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Applications of
⋂

-large pseudo N-injective acts
in quasi-Frobenius monoid theory

and its relationship with some classes of injectivity

Shaymaa Amer Abdul-Kareem and Ahmed A. Abdulkareem

Abstract. The aim of this paper is to review thoroughly the applications of
⋂

-large
pseudo N-injective acts in quasi-Frobenius monoid theory, and therefore, the relationship
of

⋂
-large pseudo N-injective acts with some class of injectivity is studied. Applications

of the properties of
⋂

-large pseudo injective acts in quasi-Frobenius monoid theory are
proven. Also, it’s proved that the subsequent parity, every union (direct sum) of the
two

⋂
-large pseudo injective acts is a

⋂
-large pseudo injective act if and only if every⋂

-large pseudo injective act is injective under Noetherian condition for a right monoid
S. Additionally, we proved that the category of strongly

⋂
-large pseudo N-injective right

S-acts are going to be egalitarian to the category of projective right S-acts under monoid
conditions. The connections between quasi injective and

⋂
-large pseudo injective acts

are investigated.

1. Introduction

Acts over semigroups appeared and were utilized in a spread of applica-
tions like graph theory, combinatorial problems, algebraic automata theory,
mathematical linguistics, the theory of machines, and theoretical comput-
ing. In a semigroup theory, it represents semigroups as semigroups of func-
tions from a set to itself such it’s almost like to Cayley’s theorem [10]. This
suggests that a semigroup action consists of a semigroup S, a set A, and
a mapping of the elements of the semigroup S to functions from the set A
to itself. Thereby in any mathematical structure on a set, the collection
gathering of structure-preserving maps of the set to itself is an example
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of an abstract algebraic object called a semigroup. On the opposite hand,
if you’re given an abstractly defined semigroup, when can it’s represented
as a semigroup of maps of a mathematical structure? One can say that
it’s represented by actions. As for the monoid, the action is a functor from
that category to an arbitrary category. It’s well-known that a really natural
concept and important tool within the study of monoids is that the idea of
getting monoids working on certain (finite) sets. This provides how to show
any monoid into a (finite) transformation monoid. Additionally, a monoid
action is in contrast to group operations where a monoid action often comes
with a natural grading which will be wont to perform certain calculations
more efficiently. Due to the importance of the unit, it’s rather thought of a
semigroup as a “monoid apart from unit,” instead of the standard way of a
monoid as a “semigroup with unit” [10].

Now, during this paper, S means a monoid with zero elements 0 and
each right S-act M is unitary with zero elements Θ which is denoted by
MS. It’s possible to seek out the S-act in many names mentioned as S-acts,
S-sets, S-operands, S-polygons, transition acts, S-automata [10]. Note that
we’ll use terminology and notations from [1, 2, 3, 4, 5, 8, 13, 15] freely. For
more information about S-act we refer the reader for [9, 10, 12, 17].

A right S-act MS with zero is a non-empty set with a function f from
M × S into M such (m, s) 7→ ms and therefore, the following conditions
hold

(1) m(st) = (ms)t for all m ∈M and s, t ∈ S,
(2) m1 = m, where 1 is that the identity element of S,
(3) m.0 = 0, where 0 is the zero element of S.
A subact N of an S-act MS is a non-empty subset of M such that xs ∈ N

for all x ∈ N and s ∈ S. A subact N of MS is called large (or essential) in
MS if and only if any homomorphism f : MS −→ HS, where HS is any S-act
with restriction to N is one to at least one, then f is itself one to at least one.
During this case, we are saying that MS is an important extension of N. A
non-zero subact N of MS is intersection large if for all non-zero subact A of
MS, A

⋂
N 6= Θ, and will be denoted by N is

⋂
-large in MS [7]. A non-zero

S-act MS over a monoid S is called
⋂
-reversible if every non-zero subact of

MS is
⋂
-large. A monoid S is called

⋂
-reversible if SS is

⋂
-reversible S-act

[19]. An equivalence relation ρ on a right S-act MS is a congruence relation
if and only if aρb implies that asρbs for all a, b ∈MS and s ∈ S.

An S-act AS is called injective if for every monomorphism α : CS−→BS
and every S-homomorphism β : CS−→AS, there exists an S-homomorphism
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σ : BS−→AS such σα = β [11]. Let MS, NS be S-acts. NS is pseudo M-
injective if for each S-subact A of MS, each S-monomorphism f : A −→ NS
is often extended to an S-homomorphism g : MS −→ NS. An S-act NS is
pseudo injective if it’s pseudo N-injective. An S-act MS is

⋂
-large pseudo N-

injective if for any
⋂
-large subact X of N, any monomorphism f : X −→MS

is often extended to some g : N −→ MS. MS is
⋂
-large pseudo injective if

M is
⋂
-large pseudo M–injective.

2. Applications of
⋂

-large pseudo injective acts

Let N be a simple subact of an S-act MS. Then SocN(MS) is called a homo-
geneous component of Soc(MS) containing N. Thus

SocN (MS) :=
⋃{

X be subact of MS : X ∼= N
}
.

Definition 2.1. Let S be a moniod and A be a class of S-acts, A is called
socle fine whenever for any MS, NS ∈ A, we have Soc(MS)∼=Soc(NS) if and
only if MS∼=NS.

An S-act MS is Noetherian if every subact of MS is finitely generated.
A monoid S is a right Noetherian if SS is Noetherian. Equivalently, S is a
right Noetherian if and only if S satisfies the ascending chain condition for
right ideals.

An S-act MS is projective if for every S-epimorphism g from S-act AS
into S-act BS and each homomorphism h from MS into BS, there’s a homo-
morphism f from MS into AS such that g ◦ h = f .

Definition 2.2. A monoid S is quasi-Frobenius if and only if S satisfies any
of the following equivalent conditions:

1. S is Noetherian on one side and self-injective on one side.
2. S is Artinian on a side and self-injective on a side.
3. All right (or all left) S-acts that are projective are also injective.
4. All right (or all left) S-acts that are injective are also projective.

For example, every semisimple monoid is quasi-Frobenius, since all acts
are projective and injective. We denote by SL the category of strongly

⋂
-

large pseudo N-injective right S-acts, by PR the category of projective right
S-acts and E is the injective hull.
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Theorem 2.3. The following conditions are equivalent for a monoid S.
(1) S is quasi-Frobenius.
(2) The class PR

⋃
SL is socle fine.

Proof. (1)⇒(2). If S is quasi-Frobenius, then projective S-acts are injective.
Thus, PR

⋃
SL=SL.

Let MS, NS∈ SL with Soc(MS)∼=Soc(NS).Then E(Soc(MS))∼=E(Soc(NS)).
Since S is right Artinian, Soc(MS) is a

⋂
-large subact of MS and Soc(NS)

is a
⋂
-large subact of NS. Hence, E(M) ∼=E(N). Then, by Proposition 2.7

in [6], we obtain MS∼=NS. Thus the class PR
⋃

SL is socle fine.
(2)⇒(1). Let P be a projective right S-act. Then P ∈ PR, E(P) ∈ SL

and Soc(P)=Soc(E(P)). By (2), we get P∼= E(P) and hence, P is injective.
It follows that S is quasi-Frobenius.

Theorem 2.4. The following conditions are equivalent for a monoid S.
(1) S is semisimple.
(2) The class of all

⋂
-large pseudo injective acts is socle fine.

(3) The class SE is the socle fine.

Proof. (1)⇒(2) since over every semisimple monoid S in the class of all
S-acts is socle fine.

(2)⇒(3). It is clear.
(3)⇒(1). Clearly Soc (E(SS))=Soc(Soc(SS)). Since E (SS) and Soc(SS)

are
⋂
-large pseudo injective, we obtain E(SS)=Soc(SS) by (3). It implies

that E(SS) is semisimple and so S is semisimple.

3.
⋂

-large pseudo N-injective and injective acts

Recall that Soc(MS) represents all
⋂
-large subacts of MS and it’s mentioned

as Soc(MS ) :=
⋂
{X |X is

⋂
−large subact of MS}. Also, SocN (MS)

represents the homogeneous component of Soc(MS) containing N where N
is a simple subact of an S-act MS. Thus,

SocN (MS) :=
⋃
{X be subact of MS : X ∼= N }.

Definition 3.1. An S-act MS is referred to as strongly
⋂
-large pseudo

injective if, MS is
⋂
-large pseudo N-injective for all right S-act NS.

Recall that an ordered groupoid S is called Artinian if S satisfies the
descending chain condition for ideals.
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Lemma 3.2. Let MS and NS be S-acts and MS be
⋂
-reversible. Then, NS

is an injective S-act if and only if NS is
⋂
-large pseudo M-injective for all

MS.

Proof. By Proposition 2.10(3) in [13], if NS is
⋂
-large pseudo M-injective for

all MS, then every S-monomorphism f : NS → MS is essential since f(N)
is
⋂
-large in MS. So, it’s split for all S-acts MS, thus NS is injective.

Recall that a proper subact N of an S-act MS is maximal if for every
subact K of MS with N ⊆ K ⊆MS implies either K = N or K = MS.

Definition 3.3. MS is called a V-act (or cosemisimple) if every proper
subact of MS is an intersection of maximal subacts. S is called a V-monoid
if the right act SS is a V-act.

It is well known that MS is a V-act if and only if every simple act is
M-injective.

Theorem 3.4. Let S is a right Noetherian monoid. Then
(1) Every direct sum of two

⋂
-large pseudo injective acts is

⋂
-large

pseudo injective if and only if every
⋂
-large pseudo injective is

injective.
(2) Essential extensions of semisimple right S-acts are

⋂
-large pseudo

injective if and only if S is right V-monoid.

Proof. (1). Assume that the act MS is
⋂
-large pseudo injective(this means

that MS is
⋂
-large pseudo M-injective), S is a right Noetherian monoid

and E(M) is injective envelope of MS. Then, since E(M) is injective, so,
it’s

⋂
-large pseudo injective and by assumption (Every direct sum of two⋂

-large pseudo injective acts is
⋂
-large pseudo injective) NS=MS

⊕
E(M)

is
⋂
-large pseudo injective. Consider the injection maps j1:MS−→E(M),

j2 : E(M)−→MS
⊕

E(M), j3 : MS−→MS
⊕

E(M) and the identity map IM :
MS−→MS. Let πM : MS

⊕
E(M)−→MS be the projection map such that

πM ◦ j3=IM . Now MS
⊕

E(M) is
⋂
-large pseudo injective, so this implies

there exists an S-homomorphism g : Ms
⊕

E(M) −→Ms
⊕

E(M) such that
g ◦ j2 ◦ j1 = j3 ◦ IM , then πM◦g◦j2 ◦ j1= πM ◦ j3 ◦ IM .

Thus, IM=πM◦g◦j2 ◦ j1, so that f =πM◦g◦j2 and then IM=f◦j1. There-
fore, MS is a retract of E(M) and then it is injective. For the converse, let
MS and NS be two

⋂
-large pseudo injective S-act. By hypothesis MS and NS

are injective which implies that the direct sum of any two injective S-acts is
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injective whence S is Noetherian monoid [15] and then every injective act is⋂
-large pseudo injective. Therefore, the direct sum of two

⋂
-large pseudo

injective is
⋂
-large pseudo injective.

(2). Let MS be a semisimple act. Then MS⊕E(M) is an essential ex-
tension of a semisimple act. It follows that MS⊕E(M) is an

⋂
-large pseudo

injective act and so by (1) MS is injective. Thus, S is a right V-monoid and a
right Noetherian monoid. The converse is obvious because every semisimple
right S-act is injective.

Proposition 3.5. Let MS be an S-act and {Ni | i ∈ I} be a family of S-
acts. Then

∏
i∈I Ni is

⋂
-large pseudo M-injective if and only if Ni is

⋂
-large

pseudo M-injective for every i ∈ I.

Proof. (⇒). Assume that NS=
∏

i∈I Ni is
⋂
-large pseudo M-injective,

where MS is an S-act. Let X be a
⋂
-large subact of MS and f be S-

monomorphism from X to Ni. Since NS is a
⋂
-large pseudo M-injective act

then there exists an S-homomorphism g : MS−→NS such that g ◦ i = ji ◦ f ,
where i is the inclusion map of X into MS and ji is the injection map of Ni
into NS. Define h : MS−→Ni such that h = πi ◦ g where πi is the projection
map from NS onto Ni. Then h ◦ i = πi ◦ g ◦ i = πi ◦ ji ◦ f = f . That is
for all x ∈ X, h(x) = h(i(x)) = πi(g(x)) = πi(g(i(x))) = πi(ji(f(x))) =
(πi ◦ ji)(f(x)) = f(x). Figure 1 illustrates this:

Figure 1: Illustrate that NS is a
⋂
-large pseudo M-injective.

(⇐). Assume that Ni is
⋂
-large pseudo M-injective for each i ∈ I, where
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MS is an S-act. Let A be a
⋂
-large subact of MS, f be S-monomorphism

from A toNS =
∏

i∈I Ni. Since Ni is
⋂
-large pseudo M-injective, there exists

an S-homomorphism βi : MS−→Ni, such that βi ◦ i = πi ◦f . Then, we claim
that there exists an S-homomorphism β : MS−→NS such that βi=πi ◦ β.
We claim that β ◦ i = f . Since βi ◦ i = πi ◦ β ◦ i, then πi ◦ f = πi ◦ β ◦ i, so
we obtain f = β ◦ i. Figure 2 explains this:

Figure 2: Clarifies that Ni is
⋂
-large pseudo M-injective act.

Therefore NS is
⋂
-large pseudo M-injective.

Corollary 3.6. Let MS and Ni be S-acts, where i ∈ I and I is a finite
index set. Then, for every i, Ni is

⋂
-large M-pseudo injective if and only if⊕n

i=1Ni is
⋂
-large M-pseudo injective.

Proposition 3.7. Let MS be a
⋂
-large subact ofMn

s . Mn
S is

⋂
-large pseudo

injective for any finite integer n, if and only if MS is
⋂
-large pseudo M-

injective (this means MS is
⋂
-large pseudo injective).

Proof. LetMn
S be

⋂
-large pseudo injective. Since MS is a

⋂
-large subact of

Mn
S , so by Proposition 3.4 in [15],Mn

S is
⋂
-large pseudo M-injective. As MS

is retract of Mn
S , for this reason, and by Lemma 3.3 in [15], MS is

⋂
-large

pseudo M-injective. Conversely, if MS is
⋂
-large pseudo M-injective, then

by Proposition 3.5, Mn
S is

⋂
-large pseudo M-injective.

Every pseudo N-injective act is
⋂
-large pseudo N-injective. The subse-

quent proposition answers the question: When the converse is true?
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Proposition 3.8. For a
⋂
-reversible act NS the following conditions are

equivalent:

(a) MS is pseudo N-injective;

(b) MS is
⋂
-large pseudo N-injective.

Proof. (a)⇒ (b). Follows from the definition.
(b)⇒ (a). Let MS be

⋂
-large pseudo N-injective, A be any subact of NS.

Let f : A −→MS be any monomorphism and α : A−→NS be the inclusion
map. NS being

⋂
-reversible implies α is an essential monomorphism. Since

MS is
⋂
-large pseudo N-injective, there exists h ∈ Hom(N,M) such that

f = h ◦ α. Hence MS is pseudo N-injective.

Each quasi injective act is
⋂
-large pseudo injective, but the converse

is not true in general. The subsequent theorem gives the condition for the
converse to be correct.

An S-act HS is called cog-reversible if each congruence ρ on HS with
ρ 6= IH is large on HS.

Theorem 3.9. Let MS be a cog-reversible nonsingular S-act with lM (s) =
Θ for each s ∈ S and MS be

⋂
-reversible. Then MS is

⋂
-large pseudo

injective if and only if MS is quasi injective act.

Proof. Let A be a subact of an S-act MS and f be a nonzero S-homomorphism
from A into MS. Since MS is

⋂
-reversible, so A is

⋂
-large subact of

MS. If f is an S-monomorphism, then there is nothing to prove. So as-
sume f is not an S-monomorphism. Since E(M) is injective, then E(M)
is an M (respectively E(M))-injective. Thus, there is an S-homomorphism
h : MS −→ E(M) such that h ◦ ωA = ωM ◦ f , where ωA (respectively
ωM ) is the inclusion mapping of A (respectively MS) into MS (respec-
tively E(M)). Again there is an S-homomorphism g : E(M) −→ E(M)
such that g ◦ ωM = h. Then either ker(h) = IM or ker(h) 6= IM . If
ker(h) = IM , then h is an S-monomorphism. The Largeness of MS in
E(M) implies that g is an S-monomorphism, so g(MS) ⊆ MS by The-
orem 3.6 in [13]. Thus, h(MS) ⊆ MS which is extension of f , since
h(A) = h ◦ ωA(A) = ωM ◦ f(A) = f(A). If ker(h) 6= IM , then ker(h)
is large on MS, so MS/ker(h) is singular. But MS/ker(h) ∼= h(M) ⊆ MS,
so MS/ker(h) is nonsingular. These two cases imply that ker(h) = M ×M .
This implies that h (and hence f) is a zero map.
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The subsequent theorem illustrates that M1 and M2 are quasi injec-
tive acts whence the direct sum is

⋂
-large pseudo injective by using some

conditions.

Theorem 3.10. Let M1 and M2 be
⋂
-reversible S-acts such that Mi is

⋂
-

large inM1
⊕
M2 for each i = 1, 2. IfM1

⊕
M2 is

⋂
-large pseudo injective,

then M1 and M2 are quasi injective acts.

Proof. Let A be a subact of M1 and f : A −→M1 be an S-homomorphism.
Then, by assumption M1 is

⋂
-reversible S-act, so A is

⋂
-large in M1 and

then in M1
⊕

M2. Define α : A −→M1
⊕
M2 by α(a) = (f(a), a), ∀a ∈ A.

Then α is an S-monomorphism. By Theorem 3.4, M1
⊕

M2 is
⋂
-large M1-

pseudo injective, so there exists an S-homomorphism β : M1−→M1
⊕

M2
such that β◦i=α. Now, let j1 and π1 be the injection and projection map
of M1 into M1

⊕
M2 and M1

⊕
M2 onto M1. Then, σ = π1βL) M1−→M1

be an S-homomorphism that extends f , this means σi = π1 βi = π1 j1f =
IM1f = f , which implies σi = f .

Figure 3: Explains that M1
⊕

M2 is
⋂

-large M1-pseudo injective act.

Proposition 3.11. (cf. [6]) Let MS be an S-act and {N i | i ∈ I} be a family
of S-acts. Then

∏
i∈I Ni is M-injective if and only if Ni is M-injective for

all i ∈ I.
Corollary 3.12. For any integer n > 2, let MS be

⋂
-reversible and a cog-

reversible nonsingular S-act with lM (s) = Θ for each s ∈ S. Then Mn
S is⋂

-large pseudo M-injective if and only if MS is quasi injective.
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Proof. If Mn
S is

⋂
-large pseudo injective, then by Theorem 3.4 Mn

S is
⋂
-

large pseudo M-injective. Then, by Lemma 2.3 in [13], MS is
⋂
-large pseudo

M-injective. Since MS is a cog-reversible nonsingular S-act, so by Theorem
3.10, MS is quasi injective act. Conversely, if MS is quasi injective act,
then by Proposition 3.11, Mn

S is quasi injective and in particular, is
⋂
-large

pseudo M-injective.

Proposition 3.13. Let MS=
⊕

i∈I Mi be a direct sum of a cog-reversible
non-singular with lM (s) = Θ for each s ∈ S and

⋂
-reversible S-acts Mi.

An S-act MS is quasi injective if and only if it is
⋂
-large pseudo injective.

Proof. Let MS be a
⋂
-large pseudo injective S-act. This means that MS

is
⋂
-large pseudo M-injective, so by Proposition 2.4 in [13], Mj is

⋂
-large

pseudo M-injective, Now, each Mj is
⋂
-large pseudo M-injective act, so by

Theorem 3.9, each Mj is quasi injective. Therefore, by Proposition 3.11 MS
is quasi injective. The rest is obvious.
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Translatable isotopes of translatable quasigroups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We determine the structure of translatable isotopes of translatable quasi-
groups. Necessary and sufficient conditions are found for a bijection between two such
isotopes to be an isomorphism. It is also proved that in a left cancellative, k-translatable
magma, the value of k is unique.

1. Introduction

This paper is motivated by the following question: What is the structure of
translatable isotopes of a left cancellative translatable magma? In Theorem
3.1 below we start with a quasigroup that is k-translatable with respect to
the natural order. The elements of a quasigroup (Q, ·) that is translatable
with respect to a particular ordering of Q can be re-labelled so that (Q, ·)
is translatable with respect to the natural ordering, so that starting with
the natural ordering is no limitation. We then determine all bijections α
and β on Q such that (Q, ∗), defined by l′ ∗m′ = αl′ ·βm′, is h-translatable
with respect to the ordering 1′, 2′, 3′, . . . , n′ of Q. This ordering is arbitrary,
except for the fact that 1′ = 1, the first element of the natural ordering.
Using perhaps repeated applications of Lemma 2.6 below, such an ordering
is always possible.

That is, we have determined the form of all h-translatable isotopes of any
k-translatable quasigroup. As a Corollary, it follows that a k-translatable
quasigroup of order n has h-translatable isotopes of every value relatively
prime to n. In addition, such translatable isotopes exist for every possible
ordering of Q.

We also give a correct proof of the fact that a left cancellative k-
translatable magma is translatable for a unique value of k and explain why
the proof of this given in [4], Theorem 3.3, is not valid.
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2. Preliminary results, definitions and notation

.
All magmas (groupoids) considered here are of finite order n. That

is, Q = {1, 2, . . . , n} and 1, 2, 3, . . . , n is the natural ordering. We denote
{1, 2, . . . , n} by {1, n}. The value of t modulo n is denoted by [t]n. If
i ≡ j(modn) we write [i]n = [j]n. Recall that t ∈ {1, n} is relatively prime
to n if and only if there exists t̃ ∈ {1, n} such that [t̃t]n = 1, if and only if
[tx]n = [ty]n implies x = y for all x, y ∈ {1, n}. We denote this by (t, n) = 1.

Definition 2.1. (cf. [2]) A finite magma is called k-translatable (for fixed
k, 1 6 k < n) if its Cayley table is obtained by the following rule: If the
first row of the table is a1, a2, . . . , an then the qth row is obtained from
the (q − 1)th row by taking the last k entries in the (q − 1)th row and
inserting them as the first k entries of the qth row and by taking the first
(n− k) entries from the (q− 1)th row and inserting them as the last (n− k)
entries of the qth row, where q ∈ {2, 3, . . . , n}. Then, the (ordered) sequence
a1, a2, . . . , an is called a k-translatable sequence of Q with respect to the
natural ordering 1, 2, 3, . . . , n. A magma is called translatable if it has a
k-translatable sequence for some k ∈ {1, 2, . . . , n− 1}.

Example 2.2. Consider the following magma represented by three Cayley
tables with different orderings.

1 2 3 4 5
1 2 5 3 4 1
2 3 4 1 2 5
3 1 2 5 3 4
4 5 3 4 1 2
5 4 1 2 5 3

4 2 3 1 5
4 1 3 4 5 2
2 2 4 1 3 5
3 3 2 5 1 4
1 4 5 3 2 1
5 5 1 2 4 3

4 2 5 3 1
4 1 3 2 4 5
2 2 4 5 1 3
5 5 1 3 2 4
3 3 2 4 5 1
1 4 5 1 3 2

Notice that (Q, ·) is 3-translatable with respect to the natural ordering
and with respect to the ordering 4, 2, 5, 3, 1. But it is not translatable with
respect to the ordering 4, 2, 3, 1, 5.

Example 2.3. The magma (Q, ·), where Q = {1, 2, 3, 4} and x · y = 1, is
k-translatable for every k ∈ {1, 2, 3, 4}. Its k-translatable sequence has the
form 1, 1, 1, 1.

The following lemmas are stated without proof, as the proofs are else-
where, as referenced.
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Lemma 2.4. (cf. [2, Lemma 2.5]) Let a1, a2, . . . , an be the first row of the
Cayley table of the magma (Q, ·) of order n. Then (Q, ·) is k-translatable
with respect to the natural ordering if and only if for all i, j ∈ {1, n} one of
the following (equivalent) conditions is satisfied:

(i) i · j = a[k−ki+j]n,

(ii) i · j = [i+ 1]n · [j + k]n,

(iii) i · [j − k]n = [i+ 1]n · j.

Lemma 2.5. Suppose that Q = {1′, 2′, . . . , n′} is a set of order n. In the
magma (Q, ·), let ai = 1′ · i′ for all i ∈ {1, n}. Then (Q, ·) is k-translatable
with respect to the ordering 1′, 2′, . . . , n′ if and only if for all i, j ∈ {1, n}
one of the following (equivalent) conditions is satisfied:

(i) i′ · j′ = a[k−ki+j]n,

(ii) i′ · j′ = [i+ 1]′n · [j + k]′n,

(iii) i′ · [j − k]′n = [i+ 1]′n · j′.

Note that in Lemma 2.5, i′ ·j′ 6= a[k−ki′+j′]n . This is because [k−ki+j]n
marks the position of the entry a[k−ki+j]n . For example, in the third Cayley
table in Example 2.2, (Q, ·) is 3-translatable with respect to the ordering
1′, 2′, 3′, 4′, 5′ where 1′ = 4, 2′ = 2, 3′ = 5, 4′ = 3 and 5′ = 1. Then,
1′ · 2′ = 4 · 2 = 3 = 4′ 6= 2 = a3 = a[−2]5 = a[3−(3·4)+2]5 = a[3−3(1′)+2′]5 while
1′ · 2′ = 3 = a2 = a[3−3(1)+2]5 .

Lemmas 2.4 and 2.5 above will be applied throughout the rest of the
paper, at times without reference. Lemma 2.5 accounts, in part, for the
error in the proof of the fact that the value of the translatability of a left
cancellative translatable magma is unique, in [4], Theorem 3.3. An error in
the proof there is that aj′′ = 1 · j′′ = 1′′ · j′′ = cj 6= cj′′ , because as we have
just seen, j′′ is not necessarily equal to j for all j ∈ {1, n}, except in the
natural ordering.

We now list some previously proved results that, along with the proof of
the converse of Lemma 2.7 from [2] will be used as lemmas to give a valid
proof that the value of translatability of left cancellative magmas is unique.

Lemma 2.6. (cf. [2, Lemma 2.7]) Let (Q, ·) be a k-translatable magma
with respect to the natural ordering 1, 2, . . . , n, with k-translatable sequence
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a1, a2, . . . , an. Then (Q, ·) is k-translatable with respect to the ordering
n, 1, 2, . . . , n− 2, n− 1, with k-translatable sequence

ak, ak+1, . . . , an−1, an, a1, a2, . . . , ak−1.ak−1.

Lemma 2.7. (cf. [4, Lemma 2.6]) Let (Q, ·) be a naturally ordered k-trans-
latable magma of order n with k-translatable sequence a1, a2, . . . , an and
suppose that (t, n) = 1. Then (Q, ·) is k-translatable with respect to the
ordering

1, [1 + t]n, [1 + 2t]n, [1 + 3t]n, . . . , [1− 2t]n, [1− t]n
with k-translatable sequence

a1, a[1+t]n , a[1+2t]n , . . . , a[1−2t]n , a[1−t]n .

The following result, the converse of Lemma 2.7, is new.

Lemma 2.8. A magma (Q, ·) of order n is a k-translatable with respect
to the natural ordering if and only if it is k-translatable with respect to the
ordering 1, [1 + t]n, [1 + 2t]n, . . . , [1− 2t]n, [1− t]n for any t relatively prime
to n.

Proof. (⇒). This is Lemma 2.7.
(⇐). Let the magma (Q, ·) be k-translatable with respect to the ordering

1′, 2′, 3′, . . . , n′, where i′ = [1 + (i − 1)t]n for all i ∈ {1, n} and where
(t, n) = 1.

Define tq = [(q − 1)t̃ ]n for any q ∈ {1, n}. Note that [1 + tqt ]n = q =

[tq + 1]′n. Then, for all i, j ∈ {1, n}, by Lemma 2.5(iii)

[i+ 1]n · [j + k]n = [1 + (ti + t̃ )t]n · [1 + (tj + t̃+ tk)t]n

= [ti + t̃+ 1]′n · [tj + t̃+ tk + 1]′n
= [ti + 1]′n · [tj + t̃+ tk + 1− t̃k]′n
= i · [1 + (tj + t̃+ tk − t̃k)t]n = i · j.

So, by Lemma 2.4(ii), (Q, ·) is k-translatable with respect to the natural
ordering.

From Lemma 2.5 (i) it follows that if a k-translatable magma (Q, ·) of
order n is left cancellative, then all elements of its k-translatable sequence
(consequently, elements in each row of its Cayley table) are different because
ϕi(x) = i·x is a bijection. But, in general, such a magma is not a quasigroup.
It is a quasigroup if and only if (k, n) = 1. A quasigroup of order n can be
k-translatable only for (k, n) = 1 [2, Lemma 2.15].
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Corollary 2.9. If (Q, ·) is a k-translatable quasigroup, then (k, n) = 1.

Theorem 2.10. A left cancellative magma (Q, ·) can be k-translatable only
for one value of k.

Proof. Suppose that (Q, ·) is k-translatable of order n. Then, by a renu-
meration of the elements of Q, we can consider (Q, ·) as k-translatable
with respect to the natural ordering. Suppose that (Q, ·) is h-translatable
with respect to some ordering. Then using Lemma 2.6, perhaps repeatedly,
(Q, ·) is h-translatable with respect to some ordering 1′, 2′, . . . , n′, where
1′ = 1. Suppose that (Q, ·) has the k-translatable sequence a1, a2, . . . , an
with respect to the natural ordering and that (Q, ·) has the h-translatable
sequence c1, c2, . . . , cn with respect to the ordering 1, 2′, 3′, . . . , n′. Then,
for any i ∈ Q, by Lemma 2.4 (i) and Lemma 2.5 (i),

ai′ = 1 · i′ = 1′ · i′ = ci. (1)

For i ∈ Q, define si = i′. Then, s1 = 1′ = 1 and for any i, j ∈ Q, by the

definition of h-translatability i′ · j′ = si · sj = a′[k−ksi+sj ]n = c[h−hi+j]n
(1)
=

a′[h−hi+j]n , and, since (Q, ·) is left cancellative, we have

[k − ksi + sj ]n = [h− hi+ j]′n. (2)

Then, for any i ∈ Q, [h + i]′n = [h − hh̃ + i + 1]′n
(2)
= [k − ksh̃ + si+1]n =

[h− hn+ i]′n
(2)
= [k − ksn + si]n. So, for all i ∈ {1, n},

[s[i+1]n − si]n = [k(sh̃ − sn)]n. (3)

It is then straightforward to prove by induction on i that

si = [1 + (i− 1)k(sh̃ − sn)]n. (4)

Since {s1, s2, . . . , sn} = {1′, 2′, . . . , n′} = {1, 2, . . . , n}, (k(sh̃ − sn), n) = 1
and the ordering 1′, 2′, . . . , n′ is of the form in our Lemma 2.8, with t =
[k(sh̃− sn)]n. Therefore, by Lemma 2.8, (Q, ·) is both h and k-translatable
with respect to the natural ordering. Applying Lemma 2.3 from [2] we
obtain h = k.
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3. Translatable isotopes of a translatable magma

A magma (Q, ∗) is an isotope of the magma (Q, ·) if there are bijections α, β
and γ of Q such that γ(i∗j) = αi ·βj. If γ is the identity map, then (Q, ∗) is
called a principal isotope of (Q, ·). One can prove (see for example [1]) that
every isotope of the magma (Q, ·) is isomorphic to a principal isotope of this
magma. Therefore, although our results on isotopes of translatable magma
are actually results on the principal isotopes of a translatable magma, up
to isomorphism they are results on all isotopes.

Theorem 3.1. Suppose that a quasigroup (Q, ·) of order n is k-translatable
with respect to the natural ordering of Q. Then (Q, ∗) is an isotope of (Q, ·)
and is h-translatable with respect to the ordering 1, 2′, 3′, . . . , n′ if and only if
there exist bijections α and β of Q and c, d ∈ {1, n} such that αc′ = n = βd′

and

(i) l′ ∗m′ = αl′ · βm′ for all l,m ∈ {1, n},

(ii) α([c+ i]′n) = iα([c+ 1]′n) for all i ∈ {1, n},

(iii) β([d+ ih]′n) = kiα([c+ 1]′n) for all i ∈ {1, n}, and

(iv) (α([c+ 1]′n), n) = 1.

Proof. (⇒). Let a1, a2, . . . , an be the k-translatable sequence of a quasi-
group (Q, ·). Then since (Q, ·) is left cancellative,

al = am if and only if l = m. (5)

Also, by Lemma 2.4 (i), l · m = a[k−kl+m]n for all l,m ∈ {1, n}. Since
(Q, ∗) is an isotope of (Q, ·), by definition there exist bijections α and β of
Q such that (i) is valid. Hence, l′ ∗m′ = αl′ · βm′ = a[k−k(αl′)+βm′]n for all
l,m ∈ {1, n}.

Since α and β are bijections of Q there exist c, d ∈ {1, n} such that
αc′ = n = βd′. Thus, for all i ∈ {1, n}, using h-translatability of (Q, ∗), by
Lemma 2.5(ii) we obtain

ak = n·n = αc′ ·βd′ = c′∗d′ = [c+ i]′n∗[d+ ih]′n = α([c+ i]′n) · β([d+ ih]′n)

= a[k−kα([c+i]′n)+β([d+ih]′n)]n

and so by (5),
kα([c+ i]′n) = β([d+ ih]′n) (6)
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for all i ∈ {1, n}.
Also,

[c+ 1]′n ∗ d′ = α([c+ 1]′n) · βd′ = a[k−kα([c+1]′n)]n
= [c+ 1 + i]′n ∗ [d+ ih]′n

= a[k−kα([c+1+i]′n)+β([d+ih]
′
n)

and so by (5),

kα([c+ 1 + i]′n)− kα([c+ 1]′n) = β([d+ ih]′n)
(6)
= kα([c+ i]′n). (7)

By induction on i we now prove (ii), that α([c+ i]′n) = iα([c+ 1]′n) for
all i ∈ {1, n}. Clearly, the statement is true for i = 1. If the statement is
true for all t 6 i− 1 then α([c+ i− 1]′n) = (i− 1)α([c+ 1]′n). Then by (7)
for i− 1 we have that

kα([c+ i]′n)− kα([c+ 1]′n) = kα([c+ i− 1]′n)

and so kα([c+ i]′n) = kiα([c+ 1]′n). Since (k, n) = 1,

α([c+ i]′n) = iα([c+ 1]′n) (8)

for all i ∈ {1, n}.
Now (iii) follows from (6) and (8), and (iv) follows from (8), the fact

that α is a bijection of Q and the fact that Q = {1, 2′, 3′, . . . , n′}.
(⇐). Clearly, (Q, ∗) is an isotope of (Q, ·). We need only prove therefore

that (Q, ∗) is h-translatable with respect to the ordering 1, 2′, 3′, . . . , n′.
For any l,m ∈ {1, n}, l = [c+ il]n and m = [d+ imh]n for some il, im ∈

{1, n}. Then, [l+ 1]′n ∗ [m+h]′n = α([c+ il + 1]′n) ·β([d+ (im + 1)h]′n) = aw,
where,

w = [k − kα([c+ il + 1]′n) + β([d+ (im + 1)h]′n]n

= [k − k(il + 1)α([c+ 1]′n) + k(im + 1)α([c+ 1]′n)]n by (ii), (iii)

= [k − kilα([c+ 1]′n) + kimα([c+ 1]′n)]n

= [k − kilα([c+ 1]′n) + β([d+ imh]′n)]n) by (iii)

= [k − kαl′ + βm′]n. by (ii)

So,

[l + 1]′n ∗ [m+ h]′n = aw = a[k−kαl′+βm′]n = αl′ · βm′ = l′ ∗m′

and, by Lemma 2.5 (ii), (Q, ∗) is h-translatable with respect to the ordering
1, 2′, 3′, . . . , n′.
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Corollary 3.2. A k-translatable quasigroup of order n has h-translatable
isotopes for all values of h relatively prime to n. It has such isotopes for
every ordering.

Corollary 3.3. (Zn, ∗) is an h-translatable isotope of (Zn,+) with respect to
the ordering 1, 2′, 3′, . . . , n′ if and only if there exist bijections α and β of Zn
and c, d ∈ Zn such that αc′ = 0 = βd′, α([c+ i]′n) = iα([c+ 1]′n) = −β([d+
ih]′n) for all i ∈ {1, n}, (α([c+ 1]′n), n) = 1 = (h, n) and l′ ∗m′ = αl′ · βm′
for all l,m ∈ Zn.

Corollary 3.4. Suppose that (Q, ·) is a k-translatable quasigroup with re-
spect to the natural ordering, with k-translatable sequence a1, a2, . . . , an.
Suppose also that (Q, ∗) is an h-translatable quasigroup with respect to the
ordering 1, 2′, 3′, . . . , n′. Then (Q, ∗) is an h-translatable isotope of (Q, ·) if
and only if there exist c, d, t ∈ {1, n} with (t, n) = 1 and for all q ∈ {1, n},
1∗q′ = axq , where xq = [r+(q−1)h̃kt]n and r = [k+kct−kt+(1−d)h̃kt]n.
Also, (Q, ∗) is an h-translatable idempotent isotope of (Q, ·) if and only if
there exist c, d, t ∈ {1, n} with (t, n) = 1 such that q = a[k−kct+(q−d)h̃kt−ktq]n
for all q ∈ {1, n}.

Proof. (⇒). By Theorem 3.1, there exist bijections α and β of Q and
c, d ∈ {1, n} such that αc′ = n = βd′ and (i), (ii), (iii) and (iv) of Theorem
3.1 are valid. Let t = α([c+ 1]′n).

For any m ∈ {1, n} there exists im ∈ {1, n} such that m = [d + imh]n
and [m+ 1]n = [d+ (im + h̃)h]n. Therefore,

β([m+ 1]′n)
(iii)
= [k(im + h̃)t]n = [kimt]n + [kh̃t]n = βm′ + [kh̃t]n.

By Theorem 3.1 again, for all l,m ∈ {1, n}, we have l′ ∗m′=αl′ · βm′=
a[k−k(αl′)+βm′]n . Therefore, for any q ∈ {1, n}, 1∗q′ = 1′∗q′ = α1·βq′ = axq ,
where

xq = [k − kα1 + βq′]n = [k − kα1 + β1 + (q − 1)h̃kt]n = [r + (q − 1)h̃kt]n

for r = [k − kα1 + β1]n, whence, applying (ii) and (iii), we obtain

r = [k − k(1− c)t+ (1− d)h̃kt]n = [k + kct− kt+ (1− d)h̃kt]n.

(⇐). For all i ∈ {1, n} we define α([c + i]′n) = [it]n and β([d + i]′n) =
[ih̃kt]n. Then α and β are bijections of Q. For any q ∈ {1, n}, define
bq = aw, where w = [r + (q − 1)h̃kt]n. That is, b1, b2, . . . , bn is the h-
translatable sequence of (Q, ∗) with respect to the ordering 1, 2′, 3′, . . . , n′.
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By Lemma 2.5 (i), for all l,m ∈ {1, n}, l′ ∗ m′ = b[h−hl+m]n = ax, where
x = [r + (h − hl + m − 1)h̃kt]n. Since r = [k + kct − kt + (1 − d)h̃kt]n,
x = [k + kct − ktl − dh̃kt + mh̃kt]n and l′ ∗m′ = b[h−hi+m]n = ax. Then,
since for any m ∈ {1, n}, βm′ = β([d+ (m− d)]′n) = [(m− d)h̃kt]n we have
αl′ ·βm′ = ay, where y = [k−kαl′+βm′]n = [k−k(l−c)t+(m−d)h̃kt]n = x.
Hence, l′ ∗m′ = ax = ay = αl′ · βm′ and (Q, ∗) is an h-translatable isotope
of (Q, ·).

The last sentence in the statement of Corollary 3.4 follows from the fact
that (Q, ∗) is idempotent if and only if q = q ∗ q = ax[h−hq+q]n

.

Example 3.5. The set Q8 = {1, 2, 3, 4, 5, 6, 7, 8} with the operation defined
by table

· 4 8 1 3 2 5 7 6

4 6 5 1 8 2 4 3 7
8 8 2 4 3 7 6 5 1
1 3 7 6 5 1 8 2 4
3 5 1 8 2 4 3 7 6
2 2 4 3 7 6 5 1 8
5 7 6 5 1 8 2 4 3
7 1 8 2 4 3 7 6 5
6 4 3 7 6 5 1 8 2

is a 5-translatable quasigroup. We can re-label the elements ofQ8 as follows:
4 becomes 1, 8 becomes 2, 1 becomes 3, 3 becomes 4, 2 becomes 5, 5 becomes
6, 7 stays as 7 and 6 becomes 8. Then, with this new labelling, (Q8, ·) is
5-translatable with respect to the natural ordering, as follows.

· 1 2 3 4 5 6 7 8

1 8 6 3 2 5 1 4 7
2 2 5 1 4 7 8 6 3
3 4 7 8 6 3 2 5 1
4 6 3 2 5 1 4 7 8
5 5 1 4 7 8 6 3 2
6 7 8 6 3 2 5 1 4
7 3 2 5 1 4 7 8 6
8 1 4 7 8 6 3 2 5

Its translatable sequence has the form 8, 6, 3, 2, 5, 1, 4, 7.
Using Corollary 3.4, we now construct an isotope (Q8, ∗) of (Q8, ·) that

is 3-translatable with respect to the ordering 1, 2′, 3′, . . . , n′.
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We have k = 5 and h = 3 = h̃. We choose c = 4 and d = 7 = t =
α([4 + 1]′8). Then we calculate that r = [k + kct − kt + (1 − d)h̃kt]8 =
8. Then, as in the proof of Corollary 3.4 (⇐), for all l,m ∈ {1, 8} is
l′ ∗m′ = b[3−3l+m]8 = a[8+(3−3l+m−1)(105)]8 = a[3−3l+m−1]8 . This gives the
following 3-translatable sequence for (Q8, ∗), with respect to the ordering
1, 2′, 3′, . . . , 8′: a8, a7, a6, a5, a4, a3, a2, a1 or 7, 8, 6, 3, 2, 5, 1, 4. This gives
the following Cayley table for the 3-translatable isotope (Q8, ∗) of (Q8, ·).

∗ 1 2′ 3′ 4′ 5′ 6′ 7′ 8′

1 7 8 6 3 2 5 1 4
2′ 5 1 4 7 8 6 3 2
3′ 6 3 2 5 1 4 7 8
4′ 4 7 8 6 3 2 5 1
5′ 2 5 1 4 7 8 6 3
6′ 8 6 3 2 5 1 4 7
7′ 1 4 7 8 6 3 2 5
8′ 3 2 5 1 4 7 8 6

According to Theorem 3.1, the mappings α and β that satisfy l′ ∗ m′ =
αl′ · βm′, for all l,m ∈ {1, 8}, are: α1′ = α1 = 3, α2′ = 2, α3′ = 1, α4′ = 8,
α5′ = 7, α6′ = 6, α7′ = 5, α8′ = 4, and β1′ = 2, β2′ = 3, β3′ = 4, β4′ = 5,
β5′ = 6, β6′ = 7, β7′ = n, β8′ = 1.

Using Lemma 2.6 we can see that 3-translatable isotopes of (Q8, ·) exist
for every ordering of Q8.

Example 3.6. Consider again the 5-translatable quasigroup of Example
3.5, with the following Cayley table:

· 1 2 3 4 5 6 7 8

1 8 6 3 2 5 1 4 7
2 2 5 1 4 7 8 6 3
3 4 7 8 6 3 2 5 1
4 6 3 2 5 1 4 7 8
5 5 1 4 7 8 6 3 2
6 7 8 6 3 2 5 1 4
7 3 2 5 1 4 7 8 6
8 1 4 7 8 6 3 2 5

Consider also a quasigroup (Q8, ?) with ordering 5, 3, 8, 1, 7, 2, 6, 4 and Cay-
ley table as follows:



Translatable isotopes of translatable quasigroups 203

? 5 3 8 1 7 2 6 4

5 8 3 6 5 4 1 7 2
3 3 7 4 6 2 8 5 1
8 6 4 8 1 3 5 2 7
1 5 6 1 2 8 7 4 3
7 4 2 3 8 7 6 1 5
2 1 8 5 7 6 2 3 4
6 7 5 2 4 1 3 6 8
4 2 1 7 3 5 4 8 6

Is the quasigroup (Q8, ?) a translatable isotope of (Q8, ·)? If it is trans-
latable then it must be 7-translatable, as all other possible values of trans-
latability, 1, 3 and 5, do not yield commutative quasigroups.

By (perhaps repeated) application of Lemma 2.6, if (Q8, ?) is 7-translata-
ble then it is 7-translatable with respect to an ordering 1, 2′, 3′, 4′, 5′, 6′, 7′, 8′,
with 7-translatable sequence 2, b2, b3, b4, b5, b6, b7, b8 with {b3, b5, b7} =
{6, 7, 8}.

Assuming that 2′ = 6 and using Lemma 2.4 (ii) and (iii), we can cal-
culate that 3′ = 3, 4′ = 5, 5′ = 2, 6′ = 4, 7′ = 7 and 8′ = 8. Using this
ordering, 1, 6, 3, 5, 2, 4, 7, 8 and the Cayley table given above for (Q8, ?), we
can calculate that, in fact (Q8, ?), is 7-translatable, with 7-translatable se-
quence 2, 4, 6, 5, 7, 3, 8, 1 or a4, a7, a2, a5, a8, a3, a1, a6. Then, by Corollary
3.4, we see that (Q8, ?) is not a 7-translatable isotope of (Q8, ·). That is
because the subscripts of the a’s in its translatable sequence must increase
successively by the same value of [7̃ ·5t]8 = [35t]8 = [3t]8. Although the sub-
scripts start increasing by a value of 3, this does not continue when moving
from b6 to b7.

4. Translatability and isomorphism

It is known that isomorphism preserves k-translatability; that is, if (Q, ·)
is k-translatable and isomorphic to (Q, ∗) then (Q, ∗) is k-translatable (cf.
[3, Theorem 8.14]). However, k-translatable quasigroups of the same or-
der are not necessarily isomorphic. An example of such quasigroups are 3-
translatable quasigroups defined by the following tables. The first is without
idempotents, in the second - all elements are idempotent. So, they cannot
be isomorphic.
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· 1 2 3 4 5
1 2 4 3 5 1
2 3 5 1 2 4
3 1 2 4 3 5
4 4 3 5 1 2
5 5 1 2 4 3

· 1 2 3 4 5
1 1 3 5 2 4
2 5 2 4 1 3
3 4 1 3 5 2
4 3 5 2 4 1
5 2 1 5 3 5

So, when are two translatable quasigroups of the same order isomor-
phic? As already mentioned, we know by [3, Theorem 8.14] that if they
are isomorphic then they must have equal value of translatability. Two
idempotent, k-translatable quasigroups of the same order are isomorphic
[2, Theorem 2.12]. The general problem remains. If (Q, ·) and (S, ∗) are
both k-translatable quasigroups of the same order then when are they iso-
morphic?

Theorem 4.1. Suppose that (Q, ·) and (S, ∗) are k-translatable quasigroups
of the same order n. If (Q, ·) is k-translatable with respect to the natural
ordering, with k-traslatable sequence a1, a2, a3, . . . , an and (S, ∗) is k-trans-
latable with respect to the ordering 1′, 2′, 3′, . . . , n′, with k-translatable se-
quence b′1, b

′
2, b
′
3 . . . , b

′
n. Then Ψ : Q → S defined by Ψi = (si)

′, i ∈ {1, n},
is an isomorphism if and only if

(i) si = [sn + it]n for all i ∈ {1, n}, where t = [k(s1 − s[1−k̃]n)]n,
(t, n) = 1 and

(ii) s′aj = b′[r+jt]n for all j ∈ {1, n}, where r = [k(1− sn − t) + sn]n.

Proof. (⇒). By Lemma 2.4 (i) and Lemma 2.5 (i), i · j = a[k−ki+j]n and
i′ ∗ j′ = b′[k−ki+j]n for all i, j ∈ {1, n}. Since Ψ is an isomorphism, for all
i, j ∈ {1, n}, Ψa[k−ki+j]n = Ψ(i · j) = Ψi ∗ Ψj = s′i ∗ s′j = b[k−ksi+sj ]n . But
1·[k−ki+j]n = a[k−ki+j]n , Ψa[k−ki+j]n = b′[[k−ksi+sj ]n = Ψ(1·[k−ki+j]n) =

Ψ1 ∗Ψ[k − ki+ j]n = s′1 ∗ s′[k−ki+j]n = b′[k−ks1+s[k−ki+j]n ]n
and so

[k(s1 − si)]n = [s[k−ki+j]n − sj ]n,
which for i = [1− k̃]n gives

[k(s1 − s[1−k̃]n)]n = [s[j+1]n− sj ]n,

for all j ∈ {1, n}.
The last equation for t = [k(s1 − s[1−k̃]n)]n implies t = [s1 − sn]n =

[s2 − s1]n = . . . = [sn − sn−1]n. Hence

si = [sn + it]n (9)
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and S = {s1, s2, . . . , sn} for (t, n) = 1.
Also, Ψ(i · j) = Ψa[k−ki+j]n = s′a[k−ki+j]n

and Ψi ∗ Ψj = s′i ∗ s′j =

b′[k−ksi+sj ]n
(9)
= b′[k−ksn−kit+sn+jt]n . Therefore, s

′
a[k−ki+j]n

= b′[k−ksn−kit+sn+jt]n .
Hence, when i = 1, we have

s′aj = b′[k−ksn−kt+sn+jt]n = b′[k(1−sn−t)+sn+jt]n = b′[r+jt]n

for all j ∈ {1, n}, where r = [k((1− sn − t) + sn]n. So, we have proved (i)
and (ii), thereby proving necessity.

(⇐). Assume that (i) and (ii) are valid. Let j = [k − kl +m]n for any
l,m ∈ {1, n}. By (ii), s′a[k−ki+m]n

= b′[r+(k−kl+m)t]n
. Since r = [k(1 − sn −

t) + sn]n, [r + (k − kl + m)t]n = [k − ksn + sn − klt +mt]n = [k − k(sn +

lt) + (sn + mt)]n
(i)
= [k − ksl + sm]n and so s′a[k−kl+m]n

= b′[k−ksl+sm]n
and

Ψ(l ·m) = Ψa[k−kl+m]n = s′a[k−kl+m]n
= b′[k−ksl−sm]n

= s′l ∗ s′m = Ψl ∗ Ψm

for any l,m ∈ {1, n}. Hence (Q, ·) and (S, ∗) are isomorphic.

Notice that, given the k-translatable quasigroups (Q, ·) and (Q, ∗), given
the k-translatable sequence a1, a2, . . . , an of Q and a given t relatively prime
to n, by (i) and (ii) every sn ∈ Q determines a k-translatable sequence
b′1, b

′
2, . . . , b

′
n for which (Q.·) and (Q, ∗) are isomorphic.

Example 4.2. Let (Q, ·), where Q = {1, 2, 3, 4, 5}, be a 2-translatable
quasigroup with respect to the natural ordering, with 2-translatable se-
quence 3, 1, 5, 2, 4. Let a quasigroup (S, ∗) be 2-translatable with respect
to the ordering b′1, b

′
2, b
′
3, b
′
4, b
′
5. Let s5 = 5 and t = 3, with Ψi = (si)

′,
i ∈ {1, 5} and s1 = 3, s2 = 1, s3 = 4, s4 = 2, s5 = 5. Suppose that
b1 = 3, b2 = 1,b3 = 2, b4 = 4, b5 = 5 Then, by Theorem 4.1, Ψ is not an
isomorphism because although (i) is satisfied, sa5 = s4 = 2 6= bx, where
x = [k(1 − s5 − t) + s6 + 5t]5 = 1 and so, 2 6= b1 = 3. Thus, (ii) is not
satisfied and Ψ is not an isomorphism. However, if we consider the mapping
when s5 = 2 and t = 3, then s1 = 5, s2 = 3, s3 = 1, s4 = 4 and this satisfies
(i) and (ii). So, (Q, ·) and (S, ∗) are isomorphic, with that mapping as the
isomorphism; namely, 1 7→ 5′, 2 7→ 3′, 3 7→ 1′, 4 7→ 4′, 5 7→ 2′.

Example 4.3. Here are the Cayley tables of the 2-translatable quasigroups
of Example 4.2.
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· 1 2 3 4 5
1 3 1 5 2 4
2 2 4 3 1 5
3 1 5 2 4 3
4 4 3 1 5 2
5 5 2 4 3 1

∗ 1′ 2′ 3′ 4′ 5′

1′ b′1 b′2 b′3 b′4 b′5
2′ b′4 b′5 b′1 b′2 b′3
3′ b′2 b′3 b′4 b′5 b′1
4′ b′5 b′1 b′2 b′3 b′4
5′ b′3 b′4 b′5 b′1 b′2

Using Theorem 4.1, we can determine all 2-translatable sequences b′1, b′2,
b′3, b

′
4, b
′
5 of (S, ∗) such that (Q, ·) and (Q, ∗) are isomorphic.

Since s5 ∈ {1, 5} and t ∈ {1, 4} there are 20 such 2-translatable se-
quences. Below we present these sequences for t = 2.

s5 t r s1 s2 s3 s4 b1 b2 b3 b4 b5 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5
1 2 2 3 5 2 4 3 4 1 2 5 3′ 5′ 2′ 4′ 1′

2 2 1 4 1 3 5 5 2 3 1 4 4′ 1′ 3′ 5′ 2′

3 2 5 5 2 4 1 3 4 2 5 1 5′ 2′ 4′ 1′ 3′

4 2 4 1 3 5 2 5 3 1 2 4 1′ 3′ 5′ 2′ 4′

5 2 3 2 4 1 3 4 2 3 5 1 2′ 4′ 1′ 3′ 5′

We can check that the quasigroups in the table above are actually iso-
morphic to (Q, ·) by using the mapping Ψ and re-ordering (S, ∗) accordingly.
In this sense, Ψ can be considered to be a mapping that re-orders S, giving
it a 2-translatable Cayley table that is more clearly isomorphic to (Q, ·).
For example, for s5 = 3, t = 2 and r = 5 we have the following:

· 1 2 3 4 5
1 3 1 5 2 4
2 2 4 3 1 5
3 1 5 2 4 3
4 4 3 1 5 2
5 5 2 4 3 1

∗ 1′ 2′ 3′ 4′ 5′

1′ 3′ 4′ 2′ 5′ 1′

2′ 5′ 1′ 3′ 4′ 2′

3′ 4′ 2′ 5′ 1′ 3′

4′ 1′ 3′ 4′ 2′ 5′

5′ 2′ 5′ 1′ 3′ 1′

∗ 5′ 2′ 4′ 1′ 3′

5′ 4′ 5′ 3′ 2′ 1′

2′ 2′ 1′ 4′ 5′ 3′

4′ 5′ 3′ 2′ 1′ 4′

1′ 1′ 4′ 5′ 3′ 2′

3′ 3′ 2′ 1′ 4′ 5′

It is not at all obvious that the first and second quasigroups above are
isomorphic. Whereas, using the mapping ψ that takes 1 7→ 5′, 2 7→ 2′,
3 7→ 4′, 4 7→ 1′ and 5 7→ 3′, it is clear that the first and third Cayley tables
are exactly the same, except for this re-labelling.

Definition 4.4. Suppose that (Q, ·) is a k-translatable quasigroup with re-
spect to the natural ordering, with k-translatable sequence a1, a2, . . . , an. If
(Q, ∗) is an h-translatable quasigroup with respect to the ordering 1, 2′, . . . , n′

and is also an isotope of (Q, ·), then we write
(Q, ∗) = (Q, ∗, h, i′, ·, k, c, d, t, a1, a2, . . . , an),
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where c, d and t are as in Corollary 3.4. If (Q, ∗) is h-translatable with
respect to the natural ordering then we write

(Q, ∗) = (Q, ∗, h, i′ = i, ·, k, c, d, t, a1, a2, . . . , an).

Corollary 4.5. Suppose that (Q, ∗) = (Q, ∗, h, i′ = i, ·, k, c, d, t, a1, a2, . . . , an),
(Q, •) = (Q, •, h, i′, ·, k, e, f, u, a1, a2, . . . , an) and Φ : (Q, ∗) → (Q, •) is de-
fined by Ψi = (si)

′, i∈{1, n}. Then Ψ is an isomorphism if and only if

(1) si = [sn + iv]n for all i ∈ {1, n}, where v = [h(s1 − s[1−h̃]n)]n
and (v, n) = 1, and

(2) Ψ a[x+(j−d)h̃kt]n = a[y+(r+jv−f)h̃ku]n for all j ∈ {1, n}, where
x = [k+kct−kt]n, y = [k+keu−ku]n and r = [h(1−sv−v)+sn]n.

Proof. (⇒). By Theorem 4.1, (i) of Corollary 4.5 is valid. By Corollary
3.4, the jth entry in the h-translatable sequences of (Q, ∗) and (Q, •) is
a[x+(j−d)h̃kt]n and a[y+(j−f)h̃ku]n respectively, where x = [k+ kct− kt]n and
y = [k + keu − ku)]n. Note that the h-translatable sequence of (Q, •),
b′1, b

′
2, . . . , b

′
n, satisfies b′j = a[y+(j−f)h̃ku]n . Then, Theorem 4.1 (ii) implies

(sa[x+(j−d)h̃kt]n
)′ = (b[r+jn]n)′, where r = [h(1 − sv − v) + sv]n. Therefore,

(ii) of Corollary 4.5 is valid.
(⇐). This follows from (⇐) of Theorem 4.1.

Example 4.6. Let (Q, ·) be the quasigroup determined by the following
Cayley table.

· 1 2 3 4 5
1 3 1 4 5 2
2 4 5 2 3 1
3 2 3 1 4 5
4 1 4 5 2 3
5 5 2 3 1 4

Then (Q, ·) is 3-translatable with respect to the natural ordering, with 3-
translatable sequence a1 = 3, a2 = 1, a3 = 4, a3 = 5 and a5 = 2. Using
Corollary 3.4, we now construct a quasigroup (Q, ∗) that is 3-translatable
with respect to the natural ordering, is an isotope of (Q, ·) and is not iso-
morphic to (Q, ·).

Firstly, we want 5 ∗ 5 = 5. This ensures that (Q, ∗) and (Q, ·) are not
isomorphic, because (Q, ·) has no idempotent elements. Now, since we want
(Q, ∗) to be 3-translatable with respect to the natural ordering, in Corollary
3.4 we have q′ = q for all q ∈ {1, 5}.
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Then, since we want h = k, 1 ∗ q′ = 1 ∗ q = axq , where xq = [r + (q −
1)k̃kt]5 = [r + (q − 1)t]5 and r = [k − kct − kt + (1 − d)k̃kt]5. Choosing
c = 5 and d = 1 we get r = [3 − 3t]5 and xq = [3 − 3t + (q − 1)t] − 5.
But, since (Q, ∗) is 3-translatable and 5 ∗ 5 = 5, by Corollary 3.4, we have
1 ∗ 3′ = 1 ∗ 3 = ax3 = 5 = a4. Hence, x3 = 4 = [3− 3t+ (3− 1)t]5 = [3− t]5
and t = [−1]5 = 4 and r = [3− 3t]5 = 1.

This gives xq = [1 + (q − 1)4]5 and so, x1 = 1, x2 = 5, x4 = 3 and
x5 = 2. Therefore, by Corollary 3.4 again, the 3-translatable sequence of
Q, ∗) is a1, a5, a4, a3, a2 or 3, 2, 5, 4, 1. This gives the following Cayley table
for (Q, ∗).

∗ 1 2 3 4 5
1 3 2 5 4 1
2 5 4 1 3 2
3 1 3 2 5 4
4 2 5 4 1 3
5 4 1 3 2 5

Using (⇐) of Corollary 3.4, we see that α([c+ i]′5) = αi′ = αi = [it]5 =
[4i]5 = β([1 + i]′5) = β[i + 1]5. This gives α1 = 4 = β2, α2 = 3 = β3,
α3 = 2 = β4, α4 = 1 = β5 and α5 = 5 = β1. One easily checks that
i ∗ j = αi · βj for all i, j ∈ {1, 5}. Therefore, (Q, ∗) is the required 3-
translatable isotope of (Q, ·).
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On right bases of partially ordered
ternary semigroups

Wichayaporn Jantanan, Natee Raikham and Ronnason Chinram

Abstract. We investigate the results of a partially ordered ternary semigroup containing
right bases and characterize when a non-empty subset of a partially ordered ternary
semigroup is a right base. Moreover, we give a characterization of a right base of a
partially ordered ternary semigroup to be a ternary subsemigroup and we show that the
right bases of a partially ordered ternary semigroup have same cardinality. Finally, we
show that the complement of the union of all right bases of a partially ordered ternary
semigroup is a maximal proper left ideal.

1. Introduction

A ternary semigroup is a particular case of n-ary semigroup introduced by
Kasner [5], i.e. it is a non-empty set T with an operation T × T × T → T ,
written as (a, b, c)→ [abc], such that [[abc]de] = [a[bcd]e] = [ab[cde]] for all
a, b, c, d, e ∈ T . Any ternary semigroup can be embedded into some binary
semigroup (called a covering semigroup) in this way that [abc] = abc for
a, b, c ∈ T [1]. Based on the notion of one-sided ideals of a semigroup gener-
ated by a non-empty set, the notion of one-sided bases of a semigroup was
first introduced by Tamura [6]. Later, this concept was studied by Fabrici
[2]. Moreover, the concept of one-sided bases were introduced and discussed
in ternary semigroups by Changphas and Kummon [7]. In this paper, we in-
troduce the concept of right bases of a partially ordered ternary semigroup.
We study the structure of a partially ordered ternary semigroup containing
right bases and extend the conclusions obtained by Thongkam and Chang-
phas [7] to the results in partially ordered ternary semigroups, where by a
partially ordered ternary semigroup (shortly: ternary po-semigroup) is mean

2010 Mathematics Subject Classification: 20N10, 06F05.
Keywords: partially ordered ternary semigroup, right base, right singular.
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a ternary semigroup with a partial order such that

a 6 b⇒ [axy] 6 [bxy], [xay] 6 [xby] and [xya] 6 [xyb]

for all a, b, x, y ∈ T. In the last years ternary semigroups (also partially
ordered) were studied by many authors (see for example [3, 4]).

We shall assume throughout this paper that T stands for a ternary po-
semigroup. For non-empty subsets A,B and C of a ternary po-semigroup
T , we denote

[ABC] := {[abc] | a ∈ A, b ∈ B, c ∈ C} and

(A] := {t ∈ T | t 6 a for some a ∈ A}.

If A = {a}, we write [{a}BC] as [aBC] and ({a}] as (a]. For any other
cases can be defined analogously. For the sake of simplicity, we write [ABC]
as ABC and [abc] as abc.

A non-empty subset A of a ternary po-semigroup T is called a left (resp.
right) ideal if (1) TTA ⊆ A (resp. ATT ⊆ A) (2) if x ∈ A and y ∈ T such
that y 6 x, then y ∈ A. A left ideal A of T is said to be proper if A ⊂ T .
A proper left ideal A of T is said to be maximal if there is no a proper left
ideal B of A such that A ⊂ B. Note that the union of left ideals of T is a
left ideal of T , and the intersection of left ideals of T is a left ideal of T , if
it is non-empty. By L(A) we denote the smallest left ideal of T containing
A, that is L(A) = (A ∪ TTA]. In particular case, for a ∈ T, we write L(a)
instead of L({a}), called the principal left ideal of T generated by a, and it
is the from L(a) = (a ∪ TTa].

As in [7], we define the quasi-ordering on a partially ordered ternary
semigroup T by for any a, b ∈ T ,

a 6L b if and only if L(a) ⊆ L(b).

The symbol a <L b stands for a 6L b and a 6= b i.e., L(a) ⊂ L(b).

Let A,B,C be non-empty subsets of T . Then
(1) A ⊆ (A] and ((A]] = (A].
(2) If A ⊆ B, then (A] ⊆ (B].
(3) (A](B](C] ⊆ (ABC].
(4) (A] ∪ (B] = (A ∪B].
(5) (TTA] is a left ideal of T .
(6) For any a ∈ T , (TTa] is a left ideal of T .
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2. Main results

In this section we characterize right bases of a ternary po-semigroup and
extend the results from [7].

Definition 2.1. A non-empty subset A of a ternary po-semigroup T is
called a right base of T if:

(1) T = (A ∪ TTA], i.e., T = L(A);
(2) if B is a subset of A such that T = L(B), then B = A.

Example 2.2. Let T = {a, b, c, d, e} be a ternary po-semigroup with the
operation xyz = z and the partial order a 6 c 6 e 6 b where d is a separate
element. Then {b, d} is a right base of T , but {b} and {d} are not right
bases of T .

Example 2.3. Let T = {a, b, c, d, e} be a ternary po-semigroup with the
operation abc = a ∗ (b ∗ c), where (T, ∗,6) is a po-semigroup defined by the
following table and graph:

∗ a b c d e

a a e e a e
b d b b d b
c d b b d b
d d b b d b
e a e e a e

b

d

a

e

c

The right bases of T are {a} and {d}. But {a, d} is not a right base.

Lemma 2.4. Let T be a ternary po-semigroup. For any a, b ∈ T, if a 6 b,
then a 6L b.

Lemma 2.5. Let A be a right base of a ternary po-semigroup T , and
a, b ∈ A. If a ∈ (TTb], then a = b.

Proof. Let a, b ∈ A be such that a ∈ (TTb]. Suppose that a 6= b. Let
B = A \ {a}. Then B ⊂ A. We claim that L(B) = T. Clearly, L(B) ⊆ T.
Next, let x ∈ T . Then, by L(A) = T , we have x ∈ (A ∪ TTA]. Thus, x 6 y
for some y ∈ A ∪ TTA. There are two cases to consider:

Case 1: y ∈ A. We have y 6= a or y = a. If y 6= a, then y ∈ B ⊆ L(B).
If y = a, then

y = a ∈ (TTb] ⊆ (TTB] ⊆ L(B).
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Case 2: y ∈ TTA. We set y = t1t2a1 for some t1, t2 ∈ T and a1 ∈ A. If
a1 6= a, then

y = t1t2a1 ∈ TTB ⊆ L(B).

If a1 = a, then

y = t1t2a1 ∈ TT (TTb] ⊆ (T ](T ](TTB] ⊆ ([TTT ]TB] ⊆ (TTB] ⊆ L(B).

From both cases, we obtain that y ∈ L(B). Since x 6 y and y ∈ L(B),
then x ∈ (L(B)] = L(B). Thus, T ⊆ L(B). Hence L(B) = T. This is a
contradiction. Therefore, a = b.

Theorem 2.6. A non-empty subset A of a ternary po-semigroup T is a
right base of T if and only if

(1) for any x ∈ T there exists a ∈ A such that x 6L a;

(2) for any a, b ∈ A, if a 6= b, then neither a 6L b nor b 6L a.

Proof. Assume that A is a right base of T . We have L(A) = T. First, to
show that (1) holds. Let x ∈ T . Then x ∈ (A ∪ TTA]. Thus, x 6 y for
some y ∈ A ∪ TTA. If y ∈ A and x 6 y, by Lemma 2.4, we obtain x 6L y.
If y ∈ TTA, then y = t1t2a for some t1, t2 ∈ T and a ∈ A. Since x 6 y
and y = t1t2a ∈ TTa ⊆ L(a), we obtain x ∈ (L(a)] = L(a). It follows that
L(x) ⊆ L(a). Thus, x 6L a where a ∈ A. This shows that (1) holds.

To prove (2) let a, b ∈ A be such that a 6= b. Suppose that a 6L b. We
set B = A \ {a}. Then b ∈ B and B ⊂ A. Let x ∈ T , by (1), there exists
c ∈ A such that x 6L c i.e., L(x) ⊆ L(c). Since c ∈ A, we have c 6= a or
c = a. If c 6= a, then c ∈ B. We obtain x ∈ L(x) ⊆ L(c) ⊆ L(B). If c = a,
then x 6L c = a 6L b and so x 6L b. We obtain x ∈ L(x) ⊆ L(b) ⊆ L(B).
Hence, T ⊆ L(B) and so T = L(B). This is a contradiction. The case
b 6L a can be proved similarly. Thus, a 6L b and b 6L a are false.

Conversely, assume that the conditions (1) and (2) hold. We will show
that A is a right base of T . Clearly, L(A) ⊆ T. By (1), we obtain T ⊆ L(A).
Thus, T = L(A). Next, suppose that T = L(B) for some B ⊂ A. Let
a ∈ A \ B. We have a ∈ A ⊆ T = L(B) = (B] ∪ (TTB]. If a ∈ (B], then
a 6 b for some b ∈ B. By Lemma 2.4, we obtain a 6L b where a, b ∈ A. This
contradicts to (2). If a ∈ (TTB], then a 6 t1t2b1 for some t1, t2 ∈ T and
b1 ∈ B. Since a 6 t1t2b1 and t1t2b1 ∈ TTb1, we have a ∈ (TTb1] ⊆ L(b1). It
follows that L(a) ⊆ L(b1). Thus, a 6L b where a, b1 ∈ A. This contradicts
to (2). Hence, A is a right base of T .
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Definition 2.7. A ternary po-semigroup T is said to be right singular if
xyz = z for all x, y, z ∈ T.

In general, a right base of a ternary po-semigroup need not be a ternary
subsemigroup. Thus, the following theorem is a requirement for a right base
to be a ternary subsemigroup.

Theorem 2.8. Let A be a right base of a ternary po-semigroup T. Then A
is a ternary subsemigroup of T if and only if A is right singular.

Proof. Assume that A is a ternary subsemigroup of T . Let a, b, c ∈ A. By
assumption, we have abc ∈ A. Since abc ∈ A, then there exists x ∈ A such
that x = abc. Then x = abc ∈ TTc ⊆ (TTc]. By Lemma 2.5, x = c.
Thus, abc = c. Therefore, A is right singular. The converse statement is
obvious.

In Example 2.2 and Example 2.3, it is observed that the cardinality of
right bases are the same. However, it turns out that this is true in general,
and we will prove in the following theorem.

Theorem 2.9. Let A and B be any right bases of a ternary po-semigroup
T . Then A and B have the same cardinality.

Proof. Let a ∈ A. Since B is a right base of T , by Theorem 2.6(1), we have
a 6L b for some b ∈ B. Similarly, since A is a right base of T , we have
b 6L a∗ for some a∗ ∈ A. Thus, a 6L b 6L a∗ and so a 6L a∗. By Theorem
2.6(2), we obtain a = a∗. Hence, a 6L b 6L a and so L(a) = L(b). Define
a mapping

f : A→ B by f(a) = b for all a ∈ A.

If a1, a2 ∈ A be such that a1 = a2, f(a1) = b1 and f(a)2 = b2 for some
b1, b2 ∈ B, we have L(a1) = L(a2), L(a1) = L(b1) and L(a2) = L(b2). Thus,
L(a1) = L(a2) = L(b1) = L(b2) i.e., b1 6L b2 and b2 6L b1. By Theorem
2.6(2), we obtain b1 = b2. Hence, f is well-defined. Next, to show that f is
one-to-one. Let a1, a2 ∈ A be such that f(a1) = f(a2) = b for some b ∈ B.
Then a1 6L b and a2 6L b. Since A is a right base of T , we have b 6L a for
some a ∈ A. Thus, a1 6L b 6L a, a2 6L b 6L a and so a1 6L a, a2 6L a.
By Theorem 2.6(2), we obtain a1 = a = a2. Hence, f is one-to-one. Finally,
we will show that f is onto. Let b ∈ B. To show that f(a) = b for all a ∈ A,
it suffices to show L(a) = L(b) for all a ∈ A. Since A is a right base of T ,
by Theorem 2.6(1), we have b 6L a for some a ∈ A. Similarly, since B is
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a right base of T , we have a 6L b∗ for some b∗ ∈ B. Thus, b 6L a 6L b∗

and so b 6L b∗. By Theorem 2.6(2), b = b∗. This implies that L(a) = L(b).
Therefore, f is onto.

Theorem 2.10. Let A be a right base of a ternary po-semigroup T, and
a ∈ A. If L(a) = L(b) for some b ∈ T and a 6= b, then b is an element of a
right base of T which is distinct from A.

Proof. Assume that L(a) = L(b) for some b ∈ T and a 6= b. Let B =
(A \ {a}) ∪ {b}. Then B 6= A. We will show that B is a right base of T , it
suffices to show that B satisfies the conditions (1) and (2) of Theorem 2.6.
First, let x ∈ T . Since A is a right base of T , we have x 6L c for some
c ∈ A. If c 6= a, then c ∈ B. If c = a, then L(c) = L(a) = L(b). Thus,
L(x) ⊆ L(c) = L(b). Hence, x 6L b where b ∈ B. This means that satisfies
the condition (1) of Theorem 2.6. Next, let b1, b2 ∈ B be such that b1 6= b2.
We consider four cases:

Case 1: b1 6= b and b2 6= b. Then b1, b2 ∈ A. This implies neither
b1 6L b2 nor b2 6L b1.

Case 2: b1 6= b and b2 = b. Then L(b2) = L(b). If b1 6L b2, we have

L(b1) ⊆ L(b2) = L(b) = L(a).

Thus, b1 6L a where b1, a ∈ A. This is a contradiction. If b2 6L b1, we have

L(a) = L(b) = L(b2) ⊆ L(b1).

Thus, a 6L b1 where b1, a ∈ A. This is a contradiction.
Case 3: b1 = b and b2 6= b. Then L(b1) = L(b). If b1 6L b2, we have

L(a) = L(b) = L(b1) ⊆ L(b2).

Thus, a 6L b2 where b2, a ∈ A. This is a contradiction. If b2 6L b1, we have

L(b2) ⊆ L(b1) = L(b) = L(a).

Thus, b2 6L a where b2, a ∈ A. This is a contradiction.
Case 4: b1 = b and b2 = b. Then b1 = b2. This contradicts to b1 6= b2.

This means that B satisfies the condition (2) of Theorem 2.6. Therefore, B
is a right base of T .

The following corollary follows directly from Theorem 2.10.
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Corollary 2.11. Let A be a right base of a ternary po-semigroup T, and
a ∈ A. If L(a) = L(b) for some b ∈ T and a 6= b, then T contains at least
two right bases.

Theorem 2.12. Let R be the union of all right bases of a ternary po-
semigroup T . If T \R is non-empty, then it is a left ideal of T .

Proof. Assume that T \ R is non-empty. Let x, y ∈ T and a ∈ T \ R.
Suppose that xya /∈ T \R. Then xya ∈ R. Thus, xya ∈ A for some a right
base A of T . We set xya = b for some b ∈ A. Then b = xya ∈ TTa ⊆ L(a).
This implies that L(b) ⊆ L(a). Thus, b 6L a. If L(b) = L(a), by Theorem
2.10, a ∈ R. This contradicts to a ∈ T \ R. Hence, L(b) 6= L(a). Since
A is a right base of T, we have a 6L c for some c ∈ A. If c = b, then
L(a) ⊆ L(c) = L(b) ⊆ L(a). Thus, L(a) = L(b). This is a contradiction.
Hence, c 6= b. Since b 6L a and a 6L c, we have b 6L c where b 6= c
and b, c ∈ A. This contradicts to the condition (2) of Theorem 2.6. Thus,
xya ∈ T \ R. Next, let x ∈ T \ R and y ∈ T such that y 6 x. By Lemma
2.4, y 6L x. To show that y ∈ T \R, suppose that y /∈ T \R. Then y ∈ R
and so y ∈ B for some a right base B of T . Since B is a right base of T , we
have x 6L z for some z ∈ B. Since y 6L x and x 6L z, then y 6L z where
y, z ∈ B. If y = z, we have x 6L z = y 6L x. By Theorem 2.6(2), x = y.
This is a contradiction. Thus, y 6= z and y 6L z. This contradicts to the
condition (2) of Theorem 2.6. Hence, y ∈ T \ R. Therefore, T \ R is a left
ideal of T.

Theorem 2.13. Let R be the union of all right bases of a ternary po-
semigroup T such that R 6= ∅. Then T \R is a maximal proper left ideal of
T if and only if R 6= T and R ⊆ L(a) for all a ∈ R.

Proof. Assume that T \ R is a maximal proper left ideal of T . We have
T \ R ⊂ T and so R 6= T . Let a ∈ R. Suppose that R * L(a). Then there
exists x ∈ R such that x /∈ L(a). Since x /∈ T \ R and x /∈ L(a), then
(T \ R) ∪ L(a) ⊂ T. So, we have (T \ R) ∪ L(a) is a proper left ideal of T ,
and (T \R) ⊂ (T \R)∪L(a). This contradicts to the maximality of T \R.
Thus, R ⊆ L(a).

Conversely, assume that R 6= T and R ⊆ L(a) for all a ∈ R. We will
show that T \R is a maximal proper left ideal of T . Since ∅ 6= R ⊂ T, then
∅ 6= T \ R ⊂ T. By Theorem 2.12, T \ R is a proper left ideal of T . Next,
let L is a proper left ideal of T such that T \R ⊂ L ⊂ T. Then there exists
x ∈ L such that x /∈ T \ R i.e., x ∈ R. Thus, R ∩ L 6= ∅. Let a ∈ R ∩ L.
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Then a ∈ R and a ∈ L. So, we have R ⊆ L(a) and L(a) ⊆ L. Hence, R ⊆ L
and so

T = (T \R) ∪R ⊆ L ⊂ T.

Thus, T = L. This is a contradiction. Therefore, T \R is a maximal proper
left ideal of T.

Theorem 2.14. Let R be the union of all right bases of a ternary po-
semigroup T such that ∅ 6= R ⊂ T, and let L∗ be a proper left ideal of T
containing every proper left ideal of T. Then the following statements are
equivalent:

(1) T \R is a maximal proper left ideal of T ;
(2) R ⊆ L(a) for all a ∈ R;
(3) T \R = L∗;
(4) every right base of T is singleton set.

Proof. (1)⇔ (2). This follows from Theorem 2.13.
(3)⇔ (4). Assume that T \R = L∗. Then T \R is a maximal proper left

ideal of T . Let a ∈ R. By Theorem 2.13, we have R ⊆ L(a). If T \R * L(a)
for some a ∈ R, we have L(a) 6= T and so L(a) is a proper left ideal of T .
Thus, a ∈ L(a) ⊆ L∗ = T \R and so a ∈ T \R. This contradicts to a ∈ R.
Hence, T \ R ⊆ L(a). Since R ⊆ L(a) and T \ R ⊆ L(a) for all a ∈ R, it
follows that

T = (T \R) ∪R ⊆ L(a) ⊆ T.

Thus, T = L(a) for all a ∈ R. Hence, {a} is a right base of T . Next, let A
be a right base of T . To show that a = b for all a, b ∈ A suppose that there
exists a, b ∈ A such that a 6= b. Then a, b ∈ A ⊆ R. So, we obtain T = L(a).
Since b ∈ T = L(a) = (a ∪ TTa] we have b 6 a or b ∈ (TTa]. If b 6 a, by
Lemma 2.4, b 6L a. This contradicts to the condition (2) of Theorem 2.6.
Thus, b ∈ (TTa]. By Lemma 2.5, b = a. This is a contradiction. Hence,
a = b for all a, b ∈ A. Therefore, every right base of T is singleton set.
Conversely, assume that every right base of T is singleton set. To show
that T \ R = L∗, it suffices to show A ⊆ T \ R for all a proper left ideal
A of T. Suppose that A is a proper left ideal of T such that A * T \ R.
Then there exists x ∈ A such that x /∈ T \ R i.e., x ∈ R. Since x ∈ A,
it follows that L(x) ∈ A. Since x ∈ R, by assumption, T = L(x) and so
T = L(x) ⊆ A ⊂ T. Thus, T = A. This is a contradiction. Hence, A ⊆ T \R.
Therefore, T \R = L∗.
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(1) ⇔ (3). Assume that T \ R is a maximal proper left ideal of T . To
show that T \ R = L∗. Let A be a left ideal of T such that A * T \ R.
Then there exists x ∈ A ∩ R. By Theorem 2.13, we have R ⊆ L(x) ⊆ A.
Thus, A = R ∪ B for some B ⊆ T \ R. For any a ∈ T , there exists b ∈ R
such that a 6L b. Since b ∈ R, then L(b) ∈ R. Thus, a ∈ L(a) ⊆ L(b) ⊆
R ⊆ A. Hence, T = A. Therefore, T \ R = L∗. The converse statement is
obvious.

Theorem 2.15. Let R be the union of all right bases of a ternary po-
semigroup T such that ∅ 6= R ⊂ T. If T \ R is a maximal proper left ideal
of T , then one of the following conditions holds:

(1) (TTA] = T (i.e., L(A) = (TTA]) for every right base A of T ;
(2) there is unique a right base A of T such that A ⊆ T \ (TTA].

Proof. Assume that T \R is a maximal proper left ideal of T and suppose
that the condition (1) is false. By Theorem 2.14, we have a right base
A = {a} of T and (TTA] 6= T. If a ∈ (TTa], then (a] ⊆ ((TTa]] = (TTa].
So, we have (TTa] = (a]∪ (TTa] = (a∪ TTa] = T. This is a contradiction.
Thus, a /∈ (TTa]. Hence, A ⊆ T \ (TTA]. Next, suppose that T contains
at least two right bases, A1 = {a1}, A2 = {a2} such that a1 /∈ (TTa1],a2 /∈
(TTa2] and a1, a2 ∈ R. We claim that {a1} = (a1]. Suppose that b ∈ T \A1

such that b ∈ (a1]. Then b 6 a1, by Lemma 2.4, we have b 6L a1. Thus,
b ∈ L(b) ⊆ L(a1) ⊆ L(A1). Clearly, if x ∈ T \ A1 such that x /∈ (a1],
then x ∈ L(A1). So, we obtain T \ A1 ⊆ L(A1). Since A1 ⊆ L(A1) and
T \A1 ⊆ L(A1), we have T \L(A1) ⊆ T \A1 ⊆ L(A1). This is a contradiction.
Thus, {a1} = (a1]. Since A1 ⊆ R, we have

T \R ⊆ T \A1 = (a1 ∪ TTa1] \ {a1} = ((a1] ∪ (TTa1]) \ (a1] = (TTa1].

Since a2 ∈ T = (a1∪TTa1], then a2 ∈ (TTa1]. Thus, T \R ⊂ (TTa1]. This
contradicts to the maximality of T \R. Hence, there is unique a right base
A of T such that A ⊆ T \ (TTA].
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Projective finitely supported M-sets

Khadijeh Keshvardoost and Mahdieh Haddadi

Abstract. The purpose of this paper is to provide simple characterizations of the pro-
jective objects in the category of finitely supported M -sets. To do so, first, we introduce
the notion of zero-retraction monoid and then characterize projective finitely supported
M -sets where M contains a zero-retraction monoid.

1. Introduction

Take D to be a countable infinite set. A permutation over D is said to be
finite if it changes only a finite number of elements of D. Let G = Perm(D)
be the group of finite permutations. A nominal set is a G-set such that for
each element x one can find a finite set of D supporting x.

The notion of nominal sets (finitely supported G-sets) was introduced
by Fraenkel in 1922, and developed by Mostowski in the 1930s in order to
prove the independence of the axiom of choice and other axioms in classical
Zermelo-Fraenkel set theory. In computer science, nominal sets were used
in order to properly model the syntax of formal systems involving variable-
binding operations (cf. [5]). Nominal sets also have been used in game
theory [1], Logic [10], topology [9] and in proof theory [13].

Pitts [12] generalized finite permutations to finite substitutions and in-
troduced the monoid Cb. He has shown that this category is equivalent to
a particular category of presheaves named cubical sets.

The question of projectivity, as the dual notion of injectivity, is one
which arises in many areas of mathematics, and concerns the possibility of
lifting a given morphism defined in to a structure through the epimorphisms.

A projective M -set, a set equipped with an action of a monoid (or a
group) M , generalizes the concept of the free M -set (cf. [8]). In fact, a
projective M -set is a retract of a free M -set. Indecomposable projective

2010 Mathematics Subject Classification: 20M30, 20B30, 20M35, 18B20, 18G05
Keywords: Finitely supported M -sets, nominal sets, projective S-sets, S-sets.
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M -sets are cyclic (cf. Proposition 17.7.III, [8]). Also a characterization of a
projective M -set in terms of indecomposable projective M -sets is given by
Knauer (cf. Theorem 17.8.III, [8]).

Throughout the paper, D and End(D) are both fixed. The set D is
an infinite countable set and End(D) is the monoid of all maps from D to
itself with respect to composition. As we mentioned, a projective M -set is
a retract of a free M -set. However in categories of finitely supported M -
sets there exists no free finitely supported M -sets over sets (see Theorem
3.1). Here, we observe that although the category of nominal sets has
no projective object (see Corollary 3.4), but projective finitely supported
M -sets exist, in which M is a submonoid of End(D). In [8], it is proved
that every singletonM -set is projective if and only ifM contains some zero
elements. This result fails in the category of finitely supported Cb-sets. The
monoid Cb has no zero element (see Lemma 2.15) while every singleton Cb-
set (which is also a finitely supported Cb-set) in the category of finitely
supported Cb-sets is projective, by Proposition 3.5.

These facts motivate us to study projective finitely supported M -sets
where M is a submonoid of End(D). We introduce the notion of zero-
retraction monoids (Definition 3.6) and then we characterize projective
finitely supported M -sets where M is a zero-retraction monoid. In fact,
we consider those monoids to behave almost like Cb. Finally, using the
functor introduced in [6], we characterize projective finitely supported N -
sets where N contains a zero-retraction monoid M .

2. Preliminaries

In this section, the preliminary facts about (finitely supported) M -sets are
given where M 6 End(D). For more information see [2, 3, 8, 12].

2.1 M-sets

An (left) M -set for a monoid M with identity idD is a set X equipped with
a map M ×X → X, (m,x)  mx, called an action of M on X, such that
idDx = x and m(m′x) = (mm′)x, for all x ∈ X and m,m′ ∈M .

The set D is an M -set with the action given by md = m(d) for all
m ∈M and d ∈ D.

The set Dk = {(d1, . . . , dk) : d1, . . . , dk ∈ D} is anM -set with the action
m(d1, . . . , dk) = (md1, . . . ,mdk).
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An equivariant map from anM -setX to anM -set Y is a map f : X → Y
with f(mx) = mf(x), for all x ∈ X,m ∈M .

An element x of anM -setX is called a zero (fixed or equivariant) element
if mx = x, for all m ∈ M . We denote the set of all zero elements of an
M -set X by Z(X). The M -set X all of whose elements are zero is called a
discrete M -set.

A subset Y of anM -set X is anM -subset of X ifmy ∈ Y , for allm ∈M
and y ∈ Y . Given an M -set X, the set Z(X) is in fact an M -subset of X.

For the family {Xi}i∈I of M -sets, the cartesian product
∏

i∈I
Xi with

the component wise action, m(xi)i∈I = (mxi)i∈I , is the product of Xi ’s
in the category of M -sets. The coproduct of the family {Xi}i∈I is their
disjoint union

∐
i∈I
Xi =

⋃
i∈I

(Xi × {i}) with the action of M defined by
m(x, i) = (mx, i), for every m ∈M and x ∈ Xi .

An element m ∈M is called idempotent if mm = m.
AnM -set X is decomposable if there exist twoM -subsets Y, Z of X with

X = Y ∪Z and Y ∩Z = ∅. In this case X = Y ∪Z is called a decomposition
of X. An M -set X is called indecomposable if it has no decomposition.

Every M -set has a decomposition into indecomposable M -subsets (cf.
Theorem 5.10.I, [8]).

A cyclic M -set X is an M -set which is generated by only one element.
That is X = Mx, for some x ∈ X.

2.2 Projective M-sets

The following facts about projective M -sets are needed in the sequel. For
more details see [8].

AnM -set P is said to be projective if for each epimorphism (equivariant
surjective map) h : A � B and each equivariant map f : P → B, there
exists an equivariant map ϕ : P → A with hϕ = f .

Also, anM -subset A of anM -set B is called a retract of B if there exists
an equivariant map f : B → A with fi = idA , in this case, f is said to be
a retraction.

Remark 2.1. (cf. Proposition 17.2.III, [8])

(1) A free M -set is projective.

(2) Any retract of a projective M -set is projective.

(3) Any monoid M is a free M -set.



222 Kh. Keshvardoost and M. Haddadi

Proposition 2.2. (cf. [8]) Let X be an M -set. Then,

(i) (Proposition 17.1.III) X is projective if and only if X =
∐

i∈I
Xi ,

where Xi ’s are projective M -sets.
(ii) (Theorem 17.8.III) X is projective if and only if X =

∐
i∈I
Xi with

Xi
∼= Me, where Me is a cyclic M -subset of M , and e ∈M is an

idempotent element.
(iii) (Proposition 17.4.III) X is projective if and only if it is a retract of

a free M -set.

2.3 Finitely supported M-sets

In this subsection, we give some needed facts about finitely supported M -
sets. For more information see [2, 12].

Definition 2.3. (cf. [12]) Suppose X is an M -set and x ∈ X.
(a) A subset C ⊆ D supports x if, for every m,m′ ∈M ,

(m(c) = m′(c), (∀c ∈ C))⇒ mx = m′x.

If there is a finite (possibly empty) support C then we say that x is finitely
supported.

(b) If every element of X has a finite support, then X is called a finitely
supported M -set.

(c) A subset C ⊆ D strongly supports x if, for every m,m′ ∈M ,

(m(c) = m′(c), (∀c ∈ C))⇔ mx = m′x.

We denote the category of all M -sets with equivariant maps between
them by M -Set, and its full subcategory of all finitely supported M -sets
by (M -Set)fs.

Remark 2.4. Suppose C ⊆ Z(D) is a finite subset. If X is a finitely
supported M -set and x ∈ X, then

(1) B ⊆ D supports x if and only if B − C supports x.
(2) B ⊆ C supports x if and only if x is a zero element.

Example 2.5. (1) A discrete M -set is a finitely supported M -set, because
the empty set is a finite support for each element.

(2) For each M -set X, the set

Xfs = {x ∈ X : x has a finite support in X},
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is a finitely supported M -subset of X. Also, Z(X) = Z(Xfs).
(3) The sets D and

Dk = {(d1, . . . , dk) : d1, . . . , dk ∈ D}

are finitely supported M -sets. In fact, {d} is a finite support of d and
{d1, . . . , dk} is a finite support for (d1, . . . , dk).

The following example shows that there exists an M -set which is not a
finitely supported M -set.

Example 2.6. (Exercise 2.4, [11]) For each natural number k, let X
k

= D.
Take the element (x

k
)
k∈N

in A =
∏

k∈N
X
k
such that for every d ∈ D there

exists k ∈ N with d = x
k
. Then, this element has no finite support. So,

A
fs
6= A.

Remark 2.7. (1) The product of a family of finitely supportedM -sets Xi ’s
is (

∏
i∈I
Xi)fs .

(2) Coproducts in the category of finitely supported M -sets are con-
strcuted just as in the catgeory of M -sets. Hence, for a family of finitely
supported M -sets Xi indexed by a set I, disjoint union of Xi ’s is the co-
product of them, and denoted by

∐
i∈I
Xi . For each element t ∈

∐
i∈I
Xi ,

there exists j ∈ I with t ∈ Xj . Hence, if S is a finite support of t in Xj ,
then S is a finite support of t in

∐
i∈I
Xi . For more details cf. Section 2.2,

[12] and Chapter II, [8].

Definition 2.8. (cf. [2, 12]) Let X be a finitely supported M -set and
x ∈ X. Then,

(a) x admits least support if the set
⋂
{C : C is a finite support of x}

supports x. We denote the least support of x ∈ X with suppx.
(b) X admits least support if every x ∈ X has the least support.

Remark 2.9. (1) For the given M -set X and x ∈ X, if C (strongly)
supports x, then m(C) (strongly) supports mx.

(2) Suppose f : X → Y is an equivariant map and x ∈ X. If C is a
finite support of x, then C is a finite support of f(x).

Definition 2.10. (a) A permutation (bijection map) π : D → D is said to
be finite if {d ∈ D | π(d) 6= d} is finite. The set Perm(D) is the group of all
finite permutations on D.

(b) A finitely supported Perm(D)-set X is called a nominal set.

Example 2.11. The set D(k) = {(d1, . . . , dk) ∈ Dk : (∀i 6= j), di 6= dj} is a
nominal set.
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2.4 Finitely supported Cb-sets

We give some basic facts about the monoid Cb and finitely supported Cb-
sets. For more information one can see [4, 7, 12].

Also, we take 2 = {0, 1} with 0, 1 6∈ D.

Definition 2.12. (a) A map σ : D → D ∪ 2 is called an injective finite
substitution if {d ∈ D | σ(d) 6= d} is finite and

(∀d, d′ ∈ D), σ(d) = σ(d′) /∈ 2⇒ d = d′.

(b) If d ∈ D and b ∈ 2, a basic substitution (b/d) maps d to b, and is
the identity mapping on all the other elements of D.

(c) If d, d′ ∈ D then each transposition (d d′) is called a transposition
substitution.

Definition 2.13. (a) The monoid Cb is the monoid whose elements are
injective finite substitutions with the monoid operation given by σ·σ′ = σ̂σ′,
where σ̂ : D ∪ 2→ D ∪ 2 maps 0 to 0, 1 to 1, and on D is defined the same
as σ. The identity element of Cb is the inclusion ι : D ↪→ D ∪ 2.

(b) The subsemigroup of Cb generated by basic substitutions is denoted
by S. Each element of S is of the form δ = (b1/d1) · · · (bk/dk) ∈ S for some
di ∈ D and bi ∈ 2, and we denote the set {d1, . . . , dk} by D

δ
.

Theorem 2.14. (Theorem 2.4, [7]) For the monoid Cb, we have

Cb = Perm(D)(S ∪ {ι}).

Lemma 2.15. The monoid Cb (as a Cb-set) has no zero element.

Proof. On the contrary, assume that there exists a zero element σ′ ∈ Cb. We
must show that σσ′ = σ′, for all σ ∈ Cb. By Theorem 2.14, σ′ ∈ Perm(D)
or σ′ ∈ Perm(D)S. For the first case, let σ = (0/d). Then,

d = σ′(σ′−1d) = σσ′(σ′−1d) = σd = (0/d)d = 0,

which is a contradiction. Now, suppose σ′ ∈ Perm(D)S. So, there exist
π′ ∈ Perm(D) and δ′ ∈ S with σ′ = π′δ′. Let σ = (0/d)π′−1 with d /∈ D

δ′ .
Then,

π′d = π′δ′d = σ′d = σσ′d = (0/d)π′−1π′δ′d = (0/d)d = 0

which is impossible.
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Proposition 2.16. (i) (Lemma 2.4, [12]) Suppose X is a Cb-set, x ∈ X
and b ∈ 2. Also, let C be a finite subset of D. Then, C is a support of x if
and only if

(∀d ∈ D) d /∈ C ⇒ (b/d)x = x.

(ii) The set {d ∈ D : (0/d)x 6= x} is the least finite support of x.

Lemma 2.17. (cf. Lemma 3.4, [4]) Let X be a Cb-set and x ∈ X. Then,
(i) Sx = {δ ∈ S | δx 6= x} and S′

x
= S−Sx are two subsemigroups of S.

(ii) If x has the least finite support, then supp δx ⊆ (suppx) \ D
δ
, for

all δ ∈ S′
x
.

(iii) Let δ ∈ S. Then, δx 6= x if and only if D
δ
∩ suppx 6= ∅.

Remark 2.18. Let δ, δ′ ∈ S. Then, δ = δ′ if and only if D
δ

= D
δ′ with

δ(d) = δ′(d), for all d ∈ D
δ
.

Lemma 2.19. (Lemma 4.5, [4]) Let Cbx be a cyclic finitely supported Cb-
set. Then, Cbx = Perm(D)S′xx ∪ Perm(D)x.

3. Projective finitely supported M-sets

In this section, we give a characterization of projective finitely supported
M -sets, where M is a zero-retraction monoid. To do so, first we show that
although free objects over sets do not exist in the categories of finitely sup-
ported Cb-sets and nominal sets, but this is not true about projectivity. In
fact, we show that the singleton finitely supported Cb-sets are projective
while no nominal sets are projective. This fact happens because of a prop-
erty of finite substitutions in Cb. So then we generalize this property and
introduce the notion of zero-retraction monoids. Then, using this notion we
find the projective finitely supported M -sets when M is a zero-retraction
monoid or contains a zero-retraction monoid.

Let us begin this section with the following theorem which shows that,
analogous to the categories nominal sets and Cb-sets, the forgetful functor

V : (M -Set)
fs
→ Set

has no left adjoint and so free finitely supported M -sets over sets do not
exist.

Theorem 3.1. The forgetful functor V : (M -Set)
fs
→ Set has no left

adjoint.
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Proof. Let L be a left adjoint of V . Then, since right adjoints preserves
limits, we get that V preserves arbitrary products. Consider the finitely
supported M -set A

fs
in Example 2.6. So, V (A

fs
) = A

fs
is the product of

the family of X
k
’s. But, the product of X

k
’s is A.

Corollary 3.2. No free finitely supported M -sets exists over sets.

Lemma 3.3. No indecomposable nominal set is projective.

Proof. Let X be indecomposable. Then X = Perm(D)x, for some x ∈ X.
Notice that, indecomposable nominal sets are cyclic. Take k to be a natural
number with k > |suppx|, h : D(k) → {θ} to be a surjective constant
equivariant map, and f : X → {θ} is an equivariant map. If X is projective,
then there exists an equivariant map ϕ : X → D(k) with hϕ = f . Now,
we have ϕ(x) = (d1, . . . , dk) ∈ D(k). Since ϕ is equivariant, we get that
suppϕ(x) ⊆ suppx. Thus, k = |{d1, . . . , dl}| 6 |suppx| which is a contra-
diction.

Corollary 3.4. No nominal set is projective.

Proof. Follows from Proposition 2.2(i).

Proposition 3.5. The singleton finitely supported Cb-set {θ} is projective.

Proof. Suppose h :A→ B is a surjective equivariant map. Take f :{θ} → B
to be an equivariant map with f(θ) = θ′ ∈ Z(B). Notice that, finitely
supported Cb-sets have zero elements. We show that there exists an equiv-
ariant map ϕ : {θ} → A with hϕ = f . Since h is surjective, there ex-
ists a ∈ A with h(a) = θ′. If a ∈ Z(A), then define ϕ(θ) = a, and so,
hϕ(θ) = h(a) = θ′ = f(θ). If supp a 6= ∅, then take δ ∈ S with D

δ
= suppx.

Now, by Lemma 2.17(ii), supp δx = ∅, and so, taking ϕ(θ) = δa, we get
that hϕ(θ) = h(δa) = δh(a) = δθ′ = θ′ = f(θ).

3.1 Retraction-monoid

Definition 3.6. (a) Let A and B be two finite subsets of D with A ⊆ B.
Then, A is called an M -zero-retraction of B if A ∪ Z(D) is a retraction of
B; that is there exists m ∈M with m(B) ⊆ A ∪ Z(D) and m|A = id|A .

(b) A is an absolutely M -zero-retraction if A is an M -zero-retraction of
every B that contains A; that is A ⊆ B.

The monoid M is called zero-retraction, if every finite subset A of D is
an absolutely M -zero-retraction.
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Proposition 3.7. Let M be a zero-retraction monoid. Then,

(i) Z(D) is non-empty.

(ii) There exists C ⊆ Z(D) such that m|C = id|C , for every m ∈M .
In other words, M is a submonoid of MC where

MC = {m ∈ End(D) : m|C = id|C},
for some C ⊆ Z(D).

Proof. (i). Suppose B ⊆ D is a non-empty finite subset. Notice that,
m(B) 6= ∅, for every m ∈ M . Since M is zero-retraction and ∅ ⊆ B,
there exists m0 ∈ M with m0(B) ⊆ Z(D). Now, since m0(B) 6= ∅, we get
Z(D) 6= ∅.

(ii). By (i), C = m0(B) ⊆ Z(D). Let m ∈ M . Then, m|C = id|C and
so m ∈MC .

Remark 3.8. (1) The nominal set D has no zero elements.

(2) The group G = Perm(D) is not a zero-retraction monoid. This is
because, if A ( B finite subsets of D and there exists π ∈ G with π(B) ⊆ A,
then A = B which is a contradiction.

(3) The monoid Cb is a zero-retraction monoid (cf. Lemma 4.1). Notice
that, Z(D) = 2.

3.2 Finitely supported DA

The following example plays an important role in characterizing projective
finitely supported M -sets.

For a finite subset A of D, the set DA = {m|A : m ∈ M} is an M -set
with the action defined by m′ ∗m|A := (m′m)|A , for all m,m′ ∈ M , where
∗ : M × DA → DA (cf. Example 2.4, [2]).

Lemma 3.9. Let A be a finite subset of D. Then, DA is a cyclic finitely
supported M -set.

Proof. First we show that m(A) is a finite support of m|A . Indeed, if
m1,m2 ∈ M and m1(a) = m2(a), for all a ∈ m(A), then m1m(d) =
m2m(d), for all d ∈ A. Hence (m1m)|A = (m2m)|A , and so m1 ∗ m|A =
m2 ∗m|A .

Now we note that DA = Mid|A . That is DA is cyclic and we are done.
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Corollary 3.10. The map ϕ : M → DA defined by ϕ(m) = m|A is a
surjective equivariant map.

Proposition 3.11. Given a finitely supported M -set Y and a finite subset
A ⊆ D, there exists an equivariant map from DA to Y if and only if A is a
finite support of some y ∈ Y .

Proof. Suppose ϕ : DA → Y is an equivariant map. Then, we consider
ϕ(id|A) = y ∈ Y . Since ϕ is equivariant, we get that A is a finite support
of y, by Remark 2.9.

To prove the other part, it is sufficient to define ϕ : DA → Y by
ϕ(m|A) = my, where A is a finite support of y.

Lemma 3.12. Let X = Mx be a cyclic finitely supported M -set and A be a
finite support of x. Then, Mx is isomorphic to DA if and only if A strongly
supports x.

Proof. First notice that if A = ∅, then X ∼= D∅. Let x be non-zero. Then,
ϕ : DA → Mx defined by ϕ(m|A) = mx is a surjective equivariant map
using Proposition 3.11. Now, ϕ is an injective map if and only if

(∀m,m′ ∈M) (mx = m′x ⇔ m|A = m′|A)

if and only if A strongly supports x.

3.3 Projective finitely supported M-sets

In this subsection, we take M to be a zero-retraction monoid and then
characterize projective finitely supported M -sets.

Proposition 3.13. If X is a finitely supported M -set, then X has some
zero elements.

Proof. First, notice that M is a submonoid of MC , for some finite subset C
of D, by Proposition 3.7. Now suppose x ∈ X and B is a finite support of x.
The set B−C is a support of x, by Remark 2.4(2). If B−C = ∅, then x is
zero. If ∅ ( B−C, then there exists m0 ∈M with m0(B−C) ⊆ Z(D). By
Remark 2.9(1), m0(B −C) is a finite support of m0x. Thus, m0x ∈ Z(X),
by Remark 2.4(2).

The following lemma is the key to show that cyclic finitely supported
M -sets DA are projective (see Lemma 3.16).
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Lemma 3.14. Suppose f : X → Y is an equivariant map between finitely
supported M -sets, and A is a finite support of f(x), for some x ∈ X. Then,
there exists m ∈ M with f(mx) = f(x) such that A is a finite support of
mx.

Proof. Let A be a finite support of y = f(x). Then, by Remark 2.4(2),
A1 = A − Z(D) supports y. If A1 supports x, then taking m = id we get
the result. Otherwise, take B1 = B −Z(D) to be a finite support of x. So,
A1 ⊆ A1 ∪B1 and since M is a zero-retraction monoid, there exists m ∈M
with [m(A1∪B1)] ⊆ A1∪Z(D) andm|A1

= id|A1
. Sincem(A1∪B1) supports

mx, we have A1 ∪ Z(D) supports mx and so A1 supports mx, by Remark
2.4(2). Also, m|A1

= id|A1
implies that f(mx) = mf(x) = f(x) = y.

As a result of Lemma 3.14, we have the following corollary for finitely
supported M -sets admit least supports.

Corollary 3.15. Let f : X → Y be an equivariant map between finitely
supported M -sets admit least supports. Then, for every y ∈ f(X) there
exist x ∈ X and m ∈M with f(mx) = y and supp y = suppmx.

Proof. Let y = f(x), for some x ∈ X. Since f is equivariant, we have
supp y ⊆ suppx. Since M is zero-retraction, there exists m0 ∈ M with
m0(suppx) ⊆ supp y ∪ Z(D) and m0 |supp y = id|supp y . Now, f(m0x) =
m0y = y. Also, supp y ⊆ suppm0x ⊆ [m0(suppx) − Z(D)] ⊆ supp y
implies that suppm0x = supp y.

Lemma 3.16. If A is a finite subset of D, then DA is a projective finitely
supported M -set.

Proof. Let f : X → Y be a surjective equivariant map and g : DA → Y
be an equivariant map. Then, we show that there exists an equivariant
map ϕ : DA → X with fϕ = g. To do so, applying Proposition 3.11, we
find an element in X such that A supports it. We have g(id|A) ∈ Y and
f is surjective. So, there exists x ∈ X with f(x) = g(id|A). Since g is
equivariant and A = id(A) is a finite support of id|A , we get that A is a
finite support of g(id|A). Hence, by Lemma 3.14, there exists m0 ∈M with
f(m0x) = g(id|A) and A supports m0x. Therefore, ϕ(m|A) = mm0x is a
required equivariant map by Proposition 3.11. Also,

fϕ(m|A) = f(mm0x) = mf(m0x) = mg(id|A) = g(m|A).

This completes the proof.
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Corollary 3.17.
(i) Every singleton finitely supported M -set is projective.
(ii) Every discrete finitely supported M -set is projective.

Proof. (i). D∅ is isomorphic to a singleton finitely supported M -set.
(ii). Follows from (i) and Proposition 2.2(i).

Theorem 3.18. Suppose X is a finitely supportedM -set. Then, there exists
a surjective equivariant map from P =

∐
x∈X

DAx to X, where Ax is a finite
support of x.

Proof. For each element x ∈ X, take Ax to be a finite support of x. Then,
by Proposition 3.11 there exists an equivariant map ϕx : DAx → X with
ϕx(m|Ax ) = mx. Now, the universal property of coproduct, ensures that
there exists a unique equivariant map ϕ : P → X by ϕ(a) = ϕx(a), for
every a ∈ DAx . Also, for each x ∈ X, there exists an element id|Ax ∈ DAx

with ϕ(id|Ax ) = ϕx(id|Ax ) = x which means that ϕ is surjective.

Lemma 3.19. Let X be a finitely supported M -set. Then, there exists a
projective finitely supported M -set P such that X is a surjective equivariant
image of P .

Proof. If X = Z(X), then by Corollary 3.17(ii), X is projective, and so,
in this case P = X. If X is non-discrete, then applying Lemma 3.16,
Proposition 2.2(i), and Theorem 3.18 we get the result.

Lemma 3.20. Let X be a finitely supported M -set. Then, X is indecom-
posable and projective if and only if X is cyclic and X ∼= DA, for some finite
subset A ⊆ D.

Proof. Necessity. First, notice that, applying Theorem 3.18 there exists a
surjective equivariant map ϕ : P → X, where P =

∐
x∈X

DAx and ϕ|
DAx

=

ϕx : DAx → X. Now since X be projective, there exists an equivariant map
ψ : X → P such that ϕψ = idX , where idX : X → X. Thus, ϕψ(X) = X.
Since X is indecomposable, we have ψ(X) ⊆ DAx , for some x ∈ X. Now,
X = ϕψ(X) ⊆ ϕ(DAx) ⊆ X, and so, Mϕ(id|Ax ) = ϕ(DAx ) = X which
means that X is cyclic. Notice that, X = Mϕ(id|Ax ) = Mϕx(id|Ax ) = DAx .
Also, since ψ is an injective equivariant map, we get that

X ∼= ψ(X) = ψ(DAx) = Mψϕ(id|Ax ) = Mψ(id|Ax ) = DAx .

Sufficiency. Follows from Lemma 3.9 and Lemma 3.16.
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Theorem 3.21. Let X be a finitely supported M -set. Then, X is projective
if and only if X =

∐
i∈I
Xi , where every Xi is isomorphic to DA, for some

finite subset A.

Proof. Suppose X is projective. Take X =
∐
Xi to be a coproduct of

indecomposable finitely supported M -sets Xi . Then, since each Xi has a
zero element, it is a retract of X. So, by Remark 2.1(2), we get that Xi ’s
are projective. Now, applying Theorem 3.20, every Xi is isomorphic to DA,
for some finite subset A.

To prove the other side, by Lemma 3.16, cyclic DA’s are projective, and
so, every Xi is projective. Now, applying Proposition 2.2(i), any coproduct
of projective finitely supported M -sets is projective.

Corollary 3.22. Every projective finitely supported M -set is a surjective
equivariant image of a free M -set.

Proof. Let X be a projective finitely supported M -set. Then, by Theorem
3.21, we get that X ∼=

∐
x∈X

DAx , where Ax supports x. On the other hand,
by Corollary 3.10, for every x ∈ X there exists a surjective equivariant
map ϕx : M → DAx . Now, the map ϕ :

∐
x∈X

M →
∐

x∈X
DAx defined

by ϕ(m) = ϕx(m) for some x ∈ X and m ∈ M is a required surjective
equivariant map.

4. Projective finitely supported Cb-sets

The monoid Cb is isomorphic to a submonoid of End(D). It is sufficient
to take two fixed elements a, b ∈ D instead of 0 and 1 and replace D with
D−{a, b}. Then, by the same scheme of Pitts, one can get a submonoid of
End(D) isomorphic to Cb. As an example of a zero-retraction monoid, we
can mention the monoid Cb.

Lemma 4.1. The monoid Cb is a zero-retraction monoid.

Proof. Suppose A ⊆ B are two finite subsets of D. If A = B or B = ∅, then
ι(B)− 2 = ι(B) = ι(A) = A.

If A ( B and A = ∅, then take δ ∈ S with D
δ
=B. So, δ(B)−2 = ∅ = A.

If A ( B and A 6= ∅, then take δ ∈ S with D
δ

= B − A. Hence
δ(B) = A ∪ 2 and so δ(B)− 2 = A and δ|A = id|A .

Lemma 3.15 holds in the category of finitely supported Cb-sets. In the
following proposition we prove it more specifically.
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Proposition 4.2. Suppose X and Y are two finitely supported Cb-set. If
f : X → Y is an equivariant map, then for every y ∈ f(X) there exists
x ∈ X with suppx = supp y.

Proof. Let y ∈ f(X). Then, there exists x ∈ X with y = f(x). If suppx =
∅, then supp y = ∅. Suppose x ∈ X with suppx 6= ∅. If suppx = supp y,
then we get the result. If suppx ( supp y, then take δ0 ∈ S with D

δ0
=

(supp y) − suppx. Thus δ0x = x and so suppx ⊆ supp δ0y. On the other
hand, supp y = (supp y − suppx) ∪ suppx = D

δ0
∪ suppx. So, supp δ0y ⊆

supp y − D
δ0

= suppx.

4.1 Max-zero cyclic finitely supported Cb-sets

In this subsection, we construct a particular cyclic finitely supported Cb-
set, and show that it is isomorphic to a finitely supported Cb-set DA, for
some finite subset A ⊆ D.

First, we give the following needed remark and lemma.

Remark 4.3. Let Cbx be a non-singleton cyclic finitely supported Cb-set.
Then,

(1) The Cb-subset Z(Cbx) of Cbx is a subset of S′
x
x. This is because,

by Lemma 2.19, we have Z(Cbx) ∩ Perm(D)x = ∅.
(2) If δ ∈ S′

x
with D

δ
= suppx, then, by Lemma 2.17(ii), we get that

supp δx ⊆ (suppx)− D
δ

= ∅. So, δx ∈ Z(Cbx).

(3) If δ ∈ S′
x
, then there exists δ′ ∈ S′

x
such that D

δ′ ⊆ suppx and
δx = δ′x. Furthermore, suppx \ D

δ
= suppx − D

δ′ . To show this, let
δ ∈ S′

x
. Then, D

δ
∩ suppx 6= ∅. Suppose δ = δ1δ2 with D

δ2
= D

δ
∩

suppx ⊆ suppx and D
δ1
∩ suppx = ∅. Then, δx = δ2x. Now, we show that

suppx − D
δ

= suppx − D
δ′ . Notice that, since D

δ1
∩ suppx = ∅, we get

that suppx− D
δ1

= suppx. So,

suppx−D
δ

= suppx− (D
δ1
∪D

δ2
) = (suppx−D

δ1
)−D

δ2
= suppx−D

δ2
.

Proposition 4.4. Suppose X is a finitely supported Cb-set and x ∈ X. Let
σ, σ′ ∈ Cb with σx = σ′x. Then,

(i) σ, σ′ ∈ Perm(D) ∪ Perm(D)Sx or σ, σ′ ∈ Perm(D)S′
x
.

(ii) there exists π ∈ Perm(D) with πx = x or there exist δ, δ′ ∈ S′
x
and

π ∈ Perm(D) with πδx = δ′x.
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Proof. (i). Since Sx ∩ S′x = ∅, it is sufficient to prove if σ ∈ Perm(D)S′
x
,

then σ′ ∈ Perm(D)S′
x
and vice versa. Let σx = σ′x with σ ∈ Perm(D)S′

x
.

Then, σ = πδ, and so, by Lemma 2.17, we get that

|suppσ′x| = |suppσx| = |suppπδx| = |supp δx| < |suppx|.

Now, if σ′ ∈ Perm(D) ∪ Perm(D)Sx , then |suppσ′x| = |suppx|, which is
impossible.

(ii). By (i), we get σ, σ′∈Perm(D) ∪ Perm(D)Sx or σ, σ′ ∈ Perm(D)S′
x
.

If σ, σ′ ∈ Perm(D)S′
x
, then σ = π1δ and σ′ = π2δ

′, and so, we get that
π1δx = π2δ

′x. In this case, taking π−12 π1 = π, we have πδx = δ′x.
Notice that, if σ ∈ Perm(D)Sx , then σx = πδx = πx. So, if both

σ, σ′ ∈ Perm(D) ∪ Perm(D)Sx , then σx = πx, and σ′x = π′x which means
that πx = π′x. Thus, π1x = x where π1 = π′−1π.

Remark 4.5. (1) For given c1, . . . , ck ∈ {0, 1}, the decimal number is
denoted by (c

k
c
k−1
· · · c1)2 and computed as c

k
× 2

k−1
+ c

k−1
× 2

k−2
+ · · ·+

c2 × 2
1

+ c1 × 2
0 .

(2) If (c
k
c
k−1
· · · c1)2 = (c′

k
c′
k−1
· · · c′

1
)2 , then ci = c′i, for all i = 1, . . . , k.

Note. The substitutions 0 6= 1 are just symbols, and they do not belong
to D. In the following lemma, if bi is the substitution 1, then take ci to be
the natural number 1, and if bi = 0, then take ci to be the zero number 0,
for all i = 1, . . . , k.

Lemma 4.6. Suppose X is a finitely supported Cb-set with x ∈ X. Let
suppx = {d1, . . . , dk} and b1, . . . , bk ∈ 2. Take A = {0, 1, 2, 3, . . . , 2k−1, x}
to be a set with 2

k+1 elements. Define map gx : Cb→ A by

gx(σ) =


(c
k
c
k−1
· · · c1)2 , if σ ∈ Cb(b1/d1) · · · (bk/dk)

x, if otherwise.

Then, supp gx = suppx.

Proof. First applying Proposition 2.16, we show that (0/d) gx = gx , for all
d /∈ suppx. In fact, we show that ((0/d)gx)(σ) = gx(σ), for all σ ∈ Cb.
Suppose σ ∈ Cb.

If σ /∈ Cb(b1/d1) · · · (bk/dk), then σ(0/d) /∈ Cb(b1/d1) · · · (bk/dk), be-
cause otherwise if σ(0/d) = σ′(b1/d1) · · · (bk/dk), then

σ̂(di) = (σ̂(0/d))(di) = σ̂′(b1/d1) · · · (bk/dk)(di) ∈ 2,
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for all di ∈ {d1, . . . , dk}. This implies that σ ∈ Cb(b1/d1) · · · (bk/dk), which
is impossible. Thus, in this case, for all σ ∈ Cb, we get that

((0/d)gx)(σ) = gx(σ(0/d)) = x = gx(σ).

Now, let σ ∈ Cb(b1/d1) · · · (bk/dk). Then, for some σ1 ∈ Cb, we have
σ = σ1(b1/d1) · · · (bk/dk). Hence,

σ(0/d) = σ1(b1/d1) · · · (bk/dk)(0/d)
= σ1(0/d)(b1/d1) · · · (bk/dk) ∈ Cb(b1/d1) · · · (bk/dk),

and so, gx(σ(0/d)) = gx(σ).
Therefore, gx ∈ (ACb)

fs
, and so supp gx ⊆ suppx.

Now, we show that suppx ⊆ supp gx . To prove this, by Proposition
2.16, first, we prove that (0/d) gx 6= gx , for all d ∈ suppx.

Let α = (0/d1) · · · (0/di−1)(1/di)(0/di+1) · · · (0/dk), and d = di . Then,

((0/di)gx)(α) = gx(α(0/di))
= gx((0/d1) · · · (0/di−1)(0/di)(0/di+1) · · · (0/dk))
= (0 · · · 0)2 = 0

6= 2
i−1

= (0 · · · 1 · · · 0)2
= gx(α).

Thus, (0/di)gx 6= gx .

Remark 4.7. The element gx in Lemma 4.6 belongs to (ACb)
fs
. Thus,

Cbgx is a Cb-subset of (ACb)
fs
.

In the following proposition, we give all needed information about Cbgx .

Proposition 4.8. Consider Cbgx constructed in Lemma 4.6. The following
statements hold:

(i) Suppose δ, δ′ ∈ S′
gx

with D
δ

= D
δ′ = supp gx . Then δ(d) = δ′(d), if

δgx = δ′gx , for all d ∈ supp gx .

(ii) For all δ ∈ S′
gx
, we have supp δgx = (supp gx)− D

δ
.

(iii) For all δ ∈ S′
gx

with D
δ
( supp gx , we have δgx /∈ Z(Cbgx).

(iv) Z(Cbgx) = {δgx : D
δ

= supp gx}.

(v) Cbgx has exactly 2
k zero elements.
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Proof. (i). On the contrary, suppose there exists some d ∈ supp gx with
δ(d) = 0 6= 1 = δ′(d). We show that δgx 6= δ′gx . Let δ = (b1/d1) · · · (0/dk)
and δ′ = (b′1/d1) · · · (b′k−1

/d
k−1

)(1/d
k
). Then,

δgx(ι) = gx(ιδ) = (0c
k−1
· · · c0)2 6= (1c′

k−1
· · · c′

0
)2 = gx(ιδ′) = δ′gx(ι).

(ii). Let δ ∈ S′
gx
. Then, by Remark 4.3(3), there exists δ1 ∈ S′gx with

D
δ1
⊆ supp gx and δgx = δ1gx . Also, supp gx \ Dδ

= supp gx − D
δ1
. If

D
δ1

= supp gx , then by Lemma 2.17(ii), supp δ1gx ⊆ (supp gx) − D
δ1

= ∅.
So, in this case, supp δgx = supp δ1gx = (supp gx)−D

δ1
= supp gx−Dδ

. Let
D
δ1

( supp gx . In this case, we also show that supp δgx = (supp gx) − D
δ
.

To prove this, it is sufficient to show that supp δ1gx = (supp gx) − D
δ1
.

On the contrary, suppose the equality does not hold. Take δ′1, δ′2 ∈ S with
D
δ′1

= D
δ′2

= [(supp gx) − D
δ1

)] − supp δ1gx , and δ′1(d) 6= δ′2(d), for some
d ∈ D

δ′1
. Then, δ′1δ1gx = δ1gx = δ′2δ1gx . We have the following cases;

Case (1): Suppose supp δ1gx 6= ∅. Let δ
0
∈ S with D

δ
0

= supp δ1gx .
Then, D

δ
0
δ′1δ1

= supp gx = D
δ
0
δ′2δ1

. Now, since there exists some d ∈ D
δ′1

with δ′1(d) 6= δ′2(d), we get that δ0δ′1δ1(d) 6= δ0δ
′
2δ1(d). So applying (i),

we get that δ0δ′1δ1gx 6= δ0δ
′
2δ1gx which is a contradiction. This is because

the equality of δ′1δ1gx = δ1gx = δ′2δ1gx implies that δ0δ′1δ1gx = δ0δ1gx =
δ0δ
′
2δ1gx .

Case (2): Let supp δ1gx = ∅. Then, D
δ′1δ1

= supp gx = D
δ′2δ1

. Now, since
there exists some d ∈ D

δ′1
with δ′1(d) 6= δ′2(d), we get that δ′1δ1(d) 6= δ′2δ1(d).

So, applying (i), we get that δ′1δ1gx 6= δ′2δ1gx which is a contradiction. This
is because δ′1δ1gx = δ1gx = δ′2δ1gx .

(iii). Since D
δ
( supp gx , we get that supp gx − D

δ
6= ∅. Now, applying

(ii), we have supp δgx 6= ∅, and so, δgx /∈ Z(Cbgx).

(iv). Let Z = {δgx : D
δ

= supp gx}. Then, we show that Z = Z(Cbgx).
Let a ∈ Z. Then, a = δgx with D

δ
= supp gx . Thus, by Lemma 2.17(ii),

supp δgx ⊆ (supp gx) − D
δ

= ∅, and so, δgx ∈ Z(Cbgx). Now, let a ∈
Z(Cbgx). Then, a = σgx for some σ ∈ Cb. By Remark 4.3(1), σ ∈ S′

gx
.

Thus, a = δgx where δ ∈ S′
gx
. First, we show that D

δ
⊆ supp gx . Notice

that, since δ ∈ S′
gx
, applying Remark 4.3(3), there exists δ1 ∈ S′

gx
with

D
δ1
⊆ supp gx and δgx = δ1gx . Also, supp gx − D

δ
= supp gx − D

δ1
. If

D
δ1

( supp gx , then by part (iii), δ1gx /∈ Z(Cbgx). So, δgx /∈ Z(Cbgx).
Thus, D

δ1
= supp gx , and so, supp gx −D

δ
= supp gx −D

δ1
= ∅. Therefore,
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D
δ
⊆ supp gx . Now, if D

δ
( supp gx , then using part (iii) we get that

δgx /∈ Z(Cbgx) which is impossible. So, D
δ

= supp gx .
(v). This follows by (iv).

Lemma 4.9. Let πδ1gx = δ2gx where D
δ1
,D

δ2
⊆ supp gx and π ∈ Perm(D).

Then,
(i) |D

δ1
| = |D

δ2
|.

(ii) D
δ1

= D
δ2
.

(iii) δ1 = δ2.

Proof. (i). Notice that, by Proposition 4.8(ii), supp δ1gx = (supp gx)−D
δ1
,

and supp δ2gx = (supp gx) − D
δ2
. Now, since |supp δ1gx | = |supp δ2gx |, we

get that |D
δ1
| = |D

δ2
|.

(ii). On the contrary, suppose D
δ1
6= D

δ2
. So, there exists some

d ∈ D
δ1
− D

δ2
or d ∈ D

δ2
− D

δ1
. Assuming d ∈ D

δ2
− D

δ1
, we prove the

result. The other case is proved similarly. Notice that, d ∈ D
δ2

implies that
δ2(d) ∈ 2, say, δ2(d) = 0. Take δ ∈ S with D

δ
= supp δ1gx and δ(d) = 1.

Now, πδδ1gx = δ′′πδ1gx = δ′′δ2gx . Applying Proposition 4.8(ii), since
supp δδ1gx = (supp δ1gx)−D

δ
= ∅, we get that δδ1gx ∈ Z(Cbgx). Thus, by

Proposition 4.8(i), we have δδ1(d) = δ′′δ2(d) for all d ∈ supp gx which is a
contradiction. This is because δ′′δ2(d) = 0 while δδ1(d) = δ(d) = 1.

(iii). By part (ii), we have D
δ1

= D
δ2
. Now, we show that δ1(d) = δ2(d),

for all d ∈ D
δ1
. Similar to the proof of (ii), take δ ∈ S with D

δ
= supp δ1gx .

Then, we get that πδδ1gx = δ′′δ2gx , and so, δδ1(d) = δ′′δ2(d) for all d ∈
supp gx . Let d ∈ D

δ1
. Then, δ1(d) ∈ 2, say δ1(d) = 0. So, δ′′δ2(d) =

δδ1(d) = 0. Now, since D
δ1

= D
δ2
, we get that d ∈ D

δ2
, and so, δ2(d) = 0.

Thus, δ1 = δ2.

The following lemma shows that gx is a strongly finitely supported ele-
ment of Cbgx .

Lemma 4.10. Let σgx = σ′gx where σ, σ′ ∈ Cb. Then, σ|supp gx = σ′|supp gx .

Proof. Let σgx = σ′gx . Then, by Proposition 4.4, we have the following
cases:

Case (1): Suppose πgx = gx . In this case, for all d ∈ supp gx , we
show that π(d) = d. We have π(supp gx) = suppπgx = supp gx . Take
d ∈ supp gx . Since πgx = gx , we get that π(0/d)gx = (0/πd)gx . Now, by
Lemma 4.9, πd = d.
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Case (2): If πδgx = δ′gx , then applying Lemma 4.9, we have δ = δ′. So,
πδgx = δgx . Notice that, by Proposition 4.8(ii), supp δgx = (supp gx)−D

δ
.

If supp δgx = ∅, then supp gx = D
δ
. So, in this case, it s clear that πδ(d) =

δ(d) for all d ∈ supp gx . Suppose supp δgx 6= ∅. First, we show π|
supp δgx

=
ι|

supp δgx
. Let d ∈ supp δgx Then, πd ∈ supp δgx , and so, π(0/d)δgx =

(0/πd)δgx . Applying Lemma 4.9, πd = d. Therefore, for all d ∈ supp δgx ,
we have πd = d. Now, we prove the result. Take d ∈ supp gx . If d ∈ D

δ
,

then the result holds. If d /∈ D
δ
, then σd = πδd = πd and δ′d = δd = d. On

the other hand, since d ∈ (supp gx−Dδ
) = supp δgx , we get that πd = d.

Corollary 4.11. Max-zero cyclic finitely supported Cb-sets are projective.

Proof. If X = Cbx is a max-zero cyclic finitely supported Cb-sets, then X
is isomorphic to Dsuppx, by Lemma 3.12 and Lemma 4.10. So, applying
Lemma 3.16 we get that X is projective.

5. Conclusions

In this section, we assume that M and N are two submonoids of End(D)
such that M is a submonoid of N .

Note. An N -equivariant (M -equivariant) map is an equivariant map be-
tween finitely supported N -sets (M -sets). (cf. Example 2.4, [2])

In [6], we proved that free finitely supported N -sets exist over finitely
supportedM -sets (Theorem 5.1). By Theorem 5.1, we show that the functor
F preserves projective objects and then we characterize projective finitely
supported N -sets in which N contains a zero-retraction submonoid M .

Theorem 5.1. (cf. [6]) The forgetful functor U : (N -Set)
fs
→ (M -Set)

fs

has a left adjoint F : (M -Set)
fs
→ (N -Set)

fs
.

Remark 5.2. (cf. [6]) (1) Since M 6 N , every finitely supported N -set
can be considered as a finitely supported M -set.

(2) The set N ×X together with the action (n, (n′, x)) 7→ (nn′, x) is an
N -set, for each finitely supported M -set X.

(3) F (X) = (N × X)/ ∼ is a finitely supported N -set where X is a
finitely supported M -set and the relation ∼ over N × X is the smallest
equivariant equivalence relation generated by R defined as follows:

(n, x)R(n′, x′)⇔ ∃m ∈M ; mx = x′ and n′m|S = n|S ,
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where S is a finite support of x.
The equivalence class of (n, x) denoted by [n, x].
(4) If X is a finitely supported M -set, then ηX : X −→ F (X) defined

by ηX (x) = [id, x] is an equivariant map.
(5) Using (1), for every finitely supported N -set, there exists a surjective

equivariant map ϕ : F (U(X)) = F (X) −→ X defined by ϕ([n, x]) = nx.

Now, by Theorem 5.1, we can characterize projective finitely supported
N -sets.

Proposition 5.3. If X is a projective finitely supported M -set, then F (X)
is a projective finitely supported N -set.

Proof. Let g : Y −→ Z be a surjective N -equivariant map and f : F (X) −→
Z be an N -equivariant map. Then, fηX : X −→ Z is an M -equivariant
map, since ηX : X −→ F (X) is an M -equivariant map. Now, since X is
projective, there exists an M -equivariant map h : X −→ Y with gh = fηX .
On the other hand, since F (X) is free over X, there exists an N -equiavriant
map f̄ : F (X) −→ Y with f̄ηX = h. Now, we show that gf̄ = f . We have

gf̄ [n, x] = ngf̄ [id, x] = ngf̄ηX (x) =

ngh(x) = nfηX (x) = nf([id, x]) = f([n, x]).

Corollary 5.4. If M is a zero-retraction submonoid of N and A ⊆ D is a
finite subset, then F (DA) is a projective finitely supported N -set.

Proof. Follows from Lemma 3.16 and Proposition 5.3.

Lemma 5.5. Let DA be a finitely supported N -set where A is a finite subset
of D. Then, DA is a retract of F (DA).

Proof. First, notice that, by Remark 5.2(2), there exists a surjective N -
equivariant ϕ : F (DA) −→ DA defined by ϕ[n, id|A ] = nid|A = n|A . Sup-
pose n ∈ N . Define h(n|A) = [n, id|A ]. We show that h is an N -equivariant
and commutes the following diagram; that is, ϕh = id.

DA

h

{{
id
��

F (DA)
ϕ // // DA
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To do so, let n, n′ ∈ N with n|A = n′|A . Then, since A is a finite
support of id|A , by Remark 5.2(2), we get that (n, id|A)R(n′, id|A). Now,
since R ⊆∼, we get that [n, id|A ] = [n′, id|A ]. If n1 ∈ N , then

n1h(n|A) = n1[n, id|A ] = [n1n, id|A ] = h(n1n|A).

Also, ϕh(n|A) = ϕ([n, id|A ] = n|A = id(n|A).

Corollary 5.6. For every finite subset A ⊆ D, finitely supported N -set DA

is projective.

Proof. Follows from Proposition 5.3 and Lemma 5.5.

Theorem 5.7. Let X be a finitely supported N -set. Then,
(i) X is indecomposable and projective if and only if it is cyclic and

isomorphic to DA for some finite subset A ⊆ D.
(ii) X is projective if and only if X =

∐
i∈I
Xi , where every Xi is iso–

morphic to DA for some finite A ⊆ D.

Proof. (i). Follows from Lemma 3.20 and Corollary 5.6.
(ii). Follows from (i), Proposition 2.2 and Corollary 5.6.

Acknowledgement. The authors gratefully thank to Referees for the care-
ful reading and constructive suggestions which definitely help to improve
the readability and quality of the paper.
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A note on 2-prime and n-weakly 2-prime ideals
of semirings

Biswaranjan Khanra, Manasi Mandal and Sampad Das

Abstract. We introduce and study the concepts of 2-prime and n-weakly 2-prime
(resp. weakly 2-prime) ideals in a commutative semiring. We prove that an integral
semidomain S is a valuation semiring if and only if every proper ideal of S is 2-prime and
in a principal ideal semidomain the concepts of primary, quasi-primary and 2-prime ideals
coincide. We characterize semirings where 2-prime ideals are prime and also characterize
semirings where every proper ideal is n-weakly 2-prime (resp. weakly 2-prime).

1. Introduction

A commutative semiring is a commutative semigroup (S, ·) and a commu-
taive monoid (S,+, 0S) in which 0S is the additive identity and 0S .x =
x.0S = 0S for all x ∈ S, both are connected by ring like distribuitivity. We
say S is a semiring with identity if the multiplicative semigroup (S, ·) has
identity element. Throughout this paper, unless otherwise mentioned, all
semirings are commutative with identity element 1 6= 0, in particular S will
denote such a semiring.

A nonempty subset I of S is called an ideal of S if a, b ∈ I and r ∈ S,
then a+ b ∈ I and ra ∈ I. We define radical of an ideal I as

√
I = {x ∈ S :

xn ∈ I} and residual of I by a ∈ S as (I : a) = {s ∈ S : sa ∈ I}. Annihilator
of an element a in a semiring S is defined as Ann(a) = {x ∈ S : ax = 0}.
For an element x of S, (x) = Sx is the principal ideal of S generated by x.
An ideal I of a semiring S is said to be subtructive (or k-ideal) if a, a+b ∈ I,
b ∈ S then b ∈ I. A nonzero element a of S is said to be a zero divisor if
ab = 0 for some nonzero b ∈ S. For an ideal I of S, ZdS(I) = {s ∈ S : sr ∈ I
for some r 6∈ I} and 2

√
I = {x ∈ S : x2 ∈ I}. An ideal I of a semiring S

2010 Mathematics Subject Classification: 16Y60.
Keywords: Prime ideal, maximal ideal, 2-prime ideal, weakly 2-prime ideal
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is said to be proper if I 6= S and an ideal generated by nth powers of
elements of I is denoted as In = ({xn : x ∈ I}) [?]. A semiring S is called
a semidomain if ab = ac implies b = c for any b, c ∈ S and for all nonzero
a ∈ S. Similarly to the concept of field of fractions in ring theory, one can
define the semifield of fractions F (S) of a semidomain S ([5], p. 22). Let A
be a multiplicatively closed subset of a semiring S. The relation is defined
on the set S × A by (s, a) ∼ (t, b) ⇔ xsb = xat for some a ∈ A is an
equivalence relation and the equivalence class of (s, a) ∈ S ×A denoted by
s/a. The set of all equivalence classes of S×A under “∼” denoted by A−1S.
The addition and multiplication are defined s/a + t/b = (sb + ta)/ab and
(s/a)(t/b) = st/ab. The semiring A−1S is called quotient semiring S by A.
Suppose that S is a commutative semiring, A be a multiplicatively closed
subset and I be an ideal. The set A−1I = {a/b : a ∈ I, b ∈ A} is an ideal
of A−1S. A proper ideal I of a semiring is said to be prime (resp. weakly
prime) if for a, b ∈ S such that ab ∈ I (resp. 0 6= ab ∈ I) implies either a ∈ I
or b ∈ I. An ideal I of S is said to be primary if ab ∈ I for some a, b ∈ S
implies a ∈ I or b ∈

√
I and quasiprimary if

√
I is a prime ideal of S. The

notion of 2-prime (resp. weakly 2-prime ideal) as a generalisations of prime
(resp. weakly prime) ideals in a commutative ring was introduced in [2, 7]
and in a commutative semigroup in [6]. Moreover, rings in which concept
of 2-prime, primary ideals coincide and rings in which 2-prime ideals are
prime has been studied in [13]. These observations tempted us to study
2-prime (resp. weakly 2-prime) ideals in a commutative semiring.

In this article, firstly we define 2-prime ideals in a commutative semir-
ing and state its relations with prime and quasi-primary ideals. Then we
prove that every maximal ideal of a semiring without unity is 2-absorbing
(Theorem 2.6). We define valuation ideal in a semiring and prove that a
semidomain is a valuation semiring if and only if every proper ideal of the
semidomain is 2-prime (Theorem 2.11). Also we prove that in a principal
ideal semidomain the concepts of 2-prime, primary, quasi-primary ideals
coincide (Theorem 2.15). In section 3, we characterize semirings in which
2-prime ideals are prime, defined as 2-P -semiring. In section 4, we define
n-weakly 2-prime (resp. weakly 2-prime) ideals in a semiring. Then we
characterize semirings in which every proper ideal is weakly 2-prime (The-
orem 4.5) (resp. n-weakly 2-prime) (Theorem 4.6) and also studied some
further properties of these ideals.

Before going to main work, we discuss some necessary preliminaries.

Theorem 1.1. (cf. [8]) Let I ⊆ P be ideals of a semiring S, where P is



2-prime and n-weakly 2-prime ideals 243

prime. Then the following statements are equivalent:
(1) P is a minimal prime ideal of I.
(2) For each x ∈ P , there is a y /∈ P and a nonnegative integer i such

that yxi ∈ I.

2. 2-prime ideals

Definition 2.1. A proper ideal I of a semiring S is said to be a 2-prime
ideal if xy ∈ I for some x, y ∈ S implies either x2 ∈ I or y2 ∈ I.

The following lemmas are obvious, hence we omit the proof.

Lemma 2.2.
(1) Every prime ideal of S is a 2-prime ideal of S.
(2) Every 2-prime ideal of S is a quasi-primry ideal of S. Therefore

if I is a 2-prime ideal of S, then
√
I = P is a prime ideal of S.

Remark 2.3. For a 2-prime ideal I of a semiring S, we refer to the prime
ideal P =

√
I as the associated prime ideal of I and I is referred to as a

P -2-prime ideal of S.

The following examples show that converses of above lemmas are not
true.

Example 2.4. Consider the ideal I = {m ∈ N ∪ {0} : m > 3} in the
semiring S = {N ∪ {0},+, ·}. Clearly, I is 2-prime but not a prime ideal of
S, since 2.2 ∈ I but 2 /∈ I.

Example 2.5. Consider the ideal I = ({Xn
n}∞n=1) in the semiring S =

Z2[{Xi}∞i=1]. Clearly I is quasiprimary ideal of S, since
√
I is a prime ideal

of S. But I is not a 2-prime ideal of S, as X2
6 ·X4

6 = X6
6 ∈ I and neither

(X2
6 )

2 /∈ I nor (X4
6 )

2 /∈ I.

If S is a semiring with unity, then every maximal ideal of S is prime
([1], Theorem 11) and hence 2-prime. If S is a semiring without unity then
maximal ideal of S need not be prime for example see ([1], Example 12)
but there is a relation between maximal and 2-prime ideal of S, as follows

Theorem 2.6. Let S be semiring without unity and assume maximal ideal
exists. Then every maximal ideal of S is a 2-prime ideal of S.
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Proof. Let xy ∈M with x2 /∈M for some x, y ∈ S, where M is a maximal
ideal of S. If y2 /∈ M , then clearly x, y ∈ S − M . Hence M + (x) =
M + (y) = S. Since x ∈ S, x2 = (p + s1x + n1x)(q + s2y + n2y) for some
p, q ∈ M , s1, s2 ∈ S and n1, n2 ∈ Z, implies x2 ∈ M , a contradiction.
Consequently, y2 ∈M . Hence M is a 2-prime ideal of S.

Proposition 2.7. Let I be an ideal of a semiring S.
(1) If I is a 2-prime ideal of S, then there is exactly one prime ideal of

S that is minimal over I.
(2) If I is a prime ideal of S, then I2 is a 2-prime ideal of S.
(3) An ideal I of S is prime if and only if it is both 2-prime and semi-

prime.
(4) If I is a 2-prime ideal of S and J1, J2,. . . , Jn are ideals of S such

that
⋂
Ji ⊆

√
I, then Ji ⊆

√
I for some i ∈ {1, 2, . . . , n}.

In particular, if
⋂
Ji =

√
I, then Ji =

√
I for some i ∈ {1, 2, . . . , n}.

(5) If I is a P -2-prime ideal of S, then (I : a2) is a 2-prime ideal of S,
for all a ∈ S such that a2 /∈ I.
In particular (I : a2) is a P -2-prime ideal of S for all a ∈ S −

√
I.

(6) If I is a 2-prime ideal of S and (I : a) = (I : a2) for all a ∈ S − I,
then (I : a) is a 2-prime ideal of S.

(7) I is a proper ideal of S and A be a multiplicatively closed subset of
S, then the following statements hold.
(i) If I is a 2-prime ideal of S such that I ∩A = φ, then A−1I is a

2-prime ideal of A−1S.
(ii) If A−1I is a 2-prime ideal of A−1S with ZdS(I) ∩ S = φ, then

I is a 2-prime ideal of S.
(8) If I is a P -primary ideal for some prime ideal P of S such that

P 2 ⊆ I. Then I is a 2-prime ideal of S.

Proof. (1). If possible, let J1 and J2 be two distinct prime ideal that are
minimal over I. Hence there exists j1 ∈ J1 − J2 and j2 ∈ J2 − J1. By
Theorem 1.1 there is a1 /∈ J1 and a2 /∈ J2 such that a1jn1 ∈ I and a2jm2 ∈ I
for some integer m, n > 1. Since j1, j2 /∈ I ⊆ J1 ∩ J2 and I is 2-prime ,
hence a21 ∈ I ⊆ J1 ∩ J2 and a22 ∈ I ⊆ J1 ∩ J2. Therefore a21 ∈ J1. Since J1
is prime so a1 ∈ J1, a contradiction. Similarly if a22 ∈ J2 then a2 ∈ J2, a
contradiction. Hence there is exactly one prime ideal minimal over I.

(2). Since I2 ⊆ I for any ideal I of S, it is clear.
(3). If an ideal I is prime, then clearly it is 2-prime and semiprime.
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Conversely, let ab ∈ I for some a, b ∈ S. Since I is 2-prime we have
a2 ∈ I or b2 ∈ I, which implies a ∈ I or b ∈ I, since I is semprime also.
Consequently I is a prime ideal of S.

(4). Let Ji *
√
I for all i ∈ {1, 2, . . . , n}. Then there exists ai ∈ Ji but

ai /∈
√
I for all i ∈ {1, 2, . . . , n}. Let x = a1a2 · · · an. Then x ∈

⋂
Ji but

x /∈
√
I, since

√
I is a prime ideal of S, a contradiction . Hence Ji ⊆

√
I

for some i ∈ {1, 2, . . . , n}.
Again if,

⋂
Ji =

√
I, then

√
I ⊆ Ji for all i ∈ {1, 2, . . . , n}. Hence Ji =

√
I

for some i ∈ {1, 2, . . . , n}.
(5). Let xy ∈ (I : a2) with x2 /∈ (I : a2) for x, y ∈ S. Then xya2 =

(xa)(ya) ∈ I. Hence (ya)2 = y2a2 ∈ I, since I is a 2-prime ideal of S and
x2a2 /∈ I. Consequently (I : a2) is a 2-prime ideal of S.
Again let a ∈ S − P and x ∈ (I : a2). Then a2x ∈ I ⊆ P . Hence x2 ∈ I,
since a /∈ P and I is a 2-prime ideal of S. Thus I ⊆ (I : a2) ⊆ P , which
implies P =

√
I ⊆

√
(I : a2) ⊆

√
P = P . Consequently (I : a2) is a

P -2-prime ideal of S.
(6). Clearly follows from (5).
(7). (i) Let (a/s)(b/t) ∈ A−1I for some a, b ∈ S and s, t ∈ A. Then

there exists u ∈ A such that abu ∈ I. Then a2 ∈ I or b2u2 ∈ I, since I
is a 2-prime ideal of S. If a2 ∈ I, then (a/s)2 = (ua2/us2) ∈ A−1I and if
b2u2 ∈ I then (b/s)2 = (b2u2/s2u2) ∈ A−1I. Therefore A−1I is a 2-prime
ideal of A−1S.

(ii) Let xy ∈ I for some x, y ∈ S. Then x
1
y
1 ∈ A

−1I implies x2

1 ∈ A
−1I

or y2

1 ∈ A−1I. Hence ax2 ∈ I or by2 ∈ I for some a, b ∈ S. Since
A ∩ ZdS(I) = φ, we have either x2 ∈ I or y2 ∈ I, as desired.

(8). Let ab ∈ I for some a, b ∈ S, where I is a P -primary ideal of S
such that P 2 ⊆ I. Then either a ∈ I or b ∈

√
I = P . If a ∈ I then a2 ∈ I2

and if b ∈ P then b2 ∈ P 2 ⊆ I. Consequently I is a 2-prime ideal of S.

Theorem 2.8. Let P be a proper ideal of a semiring S. Then the following
statements are equivalent:

(1) P is a 2-prime ideal of S.
(2) for any ideals J , K of S with JK ⊆ P implies either J2 ⊆ P or

K2 ⊆ P , where J2 = ({x2 : x ∈ J}) and K2 = ({k2 : k ∈ K}).
(3) For every s ∈ S, either (s) ⊆ (P : s) or (P : s) ⊆ 2

√
P .

(4) For any ideals A and B of S with AB ⊆ P implies either A2 ⊆ P
or B ⊆ 2

√
P .

(5) For every s ∈ S, either s2 ∈ P or (P : s)2 ⊆ P .
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Proof. (1)⇒ (2). Let P be a 2-prime ideal of a semiring S and JK ⊆ P for
some ideal J , K of S with J2 * P . Then there exists an element p ∈ J such
that p2 /∈ P . Since pK ⊆ P and p2 /∈ P , we conclude K2 ⊆ P (Proposition
2.7 ????).

(2) ⇒ (1). Let ab ∈ P for some a,b ∈ S and a2 /∈ P . Let J = (a) and
K = (b). Then JK ⊆ P and J2 * P , otherwise a2 ∈ P . Hence K2 ⊆ P
implies b2 ∈ P . Consequently, P is a 2-prime ideal of S.
(1) ⇒ (3) Let s ∈ S. If s2 ∈ P , then s ∈ (P : s) implies (s) ⊆ (P : s). Let
s2 /∈ P and r ∈ (P : s) for some r ∈ S. Hence rs ∈ P implies r2 ∈ P , since
P is 2-prime and s2 /∈ P . Consequently, (P : s) ⊆ 2

√
P .

(3)⇒ (4). Let AB ⊆ P for some ideals A, B of S. Let B * 2
√
P . Then

there exists b ∈ B − 2
√
P and ab ∈ P for all a ∈ A. Since b ∈ (P : a)− 2

√
P ,

we have (P : a) * 2
√
P . Hence by hypothesis, (a) ⊆ (P : a) implies a2 ∈ P .

Consequently A2 ⊆ P .
(4)⇒ (5). Let s ∈ S. If s2 ∈ P , there is nothing to prove. So let s2 /∈ P

and A = (P : s), B = (s). Then AB = (P : s)(s) ⊆ P . Since B * 2
√
P , we

have A2 = (P : s)2 ⊆ P .
(5)⇒ (1). Let xy ∈ P with x2 /∈ P for some x, y ∈ S. Then y ∈ (P : x).

Hence by hypothesis, y2 ∈ (P : s)2 ⊆ P , as desired.

The concept of valuation semiring has been defined by P. Nasehpour in
[10], here we define valuation ideal of a semiring, as follows

Definition 2.9. Let S be a semidomain and K be its semifield of fractions.
Then an ideal I in S is a valuation ideal if I is the intersection of S with
an ideal of a valuation semiring Sv containing S. Moreover if v is the
corresponding M -valuation we say I is a valuation ideal associated with the
M -valuation v or I is a v-ideal.

Lemma 2.10. Let v be an M -valuation on K and I an ideal of a semido-
main S. Then the followings are equivalent

(1) I is a valuation ideal.
(2) For each x ∈ S, y ∈ I, the inequality v(x) > v(y) implies x ∈ I.
(3) I is of the form I = SvI ∩ S.

Proof. The proof is similar to ([15], page 340).

Theorem 2.11. Let S be a semidomain. Then the following are equivalent
(1) Every ideal of S is 2-prime.
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(2) Every principal ideal of S is 2-prime.
(3) S is a valuation semiring.

Proof. (1)⇒ (2). It is clear.
(2) ⇒ (3). Let x ∈ K − {0}, where K is the semifield of fractions of

S. Then x = a
b for some a, b ∈ S − {0}. Let I = (ab) be a principal

ideal of S so 2-prime and since ab ∈ (ab) = I, we have a2 ∈ I or b2 ∈ I.
If a2 ∈ I, then there exists an element c ∈ S such that a2 = cab, hence
x = a

b = c ∈ S. Similarly, if b2 ∈ I, we have x−1 ∈ S. Consequently, S is a
valuation semiring ([10], Theorem 2.4).

(3) ⇒ (1). Let I be a v-ideal on S where v is a valuation on S. Let
xy ∈ I for some x, y ∈ S. If v(x) > v(y), we get v(x2) > v(xy) and as I is a
v-ideal we have x2 ∈ I. Similarly, v(y) > v(x) implies y2 ∈ I. Consequently
I is a 2-prime ideal of S.

The following lemmas are obvious, hence we omit the proof

Lemma 2.12. Let S be a semidomain and a, b ∈ S − {0}. Then a and b
are associates if and only if (a) = (b).

Lemma 2.13. Let S be a semidomain and p ∈ S − {0}. Then p is an
irreducible element of S if and only if (p) is a maximal ideal of S.

Lemma 2.14. Let I be a P -primary ideal of a semiring S. Then P is the
unique minimal prime ideal of I in S.

Proof. Let Q be another minimal prime of I in S. Then I ⊆ Q implies
P =
√
I⊆
√
Q=Q. Hence P is the unique minimal prime ideal of I in S.

Theorem 2.15. Let I be a proper ideal of a principal ideal semidomain S.
Then the followings are equivalent

(1) I is a quasi-primary ideal of S.
(2) I is a primary ideal of S.
(3) I is of the form (pn), where n is a postitive integer and p = 0 or an

irreduicible element of S.
(4) I is a 2-prime ideal of S.

Proof. (1) ⇒ (2). Since every nonzero prime ideal of a principal ideal
semidomain S is a maximal ideal ([11], Proposition 2.1), it follows claerly
from ([1], Theorem 40).
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(2)⇒ (1). It is obvious.
(2)⇒ (3). Let I be a nonzero primary ideal of S. Then I = (a) for some

nonzero nonunit element a ∈ S. Since every principal ideal semidomain is
a unique factorization semidomain ([11], Theorem 3.2), a can written as a
product of irreduicible elements of S. If a were divisible by two irreduicible
elements x and y of S, which are not associates, then by Lemma 2.12
and 2.13 (x) and (y) would be distinct maximal ideal of S, they would
both minimal prime ideal of (a), which contradicts Lemma 2.14. Hence
I = {(pn) : p = 0 or p is an irreduicible elements of S and n ∈ N}.

(3) ⇒ (2). Since S is a semidomain, {0} is prime and hence primary.
Let p be an irreduicible element of S and n ∈ N, then by Lemma 2.13 (pn)
is a power of a maximal ideal so is a primary ideal of S ([1], Theorem 40).

(3)⇔ (4) The proof is similar as that of ([13], Theorem 2.3).

Example 2.16. Let I be an ideal of a von neuman regular semiring S.
Then I = I2 =

√
I ([14], Proposition 1). Hence the concepts of prime,

primary, 2-prime and quasiprimary ideal coincide in a regular semiring S.

If R and S are semirings then a function f : R −→ S is said to be a
morphism of semirings ([4], p. 105) if (i)) f(0R) = 0S , (ii) f(1R) = 1S and
(iii) f(r1 + r2) = f(r1) + f(r2) and f(r1r2) = f(r1)f(r2) for all r1, r2 ∈ R.

Theorem 2.17. Let f : S1 → S2 be a morphism of semirings. Then the
following statements holds:

(1) If J is a 2-prime ideal of S2, then f−1(J) is a 2-prime ideal of S1.

(2) If f is onto steady morphism such that kerf ⊆ I and I is a 2-prime
k-ideal of S1, then f(I) is a 2-prime k-ideal of S2.

Proof. (1). Let ab ∈ f−1(J) for some a, b ∈ S1. Then f(ab) ∈ J , hence
f(a2) ∈ J or f(b2) ∈ J , since f is a morphism and J is a 2-prime of S2.
Therefore a2 ∈ f−1(J) or b2 ∈ f−1(J). Consequently, f−1(J) is a 2-prime
ideal of S1.

(2). Let xy ∈ f(I) for some x, y ∈ S2. Then there exists a, b ∈ S1
such that f(a) = x and f(b) = y. Then xy = f(a)f(b) = f(ab) ∈ f(I).
Hence f(ab) = f(r) for some r ∈ I. So we have ab + s = r + t for some s,
t ∈ I, since f is steady. Hence ab ∈ I, since kerf ⊆ I and I is a k-ideal of
S1. Hence either a2 ∈ I or b2 ∈ I, since I is a 2-prime ideal of S1. Thus
either f(a2)∈ f(I) or f(b2)∈ f(I). Consequently, f(I) is a 2-prime k-ideal
of S2.
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Corollary 2.18. If S ⊆ R is an extension of semiring and I is a 2-prime
ideal of R, then I ∩ S is a 2-prime ideal of S.

Theorem 2.19. Let S = S1×S2 and I = I1× I2, where Ii are ideals of Si
for i = 1, 2. Then the following are equivalent

(1) I is a 2-prime ideal of S.
(2) I1 = S1 and I2 is a 2-prime ideal of S2 or I2 = S2 and I1 is a

2-prime ideal of S1.

Proof. (1) ⇒ (2). Let I be a 2-prime ideal of S. Then
√
I =

√
I1 ×

√
I2,

is a prime ideal of S. Hence either I1 = S1 or I2 = S2. Let I2 = S2 and
ab ∈ I1 for some a, b ∈ S1. Then (a, 1)(b, 1) ∈ I. Hence (a, 1)2 ∈ I or
(b, 1)2 ∈ I, since I is a 2-prime ideal of S. This implies a2 ∈ I1 or b2 ∈ I1.
Consequently, I1 is a 2-prime of S1. Similarly, if I1 = S1, we can show that
I2 is a 2-prime ideal of S2.

(2) ⇒ (1). Assume I1 = S1 and I2 is a 2-prime ideal of S2. Let
(a, x)(b, y) ∈ I for some a, b ∈ S1 and x, y ∈ S2. Then xy ∈ I2 and this
implies x2 ∈ I2 or y2 ∈ I2. Hence (a, x)2 ∈ I or (b, y)2 ∈ I, as desired. In a
similar way, one can prove the other case.

Corollary 2.20. Let S = S1 × S2 × . . . × Sn and I = I1 × I2 × . . . × In,
where Ii are ideals of Si and n ∈ N. Then the following are equivalent

(1) I is a 2-prime ideals of S.
(2) Ii is a 2-prime ideal of Si for some i∈{1, 2, . . . , n} and Ij = Sj for

all j 6= i.

Proof. By using Theorem 2.19 and induction on n, the proof is straightfor-
ward.

Let S be a semiring and M an S-semimodule. Then S ×M equipped
with the following two operations (s1,m1) + (s2,m2) = (s1 + s2,m1 +m2)
and (s1,m1)(s2,m2) = (s1s2, s1m2 + s2m1), forms a semiring, denoted by
S
⊕̃
M , is called the expectation semiring of the S-semimodule M ([12],

Proposition 1.1).
If I is an ideal of S and N is an S-subsemimodule of M , then I

⊕̃
N is

an ideal of S
⊕̃
M if and only if IM ⊆ N ([12], Theorem 1.6(2)).

Theorem 2.21. Let M be a S-semimodule, I a proper ideal of S and N 6=
M an S-subsemimodule of M . Then

(1) If I
⊕̃
N is a 2-prime ideal of S

⊕̃
M , then I is a 2-prime ideal of S.
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(2) If the ideal I of S is 2-prime and 2
√
IM ⊆ N , then I

⊕̃
N is a 2-pri-

me ideal of S
⊕̃
M .

Proof. (1). Let ab ∈ I with a2 /∈ I for some a, b ∈ S. Then (a, 0)(b, 0) ∈
I
⊕̃
N while (a, 0)2 /∈ I

⊕̃
N . Hence (b, 0)2 ∈ I

⊕̃
N , since I

⊕̃
N is a 2-prime

ideal of S
⊕̃
M . Consequently, b2 ∈ I, as desired.

(2). Let (a,m)(b, n) ∈ I
⊕̃
N for some a, b ∈ S, m, n ∈ M . This

implies ab ∈ I implies a2 ∈ I or b2 ∈ I. If a2 ∈ I, then am ∈ 2
√
IM ⊆ N

and this yields (a,m)2 = (a2, 2am) ∈ I
⊕̃
N . Again if b2 ∈ I we have

(b,m)2 ∈ I
⊕̃
N . Consequently, I

⊕̃
N is a 2-prime ideal of S

⊕̃
N .

3. 2-P -semiring

Definition 3.1. A semiring S is said to be a 2-P -semiring if 2-prime ideals
of S are prime.

Example 3.2. Clearly every idempotent semiring is a 2-P -semiring.

Theorem 3.3. A semiring S is 2-P -semiring if and only if one of the
following conditions holds:

(1) 2-prime ideals are semiprime.
(2) Prime ideals are idempotent and every 2-prime ideal is of the form

A2, where A is a prime ideal of S.

Proof. (1). If S is a 2-P -semiring, clearly 2-prime ideals are semiprime.
Converse follows easily from Proposition 2.7(3).

(2). Let P be a prime ideal of a 2-P -semiring S. Then P 2 is a prime ideal
of S (Proposition 2.7(2)) and hence P ⊆ P 2. Clearly P 2 ⊆ P . Therefore
prime ideals of S are idempotent. Again, let I be a 2-prime ideal of S.
Then I is prime and hence I = I2.

Conversely, let I be a 2-prime ideal of S. Then I = P 2 = P for some
prime ideal P of S. Consequently, S is a 2-P semiring.

Lemma 3.4. Let (S,M) be a local semiring. Then for every prime ideal I
of S, IM is a 2-prime ideal of S. Furthermore, IM is prime if and only if
IM = I

Proof. Let xy ∈ IM ⊆ I. Then either x ∈ I or y ∈ I, since I is a prime
ideal of S. Let x ∈ I implies x2 ∈ IM , since I ⊆M . Hence IM is a 2-prime
ideal of S.
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Definition 3.5. Let I be an ideal of a semiring S. We define a 2-prime
ideal P to be a minimal 2-prime ideal over I if there is not a 2-prime ideal
K of S such that I ⊆ K ⊂ P . We denote the set of minimal 2-prime ideals
over I by 2-MinS(I).

Theorem 3.6. Let S be a subtructive semiring with unique maximal ideal
M such that (

√
I)2 ⊆ I for every 2-prime ideal I of S. Then the following

statements are equivalent.

(1) S is a 2-P -semiring.

(2) If P is the minimal prime ideal over a 2-prime ideal I, then IM = P .

(3) For every prime ideal P of S, 2-MinS(P
2) = {P}.

Proof. (1)⇒ (2). Let P be the minimal prime ideal over a 2-prime ideal I
of a 2-P -semiring S. Then clearly IM = P (Lemma 3.4).

(2) ⇒ (1). Let I be a 2-prime ideal of a subtructive semiring S with
unique maximal ideal M and P is the minimal prime ideal over I such that
IM = P . Then I ⊆ P = IM ⊆ I ∩M = I implies I = P . Hence S is a
2-P -semiring.

(2)⇒ (3) Let P be a prime ideal of S and I be a 2-prime ideal of S such
that I ∈ 2-MinS(P 2). Let J be a prime ideal of S such that I ⊆ J ⊆ P .
Clearly, P 2 ⊆ I ⊆ J ⊆ P . Let a ∈ P then a2 ∈ P 2. Therefore a2 ∈ J
implies a ∈ J , since J is prime. Hence J = P . Now by hypothesis, IM = P
implies P = IM ⊆ I ⊆ P . Consequently, 2-MinS(P 2) = {P}.

(3) ⇒ (2). Let P is the minimal prime ideal over a 2-prime ideal I
of S. Then

√
I = P . Hence by hypothesis P 2 ⊆ I ⊆ P . Therefore 2-

MinS(P 2) = {P}. Clearly I = P implies IM is 2-prime (Lemma 3.4). Now
P 2 ⊆ PM ⊆ P so IM = PM = P .

Theorem 3.7. Let S ⊆ R be an extension of semiring and spec(S)=spec(R),
where spec(S) and spec(R) denotes set of all prime ideals of S and R re-
spectively. If S is a 2-P -semiring, then R is 2-P -semiring.

Proof. Let I be a 2-prime ideal of R. Then
√
I = P ∈ spec(R) = spec(S).

Clearly I ⊆ P . Also I ∩ S is a 2-prime ideal of S (Corollary 2.18), hence
prime, since S is 2-P -semiring. Therefore I ∩ S =

√
I ∩ S = P and P 2 ⊆

I ∩ S. Let x ∈ P . Then x2 ∈ P 2 ⊆ I ∩ S ∈ spec(A). Hence x ∈ I ∩ S ⊆ I.
Consequently, I = P , as desired.
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4. n-weakly 2-prime ideal

Definition 4.1. A proper ideal I of a semiring S is said to be n-weakly
2-prime if for a, b ∈ S, ab ∈ I − In implies that a2 ∈ I or b2 ∈ I.

Definition 4.2. A proper ideal I of a semiring S is said to be a weakly
2-prime ideal of S if 0 6= xy ∈ I for some x, y ∈ S implies x2 ∈ I or y2 ∈ I.

The following lemmas are obvious, hence we omit the proof.

Lemma 4.3.
(1) Every 2-prime ideal of S is a weakly 2-prime ideal of S.
(2) Every weakly prime ideal of S is a weakly 2-prime ideal of S.
(3) Every weakly 2-prime ideal of S is a n-weakly 2-prime ideal of S.
(4) An n-weakly 2-prime is a (n−1)-weakly 2-prime ideal, for all n > 3.

Proposition 4.4. Let I be a subtructive ideal of a semiring S. Then
(1) If I is weakly 2-prime but not a 2-prime ideal of S, then

(i) I2 = 0.
(ii)
√
I =
√
0.

(2) Let (S,M) be a local semiring with M2 = 0. Then every proper
subtructive ideal of S is a weakly prime and hence weakly 2-prime
ideal of S.

(3) Let P be a weakly prime ideal of S and Q be an ideal of S containg
P , then PQ is a weakly 2-prime ideal of S. In particular, for every
weakly prime ideal P of S, P 2 is a weakly 2-prime ideal of S.

(4)
√
I is a prime (resp. weakly prime) ideal of S if and only if

√
I is a

2-prime (resp. weakly 2-prime) ideal of S.
(5) Let I be a n-weakly 2-prime ideal of S and A be a multiplicatively

closed subset of S with A ∩ I = φ and A−1In ⊆ (A−1I)n. Then
A−1I is a n-weakly 2-prime ideal of A−1S.

Proof. (1)(i). We first show that if ab = 0 for some a, b ∈ S − I, then we
have aI = bI = 0. Let ai 6= 0 for some i ∈ I. Then 0 6= a(b + i) ∈ I.
Since I is a subtructive weakly 2-prime ideal of S, either a2 ∈ I or b2 ∈ I,
a contradiction. Therefore aI = 0. Similarly we can show Ib = 0. Now
let xy 6= 0 for some x, y ∈ I and ab = 0 for some a, b 6∈ I. Then we have
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(a + x)(b + y) = xy 6= 0. Since I is subtructive weakly 2-prime ideal of S,
either a2 ∈ I or b2 ∈ I, a contradiction. Hence I2 = 0.

(ii). By (i), I2 = {0}. So we have I ⊆
√
0 implies

√
I ⊆
√
0. Also we

have
√
0 ⊆
√
I. Therefore

√
I =
√
0.

(2). Let I be a proper ideal of a local semiring (S,M) such thatM2 = 0
and 0 6= ab ∈ I for some a, b ∈ S. Then either a ∈M or b ∈M but both a,
b does not belongs to M , otherwise ab ∈ M2 = 0, a contradiction. Hence
a or b must be semi-unit, let a be a semi-unit of S. Then there exists p,
q ∈ S such that 1+pa = qa implies b+pab = qab ∈ I. Also pab ∈ I implies
b ∈ I, since I is a subtructive ideal of S. Similarly if b is a semi-unit then
a ∈ I. Consequently I is a weakly 2-prime ideal of S, as desired.

(3). Let 0 6= ab ∈ PQ for some a, b ∈ I. Since PQ ⊆ P and P is weakly
prime ideal of S, we have either a ∈ P ⊆ Q or b ∈ P ⊆ Q. Hence either
a2 ∈ PQ or b2 ∈ PQ. Consequently, PQ is a weakly 2-prime ideal of S, in
particular, P 2 is a weakly 2-prime ideal of S.

(4). Since
√√

I = I for any ideal I of S, it is clear.
(5). Let a, b ∈ S and x, y ∈ A such that a

x
b
y ∈ A

−1I − (A−1I)n. Then
there exists u ∈ A such that uab ∈ I. Again vab /∈ In for any v ∈ A because
if vab ∈ In then a

x
b
y ∈ A

−1I ⊆ (A−1I)n, a contradiction. So abu ∈ I − In,
implies a2 ∈ I or b2u2 ∈ I, since I is a n-weakly 2-prime ideal of S. Hence
(ax)

2 ∈ A−1I or ( by )
2 ∈ A−1I. Thus A−1I is a n-weakly 2-prime ideal of

A−1S.

The following is a characterization of a semiring in which every proper
ideal is weakly 2-prime.

Theorem 4.5. Let S be a semiring. Then every proper ideal of S is weakly
2-prime if and only if (a2) ⊆ (ab) or (b2) ⊆ (ab) or ab = 0, for any a, b ∈ S
such that (ab) 6= S.

Proof. Let every proper ideal of a semiring S is weakly 2-prime and a, b ∈ S
such that (ab) 6= S. If ab 6= 0, then 0 6= ab ∈ (ab) and (ab) is weakly 2-prime,
hence a2 ∈ (ab) or b2 ∈ (ab). Consequently, (a2) ⊆ (ab) or b2 ⊆ (ab).

Conversely, let I be a proper ideal of a semiring S and 0 6= ab ∈ I for
some a, b ∈ S. Then 0 6= ab ∈ (ab) ⊆ I implies a2 ∈ (a2) ⊆ (ab) ⊆ I or
b2 ∈ (b2) ⊆ (ab) ⊆ I. Hence, I is weakly 2-prime ideal of S, as desired.

Theorem 4.6. Let I be a subtructive ideal of a semiring S with I2 * In.
Then I is a 2-prime ideal of S if and only if I is a n-weakly 2-prime ideal.
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Proof. Let I be a subtructive n-weakly 2-prime ideal of S such that I2 ⊆ In
and ab ∈ I for some a, b ∈ S. If ab /∈ In, then a2 ∈ I or b2 ∈ I, since I is
n-weakly 2-prime. So we assume ab ∈ In. First we suppose aI * In. Then
for some i ∈ I, ai /∈ In implies a(b + i) /∈ In, since I is subtructive and
ab ∈ In. Hence a(b+ i) ∈ I−In implies a2 ∈ I or b2 ∈ I. So we can assume
aI ⊆ In. Similarly we can assume Ib ⊆ In. Now since I2 * In, there exists
a1, b1 ∈ I such that a1b1 /∈ In. Hence (a + a1)(b + b1) ∈ I − In because if
(a+a1)(b+b1) ∈ In then a1b1 = (a+a1)(b+b1) = (ab+aa1+bb1+a1b1) ∈ In,
which contradicts that a1b1 /∈ In. Hence (a + a1)

2 ∈ I or (b + b1)
2 ∈ I,

since I is n-weakly 2-prime ideal of S. Therefore a2 ∈ I or b2 ∈ I, since I
is subtructive ideal of S, as desired. The other part is obvious.

Proposition 4.7. Let S be a semiring and x ∈ S. Then the following
statements holds.

(1) If Sx is a subtructive ideal of S and Ann(x) ⊆ Sx. Then Sx is a
2-prime ideal of S if and only if Sx is a n-weakly 2-prime ideal.

(2) If Sx is a subtructive ideal of S and Ann(x) ⊆ xI for some subtra-
tive ideal I of S. Then xI is a 2-prime ideal of S if and only if xI
is a n-weakly 2-prime ideal of S.

Proof. (1). Let Sx be a subtructive n-weakly 2-prime ideal of S and ab ∈ Sx
for some a, b ∈ S. If ab /∈ (Sx)n, then I is 2-prime ideal, since Sx is n-
weakly 2-prime ideal of S. So we assume ab ∈ (Sx)n. Clearly a(b+x) ∈ Sx.
If a(b+ x) /∈ (Sx)n, then a2 ∈ Sx or b2 ∈ Sx, since Sx is n-weakly 2-prime
ideal of S. So we assume a(b+ x) ∈ (Sx)n. Since ab ∈ (Sx)n and (Sx)n is
subtructive, we have ax ∈ (Sx)n implies ax = tx for some t ∈ (Sx)n ⊆ Sx.
Hence a − t ⊆ Ann(x) ⊆ Sx implies a2 ∈ Sx . Consequently, Sx is a
2-prime ideal of S. The converse part is obvious.

(2). Let xI be a subtructive n-weakly 2-prime ideal of S and ab ∈ xI
for some a, b ∈ S. If ab ∈ (xI)n, then xI is a 2-prime ideal of S. Hence
we assume ab ∈ (xI)n. Clearly, a(b + x) ∈ xI. If a(b + x) /∈ (xI)n, then
a2 ∈ xI or b2 ∈ xI, since xI is subtructive n-weakly 2-prime ideal of S.
Hence xI is n-weakly 2-prime ideal of S. Now suppose a(b + x) ∈ (xI)n.
Since ab ∈ (xI)n, we have ax = yx for some y ∈ (aI)n ⊆ aI. This implies
(a−y)x = 0. Hence a−y ∈ Ann(x) ⊆ xI. Therefore a2 ∈ xI. Consequently,
xI is a 2-prime ideal of S.

Definition 4.8. A proper ideal I of a semiring S is said to be a strong
ideal, if for each a ∈ I there exists b ∈ I such that a+ b = 0.
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Proposition 4.9. Let f : S → S1 be an epimorphism of semirings such
that f(0) = 0 and I be a subtructive strong ideal of S. Then

(1) If I is a weakly 2-prime ideal of S such that kerf ⊆ I, then f(I) is
a weakly 2-prime ideal of S1.

(2) If I is a 2-prime ideal of S such that kerf ⊆ I, then f(I) is a
2-prime ideal of S1.

Proof. (1). Let a1, b1 ∈ S1 be such that 0 6= a1b1 ∈ f(I). So there exists
an element p ∈ I such that 0 6= a1b1 = f(p). Also there exist a, b ∈ S such
that f(a) = a1, f(b) = b1, since f is an epimorphism. Since I is a strong
ideal of S and p ∈ I, there exists q ∈ I such that p + q = 0. This implies
f(p + q) = 0, that is, f(ab + q) = 0, implies ab + q ∈ kerf ⊆ I, Hence
0 6= ab ∈ I, as I is a subtructive ideal of S and if ab = 0, then f(p) = 0, a
contradiction. Thus a2 ∈ I or b2 ∈ I, since I is a weakly 2-prime ideal of S.
Thus a21 ∈ f(I) or b21 ∈ f(I). Hence, f(I) is a weakly 2-prime ideal of S.

(2). It is clear from (1).

Proposition 4.10. Let S1 and S2 be two semirings and I be a proper ideal
of S1. Then the followings are equivalent:

(1) I is a 2-prime ideal of S1.
(2) I × S2 is a 2-prime ideals of S1 × S2.
(3) I × S2 is a weakly 2-prime ideals of S1 × S2.

Proof. (1)⇒ (2). Let (a1, b1)(c1, d1) ∈ I×S2 for some (a1, b1) ∈ S1×S2 and
(c1, d1) ∈ S1×S2. Then (a1c1, b1d1) ∈ I×S2 implies a21 ∈ I or c21 ∈ I, since
I is a 2-prime ideal of S1. Now if a21 ∈ I, then (a1, b1)

2 = (a21, b
2
1) ∈ I × S2.

Similarly if c21 ∈ I, then (c1, d1)
2 = (c21, d

2
1) ∈ I × S2. Consequently, I × S2

is a 2-prime ideal of S1 × S2.
(2)⇒ (3) It is clear.

(3) ⇒ (1). Let ab ∈ I for some a, b ∈ S. Then (0, 0) 6= (a, 1)(b, 1) ∈
I × S2. This implies (a2, 1) ∈ I × S2 or (b2, 1) ∈ I × S2, since I × S2 is a
2-prime ideal of S1 × S2. Hence, a2 ∈ I or b2 ∈ I, as desired.
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Left twisted rings

Hee Sik Kim and Jae Hee Kim

Abstract. We introduce the notion of a left-twisted ring, and we construct a left-zero
ring which is not a ring. We show that such a left-twisted ring does not have an identity.
Also, we show that every non-zero element of the left-twisted ring is a pseudo unit of it.

1. Introduction

The concept of several types of groupoids related to semigroups, viz., twisted
semigroups for which twisted versions of the associative law hold was intro-
duced by Allen et al. in [1]. Thus, if (X, ∗) is a groupoid and if ϕ : X2 → X2

is a function ϕ(a, b) = (u, v), then (X, ∗) is a left-twisted semigroup with
respect to ϕ if for all a, b, c ∈ X, a ∗ (b ∗ c) = (u ∗ v) ∗ c. Moreover, right-
twisted, middle-twisted and their duals, a dual left-twisted semigroup were
also discussed. The class of groupoids defined over a field (X,+, ·) via a
formula x∗y = λx+µy, with λ, µ ∈ X, fixed structure constants as twisted
semigroups are discussed.

The basic idea came from the following observations. Let X = R be
the set of all real numbers. We consider a binary operation (R,−) where
“−” is the usual subtraction. Then (x− y)− z 6= x− (y− z) = x− y+ z in
general, i.e., (R,−) is not a semigroup. Since (x− y)− z = x− (y− (−z)),
if we define u := x, v := −z, then we have (x− y)− z = u− (y − v), which
looks like that “−” satisfies a version of the associative law in R, i.e., there
exists a map ϕ : R2 → R2 such that ϕ(x, z) = (x,−z) = (u, v). Thus, we
obtain a “twisted” associated law for (R,−), with the function ϕ defining
the “nature" of the “twisted semigroup” of a particular type.

Kim and Neggers introduced in [2] the notion of Bin(X), the collec-
tion of all groupoids defined on a non-empty set X. They showed that
(Bin(X),�) is a semigroup and the left zero semigroup on X acts as an
identity in (Bin(X),�). Let (R,+, ·) be a commutative ring with identity

2010 Mathematics Subject Classification: 16Y99, 20N02, 20M10.
Keywords: left-twisted ring, right-zero-divisor, pseudo unit.
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and let L(R) denote the collection of all groupoids (R, ∗) such that, for all
x, y ∈ R, x ∗ y := ax+ by + c, where a, b, c ∈ R are fixed constants. Such a
groupoid (R, ∗) is said to be a linear groupoid. They showed that (L(R),�)
is a semigroup with identity. Neggers et al. introduced in [3] the notion of
a Q-algebra, and showed that every quadratic Q-algebra (X, ∗, e), e ∈ X,
has of the form x ∗ y = x− y + e when X is a field with |X| > 3.

In this paper, we construct a left-twisted ring which is not a ring on the
basis of left-twisted semigroups on a field K, where char(K) = p, K > p, p
is a prime by defining a binary operation a ∗ b := apb for all a, b ∈ K, and
by defining an associator function ϕ, where ϕ(a, b) := (a

1
p , b). We prove

that such a left twisted ring (K,+, ·, 0, 1) does not have an identity, but its
non-zero element is a pseudo unit of it.

2. Preliminaries

Let (X, ∗) be a groupoid for which there exists a function ϕ : X2 → X2

such that, for all a, b, c ∈ X,

a ∗ (b ∗ c) = (u ∗ v) ∗ c, (1)

where ϕ(a, b) = (u, v), i.e., u = u(a, b), v = v(a, b) are functions of two
variables. We call (X, ∗) a left-twisted semigroup with respect to the map
ϕ. Such a map ϕ is called an associator function of the groupoid (X, ∗).

Example 2.1. (cf. [1]) Let R = (R,+, ·) be a real field and λ 6= 0, µ ∈ R.
We define a binary operation “∗” on R as follows: x ∗ y := λx+ µy for any
x, y ∈ R. If we define a map ϕ(a, b) := ( aλ , b) and µ

2 = µ, then (R, ∗) is a
left-twisted semigroup with respect to ϕ.

We may think of changing the equation (1) as follows:

(a ∗ b) ∗ c = a ∗ (u ∗ v), (2)

where ϕ(a, b) = (u, v), i.e., u = u(a, b), v = v(a, b) are functions of two
variables. We call (X, ∗) a right-twisted semigroup with respect to ϕ.

Example 2.2. (cf. [1]) Consider X := 2A where A 6= ∅. If we define
a ∗ b := a − b for any a, b ∈ X, then (a ∗ b) ∗ c 6= a ∗ (b ∗ c). On the other
hand, if we let ϕ(b, c) := (b∪ c, ∅), then (a ∗ b) ∗ c = (a− b)− c = a− (b∪ c),
and a ∗ (u ∗ v) = a − (b ∪ c − ∅) = a − (b ∪ c), proving that (X, ∗) is a
right-twisted semigroup with respect to ϕ.
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Note that Example 2.2 is a typical example of a BCK-algebra which is
also a right-twisted semigroup.

3. Left-twisted rings

An algebraic system (X,+, ∗, 0, ϕ) is said to be a left-twisted ring if

(tr1) (X,+, 0) is an abelian group,

(tr2) (X, ∗, ϕ) is a left-twisted semigroup,

(tr3) for all a, b, c ∈ X,

a ∗ (b+ c) = a ∗ b+ a ∗ c,
(a+ b) ∗ c = a ∗ c+ b ∗ c.

Note that we can provide many examples of a left-twisted ring which
are not a ring by applying Theorem 4.1 below using the change of prime
number p.

Proposition 3.1. Let (X,+, ∗, 0, ϕ) be a left-twisted ring. Then

(i) a ∗ 0 = a = 0 ∗ a for all a ∈ X,

(ii) a ∗ (−b) = (−a) ∗ b = −(a ∗ b) for all a, b ∈ X.

Proof. (i). If (X,+, ∗, 0, ϕ) is a left-twisted ring, then a ∗ 0 = a ∗ (0 + 0) =
a∗0+a∗0 for all a ∈ X. Since (X,+) is an abelian group, we have a∗0 = 0
for all a ∈ X. Similarly, 0 ∗ a = (0 + 0) ∗ a = 0 ∗ a+ 0 ∗ a implies 0 ∗ a = 0
for all a ∈ X.
(ii). By applying (i), we obtain

0 = a ∗ 0 = a ∗ (b+ (−b)) = a ∗ b+ a ∗ (−b).

It follows that a∗(−b) = −(a∗b). Similarly, we obtain (−a)∗b = −(a∗b).

When we defined left-(resp., right-) twisted semigroup, we used the as-
sociator function ϕ(a, b) = (u, v), i.e., u = u(a, b), v = v(a, b) are functions
of two variables. Since u and v are represented by a and b, we may define
u ∗ v := ξ(a, b) for some ξ : X2 → X2. We denote such a function ξ by ϕ̂,
i.e., u ∗ v = ϕ̂(a, b).
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Proposition 3.2. Let (X,+, ∗, 0, ϕ) be a left-twisted ring. Then, for all
a, b, c, d ∈ X, we have

ϕ̂(a+ b, c) ∗ d = ϕ̂(a, c) ∗ d+ ϕ̂(b, c) ∗ d. (3)

Proof. Given a, b, c, d ∈ X, since X is a left-twisted ring, there exist u, v in
X such that (a + b) ∗ (c + d) = (u ∗ v) ∗ d where ϕ(a + b, c) = (u, v). It
follows that u ∗ v = ϕ̂(a+ b, c), and hence we obtain

(a+ b) ∗ (c+ d) = ϕ̂(a+ b, c) ∗ d. (4)

Now, by applying (tr3), we obtain

(a+ b) ∗ (c ∗ d) = a ∗ (c ∗ d) + b ∗ (c ∗ d)
= ϕ̂(a, c) ∗ d+ ϕ̂(b, c) ∗ d. (5)

By (4) and (5), we prove the proposition.

Corollary 3.3. Let (X,+, ∗, 0, ϕ) be a left-twisted ring. If d(∈ X) is right
cancellative, then

ϕ̂(a+ b, c) = ϕ̂(a, c) + ϕ̂(b, c). (6)

Proof. Straightforward.

Corollary 3.4. Let (X,+, ∗, 0, ϕ) be a left-twisted ring. Then

ϕ̂(0, c) ∗ d = 0 (7)

for all c, d ∈ X.

Proof. If we let a = b = 0 in Proposition 3.2, then

ϕ̂(0, c) ∗ d = [ϕ̂(0, c) + ϕ̂(0, c)] ∗ d = ϕ̂(0, c) ∗ d+ ϕ̂(0, c) ∗ d.

This shows that ϕ̂(0, c) ∗ d = 0.

Let (X,+, ∗, 0, ϕ) be a left-twisted ring. An element d in X is said to
be a right-non-zero-divisor if a ∗ d = 0 then a = 0.

Corollary 3.5. Let (X,+, ∗, 0, ϕ) be a left-twisted ring. If d in X is a
right-non-zero-divisor, then ϕ̂(0, c) = 0 for all c ∈ X.

Proof. It follows immediately from Corollary 3.4.

Proposition 3.6. Let (X,+, ∗, 0, ϕ) be a left-twisted ring. If b in X is a
right-non-zero-divisor, then ϕ̂(a, 0) = 0 for all a ∈ X.

Proof. Given a ∈ X, we have 0 = a ∗ 0 = a ∗ (0 ∗ b) = ϕ̂(a, 0) ∗ b. Since b is
a right-non-zero-divisor, we obtain ϕ̂(a, 0) = 0 for all a ∈ X.
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4. Constructions of a left twisted ring

In this section, we construct a left twisted ring which is not a ring.

Theorem 4.1. Let (K,+, ·, 0, 1) be a field where char(K) = p, |K| > p,
p is a prime. Define a binary operation a ∗ b := apb for all a, b ∈ K, and
define a map ϕ(a, b) := (a

1
p , b). Then (K,+, ∗, 0, ϕ) is a left-twisted ring

which is not a ring.

Proof. We claim that (K, ∗, ϕ) is a left-twisted semigroup. Given a, b, c ∈ K,
we have a∗ (b∗ c) = ap(b∗ c) = ap(bpc) = (ab)pc. It follows that (u∗v)∗ c =
ϕ̂(a, b) ∗ c = (a

1
p ∗ b) ∗ c = (a

1
p )pb ∗ c = ab ∗ c = (ab)pc = a ∗ (b ∗ c), proving

the claim.
We claim that (K, ∗) is not a semigroup. Let a 6∈ GF (p). Then ap 6= a

and hence a 6= a
1
p . Hence a ∗ (b ∗ c) = (u ∗ v) ∗ c = ab ∗ c = (a

1
p ∗ b) ∗ c,

which shows that (K, ∗) is not a semigroup.
Finally, we show that (tr3) condition holds. Given a, b, c ∈ K, we have

a ∗ (b + c) = ap(b + c) = apb + apc = a ∗ b + a ∗ c. Since char(K) = p, we
obtain (a+ b) ∗ c = (a+ b)pc = (ap + bp)c = apc+ bpc = a ∗ c+ b ∗ c. Hence
(K,+, ∗, 0, ϕ) is a left-twisted ring which is not a ring.

Proposition 4.2. Let (X,+, ∗, 0, ϕ) be a left-twisted ring. Then

(i) if a ∗ c 6= b ∗ c and c 6= 0, then a = b,

(ii) if a ∗ c 6= a ∗ d and a 6= 0, then c = d.

Proof. (i). Suppose a ∗ c = b ∗ c. Then apc = bpc and hence (a − b)pc =
(ap− bp)c = 0. Since c 6= 0 and K is a field, we obtain (a− b)p = 0, proving
that a = b.
(ii). Similar to (i), and we omit it.

Theorem 4.3. Let (K,+, ·, 0, 1) be a field where |K| > p, char(K) = p,
where p is a prime. Then a left-twisted ring (K,+, ∗, 0, ϕ) does not have an
identity.

Proof. Assume that there exists e ∈ K such that a ∗ e = a = e ∗ a for
all a ∈ K. It follows that ape = a. Since a 6= 0, we obtain e = a1−p =
( 1a)

p−1 = αp−1 where α = 1
a . This shows that |K| = p, i.e., K = GF (p),

a contradiction. Since e ∗ a = a and a 6= 0, we have epa = a, and hence
ep = 1. Hence e is a root of an equation xp − 1 = 0. Since xp − 1 = 0 has
at most p such elements, |K| = p, a contradiction.
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Let (K,+, ∗, 0, ϕ) be a left-twisted ring described in Theorem 4.3. An
element u ∈ K is said to be a pseudo unit if x ∈ X, there exist xL, xR ∈ K
such that xL ∗ u = x, u ∗ xR = x, i.e., (xL)pu = x, upxR = x. It follows that
xL = (xu)

1
p and xR = x

up . Clearly, the identity 1 is a pseudo unit of K. For

any x ∈ K, if we take xL := x
1
p and xR := x, then 1 becomes a pseudo unit

of K.

Proposition 4.4. Let (K,+, ∗, 0, ϕ) be a left-twisted ring as in Theorem
4.3. Let P (∗) := {u ∈ K |u : a pseudo unit of K}. Then (P (∗), ∗) is a
subsemigroup of (K, ∗) containing 1.

Proof. Clearly, 1 ∈ P (∗). If u, v ∈ X, then u ∗ v = upv. Given x ∈ K, we
let α ∈ K such that α ∗ (upv) = x. It follows that α = ( x

upv )
1
p ∈ K. Let

β ∈ K such that (u ∗ v) ∗ β = x. It follows that (upv)pβ = x, and hence
β = x

(upv)p ∈ K. If we take xL := α, xR := β, then u∗v is a pseudo unit.

Theorem 4.5. Every non-zero element of K as in Theorem 4.3 is a pseudo
unit of K.

Proof. Let u 6∈ P (∗) with u 6= 0. Then there exists x ∈ K such that
α ∗ u = x or u ∗ β = x is impossible for some α, β ∈ K. It follows that
αpu = x or upβ = x is impossible. Since u 6= 0, we obtain α = (xu)

1
p or

β = x
up is impossible, a contradiction, since α, β ∈ K.
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Menger hypercompositional algebras
represented by medial n-ary hyperoperations

Thodsaporn Kumduang

Dedicated to the memory of Professor Valentin S. Trokhimenko

Abstract. The necessary and sufficient conditions under which a Menger algebra can
be isomorphically represented by medial n-ary operations are proposed. Since a Menger
hypercompositional algebra can be regarded as a generalization of a Menger algebra, for
this reason, the situation for medial hyperoperations is further examined and a repre-
sentation theorem of Menger hypercompositional algebras by such concepts is proved.

1. Introduction and preliminaries

It is widely accepted that Professor V.S. Trokhimenko, who is a Ukrainian
mathematician, has a great contribution in the developments of Menger al-
gebras and algebras of multiplace functions for a long time. Many papers
concerning various classes of multiplace functions and their structural prop-
erties have been extensively studied in the past few decades, for instance,
idempotent n-ary operations [10] and k-commutative n-place functions [11].
See [8, 9, 12, 13, 14, 15] for more related topics in this direction. It turned
out that these works can be considered as nice connections between the
study of algebra and the theory of functions. Unfortunately, V.S. Trokhi-
menko passed away in 2020 due to the pandamic of COVID-19. However,
the paper that mentioned his personal life and scientific works was com-
memoratively collected by W.A. Dudek in [6].

Basically, for a fixed positive integer n, a Menger algebra of rank n
is a pair of a nonempty set G and an (n + 1)-ary operation on G which

2010 Mathematics Subject Classification: 20N05; 20N15; 08A05
Keywords: Menger algebra, mediality, algebra of multiplace function
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satisfies the superassociative law. Nowadays, Menger algebras were inves-
tigated in different aspects, for example, partial Menger algebras of terms
[5], power Menger algebras of terms defined by order-decreasing transfor-
mations [28]. For other, see [4, 20, 23]. Fundamental properties of Menger
algebras concerning quotient Menger algebras and isomorphism theorems
for Menger algebras were recently examined in [18]. Now two elementary
examples of Menger algebras are provided. The first one is the set R+

of all positive real numbers with the operation ◦ : (R+)n+1 → R+, de-
fined by ◦(x0, . . . , xn) = x0 n

√
x1 · · ·xn. Another one is the set of all real

numbers R with the following (n + 1)-ary operation ◦, which is defined by
◦(x, y1 . . . , yn) = x + y1+...+yn

n for all x, y1 . . . , yn ∈ R. In a view of exten-
sions, a Menger algebra of rank n = 1 is a semigroup. This means that a
Menger algebra of rank n is a generalized structure of semigroups too.

Normally, semigroups and groups can be isomorphically represented by
functions of one variables. Representations of other structures, for example,
see [1, 22, 27]. Analogously, Menger algebras of some types are also studied
in the same direction. It turned out that some types of Menger algebras
of rank n can be represented by n-ary functions. In fact, let An be the
n-th Cartesian product of a nonempty set A. Any mapping from An to
A is called a full n-ary function or an n-ary operation if it is defined for
all elements of An. The set of all such mappings is denoted by T (An, A).
One can consider the Menger’s superposition on the set T (An, A), i.e., an
(n+ 1)-ary operation O : T (An, A)n+1 → T (An, A) defined by

O(f, g1, . . . , gn)(a1, . . . , an) = f(g1(a1, . . . , an), . . . , gn(a1, . . . , an)),

where f, g1, . . . , gn ∈ T (An, A), a1, . . . , an ∈ A. A Menger algebra of all full
n-ary functions, or a Menger algebra of all n-ary operations, is a pair of
the set T (An, A) of all full n-ary functions defined on A and the Menger
composition of full n-ary functions satisfying the superassociative law. For
an extensive information on functions, see [7, 21].

It is commonly seen that the study of hypercompositional algebra has
become famous topics among mathematicians. One of outstanding classes
of its is a semihypergroup, a hyperstructure that generalized semigroups
but the composition of two elements is a nonempty set. There are several
possibilities to construct generalizations of semihypergroups. Recall from
[19] that a Menger hypercomposition algebra or a Menger hyperalgebra is a
cuple (G, �) of a nonempty set G and one (n+ 1)-ary hyperoperation � on
G satisfying the identity of the superassociativity. It can be noticed that a
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Menger hyperalgebra can be reduced to a semihypergroup if we set n = 1.
Furthermore, every Menger algebra is a Menger hypercomposition algebra.
Normally, a representation is an essential part of the study of algebra, so
representation theorems for Menger hyperalgebras are now recalled. Let
An be the n-th Cartesian product of a nonempty set A. The symbol P ∗(A)
stands for a power set of A without emptyset. On the set T (An, P ∗(A)) of all
multivalued full n-ary functions or n-ary hyperoperations α : An → P ∗(A),
one can define the following (n + 1)-ary operation • : T (An, P ∗(A))n+1 →
T (An, P ∗(A)), called the Menger superposition •, defined by

•(f, g1, . . . , gn)(x1, . . . , xn) =
⋃

yi∈gi(x1,...,xn)
i∈{1,...,n}

f(y1, . . . , yn),

for all i = 1, . . . , n where f, g1, . . . , gn ∈ T (An, P ∗(A)), x1, . . . , xn ∈ A. As
a consequence, the set T (An, P ∗(A)) of all multivalued full n-ary functions
on A together with an (n+ 1)-ary operation • forms a Menger algebra.

This papar aims to apply a specific class of functions which are called
medial operations (the formal definition will be recalled in the next section)
into the study of Menger algebras and to describe properties of Menger
hypercomposition algebras by such tools. In Section 2, the idea of medial
operations is mainly presented and a representation theroem for Menger
algebras via such concepts is mentioned. These lead us to generalized our
study in Menger hypercompositional algebras. In addition, the conditions
under which hyperstructure can be isomorphically represented by medial
hyperoperations are found. Finally, some interesting remarks and some
potential problems are given.

2. Results

This section begins with recalling some basic definitions of medial proper-
ties. An n-ary algebra (A, g) is said to be medial if it satisfies the identity

g(g(x11, ..., xn1), . . . , g(x1n, ..., xnn)) = g(g(x11, ..., x1n), . . . , g(xn1, ..., xnn)),

and an n-ary operation g on A is called medial. Furthermore, it has been
studied by many authors under different names, such as Abelian, entropy,
and bisymmetric algebras. On the other hand, if g satisfies the identity

g(g(x11, ..., xn1), . . . , g(x1n, ..., xnn)) = g(g(xnn, ..., xn1), . . . , g(x1n, ..., x11)),
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then an algebra (A, g) is called paramedial. For more information about
medial and paramedial properties can be found, for instance, in [2, 3, 16,
17, 24, 25, 26].

Example 2.1. Two interesting examples of mediality are collected.

(1) Every left (right) zero semigroup is a medial semigroup.

(2) Let (A, g) be an n-ary algebra. By an antiendomorphism on A we
mean a mapping α : A → A, α(g(a1, . . . , an)) = g(α(an), . . . , α(a1)).
As a result if (A, g) is a paramedial n-ary algebra and γ1, . . . , γn are
pair wise commuting antiendomorphisms of A, then an n-ary opera-
tion g∗ on A, which is defined by

g∗(x1, . . . , xn) = g(γ1(x1), . . . , γn(xn)),

is a medial n-ary operation.

By an1 , we mean the sequence a1, . . . , an for a positive integer n. How-
ever, it is not difficult to verify that the superassociativity does not valid
for every medial n-ary operations. In order to state necessary and sufficient
conditions representing an abstract Menger hypercompisitonal algebra by
medial n-ary operations, we need a technical lemma.

Lemma 2.2. For any medial n-ary operations f, gij on A, i, j = 1, 2, . . . , n,
we have

O(f,O(f, g11, . . . , gn1), . . . ,O(f, g1n, . . . , gnn))

= O(f,O(f, g11, . . . , g1n), . . . ,O(f, gn1, . . . , gnn)).

Proof. Let a1, . . . , an be elements in A. Then we obtain
O(f,O(f, g11, . . . , gn1), . . . ,O(f, g1n, . . . , gnn))(an1 )
= f(O(f, g11, . . . , gn1)(a

n
1 ), . . . ,O(f, g1n, . . . , gnn)(an1 ))

= f(f(g11(a
n
1 ), . . . , gn1(a

n
1 )), . . . , f(g1n(an1 ), . . . , gnn(an1 )))

= f(f(g11(a
n
1 ), . . . , g1n(an1 )), . . . , f(gn1(a

n
1 ), . . . , gnn(an1 )))

= f(O(f, g11, . . . , g1n)(an1 ), . . . ,O(f, gn1, . . . , gnn)(an1 ))

= O(f,O(f, g11, . . . , g1n), . . . ,O(f, gn1, . . . , gnn))(an1 ).

The proof is completed.

As a consequence, we have
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Theorem 2.3. A Menger algebra (G, ◦) of rank n is isomorphically repre-
sented by medial n-ary operations defined on some set if and only if (G, ◦)
satisfies the equation

◦(y, ◦(y, xn111 ), . . . , ◦(y, xnn1n )) = ◦(y, ◦(y, x1n11 ), . . . , ◦(y, xnnn1 ))

for all y, xij ∈ G and i, j ∈ {1, . . . , n}.

Proof. The necessity follows directly from the result of Lemma 2.2. Con-
versely, let (G, ◦) be an arbitrary Menger algebra satisfying the equation

◦(y, ◦(y, xn111 ), . . . , ◦(y, xnn1n )) = ◦(y, ◦(y, x1n11 ), . . . , ◦(y, xnnn1 )).

We now prove that there exists an n-ary operation induced by an element
g of G. For this construction, consider the set G′ = G ∪ {e, c} where e and
c are different elements not containing in G. For every element g ∈ G, we
assign an n-ary operation ηg : (G′)n → G′ by setting

ηg(a
n
1 ) =


◦(g, an1 ) if ai ∈ G for all 1 6 i 6 n,

g if ai = e for all 1 6 i 6 n,

c otherwise.

Firstly, we show that the n-ary operation ηg defined above is medial.
For this, let aij ∈ G′ for i, j = 1, . . . , n.

If all aij ∈ G, then according to the assumption, we have

ηg(ηg(a
n1
11 ), . . . , ηg(a

nn
1n )) = ◦(g, ηg(an111 ), . . . , ηg(a

nn
1n ))

= ◦(g, ◦(g, an111 ), . . . , ◦(g, ann1n ))
= ◦(g, ◦(g, a1n11 ), . . . , ◦(g, annn1 ))
= ηg(ηg(a

1n
11 ), . . . , ηg(a

nn
n1 )).

In the second case, if aij = e for all i, j ∈ {1, . . . , n}, then we obtain

ηg(ηg(a
n1
11 ), . . . , ηg(a

nn
1n )) = ηg(g, . . . , g) = ◦(g, g, . . . , g).

Moreover, ηg(ηg(a1n11 ), . . . , ηg(a
nn
n1 )) = ηg(g, . . . , g) = ◦(g, g, . . . , g).

In other case,

ηg(ηg(a
n1
11 ), . . . , ηg(a

nn
1n )) = ηg(c, . . . , c) = c = ηg(ηg(a

1n
11 ), . . . , ηg(a

nn
n1 )).

So, the n-ary operation ηg is medial.
Define a mapping φ : (G, ◦)→ (T (Gn, G),O) by φ(g) = ηg for all g ∈ G.

To prove the injectivity of φ, let g1, g2 ∈ G. Suppose that φ(g1) = φ(g2).
Then for all a1, . . . , an ∈ G, we have ηg1(a1, . . . , an) = ηg2(a1, . . . , an). In
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particular, ηg1(e, . . . , e) = ηg2(e, . . . , e), which implies that g1 = g2. So, φ
is injective. Finally, we show that the identity

η◦(x,y1,...,yn) = O(ηx, ηy1 , . . . , ηyn)

holds for all x, y1, . . . , yn ∈ G. For this, let a1, . . . , an be arbitrary elements
in G′. If ai ∈ G for all 1 6 i 6 n, then for x, y1, . . . , yn ∈ G, applying the
superassociativity of (n+ 1)-ary operation ◦ on G, we have

η◦(x,y1,...,yn)(a1, . . . , an) = ◦(◦(x, y1, . . . , yn), a1, . . . , an)

= ◦(x, ◦(y1, a1, . . . , an), . . . , ◦(yn, a1, . . . , an))
= ηx(ηy1(a1, . . . , an), . . . , ηyn(a1, . . . , an))
= O(ηx, ηy1 , . . . , ηyn)(a1, . . . , an).

If (a1, . . . , an) = (e, . . . , e), then η◦(x,y1,...,yn)(e, . . . , e) = ◦(x, y1, . . . , yn). On
the other hand, we get ηx(y1, . . . , yn) = ηx(ηy1(e, . . . , e), . . . , ηyn(e, . . . , e)) =
O(ηx, ηy1 , . . . , ηyn)(e, . . . , e).Now, if (a1, . . . , an) ∈ (G′)n\(Gn∪{(e, . . . , e)}),
then we get η◦(x,y1,...,yn)(a1, . . . , an) = c andO(ηx, ηy1 , . . . , ηyn)(a1, . . . , an) =
ηx(ηy1(c, . . . , c), . . . , ηyn(c, . . . , c)) = ηx(c, · · · , c) = c, which implies

η◦(x,y1,...,yn)(a1, . . . , an) = c = O(ηx, ηy1 , . . . , ηyn)(a1, . . . , an).

This completes the proof of this theorem.

Applyig the same construction of the n-ary operation ηg, we can prove
a representation theorem of any Menger algebra by paramedial operations.
So, we obtain the following corollary.

Corollary 2.4. A Menger algebra (G, ◦) of rank n is isomorphically rep-
resented by paramedial n-ary operations defined on some set if and only if
(G, ◦) satisfies the equation

◦(y, ◦(y, xn111 ), . . . , ◦(y, xnn1n )) = ◦(y, ◦(y, xnn, . . . , xn1), . . . , ◦(y, x1n, . . . , x11))

for all y, xij ∈ G and i, j ∈ {1, . . . , n}.

Now the investigation in Menger algebras is finished. We continue our
study on Menger hypercompositional algebras. In our conjecture, the sit-
uation for Menger hypercompositional algebras is different. To attain this
purpose, the concept of medial hyperoperations is now introduced. An n-ary
hyperoperation f on A is said to be medial if

f(f(xn111 ), . . . , f(xnn1n )) = f(f(x1n11 ), . . . , f(xnnn1 )).
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For convenience, we may rewrite the above identity in the following
form: ⋃

yi∈f(xni1i )
i∈{1,...,n}

f(yn1 ) =
⋃

yi∈f(xini1 )
i∈{1,...,n}

f(yn1 ).

The following theorem presents a mediality of medial hyperoperations
in a connection with permutations.

Theorem 2.5. Let f be a medial n-ary hyperoperation on a nonempty set
A and π be a permutation on {1, . . . , n}. Then the n-ary hyperoperation f̂
on A, which is defined by f̂(a1, . . . , an) = f(aπ(1), . . . , aπ(n)), is medial.

Proof. For every i, j ∈ {1, . . . , n}, let aij ∈ A. Then we obtain

⋃
bi∈f̂(a1i,...,ani)
i∈{1,...,n}

f̂(b1, . . . , bn) =
⋃

bπ(i)∈f(aπ(1)π(i),...,aπ(n)π(i))
i∈{1,...,n}

f(bπ(1), . . . , bπ(n))

=
⋃

bπ(i)∈f(aπ(i)π(1),...,aπ(i)π(n))
i∈{1,...,n}

f(bπ(1), . . . , bπ(n))

=
⋃

bi∈f̂(ai1,...,ain)
i∈{1,...,n}

f̂(b1, . . . , bn).

This shows that the n-ary hyperoperation f̂ is medial.

Theorem 2.6. A Menger hypercompositonal algebra (G, �) of rank n is
isomorphically represented by medial n-ary hyperoperations defined on some
set if and only if (G, �) satisfies the equation⋃

yi∈�(y,xni1i )
i∈{1,...,n}

�(y, yn1 ) =
⋃

yi∈�(y,xini1 )
i∈{1,...,n}

�(y, yn1 )

for all y, xij ∈ G and i, j ∈ {1, . . . , n}.

Proof. Let j = 1, . . . , n and f, gnj1j be arbitrary medial n-ary hyperopera-
tions. Then we have

•(f, •(f, gn111 ), . . . , •(f, gnn1n ))(an1 ) =
⋃

yi∈•(f,gni1i )(an1 )
i∈{1,...,n}

f(yn1 ) =
⋃

yi∈f(g1i(an1 ),...,gni(an1 ))
i∈{1,...,n}

f(yn1 )
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=
⋃

yi∈f(gi1(an1 ),...,gin(an1 ))
i∈{1,...,n}

f(yn1 ) =
⋃

yi∈•(f,gi1,...,gin)(an1 )
i∈{1,...,n}

f(yn1 )

= •(f, •(f, g1n11 ), . . . , •(f, gnnn1 ))(an1 ).

For the converse, let G′ = G ∪ {e, c} where e, c /∈ G and e 6= c. Firstly,
we now construct an n-ary hyperoperation G′. For each element g ∈ G′, an
n-ary hyperoperation on G′ can be defined by setting

µg(a1, . . . , an) =


�(g, an1 ) if an1 ∈ G;

{g} if a1 = · · · = an = e;

{c} otherwise .

Moreover, the extension of the multivalued full n-ary function is needed.
For any nonempty subset A of G′, the function µA is defined by

µA(an1 ) =


�(A, an1 ) if a1, . . . , an ∈ G;

A if a1 = · · · = an = e;

{c} otherwise .

To show that µg is a medial n-ary hyperoperation, let aij ∈ G′ for every
i, j = 1, . . . , n. We first consider in the case when anj1j ∈ G. Then we obtain⋃
bi∈µg(ani1i )
i∈{1,...,n}

µg(b
n
1 ) =

⋃
bi∈�(g,ani1i )
i∈{1,...,n}

�(g, bn1 ) =
⋃

bi∈�(g,aini1 )
i∈{1,...,n}

�(g, bn1 ) =
⋃

bi∈µg(aini1 )
i∈{1,...,n}

µg(b
n
1 ).

In the second case, if a1j = · · · = anj = e for all j = 1, . . . , n, we have⋃
bi∈µg(ani1i )
i∈{1,...,n}

µg(b
n
1 ) =

⋃
bi∈µg(e,...,e)
i∈{1,...,n}

µg(b
n
1 ) =

⋃
bi∈{g}

i∈{1,...,n}

µg(b
n
1 ) = µg(g, . . . , g)

= �(g, g, . . . , g) =
⋃

bi∈µg(e,...,e)
i∈{1,...,n}

µg(b
n
1 ) =

⋃
bi∈µg(aini1 )
i∈{1,...,n}

µg(b
n
1 ).

In other case, by the construction of µg, we have⋃
bi∈µg(ani1i )
i∈{1,...,n}

µg(b
n
1 ) =

⋃
bi∈{c}

i∈{1,...,n}

µg(b
n
1 ) = {c} =

⋃
bi∈µg(aini1 )
i∈{1,...,n}

µg(b
n
1 ).

As a result, the hyperoperation µg with respect to each element g is
medial.

Now we show that the mapping ϕ : G → Λ′, which is defined by
ϕ(g) = µg for all g ∈ G, is a strong isomorphism between (G, �) and
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(T (Gn, P ∗(G)), •) where Λ′ = {µg | g ∈ G}. In order to prove this property,
we show

µ�(a,b1,...,bn) = •(µa, µb1 , . . . , µbn)

for any a, b1, . . . , bn ∈ G′.
Let x1, . . . , xn ∈ G. Then we first show that the equation

µ�(a,b1,...,bn)(x
n
1 ) = •(µa, µb1 , . . . , µbn)(xn1 ).

holds. For this, let a, b1, . . . , bn, x1, . . . , xn be arbitrary elements in G. Then
µ�(a,b1,...,bn)(x

n
1 ) = �(�(a, bn1 ), xn1 ) = �(a, �(b1, xn1 ), . . . , �(bn, xn1 ))

= �(a, µb1(xn1 ), . . . , µbn(xn1 )) =
⋃

yi∈µbi (x
n
1 )

i∈{1,...,n}

�(a, yn1 )

=
⋃

yi∈µbi (x
n
1 )

i∈{1,...,n}

µa(y
n
1 ) = •(µa, µb1 , . . . , µbn)(xn1 ).

Now let x1 = · · · = xn = e, then according to the definition of µA, we
have
µ�(a,b1,...,bn)(x

n
1 ) = µ�(a,bn1 )(e, . . . , e) = �(a, bn1 ) = µa(b

n
1 ) =

⋃
yi∈{bi}
i∈{1,...,n}

µa(y
n
1 )

=
⋃

yi∈µbi (e,...,e)
i∈{1,...,n}

µa(y
n
1 ) = •(µa, µb1 , . . . , µbn)(e, . . . , e)

= •(µa, µb1 , . . . , µbn)(xn1 ),

which implies µ�(a,b1,...,bn)(e, . . . , e) = •(µa, µb1 , . . . , µbn)(e, . . . , e).

Otherwise, we have µ�(a,b1,...,bn)(z
n
1 ) = {c} and

•(µa, µb1 , . . . , µbn)(zn1 ) =
⋃

yi∈µbi (z
n
1 )

i∈{1,...,n}

µa(y
n
1 ) =

⋃
yi∈{c}

i∈{1,...,n}

µa(y1, . . . , yn)

= µa(c, . . . , c) = {c},
which shows µ�(a,b1,...,bn)(z

n
1 ) = •(µa, µb1 , . . . , µbn)(zn1 ). This completes the

proof of the homomorphism property.
In order to prove that µg is injective, suppose µa = µb. Since e is an

element in the domian of µa and µb, then µa(e, . . . , e) = µb(e, . . . , e), and
{a} = {b}. Hence, a = b. So the mapping ϕ : g 7→ µg is an isomorphism.

Corollary 2.7. A Menger hypercompositional algebra (G, �) of rank n is
isomorphically represented by paramedial n-ary hyperoperations defined on
some set if and only if (G, �) satisfies the equation
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�(y, �(y, xn111 ), . . . , �(y, xnn1n )) =
�(y, �(y, xnn, . . . , xn1), . . . , �(y, x1n, . . . , x11))

for all y, xij ∈ G and i, j ∈ {1, . . . , n}.

3. Concluding remarks

In the given paper, applying medial operations in the study of medial al-
gebras, a representation theorem for Menger algebras via such operations
was proved. Several results connecting Menger hypercompositional alge-
bras and medial hyperoperations were developed. The main goals of these
studies were to introduce a novel concept of operations and hyperopera-
tions that generated by a certain classes of mediality and to generalize the
investigation in Menger algebras to Menger hypercompositional algebras.
To achieve these two aims, some technical tools that derived from the idea
of W.A. Dudek and V.S. Trokhimenko were applied.

Finally, two problems for the future research in this area are collected.

(1) Describe algebraic properties of medial operations and medial hyper-
operations.

(2) According to Chapter 6 in the monograph [7], systems of multiplace
functions are described. It is possible to generalize Menger systems
to Menger hypercompsitional systems and try to discuss a construc-
tion of a mapping λg with repect to each element g in a family of
Menger hypercompositonal system (Gn)n∈I . Find necessary and suf-
ficient conditions under which a Menger hypercompositional system
can be represented by medial hyperoperations.
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Topological S-act congruence

Sunil Kumar Maity and Monika Paul

Abstract. In this paper, we establish the necessary and sufficient condition for an
equivalence relation ρ on an S-act A endowed with a topology such that A/ρ becomes a
Hausdorff topological S-act. Also, we show that if A1 and A2 be two topological S-acts,
then for any homomorphism ϕ : A1 → A2, A1/ kerϕ is a topological S-act if and only if
ϕ is ϕ-saturated continuous. Moreover, we establish for any two congruences θ1 and θ2
on an S-act A endowed with a topology, θ1 ∩ θ2 is a topological S-act congruence on A
if and only if the mapping ϕ : A → A/θ1 × A/θ2, defined by ϕ(a) = (aθ1, aθ2), for all
a ∈ A, is ϕ-saturated continuous, where S is a topological semigroup.

1. Introduction and preliminaries

Analogous to topological group actions, topological semigroup actions plays
an important role in the study of semigroup action theory. There are wide
application of topological semigroup action in many fields like manifold,
topological vector space etc. Properties of topological semigroup actions
have been recently studied by many authors, for example, P. Normak, B.
Khosravi and others (see [8], [4]). In [4], the author established a neces-
sary and sufficient conditions for a congruence on a topological S-act to be
topological S-act congruence.

Recall that a semigroup (S, ·) is a nonempty set together with a binary
operation on S satisfying the associative law, i.e., (a · b) · c = a · (b · c), for all
a, b, c ∈ S. Let S be a semigroup and A be a nonempty set. Then A is said
to be a left S-act if there is an action λ : S×A→ A defined by λ(s, a) = sa
such that (st)a = s(ta), for all s, t ∈ S and a ∈ A. Throughout this paper,
by an S-act, we always mean a left S-act. An equivalence relation θ on an S-
act A is said to be a congruence on A if, for all a, b ∈ A and s ∈ S, (a, b) ∈ θ

2010 Mathematics Subject Classification: 22A20, 20M30
Keywords: Topological semigroup, S-act topological congruence, topological S-act
congruence
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implies (sa, sb) ∈ A. For any two S-acts A and B, a mapping f : A→ B is
said to be a homomorphism if f(sa) = sf(a), for all s ∈ S, a ∈ A.

A semigroup S endowed with a topology τ is said to be a topological
semigroup if the binary operation µ : S×S→S

(x,y) 7→xy
is continuous. Let S be a

semigroup endowed with a topology τ and A be a nonempty set endowed
with a topology τA . Then A is said to be an S-act topological space if the
action λ : S × A → A is continuous. Now an S-act topological space A is
said to be a topological S-act if S is a topological semigroup.

Let S be a semigroup endowed with a topology τ and A be an S-act
endowed with a topology τA . Also, let θ be an equivalence relation on A.
Consider the natural mapping π : A → A/θ defined by π(a) = aθ, for
all a ∈ A. Define a topology on A/θ as follows : a subset U of A/θ is
open in A/θ if and only if π−1(U) is open in A. With this topology, π is
a quotient map and A/θ is called a quotient space. Two S-acts A and B
endowed with topologies τA and τB respectively are said to be topologically
isomorphic if there exists a homomorphism ϕ : A → B which is also a
homeomorphism. Moreover, for a semigroup S endowed with a topology, a
congruence θ on an S-act A endowed with a topology τ is said to be a S-act
topological congruence if A/θ is an S-act topological space. In addition, for
a topological semigroup S, a congruence θ on an S-act A endowed with a
topology τ is said to be a topological S-act congruence if A/θ is a topological
S-act.

2. Congruence on a topological S-act

Let S be a semigroup endowed with a topology τ , A be an S-act endowed
with a topology τA and θ be an equivalence relation on A. Consider the
natural map π : A→ A/θ defined by π(a) = aθ and the set τ

θ
= {B ∈ τA :

π−1π(B) = B}. It can easily be shown that τ
θ
is a topology on A. We first

state a very useful result from [4].

Theorem 2.1. Let A be a topological S-act and θ be a congruence on A.
Then A/θ is a topological S-act if and only if (A, τ

θ
) is a topological S-act.

From Theorem 2.1, we have the following two corollaries which will be
very useful in our discussion.

Corollary 2.2. Let S be a semigroup endowed with a topology τ and A
be an S-act endowed with a topology τA. Then for any congruence θ on A,
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A/θ is an S-act topological space if and only if (A, τ
θ
) is an S-act topological

space.

Corollary 2.3. Let S be a topological semigroup and A be an S-act endowed
with a topology τA. Then for any congruence θ on A, A/θ is a topological
S-act if and only if (A, τ

θ
) is a topological S-act.

We now present a necessary and sufficient condition for an equivalence
relation ρ on an S-act A endowed with a topology to be an S-act topological
congruence.

Theorem 2.4. Let S be a semigroup endowed with a topology τ and A be
an S-act endowed with a topology τA. Then for any equivalence relation θ
on A such that A/θ is a Hausdorff space, A/θ is an S-act topological space
if and only if (A, τ

θ
) is an S-act topological space.

Proof. Let A/θ be an S-act topological space. Then θ is a congruence on A.
Hence by Corollary 2.2, (A, τ

θ
) is an S-act topological space. Conversely,

let (A, τ
θ
) be an S-act topological space. Let (a, b) ∈ θ and s ∈ S. If

possible, let (sa, sb) /∈ θ. Then [sa] 6= [sb], where by [x] we mean the θ-
equivalence class containing the element x ∈ X. Since S/θ is Hausdorff,
there exist disjoint open sets G and H containing [sa] and [sb] respectively
in A/θ. Then sa ∈ π−1(G) and sb ∈ π−1(H). Since π is continuous, it
follows that π−1(G) and π−1(H) are open in (A, τ

θ
). Now (A, τ

θ
) being S-

act topological space, there exist open sets U1 and V1 in (S, τ) and (A, τ
θ
)

respectively such that s ∈ U1, a ∈ V1 and U1V1 ⊆ π−1(G). Similarly, there
exist open sets U2 and V2 in (S, τ) and (A, τ

θ
) respectively such that s ∈ U2,

b ∈ V2 and U2V2 ⊆ π−1(H). Let U = U1 ∩ U2. Then s ∈ U . As (a, b) ∈ θ,
we have [a] = [b] ∈ π(V1) ∩ π(V2) and thus a, b ∈ V1 ∩ V2 = V (say). This
implies sa, sb ∈ UV ⊆ π−1(G) ∩ π−1(H) which implies that G ∩ H 6= ∅,
a contradiction. Therefore, [sa] = [sb] and hence θ is a congruence on S.
Consequently, by Corollary 2.2, it follows that A/θ is an S-act topological
space.

Using Theorem 2.4, we at once have the following corollary.

Corollary 2.5. Let (S, τ) be a topological semigroup and A be an S-act
endowed with a topology τA. Then for any equivalence relation θ such that
A/θ is Hausdorff, A/θ is a topological S-act if and only if (A, τ

θ
) is a

topological S-act.



278 S. K. Maity and M. Paul

It is well known that image of an S-act is an S-act. But continuous
image of a topological S-act need not be a topological S-act. This follows
from the following examples.

Example 2.6. Consider the topological semigroup S = (Z6, τdis), where
τ
dis

is the discrete topology on Z6. Also, let A = S and B = (Z6, τ1),
where τ1 = {Z6, ∅, {4̄}}. Then A is a topological S-act. Consider the map
ϕ : A → B defined by ϕ(x̄) = 2x. Then ϕ(A) = {0̄, 2̄, 4̄} and the subspace
topology on ϕ(A) is given by τϕ(A) = {ϕ(A), ∅, {4̄}}. It is easy to verify
that ϕ is continuous and ϕ(A) is an S-act. Now, for the open set {4̄} in
ϕ(A) with s · a ∈ {4̄}, where s = 2̄ ∈ S and a = 2̄ ∈ ϕ(A), there is no open
set U containing a in ϕ(A) such that {s} · U ⊆ {4̄}, where {s} is open in
S. Hence ϕ(A) is not a topological S-act.

We now establish some sufficient conditions for which continuous image
of a topological S-act will be a topological S-act. For this purpose, we first
define ϕ-saturated continuity of between two S-acts A and B.

Definition 2.7. Let S be a semigroup endowed with a topology τ . Let A1

and A2 be S-acts endowed with topologies τ1 and τ2 respectively. Then a
mapping ϕ : A1 → A2 is said to be ϕ-saturated continuous if for any subset
W of A2 with ϕ−1(W ) is open in A1 and s ∈ S, a ∈ A1 with sa ∈ ϕ−1(W ),
there exist open sets U and V in (S, τ) and (A1, τkerϕ) containing s and a
respectively such that UV ⊆ ϕ−1(W ), where kerϕ = {(a, b) ∈ A1 × A1 :
ϕ(a) = ϕ(b)}.

Now we characterize ϕ-saturated continuous map between two topolog-
ical S-acts.

Proposition 2.8. Let S be a topological semigroup. Any injective mapping
ϕ : A → B between two topological S-acts A and B is always ϕ-saturated
continuous.

Proof. Let ϕ : A→ B be an injective mapping between two topological S-
acts A and B. LetW be a subset of B with ϕ−1(W ) is open in A and s ∈ S,
a ∈ A with sa ∈ ϕ−1(W ). Now A being a topological S-act, there exist
open sets U and V in S and A containing s and a respectively such that
UV ⊆ ϕ−1(W ). Now ϕ being injective, ϕ−1(ϕ(V )) = V and this implies
that V ∈ τ

kerϕ
. Hence the result.

By a counter-example below, we conclude that the converse of the
Proposition 2.8 may not be true.
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Example 2.9. Let S = A = B = (Z6, ·6, τ), where τ = {Z6, ∅, {0̄, 3̄},
{1̄, 2̄, 4̄, 5̄}}. Then S is a topological semigroup where A and B can be
thought of as a topological S-acts. Consider the mapping ϕ : A → B
defined by ϕ(a) = 2a, for all a ∈ A. Clearly, ϕ is not injective. But it can
be easily verify that ϕ is ϕ-saturated continuous.

By the following example, we prove that any ϕ-saturated continuous
map ϕ between two topological S-acts may not be continuous.

Example 2.10. Let S = B = (Z6, ·6, τdiscrete) and A = (Z6, ·6, τindiscrete).
Then S is a topological semigroup where A and B are topological S-acts.
Consider the identity map idA : A → B. Now idA being injective, idA is a
idA-saturated continuous map. But it can be easily check that idA is not a
continuous map.

Now we discuss the topological influence of a ϕ-saturated continuous
image of a S-act endowed with a topology.

Theorem 2.11. Let S be a topological semigroup. Let A and B be two
S-acts endowed with topologies τA and τB respectively such that (A, τA) is a
topological S-act. Also, assume that ϕ : A→ B be a homomorphism which
is a quotient map. Then B is a topological S-act if any one of the following
two conditions holds:

(i) ϕ is an open map.

(ii) ϕ is ϕ-saturated continuous.

Proof. (i). Let ϕ be open. Let W be open in B with sϕ(a) ∈ W , where
s ∈ S and a ∈ A. Then sa ∈ ϕ−1(W ). Because of the continuity of
ϕ, ϕ−1(W ) is open in A. Now, A being a topological S-act, there exit
open sets U in S and V in A containing s and a respectively such that
UV ⊆ ϕ−1(W ). Since ϕ is open, we must have ϕ(V ) is open in B with
ϕ(a) ∈ ϕ(V ). Moreover, Uϕ(V ) ⊆W and thus B is a topological S-act.

(ii). Let ϕ be ϕ-saturated continuous. Let W1 be open in B with
tϕ(a) ∈ W1, where t ∈ S and a ∈ A. Then ta ∈ ϕ−1(W1). Because
of the continuity of ϕ, ϕ−1(W1) is open in A. Now, ϕ being ϕ-saturated
continuous, there exist open sets U1 and V1 in S and (A, τ

kerϕ
) containing

t and a respectively such that U1V1 ⊆ ϕ−1(W1). One can easily verify that
ϕ−1(ϕ(V1)) = V1. Now ϕ being a quotient map, ϕ(V1) is open in B with
ϕ(a) ∈ ϕ(V1). Also, U1ϕ(V1) ⊆W1. Hence B is a topological S-act.
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We know that the kernel of a homomorphism between two S-acts is
always a congruence. But the kernel of a homomorphism between two
topological S-acts need not be a topological S-act congruence. Using The-
orem 2.11, we have the following corollary which ensures that the kernel
of a homomorphism between two topological S-acts is a topological S-act
congruence.

Corollary 2.12. Let S be a topological semigroup. Let A and B be two
S-acts endowed with topologies τ1 and τ2 respectively such that (A, τ1) is a
topological S-act. Also, assume that ϕ : A→ B is a homomorphism which is
also a quotient map. If ϕ is ϕ-saturated continuous, then B is topologically
isomorphic to A/ kerϕ and hence A/ kerϕ is a topological S-act.

Remark 2.13. For any two S-actsA andB, any homomorphism ϕ : A→ B
induces an S-act A/ kerϕ. But for any two topological S-acts A and B,
any homomorphism ϕ : A→ B need not induce topological S-act A/ kerϕ,
i.e., A/ kerϕ need not be a topological S-act. Now, we establish a necessary
and sufficient condition on the homomorphism ϕ : A→ B so that A/ kerϕ
will be a topological S-act.

Theorem 2.14. Let S be a semigroup endowed with a topology τ . Also,
let A1 and A2 be S-acts endowed with topologies τ1 and τ2 respectively.
Then for any mapping ϕ : A1 → A2 such that kerϕ is a congruence on
A1, A1/ kerϕ is an S-act topological space if and only if ϕ is ϕ-saturated
continuous.

Proof. Let us define a map f : A1/ kerϕ→ A2 by f(a kerϕ) = ϕ(a), for all
a kerϕ ∈ A1/ kerϕ. Then f ◦ π = ϕ, where π : A1 → A1/ kerϕ is defined
by π(a) = a kerϕ, for all a ∈ A1.

First suppose that A1/ kerϕ is an S-act topological space. Let W be
a subset of A2 such that ϕ−1(W ) is open in A1. Let s ∈ S, a ∈ A1 with
sa ∈ ϕ−1(W ). Then sa ∈ π−1(f−1(W )). Now, A1/ kerϕ being an S-
act topological space, by Corollary 2.2, (A1, τkerϕ) is an S-act topological
space. So, there exist open sets U and V containing s and a in (S, τ) and
(A1, τkerϕ) respectively such that UV ⊆ π−1(f−1(W )). This implies that
UV ⊆ ϕ−1(W ) and hence ϕ is ϕ-saturated continuous.

Conversely, let ϕ be ϕ-saturated continuous. Let G ∈ τ
kerϕ

and t ∈ S,
a ∈ A1 with ta ∈ G. Then ta ∈ G = π−1(π(G)). Since f is injective, G =
π−1(π(G)) = ϕ−1(f(f−1(ϕ(G)))). Now, ϕ being ϕ-saturated continuous,
there exist open sets U1 and V1 containing t and a in S and (A1, τkerϕ)
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respectively such that U1V1 ⊆ ϕ−1(f(f−1(ϕ(G)))) = G. So, (A1, τkerϕ) is
an S-act topological space and hence by Corollary 2.2, A1/ kerϕ is an S-act
topological space.

Corollary 2.15. Let S be a topological semigroup. Also, let A1 and A2

be two S-acts endowed with topologies τ1 and τ2 respectively. Then for any
mapping ϕ : A1 → A2 such that kerϕ is a congruence on A1, A1/ kerϕ is
a topological S-act if and only if ϕ is ϕ-saturated continuous.

Corollary 2.16. Let S be a semigroup endowed with a topology τ . Also,
let A1 and A2 be two S-acts endowed with topologies τ1 and τ2 respectively.
Then for any homomorphism ϕ : A1 → A2, A1/ kerϕ is an S-act topological
space if and only if ϕ is ϕ-saturated continuous.

Corollary 2.17. Let S be a topological semigroup. Also, let A1 and A2

be two topological S-acts. Then for any homomorphism ϕ : A1 → A2,
A1/ kerϕ is a topological S-act if and only if ϕ is ϕ-saturated continuous.

Using Corollary 2.15, we will prove that for any mapping ϕ : A1 → A2

between two topological S-acts, the continuity of ϕ does not imply the ϕ-
saturated continuity of ϕ. By the following example, we will prove this
fact.

Example 2.18. [6, Example 2.7] We consider the topological semigroup
S = {(a, b) ∈ Q × R : b > 0} with respect to the binary operation
((x, y), (a, b)) 7→ (x + a,min(y, b)). Let I = {(a, b) ∈ S : b = 0}. Then
from [6], it follows that S/ρI is not a topological semigroup, where ρI is the
Rees congruence induced by the ideal I on the semigroup S. Let us define
a mapping ϕ : S → S by for all (a, b) ∈ S,

ϕ((a, b)) =

{
(a, b) b > 0

(0, 0) b = 0.

Then it can be easily shown that ϕ is a continuous mapping with kerϕ = ρI .
We claim that ϕ is not ϕ-saturated continuous. Because if so, then by
Corollary 2.15, it follows that S/ kerϕ = S/ρI is a topological semigroup
which is not true. Hence ϕ is not ϕ-saturated continuous.

Theorem 2.19. Let S be a semigroup endowed with a topology τ . Also,
let A1 and A2 be two S-acts endowed with topologies τ1 and τ2 respec-
tively. Then for any mapping ϕ : A1 → A2, if A1/ kerϕ is Hausdorff,
then A1/ kerϕ is an S-act topological space if and only if ϕ is ϕ-saturated
continuous.



282 S. K. Maity and M. Paul

Proof. Let A1/ kerϕ is an S-act topological space. Then kerϕ is a congru-
ence on A and hence by Theorem 2.14, ϕ is ϕ-saturated continuous.

Conversely, let ϕ be ϕ-saturated continuous. First we show that kerϕ
is a congruence on A1. For this, let (a, b) ∈ kerϕ and s ∈ S. If possible, let
(sa, sb) /∈ kerϕ. Then [sa] 6= [sb]. Since A1/ kerϕ is Hausdorff, there exist
disjoint open sets U and V in A1/ kerϕ containing [sa] and [sb] respectively.
Then sa ∈ π−1(U) and sb ∈ π−1(V ). Since π is continuous, we have π−1(U)
and π−1(V ) are open in (A1, τ1). Then sa ∈ π−1(U) = ϕ−1(f(U)) and sb ∈
π−1(V ) = ϕ−1(f(V )), where the mapping f : A1/ kerϕ → A2, defined by
f(a kerϕ) = ϕ(a), is a continuous injective homomorphism. Now, ϕ being
ϕ-saturated continuous, there exist open sets U1, U2 in (S, τ) and V1, V2 in
(A1, τkerϕ) such that U1V1 ⊆ ϕ−1(f(U)) = π−1(U), U2V2 ⊆ ϕ−1(f(V )) =
π−1(V ), where s ∈ U1 ∩ U2 and a ∈ V1, b ∈ V2. Set G = U1 ∩ U2. Then
s ∈ G. Moreover, (a, b) ∈ kerϕ implies [a] = [b] ∈ π(V1) ∩ π(V2) and hence
a, b ∈ V1 ∩ V2 = H (say). Therefore, sa, sb ∈ GH ⊆ π−1(U) ∩ π−1(V ) and
thus U ∩ V 6= ∅, a contradiction. Therefore, [sa] = [sb] and thus kerϕ is a
congruence on A1. Consequently, by Theorem 2.14, it follows that A1/ kerϕ
is an S-act topological space.

Corollary 2.20. Let S be a topological semigroup. Also, let A1 and A2

be two S-acts endowed with topologies τ1 and τ2 respectively. Then for
any mapping ϕ : A1 → A2, if A1/ kerϕ is Hausdorff, then A1/ kerϕ is a
topological S-act if and only if ϕ is ϕ-saturated continuous.

3. Intersection and join of S-act congruences

It is well known that the intersection of finite number of congruences on
an S-act A is again a congruence on A. But for a topological semigroup
S, intersection of two topological S-act congruences on a topological S-act
A may not be a topological S-act congruence. In this section, we establish
a necessary and sufficient condition so that intersection of two topologi-
cal S-act congruences on a topological S-act A to be a topological S-act
congruence.

Before going to this result, we give a counter example to show that
intersection of any S-act topological congruences on an S-act endowed with
a topology τ may not be a S-act topological congruence.

Example 3.1. Consider the semigroup S = (Z6, ·6, τ), where τ = {Z6, ∅,
{0̄, 3̄}, {1̄, 2̄, 4̄, 5̄}, {4̄}}. Let S = A. Then A is an S-act endowed with
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topology τ . It is clear that A is not a S-act topological space. Now
let θ1 = {(x, x) : x ∈ A} ∪ {(2̄, 4̄), (4̄, 2̄), (1̄, 5̄), (5̄, 1̄)} and θ2 = {(x, x) :
x ∈ A} ∪ {(2̄, 5̄), (5̄, 2̄)(1̄, 4̄), (4̄, 1̄), (0̄, 3̄), (3̄, 0̄)}. Then θ1 and θ2 are con-
gruences on A. Clearly, θ1 ∩ θ2 = {(x, x);x ∈ A}. Now τ

θ1
= τ

θ2
=

{Z6, ∅, {0̄, 3̄}, {1̄, 2̄, 4̄, 5̄}}. It follows that (A, τ
θ1

) and (A, τ
θ2

) are S - act
topological spaces. But τ

θ1∩θ2
= τ and this implies that θ1 ∩ θ2 is not an

S-act topological congruence.

Now we establish some sufficient conditions for the intersection of two
S-act topological congruences on an S-act A endowed with a topology τ to
be a S-act topological congruence.

Theorem 3.2. Let S be a semigroup endowed with a topology τ and A be
an S-act endowed with a topology τA. Let θ1 and θ2 be two S-act topological
congruences on A. If τ

θ1
∪ τ

θ2
is a basis for τ

θ1 ∩ θ2
, then θ1 ∩ θ2 is an S-act

topological congruence on A.

Proof. Let θ = θ1 ∩ θ2. We first show that τ
θ1
∪ τ

θ2
⊆ τ

θ
. Consider the

natural epimorphisms π : A → A/θ, π1 : A → A/θ1 and π2 : A → A/θ2.
Let U ∈ τ

θ1
. Then π−11 (π1(U)) = U . Clearly, U ⊆ π−1(π(U)). Let x ∈

π−1(π(U)). Then π(x) = π(u), for some u ∈ U . This implies that (x, u) ∈
θ ⊆ θ1 and so π1(x) = π1(u). From this, we have x ∈ π−11 (π1(U)) = U and
thus π−1(π(U)) = U . Therefore, U ∈ τ

θ
and hence τ

θ1
⊆ τ

θ
. Similarly, one

can show that τ
θ2
⊆ τ

θ
. Therefore, τ

θ1
∪ τ

θ2
⊆ τ

θ
. Let G ∈ τ

θ
and s ∈ S,

a ∈ A with sa ∈ G. Then there exists a basic open set W ∈ τ
θ1
∪ τ

θ2
such

that sa ∈W ⊆ G. Without any loss of generality, we assume that W ∈ τ
θ1
.

Since θ1 is an S-act topological congruence, there exist open sets U1 and V1
containing s and a in (S, τ) and (A, τ

θ1
) respectively such that U1V1 ⊆ W .

As τ
θ1
⊆ τ

θ
, V1 ∈ τθ . Hence U1V1 ⊆ W ⊆ G. Therefore, (A, τ

θ
) is an S-act

topological space and hence by Corollary 2.2, it follows that θ = θ1 ∩ θ2 is
an S-act topological congruence on A.

Corollary 3.3. Let S be a topological semigroup and A be an S-act endowed
with a topology τA. Let θ1 and θ2 be two topological S-act congruences on A.
If τ

θ1
∪τ

θ2
is a basis for τ

θ1 ∩ θ2
, then θ1∩θ2 is a topological S-act congruence

on A.

Now, we come to the part where we talk about the join of two topological
S-act congruences on a topological S-act A. In the following results, we
establish a necessary and sufficient condition for the join of two topological
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S-act congruences on a topological S-act to be again a topological S-act
congruence.

Theorem 3.4. Let S be a semigroup endowed with a topology τ and A
be an S-act endowed with a topology τA. For any two S-act topological
congruences θ1 and θ2 on A, θ1 ∨ θ2 is an S-act topological congruence on
A if and only if (A, τ

θ1
∩ τ

θ2
) is an S-act topological space.

Proof. Let θ = θ1 ∨ θ2. Then by Corollary 2.2, θ is an S-act topological
congruence on A if and only if (A, τ

θ
) is an S-act topological space. For this,

it suffices to show that τ
θ

= τ
θ1
∩ τ

θ2
. Consider the natural epimorphisms

π : A → A/θ, π1 : A → A/θ1 and π2 : A → A/θ2. Let U ∈ τ
θ
. Then

π−1(π(U)) = U . Clearly, U ⊆ π−1
1

(π1(U)). Let x ∈ π−1
1

(π1(U)). Then
π1(x) = π1(u), for some u ∈ U . This implies that (x, u) ∈ θ1 ⊆ θ and so
π(x) = π(u). Then x ∈ π−1(π(U)) = U . So, π−1

1
(π1(U)) = U . This implies

that U ∈ τ
θ1
. Thus, we have τ

θ
⊆ τ

θ1
. Similarly, τ

θ
⊆ τ

θ2
. Therefore, τ

θ
⊆

τ
θ1
∩τ

θ2
. For the reverse inclusion let,W ∈ τ

θ1
∩τ

θ2
. Then π−1

1
(π1(W )) = W

and π−1
2

(π2(W )) = W . Let y ∈ π−1(π(W )). Then π(y) = π(w), for some
w ∈ W . This implies that (y, w) ∈ θ1 ∨ θ2 . Then by [2, Proposition
5.14], for some n ∈ N, there exist elements x1, x2, . . . , x2n−1 in A such
that (y, x1) ∈ θ1 , (x1 , x2) ∈ θ2 , (x2 , x3) ∈ θ1 , . . . , (x2n−1 , w) ∈ θ2 . Then
π2(x2n−1) = π2(w) for some w ∈ W and so x2n−1 ∈ π−1

2
(π2(W )) = W .

Now, (x2n−2 , x2n−1) ∈ θ1 implies x2n−2 ∈ π−11
(π1(W )) = W . Continuing in

this way, we have x1 ∈ W and this implies that y ∈ π−1
1

(π1(W )) = W .
Therefore, π−1(π(W )) = W and so W ∈ τ

θ
. Hence τ

θ
= τ

θ1
∩ τ

θ2
.

Corollary 3.5. Let S be a topological semigroup and A be an S-act endowed
with a topology τA. For any two topological S-act congruences θ1 and θ2 on
A, θ1 ∨ θ2 is a topological S-act congruence on A if and only if (S, τ

θ1
∩ τ

θ2
)

is a topological S-act.

We now establish necessary and sufficient conditions for the intersec-
tion of two topological S-act congruences on a topological S-act to be a
topological S-act congruence.

Theorem 3.6. Let S be a semigroup endowed with a topology τ and A be
an S-act endowed with a topology τA. For any two congruences θ1 and θ2
on A, θ1 ∩ θ2 is an S-act topological congruence on A if and only if the
mapping ϕ : A → A/θ1 × A/θ2 defined by ϕ(a) = (aθ1, aθ2), for all a ∈ A,
is ϕ-saturated continuous.
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Proof. Since kerϕ = θ1 ∩ θ2, the result follows from Theorem 2.14.

Corollary 3.7. Let S be a topological semigroup and A be an S-act endowed
with a topology τA. Then for any two congruences θ1 and θ2 on A, θ1 ∩ θ2
is a topological S-act congruence on A if and only if the mapping ϕ : A →
A/θ1 × A/θ2 defined by ϕ(a) = (aθ1, aθ2), for all a ∈ A, is ϕ-saturated
continuous.

Definition 3.8. Let X and Y be topological spaces. A mapping ϕ : X → Y
is said to be a weakly quotient mapping if for any subset A of Y , ϕ−1(A) is
open in X implies A is open in Y .

Theorem 3.9. Let S be a semigroup endowed with a topology τ , A be
an S-act endowed with a topology τA and θ1, θ2 be two S-act topologi-
cal congruences on A. If the mapping ϕ : A → A/θ1 × A/θ2 defined by
ϕ(a) = (aθ1, aθ2), for all a ∈ A, is weakly quotient, then θ1 ∩ θ2 is an S-act
topological congruence on A.

Proof. Clearly, kerϕ = θ1 ∩ θ2. Consider the natural semigroup epimor-
phisms π : A → A/(θ1 ∩ θ2), π1 : A → A/θ1 and π2 : A → A/θ2. To
show θ1 ∩ θ2 is an S-act topological congruence on A, it is suffices to show
that ϕ is ϕ-saturated continuous. Let G be a subset of A/θ1 × A/θ2 such
that ϕ−1(G) is open in A and s ∈ S, a ∈ A with sa ∈ ϕ−1(G). Since
ϕ is weakly quotient, G is open in A/θ1 × A/θ2. As sa ∈ ϕ−1(G), we
have (saθ1, saθ2) ∈ G and hence there exists a basic open set U × V in
A/θ1 ×A/θ2 such that (saθ1, saθ2) ∈ U × V ⊆ G, where U is open in A/θ1
and V is open in A/θ2. This implies that sa ∈ π−11 (U) ∩ π−12 (V ). Since
A/θ1 is an S-act topological space, (A, τ

θ1
) is an S-act topological space.

So there exist open sets U1 containing s and V1 containing a in (S, τ) and
(A, τ

θ1
) respectively such that U1V1 ⊆ π−11 (U). Similarly, there exist open

sets U2 containing s and V2 containing a in (S, τ) and (A, τ
θ2

) respectively
such that U2V2 ⊆ π−1

2
(V ). Let U3 = U1 ∩ U2 and V3 = V1 ∩ V2. Then

U3 and V3 are open sets containing s and a in (S, τ) and (A, τA) respec-
tively. We now show that π−1(π(V3)) = V3. For this, let z ∈ π−1(π(V3)).
Then π(z) ∈ π(V3) and so π(z) = π(v), for some v ∈ V3. Now, v ∈ V3
implies v ∈ V1 ∩ V2 and π(z) = π(v) implies (z, v) ∈ θ1 ∩ θ2 ⊆ θ1. This
implies π1(z) = π1(v) and v ∈ V1. Therefore, z ∈ π−1

1
(π1(V1)) = V1.

Similarly, we can show that z ∈ V2. Thus, z ∈ V1 ∩ V2 = V3 and hence
π−1(π(V3)) = V3. Therefore, V3 ∈ τθ1 ∩ θ2 and U3V3 ⊆ U1V1 ⊆ π−1

1
(U) and

U3V3 ⊆ U2V2 ⊆ π−12
(V ). Let t∈U3 and c∈V3. Then (tcθ1, tcθ2)∈U×V ⊆G
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implies ϕ(tc) ∈G, i.e., tc ∈ ϕ−1(G). Therefore, U3V3 ⊆ ϕ−1(G) and hence
ϕ is ϕ-saturated continuous. Consequently, θ1∩θ2 is an S-act topological
congruence on A.

Corollary 3.10. Let S be a topological semigroup, A be an S-act endowed
with a topology τA and θ1, θ2 be two topological S-act congruences on A.
If the mapping ϕ : A → A/θ1 × A/θ2 defined by ϕ(a) = (aθ1, aθ2), for all
a∈A, is weakly quotient, then θ1∩θ2 is a topological S-act congruence on
A.
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Algebraic signature algorithms with a hidden
group, based on hardness of solving systems

of quadratic equations

Nikolay A. Moldovyan

Abstract. A new-type algebraic digital signature schemes on non-commutative associa-
tive algebras are developed using technique of performing exponentiation operations in
a hidden group. The signature contains two elements: a randomization integer e and
a vector S. The used verification equations are characterized in multiple entries of the
signature element S. The post-quantum security of the introduced signature algorithms
is provided by the computational difficulty of solving a system of many quadratic equa-
tions in many variables, like in the public-key multivariate cryptosystems. However in
the former case the quadratic equations are set over the finite fields having the order of
significantly larger size.

1. Introduction

One of current challenges in the area of post-quantum cryptography reates
to the development of practical digital signature algorithms [15, 2]. Re-
cently [6, 10, 13] several signature schemes on finite non-commutative as-
sociative algebras (FNAAs) had been propsed. In that schemes, which are
based on computational complexity of so called hidden discrete logarithm
problem (HDLP), the exponentiation operations in a hidden group are per-
formed, when generating the public key and the signature. Since there is a
discrete logarithm problem, although in a hidden group, there are certain
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Keywords: non-commutative algebra, finite associative algebra, hidden group, post-
quantum cryptography, multivariate cryptography, public-key cryptoscheme, signa-
ture scheme.
This work was partially supported by RFBR (project No. 21-57-54001-Viet_a) and
by the budget theme No. FFZF-2022-0007.
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difficulties in justifying post-quantum security. The latter are associated
with the potential opportunity to find algebraic methods for reducing the
HDLP to the usual discrete logarithm problem that can be solved in poly-
nomial time on a quantum computer [4, 17].

Multivariate cryptography [3, 18] suggests various public-key cryptosys-
tems that are based on the hardness of solving systems of many quadratic
equations in many variables. The hypothetic quantum computer is not effi-
cient to solve the latter type problems, therefore the multivariate public-key
cryptographic algorithms are post-quantum. However, the maltivariate sig-
nature algorithms are not practical because of very large sizes of public and
seret keys.

The present paper introduces a new signature algorithms with a hidden
group in which the exponentiation operations are executed. However, the
proposed signature algorithm is not attributed to the HDLP-based cryp-
toschemes, since its security is based on the computational hardness of
solving the systems of many quadratic equations with many unknowns.

2. The used FNAAs

Suppose in a finite m-dimensional vector space over the field GF (p) an
additional operation, namely, the vector multiplication that is distributive
at the right and at the left relatively the addition operation, is defined.
Then one gets a finite m-dimensional algebra. Some algebra element (m-
dimensional vector) A can be denoted in the following two forms: A =
(a0, a1, . . . , am−1) and A =

∑m−1
i=0 aiei, where a0, a1, . . . , am−1 ∈ GF (p) are

called coordinates; e0, e1, ... em−1 are basis vectors.
The vector multiplication operation of twom-dimensional vectors A and

B is defined as follows:

AB =
m−1∑
i=0

m−1∑
j=0

aibj(eiej),

where every of the products eiej is to be replaced by a single-component
vector λek, where λ ∈ GF (p), indicated in the cell at the intersection of
the ith row and jth column of so called basis vector multiplication table
(BVMT) like Tables 1 and 2. To define associative vector multiplication
operation the BVMT should define associative multiplication of all possible
triples of the basis vectors (ei, ej , ek) :

(eiej) ek = ei (ejek) .
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Table 1: The BVMT for defining the 4-dimensional FNAA (λ 6= 1).

◦ e0 e1 e2 e3
e0 e0 e3 e0 e3
e1 λe2 e1 e2 λe1
e2 e2 e1 e2 e1
e3 λe0 e3 e0 λe3

In the developed signature algorithms, the FNAAs defined by Tables 1
and 2 are used as algebraic supports. The 4-dimensional FNAA had been
used earlier in [12] as algebraic support of a HDLP-based signature scheme.
This algebra contains the two-sided global unit

E =

(
1

1− λ
,

1

1− λ
,

λ

λ− 1
,

1

λ− 1

)
.

A 4-dimensional vector A of the algebra, coordinates of which satisfy the
condition

a0a1 6= a2a3, (1)

is invertible, i.e., for a vector of such a kind there exists the vector A−1 such
that the condition A ◦A−1 = A−1 ◦A = E holds true. If a0a1 = a2a3, then
the vector A is non-invertible.

The 6-dimensional FNAA is obtained as a particular case defined by the
unified method for constructing the FNAAs of arbitrary even dimensions,
which had been proposed in [5]. The used 6-dimensional FNAA contains the
global two-sided unit E = (1, 0, 0, 0, 0, 0). The scalar vectors have the form
(j, 0, 0, 0, 0, 0), where j = 1, 2, . . . p−1. A vector G = (g0, g1, g2, g3, g4, g5) is
invertible, if its coordinates satisfy the following invertibility condition [5]:

1

4
((g0 + g2 + g4)

2 − λ (g1 + g3 + g5)
2)×

× ((g0 − g2)2 + (g0 − g4)2 + (g2 − g4)2−
− λ (g1 − g3)2 − λ (g1 − g5)2 − λ (g3 − g5)2)2 6= 0.

(2)

Each of the used FNAAs contains sufficiently large number of commutative
groups of orders (p − 1)2, p2 − 1, and p(p − 1). The developed signature
schemes are not based on the HDLP, therefore, the existance of a prime
divisor of the order of the hidden group is not a strict requirement that is
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Table 2: The BVMT setting the used 6-dimensional FNAA (λ 6= 0).

· e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 e1 λe0 e5 λe4 e3 λe2
e2 e2 e3 e4 e5 e0 e1
e3 e3 λe2 e1 λe0 e5 λe4
e4 e4 e5 e0 e1 e2 e3
e5 e5 λe4 e3 λe2 e1 λe0

critical for providing security. However, to have possibility to reduce the
computational complexity of the signature generation procedure the used
FNAAs are defined over the ground finite field GF (p) with the prime order
p = 2q+1, where q is also a prime. In the casem = 4 (m = 6) it is supposed
to use the prime q having the size 128 bits (96 bits).

In each of two developed signature algorithms selection of a commutative
hidden group is performed as generation of a random minimum generator
system <G,H>, which includes two mutually permutable vectors of the
same order equal to q, as follows:

1. Using the invertibility condition (1) in the case m = 4 or (2) in the
case m = 6, select at random an invertible vector R.

2. Compute the vector G′ = Rp(p+1).

3. If the vector G′ is a scalar vector, then go to step1.
4. Select a random non-negative integer k (k < q) and generate a

primitive element α modulo p. Then compute the scalar vector L = αE
and the vector H ′ = G′kL.

5. Compute the vectors G = G′2 and H = H ′2 each of which has order
q.

6. Output the pair of vectors <G,H> as a minimum generator system
of a hidden group possessing 2-dimensonal cyclicity and having order q2.

3. The first signature scheme

The public key is generated as a set of four 4-dimensional vectors Y, Z, U,
and W as follows:

1. Generate at random a minimum generator system <G,H> of a
hidden group Γ<G,H> of the order q2.
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2. Using the invertibility condition (1), generate random invertible vec-
tors A and B satisfying the following inequalities AB 6= BA, AG 6= GA,
and BG 6= GB. Then calculate the vectors A−1 and B−1.

3. Generate random integers x1, x2 ∈ GF (p) and calculate the vectors
Y, Z, U, and W as follows:

Y = AGB, Z = AGx1B;

U = AHB, W = AHx2A−1.
(3)

Since the size of the prime p equals to 129 bits, the size of public key is
equal to ≈ 2064 bits (258 bytes). The integers x1, and x2 and the vectors G,
H, A−1, andB−1 represent a private key having the size equal to≈ 2320 bits
( ≈ 290 bytes).

Using the private key
(
x1, x2, G,H,A

−1, B−1
)
and some specified 384-

bit hash-function f , one can generate a signature to the electronic document
M as follows:

The signature generation procedure.
1. Generate a random natural numbers k (k < q) and t (t < q). Then

calculate the vector
R = AGkHtA−1.

2. Compute the hash-function value e = e1||e2||e3 (the first signature
element), where || denotes the concatenation operation, from the document
M to which the vector R is concatenated: e = e1||e2||e3 = f (M,R) , where
e1, e2, and e3 are 128-bit integers.

3. Calculate the integers n and u:

n =
k − x1e2e3 − e3
e3 + e1e3 + e2e3

mod q; u =
t− x2e2e3 − e1e3
e3 + e1e3 + e2e3

mod q.

4. Calculate the second signature element S:

S = B−1GnHuA−1.

The size of the output signature (e, S) is equal to≈ 900 bits (≈ 113 bytes).
Computational difficulty w of the signature generation procedure is roughly
equal to four exponentiation operations in the 4-dimensional FNAA used
as algebraic support of the signature scheme, i. e., to w ≈ 12, 288 multipli-
cations modulo a 129-bit prime. The verification of the signature (e, S) to
the document M is performed using the public key (Y, Z, U,W ) as folows:

The signature verification procedure.
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1. Calculate the vector R′:

R′ = (Y S (US)e1 (ZSW )e2)e3 .

2. Compute the hash-function value e′ from the document M to which
the vector R′ is concatenated: e′ = f (M,R′) .

3. If e′ = e, then the signature is genuine. Otherwise reject the signa-
ture.

At the first step of the signature verification algorithm the computations
are performed in accordance with a verification equation with 3 entries of
the signature element S. The computational complexity w′ of the signature
verification procedure is roughly equal to three exponentiation operations in
the 4-dimensional FNAA used as algebraic support of the signature scheme,
i. e., we have w′ ≈ 9, 216 multiplications modulo a 129-bit prime.

Correctness proof.
Taking into account that the vectors G and H are permutable and have
order q, one can show that the correctly computed signature (e, S) passes
the verification procedure as genuine signature:

R′1 = (Y S (US)e1 (ZSW )e2)e3 =

=
(
AGBB−1GnHuA−1

(
AHBB−1GnHuA−1

)e1 ×
×
(
AGx1BB−1GnHuA−1AHx2A−1

)e2)e3 =

=
(
AGGnHuA−1

(
AHGnHuA−1

)e1 (AGx1GnHuHx2A−1
)e2)e3 =

=
(
AGn+1HuA−1AHe1(u+1)Ge1nA−1AGe2(x1+n)He2(u+x2)A−1

)e3
=

=
(
AGn+1+e1n+e2(x1+n)Hu+e1(u+1)+e2(u+x2)A−1

)e3
=

= AGe3n+e3+e3e1n+e3e2(x1+n)He3u+e3e1(u+1)+e3e2(u+x2)A−1 =

= AGn(e3+e1e3+e2e3)+e3+x1e2e3Hu(e3+e1e3+e2e3)+e1e3+x2e2e3A−1 =

= AG
k−x1e2e3−e3
e3+e1e3+e2e3

(e3+e1e3+e2e3)+e3+x1e2e3×

×H
t−x2e2e3−e1e3
e3+e1e3+e2e3

(e3+e1e3+e2e3)+e1e3+x2e2e3A−1 =

= AGkHtA−1 = R ⇒ f(M,R′) = f(M.R) ⇒ e′ = e.

4. The second signature scheme

The public key is calculted as a set of three 6-dimensional vectors Y, Z,
and U in accordance with the public-key generation procedure of the first
signature scheme (see Section 3) with exception that at step 3 only the
following three vectors are computed:
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Y = AGB, Z = AGx1B, U = AHB. (4)

Since in the case m = 6 we use a 97-bit (96-bit) prime p (prime q) The
size of public key is equal to ≈ 1746 bits (≈ 219 bytes). The integer x1 and
the vectors G, H, A−1, and B−1 represent a private key having the size
equal to ≈ 2424 bits (≈ 303 bytes).

Using the private key
(
x1, G,H,A

−1, B−1
)
and some specified 384-bit

hash-function f , one can generate a signature to the electronic document
M as follows:

The signature generation procedure.
1. Generate random natural numbers k (k < q) and t (t < q). Then

calculate the vector
R = B−1GkHtB.

2. Compute the hash-function value e = e1||e2||e3||e4 (the first signature
element) from the document M to which the vector R is concatenated:
e = e1||e2||e3||e4 = f (M,R) , where e1, e2, e3, and e3 are 96-bit integers.

3. Calculate the integers n and u:

n =
k − e4 − e1e4 − x1e3e4
e1e4 + e2e4 + e3e4 + e4

mod q; u =
t− e2e4

e1e4 + e2e4 + e3e4 + e4
mod q.

4. Calculate the second signature element S:

S = B−1GnHuA−1.

The size of the output signature (e, S) is equal to≈ 966 bits (≈ 121 bytes).
Computational difficulty w of the signature generation procedure is roughly
equal to four exponentiation operations in the 6-dimensional FNAA used
as algebraic support of the signature scheme, i. e., w ≈ 20, 736 multipli-
cations modulo a 97-bit prime or w ≈ 11, 720 multiplications modulo a
129-bit prime. The verification of the signature (e, S) to the document M
is performed using the public key (Y,Z, U) as folows:

The signature verification procedure.
1. Calculate the vector R′:

R′ = ((SY )e1 S (US)e2 (ZS)e3 Y )e4 .

2. Compute the hash-function value e′ from the document M to which
the vector R′ is concatenated: e′ = f (M,R′) .
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3. If e′ = e, then the signature is genuine. Otherwise reject the signa-
ture.

At the first step of the signature verification algorithm the computations
are performed in accordance with a verification equation with 4 entries of
the signature element S. The computational complexity w′ of the signature
verification procedure is roughly equal to four exponentiation operations in
the 6-dimensional FNAA used as algebraic support of the signature scheme,
i. e., we have w′ ≈ 20, 736 multiplications modulo a 97-bit prime or w′ ≈
11, 720 multiplications modulo a 129-bit prime.

Correctness proof.
Taking into account that the vectors G and H are permutable and have
order q, one can show that the correctly computed signature (e, S) passes
the verification procedure as genuine signature:

R′1 = ((SY )e1 S (US)e2 (ZS)e3 Y )e4 =

=
((
B−1GnHuA−1AGB

)e1 B−1GnHuA−1
(
AHBB−1GnHuA−1

)e2 ×
×
(
AGx1BB−1GnHuA−1

)e3 AGB)e4 =

=
((
B−1GnHuGB

)e1 B−1GnHuA−1
(
AHGnHuA−1

)e2 ×
×
(
AGx1GnHuA−1

)e3 AGB)e4 =

=
(
B−1Ge1(n+1)He1uGnHuHe2(1+n)Ge2nA−1AGe3(x1+n)He3uGB

)e4
=

=
(
B−1Ge1(n+1)+n+e2n+e3(x1+n)+1He1u+u+e2(1+n)+e3uB

)e4
=

= B−1Ge4e1(n+1)+e4n+e4e2n+e4e3(x1+n)+e4He4e1u+e4u+e4e2(1+n)+e4e3uB =

= B−1Gn(e1e4+e2e4+e3e4+e4)+e4+e1e4+e3e4x1Hu(e1e4+e2e4+e3e4+e4)+e2e4B =

= B−1G
k−e4−e1e4−x1e3e4
e1e4+e2e4+e3e4+e4

(e1e4+e2e4+e3e4+e4)+e4+e1e4+e3e4x1×

×H
t−e2e4

e1e4+e2e4+e3e4+e4
(e1e4+e2e4+e3e4+e4)+e2e4B =

= B−1GkHtB = R ⇒ f(M,R′) = f(M.R) ⇒ e′ = e.

5.Disscussion

In each of the two introduced signature algorithms with a hidden group, the
used exponentiation operations are a part of the technique that provides
possibility (when using the private key) to compute the randomization vec-
tor R and the signature element S that satisfy the verification equation. It
can be noted that the knowledge of the x1 and x2 values does not make
it possible to develop a polynomial algorithm for computing a signature



Algebraic signature algorithms with a hidden group 295

until the secret vectors G and H are also known. Actually, the values x1
and x2 are used only to select some random vectors from the hidden group
and to reduce the computational complexity of the signature generation
procedure. It is easy to show that using a precomputed large set of the
vectors contained in the group Γ<G,H> allows one to compute the public
key, for example, in the first signature algorithm in the form of four vec-
tors Y = AG1B, Z = AG2B, U = AG3B, and W = AG4A

−1, where
G1, G2, G3, G4 ∈ Γ<G,H> are random vectors selected from the said set
of pairwise permutable vectors. For this method of generating a public
key, a modified signature generation procedure (computational complex-
ity of which is roughly equal to eight exponentiation operations) can be
used , while the source signature verification procedure is saved. Thus, the
developed sihnature algorithms with a hidden group are not HDLP-based
schemes.

We suppose that the most efficient attack on the proposed first algorithm
is to find the vectors A′, B′, G1, G2, G3, and G4 which express the public-
key in the form of formulas (3). The formulas (3) define the following system
of seven quadratic vector equations with the said six unknowns:{
A′−1Y = G1B

′, A′−1Z = G2B
′; A′−1U = G3B

′, WA′−1 = A′G4

G1G2 = G2G1, G1G3 = G3G1, G1G4 = G4G1.

(5)
The last three vector equations in (5) reflect the requirement of pairwise
permutability of the vectors G1, G2,G3, and G4. Thus we have a system
of 7 quadratic vector equations with 6 unknowns. The system (5) reduces
to the system of 28 equations with 24 unknowns over the field GF (p) of
129-bit order.

A similar attack on the second proposed signature algorithm leads to
the system of 5 quadratic vector equations with 5 unknowns, which reduces
to the system of 30 quadratic equations with 30 unknowns, which is set over
the field GF (p) of 97-bit order.

From the multivariate cryptography [1, 3, 18] it is known that find-
ing a solution of such systems is a computationally hard problem and the
quantum computer is not efficient to solve it. Like the multivariate public-
key cryptosystems, the developed algorithms are attributed to the post-
quantum signature schemes. The latter represent significant practical in-
terest due to significantly lower sizes of the public key, private key, and
signature. A merit of the introduced algorithms is a significantly higher
order of the finite field over which the system of quadratic equations is set.
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Table 3: Comparison of the proposed and known multivariate signature
schemes.

Signature signature public-key
scheme size, size, η ρ ω

bytes bytes
[18] − − 27 27 216

Rainbow [1] 33 16,065 27 33 28

Rainbow [16] 66. . . >150,000. . . 64 . . . 96 . . . 24, 31,
(3 versions) 204 >1,900,000 128 204 28

QUARTZ [3] 16 72,704 100 107 24

Proposed (m = 4) 160 768 28 24 >2128

Proposed (m = 6) 112 576 30 30 >296

Table 3 (where η (ρ) is the number of equations (unknowns) in the system
of quadratic equations; ω is the order of the finite field) provides some com-
parison of the introduced post-quantum signature algorithms with some
multivariate sinature algorithms. Table 4, where a procedure execution
time* is estimated in multiplications in GF (p) with 129-bit characteristic,
compares the introduced signature algorithms with some HDLP-base ones.

6. Conclusion

The proposed two post-quantum signature algorithms, using FNAAs as
algebraic support, can be attributed to the cryptoschemes with a hidden
group and to the multivariate public key cryptosystems, however not to
the HDLP-based signature algorithms. For the first time it is proposed a
method for development of the signature schemes on FNAAs, which are
based on the computational difficulty of solving systems of many quadratic
equations with many unknowns. The introduced post-quantum signature
algorithms are more practical than the known multivariate signature algo-
rithms and can serve as an attractive starting point for preparing a new
proposal for participating in the NIST competition on developing a stan-
dard on a post-quantum signature algorithm (NIST is going to consider new
proposals at the fourth round of its competition [14]).
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Table 4: Comparison of the proposed and known HDLP-based signature
schemes.

Signature signature public-key signature signature
scheme size, size, generation verification

bytes bytes time* time*
[7] 96 384 ≈ 49, 200 ≈ 36, 800

[9] 96 384 ≈ 12, 400 ≈ 24, 800

[8] 192 768 ≈ 221, 200 ≈ 221, 200

[11] 96 576 ≈ 221, 200 ≈ 165, 900

Proposed (m = 4) 113 290 ≈ 12, 288 ≈ 9, 216

Proposed (m = 6) 121 219 ≈ 27, 648 ≈ 13, 824
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On the weight of finite groups

Mohammad Amin Morshedlo and Mohammad Mehdi Nasrabadi

Abstract. For a finite group G, let W (G) denotes the set of the orders of the elements
of G. In this paper we study |W (G)| and show that the cyclic group of order n has
the maximum value of |W (G)| among all groups of the same order. Furthermore we
study this notion in nilpotent and non-nilpotent groups and state some inequality for it.
Among the result we show that the minimum value of |W (G)| is power of 2 or it pertains
to a non-nilpotent group.

1. Introduction

Let G be a finite group. The connection between structure and the set of
the orders of the elements of G, has been studied in several works. In 1932,
Levi and Waerden [4] showed that under some conditions the groups with
weight 2 are nilpotent of class at most 3. Later in 1937, Neumann [6] proved
that if W (G) = {1, 2, 3}, then G is an elementary abelian-by-prime order
group. Sanov [9] showed that, when W (G) ⊆ {1, 2, 3, 4} G is a locally finite
group. Novikov and Adjan [7] in 1968 answered negatively to the following
question. Does the finiteness of W (G) imply G to be locally finite? In the
same line of research Gupta et. al, [3] proved if W (G) ⊆ {1, 2, 3, 4, 5} and
W (G) 6= {1, 5}, then G is locally finite. In 2007, D. V. Lytkina [5] showed
that for the group G, with W (G) = {1, 2, 3, 4}, either G is an extension of
an elementary abelian 3-group by a cyclic or a quaternion group, or it is an
extension of a nilpotent 2-group of class 2 by a subgroup of S3. The sum
of element orders in finite groups is studied by Amiri, Jafarian Amiri and
Isaacs [1]. We denote by |W (G)|, the number of element orders of G. The
group G is m-weight group, if |W (G)| = m. It is easy to see that if G is
trivial, then |W (G)| = 1. If G be a non-trivial group then, the weight of
G is at least 2. In the following lemma, we state a result about 2-weight

2010 Mathematics Subject Classification: Primary 20D15; Secondary 20K01.
Keywords: Weight of group, finite p-group, non-nilpotency property.
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group.

Lemma 1.1. Let G be a group, then G is a 2-weight group if and only if
exp(G) = p.

Proof. First assumethat, G is a 2-weight group. If exp(G) = p has two
distinct prime divisors p and q, then {1, p, q} ⊆ W (G), so exp(G) must be
a p-number for some prime p. Now, if exp(G) = pn, for some n > 2, then,
{1, p, p2} ⊆W (G). The converse is trivial.

2. Preliminary results

This section contains some basic properties on the weight of a finite group.
The following proposition shows the relation of the weight of a direct prod-
uct of a finite number of finite groups with the weights of its factors.

Proposition 2.1. Let H and K be two arbitrary finite groups, then
|W (H ×K)| 6 |W (H)| × |W (K)|,

and the equality holds if (exp(H), exp(K)) = 1.

Proof. Let m ∈ W (H × K) then, there exists (h, k) ∈ H × K, such that

m = o(h, k) = [o(h), o(k)] =
o(h)

g1
× o(k)

g2
= rs. Since [o(h), o(k)] is the

least common multiple of o(h) and o(k) and g1g2 = gcd(o(h), o(k)), on the

other hand r =
o(h)

g1
, s =

o(k)

g2
. So we have r ∈ W (H) and s ∈ W (K).

Hence |W (H × K)| 6 |W (H)| × |W (K)|. Now, if (exp(H), exp(K)) = 1
and (r, s) ∈W (H)×W (K), then there exsit h ∈ H and k ∈ K of orders r
and s, respectively. Therefore, (h, k) is an element of H ×K of order rs, so
the result holds.

Now, using induction in order to prove the following corollary.

Corollary 2.2. Let Gini=1 be a family of finite groups. Then, |W (
∏n
i=1Gi)| 6∏n

i=1 |W (Gi)|. Furthermore, the equality holds if the exponent of distinct
direct factors are mutully coprime.

It is easy to see that the cyclic group of order pm−1, Cpm−1 is an m-
weight group, in which p is an arbitrary prime number, so for every natural
number n, there exists a finite group (in fact a finite p-group) of weight m.

The following theorem gives an upper bound for the weight of a finite
group in terms of its order.
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Theorem 2.3. Let G be a finite group of order n, then |W (G)| 6 |W (Cn)|
and the equality holds if and only if G ∼= Cn.

Proof. Since the order of each element of G is a divisor of n and |W (Cn)| =
d(n), in which d(n) is the number of natural divisors of n, it is trivial, such
that |W (G)| 6 |W (Cn)|. Now, if |W (G)| = |W (Cn)|, then n ∈ W (G) and
hence G ∼= Cn.

3. Nilpotent groups

In this section, we state some facts on W (G), when G is a nilpotent group.
The following proposition gives the upper and lower bound forW (G), when
G is a finite nilpotent group.

Proposition 3.1. Let ℵ be class of nilpotent groups of order n, then for
each G ∈ ℵ we have

2|π(n)| 6 |W (G)| 6 d(n),

and equality in the first inequality holds if and only if all Sylow subgroups
of G has prime exponent.

Proof. Let n = pα1
1 · · · p

αk
k , then d(n) = (α1 + 1) · · · (αk + 1). Let G be a

nilpotent group of order n, so G ∼=
∏k
i=1 Si, in which Si is the Sylow pi-

subgroup of G of order pαi
i (1 6 i 6 k). Now, by Proposition 2.1, we have

|W (G)| =
∏k
i=1 |W (Si)|. Applying, Theorem 2.3, thus 2 6 |W (Si)| 6 αi+1,

for all i, 1 6 i 6 k. So 2|π(n)| 6 |W (G)| 6
∏k
i=1(αi + 1) = d(n). Hence,

|W (G)| = 2|π(n)| if and only if αi = 1, for all i, 1 6 i 6 k which is equal to
exp(Si) = pi, for all i, 1 6 i 6 k.

As an immediate result we have.

Corollary 3.2. Let G be a finite group of order n, if |W (G)| < 2|π(n)| then
G is non-nilpotent.

Theorem 3.3. Let G be a group of prime weight then G is nilpotent if and
only if G is a p-group.

Proof. Since G is a nilpotent group we have G = P1 × · · · × Pk so W (G) =
W (P1) · · ·W (Pk) this implies k = 1 hence G is a p-group

Immediate consequence of Theorem 3.3, we get the following corollary.
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Corollary 3.4. In the class of all finite groups of prime weight, each group
is either a p-group or non-nilpotent.

Proposition 3.5. (See [8, Theorem 1]) Suppose that n = pα1
1 pα2

2 · · · p
αk
k , in

which pi’s are distinct prime numbers. Then, every finite group of order n is
a nilpotent group if and only if pi - p

βj
j −1, for each j, 0 < βj 6 αj and i 6= j.

In above proposition such these numbers are called nilpotent numbers.
Now in order to prove our main result, we need the following results.

Lemma 3.6. Every finite nilpotent group of order n is cyclic if and only if
n is square free.

Proof. Let n = pα1
1 pα2

2 · · · p
αk
k be decomposition of n into prime factors and

G be a nilpotent group of order n. By Proposition 3.1, we have 2k 6
|W (G)| 6 |W (Cn)|, since every nilpotent group of order n is cyclic, so both
inequalities are in fact equality and hence αi = 1, for all i, 1 6 i 6 k.
Conversely, let G be a nilpotent group of order n = p1 · · · pk. Applying,
Proposition 3.1 again, so we have |W (G)| = 2k = d(n) = |W (Cn)|, it
implies that G ∼= Cn.

Using, the above lemma we can prove the following theorem.

Theorem 3.7. Every finite group of order n is cyclic if and only if n =
p1 · · · pk, in which p1 < . . . < pk and pi - pi+s − 1, where 1 6 i 6 k − 1 and
1 6 s 6 k − i.

Proof. If every finite group of order n is cyclic, then by Lemma 3.6 and
Proposition 3.5, the result holds. If n = p1 · · · pk, in which p1 < . . . < pk
and pi - pi+s−1, where 1 6 i 6 k−1 and 1 6 s 6 k− i, then every group of
order n is nilpotent, so we have |W (G)| = 2k = d(n) = |W (Cn)| and hence
G ∼= Cn.

4. Non-nilpotent groups

This section is devoted to some results on non-nilpotent groups.
Let K(n) denote the class of all groups of order n.

Definition 4.1. We say that K(n) has non-nilpotency property if there ex-
ists a non-nilpotent group T in K(n), such that min

{
|W (G)| | G ∈ K(n)

}
=

|W (T )|.
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Theorem 4.2. If K(n) has non-nilpotency property, then K(nm), has also
non-nilpotency property, for any natural number m, such that (n,m) = 1.

Proof. Let H be a nilpotent group of order nl, since (n, l) = 1 and H is
nilpotent, there exist normal subgroups N and L of H, such that |L| = l,
|N | = n and H = N × L. Now, as N ∈ K(n) and K(n) has non-nilpotency
property, so there is a non-nilpotent group T in K(n) such that

|W (T )| = min{|W (G)| | G ∈ K(n)}

so
|W (T )| 6 |W (N)|.

If E = T×L, then E is also a non-nilpotent group, and clearly |T | = |N | = n
and |L| = l. Now, we have

|W (E)|= |W (T×L)|= |W (T )||W (L)|6W (N)||W (L)|= |W (N×L)|= |W (H)|.

So, as E is a non-nilpotent group, and H is nilpotent group inK(nl) and
|W (E)| 6W (H)|, then K(nl) has non-nilpotency property.

Example 4.3. It is easy to see that K(6) has the non-nilpotency property,
so K(30) has the non-nilpotency property, we know that

K(30) = {C30, C3 ×D10, C5 ×D6, D30}
and

ω (C30) = 8, ω (C3 ×D10) = 6, ω (C6 ×D6) = 6 and ω (D30) = 5.

Therefore, the minimum weight occurs at the non-nilpotent group D30 .

In the following lemma, we construct non-nilpotent groups with small
enough weights.

Lemma 4.4. Let p and q be two distinct prime numbers and α ∈ Aut(Crq )
be of order p. If {a1, . . . , am} be the standard generating set for Cmp , then the
semidirect product Cmp and Crq , by the homomorphism µ : Cmp → Aut(Crq ),
such that µ(ai) = α, for each i, i = 1, . . . ,m, is a non-nilpotent group with
weight at most 4.

Proof. Let b 6= 0 and (0, b) ∈ Cmp n Crq . Clearly (0, b)q = (0, bq) = (0, 0)
and hence o(0, b) = q. So, if a 6= 0 and (a, 0) ∈ Cmp nCrq , we have (a, 0)p =
(ap, 0) = (0, 0), it implies that o(a, 0) = p
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Now, assume that a 6= 0 and b 6= 0, as (a, b)pq = (0, 0) and o(a, b) 6 pq,
it follows that

W (Cmp n Crq ) ⊆ {1, p, q, pq} ,
therefore Cmp n Crq is a non-nilpotent group with maximum weight 4.

We use the following useful result in the next theorem.

Proposition 4.5. (See [2]) For a finite p-group G, Aut(G) ∼= Gl(n, p) if
and only if G is an elementary abelian p-group of order pn.

Theorem 4.6. The class of K(n) has non-nilpotency property, for any non-
nilpotent natural number n.

Proof. As n is not a nilpotent number according to Proposition 3.5, there
exist distinct and prime divisors p and q of n such that

p | qi − 1

Now, we consider n = pmqrk that (pq, k) = 1. By Proposition 4.5, we
have ∣∣Aut(Crq )∣∣ = (qr − 1)(qr − q)(. . . (qr − qr−1)
As

p | qi − 1,

thus
p | (qi − 1)qr−i = qr − qr−i.

Therefore, p |
∣∣Aut(Crq )∣∣ and hence there exists α ∈ Aut(Crq ) with o(α) = p.

Now, if {a1, . . . , am} is standard generator set of Cmp , we consider homo-
morphism µ, such that

µ : Cmp → Aut(Crq )

given by µ(ai) = α for i = 1, . . . ,m. We get semidirect product Cmp and
Crq , by homomorphism µ. Then, Cmp nCrq is a non-nilpotent group of order
pmqr. On the other hand by Lemma 4.4, we have∣∣W (Cmp n Crq )

∣∣ 6 4

So, if G is a nilpotent group of order pmqr, then we have

|W (G)| > 22 = 4

Thus, we conclude that K(pmqr) has nonnilpotency property. Since (pq, k) =
1 and pmqrk = n, by Theorem 4.2, K(n) has non-nilpotency property.
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Theorem 4.7. Let n be an even number, such that n is not a power of 2,
then K(n) has the non-nilpotency property.

Proof. Suppose that n = 2α1pα2qα3
3 · · · qαr

r , for some r ≥ 2. Since 2 is a
divisor of

∣∣Aut (Zα2
p

)∣∣, we have ω
(
Zα1
2 n Zα2

p

)
⊆ {1, 2, p, 2p}. Now, let G

be a nilpotent group of order n, thus ω (G) > 2r, also we have

ω
((
Zα1
2 n Zα2

p

)
× Zα3

q3 × ...× Zαr
qr

)
6 4(2r−2) = 2r

Therefore
ω
((
Zα1
2 n Zα2

p

)
× Zα3

q3 × ...× Zαr
qr

)
6 ω (G)

and the results hold.

Example 4.8. K(12), K(22) and K(30) has the non-nilpotency property. We
know that K(12) = {A4, D12, T, C12, C3 × C2 × C2} in which

T =< a, b | a4 = b3 = 1; a−1ba = b−1 >.
We have ω (T ) = ω (D12) = ω (C2 × C2 × C3) = 4 also ω (A4) = 3 and
ω (C12) = 6.
K(22) = {C22, D22}, ω (C22) = 4 and ω (D22) = 3.
K(30) = {C30, C3 ×D10, C5 ×D6, D30}( see Theorem 4.2).

Here, we can prove the main theorem.

Theorem 4.9. Let G be a finite group of order n, then |W (G)| 6 |W (Cn)|.
If min{|W (G)| | |G| = n} = m, then m = 2|π(n)| or there is a nonnilpotent
group T that |T | = n and |W (T )| = m. In other words, the class of groups
of order n, cyclic group Cn has the most weight and if the least weight on
the above groups equals m, then m is a power of 2, such that the power
equals to numbers of distinct prime factors of n. Therefore m is the weight
of a non-nilpotent group.

Proof. Let Cn be a cyclic group of order n. If m is a divisor of n, then
m ∈W (G) and it follows that

{m ∈ Z | m > 0,m | n} ⊆W (Cn).

Now, if G is a group of order n and m ∈W (G), then m | n and hence

W (G) ⊆ {m ∈ Z | m > 0,m | n} .

Thus, W (G) ⊆W (Cn), and so we have

|W (G)| 6 |W (Cn)| .
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For the finite group G if n is a nilpotent number, then

|W (G)| > 2|π(n)|,

If n is not a nilpotent number, then K(n) has nonnilpotency property. So,
there exists a nonnilpotent group T in K(n), such that for every group G in
K(n), we have

|W (T )| 6 |W (G)| .

Hence
|W (T )| = min

{
|W (G)| | G ∈ K(n)

}
,

Therefore, the proof is completed
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The relationship between EQ algebras
and equality algebras

Akbar Paad

Abstract. It is proved that every involutive equivalential equality algebra (E,∧,∼, 1),
is an involutive residualted lattice EQ-algebra, which operation ⊗ is defined by x⊗ y =

(x → y′)′. Moreover, it is showen that by an involutive residualted lattice EQ-algebra
we have an involutive equivalential equality algebra.

1. Introduction

Fuzzy type theory (FTT) has been developed by Novák as a fuzzy logic of
higher order, the fuzzy version of the classical type theory of the classical
logic of higher order. BL-algebras, MTL-algebras, MV-algebras are the best
known classes of residuated lattices [4, 5] and since the algebra of truth val-
ues is no longer a residuated lattice, a specific algebra called an EQ-algebra
[7] by Novák and De Baets was introduced. EQ-algebras generalize the
residuated lattices that have three binary operations meet, multiplication,
fuzzy equality and a unit element. If the product operation in EQ-algebras
is replaced by another binary operation smaller or equal than the original
product we still obtain an EQ-algebra, and this fact might make it difficult
to obtain certain algebraic results. For this reason, equality algebras were
introduced by Jeni [6], which the motivation cames from EQ-algebras [7].
These algebras are assumed for a possible algebraic semantics of fuzzy type
theory. It was proved [1, 6], that any equality algebra has a corresponding
BCK-meet-semilattice and any BCK(D)-meet-semilattice (with distributiv-
ity property) has a corresponding equality algebra. Since equality algebras
could also be candidates for a possible algebraic semantics for fuzzy type
theory, their study is highly motivated. In [9], by considering the notion of

2010 Mathematics Subject Classification: 08A72, 06E99, 03G25.
Keywords: EQ-algebra, Equality algebra



308 A. Paad

equality algebra, it is shown that there are relations among equality algebras
and some of other logical algebras such as residuated lattice, MTL-algebra,
BL-algebra, MV-algebra, Hertz-algebra, Heyting-algebra, Boolean-algebra,
EQ-algebra and hoop-algebra. Specially, it was proved that every good EQ-
algebra is equality algebra but the converse is open problem which means
how multiplication operation, ⊗, on equality algebra (E,∧,∼, 1) should be
defined such that (E,∧,⊗,∼, 1) is an EQ-algebra?

2. Preliminaries

In this section, we give some fundamental definitions and results. For more
details, refer to the references.

Definition 2.1. (cf. [6]) An algebra (E,∧,∼, 1) of the type (2, 2, 0) is called
an equality algebra if it satisfies the following conditions, for all x, y, z ∈ E:
(E1) (E,∧, 1) is a meet-semilattice with top element 1,
(E2) x ∼ y = y ∼ x,
(E3) x ∼ x = 1,
(E4) x ∼ 1 = x,
(E5) x 6 y 6 z implies x ∼ z 6 y ∼ z and x ∼ z 6 x ∼ y,
(E6) x ∼ y 6 (x ∧ z) ∼ (y ∧ z),
(E7) x ∼ y 6 (x ∼ z) ∼ (y ∼ z).

The operation ∧ is called meet (infimum) and ∼ is an equality operation.
We write x 6 y if and only if x ∧ y = x, for all x, y ∈ E. Also, other
two operations are defined, called implication and equivalence operation,
respectively:

x→ y = x ∼ (x ∧ y). (I)
x↔ y = (x→ y) ∧ (y → x). (II)

An equality algebra (E,∼,∧, 1) is bounded if there exists an element 0 ∈ E
such that 0 ≤ x, for all x ∈ E. In a bounded equality algebra E, we define
the negation ” ′ ” on E by, x′ = x → 0 = x ∼ 0, for all x ∈ E. If x′′ = x,
for all x ∈ E, then the bounded equality algebra E is called involutive. A
lattice equality algebra is an equality algebra which is a lattice. Equality
algebra E (and as well as its equality operation ∼ ) called equivalential,
if ∼ coincides with the equivalence operation of a suitably chosen equality
algebra.
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Theorem 2.2. (cf. [6]) An equality algebra (E,∼,∧, 1) is equivalential if
and only if for all x, y ∈ E, x ∼ y = (x ∼ (x ∧ y)) ∧ (y ∼ (x ∧ y)).

Proposition 2.3. (cf. [6]) Let (E,∧,∼, 1) be an equality algebra. Then the
following properties hold, for all x, y, z ∈ E:
(i) x→ y = 1 if and only if x 6 y,
(ii) 1→ x = x, x→ 1 = 1, x→ x = 1,
(iii) x 6 (x ∼ y) ∼ y,
(iv) x 6 y implies y → z 6 x→ z, z → x 6 z → y,
(v) x ∼ y 6 x↔ y 6 x→ y,
(vi) x→ (y → z) = y → (x→ z).
(vii) x→ y 6 (y → z)→ (x→ z.)

Definition 2.4. (cf. [7]) An EQ-algebra is an algebra (E,∧,⊗,∼, 1) of
type (2, 2, 2, 0) satisfying the following axioms:
(EQ1) (E,∧, 1) is a ∧-semilattice with top element 1. We set x 6 y if and
only

if x ∧ y = x,
(EQ2) (E,⊗, 1) is a commutative monoid and ⊗ is isotone with respect to
≤,
(EQ3) x ∼ x = 1 (reflexivity axiom),
(EQ4) ((x ∧ y) ∼ z)⊗ (s ∼ x) 6 z ∼ (s ∧ y) (substitution axiom),
(EQ5) (x ∼ y)⊗ (s ∼ t) 6 (x ∼ s) ∼ (y ∼ t) (congruence axiom),
(EQ6) (x ∧ y ∧ z) ∼ x 6 (x ∧ y) ∼ x (monotonicity axiom),
(EQ7) x⊗ y 6 x ∼ y (boundedness axiom),
For all s, t, x, y, z ∈ E.

Let E be an EQ-algebra. Then for all x, y ∈ E, we put

x→ y = (x ∧ y) ∼ x, x̃ = x ∼ 1.

The derived operation→ is called implication. If an EQ-algebra E contains
a bottom element 0, then we may define the unary operation ¬ on E by
¬x = x ∼ 0 = x→ 0.

Definition 2.5. (cf. [7]) Let E be an EQ-algebra. We say that it is
(i) good, if x̃ = x for all x ∈ E.
(ii) residuated, if (x⊗ y)∧ z = x⊗ y if and only if x∧ ((y ∧ z) ∼ y) = x for
all

x, y, z ∈ E
(iii) envolutive (IEQ-algebra), if ¬¬x = x, for all x ∈ E.
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(iv) lattice-ordered EQ-algebra if it has a lattice reduct.
(v) lattice EQ-algebra (lEQ-algebra) if it is a lattice-ordered EQ-algebra in
which the following substitution axiom holds forall x, y, z, w ∈ E:

((x ∨ y) ∼ z)⊗ (w ∼ x) 6 ((w ∨ y) ∼ z)

Proposition 2.6. (cf. [3]) For an EQ-algebra E the following are equiva-
lent:
(i) E is residuated,
(ii) E is good and x 6 y → (x⊗ y) holds for all x, y ∈ E.

Proposition 2.7. (cf. [2, 7]) Let E be an EQ-algebra. Then for any
x, y, z ∈ E:
(i) x = 1→ x and x→ (y → z) = y → (x→ z), where E is residuated.
(ii) x⊗ y 6 z if and only if x 6 y → z, where E is good.

Theorem 2.8. (cf. [7]) Any IEQ-algebra E is a good, spanned and separated
lattice EQ-algebra.

Definition 2.9. (cf. [8]) A residuated lattice is an algebra (E,∨,∧,⊗,→
, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the following axioms:
(i) (E,∨,∧, 0, 1) is a bounded lattice,
(ii) (E,⊗, 1) is a commutative monoid,
(iii) x⊗ y 6 z if and only if x 6 y → z, for any x, y, z ∈ E.

Theorem 2.10. (cf. [9]) The algebraic structure (E,∨,∧,⊗,→, 0, 1) is a
residuated lattice if and only if
(RL1) (E,∨,∧, 0, 1) is a bounded lattice,
(RL2) (E,→, 1)satisfies x = 1→ x and x→ (y → z) = y → (x→ z),
(RL3) x⊗ y 6 z if and only if x 6 y → z, for any x, y, z ∈ E.

Theorem 2.11. (cf. [9]) For any residuated lattice E = (E,∨,∧,→, 0, 1),
the structure ψ(E) = (E,∨,∧,↔, 0, 1) is a bounded lattice equality algebra,
where ↔ denotes the equivalence operation of E. Moreover, the implication
of ψ(E) coincides with ↔, that is, x→ y = x↔ (x ∧ y) .

3. Relation between algebras

Theorem 3.1. (cf. [9]) Every good EQ-algebra (E,∧,∼,⊗, 1) is an equality
algebra.
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Open problem. Under what suitable conditions the converse of The-
orem 3.1 is correct? Which means how multiplication operation, ⊗, on
equality algebra (E,∧,∼, 1) should be defined such that (E,∧,⊗,∼, 1) is
an EQ-algebra?

In the following, by adding some conditions to an equality algebra, we
answer to this open problem as follow:

Theorem 3.2. Let (E,∧,∼, 1) be an involutive equivalential equality al-
gebra. Then (E,∧,∼,⊗, 1) is an involutive residualted lattice EQ-algebra,
which operation ⊗ is defined by x⊗ y = (x→ y′)′.

Proof. Let (E,∧,∼, 1) be an involutive equivalential equality algebra.Then
(E,∧, 1) is a meet semilattice with top element 1 and so (EQ1) holds. For
x, y ∈ E, we define x ⊗ y = (x → y′)′ and we prove that (E,⊗, 1) is a
commutative monoid and ⊗ is isotone with respect to 6. By Proposition
2.3(vi), for x, y ∈ E, we have

x⊗ y = (x→ y′)′ = (x→ (y → 0))′ = (y → (x→ 0))′ = (y → x′)′ = y ⊗ x.

Hence, operation ⊗ is commutative.
Let x, y, z ∈ E. Then by Proposition 2.3(vi), we have

x⊗ (y ⊗ z) = (x→ (y ⊗ z)′))′ = (x→ (y → z′)
′′
)′ = (x→ (y → z′))′

= (x→ (y → (z → 0)))′ = (x→ (z → (y → 0)))′

= (z → (x→ (y → 0)))′ = (z → (x→ (y → 0)
′′
))′

= (z → (x⊗ y)′)′ = z ⊗ (x⊗ y) = (x⊗ y)⊗ z.

Hence, operation ⊗ is associative. Now, let x 6 y. Then by Proposition
2.3(iv), y′ = y → 0 6 x → 0 = x′ and so z → y′ 6 z → x′. Hence,
x⊗ z = z⊗ x = (z → x′)′ 6 (z → y′)′ = z⊗ y = y⊗ z. Thus, the operation
⊗ is isotone respect to 6. Moreover, x ⊗ 1 = (x → 1′)′ = x

′′
= x and so

(E,⊗, 1) is a commutative monoid which proves the (EQ2). Since by (E3),
x ∼ x = 1, for any x ∈ E, we conclude that (EQ3). In the follow, we prove
x⊗y 6 z if and only if x 6 y → z, for any x, y, z ∈ E. Since E is involutive
and by Proposition 2.3(i) and (iv), for any x, y, z ∈ E, we have x ⊗ y 6 z
if and only if (x → y′)′ 6 z if and only if z′ 6 (x → y′)

′′ if and only if
z′ 6 x→ y′ if and only if x 6 z′ → y′ if and only if x 6 y → z

′′ if and only
if x 6 y → z. Now, we prove (EQ4). Let x, y, z, w ∈ E. Then

((x ∧ y) ∼ z)⊗ (w ∼ x) 6 z ∼ (w ∧ y)
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if and only if

(((x ∧ y) ∼ z)→ (w ∼ x)′)′ 6 z ∼ (w ∧ y)

if and only if

(z ∼ (w ∧ y))′ 6 (((x ∧ y) ∼ z)→ (w ∼ x)′)
′′

if and only if

(z ∼ (w ∧ y))′ 6 ((x ∧ y) ∼ z)→ (w ∼ x)′

if and only if

(z ∼ (w ∧ y))′ ⊗ ((x ∧ y) ∼ z) 6 (w ∼ x)′

if and only if

(w ∼ x)
′′
6 ((z ∼ (w ∧ y))′ ⊗ ((x ∧ y) ∼ z))′

if and only if

(w ∼ x) 6 ((z ∼ (w ∧ y))′ ⊗ ((x ∧ y) ∼ z))′

if and only if

(w ∼ x) 6 ((z ∼ (w ∧ y))′ → ((x ∧ y) ∼ z)′)′′

if and only if

(w ∼ x) 6 (z ∼ (w ∧ y))′ → ((x ∧ y) ∼ z)′.

Now, since by (E6) and Proposition 2.3(v), for any x, y, z, w ∈ E, we have

(w ∼ x) 6 (x ∧ y) ∼ (w ∧ y)

6 ((w ∧ y) ∼ z) ∼ ((x ∧ y) ∼ z)
6 ((w ∧ y) ∼ z)′ ∼ ((x ∧ y) ∼ z)′

6 ((w ∧ y) ∼ z)′ → ((x ∧ y) ∼ z)′

= (z ∼ (w ∧ y))′ → (z ∼ (x ∧ y))′.

Now, since the inequality (w ∼ x) 6 (z ∼ (w ∧ y))′ → (z ∼ (x ∧ y))′, holds
for any x, y, z, w ∈ E, we conclude that ((x∧y) ∼ z)⊗(w ∼ x) 6 z ∼ (w∧y),
for any x, y, z, w ∈ E and so (EQ4) holds.
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For (EQ5), we must prove (x ∼ y) ⊗ (s ∼ t) 6 (x ∼ s) ∼ (y ∼ t),
for any x, y, s, t ∈ E. Since for any x, y, s, t ∈ E, by (E7) and Proposition
2.3(v) and (vi), we have:

(s ∼ t) 6 (x ∼ s) ∼ (x ∼ t) 6 (x ∼ s)→ (x ∼ t)
6 (x ∼ s)→ ((x ∼ y) ∼ (y ∼ t))
6 (x ∼ s)→ ((x ∼ y)→ (y ∼ t))
= (x ∼ y)→ ((x ∼ s)→ (y ∼ t)).

So, we conclude that (s ∼ t) ⊗ (x ∼ y) 6 (x ∼ s) → (y ∼ t). Moreover,
since by Proposition 2.3(iv) and (v), for any x, y, s, t ∈ E,

(s ∼ t) ≤ (t ∼ y) ∼ (s ∼ y)

≤ (y ∼ t)→ (y ∼ s)
≤ (y ∼ t)→ ((x ∼ y) ∼ (x ∼ s))
≤ (y ∼ t)→ ((x ∼ y)→ (x ∼ s))
= (x ∼ y)→ ((y ∼ t)→ (x ∼ s)).

We conclude that (s ∼ t)⊗ (x ∼ y) 6 (y ∼ t)→ (x ∼ s) and so we have

(s ∼ t)⊗ (x ∼ y) 6 ((x ∼ s)→ (y ∼ t)) ∧ ((y ∼ t)→ (x ∼ s))

and since E is equivalential, we get that

((x ∼ s)→ (y ∼ t)) ∧ ((y ∼ t)→ (x ∼ s)) = (x ∼ s) ∼ (y ∼ t)

Hence,
(s ∼ t)⊗ (x ∼ y) 6 (x ∼ s) ∼ (y ∼ t).

Therefore, (EQ5) is established.
For (EQ6), assume that x, y, z ∈ E. Then by x∧ y ∧ z 6 x∧ y 6 x and

(E5), we get that
(x ∧ y ∧ z) ∼ x 6 (x ∧ y) ∼ x.

Hence, (EQ6) holds. Finally, let x, y ∈ E. Then by Proposition 2.3(iii)
and (v),

x 6 (x ∼ y) ∼ y = y ∼ (x ∼ y) ≤ y → (x ∼ y).

Hence, x⊗y 6 x ∼ y and so (EQ7) is established. Therefore, (E,∧,∼,⊗, 1)
is an EQ-algebra and since x = x

′′
= (x → 0) → 0 = ¬¬x and by (E4),
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1 ∼ x = x, for any x ∈ E, by Theorem 2.8, we conclude that (E,∧,∼,⊗, 1)
is an involutive good lattice EQ-algebra. Moreover, since by Proposition
2.3(iii), x 6 (x ∼ y) ∼ y, for any x, y ∈ E and by x ⊗ y 6 x ⊗ y, we have
x 6 y → (x ⊗ y), for any x, y ∈ E, by Proposition 2.6, we conclude that
(E,∧,∼,⊗, 1) is a residuated EQ-algebra. Therefrore, (E,∧,∼,⊗, 1) is an
involutive residualted lattice EQ-algebra.

Theorem 3.3. Let (E,∧,∼,⊗, 1) be an involutive residualted lattice EQ-
algebra. Then (E,∨,∧,⊗,↔, 0, 1) be an involutive equivalential equality
algebra.

Proof. Let (E,∧,∼,⊗, 1) be an involutive residualted lattice EQ-algebra.
Then (E,∨,∧, 0, 1) is a bounded lattice and by Theorem 2.8, E is a good
EQ-algebra and so by Proposition 2.7(i), x = 1 → x and x → (y → z) =
y → (x → z), for any x, y ∈ E. Moreover, since E is a residuated EQ-
algebra, by Proposition 2.7(ii), we get that x ⊗ y 6 z if and only if x 6
y → z, for any x, y, z ∈ E. Hence, by Theorem 2.10, (E,∨,∧,⊗,→, 0, 1) is a
residuated lattice and so by Theorem 2.11, (E,∨,∧,⊗,↔, 0, 1) is a bounded
lattice equality algebra, where↔ denote the equivalence operation of E and
x→ y = x↔ (x ∧ y) and since

x↔ y = (x→ y) ∧ (y → x) = (x↔ (x ∧ y)) ∧ (y ↔ (y ∧ x))

by Theorem 2.2, we conclude that (E,∧,↔, 1) is an equvalential equality
algebra. Now, we prove (E,∧,↔, 0, 1) is an involutive equality algebra. For
x, y ∈ E, we have

x↔ 0 = (x→ 0) ∧ (0→ x) = (x→ 0) ∧ 1 = x→ 0

and since (E,∧,∼,⊗, 1) an involutive EQ-algebra we get that

(x↔ 0)↔ 0 = (x→ 0)↔ 0 = (x→ 0)→ 0 = x.

Therefore, (E,∨,∧,⊗,↔, 0, 1) is an involutive equivalential equality alge-
bra.

4. Conclusion

The main result of this paper is devoted to solution of open problem which
is about relation between EQ-algebras and equality algebras. In [9], it is
proved that every good EQ-algebra is a equality algebra and it is asked
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under what suitable conditions the converse is correct? We proved that
every involutive equivalential equality algebra (E,∧,∼, 1), is an involutive
residualted lattice EQ-algebra, which operation ⊗ is defined by x ⊗ y =
(x → y′)′. Moreover, we showed that by an involutive residualted lattice
EQ-algebra we have an involutive equivalential equality algebra.
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Normal filter in quasi-ordered residuated systems

Daniel A. Romano

Abstract. The concept of quasi-ordered residuated systems was introduced by Bonzio
and Chajda in 2018. The author introduced the concept of filters in such systems as well
as some types of filters in them such as implicative and comparative filters. This article
introduces the concept of a normal filter in a quasi-ordered residuated system and relates
it to some other filters in such algebraic systems.

1. Introduction

Residuated lattices were introduced byWard and Dilworth in [15]. The filter
theory of residuated lattice has been widely studied, and some important
results have been obtained. Normal filters in BL-algebra were defined in
paper [13]. Borzooei and Paad studied the normal filter in BL-algebras
(cf. [4]) by comparing it with other types of filters in residuated lattices.
Ahadpanah and Torkzadeh are studied normal filters in residuated lattices
(cf. [1]). Wang et al. also dealt with normal filters in some logical algebras
(cf. [14]).

The concept of residuated relational systems ordered under a quasi-order
relation, or quasi-ordered residuated systems (briefly, QRS), was introduced
in 2018 by S. Bonzio and I. Chajda (cf. [3]). Previously, this concept
was discussed in [2]. It should be noted that this algebraic system differs
from the commutative residuated lattice ordered under a quasi-order (see
Example 2.13):

- QRS does not have to be limited from below: and
- QRS, in the general case, does not have to be a lattice.

The author introduced and developed the concepts of filters (cf. [7]) in this
algebraic structure as well as several types of filters such as implicative (cf.

2010 Mathematics Subject Classification: 08A02, 06A11
Keywords: Quasi-ordered residuated system, filter in quasi-ordered residuared system,
implicative filter, comparative filter, normal filter.



318 D.A. Romano

[9]), associated (cf. [8]) and comparative filters (cf. [10]). In [9], it is shown
that every comparative filter of a quasi-ordered residuated system A is an
implicative filter of A and the reverse it need not be valid.

In the following, some preliminary claims and terms about quasi-ordered
residuated systems are taken from the literature [2, 3, 7, 9, 10]. In Section
3, we define the concept of normal filters in a quasi-ordered residuated sys-
tem and we prove some theorems that accurately describe the relationship
between this notion and the other types of filters in such an algebraic struc-
ture.

2. Preliminaries

2.1. Concept of quasi-ordered residuated systems

In article [3], S. Bonzio and I. Chajda introduced and analyzed the concept
of residual relational systems.

Definition 2.1. [[3], Definition 2.1] A residuated relational system is a
structure A = 〈A, ·,→, 1, R〉, where 〈A, ·,→, 1〉 is an algebra of type 〈2, 2, 0〉
and R is a binary relation on A and satisfying the following properties:

(1) (A, ·, 1) is a commutative monoid;
(2) (∀x ∈ A)((x, 1) ∈ R);
(3) (∀x, y, z ∈ A)((x · y, z) ∈ R⇐⇒ (x, y → z) ∈ R).

We will refer to the operation · as multiplication, to → as its residuum and
to condition (3) as residuation.

The basic properties for residuated relational systems are subsumed in
the following

Theorem 2.2 ([3], Proposition 2.1). Let A = 〈A, ·,→, 1, R〉 be a residuated
relational system. Then

(4) (∀x, y ∈ A)(x→ y = 1 =⇒ (x, y) ∈ R);
(5) (∀x ∈ A)((x, 1→ 1) ∈ R);
(6) (∀x ∈ A)((1, x→ 1) ∈ R);
(7) (∀x, y, z ∈ A)(x→ y = 1 =⇒ (z · x, y) ∈ R);
(8) (∀x, y ∈ A)((x, y → 1) ∈ R).

Recall that a quasi-order relation ′ 4 ′ on a set A is a binary relation
which is reflexive and transitive.
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Definition 2.3. [[3], Definition 3.1] A quasi-ordered residuated system is a
residuated relational system A = 〈A, ·,→, 1,4〉, where 4 is a quasi-order
relation in the monoid (A, ·)

Example 2.4. Let A = {1, a, b, c, d} and operations ’·’ and ’→’ defined on
A as follows:

· 1 a b c d
1 1 a b c d
a a a d c d
b b d b d d
c c c d c d
d d d d d d

and

→ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the re-
lation ’4’ is defined as follows 4:= {(1, 1), (a, 1), (b, 1), (c, 1), (d, 1), (b, b),
(a, a), (c, c), (d, d), (c, a), (d, a), (d, b), (d, c)}.

Example 2.5. For a commutative monoid A, let P(A) denote the powerset
of A ordered by set inclusion and ’·’ the usual multiplication of subsets of
A. Then 〈P(A), ·,→, A,⊆〉 is a quasi-ordered residuated system in which
the residuum are given by

(∀X,Y ∈ P(A))(Y → X := {z ∈ A : Y z ⊆ X}).

Example 2.6. Let R be a field of real numbers. Define a binary operations
’·’ and ’→’ on A = [0, 1] ⊂ R by

(∀x, y ∈ [0, 1])(x ·y := max{0, x+y−1}) and x→ y := min{1, 1−x+y}).

Then, A is a commutative monoid with the identity 1 and 〈A, ·,→,6, 1〉 is
a quasi-ordered residuated system.

Example 2.7. Any commutative residuated lattice 〈A, ·,→, 0, 1,u,t, R〉
where R is a lattice quasi-order is a quasi-ordered residuated system.

The following proposition shows the basic properties of quasi-ordered
residuated systems.
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Proposition 2.8 ([3], Proposition 3.1). Let A be a quasi-ordered residuated
system. Then

(9) (∀x, y, z ∈ A)(x 4 y =⇒ (x · z 4 y · z ∧ z · x 4 z · y));
(10) (∀x, y, z ∈ A)(x 4 y =⇒ (y → z 4 x→ z ∧ z → x 4 z → y));
(11) (∀x, y ∈ A)(x · y 4 x ∧ x · y 4 y).

It is generally known that a quasi-order relation 4 on a set A generates
an equivalence relation ≡4:=4 ∩ 4−1 on A. Due to properties (9) and
(10), this equivalence is compatible with the operations in A. Thus, ≡4 is a
congruence on A. The concept of a strong quasi-ordered residuated system
is given by the following definition:

Definition 2.9. [[11], Definition 6] For a quasi-ordered residuated system
A it is said to be a strong quasi-ordered residuated system if the following
holds

(∀u, v ∈ A)((u→ v)→ v ≡4 (v → u)→ u).

Example 2.10. Let A = {1, a, b, c} and operations ’·’ and ’→’ defined on
A as follows:

· 1 a b c
1 1 a b c
a a a a a
b b a b a
c c a a c

and

→ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 c 1 c
c 1 b b 1

Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the rela-
tion ’4’ is defined as follows

4:= {(1, 1), (a, 1), (b, 1), (c, 1), (a, a), (b, b), (c, c), (a, b), (a, c)}.

Direct verification it can prove that A is a strong quasi-ordered residuated
system.

2.2. Concept of filters

In this subsection we give some notions that will be used in this article.

Definition 2.11. [[7], Definition 3.1] For a non-empty subset F of a quasi-
ordered residuated system A we say that it is a filter of A if it satisfies
conditions

(F2) (∀u, v ∈ A)((u ∈ F ∧ u 4 v) =⇒ v ∈ F ), and
(F3) (∀u, v ∈ A)((u ∈ F ∧ u→ v ∈ F ) =⇒ v ∈ F ).
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It is shown (cf. [7], Proposition 3.4 and Proposition 3.2), that if a non-
empty subset F of a quasi-ordered system A satisfies the condition (F2),
then it also satisfies the conditions

(F-0) 1 ∈ F and
(F-1) (∀u, v ∈ A)((u · v ∈ F =⇒ (u ∈ F ∧ v ∈ F )).
If F(A) is the family of all filters in a QRS A, then F(A) is a complete

lattice (cf. [7], Theorem 3.1).

Remark 2.12. In implicative algebras, the term ’implicative filter’ is used
instead of the term ’filter’ we use (see, for example [5, 12]) because in the
structure we study the concept of filter is determined more complexly than
requirements (F3). It is obvious that our filter concept is also a filter in the
sense of [5, 6, 12]. The term ’special implicative filter’ is also used in the
aforementioned sources if the implicative filter in the sense of [12] satisfies
some additional condition.

Example 2.13. Let A = 〈−∞, 1] ⊂ R (the real numbers field). If we define
’·’ and ’→’ as follows, (∀y, v ∈ A)(u · v := min{u, v}) and u → v := 1 if
u 6 v and u → v := v if v < u for all u, v ∈ A, then A := 〈A, ·,→, 1,6〉 is
a quasi-ordered residuated system. All filters in A are in the form of 〈x, 1],
for x ∈ 〈−∞, 1].

Terms covering some of the requirements used herein to identify various
types of filters in the observed algebraic structure are mostly taken from
papers on UP-algebras. In some other algebraic systems, different terms are
used to cover the concepts of implicative and comparative filters mentioned
herein.

Definition 2.14. [[9], Definition 3.1] For a non-empty subset F of a quasi-
ordered residuated system A we say that an implicative filter of A if (F2)
and the following condition

(IF ) (∀u, v, z ∈ A)((u→ (v → z) ∈ F ∧ u→ v ∈ F ) =⇒ u→ z ∈ F )

are valid.

Definition 2.15. [[10], Definition 3.1] For a non-empty subset F of a quasi-
ordered residuated system A we say that a comparative filter of A if (F2)
and the following condition

(CF ) (∀u, v, z ∈ A)((u→ ((v → z)→ v) ∈ F ∧ u ∈ F ) =⇒ v ∈ F )

are valid.
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Example 2.16. Let A be a quasi-ordered residuated system as in Example
2.4. Then the set F := {1, a, b} is a comparative filter in A.

In [9] (Theorem 3.4), it is shown that every comparative filter in a quasi-
ordered residuated system is an implicative filter and that the reverse does
not have to be.

Example 2.17. (cf. [9], Example 3.3) Let A be a quasi-ordered residuated
system as in Example 2.4. Then the subset F := {1, b} is an implicative
filter but it is not a comparative filter.

Notions and notations that are used but not previously determined in
this paper can be found in ([2, 3, 7, 8, 9, 10]).

3. Normal filters in QRS

In this section, which is the main part of this paper, the concept of a
normal filter in a quasi-ordered residuated system is presented and some of
its important features are shown. Some of the assertions used in this article,
although shown in our paper [9], will be shown again due to the consistency
of the material presented in this paper.

Definition 3.1. A filter F of a quasi-ordered residuated system A is called
normal if the following holds
(NF) (∀x, y, z ∈ A)((z → ((y → x)→ x)∈F ∧ z∈F )⇒ (x→ y)→ y ∈ F ).

In the general case, the filter in a quasi-ordered residuated system does
not have to be a normal filter.

Theorem 3.2. If A is a strong quasi-ordered residuated system, then any
filter of A is a normal filter of A.

Proof. Let F be a filter of a strong quasi-ordered residuated system A.
Suppose that x, y, z ∈ A are elements such that z ∈ F and z → ((y → x)→
x) ∈ F . Then (y → x) → x ∈ F by (F-3). Since (y → x) → x = (x →
y)→ y because A is a strong quasi-ordered residuated system, we conclude
that (x→ y)→ y ∈ F is valid. So, F is a normal filter.

Example 3.3. Let A be as in Example 2.13. We will show that A does not
have any proper normal filter. Let u, v ∈ A be such that u < v < x and let
F := 〈x, 1] be a filter in A where x < 1. Then (v → u) → u = 1 ∈ F and
(u→ v)→ v = u→ v = u /∈ F . So, F is not a normal filter in A. Thus, F
is not a normal filter in A according to Theorem 3.2.
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In what follows, we need the following lemma

Lemma 3.4 ([9], Lemma 3.1). Let a subset F of a quasi-ordered residuated
system A satisfies the condition (F2). Then the following holds

(∀u ∈ A)(u ∈ F ⇐⇒ 1→ u ∈ F ).

Proof. Since (∀x ∈ A)(1 → x 4 x) and (∀x ∈ A)(x 4 1 → x), by Proposi-
tion 2.3 (d) in [3], the proof of this lemma follows from (F2).

Theorem 3.5. Let F be a filter of a quasi-ordered residuated system A. F
is a normal filter of A if and only if the followings holds

(12) (∀x, y, z ∈ A)((y → x)→ x ∈ F =⇒ (x→ y)→ y ∈ F ).

Proof. Let F be a normal filter of a quasi-ordered residuated system A and
let x, y, z ∈ A be elements such that (y → x) → x ∈ F . Since (y → x) →
x ∈ F is equivalent with 1→ ((y → x)→ x) ∈ F by Lemma 3.4 and since
1 ∈ F , thus (x→ y)→ y ∈ F because F is a normal filter of A.

Suppose that the filter F of a quasi-ordered residuated system A satisfies
the condition (12). Let z → ((y → x)→ x) ∈ F and z ∈ F be holds for all
x, y, z ∈ A. Since F is a filter of A, then (y → x)→ x ∈ F by (F-3). Thus
we get that (x→ y)→ y ∈ F by the hypothesis (12). Hence, F is a normal
filter of A.

In proving the following result that connects comparative and normal
filters in a quasi-ordered residuated system we need the following lemma

Lemma 3.6 ([9], Proposition 3.1). For any comparative filter F in a quasi-
ordered residuated system A holds

(13) (∀v, z ∈ A)((v → z)→ v ∈ F =⇒ v ∈ F ).

Theorem 3.7. Any comparative filter in a quasi-ordered residuated sustem
A is a normal filter in A.

Proof. Let F be a filter in A and let x, y, z ∈ A be such (x→ y)→ y ∈ F .
By the clain (11) of Proposition 2.8, we conclude

x 4 (y → x)→ x.

Then
((y → x)→ x)→ y 4 x→ y
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by (10) and by repeated procedure, we have

(x→ y)→ y 4 (((y → x)→ x)→ y)→ y.

Thus (((y → x)→ x)→ y)→ y ∈ F by (F2).
On the other hand, since y → x 4 y → x is equivalent to (y → x) ·y 4 x

according to (3) and y ·(y → x) 4 x, respectively, because the multiplication
in A is commutative operation, we have

y 4 (y → x)→ x.

If we treat this inequality with ((y → x)→ x)→ y using procedure (10) on
the right, we get

(((y → x)→ x)→ y)→ y 4 (((y → x)→ x)→ y)→ ((y → x)→ x).

Since (((y → x)→ x)→ y)→ y ∈ F , we obtain

(((y → x)→ x)→ y)→ ((y → x)→ x) ∈ F

according to (F2). If we denote v =: (y → x) → x, z =: y, then we
recognize the previous condition as the hypothesis in Lemma 3.6. Therefore
(y → x) → x ∈ F , since F is a comparative filter in A. So, F is a normal
filter in A.

Example 3.8. Let A = {1, a, b, c} and operations ’·’ and ’→’ defined on A
as follows:

· 1 a b c
1 1 a b c
a a a a a
b b a a a
c c a a 1

and

→ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 b 1 b
c 1 b 1 1

Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the rela-
tion ’4’ is defined as follows

4:= {(1, 1), (a, 1), (b, 1), (c, 1), (a, a), (a, b), (a, c), (b, b), (c, b), (c, c)}.

Subset {1} is a normal filter of A but it is not a comparative filter in A
because it does not satisfy the condition (13) since, for example, for v = b
and u = a, we have (b→ a)→ b = 1 ∈ F while b /∈ F .
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Example 3.9. Let A be as in Example 3.8. F = {1} is a normal filter in A
but it is not an implicative filter in A since it does not satisfy the condition
(14). For example, for u = b and v = c we have u → (u → v) = b → (b →
c) = b→ b = 1 ∈ F but u→ v = b→ c = b /∈ F .

We first express the following theorem:

Theorem 3.10. Every comparative filter in a quasi-ordered residuated sys-
tem is an implicative and a normal filter in it.

Proof. The proof is obtained by combining Theorem 3.4 in [9] and Theorem
3.7.

To demonstrate the following statement we need the following lemma

Lemma 3.11 ([9], Proposition 3.1). Let F be an implicative filter of a
quasi-ordered residuated system A. Then the following holds

(14) (∀u, v ∈ A)(u→ (u→ v) ∈ F =⇒ u→ v ∈ F ).

Proof. If we put v = u in (IF), we immediately obtain the claim of this
proposition, since for every u ∈ A always u → u ∈ F holds for every non-
empty set F satisfying condition (F2). Indeed, u → u ∈ F follows from
u 4 u; whence 1 4 (u→ u) by 1 ∈ F and (F2).

Theorem 3.12. If F is an implicative and normal filter in a quasi-ordered
residuated system A, then F is a comparative filter in A.

Proof. Let F be an implicative and normal filter of a quasi-ordered residu-
ated system A. Let us prove that F is a comparative filter in A. For this
purpose, according to Theorem 3.2 in [9], it suffices to prove that (13) holds.
Assume (x→ y)→ x ∈ F . Since

(x→ y)→ x 4 (x→ y)→ ((x→ y)→ y)

is valid according to (10), from this inequality and from (x→ y)→ x ∈ F
we get (x→ y)→ ((x→ y)→ y) ∈ F by (F2). Hence it follows (x→ y)→
y ∈ F according to Lemma 3.11 because F is an implicative filter in A. So,
(y → x)→ x ∈ F , since F is a normal filter in A.

On the other hand, by the claim (11) of Proposition 2.8 we have y 4
x → y. Thus (x → y) → x 4 y → x by (10). From this and from the
hypothesis (x→ y)→ x ∈ F , it follows that y → x ∈ F in accordance with
(F2). Finally, (y → x) → x ∈ F and y → x ∈ F implies that x ∈ F by
(F3). We have shown that condition (13) is a valid formula and, therefore,
F is a comparative filter in A.
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The notion of MV-filters in residuated lattices was introduced in [1] as
follows: A subset F of a residuated lattice L is called an MV-filter of L if
it is a filter of L that satisfies in the condition

(MVF) (∀u, v ∈ L)(((u→ v)→ v)→ ((v → u)→ u) ∈ F ).

Also, in [1] it is shown (Theorem 3.10) that every MV-filter of L is a normal
filter of L. It has been shown there that the reverse need not be true
(Example 3.11). In our case, the relationships between conditions (MVF)
and (NF) are similar.

Theorem 3.13. Any filter in a quasi-ordered residuated system A which
satisfies the condition (MV F ), is a normal filter in A.

Proof. Let F be a filter in A and let x, y ∈ A be such (x → y) → y ∈ F .
By the hypothesis (MV F ) we have ((x→ y)→ y)→ ((y → x)→ x) ∈ F .
Since F is a filter in A, we conclude that (y → x) → x ∈ F . So, F is a
normal filter in A by Theorem 3.5.

Example 3.14. Consider the quasi-ordered residuated system A as in Ex-
ample 3.8. The filter F = {1} in A is a normal filter in A while it does not
satisfy the condition (MVF), since ((c → a) → a) → ((a → c) → x) = a /∈
F holds.

4. Conclusion and further work

The condition (NF), taken from the theory of residual lattices and BL-
algebras, is placed here in the context of a specific principle-logical environ-
ment. Notwithstanding these specificities, it is shown that the substructure
of the normal filtera in a quasi-ordered residuated system, determined by
the requirement (NF), have similar properties as that substructure in the
mentioned algebraic structures. It is quite reasonable to assume that the
requirement (NF) by which it is determined substructure of the normal fil-
ter and its properties do not depend much on the environment in which
they are observed. It seems that a deeper understanding of requirements
(NF) in different principle-logical environments could offer some answer to
the aforementioned dilemma.
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On the finite loop algebra F [M(Cm
p o C2, 2)]

Swati Sidana

Abstract. Let G = Cm
p o C2 be a generalized dihedral group for an odd prime p and

a natural number m, L = M(G, 2) be the RA2 loop obtained from G and F be a finite
field of characteristic 2. For the loop algebra F [L], we determine the Jacobson radical
J(F [L]) of F [L] and the Wedderburn decomposition of F [L]/J(F [L]). The structure of
1 + J(F [L]) is also determined.

1. Introduction

The problem of determining the structure of the unit loop of the loop ring
is of great interest to many authors. Goodaire in [4], Jespers and Leal in
[5] determined the unit loops of integral loop rings of RA loops. Ferraz,
Goodaire and Milies [3] studied some classes of semisimple loop algebras
of RA loops over finite fields. Sidana and Sharma have characterized the
structure of the unit loops of the finite loop algebras of many RA and RA2
loops in [7, 8, 9]. In [1], Chein and Goodaire studied the loops whose loop
rings over the field of characteristic 2 are alternative. In this paper, we
study the structure of the unit loop of the loop algebra F [L] of RA2 loop
L = M(G, 2) obtained from the group

G=Cm
p oC2=〈a1, a2, . . . , am, b | api , b

2, aiaja
−1
i a
−1
j , baibai, i, j=1, 2, . . . ,m〉,

p an odd prime and m a natural number, over the finite field F of char-
acteristic 2 which contains a primitive pth root of unity. The structure of
1 + J(F [L]) is also determined.

Following is the main theorem of this paper.

Theorem 1.1. Let p be an odd prime, m ∈ N, F be a finite field with
|F | = 2n containing a primitive pth root of unity and L = M(Cm

p o C2, 2).
Then

U(F [L]/J(F [L])) ∼= F ∗ ×GLL(2, F )
pm−1

2

2010 Mathematics Subject Classification: 20N05, 17D05
Keywords: Loop algebra, RA2 loop, Zorn’s algebra, unit loop, general linear loop.



330 S. Sidana

and 1 + J(F [L]) ∼= C3n
2 , an elementary abelian 2-group of order 23n.

Throughout the paper, p is an odd prime, F denotes the finite field of
characteristic 2 containing a primitive pth root of unity, F ∗ = F\{0}, Cm

the cyclic group of order m, Φn(x) the nth cyclotomic polynomial and ξp a
primitive pth root of unity.

2. Preliminaries

A loop L is said to be a Moufang Loop if it satisfies any of the following
three equivalent identities:

((xy)x)z = x(y(xz)), the left Moufang identity,
((xy)z)y = x(y(zy)), the right Moufang identity,
(xy)(zx) = (x(yz))x, the middle Moufang identity

for all x, y, z ∈ L.
Let G be a non-abelian group, g0 ∈ Z(G), the center of G and g 7→ g∗

be an involution of G such that g∗0 = g0 and gg∗ ∈ Z(G) for every g ∈ G.
For an indeterminate u, let L = G ∪̇ Gu and extend the binary operation
from G to L by the rules

g(hu) = (hg)u, (gu)h = (gh∗)u, (gu)(hu) = g0h
∗g, for all g, h ∈ G.

The loop L so constructed is a Moufang loop denoted by M(G, ∗, g0) and
its order is twice the order of the group G. If the involution ‘∗’ is the
inverse map on G and g0 = 1, the identity element of G, then M(G,−1, 1)
is denoted as M(G, 2).

A loop whose loop ring in characteristic 2 is alternative but not asso-
ciative is known as RA2 loop.

Theorem 2.1. [1, Theorem 5.4] The loop M(G,−1, g0) is an RA2 loop if
and only if either G = Dih(A) is the generalized dihedral group of some
abelian group A of exponent > 2, or G is a non-abelian group of exponent
4 having exactly 2 squares.

The Zorn’s vector matrix algebra is an 8-dimensional alternative algebra
and is a generalization of the matrix algebra over an associative ring. For
any commutative and associative ring R (with unity), let R3 denotes the
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set of ordered triples over R. Consider the set of 2× 2 matrices of the form[
a x
y b

]
, where a, b ∈ R and x, y ∈ R3 with the usual addition

[
a x
y b

]
+

[
c z
w d

]
=

[
a+ c x+ z
y + w b+ d

]
and the multiplication defined by[

a x
y b

] [
c z
w d

]
=

[
ac+ x · w az + dx− y × w

cy + bw + x× z bd+ y · z

]
,

where · and × denote the dot product and the cross product respectively in
R3. By this construction, we obtain an alternative algebra called as Zorn’s
vector matrix algebra denoted by Z(R).

The loop of the invertible elements of the Zorn’s vector matrix algebra,

GLL(2, R) = {A ∈ Z(R) | det A is a unit in R}

is a Moufang loop called the General Linear Loop. This loop is a general-
ization of the General Linear group for associative algebras.

For any abelian group A, the generalized dihedral group of A is the
semidirect product of A and C2, with C2 acting on A by inverting the
elements and is written as Dih(A) = Ao C2.

If G is a non-abelian group with a faithful two dimensional matrix
representation, then we can find a matrix representation of Moufang loop
M(G, 2) with the help of the following remark.

Remark 2.2. [10, §2.3] Let G be a non-abelian group with a faithful,
two-dimensional representation over a commutative ring R with identity.
That is, there exists an embedding φ : G → GL(2, R). If we choose two
orthogonal unit vectors v, w in R3 such that ||v × w|| = 1 and consider

the map ψ : GL(2, R) → Z(R) defined as
[
a b
c d

]
7→
[
a bv
cv d

]
. Then

ψφ : G→ Z(R) and u 7→
[

0 w
w 0

]
give the matrix representation of L.

The following lemma will be used repeatedly in this article.

Lemma 2.3. Let p be an odd prime and ξp be a primitive pth root of unity. If
ξp, ξ

2
p , . . . , ξ

p−1
p are the roots of a polynomial f(x) = ap−1x

p−1 +ap−2x
p−2 +

. . .+a1x+a0 over F , then the coefficients of f(x) are all the same, that is,
ap−1 = ap−2 = . . . = a1 = a0 = a(say).
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Proof. Since the factor 1 +x+x2 + . . .+xp−1 of pth cyclotomic polynomial
Φp(x) divides f(x), therefore all the coefficients of the polynomial f(x) must
be the same.

An element a ∈ R is said to be quasiregular if there exists b ∈ R such
that a+ b = ab = ba and b is called the quasi-inverse of a. An ideal is said
to be quasiregular ideal if all its elements are quasiregular elements. The
Jacobson radical J(R) of an alternative ring R is the largest quasiregular
ideal of R. If the ring R has unity, this ideal is also the intersection of all
the maximal left ideals of R. Let θ be an onto ring homomorphism from a
ring R1 to a ring R2. Then θ(J(R1)) ⊆ J(R2).

3. Irreducible matrix representations of Cm
p o C2

In this section, we determine the irreducible and inequivalent representa-
tions of the group Cm

p oC2 over F induced from the irreducible representa-
tions of its subgroup Cm

p over F . In [6, §3], the irreducible and inequivalent
representations of C2

p o C2 over F have been discussed. Here we extend
this to Cm

p o C2. Since H = Cm
p is an abelian group, therefore, all the

irreducible representations of H are of degree 1.
For 1 6 k 6 m, 0 6 ik 6 p− 1, let

ρ(i1,i2,...,im) : H → F

be defined by
ak 7→ ξikp .

Using [2, Ch 1, §10], we get the induced representations of G as

θ(i1,i2,...,im) : G→M(2, F )

defined by

ak 7→
[
ξikp 0

0 ξ−ikp

]
, b 7→

[
0 1
1 0

]
for all 0 6 ik 6 p− 1, 1 6 k 6 m.

All these representations of G need not be irreducible and inequivalent.
For each (i1, i2, . . . , im)∈{0, 1, . . . , p−1}, the representation θ(i1,i2,...,im)

is similar to the representation θ(−i1,−i2,...,−im). Also it is clear that the
representation θ(0,0,...,0) is not irreducible. Thus, for each 1 6 k 6 m, if we
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define

Jm
k =

(i1, i2, . . . , im)

∣∣∣∣ 1 6 ij 6
p−1
2 , if j = k

0 6 ij 6 p− 1, if j < k
ij = 0, if j > k


and

Sm =
{

(i1, i2, . . . , im) | (i1, i2, . . . , im) ∈ Jm
k , 1 6 k 6 m

}
,

then the representations θ(i1,i2,...,im) for all (i1, i2, . . . , im) ∈ Sm are irre-
ducible and inequivalent over F .

Hence the total number of 2-degree irreducible and inequivalent repre-
sentations of G are

p− 1

2
+ p.

p− 1

2
+ p2.

p− 1

2
+ . . .+ pm−1.

p− 1

2
=
pm − 1

2
.

4. The unit loop U(F [L]/J(F [L])) for L=M(Cm
p oC2,2)

In this section, we determine theWedderburn decomposition of F [L]/J(F [L])
for L = M(Cm

p oC2, 2) and prove the main theorem. Consider the following
loop homomorphisms:

1. φ0 : L→ F ∗ defined by

aj 7→ 1, ∀ j = 1, 2, . . . ,m, b 7→ 1, u 7→ 1.

2. For each (i1, i2, . . . , im) ∈ Sm, define

φ(i1,i2,...,im) : L→ GLL(2, F )

by

aj 7→

[
ξ
ij
p (0, 0, 0)

(0, 0, 0) ξ
−ij
p

]
for all j = 1, 2, . . . ,m,

b 7→
[

0 (0, 1, 0)
(0, 1, 0) 0

]
, u 7→

[
0 (0, 0, 1)

(0, 0, 1) 0

]
.
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Then
Tm : L→ F ∗ × (GLL(2, F ))

pm−1
2

defined as
Tm := φ0 ×

∏
(i1,i2,...,im)∈Sm

φ(i1,i2,...,im)

is a well defined loop homomorphism.
Let φ∗(i1,i2,...,im) : F [L] → Z(F ) be the loop algebra homomorphism

obtained by extending φ(i1,i2,...,im) linearly over F and

T ∗m : F [L]→ F
⊕

(Z(F ))
pm−1

2

be defined as

T ∗m := φ∗0
⊕

⊕
(i1,i2,...,im)∈Sm

φ∗(i1,i2,...,im).

Now we shall calculate the kernel of T ∗m.
Let

Xm =

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

αi1,i2,...,ima
i1
1 a

i2
2 . . . a

im
m

+

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

βi1,i2,...,ima
i1
1 a

i2
2 . . . a

im
m b

+

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

γi1,i2,...,ima
i1
1 a

i2
2 . . . a

im
m u

+

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

δi1,i2,...,ima
i1
1 a

i2
2 . . . a

im
m bu

= Xm1 +Xm2 +Xm3 +Xm4 ∈ Ker T ∗m.

For (i1, i2, . . . , im) ∈ Jm
k , on applying φ∗(i1,i2,...,im) on Xm, we get

φ∗(i1,i2,...,im)(Xm1) =

[
Y11 (0, 0, 0)

(0, 0, 0) Y12

]
,

φ∗(i1,i2,...,im)(Xm2) =

[
0 (0, Y21, 0)

(0, Y22, 0) 0

]
,
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φ∗(i1,i2,...,im)(Xm3) =

[
0 (0, 0, Y31)

(0, 0, Y32) 0

]
,

φ∗(i1,i2,...,im)(Xm4) =

[
0 (Y41, 0, 0)

(Y42, 0, 0) 0

]
for some Y11, Y12, Y21, Y22, Y31, Y32, Y41 and Y42 ∈ F.

That is,

φ∗(i1,i2,...,im)(Xm) =

[
Y11 (Y41, Y21, Y31)

(Y42, Y22, Y32) Y12

]
.

Thus φ∗(i1,i2,...,im)(Xm) = 0 gives that Y11 = Y12 = Y21 = Y22 = Y31 = Y32 =

Y41 = Y42 = 0. This means that for all (i1, i2, . . . , im) ∈ Jm
k ,

φ∗(i1,i2,...,im)(Xm) = 0 implies that φ∗(i1,i2,...,im)(Xmj) = 0 for all j = 1, 2, 3, 4.

Firstly, consider φ∗(i1,i2,...,im)(Xm1) = 0. For a fixed (i1, i2, . . . , im) ∈ Jm
k ,

define

Am
k =

(j1, j2, . . . , jm)

∣∣∣∣ jl ∈ {il, 0}, if 1 6 l < k
jk = ik,
ij = 0, if l > k

 .

Let us start with k = m, for (j1, j2, . . . , jm) ∈ Am
m, φ∗(j1,j2,...,jm)(Xm1) = 0

and using Lemma 2.3, we get that

αi1,i2,...,im−1,im = αi1,i2,...,im−1(say) for all i1, . . . , im = 0, 1, . . . ,m.

Then φ∗(j1,j2,...,jm)(Xm1) = 0 for (j1, j2, . . . , jm) ∈ Am
m−1 gives

αi1,i2,...,im−2,im−1 = αi1,i2,...,im−2(say) for all i1, . . . , im−1 = 0, 1, . . . ,m.

Continuing the same process, φ∗(j1,j2,...,jm)(Xm1) = 0 for (j1, . . . , jm)∈Am
2 ,

implies that αi1,i2 = αi1(say) for all i1, i2 = 0, 1, . . . ,m.

Finally, φ∗(j1,j2,...,jm)(Xm1) = 0 for (j1, j2, . . . , jm) ∈ Am
1 gives that αi1 =

α(say) for all i1 = 0, 1, . . . ,m. Hence αi1,i2,...,im = α for all i1, i2, . . . , im =
0, 1, . . . ,m. By repeating the same procedure for φ∗(j1,j2,...,jm)(Xm2) = 0,
φ∗(j1,j2,...,jm)(Xm3) = 0 and for φ∗(j1,j2,...,jm)(Xm4) = 0, we get βi1,i2,...,im =
β, γi1,i2,...,im = γ and δi1,i2,...,im = δ for all i1, i2, . . . , im = 0, 1, . . . ,m.
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Next, φ∗0(Xm) = 0 implies that α+ β + γ + δ = 0. Thus

Xm = β

(
p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m +

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m b

)

+ γ

(
p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m +

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m u

)

+ δ

(
p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m +

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m bu

)
= βfm1 + γfm2 + δfm3.

We have few observations to note, which will be used here:
In the group G = Cm

p o C2, (a0i + a1i + a2i + . . .+ ap−1i )2 = p(a0i + a1i +

a2i + . . .+ap−1i ) and (a0i +a1i +a2i + . . .+ap−1i )b = b(a0i +a1i +a2i + . . .+ap−1i ),
since aki b = ba−ki (a presenting relator of G).

Further, the definition of the loop gives ug = g−1u, which implies
(a0i + a1i + a2i + . . .+ ap−1i )u = u(a0i + a1i + a2i + . . .+ ap−1i ).

Also we can write
p−1∑
i1=0

p−1∑
i2=0

. . .
p−1∑
im=0

ai11 a
i2
2 . . . a

im
m =

m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i ).

Consequently, we have fm1 =
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i ) +
m∏
i=1

(a0i +

a1i + a2i + . . .+ ap−1i )b. This gives

f2m1 = 2
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i ) + 2
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i )b

= 0, since the characteristic of F is 2. Similarly, we can prove f2m2 = 0, and
f2m3 = 0.

Also for 1 6 r, s 6 3, fmr and fms commute, as

fmrfms =
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i ) +
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i )b

+
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i )u+
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i )bu

=
∑
l∈L

l.

It follows that every element of ker T ∗m is a nilpotent element of nilpotency
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index 2 and hence is quasiregular with quasi-inverse as itself. Thus ker T ∗m
is a quasiregular ideal of F [L], which implies that ker T ∗m ⊆ J(F [L]).

Since

dimF (F ⊕ Z(F )
pm−1

2 ) = 4pm − 3 = dimF (F [L]/ ker T ∗m)

therefore, T ∗m is onto. This implies J(F [L]) ⊆ ker T ∗m. Consequently,
ker T ∗m = J(F [L]). Hence

F [L]/J(F [L]) ∼= F ⊕ Z(F )
pm−1

2

which further gives

U(F [L]/J(F [L])) ∼= F ∗ ×GLL(2, F )
pm−1

2 .

Consider 1 + J(F [L]). An element h of 1 + J(F [L]) is of the form h =
1 + c1fm1 + c2fm2 + c3fm3, where c′is ∈ F. As fmr and fms commute for all
1 6 r, s 6 3, we get that 1 + J(F [L]) is a commutative loop.

Further, for all r, s, t = 1, 2, 3,

(fmrfms)fmt = 2
∑
l∈L

l = 0 and fmr(fmsfmt) = 2
∑
l∈L

l = 0.

Thus 1 + J(F [L]) is an abelian group and h2 = 1 for all h ∈ 1 + J(F [L]),
which gives 1 + J(F [L]) ∼= (C2 × C2 × C2)

n.

Acknowledgments. The author is thankful to the anonymous referees
and Professor Petr Vojtěchovský for their useful comments and suggestions,
which have greatly improved the presentation of the paper.

References

[1] O. Chein and E. G. Goodaire, Loops whose loop rings in characteristic 2
are alternative, Comm. Algebra, 18 (1990), no. 3, 659− 688.

[2] Ch.W. Curtis and I. Reiner, Methods of representation theory. Vol. I,
John Wiley & Sons, Inc., New York (1990).

[3] R.A. Ferraz, E.G. Goodaire and C.P. Milies, Some classes of semisim-
ple group (and loop) algebras over finite fields, J. Algebra, 324 (2010), no. 12,
3457− 3469.



338 S. Sidana

[4] E.G. Goodaire, Six Moufang loops of units, Canad. J. Math., 44 (1992),
no. 5, 951− 973.

[5] E. Jespers and G. Leal, A characterization of the unit loop of the integral
loop ring ZM16(Q, 2), J. Algebra, 155 (1993), no. 1, 95− 109.

[6] S. Sidana, On units in loop algebra F [M(Dih(C2
p), 2)], Beitr. Algebra Geom.,

58 (2017), no. 4, 765− 774.

[7] S. Sidana and R.K. Sharma, Finite semisimple loop algebras of indecom-
posable RA loops, Canad. Math. Bull., 58 (2015), no. 2, 363− 373.

[8] S. Sidana and R.K. Sharma, On the finite loop algebra of the smallest
Moufang loop M(S3, 2), Armenian J. Math., 8 (2016), no. 1, 68− 76.

[9] S. Sidana and R.K. Sharma, Units in finite loop algebras of RA2 loops,
Asian-Eur. J. Math., 9 (2016), no. 1, 1650026.

[10] A.T. Wells, Zorn vector matrices over commutative rings and the loops aris-
ing from their construction, Thesis (Ph.D.)–Iowa State University (2010).

Received November 22, 2021
Revised July 20, 2022

Post Graduate Department of Mathematics
Mehr Chand Mahajan DAV College for Women
Sector 36-A
Chandigarh
India 160036
E-mail: swatisidana@gmail.com


	181-191
	193-208
	209-218
	219-240
	241-256
	257-262
	263-274
	275-286
	287-298
	299-306
	307-315
	317-327
	329-338

