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On the properties of zero-divisor graphs of posets

Mojgan Afkhami, Kazem Khashyarmanesh and Faeze Shahsavar

Abstract. We determine the cut vertices in the zero-divisor graphs of posets and study the

posets with end-regular zero-divisor graph. Also, we investigate the zero-divisor graph of the

product of two posets. In particular, we determine all posets with planar and outerplanar zero-

divisor graphs.

1. Introduction

The investigation of graphs related to various algebraic structures is a very large
and growing area of research. In particular, Cayley graphs have attracted serious
attention in the literature, since they have many useful applications, see [13],
[16], [17], [20], [21], [24] for examples of recent results and further references.
Several other classes of graphs associated with algebraic structures have been also
actively investigated. For example, power graphs and divisibility graphs have been
considered in [14], [15], zero-divisor graphs have been studied in [3], [4], [5], [8],
[9], and cozero-divisor graphs and annihilating-ideal graphs have been considered
in [1] and [2], respectively.

Recently, the zero-divisor graph of a poset was de�ned and studied in [11],
[12], [19] and [23]. In this paper, we deal with the zero-divisor graphs of posets
based on terminology of [19]. In [19], Lu and Wu de�ned the zero-divisor graph
for an arbitrary partially ordered set (P,6) (poset, brie�y) with a least element
0, as an undirected graph whose vertices consists of all nonzero zero-divisors of P ,
and two distinct vertices x and y are adjacent if and only if {x, y}` = {0}, where
for a subset S of P , {S}` denotes the set of lower bounds of S. In this paper,
we denote this graph by Γ(P ). In Section 2, we study the cut vertices in Γ(P ).
Also, we investigate some basic properties of Γ(P1×P2), where P1 and P2 are two
�nite posets. In Section 3, we study the planarity of Γ(P1 × P2). In Section 4,
we investigate the outerplanarity in the zero-divisor graphs of posets. In the last
section, we study the posets with end-regular zero-divisor graphs.

Now we recall some de�nitions and notations on graphs and partially ordered
sets. We use the standard terminology of graphs in [6] and partially ordered sets
in [7]. Let G be a graph with vertex-set V (G) and edge-set E(G). In a graph
G, the distance between two distinct vertices a and b, denoted by d(a, b), is the
length of the shortest path connecting a and b, if such a path exists; otherwise,
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we set d(a, b) :=∞. The diameter of a graph G is diam(G) = sup{d(a, b) : a and
b are distinct vertices of G}. A graph G is said to be connected if there exists a
path between any two distinct vertices, and it is complete if it is connected with
diameter one. We use Kn to denote the complete graph with n vertices. Also, we
say that G is totally disconnected if no two vertices of G are adjacent. The valency
of a vertex a is the number of the edges of the graph G incident with a. A clique

of a graph is a maximal complete subgraph of it and the number of vertices in a
largest clique of G is called clique number of G and is denoted by ω(G). In the
graph theory, a unicycle graph is a graph that has exactly one cycle. The graph
with no vertices and no edges is the null graph.

In a partially ordered set (P,6) with a least element 0, an element a is called
an atom if a 6= 0, and, for an element x in P , the relation 0 6 x 6 a implies either
x = 0 or x = a. Also, for a, b ∈ P , we say that a < b, whenever a 6 b and a 6= b.
Assume that S is a subset of P . Then an element x in P is a lower bound of S if
x 6 s for all s ∈ S. An upper bound is de�ned in a dual manner. The set of all
lower bounds of S is denoted by S` and the set of all upper bounds of S by Su,
that is,

S` := {x ∈ P | x 6 s, for all s ∈ S}

and
Su := {x ∈ P | s 6 x, for all s ∈ S}.

We say that a non-empty subset I of P is an ideal of P if, for arbitrary elements
x and y in P , the relations x ∈ I and y 6 x imply that y ∈ I. Also the ideal I is
prime if x, y ∈ P with {x, y}` j I, then x ∈ I or y ∈ I. A maximal ideal of P is
a proper ideal of P which is maximal among all ideals of P .

2. Cut vertices in the zero-divisor graph of a poset

Throughout the paper, P is a �nite poset and A(P ) = {a1, a2, ..., an} is the set of
all atoms of P . Also, we denote the set of zero-divisors of the poset P by Z(P ),
that is,

Z(P ) = {x ∈ P | {x, y}` = 0, for some y ∈ P}.

Clearly, if |A(P )| = 1, then Γ(P ) is a null graph. Therefore, we suppose that
|A(P )| > 2.

A vertex a of a graph G is called a cut vertex if the removal of a and any edges
incident on a creates a graph with more connected components than G.

Theorem 2.1. If a is a cut vertex in Γ(P ), then {0, a} is an ideal of P .

Proof. One can easily see that {0, a} is an ideal of P if and only if a is an atom of
P . Hence it is su�cient to show that a = ai, for some i = 1, 2, . . . , n. Assume that
a is not an atom. Since a is a cut vertex, Γ(P )\{a} has at least two components
X and Y . We claim that A(P ) ⊆ X or A(P ) ⊆ Y . Otherwise there are atoms
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ai and aj , where 1 6 i 6= j 6 n, such that ai ∈ X and aj ∈ Y . Now we have
that ai is adjacent to aj , which is impossible. Without loss of generality, we may
assume that A(P ) ⊆ X. Then, for all y ∈ Y , we have y ∈ {ai}u, for i = 1, 2, . . . , n.
Thus y ∈ ∩ni=1{ai}u. This implies that y /∈ Z(P ), which is impossible. Therefore
a ∈ A(P ), and so {0, a} is an ideal of P .

The following example shows that the converse of Theorem 2.1 is not true in
general.

Example 2.2. Suppose that P is a poset in Figure 1. Then, it is easy to see that
a1 is an atom, but it is not a cut vertex in Γ(P ).

Figure 1. P and Γ(P )

Notation. Let i1, i2, . . . , in be integers with 1 6 i1 < i2 < · · · < ik 6 n. The
notation UP

i1i2...ik
stands for the following set:

{x ∈ P ; x ∈ ∩ks=1{ais}u\ ∪j 6=i1,i2,...,ik {aj}u}

Note that no two distinct elements in Ui1i2...ik are adjacent in Γ(P ). Also if the in-
dex sets {i1, i2, . . . , ik} and {j1, j2, . . . , jk′} of Ui1i2...ik and Uj1j2...jk′ , respectively,
are distinct, then one can easily check that Ui1i2...ik ∩ Uj1j2...jk′ = ∅. Moreover
P\{0} = ∪nk=1, 16i1<i2<···<ik6nUi1i2···ik . Also, if there is no ambiguity, we denote

UP
i1i2...ik

by Ui1i2...ik . Also by 1 · · · î · · ·n we means that 1 · · · i− 1 i + 1 · · ·n.

In the next theorem, we provide some conditions under which the converse of
Theorem 2.1 holds.

Theorem 2.3. Let |P | > 4. Then there exists i with 1 6 i 6 n such that ai is a

cut vertex in Γ(P ), if |Ui| = 1 and U1···̂i···n 6= ∅, for some 1 6 i 6 n.

Proof. It is enough to show that there exist vertices b and c in P such that ai is
in every path from b to c in Γ(P ). Since U1···̂i···n 6= ∅, there is an element b in
U1···̂i···n. Now, for some j 6= i, consider c ∈ Uj . Thus ai is in every path from b to
c in Γ(P ), and so it is a cut vertex in Γ(P ).

Proposition 2.4. Let a be a cut vertex in Γ(P ) and X be connected component

of Γ(P )\{a}. Also suppose that X is complete with at least two vertices. Then

V (X) ∪ {0} is an ideal of P .

Proof. Since a is a cut vertex in Γ(P ), by Theorem 2.1, a is an atom of P . Suppose
that a = a1. Now, we have the following cases:
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Case 1. A(P )\{a} ⊆ X. If X contains an element b such that b is not an
atom, then since X is complete, we have that b ∈ U1. Now, let Y 6= X be another
connected components of Γ(P )\{a} and let c ∈ Y . Clearly, c ∈ U23...n. Thus b
and c are adjacent which is impossible. So we have that X = A(P )\{a}, and thus
V (X) ∪ {0} is an ideal of P .

Case 2. A(P )\{a} * X. It is easy to see that in this situation X does not
contain any atom. Now, let x and y be distinct elements in X. Then we have
x, y ∈ U23...n, and so x is not adjacent to y, which is impossible. Therefore this
case does not happen.

The next example shows that the converse of Proposition 2.4 is not true in
general.

Example 2.5. Suppose that P is a poset of Figure 2. Clearly a1 is the cut
vertex in Γ(P ). Let V (X) = {a2, a3, c}. Then, by Figure 2, it is easy to see that
V (X) ∪ {0} is an ideal of P , but X is not a complete subgraph of Γ(P ).

Figure 2. P and Γ(P )

De�nition 2.6. Suppose that x is a vertex in Γ(P ). Set

Zx := {y ∈ P | {x, y}` = {0}}.

We say that Zx is properly maximal if Zx ⊆ Zb, for some b ∈ P\{0, x}, then we
have Zx = Zb.

Theorem 2.7. If a is a cut vertex in Γ(P ), then Za is properly maximal.

Proof. Assume on the contrary that Za $ Zb, for some vertices b in Γ(P ) with
b 6= a. Then clearly all vertices adjacent to a are also adjacent to b. This is a
contradiction with the fact that a is a cut vertex.

Let (P1,61) and (P2,62) be two posets with the least elements. Then the
cartesian product P1 × P2 is also a poset with the following relation. For two
distinct elements (x, y), (x′, y′) ∈ P1 × P2 we say that (x, y) 6 (x′, y′) if and only
if x 61 x′ and y 62 y′. Clearly (P1 × P2,6) has the minimum element (0, 0).
Suppose that P1 and P2 are two �nite posets such that A(P1) = {a1, a2, . . . , an}
and A(P2) = {b1, b2, . . . , bm}. In the following we study some properties of the
zero-divisor graph Γ(P1 × P2).

Lemma 2.8. In the poset P1×P2, we have A(P1×P2) = (A(P1)×{0})∪ ({0}×
A(P2)), and so |A(P1 × P2)| = |A(P1)|+ |A(P2)|.
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Proof. Suppose that (a, b) belongs to the set A(P1×P2). If a, b 6= 0, then we have
(0, 0) < (a, 0) < (a, b) which is impossible. Then we have a = 0 or b = 0. Without
loss of generally, we may assume that b = 0. If a /∈ A(P1), then there exists an
atom ai ∈ A(P1), for some 1 6 i 6 n, such that ai < a. Hence we have that
(0, 0) < (ai, 0) < (a, 0) which is impossible. Thus a ∈ A(P1), and so the result
holds.

We can extend the concept of P1×P2 for a product of �nite number of posets.

Corollary 2.9. Let P = P1×P2× · · ·×Pn, where (Pi,6i)'s are partially ordered

sets for i = 1, 2, . . . , n. Then A(P ) consists of elements (a1, a2, . . . , an) such that

there exists 1 6 j 6 n with aj ∈ A(Pj), and, for all i with 1 6 i 6= j 6 n, ai = 0.

Proposition 2.10. Let P = P1×P2× · · ·×Pn be a poset such that P 6= P1×P2,

with |P1| = |P2| = 2. If a = (0, 0, . . . , ui, 0, . . . , 0) ∈ Z(P ) is a cut vertex with

nonzero component ui such that ui /∈ Z(Pi), then |Pi| = 2 .

Proof. Assume on the contrary that Pi has at least three elements and so there
exists vi in Pi\{0, ui}. It is easy to see that Za ⊆ Z(0,0,...,vi,0,...,0). Since a is a cut
vertex, by Theorem 2.7, we have that Za = Z(0,0,...,vi,0,...,0), which implies that
a = (0, 0, . . . , vi, 0, . . . , 0). Hence ui = vi, which is a contradiction.

3. Planarity of Γ(P1 × P2)

Recall that a graph is said to be planar if it can be drown in the plane, so that
its edges intersect only at their ends. A subdivision of a graph is any graph
that can be obtained from the original graph by replacing edges by paths. A
remarkable characterization of the planar graphs was given by Kuratowski in 1930.
Kuratowski's Theorem says that a graph is planar if and only if it contains no
subdivision of K5 or K3,3.

Theorem 3.1. If Γ(P1 × P2) is planar, then |A(P1)|+ |A(P2)| 6 4.

Proof. Suppose on the contrary that |A(P1)| + |A(P2)| > 5. Since the induced
subgraph of Γ(P1×P2) on the vertex-set A(P1×P2) is a complete graph, one can
�nd a subgraph of Γ(P1×P2) isomorphic to K5, and so, by Kuratowski's Theorem,
Γ(P1 × P2) is not planar. Hence we have |A(P1)|+ |A(P2)| 6 4.

By Theorem 3.1, we must study the cases that |A(P1)|+ |A(P2)| is equal to 2, 3
and 4. In the following proposition, we state the necessary and su�cient condition
for planarity of Γ(P1 × P2), when |A(P1)|+ |A(P2)| = 2.

Proposition 3.2. Suppose that |A(P1)| + |A(P2)| = 2 such that |A(P1)| = 1 =
|A(P2)|. Then Γ(P1 × P2) is planar if and only if |P1| 6 3 or |P2| 6 3.

Proof. Since |A(P1)|+ |A(P2)| = 2, we have that Γ(P1×P2) is a complete bipartite
graph. Now one can easily see that Γ(P1 × P2) is planar if and only if |P1| 6 3 or
|P2| 6 3.
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Now, suppose that P1 and P2 are posets such that |A(P1)|+ |A(P2)| = 3. Let
|A(P1)| = 1 and |A(P2)| = 2. If |P1|, |P2| > 4, then we can �nd a copy of K3,3 in
the graph Γ(P1 × P2). Thus, by Kuratowski's Theorem, Γ(P1 × P2) is not planar.
Therefore, if Γ(P1 × P2) is planar, then |P1| 6 3 or |P2| 6 3. Now, we have the
following cases:

Case 1. Suppose that |P1| = 2 and |UP2
i | > 2, for all 1 6 i 6 2. In this

situation we can �nd a subdivision of K5 as in Figure 3, where yi ∈ UP2
i \{bi}, for

all 1 6 i 6 2, and so Γ(P1 × P2) is not planar.

Figure 3.

If |UP2
i | = 1 and |UP2

j | > 3, for some 1 6 i 6= j 6 2, then one can �nd a copy
of K3,3 with vertex-set {(a1, 0), (0, b1), (a1, b1)} ∪ {(0, b2), (0, y2), (0, y′2)}, where
yi, y

′
i ∈ UP2

i \{bi}, for all 1 6 i 6 2, and so Γ(P1 × P2) is not planar.

Now, if |UP2
i | = 1 and |UP2

j | 6 2, for all 1 6 i 6= j 6 2, then Γ(P1 × P2) is
pictured in Figure 4, and so Γ(P1 × P2) is planar.

Figure 4.

Case 2. Suppose that |P1| = 3 and |UP2
i | > 3, for some 1 6 i 6 2. In

this situation one can �nd a copy of K3,3 with vertex-set {(a1, 0), (0, b2), (x, b2)}∪
{(0, b1), (0, y1), (0, y′1)}, where x ∈ P1\{0, a1} and yi, y

′
i ∈ UP2

i \{bi} for some 1 6
i 6 2, and so Γ(P1 × P2) is not planar.

Now, if |UP2
i | 6 2, for all 1 6 i 6 2, then one of the following situations happen:

(i) If |UP2
i | = 2, for all 1 6 i 6 2, then we can �nd a subdivision of K5 as in

Figure 3, where yi ∈ UP2
i \{bi} for all 1 6 i 6 2, and so Γ(P1 × P2) is not planar.
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(ii) If |UP2
i | = 2, |UP2

j | = 1, for all 1 6 i 6= j 6 2 and UP2
12 6= ∅, then we can

�nd a subdivision of K5 as in Figure 5, where yi ∈ UP2
i \{bi} for some 1 6 i 6 2

and c12 ∈ UP2
12 . So Γ(P1 × P2) is not planar.

Figure 5.

If |UP2
i | = 2, |UP2

j | = 1, for all 1 6 i 6= j 6 2 and UP2
12 = ∅, then Γ(P1 × P2) is

pictured in Figure 6, and so Γ(P1 × P2) is planar.

Figure 6.

(iii) If |UP2
i | = 1, for all 1 6 i 6 2, then Γ(P1×P2) is pictured in Figure 7, and

so Γ(P1 × P2) is planar.

Figure 7.

Case 3. Suppose that |P2| = 3. In this situation Γ(P1 × P2) is pictured in
Figure 8, and hence Γ(P1 × P2) is planar.
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Figure 8.

Thus we have the following theorem.

Theorem 3.3. Suppose that |A(P1)| + |A(P2)| = 3 such that |A(P1)| = 1 and

|A(P2)| = 2. Then Γ(P1×P2) is planar if and only if one of the following conditions

hold.

(i) |P1| = 2, |UP2
i | = 1 and |UP2

j | 6 2, for all 1 6 i 6= j 6 2.

(ii) |P1| = 3 and |UP2
i | = 1, for all 1 6 i 6 2.

(iii) |P1| = 3, |UP2
i | = 2 and |UP2

j | = 1, for some 1 6 i 6= j 6 2 and UP2
12 = ∅.

(iv) |P2| = 3.

Finally, in order to complete the study of planarity of Γ(P1 × P2), we assume
that |A(P1)|+ |A(P2)| = 4. Now, we have the following cases:

Case 1. Suppose that |A(P1)| = 1 and |A(P2)| = 3. In this situation if
Γ(P1 × P2) is planar, then |P1| 6 3. Note that if Γ(P1 × P2) is planar and
|P1| > 4, then one can �nd a copy of K3,3 with vertex-set {(a1, 0), (x, 0), (x′, 0)} ∪
{(0, b1), (0, b2), (0, b3)}, where x, x′ ∈ P1\{0, a1}. Thus Γ(P1 × P2) is not planar.
Therefore |P1| 6 3.

Now, we investigate the planarity of Γ(P1 × P2) whenever, |P1| 6 3. To this
end, we consider the following situations:

(i) Suppose that |P1| = 2. If |UP2
i | > 2, for some 1 6 i 6 3, then we can �nd a

subdivision of K5 as in Figure 9, where yi ∈ UP2
i \{bi} for some 1 6 i 6 3.

Figure 9.
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If |UP2
ij | > 1, for some 1 6 i 6= j 6 3, then one can �nd a copy of K3,3 with

vertex-set {(a1, 0), (0, b3), (a1, b3)} ∪ {(0, b1), (0, b2), (0, c12)}, where cij ∈ UP2
ij for

some 1 6 i 6= j 6 3. So Γ(P1 × P2) is not planar.
Now, if |UP2

i | = 1, for all 1 6 i 6 3 and UP2
ij = ∅, for all 1 6 i 6= j 6 3, then

Γ(P1 × P2) is pictured in Figure 10, and so Γ(P1 × P2) is planar.

Figure 10.

(ii) Assume that |P1| = 3. If |UP2
i | > 2, for some 1 6 i 6 3, then we can �nd a

subdivision of K5 as in Figure 9, where yi ∈ UP2
i \{bi} for some 1 6 i 6 3.

If |UP2
ij | > 1, for some 1 6 i 6= j 6 3, then one can �nd a copy of K3,3 with

vertex-set {(a1, 0), (0, b3), (a1, b3)} ∪ {(0, b1), (0, b2), (0, c12)}, where cij ∈ UP2
ij , for

some 1 6 i 6= j 6 3. So Γ(P1 × P2) is not planar.
If UP2

123 6= ∅, then we can �nd a subdivition of K5 as in Figure 11, where
c123 ∈ UP2

123. So Γ(P1 × P2) is not planar.

Figure 11.

Now, if |UP2
i | = 1, for all 1 6 i 6 3 and UP2

i...j = ∅, for all 1 6 i 6= j 6 3, then
Γ(P1 × P2) is pictured in Figure 12, and so Γ(P1 × P2) is planar.

Figure 12.
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Case 2. Assume that |A(P1)| = 2 = |A(P2)|. In this situation we can �nd a
subdivision of K3,3 as in Figure 13, and so Γ(P1 × P2) is not planar.

Figure 13.

Hence we have the following theorem.

Theorem 3.4. Suppose that |A(P1)| + |A(P2)| = 4 such that |A(P1)| = 1 and

|A(P2)| = 3. Then Γ(P1×P2) is planar if and only if one of the following conditions

hold.

(i) |P1| = 2 and |UP2
i | = 1 for all 1 6 i 6 3 and UP2

ij = ∅ for all 1 6 i 6= j 6 3.

(ii) |P1| = 3, |UP2
i | = 1 for all 1 6 i 6 3 and UP2

i...j = ∅ for all 1 6 i 6= j 6 3.

4. Outerplanarity of Γ(P ) and Γ(P1 × P2)

A directed graph is outerplanar if it can be drawn in the plane without crossing
in such a way that all of the vertices belong to the unbounded face of the drawing.
There is a characterization for outerplanar graphs that says a graph is outerplanar
if and only if it does not contain a subdivision of K4 or K2,3.

In the following, we characterize all posets P such that Γ(P ) is outerplanar.

Lemma 4.1. If Γ(P ) is outerplanar, then |A(P )| 6 3.

Proof. Assume to the contrary that |A(P )| > 4. Since the induced subgraph of
Γ(P ) on vertex-set A(P ) is a complete subgraph, one can �nd a copy of K4 in
Γ(P ), and so Γ(P ) is not outerplanar. Hence we have |A(P )| 6 3.

By Lemma 4.1, we must study the cases that |A(P )| is equal to 2 and 3.
In the following proposition, we state the necessary and su�cient condition for
outerplanarity of Γ(P ), when |A(P )| = 2.

Proposition 4.2. Suppose that |A(P )| = 2. Then Γ(P ) is outerplanar if and only

if |Ui| = 1, for some 1 6 i 6 2, or |Ui| 6 2, for all 1 6 i 6 2.

Proof. Since |A(P )| = 2, we have that Γ(P ) is a complete bipartite graph. Now one
can easily see that Γ(P ) is outerplanar if and only if |Ui| = 1, for some 1 6 i 6 2,
or |Ui| 6 2, for all 1 6 i 6 2.
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In the sequel of this section, we investigate the outerplanarity of Γ(P ), when
|A(P )| = 3. If | ∪3i=1 Ui| > 5, then we can �nd a copy of K2,3 in the structure
of Γ(P ), and so Γ(P ) is not outerplanar. Therefore, if Γ(P ) is outerplanar, then
| ∪3i=1 Ui| 6 4. Now, we have the following cases:

Case 1. Suppose that | ∪3i=1 Ui| = 3. In this situation Γ(P ) is a unicyclic
graph which is in pictured in Figure 14, and so it is outerplanar.

Figure 14.

Case 2. Suppose that | ∪3i=1 Ui| = 4. Suppose that |Ui| = 2. If |Ujk| > 1,
for some 1 6 i 6= j 6= k 6 3, then we can �nd a copy of K2,3 with vertex-set
{a1, a′1} ∪ {a2, a3, c23}, where a′i ∈ Ui\{ai} and cjk ∈ Ujk, for some 1 6 i 6= j 6=
k 6 3, and so Γ(P ) is not outerplanar.

Now, if Ujk = ∅, for all 1 6 i 6= j 6= k 6 3, then Γ(P ) is isomorphic to the
graph which is pictured in Figure 15, and so Γ(P ) is outerplanar.

Figure 15.

Theorem 4.3. Suppose that |A(P )| = 3. Then Γ(P ) is outerplanar if and only if

one of the following conditions holds:

(i) | ∪3i=1 Ui| = 3.

(ii) | ∪3i=1 Ui| = 4 and if |Ui| = 2, for some 1 6 i 6 3, then Ujk = ∅, for all

1 6 i 6= j 6= k 6 3.

In the following, we characterize all posets P1 and P2 such that Γ(P1 × P2)
is outerplanar. Clearly, if Γ(P1 × P2) is outerplanar, then, by Lemmas 2.8 and
4.1, |A(P1)| + |A(P2)| 6 3. In the next two Theorems, we investigate the cases
|A(P1)|+ |A(P2)| = 2 and |A(P1)|+ |A(P2)| = 3.

Theorem 4.4. Suppose that |A(P1)| + |A(P2)| = 2 such that |A(P1)| = 1 =
|A(P2)|. Then Γ(P1 × P2) is outerplanar if and only if |Pi| 6 2 or, |Pj | 6 3 with

|Pi| 6 2, for some 1 6 i 6= j 6 2.

Proof. Since |A(P1)|+ |A(P2)| = 2, we have that Γ(P1×P2) is a complete bipartite
graph. Now one can easily see that Γ(P1×P2) is an outerplanar graph if and only
if |Pi| 6 2 or, |Pj | 6 3 and |Pi| 6 2, for some 1 6 i 6= j 6 2.
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Now, suppose that P1 and P2 are posets such that |A(P1)| = 1 and |A(P2)| = 2.
If |Pi| > 3 and |Pj | > 4, for all 1 6 i 6= j 6 2, then we can �nd a copy of K2,3 in
the graph Γ(P1×P2). Thus Γ(P1×P2) is not outerplanar. Therefore, if Γ(P1×P2)
is outerplanar, then |P1| = 2, or |P2| = 3 with |P1| 6 3. Now, in the following two
cases, we study the outerplanarity of Γ(P1 × P2) whenever |P1| = 2, or |P1| 6 3
with |P2| = 3.

Case 1. Suppose that |P1| = 2 and |UP2
i | > 2, for some 1 6 i 6 2. In this

case we can �nd a subdivision of K4 as in Figure 16, where yi ∈ UP2
i \{bi}, and so

Γ(P1 × P2) is not outerplanar.

Figure 16.

Now, if |UP2
i | = 1, for all 1 6 i 6 2, then Γ(P1 × P2) is pictured in Figure 17,

and so Γ(P1 × P2) is outerplanar.

Figure 17.

Case 2. Suppose that |P2| = 3 and |P1| 6 3. If |P1| = 3. Then Γ(P1 × P2) is
pictured in Figure 18, where x ∈ P1\{0, a1}, and so it is outerplanar.

Figure 18.

If |P1| = 2, then Γ(P1 × P2) is pictured in Figure 17, and so it is outerplanar.

Theorem 4.5. Suppose that |A(P1)| + |A(P2)| = 3 such that |A(P1)| = 1 and

|A(P2)| = 2. Then Γ(P1 × P2) is outerplanar if and only if one of the following

conditions hold.

(i) |P1| = 2 and |UP2
i | = 1, for all 1 6 i 6 2.

(ii) |P2| = 3 and |P1| 6 3.
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Let G be a graph with n vertices and q edges. We recall that a chord is any
edge of G joining two nonadjacent vertices in a cycle of G. Let C be a cycle of G.
We say C is a primitive cycle if it has no chords. Also, a graph G has the primitive

cycle property (PCP ) if any two primitive cycles intersect in at most one edge.
The number frank(G) is called the free rank of G and it is the number of primitive
cycles of G. Also, the number rank(G)=q − n + r is called the cycle rank of G,
where r is the number of connected components of G. The cycle rank of G can be
expressed as the dimension of the cycle space of G. By [10, Proposition 2.2], we
have rank(G) 6 frank (G). A graph G is called a ring graph if it satis�es in one
of the following equivalent conditions (see [10]).

(i) rank(G)= frank(G),

(ii) G satis�es the PCP and G does not contain a subdivision of K4 as a sub-
graph.

Clearly, every outerplanar graph is a ring graph and every ring graph is a planar
graph.

Now, in view of the proofs of Proposition 4.2 and Theorem 4.3 we have the
following result.

Theorem 4.6. The zero-divisor graph Γ(P ) is a ring graph if and only if it is an

outerplanar graph.

5. End-regularity of zero-divisor graphs of posets

Let G and H be graphs. A homomorphism f from G to H is a map from V (G)
to V (H) such that for any a, b ∈ V (G), a is adjacent to b implies that f(a) is
adjacent to f(b). Moreover, if f is bijective and its inverse mapping is also a
homomorphism, then we call f an isomorphism from G to H, and in this case
we say G is isomorphic to H, denoted by G ∼= H. A homomorphism (resp, an
isomorphism) from G to itself is called an endomorphism (resp, automorphism) of
G. An endomorphism f is said to be half-strong if f(a) is adjacent to f(b) implies
that there exist c ∈ f−1(f(a)) and d ∈ f−1(f(b)) such that c is adjacent to d.
By End(G), we denote the set of all the endomorphisms of G. It is well-known
that End(G) is a monoid with respect to the composition of mappings. Let S be a
semigroup. An element a in S is called regular if a = aba for some b ∈ S and S is
called regular if every element in S is regular. Also, a graph G is called end-regular

if End(G) is regular.
Now, we recall the following Lemma from [18].

Lemma 5.1. [18, Lemma 2.1] Let G be a graph. If there are pairwise distinct

vertices a, b, c in G satisfying N(c) $ N(a) ⊆ N(b), then G is not end-regular.

Lemma 5.2. Suppose that |A(P )| > 3. If Ui...j , Ui...j...k 6= ∅, such that |Ui...j | > 1,
for some 1 6 i < j < k < n, or Ui...j , Ui...j...k, Ui...j...k...t 6= ∅, for some 1 6 i <
j < k < t < n, then Γ(P ) is not end-regular.
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Proof. First suppose that Ui...j , Ui...j...k 6= ∅ and |Ui...j | > 1, for some 1 6 i < j <
k < n. Let a, b ∈ Ui...j and c ∈ Ui...j...k. Then N(c) $ N(a), since ak ∈ N(a)\N(c).
Now, we have N(c) $ N(a) ⊆ N(b), and so, by Lemma 5.1, Γ(P ) is not end-
regular. If Ui...j , Ui...j...k, Ui...j...k...t 6= ∅, for some 1 6 i < j < k < t < n, then
consider the elements a ∈ Ui...j , b ∈ Ui...j...k and c ∈ Ui...j...k...t. Now, we have
N(c) $ N(b) ⊆ N(a). Hence Γ(P ) is not end-regular.

Proposition 5.3. Suppose that |A(P )| = 2. Then Γ(P ) is end-regular.

Proof. Clearly Γ(P ) is a complete bipartite graph. Now, by [22, Theorem 3.4], we
have that Γ(P ) is end-regular.

Lemma 5.4. Suppose that x, y ∈ Z(P ). Then N(x) ⊆ N(y) if and only if Zx ⊆ Zy

and {x, y}` 6= {0}.

Proof. First assume that N(x) ⊆ N(y). Then Zx ⊆ Zy. Also, suppose to the
contrary that {x, y}` = {0}. Then x is adjacent to y. This means that y ∈ N(x) ⊆
N(y), and so y ∈ N(y), which is a contradiction.

Conversly, one can easy to see that result holds.

Proposition 5.5. Suppose that P = P1×P2×· · ·×Pn. Then we have the following

statements.

(i) If n > 3, then Γ(P1 × P2 × · · · × Pn) is not end-regular.

(ii) If |A(P1)| = 1 = |A(P2)|, then Γ(P1 × P2) is end-regular.

Proof. (i) Suppose that A(P1) = {a1, a2, . . . , an}, A(P2) = {b1, b2, . . . , bm} and
A(P3) = {c1, c2, . . . , ct}, where m,n, t > 1.

Set x := (ai, 0, . . . , 0), y := (ai, bj , 0, . . . , 0) and z := (ai, bj , ck, 0, . . . , 0), for
some 1 6 i 6 n, 1 6 j 6 m and 1 6 k 6 t. Then N(z) $ N(y) $ N(x). Now, by
Lemmas 5.1 and 5.4, Γ(P ) is not end-regular.

(ii) Note that in this case, Γ(P1 × P2) is a complete bipartite graph and, by
[22, Theorem 3.4], every complete bipartite graph is end-regular.

Lemma 5.6. Assume that Γ(P2) has distinct vertices x and y such that x, y /∈
A(P2) and N(x) ⊆ N(y). Then Γ(P1 × P2) is not end-regular.

Proof. Suppose that b ∈ A(P2). Then it follows from the fact that N(0, b) $
N(0, x) $ N(0, y).

Acknowledgments. The authors are deeply grateful to the referee for careful
reading of the manuscript and helpful suggestions.
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Continuous homomorphisms, the left-gyroaddition

action and topological quotient gyrogroups

Watchareepan Atiponrat and Rasimate Maungchang

Abstract. Recently, many properties of gyrogroups have been discovered. In this work, we

investigate some properties of topological gyrogroups, speci�cally, the continuity of some homo-

morphisms, the canonical decomposition, and the continuity of the left-gyroaddition action.

1. Introduction

A gyrogroup is a generalization of a group of which the associative law is replaced
by a more generalized version called, the left gyroassociative law and an additional
property called, the left loop property, see Section 2 for more details and examples.
Its structures were discovered by A. A. Ungar from the study of the Einstein
velocity addition, see [13] and the references therein. Since then, many properties
of gyrogroups have been discovered by active researchers in the �eld, see [3], [4],
[7], [8], [9], [11], [12], [14]. A large portion of its algebraic properties was studied
by T. Suksumran, for example, the isomorphism theorems, Cayley's Theorem,
Lagrange's Theorem, gyrogroup actions, etc., see [7], [8], [11]. He is now extending
his study to metric aspect of the gyrogroups, see [10].

From the topological aspect, W. Atiponrat, R. Maungchang, and T. Suksum-
ran have been studying the separation axioms of the topological gyrogroups, see
[1], [2], [15]. In this work, we continue the study of topological gyrogroups, in
particular, we investigate the continuity of some homomorphisms, the canonical
decomposition, and the continuity of the left-gyroaddition action.

2. De�nitions and background

In this section, we include basic de�nitions, examples, and theorems involving the
topological gyrogroups. Readers are recommended to see [1], [8], [11], and [14] for
further details and examples.

Let (G1,⊕1) and (G2,⊕2) be groupoids. A function f : G1 → G2 is a called
a homomorphism if f(x ⊕1 y) = f(x) ⊕2 f(y) for any x, y ∈ G1. A bijective
homomorphism is called an isomorphism. An isomorphism of a groupoid (G,⊕)

2010 Mathematics Subject Classi�cation: 54H99; 22A22.

Keywords: continuity; gyrogroup; topological gyrogroup; gyrogroup action.
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to itself is called a groupoid automorphism and we denote the set of all groupoid
automorphisms of a groupoid (G,⊕) by Aut(G,⊕).

De�nition 2.1 (De�nition 2.7 of [14]). Let (G,⊕) be a nonempty groupoid. We
say that (G,⊕) or just G (when it is clear from the context) is a gyrogroup if the
following hold:

1. There is a unique identity element 0G ∈ G such that

0G ⊕ x = x = x⊕ 0G for all x ∈ G;

2. For each x ∈ G, there exists a unique inverse element 	x ∈ G such that

	x⊕ x = 0G = x⊕ (	x);

3. For any x, y ∈ G, there exists gyr[x, y] ∈ Aut(G,⊕) such that

x⊕ (y ⊕ z) = (x⊕ y)⊕ gyr[x, y](z)

for all z ∈ G; (left gyroassociative law)

4. For any x, y ∈ G, gyr[x⊕ y, y] = gyr[x, y]. (left loop property)

We give an example of a gyrogroup which is not a group. It is called a Möbius
gyrogroup.

Example 2.2. Let D be the complex open unit disk {z ∈ C : |z| < 1}. De�ne a
Möbius addition ⊕M : D× D→ D by

a⊕M b =
a + b

1 + āb
,

for all a, b ∈ D. This map is well de�ned and its image lies in D, see Theorem 5.5.2
of [5] for the proof. It is obvious that 0 is the identity and −a is the inverse of a, for
any a ∈ D. (D,⊕M ) is not a group because the associative property does not hold.
For example, if a = 1/2, b = i/2, and c = −1/2, then a⊕M (b⊕M c) = (10+15i)/26
but (a⊕M b)⊕M c = (8 + 15i)/34. However, (D,⊕M ) is a gyrogroup with

gyr[a, b](c) =
1 + ab̄

1 + āb
c for any a, b, c ∈ D,

as proved in section 3.4 of [14].

Adding a topology to a gyrogroup motivates the following de�nition.

De�nition 2.3 (De�nition 1 of [1]). A triple (G, T ,⊕) is called a topological
gyrogroup if and only if

1. (G, T ) is a topological space;
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2. (G,⊕) is a gyrogroup; and

3. The binary operation ⊕ : G×G→ G is continuous, where G×G is endowed
with the product topology, and the operation of taking the inverse, i.e.,
	( · ) : G→ G, x 7→ 	x, is continuous.

Sometimes we will just say thatG is a topological gyrogroup if the binary operation
and the topology are clear from the context.

From the previous example, if we consider D as a subspace of C endowed with
the standard topology, then it can be shown that ⊕M and 	M are continuous. So
D is a topological gyrogroup.

The following are some basic algebraic and topological properties of gyrogroups
and topological gyrogroups which will be needed later in our work.

Proposition 2.4 (Proposition 6 of [11]). Suppose (G,⊕) is a gyrogroup and A ⊆
G. Then the following are equivalent:

1. gyr[x, y](A) ⊆ A for all x, y ∈ G.

2. gyr[x, y](A) = A for all x, y ∈ G.

Lemma 2.5 (Proposition 32 of [7]). Let (G1,⊕1) and (G2,⊕2) be gyrogroups, and
let f : G1 → G2 be a homomorphism. Then the following are true:

1. f(0G1
) = 0G2

.

2. For any x ∈ G1, f(	1x) = 	2f(x).

Following the notation in [14], for any pair of elements x, y in a gyrogroup
(G,⊕), we let x�y denote x⊕gyr[x,	y](y), and let x�y denote x⊕gyr[x, y](	y).

Theorem 2.6 (Theorem 2.10, 2.22 and 2.35 of [14]). Let (G,⊕) be a gyrogroup.
For any x, y, z ∈ G, the following are true:

1. (	x)⊕ (x⊕ y) = y. (left cancellation law)

2. (x� y)⊕ y = x. (right cancellation law)

3. gyr[x, y](z) = 	(x⊕ y)⊕ (x⊕ (y ⊕ z)). (gyrator identity)

4. (x⊕ y)⊕ z = x⊕ (y ⊕ gyr[y, x](z)). (right gyroassociative law)

Akin to the case of topological groups, topological gyrogroups admit the fol-
lowing properties.

Proposition 2.7 (Proposition 3 of [1]). Let (G, T ,⊕) be a topological gyrogroup.
Then, for each a ∈ G, the maps x 7→ x ⊕ a and x 7→ a ⊕ x, where x ∈ G, are
homeomorphisms.
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Proposition 2.8 (Corollary 5 of [1]). Suppose that (G, T ,⊕) is a topological gy-
rogroup, x ∈ G, and A,B ⊆ G. Then the following are true:

1. A is open if and only if 	A, x⊕A and A⊕ x are open.

2. If A is open, then A⊕B and B ⊕A are open.

Next we introduce subgyrogroups and necessary concepts. This also leads us
to the de�nition of quotient gyrogroups and the left-gyroaddition action.

De�nition 2.9 (Section 4 of [11]). Let H be a nonempty subset of a gyrogroup
(G,⊕). ThenH is called a subgyrogroup of G and denoted byH 6 G if (H,⊕|H×H)
is a gyrogroup and gyr[a, b]|H ∈ Aut(H,⊕|H×H) for all a, b ∈ H.

A subgyrogroup H is called an L-subgyrogroup and denoted by H 6L G if

gyr[a, h](H) = H,

for all a ∈ G, h ∈ H.

It is easy to see that {0} is trivially an L-subgyrogroup. For a nontrivial
example, see Example 18 of [11].

Proposition 2.10 (Proposition 14 of [11]). Let H be a nonempty subset of a
gyrogroup (G,⊕). Then H 6 G if and only if 	h ∈ H and h ⊕ k ∈ H for all
h, k ∈ H.

Lemma 2.11. Let H be a subgyrogroup of a gyrogroup (G,⊕). Then h⊕H = H
for each h ∈ H.

Proof. Let h ∈ H. By Proposition 2.10, h⊕H ⊆ H. On the other hand, if k ∈ H,
then k = h ⊕ (	h ⊕ k) by the left cancellation law. Again, by Proposition 2.10,
	h⊕ k ∈ H so k = h⊕ (	h⊕ k) ∈ h⊕H which implies H ⊆ h⊕H. As a result,
h⊕H = H.

When H is a subgyrogroup of a gyrogroup (G,⊕), we use the notation G/H to
stand for the set of all left cosets of H, i.e. G/H = {x⊕H : x ∈ G}. The notion
of L-subgyrogroups enables us to work with the set of all left cosets easily.

Proposition 2.12 (Proposition 19 of [11]). Let H be an L-subgyrogroup of a
gyrogroup (G,⊕). Then, for any a, b ∈ G, a⊕H = b⊕H if and only if 	a⊕b ∈ H.

Proposition 2.13 (Proposition 20 of [11]). Let H be an L-subgyrogroup of a
gyrogroup (G,⊕). Then the set G/H = {x⊕H : x ∈ G} forms a partition of G.

Being a subgyrogroup and an L-subgyrogroup are preserved by homomor-
phisms in the following sense.

Proposition 2.14 (Proposition 24 of [11]). Let f : G → H be a homomorphism
between gyrogroups, and let K 6 G. Then f(K) 6 H. Moreover, if K 6L G and
f is surjective, then f(K) 6L H.
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Proposition 2.15 (Proposition 25 of [11]). Let f : G → H be a homomorphism
between gyrogroups, and let K 6 H. Then f−1(K) 6 G. Moreover, if K 6L H,
then f−1(K) 6L G. In particular, ker f 6L G.

Upcoming, trying to obtain a nice object like normal subgroups, we de�ne
normal subgyrogroups which allow a familiar binary operation on the set of all left
cosets.

De�nition 2.16 (Section 5 of [11]). Let H be a nonempty subset of a gyrogroup
(G,⊕). Then H is called a normal subgyrogroup of G and denoted by H E G if
H = ker f for some homomorphism f : G→ K where K is a gyrogroup.

Lemma 2.17 (the paragraph after Proposition 25 of [11]). Let (G,⊕) be a gy-
rogroup. If H E G, then gyr[x, y](H) = H for all x, y ∈ G. In particular, H is an
L-subgyrogroup of G.

Theorem 2.18 (Theorem 27 of [11]). Let (G,⊕) be a gyrogroup, and let H E G.
Then the function

⊕
: G/H×G/H → G/H de�ned by (x⊕H, y⊕H) 7→ (x⊕y)⊕H

is a binary operation. Furthermore, (G/H,
⊕

) becomes a gyrogroup such that H
is the identity element and 	x⊕H is the inverse of x⊕H for each x⊕H ∈ G/H.

De�nition 2.19 (Section 5 of [11]). Let (G,⊕) be a gyrogroup, and let H E G.
The gyrogroup (G/H,

⊕
) in Theorem 2.18 is called the quotient gyrogroup, and

the function q : G→ G/H such that x 7→ x⊕H is called a canonical projection.

Theorem 2.20 (Theorem 28 of [11] (The �rst isomorphism theorem)). Let (G1,⊕1)
and (G2,⊕2) be gyrogroups, and let f : G → H be a homomorphism. Then the
map g ⊕ ker f 7→ f(g) gives rise to an isomorphism between G/ ker f and f(G).

We end this section with the de�nition of the left-gyroaddition action.

De�nition 2.21 (De�nition 3.1 of [8]). Let (G,⊕) be a gyrogroup, and let X be
a set. A function · : G×X → X, written ·((a, x)) = a · x, is a (gyrogroup) action
of G on X if

1. 0G · x = x for all x ∈ X, and

2. a · (b · x) = (a⊕ b) · x for all a, b ∈ G, x ∈ X.

Theorem 2.22 (Theorem 4.5 of [8]). Let H be a subgyrogroup of (G,⊕). Then
the function · : G×G/H → G/H such that for all g ∈ G, x⊕H ∈ G/H,

g · (x⊕H) = (g ⊕ x)⊕H

de�nes a gyrogroup action of G on G/H if and only if

gyr[a, b](x⊕H) ⊆ x⊕H

for all a, b ∈ G, x⊕H ∈ G/H.

De�nition 2.23 (De�nition 4.4 of [8]). Following the language of Theorem 2.22,
the function · : G × G/H → G/H is called the left-gyroaddition action if it is a
gyrogroup action.
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3. Continuous homomorphisms

In this section, we prove the continuity of some homomorphisms and the canonical
decomposition of topological gyrogroups.

Proposition 3.24. Let (G1, T1,⊕1) and (G2, T2,⊕2) be topological gyrogroups.
Let f : G1 → G2 be a homomorphism. Then f is continuous if and only if it is
continuous at 0G1 .

Proof. (⇒) Obvious.
(⇐) Let x ∈ G1. If U is a neighborhood of f(x), then 	2f(x) ⊕2 U is a

neighborhood of 0G2
by Proposition 2.8. So there is a neighborhood W of 0G1

such that f(W ) ⊆ 	2f(x) ⊕2 U . As a result, x ⊕1 W is a neighborhood of x
such that f(x ⊕1 W ) = {f(x ⊕1 w) : w ∈ W} = {f(x) ⊕2 f(w) : w ∈ W} =
f(x) ⊕2 f(W ) ⊆ f(x) ⊕2 (	2f(x) ⊕2 U) = {f(x) ⊕2 (	2f(x) ⊕2 u) : u ∈ U} = U
by the left cancellation law (see Theorem 1). Hence f is continuous at x. Since x
is arbitrary, f is continuous.

Lemma 3.25. Let H be a subgyrogroup of a topological gyrogroup (G, T ,⊕) such
that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H [or let H E G]. Suppose
G/H is equipped with the quotient topology induced by q. Then the canonical
projection q : G→ G/H is a continuous open map.

Proof. Since G/H is endowed with the quotient topology induced by q, q is con-
tinuous. Next, let U ⊆ G be an open set. Then q(U) = {u ⊕ H : u ∈ U}. We
will show that q−1(q(U)) = U ⊕H. If a ∈ q−1(q(U)), then q(a) = a⊕H = u⊕H
for some u ∈ U . As a result, 	u⊕ a ∈ H by Proposition 2.12. Thus 	u⊕ a = h
for some h ∈ H so a = u⊕ h ∈ U ⊕H by the left cancellation law. On the other
hand, if x ∈ U ⊕ H, then x = v ⊕ k for some v ∈ U , k ∈ H. We obtain that
q(x) = x⊕H = (v⊕k)⊕H = v⊕(k⊕gyr[k, v](H)) = v⊕(k⊕H) = v⊕H ∈ q(U);
the fourth and �fth equalities come from our assumption together with Proposi-
tion 2.4 [or come from Lemma 2.17 for the case H E G] and Lemma 2.11. So
x ∈ q−1(q(U)) and we can conclude that q−1(q(U)) = U ⊕H which is an open set
by Proposition 2.8. Hence q is an open map.

Theorem 3.26. (Canonical decomposition) Let (G1, T1,⊕1) and (G2, T2,⊕2) be
topological gyrogroups. Let f : G1 → G2 be a continuous homomorphism. Then
the following are true:

G1 G2

f

G1/ ker f f(G1)

iq

f̃
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(1) The above diagram commutes where q : G1 → G1/ ker f is the canonical

projection, f̃ : G1/ ker f → f(G1) is a function de�ned by g ⊕1 ker f 7→ f(g)
for all g ∈ G1, and i : f(G1)→ G2 is the inclusion map.

(2) i : f(G1) → G2 is an injective continuous homomorphism, and f̃ is a con-
tinuous isomorphism.

(3) f is an open map if and only if f(G1) is open in G2 and f̃ is an open map.

(4) f̃ is an open map if and only if f(U) is open in f(G1) for all open subset U
of G1.

Proof. To see (1), we �rst show that f̃ is well de�ned. If a, b ∈ G are so that
a⊕1 ker f = b⊕1 ker f , then 	1b⊕1 a ∈ ker f by Proposition 2.12. Thus f(	1b)⊕2

f(a) = f(	1b⊕1 a) = 0G2
so 	2f(	1b) = f(a) by the left cancellation law. Hence

f(b) = f(a) by Lemma 2.5. Next, the diagram commutes because for any a ∈ G1,

f(a) = i(f(a)) = i(f̃(a⊕1 ker f)) = i(f̃(q(a))).
To prove (2), i is injective and continuous because it is a restriction of the

identity map. Moreover, it is a homomorphism since f(G1) is a gyrogroup by

Proposition 2.14. On the other hand, f̃ is an isomorphism by the �rst isomorphism
theorem. Next, we show that f̃ is continuous. Let U be an open subset of f(G1).
Then there is an open subset W of G2 such that U = W ∩ f(G1). Since f is
continuous, f−1(W ) is open in G1. Then q(f−1(W )) is an open subset of G1/ ker f
by Lemma 3.25. Now observe that

f̃−1(U) = f̃−1(W ∩ f(G1)) = f̃−1(i−1(W ∩ f(G1))) = f̃−1(i−1(f(f−1(W ))))

= f̃−1(i−1((i ◦ f̃ ◦ q)(f−1(W )))) = q(f−1(W )).

So f̃−1(U) is open in G1/ ker f , and hence f̃ is continuous.
Now we prove (3). (⇒): Suppose that f is an open map. Then f(G1) is open

in G2. To see that f̃ is an open map, let U be an open subset of G1/ ker f . Since q
is continuous, q−1(U) is open. Moreover, f(q−1(U)) is open because f is an open

map. Then f̃(U) = (i−1 ◦ f ◦ q−1)(U) is open because i, q are continuous.

(⇐): Let f(G1) be open in G2, and let f̃ be an open map. We will show that f is

an open map. Let U be an open subset of G1. Then (f̃ ◦ q)(U) is open in f(G1)

because q and f̃ are open maps. Since f(G1) is open in G2, (f̃ ◦ q)(U) is open in

G2. Notice that f(U) = (i ◦ f̃ ◦ q)(U) = i((f̃ ◦ q)(U)) = (f̃ ◦ q)(U). Hence f(U) is
open in G2 which implies that f is an open map.

Finally, we prove (4). (⇒): Assume that f̃ is an open map. Let U be an open

subset of G1. Then (f̃ ◦ q)(U) is open in f(G1) because q and f̃ are open maps.

Observe that f(U) = i((f̃ ◦ q)(U)) = (f̃ ◦ q)(U). So f(U) is open in f(G1).
(⇐): Suppose that f(U) is open in f(G1) for all open subset U of G1. To see that

f̃ is an open map, let W be an open subset of G1/ ker f . Then (i−1◦f ◦q−1)(W ) =
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(f ◦ q−1)(W ) = f(q−1(W )) is open in f(G1) by the assumption and the fact that

q is continuous. Since f̃(W ) = (i−1 ◦ f ◦ q−1)(W ), f̃ is an open map.

4. Action and topological quotient gyrogroups

In our last section, we consider the set of all left cosets of an L-subgyrogroup
H in a topological gyrogroup (G, T ,⊕). According to Proposition 2.13, we can
assign the quotient topology induced by canonical projection to G/H and study
the continuity of the left-gyroaddition action · : G×G/H → G/H where G×G/H
is endowed with the product topology. In addition, if H E G, then (G/H,

⊕
) is a

gyrogroup so we can examine the continuity of
⊕

.
From now on, let T denote the quotient topology induced by the canonical

projection q : G→ G/H. In addition, we will assume that G/H is endowed with
T in our proof when the topology is needed to be specify. We begin this section
by providing some basic facts of G/H in the following proposition which the proof
in topological group version can be adopted.

Proposition 4.1. Let (G, T ,⊕) be a topological gyrogroup, and let H 6 G be such
that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H. Then the following
are equivalent:

1. (G/H,T) is T2.

2. (G/H,T) is T1.

3. H is a closed subset of G.

Proof. (1⇒ 2): Trivial.
(2⇒ 3): Observe that H = q−1({H}) because of Lemma 2.11 and Proposition

2.12. Since q is continuous and {H} is closed because (G/H,T) is T1, we gain the
result.

(3⇒ 1): We will show that the set {(x⊕H, y⊕H) : x⊕H = y⊕H} is closed
in G/H ×G/H together with the product topology. Notice that {(x⊕H, y⊕H) :
x ⊕H = y ⊕H} ⊆ {(x ⊕H, y ⊕H) : 	x ⊕ y ∈ H} by Proposition 2.12. On the
other hand, {(x⊕H, y⊕H) : 	x⊕y ∈ H} ⊆ {(x⊕H, y⊕H) : x⊕H = y⊕H} by
the fact that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H, Proposition
2.4 and, again, Proposition 2.12. So {(x ⊕ H, y ⊕ H) : x ⊕ H = y ⊕ H} =
{(x ⊕H, y ⊕H) : 	x ⊕ y ∈ H}. Next, observe that G/H × G/H − {(x ⊕H, y ⊕
H) : x ⊕ H = y ⊕ H} = G/H × G/H − {(x ⊕ H, y ⊕ H) : 	x ⊕ y ∈ H} =
{(x ⊕ H, y ⊕ H) : 	x ⊕ y /∈ H} = (q × q) ◦ (	(·) × Id) ◦ (⊕−1)(G − H), where
q × q is the product of two open quotient maps and Id : G → G is the identity
function. Since ⊕ is continuous and H is closed, ⊕−1(G−H) is open. Moreover,
	(·) × Id : G × G → G × G is a homeomorphism so (	(·) × Id) ◦ (⊕−1)(G −H)
is open. Finally, it is a well-known fact in topology that the product of two open
maps is an open map. Hence (q × q) ◦ (	(·) × Id) ◦ (⊕−1)(G −H) is open. This
implies that {(x⊕H, y ⊕H) : x⊕H = y ⊕H} is closed.
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Lemma 4.2. Let H be a subgyrogroup of a gyrogroup (G,⊕), gyr[a, b](x ⊕H) ⊆
x⊕H for all a, b ∈ G, x⊕H ∈ G/H. Then, for all a ∈ G and x⊕H, y⊕H ∈ G/H,
(a⊕ x)⊕H = (a⊕ y)⊕H if and only if x⊕H = y ⊕H.

Proof. (⇐): Use Theorem 2.22.
(⇒): Suppose (a ⊕ x) ⊕ H = (a ⊕ y) ⊕ H. We will show that 	y ⊕ x ∈ H

which implies x ⊕H = y ⊕H. Let (a ⊕ x) ⊕ h1 ∈ (a ⊕ x) ⊕H. By assumption,
gyr[a, b](H) ⊆ H, for all a, b ∈ G. So gyr[a, b](H) = H, for all a, b ∈ G, by
Proposition 2.4. Then, for some h2, h3, h4, h5 ∈ H,

(a⊕ x)⊕ h1 = (a⊕ y)⊕ h2,

a⊕ (x⊕ h3) = a⊕ (y ⊕ h4),

x⊕ h3 = y ⊕ h4,

	y ⊕ (x⊕ h3) = h4,

(	y ⊕ x)⊕ h5 = h4,

	y ⊕ x = h4 � h5.

Moreover, h4 � h5 = h4 ⊕ gyr[h4, h5](	h5) ∈ H. Hence 	y ⊕ x ∈ H.

Theorem 4.3. Let H be a subgyrogroup of a topological gyrogroup (G, T ,⊕) such
that gyr[a, b](x ⊕ H) ⊆ x ⊕ H for all a, b ∈ G, x ⊕ H ∈ G/H. Then the left-
gyroaddition action · : G×G/H → G/H is transitive. Furthermore, for each a ∈
G, the function fa : G/H → G/H de�ned by fa(x⊕H) = a ·(x⊕H) = (a⊕x)⊕H
for all x⊕H ∈ G/H is a homeomorphism.

Proof. To begin with, we show that the action is transitive. Let x ⊕H, y ⊕H ∈
G/H. Then (y�x) · (x⊕H) = ((y�x)⊕x)⊕H = y⊕H, by the right cancellation
law.

Next, we prove the last sentence of the theorem. Let a ∈ G. We �rst show that
the function fa : G/H → G/H de�ned by fa(x⊕H) = a ·(x⊕H) = (a⊕x)⊕H for
each x⊕H ∈ G/H is a continuous bijection. Lemma 4.2 shows that fa is injective.
Moreover, for any x⊕H ∈ G/H, fa((	a⊕x)⊕H) = (a⊕ (	a⊕x))⊕H = x⊕H.
So fa is bijective. To see the continuity of fa, let La : G → G be such that
La(x) = a ⊕ x for all x ∈ G. Then La is a homeomorphism by Proposition 2.7.
Observe that q ◦ La = fa ◦ q where q : G→ G/H is the canonical projection. So,
for each open set U ⊆ G/H, we have f−1a (U) = q(L−1a (q−1(U))) which is open
by Lemma 3.25. We conclude that fa is a continuous bijection. It is not hard to
check that f−1a = f	a which is a continuous bijection by similar proof. Thus fa is
a homeomorphism.

In some special occasion, the continuity of the left-gyroaddition action is es-
tablished.

Theorem 4.4. Suppose that H is a compact subgyrogroup of a topological gy-
rogroup (G, T ,⊕) such that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H.
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Then the left-gyroaddition action of G on G/H is transitive. Moreover, it is con-
tinuous when G×G/H is endowed with the product topology.

Proof. The action is transitive by Theorem 4.3. Next, we show that the map
· : G×G/H → G/H de�ned by ·((a, x⊕H)) = a · (x⊕H) = (a⊕ x)⊕H for all
a ∈ G, x⊕H ∈ G/H is continuous when the topology on G×G/H is the product
topology. Suppose (a, x⊕H) ∈ G×G/H. Let U ⊆ G/H be an open set containing
·((a, x⊕H)) = (a⊕ x)⊕H. Observe that a⊕ (x⊕H) = (a⊕ x)⊕ gyr[a, x](H) =
(a⊕ x)⊕H by our assumption and Proposition 2.4. Moreover, q((a⊕ x)⊕H) =
q({(a⊕x)⊕h : h ∈ H}) = {((a⊕x)⊕h)⊕H : h ∈ H} = {(a⊕x)⊕ (h⊕gyr[h, a⊕
x](H)) : h ∈ H} = {(a⊕ x)⊕ (h⊕H) : h ∈ H} = {(a⊕ x)⊕H : h ∈ H} ⊆ U ; the
fourth and �fth equalities come from our assumption together with Proposition
2.4 and Lemma 2.11. So a ⊕ (x ⊕H) = (a ⊕ x) ⊕H ⊆ q−1(U) which is an open
set because q is continuous. Thus, for each h ∈ H, there are open sets Uh, Vh of
G such that a ∈ Uh, x⊕ h ∈ Vh, and Uh ⊕ Vh ⊆ q−1(U) because ⊕ is continuous.
It is clear that x ⊕ H ⊆

⋃
h∈H Vh. Since H is compact, x ⊕ H is compact by

Proposition 2.7. Hence x⊕H ⊆ Vh1
∪ ... ∪ Vhl

for some h1, ..., hl ∈ H, l ∈ N. Let
Ũ = Uh1

∩ ... ∩ Uhl
and Ṽ = Vh1

∪ ... ∪ Vhl
. Then Ũ ⊕ Ṽ ⊆ q−1(U), a ∈ Ũ and

x⊕H ⊆ Ṽ where Ũ , Ṽ are open in G. Notice that x ∈ x⊕H ⊆ Ṽ which implies
x⊕H = q(x) ∈ q(Ṽ ). Moreover, q(Ṽ ) is open by Lemma 3.25. Hence Ũ × q(Ṽ ) is
a neighborhood of (a, x⊕H) such that

·(Ũ × q(Ṽ )) = {u · q(v) : u ∈ Ũ and v ∈ Ṽ }

= {u · (v ⊕H) : u ∈ Ũ and v ∈ Ṽ }

= {(u⊕ v)⊕H : u ∈ Ũ and v ∈ Ṽ }

= {q(u⊕ v) : u ∈ Ũ and v ∈ Ṽ }

= q(Ũ ⊕ Ṽ ) ⊆ q(q−1(U)) = U.

We conclude that the action is continuous.

Next, we will explore the continuity of
⊕

when H E G. Let us start with the
following theorem.

Theorem 4.5. Let H be a subgyrogroup of a topological gyrogroup (G, T ,⊕) such
that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H [or let H E G]. Then
T is a discrete topology if and only if H is an open subset of G.

Proof. (⇒) Suppose T is a discrete topology. We obtain that {H} is an open subset
of G/H. Since q is continuous, q−1({H}) is open. It is not hard to prove that
q−1({H}) = H by using Lemma 2.11 and Proposition 2.12. The result follows.

(⇐) We will show that for each x ∈ G, the singleton set {x⊕H} is open. Since
H is an open subgyrogroup of G, x⊕H is open in G by Proposition 2.8. Observe
that q(x ⊕ H) = {(x ⊕ h) ⊕ H : h ∈ H} = {x ⊕ (h ⊕ gyr[h, x](H)) : h ∈ H} =
{x ⊕ (h ⊕ H) : h ∈ H} = {x ⊕ H}; again, the third and fourth equalities come
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from our assumption together with Proposition 2.4 [or come from Lemma 2.17 for
the case H E G] and Lemma 2.11. Since q is an open map, {x⊕H} = q(x⊕H)
is open in G/H.

When H is a normal subgyrogroup of a topological gyrogroup (G, T ,⊕), it is
possible that (G/H,T,

⊕
) turns into a topological gyrogroup. Fortunately, we can

show that this is the case.

De�nition 4.6. Let (G, T ,⊕) be a topological gyrogroup, and let H E G. Then
the quotient gyrogroup (G/H,

⊕
) is called the topological quotient gyrogroup if

(G/H,T,
⊕

) is a topological gyrogroup.

Theorem 4.7. Let (G, T ,⊕) be a topological gyrogroup, and let H E G. Then
(G/H,T,

⊕
) is a topological quotient gyrogroup.

Proof. It is a well-known result in topology that the product of two open quotient
maps is also a quotient map. So q × q : G×G→ G/H ×G/H is a quotient map.
To prove that

⊕
is continuous, it is enough to show that

⊕
◦(q× q) is continuous

by Theorem 22.2 of [6]. Notice that (
⊕
◦(q × q))((x, y)) = q(x)

⊕
q(y) = (x ⊕

H)
⊕

(y ⊕H) = (x⊕ y)⊕H = (q ◦ ⊕)((x, y)) for all x, y ∈ G. Since q and ⊕ are
continuous, we have that

⊕
◦(q× q) is continuous which implies the continuity of⊕

. Next, for each x⊕H ∈ G/H, 	x⊕H is its inverse element by Theorem 2.18.
As a result, the inverse operation x⊕H 7→ 	x⊕H is continuous since it is equal
to q composed with 	( · ).

A careful reader might ask for the continuity of the left-gyroaddition action
in general settings. On one hand, this problem is still open for us. On the other
hand, we provide an easy example of occasion that the action is continuous without
employing compactness of the subgroup H.

Remark 4.8. Consider (D, T ,⊕M ) where T is the discrete topology on D or
the subspace topology of C endowed with the standard topology. It is clear that
(D, T ,⊕M ) is a topological gyrogroup which is not compact. Let H = D. Then H
is not compact, and H is a normal subgyrogroup of D such that gyr[a, b](x⊕H) ⊆
x ⊕ H for all a, b ∈ D, x ⊕ H ∈ D/H. Since D/H is a singleton set, the left-
gyroaddition action is continuous when D × D/H is equipped with the product
topology.

Finally, we would like to end our work with the succeeding question.

Question 1. Is the left-gyroaddition action continuous in general?
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From quotient trigroups to groups

Guy Biyogmam, Simplice Tchamna and Calvin Tcheka

Abstract. In this paper, we study the notion of normality in the category of trigroups, and

construct quotient trigroups. This allows us to establish analogues for trigroups of some useful

results on groups, namely, the �rst, second and third isomorphism theorems as well as some of

their related corollaries. Our construction provides a new functorial link between the categories

of groups and trigroups.

1. Introduction

The concept of digroups originated from the work of J. L. Loday on dialgebras
[9], and were formally axiomatized by M. Kinyon in his contribution to the Co-
quecigrue problem; an analogue of Lie's third theorem which consists to associate
a grouplike object to a given Leibniz algebra by �antidi�erentiation�. More pre-
cisely, Kinyon showed in [4] that conjugating digroups equipped with a manifold
structure di�erentiate to Leibniz algebras [7]. Digroups was also independently
introduced by K. Liu [5] and R. Felipe [3], and further studied in [10].

In their study of trialgebras and families of polytopes [8], Loday and Ronco
provided an axiomatic de�nition of associative trioids. This led the authors to
introduce the category of trigroups as associative trioid � also called trisemigroups�
equipped with bar-units and in which each element has a bar-inverse. Trigroups
are generalizations of digroups to algebraic structures with three operations, since
forgetting one operation of a trigroup yields a digroup structure. Analogue to the
relationship between digroups and Leibniz algebras provided by Kinyon in [4], it is
shown in [2] that conjugating linear trigroups yields Lie 3-racks [1], which produce
Leibniz 3-algebras [6] when di�erentiated with respect to the distinguish bar-unit.

At the beginning of the last century, Evarist Galois introduced in the classical
theory of groups the notion of normal subgroups which played a fundamental role
in de�ning quotient groups and in the so-called isomorphism theorems which are
very important in the general development of Group Theory (see [12]). In 2016,
Ongay, Velasquez and Wills-Toro de�ned normal subdigroups [11] and studied a
construction of quotient digroups and the corresponding analogues of Isomorphism
Theorems. Our aim in this paper is to conduct a similar study on trigroups using
a di�erent approach. Our study produces a di�erent quotient on the underlying
digroup associated to a trigroup. More precisely, we use the notion of conjugation

2010 Mathematics Subject Classi�cation: 17A99; 20M99.
Keywords: Digroup, trigroup, subtrigroup, normal subtrigroup.
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of trigoups provided in [2] to de�ne the concept of normality on trigroups. This
allows us to de�ne a congruence for which the quotient set has a group structure,
i.e. a trivial trigroup structure. It is worth mentioning that our construction of
quotient trigroup produces a functor from the category of trigroups to the category
of groups, other than the functor provided in [2].

2. Trigroups

Recall from [2] that a trisemigroup (A,`,⊥,a) is a set A equipped with three
binary associative operations `, ⊥ and a respectively called left, middle and right,
and satisfying the following conditions:

x ` (y ` z) = (x a y) ` z (p1)

x ` (y ` z) = (x ⊥ y) ` z (p2)

x ` (y a z) = (x ` y) a z (p3)

x ` (y ⊥ z) = (x ` y) ⊥ z (p4)

x a (y a z) = x a (y ` z) (p5)

x a (y a z) = x a (y ⊥ z) (p6)

(x ⊥ y) a z = x ⊥ (y a z) (p7)

(x a y) ⊥ z = x ⊥ (y ` z) (p8)

for all x, y, z ∈ A.
A trisemigroup A is a trigroup if there exists an element 1 ∈ A satisfying

1 ` x = x = x a 1 for all x ∈ A (I)

and for all x ∈ A, there exists x−1 ∈ A (called inverse of x) such that

x ` x−1 = 1 = x−1 a x and x ⊥ x−1 = 1 = x−1 ⊥ x.

Let UA := {e ∈ A : e ` x = x = x a e for all x, y ∈ A} be the set of bar-units of A.
Recall also that a morphism between two trigroups is a map that preserves the

three binary operations and is compatible with bar-units and inverses.

Remark 2.1. [2, Lemma 4.5]

(a) The set JA = {x−1 : x ∈ A} is a group in which `=⊥=a .

(b) The mapping φ : A → JA de�ned by x 7→ (x−1)−1 is an epimorphism of
trigroups that �xes JA, and Ker φ = UA.

(c) x ` 1 = 1 ⊥ x = x ⊥ 1 = 1 a x = (x−1)−1 for all x ∈ A.

(d) (x ⊥ y)−1 = y−1 ⊥ x−1 for all x, y ∈ A.
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(e) (x ` y)−1 = y−1 ` x−1 = y−1 a x−1 = (x a y)−1 for all x, y ∈ A. Conse-
quently, ((x−1)−1)−1 = x−1.

(f) x−1 ` x ` y = x ` x−1 ` y = y for all x, y ∈ A.

The following results are consequences of Remark 2.1 and will be heavily used
without reference throughout the paper to simplify proofs.

Remark 2.2.

(a) x−1 ` 1 = x−1 = 1 a x−1 for all x ∈ A.

(b) x ` y = (x−1)−1 ` y for all x, y ∈ A.

(c) x a y = x a (y−1)−1 for all x, y ∈ A.

Proof. The assertion (a) follows by Remark 2.1(c). For (b) and (c), we have again
by Remark 2.1(c), (x−1)−1 ` y = (x ` 1) ` y = x ` (1 ` y) = x ` y and
x a (y−1)−1 = x a (1 a y) = (x a 1) a y = x a y.

3. Subtrigroups

In this section we de�ne sub-objects in the category of trigroups, and study the
concept of normality on these sub-objects.

De�nition 3.1. We say that a trigroup A is trivial if A = JA.

Proposition 3.2. A trigroup (A,`,⊥,a) is trivial if and only if (x−1)−1 = x for

all x ∈ A.

Proof. The proof is straightforward by De�nition 3.1.

For the rest of the paper, all trigroups are assumed to be non-trivial unless
otherwise stated.

De�nition 3.3. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1. A
subset S of A is said to be a subtrigroup of A if (S,`,⊥,a) is a trigroup with
distinguish bar-unit 1.

Proposition 3.4. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1, and
H a nonempty subset of A. H is a subtrigroup of A if and only H is closed under

the operations `,⊥,a, and x−1 ∈ H for all x ∈ H.

Proof. The proof of the forward direction is obvious. For the converse, it is enough
to verify that 1 ∈ H. Indeed, since H is nonempty there is some x0 ∈ H, which
yields x−10 ∈ H, and thus 1 = x0 ` x−10 ∈ H.

Proposition 3.5. Let A be a trigroup. Then (JA,`=a=⊥) and (UA,`,a,⊥) are
subtrigroups of A.
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Proof. JA is a subtrigroup of A since by Remark 2.1(a), JA ⊆ A and JA is a
group in which `=⊥=a . To show that UA is a subtrigroup of A, notice that for

all e, e′ ∈ UA, e ` e′ = e′, e a e′ = e, (e ⊥ e′) ` x p2
= e ` (e′ ` x) = e ` x = x

and x a (e ⊥ e′)
p6
= x a (e a e′) = (x a e) a e′ = x a e = x for all x ∈ A. So UA

is closed under the operations `,⊥,a . In addition, e−1 ∈ UA by [2, Lemma 4.6].
The result follows by Proposition 3.4.

Proposition 3.6. Let φ : A→ A′ be a morphism of trigroups. Then:

(a) Ker φ is a subtrigroup of A.

(b) If S is a subtrigroup of A, then φ(S) is a subtrigroup of A′.

(c) If S′ is a subtrigroup of A′, then φ−1(S′) is a subtrigroup of A.

Proof. To prove (a), �rst notice that φ(1A) = 1A′ , so Ker φ 6= ∅. Now Let x, y ∈
Ker φ. Then φ(x ` y) = φ(x) ` φ(y) = 1A′ ` 1A′ = 1A′ , φ(x a y) = φ(x) a
φ(y) = 1A′ a 1A′ = 1A′ , φ(x ⊥ y) = φ(x) ⊥ φ(y) = 1A′ ⊥ 1A′ = 1 and φ(x−1) =
(φ(x))−1 = 1A′ . Thus by proposition 3.4, Ker φ is a subtrigroup of A. The proofs
of (b) and (c) are similar.

Consider the following sets: x ? S = {x ? s, s ∈ S} and S ? x = {s ? x, s ∈ S},
where ? ∈ {`,⊥,a}. In [2], the operation [−,−,−] : A×A×A→ A given by
[x, y, z] = (x ⊥ y) ` z a (y−1 ⊥ x−1), was de�ned as a generalization of the
conjugation on digroups [4, Equation (13)] to trigroups. Using this operation, we
de�ne normality of subtrigroups as follows:

De�nition 3.7. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1. A
subtrigroup S of A is said to be normal if (x ⊥ y) ` S a (y−1 ⊥ x−1) ⊆ S for all
x, y ∈ A.

This de�nition extends the following de�nition of normality in digroups to
trigroups.

De�nition 3.8. [11, De�nition 4] A subdigroup S of a digroup (A,`,a) is said
to be normal if x ` S a x−1 ⊆ S for all x ∈ A.

It turns out that normality in a trigroup is completely determined by its un-
derlying digroup structure, as proven in the following Lemma.

Lemma 3.9. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1 and S a

subtrigroup of A. Then S is a normal subtrigroup of A i� S is a normal subdigroup

of the underlying digroup (A,`,a).

Proof. Let (A,`,⊥,a) be a trigroup and S a normal subtrigroup of A. Then for
all x ∈ A,
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x ` S a x−1 = x ` (1 ` S) a x−1 p2= (x ⊥ 1) ` S a x−1

= (x ⊥ 1) ` (S a 1) a x−1 = (x ⊥ 1) ` S a (1 a x−1)
p6
= (x ⊥ 1) ` S a (1 ⊥ x−1) ⊆ S.

The converse is obvious since for all x, y ∈ A we have by setting z = x ⊥ y,
(x ⊥ y) ` S a (x ⊥ y)−1 = z ` S a z−1 ⊆ S

Lemma 3.10. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1. A subtri-

group S of A is said to be normal if and only if (x ⊥ y) ` S = S a (x ⊥ y) for all

x, y ∈ A.
Proof. Assume that S is a normal subtrigroup of A. Let x, y ∈ A and set z = x ⊥ y.
For all s ∈ S, we have: z ` s a z−1 = s′ for some s′ ∈ S, i.e., z ` s = z ` (s a 1)

= z ` (s a (z−1 a z)) = z ` ((s a z−1) a z) p3= (z ` s a z−1) a z = s′ a z. So
(x ⊥ y) ` S ⊆ S a (x ⊥ y).

For the reverse inclusion,
S a z = ((z ` z−1) ` S a 1) a z = (z ` (z−1 ` S) a 1) a z

= z ` ((z−1 ` S) a 1) a z)) = z ` (z−1 ` S a (1 a z))
= z ` (z−1 ` S a (z−1)−1) ⊆ z ` S since S is normal.

Conversely, assume that (x ⊥ y) ` S = S a (x ⊥ y) for all x, y ∈ A. Then,

(x ⊥ y) ` S a (y−1 ⊥ x−1) = ((x ⊥ y) ` S) a (x ⊥ y)−1

= (S a (x ⊥ y)) a (x ⊥ y)−1

= S a ((x ⊥ y) a (x ⊥ y)−1)
= S since (x ⊥ y) a (x ⊥ y)−1 ∈ UA.

Therefore S is a normal subtrigroup of A.

The following Lemma is the normality transfer condition for trigroups.

Lemma 3.11. Let (A,`,⊥,a) be a trigroup. If S is a subtrigroup of A and R is

a normal subtrigroup of A, then S ∩R is a normal subtrigroup of S.

Proof. The proof is obvious since for all s ∈ S, we have s ` S ∩ R a s−1 ⊆ S due
to closure under the operations `,a, and s ` S ∩ R a s−1 ⊆ R since R is normal
in A. The result follows by Lemma 3.9.

Remark 3.12. Let (A,`,⊥,a) be a trigroup and S a normal subtrigroup of A.
Then S ⊥ x−1 = x−1 ` S for all x ∈ A.
Proof. Let x ∈ A. Since x−1 ` x ∈ UA, we have

S ⊥ x−1 = (x−1 ` x) ` (S ⊥ x−1) = x−1 ` (x ` (S ⊥ x−1))
p7
= x−1 ` ((x ` S) ⊥ x−1) = x−1 ` ((S a x) ⊥ x−1)
= x−1 ` (S ⊥ (x ` x−1)) = x−1 ` (S ⊥ 1) = x−1 ` (1 a S)
p3
= (x−1 ` 1) a S = x−1 a S.
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This completes the proof.

Lemma 3.13. Let φ : A → A′ be a morphism of trigroups. Then Ker φ is a

normal subtrigroup of A. Consequently, the set UA of bar-units of A is a normal

subtrigroup of A.

Proof. By Proposition 3.5, Proposition 3.6 and Lemma 3.9, it remains to show
that for all x ∈ A, x ` Ker φ a x−1 ⊆ Ker φ. Indeed, let z ∈ Ker φ,

φ(x ` z a x−1) = φ(x) ` φ(z) a φ(x−1) = φ(x) ` 1 a (φ(x))−1

= (φ(x) ` 1) a (φ(x))−1 = ((φ(x))−1)−1 a (φ(x))−1 = 1.

So x ` z a x−1 ∈ Ker φ. Consequently, UA is a normal subtrigroup by Remark
2.1.

Lemma 3.14. Let A be a trigroup. Then the group JA of inverses of elements in

A is a normal subtrigroup of A.

Proof. By Proposition 3.5 and Lemma 3.9, it is enough to show that if x ∈ A,
then x ` JA a x−1 ⊆ JA. Notice that for all y ∈ A,

x ` y = x ` (1 ` y) = (x ` 1) ` y = (x−1)−1 ` y.

So x ` JA a x−1 = (x−1)−1 ` JA a x−1 ⊆ JA since x−1, (x−1)−1 ∈ JA.

Lemma 3.15. Let φ : A→ A′ be a morphism of trigroups. Then,

(a) If S is a normal subtrigroup of A and φ is surjective, then φ(S) is a normal

subtrigroup of A′.

(b) If S′ is a normal subtrigroup of A′, then φ−1(S′) is a normal subtrigroup of

A.

Proof. To prove (a), assume that S is a normal subtrigroup of A and φ is surjective.
By Proposition 3.6 and Lemma 3.9, it remains to show that y ` φ(S) a y−1 ⊆ φ(S)
for all y ∈ A′. let y ∈ A′ and s ∈ S. Then, y = φ(x) for some x,∈ A. We have

y ` φ(s) a y−1 = φ(x) ` φ(s) a (φ(x))−1 = φ(x) ` φ(s) a φ(x−1)
= φ(x ` s a x−1) ∈ φ(S) since S is normal in A.

The proof of (b) is similar.
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4. Quotient trigroups

4.1. From quotient trigroups to groups

In an e�ort to study the notion of quotient of a given trigroup by a normal subtri-
group, we de�ne an equivalence relation for which the equivalence classes are the
cosets of the normal subtrigroup, and the equivalence class of the identity element
is the normal subtrigroup.

Lemma 4.1. Let (A,`,⊥,a) be a trigroup, and S a subtrigroup of A. Then the

following assertions are true:

(a) g ` S = S ⇐⇒ g−1 ∈ S ⇐⇒ S a g = S for all g ∈ A.

(b) g ` S = h ` S ⇐⇒ g−1 a h ∈ S.

(c) S a g = S a h, ⇐⇒ g ` h−1 ∈ S

Proof. For (a), it is clear that for all g ∈ A, (g−1)−1 = g ` 1 ∈ g ` S. So if g `
S = S, then (g−1)−1 ∈ S which implies g−1 ∈ S. Conversely, let g ∈ A such that
g−1 ∈ S. So g ` 1 = (g−1)−1 ∈ S. Then g ` S = g ` (1 ` S) = (g ` 1) ` S ⊆ S
since S is closed under the operation ` . For the reverse inclusion, we have for all
s ∈ S, that s = 1 ` s = (g ` g−1) ` s = g ` (g−1 ` s) ∈ g ` S. This proves that
g ` S = S ⇐⇒ g−1 ∈ S. The proof of the other equivalence is similar.

To prove (b), let g, h ∈ A such that g ` S = h ` S, then there exists s ∈ S such
that h ` 1 = g ` s. So

g−1 a h = g−1 a (h a 1)
p5)
= g−1 a (h ` 1) = g−1 a (g ` s)

p5
= g−1 a (g a s) = (g−1 a g) a s = 1 a s ∈ S.

Conversely, let g, h ∈ A such that g−1 a h ∈ S. Then

h ` S = ((g ` g−1) ` h) ` S = (g ` (g−1 ` h)) ` S
= g ` ((g−1 ` h) ` S) = g ` (g−1 ` (h ` S))
p1
= g ` ((g−1 a h) ` S) ⊆ g ` S.

The reverse inclusion holds also since h−1 a g = h−1 a (g−1)−1 = (g−1 a h)−1 ∈ S.
The proof of (c) is similar to the proof of (b).

Proposition 4.2. Let (A,`,⊥,a) be a trigroup and S a subtrigroup of A. De�ne

the relation: For x, y ∈ A,

x ∼ y ⇐⇒ x−1 a y ∈ S.

Then ∼ is an equivalence relation and the equivalence classes are the left cosets

x ` S, x ∈ A (orbits of the action of S on A.)



36 G. Biyogmam, S. Tchamna and C. Tcheka

Proof. For all x, y, z ∈ A, we have

i) x−1 a x = 1 ∈ S,

ii) if x−1 a y ∈ S then y−1 a x = y−1 a (x−1)−1 = (x−1 a y)−1 ∈ S,

iii) if x−1 a y ∈ S and y−1 a z ∈ S, then

x−1 a z = (x−1 ` 1) a z = (x−1 ` (y ` y−1)) a z p1= ((x−1 a y) ` y−1) a z)
p3
= (x−1 a y) ` (y−1 a z) ∈ S.

These prove that ∼ is respectively re�exive, symmetric and transitive, and by
Lemma 4.1(b), the equivalence classes are left cosets x ` S

By the fundamental theorem of equivalence relations, the relation ∼ partitions
A into the left cosets x ` S, x ∈ A. Let A/S be the set of left cosets. De�ne the
following binary operations B,M,C: A/S ×A/S → A/S by:

(g ` S) B (h ` S) = (h ` g) ` S

(g ` S) C (h ` S) = (h a g) ` S

(g ` S) M (h ` S) = (h ⊥ g) ` S.

We have the following result.

Lemma 4.3. Let (A,`,⊥,a) be a trigroup and S a normal subtrigroup of A. Then

for all x, y ∈ A, x ∼ y ⇐⇒ x−1 ` S a y ⊆ S.

Proof. Let x, y ∈ A such that x ∼ y i.e. x−1 a y ∈ S. Since y a y−1 ∈ UA, it
follows that for all s ∈ S,

(x−1 ` s) ay = (x−1 ` ((y a y−1) ` s)) a y p1= (x−1 ` (y ` (y−1 ` s))) a y
p1
= ((x−1 a y) ` (y−1 ` s)) a y p3= (x−1 a y) ` (y−1 ` (s a y)) ∈ S

since S is normal and S is closed under ` . For the converse, if x, y ∈ A such that
x−1 ` S a y ⊆ S, then x−1 a y = (x−1 ` 1) a y ∈ (x−1 ` S) a y ⊆ S.

Proposition 4.4. Let (A,`,⊥,a) be a trigroup and S a normal subtrigroup of A.

Then the binary operations B,M,C are well-de�ned and equip A/S with a structure

of a group with unit S and the inverse of the class g ` S is the class g−1 ` S.

Proof. First we verify that the operations B, M, and C are equal, then we verify
their well-de�nition and their compatibility with the equivalence relation ∼ . In-
deed, let x, y ∈ A. Then, since y−1 ` x−1 = y−1 a x−1 = y−1 ⊥ x−1 as `=a=⊥
in JA, It follows that

(x ` y)−1 a (x a y) = (x ⊥ y)−1 a (x a y) = (x a y)−1 a (x a y) = 1 ∈ S.
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So (x ` y) ∼ (x ⊥ y) ∼ (x a y). Therefore,

(x ` S) B (y ` S) = (x ` S) M (y ` S) = (x ` S) C (y ` S).

To show the well-de�nition, let x, y, a, b ∈ A such that x ∼ y, a ∼ b.
So z := a−1 a b ∈ S and thus x−1 ` z a y ∈ S by Lemma 4.3. Then

(a ` x)−1 a (b ` y) = (x−1 ` a−1) a (b ` y) p3= x−1 ` (a−1 a (b ` y))
p5
= x−1 ` (a−1 a (b a y)) = x−1 ` ((a−1 a b) a y)
= x−1 ` (z a y) ∈ S.

So (a ` x) ∼ (b ` y).
To show that S is the unique bar-unit , we prove that UA/S = {S}. Indeed,

notice that for all a, x ∈ A,

(x a a)−1 a x = (a−1 a x−1) a x = a−1 a (x−1 a x) = a−1 a 1 = a−1

and

(a ` x)−1 a x = (x−1 ` a−1) a x = (a−1 ` x−1) a x p3
= a−1 ` (x−1 a x) = a−1.

So x a a ∼ x ⇐⇒ a−1 ∈ S ⇐⇒ a ` x ∼ x. Therefore,

UA/S = {a ` S : a−1 ∈ S} = {S}

by the �rst property of Lemma 4.1. That the inverse of the class g ` S is the class
g−1 ` S is straighforward. We can now conclude that if (A,`,⊥,a) is a trigroup,
then (A/S,B=M=C) is a group.

Remark 4.5. Proposition 4.4 provides another functor from the category of tri-
groups to the category of groups.

Remark 4.6. Note that every normal subtrigroup is the kernel of some trigroup
homomorphism. More precisely, if S is a normal subtrigroup of a trigroup A, then
the natural projection A→ A/S is a homomorphism with kernel equal to S.

4.2. A First Isomorphism Theorem for trigroups

Lemma 4.7. Let φ : A→ A′ be a morphism of trigroups and S a normal subtri-

group of A containing Ker φ. If t ∈ A such that φ(t) ∈ φ(S), then t−1 ∈ S.

Proof. Under the hypothesis, we have φ(t) = φ(s) for some s ∈ S. So φ(t ` s−1) =
φ(t) ` φ(s−1) = 1. Thus t ` s−1 ∈ Ker φ ⊆ S. Therefore t−1 = ((t−1)−1)−1 ∈ S
since (t−1)−1 = t ` 1 = t ` (s−1 a s)) = (t ` s−1) a s ∈ S.
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Proposition 4.8. Let A and A′ be two trigroups and S a normal subtrigroup of

A. Let φ : A → A′ be a morphism of trigroups such that Ker (φ) ⊆ S. Then there

is an isomorphism of groups φ̂ : A/S → Imφ/φ(S). In particular, if S = ker(φ)

then this isomorphism becomes φ̂ : A/ker(φ)→ Imφ/{1}.

Proof. Since S is a normal subtrigroup of A and φ : A → A a morphism of
trigroups, then φ(S) is normal subtrigroup of Imφ by Lemma 3.15. Moreover

x ∼ y ⇐⇒ x−1 a y ∈ S ⇐⇒ φ(x−1 a y) ∈ φ(S)⇐⇒ φ(x−1) a φ(y) ∈ φ(S)
⇐⇒ (φ(x))−1 a φ(y) ∈ φ(S)⇐⇒ φ(x) ∼ φ(y).

Note that the implication x−1 a y ∈ S ⇐= φ(x−1 a y) ∈ φ(S) above is due to
Lemma 4.7 since y−1 a x = y−1 a (x−1)−1 = (x−1 a y)−1 ∈ S and the relation ∼
is symmetric. Therefore φ induces the isomorphism: φ̂ : A/S −→ Imφ/φ(S) such

that x ` S 7−→ φ̂(x ` S) = φ(x) ` φ(S).

Corollary 4.9. Let A be a trigroup. Then there is a group isomorphism

A/UA ∼= JA.

Proof. By the assertion (b) of Remark 2.1, the mapping A→ JA de�ned by x 7→
(x−1)−1 is an epimorphism of trigroups with kernel UA. Moreover JA/{1} = JA
since JA is a group. We conclude the proof using Proposition 4.8.

Corollary 4.10. Let A be a trigroup. Then there is a group isomorphism

A/{1} ∼= A/UA.

Proof. Clearly, the map A
π−→ A/UA , a 7−→ a ` UA is a trigroup epimorphism

whose kernel is ker(π) = {1} since by the �rst property of Lemma 4.1, we have
a ` UA = UA ⇐⇒ a−1 ∈ UA ∩ JA = {1} ⇐⇒ a = 1. By proposition 4.8, there
is a group isomorphism A/{1} ∼= A/UA.

Corollary 4.11. Let A and B be two trigroups. Then A can be identi�ed with a

normal subtrigroup A × UB of A × B and there is a group isomorphism A×B
A×UB

∼=
B/{1}.

Proof. Assume that (A,`,a,⊥) and (B,`′,a′,⊥′) are two trigroups. Then clearly
(A×B,B,C,D) is a trigroup with operations given by

(a1, b1) B (a2, b2) = (a1 ` a2, b1 `′ b2),
(a1, b1) C (a2, b2) = (a1 a a2, b1 a′ b2),
(a1, b1) D (a2, b2) = (a1 ⊥ a2, b1 ⊥′ b2).
It is easy to verify that the map A × B θ−→ B/UB , (a, b) 7−→ b ` UB is a

trigroup epimorphism whose kernel is ker(θ) = A × UB by the �rst property of
Lemma 4.1 and since e ∈ UB ⇐⇒ e−1 ∈ UB . By proposition 4.8, there is a group
isomorphism A×B

A×UB

∼= B/UB . Now since B/UB ∼= B/{1} thanks to Corollary 4.10,
the proof is complete.
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4.3. A Second Isomorphism Theorem for trigroups

In this section, we use our construction of quotients on trigroups to prove an
analogue of the second isomorphism theorem for trigroups. Consider the following
set:

S ? S′ = {x ? x′, x ∈ S and x′ ∈ S′} where ? ∈ {`,a}.

Lemma 4.12. Let A be a trigroup, and S, R two subtrigroups of A such that

s ` R = R a s for all s ∈ S. Then the following hold:

(a) The set R̂ =: {x ∈ A : x−1 ∈ R} is a subtrigroup of A containing R.

(b) S ` R is a subtrigroup of A.

(c) R is a normal subtrigroup of S ` R.

(d) S ∩ R̂ is a normal subtrigroup of S.

Proof. The proof of (a) is straightforward since R is a subtrigroup of A.
To show (b), we verify the properties of Proposition 3.4. Indeed, Let s, s1 ∈ S

and r, r1 ∈ R. Since R a s1 = s1 ` R, it follows that r a s1 = s1 ` r2 for some
r2 ∈ R.

1) (s ` r) ` (s1 ` r1)
p1
= ((s ` r) a s1) ` r1

p3
= (s ` (r a s1)) ` r1

= (s ` (s1 ` r2)) ` r1 = (s ` s1) ` (r2 ` r1) ∈ S ` R.

2) (s ` r) a (s1 ` r1)
p3
= s ` (r a (s1 ` r1))

p5
= s ` (r a (s1 a r1))

= s ` ((r a s1) a r1) = s ` ((s1 ` r2) a r1)
p3
= (s ` (s1 ` r2)) a r1 = ((s ` s1) ` r2) a r1
p3
= (s ` s1) ` (r2 a r1) ∈ S ` R.

3) (s ` r) ⊥ (s1 ` r1)
p8
= ((s ` r) a s1) ⊥ r1

p3
= (s ` (r a s1)) ⊥ r1

= (s ` (s1 ` r2)) ⊥ r1 = ((s ` s1) ` r2) ⊥ r1
p4
= (s ` s1) ` (r2 ⊥ r1) ∈ S ` R.

4) Since R a s−1 = s−1 ` R, then r−1 a s−1 = s−1 ` r0 for some r0 ∈ R. So
(s ` r)−1 = r−1 ` s−1 = r−1 a s−1 = s−1 ` r0 ∈ S ` R.

To show (c), we �rst notice that R ⊆ S ` R since r = 1 ` r for all r ∈ R. Now
let s ∈ S and r, r0 ∈ R. Then

(s ` r) ` r0 a (s ` r)−1 = (s ` r) ` r0 a (r−1 ` s−1)
p5
= (s ` r) ` r0 a (r−1 a s−1)
= s ` (r ` r0 a r−1) a s−1 ∈ s ` R a s−1 ⊆ R.

To show (d), we �rst notice that S ∩ R̂ 6= ∅ as 1 ∈ S ∩ R̂. Also it is clear that

S ∩ R̂ ⊆ S. Now for all s ∈ S and t ∈ S ∩ R̂, we have s ` t a s−1 ∈ S since
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S is a subtrigroup of A. Also, since s ` R = R a s, s ` t−1 = t′ a s for some
t′ ∈ R. So s ` t−1 a s−1 = (t′ a s) a s−1 = t′ a (s a s−1) = t′ ∈ R. We now
have (s ` t a s−1)−1 = (s−1)−1 ` t−1 a s−1 = s ` t−1 a s−1 ∈ R, and thus

s ` t a s−1 ∈ R̂. Therefore, s ` t a s−1 ∈ S ∩ R̂.

Corollary 4.13. Let A be a trigroup, and S and R two subtrigroups of A such

that s ` R = R a s for all s ∈ S. Then there is a group isomorphism

(S ` R)/R ∼= S/(S ∩ R̂).

Proof. By Lemma 4.12, S ` R is a subtrigroup of A having R as a normal subtri-
group, and that S ∩R is a normal subtrigroup of S. The map

S −→ (S ` R)/R, s 7→ s ` R

is clearly a surjective homomorphism. Its kernel is S ∩ R̂ by the �rst property of
Lemma 4.1. The result now follows using Proposition 4.8.

Corollary 4.14. Let A be a trigroup, R a normal subtrigroup of A and S a

subtrigroup of A such that A = S ` R. Then

A/R ∼= S/(S ∩ R̂).

Proof. The proof is straightforward as a direct consequence of Corollary 4.13.

Corollary 4.15. Let A be a trigroup. Then there are group isomorphisms

(JA ` UA)/UA ∼= JA and (UA ` JA)/JA ∼= {UA}

Proof. By Lemma 3.13 and Lemma 3.14, JA and UA are normal subtrigroups of
A. This implies that e ` JA = JA a e and j ` UA = UA a j for all e ∈ UA and
j ∈ JA. So, UA and JA are respectively normal subgroups of JA ` UA and UA ` JA
by Lemma 4.12. Note that ĴA = A, thus UA ∩ ĴA = UA. Also, since JA is a group,
JA ∩ ÛA = {1}. We now have (JA ` UA)/UA ∼= JA/{1} ∼= JA and (UA `
JA)/JA ∼= UA/UA ∼= {UA} by Corollary 4.13.

4.4. A Third Isomorphism Theorem for trigroups

Lemma 4.16. Let A be a trigroup, and S, R two normal subtrigroups of A such

that S is a subtrigroup of R. Then R̂/S is a normal subgroup of A/S.

Proof. By Lemma 3.11, S is a normal subtrigroup of R̂, and R̂/S is a subtrigroup of
A/S. Now, let a ∈ A. Then for all r ∈ R, r−1 ∈ R. So, (a ` r a a−1)−1 = (a−1)−1 `
r−1 a a−1 ∈ R since R is a normal subtrigroup of A. Hence a ` r a a−1 ∈ R̂. We
now have

(a ` S) B (r ` S) C (a−1 ` S) = ((a ` r) ` S) C (a−1 ` S)

= (a ` r a a−1) ` S ∈ R̂/S.

Hence R̂/S is a normal subtrigroup of A/S.
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Proposition 4.17. Let A be a trigroup, and S and R two normal subtrigroups of

A such that S is a normal subgroup of R. Then, there is a group ismorphism

(A/S)/(R̂/S) ∼= A/R.

Proof. Under the hypothesis of the proposition, S is also a normal subtrigroup of
R̂. Now consider the map: A/S

τ−→ A/R, (a ` S) 7−→ (a ` R). Then τ is obviously
a surjective morphism of groups whose kernel is ker(τ) = R̂/S, by the �rst property
of Lemma 4.1. We now conclude by proposition 4.8 that (A/S)/(R̂/S) ∼= A/R.

Acknowledgements. The authors are indebted to the referee for very construc-
tive comments and remarks.
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The transitivity of primary conjugacy

in a class of semigroups

Maria Borralho

Abstract. Elements a, b of a semigroup S are said to be primarily conjugate or just p-conjugate,

if there exist x, y ∈ S1 such that a = xy and b = yx. The p-conjugacy relation generalizes

conjugacy in groups, but for general semigroups, it is not transitive. Finding the classes of

semigroups in which this notion is transitive is an open problem. The aim of this note is to show

that for semigroups satisfying xy ∈ {yx, (xy)n} for some n > 1, primary conjugacy is transitive.

By a notion of conjugacy for a class of semigroups, we mean an equivalence re-
lation de�ned in the language of that class of semigroups such that when restricted
to groups, it coincides with the usual notion of conjugacy.

Before introducing the notion of conjugacy that will occupy us, we recall some
standard de�nitions and notation (we generally follow [4]). For a semigroup S, we
denote by S1 the semigroup S if S is a monoid; otherwise S1 denotes the monoid
obtained from S by adjoining an identity element 1.

Any reasonable notion of semigroup conjugacy should coincide in groups with
the usual notion. Elements a, b of a group G are conjugate if there exists g ∈ G
such that a = g−1bg. Conjugacy in groups has several equivalent formulations that
avoid inverses, and hence generalize syntactically to any semigroup. For many of
these notions including the one we focus on here, we refer the reader to [2, 5, 8].

For example, if G is a group, then a, b ∈ G are conjugate if and only if a = uv
and b = vu for some u, v ∈ G. Indeed, if a = g−1bg, then setting u = g−1b and
v = g gives uv = a and vu = b; conversely, if a = uv and b = vu for some u, v ∈ G,
then setting g = v gives g−1bg = v−1vuv = uv = a.

This last formulation was used to de�ne the following relation on a free semi-
group S (see [9]):

a ∼p b ⇐⇒ ∃u,v∈S1 a = uv and b = vu.

If S is a free semigroup, then ∼p is an equivalence relation on S [9, Cor.5.2], and
so it can be considered as a notion of conjugacy in S. In a general semigroup
S, the relation ∼p is re�exive and symmetric, but not transitive. If a ∼p b in
a semigroup, we say that a and b are primarily conjugate or just p-conjugate for
short (hence the subscript in ∼p); a and b were said to be �primarily related� in [8].

2010 Mathematics Subject Classi�cation: 20M99
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Lallement [9] credited the idea of the relation ∼p to Lyndon and Schützenberger
[10].

In spite of its name, ∼p is a valid notion of conjugacy only in the class of
semigroups in which it is transitive. Otherwise, the transitive closure ∼p∗ of ∼p
has been de�ned as a conjugacy relation in a general semigroup [3, 7, 8]. Finding
classes of semigroups in which ∼p itself is transitive, that is, ∼p=∼p∗, is an open
problem. The aim of this note is to prove the following theorem.

Theorem. Let n > 1 be an integer and let S be a semigroup satisfying the

following: for all x, y ∈ S,
xy ∈ {yx, (xy)n} .

Then primary conjugacy ∼p is transitive in S.

There are various motivations for studying this particular class of semigroups.
First, it naturally generalizes two classes of semigroups in which ∼p is transitive.

Proposition. Let S be a semigroup.

(1) If S is commutative, then ∼p is transitive.

(2) If S satis�es xy = (xy)2 for all x, y ∈ S, then ∼p is transitive.

Proof. (1). In a commutative semigroup, ∼p is the identity relation and hence it
is trivially transitive.

(2). If a ∼p b, then a = uv and b = vu for some u, v ∈ S1. Thus a2 = (uv)2 =
uv = a and b2 = (vu)2 = vu = b so that a, b are idempotents. In particular, a, b are
completely regular elements of S. The restriction of ∼p to the set of completely
regular elements is a transitive relation [6].

The other motivation for studying this class of semigroups is that it has been
of recent interest in other contexts. In particular, J. P. Araújo and M. Kinyon [1]
showed that a semigroup satisfying x3 = x and xy ∈ {yx, (xy)2} for all x, y is a
semilattice of rectangular bands and groups of exponent 2.

The proof of Theorem was found by �rst proving the special cases n = 2, 3, 4
using the automated theorem prover Prover9 developed by McCune [11]. After
studying these proofs, the pattern became apparent, leading to the proof of the
general case. Note that Prover9 and other automated theorem provers usually
cannot handle statements like our theorem directly because there is not a way to
specify that n is a �xed positive integer. Thus the approach of examining a few
special cases and then extracting a human proof of the general case is the most
e�cient way to use an automated theorem prover in these circumstances.

Proof of Theorem. Suppose a, b, c ∈ S satisfy a ∼p b and b ∼p c. Since a ∼p b,
there exist a1, a2 ∈ S1 such that a = a1a2 and b = a2a1. Similarly, since b ∼p c,
there exist b1, b2 ∈ S1 such that b = b1b2 and c = b2b1. We want to prove there



Transitivity of primary conjugacy 45

exist x, y ∈ S1 such that a = xy and c = yx. If a = b or if b = c, then there is
nothing to prove. Thus we may assume without loss of generality that a1a2 6= a2a1
and b2b1 6= b1b2.

Assume �rst that n = 2. Then

a = a1a2 = (a1a2)(a1a2) = a1(a2a1)a2 = a1ba2 = (a1b1)(b2a2) ,

and

c = b2b1 = (b2b1)(b2b1) = b2(b1b2)b1 = b2bb1 = (b2a2)(a1b1) .

Thus setting x = a1b1 and y = b2a2, we have a ∼p c in this case.

Now assume n > 2. We have

a = a1a2 = (a1a2)
n = (a1a2) · · · (a1a2)︸ ︷︷ ︸

n

= a1(a2a1) · · · (a2a1)︸ ︷︷ ︸
n−1

a2

= a1b
n−1a2

= a1bb
n−2a2

= a1(b1b2)b
n−2a2

= (a1b1)(b2b
n−2a2)

and

c = b2b1 = (b2b1)
n = (b2b1) · · · (b2b1)︸ ︷︷ ︸

n

= b2(b1b2) · · · (b1b2)︸ ︷︷ ︸
n−1

b1

= b2b
n−1b1

= b2b
n−2bb1

= b2b
n−2(a2a1)b1

= (b2b
n−2a2)(a1b1) .

Thus setting x = a1b1 and y = b2b
n−2a2, we have that a ∼p c.

Acknowledgements. We are pleased to acknowledge the use of the automated
theorem prover Prover9 developed by McCune [11]. We also thank Prof. João
Araújo for suggesting this problem to us. This paper forms a part of the au-
thor's dissertation in the PhD Program in Computational Algebra at Universidade
Aberta in Portugal.
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Hyperidentities with permutations leading to the

isotopy of invertible binary algebras to a group

Sergey S. Davidov and Davit A. Shahnazaryan

Abstract. Using the second-order formulas we obtained characterizations of binary invertible
algebras principally isotopic to a group or to an abelian group.

1. Introduction

A binary algebra (Q; Σ) is called an invertible algebra or system of quasigroups if each operation
in Σ is a quasigroup operation. Invertible algebras with second order formulas �rst were con-
sidered by Shau�er [12, 13] in connection with coding theory. He pointed out that the resulting
message would be more di�cult to decode by unauthorized receiver than in the case when a single
operation is used for calculation. Later such algebras were investigated by Aczel [1], Belousov
[3, 4], Sade [11], Movsisyan [8, 9, 10] and others.

It is well known [5] that with each quasigroup A the next �ve quasigroups are connected:

A−1, −1A, −1(A−1), (−1A)−1, A∗,

where A∗(x, y) = A(y, x). These quasigroups are called inverse quasigroups or parastrophes.
Like this, with each invertible algebra (Q; Σ) the next �ve invertible algebras are connected:

(Q; Σ−1), (Q;−1 Σ), (Q;−1 (Σ−1)), (Q; (−1Σ)−1), (Q; Σ∗),

where

Σ−1 = {A−1 |A ∈ Σ},
−1Σ = {−1A |A ∈ Σ},

−1(Σ−1) = {−1(A−1) |A ∈ Σ},

(−1Σ)−1 = {(−1A)−1 |A ∈ Σ},
Σ∗ = {A∗ |A ∈ Σ}.

Each of these invertible algebras is called a parastrophe of the algebra (Q; Σ).

Let us recall that the following absolutely closed second-order formula:

∀X1, . . . , Xm∀x1, . . . , xn (ω1 = ω2),

∀X1, . . . , Xk∃Xk+1 . . . , Xm∀x1, . . . , xn (ω1 = ω2),

where ω1, ω2 are words written in the functional variables, X1, . . . , Xm, and in the objective
variables, x1, . . . , xn, are called ∀(∀)-identity or hyperidentity and ∀∃(∀)-identity. For see [8].

The groupoid Q(A) is isotopic to the groupoid Q(B) if exist three permutations α, β, γ of Q
such that γB(x, y) = A(αx, βy) for all x, y ∈ Q. The isotopy of the form T = (α, β, ε), where ε
is the identity map, is called a principal isotopy.

2010 Mathematics Subject Classi�cation: 20N05, 03C85, 20N99.
Keywords: invertible algebra, second-order formula, hyperidentity, isotopy.
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The class of quasigroups isotopic to groups �rst were considered by Belousov [4]. Varieties of
quasigroups isotopic to groups have been considered by Glukhov, Gvaramia, Sokhatsky and oth-
ers. In [6] the concept of identities with permutations was introduced and isotopies of quasigroups
to groups was characterized by these identities.

We introduce the notion of the hyperidentity with permutations and using these hyperiden-
tities we obtain characterizations of binary invertible algebras principally isotopic to a group.

2. Auxiliary concepts and results

We start with some concepts and results, which are necessary for further considerations.

De�nition 2.1. The triplet T = (α, β, γ) of permutations of the set Q is called an autotopy of
the groupoid Q(·), if the identity γ(x · y) = αx · βy is true for for all x, y ∈ Q. If T = (α, β, γ) is
an autotopy of the groupoid Q(A), then we write AT = A.

In the case α = β = γ the triplet T = (α, α, α) is an automorphism. It is easy to see that
the set of autotopies of Q(·) forms a group.

De�nition 2.2. The third component γ of the autotopy T = (α, β, γ) of the groupoid Q(·) is
called a quasi-automorphism of Q(·).

Lemma 2.3. (cf. [3]) Any quasi-automorphism γ of a group Q(·) has the form:

γ = R̃sγ0, (γ = L̃sδ0) (1)

where γ0 (δ0) is an automorphism of the group Q(·), R̃sx = x · s (L̃sx = s · x), s ∈ Q and,

conversely, the map γ de�ned by the equality (1) is a quasi-automorphism of the group Q(·).

Lemma 2.4. (cf. [3]) Let γ be a quasi-automorphism of the group Q(·). Then γ is an auto-

morphism if and only if γ1 = 1, where 1 is the identity element of the group Q(·).

Lemma 2.5. (cf. [3]) Let α, β, γ, δ, σ, τ be permutations of the set Q, such that the equality

β(α(x · y) · z) = γx · δ(σy · τz)
is valid in the group Q(·) for all x, y, z ∈ Q. Then the permutations α, β, γ, δ, σ, τ are quasi-

automorphisms of the group Q(·).

Lemma 2.6. (cf. [3]) A permutation α of Q is a quasi-automorphism of the group Q(·) if and

only if for all x, y ∈ Q the equality

α(xy) = αx · (α1)−1 · αy,
where 1 is the identity of Q(·), is valid.

Theorem 2.7. (cf. [3]) If a non-empty set Q is a quasigroup under each of four operations

A1, A2, A3, A4 satisfying the identity:

A1(A2(x, y), z) = A3(x,A4(y, z)), (2)

then there exists the operation (·) such Q(·) is a group isotopic to all these four quasigroups.

Theorem 2.8. (cf. [2]) if a non-empty set Q is a quasigroup under each of six operations

A1, A2, A3, A4, A5, A6 satisfying the identity:

A1(A2(x, y), A3(z, u)) = A4(A5(x, z), A6(y, u)), (3)

then there exists the operation (·) such that Q(·) is an abelian group isotopic to all these six

quasigroups, i.e.,

A1(x, y) = αx · βy, A4(x, y) = χx · ϕy,
A2(x, y) = α−1(γx · δy), A5(x, y) = χ−1(γx · θy),

A3(x, y) = β−1(θx · ψy), A6(x, y) = ϕ−1(δx · ψy),

where α, β, γ, δ, χ, ϕ, ψ, θ are permutations of Q.
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De�nition 2.9. We say that a binary algebra (Q; Σ) is isotopic to the groupoid Q(·), if each
operation in Σ is isotopic to the groupoid Q(·), i.e., for every operation A ∈ Σ there exists
permutations αA, βA, γA of Q such that:

γAA(x, y) = αAx · βAy,

for every x, y ∈ Q.

Theorem 2.10. (cf. [7]) The invertible algebra (Q; Σ) is principally isotopic to a group if and

only if for all A,B ∈ Σ the following second-order formula

A(−1A(B(x,B−1(y, z)), u), v) = B(x,B−1(y,A(−1A(z, u), v))),

is valid in the algebra (Q; Σ ∪ Σ−1 ∪−1 Σ).

3. Main results

We denote by LA,a and RA,a the left and right translations of the binary algebra (Q; Σ):

LA,a : x 7→ A(a, x) (RA,a : x 7→ A(x, a)).

If (Q; Σ) is an invertible algebra, then these translations are bijections for all a ∈ Q.
We will consider second order formulas (called hyperidentities with permutations or hyperi-

dentities in (Q; Σ)) of the following form:

βA,B
1 A(βA,B

2 B(βA,B
3 x, βA,B

4 y), βA,B
5 z) = B(βA,B

6 x, βA,B
7 A(βA,B

8 y, βA,B
9 z)),

where x, y, z are objective variables, βA,B
i (i = 1, . . . , 9) are permutations on Q dependent on

A,B ∈ Σ. By doing paremeter replacement those formulas may be transformed into second
order formulas with less number of paramaters:

αA,B
1 A(αA,B

2 B(x, y), z) = B(αA,B
3 x, αA,B

4 A(αA,B
5 y, αA,B

6 z)). (4)

Theorem 3.11. If the second order formula (4) is valid in the algebra (Q; Σ) for all A,B ∈ Σ

and for some permutations αA,B
i (i = 1, . . . , 6), then the algebra (Q; Σ) is principally isotopic to

a group.

Conversely, if the invertible algebra (Q; Σ) is principally isotopic to a group Q(·), then for

all A,B ∈ Σ there exist permutations αA,B
i (i = 1, . . . , 6) such that the second order formula (4)

is valid in the algebra (Q; Σ).

Proof. Let (4) hold in (Q; Σ) for all A,B ∈ Σ and for some permutations αA,B
i (i = 1, . . . , 6).

The second order formula (4) is a particular case of (2), where

A1(x, y) = αA,B
1 A(x, y), A2(x, y) = αA,B

2 B(x, y),

A3(x, y) = B(αA,B
3 x, y), A4(x, y) = αA,B

4 A(αA,B
5 x, αA,B

6 y).

According to Theorem 2.7, the quasigroups A1, A2, A3, A4 are isotopic to the same group Q(·):

A1(x, y) = α−1(βx · γy), A2(x, y) = α−1
1 (β1x · γ1y),

A3(x, y) = λ−1(µx · νy), A4(x, y) = λ−1
1 (µ1x · ν1y).

Having in consideration the last equalities and (2) we get:

α−1(βα−1
1 (β1x · γ1y) · γz) = λ−1(µx · νλ−1

1 (µ1y · ν1z))

or
λα−1(βα−1

1 (x · y) · z) = µβ−1
1 x · νλ−1

1 (µ1γ
−1
1 y · ν1γ−1z).
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According to Lemma 2.5, λα−1 = θ is a quasi-automorphism of the group Q(·). Fixing the
operation A, we �x the permutation α, too. Then, every operation B ∈ Σ has the form:

B(x, y) = A3((αA,B
3 )−1x, y) = A3(φx, y) = λ−1(µφx · νy)

or
B(x, y) = α−1θ−1(φ′x · νy).

Since the permutation θ−1 is a quasi-automorphism of the group Q(·), then

B(x, y) = α−1(θ−1φ′x · (θ−11)−1 · θ−1νy) = α−1(φ′′x · ψy),

where φ′′x = θ−1φ′x(θ−11)−1, ψx = θ−1νx and 1 is the identity element of the group Q(·).
Consider the operation:

x ◦ y = α−1(αx · αy).

Q(◦) is isomorphic to the group Q(·). Thus, (Q(◦) is a group and

B(x, y) = α−1φ′′x ◦ α−1ψy

or
B(x, y) = fx ◦ gy.

Hence, Q(B) is principally isotopic to the group Q(◦) and since B is an arbitrary operation from
Σ, this proves the statement.

Conversely, if an invertible algebra is principally isotopic to a group, then according to
Theorem 2.10 the following formula is valid:

A(−1A(B(x,B−1(y, z)), u), v) = B(x,B−1(y,A(−1A(z, u), v))).

Taking into account that

A−1(x, u) = RA−1,ux = LA−1,xu and −1A(v, x) = L−1A,vx = R−1A,xv

the above formula may be re-written in the form:

A[R−1A,uB(x, z), v] = B[x, LB−1,yA(R−1A,uL
−1
B−1,y

z, v)].

This for u = a, y = b, where a, b ∈ Q are �xed, gives (4), where

αA,B
1 = αA,B

3 = αA,B
6 = ε, αA,B

2 = R−1A,a, αA,B
4 = LB−1,b, αA,B

5 = R−1A,aL
−1
B−1,b

,

and completes the proof.

Corollary 3.12. (cf. [6]) The class of quasigroups isotopic to a group is characterized by the

identity:

x(b\((z/a)v)) = ((x(b\z))/a)v,

where a and b are �xed.

Theorem 3.13. The invertible algebra (Q; Σ) is principally isotopic to an abelian group if and

only if for all A,B ∈ Σ the second-order formula

A(−1A(B(x, z), y), A−1(y,B(w, u))) = A(−1A(B(w, z), y), A−1(y,B(x, u))). (5)

Proof. Let (Q; Σ) be an invertible algebra principally isotopic to an abelian group Q(·), i.e.,
every operation A ∈ Σ has the form:

A(x, y) = αAx · βAy, (6)

where αA, βA are permutations of the set Q. Then from (6) we obtain:

A−1(x, y) = β−1
A (αAx · y) and −1A(x, y) = α−1

A (x · βAy), (7)

where x is the inverse element of x in the group Q(·).
Using the identities (6) and (7) we can prove that left and right sides of (5) are the same.
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Conversely, let (5) be satis�ed in (Q; Σ ∪ Σ−1 ∪−1 Σ) for all A,B ∈ Σ. For y = a it has the
form:

A(C(x, z), D(w, u)) = A(C(w, z), D(x, u)), (8)

where C(x, y) = −1A(B(x, y), a) and D(x, y) = A−1(a,B(x, y)).
Let's write (8) in the form:

A(C∗(z, x), D(w, u)) = A(C∗(z, w), D(x, u)). (9)

Obviously, the operations C, C∗ and D are inverse operations. According to Theorem 2.8, the
quasigroups Q(A), Q(C∗) and Q(D) are isotopic to the same abelian group Q(·). Hence,

A(x, y) = αx · βy, C∗(x, y) = α−1(γx · δy), D(x, y) = β−1(θx · ψy),

for some permutations α, β, γ, δ, θ, ψ of Q.
Fixing the operation A, we also �x the permutation α. Then:

C∗(y, x) = C(x, y) = −1A(B(x, y), a) = R−1A,aB(x, y) = α−1(γy · δx),

or
B(x, y) = R−1

−1A,a
α−1(γy · δx), B(x, y) = R−1

−1A,a
α−1I(Iδx · Iγy),

where I(x) = x assigns to x its inverse x calculated in the group Q(·). Then the permutation
φ = IαR−1A,a depends only on A. Thus, Q(◦), where x ◦ y = ϕ−1(ϕx · ϕy), is an abelian group
is isomorphic to the group Q(·). In the group Q(◦) the operation B has the form:

B(x, y) = fx ◦ gy,

where f = ϕ−1Iδ, g = ϕ−1Iγ are permutations of Q. Thus, Q(B) is principally isotopic to the
group Q(◦) and since B is an arbitrary operation from Σ, this proves the theorem.

Theorem 3.14. If the second order formula

αA,B
1 A[αA,B

2 B(αA,B
3 x, αA,B

4 z), αA,B
5 B(αA,B

6 w,αA,B
7 v)] = A[αA,B

8 B(w, z), αA,B
9 B(x, v)] (10)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some permutations αA,B
i where

i = 1, 2, . . . , 9, then the algebra (Q; Σ) is principally isotopic to an abelian group.

Conversely, if the invertible algebra (Q; Σ) is principally isotopic to an abelian group Q(·),
then for all A,B ∈ Σ there are permutations αA,B

i , i = 1, 2, . . . , 9, such that the second order

formula (10) is valid in the algebra (Q; Σ).

Proof. Let (10) holds in (Q; Σ) for all A,B ∈ Σ and for some permutations αA,B
i , i = 1, 2, . . . , 9.

Then (10) is a particular case of (3), where

A1(x, y) = αA,B
1 A(x, y), A2(x, y) = αA,B

2 B(αA,B
3 x, αA,B

4 y), A3(x, y) = αA,B
5 B(αA,B

6 x, αA,B
7 y),

A4(x, y) = A(x, y), A5(x, y) = αA,B
8 B(x, y), A6(x, y) = αA,B

9 B(x, y).

According to Theorem 2.8, the quasigroups A1, A2, A3, A4, A5, A6 are isotopic to the same
abelian group Q(·):

A1(x, y) = αx · φy, A2(x, y) = α−1(γx · δy), A3(x, y) = φ−1(λx · βy),

A4(x, y) = ψx · σy, A5(x, y) = ψ−1(γx · λy), A6(x, y) = σ−1(δx · βy).

Fixing B, we obtain A5(x, y) = αA,B
8 B(x, y) = ψ−1(γx · λy). Thus ψ is �xed too. Then

Q(◦), where
x · y = ψ−1x ◦ ψ−1y.

is an abelian group and A(x, y) = A4(x, y) = ψx · σy = x ◦ ψ−1σy. Thus, Q(A) is principally
isotopic to the group Q(◦) and as A ∈ Σ is an arbitrary operation, this proves the statement.
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Conversely, if the invertible algebra (Q; Σ) is principally isotopic to an abelian group, then
according to Theorem 3.13 the formula is valid:

A(−1A(B(x, z), y), A−1(y,B(w, u))) = A(−1A(B(w, z), y), A−1(y,B(x, u))).

Then,
A[R−1A,yB(x, z), LA−1,yB(w, u)] = A[R−1A,yB(w, z), LA−1,yB(x, u)].

This for �xed y = a ∈ Q gives (10) with

α1 = α3 = α4 = α6 = α7 = ε, α8 = α2 = R−1A,a, α5 = α9 = LA−1,a.

Corollary 3.15. The class of quasigroups isotopic to an abelian group is characterized by the

identity:

(xz/y)(y\wu) = (wz/y)(y\xu),

where y is �xed.
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Translatability determines the structure

of certain types of idempotent quasigroups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We prove that in certain types of k-translatable idempotent quasigroups, the value

of k determines all possible orders of k-translatable idempotent quasigroups of a particular type.

From this, all k-translatable idempotent quesigroups of that type can be calculated, as well as

their parastrophe types. Four operators on the collection of all idempotent, translatable quasi-

groups are de�ned and formulae determining relationships amongst them are given. Necessary

and su�cient conditions are given for particular types of idempotent, translatable quasigroups

to be perpendicular to their dual quasigroup.

1. Introduction

The notion of a k-translatable groupoid was an outcrop of the observation that
certain quadratical quasigroups are translatable [6]. This led to the determination
of the structure of idempotent, translatable quasigroups in general and of types
of idempotent, translatable quasigroups in particular (Theorems 4.2 and 4.27 [5]).
These results and Theorem 4.2 [7] inspired the work in this paper.

To say that an idempotent quasigroup (Q, ·) of order n is k-translatable is a
powerful statement. It implies that x · y = [ax + by]n for some a ∈ {2, 3, . . . , n}
and odd n > 1, where [a + b]n = 1, [a + kb]n = 0 and [t]n equals t calculated
modulo n (cf. [5]). In addition, the greatest common divisor of a and n is 1, as is
that of b and n and k and n. Also, there exist unique values a′, b′ and k′ such that
[aa′]n = [bb′]n = [kk′]n = 1, where k′ is the value of the translatability of the dual
quasigroup (Q, ∗) and x ∗ y = [bx+ ay]n. Therefore, [b+ k′a]n = 0. The products
of the parastrophes of (Q, ·) and their translatability can also be determined (cf.
[5]). We note that idempotent k-translatable quasigroups are medial, that is they
satisfy the identity xy · zw = xz · yw, and therefore they are what is called in the
literature IM -quasigroups (cf. [9]). We denote the collection of all idempotent,
medial quasigroups as IMQ. We de�ne IKQ as the collection of all idempotent,
k-translatable quasigroups. By Corollary 4.5 [5], IKQ ⊂ IMQ.

To simplify the size of some of the tables we will sometimes let (a, b) denote the
idempotent k-translatable quasigroup x · y = [ax + by]n, where [a + b]n = 1. For
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example, (3, 3) denotes the idempotent 4-translatable quasigroup x ·y = [3x+3y]5,
and (2, 10) denotes the idempotent 2-translatable quasigroup x · y = [2x+ 10y]11.

In this paper we examine certain types of idempotent k-translatable quasi-
groups. Each type T in Table 3.1 satis�es a single identity uT = vT , with
uT = uT (x, y) and vT = vT (x, y). Each identity yields a function FT (a) such
that [FT (a)]n = 0. This formula allows us to calculate the possible values of n;
that is, for each value of a, the formula determines the possible orders of the
members of T. Also, the value of a′ and k′ are determined by the value of k.

The function HT denotes the function HT = HT (k), where [HT (k)]n = 0.
The products of the parastrophes of a given (Q, ·) ∈ T and the value of their
translatability can also be determined by k, the value of the translatability of
(Q, ·). Also, in any type T we can calculate all k-translatable quasigroup members
of T, for any value of k. We give tables of such quasigroup members for each type
T and each value of k, for k ∈ {2, 3, . . . , 10}. The main results are given in Tables
3.1, 3.2, 3.3 and 3.4, from which most other results and tables follow.

We examine, for each T, the dual collection T∗ and the inverse collection −T
and prove that the above analysis also applies to these collections of quasigroups.
Some interrelationships between di�erent types of idempotent k-translatable quasi-
groups, their dual collections, their inverse collections and the collections T+1 and
T−1 are also given.

We will show how these results link with the work of Belousov. He proved that
any minimal non-trivial identity in a quasigroup is parastrophically equivalent to
one of seven identity types [1]. We prove that �ve of those identities determine
types of idempotent k-translatable quasigroups and that the remaining two iden-
tities do not. We prove in Corollary 6.4 that if T is the collection of quadratical
quasigroups or the collection of a�ne regular octagonal quasigroups, then any
quasigroup member of T is perpendicular to its dual quasigroup.

2. Preliminary de�nitions, examples and results

A groupoid (in other terminology: a magma) is a non-empty set Q with a binary
operation (called a multiplication) de�ned on Q and denoted by dot or juxtapo-
sition. For clarity of record we will limit the number of parentheses. Instead of
(x · y) · z, we will write xy · z.

Let us recall that a groupoid (, ·) is a quasigroup if for every a, b ∈ Q there
exist unique elements x, y ∈ Q such that ax = b and ya = b. An element x of
a groupoid (Q, ·) is idempotent if x · x = x. A �nite groupoid Q = {1, 2, . . . , n}
is called k-translatable, where 1 6 k < n, if the second row of its multiplication
table is obtained from the �rst row by inserting the last k entries of the �rst row
into the �rst k entries of the second row and the �rst n − k entries of the �rst
row into the last n− k entries of the second row. This operation is repeated from
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the second row, to obtain the entries of the third row, and so on until the table is
�lled (cf. [5]).

The following are the Cayley tables of a 2-translatable idempotent quasigroup
of order 3, a 3-translatable idempotent quasigroup of order 5 and a 4-translatable
idempotent quasigroup of order 7.

1 2 3

1 1 3 2
2 3 2 1
3 2 1 3

1 2 3 4 5

1 1 3 5 2 4
2 5 2 4 1 3
3 4 1 3 5 2
4 3 5 2 4 1
5 2 4 1 3 5

1 2 3 4 5 6 7

1 1 3 5 7 2 4 6
2 7 2 4 6 1 3 5
3 6 1 3 5 7 2 4
4 5 7 2 4 6 1 3
5 4 6 1 3 5 7 2
6 3 5 7 2 4 6 1
7 2 4 6 1 3 5 7

It is known that an idempotent k-translatable quasigroup of order n is induced
by the additive group of integers modulo n, where, for simplicity of our calcula-
tions, 0 is identi�ed with n, i.e., instead of Q = {0, 1, . . . , n − 1} we consider the
set Q = {1, 2, . . . , n}. In this convention, an idempotent k-translatable quasigroup
of order n has the form

x · y = [ax+ (1− a)y]n, where [a+ k(1− a)]n = 0

and the greatest common divisor of k and n is 1. Obviously, the greatest common
divisor of a and n (also a − 1 and n) must be 1. The value n must be odd and
greater than or equal to 3, while k > 2 (cf. [5, Lemma 4.1]).

It follows that idempotent k-translatable quasigroups satisfy particular identity
types if and only if [FT (a)]n = 0 for some function FT (a) that is determined by
the identity that de�nes the type T .

The identity types here explored determine well-known types of quasigroups,
such as quadratical (Q : xy · x = zx · yz), hexagonal (H : xy · x = y), golden
square (GS : (xy · z) · z = y), right modular (RM : xy · z = zy · x) and left modular

(LM : x·yz = z ·yx), a�ne regular octagonal (ARO : xy ·y = yx·x) and pentagonal

(P : (xy ·x)y ·x = y). In addition we examine the identities (yx ·x)x = y (denoted
as C3) and x(y · yx) = y (denoted as U).

For a given collection T of idempotent k-translatable quasigroups we de�ne
the following collection of quasigroups

T∗ = {(1− a, a) ∈ IMQ} | (a, 1− a) ∈ T},
−T = {(−a, 1 + a) ∈ IMQ | (a, 1− a) ∈ T},
T+t = {(a+ t, 1− a− t) ∈ IMQ | (a, 1− a) ∈ T},
T−t = {(a− t, 1 + t− a) ∈ IMQ | (a, 1− a) ∈ T},

where t ∈ {1, 2, . . .}.
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These two theorems, that are a modi�cation of Theorems 4.26 and 4.27 from
[5], will be used later.

Theorem 2.1. A k-translatable, naturally ordered quasigroup (Q, ·) of order n
with the multiplication de�ned by x · y = [ax + (1 − a)y]n, where a ∈ Zn and

[a+ (1− a)k]n = 0 is

(1) quadratical if and only if [2a2 − 2a+ 1]n = 0,

(2) hexagonal if and only if [a2 − a+ 1]n = 0,

(3) GS-quasigroup if and only if [a2 − a− 1]n = 0,

(4) right modular quasigroup if and only if [a2 + a− 1]n = 0,

(5) left modular quasigroup if and only if [a2 − 3a+ 1]n = 0,

(6) ARO-quasigroup if and only if [2a2]n = 1,

(7) C3 quasigroup if and only if [a3]n = 1.

Theorem 2.2. A naturally ordered quasigroup (Q, ·) of order n with the multipli-

cation de�ned by x · y = [ax+ (1− a)y]n, where a ∈ Zn and [a+ (1− a)k]n = 0 is

a k-translatable

(1) quadratical quasigroup if and only if k = [1− 2a]n,

(2) hexagonal quasigroup if and only if k = [1− a]n,

(3) GS-quasigroup if and only if k = [a+ 1]n,

(4) right modular quasigroup if and only if k = [−1− a]n,

(5) left modular quasigroup if and only if k = [a− 1]n,

(6) ARO-quasigroup if and only if k = [−1− 2a]n,

(7) C3 quasigroup if and only if [(1− a2)k]n = 1.

We will also need the following characterization of a pentagonal quasigroup
proved in [7].

Theorem 2.3. A groupoid (Q, ·) of order n > 2 is a pentagonal quasigroup induced
by the group Zn if and only if x ·y = [ax+(1−a)y]n and [a4−a3+a2−a+1]n = 0
for some a ∈ Zn such that a and n, also a − 1 and n, are relatively prime. Such

a quasigroup is k-translatable for k = [1− a− a3]n.
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3. The main theorem

In this section we �nd identities amongst various types of idempotent, k-translatable
quasigroup types T and their dual and inverse collections T∗ and −T. We then
�nd the values of HT (k), a, a

′ and k′ as functions of k.

Theorem 3.1. The following identities between classes of idempotent quasigroups

induced by the additive groups Zn are valid:

(1) Q = Q∗,

(2) H = H∗ = −C3,

(3) GS = GS∗=−RM,

(4) RM = −(GS∗),

(5) LM = RM∗,

(6) ARO = −ARO,

(7) C3 = −H = −(H∗).

Proof. In the proof we use Theorem 2.1.

(1): (a, 1− a) ∈ Q⇔ [2a2 − 2a+ 1]n = 0⇔ [2(1− a)2 − 2(1− a) + 1]n = 0⇔
(1− a, a) ∈ Q⇔ (a, 1− a) ∈ Q∗.

(2): (a, 1− a) ∈ H⇔ [a2 − a+ 1]n = 0⇔ [(1− a)2 − (1− a) + 1]n = 0⇔
(1− a, a) ∈ H⇔ (a, 1− a) ∈ H∗

and

(a, 1− a) ∈ C3⇔ [a2 + a+ 1]n = 0⇔ [(−a)2 − (−a) + 1]n = 0⇔
(−a, a+ 1) ∈ H⇔ (a, 1− a) ∈ −H. So, H∗ = H = −(−H) = −C3.

(3): GS = GS∗ = −RM and RM = −GS.

(a, 1− a) ∈ GS⇔ [a2 − a− 1]n = 0⇔ [(1− a)2 − (1− a)− 1]n = 0⇔
(1− a, a) ∈ GS⇔ (a, 1− a) ∈ GS∗

(4): (a, 1− a) ∈ RM⇔ [a2 + a− 1]n = 0⇔ [(−a)2 − (−a)− 1]n = 0⇔
(−a, a+ 1) ∈ GS⇔ (a, 1− a) ∈ −GS. So, −RM = −(−GS) = GS.

(5): RM = LM∗ and LM = RM∗.

(a, 1− a) ∈ RM⇔ [a2 + a− 1]n = 0⇔ [(1− a)2 − 3(1− a) + 1]n = 0⇔
(1− a, a) ∈ LM⇔ (a, 1− a) ∈ LM∗.

(6): (a, 1− a) ∈ ARO⇔ [2a2 − 1]n = 0⇔ [2(−a)2 − 1]n = 0⇔
(−a, a+ 1) ∈ ARO⇔ (a, 1− a) ∈ −ARO.

(7) is a consequence of the above facts.
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Theorem 3.2. If T is any one of the following types: Q, H, GS, RM, LM,

ARO, ARO∗, C3, C3∗, P, P∗, U, U∗, −LM, −(C3∗), −U, −(U∗), −(ARO∗),
−P or −(P∗), then the values of FT (a), HT (k), k, a, a

′ and k′ are as indicated

in the tables below, where all entries are calculated modulo n.

Table 3.1.

T FT (a) k HT (k)

Q 2a2 − 2a+ 1 1− 2a k2 + 1

H a2 − a+ 1 1− a k2 − k + 1

GS a2 − a− 1 a+ 1 k2 − 3k + 1

RM a2 + a− 1 −1− a k2 + k − 1

LM a2 − 3a+ 1 a− 1 k2 − k − 1

ARO 2a2 − 1 −1− 2a k2 + 2k − 1

ARO∗ 2a2 − 4a+ 1 2a− 1 k2 − 2k − 1

C3 a2 + a+ 1 ta− t 3k2 − 3k + 1

C3∗ a2 − 3a+ 3 3− a k2 − 3k + 3

P a4 − a3 + a2 − a+ 1 1− a3 − a k4 − 2k3 + 4k2 − 3k + 1

P∗ a4 − 3a3 + 4a2 − 2a+ 1 1− a3 + 2a2 − 2a k4 − 3k3 + 4k2 − 2k + 1

U a3 − 3a2 + 2a− 1 a2 − 2a+ 1 k3 − 2k2 + k − 1

U∗ a3 − a+ 1 1− a2 − a k3 − k2 + 2k − 1

Table 3.2.

T a a′ k′

Q 2a = 1− k k + 1 −k
H 1− k k 1− k

GS k − 1 k − 2 3− k

RM −1− k −k k + 1

LM k + 1 2− k k − 1

ARO 2a = −1− k −k − 1 k + 2

ARO∗ 2a = k + 1 3− k k − 2

C3 1− 3k 3k − 2 3− 3k

C3∗ 3− k −tk tk + 1

P −k3 + k2 − 3k + 1 k3 − 2k2 + 4k − 2 −k3 + 2k2 − 4k + 3

P∗ −k3 + 2k2 − 2k + 1 k3 − 3k2 + 4k − 1 −k3 + 3k2 − 4k + 2

U k3 − k2 2k − k2 k2 − 2k + 1

U∗ −1− k2 −k2 + k − 1 k2 − k + 2
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Table 3.3.

T FT (a) k HT (k)

−LM a2 + 3a+ 1 5k = 1− a 5k2 − 5k + 1

−(C3∗) a2 + 3a+ 3 7k = 3− a 7k2 − 9k + 3

−U a3 + 3a2 + 2a+ 1 7k = −a2 − 4a+ 1 7k3 − 10k2 + 5k − 1

−(U∗) a3 − a− 1 a2 + a+ 1 k3 − 5k2 + 4k − 1

−(ARO∗) 2a2 + 4a+ 1 7k = 1− 2a 7k2 − 6k + 1

−P a4+a3+a2+a+1 5k=a4−a2−2a+2 5k4−10k3+10k2−5k+1

−(P∗) a4+3a3+4a2+2a+1 11k=−a3−4a2−8a+1 11k4−21k3+16k2−6k+1

Table 3.4.

T a a′ k′

−LM 1− 5k 5k − 4 5− 5k

−(C3∗) 3− 7k 3a′ = 7k − 6 3k′ = 9− 7k

−U −7k2 + 3k − 1 −7k2 + 10k − 4 7k2 − 10k + 5

−(U∗) k2 − 4k + 1 −k2 + 5k − 3 k2 − 5k + 4

−(ARO∗) 2a = 1− 7k 7k − 5 6− 7k

−P −5k3 + 5k2 − 5k + 1 5k3−10k2+ 10k−4 −5k3+ 10k2−10k+ 5

−(P∗) −11k3+ 10k2−6k + 1 11k3−21k2+16k−5 −11k3+ 21k2−16k+ 6

Proof. The values of k listed in Table 3.1, column 3, can be checked using the
fact that [a + k(1 − a)]n = 0. In the case of P, [a + (1 − a − a3)(1 − a)]n =
[a4 − a3 + a2 − a+ 1]n = 0. Note that C3 quasigroups have order n = 3t+ 1 (cf.
[2]) and so [2t]n = [−1−t]n. Therefore, [a+(ta−t)(1−a)]n = [−ta2+2ta−t+a]n =
[−t(a2+a+1)]n = 0, which proves that k = [ta− t]n in C3 quasigroups with order
n = 3t+ 1.

Once the values of k in Table 3.1 have been veri�ed, these can be used to check
the values of a, listed in Table 3.2, as a function of k, using also the value of
FT (a). For example, in the case of P∗ since k = [1 − a3 + 2a2 − 2a]n, using the
fact that [a4 − 3a3 + 4a2 − 2a+ 1]n = 0 it follows that k2 = [−a3 + a2 − a]n and
k3 = [−2a2 + a − 1]n. Then, we get [−k3 + 2k2 − 2k + 1]n = [(2a2 − a + 1) +
(−2a3 + 2a2 − 2a) + (−2 + 2a3 − 4a2 + 4a) + 1]n = a. Similarly, for U we can
calculate that k2 = [a2 − a]n and k3 = [a2]n. Hence, a = [k3 − k2]n. Using these
values of a as a function of k, substituting them into the formula 0 = [FT (a)]n
gives the value of HT (k) listed in column 3 of Table 3.1. Alternatively, we can
substitute the value of a as a function of k into the formula [a + k(1 − a)]n = 0.
So, with P for example, [a+k(1−a)]n = 0 and a = [−k3+k2−3k+1]. Therefore,
0 = [−k3 + k2 − 3k + 1 + k(k3 − k2 + 3k)]n = [k4 − 2k3 + 4k2 − 3k + 1]n.
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The listings of the values of a′ in Table 3.2 can be checked using the fact that
[ka]n = [k + a]n. For example, in Q, [2a2 − 2a + 1]n = 0 and k = [1 − 2a]n.
Then [a(k + 1)]n = [(1 − 2a) + 2a]n = 1 and so a′ = k + 1. In the case of C3∗,
[(−tk)a]n = [−t(k + a)]n = [−t((3− a) + a)]n = [−3t]n = 1 and so a′ = [−tk]n in
a C3∗ quasigroup of order n = 3t+ 1.

The values of k′ in Table 3.2 follow from the fact that k′ = [1− a′]n, which in
turn follows from the fact that 0 = [b+ k′a]n = [k′a+(1− a)]n = [k′+(1− a)a′]n.

−LM: If (a, 1 − a) ∈ −LM, then (−a, a + 1) ∈ LM and, by Theorem 2.1, 0 =
[(−a)2−3(−a)+1]n = [a2+3a+1]n. Now 1 = [a(−a−3)]n and so, a′ = [−a−3]n.
But k′ = [1− a′]n = [a+ 4]n. Then, 1 = [kk′]n = [k(a+ 4)]n = [5k + a]n and so,
[5k]n = [1 − a]n and a = [1 − 5k]n. Therefore, a′ = [−a − 3]n = [5k − 4]n and
k′ = [a+4]n = [5−5k]n. Finally, 1 = [kk′]n = [5k−5k2]n and so, 0 = [5k2−5k+1]n.

−(C3∗): If (a, 1 − a) ∈ −(C3∗), then (−a, 1 + a) ∈ C3∗ and, by Theorem 2.1,
0 = [(−a)3 − 3(−a) + 3]n = [a2 + 3a + 3]n. But k = [a(k − 1)]n and so, 0 =
[(k − 1)a2 + 3(k − 1)a + 3(k − 1)]n which, using the fact that [ka]n = [k + a]n,
implies 0 = [7k + a − 3]n. Therefore, [7k]n = [3 − a]n and a = [3 − 7k]n. Now,
1 = [kk′]n = [a(k − 1)k′]n = [(3 − 7k)(k − 1)k′]n = [10 − 7k − 3k′]n and so
[3k′]n = [9 − 7k]n. The last gives 3 = [9k − 7k2]n and so, 0 = [7k2 − 9k + 3]n.
Moreover, k′ = [1−a′]n implies [3k′]n = [3−3a′]n and [3a′]n = [3−3k′]n = [7k−6]n.

−U: If (a, 1 − a) ∈ −U, then (−a, a + 1) ∈ U and, according to Table 3.1,
0 = [(−a)3 − 3(−a) + 2(−a)− 1]n = [a3 + 3a2 + 2a+ 1]n. Using this fact and the
fact that k = [a(k − 1)]n, the identity 0 = [(k − 1)3(a3 + 3a2 + 2a + 1)]n implies
0 = [7k3 − 10k2 + 5k − 1]n. Then, 1 = [7k3 − 10k2 + 5k]n = [k(7k2 − 10k + 5)]n
implies k′ = [7k2 − 10k + 5]n. Consequently, a

′ = [1− k′]n = [−7k2 + 10k − 4]n.
Using the fact that [ka]n = [k + a]n, the identity 0 = [k(a3 + 3a2 + 2a + 1)]n

implies [7k]n = [−a2−4a+1]n. Also, since 1 = [7k+a2+4a]n, a
′ = [7ka′+a+4]n

we obtain a = [a′ − 4− 7ka′]n = [(−7k2 + 10k − 4)− 4− 7k(−7k2 + 10k − 4)]n =
[49k3 − 77k2 + 38k − 8]n = [7(7k3 − 10k2 + 5k − 1) + (−7k2 + 3k − 1)]n. Thus,
a = [−7k2 + 3k − 1]n.

−(U∗): If (a, 1 − a) ∈ −(U∗), then (−a, 1 + a) ∈ U∗. Hence, by Table 3.1,
0 = [(−a)3 − (−a) + 1]n = [a3 − a − 1]n. Then, [a + (a2 + a + 1)(1 − a)]n =
[−a3 + a+1]n = 0 implies k = [a2 + a+1]n. But k = [a(k− 1)]n, so [(k− 1)k]n =
[(k−1)(a2+a+1)]n = [3k+a−1]n. Hence, a = [k2−4k+1]n. Also, k = [a(k−1)]n =
[(k2−4k+1)(k−1)]n = [k3−5k2+5k−1]n and so, [k3−5k+4k−1]n = 0. Then,
[k(k2−5k+4)]n = 1. Thus, k′ = [k2−5k+4]n and a′ = [1−k′]n = [−k2+5k−3]n.

−(ARO∗): If (a, 1−a) ∈ −(ARO∗), then (−a, 1+a) ∈ ARO∗ and, by Table 3.1,
0 = [2(−a)2 − 4(−a) + 1]n = [2a2 + 4a + 1]n. Since k = [a(k − 1)]n we also have
0 = [(k− 1)2(2a2 +4a+1)]n = [7k2− 6k+1]n. So, 1 = [6k− 7k2]n = [k(6− 7k)]n
and therefore, k′ = [6 − 7k]n and a′ = [7k − 5]n. Now, 0 = [k(2a2 + 4a + 1)]n
together with [ka]n = [k+ a]n imply 0 = [2a+ 7k− 1]n. So, [2a]n = [1− 7k]n and
[7k]n = [1− 2a]n.
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−P: If (a, 1 − a) ∈ −P, then (−a, 1 + a) ∈ P. Hence, by Table 3.1, we have
0 = [(−a)4 − (−a)3 + (−a)2 − (−a) + 1]n = [a4 + a3 + a2 + a + 1]n. Using the
fact that [ka]n = [k + a]n, the identity 0 = [k(a4 + a3 + a2 + a + 1)]n implies
0 = [5k + a3 + 2a2 + 3a − 1]n. Applying k = [a(k − 1)]n to the identity 0 =
[(k−1)4(a4+a3+a2+a+1)]n we obtain 0 = [5k4−10k3+10k2−5k+1]n. Thus,
1 = [k(−5k3 + 10k2 − 10k + 5)]n. Consequently, k′ = [−5k3 + 10k2 − 10k + 5]n
and a′ = [5k3 − 10k2 + 10k − 4]n. Now, from [(−5k3 + 5k2 − 5k + 1)a′]n =
[−25k6 + 75k5 − 125k4 + 125k3 − 80k2 + 30k − 4]n = [−5k2(5k4 − 10k3 + 10k2 −
5k+1)+5k(5k4− 10k3 +10k2− 5k+1)− 5(5k4− 10k3 +10k2− 5k+1)+1]n = 1
we conclude that a = [−5k3 + 5k2 − 5k + 1]n.

−(P∗): If (a, 1−a) ∈ −(P∗), then (−a, 1+a) ∈ P∗. Hence, by Table 3.1, we have
0 = [(−a)4 − 3(−a)3 + 4(−a)2 − 2(−a) + 1]n = [a4 + 3a3 + 4a2 + 2a+ 1]n. Using
the fact that [ka]n = [k+a]n, the identity 0 = [k(a4+3a3+4a2+2a+1)]n implies
0 = [11k+a3+4a2+8a−1]n. Then, using the fact that k = [a(k−1)]n, the identisty
0 = [(k−1)4(a4+3a3+4a2+2a+1)]n implies 0 = [11k4−21k3+16k2−6k+1]n.
This means that 1 = [−11k3+21k2−16k+6]n. So, k

′ = [−11k4−21k3+16k2+6]n
and a′ = [11k3−21k2+16k−5]n. Finally, using 0 = [11k4−21k3+16k2−6k+1]n,
we can calculate that [aa′]n = 1 for a = [−11k3 + 10k2 − 6k + 1]n.

This completes the proof of Theorem 3.2

Theorem 3.3. Let (Q, ·) be an idempotent k-translatable quasigroup of order n.
If m divides n, then (Q, ·) has an idempotent k′-translatable subquasigroup of order

m, where k′ = [k]m.

Proof. An idempotent k-translatable quasigroup (Q, ·) of order n is induced by the
group Zn and its automorphism ϕ(x) = [ax]n, where a and n are relatively prime.
If m divides n, then Zn has a subgroup (H,+) of order m. It is isomorphic to the
group Zm. Since a and m are relatively prime too, ϕ calculated modulo m, is an
automorphism of the group Zm and [a+ (1− a)k′]m = 0 for k′ = [k]m. So, (H, ·)
is an idempotent k′-translatable quasigroup induced by Zm and consequently by
the subgroup (H,+).

4. Idempotent k-translatable quasigroups for k 6 10

Using our Theorem 3.2 for each value of k we can calculate all idempotent k-
translatable quasigroups for the types of quasigroups discussed in the previous
section. To calculate the orders of these quasigroups we bear in mind that the
order n is odd and that the values of FT (a) and HT (k) calculated in Tables 3.1
to 3.4 are equivalent to 0 modulo n. For example, for k = 5 in H, we have
0 = [k2 − k + 1]n = [21]n = [3 · 7]n. This means that for k = 5 the possible orders
n > k are 7 or 21. Using Table 3.2 we see that for n = 7, a = [1−k]7 = [−4]7 = 3;
for n = 21, a = [−4]21 = 17. Thus, (3, 5) and (17, 5) are members of H. Similarly
for C3∗ and k = 6 we have HT (6) = 21, so possible order n of a 6-translatable C3∗
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quasigroup is 3, 7 or 21. But, in this case should be n > 6 and n = 3t+1. Thus a
6-translatable C3∗ quasigroup has order 7. Then, by Table 3.2, a = [−3]7 = 4 and
[FT (4)]7 = 0. Hence a multiplication of a 6-translatable C3∗ quasigroup of order
7 is given by x · y = [4x+ 4y]7. Therefore (4, 4) ∈ C3∗.

Calculations for other cases are similar and we skip them. Obtained results
are presented in Tables 4.1 and 4.2.

Table 4.1.

T k = 2 k = 3 k = 4 k = 5 k = 6

Q (2, 4) (4, 2) (7, 11) (11, 3) (16, 22)

H (2, 2) (5, 3) (10, 4) (3, 5), (17, 5) (26, 6)

GS − − (3, 3) (4, 8) (5, 15)

RM (2, 4) (7, 5) (14, 6) (23, 7) (34, 8)

LM − (4, 2) (5, 7) (6, 14) (7, 23)

ARO (2, 6) (5, 3) (9, 15) (14, 4) (20, 28)

ARO∗ − − (6, 2) (3, 5) (15, 9)

C3 (2, 6) (11, 9) (26, 12) (47, 15) (4, 4), (9, 5)
(74, 18)

C3∗ − − (6, 2) (11, 3) (4, 4)

P (2, 10) (4, 2), (7, 5) (122, 60) (347, 115) (794, 198)
(29, 27)

P∗ (2, 4) (17, 15) (5, 7), (82, 40) (4, 8), (9, 23) (10,2), (58,14)
(257, 85) (626, 156)

U − (7, 5) (3, 3), (6, 2) (21, 59) (31, 119)
(13, 23)

U∗ (2, 6) (13, 11) (3, 3), (5, 7) (83, 27) (154, 38)
(38, 18)

−LM (2, 10) (17, 15) (42, 20) (77, 25) (122, 30)

−(C3∗) (2, 12) (8, 6), (21, 19) (54, 26) (3, 5), (6, 14) (28, 40)
(101, 33)

−(ARO∗) (2, 16) (13, 11) (31, 59) (56, 18) (26,6), (88,130)

−U (2,4) (58, 56) (206, 102) (4, 8), (16, 44) (946, 236)
(2, 24) (488, 162)

−(U∗) − − − (6, 14) (13, 47)

−P (2, 30) (107, 105) (5, 7), (25, 47) (4, 8), (49, 143) (3722, 930)
(522, 260) (1577, 525)

(3, 3), (5, 7)
−(P∗) (2, 60) (7,5),(22,20) (22, 10), (38, 18) (3467, 1155) (26,6), (266,66)

(227, 225) (53,103),(115,327) (8210, 2052)
(1138, 568)
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Table 4.2.

T k = 7 k = 8 k = 9 k = 10

Q (22, 4) (3, 11), (29, 37) (37, 5) (46, 56)

H (37, 7) (12, 8), (50, 8) (65, 9) (4, 10), (82, 10)

GS (6, 24) (7, 35) (8, 4), (8, 48) (9, 63)

RM (3, 9), (47, 9) (62, 10) (79, 11) (98, 12)

LM (8, 34) (9, 3), (9, 47) (10, 62) (11, 79)

ARO (27, 5) (35, 45) (44, 6) (3, 15)

ARO∗ (4, 14) (28, 20) (5, 27) (45, 35)

C3 (107, 21) (3, 11), (146, 24) (5, 27) (242, 30)

C3∗ (27, 5) (38, 6) (13, 7), (51, 7) (66, 8)

P (27, 5), (52, 10) (190, 472) (8, 4), (308, 184) (6, 6), (593, 169)
(1577, 315) (2834, 472) (4727, 675) (7442, 930)

(53, 259) (5, 27), (20, 132) (6, 6), (35, 27)
P∗ (1297, 259) (2402, 400) (4097, 585) (28, 94), (523, 148)

(6562, 820)

U (43, 209) (6, 12), (11, 13) (4, 20), (23, 3) (91, 719)
(57, 335) (73, 43), (73, 503)

(13, 7), (23, 13))

U∗ (257, 51) (398, 66) (13, 83), (51, 83) (818, 102)
(583, 83)

−LM (177, 35) (242, 40) (13, 7), (317, 45) (6, 6), (33, 9)
(402, 50)

−(C3∗) (237, 47) (326, 54) (103, 61), (429, 61) (546, 68)

−(ARO∗) (127, 25) (173, 229) (226, 32) (286, 356)

−U (66, 324) (12, 8), (46, 112) (3796, 542) (19, 5), (118146)
(1622, 324) (2558, 426) (5378, 672)

−(U∗) (22, 4) (33, 191) (46, 314) (6, 6), (12, 38)
(61, 17), (61, 479)

−P (3, 9), (138, 684) (9, 3), (623, 829) (37, 5), (562, 80) (8, 24), (735, 587)
(7527, 1505) (13682, 2280) (22997, 3285) (36402, 4550)

−(P∗) (13, 59), (48, 234) (30242, 5040) (4359, 7263) (6, 6), (6403, 1829)
(16627, 3325) (50843, 7263) (80482, 10060)

Note that similar results can be obtained for negative values of k. Obtained
quasigroups will be [k]n-translatable quasigroups of order n > 2, where n is a
divisor of HT (k).

For example, for U∗, where 0 = [k3 − k2 + 2k− 1]n, substituting k = −5 gives
0 = [−161]n = [161]n = [7 · 23]n. If n = 7, then a = [−1 − k3]n = [−26]7 = 2,
which gives x · y = [2x + 6y]7. Since [23 − 2 + 1]7 = 0, (2, 6) ∈ U∗. If n = 23,
then a = [−26]23 = [−3]23 = 20 and [(−3)3 − (−3) + 1]23 = 0. So, (20, 4) ∈ U∗.
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In this case, k = [−5]23 = 18. Finally, if n = 161, then a = [−26]161 = 135,
(135, 27) ∈ U∗ and k = [−5]161 = 156.

In a similar way we can calculate analogous results for quasigroups other types
T mentioned in the previous sections.

Below we present obtained results for U∗, where k ∈ {−1,−2, . . . ,−10}, once
again omitting the detailed calculations.

Table 4.3.

k n a U∗ [k]n

−1 5 3 (3, 3) 4

−2 17 12 (16, 6) 15

−3 43 33 (33, 11) 40

−4 89 72 (72, 18) 85

−5 161 = 7 · 23 [−26]n (2, 6), (20, 4), (135, 27) 2, 18, 156

−6 265 = 5 · 53 [−37]n (3, 3), (16, 38), (228, 38) 4, 47, 259

−7 407 = 11 · 37 [−50]n (5, 7), (24, 14), (357, 51) 4, 30, 400

−8 593 528 (528, 66) 585

−9 829 747 (747, 83) 820

−10 1121 = 19 · 59 [−101]n (13, 7), (17, 43), (1020, 102) 9, 49, 1111

In [10] Vidak proved that if (Q, ·) is a pentagonal quasigroup then (Q, ◦),
de�ned as x ◦ y = (yx · x)x · y, is a golden square quasigroup. If the pentagonal
quasigroup (Q, ·) is also translatable and of order n then, as we have seen, x · y =
[ax+(1−a)y]n, with [a4−a3+a2−a+1]n = 0 and x◦y = [(a−a4)x+(1+a4−a)y]n.
We can easily check that (Q, ◦) ∈ GS using Table 3.1. Since [a5+1]n = 0, we have
also [(a− a4) + (1− a4 + a)(1 + a4 − a)]n = 0. Therefore, (Q, ◦) is [1− a4 + a]n-
translatable. So, for every translatable pentagonal quasigroup of order n there
is a translatable golden square quasigroup of order n. Note that by [7] a �nite
pentagonal quasigroup has order 5s or 5s + 1. By Table 4.1, a 6-translatable
GS-quasigroup has order 19. Hence, it is not pentagonal.

Notice that {(3, 9), (9, 3)} ⊆ −P. Accordingly, we have the following de�nition.

De�nition 4.1. The set dp(T) = {(a, 1 − a) | (a, 1 − a), (1 − a, a) ∈ T} is called
the set of T dual pairs.

If T ∈ {Q,H,GS} then, by Theorem 3.1, T = T∗ and dp(T) = T = dp(T∗).
From Table 3.1, it follows that if (a, 1 − a) ∈ RM ∩ RM∗ = RM ∩ LM, then
0 = [a2 + a− 1]n = [a2 − 3a+ 1]n and so [4a]n = 2. Thus 0 = [4(a2 + a− 1)]n =
[2a − 2]n gives [2a]n = 2. Hence, 2 = [4a]n = [2(2a)]n = 4 and so [2]n = 0. This
is impossible because 2 < a < n. Similarly, LM ∩ LM∗ = ∅. In this way we have
proved:

Proposition 4.2. dp(LM) = ∅ = dp(RM).
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Proposition 4.3. dp(C3) = {(4, 4)} = dp(C3∗).

Proof. C3 and C3∗-quasigroups have order n = 3t+ 1.
If (a, 1− a) ∈ dp(C3), then, by Table 3.1, we have 0 = [(1− a)2 +(1− a)+ 1]n

= [a2−3a+3]n which together with 0 = [a2+a+1]n gives [4a]n = 2. Consequently,
0 = [4(a2 + a + 1)]n = [2a + 6]n, i.e., [2a]n = [−6]n. So, 2 = [4a]n = [2(2a)]n =
[−12]n which means that 0 = [14]n. But n = 3t+1, so n = 7. Therefore, [2a]7 = 1
and a = 4.

If (a, 1 − a) ∈ dp(C3∗), then, by Table 3.1, we have 0 = [a2 − 3a + 3]n.
Also, 0 = [(1 − a)2 − 3(1 − a) + 3]n = [a2 + a + 1]n and consequently, 0 =
[a2 − 3a + 3]n = [(a2 + a + 1) − 4a + 2]n = [−4a + 2]n. So, [4a]n = 2. Thus
0 = [4(a2−3a+3)]n = [2a+6]n, i.e., [2a]n = [−6]n. Hence 2 = [2(2a)]n = [−12]n.
So, [14]n = 0 and, as in the previous case, n = 7, a = 4.

Proposition 4.4. dp(ARO) = ∅ = dp(ARO∗).

Proof. 0 = [2a2− 1]n and 0 = [2(1− a)2− 1]n = [2a2− 4a+1]n. So, [4a− 2]n = 0
and 2 = [4a2]n = [2a]n. Hence, 1 = [2a2]n = [2a]n = 2, contradiction.

Proposition 4.5. dp(U) = {(3, 3)} = dp(U∗).

Proof. If (a, 1 − a) ∈ dp(U), then 0 = [(1 − a)3 − 3(1 − a)2 + 2(1 − a) − 1]n =
[−a3 + a− 1]n, which gives [a3]n = [a− 1]n. Therefore, 0 = [a3− 3a2 +2a− 1]n =
[−3a2+3a−2]n, i.e., [3a2]n = [3a−2]n. Hence, [3(a−1)]n = [3a3]n = [3a2−2a]n =
[a− 2]n. So, [2a]n = 1. Thus [a2]n = [2a(a2)]n = [2(a− 1)]n = [2a− 2]n = [−1]n.
Consequently, a = [(2a)a]n = [−2]n. This together with [a3]n = [a − 1]n implies
n = 5 and a = 3.

Now, if (a, 1−a) ∈ dp(U∗), then 0=[a3−a+1]n and 0 = [(1−a)3−(1−a)+1]n =
[−(a3−a+1)+3a2−3a+2]n = [3a2−3a+2]n, by Table 3.1. Thus, [3a

2]n = [3a−2]n
and 0 = [3a2 − 2a+ 3]n = [(3a− 2)a− 3a+ 3]n = [−2a+ 1]n. Hence, [2a]n = 1 =
[4a2]n. So, [a+ 1]n = [(2a)a+ 4a2]n = [6a2]n = [6a− 4]n = [3− 4]n = [−1]n. So,
a = [−2]n and 1 = [2a]n = [−4]n. Thus, 0 = [5]n and a = 3.

Proposition 4.6. dp(−LM) = {(6, 6)}.

Proof. If (a, 1−a)∈dp(−LM), then 0=[a2+3a+1]n and 0=[(1−a)2+3(1−a)+1]n
= [a2 − 5a + 5]n = [(a2 + 3a + 1) − 8a + 4]n = [−8a + 4]n. Hence, [8a]n = 4 and
0 = [8(a2 + 3a+ 1)]n = [4a+ 20]n. Thus, 4 = [2(4a)]n = [−40]n and so [44]n = 0.
Since n must be odd (cf. [5, Lemma 4.1]), n = 11 and [8a]11 = 4. This equation
has only one solution a = 6.

The proofs of the next two propositions are very similar to the proof of Propo-
sition 4.6.

Proposition 4.7. dp(−(C3∗) = {(10, 10)}.

Proposition 4.8. dp(−(U∗)) = {(6, 6)}.
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Proposition 4.9. dp(−(ARO∗)) = {(4, 4)}.

Proof. For (a, 1 − a) ∈ dp(−(ARO∗)) we have 0 = [2a2 + 4a + 1]n. Also 0 =
[2(1 − a)2 + 4(1 − a) + 1]n = [2a2 − 8a + 7]n = [(2a2 + 4a + 1) − 12a + 6]n =
[−12a + 6]n. Hence, [12a]n = 6 and 0 = [6(2a2 + 4a + 1)]n = [6a + 18]n. Thus,
6 = [2(6a)]n = [−36]n and so [42]n = 0. Since, n must be odd, n is equal to 3, 7
or 21. For n = 3 the possible values of a are 1 or 2. These values do not satisfy
the condition [2a2 + 4a + 1]3 = 0, so the case n = 3 is impossible. For n = 21
the equation [12a]21 = 6 is solved only by a = 4, but then [2a2 + 4a + 1]21 6= 0,
This also is impossible. The equation [12a]7 = 6 has only one solution a = 4. It
satis�es the equation [2a2 + 4a+ 1]7 = 0. Hence dp(−(ARO∗)) = {(4, 4)}.

Proposition 4.10. dp(−U) = {(12, 12)}).

Proof. For the pair (a, 1 − a) ∈ dp(−U) we have 0 = [a3 + 3a2 + 2a + 1]n and
0 = [(1−a)3+3(1−a)2+2(1−a)+1]n = [−a3+6a2−11a+7]n = [9a2−9a+8]n.
Hence, [9a2]n = [9a − 8]n which together with 0 = [9(a3 + 3a2 + 2a + 1)]n gives
[46a]n = [23]n. Consequently, [a2]n = [−22a + 40]n and [207a]n = [368]n. So,
[23a]n= [230a−207a]n =[115−368]n = [−253]n. Thus, [23]n = [46a]n = [−506]n.
Therefore n = 529 or n = 23.

For n = 529 we have [23a]529 = [−253]529 = 276 and a = 12. But such a does
not satisfy [a3 + 3a2 + 2a+ 1]529 = 0. If n = 23, then from [a2]23 = [−22a+ 40]23
it follows that a = 12. Such a satis�es [a3 + 3a2 + 2a+ 1]23 = 0.

Proposition 4.11. dp(P) = {(6, 6)} = dp(P∗).

Proof. If (a, 1−a) ∈ dp(P), then 0 = [a4−a3+a2−a+1]n, i.e., [a
5]n = [−1]n. In

this case also 0 = [(1−a)4−(1−a)3+(1−a)2−(1−a)+1]n = [−2a3+3a2−a]n. So,
[2a3]n = [3a2 − a]n, whence, multiplying by a3, a2 and a we obtain, respectively,
[a4]n = [2a − 3]n, [a

3]n = [3a4 + 2]n = [6a − 7]n and [a2]n = [3a3 − 2a4]n =
[14a−15]n, which together with [a4−a3+a2−a+1]n = 0 gives [9a]n = 10. Thus,
[10a]n = [9a2]n = 5 . So, a = [−5]n and [55]n = 0. Hence n is equal to 5, 11 or
55. The case n = 5 is impossible because in this case a = 0, Also the case n = 55
is impossible since a and n should be relatively prime. For n = 11, a = 6 satis�es
these conditions.

If (a, 1 − a) ∈ dp(P∗), then 0 = [a4 − 3a3 + 4a2 − 2a + 1]n. In this case also
0 = [(1− a)4− 3(1− a)3 +4(1− a)2− 2(1− a) + 1]n = [a4− a3 + a2− a+1]n. So,
(a, 1 − a) ∈ P ∩P∗. Also (1 − a, a) ∈ P ∩P∗. Thus, dp(P∗) ⊆ dp(P) = {(6, 6)}.
Direct computation shows that (6, 6) ∈ dp(P∗). Therefore dp(P) = dp(P∗).

Proposition 4.12. dp(−P) = {(3, 9), (9, 3), (16, 16), (47, 295), (295, 47)}.

Proof. If (a, 1− a) ∈ dp(−P), then, by Table 3.3,

[a4 + a3 + a2 + a+ 1]n = 0, (1)
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which implies [a5]n = 1. Then also, 0 = [(1−a)4+(1−a)3+(1−a)2+(1−a)+1]n =
[a4 − 5a3 + 10a2 − 10a+ 5]n, i.e.,

[a4]n = [5a3 − 10a2 + 10a− 5]n. (2)

From this, multiplying by a and 4, we obtain [5a4]n = [10a3− 10a2 +5a+1]n and
[4a4]n = [20a3 − 40a2 + 40a− 20]n. So,

[a4]n = [−10a3 + 30a2 − 35a+ 21]n.

Therefore, [−50a3 + 150a2 − 175a + 105]n = [5a4]n = [10a3 − 10a2 + 5a + 1]n,
whence, as a consequence, we get

[60a3]n = [160a2 − 180a+ 104]n.

On the other hand, (1) together with (2) imply [6a3]n = [9a2−11a+4]n. Thus,
[90a2 − 110a+ 40]n = [60a3]n = [160a2 − 180a+ 104]n. So,

[70a2]n = [70a− 64]n. (3)

From this, multiply successively by a4, a and a2 we get [70a]n = [70− 64a4]n,
[70a3]n = [6a − 64]n and [70a4]n = [6a2 − 64a]n, which, together with (1), gives
0 = [70(a4 + a3 + a2 + a+ 1)]n = [6a2 + 82a− 58]n, i.e.,

[6a2]n = [58− 82a]n. (4)

Since [64a2]n = [70a−6a2−64]n, by (3), we also have [4a2]n = [64a2−60a2]n =
[(70a − 6a2 − 64) − (580 − 820a)]n = [890 − 6a2 − 644]n and so, [890a − 644]n =
[4a2 + 6a2]n = [4a2 + 58 − 82a]n. Hence, [4a2]n = [972a − 702]n. Then [2a2]n =
[6a2−4a2]n = [760−1054a]n. Thus, [972a−702]n = [2(2a2]n = [1520−2108a]n. So,
[3080a]n = [2222]n and [3080a2]n = [2222a]n. Now, using this equation and (3),
we obtain 0 = [44(70a2−70a+64)]n = [3080a2−3080a+2816]n = [−858a+2816]n.
Thus, [858a]n = [2816]n, which implies, [2574a]n = [3(858a)]n = [8448]n. Hence,
[506a]n = [3080a − 2574a] = [−6226]n, [352a]n = [858a − 506a] = [9042]n and
[308a]n = [2(858a)− 4(352a)]n = [−30536]n. Consequently,

[44a]n = [352a− 308a]n = [39578]n. (5)

But [39578]n= [44a]n= [308a− 6(44a)]n= [−30536− 237468]n= [−268004]n. So,
[307582]n = 0. Since 307582 = 2× 112 × 31× 41 and n must be an odd number,
the possible values of n are 11, 31, 41, 121, 341, 451, 1 271, 3 751, 4 961, 13 981
and 153 791.

We will consider each case separately. Note �rst that (a, b) ∈ dp(−P) if and
only if both a and b satisfy (1) and [a+b]n = 1. Then a and b satisfy the congruence
(5) too.
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(n = 11). Since k < n = 11, from Tables 4.1 and 4.2 it follows that in this case
only pairs (3, 9) and (9, 3) are dual.

(n = 31). Then (5) reduces to the congruence 13a ≡ 22(mod 31). Since the
greatest common divisor of 13 and 31 is 1, this congruence has only one solution
a = 16. This solution satis�es (1). Obviously, (16, 16) ∈ dp(−P).

(n = 41). Then (5) has the form 3a ≡ 13(mod 41) and has only one solution
a = 18. The pair (18, 24) ∈ −P, but 24 does not satis�es the above congruence.
Thus for n = 41 the set dp(−P) is empty.

(n = 121). Then 44a ≡ 11(mod 121). Since the greatest common divisor of 44
and 11 is 11, this congruence has 11 solutions. Any a satisfying the congruence
44a ≡ 11(mod 121) satis�es also the congruence 4a ≡ 1(mod 11), which has only
one solution a = 3. Thus the set S of solutions of 44a ≡ 11(mod 121) consists of
the numbers the form 3 + 11k, k = 0, 1, 2, . . . , 10. Since for any a, b ∈ S we have
[a + b]11 = 6, so [a + b]121 6= 1. This means that for n = 121 the set dp(−P) is
empty.

(n = 341). Then 44a ≡ 22(mod 341). This congruence has 11 solutions. Any
a satisfying this congruence satis�es also the congruence 4a ≡ 2(mod 31), which
has only one solution a = 16. Thus the solutions of 44a ≡ 22(mod 341) have the
form x = 16 + 31k, k = 0, 1, 2, . . . , 10. Direct calculations shows that only pairs
(47, 295) and (295, 47) are dual.

(n = 451). Then 44a ≡ 341(mod 451). This congruence has 11 solutions. Any
a satisfying this congruence also satis�es the congruence 4a ≡ 31(mod 41), which
has only one solution a = 18. Thus S = {18 + 41k | k = 0, 1, . . . , 10} is the set of
solutions of 44a ≡ 341(mod 451). Since [a+ b]41 = 36 for all a, b ∈ S, in the case
n = 451 there no dual pairs.

(n = 1271). Then 44a ≡ 177(mod 1271). This congruence is satis�ed only by
a = 264. The pair (264, 1008) ∈ −P, but 1008 does not satisfy this congruence.
So, for n = 1271 the set dp(−P) is empty.

(n = 3751). Then 44a ≡ 2068(mod 3751). This congruence has 11 solutions. Any
a satisfying this congruence satis�es also the congruence 4a ≡ 188(mod 341), which
has only one solution x = 47. Thus S = {47 + 341k | k = 0, 1, . . . , 10} contains all
solutions of the congruence 44a ≡ 2068(mod 3751). Since [a + b]341 = 94 for all
a, b ∈ S, in this case there no dual pairs.

(n = 4961). Then 44a ≡ 4851(mod 4961). This congruence has 11 solutions. Any
a satisfying this congruence satis�es also the congruence 4a ≡ 441(mod 451), which
has only one solution a = 223. Thus S = {223 + 451k | k = 0, 1, . . . , 10} contains
all solutions of the congruence 44a ≡ 441(mod 4851). Since [a+ b]451 = 446 for all
a, b ∈ S, also in this case there no dual pairs.

(n = 13 981). Then 44a ≡ 11616(mod 13981). This congruence has 11 solutions.
Proceeding as in previous cases we can see that S = {264+1271k | k = 0, 1, . . . , 10}
contains all solutions of this congruence. Since [a+ b]1271 = 528 for all a, b ∈ S, in
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this case there no dual pairs too.

(n = 153 791). Then 44a ≡ 39578(mod 153791). Analogously as in previous cases
we can see that the set S = {7890+13981k | k = 0, 1, . . . , 10} contains all solutions
of this congruence and [a+ b]13981 6= 1 for a, b ∈ S. So, in this case there no dual
pairs.

This completes the proof.

Proposition 4.13. dp(−(P∗)) = {(3, 3), (5, 7), (6, 6), (7, 5)}.

Proof. If (a, 1− a) ∈ dp((−P)∗), then, by Table 3.3,

[a4 + 3a3 + 4a2 + 2a+ 1]n = 0 (6)

and 0 = [(1−a)4+3(1−a)3+4(1−a)2+2(1−a)+1]n = [a4−7a3+19a2−23a+11]n,
i.e.,

[a4]n = [7a3 − 19a2 + 23a− 11]n. (7)

Comparing (6) with (7) we obtain

[10a3]n = [15a2 − 25a+ 10]n. (8)

Multiplying this equation by 11 and a we obtain [110a3]n = [165a2− 275a+110]n
and [10a4]n = [15a3 − 25a2 + 10a]n.

From (6) we have [10a4]n = [−30a3 − 40a2 − 20a − 10]n, which together with
the last equation implies [45a3]n = [−15a2− 30a− 10]n. Comparing this equation
with (8) multiplied by 4 we obtain

[5a3]n = [−75a2 + 70a− 50]n. (9)

Consequently, [−150a2+140a−100]n = [10a3]n = [15a2−25a+10]n. So, [165a
2]n =

[165a− 110]n. Thus,

[110a3]n = [165a2 − 275a+ 110]n = [−110a]n (10)

and [110a4]n = [−110a2]n. Now, multiplying (6) by 110 and applying the last two
expressions we obtain [330a2]n = [110a− 110]n. This and (10) imply [−330a]n =
[330a3]n = [110a2 − 110a]n. So, [110a2]n = [−220a]n and [110a3]n = [−220a2]n.
Hence [−110a]n = [110a3]n = [−220a2]n. Thus [110a]n = [220a2]n. Consequently,
[110a− 110]n = [330a2]n = [220a2 +110a2]n = [110a+110a2]n. Hence [110a

2]n =
[−110]n. Therefore, [110a]n = [220a2]n = [−220]n and [−110]n = [110a2] =
[−220a]n = [440]n, i.e., [550]n = 0. Since n must be odd, the possible values of n
are 5, 11, 25, 55 and 275.

(n = 5). Direct calculation shows that in this case only (3, 3) ∈ dp(−(P)∗).

(n = 11). In this case only (5, 7), (6, 6), (7, 5) ∈ dp(−(P∗)).
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(n = 25). Any a satisfying (6) and (7) satis�es also (9), which for n = 25 has
the form [5a3]25 = [20a]25. Solutions of this equation also satisfy the equation
[a3]5 = [4a]5. This equation has two solutions that are relatively prime to 5,
namely a = 2 and a = 3. Thus the solutions of [5a3]25 = [20a]25 should be in one of
the following sets: S′ = {2+5k | k = 0, 1, 2, 3, 4} or S′′ = {3+5k | k = 0, 1, 2, 3, 4}.
For (a, b) ∈ dp(−(P∗)), [a+ b]25 = 1. This is possible only for a, b ∈ S′′. But it is
easy to check that none of a ∈ S′′ satis�es (6). (Also none of a ∈ S′ satis�es (6).)
Hence for n = 25 the set dp(−(P∗)) is empty.

(n = 275). The number of solutions of the congruence (9) calculated modulo
275 = 11 × 25 is equal to t1 × t2, where t1 is the number of the solutions of
(9) calculated modulo 11 and t2 is the number of the solutions of (9) calculated
modulo 25 (cf. [11]). Since t2 = 0, for n = 275 the set dp(−(P∗)) is empty.

5. Moving from one type to another

The mappings T 7→T∗, T 7→ −T, T 7→T+t and T 7→T−t transform one type
of idempotent k-translatable quasigroups to another. We already know that H =
H∗ = −C3, GS = GS∗ = −RM, RM = LM∗ = −GS, LM = RM∗, ARO =
−ARO and C3 = −H. These formulae allow us to move from certain types to
others. For example, to move from GS to RM we convert any (a, 1− a) ∈ GS to
(−a, 1+a) and then (−a, 1+a) ∈ RM. Similarly, to move fromC3 toH we convert
any (a, 1−a) ∈ C3 to (−a, 1+a) and then (−a, 1+a) ∈ H. To move from RM to
LM we convert any (a, 1− a) ∈ RM to (1− a.a) and then (1− a, a) ∈ LM. Also,
(GS)+1 = LM, (LM)−1 = GS and LM = (GS)+1 = (−RM)+1 = (−(LM∗))+1.
We prove below that T = (−(T∗))+1 for any type T ⊆ IKQ.

Notice that T = T∗ does not imply −(T∗) = (−T)∗ because, H = H∗ and
−H = C3 and so, (−H)∗ = C3∗ 6= C3 = −(H∗). This proves the following
proposition.

Proposition 5.1. In general, (−T)∗ 6= −(T∗).

Theorem 5.2. For any type T of idempotent k-translatable quasigroups

−T = (T∗)−1 and T = −((T∗)−1) = (−(T∗))+1.

Proof. We have (a, 1 − a) ∈ (T∗)−1 ⇔ (a + 1,−a) ∈ T∗ ⇔ (−a, a + 1) ∈ T ⇔
(a, 1− a) ∈ −T. Since −(−T)=T, from −T = (T∗)−1 it follows T = −((T∗)−1).
Also, (a, 1−a)∈T⇔(1−a, a)∈T∗⇔(a−1, 2−a)∈−(T∗)⇔(a, 1−a)∈(−(T∗))+1.

Corollary 5.3. T∗ = −(T−1) = (−T)+1 = ((T−1)∗)−1 = ((−(T∗))∗)−1.

Proof. As a consequence of Theorem 5.2 we get, T∗ = −(−(T∗)) = ((−(T∗))∗)−1.
Also, −(T∗) = ((T∗)∗)−1 = T−1 implies T∗ = −(T−1) = ((T−1)∗)−1. Finally,
T∗ = (−T)+1.
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Corollary 5.4. T = (−(T∗))+1 = −((T∗)−1).

Proof. Observe that (a, 1− a) ∈ T⇔ (1− a, a) ∈ T∗ ⇔ (a− 1, 2− a) ∈ −(T∗)⇔
(a, 1− a) ∈ (−(T∗))+1. So, T = (−(T∗))+1. Also, (T∗)−1 = ((−T)+1)−1 = −T,
by Corollary 5.3. Hence, T = −((T∗)−1).

Corollary 5.5. −(T∗) = T−1 and (−T)∗ = T+1.

Proof. From Corollary 5.3 it follows that −(T∗) = T−1. Then, (a, 1− a) ∈ (−T)∗

⇔ (1− a, a) ∈ −T⇔ (a− 1, 2− a) ∈ T⇔ (a, 1− a) ∈ T+1.

We can now answer the question, when does −(T∗) = (−T)∗?

Theorem 5.6. (−T)∗ = −(T∗)⇔ T+1 = T−1 ⇔ T = T+2 ⇔ T = T−2.

Proof. Indeed, by Corollary 5.5, (−T)∗ = −(T∗) ⇔ T+1 = T−1. We also have,
T+1 = T−1 ⇔ T = T+2 ⇔ T = T−2.

Theorem 5.7. −(T+1) = (−T)+1 ⇔ −(T−1) = (−T)−1 ⇔ (T∗)+1 = (T−1)∗ ⇔
(T∗)−1 = (T−1)∗ ⇔ (−T)∗ = −(T∗).

Proof. We have (a, 1−a) ∈ −(T+1)⇔ (−a, 1+a) ∈ T+1 ⇔ (−1−a, 2+a) ∈ T⇔
(2+a,−1−a) ∈ T∗ ⇔ (a, 1−a) ∈ (T∗)−2 = (−T)−1 and (−T)+1 = T∗, by Corol-
lary 5.3. Therefore, −(T+1) = (−T)+1 ⇔ T∗ = (−T)−1 ⇔ −(T−1) = (−T)−1.
But by Corollary 5.3 we also have (−T)∗ = −((−T)−1), so T∗ = (−T)−1 ⇔
(−T)∗ = −(T∗).

6. Orthogonality

De�nition 6.1. Two quasigroups (Q, ·) and (Q, ◦) are called orthogonal if, for
every s, t ∈ Q, the equations x ·y = s and x◦y = t have unique solutions x, y ∈ Q.

Not every pair of idempotent translatable quasigroups of the same order are
orthogonal. The criterion of orthogonality of such quasigroups is given by the
following theorem that also can be deduced from results obtained in [8].

Theorem 6.2. The quasigroups (Q, ·) and (Q, ◦), where x · y = [ax + (1− a)y]n
and x ◦ y = [cx+ (1− c)y]n are orthogonal if a− c and n are relatively prime.

Proof. Since x · y = [ax + (1 − a)y]n and x ◦ y = [cx + (1 − c)y]n are quasigroup
operations, a and n (also c and n) are relatively prime. So, there are a′, c′ ∈ Q
such that [aa′]n = [cc′]n = 1.

Let s, t ∈ Q. Suppose that{
x · y = [ax+ (1− a)y]n = s,

x ◦ y = [cx+ (1− c)y]n = t.
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Multiply the �rst equation by a′ and the second by c′, we obtain the following
system of equations {

[x+ (a′ − 1)y]n = sa′,

[x+ (c′ − 1)y]n = tc′,

that will be written as {
[(a′ − c′)y]n = sa′ − tc′,

[x+ (c′ − 1)y]n = tc′.

This system has a unique solution if and only if the mapping ϕ(y) = [(a′ − c′)y]n
transforms Q onto Q. This is possible only in the case when a′ − c′ and n are
relatively prime. Since p divides a′ − c′ if and only if p divides a− c, a′ − c′ and n
are relatively prime if and only if a−c and n are relatively prime. This observation
completes the proof.

Corollary 6.3. A quasigroup (Q, ·), where x · y = [ax + (1 − a)y]n, and its dual

quasigroup (Q, ∗) are orthogonal if and only if 2a− 1 and n are relatively prime.

Applying this corollary to Table 3.1 we obtain

Corollary 6.4. Quasigroups from Q and ARO are orthogonal to their dual quasi-

groups.

7.Belousov's identities

Belousov in [1] proved the following Theorem.

Theorem 7.1. Any minimal nontrivial identity in a quasigroup is parastrophically

equivalent to one of the following identity types: x(x · xy) = y, x(y · yx) = y,
x · xy = yx, xy · x = y · xy, xy · yx = y, xy · y = x · xy and yx · xy = y.

We now explore these identities within IKQ. Observe �rst that the identity
x(x · xy) = y de�nes the type C3, the identity x(y · yx) = y de�nes the type U
and the identity x · xy = yx de�nes the type LM.

Proposition 7.2. In IKQ each of the identities xy · x = y · xy and xy · yx = y
de�ne a quadratical quasigroup.

Proof. Since x · y = [ax + (1 − a)y]n, each of these identities implies the identity
2a2 − 2a+ 1n = 0. So, by Theorem 2.1, (G, ·) is quadratical.

Proposition 7.3. There are no quasigroups in IKQ that satisfy either of the

identities xy · y = x · xy or yx · xy = y.

Proof. In IKQ each of these identities imply the identity [2a2 − 2a]n = 0. This
implies 0 = [k(2a2 − 2a)]n = [2(ka)a− 2ka]n = [2(k+ a)a− 2(k+ a)]n = [2a2]n =
[2a]n. So, 0 = [2ak]n = [2(k + a)]n = [2k]n, and consequently 2 = [2kk′]n = 0, a
contradiction.
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8. Parastrophes

Each quasigroup Q = (Q, ·) determines �ve new quasigroups Qi = (Q, ◦i) (called
parastrophes or conjugate quasigroups), where the operation ◦i is de�ned as follows:

x ◦1 y = z ⇔ x · z = y,
x ◦2 y = z ⇔ z · y = x,
x ◦3 y = z ⇔ z · x = y,
x ◦4 y = z ⇔ y · z = x,
x ◦5 y = z ⇔ y · x = z.

It is not di�cult to observe that these parastrophes are pairwise dual. Namely,
Q∗ = Q5, Q∗1 = Q4 and Q∗2 = Q3.

In general, such de�ned parastrophes are not isotopic, but if (Q, ·) is an idem-
potent k-translatable quasigroup of order n, then all its parastrophes are isotopic
(cf. [5]) and have simple form.

Theorem 8.1. Parastrophes of a k-translatable idempotent quasigroup (Q, ·) with
the multiplication de�ned by x · y = [ax+ by]n are t-translatable idempotent quasi-

groups of the form:
x ◦1 y = [(1− b′)x+ b′y]n,

x ◦2 y = [a′x+ (1− a′)y]n,

x ◦3 y = [(1− a′)x+ a′y]n,

x ◦4 y = [b′x+ (1− b′)y]n,

x ◦5 y = [(1− a)x+ ay]n.

Q1 is t-translatable for t = a, Q2 for t = b′, Q3 for t = b, Q4 for t = a′, Q5 for

t = k′.

Proof. By simple computations we can see that the parastrophes of (Q, ·) have the
above form. So they are idempotent quasigroups. Their t-translatability follows
from the fact that [a+ b]n = 1 and [a′ + b′]n = [a′b′]n.

Corollary 8.2. Parastrophes of a k-translatable quadratical quasigroup (Q, ·) with
the multiplication x · y = [ax+ by]n, have the form:

x ◦1 y = [kx+ (1− k)y]n,

x ◦2 y = [(k + 1)x− ky]n,

x ◦3 y = [−kx+ (k + 1)y]n,

x ◦4 y = [(1− k)x+ ky]n,

x ◦5 y = [(1− a)x+ ay]n.

Theorem 8.3. If (Q, ·) with x · y = [ax + by]n is a k-translatable quadratical

quasigroup, then its parastrophe types are as in the table below, where (u, v) in the

column x ◦i y and the row T means that the parastrophe x ◦i y of (Q, ·) is of type
T only for a = u and b = v.
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x · y x ◦1 y x ◦2 y x ◦3 y x ◦4 y x ◦5 y
Q always (2, 4) (4, 2) (2, 4) (4, 2) always

H never never never never never never

GS never (4, 2) (2, 4) (4, 2) (2, 4) never

RM (2, 4) (2, 4) never never (4, 2) (4, 2)

LM (4, 2) never (4, 2) (2, 4) never (2, 4)

ARO never never (11, 7) (7, 11) never never

ARO∗ never (7, 11) never never (11, 7) never

C3 (3, 11) never (3, 11) (11, 3) never (11, 3)

C3∗ (11, 3) (11, 3) never never (3, 11) (3, 11)

P (4, 2) never (4, 2) (2, 4) never (2, 4)

P∗ (2, 4) (2, 4) never never (4, 2) (4, 2)

U never (4, 2) (2, 4) (4, 2) (2, 4) never

U∗ never (4, 2) (2, 4) (4, 2) (2, 4) never

−LM (5, 37) never (5, 37) (37, 5) never (37, 5)

−(C3∗) (60, 38) (3, 11) (56, 6) (6, 56) (11, 3) (38, 60)

−(ARO∗) never (11, 7) (11, 3), (62, 28) (3, 11), (28, 62) (7, 11) never
(596, 562) (562, 596)

−U never (2, 4) (46, 56) (56, 46) (4, 2) never

−(U∗) never (2, 4) (7, 11) (11, 7) (4, 2) never

−P (37, 5) never (37, 5) (5, 37) never (5, 37)

−(P∗) (153, 89) (4, 2) never never (2, 4) (89, 153)

Proof. In the proof we will use conditions given in Table 3.1 and the fact that an
idempotent k-translatable quasigroup (Q, ·) is quadratical if and only if x · y =
[ax + (1 − a)y]n, where n > 1 is odd, [2a2 − 2a + 1]n = 0, k = [1 − 2a]n and
[k2]n = −1. Moreover, since Q∗ = Q5, Q

∗
1 = Q4 and Q∗2 = Q3, it is su�cient

verity only when Q, Q1 and Q2 are �xed type T, i.e., for which values of (a, b)
Q,Q1, Q2 ∈ T.

T = Q.
• Since, Q = Q∗ (Theorem 3.1), the quasigroup Q5 always is quadratical.

• x ◦1 y = [kx+ (1− k)y]n. Thus, 0 = [2k2 − 2k + 1]n = [4a − 3]n = [−2k − 1]n.
So, 0 = [(−2k − 1)k]n = [2 − k]n. Hence k = 2, n = k2 + 1 = 5 and [2a]5 = 4,
which gives (2, 4).

• x ◦2 y = [(k + 1)x − ky]n. Then 0 = [2(k1)
2 − 2(k + 1) = 1]n = [2k − 1]n. So,

0 = [(2k − 1)k]n = [−2− k]n. Hence, n = k2 + 1 = 5, [2a]5 = 3 and a = 4, which
gives (4, 2).

T = H.



The structure of certain translatable quasigroups 75

If Q ∈ H, then 0 = [2a2−2a+1]n = [a2−a+1]n, which is impossible. So, Q 6∈ H.

• If Q1 ∈ H, then 0 = [k2 − k + 1]n = [−1− k + 1]n = [−k]n, a contradiction.

• If Q2 ∈ H, then 0 = [(k+1)2−(k+1)+1]n = [k2+k+1]n = [k]n, a contradiction.

T = −(ARO∗). If Q ∈ −(ARO∗), then 0 = [2a2 − 2a + 1]n = [a2 + 4a + 1]n.
This gives [6a]n = 0. But then 0 = [3(2a2 − 2a+ 1)]n = 3. So, must be n = 3 and
a = 2, which is impossible

• If Q1 ∈ −(ARO∗), then 0 = [2k2 + 4k + 1]n implies [4k]n = 1. Thus [−4]n = k,
n = k2 + 1 = 17 and [2a]17 = [1 − k]17 = 5. So, a = 11, which gives the pair
(11, 7).

• If Q2 ∈ −(ARO∗), then 0 = [2(k+1)2+4(k+1)+1]n = [8k+5]n. Hence, [8k]n =
[−5]n, [−5k]n = [−8]n and k = [16k − 15k]n = [−34]n. Thus 0 = [k2 + 1]n = 1157
means that the possible values of n are 13, 89 and 1157. For n = 13 we obtain
k = [−13]13 = 5 and 2a = [1 − k]13 = 9. So, a = 11, which gives the pair (11, 3).
By similar calculations, for n = 89 we get k = 55 and (62, 28), for n = 1157 we
obtain k = 1123 and (598, 562).

For other types the proof is analogous, so we omit it.
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Characterization of inverse ordered semigroups

by their ordered idempotents and bi-ideals

Kalyan Hansda and Amlan Jamadar

Abstract. We prove that an ordered semigroup is complete semilattice of group-like ordered

semigroups if and only if it is completely regular and inverse. The relation between principal bi-

ideals generated by two inverses of an element in an inverse ordered semigroup has been presented

here. Furthermore we bring the opportunity to study complete regularity on an inverse ordered

semigroups by their bi-ideals.

1. Introduction

Inverse semigroups have a natural ordering which has deep impact on their struc-
ture. The study of behavior of inverses of an element in ordered semigroups had
been an area of interest among the semigroup theorists since last �fty years. Bhu-
niya and Hansda [1] have deal with ordered semigroups in which any two inverses
of an element are H-related. Class of these ordered semigroups are natural gen-
eralization of class of inverse semigroups (without order). We call these ordered
semigroups as inverse ordered semigroups.

We characterize inverse ordered semigroups by their ordered idempotents. We
study complete regularity in an inverse ordered semigroup and explore the look
of resulting ordered semigroup. Keeping in mind that bi-ideals have been studied
more, we give several characterizations of inverse ordered semigroups by their bi-
ideals.

2. Preliminaries

An ordered semigroup is a partially ordered set (S,6), and at the same time a
semigroup (S, ·) such that for all a, b, x ∈ S a 6 b implies xa 6 xb and ax 6 bx. It
is denoted by (S, ·,6).

For every H ⊆ S, we de�ne (H] = {t ∈ S : t 6 h, for some h ∈ H}.
Throughout this paper unless otherwise stated S stands for an ordered semi-

group. An equivalence relation ρ is called a left (right) congruence on S if for
a, b, c ∈ S aρb implies caρcb (acρbc). By a congruence we mean both left and

2010 Mathematics Subject Classi�cation: 06F05; 20M10

Keywords and Phrases: ordered inverse element, ordered idempotent, completely regular,

inverses, bi-ideals.
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right congruence. A congruence ρ is called a semilattice congruence on S if for
all a, b ∈ S aρa2 and abρba. By a complete semilattice congruence on S we mean
a semilattice congruence σ on S such that for a, b ∈ S a 6 b implies that aσab.
An ordered semigroup S is called a complete semilattice of subsemigroups of type
τ if there exists a complete semilattice congruence ρ such that (x)ρ is a type τ
subsemigroup of S.

Let I be a nonempty subset of an ordered semigroup S. I is a left (right) ideal
of S, if SI ⊆ I (IS ⊆ I) and (I] = I. I is an ideal of S if it is both a left and a
right ideal of S.

Following Kehayopulu [4], a nonempty subset B of an ordered semigroup S
is called a bi-ideal of S if BSB ⊆ B and (B] = B. Here our aim is to study
completely regular and inverse ordered semigroups by their bi-ideals.

The principal [5] left ideal, right ideal, ideal and bi-ideal [4] generated by a ∈ S
are denoted by L(a), R(a), I(a)and B(a) respectively and have form

L(a) = (a∪Sa], R(a) = (a∪aS], I(a) = (a∪Sa∪aS∪SaS] and B(a) = (a∪aSa].

Kehayopulu [5] de�ned Greens relations L, R, J and H on an ordered semi-
group S as follows:

aLb if L(a) = L(b),

aRb if R(a) = R(b),

aJ b if I(a) = I(b),

H = L ∩ R.
These four relations are equivalence relations on S.

A regular ordered semigroup S is said to be a group-like (resp. left group-

like) [1] ordered semigroup if for every a, b ∈ S, a ∈ (Sb] and b ∈ (aS] (resp.
a ∈ (Sb]). A right group-like ordered semigroup can be de�ned dually. Two
elements a, b ∈ S are said to H-related if aHb. An ordered semigroup S is called
an regular (completely regular ) [3] if for every a ∈ S, a ∈ (aSa] (a ∈ (a2Sa2]).
An element b ∈ S is inverse of a if a 6 aba and b 6 bab. The set of all inverses
of an element a ∈ S is denoted by V6(a). Two elements a, b ∈ S are said to
H-commutative [1] if ab 6 bxa for some x ∈ S. A regular ordered semigroup S is
called inverse [1] if for every a ∈ S and a′, a′′ ∈ V6(a), a′Ha′′, that is, any two
inverses of a are H−related.

By an ordered idempotent [1] in an ordered semigroup S, we shall mean an
element e ∈ S such that e 6 e2. We denote the set of all ordered idempotents of
S by E6(S).

For the convenience of readers we state the following three results from [1].

Lemma 2.1. Let S be completely regular ordered semigroup. Then for every a ∈ S
there is x ∈ S such that a 6 axa2 and a 6 a2xa.

Theorem 2.2. An ordered semigroup S is completely regular if and only if for

all a ∈ S there exists a′ ∈ V6(a) such that aa′ 6 a′ua and a′a 6 ava′ for some

u, v ∈ S.
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Lemma 2.3. Let S be a completely regular ordered semigroup. Then following

statements hold in S:

1. J is the least complete semilattice congruence on S.

2. S is a complete semilattice of completely simple ordered semigroups.

3. Inverse ordered semigroup

Let S be an ordered semigroup and ρ be an equivalence on S. We say thatl an
ideal I of S is generated by a ρ-unique element b ∈ S if bρx for any generator x of
I.

De�nition 3.1. A regular ordered semigroup S is called inverse if for every a ∈ S,
any two inverses of a are H-related.

Example 3.2. The ordered semigroup S = {a, e, f} with the multiplication de-
�ned below and with the discrete order is an inverse ordered semigroup.

· a e f
a a e f
e f e a
f e a f

We present a role of ordered idempotents in an inverse ordered semigroup in
the next theorem.

Theorem 3.3. An ordered semigroup S is inverse if and only if every principal

left ideal and every principal right ideal of S are generated by an H-unique ordered

idempotent.

Proof. Suppose that S is inverse. Let I be a principal left ideal of S. Then
there exists e ∈ E6(S) such that I = (Se]. If possible let I = (Sf ] for some
f ∈ E6(S). Then eLf and thus e 6 xf and f 6 ye for some x, y ∈ S. Now
e 6 ee 6 eee 6 exfe. Therefore exf 6 exfexf so that exf ∈ E6(S). Also
exf 6 exfexf 6 exf(fe)exf and fe 6 feee 6 fexfe 6 fe(exf)fe. Therefore
fe ∈ V6(exf). Also exf ∈ V6(exf). Since S is inverse, we have feHexf . Then
e 6 ee 6 exffe 6 fezexf for some z ∈ S, and so e 6 fz1, where z1 = ezexf .
Similarly f 6 ez2 for some z2 ∈ S. So eRf . Hence eHf . Likewise every principal
right ideal of S generated by certain H-unique ordered idempotent.

Conversely assume that given condition holds in S. Let a ∈ S and a′, a′′ ∈
V6(a). Clearly (Sa] = (Sa′a] = (Sa′′a]. Since a′a, a′′a ∈ E6(S) we have that
a′aHa′′a, by given condition. Then there are s, t ∈ S such that a′ 6 a′′asa′ and
a′′ 6 a′ata′′. Thus a′Ra′′. Likewise a′La′′, that is a′Ha′′. Hence S is an inverse
ordered semigroup.
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In the following we show that an ordered semigroup S is inverse if and only if
any two ordered idempotents of S are H-commutative.

Theorem 3.4. The following conditions are equivalent on an ordered semigroup

S.

(1) S is an inverse semigroup;

(2) S is regular and its idempotents are H-commutative;

(3) For every e, f ∈ E6(S), eLf(eRf) implies eHf .

Proof. (1) ⇒ (2): Obviously S is regular. Let us assume that a ∈ S and a′, a′′ ∈
V6(a).

Consider e, f ∈ E6(S). Since S is regular, so there is x ∈ S such that x ∈
V6(ef). Now x 6 xefx implies that fxe 6 fxe(ef)fxe and ef 6 efxef implies
ef 6 ef(fxe)ef . Thus ef ∈ V6(fxe). Also fxe 6 fxefxe that is fxe ∈ E6(S).
So fxe ∈ V6(fxe). Since S is inverse, so fxeHef . Then there are s1, s2 ∈ S
such that ef 6 fxes1 and ef 6 s2fxe. Now ef 6 efxef implies that ef 6
f(xes1xs2fx)e. Therefore ef 6 fye, where y = xes1xs2fx. Similarly there is
z ∈ S such that fe 6 ezf . Hence any two idempotents are H-commutative.

(2) ⇒ (3): Let e, f ∈ E6(S) be such that eLf . Then e 6 xf and f 6 ye
for some x, y ∈ S. Now e 6 xf implies e 6 exf , and so e 6 ee 6 exfe which
implies that exf 6 exfexf . So exf ∈ E6(S). Similarly fye ∈ E6(S). Now
e 6 exf 6 exff 6 exffye. Since exf, fye ∈ E6(S), by condition (2) we have
exffye 6 (fye)z(exf) for some z ∈ S . Hence e 6 ft, where t = yezexf .
Similarly f 6 ew for some w ∈ S, so that eRf . Hence eHf . If eRf then eHf can
be done dually.

(3)⇒ (1): Let a ∈ S and a′, a′′ ∈ V6(a). Now aa′ 6 aa′′aa′ and aa′′ 6 aa′aa′′.
So aa′Raa′′ which implies that aa′Haa′′, by the condition (3). Also a′aHa′′a.
Then a′ 6 a′aa′ gives that a′ 6 a′′axa for some x ∈ S. Therefore a′ 6 a′′t where
t = axa. In similar way it is possible to obtained u, v, w ∈ S such that a′ 6 ua′′,
a′′ 6 a′v and a′′ 6 wa′. So a′Ha′′. Hence S is an inverse ordered semigroup.

Lemma 3.5. Let S be an inverse ordered semigroup. Then following statements

hold in S.

(1) aLb if and only if a′aHb′b for some a, b ∈ S and a′ ∈ V6(a) b′ ∈ V6(b);

(2) aRb if and only if aa′Hbb′ for some a, b ∈ S and a′ ∈ V6(a) b′ ∈ V6(b);

(3) for any a ∈ S and e ∈ E6(S) there are x, y ∈ S such that aexa′, a′eya ∈
E6(S); where a

′ ∈ V6(a).

(4) for any a, b ∈ S there are x, y ∈ S such that ab 6 abb′xa′ab and b′a′ 6
b′a′aybb′a′, where a′ ∈ V6(a) and b′ ∈ V6(b).
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Proof. (1): Let a, b ∈ S be such that aLb. Let a′ ∈ V6(a), b
′ ∈ V6(b). Since

a 6 aa′a and a′a 6 a′aa′a, we have aLa′a which implies that bLa′a. Also bLb′b.
Hence a′aLb′b. Since a′a, b′b ∈ E6(S) and S is inverse we have a′aHb′b, by
Theorem 3.4(3).

Conversely suppose that given condition holds in S. Let a, b ∈ S with a′ ∈
V6(a) and b

′ ∈ V6(b). Then by given condition aa′Hbb′. Also we have aLa′a and
bLb′b so that aLb.

(2): This is similar to (1).

(3): Let a ∈ S and e ∈ E6(S). Also a
′a ∈ E6(S). Since S is an inverse, there

is an x ∈ S such that a′ae 6 exa′a, by Theorem 3.4(2). Now aexa′ 6 aa′aeexa′ 6
aexa′aexa′. So aexa′ ∈ E6(S). Likewise a

′eya ∈ E6(S); for some y ∈ S.
(4): Let a, b ∈ S with a′ ∈ V6(a), b

′ ∈ V6(b). So a′a, b′b ∈ E6(S). Now
ab 6 aa′abb′b 6 and a′abb′ 6 b′bxa′a, by Theorem 3.4(2). Thus ab 6 abb′xa′ab.
Likewise b′a′ 6 b′a′aybb′a′; for some y ∈ S.

In the following theorem an inverse ordered semigroup has been characterized
by the inverse of an element of the set (eSf ].

Theorem 3.6. Let S be an ordered semigroup and e, f ∈ E6(S). Then S is

inverse if and only if for every x ∈ (eSf ] implies x′ ∈ (fSe], where x′ ∈ V6(x).

Proof. First suppose that S is an inverse ordered semigroup and x ∈ (eSf ]. Then
x 6 es1f for some s1 ∈ S. Let x′ ∈ V6(x). Now x′ 6 x′xx′ 6 x′es1fx

′, and so
es1fx

′ 6 es1fx
′es1fx

′. Hence es1fx
′ ∈ E6(S). Similarly x′es1f ∈ E6(S). Now

there is s2 ∈ S such that x′es1fx
′ 6 x′es1ffx

′ 6 fs2x
′es1fx

′, by Theorem 3.4(2)
. Also fs2x

′es1fx
′ 6 fs2x

′ees1fx
′ 6 fs2x

′es1fx
′s3e, for some s3 ∈ S. Then

x′ 6 x′xx′ implies that x′ 6 fs2x
′es1fx

′ 6 fs2x
′es1fx

′s3e. Hence x
′ ∈ (fSe].

Conversely assume that the given conditions hold in S. First consider a left
ideal L of S such that L = (Se] = (Sf ] for e, f ∈ E6(S). Then eLf , so that
e 6 ee 6 ezf for some z ∈ S. Therefore e ∈ (eSf ]. Since e ∈ V6(e) we have
e ∈ (fSe], by given condition. Likewise f ∈ (eSf ]. This implies that eRf and
so eHf . Similarly it can be shown that every principal right ideal of S generated
by H-unique ordered idempotent. Thus by Theorem 3.3, S is an inverse ordered
semigroup.

Corollary 3.7. The following conditions are equivalent on a regular ordered semi-

group S.

(1) S is an inverse ordered semigroup;

(2) for any a ∈ S and for any a′ ∈ V6(a), aa′, a′a are H-commutative;

(3) for any e ∈ E6(S), any two inverses of e are H-related;

(4) for any e ∈ E6(S) and all its inverses are H-commutative;
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5) for any e ∈ E6(S) and e′ ∈ V6(e), ee′ and e′e are H-commutative.

Proof. (1)⇒ (2), (2)⇒ (3), (3)⇒ (4), and (4)⇒ (5): These are obvious.

(5) ⇒ (1): Let e, f ∈ E6(S) and x ∈ V6(ef). So ef 6 efxef 6 effxeef and
x 6 xefx implies that fxe 6 fxeeffxe. So ef ∈ V6(fxe). Also fxe ∈ E6(S).
Now ef 6 efxef 6 effxeef 6 effxefxeef 6 fxez1efz2fxe, for some z1, z2 ∈ S,
by the given condition. So ef 6 fz3e where z3 = xemefnfx. Similarly fe 6 ez4f ,
for some z4 ∈ S. So e, f are H-commutative. Hence by Theorem 3.4 S is inverse
ordered semigroup.

We study inverse ordered semigroup together with complete regularity in the
following theorem.

Theorem 3.8. The following conditions are equivalent on a regular ordered semi-

group S.

(1) S is inverse and completely regular;

(2) S is a complete semilattice of group like ordered semigroups;

(3) abHba whenever ab, ba ∈ E6(S);

(4) any ordered idempotent of S is H-commutative to any element of S;

(5) for any e, f ∈ E6(S) eJ f implies eHf ;

(6) H = L = R = J .

Proof. (1) ⇒ (2): Let S be a completely regular and inverse ordered semigroup.
Then by Lemma 2.3, J is the complete semilattice congruence on S and every
H-class is a group-like ordered semigroup. We now prove H = J . Let a, b ∈ S be
such that aJ b. So there are x, y, u, v ∈ S such that a 6 xby and b 6 uav. Since
S is completely regular, so there are h, g, f ∈ S such that x 6 x2hx, b 6 b2gb,
b 6 bgb2, y 6 yfy2, by Lemma 2.3. Now a 6 x2hxb2gbyfy2 6 x2hxb2gbgb2yfy2.

Let p ∈ V6(x2hxb2g). So
x2hxb2g 6 x2hxb2gpx2hxb2g 6 x2hxb2g(b2gpx2h)x2hxb2g

and
b2gpx2h 6 b2gpx2hxb2gpx2h 6 b2gpx2h(x2hxb2g)b2gpx2h.

This shows that b2gpx2h ∈ V6(x2hxb2g). Also
x2hxb2g 6 x2hxb2gpx2hxb2g 6 x2hxb2g(x2hxb2gp2)x2hxb2g

and
x2hxb2gp2 6 x2hxb2gpx2hxb2gp2 6 x2hxb2gp2(x2hxb2g)x2hxb2gp2,

which implies that x2hxb2gp2 ∈ V6(x2hxb2g). Similarly p2x2hxb2g ∈ V6(x2hxb2g).
Since b2gpx2h, x2hxb2gp2 ∈ V6(x2hxb2g) and S is inverse, so there is t ∈ S such
that x2hxb2gp2 6 b2gpx2ht. Thus
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x2hxb2g 6 x2hxb2gpx2hxb2g 6 x2hxb2gp2(x2hxb2g)2

implies that x2hxb2g 6 b2gpx2hxt(x2hxb2g)2 = bs where s = bgpx2ht(x2hxb2g)2.
Similarly there is s1 ∈ S such that b2gyfy2 6 s1b. Hence a 6 x2hxb2gbyfy2 6

bsbyfy2 = bs2, where s2 = sbyfy2. Similarly a 6 s3b for some s3 ∈ S. Likewise
b 6 s4a and b 6 as5, for some s4, s5 ∈ S. So aHb. Thus J ⊆ H. Also H ⊆ J ,
and Hence J = H. Therefore S is complete semilattice of group-like ordered
semigroups.

(2) ⇒ (3): Suppose that S is a complete semilattice Y of group like ordered
semigroups {Sα}α∈Y . Let a, b ∈ S such that ab, ba ∈ E6(S). Let ρ be the corres-
ponding semilattice congruence on S. Then there is α ∈ Y such that ab, ba ∈ Sα.
Since Sα is group like ordered semigroups, so abHba.

(3) ⇒ (4): Let a ∈ S and e ∈ E6(S). Since S is regular there is an
x ∈ S such that a 6 axa. Clearly ax, xa ∈ E6(S). Thus by condition (3)
axHxa. So xa 6 axu and ax 6 vxa, for some u, v ∈ S. Then we have a 6
axa 6 axaxa 6 axaxaxa 6 aaxuxvxaa = a2ta2, where t = xuxvx. Now
a 6 a2ta2 6 a(a2ta2ta2ta2)a 6 a2(a2ta2ta2ta2ta2)a, that is a 6 a2ya, where
y = a2ta2ta2ta2ta2. Similarly a 6 aya2. Clearly a2y, ya2 ∈ E6(S).

Let e, f ∈ E6(S) and x ∈ V6(ef). Then we have x 6 xefx. So fxe 6
fxefxe 6 fxeeffxe and ef 6 efxef 6 effxeef . So ef ∈ V6(fxe). Also
ef 6 effxeef implies that effxe 6 effxeeffxe, and fxeef 6 fxeeffxeef .
So effxe, fxeef ∈ E6(S) and thus effxeHfxeef , by the condition (3). Then
there are u, v ∈ S such that effxe 6 fxeefu and fxeef 6 veffxe. Now ef 6
effxefxeef 6 fxeefuveffxe = fce; where c = xe2fuvef2x. Likewise fe 6 edf ,
for some d ∈ S.

Now ae 6 a2yae. Let z ∈ V6(a2yae). So

a2yae 6 a2yaeza2yae 6 a2yae(eza2y)a2yae.

Clearly a2yaeeza2y, eza2ya2yae ∈ E6(S) and thus a2yaeeza2yHeza2ya2yae,
by condition (3). Now ae 6 a2yae 6 a2yaeeza2ya2yae 6 eza2ys1a

2yaea2yae, for
some s1 ∈ S. So ae 6 es2ae, where s2 = za2ys1a

2yaea2y. Again ae 6 es2aya
2e 6

es2aes3ya
2, for some s3 ∈ S, since ya2, e ∈ E6(S). That is ae 6 es4a, for some

s4 ∈ S. Similarly ea 6 as5e, for some s5 ∈ S. So a, e are H-commutative.

(4)⇒ (5): Let e, f ∈ E6(S) such that eJ f . Then there are x, y, z, u ∈ S such
that e 6 xfy and f 6 zeu. Now e 6 xfy implies that e 6 fhxy and e 6 xykf
by the given condition for some h, k ∈ S. Similarly f 6 zeu gives f 6 es1zu and
f 6 zus2e for some s1, s2 ∈ S. Hence eHf .

(5) ⇒ (6): Let a, b ∈ S such that aJ b. Then there are s, t, u, v ∈ S such
that a 6 sbt and b 6 uav. Since S is regular so a 6 axa and b 6 byb for some
x, y ∈ S so that ax 6 axax and by 6 byby. Now axax 6 axsbtx 6 axsbybtx
that is ax 6 axsbybtx. Likewise by 6 byuaxavy. Thus axJ by, and so from given
condition axHby. Similarly xaHyb. So there is c ∈ S such that ax 6 byc, that is
a 6 byca = bd, for some d = yca ∈ S. Likewise a 6 pb, b 6 qa for some p, q ∈ S.
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Thus aHb. So H = J . Now J = H = L ∩R gives J ⊆ L and J ⊆ R. Therefore
L = J = R.

(6) ⇒ (1): Let a ∈ S. Since S is regular so there exists a′ ∈ V6(a). Clearly
aLa′a and aRaa′. So by the given condition aRa′a and aLaa′. Now a 6 aa′a 6
aa′aa′a 6 aa′aa′aa′a 6 aas1a

′s2aa for some s1, s2 ∈ S. So a 6 a2pa2 where
p = s1a

′s2. So S is completely regular.
Also let a′, a′′ ∈ V6(a). Now aLa′aLa′′a implies that aRa′aRa′′a. Also by the

given condition we can show that aLaa′La′′a. So it is to check that a′Ra′′ and
a′La′′. So a′Ha′′. Hence S is inverse ordered semigroup.

4. Bi-ideals in inverse ordered semigroups

Following Hansda [2] an ordered semigroup S is completely regular if and only if for
every a ∈ S there is some e ∈ E6(S) such that a 6 ae, a 6 ea and B(a) = B(e).
Here our approach allows one to see the role of principal bi-ideal generated by an
inverse of an element in an inverse ordered semigroup.

Lemma 4.1. Let S be a regular ordered semigroup. Then the following conditions

are equivalent.

(1) S is a completely regular ordered semigroup;

(2) for any a ∈ S there is a′ ∈ V6(a) such that B(a) = B(a′);

(3) for any a ∈ S there is a′ ∈ V6(a) such that B(aa′) = B(a) ∩ B(a′) =
B(a′) ∩B(a) = B(a′a);

(4) B(a) = B(a2) for any a ∈ S.

Proof. (1) ⇒ (2): First suppose that S is completely regular ordered semigroup.
Let a ∈ S. Then by Theorem 2.2 there is a′ ∈ V6(a) such that aa′ 6 a′ua and
a′a 6 ava′ for some u, v ∈ S. Let x ∈ B(a). Therefore x 6 a or x 6 as1a for some
s1 ∈ S. If x 6 a then x 6 aa′a 6 aa′aa′a 6 a′uaaava′ = a′za′ where z = uaaav.
Again if x 6 as1a then there is t ∈ S such that x 6 a′ta′. Therefore in either case
x ∈ B(a′). Also a ∈ B(a′). So B(a) ⊆ B(a′). Similarly B(a′) ⊆ B(a). Hence
B(a) = B(a′).

(2) ⇒ (3): Suppose that condition (2) holds. Let a ∈ S. Then there is
a′ ∈ V6(a) such that a 6 aa′a. Let x ∈ B(aa′). Then x 6 aa′ or x 6 aa′saa′ for
some s ∈ S. By given condition a′ ∈ B(a). So a′ 6 a or there is y ∈ S such that
a′ 6 aya. If x 6 aa′saa′ and a′ 6 aya then x 6 aa′saaya. If x 6 aa′saa′ and
a′ 6 a then x 6 aa′saa. If x 6 aa′ and a′ 6 a then x 6 aa. Also if x 6 aa′ and
a′ 6 aya then x 6 aaya. Therefore in either case x ∈ B(a). Hence B(aa′) ⊆ B(a).
Likewise B(aa′) ⊆ B(a′) and hence B(aa′) ⊆ B(a) ∩B(a′).

Let w ∈ B(a) ∩ B(a′). So w ∈ B(a) and w ∈ B(a′). Therefore w 6 a or w 6
as2a and w 6 a′ or w 6 a′s3a

′ for some s2, s3 ∈ S. Since S is regular, there is d ∈ S
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such that w 6 wdw. If w 6 a and w 6 a′ then w 6 wdw 6 ada′ 6 aa′ada′aa′.
If w 6 as2a and w 6 a′ then w 6 wdw 6 as2ada

′ 6 aa′as2ada
′aa′. If w 6 as2a

and w 6 a′s3a
′ then w 6 wdw 6 as2ada

′s3a
′ 6 aa′as2ada

′s3a
′aa′. If w 6 a and

w 6 a′s3a
′ then w 6 wdw 6 ada′s3a

′ 6 aa′ada′s3a
′aa′. Therefore in either case

w ∈ B(aa′). Hence B(a) ∩B(a′) ⊆ B(aa′). Thus B(aa′) = B(a) ∩B(a′).

(3)⇒ (4): Suppose that condition (3) holds. Let a ∈ S. Then there exists a′ ∈
V6(a) such that B(aa′) = B(a′a). Now a 6 aa′a 6 aa′aa′a = a(a′a)a′(aa′)a. Now
by condition (3) a′a 6 aa′zaa′ and aa′ 6 a′awa′a for some z, w ∈ S. Then a 6
a(a′a)a′(aa′)a implies that a 6 a(aa′zaa′)a′(a′awa′a)a = a2(a′zaa′a′a′awa′)a2.
Thus B(a) ⊆ B(a2). It is evident that B(a2) ⊆ B(a) and hence B(a) = B(a2).

(4) ⇒ (1): Suppose condition (4) holds. Therefore a 6 a2 or a 6 a2s2a
2 and

a2 6 a or a2 6 as3a for some s2, s3 ∈ S. Therefore in either case aHa2. Since S is
regular, so a 6 aza for some z ∈ S. So a 6 aza 6 a2s4zs5a

2 for some s4, s5 ∈ S.
Hence S is completely regular ordered semigroup.

Corollary 4.2. A regular ordered semigroup S is completely regular if and only

if for any a ∈ S there is a′ ∈ V6(a) such that B(aa′) = B(a) ∩ B(a′) = B(a′a) =
B(a) = B(a′).

Proof. This follows from Lemma 4.1 .

Theorem 4.3. Let S be a regular ordered semigroup. Then the following condi-

tions are equivalent.

(1) S is an inverse ordered semigroup;

(2) for any a ∈ S, B(a′) = B(a′′) for every a′, a′′ ∈ V6(a);

(3) for any e, f ∈ E6(S), B(ef) = B(e) ∩B(f);

(4) for any e ∈ E6(S) and x ∈ V6(e), B(ex) = B(xe).

Proof. (1)⇒ (2): First suppose that S is an inverse ordered semigroup. Let a ∈ S
and a′, a′′ ∈ V6(a). Suppose x ∈ B(a′). Therefore x 6 a′ or x 6 a′ya′ for some
y ∈ S. Since S is inverse, so a′Ha′′. If x 6 a′ then x 6 a′aa′ 6 a′′s1as2a

′′ for
some s1, s2 ∈ S. Therefore x 6 a′′sa′′ where s = s1as2. Again if x 6 a′ya′ then
there is s3 ∈ S such that x 6 a′′s3a

′′. Therefore in either case x ∈ B(a′′). Also
a′ ∈ B(a′′). So B(a′) ⊆ B(a′′). Similarly B(a′′) ⊆ B(a′). Hence B(a′) = B(a′′).

(2) ⇒ (3): First suppose that condition (2) holds and let e, f ∈ E6(S). Let
x ∈ V6(ef). Therefore ef 6 efxef and x 6 xefx. So fxe 6 fxefxe. Therefore
fxe ∈ E6(S). Also ef 6 ef(fxe)ef and fxe 6 fxe(ef)fxe. Therefore ef, fxe ∈
V6(fxe). So by the condition B(ef) = B(fxe). Clearly efHfxe.

Let w ∈ B(ef). Therefore w 6 ef or w 6 efs1ef for some s1 ∈ S. If w 6 ef
then w 6 ef 6 efxef 6 efxs2fxe for some s2 ∈ S. Again if w 6 efs1ef then
w 6 efs1ef 6 efs1s2fxe . So in either case w ∈ B(e). Similarly w ∈ B(f). Hence
w ∈ B(e) ∩B(f). Therefore B(ef) ⊆ B(e) ∩B(f).
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Again let y ∈ B(e) ∩ B(f). So y 6 e or y 6 es4e and y 6 f or y 6 fs5f ,
for some s4, s5 ∈ S. Since S is inverse, there exists z ∈ V6(y) such that z 6 zyz
and y 6 yzy. If y 6 es4e and y 6 fs5f then z 6 zyz 6 zes4ez. Therefore
es4ez 6 es4ezes4ez. So es4ez ∈ E6(S). Similarly zfs5f ∈ E6(S). Now es4ez 6
es4ezes4ez 6 es4ez(yz)es4ez and yz 6 yzyz 6 yz(es4ez)yz. Therefore es4ez, yz ∈
V6(es4ez). So condition (2) B(es4ez) = B(yz). Similarly B(zfs5f) = B(zy).
Clearly es4ezHyz and zfs5fHzy. Now y 6 yzy 6 es4ezfs5f 6 es4ezyzfs5f 6
ees4ezyzfs5ff 6 eyzs6ys7zyf 6 efs5fzs6ys7zes4ef for some s6, s7 ∈ S. If y 6 e
and y 6 f then clearly B(ez) = B(yz) and B(zf) = B(zy). Now y 6 yzy 6
ezf 6 eezyzff 6 eyzs8ys9zyf 6 efzs8ys9zef for some s8, s9 ∈ S. If y 6 e
and y 6 fs5f then zfs5f ∈ E6(S). Now y 6 yzy 6 ezfs5f 6 eezfs5ff 6
ezfs5fs10ef 6 ezfs5ffs10ef 6 efs11zfs5fs10ef for some s10, s11 ∈ S. Again if
y 6 es4e and y 6 f then es4ez ∈ E6(S). Now y 6 yzy 6 es4ezf 6 ees4ezff 6
efs12es4ezf 6 efs12ees4ezf 6 efs12es4ezs13ef for some s12, s13 ∈ S. Therefore
in either case y ∈ B(ef) and so B(e)∩B(f) ⊆ B(ef). Hence B(e)∩B(f) = B(ef).

(3) ⇒ (4): First suppose that condition (3) holds in S. Let e ∈ E6(S) and
x ∈ V6(e) so e, xe, ex ∈ E6(S). By condition (3) B(exe) = B(e) ∩B(xe) ,that is,
B(e) = B(e)∩B(xe). Therefore B(e) ⊆ B(xe). Again B(xee) = B(e)∩B(xe) that
is B(xe) = B(e) ∩ B(xe). So B(xe) ⊆ B(e). Therefore B(e) = B(xe). Similarly
B(e) = B(ex). Therefore B(xe) = B(ex).

(4) ⇒ (1): Suppose that condition (4) holds in S. Now ex ∈ B(e) and ex ∈
B(x). So ex 6 e or ex 6 eb1e, and ex 6 x or ex 6 xb2x for some b1, b2 ∈ S. If
ex 6 e and ex 6 x then ex 6 exex 6 xe 6 xexe = xae where a = ex. If ex 6 e
and ex 6 xb2x then ex 6 exex 6 xb2xe = xbe where b = b2x. If ex 6 eb1e and
ex 6 x then ex 6 exex 6 xeb1e = xce where c = eb1. Again if ex 6 eb1e and
ex 6 xb2x then ex 6 exex 6 xb2xeb1e = xde where d = b2xeb1. Therefore in
either case ex 6 xse for some s ∈ S. Similarly xe 6 etx for some t ∈ S. Hence e, x
are H-commutative. So S is an inverse ordered semigroup, by Corollary 3.7.

Corollary 4.4. A regular ordered semigroup S is inverse if and only if for any

e ∈ E6(S) and x ∈ V6(e), B(ex) = B(e) ∩B(x) = B(xe) = B(e) = B(x).

Corollary 4.5. A regular ordered semigroup S is inverse if and only if for any

e, f ∈ E6(S), eLf(eRf) implies B(e) = B(f).

Proof. Let S be an inverse ordered semigroup. Since S is inverse, eLf(eRf)
implies eHf by Theorem 3.4. So it is easy to check that B(e) = B(f).

Conversely suppose that the condition holds in S. Now B(e) = B(f) gives
that e ∈ B(f) and f ∈ B(e). Therefore e 6 f or e 6 fxf and f 6 e or f 6 eye.
In either case eRf . So eLf implies eHf . Hence S is inverse ordered semigroup
by Theorem 3.4.

Lemma 4.6. Let S be an inverse ordered semigroup and a′ ∈ V6(a), b′ ∈ V6(b),
where a, b ∈ S. Then following conditions hold on S:



Characterization of inverse ordered semigroups 87

(1) aLb if and only if B(a′a) = B(b′b).

(2) aRb if and only if B(aa′) = B(bb′).

Proof. (1): Let S be an inverse ordered semigroup and a′ ∈ V6(a), b
′ ∈ V6(b)

where a, b ∈ S. So by Lemma 3.5 a′aHb′b. Let x ∈ B(a′a). Therefore x 6 a′a
or x 6 a′as1a

′a for some s1 ∈ S. So it is easy to verify that x ∈ B(b′b). Also
a′a ∈ B(b′b). So B(a′a) ⊆ B(b′b). Similarly B(b′b) ⊆ B(a′a). So B(a′a) = B(b′b).

The converse statement is obvious.

(2): Analogously as (1).

Characterization of ordered semigroups which are both completely regular and
inverse have been presented in the next theorem.

Theorem 4.7. Let S be a regular ordered semigroup. Then the following condi-

tions are equivalent.

(1) S is completely regular and inverse ordered semigroup;

(2) for any a, b ∈ S, B(ab) = B(ba) = B(a) ∩B(b);

(3) B(ab) = B(ba) where a, b ∈ S and ab, ba ∈ E6(S);

(4) for any a, b ∈ S, aLb implies B(a) = B(b).

Proof. (1) ⇒ (2): First suppose that S is completely regular and inverse ordered
semigroup. Then any ordered idempotent of S is H commutative to any element
of S by Theorem 3.8 . Let a, b ∈ S. Since S is regular, so there are p, q, r ∈ S
such that a 6 apa, b 6 bqb and ab 6 abrab. Clearly bq, pa ∈ E6(S). Now
ab 6 abrab 6 abqbrapab 6 bqp1abrabp2pa = bs2a where s2 = qp1abrabp2pa. Let
x ∈ B(ab). Therefore x 6 ab or x 6 abs1ab for some s1 ∈ S. If x 6 abs1ab,
then x 6 abs1bs2a. So x 6 aya where y = bs1bs2. Again if x 6 ab, then
x 6 abrab 6 abrbs2a. So in either case x ∈ B(a). Also ab ∈ B(a). Similarly
x ∈ B(b) and ab ∈ B(b). Hence B(ab) ⊆ B(a) ∩B(b).

Again let y ∈ B(a) ∩ B(b). So y 6 a or y 6 as4a and y 6 b or y 6 bs5b
for some s4, s5 ∈ S. Since S is regular, So there is z ∈ S such that y 6 yzy.
Now if y 6 as4a and y 6 bs5b then y 6 yzy 6 as4azbs5b 6 as4azbqbs5b 6
abqs6s4azbs5b 6 abqs6s4apazbs5b 6 abqs6s4azbs5s7pab for some s6, s7 ∈ S. Again
if y 6 a and y 6 b then y 6 yzy 6 azb 6 apazbqb 6 abqs8pazb 6 abqs8zs9pab
for some s8, s9 ∈ S. Again if y 6 a and y 6 bs5b then y 6 yzy 6 azbs5b 6
apazbqbs5b 6 abqs10pazbs5b 6 abqs10zbs5s11pab for some s10, s11 ∈ S. Also if
y 6 as4a and y 6 b then y 6 yzy 6 as4azb 6 as4apazbqb 6 abqs12s4apazb 6
abqs12s4azs13pab for some s12, s13 ∈ S. Therefore in either case y ∈ B(ab). Hence
B(a) ∩B(b) ⊆ B(ab). Therefore B(ab) = B(a) ∩B(b) = B(b) ∩B(a) = B(ba).

(2) ⇒ (3): Suppose that the given condition (2) holds. Therefore B(ab) =
B(a) ∩B(b) = B(b) ∩B(a) = B(ba).
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(3) ⇒ (4): First suppose that condition (3) holds and let aLb. So there
exists s, t ∈ S such that a 6 sb and b 6 ta. Since S is regular, a 6 aza and
z 6 zaz for some z ∈ V6(a). Clearly az, za ∈ E6(S). Now z 6 zaz 6 zsbz.
So zsb 6 zsbzsb. Therefore zsb ∈ E6(S). Similarly bzs ∈ E6(S). So by the
condition (3) B(zsb) = B(bzs). Clearly zsbHbzs. Similarly zaHaz. Let x ∈ B(a).
Therefore x 6 a or x 6 as1a for some s1 ∈ S. If x 6 a then x 6 a 6 aza 6 azsb 6
zas2sb 6 zsbs2sb 6 bzss3s2sb for some s2, s3 ∈ S. Similarly if x ∈ as1a then
x 6 bs4b for some s4 ∈ S. So in either case x ∈ B(b). Therefore B(a) ⊆ B(b).
Similarly B(b) ⊆ b(a). Therefore B(a) = B(b).

Conversely suppose that the given condition holds, that is aLb implies B(a) =
B(b) for any a, b ∈ S. Now B(a) = B(b) implies that aRb. So aLb implies that
aRb. Therefore L ⊆ H. Also H ⊆ L. Hence L = H. So S is completely regular
and an inverse ordered semigroup by Theorem 3.8.

Corollary 4.8. A regular ordered semigroup S is completely regular and inverse

if and only if for any e ∈ E6(S) and for any a ∈ S, B(ea) = B(e) ∩B(a).

Proof. For b = e we obtain the result.
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The equivalence graph

of the comaximal graph of a group

Atefeh Hasanvand and Rashid Rezaei

Abstract. Let G be a �nite group. The comaximal graph of G, denoted by Γm(G), is a graph

whose vertices are the proper subgroups of G that are not contained in the Frattini subgroup of

G and join two distinct vertices H and K, whenever G = 〈H,K〉. In this paper, we de�ne an

equivalence relation ∼ on V (Γm(G)) by taking H ∼ K if and only if their open neighborhoods are

the same. We introduce a new graph determined by equivalence classes of V (Γm(G)), denoted

ΓE(G), as follows. The vertices are V (ΓE(G)) = {[H]|H ∈ V (Γm(G))} and two equivalence

classes [H] and [K] are adjacent in ΓE(G) if and only if H and K are adjacent in Γm(G). We

will state some basic graph theoretic properties of ΓE(G) and study the relations between some

properties of graph Γm(G) and ΓE(G), such as the chromatic number, clique number, girth

and diameter. Moreover, we classify the groups for which ΓE(G) is complete, regular or planar.

Among other results, we show that if the number of maximal subgroups of the group G is less

or equal than 4, then Γm(G) and ΓE(G) are perfect graphs.

1. Introduction

The study of algebraic structures using the properties of graphs has been an excit-
ing research topic, leading to many fascinating results and questions. Associating
a graph to a group or a ring and using information on one of the two objects
to solve a problem for the other is an interesting research topic, for instance, see
[?, ?, ?]. For example, in [?] Sharma and Bhatwadekar de�ned a graph on a
non-zero commutative ring with identity R, Γ(R), with vertices as elements of R,
where two distinct vertices a and b are adjacent if and only if Ra + Rb = R. In
[?] the authors introduced and studied the comaximal graph of a �nite bounded
lattice, denoted by Γ(R). They investigated some graph-theoretic properties of
Γ(R). It is shown that for two �nite semi-local rings R and S, if R is reduced,
then Γ(R) ∼= Γ(S) if and only if R ∼= S.

Let G be a group and L(G) be the set of all subgroups of G. We can associate
a graph to G in many di�erent ways (see, for example, [1, 2, 3, 14]). Here we
consider the following way: Let Φ(G) be the Frattini subgroup of G. Associate a
graph Γm(G) to G, the comaximal graph of G, as follows: The vertex set is all
proper subgroups of G that are not contained in Φ(G) and two distinct vertices H

2010 Mathematics Subject Classi�cation: Primary: 05C25; Secondary: 20F99
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and K joined by an edge if and only if G = 〈H,K〉. Note that if G ∼= Cpn , a cyclic
group of order pn, then Φ(G) ∼= Cpn−1 and so Γm(G) is a null graph. Recently,
this graph was investigated by H. Ahmadi and B. Taeri in [?, ?, ?], in which it is
referred to as the graph related to the join of subgroups.

For a simple graph Γ, two vertices H, K are equivalent if and only if their
open neighborhoods are the same, i.e., H ∼ K if and only if N(H) = N(K)
where N(H) = {L ∈ V (Γ) | H and L are adjacent in Γ}. It is clear that ∼ is an
equivalence relation on V (Γ) and we denote the class of H by [H]. The graph of
equivalence classes of Γ, denoted by ΓE , is the simple graph whose vertex set is
V (ΓE) = {[H]|H ∈ V (Γ)} and two distinct equivalence classes [H] and [K] are
adjacent in ΓE , denoted [H]− [K], if H and K are adjacent in Γ. The remarkable
thing is that ΓE can be considered as a subgraph of Γ, and it can inherit many
properties of Γ. In particular, in many cases, some graph theoretic properties of Γ
and ΓE are the same, such as the chromatic number, clique number and diameter.
For example, in [?] the authors considered the graph of equivalence classes of
the non-commuting graph of a group G and investigated some graph-theoretic
properties of this graph.

In this paper, we will introduce the graph of equivalence classes of Γm(G) and
we will state some of basic graph theoretical properties of ΓE(G), for instance
determining diameter, girth, dominating set, planarity of the graph and we give
some relation between the graph properties of Γm(G) and ΓE(G). We will classify
all solvable groups G for which ΓE(G) is a complete graph. Furthermore, we show
that for a non-nilpotent group G, ΓE(G) is planner if and only if |G| = 2n3m and
G/Φ(G) ∼= S3. In Section 3, some results on groups whose equivalence graph of
comaximal graphs are complete are given. In Section 4, we will state some results
on planarity of ΓE(G). Finally, in Section 5 we will study on the perfection of
ΓE(G) and we will show that if |Max(G)| 6 4, then ΓE(G) is a perfect graph and
conclude if |Max(G)| 6 4, then Γm(G) is a perfect graph, too, where Max(G) is
the set of all maximal subgroups of the group G.

2. De�nitions and basic results

For a simple graph Γ, we denote the sets of the vertices and the edges of Γ by V (Γ)
and E(Γ), respectively. A graph Γ is said to be connected if there exists a path
between any two distinct vertices. The distance between two distinct vertices H
andK, denoted by d(H,K), is the length of the shortest path connectingH andK,
if such a path exists; otherwise, we set d(H,K) :=∞. The degree ofH, denoted by
deg(H), is the number of edges incident with H. The graph Γ is regular if and only
if for any two distinct vertices of graph have a same degree. Moreover, the diameter
of a connected graph Γ, denoted by diam(Γ), is sup{d(H,K) : H,K ∈ V (Γ)}. A
graph in which each pair of distinct vertices is joined by an edge is called a complete
graph. We use Kn for the complete graph with n vertices. For a positive integer
r, an r-partite graph is one whose vertex-set can be partitioned into r subsets so
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that no edge has both ends in any one subset. A complete r-partite graph is one
in which each vertex is joined to every vertex that is not in the same subset. The
complete bipartite graph (2-partite graph) with part sizes m and n is denoted by
Km,n. The girth of Γ, denoted by girth(Γ), is the length of the shortest cycle in
Γ, if Γ contains a cycle; otherwise, we set girth(Γ) := ∞. A subset X of V (Γ) is
called a clique if the induced subgraph on X is a complete graph. The maximum
size of a clique in a graph Γ is called the clique number of Γ and denoted by ω(Γ).
The chromatic number of a graph Γ, denoted by χ(Γ), is the minimal number of
colors which can be assigned to the vertices of Γ in such a way that every two
adjacent vertices have di�erent colors. A subset X of the vertices of Γ is called an
independent set if the induced subgraph on X has no edges. The maximum size
of an independent set in a graph Γ is called the independence number of Γ and
denoted by α(Γ). A subset D of V (Γ) is a dominating set of Γ if every vertex in
V (Γ)\D is adjacent to some vertex in D. The domination number λ(Γ) of Γ is the
minimum cardinality of a dominating set. The complement of a graph Γ, denoted
by Γ, is the graph with the same vertex set such that two distinct vertices H and
K are adjacent in Γ if and only if they are not adjacent in Γ.

Let Γm(G) be the comaximal graph of a group G and

N(H) = {L ∈ V (Γm(G)) | H and L are adjacent in Γm(G)}

be the open neighborhood of the vertex H in Γm(G). Two vertices H and K are
equivalent in Γm(G) if and only if their open neighborhoods are the same, i.e.,
H ∼ K if and only if N(H) = N(K). One can see that ∼ is an equivalence
relation on V (Γm(G)) and we denote the class of H by [H].

De�nition 2.1. Let G be a group and Γm(G) be its comaximal graph. The graph
of equivalence classes of Γm(G), denoted by ΓE(G), is the graph whose vertex set
is V (ΓE(G)) = {[H] : H ∈ V (Γm(G))}, and two distinct equivalence classes [H]
and [K] are adjacent in ΓE(G) if and only if H and K are adjacent in Γm(G).

Proposition 2.2. Let Cn be a cyclic group of order n = pα1
1 pα2

2 . . . pαmm , where
αi ∈ N and m > 2. Then ΓE(Cn) ∼= ΓE(Cp1...pm).

Proof. Assume that Cn = 〈a〉. It is easy to check that

N(〈ap
β1
i1
p
β2
i2
...p

βk
ik 〉) = N(〈api1pi2 ...pik 〉)

where {i1, i2, . . . ik} ⊂ {1, 2, . . . ,m} and 1 6 βi 6 αi. Therefore [〈ap
β1
i1
p
β2
i2
...p

βk
ik 〉] =

[〈api1pi2 ...pik 〉] and so the result follows.

Let π(G) be the set of all prime divisors of |G|. By Proposition 2.2 we have
the following result.

Proposition 2.3. Let Cn and Cm be two cyclic groups of order n,m. If π(Cn) =
π(Cm) = {p1, . . . , pk}, then ΓE(Cn) ∼= ΓE(Cm) ∼= ΓE(Cp1...pk).
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Let H be a proper subgroup of G. Set M(H) = {M ∈ Max(G)|H ⊆M}.

Lemma 2.4. Let H and K be proper subgroups of G. Then

(i) [H] and [K] are adjacent in ΓE(G) if and only if M(H) ∩M(K) = ∅.

(ii) [H] = [K] if and only if M(H) = M(K).

In particular, if H is only contained in a single maximal subgroup M , then [H] =
[M ].

Proof. (i). Assume that H and K are adjacent in Γm(G). If M is a maximal
subgroup of G that contains both of them, then 〈H,K〉 6= G, a contradiction.
Conversely, assume that the intersection ofM(H) andM(K) is the empty set and
[H] and [K] are not adjacent in ΓE(G). Then 〈H,K〉 is a proper subgroup of G
and so H and K lie in a maximal subgroup of G which is a contradiction.

(ii). Let [H] = [K] and M be a maximal subgroup of G such that M ∈
N(H) = N(K). Then M is adjacent to both of H and K, which implies that for
any maximal subgroup N of G, H ⊆ N if and only if K ⊆ N . Therefore M(H) =
M(K). Conversely, assume thatM(H) = M(K) and [H] 6= [K]. Then H � K and
so N(H) 6= N(K). Therefore there is a vertex L in Γm(G) such that G = 〈L,H〉
and 〈L,K〉 lies in a maximal subgroup of G, which is a contradiction.

Remark 2.5. Let G be a group and Max(G) = {M1, . . . ,Mn}. For In =
{1, . . . , n} we put

Vi1i2...ir = {H ∈ V (Γm(G))|M(H) = {Mi1 ,Mi2 , . . . ,Mir}}

where i1, i2, . . . , ir ∈ In and r 6 n− 1. By Lemma 2.4 we have H,H ′ ∈ Vi1i2...ir if
and only if [H] = [H ′]. Now if Vi1i2...ir 6= ∅, we may denote the vertex Vi1i2...ir in
ΓE(G) by [vi1i2...ir ]. Furthermore, for 1 6 i 6 n we denote the class of Vi by [Mi].
Then we have

V (ΓE(G)) = {[Mi] : 1 6 i 6 n} ∪n−1r=2 {[vi1i2···ir ] : 1 6 i1, · · · , ir 6 n, Vi1i2...ir 6= ∅}.

Furthermore, It is clear that [vi1i2...ir ] and [vj1j2...js ] are adjacent in ΓE(G) if and
only if {i1, i2, . . . , ir} ∩ {j1, j2, . . . , js} = ∅ where 1 6 r, s 6 n− 1.

Proposition 2.6. Assume that G is a �nite group. Then

(i) ω(ΓE(G)) = ω(Γm(G)) = χ(Γm(G)) = χ(ΓE(G)) = |Max(G)|.

(ii) diam(ΓE(G)) = diam(Γm(G)) 6 slant3. In particular, ΓE(G) is connected.

(iii) If |Max(G)| > 3, then girth(ΓE(G)) = 3.

(iv) α(ΓE(G)) 6 α(Γm(G)).
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Proof. (i). Let |Max(G)| = n. We claim that {[M1], . . . , [Mn]} is a maximum
clique in ΓE(G). Let {[H1], . . . , [Hr]} be a clique in graph ΓE(G). Since [Hi]
and [Hj ] are adjacent, by Lemma 2.4, M(Hi) ∩M(Hj) = ∅, thus every subgroup
Hi is contained in a maximal subgroup of G and so r 6 n. By the same way
we have {M1, . . . ,Mn} is a maximum clique in Γm(G). Therefore ω(ΓE(G)) =
ω(Γm(G)) = |Max(G)|. Moreover, it is clear that for any graph Γ, ω(Γ) 6 χ(Γ).
Now assume that ω(Γm(G)) = t and Max(G) = {M1, · · · ,Mt}. Then for 1 6 i 6 t,
Si = L(Mi)\L(Φ(G)) is an independent set and V (Γm(G)) = ∪ti=1Si, where L(X)
is the set of all subgroups of a group X. Hence χ(Γ) 6 ω(Γ) and the proof is
complete.

(ii). Assume that [H] and [K] are two distinct vertices in ΓE(G). If H ∩K *
Φ(G), then there is a maximal subgroup M of G such that G = 〈M,H〉 = 〈M,K〉
and so d([H], [K]) 6 2. Now assume that H ∩K ⊆ Φ(G). Then there are maximal
subgroups M1 and M2 of G such that

G = 〈M1, H〉 = 〈M2,K〉 = 〈M1,M2〉

and so d([H], [K]) 6 3. Therefore diam(ΓE(G)) 6 slant3. By the same way one
may have diam(Γm(G)) 6 slant3, as required.

(iii). Suppose that a group G contains at least three maximal subgroups M1,
M2 and M3. Then {M1,M2,M3} and {[M1], [M2], [M3]} are triangles in Γm(G)
and ΓE(G) respectively and so girth(Γm(G)) = girth(ΓE(G)) = 3.

(iv). It is clear that if {H1, . . . ,Hr} is an independent set in the graph
Γm(G), then {[H1], . . . , [Hr]} is an independent set in ΓE(G). Thus α(ΓE(G)) 6
α(Γm(G)).

3. On the completeness of ΓE(G)

Let G be a �nite group. In [14], the authors have introduced the concept of
maximal graph, denoted by ΓM(G), as the graph whose vertices are the maximal
subgroups of G and join two distinct vertices M1 and M2, whenever M1∩M2 6= 1.
If the intersection of every pair of distinct maximal subgroups of G is trivial, then
the graph ΓM(G) has no edges. Now we may recall the following theorem.

Theorem 3.1. [14, Proposition 1.3] Let G be a �nite group. The intersection of
every pair of distinct maximal subgroups of G is trivial if and only if G is solvable
and one of the following holds:

(i) G ∼= Cpn (p is prime).

(ii) G ∼= Cpq (p, q di�erent primes).

(iii) G ∼= Cp × Cp (p is prime).

(iv) G = P o Q, where P is an elementary abelian p-group of order pn (p a
prime), |Q| = q, where q is a prime di�erent from p, and Q acts irreducibly
and �xed point freely on P .
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In the following theorem, we characterize all groups whose graph of equivalence
classes of comaximal graph of G are complete.

Theorem 3.2. The equivalence graph of the comaximal graph of G is complete if
and only if G is solvable and one of the following holds.

(i) G ∼= Cpn (p is prime).

(ii) G ∼= Cprqs (p, q di�erent primes).

(iii) G is a p-group, where G/Φ(G) ∼= Cp×Cp (p a prime). In particular, if G is
an abelian p-group then G ∼= Cpr × Cps and ΓE(G) ∼= Kp+1.

(iv) G/Φ(G) ∼= PoQ, where P is an elementary abelian p-group of order pn (p is
prime), |Q| = q, where q is a prime di�erent from p, and Q acts irreducibly
and �xed point freely on P . Moreover, in this case, G is not nilpotent.

Proof. Let ΓE(G) be a complete graph and Max(G) = {M1, . . . ,Mk}. Since Mi

andMi∩Mj are not joined by an edge, then [Mi∩Mj ] is not one of the vertices of
ΓE(G). Hence Mi ∩Mj = Φ(G) and so V (ΓE(G)) = {[M1], . . . , [Mk]}. Moreover,
the intersection of every pair of distinct maximal subgroups of G/Φ(G) is trivial.
Now by Theorem 3.1 we have the following cases:

(i). If G/Φ(G) ∼= Cpn , then n = 1 and G ∼= Cpm , for some integer m. Thus in
this case ΓE(G) is an empty graph.

(ii). If G/Φ(G) ∼= Cpq, then G is a cyclic group with two maximal subgroups.
Therefore G ∼= Cprqs .

(iii). If G/Φ(G) ∼= Cp × Cp, then G is nilpotent. Therefore

G ∼= S(p1)× . . .× S(pk),

where S(pi) is the Sylow pi-subgroup of G and π(G) = {p1, . . . , pk} is the set of
all prime divisors of |G|. Assume that k > 2. We know Φ(G) ∼= Φ(S(p1))× . . .×
Φ(S(pk)) and Φ(S(pi)) 6= 1. Therefore

Cp × Cp ∼=
G

Φ(G)
∼=

S(p1)

Φ(S(p1))
× . . .× S(pk)

Φ(S(pk))
,

which contradicts π(G) = π(G/Φ(G)). Hence k = 1 and so G is a p-group, where
G/Φ(G) ∼= Cp ×Cp. In particular, if G is an abelian p-group, G/Φ(G) ∼= Cp ×Cp
follows that G ∼= Cpr × Cps and so ΓE(G) ∼= Kp+1.

(iv). If G/Φ(G) = P o Q, Since Q is a non-normal maximal subgroup of G,
then G is non-nilpotent.

Conversely, If G ∼= Cpn or Cprqs , then it is clear that ΓE(G) is complete.
Now assume that G is a p-group of order pn, where G/Φ(G) ∼= Cp × Cp. Then
|Φ(G)| = pn and for allMi andMj in Max(G), |Mi∩Mj | = |Φ(G)|. ThereforeMi∩
Mj = Φ(G) for all Mi and Mj in Max(G) and so V (ΓE(G)) = {[M1], . . . , [Mk]}.
Thus ΓE(G) is a complete graph.
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For the last case there is a bijection between Max(G) and Max(G/Φ(G)) and
we may assume that G/Φ(G) ∼= P ′/Φ(G) o Q′/Φ(G), where P = P ′/Φ(G) and
Q = Q′/Φ(G). Then V (ΓE(G)) = {[P ′], [Q′], [Q′g]| g ∈ G} and so ΓE(G) is a
complete graph.

Proposition 3.3. λ(ΓE(G)) = 1 if and only if ΓE(G) is a complete graph.

Proof. Let D = {[H]} be a dominating set. It is easy to show that H is only
contained in a single maximal subgroup M and so [H] = [M ] by Lemma 2.4.
On the other hand, one can see that M ∩ N = Φ(G) for all N ∈ Max(G) \
{M}. Therefore M/Φ(G) ∩ N/Φ(G) = {Φ(G)} and so the maximal graph of
G/Φ(G), ΓM(G/Φ(G)), is nonconnected. Thanks to Theorem 1.2 in [14], G/Φ(G)
is isomorphic to one of the groups Cp×Cp, Cpq or PoQ, where P is an elementary
abelian p-group of order pn (p a prime), |Q| = q, where q is a prime di�erent from
p, and Q acts irreducibly and �xed point freely on P . Now the result follows by
Theorem 3.2.

Proposition 3.4. ΓE(G) is a regular graph if and only if ΓE(G) is a complete
graph.

Proof. Let ΓE(G) be a regular graph and let, for a contradiction, there is maximal
subgroups Mi and Mj of G such that Φ(G) ( Mi ∩Mj . Then [Mi ∩Mj ] is one
of the vertices of ΓE(G). But deg([Mi ∩Mj ]) < deg([Mi]), which contradicts the
regularity of ΓE(G). Therefore Φ(G) = Mi∩Mj and so V (ΓE(G)) = Max(G) and
the result follows.

Proposition 3.5. If G is a �nite p-group which has a maximal cyclic subgroup,
then ΓE(G) is a complete graph.

Proof. Thanks to Theorem 5.3.4 in [?], G is one of the following groups:

(i) Cpn

(ii) Cpn × Cpn−1

(iii) D2n =< x, y|x2n−1

= y2 = (xy)2 = 1 >, n > 3.

iv) Q2n =< x, y|x2n−1

= 1, y2 = x2
n−2

, xy = x−1 >, n > 3.

(v) SD2n =< x, a|x2 = 1 = a2
n−1

, ax = a2
n−2−1 >, n > 3.

(vi) Mn(p) =< x, a|xp = 1 = ap
n−1

, ax = a1+p
n−2

>, n > 3.

Now by using the parts (i) and (iii) of Theorem 3.2, ΓE(G) is a complete
graph.

Proposition 3.6. ΓE(G) ∼= K4 if and only if one of the following holds.
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(i) G is a 3-group and G/Φ(G) ∼= C3 × C3. In particular, if G is an abelian
3-group then G ∼= C3r × C3s , r, s > 1.

(ii) G/Φ(G) ∼= S3.

Proof. Assume that ΓE(G) ∼= K4. Since ΓE(G) is complete graph, then |V (ΓE(G))| =
|Max(G)| = 4. Then we have the following cases:
(i). By part (iii) of Theorem 3.2, G is a 3-group and G/Φ(G) ∼= C3 × C3. In
particular, if G is an abelian 3-group then G ∼= C3r × C3s , r, s > 1.
(ii). By part (iv) of Theorem 3.2, assume that G/Φ(G) ∼= P o Q, where P
is an elementary abelian p-group of order pn (p a prime), |Q| = q, where q is
a prime di�erent from p. One can see that the number of Sylow q-subgroups
and Sylow p-subgroup of G/Φ(G) are q + 1 = 3 and 1 respectively. Therefore
G/Φ(G) ∼= C3 o C2

∼= S3.

Proposition 3.7. ΓE(G) ∼= K5 if and only of G/Φ(G) ∼= A4.

Proof. Assume that ΓE(G) ∼= K5. Since ΓE(G) is complete graph, then |V (ΓE(G))| =
|Max(G)| = 5 and so by the last part of Theorem 3.2 the number of Sylow q-
subgroups and of G/Φ(G) are q+1 = 4 and so G/Φ(G) ∼= (C2×C2)oC3

∼= A4.

4. On the planarity of ΓE(G)

In this section, we will investigate the planarity of the equivalence graph ΓE(G).
First we recall the following well-known theorem of Kuratowski.

Theorem 4.1. [13, Theorem 4.4.6] A graph is planar if and only if it has no
subdivisions of K5 or K3,3.

In the following theorem, we characterize all cyclic groups whose equivalence
graph are planar.

Theorem 4.2. Let Cn be a cyclic group of order n. ΓE(Cn) is planar if and only
if |π(Cn)| = 2 or 3.

Proof. Since |Max(Cn)| = |π(Cn)|, then |Max(Cn)| 6 4, otherwise ΓE(G) will
have a subgraph isomorphic to K5 which is a contradiction. First we assume that
|Max(Cn)| = 4. According to Proposition 2.3 if π(Cn) = {p1, . . . , p4}, we have
ΓE(Cn) = ΓE(Cm) = ΓE(Cp1...p4). Hence the induced subgraph on vertices

{< ap1 >,< ap2 >,< ap3 >,< ap4 >,< ap1p3 >,< ap2p4 >}

contains a subgraph isomorphic to K3,3 and so ΓE(Cn) is not planar. Now, one
can check that if |π(Cn)| = 2 or 3, then ΓE(Cn) is planar.
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Theorem 4.3. Assume that G is a p-group of order pn where p is a prime and
n > 2. Then ΓE(G) is planar if and only if G/Φ(G) ∼= C2 × C2 or C3 × C3.
In particular, if G is an abelian non-cyclic p-group of order pn and n > 2, then
ΓE(G) is planar if and only if G ∼= C3r × C3s or G ∼= C2r × C2s , where r, s > 1.

Proof. Let G be a p-group of order pn and ΓE(G) be planar. Then G/Φ(G) ∼=
Cp× · · · ×Cp with rank r, |Max(G)| = (pr − 1)/(p− 1) and |Max(G)| 6 4. Hence
we must have p = 2 or p = 3 and r = 2 and so by Theorem 3.2 ΓE(G) ∼= K3 or
K4, which they are planar.

Assume that G is a group isomorphic to D2n , Q2n or SD2n , n > 3. Then
G/Φ(G) ∼= C2 × C2. Furthermore, Mn(p)/Φ(Mn(p)) ∼= Cp × Cp for p = 2 or 3.
Thanks to Theorem 4.3 we have the following result.

Corollary 4.4. Let G be a group isomorphic to one of the group D2n , Q2n , SD2n ,
n > 3 or Mn(p), p = 2 or 3. Then ΓE(G) is planar.

Theorem 4.5. Let G be a non-nilpotent group. ΓE(G) is planar if and only if
|G| = 2n3m and G/Φ(G) ∼= S3, where n,m > 1.

Proof. Assume that ΓE(G) is planar. Then |Max(G)| 6 4. On the other hand,
since G is not nilpotent by Lemma 3, in [9], we have |Max(G)| > 4. So Max(G) = 4
and by theorem 3 in [9], G is a supersolvable group of order 2n3m n,m > 1 and
G/Φ(G) ∼= S3 and the result follows.

5. On the perfection of ΓE(G)

In this section, we will study the perfection of the equivalence graph. We show
that if |Max(G)| 6 4 then ΓE(G) and Γm(G) are perfect. First, we recall the
following de�nitions and theorems.

De�nition 5.1. A graph Γ is perfect whenever ω(Γ′) = χ(Γ′), for all induced
subgraphs Γ′ of Γ.

De�nition 5.2. A graph is chordal (or triangulated) if each of its cycles of length
at least 4 has a chord, i.e., if it contains no induced cycles other than triangles.

Proposition 5.3. [13, Proposition 5.5.1] Every chordal graph is perfect. In par-
ticular, complete graphs, empty graphs and k-partite graphs are perfect.

Theorem 5.4. [?, Theorem 1.2] A graph Γ is perfect if and only if neither Γ nor
Γ contains an odd cycle of length at least 5 as an induced subgraph.

Theorem 5.5. If |Max(G)| 6 3, then ΓE(G) is chordal.

Proof. If |Max(G)| = 1, then Φ(G) is the maximal subgroup of G and so ΓE(G)
is empty. Furthermore, if |Max(G)| = {M1,M2}, then V (ΓE(G)) = {[M1], [M2]}
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and so ΓE(G) ∼= K2 . Hence by Proposition 5.3 they are perfect. Now assume
that Max(G) = {M1,M2,M3} and

[H1]− [H2]− · · · − [Hn]− [H1]

be a cycle of length n in ΓE(G). Since for all 1 6 i 6 3, deg([Mi]) = 2 or 3 and
by Remark 2.5 deg([vij ]) = 1, then n 6 3 and so ΓE(G) is chordal.

Corollary 5.6. If |Max(G)| 6 3, then ΓE(G) is perfect.

It must be noted that if |Max(G)| > 4, then there exists a �nite group like G
such that ΓE(G) is not chordal. For example, assume that G = 〈a〉 ∼= Cp1...p4 ,
where p1, . . . , p4 are primes, then

C4 : [ap1 ]− [ap2 ]− [ap1p3 ]− [ap2p4 ]− [ap1 ]

is a cycle of length 4 without a chord.

Theorem 5.7. If |Max(G)| = 4 then ΓE(G) is perfect.

Proof. We use Theorem 5.4 and show that ΓE(G) and ΓE(G) do not contain an
odd cycle of length at least 5 as an induced subgraph. For ΓE(G), by Remark 2.5
we have

V (ΓE(G)) = {[M1], [M2], [M3], [M4], [vij ], [vijk]|i, j, k ∈ {1, 2, 3, 4}}.

In the general case, we may assume that all of [vij ]'s and [vijk]'s are not empty. It
must be noted that there is not a cycle of length at least 5 which contains [vijk],
because each [vijk] has degree 1 and cannot be part of a cycle. Therefore, if n > 5
and Cn : [H1] − [H2] − · · · − [Hn] − [H1] is an odd cycle in V (ΓE(G)), then for
1 6 i 6 n, [Hi] is equal to either [Mi] or [vij ]. Without loss of generality, we may
assume that [H1] = [M1] or [H1] = [v12].
If [H1] = [M1], there are two choices for [H2].

Case 1: [H2] = [M2], [M3] or [M4]. If for example [H2] = [M2], then we can
choose just [v13] or [v14] for [H3]. If [H3] = [v13], then [H4] = [v24] and so [H1], [H4]
are adjacent. Hence n = 4, a contradiction. On the other hand, if [H3] = [v14],
then there is no choice for [H4], a contradiction too.

Case 2: [H2] = [v23] or [v24]. Then [H3] = [v14] or [v13] respectively and we
have no choice for [H4] which is a contradiction.

Now assume that [H1] = [v12]. We have two choices for [H2].
Case 1: [H2] = [M3] or [M4]. Let for example [H2] = [M3]. If [H3] = [M1]

or [M2], then [H4] = [v23] or [v13] respectively and there exists no choice for
[H5], a contradiction. Similarly, if [H3] = [v14] or [v24], then [H4] = [v23] or [v13]
respectively and there exists no choice for [H5], a contradiction too.

Case 2: [H2] = [v34]. Then [H3] = [M1] or [M2]. If for example [H3] = [M1],
then [H4] = [v23] or [v24] and so [H5] = [v14] or [v13] respectively. Now there exists
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no choice for [H6] and so this case does not hold. Consequently, ΓE(G) does not
contain an odd cycle of length at least 5 as an induced subgraph.

Now, we prove the same result for ΓE(G). First we note that since [vijk] has
degree 1 in ΓE(G), all but one vertex of the complement are neighbors of [vijk],
and so it cannot be contained in a chordless cycle of length at least 3. Let n > 5
and Cn : [H1] − [H2] − · · · − [Hn] − [H1] be an odd cycle in ΓE(G). Then for
1 6 i 6 n, [Hi] is equal to either [Mi] or [vij ].

Without loss of generality, we may assume that [H1] = [M1] or [H1] = [v12].
First assume that [H1] = [M1]. Then [H2] = [v12], [v13] or [v14]. If for example
[H2] = [v12], then [H3] = [v23], [v24] or [M2]. If [H3] = [M2], then we have no
choice for [H4]. Let [H3] = [v23] (or [H3] = [v24] ), then [H4] = [M3] or [v34]. If
[H4] = [M3], then there is no choice for [H5] and if [H4] = [v34], then [H5] = [M4]
and we have no choice for [H6]. Therefore in this case we have a contradiction.

Now assume that [H1] = [v12]. We have the following cases for [H2] :
Case 1: If [H2] = [M1] or [M2], then [H3] = [v13] or [v23] respectively and so

we have a cycle of length at most 3, a contradiction.
Case 2: [H2] = [v13], [v14], [v23] or [v24]. If for example [H2] = [v13], then

[H3] = [M3] or [v34] and �nally we have the paths [v12] − [v13] − [M3] or [v12] −
[v13]− [v34]− [M4] respectively, which they are not cycles in ΓE(G). Then we get
a contradiction in this case too.

Therefore ΓE(G) does not contain an odd cycle of length at least 5 and so
ΓE(G) is a perfect graph.

One can easily check that if Cn : H1−H2−· · ·−Hn−H1 is a cycle of length n
in Γm(G), then Cn : [H1]− [H2]−· · ·− [Hn]− [H1] is a cycle of length n in ΓE(G).
Then by Corollary 5.6 and Theorem 5.7 we have the following result for Γm(G).

Corollary 5.8. If |Max(G)| 6 4, then Γm(G) is a perfect graph.
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Matched pairs of m-invertible Hopf quasigroups

Mohammad Hassanzadeh and Serkan Sütlü

Abstract. The matched pair theory (of groups) is studied for a class of quasigroups; namely,

the m-inverse property loops. The theory is upgraded to the Hopf level, and the m-invertible

Hopf quasigroups are introduced.

1. Introduction

One of the main motivations of the theory of quasigroups may be considered to
be the extension of the representation theoretical properties of the groups on the
level of quasigroups; such as the character theory [27, 58], module theory [57], or
homogeneous spaces [59, 60]. See also [19, 22, 23].

Not much later, it was discovered that there are a plethora of areas for quasi-
groups to apply. Among others, an incomplete list may consists of the coding
theory (see, for instance, [20] for the quasigroup-based MDS codes, and [42, 43]
for the quasigroup point of view towards the codes with one check symbol, as well
as [21]), cryptology [18, 24, 54], and combinatorics [9, 25, 30, 37].

In order to shed further light on the well deserved analysis of the quasigroups,
we shall develop in the present paper the matched pair construction for these
non-associative structures. The matched pair theory was introduced, initially, for
groups in order to recover the structure of a group in terms of two subgroups with
mutual actions, [12, 36, 38, 39, 61, 64]. More precisely, given a pair of groups
(G,H) with mutual actions

. : H ×G→ G, / : H ×G→ H

satisfying

y . (xx′) = (y . x)((y / x) . x′), y . 1 = 1,

(yy′) / x = (y / (y′ . x))(y′ / x), 1 / x = 1,

for any x, x′ ∈ G, and any y, y′ ∈ H, the cartesian product G ./ H := G×H is a
group with the multiplication

(x, y)(x′, y′) = (x(y . x′), (y / x)y′),

2010 Mathematics Subject Classi�cation: 20N05; 16T05; 57T05; 16S40.
Keywords: Quasigroups, m-inverse property, matched pairs.
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and the unit (1, 1) ∈ G × H. In this case, the pair (G,H) of groups is called a
matched pair of groups.

As for the quasigroups, there are many such constructions. To begin with,
there are of course the direct product construction [17, 56, 44, 26, 6, 7], and the
semi-direct product construction [55, 49, 15]. There is also the crossed product
construction [14, 13, 5], which is referred as quasi-direct product in [63]. Consid-
ering these as the binary crossed products, there are, on top of these, the n-ary
crossed products [11]. The other generalizations goes under the titles of the gen-
eralized crossed product [8], and the generalized singular direct product [52, 53].
Finally, there is the Sabinin's product [48, 51] and its generalization [15, 50]. We
refer the reader also to [16].

More recently, a bicrossed product construction for quasigroups (based on the
mutual interaction of the quasigroups through permutations) is developed in [1,
Sect. 5]. The structure of the resulting bipoduct quasigroup of [1, Thm. 5.1]
encompases to that of the bicrossedproduct group of [40], and is closest to the one
developed in the present manuscript.

The matched pair construction that we shall develop here is also based on
the �mutual actions� of two objects through certain maps, though this time the
objects being m-inverse property loops, and not merely quasigroups. We shall,
furthermore, be able to relate our construction to the matched pair of groups;
which will enable us to produce an ample amount of examples motivated from the
matched pairs of groups.

Let us note that the matched pair theory of groups suit also to Hopf algebras,
the quantum analogues of groups, [40, 41, 62]. Just as well, there will be a Hopf
analogue of the theory we shall develop here.

In [35], see also [34], the authors managed to develop successfully a not-
necessarily associative (but coassociative, counital, and unital) (co)algebraH, that
they call a Hopf quasigroup, with a map S : H → H satisfying compatibility
conditions more general then those satis�ed by the antipode of a Hopf algebra. It
is further shown that kQ is a Hopf quasigroup if Q is an inverse property (IP) loop,
and that for any Hopf quasigrop H, the set G(H) of group-like elements form an
IP-loop.

Considering the Hopf algebras as linearizations of groups, one sees the antipode
of a Hopf algebra as the manifestation of the inversion on a group. This point of
view is precisely what has been studied in [34, 35], where the authors succesfully
developed the correct axioms for the antipode of the quantum analogue of an IP-
loop. Looking from a similar perspective, in the present paper we shall develop the
quantum analogue of a strictly larger family; the m-inverse property loops, which
is general enough to encompass the weak-inverse-property (WIP) of [3], as well as
the crossed-inverse (CI) property of [2]. The resulting quantum objects shall be
addressed as m-inverse property Hopf quasigroups, and their matched pair theory
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(the quantum analogue of the matcehd pair theory developed for the m-inverse
property loops) will be developed.

Finally, it deserves to be mentioned that in the level of Hopf objects there
are constructions that fell beyond the matched pair construction; most notably,
the Radford's biproduct construction, [45]. However, the Radford's biproduct con-
struction uses the category of Yetter-Drinfeld objects; that we intend to explore for
the m-inverse property Hopf quasigroups in a separate paper. As such, we expect
also to penetrate into a Hopf-cyclic type (co)homology theory for the quantum
objects constructed here.

The paper is organized as follows.

Section 2 below is about the inverse properties on quasigroups, and serves to
�x the basic de�nitions of the main objects of study. To this end, in Subsection
2.1 we collect the de�nitions of quasigroups and loops, while in Subsection 2.2 we
recall brie�y the various inverse properties on quasigroups (with a special emphasis
on the m-inverse property).

Section 3 is where we develop the matched pair theory for the m-inverse prop-
erty loops. Based on the lack of literature on semi-direct product of quasigroups
(in the sense that one quasigroup acts on the other, see for instance Proposition
3.3 and Proposition 3.4 below), and for the convenience of the reader, we begin
with a recollection of the basic results (Theorem 3.1 and Theorem 3.2) on the
direct products of quasigroups in Subsection 3.1, and then extend it to the semi-
direct products of m-inverse property loops (Proposition 3.6 and Proposition 3.7).
Finally, we achieve the full generality (proving our main results on the quasigroup
level) in Subsection 3.3, and succeed the matched pair construction for the m-
inverse property loops (Proposition 3.8 and Proposition 3.9). We also discuss the
universal property of this construction in Proposition 3.12, as an analogue of [41,
Prop. 6.2.15] for the m-inverse property loops.

Section 4, �nally, is reserved for the quantum counterparts of the main results
of Subsection 3.3. Accordingly, in Subsection 4.1 we introduce the notion of m-
invertible Hopf quasigroup in De�nition 4.1. Then, in Subsection 4.2 we establish
the matched pair theory for the m-invertible Hopf quasigroups (Proposition 4.6),
along with a suitable version (Proposition 4.9) of [41, Thm. 7.2.3].

Notation and Conventions

We shall adopt the Sweedler's notation (suppressing the summation) to denote
a comultiplication; ∆ : A→ A⊗A, ∆(a) := a

<1>
⊗a

<2>
. For the sake of simplicity,

we shall also denote, occasionally, an element in the cartesian product A × B, or
tensor product A⊗B as (a, b), rather than a⊗ b.
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2. Quasigroups with inverse properties

In this section we shall discuss the semi-direct product, and then the matched pair
constructions on two large classes of semigroups; namely the m-inverse loops, and
the Hom-groups. To this end, we review the basics of the quasigroup theory �rst.
We shall then focus on the inverse-properties (IP) over quasigroups, in order to
be able to recall the (r, s, t)-inverse quasigroups, as well as the m-inverse loops.
Finally, on the other extreme, we shall recall/review the basics of the Hom-groups.

2.1. Quasigroups

A quasigroup is a set Q with a multiplication such that for all a, b ∈ Q, there exist
unique elements x, y ∈ Q such that ax = b, ya = b. In this case, x = a\b is called
the left division, and y = b/a the right division.

Given two quasigroups Q and Q′, a quasigroup homotopy from Q to Q′ is a
triple (α, β, γ) of maps Q → Q′ such that α(x)β(y) = γ(xy) for all x, y ∈ Q. In
case α = β = γ, then we arrive at the notion of a quasigroup homomorphism. On
the other hand, a quasigroup isotopy is a quasigroup homotopy (α, β, γ) such that
all three maps are bijective.

A quasigroup Q with a distinguished idempotent element δ ∈ Q is called a
pointed idempotent quasigroup, or in short, a pique, [16]. A pique (Q, δ) is called
a loop if the idempotent element δ ∈ Q acts like an identity, i.e. xδ = δx = x for
any x ∈ Q. It, then, follows that the idempotent element δ ∈ Q is unique, and
that any x ∈ Q has a unique left inverse xλ := δ/x, xλx = δ as well as a unique
right inverse xσ := x\δ, xxσ = δ. A loop Q is said to have two-sided inverses

if xλ = xσ for all x ∈ Q. Furthermore, a loop Q is said to have the left inverse

property if xλ(xy) = y for all x, y ∈ Q, and similarly Q is said to have the right

inverse property if (yx)xσ = y, for all x, y ∈ Q. Finally, a loop is said to have
the inverse property if it has both the left inverse property and the right inverse
property. Such loops are also called the IP-loops.

Given a pique (Q, δ), there corresponds a loop B(Q) - called the corresponding
loop or cloop - with the multiplication x∗y := (x/δ)(δ\y) for any x, y ∈ Q, and the
identity element δ ∈ Q. We note that it is possible to recover the multiplication
on a pique from the one on the cloop as xy := (xδ) ∗ (δy), see, for instance, [47].

Finally, a pique (Q, δ) is called central if B(Q) is an abelian group, and the
set of all left and right multiplications of Q that �x the idempotent element δ ∈ Q
is the group Aut

(
B(Q)

)
.

A convenient way to construct quasigroups, out of groups, is the cocycle-type
group extensions, [4], see also [55, Subsect. 1.6.2].

Example 2.1. Let G be a group, (V,+) an abelian group with a right action
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/ : V ×G→ V , (v, x) 7→ v / x. Then, given any ϕ : G×G→ V , the operation

(x, v)(x′, v′) := (xx′, ϕ(x, x′) + v / x′ + v′) (2.1)

is associative on Gnϕ V := G× V if and only if

dϕ(x, x′, x′′) := ϕ(x′, x′′)− ϕ(xx′, x′′) + ϕ(x, x′x′′)− ϕ(x, x′) / x′′ = 0, (2.2)

that is, ϕ : G×G→ V is 2-cocycle in the group cohomology of G, with coe�cients
in V ; in other words, ϕ ∈ H2(G,V ). As such, giving up the cocycle condition (2.2)
we arrive at the quasigroup Gnϕ V with the multiplication (2.1).

Similarly, we may construct a loop.

Example 2.2. Considering the quasigroup GnϕV of Example 2.1, we see at once
that (1, 0) ∈ Gnϕ V acts as unit, with respect to (2.1), if and only if

ϕ(1, x) = 0 = ϕ(x, 1) (2.3)

for any x ∈ G. Hence, given a group G, an abelian group (V,+) with a right action
/ : V ×G→ V , and a mapping ϕ : G×G→ V satisfying (2.3) is a loop.

We shall, for the sake of simplicity, drop the right action (that is, we shall
assume the right action to be trivial) on the sequel, and consider the examples of
the form G×ϕ V , with the multiplication

(x, v)(x′, v′) := (xx′, ϕ(x, x′) + v + v′). (2.4)

2.2. Inverse properties on quasigroups

In the present subsection we shall recall the inverse properties on quasigroups, and
in particular, on loops.

Along the lines of [33], see also [3], a loop Q is said to have the weak-inverse

property (WIP) if there is a permutation J : Q→ Q such that

xJ(x) = δ, (2.5)

and that
xJ(yx) = J(y), (2.6)

for any x, y ∈ Q. Dropping the condition (2.5), a quasigroup with 2.6 is called a
WIP quasigroup.

Similarly, a loop/quasigroup Q is said to have the crossed-inverse property (CI
property) if (2.6) is replaced by

(xy)J(x) = y. (2.7)
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We refer the reader to [31] for the applications of the CI quasigroups in cryptog-
raphy.

On the other hand, the loop/quasigroup Q has the m-inverse property if (2.6),
or (2.7), is now substituted with

Jm(xy)Jm+1(x) = Jm(y), (2.8)

where m ∈ Z, [29].

Finally, we recall that the loop/quasigroup Q is said to have the (r, s, t)-inverse
property if (2.6), (2.7), or (2.8), is exchanged with

Jr(xy)Js(x) = J t(y), (2.9)

where r, s, t ∈ Z, [33].

Remark 2.3. The condition (2.9) generalizes those given by (2.6), (2.7), or (2.8).
More precisely, the weak-inverse property is a (−1, 0,−1)-inverse property, [33],
and a crossed-inverse property is nothing but a 0-inverse property; where, in gen-
eral an m-inverse property is an (m,m+ 1,m)-inverse property.

On the other hand, it is observed in [32] that every (r, s, t)-inverse loop is
an (r, r + 1, r)-inverse loop, that is, an r-inverse loop. Though, on the level of
quasigroups, there are proper (r, s, t)-inverse quasigroups, [33].

Remark 2.4. It is critical to recall from [33, Rk. 2.2] that if Q is an (r, s, t)-inverse
quasigroup with the permutation J : Q→ Q so that Jh ∈ Aut(Q) for some h ∈ Z,
then Q is an (r + uh, s+ uh, t+ uh)-inverse quasigroup for any u ∈ Z.

Let us �nally discuss an odd-invertible loop.

Example 2.5. Let us consider the loop G×ϕ V of Example 2.2. Let also

J : G×ϕ V → G×ϕ V, J(x, v) := (x−1,−v). (2.10)

It is quite clear then that J2 = IdG×V ∈ Aut(G ×ϕ V ). Accordingly, we see at
once that

(x, v)J(x, v) = (1, 0)

if and only if
ϕ(x, x−1) = 0 (2.11)

for any x ∈ G, and that for any m = 2`+ 1,

Jm((x, v)(x′, v′))Jm+1(x, v) = Jm(x′, v′)

if and only if
J((x, v)(x′, v′))(x, v) = J(x′, v′),



Matched pairs of m-invertible Hopf quasigroups 107

if and only if
ϕ(x′−1x−1, x) = ϕ(x, x′) (2.12)

for any x, x′ ∈ G.

To sum up, we may say that given any group G, an abelian group (V,+), and
any ϕ : G × G → V satisfying (2.3), (2.11), and (2.12), G ×ϕ V is an (2` + 1)-
invertible loop with (2.10) for any ` ∈ Z.

3. Matched pairs of m-invertible loops

In this section we shall introduce the matched pair theory for the quasigroups with
the m-inverse property. The theory that we shall develop here will thus generalize
the direct product theory in [33, Sect. 5], and the semi-direct product theory in
[55, Sect. 1.6.2] for quasigroups.

3.1. Direct products of quasigroups

To this end we shall �rst recall the direct product theory from [33, Sect. 5]. In the
utmost generality, let Q1 be an (r1, s1, t1)-inverse quasigroup with the permutation
J1 : Q1 → Q1 , and let Q2 an (r2, s2, t2)-inverse quasigroup with J2 : Q2 →
Q2. Then the direct product Q1 × Q2 is de�ned to be the quasigroup with the
permutation J1 × J2 : Q1 × Q2 → Q1 × Q2, and the multiplication given by
(q1, q2)(q′1, q

′
2) := (q1q

′
1, q2q

′
2).

Along the lines of [33, Sect. 5], let Jh1
1 ∈ Aut(Q1) and Jh2

2 ∈ Aut(Q2). In the
case that Q1 is an m1-inverse quasigroup and Q2 is an m2-inverse quasigroup, the
structure of Q1 ×Q2 is given in [33, Thm. 5.1], that we recall below.

Theorem 3.1. Assume that Q1 is an m1-inverse quasigroup with the permutation

J1 : Q1 → Q1 so that Jh1
1 ∈ Aut(Q1), and Q2 is an m2-inverse quasigroup with

J2 : Q2 → Q2 such that Jh2
2 ∈ Aut(Q2). Then Q1×Q2 is an m-inverse quasigroup

with J1 × J2 : Q1 ×Q2 → Q1 ×Q2, for any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(3.1)

As is noted in the proof of [33, Thm. 5.1], a solution to (3.1) exists if and only if
there is ` ∈ N such that m1 −m2 = (h1, h2)`. Here (h1, h2) refers to the greatest
common divisor of h1 ∈ Z and h2 ∈ Z.

If, on the other hand, Q1 is an (r1, s1, t1)-inverse quasigroup, and Q2 is an
(r2, s2, t2)-inverse quasigroup, the structure of the direct product is given by [33,
Thm. 5.2], which we recall now.



108 M. Hassanzadeh and S. Sütlü

Theorem 3.2. Let Q1 is an (r1, s1, t1)-inverse quasigroup with the permutation

J1 : Q1 → Q1 so that Jh1
1 ∈ Aut(Q1), and Q2 is an (r2, s2, t2)-inverse quasigroup

with J2 : Q2 → Q2 such that Jh2
2 ∈ Aut(Q2). Then Q1 ×Q2 is an (r, s, t)-inverse

quasigroup with J1 × J2 : Q1 ×Q2 → Q1 ×Q2, if there are u1, u2 ∈ Z such that

r − r1 = s− s1 = t− t1 = u1h1, r − r2 = s− s2 = t− t2 = u2h2.

3.2. Semi-direct products of m-invertible loops

As for the semi-direct products of quasigroups, there seems to be no approach
involving the notion of an action of a quasigroup on another. A semi-direct product
construction, using groups, is the one given in [46, 28], see also [55, Sect. 1.6.2]
which we recall below.

Proposition 3.3. Let (G,+) and (H, ·) be two groups, and. : G→ Aut(H). Then,
G×H is a quasigroup with the multiplication

(g, h)(g′, h′) := (g + g′,. (g′)(h) · h′).

The construction given in [51] uses a quasigroup, and its transassociant.

Proposition 3.4. Let Q be a quasigroup, and H be the group generated by {`(q, q′) |
q, q′ ∈ Q}, where `(q, q′) := L−1

qq′ ◦ Lq ◦ Lq′ , and Lq : Q → Q, Lq(r) := qr, is the

left translation. Then, Q×H is a quasigroup with the multiplication given by

(q, h)(q′, h′) := (qh(q′), `(q, h(q′)) ◦mq′(h) ◦ h ◦ h′),

where, for any q ∈ Q and any h ∈ H,

mq(h) := L−1
h(q) ◦ h ◦ Lq ◦ h

−1.

Let us note also that this was the point of view considered in [34, 35].

None of these constructions lead to a possible discussion on the matched pairs
of quasigroups. We thus adopt the following (more general, given in terms of
quasigroup homomorphisms) de�nition given in [55, Def. 1.318].

De�nition 3.5. A quasigroup Q is called the semi-direct product of two quasi-
groups R and S, if there is a (quasigroup) homomorphism h : Q → S, such that
the kernel ker(h) = R, and that h|S = IdS . In this case, Q is denoted by Ro S.

The motivating examples are the ones discussed within the following proposi-
tions below, on the level of (m-inverse) loops, and Hom-groups.
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Proposition 3.6. Let R and S be two loops, and let ϕ : S × R → R be a map

satisfying ϕ(s, δ) = δ and ϕ(δ, r) = r. Then a loop Q is isomorphic to the loop

Ro S := R× S with the multiplication given by

(r, s)(r′, s′) := (rϕ(s, r′), ss′), (3.2)

if and only if there are quasigroup homomorphisms iS : S → Q, iR : R → Q,
pS : Q→ S, and a map pR : Q→ R satisfying the Moufang-type identities

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pR(iR(r))

((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
=(

pR(iR(r))
(
pR(iS(s)iR(r′))

))
pR(iS(s′)), (3.3)

as well as pR◦iR = IdR and pS◦iS = IdS, such that RoS → Q, (r, s) 7→ iR(r)iS(s)
and Q→ Ro S, q 7→ (pR(q), pS(q)) are inverse to each other.

Proof. Letting Φ : Q → R o S to be the (quasigroup) isomorphism, we consider
the mappings

iR : R→ Q, iR(r) := Φ−1(r, δ), iS : S → Q, iS(s) := Φ−1(δ, s)

and

pR : Q→ R, pR(q) := π1(Φ(q)), pS : Q→ S, pS(q) := π2(Φ(q)),

where πi's denote the projection onto the ith component. It is evident that

(pR ◦ iR)(r) = π1(r, δ) = r,

for any r ∈ R, as such pR ◦ iR = IdR. Similarly, pS ◦ iS = IdS . We further see that

iS(ss′) = Φ−1(δ, ss′) = Φ−1
(

(δ, s)(δ, s′)
)

= Φ−1(δ, s)Φ−1(δ, s′) = iS(s)iS(s′),

that

iR(rr′) = Φ−1(rr′, δ) = Φ−1
(

(r, δ)(r′, δ)
)

= Φ−1(r, δ)Φ−1(r′, δ) = iR(r)iR(r′),

and that

pS(qq′) = p2(Φ(qq′)) = π2(Φ(q)Φ(q′)) = π2(Φ(q))π2(Φ(q′)) = pS(q)pS(q′).

On the other hand, the mapping R o S → Q, (r, s) 7→ iR(r)iS(s), becomes
Φ−1 : R o S → Q, whereas the map Q → R o S, q 7→ (pR(q), pS(q)) becomes
Φ : Q→ Ro S. Finally, we note also that

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pR

(
Φ−1(r, s)Φ−1(r′, s′)

)
=

pR
(
Φ−1(rϕ(s, r′), ss′)

)
= rϕ(s, r′) = pR(iR(r))

((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
=(

pR(iR(r))
(
pR(iS(s)iR(r′))

))
pR(iS(s′)).
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Conversely, let iS : S → Q, iR : R → Q, and pS : Q → S the quasigroup
homomorphisms, together with the map pR : Q → R satisfying (3.3), such that
Ψ : Ro S → Q, Ψ(r, s) := iR(r)iS(s), and Φ : Q→ Ro S, Φ(q) := (pR(q), pS(q))
are inverse to each other. Thus, the loop structure on Q induces a loop structure
on R × S. We shall, furthermore, see that this induced loop structure is in fact
one of the form (3.6). Indeed,

(δ, s)(r′, δ) = Φ(Ψ(δ, s)Ψ(r′, δ)) = Φ
((
iR(δ)iS(s)

)(
iR(r′)iS(δ)

))
= Φ

(
iS(s)iR(r′)

)
=
(
pR
(
iS(s)iR(r′)

)
, pS
(
iS(s)iR(r′)

))
=
(
pR
(
iS(s)iR(r′)

)
, pS
(
iS(s)

)
pS
(
iR(r′)

))
=(

pR
(
iS(s)iR(r′)

)
, s
)

=
(
ϕ(s, r′), s

)
,

where ϕ : S × R → R, ϕ(s, r′) := pR
(
iS(s)iR(r′)

)
. On the third equality we

used the assumption that iR, iS are quasigroup homomorphisms, while on the
�fth equality we used that of pS : Q → S being a quasigroup homomorphism.
Finally, on the sixth equality we used pS ◦ iS = IdS . Accordingly,

(r, s)(r′, s′) = Φ(Ψ(r, s)Ψ(r′, s′)) = Φ
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
=(

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
, pS
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

)))
=(

pR(iR(r))
((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
, ss′

)
=
(
rϕ(s, r′), ss′

)
.

If we ask the semi-direct product loop to have the m-inverse property, then we
have the following more precise result.

Proposition 3.7. Let (R, δ) be an m1-inverse loop with the permutation JR :
R → R so that JR(δ) = δ, and that Jh1

R ∈ Aut(R), and (S, δ) is an m2-inverse

loop with JS : S → S such that JS(δ) = δ, and that Jh2

S ∈ Aut(S). Furthermore,

let there be a map ϕ : S ×R→ R satisfying

ϕ(δ, r) = r, ϕ(s, δ) = δ,

ϕ(JmS (ss′), ϕ(Jm+1
S (s), r)) = ϕ(JmS (s′), r),

ϕ(s, JmR (rr′))ϕ(s, Jm+1
R (r)) = ϕ(s, JmR (r′)),

(3.4)

for any r, r′ ∈ R, any s, s′ ∈ S, and any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(3.5)

Then,
(
Ro S := R× S, (δ, δ)

)
is an m-invertible loop with the multiplication

(r, s)(r′, s′) :=
(
rϕ(s, r′), ss′

)
(3.6)
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and the permutation J : Ro S → Ro S,

J(r, s) := (δ, JS(s))(JR(r), δ) =
(
ϕ
(
JS(s), JR(r)

)
, JS(s)

)
, (3.7)

if and only if {
ϕ(s, r) = r if m = 2`,

ϕ(JmS (ss′), ϕ(s, r)) = ϕ(JmS (s′), r) if m = 2`+ 1,
(3.8)

for any s, s′ ∈ S, and any r ∈ R.

Proof. Assuming the conditions are met, we see at once that

(r, s)J(r, s) =
[
(r, δ)(δ, s)

][
(δ, JS(s))(JR(r), δ)

]
=[

(r, δ)(δ, s)
]
(ϕ(JS(s), JR(r)), JS(s)) =

(r, δ)
[
(δ, s)(ϕ(JS(s), JR(r)), JS(s))

]
=

(r, δ)(ϕ(s, ϕ(JS(s), JR(r))), sJS(s)) =

(r, δ)(JR(r), δ) = (rJR(r), δ) = (δ, δ).

On the other hand, since

ϕ(s, r)JR(ϕ(s, r)) = δ = ϕ(s, r)ϕ(s, JR(r)),

we conclude
JR(ϕ(s, r)) = ϕ(s, JR(r)),

which, in turn, implies that

J
(
(δ, s)(r, δ)

)
= J(ϕ(s, r), s) = (δ, JS(s))(JR(ϕ(s, r)), δ) =

(δ, JS(s))(ϕ(s, JR(r)), δ) = (ϕ(JS(s), ϕ(s, JR(r))), JS(s)) = (JR(r), JS(s)),

and then that

Jm(r, s) =

{
(JmR (r), JmS (s)), if m = 2`,

(δ, JmS (s))(JmR (r), δ), if m = 2`+ 1.

Accordingly, in the case m = 2`,

Jm
(
(r, s)(r′, s′)

)
Jm+1(r, s) = Jm(rϕ(s, r′), ss′)Jm+1(r, s) =[

(JmR (rϕ(s, r′)), δ)(δ, JmS (ss′))
][

(δ, Jm+1
S (s))(Jm+1

R (r), δ)
]

=

(JmR (rϕ(s, r′)), δ)
{

(δ, JmS (ss′))
[
(δ, Jm+1

S (s))(Jm+1
R (r), δ)

]}
=

(JmR (rϕ(s, r′)), δ)
[
((δ, JmS (ss′)))(ϕ(Jm+1

S (s), Jm+1
R (r)), Jm+1

S (s))
]

=
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(JmR (rϕ(s, r′)), δ)(ϕ(JmS (ss′), ϕ(Jm+1
S (s), Jm+1

R (r))), JmS (ss′)Jm+1
S (s)) =

(JmR (rϕ(s, r′)), δ)(ϕ(JmS (ss′), ϕ(Jm+1
S (s), Jm+1

R (r))), JmS (s′)) =

(JmR (rϕ(s, r′)), δ)(ϕ(JmS (s′), Jm+1
R (r)), JmS (s′)) =(

JmR (rϕ(s, r′))ϕ(JmS (s′), Jm+1
R (r)), JmS (s′)

)
=(

JmR (rϕ(s, r′))Jm+1
R (ϕ(JmS (s′), r)), JmS (s′)

)
=
(
JmR (r′), JmS (s′)

)
= Jm(r′, s′)

(3.9)

where; on the sixth equality we used Remark 2.4, and that m ∈ Z is a solution of
the system (3.5), on the tenth equality we used (3.8), in addition to Remark 2.4
and (3.5). In the case m = 2`+ 1,

Jm
(
(r, s)(r′, s′)

)
Jm+1(r, s) = Jm(rϕ(s, r′), ss′)Jm+1(r, s) =[

(δ, JmS (ss′))(JmR (rϕ(s, r′)), δ)
][

(Jm+1
R (r), δ)(δ, Jm+1

S (s))
]

=

(ϕ(JmS (ss′), JmR (rϕ(s, r′))), JmS (ss′))
[
(Jm+1
R (r), δ)(δ, Jm+1

S (s))
]

=[
(ϕ(JmS (ss′), JmR (rϕ(s, r′))), JmS (ss′))(Jm+1

R (r), δ)
]
(δ, Jm+1

S (s)) =

(ϕ(JmS (ss′), JmR (rϕ(s, r′)))ϕ(JmS (ss′), Jm+1
R (r)), JmS (ss′))(δ, Jm+1

S (s)) =

(ϕ(JmS (ss′), JmR (ϕ(s, r′))), JmS (ss′))(δ, Jm+1
S (s)) =

(ϕ(JmS (ss′), JmR (ϕ(s, r′))), JmS (s′)) = (JmR (ϕ(JmS (ss′), ϕ(s, r′))), JmS (s′)) =

(JmR (ϕ(JmS (s′), r′)), JmS (s′)) = (ϕ(JmS (s′), JmR (r′)), JmS (s′)) =

(δ, JmS (s′))(JmR (r′), δ) = Jm(r′, s′)

(3.10)

where; in the sixth equation we used (3.4), in the seventh equation we used Remark
2.4 and (3.5), and in the ninth equation we used (3.8).

Let, conversely, Ro S be an m-inverse loop with the multiplication (3.6) and
the permutation (3.7).

In the case m = 2`, the tenth equation of (3.9) holds, and we have

JmR (rϕ(s, r′))Jm+1
R (ϕ(JmS (s′), r)) = JmR (r′)

for any r, r′ ∈ R, and any s, s′ ∈ S. In particular, for r = δ, we see that

JmR (ϕ(s, r′)) = JmR (r′),

and that ϕ(s, r′) = r′, for any r′ ∈ R, and any s ∈ S.

In the case m = 2`+ 1, however, we have the ninth equation of (3.10), that is,

JmR (ϕ(JmS (ss′), ϕ(s, r′))) = JmR (ϕ(JmS (s′), r′)).

But then, since JR : R→ R is a permutation, we obtain

ϕ(JmS (ss′), ϕ(s, r′)) = ϕ(JmS (s′), r′)

for any r′ ∈ R, and any s, s′ ∈ S.
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3.3. Matched pairs of m-invertible loops

In order to be able to generalize De�nition 3.5 in the presence of two quasigroups,
none of which is necessarily the kernel of a quasigroup homomorphism, we adopt
the point of view of [10, 40, 45].

Proposition 3.8. Let R and S be two loops, with the maps ϕ : S × R → R and

ψ : S ×R→ S satisfying

ϕ(s, δ) = δ, ϕ(δ, r) = r, ψ(s, δ) = s, ψ(δ, r) = δ.

Then a loop Q is isomorphic to the loop R ./ S := R × S with the multiplication

given by

(r, s)(r′, s′) := (rϕ(s, r′), ψ(s, r′)s′), (3.11)

if and only if there are quasigroup homomorphisms iS : S → Q, iR : R → Q,
together with the maps pR : Q → R and pS : Q → S satisfying the Moufang-type

identities

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pR(iR(r))

((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
=(

pR(iR(r))
(
pR(iS(s)iR(r′))

))
pR(iS(s′)) (3.12)

and

pS
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pS(iR(r))

((
pS(iS(s)iR(r′))

)
pS(iS(s′))

)
=(

pS(iR(r))
(
pS(iS(s)iR(r′))

))
pS(iS(s′)), (3.13)

as well as pR ◦ iR = IdR and pS ◦ iS = IdS, such that R ./ S → Q, (r, s) 7→
iR(r)iS(s) and Q→ R ./ S, q 7→ (pR(q), pS(q)) are inverse to each other.

Proof. Letting Φ : Q → R ./ S to be the (quasigroup) isomorphism, we consider
the mappings

iR : R→ Q, iR(r) := Φ−1(r, δ), iS : S → Q, iS(s) := Φ−1(δ, s)

and

pR : Q→ R, pR(q) := π1(Φ(q)), pS : Q→ S, pS(q) := π2(Φ(q)),

where πi's denote the projection onto the ith component. It is evident that

(pR ◦ iR)(r) = π1(r, δ) = r,

for any r ∈ R, as such pR ◦ iR = IdR. Similarly, pS ◦ iS = IdS . We further see that

iS(ss′) = Φ−1(δ, ss′) = Φ−1
(

(δ, s)(δ, s′)
)

= Φ−1(δ, s)Φ−1(δ, s′) = iS(s)iS(s′),
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and that

iR(rr′) = Φ−1(rr′, δ) = Φ−1
(

(r, δ)(r′, δ)
)

= Φ−1(r, δ)Φ−1(r′, δ) = iR(r)iR(r′).

On the other hand, the mapping R ./ S → Q, (r, s) 7→ iR(r)iS(s), becomes
Φ−1 : R ./ S → Q, whereas the map Q → R ./ S, q 7→ (pR(q), pS(q)) becomes
Φ : Q→ R ./ S. Finally, we note also that

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pR

(
Φ−1(r, s)Φ−1(r′, s′)

)
=

pR
(
Φ−1(rϕ(s, r′), ψ(s, r′)s′)

)
= rϕ(s, r′)= pR(iR(r))

((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
=
(
pR(iR(r))

(
pR(iS(s)iR(r′))

))
pR(iS(s′)),

and that, similarly,

pS
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pS(iR(r))

((
pS(iS(s)iR(r′))

)
pS(iS(s′))

)
=(

pS(iR(r))
(
pS(iS(s)iR(r′))

))
pS(iS(s′)).

Conversely, let iS : S → Q and iR : R → Q be quasigroup homomorphisms,
together with the maps pR : Q → R and pS : Q → S satisfying (3.12) and
(3.13), such that Ψ : R ./ S → Q, Ψ(r, s) := iR(r)iS(s), and Φ : Q → R ./ S,
Φ(q) := (pR(q), pS(q)) are inverse to each other. Thus, the loop structure on Q
induces a loop structure on R × S. We shall, furthermore, see that this induced
loop structure is in fact of the form (3.20). Indeed,

(δ, s)(r′, δ) = Φ(Ψ(δ, s)Ψ(r′, δ)) = Φ
((
iR(δ)iS(s)

)(
iR(r′)iS(δ)

))
= Φ

(
iS(s)iR(r′)

)
=
(
pR
(
iS(s)iR(r′)

)
, pS
(
iS(s)iR(r′)

))
=
(
ϕ(s, r′), ψ(s, r′)

)
,

where ϕ : S ×R→ R, ϕ(s, r′) := pR
(
iS(s)iR(r′)

)
, and ψ : S ×R→ S, ψ(s, r′) :=

pS
(
iS(s)iR(r′)

)
. On the third equality we used the assumption that iR, iS are

quasigroup homomorphisms. Accordingly,

(r, s)(r′, s′) = Φ(Ψ(r, s)Ψ(r′, s′)) = Φ
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
=(

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
, pS
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

)))
=(

pR(iR(r))
((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
,
(
pS(iR(r))

(
pS(iS(s)iR(r′))

))
pS(iS(s′))

)
=
(
rϕ(s, r′), ψ(s, r′)s′

)
.

Next, we discuss the matched pair construction for the m-inverse property loops.
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Proposition 3.9. Let (R, δ) be an m1-inverse loop with the permutation JR :
R → R so that JR(δ) = δ, and that Jh1

R ∈ Aut(R), and (S, δ) is an m2-inverse

loop with JS : S → S such that JS(δ) = δ, and that Jh2

S ∈ Aut(S). Furthermore,

let there be two maps φ : S ×R→ R and ψ : S ×R→ S satisfying

φ(δ, r) = r, φ(s, δ) = δ, ψ(δ, r) = δ, ψ(s, δ) = s, (3.14)

φ(s, φ(JS(s), r)) = r, (3.15)

ψ(ψ(s, JmR (rr′)), Jm+1
R (r)) = ψ(s, JmR (r′)), (3.16)

φ(s, JmR (rr′))φ(ψ(s, JmR (rr′)), Jm+1
R (r)) = φ(s, JmR (r′)), (3.17)

ψ(s, φ(JS(s), r))ψ(JS(s), r) = δ, (3.18)

for any r, r′ ∈ R, any s, s′ ∈ S, and any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(3.19)

Then,
(
R ./ S := R× S, (δ, δ)

)
is an m-invertible loop with the multiplication

(r, s)(r′, s′) :=
(
rφ(s, r′), ψ(s, r′)s′

)
(3.20)

and the permutation

J : R ./ S → R ./ S,

J(r, s) := (δ, JS(s))(JR(r), δ) =
(
φ
(
JS(s), JR(r)

)
, ψ
(
JS(s), JR(r)

))
,

(3.21)

if and only if
φ(s, r) = r,

ψ(s, r) = s,

}
if m = 2`,

φ(JmS (ψ(s, J−mR (r))s′), φ(ψ(s, J−1
R (r)), r)) = φ(JmS (s′), r),[

ψ(JmS (ψ(s, r)s′), JmR (φ(s, r)))
]
Jm+1
S (s) = ψ(JmS (s′), JmR (r)),

}
if m = 2`+ 1,

(3.22)

for any s, s′ ∈ S, and any r, r′ ∈ R.

Proof. Assuming the conditions (3.22) are met, we see at once that

(r, s)J(r, s) =
[
(r, δ)(δ, s)

][
(δ, JS(s))(JR(r), δ)

]
=[

(r, δ)(δ, s)
]
(φ(JS(s), JR(r)), ψ(JS(s), JR(r))) =

(r, δ)
[
(δ, s)(φ(JS(s), JR(r)), ψ(JS(s), JR(r)))

]
=

(r, δ)
(
φ(s, φ(JS(s), JR(r))), ψ(s, φ(JS(s), JR(r)))ψ(JS(s), JR(r))

)
=

(r, δ)(JR(r), δ) = (rJR(r), δ) = (δ, δ),
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where on the �fth equality we used (3.15), and (3.18). Next, in view of (3.17) and
(3.16), we have(

(δ, s)(r, δ)
)
(JR(r), JS(s)) = (φ(s, r), ψ(s, r))(JR(r), JS(s)) =(

φ(s, r)φ(ψ(s, r), JR(r)), ψ(ψ(s, r), JR(r))JS(s)
)

= (δ, δ),

which implies that
J
(
(δ, s)(r, δ)

)
= (JR(r), JS(s)).

On the other hand, in view of (3.17) we have

φ(s, r)JR(φ(s, r)) = δ = φ(s, r)φ(ψ(s, r), JR(r)),

and hence we conclude

JR(φ(s, r)) = φ(ψ(s, r), JR(r)). (3.23)

Let us note further that (3.23), together with (3.16), implies

JmR (φ(s, r)) =

{
φ(s, JmR (r)) if m = 2`,

φ(ψ(s, Jm−1
R (r)), JmR (r)) if m = 2`+ 1.

Accordingly, in the case m = 2`,

Jm
(
(r, s)(r′, s′)

)
Jm+1(r, s) = Jm(rφ(s, r′), ψ(s, r′)s′)Jm+1(r, s) =[

(JmR (rφ(s, r′)), δ)(δ, JmS (ψ(s, r′)s′))
][

(δ, Jm+1
S (s))(Jm+1

R (r), δ)
]

=

(JmR (rφ(s, r′)), δ)
{

(δ, JmS (ψ(s, r′)s′))
[
(δ, Jm+1

S (s))(Jm+1
R (r), δ)

]}
=

(JmR (rφ(s, r′)), δ)
[
((δ, JmS (ψ(s, r′)s′)))(φ(Jm+1

S (s), Jm+1
R (r)), ψ(Jm+1

S (s), Jm+1
R (r)))

]
= (JmR (rφ(s, r′)), δ)

(
φ(JmS (ψ(s, r′)s′), φ(Jm+1

S (s), Jm+1
R (r))),

ψ(JmS (ψ(s, r′)s′), φ(Jm+1
S (s), Jm+1

R (r)))ψ(Jm+1
S (s), Jm+1

R (r))
)

=(
JmR (rφ(s, r′))φ(JmS (ψ(s, r′)s′), φ(Jm+1

S (s), Jm+1
R (r))),

ψ(JmS (ψ(s, r′)s′), φ(Jm+1
S (s), Jm+1

R (r)))ψ(Jm+1
S (s), Jm+1

R (r))
)

=(
JmR (r′), JmS (s′)

)
= Jm(r′, s′), (3.24)

where; on the seventh equality we used (3.22). In the case m = 2`+ 1,

Jm
(
(r, s)(r′, s′)

)
Jm+1(r, s) = Jm(rφ(s, r′), ψ(s, r′)s′)Jm+1(r, s) =[

(δ, JmS (ψ(s, r′)s′))(JmR (rφ(s, r′)), δ)
][

(Jm+1
R (r), δ)(δ, Jm+1

S (s))
]

=

(φ(JmS (ψ(s,r′)s′),JmR(rφ(s,r′))), ψ(JmS (ψ(s,r′)s′),JmR(rφ(s,r′))))
[
(Jm+1
R (r),δ)(δ, Jm+1

S (s))
]
=[

(φ(JmS (ψ(s,r′)s′),JmR(rφ(s,r′))),ψ(JmS (ψ(s,r′)s′),JmR(rφ(s,r′))))(Jm+1
R (r),δ)

]
(δ,Jm+1

S (s))=
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[(
φ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′)))φ(ψ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′))), Jm+1

R (r)),

ψ(ψ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′))), Jm+1
R (r))

)]
(δ, Jm+1

S (s))=(
φ(JmS (ψ(s, r′)s′), JmR (φ(s, r′))), ψ(JmS (ψ(s, r′)s′), JmR (φ(s, r′)))

)
(δ, Jm+1

S (s)) =(
φ(JmS (ψ(s, r′)s′), JmR (φ(s, r′))), ψ(JmS (ψ(s, r′)s′), JmR (φ(s, r′)))Jm+1

S (s)
)

=(
φ(JmS (ψ(s,r′)s′),[φ(ψ(s,Jm−1

R (r′)),JmR(r′))]), ψ(JmS (ψ(s,r′)s′),JmR(φ(s,r′)))Jm+1
S (s)

)
=(

φ(JmS (s′),JmR(r′)), ψ(JmS (s′),JmR(r′))
)

=(δ,JmS (s′))(JmR(r′), δ) = Jm(r′, s′) (3.25)

where; in the sixth equation we used (3.17) and the second identity of (3.16), on
the eighth equation we used (3.23), and �nally on the ninth equation we used
(both identities of) (3.22), in addition to Remark 2.4 and (3.19).

Let, conversely, R ./ S be an m-inverse loop with the multiplication (3.20)
and the permutation (3.21).

In the case m = 2`, the seventh equation of (3.24) holds, and we have

JmR (rφ(s, r′))φ(JmS (ψ(s, r′)s′), φ(Jm+1
S (s), Jm+1

R (r))) = JmR (r′)

together with

ψ(JmS (ψ(s, r′)s′), φ(Jm+1
S (s), Jm+1

R (r)))ψ(Jm+1
S (s), Jm+1

R (r)) = JmS (s′)

for any r, r′ ∈ R, and any s, s′ ∈ S. In particular, for r = δ, the former equality
yields

JmR (ϕ(s, r′)) = JmR (r′),

hence ϕ(s, r′) = r′, for any r′ ∈ R, and any s ∈ S. For, on the other hand, s = δ,
the latter results in

ψ(JmS (s), Jm+1
R (r)) = JmS (s).

Once again, in view of the fact that JR : R → R and JS : S → S are both
permutations, we deduce that ψ(s, r) = s for any r ∈ R and any s ∈ S.

In the case m = 2`+ 1, however, the ninth equation of (3.25) holds, that is,

φ(JmS (ψ(s, r′)s′), [φ(ψ(s, Jm−1
R (r′)), JmR (r′))]) = φ(JmS (s′), JmR (r′)),

and

ψ(JmS (ψ(s, r′)s′), JmR (φ(s, r′)))Jm+1
S (s) = ψ(JmS (s), JmR (r′)).

The latter is nothing but the second identity of (3.22), whereas the �rst identity
of (3.22) is obtained by taking r′ = J−mR (r) in the former.
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De�nition 3.10. Assume that (R, JR, δR) is an m1-inverse property loop such
that JR(δR) = δR, and that Jh1

R ∈ Aut(R), and (S, JS , δS) be an m2-inverse

property loop such that JS(δS) = δS , and that Jh2

S ∈ Aut(S). Let also m ∈ Z be
a solution of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

Then, (R,S) is called a matched pair of m-inverse property loops if (R, JR, δR) and
(S, JS , δS) satisfy the conditions (3.14)− (3.18).

Remark 3.11. We see that if (R,S) is a matched pair of m-inverse property
quasigroups, then R ./ S := R × S is an m-inverse property quasigroup if and
only if (3.22) holds. From the point of view of the generalization of groups, this
is a manifestation of the fact that any group may be considered as an odd-inverse
property quasigroup, while only commuttative groups fall into the category of even-
inverse property quasigroups. Furthermore, we already know from the theory of
matched pairs (of groups) that the matched pair group is commutative if and only
if the mutual actions are trivial.

The following is an analogue of [41, Prop. 6.2.15].

Proposition 3.12. Let (R, δ) be an m1-inverse loop with the permutation JR :
R → R so that JR(δ) = δ, and that Jh1

R ∈ Aut(R), and (S, δ) is an m2-inverse

loop with JS : S → S such that JS(δ) = δ, and that Jh2

S ∈ Aut(S). Let also m ∈ Z
be a solution of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

and (Q, δ) be an m-inverse loop so that (R, δ) is an m1-inverse subloop of (Q, δ),
and (S, δ) is an m2-inverse subloop of (Q, δ);

(R, δ) ↪−→ (Q, δ)←−↩ (S, δ),

that the multiplication in Q yields an isomorphism

Θ : R× S → Q, (r, s) 7→ rs, (3.26)

under which the multiplications are compatible as

(rs)q = r(sq), q(rs) = (qr)s, (3.27)

and the inversions as

JQ(rs) = JS(s)JR(r), JQ(sr) = JR(r)JS(s) (3.28)

for any r ∈ R, any s ∈ S, and any q ∈ Q. Then, (R,S) is a matched pair of

m-inverse loops, and Q ∼= R ./ S as quasigroups.
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Proof. Let us begin with the mappings

φ : S ×R→ R, ψ : S ×R→ S (3.29)

given by
φ(s, r) := (π1 ◦Θ−1)(sr), ψ(s, r) := (π2 ◦Θ−1)(sr),

where π1 : R× S → R, π2 : R× S → S are the projections onto the �rst and the
second component respectively. It then follows at once that

sr = Θ
(
φ(s, r), ψ(s, r)

)
= Θ((δ, s)(r, δ)), (3.30)

that is, the isomorphism (3.26) respect the multiplications in Q and R ./ S.

It remains to show that the mappings (3.29) have the properties (3.14)−(3.18).

The �rst one, (3.14), follows from the consideration of r = δ and s = δ in
(3.30), respectively.

Next, in view of (3.28) the property qJQ(q) = δ implies (rs)JQ(rs) = δ for
any r ∈ R and any s ∈ S, which in turn implies (3.15) and (3.18).

On the other hand, (3.27), and JmQ (qq′)Jm+1
Q (q) = JmQ (q′) for any q, q′ ∈ Q

yields, along the lines of (3.25),[(
φ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′)))φ(ψ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′))), Jm+1

R (r)),

ψ(ψ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′))), Jm+1
R (r))

)]
(δ, Jm+1

S (s)) =(
φ(JmS (s′), JmR (r′)), ψ(JmS (s′), JmR (r′))

)
.

In particular, for s = δ then we see that[(
φ(JmS (s′),JmR(rr′))φ(ψ(JmS (s′),JmR(rr′)),Jm+1

R (r)), ψ(ψ(JmS (s′),JmR(rr′)),Jm+1
R (r))

)]
=
(
φ(JmS (s′), JmR (r′)), ψ(JmS (s′), JmR (r′))

)
,

which is equivalent to (3.16) and (3.17).

Finally, having obtained (3.14)− (3.18), the condition (3.22) follows from the
ninth equality of (3.25) in the odd case, while it is a result of the seventh equality
of (3.24) in the even case.

Let us illustrate with an example.

Example 3.13. Given a matched pair of groups (G,H), and two abelian groups
V and W , let

Λ:(G./H)×(G./H)→ V×W, Λ
(

(x, y), (x′, y′)
)

:=
(
ϕ(x, x′), χ(y, y′)

)
, (3.31)
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for such ϕ : G×G→ V and χ : H ×H →W that

ϕ(x, x′) = ϕ(x, y . x′) (3.32)

and

χ(y, y′) = ϕ(y / x, y′) (3.33)

for any x, x′ ∈ G, and any y, y′ ∈ H. Then let (G ./ H) ×Λ (V × W ) be the
(2` + 1)-invertible loop of Example 2.5. As such, (3.31) satis�es (2.3), and we
obtain ϕ(1, x) = 0 = ϕ(x, 1), χ(1, y) = 0 = χ(y, 1) for any (x, y) ∈ G×H.

Similarly, imposing (2.11) onto (3.31),

Λ
(

(x, y), (x, y)−1
)

= Λ
(

(x, y), (y−1 . x−1, y−1 / x−1)
)

= 0

we obtain ϕ(x, y−1 . x−1) = 0, χ(y, y−1 / x−1) = 0 for any (x, y) ∈ G×H.

In particular, for y = 1 ∈ H we obtain ϕ(x, x−1) = 0, for any x ∈ G, and
setting x = 1 ∈ G we arrive at χ(y, y−1) = 0, for any y ∈ H.

Finally, since (3.31) is bound to satisfy (2.12), that is,

Λ
(

(x′, y′)−1(x, y)−1, (x, y)
)

= Λ
(

(x, y), (x′, y′)
)
,

for any (x, y), (x′, y′) ∈ G×H, or equivalently

Λ
(

(x′, y′)(x, y), (x, y)−1
)

= Λ
(

(x, y)−1, (x′, y′)−1
)
,

we have

Λ
(

(x′(y′ . x), (y′ / x)y), (y−1 . x−1, y−1 / x−1)
)

=

Λ
(

(y−1 . x−1, y−1 / x−1), (y′−1 . x′−1, y′−1 / x′−1)
)
,

that is,

ϕ(x′(y′ . x), y−1 . x−1) = ϕ(y−1 . x−1, y′−1 . x′−1)

and

χ((y′ / x)y, y−1 / x−1) = χ(y−1 / x−1, y′−1 / x′−1)

for any x, x′ ∈ G, and any y, y′ ∈ H. Now y = y′ = 1 ∈ H (resp. x = x′ = 1 ∈ G)
leads to ϕ(x′x, x−1) = ϕ(x−1, x′−1) (resp. χ(y′y, y−1) = χ(y−1, y′−1)). As a
result, we have the (2`1 + 1)-invertible loop G ×ϕ V , and the (2`2 + 1)-invertible
loop H ×χW , for any `1, `2 ∈ Z, in such a way that

G×ϕ V → (G ./ H)×Λ (V ×W ), (x, v) 7→
(

(x, 1), (v, 0)
)
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and
H ×χW → (G ./ H)×Λ (V ×W ), (y, w) 7→

(
(1, y), (0, w)

)
are quasigroup homomorphisms.

Moreover, the multiplication in (G ./ H)×Λ (V ×W ) yields the isomorphism

Θ : (G×ϕ V )× (H ×χW )→ (G ./ H)×Λ (V ×W ),(
(x, v), (y, w)

)
7→
(

(x, y), (v, w)
)
.

Let us �nally show that (3.27) and (3.28) are satis�ed. As for the former,
we simply observe for any (x, v) ∈ G ×ϕ V , any (y, w) ∈ H ×χ W , and any
((x′, y′), (v′, w′)) ∈ (G ./ H)×Λ (V ×W ),[

(x, v)(y, w)
](

(x′, y′), (v′, w′)
)

=[(
(x, 1), (v, 0)

)(
(1, y), (0, w)

)](
(x′, y′), (v′, w′)

)
=(

(x, y), (v, w)
)(

(x′, y′), (v′, w′)
)

=(
(x(y . x′), (y / x′)y′), (ϕ(x, x′) + v + v′, χ(y, y′) + w + w′)

)
=(

(x(y . x′), (y / x′)y′), (ϕ(x, y . x′) + v + v′, χ(y, y′) + w + w′)
)

=(
(x, 1), (v, 0)

)(
(y . x′, (y . x′)y′), (v′, χ(y, y′) + w + w′)

)
=(

(x, 1), (v, 0)
)[(

(1, y), (0, w)
)(

(x′, y′), (v′, w′)
)]

=

(x, v)
[
(y, w)

(
(x′, y′), (v′, w′)

)]
,

where we used (3.32) in the fourth equality. Similarly, (3.33) yields(
(x, y), (v, w)

)[
(x′, v′)(y′, w′)

]
=
[(

(x, y), (v, w)
)

(x′, v′)
]
(y′, w′).

Accordingly, (3.27) holds. As for (3.28), we do note that

J
(

(x, v)(y, w)
)

= J
(

(x, y), (v, w)
)

=
(

(x, y)−1, (−v,−w)
)

=(
(y−1 . x−1, y−1 / x−1), (v, w)

)
=
(

(1, y−1), (0,−w)
)(

(x−1, 1), (−v, 0)
)

=

(y−1,−w)(x−1,−v) = JH×χW (y, w)JG×ϕV (x, v),

and that

J
(

(y, w)(x, v)
)

= J
(

(y . x, y / x), (v, w)
)

=
(

(y . x, y / x)−1, (−v,−w)
)

=(
(x−1, y−1), (−v,−w)

)
=
(

(x−1, 1), (−v, 0)
)(

(1, y−1), (0,−w)
)

=

(x−1,−v)(y−1,−w) = JG×ϕV (x, v)JH×χW (y, w).
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We may now say that the hypotheses of Proposition 3.12 hold with R := G×ϕ V ,
S := H×χW , Q := (G ./ H)×Λ(V ×W ), m := 2`+1, m1 := 2`1+1, m2 := 2`2+1,
for any `, `1, `2 ∈ Z, and h1 = 2 = h2, that (G ×ϕ V,H ×χ W ) is a matched pair
of (2`+ 1)-invertible loops, and that

(G ./ H)×Λ (V ×W ) ∼= (G×ϕ V ) ./ (H ×χW ).

Indeed, the mutual actions

φ : (H ×χW )× (G×ϕ V )→ (G×ϕ V ),
(

(y, w), (x, v)
)
7→ (y . x, v)

and

ψ : (H ×χW )× (G×ϕ V )→ (H ×χW ),
(

(y, w), (x, v)
)
7→ (y / x,w)

which �t (in view of (3.32) and (3.33)) into(
(x, v); (y, w)

)(
(x′, v′); (y′, w′)

)
=
(

(x, y), (v, w)
)(

(x′, y′), (v′, w′)
)

=(
(x, v)φ

(
(y, w), (x′, v′)

)
;ψ
(

(y, w), (x′, v′)
)

(y′, w′)
)

satisfy the compatibilities (3.14) − (3.18), as well as (3.22), merely from the
matched pair compatibilities for groups.

4. Linearizations

Following the terminology and the point of view of [34, 35], we shall consider the
Hopf analogues of the m-inverse property loops, under the name m-invertible Hopf

quasigroup.

4.1. m-invertible Hopf quasigroups

Along the lines of [35, Def. 4.1], see also [34, Def. 2.1], we now introduce what we
call an m-inverse property Hopf quasigroup.

De�nition 4.1. Let H be a k-linear space equipped with the linear maps

µ : H⊗H → H, η : k → H, ∆ : H → H⊗H, ε : H → k, and S : H → H.

Then, the six-tuple (H, µ, η,∆, ε, S) is called an m-inverse property Hopf quasi-

group if

(i) (H, µ, η) is a unital, not-necessarily associative algebra,
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(ii) (H,∆, ε) is a coassociative and counital coalgebra,

(iii) ∆ : H → H⊗H and ε : H → k are multiplicative,

(iv) S : H → H is the unique coalgebra anti-automorphism satisfying

h
<1>

S(h
<2>

) = ε(h)δ = S(h
<1>

)h
<2>

, (4.1)

so that
Sm(h

<2>
g)Sm+1(h

<1>
) = ε(h)Sm(g) (4.2)

holds for any h, g ∈ H.
Example 4.2. Let (Q, δ, J) be an m-inverse property loop. Then the linear space
kQ is a m-inverse property Hopf quasigroup via

(i) the multiplication µ : kQ ⊗ kQ → kQ, µ(q, q′) := qq′, de�ned as a linear
extension of the multiplication on Q, the unit η : k → kQ, η(α) := αδ,

(ii) the comultiplication ∆ : kQ→ kQ⊗kQ, ∆(q) := q⊗q as the linear extension
of the diagonal map, the counit ε : kQ→ k, ε(q) = 1,

(iii) and the antipode S : kQ→ kQ, S(q) := J(q).

The following adaptation of [33, Rk. 2.2] will be instrumental in the construc-
tion of the products of Hopf quasigroups.

Remark 4.3. Let (H, µ, η,∆, ε, S) be anm-inverse property Hopf quasigroup such
that Sr ∈ Aut(H), i.e. Sr(hg) = Sr(h)Sr(g), and ∆(Sr(h)) = Sr(h

<1>
)⊗Sr(h

<2>
),

for any h ∈ H. Then, (H, µ, η,∆, ε, S) be an (m + ur)-inverse property Hopf
quasigroup for any u ∈ Z.

Indeed,

Sm+ur(h<2>g)Sm+1+ur(h<1>) = Sm(Sur(h<2>)Sur(g))Sm+1(Sur(h<1>)) =

Sm(Sur(h)
<2>

Sur(g))Sm+1(Sur(h)
<1>

) = Sm(Sur(g)) = Sm+ur(g).

4.2. Matched pairs of m-inverse property Hopf quasigroups

For convenience, let us begin with the tensor product Hopf quasigroups. More
precisely, the following result is the Hopf counterpart of [33, Thm. 5.1], that is,
Theorem 3.1 above.

Theorem 4.4. Let (H1, µ1, η1,∆1, ε1, S1) be an m1-inverse Hopf quasigroup so

that Sh1
1 ∈ Aut(H1), and (H2, µ2, η2,∆2, ε2, S2) be an m2-inverse Hopf quasigroup

such that Sh2
2 ∈ Aut(H2). Then H1 ⊗ H2 is an m-inverse quasigroup with the

tensor product structure maps, for any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(4.3)
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Proof. It follows at once that

(i) (H1 ⊗H2, µ⊗, η⊗) is a (not necessarily associative) unital algebra via

µ⊗ := (µ1 ⊗ µ2) ◦ (Id⊗τ ⊗ Id) : (H1 ⊗H2)⊗ (H1 ⊗H2)→ H1 ⊗H2,

µ⊗

(
(h⊗ h′)⊗ (g ⊗ g′)

)
:= µ1(h⊗ g)⊗ µ2(h′ ⊗ g′)

and η⊗ := η1 ⊗ η2 : k → H1 ⊗H2, η⊗(α) := αη1(1)⊗ η2(1),

(ii) (H1⊗H2, (Id⊗τ⊗Id)◦(∆1⊗∆2), ε1⊗ε2) is a coassociative counital coalgebra,
such that

(iii) the coalgebra structure maps

∆⊗ := (Id⊗τ ⊗ Id) ◦ (∆1 ⊗∆2) : H1 ⊗H2 → (H1 ⊗H2)⊗ (H1 ⊗H2),

∆⊗(h⊗ h′) = (h
<1>
⊗ h′

<1>
)⊗ (h

<2>
⊗ h′

<2>
)

and ε⊗ := ε1⊗ε2 : H1⊗H2 → k, ε⊗(h⊗h′) = ε1(h)ε2(h′) are multiplicative.

(iv) Finally, in view of Remark 4.3 above, for any solution m ∈ Z of (4.3)

(S1 ⊗ S2)m((h
<2>
⊗ h′

<2>
)(g ⊗ g′))(S1 ⊗ S2)m+1(h

<1>
⊗ h′

<1>
) =

Sm1 (h<2>g)Sm+1
1 (h<1>)⊗ Sm2 (h′<2>g

′)Sm+1
2 (h′<1>) =

Sm1 (g)⊗ Sm2 (g′) = (S1 ⊗ S2)m(g ⊗ g′).

As for the matched pair construction, Proposition 3.9 upgrades to the following
proposition. However, we shall �rst need a technical lemma.

Lemma 4.5. Let (H1, µ1, η1,∆1, ε1, S1) be an m1-inverse Hopf quasigroup, and

(H2, µ2, η2,∆2, ε2, S2) be an m2-inverse Hopf quasigroup. Moreover, let there be

two maps φ : H2 ⊗H1 → H1 and ψ : H2 ⊗H1 → H2 satisfying

φ(S(h′<1>), φ(h′<2> , h)) = ε2(h′)h = φ(h′<1> , φ(S(h′<2>), h)), (4.4)

ψ(ψ(h′, S(h<1>)), h<2>) = ε1(h)h′ = ψ(ψ(h′, h<1>), S(h<2>)) (4.5)

∆1(φ(h′, h)) = φ(h′<1> , h<1>)⊗ φ(h′<2> , h<2>), ε1(φ(h′, h)) = ε1(h)ε2(h′),
(4.6)

∆2(ψ(h′, h)) = ψ(h′
<1>

, h
<1>

)⊗ ψ(h′
<2>

, h
<2>

), ε2(ψ(h′, h)) = ε1(h)ε2(h′),
(4.7)

φ(h′
<1>

, S(h
<2>

))
[
φ(ψ(h′

<2>
, S(h

<1>
)), h

<3>
)
]

= ε1(h)ε2(h′) =

φ(h′
<1>

, h
<1>

)
[
φ(ψ(h′

<2>
, h

<2>
), S(h

<3>
))
]
, (4.8)[

ψ(S(h′
<1>

), φ(h′
<2>

, h
<1>

))
]
ψ(h′

<3>
, h

<2>
) = ε1(h)ε2(h′) = (4.9)[

ψ(h′
<1>

, φ(S(h′
<3>

), h
<1>

))
]
ψ(S(h′

<2>
), h

<2>
),

ψ(h′
<1>

, h
<1>

)⊗ φ(h′
<2>

, h
<2>

) = ψ(h′
<2>

, h
<2>

)⊗ φ(h′
<1>

, h
<1>

) (4.10)
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for any h, g ∈ H1, any h
′, g′ ∈ H2. Then the mapping

S./ : H1 ⊗H2 → H1 ⊗H2,

S./(h⊗ h′) := (δ1 ⊗ S2(h′))(S1(h)⊗ δ2) =(
φ
(
S2(h′<2>), S1(h<2>)

)
⊗ ψ

(
S2(h′<1>), S1(h<1>)

))
,

(4.11)

satis�es

S./((δ1, h
′)(h, δ2)) = (S1(h), S2(h′))

for any h ∈ H1, and any h′ ∈ H2.

Proof. For any h ∈ H1, and any h′ ∈ H2 we have

S./((δ1, h
′)(h, δ2)) = S./(φ(h′<1> , h<1>), ψ(h′<2> , h<2>)) =

S./(φ(h′<2>,h<2>), ψ(h′<1>,h<1>))=
(
δ1, S2

(
ψ(h′<1>,h<1>)

))(
S1

(
φ(h′<2> , h<2>)

)
, δ2

)
=(

φ
(
S2(ψ(h′<1> , h<1>))<1> , S1(φ(h′<2> , h<2>))<1>

)
,

ψ
(
S2(ψ(h′<1> , h<1>))<2> , S1(φ(h′<2> , h<2>))<2>

))
=(

φ
(
S2(ψ(h′<1> , h<1>))<2> , S1(φ(h′<2> , h<2>))<2>

)
,

ψ
(
S2(ψ(h′<1> , h<1>))<1> , S1(φ(h′<2> , h<2>))<1>

))
=(

φ
(
S2(ψ(h′<1><1> , h<1><1>)), S1(φ(h′<2><1> , h<2><1>))

)
,

ψ
(
S2(ψ(h′<1><2> , h<1><2>)), S1(φ(h′<2><2> , h<2><2>))

))
=(

φ
(
S2(ψ(h′<1> , h<1>)), S1(φ(h′<3> , h<3>))

)
,

ψ
(
S2(ψ(h′<2> , h<2>)), S1(φ(h′<4> , h<4>))

))
=(

φ
(
S2(ψ(h′<1> , h<1>)), S1(φ(h′<2><2> , h<2><2>))

)
,

ψ
(
S2(ψ(h′<2><1> , h<2><1>)), S1(φ(h′<3> , h<3>))

))
=(

φ
(
S2(ψ(h′<1> , h<1>)), S1(φ(h′<2><1> , h<2><1>))

)
,

ψ
(
S2(ψ(h′<2><2> , h<2><2>)), S1(φ(h′<3> , h<3>))

))
=(

φ
(
S2(ψ(h′<1> , h<1>)), S1(φ(h′<2> , h<2>))

)
,

ψ
(
S2(ψ(h′<3> , h<3>)), S1(φ(h′<4> , h<4>))

))
=
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(
φ
(
S2(ψ(h′

<1>
, h

<1>
)), [φ(ψ(h′

<2>
, h

<2><1>
), S1(h

<2><2>
))]
)
,

ψ
(
S2(ψ(h′

<3>
, h

<3>
)), S1(φ(h′

<4>
, h

<4>
))
))

=(
S1(h

<1>
), ψ
(
S2(ψ(h′

<1>
, h

<2>
)), S1(φ(h′

<2>
, h

<2>
))
))

=(
S1(h<1>

),ψ
(
ψ(S2(h′

<1><1>
),φ(h′

<1><2>
, h

<2>
)), S1(φ(h′

<2>
, h

<2>
))
))

=
(
S1(h),S2(h′)

)
,

where on the second, �fth, and ninth equations we used (4.10), on the sixth equa-
tion we used (4.6) and (4.7), on the eleventh equation we used the fact that

S1(φ(h′, h)) = φ(ψ(h′, h<1>), S1(h<2>)),

which follows from (4.8), and on the twelfth equation we used (4.4). Finally, on
the thirteenth equation we used

S2(ψ(h′, h)) = ψ(S2(h′
<1>

), φ(h′
<2>

, h)),

which is a consequence of (4.9), and on the fourteenth we used (4.5).

We are now ready for the main result.

Proposition 4.6. Let (H1, µ1, η1,∆1, ε1, S1) be an m1-inverse Hopf quasigroups

such that S1(δ1) = δ1, and that Sh1
1 ∈ Aut(H1), and (H2, µ2, η2,∆2, ε2, S2) be

an m2-inverse Hopf quasigroup such that S2(δ2) = δ2, and that Sh2
2 ∈ Aut(H2).

Furthermore, let there be two maps φ : H2 ⊗ H1 → H1 and ψ : H2 ⊗ H1 → H2

satisfying

φ(δ2, h) = h, φ(h′, δ1) = δ1, ψ(δ2, h) = δ2, ψ(h′, δ1) = h′, (4.12)

φ(S(h′<1>), φ(h′<2> , h)) = ε2(h′)h = φ(h′<1> , φ(S(h′<2>), h)), (4.13)

ψ(ψ(h′, Sm1 (h<2>g)), Sm+1
1 (h<1>)) = ψ(h′, Sm1 (g)), (4.14)

ψ(ψ(h′, S(h
<1>

)), h
<2>

) = ε1(h)h′ = ψ(ψ(h′, h
<1>

), S(h
<2>

)) (4.15)

∆1(φ(h′, h))=φ(h′
<1>

, h
<1>

)⊗ φ(h′
<2>

, h
<2>

), ε1(φ(h′, h))=ε1(h)ε2(h′), (4.16)

∆2(ψ(h′, h))=ψ(h′
<1>

, h
<1>

)⊗ ψ(h′
<2>

, h
<2>

), ε2(ψ(h′, h))=ε1(h)ε2(h′), (4.17)

φ(h′, Sm1 (g)) ={
φ(h′

<1>
, Sm1 (h

<3>
g
<2>

))φ(ψ(h′
<2>

, Sm1 (h
<2>

g
<1>

)), Sm+1
1 (h

<1>
)) if m = 2`+ 1,

φ(h′
<1>

, Sm1 (h
<2>

g
<1>

))φ(ψ(h′
<2>

, Sm1 (h
<3>

g
<2>

)), Sm+1
1 (h

<1>
)) if m = 2`,

(4.18)

φ(h′
<1>

, S(h
<2>

))
[
φ(ψ(h′

<2>
, S(h

<1>
)), h

<3>
)
]

= ε1(h)ε2(h′) =

φ(h′
<1>

, h
<1>

)
[
φ(ψ(h′

<2>
, h

<2>
), S(h

<3>
))
]
, (4.19)[

ψ(S(h′
<1>

), φ(h′
<2>

, h
<1>

))
]
ψ(h′

<3>
, h

<2>
) = ε1(h)ε2(h′) =[

ψ(h′
<1>

, φ(S(h′
<3>

), h
<1>

))
]
ψ(S(h′

<2>
), h

<2>
), (4.20)
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ψ(h′<1> , h<1>)⊗ φ(h′<2> , h<2>) = ψ(h′<2> , h<2>)⊗ φ(h′<1> , h<1>) (4.21)

for any h, g ∈ H1, any h
′, g′ ∈ H2, and any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(4.22)

Then
(
H1 ./ H2 := H1 ⊗H2, µ./, η⊗,∆⊗, ε⊗, S./

)
is an m-invertible Hopf quasi-

group with the multiplication

µ./((h⊗h′)⊗(g⊗g′))=:(h⊗h′)(g⊗g′) :=
(
hφ(h′

<1>
, g
<1>

), ψ(h′
<2>

, g
<2>

)g′
)
, (4.23)

and the antipode

S./ : H1 ./ H2 → H1 ./ H2,

S./(h⊗ h′) := (δ1 ⊗ S2(h′))(S1(h)⊗ δ2) =(
φ
(
S2(h′

<2>
), S1(h

<2>
)
)
⊗ ψ

(
S2(h′

<1>
), S1(h

<1>
)
))
,

(4.24)

if and only if

φ(h′, h) = h,

ψ(h′, h) = h′,

}
if m = 2`,

φ(Sm2 (ψ(h′
<2>

, g
<2>

)g′), Sm1 (φ(h′
<1>

, g
<1>

))) =

ε2(h′)φ(Sm2 (g′), Sm1 (g)),

ψ(Sm2 (ψ(h′
<3>

, g
<2>

)g′), Sm1 (φ(h′
<2>

, g
<1>

)))Sm+1
2 (h′

<1>
)=

ε2(h′)ψ(Sm2 (g′), Sm1 (g)),

 if m = 2`+ 1,

(4.25)

for any h, g ∈ H1, and any h′, g′ ∈ H2.

Proof. Let us �rst assume that the conditions (4.25) are met. We shall begin with
the observation that

(h
<1>

, h′
<1>

)S./(h<2>
, h′

<2>
)=
[
(h
<1>

, δ2)(δ1, h
′
<1>

)
][

(δ1, S2(h′
<2>

))(S1(h
<2>

), δ2)
]
=[

(h<1> , δ2)(δ1, h
′
<1>)

](
φ(S2(h′<3>), S1(h<3>)), ψ(S2(h′<2>), S1(h<2>))

)
=

(h<1> , δ2)
[
(δ1, h

′
<1>)

(
φ(S2(h′<3>), S1(h<3>)), ψ(S2(h′<2>), S1(h<2>))

)]
=

(h<1> , δ2)
(
φ(h′<1><1> , φ(S2(h′<3>), S1(h<3>))<1>),

ψ(h′<1><2> , φ(S2(h′<3>), S1(h<3>))<2>)ψ(S2(h′<2>), S1(h<2>))
)

=

(h<1> , δ2)
(
φ(h′<1> , φ(S2(h′<5>), S1(h<4>))),

ψ(h′<2> , φ(S2(h′<4>), S1(h<3>)))ψ(S2(h′<3>), S1(h<2>))
)

=
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(h
<1>

, δ2)
(
φ(h′

<1>
, φ(S2(h′

<4>
), S1(h

<3>
))), ψ(h′

<2>
S2(h′

<3>
), S1(h

<2>
))
)

=

(h
<1>

, δ2)
(
φ(h′

<1>
, φ(S2(h′

<2>
), S1(h

<2>
))), δ2

)
=

(h
<1>

, δ2)(S1(h
<2>

), ε2(h′)δ2) = (h
<1>

S1(h
<2>

), δ2) = (ε1(h)δ1, ε2(h′)δ2),

where on the �fth equality we used (4.16) and (4.17), on the sixth equality (4.20),
and on the eighth equality we use (4.13). Similarly,

S./(h<1>
, h′

<1>
)(h

<2>
, h′

<2>
)=
[
(δ1, S2(h′

<1>
))(S1(h

<1>
), δ2)

][
(h
<2>

,δ2)(δ1, h
′
<2>

)
]
=(

φ(S2(h′<2>), S1(h<2>)), ψ(S2(h′<1>), S1(h<1>))
)[

(h<3> , δ2)(δ1, h
′
<3>)

]
=[(

φ(S2(h′<2>), S1(h<2>)), ψ(S2(h′<1>), S1(h<1>))
)

(h<3> , δ2)
]
(δ1, h

′
<3>) =(

φ(S2(h′<2>), S1(h<2>))φ(ψ(S2(h′<1>), S1(h<1>))<1> , h<3><1>),

ψ(ψ(S2(h′<1>), S1(h<1>))<2> , h<3><2>)
)

(δ1, h
′
<3>) =(

φ(S2(h′<2>), S1(h<2>))φ(ψ(S2(h′<1><2>), S1(h<1><2>)), h<3><1>),

ψ(ψ(S2(h′<1><1>), S1(h<1><1>)), h<3><2>)
)

(δ1, h
′
<3>) =(

φ(S2(h′<3>), S1(h<3>))φ(ψ(S2(h′<2>), S1(h<2>)), h<4>),

ψ(ψ(S2(h′<1>), S1(h<1>)), h<5>)
)

(δ1, h
′
<4>) =(

φ
(
S2(h′<2>), S1(h<2>)h<3>

)
, ψ
(
ψ(S2(h′<1>), S1(h<1>)), h<4>

))
(δ1, h

′
<3>) =(

δ1, ψ
(
ψ(S2(h′<1>), S1(h<1>)), h<2>

))
(δ1, h

′
<2>)=

(
ε1(h)δ1, S2(h′<1>)

)
(δ1, h

′
<2>)=

(ε1(h)δ1, S2(h′
<1>

)h′
<2>

) = (ε1(h)δ1, ε2(h′)δ2),

using (4.19) on the seventh equality, and (4.15) on the tenth. Furthermore, (4.24)
is unique with the property (4.1). Indeed, if T : H1 ⊗ H2 → H1 ⊗ H2, say
T (h, h′) = (T1(h, h′), T2(h, h′)), is a coalgebra anti-automorphism so that

(h
<1>

, h′
<1>

)T (h
<2>

, h′
<2>

)=(ε1(h)δ1, ε2(h′)δ2)=T (h
<1>

, h′
<1>

)(h
<2>

, h′
<2>

), (4.26)

then on one hand (from the �rst equality of (4.26))

(ε1(h)δ1, ε2(h′)δ2) = (h
<1>

, h′
<1>

)T (h
<2>

, h′
<2>

) =

(h
<1>

, h′
<1>

)
(
T1(h

<2>
, h′

<2>
), T2(h

<2>
, h′

<2>
)
)

=(
h
<1>

φ
(
h′
<1><1>

,T1(h
<2>

, h′
<2>

)
<1>

)
, ψ
(
h′
<1><2>

,T1(h
<2>

, h′
<2>

)
<2>

)
T2(h

<2>
, h′

<2>
)
)
,

(4.27)

while on the other hand (this time from the second equality of (4.26)),
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(ε1(h)δ1, ε2(h′)δ2) = T (h<1> , h
′
<1>)(h<2> , h

′
<2>) =(

T1(h
<1>

, h′
<1>

), T2(h
<1>

, h′
<1>

)
)

(h
<2>

, h′
<2>

) =(
T1(h

<1>
, h′
<1>

)φ
(
T2(h

<1>
, h′
<1>

)
<1>

, h
<2><1>

)
, ψ
(
T2(h

<1>
, h′
<1>

)
<2>

, h
<2><2>

)
h′
<2>

)
.

(4.28)

Application of Id⊗ε2 : H1 ⊗H2 → H1 to (4.27) yields

h<1>φ
(
h′<1> , T1(h<2> , h

′
<2>)

)
= ε1(h)ε2(h′)δ1,

which, in turn, leads to

φ
(
h′<1> , T1(h, h′<2>)

)
= ε2(h′)S1(h).

But then,

T1(h, h′) = φ
(
S2(h′<1>), φ

(
h′<2> , T1(h, h′<3>)

))
= φ

(
S2(h′), S1(h)

)
. (4.29)

Similarly, applying ε1 ⊗ Id : H1 ⊗H2 → H2 to (4.28) we derive

T2(h, h′) = ψ
(
S2(h′), S1(h)

)
. (4.30)

Now, from (4.29) and (4.30) we conclude T = S./.

We next proceed to show that (4.24) satis�es (4.2). In case of m = 2`+ 1, we
have

Sm./
(
(h
<2>

, h′
<2>

)(g, g′)
)
Sm+1
./ (h

<1>
, h′

<1>
) =

Sm./
(
h<2>φ(h′<2> , g<1>), ψ(h′<3> , g<2>)g′

)
Sm+1
./ (h<1> , h

′
<1>) =[(

δ1, S
m
2 (ψ(h′<3> , g<2>)g′)

)(
Sm1 (h<2>φ(h′<2> , g<1>)), δ2

)](
Sm+1

1 (h<1>), Sm+1
2 (h′<1>)

)
=(

φ
(
Sm2 (ψ(h′<3> , g<2>)g′)<1> , S

m
1 (h<2>φ(h′<2> , g<1>))<1>

)
,

ψ
(
Sm2 (ψ(h′<3>, g<2>)g′)<2>,S

m
1 (h<2>φ(h′<2>, g<1>))<2>

))(
Sm+1

1 (h<1>), Sm+1
2 (h′<1>)

)
=(

φ
(
Sm2 (ψ(h′<3> , g<2>)g′)<1> , S

m
1 (h<2>φ(h′<2> , g<1>))<1>

)
×

φ
(
ψ
(
Sm2 (ψ(h′<3> , g<2>)g′)<2><1> , S

m
1 (h<3>φ(h′<2> , g<1>))<2><1> , S

m+1
1 (h<1>)<1>

))
,

ψ
(
ψ
(
Sm2 (ψ(h′<3>,g<2>)g′)<2><2>,S

m
1 (h<2>φ(h′<2>,g<1>))<2><2>,S

m+1
1 (h<1>)<2>

))
Sm+1

2 (h′<1>)
)

=
(
φ
(
Sm2 (ψ(h′<3> , g<2>)g′)<1> ,

[
Sm1 (h<2>φ(h′<2> , g<1>))<1>S

m+1
1 (h<1>)<1>

])
,

ψ
(
Sm2 (ψ(h′<3>, g<2>)g′)<2>,

[
Sm1 (h<2>φ(h′<2>, g<1>))<2>S

m+1
1 (h<1>)<2>

])
Sm+1

2 (h′<1>)
)

=(
ε1(h)φ

(
Sm2 (g′)<1> , S

m
1 (g)<1>

)
, ε2(h′)ψ

(
Sm2 (g′)<2> , S

m
1 (g)<2>

))
=

(δ1, ε2(h′)Sm2 (g′))(ε1(h)Sm1 (g), δ2) = ε1(h)ε2(h′)Sm./(g, g
′), (4.31)
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where on the second and the eighth equalities we used Lemma 4.5, on the �fth
equality we used (4.18) and (4.14), and on the sixth equality we used (4.25). If,
on the other hand, m = 2`

Sm./
(
(h
<2>

, h′
<2>

)(g, g′)
)
Sm+1
./ (h

<1>
, h′
<1>

) =

Sm./
(
h
<2>

φ(h′
<2>

, g
<1>

), ψ(h′
<3>

, g
<2>

)g′
)
Sm+1
./ (h

<1>
, h′
<1>

) =(
Sm1 (h

<2>
φ(h′

<2>
, g
<1>

)), Sm2 (ψ(h′
<3>

, g
<2>

)g′)
)[(

δ1, S
m+1
2 (h′

<1>
)
)(
Sm+1

1 (h
<1>

), δ2
)]

=(
Sm1 (h

<2>
φ(h′

<2>
, g
<1>

)), Sm2 (ψ(h′
<3>

, g
<2>

)g′)
)
×(

φ
(
Sm+1

2 (h′
<1>

)
<1>

, Sm+1
1 (h

<1>
)
<1>

)
, ψ
(
Sm+1

2 (h′
<1>

)
<2>

, Sm+1
1 (h

<1>
)
<2>

))
=(

Sm1 (h
<2>

φ(h′
<2>

, g
<1>

))×[
φ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<1>

, φ
(
Sm+1

2 (h′
<1>

)
<1><1>

, Sm+1
1 (h

<1>
)
<1><1>

))]
,[

ψ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<2>

, φ
(
Sm+1

2 (h′
<1>

)
<1><2>

, Sm+1
1 (h

<1>
)
<1><2>

))]
×

ψ
(
Sm+1

2 (h′
<1>

)
<2>

, Sm+1
1 (h

<1>
)
<2>

))
=(

ε1(h)Sm1 (g), ε2(h′)Sm2 (g′)
)
, (4.32)

where on the second equality we used Lemma 4.5, and on the �fth equality we
used (4.25).

Conversely, let H1 and H2 be subject to the hypothesis of the theorem. Then,
in the case of m = 2`+ 1, the application of Id⊗ε2 : H1 ⊗H2 → H1 to the sixth
equality(

φ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<1>

, Sm1 (φ(h′
<2>

, g
<1>

))
<1>

)
,

ψ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<2>

, Sm1 (φ(h′
<2>

, g
<1>

))
<2>

)
Sm+1

2 (h′
<1>

)
)

=(
φ
(
Sm2 (g′)

<1>
, Sm1 (g)

<1>

)
, ε2(h′)ψ

(
Sm2 (g′)

<2>
, Sm1 (g)

<2>

))
of (4.31) yields

φ
(
Sm2 (ψ(h′

<2>
, g
<2>

)g′), Sm1 (φ(h′
<1>

, g
<1>

))
)

= φ
(
Sm2 (g′), Sm1 (g)

)
ε2(h′)

for any g ∈ H1, and any g′, h′∈ H2.

Similarly, the application of ε1⊗ Id : H1⊗H2 → H2 on the other hand (to the
sixth equality of (4.31)) this times yields

ψ
(
Sm2 (ψ(h′<3> , g<2>)g′), Sm1 (φ(h′<2> , g<1>))

)
Sm+1

2 (h′<1>) = ε2(h′)ψ
(
Sm2 (g′), Sm1 (g)

)
.



Matched pairs of m-invertible Hopf quasigroups 131

Next, if m = 2`, then we apply Id⊗ε2 : H1 ⊗H2 → H1 to the �fth equality(
Sm1 (h<2>φ(h′<2> , g<1>))×[

φ
(
Sm2 (ψ(h′<3> , g<2>)g′)<1> , φ

(
Sm+1

2 (h′<1>)<1><1> , S
m+1
1 (h<1>)<1><1>

))]
,[

ψ
(
Sm2 (ψ(h′<3> , g<2>)g′)<2> , φ

(
Sm+1

2 (h′<1>)<1><2> , S
m+1
1 (h<1>)<1><2>

))]
×

ψ
(
Sm+1

2 (h′<1>)<2> , S
m+1
1 (h<1>)<2>

))
=
(
ε1(h)Sm1 (g), ε2(h′)Sm2 (g′)

)
of (4.32) to get

Sm1 (h
<2>

φ(h′
<2>

, g
<1>

))
[
φ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′), φ
(
Sm+1

2 (h′
<1>

), Sm+1
1 (h

<1>
)
))]

=

ε1(h)Sm1 (g)ε2(h′)ε2(g′)

for any g, h ∈ H1, and any g′, h′∈ H2. In particular, for h = 1 and g′ = 1 we
arrive at

Sm1 (φ(h′, g)) = ε2(h′)Sm1 (g),

from which we conclude that

φ(h′, g) = ε2(h′)g. (4.33)

Similarly, the application of ε1 ⊗ Id : H1 ⊗ H2 → H2 to the �fth equality of
(4.32) yields[

ψ
(
Sm2 (ψ(h′<3> , g<2>)g′), φ

(
Sm+1

2 (h′<1>)<1> , S
m+1
1 (h<1>)<1>

))]
×

ψ
(
Sm+1

2 (h′<1>)<2> , S
m+1
1 (h<1>)<2>

))
=

ε1(h)ε1(g)ε2(h′)Sm2 (g′).

Now, invoking (4.33), and setting g = 1 and h′= 1, we obtain (in view of (4.12))

ψ
(
Sm2 (g′), Sm+1

1 (h)
)

= ε1(h)Sm2 (g′),

from which the the triviality of the left action follows.

De�nition 4.7. Let (H1, µ1, η1,∆1, ε1, S1) be anm1-inverse Hopf quasigroup such
that S1(δ1) = δ1, and that Sh1

1 ∈ Aut(H1), and (H2, µ2, η2,∆2, ε2, S2) be an m2-
inverse Hopf quasigroup such that S2(δ2) = δ2, and that Sh2

2 ∈ Aut(H2). Let also
m ∈ Z be a solution of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

Then, (H1,H2) is called a matched pair of m-inverse property Hopf quasigroups if
the Hopf quasigroups (H1, µ1, η1,∆1, ε1, S1) and (H2, µ2, η2,∆2, ε2, S2) satisfy the
conditions (4.12)− (4.21).
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A remark is in order.

Remark 4.8. Given an m1-inverse property quasigroup Q1, an m2-inverse prop-
erty quasigroup Q2, and a solution m ∈ Z of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

Let
(

(Q1, J1, δ1), (Q2, J2, δ2)
)
be a matched pair ofm-inverse property quasigroups

such that J1(q)q = δ1 for any q ∈ Q1 and J2(q′)q′ = δ2 for any q′ ∈ Q2. Then
(kQ1, kQ2) is a matched pair of m-inverse property Hopf quasigroups.

The following result is the universal property of the matched pair construction for
m-inverse property Hopf quasigroups, that is, the analogue of [41, Thm. 7.2.3].

Proposition 4.9. Let (H1, µ1, η1,∆1, ε1, S1) be an m1-inverse Hopf quasigroups

such that S1(δ1) = δ1, and that Sh1
1 ∈ Aut(H1), and (H2, µ2, η2,∆2, ε2, S2) be an

m2-inverse Hopf quasigroup such that S2(δ2) = δ2, and that Sh2
2 ∈ Aut(H2). Let

also m ∈ Z be a solution of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

and G be an m-inverse Hopf quasigroup so that H1 and H2 are m-inverse Hopf

quasi-subgroups of G;
H1 ↪−→ G ←−↩ H2,

such that the multiplication on G yields an isomorphism

Θ : H1 ⊗H2 → G, h⊗ h′7→ hh′, (4.34)

of vector spaces, under which the multiplications are compatible as

(hh′)g = h(h′g), g(hh′) = (gh)h′,

for any h ∈ H1, any h
′∈ H2, and any g ∈ G, while the antipodes are compatible as

S(hh′) = S2(h′)S1(h), S(h′h) = S1(h)S2(h′) (4.35)

for any h ∈ H1, any h
′∈ H2, and any g ∈ G. Then, (H1,H2) is a matched pair of

m-inverse Hopf quasigroups, and G ∼= H1 ./ H2 as Hopf quasigroups.

Proof. Let us begin with the mappings

φ : H2 ⊗H1 → H1, ψ : H2 ⊗H1 → H2 (4.36)

given by

φ(h′, h) := ((Id⊗ε2) ◦Θ−1)(h′h), ψ(h′, h) := ((ε1 ⊗ Id) ◦Θ−1)(h′h),
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through
h′h = Θ

(
φ(h′<1> , h<1>), ψ(h′<2> , h<2>)

)
. (4.37)

It then follows at once that the isomorphism (4.34) respect the multiplications in
G and H1 ./ H2.

It remains to show that the mappings (4.36) have the properties (4.12)−(4.21).

The �rst one, (4.12), follows from the consideration of h = δ1 and h′= δ2 in
(4.37), respectively.

Next, the linear map Ψ : H2 ⊗H1 → H1 ⊗H2 given by

Ψ(h′⊗ h) := Θ−1(h′h) = φ(h′
<1>

, h
<1>

)⊗ ψ(h′
<2>

, h
<2>

)

being a coalgebra homomorphism, we have

∆⊗ ◦Ψ = (Ψ⊗Ψ) ◦∆⊗,
(
(ε1 ⊗ ε2) ◦Ψ

)
(h⊗ h′) = ε1(h)ε2(h′),

for any h ∈ H1, and any h′∈ H2. Applying on an arbitrary h′⊗ h ∈ H2 ⊗H1, we
arrive at[
φ(h′

<1>
, h

<1>
)
<1>
⊗ ψ(h′

<2>
, h

<2>
)
<1>

]
⊗
[
φ(h′

<1>
, h

<1>
)
<2>
⊗ ψ(h′

<2>
, h

<2>
)
<2>

]
=(

φ(h′
<1><1>

, h
<1><1>

)⊗ ψ(h′
<1><2>

, h
<1><2>

)
)
⊗(

φ(h′
<2><1>

, h
<2><1>

)⊗ ψ(h′
<2><2>

, h
<2><2>

)
)
.

Now, Id⊗ε2⊗ Id⊗ε2 yields (4.16), and ε1⊗ Id⊗ε1⊗ Id results in (4.17). Further-
more, ε1 ⊗ Id⊗ Id⊗ε2 leads to (4.21).

On the other hand, in view of (4.35) the property g<1>S(g<2>) = ε(g)δ implies
(h<1>h

′
<1>)S(h<2>h

′
<2>) = ε1(h)ε2(h′)δ for any h ∈ H1 and any h′∈ H2, which in

turn implies(
h
<1>

φ(h′
<1>

, φ(S2(h′
<5>

), S1(h
<4>

))),

ψ(h′
<2>

, φ(S2(h′
<4>

), S1(h
<3>

)))ψ(S2(h′
<3>

), S1(h
<2>

))
)

=

(h<1>S1(h<2>), δ2) = (ε1(h)δ1, ε2(h′)δ2).

We then obtain the second equality of (4.13) by applying Id⊗ε2, as well as the
second equality of (4.20) via ε1 ⊗ Id. Similarly, S(g<1>)g<2> = ε(g)δ yields(
φ(S2(h′<3>), S1(h<3>))φ(ψ(S2(h′<2>), S1(h<2>)), h<4>),

φ(ψ(S2(h′<1>), S1(h<1>)), h<5>)h′<4>

)
=

(ε1(h)δ1, S2(h′
<1>

)h′
<2>

) = (ε1(h)δ1, ε2(h′)δ2),
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which in turn implies the �rst equality of (4.19) by Id⊗ε2, and the �rst equality
of (4.15) by ε1 ⊗ Id.

On the next step, JmQ(qq′)Jm+1
Q(q) = JmQ(q′) for any q, q′ ∈ Q provides,

along the lines of (4.31),(
φ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<1>

, Sm1 (h
<2>

φ(h′
<2>

, g
<1>

))
<1>

)
×

φ
(
ψ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<2><1>

, Sm1 (h
<3>

φ(h′
<2>

, g
<1>

))
<2><1>

, Sm+1
1 (h

<1>
)
<1>

))
,

ψ
(
ψ
(
Sm2 (ψ(h′

<3>
,g
<2>

)g′)
<2><2>

,Sm1 (h
<2>

φ(h′
<2>

,g
<1>

))
<2><2>

,Sm+1
1 (h

<1>
)
<2>

))
Sm+1

2 (h′
<1>

)
)

=
(
ε1(h)φ

(
Sm2 (g′)

<1>
, Sm1 (g)

<1>

)
, ε2(h′)ψ

(
Sm2 (g′)

<2>
, Sm1 (g)

<2>

))
=

(δ1, ε2(h′)Sm2 (g′))(ε1(h)Sm1 (g), δ2) = ε1(h)ε2(h′)Sm./(g, g
′).

In particular, for h′= δ2 we see that(
φ
(
Sm2 (g′)<1> , S

m
1 (h<2>g<1>)<1>

)
φ
(
ψ
(
Sm2 (g′)<2><1> , S

m
1 (h<3>g<1>)<2><1> ,

Sm+1
1 (h<1>)<1>

))
, ψ
(
ψ
(
Sm2 (g′)<2><2> , S

m
1 (h<2>g<1>)<2><2> , S

m+1
1 (h<1>)<2>

)))
=(

ε1(h)φ
(
Sm2 (g′)<1> , S

m
1 (g)<1>

)
, ψ
(
Sm2 (g′)<2> , S

m
1 (g)<2>

))
,

which implies (4.18) by Id⊗ε2, and (4.14) by ε1 ⊗ Id. Let us also remark that
(4.18) implies the second equality of (4.19), and that (4.14) implies the second
equation of (4.15).

Equipped with these now, (4.35) gives

S./((δ1, h
′)(h, δ2)) =(

φ
(
S2(ψ(h′

<1>
, h

<1>
)), S1(φ(h′

<2>
, h

<2>
))
)
, ψ
(
S2(ψ(h′

<3>
, h

<3>
)), S1(φ(h′

<4>
, h

<4>
))
))

=
(
φ
(
S2(ψ(h′

<1>
, h

<1>
)), [φ(ψ(h′

<2>
, h

<2><1>
), S1(h

<2><2>
))]
)
,

ψ
(
S2(ψ(h′

<3>
, h

<3>
)), S1(φ(h′

<4>
, h

<4>
))
))

=(
S1(h), S2(h′)

)
.

Then, the application of Id⊗ε2 yields

φ
(
S2(ψ(h′

<1>
, h

<1>
)), [φ(ψ(h′

<2>
, h

<2>
), S1(h

<3>
))]
)

= ε2(h′)S1(h),

in particular,

φ
(
S2(ψ(ψ(h′, S1(h

<1>
))
<1>

, h
<2><1>

)), [φ(ψ(ψ(h′, S1(h
<1>

))
<2>

, h
<2><2>

),

S1(h
<2><3>

))]
)

= ε2(ψ(h′, S1(h
<1>

)))S1(h
<2>

),
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that is,

φ
(
S2(h′<1>), φ(h′<2> , S1(h))

)
= ε2(h′)S1(h),

the �rst equality of (4.13). Similarly, the application of ε1 ⊗ Id onto

S./((δ1,h
′)(h,δ2))=

(
S1(h<1>

),ψ
(
S2(ψ(h′

<1>
, h

<2>
)), S1(φ(h′

<2>
, h

<2>
))
))

=
(
S1(h), S2(h

′)
)
,

implies

ψ
(
S2(ψ(h′<1> , h<2>)), S1(φ(h′<2> , h<2>))

))
= ε1(h)S2(h′).

Hence, we see that

ψ
(
ψ
(
S2(ψ(h′

<1><1>
, h

<1><2>
)), S1(φ(h′

<1><2>
, h

<1><2>
))
)
, φ(h′

<2>
, h

<2>
)
)

=

ε1(h
<1>

)ψ
(
S2(h′

<1>
), φ(h′

<2>
, h

<2>
)
)
,

that is,

S2(ψ(h′, h)) = ψ
(
S2(h′<1>), φ(h′<2> , h)

)
.

But then,[
ψ(S(h′<1>),φ(h′<2>,h<1>))

]
ψ(h′<3>,h<2>)=S2(ψ(h′<1>, h<1>))ψ(h′<2>,h<2>)=ε1(h)ε2(h′),

the �rst equality of (4.20) is satis�ed.

Finally, having obtained (4.12) − (4.21), it is possible to derive (4.25) from
(4.31) in the case m = 2`+ 1, and from (4.32) in the case m = 2`.
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Computational approach for intransitive action

of ∆(2, 4, k) on PL(Fq)

Tahir Imran, Muhammad Ashiq and Muhammad Asad Zaighum

Abstract In this paper, we have investigated actions of triangle group ∆(2, 4, k) de�ned by

< r, s : r2 = s4 = (rs)k = 1 >, on projective line over the �nite �eld PL(Fq) by using the

concept of coset diagrams. We will parameterize this action and prove that actions of ∆(2, 4, 4)

is intransitive on PL(Fq), where q is such a prime that q+2 gives a perfect square. We have also

developed a useful computational technique to parameterize this action and also to draw coset

diagrams. Throughout −1 represents ∞ ,in diagrams as these are computer generated.

1. Introduction

The linear-fractional group ∆(2, 4, k) is de�ned by the transformations r : z → −1
z

and s : z → −1
2(z+1) that satis�es the relations r2 = s4 = 1. This group can be

extended by adjoining an involution t : z → 1
2z such that (rt)2 = (st)2 = 1. This

extended group is denoted by ∆∗(2, 4, k) [1, 2, 6].
Let α : PGL (2, Z) −→ PGL (2, q) be a non-degenerate homomorphism. We

know that every non-degenerate homomorphism gives rise to an action. So, this
non-degenerate homomorphism gives rise to an action of PGL (2, Z) on PL (Fq).
The action which arises from this non-degenerate homomorphism not only cor-
responds to the non-degenerate homomorphism but to a conjugacy class of the
homomorphisms [3, 5].

Since, there is one-to-one correspondence between the conjugacy classes of ele-
ments of order greater than 2 in PGL (2, q) and the non-zero elements of Fq, such
that the class corresponding to an element θ in Fq consists of all the elements
represented by matrices A [6]. It follows that we can actually parameterize the
non-degenerate homomorphisms of PGL (2, Z) into PGL (2, q), except for a few
uninteresting ones, by the elements of Fq. If α is any such non-degenerate ho-
momorphism, and R, S and T are in GL (2, q), which yield the elements r, s, t
then letting θ = m2

2/∆ (where m2 = trace(RS), 4 = det(RS)), we associate the
parameter θ with the homomorphism α. This non-zero element θ of Fq provides
a permutation representation of the action corresponding to the homomorphism
α. We draw a coset diagram corresponding to this action which is a diagram cor-
responding to not only one action but to a class of actions whose parameter is θ.

2010 Mathematics Subject Classi�cation: 20G40, 05C25, 20F05

Keywords: Triangle group, coset diagram, linear-fractional transformation.
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We are looking for a condition on θ and q which ensures action of PGL (2, Z) on
PL (Fq) evolving the required coset diagrams [4, 6, 7].

2. Conjugacy classes and coset diagrams

In this section, construction of coset diagrams for the generalized triangle group
< r, s, t : r2 = s4 = t2 = (rt)2 = (st)2 = (rs)k = 1 > are considered along-with
certain observations about this case. The coset diagrams for action of ∆∗(2, 4, k)
on �nite space are de�ned as follows.

The four cycles of s are represented by squares whose vertices are permuted
anti-clock wise by S. Any two vertices which are interchanged by involution r
is represented by an edge. The action of t is represented by re�ection about a
vertical axis of symmetry. For example, action of ∆∗(2, 4, k) on PL(F31) gives us
the following permutation representations:

Figure 1: Action of ∆∗(2, 4, k) on PL(F31)

Theorem 2.1. Corresponding to each θ = m4 ∈ Fq there exists a conjugacy class

of non-degenerate homomorphism α : PGL(2, Z) → PGL(2, q) which yields the

homomorphic image of < r, s : r2 = s4 = (rs)4 = 1 > under α.

Proof. De�ne a homomorphism α : PGL(2, Z) −→ PGL(2, q) such that r = rα,
s = sα and t = tα satisfying the relations:

r2 = s4 = t
2

=
(
rt
)2

=
(
st
)2

= 1. (1)
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So, there is requirement to see for elements r, s, t ∈ PGL(2, q) satisfying the
relations 1 with r s in given conjugacy class. Let r, s and t be represented by
matrices,

R =

[
r1 kr3

r3 −r1

]
, S =

[
s1 ks3

s3 −s1 −
√

2

]
and T =

[
0 −k
1 0

]
respectively, as

de�ned in [4], where r1, r3, s1, s3, k ∈ Fq. Let det(R) = ∆ and det(S) = 1, then

det(R) = ∆ = −r2
1 − kr2

3 = r2
1 + kr2

3 6= 0 (2)

and,

det(S) = 1 = −s2
1 −
√

2s1 − ks2
3

s2
1 +
√

2s1 + ks2
3 + 1 = 0. (3)

This surely, yields such elements that satisfy the relations (1). Now the product
of matrices R and S is given by,

RS =

[
r1 kr3

re −r1

] [
s1 ks3

s3 −s1 − 1

]
=

[
r1s1 + kr3s3 kr1s3 − kr3s1 −

√
2kr3

r3s1 − r1s3 kr3s3 + r1s1 +
√

2r1

]
As already supposed that tr(RS) = m2, therefore

m2 = 2r1s1 + 2kr3s3 +
√

2r1. (4)

The matrix RST is given by

RST =

[
r1s1 + kr3s3 kr1s3 − kr3s1 −

√
2kr3

r3s1 − r1s3 kr3s3 + r1s1 +
√

2r1

] [
0 −k
1 0

]
=

[
kr1s3 − kr3s1 −

√
2kr3 −k(r1s1 + kr3s3)

kr3s3 + r1s1 +
√

2r1 −k(r3s1 − r1s3)

]
and so the trace of RST is given by

tr(RST ) = kr1s3 − kr3s1 −
√

2kr3 − k(r3s1 − r1s3) = 2kr1s3 − kr3

(
2s1 +

√
2
)

and as already considered, m3k = trace(RST ) so

m3k = 2kr1s3 − kr3

(
2s1 +

√
2
)

m3 = 2r1s3 − r3

(
2s1 +

√
2
)
. (5)

Now squaring equations (4) and (5) we get,

m2
2 = [2r1s1 + 2kr3s3 +

√
2r1]2 = 4r2

1s
2
1 + 4k2r2

3s
2
3 + 2r2

1 + 8kr1s1r3s3

+4
√

2r1r3s3 + 4
√

2r2
1s1
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and

m2
3 = [2r1s3 − r3(2s1 +

√
2)]2 = 4r2

1s
2
3 + r2

3(4s2
1 + 2 + 4

√
2s1)− 4r1r3s3(2s1 +

√
2))

= 4r2
1s

2
3 + 4r2

3s
2
1 + 2r2

3 + 4
√

2r2
3s1 − 8r1r3s1s3 − 4

√
2r1r3s3.

Multiplying m2
3 by k and then adding in m2

2, we get

m2
2+km2

3 =4r2
1s

2
1 + 4k2r2

3s
2
3 + 2r2

1 + 8kr1s1r3s3 + 4
√

2r1r3s3 + 4
√

2r2
1s1

+ 4kr2
1s

2
3 + 4kr2

3s
2
1 + 2kr2

3 + 4
√

2kr2
3s1 − 8kr1r3s1s3 − 4

√
2kr1r3s3

=4r2
1s

2
1+4k2r2

3s
2
3 + 2r2

1 +4
√

2r2
1s1 + 4kr2

1s
2
3+4kr2

3s
2
1 + 2kr2

3 +4
√

2kr2
3s1

= 2(r2
1 + kr2

3) + 4s2
1(r2

1 + kr2
3) + 4

√
2s1(r2

1 + kr2
3) + 4ks2

3(r2
1 + kr2

3)

= (r2
1 + kr2

3)(2 + 4s2
1 + 4

√
2s1 + 4ks2

3)

= [r2
1 + kr2

3][2 + 4(s2
1 +
√

2s1 + ks2
3)].

By using equations (3), we obtain

m2
2 + km2

3 = [r2
1 + kr2

3][2 + 4(−1)] = (−∆)(−2) = 2∆.

That is,
2∆ = m2

2 + km2
3. (6)

We have

R−1S−1 =
1

∆

[
r1s1 +

√
2r1 + kr3s3 kr1s3 − kr3s1

r3s1 +
√

2r3 − r1s3 kr3s1 + r1s1

]
.

The product RSR−1S−1 is

1

∆

[
r1s1 + kr3s3 kr1s3 − kr3s1 −

√
2kr3

r3s1 − r1s3 kr3s3 + r1s1 +
√

2r1

] [
r1s1 +

√
2r1 + kr3s3 kr1s3 − kr3s1

r3s1 +
√

2r3 − r1s3 kr3s1 + r1s1

]
.

Now further as considered in previous section trace(RSR−1S−1) = m4, then

m4 =
1

∆
[∆ − km2

2 − r2
1 − kr2

3] and consequently, m4∆ = ∆ − km2
3 − r2

1 − kr2
3 =

∆ − km2
3 − (r2

1 + kr2
3) = ∆ − km2

3 − (−∆) = 2∆ − km2
3, which together with (6)

implies m2
2 = m4∆. This together with m2

2 = ∆θ gives θ = m4 ∈ Fq. Hence θ is
the permutation representation of the action corresponding to the homomorphism
α.

Theorem 2.2. The transformation t has �xed vertices in D(θ, q) if and only if

θ(θ − 2) is a square in Fq.

Proof. Let α : Γ∗ → G∗3,4(2, q) be a non-degenerate homomorphism that satis�es
the relations rα = r, sα = s and tα = t and α′ be its dual. Choose the matrices,

R =

[
r1 kr3

r3 −r1

]
, S =

[
s1 ks3

s3 −
√

2− s1

]
and T =

[
0 −k
1 0

]
, representing r, s
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and t respectively, where r1, r3, s1, s3, k ∈ Fq and satis�es the equations (2) to (6).

As we know that, tr(RS) = 0 if and only if (r s)2 = 1. Also,
tra(RST )

k
= m3 = 0

if and only if (r st)2 = 1. Now det(RS) = 1, gives parameter of r s as m2
2 = θ.

Also tr(RST ) = km3 and det(RST ) = k [Since det(R) = 1, det(S) = 1 and
det(T ) = k ⇒ det(RST ) = k], gives parameter of r st as km2

3. Let this parameter

be denoted by φ. Therefore, θ + φ =
m2

2+km2
3

∆ . Putting values from equation (6),
θ + φ = 2. Hence, φ = θ − 2.

Since change from α to α′ interchanges both r and rt and θ and θ − 2, so rt
maps to an element ∆∗(2, 4, k) if and only if θ(θ − 2) is a square in Fq. Since
t lies in ∆∗(2, 4, k) if both of r and rt, so t belongs to G∗(2, 4, k) if and only if
θ(θ − 2) is a square in Fq. Now t has �xed points in PL(Fq) if either t belongs to
∆∗(2, 4, k) and q ≡ −1(mod4) or t does not belong to ∆∗(2, 4, k) and q ≡ 1(mod4),
which means that −1 is a square in Fq. Hence it can be concluded that t has �xed
vertices in D(θ, q) if and only if −θ(2− θ) = θ(θ − 2) is a square in Fq.

3. Action of ∆(2, 4, k) on PL(Fq) for θ = 2

Following computer coding scheme generate parameterizations and coset diagrams
for actions of ∆(2, 4, k) over PL(Fq), wherein q is a prime number q+2 gives perfect
square.

3.1. Computer program to parameterize action

m4 = Input["m4"];

delta = Input["Delta"];

m2sq = delta*m4;

While[! (Element[Sqrt[m2sq], Integers]), m2sq += q];

m2 = Sqrt[m2sq];

m3sq = ((2*delta ) - (m2sq))/k;

While[m3sq < 0, m3sq += q;];

m3 = Sqrt[m3sq];

s3sq = (-1 - s1^2 - (Sqrt[2 + q]*s1))/k;

While[s3sq < 0, s3sq += q;];

While[! (Element[Sqrt[s3sq], Integers]), s3sq += q];

s3 = Sqrt[s3sq];

{c, d} = {a, b} /.

First@Solve[{2*a* s1 + 2*k*b*s3 + (Sqrt[2 + q])*a == m2,

2*a*s3 - 2*b*s1 - (Sqrt[2 + q])*b == m3}, {a, b}];

nom = Numerator[c];

denom = Denominator[c];

While[! (Element[nom/denom, Integers]), nom += q];

r1 = nom/denom;
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nom = Numerator[d];

denom = Denominator[d];

While[! (Element[nom/denom, Integers]), nom += q];

r3 = nom/denom;

r11 = r1;

r12 = k*r3;

r13 = r3;

r14 = -r1;

s11 = s1;

s12 = k*s3;

s13 = s3;

s14 = -s1 - (Sqrt[2 + q]);

t2 = -k;

While[t2 < 0, t2 += q];

matrix_X = MatrixForm[{{r11, r12}, {r13, r14}}]

matrix_Y = MatrixForm[{{s11, s12}, {s13, s14}}]

matrix_T = MatrixForm[{{0, t2}, {1, 0}}]

3.2. Computer program to draw coset diagrams

Following coding scheme using java programming language to draw coset dia-
grams with respect to the primes q for the action of ∆(2, 4, k) has been developed.
The code given below will generate the permutations for R. Similar code is used
for generating the permutations for S and T .

List<Integer> tmp=new ArrayList<Integer>();

int count=R_values.get(0);

tmp.add(count);

while(cycle==true)

{

int permut_temp=(int) calculateFunc_R(count,a,b,c,d);

count=permut_temp;

if(!(tmp.contains(permut_temp))&& tmp.size()<2)

{

tmp.add((int) permut_temp);

}

else

{

Permutation_R.add(tmp);

cycle=false;

}

}

Following code separates the �x points from permutation of S.
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for(List<Integer> innerList : Permutation_S) {

if(innerList.size()<4)

{

fixPointS.add(innerList);

}

}

The code given below will make the nodes symmetrical basing on the permutations
of T.

for(List<Integer> innerList : Permutation_T) {

if(innerList.size()==1)

{

fix=(Integer) Permutation_T.get(Permutation_T.indexOf(innerList)).get(0);

for(List<Integer> innerSList : Permutation_S)

{

if(innerSList.contains(fix))

{

if(!PermutationS_toDrawCenter.contains(innerSList))

{

PermutationS_toDrawCenter.add(innerSList);

toremove_S.add(innerSList);

}

toremove_T.add(innerList);

}

}

}

}

The symmetrical nodes will then be drawn by using the code given below:

public Node(Point p,int n_v, int r, Color color, Kind kind,int pos) {

this.p = p;

this.r = r;

this.node_value=n_v;

this.color = color;

this.kind = kind;

this.pos=pos;

setBoundary(b);

}

public void draw(Graphics g) {

int x,y,r=5;

if(this.pos==0)

{

x=b.x;
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y=b.y-r;

}

else if(this.pos==1)

{x=b.x-r-8;

y=b.y;}

else if(this.pos==2)

{x=b.x;

y=b.y+r+15;}

else

{

x=b.x+r;

y=b.y;

}

g.setColor(this.color);

if (this.kind == Kind.Circular) {

g.fillOval(b.x, b.y, b.width, b.height);

} else if (this.kind == Kind.Rounded) {

g.fillRoundRect(b.x, b.y, b.width, b.height, r, r);

} else if (this.kind == Kind.Square) {

g.fillRect(b.x, b.y, b.width, b.height);

}

g.setColor(Color.BLACK);

g.setFont(g.getFont().deriveFont(18.0f));

g.drawString(Integer.toString(this.node_value), x, y);

}

Example 3.1. Consider q = 7. Then m2
2 = m4∆. Also, m4 = θ = 2, m2

2 = 24.
Considering 4 = k = s1 = 1, and then by using the code given in section 2.3,
corresponding matrices R,S, and T thus obtained are:

R =

[
3 5
5 4

]
, S =

[
1 3
3 3

]
, T =

[
0 6
1 0

]
.

Therefore, linear-fractional transformations are,

r : z 7→ 3z + 5

5z + 4
, s : z 7→ z + 3

3z + 3
, t : z 7→ 6

z
.

Applying r, s and t transformations on the elements of PL(F7), the permuta-
tions will be: r act as: (0 3)(1 4)(2 ∞)(5 6), s act as: (0 1 3 4)(2 6 ∞ 5), t act
as: (0 ∞)(1 6)(2 3)(4 5).

Obtained coset diagram is as follows.



Intransitive action of ∆(2, 4, k) on PL(Fq) 147

This diagram is disconnected and consisting of two diagrams each having 4
vertices. Also note that each vertex of these diagrams is �xed by (rs)4 and the
group ∆ (2, 4, 4) =< r, s : r2 = s4 = (rs)4 = 1 >. So G is is abelian and cyclic.

Example 3.2. Consider q = 23. Then m2
2 = m4∆. Also, m4 = θ = 2, m2

2 = 24.
Considering 4 = k = s1 = 1, and then by using the code given in sections 3.1 and
3.2, corresponding matrices R,S, and T thus obtained are:

R =

[
17 3
3 6

]
, S =

[
1 4
4 17

]
, T =

[
0 22
1 0

]
.

Therefore, linear-fractional transformations are r : z 7→ 17z + 3

3z + 6
, s : z 7→ z + 4

4z + 17
,

t : z 7→ 22

z
.

Applying r, s and t transformations on the elements of PL(F23), the permu-
tations will be,
r act as: (0 21)(1 3)(2 9)(4 14)(5 11)(6 7)(8 16)(10 20)(12∞)(13 19)(15 22)(17 18)
s act as: (0 7 12 19)(1 9 15 11)(2 3 5 22)(4 10 18 8)(8 13)(8 20)(10 16)(12 21)(14 18)
t act as: (0∞)(1 22)(2 11)(3 15)(4 17)(5 9)(6 19)(7 13)(8 20)(10 16)(12 21)(14 18).

The coset diagram generated by using code in section 2.3 is shown in Figure 2,

Figure 2: Intransitive action of ∆(2, 4, k) on PL(F23)

This diagram is disconnected and has six diagrams each consisting of 4 vertices.
Also note that each vertex of these diagrams is �xed by (rs)4 and the group

∆ (2, 4, 4) =< r, s : r2 = s4 = (rs)4 = 1 > .

So G is an abelian and cyclic.

In Table 1, we have listed few primes and the number of diagrams corresponding
to each prime. Here it can be observed that for each prime q, the coset diagram
is disconnected. So the action of ∆(2, 4, k) is intransitive on PL(Fq).
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Table 1: Number of disconnected diagrams

Primes Diagrams of 4 Vertices
7 2
23 6
47 12
79 20
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On regularities in po-ternary semigroups

Sukhendu Kar, Agni Roy and Indrani Dutta

Abstract. In this paper, we show the way to get into some results of partially ordered (in short,

po-) ternary semigroup based on quasi-ideals, bi-ideals and semiprime ideals. We extend some

results of po-semigroup into po-ternary semigroup under certain methodology. In particular, we

characterize some properties of regular po-ternary semigroup, left (resp. right) regular po-ternary

semigroup, completely regular po-ternary semigroup and intra-regular po-ternary semigroup by

using quasi-ideal, bi-ideal and semiprime ideal of po-ternary semigroup.

1. Introduction

The ideal theory of ternary semigroup was introduced and studied by Sioson in [12].
Dixit and Dewan [2] studied the notion of quasi-ideals and bi-ideals in ternary semi-
group. Later on Santiago, Sri Bala [11] developed the theory of ternary semigroup
and semiheaps. Further Kar and Maity developed the ideal theory on ternary
semigroup in [6]. Some properties of regular ternary semigroup were discussed by
Dutta, Kar and Maity in [4]. Ternary semigroups were studied by many authors,
semiheaps (and similar) by V. Vagner [13], W.A. Dudek [3], A. Knorbel [9] and
many others.

Kehayapulu ([7], [8]) introduced and studied the notion of completely regular
ordered semigroup. In 2012, Daddi and Power [1] studied the concept of ordered
quasi-ideals and ordered bi-ideals in ordered ternary semigroup and also discussed
about their properties. The result on the minimality and maximality theory of
ordered quasi-ideal in odered ternary semigroup was developed by Jailoka and
Iampan in [5].

In this paper, we study the notion of regular ordered ternary semigroups. We
also introduce the notion of completely regular and intra-regular ordered ternary
semigroups. Finally we characterize these classes of ordered ternary semigroups
in terms of ideals, quasi-ideals, bi-ideals, semiprime ideals of ternary semigroup.

2. Preliminaries and Prerequisites

Here we provide some de�nitions and relevant results of po-ternary semigroup
which will be required to develop our paper.

2010 Mathematics Subject Classi�cation: 20M12, 20M99
Keywords: po-ternary semigroup, regular po-ternary semigroup, completely regular po-ternary
semigroup, intra-regular po-ternary semigroup.
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A ternary semigroup S is called a partially ordered ternary semigroup (po-
ternary semigroup) if there is a partial order “ ≤ ” on S such that for x, y ∈ S;
x 6 y =⇒ xx1x2 6 yx1x2, x1xx2 6 x1yx2, x1x2x 6 x1x2y for all x1, x2 ∈ S.

For a po-ternary semigroup (S, ·,6) and a subset H of S, we de�ne

(H] := {t ∈ S | t 6 h for some h ∈ H}.
A nonempty subset A of S is called a left ideal of S if (i) SSA ⊆ A and (ii)

(A] = A, a right ideal of S if (i) ASS ⊆ A and (ii) (A] = A and a lateral ideal of
S if (i) SAS ⊆ A and (ii) (A] = A. A nonempty subset A of S is called an ideal

of S if it is a left ideal, right ideal and lateral ideal of S.
For a po-ternary semigroup S and a ∈ S, we denote by R(a) (resp. L(a),M(a))

the right (resp. left, lateral) ideal of S generated by a and I(a) the ideal generated
by a.

It can be easily proved that for an element a of S the right (resp. left, lateral)
ideal and the ideal I(a) of S generated by a have the form

R(a) = (a ∪ aSS], L(a) = (a ∪ SSa], M(a) = (a ∪ SaS ∪ SSaSS],
I(a) = (a ∪ SSa ∪ SaS ∪ SSaSS ∪ aSS] = (a ∪ S2a ∪ SaS ∪ S2aS2 ∪ aS2].

If A, B, C are subsets of a po-ternary semigroup (S, ·,6), then (cf. [5])
(1) A ⊆ (A].
(2) If A ⊆ B then (A] ⊆ (B].
(3) ((A]] = (A].
(4) (A](B](C] ⊆ (ABC].
(5) ((A](B](C]] = ((A](B]C] = (AB(C]] = (ABC].
(6) (A ∪B] = (A] ∪ (B].
(7) (A ∩B] ⊆ (A] ∩ (B].

In particular, if A and B are some types of ideals in S, then (A ∩B] = (A] ∩ (B].
(8) (SSA], (ASS], (SAS ∪ SSASS] are left, right and lateral ideal in S.
A nonempty subset Q of S is called a quasi-ideal of S, if (i) (SSQ] ∩ (SQS] ∩

(QSS] ⊆ Q, (ii) (SSQ] ∩ (SSQSS] ∩ (QSS] ⊆ Q and (iii) (Q] = Q.
Every left, right and lateral ideal of a po-ternary semigroup S is a quasi-ideal.
A subsemigroup B of S is called a bi-ideal of S, if (i) BSBSB ⊆ B and (ii)

(B] = B.
Every quasi-ideal is a bi-ideal. Since every left, right and lateral ideal is a

quasi-ideal, it follows that every left, right and lateral ideal is a bi-ideal.
A proper ideal T of a po-ternary semigroup S is called semiprime if for any

ideal A of S with A3 ⊆ T , we have A ⊆ T .

3. Regular po-ternary semigroups

A po-ternary semigroup S is said to be regular (left, right regular) if A ⊆ (ASA]
(respectively, A ⊆ (SA2], A ⊆ (A2S]) for every A ⊆ S.

Lemma 3.1. A lateral ideal of a regular po-ternary semigroup is regular.
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Proof. Let I be a lateral ideal of a regular po-ternary semigroup S. Let A ⊆ I.
Since S is regular, A ⊆ (ASA]. Now A ⊆ (ASA] ⊆ (AS(ASA]] = (ASASA] =
(A(SAS)A] ⊆ (A(SIS)A] ⊆ (AIA]. Consequently, I is regular.

Corollary 3.2. In a regular po-ternary semigroup S, every ideal is regular.

Theorem 3.3. (cf. [10]) In a po-ternary semigroup S, the following are equivalent:

(i) S is regular,

(ii) (RML] = R ∩M ∩ L where R, M , L are right ideal, lateral ideal and left

ideal of S respectively,

(iii) for every bi-ideal B of S, (BSBSB] = B,

(iv) for every quasi-ideal Q of S, (QSQSQ] = Q.

Theorem 3.4. A po-ternary subsemigroup B of a regular po-ternary semigroup

S is a bi-ideal of S if and only if B = (BSB].

Proof. Let S be a regular po-ternary semigroup and B ⊆ S. Let B = (BSB].
Then B = (BSB] = (BS(BSB]] = (BS(BSB)] = (BSBSB]. Thus BSBSB ⊆
(BSBSB] = B. It remains to show that (B] = B. Let x ∈ (B]. Then x ∈
((BSB]] = (BSB] = B. Thus (B] ⊆ B. Hence B is a bi-ideal of S.

Conversely, let B be any bi-ideal of a regular po-ternary semigroup S. Since
S is regular and B ⊆ S we have B ⊆ (BSB]. Again (BSB] ⊆ (BS(BSB]] =
(BS(BSB)] = (BSBSB] ⊆ (B] = B. Thus B = (BSB].

Theorem 3.5. In a regular po-ternary semigroup S, every bi-ideal of S is a quasi-

ideal of S.

Proof. Let B be a bi-ideal of a regular po-ternary semigroup S. Then BSBSB ⊆ B
and (B] = B. Now S2(S2B] ⊆ (S](S](SSB] ⊆ (S4B] ⊆ (SSB] and ((SSB]] =
(SSB]. Hence (SSB] is a left ideal of S. Also (BS2]S2 ⊆ (BS2](S](S] ⊆ (BS4] ⊆
(BS2] and ((BS2]] = (BS2]. Thus (BSS] is a right ideal of S. Again S(SBS ∪
S2BS2]S ⊆ (S](SBS ∪ S2BS2](S] ⊆ (S2BS2 ∪ S3BS3] ⊆ (S2BS2 ∪ SBS] and
((SBS ∪ S2BS2]] = (SBS ∪ S2BS2]. So (SBS ∪ S2BS2] is a lateral ideal of S.
From Theorem 3.3, we have (BS2] ∩ (SBS ∪ S2BS2] ∩ (S2B] = ((BS2](SBS ∪
S2BS2](S2B]] = ((BS2)(SBS ∪ S2BS2)(S2B)] = (BS3BS3B ∪ BS4BS4B] ⊆
(BSBSB ∪BS2BS2B] ⊆ (BSBSB ∪BSB] = (BSBSB] ∪ (BSB] = B ∪B = B,
by using Theorem 3.3 and Theorem 3.4. Consequently, B is a quasi-ideal of S.

Theorem 3.6. Let S be a po-ternary semigroup. Then S is left (resp. right)
regular if and only if every left (resp. right) ideal of S is semiprime.

Proof. Let S be a left regular po-ternary semigroup and L be a left ideal of S. Let
A3 ⊆ L for some left ideal A of S. Since S is left regular, we have A ⊆ (SA2] ⊆
(S(SA2]A] = (S(SA2)A] = (SSA3] ⊆ (SSL] ⊆ (L] = L. Thus L is semiprime.

Conversely, suppose that every left ideal of S is semiprime. Let A ⊆ S. Then
SS(SAA] ⊆ (S](S](SAA] ⊆ (S3AA] ⊆ (SAA] and ((SAA]] = (SAA]. Therefore,
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(SAA] is a left ideal of S. Now A3 ⊆ SA2 ⊆ (SA2]. Since every left ideal of S is
semiprime, we have A ⊆ (SA2]. Thus S is a left regular po-ternary semigroup.

Similarly, we can also prove the same for right ideal of S.

Theorem 3.7. Let S be a commutative po-ternary semigroup. Then S is regular

if and only if every ideal of S is semiprime.

Proof. Let S be a commutative regular po-ternary semigroup and I be any ideal
of S. Let A3 ⊆ I for A ⊂ S. Since S is regular and A ⊆ S we have A ⊆ (ASA] =
(AAS] ⊆ (A(ASA]S] = (A(ASA)S] = (A(A2S)S] = (A3SS] ⊆ (ISS] ⊆ (I] = I.
Thus I is a semiprime ideal of S.

Conversely, we assume that every ideal of commutative po-ternary semigroup
S is semiprime. Let A ⊆ S. Then (ASA] is an ideal of S. If (ASA] = (S] = S,
we get our conclusion. If (ASA] 6= S, then by hypothesis, (ASA] is a semiprime
ideal of S. Now A3 ⊆ ASA ⊆ (ASA] implies that A ⊆ (ASA]. Consequently, S is
regular.

De�nition 3.8. Let S be a po-ternary semigroup. A nonempty subset Bw of S is
called a weak bi-ideal of S, if (i) bSbSb ⊆ Bw for all b ∈ Bw and (ii) (Bw] = Bw.

Clearly, we have the following results:

Lemma 3.9. Every bi-ideal of a po-ternary semigroup S is a weak bi-ideal of S.

Lemma 3.10. The intersection of arbitrary set of weak bi-ideals of a po-ternary
semigroup S is either empty or a weak bi-ideal of S.

Theorem 3.11. Let S be a po-ternary semigroup. Then S is regular if and only

if Bw = (
⋃

b∈Bw

bSbSb] for any weak bi-ideal Bw of S.

Proof. Let S be a regular po-ternary semigroup and Bw be any weak bi-ideal of

S. Then bSbSb ⊆ Bw for all b ∈ Bw. So
⋃

b∈Bw

bSbSb ⊆ Bw. This implies that

(
⋃

b∈Bw

bSbSb] ⊆ (Bw] = Bw. Let b ∈ Bw. Since S is regular, there exists x ∈ S

such that b 6 bxb. So b 6 bxb 6 bxbxb ∈ bSbSb ⊆
⋃

b∈Bw

bSbSb. Therefore,

b ∈ (
⋃

b∈Bw

bSbSb]. Thus Bw ⊆ (
⋃

b∈Bw

bSbSb]. Hence Bw = (
⋃

b∈Bw

bSbSb].

Conversely, let Bw = (
⋃

b∈Bw

bSbSb], where Bw is a weak bi-ideal of S. Let R be

a right ideal, M be a lateral ideal and L be a left ideal of S. Since every left, right
and lateral ideal of a po-ternary semigroup S is a bi-ideal of S, it follows that every
left, right and lateral ideal of a po-ternary semigroup S is a weak bi-ideal of S. So
R,M , L are weak bi-ideals of S. Thus by Lemma 3.10, R∩M∩L is a weak bi-ideal
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of S. Clearly, (RML] ⊆ R ∩M ∩ L. Now let a ∈ R ∩M ∩ L. Since R ∩M ∩ L is

weak bi-ideal of S, by hypothesis we have R ∩M ∩ L = (
⋃

x∈R∩M∩L

xSxSx]. Then

a 6 xs1xs2x for some x ∈ R ∩M ∩ L and s1, s2 ∈ S. So a 6 xs1xs2ys3ys4y for
some x, y ∈ R ∩M ∩ L and s1, s2, s3, s4 ∈ S. This implies that a ∈ (RML]. Thus
R∩M ∩L ⊆ (RML] and hence (RML] = R∩M ∩L. Consequently, S is a regular
po-ternary semigroup by Theorem 3.3.

4. Completely regular po-ternary semigroups

In this section, we characterize completely regular po-ternary semigroup by using
quasi-ideals, bi-ideals and semiprime ideals.

De�nition 4.1. A po-ternary semigroup S is said to be completely regular if it is
regular, left regular and right regular i.e., A ⊆ (ASA], A ⊆ (SA2] and A ⊆ (A2S]
for every A ⊆ S.

Example 4.2. Let S = {a, b, c, d, e} be a po-ternary semigroup with the ternary
operation de�ned on S as abc = a ∗ (b ∗ c), where the binary operation * is de�ned
by

* a b c d e

a a a c d a

b a b c d a

c a a c d a

d a a c d a

e a a c d e

and the order de�ned as

6={(a, a), (a, c), (a, d), (b, b), (b, d), (b, a), (b, c), (c, c), (c, d), (d, d), (e, a), (e, c), (e, d), (e, e)}.

Then S is a completely regular po-ternary semigroup.

Theorem 4.3. In a po-ternary semigroup S, the following conditions are equiva-

lent:

(i) S is completely regular;

(ii) A ⊆ (A2SA2] for every A ⊆ S.

Proof. (i) ⇒ (ii). Then for any A ⊆ S, we have A ⊆ (ASA] ⊆ ((A2S]S(SA2]] =
((A2S)S(SA2)] = (A2S3A2] ⊆ (A2SA2].

(ii) ⇒ (i). Let A ⊆ S. Then A ⊆ (A2SA2] = (A(ASA)A] ⊆ (ASA],
A ⊆ (A2SA2] = ((A2S)A2] ⊆ (SA2] and A ⊆ (A2SA2] = (A2(SA2)] ⊆ (A2S].
This implies that S is regular, left regular and right regular. Consequently, S is
completely regular.

In the following result we provide another characterization of completely reg-
ular po-ternary semigroup in terms of quasi-ideal.
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Theorem 4.4. Let S be a po-ternary semigroup. Then S is completely regular if

and only if every quasi-ideal of S is a completely regular subsemigroup of S.

Proof. Let S be a completely regular po-ternary semigroup and Q be a quasi-
ideal in S. Since φ 6= Q ⊆ S and Q3 ⊆ QSS ∩ SQS ∩ SSQ ⊆ (QSS] ∩
(SQS] ∩ (SSQ] ⊆ Q, Q is a subsemigroup of S. Let A ⊆ Q ⊆ S. We have
to show that Q is completely regular. Since S is completely regular and A ⊆
S, we have A ⊆ (ASA] ⊆ ((A2S]S(SA2]] = ((A2S)S(SA2)] = (A2SSSA2] ⊆
(A2SA2] = (A(ASA)A] ⊆ (A(ASA]SAA] = (A(ASA)SAA] = (A(ASASA)A].
Now ASASA ⊆ SSASS ⊆ SSQSS, ASASA ⊆ SSA ⊆ SSQ and ASASA ⊆
ASS ⊆ QSS. Therefore, ASASA ⊆ SSQ∩SSQSS∩QSS ⊆ (SSQ]∩ (SSQSS]∩
(QSS] ⊆ Q. Hence A ⊆ (AQA]. Again A ⊆ (ASA] ⊆ (AS(SA2]] = (AS(SA2)] ⊆
(ASS(SA2]A] = (AS2(SA2)A] = ((AS3A)A2] ⊆ ((ASA)A2] ⊆ (AS(ASA]A2] =
(AS(ASA)A2] = ((ASASA)A2] ⊆ (QA2] and A ⊆ (ASA] ⊆ ((A2S]SA] =
((A2S)SA] ⊆ (A(A2S]SSA] = (A(A2S)SSA] = (A2(ASSSA)] ⊆ (A2(ASA)] ⊆
(A2(ASA]SA] = (A2(ASA)SA] = (A2(ASASA)] ⊆ (A2Q]. Thus Q is regular, left
regular and right regular. Consequently, Q is completely regular subsemigroup.

Conversely, suppose that every quasi-ideal of S is a completely regular sub-
semigroup of S. Since S itself a quasi-ideal in S, S is completely regular.

Theorem 4.5. Let S be a po-ternary semigroup. Then S is left regular and right

regular if and only if every quasi-ideal of S is semiprime.

Proof. Let S be a left regular and right regular po-ternary semigroup and Q be a
quasi-ideal of S. Let A ⊆ S and A3 ⊆ Q. Since S is left regular and right regular,
A ⊆ (SA2] and A ⊆ (A2S]. Now A ⊆ (SA2] ⊆ (S(SA2]A] = (S(SA2)A] =
(SSA3] ⊆ (SSQ], A ⊆ (A2S] ⊆ (A(A2S]S] = (A(A2S)S] = (A3SS] ⊆ (QSS] and
A ⊆ (SA2] ⊆ (SA(A2S]] = (SA3S] ⊆ (SQS]. Therefore, A ⊆ (SSQ] ∩ (SQS] ∩
(QSS] ⊆ Q. Hence Q is semiprime.

Conversely, suppose that every quasi-ideal of S is semiprime. Since every right
ideal and left ideal of S is a quasi-ideal of S, every right ideal and left ideal are
semiprime. Now by using Theorem 3.6, we �nd that S is left regular and right
regular.

Corollary 4.6. If S is a completely regular po-ternary semigroup then quasi-ideals

of S are semiprime.

The converse of the above result does not hold.

Example 4.7. Let S = {a, b, c, d, e} be a po-ternary semigroup with ternary
operation product de�ned on S by abc = a ∗ (b ∗ c), where binary operation * is
de�ned as
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* a b c d e

a a e e a e

b d b b d b

c d b b d b

d d b b d b

e a e e a e

and the order de�ned by

6 := {(a, a), (b, a), (b, b), (b, d), (b, e), (c, a), (c, c), (c, d), (c, e), (d, d), (d, a), (e, a), (e, e)}.

Then S is a left regular and right regular po-ternary semigroup. So every quasi-
ideal of S is semiprime by Theorem 4.5 but S is not completely regular. In fact it
is not regular since c ∈ S is not regular.

Theorem 4.8. A po-ternary semigroup S is completely regular if and only if every

bi-ideal of S is semiprime.

Proof. Let S be a completely regular po-ternary semigroup and B be any bi-
ideal of S. Let A ⊆ S and A3 ⊆ B. Since S is completely regular po-ternary
semigroup and A ⊆ S we have A ⊆ (A2SA2] ⊆ (A(A2SA2]S(A2SA2]A] =
(A(A2SA2)S(A2SA2)A] = ((A3SA2S)(A2S)A3] ⊆ ((A3SA2S)(A2SA2](A2SA2]
SA3] = ((A3SA2S)(A2SA2)(A2SA2)SA3] = (A3(SA2SA2S)A3(ASA2S)A3] ⊆
(BSBSB] ⊆ (B] = B. Therefore B is semiprime.

Conversely, suppose that every bi-ideal of S is semiprime. Let φ 6= A ⊆ S.
Then we have A2SA2 ⊆ S i.e. (A2SA2] ⊆ S. Now (A2SA2]S(A2SA2]S(A2SA2] ⊆
(A2SA2](S](A2SA2](S](A2SA2] ⊆ (A2SA2SA2SA2SA2SA2] ⊆ (A2SA2] and also
((A2SA2]] = (A2SA2]. Thus (A2SA2] is a bi-ideal in S. Now A9 = A2(A5)A2 ⊆
A2SA2 ⊆ (A2SA2]. By hypothesis, since every bi-ideal is semiprime, A9 =
(A3)3 ⊆ (A2SA2] =⇒ A3 ⊆ (A2SA2] =⇒ A ⊆ (A2SA2]. Since A is arbitrary,
A ⊆ (A2SA2] for every A ⊆ S. Hence S is completely regular.

5. Intra-regular po-ternary semigroups

In this section, we characterize intra-regular po-ternary semigroup by using prop-
erties of ideals.

De�nition 5.1. A po-ternary semigroup S is called intra-regular if for every a ∈ S,
there exists x, y ∈ S such that a 6 xa3y or equivalently, a ∈ (Sa3S] for all a ∈ S.

In other words, a po-ternary semigroup S is intra-regular if A ⊆ (SA3S] for
every A ⊆ S.

Lemma 5.2. If S is a left (resp. right) regular po-ternary semigroup, then S is

intra-regular.
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Proof. Let S be left regular po-ternary semigroup and A ⊆ S. Then A ⊆ (SA2] ⊆
(S(SA2]A] = (S(SA2)A] ⊆ (SS(SA2]AA] = (SS(SA2)AA] = (SSSA3A] ⊆
(SSSA3S] ⊆ (SA3S]. Thus S is intra-regular.

Similarly, we can prove the result for right regular po-ternary semigroup.

But the converse of the above result is not true.

Example 5.3. Let S = {a, b, c, d, e} be a po-ternary semigroup with ternary
operation de�ned on S by abc = a ∗ (b ∗ c), where the binary operation * is de�ned
as

* a b c d e

a a b a d a

b a b a d a

c a b a d a

d a b a d a

e a b a d a

and the order de�ned by

6 := {(a, a), (a, b), (a, c), (a, e), (b, b), (c, c), (c, b), (c, e), (d, d), (e, b), (e, e)}.

Then (S, ·,6) is an intra-regular po-ternary semigroup but not left regular, since
c and e are not left regular elements of S.

Now we can easily prove the following fact:

Theorem 5.4. In an intra-regular po-ternary semigroup S, L∩M ∩R ⊆ (LMR],
where L, M , R are left ideal, lateral ideal and right ideal of S respectively.

Clearly, every ideal of a po-ternary semigroup S is also a lateral ideal of S.
Certainly a lateral ideal of S is not necessarily an ideal of S. But in particular,
for intra-regular po-ternary semigroup S we have the following result:

Theorem 5.5. Let S be an intra-regular po-ternary semigroup. Then a non-empty

subset I of S is an ideal of S if and only if I is a lateral ideal of S.

Proof. Clearly, if I is an ideal of S, then I is a lateral ideal of S.
Conversely, assume that I is a lateral ideal of an intra-regular po-ternary semi-

group S. Then SIS ⊆ I and (I] = I. Since S is intra-regular and I ⊆ S we
have I ⊆ (SI3S]. Now SSI ⊆ (SSI] ⊆ (SS(SI3S]] = (SS(SI3S)] = (S3I3S] ⊆
(S3(SI3S]I2S] = (S3(SI3S)I2S] = ((S4I)I(ISIIS)] ⊆ (SIS] ⊆ (I] = I and
ISS ⊆ (ISS] ⊆ ((SI3S]SS] = ((SI3S)SS] = (SI3S3] ⊆ (SI2(SI3S]S3] =
(SI2(SI3S)S3] = ((SIISI)I(IS4] ⊆ (SIS] ⊆ (I] = I. Thus I is a left ideal
as well as a right ideal of S. Consequently, I is an ideal of S.

Lemma 5.6. Let S be an intra-regular po-ternary semigroup and I be a lateral

ideal of S. Then I is an intra-regular po-ternary semigroup.
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Proof. Let S be an intra-regular po-ternary semigroup and I be a lateral ideal of
S. Let A ⊆ I ⊆ S. Since S is intra-regular, it follows that A ⊆ (SA3S]. Now we
have A ⊆ (SA3S] ⊆ (S(SA3S](SA3S](SA3S]S] = (S(SA3S)(SA3S)(SA3S)S] =
((SSA3S2)A3(S2A3S2)] ⊆ ((S3AS3)A3(S3AS3)] ⊆ ((SAS)A3(SAS)] ⊆
((SIS)A3(SIS)] ⊆ (IA3I]. Consequently, I is intra-regular.

Corollary 5.7. Let S be an intra-regular po-ternary semigroup and I be an ideal

of S. Then I is an intra-regular po-ternary semigroup.

Theorem 5.8. Let S be an intra-regular po-ternary semigroup. Let I be an ideal

of S and J be an ideal of I. Then J is an ideal of the entire po-ternary semigroup

S.

Proof. It is su�cient to show that J is a lateral ideal of S. Now J ⊆ I ⊆ S
and SJS ⊆ SIS ⊆ I. We have to show that SJS ⊆ J . From Corollary 5.7, it
follows that I is an intra-regular po-ternary semigroup. Also SJS ⊆ I. So we
have (SJS) ⊆ (I(SJS)3I] = (I(SJS)(SJS)(SJS)I] = ((ISJSS)J(SSJSI)] ⊆
((ISISS)J(SSISI)] ⊆ ((IIS)J(SII)] ⊆ ((ISS)J(SSI)] ⊆ (IJI] ⊆ (J ] = J .
Consequently, J is a lateral ideal of S.

Theorem 5.9. Let S be a po-ternary semigroup. Then S is intra-regular if and

only if every ideal of S is semiprime.

Proof. Let S be an intra-regular po-ternary semigroup and I be an ideal of S.
Let A3 ⊆ I for A ⊆ S. Since S is intra-regular po-ternary semigroup, we have
A ⊆ (SA3S] ⊆ (SIS] ⊆ (I] = I. Hence I is a semiprime ideal of S.

Conversely, suppose that every ideal of S is semiprime. Let A ⊆ S. Since
A3 ⊆ I(A3), where I(A3) is the ideal generated by A3 and by hypothesis I(A3) is
a semiprime ideal of S, so A ⊆ I(A3).

Now I(A3) = (A3 ∪ SSA3 ∪ SA3S ∪ SSA3SS ∪ A3SS] = (A3] ∪ (SSA3] ∪
(SA3S] ∪ (SSA3SS] ∪ (A3SS].

1) If A ⊆ (A3]. Then A ⊆ (A(A3]A] = (A(A3)A] ⊆ (SA3S].
2) IfA ⊆(S2A3] thenA3⊆(S2A3]A2.HenceA ⊆(S2(S2A3]A2] = (S2(S2A3)A2]

= (S4A5] ⊆ (S5A3S] ⊆ (SA3S].
3) If A ⊆ (SA3S] we get our conclusion.
4) If A ⊆ (SSA3SS], then A3 ⊆ A(S2A3S2]A. Hence A ⊆ (S2A(S2A3S2]AS2]

= (S2A(S2A3S2)AS2] = (S2AS2A3S2AS2] ⊆ (S5A3S5] ⊆ (SA3S].
5) If A ⊆ (A3SS], then A3 ⊆ A2(A3SS]. Hence A ⊆ (A2(A3SS]SS] =

(A2(A3SS)SS] = (A5S4] ⊆ (SA3S5] = (SA3S5] ⊆ (SA3S].
In each case, S is intra-regular. Consequently, S is an intra-regular.
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Table of marks and markaracter table

of certain �nite groups

Haider Baker Shelash and Ali Reza Ashra�

Abstract. Let G be a �nite group and C(G) be a family of representatives of the conjugacy

classes of subgroups in G. The table of marks of G is a matrix TM(G) = (aHK), where

H,K ∈ C(G) and aHK is the number of �xed points of the right cosets of H in G under the

action of K. The markaracter table of G is a matrix obtained from the table of marks of G by

selecting rows and columns corresponding to cyclic subgroups of G. In this paper, the table of

marks and markaracter table of some classes of �nite groups are computed.

1. Introduction

Throughout this paper all groups and sets are assumed to be �nite. Our calcula-
tions are done with the aid of Gap [10] and we refer to the books [5, 6] for notions
and notations not presented here.

Suppose G is a �nite group containing subgroups H and K. De�ne C(H) to
be the set of all conjugates of H in G and K(G) = {C(H1), C(H2), . . . , C(Hs)}
to be a complete set of representatives of the conjugacy classes of subgroups in
G. The right cosets of H in H is denoted by G\H. It is well-known that the
action of G on G\H is transitive and all transitive actions have such a form up to
isomorphism. The mark βH(K) = βG\H(K) is de�ned as |FixG\H(K)| = |{Hx ∈
G\H | Hxk = Hx, ∀k ∈ K}. The table of marks of G, Table 1, is the square matrix
MT (G) = (βG\Gi

(Gj)), where Gi, Gj ∈ X . The table MT (G) was introduced in
the second edition of the famous book of W. Burnside [2]. We refer the interested
reader to consult an old but interesting paper by Pfei�er [7] for more information
on this topic.

The markaracter table of a �nite group was introduced by a Japanese chemist
Shinsaku Fujita in the context of stereochemistry and enumeration of molecules
[3]. This table can be obtained from the table of marks by removing all rows
and columns corresponding to non-cyclic subgroups. The markaracter table of
dihedral, generalized quaternion and groups of order pqr, p, q, r are distinct primes,
were computed in some earlier paper [1, 4, 8]. The aim of this paper is to continue
these works by computing the table of marks and markaracter table of certain
classes of groups.

2010 Mathematics Subject Classi�cation: 20F12, 20F14, 20F18, 20D15.

Keywords: Table of marks, subgroup lattice, markaracter table.
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Table 1. The table of marks of group G

∗ C(H1) C(H2) · · · C(Hs)

G/H1 βH1(K1) βH1(K2) · · · βH1(Ks)
G/H2 βH2(K1) βH2(K2) · · · βH2(Ks)

...
...

... · · ·
...

G/Hs βHs(K1) βHs(K2) · · · βHs(Ks)

where Ki ∈ C(Hi) for all i.

2. Main Results

The aim of this section is to calculate the table of marks and markaracter table of
the dicyclic group T4n, the semi-dihedral group SD2n , and the group H(n) that
will be de�ned later. For the sake of completeness we mention here a known result
about table of marks. The interested readers can be consulted an interesting paper
of G. Pfei�er [7].

Theorem 2.1. Let G be a �nite group, K(G) = {C(H1), C(H2), · · · , C(Hs)} and

MT (G) = (mij) in which |Ki| 6 |Kj |, when Ki ∈ C(Hi),Kj ∈ C(Hj) and i 6 j.
Then,

1. The matrix M(G) is a lower triangular matrix,

2. mij divides mi1, for all 1 6 i, j 6 r,

3. mi1 = [G : Hi], for all 1 6 i 6 s,

4. mii = [NG(Hi) : Hi],

5. If Hi EG, then mij = mi1 whenever Kj � Hi and zero otherwise.

2.1. Dicyclic group T4n

The dicyclic group T4n can be presented as T4n = 〈a, b | a2n = 1, an = b2, b−1ab =
a−1〉. The present authors [9], obtained the structure and the number of all sub-
groups of the dicyclic group T4n. Based on the given information on subgroup
lattice of dicyclic group, we know that it has two types of subgroups. The �rst
type is cyclic subgroups of 〈a〉 and the second type is a subgroup H of index
2ld conjugate to Cm

d
: Q 2r+2

2l

, where n = 2rm. It is clear that H = 〈an, ajb〉,
1 6 j 6 n, is a cyclic subgroup of order four. Thus, we have τ(2n) subgroups of
the �rst type and the second type subgroups can be partitioned into two parts.
The �rst part are subgroups in the form of 〈ad, ajb〉, where d is odd. These sub-
groups are all conjugate. If d is even then all subgroups in the form 〈ad, ajb〉, 2 | j,
are in a conjugacy class of subgroups and all subgroups in the form 〈ad, ajb〉, 2 - j,
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are in another conjugacy classes of subgroups. In Table 2 the table of marks are
computed in two di�erent cases that n is a prime number greater than or equal to
�ve or n = 3.

Table 2. Table of marks when n = p is odd prime.

n = 3 e 〈x3〉 〈x2〉 〈x3, ab〉 〈x〉 G
G/e 12 0 0 0 0 0

G/〈x3〉 6 6 0 0 0 0
G/〈x2〉 4 0 4 0 0 0

G/〈x3, ab〉 3 3 0 1 0 0
G/〈x〉 2 2 2 0 2 0
e 1 1 1 1 1 1

n > 5 e 〈xp〉 〈xp, ab〉 〈x2〉 〈x〉 G
G/e 4p 0 0 0 0 0

G/〈xp〉 2p 2p 0 0 0 0
G/〈xp, ab〉 p p 1 0 0 0
G/〈x2〉 4 0 0 4 0 0
G/〈x〉 2 2 0 2 2 0
e 1 1 1 1 1 1

From calculations given in [9, Section 2.2], one can see that this group has
exactly | K(G) | = τ(2n) + 2rτ(m) + τ(m) = τ(2n) + τ(m)(r + 1) + rτ(m) =
τ(2n) + τ(n) + rτ(m) subgroups. This shows that we have the following lemma:

Lemma 2.2. The order of the table of marks of the dicyclic group T4n, n = 2rm
and m is odd is τ(2n) + τ(n) + rτ(m).

Proposition 2.3. In the dicyclic group T4n, mi2 = [G : Hi], for any subgroup Hi

if 〈an〉 6 H. In other case, mi2 = 0.

Proof. To prove mi2 = [G : Hi], we put C2 = 〈an〉. If C2 6 Hi, then by de�nition

mi2 = [NG(Hi) : Hi]· | {Hg | 〈an〉 6 Hg & g ∈ T4n}|.

If H is a normal subgroup then mi2 = [G : H]. Suppose H = 〈ad, ajb〉, 1 6
j 6 d and d is even. Then H ∼= T4n

d
and NG(〈ad, ajb〉) = 〈a

d
2 , ajb〉 which implies

that [NG(〈ad, ajb〉) : 〈ad, ajb〉] = 2. On the other hand, |{(〈ad, ajb〉)g | 〈an〉 6
(〈ad, ajb〉)g & g ∈ T4n}| = d

2 . Now, since [T4n : 〈ad, ajb〉] = d, we have that mi2

= [T4n : 〈ad, ajb〉]. Next we assume that d is odd which shows that 〈ad, ajb〉 is
self-normalizer. Therefore, [NT4n

(〈ad, ajb〉) : 〈ad, ajb〉] = 1. This proves that the
number H−conjugate classes is d.
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In [6, Lemma 3.5.3(a)], it is proved that if M(G) = [mij ] is the table of marks
of G thenmij = [NG(Hi) : Hi]·bij , where bij is the number of subgroups conjugate
to Hi which contain Hj . In particular, mii = [NG(Hi) : Hi]. By this result, one
can easily seen that if Hi is normal then βG/H(K) = [G : H].

Proposition 2.4. Let d is an odd positive divisor and H = 〈ad, ajb〉. Then

βT4n/H(K) = [T4n : H] = d or 1.

Proof. Since d is odd, H is a self-normalizing subgroup of T4n. We �rst assume
that K 6 T4n is normal. Then βT4n/H(K) = |{Hg | K 6 Hg & g ∈ T4n}| =
|{Hg | K 6 Hg, g ∈ T4n}| = |{Hg | K 6 H}| = [T4n : NG(H)] = [T4n : H].
But H ∼= T4n

d
and so βT4n/H(K) = d, as desired. If K is not normal in T4n, then

K = 〈ah, ajb〉, where h < d. Thus βT4n/H(K) = |{Hg | 〈ah, ajb〉 6 Hg & g ∈ T4n}|
= 1.

By Lemma 2.2 and Propositions 2.3, 2.4 we have the following theorem:

Theorem 2.5. The table of marks of the dicyclic group T4n is given in Tables 3
and 4.

Table 3. Table of marks of the dicyclic group T4n, when n = 2rm and 3 |m.

∗ e 〈an〉 〈a
2n
p1 〉 〈an

2 〉 〈an, b〉 〈an, ab〉 Kj, 76j6s

G/e 4n 0 0 0 0 0 · · ·
G/〈an〉 2n 2n 0 0 0 0 · · ·
G/〈a

2n
p1 〉 4n

p1
- 4n

p1
0 0 0 · · ·

G/〈an
2 〉 n n 0 n 0 0 · · ·

G/〈an, b〉 n n 0 0 2 0 · · ·
G/〈an, ab〉 n n 0 0 0 2 · · ·

G/Hi, 7 6 i 6 s δij

Table 4. Table of marks of the dicyclic group T4n, when n = 2rm and 3 - m.

∗ e 〈an〉 〈a
n
2 〉 〈an, b〉 〈an, ab〉 Kj, 66j6s

G/e 4n 0 0 0 0 · · ·
G/〈an〉 2n 2n 0 0 0 · · ·
G/〈a

n
2 〉 n n n 0 0 · · ·

G/〈an, b〉 n n 0 2 0 · · ·
G/〈an, ab〉 n n 0 0 2 · · ·

G/Hi, 6 6 i 6 s δij

In Tables 3 and 4, the quantity δij can be computed by the following formula:

δij =


mi1 if Kj 6 Hi E T4n
2 if Kj 6 Hi 6 T4n
1 if Kj 6 NT4n(Hi) = Hi

0 otherwise.

.
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Suppose K(G) denotes the set of all conjugacy classes of a given group G. By
de�nition of the markaracter table, one can easily seen that the markaracter table
of G has exactly K(G) rows and columns.

We are now ready to calculate the markaracter table of the dicyclic group T4n.
The matrix MC(T4n) can be obtained from MT (T4n) in which we select rows and
columns corresponding to cyclic subgroups of T4n. By Lemma 2.2, the dicyclic
group T4n, n = 2rm and m is odd is τ(2n) + τ(n) + rτ(m).

Lemma 2.6. The number of conjugacy classes of dicyclic group T4n can be com-

puted by the following formula:

|K(T4n)| =
{
τ(2n) + 2 2 | n,
τ(2n) + 1 2 - n.

Proof. It is easy to see that for each i, i 2n, 〈ai〉 is a normal subgroup of T4n
and so there are τ(2n) conjugacy classes of cyclic subgroups of this type. Suppose
n is even. Among two generator subgroups 〈ai, ajb〉 of T4n, 〈an, ajb〉 is a cyclic
subgroup of order 4 and other subgroups of this form are not cyclic. On the other
hand, all subgroup of the form 〈an, ajb〉, j is odd, are conjugate in T4n, and all
subgroups of the form 〈an, ajb〉, j is even, are conjugate in T4n. This shows that
in the case that n is even, we have exactly τ(2n) + 2 conjugacy classes of cyclic
subgroups. If n is even then all subgroups of the form 〈an, ajb〉 (j can be odd or
even) are conjugate in T4n and so we have exactly τ(n) + 1 conjugacy classes of
cyclic subgroups in T4n. This completes our argument.

By previous lemma the non-conjugate subgroups of T4n are as follows:

• C(H1) = 〈e〉,

• C(H2) = 〈an〉,

• C(H3) = 〈a
2n
3 〉,

• C(H4) = 〈a
n
2 〉,

• C(H5) = 〈an, ajb〉, 2 | j,

• C(H6) = 〈an, ajb〉, 2 - j,

• C(Hi)76i6s = 〈a 2n
d 〉, d 6= 2, 3, where |K(T4n)| = s.

By Lemma 2.6, the markaracter table of the dicyclic group T4n are recorded in
Tables 5 and 6 in which

δij =


mi1 if Kj 6 Hi E T4n
2 if Kj 6 Hi 6 T4n
1 if Kj 6 NT4n

(Hi) = Hi

0 otherwise.
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Table 5. The markaracter table of T4n, when n = 2rm and 3 |m.

∗ e 〈an〉 〈a
2n
p1 〉 〈a

n
2 〉 〈an, b〉 〈an, ab〉 Kj, 76i6s

G/e 4n 0 0 0 0 0 · · ·
G/〈an〉 2n 2n 0 0 0 0 · · ·
G/〈a

2n
3 〉 4n

3
0 4n

3
0 0 0 · · ·

G/〈a
n
2 〉 n n 0 n 0 0 · · ·

G/〈an, b〉 n n 0 0 2 0 · · ·
G/〈an, ab〉 n n 0 0 0 2 · · ·
G/Hi76i6s δij

Table 6. The Markaracter Table of T4n, when n = 2rm and 3 - m.

∗ e 〈an〉 〈a
n
2 〉 〈an, b〉 〈an, ab〉 Kj, 56j6s

G/e 4n 0 0 0 0 · · ·
G/〈an〉 2n 2n 0 0 0 · · ·
G/〈a

n
2 〉 n n n 0 0 · · ·

G/〈an, b〉 n n 0 2 0 · · ·
G/〈an, ab〉 n n 0 0 2 · · ·
G/Hi66i6s δij

2.2. Table of marks of the semi-dihedral group SD2n

In [9, Section 2.5], the present authors studied the structure of subgroups of the
group SD2n . From the results given the mentioned paper, we can see that we
have two types of cyclic subgroups in SD2n . The �rst type subgroups are in the

form 〈ad〉 of order 2n−1

d , where d | 2n−1. The second type of subgroups have the
form 〈ad, akb〉, where 1 6 k 6 d. If 2 | k then 〈ad, akb〉 ∼= D 2n

d
, and if 2 - k then

〈ad, akb〉 ∼= Q 2n+1

d

.

Since all subgroups of the �rst type are normal, there are τ(2n−1) = n conju-
gacy classes of cyclic subgroups. Among subgroups of the second time, it is easy
to see that all subgroups of the form 〈ajb〉, 1 6 j 6 2n−1 and 2 | j, are conjugate
and so these subgroups constitute a conjugacy class of subgroups in SD2n . Choose

the subgroups 〈a2k , ajb〉, 1 6 j 6 k and k | 2n−3. Fix a positive integer k. Then

all subgroups of the form 〈a2k , ajb〉 with even positive integer j are conjugate and
so we have 2(n− 2) conjugacy classes of subgroups of this form. The same will be
happened when j varies on the set of all odd integers with condition 1 6 j 6 k.
Hence there are 2(n− 2)+n+2 = 3n− 2 conjugacy classes of subgroups in SD2n .
Therefore, the non-conjugate subgroups of SD2n are as follows:

• C(H1) = {〈e〉};

• C(H2) = {〈a2
n−2〉};
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• C(H3) = {〈a2
n−1

, ajb〉 | j is even};

• C(H4+3i) = {〈a2
n−3−i〉}, 0 6 i 6 n− 3;

• C(H5+3i) = {〈a2
n−2−i

, ajb〉, j is even}, 0 6 i 6 n− 3;

• C(H6+3i) = {〈a2
n−1−i

, ajb〉, j is odd}, 0 6 i 6 n− 3;

• C(H3n−2) = {〈a, b〉}.

Therefore, we proved the following proposition:

Proposition 2.7. The semi-dihedral group SD2n has exactly 3n − 2 conjugacy

classes of subgroups.

Theorem 2.8. The table of marks of the semi-dihedral group SD2n is given in

Table 7.

Table 7. Table of marks of the dicyclic group SD2n .

∗ K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 · · · Ks

G/H2 2n−1 2n−1
0 0 0 0 0 0 0 0 0 0 · · · 0

G/H3 2n−1
0 2 0 0 0 0 0 0 0 0 0 · · · 0

G/H4 2n−2 2n−2
0 2n−2

0 0 0 0 0 0 0 0 · · · 0

G/H5 2n−2 2n−2
0 0 2 0 0 0 0 0 0 0 · · · 0

G/H6 2n−2 2n−2 2 0 0 2 0 0 0 0 0 0 · · · 0

G/H7 2n−3 2n−3
0 2n−3

0 0 2n−3
0 0 0 0 0 · · · 0

G/H8 2n−3 2n−3
0 2n−3 2 0 0 2 0 0 0 0 · · · 0

G/H9 2n−3 2n−3 2 2n−3
0 2 0 0 2 0 0 0 · · · 0

G/H10 2n−4 2n−4
0 2n−4

0 0 2n−4
0 0 2n−4

0 0 · · · 0

G/H11 2n−4 2n−4
0 2n−4 2 0 2n−4 2 0 0 2 0 · · · 0

G/H12 2n−4 2n−4 2 2n−4
0 2 2n−4

0 2 0 0 2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

G/Hs 1 1 1 1 1 1 1 1 1 1 1 1 · · · 1

where s = 3n− 2.

Proof. We �rst calculate the entry mij in table of marks of semi-dihedral group
SD2n . We claim that

mij = β(SD2n/Hi)(kj) =

 [SD2n : Hi] if Kj EHi E SD2norKj 6 Hi E SD2n

2 if Kj 6 Hi 6 SD2n

0 if Kj � Hi

.

To prove, we assume that Kj EHi E SD2n . Thus

[NSD2n
(H) : H] = [SD2n : H]

|{Hg | K 6 Hg & g ∈ SD2n}| = 1.

Since Hi is normal, mij = β(SD2n/Hi)(Kj) = [SD2n : Hi]. Next we assume that
Kj 6 Hi 6 SD2n and Hi is not normal in SD2n . Then [NSD2n

(H) : H] = 2. We
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write Kj = 〈ar, ajb〉 and Hi = 〈ad, ajb〉. If r | d, then it easy see to that Kj is
contained in a unique conjugate of Hi.

Since Hi 5 SD2n and Kj 6 SD2n ,

NSD2n
(〈ad, ajb〉) = 〈a d

2 , ajb〉,
|{Kj 6 Hg

i & g ∈ SD2n}| = 1.

Finally, if Kj � Hi then |{Hg
i | Kj 6 Hg

i & g ∈ SD2n}| = 0 and so
βSD2n/Hi

(Kj) = 0.

By the proof of the previous theorem, one can see that the number of cyclic
subgroups of the semi-dihedral group SD2n are n + 2n−3 + 2n−2. There are two
conjugacy classes of subgroups of index 2n−1 with representatives C2 = 〈a2n−2〉
and D2 = 〈a2b〉. There are also two conjugacy classes of subgroup of index 2n−2

with representatives C4 = 〈a2n−3〉 and Q4 = 〈a2n−2

, ab〉. For all other integers
appeared as the index of a subgroup in SD2n , there exists a unique conjugacy
classes of cyclic subgroups. In an exact phrase, there exists a unique subgroup of

index 2n−3−k, 0 6 k 6 n − 3, generated by a2
n−4−k

. Therefore, there are n + 2
conjugacy classes of cyclic subgroups. Hence we proved the following proposition:

Corollary 2.9. The order of markaracter table in the group SD2n is equal to

s = n+ 2.

Theorem 2.10. The markaracter table of semi-dihedral group SD2n is given by

Table 8.

Table 8. Markaracter table of the semi-dihedral group SD2n .

∗ K1 K2 K3 K4 K5 K6 K7 K8 · · · Ks

G/H1 2n 0 0 0 0 0 0 0 · · · 0
G/H2 2n−1 2n−1 0 0 0 0 0 0 · · · 0
G/H3 2n−1 0 2 0 0 0 0 0 · · · 0
G/H4 2n−2 2n−2 0 2n−2 0 0 0 0 · · · 0
G/H5 2n−2 2n−2 0 0 2 0 0 0 · · · 0
G/H6 2n−3 2n−3 0 2n−3 0 2n−3 0 0 · · · 0
G/H7 2n−4 2n−4 0 2n−4 0 2n−4 2n−4 0 · · · 0
G/H8 2n−5 2n−5 0 2n−5 0 2n−5 2n−5 2n−5 · · · 0

...
...

...
...

...
...

...
...

...
. . .

...
G/Hs 2 2 0 2 0 2 2 2 · · · 2

Proof. Apply Theorem 2.8.

2.3. The group H(n)

De�ne H(n) = 〈x, y, z | x2n−2

= y2 = z2 = e, [x, y] = [y, z] = e, xz = xy〉. The aim
of this section is to calculate the table of marks and markaracter table of the group
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H(n). In [9, Section 2.6], the present authors studied the structure of subgroups
of this group and proved that the normal subgroups of H(n) have the following
forms:

• G1 = 〈ad〉, where d | 2n−2 and d 6= 1;

• G2 = 〈ad, b〉, where d | 2n−2;

• G3 = 〈adb〉, where d | 2n−3 and d 6= 1;

• G4 = 〈adc, adbc〉, where d | 2n−3;

• G5 = 〈ad, b, c〉, where d | 2n−2.

We now consider non-normal subgroups of H(n). Suppose d | 2n−2. Since
a−1〈ad, c〉a = 〈ad, bc〉 and a−1〈adb, adc〉a = 〈adb, adbc〉, 〈ad, c〉, 〈ad, bc〉 and also
〈adb, adc〉, 〈adb, adbc〉 are conjugate subgroups of H(n). Moreover, c−1〈a〉c = 〈ab〉
and so 〈a〉 and 〈ab〉 are conjugate. In what follows, we record the representatives
of conjugacy classes of subgroups of H(n). In the case that the conjugacy class has
one or two elements, the complete conjugacy class of those subgroups are recorded.

1. C(H1) = {〈e〉}, C(H2) = {〈a2n−3〉}, C(H3) = {〈b〉}, C(H4) = {〈a2n−3

b〉},
C(H5) = {〈c〉, 〈bc〉}, C(H6) = {〈a2

n−3

c〉, 〈a2n−3

bc〉};

2. C(H7+8j) = {〈a2
n−4−j 〉}, 0 6 j 6 n− 5;

3. C(H8+8j) = {〈a2
n−3−j

, b〉}, 0 6 j 6 n− 5;

4. C(H9+8j) = {〈a2
n−4−j

b〉}, 0 6 j 6 n− 5;

5. C(H10+8j) = {〈a2
n−3−j

b, a2
n−3−j

bc〉}, 0 6 j 6 n− 5;

6. C(H11+8j) = {〈a2
n−2−j

, b, c〉}, 0 6 j 6 n− 5;

7. C(H12+8j) = {〈a2
n−4−j

c〉, 〈a2n−4−j

bc〉}, 0 6 j 6 n− 5;

8. C(H13+8j) = {〈a2
n−3−j

, c〉, 〈a2n−3−j

, bc〉}, 0 6 j 6 n− 5;

9. C(H14+8j) = {〈a2
n−3−j

c, a2
n−3−j

b〉, 〈a2n−3−j

c, a2
n−3−j

bc〉}, 0 6 j 6 n− 5;

10. C(H8n−25) = {〈a2, b〉}, C(H8n−24) = {〈a2c, a2bc〉}, C(H8n−23)={〈a4, b, c〉};

11. C(H8n−22) = {〈a〉, 〈ab〉}, C(H8n−21)={〈ac〉, 〈abc〉};

12. C(H8n−20) = {〈a2b, a2bc〉, 〈a2b, a2c〉}, C(H8n−19) = {〈a2, c〉, 〈a2, bc〉},
C(H8n−18) = {〈a, b〉}, C(H8n−17) = {〈a, c〉}, C(H8n−16) = {〈a2, b, c〉},
C(H8n−15) = {〈a, b, c〉}.
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Among these classes of subgroups, conjugacy classes recorded in the cases
1, 2, 4, 7 and 11 are related to cyclic subgroups. We now record our calculations in
the following lemma:

Lemma 2.11. There are 8n − 15 conjugacy classes of subgroups in the group

H(n) and among them there are 3n− 4 conjugacy classes of cyclic subgroups. In

particular, the order of table of marks and markaracter table of H(n) are 8n− 15
and 3n− 4, respectively.

To calculate the table of marks of H(n), we have to calculate the values
mij(H(n)).

Proposition 2.12.

δij = βH(n)/Hi
(Kj) =

 [H(n) : Hi] Kj EHi EH(n) or Kj 6 Hi EH(n),
[NH(n)(Hi) : Hi] Kj 6 Hi 6 H(n),
0 Kj � Hi.

Proof. Suppose Kj 6 Hi. It is easy to see that |NH(n)(Hi)| = 2n−1, when Hi is a
non-normal subgroup of H(n). On the other hand,

βH(n)/Hi
(Kj) = [NH(n)(Hi) : Hi]|{Hg

i | Kj 6 Hg
i & g ∈ H(n)}|

= [NH(n)(Hi) : Hi],

proving the result.

Theorem 2.13. The table of marks and markaracter table of the group H(n) are

given in Tables 9 and 10, respectively.

Table 9. Table of marks of the group H(n).

∗ K1 K2 K3 K4 K5 K6 Kj, 76j68n−15

H(n)/e 2n 0 0 0 0 0 · · ·
H(n)/〈a2n−3〉 2n−1 2n−1 0 0 0 0 · · ·
H(n)/〈b〉 2n−1 0 2n−1 0 0 0 · · ·

H(n)/〈a2n−3

b〉 2n−1 0 0 2n−1 0 0 · · ·
H(n)/〈bc〉 2n−1 0 0 0 2n−2 0 · · ·

H(n)/〈a2n−3

bc〉 2n−1 0 0 0 0 2n−2 · · ·
H(n)/(Hi)76i68n−15 δij
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Table 10. The markaracter table of the group H(n).

∗ K1 K2 K3 K4 K5 K6 K7

H(n)/e 2n 0 0 0 0 0 0

H(n)/〈a2n−3〉 2n−1 2n−1 0 0 0 0 0
H(n)/〈b〉 2n−1 0 2n−1 0 0 0 0

H(n)/〈a2n−3

b〉 2n−1 0 0 2n−1 0 0 0
H(n)/〈bc〉 2n−1 0 0 0 2n−2 0 0

H(n)/〈a2n−3

bc〉 2n−1 0 0 0 0 2n−2 0

H(n)/〈a2n−4〉 2n−2 2n−2 0 0 0 0 2n−2

H(n)/〈a2n−4

b〉 2n−2 2n−2 0 0 0 0 0

H(n)/〈a2n−4

bc〉 2n−2 2n−2 0 0 0 0 0

H(n)/〈a2n−5〉 2n−3 2n−3 0 0 0 0 2n−3

H(n)/〈a2n−5

b〉 2n−3 2n−3 0 0 0 0 2n−3

H(n)/〈a2n−5

bc〉 2n−3 2n−3 0 0 0 0 2n−3

H(n)/Hi, 136i63n−4 δij

∗ K8 K9 K10 K11 K12 Ki, 136i63n−4
H(n)/e 0 0 0 0 0 · · ·

H(n)/〈a2n−3〉 0 0 0 0 0 · · ·
H(n)/〈b〉 0 0 0 0 0 · · ·

H(n)/〈a2n−3

b〉 0 0 0 0 0 · · ·
H(n)/〈bc〉 0 0 0 0 0 · · ·

H(n)/〈a2n−3

bc〉 0 0 0 0 0 · · ·
H(n)/〈a2n−4〉 0 0 0 0 0 · · ·
H(n)/〈a2n−4

b〉 2n−2 0 0 0 0 · · ·
H(n)/〈a2n−4

bc〉 0 2n−3 0 0 0 · · ·
H(n)/〈a2n−5〉 0 0 2n−3 0 0 · · ·
H(n)/〈a2n−5

b〉 0 0 0 2n−3 0 · · ·
H(n)/〈a2n−5

bc〉 0 0 0 0 2n−4 · · ·
H(n)/Hi136i63n−4
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