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Annihilator graph of a commutative semigroup

whose zero-divisor graph is a refinement

of a star graph

Mojgan Afkhami, Kazem Khashyarmanesh

and Seyed Mohammad Sakhdari

Abstract. Suppose that G is a refinement of a star graph with center c and G∗ is the subgraph
of G induced on the vertices V (G) \ {x ∈ V (G) | x = c or x is an end vertex adjacent to c}. Let
S be a commutative semigroup with zero and Γ(S) be the zero-divisor graph of S. In this paper,
we determine the structure of the annihilator graph of S by using the zero-divisor graph Γ(S),
which is a refinement of a star graph with center c, and Γ(S)∗ has at least two components or
Γ(S)∗ is isomorphic to a cycle graph or a path.

1. Introduction
Throughout the paper S is a commutative semigroup with zero whose operation is
written multiplicatively. The set of all zero-divisors of S is denoted by Z(S) and
Z(S)∗ = Z(S) \ {0}.

There are many papers which interlink graph theory and ring theory. Several
classes of graphs associated with algebraic structures have been actively investi-
gated (see for example, [2, 3, 4, 5, 6, 7, 8, 11, 12, 18, 19]).

For any commutative semigroup S with zero element 0, there is a simple undi-
rected graph, which is called the zero-divisor graph and is denoted by Γ(S) (cf.
[17]). The vertex set of Γ(S) is Z(S)∗ and x is adjacent to y in Γ(S) if and only if
xy = 0, for each two distinct elements x and y in Z(S)∗. It was proved that Γ(S)
is connected and the diameter of Γ(S) is less than or equal to three. Also if Γ(S)
contains a cycle, then its girth is less than or equal to four. For more details on
zero-divisor graphs see [9], [13], [15], [16], [17], [21].

In [10], A. Badawi introduced the concept of the annihilator graph for a com-
mutative ring R, denoted by AG(R), with vertices Z(R)∗ and x ∼ y is an edge in
AG(R) if and only if annR(xy) 6= annR(x) ∪ annR(y), where annR(x) = {r ∈ R |
xr = 0}.

In [1], the present authors introduced the annihilator graph for a commutative
semigroup S, which is denoted by AG(S). The graph AG(S) is an undirected
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graph with vertex set Z(S)∗ and two distinct vertices x and y are adjacent if and
only if annS(xy) 6= annS(x) ∪ annS(y), where annS(x) = {s ∈ S | xs = 0}. Some
basic properties of AG(S) are investigated in [1]. For example, it was proved that
if Z(S) 6= S, then Γ(S) is a subgraph of AG(S), and so AG(S) is connected. Also
if Z(S) = S and there exists x ∈ S∗ = S \ {0} such that annS(x) ⊇ Z(S) \ {x},
then x is an isolated vertex in AG(S).

Recall that a graph G with n+ 1 vertices is called a star graph, and is denoted
by K1,n, if there exists a vertex x ∈ V (G) such that d(x) = n, and for each
vertex y ∈ V (G) \ {x}, we have d(y) = 1. The vertex x is called the center of
K1,n. Suppose that G and H are two graphs. H is called a refinement of G if
V (G) = V (H) and each edge in G is an edge in H. The subgraph induced on
vertices V (G) \ {x ∈ V (G) | x = c or x is an end vertex adjacent to c} is denoted
by G∗.

In this paper, we study the annihilator graph associated to a commutative
semigroup with zero by using the zero-divisor graph Γ(S), where Γ(S) is a refine-
ment of a star graph with center c, and Γ(S)∗ has at least two components or
Γ(S)∗ is isomorphic to a cycle graph or a path.

2. Preliminaries

Now we recall some definitions and notations of graphs. We use the standard
terminology of graphs is contained in [14]. Let G be a graph with vertex set V (G)
and edge set E(G). We use the notation x ∼ y to denote that x is adjacent to y
in G and edge between x and y will denote by {xy}. Also the distance between
two distinct vertices a and b, denoted by d(a, b), is the length of the shortest path
connecting a and b, if such a path exists; otherwise, we use d(a, b) := ∞. The
diameter of a graph G is diam(G) = sup{d(a, b) : a and b are distinct vertices
of G}. The girth of G, denoted by gr(G), is the length of the shortest cycle in
G, if such a cycle exists; otherwise, we use gr(G) := ∞. A graph G is said to be
connected if there exists a path between any two distinct vertices, and it is complete
if it is connected with diameter one. We use Kn to denote a complete graph with
n vertices. Also, we say that G is totally disconnected if no two vertices of G are
adjacent. We use nK1 to denote the totally disconnected graph with n vertices.
For a vertex x of a graph G, the neighborhood of x, denoted by N(x), is the set
of vertices which are adjacent to x, moreover the degree of x, denoted by d(x), is
the cardinality of N(x). Also, a vertex u is an end vertex, if there is only one edge
incident to u, and it is an isolated vertex if d(u) = 0. Let G and H be two graphs.
We use the notation H 6 G (resp, H ∼= G) to denote that H is a subgraph of G
(resp, H is isomorphic to G). Also we use G\{{x1y1}, {x2y2}, {x3y3}, ..., {xnyn}}
to denote a graph G, such that the edges {x1y1}, {x2y2}, {x3y3}, ..., {xnyn} are
deleted.

As usual Pn and Cn will denote the path of length n and the cycle of length
n, respectively. Suppose that G is a graph with m components such that each
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component of G is isomorphic to Kn. Then we will denote G by mKn. Let H and
G be two graphs such that V (G) ∩ V (H) = ∅ and E(G) ∩ E(H) = ∅. Then the
union of the graphs H and G, which is denoted by H ∪G, is a graph with vertex
set V (G) ∪ V (H) and edge set E(H) ∪ E(G).

Throughout the paper, we assume that |Z(S)∗| > 3. The case that |Z(S)∗| 6 2
is easy. Indeed, if |Z(S)∗| = 1, then AG(S) ∼= Γ(S) ∼= K1. Let |Z(S)∗| = 2. Then
Γ(S) ∼= K2. Now if Z(S) = S, then clearly AG(S) ∼= 2K1, and if Z(S) 6= S, then
AG(S) ∼= Γ(S) ∼= K2. Moreover, in [1, Section 4 ], the case that |Z(S)∗| = 3 and
in [20] the case that |Z(S)∗| = 4, have been discussed.

3. Properties of AG(S)

In this section, we determine the structure of the annihilator graph of a commu-
tative semigroup S whose Γ(S) is a refinement of a star graph with center c and
Γ(S)∗ satisfies one of the properties: (1) Γ(S)∗ has at least two components, (2)
Γ(S)∗ is a cycle graph, (3) Γ(S)∗ is a path. Also since Γ(S) is a refinement of
a star graph with center c, if c2 = 0, then annS(c) = Z(S). Moreover, in this
section, we show that if Z(S) = S, then 5 is sharp for the girth of AG(S), while
if Z(S) 6= S, then gr(AG(S)) 6 4.

Proposition 3.1. [22, Corollary 2.4] Suppose that Γ(S) is a refinement of a star
graph with center c, and Γ(S)∗ has at least two components. Then S2 = {0, c},
where S2 = {xy|x, y ∈ S}.

By Proposition 3.1, it is clear that if Γ(S) is a refinement of a star graph and
Γ(S)∗ has at least two components, then if there exists a vertex z which is not
adjacent to some vertices x and y in Γ(S), then x and y are adjacent in AG(S).
Also, note that if Γ(S) is a refinement of a star graph with center c and S2 = {0, c},
then annS(xy) = Z(S), for all x, y ∈ Z(S). Now, the proof of the next theorem
follows from [1, Theorems 3.1 and 3.8].

Theorem 3.2. Suppose that Γ(S) is a refinement of a star graph with center c.
Also assume that Γ(S)∗ has at least three components and |V (Γ(S))| = n+1. Then
the following statements hold.

1. If x and y are two distinct non adjacent vertices in Γ(S), then x ∼ y in
AG(S).

2. If Z(S) 6= S, then AG(S) ∼= Kn+1.
3. Z(S) = S, then AG(S) ∼= Kn ∪K1, where c is an isolated vertex in

AG(S).

A graph G is called a friendship graph (or a fan graph) if G is a refinement
of a star graph with center c such that G \ {c} ∼= nK2 and it is denoted by Fn.
Clearly |V (Fn)| = 2n + 1.
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Corollary 3.3. Suppose that Γ(S) ∼= Fn with center c and n > 3. Then the
following statements hold.

1. If Z(S) 6= S, then AG(S) ∼= K2n+1.
2. If Z(S) = S, then AG(S) ∼= K2n ∪K1, where c is an isolated vertex in

AG(S).

Proof. Since Γ(S) ∼= Fn with center c and n > 3, we have Γ(S)∗ ∼= nK2, and
so Γ(S)∗ has at least three components. Therefore, by Theorem 3.2, the results
hold.

Lemma 3.4. Suppose that Γ(S) is a refinement of a star graph with center c such
that Γ(S)∗ has exactly two components A and B. Then the following statements
hold.

1. If x, y ∈ A, then x∼y in AG(S). Similarly, if x, y ∈ B, then x∼y in AG(S).

2. Suppose that x, y ∈ Z(S)∗ \ {c}. Then x � y in AG(S) if and only if there
exists no end vertex adjacent to c in Γ(S) and x ∈ A, annS(x) = A ∪ {0, c}
and y ∈ B, annS(y) = B ∪ {0, c}.

Proof. (1). It follows by Proposition 3.1.
(2). First suppose that x, y ∈ Z(S)∗\{c} and x � y inAG(S). Then, by (i), x ∈

A, y ∈ B, and so xy 6= 0 and, by Proposition 3.1, we have xy = c which follows that
c2 = (xy)c = x(yc) = 0, and hence annS(c) = Z(S). Since x � y in AG(S), we see
that annS(x) ∪ annS(y) = annS(xy) = annS(c) = Z(S). If there exists u such that
u is an end vertex adjacent to c in Γ(S), then u /∈ annS(x)∪annS(y) = Z(S), which
is impossible. Thus there exists no end vertex adjacent to c in Γ(S). Now if x2 6= 0
or y2 6= 0, then x /∈ annS(x) ∪ annS(y) = Z(S), or y /∈ annS(x) ∪ annS(y) = Z(S),
which is impossible. Therefore x2 = y2 = 0. Finally, if there exists a ∈ A such
that x � a in Γ(S), then a /∈ annS(x) ∪ annS(y) = annS(xy) = annS(c) = Z(S),
which is impossible. Hence for each a ∈ A, we have x ∼ a in Γ(S), and so
annS(x) = A ∪ {0, c}. Similarly, annS(y) = B ∪ {0, c}.

Conversely, since x ∈ A and y ∈ B, which implies that xy 6= 0 and, by
Proposition 3.1, we have xy = c. So annS(xy) = annS(c) = Z(S). Since there
exists no end vertex adjacent to c in Γ(S) and annS(x) = A∪{0, c} and annS(y) =
B ∪ {0, c}, we have annS(x) ∪ annS(y) = A ∪ B ∪ {0, c} = Z(S) = annS(xy).
Therefore x � y in AG(S).

The next theorem follows from Lemma 3.4.

Theorem 3.5. Suppose that Γ(S) is a refinement of a star graph with center c
such that there exists no end vertex adjacent to c in Γ(S) and |V (Γ(S)∗| = n.
Also assume that Γ(S)∗ has exactly two components A and B. Then the following
statements hold.

1. If Z(S) 6= S, then AG(S) ∼= Kn+1 \ {{xy}| x ∈ A, y ∈ B and annS(x) =
A ∪ {0, c} and annS(y) = B ∪ {0, c}}.
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2. If Z(S) = S, then AG(S) ∼= K1 ∪Kn \ {{xy}| x ∈ A, y ∈ B and annS(x) =
A∪{0, c} and annS(y) = B∪{0, c}}, where c is an isolated vertex in AG(S).

The next two corollaries immediately follows from Theorem 3.5 and [1, Theo-
rems 3.1 and 3.8].

Corollary 3.6. Suppose that Γ(S) ∼= F2 with center c. Also assume that Z(S) 6= S
and V (Γ(S)∗) = {x, y, z, w} with x ∼ y and w ∼ z. Then the following statements
hold.

1. AG(S) ∼= F2 if and only if x2 = y2 = z2 = w2 = 0.
2. AG(S) ∼= K5 \ {{wy}, {wx}} if and only if z2 = c and y2 = w2 = x2 = 0.
3. AG(S) ∼= K5 \ {{yz}} if and only if x2 = w2 = c and y2 = z2 = 0.
4. AG(S) ∼= K5 if and only if x2 = y2 = c or w2 = z2 = c.

Corollary 3.7. Suppose that Γ(S) ∼= F2 with center c. Also assume that Z(S) = S
and V (Γ(S)∗) = {x, y, z, w} with x ∼ y and w ∼ z. Then the following statements
hold.

1. AG(S) ∼= K1 ∪ 2K2, where c is an isolated vertex in AG(S), if and only if
x2 = y2 = z2 = w2 = 0.

2. AG(S) ∼= K1 ∪K4 \ {{wy}, {wx}}, where c is an isolated vertex in AG(S),
if and only if z2 = c and y2 = w2 = x2 = 0.

3. AG(S) ∼= K1 ∪K4 \ {{yz}}, where c is an isolated vertex in AG(S), if and
only if x2 = w2 = c and y2 = z2 = 0.

4. AG(S) ∼= K1 ∪K4, where c is an isolated vertex in AG(S), if and only if
x2 = y2 = c or w2 = z2 = c.

Theorem 3.8. Suppose that Γ(S) is a refinement of a star graph with center c
and T = {u | u is an end vertex adjacent to c in Γ(S)} and | T |= m > 1. Also
assume that Γ(S)∗ has exactly two components A and B and |V (Γ(S)∗)| = n.
Then the following statements hold.

1. If x ∈ A and y ∈ B, then x ∼ y in AG(S).
2. If x ∈ A, y ∈ B and u ∈ T , then u ∼ x and u ∼ y in AG(S).
3. If u, v ∈ T , then u ∼ v in AG(S).

The next corollary immediately follows from Theorem 3.8 and [1, Theorems
3.1 and 3.8].

Corollary 3.9. Suppose that Γ(S) is a refinement of a star graph with center c
and T = {u | u is an end vertex adjacent to c in Γ(S)} and | T |= m > 1. Also
assume that Γ(S)∗ has exactly two components and |V (Γ(S)∗)| = n. Then the
following statements hold.

1. If Z(S) 6= S, then AG(S) ∼= Km+n+1.
2. If Z(S) = S, then AG(S) ∼= Km+n ∪K1, where c is an isolated vertex in

AG(S).
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Proposition 3.10. [22, Theorem 2.5] Suppose that Γ(S) is a refinement of a star
graph with center c such that Γ(S)∗ is isomorphic to Cn, where n > 5. Then
S2 = {0, c}.

Lemma 3.11. Suppose that Γ(S) is a refinement of a star graph with center c
such that there exists no end vertex adjacent to c in Γ(S). Also assume that
Γ(S)∗ ∼= Cn, where n > 5 and x, y ∈ Z(S)∗ \ {c}. Then the following statements
hold.

1. If x ∼ y in Γ(S), then x ∼ y in AG(S).
2. If x � y in Γ(S) and x2 6= 0 or y2 6= 0, then x ∼ y in AG(S).
3. If x � y in Γ(S) and n > 7, then x ∼ y in AG(S).
4. x � y in AG(S) if and only if x2 = y2 = 0, xy = c and n = 5, or

x2 = y2 = 0, d(x, y) = 3 in Γ(S) and n = 6.

Proof. The proof of (1) and (2) is clear.
(3). Since Γ(S) ∼= Cn and n > 7, we have |V (Γ(S)∗)| > 7, and so |Z(S)| > 9,

since Z(S) = Cn∪{0, c}. On the other hand, for each two distinct vertices x and y
in Γ(S)∗, we see that |annS(x)∪annS(y)| 6 8. Since x � y in Γ(S), by Proposition
3.10, we have xy = c, and so annS(xy) = Z(S). Hence annS(x) ∪ annS(y) 6=
annS(xy), and therefore x ∼ y in AG(S).

(4). First suppose that x � y in AG(S). Then, by (i), (ii), (iii) and Proposition
3.10, we have x2 = y2 = 0, xy = c and n = 5, or n = 6. If n = 6 and d(x, y) = 2
in Γ(S), then there exists a vertex z, such that z /∈ annS(x) ∪ annS(y), and so
annS(x)∪ annS(y) 6= Z(S) = annS(c) = annS(xy). Thus x ∼ y in AG(S), which is
impossible. Also if d(x, y) = 1 in Γ(S), then x ∼ y in Γ(S) and, by (i), x ∼ y in
AG(S), which is again impossible. Therefore d(x, y) = 3 in Γ(S).

Conversely, first suppose that n = 5, x2 = y2 = 0 and xy = c. Then, since
x � y in Γ(S) and x, y ∈ C5, we have annS(x) ∪ annS(y) = Z(S) = annS(c) =
annS(xy). Thus x � y in AG(S).
Now suppose that x2 = y2 = 0, d(x, y) = 3 in Γ(S) and n = 6. Then Z(S) = C6 ∪
{0, c}, and so |Z(S)| = 8. Also since d(x, y) = 3, we see that annS(x)∩ annS(y) =
{0, c} and |annS(x)| = |annS(y)| = 5, and so |annS(x) ∪ annS(y)| = 8 = |Z(S)| =
|annS(c)| = |annS(xy)|. Thus annS(x) ∪ annS(y) = annS(xy). Therefore x � y in
AG(S).

The following three theorems immediately follows from Lemma 3.11, [1, The-
orems 3.1 and 3.8].

Theorem 3.12. Assume that all the hypothesis of Lemma 3.11 hold and n > 7.
Then we have the following statements.

1. If Z(S) 6= S, then AG(S) ∼= Kn+1.
2. If Z(S) = S, then AG(S) ∼= Kn∪K1, where c is an isolated vertex in AG(S).

Theorem 3.13. Suppose that all the hypothesis of Lemma 3.11 hold and n = 6.
Then we have the following statements.
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1. If Z(S) 6= S, then AG(S) ∼= K7 \ {{xy}|x2 = y2 = 0,d(x, y) = 3 in Γ(S)}.
2. If Z(S) = S, then AG(S) ∼= K1 ∪K6 \ {{xy}|x2 = y2 = 0,d(x, y) = 3 in

Γ(S)}, where c is an isolated vertex in AG(S).

Theorem 3.14. Suppose that all the hypothesis of Lemma 3.11 hold and n = 5.
Then we have the following statements.

1. If Z(S) 6= S, then AG(S) ∼= K6 \ {{xy}|x2 = y2 = 0, xy = c}.
2. If Z(S) = S, then AG(S) ∼= K1 ∪K5 \ {{xy}|x2 = y2 = 0, xy = c}, where c

is an isolated vertex in AG(S).

If Z(S) 6= S, then, by [1, Theorem 3.1], Γ(S) 6 AG(S), and since gr(Γ(S)) 6 4,
we have gr(AG(S)) 6 4. But if Z(S) = S, then the following example shows that
5 is sharp for the girth of AG(S).

Example 3.15. Suppose that S = {0, c, a1, a2, a3, a4, a5}, with a1a2 = a2a3 =
a3a4 = a4a5 = a5a1 = 0, cS = 0 and a2i = c2 = 0, for each 1 6 i 6 5. Otherwise
aiaj = c. Then Z(S) = S and, by [22, Theorem 2.5], S is a semigroup and Γ(S)
is a refinement of a star graph with center c such that there exists no end vertex
adjacent to c in Γ(S) and Γ(S)∗ ∼= C5.

Now, by Theorem 3.14 (ii), AG(S) ∼= K1∪C5 which means that gr(AG(S)) = 5.

Theorem 3.16. Suppose that all the hypothesis of Lemma 3.11 hold and n = 3.
Then we have the following statements. 1. If Z(S) 6= S, then AG(S) ∼= K4.

2. If Z(S) = S, then AG(S) ∼= 4K1.

Proof. Since there exists no end vertex adjacent to c in Γ(S) and Γ(S)∗ ∼= C3
∼= K3,

we have Γ(S) ∼= K4. Now, by [1, Theorems 3.1 and 3.9], the results hold.

For the case n = 4, we have the following lemma.

Lemma 3.17. Suppose that all the hypothesis of Lemma 3.11 hold and n = 4.
Also assume that V (Γ(S)∗) = {x, y, z, w} with x ∼ y ∼ z ∼ w ∼ x. Then we have
the following statements.

1. annS(x) ∪ annS(y) = annS(y) ∪ annS(z) = annS(z) ∪ annS(w) = annS(w)∪
annS(x) = Z(S).

2. xz ∈ {x, z, c} and wy ∈ {w, y, c}.
3. x � z in AG(S) if and only if xz = x, or xz = z, or xz = c and x2 = z2 =

0. Also w � y in AG(S) if and only if wy = w, or wy = y, or wy = c and
w2 = y2 = 0.

4. x ∼ z in AG(S) if and only if xz = c and x2 6= 0 or z2 6= 0. Also w ∼ y in
AG(S) if and only if wy = c and w2 6= 0 or y2 6= 0.

Proof. (1). Since V (Γ(S)∗) = {x, y, z, w} with x ∼ y ∼ z ∼ w ∼ x, we have
Z(S) = {0, c, x, y, z, w}, and annS(x) ⊇ {0, c, y, w} and annS(y) ⊇ {0, c, x, z}.



164 M. Afkhami, K. Khashyarmanesh and M. Sakhdari

Thus annS(x) ∪ annS(y) = Z(S). Similarly, annS(y) ∪ annS(z) = annS(z) ∪
annS(w) = annS(w) ∪ annS(x) = Z(S).

(2). Since x � z and w � y in Γ(S), we have xz 6= 0 and wy 6= 0. If xz = y,
then wy = w(xz) = (wx)z = 0, which is impossible. So xz 6= y. Similarly xz 6= w.
Thus xz ∈ {x, z, c}. By a similar argument, wy ∈ {w, y, c}.

(3). Suppose that x � z in AG(S), xz 6= x and xz 6= z. Then, by (ii), xz = c.
If x2 6= 0, then x /∈ annS(x) ∪ annS(z), and so annS(x) ∪ annS(z) 6= Z(S) =
annS(c) = annS(xz). This implies that x ∼ z in AG(S), which is impossible.
Therefore x2 = 0, and similarly z2 = 0.

Conversely, if xz = x or xz = z, then x � z in AG(S). Now suppose that xz = c
and x2 = z2 = 0. Then annS(x) = {0, c, x, y, w} and annS(z) = {0, c, y, z, w}, and
so annS(x) ∪ annS(z) = {0, c, x, y, z, w} = Z(S) = annS(c) = annS(xz). Therefore
x � z in AG(S). In the same manner we can see that w � y in AG(S) if and only
if wy = w, or wy = y, or wy = c and w2 = y2 = 0.

(4) By (3), it is clear.

The following two corollaries follow from Lemma 3.17 and [1, Theorems 3.1
and 3.8].

Corollary 3.18. Suppose that all the hypothesis of Lemma 3.17 hold and Z(S) 6=
S. Then one of the following statements hold.

1. AG(S) ∼= K5 if and only if the conditions:
(1) xz = wy = c,
(2) x2 6= 0 or z2 6= 0,
(3) w2 6= 0 or y2 6= 0 hold.

2. AG(S) ∼= K5 \ {{xz}} if and only if the conditions:
(1) wy = c, and w2 6= 0 or y2 6= 0,
(2) xz = x, or xz = z, or xz = c and x2 = z2 = 0 hold.

3. AG(S) ∼= K5 \ {{xz}, {wy}} if and only if the conditions:
(1) wy = w, or wy = y, or wy = c and w2 = y2 = 0,
(2) xz = x, or xz = z, or xz = c and x2 = z2 = 0 hold.

Corollary 3.19. Suppose that all the hypothesis of Lemma 3.17 hold and Z(S) =
S. Then one of the following statements holds.

1. AG(S) ∼= 2K2 ∪K1, where c is an isolated vertex and x ∼ z and y ∼ w, if
and only if the conditions:
(1) xz = wy = c,
(2) x2 6= 0 or z2 6= 0,
(3) w2 6= 0 or y2 6= 0 hold.

2. AG(S) ∼= K2 ∪ 3K1, where c, x, z are isolated vertices and w ∼ y if and only
if the conditions:
(1) wy = c,
(2) w2 6= 0 or y2 6= 0,
(3) xz = x, or xz = z, or xz = c and x2 = z2 = 0 hold.
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3. AG(S) ∼= 5K1 if and only if the conditions:
(1) wy = w, or wy = y, or wy = c and w2 = y2 = 0,
(2) xz = x, or xz = z, or xz = c and x2 = z2 = 0 hold.

The next theorem follows from [1, Theorems 3.1 and 3.8].

Theorem 3.20. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= Cn, where n > 5. Also assume that

T = {u | u is an end vertex adjacent to c in Γ(S)}
and | T |= m > 1. Then the following statements hold.

1. If x, y ∈ V (Γ(S)∗), then x ∼ y in AG(S).
2. If x ∈ V (Γ(S)∗) and u ∈ T , then x ∼ u in AG(S).
3. If u, v ∈ T , then u ∼ v in AG(S).
4. If Z(S) 6= S, then AG(S) ∼= Kn+m+1.
5. If Z(S) = S, then AG(S) ∼= Kn+m ∪K1, where c is an isolated vertex in

AG(S).

Proposition 3.21. [22, Theorem 2.6] Suppose that Γ(S) is a refinement of a star
graph with center c and Γ(S)∗ ∼= Pn, where n > 5. Then S2 = {0, c} and c2 = 0.

Theorem 3.22. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= Pn, where n > 6. Also assume that

T = {u | u is an end vertex adjacent to c in Γ(S)}
and | T |= m > 0. Then we have the following statements.

1. If x, y ∈ V (Γ(S)∗), then x ∼ y in AG(S).
2. If x ∈ V (Γ(S)∗) and u ∈ T , then x ∼ u in AG(S).
3. If u, v ∈ T , then u ∼ v in AG(S).
4. If Z(S) 6= S, then AG(S) ∼= Kn+m+2.
5. If Z(S) = S, then AG(S) ∼= Kn+m+1 ∪K1, where c is an isolated vertex in

AG(S).

Proof. The proof follows from Proposition 3.21 and [1, Theorems 3.1 and 3.8].

Lemma 3.23. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P5, with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5 ∼ a6. Also assume that there exists
no end vertex adjacent to c in Γ(S). Then a2 ∼ a5 in AG(S) if and only if a22 6= 0
or a25 6= 0. Otherwise, ai ∼ aj in AG(S), for each 1 6 i < j 6 6.

Proof. By proposition 3.15, for each 1 6 i < j 6 6, we have aiaj = 0 or aiaj = c
and c2 = 0, which follows that annS(aiaj) = Z(S). Now if a22 6= 0 or a25 6= 0, then
annS(a2)∪ annS(a5) 6= Z(S) = annS(a2a5), which implies that a2 ∼ a5 in AG(S).

Conversely, suppose on the contrary that a2 ∼ a5 in AG(S) and a22 = a25 = 0.
Then annS(a2) ∪ annS(a5) = Z(S) = annS(a2a5), which is a contradiction. Thus
a22 6= 0 or a25 6= 0.
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Finally, since Γ(S)∗ ∼= P5, it implies that, for each 1 6 i < j 6 6, other than
the case i = 2 and j = 5, we have annS(ai) ∪ annS(aj) 6= Z(S) = annS(aiaj),
which implies that ai ∼ aj in AG(S).

Theorem 3.24. Suppose that all the hypothesis of Lemma 3.23 hold. Then we
have the following statements.

1. If Z(S) 6= S, then AG(S) ∼= K7 if and only if a22 6= 0 or a25 6= 0. Otherwise
AG(S) ∼= K7 \ {a2a5}.

2. If Z(S) = S, then AG(S) ∼= K1 ∪K6 if and only if a22 6= 0 or a25 6= 0.
Otherwise AG(S) ∼= K1 ∪ K6 \ {a2a5}, where c is an isolated vertex in

AG(S).

Proof. By Lemma 3.23 and [1, Theorems 3.1 and 3.8], it is clear.

Lemma 3.25. Suppose that Γ(S) is a refinement of a star graph with center
c and Γ(S)∗ ∼= P5, with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5 ∼ a6. Also assume that
T = {u | u is an end vertex adjacent to c in Γ(S)} and | T |= m > 1. Then we
have the following statements.

1. If Z(S) 6= S, then AG(S) ∼= K7+m.
2. If Z(S) = S, then AG(S) ∼= K6+m ∪K1, where c is an isolated vertex in

AG(S).

For the case n 6 4, Proposition 3.21 doesn’t hold. For the case n = 4, we have
the following two lemmas.

Lemma 3.26. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P4, with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5. Then the following statements
hold.

1. Γ(S)∗ 6 AG(S).
2. a1a3 ∈ {a3, c}, a1a4 = c, a1a5 ∈ {a3, c}, a2a4 = c, a2a5 = c and a3a5 ∈
{a3, c}.

Proof. (1). Since a5 /∈ annS(a1) ∪ annS(a2) ∪ annS(a3) and a1 /∈ annS(a3) ∪
annS(a4) ∪ annS(a5), which follows that Γ(S)∗ ∼= P4 6 AG(S).
(2). Since a1 � a3 in Γ(S), we have a1a3 6= 0. If a1a3 = a1, then a1a4 =
(a1a3)a4 = a1(a3a4) = 0, and if a1a3 = a2, then a2a4 = 0, which are impossible.
Also if a1a3 = a4, then a2a4 = 0, and if a1a3 = a5, then a2a5 = 0, which are
again impossible. Thus a1a3 ∈ {a3, c}. The similar arguments applies to the other
cases.

If a1a3 = a3, then a1 � a3 in AG(S), and if a1a3 = c, then a1 ∼ a3 in AG(S),
since a5 /∈ annS(a1) ∪ annS(a3). Also if a21 = 0 and a24 = 0, then annS(a1) ∪
annS(a4) = {a1, a2, a3, a4, a5, c, 0} = annS(c) = annS(a1a4). Thus a1 ∼ a4 in
AG(S) if and only if a21 6= 0 or a24 6= 0. Since a3 /∈ annS(a1) ∪ annS(a5) and
a3 ∈ annS(c) = annS(a1a5), if a1a5 = c, then a1 ∼ a5 in AG(S). If a1a5 = a3,
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then a21a5 = a1a3 6= 0 and a25a1 = a5a3 6= 0, and so a21 6= 0 and a25 6= 0. Now if
a23 6= 0, then annS(a1)∪annS(a5) = {a2, a4, c, 0} = annS(a3) = annS(a1a5). Hence
if a1a5 = a3, then a1 ∼ a5 in AG(S) if and only if a23 = 0. Similarly, a2 ∼ a4
in AG(S) if and only if a22 6= 0 or a24 6= 0, and a2 ∼ a5 in AG(S) if and only
if a22 6= 0 or a25 6= 0. Clearly, if a3a5 = a3, then a3 � a5 in AG(S), and since
a1 /∈ annS(a3) ∪ annS(a5), if a3a5 = c, then a3 ∼ a5 in AG(S).

For example, suppose that S = {0, c, a1, a2, a3, a4, a5}, with a1a2 = a2a3 =
a3a4 = a4a5 = 0, a1a3 = a1a5 = a3a5 = a3, a1a4 = a2a4 = a2a5 = c, a21 = a23 =
a25 = a3 and a22 = c, a24 = 0. Then, by [22, Exampe 2.7], S is a commutative
semigroup and Γ(S) is a refinement of a star graph with center c and Γ(S)∗ ∼= P4,
with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5. Also there exists no end vertex adjacent to c in
Γ(S). See Figure 1.

Figure 1. Γ(S) AG(S), Z(S) = S AG(S), Z(S) 6= S

Lemma 3.27. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P4, with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5. Also assume that

T = {u | u is an end vertex adjacent to c in Γ(S)}
and | T |= m > 1. Then the following statements hold.

1. For each u, v ∈ T , if uv /∈ T , or uv = t ∈ T \ {u, v} and t2 = 0, then u ∼ v
in AG(S). Otherwise u � v in AG(S).

2. For each ai ∈ V (Γ(S)∗) and u ∈ T , we have aiu /∈ T and ai ∼ u in AG(S)
if and only if aiu 6= ai, for 1 6 i 6 5.

Proof. (1). If uv /∈ T , then uv = c or uv = ai, (1 6 i 6 5). If uv = c, then
c2 = 0 and clearly u ∼ v in AG(S). Assume that uv = ai, (1 6 i 6 5). Then
there exists aj , (1 6 j 6 5 and j 6= i) such that aiaj = 0, uaj 6= 0 and vaj 6= 0.
Thus aj ∈ annS(ai) = annS(uv) and aj /∈ annS(u) ∪ annS(v), and hence u ∼ v in
AG(S).

Now suppose that uv = t ∈ T \ {u, v} and t2 = 0. Then u2v = ut 6= 0, and so
u2 6= 0 also v2 6= 0. Thus annS(u) ∪ annS(v) = {0, c} 6= {0, c, t} = annS(t), which
implies that u ∼ v in AG(S). Otherwise if uv = u, or uv = v, or uv = t and
t2 6= 0, then clearly u � v in AG(S).
(2). If aiu = t ∈ T , then there exists aj ∈ annS(ai), j 6= i, such that ajt =
aj(aiu) = (ajai)u = 0, which is impossible. Thus aiu /∈ T , and so aiu = c or
aiu = aj and 1 6 j 6 5. If aiu = c, then clearly ai ∼ u in AG(S), since there
exists aj , (1 6 j 6 5 and j 6= i), such that aiaj 6= 0, uaj 6= 0 and caj = 0.
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Now if a1u = a4, then a2a4 = a2(a1u) = (a2a1)u = 0, and if a1u = a5, then
a2a5 = 0, which are impossible. Thus a1u ∈ {c, a1, a2, a3}. Similarly we have
a5u ∈ {c, a3, a4, a5}, a2u ∈ {c, a2}, a3u ∈ {c, a3}, and a4u ∈ {c, a4}.

Now by the above discussion the statement (2) holds.

In this case, by Lemma 3.26, Γ(S)∗ 6 AG(S) and we have a1 ∼ a4 ∼ a2 ∼ a5
in AG(S) and a1 ∼ a3 in AG(S) if and only if a1a3 = c and a3 ∼ a5 in AG(S) if
and only if a3a5 = c. Also a1 ∼ a5 in AG(S) if and only if a1a5 = c, or a1a5 = a3
and a23 = 0.

For the case n = 3, we have the following two lemmas.

Lemma 3.28. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P3, with a1 ∼ a2 ∼ a3 ∼ a4. Also assume that there exists no end
vertex adjacent to c in Γ(S). Then the following statements hold.

1. a1 ∼ a2 and a3 ∼ a4 in AG(S), but if Z(S) = S, then a2 � a3 in AG(S).
2. a1a3 ∈ {a3, c}, a1a4 ∈ {a2, a3, c}, a2a4 ∈ {a2, c}. Also if a1a4 = a2, then

a22 = 0, and a24 6= 0, and if a1a4 = a3, then a23 = 0 and a21 6= 0.

Proof. (1). Since a4 /∈ annS(a1)∪annS(a2) and a1 /∈ annS(a3)∪annS(a4), we have
a1 ∼ a2 and a3 ∼ a4 in AG(S). Also we see that annS(a2)∪ annS(a3) = Z(S) and
annS(a2a3) = S, and so if Z(S) = S, then a2 � a3 in AG(S).

(2). Since a1 � a3 in Γ(S), we have a1a3 6= 0. If a1a3 = a1, then a1a4 =
(a1a3)a4 = a1(a3a4) = 0, and if a1a3 = a2, then a2a4 = 0, which are impossible.
Also if a1a3 = a4, then a2a4 = 0, which is again impossible. Thus a1a3 ∈ {a3, c}.
Since a1 � a4 in Γ(S), we have a1a4 6= 0. If a1a4 = a1, then a1a3 = (a1a4)a3 =
a1(a4a3) = 0, and If a1a4 = a4, then a2a4 = 0, which are again impossible.
Thus a1a4 ∈ {a2, a3, c}. Similarly, a2a4 ∈ {a2, c}. Also if a1a4 = a2, then a22 =
a2(a1a4) = (a2a1)a4 = 0, and since a1a

2
4 = a2a4 6= 0, we have a24 6= 0. Similarly, if

a1a4 = a3, then a23 = 0 and a21 6= 0.

If a1a3 = a3, then a1 � a3 in AG(S), and if a1a3 = c, then a1 ∼ a3 in AG(S)
if and only if a21 6= 0 or a23 6= 0. If a1a4 = c, then a1 ∼ a4 in AG(S) if and only if
a21 6= 0 or a24 6= 0. Assume that a1a4 = a2. Then a22 = 0 and a24 6= 0. If a21 = 0,
then annS(a1)∪annS(a4) = {0, c, a1, a2, a3} = annS(a2), and so a1 � a4 in AG(S).
Thus if a1a4 = a2, then a1 ∼ a4 in AG(S) if and only if a21 6= 0. Similarly, if
a1a4 = a3, then a1 ∼ a4 in AG(S) if and only if a24 6= 0. Moreover a2 ∼ a4 in
AG(S) if and only if a2a4 = c and a22 6= 0 or a24 6= 0. Clearly, if a2a4 = a2, then
a2 � a4 in AG(S).

Lemma 3.29. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P3, with a1 ∼ a2 ∼ a3 ∼ a4. Also assume that

T = {u | u is an end vertex adjacent to c in Γ(S)}
and | T |= m > 1. Then the following statements hold.

1. Γ(S)∗ 6 AG(S).
2. a1a3 ∈ {a3, c}, a1a4 ∈ {a2, a3, c}, a2a4 ∈ {a2, c}. Also if a1a4 = a2, then
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a22 = 0, and also if a1a4 = a2, then a22 = 0 and a24 6= 0, and if a1a4 = a3,
then a23 = 0 and a21 6= 0.

3. For each u, v ∈ T , if uv /∈ T , or uv = t ∈ T \ {u, v} and t2 = 0, then u ∼ v
in AG(S). Otherwise u � v in AG(S).

4. For each ai ∈ V (Γ(S)∗) and u ∈ T , we have aiu /∈ T and ai ∼ u in AG(S)
if and only if aiu 6= ai, for 1 6 i 6 5.

Proof. Since a2a3 = 0, ua2 6= 0 and ua3 6= 0, we have u /∈ anns(a2)∪ anns(a3) and
u ∈ anns(a2a3). Thus a2 ∼ a3 in AG(S). Now, by using argument similar to that
we used in the proof of Lemmas 3.27 and 3.28, the results hold.

In this case, a1 ∼ a3 in AG(S) if and only if a1a3 = c, and if a1a4 = c, then
a1 ∼ a4 in AG(S). Also if a1a4 = a2, then a1 ∼ a4 in AG(S) if and only if a21 6= 0.
Similarly, if a1a4 = a3, then a1 ∼ a4 in AG(S) if and only if a24 6= 0. Moreover
a2 ∼ a4 in AG(S) if and only if a2a4 = c and a22 6= 0 or a24 6= 0

Assume that Γ(S) is a refinement of a star graph with center c and Γ(S)∗ ∼= P2,
with a1 ∼ a2 ∼ a3 such that there exists no end vertex adjacent to c in Γ(S). Then
Γ(S) ∼= K4 \ {a1a2} and we can see [20, Lemmas 3.11, 3.15, 4.12, 4.16]. Also for
the case n = 1, we can see [20, Lemmas 3.17, 3.12, 3.21, 4.9, 4.17] and [1, Section
4].
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On the torsion in multiplicatively closed subsets
of power associative algebras

Evgenii L. Bashkirov

Abstract. Let A be a commutative ring with 1, M an ideal of A, E a power associative algebra
over A having a basis and a unit element e. In the paper, the torsion in the multiplicatively
closed subset e + ME of E has been studied when A is an integral domain of characteristic 0
with a theory of divisors. The main theorem of the paper generalizes a result concerning the
torsion in the congruence subgroup of the general linear group over A.

One of the most useful way to study an algebraic system with a single binary
operation is to ask whether or not a property satisfied by some class of groups is
valid for the system in question. The present short note has its origin in the obser-
vation that the results of [4] concerning the torsion in the congruence subgroups
of the general linear groups over rings can not only be proved for matrix groups
over commutative integral domains that have a theory of divisors (this kind of
commutative rings is more general than that considered in [4]) but also can be
carried over to some multiplicatively closed sets in power associative algebras over
rings belonging to the family indicated. In particular, this features to investigate
the torsion in Moufang loops because these are power associative by Moufang’s
theorem ([3], p. 117). To pose the problem properly as well as to formulate the
main result one must, first, introduce and recall some terminology and notation.

Let A be a commutative ring with 1. Let E be an algebra over A with unit
element e. IfM is an ideal of A, thenME denotes the set of all finite sums

∑
i aixi

with ai ∈M,xi ∈ E. Define S(M) to be the set of all elements e+x where x ∈ME.
Since ME is a two-sided ideal of E, the subset S(M) is multiplicatively closed,
that is, the product uv is in S(M) whenever u and v are in S(M).

Hereafter A is assumed to be an integral domain. Recall that the requirement
A to have a theory of divisors means that there is a commutative semigroup D
with identity and with unique factorization such that there exists a homomorphism
a 7→ (a) of the semigroup A∗ = A \ {0} into D satisfying conditions (1)–(3) listed
on p. 171 [2]. In particular, an element a ∈ A∗ is divisible by b ∈ A∗ in the ring A
if and only if (a) is divisible by (b) in the semigroup D. Also an element a ∈ A∗ is
said to be divisible by an element a ∈ D, in symbols a|a, if (a) is divisible by a in

2010 Mathematics Subject Classification: 20N02, 20N05, 17A05, 17D05
Keywords: Power associative algebras; Moufang loops; alternative algebras; commutative rings;
congruence subgroups
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the semigroup D. Accordingly, the notation a - a means that (a) is not divisible
by a in D. The set of all elements of A that are divisible by a form an ideal of A,
written I(a). Under the settings established, the following result is valid.

Theorem. Let A be a commutative integral domain of characteristic 0 with an
identity 1. Suppose that A has a theory of divisors A∗ → D such that D contains
a prime element P satisfying the following conditions: P - 2 and P2 - p for
every prime rational integer p. Let E be a power associative algebra over A with
unit element e. Suppose that the underlying A-module of E is free. Then the set
S(I(P)) contains no element of finite order.

Proof. Suppose that S(I(P)) contains an element of finite order other than e.
Then it contains an element a of prime order p. Let a = e + b with b ∈ I(P)E.
By the condition of the theorem, the module E admits a basis, say (eλ)λ∈Λ where
Λ is an index set which need not be finite. Write b =

∑
λ∈Λ bλeλ with all bλ in A,

only a finite number of bλ being nonzero. Moreover, since b ∈ I(P)E, all bλ must
be in the ideal I(P). Now due to the power associativity of the algebra E, one
gets

ap = (e+ b)p = e+ bp+
p(p− 1)

2!
b2 + . . .+ bp = e,

whence it follows that

pb+
p(p− 1)

2!
b2 + . . .+ bp = 0. (1)

For any integer t > 1, write

bt =
∑
λ∈Λ

b
(t)
λ eλ, b

(t)
λ ∈ A, (2)

where certainly b
(1)
λ = bλ for each λ ∈ Λ. If t ranges from 1 through p, then

equations (2) contains only a finite number of nonzero coefficients b(t)λ and, in fact,
a finite number of basis elements eλ. Therefore the set of all indices λ occurring
in (2) with t ranging from 1 through p is finite and so it can be identified with the
set of positive integers {1, 2, . . . , n} for an appropriate n. Thus equations (2) with
t ∈ {1, 2, . . . , p} can be rewritten as

bt =

n∑
i=1

b
(t)
i ei. (3)

Since each bi = b
(1)
i is divisible by P (it should be kept in mind that the zero

element of A is supposed to be divisible by all elements of D), one can find an
integer l > 1 such that Pl divides all b1, . . . , bn while Pl+1 does not divide some
bj(j ∈ {1, 2, . . . , n}). This means that

(bj) = Plpm1
1 . . . pmr

r , (4)
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where r > 0, mi are positive integers and p1, . . . , pr are prime elements of D such
that

P /∈ {p1, . . . , pr}. (5)

On substituting (3) into (1), one obtains

p

n∑
i=1

biei +
p(p− 1)

2!

n∑
i=1

b
(2)
i ei + . . .+

n∑
i=1

b
(p)
i ei = 0.

Matching the coefficients of ej gives the equation

pbj = −
p−1∑
i=2

p(p− 1) . . . (p− i+ 1)

i!
b
(i)
j − b

(p)
j . (6)

There are two possibilities to consider: (a) P - p; (b) P|p.
Consider (a). Assume first that Pl+1|pbj . This assumption means that

(pbj) = Pl+uqk11 . . . qkss . (7)

for some integers u > 1, s > 0, some positive integers ki and some prime elements
q1, . . . , qs ∈ D different from P. In view of (4),

(pbj) = (p)Plpm1
1 . . . pmr

r . (8)

Equations (8) and (7) are combined to yield

(p)pm1
1 . . . pmr

r = Puqk11 . . . qkss . (9)

Here u > 1, so P arises on the right-hand side of (9) and consequently it must
coincide with some of p1, . . . , pr which is false by (5). This shows that Pl+1 - pbj .
On the other hand for each i = 2, . . . , p, Pli divides b(i)j , and hence Pl+1 divides
all b(2)

j , . . . , b
(p)
j . Thus Pl+1 divides each summand on the right-hand side of (6),

and therefore Pl+1|pbj . This contradiction shows that possibility (a) is in fact
impossible.

Consider (b). Assume first that Pl+2|pbj . In other words,

(pbj) = Pl+vrd11 . . . rdtt , (10)

where v > 2, all di are positive integers and r1, . . . , rt(t > 0) are prime elements of
D different from P. By the condition of the theorem, P2 - p, and hence

(p) = Pqk11 . . . qkss , (11)

where ki are positive integers and q1, . . . , qs(s > 0) are prime elements of D such
that

P /∈ {q1, . . . , qs}. (12)
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Further, by (4) and (11),

(p)(bj) = P1+lqk11 . . . qkss pm1
1 . . . pmr

r ,

and comparing the last relation with (10), one concludes, after cancelling Pl, that

Pvrd11 . . . rdtt = Pqk11 . . . qkss pm1
1 . . . pmr

r .

Since v > 2, the last equation can be rewritten as

Pv−1rd11 . . . rdtt = qk11 . . . qkss pm1
1 . . . pmr

r ,

where v − 1 > 1, and so P must occur on the right-hand side of the last equality
which is impossible in view of (12) and (5). Thus the assumption Pl+2|pbj has
led to a contradiction, and therefore, Pl+2 - pbj , or, to put it another way, Pl+2

is not a divisor of the left-hand side of (6). On the other hand, if 2 6 i 6 p − 1,
the element

p(p− 1) . . . (p− i+ 1)

i!
b
(i)
j

of A has P(Pl)i = P1+li as a divisor, and so Pl+2 is its divisor too. Also Plp|b(p)j .
Now notice that p > 2 due to the assumption P|p defining possibility (b) and in
view of the relation P - 2 which is true by the condition of the theorem. Therefore,
one has lp > l+2, and consequently Pl+2|b(p)j . Thus every term on the right-hand
side of (6) has Pl+2 as a divisor, and hence Pl+2 divides the entire expression on
the right-hand side of (6). This final contradiction completes the proof.

As a special case of the preceding theorem, the following assertion dealing with
general alternative algebras deserves to be formulated.

Corollary 1. Let A,E and P be as in Theorem. Suppose that the algebra E is
alternative. Then the set of invertible elements of E that are contained in S(I(P))
is a Moufang loop without torsion.

Proof. By [1], p. 81, the set of invertible elements in E is a Moufang loop. So
having in view Theorem, it suffices to show that for any invertible x ∈ S(I(P)), its
inverse x−1 is also in S(I(P)). Now one can write x−1 = e+b with b ∈ E. Recalling
that x = e+a with a ∈ I(P)E, one has e = xx−1 = (e+a)(e+ b) = e+a+ b+ab,
whence b = −a − ab. But I(P)E is a two-sided ideal of E, and so b must lie in
I(P)E as required.

To obtain an application of Theorem in a more concrete situation of the split
Cayley-Dickson algebra O(A) as well as in the case of associative matrix algebras,
the following portion of notation is needed.

The set O(A) is formed by all symbols ( a αβ b ) such that a, b ∈ A and α, β ∈ A3,
where A3 is the rank 3 free A-module of length 3 columns with components in
A. In O(A), equality, addition and multiplication by elements of A are fulfilled
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componentwise so that O(A) is a free A-module of rank 8. The operation of
multiplication in O(A) is defined by(
a α
β b

)(
c γ
δ d

)
=

(
ac+ α · δ aγ + αd− β × δ

βc+ bδ + α× γ β · γ + bd

)
(a, b, c, d ∈ A,α, β, γ, δ ∈ A3),

where · and × denote the usual dot product and crossed product, respectively, in
A3. This makes O(A) a non-associative alternative algebra over A. The algebra
O(A) is called the (split) octonion (or Cayley–Dickson) algebra over A, and its
elements ( a αβ b ) are called octonions. The identity of the algebra O(A) is the
octonion ( 1 0

0 1 ), where 0 denotes the element of A3 all of whose components are
zeros. The Moufang loop of invertible elements of O(A) is denoted G(A).

Now let M be an ideal of A. It is a straightforward verification that the
canonical homomorphism fM : A→ A/M = B can be extended to an epimorphism
of alternative rings hM : O(A)→ O(B),

a1

a2

a3

a4

a5

a6

a7

 a8

 7→


fM (a1)

fM (a2)
fM (a3)
fM (a4)

fM (a5)
fM (a6)
fM (a7)

 fM (a8)

 .

This hM determines, in turn, a loop homomorphism gM : G(A) → G(B) : x 7→
hM (x). The kernel of gM , denoted CL(A,M), will be termed the M -congruence
subloop by analogy with the corresponding concept in the theory of matrix groups
(see [4], p. 65) and it is appropriate to recall this concept here.

First, if n > 2 and R is an associative ring with identity, then the group
of all invertible n × n matrices over R is denoted by GL(n,R) and called the
general linear group (of degree n over R). Now the canonical homomorphism fM
determines the group homomorphism βM : GL(n,A) → GL(n,B) which sends a
matrix a ∈ GL(n,A) whose element in row i, column j is denoted aij(1 6 i, j 6 n)
to the matrix of GL(n,B) whose element in row i, column j is equal to fM (aij).
The kernel of βM is just the M -congruence subgroup GL(n,A,M).

Corollary 2. Let A and P be such as in Theorem. Let n be an integer, n > 3.
Then the I(P)-congruence subloop C(A, I(P)) as well as the I(P)-congruence sub-
group CL(n,A, I(P)) are torsion free.

Proof. Note that the subloop C(A, I(P)) (the subgroup CL(n,A, I(P)), respec-
tively) coincides with the set of invertible elements in the multiplicatively closed
subset S(I(P)) of the algebra O(A) (the algebra of n×n matrices over A, respec-
tively). Using Corollary 1 completes the proof.
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Mal’cev classes of left quasigroups and quandles

Marco Bonatto and Stefano Fioravanti

Abstract. In this paper we investigate some Mal’cev classes of varieties of left quasigroups. We
prove that the weakest non-trivial Mal’cev condition for a variety of left quasigroups is having
a Mal’cev term and that every congruence meet-semidistributive variety of left quasigroups is
congruence arithmetic. Then we specialize to the setting of quandles for which we prove that
the congruence distributive varieties are those which have no non-trivial finite models.

1. Introduction

Starting from Mal’cev’s description of congruence permutability as in [18], the
problem of characterizing properties of classes of varieties as Mal’cev conditions
has led to several results. Mal’cev conditions turned out to be extremely useful, for
instance to capture lattice theoretical properties of the congruence lattices of the
algebras of classes of variety. In [24] A. Pixley found a strong Mal’cev condition
defining the class of varieties with distributive and permuting congruences. In [15]
B. Jónsson shows a Mal’cev condition characterizing congruence distributivity, in
[10] A. Day shows a Mal’cev condition characterizing the class of varieties with
modular congruence lattices.

These results are examples of a more general theorem obtained independently
by Pixley [25] and R. Wille [28] that can be considered as a foundational result in
the field. They proved that if p 6 q is a lattice identity, then the class of varieties
whose congruence lattices satisfy p 6 q is the intersection of countably many
Mal’cev classes. [25] and [28] include an algorithm to generate Mal’cev conditions
associated with congruence identities.

Furthermore, the class of varieties satisfying a non-trivial idempotent Mal’cev
condition (i.e. any idempotent Mal’cev condition which is not satisfied by any
projection algebra) is known to be a Mal’cev class [27]. This class of varieties was
characterized by the existence of a Taylor term, namely an idempotent n-ary term
t that for every coordinate i 6 n satisfies an identity as

t(x1, . . . , xn) ≈ t(y1, . . . , yn)

where x1, . . . , xn, y1, . . . , yn ∈ {x, y}, xi = x and yi = y.
Recently this class of varieties was proven to be a strong Mal’cev class [22], i.e.

there exists the weakest strong idempotent Mal’cev condition.

2010 Mathematics Subject Classification: 20N02, 57M27, 08A30, 20N05.
Keywords: Mal’cev conditions, quandles, quasigroups:
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A variety V is meet-semidistributive if the implication

α ∧ β = α ∧ γ =⇒ α ∧ β = α ∧ (β ∨ γ),

holds for every triple of congruences of any algebra in V. It is still unknown if the
class of meet-semidistributivity varieties is defined by a strong Mal’cev condition,
nevertheless it can be characterized in several different ways [23]. On the other
hand, we are going to use the characterization of meet-semidistributive varieties
in terms of commutator of congruences as defined in [11].

Theorem 1.1. [17, Theorem 8.1 items (1), (3), (4)]
Let V be a variety. The following are equivalent:

(i) V is a congruence meet-semidistributive variety.
(ii) No member of V has a non-trivial abelian congruence.
(iii) [α, β] = α ∧ β for every α, β ∈ Con(A) and every A ∈ V.

Let A be an algebra, let α ∈ Con(A), and let a ∈ A. We denote by [a]α the
congruence class of a in α. The algebra A is said to be:

(i) coherent if every subalgebra of A which contains a block of a congruence
α ∈ Con(A) is a union of blocks of α.

(ii) Congruence regular if whenever [a]α = [a]β for some a ∈ A and α, β in
Con(A) then α = β.

(iii) Congruence uniform if the blocks of every congruence α ∈ Con(A) have
all the same cardinality.

A variety V is coherent (resp. congruence uniform, congruence regular) if all
the algebras in V are coherent (resp. congruence uniform, congruence regular).
Because for varieties regularity is equivalent to the condition that no non-zero
congruence has a singleton congruence class, every congruence uniform variety is
congruence regular. Congruence regularity and coherency are weak Mal’cev classes
(see [9] and [12]). On the other hand, it is known that congruence uniformity is
not defined by a Mal’cev condition [26].

Some of the most studied Mal’cev classes of varieties are displayed in Figure
1. We refer the reader to [2] for further informations about such classes and to [3]
for a more exhaustive poset of Mal’cev classes.

The main goal of this paper is to investigate Mal’cev conditions for racks and
quandles. In particular, this paper is concerned with certain Mal’cev classes of va-
rieties, namely, the varieties having a Taylor term, a Mal’cev term and congruence
meet semi-distributive varieties.

Left quasigroups are rather combinatorial objects, nevertheless Mal’cev classes
of varieties of left quasigroups behave in a pretty rigid way. A characterization of
Mal’cev varieties of left quasigroups is provided in Theorem 3.2: they are the vari-
eties for which every left quasigroup is connected, (a left quasigroup is connected
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T

wDF

DF CE

SD(∧) CM

SD(∨)

CD Ed

NU CP

M

CA CO

Figure 1: Mal’cev classes: T = Taylor term, wDF = weak difference term, CE = non
trivial congruence equation, DF = difference term, CM = congruence modularity, Ed
= edge term, CP = congruence permutability, M = Mal’cev term, CO = congruence
coherency, SD(∧) = meet semidistributivity, SD(∨) = join semidistributivity, CD =
congruence distributivity, NU = CD

⋂
Ed = near unanimity term, CA = CD

⋂
M =

congruence arithmeticity.

if the action of its left multiplication group is transitive). Moreover, we show
that several Mal’cev conditions are equivalent for varieties of left quasigroups. In
particular, all the classes in the interval between the class of Taylor varieties and
the class of coherent varieties in Figure 1 collapse into the strong Mal’cev class
of varieties with a Mal’cev term. Moreover, we prove that the weakest non-trivial
(not necessarily idempotent) Mal’cev condition for left quasigroups is having a
Mal’cev term, and all such varieties are congruence uniform. In Corollary 3.3
we characterize finite Mal’cev idempotent left quasigroups as the superconnected
idempotent left quasigroups (i.e. left quasigroups such that all the subalgebras are
connected) using a general result given in [1].

In Theorem 3.5 we show that a congruence meet-semidistributive variety of left
quasigroups is congruence arithmetic.

As a consequence of our two main theorems, the poset of Mal’cev classes of left
quasigroups in Figure 1 turns into the one in Figure 2.

T = CO = M

NU = SD(∧) = CA

Figure 2: Mal’cev classes of varieties of left quasigroups.

Then we turn our attention to quandles, i.e. idempotent left distributive left
quasigroups. Quandles are of interest since they provide knot invariants [16, 19].
The class of quandles used for such topological applications is the class of con-
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nected quandles. According to the characterization of Mal’cev varieties of left
quasigroups, connectedness is actually a relevant property also algebraically. Some
of the contents of the paper are formulated for semimedial left quasigroups, a class
that contain racks and medial left quasigroups [5].

A characterization of distributive varieties of semimedial left quasigroup is
given by the properties of the displacement group in Theorem 4.3 where we take
advantage of the adaptation of the commutator theory in the sense of [11] de-
veloped first for racks in [8] and then extended to semimedial left quasigroups in
[5].

In Theorem 4.9 we prove that a variety of quandles is distributive if and only
if it has no finite models, making use of the characterization of strictly simple and
simple abelian quandles [4]. We also prove that there is no distributive variety of
involutory quandles. The problem of finding an example of non-trivial distributive
variety of quandles (resp. left quasigroups) is still open.

Examples of non-trivial Mal’cev varieties of quandles (which members are not
just left quasigroup reducts of quasigroups) are provided in Table 1.

Notation and terminology. We refer to [2] for basic concepts of universal
algebra. Let A be an algebra and t be an n-ary term. Then we say that A satisfies
the identity t1(x1, . . . , xn) ≈ t2(x1, . . . , xn) if t1(a1, . . . , an) = t2(a1, . . . , an) for
every ai ∈ A.

We denote by H(A), S(A) and P(A) respectively the set of homomorphic
images, subalgebras and powers of the algebra A and V(K) denotes the variety
generated by the class of algebras K. We denote by Con(A) the congruence lattice
of A, the block of a ∈ A with respect to a congruence α is denoted by [a]α (or
simply by [a]) and the factor algebra by A/α. We denote by 1A = A × A and
0A = {(a, a) : a ∈ A} respectively the top and bottom element in the congruence
lattice of A

Through all the paper, concrete examples of left quasigroups are computed
using the software Mace4 [20] and examples of quandles are taken from the library
of connected quandles of GAP [13].

2. Left quasigroups

A left quasigroup is a binary algebraic structure (Q, ∗, \) such that the following
identities hold:

x ∗ (x\y) ≈ y ≈ x\(x ∗ y).

Hence, a left quasigroup is a set Q endowed with a binary operation ∗ such that
the mapping Lx : y 7→ x ∗ y is a bijection of Q for every x ∈ Q. The right
multiplication mappings Rx : y 7→ y ∗ x need not to be bijections. Clearly the left
division is defined by x\y = L−1x (y), so we usually denote left quasigroups just
as a pair (Q, ∗). Nevertheless, if (Q, ∗) is a left quasigroup and (R, ∗) is a binary
algebraic structure and f : Q→ R is a homomorphism with respect to ∗, the image



Qasigroups and quandles 181

of f is not necessarily a left quasigroup. We define the left multiplication group of
Q as LMlt(Q) = 〈La, a ∈ Q〉.

Let α be a congruence of a left quasigroup Q. The map

LMlt(Q) −→ LMlt(Q/α), La 7→ L[a]

can be extended to a surjective morphism of groups with kernel denoted by LMltα.
The displacement group relative to α, denoted by Disα, is the normal closure in
LMlt(Q) of {LaL−1b : aα b}. In particular, we denote by Dis(Q) the displacement
group relative to 1Q and we simpy call it the displacement group of Q. The maps
defined above clearly restrict and corestrict to the displacement groups of Q and
Q/α and we denote by Disα the intersection between LMltα and Dis(Q).

Lemma 2.1. Let K be a class of left quasigroups and Q ∈ V(K). Then:

(i) Dis(Q) ∈ V({Dis(R) : R ∈ K}).
(ii) LMlt(Q) ∈ V({LMlt(R) : R ∈ K}).

Proof. (i). Let {Qi : i ∈ I} ⊆ K. The group Dis(Qi/α) ∈ H(Dis(Qi)). Let S be
a subalgebra of Qi and H = 〈La, a ∈ S〉. Then

Dis(S) ∼= 〈hLaL−1b h−1|S , a, b ∈ S, h ∈ H〉 ∈ HS(Dis(Qi)).

Let Q =
∏
i∈I Qi and αi the kernel of the canonical homomorphism onto Qi. Then⋂

i∈I Disαi = 1 and so we have a canonical embedding

Dis(Q) ↪→
∏
i∈I

Dis(Q)/Disαi =
∏
i∈I

Dis(Qi),

i.e. Dis(Q) ∈ SP({Dis(Qi) : i ∈ I}). The same argument can be used for (ii).

In [5, Section 1] we introduced the lattice of admissible subgroups of a left
quasigroup Q. Given N 6 LMlt(Q) we have two equivalence relations on the
underlying set of the left quasigroup Q:

(i) the orbit decomposition with respect to the action of N , denoted by ON .

(ii) The equivalence conN defined as
a conN b if and only if LaL−1b ∈ N.

The assignments α 7→ Disα (resp. Disα) and N 7→ conN (resp. ON ) are
monotone and Disα 6 Disα (see the characterization of congruences in terms of
the properties of subgroups provided in [5, Lemma 1.5]), whereas in general no
containment between the equivalences conN and ON holds.

We define the lattice of admissible subgroups as

Norm(Q) = {N E LMlt(Q) : ON ⊆ conN}.
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In particular, ON is a congruence of Q whenever N is admissible and Disα,Disα

∈ Norm(Q) for every congruence α. The assignments N 7→ ON and α 7→ Disα pro-
vide a monotone Galois connection between Norm(Q) and the congruence lattice
of Q [5, Theorem 1.10].

The Cayley kernel of a left quasigroup Q is the equivalence relation λQ defined
by

a λQ b if and only if La = Lb.

Such a relation is not a congruence in general. We say that:
(i) Q is a Cayley left quasigroup if λQ is a congruence. A class of left quasi-

groups is Cayley if all its members are Cayley left quasigroups.
(ii) Q is faithful if λQ = 0Q and Q is superfaithful if all the subalgebras of Q

are faithful.
(iii) Q is permutation if λQ = 1Q, i.e. there exists f ∈ Sym(Q) such that a∗b =

f(b) for every a, b ∈ Q. If f = 1 we say that Q is a projection left
quasigroup (we denote by Pn the projection left quasigroup of size n).
Note that, permutation left quasigrouops are unary algebras and that pro-
jection left quasigroups are also called right zero semigroups.

According to [7, Theorem 5.3], the strongly abelian congruences of left quasi-
groups (in the sense of [21]) are exactly those below the Cayley kernel. Equiv-
alently, if α is a congruence of a left quasigroup Q, then α 6 λQ if and only if
Disα = 1.

A left quasigroup Q is connected if its left multiplication group is transitive on
Q. We say that Q is superconnected if all the subalgebras of Q are connected. We
investigated superconnected left quasigroups in [6].

Proposition 2.2. [6, Corollary 1.6] A left quasigroup Q is superconnected if and
only if P2 /∈ HS(Q).

The property of being (super)connected is also reflected by the properties of
congruences.

Lemma 2.3. Connected left quasigroups are congruence uniform and congruence
regular.

Proof. Let Q be a connected left quasigroup and assume that [a]α = [a]β for some
a ∈ Q. For every b ∈ Q there exists h ∈ LMlt(Q) with b = h(a). The blocks of
congruences are blocks with respect to the action of LMlt(Q). Then

[b]α = [h(a)]α = h([a]α) = h([a]β) = [h(a)]β = [b]β ,

and so α = β. In particular, the mapping h is a bijection between [a]α and [b]α
for every α ∈ Con(Q).

Lemma 2.4. Superconnected left quasigroups are coherent.
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Proof. Let Q be a superconnected left quasigroup, M be a subalgebra of Q and
α ∈ Con(Q) with [a]α ⊆ M for some a ∈ M . For every b ∈ M there exists
h ∈ LMlt(M) such that b = h(a). The blocks of α are blocks with respect to the
action of LMlt(Q) and M is a subalgebra, then h([a]α) = [b]α ⊆ M . Therefore,
M =

⋃
b∈M [b]α.

A quasigroup is a binary algebra (Q, ∗, \, /) such that (Q, ∗, \) is a left quasi-
group (the left quasigroup reduct of Q) and (Q, ∗, /) is a right quasigroup. The
left quasigroups obtained as reducts of quasigroups are called latin (note that con-
gruence and subalgebras of a quasigroup and its left quasigroup reduct might be
different due to the different signature considered for the two structures). Latin
left quasigroups are superfaithful and connected.

The squaring mapping for a left quasigroup is the map s : Q −→ Q, a 7→ a∗a.
We denote the set of idempotent elements of Q by

E(Q) = Fix(s) = {a ∈ Q : a ∗ a = a}.
We say that:

(i)] Q is idempotent if Q = E(Q), i.e. the identity x ∗ x ≈ x holds in Q.
(ii) Q is 2-divisible if s is a bijection.
(iii) Q is n-multipotent if |sn(Q)| = 1 (here sn = s ◦ sn−1 denotes the usual

composition of maps). If n = 1 we say that Q is unipotent.

3. Mal’cev classes of left quasigroups
In this section we turn our attention to Mal’cev classes of left quasigroups. Ac-
cording to [17, Theorem 3.13] a variety with a Taylor term does not contain any
strongly abelian congruence, so in particular Taylor varieties of left quasigroup do
not contain permutation left quasigroups (if Q is permutation, then 1Q = λQ is
strongly abelian).

Proposition 3.1. Let V be a Taylor variety of left quasigroups. Then Dis(Q) is
transitive on Q for every Q ∈ V.

Proof. LetQ ∈ V. According to [5, Corollary 1.9], P = Q/ODis(Q) is a permutation
left quasigroup and so P is trivial, i.e. Dis(Q) is transitive on Q.

For left quasigroups, the interval of Mal’cev classes between the class of Taylor
varieties and the class of coherent varieties collapses into the class of varieties with
a Mal’cev term.

Theorem 3.2. Let V be a variety of left quasigroups. The following are equivalent:
(i) V has a Mal’cev term.
(ii) V has a Taylor term.

(iii) V satisfies a non-trivial idempotent Mal’cev condition.
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(iv) V satisfies a non-trivial Mal’cev condition.
(v) P2 /∈ V.

(vi) Every algebra in V is superconnected.
(vii) V is coherent.

In particular, every Mal’cev variety of left quasigroup is congruence uniform.

Proof. The implications (i) ⇒ (ii) and (vii) ⇒ (i) hold in general as represented
in Figure 1, (ii) ⇒ (iii) ⇒ (iv) ⇒ (iv) clearly hold.

(v) ⇒ (vi). According to Proposition 2.2, if P2 /∈ V then every left quasi-
group in V is connected and then superconnected since V is closed under taking
subalgebras.

(vi)⇒ (vii). By Lemma 2.4 every superconnected left quasigroup is coherent,
i.e. V is coherent.

According to Lemma 2.3, connected left quasigroups are congruence uniform,
therefore so is any Mal’cev variety of left quasigroup.

Corollary 3.3. Let Q be a finite idempotent left quasigroup. Then V(Q) has a
Mal’cev term if and only if Q is superconnected.

Proof. Let Q be a finite idempotent left quasigroup. According to [1, Theorem
1.1], V(Q) has Taylor term if and only if P2 /∈ HS(Q). Thus, V(Q) has Taylor
term if and only if Q is superconnected by Proposition 2.2.

Proposition 3.4. Let V be a Cayley (resp. idempotent) Mal’cev variety of left
quasigroups and Q ∈ V. Then:

(i) every left quasigroups in V is superfaithful.
(ii) The Dis operator is injective and the con operator is surjective and

α = conDisα = conDisα for every α ∈ Con(Q).

Proof. (i). Idempotent superconnected left quasigroups are superfaithful accord-
ing to [6, Lemma 1.9], so the claim follows if V is idempotent.

Assume that V is a Cayley variety. The Cayley kernel is a strongly abelian
congruence for Cayley left quasigroups (see [7, Proposition 5.1]), therefore the left
quasigroups in V are superfaithful.

(ii). All the left quasigroups in V are superfaithful by (i). According to [5,
Proposition 1.6] we have that

α 6 conDisα 6 conDisα = α.

and so the operator conDis is the identity on Con(Q).

Let us turn our attention to congruence distributive varieties of left quasi-
groups. We have already proved that every Taylor variety of left quasigroups is
also Mal’cev. Therefore, the left branch of the poset in Figure 1 also collapses into
the Mal’cev class of distributive varieties.
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Theorem 3.5. Let V be a variety of left quasigroups. The following are equivalent:

(i) V is congruence meet-semidistributive.

(ii) V is congruence distributive.

(iii) V is congruence arithmetic.

According to Theorems 3.2 and 3.5, for left quasigroups the poset of Mal’cev
classes in Figure 1 turns into the one in Figure 2.

A term t(x1, . . . , xn) in the language of left quasigroups is a well-formed formal
expression using the variables x1, . . . , xn and the operations {∗, \}. It is easy to
see that the term t is either a variable or can be expressed by

t(x1, . . . xn) = u(x1, . . . , xn) • r(x1, . . . , xn) (1)

where • ∈ {∗, \} and u and r are suitable subterms. Let u be a n-ary term. We
define

L0
u(x1,...,xn)

(y) = y

Lk+1
u(x1,...,xn)

(y) = u(x1, . . . , xn) ∗ Lku(x1,...,xn)
(y),

Lk−1u(x1,...,xn)
(y) = u(x1, . . . , xn)\Lku(x1,...,xn)

(y),

for k ∈ Z. Using this notation we have that every term t can be written as

t(x1, . . . , xn) = Lk1u1(x1,...,xn)
. . . Lkmum(x1,...,xn)

(xR)

where ui is a subterm, ki = ±1 for 1 6 i 6 m and xR ∈ {xi : i = 1, . . . , n}. We
say that xR is the rightmost variable of t.

Every identity in the language of left quasigroups t1 ≈ t2 has the form

Lk1w1(x1,...,xn)
. . . Lkmwm(x1,...,xn)

(xR) ≈ Lr1u1(y1,...,yl)
. . . Lrlul(y1,...,yl)(yR),

or equivalently,

L−rlul(y1,...,yl)
. . . L−r1u1(y1,...,yl)

Lk1w1(x1,...,xn)
. . . Lkmwm(x1,...,xn)

(xR) ≈ yR. (2)

The projection left quasigroup P2 satisfies (2) if and only if xR = yR. So a variety
of left quasigroups V has a Mal’cev term if and only if it satisfies an identity as in
(2) with xR 6= yR.

Note that, an identity as in (2) might have just the trivial model. For instance
if V is a variety of idempotent left quasigroups satisfying such an identity and
the variable yR does not appear in the left handside then V is trivial. Indeed,
identifying all the variables x1, . . . , xn, y1, . . . , yl we have Lk1+...+kmxR (xR) = xR ≈
yR.
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Example 3.6. A variety axiomatized by some identities as in (2) might be made
up of latin left quasigroups. For instance, Mal’cev varieties of left quasigroups
are provided by varieties of quasigroup in which every member is term equivalent
to its left quasigroup reduct. This is the case of the following examples (for an
example of a Mal’cev variety of latin left quasigroups not arising from quasigroups
see Proposition 4.2).

(i) The variety of commutative left quasigroups defined by the identity
x ∗ y ≈ y ∗ x.

(ii) Let n ∈ N. The variety of left quasigroups satisfying the identity
(. . . ((x ∗ y) ∗ y) . . .) ∗ y︸ ︷︷ ︸

n

≈ x.

(iii) The variety of paramedial left quasigroups, identified by the identity
(x ∗ y) ∗ (z ∗ t) ≈ (t ∗ y) ∗ (z ∗ x).

Example 3.7. Mal’cev varieties of left quasigroups are not limited to varieties of
latin left quasigroups, as witnessed by the following examples.

(i) Let Vn be the variety of left quasigroups satisfying Lnx(x) ≈ Lny (y) where
n ∈ Z. Then

m(x, y, z) = L−nx Lny (z)

is a Mal’cev term. Let n > 0, Q be a set and e be a fixed element in Q. We
define Le = 1 and La to be any cycle (a, . . . , e) of length n for every a ∈ Q,
a 6= e (if n < 0 we define L−1a in the same way). Then (Q, ∗) ∈ Vn.

(ii) The variety of n-multipotent left quasigroups is axiomatized by the identity

sn(x) = Lsn−1(x)Lsn−2(x) . . . Ls(x)Lx(x) ≈ Lsn−1(y)Lsn−2(y) . . . Ls(y)Ly(y) = sn(y).

A Mal’cev term for n-multipotent left quasigroups is

m(x, y, z) =
(
Lsn−2(x) . . . Ls(x)Lx

)−1
Lsn−2(y) . . . Ls(y)Ly(z).

Example 3.8. Let G be a variety of groups. We denote the class of left quasi-
groups such that the left multiplication group (resp. displacement group) belongs
to G by L(G) (resp. D(G)). According to Lemma 2.1 such classes are varieties.
Since LMlt(P2) = Dis(P2) = 1 then P2 belongs to L(G) and to D(G) and so they
have no Mal’cev term.

4. Semimedial left quasigroups
Semimedial left quasigroups are defined by the semimedial law:

(x ∗ y) ∗ (x ∗ z) ≈ (x ∗ x) ∗ (y ∗ z).
The projection left quasigroup P2 satisfies the semimedial law and so the whole
variety of semimedial left quasigroups is not Mal’cev.
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A relevant subvariety of 2-divisible semimedial left quasigroups is the variety
of racks, axiomatized by the identity

x ∗ (y ∗ z) ≈ (x ∗ y) ∗ (x ∗ z).
Idempotent semimedial left quasigroups are racks and they are called quandles.
If Q is semimedial then the squaring map s is a homomorphism and so if h =
Lk1a1 . . . L

kn
an ∈ LMlt(Q) we have

sh = Lk1s(a1) . . . L
kn
s(an)︸ ︷︷ ︸

=hs

s

and the subset E(Q) = {a ∈ Q : a ∗ a = a} is a subquandle of Q. Medial left
quasigroups, i.e. those for which

(x ∗ y) ∗ (z ∗ t) ≈ (x ∗ z) ∗ (y ∗ t)
holds are also semimedial.

For a semimedial left quasigroup Q, the admissible subgroups are

Norm(Q) = {N E LMlt(Q) : Ns 6 N}

where Ns = {hs : h ∈ N}. Note that [g, h]s = [gs, hs] for every g, h ∈ LMlt(Q).
Thus, if N ∈ Norm(Q) then [LMlt(Q), N ] ∈ Norm(Q) (see [5, Lemma 3.1]).

The relation conN is a congruence for every admissible subgroup N and the as-
signments α 7→ Disα and N 7→ conN provide a second monotone Galois connection
between the lattice of congruences and the admissible subgroups [5, Theorem 3.5].
Such a Galois connection is also well-behaved with respect to the commutator of
congruences. Indeed, in a Mal’cev variety the commutator of congruences in the
sense of [11] is completely determined by such Galois connection.

Lemma 4.1. Let V be a Mal’cev variety of semimedial left quasigroups and Q ∈ V.
Then

[α, β] = con[Disα,Disβ ]

for every α, β ∈ Con(Q).

Proof. The variety V is Cayley ([5, Proposition 3.6]), and so the left quasigroups
in it are superfaithful by Proposition 3.4(i). Therefore we can apply directly [5,
Proposition 3.10]

Let us show that unipotent semimedial left quasigroups are latin, providing an
example of variety of latin left quasigroups that is not term equivalent to a variety
of quasigroups. Recall that a group G acting on a set Q is regular if for every
a, b ∈ Q there exists a unique g ∈ G such that b = g · a. Equivalently the action is
transitive and the pointwise stabilizers are trivial.

Proposition 4.2. Let Q be a unipotent semimedial left quasigroup and s(Q) =
{e}. Then:

(i) the group Dis(Q) is regular and Dis(Q) = {LaL−1e : a ∈ Q}.
(ii) Q is latin.
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Proof. (i). Let h = Lk1a1 . . . L
kn
an ∈ Dis(Q). According to [5, Lemma 1.4] k1 +

. . . + kn = 0 and so hs = Lk1s(a1) . . . L
kn
s(an)

= Lk1+...+kne = 1. If h ∈ Dis(Q)a, then
La = Lh(a) = hsLah

−1 = Lah
−1, i.e. h = 1 and so Dis(Q) is regular. On the other

hand, e = (e\a)∗(e\a) = Le\aL
−1
e (a), and so we have Dis(Q) = {LaL−1e : a ∈ Q}.

(ii). Let a, b ∈ Q. According to (i) Dis(Q) = {LcL−1e : c ∈ Q} and it is
regular. Thus, there exists a unique c such that

a = LcL
−1
e (b) = c ∗ (e\b)

and so the right multiplication Re\b is bijective for every b ∈ Q.

4.1. Congruence distributive varieties
According to Theorem 3.5 we have that congruence meet-semidistributive varieties
of left quasigroups are congruence distributive. For semimedial left quasigroups
congruence distributivity is determined by the properties of the relative displace-
ment groups and of the admissible subgroups.

Proposition 4.3. Let V be a variety of semimedial left quasigroups. The following
are equivalent:

(i) V is distributive.
(ii) Disα = [Disα,Disα] for every Q ∈ V and α ∈ Con(Q).
(iii) If N ∈ Norm(Q) is solvable then N = 1 for every Q ∈ V.

Proof. It is enough to prove the equivalence for meet-semidistributive varieties
thanks to Theorem 3.5.

Let Q ∈ V and α ∈ Con(Q). By Lemma 4.1 we have

Dis[α,α] = Discon[Disα,Disα]
6 [Disα,Disα] 6 Disα.

(i) ⇒ (ii). By Theorem 1.1 we have [α, α] = α and so Disα = Dis[α,α] =
[Disα,Disα].

(ii) ⇒ (iii). Let N ∈ Norm(Q) be solvable of length n and let D be the non-
trivial (n − 1)th element of the derived series of N . So D is abelian and it is in
Norm(Q). Hence, according to [5, Lemma 2.6], β = OD is a non-trivial abelian
congruence of Q. Therefore Disβ is abelian and we have Disβ = [Disβ ,Disβ ] = 1.
Hence, β 6 λQ = 0Q, contradiction.

(iii) ⇒ (i). If α is abelian then Disα is abelian [8, Corollary 5.4]. Hence
Disα = [Disα,Disα] = 1, i.e. α ≤ λQ = 0Q.

If Q is a 2-divisible semimedial left quasigroup then

Norm(Q) = {N E LMlt(Q) : sNs−1 6 N}

since s is bijective. In particular, Z(N) is a characteristic subgroup of N , and so
it is normal in LMlt(Q) and sZ(N)s−1 6 Z(N). Thus, Z(N) ∈ Norm(Q).
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Proposition 4.4. Let V be a variety of 2-divisible semimedial left quasigroups.
The following are equivalent

(i) V is distributive
(ii) Z(N) = 1 for every Q ∈ V and every N ∈ Norm(Q).

Proof. We are using the characterization of distributive varieties given in Propo-
sition 4.3(iii).

(i)⇒ (ii). If N ∈ Norm(Q), then Z(N) ∈ Norm(Q) is solvable and so Z(N)=1.
(ii) ⇒ (i). If Z(N) = 1 for every N ∈ Norm(Q) then there are no abelian

subgroups in Norm(Q). Since [N,N ] ∈ Norm(Q) for every N ∈ Norm(Q) then
there are no solvable subgroup in Norm(Q).

Corollary 4.5. Let V be a distributive variety of semimedial left quasigroups.
Then:

(i) V does not contain any non-trivial medial left quasigroup.
(ii) V does not contain any non-trivial finite 2-divisible latin left quasigroup.

In particular, there is no distributive variety of medial left quasigroups.

Proof. The variety V omits solvable algebras. Medial left quasigroups are nilpo-
tent [5, Corollary 4.4] and finite 2-divisible latin semimedial left quasigroups are
solvable [5, Corollary 3.20].

4.2. Mal’cev varieties of quandles
In this Section we focus on quandles. A remarkable construction of quandles is
the following.

Example 4.6. (cf. [16]) Let G be a group, f ∈ Aut(G) and a subgroup H 6
Fix(f) = {a ∈ G : f(a) = a}. Let G/H be the set of left cosets of H and the
multiplication defined by

aH ∗ bH = af(a−1b)H.

Then Q(G,H, f) = (G/H, ∗, \) is a quandle, called a coset quandle. A coset
quandle Q(G,H, f) is called principal if H = 1 and in such case it is denoted by
Q(G, f). A principal quandle is called affine if G is abelian and in such case it is
denoted by Aff(G, f).

Connected quandles can be represented as coset quandles over their displace-
ment group.

Proposition 4.7. [14, Theorem 4.1] Let Q be a connected quandle Q. Then Q

is isomorphic to Q(Dis(Q),Dis(Q)a, L̂a) for every a ∈ Q, where L̂a : Dis(Q) −→
Dis(Q) is defined by setting x 7→ LaxL

−1
a for every x ∈ Dis(Q).

The class of latin quandles is not a subvariety of the variety of quandles. Indeed
the non-connected quandle Aff(Z,−1) embeds into the latin quandle Aff(Q,−1).
On the other hand, the class of principal quandles of a Mal’cev variety is a subva-
riety.
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Theorem 4.8. The class of principal quandles of a Mal’cev variety V is a subva-
riety of V.

Proof. The product of principal quandles is principal [4, Corollary 2.3]. By virtue
of [6, Proposition 2.11] subquandles and factors of principal Mal’cev quandles are
principal. Hence the class of principal quandles of V is a subvariety.

SmallQuandle(28,i) for i = 3, 4, 5, 6 are the smallest examples of non-latin
superconnected quandles in the [13] library of GAP. The identities in Table 1
provide Mal’cev varieties of quandles that contain such minimal examples.

Table 1: Examples of Mal’cev varieties of quandles

Identity Witness in the RIG library
LxL

2
yLxLyL

2
xLyLxL

2
y(x) ≈ y SmallQuandle(28,3)

L2
xLyLxL

2
yLxLyL

2
xL

2
y(x) ≈ y SmallQuandle(28,4)

LxL
2
yLxLyL

2
xLyLxL

2
y(x) ≈ y SmallQuandle(28,5)

LxL
2
yLxLyL

2
xLyLxL

2
y(x) ≈ y SmallQuandle(28,6)

Distributive varieties of quandles have the following characterization.

Theorem 4.9. Let V be a variety of quandles. The following are equivalent:
(i) V contains a non-trivial abelian quandle.
(ii) V has a non-trivial finite model.

In particular, V is distributive if and only if V has no non-trivial finite model.

Proof. (i) ⇒ (ii). According to [4, Theorem 3.21] simple abelian quandles are
finite. Let Q ∈ V be a non-trivial abelian quandle. According to the main result
of [?], V(Q) ⊆ V contains a simple abelian quandle which is finite.

(ii)⇒ (i). Let assume that V contains a non-trivial finite quandle Q. Accord-
ing to [4, Theorem 4.7], the minimal subquandles of Q with respect to inclusion
are abelian.

The variety V is idempotent, and so it contains an abelian congruence if and
only if it contains an abelian algebra. Thus, the last claim follows.

Corollary 4.10. Let V be a distributive variety of semimedial left quasigroups
and Q ∈ V. If E(Q) is finite then |E(Q)| = 1.

Proof. According to Theorem 4.9 if E(Q) is finite then V(E(Q)) contains an
abelian algebra.

Involutory quandles are the quandles that satisfy the identity x(xy) ≈ y. A
direct consequence of the contents of [6, Section 3] is that connected involutory
quandles on two generators are finite, so we have the following Corollary of The-
orem 4.9.
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Corollary 4.11. There is no distributive variety of involutory quandles.
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Translatable isotopes of finite groups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We prove the main result, that if (Q, ∗) is a k-translatable isotope of a finite group
(Q,⊕) of order n then (Q,⊕) is isomorphic to the additive group Zn of integers modulo n.
Given a k-translatable ordering of a left cancellative groupoid Q of order n, we determine all
k-translatable orderings of Q. We also prove that a left-cancellative, k-translatable groupoid Q

is translatable for a single value of k. Finally, we prove that a left (or right) linear isotope of
Zn is linear and we give examples of k-translatable isotopes of Z4 that are neither left nor right
linear.

1. Introduction

We assume that all sets considered in this note are finite and have form Q =
{1, 2, . . . , n} with the natural ordering 1, 2, . . . , n.

A groupoid (Q, ∗) of order n is called k-translatable, where 1 6 k < n, if its
Cayley table is obtained by the following rule: If the first row of the Cayley table
is a1, a2, . . . , an, then the q-th row is obtained from the (q − 1)-st row by taking
the last k entries in the (q− 1)−st row and inserting them as the first k entries of
the q-th row and by taking the first n−k entries of the (q−1)-st row and inserting
them as the last n − k entries of the q-th row, where q ∈ {2, 3, . . . , n}. Then the
(ordered) sequence a1, a2, . . . , an is called a k-translatable sequence of (Q, ∗) with
respect to the ordering 1, 2, . . . , n. A groupoid of order n is called translatable if
it has a k-translatable sequence for some k ∈ {1, 2, . . . , n − 1}. A quasigroup of
order n may be k-translatable only for k relatively prime to n. A group of order
n is translatable if and only if it is cyclic. It is (n− 1)-translatable.

It is important to note that a k-translatable sequence depends on the ordering
of the elements in the Cayley table. A groupoid may be k-translatable for one
ordering but not for another (see Example 2.4 below). Unless otherwise stated we
will assume that the ordering of the Cayley table is 1, 2, . . . , n and the first row of
the table is a1, a2, . . . , an.

The concept of translatability was first explored in [1] and [2]. It arose through
the examination of the fine structure of quadratical quasigroups. Translatability
determines the structure of certain types of quasigroups [3]. The question of when
quadratical quasigroups, which are idempotent, are translatable was answered
in [4] and [5]. There it was proved that a naturally ordered groupoid (Q, ∗) is

2010 Mathematics Subject Classification: 20N02
Keywords: groupoids, quasigroups, translatable quasigroups, isotopes.
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idempotent and k-translatable if and only if for all i, j ∈ Q there exist a, b ∈ Zn

such that i∗j = (ai+bj)(modn), where (a+b) = 1(modn) and (a+bk) = 0(modn).
Now we are interested in the k-translatability of (α, β)-isotopes of a group

(Q,⊕), i.e. quasigroups (Q, ∗) with product x ∗ y = αx ⊕ βy, where α, β are
bijections of Q. We will prove our main result in Theorem 5.1, that if an isotope
of a group (Q,⊕) is k-translatable then (Q,⊕) is isomorphic to the additive group
Zn of integers modulo n. Then, for a given a bijection α of Zn, for particular
values of k and n we will determine all possible bijections β for which (Q, ∗) is
k-translatable.

2. Preliminaries
For simplicity instead of i ≡ j(modn) we will write [i]n = [j]n. Additionally, in
calculations of modulo n, we assume that 0 = n. Also the neutral element of a
group (Q,⊕) will be denoted by 0. The inverse elements in (Q,⊕) and Zn will be
denoted by the same symbol; namely, as −x. The set {1, 2, . . . , n} will be denoted
by {1, n}. For k ∈ {1, n}, (k, n) = 1 denotes that k and n are relatively prime.

With this convention a naturally ordered groupoid (Q, ∗) is k-translatable if
and only if i ∗ j = [i + 1]n ∗ [j + k]n for all i, j ∈ Q. Then a1, a2, . . . , an, where
ai = 1 ∗ i, is a k-translatable sequence.

We will need the following results proven in our previous publications.

Lemma 2.1. (cf. [4, Lemma 9.1]) The quasigroup (Zn, ∗) with the operation
i ∗ j = [ai+ c+ bj]n, where a, b, c ∈ Zn and (a, n) = (b, n) = 1 is k-translatable if
and only if [a+ kb]n = 0.

Lemma 2.2. (cf. [2, Lemma 2.5]) Let a1, a2, . . . , an be the first row of the Cayley
table of a quasigroup (Q, ∗) of order n. Then (Q, ∗) is k-translatable if and only if
for all i, j ∈ Q the following (equivalent) conditions are satisfied.

(i) i ∗ j = a[k−ki+j]n ,

(ii) i ∗ j = [i+ 1]n ∗ [j + k]n,

(iii) i ∗ [j − k]n = [i+ 1]n ∗ j.

Lemma 2.3. (cf. [2, Lemma 2.7]) If a quasigroup (Q, ∗) of order n is k-translatable
with respect to the ordering a1, a2, . . . , an then it is k-translatable with respect to
the ordering an, a1, a2, . . . , an−1.

Example 2.4. Consider the following tables:

∗ 1 2 3 4

1 1 2 3 4
2 2 3 4 1
3 3 4 1 2
4 4 1 2 3

∗ 4 1 2 3

4 3 4 1 2
1 4 1 2 3
2 1 2 3 4
3 2 3 4 1

∗ 1 3 4 2

1 1 3 4 2
3 3 1 2 4
4 4 2 3 1
2 2 4 1 3
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These tables define the same quasigroup isomorphic to the additive group Z4.
The first table shows that with respect to the natural ordering this quasigroup is
3-translatable. The second table is an example of Lemma 2.3. The third table
shows that in another ordering this quasigroup is not translatable.

Lemma 2.5. Let (Q, ∗) be a k-translatable groupoid with respect to the natural
ordering 1, 2, . . . , n, with k-translatable sequence a1, a2, . . . , an. Then (Q, ∗) is
k-translatable with respect to the ordering n, n − 1, . . . , 2, 1, with k-translatable
sequence ak, ak−1, . . . , a1, an, an−1, . . . , ak+1.

Proof. The ordering n, n − 1, n − 2, . . . , 2, 1 can be expressed as 1′, 2′, 3′, . . . , n′,
where i′ = [1− i]n. Then, by Lemma 2.2(ii) we have i′ ∗ j′ = [1− i]n ∗ [1− j]n =
[(1−i)−1]n∗[(1−j)−k]n = [−i]n∗[1−(j+k)]n = (i+1)′∗(j+k)′. So, 1′, 2′, . . . , n′

is a k-translatable ordering on (Q, ∗). Since n ∗ j = ak−kn+j = ak+j , this ordering
has the k-translatable sequence ak, ak−1, . . . , a1, an, an−1, . . . , ak+1.

Lemma 2.6. Let (Q, ∗) be a k-translatable groupoid with respect to the natural
ordering with k-translatable sequence a1, a2, . . . , an and suppose that (s, n) = 1.
Then (Q, ∗) is k-translatable with respect to the ordering 1, [1 + s]n, [1 + 2s]n, . . . ,
[1 + (n− 1)s]n with k-translatable sequence a1, a1+s, a1+2s, . . . , a1+(n−1)s.

Proof. Since (s, n) = 1, we can introduce the new ordering 1′, 2′, . . . , n′ where
i′ = [1 + (i− 1)s]n. Then, using Lemma 2.2(ii), we obtain i′ ∗ j′ = [1 + (i− 1)s]n ∗
[1 + (j − 1)s]n = [(1 + is)− s]n ∗ [(1 + js)− s]n = [1 + is]n ∗ [(1 + js)− s+ ks]n =
[1+ is]n ∗ [1+((j+k)−1)s]n = (i+1)′ ∗(j+k)′. So, 1′, 2′, . . . , n′ is a k-translatable
ordering on (Q, ∗). Since 1′∗j′ = 1∗[1+(j−1)s]n = a[1+(j−1)s]n the corresponding
k-translatable sequence for this order is a1, a1+s, a1+2s, . . . , a1+(n−1)s.

3. Translatable left cancellative groupoids

A groupoid (Q, ∗) is left cancellative if for all a, b, c ∈ Q a ∗ b = a ∗ c implies b = c.
Note that if a1, a2, . . . , an is a k-translatable sequence of a left cancellative

groupoid Q then for all i ∈ {1, n}, ai = aj if and only if i = j.

Definition 3.1. Let Q = {1, 2, . . . , n} be a groupoid of order n, with a1, a2, . . . , an
an ordering of Q. For i ∈ {1, n} we define the set Ai as the set consisting of
the sequence ai, ai+1, . . . , an, a1, a2, . . . , ai−1 and Bj as the set consisting of the
sequence ai, ai−1, . . . , a1, an, an−1, . . . , ai+1. Then we call

⋃
(Ai ∪ Bi), i ∈ {1, n},

the set of cyclic versions of the ordering a1, a2, . . . , an.

Note that by Lemmas 2.3 and 2.5, a cyclic version of a k-translatable ordering
is k-translatable.

Henceforth, −j′ will denote −(j′) and not (−j)′. Similarly [x]′n denotes ([x]n)′.
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Theorem 3.2. Let a left cancellative groupoid (Q, ∗) be k-translatable with respect
to the natural ordering, with k-translatable sequence a1, a2, . . . , an. Then an or-
dering is k-translatable on (Q, ∗) if and only if it is a cyclic version of the ordering
1, [1 + s]n, [1 + 2s]n, . . . , [1 + (n− 1)s]n for some s ∈ {1, n}, where (s, n) = 1.

Proof. (⇐). This follows from Lemma 2.6 and the fact that a cyclic version of a
k-translatable ordering is k-translatable.

(⇒). By Lemma 2.2(ii) we can choose a k-translatable ordering 1′, 2′, . . . , n′

on (Q, ∗), with 1′ = 1 and with k-translatable sequence a1, a2, . . . , an say. Then,
by Lemma 2.6(i), the first two rows of the multiplication table are as follows, with
all subscripts of the entries being calculated modulo n.

1 2′ . . . (−k)′ (1− k)′ . . . (n− 1)′ n′

1 a1 a
2′ . . . a

(−k)′ a
(1−k)′ . . . a

(n−1)′ a
n′

2′ a
k−k2′+1

a
k−k2′+2′ . . . a

k−k2′+(−k)′ ak−k2′+(1−k)′ . . . a
k−k2′+(n−1)′ ak−k2′+n′

Then, since the groupoid (Q, ∗) is left cancellative and k-translatable, modulo
n we have k − k2′ = (1 − k)′ − 1 = (2 − k)′ − 2′ = . . . = (n − 1)′ − (k − 1)′ =
n′ − k′ = 1 − (k + 1)′ = 2′ − (k + 2)′ = . . . = (−1 − k)′ − (n − 1)′ = (−k)′ − n′,
which implies the following n identities:

(1) (1− k)′ − 1 = (2− k)′ − 2′

(2) (2− k)′ − 2′ = (3− k)′ − 3′

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(k) n′ − k′ = 1− (k + 1)′

(k + 1) 1− (k + 1)′ = 2′ − (k + 2)′

(k + 2) 2′ − (k + 2)′ = 3′ − (k + 3)′

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(n− 1) (−1− k)′ − (n− 1)′ = (−k)′ − n′

(n) (−k)′ − n′ = (1− k)′ − 1.

We note that in any one of these n identities

(A) If j′ is the first term on the left-hand side of the identity then (j + 1)′ is the
first term on the right-hand side of that identity.

(B) If −(j′) is the second term on the left-hand side of the identity then −(j+1)′

is the first term on the right-hand side of that identity.

(C) If j′ is the first term on the left (right)-hand side of the identity the second
term on the left (right)-hand side of the identity is −(j + k)′.

It follows that for all j = 1, 2, . . . , n,

(D) j′ − (j + k)′ = (j + 1)′ − (j + 1 + k)′.
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Now n′ − 1
(k)
= k′ − (k + 1)′. But (D) implies k′ − (2k)′ = (k + 1)′ − (2k + 1)′.

So, k′ − (k + 1)′ = (2k)′ − (2k + 1)′ and n′ − 1 = k′ − (k + 1)′ = (2k)′ − (2k + 1)′.
Continuing in this manner we get n′ − 1 = k′ − (k + 1)′ = (2k)′ − (2k + 1)′ =
(3k)′ − (3k + 1)′ = . . . = (−2k)′ − (−2k + 1)′ = (−k)′ − (1− k)′.

Since (k, n) = 1, the elements k′, (2k)′, . . . , (−2k)′, (−k)′ are all different.
Therefore n′ − 1 = 1 − 2′ = 2′ − 3′ = . . . = (n − 1)′ − n′ and this implies
j′ = (j + 1)′ + n′ − 1. Hence, j′ = 1 + (1 − j)(n′ − 1), (n′ − 1, n) = 1 and
1′, 2′, 3′, . . . , n′ is the order 1, 1 − (n′ − 1), 1 − 2(n′ − 1), . . . , 1 − (n − 1)(n′ − 1),
a cyclic version of which returns us to the original k-translatable ordering, as
required.

Theorem 3.3. If a left cancellative groupoid (Q, ∗) is k-translatable then it is
k-translatable for a single value of k.

Proof. Suppose that 1, 2, 3, . . . , n is a k-translatable ordering on (Q, ∗), with k-
translatable sequence a1, a2, a3, . . . , an and that 1′, 2′, 3′, . . . , n′ is a k∗-translatable
ordering on (Q, ∗), with the k∗-translatable sequence b1, b2, b3, . . . , bn. By Lemma
2.5, there is a k∗-translatable ordering 1′′, 2′′, 3′′, . . . , n′′ with a k∗-translatable se-
quence c1, c2, c3, . . . , cn and with 1′′ = 1. Then, 1 ∗ j′′ = ak−k+j′′ = ck∗−k∗+j′′ .
Therefore, aj = cj for all j ∈ {1, n}. Then, 2 ∗ n = a[k−2k+n]n = c[k∗−2k∗+n]n =
a[k∗−2k∗+n]n and, since (Q, ∗) is left cancellative, −k = −(k∗) and k = k∗, com-
pleting the proof.

Note that the condition of left cancellation is necessary in the previous theorem.
For example, a constant groupoid of order n > 1 is k-translatable for all k =
1, 2, . . . , n − 1. Similarly, the groupoid (Q, ∗) of order 2m, with x ∗ y = 1 for all
odd y and x ∗ y = 2 for all even y, is 2k-translatable for every k = 1, . . . ,m− 1.

4. Translatable T-quasigroups
A quasigroup (Q, ∗) is called a T -quasigroup if there exist an abelian group (Q,⊕)
and its automorphisms ϕ,ψ such that x ∗ y = ϕ(x) ⊕ ψ(y) ⊕ c for all x, y ∈ Q
and some fixed c ∈ Q. Obviously, each T -quasigroup induced by (Q,⊕) is (α, β)-
isotope of (Q,⊕).

By the Toyoda theorem (cf. for example [6] or [7]) a quasigroup (Q, ∗) is medial
if and only if it is a T -quasigroup with ϕψ = ψϕ.

Theorem 4.1. A translatable T -quasigroup (Q, ∗) of order n is isomorphic to a
translatable medial quasigroup induced by the group Zn.

Proof. Let (Q, ∗) be a finite quasigroup of order n induced by the group (Q,+),
Then x ∗ y = ϕ(x) + ψ(y) + c for some fixed c ∈ Q and automorphisms ϕ,ψ
of (Q,+). Denote the k-translatable ordering of Q by 1, 2, 3, . . . , n. By Lemma
2.2(ii), (Q, ∗) is k-translatable (1 6 k < n) with respect to the ordering 1, 2, . . . , n
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if and only if ϕ(i)+ψ(j)+c = i∗j = [i+1]n∗ [j+k]n = ϕ([i+1]n)+ψ([j+k]n)+c,
i.e. if and only if ϕ(i) + ψ(j) = ϕ([i+ 1]n) + ψ([j + k]n) for all i, j ∈ {1, 2, . . . , n}.

By Lemma 2.3, we can choose the ordering such that the group element in the n-
th position in this ordering is 0, the identity element of (Q,+). We define ti = i−1,
where i is the group element of (Q,+) located in the ith position of the ordering
1, 2, . . . , n. Note that t1 = 0 and tn = −1. Then, ϕ(i)+ψ(j) = ϕ([i+1]n)+ψ([j+
k]n)⇔ ϕ(i)+ψ(j) = ϕ([i+ 1]n)+ψ([j + k]n)⇔ ψ(j−[j + k]n) = ϕ([i+ 1]n−i)⇔
ψ((1+tj)−(1+t[j+k]n)) = ϕ((1+t[i+1]n)−(1−ti))⇔ ψ(tj−t[j+k]n) = ϕ(t[i+1]n−ti)
for all i, j ∈ {1, n}.

For j = 1 and i ∈ {1, n}, ψ(−t[1+k]n) = ϕ(t[i+1]n − ti). So, ψ(−t[1+k]n) =

ϕ(t[s+1]n − ts) for all s ∈ {1, n}. Hence, tn − tn−1 = tn−1 − tn−2 = . . . = t2 − t1 =

t1 − tn = 0 − (−1) = 1. Thus, t2 = 1, ti = (i − 1)1 and i = i1. This means that
1 generates the group (Q,+) and so (Q,+) is a cyclic group isomorphic to Zn.
Hence, by Lemma 2.1, (Q, ∗) is isomorphic to a translatable medial quasigroup
i � j = [ai+ bj + c]n, where (a, n) = 1 = (b, n) and [a+ bk]n = 0.

Corollary 4.2. A medial quasigroup of order n is translatable if and only if it is
induced by a group isomorphic to the additive group Zn.

Proof. The necessity follows from Theorem 4.1. To prove the sufficiency observe
that a medial quasigroup of order n induced by the group Zn has the form x ∗ y =
[ax + by + c]n, where a, b, c ∈ Zn and (a, n) = (b, n) = 1. By Lemma 2.1 this
quasigroup is k-translatable if and only if [a + bk]n = 0. This equation is always
uniquely solvable with k = [−ab ]n, where [bb ]n = 1.

5. Translatability of isotopes of a finite group

Theorem 5.1. If an (α, β)-isotope (Q, ∗) of a group (Q,⊕) of order n is k-
translatable then there is an ordering 1, 2, . . . , n on Q such that for some s ∈ {1, n}
and all i, j ∈ {1, n}

(i) αn = 0 = βs,

(ii) α[i+ 1]n = αi⊕ α1,

(iii) αi = α1⊕ α1⊕ . . .⊕ α1︸ ︷︷ ︸
i times

= i(α1),

(iv) (Q,⊕) is isomorphic to the group Zn,

(v) β[j + k]n = βj − α1 and β[s+ jk]n = j(−α1).

Proof. From Lemma 2.3, there is a k-translatable ordering 1, 2, . . . , n on Q such
that αn = 0 and, since β is a bijection, βs = 0 for some s ∈ Q.
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Then, using k-translatability and Lemma 2.2(ii), 0 = n ∗ s = 1 ∗ [s + k]n =
α1⊕ β[s+ k]n. Hence, β[s+ k]n = −α1.

Thus, αi = αi⊕0 = i∗s = [i+1]n∗[s+k]n = α[i+1]n⊕β[s+k]n = α[i+1]n−α1,
which implies

α[i+ 1]n = αi⊕ α1. (1)

Then, by induction on i, it is easy to prove that for all i ∈ {1, n}, αi =
α1 ⊕ α1 ⊕ . . . ⊕ α1, (with i number of summands). Consequently, αi ⊕ αj =
α[i + j]n. We then define a bijection ϕ : Q → Zn as ϕαi = i and so, we have
ϕ(αi⊕αj) = ϕ(α[i+ j]n) = [i+ j]n = [ϕαi+ϕβj]n. Hence, ϕ is an isomorphism.

Finally, βj = 0 ⊕ βj = n ∗ j = 1 ∗ [j + k]n = α1 ⊕ β[j + k]n and, since the
groups (Q,⊕) and (Z,+) are isomorphic, the operation ⊕ is commutative, for all
j ∈ {1, n} we have β[j+ k]n = βj−α1. By induction on j it is then easy to prove
that for all j ∈ {1, n}, β[s+ jk]n = −α1− α1− . . .− α1 (j times).

Proposition 5.2. If an (α, β)-isotope (Q, ∗) of the commutative group (Q,⊕)
satisfies (ii) and (v) of Theorem 5.1, then it is k-translatable.

Proof. [i+1]n∗[j+k]n = α[i+1]n⊕β[j+k]n
(ii),(v)

= αi⊕α1⊕βj−α1 = αi⊕βj = i∗j,
for all i, j ∈ {1, n}. By Lemma 2.2(ii), (Q, ∗) is k-translatable.

The following Corollary follows readily from Theorem 5.1 and Proposition 5.2.
The proof is omitted.

Corollary 5.3. The quasigroup (Zn, ∗) with i ∗ j = [αi + βj]n, where α, β are
bijections of Zn is k-translatable for some k if and only if there is an ordering
1′, 2′, . . . , n′ of Zn such that for some s ∈ {1, n} and all i ∈ {1, n}

(i) αn′ = 0 = βs′,

(ii) α([i+ 1]′n) = [αi′ + α1′]n,

(iii) αi′ = [i(α1′)]n for i ∈ {1, n},

(iv) β([i+ k]′n) = βi′ − α1′ and β([s+ ik]′n) = [i(−α1′)]n,

(v) (α1′, n) = 1.

Corollary 5.4. For a given ordering on Zn and any k, t ∈ {1, n} such that (k, n) =
(t, n) = 1 there are bijections αt and βs (s ∈ {1, n}) on Zn such that the quasigroup
(Zn, ∗s) defined by i∗sj = [αti+βsy]n is k-translatable with respect to this ordering.

Proof. Suppose that 1′, 2′, . . . , n′ is a fixed ordering on Zn and that k, t ∈ {1, n}
be such that (k, n) = (t, n) = 1. Then, we define the bijection αt on Zn by putting
αti
′ = [it]n for any i ∈ {1, n}. It is easy to see that αt[i + t]′n = [αti

′ + t]n for
any i ∈ {1, n}. Now for any s ∈ {1, n} we define the bijection βs by putting
βs[s + ik]n = [−it]n for any i ∈ {1, n}. Since (k, n) = 1, we have {1, 2, . . . , n} =
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{[s + k]n, [s + 2k]n, . . . , [s + nk]n = s}. It follows that βs([i + k]′n) = [βsi
′ − t]n

for any i ∈ {1, n}. Then [i + 1]′n ∗s [j + k]′n = [αt([i + 1]′n) + βs([j + k]′n)]n =
[αti

′ + t + βsj
′ − t]n = [αti

′ + βsj
′]n = i′ ∗s j′. So, by Lemma 2.2(ii). (Zn, ∗s) is

k-translatable with respect to this ordering.

Note that, as a result of Theorem 5.1 and Corollary 5.4, a finite group of
order n is isomorphic to Zn if and only if it has a k-translatable isotope for some
k ∈ {1, n− 1}. In fact, a finite group of order n either has no k-translatable
isotope or it has k-translatable isotopes for all values of k ∈ {1, n− 1}.

Example 5.5. Let n = 8. Then (t, 8) = 1 for t ∈ {1, 3, 5, 7}. Then for t = 5, s = 1,
k = 3 and the given ordering 4, 6, 1, 3, 2, 8, 5, 7 we see that α5 = (1, 7, 8, 6, 2)(3, 4, 5)
and β1 = (1, 2, 4, 8, 5, 6)(3)(7). The Cayley table of i′ ∗1 j′ = [α5i

′+ β1j
′]8 follows.

∗1 4 6 1 3 2 8 5 7
1′ = 4 5 6 7 8 1 2 3 4
2′ = 6 2 3 4 5 6 7 8 1
3′ = 1 7 8 1 2 3 4 5 6
4′ = 3 4 5 6 7 8 1 2 3
5′ = 2 1 2 3 4 5 6 7 8
6′ = 8 6 7 8 1 2 3 4 5
7′ = 5 3 4 5 6 7 8 1 2
8′ = 7 8 1 2 3 4 5 6 7

Example 5.6. For t = 5 we want to determine all the k-translatable quasigroups
(Z8.∗) of the form i ∗ j = [αi + βj]8, where α is an automorphism of the group
Z8. Such automorphisms are of the form αi = [mi]8, where m ∈ {1, 3, 5, 7}. Then
α51′ = 5, α52′ = 2, α53′ = 7, α54′ = 4, α55′ = 1, α56′ = 6, α57′ = 3, α58′ = 8.

Now let α = α5 be an automorphism of Z8. If αi = 1i = i, then i′ = 5i.
If αi = 3i, then i′ = 7i. If αi = 5i, then i′ = i. If αi = 7i, then i′ = 3i.
These automorphisms, respectively, give the following orderings: αi = i gives the
ordering 5, 2, 7, 4, 1, 6, 3, 8; αi = 3i gives the ordering 7, 6, 5, 4, 3, 2, 1, 8; αi = 5i
gives 1, 2, 3, 4, 5, 6, 7, 8; αi = 7x gives 3, 6, 1, 4, 7, 2, 5, 8.

By Corollary 5.4, for each s ∈ {1, 2, . . . , 8} and each k ∈ {1, 3, 5, 7} we can
calculate βs. It turns out that βs is an automorphism of Z8 if and only if s = 8
(as long as α is an automorphism of Z8). These calculations give: for α5i = i and
k = 1, β8i = 7i; for α5i = 3i and k = 1, β8i = 5i; for α5i = 5x and k = 1, β8i = 3i
and for α5i = 7i and k = 1, β8i = i, which matches Lemma 2.1.

For s 6= 8, i ∗s j = [αti + βsj]n is a 1-translatable, left linear quasigroup. For
example, in the case when α5i = i, k = 1, the ordering 5, 2, 7, 4, 1, 6, 3, 8 and s = 1,
β1 = (1, 4)(2, 3)(5, 8)(6, 7) is not an automorphism of Z8. This quasigroup has the
following Cayley table that is clearly 1-translatable. It has a right neutral element;
namely, 5, and it is unipotent.
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∗1 5 2 7 4 1 6 3 8
5 5 8 3 6 1 4 7 2
2 2 5 8 3 6 1 4 7
7 7 2 5 8 3 6 1 4
4 4 7 2 5 8 3 6 1
1 1 4 7 2 5 8 3 6
6 6 1 4 7 2 5 8 3
3 3 6 1 4 7 2 5 8
8 8 3 6 1 4 7 2 5

An (α, β)-isotope (Q, ∗) of the group (Q,⊕) is left (right) linear over (Q,⊕)
if α (respectively, β) is an automorphism of (Q,⊕). If an (α, β)-isotope can be
written as x ∗ y = α̂x⊕ c⊕ β̂y for automorphisms α̂, β̂ of (Q,⊕) and some c ∈ Q,
then the quasigroup (Q, ∗) is called linear over (Q,⊕).

The following Theorem finds all k-translatable quasigroups that are left linear
over Zn.

Theorem 5.7. If an (α, β)-isotope (Zn, ∗) of the group Zn is left linear over
Zn, then it is k-translatable if and only if there exist m, s, t ∈ {1, n} such that
(t, n) = 1 = (m,n) and βsj = [k(st −mj)]n for all j ∈ {1, n}, where αi = [mi]n
and [kk]n = 1.

Proof. (⇒): Since α is an automorphism of the group Zn, αi = [mi]n for some
(m,n) = 1. Using Corollary 5.3, there exists an ordering 1′, 2′, . . . , n′ on Zn and
s ∈ {1, n} such that αn′ = 0 = βs′ and, for all i ∈ {1, n}, αi′ = [i(α1′)]n,
(α1′, n) = 1 and βs([s + ik]′n) = −[i(α1′)]n. Thus for t = α1′ we obtain [mi′]n =
αi′ = [i(α1′)]n = [it]n. Hence, for (m,m) = 1 i′ = [mti]n and [s + ik]′n =
[mt(s+ ik)]n = [mts+mtki]n. Therefore, −[it]n =
betas([s + ik]′n) = βs[mts + mtki]n. This for i = [−ks + ktmj]n gives βsj =
[−(−ks+ ktmj)t]n = [k(st−mj)]n.

(⇐): For all i, j ∈ Zn, [i + 1]n ∗ [j + k]n = [mi + m + k(st −m(j + k))]n =
[mi + m + k(st −mj) −m]n = [mi + k(st −mj)]n = i ∗ j. So, k-translatability
follows from Lemma 2.2(ii).

Theorem 5.8. If a k-translatable quasigroup (Q, ∗) is an (α, β)-isotope of the
group (Q,⊕), then there is an ordering 1, 2, . . . , n on Q such that

(i) αs = 0 = βn for some s ∈ {1, n},

(ii) α[i+ 1]n = αi⊕ α[s+ 1]n for all i ∈ {1, n},

(iii) α[s+ i]n = i(α[s+ 1]n) for all i ∈ {1, n},

(iv) (Q,⊕) is isomorphic to (Zn,+),

(v) β[jk]n = j(−α[s+ 1]n) for all j ∈ {1, n}.
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Proof. From Lemma 2.3, there is a k-translatable sequence 1, 2, . . . , n on Q such
that βn = 0 and, since α is a bijection, αs = 0 for some s ∈ {1, n}. Then, using
k-translatability and Lemma 2.2, 0 = s ∗ n = [s+ 1]n ∗ k = α[s+ 1]n⊕ βk. Hence,

βk = −α[s+ 1]n. (2)

Also, αi = i ∗ n = [i + 1]n ∗ k = α[i + 1]n ⊕ βk = α[i + 1]n − α[s + 1]n, which
implies α[i + 1]n = αi ⊕ α[s + 1]n. This proves (ii). Then, by induction on i, we
can prove (iii).

Now, βj = s ∗ j = [s + 1]n ∗ [j + k]n = α[s + 1]n ⊕ β[j + k]n. Therefore
α[s+ 1]n = βj − β[j + k]n, which together with (2) implies βj − β[j + k]n = −βk.
From this, by induction, we obtain β[jk]n = βk ⊕ βk ⊕ . . . ⊕ βk (with j number
of summands). This, by (2), proves (v).

Since α is a bijection Q = {α[s+ i]n : i ∈ {1, n}}. So we can define a bijection
ϕ : Q→ Zn as ϕα[s+ i]n = i. Then we have ϕ(α[s+ i]n ⊕ α[s+ j]n) = ϕ(iα[s+
1]n ⊕ jα[s + 1]n) = ϕ([i + j]nα[s + 1]n) = ϕα[s + [i + j]n]n = [i + j]n = [ϕα[s +
i]n + ϕα[s+ j]n]n. Hence, ϕ is an isomorphism between (Q,⊕) and (Zn,+). This
completes the proof of Theorem 5.8.

Proposition 5.9. If an (α, β)-isotope of the commutative group (Q,⊕) satisfies
(ii), (iii) and (v) of Theorem 5.8 then it is a k-translatable quasigroup.

Proof. Suppose that i, j ∈ Q. By (ii), (iii) and (v) of Theorem 5.8 we see that
Q = {iα[s + 1]n : i ∈ {1, n}} = { [ik]n : i ∈ {1, n}} and so j = [ĵk]n for some
ĵ ∈ {1, n}. Then, [i+ 1]n ∗ [j + k]n = α[i+ 1]n ⊕ β[(ĵ + 1)k]n = αi⊕ α[s+ 1]n ⊕
[ĵ + 1]n(−α[s + 1]n) = αi ⊕ ĵ(−α[s + 1]n) = αi ⊕ β[ĵk]n = αi ⊕ βj = i ∗ j and
k-translatability follows from Lemma 2.2.

The following Corollary follows directly from Theorem 5.8.

Corollary 5.10. An (α, β)-isotope of the group Zn is k-translatable if and only
if there is an ordering 1′, 2′, . . . , n′ on Zn such that for some s ∈ {1, n} and all
i ∈ {1, n}

(i) αs′ = n = βn′,

(ii) (α([s+ 1]′n), n) = 1,

(iii) α([i+ 1]′n) = αi′ + α([s+ 1]′n),

(iv) (α([s+ i]′n) = iα([s+ 1]′n),

(v) β([ik]′n) = −iα([s+ 1]′n).

Theorem 5.11. If an (α, β)-isotope (Zn, ∗) of the group Zn is right linear over
Zn, then it is k-translatable if and only if there exist m, s.t ∈ {1, n} such that
(t, n) = 1 = (m,n) and αi = [−st−mki]n for all i ∈ {1, n}, where βj = [mj]n.
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Proof. (⇒): Since β is an automorphism of the group Zn, βj = [mj]n for some
(m,n) = 1. Using Corollary 5.10(ii) with t = α([s + 1]′n) and αs′ = n, for all
i ∈ {1, n} we have [m([ik]′n)]n = [−it]n and so [i′]n = −[mkit]n, where [mm]n = 1.
By Corollary 5.10(iv), [jt]n = α([mkt(s + j)]n, which for j = [−s −mkti]n gives
αi = [−st−mki]n.

(⇐): For all i, j ∈ {1, n} we have [i + 1]n ∗ [j + k]n = [−st −mki + mj]n =
[αi+ βj]n = i ∗ j. Therefore, by Lemma 2.2(ii), (Zn, ∗) is k-translatable.

Corollary 5.12. For any ordering 1′, 2′, . . . , n′ on Zn and any k, t ∈ {1, n} such
that (k, n) = (t, n) = 1 there is a bijection βt on Znand bijections αs, s ∈ {1, n},
such that the quasigroups (Zn, ∗s) defined by i∗s j = [αsi+βtj]n are k-translatable
with respect to this ordering.

Proof. Suppose that 1′, 2′, . . . , n′ is an order on Zn and that k, t ∈ {1, n}, with
(k, n) = 1 = (t, n). Then, we define αs([s + i]′n) = [it]n. It follows that for all
i ∈ {1, n}, α([i+ 1]′n) = [αi′ + t]n. Then, we define βt([ik]′n) = [−it]n. It follows
that for all i ∈ {1, n}, βt[j + k]′n = [βtj

′ − t]n. Then, [i + 1]′n ∗s [j + k]′n =
[αs([i+ 1]′n) + βt([j + k]′n)]n = [αsi

′ + t+ βtj − t]n = i′ ∗s j′. The required result
then follows from Lemma 2.2(ii).

Theorem 5.13. A k-translatable quasigroup left or right linear over Zn is medial
and linear over Zn. If [k2]n = 1 then it is also paramedial.

Proof. By Theorem 5.7 a k-translatable quasigroup left linear over Zn has the
operation i ∗ j = [αi + kst + δj]n, where αi = [mi]n and δj = [−kmj]n. A k-
translatable quasigroup right linear over Zn has, by Theorem 5.11, the operation
i∗j = [γi−st+βj]n, where γi = [−mki]n and βj = [mj]n. Since (k, n) = (m,n) =
1, α, β, δ, γ are automorphisms of the group Zn. If [k2]n = 1 then α2 = δ2 and
γ2 = β2. This means (cf. [6, Theorem 9]) that this quasigroup is paramedial.

We have seen in Theorem 5.13 that k-translatable left linear and k-translatable
right linear quasigroups over Zn are linear. This leads to the question of whether
there are k-translatable isotopes over Zn of the form x ∗ y = [αx + βy]n where
both α and β are not automorphisms of Zn and (Zn, ∗) cannot be written as
x∗y = [α̂x+ c+ β̂y]n, where either α̂ or β̂ are automorphisms of Zn. (That is, the
k-translatable quasigroup (Zn, ∗) has no representation as a linear, k-translatable
quasigroup over Zn.) In fact, there are many such k-translatable quasigroups over
Z4, as we show in the example below.

The proofs of Theorem 5.14 and Corollary 5.15 are similar to the proofs of
Theorems 5.1 and 5.8 and Corollaries 5.3 and 5.10 and are therefore omitted.
Corollary 5.15 will be applied to give the examples just referred to in the preceding
paragraph.

Theorem 5.14. If an (α, β)-isotope (Q, ∗) of a group (Q,⊕) of order n is k-
translatable then there is an ordering 1, 2, . . . , n on Q such that for some r, s ∈
{1, n} and all i, j ∈ {1, n}
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(i) αr = 0 = βs,

(ii) α[i+ 1]n = αi⊕ α[r + 1]n,

(iii) α[r + i]n = α[r + 1]n ⊕ α[r + 1]n ⊕ . . .⊕ α[r + 1]n︸ ︷︷ ︸
i times

= i(α[r + 1]n),

(iv) (Q,⊕) is isomorphic to the group Zn,

(v) β[j + k]n = βj ⊕ β[s+ k]n and β[s+ jk]n = j(−α[r + 1]n).

Corollary 5.15. An (α, β)-isotope of the group Zn is k-translatable for some k if
and only if there is an ordering 1′, 2′, . . . , n′ of Zn such that for some r, s ∈ {1, n}
and all i ∈ {1, n}

(i) αr′ = n = βs′,

(ii) α([i+ 1]′n) = [αi′ + α([r + 1]′n)]n,

(iii) α([r + i]′n) = [iα([r + 1])′n]n,

(iv) β([i+ k]′n) = [βi′ + β([s+ k]′n)]n and β([s+ ik]′n) = [i(−α([r + 1]′n)]n,

(v) (α([r + 1]′n), n) = 1.

Theorem 5.16. If an (α, β)-isotope of the group Zn is (n − 1)-translatable for
some ordering 1′, 2′, . . . , n′ with βs′ = n, then βi′ = [αi′ − αs′]n for all i ∈ {1, n}.

Proof. An (n−1)-translatable quasigroup of order n is commutative. Hence in an
(n−1)-translatable (α, β)-isotope of the group Zn we have [αi+βj]n = [αj+βj]n.
In particular, αi′ = [αi′ + βs′]n = [αs′ + βi′]n. So, βi′ = [αi′ − αs′]n.

6. 3-translatable isotopes of Z4

We proceed to calculate the 3-translatable (α, β)-isotopes of the group Z4. By
Theorem 5.16, for all i ∈ {1, 4}, βi′ = [αi′ − αs′]4. Using Corollary 5.15, there
is a 3-translatable ordering 1′, 2′, 3′, 4′ on Z4 and r, s ∈ {1, 4} such that αr′ =
4 = βs′, (α([r + 1]′4), 4) = 1 and α([r + i]′4) = iα([r + 1]′4) for all i ∈ {1, 4}. So,
α([r+1]4)′ ∈ {1, 3}. If we choose α([r+1]′4) = 1 then α([r+ i]′4) = iα([r+1]′4) = i
for all i ∈ {1, 4}. Therefore, β([r + i]′4) = [α([r + i]′4) − αs′]4 = [i − αs′]4. Since
αs′ = α([r − (r − s)]′4) = [s− r]4 we have β([r + i]′4) = [i− αs′]4 = [i+ r − s]4.

Note that since 1′, 2′, 3′, 4′ is a 3-translatable ordering, by Lemma 2.3 so is the
ordering [r + 1]′4, [r + 2]′4, [r + 3]′4, r

′. If we define xi = [r + i]′4 then we obtain the
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following 3-translatable Cayley table for Z4, where d = [r − s]4 and each entry is
calculated modulo 4.

∗ x1 x2 x3 x4
x1 2 + d 3 + d d 1 + d
x2 3 + d d 1 + d 2 + d
x3 d 1 + d 2 + d 3 + d
x4 1 + d 2 + d 3 + d d

Note that in the Cayley table above, changing the ordering to x3x4x1x2 in the
leftmost column and also in the top row gives exactly the same quasigroup. That
is, not only is the main body of the Cayley table the same, all the products are
the same. For a fixed value of d, any other ordering gives a different quasigroup.

Note also that, given a fixed r, s and t = α([r + 1]′n), any chosen ordering
x1x2x3x4 determines precisely one bijection α which in turn by Corollary 5.15
and Theorem 5.16 determines the bijection β, as indicated in the table below, the
entries of which are calculated modulo 4.

There are all 24 possible orderings listed in the table below, twelve pairs of
which give 12 distinct 3-translatable quasigroups induced by Z4. The first 4 pairs
of those are linear over Z4, namely, the quasigroups determined by the orderings
1234, 3412, 2341, 4123, 4321, 2143, 1432 and 3214, as will be shown below. None
of the quasigroups determined by the eight other pairs of orderings is linear over
Z4.

x1x2x3x4 α β1 β2 β3 β4
1234 ε 1 + d 2 + d 3 + d d
3412 (13)(24) 3 + d d 1 + d 2 + d
2341 (1432) d 1 + d 2 + d 3 + d
4123 (1234) 2 + d 3 + d d 1 + d
4321 (14)(23) d 3 + d 2 + d 1 + d
2143 (12)(34) 2 + d 1 + d d 3 + d
1432 (24) 1 + d d 3 + d 2 + d
3214 (13) 3 + d 2 + d 1 + d d

1243 (34) 1 + d 2 + d d 3 + d
4312 (1324) 3 + d d 2 + d 1 + d
1321 (23) 1 + d 3 + d 2 + d d
2413 (1342) 3 + d 1 + d d 2 + d
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1342 (243) 1 + d d 2 + d 3 + d
4213 (134) 3 + d 2 + d d 1 + d
1423 (234) 1 + d 3 + d d 2 + d
2314 (132) 3 + d 1 + d 2 + d d
2134 (12) 2 + d 1 + d 3 + d d
3421 (1423) d 3 + d 1 + d 2 + d
2431 (142) d 1 + d 3 + d 2 + d
3124 (123) 2 + d 3 + d 1 + d d
3142 (1243) 2 + d d 1 + d 3 + d
4231 (14) d 2 + d 3 + d 1 + d
3241 (143) d 2 + d 1 + d 3 + d
4132 (124) 2 + d d 3 + d 1 + d

Given that the only automorphisms of Z4 are of the form ϕi = i and ϕi = 3i,
using Lemma 2.1 it is easy to calculate that the only 3-translatable quasigroups
linear over Z4 are of the form i∗j = [ϕi+ϕj+c]4, where c ∈ Z4 is fixed. Examining
the Cayley table of the quasigroups determined by the first eight pairs in the table,
in their natural ordering, shows that they each are of one of these linear forms.

In particular, the orderings 1234 and 3412 give i ∗ j = [i + j − d]4, 2341 and
4123 give i ∗ j = [i+ j + 2− d]4, 4321 and 2143 give i ∗ j = [3i+ 3j + 2− d]4 and
1432 and 3214 give i ∗ j = [3i+ 3j − d]4.

Any of the other quasigroups determined by the remaining 8 pairs of orderings
is not of a linear form because, in their natural ordering, there is always an increase
in the value of a particular two consecutive, increasing entries by a value of 2. This
is not possible for a 3-translatable quasigroup linear over Z4, where the values of
two consecutive, increasing entries always increases by a value of 1 or 3.

If we had chosen α([r + 1]′4) = 3 then by Corollary 5.15, for all i ∈ {1, 4},
(α[r+1]′4) = [3i]4 and β([s+3i]′4) = [−3i]4 = i = β([s−i]′4). Therefore, β([r+i]′4) =
[s − r − i]4. As previously, if we define xi = [r + i]′4 then any ordering x1x2x3x4
gives the following 3-translatable Cayley table.

∗ x1 x2 x3 x4
x1 2− d 1− d −d 3− d
x2 1− d −d 3− d 2− d
x3 −d 3− d 2− d 1− d
x4 3− d 2− d 1− d −d

The first eight orderings of the table below give different values of the mapping
α, but for each ordering the value of βi, i ∈ {1, 4} is the additive inverse of the
corresponding entries in the table on the previous page.
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x1x2x3x4 α β1 β2 β3 β4
1234 (13) −d− 1 −d− 2 −d− 3 −d
3412 (24) −d− 3 −d −d− 1 −d− 2
2341 (14)(23) −d −d− 1 −d− 2 −d− 3
4123 (12)(34) −d− 2 −d− 3 −d −d− 1
4321 (1432) −d −d− 3 −d− 2 −d− 1
2143 (1234) −d− 2 −d− 1 −d −d− 3
1432 (13)(24) −d− 1 −d −d− 3 −d− 2
3214 ε −d− 3 −d− 2 −d− 1 −d

In particular, the orderings 1234 and 3412 give i ∗ j = [3i+ 3j − d]4, 2341 and
4123 give i ∗ j = [3i+ 3j + 2− d]4, 4321 and 2143 give i ∗ j = [i+ j + 2− d]4 and
1432 and 3214 give i ∗ j = [i+ j − d]4.

Note that, whether α([r+1]′4) = 1 or α([r+1]′4) = 3, since [r−s]4 ∈ {1, 4} every
possible 3-translatable linear isotope appears for any of the first eight orderings in
Tables 2 or 4. The remainder of the non-linear, 3-translatable isotopes are of one
of the following 8 forms in their natural ordering.

∗1 1 2 3 4

1 2 1 3 4
2 1 4 2 3
3 3 2 4 1
4 4 3 1 2

∗2 1 2 3 4

1 2 4 1 3
2 4 2 3 1
3 1 3 4 2
4 3 1 2 4

∗3 1 2 3 4

1 2 3 1 4
2 3 4 2 1
3 1 2 4 3
4 4 1 3 2

∗4 1 2 3 4

1 2 4 3 1
2 4 2 1 3
3 3 1 4 2
4 1 3 2 4

∗5 1 2 3 4

1 4 1 3 2
2 1 2 4 3
3 3 4 2 1
4 2 3 1 4

∗6 1 2 3 4

1 4 3 1 2
2 3 2 4 1
3 1 4 2 3
4 2 1 3 4

∗7 1 2 3 4

1 4 2 1 3
2 2 4 3 1
3 1 3 2 4
4 3 1 4 2

∗8 1 2 3 4

1 4 2 3 1
2 2 4 1 3
3 3 1 2 4
4 1 3 4 2

The quasigroups (Z4, ∗1), (Z4, ∗3), (Z4, ∗7) and (Z4, ∗8) are isomorphic to each
other, as are the quasigroups (Z4, ∗2), (Z4, ∗4), (Z4, ∗5) and (Z4, ∗6).
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On quasi-cancellative AG-groupoids

Muhammad Iqbal and Imtiaz Ahmad

Abstract. We proved the analog of the Burmistrovich’s theorem for semigroups: a cyclic-
associative AG-groupoid is quasi-cancellative if and only if it is a semilattice of cancellative
cyclic-associative AG-subgroupoids. We also proved that an AG-groupoid in which all elements
are 3-potent is quasi-cancellative.

1. Introduction
A magma is a fundamental type of an algebraic structure, consist of a non-empty set together
with one binary operation. Abel-Grassmann’s groupoids (abbreviated as AG-groupoids) [9] (also
known as left almost semigroups (LA-semigroups) [5]) can be considered as the non-empty set H
with the binary operation satisfying the identity xy · z = zy · x. This structures was introduced
by Kazim and Naseeruddin in [5].

Protić and Stevanović introduced in [10] the concept of 3-potent elements, AG-3-bands,
AG-bands and anti-rectangular AG-bands. The notion of cyclic-associative AG-groupoids (AC-
AG-groupoids) was introduced by Iqbal et al. in [4]. Dudek and Gigoń [2, 3] studied some
fundamental properties of completely inverse AG**-groupoids and determine certain fundamental
congruences on it. Mushtaq and Yusuf proved in [7] that a left cancellative AG-groupoid is right
cancellative. Shah et al. proved in [12] that in AG-monoids the set of all cancellative elements
is an AG-subgroupoid. They further proved that a finite AG-monoid has at least one non-
cancellative element and the set of non-cancellative elements form a maximal ideal.

In this note we will prove the Burmistrovich theorem for AG-groupoids: a cyclic-associative
AG-groupoid is quasi-cancellative if and only if it is a semilattice of cancellative cyclic-associative
AG-subgroupoids. Also we will prove that any AG-groupoid H in which xx · x = x · xx = x for
all x ∈ H is quasi-cancellative.

2. Results
A groupoid (H, ·), or simply H, satisfying the identity xy · z = zy · x (known as the left invertive
law (L.I.Law) [5]) is called an AG-groupoid. Every AG-groupoid satisfies the medial law (M.Law):
xy · zt = xz · yt. An AG-groupoid contains at most one left identity [7]. An AG-groupoid having
a left identity satisfies the paramedial law (P.Law): xy · zt = ty · zx.

An element h ∈ H is called an idempotent if h2 = h. The set of all idempotent elements
of H is denoted by E(H). An AG-groupoid containing only idempotent elements is called an
AG-band [13]. A commutative AG-band is called a semilattice. An element h ∈ H is 3-potent
if (hh)h = h(hh) = h. If all elements of an AG-groupoid H are 3-potents, then H is called an
AG-3-band. An AG-groupoid H is called an AG*-groupoid [6] if xy · z = y · xz for all x, y, z ∈ H
(known as a weak associative law); an AG**-groupoid [8] if x ·yz = y ·xz and a cyclic-associative
AG-groupoid (CA-AG-groupoid) if x · yz = z · xy [4]. Every CA-AG-groupoid is paramedial
[4]. An element h of an AG-groupoid H is right (left) cancellative if for all x, y ∈ H, xh = yh
(hx = hy) implies x = y. The element h is cancellative if it is simultaneously right and left

2010 Mathematics Subject Classification: 20N02, 20N99, 08A30.
Keywords: AG-groupoid; LA-semigroup; CA-AG-groupoid; AG-band; quasi-cancellative;
Burmistrovich’s Theorem.
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cancellative. H is (right/left) cancellative if all elements of H are (right/left) cancellative. H is
quasi-cancellative [11] if for all x, y ∈ H: (i) x2 = xy and y2 = yx imply x = y, (ii) x2 = yx and
y2 = xy imply x = y.

Lemma 1. If a quasi-cancellative AG-groupoid is cyclic-associative, then
(A) xa = xb⇐⇒ ax = bx,
(B) x2a = x2b ⇒ ax = bx,
(C) x2a = x2b ⇒ xa = xb,
(D) xy · a = xy · b ⇒ a · yx = b · yx,
(E) xy · a = xy · b ⇒ yx · a = yx · b,
(F ) a · xy = b · xy ⇒ a · yx = b · yx,
(G) a · xy = b · xy ⇒ yx · a = yx · b,
(H) xy · a = xy · b ⇐⇒ a · yx = b · yx.

Proof. (A). Assume xa = xb, then xa · xa = xb · xa and xa · xb = xb · xb. Now by the cyclic-
associativity and M.Law we get

xa · xa = a(xa · x) = x(a · xa) = x(a · ax) = x(x · aa) = aa · xx = ax · ax = (ax)2.

Analogously,

xb · xa = a(xb · x) = x(a · xb) = x(b · ax) = x(x · ba) = ba · xx = bx · ax = x(bx · a)
= x(ax · b) = b(x · ax) = ax · bx.

Thus (ax)2 = ax · bx. Similarly, we obtain xa · xb = ba · xx = bx · ax. Thus (bx)2 = bx · ax.
By quasi-cancellativity, from (ax)2 = ax · bx and (bx)2 = bx · ax, we have ax = bx.
The converse implication follows by symmetry.

(B). Let x2a = x2b. Then x2a·a = x2b·a⇒ aa·xx = ab·xx⇒ ax·ax = ax·bx⇒ (ax)2 = ax·bx.
Similarly from x2a = x2b we have x2a · b = x2b · b, which gives (bx)2 = bx · ax. This together

with (ax)2 = ax · bx implies ax = bx.

(C). Follows from (A) and (B).

(D). Assume xy ·a = xy ·b. Then a2 ·xy = (xy ·a)a = (xy ·b)a = ab·xy. So, a2 ·xy = ab·xy. Thus,
(a2 ·xy) ·xy = (ab ·xy) ·xy. But (xy ·xy)a2 = (yy ·xx)a2 = (yx ·yx)a2 = (a ·yx)(a ·yx) = (a ·yx)2.
Similarly, (ab ·xy) ·xy = (xy ·xy) ·ab = (yy ·xx) ·ab = (yx ·yx) ·ab = (b ·yx)(a ·yx) = (b ·yx)(a ·yx).
Therefore (a · yx)2 = (b · yx)(a · yx).

In the same way from xy · a = xy · b we obtain (a · yx)(b · yx) = (b · yx)2, which together with
the previous equality implese a · yx = b · yx.
(E). Follows from (D) and (A); (F ) – from (A) and (D); (G) – from (F ) and (A); (H) – from
(D) and (G).

The following theorem is an analog of the Burmistrovich’s theorem for semigroups from [1].

Theorem 1. A cyclic-associative AG-groupoid is quasi-cancellative if and only if it is a semi-
lattice of cancellative cyclic-associative AG-subgroupoids.

Proof. Necessity. Let a cyclic-associative AG-groupoid be quasi-cancellative. Let σ by the
relation on H such that xσ y if for any p, q ∈ H, xp = xq ⇐⇒ yp = yq. It is an equivalence
relation. To prove that σ is a congruence, let xσ y and z ∈ H. If xz ·p = xz ·q, then pz ·x = qz ·x.
Thus, x · pz = x · qz, by Lemma 1 (A). Hence z · xp = z · xq, which by our assumption gives
z ·yp = z ·yq. So, p ·zy = q ·zy, i.e. y ·pz = y · qz. The last, by Lemma 1 (A), gives pz ·y = qz ·y.
Consequently, yz · p = yz · q. By symmetry yz · p = yz · q implies xz · p = xz · q. Hence xz σ yz.
Therefore, σ is right compatible.

Now if zx · p = zx · q, then xz · p = xz · q, by Lemma 1 (E). So, as it is proved above,
yz · p = yz · q. This, by Lemma 1 (E), implies zy · p = zy · q. By symmetry zy · p = zy · q implies
zx · p = zx · q. Hence, zx σ zy, therefore σ is left compatible. Consequently, σ is a congruence.
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Then H/σ, by Lemma 1 (A) and (B), is an AG-band, By Lemma 1 (E), it is commutative.
Consequently, σ is a semilattice congruence.

Suppose zx = zy, xσ z and y σ z. Since xσ z, zx = zy implies that x2 = xy and since yσz,
thus yx = y2. This, by quasi-cancellativity, gives x = y. If xz = yz with xσ z and y σ z, then
zx = zy, by Lemma 1 (A), and this reduces to the case just considered before. Hence, each
σ-class is cancellative.

Sufficiency. Let H is a semilattice of cancellative cyclic-associative AG-subgroupoids and
x, y are elements such that x2 = yx and y2 = xy. Suppose η be the component of H that
contains yx. As H is semilattice, consequently H is commutative, thus xy ∈ η as well. Hence,
x2, y2 ∈ η. As η is a cyclic-associative AG-groupoid, thus by the closure property in η we have
x, y ∈ η. But η is cancellative and therefore the equality xx = xy implies x = y. By similar
argument if x2 = xy and y2 = yx, then x = y. Hence, H is quasi-cancellative.

The following example illustrate Theorem 1.

Example 1. The Cayley table given below defines a quasi-cancellative cyclic-associative AG-
groupoid H that is a semilattice of cancellative cyclic-associative AG-subgroupoids I = {1} and
J = {2, 3, 4, 5} such thst I, J commute and I2 = I, J2 = J .

· 1 2 3 4 5
1 1 1 1 1 1
2 1 2 3 4 5
3 1 3 2 5 4
4 1 4 5 2 3
5 1 5 4 3 2

Theorem 2. Every AG-3-band is quasi-cancellative.

Proof. Suppose H is AG-3-band and x, y ∈ H.
To prove that x2 = xy and y2 = yx imply x = y suppose x2 = xy and y2 = yx. then, by the

definition of AG-3-band, supposition, L.I.Law and M.Law we obtain

x = x2x = xy · x = ((xx · x)y)x = (yx · xx)x = (x · xx) · yx = x · yx = xy2

= (xx · x) · yy = (xx · y) · xy = (yx · x) · xy = (y2x) · xy = (yy · x) · xy
= (xy · y) · xy = (xy · x) · yy = (((xx · x)y)x) · yy = ((yx · xx)x) · yy

= ((x · xx) · yx) · yy = (x · yx) · yy = xy2 · yy = xy · y2y = xy · y

= yy · x = yy · (x · xx) = yx · (y · xx) = y2 · yx2 = y2 ((yy · y) · xx)

= y2 ((yy · x) · yx) = y2 ((xy · y) · yx) = y2
(
x2y · yx

)
= y2 ((xx · y) · yx)

= y2 ((yx · x) · yx) = y2 ((yx · y) · xx) = y2 ((((yy · y)x)y) · xx)

= y2 (((xy · yy)y) · xx) = y2 (((y · yy) · xy) · xx) = y2 ((y · xy) · xx)

= y2
(
yx2 · xx

)
= y2

(
yx · x2x

)
= y2 (yx · x) = y2(y2x) = y2 (yy · x)

= y2 (xy · y) = y2(xy · y2y) = y2
(
xy2 · yy

)
= y2 ((x · yx) · yy)

= y2(((x · xx) · yx) · yy) = y2 (((yx · xx)x) · yy) = y2 ((((xx · x)y)x) · yy)

= y2 ((xy · x) · yy) = y2 ((xy · y) · xy) = y2 ((yy · x) · xy) = y2
(
y2x · xy

)
= y2 ((yx · x) · xy) = y2 ((xx · y) · xy) = y2 ((xx · x) · yy) = y2 · xy2

= yy · xy2 = yx · yy2 = y2y = y.

This shows that x2 = xy and y2 = yx imply x = y.
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To prove that x2 = yx and y2 = xy imply x = y suppose x2 = yx and y2 = xy. Then, as in
the previous case,

x = x2x = yx · x = xx · y = x2y = yx · y = (y2y · x)y
= ((xy · y)x)y = ((yy · x)x)y = (xx · yy)y = (xy · xy)y

= (y2 · y2)y = (yy · yy)y = ((yy · y)y)y = yy · y = y.

Hence x = y. This completes the proof.
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Semigroups in which 2-absorbing ideals

are prime and maximal

Biswaranjan Khanra and Manasi Mandal

Abstract. We characterize commutative semigroups in which 2-absorbing ideals are maximal.
We introduce the concept of 2-AB semigroups in which 2-absorbing ideals are prime and charac-
terize 2-AB semigroups in terms of minimal prime ideal over a 2-absorbing ideal and study some
properties of these semigroups.

1. Introduction

Throughout this paper all semigroups are commutative, prime ideals are proper
and whenever speaking about maximal ideals we suppose, of course, it exists.

The notion of 2-absorbing ideals for commutative ring was introduced as a
generalization of prime ideals by Badwai [1] and later extended to commutative
semigroup by [5] and [3] as follows: A proper ideal I of a semigroup S is said to
be a 2-absorbing ideal of S if for any elements s1, s2, s3 ∈ S, s1s2s3 ∈ I implies
s1s2 ∈ I or s1s3 ∈ I or s2s3 ∈ I. Clearly, every prime ideal is 2-absorbing but the
converse is not true (see Lemma 2.1 and Example 2.2).

In this paper, we prove that every maximal ideal of a commutative semigroup is
2-absorbing but converse is not true (see Theorem 2.3). In [2], D. Bennis character-
ize commutative rings in which 2-absorbing ideals are prime. These observations
prompted us to solve the following two natural questions:

(1) In which class of semigroups 2-absorbing ideals are maximal?
(2) In which class of semigroups 2-absorbing ideals are prime?
We establish an analogues result of Theorem 2.3 in a commutative ring (The-

orem 2.4). Then we characterize the class of semigroups with unity (Theorem
2.7) and without unity (Theorem 2.11), in which 2-absorbing ideals are maximal.
Next, we define the notion of 2-AB semigroup, in which 2-absorbing ideals are
prime and an example of this semigroup is given (Definition 3.1 and Example 3.2).
We study many properties of a 2-AB semigroup S such as 2-absorbing ideals are
linearly ordered, S has atmost one maximal ideal, S is semiprimary and prime
ideals of S are idempotent (Theorem 3.3). Then we characterize 2-AB semigroup
in terms of minimal prime ideal over a 2-absorbing ideal (Theorem 3.5), some
other characterizations have also been established (Theorem 3.6, Theorem 3.7 and

2010 Mathematics Subject Classification: 20M12, 20M14.
Keywords: Commutative semigroup, Prime ideal, Maximal ideal, 2-absorbing ideal.
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Theorem 3.9). We study some equivalent conditions for a regular semigroup S to
be 2-AB semigroup (Theorem 3.11). Finally, we prove that a semigroup S will be
2-AB if S is with unity and having no essential congrurence (Corollary 3.12) or
every 2-absorbing ideal of S generated by idempotent (Theorem 3.13).

Before going to the main work we recall some preliminaries which are necessary:
A non-empty ideal P of a semigroup S is said to be prime if AB ⊆ P implies

that A ⊆ P or B ⊆ P , A,B being ideals of S. An ideal P is said to be completely
prime if ab ∈ P implies a ∈ P or b ∈ P , a, b being elements of S. The concepts of
prime and completely prime ideal are coincide if S is commutative.

For an ideal A of a semigroup S, a radical of A, denoted as
√
A, is the set of

all x ∈ S such that some power of x is in A. An ideal A of S is called primary if
ab ∈ A implies either a ∈ A or b ∈

√
A. An ideal I of a semigroup S is said to

be semiprimary ideal if
√
I is a prime ideal of S. A commutative semigroup S is

called fully prime semigroup if every ideal of S is prime and primary if every ideal
of S is primary. Also a semigroup S is said to be semiprimary if every ideal of
S is a semiprimary ideal of S. A semigroup in which every ideal is idempotent is
called a fully idempotent semigroup.

Theorem 1.1. (cf. [7]) A commutative semigroup S is semiprimary if and only
if prime ideals of S are linearly ordered.

A commutative semigroup S is said to be Archimedian if, for any two elements
of S, each divides some power of the other. In [10] it is proved that a commutative
semigroup is archimedian if and only if S has no proper prime ideals.

We will use the following theorems proved in [11].

Theorem 1.2. If I and J are any two ideals of a commutative semigroup S, then
the following statements are true;

(1) IJ ⊆ I ∩ J ⊆ I.
(2) I ⊆

√
I.

(3) I ⊆ J ⇒
√
I ⊆
√
J ,

(4)
√
IJ =

√
(I ∩ J) =

√
I ∩
√
J ,

(5) If A is a prime ideal of S, then
√
A = A and if A is a primary ideal of S,

then
√
A is a prime ideal of S.

Theorem 1.3. Let A be an ideal of a commutative semigroup S with unity. If√
A = M , where M is a maximal ideal of S, then A is a primary ideal of S.

Theorem 1.4. In a commutative semigroup S with unity, the unique maximal
ideal M is prime, which is the union of all proper ideals of S;

√
Mn = M for

every positive integer n and Mn is a primary ideal for every positive integer n.

Theorem 1.5. The radical of an ideal I in a commutative semigroup is the in-
tersection of all prime ideals containing I.

Theorem 1.6. Any prime ideal containing an ideal I in a semigroup contains a
minimal prime ideal belonging to I.
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Also the following theorem will be used.

Theorem 1.7. (cf. [12]) If M is a maximal ideal of a semigroup S such that the
complement of M contains either more than one element, or an idempotent, then
M is a prime ideal of S.

2. The case when 2-absorbing ideals are maximal
Lemma 2.1. In a commutative semigroup every prime ideal is 2-absorbing.

Proof. Let I be a prime ideal of S and abc ∈ I with ab /∈ I for some a, b, c ∈ S.
Since I is prime, so c ∈ I, which implies ac ∈ I and bc ∈ I. So I is a 2-absorbing
ideal of S.

The following example shows that the converse of the above lemma is not true:

Example 2.2. The principal ideal I = (6) in the semigroup S = (N, ·) is 2-
absorbing but not prime as 2 · 3 ∈ (6) but neither 2 ∈ (6) nor 3 ∈ (6).

A commutative semigroup with unity has a unique maximal ideal, which is
prime and 2-absorbing. But in a commutative semigroup without unity maximal
ideal need not be prime. For example, the ideal I = {m ∈ N : m > 2} in the
semigroup S = (N,+) is maximal but not prime.

Theorem 2.3. In a commutative semigroup without unity every maximal ideal is
2-absorbing.

Proof. Let M be a maximal ideal of a semigroup S without unity and abc ∈ M
with ab /∈M for some a, b, c ∈ S.

1. If c ∈M then ac ∈M and bc ∈M , since M is an ideal of S. Hence M is a
2-absorbing ideal of S.

2. Let c /∈ M . Since ab /∈ M , then both a, b belongs to S − M . Now if
c 6= ab, then S −M contains two distinct elements c and ab. Again if c = ab and
a 6= b then S−M contains two distinct elements a and b and if a = b then {a, a2}
belongs to S−M , moreover if a = a2, then a is an idempotent element of S. Thus
in either case S −M contains more than one elemenet or an idempotent, hence
M is a prime ideal of S by Theorem 1.7. Consequently, M is a 2-absorbing ideal
of S by Lemma 2.1.

The converse is not true if S has unity. Indeed, the ideal I = {m ∈ S : m > 2}
in S = (N ∪ {0},+) is 2-absorbing but not maximal.

Theorem 2.4. In a commutative ring every maximal ideal is 2-absorbing.

Proof. Let M be a maximal ideal of a commutative ring R and abc ∈ M with
ab /∈ M , for some a, b, c ∈ R. If c /∈ M , then M + (c) = R = M + (ab), where (c)
and (ab) denotes respectively the principal ideal generated by c and ab.
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Since a, b ∈ R, so there exist r, s ∈ R and p, q ∈ Z such that a = m+rc+pc and
b = n+sab+qab, for somem,n ∈M . Therefore ab = (m+rc+pc)(n+sab+qab) =
mn+msab+qmab+nrc+rsabc+qrabc+pnc+psabc+pqabc ∈M , a contradiction.
Hence c ∈M implies ac, bc ∈M and consequently M is 2-absorbing.

The converse is not true. In the commutative ring Z[x] with unity the principal
ideal (x) is 2-absorbing but it is not maximal.

Lemma 2.5. The intersection of any two prime ideals is a 2-absorbing ideal.

Proof. Let abc ∈ P1 ∩ P2 for some a, b, c ∈ S. Then abc ∈ P1 and abc ∈ P2. Since
P1 and P2 are prime ideals so either a ∈ P1 or b ∈ P1 or c ∈ P1 and also either
a ∈ P2 or b ∈ P2 or c ∈ P2. Thus in either ab or bc or ac belongs to P1 ∩ P2.

Theorem 2.6. If in a semigroup S all 2-absorbing ideals are maximal, then S
has at most one prime ideal. This ideal is maximal.

Proof. By Lemma 2.5 the intersection of two prime ideals P1 and P2 is a 2-
absorbing ideal. It is maximal and it is contained in both ideal P1 and P2. Hence
P1 = P2.

Theorem 2.7. In a semigroup S with unity every 2-absorbing ideal is maximal
if and only if S is either a group or S has a unique 2-absorbing ideal A such that
S = A ∪H, where H is the group of units and A is an archimedian subsemigroup
of S.

Proof. Let S be a semigroup with unity in which every 2-absorbing ideal is max-
imal. If S is not group, then S has a unique maximal ideal A which is the only
prime as well as 2-absorbing ideal of S. Therefore S = A ∪H, where A is unique
2-absorbing ideal of S and H is the group of units. Since A is the unique prime
ideal in S, for any p,q ∈ A,

√
(p) =

√
(q) = A. Then there exist positive integers

m and n such that pm = qx and qn = py for some x, y ∈ S. So pm+1 = q(px) and
qn+1 = p(qy), where px, qy ∈M . Hence A is an archimedian subsemigroup of S.

Conversely, let A be the unique 2-absorbing ideal of S. Since in a semigroup
with unity has unique maximal ideal and maximal ideals are 2-absorbing, therefore
A is maximal, as desired.

Theorem 2.8. Let S be a regular semigroup with unity such that every 2-absorbing
ideal is of the form Mn, where n is any positive integer and M is the unique
maximal ideal of S. Then an ideal I of S is a primary if and only if I is a
2-absorbing ideal of S.

Proof. Let I be a 2-absorbing ideal of a semigroup S with unity, which is of the
form Mn, where n is any positive integer and M is the unique maximal ideal of
S. Then

√
I =
√
Mn = M by Theorem 1.4. Hence I is a primary ideals of S.

Conversely, let I be a primary ideal of S. Since S is regular so I =
√
I.

Cosequently I is prime and hence I is 2-absorbing ideal of S.
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As a consequence of the above theorem and Theorem 2.1 of [9] we obtain

Corollary 2.9. If in a regular semigroup S with zero and identity every 2-absorbing
ideal has the form Mn, where n ∈ N and M is the maximal ideal of S, then every
non-zero 2-absorbing ideal of S is maximal if and only if

(i) S is the union of two groups with adjoined zero, or
(ii) S = H ∪M, where M = {0, xh : h ∈ H,x2 = 0, x ∈M} and H is the group

of units.

Theorem 2.10. If in a semigroup S with unity all 2-absorbing ideals are maximal,
then

(1) S is a primary semigroup,
(2) M2 = M , where M is the maximal ideal of S,
(3) S has atmost one idempotent different from identity.

Proof. (1). Let S be a semigroup with unity in which all 2-absorbing ideals are
maximal. Then S has a unique maximal ideal, say M, which is the union of all
proper ideals of S and it is also the unique prime ideal of S. Then for any ideal I of
S,
√
I = M , hence I is a primary ideal of S. Therefore S is a primary semigroup.

(2). Let abc ∈ M2 ⊆ M for some a, b, c ∈ S. Since M is a prime ideal of S
either a or b or c belongs to M . Let a ∈ M . Then bc ∈ M , implies b ∈ M or
c ∈M. Hence ac or ab belongs to M2 and so M2 is a 2-absorbing ideal of S. Since
every 2-absorbing ideal of S is maximal so M2 is a maximal ideal of S. Therefore
M2 = M .

(3). If e and f are idempotents different from the identity, then
√

(eS) =√
(fS) = M , where M is the unique prime as well as unique maximal ideal of S.

Therefore e = ef = f .

Theorem 2.11. Let S be a semigroup without unity. Then 2-absorbing ideals of S
are maximal if and only if complement of each 2-absorbing ideals contains exactly
one non-idempotent element or is a subgroup of S.

Proof. Let S be a semigroup without unity in which 2-absorbing ideals are maxi-
mal. Then S has at most one prime ideal (Theorem 2.6). Let I be a 2-absorbing
ideal of S but not prime. Now if complement of I in S contains more than one el-
ement or an idempotent, then I is prime (Theorem 1.7), a contradiction. Hence in
this case complement of a 2-absorbing ideal contains exactly one non-idempotent
element of S. Again, let a 2-absorbing ideal J is prime. Then a, b ∈ S − I implies
ab ∈ S − I, since I is a prime ideal of S. We know that complement of a maximal
ideal in a commutative semigroup is a H-class (Green’s), and a, b, ab all belong to
same H-class S− I of the semigroup S. Hence S− I is a subgroup of S (Theorem
2.16, [4]), as desired.

Conversely, if complement of a 2-absorbing ideal contains exactly one element
then clearly it is maximal. Now let complement of a 2-absorbing ideal J forms a
subgroup of S. If J is not maximal, then J is contained in a proper ideal K of S.
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Let i be the identity element of S − J . Since J 6= K, there exists p ∈ K − J such
that pq = i for some q ∈ S. Hence i ∈ K. Since K 6= S, there exists m ∈ S −K
such that m = mi ∈ K, a contradiction. Thus, J is a maximal ideal of S.

Since in an archimedian semigroup has no prime ideal, we have

Corollary 2.12. In an archimedian semigroup S without unity all 2-absorbing
ideals are maximal if and only if complement of every 2-absorbing ideal contains
exactly one non-idempotent element.

Corollary 2.13. In a semigroup S without unity all 2-absorbing ideals are prime
as well as maximal if and only if the complement of each 2-absorbing ideal is a
subgroup of S.

3. The case when 2-absorbing ideals are prime
In this section we characterize the class of semigroups in which 2-absorbing ideals
are prime and study some properties of this semigroup.

Definition 3.1. A commutative semigroup S is said to be a 2-AB semigroup if
every 2-absorbing ideal of S is prime.

Example 3.2. In a semigroup S = {a, b} with the multiplication determined by
a2 = a, b2 = b, ab = ba = a, {a} is a 2-absorbing ideal which also is prime. Hence
S is a 2-AB semigroup.

Theorem 3.3. Let S be a 2-AB semigroup. Then
(1) 2-absorbing ideals of S are linearly ordered,
(2) prime ideals of S are linearly ordered,
(3) S has at most one maximal ideal, if exists then it is prime,
(4) S is a semiprimary semigroup,
(5) idempotents in S form a chain under natural ordering,
(6) P = P 2 for every prime ideal P of S,
(7) semiprime ideals of S are prime.

Proof. (1). Let A and B be any two distinct 2-absorbing ideals of a 2-AB semigroup
S. So A ∩ B is 2-absorbing (Lemma 2.5) and hence prime, which implies either
A ⊆ B or B ⊆ A.

(2) Clearly prime ideals of S are linearly ordered.
(3) Let M1 and M2 be two maximal ideal of S. Since every maximal ideal of S

is 2-absobing (Theorem 2.3), so M1 ⊆ M2 or M2 ⊆ M1 which implies M1 = M2.
Hence S has atmost one maximal ideal and if exists clearly it is prime.

(4) By Theorem 1.1, a commutative semigroup is semiprimary if and only if
prime ideals are linearly ordered. Hence S is a semiprimary semigroup.
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(5) Since S is a semiprimary semigroup, then for any ideal A of S,
√
A is prime.

Let e and f are any two idempotents of S. Then
√
eS and

√
fS are prime ideals,

so either
√
eS ⊆

√
fS or

√
fS ⊆

√
eS, which proves that the idempotents form a

chain under natural ordering.
(6) Let P be a prime ideal of S and abc ∈ P 2 ⊆ P for some a, b, c ∈ S. Since

P is a prime ideal of S, either a ∈ P or b ∈ P or c ∈ P . Let a ∈ P . Then bc ∈ P ,
implies b or c belogs to P and so ac or ab belongs to P 2. Hence P 2 is a 2-absorbing
ideal of S and so P 2 is a prime ideal of S. Let x ∈ P . Then x2 ∈ P 2 implies
x ∈ P 2 so P ⊆ P 2. Therefore P = P 2.

(7) Let I be a semiprime ideal of S. Then I =
√
I is a prime ideal of S, since

prime ideals of S are linearly ordered, as desired.

Lemma 3.4. Let S be a semigroup with unity and unique maximal ideal M . Then
for every prime ideal P , PM is a 2-absorbing ideal of S. Moreover, PM is prime
if and only if PM = P .

Proof. Let xyz ∈ PM ⊆ P . Since P is prime, either x ∈ P or y ∈ P or z ∈ P . Let
x ∈ P . Then either y ∈ M or z ∈ M , since M is also prime. Hence xy ∈ PM or
xz ∈ PM . Consequently, PM is a 2-absorbing ideal of S. Clearly, PM is prime
if and only if PM = P .

The following is a characterization of a 2-AB semigroup in terms of minimal
prime ideal over a 2-absorbing ideal, which is analogous to (Theorem 2.3, [2]).

Theorem 3.5. A semigroup S with unity is a 2-AB semigroup if and only if
prime ideals of S are linearly ordered and if P is a minimal prime ideal over a
2-absorbing ideal I, then IM = P, where M is the unique maximal ideal of S.

Proof. Let I be a 2-absorbing ideal of a 2-AB semigroup S with unity. Then prime
ideals of S are linearly ordered (Theorem 3.3) and I is prime by hypothesis. Then
IM = I (Lemma 3.4).

Conversely, let I be a 2-absorbing ideal of S. Since prime ideals are linearly
ordered and P = IM , where P is a minimal prime ideal over I, P = IM ⊆
I ∩M = I ⊆ P implies I = P , as desired.

Theorem 3.6. A commutative semigroup S is a 2-AB semigroup if and only if
P = P 2 for every prime ideal P of S and every 2-absorbing ideal of S is of the
form A2, where A is a prime ideal of S.

Proof. Let P be a 2-absorbing ideal of a 2-AB semigroup. Then P is prime and
so P = P 2 (Theorem 3.3(6)).

Conversely, let I be a 2-absorbing ideal of S. Then I = A2 = A, where A is a
prime ideal of S.

Theorem 3.7. A commutative semigroup S is a 2-AB semigroup if and only if
its prime ideals are linearly ordered and A = A2 for every 2-absorbing ideal A of
S.
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Proof. Let S be a 2-AB semigroup. Let P1 and P2 be two prime ideals of S. Then
P1 ∩ P2 is 2-absorbing ideal of S (Lemma 2.5) and so prime, which implies either
P1 ⊆ P2 or P2 ⊆ P1. Again let A be a 2-absorbing ideal of S and so prime.
Therefore A = A2 (Theorem 3.3).

Conversely, let A be any 2-absorbing ideal of S and x ∈
√
A. Then x2 ∈ A =

A2, since A is 2-absorbing ideal of S. This implies x ∈ A, so A =
√
A. Since prime

ideals are linearly ordered so A is prime and hence S is a 2-AB semigroup.

Since in a fully idempotent semigroup S, A = A2 for every ideal A of S, the
following is a simple consequence of above theorems:

Corollary 3.8. A fully idempotent semigroup S is a 2-AB semigroup if and only
if one of the following conditions hols:

(1) Prime ideals are linearly ordered.
(2) Every 2-absorbing ideal is of the form P 2, where P is a prime ideal of S.

Theorem 3.9. A semigroup S is a 2-AB semigroup if and only if its prime ideals
are linearly ordered and A =

√
A for every 2-absorbing ideal A of S.

Proof. Let S be a 2-AB semigroup. Then prime ideals of S are linearly ordered
(Theorem 3.3). Again any 2-absorbing ideal A of S is prime so A =

√
A.

Conversely, let A be a 2-absorbing ideal of S. Then A =
√
A =

⋂
Pi = Pβ , for

some β ∈ Λ and where {Pi : i ∈ Λ} are prime ideals containing A. Hence S is a
2-AB semigroup.

Since in a semiprimary semigroup prime ideals are linearly ordered (Theorem
1.1), the following corollary is an obvious consequence of the above theorem:

Corollary 3.10. A semiprimary semigroup S is a 2-AB semigroup if and only if
A =

√
A for every 2-absorbing ideal A of S.

Theorem 3.11. For a commutative regular semigroup S the following statements
are equivalent:

(1) S is 2-AB semigroup.
(2) 2-absorbing (prime) ideals are linearly ordered.
(3) Idempotents in S form a chain under natural ordering.
(4) All ideals of S are linearly ordered.

(5) S is a fully prime semigroup.
(6) S is a primary semigroup.
(7) S is a semiprimary semigroup.

Proof. (1)⇒ (2)⇒ (3) by Theorem 3.3.
(3)⇒ (4)⇒ (5)⇒ (6)⇒ (7) follows from Theorem 2.4 of [11].
(7) ⇒ (1). Let A be a 2-absorbing ideal of a commutative regular semigroup

S. Then A =
√
A =

⋂
Pα, where {Pα : α ∈ Λ} are the prime ideals of S contaning
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A. Since S is semiprimary, so prime ideals are linearly ordered, which implies
A =

√
A = Pβ for some β ∈ Λ. Therefore S is a 2-AB semigroup.

Let D be the class of commutative semigroups with an identity element and
having no proper essential congruences, i.e. congruences δ such that α ∩ δ 6= i for
every congruence α 6= i, where i is the identity relation on S. Oehmke [8], proved
that if S ∈ D, then the set of ideals of S are linearly ordered by inclusion and
hence the set of prime ideals of S are linearly ordered. Again Khaksari [6], proved
that if S ∈ D, then S is regular i.e. A =

√
A for every ideal A of S. So as a simple

consequence of Theorem 3.9, we have the following result:

Corollary 3.12. If S ∈ D, then S is a 2-AB semigroup.

Theorem 3.13. If every 2-absorbing ideal of a semigroup S has an idempotent
generator, then S is a 2-AB semigroup.

Proof. Let I be a 2-absorbing ideal of S generated by the idempotent e i.e. I =
(e) = eS. Since S is commutative so I = I2. It is clear that I ⊆

√
I. Let x ∈

√
I.

Then x2 ∈ I = I2, since I is 2-absorbing. This implies x ∈ I, so
√
I ⊆ I. Hence

I =
√
I. Again, let P,Q be two prime ideals of S. Then the prime ideal P ∪Q is

2-absorbing, has an idempotent generator e, i.e. P ∪Q = eS. But then e ∈ P or
e ∈ Q. This implies either P = eS or Q = eS and either P ⊆ Q or Q ⊆ P . Hence
by Theorem 3.9, S is a 2-AB semigroup.

Since every principal ideal of a commutative regular semigroup has an idem-
potent generator, the following is an obvious consequence of the above theorem:

Corollary 3.14. If every 2-absorboing ideal of a commutative regular semigroup
S is principal, then S is a 2-AB semigroup.
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Semisymmetric quasigroups

as alignments on abstract polyhedra

Kyle M. Lewis

Abstract.A quasigroup satisfying the identity x(yx) = y is called semisymmetric; if a semisym-
metric quasigroup is commutative, then it is totally symmetric. We demonstrate a bijection
between totally symmetric quasigroups and directed graphs satisfying certain specifications.
Further, we demonstrate a bijection between semisymmetric quasigroups and certain mappings
between abstract polyhedra and directed graphs, termed alignments.

1. Introduction
As a class, the semisymmetric quasigroups arguably warrant particular interest
due to both their algebraic and their combinatorial properties – commutative
semisymmetric i.e. totally symmetric quasigroups have been an object of study
for almost as long as quasigroups themselves [1]. There is a well-known bijec-
tion between idempotent totally symmetric quasigroups and the combinatorial
block designs known as Steiner triple systems [2]; this further links totally sym-
metric quasigroups to finite geometry, as the Steiner triple system of order 7 is
equivalent to the finite projective plane of order 2, and the Steiner triple system
of order 9 is equivalent to the finite affine plane of order 3 [11]. Notably, via
the semisymmetrization functor described by Smith [16], as well as the similar
Mendelsohnization functor described by Krapež and Petrić [12], [17], it is possible
to reduce homotopisms between arbitrary quasigroups to homomorphisms between
semisymmetric quasigroups.

In this paper, we first lay groundwork by establishing a novel bijection between
totally symmetric quasigroups and directed graphs meeting certain specifications.
There have been several graph theoretic approaches applied to the study of quasi-
groups in the past [3], [9]; the main advantages of the schema implemented here are
that the diagrams remain relatively simple, yet we are still able to fully recover the
structure of any given (totally symmetric) quasigroup from its associated directed
graph, even such that new quasigroups can be constructed starting only with a
set of rules for constructing digraphs. Then, we expand this result to demonstrate
a link between semisymmetric quasigroups and abstract polytopes, which are a
combinatorial generalization of more traditional, geometric polytopes [5], [13].

2010 Mathematics Subject Classification: 05B07, 05C25, 20N05
Keywords: quasigroup, semisymmetric quasigroup, totally symmetric quasigroup, abstract
polytope
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Specifically, we demonstrate a bijection between semisymmetric quasigroups and
objects we will refer to as alignments, which represent mappings between abstract
polyhedra and directed graphs. Likewise, up to isomorphism the full structure of
a semisymmetric quasigroup will be shown to be recoverable from its associated
alignment and vice versa.

2. Preliminaries

A partial quasigroup (Q, ·) is a set Q with a binary operation (·) such that for some
a, b ∈ Q there exist (at most) unique elements x, y ∈ Q such that a ·x = b, y ·a = b;
if this relation is satisfied for all a, b ∈ Q, then it is complete or simply a quasigroup
[2]. For brevity, we will denote x ·y by juxtaposition xy. An isomorphism between
partial quasigroups is a bijection f : Q→ Q′ such that f(x) · f(y) = f(xy) for all
x, y ∈ Q, in which case Q and Q′ are said to be isomorphic.

Given a quasigroup (Q, ·), it is possible to define 5 conjugate or parastrophic
operations [6], [15] such that:

x · y = z ⇔ z/y = x (1)
x · y = z ⇔ x\z = y (2)
x · y = z ⇔ y ◦ x = z (3)
x · y = z ⇔ y//z = x (4)
x · y = z ⇔ z\\x = y (5)

If Q satisfies any of the equivalent [16] identities:

y · xy = x (6)
yx · y = x (7)
x/y = yx (8)
x\y = yx (9)

then it is said to be semisymmetric. If Q is both semisymmetric and commutative,
then it is totally symmetric, abbreviated as a TS-quasigroup. Equivalently, Q is
totally symmetric iff all of its parastrophic operations coincide with one another.

A partial Steiner triple system of order n is a pair (V,B) where V is an n-
element set and B is a set of 3-element subsets of V , referred to as Steiner triples,
where any 2-element subset of V is contained in at most 1 triple. A partial Steiner
triple system is complete if every 2-element subset of N is contained in exactly 1
triple in B, in which case it is referred to as simply a Steiner triple system [2].

A cyclic order on 3 elements is a ternary relation θ such that for distinct
elements x, y, z then θ(x, y, z) ⇔ θ(z, x, y) ⇔ ¬θ(z, y, x) [7]. We call a pair of
cyclic orders of the form θ1(x, y, a), θ2(y, x, b) partial opposites; that is, to say,
they share > 2 common elements which are in reversed order in regards to each
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other. If partial opposites share all 3 elements, then they are simply opposites.
The scope of this paper is limited to cyclic orders on 3 elements, and so we need
not consider cyclic orders on larger sets.

A partial Mendelsohn triple system (W,C) is a generalization of a Steiner triple
system where W is a set and C is set of 3-element subsets of W with some cyclic
order, referred to as Mendelsohn triples, such that ({x, y, z}, θ) = (x, y, z) contains
the ordered pairs (x, y),(y, z),(z, x), and no others. Likewise, any ordered pair of
distinct elements (x, y) : x, y ∈ W can be contained in at most 1 triple in C; if
every possible ordered pair of distinct elements in W is contained in exactly 1
triple in C, then the system is complete and simply a Mendelsohn triple system
[3].

A multiset is a generalization of a set allowing for multiple instances of each
element. Similarly, an extended Steiner system of order n is a pair (V,B) where V
is an n-element set and B is a set of 3-element submultisets of V , called extended
Steiner triples wherein each 2-element multisubset of V is contained in exactly 1
extended Steiner triple. An extended Mendelsohn system is a pair (W,C) where
W is a set and C is a set of extended Mendelsohn triples such that any ordered pair
of not necessarily distinct elements (a, b) : a, b ∈ M is contained within exactly 1
triple in C. That is to say, extended Steiner and Mendelsohn triple systems are
simply triple systems that allow for the repetition of elements [3]. From hereon,
we will assume all Steiner and Mendelsohn systems are extended, and as such we
can safely use just triples and triple systems when there is no chance of confusion.
Cyclic orders also extend to multisets – note that any cyclic order of the form
θ(x, x, y) or θ(x, x, x) is opposite to itself.

Suppose some graded partially ordered set (P,6) with strictly monotone rank
function ρ : P → {−1, 0, 1, 2, ..., n} sending elements fi ∈ P , called faces, to integer
values such that there is some unique least face f−1 and some unique greatest face
fn such that ρ(f−1) = −1 and ρ(fn) = n. Faces of rank n are n-faces – we
call 0-faces vertices and 1-faces edges. Faces f1, f2 are incident if f1 6 f2 or
f2 6 f1. Any maximal totally ordered subset Fi ⊂ P is a flag ; each flag contains
exactly n + 2 faces. 2 flags are adjacent if they differ by exactly 1 face. P is
strongly flag-connected if for any 2 flags Fx, Fy in P , there is some sequence of
flags (F0, F1, ..., Fn) such that any 2 successive Fi, Fi+1 are adjacent to each other,
where Fx = F0, Fy = Fn and Fx ∩Fy ⊆ Fi for all i. If for any pair of faces fx 6 fz
in P where ρ(fx) = i− 1, ρ(fz) = i+ 1, there are exactly 2 faces fy1, fy2 such that
fx 6 fy1,2 6 fz and ρ(fy1,2) = i, then P is said to satisfy the diamond condition;
that is to say, any pair of incident faces that differ in rank by 2 have exactly 2
incident faces strictly between them.

A graded poset (P,6) is an abstract n-polytope [5], [13], [14] if it has a unique
least face of rank -1 and a unique greatest face of rank n, is strongly flag-connected,
all flags contain exactly n + 2 faces, and it satisfies the diamond condition. An
abstract 3-polytope is an abstract polyhedron. We will call a polyhedron cubic if
its graph is 3-regular – that is to say, each vertex is incident to exactly 3 edges.

An automorphism on an abstract polytope P is an order-preserving bijection
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ϕ : P → P . From hereon, all polytopes will be assumed to be abstract and all
quasigroups will be assumed to be finite.

3. Totally symmetric quasigroups and digraphs

3.1 Constructing didgraphs from quasigroups
There is a natural bijection between Steiner triple systems and totally symmetric
quasigroups given by S : Q → S(Q) where Q is some partial TS-quasigroup and
S(Q) = (V,B) is the partial Steiner system over the same underlying set such that
for x, y, z ∈ Q then {x, y, z} ∈ B if and only if xy = z, yx = z, xz = y. We will
refer to partial Steiner systems as isomorphic to each other iff their corresponding
partial quasigroups are isomorphic to each other, and likewise for individual Steiner
triples.

Lemma 3.1. There are exactly 3 isomorphism classes of Steiner triples: triples of
the form {x, x, x} (type 1), of the form {x, x, y} (type 2), and of the form {x, y, z}
(type 3), where x 6= y 6= z.

Proof. Any 2 triples {x, x, x}, {a, a, a} are isomorphic by ϕ(x) = a, ϕ(a) = x. Any
2 triples {x, x, y}, {a, a, b} are isomorphic by ϕ(x) = a, ϕ(a) = x, ϕ(y) = b, ϕ(b) =
y. Any 2 triples {x, y, z}, {a, b, c} are isomorphic by ϕ(x) = a, ϕ(a) = x, ϕ(y) =
b, ϕ(b) = y, ϕ(z) = c, ϕ(c) = z. No isomorphism between triples of different types
is possible because any mapping would necessarily either map unique values x, y
to the same value a or map the a single value x to different values a, b.

A partial triple system can be constructed through the union of any 2 triples
with less than 2 elements in common. Necessarily then, said triples must either
have exactly 1 element in common, in which case we will refer to them as inter-
secting, or they have no elements in common, making them disjoint. If 2 triples
t1, t2 are intersecting such that t1 has more instances of the intersecting element
than t2, we will say that t2 binds to t1 e.g. {1, 2, 3} binds to {1, 1, 4}.

Proposition 3.2. A partial Steiner triple system is uniquely determined up to
isomorphism by the types of its constituent triples and the intersection between
them.

Proof. Given partial triple systems (V1, B1) where B1 = {{x1, y1, z1}, {a1, b1, c1}}
and (V2, B2) where B2 = {{x2, y2, z2}, {a2, b2, c2}} there exists an isomorphism
ϕ(x1) = x2, ϕ(x2) = x1, ϕ(a1) = a2, ϕ(a2) = a1 et cetera iff ∀d1, e1 ∈ ∪B1∃d2, e2 ∈
∪B2((d1 = e1) ⇒ (d2 = e2)). This process can be continued inductively for the
union of triple systems of arbitrarily greater (finite) order.

Corollary 3.3. Any given totally symmetric quasigroup is uniquely determined
up to isomorphism by the types of its corresponding triples and the intersection
between them.
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In light of this, we can devise a schema to represent totally symmetric quasi-
groups as directed graphs: for given partial totally symmetric quasigroup Q, let
D : Q→ D(Q) take it to the directed graph D(Q) such that for every Steiner triple
ti ∈ S(Q) there is exactly 1 vertex vi ∈ D(Q) and where for any t1, t2 7→ v1, v2
then v1 directly succeeds v2 if and only if t2 binds to t1. For example, given an
example quasigroup Q4 of order 4 with the Cayley table:

1 2 3 4
1 1 2 4 3
2 2 1 3 4
3 4 3 2 1
4 3 4 1 2

we can derive the corresponding triples: {1,1,1}, {2, 2,1}, {3, 3, 2}, {4, 4, 2}, {1, 3, 4},
producing the directed graph:

Figure 1: Labeled digraph of Q4

The labels in figure 1 are purely for illustrative purposes; the final, unlabeled
digraph is:

Figure 2: Unlabeled digraph D(Q4)

We will refer to vertices inD(Q) as being of the same type as the triples in S(Q)
they correspond to e.g. a type 1 vertex represents some triple of the form {x, x, x}.
In general, if there is little chance for confusion we will use the same terminology
between vertices in D(Q) and the triples in S(Q) which they represent.

Proposition 3.4. Up to isomorphism, the full structure of any TS-quasigroup Q
can be recovered from its directed graph D(Q).

Proof. It is clear from the definition of an extended Steiner triple system that in
any complete system (V,B) each element of its underlying set x ∈ V must occur
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in exactly 1 triple either of the form {x, x, x} or of the form {x, x, y}. It follows
then that for given triples t1, t2 the only possible case in which t2 can contain less
instances of some shared element x ∈ t1, t2 is if t2 contains exactly 1 instance of
x and t1 contains either 2 or 3 instances of x. That is to say, a given triple binds
exactly once for each element it contains exactly 1 instance of. Therefore, the type
of triple each vertex represents can be inferred from its outdegree: vertices with
outdegree 0 map to type 1 triples, outdegree 1 to type 2 triples, and outdegree 3
to type 3 triples.

Given the digraph D(Q), once the type of each vertex is identified, we may
arbitrarily assign some bijective mapping between the type 1 and 2 vertices of the
digraph and the elements of Q; that is to say, we label each type 1 and 2 vertex
with a unique element of Q. Now, each vertex can be mapped to some triple as
follows: type 1 vertices with label x are sent to {x, x, x}, type 2 vertices with label
x binding to some vertex with label y are sent to {x, x, y}, type 3 vertices binding
to some vertices with labels x, y, z (respectively) are sent to {x, y, z}. The union
of these triples forms a triple system and thus a totally symmetric quasigroup. For
example:

Figure 3: The type of each vertex in example diagram D(Q5)

Figure 4: Arbitrary labeling of type 1 and type 2 vertices of D(Q5)

Figure 5: Deriving the corresponding triples for each vertex of D(Q5)

Our choice in assigning type 1 and 2 vertices to elements of Q does not matter,
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because the type of each triple and the intersection between them are preserved
and so by Corollary 3.3 any quasigroup produced by this method will be isomorphic
to Q. In fact, every quasigroup isomorphic to Q on the same underlying set can be
produced via permutations on the labels of the type 1 and 2 vertices of its digraph
D(Q).

Corollary 3.5. Every automorphism of a given TS-quasigroup Q corresponds to
some graph isomorphism between permutations of labelings on the type 1 and 2
vertices of its directed graph D(Q).

3.2 Constructing quasigroups from digraphs
A complete extended Steiner triple system of order n contains:(

n+ 2− 1

2

)
=

1

2
n(n+ 1) (10)

(unordered) pairs of elements. As shown by Johnson and Mendelsohn in Section 3
of [8], given a triple system of order n, fixing the number of triples of any type also
fixes the number of triples of each of the other 2 types. More specifically, where i
is the number of type 1 triples, the number of type 3 triples must be equal to:

1
2n(n+ 1)− (i+ 2(n− i))

3
= n2/6− n/2 + i/3 (11)

and therefore the number of type 1 triples i in a given triple system of order n
must be such that:

3 | 1

2
n2 − 3

2
n+ i (12)

A given element of a quasigroup x ∈ Q such that xx = x is called an idempotent
element or simply an idempotent [3]; a quasigroup wherein all elements are idem-
potent is an idempotent quasigroup. It is readily apparent that each type 1 triple
in a Steiner system specifies an element of its corresponding TS-quasigroup to be
idempotent, and that each type 2 triple specifies an element not to be idempotent.
By definition:

xx = y ⇔ xy = x⇔ yx = x (13)

and so these triples define not only the squares for each element x2 = y but also
the local identities for each element xy = x. Let us define the subset: U = {y ∈
Q | x2 = y, x ∈ Q} as the unique squares of Q. On D(Q), the unique squares
correspond to the type 1 vertices together with the type 2 vertices which have at
least 1 other type 2 vertex bound to them – this is equivalent to saying the unique
squares are the elements that are either their own squares or the square of some
other element.

Lemma 3.6. For a TS-quasigroup of odd order n, |U | = n; all elements are unique
squares.
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Proof. For elements of a TS-quasigroup x, y, z ∈ Q, by definition xy = z ⇔ xz = y.
Then for any fixed x, we can define an involution ϕ : Q → Q sending y 7→ xy. If
n is odd, because ϕ is an involution there then must be some element z for which
ϕ(z) = z i.e. xz = z. Because Q is a quasigroup, there can be no y such that
xz = z, yz = z, x 6= y; that is to say, if x acts as a local identity element for z, then
it must be the only identity element for z. There being exactly n elements in Q,
if some x were to act as an identity for more than 1 element, then there must be
some y that cannot be an identity for any element – but as we established, every
element of Q must be an identity for some other element. Therefore, each z maps
uniquely to some local identity x, or alternatively, every element x is the unique
square of some z.

In informal terms, every row and column of the Cayley table for Q is some
involution on the underlying set of Q, which means each row can be represented
as the product of disjoint transpositions, but because n is odd for any row x there
always must be some cell left over that cannot be swapped with any other cell.
This defines the local identity for x and thus it also defines x2; this must be unique
because if another row had the same local identity for x there would be multiple
instances of the same element in a single column.

Corollary 3.7. For any TS-quasigroup Q of odd order, all type 2 vertices in D(Q)
are partitioned into cycles of length > 3.

Proof. If all elements are unique squares, then each type 2 vertex must have at
least 1 other type 2 vertex bound to it. Given that type 2 vertices have outdegree
1, they all must bind to other type 2 vertices, else there necessarily would be some
type 2 vertex left over with no type 2 vertex bound to it. Assuming the number
of vertices is finite, they will therefore be partitioned into cycles. There can be no
2-cycles as that would imply {{x, x, y}, {y, y, x}}, thus the pair {x, y} would occur
in more than 1 triple.

Lemma 3.8. For a TS-quasigroup of even order n, 1 6 |U | 6 n/2.

Proof. As above, on TS-quasigroup Q we define an involution ϕ : y 7→ xy for some
fixed x where x, y ∈ Q. If n is even, because ϕ is an involution for every y such
that ϕ(y) = y there must also be another distinct element z ∈ Q where ϕ(z) = z;
that is, any x must act as a local identity for an even number of elements in Q
(0 being even). Conversely, every x must be the square of an even number of
elements. It follows then that the maximum possible number of unique squares is
n/2; trivially, there must be at least 1 unique square.

Informally, because n is even there cannot be an odd number of unswapped
cells in a given row of the Cayley table for Q.

Corollary 3.9. In the digraph D(Q) for a TS-quasigroup Q of even order, every
type 1 vertex must have an odd number of type 2 vertices bound to it and every
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type 2 vertex must have an even number of type 2 vertices bound to it (0 being
even).

To summarize, for a TS-quasigroup Q of order n: the number of type 1 vertices
i must be such that 3 | 12n

2− 3
2n+ i. The number of type 2 vertices must be n− i.

If n is odd, the type 2 vertices are partitioned into cycles of length > 3. If n is
even, every type 1 vertex must have an odd number of type 2 vertices bound to
it and every type 2 vertex must have an even number of type 2 vertices bound
to it. We will refer to a given configuration of type 1 and 2 vertices meeting the
aforementioned specifications as a diagonal subgraph.

Proposition 3.10. For any TS-quasigroup Q, D(Q) contains a diagonal subgraph
as an induced subgraph. Further, up to isomorphism every diagonal subgraph can
be mapped to some unique partial TS-quasigroup.

Proof. By Corollaries 3.7 and 3.9, the induced subgraph containing only the type
1 and type 2 vertices of the digraph of a TS-quasigroup will always be a diagonal
subgraph. Using the method specified in Proposition 3.4, we can always produce
a partial Steiner system and therefore a partial TS-quasigroup with any arbitrary
labeling of the vertices bijective with some set. Because this method preserves the
types of triples and the intersections between them, by Corollary 3.3 this partial
quasigroup is unique up to isomorphism for each unique diagonal subgraph. Triples
in a diagonal subraph are all either of the form {x, x, x} or {x, x, y}, and thus the
only way for a given pair to show up more than once would be to label more than
1 vertex with the same element, which goes against the definition.

However, not every diagonal subgraph can be made into a complete TS-quasi-
group. There must be n2/6−n/2+i/3 type 3 triples in a complete Steiner system,
and each corresponding type 3 vertex must bind to exactly 3 type 1 or type 2
vertices. Further, no 2 type 3 vertices may bind to more than 1 shared vertex, as
this would imply 2 triples that shared more than 1 common element. Finally, no
type 3 vertex may bind to 2 vertices a, b where a is bound to b; this would imply
some {{x, y, z}, {x, x, y}, {y, y, w}} and thus the pair {x, y} is contained in more
than 1 triple. A directed graph composed (solely) of a diagonal subgraph and a
set of type 3 vertices meeting the aforementioned specifications is complete.

Theorem 3.11. Up to isomorphism, there exists a bijection between complete
digraphs and totally symmetric quasigroups such that the full structure of a unique
totally symmetric quasigroup can be recovered from any complete digraph and vice
versa.

Proof. Given any diagonal subgraph and some bijective labeling from some set to
the vertices, it is readily apparent that any completion via the addition of bound
type 3 vertices is equivalent to the specification of a set of triples, each containing
exactly 3 distinct elements of the set. If any 2 of these type 3 triples shared more
than 1 common element between them, they would necessarily bind to more than
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1 shared vertex and thus violate the definition of a complete digraph. If any of
these type 3 triples shared more than 1 common element with some type 2 triple,
it would also necessarily bind to the triple said type 2 binds to and thus violate the
definition of a complete digraph. Clearly, a type 3 triple cannot share more than 1
common element with a type 1 triple. There being n2/6−n/2 + i/3 type 3 triples
ensures by the pigeonhole principle that every possible pair of elements of the set
is accounted for in some triple. By Corollary 3.3, any 2 digraphs corresponding to
isomorphic quasigroups are necessarily isomorphic to each other. By Proposition
3.4, every totally symmetric quasigroup corresponds to a directed graph, and thus
the bijection is complete.

Corollary 3.12. Every subquasigroup of any TS-quasigroup Q appears as an in-
duced subgraph of D(Q).

The methodology described here for constructing digraphs from TS-quasigroups
is compatible with that of Khatirinejad et al. in [10] for constructing digraphs
from Mendelsohn triple systems, which are equivalent to idempotent, semisym-
metric quasigroups [17]. Specifically, given any idempotent TS-quasigroup Q, we
can construct a Khatirinejad et al. digraph from D(Q) by replacing each type 3
vertex with a set of 6 vertices arranged into 2 cyclically ordered triangles (as each
Steiner triple is equivalent to 2 Mendelsohn triples).

Remark 3.13. There is known to exist a bijection between idempotent TS-quasi-
groups of order n and TS-quasigroups of order n + 1 with a (global) identity
element [4]. This can be represented graphically as follows: given the digraph of
some idempotent, TS-quasigroup, add 1 additional type 1 vertex, then bind every
other type 1 vertex to the added vertex, converting them to type 2 vertices.

Figure 6: Example idempotent quasigroup Q3

Figure 7: Derived quasigroup with identity V4 (the Klein 4-group)

Note that 1 of the arrows in Figure 2 is in the opposite orientation to that of its
counterpart in Figure 7, distinguishing Q4 and V4 as nonisomorphic quasigroups.



Semisymmetric quasigroups and abstract polyhedra 233

4. Quasigroups and abstract polyhedra

4.1 Constructing polyhedra from quasigroups

Similarly to Steiner systems and totally symmetric quasigroups, there exists a
natural bijection between Mendelsohn triple systems and semisymmetric quasi-
groups given by M : Q → M(Q) where Q is a given partial semisymmetric
quasigroup and M(Q) = (W,C) is the partial Mendelsohn system over the same
underlying set such that for elements x, y, z ∈ Q then (x, y, z) ∈ C if and only
if xy = z, yz = x, zx = y; note that because semisymmetric quasigroups are not
necessarily commutative, this does not necessarily imply yx = z, zy = x, xz = y.

Lemma 4.1. There exist exactly 3 isomorphism classes of extended Mendelsohn
triples.

Proof. The same reasoning applied to Steiner systems in Lemma 3.1 equally applies
to Mendelsohn systems.

Indeed, type 1 and type 2 Mendelsohn triples behave similarly to their Steiner
counterparts in that they specify squares and local identities and are also com-
mutative: type 1 triples (x, x, x) trivially imply xx = x, type 2 triples (x, x, y)
imply xx = y, yx = x, xy = x. Type 3 Mendolsohn triples, however, have a more
complex structure in that (x, y, z) 6= (z, y, x). As such, we will need to devise a
new schema to represent type 3 Mendelsohn triples.

For given partial semisymmetric quasigroup Q, let G : Q → G(Q) take it to
the (undirected) multigraph G(Q) such that for every type 3 Mendelsohn triple
ti ∈ M(Q) there is exactly 1 vertex vi ∈ G(Q) and where for any t1, t2 7→ v1, v2
then there is exactly 1 edge linking v1 to v2 for every pair of elements t1 and
t2 have in common. Thus, 2 vertices are adjacent if and only if the triples they
represent share at least 2 elements in common e.g. (1, 2, 3) is adjacent to (2, 1, 4)
but not to (1, 5, 6). As above, we will use the same terminology between vertices
in G(Q) and the triples they represent in M(Q) when expedient.

To illustrate, from an example semisymmetric quasigroup Q4s with Cayley
table:

1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

we can derive 4 type 1 triples {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)} and 4 type 3
triples {(1, 2, 3), (1, 3, 4), (1, 4, 2), (2, 4, 3)}. This would produce the graph:
or unlabeled:

For given semisymmetric quasigroup Q, let us define a relation
 on the type 3
triples of M(Q) such that a
 b for a, b ∈M(Q) if and only if their corresponding
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Figure 8: Labelled graph of Q4s

Figure 9: Unlabeled graph G(Q4s)

vertices in G(Q) are connected. Because connectivity is reflexive, symmetric, and
transitive,
 is then an equivalence relation; we will refer to the partial quasigroups
corresponding to the equivalence classes of type 3 triples in M(Q) under
 as the
components of Q. A partial quasigroup q such that any t1, t2 ∈ M(q) are type 3
triples corresponding to vertices of degree 3 in G(q) and t1 
 t2 we will call a free
component. That is to say, a free component q is a partial quasigroup composed of
type 3 triples where G(q) is connected and where adding any further type 3 triple
to M(q) would make G(q) disconnected.

Lemma 4.2. Given a complete semisymmetric quasigroup Q, G(Q) will be 3-
regular; further, G(q) will be 3-regular for every component q of Q.

Proof. Each type 3 Mendelsohn triple contains exactly 3 ordered pairs of elements,
and because Q is complete then for each ordered pair (x, y) in a type 3 triple
there also must be some triple containing (y, x). If there were some type 2 triple
containing (y, x), then necessarily (y, x, x) or (y, y, x), which would make (x, y)
appear in more than 1 triple, and trivially no type 1 triple can contain (y, x), so
(y, x) must be contained in some other type 3 triple, which will be adjacent by
definition. Therefore, every vertex must be incident to exactly 3 edges, each edge
corresponding to an unordered pair {x, y}. By definition any vertices in G(Q)
connected to any vertex in G(q) of any component q are also within G(q), thus
G(q) for every component of Q must also be 3-regular.

Corollary 4.3. Every component of a complete semisymmetric quasigroup is iso-
morphic to some free component.

In some cases,M(Q) may contain triples of the form {(x, y, z), (z, y, x)}, that is
to say, pairs of triples containing the same elements but in opposite order; we will
call these commutative pairs. In G(Q), these pairs correspond to the multigraph:
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Figure 10: Multigraph of a commutative pair

Remark 4.4. A semisymmetric quasigroup is totally symmetric if and only if all
of its components are commutative pairs.

Lemma 4.5. For any free component q, if q is not a commutative pair, then G(q)
is a simple graph.

Proof. By definition, any vertex v ∈ G(q) must have 3 incident edges. If all edges
connect to 1 other vertex, then their corresponding triples inM(q) have all 3 pairs
of elements in common and thus q is a commutative pair. If v were linked to some
other vertex by exactly 2 edges, this would imply there are 2 triples that have
2 pairs of elements in common, but not the 3rd, which is clearly combinatorially
impossible. Then if q is not a commutative pair, any v ∈ G(q) will have 3 edges
linking to 3 separate vertices, thus G(q) is a simple graph.

For a given free component q, let a cycle cx ∈ G(q) be an element-cycle for
x iff for every vertex in cx, its corresponding triple in M(q) contains x. Define a
cycle structure on q to be a surjection C : G(q)→ q sending each element-cycle in
G(q) to an element of q such that if cx 7→ x then cx is an element-cycle for x.

Lemma 4.6. For any commutative pair q, up to isomorphism there exists exactly
1 cycle structure on q.

Proof. All vertices in G(q) represent triples in M(q) containing all elements of q,
so all cycles qualify as element-cycles. There are 3 elements of q and there are 3
cycles in G(q), so any surjection must assign 1 cycle to each element. G(q) is vertex
transitive and edge transitive, therefore any such assignment will be equivalent up
to isomorphism.

Proposition 4.7. For any free component q, if q is not a commutative pair, then
there exists exactly 1 cycle structure on q.

Proof. For a given triple t1 = (x, y, z) ∈M(q), consider an element x; by definition,
G(q) is 3-regular, therefore there exist edges linking t1 to vertices containing (y, x)
and (x, z). G(q) is simple, therefore these edges link to distinct vertices t2 =
(y, x, a) and t3 = (x, z, b) where a 6= b. The 3rd edge must link to some vertex
containing (z, y), and this vertex cannot contain x, else the pairs (y, x) or (x, z)
would appear in more than 1 triple. Now, t2 must be adjacent to t1, some vertex
t4 = (x, d, a), and some 3rd vertex which also cannot contain x else (x, a) or (a, x)
would appear in more than 1 triple. Likewise, t3 is adjacent to t1, some vertex
t5 = (x, b, e), and a 3rd vertex not containing x. So then t4 must be adjacent
to some vertex containing (d, x), and t5 must be adjacent to a vertex containing
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(x, e), and so on. Assuming the number of triples and therefore vertices is finite,
there must eventually be some vertex (x, e, d) linking these 2 trails into a closed
cycle cx.

All vertices in cx contain x, so then cx is an element-cycle for x; thus for any
triple in M(q) and any element contained in that triple, there exists an element-
cycle in G(q) for that element. Further, as demonstrated, any vertex adjacent to a
vertex in cx which is not contained in cx cannot contain x, so cx is the only possible
element cycle for x for any vertex in cx. If there were some element f ∈ q such that
cx was also an element cycle for f , then there would be multiple triples containing
(x, f) or (f, x). Therefore, any cycle structure C has only 1 possible mapping from
cycles to elements. By definition, any element in q must be represented in some
vertex of G(q), so then C is a surjection.

Given that for any free component q there always exists a cycle structure on
G(q) unique up to isomorphism for commutative pairs and fully unique for simple
G(q), from hereon we can safely assume the cycle structure on any free component.
It is therefore meaningful to speak of the element-cycles of a given q.

Corollary 4.8. Each vertex of G(q) is contained within exactly 3 element-cycles.

Lemma 4.9. For some free component q, any 2 element-cycles in G(q) either
share exactly 2 common vertices that are adjacent to each other, or they share no
common vertices.

Proof. Given graph G(q) containing element-cycles cx, cy for elements x, y ∈ q, if
they share a common vertex it must be representative of some triple containing the
pair (x, y) or the pair (y, x). The existence of a triple containing (x, y) necessarily
implies the existence of some triple containing (y, x) and vice versa, and because
they share 2 common elements by definition they are adjacent. There cannot be
any more triples containing (x, y) or (y, x) and thus there are no more common
vertices shared by cx and cy.

Lemma 4.10. For some free component q, each edge in G(q) is contained within
exactly 2 element-cycles.

Proof. By definition, every edge in G(q) links 2 vertices representing triples con-
taining 2 shared elements, and by Proposition 4.7 there can be no adjacent vertices
sharing a common element not contained within a shared element-cycle. An edge
cannot be in more than 2 element-cycles for any graph with > 2 vertices because
that would imply 2 triples sharing more than 2 common elements, and it cannot
be in more than 2 element cycles for any graph with 2 vertices because that would
necessitate a cycle with length > 2.

Proposition 4.11. The graph of any free component is isomorphic to the graph
of some cubic abstract polyhedron.
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Proof. We use the work of Murty in [13]: Lemmas 4.9 and 4.10 satisfy Murty’s
Lemmas 2.2 (i) and (ii), therefore by Murty’s Theorem 2.11, the graph of any
free component satisfies the necessary and sufficient conditions to be that of a
cubic abstract 3-polytope i.e. an abstract polyhedron, where each element-cycle
is equivalent to some 2-face.

Further, by Murty’s Theorem 2.8, any 2 abstract polytopes with the same 2
dimensional skeleton are isomorphic, thus we can specify the polyhedron associated
with any given free component via its element-cycles. Define P : q → P (q) taking
some free component q to the cubic polyhedron P (q) such that each element-cycle
ci ∈ G(q) is sent to its equivalent 2-face in P (q). For any cubic polyhedron p, we
define a labeling on p to be a function L : p → X sending each 2-face of p to an
element of some set X such that for every edge in p incident to 2-faces f1, f2, the
(unordered) pair {L(f1), L(f2)} is unique.

4.2 Constructing quasigroups from polyhedra

For quasigroup (Q, ·) we will refer to the parastrophic quasigroup (Q, ◦) such that
x ·y = z ⇔ y◦x = z as the transpose of (Q, ·); or alternatively, QT is the transpose
of Q. A totally symmetric quasigroup and its transpose are exactly identical
(indeed, this is true for any commutative quasigroup). By definition, a strictly
semisymmetric quasigroup and its transpose are not identical, but sometimes they
are isomorphic. This is somewhat problematic, as heretofore our procedure cannot
distinguish between a semisymmetric quasigroup and its transpose – both will
produce the same graph, even if they are not isomorphic to each other. We must
devise a way to differentiate between parastrophes, but also a way to identify when
they are essentially the same.

Conveniently, because we can now map components of semisymmetric quasi-
groups to polyhedra, we can also assign them an orientation. Define an oriented
vertex to be the pair v̂ = (v, θ), where v is a vertex of some polyhedron p and θ is
some cyclic order on the 2-faces incident to v, called an orientation on v. Let an
oriented polyhedron be the pair p̂ = (p,Θ) where p is some cubic polyhedron and
Θ : V → Θ(V ) is a function on the vertices V ⊂ P sending each vertex vi 7→ v̂i to
an oriented vertex such that the orientation for any v̂1 is a partial opposite that
of any adjacent vertex v̂2. We will refer to Θ as an orientation on p.

Lemma 4.12. There are at most 2 possible orientations on any given polyhedron
p.

Proof. Suppose we fix the orientation for some vertex v̂1 such that θ1(f1, f2, f3).
Then any adjacent vertex v̂2 sharing incident 2-faces f1, f2 must be partial opposite
such that θ2(f2, f1,−), and likewise for all other adjacent vertices. So fixing a
single vertex therefore fixes all connected vertices, and since all vertices in p are
connected and there are only 2 possible cyclic orders on a set of 3 elements, there
are at most 2 possible orientations on p.
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Proposition 4.13. Given some oriented polyhedron p̂, any labeling on p̂ specifies
a unique free component qp.

Proof. A labeling on p̂ identifies each 2-face with some set element such that every
edge is incident to a unique pair of elements, and each oriented vertex v̂i ∈ p̂
specifies a cyclic order on its incident 2-faces, thus each v̂i specifies a cyclic order
on 3 distinct set elements and is therefore equivalent to a type 3 Mendelsohn triple.
By the definition of a cubic polyhedron, there are exactly 2 vertices v̂1, v̂2 incident
to any pair of 2-faces {f1, f2}, and by the definition of an orientation on p then v̂1
and v̂2 must have opposite orientations relative to f1 and f2; therefore no ordered
pair (f1, f2) occurs in p̂ more than once. The graph of p̂ is connected and 3-regular
so necessarily the partial quasigroup qp it defines is a free component. Any other
polyhedron that defines the same qp would necessarily have the same faces, labels,
and orientation as p̂ and thus be identical to p̂; therefore qp is unique.

For given free component q, define P̂ : q → P̂ (q) as the function taking q
to the oriented polyhedron P̂ (q) such that for each triple ti ∈ M(q) is sent to a
corresponding oriented vertex ti 7→ v̂i.

For given cubic polyhedron p, consider the action of its automorphism group
Aut (p) on its 2-faces; let us denote the orbit of a 2-face fi under this action as
Aut (p) · fi. Given any 2 vertices v1, v2 ∈ p with incident 2-faces {f1, f2, f3} and
{f4, f5, f6}, respectively, then by definition if there is some ϕ ∈ Aut (p) sending
v1 7→ v2 then necessarily

{Aut (p) ·f1,Aut (p) ·f2,Aut (p) ·f3} = {Aut (p) ·f4,Aut (p) ·f5,Aut (p) ·f6} (14)

that is to say, for any vertices in the same orbit, the set of orbits of their incident
2-faces must also be the same. However, given some orientation on p, the order of
incident 2-faces relative to v̂1 and v̂2 may be different. If some ϕ ∈ Aut (p) : v1 7→
v2 and the orbits of the faces incident to corresponding oriented vertices v̂1 and
v̂2 are in opposite order, we will call them opposite vertices. Any vertex which is
opposite to itself is a self-opposite vertex.

Proposition 4.14. A free component q is isomorphic to its transpose qT if and
only if there exists some automorphism ϕ : P (q) → P (q) taking every vertex in
P̂ (Q) to some opposite vertex.

Proof. By definition, q and qT are identical in all respects except for the order
of the elements in their constituent triples in M(q),M(qT ), so as the (unordered)
sets of elements and their intersections are preserved, P (q) = P (qT ) without some
orientation to distinguish between them. Therefore P̂ (qT ) is simply P̂ (q) with its
orientation reversed. If there exists some ϕ ∈ Aut (P (q)) taking every vertex to
some opposite, it follows that P̂ (q) is isomorphic to itself with reversed orientation
i.e. P̂ (qT ); then by Proposition 4.13 q is isomorphic to qT .
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Let D : Q→ D(Q) take semisymmetric quasigroup Q to directed graph D(Q)
such that for every type 1 or 2 triple in ti ∈ M(Q) there is exactly 1 vertex vi ∈
D(Q) and where for any t1, t2 7→ v1, v2 then v1 directly succeeds v2 if and only if t2
binds to t1. That is to say, D applies to the type 1 and 2 triples of semisymmetric
quasigroups in the same way it does for totally symmetric quasigroups; as above,
the number of type 1 and 2 vertices is equal to |Q|. Let any digraph such that
each vertex has outdegree 6 1 be a semisymmetric diagonal subgraph.

For a given oriented polyhedron p̂ and a given semisymmetric diagonal sub-
graph d, let ψ : p̂ → d be any function taking each 2-face of p̂ to some vertex
of d such that for every edge in p̂ incident to 2-faces f1, f2, the (unordered) pair
{ψ(f1), ψ(f2)} is unique and ψ(f1) does not bind to ψ(f2) or vice versa.

Lemma 4.15. Given some oriented polyhedron p̂ and some semisymmetric di-
agonal subgraph d, any ψi from p̂ to d specifies a unique partial semisymmetric
quasigroup q up to isomorphism.

Proof. Suppose some bijective mapping between the vertices of d and the elements
of some set X – it is clear that this is equivalent to a labeling on p̂ given by
L : p̂ → X maps each face of p̂ to an element of X iff ψi sends that face to the
vertex in d mapped to X. Therefore by Proposition 4.13 we now have a unique free
component, and we derive all type 1 and 2 triples from d in the same way as we did
for TS-quasigroups to produce a unique partial semisymmetric quasigroup q. The
derived type 3 triples in M(q) are self-consistent by Proposition 4.13 and the type
1 and 2 triples are self-consistent by Proposition 3.10. Supposing, then, there were
some pair (x, y) contained in a type 3 triple (x, y, a) and a type 2 triple (x, x, y) –
necessarily there would then be some other type 3 triple (y, x, b) forming an edge in
p̂ incident to faces fx, fy such that ψi(fx) = (x, x, y), ψi(fy) = (y, y,−), meaning
ψi(fx) binds to ψi(fy), which would violate the definition of the ψ function. It
follows then that for any ψj that specifies a quasigroup isomorphic to q then the
image of p̂ under ψj must be isomorphic to the image of p̂ under ψi; therefore, the
mapping ψi is unique up to isomorphism.

Suppose some diagonal subgraph d; each vertex of d represents an element of
some semisymmetric quasigroup Q, and for every element x ∈ Q there must be
|Q| unordered pairs {x, y} represented within M(Q). Each type 1 triple contains
1 pair and each type 2 triple contains 2 pairs, so we shall say that a type 1 vertex
starts with a bound weight of 1 and a type 2 vertex starts with a bound weight
of 2. Every type 2 triple bound to a given vertex corresponds to another pair of
elements, so we add +1 bound weight to a vertex for every other type 2 vertex
bound to it. Finally, for each face of a polyhedron 1 pair is represented for every
edge, so we add the number of edges mapped to a vertex in d to its bound weight.

Define an alignment to be the ordered triple (d,O,Ψ) where d is some semisym-
metric diagonal subgraph, O = {p̂1, p̂2, ..., p̂n} some set of oriented polyhedra, and
Ψ = {ψ1, ψ2, ..., ψn} some set of functions ψi : p̂i → d taking each 2-face of its
respective p̂i ∈ O to some vertex in d such that for every edge in p̂i incident
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to 2-faces f1, f2, the unordered pair {Ψ−1(ψi(f1)),Ψ−1(ψi(f2))} is unique, where
Ψ−1(vi) = {fx|ψx(fx) = vi}, that is to say Ψ−1 is the preimage of vi ∈ d across all
ψx ∈ Ψ. Further, there is no v1 binding to v2 such that some face f1 ∈ Ψ−1(v1)
shares an incident edge with some f2 ∈ Ψ−1(v2), and the total bound weight for
each vi ∈ d across all of Ψ is equal to |d|, the number of vertices in d. We will call
2 alignments A1, A2 isomorphic iff their sets of polyhedra O1, O2 are isomorphic
to each other and the image of Ψ1 in d1 is isomorphic to the image of Ψ2 in d2.

Theorem 4.16. Up to isomorphism, there exists a bijection between alignments
and semisymmetric quasigroups such that the full structure of a unique semisym-
metric quasigroup can be recovered from any alignment and vice versa.

Proof. Suppose some alignment A = (d,O,Ψ): by Lemma 4.15 each ψi ∈ Ψ yields
a unique partial semisymmetric quasigroup, so then the union of these partial
quasigroups also produces a semisymmetric quasigroup Q. Because the bound
weight of each vi ∈ d is equal to |d|, every possible pair of elements in Q must
be represented and therefore Q is complete. If there were 2 type 3 triples t1, t2 ∈
M(Q) both containing some ordered pair of elements (x, y), then this would imply
there are faces f1−4 ∈ ∪O such that f1, f2 share an incident edge and f3, f4 share
an incident edge and there are some ψi, ψj ∈ Ψ where ψi(f1) = ψj(f3), ψi(f2) =
ψj(f4), but this would violate the definition of an alignment because for any edge
in ∪O the image of its pair of incident faces must be unique across all Ψ. If
there were a type 3 triple t1 and a type 2 triple t2 in M(Q) both containing some
ordered pair of elements (x, y), then this would imply some faces f1, f2 ∈ ∪O such
that ψi(f1) binds to ψj(f2), which also violates the definition of an alignment.
Any alignment that yields a quasigroup isomorphic to Q would necessarily have
a set of oriented polyhedra isomorphic to O mapping to an image isomorphic to
Ψ(O) and therefore be equivalent to A, thus A corresponds to a unique Q up to
isomorphism.

Conversely, suppose some semisymmetric quasigroup Q′: the diagonal sub-
graph is given by D(Q′). For each component q′i ∈ Q′, we can derive an oriented
polyhedron P̂ (q′i); let the set of all such P̂ (q′i) be P̂ (Q′). Finally, ψi for each P̂ (q′i)
is given by simply mapping each 2-face corresponding to an element x ∈ Q′ to the
vertex in D(Q′) corresponding to x; let the set of all such ψi be ΨQ′ . Now we can
define function α : Q′ → A′ = (D(Q′), P̂ (Q′),ΨQ′) taking any given semisymmet-
ric quasigroup Q′ to a unique alignment A′ up to isomorphism, thus, the bijection
is complete.

For example, given an alignment A5 on a triangular prism:
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Figure 11: Diagram of alignment A5

We can assign an arbitrary labeling to the type 1 and 2 vertices:

Figure 12: Arbitrary labeling on A5

And derive the Mendelsohn triples corresponding to each vertex:

Figure 13: A5 with derived triples

Yielding a semisymmetric quasigroup with the Cayley table:

1 2 3 4 5
1 2 1 4 5 3
2 1 2 5 3 4
3 5 4 3 1 2
4 3 5 2 4 1
5 4 3 1 2 5

Remark 4.17. Any labeling on a triangular prism produces a free component
isomorphic to its transpose, so in the previous example the orientations on the
vertices could have been omitted, but we retain them for illustrative purposes.
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On transiso-class graphs

Surendra Kumar Mishra and Ravindra Prasad Shukla

Abstract. In this paper, we have determined the number of isomorphism classes of transversals
of subgroups of order 2 and 5 of Alt(5). Further, we have introduced two new graphs Γtic(G)

and Γd,tic(G) on a finite group G, where d is the order of a subgroup of G and studied some
properties of these graphs.

1. Introduction

Let G be a finite group and H be a subgroup of G. We say that a subset S of G is
a normalized right transversal (NRT) of H in G, if S is obtained by choosing one
and only one element from each right coset of H in G and 1 ∈ S . For x, y ∈ S,
define {x ◦ y} = S ∩Hxy. Then with respect to this binary operation, S is a right
loop with identity 1, that is, a right-quasigroup with both-sided identity (see [12,
Proposition 4.3.3]). Conversely, every right loop can be embedded as an NRT in
a group with some universal property (see [8, Theorem 3.4]).

Let S be an NRT of H in G. Let 〈S〉 be the subgroup of G generated by S
and HS be the subgroup 〈S〉 ∩ H. Then HS = 〈{xy(x ◦ y)−1 |x, y ∈ S}〉 and
HSS = 〈S〉 (see [8, Corollary 3.7]). Identifying S with the set H \ G of all right
cosets of H in G, we get a transitive permutation representation χ

S
: G→Sym(S)

defined by {χ
S
(g)(x)} = S ∩Hxg, g ∈ G, x ∈ S. The kernel kerχ

S
of this action is

CoreG(H), the core of H in G. Let GS = χ
S
(HS), the group torsion of the right

loop S (see [8]). The group GS depends only on the right loop structure ◦ on S
and not on the subgroup H. Since χS is injective on S and if we identify S with
χS(S), then χS(〈S〉) = GSS which also depends only on the right loop S and S
is an NRT of GS in GSS. One can also verify that ker(χS |HSS : HSS → GSS) =
ker(χS |HS

: HS → GS) = CoreHSS(HS) and χS |S = the identity map on S. Also,
GS is trivial if and only if (S, ◦) is a group (see [8]).

We denote the set of all normalized right transversals (NRTs) of H in G by
T (G,H). We say that S and T ∈ T (G,H) are isomorphic (denoted by S ∼= T ), if
their induced right loop structures are isomorphic. Let I(G,H) denote the set of
isomorphism classes of NRTs of H in G. It has been proved in [10] as well as in [7]
that |I(G,H)| = 1 if and only if H EG. It has been shown in [4] that there is no
pair (G,H) such that |I(G,H)| = 2. It is easy to observe that if H is a non-normal
subgroup of G of index 3, then |I(G,H)| = 3. The converse of this statement is

2010 Mathematics Subject Classification: 20N05, 20D06, 20D60, 97K30
Keywords: Transversals; right loops; complete graphs.
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proved in [5]. Also, it has been proved in [6] that there is no pair (G,H) such that
|I(G,H)| = 4. The integers 5, 6 also realized in this way (see [6]). It is easy to
observe that if H is a subgroup of order 3 of Alt(4), then |I(G,H)| = 7. Therefore
it seems an interesting problem to know that which integer appears as |I(G,H)|
for some pair (G, H).

In the Section 2, we have determined |I(G,H)|, where G = Alt(5) and H be a
non-normal subgroup of G of order 2 or 5. In the Section 3, we have defined two
new graphs associated to the isomorphism classes of transversal of a subgroup in
a finite group and studied some properties of these graphs.

2. Isomorphism classes of transversals in Alt(5)

Now, we state the following proposition whose proof is essentially the same proof
of the Proposition 2.7 in [10].

Proposition 2.1. Let G be a finite group and H be a corefree subgroup of G. Let
T ∈ T (G,H) such that 〈T 〉 = G. Let O = {L ∈ T (G,H)|T ∼= L}. Then AutH(G)
acts transitively on the set O.

Remark 2.2. If G is a finite group and H a subgroup of G such that CoreG(H)
is nontrivial, then the number |I(G,H)| may be different from the number of
AutH(G)-orbits in T (G,H). For example, let G = 〈x, y|x6 = 1 = y2, yxy−1 =
x−1〉 ∼= D12, the dihedral group of order 12 and H = {1, x3, y, yx3}, where 1 is the
identity of G. Then H is non-normal in G and [G : H] = 3. Hence |I(G,H)| = 3.
However, NRTs {1, x, x2}, {1, yx, x2}, {1, x, yx2} and {1, yx, yx2} to H in G, lie in
different AutH(G)-orbits (as the set of orders of group elements in any two NRTs
are not same).

Lemma 2.3. Let L be a subgroup of G = Alt(5) of order 12. Then L ∼= Alt(4),
the alternating group of degree 4.

Proof. Up to isomorphism, there are only 5 groups of order 12 (see [1, Theorem
5.1]),

1. Z12;

2. Z3 × Z2 × Z2;

3. D12, the dihedral group of order 12;

4.
〈
x, y|x4 = y3 = 1, xy = y2x

〉
;

5. Alt(4).

Since G does not contain an element of order 12 or order 6 or order 4, hence it is
not isomorphic to either of the groups in (1)-(4). Thus L ∼= Alt(4).
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Lemma 2.4. Let K be a subgroup of Sym(5) of order 20. Then K is isomorphic
to the group

〈
x, y | x5 = y4 = 1, yxy−1 = x2

〉
, which is the one dimensional affine

group over Z5.

Proof. Up to isomorphism, there are only five non-isomorphic groups of order 20
(see [3]),

1. Z20;

2. Z10 × Z2;

3. D20, the dihedral group of order 20;

4. M =
〈
x, y | x5 = y4 = 1, yxy−1 = x−1

〉
;

5.
〈
x, y | x5 = y4 = 1, yxy−1 = x2

〉
.

Since Sym(5) does not contain an element of order 10, K cannot be isomorphic
to the either of the groups Z20, Z10 × Z2, D20 and M . This implies that K is not
isomorphic to either of the groups in (1) - (4) (we observe that Z(M) = 〈y2〉).
Thus K is isomorphic to the group

〈
x, y | x5 = y4 = 1, yxy−1 = x2

〉
.

Remark 2.5. Let G = Alt(5). Then Aut(G) = Inn(Sym(5)) (see [13, 2.17,
p.299]). Since Z(Sym(5)) = {I}, we may identify Aut(G) with Sym(5) by iden-
tifying each g ∈ Sym(5) with ig, the inner automorphism of Sym(5), determined
by g (x 7→ gxg−1). Thus for a subgroup H of G, AutH(G) = NSym(5)(H).

Proposition 2.6. Let G = Alt(5). Let H be a subgroup of G of order 5. Then
AutH(G) is isomorphic to

〈
x, y | x5 = y4 = 1, yxy−1 = x2

〉
, the one dimensional

affine group over Z5.

Proof. Let H be a subgroup of G of order 5. Then by Remark 2.5, AutH(G) =
NSym(5)(H). Since there are 6 Sylow 5-subgroups in Sym(5), [Sym(5) :NSym(5)(H)]
= 6. This implies that |NSym(5)(H)| = 20 = |AutH(G)|. Now, the proposition fol-
lows from the Lemma 2.4.

Proposition 2.7. Let G = Alt(5) and H = 〈a = (12345)〉. Let S ∈ T (G,H).
Then H * StabK(S), the stabilizer of S in K, where K = NSym(5)(H) and the
action of K is by conjugation.

Proof. Let S0 = {α ∈ G : α(5) = 5}. Then S0
∼= Alt(4) and S0 ∈ T (G,H).

Let S0 = {I = a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11}, where a1 =
(12)(34), a2 = (13)(24), a3 = (14)(23), a4 = (123), a5 = (132), a6 = (124), a7 =
(142), a8 = (134), a9 = (143), a10 = (234), a11 = (243). Then there exists a
unique map σ : S0 → H, with σ(a0) = a0 such that S = Sσ = {σ(ai)ai | 0 6 i 6
11} ∈ T (G,H). Assume that StabK(S) ⊇ H. Then

aSa−1 = S. (1)
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Now, aσ(a3)a3a
−1 = σ(a3)aa3a

−1 = σ(a3)a2a3. Since aσ(a3)a3a
−1 ∈ Sσ (= S),

by (1), σ(a3)a2a3 ∈ S. This gives σ(a3)a2 = σ(a3). This implies that a2 = I, a
contradiction. Thus StabK(S) + H.

Corollary 2.8. Let G,H,K and S be as in the Proposition 2.7. Then StabK(S) �
D10, the dihedral group of order 10. Further, StabK(S) 6= K.

Proof. We observe that K has only one subgroup L of order 10 isomorphic to the
dihedral group D10. Since L contains the subgroup H of K, by Proposition 2.7,
StabK(S) 6= L. Since H ⊆ K, by Proposition 2.7 StabK(S) 6= K.

Proposition 2.9. Let G = Alt(5) and H = 〈(12345)〉. Let S ∈ T (G,H) such
that 〈S〉 = S. Then S = hS0h

−1, where h ∈ H and S0 = {α ∈ G : α(5) = 5} ∈
T (G,H).

Proof. We observe that S0 = 〈(123), (124)〉 ∼= Alt(4). Let S ∈ T (G,H) such that
〈S〉 = S. By Lemma 2.3, S ∼= S0. This implies that S = 〈(abc), (def)〉, where
a, b, c, d, e, f ∈ {1, 2, 3, 4, 5}. Since S ∼= S0 and |(123)(124)| = 2, |(abc)(def)| = 2.
This implies that d = a, e = b and hence S = 〈(abc), (abf)〉, where a, b, c and f
are distinct. Thus we have a permutation α ∈ Sym(5) with α(1) = a, α(2) = b,
α(3) = c, α(4) = f and α(5) = d0, where d0 ∈ {1, 2, 3, 4, 5} \ {a, b, c, f}. Thus

αS0α
−1 =

〈(
α(1)α(2)α(3)

)
,
(
α(1)α(2)α(4)

)〉
=
〈
(abc), (abf)

〉
= S. (2)

Next, since α ∈ Sym(5), either α ∈ Alt(5) or (12)α ∈ Alt(5). First, assume that
α ∈ Alt(5). Then there exists h1 ∈ H and β1 ∈ S0 such that α = h1β1. Thus
h1 = αβ1

−1 ∈ H. Since β1 ∈ S0, by (2) h1S0h
−1
1 = αβ−11 S0(αβ−11 )−1 = S.

Next, assume that (12)α ∈ Alt(5). Then there exists h2 ∈ H and β2 ∈ S0 such
that (12)α = h2β2. Thus h2 = (12)αβ−12 . Now, since(

(12)α
)
(123)

(
(12)α

)−1
=
(
α(2)α(1)α(3)

)
and

(
(12)α

)
(124)

(
(12)α

)−1
=
(
α(2)α(1)α(4)

)
, therefore(

(12)α)S0((12)α
)−1

=
〈(
α(2)α(1)α(3)

)
,
(
α(2)α(1)α(4)

)〉
= αS0α

−1. (3)

Since β2 ∈ S0, by (3) h2S0h
−1
2 = S. Thus in either cases, we have S = hS0h

−1,
for some h ∈ H.

Remark 2.10. Let G be a finite group. If H and K are subgroups of G such that
f(H) = K for some f ∈Aut(G), then |I(G,H)| = |I(G,K)|.

Proposition 2.11. Let G = Alt(5), the alternating group of degree 5 and H be a
subgroup of G of order 5. Then |I(G,H)| = 52 · (13 + 52 + 53 + 54 + 55 + 56 + 57).

Proof. Since any two subgroups of order 5 of G are conjugate, by Remark 2.10,
we may take H = 〈a = (12345)〉. Let S0 ∈ T (G,H), where S0 = {a0 = I, a1 =
(12)(34), a2 = (13)(24), a3 = (14)(23), a4 = (123), a5 = (132), a6 = (124), a7 =
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(142), a8 = (134), a9 = (143), a10 = (234), a11 = (243)}. Then S0
∼= Alt(4). We

observe that for each S ∈ T (G,H), there exists a unique map σ : S0 → H such
that σ(a0) = a0 and S = Sσ = {σ(ai)ai : 0 6 i 6 11}. Let S ∈ T (G,H). Then
S = Sσ for a unique map σ : S0 → H with σ(a0) = a0. Further, since |H| = 5, a
prime number, either 〈S〉 = S or 〈S〉 = G. Assume that 〈S〉 = S. Then by Lemma
2.3, S ∼= S0

∼= Alt(4). By Proposition 2.9 all non-generating NRTs of H in G
are conjugate, all non-generating NRTs of H in G forms a single AutH(G)-orbit
in T (G,H), where AutH(G) is identified with the subgroup K = NSym(5)(H) of
Sym(5) and the action of K on T (G,H) is by conjugation (see also Remark 2.5).
If 〈S〉 = G, then by Proposition 2.1, the isomorphism class of S on T (G,H) forms
a single AutH(G)-orbit. Thus I(G,H) is precisely the orbits of K in T (G,H).
Now, we describe the orbits of K in T (G,H). Since H = 〈a = (12345)〉, we have

NSym(5)(H) = K =
〈
a, b = (1342) | a5 = b4 = 1, bab−1 = a2

〉
,

K is isomorphic to one dimensional affine group over Z5 (see Proposition 2.6).
Further, by Proposition 2.7 and Corollary 2.8, |StabK(S)| ∈ {1, 2, 4}.

Assume that |StabK(S)| = 4. Since a subgroup of K of order 4 is a Sylow
2-subgroup of K, we may assume that StabK(S) = 〈b = (1342)〉 = K1. Since
bab−1 = a2, we obtain the following relations:

σ(a0) = σ(a1) = σ(a2) = σ(a3) = I
σ(a6) = (σ(a4))2, σ(a9) = (σ(a4))3, σ(a11) = (σ(a4))4,
σ(a7) = (σ(a5))2, σ(a8) = (σ(a5))3, σ(a10) = (σ(a5))4.

 (4)

Conversely, if σ1 : S0 → H is a map satisfying the relations (4), then StabK(Sσ1
) =

K1, for if g ∈ K \ K1, then a3 /∈ gSσ1
g−1 (note that a3 ∈ Sσ1

) and K1 ⊆
StabK(Sσ1). Let σ1 : S0 → H be a map satisfying (4). Then Sσ1 = {σ1(ai)ai | 0 6
i 6 11} ∈ T (G,H) and StabK(Sσ1) = K1. Assume that T ∈ T (G,H) lies in the
K-orbit of Sσ1

. Then there exists g ∈ K such that gSσ1
g−1 = T . This implies

that StabK(T ) = gK1g
−1. Since NK(K1) = K1, if g /∈ K1, then StabK(T ) 6= K1.

Further, if g ∈ K1, then Sσ1
= gSσ1

g−1 = T . This implies that Sσ1
lies in

the unique K-orbit of size 5. From the relations (4), we observe that a map
σ : S0 → H satisfying (4) can be completely determined by assigning values of
σ(a4) and σ(a5). Since each of σ(a4) and σ(a5) can take five distinct values, we
have 25 AutH(G) = K-orbits in T (G,H) each of size |K||K1| = 5.

Next, assume that |StabK(S)| = 2. Since a Sylow 2-subgroup of K is cyclic,
any two subgroups of K of order 2 are conjugate. Thus we may assume that
StabK(S) = 〈b2 = (14)(23)〉 = L1. Since b2ab−2 = a4, we obtain the following
relations:

σ(a0) = σ(a1) = σ(a2) = σ(a3) = 1,
σ(a8) = (σ(a7))4, σ(a9) = (σ(a6))4,
σ(a10) = (σ(a5))4, σ(a11) = (σ(a4))4.

 (5)

Conversely, let σ1 : S0 → H be a map satisfying (5). Then StabK(Sσ1
) ⊇ L1. From

the relations (5), we observe that σ1 satisfying (5) can be completely determined
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by assigning values of σ1(a4), σ1(a5), σ1(a6) and σ1(a7). Since each of σ1(ai)’s
(4 6 i 6 7) can take five distinct values, there are 625 choices of σ1 satisfying
(5). Further, from the relations (4) and (5), we observe that if a map from S0 to
H satisfies the relations (4), then it also satisfies (5). Further, since there are 25
choices of maps σ : S0 → H satisfying (4), there are 600 choices of maps from
S0 → H which satisfies (5) but not (4). Let σ1 : S0 → H be a map which satisfies
the relations (5) but not (4). Then Sσ1 = {σ1(ai)ai | 0 6 i 6 11} ∈ T (G,H) and
StabK(Sσ1) = L1. Assume that T ∈ T (G,H) lies in the K-orbit of Sσ1 . Then
there exists g ∈ K such that gSσ1

g−1 = T . This implies that StabK(T ) = gL1g
−1.

Since NK(L1) = K1, if g /∈ K1, then StabK(T ) 6= L1. Next, if g ∈ K1 \ L1, then
gSσ1

g−1 = T (6= Sσ1
). Since [K1 : L1] = 2, there exists a unique T ∈ T (G,H),

different from Sσ1 which lies in the K-orbit of Sσ1 and StabK(T ) = L1. Thus
by the discussion made above, there are 300 K-orbits in T (G,H) each of size
|K|
|L1| = 10.

Lastly, assume that |StabK(S)| = 1. As argued in the above paragraphs there
are 125 NRTs in T (G,H) whose stabilizer are of order 4 and there are 3000 NRTs
in T (G,H) whose stabilizer are of order 2, there are 511 − 55 = 55(56 − 1) NRTs
whose stabilizer are trivial. Hence, we have 54 ·(1+5+52+53+54+55), K-orbits in
T (G,H) each of size 20. Thus |I(G,H)| = 52+3·4·52+54·(1+5+52+53+54+55) =
52 · (13 + 52 + 53 + 54 + 55 + 56 + 57).

Corollary 2.12. There are at least, 52 · (13 + 52 + 53 + 54 + 55 + 56 + 57) non-
isomorphic right loops of order 12.

Proof. Let G = Alt(5), the alternating group of degree 5 and H be a subgroup
of G of order 5. If S ∈ T (G,H), then S is a right loop of order 12 (see [12,
Proposition 4.3.3, p.102]). By Proposition 2.11, |I(G,H)| is precisely the number
of AutH(G)-orbits in T (G,H). Thus if S1, S2 ∈ T (G,H) belongs to different
AutH(G)-orbits, then S1 � S2. This completes the proof.

Lemma 2.13. Let L be a subgroup of Sym(5) of order 8. Then L is isomorphic
to D8, the dihedral group of order 8.

Proof. Since |Sym(5)| = 23 ·3 ·5, if L is a subgroup of Sym(5) of order 8, then it is
a Sylow 2-subgroup of Sym(5). Let N = 〈(13), (1234)〉. Then N is a subgroup of
Sym(5) of order 8 isomorphic to D8. Since any two Sylow 2-subgroups of Sym(5)
are conjugate, the lemma follows.

Proposition 2.14. Let G = Alt(5), the alternating group of degree 5 and H be a
subgroup of G of order 2. Then |I(G,H)| = 226 + 10.

Proof. Let H be a subgroup of G of order 2. Since any two elements of G of order 2
are conjugate, by Remark 2.10, we may assume that H = {I, x = (12)(34)}, where
I is the identity element of G. Let K = AutH(G). By Remark 2.5, we identify K
with the group NSym(5)(H) = CSym(5)(H), the centralizer of H in Sym(5). Since
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there are 15 conjugates of (12)(34) in Sym(5), |CSym(5)(H)| = 8. By Lemma 2.13,
CSym(5)(H) ∼= D8. Since H = {I, x = (12)(34)}, we have

K = {I, (1324), (12)(34), (1423), (14)(23), (34), (13)(24), (12)}.

Consider the subgroups V4 = {I, (12)(34), (13)(24), (14)(23)} (isomorphic to
the Klein’s four group) and L = {g ∈ G : g(5) = 5} of G. Let T1 = {b0 =
I, b1 = (13)(24)}, T2 = {c0 = I, c1 = (134), c2 = (143)} and T3 = {d0 =
I, d1 = (12345), d2 = (13524), d3 = (14253), d4 = (15432)}. Then T1 ∈ T (V4, H),
T2 ∈ T (L, V4) and T3 ∈ T (G,L). Thus S0 = T1T2T3 = {bicjdk : 0 6 i 6 1, 0 6
j 6 2, 0 6 k 6 4} ∈ T (G,H).

Since G is a simple group and H is of order 2, 〈S〉 = G, for every S ∈ T (G,H).
Thus by Proposition 2.1, I(G,H) is precisely the orbits of K in T (G,H), where
the action of K is by conjugation.

Let S ∈ T (G,H). Then there exists a unique map σ : S0 → H such that
σ(b0c0d0 = I) = I and S = Sσ = {σ(bicjdk)bicjdk : 0 6 i 6 1, 0 6 j 6
2, 0 6 k 6 4}. Let g ∈ {(1324), (1423), (12), (34)} ⊆ K. Then g /∈ StabK(S),
for if g ∈ StabK(S), then gσ(b1c0d0)b1c0d0g

−1 = σ(b1c0d0)xb1c0d0, a contra-
diction as x = (12)(34) ∈ H and σ(b1c0d0)b1c0d0 ∈ S. Let g = (13)(24) ∈
K. Then g /∈ StabK(S), for if g ∈ StabK(S), then gσ(b0c1d0)b0c1d0g

−1 =
σ(b0c1d0)xb0c1d0 ∈ S and so we have a contradiction as x = (12)(34) 6= I.
Next, let g = (14)(23) ∈ K. Then g /∈ StabK(S), for if g ∈ StabK(S), then
gσ(b0c2d0)b0c2d0g

−1 = σ(b0c2d0)xb0c2d0 ∈ S, σ(b0c2d0)x = σ(b0c2d0), again a
contradiction. The above arguments imply that stabilizer in K of an NRT of H
in G is either H or {I}. Thus a K-orbit in T (G,H) is either of size 4 or of size 8.

Now, assume that StabK(S) = H. Then σ satisfies the following relations:

σ(b1c0d0) = I or x, σ(b0c1d4)x = σ(b1c0d3), σ(b0c2d1)x = σ(b0c1d2)
σ(b1c1d1)x = σ(b1c0d2), σ(b1c2d2)x = σ(b1c0d1), σ(b0c2d3) = σ(b0c0d4)
σ(b0c2d0) = σ(b1c2d0), σ(b0c1d3) = σ(b1c2d4), σ(b0c2d2)x = σ(b0c0d1)
σ(b1c1d2)x = σ(b1c2d1), σ(b1c0d4) = σ(b1c2d3), σ(b0c1d1)x = σ(boc0d2)
σ(b0c1d0)x = σ(b1c1d0), σ(b0c2d4) = σ(b1c1d3), σ(b1c1d4)x = σ(b0c0d3)

 (6)

Conversely, if a map σ1 : S0 → H with σ1(I) = I satisfies (6), then StabK(Sσ1
) =

H. From the relations (6), we find that there are 20 K-orbits in T (G,H) each
of size 4. Hence we have 229−80

8 = 226 − 10, K-orbits in T (G,H) each of size 8.
Therefore |I(G,H)| = 226 − 10 + 20 = 226 + 10.

Corollary 2.15. There are at least, 226 + 10 non-isomorphic right loops of order
30.

Proof. Let G = Alt(5), the alternating group of degree 5 and H be a subgroup
of G of order 2. If S ∈ T (G,H), then S is a right loop of order 30 (see [12,
Proposition 4.3.3, p.102]). By Proposition 2.14, |I(G,H)| is precisely the number
of AutH(G)-orbits in T (G,H). Thus if S1, S2 ∈ T (G,H) belongs to different
AutH(G)-orbits, then S1 � S2. This completes the proof.
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3. Graphs and isomorphism classes of transversals
In this section, we have introduced two graphs associated to the isomorphism
classes of transversals of a subgroup of a finite group and studied some properties
of these graphs.

Definition 3.1. Let G be a finite group and X be the set of all nontrivial proper
subgroups of G. We define a graph Γtic(G) on G whose vertex set is X and
two distinct vertices H and K are adjacent in Γtic(G) if and only if |I(G,H)| =
|I(G,K)|. We will call this graph the transiso-class graph.

It is easy to observe that Γtic(G) is complete if and only if |I(G,H)| = |I(G,K)|
for every H, K ∈ X.

Definition 3.2. Let G be a finite group. Let d be the order of a subgroup of G
and Xd be the set of all subgroups of G of order d. We define a graph Γd,tic(G) on
G with vertex set Xd and two distinct vertices are adjacent in Γd,tic(G) if and only
if |I(G,H)| = |I(G,K)|. We call the graph Γd,tic(G) as d-transiso-class graph.

We observe that Γd,tic(G) is complete if and only if |I(G,H)| = |I(G,K)| for
any H, K ∈ Xd.

Remark 3.3. In the definitions 3.1 and 3.2, we observe that Γtic(G) and Γd,tic(G)
both are connected if and only if they are complete.

Definition 3.4. ([11], p.143)A group G is said to be a Dedekind group if all the
subgroups of G are normal in G.

Example 3.5. Let G be a finite Dedekind group. Since each subgroup of G is
normal in G, |I(G,H)| = 1 (see [10, Main Theorem, p.643]), for every subgroup
H of G. Thus both Γtic(G) and Γd,tic(G) are complete, where d is the order of
subgroup of G.

Proposition 3.6. Let G = Sym(3). Then Γd,tic(G) is complete, d is the order of
a subgroup of G.

Proof. Let Xd = {H 6 G : |H| = d}. Obviously, d ∈ {1, 2, 3, 6}. If d = 1 or d = 3
or d = 6, then H ∈ Xd is normal in G and so |I(G,H)| = 1. Thus Γd,tic(G) is
complete. Next, assume that d = 2. Since all 2-cycles in G are conjugate, any two
members of X2 are conjugate. Hence by Remark 2.10, |I(G,H)| = |I(G,K)| for
every H, K ∈ X2. Thus Γ2,tic(G) is complete.

Remark 3.7. It is easy to observe that if H is a subgroup of G = Sym(3) of order
2, then |I(G,H)| = 3. However, if H = Alt(3), the alternating group of degree 3,
then |I(G,H)| = 1 (see [10]). Consequently, Γtic(Sym(3)) is not complete.

Proposition 3.8. Let G = Alt(4). Then Γd,tic(G) is complete for every d, where
d is the order of a subgroup of G.
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Proof. Let G = Alt(4). Let Xd denote the set of all subgroups of G of order
d. Then any two members of Xd are conjugate. By Remark 2.10, |I(G,H)| =
|I(G,K)| for every H, K ∈ Xd. Thus Γd,tic(G) is complete for every d.

Proposition 3.9. Let G = Alt(4). Then Γtic(G) is not complete.

Proof. Let G = Alt(4). If H is a subgroup of G of order 2, then |I(G,H)| = 5
(see [6]). Also, It is easy to observe that if K is a subgroup of order 3 of Alt(4),
then |I(G,K)| = 7. Thus H and K are not adjacent in Γtic(G). Hence Γtic(G) is
not complete.

Lemma 3.10. Let G = Alt(5). Let Xd be the set of all subgroups of G of order
d. Then any two members of Xd are conjugate.

Proof. Let Xd be the set of all subgroups of G of order d. Since G is simple, if
H ∈ Xd, then [G : H] > 5 (see [13, p. 308]). Hence d ∈ {1, 2, 3, 4, 5, 6, 10, 12, 60}.
If d = 1 or d = 60, then the proof is over. Assume that d = 2. Let H ∈ X2. Then
H is of the form {I, σ}, where σ ∈ Alt(5) is product of two distinct transpositions.
Since all permutations of the form σ are conjugate in Alt(5), any two members
of X2 are conjugate. Further, if d ∈ {3, 4, 5}, then any member of Xd is a Sylow
d-subgroup of G. Hence any two members of Xd are conjugate.

Next, assume that d = 6. Since G has no permutation of order 6, a subgroup
of order 6 in G is isomorphic to Sym(3). If K is a subgroup of G of order 6, then
NG(K) = K. Hence there are 10 conjugates of K in G. Since there are exactly
10 subgroups of G of order 6, all members of X6 form a complete conjugacy class.
Now, assume that d = 10. Again, since G has no permutation of order 10, a
subgroup of G of order 10 is isomorphic to D10. If L ∈ X10, then it is easy to
observe that NG(L) = L. Thus there are 6 conjugates of L in G. Since there
are exactly 6 subgroups of G of order 10, any two subgroups of G of order 10 are
conjugate. Lastly, assume that d = 12. By Proposition 2.9 any two subgroups of
G of order 12 are conjugate.

Proposition 3.11. Let G = Alt(5). Then Γd,tic(G) is complete, for every d,
where d is the order of a subgroup of G.

Proof. Let G = Alt(5). Let Xd denote the set of all subgroups of G of order d.
Then by Lemma 3.10, any two members of Xd are conjugate. By Remark 2.10,
|I(G,H)| = |I(G,K)|, for any H, K ∈ Xd. Hence Γd,tic(G) is complete for every
d.

Remark 3.12. In the above proposition, we observe that Γd,tic(Alt(5)) is complete
for every d, where d is the order of a subgroup of Alt(5). However, Alt(5) is not
a Dedekind group.

Proposition 3.13. Let G = Alt(5). Then Γtic(G) is not complete.
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Proof. Let G = Alt(5). Let X be the set of all nontrivial proper subgroups of
G. Let H be a subgroup of G of order 2. Then by Proposition 2.14, |I(G,H)| =
226 + 10.

Let K be a subgroup of G of order 5. Then by Proposition 2.11, |I(G,K)| 6=
|I(G,H)|. Thus both H and K are in X, however they are not adjacent in Γtic(G)
. Hence Γtic(G) is not complete.

Proposition 3.14. Let G be a finite p-group, p is a prime. Then Γd,tic(G) is
complete if and only if each member of Xd is normal in G, where Xd is the set of
all subgroups of G of order d.

Proof. Let G be a finite p-group. Then for each divisor d of |G|, G contains a
normal subgroup H of order d (see [9, Proposition 9.1.23]). Thus Γd,tic(G) is
complete if |I(G,K)| = 1 for every K ∈ Xd. Consequently, each K ∈ Xd is
normal in G (see [10]). Conversely, assume that each member of Xd is normal in
G. Then |I(G,H)| = 1, for any H ∈ Xd. Hence Γd,tic(G) is complete.

Corollary 3.15. Let G be a nonabelian group of order order p3, p is a prime.
Then Γp,tic(G) is complete if and only if G ∼= Q8.

Proof. Assume that Γp,tic(G) is complete. By the above proposition each subgroup
of G of order p is normal in G. Since a subgroup of G of order p2 is maximal in G,
it is normal in G. Thus if Γp,tic(G) is complete, then all subgroups of G are normal
in G. Hence G is a Dedekind group. Thus by [11, p.143], G ∼= Q8. Conversely, if
G = Q8, then Γ2,tic(G) is complete follows from the Example 3.5.

Proposition 3.16. Let G = D2n. If n is even, then Γ2,tic(G) is not complete.

Proof. Let X2 be the set of all subgroups of G of order 2. Since the center Z(G)
of G is of order 2, |I(G,Z(G))| = 1. Again if H ∈ X2 and H is non-normal,
then |I(G,H)| 6= 1 (see [10, Main Theorem, p.643]). Thus Z(G) and H are not
adjacent in Γ2,tic(G). Consequently, Γ2,tic(G) is not complete.

Let G = D8 = 〈a, b : a2 = b4 = 1, aba = b−1〉. Let X2 =
{
H1 = 〈a〉, H2 =

〈ba〉, H3 = 〈b2a〉, H4 = 〈b3a〉, H5 = 〈b2〉
}
be the set of all subgroups of G of order

2 and let X4 = {K1 = 〈b〉,K2 = 〈b2, a〉,K3 = 〈b2, ba〉} be the set of all subgroups
of G of order 4. Then the connectivity of subgroups in Γ2,tic(D8) and Γ4,tic(D8)
can be shown in following pictorial form:

H1 H3

H2 H4

(a) Γ1

H5 = Z(D8)

(b) Γ2

Figure 1: Γ2,tic(D8) = Γ1 ∪ Γ2
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K1 K3

K2

Figure 2: Γ4,tic(D8)

Proposition 3.17. Let G be a finite group containing a nontrivial proper normal
subgroup. Assume that Γtic(G) is complete. Then G is a Dedekind group.

Proof. Let X be the set of all nontrivial proper subgroups of G. Then there exists
H ∈ X such that HEG and hence |I(G,H)| = 1 (see [10, Main Theorem, p.643]).
Assume that Γtic(G) is complete. Then |I(G,K)| = 1, for every K ∈ X. Thus
each subgroup of G is normal in G (see [10]). Hence G is a Dedekind group.

In the Proposition 3.17, we saw that if Γtic(G) is complete and G has a nontriv-
ial proper normal subgroup, then G is Dedekind. Then, we may ask the following
questions:

Question 1. Does there exists a finite non-abelian simple group G such that
Γtic(G) complete ?

Question 2. Let G be a finite group. Let Xd be the set of all subgroups of G of
order d. Assume that Γd,tic is complete. Then what can we say about the members
of Xd ?
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Menger algebras of terms induced by

transformations with restricted range

Sarawut Phuapong and Thodsaporn Kumduang

Abstract. In this paper, a special kind of n-ary terms of type τn, which are called T (n̄, Y )-full
terms, are introduced. They are derived by applying transformations on the set n̄ = {1, 2, . . . , n}
with restricted range. Under the superposition operation Sn, the algebra of such terms called the
clone of T (n̄, Y )-full terms is constructed. We prove that the superassociative law is satisfied in
the clone of T (n̄, Y )-full terms and the freeness is investigated using a generating set and a suitable
homomorphism. Based on the theory of hypervariety, we study T (n̄, Y )-full hypersubstitutions
which are maps taking all operation symbols to our obtained terms. These lead us to provide
the classes of T (n̄, Y )-full hyperidentities and T (n̄, Y )-full solid varieties. A connection between
identities in cloneT (n̄,Y )(τn) and T (n̄, Y )-full hyperidentities is established.

1. Introduction

It is commonly known that the idea of terms is one of fundamental tools in
study of universal algebra. It is also connect with various fields of science, for
instance, graph theory and automata theory. Normally, terms are formal expres-
sion defined from variables and operation symbols. Let X := {x1, x2, . . .} be a
countably infinite set of symbols called variables. We often refer to these variables
as letters to X as an alphabet, and also refer to the set Xn := {x1, x2, . . . , xn}
as an n-element alphabet. Let (fi)i∈I be an indexed set which is disjoint from
X. Each fi is called an ni-ary operation symbol, where 1 6 ni 6 n is a natural
number. Let τ be a function which assigns to every fi the number ni as its arity.
The sequence of the values of function τ , written as (ni)i∈I , is called a type. An
n-ary term of type τ is defined inductively as follows: (i) Every variable xj ∈ Xn

is an n-ary term of type τ . (ii) fi(t1, . . . , tni) is an n-ary term of type τ where
t1, . . . , tni are n-ary terms of type τ and fi is an ni-ary operation symbol. The set
of all n-ary terms of type τ , closed under finite number of applications of (ii), is

denoted by Wτ (Xn). The symbol Wτ (X) :=

∞⋃
n=1

Wτ (Xn) stands for the set of all

terms of type τ . See [13, 14, 15, 21, 22, 24] for example of current trands in the
study of terms.

2010 Mathematics Subject Classification: 08A62; 08B15; 20M10
Keywords: term, Menger algebra, clone, hypersubstitution, hyperidentity, transformations
with restricted range.
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The set of all terms of type τ can be used as the universe of an algebra of type
τ . For every i ∈ I, an ni-ary operation f̄i : Wτ (X)ni −→Wτ (X) is defined by

f̄i (t1, . . . , tni) := fi (t1, . . . , tni) .

The algebra Fτ (X) := (Wτ (X); (f̄i)i∈I) is called the absolutely free algebra of
type τ over the set X.

There is another way to consider the operation on the set of terms. Now, we
recall the concept of superposition operation of terms. For each natural numbers
m,n > 1, the superposition operation is a many-sorted mapping

Snm : Wτ (Xn)× (Wτ (Xm))n →Wτ (Xm)

defined by

(i) Snm(xj , t1, . . . , tn) := tj , if xj ∈ Xn,

(ii) Snm(fi(s1, . . . , sni), t1, . . . , tn) :=fi(S
n
m(s1, t1, . . . , tn), . . . , Snm(sni , t1, . . . , tn)).

Then the many-sorted algebra can be defined by

clone τ := ((Wτ (Xn))n∈N+ ; (Snm)n,m∈N+ , (xi)i6n∈N+),

which is called the clone of all terms of type τ . For recent developments in this
way, see [3].

Let τn = (n, n, . . . , n) be a type consisting of the same values equal to n, i.e.
τn = (ni) with ni = n for all i ∈ I. The concept of full terms is used in [6] to study
the depth of terms and full hypersubstitutions, and solid varieties. The composed
full terms are derived by operation symbols and terms in which all input variables
occur. Thus the resulting subterms in each step of composition, content whole set
of the input variables, which can be permuted, only.

In 2004, Denecke and Jampachon [5] inductively defined n-ary full terms of type
τn, based on the full transformations (mappings) instead of the permutations, as
follows:

(i) fi(xα(1), . . . , xα(n)) is an n-ary full term of type τn if fi is an n-ary oper-
ation symbol and α ∈ Tn where Tn is the set of all full transformation on
{1, 2, . . . , n};

(ii) fi (t1, . . . , tn) is an n-ary full term of type τn if fi is an n-ary operation
symbol and t1, . . . , tn are n-ary full terms of type τn.

The set of all n-ary full terms of type τn, closed under finite application of (ii),
is denoted by WF

τn(Xn). If Tn is replaced by the submonoid {1n}, then WF
τn(Xn)

is denoted by WSF
τn (Xn) called the set of all strongly full terms of type τn [4].

Actually, there are many generalizations of full terms as in [4, 18, 19, 27, 28].
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Beginning with the notions of terms, we define T (n̄, Y )-full terms through
transformations with restricted range. The Menger algebea of T (n̄, Y )-full terms is
presented. In Section 3, we construct the monoid of T (n̄, Y )-full hypersubstitution
of type τn which consists of a mapping from the set of operation sysmbols to the set
of all T (n̄, Y )-full terms. These mappings preserve the arity of operation symbols
and the arity of T (n̄, Y )-full terms, together with one binary associative operation
and the identity element. Finally, the T (n̄, Y )-full solid varieties of type τn are
charaterized.

2. The algebra of T (n̄, Y )-full terms
The first aim of our main results is to propose the new concept of a specific term,
based on full transformation mappings and the original notions of terms. For this,
we recall the concept of the full transformations.

Let X be a nonempty set and let T (X) denote the semigroup of the full trans-
formations from X into itself under composition of mappings and let Y be a
nonempty subset of X. Then T (X,Y ) was introduced by Symons [26] to be the
set of all transformations from X to Y called the full transformation semigroup
with restricted range, that means

T (X,Y ) := {α ∈ T (X) | Xα ⊆ Y } .

Clearly, T (X,Y ) is a subsemigroup of T (X) and if X = Y then T (X,Y ) =
T (X). For more information about T (X,Y ), we refer to[1, 11, 25].

Let τn = (ni)i∈I be a type and let (fi)i∈I be an indexed set of operation symbols
of type τ . The full transformation semigroup Tn consists of the set of all maps
α : {1, 2, . . . , n} −→ {1, 2, . . . , n} and the usual composition of mappings. Indeed,
Tn is a monoid and identity map 1n acts as its identity. Let n̄ := {1, 2, . . . , n}.
For a fixed nonempty subset Y of n̄, it is well-known that the set

T (n̄, Y ) := {α ∈ Tn | Imα ⊆ Y } ∪ {1n}

is a submonoid of Tn.
Then we introduce the definition of n-ary T (n̄, Y )-full term of type τn.

Definition 2.1. Let fi be an n-ary operation symbol and α ∈ T (n̄, Y ). An n-ary
T (n̄, Y )-full term of type τn is defined in the following way:

(i) fi(xα(1), . . . , xα(n)) is an n-ary T (n̄, Y )-full term of type τn;

(ii) if t1, . . . , tn are n-ary T (n̄, Y )-terms of type τn, then fi (t1, . . . , tn) is an
n-ary T (n̄, Y )-full term of type τn.

Let WT (n̄,Y )
τn (Xn) be the set of all n-ary T (n̄, Y )-full terms of type τn.

Now we give an example of Definition 2.1.
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Example 2.2. Let τn = (n) be a type with one operation symbol f and let us
consider the following examples:

(i) Let n = 2, and Y = {2}, then
f(x1, x2), f(x2, x2), f(f1(x2, x2), f(x2, x2)) ∈WT (2̄,Y )

τ2 (X2).

(ii) Let n = 3, and Y = {1, 3}, then
f(x1,x2, x3),f(x3, x3, x3),f(f2(x3, x3, x1),f(x1, x1, x1),f(x1,x3, x3))∈WT (3̄,Y )

τ3 (X3).

(iii) Let n = 4, and Y = {2, 3, 4}, then
f(x1, x2, x3, x4), f(x2, x2, x4, x2), f(x2, x4, x2, x4) ∈WT (4̄,Y )

τ4 (X4).

Let us note that if Y = n̄ then the set WT (n̄,Y )
τn (Xn) of all T (n̄, Y )-full terms

is equal to the set WF
τn(Xn) of all n-ary full terms of type τn, as defined in [5].

This means that T (n̄, Y )-full terms of type τn are natural generalization of the full
terms of type τn, discussed in [5] and [6]. By the definition of T (n̄, Y )-full terms of
type τn we have that

(
W

T (n̄,Y )
τn (Xn); (f̄i)i∈I

)
is a subalgebra of

(
Wτ (X); (f̄i)i∈I

)
.

Normally, terms have many measures of their complexity, see [23]. As a result,
there is a possibility to measure a complexity of T (n̄, Y )-full terms. The depth
of a T (n̄, Y )-full term t, denoted by Depth(t), is the longest distance from a first
operation symbol that appears in a term (from the left) to variables. It can be
inductively defined by

(i) Depth(t) = 1 if t = fi(xα(1), . . . , xα(n)) and α ∈ T (n̄, Y );

(ii) Depth(t) = 1 +max{Depth(tj) | 1 6 j 6 n} if t = fi(t1, . . . , tn).

On the set WT (n̄,Y )
τn (Xn), we define an (n+ 1)-ary operation Sn,

Sn :
(
WT (n̄,Y )
τn (Xn)

)n+1

−→WT (n̄,Y )
τn (Xn)

for all t1, . . . , tn, s1, . . . , sn ∈WT (n̄,Y )
τn (Xn) by

(i) Sn
(
fi
(
xα(1), . . . , xα(n)

)
, t1, . . . , tn

)
:= fi

(
tα(1), . . . , tα(n)

)
;

(ii) Sn(fi(t1, . . . , tn) , s1, . . . , sn) :=fi (Sn(t1, s1, . . . , sn) , . . . , Sn(tn, s1, . . . , sn)).

Then we form the algebra

cloneT (n̄,Y )(τn) :=
(
W

T (n̄,Y )
τn (Xn), Sn

)
which is called the clone of all T (n̄, Y )-full terms of type τn. Theorem 2.3, pre-
sented below, shows that the algebra

(
W

T (n̄,Y )
τn (Xn), Sn

)
satisfies the superasso-

ciative law (SASS):

Sn(X0, S
n(Y1, Z1, . . . , Zn), . . . , Sn(Yn, Z1, . . . , Zn))

≈ Sn(Sn(X0, Y1, . . . , Yn), Z1, . . . , Zn) (1)



Menger algebras of terms 259

where Sn is an (n + 1)-ary operation symbol and X0, Yj , Zj are variables for all
1 6 j 6 n.

Next, we shall show that the superassociative law is satisfied in the clone of all
T (n̄, Y )-full terms.

Theorem 2.3.The algebra cloneT (n̄,Y )(τn) satisfies the superassociative law.

Proof. We give a proof by induction on the depth of an n-ary T (n̄, Y )-full term
t which is substituted for X0 from (1). If we substitute for X0 from (1) by a
T (n̄, Y )-full term t = fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ), and Depth(t) = 1,
then we have

Sn(fi(xα(1), . . . , xα(n)), S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

= fi(S
n(xα(1), S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)), . . . ,

Sn(xα(n), S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)))

= fi(S
n(tα(1), s1, . . . , sn), . . . , Sn(tα(n), s1, . . . , sn))

= Sn(fi(tα(1), . . . , tα(n)), s1, . . . , sn)

= Sn(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn), s1, . . . , sn).

If we substitute for X0 from (1) by a T (n̄, Y )-full term t = fi(r1, . . . , rn) where
r1, . . . , rn ∈WT (n̄,Y )

τn (Xn) and assume that

Sn(rk, S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)) = Sn(Sn(rk, t1, . . . , tn), s1, . . . , sn)

for all 1 6 k 6 n, and max16k6nDepth(rk) = m, then Depth(t) = m+ 1 and we
have

Sn(fi(r1, . . . , rn), Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

= fi(S
n(r1, S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)), . . . ,

Sn(rn, S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)))

= fi (Sn (Sn(r1, t1, . . . , tn), s1, . . . , sn) , . . . , (Sn(rn, t1, . . . , tn), s1, . . . , sn))

= Sn(fi(S
n(r1, t1, . . . , tn), . . . , Sni(rn, t1, . . . , tn)), s1, . . . , sn)

= Sn(Sn(fi(r1, . . . , rn), t1, . . . , tn), s1, . . . , sn). �

An algebraM := (M,Sn) of type τ = (n+1) is called a Menger algebra of rank
n ifM satisfies the condition (SASS) [2]. It follows immediately from Theorem 2.3
that cloneT (n̄,Y )(τn) is a Menger algebra of rank n. For basics and some advanced
developments of Menger algebras can be found in the works of W.A. Dudek and
V.S. Trokhimenko, for example, see [8, 9, 10].

It is clear that cloneT (n̄,Y )(τn) is generated by

F
W
T (n̄,Y )
τn (Xn)

:=
{
fi
(
xα(1), . . . , xα(n)

)
| i ∈ I, α ∈ T (n̄, Y )

}
.
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Let V T (n̄,Y ) be the variety of type τ = (n+1) generated by the superassociative
law (SASS). Now let FV T (n̄,Y )({Yl | l ∈ J}) be the free algebra with respect to
V T (n̄,Y ), freely generated by an alphabet {Yl | l ∈ J} where J = {(i, α) | i ∈
I , α ∈ T (n̄, Y )}. The operation of FV T (n̄,Y )({Yl | l ∈ J}) is denoted by S̃n. Next,
we are going to prove that the clone of all T (n̄, Y )-full terms is a free algebra with
respect to the variety V T (n̄,Y ).

Theorem 2.4.The algebra cloneT (n̄,Y )(τn) is isomorphic to FV T (n̄,Y )({Yl | l ∈ J})
and therefore it is free with respect to the variety V T (n̄,Y ), and freely generated by
the set

{fi(xα(1), . . . , xα(n)) | i ∈ I, α ∈ T (n̄, Y )}.

Proof. We define the mapping ϕ : W
T (n̄,Y )
τn (Xn) −→ FV T (n̄,Y )({Yl | l ∈ J}) induc-

tively as follows:

(i) ϕ(fi(xα(1), . . . , xα(n)) = y(i,α);

(ii) ϕ(fi(tα(1), . . . , tα(n))) = S̃n(y(i,α), ϕ(t1), . . . , ϕ(tn)).

Since ϕ maps the generating system of cloneT (n̄,Y )(τn) onto the generating
system of FV T (n̄,Y )({Yl | l ∈ J}), it is surjective. We prove the homomorphism
property

ϕ(Sn(t0, t1, . . . , tn)) = S̃n(ϕ(t0), ϕ(t1), . . . , ϕ(tn))

by induction on the depth of an n-ary T (n̄, Y )-full term t0.If t0 =fi(xα(1), . . . , xα(n))
where α ∈ T (n̄, Y ), and Depth(t) = 1, then we have

ϕ(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn))
= ϕ(fi(tα(1), . . . , tα(n)))

= S̃n(y(i,α), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(fi(xα(1), . . . , xα(n))), ϕ(t1), . . . , ϕ(tn)).

If t0 = fi(r1, . . . , rn) and assume that

ϕ(Sn(rk, t1, . . . , tn)) = S̃n(ϕ(rk), ϕ(t1), . . . , ϕ(tn))

for all 1 6 k ≤ n and max16k6nDepth(rk) = m, then Depth(t) = m + 1 and we
have

ϕ(Sn(fi(r1, . . . , rn), t1, . . . , tn))
= ϕ(fi(S

n(r1, t1, . . . , tn), . . . , Sn(rn, t1, . . . , tn)))
= S̃n(y(i,1n), ϕ(Sn(r1, t1, . . . , tn)), . . . , ϕ(Sn(rn, t1, . . . , tn)))

= S̃n(y(i,1n), S̃
n(ϕ(r1), ϕ(t1), . . . , ϕ(tn)), . . . ,

S̃n(ϕ(rn), ϕ(t1), . . . , ϕ(tn)))
= S̃n(S̃(y(i,1n), ϕ(r1), . . . , ϕ(rn)), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(fi(r1, . . . , rn)), ϕ(t1), . . . , ϕ(tn)).

Thus ϕ is a homomorphism. The mapping ϕ is clearly bijective since the set
{y(i,α) | i ∈ I, α ∈ T (n̄, Y )} is free independent. Therefore we have
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y(i,α) = y(j,β) =⇒ (i, α) = (j, β) =⇒ i = j, α = β.

So fi(xα1), . . . , xα(n)) = fj(xβ(1), . . . , xβ(n)). Thus ϕ is a bijection between the
generating sets of cloneT (n̄,Y )(τn) and FV T (n̄,Y )({Yl | l ∈ J}) and therefore ϕ is an
isomorphism.

3. T (n̄, Y )-full hypersubstitutions
The concept of a hypersubstitution is the main tool used to study hyperidentities
and hypervarieties, see, for instance, in [7, 16, 17, 20] for more background. In
this section, the monoid of hypersubstitution will be studied. First, we recall the
definition and notation of hypersubstitutions.

A hypersubstitution of type τ is a mapping σ : {fi | i ∈ I} −→ Wτ (X) which
maps each operation symbol fi to an ni-ary term σ(fi) of type τ . Any hyper-
substitution σ : {fi | i ∈ I} −→ Wτ (X) can be uniquely extended to a mapping
σ̂ : Wτ (X) −→Wτ (X) as follows:

(i) σ̂[t] := t if t ∈ X ; and

(ii) σ̂[t] := Sni (σ(fi), σ̂[t1], . . . , σ̂[tni ]) if t = fi(t1, . . . , tni) ∈Wτ (Xni).

The set Hyp(τ) of all hypersubstitutions of type τ forms a monoid under the
binary operation ◦h, defined by

σ1 ◦h σ2 := σ̂1 ◦ σ2

where ◦ denotes the usual composition of mappings.
The identity is σid : {fi | i ∈ I} −→Wτ (X) such that σid(fi) = fi(x1, ..., xni).
Now, we call mapping

σ : {fi | i ∈ I} −→W
T (n̄,Y )
τn (Xn).

T (n̄, Y )-full hypersubstitution of type τn.
For a T (n̄, Y )-full term t we need the T (n̄, Y )-full term tβ derived from t by

replacement a variable xα(j) in t by a variable xβ(α(j)) for a mapping β ∈ T (n̄, Y ).
This can be defined as follows.

Let t, t1, . . . , tn ∈ W
T (n̄,Y )
τn (Xn) and α, β ∈ T (n̄, Y ). Then we define the

T (n̄, Y )-full term tβ in the following steps:

(i) If t = fi(xα(1), . . . , xα(n)), then tβ := fi(xβα(1), . . . , xβα(n)).

(ii) If t = fi(t1, . . . , tn), then tβ := fi((t1)β , . . . , (tn)β).

It is observed that if t is an T (n̄, Y )-full term of type τn, then tβ is an T (n̄, Y )-
full term of type τn for all β ∈ T (n̄, Y ). Then an T (n̄, Y )-full hypersubstitution
σ : {fi | i ∈ I} −→W

T (n̄,Y )
τn (Xn) of type τn can be extended to a mapping

σ̂ : W
T (n̄,Y )
τn (Xn) −→W

T (n̄,Y )
τn (Xn)

as follows:
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(i) σ̂[fi(xα(1), . . . , xα(n))] := (σ(fi))α,

(ii) σ̂[fi(t1, . . . , tn)] := Sn (σ(fi), σ̂[t1], . . . , σ̂[tni ]).

The set of all T (n̄, Y )-full hypersubstitutions of type τn will be denoted by
HypT (n̄,Y )(τn). It is easy to see that

(
HypT (n̄,Y )(τn); ◦h, σid

)
is a submonoid of

(Hyp(τn); ◦h, σid).
The following lemma shows the property of a term tα and the extension σ̂.

Lemma 3.1. Let t, t1, ..., tn ∈WT (n̄,Y )
τn (Xn). Then

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn(tα, σ̂[t1], . . . , σ̂[tn])

for all α ∈ T (n̄, Y ).

Proof. We begin with the case when t = fi(xα(1), xα(2), . . . , xα(n)), which is the
first claim of the first step of the induction Depth(t) = 1. In fact, we have
Sn(fi(x1, x2, . . . , xn), σ̂[tα(1)], . . . , σ̂[tα(n)]) = fi(σ̂[tα(1)], σ̂[tα(2)], . . . , σ̂[tα(n)]) =
Sn(fi(xα(1), . . . , xα(n)), σ̂[t1], . . . , σ̂[tn]) = Sn(fi(x1, x2, . . . , xn)α, σ̂[t1], . . . , σ̂[tn]).

If t = fi(s1, . . . , sn) and assume that

Sn(sk, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn((sk)αi , σ̂[tα(1)], . . . , σ̂[tα(n)])

for all 1 6 k 6 n and α ∈ T (n̄, Y ) then

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)])
= Sn(fi(s1, . . . , sn), σ̂[tα(1)], . . . , σ̂[tα(n)])
= fi(S

n(s1, σ̂[tα(1)], . . . , σ̂[tα(n)]), . . . , S
n(sn, σ̂[tα(1)], . . . , σ̂[tα(n)]))

= fi(S
n((s1)α, σ̂[t1], . . . , σ̂[tn]), . . . , Sn((sn)α, σ̂[t1], . . . , σ̂[tn]))

= Sn(fi((s1)α, . . . , (sn)α), σ̂[t1], . . . , σ̂[tn])
= Sn(tα, σ̂[t1], . . . , σ̂[tn]).

Using Lemma 3.1 we show that the extension σ̂ of each T (n̄, Y )-full hypersub-
stitution σ preserves the operation Sn on the set WT (n̄,Y )

τn (Xn).

Theorem 3.2. For σ ∈ HypT (n̄,Y )(τn), the extension

σ̂ : W
T (n̄,Y )
τn (Xn) −→W

T (n̄,Y )
τn (Xn)

is an endomorphism on the algebra cloneT (n̄,Y )(τn).

Proof. It is clear that σ̂ : W
T (n̄,Y )
τn (Xn) −→ W

T (n̄,Y )
τn (Xn). Let t0, t1, . . . , tn ∈

W
T (n̄,Y )
τn (Xn). We will show by induction on the depth of t0 that

σ̂[Sn(t0, t1, . . . , tn)] = Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

If t0 = fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ), and Depth(t) = 1, then we have

σ̂[Sn(t0, t1, . . . , tn)] = σ̂[Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn)]
= σ̂[fi(tα1), . . . , tα(n))]
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= Sn(σ(fi), σ̂[tα(1)], . . . , σ̂[tα(n)])
= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

If t0 = fi(r1, . . . , rn) and we assume that

σ̂[Sn(rk, t1, . . . , tn)] = Sn(σ̂[rk], σ̂[t1], . . . , σ̂[tn])

for all 1 6 k 6 n and max16k6nDepth(rk) = m, then Depth(t) = m + 1 and we
have

σ̂[Sn(t0, t1, . . . , tn)]
= σ̂[Sn(fi(r1, . . . , rn), t1, . . . , tn)]
= σ̂[fi(S

n(r1, t1, . . . , tn), . . . , Sni(rn, t1, . . . , tn))]
= Sn(σ(fi), σ̂[Sn(r1, t1, . . . , tn)], . . . , σ̂[Sn(rni , t1, . . . , tn)])
= Sn(σ(fi), S

n(σ̂[r1], σ̂[t1], . . . , σ̂[tn]), . . . , Sn(σ̂[rn], σ̂[t1], . . . , σ̂[tn]))
= Sn(Sn(σ(fi), σ̂[r1], . . . , σ̂[rn]), σ̂[t1], . . . , σ̂[tn])
= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

We complete this section by studying the connection between T (n̄, Y )-full terms
and the extension of a mapping which maps fundamental term to any T (n̄, Y )-full
terms.

As mentioned, the algebra cloneT (n̄,Y )(τn) is generated by the set

F
W
T (n̄,Y )
τn (Xn)

:=
{
fi
(
xα(1), . . . , xα(n)

)
| i ∈ I, α ∈ T (n̄, Y )

}
.

Thus, any mapping
η : F

W
T (n̄,Y )
τn (Xn)

−→W
T (n̄,Y )
τn (Xn)

called T (n̄, Y )-full clone substitution, can be uniquely extended to endomorphism

η̄ : W
T (n̄,Y )
τn (Xn) −→W

T (n̄,Y )
τn (Xn).

Let SubstT (n̄,Y )(τn) be the set of all T (n̄, Y )-full clone substitutions. On the
set SubstT (n̄,Y )(τn), a binary operation � can be defined by

η1 � η2 := η̄1 ◦ η2

where ◦ denotes the usual composition of mappings. Furthermore, the identity
mapping with respect to � is denoted by idF

W
T (n̄,Y )
τn (Xn)

.

Then clearly,
(
SubstT (n̄,Y )(τ);�, idF

W
T (n̄,Y )
τn (Xn)

)
forms a monoid.

Consider σ ∈ HypT (n̄,Y )(τn) and by Theorem 3.2,

σ̂ : W
T (n̄,Y )
τn (Xn) −→W

T (n̄,Y )
τn (Xn)

is an endomorphism. Since F
W
T (n̄,Y )
τn (Xn)

generates cloneT (n̄,Y )(τn), σ̂
∣∣
F
W
T (n̄,Y )
τn (Xn)

is an T (n̄, Y )-full clone substitution with

σ̂
∣∣
F
W
T (n̄,Y )
τn (Xn)

= σ̂.
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Define a mapping ψ : HypT (n̄,Y )(τn) −→ SubstT (n̄,Y )(τn) by

ψ(σ) = σ̂
∣∣
F
W
T (n̄,Y )
τn (Xn)

.

We have that ψ is a homomorphism. In fact: Let σ1, σ2 ∈ HypT (n̄,Y )(τn). Then

ψ(σ1 ◦h σ2) = (σ1 ◦h σ2)̂
∣∣
F
W
T (n̄,Y )
τn (Xn)

= (σ̂1 ◦ σ̂2)
∣∣
F
W
T (n̄,Y )
τn (Xn)

= σ̂1

∣∣
F
W
T (n̄,Y )
τn (Xn)

◦ σ̂2

∣∣
F
W
T (n̄,Y )
τn (Xn)

= ψ(σ1) ◦ ψ(σ2)

= ψ(σ1)� ψ(σ2).

Clearly, ψ is an injection. Hence we have proved, the following corollary.

Corollary 3.3. The monoid
(
HypT (n̄,Y )(τn); ◦h, σid

)
can be embedded into

(SubstT (n̄,Y )(τn);�, idF
W
T (n̄,Y )
τn (Xn)

).

4. T (n̄, Y )-full hyperidentities and clone identities
In this section we examine the relationship between a variety V of type τn and the
identity in the cloneT (n̄,Y )(τn).

Let V be a variety of type τn and let IdV be the set of all identities of V . Let
IdT (n̄,Y )V be the set of all s ≈ t of V such that s and t are both T (n̄, Y )-full term
of type τn; that is

IdT (n̄,Y )V :=
(
W

T (n̄,Y )
τn (Xn)

)2

∩ IdV.

It is well-known that IdV is a congruence on the free algebra Fτ (X). However, in
general this is not true for IdT (n̄,Y )V . The following theorem shows that IdT (n̄,Y )V
is a congruence on cloneT (n̄,Y )(τn).

Theorem 4.1. Let V be a variety of type τn. Then IdT (n̄,Y )V is a congruence on
the algebra cloneT (n̄,Y )(τn).

Proof. We will prove that if t ≈ r, tk ≈ rk ∈ IdT (n̄,Y )V, k = 1, 2, . . . , n,
then Sn(t, t1, . . . , tn) ≈ Sn(r, r1, . . . , rn) ∈ IdT (n̄,Y )V . Firstly, we give a proof
by induction on the depth of a term t ∈ W

T (n̄,Y )
τn (Xn) that for every i ∈ I

from tk ≈ rk ∈ IdT (n̄,Y )V, k = 1, 2, . . . , n, there follows Sn(t, t1, . . . , tn) ≈
Sn(t, r1, . . . , rn) ∈ IdT (n̄,Y )V . If t = fi(xα(1), . . . , xα(n)), where α ∈ T (n̄, Y ),
and Depth(t) = 1, then we have

Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) = fi(tα(1), . . . , tα(n))

≈ fi(rα(1), . . . , rα(n)) = ψ(σ1) ◦ ψ(σ2)

= Sn(fi(xα(1), . . . , xα(n)), r1, . . . , rn) ∈ IdT (n̄,Y )V,

since IdV is compatible with the operation fi of the absolutely free algebra Fτ (X)
and by the definition of T (n̄, Y )-full terms.
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If t = fi(l1, . . . , ln) ∈WT (n̄,Y )
τn (Xn) and assume that

Sn(lk, t1, ..., tn) ≈ Sn(lk, r1, ..., rn) ∈ IdT (n̄,Y )V.

for all 1 6 k 6 n and max16k6nDepth(rk) = m, then Depth(t) = m + 1 and we
obtain

Sn(fi(l1, . . . , ln), t1, . . . , tn) = fi(S
n(l1, t1, . . . , tn), . . . , Sn(ln, t1, . . . , tn))

≈ fi(Sn(l1, r1, . . . , rn), . . . , Sni(ln, r1, . . . , rn))

= Sn(fi(l1, . . . , ln), r1, . . . , rn) ∈ IdT (n̄,Y )V.

This means
Sn(t, t1, . . . , tn) ≈ Sn(t, r1, . . . , rn) ∈ IdT (n̄,Y )V.

This is a consequence of the fact that IdV is a fully invariant congruence on the
absolutely free algebra Fτ (X). Assume now that t ≈ r, tk ≈ rk ∈ IdT (n̄,Y )V .
Then

Sn(t, t1, . . . , tn) ≈ Sn(r, t1, . . . , tn) ≈ Sn(r, r1, . . . , rn) ∈ IdT (n̄,Y )V. �

By using the concepts of T (n̄, Y )-full hypersubstitution as we presented in
Section 3. We shall define T (n̄, Y )-full hyperidentities in a variety of typer τn.

Let V be a variety of type τn. An identity s ≈ t ∈ IdT (n̄,Y )V is called a
T (n̄, Y )-full hyperidentity of V if σ̂[s] ≈ σ̂[t] ∈ IdV for all σ ∈ HypT (n̄,Y )(τn).
Moreover, the variety V is called T (n̄, Y )-full solid if the following holds:

∀s ≈ t ∈ IdT (n̄,Y )V ∀σ ∈ HypT (n̄,Y )(τn) σ̂[s] ≈ σ̂[t] ∈ IdV.

Next theorem characterizes the T (n̄, Y )-full solid variety.

Theorem 4.2. Let V be a variety of type τn. If IdT (n̄,Y )V is a fully invariant
congruence on cloneT (n̄,Y )(τn), then V is T (n̄, Y )-full solid.

Proof. Assume that IdT (n̄,Y )V is a fully invariant congruence on cloneT (n̄,Y )(τn).
Let s ≈ t ∈ IdT (n̄,Y )V and σ ∈ HypT (n̄,Y )(τn). By Theorem 3.2, σ̂ is an endo-
morphism of cloneT (n̄,Y )(τn). Hence σ̂[s] ≈ σ̂[t] ∈ IdT (n̄,Y )V , which shows that V
is T (n̄, Y )-full solid.

For a variety V of type τn, IdT (n̄,Y )V is a congruence on cloneT (n̄,Y )(τn) by
Theorem 4.1. We can form the quotient algebra

cloneT (n̄,Y )(V ) := cloneT (n̄,Y )(τn)/IdT (n̄,Y )V.

This quotient algebra belongs to the class of a Menger algebra of rank n. Note
that we have a natural homomorphism

natIdT (n̄,Y )V : cloneT (n̄,Y )(τn) −→ cloneT (n̄,Y )(V )
such that

natIdT (n̄,Y )V (t) = [t]IdT (n̄,Y )V .

Finally, we prove the following connection between T (n̄, Y )-full hyperidentities
of a variety V and clone identities.
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Theorem 4.3. Let V be a variety of type τn. If s ≈ t ∈ IdT (n̄,Y )V is an identity
in cloneT (n̄,Y )(V ), then s ≈ t is T (n̄, Y )-full hyperidentity of V .

Proof. Assume that s ≈ t ∈ IdT (n̄,Y )V is an identity in cloneT (n̄,Y )(V ). Let σ ∈
HypT (n̄,Y )(τn). Then σ̂ : cloneT (n̄,Y )(τn) −→ cloneT (n̄,Y )(τn) is an endomorphism
by Theorem 3.2. Thus

natIdT (n̄,Y )V ◦ σ̂ : cloneT (n̄,Y )(τn) −→ cloneT (n̄,Y )(V )

is a homomorphism. By assumption,

(natIdT (n̄,Y )V ◦ σ̂) (s) = (natIdT (n̄,Y )V ◦ σ̂) (t).

That is
natIdT (n̄,Y )V (σ̂[s]) = natIdT (n̄,Y )V (σ̂[t]).

Thus
[σ̂[s]]IdT (n̄,Y )V = [σ̂[t]]IdT (n̄,Y )V ,

and hence
σ̂[s] ≈ σ̂[t] ∈ IdT (n̄,Y )V.

Therefore, s ≈ t is a T (n̄, Y )-full hyperidentity of V .

5. Open Problems
Finally, we give three problems and suggestions for the future research in this area.

(1) Determine the semigroup properties of the monoid
(
HypT (n̄,Y )(τn); ◦h, σid

)
.

Find the order of its elements for the particular type. Describe the idempo-
tency and several kinds of regularity of the T (n̄, Y )-full hypersubstitutions.

(2) Use some difference definions of transformation semigroup, for instance trans-
formations with invariant subset to define new generalizations of full terms.
Study the connection between the different kinds of full terms.

(3) Based on [12], define the set of all formulas induced by T (n̄, Y )-full terms
and study this set.
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Some applications of the independence

to the semigroup of all binary systems

Akbar Rezaei, Hee Sik Kim and Joseph Neggers

Abstract. We extend the notions of right (left) independency and absorbent from groupoids to
Bin(X) as a semigroup of all the groupoids on a set X and study and investigate many of their
properties. We show that these new concepts are different by presenting several examples. In
general, the concept of right (left) independence is a generalization and alternative of classical
concept of the converse of injective function.

1. Introduction

Bruck [2] published a book, A survey of binary systems discussed in the theory of
groupoids, loops and quasigroups, and several algebraic structures. Bor

o
uvka [3]

stated the theory of decompositions of sets and its application to binary systems.
Nebeský [12] introduced the notion of a travel groupoid by adding two axioms
to a groupoid, and he described an algebraic interpretation of the graph theory.
Allen et al. [1] introduced the concept of several types of groupoids related to
semigroups, viz., twisted semigroups for which twisted versions of the associative
law hold. Kim et al. [7] showed that every selective groupoid induced by a fuzzy
subset is a pogroupoid, and they discussed several properties in quasi ordered sets
by introducing the notion of a framework. Liu et al. [11] extended the theory of
groupoids already developed for semigroups (Bin(X),�) in a growing number of
research papers with X a set and Bin(X) the set of groupoids defined on X to the
generalizations: fuzzy (sub)groupoids and hyperfuzzy (sub)groupoids. Hwang et
al. [8] generalized the notion of an implicativity discussed in BCK-algebras, and
applied it to some groupoids and BCK-algebras. Also, they discussed the notion
of the locally finiteness and convolution products in groupoids [9]. Fayoumi intro-
duced the notions of locally zero groupoids and the center of Bin(X) of all binary
systems on a set X [4]. Also, she introduced two methods of factorization for this
binary system under the binary groupoid product in the semigroup (Bin(X),�)
and showed that a strong non-idempotent groupoid can be represented as a prod-
uct of its similar- and signature- derived factors. Moreover, she showed that a
groupoid with the orientation property is a product of its orient- and skew-factors
[5]. Feng et al. discussed on some relations among axioms in groupoids, and

2010 Mathematics Subject Classification: 20N02, 06F35.
Keywords: groupoid, (right , left) independence, (right , left) absorbent.
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obtained some useful properties [6].
The motivation of this study came from the idea of the converse of “injective

function". We applied this concepts to Bin(X), and obtained several properties.
Moreover, we discuss the right (left) absorbent subsets of Bin(X). We provide
several (counter-) examples to describe the concepts.

2. Preliminaries
A groupoid (X, ∗) is said to be a right zero semigroup if x∗y = y for any x, y ∈ X,
and a groupoid (X, ∗) is said to be a left zero semigroup if x ∗ y = x for any
x, y ∈ X. A groupoid (X, ∗) is said to be a right oid for f : X → X if x ∗ y = f(y)
for any x, y ∈ X. Similarly, a groupoid (X, ∗) is said to be a leftoid for f : X → X
if x ∗ y = f(x) for any x, y ∈ X. Note that a right (left, resp.) zero semigroup is a
special case of a right oid(leftoid, resp.) (see [10]). A groupoid (X, ∗) is said to be
right cancellative (or left cancellative, resp.) if y ∗ x = z ∗ x (x ∗ y = x ∗ z, resp.)
implies y = z. A groupoid (X, ∗) is said to be locally zero [4] if

(i) x ∗ x = x for all x ∈ X,

(ii) for any x 6= y ∈ X, ({x, y}, ∗) is either a left zero semigroup or a right zero
semigroup.

Given a groupoid (X, ∗) (i.e., (X, ∗) ∈ Bin(X)), a non-empty subset E of X is
said to be right independence if x 6= y ∈ E, then x ∗ u 6= y ∗ u for all u ∈ X. Also
E is said to be left independence if x 6= y ∈ E, then u ∗ x 6= u ∗ y for all u ∈ X. E
is said to be independence if it both right and left independence [13].

The notion of the semigroup (Bin(X),�) was introduced by Kim and Neggers
[10]. Given binary operations “∗" and “•" on a set X, they defined a product
binary operation “�" as follows: x�y = (x ∗ y) • (y ∗ x). This in turn yields
a binary operation on Bin(X), the set of all groupoids, defined on X turning
(Bin(X),�) into a semigroup with identity (x ∗ y = x), the left zero semigroup,
and an analog of negative one in the right zero semigroup [10].

Example 2.1. Let X := {a, b} be a set. Then we have 16 groupoids (X, ∗i) for
i ∈ {1, . . . , 16} with the following tables.

∗1 a b

a a a
b a a

∗2 a b

a b a
b a a

∗3 a b

a a b
b b a

∗4 a b

a b b
b a a

∗5 a b

a a a
b b a

∗6 a b

a b a
b b a

∗7 a b

a a b
b a b

∗8 a b

a b b
b b a

∗9 a b

a a a
b b b

∗10 a b

a b a
b a b

∗11 a b

a a b
b b b

∗12 a b

a b b
b a b

∗13 a b

a a a
b a b

∗14 a b

a b a
b b b

∗15 a b

a a b
b a a

∗16 a b

a b b
b b b

It follows that Bin(X) = {(X, ∗i)}i∈{1,...,16}. We see that (Bin(X),�), where �
is defined by x�y = (x ∗i y) ∗j (y ∗i x) for all i, j ∈ {1, . . . , 16}, forms a semigroup.



Some applications of the independence 271

For example, (X, ∗1)�(X, ∗2) and (X, ∗2)�(X, ∗1) are groupoids with the following
tables:

� a b

a b b
b b b

� a b

a a a
b a a

It is seen that (X, ∗1)�(X, ∗2) = (X, ∗16) 6= (X, ∗2)�(X, ∗1) = (X, ∗1). Also, for
example, in (X, ∗6)�(X, ∗7), we have a�b = (a ∗6 b) ∗7 (b ∗6 a) = a ∗7 b = b, but
b�a = (b ∗6 a) ∗7 (a ∗6 b) = b ∗7 a = a, and so a�b 6= b�a. Further, (Bin(X),�)
it is not a left cancellative semigroup, since (X, ∗2)�(X, ∗3) = (X, ∗2)�(X, ∗5) =
(X, ∗1), but (X, ∗3) 6= (X, ∗5). Also, it is not a right cancellative semigroup, since
(X, ∗13)�(X, ∗14) = (X, ∗1)�(X, ∗14) = (X, ∗16), but (X, ∗13) 6= (X, ∗1).

3. right (left) independence in Bin(X)

Definition 3.1. A non-empty subset A ⊆ Bin(X) is said to be right inde-
pendence if (X, ∗) 6= (X, •) in A, then (X, ∗)�(X, �) 6= (X, •)�(X, �) for all
(X, �) ∈ Bin(X). Also A is said to be left independence if (X, ∗) 6= (X, •) ∈ A,
then (X, �)�(X, ∗) 6= (X, �)�(X, •) for all (X, �) ∈ Bin(X). A is said to be inde-
pendence if it both right and left independence.

Example 3.2. (a). Let (R,+, ·, 0, 1) be a commutative ring with identity 1, and
let L(R) denote the collection of all groupoids (R, ∗) such that, for all x, y ∈ R,

x ∗ y = ax + by + c,

where a, b, c ∈ R. Such a groupoid is said to be a linear groupoid. Notice that
a = 1, b = c = 0 yields x ∗ y = 1 · x = x, and thus the left zero semigroup on R is
a linear groupoid. Now, suppose that (R, ∗) and (R, •) are linear groupoids where
x ∗ y = ax + by + c and x • y = dx + ey + f. Then

x�y = d(ax+ by + c) + e(ay + bx+ c) + f = (da+ cb)x+ (db+ ca)y + (d+ e)c+ f,

whence (R,�) = (R, ∗)�(R, •) is also a linear groupoid (i.e., (L(R),�) is a semi-
group with identity (cf. [5])).

Let L(A) denote the collection of all groupoids (R, ∗) such that for all x, y ∈ R,

x ∗ y = ax,

where a ∈ R. Now, suppose that (R, ∗) 6= (R, •) ∈ L(A) where x ∗ y = a1x and
x • y = a2x, for some a1 6= a2 ∈ R. Let (R, �) ∈ L(R), where x � y := ax + by + c
for some a, b, c ∈ R with abc 6= 0. Hence

x�y = (x ∗ y) � (y ∗ x) = a1x � a1y = aa1x + ba1y + c in (R, ∗)�(R, �) and
x�y = (x • y) � (y • x) = a2x � a2y = aa2x + ba2y + c in (R, •)�(R, �).

Assume (R, ∗)�(R, �) = (R, •)�(R, �). Then aa1x + ba1y + c = aa2x + ba2y + c
and hence a(a1 − a2)x + b(a1 − a2)y = 0. Since a1 6= a2, we obtain a = b = 0,
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a contradiction. Thus, (R, ∗)�(R, �) 6= (R, •)�(R, �), and hence L(A) is a right
independence subset of L(R). Moreover, x�y = (x � y) ∗ (y � x) = (ax + by +
c) ∗ (ay + bx + c) = a1(ax + by + c) = a1ax + a1by + a1c in (R, �)�(R, ∗) and
x�y = (x�y)•(y�x) = (ax+by+c)•(ay+bx+c) = a2(ax+by+c) = a2ax+a2by+a2c
in (R, �)�(R, •). It is easy to see that a1ax+a1by+a1c 6= a2ax+a2by+a2c. Thus,
(R, �)�(R, ∗) 6= (R, �)�(R, •), and so L(A) is a left independence subset of L(R).
Therefore L(A) is an independence subset of L(R).

(b). Let R denote the real numbers. Let R∗ := R \ {0}, and let L(R∗) denote
the collection of all groupoids on R∗ (e.g., (R∗, ·), (R∗,+), (R∗,−), (R∗,÷) and
(R∗, •) where • : R∗ × R∗ −→ R∗ is an arbitrary binary relation on R∗. Take
A = {(R∗,+), (R∗, ·)}. Then A is not a right independence subset of L(R∗).
Since (R∗,+) 6= (R∗, ·) ∈ A and (R∗,÷) ∈ L(R∗), for all x, y ∈ R∗, we get
x�y = (x+ y)÷ (y + x) = 1 in (R∗,+)�(R∗,÷) and x�y = (x · y)÷ (y · x) = 1 in
(R∗, ·)�(R∗,÷). Thus, (R∗,+)�(R∗,÷) = (R∗, ·)�(R∗,÷).

Note that the singleton set {(X, ∗)} ⊆ Bin(X) is right (left) independence,
since {(X, ∗)} has no element (X, •) ∈ Bin(X) such that (X, ∗) 6= (X, •). Also, if
(Bin(X),�) is a group, then every subset of Bin(X) is both right and left inde-
pendence, and so it is an independence subset of Bin(X). By routine calculation
we can see that if Ai ⊆ Bin(X) for i ∈ Λ are right (left) independence, then

⋂
i∈Λ

Ai

and
⋃
i∈Λ

Ai are right (left) independence. Note that if B and D are not right (left)

independence subsets of Bin(X), then B∩D, B∪D, D \B and B4D are not right
(left) independence subsets of Bin(X).

The following example shows that there exists a right (left) independence subset
A of Bin(X) such that A′ = Bin(X) \A is not a right (left) independence subset
of Bin(X).

Example 3.3. Consider groupoid (X, ∗1) at Example 2.1. Then A = {(X, ∗1)} is
a right independence subset of Bin(X) and

A′ = Bin(X) \ {(X, ∗1)} = {(X, ∗i)}i∈{2,...,16}.

The subset A′ is not a right independence subset of Bin(X), since (X, ∗11) 6=
(X, ∗12) ∈ A′, but (X, ∗11)�(X, ∗16) = (X, ∗12)�(X, ∗16). Moreover, it is not a left
independence subset of Bin(X), since (X, ∗16)�(X, ∗11) = (X, ∗16)�(X, ∗12) =
{b}. Thus, A′ is not an independence subset of Bin(X).

Proposition 3.2. Let A,B ⊆ Bin(X) and A be a right (left) independence subset
of Bin(X). Then A ∩ B a right (left) independence subset of Bin(X).

Proof. Assume A is a right (left) independence subset of Bin(X) and B is an
arbitrary subset of Bin(X). Let (X, ∗) 6= (X, •) in A ∩ B. Since A ∩ B ⊆ A, we
get (X, ∗) 6= (X, •) in A. Since A is a right (left) independence subset of Bin(X),
for all (X, �) ∈ Bin(X), we have (X, ∗)�(X, �) 6= (X, •)�(X, �), and hence A ∩ B
is a right (left) independence subset of Bin(X).
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Corollary 3.3. Let A,B ⊆ Bin(X) and A be a right (left) independence subset of
Bin(X). Then A \ B a right (left) independence subset of Bin(X).

Proof. Since A \B = A∩B′, using Proposition 3.2, we obtain that A \B is a right
(left) independence subset of Bin(X).

Corollary 3.4. Let A,B ⊆ Bin(X) and A be a right (left) independence subset of
Bin(X). If B ⊆ A, then B is a right (left) independence subset of Bin(X).

Corollary 3.5. Let Bin(X) be right (left) independence and let A ⊆ Bin(X).
Then A is a right (left) independence subset of Bin(X).

Proof. It follows immediately from Corollary 3.4.

The following example shows that there exists a right (left) independence subset
A of Bin(X) such that A ∪ B is not a right (left) independence subset of Bin(X)
for some B ⊆ Bin(X).

Example 3.4. Consider Example 3.3, and take B := A′, the complement of A
in Bin(X). Then B is not an independence subset of Bin(X). Then A ∪ B =
A ∪ A′ = Bin(X), which is not a right (left) independence subset of Bin(X),
since (X, ∗11) 6= (X, ∗12) ∈ Bin(X), but (X, ∗11)�(X, ∗16) = (X, ∗12)�(X, ∗16).
Moreover, it is not a left independence subset of Bin(X), since (X, ∗16)�(X, ∗11) =
(X, ∗16)�(X, ∗12) = {b}. Thus, Bin(X) itself is not an independence subset of
Bin(X). Also, A4B = A4A′ = (A∪A′)\(A∩A′) = Bin(X)\∅ = Bin(X), which
is not a right (left) independence subset of Bin(X).

Theorem 3.6. Let Bin(X) := A∪B, where B ⊆ Bin(X) is a non-trivial group and
A be a right (left) independence subset of Bin(X). Then Bin(X) is independence.

Proof. Assume B is a non-trivial group and A is a right independence subset of
Bin(X) satisfying Bin(X) = A ∪ B. Let (X, ∗) 6= (X, •) in Bin(X).

Case 1. if (X, ∗) 6= (X, •) in Bin(X) ∩ A, since A is a right independence
subset of Bin(X), we get (X, ∗)�(X, �) 6= (X, •)�(X, �) for all (X, �) ∈ Bin(X).

Case 2. if (X, ∗) 6= (X, •) in Bin(X) ∩ B. We claim that

(X, ∗)�(X, �) 6= (X, •)�(X, �) for all (X, �) ∈ Bin(X).

Assume (X, ∗)�(X, �) = (X, •)�(X, �) for some (X, �) ∈ Bin(X). Since B is a
non-trivial group, we have |B| > 2. Hence there is at least one element (X, ◦) ∈ B,
and so there is (X, ◦)−1 ∈ B as an inverse of (X, ◦) (i.e., (X, ◦)�(X, ◦)−1 = (X, ?)
and (X, ?) is the left zero semigroup). Thus,

((X, ∗)�(X, ◦))�(X, ◦)−1 = (X, ∗)�((X, ◦)�(X, ◦)−1) = (X, ∗)�(X, ?) = (X, ∗)

and

((X, •)�(X, ◦))�(X, ◦)−1 = (X, •)�((X, ◦)�(X, ◦)−1) = (X, •)�(X, ?) = (X, •).
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Therefore, (X, ∗) = (X, •), which is a contradiction.

Case 3. Let (X, ∗) ∈ A and (X, •) ∈ B such that (X, ∗) 6= (X, •). We claim
that (X, ∗)�(X, �) 6= (X, •)�(X, �) for all (X, �) ∈ Bin(X).

Assume (X, ∗)�(X, �) = (X, •)�(X, �) for some (X, �) ∈ Bin(X). Since
(X, •) ∈ B and B is a non-trivial group, there is (X, •)−1 ∈ B as an inverse of
(X, •) (i.e., (X, •)�(X, •)−1 = (X, ?) and (X, ?) is the left zero semigroup). Thus,

((X, ∗)�(X, •)−1)�(X, •) = ((X, •)�(X, •)−1)�(X, •)
= (X, ?)�(X, •) = (X, •) ∈ B.

Since (X, ?) is a left zero semigroup, we get (X, ∗)�(X, •)−1 = (X, ?), and so
(X, ∗) = (X, •), which is a contraction.

Similarly, we prove the theorem for the case of a left independence subset in
Bin(X).

Corollary 3.7. If Bin(X) =
⋃
i∈Λ

Ai is a right (left) independence, Ai 6= ∅ for all

i ∈ Λ, and Aj is a non-trivial group for some j ∈ Λ. Then every Ai (i 6= j ∈ Λ)
is a right (left) independence subset of Bin(X).

Proposition 3.8. Let (A,�1) and (B,�2) be right (left, respectively) independence
subsets of (Bin(X),�1) and (Bin(Y ),�2) respectively. Then A×B is a right (left,
respectively) independence subset of (Bin(X)×Bin(Y ),�), where � is defined by
(x, u)�(y, v) := (x�1y, u�2v).

Proof. Assume (A,�1) and (B,�2) are right independence subsets of Bin(X) and
Bin(Y ) respectively. Let (X, ∗1)×(Y, ◦1) 6= (X, ∗2)×(Y, ◦2), where (X, ∗i) ∈ A and
(Y, ◦i) ∈ B for i ∈ {1, 2}. Then either (X, ∗1) 6= (X, ∗2) or (Y, ◦1) 6= (Y, ◦2). Since A
and B are right independence subsets of Bin(X) and Bin(Y ) respectively, we ob-
tain either (X, ∗1)�1(X, •) 6= (X, ∗2)�1(X, •) or (Y, ◦1)�2(Y, �) 6= (Y, ◦2)�2(Y, �)
for all (X, •) ∈ Bin(X) and (Y, �) ∈ Bin(Y ). It follows that

((X, ∗1)× (Y, ◦1))�((X, •)× (Y, �)) 6= ((X, ∗2)× (Y, ◦2))�((X, •)× (Y, �))

for all (X, •)× (Y, �) ∈ A× B. Therefore, A× B is a right independence subset of
Bin(X)×Bin(Y ). Similarly, we can prove the case of the left independence, and
we omit it.

Let ∅ 6= A ⊆ Bin(X), and let (X, ∗) ∈ Bin(X). Define two sets (X, ∗)�A and
A�(X, ∗) as follows:

(X, ∗)�A = {(X, ∗)�(X, ◦) : (X, ◦) ∈ A}

and
A�(X, ∗) = {(X, ◦)�(X, ∗) : (X, ◦) ∈ A}.

Note that if A = {(X, �)} (i.e., |A| = 1), then {(X, ∗)�(X, �)} and {(X, �)�(X, ∗)}
are also singleton sets, and so these are independence subsets of Bin(X).
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Proposition 3.9. Let Bin(X) be a right (left) zero semigroup, and (X, ∗) ∈
Bin(X). Then A�(X, ∗) (resp., (X, ∗)�A) is an independence subset of Bin(X).

Proof. Assume Bin(X) is a right (left) zero semigroup. Then A�(X, ∗) = {(X, ∗)}
(resp., (X, ∗)�A = {(X, ∗)}). Thus, the proof is complete.

Proposition 3.10. If Bin(X) is a right (left) zero semigroup, A ⊆ Bin(X) is
a right (left) independence subset, and (X, ∗) ∈ Bin(X), then (X, ∗)�A (resp.,
A�(X, ∗)) is a right (left) independence subset of Bin(X).

Proof. AssumeBin(X) is a right (left) zero semigroup, A ⊆ Bin(X) is a right (left)
independence and (X, ∗) ∈ Bin(X). Then A�(X, ∗) ⊆ A (resp., (X, ∗)�A ⊆ A).
Using Proposition 3.2, we get (X, ∗)�A ⊆ A (resp., A�(X, ∗) ⊆ A) is a right (left)
independence subset of Bin(X).

Proposition 3.11. If Bin(X) is a right cancellative, and A ⊆ Bin(X) (right
(left) independence or not), where |A| > 1 and (X, ∗) ∈ Bin(X), then (X, ∗)�A
and (X, ∗)�A are independence subsets of Bin(X).

Proof. Assume (X, ∗)�(X, ∗1) 6= (X, ∗)�(X, ∗2) ∈ (X, ∗)�A for some (X, ∗i) ∈ A
for i ∈ {1, 2}, and let (X, �) ∈ Bin(X).

On the contrary, if ((X, ∗)�(X, ∗1))�(X, �) = ((X, ∗)�(X, ∗2))�(X, �) for
some (X, �) ∈ Bin(X), then using cancellative laws we get (X, ∗)�(X, ∗1) =
(X, ∗)�(X, ∗2), which is a contradiction. Thus, (X, ∗)�A is an independence sub-
set of Bin(X).

Similarly, if Bin(X) is a left cancellative, then (X, ∗)�A is an independence
subset of Bin(X).

By a similar argument for the set A�(X, ∗) the result is valid.

Let E ⊆ Bin(X), and (X, ∗) ∈ Bin(X). Define

(X, ∗)E := {(X, •) ∈ E : (X, ∗)�(X, •) = (X, •)},

E(X, ∗) := {(X, •) ∈ E : (X, •)�(X, ∗) = (X, •)}

and

(X, ∗)E(X, ∗) := {(X, •) ∈ E : (X, ∗)�(X, •) = (X, •)�(X, ∗) = (X, •)}.

(a) If E = ∅, then (X, ∗)E = E(X, ∗) = (X, ∗)E(X, ∗) = ∅, for all (X, ∗) ∈ Bin(X).

(b) For all (X, ∗) ∈ Bin(X), (X, ∗)E, E(X, ∗) and (X, ∗)E(X, ∗) are subsets of
Bin(X) and we have:

(i) (X, ∗)E ∩ F = (X, ∗)E ∩ (X, ∗)F,
E ∩ F(X, ∗) = E(X, ∗) ∩ F(X, ∗),
(X, ∗)E ∩ F(X, ∗) = (X, ∗)E(X, ∗) ∩ (X, ∗)F(X, ∗).



276 A. Rezaei, H.S. Kim and J. Neggers

(ii) (X, ∗)E ∪ F ⊆ (X, ∗)E ∩ (X, ∗)F,
E ∩ F(X,∪) ⊆ E(X, ∗) ∪ F(X, ∗),
(X, ∗)E ∪ F(X, ∗) ⊆ (X, ∗)E(X, ∗) ∪ (X, ∗)F(X, ∗).

(iii) (X, ∗)E ∩Bin(X) = (X, ∗)E.

(iv) (X, ∗)E ∪Bin(X) = (X, ∗)Bin(X).

(v) if E ⊆ F, then (X, ∗)E ⊆ (X, ∗)F, E(X, ∗) ⊆ F(X, ∗), and so
(X, ∗)E(X, ∗) ⊆ (X, ∗)F(X, ∗).

(vi) (X, ∗)E(X, ∗) = (X, ∗)E ∩ E(X, ∗),

(vii) (X, ∗)(E \ F) = (X, ∗)E \ (X, ∗)F,
(E \ F)(X, ∗) = E(X, ∗) \ F(X, ∗),
(X, ∗)(E \ F)(X, ∗) = (X, ∗)E(X, ∗) \ (X, ∗)F(X, ∗).

(viii) If E is a group in Bin(X), then for all (X, •) ∈ (X, ∗)E
(resp., (X, •) ∈ E(X, ∗) or (X, •) ∈ (X, ∗)E(X, ∗)) we have
(X, ∗) = (X, ?), as a zero element.

(ix) If (X, ∗) ∈ (X, ∗)E (resp., (X, ∗) ∈ E(X, ∗) or
(X, ∗) ∈ (X, ∗)E(X, ∗)), then (X, ∗)�(X, ∗) = (X, ∗), and so (X, ∗) is an
idempotent element in Bin(X),

(x) If Bin(X) is commutative, then (X, ∗)E = E(X, ∗) = (X, ∗)E(X, ∗),

(c) If (X, ∗)E 6= ∅, then it is a closed subset. Let (X, •) and (X, �) be elements in
(X, ∗)E, we get (X, ∗)�(X, •) = (X, •) and (X, ∗)�(X, �) = (X, �). Hence

(X, ∗)�((X, •)�(X, �)) = ((X, ∗)�(X, •))�(X, �) = (X, •)�(X, �).

Thus, (X, •)�(X, �) ∈ (X, ∗)E, and so (X, ∗)E is a subsemigroup of Bin(X).
If E(X, ∗) 6= ∅, then it is a closed subset. Let (X, •) and (X, �) be elements in

E(X, ∗). So (X, •)�(X, ∗) = (X, •) and (X, �)�(X, ∗) = (X, �). Hence

((X, •)�(X, �))�(X, ∗) = (X, •)�((X, �)�(X, ∗)) = (X, •)�(X, �).

Thus, (X, •)�(X, �) ∈ E(X, ∗), and so E(X, ∗) is a subsemigroup of Bin(X).
Similarly, (X, ∗)E(X, ∗) is a closed set.

(d) If Bin(X) is a monoid or group and (X, ?) is a unique right (left) zero semi-
group, then (X, ?)Bin(X) = Bin(X)(X, ?) = (X, ?)Bin(X)(X, ?) = Bin(X), and
so the cancellation law is valid.

(e) Let E be the set of all right zero semigroups. Then (X, ∗)Bin(X) = Bin(X)
for all (X, ∗) ∈ E, and so the left cancellation law is valid in E.

(f) Let E be the set of all left zero semigroups. Then Bin(X)(X, ∗) = Bin(X) for
all (X, ∗) ∈ E, and so the right cancellation law is valid in E.
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(g) If for all (X, ∗) ∈ E the set (X, ∗)E(X, ∗) = {(X, •)} for some (X, •) ∈ Bin(X)
(i.e., (X, ∗)E(X, ∗) is a singleton set), then E is a group in semigroup Bin(X).

(h) If there exists (X, ∗) ∈ Bin(X) such that (X, ∗)E∩E(X, ∗) = ∅, then E is not
a group.

(i) If there exists (X, ∗) ∈ Bin(X) such that ((X, ∗)E)′ = E(X, ∗), then Bin(X) =
(X, ∗)E ∪ E(X, ∗) and E is not a group.

(j) If (X, ∗) ∈ Bin(X) is an idempotent element (i.e., (X, ∗)�(X, ∗) = (X, ∗)),
then (X, ∗) ∈ (X, ∗)Bin(X)(X, ∗).

(k) Let (X, ∗) ∈ Bin(X). If there exists ∅ 6= E ⊆ Bin(X), where (X, ∗) ∈
(X, ∗)E ∪ E(X, ∗), then (X, ∗) is an idempotent element.

Theorem 3.12. Let ∅ 6= E ⊆ Bin(X). Then

(a) if F =
⋂

(X,∗)∈Bin(X)

E(X, ∗) 6= ∅, then F is a right independence subset of Bin(X),

(b) if F =
⋂

(X,∗)∈Bin(X)

E 6= ∅, then F is a left independence subset of Bin(X),

(c) if F =
⋂

(X,∗)∈Bin(X)

(X, ∗)E(X, ∗) 6= ∅, then F is an independence subset of Bin(X).

Proof. (a). Assume ∅ 6= E ⊆ Bin(X), F =
⋂

(X,∗)∈Bin(X)

E(X, ∗) and (X, •) 6= (X, ◦) ∈ F.

Hence (X, •) ∈
⋂

(X,∗)∈Bin(X)

E(X, ∗), and so we get (X, •)�(X, ∗) = (X, •).

On the other hand, from (X, ◦) ∈
⋂

(X,∗)∈Bin(X)

E(X, ∗), we have (X, ◦)�(X, ∗) =

(X, ◦). Thus, (X, •)�(X, ∗) = (X, •) 6= (X, ◦) = (X, ◦)�(X, ∗). Therefore, F is a
right independence subset of Bin(X).

(b). Assume ∅ 6= E ⊆ Bin(X), F =
⋂

(X,∗)∈Bin(X)

(X, ∗)E and (X, •) 6= (X, ◦) ∈ F.

Hence (X, •) ∈
⋂

(X,∗)∈Bin(X)

(X, ∗)E, and so we get (X, ∗)�(X, •) = (X, •).

On the other hand, from (X, ◦) ∈
⋂

(X,∗)∈Bin(X)

(X, ∗)E, we have (X, ∗)�(X, ◦) =

(X, ◦). Thus, (X, ∗)�(X, •) = (X, •) 6= (X, ◦) = (X, ∗)�(X, ◦). Therefore, F is a
left independence subset of Bin(X).

(c). It follows immediately from (a) and (b).
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Suppose that A and B are two arbitrary subsets of Bin(X). Define A�B as
follows:

A�B = {(X, ∗)�(X, ◦) : (X, ∗) ∈ A and (X, ◦) ∈ A}
=

⋃
(X,∗)∈A

((X, ∗)�B) =
⋃

(X,◦)∈B
(A�(X, ◦)).

Note that ∅�A = A�∅ = ∅�∅ = ∅, Bin(X)�Bin(X) = Bin(X), A�A 6= A
and A�B 6= B�A.

Also, let A, B, and C be subsets of Bin(X). Then one can see that:

• if A ⊆ B, then A�C ⊆ B�C and C�A ⊆ C�B,

• (A ∩ B)�C ⊆ (A�C) ∩ (B�C),

• C�(A ∩ B) ⊆ (C�A) ∩ (C�B),

• (A ∪ B)�C = (A�C) ∪ (B�C),

• C�(A ∪ B) = (C�A) ∪ (C�B).

Corollary 3.13.
(a) If Bin(X) is a right (left) zero semigroup and either A or B is a right (left)

independence subset of Bin(X), then A�B is also a right (left) independence
subset of Bin(X).

(b) If |A| = 1 or |B| = 1, then A�B is a right (left) independence subset of Bin(X).

(c) If Bin(X) is a right (left) cancellative semigroup, then A�B is an independence
subset of Bin(X).

Consider Example 2.1, and put A := {(X, ∗1), (X, ∗2)}. Then Bin(X) �A 6= A,
since (X, ∗3)�(X, ∗2) = (X, ∗10) 6∈ A. Also, A�Bin(X) 6= A, since (X, ∗2)�(X, ∗5)
= (X, ∗5) 6∈ A. If take B := {(X, ∗16)}, then Bin(X)�B = B 6= Bin(X). Also,
B�Bin(X) = {(X, ∗1), (X, ∗16)} 6= {(X, ∗16)} and B�Bin(X) 6= Bin(X)�B.

Now, we can rewrote the definitions of right (left) zero semigruops as the
follows:
A semigroup (Bin(X),�) is said to be a right zero semigroup if

Bin(X)�(X, ∗) = {(X, ∗)}

and a groupoid (Bin(X),�) is said to be a left zero semigroup if

(X, ∗)�Bin(X) = {(X, ∗)}

for any (X, ∗) ∈ Bin(X).
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4. right (left) absorbent in Bin(X)

Definition 4.1. A non-empty subset A of Bin(X) is said to be right absorbent
(resp., left absorbent) if Bin(X)�A = A (resp., A�Bin(X) = A). It is absorbent
if it is both right and left absorbent (i.e., Bin(X)�A = A�Bin(X) = A).

Example 4.5. Consider Example 2.1.
(a) If C := {(X, ∗1)}, then Bin(X)�C = C, and so C is a right absorbent of

Bin(X), but not a left absorbent, since

C�Bin(X) = {(X, ∗1), (X, ∗16)} 6= C 6= Bin(X).

(b) If B := {(X, ∗3}, then B�Bin(X) = B, and so B is a left absorbent of Bin(X),
but not a right absorbent, since

(X, ∗7) = (X, ∗6)�(X, ∗3) ∈ Bin(X)�B, but (X, ∗7) 6∈ {(X, ∗3)}.

(c) If D := {(X, ∗1), (X, ∗16)}, then Bin(X)�D = D and D�Bin(X) = D. Thus,
D is an absorbent subset of Bin(X).

Proposition 4.2. If Bin(X) is a right (left) zero semigroup, then every subset of
Bin(X) is a right (left) absorbent subset of Bin(X).

Proof. Straightforward.

The converse of Proposition 4.2, may not be true in general. For this, consider
Example 2.1, and take A := {(X, ∗1)}, so A is a right absorbent subset, but
Bin(X) is neither a right zero semigroup nor a left zero semigroup, since
(X, ∗2)�(X, ∗14) = (X, ∗16) 6∈ {(X, ∗2), (X, ∗14)}.

Proposition 4.3. Let A be a right (left) absorbent subset of Bin(X). Then A is
closed under � (i.e., A is a subsemigroup of Bin(X)).

Proof. Assume A is a right absorbent subset of Bin(X) and (X, ∗), (X, ◦) ∈ A.
Then (X, ∗)�(X, ◦) ∈ A�A ⊆ Bin(X)�A = A. Thus, (X, ∗)�(X, ◦) ∈ A. Now,
suppose that A is a left absorbent subset of Bin(X), and let (X, ∗), (X, ◦) ∈ A.
Then (X, ∗)�(X, ◦) ∈ A�A ⊆ A �Bin(X) = A. Thus, (X, ∗)�(X, ◦) ∈ A.

Proposition 4.4. Let A1 and A2 be two right (left) absorbent subsets of Bin(X).
Then A1 ∪ A2 is also a right (left) absorbent subset of Bin(X).

Proof. Assume A1 and A2 are two right absorbent subsets of Bin(X). Then
Bin(X)�A = A and Bin(X)�B = B. It follows that

Bin(X)�(A ∪ B) = (Bin(X)�A) ∪ (Bin(X)�B) = A ∪ B.

Similarly, the assertion holds for the left absorbent subsets.
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Corollary 4.5. Let {Ai}i∈Λ be a family of right (left) absorbent subsets of Bin(X).
Then

⋃
i∈Λ

Ai is a right (left) absorbent subset of Bin(X).

Let A ⊆ Bin(X). Define A(X,∗) and (X,∗)A as follows:

A(X,∗) = {(X, •) ∈ Bin(X) : (X, ∗)�(X, •) ∈ A},

(X,∗)A = {(X, •) ∈ Bin(X) : (X, •)�(X, ∗) ∈ A}.

Also, we can define:

(X,∗)A(X,∗) = {(X, •) ∈ Bin(X) : (X, •)�(X, ∗) and (X, ∗)�(X, •) ∈ A}.

Proposition 4.6. Let A be a right independence subset of a left cancellative semi-
group Bin(X). If A(X,∗) 6= ∅ for some (X, ∗) ∈ Bin(X), then A(X,∗) is a right
independence subset of Bin(X).

Proof. Assume A is a right independence subset of the left cancellative semi-
group Bin(X). If (X, •1) 6= (X, •2) in A(X,∗), then (X, ∗)�(X, •1) ∈ A and
(X, ∗)�(X, •2) ∈ A. We claim (X, ∗)�(X, •1) 6= (X, ∗)�(X, •2). If we assume
(X, ∗)�(X, •1) = (X, ∗)�(X, •2), since Bin(X) is left cancellative, we obtain
(X, •1) = (X, •2), a contradiction. Now, since A is right independence, we have
[(X, ∗)�(X, •1)]�(X, �) 6= [(X, ∗) �(X, •2)]�(X, �) for all (X, �) ∈ Bin(X). Since
Bin(X) is left cancellative, by the associativity, we obtain (X, ∗)�[(X, •1)�(X, �)]
6= (X, ∗)�[(X, •2)�(X, �)], and so (X, •1)�(X, �) 6= (X, •2)�(X, �) for all (X, �) ∈
Bin(X). Thus, A(X,∗) is a right independence subset of Bin(X).

Proposition 4.7. Let A be a left independence subset of a right cancellative semi-
group Bin(X). Then (X,∗)A is a left independence subset of Bin(X) for any
(X, ∗) ∈ Bin(X).

Proof. Assume A is a left independence subset of the right cancellative semi-
group Bin(X). Let (X, •1) 6= (X, •2) in A. Then (X, •1)�(X, ∗) ∈ A and
(X, •2)�(X, ∗) ∈ A. SinceBin(X) is right cancellative, we obtain (X, •1)�(X, ∗) 6=
(X, •2)�(X, ∗). Now, since A is a left independence subset of Bin(X), we ob-
tain (X, �)�[(X, •1)�(X, ∗)] 6= (X, �)�[(X, •2)�(X, ∗)] for all (X, �) ∈ Bin(X).
Since Bin(X) is a right cancellative semigroup, by using the associative laws,
we obtain [(X, �)�(X, •1)]�(X, ∗) 6= [(X, �)�(X, •2)]�(X, ∗), and hence (X, �)
�(X, •1) 6= (X, �)�(X, •2) for all (X, �) ∈ Bin(X). Thus, (X,∗)A is a left indepen-
dence subset of Bin(X).

Corollary 4.8. Let A be an independence subset of a cancellative semigroup
Bin(X). Then (X,∗)A(X,∗) is an independence subset of Bin(X) for any (X, ∗) ∈
Bin(X).

Proof. It follows immediately from Propositions 4.6 and 4.7.
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Theorem 4.9. Let A be a right (left) absorbent subset of Bin(X), and let (X, ∗) ∈
A. Then Bin(X) = A(X,∗) (resp., Bin(X) =(X,∗) A).

Proof. Assume A is a right absorbent subset of Bin(X) and (X, ∗) ∈ A. Then
(X, ∗)�(X, •) ∈ A�Bin(X) = A for all (X, •) ∈ Bin(X). Thus, (X, •) ∈ A(X,∗),
and so Bin(X) ⊆ A(X,∗). Thus, Bin(X) = A(X,∗).

Assume A is a left absorbent subset of Bin(X) and (X, ∗) ∈ A. Hence
(X, •)�(X, ∗) ∈ Bin(X)�A = A for all (X, •) ∈ Bin(X). Thus, (X, •) ∈ (X,∗) A,
and so Bin(X) ⊆ A(X,∗). Thus, Bin(X) = (X,∗) A.

Corollary 4.10. Let A be an absorbent subset of Bin(X). Then for (X, ∗) ∈ A
we have Bin(X) =(X,∗) A = A(X,∗).

Theorem 4.11. Let {Ai}i∈Λ be a family of disjoint right (left) absorbent subsets,
Bin(X) =

⋃
i∈Λ

Ai and |Ai| = 1 for i ∈ Λ. Then the following hold:

(a) Bin(X) is not a commutative semigroup,

(b) Bin(X) is an independence.

Proof. (a). Assume {Ai}i∈Λ be a partition of right (resp., left) absorbent sub-
sets of Bin(X). Then Bin(X) =

⋃
i∈Λ

Ai. Let (X, ∗) 6= (X, •) ∈ Bin(X). Then

there exist i 6= j ∈ Λ such that (X, ∗) ∈ Ai and (X, •) ∈ Aj . It follows that
(X, ∗)�(X, •) ∈ Bin(X)�Aj = Aj (resp., (X, ∗)�(X, •) ∈ Ai�Bin(X) = Ai),
since Aj is a right (resp., Ai is a left) absorbent subset of Bin(X). On the
other hand, since Ai is a right (resp., Aj is a left) absorbent subset of Bin(X),
(X, •)�(X, ∗) ∈ Bin(X)�Ai = Ai (resp., (X, •)�(X, ∗) ∈ Aj�Bin(X) = Aj),
Since Ai ∩ Aj = ∅, we get (X, ∗)�(X, •) 6= (X, •)�(X, ∗). This proves (a).

(b). Assume (X, ∗) 6= (X, •) ∈ Bin(X). Hence there are i 6= j ∈ Λ such that
(X, ∗) ∈ Ai and (X, •) ∈ Aj . Then for all (X, �) ∈ Bin(X), since Ai and Aj are
right absorbent subsets of Bin(X), we get (X, �)�(X, ∗) ∈ Bin(X)�Ai = Ai and
(X, �)�(X, •) ∈ Bin(X)�Aj = Aj . Since Ai ∩ Aj = ∅, we get (X, �)�(X, ∗) 6=
(X, �)�(X, •), and so Bin(X) is a left independence.

Also, since Ai and Aj are left absorbent subsets of Bin(X), (X, ∗)�(X, �) ∈
Ai�Bin(X) = Ai and (X, •)�(X, �) ∈ Aj�Bin(X) = Aj . Since Ai ∩ Aj = ∅, we
get (X, ∗)�(X, �) 6= (X, •)�(X, �), and so Bin(X) is a right independence.

5. Open problem
There is a partition {Ai}i∈Λ of right (left) independence subsets of Bin(X) (i.e.,
Bin(X) =

⋃
i∈Λ

Ai, |Ai| = 1 and Ai

⋂
Aj = ∅ for i, j ∈ Λ).

Is there another partition of Bin(X), where there is at least i ∈ Λ such that
|Ai| > 1?
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Four halves of the inverse property

in loop extensions

Uzi Vishne

Abstract. Any two of the left, right, weak and antiautomorphic inverse properties of a loop
imply the full inverse property. Considering these properties in the context of nuclear loop
extensions 1→K→L→Q→1, we discover an action of the infinite dihedral group on C2(Q,K)

whose subspaces fixed under odd subgroups precisely correspond to these classical loop properties.

When in doubt, look for the group!
(André Weil)

1. Introduction

A set equipped with a (nonassociative) binary operation is called a loop if it has a
unit element, and left and right multiplications are invertible. Thus every element
has a unique left inverse and a unique right inverse. A loop has the inverse property
if the left and right inverses coincide, and the identities x−1(xy) = (yx)x−1 = y
hold. Any group has the inverse property, but there are plenty of other examples
(see [4]). This paper is concerned with a cohomological structure governing various
generalizations of the inverse property.

Let L be a loop. The actions on L by left and right multiplication by x ∈ L
are denoted `x and rx, respectively. The left and right inverses of x are denoted
xλ and xρ, respectively. The maps λ, ρ :L→L satisfy λρ = ρλ = id. We consider
the following properties of loops, all studied by multiple authors before.

(LI) xλ(xy) = y (the left inverse property).

(RI) (yx)xρ = y (the right inverse property).

(WI) (xy)z = 1 precisely when x(yz) = 1 (the weak inverse property).

(AI) (xy)λ = yλxλ, equivalently (xy)ρ = yρxρ (the antiautomorphic inverse prop-
erty).
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(IP) both left and right inverse properties (the inverse property).

(Inv) All elements are invertible (λ = ρ).

(H) The map λ2 (equivalently ρ2) is a loop homomorphism.

The logical dependencies are given in Figure 1 (up-side down, anticipating the
refinement given in Figure , see Section ). We call (LI), (RI), (WI) and (AI) the
“four halves” of the inverse property, because, as we show below, any two of these
conditions imply the inverse property (IP) and thus all the others.

We study these properties for loops arising as nuclear extensions of a group Q
by an abelian group K. Let C2(Q,K) = {c :Q×Q→K} be the function space
parameterizing the extensions via the classical factor set construction. We say
that a subspace X ⊆C2(Q,K) “is” the loop property P if the extension (K,Q, c)
has P precisely when c ∈ X. The purpose of this paper is to exhibit an action of
the infinite dihedral group, which was discovered by Artzy [5, Prop. 3.2], in the
cohomological context. Let D∞ denote the infinite dihedral group, and C∞ its
cyclic subgroup of index 2. We say that a subgroup is even if it is contained in
C∞, and odd otherwise.

Theorem 1.1. There is an action of D∞ on the space C2(Q,K), such that the
subspaces fixed under subgroups of D∞ are:

• (LI), (RI), (AI) and (IP) (for odd subgroups) and

• (W2n+1) and (Hn) (for even subgroups).

A loop has the property (Hn) if λ2n is a homomorphism; thus (H1) = (H). The
m-inverse properties (Wm), defined in Section , are variations on the weak inverse
property, which is (WI) = (W−1).

The action of D∞ in the theorem preserves the coboundaries B2(Q,K) elemen-
twise, and is in particular well-defined on the quotient space C2(Q,K)/B2(Q,K)
which classifies extensions up to equivalence.

As we see below, any two of the four halves define the group action, and in
this sense could have defined the other properties. Notice that there are infinitely
many odd subgroups, a-priori each with its own fixed subspace. The fact that
our action has finitely many fixed subspaces under odd subgroups indicates a
strong connection between the four halves and places (W2n+1) and (Hn) as their
conceptual derivatives.

Section provides a brief sketch of the properties of loops we encounter in this
paper. The proofs follow standard arguments, and are given here for completeness.
In Section we define loop extensions arising from an action of a group Q on an
abelian group K, and characterize the four properties (LI), (RI), (WI) and (AI)
of the extension (K,Q, c) in terms of conditions on the factor set c ∈ C2(Q,K).
Further details are given in Section , where we find similar characterization for
(Inv) and (H).



Four halves of the inverse property 285

(H)
OO ``

(Inv)
OO ``>>

(AI)̀̀ (LI)
OO

(RI)
>>

(WI)66

(IP)

Figure 1: Logical dependencies of loop properties

In Section we introduce the action of the infinite dihedral group D∞ on
C2(Q,K); the action preserves equivalence classes of extensions. Proposition 6.1
ties the loop properties with the dihedral action, and Theorem 7.1 proves the
odd part of Theorem 1.1. Section studies the m-inverse properties, denoted here
(Wm), which include the k-fold weak inverse properties (WkIP). Theorem 8.8
covers the even part of Theorem 1.1. Finally, in Section we specialize to the case
Q = Z4 and provide some examples and counterexamples.

We thank the referee for helpful remarks on an earlier version of this paper,
which in particular led to the current Section .

2. Four halves of the inverse property

In this section we provide equivalent formulations for each of the four halves of (IP),
and prove:

Proposition 2.1. Any two of the properties (LI), (RI), (WI) and (AI) imply the
(full) inverse property.

Counterexamples, showing that none of the four halves implies (IP) on its own,
are given in Corollary 9.3.

2.1. The left and right inverse properties

Let L be a loop. If the inverse of `x has the form `y for some y, then necessarily
`−1x = `xλ . Indeed, if xy = `x`y(1) = 1 then y = xλ. Likewise if the inverse of rx
has the form ry, then r−1x = rxρ .

Proposition 2.2.
a The left inverse property is equivalent to `−1x = `xλ for every x.
b. The right inverse property is equivalent to r−1x = rxρ for every x.
c. Each of the properties (LI) and (RI) implies (Inv).
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Proof. The identity xλ(xy) = y is equivalent to `xλ`x = id so `−1x = `xλ . Now
suppose `xλ = `−1x for all x. Then `xλ2 = `−1

xλ
= `x, implying xλ

2

= x, and so
λ2 = id. But then ρ = λ−1 = λ, so all elements are invertible. The proof for right
inverse is similar.

The left (resp. right) inverse property holds for all isotopes of a loop L, if
and only if L satisfies the left (resp. right) Bol axiom `x`y`x = `x(yx) (resp.
rxryrx = r(xy)x), [12, Thm 3.1].

2.2. The antiautomorphic inverse property
Proposition 2.3. The following properties of a loop are equivalent.

(a) (xy)λ = yλxλ (namely antiautomorphic inverse).

(a′) (xy)ρ = yρxρ.

(b) ry = ρ`yλλ.

(b′) ry = λ`yρρ.

(c) rxλ = λ`xρ.

(c′) rxρ = ρ`xλ.

Proof. Condition (a) is equivalent to (b) by the action on x, and to (c) by the
action on y. Condition (a′) is equivalent to (b′) by the action on x, and to (c′) by
the action on y. Taking x = yλ in (c′) we get (b).

Proposition 2.4. (IP) =⇒ (AI) =⇒ (Inv).

Proof. Assuming (IP) we have (xy)−1 = ((xy)−1x)x−1 = ((xy)−1(xy · y−1))x−1 =
y−1x−1. Assuming (AI), we have xxλ = (xρ)λxλ = (xxρ)λ = 1λ = 1, so xλ =
xρ.

For example, every automorphic loop (=all inner maps are automorphisms)
has the antiautomorphic inverse property [8, Cor. 6.6]. Artzy proved that an (IP)
loop all of whose isotopes satisfy (AI) is a Moufang loop [2] (see also [1]).

2.3. The weak inverse property
Weak inverse loops are of interest mostly due to Osborn’s theorem that their
one-sided nuclei coincide [11].

Proposition 2.5. The following properties of a loop are equivalent.

(a)′ x(yz) = 1 if and only if (xy)z = 1 (namely weak inverse).

(b)′ if x(yz) = 1 then (xy)z = 1.
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(b′) if (xy)z = 1 then x(yz) = 1.

(c)′ (yz)λy = zλ.

(c′) y(xy)ρ = xρ.

(d)′ ry = λ`−1y ρ.

Proof. Condition (b)′ says that if x = (yz)λ then xy = zλ, namely (yz)λy =
zλ, which is condition (c)′. Action on z interprets this condition as ryλ`y = λ,
which is condition (d)′. Similarly (b′) is equivalent to (c′) and to (d)′; and (a)′=
(b)′+(b′).

Proposition 2.6. The property (AI), together with either (LI) or (RI), im-
plies (WI).

Proof. If (xy)z = 1 then z = (xy)−1 = y−1x−1 by (AI) and then x(yz) =
x(y(y−1x−1)) = xx−1 = 1 by (LI). Similarly if x(yz) = 1 then x = (yz)−1 =
z−1y−1 by the (AI) and then (xy)z = (z−1y−1 · y)z = z−1z = 1 by (RI).

Osborn [11, p. 296] notes that (WI) =⇒ (H) (but (WI) 6=⇒ (Inv), see Exam-
ple 9.5).

2.4. Any two suffice

We move to prove Proposition 2.1.

Proof. The inverse property clearly implies both (LI), (RI), and by Proposition 2.4
it also implies (AI). By Proposition 2.6, (WI) follows as well.

1. Assume (LI) and (RI). The inverse property holds by Proposition 2.2.(c).

2. Assume (WI) and either (LI) or (RI). All elements are invertible. Now
Proposition 2.5.(d)′ gives ry = λ`−1y λ−1, so taking y−1 for y we get ry−1 =

λ`−1y−1λ
−1, implying that ryry−1 = λ(`y−1`y)−1λ−1, so the left inverse prop-

erty ryry−1 = id is equivalent to the right inverse property `y−1`y = id; but
we assume one of them holds, so both do.

3. Assume (AI) and either (LI) or (RI). Then by Proposition 2.3.(b′), ry =
λ`y−1λ−1, so taking y−1 for y we get ry−1 = λ`yλ

−1, implying once more
ryry−1 = λ(`y−1`y)−1λ−1. The argument continues as in 2.

4. Finally if (WI) and (AI) hold, then λ`yλρ = ry = λ`−1y ρ by Proposi-
tions 2.3.(b′) and 2.5.(d)′, implying `yλ = `−1y which is the left inverse prop-
erty, and we are done by 2. or 3.
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3. Loop extensions
Let L′ and L′′ be loops. A loop L is an extension of L′ by L′′ if there is a short
exact sequence of loop homomorphisms 1−→L′′−→L−→L′−→1. This classical
construction is systematically studied in the recent paper [9] (also see the references
therein). The extension is nuclear if the image of L′′ is contained in the nucleus
of L. Our focus here is on loops obtained as nuclear extensions of a group by an
abelian group.

Let Q be a group acting on an abelian group K. We denote the action by
q : k 7→ kq, so that kqq

′
= (kq

′
)q. For a function c :Q × Q→K satisfying c1,q =

cq,1 = 1 for all q ∈ Q, let (K,Q, c) denote the set K × Q = {kq : k ∈ K, q ∈ Q}
with the binary operation

kq · k′q′ = kk′
q
cq,q′(qq

′).

We always have that K is a normal nuclear subgroup of the loop (K,Q, c). It is
well known that (K,Q, c) is a group if and only if c satisfies the 2-cocycle condition

cq,q′cqq′,q′′ = cqq′,q′′cq,q′q′′ . (1)

The semidirect extension L = K oQ with respect to the given action corresponds
to the trivial co-cycle c = 1.

We say that c, c′ are equivalent (and write c ≈ c′) if there are aq ∈ K, a1 = 1,
such that c′q,q′ = aqa

q
q′a
−1
qq′cq,q′ . There is an extension isomorphism (K,Q, c) →

(K,Q, c′), namely a loop isomorphism preserving K elements-wise and each of the
cosets Kq, if and only if c ≈ c′.

The “diagonal” entries cq,q−1 of the function c :Q×Q→ K play a special role
in the computations to follow. We thus denote

γq = cq,q−1 , (2)

always understood as depending on c. Writing k−q = (k−1)q = (kq)−1, we have
in (K,Q, c) that

(kq)λ = k−q
−1

γ−1q−1q
−1, (3)

(kq)ρ = k−q
−1

γ−q
−1

q q−1. (4)

Proposition 3.1. The loop (K,Q, c) satisfies the property:

(LI) if cp,qc
p
p−1,pq = γpp−1 .

(RI) if cp,qcpq,q−1 = γpq .

(WI) if cp,qc
−p
q,(pq)−1 = γpγ

−1
pq .

(AI) if cp,qc
pq
q−1,p−1 = γpp−1γ

pq
q−1γ

−pq
(pq)−1 , equivalently if cp,qc

pq
q−1,p−1 = γpγ

p
qγ
−1
pq .



Four halves of the inverse property 289

Proof. Computation with the defining identities, based on Equations (3) and (4).
For the antiautomorphic inverse property we used both (a) and (a′) of Proposi-
tion 2.3 (so each of the conditions cp,qc

pq
q−1,p−1 = γpp−1γ

pq
q−1γ

−pq
(pq)−1 and cp,qc

pq
q−1,p−1 =

γpγ
p
qγ
−1
pq suffices).

4. Detecting (Inv) and (H)

Recall that C1(Q,K) = {a :Q→K} and C2(Q,K) = {c :Q×Q→K} are the spaces
of unary and binary functions from Q to the abelian group K. The differential
map δ1 : C1(Q,K)→ C2(Q,K), defined by

(δ1a)p,q = apa
p
qa
−1
pq ,

gives rise to the groups of cocycles

Z1(Q,K) = Ker(δ1)

and coboundaries
B2(Q,K) = Im(δ1)

(see [3]). The loop extensions (K,Q, c), up to equivalence, are in correspondence
with the quotient C2(Q,K)/B2(Q,K). The properties listed in Proposition 3.1 are
well-defined up to equivalence of c because they are preserved by loop isomorphism;
alternatively by direct computation.

For any k ∈ K and q ∈ Q, we have in (K,Q, c) that

(kq)(kq)λ = (kq−1)ρ(kq−1) = γ−qq−1γq,

which is independent of k (compare to [6, Lemma 4.2], that every element of a
Buchsteiner loop satisfies xρx = xxλ). Motivated by this quantity, we define a
function ψ : C2(Q,K)→ C1(Q,K) by

(ψc)q = c−qq−1,qcq,q−1 = γ−qq−1γq.

Proposition 4.1. The function ψ is a well-defined group homomorphism

ψ : C2(Q,K)/B2(Q,K)→ C1(Q,K).

Proof. Verify that (ψδ1a) = a−qq−1a
−1
q · a1qa

q
q−1 = 1 for every a ∈ C1(Q,K), showing

that ψ is trivial on B2(Q,K).

In particular, ψc is defined in terms of the equivalence class of the loop (K,Q, c).
Complementing Proposition 3.1, we have:

Proposition 4.2. The loop (K,Q, c) satisfies the property:
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(Inv) if ψc = 1.

(H) if δ1ψc = 1.

Proof. The first statement follows from the computation (kq)(kq)λ = (ψc)q (for
any k ∈ K and q ∈ Q). By (3) we find that (kq)λ

2

= kγqq−1γ
−1
q q and (kq)ρ

2

=

kγqγ
−q
q−1q, namely

(kq)λ
2

= (ψc)−1q · kq; (5)

(kq)ρ
2

= (ψc)q · kq. (6)

This proves the first claim. One can then verify that λ2 is a homomorphism if and
only if (δ1ψc)q,q′ = γqq−1γ

−1
q (γq

′

q′−1γ
−1
q′ )q(γqq

′

(qq′)−1γ
−1
qq′ )
−1 = 1.

Taking q = p−1 in the condition for (AI) given in Proposition 3.1, we obtain the
condition of (Inv) as stated in Proposition 4.2, consistently with the implication
(AI) =⇒ (Inv) of Proposition 2.4.

4.1. Extensions of Z2

As an illustration we consider extensions with the largest nucleus, namely the case
when Q = 〈σ〉 is the cyclic group of order 2. (The case Q = Z4 is described
in Section ). Since |Q| = 2, the factor set c is determined by the single value
γσ = cσ,σ ∈ K. Let us describe the properties of (K,Q, c) in this case.

Example 4.3. Suppose L = (K,Q, c) is a nuclear loop extension of Q = Z2 by
an abelian group. Then:

a. (WI) always holds.

b. (Inv) implies associativity.

Indeed, the conditions in Proposition 3.1 hold trivially when p = 1 or q = 1, so it
remains to substitute p = q = σ. We find that (WI) holds trivially. Also, (ψc)σ =
γ−1σ γσσ , so ψc = 1 if and only if γσ ∈ Kσ, which is equivalent to associativity.

We also note that the loops in this subsection are all conjugacy closed, see [7].

5. A dihedral action

We use the conditions for (LI) and (RI) in Proposition 3.1 to define operators

α, β : C2(Q,K)→ C2(Q,K)
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as follows:

(αc)p,q = γpp−1 c
−p
p−1,pq,

(βc)p,q = γpq c
−1
pq,q−1 ,

where tautologically γq = cq,q−1 by (2).

Remark 5.1. The maps α, β are built on top of the involutorial maps (p, q) 7→
(p−1, pq) and (p, q) 7→ (pq, q−1), generating an action of the symmetric group S3

on the space of pairs Q2. In fact, if Q = Z we obtain the irreducible representation

S3↪→GL2(Z) generated by the involutions
(
−1 1

0 1

)
and

(
1 0
1 −1

)
.

Proposition 5.2. The operators α, β define an action of the infinite dihedral
group D∞ on C2(Q,K); namely α2 = β2 = id.

Proof. We have that

(α2c)p,q = (αc)pp−1,p(αc)
−p
p−1,pq = (cp

−1

p,p−1c
−p−1

p,1 )p(cp
−1

p,p−1c
−p−1

p,q )−p = cp,q;

and
(β2c)p,q = (βc)pq,q−1(βc)−1pq,q−1 = (cqq−1,qc

−1
1,q)

p(cpqq−1,qc
−1
p,q)
−1 = cp,q;

thus 〈α, β〉 is a dihedral group (which by Proposition 5.6 below is infinite for a
generic K).

Remark 5.3. Both α and β act trivially on B2(Q,K), so 〈α, β〉 acts on the
quotient space C2(Q,K)/B2(Q,K). (However, see Example 9.7 below.)

Indeed, we also have that

(αδ1a)p,q = (δ1a)pp−1,p(δ
1a)−pp−1,pq = (ap−1ap

−1

p a−11 )p(ap−1ap
−1

pq a−1q )−p

= apa
−1
pq a

p
q = (δ1a)p,q,

and likewise βδ1a = δ1a.

Remark 5.4. We point out some useful computations.

1. The diagonal entries of α and β are

(αc)p,p−1 = (βc)p,p−1 = cpp−1,p;

and therefore
(αβc)p,p−1 = (βαc)p,p−1 = cp,p−1 .

2. Define Γ : C2(Q,K) → C1(Q,K) by Γc = γ, namely (Γc)p = cp,p−1 ; then
Γαβ = Γ.
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3. We have that ψαc = ψβc = ψc−1. Therefore ψαβ = ψ.

Proof. Taking q = p−1 in the definition of α, β gives (1). (2) follows from the
definition of Γc = γ. Since ψc can be computed from Γc = γ, we conclude (3)
from (2).

Let us compute some elements in the orbit of c ∈ C2(Q,K) under the action.

Proposition 5.5. The following formulas hold:

(αβc)p,q = γpγ
−1
pq c

p
q,(pq)−1 ; (7)

(βαc)p,q = γpqq−1γ
−pq
(pq)−1 c

pq
(pq)−1,p; (8)

(αβαc)p,q = γpp−1γ
pq
q−1γ

−pq
(pq)−1 c

−pq
q−1,p−1 ; (9)

(βαβc)p,q = γpγ
p
qγ
−1
pq c

−pq
q−1,p−1 . (10)

Proof. Direct computation, aided by Proposition 5.4.(1).

Careful substitution then proves:

Proposition 5.6. We have the equality (αβ)3c = c · δ1ψc.

We write XG = {x ∈ X : (∀g ∈ G) gx = x} for the subspace of X fixed under
the action of a group G.

Corollary 5.7. We have that

C2(Q,K)
〈(αβ)3〉

= ψ−1Z1(Q,K).

Proof. By Proposition 5.6, the elements fixed under (αβ)3 are those c for which
δ1ψc = 1, namely ψc ∈ Z1(Q,K) = Ker(δ1).

Notice that while the dihedral group D∞ acts on the full space C2(Q,K) (in a
free manner, if K has elements of infinite order), there is an action of its quotient

〈α, β〉/
〈
(αβ)3

〉∼=S3 on the fixed subspace C2(Q,K)
〈(αβ)3〉.

6. Loops and the dihedral action
We now interpret the loop properties from the introduction in terms of the dihedral
action introduced in Section .

Proposition 6.1. Let c ∈ C2(Q,K). The loop (K,Q, c) has the property:

(LI) if and only if αc = c.

(RI) if and only if βc = c.
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(WI) if and only if αβc = c.

(AI) if and only if αβαc = c, if and only if βαβc = c.

(IP) if and only if αc = βc = c.

Proof. This is an interpretation of the conditions of Proposition 3.1, in the lan-
guage of the operators as spelled out in Proposition 5.5. For example, (K,Q, c)
has (LI) when cp,q = γpp−1c

−p
p−1,pq = (αc)p,q.

The dual description of (AI) in Proposition 6.1 allows us to extract a curious
fact (especially in light of αβα and βαβ not being conjugate in the group, see
Remark 7.3):

Corollary 6.2. C2(Q,K)
〈αβα〉

= C2(Q,K)
〈βαβ〉

.

Even more surprising, the loop theoretic description of the fixed subspaces
gives the following inclusions:

Corollary 6.3. We have that

C2(Q,K)
〈α〉
, C2(Q,K)

〈β〉
, C2(Q,K)

〈αβα〉 ⊆ Ker(ψ) ⊆ C2(Q,K)
〈(αβ)3〉

.

Proof. If c ∈ C2(Q,K) is fixed under α, β or αβα, then (K,Q, c) has the properties
(LI), (RI) or (AI) respectively, implying (Inv) in each case; but (Inv) means ψc = 1
by Proposition 4.2. This proves the first statement. Likewise if ψc = 1 then clearly
δ1ψc = 1, and by Corollary 5.7 we then get that (αβ)3c = c.

We also note the trivial inclusion C2(Q,K)
〈αβ〉⊆C2(Q,K)

〈(αβ)3〉, which in the
same manner encodes the implication (WI) =⇒ (H).

7. The fixed subspaces
The element αβ ofD∞ is well defined up to inversion, as the generator of the unique
subgroup C∞ of index 2. Moreover, C∞ contains all the non-torsion elements
of D∞, and these are the elements of even length in terms of the generators α, β
(or any other pair of generating involutions). Recall that a subgroup is even if it
is contained in C∞, and odd otherwise. We analyze odd subgroups in this section,
and even subgroups in Section .

Theorem 7.1. Any fixed subspace C2(Q,K)
H
, under an odd subgroup H ≤ D∞,

is one of the subspaces

(LI) = C2(Q,K)
〈α〉
, (RI) = C2(Q,K)

〈β〉
, (AI) = C2(Q,K)

〈αβα〉

and
(IP) = C2(Q,K)

〈α,β〉
.
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Proof. For g, g′ ∈ D∞, let us write that g ≈ g′ if C2(Q,K)
〈g〉

= C2(Q,K)
〈g′〉.

Since C2(Q,K)
〈ghg−1〉

= g(C2(Q,K)
〈h〉

), this equivalence relation is stable under
joint conjugation. Corollary 6.2 tells us that αβα ≈ βαβ. Conjugation by α gives
β ≈ αβαβα. These facts can be restated as (αβ)iα ≈ (αβ)i−3α for i = 1, 2.
We have that (αβ)j(αβ)kα(αβ)−j = (αβ)k+2jα, which now implies (αβ)iα ≈
(αβ)i−3α for any i ∈ Z. It follows that every odd element has the same fixed
subspace as one of the three elements α, β, αβα (corresponding to i = 0,−1, 1).

Now let H ≤ D∞ be an odd subgroup. Since the intersection with 〈αβ〉 is
cyclic, we may write H =

〈
g, (αβ)k

〉
where g is an odd element and k ∈ Z.

Then C2(Q,K)
H

= C2(Q,K)
〈g〉∩C2(Q,K)

〈(αβ)k〉, so by the previous paragraph g
can be replaced by one of the elements α, β, αβα. By Corollary 6.3 we con-

clude that C2(Q,K)
H ⊆C2(Q,K)

〈(αβ)3,(αβ)k〉. If k is divisible by 3 it follows
that C2(Q,K)

H
= C2(Q,K)

〈g〉
; and otherwise C2(Q,K)

H
= C2(Q,K)

〈g,αβ〉
=

C2(Q,K)
〈α,β〉

.

Recall that Z2(Q,K) is the space of elements c ∈ C2(Q,K) satisfying the 2-
cocycle condition (1); namely those c for which (K,Q, c) is a group. Since every
group has the inverse property (IP), we proved:

Corollary 7.2. Z2(Q,K)⊆C2(Q,K)
〈α,β〉

.

In other words, our groupD∞ acts trivially on the cohomology group H2(Q,K) =
Z2(Q,K)/B2(Q,K), which explains why it went unobserved in the classical theory
of group extensions. The facts proved in Sections – are summarized in Figure 2.

C2(Q,K)

(H)=C2(Q,K)
〈(αβ)3〉

(Inv)=Ker(ψ)

(AI)=C2(Q,K)
〈αβα〉

(LI)=C2(Q,K)
〈α〉

(RI)=C2(Q,K)
〈β〉

(WI)=C2(Q,K)
〈αβ〉

(IP)=C2(Q,K)
〈α,β〉

(Associative)=Z2(Q,K)

(Trivial)=B2(Q,K)

Figure 2. Subgroups of C2(Q,K), ordered by inclusion, and the respective properties of
the loops (K,Q, c)
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7.1. The opposite loop

The opposite serves as a left-right mirror, explaining expected symmetries. Recall
that the opposite loop Lop has the same underlying set as L, with the reverse
multiplication.

Remark 7.3. We have that (K,Q, c)
op∼= (K,Q, τc) via the map (kq)

op 7→ kq
−1

q−1,
where τ : C2(Q,K) → C2(Q,K) is defined by (τc)p,q = cpqq−1,p−1 . (This is an iso-
morphism of loops, even if not an equivalence of extensions since K is not fixed
elementwise). We have that τ2 = 1 and τα = βτ by computation. Consequently,
the group 〈α, β, τ〉 = 〈τ, α〉, which is by itself infinite dihedral, acts by conjugation
on its subgroup 〈α, β〉 as the full group of automorphisms. The action of 〈τ, α〉 on
loops is discussed in [5].

It follows that a-priori

C2(Q,K)
〈β〉

= τ(C2(Q,K)
〈α〉

),

C2(Q,K)
〈βαβ〉

= τ(C2(Q,K)
〈αβα〉

),

C2(Q,K)
〈αβ〉

= τ(C2(Q,K)
〈αβ〉

);

indeed (LI) and (RI) are dual with respect to the opposite, while the other prop-
erties are left-right symmetric.

We also have that ψτ = ψ, in line with the fact that (Inv) is invariant to taking
the opposite.

8. Generalizations of the weak inverse property
Following an insightful suggestion by the referee, we show in this section how
the “doubly weak inverse property” and some of its generalizations fall under the
framework of fixed subgroups of C2(Q,K).

8.1. The m-inverse properties

For m ∈ Z, a loop is said to have the m-inverse property, which we denote here
by (Wm), if it satisfies the equivalent conditions

(xy)ρ
m

xρ
m+1

= yρ
m

; (11)

xλ
m+1

(yx)λ
m

= yλ
m

; (12)
ρm`xρ

−m = r−1
xρm+1 ; (13)

λmrxλ
−m = `−1

xλm+1 . (14)

Indeed, (11)=(13) and (12)=(14) by the action on y, and (14) is obtained from (13)
by taking xλ

m+1

for x.
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These properties were introduced by Karkliňš and Karkliň [10], see [6, Sec-
tion 3]. By Proposition 2.5(c)′the weak inverse property is (WI)=(W−1). One of
the key facts on this sequence, proven in [6, Lemma 3.1], is that

(Wm) =⇒ (W−2m−1), (15)

resulting in the chain

(WI) (W1IP) +3 (W2IP) +3 (W3IP) +3 (W4IP) +3 · · ·

where (WkIP) is defined for k ≥ 1 as (Wm) for m = (−2)k−1
3 . The “doubly weak

inverse property” (W2IP)=(W1) holds in any Buchsteiner loop, where (WI) does
not necessarily hold.

Before characterizing the possible m-inverse properties of any given loop, we
propose a change of indices, and write (W′1+3m) instead of (Wm). Although hard
to justify in terms of the defining identities (11)–(14), the formulation of various
facts becomes cleaner in this manner. For example (15) reads (W′`) =⇒ (W′−2`),
and (WkIP) = (W′(−2)k).

We call a subset of 1 + 3Z a principal ideal if it is has the form (1 + 3Z)` for
some ` ∈ 1 + 3Z. Notice that every two numbers `, `′ ∈ 1 + 3Z have a unique
greatest common divisor in 1 + 3Z, which we denote by gcd(`, `′). For example,
gcd(40, 100) = −20.

Proposition 8.1.
1. (Wm′)+(Wm′′)+(Wm′′′) =⇒ (Wm′−m′′+m′′′).
2. If 1 + 3m | 1 + 3m′ then (Wm) =⇒ (Wm′).
3. (W′`) + (W′`′) =⇒ (W′gcd(`,`′)).

Proof. For completeness we copy the proof of the case p = −1 from [6, Lemma 3.1]:

assuming (Wm), we have that xλ
−2m

(yx)λ
−(2m+1)

= xρ
2m

(yx)ρ
2m+1 (11)

= ((yx)ρ
m ·

yρ
m+1

)ρ
m · ((yx)ρ

m

)ρ
m+1 (11)

= (yρ
m+1

)ρ
m

= yλ
−2m−1

, proving (W−2m−1).

1. Assume (Wm′), (Wm′′) and (Wm′′′) hold. Applying (13) and (14) alterna-
tively, we have that

ρm
′−m′′+m′′′`xρ

−(m′−m′′+m′′′) = ρm
′′′
λm
′′
ρm
′
`xρ
−m′λ−m

′′
ρ−m

′′′

= ρm
′′′
λm
′′
r−1
xρm

′+1λ
−m′′ρ−m

′′′

= ρm
′′′
`
xρm

′−m′′ ρ−m
′′′

= r−1
xρm

′−m′′+m′′′+1 ,

which is (Wm′−m′′+m′′′).
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2. Taking m′,m′′ in the previous claim to be m and −2m − 1, it now follows
that (W′1+3m)+ (W′(1+3p)(1+3m)) = (W′1+3m)+ (W′(4+3p)(1+3m)), and we are
done by induction on p.

3. Let I ⊆ 1 + 3Z be the set of integers p for which (W′p) is a consequence of
the pair (W′`) and (W′`′). Let a ∈ I be minimal in terms of absolute value.
Assuming a does not divide gcd(`, `′), let b be a minimal element of I, in
terms of absolute value, not divisible by a. By (15) we have that −2a ∈ I. If
a, b have different signs, then −a−b = a−b+(−2a) ∈ I by the first part, but
|−a− b| < |b|. If a, b have the same sign, then again 2a− b = a− b+ a ∈ I,
but |2a− b| =

∣∣2ab − 1
∣∣|b| < |b| because |a| < |b|. In either case we have a

contradiction.

Corollary 8.2. Let L be any loop. The set of integers p ∈ 1 + 3Z for which L
satisfies (W′p), if nonempty, is a principal ideal.

Thus, if L satisfies any of the m-inverse properties, there is a minimal one, of
which all of the others are formal consequences of. This may be called the “inverse
level” of L. Corollary 8.2 is shown in [5] by using isotrophisms.

8.2. m-inverse for loop extensions
As always, let Q be a group acting on an abelian group K.

Proposition 8.3. Let m be an odd integer. For c ∈ C2(Q,K), L = (K,Q, c)
satisfies (Wm) if and only if

(αβ)(3m+1)/2c = c.

Proof. Write m = 2n+ 1. By (5)–(6) we have that

(kq)ρ
2n

= (ψc)nq · kq, (16)

regardless of the sign of n. Taking x = kp and y = k′q in (11), acting by pq on the
resulting equality and rearranging, we find that (K,Q, c) is has the property (Wm)
if and only

cp,q = (δ1γ)p,q(δ
1ψc)np,qγ

−p
p−1c

pq
(pq)−1,p.

Next, we compute by Equation (7) that ((αβ)2c)p,q = (δ1γ)p,qγ
−p
p−1c

pq
(pq)−1,p.

Applying Proposition 5.6 to (αβ)2c in place of c, we then find that

((αβ)3n+2c)p,q = (δ1γ)p,q(δ
1ψc)np,qγ

−p
p−1c

pq
(pq)−1,p,

and the result follows.

Remark 8.4. In terms of n, Proposition 8.3 reads that L = (K,Q, c) satisfies
(W2n+1) if and only if (αβ)3n+2c = c. To cover the other non-zero residue of 3
substitute −n−1 for n, to find that (W−(2n+1)) holds if and only if (αβ)−(3n+1)c =
c, which is equivalent to (αβ)3n+1c = c.
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Taking m = −1 in Proposition 8.3 recaptures the fact that C2(Q,K)
〈αβ〉

corresponds to the weak inverse property, (WI). For m = 1 we obtain that

C2(Q,K)
〈(αβ)2〉 is the doubly weak inverse property (W2IP). More generally,

taking m = (−2)k−1
3 , we obtain:

Corollary 8.5. The extension L = (K,Q, c) satisfies the property (WkIP) if and

only if c ∈ C2(Q,K)

〈
(αβ)2

k−1
〉
.

8.3. Generalizations of (H)
Let (Hm) denote the property of a loop that ρ2m, equivalently λ2m, are homomor-
phisms. Here m is allowed to be negative. By [6, Lemma 3.1],

(W′2`) =⇒ (H`)

for any ` ≡ 2 (mod 3); for example, (WkIP) =⇒ (H2k−1

); and in particular
(WI)= (W1IP) =⇒ (H1) = (H).

The following proposition complements Proposition 8.3, as we see in the theo-
rem below.

Proposition 8.6. The following are equivalent for the loop (K,Q, c):

1. (Hn) (namely λ2n and ρ2n are homomorphisms)

2. (δ1ψc)n = 1.

3. (αβ)3nc = c.

Proof. Since (kq)ρ
2n

= (ψc)nq · kq by Example 16, it immediately follows that ρ2n
is a homomorphism if and only if (δ1ψ(cm) = 1. But by Proposition 5.6 we also
have that (αβ)3nc = (δ1ψc)n · c.

The same computation yields the following observation, concerning weak ver-
sions of (Inv):

Proposition 8.7. The following are equivalent for c ∈ C2(Q,K):

1. λ2n = 1 holds in (K,Q, c).

2. (ψc)n = 1.

8.4. Invariants of even subgroups
Theorem 8.8. The subspaces of C2(Q,K) fixed under subgroups of C∞ = 〈αβ〉
are

(W2n+1) = C2(Q,K)
〈(αβ)3n+2〉

and
(Hn) = C2(Q,K)

〈(αβ)3n〉
.



Four halves of the inverse property 299

Proof. Combine Remark 8.4 and Proposition 8.6, noting that any nontrivial sub-
group of 〈αβ〉 can be uniquely represented in one of the forms

〈
(αβ)3n+2

〉
(for

n ∈ Z) and
〈
(αβ)3n

〉
(for n > 0).

Proof of Theorem 1.1. The action ofD∞ on C2(Q,K) is defined in Proposition 5.2.
The subspaces fixed under odd subgroups are given in Theorem 7.1. The subspaces
fixed under even subgroups are given in Theorem 8.8.

9. Extensions of Z4

In this final section we describe the extensions (K,Q, c) for Q = 〈σ〉 the cyclic
group of order 4, acting on an arbitrary abelian group K. This is a case of interest
in light of the fact that any Buchsteiner loop is a nuclear extension of an abelian
group of exponent 4 (see [6, Theorem 7.14]).

For brevity we denote cσi,σj = cij (and aσi = ai), and write c in a 3×3 matrix
form, omitting the trivial row and column corresponding to the identity element
of Q.

We are interested in c up to equivalence, so we may multiply c by δ1a for
some a ∈ C1(Q,K). Note that (δ1a)2 = a1a

σ
1a
−1
2 and (δ1a)3 = a1a

σ
2a
−1
3 , so

choosing a2 and then a3 properly, we may henceforth assume c11 = c12 = 1.
Equivalence under this reduction amounts to entry-wise multiplication by δ1a = 1 1 N(a1)

1 N(a1) N(a1)
N(a1) N(a1) N(a1)

 whereN(k) = kkσkσ
2

kσ
3

and a1 ∈ K is arbitrary. Solving

the equations in Proposition 3.1 for cij ∈ K, we find:

Proposition 9.1. The conditions for the loop (K,Z4, c) to satisfy the respective
properties are as follows:

(LI) if c ≈

 1 1 k

k′ π πk′
−σ2

kσ
3

kσ
3

kσ
3

 for k, k′, π ∈ K with πσ
2

= π.

(RI) if c ≈

 1 1 k
k′ π kσ

kσ
3

πσ kσ
2

k′
−1

 for k, k′, π ∈ K with πσ
2

= π.

(WI) if c ≈

 1 1 k
π k k′

π−1k π−1k′σ
3

k′σ
2

 for k, k′, π ∈ K with πσ = π−1.

(AI) if c ≈

 1 1 k
k′ π πkσk−1

kσ
3

πσkσ
3

k−1k′
−σ

π−1kσ
2

kσ
3

 for k, k′, π ∈ K with πσ
2

= π.
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(Inv) if c13 = cσ31 and cσ
2

22 = c22.

(H) if there is µ ∈ K such that c13 = µ−1cσ31 and cσ
2

22 = µµσc22.

Intersecting any two of the conditions for (LI), (RI), (AI) and (WI), we obtain:

Proposition 9.2. (K,Q, c) has (IP) when c ≈

 1 1 π
ππ−σ π πσ

πσ πσ πσ

 for π ∈ K satis-

fying πσ
2

= π. This loop is a group when π ∈ Kσ.

Letting N : K → K denote the function N(k) = kkσkσ
2

kσ
3

, Proposition 9.2
gives a 1-to-1 correspondence between Kσ2

/N(K) and extensions of Z4 satisfy-
ing (IP), extending the well known correspondence between H2(Z4,K) = Kσ/N(K)
and group extensions.

As a complement to Proposition 2.1, we now give counterexamples for each of
the implications (LI), (RI), (AI), (WI) + (Inv) =⇒ (IP).

Corollary 9.3. For each of the four halves, there is a loop of order 8, in fact an
extensions of Q = Z4 by K = Z2, satisfying this property as well as (Inv), but not
any of the other three.

Proof. In any of the formulas of Proposition 9.1 take π = k′ = 1 and k 6= 1 to
avoid the form of Proposition 9.2.

Let K(2) denote the 2-torsion subgroup of K.

Proposition 9.4. Let K be an abelian group on which Q = Z4 acts. The following
are equivalent:

1. (WI) =⇒ (Inv) for loops of the form L = (K,Z4, c);

2. (H) =⇒ (Inv) for loops of the form L = (K,Z4, c);

3. K(2) = 1 and the action is trivial.

Proof. 2. =⇒ 1. because (WI) =⇒ (H).
1. =⇒ 3. By Proposition 9.1, the condition for (Inv) is that c31 = cσ

3

13 and
cσ

2

22 = c22. For the function c given in the same proposition for (WI), this holds
when kσ

2

= k and π = kk−σ (which imply πσ = π−1). If the action is nontrivial
these conditions are countered by taking π = 1 and k 6∈ Kσ. If the action is trivial
and there are elements of order 2, take π to be such an element and k = 1. It
follows that the action is trivial and K(2) = 1.

3. =⇒ 2. Again by Proposition 9.1, (H) =⇒ (Inv) if µµσ = πσ
2

π−1 implies
µ = 1. This condition can be written as (µπσπ−1)(µπσπ−1)σ = 1, or equivalently
µ ∈ Ker(1 +σ)Im(1−σ), viewing K as a Z[Q]-module, written multiplicatively. If
the action is trivial and there are no elements of order 2, we have that Im(1−σ) = 1
and Ker(1 + σ) = Ker(2) = 1.
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Recall that (LI), (RI) and (AI) each imply (Inv). Following the recipe in the
first part of Proposition 9.4, we construct an example showing that (WI) 6=⇒(Inv)
for loop extensions.

Example 9.5. Let L =
{
εiσj

}
i∈Z3, j∈Z4

be the (monogenic) loop of order 12 with

multiplication rule εiσj ·εi′σj′ = εi+(−1)ji′+δj,−j′ (1−δj,0)σj+j
′
. Then L satisfies (WI)

but not (Inv). (This is the loop (Z3,Z4, c) where Z4 acts by inversion and c is
taken from the formula for (WI) in Proposition 9.1 with k = ε and k′ = π = 1.)

Remark 9.6. An extension L = (K,Q, c) is commutative if Q is commutative, its
action on K is trivial, and cp,q = cq,p for all p, q. When Q = Z4, assuming com-
mutativity means that either (LI) or (RI) implies associativity. On the other hand
the examples for (AI) 6=⇒(IP) and (WI) 6=⇒(IP) in Corollary 9.3 are commutative.
Example 9.5 for (WI) 6=⇒(Inv) is flexible, but not commutative.

As noted in Remark 5.3, 〈α, β〉 acts on the quotient space C2(Q,K)/B2(Q,K),
namely on extensions up to equivalence. Clearly,

C2(Q,K)
〈α〉
/B2(Q,K) ≤ (C2(Q,K)/B2(Q,K))〈α〉,

and likewise for β (or any group action). If K2 = 1 this is an equality, because
αc = c · δ1a implies (δ1a)2 = 1. However, when K has 2-torsion the situation is
more delicate:

Example 9.7. Let Q = Z4 act on K = 〈t0, t1, t2, t3〉∼= (Z2)4 by permuting the

indices. Consider the cocycle c =

 1 1 1
1 t0t1 t0t1

t0t1t2t3 t0t1t2t3 t0t1t2t3

.

Then (K,Q, c)∼= (K,Q,αc) because αc · c−1 ∈ B2(Q,K), but αc 6= c, and
indeed (K,Q, c) does not satisfy (LI): t0t1t2t3σ2 = (σ2)λ · (σ2 · σ2) 6= σ2.

Similar examples can be constructed for the other properties.
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