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Translatable quadratical quasigroups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. The concept of a k-translatable groupoid is introduced. Those k-translatable
quadratical quasigroups induced by the additive group of integers modulo m, where k < 40, are
listed for m 6 1200. The fine structure of quadratical quasigroups is explored in detail and the
Cayley tables of quadratical quasigroups of orders 5, 9, 13 and 17 are produced. All but those of
order 9 are k-translatable, for some k. Quadratical quasigroups induced by the additive group
of integers modulo m are proved to be k-translatable, for some k. Open questions and thoughts
about future research in this area are given.

1. Introduction

Geometrical motivations for the study of quadratical quasigroups have been given
in [9, 10, 11, 12]. In particular Volenec [9, 10] defined a product ∗ on C, the
complex numbers, that defines a quadratical quasigroup. The product x∗y of two
distinct elements is the third vertex of a positively oriented, isosceles right triangle
in the complex plane, at which the right angle occurs.

The main aim of this paper is to give insight into the fine algebraic structure
of quadratical quasigroups, in order to set the stage for, and to stimulate, further
development of the general theory that is still in its relative infancy. This is the
second of a series of four papers that advance this theory. We concern ourselves
here mainly with the fine algebraic structure, rather than with the geometrical
representations, of quadratical quasigroups. However, as noted by Volenec, each
algebraic identity valid in the quadratical quasigroup (C, ∗) can be interpreted as
a geometrical theorem and the theory of quadratical quasigroups gives a better
insight into the mutual relations of such theorems ([9], page 108).

Volenec [9] proved that quadratical quasigroups have a number of properties,
such as idempotency, mediality and cancellativity. These properties were applied
by the authors in [3] to prove that quadratical quasigroups form a variety Q. The
spectrum of Q was proved to be contained in the set of all integers equal to 1
plus a multiple of 4. Quadratical quasigroups are uniquely determined by certain
abelian groups and their automorphisms [1]. Necessary and sufficient conditions
under which Zm, the additive group of integers modulo m, induces quadratical
quasigroups are given in [3].
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This paper builds on the authors’ work in [3], as well as the prior work of
Polonijo [7], Volenec [9] and Dudek [1]. In Sections 3, 4, 5, 6 and 7 the notion
of a four-cycle, which was introduced in [3], is used to explore in detail the fine
structure of quadratical quasigroups. The concept of a four-cycle is applied in
Sections 4 and 6 to produce Cayley tables for quadratical quasigroups of orders 5,
9, 13 and 17. These tables can be reproduced by model builders, but we would
not achieve our aim of stimulating thought about the fine algebraic structure in
that manner.

In Section 8, all of these quadratical quasigroups except those of order 9 are
proved to be k-translatable, for some k. We prove that, up to isomorphism, there
is only one quadratical quasigroup of order 9 and that it is self-dual. Quadratical
quasigroups of order 25 and 29 are found. The one of order 25 is 18-translatable,
its dual is 7-translatable, the quadratical quasigroup of order 29 is 12-translatable
and its dual is 17-translatable.

Sections 8 and 9 of this paper explore other ways of constructing k-translatable
quasigroups. We introduce the central concept of a k-translatable groupoid in
Section 8 and use it to characterize quadratical quasigroups. In Section 9 nec-
essary and sufficient conditions are found for a quasigroup induced by Zm to be
k-translatable. We prove that a quadratical quasigroup induced by Zm is always
k-translatable, for some k. The existence of k-translatable quadratical quasigroups
induced by some Zm is established for each integer k, where 1 < k < 11. Values of
m for which a quadratical quasigroup induced by Zm is (m − k)-translatable are
determined for each integer k, where 1 < k < 11.

In Section 9 lists are given for k-translatable (k < 40) quadratical quasigroups
of orders m < 1200, induced by Zm and k-translatable quadratical quasigroups
induced by Zm for m < 500.

In a future publication, the two different approaches to the construction of
quadratical quasigroups are united. It will be proved that a quadratical quasigroup
is translatable if and only if it is induced by some Z4n+1. Finally, open questions
and possible future directions for research are discussed in Section 9.

2. Preliminaries

Volenec [9] defined a quadratical groupoid as a right solvable groupoid satisfying
the following condition:

xy · x = zx · yz. (A)

He proved that such groupoids are quasigroups and satisfy the identities listed
below.
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Theorem 2.1. A quadratical groupoid satisfies the following identities:

x = x2 (idempotency), (1)
x · yx = xy · x (elasticity), (2)
x · yx = xy · x = yx · y (strong elasticity), (3)
yx · xy = x (bookend), (4)
x · yz = xy · xz (left distributivity), (5)
xy · z = xz · yz (right distributivity), (6)
xy · zw = xz · yw (mediality), (7)
x(y · yx) = (xy · x)y, (8)
(xy · y)x = y(x · yx), (9)
xy = zw ←→ yz = wx (alterability). (10)

These identities can be used to characterize quadratical quasigroups. Namely,
the following theorem is proved in [3].

Theorem 2.2. The class of all quadratical quasigroups form a variety uniquely
defined by
• (A), (3), (4), (7), or
• (1), (4), (7), or
• (2), (4), (7), or
• (4), (5), (10).

Quadratical quasigroups are uniquely characterized by commutative groups
and their automorphisms. This characterization (proved in [1]) is presented below.

Theorem 2.3. A groupoid (G, ·) is a quadratical quasigroup if and only if there
exists a commutative group (G,+) in which for every a ∈ G the equation z+z = a
has a unique solution z ∈ G and ϕ,ψ are automorphisms of (G,+) such that

xy = ϕ(x) + ψ(y),

ϕ(x) + ψ(x) = x,

2ϕψ(x) = x

for all x, y ∈ G.

In this case we say that the quadratical quasigroup is induced by (G,+).
We also will need the following two results proved in [3].

Theorem 2.4. A finite quadratical groupoid has order m = 4t+ 1.

So, later it will be assumed that m = 4t+ 1 for some natural t.
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Theorem 2.5. A quadratical groupoid induced by the additive group Zm has the
form

x · y = ax+ (1− a)y ,

where a ∈ Zm and

2a2 − 2a+ 1 = 0. (11)

3. Products in quadratical quasigroups
Let Q be a quadratical quasigroup and a, b ∈ Q be two different elements. Suppose
that C = {x1, x2, . . . , xn} ⊆ Q consists of n distinct elements, such that aba =
x1x2 = x2x3 = x3x4 = . . . = xn−1xn = xnx1. Then C will be called an (ordered)
n-cycle based on aba. Note that x1 6= aba, or else x1 = x2 = . . . = xn = aba. Note
also that if C = {x1, x2, x3, . . . , xn} ⊆ Q is an n-cycle based on aba, then so is
Ci = {xi, x(i+1)modn, x(i+2)modn, . . . , x(i+n−1)modn}.

In [3] is proved that in a quadratical quasigroup all n-cycles have the length
n = 4. Moreover, if a, b ∈ Q and a 6= b, then each element x1 6= aba of Q is a
member of a 4-cycle based on aba. Two 4-cycles based on aba, where a 6= b, are
equal or disjoint. Note that in any 4-cycle C = {x1, x2, x3, x4}, x4 = x1x3. Hence,
C = {x, yx, y, xy}, where x = x1 and y = x3.

Definition 3.1. Let Q be a quadratical quasigroup with {a, b} ⊆ Q and a 6= b.
Then {a, b, ab, ba, aba} contains five distinct elements. We will use the notation
[1, 1] = a, [1, 2] = ab, [1, 3] = ba and [1, 4] = b. We omit the commas and square
brackets in the notation, when this causes no confusion, and write 11 = a, 12 = ab,
13 = ba and 14 = b. For n > 2, by induction we define n1 = (n − 1)1 · (n − 1)2,
n2 = (n − 1)2 · (n − 1)4, n3 = (n − 1)3 · (n − 1)1, n4 = (n − 1)4 · (n − 1)3
and Hn = {n1, n2, n3, n4}. On the occasions when we need to highlight that
the element fk, f ∈ {1, 2, . . . , n} and k ∈ {1, 2, 3, 4}, is in the dual quadratical
quasigroup Q∗ we will denote it by fk∗. Similarly, Hn∗ = {n1∗, n2∗, n3∗, n4∗}.
Note that the values of both fk and fk∗ depend on the choice of the elements a
and b.

Example 3.2. H2 = {a · ab, ab · b, ba · a, b · ba},
H3 = {(a · ab)(ab · b), (ab · b)(b · ba), (ba · a)(a · ab), (b · ba)(ba · a)},
H4 = {(31 · 32)(32 · 34), (32 · 34)(34 · 33), (33 · 31)(31 · 32), (34 · 33)(33 · 31)}, where
31 = (a · ab)(ab · b), 32 = (ab · b)(b · ba), 33 = (ba · a)(a · ab) and 34 = (b · ba)(ba · a).

Example 3.3. 11∗ = a, 12∗ = a ∗ b, 13∗ = b ∗ a, 14∗ = b and, for n > 2, by
induction we define n1∗ = (n − 1)1∗ ∗ (n − 1)2∗, n2∗ = (n − 1)2∗ ∗ (n − 1)4∗,
n3∗ = (n− 1)3∗ ∗ (n− 1)1∗ and n4∗ = (n− 1)4∗ ∗ (n− 1)3∗.

Example 3.4. H2∗={a∗(a∗b), (a∗b)∗b, (b∗a)∗a, b∗(b∗a)} = {ba·a, b·ba, a·ab, ab·b}
and 52∗ = 42∗ ·44∗ = (32∗ ·34∗)(34∗ ·33∗) = (((ab∗b)∗(b∗ba))∗((b∗ba)∗(ba∗a)))∗
(((b ∗ ba) ∗ (ba ∗ a)) ∗ (ba ∗ a) ∗ (a ∗ ab)), where a ∗ ab = a ∗ (a ∗ b), ab ∗ b = (a ∗ b) ∗ b,
ba ∗ a = (b ∗ a) ∗ a and b ∗ ba = b ∗ (b ∗ a).
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Note that the expression ab, when working in the dual groupoid Q∗ = (Q, ∗),
equals a ∗ b, which equals b · a in the original groupoid itself. This notation will
cause no problems, as we will either calculate values only using the dot product or
the star product, or when we are calculating using both products, as in Theorem
5.1, the distinction will be obvious.

The proofs of the following propositions are straightforward, using induction
on n and the properties of quadratical quasigroups, and are omitted.

Proposition 3.5. For any positive integer t, t1 · t4 = t2, t2 · t3 = t4, t3 · t2 = t1
and t4 · t1 = t3.

Proposition 3.6. For t > 1, aba · tk = (t− 1)k for any k ∈ {1, 2, 3, 4}.

Proposition 3.7. For t > 1, t1·aba = (t−1)2, t2·aba = (t−1)4, t3·aba = (t−1)1
and t4 · aba = (t− 1)3.

Proposition 3.8. For any positive integer t, Ht contains 4 distinct elements.

Proposition 3.9. For any positive integer t, Ht ∩ {aba} = ∅.

Proposition 3.10. For any positive integer t, t1·t3 = t2·t1 = t3·t4 = t4·t2 = aba.

Proposition 3.11. Ht = {t1, t3, t4, t2} is a 4-cycle based on aba.

Definition 3.12. We say that a groupoid Q is of the form Qn, for some positive

integer n, if Q = {aba}
n⋃
t=1
Ht for some {a, b} ⊆ Q, where each Ht is as in

Definition 3.1.

4. Quadratical quasigroups of form Q1 and Q2
We are now in a position to examine more closely the Cayley tables of quadra-
tical quasigroups. This will aid in the construction of the tables for quadratical
quasigroups of orders 5, 9, 13 and 17. Dudek [1] gave two examples of quadratical
quasigroups of orders 5, 13 and 17 and six examples of quadratical quasigroups
of order 9. A close examination of the fine structure will aid us in proving that
all these quadratical quasigroups are of the form Qn, for some positive integer n.
Each pair of quadratical quasigroups of orders 5, 13 or 17 will be proved to be
dual groupoids. The 6 quadratical quasigroups of order 9 will be proved to be of
form Q2 and self-dual. That is, up to isomorphism, there is only one quadratical
quasigroup of order 9.

A method of constructing quadratical quasigroups of the form Qn is as follows.
Proposition 3.6 implies that aba ·Ht = H(t − 1) for all t 6= 1. Since quadratical
quasigroups are cancellative, we can assume that aba ·H1 = Hn. If we choose the
value of aba · 11 in Hn = {n1, n2, n3, n4} then, using the properties of quadratical
quasigroups, we can attempt to fill in the remaining unknown products in the
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Cayley table. If this can be done without contradiction, then, using Theorem 2.2,
we can check that the groupoid thus obtained is quadratical, by checking that it
is bookend and medial. Completing the Cayley table is this way is not always
possible, as shown in the following example.

Example 4.1. Suppose Q is a quadratical quasigroup of the form Q2. Then
aba · 11 = aba · a ∈ H2 = {21, 22, 23, 24} = {a · ab, ab · b, ba · a, b · ba}. Now
aba · a = a(ba · a) and so aba · a /∈ {a · ab, ba · a}, since cancellativity, idempotency
and alterability would imply that a = b (if aba · a = ba · a) and b = a · ab (if
aba · a = a · ab), the latter contradicting to the fact that two 4-cycles based on
aba are equal or disjoint (cf. [3]). Hence, aba · a must be in the set {ab · b, b · ba}.
However, if aba · a = b · ba, then by (10), ab = ba · aba = (b · ab)a = aba · a = b · ba,
a contradiction since H1 ∩H2 = ∅.

Example 4.1 shows that aba · a = ab · b. Using the properties of quadratical
quasigroups, the Cayley table of the groupoid of the formQ2 can only be completed
in one way, as shown below here, in Table 1.

We then need to calculate all the possible products xy ·yx and xy · zw in Table
1, to prove that they are equal to y and xz · yw respectively. Then, by Theorem
2.2, Q2 would be quadratical. This proves to be the case and we omit the detailed
calculations. However, to give a flavour of the calculations we find all products
aba · x and x · aba when x ∈ H1 and aba · a = ab · b.

Since (a ·aba) (aba · a) = (a · aba) (ab · b), it follows that we have a ·aba = b ·ba,
aba · b = ba · a, aba · ab = (aba · a) (aba · b) = (ab · b) (ba · a) = b · ba and, simi-
larly aba · ba = a · ab. Then aba · ab = b · ba implies ba · aba = ab · b. Also,
aba = (ab · aba) (aba · ab) = (ab · aba) (b · ba) implies ab · aba = ba · a. Finally,
b · aba = (ab · aba) (ba · aba) = (ba · a) (ab · b) = a · ab.

Q2 11=a 12=ab 13=ba 14=b aba 21=a·ab 22=ab·b 23=ba·a 24=b·ba
11=a a a · ab aba ab b · ba ba b ab · b ba · a
12=ab aba ab b ab · b ba · a b · ba a a · ab ba

13=ba ba · a a ba aba ab · b ab b · ba b a · ab
14=b ba aba b · ba b a · ab ab · b ba · a a ab

aba ab · b b · ba a · ab ba · a aba a ab ba b

21=a·ab b · ba b ba · a a ab a · ab ba aba ab · b
22=ab·b a · ab ba · a ab ba b aba ab · b b · ba a

23=ba·a ab ba ab · b b · ba a b a · ab ba · a aba

24=b·ba b ab · b a a · ab ba ba · a aba ab b · ba

Table 1.

Proposition 4.2. A quadratical quasigroup Q of order 9 is of the form Q = Q2.

Proof. We have Q = H1 ∪ {aba} ∪ C, where C is a 4-cycle based on aba and
C ∩H1 = ∅. We proceed to prove that C = H2.

Consider the following part of the Cayley table: (H1 ∪ {aba}) ·H1.
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Q a ab ba b

a a aba ab

ab aba ab b

ba a ba aba

b ba aba b

aba

From the table, clearly, if ba · a ∈ H1 ∪ {aba}, then ba · a ∈ {ab, b}.
Assume that ba · a = ab. Then we have a = b · ba, ab · b = (ba · a)b =

(ba · b) · ab = aba · ab = a(ba · b) = (b · ba)(ba · b) = b(ba · ab) = ba and b = a · ab.
Also, aba · a = a(ba · a) = a · ab = b, aba · ab = ab · (a · ab) = ab · b = ba,
aba · b = bab · b = b(ab · b) = b · ba = a and aba · ba = (aba · b)(aba · a) = ab. So, we
have proved that (H1 ∪ {aba}) ·H1 = H1 ∪ {aba}.

Similarly, if ba · b = b, then (H1 ∪ {aba}) · H1 = H1 ∪ {aba}, which is not
possible because, if c ∈ C, then c ∈ C = {ca, c · ab, c · ba, cb}, a contradiction. So,
ba · a = c, for some c ∈ C. Then, since C = {c, dc, d, cd} for some d ∈ C, we have
aba = c ·dc = dc ·d = d · cd = cd · c. So, aba = (ba ·a) ·dc, which implies dc = b · ba.
Also, aba = cd · (ba · a), which implies cd = a · ab. Then, aba = dc · d = (b · ba)d,
which gives d = ab · b. Hence, C = {a · ab, ab · b, ba · a, b · ba} = H2.

So, we have proved that a quadratical quasigroup of order 9 must be the quasi-
group Q2.

Open question. Is a finite, idempotent, alterable, cancellative, elastic groupoid
of form Qn quadratical?

Note that we can prove that the answer is affirmative when n = 1 or n = 2.

Now, if we calculate the Cayley table for (Q2)∗, the dual of Q2, we see that the
table for the dual product ∗ (defined as a ∗ b = b · a) is exactly the same as Table
1, where the product is the dot product ·. (For example, ((b ∗ a) ∗ a) ∗ (b ∗ a) =
(a · ab) ∗ ab = ab · (a · ab) = b · ba = (a ∗ b) ∗ b and, by Table 1, (ba · a) · ba = ab · b).
Hence, Q2 ∼= (Q2)∗. Another way to put this is that the quadratical groupoid
Q2 must be self-dual. An isomorphism θ between Q2 and (Q2)∗ is: θa = a,
θb = b, θ(ab) = a ∗ b, θ(ba) = b ∗ a, θ(a · ab) = a ∗ (a ∗ b), θ(ab · b) = (a ∗ b) ∗ b,
θ(ba · a) = (b ∗ a) ∗ a and θ(b · ba) = b ∗ (b ∗ a).

Example 4.3. It is straightforward to calculate the Cayley tables of the quadra-
tical quasigroups, each of order 9, given in [1]. They are each based on the group
Z3 × Z3 of ordered pairs of integers, with product being addition (mod 3). The
products are defined as follows:

(x, y) ∗1 (z, u) = (y + z + 2u, x+ y + 2z),
(x, y) ∗2 (z, u) = (2y + z + u, 2x+ y+z) ,
(x, y) ∗3 (z, u) = (x+ y + 2u, x+ 2z + u),
(x, y) ∗4 (z, u) = (x+ 2y + u, 2x+ z + u) ,
(x, y) ∗5 (z, u) = (2x+ y + 2z + 2u, 2x+ 2y + z + 2u),
(x, y) ∗6 (z, u) = (2x+ 2y + 2z + u, x+ 2y+2z + 2u) .
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In each table, if we calculate ab and ba for the ordered pairs a = (1, 1) and
b = (1, 2) we see that Q = {aba} ∪H1 ∪H2 and that aba · a = ab · b. Therefore,
these six quadratical quasigroups are isomorphic to each other and to Q2. We
already knew that there is only one quadratical quasigroup of order 9, but these
calculations clarify (and reinforce a conviction) that the quadratical quasigroups
of order 9 presented in [1] are isomorphic.

Example 4.4. We now calculate the Cayley table for a groupoid Q1 and its dual,
when aba · a ∈ {ab, b}.

Q1 a ab ba b aba

a a ba aba ab b

ab aba ab b a ba

ba b a ba aba ab

b ba aba ab b a

aba ab b a ba aba

(Q1)∗ a b ∗ a a ∗ b b aba

a a aba b a ∗ b b ∗ a
b ∗ a a ∗ b b ∗ a a aba b

a ∗ b aba b a ∗ b b ∗ a a

b b ∗ a a aba b a ∗ b
aba b a ∗ b b ∗ a a aba

Table 2.

Checking these tables shows that each is medial and bookend and that, indeed,
these two quadratical quasigroups are dual.

Open question. Examining Tables 1 and 2 closely, we can show that any two
distinct elements of Q1 (resp. (Q1)∗, Q2) generate Q1 (resp. (Q1)∗, Q2). This
will later be seen to be the case also for Q3, Q4 and their duals. We conjecture
that if Q is a quadratical quasigroup of form Qn, for some positive integer n, then
it is generated by any two distinct elements. Such a property does not hold in
quadratical quasigroups in general, as we shall now prove.

Example 4.5. Since Q is a variety of groupoids, the direct product of quadratical
quasigroups is quadratical. Hence, Q1 × Q1 is quadratical. If we choose a base
element, (a, b) say, then Q1 × Q1 consists of six disjoint 4-cycles based on (a, b);
namely,

{(a, a), (a, aba), (a, ab), (a, ba)}, {(b, ab), (aba, ba), (ba, a), (ab, aba)},
{(ab, b), (b, b), (aba, b), (ba, b)}, {(ab, ab), (b, ba), (aba, a), (ba, aba)},
{(ba, ba), (ab, a), (b, aba), (aba, ab)}, {(aba, aba), (ba, ab), (ab, ba), (b, a)}.

If C is any one of these six 4-cycles, then no two distinct elements x and y
of C generates Q1 × Q1, because {x, y} ⊆ C and C is a proper subquadratical
quasigroup of Q1×Q1, isomorphic to Q1.

Example 4.6. (Q1 × Q1)∗ = (Q1)∗ × (Q1)∗ and (Q1× (Q1)∗)
∗

= (Q1)∗ × Q1.
Note that (a, ba) and (ab, b) generate Q1× (Q1)∗ and (ba, a) and (b, ab) generate
(Q1)∗ ×Q1 while Q1×Q1 and (Q1)∗ × (Q1)∗ are not 2-generated.
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5. The elements nk*
The following Theorem is easily proved for k = 1 and, by induction on k, is
straightforward to prove for all k ∈ {0, 1, 2, . . .} = N0. The proof is omitted but
we proceed to give an idea of some of the calculations.

For k = 0

((4 + 4k)4)∗ = 44∗ = (34 · 33)∗ = ((24 · 23) · (23 · 21))∗

= ((b · ba)(ba · a) · (ba · a)(a · ab))∗ = (ba · a)(a · ab) · (a · ab)(ab · b)
= (23 · 21) · (21 · 22) = 33 · 31 = 43 = ((4 + 4k)3).

Note that we get the same result if we write

44∗ = [(b ∗ (b ∗ a) ∗ ((b ∗ a) ∗ a))] ∗ [((b ∗ a) ∗ a) ∗ (a ∗ (a ∗ b))].

Theorem 5.1. For all k ∈ N0,
((1+4k)1)∗=(1+4k)1, ((1+4k)2)∗=(1+4k)3, ((1+4k)3)∗=(1+4k)2, ((1+4k)4)∗=(1+4k)4,
((2+4k)1)∗=(2+4k)3, ((2+4k)2)∗=(2+4k)4, ((2+4k)3)∗=(2+4k)1, ((2+4k)4)∗=(2+4k)2,
((3+4k)1)∗=(3+4k)4, ((3+4k)2)∗=(3+4k)2, ((3+4k)3)∗=(3+4k)3, ((3+4k)4)∗=(3+4k)1,
((4+4k)1)∗=(4+4k)2, ((4+4k)2)∗=(4+4k)1, ((4+4k)3)∗=(4+4k)4, ((4+4k)4)∗=(4+4k)3.

Further, for simplicity, elements of the form (xy)∗ will be denoted as xy∗.
Now, considering the quadratical quasigroups of form Qn, from the remarks in

the paragraph preceding Example 4.1, we see that there are at most 4 groupoids of
the form Qn for any given integer n. Since the dual of a quadratical quasigroup of
the form Qn must also have the form Qn, we can tell, from the following Theorem,
which values of aba · a may yield groupoids that are duals of each other.

Theorem 5.2. For all positive integers n > 2, the following identities are valid
in a quadratical quasigroup of form Qn, depending on the value of aba · a:

aba·a aba·ab aba·ba aba·b a·aba ab·aba ba·aba b·aba n1·n2 n2·n4 n3·n1 n4·n3
n1 n2 n3 n4 n2 n4 n1 n3 a ab ba b

n2 n4 n1 n3 n4 n3 n2 n1 ba a b ab

n3 n1 n4 n2 n1 n2 n3 n4 ab b a ba

n4 n3 n2 n1 n3 n1 n4 n2 b ba ab a

aba·a 11·34 23·14 34·14 14·21
n1 n3 n2 n1 n1 (n−1)2 = 11·n1 = n2·11
n2 n1 n4 n2 n2 (n−1)4 = 11·n2 = n4·11
n3 n4 n1 n3 n3 (n−1)1 = 11 ·n3 = n1·11
n4 n2 n3 n4 n4 (n−1)3 = 11·n4 = n3·11

Proof. We prove only the identities for when aba·a = n2, as the proofs of the other
three cases are similar. We have aba·n2. Then, aba = (a·aba)(aba·a) = (a·aba)·n2.
By Proposition 3.11 and Theorem 2.1, a · aba = n4 = a · bab = aba · ab. Then,
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n4 = aba · ab = (aba · a)(aba · b) = n2 · (aba · b). By Proposition 3.5, aba · b = n3.
So aba · ba = (aba · b)(aba · a) = n3 · n2 = n1 (by Proposition 3.5). Then,
aba = (b ·aba)(aba ·b) = (b ·aba) ·n3, which by Proposition 3.11 implies b ·aba = n1.
Then, using Proposition 3.5, ab·aba = (a·aba)(b·aba) = n4·n1 = n3 and ba·aba =
(b · aba)(a · aba) = n1 · n4 = n2. We also have n1 · n2 = (aba · ba)(ba · aba) = ba,
n2 · n4 = (aba · a)(a · aba)) = a, n3 · n1 = (aba · b)(b · aba) = b and n4 · n3 =
(aba · ab)(ab · aba) = ab. Now, 11 · 34 = a · (b · ba)(ba · a) = a(b · ba) · a(ba · a) =
(ab · aba)(aba · a) = n3 · n2 = n1, 34 · 14 = (b · ba)(ba · a) · b = (b · ba)b · (ba · a)b =
(b · bab)(bab · ab) = (b · aba)(aba · ab) = n1 ·n4 = n2, 14 · 21 = b(a · ab) = ba · bab =
ba · aba = n2 and 23 · 14 = (ba · a)b = bab · ab = aba · ab = n4.

Finally, a · n2 = a · aba · a = aba · a · aba = aba · n4 = (n − 1)4 = 11 · n2 and
n4 · a = a · aba · a = aba · a · aba = (n− 1)4 = n4 · 11.

This completes the proof of the validity of the identities indicated in row 3 of
the two tables in Theorem 5.2, when aba · a = n2.

As mentioned above, Theorem 5.2 will be useful when we look for the duals
of the quadratical quasigroups that we will call Q3 and Q4, as will the following
concept.

Definition 5.3. If a quadratical quasigroup of form Qn exists for some integer n
then the identity generated on the left (on the right) by an identity kr · ls = mt,
where r, s, t ∈ {1, 2, 3, 4} and k, l,m 6 n, is defined as the identity

(aba · kr)(aba · ls) = aba ·mt (resp. (kr · aba)(ls · aba) = mt · aba)

and kr · ls = mt is called the generating identity.

Note that Propositions 3.6 and 3.7, along with Theorem 5.2, give the means
of calculating identities generated on the left and right by a given identity. Mul-
tiplying on the left (or on the right) repeatedly n-times gives n distinct identities.
These methods will later be used to prove that quadratical quasigroups of the form
Q6 do not exist.

6. Quadratical quasigroups of forms Q3 and Q4

We give the Cayley tables of quadratical quasigroups of orders 13 and 17.
First we note that for a quadratical quasigroup of form Q3, if aba · a = n3 =

33 = (ba · a)(a · ab), then aba · a = a(ba · a) = (a · ab) · aba = ab, which implies, by
cancellation, ba·a = b, a contradiction because H1∩H2 = ∅. If aba·a = n4 = 34 =
(b · ba)(ba ·a), then ab ·aba = a(b · ba) = (ba ·a) ·aba = a, which implies b · ba = a, a
contradiction. Hence, aba · a ∈ {31, 32} = {(a · ab)(ab · b), (ab · b)(b · ba)}. Setting
aba · a = a · ab and using the properties of quadratical quasigroups (Theorem 2.1)
we obtain the Cayley Table 3. It can be checked that it is medial and bookend
and so, by Theorem 2.2, this groupoid is a quadratical quasigroup.
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Q3 11 12 13 14 aba 21 22 23 24 31 32 33 34

11 11 21 aba 12 32 14 23 31 34 22 13 24 33

12 aba 12 14 22 34 32 13 33 21 23 24 31 11

13 23 11 13 aba 31 24 32 12 33 14 34 21 22

14 13 aba 24 14 33 31 34 22 11 32 21 12 23

aba 31 32 33 34 aba 11 12 13 14 21 22 23 24

21 32 23 34 13 12 21 31 aba 22 24 33 11 14

22 33 34 11 21 14 aba 22 24 32 12 23 13 31

23 24 14 31 32 11 33 21 23 aba 34 12 22 13

24 12 31 22 33 13 23 aba 34 24 11 14 32 21

31 34 13 21 24 22 12 33 14 23 31 11 aba 32

32 22 33 23 11 24 13 14 21 31 aba 32 34 12

33 14 22 32 23 21 34 24 11 12 13 31 33 aba

34 21 24 12 31 23 22 11 32 13 33 aba 14 34

Table 3.

There are then two ways to obtain the Cayley table for (Q3)∗. Firstly, we can
use aba ∗a = 32∗ = [(a ∗ b) ∗ b] ∗ [b ∗ (b ∗a)] and, using the properties of quadratical
quasigroups, we can then calculate the remaining products in Table 4.

Alternatively, we can calculate the products directly from Table 3, using our
Theorem 5.1. For example, 23∗ = (b ∗ a) ∗ a = a · ab = 21, and similarly 32∗ =
((a ∗ b) ∗ b) ∗ (b ∗ (b ∗ a)) = (ab · b)(b · ba) = 32. Hence, 32∗ ∗ 23∗ = 32 ∗ 21 = 21 · 32.
From Table 3, 21 · 32 = 33. But from Theorem 5.1, 33 = 33∗. So, we obtain
32∗ ∗ 23∗ = 33 = 33∗. The remaining products in Table 4 can be calculated in
similar fashion. Having already checked that Table 3 is quadratical, Table 4 also
produces a quadratical quasigroup, the dual groupoid.

(Q3)∗ 11∗ 12∗ 13∗ 14∗ aba 21∗ 22∗ 23∗ 24∗ 31∗ 32∗ 33∗ 34∗

11∗ 11∗ 21∗ aba 12∗ 34∗ 22∗ 13∗ 32∗ 33∗ 23∗ 24∗ 14∗ 31∗

12∗ aba 12∗ 14∗ 22∗ 33∗ 34∗ 24∗ 31∗ 11∗ 13∗ 21∗ 32∗ 23∗

13∗ 23∗ 11∗ 13∗ aba 32∗ 14∗ 34∗ 21∗ 31∗ 22∗ 33∗ 24∗ 12∗

14∗ 13∗ aba 24∗ 14∗ 31∗ 32∗ 33∗ 12∗ 23∗ 34∗ 11∗ 21∗ 22∗

aba 32∗ 34∗ 31∗ 33∗ aba 11∗ 12∗ 13∗ 14∗ 21∗ 22∗ 23∗ 24∗

21∗ 34∗ 13∗ 33∗ 24∗ 12∗ 21∗ 31∗ aba 22∗ 32∗ 23∗ 11∗ 14∗

22∗ 31∗ 33∗ 23∗ 11∗ 14∗ aba 22∗ 24∗ 32∗ 12∗ 34∗ 13∗ 21∗

23∗ 14∗ 22∗ 32∗ 34∗ 11∗ 33∗ 21∗ 23∗ aba 23∗ 12∗ 31∗ 13∗

24∗ 21∗ 32∗ 12∗ 31∗ 13∗ 23∗ aba 34∗ 24∗ 11∗ 14∗ 22∗ 33∗

31∗ 33∗ 24∗ 11∗ 21∗ 22∗ 12∗ 23∗ 14∗ 34∗ 31∗ 13∗ aba 32∗

32∗ 12∗ 31∗ 22∗ 23∗ 24∗ 13∗ 14∗ 33∗ 21∗ aba 32∗ 34∗ 11∗

33∗ 22∗ 23∗ 34∗ 13∗ 21∗ 24∗ 32∗ 11∗ 12∗ 14∗ 31∗ 33∗ aba

34∗ 24∗ 14∗ 21∗ 32∗ 23∗ 31∗ 11∗ 22∗ 13∗ 33∗ aba 12∗ 34∗

Table 4.

Similarly, we can calculate the Cayley tables for Q4 and its dual (Q4)∗:
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Q4 11 12 13 14 aba 21 22 23 24 31 32 33 34 41 42 43 44

11 11 21 aba 12 44 24 32 42 43 14 23 31 41 33 34 13 22

12 aba 12 14 22 43 44 23 41 34 32 13 42 21 11 31 24 33

13 23 11 13 aba 42 31 44 22 41 24 43 12 33 32 21 34 14

14 13 aba 24 14 41 42 43 33 21 44 34 22 11 23 12 31 32

aba 42 44 41 43 aba 11 12 13 14 21 22 23 24 31 32 33 34

21 44 32 43 23 12 21 31 aba 22 34 42 11 14 24 33 41 13

22 41 43 21 34 14 aba 22 24 32 12 33 13 44 42 23 11 31

23 31 24 42 44 11 33 21 23 aba 41 12 32 13 34 14 22 43

24 22 42 33 41 13 23 aba 34 24 11 14 43 31 12 44 32 21

31 43 23 34 13 22 12 42 14 33 31 41 aba 32 44 11 21 24

32 33 41 11 21 24 13 14 31 44 aba 32 34 42 22 43 23 12

33 24 14 44 32 21 41 34 11 12 43 31 33 aba 13 22 42 23

34 12 31 22 42 23 32 11 43 13 33 aba 44 34 21 24 14 41

41 21 34 12 31 32 14 33 44 23 22 11 24 43 41 13 aba 42

42 14 22 32 33 34 43 13 21 31 23 24 41 12 aba 42 44 11

43 32 33 23 11 31 34 24 12 42 13 44 21 22 14 41 43 aba

44 34 13 31 24 33 22 41 32 11 42 21 14 23 43 aba 12 44

Table 5.

(Q4)∗ 11∗ 12∗ 13∗ 14∗ aba 21∗ 22∗ 23∗ 24∗ 31∗ 32∗ 33∗ 34∗ 41∗ 42∗ 43∗ 44∗

11∗ 11∗ 21∗ aba 12∗ 41∗ 34∗ 24∗ 43∗ 42∗ 13∗ 33∗ 22∗ 44∗ 14∗ 23∗ 31∗ 32∗

12∗ aba 12∗ 14∗ 22∗ 42∗ 41∗ 33∗ 44∗ 23∗ 24∗ 11∗ 43∗ 31∗ 32∗ 13∗ 34∗ 21∗

13∗ 23∗ 11∗ 13∗ aba 43∗ 22∗ 41∗ 32∗ 44∗ 34∗ 42∗ 14∗ 21∗ 24∗ 31∗ 12∗ 33∗

14∗ 13∗ aba 24∗ 14∗ 44∗ 43∗ 42∗ 21∗ 31∗ 41∗ 23∗ 32∗ 12∗ 33∗ 34∗ 22∗ 11∗

aba 43∗ 41∗ 44∗ 42∗ aba 11∗ 12∗ 13∗ 14∗ 21∗ 22∗ 23∗ 24∗ 31∗ 32∗ 33∗ 34∗

21∗ 41∗ 24∗ 42∗ 33∗ 12∗ 21∗ 31∗ aba 22∗ 44∗ 34∗ 11∗ 14∗ 23∗ 43∗ 32∗ 13∗

22∗ 44∗ 42∗ 31∗ 23∗ 14∗ aba 22∗ 24∗ 32∗ 12∗ 43∗ 13∗ 33∗ 34∗ 21∗ 11∗ 41∗

23∗ 22∗ 34∗ 43∗ 41∗ 11∗ 33∗ 21∗ 23∗ aba 32∗ 12∗ 42∗ 13∗ 44∗ 14∗ 24∗ 31∗

24∗ 32∗ 43∗ 21∗ 44∗ 13∗ 23∗ aba 34∗ 24∗ 11∗ 14∗ 31∗ 41∗ 12∗ 33∗ 42∗ 22∗

31∗ 42∗ 33∗ 23∗ 11∗ 22∗ 12∗ 34∗ 14∗ 43∗ 31∗ 41∗ aba 32∗ 13∗ 44∗ 21∗ 24∗

32∗ 21∗ 44∗ 12∗ 31∗ 24∗ 13∗ 14∗ 41∗ 33∗ aba 32∗ 34∗ 42∗ 22∗ 11∗ 23∗ 43∗

33∗ 34∗ 13∗ 41∗ 24∗ 21∗ 32∗ 44∗ 11∗ 12∗ 43∗ 31∗ 33∗ aba 42∗ 22∗ 14∗ 23∗

34∗ 14∗ 22∗ 32∗ 43∗ 23∗ 42∗ 11∗ 31∗ 13∗ 33∗ aba 44∗ 34∗ 21∗ 24∗ 41∗ 12∗

41∗ 31∗ 23∗ 34∗ 13∗ 32∗ 14∗ 43∗ 33∗ 21∗ 22∗ 44∗ 24∗ 11∗ 41∗ 12∗ aba 42∗

42∗ 33∗ 32∗ 11∗ 21∗ 34∗ 31∗ 13∗ 22∗ 41∗ 23∗ 24∗ 12∗ 43∗ aba 42∗ 44∗ 14∗

43∗ 24∗ 14∗ 33∗ 32∗ 31∗ 44∗ 23∗ 12∗ 34∗ 42∗ 13∗ 21∗ 22∗ 11∗ 41∗ 43∗ aba

44∗ 12∗ 31∗ 22∗ 34∗ 33∗ 24∗ 32∗ 42∗ 11∗ 14∗ 21∗ 41∗ 23∗ 43∗ aba 13∗ 44∗

Table 6.

Groups of orders 13 and 17 are isomorphic to the additive groups Z13 and
Z17, respectively. So, by Theorem 2.5, quasigroups Q3 and Q4 are isomorphic to
quadratical quasigroups induced by Z13 and Z17, respectively. Direct computa-
tions show that Q3 is isomorphic to the quadratical quasigroup (Z13, ·) with the
operation x · y = 11x + 3y(mod 13); the dual quasigroup (Q3)∗ is isomorphic to
the quasigroup (Z13, ◦) with the operation x ◦ y = 3x + 11y(mod 13). Similarly,
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Q4 is isomorphic to (Z17, ·) with the operation x · y = 11x + 7y(mod 17). Its
dual quasigroup (Q4)∗ is isomorphic to the quasigroup (Z17, ◦) with the operation
x ◦ y = 7x+ 11y(mod 17).

7. No quadratical quasigroup of form Q6 exists

The quasigroup x · y = [9x + 21y]29 is clearly idempotent, medial and book-
end. Therefore, by Theorem 2.2, it is quadratical. Set a = 1 and b = 2. Then
we can calculate that aba = 16, H1 = {1, 22, 10, 2}, H2 = {7, 8, 24, 25}, H3 =
{28, 17, 15, 4}, H4 = {29, 5, 27, 3}, H5 = {18, 21, 11, 14}, H6 = {23, 19, 13, 9} and
H7 = {26, 12, 20, 6}. Hence, this quasigroup and its dual are of the form Q7. So,
we have so far shown that there are quadratical quasigroups of the form Q1, Q2,
Q3, Q4 and Q7.

It follows from Theorem 4.11 [3] that there are no quadratical quasigroups of
order 21 or 33, so there are no quadratical quasigroups of the form Q5 or Q8.

Theorem 7.1. There is no quadratical quasigroup of form Q6.

Proof. Case 1: aba · a = 61. Using Propositions 3.6, 3.7, Theorem 5.2 and
Theorem 2.1, we see that aba · a = 61, by (10), implies

a · 61 = 61 · aba = 52 = 62 · 11
(10)
= aba · 62 = 52 · 52. (12)

Then, 62 = 61 ·64, by Proposition 3.5. This, by Proposition 3.6, gives 52 = 51 ·54.
Also, 62 = 52 · 54, by Definition 3.1, whence 52 = 42 · 44, by Proposition 3.6 and
(10), and so

52 = 51 · 54 = 42 · 44. (13)

Theorem 5.2 implies 61 = 14 · 21 = 34 · 14, 62 = 23 · 14 and 63 = 11 · 34. So, these
identities generate the following:

52 = 63 · 12 = 13 · 64 = 64 · 21 = 23 · 63. (14)

As a consequence of (12), (13), (15), Proposition 3.5 and Proposition 3.10
we can see that the solutions to the equation 52 = 12 · x must be in the set
{14, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 51, 53}. Now, by Definition 3.1, we obtain
22 = 12 · 14 6= 52 and so x 6= 14.

To eliminate the other possibilities for x we now use the generating identities
(15) through (25), indicated in the Table 7 below.
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(15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)

(n−1)2 (n−1)2 aba·11 11·aba Prop. Def. n1 = n2 = n3 = n1 = idem.
=11·n1 =n2·11 = 61 = 62 3.5 3.1 14·21 23·14 11·34 34·14

52 11·61 62·11 aba·62 61·aba 51·54 42·44 63·12 13·64 64·21 23·13 52·52
44 62·52 54·62 aba·54 52·aba 42·43 34·33 51·64 61·22 53·12 11·61 44·44
33 54·44 43·54 aba·43 44·aba 34·31 23·21 42·53 52·41 41·64 62·52 33·33
21 43·33 31·43 aba·31 33·aba 23·22 11·12 34·41 44·32 32·53 54·34 21·21
12 31·21 22·31 aba·22 21·aba 11·14 62·64 23·32 33·24 24·41 43·33 12·12
64 22·12 14·22 aba·14 12·aba 62·63 54·53 11·24 21·13 13·32 31·21 64·64
53 14·64 63·14 aba·63 64·aba 54·51 43·41 62·13 12·61 61·24 22·12 53·53
41 63·53 51·63 aba·51 53·aba 43·42 31·32 54·61 64·52 52·13 14·54 41·41
32 51·41 42·51 aba·42 41·aba 31·34 22·24 43·52 53·44 44·61 63·53 32·32
24 42·32 34·42 aba·34 32·aba 22·23 14·13 31·44 41·33 33·52 51·41 24·24
13 34·24 23·34 aba·23 24·aba 14·11 63·61 22·33 32·21 21·44 42·32 13·13
61 23·13 11·23 aba·11 13·aba 63·62 51·52 14·21 24·12 12·33 34·14 61·61
51 13·63 61·13 aba·61 63·aba 53·52 41·42 64·11 14·62 62·23 24·64 51·51
31 53·43 41·53 aba·41 43·aba 33·32 21·22 44·51 54·42 42·63 64·44 31·31
11 33·23 21·33 aba·21 23·aba 13·12 61·62 24·31 34·22 22·43 44·24 11·11
62 21·11 12·21 aba·12 11·aba 61·64 52·54 13·22 23·14 14·31 33·23 62·62
54 12·62 64·12 aba·64 62·aba 52·53 44·43 61·14 11·63 63·22 21·11 54·54
43 64·54 53·64 aba·53 54·aba 44·41 33·31 52·63 62·51 51·14 12·62 43·43
34 52·42 44·52 aba·44 42·aba 32·33 24·23 41·54 51·43 43·62 61·51 34·34
23 44·34 33·44 aba·33 34·aba 24·21 13·11 32·43 42·31 31·54 52·42 23·23
14 32·22 24·32 aba·24 22·aba 12·13 64·63 21·34 31·23 23·42 41·31 14·14
63 24·14 13·24 aba·13 14·aba 64·61 53·51 12·23 22·11 11·34 32·22 63·63
42 61·51 52·61 aba·52 51·aba 41·44 32·34 53·62 63·54 54·11 13·63 42·42
22 41·31 32·41 aba·32 31·aba 21·24 12·14 33·42 43·34 34·51 53·53 22·22

Table 7.

Assuming that Q6 is quadratical, using the properties of a quadratical quasi-
group we will prove that all the remaining possible values of x lead to a contra-
diction.

When we use a particular value of an element we will refer to the column
in which this value appears in Table 7. For example, we will use the fact that
52 = 63 · 12, from (21), henceforth without mention

By (21), if 52 = 12 · 53 = 63 · 12, then 12 = 53 · 63, and, multiplying on the
right by aba gives 64 = 41 · 51, which, along with 51 · 41 = 24, (from (24)) gives
51 = 64 · 24. This contradicts 51 = 64 · 11, from (21).

If 52 = 12 ·51 = 63 ·12 then 12 = 51 ·63 = 62 ·64, from (20). Hence, by (19) and
(20), 61 = 63 · 62 = 64 · 51 = 51 · 52. Therefore, using (24), 51 = 52 · 64 = 24 · 64,
a contradiction.

If 52 = 12 · 43 = 63 · 12 then, by (23), 12 = 43 · 63 = 24 · 41. By Proposition
3.11 we have 63 · 24 = 41 · 43 = aba = 23 · 24, contradiction.

If 52 = 12 · 42 = 63 · 12 then, by (23), is 12 = 42 · 63 = 24 · 41. By Proposition
3.11 and (24), 51 = 41 · 42 = 63 · 24 = 24 · 64. So, by (20), 24 = 64 · 63 = 14,
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contradiction.
If 52 = 12 · 41 = 63 · 12 then, by (23), 12 = 41 · 63 = 24 · 41 and so, using (15),

41 = 63 · 24 = 63 · 53, contradiction.
If 52 = 12 · 34 = 63 · 12 then, by (21), 12 = 34 · 63 = 23 · 32 and, by Proposition

3.11 and (22), 42 = 32 · 34 = 63 · 23 = 63 · 54, contradiction.
If 52 = 12 · 33 = 63 · 12 then, by (21), 12 = 33 · 63 = 23 · 32 and so, by

Propositions 3.11 and 3.5, 34 = 32 · 33 = 63 · 23 = 24 · 23, contradiction.
If 52 = 12 · 32 = 63 · 12 then, by (21), 12 = 32 · 63 = 23 · 32 and so, by (24),

32 = 63 · 33 = 63 · 53, contradiction.
If 52 = 12 · 31 = 63 · 12 then, by (15), 12 = 31 · 63 = 31 · 21, contradiction.
If 52 = 12 · 24 = 63 · 12 then, by (15), 12 = 24 · 63 = 24 · 41, contradiction.
If 52 = 12 · 23 = 63 · 12 then, by (21), 12 = 23 · 63 = 23 · 32, contradiction.
If 52 = 12 · 22 = 63 · 12 then, by (26), 12 = 22 · 63 = 22 · 31, contradiction.
If 52 = 12 · 14 = 63 · 12 then, by Proposition 3.11, 52 = 12 · 14 = 22, contradic-

tion.
In this way we have proved that when aba ·a = 61, there is no right solvability,

a contradiction.
The proof that there is no right solvability in Case 2 (aba · a = 62), Case 3

(aba · a = 63) and Case 4 (aba · a = 64) are similar, where the values in Table 7
are different, according to Theorem 5.2. We omit these detailed calculations.

There are 32 quadratical quasigroups of order 25 (cf. [3]). Some of them are
isomorphic to quasigroups Q1×Q1, Q1×(Q1)∗, (Q1)∗×Q1, (Q1)∗×(Q1)∗.

Theorem 7.2. Quadratical quasigroups induced by Z25 are not isomorphic to
Q1×Q1, Q1×(Q1)∗, (Q1)∗×Q1, (Q1)∗×(Q1)∗.

Proof. There are only two quadratical quasigroups induced by Z25 (cf. [3]). Their
operations are given by x · y = 22x + 4y(mod 25) and x ◦ y = 4x + 22y(mod 25).
Quasigroups Q1 and (Q1)∗ are isomorphic, respectively, to quasigroups (Z5, ·) and
(Z5, ◦), where x · y = 4x+ 2y(mod 5) and x ◦ y = 2x+ 4y(mod 5).

Suppose that (Z25, ·) is isomorphic to Q1×Q1 or to Q1×(Q1)∗. Since in (Z5, ·)
we have x · xy = yx, in Q1×Q1 and Q1×(Q1)∗ for all x = (x, a) 6= y = (y, a),
x̄ · x̄ȳ = ȳx̄. But in (Z25, ·) we have 22ȳ + 4x̄ = ȳx̄ = x̄ · x̄ȳ = 10x̄ + 16ȳ, which
implies x̄ = ȳ. So, (Z25, ·) cannot be isomorphic to Q1×Q1 or Q1×(Q1)∗.

In (Q1)∗×Q1 and (Q1)∗× (Q1)∗ for all x = (x, a) 6= y = (y, a), we have
ȳx̄ · x̄ = x̄ȳ. But in (Z25, ·) we have 22x̄ + 4ȳ = x̄ȳ = ȳx̄ · x̄ = 9ȳ + 17x̄, which
implies x̄ = ȳ. So, (Z25, ·) also cannot be isomorphic to (Q1)∗×Q1 or (Q1)∗×(Q1)∗.

In the same manner we can prove that (Z25, ◦) is not isomorphic to Q1×Q1,
Q1×(Q1)∗, (Q1)∗×Q1, (Q1)∗×(Q1)∗.

8. Translatable groupoids
Patterns of translatability can be hidden in the Cayley tables of quadratical quasi-
groups. One can assume the properties of quadratical quasigroups and then calcu-
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late whether translatable groupoids of various orders exist with these properties.
We proceed to prove that the quadratical quasigroups Q1, (Q1)∗, Q3, (Q3)∗, Q4
and (Q4)∗ are translatable and that Q2 is not translatable.

Definition 8.1. A finite groupoid Q = {1, 2, . . . , n} is called k-translatable, where
1 6 k < n, if its Cayley table is obtained by the following rule: If the first row of
the Cayley table is a1, a2, . . . , an, then the q-th row is obtained from the (q− 1)-st
row by taking the last k entries in the (q−1)−st row and inserting them as the first
k entries of the q-th row and by taking the first n− k entries of the (q− 1)-st row
and inserting them as the last n−k entries of the q-th row, where q ∈ {2, 3, . . . , n}.
Then the (ordered) sequence a1, a2, . . . , an is called a k-translatable sequence of Q
with respect to the ordering 1, 2, . . . , n. A groupoid is called a translatable groupoid
if it has a k-translatable sequence for some k ∈ {1, 2, . . . , n}.

It is important to note that a k-translatable sequence of a groupoid Q depends
on the ordering of the elements in the Cayley table of Q. A groupoid may be k-
translatable for one ordering but not for another (see Example 8.13 below). Unless
otherwise stated we will assume that the ordering of the Cayley table is 1, 2, . . . , n
and the first row of the table is a1, a2, . . . , an.

Proposition 8.2. The additive group Zn is (n− 1)-translatable.

The example below shows that there are (n − 1)-translatable quasigroups of
order n which are not a cyclic group.

Example 8.3. Consider the following three groupoids of order n = 5.

· 1 2 3 4 5

1 1 4 2 5 3
2 4 2 5 3 1
3 2 5 3 1 4
4 5 3 1 4 2
5 3 1 4 2 5

· 1 2 3 4 5

1 2 1 3 4 5
2 1 3 4 5 2
3 3 4 5 2 1
4 4 5 2 1 3
5 5 2 1 3 4

· 1 2 3 4 5

1 3 1 5 2 4
2 1 5 2 4 3
3 5 2 4 3 1
4 2 4 3 1 5
5 4 3 1 5 2

These groupoids are 4-translatable quasigroups but they are not groups. The
first is idempotent, the second is without idempotents, the third is a cyclic quasi-
group generated by 1 or by 5.

Proposition 8.4. Any (n− 1)-translatable groupoid of order n is commutative.

Proof. In a k-translatable groupoid i · j = a(i−1)(n−k)+j , where the subscript is
calculated modulo n. If k = n− 1, then i · j = ai+j−1 = j · i.

Theorem 8.5. There are no (m−1)-translatable quadratical quasigroups of order
m.

Proof. By Proposition 8.4 such a quasigroup is commutative. Since it also is
bookend and idempotent, x = (y · x) · (x · y) = (x · y) · (x · y) = x · y, so it cannot
be a quasigroup.
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The following proposition is obvious.

Proposition 8.6. Every 1-translatable groupoid is unipotent, i.e., in such groupoid
there exists an element a such that x2 = a for every x.

Corollary 8.7. There is no idempotent 1-translatable groupoid of order n > 1.

Proposition 8.8. A k-translatable groupoid of order n containing a cancellable
element is a quasigroup if and only if (k, n) = 1.

Proof. Let Q be a k-translatable groupoid of order n and let a be its cancellable
element. Then in the Cayley table [xij ]n×n corresponding to this groupoid the a-
row contains all elements of Q. Without loss of generality we can assume that this
is the first row. If this row has the form a1, a2, . . . , an, then other entries have the
form xij = a(i−1)(n−k)+j , where the subscript (i−1)(n−k)+j is calculated modulo
n. Obviously, for fixed i = 1, 2, . . . , n, all entries xi1, xi2, . . . , xin are different.

If (n, k) = 1, then also (n, n− k) = 1. So, in this case, also all x1j , x2j , . . . , xnj
are different. Hence, this table determines a quasigroup.

If (n, k) = t > 1, then (n, n − k) = t and the equation (i − 1)(n − k) = 0
has at least two solutions in the set {1, 2, . . . , n}. Thus, in the Cayley table of
such groupoid at least two rows are identical. Hence such groupoid cannot be a
quasigroup.

Theorem 8.9. For every odd n and every k > 1 such that (k, n) = 1 there is
at most one idempotent k-translatable quasigroup. For even n there are no such
quasigroups.

Proof. Let a1, a2, a3, . . . , an be the first row of a k-translatable quasigroup Q.
This quasigroup is idempotent only in the case when in its Cayley table we

have 1 = x11, 2 = x22 = a(n−k)+2, 3 = x33 = a2(n−k)+3, 4 = x44 = a3(n−k)+4,
and so on. This means that the main diagonal of the table [xij ]n×n should con-
tains elements a1, a(n−k)+2, a2(n−k)+3, . . . , a(n−1)(n−k)+n, where all subscripts are
calculated modulo n. Obviously, at(n−k)+t = at′(n−k)+t′ only in the case when
t − tk ≡ t′ − t′k(modn), i.e., (t − t′)(k − 1) ≡ 0(modn). If n is odd and
(n, k) = 1, then for some k also is possible (n, k − 1) = 1. In this case the
equation z(k − 1) ≡ 0(modn) has only one solution z = 0, so t = t′. Hence the
diagonal of the table [xij ]n×n contains n different elements.

If n is even and (n, k) = 1, then k is odd. Thus, k−1 is even and (n, k−1) 6= 1.
Hence, the equation z(k−1) ≡ 0(modn) has at least two solutions. Consequently,
the diagonal of the table [xij ]n×n contains at least two equal elements. This
contradicts to the fact that this quasigroup is idempotent. Therefore, for even n
there are no idempotent k-translatable quasigroups.

Corollary 8.10. For every odd n and every k > 1 such that (n, k) = (n, k−1) = 1
there is exactly one idempotent k-translatable quasigroup of order n.
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Corollary 8.11. The first row of an idempotent k-translatable quasigroup Q =
{1, 2, . . . , n} has the form 1, a2, a3, . . . , an, where a(i−1)(n−k)+i(modn) = i for every
i ∈ Q.

Example 8.12. Consider an idempotent quasigroup Q = {1, 2, . . . , 7}. From the
proof of Theorem 8.9 it follows that if this quasigroup is 3-translatable, then the
first row of its Cayley table has the form 1, 4, 7, 3, 6, 2, 5. If it is 4-translatable,
then the first row has the form 1, 3, 5, 7, 2, 4, 6.

Example 8.13. The following example shows that for Q1 = {a, ab, ba, b, aba} the
sequence a, ba, aba, ab, b is 3-translatable, but Q1 presented in the form Q1′ =
{a, b, ab, ba, aba} has no translatable sequences.

Q1 a ab ba b aba

a a ba aba ab b

ab aba ab b a ba

ba b a ba aba ab

b ba aba ab b a

aba ab b a ba aba

Q1′ a b ab ba aba

a a ab ba aba b

b ba b aba ab a

ab aba a ab b ba

ba b aba a ba ab

aba ab ba b a aba

The sequence a, aba, b, a∗b, b∗a is 2-translatable for (Q1)∗ = {a, b∗a, a∗b, b, aba}.
(Q1′)∗ = {a, b, b ∗ a, a ∗ b, aba} has no translatable sequence.

(Q1)∗ a b ∗ a a ∗ b b aba

a a aba b a ∗ b b ∗ a
b ∗ a a ∗ b b ∗ a a aba b

a ∗ b aba b a ∗ b b ∗ a a

b b ∗ a a aba b a ∗ b
aba b a ∗ b b ∗ a a aba

(Q1′)∗ a b b ∗ a a ∗ b aba

a a a ∗ b aba b b ∗ a
b b ∗ a b a aba a ∗ b

b ∗ a a ∗ b aba b ∗ a a b

a ∗ b aba b ∗ a b a ∗ b a

aba b a a ∗ b b ∗ a aba

By Corollary 8.10, the quasigroup Q1 is isomorphic to a 3-translatable quasi-
group (Z5, ◦) with the operation x ◦ y = 4x + 2y(mod 5). The dual quasigroup
(Q1)∗ is isomorphic to a 2-translatable quasigroup (Z5, �) with the operation
x � y = 2x+ 4y(mod 5).

Theorem 8.14. A groupoid isomorphic to a k-translatable groupoid also has a
k-translatable sequence.

Proof. Let α be an isomorphism from a k-translatable groupoid (Q, ·) to a groupoid
(S, ◦). If Q is with ordering 1, 2, . . . , n, then on S we consider ordering induced by
α, namely α(1), α(2), . . . , α(n). Suppose that the first row of the Cayley table of
Q has the form a1, a2, . . . , an. Then in the i-th row and j-th column of this table
is xij = a(i−1)(n−k)+j(modn). Consequently, in the α(i)-row and α(j)-th column
of the Cayley table [zij ] of S we have zα(i),α(j) = α(i) ◦ α(j) = α(i · j) = α(xij).
Since Q is k-translatable, for every 1 6 t 6 k, we have ai,n−k+t = ai+1,t. Thus,
zα(i),α(n−k+t) = α(i) ◦ α(n − k + t) = α(xi,n−k+t) = α(xi+1,t) = α((i + 1) · t) =
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α(i+ 1)◦α(t) = zα(i+1),α(t). This shows that S also is k-translatable (for ordering
α(1), α(2), . . . , α(n)).

Theorem 8.15. An idempotent cancellable groupoid of order 9 is not translatable.

Proof. Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be the first row of the Cayley table of an
idempotent cancellable groupoid Q. Then obviously ai 6= aj for i 6= j. If Q is
k-translatable, then x44 = 4 = a3(9−k)+4. Since 3(9 − k) + 4 ≡ 4(mod 9) only for
k = 3 and k = 6, this groupoid can be 3-translatable or 6-translatable. But in this
case the fourth row coincides with the first, so Q cannot be cancellable.

Corollary 8.16. The quadratical quasigroups of order 9 are not translatable.

Theorem 8.17. An idempotent, bookend quasigroup Q, where Q = {1, 2, . . . , n},
is k-translatable if and only if for every i ∈ Q we have i = a(s−1)(n−k)+t(modn),
where s, t ∈ Q are such that{

k − 2 ≡ s(k − 1)(modn),
ik − 1 ≡ t(k − 1)(modn).

(15)

Proof. Let 1, a2, a3, . . . , an be the first row of the Cayley table [xij ] of an idem-
potent, bookend quasigroup Q = {1, 2, 3, . . . , n}. If it is k-translatable, then, by
Corollary 8.11, we have a(i−1)(n−k)+i(modn) = i for each i ∈ Q.

Moreover, in this quasigroup for every i ∈ Q should be

i = (1 · i) · (i · 1) = ai · xi1 = ai · a(i−1)(n−k)+1(modn)

= s · t = xst = a(s−1)(n−k)+t(modn),

where {
ai = a(s−1)(n−k)+s(modn) = s,
a(i−1)(n−k)+1(modn) = a(t−1)(n−k)+t(modn) = t

for some s, t ∈ {1, 2, . . . , n} satisfying (15).
The converse statement is obvious.

Corollary 8.18. A quadratical quasigroup of order 25 can be k-translatable only
for k = 7 or k = 18.

Proof. Let Q = {1, 2, . . . , 25} be a quadratical quasigroup. By Theorem 8.17, in
this quasigroup for i = 2 should be

a27−k(mod 25) = xst = a(s−1)(25−k)+t(mod 25),

where s, t ∈ {1, 2, . . . , 25} satisfy the equations{
k − 2 ≡ s(k − 1)(mod 25),

2k − 1 ≡ t(k − 1)(mod 25).
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To reduce the number of solutions of these equations observe that

xi1 6= 1←→ a(i−1)(25−k)+1(mod 25) 6= 1 = a1 ←→ (i− 1)k ≡/ 0(mod 25).

The last, for i = 6, is possible only for k 6= 5, 10, 15, 20.
Also

xii 6= 1←→ a(i−1)(25−k)+i(mod 25) 6= 1 = a1 ←→ (i− 1)(k − 1) ≡/ 0(mod 25),

which for i = 6 is possible only for k 6= 6, 11, 16, 21.
Hence Q cannot be k-translatable for k ∈ {5, 6, 10, 11, 15, 16, 20, 21}. By The-

orem 8.5 and Corollary 8.7 it also cannot be k-translatable for k ∈ {1, 24, 25}.
In other cases, for i = 2, we obtain

k 2 3 4 7 8 9 12 13 14 17 18 19 22 23
s 25 13 9 5 8 4 10 3 24 15 23 19 20 18
t 3 15 19 23 20 24 18 25 4 12 5 9 8 10
xst a5 a4 a12 a20 a14 a22 a10 a24 a7 a24 a9 a17 a15 a19
a27−k a25 a24 a23 a20 a19 a18 a15 a14 a13 a10 a9 a8 a5 a4

Since xst = a27−k only for k = 7 and k = 18, a quasigroup of order 25 can be
k-translatable only for k = 7 and k = 18.

Direct computations shows that Z25 with the operation x·y = 22x+4y(mod 25)
is an example of a 7-translatable quadratical quasigroup of order 25. Its dual
quasigroup is a 18-translatable.

By changing the order of rows and columns in Tables 3, 4, 5 and 6 we obtain
the following two theorems.

Theorem 8.19. The sequence 11, 12, 33, 21, 31, 34, 24, 32, 13, 14, 13, aba, 22 is 5-
translatable for Q3 = {11, 14, 34, 12, 23, 24, 33, aba, 32, 21, 22, 13, 31}.

The sequence 11∗, 12∗, 23∗, aba∗, 22∗, 13∗, 14∗, 34∗, 24∗, 32∗, 33∗, 21∗, 31∗ is 8-trans-
latable for (Q3)∗={11∗, 14∗, 31∗, 13∗, 21∗, 22∗, 33∗, aba∗, 32∗, 23∗, 24∗, 12∗, 34∗}.

Theorem 8.20. The sequence
11, 12, 42, 43, 13, 14, 33, 21, 31, 44, 23, aba, 22, 41, 34, 24, 32

is 13-translatable for
Q4 = {11, 14, 23, 24, 43, 31, 41, 12, 33, aba, 32, 13, 44, 34, 42, 21, 22}.

The sequence
11∗, 12∗, 34∗, 24∗, 32∗, 44∗, 23∗, aba∗, 22∗, 41∗, 33∗, 21∗, 31∗, 13∗, 14∗, 43∗, 42∗

is 4-translatable for
(Q4)∗={11∗, 14∗, 21∗, 22∗, 44∗, 34∗, 42∗, 13∗, 33∗, aba∗, 32∗, 12∗, 43∗, 31∗, 41∗, 23∗, 24∗}.

Quasigroups Q3 and (Q3)∗ are isomorphic, respectively, to quasigroups (Z13, ·)
and (Z13, ◦), where x · y = 11x+ 3y(mod 13) and x ◦ y = 3x+ 11y(mod 13).

Quasigroups Q4 and (Q4)∗ are isomorphic, respectively, to quasigroups (Z17, ·)
and (Z17, ◦), where x · y = 11x+ 7y(mod 17) and x ◦ y = 7x+ 11y(mod 17).
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9. Translatable quasigroups induced by groups Zm
In this section we describe quadratical quasigroups induced by groups Zm. We
start with some general results.

Lemma 9.1. A quasigroup of the form x ∗ y = ax+ by+ c induced by a group Zm
is k-translatable if and only if a+ kb ≡ 0(modm).

Proof. The i-th row of the Cayley table of this quasigroup has the form

a(i− 1) + c, a(i− 1) + b+ c, a(i− 1) + 2b+ c, . . . , a(i− 1) + (m− 1)b+ c,

the (i+ 1)-row has the form

ai+ c, ai+ b+ c, ai+ 2b+ c, . . . , ai+ (m− 1)b+ c.

So, this quasigroup is k-translatable if and only if

ai+ c = a(i− 1) + (m− k)b+ c(modm),

i.e., if and only if a+ kb ≡ 0(modm).

Corollary 9.2. A quasigroup (Zm, �), where x � y = ax+ y+ c, is (m− a)-trans-
latable.

Theorem 9.3. Each quadratical quasigroup induced by group Zm is k-translatable
for some 1 < k < m − 1, namely for k such that (a − 1)k ≡ a(modm). This is
valid for exactly one value of k.

Proof. By Theorem 2.5 and Lemma 9.1 a quadratical quasigroup induced by Zm
is k-translatable if and only if there exist k such that a ≡ (1 − a)k(mod m), i.e.,
(a − 1)k ≡ a(mod m). Since (a − 1,m) = 1, the last equation has exactly one
solution in Zm (cf. [8]).

Theorem 9.4. A quadratical quasigroup (Zm, ·) with x · y = ax + (1 − a)y is k-
translatable if and only if its dual quasigroup (Zm, ◦), where x ◦ y = (1− a)x+ ay,
is (m− k)-translatable.

Proof. Let (Zm, ·) be k-translatable, then (a−1)k ≡ a(modm), i.e., k ≡ a
a−1 (mod m).

If (Zm, ◦) is t-translatable, then ak ≡ (a − 1)(modm), i.e., t ≡ a−1
a (mod m).

( a
a−1 and a1

a are well defined in Zm because (a,m) = (a − 1,m) = 1.) Thus
k + t = 2a2−2a+1

a(a−1) = 0(mod m), by Theorem 2.5. Hence k + t = m.

Note that this theorem is not valid for quasigroups which are not quadratical.
Indeed, a quasigroup (Z7, ·) with x · y = 4x + y(mod 7) is 3-translatable, but its
dual quasigroup (Z7, ∗), where x ∗ y = x+ 4y(mod 7), is 5-translatable.

Corollary 9.5. There are no self-dual quadratical quasigroups induced by groups
Zm.
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Using Theorem 9.3 we can calculate all k-translatable quadratical quasigroups
induced by groups Zm. For this, it is better to rewrite the condition given in
Theorem 9.3 in the form (k − 1)a ≡ k(modm).

2-translatable quadratical quasigroups
In this case a ≡ 2(modm), where a satisfies (5). So, 5 ≡ 0(modm). Thus

m = 5. Therefore there is only one 2-translatable quadratical quasigroup induced
by Zm. It is induced by Z5 and has the form x · y = 2x+ 4y(mod 5).

3-translatable quadratical quasigroups
Then 2a ≡ 3(mod m). Since (5) can be written in the form 2a(a− 1) + 1 = 0,

we also have 3a ≡ 2(mod m). This, together with 4a ≡ 6(mod m), implies a = 4.
Hence 8 ≡ 3(mod m). Thus m = 5. Therefore there is only one 3-translatable
quadratical quasigroup induced by Zm. It is induced by Z5 and has the form
x · y = 4x+ 2y(mod 5).

4-translatable quadratical quasigroups
Now 3a ≡ 4(modm) and 6a ≡ 8(modm). From (5) we obtain 6a(a−1)+3 = 0,

which together with the last equation gives 8a ≡ 5(modm). This, with 9a ≡
12(modm), implies a = 7. Hence 21 ≡ 4(modm). Thus m = 17. Therefore there
is only one 4-translatable quadratical quasigroup induced by Zm. It is induced by
Z17 and has the form x · y = 7x+ 11y(mod 17).

5-translatable quadratical quasigroups
Now 4a ≡ 5(modm) and 5a ≡ 3(modm), by (5). Thus, 16a ≡ 20(modm) and

15a ≡ 9(modm), which implies a = 11. Hence 44 ≡ 5(modm). Thus m = 13.
Therefore a 5-translatable quadratical quasigroup is induced by Z13 and has the
form x · y = 11x+ 4y(mod 13).

6-translatable quadratical quasigroups
Now 5a ≡ 6(modm) and 12a ≡ 7(modm), by (5). Thus, 25a ≡ 30(modm) and

24a ≡ 14(modm), which implies a = 16. Hence 80 ≡ 6(modm). Thus m = 37.
Therefore a 6-translatable quadratical quasigroup is induced by Z37 and has the
form x · y = 16x+ 22y(mod 37).

7-translatable quadratical quasigroups
Now 6a ≡ 7(modm) and 7a ≡ 4(modm), by (5). Thus, a ≡ (−3)(modm)

and (−18) ≡ 7(modm). Consequently, 25 ≡ 0(modm). Hence m = 25. (The
case m = 5 is impossible because must be m > k = 7.) Therefore a = 22.
So, a 7-translatable quadratical quasigroup is induced by Z25 and has the form
x · y = 22x+ 4y(mod 25).

8-translatable quadratical quasigroups
Now 7a ≡ 8(modm) and 16a ≡ 9(modm), by (5). Thus, 49a ≡ 56(modm)

and 48a ≡ 27(modm) shows that a ≡ 29(modm). Hence 7 · 29 ≡ 8(modm)
and 16 · 29 ≡ 9(modm) imply 195 ≡ 0(modm) and 455 ≡ 0(modm). Therefore,
65 ≡ 0(modm). Since m > k = 8, the last means that m = 65 or m = 13. So, a
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8-translatable quadratical quasigroup is induced by Z13 or by Z65. In the first case
it has the form x · y = 3x+ 11y(mod 13), in the second x · y = 29x+ 37y(mod 65).

9-translatable quadratical quasigroups
In this case 8a ≡ 9(modm) and 9a ≡ 5(modm), by (5). So, a ≡ (−4)(modm),

and consequently 41 ≡ 0(modm). Thus, m = 41. Hence a 9-translatable quadrat-
ical quasigroup is induced by Z41 and has the form x · y = 37x+ 5y(mod 41).

10-translatable quadratical quasigroups
In a similar way we can see that there is only one 10-translatable quasigroup

induced by Zm. It is induced by Z101 and has the form x ·y = 46x+56y(mod 101).

As a consequence of the above calculations and Theorem 9.4 we obtain the
following list of (m− k)-translatable quadratical quasigroups induced by Zm.

(m−2)-translatable quadratical quasigroups
There is only one such quasigroup. It is induced by Z5 and has the form

x · y = 4x+ 2y(mod 5).

(m−3)-translatable quadratical quasigroups
There is only one such quasigroup. It has the form x · y = 2x+ 4y(mod 5).

(m−4)-translatable quadratical quasigroups
There is only one such quasigroup. It has the form x · y = 11x+ 7y(mod 17).

(m−5)-translatable quadratical quasigroups
There is only one such quasigroup. It has the form x · y = 3x+ 11y(mod 13).

(m−6)-translatable quadratical quasigroups
There is only one such quasigroup. It has the form x · y = 22x+ 16y(mod 37).

(m−7)-translatable quadratical quasigroups
There is only one such quasigroup. It has the form x · y = 4x+ 22y(mod 25).

(m−8)-translatable quadratical quasigroups
There are only two such quasigroups. The first has the form ·x · y = 11x +

3y(mod 13), the second x · y = 37x+ 29y(mod 65).

(m−9)-translatable quadratical quasigroups
There is only one such quasigroup. It has the form x · y = 5x+ 37y(mod 41).

(m−10)-translatable quadratical quasigroups
Such a quasigroup is induced by Z101 and has the form x·y = 56x+46y(mod 101).

Below, for k < 40, we list all k-translatable quadratical quasigroups of order
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m 6 1200 defined on Zm.

k m a b
2 5 2 4
3 5 4 2
4 17 7 11
5 13 11 7
6 37 16 22
7 25 22 4
8 13 3 11

65 29 37
9 41 37 5
10 101 46 56
11 61 56 6
12 29 9 21

145 67 79
13 17 11 7

85 79 7
14 197 92 106
15 113 106 8
16 257 121 137

k m a b
17 29 21 9

145 137 9
18 25 4 22

65 24 42
325 154 172

19 181 172 10
20 401 191 211
21 221 211 11
22 97 38 60

485 232 254
23 53 42 12

265 254 12
24 577 277 301
25 313 301 13
26 677 326 352
27 73 60 14

365 352 14
28 157 65 93

785 379 407

k m a b
29 421 407 15
30 53 12 42

901 436 466
31 37 22 16

481 466 16
32 41 5 37

205 87 119
1025 497 529

33 109 93 17
545 529 17

34 89 28 62
1157 562 596

35 613 596 18
36 1297 631 667
37 137 119 19

685 667 198
38 85 24 62

289 126 164
39 761 742 20

10. Classification of quadratical quasigroups

We have classified translatable quadratical quasigroups in several ways. Firstly,
all k-translatable quadratical quasigroups induced by Zm were calculated for k ∈
{2.3. . . . , 10}. Secondly, for a quadratical quasigroup of order m we calculated
all (m − t)-translatable quadratical quasigroups for t ∈ {2, 3, . . . , 10}. Then we
calculated all k-translatable quadratical quasigroups (k < 40) on Zm of order
m < 1200. We now list all k-translatable quadratical quasigroups induced by Zm,
for m < 500. A list of all translatable quadratical quasigroups of the form Qn, up
to a certain order, remains uncalculated.

Below are listed all k-translatable quadratical quasigroups of the form x · y =
ax + by(modm), where a < b, defined on the group Zm for m < 500. Dual
quasigroups x ◦ y = bx+ ay(modm) are omitted.

For example, the group Z65 induces four quadratical quasigroups: x · y =
24x + 42y(mod 65), x · y = 29x + 37y(mod 65) and two duals to these two. The
first is 18-translatable, the second 8-translatable. In the table below these dual
quasigroups x ·y = 42x+24y(mod 65) and x ·y = 37x+29y(mod 65) are not listed.



Translatable quadratical quasigroups 227

m a b k
5 2 4 2
13 3 11 8
17 7 11 4
25 4 22 18
29 9 21 12
37 16 22 6
41 5 37 32
53 12 42 30
61 6 56 50
65 24 42 18

29 37 8
73 14 60 46
85 7 79 72

24 62 38
89 28 62 34
97 38 60 22
101 46 56 10
109 17 93 76
113 8 106 98
125 29 97 68
137 19 119 100
145 9 137 128

67 79 12
149 53 97 44
157 65 93 28
169 50 120 70

m a b k
173 47 127 80
181 10 172 162
185 22 164 142

59 127 68
193 41 153 112
197 92 106 14
205 37 169 132

87 119 32
221 11 211 200

24 198 174
229 54 176 122
233 45 189 144
241 89 153 64
257 121 137 16
265 12 254 242

42 224 182
269 94 176 82
277 109 169 60
281 27 255 228
289 126 164 38
293 78 216 138
305 67 239 172

117 189 72
313 13 301 288
317 102 216 114
325 29 297 268

154 172 18

m a b k
337 95 243 148
349 107 243 136
353 156 198 42
365 14 352 338

87 279 192
373 135 239 104
377 50 328 278

154 224 70
389 58 332 274
397 32 366 334
401 191 211 20
409 72 338 266
421 15 407 392
425 79 347 268

147 279 132
433 90 344 254
445 62 384 322

117 329 212
449 34 416 382
457 55 403 348
461 207 255 48
481 16 466 450

133 349 216
485 157 329 172

232 254 22
493 79 415 336

96 398 302

10. Open questions and problems

Problem 1. For which values of n are there quadratical quasigroups of form Qn?
Note that n 6∈ {5, 6, 8, 14, 17, 19, 33, 26, 32, . . .}. Moreover, from Theorem 4.11

in [3] it follows that there are no such quasigroups if there is a prime p|4n+ 1 such
that p ≡ 3(mod 4).

Problem 2. Is every quadratical quasigroup Q of form Qn translatable (n 6= 2)?
The answer is positive if Q is isomorphic to a quasigroup induced by Z4m+1.

Problem 3. Are there self-dual, quadratical groupoids of order greater than 9?
Such quasigroups cannot be induced by Zm.

Problem 4. Is every quadratical groupoid of order greater than 9 and of form Qn
(n > 3) generated by any two of its distinct elements?
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Problem 5. If a quadratical quasigroup Q of order m is k-translatable, then is
Q∗ (m− k)-translatable?

For quadratical quasigroups induced by Zm the answer is positive.
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A note on the construction
of right conjugacy closed loops

Gerhard Hiss and Lucia Ortjohann

Abstract. We describe a group theoretical construction of non-associative right conjugacy closed
loops with abelian inner mapping groups.

1. Introduction

A loop is a quasigroup with an identity element. If the multiplication of the loop
is associative, it is a group. In the following, every loop, and in particular every
group, will be assumed to be finite.

Let (L, ∗) be a loop with identity element 1L. For every x ∈ L, we de-
note by Rx the right multiplication by x in L, i.e. Rx : L → L, y 7→ y ∗ x,
and we set RL := {Rx | x ∈ L}. Then RM(L) := 〈RL〉 6 Sym(L) and its
subgroup StabRM(L)(1L) are called the right multiplication group, and the in-
ner mapping group of L, respectively. The envelope of L consists of the triple
(RM(L), StabRM(L)(1L), RL). To simplify notation, let us put G := RM(L),
H := StabRM(L)(1L) and T := RL. Clearly, G acts faithfully and transitively
on L, which may hence be identified with the set of right cosets of H in G. Notice
that L is a group if and only if |G| = |L|, or, equivalently, H = {1}. By definition,
T generates G, and one can check that T is a transversal for the set of right cosets
of Hg in G for every g ∈ G. Envelopes of loops are generalized to loop folders.

The connection between loops and loop folders, summarized below, goes back
to Baer [3], and is described in detail by Aschbacher in [2, Section 1]. In the
following, G denotes a finite group and H a subgroup of G; we write H\G for the
set of right cosets of H in G. The triple (G,H, T ) is called a loop folder if T ⊆ G
is a transversal for Hg\G for every g ∈ G, and if 1 ∈ T . We call (G,H, T ) faithful
if G acts faithfully on H\G, i.e. if coreG(H) = {1}.

By construction, the envelope (G,H, T ) of a loop L is a faithful loop folder
with G = 〈T 〉, and there is a natural bijection between T and L. Conversely,
given a loop folder (G,H, T ), one can construct a loop (T, ∗) on the set T in such
a way that (G,H, T ) is isomorphic to the envelope of (T, ∗), provided (G,H, T ) is
faithful and G = 〈T 〉. This motivates the following definition. A transversal T for
H\G is called a generating transversal if G = 〈T 〉.
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A loop L is called right conjugacy closed or an RCC-loop if the set RL is closed
under conjugation, i.e. if R−1x RyRx ∈ RL for all x, y ∈ L. Analogously, a loop
folder (G,H, T ) is called right conjugacy closed, or an RCC-loop folder if T is G-
invariant under conjugation, i.e. g−1tg ∈ T for all g ∈ G, t ∈ T . Clearly, a loop is
right conjugacy closed if and only if its envelope is an RCC-loop folder.

In this paper we construct envelopes of RCC-loops with abelian inner map-
ping groups. The following trivial observations form the starting point of our
construction.

Proposition 1. Let G be a finite group, Q E G and H 6 G with H ∩ Q = {1}.
Let T̂ = {t1, . . . , tn} be a transversal for HQ in G. Then T := T̂Q is a transversal
for H in G and {t1Q, . . . , tnQ} is a transversal for HQ/Q in G/Q. Furthermore,
we have the following two statements.

(a) The transversal {t1Q, . . . , tnQ} is G/Q-invariant if and only if T is G-
invariant.

(b) The transversal {t1Q, . . . , tnQ} generates G/Q if and only if T generates G.

Thus if coreG(H) = {1} and the transversal {t1Q, . . . , tnQ} is G/Q-invariant
and generates G/Q, then (G,H, T ) is an envelope of an RCC-loop, which is non-
associative if {1} � H � G. �

Notice that coreG(H) 6 CH(Q) under our assumption H ∩ Q = {1}, so that
CH(Q) = {1} implies coreG(H) = {1}. If G/Q is abelian, then H is abelian and
T is G-invariant by part (a) of Proposition 1. This holds in particular for Q equal
to the commutator subgroup [G,G] of G. We conjecture that the converse of this
statement holds.

Conjecture 1. Let G be a finite group, H 6 G an abelian subgroup such that
there exists a G-invariant transversal T for H\G with 1 ∈ T , i.e. (G,H, T ) is an
RCC-loop folder. Then [G,G] ∩H = {1}. �

In Section 3 we prove this conjecture in special cases. The conjecture also
makes sense if G is an infinite group, but this more general question is out of the
scope of this paper.

2. Generating transversals for abelian groups

In this section we investigate the existence of generating transversals in abelian
groups. Let p be a prime. We first show that if G is an abelian p-group, and the
index of H in G is larger than the minimal size of a generating set of G, there
exists a generating transversal for H\G containing 1. We generalize this result
for an arbitrary abelian group G, however with a stronger condition on the index
of H in G.
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The minimal size of a generating set of G is called the rank of G, i.e.

rk(G) := min{|S| | S ⊆ G,G = 〈S〉}.

A cyclic group of order n is denoted by Cn. If T is a generating transversal for
H\G containing 1, then necessarily, |G : H| > rk(G). For the sake of clarity in
the proofs to follow, we write the elements of a direct product A×B of groups as
pairs (a, b) with a ∈ A, b ∈ B.

Proposition 2. Let G be an abelian p-group. Suppose that H 6 G is a subgroup
of G such that |G : H| > rk(G). Then there exists a generating transversal T for
H\G with 1 ∈ T .

Proof. We proceed by induction on the order of G, where the base case is trivial.
For the induction step, we assume that G 6= {1}, that the statement holds for
every abelian p-group of order less than |G|, and distinguish two cases.
Case 1: For every decomposition

G = Cm1
× Cm2

× · · · × Cmr
, (1)

with {1} 6= Cmi 6 G for 1 6 i 6 r, we have Cmi � H for all 1 6 i 6 r.
Consider an arbitrary decomposition of G as in (1), and let ai be a generator

of Cmi
for every 1 6 i 6 r. Then G = 〈a1, . . . , ar〉 and our assumption implies

that ai /∈ H for all 1 6 i 6 r. Suppose that for any 1 6 i 6= j 6 r, the generators
ai and aj of G lie in distinct cosets of H in G. Then there is a transversal for
H\G containing {1, a1, . . . , ar} and we are done. Otherwise, Hai = Haj for some
1 6 i 6= j 6 r. Without loss of generality, we may assume that |aj | ≥ |ai|. Then

G = 〈a1〉 × · · · × 〈aj−1〉 × 〈aja−1i 〉 × 〈aj+1〉 × · · · × 〈ar〉,

and we have 〈aja−1i 〉 6 H. We have thus reduced the assertion to the following
situation.
Case 2: There exist {1} 6= Cmi

6 G for 1 6 i 6 r such that

G = Cm1 × Cm2 × · · · × Cmr ,

and Cmj
6 H for some 1 6 j 6 r.

Note that the generators of these cyclic groups form a minimal generating set
of G of size r. Thus, it follows from Burnside’s basis theorem [5, III, Satz 3.15]
that r = rk(G).

Set U := Cmj ,

G̃ := Cm1
× · · · × Cmj−1

× Cmj+1
× · · · × Cmr

,

and H̃ := G̃∩H. Clearly, H̃ is a complement to U in H and thus, without loss of
generality, we may assume that

G = G̃× U and H = H̃ × U.
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By construction,

rk(G̃) = r − 1 < r = rk(G).

Since
∣∣G̃∣∣ < |G| and ∣∣G̃ : H̃

∣∣ = |G : H| > rk(G) > rk(G̃), (2)

we can apply the induction hypothesis to G̃ and hence there exists a generating
transversal T̃ for H̃\G̃ with 1 ∈ T̃ . Moreover, from Equation (2) we obtain∣∣T̃ − {1}∣∣ = ∣∣G̃ : H̃

∣∣− 1 > rk(G̃). (3)

Suppose that T̃−{1} is a minimal generating set for G̃. Then Burnside’s basis the-
orem [5, III, Satz 3.15] implies that

∣∣T̃ −{1}∣∣ = rk(G̃), contradicting Equation (3).
Thus there exists 1 6= t ∈ T̃ such that t = t1 · · · tk for certain t1, . . . , tk ∈ 〈T̃ \{1, t}〉.

Now T̃ × {1} is a transversal for H\G and we set

T := (T̃ × {1} \ {(t, 1)}) ∪ {(t, u)},

where u is a generator of U . Clearly, (1, 1) ∈ T , and T is a transversal for
H\G since (t, 1) and (t, u) lie in the same coset of H in G. It remains to show
that T generates G. Recall that t = t1 · · · tk with t1, . . . , tk ∈ 〈T̃ \ {1, t}〉. As
(t1, 1), . . . , (tk, 1) ∈ 〈T 〉, we also have (t−1, 1) ∈ 〈T 〉. Hence (1, u) = (t−1, 1)(t, u) ∈
〈T 〉 and then (t, 1) = (t, u)(1, u−1) ∈ 〈T 〉. We conclude that 〈T 〉 > 〈T̃ 〉 × 〈u〉 =
G̃× U = G and we are done.

Let G be an abelian group and let p1, . . . , pn be the distinct prime divisors of
G. Assume that G = G1 × · · · ×Gn with Gi := Opi

(G) for all 1 6 i 6 n. Then an
easy induction on n shows that

rk(G) = max{rk(Gi) | 1 6 i 6 n}. (4)

We now transfer the result of Proposition 2 to an arbitrary abelian group.

Theorem 1. Let G be an abelian group, let p1, . . . , pn be the distinct prime divisors
of G and let H 6 G. Then

G = G1 × · · · ×Gn and H = H1 × · · · ×Hn,

with Gi := Opi(G) and Hi := Opi(H). If

max{|Gi : Hi| | 1 6 i 6 n} > rk(G),

then there exists a generating transversal for H\G containing 1.
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Proof. Without loss of generality, we assume that

|G1 : H1| = max{|Gi : Hi| | 1 6 i 6 n}

and we set G̃ := G2 × · · · ×Gn and H̃ := H2 × · · · ×Hn. Then G = G1 × G̃ and
H = H1 × H̃. Equation (4) yields

m := |G1 : H1| = max{|Gi : Hi| | 1 6 i 6 n} > rk(G)

= max{ rk(Gi) | 1 6 i 6 n} > rk(G1).

Since G1 is an abelian p1-group with |G1 : H1| > rk(G1), it follows from Proposi-
tion 2 that there exists a transversal T1 = {t1, . . . , tm} for H1\G1 with t1 = 1 and
G1 = 〈T1〉. We are done if n = 1. Assume from now on that n > 1.

Put K := H1 × G̃. Then H 6 K 6 G and |G : K| = |G1 : H1| = m. We
next construct a generating transversal for K\G containing 1. Our hypothesis and
Equation (4) imply that

k := rk(G̃) =max{rk(Gi) | 2 6 i 6 n} 6 rk(G)

<max{|Gi : Hi| | 1 6 i 6 n} = |G1 : H1| = m.

Let S be a generating set of G̃ with |S| = k. Then S is a minimal generating set and
thus 1 6∈ S. Write S∪{1} := {s1, . . . , sk+1} with s1 = 1. Now |S∪{1}| = k+1 6 m,
and we set

R :=

k+1⋃
i=1

(ti, si) ∪
m⋃

j=k+2

(tj , s1).

As t1 = 1 and s1 = 1, we have (1, 1) ∈ R and |R| = m = |G : K|. We proceed to
show that R is a generating transversal for K\G. Suppose that (ti, sj), (tk, sl) ∈ R
such that (ti, sj)(tk, tl)

−1 ∈ H1 × G̃. Then tit−1k ∈ H1 and as T1 is a transversal
for H1\G1, it follows that i = k. This implies that j = l. We conclude that R is
a transversal for K\G. The fact gcd(|G1|, |G̃|) = 1 yields that for every (t, s) ∈ R
there exist a, b ∈ Z such that (t, s)a = (1, s) and (t, s)b = (t, 1). Hence

〈R〉 > 〈T1〉 × 〈S〉 = G1 × G̃ = G

and thus, R is a generating transversal for K\G with 1 ∈ R.
Let V be a transversal for H\K with 1 ∈ V . Then T := V R is a transversal

for H\G. Since 1 ∈ V , we have R ⊆ T and it follows that 〈T 〉 > 〈R〉 = G. This
implies that T is a generating transversal for H\G with 1 ∈ T .

With this result and Proposition 1 we can construct envelopes of RCC-loops.



234 G. Hiss and L. Ortjohann

Corollary 1. Let G be a group and let H be a subgroup of G. Let Q be a normal
subgroup of G such that G/Q is abelian, H ∩Q = {1}, CH(Q) = {1} and

max{|Op(G/Q) : Op(HQ/Q)| | p prime divisor of G/Q} > rk(G/Q).

Then there exists a G-invariant generating transversal T for H\G with 1 ∈ T ,
and G acts faithfully on H\G; thus (G,H, T ) is an envelope of a non-associative
RCC-loop. �

Recall that T in Corollary 1 arises from multiplying a generating transversal
for HQ\G with Q; see Proposition 1. If G is a Frobenius group with kernel Q
(in which case Q = [G,G], the commutator subgroup of G), every G-invariant
transversal for H\G has this form (see [7, Theorem 3.6]). In general there may be
G-invariant transversals, which are not obtained in this way. Since [G,G] is the
smallest normal subgroup of G with abelian quotient, we can replace Q by [G,G].

Let us investigate the range of Corollary 1 by comparing with the examples
presented in [1, Appendix B]. Let n ∈ {6, 8, 9, 10, 12, 14, 15, 21} and let G be one
of the transitive groups of degree n listed in this appendix. In each case, let H
denote the stabilizer of 1 in G. Assume that H is abelian, and put Q := [G,G].
Using GAP, once checks that H∩Q = {1} in each case. Trivially, coreG(H) = {1},
although, in general, CH(Q) is non-trivial. (The latter just means that the sufficent
condition for coreG(H) to be trivial mentioned after Proposition 1 is not necessary.)
Now, unless the GAP-identity number of G is one of (8, 17), (12, 15), (12, 28) or
(12, 42), the displayed condition in Corollary 1 is satisfied, so that one of the
RCC-loops arising from G and H is of the form constructed in Proposition 1.

Finally, notice that the construction of RCC-loops arising from Proposition 1
is, of course, not restricted to the case G/Q abelian. For example, consider the
transitive group L of degree 6 with GAP-identity number (6, 5), and let H denote
the stabilizer of 1 in L. Then H is cyclic of order 3, and L/Z(L) ∼= SL2(2); thus L
acts on the Klein four group Q in such a way that CH(Q) = {1}. Letting G
denote the semidirect product G = L n Q and identifying H with a subgroup
of G, Proposition 1, applied to the invariant transversals for H\L, yields invariant
transversals for H\G, and thus RCC-loops of order 24.

3. A conjecture for RCC-loop folders
In this final section we discuss Conjecture 1. Using GAP [4], this conjecture has
been verified for all non-abelian groups of order smaller than 40 by the second
author in her master thesis [7], and for the multiplication groups of RCC-loops of
order up to 30, by Artic in her dissertation [1].

It follows from a result of Zappa, that Conjecture 1 holds in case H is a Hall
subgroup of G. Indeed, Zappa shows that if H is a nilpotent Hall subgroup of G
such that there exists a transversal for H\G which is invariant under conjugation
by H, then H has a normal complement; see [8, Proposizione XIV 12.1]. Now if H
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is abelian, the commutator subgroup of G is contained in this normal complement.
In [6], Kochendörffer generalizes Zappa’s result. We present the essence of Zappa’s
and Kochendörffer’s argument in the following theorem.

Theorem 2. Let G be a finite group and let H be an abelian Hall subgroup of
G. Suppose that there exists transversal T for H\G which is invariant under
conjugation by H. Then [G,G] ∩H = {1}.

Proof. This is very much inspired by the proof of [6, Theorem]. The transfer map

τ : G→ H,x 7→
∏
t∈T

λTx (t),

where λTx (t) is the unique element in H such that tx = λTx (t)t
′ for some t′ ∈ T , is

a group homomorphism; see [5, IV, Hauptsatz 1.4].
Let h ∈ H and let h′ := λTh (t) for some t ∈ T . Then th = h′t′ for some

t′ ∈ T . It follows that hh′−1 = t−1h′t′h′
−1 ∈ H and since T is H-invariant, we

have h′t′h′−1 ∈ T . Thus, t = h′t′h′
−1. This yields that h = h′ = λTh (t) and hence

τ(h) =
∏
t∈T

λTh (t) =
∏
t∈T

h = h|G:H|.

As H is an abelian Hall subgroup of G, the map f : H → H,h 7→ h|G:H| is an
isomorphism. Thus ker τ ∩ H = {1}. Furthermore, G/ ker τ is abelian, because
the image of τ is abelian as subgroup of H. Hence, [G,G] 6 ker τ . We conclude
that [G,G] ∩H 6 ker τ ∩H = {1}.

In the next example we show that for the conclusion of Conjecture 1 to be true,
it is not enough to require the existence of an H-invariant transversal for H\G.

Example 1. Let G := Q8 and let H := Z(G). Then H is abelian and every
transversal of H\G is H-invariant. However, H = Z(G) = [G,G]. Notice that
there does not exist any G-invariant transversal for H\G.

However, if p is a prime, G is a group of order p3 and there exists a G-invariant
transversal for H\G, then Conjecture 1 holds.

Lemma 1. Let G be a p-group with [G,G] = Z(G) and |Z(G)| = p. Suppose
that H 6 G is abelian and that there exists a G-invariant transversal T of H\G
containing 1. Then [G,G] ∩H = {1}.

Proof. Since T is G-invariant, T is a union of conjugacy classes of G. As 1 ∈ T ,
we conclude that T contains at least p conjugacy classes with exactly one element,
i.e. T contains at least p elements of Z(G). Hence [G,G] = Z(G) ⊆ T and thus
[G,G] ∩H ⊆ T ∩H = {1}.

This lemma shows that Conjecture 1 holds for groups of order p3.
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Maximal cyclic subgroups of a finite abelian

p-group of rank two

Pradeep Kumar

Abstract. Let G be a finite group. A cyclic subgroup of G that is not a proper subgroup of any
other proper cyclic subgroup of G is called a maximal cyclic subgroup and the set of all maximal
cyclic subgroups of G is denoted by MG. In this paper, we find the cardinality of the set MG,
where G is a finite abelian p-group of rank two. As an application, we obtain the independence
number of the power graph of the group G.

1. Introduction

Counting the number of subgroups of finite groups is one of the old problems
in finite group theory and it is still frequently studied. In [2], Bhowmik gave a
method to determine the total number of subgroups of a finite abelian p-group. A
simple formula, in the case of a finite abelian p-group of rank two was obtained
by Călugăreanu [3], Petrillo [10] and Tóth [14] by using Goursat’s lemma. In [13],
Tóth obtained the number of cyclic subgroups of a finite abelian group.

Let G be a finite group. A cyclic subgroup of G that is not a proper subgroup
of any other proper cyclic subgroup of G is called a maximal cyclic subgroup and
the set of all maximal cyclic subgroups of G is denoted by MG. Let Γ be a
graph. A set of pairwise non-adjacent vertices of Γ is called an independent set.
The maximum size of an independent set in a graph Γ is called the independence
number of Γ and denoted by β(Γ ).

Let G be a group. The undirected power graph P(G) has the vertex set G and
two distinct vertices x and y are adjacent if x = ym or y = xm for some positive
integer m. The concepts of a power graph and an undirected power graph were
first considered by Kelarev and Quinn [8] and Chakrabarty et al. [6], respectively.
Since this paper deals only with undirected graphs, for convenience throughout we
use the term “power graph” to refer to an undirected power graph. Recently, a lot of
interesting results on the power graphs have been obtained, see for example [4, 5].
A detailed list of open problems and results can be found in [1]. Chakrabarty et al.
[6], found that the power graph P(G) is complete if and only if G is a cyclic group
of order pn, where p is a prime number and n is a non-negative integer. Sehgal and
Singh [12] obtained the degree of a vertex in the power graph of a finite abelian
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group. Chelevam and Sattanathan [7] determined the finite abelian groups whose
power graphs are planar. They have also characterized the finite abelian groups
G with β(P(G)) = 2. In [9], X. Ma et al. obtained that the independence number
of the power graph of a finite p-group G is equal to the cardinality of the setMG.
For generalized extraspecial p-groups G with p > 2, β(P(G)) had been determined
in [?] by calculating the cardinality of the setMG.

In this paper, we find the cardinality of the set MG, where G is an abelian
p-group of rank two. Equivalently, we find the independence number of P(G).

Throughout the paper p denotes a prime number. Let |X| denote the cardinal-
ity of the set X and o(x) denote the order of the element x in the group G. Let
〈g〉 denote the cyclic subgroup of the group G generated by g ∈ G and the identity
element of the group G is denoted by e. For a positive integer n, φ(n) denotes the
Euler’s totient function. Let C(G) denote the set of all distinct cyclic subgroups
of the group G. Note that (C(G),⊆) is a poset.

2. Preliminaries

We will start with the basic facts that will be needed later.

Lemma 2.1. Let G ∼= Zpβ1 × Zpβ2 ∼= 〈x〉 × 〈y〉 where o(x) = pβ1 and o(y) = pβ2

and β1 > β2 > 1. Let g = xp
k1α1yp

k2α2 6= e ∈ G. If 0 < ki and p - αi ∀ i ∈ {1, 2},
then there are p cyclic subgroups of order o(g)p containing 〈g〉. Further, if for some
i = io, kio = 0 and αio 6= 0, then 〈g〉 doesn’t contained in any cyclic subgroup of
order o(g)p.

Proof. Let g ∈ G such that g = xp
k1α1yp

k2α2 , where p - αi for i ∈ {1, 2}. First, we
count the number of elements h ∈ G such that hp = g. Consider h = xr1yr2 . Now,
hp = g implies xpr1ypr2 = xp

k1α1yp
k2α2 . So pkiαi = pri mod pβi ∀ i ∈ {1, 2}. For

fixed i, latter equation has integer solution ri if and only if p | pkiαi. Thus, if for
some i = io, kio = 0 and αio 6= 0, then there doesn’t exist any h ∈ G such that
hp = g.

Now, assume ki > 0, ∀ i. So, if pkiαi ≡ pri mod pβi , then pki−1αi ≡ ri
mod pβi−1. Thus, the latter equation has p distinct solutions for each fixed i
and that are ri = pki−1αi + kpα1−1, where 0 6 k 6 p − 1. Thus, for given
g = xp

k1α1yp
k2α2 , where p - αi and ki > 0, there are p2 elements h ∈ G such that

hp = g and o(h) = o(g)p.
Now, let 〈h〉 be a cyclic subgroup of order o(g)p such that 〈g〉 ⊂ 〈h〉 and hp = g.

Suppose w ∈ 〈h〉 such that wp = g, then w = hr and hrp = hp = g. This implies
that rp ≡ p mod o(h). Thus, r = 1 + k o(h)p , where 1 6 k 6 p. Thus, each
cyclic subgroup 〈h〉 of order o(g)p contains p distinct elements w ∈ 〈h〉 such that
wp = g. Hence that, there are p2

p = p cyclic subgroups of order o(g)p containing
g for ki > 0 ∀ i. This completes the proof.
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Corollary 2.2. Suppose G ∼= Zpβ1 × Zpβ2 , β1 > β2. Then a cyclic subgroup
H = 〈xpβ1−t

yb〉 (where β2 6 t < β1, 1 6 b 6 pβ2 ) of order pt is contained in a
cyclic subgroup of order pt+1 if and only if p | b.
Proof. This follows from Lemma 2.1.

Recall that the set of all maximal cyclic subgroups of the finite group G is
denoted byMG and the independence number of the graph Γ is denoted by β(Γ ).

Theorem 2.3. [9, Corollary 2.14] Let G be a p-group. Then β(P(G)) = |MG|.

3. Maximal cyclic subgroups
In this section, we find the number of maximal cyclic subgroups of Zpr × Zps , r >
s > 1. For the rest of the paper, we fixed that G ∼= Zpr × Zps ∼= 〈x〉 × 〈y〉, where
o(x) = pr and o(y) = ps and r > s > 1.

The number of cyclic subgroups of order p in G is p+1 and these cyclic groups
are given as {〈yps−1〉} ∪ {〈xpr−1

yip
s−1〉 | 1 6 i 6 p}. From [11], we know that

a cyclic subgroup of order pt (t > 1) contains exactly one cyclic subgroup of
order p. Let Xi be the set of all cyclic subgroups of G containing cyclic subgroup
〈xpr−1

yip
s−1〉 for 1 6 i 6 p andX0 be the set of all cyclic subgroups of G containing

〈yps−1〉.
Lemma 3.1. The number of cyclic subgroups of order pt in Xi, 0 6 i 6 p is pt−1

where 1 6 t 6 s.

Proof. By Lemma 2.1, each cyclic subgroup of order pt is contained in p cyclic
subgroups of order pt+1, 1 6 t < s. Thus, it is immediate that each Xi contains
pt−1 cyclic subgroups of order pt, 1 6 t 6 s.

LetM(Xi,⊆) denote the set of all maximal elements of the poset (Xi,⊆).
Lemma 3.2. |MG| =

∑p
i=0 |M(Xi,⊆)|.

Proof. Recall that C(G) is the set of all distinct cyclic subgroups of the group
G. Let C∗(G) be the set C(G)\〈e〉. Define a relation R on C∗(G) such that
〈x〉, 〈y〉 ∈ C∗(G) are said to be related if 〈x〉 and 〈y〉 contain a unique cyclic
subgroup of order p. It is immediate the R is an equivalence relation. Since,
G has p + 1 cyclic subgroups of order p, C∗(G) has p + 1 equivalence classes.
Clearly, Xi, 0 6 i 6 p are these equivalence classes. It is easy to observe that if
〈x〉 ∈ Xi and 〈y〉 ∈ Xj for i 6= j, 0 6 i, j 6 p, then 〈x〉 * 〈y〉 and 〈y〉 * 〈x〉. Thus,
a maximal element of the poset (Xi,⊆) is a maximal cyclic subgroup of G. This
completes the proof.

Theorem 3.3. Let G ∼= Zpr × Zps , r > s. Then

β(P(G)) = |MG| =

{
2ps + φ(ps)(r − s− 1), r > s

ps + ps−1, r = s.
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Proof. Suppose r > s. Now assume that s < t 6 r. Take g = xayb ∈ G. If
the order of g is pt, then g = xp

r−tkyb, where gcd(k, p) = 1, 1 6 k 6 pt and
1 6 b 6 ps. Thus, the number of elements of order pt is φ(pt)ps. Since, each cyclic
subgroup of order pt contains φ(pt) elements of order pt, so the number of cyclic
subgroups of order pt is φ(pt)ps

φ(pt) = ps and they are 〈xpr−tyb〉, 1 6 b 6 s. Further,

(xp
r−t
yb)p

t−1

= xp
r−1

. Thus, all cyclic subgroups of order pt, t > s belong to Xp.
By Corollary 2.2, cyclic subgroup H = 〈xpr−tyb〉 of order pt is contained in cyclic
subgroup of order pt+1 if and only if p | b and if p | b, then H is contained in p
cyclic subgroups of order pt+1 (t < r). Hence, out of ps only ps−1 cyclic subgroups
of order pt are contained in cyclic subgroups of order pt+1.

Again, the number of cyclic subgroups of order ps in the set Xp is ps−1 (Lemma
3.1) and the number of cyclic subgroups of order ps+1 is ps and each cyclic subgroup
of order ps is contained in at most p cyclic subgroups of order ps+1 (Lemma 2.1).
Thus, each cyclic subgroup of order ps is contained in p cyclic subgroups of order
ps+1 in the set Xp. By Lemmas 2.1 and 3.1, it is clear that Xp has pt−1 cyclic
subgroups of order pt and each cyclic subgroup of order pt is contained in p cyclic
subgroups of order pt+1 in Xp for 1 6 t < s.

The number of cyclic subgroups of order pt in Xi for 0 6 i 6 p− 1 is pt−1, for
1 6 t 6 s (Lemma 3.1) and none of cyclic subgroups of order pt for t > s belong
to Xi(0 6 i 6 p − 1). Further, each cyclic subgroup of order pt is contained in p
cyclic subgroups of order pt+1 for 1 6 t < s in Xi.

Collecting all arguments, the Hasse diagram of the poset (Xp,⊆) is given in
Figure 1 and the Hasse diagram of the poset (Xi,⊆) (0 6 i 6 p − 1) is given in
Figure 2.

Figure 1: The Hasse diagram of the poset (Xp,⊆)



Maximal cyclic subgroups of a finite abelian p-group of rank two 241

Figure 2: The Hasse diagram of the poset (Xi,⊆), for 0 6 i 6 p− 1

In Figures 1 and 2, Vtj denotes the element of Xi, 0 6 i 6 p of cardinality pt.
(Xp,⊆) has ps + φ(ps)(r − s − 1) maximal elements (see Figure 1) and (Xi,⊆)
for 0 6 i 6 p − 1 has ps−1 maximal elements. Thus, by Lemma 3.2, |MG| =
2ps+φ(ps)(r−s−1) for r > s. Now, for r = s. Only the cyclic subgroups of order
ps are maximal elements in Xi, 0 6 i 6 p and each Xi has ps−1 cyclic subgroups
of order ps. Thus, by Lemma 3.2, |MG| = ps+ps+1, for r = s. Hence by Theorem
2.3, we complete the proof.
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On the component graphs of

finitely generated free semimodules

Sushobhan Maity and Anjan Kumar Bhuniya

Abstract. A semiring S is said to have invariant basis number property if any two bases of a
finitely generated free semimodule over S have the same cardinality. Here we characterize reduced
zero and reduced non-zero component graphs of every finitely generated free semimodule V over
such semirings. It is shown that if |S| > ℵ0, these two graphs of a semimodule V over S are
isomorphic.

1. Introduction

In the recent years, there has been a flow of various ideas in the study of algebraic
structures using graphs defined on themselves. Various algebraic structures like
semigroups [5], groups [2], rings [1] and vector spaces [6, 8] have been character-
ized in this way. In [6], Das introduced non-zero component graph on a finite
dimensional vector space.

Recently, semimodules over a semiring have created attention to the researchers
for their different interesting uncommon features. Many of the results of vector
spaces do not match with the results of semimodules. For example, in a vector
space every basis is a free basis and converesely, which does not hold in a semi-
module in general [10].

Here we consider both zero and non-zero component graphs of a finitely gen-
erated free semimodule. Also we introduce reduced non-zero component graph
and reduced zero component graph on a finitely generated free semimodule and
prove that they are isomorphic. This isomorphism ensures that studying either of
them is sufficient to know about both. Here we study reduced non-zero component
graph.

2. Definitions and preliminary results

Let G = (M,E) be a graph. All graphs considered here are simple. A subset
I of M is said to be independent if no two elements of I are pairwise adjacent.
The maximum number of elements of an independent set is called the indepen-
dence number of G. A subset D of M is called dominating if each element of

2010 Mathematics Subject Classification: 05C25, 05C69, 16Y60.
Keywords: semiring, semimodule, free set, graph isomorphism.
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M \ D is adjacent to at least one element of D. If no proper subset of D is a
dominating set for G, then D is called a minimal dominating set for G. The least
cardinality of a dominating set is called the domination number of G. Two graphs
(M,E) and G′ = (M ′, E′) are said to be isomorphic if there exists a bijective
mapping φ : M → M ′ such that a ∼ b in M if and only if φ(a) ∼ φ(b) in M ′.
A path of length k in a graph G is an alternating sequence of vertices and edges
a0, e0, a1, e1, a2, . . . , ak−1, ek−1, ak, where ai’s are distinct (except possibly a0, ak)
and ei is the edge joining ai and ai+1. If there exists a path between any pair of
distinct vertices, then it is called connected. The distance between two vertices
a, b ∈ M , d(a, b) is defined as the length of the shortest path between a and b.
The diameter of a graph G is defined as diam(G) = maxa,b∈Md(a, b), if it exists.
Otherwise, diam(G) is defined as ∞.

We refer to [3] for further notions on graph theory and [7] for basic notions
and results on semirings and semimodules.

A semiring S is an algebraic system (S,+, ·, 0, 1) such that (S,+, 0) is a com-
mutative monoid and (S, ·, 1) is a monoid, connected by the ring-like distributive
laws. Also we assume that (S, ·) is commutative, 0 6= 1 and the zero element 0 is
absorbing, that is s0 = 0s = 0 for all s ∈ S. We say that s ∈ S is invertible if
st = 1 for some t ∈ S and denote the set of all invertible elements of S by U(S).
If a semiring S is such that U(S) = S \ {0}, then S is said to be a semifield.

Definition 2.1. Let S be a semiring. A left S-semimodule is a commutative
monoid (V,+) with additive identity θ for which we have a function S ×V −→ V,
denoted by (λ, α) 7−→ λα and called as scalar multiplication, which satisfies the
following conditions for all a, b ∈ S and u, v ∈ V:

(i) a(u+ v) = au+ av;
(ii) (a+ b)v = av + bv;
(iii) (ab)v = a(bv);
(iv) 1v = v;
(v) aθ = θ = 0v.

Right S-semimodules are defined analogously. In this paper a semimodule V
over S means left S-semimodule. The elements of V are called vectors and the
elements of S are called scalars.

Let S be a semiring. Then a semimodule V over S is also known as a semilinear
space over S. If a semiring S is a ring, then any semilinear space V over S is an
S-module. In particular, if S is a field then any semilinear space over S is a linear
space (or, vector space) over S.

Let B be a non-empty subset of V. Then we denote

span(B) = {
∑n
i=1 cixi : n ∈ N, ci ∈ S, xi ∈ B}.

If span(B) = V, then B is called a generating subset of V. A semimodule V
having a finite generating set B is called finitely generated. A nonempty subset
D of vectors in V is called linearly dependent if there exists x ∈ D such that
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x ∈ span(D − {x}); otherwise it is called linearly independent; and free if each
element of V is expressed as a linear combination of the elements of D in at most
one way. It is easy to see that every free subset of V is linearly independent.
A linearly independent generating subset of V is called a basis of V and a free
generating subset of V is called a free basis of V [10]. If V has a free basis then it is
called a free semimodule. It is easy to see that every finitely generated semimodule
has a basis, and every free basis is a basis [10].

Definition 2.2. A semiring S is said to have invariant basis number [IBN] prop-
erty if any two bases of a finitely generated free semimodule over S have the same
cardinality.

A semiring S has the IBN property if and only if for every s, t ∈ S, s + t = 1
implies that either s ∈ U(S) or t ∈ U(S) [Theorem 4.3; [10]]. Hence every semifield
has the IBN property. In particular, the semiring R+∪{0} of all non-negative real
numbers, the max-plus semiring Rmax and many other tropical semirings are of this
type. Apart from the semifields, the semiring N ∪ {0} of all non-negative integers
also has this property. Thus we see that many useful as well as algebraically
important semirings have the IBN property.

Henceforth, unless stated otherwise, S is a semiring having invariant basis
number property and V is a finitely generated free semimodule over S. Let V
be a finitely generated free semimodule over S, then from Corollary 3.1 [10], it
follows that every vector of V can be expressed uniquely in terms of each basis.
The cardinality of a basis of V is denoted by dim(V).

Isomorphism of semimodules is defined similarly to modules. It follows from
Corollary 5.2 [9], that semimodules V andW are isomorphic if and only if dim(V) =
dim(W).

If X = {x1, x2, . . . , xn} is a basis of a semimodule V, then every vector v ∈ V
can be expressed uniquely as v = c1x1 + · · · + cnxn; ci ∈ S. We call ci the i-th
component of V and is denoted by vi.

Definition 2.3. The non-zero component graph of V relative to the basis X, is
defined as ΓX(V) = (V,E), where V = V \ {θ} and (α, β) ∈ E if there exists i such
that αi, βi are non-zero.

Note that the vectors of the form v = c1x1 + c2x2 + · · · + cnxn, whose all
components are non-zero, adjacent to every other vertex of ΓX(V). These vertices
do not have much role on the parameters of ΓX(V). So we propose to consider
the graph Γ∗X(V) obtained from ΓX(V) after deletion of such vertices. We call
Γ∗X(V) the reduced non-zero component graph of V with respect to the basis
X = {x1, x2, . . . , xn}.

Theorem 2.4. Let V be a semimodule over a semiring S. Let Γ∗X(V) and Γ∗Y (V)
be the reduced non-zero component graphs of V with respect to the bases X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} of V. Then Γ∗X(V) and Γ∗Y (V) are graph
isomorphic.
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Proof. Define a mapping σ : V −→ V such that

σ(c1x1 + c2x2 + · · ·+ cnxn) = c1y1 + c2y2 + · · ·+ cnyn.

Then clearly σ is an isomorphism on V such that σ(xi) = yi for all i ∈ {1, 2, . . . , n}.
We show that the restriction of σ on non-null vectors of V such that at least one
component is zero induces a graph isomorphism σ∗ : Γ∗X(V) −→ Γ∗Y (V). Clearly σ∗
is a bijection. Let α = c1x1+c2x2+· · ·+cnxn and β = d1x1+d2x2+· · ·+dnxn with
α ∼ β in Γ∗X(V). Then there exists i such that ci, di 6= 0. Hence σ∗(α) ∼ σ∗(β) in
Γ∗Y (V). Similarly it can be shown that if α and β are not adjacent in Γ∗X(V), then
σ∗(α) and σ∗(β) are not adjacent in Γ∗Y (V).

Now we define the zero component graph Γ0X(V) and reduced zero component
graph Γ∗0X(V) of a semimodule V as follows:

Definition 2.5. Let V be a semimodule with a basis X. The zero component
graph of V is defined as the graph Γ0X(V) = (V, E), where V = V \ {

∑
cixi :

c1 · c2 · · · cn 6= 0}, that is V consists of the elements whose at least one component
is zero and (α, β) ∈ E if there exists i such that both αi and βi are zero. Note that
θ ∼ v for every v in Γ0X(V). In fact θ is the only vertex having this property. The
subgraph Γ∗0X(V) obtained by deletion of θ, is called the reduced zero-component
graph of V.

For any two bases X and Y of V, proceeding similarly as in the proof of
Theorem 2.4, we can prove that Γ∗0X(V) and Γ∗0Y (V) are graph isomorphic.

Since the graphs are independent of the choice of a particular basis (up to
isomorphism), so we denote the reduced non-zero component graph of V by Γ∗(V)
and the reduced zero component graph of V by Γ∗0(V).

Notice that the vertex set of both Γ∗(V) and Γ∗0(V) is same and for the next
sections of this article we denote it by V and X = {x1, x2, . . . , xn} denotes a basis.

3. Properties of the graph Γ∗(V)

In this section, we investigate some basic properties like connectedness, complete-
ness, domination number, independence number of the graph Γ∗(V). Also we show
that two semimodules V and W are isomorphic if and only if the graphs Γ∗(V)
and Γ∗(W) are isomorphic.

Since any two elements of a basis are pairwise non-adjacent, Γ∗(V) is not
complete.

Theorem 3.1. If n > 3, Γ∗(V) is connected and diam(Γ∗(V)) = 2.

Proof. If α, β ∈ V are adjacent, then d(α, β) = 1; otherwise, there exist distinct
i, j such that αi, βj 6= 0. Since n > 3, there exists γ ∈ V such that γi, γj 6= 0.
So α ∼ γ and β ∼ γ and hence d(α, β) = 2. Thus Γ∗(V) is connected and
diam(Γ∗(V)) = 2.
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Theorem 3.2. The domination number of Γ∗(V) is 2.

Proof. It is easily seen that {x1 + x2 + · · ·+ xn−1, x2 + x3 + · · ·xn} is a minimal
dominating subset of Γ∗(V). If possible, let {α} be a dominating subset of Γ∗(V).
Then there exists i such that αi = 0. Consider β ∈ V such that βi 6= 0 but βj = 0
for all j 6= i. Then α � β. Hence the result.

Theorem 3.3. If D = {y1, y2, . . . , yl} is a minimal dominating set of Γ∗X(V), then
l 6 n.

Proof. Let Di = D \ {yi} for i ∈ {1, 2, . . . , n}. Since D is a minimal dominating
set, for all i ∈ {1, 2, . . . , l}, Di is not a dominating subset of Γ∗X(V). So, for each
i ∈ {1, 2, . . . , l}, there exists zi ∈ Γ∗(V) such that zi ∼ yi but zi � yj for j 6= i.
Since zi 6= θ, there exists ti such that (zi)ti 6= 0. So xti � yj for j 6= i but xti ∼ yi
as D is a minimal dominating set.

Now we show that xti 6= xtj for i 6= j. If possible, let xti = xtj for some i 6= j.
Since xti ∼ yi and xti = xtj , so xtj ∼ yi which contradicts that xti � yj for all
i 6= j. Hence xti 6= xtj for i 6= j. Since xt1 , xt2 , . . . , xtl are all distinct, it follows
that l 6 n.

Theorem 3.4. The independence number of Γ∗X(V) is n.

Proof. It is easy to observe that {x1, x2, . . . , xn} is an independent set of Γ∗X(V).
So the independence number of Γ∗X(V) is greater than or equal to n. If possible,
let {y1, y2, . . . , yl} be an independent set of Γ∗X(V) such that l > n. Since for all
i ∈ {1, 2, . . . , l}, yi 6= θ, there exists ti such that (yi)ti 6= 0. We show that ti 6= tj
when i 6= j. If ti = tj = t for some i 6= j, then ti th component of both yi and yj
is non-zero and hence yi ∼ yj , which is a contradiction to the independence of yi
and yj . Since there are exactly n distinct xi, the independence number of Γ∗X(V)
is n.

Lemma 3.5. Let I be an independent set in Γ∗X(V), then I is linearly independent
in V.

Proof. Let I = {y1, y2, . . . , yl} be an independent set of Γ∗X(V). Then by Theorem
3.4, l 6 n. If possible, let I be linearly dependent in V. Then there exists i ∈
{1, 2, . . . , l} such that yi is expressed as a linear combination of y1, . . . , yi−1, yi+1,

. . . , yl, i.e., yi = c1y1 + c2y2 + · · ·+ ci−1yi−1 + ci+1yi+1 + · · ·+ clyl =
∑l
j=1,j 6=i cjyj

Let yj =
∑n
t=1 dtjxt for j = 1, 2, . . . , i− 1, i+ 1, . . . , l. Thus,

yi = (c1d11+· · ·+ci−1d1,i−1+ci+1d1,i+1+· · ·+cld1l)x1+(c1d21+· · ·+ci−1d2,i−1+
ci+1d2,i+1+· · ·+cld2l)x2+· · ·+(c1dn1+· · ·+ci−1dn,i−1+ci+1dn,i+1+· · ·+cldnl)xn
Since yi 6= θ, there exists t0 such that (yi)t0 6= 0. So, there exists yk such that
k 6= i and (yk)t0 6= 0, otherwise t0-th component of yi will be 0. Which shows
that {y1, y2, . . . , yl} is not independent in Γ∗X(V). This contradiction shows that
{y1, y2, . . . , yl} is linearly independent in V.
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Remark 3.6. Converse of the Lemma 3.5 is not true, in general, if we consider
the subset {x1, x1 + x2} of a three dimensional semimodule with respect to the
basis {x1, x2, x3}.

Now, we show that two semimodules are isomorphic if and only if their corre-
sponding reduced non-zero component graphs are isomorphic.

Lemma 3.7. Two semimodules V andW are isomorphic if and only if the reduced
non-zero component graphs Γ∗(V) and Γ∗(W) are isomorphic.

Proof. Let V and W be isomorphic and σ : V −→ W be an isomorphism. Then
Y = {σ(x1), σ(x2), . . . ,
σ(xn)} is a basis of W . Consider the restriction σ∗ : Γ∗X(V) −→ Γ∗Y (W) given by

σ∗(c1x1 + c2x2 + · · ·+ cnxn) = c1σ(x1) + c2σ(x2) + · · ·+ cnσ(xn)

where c1 · c2 · · · cn = 0 but (c1, c2, . . . , cn) 6= (0, 0, . . . , 0). Clearly σ∗ is a bijection.
Let α = c1x1 + · · ·+ cnxn and β = d1x1 + · · ·+dnxn. Then α ∼ β in Γ∗X(V) if and
only if there exists i such that ci, di 6= 0 if and only if σ∗(α) ∼ σ∗(β) in Γ∗Y (W ).
Therefore Γ∗(V) and Γ∗(W ) are isomorphic.

Conversely, let φ : Γ∗(V) → Γ∗(W) be a graph isomorphism. let dim(V) = m
and dim(W ) = n. Since isomorphism preserves the independence number, the
independence number of Γ∗(V) equals to the independence number of Γ∗(W) and
hence m = n. So V and W are isomorphic.

Thus we see that a semimodule isomorphism σ : V → W is also a graph
isomorphism (ignoring the null vector and vectors of the form c1x1 + · · · + cnxn
such that c1 · c2 . . . cn 6= 0), however the converse may not be true which is shown
in the following example.

Example 3.8. Consider the semimodule N2
0 over N0, the set of all nonnegative

integers, with respect to usual addition and multiplication. Then the vertex set
V of Γ∗(N2

0), is {(a, b) ∈ N2
0 : a = 0 or b = 0 and (a, b) 6= (0, 0)}. Define a

map φ : V → V defined by φ(1, 0) = (3, 0), φ(3, 0) = (1, 0), φ(n, 0) = (n, 0) for
n 6= 1, 3 and φ(0,m) = (0,m), where m ∈ N0. Then φ is a graph isomorphism on
Γ∗(N2

0) but it can not be extended to a linear transformation on N2
0. Otherwise

(1, 0) = φ(3, 0) = 3φ(1, 0) = (9, 0), which is a contradiction.

Now, we study the form of automorphisms of Γ∗(V).

Theorem 3.9. Let φ be a graph automorphism on Γ∗X(V). Then φ permutes the
elements of X = {x1, x2, . . . , xn} of V with some non-zero scalar multiplication,
i.e. there exists a permutation σ ∈ Sn such that φ(xi) = cixσ(i), where ci’s are
non-zero.

Proof. Since φ is a graph automorphism on Γ∗X(V) and {x1, x2, . . . , xn} is an in-
dependent set of vertices in Γ∗X(V), therefore {φ(xi) : i = 1, 2, . . . , n} is also an
independent set of vertices in Γ∗X(V). Let
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φ(x1) = c11x1 + c12x2 + · · ·+ c1nxn
φ(x2) = c21x1 + c22x2 + · · ·+ c2nxn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

φ(xn) = cn1x1 + cn2x2 + · · ·+ cnnxn

Since φ(x1) 6= 0, there exists j1 ∈ {1, 2, . . . , n} such that c1j1 6= 0. Therefore
cij1 = 0 for all i 6= 1 because φ(xi) is not adjacent to φ(x1) for all i 6= 1. Similarly,
for φ(x2), there exists j2 ∈ {1, 2, . . . , n} such that c2j2 6= 0 and cij2 = 0 for all
i 6= 2. Moreover, j1 6= j2 as φ(x1) and φ(x2) are not adjacent. Proceeding in this
way, we see that for φ(xn), there exists jn ∈ {1, 2, . . . , n} such that cnjn 6= 0 and
cijn = 0 for all i 6= n and j1, j2, . . . , jn ∈ {1, 2, . . . , n} are all distinct numbers.

Thus we see that ckjl = 0 for all k 6= l and ckjk 6= 0, where k, l ∈ {1, 2, . . . , n}.

Let σ =

(
1 2 . . . n
j1 j2 . . . jn

)
. Then σ is a permutation on {1, 2, . . . , n} and

φ(xi) = cijixji = cijixσ(i), where ciji 6= 0 and hence the result follows.

Theorem 3.10. Let φ be a graph automorphism on Γ∗X(V) such that φ maps
xi into cijixσ(i) for some σ ∈ Sn, where ciji 6= 0. Then, for {i1, i2, . . . , ik} ⊂
{1, 2, . . . , n}, if ci’s are non-zero, then φ(c1xi1 + · · · + ckxik) = d1xσ(i1) + · · · +
dkxσ(ik), where di’s are non-zero.

Proof. Since cxi ∼ xi in Γ∗X(V) and φ is an automorphism on Γ∗X(V), φ(cxi) ∼
φ(xi) i.e., φ(cxi) ∼ cijxσ(i). So, σ(i)-th component of φ(cxi) is non-zero. If
possible, let σ(j)-th component of φ(cxi) is non-zero for j 6= i. Then φ(cxi) ∼ xσ(j)
i.e. φ(cxi) ∼ φ(xj). Which in turn implies that cxi ∼ xj for i 6= j, which is a
contradiction since {x1, x2, . . . , xn} is an independent set. Therefore, φ(cxi) =
dxσ(i) for some d 6= 0.

Now, for all {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n},

c1xi1 + c2xi2 + · · ·+ ckxik ∼ xi1

⇒φ(c1xi1 + c2xi2 + · · ·+ ckxik) ∼ φ(xi1) = cxσ(i1) for some c 6= 0.

Which implies that φ(c1xi1 + c2xi2 + · · · + ckxik) ∼ xσ(i1). Similarly, φ(c1xi1 +
c2xi2 + · · ·+ ckxik) ∼ xσ(i2) and so on. Therefore, φ(c1xi1 + c2xi2 + · · ·+ ckxik) =
d1xσ(i1) + d2xσ(i2) + · · ·+ dkxσ(ik), where di’s are non-zero

Corollary 3.11. If n > 3, then Γ∗X(V) is not vertex transitive.

Proof. If n > 3, then by Theorem 3.10, there does not exist any automorphism
which maps x1 to x1 + x2.

4. Graph isomorphism of Γ∗(V) and Γ∗0(V)

In this section we show that for a semimodule V over S, if |S| > ℵ0, then the
reduced non-zero component graph and reduced zero component graph of V are
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isomorphic. Now we show that if |S| < ℵ0, then the two graphs Γ∗(V) and Γ∗0(V)
may not be isomorphic.

Example 4.12. Let S = {0, 1, a} be the chain 0 < a < 1. Consider the semi-
module S3 over S and a basis E = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Then the ver-
tex set of both reduced zero and reduced non-zero component graphs of S3 is
{(1, 0, 0), (1, 0, a), (1, 0, 1), (1, 1, 0), (1, a, 0), (a, 0, 0), (a, 0, a), (a, 0, 1), (a, a, 0), (a, 1, 0),
(0, a, a), (0, a, 0), (0, a, 1), (0, 0, a), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, a)}. The degree of
(1, 0, 0) in Γ∗E(S3) is 9. But, there does not exist any element of degree 9 in
Γ∗0E(S3). Therefore Γ∗E(S3) is not isomorphic to Γ∗0E(S3).

Theorem 4.13. Let V be a semimodule over S and X be a basis of V. If |S| > ℵ0,
then Γ∗X(V) and Γ∗0X(V) are isomorphic.

Proof. Let X = {x1, x2, . . . , xn}. Then the two graphs Γ∗X(V) and Γ∗0X(V) have
the same set of vertices V = {

∑n
i=1 aixi : ∃i, j such that ai = 0 and aj 6= 0}. For

A = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}, denote ZA = {
∑
aixi ∈ V : ai1 = . . . = aik = 0

and ai 6= 0 otherwise }. Then V is a disjoint union of the sets ZA, where A is a
non-empty proper subset of {1, 2, . . . , n}, i.e. V =

⋃
ZA. Now, since |S| > ℵ0,

|ZA| = |ZAc | = |V|, which implies that there exists a bijection φA : ZA → ZAc .
Thus we get a bijection φ = ∪φA : V −→ V such that a ∼ b in Γ∗0X(V) if

and only if φ(a) ∼ φ(b) in Γ∗X(V). Hence Γ∗X(V) and Γ∗0X(V) are isomorphic as
graphs.
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Cryptanalysis of some stream ciphers

based on n-ary groupoids

Nadezhda N. Malyutina

Abstract. We research generalized Markovski algorithm based on i-invertible n-groupoids. We
give lower bounds for cryptoattacks named as chosen ciphertext and plaintext attacks. Also we
give modifications of these attacks.

1. Introduction

The use of quasigroups opens new ways in construction of stream and block ciphers
[3, 4]. We continue researches of applications of n-ary groupoids that are invertible
on i-th place in cryptology [2, 5].

Definition 1.1. n-Ary groupoid (Q, f) is called invertible on the i-th place, i ∈
1, n, if the equation f(a1, . . . , ai−1, xi, ai+1, . . . , an) = an+1 has a unique solution
for any elements a1, . . . , ai−1, ai+1, . . . , an, an+1 ∈ Q.

In this case the operation (i,n+1)f(a1, . . . , ai−1, an+1, ai+1, . . . , an) = xi is de-
fined in a unique way and we have:

f(a1, . . . , ai−1,
(i,n+1)f(a1, . . . , ai−1, an+1, ai+1, . . . , an), ai+1, . . . , an) = an+1,

(i,n+1)f(a1, . . . , ai−1, f(a1, . . . , ai−1, xi, ai+1, . . . , an), ai+1, . . . , an) = xi.

Algorithm 1.2. Let Q be a non-empty finite alphabet and k be a natural number,
uj , vj ∈ Q, j ∈ {1, ..., k}. Define an n-ary groupoid (Q, f) which is invertible on
the i-th place,i ∈ 1, n. Then the groupoid (Q, (i, n+1)f) is defined in a unique way.

Take the fixed elements l(n−1)(n−1)
1 (li ∈ Q), which are called leaders.

Let u1u2...uk be a k-tuple of letters from Q.

2010 Mathematics Subject Classification: 20N15, 20N05, 05B15, 94A60
Keywords: cipher, ciphertext, plaintext, Markovski algorithm, n-ary groupoid.
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The following ciphering (encryption) procedure is proposed:

v1 = f(l1, . . . , li−1, u1, li, . . . , ln−1),

v2 = f(ln, . . . , ln+i−2, u2, ln+i−1, . . . , l2n−2),

. . . . . . . . . . . . . . . ,

vn−1 = f(ln2−3n+3, . . . , ln2−3n+1+i, un−1, ln2−3n+2+i, . . . , l(n−1)2),

vn = f(v1, . . . , vi−1, un, vi, . . . , vn−1),

vn+1 = f(v2, . . . , vi, un+1, vi+1, . . . , vn),

. . . . . . . . . . . . . . .

(1)

Therefore we obtain the following ciphertext: v1v2 . . . , vn−1, vn, vn+1, . . .
The deciphering algorithm is constructed similarly to the binary case:

u1 = (i, n+1)f(l1, . . . , li−1, v1, li, . . . , ln−1),

u2 = (i, n+1)f(ln, . . . , ln+i−2, v2, ln+i−1, . . . , l2n−2),

. . . . . . . . . . . . . . . ,

un−1 = (i, n+1)f(ln2−3n+3, . . . , ln2−3n+1+i, vn−1, ln2−3n+2+i, . . . ,

l(n−1)2)

un = (i, n+1)f(v1, . . . , vi−1, vn, vi, . . . , vn−1),

un+1 = (i, n+1)f(v2, . . . , vi, vn+1, vi+1, . . . , vn),

. . . . . . . . . . . . . . .

(2)

2.Results

2.1 Ciphertext attacks

S. Markovski, E. Ochodkova and V. Snashel proposed a new stream cipher to
encrypt the file system [3, 4]. M. Vojvoda has given the cryptanalysis of the file
encoding system based on binary quasigroups [6, 7] and showed how to break this
cipher. These attacks are described by M. Vojvoda [7]. See [1] for the case of
n-ary quasigrops.

We studied cryptographic attacks on the cipher using the generalized Markovski
algorithm. In this article we will conduct a comparative analysis, identify positive
and negative points in these attacks. Given examples provide lower bounds of such
attacks.

Consider an attack with text constructed using an n-ary groupoid, which is
invertible on the i-th place obtained using the generalized Markovski algorithm.

Assume the cryptanalyst has access to the decryption device loaded with the
key. He can then construct the following ciphertext, where n is arity and m the
order of an i-invertible groupoid:
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q1q1 . . . q1q1q1q1 . . . q1q2q1q1 . . . q1qm
q1q1 . . . q2q1q1q1 . . . q2q2q1q1 . . . q2qm
q1q1 . . . q3q1q1q1 . . . q3q2q1q1 . . . q3qm
. . . . . . . . . . . . . . .
q1q1 . . . qmq1q1q1 . . . qmq2q1q1 . . . qmqm . . .

and enter it into the decryption device.
For a complete reconstruction of the table of values of the operation (i,n+1)f ,

and hence the table of values of the operation f , it is sufficient to submit at the
input: A = (n · mn−1 + 1)(m − 1) characters to get all the values or A − 1 =
n ·mn−1(m−1)+(m−2) characters, when the last value is found by the exception
method.

We give numerical examples instead of “general case” in order to make the
reading of this paper more convenient . We hope that any qualified student can
be easy to write “general case” using these examples.

Example 2.1. Take the ternary groupoid (R3, f), R3 = {0, 1, 2}, which is defined
over the ring (R3,+, ·) residue classes modulo 3 and which is invertible on first
place.

Ternary operation f on the set R3 is defined as:
f(x1, x2, x3) = αx1 + βx2 + γx3 = x4, where

α0 = 2, α1 = 0, α2 = 1,
β0 = 0, β1 = 1, β2 = 1,
γ0 = 2, γ1 = 0, γ2 = 0.

Inverse operation for f or (14)-parastrophe is the following operation:
(1,4)f(x4, x2, x3) = x1 = α−1(x4 + 2·βx2 + 2·γx3), where α−1(0) = 1, α−1(1) = 2,
α−1(2) = 0.
Check.
f((1,4)f(x4, x2, x3), x2, x3) = α(α−1(x4 + 2 · βx2 + 2 · γx3)) + βx2 + γx3

= x4 + 2 · βx2 + 2 · γx3 + βx2 + γx3 = x4.
(1,4)f(f(x1, x2, x3), x2, x3) = α−1(αx1 + βx2 + γx3 + 2 · βx2 + 2 · γx3)

= α−1(αx1) = x1.
Elements: l1 = 0, l2 = 2, l3 = 1, l4 = 2 are used as leaders.

We will use Algorithm 1.2. and we can construct the following ciphertext:
q1q1q1q1q1q2q1q1q3q1q2q1q1q2q2q1q2q3q1q3q1q1q3q2q1q3q3
q2q1q1q2q1q2q2q1q3q2q2q1q2q2q2q2q2q3q2q3q1q2q3q2q2q3q3
q3q1
or
000001002010011012020021022
100101102110111112120121122
20

and enter it into the decryption device.
The process of decrypting the text and the results are as follows:
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Table 1: Decrypted text

u1 =(1,4) f(v1, l1, l2) =
(1,4) f(q1, l1, l2) u29 =(1,4) f(0, 2, 1) = 0

=(1,4) f(0, 0, 2) = 1

u2 =(1,4) f(v2, l3, l4) =
(1,4) f(q1, l3, l4) u30 =(1,4) f(0, 1, 0) = 1

=(1,4) f(0, 1, 2) = 0

u3 =(1,4) f(v3, v1, v2) =
(1,4) f(q1, q1, q1) u31 =(1,4) f(1, 0, 0) = 0

=(1,4) f(0, 0, 0) = 2− (1)

u4 =(1,4) f(0, 0, 0) = 2 u32 =(1,4) f(0, 0, 1) = 1

u5 =(1,4) f(0, 0, 0) = 2 u33 =(1,4) f(1, 1, 0) = 2

u6 =(1,4) f(1, 0, 0) = 0− (10) u34 =(1,4) f(1, 0, 1) = 2

u7 =(1,4) f(0, 0, 1) = 1− (2) u35 =(1,4) f(0, 1, 1) = 0

u8 =(1,4) f(0, 1, 0) = 1− (4) u36 =(1,4) f(2, 1, 0) = 0

u9 =(1,4) f(2, 0, 0) = 1− (19) u37 =(1,4) f(1, 0, 2) = 2

u10 =(1,4) f(0, 0, 2) = 1− (3) u38 =(1,4) f(1, 2, 1) = 1− (17)

u11 =(1,4) f(1, 2, 0) = 2− (16) u39 =(1,4) f(0, 1, 1) = 0

u12 =(1,4) f(0, 0, 1) = 1 u40 =(1,4) f(1, 1, 0) = 2

u13 =(1,4) f(0, 1, 0) = 1 u41 =(1,4) f(1, 0, 1) = 2

u14 =(1,4) f(1, 0, 0) = 0 u42 =(1,4) f(1, 1, 1) = 1− (14)

u15 =(1,4) f(1, 0, 1) = 2− (11) u43 =(1,4) f(1, 1, 1) = 1

u16 =(1,4) f(0, 1, 1) = 0− (5) u44 =(1,4) f(1, 1, 1) = 1

u17 =(1,4) f(1, 1, 0) = 2− (13) u45 =(1,4) f(2, 1, 1) = 2− (23)

u18 =(1,4) f(2, 0, 1) = 0− (20) u46 =(1,4) f(1, 1, 2) = 1− (15)

u19 =(1,4) f(0, 1, 2) = 0− (6) u47 =(1,4) f(2, 2, 1) = 2− (26)

u20 =(1,4) f(2, 2, 0) = 0− (25) u48 =(1,4) f(0, 1, 2) = 0

u21 =(1,4) f(0, 0, 2) = 1 u49 =(1,4) f(1, 2, 0) = 2

u22 =(1,4) f(0, 2, 0) = 1− (7) u50 =(1,4) f(2, 0, 1) = 0

u23 =(1,4) f(2, 0, 0) = 1 u51 =(1,4) f(1, 1, 2) = 1

u24 =(1,4) f(1, 0, 2) = 2− (12) u52 =(1,4) f(1, 2, 1) = 1

u25 =(1,4) f(0, 2, 1) = 0− (8) u53 =(1,4) f(2, 1, 1) = 2

u26 =(1,4) f(2, 1, 0) = 0− (22) u54 =(1,4) f(2, 1, 2) = 2− (24)

u27 =(1,4) f(2, 0, 2) = 0− (21) u55 =(1,4) f(2, 2, 2) = 2− (27)

u28 =(1,4) f(1, 2, 2) = 1− (18) u56 =(1,4) f(0, 2, 2) = 0− (9)

At the output we get:
10222011112110202000111200010101220021022111212020112220.
Thus, for a complete reconstruction of the table of values of the operation

(1,4)f , and hence the table of values of the operation f , it is enough to supply
55 characters (without the last one) for the ternary groupoid at the input, or 56
characters to restore all values. The table of the decrypting function is hacked:
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Table 2: Decryption function

N Value N Value
(1) (1,4)f(0, 0, 0) = α−1(1) = 2 (15) (1,4)f(1, 1, 2) = α−1(0) = 1

(2) (1,4)f(0, 0, 1) = α−1(0) = 1 (16) (1,4)f(1, 2, 0) = α−1(1) = 2

(3) (1,4)f(0, 0, 2) = α−1(0) = 1 (17) (1,4)f(1, 2, 1) = α−1(0) = 1

(4) (1,4)f(0, 1, 0) = α−1(0) = 1 (18) (1,4)f(1, 2, 2) = α−1(0) = 1

(5) (1,4)f(0, 1, 1) = α−1(2) = 0 (19) (1,4)f(2, 0, 0) = α−1(0) = 1

(6) (1,4)f(0, 1, 2) = α−1(2) = 0 (20) (1,4)f(2, 0, 1) = α−1(2) = 0

(7) (1,4)f(0, 2, 0) = α−1(0) = 1 (21) (1,4)f(2, 0, 2) = α−1(2) = 0

(8) (1,4)f(0, 2, 1) = α−1(2) = 0 (22) (1,4)f(2, 1, 0) = α−1(2) = 0

(9) (1,4)f(0, 2, 2) = α−1(2) = 0 (23) (1,4)f(2, 1, 1) = α−1(1) = 2

(10) (1,4)f(1, 0, 0) = α−1(2) = 0 (24) (1,4)f(2, 1, 2) = α−1(1) = 2

(11) (1,4)f(1, 0, 1) = α−1(1) = 2 (25) (1,4)f(2, 2, 0) = α−1(2) = 0

(12) (1,4)f(1, 0, 2) = α−1(1) = 2 (26) (1,4)f(2, 2, 1) = α−1(1) = 2

(13) (1,4)f(1, 1, 0) = α−1(1) = 2 (27) (1,4)f(2, 2, 2) = α−1(1) = 2

(14) (1,4)f(1, 1, 1) = α−1(0) = 1

Knowing the value table for (1,4)f operation, value table is easily restored for
f :

Table 3: Encryption function

N Value N Value
(1) f(0, 0, 0) = 1 (15) f(1, 1, 2) = 1
(2) f(0, 0, 1) = 2 (16) f(1, 2, 0) = 0
(3) f(0, 0, 2) = 2 (17) f(1, 2, 1) = 1
(4) f(0, 1, 0) = 2 (18) f(1, 2, 2) = 1
(5) f(0, 1, 1) = 0 (19) f(2, 0, 0) = 0
(6) f(0, 1, 2) = 0 (20) f(2, 0, 1) = 1
(7) f(0, 2, 0) = 2 (21) f(2, 0, 2) = 1
(8) f(0, 2, 1) = 0 (22) f(2, 1, 0) = 1
(9) f(0, 2, 2) = 0 (23) f(2, 1, 1) = 2
(10) f(1, 0, 0) = 2 (24) f(2, 1, 2) = 2
(11) f(1, 0, 1) = 0 (25) f(2, 2, 0) = 1
(12) f(1, 0, 2) = 0 (26) f(2, 2, 1) = 2
(13) f(1, 1, 0) = 0 (27) f(2, 2, 2) = 2
(14) f(1, 1, 1) = 1

To understand the situation with hacking of the decrypted text and the leaders,
consider the plaintext of the form: 101202=u1u2u3u4u5u6.
v1 = f(u1, l1, l2) = f(1, l1, l2) =?
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v2 = f(u2, l3, l4) = f(0, l3, l4) =?
v3 = f(u3, v1, v2) = f(1, v1, v2) =?
v4 = f(u4, v2, v3) = f(2, v2, v3) =?
v5 = f(u5, v3, v4) = f(0, v3, v4) =?
v6 = f(u6, v4, v5) = f(2, v4, v5) =?

Analyzing the results obtained using the table of values of the function f , we
obtain the following options for the text to be decoded (f(1, ∗, ∗) and f(0, ∗, ∗)
take any values):

Table 4: Ciphertext values

v1 v2 v3 v4 v5 v6
0 0 f(1, 0, 0) = 2 f(2, 0, 2) = 1 f(0, 2, 1) = 0 f(2, 1, 0) = 1
0 1 f(1, 0, 1) = 0 f(2, 1, 0) = 1 f(0, 0, 1) = 2 f(2, 1, 2) = 2
1 0 f(1, 1, 0) = 0 f(2, 0, 0) = 0 f(0, 0, 0) = 1 f(2, 0, 1) = 1
1 1 f(1, 1, 1) = 1 f(2, 1, 1) = 2 f(0, 1, 2) = 0 f(2, 2, 0) = 1
2 0 f(1, 2, 0) = 0 f(2, 0, 0) = 0 f(0, 0, 0) = 1 f(2, 0, 1) = 1
0 2 f(1, 0, 2) = 0 f(2, 2, 0) = 1 f(0, 0, 1) = 2 f(2, 1, 2) = 2
2 1 f(1, 2, 1) = 1 f(2, 1, 1) = 2 f(0, 1, 2) = 0 f(2, 2, 0) = 1
1 2 f(1, 1, 2) = 1 f(2, 2, 1) = 2 f(0, 1, 2) = 0 f(2, 2, 0) = 1
2 2 f(1, 2, 2) = 1 f(2, 2, 1) = 2 f(0, 1, 2) = 0 f(2, 2, 0) = 1

We get 9 options for possible decrypted text. Among which the first option is
true. The possible values of the ciphertext will be only 9 options, i.e. to determine
the true value is not particularly difficult.

The question of identifying leaders in this case loses its relevance. Thus different
sets of leaders for a ternary groupoid will be 92 = 81. Essentially, we do not need
to determine the exact values of the leaders.

The ciphertext proposed in Example 2.1 is a generalized version of the chipher-
text used by M. Vojvoda for binary quasigroups.

In the following example we tried to improve this result.

Example 2.2. Enter the other text into the decryption device:
q1q1q1q2q2q2q3q3q3
q2q1q1q3q2q2q1q3q3
q1q2q1q2q3q2q3q1q3
q1q1
or
000111222
100211022
010121202
00

We get the following decryption process:
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Table 5: Decrypted text

u1 =(1,4) f(0, 0, 2) = 1 u16 =(1,4) f(0, 1, 1) = 0− (5)

u2 =(1,4) f(0, 1, 2) = 0 u17 =(1,4) f(2, 1, 0) = 0− (22)

u3 =(1,4) f(0, 0, 0) = 2− (1) u18 =(1,4) f(2, 0, 2) = 0− (21)

u4 =(1,4) f(1, 0, 0) = 0− (10) u19 =(1,4) f(0, 2, 2) = 0− (9)

u5 =(1,4) f(1, 0, 1) = 2-(11) u20 =(1,4) f(1, 2, 0) = 2− (16)

u6 =(1,4) f(1, 1, 1) = 1− (14) u21 =(1,4) f(0, 0, 1) = 1− (2)

u7 =(1,4) f(2, 1, 1) = 2− (23) u22 =(1,4) f(1, 1, 0) = 2− (13)

u8 =(1,4) f(2, 1, 2) = 2− (24) u23 =(1,4) f(2, 0, 1) = 0− (20)

u9 =(1,4) f(2, 2, 2) = 2− (27) u24 =(1,4) f(1, 1, 2) = 1− (15)

u10 =(1,4) f(1, 2, 2) = 1− (18) u25 =(1,4) f(2, 2, 1) = 2− (26)

u11 =(1,4) f(0, 2, 1) = 0− (8) u26 =(1,4) f(0, 1, 2) = 0− (6)

u12 =(1,4) f(0, 1, 0) = 1− (4) u27 =(1,4) f(2, 2, 0) = 0− (25)

u13 =(1,4) f(2, 0, 0) = 1− (19) u28 =(1,4) f(0, 0, 2) = 1− (3)

u14 =(1,4) f(1, 0, 2) = 2− (12) u29 =(1,4) f(0, 2, 0) = 1− (7)

u15 =(1,4) f(1, 2, 1) = 1− (17)

At the output we get the following 29 characters:
10202122210112100002120120011.
Thus, for a complete reconstruction of the table of values of the operation (1,4)f

it is enough to supply 28 characters (without the last one) for the ternary groupoid
at the input, or 29 to restore all values. This text has the smallest possible length,
i.e. is the best option for ternary case.

Let’s see what happens in the 4-ary case.

Example 2.3. Take the 4-ary groupoid (R3, f), R3 = {0, 1, 2}, which is defined
over residue ring modulo three (R3,+, ·) and which is invertible on the fourth
place.

We define 4-ary operation f on the set R3 in the following way:
f(x1, x2, x3, x4) = αx1 + βx2 + γx3 + δx4 = x5, where

α0 = 1, α1 = 0, α2 = 2,
β0 = 0, β1 = 0, β2 = 1,
γ0 = 2, γ1 = 1, γ2 = 1,
δ0 = 2, δ1 = 0, δ2 = 1.

The (45)-parastrophe for f is:
(4,5)f(x1, x2, x3, x5) = x4 = δ−1(2 · αx1 + 2 · βx2 + 2 · γx3 + x5),

where δ−1(0) = 1, δ−1(1) = 2, δ−1(2) = 0.
Check.

f(x1, x2, x3,
(4,5) f(x1, x2, x3, x5)) =

= αx1 + βx2 + γx3 + δ(δ−1(2 · αx1 + 2 · βx2 + 2 · γx3 + x5)) =
= αx1 + βx2 + γx3 + 2 · αx1 + 2 · βx2 + 2 · γx3 + x5 = x5
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(4,5)f(x1, x2, x3, f(x1, x2, x3, x4)) =
= δ−1(2 · αx1 + 2 · βx2 + 2 · γx3 + αx1 + βx2 + γx3 + δx4) = δ−1(δx4) = x4.

We propose the following elements:
l1 = 1, l2 = 0, l3 = 0, l4 = 2, l5 = 1, l6 = 1, l7 = 0, l8 = 0, l9 = 0
as leader elements.

We will use Algorithm 1.2 and enter the following text into the decryption
device:
000000010002001000110012002000210022
010001010102011001110112012001210122
020002010202021002110212022002210222
100010011002101010111012102010211022
110011011102111011111112112011211122
120012011202121012111212122012211222
20

In the table we give the values of the characters that allow us to determine the
values of the (4,5)f :

Table 6: Decrypted text (fragment)

u1 =(4,5) f(l1, l2, l3, v1) u63 =(4,5) f(2, 0, 1, 2) = 0− (60)
=(4,5) f(1, 0, 0, 0) = 2

u2 =(4,5) f(l4, l5, l6, v2) u68 =(4,5) f(0, 1, 2, 1) = 0− (17)
=(4,5) f(2, 1, 1, 0) = 1

u3 =(4,5) f(l7, l8, l9, v3) u69 =(4,5) f(1, 2, 1, 0) = 2− (49)
=(4,5) f(0, 0, 0, 0) = 1

u4 =(4,5) f(v1, v2, v3, v4) u70 =(4,5) f(2, 1, 0, 1) = 1− (65)
=(4,5) f(0, 0, 0, 0) = 1− (1)

u8 =(4,5) f(0, 0, 0, 1) = 2− (2) u71 =(4,5) f(1, 0, 1, 2) = 2− (33)

u9 =(4,5) f(0, 0, 1, 0) = 2− (4) u72 =(4,5) f(0, 1, 2, 2) = 1− (18)

u10 =(4,5) f(0, 1, 0, 0) = 1− (10) u73 =(4,5) f(1, 2, 2, 0) = 2− (52)

u11 =(4,5) f(1, 0, 0, 0) = 2− (28) u74 =(4,5) f(2, 2, 0, 2) = 1− (75)

u12 =(4,5) f(0, 0, 0, 2) = 0− (3) u75 =(4,5) f(2, 0, 2, 0) = 1− (61)

u13 =(4,5) f(0, 0, 2, 0) = 2− (7) u84 =(4,5) f(0, 2, 0, 2) = 2− (21)

u14 =(4,5) f(0, 2, 0, 0) = 0− (19) u87 =(4,5) f(2, 0, 2, 1) = 2− (62)

u15 =(4,5) f(2, 0, 0, 1) = 1− (56) u92 =(4,5) f(0, 2, 1, 1) = 2− (23)

u20 =(4,5) f(0, 0, 1, 1) = 0− (5) u93 =(4,5) f(2, 1, 1, 0) = 1− (67)

u21 =(4,5) f(0, 1, 1, 0) = 2− (13) u94 =(4,5) f(1, 1, 0, 2) = 1− (39)

u22 =(4,5) f(1, 1, 0, 0) = 2− (37) u95 =(4,5) f(1, 0, 2, 1) = 1− (35)

u23 =(4,5) f(1, 0, 0, 1) = 0− (29) u96 =(4,5) f(0, 2, 1, 2) = 0− (24)

u24 =(4,5) f(0, 0, 1, 2) = 1− (6) u97 =(4,5) f(2, 1, 2, 0) = 1− (70)

u25 =(4,5) f(0, 1, 2, 0) = 2− (16) u98 =(4,5) f(1, 2, 0, 2) = 2− (48)

u26 =(4,5) f(1, 2, 0, 0) = 1− (46) u99 =(4,5) f(2, 0, 2, 2) = 0− (63)
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u27 =(4,5) f(2, 0, 0, 2) = 2− (57) u104 =(4,5) f(0, 2, 2, 1) = 2− (26)

u30 =(4,5) f(2, 0, 0, 0) = 0− (55) u105 =(4,5) f(2, 2, 1, 0) = 0− (76)

u32 =(4,5) f(0, 0, 2, 1) = 0− (8) u106 =(4,5) f(2, 1, 0, 2) = 2− (66)

u33 =(4,5) f(0, 2, 1, 0) = 1− (22) u107 =(4,5) f(1, 0, 2, 2) = 2− (36)

u34 =(4,5) f(2, 1, 0, 0) = 0− (64) u108 =(4,5) f(0, 2, 2, 2) = 0− (27)

u35 =(4,5) f(1, 0, 0, 2) = 1− (30) u109 =(4,5) f(2, 2, 2, 1) = 1− (80)

u36 =(4,5) f(0, 0, 2, 2) = 1− (9) u146 =(4,5) f(2, 2, 1, 1) = 1− (77)

u37 =(4,5) f(0, 2, 2, 0) = 1− (25) u159 =(4,5) f(2, 1, 1, 1) = 2− (68)

u38 =(4,5) f(2, 2, 0, 1) = 0− (74) u164 =(4,5) f(1, 1, 1, 1) = 1− (41)

u39 =(4,5) f(2, 0, 1, 0) = 1− (58) u168 =(4,5) f(1, 1, 1, 2) = 2− (42)

u44 =(4,5) f(0, 1, 0, 1) = 2− (11) u169 =(4,5) f(1, 1, 2, 1) = 1− (44)

u45 =(4,5) f(1, 0, 1, 0) = 0− (31) u170 =(4,5) f(1, 2, 1, 1) = 0− (50)

u48 =(4,5) f(0, 1, 0, 2) = 0− (12) u171 =(4,5) f(2, 1, 1, 2) = 0− (69)

u49 =(4,5) f(1, 0, 2, 0) = 0− (34) u180 =(4,5) f(1, 1, 2, 2) = 2− (45)

u50 =(4,5) f(0, 2, 0, 1) = 1− (20) u181 =(4,5) f(1, 2, 2, 1) = 0− (53)

u51 =(4,5) f(2, 0, 1, 10) = 2− (59) u182 =(4,5) f(2, 2, 1, 2) = 2− (78)

u56 =(4,5) f(0, 1, 1, 1) = 0− (14) u195 =(4,5) f(2, 1, 2, 1) = 0− (71)

u57 =(4,5) f(1, 1, 1, 0) = 0− (40) u204 =(4,5) f(1, 2, 1, 2) = 1− (51)

u58 =(4,5) f(1, 1, 0, 1) = 0− (38) u207 =(4,5) f(2, 1, 2, 2) = 2− (72)

u59 =(4,5) f(1, 0, 1, 1) = 1− (32) u216 =(4,5) f(1, 2, 2, 2) = 1− (54)

u60 =(4,5) f(0, 1, 1, 2) = 1− (15) u217 =(4,5) f(2, 2, 2, 2) = 2− (81)

u61 =(4,5) f(1, 1, 2, 0) = 0− (43) u218 =(4,5) f(2, 2, 2, 0) = 0− (79)

u62 =(4,5) f(1, 2, 0, 1) = 2− (47)

At the output we get 218 characters.Thus the table of the decrypting function
is hacked.

Table 7: Decryption function

N Value N Value N Value
(1) (4,5)f(0, 0, 0, 0) = 1 (28) (4,5)f(1, 0, 0, 0) = 2 (55) (4,5)f(2, 0, 0, 0) = 0

(2) (4,5)f(0, 0, 0, 1) = 2 (29) (4,5)f(1, 0, 0, 1) = 0 (56) (4,5)f(2, 0, 0, 1) = 1

(3) (4,5)f(0, 0, 0, 2) = 0 (30) (4,5)f(1, 0, 0, 2) = 1 (57) (4,5)f(2, 0, 0, 2) = 2

(4) (4,5)f(0, 0, 1, 0) = 2 (31) (4,5)f(1, 0, 1, 0) = 0 (58) (4,5)f(2, 0, 1, 0) = 1

(5) (4,5)f(0, 0, 1, 1) = 0 (32) (4,5)f(1, 0, 1, 1) = 1 (59) (4,5)f(2, 0, 1, 1) = 2

(6) (4,5)f(0, 0, 1, 2) = 1 (33) (4,5)f(1, 0, 1, 2) = 2 (60) (4,5)f(2, 0, 1, 2) = 0

(7) (4,5)f(0, 0, 2, 0) = 2 (34) (4,5)f(1, 0, 2, 0) = 0 (61) (4,5)f(2, 0, 2, 0) = 1

(8) (4,5)f(0, 0, 2, 1) = 0 (35) (4,5)f(1, 0, 2, 1) = 1 (62) (4,5)f(2, 0, 2, 1) = 2

(9) (4,5)f(0, 0, 2, 2) = 1 (36) (4,5)f(1, 0, 2, 2) = 2 (63) (4,5)f(2, 0, 2, 2) = 0

(10) (4,5)f(0, 1, 0, 0) = 1 (37) (4,5)f(1, 1, 0, 0) = 2 (64) (4,5)f(2, 1, 0, 0) = 0

(11) (4,5)f(0, 1, 0, 1) = 2 (38) (4,5)f(1, 1, 0, 1) = 0 (65) (4,5)f(2, 1, 0, 1) = 1

(12) (4,5)f(0, 1, 0, 2) = 0 (39) (4,5)f(1, 1, 0, 2) = 1 (66) (4,5)f(2, 1, 0, 2) = 2
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(13) (4,5)f(0, 1, 1, 0) = 2 (40) (4,5)f(1, 1, 1, 0) = 0 (67) (4,5)f(2, 1, 1, 0) = 1

(14) (4,5)f(0, 1, 1, 1) = 0 (41) (4,5)f(1, 1, 1, 1) = 1 (68) (4,5)f(2, 1, 1, 1) = 2

(15) (4,5)f(0, 1, 1, 2) = 1 (42) (4,5)f(1, 1, 1, 2) = 2 (69) (4,5)f(2, 1, 1, 2) = 0

(16) (4,5)f(0, 1, 2, 0) = 2 (43) (4,5)f(1, 1, 2, 0) = 0 (70) (4,5)f(2, 1, 2, 0) = 1

(17) (4,5)f(0, 1, 2, 1) = 0 (44) (4,5)f(1, 1, 2, 1) = 1 (71) (4,5)f(2, 1, 2, 1) = 0

(18) (4,5)f(0, 1, 2, 2) = 1 (45) (4,5)f(1, 1, 2, 2) = 2 (72) (4,5)f(2, 1, 2, 2) = 2

(19) (4,5)f(0, 2, 0, 0) = 0 (46) (4,5)f(1, 2, 0, 0) = 1 (73) (4,5)f(2, 2, 0, 0) = 2

(20) (4,5)f(0, 2, 0, 1) = 1 (47) (4,5)f(1, 2, 0, 1) = 2 (74) (4,5)f(2, 2, 0, 1) = 0

(21) (4,5)f(0, 2, 0, 2) = 2 (48) (4,5)f(1, 2, 0, 2) = 0 (75) (4,5)f(2, 2, 0, 2) = 1

(22) (4,5)f(0, 2, 1, 0) = 1 (49) (4,5)f(1, 2, 1, 0) = 2 (76) (4,5)f(2, 2, 1, 0) = 0

(23) (4,5)f(0, 2, 1, 1) = 2 (50) (4,5)f(1, 2, 1, 1) = 0 (77) (4,5)f(2, 2, 1, 1) = 1

(24) (4,5)f(0, 2, 1, 2) = 0 (51) (4,5)f(1, 2, 1, 2) = 1 (78) (4,5)f(2, 2, 1, 2) = 2

(25) (4,5)f(0, 2, 2, 0) = 1 (52) (4,5)f(1, 2, 2, 0) = 2 (79) (4,5)f(2, 2, 2, 0) = 0

(26) (4,5)f(0, 2, 2, 1) = 2 (53) (4,5)f(1, 2, 2, 1) = 0 (80) (4,5)f(2, 2, 2, 1) = 1

(27) (4,5)f(0, 2, 2, 2) = 0 (54) (4,5)f(1, 2, 2, 2) = 1 (81) (4,5)f(2, 2, 2, 2) = 2

Thus, for a complete reconstruction of the table of values of the operation
(4,5)f , and hence the table of values of the operation f it is sufficient to supply
218 (or 217) characters for the 4-ary groupoid at the input.

Knowing Cayley table for operation (4,5)f , we easily restored the operation f :

Table 8: Encryption function

N Value N Value N Value
(1) f(0, 0, 0, 0) = 2 (28) f(1, 0, 0, 0) = 1 (55) f(2, 0, 0, 0) = 0
(2) f(0, 0, 0, 1) = 0 (29) f(1, 0, 0, 1) = 2 (56) f(2, 0, 0, 1) = 1
(3) f(0, 0, 0, 2) = 1 (30) f(1, 0, 0, 2) = 0 (57) f(2, 0, 0, 2) = 2
(4) f(0, 0, 1, 0) = 1 (31) f(1, 0, 1, 0) = 0 (58) f(2, 0, 1, 0) = 2
(5) f(0, 0, 1, 1) = 2 (32) f(1, 0, 1, 1) = 1 (59) f(2, 0, 1, 1) = 0
(6) f(0, 0, 1, 2) = 0 (33) f(1, 0, 1, 2) = 2 (60) f(2, 0, 1, 2) = 1
(7) f(0, 0, 2, 0) = 1 (34) f(1, 0, 2, 0) = 0 (61) f(2, 0, 2, 0) = 2
(8) f(0, 0, 2, 1) = 2 (35) f(1, 0, 2, 1) = 1 (62) f(2, 0, 2, 1) = 0
(9) f(0, 0, 2, 2) = 0 (36) f(1, 0, 2, 2) = 2 (63) f(2, 0, 2, 2) = 1
(10) f(0, 1, 0, 0) = 2 (37) f(1, 1, 0, 0) = 1 (64) f(2, 1, 0, 0) = 0
(11) f(0, 1, 0, 1) = 0 (38) f(1, 1, 0, 1) = 2 (65) f(2, 1, 0, 1) = 1
(12) f(0, 1, 0, 2) = 1 (39) f(1, 1, 0, 2) = 0 (66) f(2, 1, 0, 2) = 2
(13) f(0, 1, 1, 0) = 1 (40) f(1, 1, 1, 0) = 0 (67) f(2, 1, 1, 0) = 2
(14) f(0, 1, 1, 1) = 2 (41) f(1, 1, 1, 1) = 1 (68) f(2, 1, 1, 1) = 0
(15) f(0, 1, 1, 2) = 0 (42) f(1, 1, 1, 2) = 2 (69) f(2, 1, 1, 2) = 1
(16) f(0, 1, 2, 0) = 1 (43) f(1, 1, 2, 0) = 0 (70) f(2, 1, 2, 0) = 2
(17) f(0, 1, 2, 1) = 2 (44) f(1, 1, 2, 1) = 1 (71) f(2, 1, 2, 1) = 0
(18) f(0, 1, 2, 2) = 0 (45) f(1, 1, 2, 2) = 2 (72) f(2, 1, 2, 2) = 1
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(19) f(0, 2, 0, 0) = 0 (46) f(1, 2, 0, 0) = 2 (73) f(2, 2, 0, 0) = 1
(20) f(0, 2, 0, 1) = 1 (47) f(1, 2, 0, 1) = 0 (74) f(2, 2, 0, 1) = 2
(21) f(0, 2, 0, 2) = 2 (48) f(1, 2, 0, 2) = 1 (75) f(2, 2, 0, 2) = 0
(22) f(0, 2, 1, 0) = 2 (49) f(1, 2, 1, 0) = 1 (76) f(2, 2, 1, 0) = 0
(23) f(0, 2, 1, 1) = 0 (50) f(1, 2, 1, 1) = 2 (77) f(2, 2, 1, 1) = 1
(24) f(0, 2, 1, 2) = 1 (51) f(1, 2, 1, 2) = 0 (78) f(2, 2, 1, 2) = 2
(25) f(0, 2, 2, 0) = 2 (52) f(1, 2, 2, 0) = 1 (79) f(2, 2, 2, 0) = 0
(26) f(0, 2, 2, 1) = 0 (53) f(1, 2, 2, 1) = 2 (80) f(2, 2, 2, 1) = 1
(27) f(0, 2, 2, 2) = 1 (54) f(1, 2, 2, 2) = 0 (81) f(2, 2, 2, 2) = 2

Currently, we are looking for the type of text of minimum length for a 4-ary
groupoid.

To understand the situation with burglary of the decrypted text and the lead-
ers, consider the plaintext of the form: 101202=u1u2u3u4u5u6. For this text we
have:
v1 = f(l1, l2, l3, u1) = f(l1, l2, l3, 1) =?
v2 = f(l4, l5, l6, u2) = f(l4, l5, l6, 0) =?
v3 = f(l7, l8, l9, u3) = f(l7, l8, l9, 1) =?
v4 = f(v1, v2, v3, u4) = f(v1, v2, v3, 2) =?
v5 = f(v2, v3, v4, u5) = f(v2, v3, v4, 0) =?
v6 = f(v3, v4, v5, u6) = f(v3, v4, v5, 2) =?

Analyzing the results obtained using the table of values of the function f , we
obtain the following: f(∗, ∗, ∗, 1) and f(∗, ∗, ∗, 2) take any values.

Table 9: Ciphertext values

v1 v2 v3 v4 v5 v6
0 0 0 f(0, 0, 0, 2) = 1 f(0, 0, 1, 0) = 1 f(0, 1, 0, 2) = 1
0 0 1 f(0, 0, 1, 2) = 0 f(0, 0, 0, 0) = 2 f(0, 0, 2, 2) = 0
0 0 2 f(0, 0, 2, 2) = 0 f(0, 2, 2, 0) = 2 f(2, 0, 2, 2) = 1
0 1 0 f(0, 1, 0, 2) = 1 f(1, 0, 1, 0) = 0 f(0, 1, 0, 2) = 1
0 1 1 f(0, 1, 1, 2) = 0 f(1, 1, 0, 0) = 1 f(1, 0, 1, 2) = 2
0 1 2 f(0, 1, 2, 2) = 0 f(1, 2, 0, 0) = 2 f(2, 0, 2, 2) = 1
0 2 0 f(0, 2, 0, 2) = 2 f(2, 0, 2, 0) = 2 f(0, 2, 2, 2) = 1
0 2 1 f(0, 2, 1, 2) = 1 f(2, 1, 1, 0) = 2 f(1, 1, 2, 2) = 2
0 2 2 f(0, 2, 2, 2) = 1 f(2, 2, 1, 0) = 0 f(2, 1, 0, 2) = 2
1 0 0 f(1, 0, 0, 2) = 0 f(0, 0, 0, 0) = 2 f(0, 0, 2, 2) = 0
1 0 1 f(1, 0, 1, 2) = 2 f(0, 1, 2, 0) = 1 f(1, 2, 1, 2) = 0
1 0 2 f(1, 0, 2, 2) = 2 f(0, 2, 2, 0) = 2 f(2, 2, 2, 2) = 2
1 1 0 f(1, 1, 0, 2) = 0 f(1, 0, 0, 0) = 1 f(0, 0, 1, 2) = 0
1 1 1 f(1, 1, 1, 2) = 2 f(1, 1, 2, 0) = 0 f(1, 2, 0, 2) = 1
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1 1 2 f(1, 1, 2, 2) = 2 f(1, 2, 2, 0) = 1 f(2, 2, 1, 2) = 2
1 2 0 f(1, 2, 0, 2) = 1 f(2, 0, 1, 0) = 2 f(0, 1, 2, 2) = 0
1 2 1 f(1, 2, 1, 2) = 0 f(2, 1, 0, 0) = 0 f(1, 0, 0, 2) = 0
1 2 2 f(1, 2, 2, 2) = 0 f(2, 2, 0, 0) = 1 f(2, 0, 1, 2) = 1
2 0 0 f(2, 0, 0, 2) = 2 f(0, 0, 2, 0) = 1 f(0, 2, 1, 2) = 1
2 0 1 f(2, 0, 1, 2) = 1 f(0, 1, 1, 0) = 1 f(1, 1, 1, 2) = 2
2 0 2 f(2, 0, 2, 2) = 1 f(0, 2, 1, 0) = 2 f(2, 1, 2, 2) = 1
2 1 0 f(2, 1, 0, 2) = 2 f(1, 0, 2, 0) = 0 f(0, 2, 0, 2) = 2
2 1 1 f(2, 1, 1, 2) = 1 f(1, 1, 1, 0) = 0 f(1, 1, 0, 2) = 0
2 1 2 f(2, 1, 2, 2) = 1 f(1, 2, 1, 0) = 1 f(2, 1, 1, 2) = 1
2 2 0 f(2, 2, 0, 2) = 0 f(2, 0, 0, 0) = 0 f(0, 0, 0, 2) = 1
2 2 1 f(2, 2, 1, 2) = 2 f(2, 1, 2, 0) = 2 f(1, 2, 2, 2) = 0
2 2 2 f(2, 2, 2, 2) = 2 f(2, 2, 2, 0) = 0 f(2, 2, 0, 2) = 0

We get 27 options for possible decrypted text, among which the 25-th option
is true.

Thus, we confirmed the result that for an n-ary groupoid, the required number
of characters is: (n · mn−1 + 1)(m − 1) characters to get all the values or n ·
mn−1(m− 1) + (m− 2) characters, when the last value is found by the exception
method.

So the minimum number of characters in a modified attack will be: mn+(n−1).
The main question is the choice of text of minimum length for groupoids of

different arity and order.

2.2 Plaintext attacks
Consider an attack with the plaintext constructed using an n-ary groupoid, which
is invertible on the i-th place obtained using the generalized Markovski algorithm.

Assume the cryptanalyst has access to the encryption device loaded with the
key. He can then construct the following plaintext:

q1q1 . . . q1q1q1q1 . . . q1q2q1q1 . . . q1qm
q1q1 . . . q2q1q1q1 . . . q2q2q1q1 . . . q2qm
q1q1 . . . q3q1q1q1 . . . q3q2q1q1 . . . q3qm
. . . . . . . . . . . . . . .
q1q1 . . . qmq1q1q1 . . . qmq2q1q1 . . . qmqm . . .

and enter it into the encryption device.
The number of characters required to restore the encryption table depends

on the values of the selected leaders. Therefore, the question of determining the
length of the plaintext used remains open.

Example 2.4. We consider the plaintext attack for the Example 2.1 and we chose
the following plaintext:
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q1q1q1q1q1q2q1q1q3q1q2q1q1q2q2q1q2q3q1q3q1q1q3q2q1q3q3
q2q1q1q2q1q2q2q1q3q2q2q1q2q2q2q2q2q3q2q3q1q2q3q2q2q3q3
q3q1q1q3q1q2q3q1q3q3q2q1q3q2q2q3q2q3q3q3q1q3q3q2q3q3q3
or
000001002010011012020021022
100101102110111112120121122
200201202210211212220221222

The process of encrypting the text and the results are as follows:

Table 10: Encrypted text

v1 = f(u1, l1, l2) = f(q1, l1, l2) v42 = f(1, 0, 2) = 0
= f(0, 0, 2) = 2

v2 = f(u2, l3, l4) = f(q1, l3, l4) v43 = f(1, 2, 0) = 0
= f(0, 1, 2) = 0

v3 = f(u3, v1, v2) = f(q1, v1, v2) v44 = f(1, 0, 0) = 2
= f(0, 2, 0) = 2− (7)

v4 = f(u4, v2, v3) = f(0, 0, 2) = 2− (3) v45 = f(2, 0, 2) = 1
v5 = f(0, 2, 2) = 0− (9) v46 = f(1, 2, 1) = 1
v6 = f(1, 2, 0) = 0− (16) v47 = f(2, 1, 1) = 2− (23)
v7 = f(0, 0, 0) = 1− (1) v48 = f(0, 1, 2) = 0− (6)
v8 = f(0, 0, 1) = 2− (24) v49 = f(1, 2, 0) = 0
v9 = f(2, 1, 2) = 2− (24) v50 = f(2, 0, 0) = 0
v10 = f(0, 2, 2) = 0 v51 = f(1, 0, 0) = 2
v11 = f(1, 2, 0) = 0 v52 = f(1, 0, 2) = 0
v12 = f(0, 0, 0) = 1 v53 = f(2, 2, 0) = 1− (25)
v13 = f(0, 0, 1) = 2 v54 = f(2, 0, 1) = 1
v14 = f(1, 1, 2) = 1− (15) v55 = f(2, 1, 1) = 2
v15 = f(1, 2, 1) = 1− (17) v56 = f(0, 1, 2) = 0
v16 = f(0, 1, 1) = 0− (5) v57 = f(0, 2, 0) = 2
v17 = f(1, 1, 0) = 0− (13) v58 = f(2, 0, 2) = 1
v18 = f(2, 0, 0) = 0− (19) v59 = f(0, 2, 1) = 0− (8)
v19 = (0, 0, 0) = 1 v60 = f(1, 1, 0) = 0
v20 = f(2, 0, 1) = 1− (20) v61 = f(2, 0, 0) = 0
v21 = f(0, 0, 1) = 0 v62 = f(0, 0, 0) = 1
v22 = f(0, 1, 0) = 2− (4) v63 = f(2, 0, 1) = 1
v23 = f(2, 0, 2) = 1− (21) v64 = f(2, 1, 1) = 2
v24 = f(1, 2, 1) = 1 v65 = f(1, 1, 2) = 1
v25 = f(0, 1, 1) = 0 v66 = f(0, 2, 1) = 0
v26 = f(2, 1, 0) = 1− (22) v67 = f(2, 1, 0) = 1
v27 = f(2, 0, 1) = 1 v68 = f(1, 0, 1) = 0− (11)
v28 = f(1, 1, 1) = 1− (14) v69 = f(1, 1, 0) = 0
v29 = f(0, 1, 1) = 0 v70 = f(2, 0, 0) = 0
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v30 = f(0, 1, 0) = 2 v71 = f(1, 0, 0) = 2
v31 = f(1, 0, 2) = 0− (12) v72 = f(2, 0, 2) = 1
v32 = f(0, 2, 0) = 2 v73 = f(2, 2, 1) = 2− (26)
v33 = f(1, 0, 2) = 0 v74 = f(2, 1, 2) = 2
v34 = f(1, 2, 0) = 0 v75 = f(0, 2, 2) = 0
v35 = f(0, 0, 0) = 1 v76 = f(2, 2, 0) = 1
v36 = f(2, 0, 1) = 1 v77 = f(2, 0, 1) = 1
v37 = f(1, 1, 1) = 1 v78 = f(1, 1, 1) = 1
v38 = f(1, 1, 1) = 1 v79 = f(2, 1, 1) = 2
v39 = f(0, 1, 1) = 0 v80 = f(2, 1, 2) = 2
v40 = f(1, 1, 0) = 0 v81 = f(2, 2, 2) = 2− (27)
v41 = f(1, 0, 0) = 2− (10)

At the output of the encryption device, we get the following 81 characters:
20220012200121100011021101110202001111002002112000201120210001121010
0021220111222.

These characters will be enough to restore the table of values of the function f
(Table 3). Knowing Cayley table for operation f , we easily restored the operation
(1,4)f (Table 2).

Take some encrypted text and try to crack it. For example, we have the
following ciphertext: 002101=v1v2v3v4v5v6. Then we have:

u1 =(1,4) f(v1, l1, l2) = (0, l1, l2) =?⇒ u1 =?
u2 =(1,4) f(v2, l3, l4) =

(1,4) f(0, l3, l4) =?⇒ u2 =?
u3 =(1,4) f(v3, v1, v2) =

(1,4) f(2, 0, 0) = 1⇒ u3 = 1,
u4 =(1,4) f(v4, v2, v3) =

(1,4) f(1, 0, 2) = 2⇒ u4 = 2,
u5 =(1,4) f(v5, v3, v4) =

(1,4) f(0, 2, 1) = 0⇒ u5 = 0,
u6 =(1,4) f(v6, v4, v5) =

(1,4) f(1, 1, 0) = 2⇒ u6 = 2.

Analyzing the results obtained using the table of values of the function f ,
we obtain the following: f(0, ∗, ∗) takes any values. The possible values of the
ciphertext will be only of 9 options:

Table 11: Plaintext values

u1 u2 u3 u4 u5 u6
0 0 1 2 0 2
0 1 1 2 0 2
1 0 1 2 0 2
1 1 1 2 0 2
2 0 1 2 0 2
0 2 1 2 0 2
2 1 1 2 0 2
1 2 1 2 0 2
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2 2 1 2 0 2

Among them only the third option is correct.

For an n-ary groupoid in plaintext of length k, the first (n− 1) characters are
not cracked. The rest are unequivocally.

Example 2.5. We consider the plaintext attack for the Example 2.3 and we chose
the following plaintext:
000000010002001000110012002000210022
010001010102011001110112012001210122
020002010202021002110212022002210222
100010011002101010111012102010211022
110011011102111011111112112011211122
120012011202121012111212122012211222
200020012002201020112012202020212022
210021012102211021112112212021212122
220022012202221022112212222022212222
0000000100020010

The process of encrypting the text and the results are as follows:

Table 12: Encrypted (fragment)

v4 = f(1, 2, 2, 0) = 1− (52) v86 = f(1, 2, 0, 2) = 1− (48)
v5 = f(2, 2, 1, 0) = 0− (76) v93 = f(2, 0, 1, 0) = 2− (58)
v6 = f(2, 1, 0, 0) = 0− (64) v94 = f(0, 1, 2, 2) = 0− (18)
v7 = f(1, 0, 0, 0) = 1− (28) v96 = f(2, 0, 0, 2) = 2− (57)
v8 = f(0, 0, 1, 1) = 2− (5) v97 = f(0, 0, 2, 0) = 1− (7)
v9 = f(0, 1, 2, 0) = 1− (16) v98 = f(0, 2, 1, 2) = 1− (24)
v10 = f(1, 2, 1, 0) = 1− (49) v99 = f(2, 1, 1, 2) = 1− (69)
v11 = f(2, 1, 1, 0) = 2− (67) v101 = f(1, 1, 0, 0) = 1− (37)
v12 = f(1, 1, 2, 2) = 2− (45) v102 = f(1, 0, 1, 2) = 2− (33)
v15 = f(2, 1, 0, 1) = 1− (65) v109 = f(1, 0, 1, 1) = 1− (32)
v16 = f(1, 0, 1, 0) = 0− (31) v116 = f(1, 1, 0, 1) = 2− (38)
v17 = f(0, 1, 0, 0) = 2− (10) v117 = f(1, 0, 2, 1) = 1− (35)
v18 = f(1, 0, 2, 0) = 0− (34) v118 = f(0, 2, 1, 0) = 2− (22)
v19 = f(0, 2, 0, 1) = 1− (20) v119 = f(2, 1, 2, 0) = 2− (70)
v20 = f(2, 0, 1, 1) = 0− (59) v121 = f(2, 2, 0, 1) = 2− (74)
v24 = f(2, 0, 1, 2) = 1− (60) v128 = f(0, 2, 1, 1) = 0− (23)
v25 = f(0, 1, 1, 0) = 1− (13) v131 = f(0, 1, 0, 1) = 0− (11)
v26 = f(1, 1, 1, 0) = 0− (40) v132 = f(1, 0, 0, 2) = 0− (30)
v27 = (1, 1, 0, 2) = 0− (39) v133 = f(0, 0, 0, 1) = 0− (2)
v29 = f(0, 0, 1, 0) = 1− (4) v134 = f(0, 0, 0, 0) = 2− (1)
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v31 = f(1, 1, 1, 2) = 2− (42) v135 = f(0, 0, 2, 2) = 0− (9)
v32 = f(1, 1, 2, 1) = 1− (44) v139 = f(0, 1, 1, 2) = 0− (15)
v36 = f(1, 2, 2, 2) = 0− (54) v143 = f(2, 1, 2, 2) = 1− (72)
v37 = f(2, 2, 0, 0) = 1− (73) v144 = f(1, 2, 1, 2) = 0− (51)
v41 = f(0, 2, 0, 0) = 0− (19) v161 = f(1, 0, 0, 1) = 2− (29)
v42 = f(2, 0, 0, 1) = 1− (56) v162 = f(0, 0, 2, 1) = 2− (8)
v44 = f(0, 1, 1, 1) = 2− (14) v173 = f(2, 2, 1, 1) = 1− (77)
v45 = f(1, 1, 2, 0) = 0− (43) v174 = f(2, 1, 1, 1) = 0− (68)
v46 = f(1, 2, 0, 1) = 0− (47) v179 = f(2, 2, 0, 2) = 0− (75)
v47 = f(2, 0, 0, 0) = 0− (55) v182 = f(0, 2, 2, 2) = 1− (27)
v48 = f(0, 0, 0, 2) = 1− (3) v192 = f(2, 0, 2, 2) = 1− (63)
v55 = f(1, 2, 1, 1) = 2− (50) v194 = f(2, 1, 0, 2) = 2− (66)
v56 = f(2, 1, 2, 1) = 0− (71) v212 = f(0, 1, 2, 1) = 2− (17)
v57 = f(1, 2, 0, 0) = 2− (46) v213 = f(1, 2, 2, 1) = 2− (53)
v58 = f(2, 0, 2, 1) = 0− (62) v214 = f(2, 2, 2, 2) = 2− (81)
v62 = f(1, 1, 1, 1) = 1− (41) v218 = f(2, 2, 2, 0) = 0− (79)
v67 = f(0, 2, 0, 2) = 2− (21) v227 = f(0, 0, 0, 0) = 2− (1)
v71 = f(0, 0, 1, 2) = 0− (6) v288 = f(1, 0, 2, 2) = 2− (36)
v72 = f(0, 1, 0, 2) = 1− (12) v290 = f(2, 2, 1, 2) = 2− (78)
v79 = f(2, 0, 2, 0) = 2− (61) v338 = f(0, 2, 2, 0) = 2− (25)
v80 = f(0, 2, 2, 1) = 0− (26) v339 = f(2, 2, 2, 1) = 1− (80)

At the output of the encryption device we get 339 characters.They will be
enough to restore the table of values of the function f (Table 8). Knowing Cayley
table for the operation f , we easily restored the operation (4,5)f (Table 7).

Take some encrypted text and try to crack it. For example, we have the
following ciphertext: 220001=v1v2v3v4v5v6. Then we have:

u1 =(4,5) f(l1, l2, l3, v1, ) =
(4,5) f(l1, l2, l3, 2) =?⇒ u1 =?

u2 =(4,5) f(l4, l5, l6, v2, ) =
(4,5) f(l4, l5, l6, 2) =?⇒ u2 =?

u3 =(4,5) f(l7, l8, l9, v3) =
(4,5) f(l7, l8, l9, 0) =?⇒ u3 =?

u4 =(4,5) f(v1, v2, v3, v4) =
(4,5) f(2, 2, 0, 0) = 2⇒ u4 = 2,

u5 =(4,5) f(v2, v3, v4, v5) =
(4,5) f(2, 0, 0, 0) = 0⇒ u5 = 0,

u6 =(4,5) f(v3, v4, v5, v6) =
(4,5) f(0, 0, 0, 1) = 2⇒ u6 = 2.

Analyzing the results obtained using the table of values of the function (4,5)f ,
we obtain the following: f(∗, ∗, ∗, 2) and f(∗, ∗, ∗, 0) take any values.The possible
values of the ciphertext will be 27 options:

Table 13: Plaintext values

u1 u2 u3 u4 u5 u6
0 0 0 2 0 2
0 0 1 2 0 2
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0 0 2 2 0 2
0 1 0 2 0 2
0 1 1 2 0 2
0 1 2 2 0 2
0 2 0 2 0 2
0 2 1 2 0 2
0 2 2 2 0 2
1 0 0 2 0 2
1 0 1 2 0 2
1 0 2 2 0 2
1 1 0 2 0 2
1 1 1 2 0 2
1 1 2 2 0 2
1 2 0 2 0 2
1 2 1 2 0 2
1 2 2 2 0 2
2 0 0 2 0 2
2 0 1 2 0 2
2 0 2 2 0 2
2 1 0 2 0 2
2 1 1 2 0 2
2 1 2 2 0 2
2 2 0 2 0 2
2 2 1 2 0 2
2 2 2 2 0 2

Among them the 11th option is correct.

3. Conclusion
A cryptanalysis is done on cipher and there are analyzed cryptoattacks, built by
M. Vojvoda for quasigroups, chosen ciphertext and plaintext.

In this article, we looked at some types of attacks on the Markovski cipher with
the help of open and encrypted texts.

Thus, for a complete reconstruction of the table of values of the operation
(i,n+1))f and hence, the table of values of the operation f using cryptotext attack,
it is sufficient to submit at the input: A = (n ·mn−1 +1)(m− 1) characters to get
all the values.

The minimum number of characters in a modified cryptotext attack will be
mn+(n−1) symbols, where n is arity and m the order of an i-invertible groupoid.
As for the plaintext attack, it was possible to establish the lower limit value of the
necessary characters to restore the table of the values of function f .
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But the following question remains. What kind of text to give at the input of
the encrypting device so as not to exceed the received limit of characters and will
it always be possible?

We plan to continue attacks on the cipher built with the help of generalized
Markovski algorithms on i-invertible groupoids.

Acknowledgement. The author thanks Referee for his helpful comments.
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An enhanced version of the hidden discrete
logarithm problem and its algebraic support

Dmitriy N. Moldovyan, Alexandr A. Moldovyan, Nikolay A. Moldovyan

Abstract. A new approach is proposed to the development of the signature schemes based on
the computational difficulty of the hidden discrete logarithm problem, which is characterized
in the adoption of the criterion of elimination of periodicity associated with the value of the
discrete logarithm in the construction of periodic functions based on the public parameters of the
signature scheme. In line with the approach, a new signature scheme is proposed as candidate for
post-quantum public-key cryptoscheme. Its algebraic support represents a 6-dimensional finite
non-commutative associative algebra set over the fieldGF (p), which contains p2 global right-sided
units. Every one of the lasts is the unit of one of p2 isomorphic finite non-commutative groups
contained in the algebra. Every of the said groups contains commutative subgroups possessing
2-dimensional cyclicity and this feature is exploited to implement the enhanced criterion of
providing security to the known and potential future quantum attacks.

1. Introduction

In the last few years the development of practical post-quantum (PQ) public-key
(PK) cryptosystems has attracted considerable attention from the cryptographic
community [11, 12]. Post-quantum are called cryptographic algorithms and pro-
tocols that run efficiently on classical computers but will resist attacks performed
with using hypothetic quantum computers (quantum attacks). Currently, the
most widely used in practice cryptographic algorithms and protocols are based on
computationally difficult problems of finding discrete logarithm and factorization,
however, in the PQ era, such cryptosystems are insecure. The latter is due to the
fact that polynomial algorithms for solving the said computational problems are
known for a quantum computer [14].

Quantum algorithms for solving both the factoring problem (FP) [1] and the
discrete logarithm problem (DLP) [14, 15] are based on the extremely high effi-
ciency of a quantum computer to perform a discrete Fourier transform [2], which
is used to calculate the period length of periodic functions. In particular, to solve
the problem of finding the value of a discrete logarithm, one constructs a peri-
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Keywords: non-commutative algebra, finite associative algebra, single-sided units, post-
quantum cryptography, public-key cryptoscheme, signature scheme, discrete logarithm prob-
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odic function whose values lie in an explicitly given cyclic group, which contains
a period with the length depending on the value of the logarithm.

Developers of the PQ PK cryptoschemes usually use difficult computational
problems that are different from the FP and DLP. An interesting approach to the
designing of the PQ PK cryptoschemes and PQ commutative ciphers relates to
using so called hidden DLP (HDLP) [3, 6, 7]. Different versions of the HDLP
are used in the design of different PK cryptosystems. In the case of development
of the signature schemes [9], the idea of that approach consists in selecting a
cyclic group having sufficiently large prime order, which is generated by some
vector N as a subset of elements of a finite non-commutative associative algebra
(FNAA) followed by computing the PK in the form of the pair of the vectors
Q = ψ1 (N) and Y = ψ2 (Nx) , where x is private key; ψ1 and ψ2 are masking
operations representing two different homomorphism-map (or automorphism-map)
operations.

Due to using the masking operations ψ1 and ψ2 the vectors Q and Y are el-
ements of two different cyclic groups each of which is different from the group
generated by the vector N. Since the masking operations defines homormorphism
maps, every one of them is mutually comutative with the exponentiation opera-
tion. Due to the last, one can use a DLP-based signature (for example, well known
Schnorr signature algorithm [13]) and replace in it the signature verification proce-
dure using the values N and Nx by the the signature verification procedure using
the values Q and Y. To compute a signature a potential forger needs to know only
the value x that is a discrete logarithm value in a hidden cyclic group, no element
of which is known to the forger. The rationale of the security of the HDLP-based
signature schemes consists in the fact that a periodic function f(i, j) constructed
as computation of product of the values Qi and Y j (for example, f(i, j) = QiY j)
take on the values contained in numerous different groups contained in the FNAA
used as algebraic support of the signature scheme. Therefore, the Shor quantum
algorithm is not directly applicable to compute the value x, the function f(i, j)
contains a period depending on the value x though.

However, the question arises about the possibility of developing new quantum
algorithms that allow us to calculate the period length for periodic functions that
take values in algebraic sets that are not groups. In future, the emergence of
such quantum algorithms will mean breaking the known HDLP-based signature
schemes.

In this paper, we propose to adopt a strengthened criterion for ensuring secu-
rity of the HDLP-based cryptoschemes to hypothetic quantum attacks based on
the said advanced quantum algorithms for computing the lenth of the periods of
periodic funcions related to a wider class of such functions. Namey, we propose
the following advanced criterion of designing the HDLP-based PK cryptosystems:
construction of the periodic functions on the base of the publicly know parameters
of the cryptoscheme, which contain a period with the length depending on the
value of the discrete logarithm in the hidden group, should be a computationally
intractable problem.
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To develop algorithms that meet this criterion, we propose to use the idea
of masking periodicity with a period length different from the value of the prime
order q of the cyclic group in which the hidden discrete logarithm problem is given.
Namely, one is to design a signature scheme with such public parameters that using
them to build periodic functions will give the period length equal to the order of
the hidden cyclic group. As a concrete way to implement this idea, we propose to
define a base cyclic group as a subgroup of a hidden commutative group having
2-dimensional cyclicity (i.e., group generated by a minimum generator system of
two elements U and N having the same order value; in our case, the order is equal
to the prime q). This makes it possible to form such a PK that the construction
of periodic functions using its elements will define the value of the period equal
to the value q. The latter is achieved by the fact that the elements of the PK are
calculated by the formulas Q = ψ1 (NU) and Y = ψ2 (Nx) .

The use of the multiplier U allows one to fix the length q of the period of
the constructed periodic functions, but the presence of such a multiplier should
be taken into account when developing the verification equation of the signature
scheme. In general, the HDLP-based cryptosystems developed taking into account
the proposed enhanced design criterion have lower performance, longer PK and
signature. However, they are significantly more attractive as candidates for PQ
signature schemes.

The rest of the paper is organized as follows. Section 2 describes the suit-
able algebraic support of the developed signature scheme, which represents the
6-dimensional FNAA defined over the ground finite field GF (p) and containing
p2 different global right-sided units and p2 finite non-commutative groups every
one of which contains commutative subgroups with 2-dimensional cyclicity. Sec-
tion 3 introduces the developed candidate for PQ signature scheme, characterized
in using a commutative group with 2-dimensional cyclicity as a hidden group.

2. The used 6-dimensional FNAA

2.1. Preliminaries

In general, the m-dimensional finite algebra represents the m-dimensional vector
space over some finite field, in which the vector multiplication operation (that is
distributive at the left and at the right) is defined. If the vector multiplication is
non-commutative and associative we have the FNAAs. The FNAA used as the
algebraic support of the developed PQ signature scheme is defined over the ground
field GF (p) the characteristic of which is equal to the prime p = 2q + 1, where q
is a 256-bit prime. The multiplication operation (denoted as ◦) in the considered
FNAA is defined using the following formula descibing the result of the multiplying
two 6-dimensional vectors A =

∑5
i=0 aiei, and B =

∑5
j=0 bjej , where e0, e1, . . . e5

are formal basis vectors, as follows:
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A ◦B =

(
5∑
i=0

aiei

)
◦

 5∑
j=0

bjej

 =

5∑
j=0

5∑
i=0

aibj (ei ◦ ej) , (1)

where coordinates a0, a1, . . . a5 of the vector A and coordinates b0, b1, . . . b5 of the
vector B are elements of the field GF (p). One assumes the product of every pair of
the basis vectors ei◦ej is to be replaced by some single-component vector λek that
is taken from the so called basis vector multiplication table (BVMT), namely, from
the cell at the intersection of the ith row and the jth column. In present paper
the BVMT shown as Table 1 is used to define the 6-dimensional FNAA with the
required properties. This algebra contains p2 isomorphic non-commutative groups
every of which contains commutative subgroups having 2-dimensional cyclicity.

Table 1. The BVMT setting the FNAA with p2 global right-sided units (λ > 2)

◦ e0 e1 e2 e3 e4 e5

e0 e0 e3 e0 e3 e0 e3

e1 λe2 e1 e2 λe1 e2 e1

e2 e2 e1 e2 e1 e2 e1

e3 λe0 e3 e0 λe3 e0 e3

e4 e4 e5 e4 e5 e4 e5

e5 λe4 e5 e4 λe5 e4 e5

2.2. Finite commutative group with 2-dimensional cyclicity
The finite 2-dimentional commutative algebra with the associative multiplication
operation defined by Table 2 was considered in the paper [10], where it had been
shown that the multiplicative group Γ of the algebra is cyclic, if the structural
coefficient λ is a quadratic non-residue inGF (p). In this case this algebra represents
a finite field GF (p2).

If the structural coefficient λ is a quadratic residue in GF (p), then the order
of the group Γ has order equal to the value Ω = (p− 1)2. Besides, Γ is generated
by the minimum generator system < G′1, G

′
2 >, including two vectors of the same

order equal to the value (p−1). In [8] it was proposed to call a commutative finite
group containg the minimum generator system of m vectors having the same order
the group having m-dimensional cyclicity. In this paper the said term is used.

For the case p = 2q+ 1, where q is a prime, one can consider the commutative
primary group of the order q2 that has 2-dimensional cyclicity and is generated by
the generator system < G1, G2 >, where each of the vectors G1 and G2 has order q:
G1 = G′1

2 and G2 = G′2
2. Independenly of the value of the structural coefficient λ

the multiplicative group of the considered 2-dimentional algebra contains the unit
equal to the vector (1, 0). The said primary group can be considered as a set of
q+1 different cyclic groups of the prime order q all possible pairs of which contain
only one common element, namely, the unit vector (1, 0). Evidently, some fixed
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pair of the integers i and j (0 < i < q; 0 < j < q) define the vector Gij = Gi1 ◦G
j
1

having order equal to q, which is a generator of some cyclic group Γc of the prime
order q. One can easily see that the following proposition holds true.

Table 2. The BVMT setting 2-dimensional commutative associative algebra over GF (p)

◦ e0 e1

e0 e0 e1

e1 e1 λe0

Proposition 1. For k = 0, 1, . . . , q − 1 each of the the formulas Gk = Gij ◦Gk1
and Gk = Gij ◦Gk2 , where i, j = 1, 2, . . . , q − 1, defines q generators of q different
cyclic groups having order q.

Arbitrary two elements N 6= (1, 0) and U 6= (1, 0) of the said primary group,
which are contained in different cyclic subgroups, represent the generator system of
the primary group. Therefore, due to the Proposition 1, for arbitrary fixed integer
i (0 < i < q) q different cyclic groups are defined by the generators Uk = Ni ◦Uk,
where k = 0, 1, . . . , q − 1. The last fact is used in the design of the proposed
HDLP-based signature scheme.

2.3. Properties of the algebraic support

The FNAA defined over the field GF (p) by Table 1, where λ 6= 1; λ 6= 0, contains
p2 global right-sided units R that can be computed from the vector equation

A ◦X = A (2)

with the unknown 6-dimensional vector X = (x0, x1, . . . , x5) . Using Table 1 the
equation (2) can be represented in the form of the following system of four linear
equations: 

a0 (x0 + x2 + x4) + a3 (λx0 + x2 + x4) = a0;

a1 (x1 + λx3 + x5) + a2 (x1 + x3 + x5) = a1;

a1 (λx0 + x2 + x4) + a2 (x0 + x2 + x4) = a2;

a0 (x1 + x3 + x5) + a3 (x1 + λx3 + x5) = a3;

a4 (x0 + x2 + x4) + a5 (λx0 + x2 + x4) = a4;

a4 (x1 + x3 + x5) + a5 (x1 + λx3 + x5) = a5.

(3)

Performing the variable substitution u1 = x0 + x2 + x4, u2 = λx0 + x2 + x4,
u3 = x1 + x3 + x5, and u4 = x1 + λx3 + x5, one can represent the system (3) in
the following form:
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

a0u1 + a3u2 = a0;

a1u4 + a2u3 = a1;

a2u1 + a1u2 = a2;

a0u3 + a3u4 = a3;

a4u1 + a5u2 = a4;

a4u3 + a5u4 = a5.

The solution (u1, u2, u3, u4) = (1, 0, 0, 1) satisfies the last system for all 6-
dimensional vectors, therefore, the conditions{

u1 = x0 + x2 + x4 = 1;

u2 = λx0 + x2 + x4 = 0;
(4)

{
u3 = x1 + x3 + x5 = 0;

u4 = x1 + λx3 + x5 = 1.
(5)

define the ful set of the global right-sided units R = (r0, r1, r2, r3, r4, r5) that
satisfy the equation (2). Solving the systems of linear equations (4) and (5) one
can get the following formula describing p2 different global right-sided units:

R =

(
1

1− λ
,
h(λ− 1) + 1

1− λ
,
d(λ− 1)− λ

1− λ
,
−1

1− λ
, d, h

)
, (6)

where d, h = 0, 1, . . . , p − 1. Evidently, the considered algebra contains no global
left-sided unit nor global two-sided unit, however it contains numerous local left-
sided units L acting in some subsets of the 6-dimensional vectors. The local left-
sided unit LA corresponding to the set of the algebraic elements, which includes
all possible powers of some fixed vector A, can be computed as solution of the
vector equation

X ◦A = A. (7)

Using Table 1 one can represent (7) in the form of the following three independent
systems of two linear equations with the pairs of the unknowns (x0, x1) , (x2, x5) ,
and (x3, x4) : {

(a0 + a2 + a4)x0 + (a0 + λa2 + a4)x1 = a0;

(a1 + a3 + a5)x0 + (a1 + a3 + λa5)x1 = a1;
(8)

{
(a0 + a2 + a4)x2 + (a0 + λa2 + a4)x5 = a2;

(a1 + a3 + a5)x2 + (a1 + a3 + λa5)x5 = a5;
(9)

{
(a1 + a3 + λa5)x3 + (a1 + a3 + a5)x4 = a3;

(a0 + λa2 + a4)x3 + (a0 + a2 + a4)x4 = a4;
(10)
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The same main determinant ∆A corresponds to each of the systems (8), (9), and
(10):

∆A = (a0a5 + a4a5 − a1a2 − a2a3) (λ− 1) . (11)

If ∆A 6= 0, then every of the systems (8), (9), and (10) has unique solution, i. e.,
the vector equation (7) has unique solution as the local left-sided unit LA related
to the vector A. Solving the systems (8), (9), and (10) one gets the following
formulas describing the value LA = (l0, l1, l2, l3, l4, l5) :

l0 =
1

1− λ
; l1 =

a0a1 + a1a4 − a2a3 − a2a5

∆A
;

l2 =
λa2a3 + a2a5 − λa0a1 − a1a4

∆A
; l3 =

−1

1− λ
;

l4 =
a0a4 + λa3a4 − λa0a5 − a2a5

∆A
; l5 =

a0a5 + a2a5 − a1a4 − a3a4

∆A
.

(12)

Proposition 2. Suppose the vector A is such that ∆A 6= 0. Then the local left-
sided unit LA is simultaneously the local two-sided unit EA relating to the vector
A.

Proof. It is sufficient to show that the vector LA is contained in the set (6) of the
global right-sided units. Suppose in (6) we have d = l4 and h = l5. Then one can
compute

r1 =
h(λ− 1) + 1

1− λ
= l1; r2 =

d(λ− 1)− λ
1− λ

= l2.

Since r0 = l0 and r3 = l3, the local left-sided unit LA is equal to the global right-
sided unit corresponding to the integer values d = l4 and h = l5 in (6) and the
vector LA is the local two-sided unit EA relating to the vector A.

Due to the last proposition, one can conclude that the vector LA acts on every
vector form the set A,A2, . . . , Ai, . . . as local two-sided unit. Since ∆A 6= 0, for
the fixed value A one has unique value LA and the said sequence is periodic with
the period length equal to some integer ω. The set of all vectors included in a
fixed period compose a finite cyclic group (generated by the vector A) with the
unit element equal to EA = LA, i. e., the element LA can be computed using the
formula LA = EA = Aω. For the integer value i (0 < i < ω)the vector Aω−i is
the inverse value of the vector Ai relatively the local two-sided unit EA, therefore,
the vector A can be called a locally invertible vector. One can easily prove the
following proposition:

Proposition 3. Suppose the vector A is such that ∆A 6= 0. Then there exists some
integer ω such that Aω = EA and the local two sided-unit EA is simultaneously
the unit of the cyclic group generated by the vector A.

Proposition 4. If the vector equation A ◦X = B has solution X = S such that
∆S 6= 0, then p2 different values Xi = Ri ◦ S, where Ri takes on all values from
the set (6), also represents solutions of the given equation.
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Proof. A ◦ (Ri ◦ S) = (A ◦Ri) ◦ S = A ◦ S = B. Suppose Ri ◦ S = Rj ◦ S, then
(Ri −Rj)◦S = (0, 0, 0, 0, 0, 0) and Ri = Rj , i. e., the number of different solutions
Xi = Ri ◦ S is equal to the number of different global right-sided units, which is
equal to p2. The Proposition 4 is proven.

Proposition 5. Suppose the vector R is a global right-sided unit. Then the map
of the FNAA, which is defined by the formula ϕR(X) = R ◦ X, where the vector
X takes on all values in the considered FNAA, is a homomorphism.
Proof. For two arbitrary vectors X1 and X2 we have

ϕR (X1 ◦X2) = R ◦ (X1 ◦X2) = (R ◦X1) ◦ (R ◦X2) = ϕR (X1) ◦ ϕR (X2) ;

ϕR (X1 +X2) = R ◦ (X1 +X2) = R ◦X1 +R ◦X2 = ϕR (X1) +ϕR (X2) . �

Proposition 6. All locally invertible vectors of the considered 6-dimensional
FNAA compose p2 different groups with p2 different units

E = R =

(
1

1− λ
,
h(λ− 1) + 1

1− λ
,
d(λ− 1)− λ

1− λ
,
−1

1− λ
, d, h

)
,

where d, h = 0, 1, 2, . . . p− 1.

Proof. Suppose the set {A1, A2, . . . Ai, . . . AΩ} of locally invertible vectors includes
all vectors relating to a fixed local two-sided unit E (including the vector E) and
only such vectors. One can easily see that the said set is the group ΓE with the
unit E. Every fixed global right-sided unit R′ from the set (6) is the unit E′ of
some group ΓE′ representing a set locally invertible vectors {A′1, A′2, . . . A′i, . . . A′Ω}.
Indeed, due to the Proposition 5 we have A′i = R′ ◦ Ai for i = 1, 2, . . .Ω, and
E′ = R′ ◦ E = R′. We have p2 different global right-sided units R described by
the formula (6). Every of these units defines a unique group of the order Ω. The
Proposition 6 is proven.

Consider the order Ω of every of the said isomorphic groups. Evidently Ω =
Ω′p−2, where Ω′ is the number of all locally invertible vectors contained in the
algebra. One can compute the last value as Ω′ = p6−Ω′′, where Ω′′ is the number
of all non-invertible vectors, i. e., vectors satisfying the condition ∆A = 0. The
last condition reduces to the following equation:

a0a5 + a4a5 − a1a2 − a2a3 = 0.

If a5 6= 0, then for arbitrary values a1, a2, a3, a4 there exists unique value a0 that
satisfies the last equality (in this case we have p4(p − 1) different non-invertible
vectors). For the case a5 = 0 the equality holds true for arbitrary values a0 and
a4, if a1a2 +a2a3 = 0. Consideration of two subcases i) a2 6= 0 and ii) a2 = 0 gives
respectively p3(p− 1) and p4 different non-invertible vectors. Totally the algebra
contains Ω′′ = p4(p− 1) + p3(p− 1) + p4 = p5 + p4 − p3 non-invertible vectors.
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Proposition 7. Every one of p2 isomorphic groups, which relates to some fixed
global right-sided unit R and includes all invertible vectors relating to R, has order
Ω = p(p− 1)2(p− 1).

Proof. We have Ω′ = p6 − Ω′′ = p6 −
(
p5 + p4 − p3

)
= p3(p − 1)

(
p2 − 1

)
and

Ω = Ω′p−2 = p(p− 1)
(
p2 − 1

)
.

One can easily see that the set of all 6-dimensional vectors of the form A′ =
(a0, a1, a2, a3, 0, 0) compose the 4-dimensional non-commutative subalgebra with
the multiplication operation set by the BVMT shown as Table 3. This subalge-
bra contains one global two-sided unit E00 that is contained in the set (6) and
corresponds to the integer values d = 0 and h = 0:

E00 =

(
1

1− λ
,

1

1− λ
,
−λ

1− λ
,
−1

1− λ
, 0, 0

)
.

Actually, this subalgebra represents the 4-dimensional FNAA described in [4] and
used as algebraic support of the HDLP-based signature schemes. The multiplica-
tive group Γ00 of the subalgebra is one of the p2 isomorphic groups contained in
the considered 6-dimensional FNAA.

The group Γ00 includes a large number of commutative subgroups possessing 2-
dimensional cyclicity. Indeed, for arbitrary value α ∈ GF (p) the vector Vα = αE00

(scalar multiplication) is permutable with every vector in the group Γ00. If α is a
primitive element in GF (p), then the vector Vα generates a cyclis subgroup Γα of
the order p − 1. Suppose G /∈ Γ00 (G /∈ Γα) is a vector of the order p − 1. Then
the generator system < Vα, G > generates the commutative subgroup possessing
the order (p− 1)2 and having 2-dimensional cyclicity.

Table 3. The BVMT of the 4-dimensional subalgebra containing a global two-sided unit

◦ e0 e1 e2 e3 e4 e5

e0 e0 e3 e0 e3 − −
e1 λe2 e1 e2 λe1 − −
e2 e2 e1 e2 e1 − −
e3 λe0 e3 e0 λe3 − −
e4 − − − − − −
e5 − − − − − −

Suppose the vector A is such that ∆A 6= 0 and R is a random global right-sided
unit. One can compute the single vector B that satisfies the condition

B ◦A = R. (13)

Evidently, the main determinant of the system of linear equations, which corre-
sponds to the vector equation (13) is equal to ∆A 6= 0, therefore, the equation (13)
has unique solution.
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Proposition 8. Suppose B ◦A = R. Then the formula

ψR(X) = A ◦X ◦B,

where the vector X takes on all values in the considered 6-dimensional FNAA, sets
the homomorphism map.
Proof. For two random 6-dimensional vectors X1 and X2 one can get the following:

ψR (X1 ◦X2) = A ◦ (X1 ◦X2) ◦B = A ◦ (X1 ◦R ◦X2) ◦B
= (A ◦X1 ◦B) ◦ (A ◦X2 ◦B) = ψR (X1) ◦ ψR (X2) ;

ψR (X1 +X2) = A ◦ (X1 +X2) ◦B = (A ◦X1 ◦B) + (A ◦X2 ◦B)
= ψR (X1) + ψR (X2) . �

Proposition 9. The homomorphism-map operation ψR(X) = A ◦X ◦B and the
exponentiation operation Xk are mutually commutative, i.e., the equality A ◦Xk ◦
B = (A ◦X ◦B)k holds true.

Proof. Due to Proposition 8 we have ψR(Xk) = (ψR(X))
k
, i. e., A ◦ Xk ◦ B =

(A ◦X ◦B)k.

3. The proposed HDLP-based signature scheme

3.1. Setting the hidden commutative group
The algebraic support of the introduced signature scheme represents the 6-dimensional
FNAA described in Subsection 2.3 and defined over the field GF (p) with character-
istic p = 2q+ 1, where q is a 256-bit prime. In the BVMT defining the multiplica-
tion operation (see Table 1) it is used the structural coefficient λ > 2, for example,
λ = 2. Computation of the private and public parameters of the signature scheme
begins with setting a private hidden finite commutative group Γ<N,U>. The group
Γ<N,U> is set as computation of its generator system < N,U > that includes two
vectors N and U each of which has order equal to the prime q. The generator
system < N,U > can be computed as follows:

1. Generate at random a locally invertible vector U = (u0, u1, . . . , u5) of the
order equal to q and, using the formulas (12), compute the global left-sided unit
LU = (lU0, lU1, . . . , lU5) .

2. If the condition u0

lU0
= ui

lUi
holds true for all i = 1, 2, . . . , 5, then go to step 1

(probability of this event is equal to ≈ q−1).
3. Select at random an integer value α (1 < α < p − 1) that is a primitive

element modulo p. The primitive element α defines a locally invertible vector
G = α2LU having order equal to the prime q.

4. Generate a random integer k (1 < k < q) and compute the vectors N =
G ◦ Uk.

One can easily see that each of the vectors N and U has order equal to the
value q and the generator system < N,U > defines a commutative primary group



An enhanced version of the hidden discrete logarithm problem 279

Γ<N,U> the unit element of which is equal to LU . The group Γ<N,U> has structure
with the 2-dimensional cyclicity and the group order is equal to Ω = q2.

3.2. Computing parameters of the masking operations

The main contribution to the security of the developed signature scheme is intro-
duced by two exponentiation operations performed in two different cyclic groups
contained in the hidden commutative group Γ<N,U>. The vector N sets the first
of the said cyclic groups. The second cyclic group is set by the generator J that
is computed as follows:

J = N t ◦ Uw,

where t and w (1 < t < q; 1 < w < q) are two integer values selected at random.
The vectors N, J, Nx, and Jx/2, where x < q is an integer representing one of
the elements of the private key, are used for computing the vectors ψ1 (N ◦ U) ,
ψ2 (Nx) , ψ3

(
J ◦ U2

)
, and ψ4

(
Jx/2

)
that are elements of the PK. Four differ-

ent homomorphism-map operations ψ1, ψ2, ψ3, and ψ4 are used to compute four
elements of the PK, which are elements of four different commutative groups con-
tained in the algebra.

Parameters of the homomorphism-map operations ψ1(X) = A1 ◦ X ◦ B1,
ψ2(X) = A2 ◦ X ◦ B2, ψ3(X) = A1 ◦ X ◦ B3, and ψ4(X) = A4 ◦ X ◦ B4, are
computed as follows:

1. Select at random a global right-sided unit R1 (for example, using the formula
(6)), generate at random a locally invertible vector A1, and compute the vector
B1 as solution of the vector equation B1 ◦A1 = R1 (that has unique solution B1,
since ∆A1

6= 0).
2. Select at random a global right-sided unit R2, generate at random a locally

invertible vector A2, and compute the vector B2 as solution of the vector equation
B2 ◦A2 = R2.

3. Select at random a global right-sided unit R3 and compute the vector B3

as solution of the vector equation B3 ◦ A1 = R3, where the vector A1 has been
generated at step 1.

4. Select at random a global right-sided unit R4, generate at random a locally
invertible vector A4, and compute the vector B4 as solution of the vector equation
B4 ◦A4 = R4.

3.3. Computation of the public key

The PK represents a set of six 6-dimensional vectors (Z1, Y1, T1;Z2, Y2, T2) which
are computed as follows:

1. Z1 = A1 ◦N ◦ U ◦B1 and Y1 = A2 ◦Nx ◦B2.
2. T1 = R ◦A1 ◦B2, where R is a random global right-sided unit.
3. Z2 = A1 ◦ J ◦ U2 ◦B3 and Y2 = A4 ◦ Jx/2 ◦B4.
4. T2 = R′ ◦A1 ◦B4, where R′ is a random global right-sided unit.
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One can consider the private key as the set of all of secret elements that are
needed to compute the signature. With such interpretation in the developed sig-
nature scheme the private key represents the set of the values x, N, J, U, A1, B2,
and B4.

3.4. Algorithm for signature generation
Suppose one should sign an electronic documentM, using some fixed secure 256-bit
hash-function fH . The signature includes the following three elements: two 256-bit
integers e and s and a 6-dimensional vector S. The elements of the signature are
computed using the following signature generation algorithm:

1. Generate a random integer k < q and a random locally invertible 6-dimen-
sional vector K. Then compute the vectors V1 and V2:{

V1 = K ◦Nk ◦B2;

V2 = K ◦ Jk/2 ◦B4.

2. Calculate the first signature element e as the hash-function value computed
from the document M to which the vectors V1 and V2 are concatenated:

e = fH (M,V1, V2) .

3. Calculate the second signature element s as follows: s = k + xe mod q.
4. Calculate the third signature element S as solution of the following vector

equation:
S ◦A1 ◦ Us = K.

In the last vector equation every of the values Us, A1, and K is a locally
invetible vector, therefore, the equation has unique solution. At the output of the
last algorithm one gets the signature (e, s, S) to the document M.

3.5. Algorithm for signature verification
Using the PK (Y1, Z1, T1; Y2, Z2, T2) , one can verify the signature (e, s, S) to the
document M with the following signature verification algorithm:

1. Using the PK, compute the vectors V ′1 and V ′2 :{
V ′1 = S ◦ Zs1 ◦ T1Y

−e
1 ;

V ′2 = S ◦ Zs/22 ◦ T2 ◦ Y −e2 .

2. Calculate the hash-function value e′ from the document M to which the
vectors V ′1 and V ′2 are concatenated: e′ = fH (M,V ′1 , V

′
2) .

3. Using the formula (10), calculate the value ∆S corresponding to the locally
invertible vector S = (s0, s1, s2, s3) .

4. If e′ = e and ∆S 6= 0, then the signature is genuine. Otherwise the signature
is rejected as false one.
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3.6. Correctness proof
Correctness proof of the sigature scheme consists in proving that the signature
(e, s, S) computed correctly will pass the verification procedure as genuine signa-
ture. Taking into account the mutual commutativity of the ψ-map operation with
the exponentiation operation, for the vectors V ′1 and V ′2 computed at the first step
of the signature verification procedure we have the following:

V ′1 = S ◦ Zs1 ◦ T1 ◦ Y −e1

= S ◦ (A1 ◦N ◦ U ◦B1)
s ◦R ◦A1 ◦B2 ◦ (A2 ◦Nx ◦B2)

−e

= S ◦A1 ◦ Us ◦Ns ◦B1 ◦A1 ◦B2 ◦A2 ◦N−es ◦B2

= K ◦Ns ◦R1 ◦R2 ◦N−es ◦B2 = K ◦Nk+ex ◦N−ex ◦B2

= K ◦Nk ◦B2 = V1;

V ′2 = S ◦ Zs/22 ◦ T2 ◦ Y −e2

= S ◦
(
A1 ◦ J ◦ U2 ◦B3

)s/2 ◦R′ ◦A1 ◦B4 ◦
(
A4 ◦ Jx/2 ◦B4

)−e
= S ◦A1 ◦ Us ◦ Js/2 ◦B3 ◦A1 ◦B4 ◦A4 ◦ (J−ex/2) ◦B4

= K ◦ J (k+ex)/2 ◦R3 ◦R4 ◦ J−ex/2 ◦B4 = K ◦ J (k+ex)/2−ex/2 ◦B4

= K ◦ Jk/2 ◦B4 = V2.

For V ′1 = V1 and V ′2 = V2 we have fH (M,V ′1 , V
′
2) = fH (M,V1, V2) and the equality

e′ = e holds true. For the signature (e, s, S) computed correctly inequality ∆S 6= 0
is satisfied. Thus, the signature scheme performes correctly.

4. Discussion
In the known signature schemes based on the computational difficulty of the HDLP,
security to potential quantum attacks is provided by such design that sets the pub-
lic signature-scheme parameters contained in different finite groups of some FNAA
used as algebraic support of the cryptoscheme. Therefore, the use of the public
parameters of the signature scheme in constructing periodic function causes the
lasts to take values from many different groups, so the known quantum algorithms
for finding the discret logarithm cannot be applied, the functions with the pe-
riod length depending on the discrete logarithm value can be easily constructed
though. The emergence of each new quantum algorithm will require a separate
consideration of the security issue.

To obtain stronger guarantees of security to quantum attacks based on quan-
tum algorithms for finding the length of periods of periodic functions, which can be
developed in the future, it is reasonable to construct such signature schemes that
periodic functions constructed using public parameters of the signature scheme will
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be free of periods whose length is associated with the value of the discrete loga-
rithm. The signature scheme described in Section 3 is an attempt of implementing
this idea.

The proposed design can be considered as modification of the signature scheme
described in [9], in which the PK represents three vectors Z = ψ′ (N) , Y =
ψ′′ (Nx) , and T, where ψ′ and ψ′′, are different homomorphism-map operations
satisfying the condition Y i ◦ T ◦ Zj = W1 ◦Nxj+i ◦W2 for some fixed vectors W1

and W2 defining a map-operation of arbitrary type. Due to the last condition the
periodic function f(i, j) = Y i ◦T ◦Zj contains a period that is determined by the
value of the discrete logarithm x. Indeed, the condition Y i◦T ◦Zj = Y i−1◦T ◦Zj+x
holds true. To eliminate periodicity connected with the value x, in the present
paper for computing the vector Z it is proposed to use the formula Z = ψ′ (N ◦ U) ,
where the vectorsN and U have the same prime order and are selected from hidden
commutative group, besides these two vectors are contained in different cyclic
groups. After such modification the periodic function f(i, j) = Y i◦T ◦Zj becomes
free from periods connected with the value x, since Y i◦T◦Zj = W1◦Nxj+i◦U j◦W2,
where U cannot be represented in the form of some power of the vector N. Indeed,
if the equation Nxj+i ◦ U j = Nxj′+i′ ◦ U j′ holds true, then we have j′ ≡ j mod q
and i′ ≡ i mod q.

The said modification requires to introduce corresponding modification of the
signature verification equation and such modfication has been performed as in-
troducing the left-sided multiplication by the vector S that is the third signature
element. This modification gives the following signature verification equation:
V ′ = S ◦Zs ◦ Y −e. However, after the modification a potential attacker can easily
forge a signature using the value S as a fitting parameter, for example, using the
following algorithm:

1. Generate at random a locally invertible vector V and compute e = fH(M,V ).
2. Select at random a 256-bit number s < q.
3. Compute the vector S from the vector equation S ◦ Zs ◦ Y −e = V.
In order to prevent attacks based on using the signature element S as a fitting

parameter in the introduced signature scheme the signature verification procedure
includes two different verification equations.

Up to this point, we have focused attention on the fact that the calculation
of the value x by public parameters of the HDLP-based schemes cannot be per-
formed using known quantum algorithms for calculating the discrete logarithm.
However, suppose a forger knows the value x. In the case of the HDLP-based sig-
nature schemes described in [5, 9] one can easily compose the signature generation
algorithm using the value x and public parameters. In the case of the introduced
signature scheme, knowledge of the value of x is not sufficient to simply calculate
a genuine signature. In this connection one has an interesting research item on es-
timation of the computationally difficulty of forging a signature, when the private
value x is known to the forger.

In comparison with the known HDLP-based signature schemes [5, 9], disadvan-
tages of the proposed new signature scheme is the increased size of the signature
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(about 3 times), the increased size of the PK (about 3 times), the reduced per-
formance of the signature generation procedure (about 3 times) and signature
verification procedure (about 2 times). However, these disadvantages are offset by
the main advantage of the new scheme, which consists in the proposed significantly
higher security to future quantum attacks and a more rigorous justification of such
expectation.

5. Conclusion

This paper introduces a new approach to the design of the HDLP-based signature
schemes and describes a signature scheme that illustrates a method used to satisfy
the adopted criterion of eliminating periods having length connected with the value
of discrete logarithm in construction of the periodic functions on the base of the
public parameters of the signature scheme. The main difference of the proposed
design from the earlier known deigns of the HDLP-based signature schemes is the
use of the hidden commutative group possessing 2-dimensional cyclicity instead
of using a hidden cyclic group. The 6-dimensial FNAA used as algebraic sup-
port of the developed signature scheme contains very large number of isomorphic
commutative groups with 2-dimensional cyclicity.

One can suppose that FNAAs containing a large set of commutative groups
with 3-dimensional cyclicity provide more space in designing the HDLP-based
candidates for PQ signatures. This assumption sets the theme of a new study
in the development of the proposed approach, but it is associated with the use
of the FNAAs possessing a suitable structure. New designs in the line with the
introduced approach, which are based on using 4-dimensional FNAAs with global
two-sided unit, also represent practical interest.

Acknowledgement. The authors thank anonymous Referee for valuable re-
marks.

References
[1] A. Ekert, R. Jozsa, Quantum computation and Shor’s factoring algorithm, Rev.

Mod. Phys. 68 (1996), 733.

[2] R. Jozsa, Quantum algorithms and the fourier transform, Proc. Roy. Soc. London
Ser A, 454 (1998), 323− 337.

[3] A.S. Kuzmin, V.T. Markov, A.A. Mikhalev, A.V. Mikhalev, A.A.
Nechaev, Cryptographic algorithms on groups and algebras, J. Math. Sci. 223
(2017), no. 5, 629− 641.

[4] A.A. Moldovyan, N.A. Moldovyan, Post-quantum signature algorithms based
on the hidden discrete logarithm problem, Computer Sci. J. Moldova. 26 (2018),
301− 313.



284 D. N. Moldovyan, A. A. Moldovyan, N. A. Moldovyan

[5] A.A. Moldovyan, N.A. Moldovyan, Finite non-commutative associative alge-
bras as carriers of hidden discrete logarithm problem, Bull. South Ural State Univ.
Ser. Math. Modelling, Programming & Computer Software. 12 (2019), 66− 81.

[6] D.N. Moldovyan, Non-commutative finite groups as primitive of public-key cryp-
toschemes, Quasigroups and Related Systems, 18 (2010), 165− 176.

[7] D.N. Moldovyan, A unified method for setting finite none-commutative associative
algebras and their properties, Quasigroups and Related Systems, 27 (2019), 293 −
308.

[8] N.A. Moldovyan, Fast signatures based on non-cyclic finite groups, Quasigroups
and Related Systems, 18 (2010), 83− 94.

[9] N.A. Moldovyan, Finite non-commutative associative algebras for setting the hid-
den discrete logarithm problem and post-quantum cryptoschemes on its base, Bul.
Acad. Stiinte Republ. Moldova. Matematica, 1(89) (2019), 71− 78.

[10] N.A. Moldovyan, P.A. Moldovyanu, New primitives for digital signature algo-
rithms, Quasigroups and Related Systems, 17 (2009), 271− 282.

[11] Post-quantum cryptography, Lecture Notes Comp. Sci. 10786 (2018).

[12] Post-quantum cryptography, Lecture Notes Comp. Sci. 11505, (2019).

[13] C.P. Schnorr Efficient signature generation by smart cards, J. Cryptology, 4 (1991),
161− 174.

[14] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on quantum computer, SIAM J. Computing, 26 (1997), 1484− 1509.

[15] S.Y. Yan, Quantum Attacks on Public-Key Cryptosystems, Springer (2014).

Received December 16, 2019
St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences,
14-th line 39, 199178, St. Petersburg, Russia
E-mails: maa1305@yandex.ru, mdn.spectr@mail.ru, nmold@mail.ru



Quasigroups and Related Systems 28 (2020), 285− 299

Division on semigroups

that are semilattices of groups

Robert A. R. Monzo

Abstract. The binary products of right, left or double division on semigroups that are semi-
lattices of groups give interesting groupoid structures that are in one-one correspondence with
semigroups that are semilattices of groups. This work is inspired by the well-known one-one
correspondence between groups and Ward quasigroups.

1. Introduction

It appears in the literature that in 1930 M. Ward was the first to find a set of
axioms on (S, ∗) (a set S with a binary operation ∗, called here a groupoid) that
ensure the existence of a group binary operation ◦ on S such that x ∗ y = x ◦ y−1
cf. [12]. Such a groupoid was called a division groupoid by Polonijo (cf. [10]) and
it is clear that division groupoids are quasigroups.

Over the next 63 years many other sets of axioms on a groupoid were found
that make it a division groupoid, now commonly known as a Ward quasigroup
(see for example: [1, 2, 4, 6, 7, 8, 9, 10, 11]). Perhaps the most impressive of
these characterisations of Ward quasigroups is that of Higman and Neumann who
found a single law making a groupoid a Ward quasigroup (cf. [6]). It is now known
that a quasigroup is a Ward quasigroup if and only if it satisfies the law of right
transitivity, (x∗ z)∗ (y ∗ z) = x∗y (cf. [9]). It follows that a quasigroup is the dual
of a Ward quasigroup, which we will call a Ward dual quasigroup, if and only if it
satisfies the identity (z ∗ x) ∗ (z ∗ y) = x ∗ y.

Starting from any group (G, ◦) we can form a Ward quasigroup (G, ∗) by defin-
ing x ∗ y = x ◦ y−1; that is, ∗ is the operation of right division in the group (G, ◦).
Conversely, any Ward quasigroup (W, ∗) is unipotent and its only idempotent
e = e ∗ e = x ∗ x (for any x ∈ W ), is a right identity element. If we then define
(W, ◦) as x◦y = x∗ (e∗y), (W, ◦) is a group, x−1 = e∗x and x∗y = x◦y−1. These
mappings, (G, ◦) 7→ (G, ∗) and (W, ∗) 7→ (W, ◦) are inverse mappings, which im-
plies that groups are in one-to-one correspondence with Ward quasigroups. (This
is all well known.) In addition, a Ward quasigroup is an inverse groupoid, with
the unique inverse of x being x−1 = e ∗ x. That is, the inverse of an element of a
Ward quasigroup is the inverse element in the group it induces.

2010 Mathematics Subject Classification: 20N02; 20N05; 20N99
Keywords: Semigroup semilattice of groups; Ward dual quasigroup; double Ward quasigroups.
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In 2007 N.C. Fiala proved (cf. [5]) that a quasigroup (S, ∗) satisfies the identity
[(e ∗ e) ∗ (x ∗ z)] ∗ [(e ∗ y) ∗ z] = x ∗ y (for some e ∈ S) if and only if there is a
group (S, ◦) with identity element e such that x ∗ y = x−1 ◦ y−1. Fiala called such
groupoids double Ward quasigroups. He noted that the binary operation ◦ on a
double Ward quasigroup S defined by x ◦ y = (e ∗ x) ∗ (e ∗ y) is a group operation
and that double Ward quasigroups are in one-to-one correspondence with groups.
Double Ward quasigroups are also inverse quasigroups, with x−1 = x.

Our intention here is to explore the operations x ∗ y = x · y−1 (called right
division), x ∗ y = x−1 · y (called left division) and x ∗ y = x−1 · y−1 (called double
division) when (S, ·) is a semigroup and a semilattice of groups, where x−1 is the
inverse of x in the group to which it belongs. We will prove that each collection
of all such structures are in one-one correspondence with the collection of all
semigroups that are semilattices of groups and, in this sense, we extend the result
that Ward quasigroups are in one-to-one correspondence with groups.

2. Preliminary definitions and results

The set of all idempotent elements of a groupoid (S, ∗) is denoted by E(S, ∗), i.e.,
E(S, ∗) = {x ∈ S |x∗x = x}. Note that the set E(S, ∗) may not be closed under the
operation ∗. The groupoid (S, ∗) is called an idempotent groupoid (a semilattice
groupoid) if all of its elements are idempotent (idempotent and commute). A
semilattice groupoid (S, ∗) is called a semigroup semilattice if it is a semigroup.
A groupoid (S, ∗) is called an (idempotent) groupoid (T, ·) of groupoids (Sα, ∗|Sα )
(α ∈ T ) if S is a disjoint union of the Sα (α ∈ T ) and Sα ∗Sβ ⊆ Sα·β = Sαβ for all
α, β ∈ T. Note that this definition does not require either of the binary operations
· or ∗ to be associative.

We call the groupoid (S, ∗) right (left) solvable if for any a, b ∈ S there exists
a unique x ∈ S such that a ∗x = b (x ∗ a = b). The groupoid (S, ∗) is a quasigroup
if it is right and left solvable, in which case it is right and left cancellative. We call
the quasigroup (S, ∗) a Ward quasigroup (Ward dual quasigroup) if it satisfies the
identity (x∗z)∗(y∗z) = x∗y ((z∗x)∗(z∗y) = x∗y). The quasigroup (S, ∗) is called
a double Ward quasigroup if it satisfies the identity ((e ∗ e) ∗ (x ∗ z)) ∗ ((e ∗ y) ∗ z) =
x ∗ y for some fixed e ∈ S. A groupoid (S, ∗) is called an inverse groupoid if
for all x ∈ S there exists a unique element x−1 such that (x ∗ x−1) ∗ x = x and
(x−1 ∗ x) ∗ x−1 = x−1. The fact that (S, ∗) and (T, ◦) are isomorphic groupoids
is denoted by (S, ∗) ∼= (T, ◦). The groupoid (S, ∗̄) is dual to the groupoid (S, ∗)
if x∗̄y = y ∗ x. The collection C is the collection of all groupoids (S, ∗̄), where
(S, ∗) ∈ C. Clearly, C is in one-one correspondence with C.

Below we list a few identities that we will use later. The proofs of these
identities one can find in [2] and [9].

A Ward quasigroup (S, ∗) satisfies the following identities:

(1) x ∗ x = y ∗ y = r,
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(2) x ∗ r = x,

(3) r ∗ (x ∗ y) = y ∗ x,

(4) r ∗ (r ∗ x) = x,

(5) (x ∗ y) ∗ z = x ∗ (z ∗ (r ∗ x)).

Note that a Ward (Ward dual) quasigroup (S, ∗) has a unique right (left)
identity element r. So, we will denote this by (W, ∗, r) (resp. (WD, ∗, r)). We
will denote a double Ward quasigroup by (DW, ∗, e), although we note that the
element e may not be unique.

A double Ward quasigroup (S, ∗) satisfies the following identities:

(6) e ∗ e = e,

(7) (e ∗ (x ∗ z)) ∗ ((e ∗ y) ∗ z) = x ∗ y,

(8) (y ∗ x) ∗ y = y ∗ (x ∗ y) = x,

(9) e ∗ x = x ∗ e,

(10) x ∗ (x ∗ e) = (e ∗ x) ∗ x = e,

(11) x ∗ y = e ∗ ((e ∗ y) ∗ (e ∗ x)).

The following facts on connections of groups with various types of Ward quasi-
groups are well-known, or follow readily from [2], [5] and [9].

(F1) (W, ∗, r) is a Ward quasigroup if and only if there is a group (W, ◦, r) such
that x ∗ y = x ◦ y−1 for all x, y ∈W .

(F2) (WD, ∗, r) is a Ward dual quasigroup if and only if there is a group (WD, ◦, r)
such that x ∗ y = y ◦ x−1 for all x, y ∈WD.

(F3) (DW, ∗, e) is a double Ward quasigroup if and only if there is a group
(DW, ◦, e) such that x ∗ y = x−1 ◦ y−1 for all x, y ∈ DW .

(F4) If (W, ∗, r) is a Ward quasigroup, then (W, ◦) defined as x ◦ y = x ∗ (r ∗ y)
is a group with identity r and x−1 = r ∗ x.

(F5) If (WD, ∗, r) is a Ward dual quasigroup, then (WD, ◦) defined as x ◦ y =
(x ∗ r) ∗ y is a group with identity r and x−1 = x ∗ r.

(F6) If (DW, ∗, e) is a double Ward quasigroup, then (DW, ◦) defined as x ◦ y =
(e ∗ x) ∗ (e ∗ y) is a group with identity e and x−1 = e ∗ x.
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The fact (F6) was noted in [5] without proof. Below we give a short proof.

By definition we have

(x ◦ y) ◦ z = (e ∗ ((e ∗ x) ∗ (e ∗ y)) ∗ (e ∗ z) (11)
= (y ∗ x) ∗ (e ∗ z)

and
x ◦ (y ◦ z) = (e ∗ x) ∗ (e ∗ ((e ∗ y) ∗ (e ∗ z))) (11)

= (e ∗ x) ∗ (z ∗ y).

Since, by (8) and (9), x = (y ∗ x) ∗ y and z = e ∗ (e ∗ z), we have

x ◦ (y ◦ z) = (e ∗ x) ∗ (z ∗ y) = (e ∗ ((y ∗ x) ∗ y)) ∗ ((e ∗ (e ∗ z)) ∗ y)
(7)
= (y ∗ x) ∗ (e ∗ z) = (x ◦ y) ◦ z.

So, (DW, ∗) is a semigroup.
Now suppose that a, b ∈ DW . Since (DW, ∗, e) is a quasigroup, there exists a

unique x ∈ DW such that x ∗ a = e ∗ b. So

a ◦ x = (e ∗ a) ∗ (e ∗ x)
(8,9,11)

= e ∗ (x ∗ a) = e ∗ (e ∗ b) (8,9)
= b.

If a ◦ y = b, then b = (e ∗ a) ∗ (e ∗ y)
(8,9,11)

= e ∗ (y ∗ a) and so, by (8) and (9),
e ∗ b = b ∗ e = (e ∗ (y ∗ a)) ∗ e = y ∗ a. But x was unique, so x = y. Similarly, there
exists a unique element z ∈ DW such that z ◦ a = b. So, (DW, ◦) is a group. The
facts that e is the identity and x−1 = e ∗ x follow from (8) and (10).

As a consequence of (F1)− (F6), we have the following corollaries:

Corollary 2.1. (cf. [2] and [9]) The collection of all Ward quasigroups is in one-
to-one correspondence with the collection of all groups.

Corollary 2.2. The collection of all Ward dual quasigroups is in one-to-one cor-
respondence with the collection of all groups.

Corollary 2.3. (cf. [5]) The collection of all double Ward quasigroups is in one-
to-one correspondence with the collection of all groups.

The following two facts follow readily from (F1) and (F3) and proofs are
omitted.

(F10) If (W, ∗, r) is a Ward quasigroup, then (W, ·, r), where x · y = (r ∗ x) ∗ y, is
a double Ward quasigroup.

(F11) If (DW, ∗, e) is a double Ward quasigroup, then (DW, ·, e), where x · y =
(e ∗ x) ∗ y, is a Ward quasigroup.

Also the following fact is true.
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(F12) If (S, ∗) is a semigroup semilattice V of Ward quasigroups (Wα, ∗|Wα , eα)
(α ∈ V ) and satisfies the identity (x∗y)∗ (z ∗w) = (x∗ (w−1 ∗y−1))∗z, then
E(S, ∗) = {eα |α ∈ V }, eα ∗ eβ = eαβ and the mapping Ψ(eα) = α restricted
to E(S, ∗) is an isomorphism between (E(S, ∗), ∗|E(S,∗)) and V.

Proof. First, we note that each (Wα, ∗|Wα , eα) is an inverse groupoid, with x−1α =
eα ∗ xα. Since a semigroup semilattice groupoid of inverse groupoids is an inverse
groupoid, (S, ∗) is an inverse groupoid. Hence, the identity (x ∗ y) ∗ (z ∗ w) =
(x ∗ (w−1 ∗ y−1)) ∗ z has a clear meaning. We call this identity (?).

Now, by definition, eα ∗ eβ ∈ Wαβ . Therefore, eαβ
(1)
= (eα ∗ eβ) ∗ (eα ∗ eβ)

(?)
=

(eα ∗ eβ) ∗ eα. Then, (eα ∗ eβ) ∗ eβ
(?)
= (eα ∗ (eβ ∗ eα)) ∗ eβ

(?)
= (eα ∗ eα) ∗ (eβ ∗ eβ) =

eα ∗ eβ = (eα ∗ eβ)∗ eαβ = (eα ∗ eβ)∗ ((eα ∗ eβ)∗ eα)
(?)
= (eα ∗ (eα ∗ eβ))∗ (eα ∗ eβ)

(?)
=

((eα ∗ (eβ ∗ eα)) ∗ eα) ∗ (eα ∗ eβ)
(?)
= ((eα ∗ eβ) ∗ eα) ∗ (eα ∗ eβ) = eαβ ∗ (eα ∗ eβ).

So, (eα ∗ eβ) ∗ eβ = eα ∗ eβ = eαβ ∗ (eα ∗ eβ) = ((eα ∗ eβ) ∗ eα) ∗ ((eα ∗ eβ) ∗ eβ)
(?)
=

((eα ∗ eβ) ∗ (eβ ∗ eα)) ∗ (eα ∗ eβ). But, since (eα ∗ eβ) ∗ (eβ ∗ eα) ∈ Wαβ , Wαβ

is a Ward quasigroup and eαβ ∗ (eα ∗ eβ) = ((eα ∗ eβ) ∗ (eβ ∗ eα)) ∗ (eα ∗ eβ),

eαβ = (eα∗eβ)∗(eβ∗eα)
(1)
= (eα∗eβ)∗(eα∗eβ) and eα∗eβ = eβ∗eα. But this implies

eα∗(eβ∗eσ)=eα∗(eσ∗eβ)=(eα∗eα)∗(eσ∗eβ)
(?)
= (eα ∗ (eβ ∗ eα)) ∗ eσ

(?)
= (eα∗eβ)∗eσ.

Then, eαβ = (eα ∗ eβ) ∗ (eα ∗ eβ)
(?)
= (eα ∗ eβ) ∗ eα = eα ∗ (eβ ∗ eα) = eα ∗ (eα ∗ eβ) =

(eα ∗ eα) ∗ eβ = eα ∗ eβ . It follows that the mapping eα 7→ α is an isomorphism
between E(S, ∗) and V.

Dually, we have

(F13) If (S, ∗) is a semigroup semilattice V of Ward dual quasigroups (Wα, ∗|Wα , eα)
(α ∈ V ) and satisfies the identity (x∗y)∗ (z ∗w) = y ∗ ((z−1 ∗x−1)∗w), then
E(S, ∗) = {eα |α ∈ V }, eα ∗ eβ = eαβ and the mapping Ψ(eα) = α restricted
to E(S, ∗) is an isomorphism between (E(S, ∗), ∗|E(S,∗)) and V.

(F10) and (F11) are easily proved using (F1) and (F3). For example, if
(W, ∗, r) is a Ward quasigroup then by (F1) x · y = (r ∗ x) ∗ y = (r ◦ x−1) ◦ y−1 =
x−1 ◦ y−1 and so (W, ·, r) is a double Ward quasigroup.

Proposition 2.4. If (S, ∗) is a semigroup semilattice V of double Ward quasi-
groups (DWα, ∗|DWα , eα), (α ∈ V ), then the following conditions are equivalent

(i) {eα |α ∈ V } ∼= V,

(ii) for all α, β, γ, σ ∈ V , (eα ∗ eβ) ∗ (eγ ∗ eσ)= eβ ∗ ((eγ ∗ eσ) ∗ eα),

(iii) the mapping eα 7→ α is an isomorphism from ({eα |α ∈ V }, ∗|{eα |α∈V }) to V.
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Proof. (i)⇒ (ii): Let Ψ: ({eα |α ∈ V }, ∗|{eα |α∈V })→V be an isomorphism. Then
Ψ((eα ∗ eβ) ∗ (eγ ∗ eσ)) = Ψ(eα)Ψ(eβ)Ψ(eγ)Ψ(eσ) = Ψ(eβ)[[Ψ(eσ)Ψ(eγ)]Ψ(eα)] =
Ψ(eβ ∗ ((eσ ∗ eγ) ∗ eα)), because V is a semigroup semilatice. Since Ψ is one-one,
the last implies (ii).

(ii)⇒ (iii): First, we prove that eα ∗ eβ = eβ ∗ eα. By hypothesis, we have

(12) (eα ∗ eβ) ∗ (eγ ∗ eσ) = eβ ∗ ((eσ ∗ eγ) ∗ eα).

From this we obtain

(13) (eα ∗ eβ) ∗ eσ = eβ ∗ (eσ ∗ eα),

which implies

(14) (eβ ∗ eα) ∗ eβ = eα ∗ eβ = eα ∗ (eβ ∗ eα).

Now, eαβ
(8)
= ((eα ∗ eβ) ∗ eαβ) ∗ (eα ∗ eβ)

(13)
= (eβ ∗ (eαβ ∗ eα)) ∗ (eα ∗ eβ)

(12)
=

(eβ ∗ ((eα ∗ eαβ) ∗ eβ)) ∗ (eα ∗ eβ)
(13)
= (eβ ∗ (eαβ ∗ (eβ ∗ eα))) ∗ (eα ∗ eβ)

(12)
= (eβ ∗

(eαβ ∗ (eβ ∗ eα))) ∗ (eα ∗ eβ))
(12)
= (eβ ∗ ((eαβ ∗ (eα ∗ eβ)) ∗ eαβ)) ∗ (eα ∗ eβ)

(8)
=

(eβ ∗ (eα ∗ eβ)) ∗ (eα ∗ eβ)
(14)
= (eβ ∗ eα) ∗ (eα ∗ eβ)

(12)
= eα ∗ ((eβ ∗ eα) ∗ eβ)

(14)
=

eα ∗ (eα ∗ eβ)
(12)
= eα ∗ ((eβ ∗ eα) ∗ eα)

(14)
= eα ∗ (eα ∗ (eα ∗ eβ)) = eα ∗ eαβ .

Then,

(15) eαβ ∗ eα
(14)
= eαβ ∗ (eα ∗ eαβ) = eαβ ∗ eαβ = eαβ = eα ∗ (eα ∗ eβ).

Since we have proved above that eαβ = (eβ ∗ eα) ∗ (eα ∗ eβ), it follows from (8)

that (eα ∗ eβ) ∗ eαβ = eβ ∗ eα. So, eβ ∗ eα = (eα ∗ eβ) ∗ eαβ
(14)
= eβ ∗ (eαβ ∗ eα)

(15)
=

eβ ∗ eαβ
(15)
= eβ ∗ (eα ∗ (eα ∗ eβ))

(14)
= eβ ∗ ((eβ ∗ eα) ∗ eα)

(12)
= (eα ∗ eβ) ∗ (eα ∗ eβ),

which means that (eα ∗ eβ) ∗ (eα ∗ eβ) = (eα ∗ eβ) ∗ eαβ . Since (DWαβ , ∗|DWαβ , eαβ)

is a quasigroup, eβα = eαβ = eα ∗ eβ = eβ ∗ eα. Also, (eα ∗ eβ) ∗ eγ = eαβ ∗ eγ =
e(αβ)γ = eα(βγ) = eα ∗ (eβ ∗ eγ). Finally, the mapping Ψ: ({eα |α ∈ V }, ∗) → V

defined as Ψ(eα) = α satisfies Ψ(eα ∗ eβ) = Ψ(eαβ) = αβ = Ψ(α)Ψ(β) and so,
since it is clearly one-one and onto V, Ψ is an isomorphism.

(iii)⇒ (i): This is obvious.

3. Semigroup semilattices of groups
We have seen that Ward quasigroups, Ward dual quasigroups and double Ward
quasigroups are in one-to-one correspondence with groups. In this section, we
extend these results to semigroups that are semilattices of groups. Note that in
semigroup theory a semilattice, a union of groups and a semilattice of groups are,
by definition, semigroups. However, the definition of a semilattice (or idempotent
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groupoid) (S, ·) of groupoids (Sα, ∗|Sα ) (α ∈ T ) results in structures that are not
necessarily associative, even when the Sα (α ∈ T ) are all groups. Therefore, we
use the terms semigroup semilattice, semigroup union of groups and semigroup
semilattice of groups, terms that are redundant for semigroup theorists. The idea
is a straightforward one. We simply “extend” the binary product that gives the
bijection between groups and Ward quasigroups, for example, to the semigroup
semilattice of groups and to the resultant structure(s). So, we are working with
structures that result from defining binary operations on a semigroup semilattice
of groups (S, ·) as follows: x ∗ y = x · y−1 (called right division), x ∗ y = x−1 · y
(called left division) and x ∗ y = x−1 · y−1 (called double division). This is possible
because a semigroup semilattice of groups is an inverse semigroup; that is, each
element x ∈ S has a unique inverse x−1 that is the inverse of the element x in the
group to which it belongs [3, Theorem 4.11].

On the resultant structures (S, ∗) we define binary operations as follows, re-
spectively:

xα ⊗ yβ = xα ∗ (eαβ ∗ yβ),

xα ⊗ yβ = (xα ∗ eαβ) ∗ yβ ,
xα ⊗ yβ = (eαβ ∗ xα) ∗ (eαβ ∗ yβ).

These structures (S,⊗) turn out to be semigroup semilattices of groups. In each
of these three cases, the mappings (S, ·) → (S, ∗) and (S, ∗) → (S,⊗) are inverse
mappings. Hence, we find three different collections of structures, each of which is
in one-to-one correspondence with the collection SLG of all semigroup semilattices
of groups.

Lemma 3.1. (cf. [3, Theorem 4.11]) A semigroup (S, ·) is a semigroup semilattice
V of groups (Gα, ·|Gα , eα) (α ∈ V ) if and only if (S, ·) is a semigroup union of
groups and has commuting idempotents if and only if (S, ·) is an inverse semigroup
that is a semigroup union of groups if and only if (S, ·) is a semigroup and a
semigroup semilattice V ∼= E(S, ·) of groups.

Note that the following identity holds in inverse semigroups:

(16) (x · y)−1 = y−1 · x−1.

If (S, ·) is a semigroup and a semilattice V of groups then it follows from Lemma
3.1 that

(17) eα · eβ = eαβ = eβα = eβ · eα

for all α, β ∈ V.

Lemma 3.2. Suppose that (S, ·) is a semigroup semilattice V of groups (Gα, eα)
(α ∈ V ) and that xα ∗ yβ = xα · y−1 for all xα ∈ Gα, yβ ∈ Gβ and α, β ∈ V . Then

(18) (S, ∗) is an inverse groupoid with x−1α = eα ∗ xα (α ∈ V ),



292 R. A. R. Monzo

(19) E(S, ∗) ∼= E(S, ·) ∼= V,

(20) (S, ∗) is a semigroup semilattice Vof Ward quasigroups (Gα, ∗|Gα,eα) (α∈V ),

(21) (xα ∗ yβ) ∗ (zσ ∗ wγ) = [xα ∗ (w−1γ ∗ y−1β )] ∗ zσ,

(22) xα ∗ (eαβ ∗ yβ) = xα ∗ y−1β ,

(23) xα ∗ yβ = (yβ ∗ xα)−1.

Proof. (18): It is straightforward to calculate that x−1α , the inverse of xα in the
group to which it belongs, is the unique inverse of xα in (S, ∗). That is, x−1α =
eα ∗ xα.

(19): xα = xα ∗ xα if and only if xα = xα · x−1α = eα, the identity of the group

to which xα belongs. Then, eα ∗ eβ = eα · e−1β = eα · eβ
(17)
= eαβ . Since, by Lemma

3.1, in (S, ·) we have E(S, ·) ∼= V, E(S, ∗) ∼= E(S, ·) ∼= V.

(20): Since xα ∗ yβ = xα · y−1β ∈ Gα · Gβ ⊆ Gαβ . Since xα ∗ yα = xα · y−1α
in each (Gα, ∗|Gα , eα), by fact (F1), (Gα, ∗|Gα , eα) is a Ward quasigroup for all
α ∈ V. By definition then, (S, ∗) is a semigroup semilattice V of Ward quasigroups
(Gα, ∗|Gα , eα) (α ∈ V ).

(21): Using the facts that xα ∗ yβ = xα · y−1β and (xα · yβ)−1
(16)
= y−1β · x−1α it

is straightforward to calculate that (xα ∗ yβ) ∗ (zσ ∗ wγ) = xα · y−1β · wγ · z−1σ =

[xα ∗ (w−1γ ∗ y−1β )] ∗ zσ.

(22): xα ∗ (eαβ ∗ yβ) = xα · (eαβ · y
−1
β )−1

(16)
= xα · (yβ · e

−1
αβ) = (xα · yβ) · eαβ =

xα · yβ = xα ∗ y−1β .

(23): (xα ∗ yβ)−1 = (xα · y−1β )−1
(16)
= yβ · x−1α = yβ ∗ xα.

Definition 3.3. If (S, ·) is a semigroup semilattice V of groups (Gα, eα) (α ∈ V )
and x ∗ y = x · y−1, then we denote (S, ∗) by SLWQ(S, ·). We define SLWQ as
the collection of all semigroup semilattices V of Ward quasigroups (Gα, ∗|Gα , eα)
(α ∈ V ) that satisfy (21). In particular, SLWQ(S, ·) ∈ SLWQ.

Note once again that a semigroup semilattice of inverse groupoids is an inverse
groupoid. So, conditions (21), (22) and (23) have a clear meaning.

Lemma 3.4. Suppose that (S, ∗) is a semigroup semilattice V of Ward quasigroups
(Wα, ∗|Wα , eα) (α ∈ V ) and satisfies (21). Define xα · yβ = xα ∗ (eαβ ∗ yβ). Then
(S, ·) is a semigroup and a semigroup semilattice V of groups (Wα, ∗|Wα, eα) (α∈V )
with V ∼= E(S, ·) ∼= E(S, ∗).
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Proof. As previously noted in the proof of (F12), since each (Wα, ∗|Wα , eα) is an
inverse groupoid, with x−1α = eα ∗ xαand since a semigroup semilattice of inverse
groupoids is an inverse groupoid, (S, ∗) is an inverse groupoid.

We prove that (21) implies (22). We have

xα∗(eαβ∗yβ) = (xα∗eα)∗(eαβ∗yβ)
(21)
= [xα∗(y−1β ∗e−1α )]∗eαβ = [xα∗(y−1β ∗eα)] =

(xα ∗ eα) ∗ (y−1β ∗ eα)
(21)
= [xα ∗ (eα ∗ eα)] ∗ y−1β = (xα ∗ eα) ∗ y−1β = xα ∗ y−1β ,

so, (22) is valid.

Next, we prove that (21) implies (23). Since we have xα∗yβ = xα∗(y−1β )−1
(22)
=

xα ∗ (eαβ ∗ y
−1
β ), then xα ∗ yβ = xα ∗ (eαβ ∗ y

−1
β )

(5)
= [eα ∗ (eα ∗xα)] ∗ (eαβ ∗ y

−1
β )

(21)
=

[eα∗(yβ ∗xα)]∗eαβ = [eα∗(yβ ∗xα)]∗(eαβ ∗eαβ)
(21)
= (eα∗[eαβ ∗(yβ ∗xα)−1])∗eαβ =

eα ∗ (yβ ∗ xα) = (eα ∗ eα) ∗ [(yβ ∗ xα) ∗ eαβ ]
(21)
= [eα ∗ (eαβ ∗ eα)] ∗ (yβ ∗ xα)

(F12)
=

eαβ ∗ (yβ ∗ xα) = (yβ ∗ xα)−1, so, (23) is valid.
Now xα = xα · xα if and only if xα = xα ∗ (eα ∗ xα) = xα ∗ eα if and only if

eα = eα∗xα = xα∗xα if and only if xα = eα. Also, eα∗eβ = [eα∗(eα∗eα)]∗eβ)
(21)
=

eα ∗ (eβ ∗ eα). Then, eα · eβ = eα ∗ (eαβ ∗ eβ) = (eα ∗ eα) ∗ (eαβ ∗ eβ)
(21)
=

[eα ∗ (eβ ∗ eα)] ∗ eαβ = eα ∗ (eβ ∗ eα)
(21)
= eα ∗ eβ . So, the operations · and ∗ coincide

on E(S, ∗). Thus, E(S, ·) ∼= E(S, ∗). Using (F12), E(S, ·) ∼= E(S, ∗) ∼= V is a
semigroup semilattice. Since, for each (Wα, ∗|Wα , eα), xα · yα = xα ∗ (eα ∗ yα),
by (F4), each (Wα, ·|Wα , eα) is a group. Since xα ·yβ = xα∗(eαβ ∗ yβ) ∈ Wαβ ,
Wα ·Wβ ⊆Wαβ , and so (S, ·) is a semigroup semilattice V of groups. So, we only
need to prove that (S, ·) is a semigroup.

We have (xα ·yβ)·zγ = [xα∗(eαβ ∗yβ)]∗(eαβγ ∗zγ)
(22)
= (xα∗y−1β )∗(eαβγ ∗zγ)

(21)
=

[xα ∗ (z−1γ ∗ yβ)] ∗ eαβγ = [xα ∗ (z−1γ ∗ yβ)]
(23)
= xα ∗ (yβ ∗ z−1γ )−1

(22)
= xα ∗ [eαβγ ∗

(yβ ∗ z−1γ )]
(22)
= xα ∗ [eαβγ ∗ [yβ ∗ (eβγ ∗ zγ)]) = xα · (yβ · zγ).

Corollary 3.5. Let (S, ∗) be a semigroup semilattice V of Ward quasigroups
(Wα, ∗|Wα , eα) (α ∈ V ). If (S, ∗) satisfies (21), then

(i) it satisfies (22) and (23),

(ii) there exists (S, ·) ∈ SLG such that x ∗ y = x · y−1 for all x, y ∈ S.

Proof. Part (i) was proved in Lemma 3.4. For part (ii), let (S, ·) be as in our
Lemma 3.4. Then, as proved in Lemma 3.4, (S, ·) ∈ SLG. Also, xα · y−1β =

(xα∗eα)∗(eαβ ∗y
−1
β )

(21)
= [xα∗(yβ ∗eα)]∗eαβ = [xα∗(yβ ∗eα)] = [(xα∗eα)∗(yβ ∗eα)]

(21)
= (xα ∗ eα) ∗ yβ = xα ∗ yβ .
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Definition 3.6. Let (S, ∗) be a semigroup semilattice V of Ward quasigroups
(Wα, ∗|Wα , eα) (α ∈ V ) that satisfies (21), and if we define xα ·yβ = xα ∗ (eαβ ∗yβ),
then we denote the semigroup semilattice V of groups (S, ·) as SLG(S.∗).

Theorem 3.7. For all (S, ∗) ∈ SLWQ, SLWQ(SLG(S, ∗)) = (S, ∗) and for all
(S, ·) ∈ SLG, SLG(SLWQ(S, ·)) = (S, ·).

Proof. In SLG(S, ∗) the product is xα · yβ = xα ∗ (eαβ ∗ yβ). The product ⊗ in

SLWQ(SLG(S, ∗)) is xα ⊗ yβ = xα · y−1β . So, xα ∗ yβ = (xα ∗ yβ) ∗ (eαβ ∗ eαβ)
(22)
=

(xα ∗ (e−1αβ ∗ y
−1
β )) ∗ eαβ = xα ∗ (eαβ ∗ y

−1
β ) = xα · y−1β = xα ⊗ yβ and consequently,

SLWQ(SLG(S, ∗)) = (S, ∗).
In SLWQ(S, ·) the product is x∗y = x·y−1. The product⊕ in SLG(SLWQ(S, ·))

is xα ⊕ yβ = xα ∗ (eαβ ∗ yβ) = xα · (eαβ · y
−1
β )−1

(12)
= xα · yβ · e

−1
αβ = xα · yβ . Hence,

SLG(SLWQ(S, ·)) = (S, ·).

The second part of the following Corollary can be viewed as an “extension” of
(F1).

Corollary 3.8. There is a one-to-one correspondence between semigroup semi-
lattices of groups SLG and groupoids (S, ∗) that are semigroup semilattices V of
Ward quasigroups (Wα, ∗|Wα , eα) and that satisfy (21). Also, (S, ∗) ∈ SLWQ if
and only if there exists (S, ·) ∈ SLG such that x ∗ y = x · y−1 for all x, y ∈ S.

Corollary 3.9. There is a one-to-one correspondence between semigroup semilat-
tices of abelian groups and groupoids (S, ∗) that are semigroup semilattices V of
medial Ward quasigroups (Wα, ∗|Wα , eα) (α ∈ V ) and that satisfy (21).

Proof. The proof here follows that of Lemmas 3.2, 3.4 and Theorem 3.7, using the
additional fact that a groupoid is a medial Ward quasigroup if and only if it is
induced by an abelian group.

Lemma 3.10. Let (S, ·) be a semigroup semilattice V of groups (Gα, ∗|Gα , eα)
(α ∈ V ) and let x ∗ y = x−1 · y. Then

(24) (S, ∗) an inverse groupoid with x−1α = xα ∗ eα, (α ∈ V ),

(25) E(S, ∗) ∼= E(S, ·) ∼= V,

(26) (S, ∗) is a semigroup semilattice V of Ward dual quasigroups (Sα, ∗|Sα , eα)
(α ∈ V ),

(27) (xα ∗ yβ) ∗ (zγ ∗ wσ) = yβ ∗ ((z−1γ ∗ x−1α ) ∗ wσ),

(28) (xα ∗ eαβ) ∗ yβ = x−1α ∗ yβ,

(29) xα ∗ yβ = (yβ ∗ xα)−1.
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Proof. Note that it follows from Lemma 3.1 that SLG = SLG. Since x∗̄y =
y ∗x = y−1 ·x = x̄·y−1 and (S, ·̄) ∈ SLG, (S, ∗̄) satisfies (18) to (23). Hence, (S, ∗)
satisfies (24) to (29).

Definition 3.11. SLWD(S, ·) will denote (S, ∗) in Lemma 3.10 above. We denote
the collection of all groupoids (S, ∗) that are semigroup semilattices V of Ward
dual quasigroups (WDα, ∗|WDα

, eα) (α ∈ V ) that satisfy (27) as SLWDQ. So,
SLWD(S, ·) = (S, ∗) ∈ SLWDQ.

Lemma 3.12. Suppose that (S, ∗) is a semigroup semilattice V of Ward dual
quasigroups (WDα, ∗|WDα , eα) (α ∈ V ) and satisfies (27). Then (S, ·) with the
operation xα · yβ = (xα ∗ eαβ) ∗ yβ , is a semigroup and a semigroup semilattice V
of groups.

Proof. It is clear that (S, ∗̄) is a semigroup semilattice V of Ward quasigroups
(WDα, ∗|WDα , eα) (α ∈ V ) and satisfies (21). Also, xα ·̄ yβ = (yβ ∗ eαβ) ∗ xα =
xα∗̄ (eαβ ∗̄ yβ). By Lemma 3.4, (S, ·̄) is a semigroup and a semigroup semilattice V
of groups with V ∼= E(S, ·̄) ∼= E(S, ∗̄). Hence, (S, ·) is a semigroup and a semigroup
semilattice V of groups with V ∼= E(S, ·) ∼= E(S, ∗).

Definition 3.13. SLG(S, ∗) will denote (S, ·) in Lemma 3.12 above.

Theorem 3.14. For all (S, ·) ∈ SLG, SLG(SLWD(S, ·)) = (S, ·) and for all
(S, ∗) ∈ SLWDQ, SLWD(SLG(S, ∗)) = (S, ∗).

Proof. Observe that the product in SLWD(S, ·) is x ∗ y = x−1 · y. The product in
SLG(SLWD(S, ·)) is

xα ⊗ yβ = (xα ∗ eαβ) ∗ yβ = (x−1α · eαβ) ∗ yβ
(12)
= eαβ · xα · yβ = xα · yβ .

Hence, SLG(SLWD(S, ·)) = (S, ·).
The product in SLG(S, ∗) is xα · yβ = (xα ∗ eαβ) ∗ yβ . Hence, the product in

SLWD(SLG(S, ∗)) is xα ⊕ yβ = x−1 · y = ((xα ∗ eα) ∗ eαβ) ∗ yβ
(27)
= xα ∗ yβ and

so SLWD(SLG(S, ∗)) = (S, ∗) .

Corollary 3.15. There is a one-to-one correspondence between semigroup semi-
lattices of groups SLG and groupoids (S, ∗) that are semigroup semilattices V of
Ward dual quasigroups (WDα, ∗|WDα , eα) (α ∈ V ) and that satisfy (24), (26) and
(27). Also, (S, ∗) ∈ SLWDQ if and only if there exists (S, ·) ∈ SLG such that
x ∗ y = x−1 · y for all x, y ∈ S.

Corollary 3.16. There is a one-to-one correspondence between semigroup semi-
lattices of abelian groups and groupoids (S, ∗) that are semigroup semilattices V of
unipotent, left-unital right modular quasigroups (Qα, ∗|α , eα) satisfying (27).
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Proof. A Ward dual quasigroup is a unipotent, left-unital right modular quasi-
group if and only if it is medial if and only if it is induced by an abelian group.
Using this fact, the proof of Corollary 3.16 exactly follows those of Lemmas 3.10,
3.12 and Theorem 3.14.

Lemma 3.17. Let (S, ·) be a semigroup semilattice V of groups (Gα, ∗|Gα , eα)

(α ∈ V ) such that xα ∗ yβ = x−1 · y−1β . Then

(30) ({eα |α ∈ V }, ∗) ∼= ({eα |α ∈ V }, ·) ∼= V is a semigroup semilattice,

(31) (S, ∗) is a semigroup semilattice V of double Ward quasigroups (Gα, ∗|Gα , eα)
(α ∈ V ),

(32) (S, ∗) satisfies the identity

(eαβγ∗((eαβ∗xα)∗(eαβ∗yβ)))∗(eαβγ∗zγ)=(eαβγ∗xα)∗(eαβγ∗((eβγ∗yβ)∗(eβγ∗zγ))),

(33) (S, ∗) satisfies the identity xα ∗ yβ = (eαβ ∗ (eα ∗ xα)) ∗ (eαβ ∗ (eβ ∗ yβ)).

Proof. (30): For any eα, eβ ∈ V, eα ∗ eβ = e−1α · e−1β = eα · eβ . Then, eα ∗ eβ =
eα · eβ = eβ · eα = eαβ , by Lemma 3.1. Hence, (eα ∗ eβ) ∗ eγ = eαβ ∗ eγ = e(αβ)γ =

eα(βγ) = eα ∗ (eβ ∗ eγ). By Lemma 3.1, ({eα |α ∈ V }, ∗) ∼= V is a semigroup
semilattice and so (30) is valid.

(31): Each (Gα, ∗|Gα , eα) has product xα∗yα = x−1α ·y−1α and therefore, by (F3),
each (Gα, ∗|Gα , eα) is a double Ward quasigroup. Since xα ∗yβ = x−1α ·y−1β ∈ Gαβ ,
(31) is valid.

(32): We have

(eαβγ ∗ ((eαβ ∗ xα) ∗ (eαβ ∗ yβ))) ∗ (eαβγ ∗ zγ) =

(eαβγ ∗ ((e−1αβ · x−1α ) ∗ (e−1αβ · y
−1
β ))) ∗ (e−1αβγ · z−1γ ) =

(eαβγ ∗ (xα · yβ)) ∗ (e−1αβγ · z−1γ ) = (e−1αβγ · y
−1
β · x−1α )−1 · zγ · eαβγ =

(xα · yβ) · (eαβγ · (zγ · eαβγ)) = (xα · yβ) · (zγ · eαβγ) =

(xα · yβ · zγ) · eαβγ = xα · yβ · zγ .

Also,

(eαβγ ∗ xα) ∗ (eαβγ ∗ ((eβγ ∗ yβ) ∗ (eβγ ∗ zγ))) =

(e−1αβγ · x−1α )−1 ∗ (e−1αβγ · ((e
−1
βγ · y

−1
β )−1)−1)−1 =

(xα · eαβγ) · eαβγ · (yβ · eβγ) · (zγ · eβγ) =

xα · (eα · eβγ) · (yβ · (eβγ · (zγ · eβγ))) =

(xα · eα) · (eβγ · ((yβ · zγ) · eβγ)) = xα · yβ · zγ .

This proves (32).

(33): By the definition of the operation ∗,
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(eαβ ∗ (eα ∗ xα)) ∗ (eαβ ∗ (eβ ∗ yβ)) =

(e−1αβ · (e−1α · x−1α )−1) ∗ (e−1αβ · (e
−1
β · y

−1
β )−1) =

eα · x−1α · (eαβ · (eβ · y
−1
β · eαβ)) = eα · x−1α · eβ · y

−1
β · eαβ =

eα · x−1α · eβ · y
−1
β = x−1α · y−1β = xα ∗ yβ .

This proves (33) and completes the proof of Lemma 3.17.

Definition 3.18. SLDWQ(S, ·) denotes (S, ∗) of Lemma 3.17. The collection of
all semilattices of double Ward quasigroups that satisfy (30)− (34) is denoted by
SLDWQ.

Lemma 3.19. Suppose that (S, ∗) is a semigroup semilattice V of double Ward
quasigroups (DWα, ∗|DWα , eα) (α ∈ V ), that ({eα |α ∈ V }, ∗) ∼= V and that (S, ∗)
satisfies (32) and (33). Define xα · yβ = (eαβ ∗ xα) ∗ (eαβ ∗ yβ). Then

(34) ({eα |α ∈ V }, ·) ∼= ({eα |α ∈ V }, ∗) is a semigroup semilattice,

(35) (S, ·) is a semigroup and a semigroup semilattice of groups (DWα, ∗|DWα , eα)

(α ∈ V ),

(36) for all α, β ∈ V and all xα ∈ DWα, yβ ∈ DWβ, xα ∗ yβ = x−1α · y−1β .

Proof. We have

eα · eβ = (eαβ ∗ eα) ∗ (eαβ ∗ eβ) = (eαβ ∗ (eα ∗ eα)) ∗ (eαβ ∗ (eβ ∗ eβ))
(33)
= eα ∗ eβ

and so, (34) is valid.
For each (DWα, ∗|DWα , eα) the product is xα ·yβ = (eα∗xα)∗(eα∗yα), by (F6)

each (DWα, ∗|DWα , eα) is a group. By (32), (S, ·) is a semigroup and, by Lemma
3.1, (35) is valid. Finally, by (F6), x−1α = eα ∗ xα in (S, ·). Then, by (33),

x−1α · y−1β = (eα ∗ xα) · (eβ ∗ yβ) = (eαβ ∗ (eα ∗ xα)) ∗ (eαβ ∗ (eβ ∗ yβ)) = xα ∗ yβ ,

which completes the proof.

Definition 3.20. SLG(S, ∗) denotes (S, ·) of Lemma 3.19.

Theorem 3.21. For all (S, ·) ∈ SLG, SLG(SLDWQ(S, ·)) = (S, ·) and for all
(S, ∗) ∈ SLDWQ, SLDWQ(SLG(S, ∗)) = (S, ∗).

Proof. The product in SLDWQ(S, ·) is xα ∗ yβ = x−1α · y−1β . So, the product in
SLG(SLDWQ(S, ·)) is xα⊗yβ = (eαβ∗xα)∗(eαβ∗yβ) = (e−1αβ ·x−1α )−1 ·(e−1αβ ·y

−1
β )−1

= xα · (eαβ · (yβ · eαβ)) = (xα · yβ) · eαβ = xα · yβ . Hence, SLG(SLDWQ(S, ·)) =
(S, ·).

The product in SLG(S, ∗) is xα · yβ = (eαβ ∗ xα) ∗ (eαβ ∗ yβ). The product in

SLDWQ(SLG(S, ∗)) is xα⊕yβ = x−1α ·y−1β = (eαβ∗(eα∗xα))∗(eαβ∗(eβ∗eyβ))
(33)
=

xα ∗ yβ . So, SLDWQ(SLG(S, ∗)) = (S, ∗).
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Corollary 3.22. There is a one-to-one correspondence between elements of SLG
and SLDWQ.

Note that since SLG is in one-one correspondence with SLWQ, SLWDQ
and SLDWQ, SLWQ and SLWDQ are in one-one correspondence with each
other, as are SLDWQ and SLWQ. The next results give the explicit forms of
these bijective mappings.

Theorem 3.23. SLG = SLG.

Proof. The dual groupoid of a semigroup union of groups with commuting idempo-
tents is a semigroup union of groups with commuting idempotents. As previously
noted, the required result then follows from Lemma 3.1.

Theorem 3.24. . SLWQ = SLWDQ.

Proof. If (S, ∗) ∈ SLWQ, then x ∗ y = x · y−1 for some (S, ·) ∈ SLG. So, if
(T, ◦̄)∈ SLWQ, then, using Theorem 3.23, x◦̄y = x−1 ·̄ y for some (T, ·̄) from
SLG. As in the proof of Lemma 3.10, (T, ◦̄) satisfies (24) − (27). Therefore,
(T, ◦̄) ∈ SLWDQ. Hence, SLWQ ⊆ SLWDQ.

If (S, ∗) ∈ SLWDQ, then x ∗ y = x−1 · y for some (S, ·) ∈ SLG. So, using
Theorem 3.23, x∗̄y = x ·̄ y−1 for some (S, ·̄) ∈ SLG. Therefore, as in the proof of
Lemma 3.2, (S, ∗̄) satisfies (17). Hence, (S, ∗̄) ∈ SLWQ and (S, ∗) ∈ SLWQ. So,
SLWDQ ⊆ SLWQ.

Corollary 3.25. (S, ∗) ∈ SLWDQ if and only if (S, ∗) is a semilattice of Ward
dual quasigroups and satisfies the identity (x ∗ y) ∗ (z ∗w) = y ∗ ((z−1 ∗ x−1) ∗w).

Theorem 3.26. SLDWQ = SLDWQ.

Proof. If (S, ∗) ∈ SLDWQ, then x ∗ y = y∗̄x for some (S, ∗̄) ∈ SLDWQ. So,
x ∗ y = y∗̄x = x−1̄·y−1 for some (S, ·̄) ∈ SLG. Therefore, by the proof of Lemma
3.17, (S, ∗) ∈ SLDWQ. Hence, SLDWQ ⊆ SLDWQ ⊆ SLDWQ.

Theorem 3.27. SLDWQ and SLWQ are in one-one correspondence.

Proof. For (S, ∗) ∈ SLDWQ we define SLWQ(S, ∗) = (S, ◦), where xα ◦ yβ =
(eαβ ∗ xα) ∗ yβ . If (S,⊗) ∈ SLWQ, we define SLDWQ(S,⊗) = (S,⊕), where
xα ⊕ yβ = (eαβ ⊗ xα)⊗ yβ . Note that, since (S, ∗) ∈ SLDWQ, x ∗ y = x−1 · y−1

for some (S, ·) ∈ SLG. Therefore, xα ◦ yβ = (eαβ ∗xα)∗ yβ = (e−1αβ ·x−1α )−1 · y−1β =

xα · eαβ ·y
−1
β = xα · eα · eβ ·y−1β = xα ·y−1β . By Lemma 3.2, SLWQ(S, ∗) = (S, ◦) is

in SLWQ. Therefore, SLDWQ(S, ◦) = (S,⊕), where xα⊕ yβ = (eαβ ◦ xα) ◦ yβ =

(eαβ · x−1α ) · y−1β = x−1α · y−1β and so (S,⊕) ∈ SLDWQ.
Then, the product in SLDWQ(SLWQ(S, ∗)) is xα ⊕ yβ = (eαβ ◦ xα) ◦ yβ =

(eαβ ∗ (eαβ ◦ xα)) ∗ yβ = (e−1αβ · (e
−1
αβ · x−1α )−1)−1 · y−1β = ((e−1αβ · x−1α )−1)−1 · y−1β =

(e−1αβ ·x−1α ) ·y−1β = x−1α ·y−1β = xα∗yβ . Therefore, SLDWQ(SLWQ(S, ∗)) = (S, ∗).

Similarly, SLWQ(SLDWQ(S,⊗)) = (S,⊗).
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Questions. Suppose that (S, ∗) is a semigroup semilattice V of double Ward
quasigroups (DWα, ∗|DWα , eα) (α ∈ V ) and that (S, ∗) satisfies (32) and (33).
Then, is ({eα |α ∈ V }, ∗) ∼= V.

1. Can groupoids in SLDWQ be described by a single identity, in place of (32)
and (33)?

2. Is there a structure theorem for groupoids in SLWQ, SLWDQ and SLDWQ
analogous to the structure theorem for semigroups that are semigroup semi-
lattices of groups [3, Theorem 4.11]?

A remaining area for investigation is right, left and double division on completely
simple semigroups, where x−1 is the inverse of x in the group to which it belongs.
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Semigroups in which the radical

of every quasi-ideal is a subsemigroup

Jatuporn Sanborisoot and Thawhat Changphas

Abstract. For a non-empty subset A of a semigroup S,
√
A denotes the radical of A, i.e.,√

A = {x ∈ S | xn ∈ A for some positive integer n}. This paper characterizes when the radical
√
Q is a subsemigroup of S for every quasi-ideal Q of S.

1. Introduction and Preliminaries

Let S be a semigroup. For a, b ∈ S, the subsemigroup of S generated by {a, b} is
denoted by 〈a, b〉. A non-empty subset A of S is called a left (respectively, right)
ideal of S if SA ⊆ A (respectively, AS ⊆ A). And, A is called a two-sided ideal
(or ideal) of S if it is both a left and a right ideal of S. A non-empty subset Q of
S is called a quasi-ideal of S if QS ∩ SQ ⊆ Q. A subsemigroup B of S is called a
bi-ideal of S if BSB ⊆ B (cf. [2], [3]).

For a non-empty subset A of a semigroup S,
√
A denotes the radical of S, i.e.,

√
A = {a ∈ S | an ∈ A for some positive integer n}.

In [1], M. Ćirić and S. Bogdanović characterized when the radical
√
A is a subsemi-

group of S for every ideals A of S. Indeed, the authors studied when the radical
of every ideal of S is a subsemigroup of S; and when the radical of every bi-ideal
of S is a subsemigroup of S. The notion of quasi-ideals generalizes ideals, and the
notion of bi-ideals generalizes quasi-ideals, but quasi-ideals have been widely stud-
ied; see [3]. In the line of [1], this paper considers the case of quasi-ideals. Indeed,
we characterize when the radical

√
Q of every quasi-ideal Q of S is a subsemigroup

of S.
Let N = {1, 2, 3, . . .} denote the set of all positive integers. Let a, b be any
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elements of a semigroup S with identity. Define

a | b ⇐⇒ b = xay for some x, y ∈ S;
a |r b ⇐⇒ b = ax for some x ∈ S;
a |l b ⇐⇒ b = ya for some y ∈ S;
a |t b ⇐⇒ a |r b ∧ a |l b;
a→ b ⇐⇒ a | bn for some n ∈ N; and

a
h−→ b ⇐⇒ a |h bn for some n ∈ N where h is r, l or t.

2. Main results
In [3], a non-empty subset Q of a semigroup S is a quasi-ideal of S if and only if
it is an intersection of a left and a right ideal of S. We begin the section with the
following theorem.

Theorem 2.1. Let S be a semigroup with identity. Then the radical of every
quasi-ideal of S is a subsemigroup of S if and only if

∀a, b ∈ S ∀i, j ∈ N ∃n ∈ N [(ab)n ∈ {ai, bj}S ∩ S{ai, bj}].

Proof. Assume that the radical of every quasi-ideal of S is a subsemigroup of S.
Let a, b ∈ S, and let i, j ∈ N. Put

Q = {ai, bj}S ∩ S{ai, bj}.

Then Q is a quasi-ideal of S such that a, b ∈
√
Q. By assumption, ab ∈

√
Q. Hence

(ab)n ∈ {ai, bj}S ∩ S{ai, bj} for some n ∈ N.
Conversely, assume that for all a, b in S and i, j in N there exists n ∈ N such

that (ab)n ∈ {ai, bj}S ∩ S{ai, bj}. Let Q be a quasi-ideal of S, and let a, b ∈
√
Q.

Then ai ∈ Q and bj ∈ Q for some i, j ∈ N. By assumption, there exists n ∈ N
such that (ab)n ∈ {ai, bj}S ∩ S{ai, bj}. Thus ab ∈

√
Q, because

(ab)n ∈ {ai, bj}S ∩ S{ai, bj} ⊆ QS ∩ SQ ⊆ Q.

Hence
√
Q is a subsemigroup of S.

Let S = {a, b, c, d, 1} be a semigroup with the multiplication:

· a b c d 1

a a a a a a
b a a a a b
c a a b a c
d a a b b d
1 a b c d 1
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The quasi-ideal of S is {{a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, S}. Observe that√
{a} = {a, b},

√
{a, b} =

√
{a, b, c} =

√
{a, b, d} =

√
{a, b, c, d} = {a, b, c, d} and√

S = S; then the radical of every quasi-ideal of S is a subsemigroup of S.
In general, the radical of quasi-ideals of a semigroup with identity need not be

subsemigroups, as the following example shows:
Let S = {a, b, c, d, f, 1} be a semigroup with the multiplication:

· a b c d f 1

a a a a a a a
b a b a d a b
c a f c c f c
d a b d d b d
f a f a c a f
1 a b c d f 1

The quasi-ideal of S is {{a},{a, b},{a, c},{a, d},{a, f},{a, b, d}, {a, c, d},
{a, b, f},{a, c, f},{a, b, c, d, f}, S}. We have

√
{a, c, d} = {a, c, d, f} which is not a

subsemigroup of S.

Theorem 2.2. Let S be a semigroup with identity. Then the radical of every right
ideal of S is a quasi-ideal of S if and only if

∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N [ai
r−→ c ∨ bj

r−→ c]].

Proof. Assume that the radical of every right ideal of S is a quasi-ideal of S. Let
a, b, c ∈ S such that a |r c and b |l c. Then c = au and c = vb for some u, v ∈ S.
Let i, j ∈ N. Put R = {ai, bj}S; then R is a right ideal of S and a, b ∈

√
R. By

assumption,
√
R is a quasi-ideal of S. Since c = au and c = vb,

c ∈
√
RS ∩ S

√
R ⊆

√
R.

Thus cn ∈ R for some n ∈ N, whence ai
r−→ c or bj r−→ c.

Conversely, assume that for all a, b, c in S,

a |r c ∧ b |l c =⇒ ∀i, j ∈ N [ai
r−→ c ∨ bj

r−→ c].

Let R be a right ideal of S. To show that
√
RS∩S

√
R ⊆

√
R, let x ∈

√
RS∩S

√
R.

Then x = au and x = vb for some u, v ∈ S and a, b ∈
√
R. Since a, b ∈

√
R, there

exist i, j ∈ N such that ai, bj ∈ R. By assumption, there exists n ∈ N such that
xn ∈ {ai, bj}S. Since

{ai, bj}S ⊆ RS ⊆ R,

then x ∈
√
R. Hence

√
R is a quasi-ideal of S.

As Theorem 2.2, we obtain the following.

Theorem 2.3. Let S be a semigroup with identity. Then the radical of every left
ideal of a semigroup S is a quasi-ideal of S if and only if
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∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N [ai
l−→ c ∨ bj

l−→ c]].

Theorem 2.4. Let S be a semigroup with identity. Then the radical of every
quasi-ideal of S is a quasi-ideal of S if and only if

∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N ∃n ∈ N [cn ∈ {ai, bj}S ∩ S{ai, bj}]].

Proof. Assume that the radical of every quasi-ideal of S is a quasi-ideal of S. Let
a, b, c ∈ S such that a |r c and b |l c. Then c = au and c = vb for some u, v ∈ S.
Let i, j ∈ N. Put

Q = {ai, bj}S ∩ S{ai, bj}.

Then Q is a quasi-ideal of S and a, b ∈
√
Q. By assumption,

√
Q is a quasi-ideal

of S. Since c = au and c = vb,

c ∈
√
QS ∩ S

√
Q ⊆

√
Q.

Hence cn ∈ {ai, bj}S ∩ S{ai, bj} for some n ∈ N.
Conversely, assume that for all a, b, c ∈ S,

a |r c ∧ b |l c =⇒ ∀i, j ∈ N ∃n ∈ N [cn ∈ {ai, bj}S ∩ S{ai, bj}].

Let Q be a quasi-ideal of S. We need show that
√
QS ∩ S

√
Q ⊆

√
Q. Let x ∈√

QS ∩ S
√
Q. Then x = au and x = vb for some a, b ∈

√
Q and u, v ∈ S. Since

a, b ∈
√
Q, there exist i, j ∈ N such that ai, bj ∈ Q. By assumption, there exists

n ∈ N such that xn ∈ {ai, bj}S ∩ S{ai, bj}. Since

{ai, bj}S ∩ S{ai, bj} ⊆ QS ∩ SQ ⊆ Q,

then x ∈
√
Q, whence

√
Q is a quasi-ideal of S.

Theorem 2.5. Let S be a semigroup with identity. The radical of every ideal of
S is a quasi-ideal of S if and only if

∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N [ai → c ∨ bj → c]].

Proof. Assume that the radical of every ideal of S is a quasi-ideal of S. Let
a, b, c ∈ S such that a |r c and b |l c. Then c = au and c = vb for some u, v ∈ S.
Let i, j ∈ N. Put A = S{ai, bj}S, then A is an ideal of S and a, b ∈

√
A. By

assumption,
√
A is a quasi-ideal of S. Since c = au and c = vb,

c ∈
√
AS ∩ S

√
A ⊆

√
A.

Then there exists n ∈ N such that cn ∈ A. Hence ai → c or bj → c. The opposite
direction can be proved similarly to the converse of Theorem 2.2.

Theorem 2.6. Let S be a semigroup with identity. The radical of every quasi-ideal
of S is a bi-ideal of S if and only if
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∀a, b, c ∈ S ∀i, j ∈ N ∃n ∈ N [(abc)n ∈ {ai, cj}S ∩ S{ai, cj}].

Proof. Assume that the radical of every quasi-ideal of S is a bi-ideal of S. Let
a, b, c ∈ S, and let i, j ∈ N. Put Q = {ai, cj}S ∩ S{ai, cj}. Observe firstly that Q
is a quasi-ideal of S and a, c ∈

√
Q. By assumption,

√
Q is a bi-ideal of S. Then

abc ∈
√
QS

√
Q ⊆

√
Q.

Hence (abc)n ∈ {ai, cj}S ∩ S{ai, cj} for some n ∈ N.
Conversely, assume that for any a, b, c ∈ S, and i, j ∈ N,

(abc)n ∈ {ai, cj}S ∩ S{ai, cj} for some n ∈ N.

Let Q be a quasi-ideal of S. Let a, c ∈
√
Q, and let b ∈ S. Then ai, cj ∈ Q for

some i, j ∈ N. By assumption, (abc)n ∈ {ai, cj}S ∩ S{ai, cj} for some n ∈ N.
Consider

(abc)n ∈ {ai, cj}S ∩ S{ai, cj} ⊆ QS ∩ SQ ⊆ Q.

Thus abc ∈
√
Q, and

√
Q is a bi-ideal of S.

Theorem 2.7. Let S be a semigroup with identity. The radical of every quasi-ideal
of a semigroup S is a right ideal of S if and only if

ak
t−→ ab for all a, b ∈ S and k ∈ N.

Proof. Assume that the radical of every quasi-ideal of S is a right ideal of S. Let
a, b ∈ S and k ∈ N. Put Q = akS∩Sak. Then Q is a quasi-ideal of S and a ∈

√
Q.

By assumption,
√
Q is a right ideal of S. Thus ab ∈

√
QS ⊆

√
Q. We then have

that there exists n ∈ N such that (ab)n ∈ Q. Hence ak
t−→ ab.

Conversely, assume that ak
t−→ ab for all a, b ∈ S and k ∈ N. Let Q be a

quasi-ideal of S, and let a ∈
√
Q and b ∈ S. Then ak ∈ Q for some k ∈ N. Since

akS ∩ Sak ⊆ QS ∩ SQ ⊆ Q,

(ab)n ∈ Q for some n ∈ N. This implies ab ∈
√
Q, and hence

√
Q is a right ideal

of S.

As Theorem 2.7, we obtain the following theorem.

Theorem 2.8. Let S be a semigroup with identity. The radical of every quasi-ideal
of S is a left ideal of S if and only if ak t−→ ba for all a, b ∈ S and k ∈ N.

Theorem 2.9. Let S be a semigroup with identity. Then the following conditions
are equivalent:

(1) the radical of every quasi-ideal of S is an ideal of S;

(2) ak
t−→ ab and ak

t−→ ba for all a, b ∈ S and k ∈ N.
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Proof. (1) ⇒ (2): Assume (1). Let a, b ∈ S, and let k ∈ N. Put A = akS ∩ Sak.
Clearly, A is a quasi-ideal of S and a ∈

√
A. By assumption,

√
A is an ideal of S.

Thus ab ∈
√
AS ⊆

√
A and ba ∈ S

√
A ⊆

√
A. This implies (ab)m, (ba)n ∈ A for

some m,n ∈ N. Hence ak
t−→ ab and ak

t−→ ba.
(2) ⇒ (1): Assume (2). Let Q be a quasi-ideal of S. To show that

√
Q is

an ideal of S, let a ∈
√
Q and b ∈ S. Since a ∈

√
Q, ak ∈ Q for some k ∈ N.

By assumption, there exist m,n ∈ N such that (ab)m, (ba)n ∈ akS ∩ Sak. Hence
(ab)m, (ba)n ∈ Q, because

akS ∩ Sak ⊆ QS ∩ SQ ⊆ Q.

This implies ab, ba ∈
√
Q, and thus

√
Q is an ideal of S.

Theorem 2.10. Let S be a semigroup with identity. Then the following conditions
are equivalent:

(1) the radical of every bi-ideal of S is a quasi-ideal of S;

(2) ∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N ∃n ∈ N [cn ∈ {ai, bj}S{ai, bj}]].

Proof. (1) ⇒ (2): Assume (1). Let a, b, c ∈ S such that c = au and c = vb for
some u, v ∈ S. Let i, j ∈ N. It is observed that

B = {ai, bj}S{ai, bj}

is a bi-ideal of S and a, b ∈
√
B. By assumption,

√
B is a quasi-ideal of S.

Therefore, c ∈
√
BS ∩ S

√
B ⊆

√
B. Hence cn ∈ {ai, bj}S{ai, bj} for some n ∈ N.

(2) ⇒ (1): Assume (2). Let B be a bi-ideal of S. Let x ∈
√
BS ∩ S

√
B. Then

x = au and x = vb for some a, b ∈
√
B and u, v ∈ S. Hence, there exist i, j ∈ N

such that ai, bj ∈ B. By assumption,

xn ∈ {ai, bj}S{ai, bj} ⊆ BSB ⊆ B.

Thus x ∈
√
B. Hence

√
B is a quasi-ideal of S.

Theorem 2.11. Let S be a semigroup with identity. Then the following conditions
are equivalent:

(1) the radical of every subsemigroup of S is a quasi-ideal of S;

(2) ∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N ∃n ∈ N [cn ∈ 〈ai, bj〉]].

Proof. (1) ⇒ (2): Assume (1), and let a, b, c ∈ S, such that a |r c and b |l c. Then
c = au and c = vb for some u, v ∈ S. Let i, j ∈ N. Put A = 〈ai, bj〉. By (1),

√
A

is a quasi-ideal of S. Since c = au and c = vb, c ∈
√
AS ∩ S

√
A. Then

c ∈
√
AS ∩ S

√
A ⊆

√
A.
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Hence cn ∈ 〈ai, bj〉 for some n ∈ N.
(2)⇒ (1): Assume (2), and let A be a subsemigroup of S. Let x ∈

√
AS∩S

√
A;

then x = au and x = vb for some a, b ∈
√
A and u, v ∈ S. We then have that

ai, bj ∈ A for some i, j ∈ N. By assumption, xn ∈ 〈ai, bj〉. Since 〈ai, bj〉 ⊆ A,
x ∈
√
A. Thus

√
A is a quasi-ideal of S.

Finally, we have the following result.

Theorem 2.12. Let S be a semigroup with identity. Then the following conditions
are equivalent:

(1) the radical of every quasi-ideal of S is a quasi-ideal of S;

(2) ∀a, b ∈ S [
√
{a, b}S ∩ S{a, b} is a quasi-ideal of S];

(3) ∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∃n ∈ N [cn ∈ {a2, b2}S ∩ S{a2, b2}]];

(4) ∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀k ∈ N ∃n ∈ N [cn ∈ {ak, bk}S ∩ S{ak, bk}]].

Proof. (1) ⇒ (2): Assume (1), and let a, b ∈ S. Since {a, b}S ∩ S{a, b} is a
quasi-ideal of S and (1),

√
{a, b}S ∩ S{a, b} is a quasi-ideal of S.

(2) ⇒ (3): Assume (2), and let a, b, c ∈ S such that a |r c and b |l c. Then
c = au and c = vb for some u, v ∈ S. Clearly, a, b ∈

√
{a2, b2}S ∩ S{a2, b2}.

By (2),
√
{a2, b2}S ∩ S{a2, b2} is a quasi-ideal of S. From c = au and c = vb, it

follows that

c ∈
√
{a2, b2}S ∩ S{a2, b2}S ∩ S

√
{a2, b2}S ∩ S{a2, b2}

⊆
√
{a2, b2}S ∩ S{a2, b2}.

Thus cn ∈ {a2, b2}S ∩ S{a2, b2} for some n ∈ N.
(3) ⇒ (4): Assume (3), and let a, b, c ∈ S such that a |r c and b |l c. Then

c = au and c = vb for some u, v ∈ S. By (3), cn ∈ {a2, b2}S ∩ S{a2, b2} for some
n ∈ N. It is observed that

{a2, b2}S ∩ S{a2, b2} ⊆ {a, b}S ∩ S{a, b}.

Then
cn ∈ {a, b}S ∩ S{a, b}.

Suppose that there exists m ∈ N where k ∈ N such that

cm ∈ {ak, bk}S ∩ S{ak, bk}.

By (3), there exists l ∈ N such that

(cm)l ∈ {a2k, b2k}S ∩ S{a2k, b2k}.
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Consider

(cm)l ∈ {a2k, b2k}S ∩ S{a2k, b2k}
= {ak+1ak−1, bk+1bk−1}S ∩ S{ak−1ak+1, bk−1bk+1}
⊆ {ak+1, bk+1}S ∩ S{ak+1, bk+1}.

Hence
cml = (cm)l ∈ {ak+1, bk+1}S ∩ S{ak+1, bk+1}.

Therefore (4) holds.
(4) ⇒ (1): Assume (4), and let Q be a quasi-ideal of S. Let x ∈

√
QS ∩ S

√
Q.

Then x = au and x = vb for some u, v ∈ S and a, b ∈
√
Q. Then ai, bj ∈ Q for

some i, j ∈ N. By (4), there exists n ∈ N such that

xn ∈ {ai+j , bi+j}S ∩ S{ai+j , bi+j}.

Consider

xn ∈ {ai+j , bi+j}S ∩ S{ai+j , bi+j} ⊆ {ai, bj}S ∩ S{ai, bj} ⊆ QS ∩ SQ ⊆ Q.

Thus x ∈
√
Q, and Q is a quasi-ideal of S.
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On ordered semigroups satisfying certain

regularity conditions

Jatuporn Sanborisoot and Thawhat Changphas

Abstract. In terms of ideals, this paper investigates ordered semigroups satisfying certain
regularity conditions. In particular we study regularity, complete regularity, quasi-regularity,
intra-regularity as well as left (right) regularity, left (right) quasi-regularity, and left (right)
reproduce.

1. Preliminaries

Regular rings and semigroups have been introduced and studied by Neumann [10].
These lead to study other types of regularity, for example, completely regularity,
intra-regularity and quasi-regularity ([9], [12]). Using the so-called linear words,
Bogdanovíc et al. classified all the types of regularity of semigroups [2]; based
on the results obtained the authors then described semigroups satisfying certain
regularity conditions [1]. In [11], Phochai and Changphas determined all the types
of regularity conditions for ordered semigroups. This paper then examines ordered
semigroups satisfying each of the types of regularity conditions. Some types of
regularity of ordered semigroups have been studied ([3], [4]).

An ordered semigroup (S, ·,6) consists of a semigroup (S, ·) together with a
relation 6 that is compatible with the semigroup operation (cf. [7]), meaning that,
for any a, b, c ∈ S, a 6 b implies ac 6 bc and ca 6 cb. For ∅ 6= A,B ⊆ S,
AB := {ab ∈ S | a ∈ A, b ∈ B} and (A] := {x ∈ S | ∃a ∈ A, x 6 a}. It is observed
that (1) A ⊆ (A]; (2) (A](B] ⊆ (AB]; (3) ((A](B]] = (AB].

A non-empty subset A of an ordered semigroup (S, ·,6) is called a left (resp.
right) ideal of S if (i) SA ⊆ A (resp. AS ⊆ A); (ii) (A] = A. We say that A
is a (two-sided) ideal of S if A is both a left and a right ideal of S. S is said to
be simple if S contains no proper ideals. If a ∈ S then L(a) = (a ∪ Sa] (resp.
R(a) = (a∪aS], J(a) = (a∪aS ∪Sa∪SaS]) is a left (resp. right, two-sided) ideal
containing a. An ordered semigroup S is simple if and only if S = (SaS] for all
a ∈ S [8]. A subsemigroup B of S (that is, BB ⊆ B) is called a bi-ideal of S if (i)

2000 Mathematics Subject Classification: 06F05
Keywords: ordered semigroup, ideal, simple, semilattice, linear word, regularity conditions
The first author is supported by grant number 6200056 of the National Research Council of
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BSB ⊆ B; (ii) (B] = B ([5], p. 242). If a ∈ S then (a ∪ a2 ∪ aSa] is a bi-ideal
containing a .

Let X be a countable alphabet whose elements are called variables. Let c be a
symbol such that c /∈ X, called a constant. Consider (X ∪ {c})+, free semigroup
generated by X ∪ {c}, let L be the set of all words u ∈ (X ∪ {c})+ satisfying the
following conditions:

(i) The constant c appears at least once in u.
(ii) There is at least one occurrence of a variable in u.
(iii) Any variable appears at most once in u.

A word u ∈ L is called linear, and we shall write u(c, x1, . . . , xn) instead of u
to emphasize that {x1, . . . , xn} is the set of all variables appearing in u. For
u(c, x1, . . . , xn) ∈ L, an expression of the form c 6 u(c, x1, . . . , xn) is called a
regularity condition. For an ordered semigroup (S, ·,6) and a ∈ S, an expression
of the form a 6 u(a, x1, . . . , xn) is solvable in S if there exist a1, . . . , an ∈ S
such that a 6 u(a, a1, . . . , an). Two regularity conditions c 6 u(c, x1, . . . , xn) and
c 6 v(c, y1, . . . , ym) are equivalent if for every ordered semigroup (S, ·,6), and for
every a ∈ S,

a 6 u(a, x1, . . . , xn) is solvable in S ⇐⇒ a 6 v(a, y1, . . . , ym) is solvable in S.

We denote by N the set of all positive integers. It was proved in [11] that
an arbitrary regularity condition c 6 u(c, x1, . . . , xn) is equivalent to one of the
regularity conditions (C1)–(C16):

Number Condition Name
C1 c 6 xcy
C2 c 6 xc Left Reproduce
C3 c 6 cx Right Reproduce
C4 c 6 xcycz Intra-quasi-regular
C5 c 6 xcyc Left Quasi-regular
C6 c 6 cxcy Right Quasi-regular
C7 c 6 cxc Regular
C8 c 6 xcky, for some k ∈ N Intra-regular (k = 2)
C9 c 6 xckyc, for some k ∈ N Left Regular
C10 c 6 cxcky, for some k ∈ N Right Regular
C11 c 6 xc2

C12 c 6 xc2

C13 c 6 c2x
C14 c 6 c2xc2

C15 c 6 cxc2

C16 c 6 c2xc

Let (S, ·,6) be an ordered semigroup. S is said to satisfy a regularity condition
c 6 u(c, x1, ..., xn), if for every a ∈ S, the expression a 6 u(a, x1, ..., xn) is solvable
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in S. It is observed that an ordered semigroup (S, ·,6) is intra-quasi-regular (resp.
left quasi-regular) if a ∈ (SaSaS] (resp. a ∈ (SaSa]) for all a ∈ S. Any other
types of regularity can be observed similarly. Finally, we call an element a of S
a left (resp. right) reproduce element if a 6 xa (resp. a 6 ax) is solvable. Any
other types of elements can be defined similarly.

The main results can be described shortly as the following: Theorem 1 shows
that every ordered semigroup in a semilattice satisfies the same regularity condition
of such semilattice. In Theorem 2, we consider relationships of ordered semigroups
containing intra-quasi-regular elements, intra-regular elements, left [resp. right]
quasi-regular elements, left [resp. right] regular elements. In Theorem 3, we
characterize several regularities of elements by its principal ideal, principal left
ideal and principal right ideal. The rest of this paper shows characterizations of
regularities of semigroups and regularity conditions of semigroups as well.

2. Main Results

Let Y be a semilattice. An ordered semigroup (S, ·,6) is a semilattice Y of ordered
semigroups (Sα, ·α,≤α), α ∈ Y if (i) Sα ∩ Sβ = ∅ for all different α, β ∈ Y ; (ii)
S =

⋃
α∈Y

Sα; (iii) SαSβ ⊆ Sαβ for all α, β ∈ Y .

Theorem 1. Assume an ordered semigroup (S, ·,6) is a semilattice Y of ordered
semigroups (Sα, ·α,≤α), α ∈ Y . If (S, ·,6) satisfies one of the regularity conditions
(C4)–(C14) then (Sα, ·α,≤α) satisfies the same regularity condition for all α ∈ Y .

Proof. Assume that S satisfies (C4); that is S is left intra-quasi-regular. Let
α ∈ Y . To show that (Sα, ·α,≤α) satisfies (C4), let a ∈ Sα. By assumption,
a 6 xayaz for some x, y, z ∈ S. Since S =

⋃
ν∈Y

Sν , there exist β, γ, δ ∈ Y such

that x ∈ Sβ , y ∈ Sγ , z ∈ Sδ. We have αβ = αγ = αδ = α because a ∈ Sα and
a 6 axayaz, so

a 6 xayaz 6 x(xayaz)y(xayaz)z = (xxay)a(zyx)a(yazz)

6 (xxay)(xayaz)(zyx)a(yazz) = (xxayx)a(yazzyx)a(yazz) ∈ SαaSαaSα.

Then a ∈ (SαaSαaSα]. So Sα satisfies (C4). The rest of the assertions can be
proved similarly.

Theorem 2. The following statements hold for an ordered semigroup (S, ·,6):

(1) S has an intra-quasi-regular element if and only if S has an intra-regular
element.

(2) S has a left quasi-regular element if and only if S has a left regular element.
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(3) S has a right quasi-regular element if and only if S has a right regular ele-
ment.

Proof. (1) Assume that S has an intra-quasi-regular element a; then a 6 xayaz
for some x, y, z ∈ S. We have

yaz 6 y(xayaz)z = (yx)a(yazz) 6 (yx)(xayaz)(yazz)

= (yxxa)(yaz)(yaz)z ∈ S(yaz)2S.

Then yaz ∈ (S(yaz)2S], and S has an intra-regular element yaz.
Conversely, assume that S has an intra-regular element a. That is, a 6 xa2y

for some x, y ∈ S. We have

a 6 xa2y 6 xa(xa2y)y = xaxa(ayy) ∈ SaSaS.

Then a ∈ (SaSaS], and S has an intra-quasi-regular element a.
(2) Assume that S has a left quasi-regular element a; then a 6 xaya for some

x, y ∈ S. Thus,

ya 6 y(xaya) = (yx)a(ya) 6 (yx)(xaya)(ya)

= (yxxa)(ya)(ya) ∈ S(ya)2.

So ya ∈ (S(ya)2], and S has a left regular element ya.
Conversely, assume that S has a left regular element a. Then a 6 xa2 for some

x ∈ S. Since
a 6 xa2 6 xaxa2 = xa(xa)a ∈ SaSa

then a ∈ (SaSa], and a is a left quasi-regular element. That (3) holds can be
proved analogously.

Theorem 3. For an element a of an ordered semigroup (S, ·,6), the following
statements hold:

(1) a is intra-quasi-regular if and only if the principal two-sided ideal J(a) of S
has an intra-regular generator.

(2) a is left quasi-regular if and only if the principal left ideal L(a) of S has a
left regular generator.

(3) a is right quasi-regular if and only if the principal right ideal R(a) of S has
a right regular generator.

Proof. (1) Assume that a ∈ S is intra-quasi-regular; then a 6 xayaz for some
x, y, z ∈ S. Since a ∈ J(a), J(yaz) ⊆ J(a). By a 6 xayaz, J(a) ⊆ J(yaz). Then
J(a) = J(yaz). As the proof of Theorem 2 we have yaz is intra-regular, and then
J(a) has an intra-regular generator.

Conversely, assume that the principal ideal J(a) has an intra-regular generator
b. Then J(a) = J(b) and b 6 pb2q for some p, q ∈ S. We have

a ∈ J(b) = J(pb2q) = (pb2q ∪ S(pb2q) ∪ (pb2q)S ∪ S(pb2q)S] ⊆ (Sb2S].
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Since b ∈ J(a), then b2 ∈ J(a)J(a) ⊆ (SaSaS]. Hence, a is intra-quasi-regular.
That (2) and (3) hold can be proved similarly.

Next, we deal with ordered semigroups satisfying c 6 xc2yc, and satisfying
both of c 6 xc2yc and c 6 cxc2y.

Theorem 4. Let (S, ·,6) be an ordered semigroup. The following are equivalent:

(1) a ∈ (SbSa] for all a, b ∈ S;
(2) S is simple and left quasi-regular;
(3) S is simple and left reproduce;
(4) every left ideal of S is simple;
(5) S is simple and every left ideal of S is intra-regular.

Proof. (1)⇐⇒ (2): Assume that a ∈ (SbSa] for all a, b ∈ S. Since a ∈ (SaSa] for
any a ∈ S, S is left quasi-regular. To show that S is simple, let a ∈ S. Clearly,
(SaS] ⊆ S. By assumption, a ∈ (SaSa] ⊆ (SaS], and so S ⊆ (SaS]. Then
S = (SaS].

Conversely, assume that S is simple and left quasi-regular. Let a, b ∈ S. Since
S is simple, S = (SaS] and S = (SbS]. Since S is left quasi-regular, a ∈ (SaSa],
and so S = (SaSa]. Thus

a ∈ S = (SbS] ⊆ (Sb(SaSa]] ⊆ ((S](b](SaSa]] = (SbSaSa] ⊆ (SbSa],

as required.
(1)⇐⇒ (3): If a ∈ (SbSa] for all a, b ∈ S, then a ∈ (SaSa] for all a ∈ S; hence

a ∈ (Sa] for all a ∈ S. We have S is left reproduce. As in the proof of (1)⇐⇒ (2),
S is simple.

Conversely, assume that S is simple and left reproduce. Let a, b ∈ S. Since
S is simple, S = (SaS] and S = (SbS]. Since S is left reproduce, a ∈ (Sa], so
S = (Sa]. Thus

a ∈ S = (SbS] ⊆ (Sb(Sa]] ⊆ ((S](b](Sa]] = (SbSa],

as required.
(1) ⇐⇒ (4): Assume that a ∈ (SbSa] for all a, b ∈ S. Let L be a left ideal of

S, and let a ∈ L. Clearly, (LaL] ⊆ (LLL] ⊆ (L] = L. If b ∈ L, then b ∈ (SaaSb]
by assumption. Since

(SaaSb] ⊆ (SLaSL] ⊆ (LaL]

it follows that b ∈ (LaL], and (LaL] = L. Hence, L is simple.
Conversely, assume that every left ideal of S is simple. Let a, b ∈ S. Since

(a ∪ Sa] is a left ideal of S, it follows by assumption that

(a ∪ Sa] = ((a ∪ Sa](ba)(a ∪ Sa]] ⊆ ((a ∪ Sa](ba](a ∪ Sa]]
= ((a ∪ Sa)(ba)(a ∪ Sa)] = (abaa ∪ abaSa ∪ Sabaa ∪ SabaaSa]
⊆ (SbSa].
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Hence, (1) holds.
(1) ⇐⇒ (5): Assume that a ∈ (SbSa] for all a, b ∈ S. As in the proof of

(1) ⇐⇒ (2) we have S is simple. Let L be a left ideal of S, and let a ∈ L. By
assumption,

a ∈ (SaaaSa] ⊆ (SLaaSL] ⊆ (La2L].

Then L is intra-regular.
Conversely, assume that S is simple and every left ideal of S is intra-regular.

Let a, b ∈ S. Since S is simple, (SaS] = (SbS]. Since (a ∪ Sa] is a left ideal of S,
we have (a ∪ Sa] is intra-regular, and so a ∈ ((a ∪ Sa]aa(a ∪ Sa]]. Consider:

a ∈ ((a ∪ Sa]aa(a ∪ Sa]] ⊆ ((a ∪ Sa](aa](a ∪ Sa]] = ((a ∪ Sa)(aa)(a ∪ Sa)]
= (aaaa ∪ aaaSa ∪ Saaaa ∪ SaaaSa] ⊆ (SaSa] ⊆ ((SaS]a] = ((SbS]a]

⊆ ((SbS](a]] = (SbSa].

Hence, (1) holds.

An ordered semigroup (S, ·,6) is called completely quasi-regular (resp. com-
pletely reproduce) if S is left and right quasi-regular (resp. left and right repro-
duce). Using Theorem 4 and its dual, we have:

Corollary 1. Let (S, ·,6) be an ordered semigroup. The following are equivalent:

(1) a ∈ (SbSa] ∩ (bSaS] for all a, b ∈ S;
(2) S is simple and completely quasi-regular;
(3) S is simple and completely reproduce;
(4) every one-sided ideal of S is simple;
(5) S is simple and every one-sided ideal of S is intra-regular.

Theorem 5. Let (S, ·,6) be an ordered semigroup. The following are equivalent:

(1) S satisfies the regularity condition c 6 xc2yc;
(2) S is intra-regular and left quasi-regular;
(3) every left ideal of S is intra-regular;
(4) every left ideal of S is intra-quasi-regular.

Proof. (1) ⇐⇒ (2): That (1) =⇒ (2) is clear. To prove (2) =⇒ (1), assume that
S is intra-regular and left quasi-regular. Let a ∈ S. Since S is intra-regular,
a 6 xa2y for some x, y ∈ S. Since S is left quasi-regular, a 6 uava for some
u, v ∈ S. Then

a 6 uava 6 uxa2yva.

Hence S satisfies the regularity condition c 6 xc2yc.
(1) =⇒ (3): Assume that S satisfies the regularity condition c 6 xc2yc. Let

L be a left ideal of S. If a ∈ L, then by assumption we have a 6 xa2ya for some
x, y ∈ S, and a2 6 ua4va2 for some u, v ∈ S. Thus,

a 6 xa2ya 6 x(ua4va2)ya = (xua2)a2(va2ya) ∈ La2L
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it follows that a ∈ (La2L], and L is intra-regular.
(3) =⇒ (4): This is easy to see.
(4) =⇒ (1): Assume that every left ideal of S is intra-quasi-regular. Let a ∈ S.

Since (a ∪ Sa] is a left ideal of S, (a ∪ Sa] is intra-quasi-regular. Then

a ∈ ((a ∪ Sa]a(a ∪ Sa]a(a ∪ Sa]] ⊆ ((a ∪ Sa](a](a ∪ Sa](a](a ∪ Sa]]
= ((a ∪ Sa)a(a ∪ Sa)a(a ∪ Sa)] ⊆ (Sa2Sa].

Hence S satisfies the condition c 6 xc2yc.

Using Theorem 5 and its dual, we have the following.

Corollary 2. Let (S, ·,6) be an ordered semigroup. The following are equivalent:

(1) S satisfies the regularity conditions c 6 xc2yc and c 6 cxc2y;
(2) S is intra-regular and completely quasi-regular;
(3) every one-sided ideal of S is intra-regular;
(4) every one-sided ideal of S is intra-quasi-regular.

We next consider ordered semigroups satisfying the regularity c 6 cxc2yc.

Theorem 6. Let (S, ·,6) be an ordered semigroup. The following are equivalent:

(1) a ∈ (aSbSa] for all a, b ∈ S;
(2) S is simple and regular;
(3) every bi-ideal of S is simple.

Proof. (1) =⇒ (2): Assume that a ∈ (aSbSa] for all a, b ∈ S. Then, for any
a ∈ S, we have a ∈ (aSaSa] ⊆ (aSa]. Hence, S is regular. Since (aSaS] ⊆ (SaS],
S ⊆ (SaS], and so S is simple.

(2) =⇒ (1): Assume that S is simple and regular. Let a, b ∈ S. Since S is
simple, S = (SbS]. Since S is regular, a ∈ (aSa]. Then

a ∈ (a(SbS]a] ⊆ ((a](SbS](a]] = (aSbSa]

as required.
(1) =⇒ (3): Assume that a ∈ (aSbSa] for all a, b ∈ S. Let B be a bi-ideal of

S. Then (BSB] ⊆ B. If b ∈ B, then b ∈ (bSbSb] ⊆ (BSBSB] ⊆ (BSB]. Thus
B ⊆ (BSB], and B is simple.

(3) =⇒ (1): Assume that every bi-ideal of S is simple. Let a, b ∈ S. Since
(a ∪ a2 ∪ aSa] is a bi-ideal of S, it follows by assumption that

a ∈ (a ∪ a2 ∪ aSa] = ((a ∪ a2 ∪ aSa]aba(a ∪ a2 ∪ aSa]]
⊆ ((a ∪ a2 ∪ aSa](aba](a ∪ a2 ∪ aSa]]
= ((a ∪ a2 ∪ aSa)aba(a ∪ a2 ∪ aSa)] ⊆ (aSbSa].

Thus (1) holds.
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Theorem 7. Let (S, ·,6) be an ordered semigroup. The following are equivalent:

(1) S satisfies the regularity condition c 6 cxc2yc;
(2) S is intra-regular and regular;
(3) every left ideal of S is right quasi-regular;
(4) every right ideal of S is left quasi-regular;
(5) every bi-ideal of S is intra-regular;
(6) every bi-ideal of S is intra-quasi-regular.

Proof. (1) ⇐⇒ (2): That (1) =⇒ (2) is clear. To show that (2) =⇒ (1), assume
that S is intra-regular and regular. Let a ∈ S. Since S is regular, a 6 axa for
some x ∈ S. Since S is intra-regular, a 6 ya2z for some y, z ∈ S. We have

a 6 (ax)a 6 (ax)a(xa) 6 (ax)ya2z(xa).

Then (1) holds.
(1) =⇒ (3): Assume that S satisfies the regularity condition c 6 cxc2yc. Let L

be a left ideal of S, and let a ∈ L. By assumption, a 6 axa2ya for some x, y ∈ S.
By xa, ya ∈ L, it follows that

a 6 axa2ya = a(xa)a(ya) ∈ aLaL.

Thus a ∈ (aLaL]. Hence, L is right quasi-regular.
(3) =⇒ (1): Assume that every left ideal of S is right quasi-regular. Let a ∈ S.

Since (a ∪ Sa] is a left ideal of S, (a ∪ Sa] is right quasi-regular. Then

a ∈ (a(a ∪ Sa]a(a ∪ Sa]] ⊆ ((a](a ∪ Sa](a](a ∪ Sa]] = (a(a ∪ Sa)a(a ∪ Sa)].

This implies that a ∈ (aSa2Sa], and S satisfies the regularity condition c 6 cxc2yc.
(1) =⇒ (4): Assume that S satisfies the regularity condition c 6 cxc2yc. Let

R be a right ideal of S, and let a ∈ R. By assumption, a 6 axa2ya for some x, y
in S. By ax, ay ∈ R, it follows that

a 6 axa2ya = (ax)a(ay)a ∈ RaRa.

Thus a ∈ (RaRa], whence R is left quasi-regular.
(4) =⇒ (1): Assume that every right ideal of S is left quasi-regular. Let a ∈ S.

Since (a ∪ aS] is a right ideal of S, (a ∪ aS] is left quasi-regular. Then

a ∈ ((a ∪ aS]a(a ∪ aS]a] ⊆ ((a ∪ aS](a](a ∪ aS](a]] = ((a ∪ aS)a(a ∪ aS)a].

This implies that a ∈ (aSa2Sa], and S satisfies the regularity condition c 6 cxc2yc.
(1) =⇒ (5): Assume that S satisfies the regularity condition c 6 cxc2yc. Let

B be a bi-ideal of S, and let a ∈ B. Then a 6 axa2ya for some x, y ∈ S and
a2 6 a2ua4va2 for some u, v ∈ S. We have

a 6 axa2ya 6 ax(a2ua4va2)ya = (axa2ua)a2(ava2ya) ∈ (BSB)a2(BSB) ⊆ Ba2B
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Then a ∈ (Ba2B], and B is intra-regular.
(5) =⇒ (6): This is easy to see.
(6) =⇒ (1): Assume that every bi-ideal of S is intra-quasi-regular. Let a ∈ S.

Since (a∪a2∪aSa] is a bi-ideal of S, (a∪a2∪aSa] is intra-quasi-regular. Consider:

a ∈ ((a ∪ a2 ∪ aSa]a(a ∪ a2 ∪ aSa]a(a ∪ a2 ∪ aSa]]
⊆ ((a ∪ a2 ∪ aSa](a](a ∪ a2 ∪ aSa](a](a ∪ a2 ∪ aSa]]
= ((a ∪ a2 ∪ aSa)a(a ∪ a2 ∪ aSa)a(a ∪ a2 ∪ aSa)]
⊆ (aSa2Sa]

Thus, S satisfies the regularity condition c 6 cxc2yc.

Finally, ordered semigroups satisfying left regularity and complete regularity
conditions will be characterized.

Theorem 8. Let (S, ·,6) be an ordered semigroup. The following are equivalent:

(1) S is left regular;
(2) every left ideal of S is left quasi-regular;
(3) every left ideal of S is left reproduce.

Proof. (1) =⇒ (2): Assume that S is left regular. Let L be a left ideal of S, and
let a ∈ L. By assumption, a 6 xa2 for some x ∈ S. We have

a 6 xaa 6 x(xaa)a 6 x(x(xaa)a)a = (xxxa)a(aa) ∈ LaLa.

That is: a ∈ (LaLa]. Hence L is left quasi-regular.
(2) =⇒ (3): This is easy to see.
(3) =⇒ (1): Assume that every left ideal of S is left reproduce. Let a ∈ S. By

assumption, (a ∪ Sa] is left reproduce. Then

a ∈ ((a ∪ Sa]a] ⊆ ((a ∪ Sa](a]] = ((a ∪ Sa)a] = (a2 ∪ Sa2].

This implies a ∈ (Sa2], and S is left regular.

An ordered semigroup (S, ·,6) is called completely regular if S satisfies both
of the regularity conditions c 6 c2x and c 6 xc2, equivalently, if S satisfies the
regularity condition c 6 c2xc2. The proof of the following assertion will be omitted.

Theorem 9. Let (S, ·,6) be an ordered semigroup. The following are equivalent:

(1) S is completely regular;
(2) S is left regular, right regular, left quasi-regular, and right quasi-regular;
(3) every left ideal of S is left regular, and every right ideal is right regular;
(4) every left and right ideal of S is completely quasi-regular;
(5) every bi-ideal of S is left and right quasi-regular.
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Families of semi-automata in finite quasigroups

and iterated hash functions

Volodymyr G. Skobelev and Volodymyr V. Skobelev

Abstract. Families of semi-automata defined by a recurrence relation in a finite quasigroup are
investigated. Initially, these families are defined in an abstract finite quasigroup, and their struc-
ture is studied. It is shown that from a probabilistic point of view these semi-automata are the
best mathematical models for computationally secure families of iterated hash functions. Then
families of semi-automata in T -quasigroups determined by a finite Abelian group are defined, and
their structure is studied. Representation of these semi-automata by the parallel composition of
the ones defined in T -quasigroups determined by cyclic groups of prime power order is consid-
ered. This decomposition results in speed up the functioning and reducing space complexity of a
semi-automaton. In addition, families of semi-automata in the Abelian group of an elliptic curve
over a finite field are investigated.

1. Introduction
Over the past two decades, intensive research of quasigroups has been largely
caused by their successful applications in various fields, including cryptography.
The significance of the latter is as follows.

Currently, the main approach to solving cryptography problems relies on al-
gebraic models. Most of them are built in finite associative algebraic systems.
However, for algebraic systems without the requirements "to be associative", "to
be commutative", and "to be with unit", high complexity of solving identifica-
tion problems is typical. Such algebraic systems include quasigroups [2, 18], i.e.
magma with both left and right division. It seems promising to apply quasigroups
to solving cryptography problems due to the following two circumstances, at least.
Firstly, they have been applied successfully in the design of basic cryptography
primitives including block and stream ciphers, public key crypto-schemes, signa-
ture schemes, codes, and hash functions [7, 10, 13, 14]. Secondly, a hardware
implementation of encryption based on a finite quasigroup has been designed [15].
Some applications of quasigroups to solving cryptography problems have also been
considered in [3, 4, 17].

Among the above pointed cryptography primitives, hash functions should be
noted, since they are widely used for information protection. We remind, that any

2010 Mathematics Subject Classification: 20N05, 20K01, 68Q70, 94A60
Keywords: finite quasigroups, finite T -quasigroups, semi-automata, hash functions, compu–
tational security, elliptic curves
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hash function is a mapping that transforms any binary string (a message) into a
binary string of some fixed length (this string is the hash value or, simply, the
hash). Informally, a cryptographic hash function (see [16], for example) satisfies
the following four conditions:

1. The hash of any message can be computed sufficiently easy.
2. It is infeasible to reconstruct the original message via its hash.
3. It is infeasible to find two different messages with the same hash.
4. Small changes in a message lead to uncorrelated changes in its hash.
Numerous attempts for the design and implementation of cryptographic hash

functions have led to the notion of an iterated hash function [16]. It can be
characterized as follows. The original message is divided into the blocks of the
equal length. If necessary, the last block is extended to the required length by
its concatenation with some fixed string. Some fixed block is added as the initial
fragment. Firstly, this block is hashed in accordance with a certain rule. Then the
iterative process starts: the next hash is computed from the current hash and the
current block of the message. The final hash is the hash of the original message.

It is evident that a mathematical model for iterated hash function is a semi-
automaton, i.e. an automaton without output mapping. Hence, investigation of
families of semi-automata defined by recurrence relations in a finite quasigroup due
to their possible applications as mathematical models of iterated hash function is
actual from both theoretic and applied point of view. Some attempts to solve
this problem have been done in [19-21]. The main aim of the given paper is to
generalize and to unify these results. By time and space complexity we mean
asymptotic the worst-case complexity under logarithmic weight [1].

The rest of the paper is organized as follows. Section 2 contains mathematical
notions and structures sufficient to present the results. In Section 3 basic families of
semi-automata defined by a recurrence relation in a finite abstract quasigroup are
investigated. In Section 4 these families of semi-automata are detailed for finite
T -quasigroups. Section 5 is devoted to semi-automata defined by a recurrence
relation in the Abelian group of an elliptic curve over a finite field. Section 6 is
some discussion of obtained results. Section 7 contains concluding remarks.

2. Mathematical backgrounds

2.1. Abstract quaigroups and iterated hash functions

A semi-automaton (SA) is a triple M = (Q,X, δ), where Q (|Q| > 2) is a finite
set of states, X is a finite input alphabet, and δ : Q × X → Q is the transition
mapping. This mapping can be extended onto the set Q × X+ by the equality
δ(q, wx) = δ(δ(q, w), x) (w ∈ X+, x ∈ X).

An initial SA is a pair (M, q) (q ∈ Q), where q is the initial state. Any initial
SA (M, q) implements the mapping H(M,q) : X+ → Q defined by the equality
H(M,q)(w) = δ(q, w) (w ∈ X+). This mapping can be interpreted as an iterated
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hash function. Hence, any SA M = (Q,X, δ) implements the family of iterated
hash functions HM = {H(M,q)}q∈Q.

Let QQ be the set of all quasigroups with the finite carrier Q (|Q| > 2).
Based on the Cayley table, we get for any quasigroup Q = (Q, ◦) ∈ QQ that

the upper bounds of time and space complexity for computation the element a ◦ b
(a, b ∈ Q) are equal, correspondingly, to:

T◦ = O(|Q| log |Q|) (|Q| → ∞), (1)

V◦ = O(|Q|2 log |Q|) (|Q| → ∞). (2)

Besides, for any mapping χ : Q → Q the upper bounds of time and space com-
plexity for computation the value χ(a) (a ∈ Q) are equal, correspondingly, to:

Tχ = O(|Q| log |Q|) (|Q| → ∞), (3)

Vχ = O(|Q| log |Q|) (|Q| → ∞). (4)

Any quasigroup Q = (Q, ◦) ∈ QQ can be presented by the labeled directed
graph ΓQ with the set of vertices Q such that for any q1, q2, q ∈ Q there is an arc
started in the vertex q1, terminated in the vertex q2, and labeled by the element
q if and only if q1 ◦ q = q2. It is evident that ΓQ is completed labeled directed
graph with a single loop in each vertex. Besides, for any vertex q ∈ Q, all |Q|
arcs started in q terminate in pair-wise different vertices, and exactly |Q| arcs are
terminated in q and labels of these arcs are pair-wise different. We can interpret
ΓQ as the SA ΓQ = (Q,Q, ◦), where Q is both the set of the states and the input
alphabet, and ◦ is the transition mapping. This SA implements the family of
iterated hash functions HΓQ = {H(ΓQ,q)}q∈Q. Since elements of the family HΓQ

are pair-wise different hash functions, this family can be identified with the set
HΓQ = {H(ΓQ,q)|q ∈ Q}.

Remark 1. It is known, that the set of string transformations [8, 9, 11, 12] of
any quasigroup Q = (Q, ◦) ∈ QQ contains the set of bijections eq,◦ : Q+ → Q+

(q ∈ Q), where eq,◦(q1q2 . . . qm) = q′1q
′
2 . . . q

′
m (q1q2 . . . qm ∈ Q+; m = 1, 2, . . . ) if

and only if q′1 = q ◦ q1 and q′i = q′i−1 ◦ qi (i = 2, . . .m). Relationship between the
sets of mappings {eq,◦|q ∈ Q} and HΓQ = {H(ΓQ,q)|q ∈ Q} is that the equality
eq,◦(q1q2 . . . qm) = q′1q

′
2 . . . q

′
m implies the equality H(ΓQ,q)(q1q2 . . . qm) = q′m.

Proposition 1. Let Q = (Q, ◦) ∈ QQ be any quasigroup. Then:
1. For any elements q, q′ ∈ Q holds the equality

|{x ∈ Qm|H(ΓQ,q)(x) = q′}| = |Q|m−1 (m = 1, 2, . . . ). (5)

2. For any elements q, q′, q′′ ∈ Q (q 6= q′) holds the equality

{x ∈ Q+|H(ΓQ,q)(x) = q′′} ∩ {x ∈ Q+|H(ΓQ,q′)(x) = q′′} = ∅. (6)

Proof. By induction on the length of an input string.
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Since H−1
(ΓQ,q)

(q′) = {x ∈ Q+|H(ΓQ,q)(x) = q′} (q, q′ ∈ Q), we can present (5)
and (6) as follows:

|H−1
(ΓQ,q)

(q′) ∩Qm| = |Q|m−1 (q, q′ ∈ Q; m = 1, 2, . . . ), (7)

H−1
(ΓQ,q)

(q′′) ∩H−1
(ΓQ,q′)

(q′′) = ∅ (q, q′, q′′ ∈ Q; q 6= q′). (8)

Let P(1)
ΓQ,q,m

(q′) (q, q′ ∈ Q; m = 1, 2, . . . ) be the probability that uniformly
randomly chosen input string x ∈ Qm is a solution of equationH(ΓQ,q)(x) = q′, and
P(2)

ΓQ,q,m
(q ∈ Q; m = 1, 2, . . . ) be the probability that for two uniformly randomly

chosen input strings x, x′ ∈ Qm (x 6= x′) the equality H(ΓQ,q)(x) = H(ΓQ,q)(x
′)

holds. Applying (7) and (8), it is not difficult to prove the following theorem.

Theorem 1. Let Q = (Q, ◦) ∈ QQ be any quasigroup. Then:

P(1)
ΓQ,q,m

(q′) = |Q|−1 (q, q′ ∈ Q; m = 1, 2, . . . ), (9)

P(2)
ΓQ,q,m

= |Q|−1(1− (|Q| − 1)(|Q|m − 1)−1) (q ∈ Q; m = 1, 2, . . . ). (10)

It follows directly from (9) and (10) that lim
|Q|→∞

P(1)
ΓQ,q,m

(q′) = 0 (q, q′ ∈ Q) and

lim
m→∞

P(2)
ΓQ,q,m

= |Q|−1. This is a significant argument to use finite quasigroups in
mathematical models of cryptographic iterated hash functions.

2.2. T -quaigroups
A quasigroup Q = (Q, ◦) ∈ QQ is a T -quasigroup [6] if there exist an Abelian
group G = (Q,+), some ordered pair (ξ, ζ) ∈ Aut(G) × Aut(G), and an element
c ∈ Q such that holds the equality

a ◦ b = ξ(a) + ζ(b) + c (a, b ∈ Q). (11)

It follows from this definition that any finite Abelian group G = (Q,+) (|Q| > 2)
determines the family of T -quasigroups FG = {(Q,+, ξ, ζ, c)}ξ,ζ∈Aut(G);c∈Q, where
(Q,+, ξ, ζ, c) is the T -quasigroup Q = (Q, ◦) ∈ QQ such that the operation ◦ is
defined by the equality (11). Since elements of the family FG are pair-wise different
T -quasigroups (see Theorem 1 in [20]), this family can be identified with the set
FG = {(Q,+, ξ, ζ, c)|ξ, ζ ∈ Aut(G); c ∈ Q}.

Let εQ : Q → Q be the identity mapping. It is not difficult to prove that for
any finite Abelian group G = (Q,+) (|Q| > 2):

1. There exists the left unit el in a T -quasigroup (Q,+, ξ, ζ, c) ∈ FG if and only
if ζ = εQ. In this case, el = −ξ−1(c).

2. There exists the right unit er in a T -quasigroup (Q,+, ξ, ζ, c) ∈ FG if and
only if ξ = εQ. In this case, el = −ζ−1(c).

3. (Q,+, ξ, ζ, c) ∈ FG is a loop if and only if ξ = ζ = εQ. In this case, e = −c.
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4. (Q,+, ξ, ζ, c) ∈ FG is a commutative T -quasigroup if and only if ξ = ζ (see
Theorem 2 in [20]).

5. (Q,+, ξ, ζ, c) ∈ FG is an associative T -quasigroup if and only if ξ = ζ = εQ
(see Theorem 3 in [20]).

Remark 2. Therefore, for T -quasigroups the statements "a loop", "to be asso-
ciative", and "to be associative-commutative" are the same.

Due to Fundamental Theorem, any Abelian group can be presented uniquely
as a direct product of cyclic groups of prime-power order. More precisely, let
G = (Q,+) (|Q| > 2) be any Abelian group, such that |Q| = pr11 . . . prmm (m > 1),
where ri > 1 (i = 1, . . . ,m) and pi (i = 1, . . . ,m) are pair-wise different prime
integers. Then

G ∼=
m⊗
i=1

ki⊗
j=1

(Z
p
dij
j

,+ij), (12)

where ∼= is the isomorphism relation, dij (i = 1, . . . ,m; j = 1, . . . , ki) are fixed

positive integers such that 1 6 di1 6 · · · 6 diki (i = 1, . . . ,m), ri =
ki∑
j=1

dij

(i = 1, . . . ,m), Z
p
dij
j

= {0, 1, . . . , pdijj − 1} (i = 1, . . . ,m; j = 1, . . . , ki), and +ij

(i = 1, . . . ,m; j = 1, . . . , ki) is the module pdijj addition. Due to (12), any element
z ∈ Q can be identified with a vector z = (z11, . . . , z1k1 , . . . , zm1, . . . , zmkm), where
zij ∈ Z

p
dij
j

(i = 1, . . . ,m; j = 1, . . . , ki). Hence, computation the sum x + y

(x, y ∈ Q) can be reduced to independent additions of corresponding components
of vectors x and y. From here it follows that for any Abelian group G = (Q,+)
(|Q| > 2) that satisfies to (12), time and space complexity for computation the
element x+ y (x, y ∈ Q) are equal, correspondingly, to:

T+ = O(

m∑
i=1

ki∑
j=1

dij log pi) (|Q| → ∞), (13)

V+ = O(

m∑
i=1

ki∑
j=1

dij log pi) (|Q| → ∞). (14)

Remark 3. If additions of the corresponding components of vectors x and y can
be implemented in parallel then time complexity for computation the element x+y
can be reduced to

T+ = O( max
i=1,...m

max
j=1,...ki

dij log pi) (|Q| → ∞). (15)

If an Abelian group G = (Q,+) (|Q| > 2) satisfies to (12) then

Aut(G) ∼=
m⊗
i=1

Aut(
ki⊗
j=1

(Z
p
dij
j

,+ij)). (16)
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Besides, for any i = 1, . . . ,m (see Theorem 4.1 in [5]) holds the equality

|Aut(
ki⊗
j=1

(Z
p
dij
j

,+ij))| =
ki∏
j=1

(p
αij
i − pj−1

i )

ki∏
j=1

(p
dij
i )ki−αij

ki∏
j=1

(p
dij
i )ki−βij+1, (17)

where αij = max{h|dih = dij} and βij = min{h|dih = dij} for all i = 1, . . . ,m and
j = 1, . . . ki. Due to (16) and (17), for any Abelian group G = (Q,+) (|Q| > 2)
that satisfies to (12) holds the equality

|Aut(G)| =
m∏
i=1

ki∏
j=1

(p
αij
i − pj−1

i )

ki∏
j=1

(p
dij
i )ki−αij

ki∏
j=1

(p
dij
i )ki−βij+1. (18)

Since
ki⊗
j=1

Aut((Z
p
dij
j

,+ij)) is a subgroup of the group Aut(
ki⊗
j=1

(Z
p
dij
j

,+ij)),

then
m⊗
i=1

ki⊗
j=1

Aut((Z
p
dij
j

,+ij)) is a subgroup of the group
m⊗
i=1

Aut(
ki⊗
j=1

(Z
p
dij
j

,+ij)).

Besides, |Aut((Z
p
dij
j

,+ij))| = p
dij
i (1− p−1

i ) (i = 1, . . . ,m; j = 1, . . . , ki). Hence

|
m⊗
i=1

ki⊗
j=1

Aut((Z
p
dij
j

,+ij))| = |Q|
m∏
i=1

(1− p−1
i ). (19)

By comparing (18) and (19), we conclude that
m⊗
i=1

ki⊗
j=1

Aut((Z
p
dij
j

,+ij)) is a non-

trivial subset of the set Aut(G).

For any χ = (χ11, . . . , χ1k1 , . . . , χm1, . . . , χmkm) ∈
m⊗
i=1

ki⊗
j=1

Aut((Z
p
dij
j

,+ij)) and

z = (z11, . . . , z1k1 , . . . , zm1, . . . , zmkm) ∈
m⊗
i=1

ki⊗
j=1

(Z
p
dij
j

,+ij) we get

χ(z) = (χ11(z11), . . . , χ1k1(z1k1), . . . , χm1(zm1), . . . , χmkm(zmkm)),

i.e. computation the vector χ(z) can be reduced to independent computations of its
components. From here it follows that for any Abelian group G = (Q,+) (|Q| > 2)
that satisfies to (12), time and space complexity for computation the element χ(z)

(z ∈
m⊗
i=1

ki⊗
j=1

(Z
p
dij
j

,+ij), χ ∈
m⊗
i=1

ki⊗
j=1

Aut((Z
p
dij
j

,+ij))) are equal, correspondingly,

to

Tχ = O(

m∑
i=1

ki∑
j=1

dij log pi) (|Q| → ∞), (20)

Vχ = O(

m∑
i=1

ki∑
j=1

dij log pi) (|Q| → ∞). (21)
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Remark 4. If computations of components can be implemented in parallel then
time complexity for computation the element χ(z) can be reduced to

Tχ = O( max
i=1,...m

max
j=1,...ki

dij log pi) (|Q| → ∞). (22)

Comparing (13), (14) with (1), (2), and (20), (21) with (3), (4), we conclude
that for any Abelian group G = (Q,+) (|Q| > 2) that satisfies to (12) it is reason-
able to consider the set of T -quasigroups

F̃G = {(Q,+, ξ, ζ, c)|ξ, ζ ∈
m⊗
i=1

ki⊗
j=1

Aut((Z
p
dij
j

,+ij)); c ∈ Q}.

Due to (18) and (19), F̃G is a non-trivial subset of the set FG for any Abelian
group G = (Q,+) (|Q| > 2) that satisfies to (12).

2.3. Elliptic curves over finite fields
At present, Abelian groups associated with elliptic curves over finite fields are
widely used for solving information protection problems. This is due to the high
complexity of identification the elements of these groups. So, it is it is reasonable
to consider the sets of T -quasigroups defined by Abelian groups associated with
elliptic curves over finite fields.

We remind, that an elliptic curve γ over any field F = (F,+, ·) can be defined
as the set of all solutions of an equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (a1, a2, a3, a4, a6 ∈ F ),

such that ∆ = d2
2−8d3

4−27d2
6 +9d2d4d6 6= 0, where d2 = a2

1 +4a2, d4 = 2a4 +a1a3,
d6 = a2

3 + 4a6, and d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4. With this elliptic
curve can be associated the Abelian group Gγ = (γ∪{0},+Gγ ), where 0+Gγ 0 = 0,
0+Gγ P = P+Gγ 0 = P (P ∈ γ), and P = (x, y) ∈ γ ⇒ −GγP = (x,−y−a1x−a3).
For any two points Pi = (xi, yi) ∈ γ (i = 1, 2), such that P1 6= −GγP2, the point
P3 = P1 +Gγ P2 can be computed as follows{

x3 = −x1 − x2 + α2 + αa1 − a2

y3 = −y1 + α(x1 − x3) + a1x3 − a3

,

where

α =

{
(3x2

1 + 2a2x1 + a4 − a1y1)(2y1 + a1x1 + a3)−1, if x1 = x2

(y1 − y2)(x1 − x2)−1, if x1 6= x2

.

For any non-negative integer m and any element P ∈ γ ∪ {0} we set

mP =


0, if m = 0

P +Gγ · · ·+Gγ P︸ ︷︷ ︸
m times

, if m = 1, 2, . . . .
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Let γ be an elliptic curve over any finite field F = (F,+, ·).
We define the mappings χm : γ ∪ {0} → γ ∪ {0} (m = 0, 1, . . . , |γ|) by the

equality χm(P ) = mP (P ∈ γ ∪ {0}).
It is evident that χm ∈ Aut(Gγ) (m = 1, . . . , |γ|) if and only if the integer m

is not a multiple of the order of any element P ∈ γ. Hence, we can define the set
of T -quasigroups FGγ = {(γ ∪ {0},+Gγ , ξ, ζ, P )|ξ, ζ ∈ Aut(Gγ), P ∈ γ ∪ {0}}, and
apply to it all results obtained in Subsection 2.2.

3. Families of SA in finite abstract quasigroups
For any abstract finite quasigroup Q = (Q, ◦) ∈ QQ the following families of SA
A

(i)
Q (i = 1, . . . , 22) can be defined, at least:

A
(1)
Q = {M (1)

a,b = (Q,Q, δ
(1)
a,b)|δ

(1)
a,b(q, x) = (a ◦ q) ◦ (b ◦ x) (q, x ∈ Q)}a,b∈Q,

A
(2)
Q = {M (2)

a,b = (Q,Q, δ
(2)
a,b)|δ

(2)
a,b(q, x) = (b ◦ x) ◦ (a ◦ q) (q, x ∈ Q)}a,b∈Q,

A
(3)
Q = {M (3)

a,b = (Q,Q, δ
(3)
a,b)|δ

(3)
a,b(q, x) = (q ◦ a) ◦ (b ◦ x) (q, x ∈ Q)}a,b∈Q,

A
(4)
Q = {M (4)

a,b = (Q,Q, δ
(4)
a,b)|δ

(4)
a,b(q, x) = (b ◦ x) ◦ (q ◦ a) (q, x ∈ Q)}a,b∈Q,

A
(5)
Q = {M (5)

a,b = (Q,Q, δ
(5)
a,b)|δ

(5)
a,b(q, x) = (a ◦ q) ◦ (x ◦ b) (q, x ∈ Q)}a,b∈Q,

A
(6)
Q = {M (6)

a,b = (Q,Q, δ
(6)
a,b)|δ

(6)
a,b(q, x) = (x ◦ b) ◦ (a ◦ q) (q, x ∈ Q)}a,b∈Q,

A
(7)
Q = {M (7)

a,b = (Q,Q, δ
(7)
a,b)|δ

(7)
a,b(q, x) = (q ◦ a) ◦ (x ◦ b) (q, x ∈ Q)}a,b∈Q,

A
(8)
Q = {M (8)

a,b = (Q,Q, δ
(8)
a,b)|δ

(8)
a,b(q, x) = (x ◦ b) ◦ (q ◦ a) (q, x ∈ Q)}a,b∈Q,

A
(9)
Q = {M (9)

a = (Q,Q, δ(9)
a )|δ(9)

a (q, x) = (a ◦ q) ◦ x (q, x ∈ Q)}a∈Q,

A
(10)
Q = {M (10)

a = (Q,Q, δ(10)
a )|δ(10)

a (q, x) = x ◦ (a ◦ q) (q, x ∈ Q)}a∈Q,

A
(11)
Q = {M (11)

a = (Q,Q, δ(11)
a )|δ(11)

a (q, x) = (q ◦ a) ◦ x (q, x ∈ Q)}a∈Q,

A
(12)
Q = {M (12)

a = (Q,Q, δ(12)
a )|δ(12)

a (q, x) = x ◦ (q ◦ a) (q, x ∈ Q)}a∈Q,

A
(13)
Q = {M (13)

a = (Q,Q, δ(13)
a )|δ(13)

a (q, x) = q ◦ (a ◦ x) (q, x ∈ Q)}a∈Q,

A
(14)
Q = {M (14)

a,b = (Q,Q, δ
(14)
a,b )|δ(14)

a (q, x) = (a ◦ x) ◦ q (q, x ∈ Q)}a∈Q,

A
(15)
Q = {M (15)

a = (Q,Q, δ(15)
a )|δ(15)

a (q, x) = q ◦ (x ◦ a) (q, x ∈ Q)}a∈Q,

A
(16)
Q = {M (16)

a = (Q,Q, δ(16)
a )|δ(15)

a (q, x) = (x ◦ a) ◦ q (q, x ∈ Q)}a∈Q,

A
(17)
Q = {M (17)

a = (Q,Q, δ(17)
a )|δ(17)

a (q, x) = a ◦ (q ◦ x) (q, x ∈ Q)}a∈Q,
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A
(18)
Q = {M (18)

a = (Q,Q, δ(17)
a )|δ(18)

a (q, x) = (q ◦ x) ◦ a (q, x ∈ Q)}a∈Q,

A
(19)
Q = {M (19)

a = (Q,Q, δ(19)
a )|δ(19)

a (q, x) = a ◦ (x ◦ q) (q, x ∈ Q)}a∈Q,

A
(20)
Q = {M (20)

a = (Q,Q, δ(20)
a )|δ(20)

a (q, x) = (x ◦ q) ◦ a (q, x ∈ Q)}a∈Q,

A
(21)
Q = {M (21)

a = (Q,Q, δ(21)
a )|δ(21)

a (q, x) = q ◦ x (q, x ∈ Q)},

A
(22)
Q = {M (22)

a = (Q,Q, δ(22)
a )|δ(22)

a (q, x) = x ◦ q (q, x ∈ Q)}.

It is evident that any family A
(i)
Q (i = 1, . . . , 8) consists of |Q|2 elements, any

family A
(i)
Q (i = 9, . . . , 20) consists of |Q| elements, and any family A

(i)
Q (i = 21, 22)

consists of a single element.
Let Set(A(i)

Q ) (i = 1, . . . , 22) be the set of all SA that are elements of the family
A

(i)
Q . Then |Set(A(i)

Q )| = 1 (i = 21, 22). Besides, since Q ∈ QQ is a cancellative
magma, it is not difficult to prove that |Set(A(i)

Q )| > |Q| (i = 1, . . . , 8), and
|Set(A(i)

Q )| = |Q| (i = 9, . . . , 20), i.e. elements of the family A
(i)
Q (i = 9, . . . , 20) are

pair-wise different SA.
It follows from definition of the families A(i)

Q (i = 1, . . . , 22) that the following
proposition is true.

Proposition 2. Let Q ∈ QQ be any abstract finite quasigroup. Then any SA
M ∈ A

(i)
Q (i = 1, . . . , 8) is functioning by 1.5 times more slowly than any SA

M ′ ∈ A
(i)
Q (i = 9, . . . , 20), and three times more slowly than the SA M ′′ ∈ A

(i)
Q

(i = 21, 22). Besides, any SA M ′ ∈ A
(i)
Q (i = 9, . . . , 20) is functioning twice more

slowly than the SA M ′′ ∈ A
(i)
Q (i = 21, 22).

Applying (1) and (2) it is not difficult to prove the following theorem.

Theorem 2. Let Q ∈ QQ be any abstract finite quasigroup. Then for any SA
M ∈ A

(i)
Q (i = 1, . . . , 22) time and space complexity for computing the value of the

transition mapping are equal, correspondingly, to

TM = O(|Q| log |Q|) (|Q| → ∞), (23)

VM = O(|Q|2 log |Q|) (|Q| → ∞). (24)

Any abstract finite quasigroup Q ∈ QQ is a cancellative magma. Hence, the
diagram of any SA M ∈ A

(i)
Q (i = 1, . . . , 22) is completed labeled directed graph

with a single loop in each vertex, such that for any vertex q ∈ Q, all |Q| arcs started
in q terminate in pair-wise different vertices, and exactly |Q| arcs are terminated in
q and labels of these arcs are pair-wise different. From here we get that Theorem 1
is true for any SA M ∈ A

(i)
Q (i = 1, . . . , 22), and it can be reformulated as follows.
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Theorem 3. Let Q ∈ QQ be any be any abstract finite quasigroup. Then for any
SA M ∈ A

(i)
Q (i = 1, . . . , 22) hold equalities:

P(1)
M,q,m(q′) = |Q|−1 (q, q′ ∈ Q; m = 1, 2, . . . ), (25)

P(2)
M,q,m = |Q|−1(1− (|Q| − 1)(|Q|m − 1)−1) (q ∈ Q; m = 1, 2, . . . ). (26)

Due to Theorems 2 and 3, we can consider A(i)
Q (i = 1, . . . , 22) as basic families

of SA defined by a recurrence relation in an abstract finite quasigroup Q ∈ QQ.
Let us characterize the structure of the families A(i)

Q (i = 1, . . . , 22) with addi-
tional restrictions on the operation in an abstract finite quasigroup Q ∈ QQ.

Based on the definition of the left unit, the right unit and the unit in a quasi-
group, it is not difficult to prove the following three propositions.

Proposition 3. Let Q ∈ QQ be any abstract finite quasigroup with the left unit.
Then the following inclusions hold:

Set(A
(i)
Q ) ⊆ Set(A(1)

Q ) (i = 9, 13, 21), Set(A
(i)
Q ) ⊆ Set(A(2)

Q ) (i = 10, 14, 22),

Set(A
(11)
Q ) ⊆ Set(A(3)

Q ), Set(A
(12)
Q ) ⊆ Set(A(4)

Q ), Set(A
(15)
Q ) ⊆ Set(A(5)

Q ),

Set(A
(16)
Q ) ⊆ Set(A(6)

Q ), Set(A
(21)
Q ) ⊆ Set(A(i)

Q ) (i = 9, 13, 17),

Set(A
(22)
Q ) ⊆ Set(A(i)

Q ) (i = 10, 14, 19).

Proposition 4. Let Q ∈ QQ be any abstract finite quasigroup with the right unit.
Then the following inclusions hold:

Set(A
(i)
Q ) ⊆ Set(A(7)

Q ) (i = 11, 15, 21), Set(A
(i)
Q ) ⊆ Set(A(8)

Q ) (i = 12, 16, 22),

Set(A
(13)
Q ) ⊆ Set(A(3)

Q ), Set(A
(14)
Q ) ⊆ Set(A(4)

Q ), Set(A
(9
Q) ⊆ Set(A(5)

Q ),

Set(A
(10)
Q ) ⊆ Set(A(6)

Q ), Set(A
(21)
Q ) ⊆ Set(A(i)

Q ) (i = 11, 15, 18),

Set(A
(22)
Q ) ⊆ Set(A(i)

Q ) (i = 12, 16, 20).

Proposition 5. Let Q ∈ QQ be any abstract finite loop. Then the following
inclusions hold:

Set(A
(i)
Q ) ⊆ Set(A(1)

Q ) (i = 9, 13, 21), Set(A
(i)
Q ) ⊆ Set(A(2)

Q ) (i = 10, 14, 22),

Set(A
(i)
Q ) ⊆ Set(A(3)

Q ) (i = 11, 13, 21), Set(A
(i)
Q ) ⊆ Set(A(4)

Q ) (i = 12, 14, 22),

Set(A
(i)
Q ) ⊆ Set(A(5)

Q ) (i = 9, 15, 21), Set(A
(i)
Q ) ⊆ Set(A(6)

Q ) (i = 12, 14, 22),

Set(A
(i)
Q ) ⊆ Set(A(7)

Q ) (i = 11, 15, 21), Set(A
(i)
Q ) ⊆ Set(A(8)

Q ) (i = 12, 16, 22),

Set(A
(21)
Q ) ⊆ Set(A(i)

Q ) (i = 9, 11, 13, 15, 17, 18),

Set(A
(22)
Q ) ⊆ Set(A(i)

Q ) (i = 10, 12, 14, 16, 19, 20).
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Proceeding from definitions of associative and/or commutative magma, it is
not difficult to prove the following three propositions.

Proposition 6. Let Q ∈ QQ be any finite associative quasigroup. Then the
following equalities hold:

Set(A
(9)
Q ) = Set(A

(17)
Q ), Set(A

(10)
Q ) = Set(A

(16)
Q ), Set(A

(11)
Q ) = Set(A

(13)
Q ),

Set(A
(12)
Q ) = Set(A

(20)
Q ), Set(A

(14)
Q ) = Set(A

(19)
Q ), Set(A

(15)
Q ) = Set(A

(18)
Q ).

Proposition 7. Let Q ∈ QQ be any finite commutative quasigroup. Then the
following equalities hold:

Set(A
(i)
Q ) = Set(A

(j)
Q ) (i, j = 1, . . . , 8), Set(A

(i)
Q ) = Set(A

(j)
Q ) (i, j = 9, . . . , 12),

Set(A
(i)
Q ) = Set(A

(j)
Q ) (i, j = 13, . . . , 16), Set(A

(i)
Q ) = Set(A

(j)
Q ) (i, j = 17, . . . , 20),

Set(A
(i)
Q ) = Set(A

(j)
Q ) (i, j = 21, 22).

Proposition 8. Let Q ∈ QQ be any finite associative-commutative quasigroup.
Then the following equalities hold:

Set(A
(i)
Q ) = Set(A

(17)
Q ) (i = 1, . . . , 16, 18, 19, 20).

It should be noted, that if Q ∈ QQ is a finite associative-commutative quasi-
group, then for all elements a, b ∈ Q any SA M

(i)
a,b ∈ Set(A

(i)
Q ) (i = 1, . . . , 8)

appears as an element of the family Set(A(i)
Q ) (i = 9, . . . , 20) exactly |Q| times.

4. Families of SA in finite T -quasigroups
Let G = (Q,+) (|Q| > 2) be given Abelian group.

For any T -quasigroup Q = (Q, ◦) = (Q,+, ξ, ζ, c) ∈ FG , applying (11), we can
redefine the families of SA A

(i)
Q (i = 1, . . . , 22) as follows:

A
(1)
(Q,+,ξ,ζ,c) = {M (1)

a,b,c,ξ,ζ = (Q,Q, δ
(1)
a,b,c,ξ,ζ)|δ

(1)
a,b,c,ξ,ζ(q, x) =

= ξζ(q) + ζ2(x) + ξ2(a) + ζξ(b) + ξ(c) + ζ(c) + c (q, x ∈ Q)}a,b∈Q,

A
(2)
(Q,+,ξ,ζ,c) = {M (2)

a,b,c,ξ,ζ = (Q,Q, δ
(2)
a,b,c,ξ,ζ)|δ

(2)
a,b,c,ξ,ζ(q, x) =

= ζ2(q) + ξζ(x) + ζξ(a) + ξ2(b) + ξ(c) + ζ(c) + c (q, x ∈ Q)}a,b∈Q,

A
(3)
(Q,+,ξ,ζ,c) = {M (3)

a,b,c,ξ,ζ = (Q,Q, δ
(3)
a,b,c,ξ,ζ)|δ

(3)
a,b,c,ξ,ζ(q, x) =

= ξ2(q) + ζ2(x) + ξζ(a) + ζξ(b) + ξ(c) + ζ(c) + c (q, x ∈ Q)}a,b∈Q,
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A
(4)
(Q,+,ξ,ζ,c) = {M (4)

a,b,c,ξ,ζ = (Q,Q, δ
(4)
a,b,c,ξ,ζ)|δ

(4)
a,b,c,ξ,ζ(q, x) =

= ζξ(q) + ξζ(x) + ζ2(a) + ξ2(b) + ξ(c) + ζ(c) + c (q, x ∈ Q)}a,b∈Q,

A
(5)
(Q,+,ξ,ζ,c) = {M (5)

a,b,c,ξ,ζ = (Q,Q, δ
(5)
a,b,c,ξ,ζ)|δ

(5)
a,b,c,ξ,ζ(q, x) =

= ξζ(q) + ζξ(x) + ξ2(a) + ζ2(b) + ξ(c) + ζ(c) + c (q, x ∈ Q)}a,b∈Q,

A
(6)
(Q,+,ξ,ζ,c) = {M (6)

a,b,c,ξ,ζ = (Q,Q, δ
(6)
a,b,c,ξ,ζ)|δ

(6)
a,b,c,ξ,ζ(q, x) =

= ζ2(q) + ξ2(x) + ζξ(a) + ξζ(b) + ξ(c) + ζ(c) + c (q, x ∈ Q)}a,b∈Q,

A
(7)
(Q,+,ξ,ζ,c) = {M (7)

a,b,c,ξ,ζ = (Q,Q, δ
(7)
a,b,c,ξ,ζ)|δ

(7)
a,b,c,ξ,ζ(q, x) =

= ξ2(q) + ζξ(x) + ξζ(a) + ζ2(b) + ξ(c) + ζ(c) + c (q, x ∈ Q)}a,b∈Q,

A
(8)
(Q,+,ξ,ζ,c) = {M (8)

a,b,c,ξ,ζ = (Q,Q, δ
(8)
a,b,c,ξ,ζ)|δ

(8)
a,b,c,ξ,ζ(q, x) =

= ζξ(q) + ξ2(x) + ζ2(a) + ξζ(b) + ξ(c) + ζ(c) + c (q, x ∈ Q)}a,b∈Q,

A
(9)
(Q,+,ξ,ζ,c) = {M (9)

a,c,ξ,ζ = (Q,Q, δ
(9)
a,c,ξ,ζ)|δ

(9)
a,c,ξ,ζ(q, x) =

= ξζ(q) + ζ(x) + ξ2(a) + ξ(c) + c (q, x ∈ Q)}a∈Q,

A
(10)
(Q,+,ξ,ζ,c) = {M (10)

a,c,ξ,ζ = (Q,Q, δ
(10)
a,c,ξ,ζ)|δ

(10)
a,c,ξ,ζ(q, x) =

= ζ2(q) + ξ(x) + ζξ(a) + ζ(c) + c (q, x ∈ Q)}a∈Q,

A
(11)
(Q,+,ξ,ζ,c) = {M (11)

a,c,ξ,ζ = (Q,Q, δ
(11)
a,c,ξ,ζ)|δ

(11)
a,c,ξ,ζ(q, x) =

= ξ2(q) + ζ(x) + ξζ(a) + ξ(c) + c (q, x ∈ Q)}a∈Q,

A
(12)
(Q,+,ξ,ζ,c) = {M (12)

a,c,ξ,ζ = (Q,Q, δ
(12)
a,c,ξ,ζ)|δ

(12)
a,c,ξ,ζ(q, x) =

= ζξ(q) + ξ(x) + ζ2(a) + ζ(c) + c (q, x ∈ Q)}a∈Q,

A
(13)
(Q,+,ξ,ζ,c) = {M (13)

a,c,ξ,ζ = (Q,Q, δ
(13)
a,c,ξ,ζ)|δ

(13)
a,c,ξ,ζ(q, x) =

= ξ(q) + ζ2(x) + ζξ(a) + ζ(c) + c (q, x ∈ Q)}a∈Q,

A
(14)
(Q,+,ξ,ζ,c) = {M (14)

a,c,ξ,ζ = (Q,Q, δ
(14)
a,c,ξ,ζ)|δ

(14)
a,c,ξ,ζ(q, x) =

= ζ(q) + ξζ(x) + ξ2(a) + ξ(c) + c (q, x ∈ Q)}a∈Q,

A
(15)
(Q,+,ξ,ζ,c) = {M (15)

a,c,ξ,ζ = (Q,Q, δ
(15)
a,c,ξ,ζ)|δ

(15)
a,c,ξ,ζ(q, x) =

= ξ(q) + ζξ(x) + ζ2(a) + ζ(c) + c (q, x ∈ Q)}a∈Q,

A
(16)
(Q,+,ξ,ζ,c) = {M (16)

a,c,ξ,ζ = (Q,Q, δ
(16)
a,c,ξ,ζ)|δ

(16)
a,c,ξ,ζ(q, x) =

= ζ(q) + ξ2(x) + ξζ(a) + ξ(c) + c (q, x ∈ Q)}a∈Q,
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A
(17)
(Q,+,ξ,ζ,c) = {M (17)

a,c,ξ,ζ = (Q,Q, δ
(17)
a,c,ξ,ζ)|δ

(17)
a,c,ξ,ζ(q, x) =

= ζξ(q) + ζ2(x) + ξ(a) + ζ(c) + c (q, x ∈ Q)}a∈Q,

A
(18)
(Q,+,ξ,ζ,c) = {M (18)

a,c,ξ,ζ = (Q,Q, δ
(18)
a,c,ξ,ζ)|δ

(18)
a,c,ξ,ζ(q, x) =

= ξ2(q) + ξζ(x) + ζ(a) + ξ(c) + c (q, x ∈ Q)}a∈Q,

A
(19)
(Q,+,ξ,ζ,c) = {M (19)

a,c,ξ,ζ = (Q,Q, δ
(19)
a,c,ξ,ζ)|δ

(19)
a,c,ξ,ζ(q, x) =

= ζ2(q) + ζξ(x) + ξ(a) + ζ(c) + c (q, x ∈ Q)}a∈Q,

A
(20)
(Q,+,ξ,ζ,c) = {M (20)

a,c,ξ,ζ = (Q,Q, δ
(20)
a,c,ξ,ζ)|δ

(20)
a,c,ξ,ζ(q, x) =

= ξζ(q) + ξ2(x) + ζ(a) + ξ(c) + c (q, x ∈ Q)}a∈Q,

A
(21)
(Q,+,ξ,ζ,c) = {M (21)

c,ξ,ζ = (Q,Q, δ
(21)
c,ξ,ζ)|δ

(21)
c,ξ,ζ(q, x) = ξ(q) + ζ(x) + c (q, x ∈ Q)},

A
(22)
(Q,+,ξ,ζ,c) = {M (22)

c,ξ,ζ = (Q,Q, δ
(22)
c,ξ,ζ)|δ

(22)
c,ξ,ζ(q, x) = ζ(q) + ξ(x) + c (q, x ∈ Q)}.

It is evident that for any family of SA A
(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) all results

obtained in Section 3 are true. Moreover, due to Remark 2, for T -quasigroups,
Proposition 8 is the strongest one among Propositions 5, 6, and 8. Therefore, for
a T -quasigroup (Q,+, ξ, ζ, c) ∈ FG with additional restrictions on the operation in
it (see subsection 2.2), Propositions 3, 4, 7, and 8 can be reformulated as follows:

In Proposition 3, the phrase "Let Q ∈ QQ be any abstract finite quasigroup
with the left unit" can be replaced by "Let G = (Q,+) (|Q| > 2) be any finite
Abelian group, and (Q,+, ξ, εQ, c) ∈ FG be any T -quasigroup with the left unit".
Besides, in all inclusions the symbol Q can be replaced by (Q,+, ξ, εQ, c).

In Proposition 4, the phrase "Let Q ∈ QQ be any abstract finite quasigroup
with the right unit" can be replaced by "Let G = (Q,+) (|Q| > 2) be any finite
Abelian group, and (Q,+, ξ, εQ, c) ∈ FG be any T -quasigroup with the right unit".
Besides, in all inclusions the symbol Q can be replaced by (Q,+, ξ, εQ, c).

In Proposition 7, the phrase "Let Q ∈ QQ be any abstract finite commutative
quasigroup" can be replaced by "Let G = (Q,+) (|Q| > 2) be any finite Abelian
group, and (Q,+, ξ, εQ, c) ∈ FG be any commutative T -quasigroup". Besides, in
all inclusions the symbol Q can be replaced by (Q,+, ξ, εQ, c).

In Proposition 8, the phrase "Let Q ∈ QQ be any abstract finite loop" can
be replaced by "Let G = (Q,+) (|Q| > 2) be any finite Abelian group, and
(Q,+, ξ, εQ, c) ∈ FG be any loop". Besides, in all inclusions the symbol Q can be
replaced by (Q,+, ξ, εQ, c).

Fundamental theorem for finite Abelian groups (see Subsection 2.2) makes it
possible to represent SA M ∈ A

(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) by the parallel com-

position of SA over T -quasigroups determined by cyclic groups of prime-power
order.
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Remark 5. The parallel composition of SA Mi = (Qi, Xi, δi) (i = 1, . . . , n) is the

SA
n⊗
i=1

Mi = (
n⊗
i=1

Qi,
n⊗
i=1

Xi, δ), where

δ((q1, . . . , qn), (x1, . . . , xn)) = (δ1(q1, x1), . . . , δn(qn, xn))

for all (q1, . . . , qn) ∈
n⊗
i=1

Qi and (x1, . . . , xn) ∈
n⊗
i=1

Xi.

Indeed, let G = (Q,+) (|Q| > 2) be an Abelian group that satisfies to (12),
and (Q,+, ξ, ζ, c) ∈ F̃G . Setting

a = (a11, . . . , a1k1 , . . . , am1, . . . , amkm), b = (b11, . . . , b1k1 , . . . , bm1, . . . , bmkm),

ξ = (ξ11, . . . , ξ1k1 , . . . , ξm1, . . . , ξmkm), ζ = (ζ11, . . . , ζ1k1 , . . . , ζm1, . . . , ζmkm),

c = (c11, . . . , c1k1 , . . . , cm1, . . . , cmkm),

we get the following representations of SA M ∈ A
(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) by the

parallel composition of SA over cyclic groups of prime-power order:
1. If M (i)

a,b,c,ξ,ζ ∈ A
(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 8) then

M
(i)
a,b,c,ξ,ζ

∼=
m⊗
j=1

kj⊗
h=1

M
(i)
ajh,bjh,cjh,ξjh,ζjh

. (27)

2. If M (i)
a,c,ξ,ζ ∈ A

(i)
(Q,+,ξ,ζ,c) (i = 9, . . . , 20) then

M
(i)
a,c,ξ,ζ

∼=
m⊗
j=1

kj⊗
h=1

M
(i)
ajh,cjh,ξjh,ζjh

. (28)

3. If M (i)
c,ξ,ζ ∈ A

(i)
(Q,+,ξ,ζ,c) (i = 21, 22) then

M
(i)
c,ξ,ζ
∼=

m⊗
j=1

kj⊗
h=1

M
(i)
cjh,ξjh,ζjh

. (29)

Applying (13), (14), (20) and (21) to the representations (27)-(29), the follow-
ing theorem can be proved.

Theorem 4. Let G = (Q,+) (|Q| > 2) be an Abelian group that satisfies to (12),
and (Q,+, ξ, ζ, c) ∈ F̃G. Then for any SA M ∈ A

(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) time

and space complexity for computation the value of the transition mapping are equal,
correspondingly, to

TM = O(

m∑
i=1

ki∑
j=1

dij log pi) (|Q| → ∞), (30)
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VM = O(

m∑
i=1

ki∑
j=1

dij log pi) (|Q| → ∞). (31)

Remark 6. If computations of transition mappings for components in the parallel
composition of SAM ∈ A

(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) can be implemented in parallel,

then, due to (15) and (22), for SA M time complexity for computation the value
of the transition mapping can be reduced to

TM = O( max
i=1,...m

max
j=1,...ki

dij log pi) (|Q| → ∞). (32)

By comparing (30), (31) with (23), (24), we conclude that for any T -quasigroup
(Q,+, ξ, ζ, c) ∈ F̃G it is reasonable to use SA M ∈ A

(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) as

mathematical models for the families of fast iterated hash functions.

5. Families of SA in elliptic curves over finite fields
Let γ be any elliptic curve over a finite field, and (γ∪{0},+Gγ , χm1

, χm2
, P ) ∈ FGγ

be any T -quasigroup. To transform the families A
(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) into

the families A(i)
(γ∪{0},+Gγ ,χm1

,χm2
,c) it is sufficient to substitute:

1) γ ∪ {0} instead of Q;
2) P1, P2, P ∈ γ, correspondingly, instead of a, b, c ∈ Q;
3) χm1

, χm2
∈ Aut(Gγ), correspondingly, instead of ξ, ζ ∈ Aut(G);

4) +Gγ instead of +.
It is evident that for the families of SA A

(i)
(γ∪{0},+Gγ ,χm1

,χm2
,c) (i = 1, . . . , 22) all

results obtained in Section 4 are true. Hence, A(i)
(γ∪{0},+Gγ ,χm1

,χm2
,c) (i = 1, . . . , 22)

can be considered as basic families of SA defined by a recurrence relation in a T -
quasigroup (γ ∪ {0},+Gγ , χm1 , χm2 , P ) ∈ FGγ .

The following another approach to definition families of SA in an elliptic curve
γ over a finite field has been proposed in [22].

Let Fγ = {χm|m = 1, . . . , |γ|}. For any fixed integer l ∈ {1, . . . , |γ|} we can
define the family of SA

Aγ,l = {Mχm,P = (γ ∪ {0},Zl+1, δχm,P )}χm∈Fγ ,P∈γ ,

where
δχm,P (q, x) = χm(q) +Gγ χx(P ) (q ∈ γ ∪ {0}, x ∈ Zl+1). (33)

Let Ordr(P ) be the order of the element P in the Abelian group Gγ .

Theorem 5. Let γ be any elliptic curve over a finite field, l ∈ {1, . . . , |γ|} be any
fixed integer, and Mχm,P = (γ ∪{0},Zl+1, δχm,P ) ∈ Aγ,l be any SA. Then for any
state q ∈ γ ∪ {0} and any two different input symbols x1, x2 ∈ Zl+1 the inequality
δχm,P (q, x1) 6= δχm,P (q, x2) holds if and only if Ordr(P ) > l.
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Proof. Suppose that there exists an SA Mχm,P = (γ ∪ {0},Zl+1, δχm,P ) ∈ Aγ,l
such that Ordr(P ) > l, and for some state q ∈ γ ∪ {0} and some two different
input symbols x1, x2 ∈ Zl+1 holds the equality δχm,P (q, x1) = δχm,P (q, x2).

Due to (33), we get

(∃q ∈ γ ∪ {0})(∃x1, x2 ∈ Zl+1)(x1 6= x2&δχm,P (q, x1) = δχm,P (q, x2))⇔

⇔ (∃q ∈ γ ∪ {0})(∃x1, x2 ∈ Zl+1)(x1 6= x2&χm(q) +Gγ χx1
(P ) =

= χm(q) +Gγ χx2(P ))⇔ (∃x1, x2 ∈ Zl+1)(x1 6= x2&χx1(P ) = χx2(P ))⇔

⇔ (∃x1, x2 ∈ Zl+1)(x1 6= x2&x1P = x2P )⇔

⇔ (∃x1, x2 ∈ Zl+1)(x1 6= x2&(max{x1, x2} −min{x1, x2})P = 0)⇔

⇔ (∃x ∈ {1, . . . , l})(xP = 0)⇔ Ordr(P ) 6 l.

We get a contradiction, since, by supposition, Ordr(P ) > l.
Therefore, Mχm,P = (γ ∪ {0},Zl+1, δχm,P ) ∈ Aγ,l is an SA such that for any

state q ∈ γ ∪{0} and any two different input symbols x1, x2 ∈ Zl+1 the inequality
δχm,P (q, x1) 6= δχm,P (q, x2) holds if and only if Ordr(P ) > l.

From proof of Theorem 5 we get that the following corollary is true.

Corollary 1. Let γ be any elliptic curve over a finite field, l ∈ {1, . . . , |γ|} be
any fixed integer, and Mχm,P = (γ ∪ {0},Zl+1, δχm,P ) ∈ Aγ,l be any SA such that
Ordr(P ) 6 l. Then for any state q ∈ γ ∪ {0} and for all two different input
symbols x1, x2 ∈ Zl+1 such that the integer max{x1, x2} − min{x1, x2} is some
multiple of the integer Ordr(P ) holds the equality δχm,P (q, x1) = δχm,P (q, x2).

Theorem 6. Let γ be any elliptic curve over a finite field, l ∈ {1, . . . , |γ|} be any
fixed integer, and Mχm,P = (γ ∪{0},Zl+1, δχm,P ) ∈ Aγ,l be any SA. Then for any
two different states q1, q2 ∈ γ ∪ {0} and any input symbol x ∈ Zl+1 the inequality
δχm,P (q1, x) 6= δχm,P (q2, x) holds if and only if χm ∈ Aut(Gγ).

Proof. Suppose that there exists an SA Mχm,P = (γ ∪ {0},Zl+1, δχm,P ) ∈ Aγ,l
such that χm ∈ Aut(Gγ), and for some two different states q1, q2 ∈ γ ∪ {0} and
some input symbol x ∈ Zl+1 holds the equality δχm,P (q1, x) = δχm,P (q2, x).

Due to (33), we get

(∃q1, q2 ∈ γ ∪ {0})(∃x ∈ Zl+1)(q1 6= q2&δχm,P (q1, x) = δχm,P (q2, x))⇔

⇔ (∃q1, q2 ∈ γ ∪ {0})(∃x ∈ Zl+1)(q1 6= q2&χm(q1) +Gγ χx(P ) =

= χm(q2) +Gγ χx(P ))⇔ (∃q1, q2 ∈ γ ∪ {0})(q1 6= q2&χm(q1) = χm(q2))⇔

⇔ (∃q1, q2 ∈ γ ∪ {0})(q1 6= q2&mq1 = mq2P )⇔

⇔ (∃q1, q2 ∈ γ ∪ {0})(q1 6= q2&m(q1 −Gγ q2) = 0)⇔

⇔ (∃q ∈ γ)(mq = 0)⇔ (∃q ∈ γ)(χm(q) = 0)⇔ χm 6∈ Aut(Gγ).
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We get a contradiction, since, by supposition, χm ∈ Aut(Gγ).
Therefore, Mχm,P = (γ ∪ {0},Zl+1, δχm,P ) ∈ Aγ,l is an SA such that for any

two different states q1, q2 ∈ γ ∪ {0} and any input symbol x ∈ Zl+1 the inequality
δχm,P (q1, x) 6= δχm,P (q2, x) holds if and only if χm ∈ Aut(Gγ).

From proof of Theorem 6 we get that the following corollary is true.

Corollary 2. Let γ be any elliptic curve over a finite field, l ∈ {1, . . . , |γ|} be
any fixed integer, and Mχm,P = (γ ∪ {0},Zl+1, δχm,P ) ∈ Aγ,l be any SA such that
χm ∈ Fγ\Aut(Gγ). Then for all two different states q1, q2 ∈ γ ∪ {0} such that
the integer m is some multiple of the integer Order(q1 −Gγ q2) any for any input
symbol x ∈ Zl+1 holds the equality δχm,P (q1, x) = δχm,P (q2, x).

Due to Theorems 5 and 6, and Corollaries 1 and 2, it seems promising to
use SA Mχm,P ∈ Aγ,l (χm ∈ Fγ , P ∈ γ,Ordr(P ) > l) and SA Mχm,P ∈ Aγ,l
(χm ∈ Aut(Gγ), P ∈ γ) as mathematical models for the design and implementation
of computationally secured families of iterated hash functions.

6. Discussion

The main aim of the given paper was to explore the feasibility to use SA de-
fined by a reccurence relation in a finite quasigroup as mathematical models for
computationally secure families of iterated hash functions.

Basic families of SA defined by a recurrence relation in an abstract finite quasi-
group Q ∈ QQ have been introduced and examined in Section 3. The main results
of these studies are presented in Theorem 1. Their significance is that from a
probabilistic point of view SA M ∈ A

(i)
Q (i = 1, . . . , 22) are the best in the class of

SA mathematical models for computationally secure sets HM = {H(M,q)|q ∈ Q}
of iterated hash functions.

It is known that solving equations in a quasigroup Q ∈ QQ is a hard Problem
when |Q| is sufficiently large integer. Let the initial state q ∈ Q of a SA M ∈ A

(i)
Q

(i = 1, . . . , 22) and the length l of the hashed input string w ∈ Ql be some part
of the short-term secret key. Suppose that an intruder have intercepted the hash
q′, and his aim is to find the hashed input string w ∈ Ql. Therefore, he is faced
with the family of equations H(M,q)(w) = q′ in a situation, when the integer l is
unknown to him. In the absence of additional information this Problem cannot
be solved at all. Even if the integer l is known to an intruder, then, due to
Theorem 1, any searching based either on deterministic or probabilistic approach
does not guarantee identification of the hashed input string w in the admissible
time. Due to Theorem 1, the similar situation arises if an intruder tries to change
the hashed message. The values of the parameters of SA M ∈ A

(i)
Q (i = 1, . . . , 20)

can be considered as some part of the medium-term secret key. In this case, when
an intruder tries to find the hashed input string, he must additionally identify the
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SA M ∈ A
(i)
Q . Besides, some algorithm that determines the selection of the family

A
(i)
Q (i = 1, . . . , 22) can be designed as the long-term secret key.
Any abstract quasigroup Q ∈ QQ is specified by the Cayley table, as a rule.

Hence, any SAM ∈ A
(i)
Q (i = 1, . . . , 22) has a sufficiently high time and space com-

plexity (see Theorem 2). It seems promising to define similar families of SA for
some set of quasigroups that can be specified compactly and operations in which
are fast. The set of all T -quasigroups defined by a given finite Abelian group
G = (Q,+) meets these conditions. In Sections 4 the families of SA A

(i)
(Q,+,ξ,ζ,c)

(i = 1, . . . , 22) defined in these T -quasigroups have been investigated. The repre-
sentation of SA M ∈ A

(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) by the parallel composition of SA

over T -quasigroups determined by cyclic groups of prime-power order reduces its
time and space complexity (see Theorem 4 and Remark 6). Investigation of the
families A(i)

(Q,+,ξ,ζ,c) (i = 1, . . . , 22) for specific Abelian groups G = (Q,+) (|Q| > 2)

can help to find the most suitable families of SA for mathematical models of fast
computationally secure families of iterated hash functions.

It is known, that elliptic curves over finite fields can be successfully used
for solving information protection problems. In Section 5 it has been shown
how the families A

(i)
(Q,+,ξ,ζ,c) (i = 1, . . . , 22) can be transformed into the fam-

ilies A
(i)
(γ∪{0},+Gγ ,χm1

,χm2
,c), where γ is an elliptic curve over a finite field, and

Gγ = (γ ∪ {0},+Gγ ) is the Abelian group associated with it. Besides, the families
of SA Aγ,l = {Mχm,P = (γ ∪ {0},Zl+1, δχm,P )}χm∈Fγ ,P∈γ (l ∈ {1, . . . , |γ|}) have
been analyzed. Obtained results justify that it is reasonable to use families of
SA in elliptic curves over finite fields as mathematical models for computationally
secure families of iterated hash functions.

7. Conclusion

In the given paper, some fragment of the Algebraic Theory of SA in finite quasi-
groups has been developed. The main aim of these studies was to elaborate some
theoretic backgrounds for possible using these SA as mathematical models for
the design and implementation of computationally secure families of iterated hash
functions. To achieve this aim, basic families of SA in abstract finite quasigrops, in
finite T -quasigroups, and in elliptic curves over finite fields have been defined and
investigated. Obtained results form some base for developing similar fragment of
the Algebraic Theory of Automata in finite quasigroups with the aim to use them
as mathematical models for families of stream ciphers. This is the main area of
our future research.
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