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On generalized associativity in groupoids

Reza Akhtar

Abstract. Following an approach developed by Niemenmäa and Kepka, we prove that if a

division groupoid G satis�es the identity Rx1Lx2 . . . Rx2n−1Lx2ny = Lx2nRx2n−1 . . . Lx2Rx1y

for some n 6= 2, then G is an abelian group. Using equational reasoning, we also give a new

proof of a result of Niemenmäa and Kepka that a division groupoid in which the generalized

associative law x1(x2(. . . xn−1xn) . . .)) = ((. . . (x1x2) . . .)xn−1)xn holds must be a group.

1. Introduction

Let G be a groupoid, with composition written as juxtaposition. For a ∈ G,
we de�ne the left multiplication map La : G → G by x 7→ ax and the right
multiplication map Ra : G → G by x 7→ xa. If these maps are surjective for all
a ∈ G, we call G a division groupoid. If these maps are bijective for all a ∈ G, we
call G a quasigroup. For more on quaisgroups, we refer the reader to [2].

Since the operation on a groupoid is not in general associative, direct study of
such objects is usually rather di�cult. One way around this problem is to con-
struct an auxiliary group whose properties re�ect those of the groupoid operation,
and then use this group to study the original structure. This approach was ex-
ploited successfully by Niemenmäa and Kepka in [1], in which they showed that
any division groupoid satisfying the identity

In : x1(x2(. . . (xn−1xn) . . .)) = ((. . . (x1x2) . . .)xn−1)xn

is in fact a group. While it is clear that In constitutes a generalization of associa-
tivity, it is far from obvious that it implies associativity.

At the end of [1], the authors de�ne a groupoid identity M = N to be linear
if M and N contain the same set of indeterminates, and each such indeterminate
occurs exactly once on each side. They then pose the question of determining which
linear groupoid identities imply associativity. Considering that the associative law
(xy)z = x(yz) may be written (in terms of the multiplication maps) as RzLxy =
LxRzy, it is perhaps natural to consider the following family of linear groupoid
identities:

Jn : Rx1Lx2 . . . Rx2n−1Lx2ny = Lx2nRx2n−1 . . . Lx2Rx1y
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as generalizations of the associative law, which is the case n = 1. Modifying the
techniques of [1], we show, in the �rst part of this article, that if n > 2, then a
division groupoid satis�es Jn if and only if it is an abelian group. In the second
part of the article, we use equational reasoning to give a much shorter proof of
the original Niemenmäa-Kepka result that In implies associativity. The �rst part
of that proof is a relatively straightforward argument that any division groupoid
satisfying In is in fact a quasigroup; this is essentially the same as the reasoning in
the original paper [1]. In the second part of the proof, however, we use an inductive
argument to show that any quasigroup satisfying In implies associativity, thereby
circumventing the need to introduce an auxiliary group structure. The ideas in
this part of the proof were inspired by output from Prover9 for the implication
I4 =⇒ I3; however, our proof follows a di�erent path from that outlined in the
Prover9 output.

Following [1], we make the following de�nitions. Let G be a groupoid and P (G)
the set of permutations of G.

AL(G) = {f ∈ P (G) : f(xy) = g(x)y for some g ∈ P (G) and all x, y ∈ G}

AR(G) = {g ∈ P (G) : f(xy) = g(x)y for some f ∈ P (G) and all x, y ∈ G}

BL(G) = {f ∈ P (G) : f(xy) = xg(y) for some g ∈ P (G) and all x, y ∈ G}

BR(G) = {g ∈ P (G) : f(xy) = xg(y) for some f ∈ P (G) and all x, y ∈ G}

We say that G is AL-transitive if for all x, y ∈ G there exists f ∈ AL(G)
such that f(x) = y. The notions of AR−, BL− and BR−transitivity are de�ned
similarly.

A key property undergirding both parts of this paper is a rigidity principle
which appears in [1] as Lemma 2.5. We give a slightly modi�ed version of this
below.

Lemma 1.1. [1, Lemma 2.5] Suppose a division groupoid G is BL-transitive. If
f, f ′ ∈ AL(G) and f(a) = f ′(a) for some a ∈ G, then f = f ′. The same is true if
G is assumed to be AL-transitive and f, f ′ ∈ BL(G).

Proof. Suppose �rst that G is BL-transitive and f, f ′ ∈ AL(G), a ∈ G are such
that f(a) = f ′(a). Select c ∈ G arbitrarily, and use surjectivity of Lc to �nd
d ∈ G such that a = cd. Next, given z ∈ G, use BL-transitivity to �nd h ∈ BL(G)
such that h(a) = z. Let g, g′, k ∈ P (G) witness that the formulas f(xy) = g(x)y,
f ′(xy) = g′(x)y, and h(xy) = xk(y) hold for x, y ∈ G. Now

f(z) = f(h(a)) = f(h(cd)) = f(ck(d)) = g(c)k(d) = h(g(c)d) = h(f(cd))

= hf(a) = hf ′(a) = hf ′(cd) = h(g′(c)d) = g′(c)k(d) = f ′(ck(d))

= f ′(h(cd)) = f ′(h(a)) = f ′(z).

The proof of the second statement is similar.
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We will also need the following key result:

Proposition 1.2. [1, Proposition 3.4] Let G be a quasigroup which is both AL-
and BL-transitive and satis�es AL(G) ⊆ AR(G), BL(G) ⊆ BR(G). Then there
exists a binary operation ∗ such that (G, ∗) is a group and xy = A(x) ∗ c ∗ B(y)
for some c ∈ G and some automorphisms A,B of (G, ∗).

2. A generalized form of associativity

In this section, we consider the identity

Jn : Rx1
Lx2

. . . Rx2n−1
Lx2n

y = Lx2n
Rx2n−1

. . . Lx2
Rx1

y

as another generalization of the associative law. We may rewrite Jn in two di�erent
ways:

Lx2
. . . Rx2n−1

Lx2n
y · x1 = Lx2n

Rx2n−1
. . . Lx2

(yx1), (1)

Rx1
Lx2

. . . Rx2n−1
(x2ny) = x2n ·Rx2n−1

. . . Lx2
Rx1

y. (2)

These formulas witness that if G is a groupoid in which Jn is satis�ed, then
Lx2n

Rx2n−1
. . . Lx2

∈ AL(G) ∩ AR(G) and Rx1
Lx2

. . . Rx2n−1
∈ BL(G) ∩ BR(G).

In particular, if G is a division groupoid, then G is both AL-transitive and BL-
transitive.

We are now ready to prove our main result.

Theorem 2.1. Let G be a division groupoid and n > 2. Then G satis�es Jn if
and only if G is an abelian group.

Proof. Suppose �rst that G is a division groupoid satisfying Jn. We argue �rst
that G must be a quasigroup. Given a ∈ G, �x b ∈ G, and use surjectivity of
the multiplication maps to select c1, . . . , c2n−2 such that Lc1Rc2 . . . Rc2n−2Lab = b.
Now Lc1Rc2 . . . Rc2n−2

La ∈ AL(G), so by Lemma 1.1, Lc1Rc2 . . . Rc2n−2
La = 1G.

Therefore, La is injective.

Next, we show that G satis�es the remaining hypotheses of Proposition 1.2.
Given f ∈ AL(G), �x a ∈ G and use surjectivity of the multiplication maps to
select d1, . . . , d2n−1 ∈ G such that Ld1Rd2 . . . Ld2n−1a = f(a). Because we have
Ld1

Rd2
. . . Ld2n−1

and f are both members of AL(G), Lemma 1.1 implies that
f = Ld1

Rd2
. . . Ld2n−1

, so f ∈ AR(G) also. Thus, AL(G) ⊆ AR(G). The proof of
the inclusion BL(G) ⊆ BR(G) is similar.

Now we use Proposition 1.2 to deduce the existence of a binary operation + on
G such that (G,+) is a group and xy = A(x) + c+B(y) for some automorphisms
A and B of (G,+). (Even though (G,+) is not assumed to be an abelian group,
we will still use additive notation to avoid confusion with the groupoid operation
on G.) The identity

Jn : Rx1
Lx2

. . . Rx2n−1
Lx2n

y = Lx2n
Rx2n−1

. . . Lx2
Rx1

y
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implies an identity in (G,+); when this is written out, each of the indeterminates
x1, . . . , xn occurs in exactly one term on each side, with some automorphism of
(G,+) applied to it. For example, in the case n = 2 we have:

A2x2 +Ac+ABA2x4 +ABAc+ABABy +ABc+AB2x3 + c+Bx1

= Ax4+c+BA
2x2+BAc+BABAy+BABc+BAB

2x1+Bc+B
2x3.

In general, the automorphisms applied to the indeterminates x1, . . . , x2n on
the left are (respectively, in order):

B,A2, (AB)B, (AB)A2, (AB)2B, (AB)2A2, . . . , (AB)n−1B, (AB)n−1A2

and on the right the automorphisms are:

(BA)n−1B2, (BA)n−1A, . . . , (BA)2B2, (BA)2A, (BA)B2, (BA)A,B2, A.

For 2 6 i 6 2n, set xi =

{
B−1(c) if i is odd,
A−1c if i is even.

Next, set y = A−1(c) and substitute these values into the identity to obtain:
d + Bx1 = (BA)n−1B2x1 for some d ∈ G. Evaluating at x1 = 0, the fact that B
and (BA)n−1B2 are automorphisms of G forces d = 0, so Bx1 = (BA)n−1B2x1
and hence (BA)n−1B = 1G.

Now for i 6= 2, 1 6 i 6 n, set y = (BA)−1(c); then, substitute this and the
same values for xi (as above) into the identity to obtain A2x2+d

′ = (BA)n−1Ax2
for some d′ ∈ G. Reasoning as before, we have d′ = 0, so (BA)n−1A−1 = 1G.
Thus, A−1 = B, so B = (BA)n−1B = 1G, which in turn implies A = 1G.

Therefore, xy = x+ c+ y, and so we compute:

(xy)z = (x+c+y)z = (x+c+y)+c+z = x+c+(y+c+z) = x(y+c+z) = x(yz).

This shows that the quasigroup G is, in fact, a group. Now that we know that G
has a neutral element e, simply set all xi, i 6= 1, 3 equal to e in the identity Jn
to obtain Rx1Rx3 = Rx3Rx1 . Applying this equality of functions to e, we have
x1x3 = x3x1 for all x1, x3 ∈ G, so G is abelian.

Conversely, if G is an abelian group, then the identities RxLy = LyRx, RxRy =
RyRx and LxLy = LyLx hold in G. Now all left and right multiplication maps
commute with each other, so Jn must hold.

3. The Niemenmäa-Kepka Theorem

We conclude by giving a new proof of the main result of [1]. The �rst part of the
proof (Proposition 3.1 below) follows the reasoning of [1, Theorem 4.1].

Proposition 3.1. Let n > 3. Then a division groupoid satisfying In is a quasi-
group.
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Proof. Note that In can be interpreted in two ways:

Lx1 . . . Lxn−2(xn−1xn) = Rxn−1 . . . Rx3Rx2x1 · xn, (3)

Rxn . . . Rx3(x1x2) = x1 · Lx2 . . . Lxn−1xn. (4)

In particular, for any division groupoid G satisfying In, the �rst formula shows
that Lx1 . . . Lxn−2 ∈ AL(G), and the second formula that Rxn . . . Rx3 ∈ BL(G).
Since all left and right multiplication maps are surjective, it follows that G is both
AL-transitive and BL-transitive.

We now show that for a ∈ G, the map La is injective. To this end, �x b ∈ G and
use surjectivity of the left multiplication maps to select y1, . . . , yn−3 ∈ G such that
Ly1

. . . Lyn−3
Lab = b. By the rigidity principle (Lemma 1.1), Ly1

. . . Lyn−3
La = 1G;

so La has a left inverse and is hence injective. The proof of the injectivity of Ra

is similar.

We are now ready to give a new proof of [1, Theorem 4.1]. To prepare, de�ne

λ(x1, . . . , xn) = ((x1x2) · · ·xn−1)xn,

ρ(x1, . . . , xn) = x1(x2 · · · (xn−1xn)).

Then In is simply the statement λ(x1, . . . , xn) = ρ(x1, . . . , xn). All of the
identities in the list below can be proved by direct calculation.

Lemma 3.2. The following formulas hold for any m > 1:

• (HL) λ(x1, . . . , xm, y) = λ(x1, . . . , xm)y,

• (HR) ρ(y, x1, . . . , xm) = yρ(x1, . . . , xm),

• (CL) λ(λ(x1, . . . , x`), x`+1, . . . , xm) = λ(x1, . . . , xm),

• (CR) ρ(x1, . . . , x`, ρ(x`+1, . . . , xm)) = ρ(x1, . . . , xm),

• (DL) λ(yx1, x2, . . . , xm) = λ(y, x1, x2, . . . , xm),

• (DR) ρ(x1, . . . , xm−1, xmy) = ρ(x1, . . . , xm−1, xm, y).

Theorem 3.3. A quasigroup satisfying In is a group.

Proof. We will argue that when n > 4, In implies In−1, and then apply induction.
The designation at the end of each line shows which statement from Lemma 3.2
was used to deduce it from the previous line.
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y(λ(x1, . . . , xn−1)ρ(z1, . . . , zn−2))
= y(λ(x1, . . . , xn−1, ρ(z1, . . . , zn−2))) (HL)
= y(ρ(x1, . . . , xn−1, ρ(z1, . . . , zn−2))) (In)
= ρ(y, x1, . . . , xn−1, ρ(z1, . . . , zn−2))) (HR)
= ρ(y, x1, . . . , xn−2, xn−1, z1, . . . , zn−2) (CR)
= ρ(y, x1, . . . , xn−2, ρ(xn−1, z1, . . . , zn−2)) (CR)
= λ(y, x1, . . . , xn−2, ρ(xn−1, z1, . . . , zn−2)) (In)
= λ(y, x1, . . . , xn−2)ρ(xn−1, z1, . . . , zn−2) (HL)
= ρ(λ(y, x1, . . . , xn−2), xn−1, z1, . . . , zn−2) (HR)
= λ(λ(y, x1, . . . , xn−2), xn−1, z1, . . . , zn−2) (In)
= λ(y, x1, . . . , xn−1, z1, . . . , zn−2) (CL)
= λ(λ(y, x1, . . . , xn−1), z1, . . . , zn−2) (CL)
= λ(ρ(y, x1, . . . , xn−1), z1, . . . , zn−2) (In)
= λ(yρ(x1, . . . , xn−1), z1, . . . , zn−2) (HR)
= λ(y, ρ(x1, . . . , xn−1), z1, . . . , zn−2) (DR)
= ρ(y, ρ(x1, . . . , xn−1), z1, . . . , zn−2) (In)
= yρ(ρ(x1, . . . , xn−1), z1, . . . , zn−2) (HR)
= y(ρ(x1, . . . , xn−1)ρ(z1, . . . , zn−2)) (HR).

Now cancel y from the left, and then cancel ρ(z1, . . . , zn−2) from the right to
obtain λ(x1, . . . , xn−1) = ρ(x1, . . . , xn−1), which is In−1.
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Characterizations of Cli�ord semigroups

and t-Putcha semigroups by their quasi-ideals

Anjan Kumar Bhuniya and Kanchan Jana

Abstract. There are bi-ideals of semigroups which are not quasi-ideals. In spite of this fact, here

we show that a semigroup S is quasi-simple if and only if it is bi-simple, equivalently t-simple.

Main results of this article are several equivalent characterizations of the Cli�ord semigroups

and the semigroups which are semilattices of t-Archimedean semigroups by their quasi-ideals. A

semigroup S is a Cli�ord semigroup if and only if every quasi-ideal of S is a semiprime ideal,

whereas S is a semilattice of t-Archimedean semigroups if and only if
√
Q is an ideal for every

quasi-ideal Q of S.

1. Introduction

In 1952, R.A. Good and D.R. Hughes [3] �rst de�ned the notion of bi-ideals of a
semigroup. The notion of quasi-ideals in rings and semigroups was introduced and
developed by Otto Steinfeld [12], [13], [14], [15]. Di�erent classes of semigroups
has been characterized by using bi-ideals and quasi-ideals by many authors [7],
[8], [9], [10]. Later on di�erent classes of semigroups has been characterized by
using minimal and maximal left-ideals, bi-ideals and quasi-ideals by many authors
[1], [17], [4], [2], [9], [6]. Here we characterize the Cli�ord semigroups and the
semigroups which are semilattices of t-Archimedean semigroups by their quasi-
ideals.

There are several characterizations for a semigroup S equivalent to be a Clif-
ford semigroup and t-Putcha semigroup by their bi-ideals. Every quasi-ideal of a
semigroup is a bi-ideal but the converse is not true. So if a semigroup S is bi-simple
or equivalently t-simple then it is quasi-simple. Here we have a strange observa-
tion that every quasi-simple semigroup is also t-simple and thus quasi-simplicity
and t-simplicity becomes equivalent in semigroups. Therefore we hope that it may
turns out to be the case that the semigroups which are semilattices of groups or
t-Archimedean semigroups will be characterized by their quasi-ideals. We show
that a semigroup S is a semilattice of t-Archimedean semigroups.

Some elementary results together with prerequisites have been discussed in
Section 2. In Section 3 we have studied semilattice of quasi-simple semigroups.

2010 Mathematics Subject Classi�cation: 20M12, 20M17
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2. Preliminaries

A nonempty subset L of a semigroup S is called a left ideal of S if SL ⊆ L. The
right ideals are de�ned dually. A subset I of S is called an ideal of S if it is both a
left and a right ideal of S. For an element a ∈ S the principal left ideal (right ideal)
of S generated by {a} is given by Sa∪{a} (aS∪{a}) and are denoted by L(a) and
R(a) respectively. A semigroup S is called simple (left-simple, right-simple) if it
does not contain any proper ideal (left-ideal, right-ideal), and S is called t-simple
if it is both left simple and right simple.

A nonempty subset Q is called a quasi-ideal of S if QS ∩ SQ ⊆ Q. It follows
that every quasi-ideal Q of S is a subsemigroup. Every nonempty intersection of
a left ideal and a right ideal is a quasi ideal of S. Suppose Q is a quasi-ideal of S.
Then L = SQ ∪ Q is a left ideal and R = QS ∪ Q is a right ideal of S such that
Q = L ∩R. Thus a nonempty subset Q of S is a quasi-ideal if and only if it is an
intersection of a left ideal and a right ideal. For a ∈ S, let Q(a) be the quasi-ideal
generated by {a}.

A semigroup S is called quasi-simple if it has no proper quasi-ideal.
The Green's relations L, R and H on a semigroup S are de�ned by, for a, b ∈ S,

aLb if L(a) = L(b), aRb if R(a) = R(b) and H = L ∩R.

Now we have the following theorem (cf. [9]).

Theorem 2.1. Let S be a semigroup. Then H can be given as follows: for a, b ∈ S,

aHb ⇐⇒ Q(a) = Q(b).

A nonempty subset A of S is called semiprime if for all x ∈ S such that x2 ∈ A
one has x ∈ A, and completely prime (resp. semiprimary) if for all x, y ∈ S such
that xy ∈ A one has x ∈ A or y ∈ A (resp. xn ∈ A or yn ∈ A for some n ∈ N). A
subsemigroup F of S is called a �lter of S if for any a, b ∈ S, ab ∈ F ⇒ a, b ∈ F .
Let N(a) be the �lter generated by {a}. De�ne an equivalence relation N on S
by: for a, b ∈ S,

aN b if N(a) = N(b).

The following lemma (proved in [9]) plays a crucial role in the main theorems
of this article.

Lemma 2.2. Let S be a semigroup. Then N is the least semilattice congruence
on S.

3. Semilattice of groups

In this section we characterize the semigroups which are semilattices (chains) of
groups.
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Theorem 3.1. The following conditions are equivalent on a semigroup S:

(1) S is a semilattice of groups;

(2) for all a, b ∈ S, ab, ba ∈ Q(a) and a ∈ Q(a2);

(3) for all a ∈ S, Q(a) is a semiprime ideal of S;

(4) every quasi-ideal of S is a semiprime ideal of S;

(5) for all a, b ∈ S, Q(ab) = Q(a) ∩Q(b);

(6) for all a ∈ S, N(a) = {x ∈ S|a ∈ Q(x)};

(7) for every nonempty family {Qλ|λ ∈M} of quasi-ideals of S,
⋂
λ∈MQλ is a

semiprime ideal of S;

(8) H = N is the least semilattice congruence of S such that each of its congru-
ence classes is a group.

Proof. (1) ⇒ (2). Let S be a semilattice L of groups Gα, (α ∈ L). Consider
a, b ∈ S. Then there are α, β ∈ L such that a ∈ Gα, b ∈ Gβ and so aba, ab, ba are
in GαGβ ⊆ Gαβ . Since Gαβ is a group, ab ∈ Q(aba) ⊆ Q(a). Similarly, ba ∈ Q(a).
Also a, a2 ∈ Gα implies that a ∈ Q(a2).

(2)⇒ (3). Let a ∈ S. Consider q ∈ Q(a) and s ∈ S. Then sq, qs ∈ Q(q) ⊆ Q(a)
implies that Q(a) is an ideal of S. Let u ∈ S be such that u2 ∈ Q(a). Then
u ∈ Q(u2) ⊆ Q(a). Thus Q(a) is a semiprime ideal of S.

(3)⇒ (4). Follows similarly.
(4) ⇒ (5). Let a, b ∈ S. Since a ∈ Q(a) is an ideal of S, so ab ∈ Q(a) and

similarly, ab ∈ Q(b). Then ab ∈ Q(a) ∩ Q(b) implies that Q(ab) ⊆ Q(a) ∩ Q(b).
Let x ∈ Q(a) ∩ Q(b). Then x ∈ R(a) implies that there exists s1 ∈ S such that
x = as1. Then x2 = (as1)x = a(s1x). Since Q(a) ∩ Q(b) is an ideal of S, so
s1x ∈ Q(a) ∩Q(b) and hence s1x ∈ R(b). Then s1x = bs2 for some s2 ∈ S. Then
x2 = abs2 which implies that x2 ∈ R(ab). Similarly, x2 ∈ L(ab). Thus x2 ∈ Q(ab)
which yields x ∈ Q(ab). Then Q(a)∩Q(b) ⊆ Q(ab) and hence Q(a)∩Q(b) = Q(ab).

(5) ⇒ (6). Let F = {x ∈ S | a ∈ Q(x)}. Consider x, y ∈ F . Then a ∈
Q(x) ∩Q(y) = Q(xy) implies that xy ∈ F . Thus F is a subsemigroup of S. If for
x, y ∈ S, xy ∈ F , then a ∈ Q(xy) = Q(x) ∩Q(y) implies that x, y ∈ F . Thus F is
a �lter of S.

Let T be a �lter of S containing a and u ∈ F . Then there exists s ∈ S such
that a = s1u. Then s1u ∈ T implies that u ∈ T . Hence F = N(a).

(6) ⇒ (7). Let Q =
⋂
λ∈MQλ. Then Q is a quasi-ideal of S. Let q ∈ Q and

s ∈ S. Now q ∈ N(qs) implies that qs ∈ Q(q) ⊆ Q. Similarly, sq ∈ Q. Let a2 ∈ Q.
Then a2 ∈ N(a) implies that a ∈ Q(a2) ⊆ Q. Thus Q is a semiprime ideal of S.

(7)⇒ (4). Obvious.
(6) ⇒ (8). Let a, b ∈ S. Then aHb implies that Q(a) = Q(b) and so a ∈ N(b)

and b ∈ N(a) . This implies that N(a) = N(b), i.e., aN b. Thus H ⊆ N . Similarly,
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N ⊆ H. Hence H = N is the least semilattice congruence on S. Then every H-
class is a group.

(8)⇒ (1). Obvious.

In the following theorem we characterize the semigroups which are chains of
groups.

Theorem 3.2. The following conditions are equivalent on a semigroup S:

(1) S is a chain of groups;

(2) for all a, b ∈ S, ab, ba ∈ Q(a); and a ∈ Q(ab) or b ∈ Q(ab);

(3) for all a ∈ S, Q(a) is a completely prime ideal of S;

(4) every quasi-ideal of S is a completely prime ideal of S;

(5) for all a, b ∈ S, Q(ab) = Q(a) ∩Q(b); and Q(a) ⊆ Q(b) or Q(b) ⊆ Q(a);

(6) for all a, b ∈ S, N(a) = {x ∈ S | a ∈ Q(x)} and N(ab) = N(a) ∪N(b);

(7) for every nonempty family {Qλ |λ ∈M} of quasi-ideals of S,
⋂
λ∈MQλ is a

completely prime ideal of S;

(8) H = N is the least chain congruence on S such that each of its congruence
classes is a group.

Proof. (1) ⇒ (2). Let S be a chain C of groups Gα(α ∈ C). Then the �rst part
follows from Theorem 3.1. For the second part, let a ∈ Gα, b ∈ Gβ , α, β ∈ C.
Since C is a chain, either αβ = α or αβ = β. If αβ = α, then a, ab ∈ Gα implies
that aHab and hence a ∈ Q(ab). Similarly, αβ = β implies that b ∈ Q(ab). Thus
either a ∈ Q(ab) or b ∈ Q(ab).

(2) ⇒ (3). Let a ∈ S. Then Q(a) is an ideal of S by Theorem 3.1. Consider
x, y ∈ S such that xy ∈ Q(a). Now x ∈ Q(xy) or y ∈ Q(xy) implies that x ∈ Q(a)
or y ∈ Q(a). Thus Q(a) is a semiprime ideal of S.

(3)⇒ (4). Follows similarly.
(4)⇒ (5). Let a, b ∈ S. Then Q(ab) = Q(a) ∩Q(b), by Theorem 3.1.
Again a ∈ Q(ab) or b ∈ Q(ab) implies that Q(a) ⊆ Q(ab) ⊆ Q(b) or Q(b) ⊆

Q(ab) ⊆ Q(a). Thus Q(a) ⊆ Q(b) or Q(b) ⊆ Q(a).
(5) ⇒ (6). Let a ∈ S. Then N(a) = {x ∈ S | a ∈ Q(x)}, by Theorem 3.1.

Let a, b ∈ S. Then, N(a) ∩ N(b) ⊆ N(ab). Let x ∈ N(ab). Then ab ∈ Q(x).
Now we have Q(ab) = Q(a) or Q(ab) = Q(b) which implies that Q(a) ⊆ Q(x) or
Q(b) ⊆ Q(x). Then x ∈ N(a) or x ∈ N(b). Thus N(ab) ⊆ N(a) or N(ab) ⊆ N(b).
Then N(ab) ⊆ N(a) ∪N(b). Hence N(ab) = N(a) ∪N(b).

(6)⇒ (7). Let Q =
⋂
λ∈MQλ. In view of Theorem 3.1, we are only to show that

Q is completely prime. For a, b ∈ S, if ab ∈ Q, then ab ∈ N(ab) = N(a) ∪ N(b)
implies that a ∈ Q(ab) ⊆ Q or b ∈ Q(ab) ⊆ Q, i.e., a ∈ Q or b ∈ Q. Thus Q is a
completely prime ideal of S.
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(7)⇒ (4). Obvious.
(6) ⇒ (8). In view of Theorem 3.1, we are only to show that N is a chain

congruence on S. Let a, b ∈ S. Then ab ∈ N(ab) = N(a) ∪N(b). Thus ab ∈ N(a)
or ab ∈ N(b), i.e., N(ab) ⊆ N(a) ⊆ N(a) ∪ N(b) = N(ab) or N(ab) ⊆ N(b) ⊆
N(a) ∪ N(b) = N(ab). Then N(ab) = N(a) or N(ab) = N(b). Then abNa or
abN b.

(8)⇒ (1). Obvious.

4. Semilattice of t-Archimedean semigroups

In this section we characterize the semigroups which are semilattices of t-Archimedean
semigroups by their quasi-ideals. Also in this section the semigroups which are
chains of t-Archimedean semigroups are characterized.

Let A be a nonempty subset of a semigroup S. Then the radical of A in S is
given by √

A = {x ∈ S | (∃n ∈ N) xn ∈ A}.

A semigroup S is called left (right) Archimedean if for each a ∈ S, S =
√
Sa,

(S =
√
aS) and t-Archimedean semigroup if it is both a left Archimedean semi-

group and a right Archimedean semigroup. Thus a semigroup S is t-Archimedean
if and only if for a, b ∈ S there exist n ∈ N and x1, x2 ∈ S such that bn = x1a and
bn = ax2.

A semigroup S is called a semilattice (chain) of t-Archimedean semigroups if
there exists a congruence ρ on S such that S/ρ is a semilattice (chain) and each
ρ-class is a t-Archimedean semigroup.

Let S be a semigroup. De�ne a binary relation σ on S by : for a, b ∈ S,

aσb⇐⇒ b ∈
√
SaS ⇐⇒ bn ∈ SaS, for some n ∈ N.

Then a3 ∈ SaS shows that a ∈
√
SaS, i.e., σ is re�exive. So the transitive closure

ρ = σ∗ is re�exive and transitive and therefore the symmetric relation η = ρ∩ρ−1
is an equivalence relation. Thus the equivalence relation η is the least semilattice
congruence on S.

Recall that for every a ∈ S, Q(a) = L(a)∩R(a). In general neither L(a) = Sa
nor R(a) = aS. Also, Sa ∩ aS is a quasi-ideal of S which may not contain a. But
we have the following lemma.

Lemma 4.1. Let S be a semigroup. Then
√
Q(a)=

√
Sa ∩ aS=

√
Sa ∩

√
aS for

all a ∈ S.

Lemma 4.2. Let S be a semigroup such that for all a, b ∈ S, ab ∈
√
Sa ∩

√
bS.

Then

(1) for all a, b ∈ S, a ∈ Sb ∩ bS ⇒ for every r ∈ N there are n ∈ N, x ∈ S such
that an = b2

r

xb2
r

and hence a ∈
√
Q(b2r );
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(2) for all a, b ∈ S, a ∈
√
Q(b) implies that

√
Q(a) ⊆

√
Q(b);

(3) the least semilattice congruence η on S is given by: for all a, b ∈ S,

aηb if b ∈
√
Q(a) and a ∈

√
Q(b).

Proof. (1). Let a, b ∈ S with a ∈ Sb ∩ bS. Then there exist s1, s2 ∈ S such that
a = s1b = bs2. Also, there exist n ∈ N and u1, u2 ∈ S such that (bs1)

n = u1b and
(s2b)

n = bu2. Then an+1 = s1(bs1)
nb = s1u1b

2 and an+1 = b(s2b)
ns2 = b2u2s2.

Then a2(n+1) = b2u2s2s1u1b
2 implies that the result is true for r = 1. Let for

k ∈ N, there is p ∈ N and x ∈ S such that ap = b2
k

xb2
k

. Then proceeding as

above, we have q ∈ N and y ∈ S such that aq = b2
k+1

yb2
k+1

. Thus the result
follows by the principle of Mathematical induction.

The last part follows by Lemma 4.1.
(2). For a ∈

√
Q(b), there are n ∈ N and s1, s2 ∈ S such that an = s1b = bs2.

Let x ∈
√
Q(a). Then there exists m ∈ N such that xm ∈ Sa ∩ aS. Let r ∈ N

be such that 2r > n. Then, by (1), we �nd p ∈ N and u ∈ S such that xp =
a2

r

ua2
r

which implies that xp = ana2
r−nua2

r−nan = bs2a
2r−nua2

r−ns1b. Then
x ∈

√
Q(b), by the Lemma 4.1.

(3). Consider a ∈ S. Then x ∈
√
Q(a) implies that xn = s1a = as2 for

some n ∈ N and s1, s2 ∈ S. Then xn+n = s1a
2s2 implies that x ∈

√
SaS. Thus√

Q(a) ⊆
√
SaS. Let y ∈

√
SaS. Then there are m ∈ N and t1, t2 ∈ S such

that ym = t1at2. Again t1at2 ∈
√
St1a ⊆

√
Sa and t1at2 ∈

√
at2S ⊆

√
aS implies

that ym ∈
√
aS ∩

√
Sa =

√
Q(a) and so y ∈

√
Q(a), by the Lemma 4.1. Thus√

SaS ⊆
√
Q(a) and hence

√
Q(a) =

√
SaS.

Now for a, b ∈ S, aηb implies that there are c1, c2, . . . , cn, d1, d2, . . . , dm ∈ S
such that aσc1, c1σc2, . . . , cn−1σcn, cnσb and bσd1, d1σd2, . . . , dm−1σdm, dmσa.
These give c1 ∈

√
Q(a), c2 ∈

√
Q(c1), . . . , b ∈

√
Q(cn) and d1 ∈

√
Q(b), d2 ∈√

Q(d1), . . . , a ∈
√
Q(dm) so that b ∈

√
Q(a) and a ∈

√
Q(b), by (2).

Recall that for a, b ∈ S,

aHb ⇐⇒ Q(a) = Q(b).

Let us de�ne
√
H, the radical of H on S by: for a, b ∈ S,

a
√
Hb ⇐⇒

√
Q(a) =

√
Q(b).

Now we have the main theorem of this section:

Theorem 4.3. The following conditions are equivalent on a semigroup S:

(1) S is a t-Putcha semigroup;

(2) for all a, b ∈ S, b ∈ SaS implies b ∈
√
Q(a);
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(3) for all a, b ∈ S, ab ∈
√
Sa ∩

√
bS;

(4)
√
Q is an ideal of S for every quasi-ideal Q of S;

(5)
√
Q(a) is an ideal of S, for all a ∈ S;

(6) N(a) = {x ∈ S | a ∈
√
Q(x)} for all a ∈ S;

(7) N =
√
H is the least semilattice congruence and the congruence classes are

t-Archimedean semigroups.

Proof. (1) ⇒ (2). Let ρ be a semilattice congruence on S such that the ρ-classes
Tα, α ∈ S/ρ are t-Archimedean semigroups. Let a, b ∈ S be such that b ∈ SaS.
Then there are s1, s2 ∈ such that b = s1as2. Now s1as2ρas1s2ρs1s2a implies that
b, as1s2, s1s2a ∈ Tα for some α ∈ S/ρ. Since Tα is a t-Archimedean semigroup,
there exist n ∈ N and u1, u2 ∈ Tα such that bn = as1s2u1 and b

n = u2s1s2a. Thus
b ∈

√
Q(a), by Lemma 4.1.

(2) ⇒ (3). Let a, b ∈ S. Now (ab)2 = abab implies (ab)2 ∈ SaS ∩ SbS. Then
(ab)2 ∈

√
Q(a) ∩

√
Q(b) ⊆

√
Sa ∩

√
bS and hence ab ∈

√
Sa ∩

√
bS.

(3)⇒ (4). Let Q be a quasi-ideal of S and let u ∈
√
Q and c ∈ S. Then un = q

for some n ∈ N, q ∈ Q. Also by (3), there is m ∈ N such that (uc)m ∈ Su and
(uc)m+1 ∈ uSu. Consider r ∈ N such that 2r > n. Then by Lemma 4.2, there are
m1 ∈ N and x ∈ S such that (uc)m1 = u2

r

xu2
r

= qu2
r−nxu2

r−nq which implies
that uc ∈

√
qS ∩ Sq =

√
Q(q) ⊆

√
Q, by Lemma 4.1. Similarly, cu ∈

√
Q. Thus√

Q is an ideal of S.
(4)⇒ (5). Trivial.
(5) ⇒ (3). Let a, b ∈ S. Then

√
Q(a) and

√
Q(b) are ideals of S. Then

ab ∈
√
Q(a) ∩

√
Q(b) and hence ab ∈

√
Sa ∩

√
bS.

(3) ⇒ (6). Let a ∈ S and F = {x ∈ S|a ∈
√
Q(x)}. Consider y, z ∈ F .

Then there exist n ∈ N, u1, u2 ∈ S such that an = u1z and an = yu2. Also,
by (3), there are m1,m2 ∈ N, w1, w2 ∈ S such that (u2u1zy)

m1 = zyw1 and
(zyu2u1)

m2 = w1zy. Now a2n = yu2u1z implies a2n(m1+1) = (yu2u1z)
m1+1 =

y(u2u1zy)
m1u2u1z = (yz)yw1u2u1z. Also, a2n(m2+1) = yu2u1zw2z(yz). Thus

yz ∈ F , by Lemma 4.1; and hence F is a subsemigroup of S.
Let y, z ∈ S be such that yz ∈ F . Then a ∈

√
Q(yz) =

√
yzS ∩

√
Syz ⊆√

yS ∩
√
Sz. Now, by (3), yz ∈

√
Sy, and so yz ∈

√
yS ∩

√
Sy =

√
Q(y), by

Lemma 4.1. Then
√
Q(yz) ⊆

√
Q(y), by Lemma 4.2. Thus a ∈

√
Q(y) and hence

y ∈ F . Similarly, z ∈ F . Thus F is a �lter that contains a. Let T be a �lter of
S containing a and y ∈ F . Then am = sy for some m ∈ N, s ∈ S. Now am ∈ T
implies sy ∈ T and hence y ∈ T . Thus F = N(a).

(6)⇒ (7). Consider a, b ∈ S. Then ab ∈ N(ab) implies that a, b ∈ N(ab). Then,
by (6), ab ∈

√
Q(a) ∩

√
Q(b) ⊆

√
Sa ∩

√
bS. If aN b then N(a) = N(b) implies

that b ∈
√
Q(a) and a ∈

√
Q(b). So,

√
Q(b) ⊆

√
Q(a) and

√
Q(a) ⊆

√
Q(b),

by Lemma 4.2. Thus a
√
Hb and hence N ⊆

√
H. Similarly,

√
H ⊆ N . Hence

N =
√
H is the least semilattice congruence.
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Let T be an N -class in S. Since N is a semilattice congruence, T is a sub-
semigroup. Consider a, b ∈ T . Then a2N b implies that N(a2) = N(b); and by (6)
we have b ∈

√
Q(a2). Thus there are n ∈ N and s1, s2 ∈ S such that bn = s1a

2

and bn = a2s2 which implies that bn+1 = bs1a
2 and bn+1 = a2s2b. Since N is

a semilattice congruence, t1 = bs1aN bs1a2N bn+1N b and t2 = as2bN b which im-
plies that t1 = bs1a ∈ T and t2 = as2b ∈ T . Thus b ∈

√
Ta ∩

√
aT and hence T is

a t-Archimedean semigroup.
(7)⇒ (1). Follows directly.

Theorem 4.4. The following conditions on a semigroup S are equivalent:

(1) S is a chain of t-Archimedean semigroups.

(2) S is a t-Putcha semigroup and for all a, b ∈ S, b ∈
√
Q(a) or a ∈

√
Q(b).

(3) For all a, b ∈ S, N(a) = {x ∈ S | a ∈
√
Q(x)} and N(ab) = N(a) ∪N(b).

(4) N =
√
H is the least chain congruence on S such that each of its congruence

classes is t-Archimedean.

Proof. (1)⇒ (2). Let S be a chain C of t-Archimedean semigroups Sα(α ∈ C). Let
a, b ∈ S. Then a ∈ Sα and a ∈ Sβ for some α, β ∈ C. Since C is a chain, either
αβ = α or αβ = β. If αβ = α, then a, ab ∈ Sα; and since Sα is a t-Archimedean
semigroup, there exist n ∈ N and x1, x2 ∈ Sα such that an = x1ab and a

n = abx2.
Now, by Theorem 4.3, since S is a semilattice of t-Archimedean semigroup, there
are m ∈ N and s ∈ S such that (abx2)

m = bx2s. Then we have anm = s1b and
anm = bx2s for some s1 ∈ S and hence a ∈

√
Q(b), by Lemma 4.1. If αβ = β,

then b, ab ∈ Sβ and similarly as above we have b ∈
√
Q(a).

(2) ⇒ (3). By Theorem 4.3, we have N(a) = {x ∈ S | a ∈
√
Q(x)}, since S

is a t-Putcha semigroup. Let a, b ∈ S. Then ab ∈ N(ab) implies that a ∈ N(ab)
and b ∈ N(ab), and hence N(a) ∪ N(b) ⊆ N(ab). Again, either a ∈

√
Q(b) or

b ∈
√
Q(a). If a ∈

√
Q(b), then there are n ∈ N and s ∈ S such that an = bs

and so an+1 = abs. Since S is a semilattice of t-Archimedean semigroups, there
exist m ∈ N and t ∈ S such that (abs)m = tab, by Theorem 4.3. Then we have
a(n+1)m = tab and a(n+1)m = abt1 for some t1 ∈ S. Then a ∈

√
Q(ab) which

implies that ab ∈ N(a). Thus N(ab) ⊆ N(a). If b ∈
√
Q(a), then similarly we

have N(ab) ⊆ N(b), which shows that N(ab) ⊆ N(a) ∪ N(b). Hence N(ab) =
N(a) ∪N(b).

(3) ⇒ (4). It follows by Theorem 4.3 that N =
√
H is the least semilattice

congruence on S and each N -class is a t-Archimedean semigroup.
Now consider a, b ∈ S. Then ab ∈ N(a) ∪ N(b) shows that ab ∈ N(a) or

ab ∈ N(b). Again N(a) ⊆ N(ab) and N(b) ⊆ N(ab). Thus either N(ab) ⊆ N(a) ⊆
N(ab) or N(ab) ⊆ N(b) ⊆ N(ab). i.e., either aNab or bNab. Hence N is a chain
congruence on S. Since every chain is a semilattice and N is the least semilattice
congruence, it is the least chain congruence on S.

(4)⇒ (1). Trivial.
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Theorem 4.5. The following conditions on a semigroup S are equivalent:

(1) S is a chain of t-Archimedean semigroups;

(2)
√
Q is a completely prime ideal of S for every quasi-ideal Q of S;

(3)
√
Q(a) is a completely prime ideal of S for every a ∈ S;

(4)
√
Q(ab) =

√
Q(a) ∩

√
Q(b) for all a, b ∈ S and every quasi-ideal of S is

semiprimary .

Proof. (1)⇒ (2). Let S be a chain C of t-archimedean semigroups {Sα |α ∈ C}. We
take a quasi-ideal Q of S. Then

√
Q is an ideal of S, by Theorem 4.3. Let x, y ∈ S

be such that xy ∈
√
Q. Then there is n ∈ N such that (xy)n = u ∈ Q. Suppose

x ∈ Sα and y ∈ Sβ ,α, β ∈ C . Since C is a chain, either αβ = α or αβ = β.

If αβ = α, then x, u ∈ Sα. Since Sα is t-Archimedean, so x ∈
√
Q(u) ⊆

√
Q.

Similarly, if αβ = β, then y ∈
√
Q. Hence

√
Q is a completely prime ideal of S.

(2)⇒ (3). Obvious.
(3) ⇒ (4). Let a, b ∈ S. Then

√
Q(a) and

√
Q(b) are ideals of S and hence

ab ∈
√
Q(a) ∩

√
Q(b). This implies

√
Q(ab) ⊆

√
Q(a) ∩

√
Q(b), by Lemma 4.2

and Theorem 4.3. Since
√
Q(ab) is completely prime, so a, b ∈

√
Q(ab) which

implies
√
Q(a) ∩

√
Q(b) ⊆

√
Q(ab). Thus

√
Q(ab) =

√
Q(a) ∩

√
Q(b).

Let Q be a quasi-ideal of S and x, y ∈ S be such that xy ∈ Q. Then xy ∈√
Q(xy) implies that x ∈

√
Q(xy) or y ∈

√
Q(xy). Thus xn ∈

√
Q(xy) ⊆ Q or

yn ∈
√
Q(xy) ⊆ Q for some n ∈ N. Hence Q is semiprimary.

(4) ⇒ (1). Let a, b ∈ S. Then ab ∈
√
Q(a) ∩

√
Q(b) ⊆

√
Sa ∩

√
bS. Then

by Theorem 4.3, S is a t-Putcha semigroup. Since
√
Q(ab) is a semiprimary,

ab ∈ Q(ab) implies that a ∈
√
Q(ab) =

√
Q(a)∩

√
Q(b) ⊆

√
Q(b) or b ∈

√
Q(ab) ⊆√

Q(a). Thus S is a chain of t-Archimedean semigroups by Theorem 4.4.
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Normal edge-transitive Cayley graphs

on certain groups of orders 4n and 8n

Mohammad Reza Darafsheh and Majid Abdollahi

Abstract. Normal edge-transitive Cayley graph Cay(G,S) where G is the generalized quater-

nion group Q4n of order 4n or a certain group V8n of order 8n is investigated. It is shown that up

to isomorphism there is only one tetravalent normal edge-transitive Cayley graph when G ∼= Q4n

is the generalized quaternion group and its automorphism group is found. In the case of V8n we

show that there is no normal edge-transitive Cayley graph on V8n.

1. Introduction

We will be concerned with simple graphs, which mean graphs with no multiple
edges and loops. Let Γ = (V,E) be a graph with vertex set V and edge set E.
The edge joining the vertices u and v is denoted by e = {u, v}. The group of the
automorphisms of the graph is denoted by A = Aut (Γ), and Γ is called vertex

or edge transitive if A acts transitively on V or E respectively. Let G be a �nite
group and S be a subset of G such that S = S−1 and 1 /∈ S. The Cayley graph
of G on S is denoted by Γ = Cay(G,S) and has its vertex set G and edge set
e = {x, sx} where x ∈ G and s ∈ S. Therefore Γ is a regular graph of valency |S|,
and it is connected if and only if S generates G. For g ∈ G the mapping de�ned
by ρg : G → G, ρg(x) = xg, x ∈ G is a permutation of G preserving the edges of
Γ, hence it is an automorphism of Γ. It can be veri�ed that R(G) = {ρg | g ∈ G}
is a subgroup of Aut(Γ) isomorphic to G which acts regularly on the vertices of Γ,
hence Γ is a vertex transitive graph.

For the Cayley graph Γ = Cay(G,S) we de�ne the group Aut(G,S) by putting
Aut(G,S) = {σ ∈ Aut(G) |σ(S) = S}. It can be veri�ed that Aut(G,S) is a sub-
group of A = Aut(Γ) which acts on R(G) by ρσg := ρσ−1(g), where σ ∈ Aut(G,S)
and ρg ∈ R(G). Therefore the semi-direct product R(G)oAut(G,S) is a subgroup
of A.

It is proved in [3] that NA(R(G)) = R(G) o Aut(G,S), where NA(R(G))
denotes the normalizer of R(G) in A. In [7] the graph Γ is called normal if R(G) is
a normal subgroup of A and obviously in this case we have A = R(G)oAut(G,S).
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The normality of Cayley graphs has been studied by various authors from
di�erent point of views. If one is interested to study the normality of the Cayley
graphs it su�ces to consider the connected normal Cayley graphs, because in [5]
all the disconnected normal Cayley graphs are determined. The research on edge-
transitive Cayley graphs of small valency is of interest to many authors. In [6]
the authors determined all the tetravalent edge-transitive Cayley graphs on the
group PSL2(p) and Brian P. Corr et al. in [1] determined normal edge-transitive
Cayley graphs of Frobenius group of order a product of two di�erent primes.
In [8] tetravalent non-normal Cayley graphs of order 4p, p a prime number, are
determined. In [2] the authors studied normal edge-transitive Cayley graphs on
group of order 4p where p is an odd prime. Motivated by [2] we are interested
to investigate normal edge-transitive Cayley graphs on the generalized quaternion
group of order 4n and a certain group of order 8n, where n is an arbitrary natural
number. In particular we obtain:

Main result 1. Let Q4n = 〈a, b | a2n = b4 = 1, an = b2, b−1ab = a−1〉 be the

generalized quaternion group of order 4n. Then up to isomorphism there is only

one normal edge-transitive tetravalent Cayley graph of G and its automorphism

group is isomorphic to GoD8 if n is even and isomorphic to Go (Z2 × Z2) if n
is odd.

Main result 2. Let V8n = 〈a, b | a2n = b4 = 1, (ab)2 = (a−1b)2 = 1〉 be a group

of order 8n. Then there is no normal edge-transitive Cayley graph on V8n.

2. Preliminary results

Let G be a group and S be a subset of G such that 1 /∈ S. The Cayley di-graph

(directed graph) Cay(G,S) of G relative to S has G as its vertex set and (x, sx)
as its edge set, where x ∈ G and s ∈ S. If S is an inverse closed subset of G, i.e.,
S = S−1, then Cay(G,S) is an undirected graph that is simply called a Cayley
graph. The following result can be found for example in [4].

Lemma 2.1. Let Γ = Cay(G,S) be the Cayley graph of G with respect to S. Then

the following hold:

(i) NA(R(G)) = R(G) oAut(G,S).

(ii) R(G) E A if and only if A = R(G) oAut(G,S).

(iii) Γ is normal i� A1 = Aut(G,S), where A1 denotes the stabilizer of the vertex

1 under A.

We set N = NA(R(G)) = R(G)oAut(G,S) and we remark that for the normal
edge-transitivity of Cay(G,S) the group N need only be transitive on undirected
edges, and may or may not be transitive on ordered pairs of adjacent vertices.
From [4] we have the following result which is useful in our investigation.
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Lemma 2.2. Let Γ = Cay(G,S) be an undirected Cayley graph of the group G on

S and let N = NA(R(G)) = R(G)oAut(G,S). Then the following are equivalent:

(i) Γ is normal edge-transitive.

(ii) S = T ∪ T−1 where T is an orbit of Aut(G,S) on S.

(iii) There exist a subgroup H of Aut(G) and g ∈ G such that S = gH ∪ (g−1)H ,

where gH = {gh |h ∈ H}.

3. Cayley graphs on a certain group of order 4n

First we consider the generalized quaternion group. The generalized quaternion
group of order 4n has the following presentation:

Q4n = 〈a, b | a2n = b4 = 1, an = b2, b−1ab = a−1〉.

It is easy to verify that the center Z of Q4n has order 2 generated by an = b2 and
Q4n

Z
∼= D2n. The elements of Q4n are of the form aibj , 0 6 i 6 2n − 1, j = 0, 1.

Element orders of Q4n is as follows:

O(ak) = 2n
(k,2n) , 0 6 k 6 2n− 1, (0, 2n) = 2n,

O(akb) = 4, 0 6 k 6 2n− 1.

Proposition 3.1. The automorphism group of Q4n is of order 2nϕ(2n) and is

isomorphic to the semi-direct product Z2n o Φ2n, where Φ2n is the group of units

of Z2n.

Proof. Let ϕ ∈ Aut(Q4n). Then ϕ is completely determined by de�ning ϕ(a) and
ϕ(b). Since ϕ preserves order of elements we have O(ϕ(a)) = 2n and O(ϕ(b)) = 4.
Therefore ϕ(a) = ak, where 1 6 k < 2n, (k, 2n) = 1. If ϕ(b) = alhas order 4,
then ϕ(〈a, b〉) ⊆ 〈a〉 or G ⊆ 〈a〉 which is a contradiction. Therefore ϕ(b) = alb,
0 6 l < 2n. It can be veri�ed that ϕ in fact de�nes an automorphism of Q4n and
if we set ϕk,l(a) = ak, ϕk,l(b) = alb with k, l satisfying the above conditions, then
ϕk,lϕk′,l′ = ϕkk′,l+kl′ , hence:

Aut(Q4n) = {ϕk,l | k ∈ Φ2n, l ∈ Z2n}

∼=
{[

k l
0 1

]
: k ∈ Φ2n, l ∈ Z2n

}
But if we set

N =

{[
1 l
0 1

]
: l ∈ Z2n

}
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and

H =

{[
k 0
0 1

]
: k ∈ Φ2n

}
,

then Aut(Q4n) = N oH ∼= Z2noΦ2n, where the group Φ2n has order ϕ(2n). The
proof is completed now.

Now let S be a subset of Q4n such that 1 /∈ S, S = S−1 and 〈S〉 = Q4n. Our
aim is to consider normal edge-transitive Cayley graphs Q4n on S. By Lemma
2.2, elements of S have the same order d and S = T ∪ T−1 where T is an orbit of
Aut(G,S). If S contains an element of order 2 this element must be b2 which is a
central element and invariant under Aut(G,S) and S can not break as S = T∪T−1.
This implies that |S| should be even. Since 〈a〉is a cyclic group of order 2n, for
each divisor d of 2n there is a unique subgroup of 〈a〉with order d and elements of
order d of 〈a〉 lie in this subgroup. If d 6= 4, elements of order d of Q4n lie in 〈a〉
and obviously can not generate Q4n.

Next we assume elements of S are of order d = 4. Keeping �xed the above
notations we state the following:

Proposition 3.2. S can not contain elements of order 4 contained in 〈a〉.

Proof. On the contrary suppose ak ∈ 〈a〉∩S has order 4. Then 2n
(k,2n) = 4 implying

n = 2(k, 2n). Hence n must be even and we set n = 2t which implies k is an odd

multiple of t, i.e., k = (2l + 1)t = (2l+1)n
2 . Then from 0 6 k < 2n we obtain l = 0

or 1, hence k = n
2 or 3n2 . This implies that the only elements of order4 in 〈a〉 are

a
n
2 and a

3n
2 .

But in this case if we apply the automorphisms ϕ ofQ4n obtained in Proposition
3.1 we see that {an

2 , a
3n
2 } is invariant under Aut(Q4n) . Again S can not break

as S = T ∪ T−1 with T as an Aut(G,S) orbit and this completes the proof.

By the above proposition if Cay(G,S) is normal edge-transitive, then we will
have S ⊆ {aib | 0 6 i < 2n}.

Proposition 3.3. Let 0 6 i 6= j < 2n. Then 〈aib, ajb〉 = Q4n if and only if

(i− j, 2n) = 1.

Proof. Suppose j < i, (i − j, 2n) = d and H = 〈aib, ajb〉. Then using the
de�ning relations for Q4n we deduce (aib)2 = b2 ∈ H. Therefore ai−j ∈ H. Since
(i − j, 2n) = d we obtain ad ∈ H and d is the least power of a belonging to H.

Now elements of H can be organized as aid, aidb2, 0 6 i <
2n

d
. Hence|H| = 4n

d

and H = Q4n if and only if d = 1 and the proof is complete.

Next we turn on tetravalent Cayley graphs of Q4n. By what we proved earlier
we have S = {aib, ajb, aib−1, ajb−1}, where (i−j, 2n) = 1. We de�ne the following
concept which is needed in the next result.
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If G is a group with two subsets S and T such that 1 /∈ S, 1 /∈ T , and if there
is an automorphism ϕ of G such that ϕ(S) = T , then Cay(G,S) is isomorphic to
Cay(G,T ). In this case S and T are called equivalent.

Proposition 3.4. If (i− j, 2n) = 1, then {b, ab, b−1, ab−1} is equivalent to

{aib, ajb, aib−1, ajb−1}.

Proof. It is enough to apply the automorphism ϕj−i,i of Q4n to one of the above
sets.

Theorem 3.5. There is only one tetravalent normal edge-transitive Cayley graph

of Q4n and the automorphism group of this graph is isomorphic to Q4n oD8 if n
is even and isomorphic to Q4n o (Z2 × Z2) if n is odd.

Proof. By Proposition 3.3 we have S ⊆ {aib | 0 6 i < 2n} and |S| = 4, S = S−1,
〈S〉 = Q4n forces S = {aib, ajb, aib−1, ajb−1} for some i, j where (i − j, 2n) = 1.
Now by Proposition 3.4 we may take S = {b, ab, b−1, ab−1}. This proves that up
to equivalence there is a unique tetravalent normal edge-transitive Cayley graph
of Q4n. Next we determine Aut(Q4n, S).

Since 〈S〉 = Q4n the group Aut(Q4n, S) acts on S faithfully, from which we
deduce Aut(Q4n, S) 6 S4. If Aut(Q4n, S) contains an element σ of order 3, then
σ would �x an element say α ∈ S, but in this case σ(α−1) = α−1 and σ can not
be a 3-cycle. Therefore |Aut(Q4n, S)| is a divisor of 8. It is easy to verify that
the elements ϕ1,n and ϕ2n−1,1 belong to Aut(Q4n, S) and 〈ϕ1,n, ϕ2n−1,1〉 ∼= V4 the
Klein's four group. We distinguish two cases:

Case (i). n is even. In this case ϕn−1,1 is also an element of Aut(G,S)
of order 4 and 〈ϕn−1,1, ϕ2n−1,1, ϕ1,n〉 ∼= D8 is a subgroup of Aut(Q4n, S), hence
Aut(Q4n, S) ∼= D8 therefore the automorphism group of Cay(Q4n, S) is isomorphic
to Q4n oD8.

Case (ii). n is odd. In this case we will prove that Aut(Q4n, S) does not
contain an element of order 4. On the contrary suppose ϕk,l ∈ Aut(Q4n, S) is an
element of order 4. Therefore we have one of the cases ϕk,l(b) = ab, ϕk,l(ab) = b−1

or ϕk,l(b) = ab−1, ϕk,l(ab) = b. In the �rst case we obtain alb = ab and ak+lb =
b−1, hence al−1 = 1, ak+l+n = 1. Since a is of order 2n we obtain k = n− 1, and
because n is odd, 2|(n− 1, 2n) = (k, 2n) = 1, a contradiction. In the second case
we obtain alb = ab−1, ak+lb = b, hence al+n−1 = 1 and al+k = 1. Again from
these relations we obtain k = n− 1, a contradiction.

Since Aut(Q4n, S) does not contain elements of order 4 we obtain Aut(Q4n, S) ∼=
Z2 × Z2, hence the automorphism group of Cay(Q4n, S) is isomorphic to Q4n o
(Z2 × Z2) and the proof is complete.

4. Cayley graph of a group of order 8n

Next we are going to study the normal edge-transitive Cayley graphs of a certain
group of order 8n whose presentation is given as follows:



22 M. R. Darafsheh and M. Abdollahi

V8n = 〈a, b | a2n = b4 = 1, (ab)2 = (a−1b)2 = 1〉

where n is a natural number. Using similar techniques as used in the previous
section in �nding the automorphism group of Q4n one can prove the following:

Lemma 4.1. Aut(V8n) is a group of order 4nϕ(2n) if n > 1 and it is a group of

order 8 if n = 1.

Proof. In fact if n = 1, the group V1 = D8 is the dihedral group of order 8. To
de�ne an automorphism f of V8n it is enough to de�ne f(a) and f(b) which can be
veri�ed they are of the form:

fi,r,s,t(a) = aibr

fi,r,s,t(b) = a2tbs,

where (i, 2n) = 1, r = 0, 2, s = ±1, 1 6 t 6 n.

Lemma 4.2. For V8n we have

〈a2, b2, ab〉 = {a2k, a2k+1b±1, a2kb2 | 1 6 k 6 n}

Proof. If we set X = {a2k, a2k+1b±1, a2kb2 | 1 6 k 6 n} since {a2, b2, ab} ⊆ X it is
su�cient to show that X is a subgroup of V8n and it is obviously true.

Theorem 4.3. There is no normal edge-transitive Cayley graph Cay(G,S) for

G = V8n if S has an element of order 2.

Proof. Suppose Cay(G,S) is a normal edge-transitive Cayley graph and S has an
element of order 2.

Elements of order 2 in V8n are Y = {an, b2, anb2, a2k+1b±1 | 1 6 k 6 n}. Since
all elements of S have the same order we have S ⊆ Y . If n is even then 〈S〉 ⊆
〈Y 〉 ⊆ 〈a2, b2, ab〉 6= V8n, a contradiction. Hence n is odd.

If S ∩ {an, anb2} = ∅ then 〈S〉 ⊆ 〈a2, b2, ab〉 6= V8n a contradiction, hence
S ∩ {an, anb2} 6= ∅. For all f ∈ Aut(G,S) we have f({an, anb2}) = {an, anb2},
therefore S ∩{an, anb2} is an orbit of f ∈ Aut(G,S) on S and it is a contradiction
by Lemma 2.2.

Theorem 4.4. There is no normal edge-transitive Cayley graph Cay(G,S) for

G = V8n if S has an element of order 4.

Proof. Suppose Cay(G,S) is a normal edge-transitive Cayley graph and S has
an element of order 4. Elements of order 4 in V8n are a2tb±1 for odd n and are
{an

2 , a
n
2 b2, a2tb±1 | 1 6 t 6 n}.

Since Cay(G,S) is a normal edge transitive Cayley graph all elements of S
have order 4. If (n, 4) = 1 or (n, 4) = 4 then 〈S〉 ⊆ 〈a2, b〉 6= V8n, a contradiction.
Hence (n, 4) = 2 or equivalently n

2 is odd.
If S ∩ {an

2 , a
n
2 b2} = ∅ then 〈S〉 ⊆ 〈a2, b〉 6= V8n a contradiction, hence S ∩

{an
2 , a

n
2 b2} 6= ∅. For all f ∈ Aut(G,S) we have f({an

2 , a
n
2 b2}) = {an

2 , a
n
2 b2}
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therefore S ∩{an
2 , a

n
2 b2} is an orbit of Aut(G,S) on S and it is a contradiction by

Lemma 2.2. unless |S| = 4 and S = {an
2 , a

n
2 b2, a−

n
2 , a−

n
2 b2} and in these case we

also have 〈S〉 6= V8n.

Theorem 4.5. There is no normal edge-transitive Cayley graph on V8n.

Proof. Suppose Cay(G,S) is a normal edge-transitive Cayley graph. By Theorems
3.3 and 3.4 we know that S can not have elements of order 2 or 4, Hence we have
S ⊆ {ai, aib2 | 1 6 i 6 2n} consequently 〈S〉 ⊆ 〈a, b2〉 6= V8n, a contradiction.
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Filter theory in EQ-algebras based on soft sets

Young Bae Jun, Seok-Zun Song and Ghulam Muhiuddin

Abstract. Int-soft pre�lters (�lters) of EQ-algebras are introduced, and related properties are

investigated. Characterizations of int-soft pre�lters (�lters) of EQ-algebras are provided.

1. Introduction

Many-valued logics are uniquely determined by the algebraic properties of the
structure of its truth values. As a precise logic to deal with uncertainty and ap-
proximate reasoning, one can consider fuzzy logics. As well-known fuzzy logics,
one can also take residuated lattices based on fuzzy logics such as �ukasiewicz
logic, BL-logic, R0-logic, MTL-logic, and so forth. In fuzzy logics, it is generally
accepted that the algebraic structure should be a residuated lattice. MV -algebras,
BL-algebras, R0-algebras, MTL-algebras, and so forth are well-known classes of
residuated lattices. A new class of algebras called EQ-algebras has been recently
introduced by V. Novák and B. De Baets [9] with the intent to develop an algebraic
structure of truth values for fuzzy type theory. From the point of view of logic,
the main di�erence between residuated lattices and EQ-algebras lies in the way
the implication operation is obtained. It is obtained from a (strong) conjuction
in residuated lattices, but it is obtained from equivalence in EQ-algebras. Conse-
quently, the two types of algebras di�er in several essential points, despite their
many similar or identical properties. An EQ-algebra has three binary operations:
meet (∧), multiplication (⊗), and fuzzy equality (∼), and a unit element, whereas
the implication (→) is derived from the fuzzy equality (∼). Filter theory plays a
vital role in studying several algebraic structures such as residuated lattices, MV -
algebras, BL-algebras, R0-algebras, MTL-algebras, BCK/BCI-algebras, lattice
implication algebras, and so forth. M. El-Zekey et al. [2] have introduced and
studied the pre�lters and �lters of EQ-algebras. Liu and Zhang [5] have intro-
duced and studied the implicative and positive implicative pre�lters (�lters) of
EQ-algebras.

Soft set theory [8] has been �rstly proposed by a Russian researcher Molodtsov
in 1999. This is a general mathematical tool for dealing with uncertain, fuzzy, not
clearly de�ned objects. Generally, the soft set theory is di�erent from traditional
tools for dealing with uncertainties, such as the theory of probability, the theory

2010 Mathematics Subject Classi�cation: 03G25, 06D72, 06D99.
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of fuzzy sets and the theory of rough sets. Nowadays, work on the soft set theory
is progressing rapidly. Maji et al. [7] has been �rstly de�ned some operations on
soft sets. They also have been introduced the soft set into the decision-making
problem [6] that is based on the concept of knowledge reduction in the rough set
theory [10]. Jun et al. [4] has been introduced and studied int-soft �lters, int-soft
G-�lters, regular int-soft �lters, andMV -int-soft �lters in residuated lattices. Jun
et al. has been studied (implicative) int-soft �lters of R0-algebras (see [3]).

The aim of this paper is to study pre�lters (�lters) and positive implicative pre-
�lters (�lters) of EQ-algebras based on soft set theory. We study characterizations
of positive implicative int-soft pre�lters (�lters) of EQ-algebras, and establish the
extension property for positive implicative int-soft �lters.

2. Preliminaries

We display basic de�nitions and properties of EQ-algebras that will be used in
this paper. For more details of EQ-algebras, we refer the reader to [1], [2], and [5].

By an EQ-algebra we mean an algebra E := (E,∧,⊗,∼, 1) of type (2, 2, 2, 0)
in which the following axioms are valid:

(E1) (E,∧, 1) is a commutative idempotent monoid (i.e., ∧-semilattice with top
element 1),

(E2) (E,⊗, 1) is a monoid and ⊗ is isotone with respect to 6 (with x 6 y de�ned
as x ∧ y = x),

(E3) x ∼ x = 1,

(E4) ((x ∧ y) ∼ z)⊗ (a ∼ x) 6 z ∼ (a ∧ y),
(E5) (x ∼ y)⊗ (a ∼ b) 6 (x ∼ a) ∼ (y ∼ b),
(E6) (x ∧ y ∧ z) ∼ x 6 (x ∧ y) ∼ x,
(E7) x⊗ y 6 x ∼ y
for all x, y, z, a, b ∈ E.

The operation �∧� is called meet (in�mum) and �⊗� is called multiplication. If
the multiplication is commutative in an EQ-algebra E , then we say that E is a
commutative EQ-algebra.

Let E be an EQ-algebra. For all x ∈ L, we put x̃ = x ∼ 1. We also de�ne the
derived operation, so called implication and denoted by →, as follows:

(∀x, y ∈ E) (x→ y = (x ∧ y) ∼ x) . (1)

An EQ-algebra E is said to be residuated if (x ⊗ y) ∧ z = x ⊗ y if and only if
x ∧ ((y ∧ z) ∼ y) = x for all x, y, z ∈ E.

Proposition 2.1. Every (commutative) EQ-algebra E satis�es the following con-

ditions for all a, b, c, d ∈ E:
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(1) If a 6 b, then a → b = 1, a ∼ b = b → a, ã 6 b̃, c → a 6 c → b and

b→ c 6 a→ c,

(2) a⊗ b 6 a ∧ b 6 a, b and b⊗ a 6 a ∧ b 6 a, b,

(3) a→ b = a→ (a ∧ b),
(4) (a→ b)⊗ (b→ c) 6 a→ c,

(5) a→ b 6 (a ∧ c)→ (b ∧ c).

A subset F of an EQ-algebra E is called a pre�lter of E if it satis�es the
following conditions:

1 ∈ F, (2)

(∀a, b ∈ E) (a→ b ∈ F, a ∈ F ⇒ b ∈ F ) . (3)

A subset F of an EQ-algebra E is called a �lter of E if it is a pre�lter of E
with the following additional condition:

(∀a, b, c ∈ E) (a→ b ∈ F ⇒ (a⊗ c)→ (b⊗ c) ∈ F, (c⊗ a)→ (c⊗ b) ∈ F ) . (4)

A pre�lter (resp. �lter) F of an EQ-algebra E is said to be positive implicative

if the following assertion is valid:

(∀x, y, z ∈ E) (x→ (y → z) ∈ F, x→ y ∈ F ⇒ x→ z ∈ F ) . (5)

A soft set theory is introduced by Molodtsov [8]. In what follows, let U be an
initial universe set and X be a set of parameters. Let P(U) denotes the power set
of U and A,B,C, . . . ⊆ X.

A soft set (f̃ , A) of X over U is de�ned to be the set of ordered pairs

(f̃ , A) := {(x, f̃(x)) : x ∈ X, f̃(x) ∈ P(U)},

where f̃ : X → P(U) such that f̃(x) = ∅ if x /∈ A.

3. Int-soft pre�lters (�lters)

In what follows, let E denote a commutative EQ-algebra unless otherwise speci�ed.

De�nition 3.1. A soft set (f̃ , E) on E over U is called an int-soft pre�lter (resp.
int-soft �lter) of E if the set

iE (f̃ ; γ) := {x ∈ E | γ ⊆ f̃(x)}

is a pre�lter (resp. �lter) of E for all γ ∈ P(U) with iE (f̃ ; γ) 6= ∅.

We say that iE (f̃ ; γ) is the γ-inclusive set of (f̃ , E).
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Example 3.2. Let E = {0, a, b, 1} be a chain. We de�ne two binary operations
`⊗' and `∼' by the following tables:

⊗ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
1 0 a b 1

∼ 0 a b 1
0 1 a a a
a a 1 b b
b a b 1 1
1 a b 1 1

Then E := (E,∧,⊗,∼, 1) is an EQ-algebra (see [5]). The derived operation
�→� is described as the following table:

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b a b 1 1
1 a b 1 1

Then a soft set (f̃ , E) on E over U = Z de�ned by

f̃(x) :=

 4N if x ∈ {0, a},
4Z if x = b,
2Z if x = 1

is an int-soft pre�lter of E .

Example 3.3. Let E by as in the previous example an let

⊗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 a a
b 0 a 1 1
1 0 a 1 1

Then E := (E,∧,⊗,∼, 1) is an EQ-algebra (see [5]). The derived operation
�→� is described by table:

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a 1 1

Then a soft set (f̃ , E) on E over U = Z de�ned as follows:

f̃(x) :=

{
4Z if x ∈ {0, a},
2Z if x ∈ {b, 1}

is an int-soft �lter of E .
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Theorem 3.4. A soft set (f̃ , E) on E over U is an int-soft pre�lter of E if and

only if the following assertions are valid.

(∀x ∈ E)
(
f̃(x) ⊆ f̃(1)

)
, (6)

(∀x, y ∈ E)
(
f̃(x) ∩ f̃(x→ y) ⊆ f̃(y)

)
. (7)

Proof. Assume that (f̃ , E) is an int-soft pre�lter of E . For any x ∈ E, let f̃(x) =
γ. Then x ∈ iE (f̃ ; γ), and so iE (f̃ ; γ) 6= ∅. Thus iE (f̃ ; γ) is a pre�lter of E ,
and therefore 1 ∈ iE (f̃ ; γ). Hence f̃(1) ⊇ γ = f̃(x) for all x ∈ E. For any
x, y ∈ E, let f̃(x) ∩ f̃(x → y) = δ. Then f̃(x) ⊇ δ and f̃(x → y) ⊇ δ, that is,
x ∈ iE (f̃ ; δ) and x → y ∈ iE (f̃ ; δ). It follows from (3) that y ∈ iE (f̃ ; δ) and that
f̃(y) ⊇ δ = f̃(x) ∩ f̃(x→ y).

Conversely, let (f̃ , E) be a soft set on E over U that satis�es two conditions
(6) and (7). Let ε ∈ P(U) be such that iE (f̃ ; ε) 6= ∅. Then f̃(a) ⊇ ε for some
a ∈ iE (f̃ ; ε). Using (6), we have f̃(1) ⊇ f̃(a) ⊇ ε, and so 1 ∈ iE (f̃ ; ε). Let x, y ∈ E
be such that x ∈ iE (f̃ ; ε) and x→ y ∈ iE (f̃ ; ε). Then ε ⊆ f̃(x) and ε ⊆ f̃(x→ y).
It follows from (7) that ε ⊆ f̃(x) ∩ f̃(x→ y) ⊆ f̃(y) and that y ∈ iE (f̃ ; ε). Hence
iE (f̃ ; ε) is a pre�lter of E for all ε ∈ P(U) with iE (f̃ ; ε) 6= ∅, and therefore (f̃ , E)
is an int-soft pre�lter of E .

Theorem 3.5. A soft set (f̃ , E) on E over U is an int-soft �lter of E if and only

if it satis�es (6), (7) and

(∀x, y, z ∈ E)
(
f̃(x→ y) ⊆ f̃((x⊗ z)→ (y ⊗ z))

)
. (8)

Proof. Let (f̃ , E) be an int-soft �lter of E . Then (f̃ , E) is an int-soft pre�lter of
E , and so two conditions (6) and (7) are valid by Theorem 3.4. Let x, y ∈ E and
τ ∈ P(U) be such that f̃(x→ y) = τ . Then x→ y ∈ iE (f̃ ; τ). Since iE (f̃ ; τ) is a
�lter of E , we have (x⊗ z)→ (y ⊗ z) ∈ iE (f̃ ; τ) for all x, y, z ∈ E. It follows that

f̃((x⊗ z)→ (y ⊗ z)) ⊇ τ = f̃(x→ y)

for all x, y, z ∈ E.
Conversely, let (f̃ , E) be a soft set on E over U that satis�es (6), (7) and (8).

Then (f̃ , E) is an int-soft pre�lter of E by Theorem 3.4, and thus iE (f̃ ; γ) is a
pre�lter of E for all γ ∈ P(U) with iE (f̃ ; γ) 6= ∅. Let x, y ∈ E be such that
x→ y ∈ iE (f̃ ; γ). Then

f̃((x⊗ z)→ (y ⊗ z)) ⊇ f̃(x→ y) ⊇ γ

by (8), and so (x ⊗ z) → (y ⊗ z) ∈ iE (f̃ ; γ). Hence iE (f̃ ; γ) is a �lter of E , and
therefore (f̃ , E) is an int-soft �lter of E .

Proposition 3.6. Every int-soft pre�lter (f̃ , E) of E for all x, y ∈ E satis�es the

following assertions:
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(1) if x 6 y, then f̃(x) ⊆ f̃(y),

(2) f̃(x⊗ y) ⊆ f̃(x) ∩ f̃(y).

Proof. (1). Let x, y ∈ E be such that x 6 y. Then x→ y = 1 by Proposition 2.1.
It follows from (6) and (7) that f̃(y) ⊇ f̃(x) ∩ f̃(x→ y) = f̃(x) ∩ f̃(1) = f̃(x).

(2). Using Proposition 2.1(2) and item (1), we have f̃(x⊗y) ⊆ f̃(x)∩ f̃(y).

Theorem 3.7. For a soft set (f̃ , E) on E over U , the following are equivalent.

(1) (f̃ , E) is an int-soft pre�lter of E .

(2) (∀x, y, z ∈ E)
(
x 6 y → z ⇒ f̃(x) ∩ f̃(y) ⊆ f̃(z)

)
.

(3) (∀x, y, z ∈ E)
(
x→ (y → z) = 1 ⇒ f̃(x) ∩ f̃(y) ⊆ f̃(z)

)
.

Proof. (1) ⇒ (2). Let x, y, z ∈ E be such that x 6 y → z. Then f̃(x) ⊆ f̃(y → z)
by Proposition 3.6(1). Using (7), we get

f̃(z) ⊇ f̃(y) ∩ f̃(y → z) ⊇ f̃(x) ∩ f̃(y).

(2) ⇒ (3). Let x, y, z ∈ E be such that x→ (y → z) = 1. Then

x 6 1 = x→ (y → z),

and so f̃(x) ⊆ f̃(y → z) by (2). Since y → z 6 y → z, it follows from (2) that

f̃(z) ⊇ f̃(y → z) ∩ f̃(y) ⊇ f̃(x) ∩ f̃(y).

(3) ⇒ (1). Since x → (x → 1) = 1 for all x ∈ E, it follows from (3) that
f̃(x) ⊆ f̃(1) for all x ∈ E. Note that (x → y) → (x → y) = 1 for all x, y ∈ E.
Thus f̃(x) ∩ f̃(x → y) ⊆ f̃(y) for all x, y ∈ E by (3). Therefore (f̃ , E) is an
int-soft pre�lter of E by Theorem 3.4.

Proposition 3.8. For any int-soft �lter (f̃ , E) of E , for all x, y, z ∈ E the fol-

lowing assertions are valid.

(1) f̃(x⊗ y) = f̃(x) ∩ f̃(y),
(2) f̃(x→ z) ⊇ f̃(x→ y) ∩ f̃(y → z).

Proof. (1). The inclusion f̃(x⊗ y) ⊆ f̃(x) ∩ f̃(y) follows from Proposition 3.6(2).
Note that y 6 1→ y for all y ∈ E. It follows from Proposition 3.6(1) and (8) that

f̃(y) ⊆ f̃(1→ y) ⊆ f̃((x⊗ 1)→ (x⊗ y)) = f̃(x→ (x⊗ y))

and from (7) that f̃(x⊗ y) ⊇ f̃(x)∩ f̃(x→ (x⊗ y)) ⊇ f̃(x)∩ f̃(y) for all x, y ∈ E.
(2). Combining Proposition 2.1(4), Proposition 3.6(1) and item (1) induces

f̃(x→ z) ⊇ f̃((x→ y)⊗ (y → z)) = f̃(x→ y) ∩ f̃(y → z)

for all x, y, z ∈ E.
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4. Int-soft pre�lters (�lters)

De�nition 4.1. A soft set (f̃ , E) on E over U is called a positive implicative

int-soft pre�lter (�lter) of E if the nonempty γ-inclusive set of (f̃ , E) is a positive
implicative pre�lter (�lter) of E for all γ ∈ P(U).

Example 4.2. The int-soft �lter (f̃ , E) in Example 3.3 is positive implicative,
but the int-soft pre�lter (f̃ , E) in Example 3.2 is not positive implicative because
if we take τ ∈ P(U) with 4N ( τ ⊆ 4Z, then iE (f̃ ; τ) = {b, 1} is not a positive
implicative pre�lter of E .

Theorem 4.3. A soft set (f̃ , E) on E over U is a positive implicative int-soft

pre�lter (�lter) of E if and only if it is an int-soft pre�lter (�lter) of E that

satis�es an additional condition:

(∀x, y, z ∈ E)
(
f̃(x→ (y → z)) ∩ f̃(x→ y) ⊆ f̃(x→ z)

)
. (9)

Proof. Assume that (f̃ , E) is a positive implicative int-soft pre�lter (�lter) of E .
Then iE (f̃ ; τ) is a positive implicative pre�lter (�lter) of E for all τ ∈ P(U) with
iE (f̃ ; τ) 6= ∅, and therefore iE (f̃ ; τ) is a pre�lter (�lter) of E . Hence (f̃ , E) is an
int-soft pre�lter (�lter) of E . Let x, y, z ∈ E be such that f̃(x→ (y → z))∩ f̃(x→
y) = ε. Then x → (y → z) ∈ iE (f̃ ; ε) and x → y ∈ iE (f̃ ; ε), which implies from
(5) that x→ z ∈ iE (f̃ ; ε). Thus

f̃(x→ z) ⊇ ε = f̃(x→ (y → z)) ∩ f̃(x→ y).

Conversely, let (f̃ , E) be an int-soft pre�lter (�lter) of E that satis�es (9).
Then iE (f̃ ; ε) is a pre�lter (�lter) of E for all ε ∈ P(U) with iE (f̃ ; ε) 6= ∅. Let
x, y, z ∈ E be such that x → (y → z) ∈ iE (f̃ ; ε) and x → y ∈ iE (f̃ ; ε). Then
ε ⊆ f̃(x→ (y → z)) and ε ⊆ f̃(x→ y). It follows from (9) that

ε ⊆ f̃(x→ (y → z)) ∩ f̃(x→ y) ⊆ f̃(x→ z)

and that x → z ∈ iE (f̃ ; ε). Hence iE (f̃ ; ε) is a positive implicative pre�lter
(�lter) of E for all ε ∈ P(U) with iE (f̃ ; ε) 6= ∅, and therefore (f̃ , E) is a positive
implicative int-soft pre�lter (�lter) of E .

Theorem 4.4. If an int-soft �lter of E satis�es the following assertion

(∀x, y ∈ E)
(
f̃(((x→ y) ∧ x)→ y) = f̃(1)

)
, (10)

then it is a positive implicative int-soft �lter of E .

Proof. Let (f̃ , E) be an int-soft �lter of E that satis�es the condition (10). Using
Proposition 2.1(5) and Proposition 2.1(3), we have

x→ (y → z) 6 (x ∧ y)→ ((y → z) ∧ y) and x→ y = x→ (x ∧ y).
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It follows from (6), Proposition 3.6, Proposition 3.8(2) and (10) that

f̃(x→ y) ∩ f̃(x→ (y → z)) = f̃(x→ y) ∩ f̃(x→ (y → z)) ∩ f̃(1)
⊆ f̃(x→ (x ∧ y)) ∩ f̃((x ∧ y)→ ((y → z) ∧ y)) ∩ f̃(1)
⊆ f̃(x→ ((y → z) ∧ y)) ∩ f̃(((y → z) ∧ y)→ z) ⊆ f̃(x→ z).

Therefore (f̃ , E) is a positive implicative int-soft �lter of E by Theorem 4.3.

Theorem 4.5. Let (f̃ , E) and (g̃, E) be int-soft �lters of E such that f̃(1) = g̃(1)
and f̃(x) ⊆ g̃(x) for all x ∈ E. If (f̃ , E) is positive implicative, then so is (g̃, E).

Proof. Indeed, g̃(((x → y) ∧ x) → y) ⊇ f̃(((x → y) ∧ x) → y) = f̃(1) = g̃(1), and
thus g̃(((x → y) ∧ x) → y)) = g̃(1) for all x, y ∈ E. Therefore (g̃, E) is a positive
implicative int-soft �lter of E by Theorem 4.4.
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Minimal ideals of Abel-Grassmann's groupoids

Waqar Khan, Faisal Yousafzai and Kar Ping Shum

Abstract. We study minimal (0-minimal) ideals, simple (0-simple) Abel-Grassmann's groupoids

and zeroids of an Abel-Grassmann's groupoid S. We consider S containing a minimal ideal which

is the union of all minimal left ideals of S. The completely simple Abel-Grassmann's groupoid

which is equal to the union of all its nonzero minimal left ideals is investigated. In addition, we

discuss a universally minimal left ideal of S which is a right ideal and is the kernel of S. Finally,

we prove that S contains a left zeroid if and only if it contains a universally minimal left ideal.

1. Introduction and preliminaries

The concept of an Abel-Grassmann's groupoid (abbreviated as AG-groupoid) was
�rst introduced by M. A. Kazim and M. Naseeruddin in 1972 which they called a
left almost semigroup [7]. P. Holgate [6] called the same structure a left invertive

groupoid. P. V. Proti¢ and N. Stevanovi¢ later called such a groupoid an Abel-

Grassmann's groupoid [12]. An AG-groupoid is in fact a groupoid S satisfying the
left invertive law (ab)c = (cb)a. The left invertive law can be stated by introducing
the braces on the left of ternary commutative law abc = cba. An AG-groupoid
satis�es the medial law (ab)(cd) = (ac)(bd). Since AG-groupoids satisfy the medial
law, they belong to the class of entropic groupoids. If an AG-groupoid S contains
a left identity, then it satis�es the paramedial law (ab)(cd) = (dc)(ba) and the
identity a(bc) = b(ac) [11]. An AG-groupoid is an algebraic structure which is
midway between a groupoid and a commutative semigroup. Consequently, an
AG-groupoid has many properties similar to to the properties of semigroups (cf.
for example [3], [4] and [5]), but AG-groupoids (also AG-groupoids with a left
identity) are non-associative and non-commutative in general.

The minimal ideals are interesting not only in itself but it also in�uences the
other properties of semigroups. In the literature, some interesting articles on
minimal ideals and their properties can be found, for instance, see [1, 2, 8] and [9].

In this paper, we investigate minimal ideals in a non-associative and non-
commutative AG-groupoid. We also discuss zeroids and divisibility in an AG-
groupoid and relate them with minimal ideals.

2010 Mathematics Subject Classi�cation: 20N20, 20M30, 20M32, 20M50, 20M99
Keywords: Abel-Grassmann's groupoid, 0-minimal ideal, 0-simple groupoid.
Research of the �rst author is supported by the NNSF of China ( # 11371335)



34 W. Khan, F. Yousafzai and K. P. Shum

By a unitary AG-groupoid, we mean a AG-groupoid S with a left identity e.
It is worth noticing that if S is a unitary AG-groupoid then Se = eS = S and
S = S2. A groupoid with the property S = S2 is called surjective.

If I ⊆ S and SI ⊆ I (IS ⊆ I) , then I is called a left (right) ideal of S. If I
is both a left and right ideal of S, then I is called a two-sided ideal or simply an
ideal of S. A left ideal L of an AG-groupoid S is minimal if every left ideal M of
S included in L coincides with L. A similar statement holds for the right ideal.
Let S∗ be an AG-groupoid and S∗ ⊇ S ⊇ A such that A is a left ideal of S and
S is a left ideal of S∗ with the assumption that A is idempotent. Then A is a left
ideal of S∗. In fact, the following equalities always hold.

S∗A = S∗ ·AA ⊆ S∗ ·AS = A · S∗S ⊆ AS = AA · SS = SA · SA ⊆ A.

Notice that the property of being left ideal is transitive only if we impose an
extra condition on a left ideal A. In general, being a left ideal is not transitive. If
S is an AG-groupoid and A and B are ideals of the same type, then A∩B is either
empty or an ideal of the same type as A and B. Also if S is an AG-groupoid, then
the union of any collection of ideals of the same type is an ideal of the same type.

If there is an element 0 of an AG-groupoid (S, ·) such that x0 = 0x = 0 for all
x ∈ S, then 0 is the zero element of S.

2. Minimal and 0-minimal ideals

In [8], the authors studied minimal ideals of an AG-groupoid. They have shown
that if L is a minimal left ideal of a unitary AG-groupoid, then Lc forms a minimal
left ideal of S for all c ∈ S which is a consequence of the following lemma.

Lemma 2.1. Let L be a left ideal of a unitary AG-groupoid S. Then the following

conditions are equivalent:

(i) L is a minimal left ideal of S;
(ii) Lx = L for every x ∈ L;
(iii) Sx = L holds for every x ∈ L.

Proof. (i) ⇒ (ii). Let L be a minimal left ideal of S and x ∈ L. Then Lx ⊆ L.
Moreover, S · Lx = Se · Lx = SL · ex ⊆ Lx. Thus, Lx is a left ideal of S and, by
the minimality of L, we have Lx = L for every x ∈ L.

(ii)⇒ (iii) is simple.
(iii)⇒ (i). Let L be a left ideal of S such that Sx = L holds for every x ∈ L.

Assume that M is a left ideal of S which is contained in L and let x ∈ M. Then
x ∈ L and therefore, L = Sx ⊆ SM ⊆M . Hence L = M.

Lemma 2.2. A left ideal L (a right ideal R of a unitary AG-groupoid S is a

minimal left (right) ideal of S if and only if L = Sa for all a ∈ L (respectively,
R = Sa2 for every a ∈ R).



Minimal ideals of Abel-Grassmann's groupoids 35

Theorem 2.3. If a unitary AG-groupoid S contains a minimal left ideal L such

that L is idempotent, then S contains a minimal ideal which is the union of all the

minimal left ideals of S.

Proof. Assume that L is a minimal left ideal of S. Then, as a consequence of
Lemma 2.1, LS is the union of all the minimal left ideals of S, that is LS = ∪

s∈S
Ls.

Now we have the following equalities:

LS · S = SS · L = SL = SS · LL = LL · SS = LS,

and
S · LS = SS · LS = SL · SS ⊆ LS.

Hence, we can easily show that LS is an ideal of S. Further, we may suppose
that I is an ideal of S such that I ⊆ LS. Then S(I · LS) ⊆ LS. Therefore by the
minimality of L, we have I · LS = L. Thus LS = (I · LS)S ⊆ IS · S ⊆ I. Hence,
we can see that S contains a minimal two sided ideal which is a union of all the
minimal left ideals of S.

Corollary 2.4. A unitary AG-groupoid S will have no proper ideals if and only

if S is the union of all its minimal left ideals.

Corollary 2.5. If a unitary AG-groupoid S contains a minimal left ideal L and

an ideal I such that L is idempotent then L ⊆ I.

Theorem 2.6. Let L, R and I be the minimal left, minimal right and minimal

ideal of a unitary AG-groupoid S respectively such that L is idempotent and R ⊆ I.
Then I = LR = LS ·R = LS = SR = LI = IR.

Proof. Since L2 = L, and R ⊆ I we have S ·LR = L·SR = L(SS ·R) = L(RS ·S) ⊆
LR and LR · S = SR ·L = SR ·LL = SL ·RL ⊆ LR. So, LR is an ideal of S and
therefore by minimality of I again, we have I ⊆ LR. Also it is easy to see that
LR ⊆ I, which shows hat I = LR. Thus,

S(LS ·R) = (SS)(LS ·R) = (S · LS)(SR)

= (SS · LS)(SR) = (SL · SS)(SR)

⊆ (L · SS)(SR) ⊆ LS ·R,

and

(LS ·R)S = (LS ·R)(SS) = (LS · S)(RS) ⊆ SL ·R
= (SS · LL)R = (SL · SL)R ⊆ LS ·R.

Hence, LS ·R is an ideal of S and, by the minimality of I, we obtain I ⊆ LS ·R.
Also it is easy to see that LS ·R ⊆ I, which implies that I = LS ·R. The remaining
results can be proved in the similar manner.
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Corollary 2.7. If L, L′, R, R′ are minimal left and minimal right ideals of a

unitary AG-groupoid S respectively, then LR = L′R′.

Lemma 2.8. If L is a minimal left ideal of a unitary AG-groupoid S, then L is

an AG-groupoid without proper left ideal.

Proof. Let L′ be a left ideal of L, then LL′ ⊆ L. As L is a left ideal of S, we have
S ·LL′ = Se ·LL′ = SL ·eL′ ⊆ LL′, The above result shows that LL

′
is a left ideal

of S contained in L and therefore by the minimality of L, we have L = LL
′ ⊆ L

′
.

This equality shows that L = L
′
and thus L contains no proper left ideal.

De�nition 2.9. A left (right) ideal M of an AG-groupoid S with zero is called
0-minimal if M 6= {0} and {0} is the only left (right) ideal of S properly contained
in M.

Theorem 2.10. Let M be a 0-minimal ideal of a unitary AG-groupoid S with

zero such that M2 6= {0} and S 6= {0}. If R 6= {0} is a right ideal of S contained

in M, then R2 6= {0}.

Proof. Let R be right ideal of S, then it is easy to show that RS is an ideal
of S. Therefore by the 0-minimality of M, either RS = {0} or RS = M. Let
RS = {0} . Since R is nonzero and would appear as an ideal of S contained in M,
therefore R = M. Thus, M2 ⊆MS = RS = {0}. This contradicts the hypothesis
of M. Thus RS = M and therefore M2 = RS · RS = R2S, which shows that
R2 6= {0}.

Lemma 2.11. Let S be a unitary AG-groupoid with zero and S 6= {0} . Then

Sa · S = S for every 0 6= a ∈ S if {0} is the only left ideal of S.

Proof. Assume that S2 6= {0} and {0} is the only left ideal of S. Further, suppose
that C = {c ∈ S : Sc · S = {0}} 6= ∅. If x ∈ C and y ∈ S, then

(S · yx)S = (y · Sx)(SS) = (yS)(Sx · S) = (Sx)(yS · S) ⊆ Sx · S = {0} .

The above equality implies yx ∈ C. Thus yx ∈ SC ⊆ C which means that C is a
left ideal of S. Therefore, either C = {0} or C = S. For the last case, we have

SC · S = S2S = SS = S = {0},

which contradicts our assumption. Hence, we have C = {0} and Sa · S 6= {0} for
all 0 6= a ∈ S. Since Sa · S is a left ideal of S, we have Sa · S = S.

Theorem 2.12. If a 0-minimal ideal A of a unitary AG-groupoid S with zero
contains at least one 0-minimal left ideal of S and A2 6= {0}, then every left ideal

of A is also a left ideal of S.
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Proof. Assume that L 6= {0} is a left ideal of A and a ∈ L\ {0} . By Lemmas
2.2, 2.11 and the fact that A2 6= {0} , we obtain Aa · A = A and Aa 6= {0} . By
Lemma 6.8 [8], S contains a left ideal L1 such that a ∈ L1 ⊆ A. Since Aa is a
nonzero left ideal of S contained in L1, we have Aa = L1. Thus, a ∈ Aa. Therefore
L ⊆ ∪{Aa : a ∈ L} . To show the converse statement let x ∈ ∪{Aa : a ∈ L}. Then
there exist elements b ∈ A and c ∈ L such that x = bc. Since AL ∈ L, it is
evident that x ∈ L. Thus L = ∪{Aa : a ∈ L} . By the union of a set of ideals,
∪{Aa : a ∈ L} is a left ideal of S.

3. Simple and completely 0-simple AG-groupoids

In this section, we consider an AG-groupoid which contains a zero but contains
no proper ideal except zero. If zero is the only element of an AG-groupoid, then
it would be a proper ideal. The fact that the intersection of two nonzero minimal
ideals might contain a zero element of an AG-groupoid di�erentiates it from the
class of non-zero ideals.

Theorem 3.1. If an AG-groupoid S without zero has at least one minimal left

ideal, then the sum of all its minimal left ideals is a two-sided ideal of S.

Proof. Let Aα be the minimal left ideals of S and B =
∑
αAα. Then B is a left

ideal. In fact: SB = S
∑
αAα =

∑
α SAα ⊆

∑
αAα = B. Also let a ∈ S, then

Ba =
∑
αAαa. But since Aαa is a minimal left ideal of S is contained in the

sum of all minimal left ideals, i.e Aαa ⊆ B holds for all a ∈ S. It shows that
Ba ∈ BS ⊆ B. Hence B is a two sided ideal of S.

Theorem 3.2. An AG-groupoid without zero having at least one minimal left ideal

is the sum of all its minimal left ideals if and only if it is simple.

Proof. Let S be simple and has at least one minimal left ideal L. By Theorem 3.1
the sum B of all the minimal left ideals is a two sided ideal of S. Thus B = S. As
B ⊂ S is contrary to the de�nition of simplicity of S.

Conversely, suppose that S =
∑
α Lα. Suppose that S has a two-sided subideal

A distinct from S, i.e., AS ⊆ A ⊂ S and SA ⊆ A ⊂ S. Then ALα is a left
ideal of S contained in Lα. In fact: S(ALα) = A(SLα) ⊆ ALα ⊂ Lα. Since
every Lα is a left ideal of S, according to the minimality, ALα = Lα. Therefore,
AS = A

∑
α Lα =

∑
αALα =

∑
Lα = S, which contradicts our supposition. Thus

S has no proper two sided ideal and hence is simple.

In a unitary AG-groupoid S the situation Sa 6= S (Sa2 6= S) for every a ∈ S is
possible. Indeed, such situation take place in a unitary AG-groupoid S with the
following multiplication table:
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. a b c d e
a a a a a a
b a b c d e
c a e b c d
d a d e b c
e a c d e b

De�nition 3.3. An AG-groupoid S is called left (right) simple if S is the only
left (right) ideal of S. It is called simple if it contains no proper ideal.

Theorem 3.4. A unitary AG-groupoid S is left (right) simple if and only if Sa = S
(Sa2 = S) for every a ∈ S.

Proof. Suppose that S is a left simple AG-groupoid. Let a ∈ S, Then

S · Sa = SS · Sa = aS · SS = aS · S = SS · a = Sa.

Thus Sa is a proper left ideal of S, but this contradicts our assumption. So,
Sa = S.

Conversely, suppose that Sa = S for all a ∈ S. Let L be a left ideal and b ∈ L.
Then S = Sb ⊆ SL ⊆ L and hence S = L.

Let S be right simple and a ∈ S. Then

Sa2 · S = SS · a2S = S · a2S = a2 · SS = SS · aa = Sa2.

The above shows that Sa2 is a proper right ideal of S, which is a contradiction to
the fact that S is right simple and therefore Sa2 = S.

The converse statement is obvious.

De�nition 3.5. An AG-groupoid S with zero is called 0-simple (left 0-simple,

right 0-simple) if S2 6= {0} and {0} is the only ideal (left ideal, right ideal) of S.

Theorem 3.6. Let S be a unitary AG-groupoid with zero and S 6= {0}. Then S
is left (right) 0-simple if and only if Sa · S = S (Sa2 · S = S) for every 0 6= a ∈ S.

Proof. The �rst part of the proof is a consequence of Lemma 2.11. To prove the
second part assume that Sa · S = S. Then S2 6= {0} because S = Sa · S ⊆ S2. Let
A 6= {0} be a left ideal of S and a ∈ A, then S = Sa · S ⊆ SA · S ⊆ A. Hence S is
left 0-simple. Similarly it can be proved for a right 0-simple AG-groupoid.

Corollary 3.7. A unitary AG-groupoid S without zero is left (right) simple if and

only if Sa · S = S (Sa2 · S = S) for all a ∈ S.

Lemma 3.8. Let {0} be the only ideal properly contained in a unitary AG-groupoid

S with 0. Then S is 0-simple.
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Proof. Since S2 is an ideal of S. We have either S2 = {0} or S2 = S. If S2 = {0},
then S = {0} and {0} is not the proper ideal of S, a clear contradiction. Now if
S2 6= {0}, then by de�nition, S is 0-simple.

Lemma 3.9. Let L (R) be a 0-minimal left (right) ideal of a 0-simple unitary

AG-groupoid S with zero. Then Sa = L (Sa2 = R) for a ∈ L\0 (a ∈ R\0).

Proof. Let L be a 0-minimal left ideal of S and a ∈ L\0. Then Sa is a left ideal of
S contained in L. By minimality of L, either Sa ={0} or Sa = L. The case Sa = 0
is impossible because a 6= {0} and therefore Sa = L. Similarly in the case for a
right ideal.

De�nition 3.10. If S is an AG-groupoid with zero such that S2 6= {0} and has
no proper nonzero ideal and has minimal left and minimal right nonzero ideals,
then S is said to completely simple AG-groupoid with zero.

Theorem 3.11. Let L be a minimal left ideal of a completely simple unitary AG-

groupoid S with zero such that L is idempotent. Then LS = S = A, where A is a

nonzero left ideal of S contained in LS.

Proof. Let S be an AG-groupoid and L be a nonzero minimal left ideal such that
L2 = L. Since we have LS · S = (LL · SS)S = (LS · LS)S ⊆ LL · S ⊆ LS, and
S · LS = SS · LS = SL · SS ⊆ LS, we see that LS is an ideal of S. If LS = {0},
then there exists only one minimal left ideal L, i.e., the zero ideal and S reduces
to L. Therefore LS = SS = S2 = {0}, which the contradicts the argument of S.
Hence our assumption is false and hence LS = S. Let A be a nonzero left ideal
of S contained in LS. Let a ∈ LS. Then there exists b ∈ L and y ∈ S such that
a = by. Since A ⊆ LS, therefore 0 6= f ∈ A has the form f = ty for t ∈ L and
y ∈ S. According to Lemma 2.1, every b ∈ L has the form b = st where s ∈ S.
Therefore, a = by = st · y = se · ty = se · f ∈ SA ⊆ A. It follows that LS ⊆ A and
hence LS = A.

Corollary 3.12. Let L be an idempotent minimal left ideal of a completely simple

unitary AG-groupoid S with zero. Then LS is a minimal left ideal of S.

Theorem 3.13. If S is a completely simple unitary AG-groupoid with a zero and

L and R are nonzero minimal left and right ideals of S respectively such that L
and R are idempotents. Then RL 6= {0}. If LR 6= {0}, then LR = S.

Proof. Similarly as in the proof of Theorem 3.11 we can prove that LS = S and
SR = S. Hence,

S = SS = SR · LS = (SS ·RR)(LS) = (RS · L)S = (LS ·RR)S

= (LR · SR)S = S(LR ·R) · S = (S ·RL)S.

The above equality implies that RL 6= {0} . If LR 6= {0}, then

S · LR = SS · LR = L(SS ·R) = L(RS · S) ⊆ LR
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and LR · S = (LL ·R)S ⊆ LR, which shows that LR is a two sided ideal of S and
therefore LR = S.

Corollary 3.14. If L is a nonzero minimal left ideal of a completely simple unitary

AG-groupoid S, then LR = S for some nonzero minimal right ideal R of S.

4. Zeroids and divisibility in AG-groupoids

The concept of zeroids in an AG-groupoid was given by Q. Mushtaq in [10], where
it is shown that every AG-groupoid has a left zeroid and characterized an AG-
groupoid in terms of zeroids.

De�nition 4.1. An element u of an AG-groupoid S is said to be a left (right)
zeroid of S if for every element a ∈ S, there exists x ∈ S such that u = xa (u = ax),
that is u ∈ Sa (u ∈ aS). An element is called zeroid if it is both a left and a right
zeroid.

De�nition 4.2. A left (right) ideal of an AG-groupoid S is called an universally

minimal left ideal of S if it is contained in every left (right) ideal of S. If an
AG-groupoid S has a minimal ideal K, then K is called the kernel of S.

Lemma 4.3. A unitary AG-groupoid S contains a left zeroid if and only if it

contains a universally minimal left ideal L and L contains all the left zeroids of S.

Proof. Assume that S contains a left zeroid and L consist of all left zeroids of S.
Then for a ∈ SL there exists x ∈ S and y ∈ L such that a = xy. Since L is the set
of all left zeroids, y = bc for some b ∈ S. Thus

a = xy = x · bc = ex · bc = cb · xe = (xe · b)c.

So, a is a left zeroid belonging to L. Hence SL ⊆ L and L is a left ideal of S. Let
L1 be a left ideal of S. Then for b ∈ L1, Sb ⊆ SL1 ⊆ L1. Let z ∈ L, then since z
is a left zeroid, z ∈ Sb ⊆ L1 and therefore L ⊆ L1.

Conversely, if S contains a universally minimal left ideal L, then for any x ∈ S,
Sx is a left ideal of S and L ⊆ Sx. Hence for every a ∈ L we have a = yx for some
y ∈ S. Thus we a is a left zeroid of S.

Lemma 4.4. An universally minimal left ideal of a unitary AG-groupoid S is a

right ideal of S and is the kernel of S.

Proof. Assume that L is an universally minimal left ideal of S. Let p ∈ LS. Then
p = xy for x ∈ L and y ∈ S. By Theorem 2.3, Ly is a minimal left ideal of S and
by de�nition of L, L ⊆ Ly and hence L = Ly. Thus p ∈ Ly = L and therefore
LS ⊆ L, which shows that L is a right ideal of S. By de�nition, L contains no
proper ideal and hence is the kernel of S.
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Theorem 4.5. In a unitary AG-groupoid S with zeroids, every left zeroid is a

right zeroid and vice versa. The set of all zeroids of S is the kernel of S.

Proof. The proof follows from Lemmas 4.7 and 4.4.

An element a ∈ S is said to be divisible on the left (right) by b ∈ S if there
exist x, y ∈ S such that a = ax (a = yb).

Theorem 4.6. Let a and b be two distinct elements of a unitary AG-groupoid S.
Then a is divisible by b on the right if and only if the left ideal of a is contained

in the left ideal of b.

Proof. Suppose that a is divisible by b on the right. Then for some x ∈ S, a = xb.
Thus

Sa ∪ a = S · xb ∪ xb ⊆ S · Sb ∪ Sb = SS · Sb ∪ Sb

= bS · SS ∪ Sb = Sb ∪ Sb = Sb ⊆ Sb ∪ b.

Conversely, let Sa ∪ a ⊆ Sb ∪ b. Since a and b are distinct elements, therefore
we have a ∈ Sb, this means that there exists some y ∈ S such that a = yb.

Corollary 4.7. If some elements of a unitary AG-groupoid S are divisible by all

the elements of S, then the collection of such elements is a universally minimal

left ideal of S.

Proof. Let B be a non-empty collection of all such elements which are divisible by
all the elements of S on the right, then B is a left ideal of S. Indeed, for a1, a2 ∈ S,
there exists x ∈ S such that b = xa1 for b ∈ S. Thus

a2b = a2 · xa1 = ea2 · xa1 = a1x · a2e = (a2e · x)a1.

So, a2b is divisible on the right by a1 ∈ S and hence a2b ∈ B.
Let L be any arbitrary left ideal of S. Then for l ∈ L and b ∈ B, there exists

x ∈ S such that b = xl ∈ B. Hence, B ⊆ L and it is an universally minimal left
ideal of S.
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Flocks, groups and heaps, joined with semilattices

Arthur Knoebel

Abstract. This article describes the lattice of varieties generated by those of �ocks and near

heaps. Flocks and heaps are two ways of presenting groups by a ternary operation rather than

a binary one. Their varieties joined with that of ternary semilattices create the varieties of near

�ocks and near heaps. This is done by �nding normal forms for words that make up free algebras.

Simple sets of identities de�ne these varieties. Identities in general are decidable. Each near �ock

is a Pªonka sum of �ocks, and each near heap is a Pªonka sum of heaps. An algorithm translates

any binary group identity to one in a ternary operation satis�ed by near heaps.

1. Introduction

This article merges groups, which arise from composing permutations, with semi-
lattices, which are partial orders with least upper bounds. This is not done by
imposing an order on groups, of which there is an extensive literature, but by
joining their varieties. The varietal join of groups with semilattices is achieved
seamlessly with operations having three arguments instead of the usual two. There
are several ways to do this. We look at �ocks and heaps.

Figure 1 shows the lattice of these varieties. In each box are the algebras, the
name of their variety, and the identities de�ning it. The top box, containing all
of the varieties, is the new variety of near �ocks. We prove that these varieties
are related as depicted, and decompose algebras higher up into those lower down,
wherever possible.

The traditional binary operation × of a group has �ve desirable properties:
associativity, unique solvability in each argument, and hence the existence of a
unity, from which follow inverses and cancellation. There are several ways to
change the binary operation to a ternary one [, , ], where these properties diverge.
Our way de�nes it by:

[x, y, z] = (x× y−1)× z.
This satis�es (1) and (2), which together are called the para-associative law. This
operation is also uniquely solvable in each argument, which implies cancellation.
However there is neither a unity nor an inverse operation.

A set with a ternary operation satisfying the para-associative law and being
solvable in each argument is a �ock in the original sense. But solvability is not

2010 Mathematics Subject Classi�cation: 06A12, 08A05, 08B05, 08B20, 20N10, 20N15

Keywords: near �ock, near heap, group, semilattice, join, variety, identity, extension, Pªonka

sum.
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de�nable by identities. To do so requires adding a unary operation x that cap-
tures regularity in the sense of von Neumann: for each x, the element x satis�es
[x, x, x] = x. This is not necessarily the inverse, although it may be is some cases,
and in other cases it may be the identity function. When x is the identity function
we have heaps.

Near Flocks
nF
(1)�(6)

Flocks
F
Add (7) to above

Near Heaps
nH
Add (8) to above

Heaps
H
All the above

Semilattices
sL
Add (9) to above

Trivial Algebras
O
All the above

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

[v, w, [x, y, z]] ≈ [[v, w, x], y, z], (1)

[v, w, [x, y, z]] ≈ [v, [y, x, w], z], (2)

[x, y, z] ≈ [x, y, z], (3)

x ≈ x, (4)

[x, x, x] ≈ x, (5)

[x, x, y] ≈ [x, x, y] ≈ [y, x, x] ≈ [y, x, x], (6)

[x, x, y] ≈ y, (7)

x ≈ x, (8)

[x, x, y] ≈ [x, y, y]. (9)

Figure 1. Lattice of varieties of �ocks, heaps and semilattices, and their de�ning identities.



Flocks, groups and heaps 45

The binary operation ∧ of semilattices may be turned into a ternary operation:

[x, y, z] = (x ∧ y) ∧ z.

Then the equation [x, y, x] = x always has the solution y = x although it may not
be unique. Nevertheless we set x = x, the identity function. Although it could
be dropped in semilattices and heaps, for uniformity in comparing varieties we
type algebras with a ternary operation and a unary operation, that is the type is
< 3, 1 >, except where otherwise noted later in this article.

For groups there is also the triple composition:

[x, y, z] = (x× y)× z,

without a middle inverse y−1. This satis�es associative laws and solvability. The
inverse operation x = x−1 may be again added to the type as the solution to
[x, x, x] = x. But this is not the main line of investigation, and will be passed
over.

The lack of a unity is no loss and may be an advantage. In the study of
vector spaces, where a base-free presentation favors no particular axes, just as in
the physical world no particular directions are preferred, so a presentation with no
origin should be applauded, as it goes along with the universe having no designated
center. Still, the ternary operation has a physical meaning, at least for vector
spaces, it is the completion of a parallelogram, that is, it is the fourth vertex,
d = [a, b, c], of a parallelogram when the other three vertices are a, b and c.

With the de�nition of the varieties by ever increasing sets of identities as we go
downward in Figure 1, it is clear that the lines represent set-theoretical inclusion
as we go upwards. It remains to be proven that the joins and meets are varietal:
for example, that nF is the smallest variety that includes both F and nH, and that
H is the largest variety included in both F and nH.

To do this for joins, we �nd for each variety a normal form for its terms. These
constitute the free algebras. The identities in each variety are decidable.

Algebras in the joins are built from algebras below them. A near �ock is a
Pªonka sum of �ocks, which is a special kind of extension of �ocks by a semilattice.
A near heap is a Pªonka sum of heaps.

Through the next four sections we descend from the top of the lattice of Figure
1. Since the operation x has no e�ect on the variety nH, because of identity (8),
it will eventually be left out in the treatment of the varieties lower in the lattice.

The next to last section spells out the close connection between heaps and
groups as an adjoint situation that is almost a categorical equivalence. The last
section translates any group identity to its counterpart in heaps.

2. Near �ocks

The variety nF of near �ocks is de�ned by the set nF of identities (1)�(6), and is
at the top of the lattice of Figure 1. Free algebras are built with normal words.
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With these it will be proven in the next section that the variety of near �ocks is
the join of those of �ocks and near heaps.

First, we derive some consequences of the identities de�ning near �ocks. Only
some of what is needed is written out here. More identities may be manufactured
by their re�ection. The re�ection of an identity is it written backwards, literally.
For instance, the re�ection of (2), [vw[xyz]] ≈ [v[yxw]z], is [z[wxy]v] ≈ [[zyx]wv].
Since the re�ections of (1)�(6) are consequences of these axioms, a re�ection of
any consequence of (1)�(6) is also a consequence of them.

Proposition 2.1. These identities for near �ocks follow from (1)− (6).

[[w, x, x], y, z] ≈ [[w, y, z], x, x] (10)

[[w, y, x], x, z] ≈ [[w, y, z], x, x], (11)

[[x, y, z], [x, y, z], w] ≈ [x, x, [y, y, [z, z, w]]]. (12)

[[x, v, w], [y, v, w], [z, v, w]] ≈ [[x, y, z], v, w]. (13)

Proof.

(10). [[w, x, x], y, z] ≈ [[x, x, w], y, z] (6)

≈ [x, x, [w, y, z]] (1)

≈ [[w, y, z], x, x] (6).

(11). [[w, y, x], x, z] ≈ [w, y, [x, x, z]] (1)

≈ [w, y, [z, x, x]] (6)

≈ [[w, y, z], x, x] (1).

(12). [[x, y, z], [x, y, z], w] ≈ [[x, y, z], [x, y, z], w] (3)

≈ [[[x, y, z], z, y], x, w] (2)

≈ [[[x, y, y], x, w], z, z] (11), (10)

≈ [[x, y, y], x, [z, z, w]] (1), (6)

≈ [x, x, [y, y, [z, z, w]]] (1), (11).

(13). [[x, v, w], [y, v, w], [z, v, w]] ≈ [[[x, v, w], w, v], y, [z, v, w]] (2)

≈ [[[[x, v, w], w, v], y, z], v, w] (1)

≈ [[[[x, y, z], v, v], v, w], w, w] (10), (11)

≈ [[x, y, z], v, w] (1), (5).

Identities (10) and (11) of this proposition suggest isolating pairs of adjacent
variables when one is barred and the other is not.

Normal near �ock words, introduced in the next de�nition, will serve as the
elements of free near �ocks. A distinction is made between terms and words.
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De�nition 2.2. In contrast to a term, built with variables and operations sym-
bols, a word is simply a �nite string of these letters with no ternary operation sym-

bols but with single bars over some of the letters. For example,
[
x2, x1, [x4, x1, x4]

]
is a term, and x2x1x4x1x4 is a word. A letter adjacent to itself barred, xixi or
xixi, is called a skew pair. Let |w| be the length of a word, that is, the num-
ber of occurrences of letters in it. A normal near �ock word, or simply normal
word in this section, is a word, w = wφwσ, with two parts, namely a �ock part
wφ and a semilattice part wσ � their names will be motivated later. The �ock
part wφ is of odd length in which no variable xi and its bar xi are adjacent,
in either order. The semilattice or skew part wσ is of even length and is a se-
quence, xi1xi1xi2xi2 . . . xikxik , of skew pairs xixi with the indices in increasing
order: i1 < i2 < · · · < ik. All letters occurring in the �ock part wφ must occur in
the semilattice part wσ, but not all the letters in wσ need be in wφ. For example,
here are the parts of a normal word:

w = x5x5x2x5x6x2x2 x2x2x5x5x6x6x9x9,

wφ = x5x5x2x5x6x2x2,

wσ = x2x2x5x5x6x6x9x9.

De�nition 2.3. To de�ne free near �ocks we need to manipulate words with some
operators: the �rst operator wρ reverses the order of the variables; for example,
(x1x2x3)ρ is x3x2x1. Note that (uvw)ρ = wρvρuρ for words u, v and w. The
second operator d joins semilattice parts: vσ d wσ is the string of all skew pairs
xixi for all variables xi in v or w, put in order of increasing index with no skew pair
occurring more than once. The third transforms a word w of odd length back into
a term wβ by appropriately inserting pairs of brackets to form ternary operations
all associated to the left; for example, the word w = x5x5x2x2x5x6x2 becomes the
term wβ = [[[x5, x5, x2], x2, x5], x6, x2]. The fourth is an algorithm, given in the
next de�nition, that normalizes any term.

De�nition 2.4. Here is how to turn any near �ock term t into a normal near
�ock word tν by using (1)�(6). Let xi1 , xi2 , . . . , xin be the variables of t with
i1 < i2 < . . . < in. As a running example, consider t = [[x2, x2, x1], [x1, x2, x1], x1].
Use (3) to push all bars of t onto individual variables, and (4) to eliminate more
than one bar on a variable. The example becomes [[x2, x2, x1], [x1, x2, x1], x1].

With (5) create a skew pair xixi for each variable xi in t not already in such
a pair. Use (10) and (11) to move these skew pairs, one at a time, to the extreme
right, in order of increasing index. The example has now become

[[[[x2, x2, x1], [x1, x2, x1], x1], x1, x1], x2, x2].

No skew pair will now be across a bracket. Then use (1) and (2) to associate all
occurrences of [, , ] to the far left. So we have

[[[[[x2, x2, x1], x1, x2], x1, x1], x1, x1], x2, x2].
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At this point we may as well remove the brackets and work with the resulting
word w = wυwσ. Here wσ is the semilattice part � the word xi1xi1xi2xi2 . . . xinxin
of all skew pairs that have been moved. The remainder wυ of w on the right will
be reworked to give the �ock part. The example turns into a word with parts

wυ = x2x2x1x1x2x1x1 and wσ = x1x1x2x2.

Remember that at any time the operator β can return brackets, associated to the
left.

Up to now the algorithm has been deterministic; there have been no choices
that might make a di�erence. But new skew pairs may appear in wυ as a result
of having moved old ones to the right; for example, when x1x1 is removed from
the middle of wυ, then x2x2 is a new skew pair. Now there will be choices as to
which order to eliminate these unnecessary skew pairs. The next proposition will
show that these choices make no di�erence in the �nal outcome.

With (10) and (11) move skew pairs as they appear over to their corresponding
pairs in wσ on the right, and eliminate duplicates with (5). The remaining part of
the word on the left, with no skew pairs, is the desired �ock part wφ. Our term,
t = [[x2, x2, x1], [x1, x2, x1], x1] has become the normal word tν = x2 x1x1x2x2.

Proposition 2.5. The outcome of the algorithm of De�nition 2.4 does not depend
on the order of eliminating skew pairs.

Proof. By induction on the length |wυ| of what is to become the �ock part of a
word w. Suppose the proposition is true when the length is less than n. Assume
a particular wυ has length n. Consider sequences, p = 〈p1, p2, . . .〉, of occurrences
pi of skew pairs that appear in it and that are being successively eliminated; call
them paths. Think of two di�erent paths, p = 〈p1, p2, . . .〉 and q = 〈q1, q2, . . .〉.
We will show that, after removing the skew pairs in them, we arrive at the same
�ock part wφ. There are three possibilities for the �rst pairs: p1 and q1 are the
same; p1 and q1 are not the same but overlap; p1 and q1 do not overlap, that is,
they are disjoint. We dispose of these possibilities in order.

Suppose that p1 is q1, and this skew pair is eliminated from both paths, Then
the remaining words will be the same and have length less than n. By the induction
hypothesis, after all the remaining skew pairs are eliminated from the two paths,
we end up with the same word.

Next suppose that p1 and q1 overlap, that is, we have for example xixixi in
wυ with p1 being xixi and q1 being xixi. Eliminating either skew pair leaves the
same word of lesser length, and the induction hypothesis applies again.

Now assume the two paths start out with disjoint skew pairs, that is, a path can
start out at either p1 or q1, which are not the same. In particular new paths can
start as p′ = 〈p1, q1, . . .〉 and q′ = 〈q1, p1, . . .〉. Now, by the induction hypothesis,
the elimination of the same �rst skew pairs of p and p′ will end up with the same
word, since they start out the same; and so will q and q′. As p1 and q1 are disjoint,
what is left after they are both removed is the same word r. Its length |r| is less
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than n, and hence we are led to the same normal word no matter in what order
skew pairs of r are thrown out. So p′ and q′ will terminate the algorithm at the
same �ock part, and hence so will p and q.

We now extend the use of φ from designating the �ock part of a normal word
to its use as an operator that creates the normal �ock part from any word of odd
length. Similarly σ becomes the operator that creates the semilattice part

De�nition 2.6. Write FnF(α) for the set of all normal words for near �ocks, each
with a �nite number of letters from the set {xi | i < α}. Turn this into an algebra
of type 〈3, 1〉, soon to be proven a near �ock. For normal words u, v, w de�ne the
�ock part [u, v, w]φ of the operation [u, v, w] to be the string (uφvφρwφ)φ, and the
semilattice part [u, v, w]σ to be uσ d vσ dwσ. (The operation d is associative; see
De�nition 2.3.) The operation w adds bars to those variables in the �ock part
that have none and removes bars from those that do, it leaves the semilattice part
alone. Write F nF(α) for the algebra 〈FnF(α); [, , ], 〉.

Proposition 2.7. For each nonzero cardinal α, F nF(α) is a near �ock.

Proof. We prove that the identities (2), (3) and (4) are satis�ed in F nF(α); the
others are proven similarly.

(2). Let u, v, w, x, y and z be normal words. It su�ces to prove (2) separately
on the �ock parts and the semilattice parts of words.

For the �ock parts on each side of (2), we expand them to a common word:

[v, w, [x, y, z]]φ = (vφwφρ[x, y, z]φ)φ = (vφwφρ(xφyφρzφ)φ)φ = (vφwφρxφyφρzφ)φ,

[v, [y, x, w], z]φ = (vφ[yxw]φρzφ)φ = (vφ(yφxφρwφ)φρzφ)φ = (vφwφρxφyφρzφ)φ.

In the �rst line, Proposition ?? tells us that (uvwφ)φ = (uvw)φ for words u, v, w.
In the second line, we also use the fact that wφρ = wρφ.

The semilattice parts are equal since d is associative and commutative.

(3) [u, v, w] = [u, v, w]. For the �ock part this follows from the fact that

wφ = wφ. So each path eliminating skew pairs from w has a corresponding path
in w. For the semilattice parts of u, v, w, the bar has no e�ect.

(4) w = w. The operation toggles the bar operation on the �ock part, leaving
the semilattice part alone.

Theorem 2.8. For each nonzero cardinal α, F nF(α) is the free near �ock on α
generators.

Proof. We verify the universal property that characterizes free algebras: for any
near �ock A generated by α elements ai (i < α), there is a unique homomorphism
h from F nF(α) to A such that h(xi) = ai. To that end de�ne h : FnF(α)→ A by
h(w) = wβ(ai1 , . . . , ain) where xi1 , . . . , xin are the letters of the normal word w.
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First we prove that h is a homomorphism, that is, it preserves the operations;
then we prove that it is unique. Preserving the operation [, , ] means that

h([u, v, w]) = [h(u), h(v), h(w)] (u, v, w ∈ FnF(α)),

which is equivalent to
[u, v, w]β ≈ [uβ , vβ , wβ ]. (14)

This last requires a proof by induction on the length |v| of the middle argument
v.

If v is a single variable y, then identity (1) only, when applied to the left side
of (14), will move all brackets of the normal word w to the left without any need
of reversals by (2). Now suppose v = [x, y, z] with x, y, z normal near �ock words
of length less than v. We calculate that

[u, v, w]β = [u, [x, y, z], w]β

= [[u, z, y], x, w]β (2)

= [[uβ , zβ , yβ ], xβ , wβ ] (induction hypothesis twice)

= [uβ , [xβ , yβ , zβ ], wβ ] (2)

= [[uβ , [x, y, z]β , wβ ] (induction hypothesis)

= [uβ , vβ , wβ ].

Since the bar does not change the order of the variables, h preserves it:

h(w) = wβ = wβ = h(w).

To show φ is unique, let g : FnF(α)→ A be another homomorphism such that
g(xi) = ai (i < α). Then, if xi1 , . . . , xin are the letters of a normal word w, we have
that g(w) = wβ(ai1 , . . . , ain) = h(w), since a homomorphism preserves terms.

Write nF for the set of identities (1)− (6) de�ning near �ocks.

Proposition 2.9.

(a) For any near �ock term t there exists a unique normal near �ock word w
such that nF ` t ≈ wβ.

(b) For any normal near �ock words v and w, nF ` vβ ≈ wβ i� v = w.

Proof. Existence falls out of De�nition 2.4. Uniqueness follows from Theorem 2.8:
as normal words, like v and w, make up F nF(α), a free near �ock of the variety
de�ned by the identities of nF, we conclude (b), from which follows uniqueness.

Corollary 2.10. The equational theory of near �ocks is decidable.

Proof. From (b) of Proposition 2.9, for terms t1 and t2 of type 〈3, 1〉,

nF ` t1 ≈ t2 i� tν1 = tν2 .

This is true since nF ` tνβ ≈ t. Here tν is the normal near �ock word obtained
from a term t by the algorithm of De�nition 2.4.
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3. Flocks

The set F of identities (1)�(7) de�ne the variety F of �ocks. Originally �ocks
were de�ned by Dudek [6] as a nonempty set A with a ternary operation [, , ] that
satis�es (1)�(2) and is uniquely solvable in each argument: for all a, b and c in
A there are unique x, y, z such that [x, a, b] = c, [a, y, b] = c, and [a, b, z] = c.
It is not possible to de�ne unique solvability by identities in [, , ] alone without
additional operations (see the end of this section for why not). However, by [6,
Proposition 3.2], unique solvability does allow us to de�ne a unary operation −:

x is the unique y such that [x, y, x] = x.

Adding (7) to those identities de�ning near �ocks simpli�es the theory since
(7) allows all skew pairs to be removed from normal �ock words. With them free
algebras are de�ned and used to prove that the variety of near �ocks is the join of
�ocks and near heaps. Finally, it is shown that each near �ock is a Pªonka sum of
�ocks by a semilattice.

De�nition 3.1. As before, words are strings of letters, some with bars. But now,
a normal word for �ocks is a word of odd length in which no skew pairs occur,
that is, neither xixi nor xixi occur. They are merely the �ock parts of normal
near �ock words.

We pass between terms and words similarly to what was done in the last section.
A normal �ock word is obtained from any term by using the identities (1)�(6) to
push all bars onto individual letters and eliminate multiple bars. Identities (10),
(11) and (7) eliminate skew pairs. Identities (1) and (2) associate brackets to the
left. With brackets removed, this is a normal �ock word.

De�nition 3.2. To de�ne the free �ock on α generators, let FF(α) be the set
of normal �ock words on the set of α letters {xi | i < α}. Then F F(α) is the
algebra 〈FF(α); [, , ], 〉 of type 〈3, 1〉. Here, for normal �ock words, u, v and w,
the ternary operation [u, v, w] is the catenation of them, (uvρw)φ, with the order
of the letters in the middle argument v reversed to vρ. This is followed by erasing
any skew pairs that arise. The unary operation w removes bars from letters in w
that have them and adds them otherwise.

The next proposition is on the way to showing that F F(α) is a free �ock.

Proposition 3.3. For any non-zero cardinal α, F F(α) is a �ock.

Proof. Axiom (7) is satis�ed since, for normal �ock words w and v = xi1 . . . xin ,

[v, v, w] = (vvρw)φ = (xi1 . . . xinxin . . . xi1w)φ = wφ = w.

Cancelling inner letters by the operator φ also works when some of the letters of
v are barred.
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It was proven in Proposition 2.7 that F nF(α) satis�es (1)�(6). With the help
of (7), these proofs may be extended to F F(α). For example, to prove (1), let
v, w, x, y, z be normal �ock words. For all xi appearing in any of v, . . . , z, use (7)
to add the skew pair xixi at the right side of each word v, . . . , z. Then (1) holds for
these words since their modi�cations are normal near �ock words. Use (7) again
to wipe out all skew pairs, returning v, . . . , z to satisfy (1).

The proof of the next theorem builds on that for free near �ocks.

Theorem 3.4. For any non-zero cardinal α, F F(α) is the free �ock on α gener-
ators.

Proof. It was just proven that F F(α) is a �ock. The argument that F F(α) satis�es
the universal property for freedom is like that for Theorem 2.8.

Proposition 3.5.

(a) For each term t of type 〈3, 1〉, there is a unique normal �ock word w such
that F ` t ≈ wβ.

(b) For any normal �ock words v and w, F ` vβ ≈ wβ i� v = w.

Proof. By Proposition 2.9 there is a unique normal free near �ock word w such
that nF ` t ≈ vβ . Eliminating the semilattice part of v give w.

Corollary 3.6. The equational theory of �ocks is decidable.

Proof. Like that of Corollary 2.10.

The proofs and structure of normal forms suggest building any free near �ock
as a subalgebra of a product of a free �ock and a free semilattice. To set the
stage, here is a sort review of semilattices. They are traditionally binary algebras
with one operation ∨ that is idempotent, commutative and associative. A term-
equivalent variety with a ternary operation [, , ] and a unary operation is obtained
by `stammering' the binary operation, and making the unary a dummy:

[x, y, z] = (x ∨ y) ∨ z,
x = x.

An example of a semilattice lies in the semilattice parts wσ of normal near
�ock words w. They make up the free semilattice F sL(α) on α generators xixi
(i < α). The ternary operation [uσ, vσ, wσ] is the word consisting of all skew pairs
xixi occurring in any of uσ, vσ or wσ, arranged in order of ascending index, that
is, [uσ, vσ, wσ] = uσ d vσ d wσ. Bar does nothing. F sL(α) is term-equivalent to
the semilattice of all nonempty �nite subsets of a set with α elements. It is almost
a distributive lattice in that every interval of it is a distributive lattice with the
operations of union and intersection. All that is missing to make it distributive is
the empty set, a bottom element.
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Theorem 3.7. For any nonzero cardinal α, the free near �ock F nF(α) is isomor-
phic to a subalgebra of the product, F F(α)×F sL(α), of a corresponding free �ock
and free semilattice. The carrier of the subalgebra is {〈wφ, wσ 〉 | w ∈ FnF(α)}.

Proof. De�ne a function h : FnF(α)→ FF(α)×FsL(α) by h(w) = 〈wφ, wσ 〉. That
h is an injection follows from the de�nition of normal words. It is a homomorphism
since it preserves the operations:

h(w) = h
(
wφwσ

)
= h

(
wφwσ

)
= h

(
wφwσ

)
= 〈wφ, wσ 〉 = 〈wφ, wσ 〉 = h(w);

and h([u, v, w] = [h(u), h(v), h(w)] similarly.

With this theorem we may check the top part of Figure 1.

Theorem 3.8.

(a) The variety of near �ocks is the join of those of �ocks and semilattices:
nF = F ∨ sL.

(b) The variety of near �ocks is the join of those of �ocks and near heaps:
nF = F ∨ nH.

Proof. (a). The inclusions of their de�ning identities are passed to the varieties
themselves, and hence F∨sL ⊆ nF. As each free near �ock F nF(α) is a subalgebra
of a product of a �ock and a semilattice (Theorem 3.7), we have that F nF(α)
belongs to the join F ∨ sL. As any near �ock A is a homomorphic image of a free
near �ock, it follows that A is in the join. Therefore, nF ⊆ F ∨ sL.

(b). This follows from (a) by the inclusion of varieties: sL ⊆ nH ⊆ nF.

In the language of extensions and Pªonka sums more can be said about the
structure of near �ocks. We �rst de�ne extensions and prove Theorem 3.10. Then
we de�ne connecting homomorphisms that turn this extension into a Pªonka sum.

De�nition 3.9. An extension (or union or sum) of a nonempty set A of algebras
by another algebra B (all of the same type) is an algebra E and a congruence θ
of E such that:

1. each congruence class of θ that is an algebra is isomorphic to a member of
A;

2. each member of A is isomorphic to some congruence class of θ; and

3. E/θ is isomorphic to B.

This de�nition came from specializing Mal'cev's de�nition for classes of al-
gebras to individual algebras [11]. In turn, his de�nition grew out of classical
extensions in group theory, where not every coset is a subgroup. However, when
B is idempotent, say a semilattice, then all the congruence classes of E/θ will be
subalgebras.
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Theorem 3.10. Each near �ock A is an extension of �ocks by a semilattice.

The proof of this theorem proceeds by a series of lemmas and interspersed
de�nitions. Easy proofs are omitted without mention.

Now assume that A is a near �ock. A congruence θ of A is found such that A
is an extension of its congruence classes a/θ by its quotient A/θ.

De�nition 3.11. On A de�ne the binary relation:

a 6 b if [a, a, b] = b. (15)

Lemma 3.12.

(a) The relation 6 is a quasi-order.
(b) The operations and [, , ] preserve 6.

Proof. (a). Re�exivity is clear from (5). To prove transitivity, suppose that a 6 b
and b 6 c, that is, [a, a, b] = b and [b, b, c] = c. Then by (1),

[a, a, c] = [a, a, [b, b, c]] = [[a, a, b], b, c] = [b, b, c] = c,

and hence a 6 c.
(b). Bar is preserved by (3). We prove that 6 preserves [, , ] in its middle

argument; the other arguments are simpler.
We assume that b 6 d, that is [b, b, d] = d, and prove that [a, b, c] 6 [a, d, c],

with the help of (1), (2), (5), (10) and (12):

[[a, b, c], [a, b, c], [a, d, c]] = [a, a, [b, b, [c, c, [a, d, c]]]] = [a, a, [b, b, [a, d, [c, c, c]]]]

= [a, a, [b, b, [a, d, c]]] = [b, b, [a, d, c]]

= [a, d, [b, b, c] = [a, [b, b, d], c]

= [[a, d, c].

De�nition 3.13. On A de�ne the binary relation θ by:

a θ b if a 6 b and b 6 a.

Lemma 3.14. The relation θ is a congruence of A.

Proof. By Lemma 3.12, 6 is a quasi-order preserving and [, , ]. Therefore, θ is
an equivalence relation preserving the operations.

Lemma 3.15. Each coset of θ is a �ock.

Proof. First one must prove that, for any element of e of A, the coset e/θ is an
algebra, that is, it is closed to the operations and [, , ]. To prove closure to ,
suppose a ∈ e/θ. Then a θ e, and hence from the de�nition of θ,

[a, a, e] = e and [e, e, a] = a.
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From the �rst equation, with the identities for near �ocks we get that [a, a, e] =
[a, a, e] = [a, a, e] = e, and so a 6 e. From the second, similarly e 6 a, and thus
a ∈ e/θ.

To prove closure to [, , ], suppose a, b, c ∈ e/θ. As before, [a, a, e] = e and
[e, e, a] = a, and likewise for b and c. From these equations, Proposition 2.1, and
the axioms for near �ocks, we deduce that

[[a, b, c], [a, b, c], e] = [[a, b, c], [a, b, c], e] = [[[a, b, c], c, b], a, e]

= [[a, b, b], a, [c, c, e]] = [[a, b, b], a, e]

= [a, a, [b, b, e]] = [a, a, e] = e.

Hence [a, b, c] 6 e, and with less work e 6 [a, b, c]; therefore, [a, b, c] ∈ e/θ.
To show that e/θ is a �ock one need only show that (7) is an identity in e/θ;

that is, show [a, a, b] = b for all a and b related by θ; but this last implies a 6 b,
that is, [a, a, b] = b.

Lemma 3.16. The quotient A/ θ is a semilattice.

Proof. We need only prove (8) and (9) in A/ θ. For the latter, this amounts to
showing that [a, a, b] θ [a, b, b] for any a and b in A. Arguing with the axioms and
Proposition 2.1 as before, we show that [[a, a, b], [a, a, b], [a, b, b]] = · · · = [a, b, b],
which implies [a, a, b] 6 [a, b, b]. The converse of this relation is proven similarly,
and so the two sides are related by θ. This completes the proof of Theorem
3.10.

This extension is re�ned with Pªonka sums [13], which are de�ned here only
for near �ocks. In [7, Theorem 11] a Pªonka sum of heaps is also called a `strong
semilattice of heaps'. We need the partial order found in any semilattice S:

r 6 s if [r, r, s] = s (r, s ∈ S).

De�nition 3.17. A near �ock A is a Pªonka sum of �ocks if it is the union of a
family {As | s ∈ S} of disjoint �ocks indexed by a semilattice S together with a
family of homomorphisms, {hrs : Ar → As | r 6 s in S}, that evaluate the ternary
and unary operations of A:

[a, b, c]A = [(hπ(a),s(a), hπ(b),s(b), hπ(c),s(c)]
As , where s = [π(a), π(b), π(c)]S ;

(16)

(a)
A

= hπ(a),s(a)
As
, where s = π(a)

S
. (17)

Here the homomorphisms are assumed to be functorial in that hst◦hrs = hrt when
r 6 s 6 t; and π is the projection map from the disjoint �ocks to their indices:
π(a) = s if a ∈ As. The class of Pªonka sums of �ocks is denoted sPF.
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The next theorem follows from the more general theory of Pªonka [15, Theorem
7.1]. It is also proven in [7, Section 4]; but we sketch another proof that depends
in part on Theorem 3.10.

Theorem 3.18. Every Pªonka sum of �ocks is a near �ock, and every near �ock
is a Pªonka sum of �ocks. In short, nF = sPF.

Proof. That a Pªonka sum of �ocks is a near �ock follows from proving that the
identities satis�ed by a Pªonka sum A are precisely those common to the stalks
As and semilattices. This follows from verifying by induction on terms that for
any term t with n variables,

tA(a1, . . . , an) = tAs(hs1,s(a1), . . . , hsn,s(an)) (ai ∈ Asi);

here s is the semilattice join of the si.
For the other direction, by Theorem 3.10, A is the extension of �ocks by a

semilattice. Let θ be the congruence in De�nition 3.13. To create a Pªonka sum
take the index set S to be the set A/θ of congruence classes a/θ of θ, and de�ne
the projection, π(a) = a/θ. De�ne the connecting homomorphisms by

h a
θ ,
b
θ
(x) = [x, b, b] (a, b ∈ A and x ∈ a/θ). (18)

It remains to be proven that these homomorphisms are well-de�ned and functorial,
and that the operations are evaluated correctly.

These connecting homomorphisms are well-de�ned since di�erent choices of
related a's and related b's yield the same answer for (18). In detail, supposing
x ∈ a1/θ, a1θa2 and b1θb2, we know that b1 = [b1, b2, b2] and �nd that

h a1
θ ,

b1
θ

(x)=[x, b1, b1]=[x, b1, [b1, b2, b2]]=[x, [b2, b1, b1], b2]=[x, b2, b2]=h a2
θ ,

b2
θ

(x).

They are functorial since, if a 6 b 6 c and x ∈ a/θ, then

h b
θ ,
c
θ
(h a

θ ,
b
θ
(x)) = h b

θ ,
c
θ
([x, b, b]) = [[x, b, b], c, c] = [x, [c, b, b], c] = [x, c, c] = h a

θ ,
c
θ
(x).

They evaluate correctly according to (16) and (17) since for a, b, c in A and
d = [a, b, c], we have in A/θ that

s = [π(a), π(b), π(c)] =

[
a

θ
,
b

θ
,
c

θ

]
=

[a, b, c]

θ
=
d

θ
,

and hence, with the help of (13) and (5),

[(hπ(a),s(a), hπ(b),s(b), hπ(c),s(c)] = [h a
θ ,
d
θ
(a)]h b

θ ,
d
θ
(b)]h c

θ ,
d
θ
(c)]

= [[a, d, d], [b, d, d], [c, d, d]]

= [[a, b, c], d, d]

= [[a, b, c], [a, b, c], [a, b, c]]

= [a, b, c].
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For the unary operation, since s = π(a)
S

= π(a) = a
θ , we check that hπ(a),s(a) =

h a
θ ,
a
θ
(a) = [a, a, a] = a.

A free near �ock may also be described as a Pªonka sum; this is a re�nement
of Theorem 3.7. We realize this by looking closely at the de�nition of FnF(α).

Theorem 3.19. For a nonzero cardinal α, the free near �ock FnF(α) is the Pªonka
sum of the free �ocks FF(w) indexed by elements w of the free semilattice FsL(α).
Here the FF(w) are free �ocks on generators that are the skew pairs xixi in w.

The article [17] also describes free near �ocks as Pªonka sums of �ocks, but
assumes the free �ocks FF(w) are already known.

The lattice of subvarieties of nF has been described in [5] and [18, Section 4.3].

Theorem 3.20. The lattice of varieties of near �ocks is isomorphic to the product
of the lattice of varieties of �ocks and the two-element lattice.A subvariety of nF is
either a subvariety K of F, or a join, K∨ sL, of it with the variety of semilattices.

There is a curiosity about the �ocks 〈A; [, , ]〉 originally de�ned by (1), (2) and
the unique solvability of [, , ]. The class F3 of all such is categorically isomorphic
to F. However, F is a variety, but F3 is not. To understand this, let A be the
set {xn0 | n ≥ 1, n odd} of words in FF(1). This set is closed to [, , ] and thus it
is a subalgebra of 〈FF(1); [, , ]〉. Because there is no bar, the operation [, , ] is not
solvable in it. Hence F3 is not closed to taking subalgebras, and so fails to be a
variety. Therefore, F3 is not de�nable by identities.

4. Near heaps

The variety nH of near heaps is the class of algebras satisfying the identities: (1)�
(6) and (8). The last identity means that the bar operation may be omitted, and
we will do so for the remainder of this article, changing the type of near heaps,
heaps and semilattices from 〈3, 1〉 to 〈3〉, only retaining the ternary operation [, , ].
With that understanding, the de�ning identities are equivalent to

[v, w, [x, y, z]] ≈ [[v, w, x], y, z], (1)

[v, w, [x, y, z]] ≈ [v, [y, x, w], z], (2)

[x, x, x] ≈ x, (19)

[x, x, y] ≈ [y, x, x], (20)

which is the way Hawthorn and Stokes [7] introduced near heaps.
These identities hold in any group when [x, y, z] is interpreted as x(y−1z), and

in any semilattice when [x, y, z] is interpreted as x(yz). In this section a new
normal form describes the elements of free near heaps. In the next, the variety of
near heaps is proven to be the join of the varieties of heaps and semilattices, in
fact, Pªonka sums.
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De�nition 4.1. Near heap words w now have no bars, they are simply �nite
sequences of letters xi. With bars no more, twin pairs take the place of skew
pairs; a twin pair is a double occurrence xixi of the same letter adjacent to itself.

A normal near heap word is in two parts: on the left will be the heap part wφ̂, a
string of odd length of isolated occurrences of individual letters; on the right will
be the semilattice part wσ̂, a string of twin pairs, one for each letter occurring
in w, and ordered by increasing indices, with no twin pair duplicated. Hats over
operators indicate their adjustment to there no longer being any bars. Recall that
wβ restores brackets, associated to the left.

A normal near heap word w is derived from nH for any term t built from the
ternary operation and letters alone. To convert t use (1) and (2) to associate all
the brackets to the left; (2) may change the order of the letters. Move to the right
side any twin pair by using (10) and (11). (They have no bars now.) Reorder
these pairs by increasing indices, removing duplicate pairs with (5). If some letter
is isolated on the left side and does not occur on the right, triplicate it with (19)
to create a twin pair, and move the twin pair to the side, absorbing it among the
twin pairs already ordered there.

For example, if t is [x3, x2, [x2, x1, x3]], then, with the algorithm in the proof

of the next lemma, w is x3x1x3 x1x1x2x2x3x3 with wφ̂ = x3x1x3 and wσ̂ =
x1x1x2x2x3x3.

De�nition 4.2. For any cardinal α, the algebra F nH(α) has as carrier FnH(α) of
all normal near heap words with letters from {xi | i < α} and a ternary operation
de�ned by,

[u, v, w] = (uφ̂vφ̂ρwφ̂)φ̂(uσ̂ d vσ̂ d wσ̂),

where uσ̂ d vσ̂ d wσ̂ is the sequence of all twin pairs in order of increasing index
without repetition.

Proposition 4.3. For any cardinal α, F nH(α) is a near heap.

Proof. When the operation, x = x, is introduced into the type, the identities of
nH follow readily from those of nF.

Theorem 4.4. For any cardinal α, F nH(α) is the free near heap on α generators.

Proof. We use the universal mapping property of free algebras. Let A be a near
heap generated by {ai | i < α}. De�ne h on a w of FnH(α) in the letters
xi1 , xi2 , . . . , xin by h(w) = wβ(ai1 , ai2 , . . . , ain). Proving that h is the unique
homomorphism of F nH(α) to A taking xi to ai parallels the proof of Theorem
2.8.

Proposition 4.5.

(a) For any near heap term t, there is a unique normal near heap word w such
that nH ` t ≈ wβ.

(b) For any normal near heap words v and w, nF ` vβ ≈ wβ i� v = w.
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Proof. Existence comes from the algorithm of De�nition 4.1, which uses only the
identities of nH and their consequences.

Uniqueness and part (b) parallel the proof of Proposition 2.9.

Corollary 4.6. The equational theory of near heaps is decidable.

Proof. Like that of Corollary 2.10.

5. Heaps

These were de�ned in Section as algebras satisfying the identities (1)�(8). As the
last identity makes the bar pointless, these identities are equivalent to (1), (2)
and

[x, x, y] ≈ y ≈ [y, x, x] (21)

in algebras with only a ternary operation. Let H be this last set of identities.
It is proven that the variety nH of near heaps is the smallest variety containing
heaps and semilattices. Even better, any near heap is a Pªonka sum of heaps
over a semilattice. From results in the literature, the lattice of subvarieties of
nH is sketched, and their subdirectly irreducibles are determined modulo those of
heaps. The equivalence of these varieties with the traditional ones for ordinary
groups and semilattices with binary operations will be addressed in Section 6.
Heaps were �rst studied by Prüfer [16] in the context of commutative groups
where [x, y, z] = x− y + z.

Of all the free algebras in this article, free heaps are the simplest to describe;
their elements are just the left part, the heap part, of normal near heap words.

De�nition 5.1. A normal heap word is a string of letters of odd length in which
no letter occurs next to itself. The set FH(α) of normal heap words on the alphabet
{i| i < α} is the carrier of the algebra FH(α) with the ternary operation

[u, v, w] = (uvρw)φ̂.

Proposition 5.2. For α a nonzero cardinal, FH(α) is a heap.

Proof. As a heap is a near heap, only axiom (21) needs be proven:

[v, v, w] = (vvρw)φ̂ = (xi1xi2 . . . xinxin . . . xi2xi1w)φ̂ = w,

when v = xi1xi2 . . . xin ; here (7) cancels duplicate pairs successively.

Theorem 5.3. For α a nonzero cardinal, FH(α) is the free heap on α generators.

Proof. This parallels the proof for Theorem 2.8.

Proposition 5.4.

(a) For any heap term t, there is a unique normal heap word such that H ` t≈wβ.
(b) For any normal heap words v and w, nF ` vβ ≈ wβ i� v = w.
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Proof. This is like that of Proposition 3.5.

Corollary 5.5. The equational theory of heaps is decidable.

Proof. Similar to that for Corollary 2.10.

Theorem 5.6. For any nonzero cardinal α, the free near heap on α generators is
isomorphic to a subalgebra of the product of the free heap and the free semilattice,
both on α generators. Symbolically, F nH(α) ↪→ FH(α)× F sL(α).

Proof. De�ne the function FnH(α) ↪→ FH(α) × FsL(α) by h(w) = 〈wφ̂, wσ̂ 〉. It is
a homomorphism since it preserves the ternary operation:

h([u, v, w]) = 〈 [u, v, w]φ̂, [u, v, w]σ̂ 〉

= 〈(uφ̂vφ̂ρwφ̂)φ̂, (uσ̂vσ̂wσ̂)σ̂ 〉

= 〈 [uφ̂, vφ̂, wφ̂], [uσ̂, vσ̂, wσ̂]〉

= [〈uφ̂, uσ̂ 〉, 〈vφ̂, vσ̂ 〉, 〈wφ̂, wσ̂ 〉]
= [h(u), h(v), h(w)].

Theorem 5.7. The variety of hear heaps is the join of the varieties of heaps and
semilattices: nH = H ∨ sL; that is, it is the smallest variety containing them.

Proof. It is the proof of Theorem 3.8 mutatis mutandis.

Theorem 5.8. The lattice of Figure 1 is a sublattice of the lattice of all varieties
of algebra with one ternary operation and one unary operation.

Proof. Note that the free algebras of the di�erent varieties in Figure 1 being non-
isomorphic shows that the inclusions in it are proper. That each join of Figure
1 is the smallest variety including those below it is covered by Theorems 3.8 and
5.7. For the each meet of the �gure, recall that the meet of two varieties is their
intersection, and that the inclusions of the varieties in Figure 1 correspond to that
of their generating sets, for example, that F ∩ nH = H.

The next theorem follows immediately from Theorem 3.10. It is also proven in
[7, Section 4] in a di�erent language, and also follows from [18, Theorem 4.3.2].

Theorem 5.9. Every Pªonka sum of heaps is a near heap, and every near heap
is a Pªonka sum of heaps. In short, nH = sPH.

In parallel with Theorem 3.19, a free near heap may also be described as a
Pªonka sum of free heaps over a free semilattice (see also [17] and [18, Theorem
4.3.8]).
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6. Types for groups and heaps

This section clari�es the relationship between groups with a binary operation and
heaps with a ternary one. We view their varieties as categories. Two functors
pass back and forth between them, giving almost a categorical equivalence. To
make clear what is preserved, the intermediary of pointed heaps is introduced.
The point serves as an identity element and can be chosen arbitrarily in a heap.
Some of these ideas and results were presented noncategorically by Baer [1] and
Certaine [3], where there are many references to their origins. See [6] for related
concepts.

De�nition 6.1. The variety G of groups is the class of all algebras 〈G;×,−1 , e〉
of type 〈2, 1, 0〉 satisfying these identities:

x× (y × z) ≈ (x× y)× z,
x× x−1 ≈ 1 ≈ x−1 × x,

1× x ≈ x ≈ x× 1.

The variety pH of pointed heaps consists of all algebras 〈G; [, , ], e〉 of type 〈3, 0〉
satisfying identities (1)�(2) and (21).

Surprisingly, no additional identities beyond these de�ning heaps are needed
to de�ne pointed heaps. Identities cannot nail the constant e � its choice is
arbitrary!

The varieties G and pH are term-equivalent and hence categorically isomorphic.
To see this, replace the three operations x × y, x−1 and 1 in a group by the two
operations [x, y, z] = x × y−1 × z and e = 1 in a pointed heap, and replace the
operations [x, y, z] and e in a pointed heap by x× y = [x, e, y], x−1 = [e, x, e], and
1 = e in a group. Now we de�ne an adjoint situation between pH and G.

De�nition 6.2. The function D : pH → H drops the constant e as an operation
from any pointed heap 〈A; [, , ], e〉. Homomorphisms are left alone by D(h) = h,
although there may be more of them in H. The function E : H → pH uses the
axiom of choice to add to each heap 〈A; [, , ]〉 an arbitrary element e of A. A
homomorphism h : A→ A′ in H is mapped by E to one in pH by the formula:

E(h)(a) = [h(a), h(e), e′] (a ∈ A),

where e and e′ are the constants chosen by E.

Theorem 6.3. The functions D : pH → H and E : H → pH are functors, and D
is both a right and left adjoint of E.

Proof. That D and E are indeed functors is straightforward to verify.
To show that D is a left adjoint of E, it is easiest to prove an equivalent

universal situation: for all A in H, there exists an B in pH and a homomorphism
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f : A→ D(B) such that for all B′ in pH and all homomorphisms h : A→ D(B′)
there is a unique homomorphism h̄ : B → B′ such that this diagram commutes:

A
f−−−−→ D(B)

h

y yD(h)

D(B′) D(B′)

Byh
B′

It follows that D is a left adjoint of E by Theorem 27.3 of [8].
It is proven similarly that D is a right adjoint of E.

How far this adjunction falls short of a categorical equivalence is seen in a
proposition that traces how common concepts pass across. Its proof is routine.
But its statement needs the Cayley representation of elements of a group as per-
mutations.

De�nition 6.4. For any pointed heap A, CayA = {fab | a, b ∈ A}, where fab is
the function given by fab(c) = [a, b, c].

In the following, SubA, ConA and AutA mean respectively the sets of all
subalgebras, congruences and automorphisms of an algebra A. For sets F1 and
F2 of functions, F1 ◦ F2 means complex composition: {f1 ◦ f2 | fi ∈ Fi}.

Proposition 6.5. For A,A1,A2 in pH and their images DA, DA1, DA2 in H:

(1) Sub (DA) = the set of congruence classes of A;

(2) Con (DA) = Con A;

(3) Aut (DA) = Aut A ◦ Cay A = Cay A ◦ Aut A;

(4) Hom (DA1, DA2) = Cay A2 ◦ Hom (A1,A2);

(5) DA1 ×DA2 = D(A1 ×A2).

Since the congruences are the same under D, so are the simple algebras and
subdirectly irreducibles.

Dudek [6, Section 4] approaches the groups in �ocks by looking at the binary
operations, x ·a y = [x, a, y], which are isomorphic groups in a given �ock.

Pªonka sums of groups are developed in [14].

7. Transfer of identities

What do the identities de�ning a variety of ordinary groups become when trans-
fered to a corresponding variety of near heaps? This section starts with algo-
rithms for modifying identities to de�ne varieties of a new type, then a theorem
justi�es them, and two examples follow. There are two or three steps, depending
on whether the subvariety is only a variety of heaps or it is a join of one with
semilattices (Theorem 3.20). Notation is from Section 6. Regularity is needed.
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De�nition 7.1. An identity is regular if each variable occurring in a term on one
side of it occurs also in the term on the other side. A variety is regular if it can
be de�ned by regular identities. The regularization of a variety K is the variety
de�ned by the regular identities satis�ed by K.

Step 1 � from G to pH. Here is the recipe for the �rst step to translate a term
t of type 〈2, 1, 0〉 to one of type 〈3, 0〉; it follows the scheme in Section 6.

• Replace each product t1 × t2 of subterms t1 and t2 of t by [t1, e, t2].

• Replace each inverse t−11 of a subterm t1 of t by [e, t1, e].

• Replace the constant 1 by e.

Write t for the translated term, and t1 ≈ t2 for the translation of an identity
t1 ≈ t2. For a set K of identities de�ning a variety of groups, let K be the set of
translations.

Step 2 � from pH to H. Assume w is a variable not in any of the identities
de�ning H, a subvariety of pH. Replace the constant e by w in all the identities
of K. Write K for the set modi�ed identities.

Step 3 � from H to sH. If a subvariety of nH is the join of a subvariety K of
H with sL, then the identities K de�ning K must be regularized. One can do this
for an identity, t1 ≈ t2, by adding to the right side of the term t1 the pair xx for
any variable x that appears only in t2 to get [t1, x, x] ≈ t2, and likewise for t2 .

Theorem 7.2.

(1) For K a subvariety of G de�ned by a set K of identities, the set K of term-
translated identities of Step 1 de�nes K, the subvariety of pH of pointed heaps
term-equivalent to the groups of G.

(2) For a subvariety K of pH de�ned by a set K of identities, the set K of trans-
lated identities of Step 2 de�nes the subvariety, K = D(K), of H.

(3) For a subvariety K of nH with a de�ning set K of identities, a de�ning set of
identities for its join, K ∨ sL, with the variety of semilattices is given by the
regularization K of K, as done in Step 3.

Proof. (1). This follows from term-equivalence of G of pH.

(2). We must show that, if an identity t1 ≈ t2 is satis�ed by an algebra A of
K, then its translation t1 ≈ t2 is satis�ed by D(A), and conversely. Write the
terms as ti(x1, . . . , xn, e) where the ti are of type 〈3〉. Then the translated terms
will be ti(x1, . . . , xn, w) with w replacing e. We will show that t1(a1, . . . , an, b) =
t2(a1, . . . , an, b) for all a1, . . . , an, b in A. De�ne an automorphism α of A by
α(x) = [x, b, e]. Then α(b) = e. So
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α(t1(a1, . . . , an, b)) = t1(α(a1), . . . , α(an), α(b))

= t1(α(a1), . . . , α(an), e)

= t2(α(a1), . . . , α(an), e)

= t2(α(a1), . . . , α(an), α(b))

= α(t2(a1, . . . , an, b)).

Therefore, t1(a1, . . . , an, b) = t2(a1, . . . , an, b). The converse is proven by replacing
w by e.

We have shown for any identity t1 ≈ t2 and any algebra A of K that

A � t1 ≈ t2 i� D(A) � t1 ≈ t2.

This equivalence also applies to the sets of identities:

K � K i� K � K.

Therefore, K de�nes K since K de�nes K.
(3). Let t1 ≈ t2 be an identity of K ∨ sL. We must show that it is derivable

from the regularization K of K. As an identity satis�ed by K ∨ sL, t1 ≈ t2 is
satis�ed by K, and so is derivable from K alone. Such a derivation is a sequence of
identities, each one of which is either in K or derivable from previous ones using
the rules of equational logic. Now regularize each identity in this derivation. This
is a derivation from K of the regularization t1 ≈ t2 of the original identity, with the
proviso that some new identities must be interpolated to accommodate instances
of substitution in equation logic.

Two examples illustrate this process. The identities of De�nition 6.1, which
de�ne groups, translate to identities that are seen to be equivalent to (1), (2) and
(21), which de�ne heaps. If the binary commutative law, x× y ≈ y × x, is added,
it becomes

[x,w, y] ≈ [y, w, x] (22)

in the �rst two steps. This is already regular, and so Step 3 is not needed. Hence
the join of semilattices and commutative groups is de�ned by (1),(2), (21) and
(22).

Elementary 2-groups are de�ned by the identity, x × x ≈ 1. The �rst and
second steps give [x,w, x] ≈ w, and the third regularizes it:

[x,w, x] ≈ [w, x, x]. (23)

So the join of semilattices and 2-groups is de�ned by (1), (2), (21) and (23).
As 2-groups are commutative, it is an elementary exercise to show directly in

the language of heaps that (22) follows from (23).
A note on the references. Some of the notions in this paper have an extensive

literature reaching back more than a century. A sampling is included here, from
which the reader may �nd more, as well as related concepts.
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On 2-absorbing ideals in commutative semirings

Pratibha Kumar, Manish Kant Dubey and Poonam Sarohe

Abstract. We study 2-absorbing ideals in a commutative semiring S with 1 6= 0 and prove some

important results analogous to ring theory. More general form of the Prime Avoidance Theorem

is also given. We also prove that if I = 〈a1, a2, . . . , ar〉 is a �nitely generated ideal of a semiring

S and P1, P2, . . . , Pn are subtractive prime ideals of S such that I * Pi for each 1 6 i 6 n, then

there exist b2, . . . , br ∈ S such that c = a1 + b2a2 + . . .+ brar /∈
n⋃

i=1
Pi.

1. Introduction

The semiring is an important algebraic structure which plays a prominent role in
various branches of mathematics like combinatorics, functional analysis, topology,
graph theory, optimization theory, cryptography etc. as well as in diverse areas of
applied science such as theoretical physics, computer science, control engineering,
information science, coding theory etc. The concept of semiring was �rst intro-
duced by H. S. Vandiver [14] in 1934. After that several authors have apllied this
concept in various disciplines in many ways.

A commutative semiring is a commutative semigroup (S, ·) and a commutative
monoid (S,+, 0S) in which 0S is the additive identity and 0S · x = x · 0S = 0S for
all x ∈ S, both are connected by ring like distributivity. A subset I of a semiring
S is called an ideal of S if a, b ∈ I and r ∈ S, a+ b ∈ I and ra, ar ∈ I. An ideal I
of a semiring S is called subtractive if a, a+b ∈ I, b ∈ S then b ∈ I. A proper ideal
P of a semiring S is said to be prime (resp. weakly prime) if for some a, b ∈ S
such that ab ∈ P (resp. 0 6= ab ∈ P ), then either a ∈ P or b ∈ P .

Throughout this paper, semiring S will be considered as commutative with
identity 1 6= 0.

2. Prime ideals

The concept of prime ideal plays an important role in ring and semiring theory. we
refer ([8], [10], [13]), for more understanding about prime ideals. In this section,
we give the more general form of The Prime Avoidance Theorem for semirings.
We start this section with the statement of the following lemma.

2010 Mathematics Subject Classi�cation: 16Y30, 16Y60

Keywords: Semiring, subtractive ideal, prime ideal, 2-absorbing ideal, weakly 2-absorbing
ideal.
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Lemma 2.1 ([15], Lemma 2.5). Let P1, P2 be subtractive ideals of a commutative
semiring S and I be an ideal of S such that I ⊆ P1 ∪P2. Then I ⊆ P1 or I ⊆ P2.

Theorem 2.2 ([15], Theorem 2.6). (The Prime Avoidance Theorem)
Let S be a semiring and P1, . . . , Pn (n > 2) be subtractive ideals of S such that

almost two of P1, . . . , Pn are not prime. Let I be an ideal of S such that I ⊆
n⋃

i=1

Pi.

Then I ⊆ Pj for some 1 6 j 6 n.

The next theorem is the more general form of the Prime Avoidance Theorem
of semirings.

Theorem 2.3. (Extented version of the Prime Avoidance Theorem)
Let S be a semiring and P1, . . . , Pn be subtractive prime ideals of S. Let I be an

ideal of S and a ∈ S such that aS + I *
n⋃

i=1

Pi. Then there exists c ∈ I such that

a+ c /∈
n⋃

i=1

Pi.

Proof. Assume that Pi * Pj and Pj * Pi for all i, j ∈ {1, 2, . . . , n} and i 6= j.
Suppose that a lies in all of P1, P2, . . . , Pk but none of Pk+1, . . . , Pn. If k = 0,

then a = a + 0 /∈
n⋃

i=1

Pi, which is required. So, let k > 1. Now, I *
k⋃

i=1

Pi,

for otherwise, by the Prime Avoidance Theorem, we would get I ⊆ Pj for some

1 6 j 6 k, which gives aS + I ⊆ Pj ⊆
n⋃

i=1

Pi, which contradicts to the hypothesis.

Thus, there exists d ∈ I \
k⋃

i=1

Pi. Also, Pk+1 ∩ . . .∩Pn * P1 ∪ . . .∪Pk. Otherwise,

if Pk+1 ∩ . . . ∩ Pn ⊆ P1 ∪ . . . ∪ Pk, by the Prime Avoidance Theorem, we would
get a contradiction. Therefore there exists b ∈ Pk+1 ∩ . . . . ∩ Pn \ (P1 ∪ . . . ∪ Pk).
Now, de�ne c = db ∈ I and note that c ∈ Pk+1 ∩ . . . ∩ Pn \ (P1 ∪ . . . ∪ Pk). Since

a ∈ P1 ∩ . . . ∩ Pk \ (Pk+1 ∪ . . . ∪ Pn), it follows that a + c /∈
n⋃

i=1

Pi (since P
′
is are

subtractive).

Next theorem says that if I is a �nitely generated ideal of S satisfying the
assumption of the Prime Avoidance Theorem for semirings, then the linear com-

bination of the generators of I also avoids
n⋃

i=1

Pi, where P
′
is, (1 6 i 6 n) are

subtractive prime ideals of S.

Theorem 2.4. Let S be a semiring and I = 〈a1, a2, . . . , ar〉 be a �nitely generated
ideal of S. Let P1, P2, . . . , Pn be subtractive prime ideals of S such that I * Pi for
each i, 1 6 i 6 n. Then there exist b2, . . . , br ∈ S such that c = a1 + b2a2 + . . .+

brar /∈
n⋃

i=1

Pi.
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Proof. We prove it by induction on n. Without loss of generality, assume that
Pi * Pj for all i 6= j. If n = 1, then clearly c = a1 + b2a2 + . . . + brar /∈ P1.
Assume that the result is true for (n − 1) subtractive prime ideals of S. Then,

there exist c2, c3, . . . , cr ∈ S such that d = a1 + c2a2 + . . . + crar /∈
n−1⋃
i=1

Pi. If

d /∈ Pn, then we are through. So assume that d ∈ Pn. If a2, . . . , ar ∈ Pn, then
from the expression for d, we have a1 ∈ Pn, (since d = a1 + c2a2 + . . . + crar
and d ∈ Pn implies a1 ∈ Pn, since Pn is subtractive), which is a contradiction to
I * Pn (since, if a1 ∈ Pn and we have already assumed that a2, . . . , ar ∈ Pn, we
get a1, . . . , ar ∈ Pn, this implies that I ⊆ Pn). So for some i, ai /∈ Pn. Without

loss of generality, let i = 2. Since Pi * Pj for all i 6= j, we can �nd x ∈
n−1⋂
i=1

Pi

such that x /∈ Pn. Thus, c = a1 + (c2 + x)a2 + . . .+ crar /∈
n⋃

i=1

Pi.

3. 2-absorbing ideals

The concept of 2-absorbing and weakly 2-absorbing ideals of a commutative ring
with non-zero unity was �rst introduced by Badawi and Darani in [3], [4] which
are generalizations of prime and weakly prime ideals in commutative ring, see
[1]. After that Darani [7] and Kumar et. al [11], explored these concepts in
commutative semiring and characterized many results in terms of 2-absorbing and
weakly 2-absorbing ideals in commutative semiring. Most of the results of this
section are inspired from [5] and [6].

De�nition 3.1. A proper ideal I of a semiring S is said to be a 2-absorbing ideal
of S if abc ∈ I implies ab ∈ I or bc ∈ I or ac ∈ I for some a, b, c ∈ S.

De�nition 3.2. A proper ideal I of a semiring S is said to be a weakly 2-absorbing
ideal if whenever a, b, c ∈ S such that 0 6= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I.

Clearly, one can see that every 2-absorbing ideal of a semiring S is a weakly 2-
absorbing ideal of S but converse need not be true. For more details of 2-absorbing
and weakly 2-absorbing ideals in commutative semirings, we refer [7], [11].

Lemma 3.3. Let I be a subtractive 2-absorbing ideal of S. Suppose that abJ ⊆ I
for some a, b ∈ S and an ideal J of S. If ab /∈ I, then either aJ ⊆ I or bJ ⊆ I.

Proof. Suppose that aJ * I and bJ * I. Therefore, there are some x, y ∈ J such
that ax /∈ I and by /∈ I. Since abx ∈ I and ab /∈ I and ax /∈ I, we have bx ∈ I.
Since aby ∈ I and ab /∈ I and by /∈ I, we have ay ∈ I. Now, since ab(x + y) ∈ I
and ab /∈ I, we have a(x + y) ∈ I or b(x + y) ∈ I, since I is a 2-absorbing ideal
of S. If a(x + y) ∈ I and ay ∈ I, then ax ∈ I (since I is subtractive), which is
a contradiction. Similarly, if b(x + y) ∈ I and bx ∈ I, we get by ∈ I (since I is
subtractive), which is again a contradiction. Hence, either aJ ⊆ I or bJ ⊆ I.
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Theorem 3.4. Let I be a proper subtractive ideal of S. Then I is a 2-absorbing
ideal of S if and only if whenever I1I2I3 ⊆ I for some ideals I1, I2, I3 of S, then
either I1I2 ⊆ I or I2I3 ⊆ I or I3I1 ⊆ I.

Proof. Let I1I2I3 ⊆ I for some ideals I1, I2, I3 of S, then I1I2 ⊆ I or I2I3 ⊆ I or
I1I3 ⊆ I. Then by de�nition, I is a 2-absorbing ideal of S. Conversely, let I be
a 2-absorbing ideal of S and I1I2I3 ⊆ I for some ideals I1, I2, I3 of S, such that
I1I2 * I. We show that I1I3 ⊆ I or I2I3 ⊆ I. If possible, suppose that I1I3 * I
and I2I3 * I. Then there exist a1 ∈ I1 and a2 ∈ I2 such that a1I3 * I and
a2I3 * I. Also, a1a2I3 ⊆ I and a1I3 * I and a2I3 * I, we have a1a2 ∈ I by above
lemma. Since I1I2 * I, therefore for some a ∈ I1, b ∈ I2, ab /∈ I. Since abI3 ⊆ I
and ab /∈ I, we have aI3 ⊆ I or bI3 ⊆ I by above lemma. Here three cases arise.

Case I: Suppose that aI3 ⊆ I, but bI3 * I. Since a1bI3 ⊆ I and bI3 * I and
a1I3 * I, by above lemma, we have a1b ∈ I. Since (a + a1)bI3 ⊆ I and aI3 ⊆ I,
but a1I3 * I, therefore (a+ a1)I3 * I. Since bI3 * I and (a+ a1)I3 * I, we have
(a + a1)b ∈ I by above lemma. Again, (a + a1)b = ab + a1b ∈ I and a1b ∈ I, we
conclude that ab ∈ I (since I is subtractive), which is a contradiction.

Case II: Suppose that bI3 ⊆ I, but aI3 * I. Since aa2I3 ⊆ I and aI3 * I and
a2I3 * I, by above lemma, we have aa2 ∈ I. Again, a(b+ a2)I3 ⊆ I and bI3 ⊆ I,
but a2I3 * I, we have (b+ a2)I3 * I. Since aI3 * I and (b+ a2)I3 * I, we have
a(b + a2) ∈ I by above lemma. Since a(b + a2) = ab + aa2 ∈ I and aa2 ∈ I, we
conclude that ab ∈ I (since I is subtractive), which is a contradiction.

Case III: Suppose that aI3 ⊆ I and bI3 ⊆ I. Since bI3 ⊆ I and a2I3 * I, we
have (b+a2)I3 * I. Since a1(b+a2)I3 ⊆ I and a1I3 * I and (b+a2)I3 * I, we have
a1(b+ a2) = a1b+ a1a2 ∈ I by lemma above. Since a1b+ a1a2 ∈ I and a1a2 ∈ I,
we have ba1 ∈ I (since I is subtractive). Since aI3 ⊆ I and a1I3 * I, we have
(a+ a1)I3 * I. Since (a+ a1)a2I3 ⊆ I and a2I3 * I and (a+ a1)I3 * I, we have
(a+ a1)a2 = aa2 + a1a2 ∈ I by above lemma. Since a1a2 ∈ I and aa2 + a1a2 ∈ I,
we have aa2 ∈ I (since I is subtractive). Now, since (a + a1)(b + a2)I3 ⊆ I and
(a+a1)I3 * I and (b+a2)I3 * I, we have (a+a1)(b+a2) = ab+aa2+ba1+a1a2 ∈ I
by above lemma. Since aa2, ba1, a1a2 ∈ I, we have aa2 + ba1 + a1a2 ∈ I. Since
ab+aa2+ ba1+a1a2 ∈ I and aa2+ ba1+a1a2 ∈ I, we conclude that ab ∈ I (since
I is subtractive), which is a contradiction. Hence I1I3 ⊆ I or I2I3 ⊆ I.

Result 3.5 ([2], Lemma 2.1 (ii)). If I is a subtractive ideal of S, then (I : a) is a
subtractive ideal of S, where (I : a) = {s ∈ S : sa ∈ I}.

Proof. It is straight forward.

Next theorem gives some characterizations of 2-absorbing ideals of semiring.
Mostafanasab and Darani in [12], proved it for 2-absorbing primary ideals of rings.

Theorem 3.6. Let S be a semiring and I be a proper subtractive ideal of S. Then
the following are equivalent:

(1) I is a 2-absorbing ideal of S;
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(2) For all a, b ∈ S such that ab /∈ I, (I : ab) ⊆ (I : a) or (I : ab) ⊆ (I : b);

(3) For all a ∈ S and for all ideal J of S such that aJ * I, (I : aJ) ⊆ (I : J) or
(I : aJ) ⊆ (I : a);

(4) For all ideals J,K of S such that JK * I, (I : JK) ⊆ (I : J) or (I : JK) ⊆
(I : K);

(5) For all ideals J,K,L of S such that JKL ⊆ I, either JK ⊆ I or KL ⊆ I or
JL ⊆ I.

Proof. (1) ⇒ (2). Let ab /∈ I where a, b ∈ S and x ∈ (I : ab). Then xab ∈ I.
Therefore, either xa ∈ I or xb ∈ I and hence either x ∈ (I : a) or x ∈ (I : b). Thus,
(I : ab) ⊆ (I : a) ∪ (I : b). Then we have (I : ab) ⊆ (I : a) or (I : ab) ⊆ (I : b)
(since if A,B are subtractive ideals of a semiring S such that C ⊆ A∪B where C
is an ideal of S, then either C ⊆ A or C ⊆ B).
(2) ⇒ (3), (3) ⇒ (4), (4) ⇒ (5) and (5) ⇒ (1) is similar as the proof of ([12],
Theorem 2.1), by using the result (if A,B are subtractive ideals of a semiring S
such that C ⊆ A ∪B where C is an ideal of S, then either C ⊆ A or C ⊆ B).

Theorem 3.7. Let I be a 2-absorbing ideal of S and A be a multiplicatively closed
subset of S such that I ∩A = Φ. Then A−1I is also a 2-absorbing ideal of A−1S.

Proof. Let (a/s)(b/t)(c/k) ∈ A−1I for some a, b, c ∈ S and s, t, k ∈ A. Then there
exists u ∈ A such that uabc ∈ I. Therefore, we have uab ∈ I or bc ∈ I or uac ∈ I,
since I is a 2-absorbing ideal of S. If uab ∈ I, then (a/s)(b/t) = (uab/ust) ∈ A−1I.
If bc ∈ I, then (b/t)(c/k) ∈ A−1I. If uac ∈ I, then (a/s)(c/k) = (uac/usk) ∈
A−1I.

Lemma 3.8. Let S be a semiring and P1 and P2 be distinct weakly prime ideals
of S. Then P1 ∩ P2 is also a weakly 2-absorbing ideal of S.

Proof. Let 0 6= abc ∈ P1 ∩ P2 for some a, b, c ∈ S. Suppose that ab /∈ P1 ∩ P2 and
ac /∈ P1 ∩ P2. Assume that ab /∈ P1 and ac /∈ P1. Since 0 6= abc ∈ P1 and P1

is weakly prime, we get c ∈ P1 and hence ac ∈ P1, a contradiction. Similarly, if
ab /∈ P2 and ac /∈ P2, we would get a contradiction. Therefore, either ab /∈ P1 and
ac /∈ P2 or ab /∈ P2 and ac /∈ P1. First assume that, ab /∈ P1 and ac /∈ P2. Since
0 6= abc ∈ P1, we get c ∈ P1 and hence bc ∈ P1. Similarly, since 0 6= abc ∈ P2,
we get b ∈ P2 and hence bc ∈ P2. Thus, bc ∈ P1 ∩ P2. Hence P1 ∩ P2 is a weakly
2-absorbing ideal of S. Likewise, we can prove for the second case when ab /∈ P2

and ac /∈ P1, we have bc ∈ P1 ∩ P2.

De�nition 3.9. Let I be a weakly 2-absorbing ideal of S. We say that (a, b, c),
where a, b, c ∈ S is a triple zero of I if abc = 0, ab /∈ I, bc /∈ I and ac /∈ I.

Theorem 3.10. Let I be a subtractive weakly 2-absorbing ideal of S and (a, b, c)
be a triple zero of I for some a, b, c ∈ S. Then
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(1) abI = bcI = acI = {0}.

(2) aI2 = bI2 = cI2 = {0}.

Proof. (1). Let abI 6= 0. Then there exists x ∈ I such that abx 6= 0. Therefore,
ab(c + x) 6= 0. Since I is a weakly 2-absorbing ideal of S and ab /∈ I, we have
a(c + x) ∈ I or b(c + x) ∈ I and hence ac ∈ I or bc ∈ I (since I is subtractive),
which is a contradiction. Thus, abI = 0. Similarly, bcI = acI = 0.

(2). Let aI2 6= 0. Then there exist x, y ∈ I such that axy 6= 0. Therefore (1)
gives, a(b + x)(c + y) = axy 6= 0. Since I is a weakly 2-absorbing ideal of S, we
have either a(b + x) ∈ I or a(c + y) ∈ I or (b + x)(c + y) ∈ I. Thus, ab ∈ I or
ac ∈ I or bc ∈ I (since I is subtractive), which is a contradiction. Hence aI2 = 0.
Similarly, bI2 = cI2 = 0.

De�nition 3.11. Let I be a weakly 2-absorbing ideal of S and let I1I2I3 ⊆ I for
some ideals I1, I2, I3 of S. We say that I is a free triple zero with respect to I1I2I3
if (a, b, c) is not a triple zero of I for every a ∈ I1, b ∈ I2, and c ∈ I3.

Conjecture 3.12. If I is a weakly 2-absorbing ideal of S with 0 6= I1I2I3 ⊆ I for
some ideals I1, I2, I3 ∈ S, then I is a free triple zero with respect to I1I2I3.

Lemma 3.13. Let I be a subtractive weakly 2-absorbing ideal of S. Let abJ ⊆ I
for some a, b ∈ S and some ideal J of S such that (a, b, c) is not a triple zero of I
for every c ∈ J . If ab /∈ I, then either aJ ⊆ I or bJ ⊆ I.

Proof. Suppose that aJ * I and bJ * I. Then, there are some x, y ∈ J such that
ax /∈ I and by /∈ I. Since (a, b, x) is not a triple zero of I and abx ∈ I and ab /∈ I
and ax /∈ I, we have bx ∈ I. Since (a, b, y) is not a triple zero of I and aby ∈ I
and ab /∈ I and by /∈ I, we have ay ∈ I. Again, (a, b, x+ y) is not a triple zero of
I and ab(x + y) ∈ I and ab /∈ I, we have a(x + y) ∈ I or b(x + y) ∈ I, since I is
a weakly 2-absorbing ideal of S. If a(x+ y) ∈ I and ay ∈ I, then ax ∈ I (since I
is subtractive), which is a contradiction. Similarly, if b(x+ y) ∈ I and bx ∈ I, we
get by ∈ I (since I is subtractive), which is a contradiction. Hence, either aJ ⊆ I
or bJ ⊆ I.

Remark 3.14. If I is a weakly 2-absorbing ideal of S and I1I2I3 ⊆ I for some
ideals I1, I2, I3 of S such that I is a free triple zero with respect to I1I2I3. Then
ab ∈ I or ac ∈ I or bc ∈ I for all a ∈ I1, b ∈ I2 and c ∈ I3.

Let I be a weakly 2-absorbing ideal of S. According to the following result, we
see that Conjecture 3.12 is valid if and only if whenever 0 6= I1I2I3 ⊆ I for some
ideals I1, I2, I3 of S, then either I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I.

Theorem 3.15. Let I be a subtractive weakly 2-absorbing ideal of S. If 0 6=
I1I2I3 ⊆ I for some ideals I1, I2, I3 of S such that I is a free triple zero with
respect to I1I2I3 , then either I1I2 ⊆ I or I2I3 ⊆ I or I3I1 ⊆ I.
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Proof. Let I be a subtractive weakly 2-absorbing ideal of S and 0 6= I1I2I3 ⊆ I for
some ideals I1, I2, I3 of S such that I is a free triple zero with respect to I1I2I3.
Let I1I2 * I. We show that I1I3 ⊆ I or I2I3 ⊆ I. By using above remark 1 and
lemma 3.13, it will proceed as the proof of theorem 3.4. If possible, suppose that
I1I3 * I and I2I3 * I. Then there exist a1 ∈ I1 and a2 ∈ I2 such that a1I3 * I
and a2I3 * I. Also, a1a2I3 ⊆ I and a1I3 * I and a2I3 * I, we have a1a2 ∈ I
by lemma 3.13. Since I1I2 * I, therefore for some a ∈ I1, b ∈ I2, ab /∈ I. Since
abI3 ⊆ I and ab /∈ I, we have aI3 ⊆ I or bI3 ⊆ I by lemma 3.13 . Here three cases
arise.

Case I: Suppose that aI3 ⊆ I, but bI3 * I. Since a1bI3 ⊆ I and bI3 * I and
a1I3 * I, by lemma 3.13, we have a1b ∈ I. Since (a + a1)bI3 ⊆ I and aI3 ⊆ I,
but a1I3 * I, therefore (a+ a1)I3 * I. Since bI3 * I and (a+ a1)I3 * I, we have
(a + a1)b ∈ I by lemma 3.13. Again, (a + a1)b = ab + a1b ∈ I and a1b ∈ I, we
conclude that ab ∈ I (since I is subtractive), which is a contradiction.

Case II: Suppose that bI3 ⊆ I, but aI3 * I. Since aa2I3 ⊆ I and aI3 * I and
a2I3 * I, by lemma 3.13, we have aa2 ∈ I. Again, a(b + a2)I3 ⊆ I and bI3 ⊆ I,
but a2I3 * I, we have (b+ a2)I3 * I. Since aI3 * I and (b+ a2)I3 * I, we have
a(b + a2) ∈ I by lemma 3.13. Since a(b + a2) = ab + aa2 ∈ I and aa2 ∈ I, we
conclude that ab ∈ I (since I is subtractive), which is a contradiction.

Case III: Suppose that aI3 ⊆ I and bI3 ⊆ I. Since bI3 ⊆ I and a2I3 * I, we
have (b + a2)I3 * I. Since a1(b + a2)I3 ⊆ I and a1I3 * I and (b + a2)I3 * I, we
have a1(b+a2) = a1b+a1a2 ∈ I by lemma 3.13. Since a1b+a1a2 ∈ I and a1a2 ∈ I,
we have ba1 ∈ I (since I is subtractive). Since aI3 ⊆ I and a1I3 * I, we have
(a+ a1)I3 * I. Since (a+ a1)a2I3 ⊆ I and a2I3 * I and (a+ a1)I3 * I, we have
(a + a1)a2 = aa2 + a1a2 ∈ I by lemma 3.13. Since a1a2 ∈ I and aa2 + a1a2 ∈ I,
we have aa2 ∈ I (since I is subtractive). Now, since (a + a1)(b + a2)I3 ⊆ I and
(a+a1)I3 * I and (b+a2)I3 * I, we have (a+a1)(b+a2) = ab+aa2+ba1+a1a2 ∈ I
by lemma 3.13. Since aa2, ba1, a1a2 ∈ I, we have aa2 + ba1 + a1a2 ∈ I. Since
ab+aa2+ ba1+a1a2 ∈ I and aa2+ ba1+a1a2 ∈ I, we conclude that ab ∈ I (since
I is subtractive), which is a contradiction. Hence I1I3 ⊆ I or I2I3 ⊆ I.

Proposition 3.16. Let S be a semiring and I be a proper subtractive ideal of S.
Then the following statements are equivalent:

(1) For any ideals I1, I2, I3 of S, 0 6= I1I2I3 ⊆ I implies either I1I2 ⊆ I or
I1I3 ⊆ I or I2I3 ⊆ I;

(2) For any ideals I1, I2, I3 of S such that I ⊆ I1, 0 6= I1I2I3 ⊆ I implies either
I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (1). Let 0 6= JI2I3 ⊆ I for some ideals J, I2, I3 of S. Then obviously

0 6= (J + I)I2I3 = (JI2I3) + (II2I3) ⊆ I. Let I1 = J + I. Then, either I1I2 ⊆
I or I1I3 ⊆ I or I2I3 ⊆ I by given hypothesis. Therefore, (J + I)I2 ⊆ I or
(J + I)I3 ⊆ I or I2I3 ⊆ I. Thus, either JI2 ⊆ I or JI3 ⊆ I or I2I3 ⊆ I (since I is
subtractive).
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On the principal (m,n)-ideals in the direct product

of two semigroups

Panuwat Luangchaisri and Thawhat Changphas

Abstract. We characterize properties of the equivalence relation determined by two (m,n)-

ideals of a semigroup S and describe properties of this relation in the direct product of two

semigroups.

1. Preliminaries

Let m,n be non-negative integers. A subsemigroup A of a semigroup S is called
an (m,n)-ideal of S if

AmSAn ⊆ A

(Here, A0S = SA0 = S). This notion was �rst introduced by S. Lajos [3] in 1961.
The principal (m,n)-ideal of S generated by a ∈ S will be denoted by [a](m,n),
and it is of the form

[a](m,n) =
⋃m+n

i=1 {ai}
⋃
amSan

(see [2]).
Now, let T be a semigroup, and thus the direct product S × T is a semi-

group under the coordinate wise multiplications. In this paper we introduce the
equivalence relation J(m,n) on S by, for any a, b ∈ S,

aJ(m,n)b ←→ [a](m,n) = [b](m,n).

2. Main results

Throughout this section, let m,n be non-negative integers and S be a semigroup.
We begin this section with the following lemmas:

Lemma 2.1. Let S and T be any two semigroups, and let s ∈ S, t ∈ T . Then

(s, t)m(S × T )(s, t)n = smSsn × tmTtn.

2010 Mathematics Subject Classi�cation: 20M20.
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Hence,

[(s, t)](m,n) =
⋃m+n

i=1 {(s, t)i} ∪ smSsn × tmTtn.

Proof. This follows by

(s, t)m(S × T )(s, t)n = (sm, tn)(S × T )(sn, tn) = smSsn × tmTtn.

Lemma 2.2. Let s be an element of a semigroup S. Then

[s](m,n) = smSsn ←→ s ∈ smSsn.

Proof. It is clear that [s](m,n) = smSsn implies s ∈ smSsn.
Conversely, if s ∈ smSsn, then

[s](m,n) =
⋃m+n

i=1 {si} ∪ smSsn ⊆ smSsn.

By smSsn ⊆ [s](m,n), [s](m,n) = smSsn.

Lemma 2.3. Let S and T be any two semigroups, and let s ∈ S, t ∈ T . Then

[(s, t)](m,n) ⊆ [s](m,n) × [t](m,n).

Proof. This follows by Lemma 2.1.

We now prove the �rst main purpose of this paper.

Theorem 2.4. Let S and T be any two semigroups, and let s ∈ S, t ∈ T . Then

[(s, t)](m,n) = [s](m,n)×[t](m,n) if and only if at least one of the following conditions

holds:

(1) smSsn = {s},

(2) tmTtn = {t},

(3) s ∈ smSsn and t ∈ tmTtn.

Proof. Assume �rst that [(s, t)](m,n) = [s](m,n)× [t](m,n). Suppose that s /∈ smSsn
or t /∈ tmTtn. If s /∈ smSsn, then s 6= sk for all k ∈ {2, 3, . . .}; hence

{s} × tmTtn = {(s, t)}.

This implies that tmTtn = {t}. Similarly, if t /∈ tmTtn, then smSsn = {s}.
Conversely, we assume that (1), (2) or (3) holds. If smSsn = {s}, then, by

Lemma 2.2, it follows that

[s](m,n) × [t](m,n) = {s} × [t](m,n) =
⋃m+n

i=1 {(s, ti)}
⋃
{s} × tmTtn

=
⋃m+n

i=1 {(si, ti)}
⋃
smSsn × tmTtn = [(s, t)](m,n).

Thus [(s, t)](m,n) = [s](m,n) × [t](m,n).

Similarly, if tmTtn = {t}, then [(s, t)](m,n) = [s](m,n) × [t](m,n).
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Finally, we assume that s ∈ smSsn and t ∈ tmTtn. By Lemmas 2.2 − 2.3, we
have

[(s, t)](m,n) ⊆ [s](m,n) × [t](m,n) = smSsn × tmTtn ⊆ [(s, t)](m,n).

Therefore [(s, t)](m,n) = [s](m,n) × [t](m,n), as required.

Now, we consider the second aim of this paper.

Lemma 2.5. For any s ∈ S, if J(m,n),s ∩ smSsn 6= ∅, then J(m,n),s ⊆ smSsn.

Proof. For J(m,n),s ∩ smSsn 6= ∅ there exists u ∈ J(m,n),s ∩ smSsn. Thus

s ∈ [s](m,n) = [u](m,n).

We have s ∈ smSsn. Indeed, if s = ui for some i ∈ {1, 2, . . . ,m + n}, then
s ∈ smSsn. And, if s ∈ umSun, then s ∈ umSun ⊆ (smSsn)S(smSsn) ⊆ smSsn,
and so s ∈ smSsn.

Now, if v ∈ J(m,n),s, then [v](m,n) = [s](m,n); hence v ∈ [s](m,n). This implies
v ∈ [s](m,n) = smSsn by Lemma 2.2. Therefore J(m,n),s ⊆ smSsn.

Lemma 2.6. If for s ∈ S the cardinality |J(m,n),s| > 1, then J(m,n),s ⊆ smSsn.

Proof. For |J(m,n),s| > 1 there exists u ∈ J(m,n),s such that u 6= s. We have

u ∈ [u](m,n) = [s](m,n).

If u ∈ smSsn, then J(m,n),s ∩ smSsn 6= ∅. So, J(m,n),s ⊆ smSsn, by Lemma 2.5.
Let u = si for some i ∈ {2, 3, . . . ,m+n}. If s = uj for some j ∈ {2, 3, . . . ,m+n},
then s ∈ smSsn. Therefore, by Lemma 2.5, it follows that J(m,n),s ⊆ smSsn.
If s ∈ umSun, then J(m,n),s = J(m,n),u ⊆ umSun = smiSsni ⊆ smSsn. This
completes the proof.

Let S and T be any two semigroups. De�ne πS : S×T → S and πT : S×T → T ,
respectively, by:

(s, t)πS = s for all s ∈ S and (s, t)πT = t for all t ∈ T .

Then πS (resp. πT ) is a projection from S × T onto S (resp. T ). Moreover, for
any (s, t) ∈ S × T we have [(s, t)](m,n)πS = [s](m,n) and [(s, t)](m,n)πT = [t](m,n).

Theorem 2.7. Let S and T be any two semigroups, and let (s, t) ∈ S × T . Then

(1) J(m,n),(s,t) ⊆ J(m,n),s × J(m,n),t, and

(2) if J(m,n),(s,t) is a proper subset of J(m,n),s × J(m,n),t, then J(m,n),s × J(m,n),t

is the union of at least two J(m,n)-classes in S × T .

Proof. To prove (1), let (u, v) ∈ J(m,n),(s,t). Then [(s, t)](m,n) = [(u, v)](m,n),

[s](m,n) = [(s, t)](m,n)πS = [(u, v)](m,n)πS = [u](m,n)
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and

[t](m,n) = [(s, t)](m,n)πT = [(u, v)](m,n)πT = [v](m,n).

Thus (u, v) ∈ J(m,n),s × J(m,n),t.

(2). Let (u, v) ∈ J(m,n),s × J(m,n),t \ J(m,n),(s,t). Then [u](m,n) = [s](m,n) and
[v](m,n) = [t](m,n). Thus

J(m,n),(u,v) ⊆ J(m,n),u × J(m,n),v = J(m,n),s × J(m,n),t.

Corollary 2.8. Let S and T be any two semigroups, and let (s, t) ∈ S × T . If

J(m,n),s = {s} and J(m,n),t = {t}, then

J(m,n),(s,t) = J(m,n),s × J(m,n),t = {(s, t)}.

Theorem 2.9. Let S and T be any two semigroups, and let s ∈ S, t ∈ T . Then

J(m,n),s×J(m,n),t = J(m,n),(s,t) if and only if at least one of the following conditions

holds:

(1) J(m,n),s = {s} and J(m,n),t = {t},

(2) s ∈ smSsn and t ∈ tmTtn.

Proof. Assume that J(m,n),s × J(m,n),t = J(m,n),(s,t). If |J(m,n),(s,t)| = 1, then

J(m,n),s × J(m,n),t = J(m,n),(s,t) = {(s, t)}.

That is, J(m,n),s = {s} and J(m,n),t = {t}.
If |J(m,n),(s,t)| > 1, then, (s, t) ∈ J(m,n),(s,t) ⊆ smSsn × tmTtn, by Lemma 2.2.

Conversely, if (1) holds, then J(m,n),s×J(m,n),t = J(m,n),(s,t), by Corollary 2.8.
By (2) and Theorem 2.4, we get [(s, t)](m,n) = [s](m,n)× [t](m,n). By Theorem 2.7,
J(m,n),(s,t) ⊆ J(m,n),s × J(m,n),t.

To prove the reverse inclusion let (u, v) ∈ J(m,n),s × J(m,n),t.
Case 1: (u, v) = (s, t). Then (u, v) ∈ J(m,n),(s,t), and so J(m,n),s × J(m,n),t ⊆

J(m,n),(s,t).
Case 2: u 6= s. By Lemma 2.6, we have u ∈ J(m,n),u ⊆ umSun, because

s, u ∈ J(m,n),s = J(m,n),u.
Case 2.1: v = t. We have v ∈ vmTvn. By Theorem 2.4,

[(u, v)](m,n) = [u](m,n) × [v](m,n) = [s](m,n) × [t](m,n) = [(s, t)](m,n).

Thus (u, v) ∈ J(m,n),(s,t). Therefore J(m,n),s × J(m,n),t ⊆ J(m,n),(s,t).
Case 2.2: v 6= t. We have v ∈ J(m,n),v ⊆ vmTvn. As Case 2.1 we have

(u, v) ∈ J(m,n),(s,t), and thus

J(m,n),s × J(m,n),t ⊆ J(m,n),(s,t).

Case 3: u = t, v 6= t. Analogously as Case 2.1.
This completes the proof.
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Using the thereom above we have the following.

Corollary 2.10. Let S and T be any two semigroups, and let s ∈ S, t ∈ T . If

|J(m,n),s| > 1 and |J(m,n),t| > 1, then J(m,n),(s,t) = J(m,n),s × J(m,n),t.

Corollary 2.11. Let S and T be any two semigroups, and let s ∈ S, t ∈ T . If

J(m,n),s×J(m,n),t is the union of at least two J(m,n)-classes, then necessarily either

|J(m,n),s| > 1, J(m,n),t = {t} or |J(m,n),t| > 1, J(m,n),s = {s}.

Theorem 2.12. Let S and T be any two semigroups, and let s ∈ S, t ∈ T . Then

J(m,n),s × J(m,n),t is the union of at least two J(m,n)-classes if and only if either

|J(m,n),s| > 1, J(m,n),t = {t}, t /∈ tmTtn
or

|J(m,n),t| > 1, J(m,n),s = {s}, s /∈ smSsn.

Proof. Assume that J(m,n),s × J(m,n),t is the union of at least two J(m,n)-classes.
By Corollary 2.11,

|J(m,n),s| > 1, J(m,n),t = {t}
or

|J(m,n),t| > 1, J(m,n),s = {s}.

Case 1: |J(m,n),s| > 1, J(m,n),t = {t}. Then t /∈ tmTtn because otherwise,
s ∈ J(m,n),s ⊆ smSsn and t ∈ tmTtn imply that J(m,n),s × J(m,n),t = J(m,n),(s,t).

Case 2: |J(m,n),t| > 1, J(m,n),s = {s}. This can be proceed analogously, and
hence s /∈ smSsn.

For the opposite direction, it su�ces to consider the case |J(m,n),s| > 1,
J(m,n),t = {t}, t /∈ tmTtn. Let u ∈ J(m,n),s such that u 6= s. Then (u, t) ∈
J(m,n),s × J(m,n),t. Since t /∈ tmTtn, we have (s, t) /∈ smSsn × tmTtn. Thus, by
Lemma 2.6, we have (u, t) /∈ {(s, t)} = J(m,n),(s,t).

The rest of this paper, relationships between maximal J(m,n)-classes in S × T
and maximal J(m,n)-classes in S and in T will be investigated.

Theorem 2.13. Let S and T be any two semigroups, and let s ∈ S, t ∈ T be such

that (s, t) ∈ smSsn×tmTtn. Then, for any u ∈ S, v ∈ T , [(s, t)](m,n) ⊆ [(u, v)](m,n)

if and only if [s](m,n) ⊆ [u](m,n) and [t](m,n) ⊆ [v](m,n).

Proof. Assume that [(s, t)](m,n) ⊆ [(u, v)](m,n). Then

[s](m,n) = [(s, t)](m,n)πS ⊆ [(u, v)](m,n)πS = [u](m,n),

[t](m,n) = [(s, t)](m,n)πT ⊆ [(u, v)](m,n)πT = [v](m,n).

Hence [s](m,n) ⊆ [u](m,n) and [t](m,n) ⊆ [v](m,n).
Assume that [s](m,n) ⊆ [u](m,n) and [t](m,n) ⊆ [v](m,n). Since s ∈ smSsn and

t ∈ tmTtn, it follows by Theorem 2.4 and Lemma 2.2 that

[(s, t)](m,n) = [s](m,n) × [t](m,n) = smSsn × tmTtn.
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If (x, y) ∈ [(s, t)](m,n), then

(x, y) ∈ smSsn × tmTtn ⊆ umSun × vmTvn ⊆ [(u, v)](m,n).

Thus [(s, t)](m,n) ⊆ [(u, v)](m,n).

Theorem 2.14. Let S and T be any two semigroups, and let s ∈ S, t ∈ T be

such that (s, t) ∈ smSsn × tmTtn. Then J(m,n),(s,t) is a maximal J(m,n)-class in

S × T if and only if J(m,n),s and J(m,n),t are maximal J(m,n)-classes in S and in

T , respectively.

Proof. Assume �rst that J(m,n),(s,t) is a maximal J(m,n)-class in S × T . Suppose
that J(m,n),s is not a maximal J(m,n)-class in S. Then there exists u ∈ S such
that [s](m,n) ⊂ [u](m,n). By Theorem 2.13, [(s, t)](m,n) ⊆ [(u, t)](m,n). We have

(u, t) /∈ [s](m,n) × [t](m,n) = [(s, t)](m,n).

Thus [(s, t)](m,n) ⊂ [(u, t)](m,n). This contradicts to the maximality of J(m,n),(s,t).
In the same manner, if J(m,n),t is not a maximal J(m,n)-class in T , then we get a
contradiction.

Conversely, we assume that J(m,n),s and J(m,n),t are maximal J(m,n)-classes in
S and in T , respectively. Suppose that J(m,n),(s,t) is not maximal. Then there
exists (u, v) ∈ S × T such that [(s, t)](m,n) ⊂ [(u, v)](m,n). Thus

[s](m,n) × [t](m,n) = [(s, t)](m,n) ⊂ [(u, v)](m,n) ⊆ [u](m,n) × [v](m,n).

This is a contradiction.
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Characterizing monomorphisms of actions

on directed complete posets (S-dcpo)

Mojgan Mahmoudi and Mahdieh Yavari

Abstract. Domain Theory is a branch of mathematics that studies special kinds of partially
ordered sets (posets) commonly called domains. It was introduced in the 1970s by Scott as a
foundation for programming semantics and provides an abstract model of computation, and has
grown into a respected �eld on the borderline between Mathematics and Computer Science.

In this paper we take domains as ordered algebraic structures and consider the actions of

a partially ordered monoid which is itself a domain, on them. To study algebraic notions, in

particular injectivity and �atness, in the categories so obtained, one needs to know the di�erent

kinds of monomorphisms, their properties and the relations between them. This is what we are

going to discuss in this paper.

1. Introduction and preliminaries

Domain theory is a branch of mathematics that studies special kinds of partially
ordered sets (posets) commonly called domains. It was introduced in the 1970s
by Scott as a foundation for programming semantics and provides an abstract
model of computation using order structures and topology, and has grown into a
respected �eld on the borderline between Mathematics and Computer Science [1].

Relationships between domain theory and logic were noted early on by Scott
[10], and subsequently developed by many authors, including Smyth [11], Abram-
sky [2], and Zhang [12]. There has been much work on the use of domain logics
as logics of types and of program correctness, with a focus on functional and
imperative languages.

In this paper we take domains as ordered algebraic structures and consider
the actions of a pomonoid which is itself a domain, on them. To study algebraic
notions, in particular injectivity and �atness, in the categories so obtained, one
needs to know the properties of di�erent kinds of monomorphisms and the relations
between them. This is what we are trying to do in the following.

First we recall some preliminaries needed in the sequel. The reader can �nd
more details in [2, 4, 5, 6]. Let Pos denote the category of all partially ordered
sets (posets) with order-preserving (monotone) maps between them. A non-empty
subsetD of a partially ordered set is called directed, denoted byD ⊆d P , if for every
a, b ∈ D there exists c ∈ D such that a, b 6 c; and P is called directed complete,

2010 Mathematics Subject Classi�cation: 06F05, 18A40, 20M30, 20M50.
Keywords: Directed complete partially ordered set, monomorphism.
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or brie�y a dcpo, if for every D ⊆d P , the directed join
∨d

D exists in P . A dcpo
which has a bottom element ⊥ is said to be a cpo.

A dcpo map or a continuous map f : P → Q between dcpo's is a map with the
property that for every D ⊆d P , f(D) is a directed subset of Q and f(

∨d
D) =∨d

f(D). A dcpo map f : P → Q between cpo's is called strict if f(⊥) =⊥. Thus
we have the category Dcpo (Cpo) of all dcpo's (cpo's) with (strict) continuous
maps between them.

A po-monoid S is a monoid with a partial order 6 which is compatible with
the binary operation (that is, for s, t, s′, t′ ∈ S, s 6 t and s′ 6 t′ imply ss′ 6 tt′).
Similarly, a dcpo (cpo)-monoid is a monoid which is also a dcpo (cpo) whose binary
operation is a (strict) continuous map.

Recall that an (right) S-act or an S-set for a monoid S is a set A equipped with
an action A × S → A, (a, s)  as, such that ae = a (e is the identity element of
S) and a(st) = (as)t, for all a ∈ A and s, t ∈ S. Let Act-S denote the category
of all S-acts with action preserving maps (f : A → B with f(as) = f(a)s, for all
a ∈ A, s ∈ S). Let A be an S-act. An element a ∈ A is called a zero, �xed, or a

trap element if as = a, for all s ∈ S.
For a po-monoid S, an (right) S-poset is a poset A which is also an S-act whose

action λ : A × S → A is order-preserving, where A × S is considered as a poset
with componentwise order. The category of all S-posets with action preserving
monotone maps between them is denoted by Pos-S.

Also, for a dcpo (cpo)-monoid S, an (right) S-dcpo (S-cpo) is a dcpo (cpo) A
which is also an S-act whose action λ : A× S → A is a (strict) continuous map.

Notice that in the de�nition of an S-cpo, the continuity of the action implies
that it is also strict. This is because, since ⊥S 6 e and the action is continuous,
we have ⊥A⊥S 6 ⊥Ae = ⊥A and so ⊥A⊥S 6 ⊥A. Also, ⊥A 6 ⊥A⊥S . Therefore,
⊥A⊥S = ⊥A and the action is strict. Also, note that the bottom element of an
S-cpo in not necessarily a zero element. For example, consider the cpo-monoid
S = {s, e} where e is the identity element of S, e 6 s, and ss = s. Take the S-cpo
A = {⊥A, a}, where ⊥A 6 a, with the action ⊥As = a = as. We see that ⊥A is
not a zero element.

A (possibly empty) subset B of an S-dcpo (S-cpo) A is called a sub S-dcpo
(sub S-cpo) of A if B is both a sub dcpo (sub cpo) and a subact of A.

By an S-dcpo map (S-cpo map) between S-dcpo's (S-cpo's), we mean a map
f : A → B which is both (strict) continuous and action preserving. We denote
the category of all S-dcpo's (S-cpo's) and S-dcpo (S-cpo) maps between them by
Dcpo-S (Cpo-S).

A separately (or semi-)cpo-monoid is a monoid which is also a cpo whose right
and left translations Rs : S → S, t  ts and Ls : S → S, t  st are strict
continuous.

Now, let S be a separately cpo-monoid. A separately S-cpo is a cpo A which
is also an S-act with the action A× S → A such that every Rs : A → A, a  as
and La : S → A, s  as, are strict continuous. The category of all separately
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S-cpo's with action preserving strict continuous maps between them is denoted by
Sep-Cpo-S.

Finally, let S be a monoid with identity e. By a cpo S-act, we mean an S-act
in the category Cpo. In other words, a pair (A; (λs)s∈S) is called a cpo S-act if A
is a cpo, and each λs : A → A, a  as, is a cpo map, called an action, such that
for all s, t ∈ S, and a ∈ A, denoting λs(a) by as we have:

(1) a(st) = (as)t;
(2) ae = a.
By a cpo S-act map between cpo S-acts, we mean a cpo map which is also

action preserving. The category of all cpo S-acts with cpo S-act maps between
them is denoted by CpoAct-S .

De�nition 1.1. A morphism h : A → B in Dcpo-S (Cpo-S, Sep-Cpo-S,
CpoAct-S) is called order-embedding provided that for all x, y ∈ A, h(x) 6 h(y) if
and only if x 6 y.

In this paper, �rst we characterize di�erent kinds of monomorphisms namely
regular, strict, strong and extremal in [3], in the categories Dcpo-S, Cpo-S, Sep-
Cpo-S and CpoAct-S and see that they are the same as order-embeddings. Then,
we study the relation of monomorphisms with one-one morphisms and see that
in the categories Dcpo-S, Sep-Cpo-S, CpoAct-S , Dcpo and Cpo, monomor-
phisms are exactly one-one morphisms. Also, we show that under some conditions
the same result is true for the category Cpo-S. In the last section we consider
some categorical properties of monomorphisms and regular monomorphisms, in the
mentioned categories, the properties such as factorization properties of morphisms
and some categorical properties related to limits and colimits.

2. Characterization of monomorphisms

In this section we characterize di�erent kinds of monomorphisms in categories
Dcpo-S, Cpo-S, Sep-Cpo-S and CpoAct-S , also we study their relation with
one-one morphisms. First, we recall some related de�nitions from [3].

De�nition 2.1. Let E andM be classes of morphisms in a category C. Then, the
pair (E ,M) is called a factorization structure for morphisms in C and C is called
(E ,M)-structured provided that:

(1) each of E andM is closed under composition with isomorphisms,
(2) C has (E ,M)-factorizations (of morphisms); that is, each morphism f in C

has a factorization f = he, with e ∈ E and h ∈M, and
(3) C has the unique (E ,M)-diagonalization property; that is, for each commu-

tative square

A
e−−−−→ B

f
y yg
C

h−−−−→ D
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with e ∈ E and h ∈ M, there exists a unique diagonal; that is, a morphism
d : B → C such that de = f and hd = g.

De�nition 2.2. A monomorphism h : A→ B in a category C is called:
(1) regular if it is an equalizer of a pair of morphisms;
(2) strict if it has the universal property that given any morphism h′ : A′ → B

such that rh = sh implies rh′ = sh′, for all r, s : B → C, there exists a
unique morphism h̄ : A′ → A with h′ = hh̄;

(3) strong provided that C has the unique (Epi,{h})-diagonalization property
(Epi is the class of all epimorphisms);

(4) extremal provided that if h = me, where e is an epimorphism, then e is an
isomorphism.

2.1. Monomorphisms and order-embeddings

In this subsection, we characterize di�erent kinds of monomorphisms such as reg-
ular, strict, strong and extremal in Dcpo-S, Cpo-S, Sep-Cpo-S and CpoAct-S .

Remark 2.3. Notice that order-embeddings are one-one, and hence monom-
orphisms in the categories Dcpo-S, Cpo-S, Sep-Cpo-S and CpoAct-S . But
the converse is not necessarily true. For example, take S = {e, s} where s 6 e and
s2 = s. Then S is a dcpo (cpo, separately cpo)-monoid. Now, take A = {⊥, a, a′}
with the order ⊥ 6 a, a′, a ‖ a′, and de�ne the action on A as follows: ⊥ is
a zero element and as = a′s = ⊥. Also, take B to be the three element chain
3 = {0, 1, 2} with 0 6 1 6 2, and de�ne the action on B as follows: 0 is a zero
element and 1s = 2s = 0. Now, de�ne h : A→ B as h(⊥) = 0, h(a) = 1, h(a′) = 2.
Then h is one-one and hence a monomorphism in these categories, but it is not an
order-embedding.

Theorem 2.4. A monomorphism h : A → B in Dcpo-S, Cpo-S, Sep-Cpo-S
and CpoAct-S is regular if and only if it is order-embedding.

Proof. Let h : A → B be a regular monomorphism in Dcpo-S (Cpo-S, Sep-
Cpo-S, CpoAct-S). Then h is the equalizer of morphisms g1, g2 : B → C. Note
that, the equalizer of g1 and g2 in these categories is E = {b ∈ B : g1(b) = g2(b)}
with order and action inherited from B (see also [7], [8], [9]). Hence there exists
an isomorphism between E and A, so h is an order-embedding.

Conversely, let h : A → B be an order-embedding in one of the categories
Dcpo-S, Cpo-S, Sep-Cpo-S or CpoAct-S . In each category, we de�ne two
morphisms whose equalizer is h.

(i). InDcpo-S, consider the disjoint union (B×{1})∪(B×{2}) of B with itself,
which is the coproduct BtB by Theorem 2.4 of [7]. Take B′ to be the quotient (Bt
B)/θ(H), where θ(H) is the congruence generated by H = {((h(a), 1), (h(a), 2)) :
a ∈ A}. Now, consider the natural epimorphism q : BtB → B′ and the coproduct
maps g1, g2 : B → BtB. We prove later on that h is the equalizer of qg1 and qg2.
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(ii). In Cpo-S, we consider the same S-dcpo B′ as de�ned in (i). Since in
this case h is strict, h(⊥A) = ⊥B , and then [(⊥B , 1)]θ(H) = [(⊥B , 2)]θ(H) is the
bottom element of B′. So, B′ is an S-cpo. Also qg1 and qg2 introduced in part (i)
are strict, because qg1(⊥B) = [(⊥B , 1)]θ(H) and qg2(⊥B) = [(⊥B , 2)]θ(H). We will
see that h is the equalizer of qg1 and qg2 in Cpo-S.

(iii). In Sep-Cpo-S, B is a separately S-cpo, and hence by Remark 3.3 of
[8], B is also an S-cpo. So, from the discussion given in (ii), B′ which introduced
in part (i), is an S-cpo. Now again by applying Remark 3.3 of [8], we get that
B′ is a separately S-cpo. This is because, B is a separately S-cpo, and so for
every b ∈ B and s ∈ S we have b⊥S = ⊥B and ⊥Bs = ⊥B , therefore for every
b ∈ B, s ∈ S, and i = 1, 2, we have [(b, i)]⊥S = [(b⊥S , i)] = [(⊥B , i)] and
[(⊥B , i)]s = [(⊥Bs, i)] = [(⊥B , i)]. Also, similar to part (ii), qg1 and qg2 are strict
continuous maps. We will see later on that h is the equalizer of qg1 and qg2.

(iv). In CpoAct-S , similar to (i), take the coporoduct of B with itself (which is
called the coalesced sum, see [9]), and apply the same argument to de�ne q, g1, g2.
We show that h is the equalizer of qg1 and qg2.

Now, we prove that h is the equalizer of qg1 and qg2 in all the above cases.

It is clear that (qg1)h = (qg2)h. Consider an S-dcpo (an S-cpo, a separately S-
cpo, a cpo S-act) map k : C → B with (qg1)k = (qg2)k. Notice that k(C) ⊆ h(A).
This because, on the contrary if x ∈ k(C) \ h(A), then since x 6∈ h(A), we get
qg1(x) 6= qg2(x) but since x ∈ k(C) and (qg1)k = (qg2)k, we have qg1(x) = qg2(x)
which is a contradiction. On the other hand, since h is an order-embedding, it
is one-one, and so there exists a map h′ : B → A such that h′h = idA. Now we
see that k′ = h′k : C → A is the unique S-dcpo (S-cpo, separately S-cpo, cpo
S-act) map with hk′ = k. First, we prove that k′ preserves the order. To see
this, let x, x′ ∈ C, x 6 x′. Then k(x) 6 k(x′). Since k(C) ⊆ h(A), there exist
a, a′ ∈ A, k(x) = h(a) and k(x′) = h(a′). Therefore, h(a) 6 h(a′), and so a 6 a′

(since h is an order-embedding). Now, h′h(a) 6 h′h(a′) (since h′h = idA) and
hence k′(x) = h′k(x) = h′h(a) 6 h′h(a′) = h′k(x′) = k′(x′). Also, k′ preserves the
action. To show this, let x ∈ C and s ∈ S, then k′(xs) = h′k(xs) = h′(k(x)s) =
h′(h(a)s) = h′(h(as)) = as where k(x) = h(a), a ∈ A. On the other hand,
k′(x)s = h′k(x)s = h′h(a)s = as. To see that k′ is continuous, let D ⊆d C.
Then k′(D) ⊆d A, since k′ is order-preserving. Also for each d ∈ D, there exists
ad ∈ A with k(d) = h(ad) and T = {ad : d ∈ D,h(ad) = k(d)} ⊆d A. This is
because, if ad1 , ad2 ∈ T , then d1, d2 ∈ D ⊆d C. Therefore, there exists d3 ∈ D
with d1, d2 6 d3. Now, k(d1), k(d2) 6 k(d3) and so h(ad1), h(ad2) 6 h(ad3) for
some ad3 ∈ A, and hence ad1 , ad2 6 ad3 , since h is an order-embedding. Now,

k′(
∨d

D) = h′k(
∨d

D) = h′h(a) = a where k(
∨d

D) = h(a), a ∈ A. On the other

hand,
∨d
d∈D k

′(d) =
∨d
d∈D h

′k(d) =
∨d
d∈D h

′h(ad) =
∨d
d∈D ad. It is enough to

prove that
∨d

T =
∨d
d∈D ad = a. For every d ∈ D, ad 6 a, since h(ad) = k(d) 6

k(
∨d

D) = h(a) and h is an order-embedding. If a′ ∈ A is also an upper bound
of T in A, then for every d ∈ D, h(ad) 6 h(a′) and so k(d) = h(ad) 6 h(a′)

which implies h(a) = k(
∨d

D) =
∨d
d∈D k(d) 6 h(a′). Thus a 6 a′, since h is an
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order-embedding. Therefore,
∨d

T = a. Notice that hk′ = k and k′ is unique with
this property. Also, in the case where h and k are strict, then so is k′.

De�nition 2.5. Recall from [4] that considering Dcpo-S (Cpo-S, Sep-Cpo-S,
CpoAct-S) as a concrete category over Set, a monomorphism h is said to be an
embedding over Set if whenever g is a map between S-dcpo's (S-cpo's, separately
S-cpo's, cpo S-acts) such that hg is an S-dcpo (an S-cpo, a separately S-cpo, a
cpo S-act) map, then g itself is an S-dcpo (an S-cpo, a separately S-cpo, a cpo
S-act) map.

As a consequence of Theorem 2.4 we have:

Corollary 2.6. If h : A → B is a regular monomorphism in Dcpo-S (Cpo-S,
Sep-Cpo-S, CpoAct-S) then h is an S-dcpo (an S-cpo, a separately S-cpo, a cpo

S-act) embedding over Set.

Proof. Suppose that h : A → B is a regular monomorphism in Dcpo-S (Cpo-S,
Sep-Cpo-S, CpoAct-S). By Theorem 2.4, h is an order-embedding. Now, let
g : C → A be a function between S-dcpo's (S-cpo's, separately S-cpo's, cpo S-
acts) such that hg is an S-dcpo (an S-cpo, a separately S-cpo, a cpo S-act) map.
Then we prove that g is an S-dcpo (an S-cpo, a separately S-cpo, a cpo S-act)
map. First, we show that g preserves the action. This is because, for x ∈ C and
s ∈ S,

h(g(xs)) = (hg)(xs) = ((hg)(x))s = (h(g(x)))s = h(g(x)s)

and so g(xs) = g(x)s, since h is one-one. Also, g preserves the order. To see
this, let x, x′ ∈ C with x 6 x′. Then, h(g(x)) 6 h(g(x′)). Now, since h is an
order-embedding we have g(x) 6 g(x′). Finally, g is continuous. To show this, let
D ⊆d C. Then g(D) ⊆d A, since g preserves the order. Further,

h(g(

d∨
D)) = (hg)(

d∨
D) =

d∨
d∈D

(hg)(d) =

d∨
d∈D

h(g(d)) = h(

d∨
d∈D

g(d))

and so g(
∨d
d∈DD) =

∨d
d∈D g(d). Also, h(g(⊥C)) = hg(⊥C) =⊥B= h(⊥A) and

g(⊥C) =⊥A.

Now, we will study the relation of di�erent kinds of monomorphisms. First
recall the following proposition.

Proposition 2.7. [3] If the category C has equalizers and pushouts, also regu-

lar monomorphisms in C are closed under composition, then a monomorphism is

regular if and only if it is extremal.

Theorem 2.8. For a monomorphism h : A → B in Dcpo-S (Sep-Cpo-S,
CpoAct-S) the following are equivalent:

(1) h is regular,

(2) h is strict,

(3) h is strong,

(4) h is extremal.
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Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are general category-theoretic
results. For implication (4)⇒ (1), since these categories are complete and cocom-
plete (see [7], [8], [9]), and by Theorem 2.4, regular monomorphisms are exactly
order-embeddings and hence they are closed under composition, applying Propo-
sition 2.7, we get that any extremal monomorphism is regular.

Lemma 2.9. If h : A → B is a morphism in Dcpo-S (Cpo-S) then h′ : A →
<h(A)>, to the sub S-dcpo (sub S-cpo) of B generated by h(A), with h′(a) = h(a)
for all a ∈ A, is an epimorphism in Dcpo-S (Cpo-S).

Proof. Let h : A → B be a morphism in Dcpo-S (Cpo-S). Then take h′ : A →
<h(A)>, to the sub S-dcpo (sub S-cpo) of B generated by h(A), with h′(a) = h(a)
for all a ∈ A. To show that h′ is an epimorphism, consider g1, g2 : <h(A)> → C
such that g1h

′ = g2h
′. Since for all D ⊆ h(A), g1(D) = g2(D) and g1 and g2

are continuous, it is straightforward to show that g1(<h(A)>) = g2(<h(A)>).
Therefore, h′ is an epimorphism in Dcpo-S (Cpo-S).

Remark 2.10. Notice that, if h : A→ B is a morphism in the category Dcpo-S
(Cpo-S), then h(A) is not necessarily an S-dcpo (S-cpo). To see this, consider
A = (N)⊥ where the natural numbers N is considered with the discrete order and
⊥ 6 n, for all n ∈ N. Also consider B = (N∞)⊥ where N∞ = N ∪ {∞} and the
order on N is the usual one and ⊥ 6 n 6∞, for all n ∈ N. It is straightforward to
show that A and B with the identity action are S-dcpo's (S-cpo's). Now, de�ne
the map h : A → B by h(⊥) = ⊥ and h(n) = n, for all n ∈ N. We get h is
a (strict) continuous map and h(A) = (N)⊥ is not an S-dcpo (S-cpo). This is

because D = N is a directed subset of h(A) and
∨d

D =
∨d N =∞ 6∈ h(A).

Lemma 2.11. A monomorphism h : A→ B in Cpo-S is order-embedding if it is

extremal.

Proof. Suppose that h : A → B is an extremal mono in Cpo-S and consider
h′ : A → <h(A)>, h′(a) = h(a) for all a ∈ A. It is clear that h = ih′, where
i : <h(A)> ↪→ B. Also by Lemma 2.9, h′ is an epimorphism in Cpo-S. Hence, by
the de�nition of extremal monomorphisms, h′ is an isomorphism in Cpo-S, and
consequently h is an order-embedding.

As a consequence of Lemma 2.11 and Theorem 2.4, we have:

Corollary 2.12. For a monomorphism h : A → B in Cpo-S, the following are

equivalent:

(1) h is regular,

(2) h is strict,

(3) h is strong,

(4) h is extremal.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are general category-theoretic
results. For implication (4) ⇒ (1), by Lemma 2.11 and Theorem 2.4, we get the
result.
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2.2. Monomorphisms and one-one morphisms

In this subsection, we study the relation between monomorphisms and one-one
morphisms in the categories Dcpo-S, Dcpo, Cpo, Sep-Cpo-S, and CpoAct-S .

Remark 2.13. Notice that inDcpo-S, monomorphisms are exactly one-one mor-
phisms (see [7]). Furthermore, in Dcpo, Cpo, Sep-Cpo-S, and CpoAct-S by ap-
plying the adjoint pairs given in Corollary 2.5 and Theorem 3.4 of [6], Corollary 4.4
of [8] and Corollary 4.2 of [9] and the fact that right adjoints preserves limits, we
get that monomorphisms are exactly one-one morphisms. In the category Cpo-S,
whenever ⊥S = e or >S = e, monomorphisms are exactly one-one morphisms (by
the adjoint pairs given in Corollaries 3.2 and 3.7 of [6]).

Remark 2.14. In Remark 2.3, we see that in the categories Dcpo-S, Cpo-S,
Sep-Cpo-S, and CpoAct-S , order-embeddings are monomorphisms, but the con-
verse is not necessarily true. But it is clearly shown that in the ordered structures,
if h : A → B is a monomorphism and A is a chain then we have h is an order-
embedding.

Lemma 2.15. If h : A → B is a monomorphism in Cpo-S such that for every

a, a′ ∈ A with h(a) = h(a′), we have a ⊥S= a′ ⊥S=⊥A, then h is one-one.

Proof. Let h : A→ B be a monomorphism in Cpo-S with the property mentioned
in the hypothesis and h(a) = h(a′) for some a, a′ ∈ A. Then a = a′. This is
because, on the contrary if a 6= a′, then there exist S-cpo maps g, k : S → A given
by g(s) = as and k(s) = a′s, for s ∈ S where hg = hk while g 6= k, which is a
contradiction. Therefore, h is one-one.

As a corollary of Lemma 2.15, we have:

Theorem 2.16. If h : A → B is a monomorphism in Cpo-S and for every

a ∈ A, a⊥S = ⊥A, then h is one-one.

Theorem 2.17. If h : A → B is a monomorphism in Cpo-S and ⊥A is a zero

element then h is one-one.

Proof. Let h : A → B be a monomorphism in Cpo-S such that ⊥A is a zero
element. To see that h is a monomorphism in Dcpo-S, let g1, g2 : D → A be
S-dcpo maps such that hg1 = hg2. Then, consider D⊥ the S-cpo where ⊥ is a
zero element, and de�ne g′i : D⊥ → A for i = 1, 2 by

g′i(d) =

{
gi(d) if d 6= ⊥
⊥A if d = ⊥

It is clear that g′1 and g′2 are S-cpo maps and hg′1 = hg′2. So g′1 = g′2, and hence
g1 = g2. Therefore h is a monomorphism in Dcpo-S, and so h is one-one by
Remark 2.13.
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As a consequence of Theorem 2.17 we get the following corollary.

Corollary 2.18. If S is a cpo-monoid whose bottom element is a zero element or

S is left zero as a semigroup, then in Cpo-S monomorphisms are exactly one-one

morphisms.

Proof. Let S be a cpo-monoid whose bottom element is a zero element and A be an
S-cpo. Then ⊥A is a zero element (for all s ∈ S, ⊥As = (⊥A⊥S)s = ⊥A(⊥Ss) =
⊥A⊥S = ⊥A). So by Theorem 2.17, in Cpo-S, monomorphisms are exactly one-
one morphisms. In the case where S is left zero as a semigroup, since ⊥S is zero
element, the result follows similarly.

3. Monomorphisms and regular monomorphisms

We have divided this section into two subsections as follows:

3.1. Factorization properties of morphisms

Let E ′ be the class of order-embeddings in Dcpo-S, Cpo-S, Sep-Cpo-S, and
CpoAct-S . Then, in the following theorem we show that Dcpo-S, Cpo-S, Sep-
Cpo-S, and CpoAct-S have unique (Epi, E ′)-diagonalization property.

Corollary 3.1. Dcpo-S, Cpo-S, Sep-Cpo-S, and CpoAct-S have unique (Epi,
E ′)-diagonalization property.

Proof. By Theorem 2.4, every order-embedding is a regular monomorphism in
the mentioned categories and by Theorem 2.8 and Corollary 2.12 every regular
monomorphism is a strong monomorphism. Now, by the de�nition of a strong
monomorphism we get the result.

Theorem 3.2. Dcpo-S and Cpo-S have (Epi, Mono)-factorization.

Proof. Let f : A → B be a morphism in Dcpo-S (Cpo-S). Then, take f ′ : A →
<f(A)> by f ′(a) = f(a). So by Lemma 2.9, f ′ is an S-dcpo (S-cpo) epimorphism
and f = if ′, where i : <f(A)> ↪→ B is an S-dcpo (S-cpo) monomorphism.

Remark 3.3. The factorization mentioned in Theorem 3.2, is not necessarily
unique. To see this, consider A = (N∞)⊥, where N∞ = N ∪ {∞} has been
considered with the discrete order, ⊥ 6 n for all n ∈ N∞ and the action on A
is the identity action. Also consider B =⊥ ⊕N∞ ⊕ > where the order on N is
the usual one, ∞ ‖ n for all n ∈ N, and the action on B is the identity action.
De�ne the map f : A → B as f(⊥) =⊥ and f(n) = n, for all n ∈ N∞. It is
straightforward to show that A and B are S-dcpo's (S-cpo's) and f is an S-dcpo
(S-cpo) map. Furthermore, f is an epimorphism in Dcpo-S (Cpo-S). To prove
this, let g1, g2 : B → D be S-dcpo (S-cpo) maps with g1f = g2f . Then, g1(n) =

g1(f(n)) = g2(f(n)) = g2(n), for all n ∈ N∞ ∪ {⊥}. Also g1(>) = g1(
∨d N) =
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∨d
n∈N g1(n) =

∨d
n∈N g2(n) = g2(

∨d N) = g2(>), since g1(n) = g2(n), for all n ∈ N.
Therefore, g1(>) = g2(>) and so g1 = g2. Hence, f is an epimorphism and it has
the factorization f = idBf . Now, let C =⊥ ⊕((N ⊕ >) ∪ {∞}) where the order
on N is the natural one, n 6 > for all n ∈ N, ∞ ‖ n for all n ∈ (N ⊕ >), and
the action on C is the identity action. Then de�ne f ′ : A→ C by f ′(⊥) =⊥ and
f ′(n) = n, for all n ∈ N ∪ {∞}. It is clear that f ′ is an S-dcpo (S-cpo) map.
Also f ′ is an epimorphism in Dcpo-S (Cpo-S) (the proof of the fact that f ′ is an
epimorphism is similar to proof of the fact that f is an epimorphism) and f = if ′

where i is an inclusion map from C to B. Hence, we have two factorizations for
f , which are not equal.

Theorem 3.4. The category Dcpo-S (Cpo-S, CpoAct-S) has neither

(Onto,Mono)-diagonalization property nor (Epi,Mono)-diagonalization property.

Proof. Suppose that A = {⊥A, a1, a2, a3} where⊥A is the bottom element, a2 6 a3
and a1 ‖ a2, a3, B = {⊥B , b1, b2} where the order on B is ⊥B6 b1 6 b2, C = {⊥C
, c1, c2} where ⊥C is the bottom element and c1 ‖ c2 and D = {⊥D, d1, d2, d3}
where ⊥D is the bottom element, d1 ‖ d2 and d1, d2 6 d3. It is clear that A, B,
C and D with the identity action are S-dcpo's (S-cpo's, cpo S-acts). Now, de�ne
e : A → B as e(⊥A) =⊥B , e(a1) = b1 and e(a3) = e(a2) = b2, f : A → C as
f(⊥A) =⊥C , f(a1) = c1 and f(a2) = f(a3) = c2, h : C → D as h(⊥C) =⊥D,
h(c1) = d1 and h(c2) = d3, g : B → D as g(⊥B) =⊥D, g(b1) = d1 and g(b2) = d3.
It is straightforward to show that e, g, f and h are S-dcpo (S-cpo, cpo S-act)
maps and ge = hf , but if there exists an S-dcpo (an S-cpo, a cpo S-act) map
k : B → C, such that ke = f and hk = g, then k(b1) = k(e(a1)) = f(a1) = c1
and k(b2) = k(e(a2)) = f(a2) = c2 but c1 66 c2, which is a contradiction (because
k is an order-preserving and b1 6 b2). So Dcpo-S (Cpo-S, CpoAct-S) does not
have (Onto,Mono)-diagonalization property. Also Dcpo-S (Cpo-S, CpoAct-S)
does not have (Epi,Mono)-diagonalization property.

3.2. Limits and colimits

The following theorem is easily proved, and it is in fact a corollary of the next
result.

Theorem 3.5. In Dcpo-S (Cpo-S, Sep-Cpo-S, CpoAct-S) we have:

(1) The class of monomorphisms is closed under products;

(2) Let {fα : A→ Bα|α ∈ I} be a family of monomorphisms. Then their

product morphism f : A→
∏
Bα is also a monomorphism.

Theorem 3.6. Let {fα : A → Bα|α ∈ I} be a source of monomorphisms in the

categories Dcpo-S (Cpo-S, Sep-Cpo-S, CpoAct-S). Then the morphism f :
A→ limBα (existing by the universal property of limits) is also a monomorphism.

Proof. Let {fα : A → Bα|α ∈ I} be a source of monomorphisms in one of the
categories mentioned in the hypothesis. To prove that f : A → limBα is a
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monomorphism, let g1, g2 : C → A be such that fg1 = fg2. Then, fg1(c) = fg2(c)
for all c ∈ C. Also for all c ∈ C and α ∈ I, πα(fg1(c)) = fα(g1(c)) = fα(g2(c)) =
πα(fg2(c)), where πα : limBα → Bα is a limit morphism. Hence, fαg1 = fαg2 for
all α ∈ I, and since fα is a monomorphism, we have g1 = g2.

Proposition 3.7. In Dcpo-S (Cpo-S, Sep-Cpo-S, CpoAct-S) we have:

(1) The class of regular monomorphisms is closed under products;

(2) Let {fα : A→ Bα|α ∈ I} be a family of regular monomorphisms. Then

their product morphism f : A→
∏
Bα is also a regular monomorphism.

Proof. We just prove (1) in Dcpo-S and the rest are proved similarly.
Let {fα : Aα → Bα|α ∈ I} be a family of regular monomorphisms in Dcpo-

S. We show that f =
∏
fα :

∏
Aα →

∏
Bα where f((aα)α∈I) = (fα(aα))α∈I

is an order-embedding and so by Theorem 2.4, it is a regular monomorphism.
Suppose that f((aα)α∈I) 6 f((a′α)α∈I) for (aα)α∈I , (a′α)α∈I ∈

∏
Aα. We have

f((aα)α∈I) 6 f((a′α)α∈I) if and only if (fα(aα))α∈I 6 (fα(a′α))α∈I if and only if
fα(aα) 6 fα(a′α), for all α ∈ I if and only if aα 6 a′α, for all α ∈ I (since each
fα is an order-embedding) if and only if (aα)α∈I 6 (a′α)α∈I . So f is a regular
monomorphism.

Theorem 3.8. Let {fα : A→ Bα|α ∈ I} be a source of regular monomorphisms in

Dcpo-S (Cpo-S, Sep-Cpo-S, CpoAct-S). Then the morphism f : A → limBα
(existing by the universal property of limits) is also a regular monomorphism.

Proof. Let {fα : A → Bα|α ∈ I} be a source of regular monomorphisms in one
of the categories mentioned in the hypothesis. To prove that f : A → limBα
is a regular monomorphism, by Theorem 2.4 it is enough to show that f is
an order-embedding. To see this, let f(a) 6 f(a′) where a, a′ ∈ A. We have
fα(a) = πα(f(a)) 6 πα(f(a′)) = fα(a′), for all α ∈ I (πα : limBα → Bα is a limit
morphism). So a 6 a′, because by Theorem 2.4, fα is an order-embedding, for
every α ∈ I and hence f is an order-embedding and also it is a regular monomor-
phism.

Proposition 3.9. InDcpo-S, Sep-Cpo-S and CpoAct−S, the class of monomor-

phisms and regular monomorphisms are closed under coproducts.

Proof. Assume that {fα : Aα → Bα|α ∈ I} is a family of monomorphisms
and

∐
fα :

∐
Aα →

∐
Bα is the coproduct morphism. We show that

∐
fα

de�ned by (
∐
fα)(a, α) = (fα(a), α), a ∈ Aα, α ∈ I, is a monomorphism.

By Remark 2.13, it is enough to show that
∐
fα is one-one. To see this, let

(
∐
fα)(a, α) = (

∐
fα)(a′, α′) where a ∈ Aα, a

′ ∈ Aα′ , α, α′ ∈ I. Therefore,
(fα(a), α) = (fα(a′), α′) and so α = α′ and fα(a) = fα(a′). Since fα is one-
one we have a = a′. Consequently, (a, α) = (a′, α) = (a′, α′). Now, suppose
that {fα : Aα → Bα|α ∈ I} is a family of regular monomorphisms. We show
that

∐
fα is a regular monomorphism. By Theorem 2.4, it is enough to show

that
∐
fα is an order-embedding. To prove this, let (

∐
fα)(a, α) 6 (

∐
fα)(a′, α′)
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where a ∈ Aα, a′ ∈ Aα′ , α, α′ ∈ I. Therefore, (fα(a), α) 6 (fα(a′), α′). But this is
impossible except α = α′ and then fα(a) 6 fα(a′). Since fα is order-embedding,
we have a 6 a′. Consequently, (a, α) 6 (a′, α) = (a′, α′).

Recall that a class of morphisms of a category is called pullback stable if pull-
backs transfer those morphisms. In the �nal theorem, we see that the class of
order-embeddings satisfying this property.

Theorem 3.10. The class of order-embeddings in Dcpo-S (Cpo-S, Sep-Cpo-S,
CpoAct-S) is pullback stable.

Proof. By Proposition 11.18 of [3], the class of regular monomorphisms is pullback
stable. Therefore by Theorem 2.4, we get the result.
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Some properties of a graph

associated to a lattice

Shahide Malekpour and Behnam Bazigaran

Abstract. Some properties of the graph ΓS(L), where L is a lattice and S is a ∧-closed subset

of L, are obtained. Moreover, the graph structure of ΓS(L) under graph operations union, join,

lexicographic product and tensor product are determined. The graph associated to quotient

lattice is also studied.

1. Introduction

Making connection between various algebraic structures and graph theory by as-
signing graphs to an algebraic structure and investigating the properties of one
from the another is an exciting research methods in the last decade. Barati et
al. [2] associated a simple graph ΓS(R) to a multiplicatively closed subset S of a
commutative ring R with all elements of R as vertices, and two distinct vertices
x, y are adjacent if and only if x+ y ∈ S. Afkhami et al. [1] introduced the same
graph structure on a lattice. They considered a lattice L and de�ned a graph
ΓS(L) with all elements of L as vertices and two distinct vertices x, y ∈ L are
adjacent if and only if x ∨ y ∈ S where S is a subset of L which is closed under ∧
operation.

Throughout this paper L means a �nite bounded lattice. Let x, y be two
distinct elements of L, whenever x < y and there is no element z in L such that
x < z < y, we say that y covers x. In bounded lattice L an element p ∈ L is said
to be an atom if it covers 0, also an element m ∈ L is a coatom of L if 1 covers
it. We denote the set of all coatoms of L by Coatom(L) and the set of atoms of L
by Atom(L). The set of all lower bounds of a subset A of L is denoted by A` and
the set of all upper bounds of A is denoted by Au i.e.,

A` = {x ∈ L : x 6 a for all a ∈ A},

Au = {x ∈ L : a 6 x for all a ∈ A},

{x}` and {x}u (or simply x` and xu) are also denoted by (x] and [x) respectively.

2010 Mathematics Subject Classi�cation: 05C10, 06B99.
Keywords: Quotient lattice, prime �lter, congruence relation.
This paper is partially supported by the university of Kashan under the grant no. 364998/1.
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Let L and L′ be lattices. A mapping θ : L −→ L′ is called a homomorphism if
for all a, b ∈ L, θ(a ∨ b) = θ(a) ∨ θ(b) and θ(a ∧ b) = θ(a) ∧ θ(b). If the map θ is
also bijective, we call θ to be an isomorphism.

A mapping θ : L −→ L′ is called an anti-homomorphism if θ(a∨b) = θ(a)∧θ(b)
and θ(a ∧ b) = θ(a) ∨ θ(b) for all a, b ∈ L. A bijective anti-homomorphism is
called an anti-isomorphism. An equivalence relation R on a lattice L is called a
congruence if a1Rb1 and a2Rb2 imply (a1 ∧ a2)R(b1 ∧ b2) and (a1 ∨ a2)R(b1 ∨ b2).
The set of all such relations is denoted by Con(L) or L/R. It is well-known that
the set of all congruence relations, under inclusion constitutes a complete lattice.
The (ordinal) sum P +Q of P and Q can be de�ned on the (disjoint) union P ∪Q
ordered as follows: for the elements x, y ∈ P ∪ Q, de�ne x 6 y if one of the
following conditions holds:

i) x, y ∈ P and x 6P y,

ii) x, y ∈ Q and x 6Q y,

iii) x ∈ P and y ∈ Q.

For an order set P with unit 1P , and an order set Q with zero, 0Q, the glued sum,
P uQ, is obtained from P +Q by identifying 1P and 0Q[5, p. 8]. We refer to [4, 5]
for a complete description of these notions.

Let G be an undirected graph with the vertex set V (G). The notation ab ∈ E
means that vertices a and b are adjacent in G. The degree of a vertex v is denoted
by deg(v) and the notations Pn, Cn, Sn and Kn are used for the path, cycle,
star and complete graphs with n vertices, respectively. Recall that a subgraph H
of a graph G is a graph whose the set of vertices and the set of edges are both
subsets of G. A vertex-induced subgraph of graph G is one that consists of some
of the vertices of G and all of the edges that connect them in G. An edge-induced
subgraph of graph G consists of some of the edges of G and the vertices that are
at their endpoints. The complement of G is a graph denoted by G with the same
vertex set as G and two vertices in G are adjacent if and only if they are not
adjacent in G. The complement of the complete graph Kn is called the null graph
on n vertices, see [3] for more details.

We now recall some graph operations [6]. Suppose G and H are graphs with
disjoint vertex sets. The disjoint union G + H is a graph with V (G + H) =

V (G)∪ V (H) and E(G+H) = E(G)∪E(H). The join G⊕H de�ned as Ḡ+ H̄.
The tensor product (or direct product) G × H of graphs G and H is the graph
whose vertex set is V (G)×V (H) in such a way that vertices (g, h) and (g′, h′) are
adjacent if and only if gg′ ∈ E(G) and hh′ ∈ E(H).

2. Main results

The aim of this section is to compute ΓS(L), for some special lattice L and a
subset S of L. We start by an example:
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Example 2.1. Let L be a chain with n elements and S be any nonempty subset
of L. Then degΓS(L)(x) = |xl| + |S ∩ xu| − 2, x ∈ S, and for any x ∈ Sc,
deg(x) = |xu ∩ S|. In some special cases, we have:

• If S = yu for some y ∈ L, then deg(x) = |L| − 1, for all x ∈ S and deg(x) =
|S|, for every x ∈ Sc.

• If S = yl for some y ∈ L, then deg(x) = |S|−1, for all x ∈ S and deg(x) = 0,
for every x ∈ Sc.

Proposition 2.2. We have:
(i) ΓS(L) is a cycle if and only if |L| = 3 and ΓS(L) is complete. On the other

word ΓS(L) 6= Cn for all subset S of L, unless n = 3.

(ii) ΓS(L) is a tree if and only if it is a star.

Proof. (i). Since the cycle is two regular, if ΓS(L) is a cycle, then deg(1) =
deg(0) = 2. Hence by [1, Lemma 2.2], 1 ∈ S and deg(1) = |L| − 1 = 2 i.e., |L| = 3.
On the other hand, if 0 ∈ S, then deg(0) = |S| − 1 = 2 and |S| = 3 i.e., S = L,
and if 0 /∈ S, then deg(0) = |S| = 2 i.e., S = L \ {0} [1, Lemma 2.2]. So, ΓS(L) is
a complete graph [1, Proposition 2.4].

(ii). If ΓS(L) is a tree, then it is connected, so, 1 ∈ S [1, Theorem 2.3]. Thus
deg(1) = |L| − 1 [1, Lemma 2.2]. Since ΓS(L) is a tree, it has no other edge, so,
|Coatom(L)| = 1 and by [1, Lemma 2.2], S = {1} or S = {0, 1}. The result follows
from [1, Theorem 2.5].

Lemma 2.3. Let L be a bounded lattice. Then

(1) ΓS(L) is null graph if and only if S = {0} or S = ∅.
(2) ΓS(L) = P2 +K |L|−2 if and only if S = {p} or S = {0, p} that p ∈ Atom(L),

in fact in this case, deg(p) = deg(0) = 1 and deg(x) = 0, for every x 6= 0, p.

(3) ΓS(L) = P3 +K |L|−3 if and only if S = {p1, p2} or S = {0, p1, p2} for some
p1, p2 ∈ Atom(L), in this case, deg(p1) = deg(p2) = 1, deg(0) = 2 and for
every x 6= 0, p1, p2, deg(x) = 0.

(4) ΓS(L) = C3 + K |L|−3 if and only if S = {0, p, x} such that x` = {0, p} and
p ∈ Atom(L).

(5) ΓS(L) = Sα + K |L|−α ( where α = |S| − 1 or α = |Sl|) if and only if
S ⊆ {0} ∪AtomL or S = {x}, for some nonzero element of lattice L.

Proof. The proof is straightforward and so it is omitted.

Remark 2.4. Suppose that S is a ∧-closed subset of a lattice L and a, b, x ∈ L,
we know that a ∨ (a ∨ b) = b ∨ (a ∨ b) = (a ∧ b) ∨ (a ∨ b) = (a ∧ x) ∨ (a ∨ b) =
(b ∧ x) ∨ (a ∨ b) = a ∨ b. So if in a graph ΓS(L) a, b are adjacent i.e., a ∨ b ∈ S,
then a∨ (a∨ b) ∈ S, b∨ (a∨ b) ∈ S, (a∧ b)∨ (a∨ b) ∈ S and (a∧ x)∨ (a∨ b) ∈ S.
Hence, summarizing, we have:

If n > 3, then ΓS(L) 6= Pn + K |L|−(n) for all ∧-closed subsets S of L; and if

n > 4, then ΓS(L) 6= Cn +K |L|−n for all subset S of L.
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Remark 2.5. If S is a sublattice of L, then the subgraph ΓS(L) on S is complete.
Since for all a, b ∈ S we have a ∨ b ∈ S, every two elements of subset S in ΓS(L)
are adjacent.

Remark 2.6. It is easy to show that ΓS′(L) is a subgraph of ΓS(L), when S, S′

are two ∧-closed subsets of L and S′ ⊆ S. But in general ΓS′(L) is neither
edge-induced nor vertex-induced subgraph of ΓS(L). For example, let L be the
modular lattice M3 containing 0, 1 and three incomparable elements a, b, c. De�ne
S = {0, b, c, 1} and S′ = {0, b}. Then it is clear to see that ΓS′(L) is not edge-
induced and vertex-induced subgraph of ΓS(L).

Theorem 2.7. A ∧-closed subset S of L is an ideal if and only if

ΓS(L) = K|S| +K |Sc|.

Proof. Suppose ΓS(L) = K|S| + K |Sc|. Then by de�nition of ΓS(L), we have
a ∨ b ∈ S if and only if a, b ∈ S which implies that S is an ideal.

Conversely, if S is an ideal of L. Then, S is closed under taking join of elements,
consequently all vertices of S are adjacent in graph ΓS(L). Moreover, since S is
a lower set, for all a, b ∈ Sc, a ∨ b /∈ S. In fact, if in contrary a ∨ b ∈ S then
a∧ (a∨ b) = a ∈ S which is a contraction. So, all vertices of Sc aren't adjacent in
ΓS(L). Moreover, since S is a lower set, it follows that all a ∈ S and b ∈ Sc aren't
adjacent in ΓS(L). Therefore, ΓS(L) = K|S| +K |Sc|.

Clearly we have:

Lemma 2.8. Let α : L −→ L′ be a lattice isomorphism and S be a ∧-closed subset
of L. Then

ΓS(L) ∼= Γα(S)(L
′).

Theorem 2.9. A ∧-closed subset S of L is a prime �lter if and only if

ΓS(L) = K|S| ⊕K |Sc|.

Proof. Assume that S is a prime �lter. Then for any x, y ∈ S, we have x ∨ y ∈ S,
i.e., xy ∈ E(ΓS(L)). Since S is an upper subset of L, x∨ y ∈ S for each x ∈ S and
y ∈ Sc. This means that x and y are adjacent. In addition, since S is a prime �lter,
Sc is an ideal. Hence for any x, y ∈ Sc, x ∨ y ∈ Sc and so x ∨ y /∈ S. This implies
that x, y aren't adjacent in ΓS(L). On the other hand, if ΓS(L) = K|S| ⊕K |Sc|,
then obviously for any x ∈ S and y ∈ L, x∨ y ∈ S and if x∨ y ∈ S, then x ∈ S or
y ∈ S. This completes the proof.

A semiregular graph is a graph in which the set of degree of vertices includes
only two elements. The following corollary immediately follows from Theorem 2.9.

Corollary 2.10. If S is a prime �lter of L, then ΓS(L) is a semiregular graph.
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Proof. Suppose S is a prime �lter of L. Then by Theorem 2.9, we conclude that
deg(x) = |L| − 1, for all x ∈ S and deg(y) = |S|, for all y ∈ Sc, and the proof is
completed.

Proposition 2.11. Assume that α : L −→ L′ is a lattice isomorphism and S is a
prime ideal or a �lter of L, then

ΓS(L) ∼= Γα(S)c(L′).

Proof. It is easy to show that if S is a prime ideal or a �lter of L, then α(S)c is a
∧-closed subset of L′. The details are left to the readers.

Corollary 2.12. If S is a �lter or a prime ideal of L, then ΓS(L) = ΓSc(L).

Proof. The proof by Proposition 2.11 and α = IdL (the identity map) is done.

The disjunction graph G∨H of graphs G and H is the graph whose vertex set
is V (G)× V (H) in such a way that vertices (g, h) and (g′, h′) are adjacent if and
only if gg′ ∈ E(G) or hh′ ∈ E(H).

Theorem 2.13. Let L,L′ be two lattices and L × L′ be its direct product. If S
and T are ∧-closed subset of L,L′, respectively, Then

(1) ΓS×T (L× L′) = ΓS(L)× ΓT (L′),

(2) ΓS(L) + ΓT (L′) = ΓS∪T (L+ L′),

(3) Let S0 = S × L′ and T0 = L × T . If S or T is a lower set, then we have
ΓS0∪T0

(L× L′) = ΓS(L) ∨ ΓT (L′).

Proof. (1). At �rst, we notice that S×T is a ∧-closed subset of L×L′. Two distinct
vertices (a, b) and (c, d) of ΓS×T (L×L′) are adjacent if and only if (a, b)∨ (c, d) =
(a ∨ c, b ∨ d) ∈ S × T , which is equivalent to a ∨ c ∈ S and b ∨ d ∈ T . This means
that a, c are adjacent in ΓS(L) and b, d are adjacent in ΓT (L′). Therefore, (a, b)
and (c, d) are adjacent in ΓS(L)× ΓT (L′).

(2). If a, b are adjacent in ΓS∪T (L + L′), then a ∨ b ∈ S ∪ T . So, a ∨ b ∈ S
or a ∨ b ∈ T , i.e., a, b are adjacent in ΓS(L) or a, b are adjacent in ΓT (L′) which
implies that a, b are adjacent in ΓS(L) + ΓT (L′). On the other hand, if a, b are
adjacent in ΓS(L) + ΓT (L′), then a, b are adjacent in ΓS(L) or a, b are adjacent in
ΓT (L′). So, a ∨ b ∈ S or a ∨ b ∈ T , i.e., a ∨ b ∈ S ∪ T . Hence a, b are adjacent in
ΓS∪T (L+ L′),

(3). Since S or T is a lower set, S0 ∪ T0 is a ∧-closed subset of L × L′. Two
distinct vertices (a, b) and (c, d) are adjacent in ΓS0∪T0

(L × L′) if and only if
(a ∨ c, b ∨ d) ∈ (S × L′) ∪ (L × T ) if and only if a ∨ c ∈ S or b ∨ d ∈ T and this
means that a, c are adjacent in ΓS(L) or b, d are adjacent in ΓT (L′). The later is
equivalent to (a, b) and (c, d) are adjacent in ΓS(L) ∨ ΓT (L′).
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Recall that the lexicographic product of two graph G and H, denoted by G[H],
is de�ned as V (G[H]) = V (G)× V (H) where two vertices (a, b), (c, d) of G[H] are
adjacent whenever ac ∈ E(G), or a = c and bd ∈ E(H) [6, p. 43].

If P and Q are two partially ordered sets, then P×Q, by ordering (a, b) 6 (c, d)
if a <P c, or a = c and b 6Q d will be a partially ordered set again. We use the
notation P �Q to denote (P ×Q,6). Notice that if P and Q are totally ordered
sets, then P �Q is a totally ordered set too. One can check at once that if L and
L′ are two lattices and L′ is bounded, then L�L′ is a lattice [5, p. 260] with join
and meet operations as follows:

(a, b) ∧ (c, d) =

 (a, b ∧ d) if a = c,
(a, b)(or (c, d)) if a < c (or c < a),

(a ∧ c, 1) if a ‖ c,

(a, b) ∨ (c, d) =

 (a, b ∨ d) if a = c,
(c, d)(or (a, b)) if a < c (or c < a),

(a ∨ c, 0) if a ‖ c.

Theorem 2.14. Let L,L′ be two totally ordered lattices and L′ be bounded. If S
and T are subsets of L,L′, respectively, then

ΓS×T (L� L′) = ΓS(L)[ΓT (L′)].

Proof. Since L,L′ are totally ordered, L � L′ is totally ordered and so S × T is
a ∧-closed subset of L � L′ and ΓS×T (L � L′) is well de�ned. We now assume
that (a, b) and (c, d) are two distinct vertices of ΓS×T (L�L′). These two vertices
are adjacent if and only if (a, b) ∨ (c, d) ∈ S � T if and only if (a, b) ∈ S × T or
(c, d) ∈ S × T if and only if (a > c or a = c, b > d) or (a < c or a = c, b < d),
equivalently a ∨ c ∈ S or (a = c, b ∨ d ∈ T ). This is equivalent to ac ∈ E(ΓS(L))
or a = c, bd ∈ E(ΓT (L′)). So, (a, b) and (c, d) are adjacent in ΓS(L)[ΓT (L′)].

Proposition 2.15. Let L and L′ be lattices and L′ be bounded. Suppose that T is
a ∧-closed subset of L′ and S is a lower set of L. We also assume that S0 = S×L′
and T0 = L× T , then ΓS(L)[ΓT (L′)] is a subgraph of ΓS0∪T0

(L� L′).

Proof. At �rst, since T is a ∧-closed subset of L′ and S is a lower set of L, S0 ∪T0

is a ∧-closed subset of L�L′, so ΓS0∪T0
(L�L′) can be de�ned. On the other hand,

V (ΓS(L)[ΓT (L′)]) = V (ΓS0∪T0
(L�L′)) = L×L′. Also, if two distinct vertices (a, b)

and (c, d) are adjacent in ΓS(L)[ΓT (L′)], by de�nition of lexicographic product of
graphs, one of the following two cases are occurred:

1. a and c are adjacent in graph ΓS(L),

2. a = c and b and d are adjacent in graph ΓT (L′).

Thus we have a∨c ∈ S or (a = c and b∨d ∈ T ). Hence, according to join operation
in a lattice L� L′, we conclude that (a, b) ∨ (c, d) ∈ S0 ∪ T0, so two vertices (a, b)
and (c, d) are adjacent in ΓS0∪T0

(L� L′). This completes the proof.
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Corollary 2.16. Let L,L′ be two totally ordered lattices and L′ be bounded. If S
and T are (∧-closed) subsets of L,L′, respectively, then ΓS×T (L�L′) is a subgraph
of ΓS0∪T0

(L� L′).

The Cartesian product of two graph G and H is a graph, denoted by G�H,
whose vertex set is V (G)× V (H) and two vertices (a, b) and (c, d) are adjacent if
a = c and bd ∈ E(G), or ac ∈ E(H) and b = d [6, p. 35].

Proposition 2.17. Let L and L′ be lattices and T, S are ∧-closed subsets of L,L′,
respectively. We also assume that S0 = S×L′ and T0 = L×T. Then ΓS(L)�ΓT (L′)
is a subgraph of ΓS0∪T0(L× L′).

Proof. Assume that (a, b) and (c, d) are two distinct vertices of ΓS(L)�ΓT (L′).
These two vertices are adjacent if and only if (a = c, bd ∈ E(ΓT (L′))) or (ac ∈
E(ΓS(L)), b = d), if and only if (a = c, b∨d ∈ T ) or (a∨ c ∈ S, b = d), equivalently
(a, b) ∨ (c, d) = (a ∨ c, b ∨ d) ∈ S0 ∪ T0. So, (a, b) and (c, d) are adjacent in
ΓS0∪T0(L× L′).

The strong product of two graph G and H is the graph denoted as G � H,
whose vertex set is V (G) × V (H) and E(G �H) = E(G�H) ∪ E(G ×H) [6, p.
36].

Corollary 2.18. Let L and L′ be lattices and T, S are ∧-closed subsets of L,L′

respectively. We also assume that S0 = S×L′ and T0 = L×T. Then ΓS(L)�ΓT (L′)
is a subgraph of ΓS×T (L× L′) ∪ ΓS0∪T0

(L× L′).

Proof. The result follows from de�nition of G�H, part (1) of Theorem 2.13 and
previous preposition.

Suppose Π is a partition of the vertices of a graph G. The quotient graph G/Π
is a graph with vertex set Π, and for which distinct classes C1, C2 ∈ Π are adjacent
if some vertex in C1 is adjacent to a vertex of C2 [6, p. 159]. In the following,
we let ϕ : L −→ K be an onto lattice homomorphism and α be the congruence
relation of L de�ned by x ≡α y if and only if ϕ(x) = ϕ(y). Therefore, L/α ∼= K.
In other words, a homomorphic image of L is isomorphic to some quotient lattice
of L. Obviously, if S is a ∧-closed subset of L, then S1, the set of all equivalence
classes of α on S, is a ∧-closed subset of L/α. So, we can de�ne graph ΓS1

(L/α).
We have the following description for the graph associated to L/α.

Theorem 2.19. Suppose that ϕ : L −→ K is an onto lattice homomorphism and
α is corresponding congruence relation with it. If S is an ideal of L and S1 is the
set of all equivalence classes of α on S, then

ΓS1(L/α) = ΓS(L)/α.

Proof. Consider α = {[x]α : x ∈ L} to be a partition for the vertex set of ΓS(L).
So, the vertices of ΓS(L)/α and ΓS1

(L/α) are equal. On the other hand, according
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to de�nition of a quotient graph, if two distinct vertices [x] and [y] are adjacent
in ΓS(L)/α, there exists a ∈ [x] and b ∈ [y] which are adjacent in ΓS(L) i.e.
a∨ b ∈ S. So, [a]∨ [b] = [a∨ b] ∈ S1. Thus [a], [b] are adjacent in ΓS1

(L/α), which
is equivalent to [x] and [y] are adjacent in ΓS1

(L/α).
Moreover, if [x] and [y] are adjacent in ΓS1

(L/α), then [x∨ y] = [x]∨ [y] ∈ S1.
So, there exists a s ∈ S such that x ∨ y ≡α s. According to the properties of
congruence relations we have:

x = x ∧ (x ∨ y) ≡α x ∧ s, y = y ∧ (x ∨ y) ≡α y ∧ s.

So, s∧x ∈ [x] and s∧y ∈ [y]. Since S is an ideal, s∧x, s∧y ∈ S and (s∧x)∨(s∧y) ∈
S. Thus s ∧ x and s ∧ y are adjacent in ΓS(L). This follows that [x] and [y] are
adjacent in ΓS(L)/α and the proof is complete.

Corollary 2.20. Suppose that ϕ : L −→ K is an onto lattice anti-homomorphism
and α is corresponding congruence relation with it. If S is a �lter of L and S1 is
the set of all equivalence classes of α on S and (L′,∨′,∧′) is dual of a lattice L,
then

ΓS1
(L/α) = ΓS(L′)/α.

Proof. At �rst the vertex set of ΓS(L′)/α and ΓS1
(L/α) are equal. On the other

hand, if two distinct vertices [x] and [y] are adjacent in ΓS(L′)/α, there exists
a ∈ [x] and b ∈ [y] which are adjacent in ΓS(L′) i.e. a ∨′ b ∈ S. So, by de�nition
of S1, [a ∨′ b] ∈ S1 i.e., [x] ∨ [y] = [a] ∨ [b] = [a ∧ b] = [a ∨′ b] ∈ S1, so [x] and [y]
are adjacent in ΓS1

(L/α). Moreover, if [x] and [y] are adjacent in ΓS1
(L/α), then

[x ∧ y] = [x] ∨ [y] ∈ S1. So, there exist some s ∈ S such that x ∧ y ≡α s. By the
properties of congruence relations, we have:

x = x ∨ (x ∧ y) ≡α x ∨ s, y = y ∨ (x ∧ y) ≡α y ∨ s.

So, s∨x ∈ [x] and s∨y ∈ [y]. Since S is a �lter, s∨x, s∨y ∈ S and (s∨x)∧(s∨y) ∈ S.
Thus (s∨x)∨′ (s∨y) ∈ S, i.e., s∨x and s∨y are adjacent in ΓS(L′). This follows
that [x] and [y] are adjacent in ΓS(L′)/α.

From now on L is a distributive lattice and S is a �lter of L. We state here an
important result of Stone [5, Theorem 115] as follows:

Theorem 2.21. Let L be a distributive lattice, let I be an ideal, let D be a �lter
of L, and let I ∩D = ∅. Then there exists a prime ideal P of L such that P ⊇ I
and P ∩D = ∅.

For a �lter S of L and arbitrary element x ∈ Sc, by Stone theorem, there exists
a prime ideal Px such that Px ∩ S = ∅ and (x] ⊆ Px. This means that Sc is a
union of some prime ideals. Hence Sc =

⋃
x∈Sc Px. Set I =

⋂
x∈Sc Px and de�ne

a congruence relation θ0 on L as follows;

θ0 =
∧
{θ ∈ Con(L) : I2 ⊆ θ}.

We consider S̃ = {[x]θ0 : x ∈ S}.
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Example 2.22. Suppose L = {0, x1, x2, x3, x4, x5, . . .}. De�ne an order 6 on L
as follows: for each i > 1, 0 6 xi. Moreover, x1, x2 6 x3 and for i, j ≥ 3 that
i 6 j, xi 6 xj . De�ne S = [x5). So, I = (x3] and by de�nition of θ0, we have
L/θ0 = {I} ∪ {{x} : x /∈ I}.

Lemma 2.23. S̃ = {[x]θ0 : x ∈ S} is a �lter of L/θ0.

Proof. S is a ∧-closed subset of L and in L/θ0, we have [a ∧ b] = [a] ∧ [b]. So, S̃
is a ∧-closed subset of L/θ0. It is now enough to show that if [a] ∧ [b] ∈ S̃ then
[a], [b] ∈ S̃. To do this, suppose that [a ∧ b] = [a] ∧ [b] ∈ S̃. Hence, there exist
some element s ∈ S such that a ∧ b ≡θ0 s. According to properties of congruence
relations, we have a = a ∨ (a ∧ b) ≡θ0 a ∨ s , b = b ∨ (a ∧ b) ≡θ0 b ∨ s. This means
that [a] = [a∨ s], [b] = [b∨ s]. Since S is a �lter of L, b∨ s, a∨ s ∈ S which implies
that [a], [b] ∈ S̃.

Theorem 2.24. ΓS̃(L/θ0) is connected.

Proof. By [1, Theorem 2.3] the graph ΓS(L) is connected if and only if 1 ∈ S.
Now the result follows from Lemma 2.23.

Theorem 2.25. If ΓS(L) is complete, then ΓS̃(L/θ0) is complete.

Proof. Suppose that ΓS(L) is complete. Thus S = L or S = L \ {0} [1, Theorem
4.2] and we have the following two cases:

• If S = L, then I = ∅, so θ0 =
∧
{θ : I2 ⊆ θ} = L×L.Thus S̃ = {[x]θ0 : x ∈ S}

= L/θ0 and therefore ΓS̃(L/θ0) is complete.

• If S = L \ {0} then I = {0}. So, θ0 =
∧
{θ : I2 ⊆ θ} = 4. Hence,

S̃ = (L/θ0) \ {[0]} and so ΓS̃(L/θ0) is complete.

Notice that the converse of previous theorem is not true in general. Suppose
L = {0, x1, x2, x3, x4, x5, x6, . . .}. De�ne an order 6 on L as follows: for each
i > 1, 0 6 xi. Moreover, x1 6 x2, x3 and x2, x3 6 x4 and for i, j > 4 that i 6 j,
xi 6 xj . De�ne S = [x5), so I = (x4] and θ0 = {I} ∪ {{x} : x /∈ I}. Therefore,

{I} is zero element of a lattice L/θ0 and so S̃ = (L/θ0) \ {[0]}. By [1, Proposition
2.4] the graph ΓS̃(L/θ0) is complete. But by Theorem 2.9, ΓS(L) is not complete.
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Steiner loops satisfying the statement

of Moufang's theorem

Maria de Lourdes Merlini Giuliani, Giliard Souza dos Anjos

and Charles J. Colbourn

Abstract. Andrew Rajah posed at the Loops'11 Conference in Trest, Czech Republic, the

following conjecture: Is every variety of loops that satis�es Moufang's theorem contained in the

variety of Moufang loops? This paper is motivated by that problem. We give a partial answer

to this question and present two types of Steiner loops, one that satis�es Moufang's theorem and

another that does not, and neither is Moufang loop.

1. Introduction

A nonempty set L with a binary operation is a loop if there exists an identity
element 1 with 1x = x = x1 for every x ∈ L and both left and right multiplication
by any �xed element of L permutes every element of L.

A loop L has the inverse property (and is an IP loop), if and only if there is a
bijection L −→ L : x 7→ x−1 such whenever x, y ∈ L, x−1(xy) = y = (yx)x−1. It
can be seen that IP loops also satisfy (xy)−1 = y−1x−1. A Steiner loop is an IP
loop of exponent 2. A loop M is a Moufang loop if it satis�es any of the following
equivalent identities:

x(y · xz) = (xy · x)z,
y(x · zx) = (yx · z)x,
xy · zx = x(yz · x).

Such loops were introduced by Moufang [3] in 1934. The associator of elements
a, b, c ∈ L is the unique element (a, b, c) of L satisfying the equation: ab · c =
(a · bc)(a, b, c).

Theorem 1.1. [Moufang's Theorem [4]] Let M be a Moufang loop. If a, b, c ∈M
such that (a, b, c) = 1, then a, b, c generate a subgroup of M .

In view of Theorem 1.1, every Moufang loop is diassociative, that is, any two of
its elements generate a group. However, Theorem 1.1 was formulated for Moufang
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loops. We consider its statement for another class of loops, namely, for the variety
of Steiner loops.

Our motivation arises from the question posed by Andrew Rajah at the Loops'11
Conference concerning the relationship between Moufang loops and loops that sat-
isfy Moufang's theorem. The results in this paper were �rst presented at the Third
Mile High Conference on Nonassociative Mathematics in Denver, 2013. Later,
Stuhl [7] explored solutions based on Steiner Oriented Hall Loops, and a combina-
torial characterization of Steiner loops satisfying Moufang's theorem in terms of
con�gurations has been established [1]. Despite the combinatorial characterization
in [1], the algebraic treatment here remains useful for two reasons. First, these
results provide the foundational work for [1]; and second, they provide an alge-
braic framework to understand such loops, which complements the combinatorial
framework.

2. Steiner loops and Moufang's theorem

De�nition 2.1. A loop L satis�es Moufang's Property,MP, if L is not Moufang
loop, but it satis�es the statement of Moufang's theorem, i.e., if a, b, c ∈ L such
that (a, b, c) = 1, then a, b, c generate a subgroup of L.

It is known that there exists only one Steiner loop S of order 10. We prove
that this Steiner loop S satis�es Moufang's Property MP. Its Cayley table can
be found, for example, using the GAP Library [9], as seen below:

· 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 1 4 3 8 10 9 5 7 6
3 3 4 1 2 10 9 8 7 6 5
4 4 3 2 1 9 8 10 6 5 7
5 5 8 10 9 1 7 6 2 4 3
6 6 10 9 8 7 1 5 4 3 2
7 7 9 8 10 6 5 1 3 2 4
8 8 5 7 6 2 4 3 1 10 9
9 9 7 6 5 4 3 2 10 1 8
10 10 6 5 7 3 2 4 9 8 1

For any x, y, z ∈ S, such that x 6= y; y 6= z; z 6= x, x 6= 1, y 6= 1, z 6= 1,
x · yz = xy · z implies that z = xy. So < x, y, z >=< x, y >, and hence x, y, z
generate a group.

A Steiner triple system (Q,B), or STS(n), is a non-empty set Q with n elements
and a set B of unordered triples {a, b, c} such that

(i) a, b, c are distinct elements of Q;

(ii) when a, b ∈ Q and a 6= b, there exists a unique triple {a, b, c} ∈ B.
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A Steiner triple system (Q,B) with |Q| = n elements exists if and only if n > 1 and
n ≡ 1 or 3 (mod 6) [8]. Because there is a one-to-one correspondence between the
variety of Steiner triple systems and the variety of all Steiner Loops [2], Steiner
loops have order m ≡ 2 or 4 (mod 6). This underlies the study of Steiner triple
systems from an algebraic point of view as in [4], [5] and [6].

We use the following standard construction of Steiner triple systems [8], some-
times called the Bose construction. Let n = 2t + 1 and de�ne Q := Zn × Z3.
A Steiner triple system (Q,B) can be formed with B consisting of the following
triples

{(x, 0), (x, 1), (x, 2)} where x ∈ Zn, and

{(x, i), (y, i), (x+y
2 , i+ 1)} where x 6= y;x, y ∈ Zn, i ∈ Z3

The corresponding Steiner loops can be de�ned directly. Let S = Q∪ {1}. De�ne
a binary operation ∗ with identity element 1 as follows:

(x, i) ∗ (x, j) = (x, k) i 6= j, i 6= k, j 6= k,

(x, i) ∗ (y, i) = (x+y
2 , i+ 1) x 6= y,

(x, i) ∗ (y, i+ 1) = (2y − x, i) x 6= y,

(x, i) ∗ (y, i− 1) = (2x− y, i− 1) x 6= y,

(x, i) ∗ (x, i) = 1

Then (S, ∗) is commutative loop. However, (S, ∗) is not a Moufang loop. If we take
the elements x = (0, 0) y = (1, 0) and z = (0, 1) then (xy)(zx) = (−1/2, 1). On
the other hand, x((yz)x) = (−1, 0), so (S, ∗) does not satisfy one of the Moufang
identities.

Analyzing Steiner loops from the Bose construction, there are two types: one
that satis�es MP, and another that does not. Using computer calculations and
the Loops package in GAP [9], �rst we studied the Steiner loops of order k with
k ∈M1 where

M1={16, 28, 34, 40, 46, 52, 58, 79, 76, 82, 88, 94, 100, 112, 118, 124, 130, 136, 142, 154}

from the Bose construction. Each of these Steiner loops satis�es MP. However,
none of the Steiner loops of order k ∈ {22, 64, 106, 148} from the Bose construction
satis�esMP. The explanation for this follows.

Theorem 2.2. Let S be a Steiner loop from the Bose construction. Then S has

the propertyMP if and only if 7 is an invertible element in Zn.

Proof. Suppose S has property MP. If 7 is not invertible in Zn, then exists an
element a ∈ Zn, a 6= 0 such that 7a = 0. Hence 8a = a. Because n is odd,
2a = a/4. The associator ((0, 1), (0, 0), (a, 0)) = 1 while ((0, 1), (a, 0), (0, 0)) 6= 1,
thus the elements (0, 1), (0, 0), (a, 0) associate in some order, but not in every order,
a contradiction.
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Now, suppose that 7 is invertible in Zn. We consider all possible triples of
elements of S. Our strategy is to show that if the associator (a, b, c) = 1, then
a, b, c are in the same triple. There are 25 generic triple elements of S; here
x, y, z ∈ Zn are distinct and i, j, k ∈ Z3 are distinct:

{(x, i), (x, i), (x, i)}, {(x, i), (x, i), (x, j)}, {(x, i), (x, i), (y, i)}, {(x, i), (x, i), (y, j)},
{(x, i), (x, j), (x, i)}, {(x, i), (x, j), (x, j)}, {(x, i), (x, j), (y, i)}, {(x, i), (x, j), (y, j)},
{(x, i), (x, j), (x, k)}, {(x, i), (x, j), (y, k)}, {(x, i), (y, i), (x, i)}, {(x, i), (y, i), (x, j)},
{(x, i), (y, i), (y, i)}, {(x, i), (y, i), (y, j)}, {(x, i), (y, i), (z, i)}, {(x, i), (y, i), (z, j)},
{(x, i), (y, j), (x, i)}, {(x, i), (y, j), (x, j)}, {(x, i), (y, j), (y, i)}, {(x, i), (y, j), (y, j)},
{(x, i), (y, j), (z, i)}, {(x, i), (y, j), (z, j)}, {(x, i), (y, j), (x, k)}, {(x, i), (y, j), (y, k)},
{(x, i), (y, j), (z, k)}.

When we consider j 6= i, j 6= k, k 6= i, we assume that j = i+1 and k = i− 1
or j = i − 1 and k = i + 1. We identify 59 di�erent sets of triples of elements
and calculate the associators of each set. We found that in the �rst 37 triples the
associator is di�erent from 1, as listed below:

{(x, i), (x, i+ 1), (y, i)}, {(x, i), (x, i− 1), (y, i)}, {(x, i), (x, i+ 1), (y, i+ 1)},
{(x, i), (y, i), (x, i+ 1)}, {(x, i), (y, i), (x, i− 1)}, {(x, i), (y, i), (y, i− 1)},
{(x, i), (y, i), (z, i), where z 6= x+y

2 and x 6= y+z
2 },

{(x, i), (y, i), (z, i), where z 6= x+y
2 and x = y+z

2 },
{(x, i), (y, i), (z, i), where z = x+y

2 and x 6= y+z
2 },

{(x, i), (y, i), (z, i), where z = x+y
2 and x = y+z

2 },
{(x, i), (y, i), (z, i+ 1), where z 6= x+y

2 }, {(x, i), (y, i+ 1), (x, i+ 1)},
{(x, i), (y, i), (z, i− 1), where z 6= x+y

2 and x 6= 2y − z},
{(x, i), (y, i), (z, i− 1), where z = x+y

2 and x 6= 2y − z},
{(x, i), (y, i), (z, i− 1), where z = x+y

2 and x = 2y − z},
{(x, i), (y, i− 1), (x, i− 1)}, {(x, i), (y, i+ 1), (y, i)}, {(x, i), (y, i− 1), (y, i)},
{(x, i), (y, i+ 1), (z, i), where z 6= 2y − x},
{(x, i), (y, i− 1), (z, i), where z 6= 2x− y and x 6= 2z − y},
{(x, i), (y, i− 1), (z, i), where z 6= 2x− y and x = 2z − y},
{(x, i), (y, i− 1), (z, i), where z = 2x− y and x 6= 2z − y},
{(x, i), (y, i− 1), (z, i), where z = 2x− y and x = 2z − y},
{(x, i), (y, i+ 1), (z, i+ 1), where z 6= 2y − x and x 6= y+z

2 },
{(x, i), (y, i+ 1), (z, i+ 1), where z 6= 2y − x and x = y+z

2 },
{(x, i), (y, i+ 1), (z, i+ 1), where z = 2y − x and x = y+z

2 },
{(x, i), (y, i− 1), (z, i− 1), where z 6= 2x− y}, {(x, i), (y, i+ 1), (x, i− 1)},
{(x, i), (y, i− 1), (x, i+ 1)}, {(x, i), (y, i+ 1), (y, i− 1)},
{(x, i), (y, i+ 1), (z, i− 1), where z 6= 2y − x and x 6= 2z − y},
{(x, i), (y, i+ 1), (z, i− 1), where z = 2y − x and x 6= 2z − y},
{(x, i), (y, i+ 1), (z, i− 1), where z = 2y − x and x = 2z − y},
{(x, i), (y, i− 1), (z, i+ 1), where z 6= 2x− y and x 6= 2y − z},
{(x, i), (y, i− 1), (z, i+ 1), where z 6= 2x− y and x = 2y − z},
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{(x, i), (y, i− 1), (z, i+ 1), where z = 2x− y and x = 2y − z},
{(x, i), (x, i− 1), (y, i+ 1)}.

Next, there are 14 triples for which the associator is 1 and they are in the
same triple of the STS; consequently, they are in a Klein group (and so generate
a subgroup).

{(x, i), (x, i), (x, i)}, {(x, i), (x, i), (x, j)}, {(x, i), (x, i), (y, i)}, {(x, i), (x, i), (y, j)},
{(x, i), (x, j), (x, i)}, {(x, i), (x, j), (x, j)}, {(x, i), (y, i), (x, i)}, {(x, i), (y, i), (y, i)},
{(x, i), (y, i), (z, i+ 1), where z = x+y

2 }, {(x, i), (y, j), (x, i)}, {(x, i), (y, j), (y, j)},
{(x, i), (y, i+ 1), (z, i), where z = 2y − x},
{(x, i), (y, i− 1), (z, i− 1), where z = 2x− y}, {(x, i), (x, j), (x, k)}

There remain 8 cases to consider:

{(x, i), (x, i− 1), (y, i− 1)}, {(x, i), (y, i), (y, i+ 1)},
{(x, i), (y, i− 1), (y, i+ 1)}, {(x, i), (x, i+ 1), (y, i− 1)},
{(x, i), (y, i), (z, i− 1), where x = 2y − z, z 6= x+y

2 },
{(x, i), (y, i+ 1), (z, i+ 1) where z = 2y − x, x 6= y+z

2 },
{(x, i), (y, i+ 1), (z, i− 1) where z 6= 2y − x, x = 2z − y},
{(x, i), (y, i− 1), (z, i+ 1) where z = 2x− y, x 6= 2y − z}

Each has associator di�erent from 1 because 7 is invertible in Zn. Take for
instance the triple {(x, i), (x, i+ 1), (y, i− 1)} with x 6= y of the STS. Now (x, i) ∗
((x, i+ 1) ∗ (y, i− 1)) = (4y − 3x, i) and ((x, i) ∗ (x, i+ 1)) ∗ (y, i− 1) = (x+y

2 , i).
The associator ((x, i), (x, i+ 1), (y, i− 1)) is 1 if and only if 7x = 7y. Because 7 is
invertible in Zn, we obtain x = y, a contradiction.

3. Beyond Steiner loops

We have seen that certain Steiner loops from the Bose construction provide ex-
amples of loops satisfying MP. Further examples can be obtained by the direct
product of loops, the proof of which is straightforward:

Lemma 3.1. Let S and M be loops that satisfy Moufang's theorem. Then S×M
satis�es Moufang's theorem, and S ×M satis�esMP if one or both of S and M
satisfyMP.

Taking S to satisfy MP and M to be a group or a Moufang loop provides
numerous examples of loops that satisfyMP but are neither Steiner nor Moufang
loops. A characterization of loops that satisfy Moufang's theorem must therefore
consider loops beyond the varieties examined here.

References

[1] C.J. Colbourn, M.L. Merlini Giuliani, A. Rosa, and I. Stuhl, Steiner loops

satisfying Moufang's theorem, Australasian J. Combinatorics 63 (2015), 170�181.



108 M. L. Merlini Giuliani, G. S. Anjos and C. J. Colbourn

[2] B. Ganter and U. Pfüller, A remark on commutative di-associative loops, Algebra
Univ. 21 (1985), 310-311.

[3] R. Moufang, Zur Struktur von Alternativkörpern, Math. Ann. 110 (1935), 416-430.

[4] H.O. P�ugfelder, Quasigroups and Loops: Introduction, Heldermann Verlag, 1990.

[5] K. Strambach and I. Stuhl, Translation group of Steiner loops, Discrete Math.
309 (2009), 4225-4227.

[6] K. Strambach and I. Stuhl, Oriented Steiner loops, Beitr Algebra Geom. bf 54
(2013), 131-145.

[7] I. Stuhl, Moufang's theorem for non-Moufang loops, Aequationes Math. 90 (2016),
329− 333.

[8] J.H. Van Lint and R.M. Wilson, A course in combinatorics, Camb. Uni. Press,
2001.

[9] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12; 2008.
(http://www.gap-system.org)

Received March 26, 2015
Revised January 10, 2016

M.L. Merlini Giuliani and G.S. Anjos
Universidade Federal do ABC, Santo André (SP), 09210-180 Brazil
E-mail: maria.giuliani@ufabc.edu.br

C.J. Colbourn
School of CIDSE, Arizona State University, Tempe, AZ 85287, U.S.A
E-mail: giliard.anjos@ufabc.edu.br



Quasigroups and Related Systems 24 (2016), 109− 116

On injective and subdirectly irreducible

S-posets over left zero posemigroups

Gholam Reza Moghaddasi and Mahdieh Haddadi

Abstract. The notion of a Cauchy sequence in an S-poset is a useful tool to study algebraic

concepts, specially the concept of injectivity. This paper is concerned with the relations between

injectivity and Cauchy sequences in the category of S-posets in which S is a left zero posemi-

group. We characterize subdirectly irreducible S-posets over this posemigroup and by Birkhof's

Representation Theorem we get a description of such S-posets.

1. Introduction and preliminaries

The category of S-posets, as the ordered version of the category of S-acts, recently
have captured the interest of some mathematicians [4, 5]. And it is always inter-
esting to verify the counterpart results of S-acts in the category of S-posets (see
[1, 4, 8]). Cauchy sequences in an S-act �rst introduced by E. Giuli in [3] for a
particular class of acts, then generalized to S-acts, in [2]. Recently we generalized
this concept to S-posets, [4, 5].

Left zero semigroups, all of whose elements are left zero, are an important
class of semigroups, since every non-empty set S can be turned into a left zero
semigroup by de�ning st = s for all s, t ∈ S also this semigroup is applied in
automata theory, theory of computations, Boolean algebras.

Here we are going to use the notion of Cauchy sequences to study the dc-regular
injectivity of S-posets over a left zero posemigroup, as we did in [7] for injectivity
of S-acts. But the order here plays an important role and to get the counterpart
results here we need to modify (some times strongly) the S-act version of the
proofs. The aim of this paper is to determine the structure of dc-injective in the
category of S-posets and characterize the subdiretly irreducible S-posets over a
left zero semigroup. Therefore, throughout this article, we assume S to be a left
zero posemigroup. Now let us brie�y recall some necessary concepts.

A partially ordered semigroup (or simply, a posemigoup) is a semigroup which
is also a poset whose partial order is compatible with its binary operation (that is
s 6 s′ implies st 6 s′t, for every s, s′, t ∈ S).

For a posemigoup S, a (right) S-poset is a poset A equipped with a function
α : A×S → A, called the action of S on A, such that for a, b ∈ A, s, t ∈ S (denoting
α(a, s) by as): (1) a(st) = (as)t, (2) a 6 b⇒ as 6 bs, (3) s 6 t⇒ as 6 at.

2010 Mathematics Subject Classi�cation: 06F05, 20M30.
Keywords: S-poset, left zero posemigroup, subdiretly irreducible, injective.
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By an S-poset morphism f : A → B, we mean a monotone map between
S-posets which preserves the action (that is f(as) = f(a)s).

An element a of an S-poset A is called a �xed or zero element if as = a for all
s ∈ S. We denote the set of all �xed elements of an S-poset A by FixA, which is
in fact a sub-S-poset of A that is as ∈ FixA for all a ∈ FixA and s ∈ S.

We de�ne an S-poset A to be separated if it is separated as an S-act, that is
any two points a 6= b in A can be separated by at least one s ∈ S, by sa 6= sb.

We say that an S-poset A is subseparated if a 6 b in A whenever as 6 bs for
all s ∈ S. It is clear that every subseparated S-poset is a separated one.

A regular monomorphism or an embedding is an S-poset morphism (that is, a
monoton and action preserving map) f : A → B such that a 6 b if and only if
f(a) 6 f(b), for each a, b ∈ A.

2. Cauchy sequences

Our central object of study in this paper is the notion of Cauchy sequences in
S-posets [2, 3, 4].

First of all it is easy to check that:
• If S is a left zero semigroup, then for every S-poset A, AS ⊆ FixA.

De�nition 2.1. A Cauchy sequence in an S-poset A is an S-poset morphism
f : S → A. More explicitly, f : S → A is a Cauchy sequence when it is order
preserving and f(st) = f(s)t.

We denote a Cauchy sequence by (as)s∈S , which expresses the fact that the
element s ∈ S is mapped to the element as in A. Since S is a left zero posemigroup,
with this notation we have ast = ast = as and for s, t ∈ S if s 6 t then as 6 at.

It is worth noting that in an S-poset A (over the left zero posemigroup S) the
terms of a Cauchy sequence are �xed elements of A. So if we denote the set of
Cauchy sequences of A by C(A) then C(A) = (FixA)S in which (FixA)S is the
set of monotone mappings from S to FixA.

De�nition 2.2. Let (as)s∈S be a Cauchy sequence in an S-poset A. An element b
in an extension B of A is called a limit of (as)s∈S whenever bs = as for each s ∈ S.

Lemma 2.3. Given an S-poset A over a left zero posemigroup S, the set C(A) of
all Cauchy sequences in A, is a subseparated S-poset.

Proof. First we note that C(A) is an S-poset, by the action C(A) × S → C(A)
mapping each ((as)s∈S , t) ∈ C(A)× S to (as)s∈S · t = (ats)s∈S which is obviously
in C(A), for every t ∈ S. We should note that C(A) is a poset with point-wise
order and ((as)s∈S · t) · r = (as)s∈S · (tr). Indeed, (as)s∈S · (tr) = (as)s∈S · t =
(ats)s∈S = (at)s∈S , namely (as)s∈S · (tr) is the constant sequence (at)s∈S , also we
have ((as)s∈S · t) · r = (ats)s∈S · r = (at)s∈S · r = (at)s∈S ; the last equality is true
because (at)s∈S is a constant sequence. Now if r 6 t in S, then rs = r 6 t = ts,
for every s ∈ S and since (as)s∈S is a Cauchy sequence, ars = ar 6 at = ats. That
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is (as)s∈S · r 6 (as)s∈S · t. Finally if (as)s∈S 6 (bs)s∈S , then as 6 bs, for every
s ∈ S. Hence ats 6 bts for every s, t ∈ S. That is (as)s∈S · t 6 (bs)s∈S · t, for every
t ∈ S. To prove subseparatedness, let (as)s∈S · t 6 (bs)s∈S · t, for every t ∈ S.
Then ats 6 bts, for every t, s ∈ S. Now, since S is a left zero posemigroup, at 6 bt,
for every t ∈ S. That is (as)s∈S 6 (bs)s∈S .

Lemma 2.4. Let A be an S-poset over a left zero posemigroup S and (as)s∈S be
a sequence (indexed family of elements of A by s ∈ S). Then (as)s∈S has a limit
in some extension B of A if and only if it is a Cauchy sequence.

Proof. One way is clear. In fact the limit of the sequence (as)s∈S makes it to
have the Cauchy property in De�nition 2.1. For the converse, let (as)s∈S be a
Cauchy sequence in A. Then take the extension B of A to be A∪̇{(as)s∈S} with
the action (as)s∈S ·t = at for t ∈ S and no order between (as)s∈S and the elements
of A. The constructed B is an S-poset. This is because, for all t, r ∈ S, we have
((as)s∈S · t) · r = at · r = atr = (as)s∈S · (tr), and if t 6 r then at 6 ar follows from
this fact that (as)s∈S is a Cauchy sequence, and hence (as)s∈S · t 6 (as)s∈S · r.
Now, by the de�ned action, we have that (as)s∈S is a limit of (as)s∈S .

De�nition 2.5. An S-poset A is said to be complete if every Cauchy sequence
over A has a limit in A.

For a given left zero posemigroup S and an S-poset A Lemma 2.3 shows that
C(A) is an S-poset. In fact, C(A) is a complete S-poset.

Theorem 2.6. Let A be an S-poset over a left zero posemigroup S. The S-poset
C(A) is complete.

Proof. Let (fs)s∈S be a Cauchy sequence in C(A), in which fs = (asr)r∈S for each
s ∈ S. Hence for each s, t ∈ S we have fst = fst. Since S is a left zero semigroup,
fs = fst = fst, i.e., for each s ∈ S, fs is a �xed element in C(A). Now, by the
de�ned action of S over C(A) in Lemma 2.3, we have fs = fst = (astr)r∈S =
(ast )r∈S . So (asr)r∈S = (ast )r∈S for each r ∈ S. Namely, for each s ∈ S, fs is a
constant sequence. Now we de�ne the Cauchy sequence (as)s∈S to be as = ast , for
every s ∈ S and claim that (as)s∈S is a limit of (fs)s∈S . This is because (as)s∈S ·r
= (ast )s∈S · r = (asrt)s∈S = (asr)s∈S = (ast )r∈S = fs. Indeed, the third equation
follows from this fact that S is a left zero posemigroup. Also since fs is a constant
sequence and (asr)r∈S = (ast )r∈S , we have the fourth and �fth equations.

3. dc-injective of S-posets

A sub-S-poset A of an S-poset B is called down-closed in B if b 6 a for a ∈ A,
b ∈ B then b ∈ A. By a down-closed embedding or dc-regular monomorphism, we
mean an embedding f : A→ B such that f(A) is a down-closed sub-S-poset of B.
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An S-poset A is said to be down-closed injective or simply dc-injective if for
every down-closed embedding f : B → C and each S-poset morphism ϕ : B → A
there exists an S-poset morphism ϕ∗ : C → A making the diagram

B
f //

ϕ

��

C

ϕ∗~~
A

commutative.

Theorem 3.1. For a left zero posemigroup S every dc-injective S-poset is com-
plete.

Proof. Let (as)s∈S be a Cauchy sequence in a dc-injective S-poset A. Consider
the extension B = A∪̇{(as)s∈S} of A with the action (as)s∈S · t = at and no
order relation between (as)s∈S and the elements of A as introduced in the proof
of Lemma 2.4. It is clear that A is embedded in B, so the dc-injective property of
A completes the diagram

A
� � // B

ϕ
��

A

by an S-poset morphism ϕ. Now we claim that ϕ((as)s∈S) ∈ A is a limit of the
Cauchy sequence (as)s∈S . This is because ϕ((as)s∈S) · t = ϕ((as)s∈S · t) = ϕ(at) =
at, for every t ∈ S.

The converse of Theorem 3.1 is true if the S-poset has a �good� property. See
the next theorem as the counterpart of Theorem 2.3 of [7] with the compeletly
di�erent method of proof.

Theorem 3.2. If S is a left zero posemigroup S, then every complete subseparated
S-poset A with a top �xed element is dc-injective.

Proof. To prove, we show that A is a retract of each of its down-closed extensions
(that is, to say A is an absolute down-closed retract) (see [8]). To do so, let B be
a down-closed extension of A. De�ne g : B → A with g|A = idA and for b ∈ B \A
take g(b) = ab where ab is a limit of the Cauchy sequence (as)s∈S with as = bs for
bs ∈ A, and as = a0 for bs /∈ A, where a0 ∈ FixA is the top �xed element in A
mentioned in the hypotheses.

First we show that (as)s∈S is a Cauchy sequence. To do so, we note that
ast = ast. This is because, if as = bs, then ast = (bs)t = b(st) = bs also
ast = as = bs, and if as = a0, then ast = a0t = a0 also ast = as = a0. Also if
s 6 t, then bs 6 bt. This is because if bt ∈ A, then bs ∈ A, since A is down-closed
in B, therefore as 6 at, and if bt /∈ A, then at = a0 but a0 is a top �xed element
and hence bs 6 a0, that is as 6 at. Thus (as)s∈S is a Cauchy sequence.
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Now we show that g is order preserving. To do so, let b 6 b′. Then bs 6 b′s
for all s ∈ S. Therefore, by de�nition of ab, ab′ , we have abs 6 ab′s. But, since A
is subseparated, ab 6 ab′ . That is g(b) 6 g(b′). Finally g is equivariant on B \ A.
Because g(b)s = abs = as = bs = g(bs), if bs ∈ A, for every b ∈ B \ A and s ∈ S.
And if bs /∈ A, then, since (bs)t = bs for all t ∈ S, we get g(bs) = abs = a0 = a0s =
abs = g(b)s.

As a corollary of Theorems 3.1 and 3.2 we get the following Theorem.

Theorem 3.3. Let S be a left zero posemigroup S. Then a subseparated S-poset
A with a top �xed element is dc-injective if and only if it is complete.

Theorem 3.4. For each S-poset A over a left zero posemigroup S with a top �xed
element, C(A) is dc-injective.

Proof. Let a0 be a top �xed element in A. One can easily see that the constant
sequence (as = a0)s∈S is a Cauchy sequence and is a top �xed element in C(A).
Now Theorems 3.3 and 2.6 give the result.

Before the next de�nition it is worth noting that by a right down-closed ideal
I of a posemigroup S we mean a non-empty subset I of S such that (i) IS ⊂ I
and (ii) a 6 b ∈ I implies a ∈ I, for all a, b ∈ S.

De�nition 3.5. An S-poset A is said to be
• I-injective, for a right down-closed ideal I of S, if each S-poset morphism
f : I → A is of the form λa for some a ∈ A, that is f(s) = as for s ∈ I.
• S-injective, if each S-poset morphism f : S → A is of the form λa for some
a ∈ A, that is f(s) = as for s ∈ S.

In the next theorem we compare the concept of completeness with the di�erent
types of injectivity for some special S-poset over a left zero posemigroup S, and
we see that they are surprisingly equivalent to each other.

Theorem 3.6. For a subseparated S-poset A with a top �xed element a0, the
following are equivalent:

(1) A is dc-injective;
(2) A is dc-absolutely retract;
(3) A is complete;
(4) A is I-injective, for each right down-closed ideal I of S;
(5) A is S-injective.

Proof. (1)⇔(2). It is given in [8].
(1)⇔(3). See Theorem 3.3.
(3)⇒(4). Let A be complete and I be a right down-closed ideal of S and

f : I → A be an S-poset morphism. Consider the sequence (as)s∈S to be as = f(s)
for s ∈ I, and as = a0 for s ∈ S − I. The sequence (as)s∈S is a Cauchy sequence.
This is because, if s 6 t then four cases may occur:
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◦ If s, t ∈ I then f(s) 6 f(t), since f is S-poset morphism, that is as 6 at.
◦ If s, t ∈ S − I, then as = at = a0, that is as 6 at.
◦ It may s ∈ S − I, t ∈ I. But since s 6 t and I is down-closed ideal, we must

have s ∈ I which is a contradiction. Hence this case is not possible.
◦ And �nally if s ∈ I and t ∈ S − I, then f(s) = as, f(t) = a0. But a0 is the

top �xed element, hence f(s) = as 6 a0 = f(t).
Also let s, t ∈ S. Then if s ∈ I, we have ast = f(s)t = f(st) = f(s) = as and

if s ∈ S − I, then f(s)t = a0t = a0 = f(s).
Now since (as)s∈S is a Cauchy sequence, it has a limit a in A. So as = as, for

all s ∈ S, which means f(s) = as = λa(s). That is f = λa.
(4)⇒ (5). It is trivial.
(5)⇒ (3). Let A be S-injective and (as)s∈S be a Cauchy sequence over A. So

f : S → A with f(s) = as is an S-poset morphism. Now (5) gives a ∈ A such that
f = λa, hence as = as for all s ∈ S, i.e., a is a limit of the given sequence.

4. Subdirectly irreducible

By Birkho�'s Representation Theorem (see [6]) every algebra is isomorphic to a
subdirect product of subdirectly irreducible algebras. This theorem, by analo-
gous proof is established in the category of S-posets. In [7], characterization of
subdirectly irreducible acts, respectively over the monoid (N∪ {∞},min,∞), and
left zero semigroups can be seen. In this section we give a characterization of
subdirectly irreducible S-posets over a left zero posemigroup.

De�nition 4.1. (see [6]) An equivalence relation ρ on an S-act A is called a
congruence on A, if aρa′ implies (as)ρ(a′s), for all s ∈ S. We denote the set of all
congruences on A by Con(A) .

A congruence on an S-poset A is a congruence θ on the S-act A with the
property that the S-act A/θ can be made into an S-poset in such a way that the
natural map A→ A/θ is an S-poset map (see [1]).

For any relation θ on A, de�ne the relation 6θ on A by

a 6θ a′ if and only if a 6 a1θa
′
1 6 a2θa

′
2 6 . . . 6 anθa

′
n 6 a′,

where ai, a
′
i ∈ A (such a sequence of elements is called a θ-chain). Then an S-

act congruence θ on an S-poset A is an S-poset congruence if and only if aθa′

whenever a 6θ a′ 6θ a.
For a, b ∈ A, ρa,b denotes the smallest S- act congruence on A containing (a, b).

It is in fact, the equivalence relation generated by {(as, bs) : s ∈ S ∪ {1}}. Its
elements are as follows:

xρa,by ⇔ ∃s1, s2, ..., sn ∈ S ∪ {1} , p1, p2, ..., pn, q1, q2, ..., qn ∈ A,

x = p1s1 q2s2 = p3s3 . . . qnsn = y
q1s1 = p2s2 q3s3 = p4s4 . . .

where (pi, qi) = (as, bs) or (pi, qi) = (bs, as) for some s ∈ S ∪ {1}.



On injective and subdirectly irreducible S-posets 115

Lemma 4.2. Let A be an S-act over a posemigroup S. Then ρx,y, for every
distinct x, y ∈ FixA, is an S-poset congruence.

Proof. To prove we show the equivalence condition of an S-poset congruence.
Namely, we show that if a 6ρx,y a

′ 6ρx,y a then aρx,ya
′. But �rst we note that

ρx,y = ∆
⋃
{(x, y), (y, x)} since x, y ∈ FixA. Now if a 6ρx,y

a′ 6ρx,y
a then two:

1) a 6 xρx,yy 6 yρx,yx 6 a′ 6 xρx,yy 6 yρx,yx 6 a. Therefore a 6 x 6 a′ 6
x 6 a and hence a = a′ thus aρx,ya

′; or
2) a 6 xρx,yy 6 yρx,yx 6 a′ 6 yρx,yx 6 xρx,yy 6 a. Therefore a 6 x 6 a′ 6

y 6 a and hence x = y which is a contradiction. Hence this case is not possible.
Thus we have a = a′, that is aρx,ya

′.

De�nition 4.3. (see [6])An S-poset A is called subdirectly irreducible if
⋂
i∈I ρi 6=

∆ for all congruences ρi on A with ρi 6= ∆. If A is not subdirectly irreducible,
then it is called subdirectly reducible.

It is worth noting that for each posemigroup S and an S-poset A with |A| = 2
there exist only two congruences ∆ and 5 on A and therefore these S-posets are
subdirectly irreducible.

Lemma 4.4. Every S-poset A over a left zero posemigroup S with |FixA| = 1 or
|FixA| > 3 is subdirectly reducible.

Proof. It is clear that for a left zero semigroup S, every S-poset with only one
�xed element is subirectly reducible. Also, let A be an S-poset with at least
three distinct �xed elements a, b, c. Then we consider the S-poset congruences
ρa,b and ρb,c , by Lemma 4.2. Since a, b, c ∈ FixA we obviously have ρa,b =
∆
⋃
{(a, b), (b, a)} and ρb,c = ∆

⋃
{(b, c), (c, b)}. Therefore ρa,b ∩ ρa,c = 4, and we

are done.

We give the following theorm as the counterpart of Theorem 3.2 of [7] in the
category of S-posets over a left zero posemigroup.

Theorem 4.5. An S-poset A over a left zero posemigroup S is subdirectly irre-
ducible if and only if it is separated and |FixA| = 2.

Proof. Let A be subdirectly irreducible. Then Lemma 4.4 ensures that |FixA| = 2
such as {a0, b0}. To show that A is separated, we suppose that there exists x 6=
y ∈ A such that xs = ys, for all s ∈ S, and �nd a contradiction. To do so, consider
the S-act congruence ρx,y. Since xs = ys, for all s ∈ S, ρx,y = ∆

⋃
{(x, y), (y, x)}.

By the analogous method of the proof of Lemma 4.2 one can see that ρx,y is an
S-poset congruence on A. Also since a0, b0 ∈ FixA, by Lemma 4.2, we have the
S-posset congruence ρa0,b0 on A. But ρa0,b0 ∩ ρx,y = ∆ which is a contradiction,
therefore A is separated.

For the converse, let A be separated, FixA = {a0, b0}, and θ( 6= ∆) be an
S-poset congruence on A. Then there exists x 6= y ∈ A such that (x, y) ∈ θ. Thus
(xs, ys) ∈ θ for every s ∈ S. But since xs, ys ∈ FixA = {a0, b0} and A is separated,
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there exists s ∈ S such that xs 6= ys. This means (a0, b0), (b0, a0) ∈ θ. Therefore⋂
θ 6=∆ θ contains ∆ ∪ {(a0, b0), (b0, a0)}, hence A is subdirectly irreducible.

Finally, by the above theorem, and Birkho�'s Representation Theorem we have:

Theorem 4.6. Every S-poset over a left zero posemigroup S is isomorphic to a
subdirect product of separated S-posets each of which has exactly two �xed elements.

It is worth noting that every S-poset A over a left zero posemigroup S with
one or two elements and |FixA| = 1 is dc-injective.

We close the paper by characterizing simple S-poset. Recall that an S-poset A
is called simple if ConA = {4,∇}. It is easy to check that every S-poset A with
|A| 6 2 is simple but no S-poset A with trivial action and |A| > 2 is simple.

Theorem 4.7. For a left zero posemigroup S, there exists no simple S-poset A
with |A| > 2.

Proof. Let a 6= b be elements of A. Then in the case where a, b ∈ FixA we have
ρa,b 6= ∇, (where ρa,b is an S-poset congruence that discussed in Lemma 4.2) since
|A| > 2, hence there exists (a, b 6=)x ∈ A and (a, x) /∈ ρa,b. Therefore, ρa,b is a
nontrivial congruence on A. Also in the case that one of a, b is not �xed, taking
a /∈ FixA, then ρa,b 6= ∇. Because otherwise, if ρa,b = ∇ then for each x 6= y ∈ A,
we have (x, y) ∈ ρa,b. Consequently there exist s, t ∈ S such that as = x, bt = y.
Hence x, y ∈ FixA. Thus (a, x) /∈ ρx,y, and so ρx,y is a nontrivial congruence.
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Dynamic groups

Mohammad Reza Molaei

Abstract. In this essay we introduce a class of groups which any member of it has a dynamic

product. We prove that any subgroup of a dynamic group is a dynamic group and the product

of two dynamic groups is a dynamic group. We deduce a new equivalency on dynamical systems

via Rees matrix semigroups.

1. Introduction

Groups with dynamic products are a class of groups which have important role in
topological cocycles [5]. Cocycles [1, 2, 3] are time-dependent dynamical systems
and they can describe by these kind of groups [5]. To present the de�nition of a
dynamic group we �rst recall the de�nition of a dynamical system. We assume
that (T,+) is the group of real numbers or the group of integer numbers. The
binary operation + can be any group operation on this set. If Y is a non-empty
set, then a family ξ = {ξt : t ∈ T} of the maps ξt : Y → Y is called a dynamical

system if

(i) ξ0 = idY ;

(ii) ξt+s = ξt ◦ ξs for all t, s ∈ T .
(T,+) is called the time group of ξ, and T is called the time set of ξ. If (T,+)

is a semigroup, and ξ satis�es the condition (ii), then it is called a semi-dynamical

system.

De�nition 1.1. Suppose ξ is a dynamical system (semi-dynamical system) on
Y , and G is a group (semigroup). (G, ξ) is called a dynamic group (dynamic

semigroup) if there is a one-to-one map h : G→ ξ such that h(b) ◦ h(c) = h(cb).

If G is a group with the identity e, then the above de�nition implies that
h(e) = ξ0. One must pay attention to this point that: in the above de�nition if h
is an onto map, and T is a commutative group, then h is a group isomorphism.

Example 1.2. We de�ne a self map η on the circle S1 by η(e2πiθ) = e2πi(θ+
1
4 ),

and we take ξ = {ηn : n ∈ Z}, where
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ηn =


η ◦ η ◦ η ◦ · · · ◦ η︸ ︷︷ ︸

n times

if n ∈ N,

id if n = 0,
η−1 ◦ η−1 ◦ η−1 ◦ · · · ◦ η−1︸ ︷︷ ︸

−n times

if − n ∈ N.

Let G be the additive group modulo 4. Then (G, ξ) is a dynamic group.

In the next section we present an example of a non trivial dynamic group.

Example 1.3. The set of integer numbers with the product m ∗ n = n|m| is a
semigroup. Z with the product m × n = m|n| is also a semigroup. If for given
n ∈ Z, we de�ne ηn : Z → Z by

ηn(m) =

{
n3|m| if m

1
3 ∈ Z,

m if m
1
3 /∈ Z,

then ξ = {ηn : n ∈ (Z,×)} is a semi-dynamical system, and ((Z, ∗), ξ) is a dynamic
semigroup. In fact, if we de�ne h : Z → ξ by h(n) = ηn, then h(n)◦h(m) = h(m∗n)
and h is one-to-one.

In the next section we present two methods for constructing dynamic groups
(dynamic semigroups), and we show that a dynamic product is an algebraic prop-
erty. We associate a completely simple semigroup to a dynamic group. By using
of completely simple semigroups or Rees matrix semigroups we present an equiv-
alence relation on dynamical systems.

2. Structural consideration

We begin this section by presenting a nontrivial example of a dynamic group.

Example 2.1. Let

Y = {y : R2 → R : y(t, x) = 2x+ g(t) where g(t) is a continuous function},

and for given s ∈ R let ξt : Y → Y be de�ned by ξs(y)(t, x) = y(t + s, x). Then
ξ = {ξs : s ∈ R} is a dynamical system on Y . For given x, t, s ∈ R and y ∈ Y we

take ϕt(y(t + s, x), x) = e2t[x +
∫ t
0
e−2ug(u + s)du]. Suppose G = {ϕt(y(t, .), .) :

t ∈ R and y ∈ Y }. We de�ne a product on G by the following form

ϕt(y(t, .), .)ϕs(z(s, .), .) = ϕt(y(t+ s, .), .)oϕs(z(s, .), .).

Then G with this product is a group and (G, ξ) is a dynamic group. The map
h : G→ ξ de�ned by h(ϕt(y(t, .), .)) = ξt has the properties of De�nition 1.1.
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Dynamic group is a kind of groups which it's product is look alike to an evo-
lution operator up to a one-to-one map. To see this let (G, ξ) be a dynamic group
with a one-to-one mapping h : G → ξ. Any member of ξ is called an evolution

operator. If P : G×G→ G is the product of G, and if

A = {Pb = P (., b) : G→ G : b ∈ G},
then there is a bijection

φ : G −→ A, b 7→ Pb.

Under the map h ◦ φ−1 any given Pb is look alike to the evolution operator
(h ◦ φ−1)(Pb). So there is a dynamics on the product of G.

Theorem 2.2. If H is a subgroup of a dynamic group (G, ξ), then H is a dynamic

group.

Proof. Suppose h : G → ξ is a one-to-one map with the properties of De�nition
1.1, then h|H : H → ξ has the properties of De�nition 1.1 for (H, ξ).

Theorem 2.3. If (G1, ξ1) and (G2, ξ2) are two dynamic groups with a common

time set T, then G1 ×G2 is a dynamic group.

Proof. Suppose h1 : G1 −→ ξ1, g 7→ ξ
tg
1 and h2 : G2 −→ ξ1, g 7→ ξ

tg
2 are the

one-to-one maps which satisfy the conditions of De�nition 1.1. We know that
G1 × G2 with the multiplication (g1, g2)(j1, j2) = (g1j1, g2j2) is a group, and we
know that there is a bijection σ : T × T → T, where T = R or T = Z. We de�ne
the following binary operation on T :

+σ : T × T −→ T, (t, s) 7→ σ(t+ s).

Clearly (T,+σ) is a group. We assume that ξi is a dynamical system on Yi for
i ∈ {1, 2}. If t ∈ T , then we de�ne

ξt : Y1 × Y2 −→ Y1 × Y2, (y1, y2) 7→ (ξt11 (y1), ξt22 (y2)),

where t = σ(t1, t2). The straightforward calculations imply that

ξ = {ξt : t ∈ T and the operation of T is +σ}

is a dynamical system on Y1 × Y2. Now we de�ne h : G1 ×G2 → ξ by h(g1, g2) =
ξσ(tg1 ,tg2 ). Since σ, h1, h2 are one-to-one, then h is one-to-one.

For given (g1, g2), (l1, l2) ∈ G1 ×G2, we have

h(g1, g2) ◦ h(l1, l2) = ξσ(tg1 ,tg2 ) ◦ ξσ(tl1 ,tl2 ) = ξσ(tg1+tl1 ,tg2+tl2 )

= (h1(g1) ◦ h1(l1), h2(g2) ◦ h2(l2)) = (h1(l1g1), h2(l2g2)) = (ξ
tl1+tg1
1 , ξ

tl2+tg2
2 )

= ξσ(tl1+tg1 ,tl2+tg2 ) = h(l1g1, l2g2) = h((l1, l2)(g1, g2)).

Thus (G1 ×G2, ξ) is a dynamic group.
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We say that a property is an algebraic property if it preserves under algebraic
isomorphisms. The next theorem show that the concept of dynamic product is an
algebraic concept.

Theorem 2.4. If (G, ξ) is a dynamic group, and if f : G→ H is a group isomor-

phism, then (H, ξ) is a dynamic group.

Proof. Suppose h : G→ ξ has the properties of De�nition 1.1. We de�ne h̃ : H → ξ
by h̃(a) = h(f−1(a)). Clearly h̃ is one-to-one. If a, b ∈ H, then

h̃(ab) = h(f−1(ab)) = h(f−1(a)f−1(b)) = h(f−1(b)) ◦ h(f−1(a)) = h̃(b) ◦ h̃(a).

We also have h̃(eH) = h(eG) = id. Thus (H, ξ) is a dynamic group.

3. Dynamic mappings

We begin this section by de�nition of a Rees matrix semigroup which is de�ned
�rst in [6]. Suppose that G is a group and Λ and I are two sets. If p : Λ× I → G
is a mapping then I × G × Λ with the product (i, a, λ)(j, b, µ) = (i, ap(λ, j)b, µ)
is a completely simple semigroup [4]. I × G × Λ with this product is denoted by
M(G, I,Λ, p) and it is called a Rees matrix semigroup. Rees proved in [6] that any
completely simple semigroup is isomorphic to a Rees matrix semigroup.

Now we are going to associate a Rees matrix semigroup to a dynamic group.
We assume that (G, ξ) is a dynamic group with the mapping h : G→ ξ, and ξ

is a dynamical system on Y, then the mapping p : Y × Y → G de�ned by

p(y, z) =

{
h−1(ξt0) if A = {|t| : ξt(y) = z} 6= ∅ and t0 = infA,
e if A = ∅

is a well de�ned map. In this case the Rees matrix M(G, Y, Y, p) is associated to
(G, ξ).

De�nition 3.1. If (G, ξ) and (H, η) are two dynamic groups, and ξ and η are
dynamical systems on Y and X respectively, then we say that (G, ξ) and (H, η)
are equivalent if their associated Rees matrices M(G, Y, Y, p) and M(H,X,X, q)
are isomorphic semigroups.

Theorem 3.2. Suppose (G, ξ) and (H, η) are two dynamic groups with the time

set T and one-to-one maps h : G → ξ and g : H → η. If there exists a bijection

f : Y → X such that f ◦ ξt = ηt ◦ f for all t ∈ T, then (G, ξ) is equivalent to

(H, η).

Proof. We de�ne w : h(G) → g(H) by w(ξt) = ηt. The condition f ◦ ξt = ηt ◦ f
implies that w is a bijection. If l = g−1 ◦w ◦h, then l : G→ H is an isomorphism.
Because if a, b ∈ G, then

l(ab) = (g−1 ◦ w)(h(ab)) = (g−1 ◦ w)(h(b) ◦ h(a)) = g−1(w(h(b)) ◦ w(h(a)))
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= (g−1(w(h(a))))(g−1(w(h(b)))) = l(a)l(b).

Since l is a bijection, by similar method we can show that l−1 is a homomorphism.
So it is an isomorphism.

Now we show that the mapping ψ : M(G, Y, Y, p)→M(H,X,X, q) de�ned by
ψ(y, s, z) = (f(y), l(s), f(z)) is a semigroup isomorphism. If (y1, s1, z1), (y2, s2, z2)
are in M(G, Y, Y, p), then

ψ((y1, s1, z1), (y2, s2, z2)) = ψ(y1, s1p(z1, y2)s2, z2)

= (f(y1, l(s1)l(p(z1), y2))l(s2), f(z2))

and

(ψ(y1, s1, z1))(ψ(y2, s2, z2)) = (f(y1), l(s1), f(z1))((f(y2), l(s2), f(z2))

= (f(y1), l(s1)q(f(z1), f(z2))l(s2), f(z2)).

So ψ is a homomorphism if we prove that l(p(z1, y2)) = q(f(z1), f(y2)). To prove
this we have the following two cases.

Case 1. If p(z1, y2) = eG, then ξ
t(z1) 6= y2 for all t ∈ T. So f−1◦ηt◦f(z1) 6= y2

for all t ∈ T . Thus ηt(f(z1)) 6= f(y2) for all t ∈ T. Hence q(f(z1), f(y2)) = eH .
Thus l(p(z1, y2)) = l(eG) = eH = q(f(z1), f(y2)).

Case 2. If there is t ∈ T such that ξt(z1) = y2, then (f−1 ◦ ηt ◦ f)(z1) = y2.
So ηt(f(z1)) = f(y2). Thus

A = {|t| : ξt(z1) = y2} = {|t| : ηt(f(z1)) = f(y2)}.

Hence p(z1, y2) = h−1(ξt0) and q(f(z1), f(y2)) = g−1(ηt0), where t0 = infA. Thus
l(p(z1, y2)) = l(h−1(ξt0)) = g−1(ηt0) = q(f(z1), f(y2)). So ψ is a homomorphism.

Since ψ is one-to-one and onto, then by similar method we can show that ψ−1

is a homomorphism. Hence it is an isomorphism.

If a �nite set Y and a �nite group G are given and if a is the cardinality of
the set {p : p : Y × Y → G is a mapping}, then the number of non-equivalent
dynamical systems on Y which can make G a dynamic group is at most a.

One must attention to this point that there exist completely simple semigroups
which are not associated to any dynamic group. For example, if Y andG have more
than two elements, and if p : Y ×Y → G is the constant mapping p(y, z) = e, then
there is no any dynamical system on Y such that M(G, Y, Y, p) can be associated
to it. Because if there is a ξ and a one-to-one mapping h : G → ξ, then the
condition p(y, z) = e implies that ξ can not have more than one element, and it's
element is the identity mapping on Y . Since h is one-to-one, then the order of G
is 1, and this is a contradiction.

To determine dynamical systems on Y which can prove a group G is a dynamic
group is basically related to the number ofM(G, Y, Y, .). In fact when we determine
M(G, Y, Y, p), then we must check the existence of h.
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4. Conclusion

We introduce dynamic groups, and we consider their properties. We show that if
(G1, ξ1) and (G2, ξ2) are two dynamic groups, then there is a dynamical system ξ
such that (G1 ×G2, ξ) is a dynamic group. In Theorem 2.2 time sets of ξ1 and ξ2
can be di�erent groups. Now let us to pose a problem.

Problem. Suppose that the time groups of ξ1 and ξ2 are equal, and it is a group

(T,+). Is it possible to �nd a dynamical system ξ with the time group (T,+) such

that (G1 ×G2, ξ) be a dynamic group?

We present an equivalence relation on a set of dynamical systems. The char-
acterization of dynamical systems via this kind of equivalency can be a topic for
further research.

References

[1] A. Avila, A. Santamaria, M. Viana and A. Wilkinson, Cocycles over partially
hyperbolic maps, Asterisque 358 (2013), 1− 12.

[2] I.V. Ermakov, Yu. N. Kalinin and V. Reitmann, Determining modes and

almost periodic integrals for cocycles, Di�er. Equations 47(13) (2011), 1837− 1852.

[3] P. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and

variable time-step discretization, Numer. Algorithms 14 (1997), 141− 152.

[4] M.R. Molaei, Mathematical structures based on completely simple semigroups,
Hadronic press, 2005.

[5] M.R. Molaei, Topological cocycles, Submitted for publication.

[6] D. Rees, On semigroups, Proceedings of the Cambridge philosophical society, 36
(1940), 387− 400.

Received May 15, 2015

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar

University of Kerman, Kerman, Iran

E-mail: mrmolaei@uk.ac.ir



Quasigroups and Related Systems 24 (2016), 123− 128

On the generalization of Bre²er theorems

Muhammad Nadeem, Muhammad Aslam and Malik Anjum Javed

Abstract. If S is a prime semiring with char S 6= 2 and f : S → S is an additive mapping which

is skew-commuting on an ideal I of S, then f(I) = 0. We also prove that zero is the only additive

mapping which is skew-commuting on a 2-torsion free semiprime semiring. These statements are

the generalization of Bre²ar's theorems.

1. Introduction

The notion of semiring was �rst introduced by H. S. Vandiver in 1934 [10]. An
algebraic system (S,+, ·) is called a semiring if (S, ·) is a semigroup; (S,+) is a
commutative semigroup with 0 and distributive laws of multiplication over addition
hold; furthermore, 0s = s0 = 0 for all s ∈ S. A subsemiring I of S is called a right
ideal of S if s ∈ S, x ∈ I implies xs ∈ I. Left ideals are de�ned in a similar way. A
subset which is both left and right ideal is called an ideal. An ideal I of a semiring
S is called a k-ideal if x + y ∈ I, x ∈ I implies y ∈ I. A proper ideal P of a
semiring S is said to be prime if AB ⊂ P implies A ⊂ P or B ⊂ P for any ideals A
and B of S. A proper ideal P of a semiring S is called a semiprime ideal if A2 ⊂ P
implies A ⊂ P for every ideal A of S. A k-ideal I of a semiring S is semiprime
ideal if and only if I is the intersection of all prime k-ideals of S containing it
[9, Theorem 3.12]. A semiring S is prime if 0 is a prime ideal. A semiring S is
semiprime if 0 is a semiprime ideal. For further details of semirings, we refer [2,
3, 4, 5, 6, 7]. An additive mapping f : S → S is said to be skew-commuting on a
set T ⊆ S if f(s)s+ sf(s) = 0 for all s ∈ T .

In [1], M. Bre²ar proved that if S is a prime ring of characteristic not 2, and
f : S → S is an additive mapping which is skew-commuting on an ideal I of S,
then f(I) = 0. He also proved that zero is the only additive mapping which is
skew-commuting on a 2-torsion free semiprime rings. In this paper, we observe
that these results still hold in the wider spectrum of semirings.

2. Preliminaries

One can easily prove the statement of following lemma.
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Lemma 2.1. Let S be a semiring. If S has a nonzero nilpotent right ideal R, then
it has a nonzero nilpotent ideal I containing R.

Now, we extend Lemma 1.1 [7] and Lemma 1 [1] in the framework of semirings.

Lemma 2.2. Let S be a semiring and I 6= (0) a right ideal of S. If there exists a
positive integer n such that xn = 0 for all x ∈ I, then S has a nonzero nilpotent
ideal.

Proof. The proof is given by induction on n. For n = 2, we have x2 = 0 for all
x ∈ I. As x+ xs ∈ I for all s ∈ S, so we get (x+ xs)2 = 0. This implies xsx = 0.
Multiply from right by t ∈ S to get xsxt = 0, so we obtain (xS)2 = 0. Now if
xS 6= 0, then S has a nonzero nilpotent right ideal xS and hence, by Lemma 2.1,
S has a nonzero nilpotent ideal. When xS = 0, then I2 ⊆ IS = 0. So S has a
nonzero nilpotent right ideal I and hence has a nonzero nilpotent ideal.

Now suppose that Lemma is true for all positive integers less than n. Since
xn = 0 for all x ∈ I for a �xed integer n and n is least such integer, therefore
xn−1 6= 0 and (xn−1)2 = 0. Take b = xn−1, then b2 = 0. Let B = bI, then
two cases arise. In the �rst case, let B 6= (0). As b + bs ∈ I for all s ∈ S,
so we have (b + bs)n = 0. On expansion, we arrive (bs)n−1b = 0. This results
in (bs)n−1B = (0). Let T = {x ∈ B |xB = 0}. It is easy to see that T is a
k-ideal of B. Moreover, y ∈ B implies that yn−1 ∈ T . Now let y + T ∈B/T ,
then (y + T )n−1 = yn−1 + T = T . Hence by induction hypothesis B/T has a
nilpotent ideal U/T 6= T . This yields U 6⊂ T and (U/T )k = Uk/T = T for
some positive integer k. Since T is a k-ideal of B, therefore Uk ⊂ T and hence
Uk+1 ⊂ TU ⊆ TB = (0). As U 6⊂ T and U is an ideal of B, so we have (0) 6=
UB ⊂ U and (UB)k+1 ⊂ Uk+1 = (0). This implies that UB is a nonzero nilpotent
right ideal of S and hence, by Lemma 2.1, S has a nonzero nilpotent ideal. In
the second case, when B = xn−1I = (0). Let W = {x ∈ I |xI = (0)}, then W
is a k-ideal of I. If W = I, then I2 = (0) and so I is a nonzero nilpotent right
ideal and hence, by Lemma 2.1, S has a nonzero nilpotent ideal. If W 6= I, then
for each element x ∈ I, xn−1 ∈ W . Hence in I/W , each element x +W satis�es
(x +W )n−1 = xn−1 +W = W . So our induction hypothesis gives us a nilpotent
ideal V/W 6= W , this means V 6⊂ W and (V/W )m = V m/W = W for some
positive integer m. Hence we have V m ⊂W and V m+1 ⊂WV ⊆WI = (0). Since
(0) 6= V I ⊂ V , where V is ideal of I, so we have (V I)m+1 ⊂ V m+1 = (0). This
means that S has a nonzero nilpotent right ideal V I and hence again, in view of
Lemma 2.1, S has a nonzero nilpotent ideal.

Lemma 2.3. Let I be a nonzero ideal of a prime semiring S. If In = {xn |x ∈ I},
then Ina = 0 (or aIn = 0) implies a = 0.

Proof. Let Ina = 0 and suppose on contrary a 6= 0. If at = 0 for all t ∈ I, then
replacing t by st, where s ∈ S, we get ast = 0. As S is prime semiring, so we get
t = 0 for all t ∈ I. This implies I = 0, which is not possible, hence av 6= 0 for some
v ∈ I. As avx ∈ I for all x ∈ I, so (avx)na = 0, this implies that (avx)n+1 = 0.
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So we get right ideal (av)S in which each element r satis�es rn+1 = 0. Hence,
by Lemma 2.2, S has a nonzero nilpotent ideal but this is not possible in prime
semiring, so we conclude a = 0. Similarly, we can prove the case when aIn = 0.

One can also observe the following statements.

Lemma 2.4. Let S be a semiring. If a+ b = 0 and a+ c = 0 for a, b, c ∈ S, then
b = c.

Lemma 2.5. Let P be a prime ideal of semiring S and ax ∈ P (or xa ∈ P ) for
all x ∈ S, then a ∈ P .

3. Main results

Theorem 3.1. Let S be a prime semiring of characteristic not 2. If an additive
mapping f : S → S is skew-commuting on some ideal I of S, then f(x) = 0 for
all x ∈ I.

Proof. As f is skew-commuting on I, so we have

f(x)x+ xf(x) = 0 ∀x ∈ I. (1)

Multiplying (1) from the right and left separately by x and applying Lemma 2.4,
we get

f(x)x2 = x2f(x). (2)

Linearization of (1) yields

f(x)y + yf(x) + f(y)x+ xf(y) = 0 ∀x, y ∈ I. (3)

Replacing y by x2 in (3) and using (2), we get

2x2f(x) + f(x2)x+ xf(x2) = 0. (4)

After multiplying the last relation from right by x2 and using (2), one can get the
relation 2x4f(x) + f(x2)x3 + xf(x2)x2 = 0. Now by adding x2f(x2)x + x3f(x2)
on both sides of this relation and using (1), we obtain

2x4f(x) = x2f(x2)x+ x3f(x2). (5)

Multiplying (4) by x2 from left, the last relation reduces to 4x4f(x) = 0. As S is
of characteristic not 2, so we have

x4f(x) = 0. (6)

Using (2), we obtain
f(x)x4 = 0. (7)
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Now multiplying (1) from right by 2x and applying the Lemma 2.4 to (4), we
have 2xf(x)x = f(x2)x + xf(x2). By multiplying this from left and right by x
simultaneously and using (2) and (6), we reach xf(x2)x2 + x2f(x2)x = 0. This,
along with (5) and (6), becomes

x3f(x2) = xf(x2)x2. (8)

Now (1) can be written as f(x2)x2 + x2f(x2) = 0. Multiplying it from left by x
and using (8), we get 2x3f(x2) = 0. This becomes

x3f(x2) = 0. (9)

Similarly, we can prove
f(x2)x3 = 0. (10)

Replace x by x2 in (3) to get f(x2)y+yf(x2)+f(y)x2+x2f(y) = 0 for all x, y ∈ I.
By multiplying this from right and left by x3 simultaneously and using (9) and
(10), we obtain

x3f(y)x5 + x5f(y)x3 = 0 ∀x, y ∈ I. (11)

Replace x by x2 in last relation to get

x6f(y)x10 + x10f(y)x6 = 0. (12)

First multiplying (11) from left by x3 and right by x5, then the last relation, in
view of Lemma 2.4, becomes x10f(y)x6 = x8f(y)x8. Similarly, we get x6f(y)x10 =
x8f(y)x8. So (12) becomes x8f(y)x8 = 0 for all x, y ∈ I. This can be written as

zf(y)z = 0 ∀y ∈ I, ∀z ∈ I8. (13)

Replace y by z in (3) to get

f(x)z + zf(x) + f(z)x+ xf(z) = 0 ∀x ∈ I, ∀z ∈ I8. (14)

Multiplying last relation from right by z and using (13), we obtain

f(x)z2 + f(z)xz + xf(z)z = 0. (15)

Suppose x ∈ I8, then (13) can be written as xf(x)x = 0. Left multiplying (1)
by x and using this relation, we get x2f(x) = 0 for all x ∈ I8. Now multiplying
(15) from left by x2, using this relation and (13), we arrive x3f(z)z = 0 for all
x, z ∈ I8. By Lemma 2.3, this reduces to f(z)z = 0, hence we have zf(z) = 0. In
view of this, (15) reduces to

f(x)z2 + f(z)xz = 0 ∀x ∈ I, ∀z ∈ I8. (16)

Now replacing x by xz in last relation, we obtain f(xz)z2 + f(z)xz2 = 0, then
multiplying (16) from right by z and using Lemma 2.4, we arrive

f(x)z3 = f(xz)z2 ∀x ∈ I, z ∈ I8. (17)
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Left multiplying (14) by z, where z ∈ I8, using zf(z) = 0 and (13), we get
z2f(x) + zxf(z) = 0. Replace x by xz in this relation and use zf(z) = 0 to have

z2f(xz) = 0 ∀x ∈ I, z ∈ I8. (18)

As a special case of (3), we have

f(x)yz + yzf(x) + f(yz)x+ xf(yz) = 0 ∀x, y ∈ I, z ∈ I8.

Multiplying the last relation from left and right by z2 simultaneously and using
(13), (17) and (18), we get z2f(x)yz3 + z2xf(y)z3 = 0. Multiplying this relation
from left by z, one can see tf(x)yt + txf(y)t = 0 for all x, y ∈ I and all t ∈ I24.
Now replacing y by ytf(s), where s ∈ I and t ∈ I24, in this relation and using
(13), one can arrive txf(ytf(s))t = 0 for all x, y, s ∈ I and t ∈ I24. As S is a prime
semiring, we get

f(ytf(s))t = 0 (19)

Replacing y by ytf(s) in (3), where s ∈ I, we obtain

f(x)ytf(s) + ytf(s)f(x) + f(ytf(s))x+ xf(ytf(s)) = 0.

Multiplying the last equation from left by t, using (13) and (19), we have

ytf(s)f(x)t+ f(ytf(s))xt = 0 ∀x, y, s ∈ I,∀t ∈ I24 (20)

Putting ry for y in last relation, where r ∈ S, leads to

rytf(s)f(x)t+ f(rytf(s))xt = 0.

Multiplying (20) from left by r and using Lemma 2.4, we obtain f(ryf(s))xt =
rf(ytf(s))xt. Again multiplying this from left by z, we obtain zf(ryf(s))xt =
zrf(ytf(s))xt for all x, y, s ∈ I, z ∈ I8, t ∈ I24, r ∈ S. Replace x by zx in this
relation and use (13) to get zrf(ytf(s))zxt = 0. Due to primeness of S, this
becomes f(ytf(s))zxt = 0. Again by primeness of S, we get f(ytf(s))z = 0. In
view of Lemma 2.3, we have

f(ytf(s)) = 0. (21)

Now suppose f(s) 6= 0 for some s ∈ I, otherwise theorem is proved. By Lemma
2.3, tf(s) 6= 0 for some t ∈ I24. As I 6= 0, therefore for some x ∈ I, a = xtf(s) 6= 0.
Thus L = Sa is a nonzero left ideal of S contained in I. Hence using (21), we get
f(L) = 0. Now, using (3), we have f(x)t + tf(x) = 0 for all t ∈ L and x ∈ I.
Substituting st for t, where s ∈ S, gives f(x)st+ stf(x) = 0. Now by replacing s
by x4s and using (7), we have x4stf(x) = 0. As S is a prime semiring, so we get
tf(x) = 0. This implies that f(x)t = 0 and hence f(x) = 0 for all x ∈ I. This
completes the proof.

Theorem 3.2. Let S be a 2-torsion free semiprime semiring. If an additive
mapping f : S → S is skew-commuting on S, then f = 0.
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Proof. As S is a semiprime semiring, there exits a collection of prime k-ideals τ
such that ∩τ = 0. Let τ1 = {P ∈ τ |charS/P 6= 2} and τ2 = {P ∈ τ |charS/P = 2}.
Let x ∈ ∩τ1, then 2x ∈ (∩τ1) ∩ (∩τ2) = ∩τ = 0, since S is 2-torsion free, so
x = 0. Hence ∩τ1 = 0. The theorem will be complete if we prove f(x) ∈ ∩τ1
for all x ∈ S. Take a prime k-ideal P ∈ τ1. Linearize f(x)x + xf(x) = 0 to get
f(x)y+yf(x)+f(y)x+xf(y) = 0 for all x, y ∈ S. This implies f(p)x+xf(p) ∈ P
for all p ∈ P, x ∈ S, so we get xf(p)x+x2f(p) ∈ P and f(p)x2+xf(p)x ∈ P . This
gives 2xf(p)x+x2f(p)+ f(p)x2 ∈ P . As P is k-ideal and x2f(p)+ f(p)x2 ∈ P , so
we have 2xf(p)x ∈ P . As char S/P 6= 2, so by Lemma 2.5, we obtain xf(p)x ∈ P
for all p ∈ P, x ∈ S. Since the k-ideal P is prime, therefore, in view of Lemma
2.6, f(p) ∈ P for every p ∈ P . Now de�ne a mapping F on S/P by F (x + P ) =
f(x)+P . It can be seen that F is additive and skew-commuting on prime semiring
S/P . Hence F = 0 by Theorem 3.1. This gives f(x) ∈ P for all x ∈ S. Hence
f(x) ∈ ∩τ1 = 0. This completes the proof.
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Characterizations of ordered k-regular semirings

by closure operations

Satyt Patchakhieo and Bundit Pibaljommee

Abstract. We introduce relations on the set of all closure operations on ordered semirings

and then we characterize regular ordered semirings and ordered k-regular semirings using these

relations.

1. Introduction

In 1936, J. von Neumann [14] called a ring (S,+, ·) to be regular if (S, ·) is regular.
S. Bourne [3] has de�ned a semiring (S,+, ·) to be regular if for all a ∈ S there
exist x, y ∈ S such that a+axa = aya which is di�erent from Neumann regularity
in general but both are equivalent in rings. In 1996, M. R. Adhikari, M. K. Sen
and H. J. Weinert [1] have renamed the Bourne regularity of semirings to be a
k-regularity.

In 1958, M. Henricksen [6] introduced the notion of k-ideals in a semiring. M.
K. Sen and P. Mukhopadhyay [13] showed that k-regular semirings were charac-
terized by k-ideals. A. K. Bhuniya and K. Jana [2] have shown that k-regular
semirings and intra k-regular semirings can be characterized by k-bi-ideals where
these semirings are additive semilattices. Subsequently, K. Jana [7, 8] continued to
consider additive semilattice semirings and investigated some properties of quasi
k-ideals in k-regular semirings and intra k-regular semirings, k-bi-ideals and quasi
k-ideals in k-Cli�ord semirings. For more information about k-regular semirings
and k-ideals in semirings, the reader may refer e.g., [2, 7, 8, 11].

A. P. Gan and Y. L. Jiang [5] investigated some properties of ordered ideals in
ordered semirings. S. Patchakhieo and B. Pibaljommee [11] introduced the notions
of an ordered k-regular semiring and an ordered k-ideal in an ordered semiring and
characterized ordered k-regular semirings by their ordered k-ideals.

In 1970, B. Pond¥lí£ek [12] investigated a relation on the set of all closure
operations on a semigroup and characterized a regular semigroup by this rela-
tion. After that T. Changphas [4] generalized Pond¥lí£ek's relation to an ordered
semigroup.
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Keywords: C-closure operation, k-regular semiring, k-ideal
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In this paper, we investigate a relationship between ordered semirings and
closure operations on the ordered semirings. Moreover, we introduce relations
on the set of all closure operations on ordered semirings and characterize regular
ordered semirings and ordered k-regular semirings using these relations.

2. Preliminaries

In this section, we recall notions of an ordered semiring, an ordered ideal in an
ordered semiring and notions of closure operations.

Let S be a nonempty set and + and · be binary operations on S, named
addition and multiplication, respectively. Then (S,+, ·) is called a semiring if the
following conditions are satis�ed:

1. (S,+) is a commutative semigroup;

2. (S, ·) is a semigroup;

3. both operations are connected by the distributive laws, namely, a · (b+ c) =
a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ S.

A semiring (S,+, ·) is said to have a zero element if there exists an element
0 ∈ S such that 0+x = x = x+0 and 0 ·x = 0 = x ·0 for all x ∈ S. In particular, a
semiring (S,+, ·) is called commutative if (S, ·) is a commutative semigroup, and
called a ring if (S,+) is a commutative group.

De�nition 2.1. Let (S,+, ·) be a semiring and ∅ 6= A ⊆ S. Then A is called a
left (right) ideal if the following conditions are satis�ed:

1. x+ y ∈ A for all x, y ∈ A;

2. SA ⊆ A (AS ⊆ A).

We call A an ideal if it is both left ideal and right ideal of S.

De�nition 2.2. Let (S,6) be a partially ordered set. Then (S,+, ·,6) is called
an ordered semiring if the following conditions are satis�ed:

1. (S,+, ·) is a semiring;

2. if a 6 b then a+ x 6 b+ x and x+ a 6 x+ b;

3. if a 6 b then ax 6 bx and xa 6 xb

for all a, b, x ∈ S.

Instead of writing an ordered semiring (S,+, ·,6), we denote S, for short, as
an ordered semiring. Let A be a nonempty subset of S. We de�ne

(A] = {x ∈ S | x 6 a,∃a ∈ A}.
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De�nition 2.3. Let S be an ordered semiring and ∅ 6= A ⊆ S. Then A is called
a left (right) ordered ideal if the following conditions are satis�ed:

1. A is a left (right) ideal of S;

2. if x 6 a for some a ∈ A then x ∈ A.

We call A an ordered ideal if it is both left ordered ideal and right ordered ideal
of S.

It is known, a result in [5], that if A is a left (right, two-sided) ideal of an
ordered semiring S then (A] is the smallest left ordered ideal (right ordered ideal,
two-sided ordered ideal) containing A.

Now we recall the notion of a C-closure operation and some of its properties
proved in [12].

Let S be a nonempty set and Sub(S) be the set of all subsets of S. A mapping
U : Sub(S)→ Sub(S) is called a C-closure operation on S if

1. U(∅) = ∅;

2. A ⊆ B ⇒ U(A) ⊆ U(B);

3. A ⊆ U(A);

4. U(U(A)) = U(A)

for all A,B ∈ Sub(S).
Let x ∈ S. We de�ne U(x) = U({x}). We denote by

F(U) = {A ⊆ S | U(A) = A}

the set of all closed sets with respect to the operation U and by C(S) the set of
all C-closure operations on S. De�ne a relation 6 on C(S) by

U 6 V ⇐⇒ U(A) ⊆ V(A) for all A ∈ Sub(S).

We de�ne a C-closure operation I on S by

I(A) =

{
S, if A 6= ∅,
∅, if A = ∅,

and for any U,V ∈ C(S) we denote by U ∧V and U ∨V the in�mum and the
supremum, respectively, ofU andV in C(S). It is known that for anyU,V ∈ C(S),

1. U 6 I,

2. U 6 V ⇐⇒ F(V) ⊆ F(U),

3. U ∨V,U ∧V exist and

(a) F(U ∨V) = F(U) ∩ F(V),

(b) F(U ∧V) = {A ∩B | A ∈ F(U), B ∈ F(V)}.
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3. Regular ordered semirings

In this section, we de�ne a relation on the set of all closure operations on an
ordered semiring and characterizes a regular ordered semiring by the relation.

Let S be an ordered semiring and ∅ 6= A ⊆ S. We denote by ΣfinA the set
of all �nite sums of elements of A. We de�ne a relation ρ on C(S) by letting
U,V ∈ C(S),

UρV ⇐⇒ A ∩B = (ΣfinAB]

for all nonempty set A ∈ F(U) and for all nonempty set B ∈ F(V).
The following lemma is easy to prove using the de�nition of ρ.

Lemma 3.1. Let S be an ordered semiring and U,U′,V,V′ ∈ C(S) such that

UρV. If U 6 U′ and V 6 V′ then U′ρV′.

Let S be an ordered semiring. Then we de�ne mappings L and R on Sub(S)
by letting A ⊆ S,

L(A) =

{
(ΣfinA+ ΣfinSA], if A 6= ∅,
∅, if A = ∅,

and

R(A) =

{
(ΣfinA+ ΣfinAS], if A 6= ∅,
∅, if A = ∅.

It is easy to show that L and R are closure operations on Sub(S).
Now, we show that F(L) is the set of all left ordered ideals of S (including

the empty set). Let A is a left ordered ideal of S. Then we obtain A ⊆ L(A) =
(ΣfinA + ΣfinSA] ⊆ (A] = A. Hence, A ∈ F(L). Conversely, let ∅ 6= A ∈ F(L).
Then A = L(A) = (ΣfinA + ΣfinSA]. Hence, A is a left ordered ideal of S.
Similarly, we have F(R) is the set of all right ordered ideals of S (including the
empty set).

The following lemma can be proved straightforward.

Lemma 3.2. Let S be an ordered semiring and A be a nonempty subset of

S. Then Σfin(AS] ⊆ (ΣfinAS] = Σfin(ΣfinAS] and Σfin(SA] ⊆ (ΣfinSA] =
Σfin(ΣfinSA].

Theorem 3.3. Let S be an ordered semiring and U,V ∈ C(S). Then UρV if and

only if R 6 U,L 6 V and x ∈ (ΣfinU(x)V(x)] for all x ∈ S.

Proof. (⇒). Assume that UρV. First, we show that R 6 U. Let A ∈ F(U). It is
clear that S ∈ F(V). By assumption, we have A = A∩S = (ΣfinAS]. By Lemma
3.2, we have A ⊆ R(A) = (ΣfinA + ΣfinAS] = (Σfin(ΣfinAS] + ΣfinAS] =
((ΣfinAS] + ΣfinAS] ⊆ ((ΣfinAS]] = (ΣfinAS] = A. Hence, R(A) = A. Thus,
A ∈ F(R). It follows thatR 6 U. Similarly, L 6 V. Let x ∈ S. SinceU,V ∈ C(S),
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we obtain x ∈ U(x) ∩ V(x). Since U(x) ∈ F(U) and V(x) ∈ F(V), we obtain
U(x) ∩V(x) = (ΣfinU(x)V(x)]. Thus, x ∈ (ΣfinU(x)V(x)].

(⇐). Assume that R 6 U,L 6 V and x ∈ (ΣfinU(x)V(x)] for all x ∈ S. We
show that UρV. Let A ∈ F(U)\{∅} and B ∈ F(V)\{∅}. By assumption, we have
A ∈ F(R) and B ∈ F(L). Hence, (ΣfinAB] ⊆ (ΣfinAS] ⊆ (ΣfinA] ⊆ (A] = A
and (ΣfinAB] ⊆ (ΣfinSB] ⊆ (ΣfinB] ⊆ (B] = B. Thus, (ΣfinAB] ⊆ A ∩ B. Let
x ∈ A ∩ B. Then U(x) ⊆ U(A) = A and V(x) ⊆ V(B) = B. By assumption,
we have x ∈ (ΣfinU(x)V(x)] ⊆ (ΣfinAB]. Hence, A ∩ B ⊆ (ΣfinAB]. Thus,
A ∩B = (ΣfinAB]. Therefore, UρV.

As the notion of a regular ordered semigroup [9, 10], we de�ne a notion of a
regular ordered semiring as follows. An ordered semiring S is called left (right)
regular if a ∈ (Sa2](a ∈ (a2S]) for all a ∈ S and called regular if a ∈ (aSa] for all
a ∈ S. Similar to a result in ordered semigroups, we obtain the following theorem.

Theorem 3.4. An ordered semiring S is ordered regular if and only if A ∩ B =
(AB] for all right ordered ideal A and for all left ordered ideal B of S.

Theorem 3.5. An ordered semiring S is regular if and only if RρL.

Proof. (⇒). Assume that S is regular. Let a ∈ S. By assumption, we have
a ∈ (aSa] ⊆ (R(a)SL(a)] ⊆ (R(a)L(a)] ⊆ (ΣfinR(a)L(a)]. By Theorem 3.3,
we obtain RρL.

(⇐). Assume that RρL. Let a ∈ S. By Theorem 3.3, a ∈ (ΣfinR(a)L(a)].
Since (ΣfinR(a)L(a)] ⊆ (aS] and (ΣfinR(a)L(a)] ⊆ (Sa], we get a ∈ (aS] ∩ (Sa].
Since (aS] ∈ F(R), (Sa] ∈ F(L) and RρL, we obtain a ∈ (Σfin(aS](Sa]]. Then
there exist x1, x2, . . . , xn ∈ (aS] and y1, y2, . . . , yn ∈ (Sa] for some n ∈ N such that
x 6 x1y1 + x2y2 + · · ·+ xnyn. Since xi ∈ (aS] and yi ∈ (Sa] for all i = 1, 2, . . . , n,
there exist si, ri ∈ S such that xi 6 asi and yi 6 ria for all i = 1, 2, . . . , n. Hence,
xiyi 6 asiria for all i = 1, 2, . . . , n. It follows that a 6 as1r1a + as2r2a + · · · +
asnrna = a(s1r1 + s2r2 + · · · + snrn)a ∈ aSa. Thus, a ∈ (aSa]. Therefore, S is
regular.

As a consequence of Theorem 3.4 and Theorem 3.5, we obtain the following
result.

Corollary 3.6. Let S be an ordered semiring. Then RρL if and only if A ∩B =
(AB] for all nonempty set A ∈ F(R) and for all nonempty set B ∈ F(L).

Theorem 3.7. Let S be a commutative ordered semiring, A be a nonempty subset

of S and RρL. Then A is an ordered ideal of S if and only if there exist H ∈ F(R)
and K ∈ F(L) such that A = (HK].

Let S be an ordered semiring. We denote the C-closure operation R ∨L on S
by M. Note that F(M) is the set of all ordered ideals of S (including empty set).

Theorem 3.8. Let S be an ordered semiring. Then the following statements are

equivalent:
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(i) LρL;

(ii) LρM;

(iii) S is left regular and R 6 L.

Proof. (i)⇒ (ii). Since LρL and by Lemma 3.1, we obtain LρM.
(ii) ⇒ (iii). Assume that LρM. By Theorem 3.3, we have R 6 L. It follows

that L = M. For any x ∈ S, we get

x ∈ (ΣfinL(x)M(x)] = (ΣfinL(x)L(x)]

⊆ (Nx2 + ΣfinSx
2 + ΣfinxSx+ ΣfinSxSx]

⊆ (Nx2 + ΣfinSx
2 + ΣfinR(x)x+ ΣfinSR(x)x]

⊆ (Nx2 + ΣfinSx
2 + ΣfinL(x)x+ ΣfinSL(x)x]

⊆ (Nx2 + ΣfinSx
2]

= (Nx2 + Sx2].

Then there exist k1 ∈ N, s ∈ S such that

x 6 k1x
2 + sx2. (1)

Similarly, there exist k2 ∈ N, r ∈ S such that x2 6 k2x
4 + rx4. Hence, k1x

2 6
k1k2x

4+k1rx
4. From (1), we have x 6 k1k2x

4+k1rx
4+sx2. This implies x ∈ (Sx2].

Therefore, S is left regular.
(iii) ⇒ (i). Assume that S is left regular and R 6 L. Then for any x ∈ S, we

get x ∈ (Sx2] ⊆ (SxL(x)] ⊆ (L(x)L(x)] ⊆ (ΣfinL(x)L(x)]. By Theorem 3.3, it
turns out LρL.

Theorem 3.9. Let S be an ordered semiring. Then the following statements are

equivalent:

(i) RρR;

(ii) MρR;

(iii) S is right regular and L 6 R.

Proof. The proof of this theorem is similar to Theorem 3.8.

An ordered semiring S is called left simple (right simple, simple) if S has no
proper left (right, two-sided) ordered ideal.

Now we give characterizations of left simple, right simple and simple as the
following theorem which is easy to verify.

Theorem 3.10. Let S be an ordered semiring. Then

(i) S is left simple if and only if L = I;

(ii) S is right simple if and only if R = I;

(iii) S is simple if and only if M = I.
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4. Ordered k-regular semirings

In this section, we de�ne a relation on the set of all closure operations on an ordered
semiring S and characterizes an ordered k-regular semiring by the relation.

The k-closure of a nonempty subset A of an ordered semiring S is de�ned by

A = {x ∈ S | ∃a, b ∈ A, x+ a 6 b}.

Lemma 4.1. [11] Let S be an ordered semiring and A be a nonempty subset of

S. If A+A ⊆ A then A ⊆ (A] = (A].

Let A be a nonempty subset of S. We note that if A is closed under addition
then (A] is also closed.

De�nition 4.2. [11] A left (right, two-sided) ordered ideal A of an ordered semir-
ing S is called a left ordered k-ideal (right ordered k-ideal, ordered k-ideal) if A = A.

In [11], it is known that if A is a left (right, two-sided) ideal of S then (A] is
the smallest left ordered k-ideal (right ordered k-ideal, ordered k-ideal) containing
A.

De�nition 4.3. [11] An ordered semiring S is called left (right) ordered k-regular
if a ∈ (Sa2](a ∈ (a2S]) for all a ∈ S and called ordered k-regular if a ∈ (aSa] for
all a ∈ S.

Theorem 4.4. [11] An ordered semiring S is ordered k-regular if and only if

A ∩ B = (AB] for all right ordered k-ideal A and for all left ordered k-ideal B of

S.

Let S be an ordered semiring. We de�ne a relation β on C(S) by letting
U,V ∈ C(S),

UβV ⇐⇒ A ∩B = (ΣfinAB]

for all nonempty set A ∈ F(U) and for all nonempty set B ∈ F(V).

By the de�nition of β, we have the following lemma.

Lemma 4.5. Let S be an ordered semiring and U,U′,V,V′ ∈ C(S) such that

UβV. If U 6 U′ and V 6 V′ then U′βV′.

Lemma 4.6. [11] Let S be an ordered semiring and A be a nonempty subset of

S. Then

(i) (ΣfinA+ ΣfinSA] is the smallest left ordered k-ideal of S containing A;

(ii) (ΣfinA+ ΣfinAS] is the smallest right ordered k-ideal of S containing A.
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Let (S,+, ·,6) be an ordered semiring. Then we de�ne mappings Lk and Rk

on Sub(S) by letting A ⊆ S,

Lk(A) =

{
(ΣfinA+ ΣfinSA], if A 6= ∅,
∅, if A = ∅,

and

Rk(A) =

{
(ΣfinA+ ΣfinAS], if A 6= ∅,
∅, if A = ∅.

It is easy to show that Lk and Rk are closure operations on Sub(S) and if A 6= ∅
then Lk(A) and Rk(A) are left ordered k-ideal and right ordered k-ideal of S,
respectively.

Now, we show that F(Lk) is the set of all left ordered k-ideals of S (including
the empty set). Let A be a left ordered k-ideal of S. Then we obtain A ⊆ Lk(A) =
(ΣfinA+ ΣfinSA] ⊆ (A] = A.Hence, A ∈ F(Lk). Conversely, let A ∈ F(Lk)\{∅}.
By Lemma 4.6, we get A = Lk(A) = (ΣfinA+ ΣfinSA] is a left ordered k-ideal of
S. Similarly, we have F(Rk) is the set of all right ordered k-ideals of S (including
the empty set).

Lemma 4.7. Let S be an ordered semiring and A be a nonempty subset of

S. Then Σfin(AS] ⊆ (ΣfinAS] = Σfin(ΣfinAS] and Σfin(SA] ⊆ (ΣfinSA] =

Σfin(ΣfinSA].

Proof. Since ΣfinAS is closed under addition, then (ΣfinAS] is also closed. Since

(AS] ⊆ (ΣfinAS] and (ΣfinAS] is closed under addition, we have Σfin(AS] ⊆
(ΣfinAS] and Σfin(ΣfinAS] ⊆ (ΣfinAS]. Hence, (ΣfinAS] = Σfin(ΣfinAS]. Sim-

ilarly, we have Σfin(SA] ⊆ (ΣfinSA] = Σfin(ΣfinSA].

For any element a of an ordered semiring S, Na means {na | n ∈ N}.
As a consequence of de�nitions of Lk and Rk, we have the following lemma.

Lemma 4.8. Let S be an ordered semiring and a ∈ S. Then Lk(a) = (Na+ Sa]
and Rk(a) = (Na+ aS].

Theorem 4.9. Let S be an ordered semiring and U,V ∈ C(S). Then UβV if

and only if Rk 6 U, Lk 6 V and x ∈ (ΣfinU(x)V(x)] for all x ∈ S.

Proof. (⇒). Assume that UβV. We �rst show that Rk 6 U. Let A ∈ F(U)\{∅}.
It is clear that S ∈ F(V). By assumption, A = A ∩ S = (ΣfinAS]. By Lemma

4.7, we have A ⊆ Rk(A) = (ΣfinA+ ΣfinAS] = (Σfin(ΣfinAS] + ΣfinAS] =

((ΣfinAS] + ΣfinAS] ⊆ ((ΣfinAS]] = (ΣfinAS] = A. Hence, Rk(A) = A. Thus,
A ∈ F(Rk). It follows that Rk 6 U. Similarly, Lk 6 V. Since U,V ∈ C(S), we
obtain x ∈ U(x) ∩V(x) for all x ∈ S. Since U(x) ∈ F(U) and V(x) ∈ F(V), we
obtain U(x) ∩V(x) = (ΣfinU(x)V(x)]. Thus, x ∈ (ΣfinU(x)V(x)] for all x ∈ S.
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(⇐). Assume that Rk 6 U,Lk 6 V and x ∈ (ΣfinU(x)V(x)] for all x ∈ S.
We show that UβV. Let A ∈ F(U) \ {∅} and B ∈ F(V) \ {∅}. By assumption,
A ∈ F(Rk) and B ∈ F(Lk). We obtain (ΣfinAB] ⊆ (ΣfinAS] ⊆ (ΣfinA] ⊆ (A] =

A and (ΣfinAB] ⊆ (ΣfinSB] ⊆ (ΣfinB] ⊆ (B] = B. Hence, (ΣfinAB] ⊆ A ∩ B.
Let x ∈ A ∩ B. Then U(x) ⊆ A and V(x) ⊆ B. By assumption, we have x ∈
(ΣfinU(x)V(x)] ⊆ (ΣfinAB]. Hence, A∩B ⊆ (ΣfinAB]. Thus, A∩B = (ΣfinAB].
Therefore, UβV.

The following theorem gives a characterization of an ordered k-regular semiring
by closure operations.

Theorem 4.10. An ordered semiring S is ordered k-regular if and only if RkβLk.

Proof. (⇒). Assume that S is ordered k-regular. Let a ∈ S. Then we have a ∈
(aSa] ⊆ (Rk(a)SLk(a)] ⊆ (Rk(a)Lk(a)] ⊆ (ΣfinRk(a)Lk(a)]. By Theorem 4.9,
we obtain RkβLk.

(⇐). Assume that RkβLk. Let a ∈ S. Then a ∈ (ΣfinRk(a)Lk(a)] by The-

orem 4.9. Since (ΣfinRk(a)Lk(a)] ⊆ (aS] and (ΣfinRk(a)Lk(a)] ⊆ (Sa], we

get a ∈ (aS] ∩ (Sa]. Since (aS] ∈ F(Rk), (Sa] ∈ F(Lk) and RkβLk, we ob-

tain a ∈ (Σfin(aS] (Sa]]. There exist x, x′ ∈ (Σfin(aS] (Sa]] such that a + x 6
x′. But x, x′ ∈ (Σfin(aS] (Sa]], so there exist x1, x2, . . . , xn, x

′
1, . . . , x

′
m ∈ (aS],

y1, y2, . . . , yn, y
′
1, . . . , y

′
m ∈ (Sa] such that x 6 Σn

i=1xiyi and x′ 6 Σm
j=1x

′
jy

′
j . For

each 1 6 i 6 n, we get

xi + ui 6 u′i, (2)

yi + vi 6 v′i, (3)

where ui 6 asi, u
′
i 6 as′i, vi 6 tia, v

′
i 6 t′ia for some si, s

′
i, ti, t

′
i ∈ S. From (2),

we have xiyi + uiyi 6 u′iyi. From (3), we have uiyi + uivi 6 uiv
′
i and u′iyi +

u′ivi 6 u′iv
′
i. Hence, xiyi + uiyi + uivi + u′ivi 6 u′iyi + uivi + u′ivi. Then we get

uiyi + uivi + u′ivi 6 uiv
′
i + u′ivi 6 asit

′
ia + as′itia = a(sit

′
i + s′iti)a ∈ aSa and

u′iyi +uivi +u′ivi 6 uivi +u′iv
′
i 6 asitia+ as′it

′
ia = a(siti + s′it

′
i)a ∈ aSa. It follows

that xiyi ∈ (aSa]. Hence, Σn
i=1xiyi ∈ (aSa]. Similarly, we obtain Σm

j=1x
′
jy

′
j ∈

(aSa]. Since x 6 Σn
i=1xiyi and x′ 6 Σm

j=1x
′
jy

′
j , we have x, x′ ∈ ((aSa]] = (aSa].

Then there exist c, c′d, d′ ∈ (aSa] such that x + c 6 d and x′ + c′ 6 d′. It follows
that a+ x+ c+ c′ 6 x′ + c+ c′ 6 c+ d′ ∈ (aSa] and x+ c+ c′ 6 d+ c′ ∈ (aSa].
Thus, a ∈ (aSa]. Therefore, S is ordered k-regular.

By Theorem 4.4 and Theorem 4.10, we have the following result.

Corollary 4.11. Let S be an ordered semiring. Then RkβLk if and only if A∩B =
(AB] for all nonempty set A ∈ F(Rk) and for all nonempty set B ∈ F(Lk).

Example 4.12. Let S = {a, b, c} with a partially ordered set 6 be de�ned
a 6 b 6 c. De�ne binary operations + and · on S by the following tables.



138 S. Patchakhieo and B. Pibaljommee

+ a b c
a a a a
b a b c
c a c c

and

· a b c
a b b b
b b b b
c b b b

Then we have (S,+, ·,6) is an ordered semiring. Moreover, (ΣfinR(x)L(x)] = S

for every x ∈ S. It follows that x ∈ (ΣfinR(x)L(x)] for every x ∈ S. By Theorem
4.9 and Theorem 4.10, we obtain that S is an ordered k-regular semiring.

Theorem 4.13. Let S be a commutative ordered semiring, A be a nonempty

subset of S and RkβLk. Then A is an ordered k-ideal of S if and only if there

exist H ∈ F(Rk) and K ∈ F(Lk) such that A = (HK].

Proof. (⇒). Assume that A is an ordered k-ideal of S. Let H = Rk(A) and K =
Lk(A). Then we have H ∈ F(Rk) and K ∈ F(Lk). Since S is a commutative
ordered semiring, H = A = K. Let a ∈ A. Since RkβLk, a ∈ (Rk(a)Lk(a)] ⊆
(Rk(A)Lk(A)] = (HK]. Hence, A ⊆ (HK]. Since A2 ⊆ A, (HK] = (A2] ⊆ (A] =
A. Therefore, A = HK.

(⇐). Assume that there existH ∈ F(Rk) andK ∈ F(Lk) such that A = (HK].
Since RkβLk, we have H ∩ K = (HK]. Since A = (HK] = H ∩ K and S is

commutative, A is an ordered ideal. Since A = (HK] = (HK] = A, A is an
ordered k-ideal.

Let S be an ordered semiring. We denote the C-closure operation Rk ∨ Lk

on S by Mk. Note that F(Mk) is the set of all ordered k-ideals of S (including
empty set).

Theorem 4.14. Let S be an ordered semiring. Then the following statements are

equivalent:

(i) LkβLk;

(ii) LkβMk;

(iii) S is left ordered k-regular and Rk 6 Lk.

Proof. (i)⇒ (ii). Since LkβLk and by Lemma 4.5, we obtain LkβMk.
(ii) ⇒ (iii). Assume that LkβMk. By Theorem 4.9, we have Rk 6 Lk. It

follows that Lk = Mk. For any x ∈ S, we get

x ∈ (ΣfinLk(x)Mk(x)] = (ΣfinLk(x)Lk(x)]

⊆ (Nx2 + ΣfinSx2 + ΣfinxSx+ ΣfinSxSx]

⊆ (Nx2 + ΣfinSx2 + ΣfinRk(x)x+ ΣfinSRk(x)x]

⊆ (Nx2 + ΣfinSx2 + ΣfinLk(x)x+ ΣfinSLk(x)x]

⊆ (Nx2 + ΣfinSx2]

= (Nx2 + Sx2].
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Then there exist y, z ∈ (Nx2 + Sx2] such that x + y 6 z. It follows that there
exist k1, k2 ∈ N, s, t ∈ S such that y 6 k1x

2 + sx2, z 6 k2x
2 + tx2. Similarly,

there exist u, v ∈ (Nx4 + Sx4] such that x2 + u 6 v. It follows that there exist
k3, k4 ∈ N, q, r ∈ S such that u 6 k3x

4 + qx4, v 6 k4x
4 + rx4. Since x2 +u 6 v, we

obtain k1x
2+k1u 6 k1v and k2x

2+k2u 6 k2v. Hence, y+k1u 6 k1x
2+sx2+k1u 6

k1v + sx2 6 k1k4x
4 + k1rx

4 + sx2 and z + k2u 6 k2x
2 + tx2 + k2u 6 k2v + tx2 6

k2k4x
4 +k2rx

4 + tx2. It turns out y+k1u+k2u 6 k1k4x
4 +k1rx

4 +sx2 +k2k3x
4 +

k2qx
4 ∈ Sx2 and z + k1u+ k2u 6 k2k4x

4 + k2rx
4 + tx2 + k1k3x

4 + k1qx
4 ∈ Sx2.

Since x + y 6 z, we get x + y + k1u + k2u 6 z + k1u + k2u. This implies that
x ∈ (Sx2]. Therefore, S is left ordered k-regular.

(iii) ⇒ (i). Assume that S is left ordered k-regular and Rk 6 Lk. Then
x ∈ (Sx2] ⊆ (SxLk(x)] ⊆ (Lk(x)Lk(x)] ⊆ (ΣfinLk(x)Lk(x)] for all x ∈ S. By
Theorem 4.9, it turns out LkβLk.

Theorem 4.15. Let S be an ordered semiring. Then the following statements are

equivalent:

(i) RkβRk;

(ii) MkβRk;

(iii) S is right ordered k-regular and Lk 6 Rk.

Proof. The proof of this theorem is similar to Theorem 4.14.

An ordered semiring S is called left k-simple (right k-simple, k-simple) if S has
no proper left (right, two-sided) ordered k-ideal.

Theorem 4.16. Let S be an ordered semiring. Then

(i) S is left k-simple if and only if Lk = I;

(ii) S is right k-simple if and only if Rk = I;

(iii) S is k-simple if and only if Mk = I.

Proof. (i). Assume that S is left k-simple. It is clear that Lk(∅) = ∅ = I(∅). Let
A be a nonempty subset of S. Then we have Lk(A) = (ΣfinA+ ΣfinSA] = S =
I(A). Hence, Lk = I. Conversely, if A is a left ordered k-ideal, then we obtain
S = I(A) = Lk(A) = (ΣfinA+ ΣfinSA] ⊆ (A] = A ⊆ S. Hence, A = S. Thus, S
is left k-simple.

The proof of (ii) and (iii) are similar to (i).
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