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On generalized associativity in groupoids

Reza Akhtar

Abstract. Following an approach developed by Niemenmé&a and Kepka, we prove that if a
division groupoid G satisfies the identity Ry, Lay ... Rag, 1 Las, ¥ = Lag, Rag, 1 -+ Lag Rayy
for some n # 2, then G is an abelian group. Using equational reasoning, we also give a new
proof of a result of Niemenmé&a and Kepka that a division groupoid in which the generalized

associative law z1(z2(. .. Zn—12n)...)) = ((... (z122) ...)Zn—1)zn holds must be a group.

1. Introduction

Let G be a groupoid, with composition written as juxtaposition. For a € G,
we define the left multiplication map L, : G — G by x +— ax and the right
multiplication map R, : G — G by x +— za. If these maps are surjective for all
a € G, we call G a division groupoid. If these maps are bijective for all a € G, we
call G a quasigroup. For more on quaisgroups, we refer the reader to [2].

Since the operation on a groupoid is not in general associative, direct study of
such objects is usually rather difficult. One way around this problem is to con-
struct an auxiliary group whose properties reflect those of the groupoid operation,
and then use this group to study the original structure. This approach was ex-
ploited successfully by Niemenmé#a and Kepka in [1], in which they showed that
any division groupoid satisfying the identity

Tnxr(za(c o (@p—1xn) . .) = (. (z122) . )Tpe1) Ty

is in fact a group. While it is clear that Z,, constitutes a generalization of associa-
tivity, it is far from obvious that it implies associativity.

At the end of [1], the authors define a groupoid identity M = N to be linear
if M and N contain the same set of indeterminates, and each such indeterminate
occurs exactly once on each side. They then pose the question of determining which
linear groupoid identities imply associativity. Considering that the associative law
(ry)z = x(yz) may be written (in terms of the multiplication maps) as R, L,y =
L, R,y, it is perhaps natural to consider the following family of linear groupoid
identities:

In Ry Lyy .. . Ray, Loy, y=Lag, Ray, .. Loy Ryy
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as generalizations of the associative law, which is the case n = 1. Modifying the
techniques of [1], we show, in the first part of this article, that if n > 2, then a
division groupoid satisfies 7, if and only if it is an abelian group. In the second
part of the article, we use equational reasoning to give a much shorter proof of
the original Niemenmaa-Kepka result that Z,, implies associativity. The first part
of that proof is a relatively straightforward argument that any division groupoid
satisfying 7Z,, is in fact a quasigroup; this is essentially the same as the reasoning in
the original paper [1]. In the second part of the proof, however, we use an inductive
argument to show that any quasigroup satisfying Z,, implies associativity, thereby
circumventing the need to introduce an auxiliary group structure. The ideas in
this part of the proof were inspired by output from Prover9 for the implication
1y = I3; however, our proof follows a different path from that outlined in the
Prover9 output.

Following [1], we make the following definitions. Let G be a groupoid and P(G)
the set of permutations of G.

AL(G) ={f € P(G) : f(zy) = g(x)y for some g € P(G) and all 2,y € G}
AR(G) ={g € P(G) : f(zy) = g(z)y for some f € P(G) and all z,y € G}
BL(G) ={f € P(G) : f(xzy) = xg(y) for some g € P(G) and all z,y € G}
BR(G) ={g € P(G) : f(zy) = zg(y) for some f € P(G) and all z,y € G}

We say that G is AL-transitive if for all z,y € G there exists f € AL(G)
such that f(xz) = y. The notions of AR—, BL— and BR—transitivity are defined
similarly.

A key property undergirding both parts of this paper is a rigidity principle
which appears in [1] as Lemma 2.5. We give a slightly modified version of this
below.

Lemma 1.1. [1, Lemma 2.5] Suppose a division groupoid G is BL-transitive. If
I, € AL(G) and f(a) = f'(a) for some a € G, then f = f'. The same is true if
G is assumed to be AL-transitive and f, f' € BL(G).

Proof. Suppose first that G is BL-transitive and f, f’ € AL(G), a € G are such
that f(a) = f'(a). Select ¢ € G arbitrarily, and use surjectivity of L. to find
d € G such that a = cd. Next, given z € G, use BL-transitivity to find h € BL(G)
such that h(a) = z. Let g,¢', k € P(G) witness that the formulas f(xy) = g(z)y,
f'(zy) = ¢'(x)y, and h(zy) = xk(y) hold for z,y € G. Now
f(2) = f(h(a)) = f(h(cd)) = f(ck(d)) = g(c)k(d) = h(g(c)d) = h(f(cd))
= hf(a) = hf'(a) = hf'(cd) = h(g'(c)d) = g'(c)k(d) = f'(ck(d))
= ['(h(cd)) = f'(h(a)) = f'(2).

The proof of the second statement is similar. O
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We will also need the following key result:

Proposition 1.2. [1, Proposition 3.4] Let G be a quasigroup which is both AL-
and BL-transitive and satisfies AL(G) C AR(G), BL(G) C BR(G). Then there
exists a binary operation * such that (G, *) is a group and vy = A(z) * ¢ * B(y)
for some ¢ € G and some automorphisms A, B of (G, ).

2. A generalized form of associativity

In this section, we consider the identity
In  ReyLay .. . Ryy, Lyy,y=DLg, Rey, ... LayReyy

as another generalization of the associative law. We may rewrite 7, in two different
ways:

Lyy...Ryy, Loy, y w1 =Lg, Ry, | ... Ly, (yz1), (1)
Ry Lyy ... Rey,  (2ny) = Xon - Ruo,_y -+« Loy Ray Y. (2)

These formulas witness that if G is a groupoid in which 7, is satisfied, then
Ly, Ry, - Lz, € AL(G)NAR(G) and R, Ly, ... Ry, _, € BL(G) N BR(G).
In particular, if G is a division groupoid, then G is both AL-transitive and BL-
transitive.

We are now ready to prove our main result.

Theorem 2.1. Let G be a division groupoid and n > 2. Then G satisfies J, if
and only if G is an abelian group.

Proof. Suppose first that G is a division groupoid satisfying J,,. We argue first
that G must be a quasigroup. Given a € G, fix b € G, and use surjectivity of
the multiplication maps to select ¢y, ..., can—2 such that L., R., ... Rc,, _,Lab =0.

Now L, R, ... R L, € AL(G), so by Lemma 1.1, L., R., ... R L, = 1.

cC2n—2 st ¥Can—2--a
Therefore, L, is injective.

Next, we show that G satisfies the remaining hypotheses of Proposition 1.2.
Given f € AL(G), fix a € G and use surjectivity of the multiplication maps to
select dy,...,d2n—1 € G such that Lg, Ry, ... Lg,, ,a = f(a). Because we have
L4, Ry, ... Lg,, , and f are both members of AL(G), Lemma 1.1 implies that
f=L4Ra,...La,, _,,s0 f € AR(G) also. Thus, AL(G) C AR(G). The proof of
the inclusion BL(G) C BR(G) is similar.

Now we use Proposition 1.2 to deduce the existence of a binary operation + on
G such that (G, +) is a group and xzy = A(z) + ¢+ B(y) for some automorphisms
A and B of (G,+). (Even though (G, +) is not assumed to be an abelian group,
we will still use additive notation to avoid confusion with the groupoid operation
on G.) The identity

In RwlLﬂiz s Raj2n71L$2ny = LIZHRQTZH—I s szRmy
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implies an identity in (G, +); when this is written out, each of the indeterminates
x1,...,Ty, occurs in exactly one term on each side, with some automorphism of
(G, +) applied to it. For example, in the case n = 2 we have:

A%zy + Ac+ ABA%*z4 + ABAc+ ABABy + ABc+ AB%z5 + ¢ + By
= Azy+c+BA%x9+BAc+ BABAy+ BABc+ BAB?x, + Be+ B2 3.

In general, the automorphisms applied to the indeterminates zi,...,zs, on
the left are (respectively, in order):

B, A% (AB)B,(AB)A?,(AB)’B,(AB)?A?,... (AB)"'B,(AB)" ' A?
and on the right the automorphisms are:
(BA)"'B? (BA)"'A,...,(BA)’B? (BA)?A,(BA)B?,(BA)A, B* A.

B7Y(c) ifiis odd,

or2 <1< 2n,set x; {Alc if 4 is even.

Next, set y = A71(c) and substitute these values into the identity to obtain:
d+ Bxy = (BA)""1B2z; for some d € G. Evaluating at z; = 0, the fact that B
and (BA)"~1B? are automorphisms of G forces d = 0, so Bx; = (BA)""!B%1,
and hence (BA)"™'B = 1.

Now for i # 2,1 < i < n, set y = (BA)~!(c); then, substitute this and the
same values for z; (as above) into the identity to obtain A%xe +d' = (BA)" ! Az,
for some d’ € G. Reasoning as before, we have d’ = 0, so (BA)" tA~! = 1.
Thus, A=! = B, so B = (BA)" !B = 1¢, which in turn implies 4 = 1¢.

Therefore, zy = = + ¢ + y, and so we compute:
(zy)z = (x+c+y)z = (x+c+y)+tetz =xz+c+(y+c+2) = 2(y+ce+2) = 2(yz).

This shows that the quasigroup G is, in fact, a group. Now that we know that G
has a neutral element e, simply set all z;, i # 1,3 equal to e in the identity J,
to obtain R, R;, = R;,R,,. Applying this equality of functions to e, we have
r12x3 = x3x for all x1,x3 € G, so G is abelian.

Conversely, if G is an abelian group, then the identities R, L, = Ly R;, R, R, =
RyR, and L,L, = L,L, hold in G. Now all left and right multiplication maps
commute with each other, so J,, must hold. O

3. The Niemenmaéaa-Kepka Theorem

We conclude by giving a new proof of the main result of [1]. The first part of the
proof (Proposition 3.1 below) follows the reasoning of [1, Theorem 4.1].

Proposition 3.1. Let n > 3. Then a division groupoid satisfying T, is a quasi-
group.
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Proof. Note that Z,, can be interpreted in two ways:

Ly ... Ly, o (®n—12n) = Ry oo  Ryg Ruy @1 + Ty, (3)
Ry, ... Ry, (z1@9) =21 - Lyy ... Ly, _ Ty (4)

In particular, for any division groupoid G satisfying Z,,, the first formula shows
that Ly, ...L,, , € AL(G), and the second formula that R, ...R,, € BL(QG).
Since all left and right multiplication maps are surjective, it follows that G is both
AL-transitive and BL-transitive.

We now show that for a € G, the map L, is injective. To this end, fix b € G and
use surjectivity of the left multiplication maps to select y1,...,yn—3 € G such that
Ly, ...L,, ,L,b=>,. By therigidity principle (Lemma1.1), L,, ... L, ,L, =1¢;
so L, has a left inverse and is hence injective. The proof of the injectivity of R,
is similar. O

We are now ready to give a new proof of [1, Theorem 4.1]. To prepare, define

Az, oy xn) = ((R122) - X1 )Ty
o1, .. xn) =x1(Ty - (Tp_1y)).

Then Z, is simply the statement A(z1,...,2z,) = p(x1,...,2,). All of the
identities in the list below can be proved by direct calculation.

Lemma 3.2. The following formulas hold for any m > 1:

b (HL) )\le"‘,xm)y):)\(x17"‘,xm)y7

(
(HR) p(y,21,....2m) = yp(z1,. ., Tm),
(CL) AA(®1,...,20), Te1,- - Tm) = M@, - ., Tn),
(
(

(CR) P SUl,...,l’g,p(l’ngl,...,lL'm)) ZP($1,...7$m),

(DL) A Yri, T2, ... al"m) = A(yvxlvaa' . 7xm):

(DR) p(xh e ,mmflﬂrmy) = P(ﬂfla e 7mm7171’m7y)'
Theorem 3.3. A quasigroup satisfying L, is a group.

Proof. We will argue that when n > 4, Z,, implies Z,,_1, and then apply induction.
The designation at the end of each line shows which statement from Lemma 3.2
was used to deduce it from the previous line.
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yA(@1, .. xn1)p(215 -y Zn—2))

—

=y(A1, .., Tn-1,p(21,. -, 2n—2))) (HL)
:y(p($1,...,xn_1,p(z1,...,zn_2))) (In)
=p(y, 21, Tn—1,p(21,. .., 2n-2))) (HR)
= p(Yy 1, e ey T2y Ty 15 21y« -+ 5 Zn—2) (CR)
=p(Y, 1, T2, P(Tp—1, 215+« y Zn—2)) (CR)
=My, 1, T2, P(Tn—1,21, -, 2n—2)) (Z,.)
=AMy, 21, Tp2)P(Tp—1, 215+ -+, Zn—2) (HL)
:p()‘(yaxlv"'7xn72)axn717217~~72n72) (HR)
=AY, T1y -y Tp—2), X1, 21, -« -y Zn—2) (Z,)
:)\(y7.’131,...,J}nfl,Zl,...,Zn,Q) (CL)
:)\(/\( ,xl,...,xn_l),zl,...,zn_g) (OL)
=ApY,T1, -, Tne1), 21, -+, 2n—2) (Z,)
:)‘(yp(xlw~'7xn—1)7zla"'7zn—2) (HR)
=My, p(T1, -, Tne1), 21, -+ Zn—2) (DR)
:p(y,p(xl,...,xn,l),zl,...,zn,g) (In)
:yp(p(xl,...,xn_l),zl,...,zn_z) (HR)
=y(p(x1,...,Tn_1)p(21,- -, 2n—2)) (HR).
Now cancel y from the left, and then cancel p(z1,...,2,—2) from the right to
obtain A(z1,...,z,—1) = p(x1,...,Zn_1), which is Z,,_1. O
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Characterizations of Clifford semigroups

and {-Putcha semigroups by their quasi-ideals

Anjan Kumar Bhuniya and Kanchan Jana

Abstract. There are bi-ideals of semigroups which are not quasi-ideals. In spite of this fact, here
we show that a semigroup S is quasi-simple if and only if it is bi-simple, equivalently ¢-simple.
Main results of this article are several equivalent characterizations of the Clifford semigroups
and the semigroups which are semilattices of t-Archimedean semigroups by their quasi-ideals. A
semigroup S is a Clifford semigroup if and only if every quasi-ideal of S is a semiprime ideal,
whereas S is a semilattice of t-Archimedean semigroups if and only if /@ is an ideal for every
quasi-ideal @ of S.

1. Introduction

In 1952, R.A. Good and D.R. Hughes [3] first defined the notion of bi-ideals of a
semigroup. The notion of quasi-ideals in rings and semigroups was introduced and
developed by Otto Steinfeld [12], [13], [14], [15]. Different classes of semigroups
has been characterized by using bi-ideals and quasi-ideals by many authors [7],
[8], [9], [10]. Later on different classes of semigroups has been characterized by
using minimal and maximal left-ideals, bi-ideals and quasi-ideals by many authors
(1], [17], [4], [2], [9], [6]. Here we characterize the Clifford semigroups and the
semigroups which are semilattices of t-Archimedean semigroups by their quasi-
ideals.

There are several characterizations for a semigroup S equivalent to be a Clif-
ford semigroup and t-Putcha semigroup by their bi-ideals. Every quasi-ideal of a
semigroup is a bi-ideal but the converse is not true. So if a semigroup S is bi-simple
or equivalently t-simple then it is quasi-simple. Here we have a strange observa-
tion that every quasi-simple semigroup is also ¢-simple and thus quasi-simplicity
and t-simplicity becomes equivalent in semigroups. Therefore we hope that it may
turns out to be the case that the semigroups which are semilattices of groups or
t-Archimedean semigroups will be characterized by their quasi-ideals. We show
that a semigroup S is a semilattice of t-Archimedean semigroups.

Some elementary results together with prerequisites have been discussed in
Section 2. In Section 3 we have studied semilattice of quasi-simple semigroups.

2010 Mathematics Subject Classification: 20M12, 20M17
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2. Preliminaries

A nonempty subset L of a semigroup S is called a left ideal of S if SL C L. The
right ideals are defined dually. A subset I of S is called an ideal of S if it is both a
left and a right ideal of S. For an element a € S the principal left ideal (right ideal)
of S generated by {a} is given by SaU{a} (aSU{a}) and are denoted by L(a) and
R(a) respectively. A semigroup S is called simple (left-simple, right-simple) if it
does not contain any proper ideal (left-ideal, right-ideal), and S is called t-simple
if it is both left simple and right simple.

A nonempty subset @ is called a quasi-ideal of S if QS N SQ C Q. It follows
that every quasi-ideal @ of S is a subsemigroup. Every nonempty intersection of
a left ideal and a right ideal is a quasi ideal of S. Suppose @ is a quasi-ideal of S.
Then L = SQ UQ is a left ideal and R = QS U @ is a right ideal of S such that
@ = LN R. Thus a nonempty subset @ of S is a quasi-ideal if and only if it is an
intersection of a left ideal and a right ideal. For a € S, let Q(a) be the quasi-ideal
generated by {a}.

A semigroup S is called quasi-simple if it has no proper quasi-ideal.

The Green’s relations £, R and H on a semigroup S are defined by, for a,b € S,

albif L(a) = L(b), aRbif R(a)=R() and H=LNR.
Now we have the following theorem (cf. [9]).

Theorem 2.1. Let S be a semigroup. Then H can be given as follows: fora,b € S,
aHb <= Q(a) = Q(b).

A nonempty subset A of S is called semiprime if for all 2 € S such that 22 € A
one has x € A, and completely prime (resp. semiprimary) if for all x,y € S such
that xy € A one hasz € Aory € A (resp. 2" € Aor y" € A for some n € N). A
subsemigroup F' of S is called a filter of S if for any a,b € S, ab € F = a,b € F.
Let N(a) be the filter generated by {a}. Define an equivalence relation A" on S
by: for a,b € S,

aNb if N(a)= N(b).

The following lemma (proved in [9]) plays a crucial role in the main theorems
of this article.

Lemma 2.2. Let S be a semigroup. Then N is the least semilattice congruence
on S.
3. Semilattice of groups

In this section we characterize the semigroups which are semilattices (chains) of
groups.
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Theorem 3.1. The following conditions are equivalent on a semigroup S:

1) S is a semilattice of groups;

2) for all a,b € S, ab,ba € Q(a) and a € Q(a?);

3) foralla €S, Q(a) is a semiprime ideal of S;

5) for all a,b € S, Q(ab) = Q(a)NQ(b);

(1)
(2)
3)
(4) every quasi-ideal of S is a semiprime ideal of S;
()
(6) for allae S, N(a)={x € Sla € Q(z)};

(7)

7) for every nonempty family {Qx|\ €A} of quasi-ideals of S, [y, @ is a
semiprime ideal of S;

(8) H =N is the least semilattice congruence of S such that each of its congru-
ence classes is a group.

Proof. (1) = (2). Let S be a semilattice L of groups G4, (o € L). Counsider
a,b € S. Then there are o, 8 € L such that a € G, b€ Gg and so aba, ab, ba are
in GoGg C Gag. Since Gup is a group, ab € Q(aba) C Q(a). Similarly, ba € Q(a).
Also a,a® € G, implies that a € Q(a?).

(2) = (3). Let a € S. Consider ¢ € Q(a) and s € S. Then sq, ¢s € Q(q) C Q(a)
implies that Q(a) is an ideal of S. Let u € S be such that u? € Q(a). Then
u € Q(u?) C Q(a). Thus Q(a) is a semiprime ideal of S.

(3) = (4). Follows similarly.

(4) = (5). Let a,b € S. Since a € Q(a) is an ideal of S, so ab € Q(a) and
similarly, ab € Q(b). Then ab € Q(a) N Q(b) implies that Q(ab) C Q(a) N Q(d).
Let z € Q(a) N Q(b). Then x € R(a) implies that there exists s; € S such that
r = as;. Then 22 = (as;)z = a(s1z). Since Q(a) N Q(b) is an ideal of S, so
s1z € Q(a) N Q(b) and hence syz € R(b). Then s;x = bsg for some sp € S. Then
22 = absy which implies that 2% € R(ab). Similarly, 22 € L(ab). Thus z2 € Q(ab)
which yields € Q(ab). Then Q(a)NQ(b) C Q(ab) and hence Q(a)NQ(d) = Q(ab).

(5) = (6). Let F = {& € S|a € Q(z)}. Consider z,y € F. Then a €
Q(z) N Q(y) = Q(xy) implies that zy € F. Thus F is a subsemigroup of S. If for
xz,y €S, xzy € F, then a € Q(xy) = Q(z) N Q(y) implies that z,y € F. Thus F is
a filter of S.

Let T be a filter of S containing a and u € F. Then there exists s € S such
that @ = syu. Then squ € T implies that v € T. Hence F = N(a).

(6) = (7). Let Q@ = [ cp @r- Then Q is a quasi-ideal of S. Let ¢ € Q and
s € S. Now q € N(gs) implies that ¢s € Q(¢) C Q. Similarly, sq € Q. Let a® € Q.
Then a? € N(a) implies that a € Q(a?) C Q. Thus Q is a semiprime ideal of S.

(7) = (4). Obvious.

(6) = (8). Let a,b € S. Then a#b implies that Q(a) = Q(b) and so a € N(b)
and b € N(a) . This implies that N(a) = N(b), i.e., aN'b. Thus H C A. Similarly,
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N C H. Hence H = N is the least semilattice congruence on S. Then every H-
class is a group.
(8) = (1). Obvious. O

In the following theorem we characterize the semigroups which are chains of
groups.

Theorem 3.2. The following conditions are equivalent on a semigroup S':
(1) S is a chain of groups;
2) for all a,b € S, ab,ba € Q(a); and a € Q(ab) or b € Q(ab);

3) for alla €S, Q(a) is a completely prime ideal of S;

5) for all a,b € S, Q(ab) = Qa) N Q(b); and Q(a) € Q(b) or Q(b) € Q(a);

)
(2)
3)
(4) every quasi-ideal of S is a completely prime ideal of S;
(5)
(6) for alla,be S, N(a) = {z € S|a € Q(z)} and N(ab) = N(a) UN(b);
(7)

7) for every nonempty family {Qx |\ €A} of quasi-ideals of S, (1yc, @x s @
completely prime ideal of S;

(8) H = N is the least chain congruence on S such that each of its congruence
classes is a group.

Proof. (1) = (2). Let S be a chain C of groups G,(a € C). Then the first part
follows from Theorem 3.1. For the second part, let a € G,,b € Gg, a,8 € C.
Since C is a chain, either a8 = o or a8 = 8. If a8 = a, then a, ab € G, implies
that aHab and hence a € Q(ab). Similarly, o = 3 implies that b € Q(ab). Thus
either a € Q(ab) or b € Q(ab).

(2) = (3). Let @ € S. Then Q(a) is an ideal of S by Theorem 3.1. Consider
x,y € S such that zy € Q(a). Now z € Q(zy) or y € Q(zy) implies that z € Q(a)
or y € Q(a). Thus Q(a) is a semiprime ideal of S.

(3) = (4). Follows similarly.

(4) = (5). Let a,b € S. Then Q(ab) = Q(a) N Q(b), by Theorem 3.1.

Again a € Q(ab) or b € Q(ab) implies that Q(a) C Q(ab) C Q(b) or Q(b) C
Q(ab) € Q(a). Thus Q(a) € Q(b) or Q(b) € Qo).

(5) = (6). Let a € S. Then N(a) = {x € S|a € Q(z)}, by Theorem 3.1.
Let a,b € S. Then, N(a) N N(b) C N(ab). Let x € N(ab). Then ab € Q(x).
Now we have Q(ab) = Q(a) or Q(ab) = Q(b) which implies that Q(a) C Q(x) or
Q(b) C Q(x). Then 2z € N(a) or x € N(b). Thus N(ab) C N(a) or N(ab) C N(b).
Then N(ab) C N(a) U N(b). Hence N(ab) = N(a)U N(b).

(6) = (7). Let Q = [ cp @a- In view of Theorem 3.1, we are only to show that
Q is completely prime. For a,b € S, if ab € @, then ab € N(ab) = N(a) U N(b)
implies that a € Q(ab) C Q or b € Q(ab) C Q,ie.,a € Qor b€ Q. Thus Q is a
completely prime ideal of S.
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(7) = (4). Obvious.

(6) = (8). In view of Theorem 3.1, we are only to show that A is a chain
congruence on S. Let a,b € S. Then ab € N(ab) = N(a) U N(b). Thus ab € N(a)
or ab € N(b), i.e., N(ab) C N(a) € N(a) UN(b) = N(ab) or N(ab) C N(b) C
N(a) UN(b) = N(ab). Then N(ab) = N(a) or N(ab) = N(b). Then abNa or
abN'b.

(8) = (1). Obvious. O

4. Semilattice of t-Archimedean semigroups

In this section we characterize the semigroups which are semilattices of ¢-Archimedean
semigroups by their quasi-ideals. Also in this section the semigroups which are
chains of t-Archimedean semigroups are characterized.
Let A be a nonempty subset of a semigroup S. Then the radical of A in S is
given by
VA={zeS|(@neN)z" e A}.

A semigroup S is called left (right) Archimedean if for each a € S, S = v/Sa,
(S = VaS) and t-Archimedean semigroup if it is both a left Archimedean semi-
group and a right Archimedean semigroup. Thus a semigroup S is t-Archimedean
if and only if for a,b € S there exist n € N and z1,z2 € S such that b = x1a and
b" = axs.

A semigroup S is called a semilattice (chain) of t-Archimedean semigroups if
there exists a congruence p on S such that S/p is a semilattice (chain) and each
p-class is a t-Archimedean semigroup.

Let S be a semigroup. Define a binary relation ¢ on S by : for a,b € S,

ach <= b € VSaS < b" € SaS, for some n € N.

Then a® € SaS shows that a € v/SaS, i.e., o is reflexive. So the transitive closure
p = o* is reflexive and transitive and therefore the symmetric relation n = pnp~1
is an equivalence relation. Thus the equivalence relation 7 is the least semilattice
congruence on S.

Recall that for every a € S, Q(a) = L(a) N R(a). In general neither L(a) = Sa
nor R(a) = aS. Also, SaNasS is a quasi-ideal of S which may not contain a. But
we have the following lemma.

Lemma 4.1. Let S be a semigroup. Then \/Q(a)= v/SaNaS=vSan vaS for
alla € S.

Lemma 4.2. Let S be a semigroup such that for all a,b € S,ab € v/ Sa N VbS.
Then

(1) for all a,b € S;a € SbNbS = for every r € N there are n € N;z € S such
that a” = b* 2b*" and hence a € \/Q(b*");
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(2) for all a,b € S,a € \/Q(b) implies that v/Q(a) C /Q(b);

(3) the least semilattice congruence n on S is given by: for all a,b € S,

anb if b€ \/Q(a) and a € \/Q(D).

Proof. (1). Let a,b € S with a € SbNbS. Then there exist s1,s2 € S such that
a = s1b = bsa. Also, there exist n € N and wuy,us € S such that (bs;)™ = u1b and
(s9b)™ = bus. Then a™t! = s1(bs1)"b = sju1b? and a™*! = b(s2b)"sy = bPugss.
Then 2"t = b2uys081u1b? implies that the result is true for r = 1. Let for
k € N, there is p € N and 2 € S such that o = b2 2b%". Then proceeding as
above, we have ¢ € N and y € S such that a? = 52" ybp2""". Thus the result
follows by the principle of Mathematical induction.

The last part follows by Lemma, 4.1.

(2). For a € \/Q(b), there are n € N and s, s2 € S such that a™ = s1b = bss.
Let x € /Q(a). Then there exists m € N such that 2™ € SanaS. Let r € N
be such that 2" > n. Then, by (1), we find p € N and v € S such that 2P =

T ' i
a?" ua? Wthh implies that 2P = a™a? ~"ua? ~"a" = bssa® ~"ua® ~"s;b. Then

x € v/Q(b), by the Lemma 4.1.
(3). Consider a € S. Then = € \/Q(a) implies that 2™ = sja = asy for
some n € N and s1,s2 € S. Then 2" = s;a%s, implies that z € v/SaS. Thus
Q(a) C vVSaS. Let y € vSaS. Then there are m € N and ¢1,t; € S such
that y™ = tiats. Again tiats € v/Stia C vV Sa and tiats € vataS C VasS implies
that y™ € VaS N +vSa = \/Q(a) and so y € \/Q(a), by the Lemma 4.1. Thus
VvSaS C y/Q(a) and hence \/Q(a) = v SaS.

Now for a,b € S, anb implies that there are ci,ca,...,¢n,dy,do, ... dy €S

such that accy, ciocs, ..., ch_10¢Cy, c,ob and body, dlcrdg,... dy— 1adm, moa.
These give ¢; € Q(a), c2 € \/Q(c1),...,b € \/Q(cn) and dy € \/ ), do €
Q(dy),...,a € \/Q(d,,) so that b € \/Q(a) and a € \/Q(b), by (2). O

Recall that for a,b € S,
aHb = Q(a) = Q(b).
Let us define /A, the radical of H on S by: for a,b € S,
Wb = /Ola) = VO).
Now we have the main theorem of this section:
Theorem 4.3. The following conditions are equivalent on a semigroup S':

(1) S is a t-Putcha semigroup;
(2) for alla,be S, be SaS implies b € \/Q(a);
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(3) for all a,b € S, ab € \/SanNVbS;

(4) Q is an ideal of S for every quasi-ideal Q of S;
(5) \/Q(a) is an ideal of S, for all a € S;

(6) N(a) ={z € S|ac+/Qx)} forallac S;
(NN

= VH is the least semilattice congruence and the congruence classes are
t-Archimedean semigroups.

7

Proof. (1) = (2). Let p be a semilattice congruence on S such that the p-classes
T.,a € S/p are t-Archimedean semigroups. Let a,b € S be such that b € SaS.
Then there are sy, so € such that b = syass. Now sjasapasysepsisea implies that
b, as1s2, s152a € T, for some o € S/p. Since T, is a t-Archimedean semigroup,
there exist n € N and uy,us € T, such that "™ = asyssu; and "™ = uss152a. Thus
b€ \/Q(a), by Lemma 4.1.

(2) = (3). Let a,b € S. Now (ab)? = abab implies (ab)? € SaS N SbS. Then
(ab)? € /Q(a) N \/Q(b) C v/San+/bS and hence ab € v/ Sa N /bS.

(3) = (4). Let Q be a quasi-ideal of S and let v € v/Q and ¢ € S. Then u" = ¢
for some n € N,¢ € Q. Also by (3), there is m € N such that (uc)™ € Su and
(uc)™*! € uSu. Consider r € N such that 2" > n. Then by Lemma 4.2, there are
my € N and z € S such that (uc)™ = v zu? = qu? ~"zu® ~"q which implies
that uc € /gSNSq = \/Q(q) C +/Q, by Lemma 4.1. Similarly, cu € v/Q. Thus
v/Q is an ideal of S.

(4) = (5). Trivial.

(5) = (3). Let a,b € S. Then y/Q(a) and /Q(b) are ideals of S. Then
ab € \/Q(a) N \/Q(b) and hence ab € v/Sa N /bS.

(3) = (6). Let a € S and F = {x € Sla € /Q(z)}. Consider y,z € F.
Then there exist n € N uj,us € S such that a” = w2z and a™ = yus. Also,
by (3), there are mi,ma € Nywi,wy € S such that (uguizy)™ = zyw; and
(zyuguy)™ = wyzy. Now a?" = yuguyz implies a?""™ D = (yuguyz)™+! =
y(uguizy)™ugurz = (yz)ywiuguiz. Also, a2n(ma+1) — yuguy zwe2(yz). Thus
yz € F', by Lemma 4.1; and hence F' is a subsemigroup of S.

Let y,z € S be such that yz € F. Then a € \/Q(yz) = vyzS N +/Syz C
VyS NSz Now, by (3), yz € v/Sy, and so yz € vyS N /Sy = /Q(y), by
Lemma 4.1. Then /Q(yz) C /Q(y), by Lemma 4.2. Thus a € \/Q(y) and hence
y € F. Similarly, z € F. Thus F is a filter that contains a. Let T be a filter of
S containing a and y € F. Then a™ = sy for some m € N;s € S. Now a™ € T
implies sy € T and hence y € T. Thus F = N(a).

(6) = (7). Consider a,b € S. Then ab € N(ab) implies that a,b € N(ab). Then,
by (6), ab € \/Q(a) N /Q(b) C VSan VbS. If aNb then N(a) = N(b) implies
that b € \/Q(a) and a € \/Q(b). So, /Q(b) C \/Q(a) and /Q(a) C \/Q(b)
by Lemma 4.2. Thus avHb and hence N C v#H. Similarly, v € N. Hence
N = V/H is the least semilattice congruence.
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Let T be an N-class in S. Since N is a semilattice congruence, T is a sub-
semigroup. Consider a,b € T. Then a?N'b implies that N(a?) = N(b); and by (6)
we have b € \/Q(a?). Thus there are n € N and s1,52 € S such that b" = s;a®
and b® = a?sy which implies that b”t! = bs;a? and b"t! = a2syb. Since N is
a semilattice congruence, t; = bs;aNbs1a’ N IND and t3 = assbNb which im-
plies that t; = bsya € T and t5 = assb € T. Thus b € VTa N +vaT and hence T is
a t-Archimedean semigroup.

(7) = (1). Follows directly. O

Theorem 4.4. The following conditions on a semigroup S are equivalent:

(1) S is a chain of t-Archimedean semigroups.

(2) S is a t-Putcha semigroup and for all a,b € S, b€ \/Q(a) or a € /Q(D).
(3) For alla,be S, N(a) ={x € S|a € /Q(x)} and N(ab) = N(a) U N(b).
(4)

4) N = /H is the least chain congruence on S such that each of its congruence
classes is t-Archimedean.

Proof. (1) = (2). Let S be a chain C of ¢-Archimedean semigroups S, (« € C). Let
a,b € S. Then a € S, and a € Sg for some «, 5 € C. Since C is a chain, either
af =aor af = . If af = a, then a,ab € S,; and since S, is a t-Archimedean
semigroup, there exist n € N and 1, x5 € S, such that ™ = x1ab and a™ = abxs.
Now, by Theorem 4.3, since S is a semilattice of ¢-Archimedean semigroup, there
are m € N and s € S such that (abze)™ = brys. Then we have a™™ = s1b and
a™ = bxgys for some s; € S and hence a € 1/Q(b), by Lemma 4.1. If af = 5,
then b,ab € Sg and similarly as above we have b € 1/Q(a).

(2) = (3). By Theorem 4.3, we have N(a) = {z € S|a € v/Q(x)}, since S
is a t-Putcha semigroup. Let a,b € S. Then ab € N(ab) implies that a € N(ab)
and b € N(ab), and hence N(a) U N(b) C N(ab). Again, either a € 1/Q(b) or
b e /Q(a). If a € \/Q(b), then there are n € N and s € S such that a™ = bs
and so a”t! = abs. Since S is a semilattice of t-Archimedean semigroups, there
exist m € N and ¢ € S such that (abs)™ = tab, by Theorem 4.3. Then we have
a™tm = tab and a("*V"™ = abt; for some t; € S. Then a € \/Q(ab) which
implies that ab € N(a). Thus N(ab) C N(a). If b € \/Q(a), then similarly we
have N(ab) C N(b), which shows that N(ab) C N(a) U N(b). Hence N(ab) =
N(a) U N(b).

(3) = (4). Tt follows by Theorem 4.3 that A" = v/#H is the least semilattice
congruence on S and each N-class is a t-Archimedean semigroup.

Now consider a,b € S. Then ab € N(a) U N(b) shows that ab € N(a) or
ab € N(b). Again N(a) C N(ab) and N(b) C N(ab). Thus either N(ab) C N(a) C
N(ab) or N(ab) C N(b) C N(ab). i.e., either aNab or bNab. Hence N is a chain
congruence on S. Since every chain is a semilattice and N is the least semilattice
congruence, it is the least chain congruence on S.

(4) = (1). Trivial. O
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Theorem 4.5. The following conditions on a semigroup S are equivalent:
1) S is a chain of t-Archimedean semigroups;
2) /Q is a completely prime ideal of S for every quasi-ideal Q of S;

3) /Q(a) is a completely prime ideal of S for every a € S;

(
(
(
(4) V/Q(ab) = \/Q(a) N /Q(b) for all a,b € S and every quasi-ideal of S is

semiprimary .

Proof. (1) = (2). Let S be a chain C of t-archimedean semigroups {S, | o € C}. We
take a quasi-ideal @ of S. Then /@ is an ideal of S, by Theorem 4.3. Let z,y € S
be such that xy € v/Q. Then there is n € N such that (xy)® = u € Q. Suppose
z € Sy and y € Sg,a,8 € C . Since C is a chain, either af = o or a8 = (.
If a8 = a, then z,u € S,. Since S, is t-Archimedean, so z € /Q(u) C Q.
Similarly, if a8 = 3, then y € /Q. Hence /@ is a completely prime ideal of S.

(2) = (3). Obvious.

(3) = (4). Let a,b € S. Then /Q(a) and /Q(b) are ideals of S and hence
ab € \/Q(a) N v/Q(b). This implies 1/Q(ab) C \/Q(a) N /Q(b), by Lemma 4.2
and Theorem 4.3. Since \/Q(ab) is completely prime, so a,b € \/Q(ab) which
implies 1/Q(a) N /Q(b) C \/Q(ab). Thus \/Q(ab) = /Q(a) N /Q(b)

Let @ be a quasi-ideal of S and z,y € S be such that xy € Q. Then xy €
v/ Q(xy) implies that = € \/Q(zy) or y € \/Q(zy). Thus 2" € \/Q(zy) C Q or
y"™ € +/Q(zy) C Q for some n € N. Hence ) is semiprimary.

(4) = (1). Let a,b € S. Then ab € \/Q(a) N /Q(b) C VSanVbS. Then

by Theorem 4.3, S is a t-Putcha semigroup. Since 1/Q(ab) is a semiprimary,

ab € Q(ab) implies that a € 1/Q(ab) = \/Q(a)N/Q(b) C \/Q(b) or b € \/Q(ab) C
v/Q(a). Thus S is a chain of ¢-Archimedean semigroups by Theorem 4.4. O
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Normal edge-transitive Cayley graphs

on certain groups of orders 4n and 8n

Mohammad Reza Darafsheh and Majid Abdollahi

Abstract. Normal edge-transitive Cayley graph Cay(G, S) where G is the generalized quater-
nion group Quy of order 4n or a certain group Vg, of order 8n is investigated. It is shown that up
to isomorphism there is only one tetravalent normal edge-transitive Cayley graph when G 22 Quy,
is the generalized quaternion group and its automorphism group is found. In the case of Vg, we
show that there is no normal edge-transitive Cayley graph on Vgy,.

1. Introduction

We will be concerned with simple graphs, which mean graphs with no multiple
edges and loops. Let I' = (V, E) be a graph with vertex set V' and edge set E.
The edge joining the vertices v and v is denoted by e = {u,v}. The group of the
automorphisms of the graph is denoted by A = Aut (T'), and T is called vertex
or edge transitive if A acts transitively on V or F respectively. Let G be a finite
group and S be a subset of G such that S = S~ and 1 ¢ S. The Cayley graph
of G on S is denoted by I' = Cay(G, S) and has its vertex set G and edge set
e = {x, sz} where x € G and s € S. Therefore T is a regular graph of valency |5,
and it is connected if and only if S generates G. For g € G the mapping defined
by pg: G = G, py(x) = xg, x € G is a permutation of G preserving the edges of
I', hence it is an automorphism of I'. It can be verified that R(G) = {p, |9 € G}
is a subgroup of Aut(I") isomorphic to G which acts regularly on the vertices of T,
hence T is a vertex transitive graph.

For the Cayley graph I' = Cay(G, S) we define the group Aut(G,S) by putting
Aut(G, S) = {o € Aut(G) |o(S) = S}. It can be verified that Aut(G,S) is a sub-
group of A = Aut(I') which acts on R(G) by p] = ps-1(4), where o € Aut(G,S)
and p, € R(G). Therefore the semi-direct product R(G) x Aut(G, S) is a subgroup
of A.

It is proved in [3] that N4(R(G)) = R(G) x Aut(G,S), where N4s(R(G))
denotes the normalizer of R(G) in A. In [7] the graph I is called normalif R(G) is
a normal subgroup of A and obviously in this case we have A = R(G) x Aut(G, S).

2010 Mathematics Subject Classification: 20D60, 05B25
Keywords: Cayley graph, automorphism group, tetravalent graph, normal edge-transitive
Cayley graph.
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The normality of Cayley graphs has been studied by various authors from
different point of views. If one is interested to study the normality of the Cayley
graphs it suffices to consider the connected normal Cayley graphs, because in [5]
all the disconnected normal Cayley graphs are determined. The research on edge-
transitive Cayley graphs of small valency is of interest to many authors. In [6]
the authors determined all the tetravalent edge-transitive Cayley graphs on the
group PSLs(p) and Brian P. Corr et al. in [1] determined normal edge-transitive
Cayley graphs of Frobenius group of order a product of two different primes.
In [8] tetravalent non-normal Cayley graphs of order 4p, p a prime number, are
determined. In [2] the authors studied normal edge-transitive Cayley graphs on
group of order 4p where p is an odd prime. Motivated by [2] we are interested
to investigate normal edge-transitive Cayley graphs on the generalized quaternion
group of order 4n and a certain group of order 8n, where n is an arbitrary natural
number. In particular we obtain:

Main result 1. Let Q4. = (a,b|a®” = b* =1, a™ = b2, b~ lab = a™ 1) be the
generalized quaternion group of order 4n. Then up to isomorphism there is only
one normal edge-transitive tetravalent Cayley graph of G and its automorphism
group is isomorphic to G X Dg if n is even and isomorphic to G x (Za X Zs2) if n
is odd.

Main result 2. Let Vg, = (a,b|a®" = b = 1, (ab)? = (a=1b)* = 1) be a group
of order 8n. Then there is no normal edge-transitive Cayley graph on Vg,.

2. Preliminary results

Let G be a group and S be a subset of G such that 1 ¢ S. The Cayley di-graph
(directed graph) Cay(G,S) of G relative to S has G as its vertex set and (z, sx)
as its edge set, where x € G and s € S. If S is an inverse closed subset of G, i.e.,
S = S71, then Cay(G,S) is an undirected graph that is simply called a Cayley
graph. The following result can be found for example in [4].

Lemma 2.1. Let ' = Cay(G, S) be the Cayley graph of G with respect to S. Then
the following hold:

(1) Na(R(@)) = R(G) x Aut(G, S).
(1) R(G) < A if and only if A= R(G) x Aut(G, S).
(#i7) T is normal iff Ay = Aut(G, S), where Ay denotes the stabilizer of the vertex
1 under A.

We set N = N4(R(G)) = R(G) x Aut(G, S) and we remark that for the normal
edge-transitivity of Cay(G, S) the group N need only be transitive on undirected
edges, and may or may not be transitive on ordered pairs of adjacent vertices.
From [4] we have the following result which is useful in our investigation.
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Lemma 2.2. Let T' = Cay(G, S) be an undirected Cayley graph of the group G on
S and let N = Ny(R(G)) = R(G) x Aut(G, S). Then the following are equivalent:

(7) T is normal edge-transitive.
(i) S=TUT~! where T is an orbit of Aut(G,S) on S.

(iii) There exist a subgroup H of Aut(G) and g € G such that S = gT U (g~1)¥,
where g = {gh|h € H}.

3. Cayley graphs on a certain group of order 4n

First we consider the generalized quaternion group. The generalized quaternion
group of order 4n has the following presentation:

Qun = (a,b]a® =b* =1, a" = b, b~ lab=a~1).

It is easy to verify that the center Z of Qy, has order 2 generated by a" = b and
% 2 Dy,. The elements of Qg4, are of the form a’4?, 0 <i < 2n—1, 5 =0, 1.
Element orders of Q4. is as follows:

O(a") = 5y, 0<k<2n—1, (0,2n) = 2n,

O(akb) =4, 0< k< 2n— 1.

Proposition 3.1. The automorphism group of Qu, is of order 2np(2n) and is
isomorphic to the semi-direct product Zo, X ®o,, where ®o, is the group of units
Of Zgn.

Proof. Let ¢ € Aut(Q4y,). Then ¢ is completely determined by defining ¢(a) and
©(b). Since @ preserves order of elements we have O(p(a)) = 2n and O(p(b)) = 4.
Therefore p(a) = a¥, where 1 < k < 2n, (k,2n) = 1. If p(b) = a'has order 4,
then ¢({a,b)) C {(a) or G C (a) which is a contradiction. Therefore ¢(b) = a'b,
0 <1< 2n. Tt can be verified that ¢ in fact defines an automorphism of @y, and
if we set ¢y 1(a) = a*, pi(b) = a'b with k, [ satisfying the above conditions, then
PPk = Pl 14kl hence:

Aut(Qun) = {pr,i |k € Pop, | € Loy}

k1
§{|:0 1:|Il€€¢)2n,lEZ2n}

But if we set
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([ §Jen)

then Aut(Quan) = N x H & Zo, ¥ $yy,, where the group ®o,, has order ¢(2n). The
proof is completed now. O

and

Now let S be a subset of Qg4, such that 1 ¢ S, S = S~! and (S) = Q4,,. Our
aim is to consider normal edge-transitive Cayley graphs @4, on S. By Lemma
2.2, elements of S have the same order d and S = T UT~! where T is an orbit of
Aut(G,S). If S contains an element of order 2 this element must be b? which is a
central element and invariant under Aut(G, S) and S can not break as S = TUT 1.
This implies that |S| should be even. Since (a)is a cyclic group of order 2n, for
each divisor d of 2n there is a unique subgroup of (a)with order d and elements of
order d of (a) lie in this subgroup. If d # 4, elements of order d of Q4 lie in (a)
and obviously can not generate Qg4 -

Next we assume elements of S are of order d = 4. Keeping fixed the above
notations we state the following:

Proposition 3.2. S can not contain elements of order 4 contained in (a).

Proof. On the contrary suppose a® € (a)NS has order 4. Then(k?—gn) = 4 implying
n = 2(k,2n). Hence n must be even and we set n = 2t which implies & is an odd
multiple of ¢, i.e., k = (20 + 1)t = ZEU™ Then from 0 < k < 2n we obtain [ = 0

or 1, hence k =2 or%”. This implies that the only elements of order4 in (a) are

2
a® and a'% .

But in this case if we apply the automorphisms ¢ of @4, obtained in Proposition
3.1 we see that {a?, @ } is invariant under Aut(Qg4,) . Again S can not break

as S =T UT~! with T as an Aut(G, S) orbit and this completes the proof. O

By the above proposition if Cay(G,S) is normal edge-transitive, then we will
have S C {a'b|0 < i < 2n}.

Proposition 3.3. Let 0 < i # j < 2n. Then (a'b,a’b) = Qu, if and only if
(i—j,2n) = 1.

Proof. Suppose j < i, (i —j,2n) = d and H = (a'b,a’b). Then using the
defining relations for Q4, we deduce (a'b)? = b*> € H. Therefore a*~7 € H. Since
(i — j,2n) = d we obtain a? € H and d is the least power of a belonging to H.
Now elements of H can be organized as a'?, a’b? 0 < i < Fn Hence|H| = 27
and H = @Q4, if and only if d = 1 and the proof is complete. O

Next we turn on tetravalent Cayley graphs of Q4,. By what we proved earlier
we have S = {a'b,a’b,a’b™!,a/b~1}, where (i —j,2n) = 1. We define the following
concept which is needed in the next result.
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If G is a group with two subsets S and T such that 1 ¢ S, 1 ¢ T, and if there
is an automorphism ¢ of G such that ¢(S) =T, then Cay(G, S) is isomorphic to
Cay(G,T). In this case S and T are called equivalent.

Proposition 3.4. If (i —j,2n) =1, then {b,ab,b=',ab=1} is equivalent to
{a'b, a’b,a’b=t, a’b1}.

Proof. It is enough to apply the automorphism ¢;_; ; of Q45 to one of the above
sets. O

Theorem 3.5. There is only one tetravalent normal edge-transitive Cayley graph
of Q4n and the automorphism group of this graph is isomorphic to Qun X Dg if n
is even and isomorphic to Qan X (Z2 X Zs) if n is odd.

Proof. By Proposition 3.3 we have S C {a’b|0 < i < 2n} and |S| =4, S = S~1,
(S) = Qup forces S = {a'b,a’b,a’b=1,a’b~'} for some i,j where (i — j,2n) = 1.
Now by Proposition 3.4 we may take S = {b,ab,b~',ab='}. This proves that up
to equivalence there is a unique tetravalent normal edge-transitive Cayley graph
of Q4. Next we determine Aut(Q4yn,S).

Since (S) = Qun the group Aut(Qan,,S) acts on S faithfully, from which we
deduce Aut(Quan,S) < S4. If Aut(Qan,S) contains an element o of order 3, then
o would fix an element say a € S, but in this case o(a™!) = a~! and o can not
be a 3-cycle. Therefore |Aut(Q4n,S)| is a divisor of 8. It is easy to verify that
the elements 1 ,, and @2,—1,1 belong to Aut(Quy, S) and (p1,n, Pon—1,1) = Vi the
Klein’s four group. We distinguish two cases:

CASE (i). n is even. In this case ¢,_11 is also an element of Aut(G,S)
of order 4 and (pn—_1.1, P2n—1,1,91.n) = Ds is a subgroup of Aut(Qu4y,S), hence
Aut(Qqn, S) = Dg therefore the automorphism group of Cay(Q4n, S) is isomorphic
to Qupn X Dg.

CASE (i7). n is odd. In this case we will prove that Aut(Q4n,S) does not
contain an element of order 4. On the contrary suppose ¢ € Aut(Qun, S) is an
element of order 4. Therefore we have one of the cases oy ;(b) = ab, i (ab) = b~?
or i 1(b) = ab™!, pi(ab) = b. In the first case we obtain a'b = ab and a**'b =
b=1, hence a!~! =1, a*t!*" = 1. Since a is of order 2n we obtain k = n — 1, and
because n is odd, 2|(n — 1,2n) = (k,2n) = 1, a contradiction. In the second case
we obtain a'b = ab~!, a**'b = b, hence a'*"~! = 1 and a!** = 1. Again from
these relations we obtain £ = n — 1, a contradiction.

Since Aut(Q4n, S) does not contain elements of order 4 we obtain Aut(Q4n, S)
Zs X Zsa, hence the automorphism group of Cay(Qun,S) is isomorphic to Q4
(Zy x Z3) and the proof is complete.

O xR

4. Cayley graph of a group of order 8n

Next we are going to study the normal edge-transitive Cayley graphs of a certain
group of order 8n whose presentation is given as follows:
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Van = <CL,b | a? = bt = 1, (a’b)2 = (ailb)Z = 1>

where n is a natural number. Using similar techniques as used in the previous
section in finding the automorphism group of @4, one can prove the following:

Lemma 4.1. Aut(Vg,) is a group of order 4np(2n) if n > 1 and it is a group of
order 8 if n = 1.

Proof. In fact if n = 1, the group V3 = Dsg is the dihedral group of order 8. To
define an automorphism f of Vg, it is enough to define f(a) and f(b) which can be
verified they are of the form:

firsi(a) = a'b”
firsi(b) = a0,
where (,2n) =1,r=0,2, s=+1, 1 <t < n. O
Lemma 4.2. For Vg, we have
(a2,b2,ab) = {a2*, a2 +1pE! o2kp2 |1 < k < n}

Proof. 1f we set X = {a?F, a®**t1b*L 2802 |1 < k < n} since {a?,b%, ab} C X it is
sufficient to show that X is a subgroup of Vg, and it is obviously true. O

Theorem 4.3. There is no normal edge-transitive Cayley graph Cay(G,S) for
G = Vg, if S has an element of order 2.

Proof. Suppose Cay(G, S) is a normal edge-transitive Cayley graph and S has an
element of order 2.

Elements of order 2 in Vg, are Y = {a",b%, a"b? a?**t1b*1 |1 < k < n}. Since
all elements of S have the same order we have S C Y. If n is even then (S) C
(Y) C (a?,b%, ab) # Vgn, a contradiction. Hence n is odd.

If SN {a",a"?*} = 0 then (S) C (a® b ab) # Vs, a contradiction, hence
Sn{a,a"v?} # 0. For all f € Aut(G,S) we have f({a",a"b?}) = {a™,a"b?},
therefore SN {a™, a"b?} is an orbit of f € Aut(G,S) on S and it is a contradiction
by Lemma 2.2. O

Theorem 4.4. There is no normal edge-transitive Cayley graph Cay(G,S) for
G = Vg, if S has an element of order 4.

Proof. Suppose Cay(G,S) is a normal edge-transitive Cayley graph and S has
an element of order 4. Elements of order 4 in Vk,, are ab*! for odd n and are
{a%,a2b%,a?b™ |1 <t < n}.

Since Cay(G,S) is a normal edge transitive Cayley graph all elements of S
have order 4. If (n,4) = 1 or (n,4) = 4 then (S) C (a?,b) # Vg, a contradiction.
Hence (n,4) = 2 or equivalently 7 is odd.

If SN{a?,a2b?} = 0 then (S) C (a?,b) # Vg, a contradiction, hence S N
{a%,a%b?} # 0. For all f € Aut(G,S) we have f({a%,a%b?}) = {a%,a?b?}
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therefore SN {a%,a?b?} is an orbit of Aut(G, S) on S and it is a contradiction by
Lemma 2.2. unless |S| =4 and S = {a%,a%b? a~%,a"2b?} and in these case we
also have (S) # Vg,. O

Theorem 4.5. There is no normal edge-transitive Cayley graph on Vg,.

Proof. Suppose Cay(G, S) is a normal edge-transitive Cayley graph. By Theorems
3.3 and_ 3.4 we know that S can not have elements of order 2 or 4, Hence we have
S C {a%,a'v? |1 < i < 2n} consequently (S) C (a,b?) # Vs, a contradiction.  [J
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Filter theory in EQ-algebras based on soft sets

Young Bae Jun, Seok-Zun Song and Ghulam Muhiuddin

Abstract. Int-soft prefilters (filters) of EQ-algebras are introduced, and related properties are
investigated. Characterizations of int-soft prefilters (filters) of EQ-algebras are provided.

1. Introduction

Many-valued logics are uniquely determined by the algebraic properties of the
structure of its truth values. As a precise logic to deal with uncertainty and ap-
proximate reasoning, one can consider fuzzy logics. As well-known fuzzy logics,
one can also take residuated lattices based on fuzzy logics such as Lukasiewicz
logic, BL-logic, Ry-logic, MT L-logic, and so forth. In fuzzy logics, it is generally
accepted that the algebraic structure should be a residuated lattice. MV -algebras,
BL-algebras, Ry-algebras, MT L-algebras, and so forth are well-known classes of
residuated lattices. A new class of algebras called EQ-algebras has been recently
introduced by V. Novék and B. De Baets [9] with the intent to develop an algebraic
structure of truth values for fuzzy type theory. From the point of view of logic,
the main difference between residuated lattices and EQ-algebras lies in the way
the implication operation is obtained. It is obtained from a (strong) conjuction
in residuated lattices, but it is obtained from equivalence in EQ-algebras. Conse-
quently, the two types of algebras differ in several essential points, despite their
many similar or identical properties. An EQ-algebra has three binary operations:
meet (A), multiplication (®), and fuzzy equality (~), and a unit element, whereas
the implication (—) is derived from the fuzzy equality (~). Filter theory plays a
vital role in studying several algebraic structures such as residuated lattices, MV-
algebras, BL-algebras, Rp-algebras, MT L-algebras, BC K /BCI-algebras, lattice
implication algebras, and so forth. M. El-Zekey et al. [2] have introduced and
studied the prefilters and filters of EQ-algebras. Liu and Zhang [5] have intro-
duced and studied the implicative and positive implicative prefilters (filters) of
EQ-algebras.

Soft set theory [8] has been firstly proposed by a Russian researcher Molodtsov
in 1999. This is a general mathematical tool for dealing with uncertain, fuzzy, not
clearly defined objects. Generally, the soft set theory is different from traditional
tools for dealing with uncertainties, such as the theory of probability, the theory

2010 Mathematics Subject Classification: 03G25, 06D72, 06D99.
Keywords: EQ-algebra, int-soft prefilter, int-soft filter.
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of fuzzy sets and the theory of rough sets. Nowadays, work on the soft set theory
is progressing rapidly. Maji et al. [7] has been firstly defined some operations on
soft sets. They also have been introduced the soft set into the decision-making
problem [6] that is based on the concept of knowledge reduction in the rough set
theory [10]. Jun et al. [4] has been introduced and studied int-soft filters, int-soft
G-filters, regular int-soft filters, and M V-int-soft filters in residuated lattices. Jun
et al. has been studied (implicative) int-soft filters of Ry-algebras (see [3]).

The aim of this paper is to study prefilters (filters) and positive implicative pre-
filters (filters) of EQ-algebras based on soft set theory. We study characterizations
of positive implicative int-soft prefilters (filters) of EQ-algebras, and establish the
extension property for positive implicative int-soft filters.

2. Preliminaries

We display basic definitions and properties of EQ-algebras that will be used in
this paper. For more details of EQ-algebras, we refer the reader to [1], [2], and [5].

By an EQ-algebra we mean an algebra E := (E,A,®,~,1) of type (2,2,2,0)
in which the following axioms are valid:

(E1) (E,A,1) is a commutative idempotent monoid (i.e., A-semilattice with top
element 1),

(E2) (FE,®,1) is a monoid and ® is isotone with respect to < (with 2 < y defined
as r Ay =ux),

(zAy) ~2)@(a~x) <z~ (ahy),
(z~y)@(a~d) <(z~a)~(y~Db),

E7) z@y<z~y
for all x,y,z2,a,b € E.

The operation “A” is called meet (infimum) and “®” is called multiplication. If
the multiplication is commutative in an EQ-algebra E, then we say that E is a
commutative EQ-algebra.

Let E be an EQ-algebra. For all z € L, we put & = x ~ 1. We also define the
derived operation, so called implication and denoted by —, as follows:

(Vo,y € E)(z =y = (xNy) ~ ). (1)

An EQ-algebra E is said to be residuated if (x @ y) A z = x @ y if and only if
xA((yAz)~y)=xforall z,y,z € E.

Proposition 2.1. Every (commutative) EQ-algebra E satisfies the following con-
ditions for all a,b,c,d € E:
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(1) Ifa<b, thena—>b=1,a~b=b—a,a<bc—>a<c—band
b—c<a—ec,
<

2) a®b<aAb<a,bandb®a<aAb<a,b,
3) a—wb=a— (aAD),

4) (a—=b@(b—c)<a—c,

5) a—=b< (anc)— (bAc).

(
(
(
(

A subset F' of an EQ-algebra F is called a prefilter of E if it satisfies the
following conditions:

l1eF, (2)
(Va,be E)(a—>b€EF, a€F = beF). (3)

A subset F' of an EQ-algebra F is called a filter of F if it is a prefilter of E
with the following additional condition:

(Va,b,ce E)(a—»beF = (a®c) = (b®c)€F, (c®a)— (c@b) e F). (4)

A prefilter (resp. filter) F' of an EQ-algebra F is said to be positive implicative
if the following assertion is valid:

(Va,y,z€ E)(x > (y—>2)€F,c >yeF = x—z2€F). (5)

A soft set theory is introduced by Molodtsov [8]. In what follows, let U be an
initial universe set and X be a set of parameters. Let P(U) denotes the power set
of U and A,B,C,... C X.

A soft set (f, A) of X over U is defined to be the set of ordered pairs

(f,A) = {(z, f(2)) : x € X, f(z) € P(U)},

where f: X — P(U) such that f(z) =0 if z ¢ A.

3. Int-soft prefilters (filters)

In what follows, let F denote a commutative EQ-algebra unless otherwise specified.

Definition 3.1. A soft set (f, E) on F over U is called an int-soft prefilter (resp.
int-soft filter) of E if the set

ig(f;7) ={zeE|yC f(x)}

is a prefilter (resp. filter) of E for all v € P(U) with ig(f;v) # 0.

We say that ig(f;7) is the y-inclusive set of (f, E).
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Example 3.2. Let £ = {0,a,b,1} be a chain. We define two binary operations
‘®’ and ‘~’ by the following tables:

b 1

®‘Oa N‘Oa b 1
010 O O O 0|1 a a a
a |0 0 0 a a |la 1 b b
b |0 0 0 b b |la b 1 1
1 ]0 a b 1 1 |a b 1 1

Then E := (E,\,®,~,1) is an EQ-algebra (see [5]). The derived operation
“—” is described as the following table:

— o ol
— = e | o
= T T

0
1
a
a
a

St o= R

Then a soft set (f, E) on E over U = Z defined by

) AN if z € {0, a},
flz):=<¢ 4Z if x =1,
27 iftx=1

is an int-soft prefilter of E.

Example 3.3. Let E by as in the previous example an let

® [0 a b 1 ~ 10 a b 1
010 O 0O O 011 0 0 O
a |0 a a a a |0 1 a a
b 10 a b b b 10 a 1 1
110 a b 1 110 a 1 1

Then F := (E,A\,®,~,1
“—” is described by table:

~—

is an EQ-algebra (see [5]). The derived operation

—>‘Oab1
0|1 1 1 1
a |0 1 1 1
b 10 a 1 1
1 0 a 1 1

Then a soft set (f, E) on E over U = Z defined as follows:

P 47, if x € {0,a},
Ut {2Z if z € {b,1}

~

is an int-soft filter of E.
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Theorem 3.4. A soft set (f,E) on E over U is an int-soft prefilter of E if and
only if the following assertions are valid.

(va € B) (fl@) € F1)), (6)
(va,y € B) (f2)n flz = y) € fv) - (7)

Proof. Assume that (f,E) is an int-soft prefilter of E. For any x € E, let f(z) =
7. Then z € ig(f;7), and so ig(f;y) # 0. Thus ig(f;7) is a prefilter of E,
and therefore 1 € ig(f;v). Hence f(1) 2 v = f(z) for all z € E. For any
x,y € E, let f(a:) N f(x — y) = 0. Then f(:n) D 4 and f(x — y) 2 0, that is,
T € in(f; §) and v — y € ig(f;0). It follows from (3) that y € ig(f;0) and that
fly) 26 =f@)nflz —=y).

Conversely, let (f, E) be a soft set on E over U that satisfies two conditions
(6) and (7). Let ¢ € P(U) be such that ig(f;e) # 0. Then f(a) D € for some
a €ip(f;e). Using (6), we have f(1) D f(a) De,andso 1 € ig(f;e). Let z,y € E
be such that = € ig(f;e) and © — y € ig(f;e). Then e C f(z) and € C f(x — y).
It follows from (7) that ¢ C f@) N f(z = y) C f(y) and that y € ig(f;c). Hence
ig(f;e) is a prefilter of E for all e € P(U) with ig(f;e) # 0, and therefore (f, E)

is an int-soft prefilter of E. O

Theorem 3.5. A soft set (f, E) on E over U is an int-soft filter of E if and only
if it satisfies (6), (7) and

(va,y2 € B) (f@ > 9) € @@ 2) » w@2). (®)

Proof. Let (f, E) be an int-soft filter of E. Then (f, E) is an int-soft prefilter of
E, and so two conditions (6) and (7) are valid by Theorem 3.4. Let x,y € E and
7 € P(U) be such that f(z — y) = 7. Then & — y € ig(f;7). Since ig(f;7) is a
filter of E, we have (z ® 2) = (y® 2) € ig(f;7) for all z,y, z € E. It follows that

fz@z) = (y©z)27=flz—>y)

for all z,y,z € E.

Conversely, let (f, E) be a soft set on E over U that satisfies (6), (7) and (8).
Then (f,E) is an int-soft prefilter of £ by Theorem 3.4, and thus ig(f;7) is a
prefilter of E for all v € P(U) with ig(f;y) # 0. Let z,y € E be such that
x—y €ip(f;vy). Then

flla®z) = (y©2) 2 flz = y) 27

by (8), and so (r® 2) = (y® 2) € ig(f;v). Hence ig(f;v) is a filter of E, and
therefore (f, F) is an int-soft filter of E. O

Proposition 3.6. Every int-soft prefilter (f, E) of E for all z,y € E satisfies the
following assertions:
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(1) if z <y, then f(z) C f(y),

(2) flz®y) C fz) N fy).

Proof. (1). Let z,y € E be such that » <y. Then  — y = 1 by Proposition 2.1.

It follows from (6 )and( ) that f(y) 2 f(z )ﬂf(x—>y) flz )ﬂf( ) = f( )-
(2). Using Proposition 2.1(2) and item (1), we have f(z®y) C f(z)Nf(y). O

Theorem 3.7. For a soft set (f, E) on E over U, the following are equivalent.
(1) (f, E) is an int-soft prefilter of E.
(2) (Va:,yweE)( <y—z = flo) )
3) <w,yvzeE>(H<wz>—1 = J@)n i) € ().

Proof. (1) = (2). Let 2,5, z € E be such that z <y — 2. Then f(z) C f(y — 2)
by Proposition 3.6(1). Using (7), we get
f2) 2 Fy)n fly = 2) 2 f2) N f(y).
(2) = (3). Let z,y,z € E be such that x — (y — z) = 1. Then
r<1l=2— (y— 2),

and so f(z) C f(y — z) by (2). Since y — z < y — 2, it follows from (2) that

f2)2 fly = =) N fly) 2 fl@)n fly).

(3) = (1). Since z — (z — 1) = 1 for all z € E, it follows from (3) that
f(x )gf()foraller Note that (z — y) — (x = y) = 1 for all z,y € E.
Thus f(z) N f(x — y) C f(y) for all 2,y € E by (3). Therefore (f,E) is an
int-soft prefilter of £ by Theorem 3.4. O

Proposition 3.8. For any int-soft filter (f,E) of E, for all x,y,z € E the fol-
lowing assertions are valid.

(1) flx®y) = fl@)nfy),

(2) flz—2)2 fle=y)nfly—2).
Proof. (1). The inclusion f(z ® y) C f(z) N f(y) follows from Proposition 3.6(2).
Note that y <1 — y for all y € E. It follows from Proposition 3.6(1) and (8) that

fy)cfl—=y) S fl@el)— (z0y) =

f
and from (7) that f(z®y) D f(z)N f(z = (x®7y)) 2 f(z)N f(y) for all z,y € E.
(2). Combining Proposition 2.1(4), Proposition 3.6(1) and item (1) induces

(z = (z®y))

fla=2)2f(z=y) @y —2)=Ffle=y)nfly—2)

for all x,y,z € E. O
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4. Int-soft prefilters (filters)

Definition 4.1. A soft set (f, E) on E over U is called a positive implicative
int-soft prefilter (filter) of E if the nonempty ~y-inclusive set of (f, E) is a positive
implicative prefilter (filter) of F for all v € P(U).

Example 4.2. The int-soft filter (f, E) in Example 3.3 is positive implicative,
but the int-soft prefilter ( f ,E) in Example 3.2 is not positive implicative because
if we take 7 € P(U) with 4N C 7 C 47, then ig(f;7) = {b,1} is not a positive
implicative prefilter of E.

Theorem 4.3. A soft set (f, E) on E over U is a positive implicative int-soft
prefilter (filter) of E if and only if it is an int-soft prefilter (filter) of E that
satisfies an additional condition:

(va,y,2 € B) (Flz = (= 2) N fz =+ y) € fla = 2)) . (9)

Proof. Assume that (f, E) is a positive implicative int-soft prefilter (filter) of E.
Then ig(f;7) is a positive implicative prefilter (filter) of E for all 7 € P(U) with
ig(f;7) # 0, and therefore ig(f;7) is a prefilter (filter) of E. Hence (f, E) is an
int-soft prefilter (filter) of £. Let x,y,z € E be such that f(z — (y — 2))N f(z —
y) =¢. Then z — (y — 2) € ig(f;e) and x — y € ig(f;e), which implies from
(5) that  — z € ig(f;e). Thus

fla=z)2e=flx—(y—>2))nflz—y)

Conversely, let (f, F) be an int-soft prefilter (filter) of E that satisfies (9).
Then ig(f;e) is a prefilter (filter) of E for all e € P(U) with ig(f;c) # 0. Let
x,y,z € E be such that  — (y — 2) € ig(f;e) and ¢ — y € ig(f;e). Then
eC f(x = (y—2)) and e C f(x — y). It follows from (9) that

eCflz—(y—=2)Nflz—y Cfla—z)
(

and that x — z € ZE(f, ¢). Hence ig i g) is a positive implicative prefilter
(filter) of F for all ¢ € P(U) with ig(f;e) # 0, and therefore (f, E) is a positive
implicative int-soft prefilter (filter) of E. O

Theorem 4.4. If an int-soft filter of E satisfies the following assertion

(va,y € B) (F(((z > y) Aw) > ) = (1)), (10)
then it is a positive implicative int-soft filter of E.

Proof. Let (f, E) be an int-soft filter of E that satisfies the condition (10). Using
Proposition 2.1(5) and Proposition 2.1(3), we have

r=y—=2)<(zAy) = ((y—=2)Ay) and 2 2 y=x = (x Ay).
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It follows from (6), Proposition 3.6, Proposition 3.8(2) and (10) that

fla=y)nfl@—=(y—2)=Ffle=y)nfle—y—2)nf1)
Cflx—=(@rny) N fll@ny) = (y=2)Ay)NF1)
Cflx—= (=2 AN f((y—=2)Ay) = 2) C flz— 2).

Therefore ( 1, E) is a positive implicative int-soft filter of F' by Theorem 4.3. [

Theorem 4.5. Let (f,E) and (g, E) be int-soft filters of E such that f(1) =g(1)
and f(z) C g(x) for all x € E. If (f, E) is positive implicative, then so is (g, F).

Proof. Indeed, §(((x = y) Az) = y) D f(((z = y) Az) = y) = f(1) = §(1), and
thus g(((x = y) Ax) = y)) = g(1) for all 2,y € E. Therefore (g, E) is a positive
implicative int-soft filter of £ by Theorem 4.4. 0
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Minimal ideals of Abel-Grassmann’s groupoids

Waqar Khan, Faisal Yousafzai and Kar Ping Shum

Abstract. We study minimal (0-minimal) ideals, simple (0-simple) Abel-Grassmann’s groupoids
and zeroids of an Abel-Grassmann’s groupoid S. We consider S containing a minimal ideal which
is the union of all minimal left ideals of S. The completely simple Abel-Grassmann’s groupoid
which is equal to the union of all its nonzero minimal left ideals is investigated. In addition, we
discuss a universally minimal left ideal of S which is a right ideal and is the kernel of S. Finally,

we prove that S contains a left zeroid if and only if it contains a universally minimal left ideal.

1. Introduction and preliminaries

The concept of an Abel-Grassmann’s groupoid (abbreviated as AG-groupoid) was
first introduced by M. A. Kazim and M. Naseeruddin in 1972 which they called a
left almost semigroup [7]. P. Holgate [6] called the same structure a left invertive
groupoid. P. V. Proti¢ and N. Stevanovié¢ later called such a groupoid an Abel-
Grassmann’s groupoid [12]. An AG-groupoid is in fact a groupoid S satisfying the
left invertive law (ab)c = (cb)a. The left invertive law can be stated by introducing
the braces on the left of ternary commutative law abc = cba. An AG-groupoid
satisfies the medial law (ab)(cd) = (ac)(bd). Since AG-groupoids satisfy the medial
law, they belong to the class of entropic groupoids. If an AG-groupoid S contains
a left identity, then it satisfies the paramedial law (ab)(cd) = (dc)(ba) and the
identity a(bc) = b(ac) [11]. An AG-groupoid is an algebraic structure which is
midway between a groupoid and a commutative semigroup. Consequently, an
AG-groupoid has many properties similar to to the properties of semigroups (cf.
for example [3], [4] and [5]), but AG-groupoids (also AG-groupoids with a left
identity) are non-associative and non-commutative in general.

The minimal ideals are interesting not only in itself but it also influences the
other properties of semigroups. In the literature, some interesting articles on
minimal ideals and their properties can be found, for instance, see [1, 2, 8] and [9].

In this paper, we investigate minimal ideals in a non-associative and non-
commutative AG-groupoid. We also discuss zeroids and divisibility in an AG-
groupoid and relate them with minimal ideals.

2010 Mathematics Subject Classification: 20N20, 20M30, 20M32, 20M50, 20M99
Keywords: Abel-Grassmann’s groupoid, O-minimal ideal, O-simple groupoid.
Research of the first author is supported by the NNSF of China ( # 11371335)
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By a wunitary AG-groupoid, we mean a AG-groupoid S with a left identity e.
It is worth noticing that if S is a unitary AG-groupoid then Se = ¢S = S and
S = S2. A groupoid with the property S = S? is called surjective.

If 1 C Sand SI CT(ISCI), then I is called a left (right) ideal of S. If T
is both a left and right ideal of S, then I is called a two-sided ideal or simply an
ideal of S. A left ideal L of an AG-groupoid S is minimal if every left ideal M of
S included in L coincides with L. A similar statement holds for the right ideal.
Let S* be an AG-groupoid and S* O S O A such that A is a left ideal of S and
S is a left ideal of S* with the assumption that A is idempotent. Then A is a left
ideal of S*. In fact, the following equalities always hold.

S*A=5"-AACS" - AS=A-S*"SCAS=AA-55=85A-SACA.

Notice that the property of being left ideal is transitive only if we impose an
extra condition on a left ideal A. In general, being a left ideal is not transitive. If
S is an AG-groupoid and A and B are ideals of the same type, then AN B is either
empty or an ideal of the same type as A and B. Also if S is an AG-groupoid, then
the union of any collection of ideals of the same type is an ideal of the same type.

If there is an element 0 of an AG-groupoid (S, -) such that 0 = 0z = 0 for all
x € S, then 0 is the zero element of S.

2. Minimal and 0-minimal ideals

In [8], the authors studied minimal ideals of an AG-groupoid. They have shown
that if L is a minimal left ideal of a unitary AG-groupoid, then Lc forms a minimal
left ideal of S for all ¢ € S which is a consequence of the following lemma.

Lemma 2.1. Let L be a left ideal of a unitary AG-groupoid S. Then the following
conditions are equivalent:
(1) L is a minimal left ideal of S;
(it) Lz =L for every x € L;
(t4i) Sx = L holds for every x € L.

Proof. (i) = (i7). Let L be a minimal left ideal of S and @ € L. Then Lz C L.
Moreover, S - Lx = Se- Lv = SL - ex C Lz. Thus, Lz is a left ideal of S and, by
the minimality of L, we have Lz = L for every = € L.

(ii) = (idi) is simple.

(#ii) = (7). Let L be a left ideal of S such that Sz = L holds for every x € L.
Assume that M is a left ideal of S which is contained in L and let € M. Then
x € L and therefore, L = Sx C SM C M. Hence L = M. O

Lemma 2.2. A left ideal L (a right ideal R of a unitary AG-groupoid S is a
minimal left (right) ideal of S if and only if L = Sa for all a € L (respectively,
R = Sa? for every a € R). O
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Theorem 2.3. If a unitary AG-groupoid S contains a minimal left ideal L such
that L is idempotent, then S contains a minimal ideal which is the union of all the
minimal left ideals of S.

Proof. Assume that L is a minimal left ideal of S. Then, as a consequence of
Lemma 2.1, LS is the union of all the minimal left ideals of .S, that is LS = USLs.
se

Now we have the following equalities:
LS-S=85-L=SL=SS-LL=LL-SS=1LS,

and
S-LS=S5-LS=SL-SSCLS.

Hence, we can easily show that LS is an ideal of S. Further, we may suppose
that I is an ideal of S such that I C LS. Then S(I - LS) C LS. Therefore by the
minimality of L, we have I - LS = L. Thus LS = (I - LS)S C IS - S C I. Hence,
we can see that S contains a minimal two sided ideal which is a union of all the
minimal left ideals of S. 0

Corollary 2.4. A unitary AG-groupoid S will have no proper ideals if and only
if S is the union of all its minimal left ideals. O

Corollary 2.5. If a unitary AG-groupoid S contains a minimal left ideal L and
an ideal I such that L is idempotent then L C I. O

Theorem 2.6. Let L, R and I be the minimal left, minimal right and minimal
ideal of a unitary AG-groupoid S respectively such that L is idempotent and R C I.
Then I =LR=LS-R=LS=SR=LI=1IR.

Proof. Since L? = L,and R C [ wehave S-LR = L-SR = L(SS-R) = L(RS-S) C
LRand LR-S=SR-L=SR-LL=SL-RLC LR. So, LR is an ideal of S and
therefore by minimality of I again, we have I C LR. Also it is easy to see that
LR C I, which shows hat I = LR. Thus,

S(LS-R) = (SS)(LS - R) = (S- LS)(SR)
= (85 - LS)(SR) = (SL- SS)(SR)
C(L-SS)(SR)CLS-R,

and

(LS-R)S =(LS-R)(SS)=(LS-S)(RS)CSL-R
:(SS'LL)R:(S S)RCLS R.
Hence, LS - R is an ideal of S and, by the minimality of I, we obtain I C LS - R.

Also it is easy to see that LS- R C I, which implies that I = LS R. The remaining
results can be proved in the similar manner. O
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Corollary 2.7. If L, L', R, R’ are minimal left and minimal right ideals of a
unitary AG-groupoid S respectively, then LR = L'R’. O

Lemma 2.8. If L is a minimal left ideal of a unitary AG-groupoid S, then L is
an AG-groupoid without proper left ideal.

Proof. Let L' be a left ideal of L, then LL' C L. As L is a left ideal of S, we have
S.-LL' = Se-LL' = SL-el’ C LL', The above result shows that LL is a left ideal
of S contained in L and therefore by the minimality of L, we have L = LL CL.
This equality shows that L = L and thus L contains no proper left ideal. O

Definition 2.9. A left (right) ideal M of an AG-groupoid S with zero is called
0-minimal if M # {0} and {0} is the only left (right) ideal of S properly contained
in M.

Theorem 2.10. Let M be a 0-minimal ideal of a unitary AG-groupoid S with
zero such that M? # {0} and S # {0}. If R # {0} is a right ideal of S contained
in M, then R? # {0}.

Proof. Let R be right ideal of S, then it is easy to show that RS is an ideal
of S. Therefore by the O-minimality of M, either RS = {0} or RS = M. Let
RS = {0}. Since R is nonzero and would appear as an ideal of S contained in M,
therefore R = M. Thus, M? C MS = RS = {0}. This contradicts the hypothesis
of M. Thus RS = M and therefore M? = RS - RS = R2S, which shows that
R? # {0} O

Lemma 2.11. Let S be a unitary AG-groupoid with zero and S # {0}. Then
Sa-S =S5 for every 0 # a € S if {0} is the only left ideal of S.

Proof. Assume that S? # {0} and {0} is the only left ideal of S. Further, suppose
that C ={ce€ S:Sc-S={0}}#0.If x € C and y € S, then

(S-yz)S = (y- S2)(59) = (yS)(Sz - 5) = (Sz)(yS - §) € Sz - 5 = {0}

The above equality implies yz € C. Thus yx € SC C C which means that C is a
left ideal of S. Therefore, either C'= {0} or C' = S. For the last case, we have

SC -8 =828=885=5=1{0},

which contradicts our assumption. Hence, we have C' = {0} and Sa - S # {0} for
all 0 #£ a € S. Since Sa - S is a left ideal of S, we have Sa - S = S. O

Theorem 2.12. If a 0-minimal ideal A of a unitary AG-groupoid S with zero
contains at least one O-minimal left ideal of S and A% # {0}, then every left ideal
of A is also a left ideal of S.
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Proof. Assume that L # {0} is a left ideal of A and a € L\ {0}. By Lemmas
2.2, 2.11 and the fact that A% # {0}, we obtain Aa- A = A and Aa # {0}. By
Lemma 6.8 [8], S contains a left ideal L; such that a € L; C A. Since Aa is a
nonzero left ideal of S contained in L1, we have Aa = L. Thus, a € Aa. Therefore
L CU{Aa:a€ L}. Toshow the converse statement let € U{Aa : a € L}. Then
there exist elements b € A and ¢ € L such that x = be. Since AL € L, it is
evident that © € L. Thus L = U{Aa:a € L}. By the union of a set of ideals,
U{Aa:a € L} is a left ideal of S. O

3. Simple and completely 0-simple AG-groupoids

In this section, we consider an AG-groupoid which contains a zero but contains
no proper ideal except zero. If zero is the only element of an AG-groupoid, then
it would be a proper ideal. The fact that the intersection of two nonzero minimal
ideals might contain a zero element of an AG-groupoid differentiates it from the
class of non-zero ideals.

Theorem 3.1. If an AG-groupoid S without zero has at least one minimal left
ideal, then the sum of all its minimal left ideals is a two-sided ideal of S.

Proof. Let A, be the minimal left ideals of S and B = )" A,. Then B is a left
ideal. In fact: SB =S5 Aa =) ,54a C > ,Aa = B. Also let a € S, then
Ba = ) Aqa. But since Aya is a minimal left ideal of S is contained in the
sum of all minimal left ideals, i.e Aoa C B holds for all a € S. It shows that
Ba € BS C B. Hence B is a two sided ideal of S. O

Theorem 3.2. An AG-groupoid without zero having at least one minimal left ideal
is the sum of all its minimal left ideals if and only if it is simple.

Proof. Let S be simple and has at least one minimal left ideal L. By Theorem 3.1
the sum B of all the minimal left ideals is a two sided ideal of S. Thus B = S. As
B C S is contrary to the definition of simplicity of S.

Conversely, suppose that S = " L,. Suppose that S has a two-sided subideal
A distinct from S, ie., AS C A C S and SA C A C S. Then AL, is a left
ideal of S contained in L,. In fact: S(AL,) = A(SL,) € AL, C L. Since
every L, is a left ideal of S, according to the minimality, AL, = L. Therefore,
AS=A>Y_ Lo=>,ALy, =) L, =5, which contradicts our supposition. Thus
S has no proper two sided ideal and hence is simple. O

In a unitary AG-groupoid S the situation Sa # S (Sa? # S) for every a € S is
possible. Indeed, such situation take place in a unitary AG-groupoid S with the
following multiplication table:
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o Q0 ool
Q Q2 2 Q|
0O Q0 oo
QO 0 |0
0 Qo
S0 Q0 Qo

Definition 3.3. An AG-groupoid S is called left (right) simple if S is the only
left (right) ideal of S. It is called simple if it contains no proper ideal.

Theorem 3.4. A unitary AG-groupoid S is left (right) simple if and only if Sa = S
(Sa? = S) for every a € S.

Proof. Suppose that S is a left simple AG-groupoid. Let a € S, Then
S-Sa=85-Sa=aS-55=aS-5=855 a=Sa.

Thus Sa is a proper left ideal of S, but this contradicts our assumption. So,
Sa=2S5.

Conversely, suppose that Sa = S for all a € S. Let L be a left ideal and b € L.
Then S = S5bC SL C L and hence S = L.

Let S be right simple and a € S. Then

Sa2-8S=85-a’S=5-a25=a%-59 =S8 -aa = Sad>.

The above shows that Sa? is a proper right ideal of S, which is a contradiction to
the fact that S is right simple and therefore Sa? = S.
The converse statement is obvious. O

Definition 3.5. An AG-groupoid S with zero is called 0-simple (left 0-simple,
right 0-simple) if 5% # {0} and {0} is the only ideal (left ideal, right ideal) of S.

Theorem 3.6. Let S be a unitary AG-groupoid with zero and S # {0}. Then S
is left (right) 0-simple if and only if Sa-S = S (Sa?-S = S) for every 0 #a € S.

Proof. The first part of the proof is a consequence of Lemma 2.11. To prove the
second part assume that Sa-S = S. Then S? # {0} because S = Sa-S C S2. Let
A # {0} be a left ideal of S and a € A, then S = Sa-S C SA-S C A. Hence S is
left O-simple. Similarly it can be proved for a right 0-simple AG-groupoid. O

Corollary 3.7. A unitary AG-groupoid S without zero is left (right) simple if and
only if Sa-S =S (Sa?-S =9) for alla € S. O

Lemma 3.8. Let {0} be the only ideal properly contained in a unitary AG-groupoid
S with 0. Then S is 0-simple.
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Proof. Since S? is an ideal of S. We have either S? = {0} or S? = S. If S? = {0},
then S = {0} and {0} is not the proper ideal of S, a clear contradiction. Now if
S2 # {0}, then by definition, S is 0-simple. O

Lemma 3.9. Let L (R) be a 0-minimal left (right) ideal of a 0-simple unitary
AG-groupoid S with zero. Then Sa = L (Sa? = R) for a € L\0 (a € R\0).

Proof. Let L be a 0-minimal left ideal of S and a € L\0. Then Sa is a left ideal of
S contained in L. By minimality of L, either Sa ={0} or Sa = L. The case Sa =0
is impossible because a # {0} and therefore Sa = L. Similarly in the case for a
right ideal. O

Definition 3.10. If S is an AG-groupoid with zero such that S? # {0} and has
no proper nonzero ideal and has minimal left and minimal right nonzero ideals,
then S is said to completely simple AG-groupoid with zero.

Theorem 3.11. Let L be a minimal left ideal of a completely simple unitary AG-
groupoid S with zero such that L is idempotent. Then LS =S = A, where A is a
nonzero left ideal of S contained in LS.

Proof. Let S be an AG-groupoid and L be a nonzero minimal left ideal such that
L? = L. Since we have LS -S = (LL-SS)S = (LS -LS)S C LL-S C LS, and
S-LS=S58S5-LS=SL-S5SS CLS, we see that LS is an ideal of S. If LS = {0},
then there exists only one minimal left ideal L, i.e., the zero ideal and S reduces
to L. Therefore LS = SS = 5% = {0}, which the contradicts the argument of S.
Hence our assumption is false and hence LS = S. Let A be a nonzero left ideal
of S contained in LS. Let a € LS. Then there exists b € L and y € S such that
a = by. Since A C LS, therefore 0 # f € A has the form f = ty for t € L and
y € S. According to Lemma 2.1, every b € L has the form b = st where s € S.
Therefore, a = by = st-y = se-ty = se- f € SA C A. It follows that LS C A and
hence LS = A. O

Corollary 3.12. Let L be an idempotent minimal left ideal of a completely simple
unitary AG-groupoid S with zero. Then LS is a minimal left ideal of S. O

Theorem 3.13. If S is a completely simple unitary AG-groupoid with a zero and
L and R are nonzero minimal left and right ideals of S respectively such that L
and R are idempotents. Then RL # {0}. If LR # {0}, then LR = S.

Proof. Similarly as in the proof of Theorem 3.11 we can prove that LS = S and
SR = S. Hence,

§=8S=SR-LS=(5S-RR)(LS) = (RS- L)S = (LS - RR)S
=(LR-SR)S=S(LR-R)-S =(S-RL)S.

The above equality implies that RL # {0}. If LR # {0}, then
S-LR=S8S-LR=L(SS-R)=L(RS-S)C LR
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and LR-S = (LL-R)S C LR, which shows that LR is a two sided ideal of S and
therefore LR = S. O

Corollary 3.14. If L is a nonzero minimal left ideal of a completely simple unitary
AG-groupoid S, then LR = S for some nonzero minimal right ideal R of S. O

4. Zeroids and divisibility in AG-groupoids

The concept of zeroids in an AG-groupoid was given by Q. Mushtaq in [10], where
it is shown that every AG-groupoid has a left zeroid and characterized an AG-
groupoid in terms of zeroids.

Definition 4.1. An element u of an AG-groupoid S is said to be a left (right)
zeroid of S if for every element a € S, there exists z € S such that u = za (u = az),
that is u € Sa (u € aS). An element is called zeroid if it is both a left and a right
zeroid.

Definition 4.2. A left (right) ideal of an AG-groupoid S is called an universally
minimal left ideal of S if it is contained in every left (right) ideal of S. If an
AG-groupoid S has a minimal ideal K, then K is called the kernel of S.

Lemma 4.3. A unitary AG-groupoid S contains a left zeroid if and only if it
contains a universally minimal left ideal L and L contains all the left zeroids of S.

Proof. Assume that S contains a left zeroid and L consist of all left zeroids of S.
Then for a € SL there exists x € S and y € L such that a = xy. Since L is the set
of all left zeroids, y = bc for some b € S. Thus

a=xy=x-bc=ex- -bc=ch-ze= (ze-b)c.

So, a is a left zeroid belonging to L. Hence SL C L and L is a left ideal of S. Let
L1 be a left ideal of S. Then for b € Ly, Sb C SLy C Ly. Let z € L, then since z
is a left zeroid, z € Sb C L; and therefore L C L.

Conversely, if S contains a universally minimal left ideal L, then for any x € .5,
Sz is a left ideal of S and L C Sxz. Hence for every a € L we have a = yx for some
y € S. Thus we a is a left zeroid of S. O

Lemma 4.4. An universally minimal left ideal of a unitary AG-groupoid S is a
right ideal of S and is the kernel of S.

Proof. Assume that L is an universally minimal left ideal of S. Let p € LS. Then
p=uay for x € L and y € S. By Theorem 2.3, Ly is a minimal left ideal of S and
by definition of L, L C Ly and hence L = Ly. Thus p € Ly = L and therefore
LS C L, which shows that L is a right ideal of S. By definition, L contains no
proper ideal and hence is the kernel of S. O
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Theorem 4.5. In a unitary AG-groupoid S with zeroids, every left zeroid is a
right zeroid and vice versa. The set of all zeroids of S is the kernel of S.

Proof. The proof follows from Lemmas 4.7 and 4.4. O

An element a € S is said to be divisible on the left (right) by b € S if there
exist z,y € S such that a = ax (a = yb).

Theorem 4.6. Let a and b be two distinct elements of a unitary AG-groupoid S.
Then a is divisible by b on the right if and only if the left ideal of a is contained
in the left ideal of b.

Proof. Suppose that a is divisible by b on the right. Then for some z € S, a = xb.
Thus

SaUa=8-zbUxbC S-SbUSb=S55-5SbUSb
=0b5-SSUSb=SbUSb=S5bC SbUb.

Conversely, let Sa Ua C SbUb. Since a and b are distinct elements, therefore
we have a € Sb, this means that there exists some y € S such that a = yb. O

Corollary 4.7. If some elements of a unitary AG-groupoid S are divisible by all
the elements of S, then the collection of such elements is a universally minimal

left ideal of S.

Proof. Let B be a non-empty collection of all such elements which are divisible by
all the elements of S on the right, then B is a left ideal of S. Indeed, for a1,as € S,
there exists x € S such that b = zay for b € S. Thus

ash = ag - xay = eas - xay = a1 - age = (age - x)ay.

So, asb is divisible on the right by a; € S and hence asb € B.

Let L be any arbitrary left ideal of S. Then for [ € L and b € B, there exists
x € S such that b = 2l € B. Hence, B C L and it is an universally minimal left
ideal of S. O
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Flocks, groups and heaps, joined with semilattices

Arthur Knoebel

Abstract. This article describes the lattice of varieties generated by those of flocks and near
heaps. Flocks and heaps are two ways of presenting groups by a ternary operation rather than
a binary one. Their varieties joined with that of ternary semilattices create the varieties of near
flocks and near heaps. This is done by finding normal forms for words that make up free algebras.
Simple sets of identities define these varieties. Identities in general are decidable. Each near flock
is a Plonka sum of flocks, and each near heap is a Plonka sum of heaps. An algorithm translates

any binary group identity to one in a ternary operation satisfied by near heaps.

1. Introduction

This article merges groups, which arise from composing permutations, with semi-
lattices, which are partial orders with least upper bounds. This is not done by
imposing an order on groups, of which there is an extensive literature, but by
joining their varieties. The varietal join of groups with semilattices is achieved
seamlessly with operations having three arguments instead of the usual two. There
are several ways to do this. We look at flocks and heaps.

Figure 1 shows the lattice of these varieties. In each box are the algebras, the
name of their variety, and the identities defining it. The top box, containing all
of the varieties, is the new variety of near flocks. We prove that these varieties
are related as depicted, and decompose algebras higher up into those lower down,
wherever possible.

The traditional binary operation X of a group has five desirable properties:
associativity, unique solvability in each argument, and hence the existence of a
unity, from which follow inverses and cancellation. There are several ways to
change the binary operation to a ternary one [,,], where these properties diverge.
Our way defines it by:

[w,y,2] = (2 x y~™) x 2.

This satisfies (1) and (2), which together are called the para-associative law. This
operation is also uniquely solvable in each argument, which implies cancellation.
However there is neither a unity nor an inverse operation.

A set with a ternary operation satisfying the para-associative law and being
solvable in each argument is a flock in the original sense. But solvability is not

2010 Mathematics Subject Classification: 06A12, 08A05, 08B05, 08B20, 20N10, 20N15
Keywords: near flock, near heap, group, semilattice, join, variety, identity, extension, Ptonka
sum.
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definable by identities. To do so requires adding a unary operation T that cap-
tures regularity in the sense of von Neumann: for each x, the element T satisfies
[x,Z, 2] = «. This is not necessarily the inverse, although it may be is some cases,
and in other cases it may be the identity function. When 7 is the identity function

we have heaps.

Near Flocks
ng
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Flocks Near Heaps
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Figure 1. Lattice of varieties of flocks, heaps and semilattices, and their defining identities.
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The binary operation A of semilattices may be turned into a ternary operation:
[2,9,2] = (z Ay) A 2.

Then the equation [x,y, z] = = always has the solution y = x although it may not
be unique. Nevertheless we set T = x, the identity function. Although it could
be dropped in semilattices and heaps, for uniformity in comparing varieties we
type algebras with a ternary operation and a unary operation, that is the type is
< 3,1 >, except where otherwise noted later in this article.

For groups there is also the triple composition:

[z,y,2] = (z x y) x 2,

without a middle inverse y~!. This satisfies associative laws and solvability. The
inverse operation T = x~! may be again added to the type as the solution to
[x,Z,2] = x. But this is not the main line of investigation, and will be passed
over.

The lack of a unity is no loss and may be an advantage. In the study of
vector spaces, where a base-free presentation favors no particular axes, just as in
the physical world no particular directions are preferred, so a presentation with no
origin should be applauded, as it goes along with the universe having no designated
center. Still, the ternary operation has a physical meaning, at least for vector
spaces, it is the completion of a parallelogram, that is, it is the fourth vertex,
d = la, b, c], of a parallelogram when the other three vertices are a,b and c.

With the definition of the varieties by ever increasing sets of identities as we go
downward in Figure 1, it is clear that the lines represent set-theoretical inclusion
as we go upwards. It remains to be proven that the joins and meets are varietal:
for example, that ng is the smallest variety that includes both § and n$), and that
9 is the largest variety included in both § and n$).

To do this for joins, we find for each variety a normal form for its terms. These
constitute the free algebras. The identities in each variety are decidable.

Algebras in the joins are built from algebras below them. A near flock is a
Plonka sum of flocks, which is a special kind of extension of flocks by a semilattice.
A near heap is a Plonka sum of heaps.

Through the next four sections we descend from the top of the lattice of Figure
1. Since the operation T has no effect on the variety nf), because of identity (8),
it will eventually be left out in the treatment of the varieties lower in the lattice.

The next to last section spells out the close connection between heaps and
groups as an adjoint situation that is almost a categorical equivalence. The last
section translates any group identity to its counterpart in heaps.

2. Near flocks

The variety n§ of near flocks is defined by the set nF of identities (1)—(6), and is
at the top of the lattice of Figure 1. Free algebras are built with normal words.
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With these it will be proven in the next section that the variety of near flocks is
the join of those of flocks and near heaps.

First, we derive some consequences of the identities defining near flocks. Only
some of what is needed is written out here. More identities may be manufactured
by their reflection. The reflection of an identity is it written backwards, literally.
For instance, the reflection of (2), [vw[zyz]| = [v[yzw]z], is [z[way|v] = [[zyz]wy].
Since the reflections of (1)-(6) are consequences of these axioms, a reflection of
any consequence of (1)—(6) is also a consequence of them.

Proposition 2.1. These identities for near flocks follow from (1) — (6).

([w,z,7],y, 2] = [[w,y, 2], 7] (10)
([w,y,2],7, 2] = [[w,y, 2], 2, 7], (11)
(2,9, 2], [y, 2], w] = [2, 7, [y,7, [2, Z, w]]]- (12)
[z, v,w], [y, 9,%], [2, 0, w]] = [[x,y, 2], v, w]. (13)
Proof.
(10). ([w,z,7),y, 2] = [[x,7,w],y, 2] (6)
~ (2,7, [w,y, 2] (1)
~ [[w,y,z],z,2]  (6).
(11). lw,y,2],2, 2] = [w,y,[z,Z,2] (1)
~w,y, [z,z,7]] (6
~ ([w,y, 2], z,7 (1)
(12) [z,y, 2], [z,y, 2], w] = [[z,y, 2], [7,7, %], w] (3)
~ [z, 2],2, 7], 7, w] (2)
~ [z, y.9],7,w],2,2]  (11),(10)
~ [z, y,7],7 ,[Z,ZWH (1), (6)
~ 7 [y, 7, [z 0] (1),(11)
13). [z, v,w], [y, v,w], [2,v,w]] = [[[z,v, w], W, 7], y, [z, v, w]] (2)
~ [z, v, w],w, 7], y, 2], v, w] (1)
~ ([, y, 2], v, 0], v, w],w,w]  (10),(11)
~ [z, y, 2], v, w] (1),(5). O

Identities (10) and (11) of this proposition suggest isolating pairs of adjacent
variables when one is barred and the other is not.

Normal near flock words, introduced in the next definition, will serve as the
elements of free near flocks. A distinction is made between terms and words.
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Definition 2.2. In contrast to a term, built with variables and operations sym-
bols, a word is simply a finite string of these letters with no ternary operation sym-

bols but with single bars over some of the letters. For example, [xg, T, |14, 71, T4)

is a term, and zox1Z4T1x4 is a word. A letter adjacent to itself barred, z;Z; or
T;x;, is called a skew pair. Let |w| be the length of a word, that is, the num-
ber of occurrences of letters in it. A mnormal near flock word, or simply normal
word in this section, is a word, w = w?w?, with two parts, namely a flock part
w? and a semilattice part w® — their names will be motivated later. The flock
part w? is of odd length in which no variable z; and its bar Z; are adjacent,
in either order. The semilattice or skew part w® is of even length and is a se-
quence, T, T, Ti,Ti, - - - L4, Tiy,, of skew pairs x;Z; with the indices in increasing
order: i1 <ig < --+ < ig. All letters occurring in the flock part w® must occur in
the semilattice part w”, but not all the letters in w” need be in w?. For example,
here are the parts of a normal word:

W = T5T5L2T5T6T2X2 T2TaX5T5L6TeL9T9,
w? = T5T509T5T6T2Ta,

w? = ToT2X5T5L6LeLY9LY.

Definition 2.3. To define free near flocks we need to manipulate words with some
operators: the first operator w” reverses the order of the variables; for example,
(z129T3)" is Tgxexi. Note that (uvvw)? = wPvPuf for words u, v and w. The
second operator U joins semilattice parts: v? U w? is the string of all skew pairs
x;%; for all variables z; in v or w, put in order of increasing index with no skew pair
occurring more than once. The third transforms a word w of odd length back into
a term w” by appropriately inserting pairs of brackets to form ternary operations
all associated to the left; for example, the word w = x5x5x202T526T2 becomes the
term w® = [[[z5, 75, T2], T2, T5], 76, T2). The fourth is an algorithm, given in the
next definition, that normalizes any term.

Definition 2.4. Here is how to turn any near flock term ¢ into a normal near
flock word t” by using (1)—(6). Let z;,,zi,,...,x;, be the variables of ¢ with
i1 <13 <...<ip. As arunning example, consider ¢ = [[x2, Tz, 21], [T1, T2, 1], T1)-
Use (3) to push all bars of ¢ onto individual variables, and (4) to eliminate more
than one bar on a variable. The example becomes [[x2, x2, x1], [T1, T2, T1], T1].

With (5) create a skew pair z,;T; for each variable z; in ¢ not already in such
a pair. Use (10) and (11) to move these skew pairs, one at a time, to the extreme
right, in order of increasing index. The example has now become

[lz2, T2, 1], [21, T2, T1], T1), 21,T1], X2, Ta).

No skew pair will now be across a bracket. Then use (1) and (2) to associate all
occurrences of [,,] to the far left. So we have

[lz2, 2, 21], %1, Ta|, ®1, 1), 21,T1], T2, Ta).
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At this point we may as well remove the brackets and work with the resulting
word w = w'w?. Here w? is the semilattice part — the word x;, T;, i, %5, . . . ; Ti,
of all skew pairs that have been moved. The remainder w" of w on the right will
be reworked to give the flock part. The example turns into a word with parts

wY = ToLoX1T1L2X1T1 and w? = T1T1X27T2.

Remember that at any time the operator # can return brackets, associated to the
left.

Up to now the algorithm has been deterministic; there have been no choices
that might make a difference. But new skew pairs may appear in w" as a result
of having moved old ones to the right; for example, when x17; is removed from
the middle of w¥, then z2T5 is a new skew pair. Now there will be choices as to
which order to eliminate these unnecessary skew pairs. The next proposition will
show that these choices make no difference in the final outcome.

With (10) and (11) move skew pairs as they appear over to their corresponding
pairs in w? on the right, and eliminate duplicates with (5). The remaining part of
the word on the left, with no skew pairs, is the desired flock part w®. Our term,
t = [[x2, T2, 71], [T1, T2, 1], 71| has become the normal word t¥ = xo 2171 22T2.

Proposition 2.5. The outcome of the algorithm of Definition 2.4 does not depend
on the order of eliminating skew pairs.

Proof. By induction on the length |w"| of what is to become the flock part of a
word w. Suppose the proposition is true when the length is less than n. Assume
a particular wV has length n. Consider sequences, p = (p1,pa,...), of occurrences
p; of skew pairs that appear in it and that are being successively eliminated; call
them paths. Think of two different paths, p = (p1,po,...) and ¢ = (q1,¢2,...).
We will show that, after removing the skew pairs in them, we arrive at the same
flock part w?. There are three possibilities for the first pairs: p; and ¢; are the
same; p; and ¢ are not the same but overlap; p; and ¢; do not overlap, that is,
they are disjoint. We dispose of these possibilities in order.

Suppose that p; is ¢;, and this skew pair is eliminated from both paths, Then
the remaining words will be the same and have length less than n. By the induction
hypothesis, after all the remaining skew pairs are eliminated from the two paths,
we end up with the same word.

Next suppose that p; and ¢; overlap, that is, we have for example z;Z;x; in
w® with p; being z;7; and ¢ being z;x;. Eliminating either skew pair leaves the
same word of lesser length, and the induction hypothesis applies again.

Now assume the two paths start out with disjoint skew pairs, that is, a path can
start out at either p; or ¢, which are not the same. In particular new paths can
start as p’ = (p1,q1,...) and ¢ = (q1,p1,...). Now, by the induction hypothesis,
the elimination of the same first skew pairs of p and p’ will end up with the same
word, since they start out the same; and so will ¢ and ¢’. As p; and ¢; are disjoint,
what is left after they are both removed is the same word r. Its length |r| is less
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than n, and hence we are led to the same normal word no matter in what order
skew pairs of r are thrown out. So p’ and ¢’ will terminate the algorithm at the
same flock part, and hence so will p and q. O

We now extend the use of ¢ from designating the flock part of a normal word
to its use as an operator that creates the normal flock part from any word of odd
length. Similarly ¢ becomes the operator that creates the semilattice part

Definition 2.6. Write F,z(«) for the set of all normal words for near flocks, each
with a finite number of letters from the set {z; | ¢« < a}. Turn this into an algebra
of type (3,1), soon to be proven a near flock. For normal words u, v, w define the
flock part [u, v, w]? of the operation [u,v,w] to be the string (u®v?Pw?)?, and the
semilattice part [u, v, w]? to be u? Wv? Yw’. (The operation U is associative; see
Definition 2.3.) The operation w adds bars to those variables in the flock part
that have none and removes bars from those that do, it leaves the semilattice part
alone. Write Fz(«) for the algebra (Fuz(«); [,,], 7).

Proposition 2.7. For each nonzero cardinal o, F.z(«) is a near flock.

Proof. We prove that the identities (2), (3) and (4) are satisfied in Fnz(«); the
others are proven similarly.

(2). Let w,v,w,x,y and z be normal words. It suffices to prove (2) separately
on the flock parts and the semilattice parts of words.

For the flock parts on each side of (2), we expand them to a common word:

[v,w, [z, y,z]]¢’ - (Urzﬁwti>p[m7y7 z]¢)¢ - (v¢w¢”(m¢y¢”z¢)¢)¢ - (v¢w¢px¢y¢pz¢)¢,

[v, [y,x,w], z]¢ — (v¢[yxw]¢pz¢)¢ _ (v¢(y¢z¢pw¢)¢pz¢)¢ — (v¢w¢px¢y¢’pz¢’)¢.

In the first line, Proposition ?? tells us that (uvw?)? = (uvw)? for words u, v, w.
In the second line, we also use the fact that w?? = wr?.

The semilattice parts are equal since U is associative and commutative.

(3) [u,v,w] = [@,v,w]. For the flock part this follows from the fact that
w? = w?. So each path eliminating skew pairs from w has a corresponding path
in w. For the semilattice parts of u, v, w, the bar has no effect.

(4) W = w. The operation ~ toggles the bar operation on the flock part, leaving

the semilattice part alone. O

Theorem 2.8. For each nonzero cardinal o, Foz(c) is the free near flock on «
generators.

Proof. We verify the universal property that characterizes free algebras: for any
near flock A generated by « elements a; (i < a), there is a unique homomorphism
h from F.z(«) to A such that h(x;) = a;. To that end define h : Fz(a) — A by
h(w) = w’(aj,,...,a;, ) where z;,,...,z; are the letters of the normal word w.
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First we prove that h is a homomorphism, that is, it preserves the operations;
then we prove that it is unique. Preserving the operation [,,] means that

h([u, v, w]) = [h(u>7 h(v), h(w)] (u, v, w e Fﬂ%’(a))7

which is equivalent to

[u, v, w]? = [u®,v?, wP). (14)
This last requires a proof by induction on the length |v| of the middle argument
v.

If v is a single variable y, then identity (1) only, when applied to the left side
of (14), will move all brackets of the normal word w to the left without any need
of reversals by (2). Now suppose v = [z,y, z] with z,y, 2 normal near flock words
of length less than v. We calculate that

[
= [[u, 2,9], 2, w]’ (2)
= [[u?, 2%, 4", 2P, wP) (induction hypothesis twice)
= [u”,[2", 4", 2], w”] (2)
= [[u?, [z, y, 2], w”] (induction hypothesis)
= [P, 0P, 0]

Since the bar — does not change the order of the variables, h preserves it:
h(w) = 0’ = wP = h(w).

To show ¢ is unique, let g : Frz(a) — A be another homomorphism such that
g(x;) = a; (i < a). Then, if z;,,...,x;, are the letters of a normal word w, we have
that g(w) = w?(as,,...,a;,) = h(w), since a homomorphism preserves terms. []

Write nF for the set of identities (1) — (6) defining near flocks.

Proposition 2.9.
(a) For any near flock term t there exists a unique normal near flock word w
such that nF -t ~ w?.
(b) For any normal near flock words v and w, nF F v® =~ w? iff v=w.

Proof. Existence falls out of Definition 2.4. Uniqueness follows from Theorem 2.8:
as normal words, like v and w, make up F,z(«), a free near flock of the variety
defined by the identities of nF, we conclude (b), from which follows uniqueness. O

Corollary 2.10. The equational theory of near flocks is decidable.
Proof. From (b) of Proposition 2.9, for terms ¢; and t5 of type (3,1),
nF}—tl ~ to lﬂltlll :tg

This is true since nF F ¢ a~ t. Here t” is the normal near flock word obtained
from a term t by the algorithm of Definition 2.4. O
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3. Flocks

The set F of identities (1)—(7) define the variety § of flocks. Originally flocks
were defined by Dudek [6] as a nonempty set A with a ternary operation [,,] that
satisfies (1)—(2) and is uniquely solvable in each argument: for all a, b and ¢ in
A there are unique z, y, z such that [z,a,b] = ¢, [a,y,b] = ¢, and [a,b, 2] = c.
It is not possible to define unique solvability by identities in [,,] alone without
additional operations (see the end of this section for why not). However, by [6,
Proposition 3.2], unique solvability does allow us to define a unary operation ~:

T is the unique y such that [z, y, x| = .

Adding (7) to those identities defining near flocks simplifies the theory since
(7) allows all skew pairs to be removed from normal flock words. With them free
algebras are defined and used to prove that the variety of near flocks is the join of
flocks and near heaps. Finally, it is shown that each near flock is a Plonka sum of
flocks by a semilattice.

Definition 3.1. As before, words are strings of letters, some with bars. But now,
a normal word for flocks is a word of odd length in which no skew pairs occur,
that is, neither x;T; nor T;x; occur. They are merely the flock parts of normal
near flock words.

We pass between terms and words similarly to what was done in the last section.
A normal flock word is obtained from any term by using the identities (1)—(6) to
push all bars onto individual letters and eliminate multiple bars. Identities (10),
(11) and (7) eliminate skew pairs. Identities (1) and (2) associate brackets to the
left. With brackets removed, this is a normal flock word.

Definition 3.2. To define the free flock on a generators, let Fz(a) be the set
of normal flock words on the set of « letters {z; | i < a}. Then Fg(«) is the
algebra (Fz(«); [,,], ~) of type (3,1). Here, for normal flock words, u, v and w,
the ternary operation [u,v,w] is the catenation of them, (uv”w)?, with the order
of the letters in the middle argument v reversed to v”. This is followed by erasing
any skew pairs that arise. The unary operation w removes bars from letters in w
that have them and adds them otherwise.

The next proposition is on the way to showing that Fz(«) is a free flock.
Proposition 3.3. For any non-zero cardinal o, Fz() is a flock.
Proof. Axiom (7) is satisfied since, for normal flock words w and v = z;, ... x;,,
[v,T,w] = (vVTPw)? = (zi, ... 2, T, ... Ti,w)® = w? = w.

Cancelling inner letters by the operator ¢ also works when some of the letters of
v are barred.
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It was proven in Proposition 2.7 that F.z(«) satisfies (1)—(6). With the help
of (7), these proofs may be extended to Fz(a). For example, to prove (1), let
v, w, x,y, 2 be normal flock words. For all x; appearing in any of v,..., z, use (7)
to add the skew pair z;T; at the right side of each word v, ..., z. Then (1) holds for
these words since their modifications are normal near flock words. Use (7) again
to wipe out all skew pairs, returning v, ..., z to satisfy (1). O

The proof of the next theorem builds on that for free near flocks.

Theorem 3.4. For any non-zero cardinal o, Fz(a) is the free flock on o gener-
ators.

Proof. Tt was just proven that F'z(«) is a flock. The argument that Fz(«) satisfies
the universal property for freedom is like that for Theorem 2.8. O

Proposition 3.5.
(a) For each term t of type (3,1), there is a unique normal flock word w such
that F -t ~ wh.
(b) For any normal flock words v and w, F - v® =~ w? iff v=w.

Proof. By Proposition 2.9 there is a unique normal free near flock word w such
that nF ¢ ~ v#. Eliminating the semilattice part of v give w. O

Corollary 3.6. The equational theory of flocks is decidable.

Proof. Like that of Corollary 2.10. 0

The proofs and structure of normal forms suggest building any free near flock
as a subalgebra of a product of a free flock and a free semilattice. To set the
stage, here is a sort review of semilattices. They are traditionally binary algebras
with one operation V that is idempotent, commutative and associative. A term-
equivalent variety with a ternary operation [,,] and a unary operation ~ is obtained
by ‘stammering’ the binary operation, and making the unary a dummy:

[z,y,2] = (xVy) V2
f:

x.

An example of a semilattice lies in the semilattice parts w® of normal near
flock words w. They make up the free semilattice Fse(a) on « generators z;T;
(i < ). The ternary operation [u”, v, w’] is the word consisting of all skew pairs
x;T; occurring in any of u?, v7 or w?, arranged in order of ascending index, that
is, [u?,v7,w’] = u? Uv° Yw?’. Bar does nothing. Fse(a) is term-equivalent to
the semilattice of all nonempty finite subsets of a set with « elements. It is almost
a distributive lattice in that every interval of it is a distributive lattice with the
operations of union and intersection. All that is missing to make it distributive is
the empty set, a bottom element.
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Theorem 3.7. For any nonzero cardinal o, the free near flock Fuz(c) is isomor-
phic to a subalgebra of the product, Fgz(a) X Fse(a), of a corresponding free flock
and free semilattice. The carrier of the subalgebra is {{w?, w’) | w € Fuz(a)}.

Proof. Define a function h : Fyz(a) — Fy(a) x Fse(a) by h(w) = (w®,w”). That
h is an injection follows from the definition of normal words. It is a homomorphism
since it preserves the operations:

h(w) =h (w¢w") =h (Ww”) = h(0’uw’) = (w?,w’) = (w, w) = h(w);
and h([u,v,w] = [h(u), h(v), h(w)] similarly. O
With this theorem we may check the top part of Figure 1.

Theorem 3.8.
(a) The variety of near flocks is the join of those of flocks and semilattices:

ng =3 Vsl
(b) The variety of near flocks is the join of those of flocks and near heaps:
ng =3 VvnH.

Proof. (a). The inclusions of their defining identities are passed to the varieties
themselves, and hence FVs£ C nF. As each free near flock F,z(«) is a subalgebra
of a product of a flock and a semilattice (Theorem 3.7), we have that F,z(«)
belongs to the join § V s£. As any near flock A is a homomorphic image of a free
near flock, it follows that A is in the join. Therefore, n§ C § V s£.

(b). This follows from (a) by the inclusion of varieties: s£ C n$) C ng. O

In the language of extensions and Plonka sums more can be said about the
structure of near flocks. We first define extensions and prove Theorem 3.10. Then
we define connecting homomorphisms that turn this extension into a Plonka sum.

Definition 3.9. An extension (or union or sum) of a nonempty set A of algebras
by another algebra B (all of the same type) is an algebra E and a congruence 6
of E such that:

1. each congruence class of 6 that is an algebra is isomorphic to a member of

A;
2. each member of A is isomorphic to some congruence class of 6; and
3. E/0 is isomorphic to B.

This definition came from specializing Mal’cev’s definition for classes of al-
gebras to individual algebras [11]. In turn, his definition grew out of classical
extensions in group theory, where not every coset is a subgroup. However, when
B is idempotent, say a semilattice, then all the congruence classes of E/f will be
subalgebras.
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Theorem 3.10. Each near flock A is an extension of flocks by a semilattice.

The proof of this theorem proceeds by a series of lemmas and interspersed
definitions. Easy proofs are omitted without mention.

Now assume that A is a near flock. A congruence 6 of A is found such that A
is an extension of its congruence classes a/6 by its quotient A/6.

Definition 3.11. On A define the binary relation:

Lemma 3.12.
(a) The relation < is a quasi-order.
(b) The operations — and [,,] preserve <.

Proof. (a). Reflexivity is clear from (5). To prove transitivity, suppose that a < b
and b < ¢, that is, [a,@,b] = b and [b, b, c] = ¢. Then by (1),

[a,@,c] = [a,a,[b,b,c]] = [[a,a,b],b,c] = [b,b, ] = c,

and hence a < c.

(b). Bar is preserved by (3). We prove that < preserves [,,] in its middle
argument; the other arguments are simpler.

We assume that b < d, that is [b,b,d] = d, and prove that [a,b,c] < [a,d, ],
with the help of (1), (2), (5), (10) and (12):

[la, b, c],[a, b, cl, [a,d,c]] = [a,a,[b,b, [c,¢,[a,d,]]]]| = [a,a, [b,b, [a,d,[c, G, c]]]]
= la, @, [b,b,[a,d,c]]] = [b,b,][a,d,c]|]
= la,d, [b,b,c] = [a, [b,b,d], |
= [la,d, ] O

Definition 3.13. On A define the binary relation 6 by:
afb if a<bandbd<a.

Lemma 3.14. The relation 0 is a congruence of A.

Proof. By Lemma 3.12, < is a quasi-order preserving ~ and [,,]. Therefore, 0 is
an equivalence relation preserving the operations. O

Lemma 3.15. FEach coset of 0 is a flock.

Proof. First one must prove that, for any element of e of A, the coset e¢/f is an
algebra, that is, it is closed to the operations ~ and [,,]. To prove closure to —,
suppose a € e/6. Then a 6 e, and hence from the definition of 6,

[a,a,e] =e and e € a] =a.
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From the first equation, with the identities for near flocks we get that [@,a,e] =

[@,a,e] = [a,a,e] = e, and so @ < e. From the second, similarly e < @, and thus
acefd.
To prove closure to [,,], suppose a,b,c € e/f. As before, [a,a,e] = e and

[e,€,a] = a, and likewise for b and ¢. From these equations, Proposition 2.1, and
the axioms for near flocks, we deduce that

Ha7 b, C]vma e] = Ha7 b, C]v [67 b, E]? 6] = [Ha7 b, C],a ]757 6]
= [[a, b,b],@, [c, ¢, €]] = [[a,b,b],a, €]
= la, @, [b,b,e]] = [a,a,e] = e.

Hence [a, b, ¢] < e, and with less work e < [a, b, ]; therefore, [a, b, c] € €/6.

To show that e/f is a flock one need only show that (7) is an identity in e/6;
that is, show [a,@,b] = b for all @ and b related by 6; but this last implies a < b,
that is, [a,a, b] = b. O

Lemma 3.16. The quotient A/ 0 is a semilattice.

Proof. We need only prove (8) and (9) in A/6. For the latter, this amounts to
showing that [a, a,b] 0 [a, b, b] for any a and b in A. Arguing with the axioms and
Proposition 2.1 as before, we show that [[a, a,b], [a,a,b],[a,b,b]] = -+ = [a,b, ],
which implies [a, a,b] < [a,b,b]. The converse of this relation is proven similarly,
and so the two sides are related by 6. This completes the proof of Theorem
3.10. =

This extension is refined with Ptonka sums [13], which are defined here only
for near flocks. In [7, Theorem 11] a Ptonka sum of heaps is also called a ‘strong
semilattice of heaps’. We need the partial order found in any semilattice S:

r<sif [r,7,s]=s (r,se€S9).

Definition 3.17. A near flock A is a Ptonka sum of flocks if it is the union of a
family {A; | s € S} of disjoint flocks indexed by a semilattice S together with a
family of homomorphisms, {h,s : A, = A |r < s in S}, that evaluate the ternary
and unary operations of A:

[a, b, C]A = [(Pr(a),s(a), r(p),s(b), hw(c))s(c)]As, where s = [r(a), 7(b), 7(c)]®;

@" =Tr@n(@,  where s =(a) . (17)

Here the homomorphisms are assumed to be functorial in that hgoh,.s = h,; when
r < s < t; and 7 is the projection map from the disjoint flocks to their indices:
m(a) = s if a € A;. The class of Plonka sums of flocks is denoted sp3F.
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The next theorem follows from the more general theory of Plonka [15, Theorem
7.1]. It is also proven in [7, Section 4]; but we sketch another proof that depends
in part on Theorem 3.10.

Theorem 3.18. Every Ptonka sum of flocks is a near flock, and every near flock
is a Ptonka sum of flocks. In short, n§ = spg.

Proof. That a Plonka sum of flocks is a near flock follows from proving that the
identities satisfied by a Plonka sum A are precisely those common to the stalks
A, and semilattices. This follows from verifying by induction on terms that for
any term t with n variables,

tA(al7 ceyQp) = tAS(hsl’s(al), oo hs, s(ay)) (a; € Ag));

here s is the semilattice join of the s;.

For the other direction, by Theorem 3.10, A is the extension of flocks by a
semilattice. Let 6 be the congruence in Definition 3.13. To create a Plonka sum
take the index set S to be the set A/ of congruence classes a/6 of 0, and define
the projection, 7(a) = a/f. Define the connecting homomorphisms by

hg v(x) = [z,b,b] (a,b€ Aand z € a/h). (18)

It remains to be proven that these homomorphisms are well-defined and functorial,
and that the operations are evaluated correctly.

These connecting homomorphisms are well-defined since different choices of
related a’s and related b’s yield the same answer for (18). In detail, supposing
x € a1 /0, a10as and by by, we know that by = [by, by, by] and find that
h‘%l7%l(x) = [iﬂ, bla bl] = [.’E, bla [bl, b2» bQH = [iﬂ, [bZ’ b1, bl]v b2] = [LE, b27 b2] :h%

They are functorial since, if a < b < ¢ and = € a/6, then

hy o (hg b (x)) = h%,s([m,g, b)) = [[x,b,b],¢,¢] = [z, [c,b,0], ¢] = [2,E,¢] = ha < (x).
They evaluate correctly according to (16) and (17) since for a,b,c in A and
d = [a, b, c], we have in A/6 that

[(hr(a),s(a); Pr(v),s (D), Pr(e),s(€)] = [g a(a)lhy a(b)]he a(c)]
= [[a,d,d],[b,d,d],[c,d,d]]
= [[a, b, ¢, d, d]
= [[a, b, ], [a,b, ], [a, b, ]]
[
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S

For the unary operation, since s = 7(a) = m(a) = §, we check that h.(4) (a) =
he a(a) = [a,a,a] =a. O

676

A free near flock may also be described as a Plonka sum; this is a refinement
of Theorem 3.7. We realize this by looking closely at the definition of Fuz(c).

Theorem 3.19. For a nonzero cardinal o, the free near flock Fuz (o) is the Ptonka
sum of the free flocks Fgz(w) indezed by elements w of the free semilattice Fse(a).
Here the Fz(w) are free flocks on generators that are the skew pairs x;T; in w.

The article [17] also describes free near flocks as Ptonka sums of flocks, but
assumes the free flocks Fiz(w) are already known.
The lattice of subvarieties of n§ has been described in [5] and [18, Section 4.3].

Theorem 3.20. The lattice of varieties of near flocks is isomorphic to the product
of the lattice of varieties of flocks and the two-element lattice. A subvariety of n§ is
either a subvariety R of §, or a join, RV s£, of it with the variety of semilattices.

There is a curiosity about the flocks (A4;[,,]) originally defined by (1), (2) and
the unique solvability of [,,]. The class F3 of all such is categorically isomorphic
to §. However, § is a variety, but §3 is not. To understand this, let A be the
set {af | n > 1,n odd} of words in Fj(1). This set is closed to [,,] and thus it
is a subalgebra of (F5(1);[,,]). Because there is no bar, the operation [,,] is not
solvable in it. Hence F3 is not closed to taking subalgebras, and so fails to be a
variety. Therefore, §3 is not definable by identities.

4. Near heaps

The variety nf) of near heaps is the class of algebras satisfying the identities: (1)—
(6) and (8). The last identity means that the bar operation may be omitted, and
we will do so for the remainder of this article, changing the type of near heaps,
heaps and semilattices from (3,1) to (3), only retaining the ternary operation |, ,].
With that understanding, the defining identities are equivalent to

[v,w,[z,y, 2] = [[v,w,z],y, 2], (1)
[v,w,[z,y,2]] = [v, [y, z, 0], 2], (2)
[z, 2, 2] ~ x, (19)
[z,2,y] = [y, 2, z], (20)

which is the way Hawthorn and Stokes [7] introduced near heaps.

These identities hold in any group when [z, v, 2] is interpreted as x(y~'z), and
in any semilattice when [z,y, 2] is interpreted as x(yz). In this section a new
normal form describes the elements of free near heaps. In the next, the variety of
near heaps is proven to be the join of the varieties of heaps and semilattices, in
fact, Ptonka sums.
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Definition 4.1. Near heap words w now have no bars, they are simply finite
sequences of letters z;. With bars no more, twin pairs take the place of skew
pairs; a twin pair is a double occurrence x;z; of the same letter adjacent to itself.
A normal near heap word is in two parts: on the left will be the heap part w?, a
string of odd length of isolated occurrences of individual letters; on the right will
be the semilattice part w?, a string of twin pairs, one for each letter occurring
in w, and ordered by increasing indices, with no twin pair duplicated. Hats over
operators indicate their adjustment to there no longer being any bars. Recall that
w? restores brackets, associated to the left.

A normal near heap word w is derived from nH for any term ¢ built from the
ternary operation and letters alone. To convert ¢ use (1) and (2) to associate all
the brackets to the left; (2) may change the order of the letters. Move to the right
side any twin pair by using (10) and (11). (They have no bars now.) Reorder
these pairs by increasing indices, removing duplicate pairs with (5). If some letter
is isolated on the left side and does not occur on the right, triplicate it with (19)
to create a twin pair, and move the twin pair to the side, absorbing it among the
twin pairs already ordered there.

For example, if t is [x3, 22, [x2, 21, x3]], then, with the algorithm in the proof
of the next lemma, w is x3x123x1x1x2T22x32x3 with w? = x3xi23 and W’ =

T1X1T2X2X3T3.

Definition 4.2. For any cardinal «, the algebra Fuq(«) has as carrier Fyg () of
all normal near heap words with letters from {z; | i < a} and a ternary operation
defined by,

[u, v, w] = (u‘zvapuﬂi)‘g(u3 W’ wuw?),

where 4% U v% U w? is the sequence of all twin pairs in order of increasing index
without repetition.

Proposition 4.3. For any cardinal o, F . (a) is a near heap.

Proof. When the operation, T = z, is introduced into the type, the identities of
nH follow readily from those of nF. O

Theorem 4.4. For any cardinal o, Fg () is the free near heap on o generators.

Proof. We use the universal mapping property of free algebras. Let A be a near
heap generated by {a; | i < a}. Define h on a w of Fys(a) in the letters

Tiy, Tiyy- -2, by h(w) = wP(a;,,ai,,...,a;,). Proving that h is the unique
homomorphism of Fu(a) to A taking z; to a; parallels the proof of Theorem
2.8. 0

Proposition 4.5.
(a) For any near heap term t, there is a unique normal near heap word w such
that nH -t ~ w?.
(b) For any normal near heap words v and w, nF Fv% ~w” iff v=w.
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Proof. Existence comes from the algorithm of Definition 4.1, which uses only the
identities of nH and their consequences.
Uniqueness and part (b) parallel the proof of Proposition 2.9. O

Corollary 4.6. The equational theory of near heaps is decidable.
Proof. Like that of Corollary 2.10. O

5. Heaps

These were defined in Section as algebras satisfying the identities (1)—(8). As the
last identity makes the bar — pointless, these identities are equivalent to (1), (2)
and
[z, 2,y] =y =~ [y, , 2] (21)

in algebras with only a ternary operation. Let H be this last set of identities.
It is proven that the variety nf) of near heaps is the smallest variety containing
heaps and semilattices. Even better, any near heap is a Plonka sum of heaps
over a semilattice. From results in the literature, the lattice of subvarieties of
ns) is sketched, and their subdirectly irreducibles are determined modulo those of
heaps. The equivalence of these varieties with the traditional ones for ordinary
groups and semilattices with binary operations will be addressed in Section 6.
Heaps were first studied by Priifer [16] in the context of commutative groups
where [z,y,z] =z —y + 2.

Of all the free algebras in this article, free heaps are the simplest to describe;
their elements are just the left part, the heap part, of normal near heap words.

Definition 5.1. A normal heap word is a string of letters of odd length in which
no letter occurs next to itself. The set Fy(«) of normal heap words on the alphabet
{i] i < a} is the carrier of the algebra F's(c) with the ternary operation

[u, v, w] = (wwPw)?.
Proposition 5.2. For a a nonzero cardinal, Fg(«) is a heap.

Proof. As a heap is a near heap, only axiom (21) needs be proven:
[v,v,w] = (VPW)? = (z5, T4y ... T4, i, - .. TiyTi,w)° = w,
when v = z;, @i, ... x;,; here (7) cancels duplicate pairs successively. O

Theorem 5.3. For a a nonzero cardinal, F () is the free heap on a generators.

Proof. This parallels the proof for Theorem 2.8. O

Proposition 5.4.
(a) For any heap term t, there is a unique normal heap word such that H -t~ w®.
(b) For any normal heap words v and w, nF - v® =~ w? iff v=w.



60 A. Knoebel

Proof. This is like that of Proposition 3.5. O

Corollary 5.5. The equational theory of heaps is decidable.

Proof. Similar to that for Corollary 2.10. O

Theorem 5.6. For any nonzero cardinal o, the free near heap on a gemerators is
isomorphic to a subalgebra of the product of the free heap and the free semilattice,
both on « generators. Symbolically, Fuq(co) = Fg(a) X Fae(a).

Proof. Define the function Fug(a) < Fg(a) X Fee(a) by h(w) = (w‘g, w?). Tt is
a homomorphism since it preserves the ternary operation:

B[, v, w]) = (fu, 0, w]?, [u, v, 0)7)
= ((uPv?Pw?)?, uavaw‘?)A>
= ([u¢,vd’,w¢], [u ,v‘?,wa]>

h(u), h(v), h(w)]. O

Theorem 5.7. The variety of hear heaps is the join of the varieties of heaps and
semilattices: n) = H V sL; that is, it is the smallest variety containing them.

Proof. 1t is the proof of Theorem 3.8 mutatis mutandis. O

Theorem 5.8. The lattice of Figure 1 is a sublattice of the lattice of all varieties
of algebra with one ternary operation and one unary operation.

Proof. Note that the free algebras of the different varieties in Figure 1 being non-
isomorphic shows that the inclusions in it are proper. That each join of Figure
1 is the smallest variety including those below it is covered by Theorems 3.8 and
5.7. For the each meet of the figure, recall that the meet of two varieties is their
intersection, and that the inclusions of the varieties in Figure 1 correspond to that
of their generating sets, for example, that F N nH = H. O

The next theorem follows immediately from Theorem 3.10. It is also proven in
[7, Section 4] in a different language, and also follows from [18, Theorem 4.3.2].

Theorem 5.9. FEvery Plonka sum of heaps is a near heap, and every near heap
is a Ptonka sum of heaps. In short, n$) = sp9.

In parallel with Theorem 3.19, a free near heap may also be described as a
Ptonka sum of free heaps over a free semilattice (see also [17] and [18, Theorem
4.3.8]).
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6. Types for groups and heaps

This section clarifies the relationship between groups with a binary operation and
heaps with a ternary one. We view their varieties as categories. Two functors
pass back and forth between them, giving almost a categorical equivalence. To
make clear what is preserved, the intermediary of pointed heaps is introduced.
The point serves as an identity element and can be chosen arbitrarily in a heap.
Some of these ideas and results were presented noncategorically by Baer [1] and
Certaine [3], where there are many references to their origins. See [6] for related
concepts.

Definition 6.1. The variety & of groups is the class of all algebras (G; x,~ ! e)
of type (2,1,0) satisfying these identities:

xx (yxz)=~(zxXy) Xz,

The variety p$) of pointed heaps consists of all algebras (G;[,,],e) of type (3,0)
satisfying identities (1)—(2) and (21).

Surprisingly, no additional identities beyond these defining heaps are needed
to define pointed heaps. Identities cannot nail the constant e — its choice is
arbitrary!

The varieties & and p$) are term-equivalent and hence categorically isomorphic.
To see this, replace the three operations = x y, z~! and 1 in a group by the two
operations [x,y,2] = 2 X y~! x z and e = 1 in a pointed heap, and replace the
operations [z,y, z] and e in a pointed heap by x x y = [x,e,y], v7! = [e, 7, €], and
1 =ein a group. Now we define an adjoint situation between p§) and &.

Definition 6.2. The function D : p$) — $) drops the constant e as an operation
from any pointed heap (A4;],,],e). Homomorphisms are left alone by D(h) = h,
although there may be more of them in §). The function E : $ — p$) uses the
axiom of choice to add to each heap (A4;],,]) an arbitrary element e of A. A
homomorphism h: A — A’ in $ is mapped by E to one in p§) by the formula:

E(h)(a) = [h(a), h(e),e']  (a € A),
where e and e’ are the constants chosen by E.

Theorem 6.3. The functions D : pH — $ and E : H — pH are functors, and D
is both a right and left adjoint of E.

Proof. That D and E are indeed functors is straightforward to verify.
To show that D is a left adjoint of F, it is easiest to prove an equivalent
universal situation: for all A in §), there exists an B in p§) and a homomorphism
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f: A — D(B) such that for all B’ in p§) and all homomorphisms h : A — D(B')
there is a unique homomorphism h : B — B’ such that this diagram commutes:

A —1 DB B

hl JD(Z) lﬁ
D(B') ——— D(B') B’

It follows that D is a left adjoint of E by Theorem 27.3 of [8].
It is proven similarly that D is a right adjoint of E. O

How far this adjunction falls short of a categorical equivalence is seen in a
proposition that traces how common concepts pass across. Its proof is routine.
But its statement needs the Cayley representation of elements of a group as per-
mutations.

Definition 6.4. For any pointed heap A, Cay A = {fa | a,b € A}, where fu is
the function given by f.;(c) = [a, b, c].

In the following, Sub A, Con A and Aut A mean respectively the sets of all
subalgebras, congruences and automorphisms of an algebra A. For sets F; and
F» of functions, F; o F» means complex composition: {f; o fo | fi € F;}.

Proposition 6.5. For A, Ay, Ay in p$) and their images DA, DA, DAy in $):
(1) Sub (DA) = the set of congruence classes of A;
(2) Con (DA) = Con A;
(3) Aut (DA) = Aut A o Cay A = Cay A o Aut A;
(4) Hom (DA;,DA;) = Cay As o Hom (A, Az);
(5) DA; x DAy = D(Aq x Ay).

Since the congruences are the same under D, so are the simple algebras and
subdirectly irreducibles.

Dudek [6, Section 4] approaches the groups in flocks by looking at the binary
operations, z -, ¥y = [z, a,y], which are isomorphic groups in a given flock.

Ptonka sums of groups are developed in [14].

7. Transfer of identities

What do the identities defining a variety of ordinary groups become when trans-
fered to a corresponding variety of near heaps? This section starts with algo-
rithms for modifying identities to define varieties of a new type, then a theorem
justifies them, and two examples follow. There are two or three steps, depending
on whether the subvariety is only a variety of heaps or it is a join of one with
semilattices (Theorem 3.20). Notation is from Section 6. Regularity is needed.
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Definition 7.1. An identity is regular if each variable occurring in a term on one
side of it occurs also in the term on the other side. A variety is regular if it can
be defined by regular identities. The regularization of a variety K is the variety
defined by the regular identities satisfied by R.

Step 1 — from & to psH. Here is the recipe for the first step to translate a term
t of type (2,1,0) to one of type (3,0); it follows the scheme in Section 6.

e Replace each product ¢; x t2 of subterms t; and t5 of t by [t1, e, t2].
e Replace each inverse tl_l of a subterm ¢, of ¢ by [e, ¢y, €].
e Replace the constant 1 by e.

Write ¢ for the translated term, and #; = t5 for the translation of an identity
t, ~ ty. For a set K of identities defining a variety of groups, let K be the set of
translations.

Step 2 — from p$H to $H. Assume w is a variable not in any of the identities
defining H, a subvariety of pf). Replace the constant e by w in all the identities
of K. Write K for the set modified identities.

Step 3 — from 9 to s9. If a subvariety of nf) is the join of a subvariety K of
9 with s£, then the identities K defining 8 must be regularized. One can do this
for an identity, ¢t = to, by adding to the right side of the term ¢; the pair zx for
any variable z that appears only in t5 to get [t1,x, x| & to, and likewise for ¢ .

Theorem 7.2.

(1) For R a subvariety of ® defined by a set K of identities, the set K of term-
translated identities of Step 1 defines R, the subvariety of p$ of pointed heaps
term-equivalent to the groups of &.

(2) For a subvariety & of p) defined by a set K of identities, the set K of trans-
lated identities of Step 2 defines the subvariety, R = D(R), of $.

(3) For a subvariety 8 of n$) with a defining set K of identities, a defining set of
identities for its join, RV s&, with the variety of semilattices is given by the
reqularization K of K, as done in Step 3.

Proof. (1). This follows from term-equivalence of & of p£).
(2). We must show that, if an identity ¢; ~ ¢ is satisfied by an algebra A of
R, then its translation ; = ¢y is satisfied by D(A), and conversely. Write the

terms as t;(x1,...,Zn,e) where the t; are of type (3). Then the translated terms
will be t;(z1,...,2,, w) with w replacing e. We will show that t1(aq,...,a,,b) =
ta(aiy...,an,b) for all ai,...,a,,b in A. Define an automorphism « of A by

a(xz) = [z,b,e]. Then a(b) =e. So
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a(ti(a,...,an,b)) =t1(alar),...,ala,), a(d))
= t1(afar),...,ala,),e)
= ta(afay),...,ala,),e)
=ta(afa1), ..., a(an), (b))
= a(ta(a1,...,an,b)).
Therefore, t1 (a1, ..., an,b) = ta(a,...,a,,b). The converse is proven by replacing
w by e.

We have shown for any identity t; ~ t5 and any algebra A of £ that
A':tl %tg IHD(A) ':%1 %ig.
This equivalence also applies to the sets of identities:
AEKIff REK.
Therefore, K defines £ since K defines .

(3). Let t; ~ t3 be an identity of & V s€. We must show that it is derivable
from the regularization K of K. As an identity satisfied by K V s£, t; = to is
satisfied by R, and so is derivable from K alone. Such a derivation is a sequence of
identities, each one of which is either in K or derivable from previous ones using
the rules of equational logic. Now regularize each identity in this derivation. This
is a derivation from K of the regularization #; = ts of the original identity, with the

proviso that some new identities must be interpolated to accommodate instances
of substitution in equation logic. O

Two examples illustrate this process. The identities of Definition 6.1, which
define groups, translate to identities that are seen to be equivalent to (1), (2) and
(21), which define heaps. If the binary commutative law, X y = y X z, is added,
it becomes

[z, w,y] = [y, w,z] (22)
in the first two steps. This is already regular, and so Step 3 is not needed. Hence
the join of semilattices and commutative groups is defined by (1),(2), (21) and
(22).

Elementary 2-groups are defined by the identity, x x = =~ 1. The first and
second steps give [z, w,z] &~ w, and the third regularizes it:

[z, w, 2] = [w, z, z]. (23)

So the join of semilattices and 2-groups is defined by (1), (2), (21) and (23).

As 2-groups are commutative, it is an elementary exercise to show directly in
the language of heaps that (22) follows from (23).

A note on the references. Some of the notions in this paper have an extensive
literature reaching back more than a century. A sampling is included here, from
which the reader may find more, as well as related concepts.
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On 2-absorbing ideals in commutative semirings
Pratibha Kumar, Manish Kant Dubey and Poonam Sarohe

Abstract. We study 2-absorbing ideals in a commutative semiring S with 1 # 0 and prove some
important results analogous to ring theory. More general form of the Prime Avoidance Theorem
is also given. We also prove that if I = (a1,az2,...,ar) is a finitely generated ideal of a semiring
S and P1, Ps, ..., P, are subtractive prime ideals of S such that I SZ P; for each 1 < i < n, then

n
there exist ba,...,b, € S such that ¢ = a1 +baaz + ...+ brar ¢ U B
i=1

1=

1. Introduction

The semiring is an important algebraic structure which plays a prominent role in
various branches of mathematics like combinatorics, functional analysis, topology,
graph theory, optimization theory, cryptography etc. as well as in diverse areas of
applied science such as theoretical physics, computer science, control engineering,
information science, coding theory etc. The concept of semiring was first intro-
duced by H. S. Vandiver [14] in 1934. After that several authors have apllied this
concept in various disciplines in many ways.

A commutative semiring is a commutative semigroup (S, -) and a commutative
monoid (S, +,0g) in which Og is the additive identity and Og -z = x - 0g = Og for
all x € S, both are connected by ring like distributivity. A subset I of a semiring
S is called an ideal of Sifa,be I andr €S, a+be Il and ra,ar € I. An ideal I
of a semiring S is called subtractive if a,a+b € I,b € S then b € I. A proper ideal
P of a semiring S is said to be prime (resp. weakly prime) if for some a,b € S
such that ab € P (resp. 0 # ab € P), then either a € P or b € P.

Throughout this paper, semiring S will be considered as commutative with
identity 1 # 0.

2. Prime ideals

The concept of prime ideal plays an important role in ring and semiring theory. we
refer ([8], [10], [13]), for more understanding about prime ideals. In this section,
we give the more general form of The Prime Avoidance Theorem for semirings.
We start this section with the statement of the following lemma.

2010 Mathematics Subject Classification: 16Y30, 16Y60
Keywords: Semiring, subtractive ideal, prime ideal, 2-absorbing ideal, weakly 2-absorbing
ideal.
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Lemma 2.1 ([15], Lemma 2.5). Let Py, P> be subtractive ideals of a commutative
semiring S and I be an ideal of S such that I C PyUP,. Then I C P, or I C P5.

Theorem 2.2 ([15], Theorem 2.6). (THE PRIME AVOIDANCE THEOREM)
Let S be a semiring and Py, ..., P, (n > 2) be subtractive ideals of S such that

almost two of Py, ..., P, are not prime. Let I be an ideal of S such that I C U P;.
Then I C P; for some 1 < j < n. B

The next theorem is the more general form of the Prime Avoidance Theorem
of semirings.

Theorem 2.3. (EXTENTED VERSION OF THE PRIME AVOIDANCE THEOREM)

Let S be a semiring and Py, ..., P, be subtractive prime ideals of S. Let I be an
n

ideal of S and a € S such that aS+ 1 ¢ |J P;. Then there exists ¢ € I such that
i=1

a+cé¢ U P,

Proof. Assume that P; ¢ P; and P; € P, for all i,j € {1,2,...,n} and ¢ # j.

Suppose that « lies in all of Py, Py, ..., P, but none of Pyyq,...,P,. If k =0,

then a = a+0 ¢ U P;, which is required. So, let k¥ > 1. Now, I ¢ U P,

for otherwise, by the Prlme Avoidance Theorem we would get I C P; for some

1 < j <k, which gives aS+1 C P; C U P;, which contradicts to the hypothesis.

=1

Thus, there exists d € T\ U P;. Also, Pyy1N...NP, ¢ PyU...UP;. Otherwise,
1=1
if PeyinN...NP, C P U...UPg, by the Prime Avoidance Theorem, we would

get a contradiction. Therefore there exists b € Pk+1 N....0 P, \ (P1 U...UPy).
Now, define ¢ = db € I and note that ¢ € Py N...N Py \ (P1 .U Py). Since

a€ P N...NP\ (Pyr1U...UP,), it follows that a + ¢ ¢ UPZ (since P/s are

subtractive). O

Next theorem says that if I is a finitely generated ideal of S satisfying the

assumption of the Prime Avoidance Theorem for semirings, then the linear com-
n

bination of the generators of I also avoids |J P;, where P/s, (1 < ¢ < n) are

i=1
subtractive prime ideals of S.

Theorem 2.4. Let S be a semiring and I = (a1, as,...,a,) be a finitely generated
ideal of S. Let P, Ps,..., P, be subtractive prime ideals of S such that I ¢ P; for
each 1, 1 1< n. Then there exist by, ..., b, € S such that ¢ = a1 + bsas + ...+

bra, ¢ U p;.
1=1
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Proof. We prove it by induction on n. Without loss of generality, assume that
P; ¢ Pj for all i # j. If n = 1, then clearly ¢ = ay + baas + ... + bya, ¢ Pp.
Assume that the result is true for (n — 1) subtractive prime ideals of S. Then,

n—1
there exist cg,c3,...,¢, € S such that d = a1 + a0 + ...+ ¢crar. ¢ |J B If
i=1

d ¢ P,, then we are through. So assume that d € P,. If ag,...,a, € P,, then
from the expression for d, we have a1 € P,, (since d = ay + caas + ... + cra,
and d € P, implies a1 € P,, since P, is subtractive), which is a contradiction to
I ¢_ P, (since, if a1 € P,, and we have already assumed that as,...,a, € P,, we
get ai,...,a, € P,, this implies that I C P,). So for some i, a; ¢ P,. Without

n—1
loss of generality, let i = 2. Since P, ¢ P; for all i # j, we can find z € () P,
i=1

1=

such that « ¢ P,. Thus, c=a; + (ca + x)as + ...+ crar- ¢ | P O
i=1

K3

3. 2-absorbing ideals

The concept of 2-absorbing and weakly 2-absorbing ideals of a commutative ring
with non-zero unity was first introduced by Badawi and Darani in [3], [4] which
are generalizations of prime and weakly prime ideals in commutative ring, see
[1]. After that Darani [7] and Kumar et. al [11], explored these concepts in
commutative semiring and characterized many results in terms of 2-absorbing and
weakly 2-absorbing ideals in commutative semiring. Most of the results of this
section are inspired from [5] and [6].

Definition 3.1. A proper ideal I of a semiring S is said to be a 2-absorbing ideal
of S if abc € I implies ab € I or bc € I or ac € I for some a,b,c € S.

Definition 3.2. A proper ideal I of a semiring S is said to be a weakly 2-absorbing
ideal if whenever a,b,c € S such that 0 # abc € I, then ab € I or ac € I or bc € 1.

Clearly, one can see that every 2-absorbing ideal of a semiring S is a weakly 2-
absorbing ideal of S but converse need not be true. For more details of 2-absorbing
and weakly 2-absorbing ideals in commutative semirings, we refer [7], [11].

Lemma 3.3. Let I be a subtractive 2-absorbing ideal of S. Suppose that abJ C I
for some a,b € S and an ideal J of S. If ab ¢ I, then either aJ C I orbJ C I.

Proof. Suppose that aJ ¢ I and bJ € I. Therefore, there are some z,y € J such
that ax ¢ I and by ¢ I. Since abx € I and ab ¢ I and ax ¢ I, we have bx € I.
Since aby € I and ab ¢ I and by ¢ I, we have ay € I. Now, since ab(z + y) € I
and ab ¢ I, we have a(z +y) € I or b(z +y) € I, since I is a 2-absorbing ideal
of S. If a(x +y) € I and ay € I, then ax € I (since I is subtractive), which is
a contradiction. Similarly, if b(z + y) € I and bx € I, we get by € I (since [ is
subtractive), which is again a contradiction. Hence, either aJ C T or bJ C 1. O
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Theorem 3.4. Let I be a proper subtractive ideal of S. Then I is a 2-absorbing
ideal of S if and only if whenever I1Isl3 C I for some ideals Iy, Is, I3 of S, then
either I11s C I or Isls C I or I3l C 1.

Proof. Let 11513 C I for some ideals I, I, I3 of S, then I1Io C I or IoI3 C I or
I1I3 C I. Then by definition, I is a 2-absorbing ideal of S. Conversely, let I be
a 2-absorbing ideal of S and I1I5I5 C I for some ideals Iy, Is, I3 of S, such that
IiI, ¢ I. We show that I1I3 C I or IoI3 C I. If possible, suppose that I;I3 & T
and II3 ¢ I. Then there exist a; € I; and ay € Iy such that ayf3 ¢ I and
asIs ¢ I. Also, ajasls C I and a1ls € I and asl3 € I, we have ajag € I by above
lemma. Since I ¢ I, therefore for some a € Iy, b € I», ab ¢ I. Since abls C I
and ab ¢ I, we have als C I or bl3 C I by above lemma. Here three cases arise.

CASE I: Suppose that als C I, but bI3 € I. Since a;bI3 C I and bI3 ¢ I and
arl3 € I, by above lemma, we have a1b € I. Since (a + a1)bl3 C I and als C I,
but a;l5 ¢ I, therefore (a+ ay)I3 € I. Since bI3 € I and (a+ a1)I3 € I, we have
(a + a1)b € I by above lemma. Again, (a + a1)b = ab+ a1b € I and a1b € I, we
conclude that ab € I (since I is subtractive), which is a contradiction.

CASE II: Suppose that bI3 C I, but als ¢ I. Since aasl3 C I and alz ¢ I and
asI3 € I, by above lemma, we have aay € I. Again, a(b+ a2)l3 C I and b3 C I,
but asl3 € I, we have (b+ az)Is € I. Since als € I and (b+ a2)I3 € I, we have
a(b+ az) € I by above lemma. Since a(b+ az) = ab+ aaz € I and aay € I, we
conclude that ab € I (since I is subtractive), which is a contradiction.

CasE III: Suppose that als C I and bI3 C I. Since bI3 C I and axl3 € I, we
have (b+a2)Is ¢ I. Since ay(b+a2)ls C I and a1l3 € I and (b+a2)I3 € I, we have
a1(b+ az) = a1b+ ajas € I by lemma above. Since a;b+ ajaz € I and ajas € I,
we have ba; € I (since I is subtractive). Since al3 C I and ail3 ¢ I, we have
(a+a1)I3 € I. Since (a+ a1)azls C I and axls € I and (a+ a1)l3 € I, we have
(a + a1)ag = aag + ajag € I by above lemma. Since ajas € I and aas + ajas € 1,
we have aay € I (since I is subtractive). Now, since (a + a1)(b + a2)Is C I and
(a+a1)l3 € I and (b+az)I3 € I, we have (a+aq)(b+a2) = ab+aaz+bay+ajas € I
by above lemma. Since aas,bai,a1a2 € I, we have aas + bay + ajas € I. Since
ab+ aas +bay +ajas € I and aas +ba; + ajas € I, we conclude that ab € I (since
I is subtractive), which is a contradiction. Hence I; I3 C I or I15 C I. O

Result 3.5 ([2], Lemma 2.1 (ii)). If I is a subtractive ideal of S, then (I : a) is a
subtractive ideal of S, where (I :a) ={s€ S :sa€I}.

Proof. 1t is straight forward. O

Next theorem gives some characterizations of 2-absorbing ideals of semiring.
Mostafanasab and Darani in [12], proved it for 2-absorbing primary ideals of rings.

Theorem 3.6. Let S be a semiring and I be a proper subtractive ideal of S. Then
the following are equivalent:

(1) I is a 2-absorbing ideal of S;
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(2) For all a,b e S such thatab¢ I, (I:ab) C(I:a) or (I:ab)C (I:b);

(3) Foralla € S and for all ideal J of S such that aJ € I, (I:aJ)C (I:J) or
(I:aJ)C (I:a);

(4) For all ideals J, K of S such that JK € I, (I:JK)C(I:J) or(I:JK)C
(I K);

(5) For all ideals J, K, L of S such that JKL C I, either JK C I or KL C I or
JLCI.

Proof. (1) = (2). Let ab ¢ I where a,b € S and = € (I : ab). Then zab € I.
Therefore, either xa € I or b € I and hence either z € (I : a) or x € (I : b). Thus,
(I:ab) C(I:a)U(:b). Then we have (I : ab) C (I :a)or (I :ab) C (I:D)
(since if A, B are subtractive ideals of a semiring S such that C C AU B where C
is an ideal of S, then either C C A or C C B).

(2) = (3), 3) = (4), (4) = (5) and (5) = (1) is similar as the proof of ([12],
Theorem 2.1), by using the result (if A, B are subtractive ideals of a semiring S
such that C C AU B where C is an ideal of S, then either C C Aor C C B). O

Theorem 3.7. Let I be a 2-absorbing ideal of S and A be a multiplicatively closed
subset of S such that IN A =®&. Then A™'I is also a 2-absorbing ideal of A™'S.

Proof. Let (a/s)(b/t)(c/k) € A~LI for some a,b,c € S and s,t,k € A. Then there
exists u € A such that uabc € I. Therefore, we have uab € I or bc € I or uac € I,
since I is a 2-absorbing ideal of S. If uab € I, then (a/s)(b/t) = (uab/ust) € A7'1.
If bc € I, then (b/t)(c/k) € A~ If uac € I, then (a/s)(c/k) = (uac/usk) €
AT -

Lemma 3.8. Let S be a semiring and Py, and P be distinct weakly prime ideals
of S. Then Py N Py is also a weakly 2-absorbing ideal of S.

Proof. Let 0 # abc € Py N Py for some a,b,c € S. Suppose that ab ¢ P, N P, and
ac ¢ Py N Ps. Assume that ab ¢ P; and ac ¢ P;. Since 0 # abc € Py and P,
is weakly prime, we get ¢ € P; and hence ac € P;, a contradiction. Similarly, if
ab ¢ P, and ac ¢ P,, we would get a contradiction. Therefore, either ab ¢ P, and
ac ¢ Py or ab ¢ P; and ac ¢ P;. First assume that, ab ¢ P and ac ¢ P,. Since
0 # abc € Py, we get ¢ € P; and hence bc € P;. Similarly, since 0 # abc € P,
we get b € P, and hence bc € P,. Thus, bc € P, N P,. Hence P; N P» is a weakly
2-absorbing ideal of S. Likewise, we can prove for the second case when ab ¢ P,
and ac ¢ Py, we have bc € P, N Ps. O

Definition 3.9. Let I be a weakly 2-absorbing ideal of S. We say that (a,b, ¢),
where a,b,c € S is a triple zero of I if abc=0,ab¢ I, bc ¢ I and ac ¢ I.

Theorem 3.10. Let I be a subtractive weakly 2-absorbing ideal of S and (a,b,c)
be a triple zero of I for some a,b,c € S. Then
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(1) abl = bel = acl = {0}.
(2) aI? =bI* = cI? = {0}.

Proof. (1). Let abl # 0. Then there exists « € I such that abz # 0. Therefore,
ab(c + x) # 0. Since I is a weakly 2-absorbing ideal of S and ab ¢ I, we have
alc+x) € I or b(c+ x) € T and hence ac € T or be € I (since [ is subtractive),
which is a contradiction. Thus, abl = 0. Similarly, bcI = acl = 0.

(2). Let aI? # 0. Then there exist x,y € I such that axy # 0. Therefore (1)
gives, a(b+ x)(c +y) = axy # 0. Since I is a weakly 2-absorbing ideal of S, we
have either a(b+z) € T or a(c+y) € [ or (b+ x)(c+y) € I. Thus, ab € I or
ac € I or be € I (since I is subtractive), which is a contradiction. Hence al? = 0.
Similarly, bI% = cI? = 0. O

Definition 3.11. Let I be a weakly 2-absorbing ideal of S and let I; I3I3 C I for
some ideals I, I, I3 of S. We say that I is a free triple zero with respect to 111515
if (a, b, c) is not a triple zero of I for every a € I, b € I, and ¢ € I5.

Conjecture 3.12. If I is a weakly 2-absorbing ideal of S with 0 # I11213 C I for
some ideals Iy, 15,13 € S, then I is a free triple zero with respect to I11513.

Lemma 3.13. Let I be a subtractive weakly 2-absorbing ideal of S. Let abJ C I
for some a,b € S and some ideal J of S such that (a,b,c) is not a triple zero of 1
for every c € J. If ab ¢ I, then either aJ C I or bJ C I.

Proof. Suppose that aJ ¢ I and bJ € I. Then, there are some z,y € J such that
axr ¢ I and by ¢ I. Since (a, b, z) is not a triple zero of I and abx € I and ab ¢ I
and ax ¢ I, we have bx € I. Since (a,b,y) is not a triple zero of I and aby € I
and ab ¢ I and by ¢ I, we have ay € I. Again, (a,b,x + y) is not a triple zero of
I and ab(z +y) € I and ab ¢ I, we have a(x +y) € I or b(x + y) € I, since I is
a weakly 2-absorbing ideal of S. If a(x + y) € I and ay € I, then ax € I (since I
is subtractive), which is a contradiction. Similarly, if b(x 4+ y) € I and bx € I, we
get by € I (since I is subtractive), which is a contradiction. Hence, either aJ C I
or bJ C I. O

Remark 3.14. If I is a weakly 2-absorbing ideal of S and I1I513 C I for some
ideals Iy, I, I3 of S such that I is a free triple zero with respect to I1I5I3. Then
abeloracelorbcelforallael;,bel;and c € I3.

Let I be a weakly 2-absorbing ideal of S. According to the following result, we
see that Conjecture 3.12 is valid if and only if whenever 0 # ;1513 C I for some
ideals Il,IQ,Ig of S, then either I]_IQ - I or 1213 - I or 11[3 - 1.

Theorem 3.15. Let I be a subtractive weakly 2-absorbing ideal of S. If 0 #
I1 1,13 C I for some ideals Iy, 15,13 of S such that I is a free triple zero with
respect to 111513 , then either I1Is C I or IoI3 C 1 or Isl; C 1.
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Proof. Let I be a subtractive weakly 2-absorbing ideal of S and 0 # ;1513 C I for
some ideals Iy, I, Is of S such that [ is a free triple zero with respect to I1I51s.
Let I 15 Q I. We show that I;1Is C I or I,I3 C I. By using above remark 1 and
lemma 3.13, it will proceed as the proof of theorem 3.4. If possible, suppose that
IiI3 ¢ I and I,I3 ¢ I. Then there exist a; € I1 and ap € I5 such that ai1l3 € T
and axls € I. Also, ajasls C I and a1l3 ¢ I and aqls € I, we have ajas € T
by lemma 3.13. Since I1I; € I, therefore for some a € I, b € I, ab ¢ I. Since
abls C I and ab ¢ I, we have als C I or b3 C I by lemma 3.13 . Here three cases
arise.

CASE I: Suppose that als C I, but bI3 € I. Since a;bI3 C I and bI3 ¢ I and
arl3 ¢ I, by lemma 3.13, we have a1b € I. Since (a4 a1)bl3 C I and als C I,
but aiI3 € I, therefore (a +ay)ls € I. Since bl € I and (a+ a1)I3 € I, we have
(a 4+ a1)b € I by lemma 3.13. Again, (a + a1)b = ab+ a1b € I and a1b € I, we
conclude that ab € I (since I is subtractive), which is a contradiction.

CASE II: Suppose that bI3 C I, but als € I. Since aasI3 C I and al3 ¢ I and
asI3 € I, by lemma 3.13, we have aas € I. Again, a(b+ az)Is C I and b3 C I,
but asl3 € I, we have (b+ az)ls € I. Since als € I and (b+ a2)I3 € I, we have
a(b + az) € I by lemma 3.13. Since a(b+ az) = ab+ aaz € I and aay € I, we
conclude that ab € I (since I is subtractive), which is a contradiction.

CASE III: Suppose that al3 C I and bl3 C I. Since b3 C I and asl3 Q I, we
have (b+ az)I3 € I. Since a1(b+ a2)I3 C I and a1l3 € I and (b+ az)I3 € I, we
have aq(b+as) = a1b+ajay € I by lemma 3.13. Since a;b+ajas € I and ajas € I,
we have ba; € I (since I is subtractive). Since alz3 C I and ail3 ¢ I, we have
(a+a1)Is € I. Since (a+ ar)asls C I and aols € I and (a+ a1)l5 € I, we have
(a + a1)as = aas + ajas € I by lemma 3.13. Since ajag € I and aas + ajas € I,
we have aag € I (since I is subtractive). Now, since (a + a1)(b + a2)I3 C I and
(a+a1)I3 € I and (b+az)I3 € I, we have (a+aq)(b+a2) = ab+aaz+bay+ajas € I
by lemma 3.13. Since aas,bai,aras € I, we have aas + ba; + a1as € I. Since
ab+ aas +bay +ajas € I and aas +ba; + ajas € I, we conclude that ab € I (since
I is subtractive), which is a contradiction. Hence I; I3 C I or II5 C I. O

Proposition 3.16. Let S be a semiring and I be a proper subtractive ideal of S.
Then the following statements are equivalent:

(1) For any ideals I ,I5, I35 of S, 0 # I1IxI3 C I implies either I1Io C I or
11]3 g I or 1213 g I,‘

(2) For any ideals I, I, I3 of S such that I C Iy, 0 # I1 1313 C I implies either
11[2 g I or 11[3 g I or 1213 g I.

Proof. (1) = (2) is clear.

(2) = (1). Let 0 # JI2I3 C I for some ideals J, I, I3 of S. Then obviously
0 7é (J+ I)IQIg = (JIQIg) + (IIQIg) Q I. Let I1 = J+I Then, either .[112 Q
Ior 1I3 C I or I;I3 C I by given hypothesis. Therefore, (J 4+ I)Is C I or
(J+I)I3 CTIor Ixl3 CI. Thus, either JIo C T or JI3 C I or IoI3 C T (since I is
subtractive). O
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On the principal (m,n)-ideals in the direct product

of two semigroups
Panuwat Luangchaisri and Thawhat Changphas

Abstract. We characterize properties of the equivalence relation determined by two (m,n)-
ideals of a semigroup S and describe properties of this relation in the direct product of two
semigroups.

1. Preliminaries

Let m,n be non-negative integers. A subsemigroup A of a semigroup S is called
an (m,n)-ideal of S if

AMSAT C A

(Here, A’S = SA® = S). This notion was first introduced by S. Lajos [3] in 1961.
The principal (m,n)-ideal of S generated by a € S will be denoted by [a] (),
and it is of the form

[a](m,n) = U:”f;tn{az} U a™Sa™
(see [2]).

Now, let T' be a semigroup, and thus the direct product S x T is a semi-
group under the coordinate wise multiplications. In this paper we introduce the
equivalence relation J,, )y on S by, for any a,b € S,

ax7(m,n)b — [a](m,n) = [b](m,n)

2. Main results

Throughout this section, let m,n be non-negative integers and S be a semigroup.
We begin this section with the following lemmas:

Lemma 2.1. Let S and T be any two semigroups, and let s € S, t € T. Then
(5,)™(S x T)(s,t)" = s™Ss™ x t™Tt".

2010 Mathematics Subject Classification: 20M20.
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Hence,
(8, )] (mmy) = Ul {(s,1)1} U s™Ss™ x ™ Tt™,
Proof. This follows by
(5, )™ (S x T)(s,t)™ = (s, t")(S x T)(s™,t") = s™Ss™ x t"Tt". O
Lemma 2.2. Let s be an element of a semigroup S. Then
[8](m,n) = 8™ 95" — s5€s™Is".

Proof. It is clear that [s](,, ) = s Ss" implies s € s™Ss".
Conversely, if s € s™Ss", then

[$](m,n) = Uri™{s' U s™Ss™ C s™Ss™
By s™85" C [s](m,n)s [8](m.n) = 858", O

Lemma 2.3. Let S and T be any two semigroups, and let s € S, t € T. Then
[(Svt”(m,n) - [S](mm) X [t](m,n)'
Proof. This follows by Lemma 2.1. 0
We now prove the first main purpose of this paper.

Theorem 2.4. Let S and T be any two semigroups, and let s € S, t € T. Then
[(8, )] (m.n) = [8](m,n) X [tlm,n) if and only if at least one of the following conditions
holds:

(1) s™Ss™ ={s},
(2) t"Ttn = {t},
(3) s€s™Ss"™ and t € t™Tt".

Proof. Assume first that [(s,%)](m,n) = [5](m,n) X [t](m,n)- Suppose that s ¢ s™Ss"
ort ¢ t™Tt". If s ¢ s™Ss", then s # s* for all k € {2,3,...}; hence
{s} x t"™Tt™ = {(s,t)}.

This implies that t™Tt" = {t}. Similarly, if ¢ ¢ t"Tt", then s™Ss" = {s}.

Conversely, we assume that (1), (2) or (3) holds. If s™Ss™ = {s}, then, by
Lemma 2.2, it follows that

Sy X [y = (5 % Flommy = U (560} Uls) x T8

= UZ’:{" (st U s™Ss™ X t™Tt" = [(8,1)] (m,m)-

Thus [(sat)](m,n) = [S](m,n) X [t](m,n)-

Similarly, if t™Tt™ = {t}, then [(5,1)](m,n) = [8](m,n) X [t]m,n)-
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Finally, we assume that s € s Ss” and t € t"Tt". By Lemmas 2.2 — 2.3, we
have

[(5, )] (m,m) S [8lom,m) X [,y = 8™58™ x ATt C (s, 8)](m,m)-
Therefore [(s,2)](m,n) = [5(m.n) X [t](m,n), as required. O
Now, we consider the second aim of this paper.
Lemma 2.5. For any s € S, if Jun n),s 187 Ss™ # 0, then Jiy, n),s C s Ss".
Proof. For J(;, n),s N s™Ss™ # () there exists u € J(;, ),s N 5™ Ss™. Thus

s € [S}(m,n) = [u}(m,n)'

We have s € s™Ss". Indeed, if s = u’ for some i € {1,2,...,m + n}, then
s € smSs™. And, if s € u™Su", then s € u"™Su™ C (s™Ss™)S(s™Ss™) C s™Ss™,
and so s € s Ss”.

Now, if v € Jim n),s, then [v](m.n) = [8](m,n); hence v € [s](y, ). This implies
V € [8](m,n) = s™S5s™ by Lemma 2.2. Therefore J(,, ) s € 5™ Ss™. O

Lemma 2.6. If for s € S the cardinality |, )| > 1, then J(y, ny,s € s™Ss™.
Proof. For |J(y n,s| > 1 there exists u € Jiy, n),s such that u # s. We have

u e [u](mm) = [8](m7n).

If u € sSs", then Ji, n).s N s™Ss™ # 0. So, Jimny,s C s™Ss™, by Lemma 2.5.
Let u = s* for some ¢ € {2,3,...,m+n}. If s =’ for some j € {2,3,...,m+n},
then s € s™Ss™. Therefore, by Lemma 2.5, it follows that Jip p)s © s™5s™.
If s € w™Su™, then Jimpnys = Jimpn)u © w™Su™ = s™Ss™ C s™Ss™. This
completes the proof. O

Let S and T be any two semigroups. Define g : SXT — Sand np : SXT — T,
respectively, by:

(s,tyrs=sforallse S and (s,t)rp=tforallteT.

Then 7g (resp. mr) is a projection from S x T onto S (resp. 7). Moreover, for
any (S,t) S S x T we have [(S,t)](mm)ﬂs = [5](7”7”) and [(S7t)}(m,n)7TT = [t}(m,n)-

Theorem 2.7. Let S and T be any two semigroups, and let (s,t) € S x T. Then
(1) J(m,n),(s,t) g J(m,n),s X J(m,n),t; and

(2) if Jim,n),(s,¢) 15 a proper subset of Jim ny.s X Jim.n),es then Jim ny s X Jimm).e
is the union of at least two J(y, n)-classes in S X T.

Proof. To prove (1), let (u,v) € Jim.n),(s,6)- Then [(8,6)](mn) = [(% V)] (m,n)

[8](m,n) = [(S7t)](m,n)7r5 = [(u7v)](m,n)7r5 = [U](m,n)
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and

(tlm.n) = (8, D)) m.mymr = [(W V)] (m,m) T = [0](m,n)-
Thus (u,v) € Jimn),s X Jmn)t-
(2). Let (u,v) € Jimn),s X Syt \ Jimon),(s,0)- Then [u]om ny = [8](m,n) and
[v]m,n) = [tl(m,n)- Thus
Jmn) (o) © Jemn)u X mn),0 = Jonm),s X Jmn) - -

Corollary 2.8. Let S and T be any two semigroups, and let (s,t) € S x T. If
Jimon),s = {8} and Jiy 0y, = {t}, then

Jmn) (s,t) = Jmmny,s X Jomamy e = {(s,8)}

Theorem 2.9. Let S and T be any two semigroups, and let s € S;t € T. Then
Jimn),s X Jmn)t = Jmon),(s,t) if and only if at least one of the following conditions
holds:

(1) J(m,n),s = {S} and J(m,n),t = {t},
(2) se€s™Ss™ and t € t™TL".
Proof. Assume that J(m,n)’s X J(m’n)ﬂg = J(m,n),(s,t)' If |J(m,n),(s,t)| =1, then

J(m;n),s X J(m,n),t = J(mm),(s,t) = {(Svt)}

That is, J(m,n),s = {S} and J(m,n),t = {ﬁ}

If [ J(mn),s,0)] > 1, then, (s,t) € Jim p),(s,0) € 8™ Ss™ x t™T't", by Lemma 2.2.

Conversely, if (1) holds, then Ji, n),s X Jim.n)t = J(m.n),(s,t), Py Corollary 2.8.
By (2) and Theorem 2.4, we get [(,t)](m.n) = [5](m.n) X [t](m,n)- By Theorem 2.7,
J(m,n),(s,t) - J(m,n),s X J(m,n),t-

To prove the reverse inclusion let (u,v) € Jim n).s X Jim,n) .t

CASE 1: (u,v) = (s,t). Then (u,v) € J(m’n)’(s’t), and so J(m’n)’s X J(m,n),t -
(), (s,t)-

CASE 2: u # s. By Lemma 2.6, we have u € Jy n),u C© u™Su", because
S,u € J(m,n),s = J(m,n),u-

CAsE 2.1: v =t. We have v € v™Tv". By Theorem 2.4,

[(wv)](m,n) = [u](m,n) X [U}(m,n) = [5](m,n) X [t](m,n) = [(Sat)](m,n)'
Thus (uvv) € J(m,n),(s,t)- Therefore J(m,n),s x J(m,n),t - J(m,n),(s,t)-
Case 2.2: v #t. We have v € Juypn),0 S v"T0v". As Case 2.1 we have
(u,v) € Jm,n),(s,t), and thus
J(m,n),s X J(m,n),t - J(m,n),(s,t)-

CASE 3: u =t,v # t. Analogously as Case 2.1.
This completes the proof. O
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Using the thereom above we have the following.

Corollary 2.10. Let S and T be any two semigroups, and let s € S;t € T. If
|J(m,n)7s| > 1 and |J(m,n)7t| > 17 then J(m,n),(s,t) = J(m,n),s X J(m,n)ﬂt'

Corollary 2.11. Let S and T be any two semigroups, and let s € S;t € T. If
Jim,n),s X J(m,n),t 18 the union of at least two Jm n)-classes, then necessarily either
|J(m,n),s| > 1, J(m,n),t = {t} or |J(m,n),t| > 17<](m,n),s = {S}

Theorem 2.12. Let S and T be any two semigroups, and let s € S,t € T. Then
Jimn),s X Jmn),¢ 18 the union of at least two J(p, ny-classes if and only if either

Tyl > 1 Jonmye = {t}, t & Tt
or
|J(m»’fl)7t| > 1} J(m,n),s = {3}; S ¢ s™MSs™,

Proof. Assume that Ji, n).s X J(m,n),¢ is the union of at least two J(,, n)-classes.
By Corollary 2.11,

"](m,n)ﬁ > 17 J(m;n),t = {t}

or
|J(m,n),t| > 1, J(m,n),s = {S}

CASE 1: [Jimn),sl > 1, Jimmye = {t}. Then t ¢ t™Tt" because otherwise,
5 € Jimn),s € 8MSs™ and t € tTt"™ imply that Jim, n)s X Jimn)t = Jmn),(s,)-

CASE 2: |[Jimn) el > 1, Jimn),s = {s}. This can be proceed analogously, and
hence s ¢ s™Ss™.

For the opposite direction, it suffices to consider the case [Jn )l > 1,
Jimmye = {t}, t ¢ t"Tt". Let u € Jm s such that u # s. Then (u,t) €
Jimom),s X Jimony,e- Since t ¢ t™Tt", we have (s,t) ¢ s™Ss™ x t™Tt". Thus, by
Lemma 2.6, we have (u,t) & {(s,1)} = Jim,n).(s,t)- 0

The rest of this paper, relationships between maximal J(;, n)-classes in S x T
and maximal J,, »)-classes in S and in T" will be investigated.

Theorem 2.13. Let S and T be any two semigroups, and let s € S, t € T be such
that (s,t) € s Ss" xt™Tt". Then, for anyu € S,v € T, [(5,1)](m,n) € [(% V)] (m,n)
if and only if [s](m.n) C [U](mn) and [t](mn) € [V]mn)-

Proof. Assume that [(s,%)](m,n) € [(%,V)](m,n). Then
[s ] (m,n) = = [(s, t)](m n)Ts & [(u, )](m,n)ﬂs = [u](mm)7
[ } (m,n) — [(57 )](m n)TT - [( )](7n,n)7TT = [U](m,n)-
Hence [S}(m’n) - [’U,}(m’n) and [t](m’n) - [U](mm).
Assume that [s](m.n) € [t](m,n) and [t]m.n) € [V](mn). Since s € s™S5s™ and
t € t™Tt", it follows by Theorem 2.4 and Lemma 2.2 that

[(S7t)](m,n) = [S](m,n) X [t](m,n) = s™Ss™ x t"™Tt".
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If (xay) € [(Svt)}(m,n)a then
(z,y) € sSs"™ x t"Tt" Cu™Su™ x v™Tv"™ C [(u,V)](m,n)-
Thus [(S,t)](m’n) - [(uw)](m,n). O

Theorem 2.14. Let S and T be any two semigroups, and let s € S, t € T be
such that (s,t) € s™Ss™ x t™Tt". Then Jim ) (s, 15 @ mazimal Jm ,)-class in
S x T if and only if Jinny,s and Jon n)e are mazimal Jpy, n)-classes in S and in
T, respectively.

Proof. Assume first that J(,, ) (s, 18 @ maximal J(,, »)-class in S x T'. Suppose
that J(,, 5),s is not a maximal J(,, n)-class in S. Then there exists u € S such
that [s] () C [t](m,n)- By Theorem 2.13, [(5,1)](m,n) € [(1:1)](m,n). We have

(uvt) ¢ M(m,n) X [t](m,n) = [(S’t)}(m,n)-

Thus [(8,t)](m,n) C [(4;t)](m,ny- This contradicts to the maximality of Jm 5, (s.e)-
In the same manner, if J(,, . is not a maximal J(,, »)-class in T', then we get a
contradiction.

Conversely, we assume that Ji,, n) s and J(;, n),, are maximal J,, ,)-classes in
S and in T, respectively. Suppose that Ji, n) (s, i not maximal. Then there
exists (u,v) € S x T such that [(s,)](m,n) C [(%V)](m,n). Thus

[*ﬂ(m,n) X [t](m,n) = [(S,t)}(m,n) C [(uav)](m,n) g [u](m,n) X [U](m,n)-

This is a contradiction. O
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Characterizing monomorphisms of actions

on directed complete posets (S-dcpo)

Mojgan Mahmoudi and Mahdieh Yavari

Abstract. Domain Theory is a branch of mathematics that studies special kinds of partially
ordered sets (posets) commonly called domains. It was introduced in the 1970s by Scott as a
foundation for programming semantics and provides an abstract model of computation, and has
grown into a respected field on the borderline between Mathematics and Computer Science.

In this paper we take domains as ordered algebraic structures and consider the actions of
a partially ordered monoid which is itself a domain, on them. To study algebraic notions, in
particular injectivity and flatness, in the categories so obtained, one needs to know the different
kinds of monomorphisms, their properties and the relations between them. This is what we are
going to discuss in this paper.

1. Introduction and preliminaries

Domain theory is a branch of mathematics that studies special kinds of partially
ordered sets (posets) commonly called domains. It was introduced in the 1970s
by Scott as a foundation for programming semantics and provides an abstract
model of computation using order structures and topology, and has grown into a
respected field on the borderline between Mathematics and Computer Science [1].

Relationships between domain theory and logic were noted early on by Scott
[10], and subsequently developed by many authors, including Smyth [11], Abram-
sky [2], and Zhang [12]. There has been much work on the use of domain logics
as logics of types and of program correctness, with a focus on functional and
imperative languages.

In this paper we take domains as ordered algebraic structures and consider
the actions of a pomonoid which is itself a domain, on them. To study algebraic
notions, in particular injectivity and flatness, in the categories so obtained, one
needs to know the properties of different kinds of monomorphisms and the relations
between them. This is what we are trying to do in the following.

First we recall some preliminaries needed in the sequel. The reader can find
more details in [2, 4, 5, 6]. Let Pos denote the category of all partially ordered
sets (posets) with order-preserving (monotone) maps between them. A non-empty
subset D of a partially ordered set is called directed, denoted by D C¢ P, if for every
a,b € D there exists ¢ € D such that a,b < ¢; and P is called directed complete,

2010 Mathematics Subject Classification: 06F05, 18A40, 20M30, 20M50.
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or briefly a dcpo, if for every D C? P, the directed join \/d D exists in P. A dcpo
which has a bottom element L is said to be a cpo.

A dcpo map or a continuous map f : P — @Q between dcpo’s is a map with the
property that for every D C% P, f(D) is a directed subset of @ and f(\/? D) =
\/df(D). A depo map f: P — @ between cpo’s is called strict if f(L) =1. Thus
we have the category Depo (Cpo) of all depo’s (cpo’s) with (strict) continuous
maps between them.

A po-monoid S is a monoid with a partial order < which is compatible with
the binary operation (that is, for s,¢,s',t' € S, s <t and s’ < ¢ imply ss’ < #t').
Similarly, a depo (¢po)-monoid is a monoid which is also a dcpo (cpo) whose binary
operation is a (strict) continuous map.

Recall that an (right) S-act or an S-set for a monoid S is a set A equipped with
an action A x S — A, (a,s) ~ as, such that ae = a (e is the identity element of
S) and a(st) = (as)t, for all a € A and s,t € S. Let Act-S denote the category
of all S-acts with action preserving maps (f : A — B with f(as) = f(a)s, for all
a € A,s €5). Let A be an S-act. An element a € A is called a zero, fized, or a
trap element if as = a, for all s € S.

For a po-monoid S, an (right) S-poset is a poset A which is also an S-act whose
action A : A x § — A is order-preserving, where A x S is considered as a poset
with componentwise order. The category of all S-posets with action preserving
monotone maps between them is denoted by Pos-S.

Also, for a depo (cpo)-monoid S, an (right) S-depo (S-cpo) is a depo (cpo) A
which is also an S-act whose action A : A x S — A is a (strict) continuous map.

Notice that in the definition of an S-cpo, the continuity of the action implies
that it is also strict. This is because, since 1 g < e and the action is continuous,
we have L 4lg < Llge=_1lg4andso Lalg < L. Also, L4 < L4Llg. Therefore,
Lalg = 14 and the action is strict. Also, note that the bottom element of an
S-cpo in not necessarily a zero element. For example, consider the cpo-monoid
S = {s, e} where e is the identity element of S, e < s, and ss = s. Take the S-cpo
A ={Lla,a}, where L 4 < a, with the action L s = a = as. We see that L4 is
not a zero element.

A (possibly empty) subset B of an S-dcpo (S-cpo) A is called a sub S-dcpo
(sub S-cpo) of A if B is both a sub dcpo (sub cpo) and a subact of A.

By an S-dcpo map (S-cpo map) between S-dcpo’s (S-cpo’s), we mean a map
f A — B which is both (strict) continuous and action preserving. We denote
the category of all S-dcpo’s (S-cpo’s) and S-dcpo (S-cpo) maps between them by
Dcpo-S (Cpo-5).

A separately (or semi-)cpo-monoid is a monoid which is also a cpo whose right
and left translations Rg : S — S, t ~ ts and Ls : S — S, t ~» st are strict
continuous.

Now, let S be a separately cpo-monoid. A separately S-cpo is a cpo A which
is also an S-act with the action A x S — A such that every Ry : A — A, a ~ as
and L, : S — A, s ~ as, are strict continuous. The category of all separately
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S-cpo’s with action preserving strict continuous maps between them is denoted by
Sep-Cpo-S.

Finally, let S be a monoid with identity e. By a cpo S-act, we mean an S-act
in the category Cpo. In other words, a pair (A4; (As)ses) is called a cpo S-act if A
is a cpo, and each A\; : A — A, a ~ as, is a cpo map, called an action, such that
for all s,t € S, and a € A, denoting A;(a) by as we have:

(1) a(st) = (as)t;

(2) ae = a.

By a cpo S-act map between cpo S-acts, we mean a cpo map which is also
action preserving. The category of all cpo S-acts with cpo S-act maps between
them is denoted by Cpogct.s-

Definition 1.1. A morphism h : A — B in Dcpo-S (Cpo-S, Sep-Cpo-S,
Cpoygi g) is called order-embedding provided that for all z,y € A, h(z) < h(y) if
and only if z < y.

In this paper, first we characterize different kinds of monomorphisms namely
regular, strict, strong and extremal in [3], in the categories Depo-S, Cpo-S, Sep-
Cpo-S and Cpoyg g and see that they are the same as order-embeddings. Then,
we study the relation of monomorphisms with one-one morphisms and see that
in the categories Dcpo-S, Sep-Cpo-S, Cpoyp g, Depo and Cpo, monomor-
phisms are exactly one-one morphisms. Also, we show that under some conditions
the same result is true for the category Cpo-S. In the last section we consider
some categorical properties of monomorphisms and regular monomorphisms, in the
mentioned categories, the properties such as factorization properties of morphisms
and some categorical properties related to limits and colimits.

2. Characterization of monomorphisms

In this section we characterize different kinds of monomorphisms in categories
Dcpo-9, Cpo-S, Sep-Cpo-5 and Cpop g, also we study their relation with
one-one morphisms. First, we recall some related definitions from [3].

Definition 2.1. Let £ and M be classes of morphisms in a category C. Then, the
pair (£, M) is called a factorization structure for morphisms in C and C is called
(€, M)-structured provided that:
(1) each of £ and M is closed under composition with isomorphisms,
(2) C has (£, M)-factorizations (of morphisms); that is, each morphism f in C
has a factorization f = he, with e € £ and h € M, and
(3) C has the unique (£, M)-diagonalization property; that is, for each commu-
tative square
A~ B
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with e € £ and h € M, there exists a unique diagonal; that is, a morphism
d: B — C such that de = f and hd = g.

Definition 2.2. A monomorphism h: A — B in a category C is called:

(1) regular if it is an equalizer of a pair of morphisms;

(2) strict if it has the universal property that given any morphism A’ : A’ — B
such that rh = sh implies 7h’ = sh/, for all r, s : B — C, there exists a
unique morphism h : A’ — A with &' = hh;

(3) strong provided that C has the unique (Epi,{h})-diagonalization property
(Epi is the class of all epimorphisms);

(4) extremal provided that if h = me, where e is an epimorphism, then e is an
isomorphism.

2.1. Monomorphisms and order-embeddings

In this subsection, we characterize different kinds of monomorphisms such as reg-
ular, strict, strong and extremal in Dcpo-S, Cpo-S, Sep-Cpo-S and Cpop ;. g-

Remark 2.3. Notice that order-embeddings are one-one, and hence monom-
orphisms in the categories Dcpo-S, Cpo-S, Sep-Cpo-S and Cpop...g- But
the converse is not necessarily true. For example, take S = {e, s} where s < e and
s? = 5. Then S is a dcpo (cpo, separately cpo)-monoid. Now, take A = { L, a,a’}
with the order L < a,d, a || @/, and define the action on A as follows: L is
a zero element and as = a’s = L. Also, take B to be the three element chain
3 ={0,1,2} with 0 < 1 < 2, and define the action on B as follows: 0 is a zero
element and 1s = 2s = 0. Now, defineh: A — Bas h(L) =0, h(a) =1, h(d') = 2.
Then h is one-one and hence a monomorphism in these categories, but it is not an
order-embedding.

Theorem 2.4. A monomorphism h : A — B in Dcpo-S, Cpo-S, Sep-Cpo-5
and Cpopi.g s reqular if and only if it is order-embedding.

Proof. Let h : A — B be a regular monomorphism in Dcpo-S (Cpo-S, Sep-
Cpo-S, Cpopeig)- Then h is the equalizer of morphisms ¢q,¢92 : B — C. Note
that, the equalizer of g1 and g, in these categories is E = {b € B : g1(b) = ¢2(b)}
with order and action inherited from B (see also [7], [8], [9]). Hence there exists
an isomorphism between F and A, so h is an order-embedding.

Conversely, let h : A — B be an order-embedding in one of the categories
Dcpo-S, Cpo-S, Sep-Cpo-S or Cpopgig- In each category, we define two
morphisms whose equalizer is h.

(¢). In Dcpo-S, consider the disjoint union (Bx{1})U(Bx{2}) of B with itself,
which is the coproduct BUB by Theorem 2.4 of [7]. Take B’ to be the quotient (BL
B)/0(H), where 8(H) is the congruence generated by H = {((h(a), 1), (h(a),2)) :
a € A}. Now, consider the natural epimorphism ¢ : BUB — B’ and the coproduct
maps g1, 92 : B — BUB. We prove later on that h is the equalizer of qg; and qgs.
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(#4). In Cpo-S, we consider the same S-dcpo B’ as defined in (¢). Since in
this case h is strict, h(La) = Lp, and then [(Lp,1)]ga) = [(LB,2)]om) is the
bottom element of B’. So, B’ is an S-cpo. Also ¢gg; and ¢gs introduced in part (7)
are strict, because gg1(Lp) = [(Lp,1)]om) and qg2(Lp) = [(LB,2)]oc). We will
see that h is the equalizer of ¢qg; and ¢g2 in Cpo-S.

(7i7). In Sep-Cpo-S, B is a separately S-cpo, and hence by Remark 3.3 of
[8], B is also an S-cpo. So, from the discussion given in (i7), B’ which introduced
in part (), is an S-cpo. Now again by applying Remark 3.3 of [8], we get that
B’ is a separately S-cpo. This is because, B is a separately S-cpo, and so for
every b € B and s € S we have blg = 1l and 1Lgs = 1p, therefore for every
be B,s e S, and i = 1,2, we have [(b,7)]Ls = [(bLls,i)] = [(Lp,7)] and
[(Lp,i)]s =[(Lps,i)] =[(Lp,i)]. Also, similar to part (ii), gg1 and ggo are strict
continuous maps. We will see later on that h is the equalizer of ¢g; and qgs.

(v). In Cpoy 4. g, similar to (), take the coporoduct of B with itself (which is
called the coalesced sum, see [9]), and apply the same argument to define g, g1, ga.
We show that h is the equalizer of gg; and qgs.

Now, we prove that h is the equalizer of gg; and ggs in all the above cases.

It is clear that (gg1)h = (gg2)h. Consider an S-dcpo (an S-cpo, a separately S-
cpo, a cpo S-act) map k : C — B with (gg1)k = (qg2)k. Notice that k(C) C h(A).
This because, on the contrary if z € k(C) \ h(A), then since z ¢ h(A), we get
qg1(x) # qga2(z) but since z € k(C) and (gg1)k = (¢g2)k, we have gg1(x) = qgz2(z)
which is a contradiction. On the other hand, since h is an order-embedding, it
is one-one, and so there exists a map h’ : B — A such that h’h = idy. Now we
see that k' = 'k : C — A is the unique S-dcpo (S-cpo, separately S-cpo, cpo
S-act) map with hk’ = k. First, we prove that k' preserves the order. To see
this, let z,2’ € C, z < a’. Then k(z) < k(z’). Since k(C) C h(A), there exist
a,a’ € A, k(x) = h(a) and k(z") = h(a’). Therefore, h(a) < h(a’), and so a < o
(since h is an order-embedding). Now, h'h(a) < h'h(a’) (since h'h = id4) and
hence k' (z) = h'k(z) = h'h(a) < Wh(a') = W'k(z') = k' (2'). Also, k’ preserves the
action. To show this, let z € C and s € S, then k' (zs) = hWk(zs) = b/ (k(z)s) =
R (h(a)s) = h'(h(as)) = as where k(x) = h(a),a € A. On the other hand,
K'(r)s = Wk(z)s = h'h(a)s = as. To see that k' is continuous, let D C? C.
Then k'(D) C¢ A, since k' is order-preserving. Also for each d € D, there exists
aq € A with k(d) = h(ag) and T = {aq : d € D,h(aq) = k(d)} C¢ A. This is
because, if aq,,aq, € T, then dy,ds € D C? C. Therefore, there exists d3 € D
with dy,dy < d3. Now, k(dy),k(d2) < k(ds) and so h(ag, ), h(aq,) < h(ag,) for
some a4, € A, and hence ag4,,a4, < aq4,, since h is an order-embedding. Now,
k(D) = Wk(\* D) = Wh(a) = a where k(\/* D) = h(a),a € A. On the other
hand, \/9cp ¥ (d) = Viep W'k(d) = Viep Wh(ag) = \/epaa. Tt is enough to
prove that \/*T = \/ZGD aq = a. For every d € D, a4 < a, since h(aq) = k(d) <
k:(\/d D) = h(a) and h is an order-embedding. If a’ € A is also an upper bound
of T in A, then for every d € D, h(aq) < h(a’) and so k(d) = h(aq) < h(d')
which implies h(a) = k(\/? D) = \/36[, k(d) < h(a’). Thus a < @/, since h is an
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order-embedding. Therefore, \/d T = a. Notice that hk’ = k and %’ is unique with
this property. Also, in the case where h and k are strict, then so is &'. O

Definition 2.5. Recall from [4] that considering Depo-S (Cpo-S, Sep-Cpo-S,
Cpoj.ig) s a concrete category over Set, a monomorphism h is said to be an
embedding over Set if whenever g is a map between S-dcpo’s (S-cpo’s, separately
S-cpo’s, cpo S-acts) such that hg is an S-dcpo (an S-cpo, a separately S-cpo, a
cpo S-act) map, then g itself is an S-dcpo (an S-cpo, a separately S-cpo, a cpo
S-act) map.

As a consequence of Theorem 2.4 we have:

Corollary 2.6. If h : A — B is a regular monomorphism in Dcpo-S (Cpo-S,
Sep-Cpo-S, Cpoyig) then h is an S-depo (an S-cpo, a separately S-cpo, a cpo
S-act) embedding over Set.

Proof. Suppose that h : A — B is a regular monomorphism in Dcpo-S (Cpo-S,
Sep-Cpo-S, Cpopt.g)- By Theorem 2.4, h is an order-embedding. Now, let
g : C — A be a function between S-dcpo’s (S-cpo’s, separately S-cpo’s, cpo S-
acts) such that hg is an S-dcpo (an S-cpo, a separately S-cpo, a cpo S-act) map.
Then we prove that g is an S-dcpo (an S-cpo, a separately S-cpo, a cpo S-act)
map. First, we show that g preserves the action. This is because, for z € C and
se s,
h(g(xs)) = (hg)(xs) = ((hg)(x))s = (h(g(x)))s = h(g(z)s)

and so g(zs) = g(z)s, since h is one-one. Also, g preserves the order. To see
this, let z,2’ € C with < a’. Then, h(g(z)) < h(g(z')). Now, since h is an
order-embedding we have g(x) < g(z’). Finally, g is continuous. To show this, let
D C? C. Then g(D) C? A, since g preserves the order. Further,

d d d d d
n(g(\/ D)) = (hg)(\/ D) = \/ (hg)(d) = \/ h(g(d)) = h(\/ 9(d))
deD deD deD
and so g(\/5cp D) = Viep g(d). Also, h(g(Lc)) = hg(Le) =Lp= h(La) and
g(Lc) ZJ_A. O

Now, we will study the relation of different kinds of monomorphisms. First
recall the following proposition.

Proposition 2.7. [3] If the category C has equalizers and pushouts, also regu-
lar monomorphisms in C are closed under composition, then a monomorphism is
reqular if and only if it is extremal. O

Theorem 2.8. For a monomorphism h : A — B in Dcpo-S (Sep-Cpo-S,
Cpopgi.g) the following are equivalent:

(1) h is regular,

(2) h is strict,

(3) h is strong,

(4) h is extremal.
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Proof. The implications (1) = (2) = (3) = (4) are general category-theoretic
results. For implication (4) = (1), since these categories are complete and cocom-
plete (see [7], [8], [9]), and by Theorem 2.4, regular monomorphisms are exactly
order-embeddings and hence they are closed under composition, applying Propo-
sition 2.7, we get that any extremal monomorphism is regular. O

Lemma 2.9. If h : A — B is a morphism in Dcpo-S (Cpo-S) then h' : A —
<h(A)>, to the sub S-dcpo (sub S-cpo) of B generated by h(A), with h'(a) = h(a)
for all a € A, is an epimorphism in Dcpo-S (Cpo-S).

Proof. Let h: A — B be a morphism in Dcpo-S (Cpo-S). Then take h' : A —
<h(A)>, to the sub S-dcpo (sub S-cpo) of B generated by h(A), with h'(a) = h(a)
for all a € A. To show that A’ is an epimorphism, consider g1, gs : <h(A)> — C
such that g1h’ = goh'/. Since for all D C h(A), g1(D) = g2(D) and g; and g
are continuous, it is straightforward to show that g1(<h(A)>) = ga(<h(A4)>).
Therefore, h’ is an epimorphism in Dcpo-S (Cpo-S). O

Remark 2.10. Notice that, if h: A — B is a morphism in the category Dcpo-S
(Cpo-S), then h(A) is not necessarily an S-dcpo (S-cpo). To see this, consider
A = (N) where the natural numbers N is considered with the discrete order and
1 < n, for all n € N. Also consider B = (N*°); where N*° = NU {oo} and the
order on N is the usual one and 1. < n < oo, for all n € N. It is straightforward to
show that A and B with the identity action are S-dcpo’s (S-cpo’s). Now, define
the map h : A — B by h(L) = L and h(n) = n, for all n € N. We get h is
a (strict) continuous map and h(A) = (N)_ is not an S-dcpo (S-cpo). This is
because D = N is a directed subset of h(A) and \/* D = \/*N = oo & h(A).

Lemma 2.11. A monomorphism h : A — B in Cpo-S is order-embedding if it is
extremal.

Proof. Suppose that h : A — B is an extremal mono in Cpo-S and consider
B+ A — <h(A)>, W(a) = h(a) for all a € A. Tt is clear that h = ih/, where
i:<h(A)> < B. Also by Lemma 2.9, i’ is an epimorphism in Cpo-S. Hence, by
the definition of extremal monomorphisms, k' is an isomorphism in Cpo-S, and
consequently h is an order-embedding. O

As a consequence of Lemma 2.11 and Theorem 2.4, we have:

Corollary 2.12. For a monomorphism h : A — B in Cpo-S, the following are
equivalent:

(1) h is regular,

(2) h is strict,
(3) h is strong,
(4) h is extremal.
Proof. The implications (1) = (2) = (3) = (4) are general category-theoretic
results. For implication (4) = (1), by Lemma 2.11 and Theorem 2.4, we get the
result. O
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2.2. Monomorphisms and one-one morphisms

In this subsection, we study the relation between monomorphisms and one-one
morphisms in the categories Dcpo-S, Depo, Cpo, Sep-Cpo-S, and Cpop ;. g-

Remark 2.13. Notice that in Dcpo-S, monomorphisms are exactly one-one mor-
phisms (see [7]). Furthermore, in Dcpo, Cpo, Sep-Cpo-S, and Cpo, ... by ap-
plying the adjoint pairs given in Corollary 2.5 and Theorem 3.4 of [6], Corollary 4.4
of [8] and Corollary 4.2 of [9] and the fact that right adjoints preserves limits, we
get that monomorphisms are exactly one-one morphisms. In the category Cpo-S,
whenever L g = e or Tg = e, monomorphisms are exactly one-one morphisms (by
the adjoint pairs given in Corollaries 3.2 and 3.7 of [6]).

Remark 2.14. In Remark 2.3, we see that in the categories Dcpo-S, Cpo-S,
Sep-Cpo-95, and Cpoy g, order-embeddings are monomorphisms, but the con-
verse is not necessarily true. But it is clearly shown that in the ordered structures,
if h : A — B is a monomorphism and A is a chain then we have h is an order-
embedding.

Lemma 2.15. If h : A — B is a monomorphism in Cpo-S such that for every
a,a’ € A with h(a) = h(a'), we have a Lg=a' Lg=14, then h is one-one.

Proof. Let h: A — B be a monomorphism in Cpo-S with the property mentioned
in the hypothesis and h(a) = h(a’) for some a,a’ € A. Then a = a’. This is
because, on the contrary if @ # a’, then there exist S-cpo maps g,k : S — A given
by g(s) = as and k(s) = a's, for s € S where hg = hk while g # k, which is a
contradiction. Therefore, h is one-one. O

As a corollary of Lemma 2.15, we have:

Theorem 2.16. If h : A — B is a monomorphism in Cpo-S and for every
a€ A, alg= 14, then h is one-one. O

Theorem 2.17. If h : A — B is a monomorphism in Cpo-S and L 4 is a zero
element then h is one-one.

Proof. Let h : A — B be a monomorphism in Cpo-S such that 1 4 is a zero
element. To see that h is a monomorphism in Dcpo-S5, let g1,90 : D — A be
S-dcpo maps such that hg; = hgs. Then, consider D, the S-cpo where 1 is a
zero element, and define g, : D, — A for i =1,2 by

do={ 17§ Gl

It is clear that ¢} and g} are S-cpo maps and hg| = hgh. So g} = g5, and hence
g1 = g2. Therefore h is a monomorphism in Depo-S, and so h is one-one by
Remark 2.13. O
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As a consequence of Theorem 2.17 we get the following corollary.

Corollary 2.18. If S is a cpo-monoid whose bottom element is a zero element or
S is left zero as a semigroup, then in Cpo-S monomorphisms are evactly one-one
morphisms.

Proof. Let S be a cpo-monoid whose bottom element is a zero element and A be an
S-cpo. Then L4 is a zero element (for all s € .S, Las=(Lalg)s= La(Lgs)=
Llalsg=14). Soby Theorem 2.17, in Cpo-S, monomorphisms are exactly one-
one morphisms. In the case where S is left zero as a semigroup, since Lg is zero
element, the result follows similarly. O

3. Monomorphisms and regular monomorphisms

We have divided this section into two subsections as follows:

3.1. Factorization properties of morphisms

Let £ be the class of order-embeddings in Dcpo-S, Cpo-S, Sep-Cpo-S, and
Cpopct.g- Then, in the following theorem we show that Dcpo-S, Cpo-S, Sep-
Cpo-S5, and Cpoy . g have unique (Epi, £)-diagonalization property.

Corollary 3.1. Dcpo-S, Cpo-S, Sep-Cpo-S, and Cpoy.g have unique (Epi,
&")-diagonalization property.

Proof. By Theorem 2.4, every order-embedding is a regular monomorphism in
the mentioned categories and by Theorem 2.8 and Corollary 2.12 every regular
monomorphism is a strong monomorphism. Now, by the definition of a strong
monomorphism we get the result. O

Theorem 3.2. Dcpo-S and Cpo-S have (Epi, Mono)-factorization.

Proof. Let f: A — B be a morphism in Decpo-S (Cpo-S). Then, take f/: A —
<f(A)> by f'(a) = f(a). So by Lemma 2.9, f’"is an S-dcpo (S-cpo) epimorphism
and f =if’, where i : <f(A)> — B is an S-dcpo (S-cpo) monomorphism. O

Remark 3.3. The factorization mentioned in Theorem 3.2, is not necessarily
unique. To see this, consider A = (N*°),, where N* = N U {oc} has been
considered with the discrete order, L < n for all n € N* and the action on A
is the identity action. Also consider B =1 ®N*° @ T where the order on N is
the usual one, co || n for all n € N, and the action on B is the identity action.
Define the map f : A — B as f(L) =L and f(n) = n, for all n € N*°. It is
straightforward to show that A and B are S-dcpo’s (S-cpo’s) and f is an S-dcpo
(S-cpo) map. Furthermore, f is an epimorphism in Dcpo-S (Cpo-S). To prove
this, let g1,g2 : B — D be S-dcpo (S-cpo) maps with g1 f = gof. Then, ¢g1(n) =

a1(f(n) = g2(f(n)) = ga(n), for all n € N* U {L}. Also g1(T) = g1(V'N) =
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Vaeng1(n) = Vacy g2(n) = g2(V/N) = go(T), since gy (n) = ga(n), for all n € N,
Therefore, g1(T) = g2(T) and so g1 = g2. Hence, f is an epimorphism and it has
the factorization f = idgf. Now, let C =L &((N@® T) U {co}) where the order
on N is the natural one, n < T forall n € N, co || n for all n € (N T), and
the action on C is the identity action. Then define f': A — C by f'(L) =L and
f'(n) = n, for all n € NU {oco}. It is clear that f’ is an S-dcpo (S-cpo) map.
Also f’ is an epimorphism in Dcpo-S (Cpo-S) (the proof of the fact that f’ is an
epimorphism is similar to proof of the fact that f is an epimorphism) and f = if’
where ¢ is an inclusion map from C to B. Hence, we have two factorizations for
f, which are not equal.

Theorem 3.4. The category Dcpo-S (Cpo-S, Cpop.i.g) has neither
(Onto,Mono)-diagonalization property nor (Epi, Mono)-diagonalization property.

Proof. Suppose that A = {L 4, a1, a9, a3} where L 4 is the bottom element, as < as
and a; || ag,as, B ={Lp,b1,ba} where the order on Bis Lp< b < be, C ={Ll¢
,c1,c2} where Lo is the bottom element and ¢; || ¢o and D = {Lp,d;,ds,ds}
where 1 p is the bottom element, d; || da and dy,ds < ds. It is clear that A, B,
C and D with the identity action are S-dcpo’s (S-cpo’s, cpo S-acts). Now, define
e: A— Base(ls) =Lp, e(a1) = by and e(az) = e(az) = ba, f: A — C as
f(La) =Le, flar) = c1 and f(az) = f(as) = c2, h: C = D as h(Lc) =Lp,
h(c1) =dy and h(ce) =ds, g: B— D as g(Lp) =Lp, g(b1) = d1 and g(be) = ds.
It is straightforward to show that e, g, f and h are S-decpo (S-cpo, cpo S-act)
maps and ge = hf, but if there exists an S-dcpo (an S-cpo, a cpo S-act) map
k: B — C, such that ke = f and hk = g, then k(b1) = k(e(a1)) = f(a1) = &1
and k(be) = k(e(az2)) = f(az) = co but ¢; € co, which is a contradiction (because
k is an order-preserving and b; < b2). So Dcpo-S (Cpo-S, Cpoy.i g) does not
have (Onto,Mono)-diagonalization property. Also Dcpo-S (Cpo-S, Cpoact.s)
does not have (Epi,Mono)-diagonalization property. O

3.2. Limits and colimits

The following theorem is easily proved, and it is in fact a corollary of the next
result.

Theorem 3.5. In Dcpo-S (Cpo-S, Sep-Cpo-S, Cpopi.g) we have:
(1) The class of monomorphisms is closed under products;
(2) Let {fo : A— Byla € I} be a family of monomorphisms. Then their
product morphism f : A — [[ Bo is also a monomorphism. ]

Theorem 3.6. Let {f, : A = Bu|a € I} be a source of monomorphisms in the
categories Dcpo-S (Cpo-S, Sep-Cpo-S, Cpopci.g)- Then the morphism f :
A — limB,, (existing by the universal property of limits) is also a monomorphism.

Proof. Let {fo : A = Byla € I} be a source of monomorphisms in one of the
categories mentioned in the hypothesis. To prove that f : A — limB, is a
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monomorphism, let g1, g2 : C — A be such that fg1 = fgo. Then, fgi(c) = fg2(c)
for all c € C. Also for all c € C and « € I, mo(fg1(c)) = falg1(c)) = falg2(c)) =
Ta(fg2(c)), where 7, : limB, — B, is a limit morphism. Hence, fog1 = fage for
all a € I, and since f, is a monomorphism, we have g; = go. O

Proposition 3.7. In Dcpo-S (Cpo-S, Sep-Cpo-S, Cpop.g) we have:
(1) The class of regular monomorphisms is closed under products;
(2) Let {fo : A = By|a € I} be a family of reqular monomorphisms. Then
their product morphism f : A — [[ Ba is also a regular monomorphism.

Proof. We just prove (1) in Dcpo-S and the rest are proved similarly.

Let {fo : Ao — Ba|a € I} be a family of regular monomorphisms in Dcpo-
S. We show that f = [[fa : [[Aa — [[Ba where f((an)acr) = (fa(@a))acr
is an order-embedding and so by Theorem 2.4, it is a regular monomorphism.
Suppose that f((an)acr) < f((al)acr) for (aa)acr; (@))acr € []Aa. We have
f((aa)acr) < f((ay)acr) if and only if (fo(aa))acr < (fa(agy))aer if and only if
falas) < falal), for all @ € I if and only if a, < al, for all a € I (since each
fa is an order-embedding) if and only if (aq)aer < (al,)acr. So f is a regular
monomorphism. 0

Theorem 3.8. Let {f, : A — By|a € I} be a source of regular monomorphisms in
Dcpo-S (Cpo-S, Sep-Cpo-S, Cpop.i.g)- Then the morphism f: A — limB,
(existing by the universal property of limits) is also a regular monomorphism.

Proof. Let {fo : A — By|a € I} be a source of regular monomorphisms in one
of the categories mentioned in the hypothesis. To prove that f : A — limB,
is a regular monomorphism, by Theorem 2.4 it is enough to show that f is
an order-embedding. To see this, let f(a) < f(a') where a,a’ € A. We have
fala) =7 (f(a)) < mo(f(a')) = fo(d'), for all a € I (74 : limB, — By, is a limit
morphism). So a < o, because by Theorem 2.4, f, is an order-embedding, for
every « € I and hence f is an order-embedding and also it is a regular monomor-
phism. O

Proposition 3.9. In Dcpo-S, Sep-Cpo-S and Cpoact—s, the class of monomor-
phisms and reqular monomorphisms are closed under coproducts.

Proof. Assume that {f, : A, — Bala € I} is a family of monomorphisms
and [[fa : JTAa — ]JIBa is the coproduct morphism. We show that [] fa
defined by (] fa)(a,) = (fala),a), a € Ay, a € I, is a monomorphism.
By Remark 2.13, it is enough to show that [] f, is one-one. To see this, let
(ITfo)(a, @) = (J] fa)(a/, ') where a € A,,a’ € Ay,a,a’ € I. Therefore,
(fala),a) = (fa(a’),a) and so a = o and f(a) = fo(a’). Since f, is one-
one we have a = a/. Consequently, (a,a) = (a’,a) = (a’,a’). Now, suppose
that {f, : Aa — Bgala € I} is a family of regular monomorphisms. We show
that [] fo is a regular monomorphism. By Theorem 2.4, it is enough to show
that ] fa is an order-embedding. To prove this, let (][] fo)(a, @) < (I] fa)(@', &)
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where a € A,,d’ € Ay, a,f € 1. Therefore, (fo(a), @) < (fa(a’),a’). But this is
impossible except a = o/ and then f,(a) < fo(a’). Since f, is order-embedding,
we have a < a’. Consequently, (a,a) < (d,a) = (d/, ). O

Recall that a class of morphisms of a category is called pullback stable if pull-
backs transfer those morphisms. In the final theorem, we see that the class of
order-embeddings satisfying this property.

Theorem 3.10. The class of order-embeddings in Dcpo-S (Cpo-S, Sep-Cpo-S,
Cpopci.g) is pullback stable.

Proof. By Proposition 11.18 of 3], the class of regular monomorphisms is pullback
stable. Therefore by Theorem 2.4, we get the result. O
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Some properties of a graph

associated to a lattice

Shahide Malekpour and Behnam Bazigaran

Abstract. Some properties of the graph I's (L), where L is a lattice and S is a A-closed subset
of L, are obtained. Moreover, the graph structure of I's(L) under graph operations union, join,
lexicographic product and tensor product are determined. The graph associated to quotient
lattice is also studied.

1. Introduction

Making connection between various algebraic structures and graph theory by as-
signing graphs to an algebraic structure and investigating the properties of one
from the another is an exciting research methods in the last decade. Barati et
al. [2] associated a simple graph I's(R) to a multiplicatively closed subset S of a
commutative ring R with all elements of R as vertices, and two distinct vertices
x,y are adjacent if and only if z +y € S. Afkhami et al. [1] introduced the same
graph structure on a lattice. They considered a lattice L and defined a graph
I's(L) with all elements of L as vertices and two distinct vertices x,y € L are
adjacent if and only if z V y € S where S is a subset of L which is closed under A
operation.

Throughout this paper L means a finite bounded lattice. Let x,y be two
distinct elements of L, whenever x < y and there is no element z in L such that
r < z <y, we say that y covers x. In bounded lattice L an element p € L is said
to be an atom if it covers 0, also an element m € L is a coatom of L if 1 covers
it. We denote the set of all coatoms of L by Coatom(L) and the set of atoms of L
by Atom(L). The set of all lower bounds of a subset A of L is denoted by A* and
the set of all upper bounds of A is denoted by A% i.e.,

A={zecL:x<a foralac A},

A*={xeL:a<zx forall a€ A},

{x}* and {x}* (or simply z’ and z¥) are also denoted by (z] and [z) respectively.

2010 Mathematics Subject Classification: 05C'10, 06 B99.
Keywords: Quotient lattice, prime filter, congruence relation.
This paper is partially supported by the university of Kashan under the grant no. 364998/1.
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Let L and L' be lattices. A mapping 0 : L — L’ is called a homomorphism if
for all a,b € L, 8(aV b) = 6(a) v O(b) and 0(a Ab) = 0(a) A 0(b). If the map 0 is
also bijective, we call 6 to be an isomorphism.

A mapping 0 : L — L’ is called an anti-homomorphism if 8(aVvb) = 6(a) AO(b)
and 6(a Ab) = 0(a) vV 0(b) for all a,b € L. A bijective anti-homomorphism is
called an anti-isomorphism. An equivalence relation R on a lattice L is called a
congruence if a1 Rb; and ag Rby imply (a1 A az)R(by A bg) and (a1 V az)R(b1 V bs).
The set of all such relations is denoted by Con(L) or L/R. It is well-known that
the set of all congruence relations, under inclusion constitutes a complete lattice.
The (ordinal) sum P+ Q of P and @ can be defined on the (disjoint) union PUQ
ordered as follows: for the elements xz,y € P U Q, define x < y if one of the
following conditions holds:

i) z,y € P and z <p y,
i) z,y € Q and = <q ¥,
i) x € Pand y € Q.

For an order set P with unit 1p, and an order set Q) with zero, O¢, the glued sum,
P+@Q, is obtained from P+ @ by identifying 1p and 0gl[5, p. 8]. We refer to [4, 5]
for a complete description of these notions.

Let G be an undirected graph with the vertex set V(G). The notation ab € F
means that vertices a and b are adjacent in G. The degree of a vertex v is denoted
by deg(v) and the notations P,, C,, S, and K, are used for the path, cycle,
star and complete graphs with n vertices, respectively. Recall that a subgraph H
of a graph G is a graph whose the set of vertices and the set of edges are both
subsets of G. A wvertez-induced subgraph of graph G is one that consists of some
of the vertices of G and all of the edges that connect them in G. An edge-induced
subgraph of graph G consists of some of the edges of G and the vertices that are
at their endpoints. The complement of G is a graph denoted by G with the same
vertex set as G and two vertices in G are adjacent if and only if they are not
adjacent in G. The complement of the complete graph K, is called the null graph
on n vertices, see [3] for more details.

We now recall some graph operations [6]. Suppose G and H are graphs with
disjoint vertex sets. The disjoint union G + H is a graph with V(G + H) =
V(G)UV(H) and E(G + H) = E(G)UE(H). The join G ® H defined as G + H.
The tensor product (or direct product) G x H of graphs G and H is the graph
whose vertex set is V(G) x V(H) in such a way that vertices (g, h) and (¢', h’) are
adjacent if and only if g¢' € F(G) and hh' € E(H).

2. Main results

The aim of this section is to compute I'g(L), for some special lattice L and a
subset S of L. We start by an example:
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Example 2.1. Let L be a chain with n elements and S be any nonempty subset
of L. Then degryy(z) = |#'| +[SNa“| -2, 2 € S, and for any = € S,
deg(z) = |z* N S|. In some special cases, we have:

o If S =y" for some y € L, then deg(z) = |L| — 1, for all x € S and deg(x) =
|S|, for every x € S°.

o If S = ¢! for some y € L, then deg(x) = |S|—1, for all z € S and deg(z) = 0,
for every = € S°.

Proposition 2.2. We have:
(1) Ts(L) is a cycle if and only if |L| = 3 and I's(L) is complete. On the other
word I's(L) # C,, for all subset S of L, unless n = 3.

(1) Ts(L) is a tree if and only if it is a star.

Proof. (i). Since the cycle is two regular, if I's(L) is a cycle, then deg(l) =
deg(0) = 2. Hence by |1, Lemma 2.2|, 1 € S and deg(1l) = |L| -1 =2i.e., |L| = 3.
On the other hand, if 0 € S, then deg(0) = |S|—1=2and |S| =31ie, S=1L,
and if 0 ¢ S, then deg(0) = |S| =21i.e.,.S =L\ {0} [1, Lemma 2.2]. So, I's(L) is
a complete graph [1, Proposition 2.4].

(7). If T'g(L) is a tree, then it is connected, so, 1 € S [1, Theorem 2.3]. Thus
deg(1) = |L| — 1 [1, Lemma 2.2]. Since I'g(L) is a tree, it has no other edge, so,
|Coatom(L)| = 1 and by [1, Lemma 2.2], S = {1} or S = {0, 1}. The result follows
from [1, Theorem 2.5]. O

Lemma 2.3. Let L be a bounded lattice. Then

(1) Ts(L) is null graph if and only if S = {0} or S = 0.

(2) Ts(L) = Py +F‘L|,2 if and only if S = {p} or S = {0,p} that p € Atom(L),
in fact in this case, deg(p) = deg(0) = 1 and deg(x) = 0, for every x # 0, p.

(3) T's(L) = Ps+ Kr|—3 if and only if S = {p1,p2} or S = {0, p1,p2} for some
p1,p2 € Atom(L), in this case, deg(p1) = deg(p2) = 1, deg(0) = 2 and for
every x # 0,p1, p2, deg(x) = 0.

(4) Ts(L) = Cs +?‘L|,3 if and only if S = {0,p,x} such that z* = {0,p} and
p € Atom(L).

(5) Ts(L) = Sa + K|1|—a (where o = |S| =1 or a = |S'|) if and only if
S C {0} U AtomL or S = {z}, for some nonzero element of lattice L.

Proof. The proof is straightforward and so it is omitted. O

Remark 2.4. Suppose that S is a A-closed subset of a lattice L and a,b,x € L,
we know that a V (aVb) =bV (aVbd) =(aAb)V(aVbd) =(@@Az)V(aVb) =
(bAz)V(aVb) =aVb Soifin a graph I's(L) a,b are adjacent i.e., aVb € S,
then aV (aVb) € S,bV(aVb) €S, (anb)V(aVb) € Sand (aAz)V(aVd)eS.
Hence, summarizing, we have:

If n > 3, then I's(L) # P, +?|L|_(n) for all A-closed subsets S of L; and if
n >4, then T'g(L) # Cy, + K ||_p, for all subset S of L.
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Remark 2.5. If S is a sublattice of L, then the subgraph I's(L) on S is complete.
Since for all a,b € S we have a Vb € S, every two elements of subset S in I'g(L)
are adjacent.

Remark 2.6. It is easy to show that I's/(L) is a subgraph of I's(L), when S, .5’
are two A-closed subsets of L and S’ C S. But in general I's/(L) is neither
edge-induced nor vertex-induced subgraph of I's(L). For example, let L be the
modular lattice M3 containing 0,1 and three incomparable elements a, b, c. Define
S ={0,b,¢,1} and S" = {0,b}. Then it is clear to see that I's:(L) is not edge-
induced and vertex-induced subgraph of I's(L).

Theorem 2.7. A A-closed subset S of L is an ideal if and only if
Fs(L) = K|S'| —‘r?wc‘.

Proof. Suppose I's(L) = K|g + Flsal. Then by definition of I's(L), we have
aVbe Sif and only if a,b € S which implies that S is an ideal.

Conversely, if S is an ideal of L. Then, S is closed under taking join of elements,
consequently all vertices of S are adjacent in graph I's(L). Moreover, since S is
a lower set, for all a,b € S¢, aVb ¢ S. In fact, if in contrary a Vb € S then
aA(aVb)=aec S which is a contraction. So, all vertices of S¢ aren’t adjacent in
I's(L). Moreover, since S is a lower set, it follows that all a € S and b € S° aren’t
adjacent in Fs(L) Therefore, Fs(L) = K|S| +F|Sc|. O

Clearly we have:

Lemma 2.8. Let o : L — L' be a lattice isomorphism and S be a N-closed subset
of L. Then

Ds(L) = Tos(L).

Theorem 2.9. A A-closed subset S of L is a prime filter if and only if
Fs(L) = K|S| @FlSc‘.

Proof. Assume that S is a prime filter. Then for any x,y € S, we have x Vy € 5,
ie., zy € E(I's(L)). Since S is an upper subset of L, xVy € S for each € S and
y € S¢. This means that x and y are adjacent. In addition, since S is a prime filter,
5S¢ is an ideal. Hence for any z,y € S¢, x Vy € S¢ and so x Vy ¢ S. This implies
that z,y aren’t adjacent in I's(L). On the other hand, if I's(L) = K|g| ® K s¢|,
then obviously for any x € Sandy € L, xVy € Sandif xt Vy € S, then z € S or
y € S. This completes the proof. O

A semiregular graph is a graph in which the set of degree of vertices includes
only two elements. The following corollary immediately follows from Theorem 2.9.

Corollary 2.10. If S is a prime filter of L, then T's(L) is a semireqular graph.
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Proof. Suppose S is a prime filter of L. Then by Theorem 2.9, we conclude that
deg(z) = |L| — 1, for all z € S and deg(y) = |S], for all y € S¢, and the proof is
completed. O

Proposition 2.11. Assume that o : L — L' is a lattice isomorphism and S is a
prime ideal or a filter of L, then

T's(L) = ys)e (L)

Proof. Tt is easy to show that if S is a prime ideal or a filter of L, then «(S5)¢ is a
A-closed subset of L’. The details are left to the readers. O

Corollary 2.12. If S is a filter or a prime ideal of L, then T's(L) = I'se(L).

Proof. The proof by Proposition 2.11 and o = IdL (the identity map) is done. [

The disjunction graph GV H of graphs G and H is the graph whose vertex set
is V(G) x V(H) in such a way that vertices (g, h) and (¢’, ') are adjacent if and
only if g¢’ € E(G) or hh' € E(H).

Theorem 2.13. Let L,L’ be two lattices and L x L' be its direct product. If S
and T are N-closed subset of L, L', respectively, Then

(1) Tgxr(L x L'y =Tg(L) x T'r(L),
(2) Ts(L) +T'p(L') =Tsur(L+ L"),

(3) Let Sy =S x L and To =L xT. If S or T is a lower set, then we have
Tsour, (L x L") =Ts(L) VI (L).

Proof. (1). At first, we notice that Sx T is a A-closed subset of Lx L'. Two distinct
vertices (a,b) and (¢, d) of T'gxr(L x L") are adjacent if and only if (a,b) V (¢,d) =
(aVe,bVd) €S xT, which is equivalent to a V¢ € S and bV d € T. This means
that a,c are adjacent in 's(L) and b,d are adjacent in T'r(L’). Therefore, (a,b)
and (c,d) are adjacent in T'g(L) x T'p(L/).

(2). If a,b are adjacent in I'syr(L + L'), then avVb € SUT. So,aVbe S
oraVbeT,lie., abare adjacent in I's(L) or a,b are adjacent in I'r(L’) which
implies that a,b are adjacent in I's(L) + I'yr(L’). On the other hand, if a,b are
adjacent in T's(L) +T'r(L’), then a, b are adjacent in T's(L) or a, b are adjacent in
I'r(L'). So,avbeSoravbeT, ie,aVvbe SUT. Hence a,b are adjacent in
Lsur(L+ L),

(3). Since S or T is a lower set, Sp U Tp is a A-closed subset of L x L'. Two
distinct vertices (a,b) and (c,d) are adjacent in I's,ur, (L x L) if and only if
(ave,bvd)e (SxL)U(LxT)ifand only ifaVee SorbVdeT and this
means that a,c are adjacent in T's(L) or b,d are adjacent in I'r(L’). The later is
equivalent to (a,b) and (¢, d) are adjacent in I's(L) V T'r(L'). O
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Recall that the lezicographic product of two graph G and H, denoted by G[H],
is defined as V(G[H]) = V(G) x V(H) where two vertices (a,b), (¢,d) of G[H] are
adjacent whenever ac € E(G), or a = c and bd € E(H) [6, p. 43].

If P and Q are two partially ordered sets, then P x @Q, by ordering (a,b) < (¢, d)
ifa <pc,ora=candb<g d will be a partially ordered set again. We use the
notation P @ @ to denote (P x @, <). Notice that if P and @ are totally ordered
sets, then P @ @ is a totally ordered set too. One can check at once that if L and
L’ are two lattices and L’ is bounded, then L @ L' is a lattice |5, p. 260] with join
and meet operations as follows:

(a, b/\d) ifa=c,
ifa<c(orc<a),
ifal ¢,

(av b) A (C’ d) = ( )(

(a/\c 1

d))

)

(a,bvd) ifa=c,

@)V (e:d) = { (ed)or (b)) ifa<clore<a)
(a\/cO) ifal c.

Theorem 2.14. Let L, L’ be two totally ordered lattices and L' be bounded. If S
and T are subsets of L, L', respectively, then

Tsxr(L©L') =Ts(L)[Tr(L)].

Proof. Since L, L’ are totally ordered, L @ L’ is totally ordered and so S x T is
a A-closed subset of L @ L' and Tgur(L @ L') is well defined. We now assume
that (a,b) and (¢, d) are two distinct vertices of I'sx (L @ L’). These two vertices
are adjacent if and only if (a,b) V (¢,d) € S@ T if and only if (a,b) € S x T or
(¢,d) € Sx T if and only if (a > cor a =¢,b > d) or (a < cora=cb<d),
equivalently a V¢ € S or (a =¢,bVd € T). This is equivalent to ac € E(T's(L))
ora=c,bd e E(Ip(L")). So, (a,b) and (c,d) are adjacent in I's(L)[I'r(L)]. O

Proposition 2.15. Let L and L' be lattices and L' be bounded. Suppose that T is
a N-closed subset of L' and S is a lower set of L. We also assume that So = S x L'
and Ty = L x T, then Ts(L)[Tr(L')] is a subgraph of T's,ur, (L @ L').

Proof. At first, since T is a A-closed subset of L' and S is a lower set of L, SoUTy
is a A-closed subset of Lo L', so I's,ur, (L@L') can be defined. On the other hand,
V(Ts(L)[Tp(L)]) = V(Isyur, (LOL')) = LxL'. Also, if two distinct vertices (a, b)
and (¢, d) are adjacent in I's(L)[T'r(L)], by definition of lexicographic product of
graphs, one of the following two cases are occurred:

1. a and ¢ are adjacent in graph T's(L),
2. a =c and b and d are adjacent in graph I'p(L').

Thus we have aVe € S or (a = cand bVd € T). Hence, according to join operation
in a lattice L @ L', we conclude that (a,b) V (¢,d) € Sy U Ty, so two vertices (a, b)
and (¢, d) are adjacent in T's,ur, (L @ L’). This completes the proof. O
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Corollary 2.16. Let L, L’ be two totally ordered lattices and L' be bounded. If S
and T are (A-closed) subsets of L, L', respectively, then Usur(L@L') is a subgraph
of Tsyur, (L@ L').

The Cartesian product of two graph G and H is a graph, denoted by GOH,
whose vertex set is V(G) x V(H) and two vertices (a,b) and (¢, d) are adjacent if
a=cand bd € E(G), or ac € E(H) and b =d [6, p. 35].

Proposition 2.17. Let L and L' be lattices and T, S are N-closed subsets of L, L',
respectively. We also assume that Sy = Sx L' and To = LXT. ThenTg(L)OC7(L')
is a subgraph of T's,ur, (L x L').

Proof. Assume that (a,b) and (c¢,d) are two distinct vertices of I's(L)OT'r(L’).
These two vertices are adjacent if and only if (a = ¢,bd € E(T'r(L'))) or (ac €
E(Ts(L)),b=4d),if and only if (a = ¢,bVd € T) or (aVe € S,b = d), equivalently
(a,b) V (¢,d) = (aV ¢,bVvd) € Sy UTy. So, (a,b) and (c,d) are adjacent in
Ts,om (L x L'). O

The strong product of two graph G and H is the graph denoted as G X H,
whose vertex set is V(G) x V(H) and E(GX H) = E(GOH) U E(G x H) [6, p.
36].

Corollary 2.18. Let L and L' be lattices and T,S are A-closed subsets of L, L’
respectively. We also assume that Sy = SXL' and Ty = LxT. ThenTs(L)XT'r(L')
is a subgraph of Tgur(L x L") UT g,ur, (L x L).

Proof. The result follows from definition of G X H, part (1) of Theorem 2.13 and
previous preposition. O

Suppose II is a partition of the vertices of a graph G. The quotient graph G /11
is a graph with vertex set II, and for which distinct classes C1, Cy € II are adjacent
if some vertex in C; is adjacent to a vertex of Cy [6, p. 159]. In the following,
we let ¢ : L — K be an onto lattice homomorphism and « be the congruence
relation of L defined by = =, y if and only if ¢(x) = ¢(y). Therefore, L/a = K.
In other words, a homomorphic image of L is isomorphic to some quotient lattice
of L. Obviously, if S is a A-closed subset of L, then S, the set of all equivalence
classes of o on S, is a A-closed subset of L/a. So, we can define graph I's, (L/a).
We have the following description for the graph associated to L/a.

Theorem 2.19. Suppose that ¢ : L — K is an onto lattice homomorphism and
« is corresponding congruence relation with it. If S is an ideal of L and Sy is the
set of all equivalence classes of « on S, then

Ts,(L/a) =Ts(L)/c.

Proof. Consider a = {[z]o : € L} to be a partition for the vertex set of I'g(L).
So, the vertices of I's(L)/a and I'g, (L/«) are equal. On the other hand, according
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to definition of a quotient graph, if two distinct vertices [z] and [y] are adjacent
in I's(L)/a, there exists a € [z] and b € [y] which are adjacent in I'g(L) i.e.
aVbeS. So, [a]V[b] =[aVb] €S;. Thus [a], [b] are adjacent in I's, (L/«), which
is equivalent to [z] and [y] are adjacent in T's, (L/a).

Moreover, if [z] and [y] are adjacent in T'g, (L/a), then [z Vy] = [z] V [y] € S;.
So, there exists a s € S such that x Vy =, s. According to the properties of
congruence relations we have:

=z A(@Vy) =4 TAs, y=yAN(@Vy) =ayAs.

So, sAz € [z] and sAy € [y]. Since S is an ideal, sAx, sAy € S and (sAz)V(sAy) €
S. Thus s Az and s Ay are adjacent in I'g(L). This follows that [z] and [y] are
adjacent in I'g(L)/a and the proof is complete. O

Corollary 2.20. Suppose that p : L — K is an onto lattice anti-homomorphism
and « is corresponding congruence relation with it. If S is a filter of L and Sy is
the set of all equivalence classes of a on S and (L',V',\') is dual of a lattice L,
then

Fsl (L/a) = Fs(L/)/Oz.

Proof. At first the vertex set of I's(L')/a and I'g, (L/a) are equal. On the other
hand, if two distinct vertices [z] and [y] are adjacent in I's(L’)/«, there exists
a € [z] and b € [y] which are adjacent in I's(L’) i.e. aV'b € S. So, by definition
of S1, [aV'bl € S ie., [z]V]y]=a] Vb =]aAb] =[aV b €Sy, soz] and [y]
are adjacent in I'g, (L/a). Moreover, if [x] and [y] are adjacent in I'g, (L /), then
[ Ay] = [z] V [y] € S1. So, there exist some s € S such that © Ay =, s. By the
properties of congruence relations, we have:

x=zV(xAY)=42Vs, y=yV(@Ay)=ayVs.

So, sVz € [z] and sVy € [y]. Since S is afilter, sVz, sVy € S and (sVa)A(sVy) € S.
Thus (sVz)V' (sVy) € S, i.e., sVa and sV y are adjacent in I's(L’). This follows
that [z] and [y] are adjacent in I's(L)/a. O

From now on L is a distributive lattice and S is a filter of L. We state here an
important result of Stone [5, Theorem 115] as follows:

Theorem 2.21. Let L be a distributive lattice, let I be an ideal, let D be a filter
of L, and let IN D = (. Then there exists a prime ideal P of L such that P D I
and PN D = 0.

For a filter S of L and arbitrary element x € S°, by Stone theorem, there exists
a prime ideal P, such that P, NS = ) and (] C P,. This means that S¢ is a
union of some prime ideals. Hence S¢ = J P,. Set I = P, and define
a congruence relation 6y on L as follows;

0o = /\{0 € Con(L) : I* C 6}.

reSe r€eS*

We consider S = {[z]g, : = € S}.
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Example 2.22. Suppose L = {0, x1,x2,x3, T4, Ts5,...}. Define an order < on L
as follows: for each ¢ > 1, 0 < x;. Moreover, z1,25 < z3 and for i,j > 3 that
i < j, x; < z;. Define S = [x5). So, I = (z3] and by definition of 6y, we have
L/0y={T1}U{{z}: = &1I}.

Lemma 2.23. S = {[z]g, : = € S} is a filter of L/6;.

Proof. S is a A-closed subset of L and in L/, we have [a A b] = [a] A [b]. So, S
is a A-closed subset of L/6y. Tt is now enough to show that if [a] A [b] € S then
[a],[b] € S. To do this, suppose that [a A b] = [a] A [b] € S. Hence, there exist
some element s € S such that a A b =y, s. According to properties of congruence
relations, we have a = aV (a Ab) =g, aVs, b=>bV (aAb) =g, bV s. This means
that [a] = [aV s], [b] = [bV s]. Since S is afilter of L, bV s,aV s € S which implies
that [a], [0] € S. O

Theorem 2.24. I'5(L/6y) is connected.

Proof. By [1, Theorem 2.3] the graph I's(L) is connected if and only if 1 € S.
Now the result follows from Lemma 2.23. O

Theorem 2.25. If I's(L) is complete, then I'5(L/0y) is complete.

Proof. Suppose that I's(L) is complete. Thus S =L or S = L\ {0} [1, Theorem
4.2] and we have the following two cases:

e If S=L,then I = 0,500 = N\{0:1>C 0} = LxL.Thus S = {[z]y, : 2 € S}
= L /6y and therefore I'5(L/6y) is complete.

o If S = L\ {0} then I = {0}. So, 6y = A{6 : I> C 0} = A. Hence,
S = (L/6y) \ {[0]} and so T'5(L/6y) is complete. 0

Notice that the converse of previous theorem is not true in general. Suppose
L = {0,21,x2, 23,24, T5, T, ...}. Define an order < on L as follows: for each
1> 1,0 < z;. Moreover, 1 < 2,23 and z9,x3 < x4 and for ¢,j > 4 that ¢ < j,
z; < xj. Define S = [z5), so I = (z4] and 0y = {I} U {{z} : « ¢ I}. Therefore,
{I} is zero element of a lattice L/6y and so S = (L/6o) \ {[0]}. By [1, Proposition
2.4] the graph I'5(L/6y) is complete. But by Theorem 2.9, I's(L) is not complete.
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Steiner loops satisfying the statement

of Moufang’s theorem

Maria de Lourdes Merlini Giuliani, Giliard Souza dos Anjos

and Charles J. Colbourn

Abstract. Andrew Rajah posed at the Loops’ll Conference in Trest, Czech Republic, the
following conjecture: Is every variety of loops that satisfies Moufang’s theorem contained in the
variety of Moufang loops? This paper is motivated by that problem. We give a partial answer
to this question and present two types of Steiner loops, one that satisfies Moufang’s theorem and
another that does not, and neither is Moufang loop.

1. Introduction

A nonempty set L with a binary operation is a loop if there exists an identity
element 1 with 1z = x = 1 for every x € L and both left and right multiplication
by any fixed element of L permutes every element of L.

A loop L has the inverse property (and is an IP loop), if and only if there is a
bijection L — L :  — x~! such whenever z,y € L, 7! (2y) =y = (yx)z~ L. It
can be seen that IP loops also satisfy (zy)~! = y~tz=t. A Steiner loop is an IP
loop of exponent 2. A loop M is a Moufang loop if it satisfies any of the following
equivalent identities:

2y - a2) = (wy - o)z,
ylo - 22) = (yo - )z,

Such loops were introduced by Moufang [3] in 1934. The associator of elements
a,b,c € L is the unique element (a,b,c) of L satisfying the equation: ab-c¢ =
(a-be)(a,b,c).

Theorem 1.1. [Moufang’s Theorem [4]] Let M be a Moufang loop. If a,b,c € M
such that (a,b,c) =1, then a,b,c generate a subgroup of M.

In view of Theorem 1.1, every Moufang loop is diassociative, that is, any two of
its elements generate a group. However, Theorem 1.1 was formulated for Moufang
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loops. We consider its statement for another class of loops, namely, for the variety
of Steiner loops.

Our motivation arises from the question posed by Andrew Rajah at the Loops’11
Conference concerning the relationship between Moufang loops and loops that sat-
isfy Moufang’s theorem. The results in this paper were first presented at the Third
Mile High Conference on Nonassociative Mathematics in Denver, 2013. Later,
Stuhl [7] explored solutions based on Steiner Oriented Hall Loops, and a combina-
torial characterization of Steiner loops satisfying Moufang’s theorem in terms of
configurations has been established [1]. Despite the combinatorial characterization
in [1], the algebraic treatment here remains useful for two reasons. First, these
results provide the foundational work for [1]; and second, they provide an alge-
braic framework to understand such loops, which complements the combinatorial
framework.

2. Steiner loops and Moufang’s theorem

Definition 2.1. A loop L satisfies Moufang’s Property, MP, if L is not Moufang
loop, but it satisfies the statement of Moufang’s theorem, i.e., if a,b,c € L such
that (a,b,c) = 1, then a,b, ¢ generate a subgroup of L.

It is known that there exists only one Steiner loop S of order 10. We prove
that this Steiner loop S satisfies Moufang’s Property MP. Its Cayley table can
be found, for example, using the GAP Library [9], as seen below:

12345678910
111 2 3 456 78 910
2121438109 5 76
313 412109 8 76 5
414 3 219 8106 5 7
5|5 8109 1 7 6 2 4 3
6/6 109 8 71 5 4 3 2
7|79 8106 513 2 4
818 5 76 2431109
919 7 6 54 3 2101 8
1010 6 5 7 3 2 4 9 8 1

For any z,y,z € S, such that x # y; y # 2; z # z, v # L,y # 1,z # 1,
x-yz = xy -z implies that z = xzy. So < x,y,z >=< x,y >, and hence z,y, z
generate a group.

A Steiner triple system (Q, B), or STS(n), is a non-empty set () with n elements
and a set B of unordered triples {a, b, ¢} such that

(i) a,b,c are distinct elements of Q;

(ii) when a,b € Q and a # b, there exists a unique triple {a,b,c} € B.
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A Steiner triple system (Q, B) with |Q| = n elements exists if and only if n > 1 and
n =1 or 3 (mod 6) [8]. Because there is a one-to-one correspondence between the
variety of Steiner triple systems and the variety of all Steiner Loops [2], Steiner
loops have order m = 2 or 4 (mod 6). This underlies the study of Steiner triple
systems from an algebraic point of view as in [4], [5] and [6].

We use the following standard construction of Steiner triple systems [8], some-
times called the Bose construction. Let n = 2t + 1 and define Q := Z,, x Zs.
A Steiner triple system (Q,B) can be formed with B consisting of the following
triples

{(z,0), (z,1), (x,2)} where z € Z,, and
{(@,0), (y,9), (F,i+ 1)} where = # y;2,y € Zn,i € Zs

The corresponding Steiner loops can be defined directly. Let S = QU {1}. Define
a binary operation * with identity element 1 as follows:

(2,1) * (x,5) = (,k) i# g, iFk jFEk,
(z,0) * (y,0) = (FLi+ 1) z#y,

(i) * (y,i+1) =2y —=z,9) x#y,

(z,9) * (y,i—1) = @x—%l—Dx#y7
(2,1) * (z,9) =

Then (S, *) is commutative loop. However, (.5, *) is not a Moufang loop. If we take
the elements z = (0,0) y = (1,0) and z = (0,1) then (zy)(zz) = (-1/2,1). On
the other hand, z((yz)x) = (—1,0), so (5, *) does not satisfy one of the Moufang
identities.

Analyzing Steiner loops from the Bose construction, there are two types: one
that satisfies MP, and another that does not. Using computer calculations and
the Loops package in GAP [9], first we studied the Steiner loops of order k& with
k € M, where

={16,28,34, 40, 46, 52, 58, 79, 76, 82, 88, 94, 100, 112, 118, 124, 130, 136, 142, 154}

from the Bose construction. Each of these Steiner loops satisfies MP. However,
none of the Steiner loops of order k € {22, 64, 106, 148} from the Bose construction
satisfies MP. The explanation for this follows.

Theorem 2.2. Let S be a Steiner loop from the Bose construction. Then S has
the property MP if and only if 7 is an invertible element in Z,,.

Proof. Suppose S has property MP. If 7 is not invertible in Z,, then exists an
element a € Z,, a # 0 such that 7a = 0. Hence 8a = a. Because n is odd,
2a = a/4. The associator ((0,1),(0,0), (a,0)) = 1 while ((0,1), (a,0),(0,0)) # 1,
thus the elements (0, 1), (0,0), (a, 0) associate in some order, but not in every order,
a contradiction.
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Now, suppose that 7 is invertible in Z,. We consider all possible triples of
elements of S. Our strategy is to show that if the associator (a,b,c¢) = 1, then
a,b,c are in the same triple. There are 25 generic triple elements of S; here
x,y,z € Z, are distinct and i, j, k € Zg are distinct:

{(z,1), (z, 1), (2, )}, {(,9), (z,9), (z, §)}, {(@,9), (%,9), (y, ) }, {(,9), (x,9), (y,5)},
{(@,4), (z,7), (x, )}, {(x, 1), (2, 4), (2, 7))}, {($7i>a($ 0)s ()}, {(@,4), (2, ), (,5) )
{(@,4), (z,9), (z, k) }, {(z,9), (2, 7), (y, k) }, {(2,9), (y,9), (z,9)}, {(=, ), (y, ), (2, 4)},
{(z,9), (y,9), (v, D)}, {(2,9), (y,0), (y, )}, {(2,9), (y,9), (2,0)}, {(,9), (y,0), (2, 5)},

{(ma i)’ (y7j>7 (x’i)}v {(l‘,i), (y,j), (l’,j)}, {(.1‘72)7 (y,j), (%i)}’ {(.%‘,Z), (y,j), (y,])}',
{(z,9), (y,5), ()}, {(@, ), (y,9), (z,5)}, {(@,9), (y,4), (@, k) }, {(=,9), (y,5), (v, k) },
{(,4), (y,5), (2, k)}.

When we consider j # i, j # k, k # i, we assume that j =7+ 1land k =4i—1
or j =i—1and k =i+ 1. We identify 59 different sets of triples of elements
and calculate the associators of each set. We found that in the first 37 triples the
associator is different from 1, as listed below:

{(2,0), (2,0 + 1), (y,0)}, {(2,9), (2,0 = 1), (y,0)}, {(2, ), (2,0 + 1), (y, i + 1)},
{(,2), (y,9), (2,1 + D}, {(@,4), ( ) (x i— 1}, {(2,9), (y,9), (v, i = 1},
{(z,1), (y,1), (2,1), Y and @ # Y7},

{(x,7), (y,1), (2,1), where z # m“’ and z = y;rz},

{(x,17), (y,1), (2,1), where z = I;ry and z # L2}

{(z,9), (y,%), (,1), where z = “T¥ and z = X2},

{(2,4), (y,4), (2, + 1), where z # ZE2} {(2,4), (y,i + 1), (z,5 + 1)}
{(x,7), (y,4), (2,7 — 1), where z # I;y and x # 2y — z},

{(z,7), (y,4), (2,7 — 1), where z = % and x # 2y — z},

{(z,1), (y,4), (2,0 — 1), where z = 23¥ and © = 2y — z},
{(:E,Z),(y,i—l),(l’,l )} {(ZZ? Z) (yvl+1) ( )} {(‘T Z)a(yvi_l)’(yvi)}a
{(fﬂ, Z)a (yai + 1)3 (sz)a where z 7£ 2y - :L'}a

{(z,%),(y,i —1),(z,1), where z # 2z — y and x # 2z — y},

{(z,7),(y,i —1),(z,1), where z # 22 — y and x = 2z — y},

{(z,9), (y,i — 1), (z,1), where z = 2z — y and x # 2z — y},

{(z,9), (y,i — 1), (z,1), where z = 2z — y and = = 2z — y},

{(z,4), (y,i+1),(2,i+ 1), where z # 2y — x and z # L2},

{(z,1), (y,i+ 1), (2,5 + 1), where z # 2y — 2 and z = LL2},

{(z,4), (y,i+1),(2,i+ 1), where z = 2y — 2 and z = L2},

{(x’ Z)a (yvl - 1)7 (Z i— ) where z 7& 2z — y}7 {($77;)v (y, i+ 1)7 (5577; - 1)}7
{(z,2),(y,1 = 1), (2,0 + D} {(,9), (y,0 + 1), (w0 = D},

{(z,7), (y,i+ 1), (2,0 — 1), where z # 2y — x and = # 2z — y},

{(x,9), (y,i+ 1), (2,0 — 1), where z = 2y — x and = # 2z — y},
{(z,1),(y,i+1),(2,i — 1), where z = 2y — x and = = 2z — y},

{(z,1), (y,i—1),(z,i+ 1), where z # 2z — y and x # 2y — z},

{(z,%), (y,i—1),(2,i+ 1), where z # 2z —y and z = 2y — z},
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{(z,4), (y,i — 1), (2,4 + 1), where z = 2z — y and = = 2y — z},
{(fﬂ, i)a (:E,i - 1)7 (y7i + 1)}
Next, there are 14 triples for which the associator is 1 and they are in the

same triple of the STS; consequently, they are in a Klein group (and so generate
a subgroup).

{(@,1), (z,9), (z, )}, {(2,0), (z,9), (2, §) }, {(2,0), (z,9), (y,9)}, {(2,9), (2,9), (¥, 5)},
{(z,9), (z,4), (z, D)}, {(z,9), (z,]), (z. )}, {(2,1), (y,9), (iv i} (@, 4), (y,9), (y,9)},
{(z,9), (y,9), (2,0 + 1), where = = Y (=, 1), (v, ) (z, 1)}, {(,9), (¥,9), (9. 9)},
{(z,1), (y,z+ ) (2,1), where z = 2y — x},

{(@,9), (y,i — 1), (2,i — 1), where z = 2z — y}, {(x, 1), (z, ), (2, k)}

There remain 8 cases to consider:

{(.’L‘,Z) ({E i 1) (y7i - 1)}7 {(‘T7i)7(y7i)7(yﬂi+ 1)}7

{(z,9), (y,i = 1), (y, i + D}, {(2,4), (z,i+ 1), (y,i — 1)},
{(z,19), (y, ) (z,i— 1), where © =2y — 2,2 # $J2””},
{(z,4),(
{(z,4),(
{(

x,1),(y,i +1),(2,i+ 1) where z =2y — x,x # y;z},
x,1),(y,i + 1),(2,i — 1) where z # 2y — z,x = 22 — y},
z,1),(y,i — 1), (2,i 4+ 1) where z = 22 — y,x # 2y — z}

Each has associator different from 1 because 7 is invertible in Z,. Take for
instance the triple {(x, 1), (z,i+ 1), (y,i — 1)} with = # y of the STS. Now (z, ) *
((z,i+1) % (y,i — 1)) = (4dy — 3z,4) and ((z,4) * (2,0 + 1)) = (y,i — 1) = (ZL 4).
The associator ((x,7),(x,i+1),(y,i — 1)) is 1 if and only if 72 = Ty. Because 7 is
invertible in Z,,, we obtain x = y, a contradiction. O

3. Beyond Steiner loops

We have seen that certain Steiner loops from the Bose construction provide ex-
amples of loops satisfying MP. Further examples can be obtained by the direct
product of loops, the proof of which is straightforward:

Lemma 3.1. Let S and M be loops that satisfy Moufang’s theorem. Then S x M
satisfies Moufang’s theorem, and S x M satisfies MP if one or both of S and M
satisfy MP.

Taking S to satisfy MP and M to be a group or a Moufang loop provides
numerous examples of loops that satisfy MP but are neither Steiner nor Moufang
loops. A characterization of loops that satisfy Moufang’s theorem must therefore
consider loops beyond the varieties examined here.
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On injective and subdirectly irreducible

S-posets over left zero posemigroups

Gholam Reza Moghaddasi and Mahdieh Haddadi

Abstract. The notion of a Cauchy sequence in an S-poset is a useful tool to study algebraic
concepts, specially the concept of injectivity. This paper is concerned with the relations between
injectivity and Cauchy sequences in the category of S-posets in which S is a left zero posemi-
group. We characterize subdirectly irreducible S-posets over this posemigroup and by Birkhof’s
Representation Theorem we get a description of such S-posets.

1. Introduction and preliminaries

The category of S-posets, as the ordered version of the category of S-acts, recently
have captured the interest of some mathematicians [4, 5]. And it is always inter-
esting to verify the counterpart results of S-acts in the category of S-posets (see
[1, 4, 8]). Cauchy sequences in an S-act first introduced by E. Giuli in [3] for a
particular class of acts, then generalized to S-acts, in [2]. Recently we generalized
this concept to S-posets, [4, 5].

Left zero semigroups, all of whose elements are left zero, are an important
class of semigroups, since every non-empty set S can be turned into a left zero
semigroup by defining st = s for all s,t € S also this semigroup is applied in
automata theory, theory of computations, Boolean algebras.

Here we are going to use the notion of Cauchy sequences to study the de-regular
injectivity of S-posets over a left zero posemigroup, as we did in [7] for injectivity
of S-acts. But the order here plays an important role and to get the counterpart
results here we need to modify (some times strongly) the S-act version of the
proofs. The aim of this paper is to determine the structure of dc-injective in the
category of S-posets and characterize the subdiretly irreducible S-posets over a
left zero semigroup. Therefore, throughout this article, we assume S to be a left
zero posemigroup. Now let us briefly recall some necessary concepts.

A partially ordered semigroup (or simply, a posemigoup) is a semigroup which
is also a poset whose partial order is compatible with its binary operation (that is
s < s implies st < st for every s,s',t € 5).

For a posemigoup S, a (right) S-poset is a poset A equipped with a function
a: AxS — A, called the action of S on A, such that for a,b € A, s,t € S (denoting
ala,s) by as): (1) a(st) = (as)t, (2) a <b=as <bs, (3) s <t= as < at.

2010 Mathematics Subject Classification: 06F05, 20M30.
Keywords: S-poset, left zero posemigroup, subdiretly irreducible, injective.
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By an S-poset morphism f : A — B, we mean a monotone map between
S-posets which preserves the action (that is f(as) = f(a)s).

An element a of an S-poset A is called a fized or zero element if as = a for all
s € S. We denote the set of all fixed elements of an S-poset A by FixA, which is
in fact a sub-S-poset of A that is as € FixA for all a € FizA and s € S.

We define an S-poset A to be separated if it is separated as an S-act, that is
any two points a # b in A can be separated by at least one s € S, by sa # sb.

We say that an S-poset A is subseparated if a < b in A whenever as < bs for
all s € S. It is clear that every subseparated S-poset is a separated one.

A regular monomorphism or an embedding is an S-poset morphism (that is, a
monoton and action preserving map) f : A — B such that a < b if and only if
f(a) < f(b), for each a,b € A.

2. Cauchy sequences

Our central object of study in this paper is the notion of Cauchy sequences in
S-posets [2, 3, 4].

First of all it is easy to check that:

o If S is a left zero semigroup, then for every S-poset A, AS C FizA.

Definition 2.1. A Cauchy sequence in an S-poset A is an S-poset morphism
f 8 — A. More explicitly, f : S — A is a Cauchy sequence when it is order
preserving and f(st) = f(s)t.

We denote a Cauchy sequence by (as)scs, which expresses the fact that the
element s € S is mapped to the element as in A. Since S is a left zero posemigroup,
with this notation we have ast = as; = as and for s,t € S if s <t then as; < ay.

It is worth noting that in an S-poset A (over the left zero posemigroup S) the
terms of a Cauchy sequence are fixed elements of A. So if we denote the set of
Cauchy sequences of A by C(A) then C(A) = (FizA)® in which (FizA)® is the
set of monotone mappings from S to FizA.

Definition 2.2. Let (as)ses be a Cauchy sequence in an S-poset A. An element b
in an extension B of A is called a limit of (as)scs whenever bs = a, for each s € S.

Lemma 2.3. Given an S-poset A over a left zero posemigroup S, the set C(A) of
all Cauchy sequences in A, is a subseparated S-poset.

Proof. First we note that C(A) is an S-poset, by the action C(A4) x S — C(A)
mapping each ((as)ses,t) € C(A) x S to (as)ses -t = (ars)ses which is obviously
in C(A), for every t € S. We should note that C(A) is a poset with point-wise
order and ((as)ses - t) - r = (as)ses - (tr). Indeed, (as)ses - (tr) = (as)ses - t =
(ats)ses = (at)ses, namely (as)ses - (tr) is the constant sequence (a;)ses, also we
have ((as)ses - t) -7 = (ais)ses -7 = (at)ses - T = (at)ses; the last equality is true
because (at)ses is a constant sequence. Now if r < ¢ in S, then rs = r < t = ts,
for every s € S and since (as)ses is a Cauchy sequence, a,s = a, < a; = a;s. That
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is (as)ses - < (as)ses - t. Finally if (as)ses < (bs)ses, then as < bg, for every
s € S. Hence a5 < by for every s,t € S. That is (as)ses -t < (bs)ses - t, for every
t € S. To prove subseparatedness, let (as)ses -t < (bs)ses - ¢, for every t € S.
Then a;s < by, for every t,s € S. Now, since S is a left zero posemigroup, a; < by,
for every ¢ € S. That is (as)ses < (bs)ses- O

Lemma 2.4. Let A be an S-poset over a left zero posemigroup S and (as)scs be
a sequence (indezed family of elements of A by s € S). Then (as)scs has a limit
in some extension B of A if and only if it is a Cauchy sequence.

Proof. One way is clear. In fact the limit of the sequence (as)scs makes it to
have the Cauchy property in Definition 2.1. For the converse, let (as)scs be a
Cauchy sequence in A. Then take the extension B of A to be AU{(as)scs} with
the action (as)ses -t = a; for t € S and no order between (as)scs and the elements
of A. The constructed B is an S-poset. This is because, for all ¢, € S, we have
((as)ses t)-r=a¢ -1 =ay = (as)ses - (tr), and if ¢ < r then a; < a, follows from
this fact that (as)scs is a Cauchy sequence, and hence (as)scs -t < (as)ses - 7
Now, by the defined action, we have that (as)scs is a limit of (as)ses- O

Definition 2.5. An S-poset A is said to be complete if every Cauchy sequence
over A has a limit in A.

For a given left zero posemigroup S and an S-poset A Lemma 2.3 shows that
C(A) is an S-poset. In fact, C(A) is a complete S-poset.

Theorem 2.6. Let A be an S-poset over a left zero posemigroup S. The S-poset
C(A) is complete.

Proof. Let (fs)ses be a Cauchy sequence in C(A), in which fs = (a?),cs for each
s € S. Hence for each s,t € S we have fg; = fst. Since S is a left zero semigroup,
fs = fst = fst, ie, for each s € S, fs is a fixed element in C(A). Now, by the
defined action of S over C(A) in Lemma 2.3, we have f, = fit = (a].)res =
(af)res. So (af)res = (af)res for each r € S. Namely, for each s € S, f; is a
constant sequence. Now we define the Cauchy sequence (as)scs to be as = aj, for
every s € S and claim that (as)scs is a limit of (fs)ses. This is because (as)ses T
= (af)ses -7 = (a7)ses = (a7)ses = (af)res = fs. Indeed, the third equation
follows from this fact that S is a left zero posemigroup. Also since f; is a constant
sequence and (af),cs = (af)rcs, we have the fourth and fifth equations. O

3. dc-injective of S-posets

A sub-S-poset A of an S-poset B is called down-closed in B if b < a for a € A,
b € B then b € A. By a down-closed embedding or dc-reqular monomorphism, we
mean an embedding f : A — B such that f(A) is a down-closed sub-S-poset of B.
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An S-poset A is said to be down-closed injective or simply dc-injective if for
every down-closed embedding f : B — C' and each S-poset morphism ¢ : B — A
there exists an S-poset morphism ¢* : C'— A making the diagram

f

B——C
®
J/ g
A

commutative.

Theorem 3.1. For a left zero posemigroup S every dc-injective S-poset is com-
plete.

Proof. Let (as)ses be a Cauchy sequence in a dc-injective S-poset A. Consider
the extension B = AU{(as)ses} of A with the action (as)ses -t = a; and no
order relation between (as)ses and the elements of A as introduced in the proof
of Lemma 2.4. It is clear that A is embedded in B, so the dc-injective property of
A completes the diagram

AC——

e
/,‘

A

by an S-poset morphism ¢. Now we claim that ¢((as)scs) € A is a limit of the
Cauchy sequence (as)scs. This is because ¢((as)ses) t = p((as)ses-t) = p(a) =
ag, for every t € S. O

The converse of Theorem 3.1 is true if the S-poset has a “good’ property. See
the next theorem as the counterpart of Theorem 2.3 of [7] with the compeletly
different method of proof.

Theorem 3.2. If S is a left zero posemigroup S, then every complete subseparated
S-poset A with a top fized element is dc-injective.

Proof. To prove, we show that A is a retract of each of its down-closed extensions
(that is, to say A is an absolute down-closed retract) (see [8]). To do so, let B be
a down-closed extension of A. Define g : B — A with g|4 = id4 and for b€ B\ A
take g(b) = a, where ay is a limit of the Cauchy sequence (as)ses with as = bs for
bs € A, and a5 = ap for bs ¢ A, where ag € FizA is the top fixed element in A
mentioned in the hypotheses.

First we show that (as)scs is a Cauchy sequence. To do so, we note that
ast = ag. This is because, if a; = bs, then ast = (bs)t = b(st) = bs also
ast = as = bs, and if as = ag, then ast = agt = ag also ags = as = ag. Also if
s < t, then bs < bt. This is because if bt € A, then bs € A, since A is down-closed
in B, therefore as; < a¢, and if bt ¢ A, then a; = ap but ag is a top fixed element
and hence bs < ag, that is a5 < a;. Thus (as)secs is a Cauchy sequence.
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Now we show that g is order preserving. To do so, let b < &’. Then bs < V's
for all s € S. Therefore, by definition of ay, ayr, we have aps < ap's. But, since A
is subseparated, ap < ap. That is g(b) < g(b'). Finally g is equivariant on B\ A.
Because g(b)s = aps = as = bs = g(bs), if bs € A, for every b € B\ A and s € S.
And if bs ¢ A, then, since (bs)t = bs for all t € S, we get g(bs) = aps = ag = apgs =
aps = g(b)s. O

As a corollary of Theorems 3.1 and 3.2 we get the following Theorem.

Theorem 3.3. Let S be a left zero posemigroup S. Then a subseparated S-poset
A with a top fized element is dc-injective if and only if it is complete.

Theorem 3.4. For each S-poset A over a left zero posemigroup S with a top fized
element, C(A) is dc-injective.

Proof. Let ag be a top fixed element in A. One can easily see that the constant
sequence (as = ag)ses is a Cauchy sequence and is a top fixed element in C(A).
Now Theorems 3.3 and 2.6 give the result. O

Before the next definition it is worth noting that by a right down-closed ideal
I of a posemigroup S we mean a non-empty subset I of S such that (i) IS C I
and (ii) @ < b € I implies a € I, for all a,b € S.

Definition 3.5. An S-poset A is said to be
o [-injective, for a right down-closed ideal I of S, if each S-poset morphism
f:I— Aisof the form A, for some a € A, that is f(s) = as for s € I.
e S-injective, if each S-poset morphism f :.S — A is of the form )\, for some
a € A, that is f(s) = as for s € S.

In the next theorem we compare the concept of completeness with the different
types of injectivity for some special S-poset over a left zero posemigroup .S, and
we see that they are surprisingly equivalent to each other.

Theorem 3.6. For a subseparated S-poset A with a top fixed element ag, the
following are equivalent:

(1) A is de-injective;

(2) A is dc-absolutely retract;

(3) A is complete;

(4) A is I-injective, for each right down-closed ideal I of S;

(5) A is S-injective.

Proof. (1)<(2). It is given in [8].

(1)<(3). See Theorem 3.3.

(3)=>(4). Let A be complete and I be a right down-closed ideal of S and
f: I — Abean S-poset morphism. Consider the sequence (as)scs to be as = f(s)
for s € I, and a5 = ag for s € S — I. The sequence (as)ses is a Cauchy sequence.
This is because, if s < t then four cases may occur:
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oIf s,t € I then f(s) < f(t), since f is S-poset morphism, that is as < as.

olfs,t € S—1,then a; = a; = ag, that is as; < ay.

olt may s € S—1I,t e I. But since s <t and I is down-closed ideal, we must
have s € I which is a contradiction. Hence this case is not possible.

o And finally if s € I and t € S — I, then f(s) = as, f(t) = ag. But ag is the
top fixed element, hence f(s) = as < ag = f(¢).

Also let s,t € S. Then if s € I, we have ast = f(s)t = f(st) = f(s) = as and
if se€ S —1, then f(s)t = apt = ap = f(s).

Now since (as)ses is a Cauchy sequence, it has a limit a in A. So a5 = as, for
all s € S, which means f(s) = as = Aa(s). That is f = A,.

(4)= (5). It is trivial.

(5)= (3). Let A be S-injective and (as)ses be a Cauchy sequence over A. So
f:S— Awith f(s) = a, is an S-poset morphism. Now (5) gives a € A such that
f =g, hence a; = as for all s € S, i.e., ais a limit of the given sequence. O

4. Subdirectly irreducible

By Birkhoff’s Representation Theorem (see [6]) every algebra is isomorphic to a
subdirect product of subdirectly irreducible algebras. This theorem, by analo-
gous proof is established in the category of S-posets. In [7], characterization of
subdirectly irreducible acts, respectively over the monoid (N U {oc}, min, c0), and
left zero semigroups can be seen. In this section we give a characterization of
subdirectly irreducible S-posets over a left zero posemigroup.

Definition 4.1. (see [6]) An equivalence relation p on an S-act A is called a
congruence on A, if apa’ implies (as)p(a’s), for all s € S. We denote the set of all
congruences on A by Con(A) .

A congruence on an S-poset A is a congruence ¢ on the S-act A with the
property that the S-act A/6 can be made into an S-poset in such a way that the
natural map A — A/6 is an S-poset map (see [1]).

For any relation 6 on A, define the relation <g on A by

a<ga if and only if a < a10a] < agfaly < ... < apbal, <a,

where a;,a; € A (such a sequence of elements is called a 6-chain). Then an S-
act congruence 6 on an S-poset A is an S-poset congruence if and only if afa’
whenever a <y a’ <p a.

For a,b € A, pap denotes the smallest S- act congruence on A containing (a, b).
It is in fact, the equivalence relation generated by {(as,bs) : s € SU{1}}. Its
elements are as follows:

ZTPa,bly = 3517527---7871 S SuU {1} sP1yP2y -y Pns 41,42, ---;qn S Aa

T = Pp1s1 q282 = P3S3 cee qnSn =Y
qi151 = p252 G353 = P4S4

where (p;, ¢;) = (as,bs) or (p;,q;) = (bs, as) for some s € SU{1}.
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Lemma 4.2. Let A be an S-act over a posemigroup S. Then ps,, for every
distinct x,y € FizA, is an S-poset congruence.

Proof. To prove we show the equivalence condition of an S-poset congruence.
Namely, we show that if a <,, , a’ <,, , a then ap,  a’. But first we note that
pzy = AU (7,y), (y,2)} since z,y € FizA. Now if a <,, , a’ <,, , a then two:

1) a < 2pzyY < Ypoyt < ¢’ < 2pp Y < Ypzy« < a. Therefore a < z < d’ <
z < a and hence a = o thus ap, 4a'; or

2) a < 2pp Y < Ypayr < ' < Ypuyt < TPy yy < a. Therefore a <z < d’ <
y < a and hence x = y which is a contradiction. Hence this case is not possible.
Thus we have a = o/, that is ap, 4a'. O

Definition 4.3. (see [6/)An S-poset A is called subdirectly irreducible if (), p; #
A for all congruences p; on A with p; % A. If A is not subdirectly irreducible,
then it is called subdirectly reducible.

It is worth noting that for each posemigroup S and an S-poset A with |A| = 2
there exist only two congruences A and 17 on A and therefore these S-posets are
subdirectly irreducible.

Lemma 4.4. Every S-poset A over a left zero posemigroup S with |FizA| =1 or
|FizA| > 3 is subdirectly reducible.

Proof. 1t is clear that for a left zero semigroup S, every S-poset with only one
fixed element is subirectly reducible. Also, let A be an S-poset with at least
three distinct fixed elements a,b,c. Then we consider the S-poset congruences
Pab and pp. , by Lemma 4.2. Since a,b,c¢ € FixA we obviously have pqp =
AlJ{(a,b), (b,a)} and pp . = AJ{(b,c), (c,b)}. Therefore p, N pq.c = A, and we
are done. O

We give the following theorm as the counterpart of Theorem 3.2 of [7] in the
category of S-posets over a left zero posemigroup.

Theorem 4.5. An S-poset A over a left zero posemigroup S is subdirectly irre-
ducible if and only if it is separated and |FizA| = 2.

Proof. Let A be subdirectly irreducible. Then Lemma 4.4 ensures that |FizA| = 2
such as {ag,bo}. To show that A is separated, we suppose that there exists = #
y € A such that zs = ys, for all s € S, and find a contradiction. To do so, consider
the S-act congruence p, ,. Since zs = ys, for all s € S, p,, = AY{(z,v), (y,z)}.
By the analogous method of the proof of Lemma 4.2 one can see that p., is an
S-poset congruence on A. Also since ag, by € FixA, by Lemma 4.2, we have the
S-posset congruence pq, b, on A. But pgy .6, N pz,y = A which is a contradiction,
therefore A is separated.

For the converse, let A be separated, FizA = {ag,bp}, and 6(# A) be an
S-poset congruence on A. Then there exists « # y € A such that (z,y) € 6. Thus
(zs,ys) € 0 for every s € S. But since xs,ys € FixA = {ap, bg} and A is separated,
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there exists s € S such that xs # ys. This means (ag, bo), (bo, ap) € 0. Therefore
(Mpza 0 contains AU {(ao, bo), (bo, ao)}, hence A is subdirectly irreducible. O

Finally, by the above theorem, and Birkhoff’s Representation Theorem we have:

Theorem 4.6. Fvery S-poset over a left zero posemigroup S is isomorphic to a
subdirect product of separated S-posets each of which has exactly two fized elements.

It is worth noting that every S-poset A over a left zero posemigroup S with
one or two elements and |FizA| = 1 is dc-injective.

We close the paper by characterizing simple S-poset. Recall that an S-poset A
is called simple if ConA = {A,V}. It is easy to check that every S-poset A with
|A| < 2 is simple but no S-poset A with trivial action and |A| > 2 is simple.

Theorem 4.7. For a left zero posemigroup S, there exists no simple S-poset A
with |A| > 2.

Proof. Let a # b be elements of A. Then in the case where a,b € FixA we have
Pab 7 V, (where p,p is an S-poset congruence that discussed in Lemma 4.2) since
|A| > 2, hence there exists (a,b #)z € A and (a,z) ¢ pap- Therefore, p,p is a
nontrivial congruence on A. Also in the case that one of a,b is not fixed, taking
a ¢ FizA, then p,;, # V. Because otherwise, if p,;, = V then for each z # y € A,
we have (x,y) € p,p. Consequently there exist s,t € S such that as =z, bt = y.
Hence z,y € FizA. Thus (a,z) ¢ py, and so p, , is a nontrivial congruence. O
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Dynamic groups
Mohammad Reza Molaei

Abstract. In this essay we introduce a class of groups which any member of it has a dynamic
product. We prove that any subgroup of a dynamic group is a dynamic group and the product
of two dynamic groups is a dynamic group. We deduce a new equivalency on dynamical systems

via Rees matrix semigroups.

1. Introduction

Groups with dynamic products are a class of groups which have important role in
topological cocycles [5]. Cocycles [1, 2, 3] are time-dependent dynamical systems
and they can describe by these kind of groups [5]. To present the definition of a
dynamic group we first recall the definition of a dynamical system. We assume
that (T',+) is the group of real numbers or the group of integer numbers. The
binary operation + can be any group operation on this set. If Y is a non-empty
set, then a family € = {¢' : ¢t € T} of the maps £' : Y — Y is called a dynamical
system if

(1) & =idy;

(i1) s =¢togs forall t,seT.

(T, +) is called the time group of £, and T is called the time set of £. If (T, +)
is a semigroup, and ¢ satisfies the condition (i), then it is called a semi-dynamical
system.

Definition 1.1. Suppose ¢ is a dynamical system (semi-dynamical system) on
Y, and G is a group (semigroup). (G,¢) is called a dynamic group (dynamic
semigroup) if there is a one-to-one map h : G — £ such that h(b) o h(c) = h(cb).

If G is a group with the identity e, then the above definition implies that
h(e) = £°. One must pay attention to this point that: in the above definition if h
is an onto map, and 7T is a commutative group, then h is a group isomorphism.
271'1'0)

Example 1.2. We define a self map 71 on the circle S by (e e2mi(0+3),

and we take £ = {n" : n € Z}, where

2010 Mathematics Subject Classification: 20F38, 37TH05
Keywords: Dynamic product; dynamic group; Rees matrix semigroup; equivalent
dynamical systems.
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nomnomno---on if neN,
—_——
n times
ntontonto.ion™t if —neN.
—n times
Let G be the additive group modulo 4. Then (G, ¢) is a dynamic group. O

In the next section we present an example of a non trivial dynamic group.

Example 1.3. The set of integer numbers with the product m *n = n|m| is a
semigroup. Z with the product m x n = m|n| is also a semigroup. If for given
n € Z, we define n" : Z — Z by

n®lm| if m3 € Z,

”n(m):{ m o if mb¢Z,

then & = {n™ : n € (Z, x)} is a semi-dynamical system, and ((Z, *), £) is a dynamic
semigroup. In fact, if we define h : Z — £ by h(n) = n™, then h(n)oh(m) = h(ms=*n)
and h is one-to-one. O

In the next section we present two methods for constructing dynamic groups
(dynamic semigroups), and we show that a dynamic product is an algebraic prop-
erty. We associate a completely simple semigroup to a dynamic group. By using
of completely simple semigroups or Rees matrix semigroups we present an equiv-
alence relation on dynamical systems.

2. Structural consideration

We begin this section by presenting a nontrivial example of a dynamic group.

Example 2.1. Let
Y ={y:R*— R:y(t,z) =2z + g(t) where g(t) is a continuous function},

and for given s € R let £& : Y — Y be defined by £5(y)(t,z) = y(t + s,x). Then
& ={¢° : s € R} is adynamical system on Y. For given z,t,s € Rand y € Y we

take @ (y(t + s,z),2) = ¥z + fot e~ 2g(u + s)du]. Suppose G = {p'(y(t,.),.) :
t € Rand y € Y}. We define a product on G by the following form

P (y(t,), ) (2(s,.), ) = @' (y(t +5,.), Jog® (2(s, ), ).

Then G with this product is a group and (G, &) is a dynamic group. The map
h:G — & defined by h(p(y(t,.),.)) = & has the properties of Definition 1.1. [
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Dynamic group is a kind of groups which it’s product is look alike to an evo-
lution operator up to a one-to-one map. To see this let (G, &) be a dynamic group
with a one-to-one mapping h : G — £. Any member of ¢ is called an evolution
operator. If P : G x G — G is the product of G, and if

A={P,=P(,b):G—>G:be G},

then there is a bijection
o:G— A, b B,

Under the map ho ¢~ ! any given P, is look alike to the evolution operator
(ho¢~1)(P). So there is a dynamics on the product of G.

Theorem 2.2. If H is a subgroup of a dynamic group (G,§), then H is a dynamic
group.

Proof. Suppose h : G — £ is a one-to-one map with the properties of Definition
1.1, then h|gy : H — £ has the properties of Definition 1.1 for (H,¢§). O

Theorem 2.3. If (G1,&1) and (Go, &) are two dynamic groups with a common
time set T, then G1 X G2 is a dynamic group.

Proof. Suppose hy : Gy — &, g — ﬁy and hy : Go — &, g — f;g are the
one-to-one maps which satisfy the conditions of Definition 1.1. We know that
G x Go with the multiplication (g1, ¢92)(j1,J2) = (9141, 92J2) is a group, and we
know that there is a bijection o : T'x T' — T, where T = R or T = Z. We define
the following binary operation on T

+o:TXT —T, (t,s)—o(t+s).

Clearly (T,+,) is a group. We assume that ; is a dynamical system on Y; for
i€{1,2}. If t € T, then we define

Y xYs — Y1 xYa,  (y1,52) = (61 (1), 652 (32)),
where t = o(t1,t2). The straightforward calculations imply that
¢ ={¢" :t € T and the operation of T is +,}

is a dynamical system on Y7 X Y2. Now we define h : G1 x Ga — £ by h(g1,92) =
£7(ta1:ter)  Since o, hy, he are one-to-one, then h is one-to-one.
For given (g1, g2), (I1,12) € G1 X G2, we have

hg1.g2) 0 bl o) = £7(En 1) 0 €7 tia) = g7(tns iyt )
= (h1(g1) © ha (1), ha(ga) © ha(l2)) = (A1 (ligr), ha(lzge)) = (€427 €52 T2

= 7t ttontiatlon) = n(ly gy, lags) = h((l1,12)(g1, 92))-

Thus (G; x Gs,§) is a dynamic group. O
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We say that a property is an algebraic property if it preserves under algebraic
isomorphisms. The next theorem show that the concept of dynamic product is an
algebraic concept.

Theorem 2.4. If (G,£) is a dynamic group, and if f : G — H is a group isomor-
phism, then (H, &) is a dynamic group.

Proof. Suppose h : G — & has the properties of Definition 1.1. We define h:H— &
by h(a) = h(f~*(a)). Clearly h is one-to-one. If a,b € H, then

h(ab) = h(f~'(ab)) = h(f (@)~ (b)) = h(f (b)) o A(f ! (a)) = h(b) © (a).
We also have h(eg) = h(eg) = id. Thus (H,£) is a dynamic group. O

3. Dynamic mappings

We begin this section by definition of a Rees matrix semigroup which is defined
first in [6]. Suppose that G is a group and A and I are twosets. If p: A x I — G
is a mapping then I x G x A with the product (i,a,A)(4,b, 1) = (i, ap(A, 7)b, p)
is a completely simple semigroup [4]. I x G x A with this product is denoted by
M(G,I,A,p) and it is called a Rees matriz semigroup. Rees proved in [6] that any
completely simple semigroup is isomorphic to a Rees matrix semigroup.

Now we are going to associate a Rees matrix semigroup to a dynamic group.

We assume that (G, €) is a dynamic group with the mapping h: G — &, and ¢
is a dynamical system on Y, then the mapping p: Y XY — G defined by

p(y, z) = { 2—1(5%) ZZ f: - Q{)|t| (€ (y) = 2} £ 0 and to = inf A,

is a well defined map. In this case the Rees matrix M(G,Y,Y,p) is associated to
(G,8).

Definition 3.1. If (G,¢) and (H,7n) are two dynamic groups, and £ and n are
dynamical systems on Y and X respectively, then we say that (G, &) and (H,n)
are equivalent if their associated Rees matrices M (G,Y,Y,p) and M(H, X, X, q)
are isomorphic semigroups.

Theorem 3.2. Suppose (G,€) and (H,n) are two dynamic groups with the time
set T and one-to-one maps h : G — & and g : H — n. If there exists a bijection
f:Y — X such that fo& =nto f for allt € T, then (G,€) is equivalent to

(H,n).

Proof. We define w : h(G) — g(H) by w(&') = n*. The condition fo&* =nfo f
implies that w is a bijection. If | = g~'owoh, then [ : G — H is an isomorphism.
Because if a,b € G, then

[(ab) = (97" o w)(h(ab)) = (97" o w)(h(b) o h(a)) = g~ (w(h(b)) o w(h(a)))
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= (97 (w(h(a)))) (g~ (w(h(b)))) = U(a)l(D).
Since [ is a bijection, by similar method we can show that [~! is a homomorphism.
So it is an isomorphism.
Now we show that the mapping ¢ : M(G,Y,Y,p) - M(H, X, X, q) defined by

W(y,5,2) = (f(y), (s), f(2)) is a semigroup isomorphism. Tf (31,51, 21), (42, 52, 22)
are in M(G,Y,Y,p), then

Y((y1, 51, 21), (Y2, 82, 22)) = P (Y1, 81P(21,Y2) S2, 22)
= (f(y17 l(Sl)l(p(Zl),yg))l(Sz), f(ZQ))

and

(¥ (y1,81,21)) (Y (Y2, 52, 22)) = (f(y1),1(s1), f(21))((f(y2), (s2), f(22))

= (f(11), l(s1)q(f (21), f(22))(s2), f(22))-

So 1 is a homomorphism if we prove that {(p(z1,y2)) = q(f(21), f(y2)). To prove
this we have the following two cases.

CASE 1. If p(21,92) = eq, then £8(21) # ya forall t € T. So f~ronto f(21) # yo
for all t € T. Thus n'(f(z1)) # f(yo) for all t € T. Hence q(f(z1), f(y2)) = en.
Thus I(p(21,92)) = llec) = en = q(f(21), f(y2)).

CASE 2. If there is t € T such that £'(z1) = ya, then (f~'onto f)(21) = ya.
So 1'(f(21)) = f(y2). Thus

A={Jt]: €' (z1) = y2} = {It] : ' (f(21)) = f(2)}-

Hence p(z1,92) = h=1(€) and q(f(z1), f(y2)) = g~ (1), where to = infA. Thus
L(p(z1,92)) = U(RH(E)) = g7 (") = q(f(21), f(y2)). So ¢ is a homomorphism.

Since 1) is one-to-one and onto, then by similar method we can show that 1!
is a homomorphism. Hence it is an isomorphism. 0

If a finite set Y and a finite group G are given and if a is the cardinality of
the set {p : p: Y XY — G is a mapping}, then the number of non-equivalent
dynamical systems on Y which can make G a dynamic group is at most a.

One must attention to this point that there exist completely simple semigroups
which are not associated to any dynamic group. For example, if Y and G have more
than two elements, and if p: Y XY — G is the constant mapping p(y, z) = e, then
there is no any dynamical system on Y such that M (G,Y,Y,p) can be associated
to it. Because if there is a ¢ and a one-to-one mapping h : G — &, then the
condition p(y, z) = e implies that & can not have more than one element, and it’s
element is the identity mapping on Y. Since h is one-to-one, then the order of G
is 1, and this is a contradiction.

To determine dynamical systems on Y which can prove a group G is a dynamic
group is basically related to the number of M (G,Y,Y,.). In fact when we determine
M(G,Y,Y,p), then we must check the existence of h.
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4. Conclusion

We introduce dynamic groups, and we consider their properties. We show that if
(G1,&) and (Ga, &) are two dynamic groups, then there is a dynamical system &
such that (G1 x Ga,¢) is a dynamic group. In Theorem 2.2 time sets of £; and &
can be different groups. Now let us to pose a problem.

Problem. Suppose that the time groups of & and & are equal, and it is a group
(T,+). Is it possible to find a dynamical system & with the time group (T,+) such
that (G1 x Ga,&) be a dynamic group?

We present an equivalence relation on a set of dynamical systems. The char-
acterization of dynamical systems via this kind of equivalency can be a topic for
further research.
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On the generalization of BreSer theorems

Muhammad Nadeem, Muhammad Aslam and Malik Anjum Javed

Abstract. If S is a prime semiring with char S # 2 and f : S — S is an additive mapping which
is skew-commuting on an ideal I of S, then f(I) = 0. We also prove that zero is the only additive
mapping which is skew-commuting on a 2-torsion free semiprime semiring. These statements are

the generalization of BreSar’s theorems.

1. Introduction

The notion of semiring was first introduced by H. S. Vandiver in 1934 [10]. An
algebraic system (S, +,-) is called a semiring if (S,-) is a semigroup; (S,+) is a
commutative semigroup with 0 and distributive laws of multiplication over addition
hold; furthermore, 0s = s0 = 0 for all s € S. A subsemiring I of S is called a right
ideal of S'if s € S, x € I implies xs € I. Left ideals are defined in a similar way. A
subset which is both left and right ideal is called an ideal. An ideal I of a semiring
S is called a k-ideal if x +y € I, x € I implies y € I. A proper ideal P of a
semiring S is said to be prime if AB C P implies A C P or B C P for any ideals A
and B of S. A proper ideal P of a semiring S is called a semiprime ideal if A> C P
implies A C P for every ideal A of S. A k-ideal I of a semiring S is semiprime
ideal if and only if I is the intersection of all prime k-ideals of S containing it
[9, Theorem 3.12]. A semiring S is prime if 0 is a prime ideal. A semiring S is
semiprime if 0 is a semiprime ideal. For further details of semirings, we refer [2,
3,4, 5,6, 7. An additive mapping f : S — S is said to be skew-commuting on a
set TC Sif f(s)s+sf(s) =0forall s € T.

In [1], M. Bresar proved that if S' is a prime ring of characteristic not 2, and
f 8 — S is an additive mapping which is skew-commuting on an ideal I of S,
then f(I) = 0. He also proved that zero is the only additive mapping which is
skew-commuting on a 2-torsion free semiprime rings. In this paper, we observe
that these results still hold in the wider spectrum of semirings.

2. Preliminaries

One can easily prove the statement of following lemma.

2010 Mathematics Subject Classification: 16Y60, 16N60
Keywords: semirings, additive mappings, k-ideals
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Lemma 2.1. Let S be a semiring. If S has a nonzero nilpotent right ideal R, then
1t has a nonzero nilpotent ideal I containing R. O

Now, we extend Lemma 1.1 [7] and Lemma 1 [1] in the framework of semirings.

Lemma 2.2. Let S be a semiring and I # (0) a right ideal of S. If there ezists a
positive integer n such that ™ = 0 for all x € I, then S has a nonzero nilpotent
ideal.

Proof. The proof is given by induction on n. For n = 2, we have 22 = 0 for all
r€l. Asxz+aselforall seS,soweget (x+ xs)? =0. This implies zsx = 0.
Multiply from right by ¢ € S to get zszt = 0, so we obtain (x5)? = 0. Now if
xS # 0, then S has a nonzero nilpotent right ideal xS and hence, by Lemma 2.1,
S has a nonzero nilpotent ideal. When ¢S = 0, then I? C IS = 0. So S has a
nonzero nilpotent right ideal I and hence has a nonzero nilpotent ideal.

Now suppose that Lemma is true for all positive integers less than n. Since
2™ = 0 for all € I for a fixed integer n and n is least such integer, therefore
2"t # 0 and (2" 1)? = 0. Take b = 2™ 1, then v> = 0. Let B = bl, then
two cases arise. In the first case, let B # (0). As b+ bs € I for all s € S,
so we have (b + bs)® = 0. On expansion, we arrive (bs)"~!'b = 0. This results
in (bs)""!B = (0). Let T = {z € B|zB = 0}. It is easy to see that T is a
k-ideal of B. Moreover, y € B implies that y"~! € T. Now let y + T €B/T,
then (y +T)"~! = y"~1 + T = T. Hence by induction hypothesis B/T has a
nilpotent ideal U/T # T. This yields U ¢ T and (U/T)* = U*/T = T for
some positive integer k. Since T is a k-ideal of B, therefore U¥ C T and hence
Ukt ¢ TU C TB = (0). AsU ¢ T and U is an ideal of B, so we have (0) #
UB C U and (UB)**! c U*! = (0). This implies that U B is a nonzero nilpotent
right ideal of S and hence, by Lemma 2.1, S has a nonzero nilpotent ideal. In
the second case, when B = 2" '] = (0). Let W = {z € I|zI = (0)}, then W
is a k-ideal of I. If W = I, then I? = (0) and so I is a nonzero nilpotent right
ideal and hence, by Lemma 2.1, S has a nonzero nilpotent ideal. If W # [, then
for each element x € I, 2"~' € W. Hence in I/W, each element x + W satisfies
(x + W)=t = 2=t 4+ W = W. So our induction hypothesis gives us a nilpotent
ideal V/W # W, this means V ¢ W and (V/W)™ = V™/W = W for some
positive integer m. Hence we have V™ C W and V™™t ¢ WV C WI = (0). Since
(0) # VI C V, where V is ideal of I, so we have (VI)™™t c V™! = (0). This
means that S has a nonzero nilpotent right ideal VI and hence again, in view of
Lemma 2.1, S has a nonzero nilpotent ideal. O

Lemma 2.3. Let I be a nonzero ideal of a prime semiring S. If I, = {«™ |z € I},
then Ina =0 (or al,, = 0) implies a = 0.

Proof. Let I,a = 0 and suppose on contrary a # 0. If at = 0 for all t € I, then
replacing t by st, where s € S, we get ast = 0. As S is prime semiring, so we get
t =0 for all t € I. This implies I = 0, which is not possible, hence av # 0 for some
ve€ I Asavz €I for all z € I, so (avz)"a = 0, this implies that (avz)"*! = 0.
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So we get right ideal (av)S in which each element r satisfies r"*! = 0. Hence,
by Lemma 2.2, S has a nonzero nilpotent ideal but this is not possible in prime
semiring, so we conclude a = 0. Similarly, we can prove the case when al,, = 0. O

One can also observe the following statements.

Lemma 2.4. Let S be a semiring. If a+b=0 and a+c =0 for a,b,c € S, then
=c. O

Lemma 2.5. Let P be a prime ideal of semiring S and ax € P (or xa € P) for
allx € S, then a € P. O

3. Main results

Theorem 3.1. Let S be a prime semiring of characteristic not 2. If an additive
mapping f : S — S is skew-commuting on some ideal I of S, then f(x) =0 for
all x € I.

Proof. As f is skew-commuting on I, so we have
f@)x+af(x)=0 Veel. (1)

Multiplying (1) from the right and left separately by = and applying Lemma 2.4,
we get

fx)2® = a* f(x). (2)
Linearization of (1) yields
f@y+yf@)+ fy)z+xfly) =0 Vo,yel (3)
Replacing y by 2 in (3) and using (2), we get
222 f(z) + f(2®)z + z f(2*) = 0. (4)

After multiplying the last relation from right by 22 and using (2), one can get the
relation 224 f(z) + f(2?)x3 + 2 f(2?)2? = 0. Now by adding 22 f(22)x + 22 f(2?)
on both sides of this relation and using (1), we obtain

204 f(2) = [ (2*)r + & [ (a2). (5)

Multiplying (4) by 22 from left, the last relation reduces to 4% f(x) = 0. As S is
of characteristic not 2, so we have

ztf(x) = 0. (6)

Using (2), we obtain
f(x)z* =o. (7
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Now multiplying (1) from right by 2z and applying the Lemma 2.4 to (4), we
have 2z f(r)r = f(2?)x + xf(2?). By multiplying this from left and right by x
simultaneously and using (2) and (6), we reach xf(2%)2? + 2% f(2?)x = 0. This,
along with (5) and (6), becomes

o’ f(2?) = af(a?)a®. (8)
Now (1) can be written as f(2?)z? + 22 f(2?) = 0. Multiplying it from left by =
and using (8), we get 223 f(2?) = 0. This becomes
a® f(z%) = 0. 9)
Similarly, we can prove
fzHa® =0. (10)

Replace z by 22 in (3) to get f(2?)y+yf(z?)+ f(y)z? +2%f(y) = 0forall z,y € I.
By multiplying this from right and left by 23 simultaneously and using (9) and
(10), we obtain

2 f(y)a® + 2’ f(y)a® =0 Vr,yel (11)
Replace = by 2 in last relation to get
2 f(y)z'® + ' f(y)a® = 0. (12)

First multiplying (11) from left by 2® and right by 2°, then the last relation, in
view of Lemma 2.4, becomes x'° f (y)z5 = 28 f(y)2®. Similarly, we get 2° f(y)x'0 =
28 f(y)28. So (12) becomes x®f(y)2® = 0 for all x,y € I. This can be written as

zf(y)z=0 VYyel,Vzels. (13)
Replace y by z in (3) to get
f@)z+zf(x)+ fR)x+af(z) =0 VeelVzels. (14)
Multiplying last relation from right by z and using (13), we obtain
f@)22 + f(2)xz + xf(2)z = 0. (15)

Suppose x € Ig, then (13) can be written as zf(z)x = 0. Left multiplying (1)
by = and using this relation, we get 22 f(x) = 0 for all z € Izs. Now multiplying
(15) from left by x2, using this relation and (13), we arrive z3f(2)z = 0 for all
x,z € Ig. By Lemma 2.3, this reduces to f(z)z = 0, hence we have zf(z) = 0. In
view of this, (15) reduces to

f(x)22 + f(2)xz =0 Vel Vze . (16)

Now replacing = by xz in last relation, we obtain f(x2)z? + f(2)z2? = 0, then
multiplying (16) from right by z and using Lemma 2.4, we arrive

f(x)2® = f(x2)2? Veel, zel. (17)
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Left multiplying (14) by z, where z € Ig, using zf(z) = 0 and (13), we get
22f(z) + zzf(2) = 0. Replace = by zz in this relation and use zf(z) = 0 to have

2f(xz) =0 Veel zels. (18)
As a special case of (3), we have
f@yz+yzf(a) + fyz)r + 2f(yz) =0 Vo,y € [,z € Is.

Multiplying the last relation from left and right by z? simultaneously and using
(13), (17) and (18), we get 22f(z)yz> + 222 f(y)z® = 0. Multiplying this relation
from left by z, one can see tf(z)yt + txf(y)t = 0 for all z,y € I and all t € Ipy.
Now replacing y by ytf(s), where s € I and t € Io4, in this relation and using
(13), one can arrive tz f(ytf(s))t = 0 for all z,y,s € [ and t € I54. As S is a prime
semiring, we get,

fytf(s))t =0 (19)
Replacing y by ytf(s) in (3), where s € I, we obtain

f@ytf(s) +ytf(s)f(x) + f(ytf(s))z + xf(ytf(s)) =0.
Multiplying the last equation from left by ¢, using (13) and (19), we have
ytf(s)f(x)t+ f(ytf(s))at =0 Va,y,s € I,Vt € Iy (20)
Putting ry for y in last relation, where r € S, leads to

rytf(s)f(z)t + f(rytf(s))zt = 0.

Multiplying (20) from left by r and using Lemma 2.4, we obtain f(ryf(s))zt =
rf(ytf(s))zt. Again multiplying this from left by z, we obtain zf(ryf(s))zt =
zrf(ytf(s))xt for all x,y,s € I, z € Is, t € Isy, 7 € S. Replace x by zzx in this
relation and use (13) to get zrf(ytf(s))zazt = 0. Due to primeness of S, this
becomes f(ytf(s))zat = 0. Again by primeness of S, we get f(ytf(s))z = 0. In
view of Lemma 2.3, we have

Pt (s) = 0. (21)
Now suppose f(s) # 0 for some s € I, otherwise theorem is proved. By Lemma
2.3, tf(s) # 0 for some t € Is4. As I # 0, therefore for some x € I, a = xtf(s) # 0.
Thus L = Sa is a nonzero left ideal of S contained in I. Hence using (21), we get
f(L) = 0. Now, using (3), we have f(x)t+tf(z) =0forall ¢t € L and z € I.
Substituting st for ¢, where s € S, gives f(xz)st + stf(x) = 0. Now by replacing s
by x*s and using (7), we have x*stf(x) = 0. As S is a prime semiring, so we get
tf(z) = 0. This implies that f(x)t = 0 and hence f(x) = 0 for all x € I. This
completes the proof. O

Theorem 3.2. Let S be a 2-torsion free semiprime semiring. If an additive
mapping [ : S — S is skew-commuting on S, then f = 0.
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Proof. As S is a semiprime semiring, there exits a collection of prime k-ideals 7
such that N7 = 0. Let 7y = {P € 7|charS/P # 2} and 7o = {P € T|charS/P = 2}.
Let € Nry, then 2z € (N1y) N (N2) = N7 = 0, since S is 2-torsion free, so
x = 0. Hence N7y = 0. The theorem will be complete if we prove f(xz) € N7y
for all x € S. Take a prime k-ideal P € 7;. Linearize f(z)x + zf(x) = 0 to get
f@y+yf(z)+ f(y)zr+zf(y) =0forall z,y € S. This implies f(p)z+zf(p) € P
forallp € P,x € S, so we get o f(p)r+22f(p) € P and f(p)z?+xf(p)x € P. This
gives 2z f(p)x + 22 f(p) + f(p)x® € P. As P is k-ideal and 22 f(p) + f(p)x? € P, so
we have 2z f(p)x € P. As char S/P # 2, so by Lemma 2.5, we obtain zf(p)x € P
for all p € P,x € S. Since the k-ideal P is prime, therefore, in view of Lemma
2.6, f(p) € P for every p € P. Now define a mapping F on S/P by F(z + P) =
f(z)+ P. It can be seen that F is additive and skew-commuting on prime semiring
S/P. Hence F' = 0 by Theorem 3.1. This gives f(z) € P for all x € S. Hence
f(z) € N = 0. This completes the proof. O
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Characterizations of ordered k-regular semirings

by closure operations

Satyt Patchakhieo and Bundit Pibaljommee

Abstract. We introduce relations on the set of all closure operations on ordered semirings
and then we characterize regular ordered semirings and ordered k-regular semirings using these

relations.

1. Introduction

In 1936, J. von Neumann [14] called a ring (S, +, -) to be regular if (.5, -) is regular.
S. Bourne [3] has defined a semiring (S, +,-) to be regular if for all @ € S there
exist x,y € S such that a + axa = aya which is different from Neumann regularity
in general but both are equivalent in rings. In 1996, M. R. Adhikari, M. K. Sen
and H. J. Weinert [1] have renamed the Bourne regularity of semirings to be a
k-regularity.

In 1958, M. Henricksen [6] introduced the notion of k-ideals in a semiring. M.
K. Sen and P. Mukhopadhyay [13] showed that k-regular semirings were charac-
terized by k-ideals. A. K. Bhuniya and K. Jana [2] have shown that k-regular
semirings and intra k-regular semirings can be characterized by k-bi-ideals where
these semirings are additive semilattices. Subsequently, K. Jana [7, 8] continued to
consider additive semilattice semirings and investigated some properties of quasi
k-ideals in k-regular semirings and intra k-regular semirings, k-bi-ideals and quasi
k-ideals in k-Clifford semirings. For more information about k-regular semirings
and k-ideals in semirings, the reader may refer e.g., [2, 7, 8, 11].

A.P. Gan and Y. L. Jiang [5] investigated some properties of ordered ideals in
ordered semirings. S. Patchakhieo and B. Pibaljommee [11] introduced the notions
of an ordered k-regular semiring and an ordered k-ideal in an ordered semiring and
characterized ordered k-regular semirings by their ordered k-ideals.

In 1970, B. Pondéli¢ek [12] investigated a relation on the set of all closure
operations on a semigroup and characterized a regular semigroup by this rela-
tion. After that T. Changphas [4] generalized Pondélicek’s relation to an ordered
semigroup.
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In this paper, we investigate a relationship between ordered semirings and
closure operations on the ordered semirings. Moreover, we introduce relations
on the set of all closure operations on ordered semirings and characterize regular
ordered semirings and ordered k-regular semirings using these relations.

2. Preliminaries

In this section, we recall notions of an ordered semiring, an ordered ideal in an
ordered semiring and notions of closure operations.

Let S be a nonempty set and + and - be binary operations on S, named
addition and multiplication, respectively. Then (S, +,-) is called a semiring if the
following conditions are satisfied:

1. (S,+) is a commutative semigroup;
2. (S,-) is a semigroup;

3. both operations are connected by the distributive laws, namely, a - (b+c¢) =
a-b+a-cand (a+b)-c=a-c+b-cforall a,b,ces.

A semiring (S, +,-) is said to have a zero element if there exists an element
0e Ssuchthat 0+x =z =x+0and 0-z =0 = x-0 for all z € S. In particular, a
semiring (S, +,-) is called commutative if (S,-) is a commutative semigroup, and
called a ring if (S,+) is a commutative group.

Definition 2.1. Let (S,+,-) be a semiring and () # A C S. Then A is called a
left (right) ideal if the following conditions are satisfied:

1. x+ye€ Aforall z,y € A;
2. SACA (ASCA).
We call A an ideal if it is both left ideal and right ideal of S.

Definition 2.2. Let (5,<) be a partially ordered set. Then (5, +,-, <) is called
an ordered semiring if the following conditions are satisfied:

1. (S,+,-) is a semiring;
2. ifa<bthena+x<b+zand x+a < z+ b
3. if a < b then az < bx and za < b

for all a,b,x € S.

Instead of writing an ordered semiring (.5, +, -, <), we denote S, for short, as
an ordered semiring. Let A be a nonempty subset of S. We define

(Al ={x€S|z<a,3ac A}
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Definition 2.3. Let S be an ordered semiring and ) # A C S. Then A is called
a left (right) ordered ideal if the following conditions are satisfied:

1. Ais aleft (right) ideal of S;
2. if x < a for some a € A then x € A.

We call A an ordered ideal if it is both left ordered ideal and right ordered ideal
of S.

It is known, a result in [5], that if A is a left (right, two-sided) ideal of an
ordered semiring S then (A] is the smallest left ordered ideal (right ordered ideal,
two-sided ordered ideal) containing A.

Now we recall the notion of a C-closure operation and some of its properties
proved in [12].

Let S be a nonempty set and Sub(S) be the set of all subsets of S. A mapping
U : Sub(S) — Sub(S) is called a C-closure operation on S if

L. U =0,

2. ACB=U(A4) CU(B);
3. A C U(A);

4. U(U(A)) = U(4)

for all A, B € Sub(S).
Let z € S. We define U(z) = U({z}). We denote by

F(U)={AC5|UM) = 4)

the set of all closed sets with respect to the operation U and by C(5) the set of
all C-closure operations on S. Define a relation < on C(5) by

UKV < U(4) CV(A) forall Ae Sub(S).
We define a C-closure operation I on S by

(S, ifA£D,
I<A)—{@, if A =0,

and for any U,V € C(S) we denote by UAV and UV V the infimum and the
supremum, respectively, of U and V in C(S). It is known that for any U,V € C(S5),

1. ULI,
2. UKV <= F(V)CFU),
3. UVV, UAYV exist and

(a) F(UVV)=FU)NF(V),
(b) FUAV)={ANnB|Ac F(U),Be F(V)}.
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3. Regular ordered semirings

In this section, we define a relation on the set of all closure operations on an
ordered semiring and characterizes a regular ordered semiring by the relation.
Let S be an ordered semiring and ) # A C S. We denote by X;, A the set
of all finite sums of elements of A. We define a relation p on C(S) by letting
U,V e C(9),
UpV <<= ANB = (X4, AB]

for all nonempty set A € F(U) and for all nonempty set B € F(V).
The following lemma is easy to prove using the definition of p.

Lemma 3.1. Let S be an ordered semiring and U, U’V , V' € C(S) such that
UpV. If U LU and V < V' then U'pV'.

Let S be an ordered semiring. Then we define mappings L and R on Sub(S)
by letting A C S,

f BpinA+SpnSAl, if A0,
L(A)_{ 0, if A =0,

and

[ (SpinA+ S AS], i A £,
R(A>—{ 0, it A =0.

It is easy to show that L and R are closure operations on Sub(S).

Now, we show that F(L) is the set of all left ordered ideals of S (including
the empty set). Let A is a left ordered ideal of S. Then we obtain A C L(A) =
(XfinA + X5 SA] C (A] = A. Hence, A € F(L). Conversely, let § # A € F(L).
Then A = L(A) = (XfinA + X4inSA]. Hence, A is a left ordered ideal of S.
Similarly, we have F(R) is the set of all right ordered ideals of S (including the
empty set).

The following lemma can be proved straightforward.

Lemma 3.2. Let S be an ordered semiring and A be a monempty subset of
Xfin(XfrinSA].

Theorem 3.3. Let S be an ordered semiring and U,V € C(S). Then UpV if and
only if R< U, LV and z € (X4, U(2)V(z)] for all z € S.

Proof. (=). Assume that UpV. First, we show that R < U. Let A € F(U). It is
clear that S € F(V). By assumption, we have A = ANS = (X4, AS]. By Lemma
3.2, we have A C R(A) = (EflnA + EfmAS] = (Efln(EonAS] + EflnAS] =
((ZfinAS] + E4inAS] C ((BfinAS]] = (£4inAS] = A. Hence, R(A) = A. Thus,
A € F(R). It follows that R < U. Similarly, L < V.Let z € S. Since U,V € C(S5),
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we obtain x € U(z) N'V(z). Since U(z) € F(U) and V(z) € F(V), we obtain
U(z) N V(z) = (27, U(z)V(z)]. Thus, z € (X4,U(z)V(x)].

(«<). Assume that R < U,L <V and z € (X4, U(z)V(2)] for all z € S. We
show that UpV. Let A € F(U)\{0} and B € F(V)\{0}. By assumption, we have
A € F(R) and B € F(L). Hence, (X7 AB] C (X, AS] C (Zind] C (Al = A
and (X4, AB] C (24inSB] C (24, B] C (B] = B. Thus, (34;,,AB] C AN B. Let
x € AN B. Then U(z) C U(A) = A and V(z) C V(B) = B. By assumption,
we have v € (4, U(2)V(z)] C (E4inAB]. Hence, AN B C (X, AB]. Thus,
AN B = (X4, AB]. Therefore, UpV. O

As the notion of a regular ordered semigroup [9, 10], we define a notion of a
regular ordered semiring as follows. An ordered semiring S is called left (right)
regular if a € (Sa?](a € (a®S)) for all a € S and called regular if a € (aSa] for all
a € S. Similar to a result in ordered semigroups, we obtain the following theorem.

Theorem 3.4. An ordered semiring S is ordered reqular if and only if ANDB =
(AB] for all right ordered ideal A and for all left ordered ideal B of S.

Theorem 3.5. An ordered semiring S is regular if and only if RpL.

Proof. (=). Assume that S is regular. Let a € S. By assumption, we have
a € (aSa] € (R(a)SL(a)] € (R(a)L(a)] € (£finR(a)L(a)]. By Theorem 3.3,
we obtain RpL.

(«<). Assume that RpL. Let a € S. By Theorem 3.3, a € (X;,R(a)L(a)].
Since (X R(a)L(a)] C (aS] and (X, R(a)L(a)] C (Sa], we get a € (aS] N (Sal.
Since (aS] € F(R), (Sa] € F(L) and RpL, we obtain a € (X, (aS](Sa]]. Then
there exist 1, x2,...,2, € (aS] and y1, Y2, ..., yn € (Sa] for some n € N such that
x < x1y1 + TaYe + - + TpYy. Since z; € (aS] and y; € (Sa] for all i =1,2,...,n,

there exist s;,r; € S such that z; < as; and y; < ra forall i =1,2,...,n. Hence,
ziy; < as;ria for all 4 = 1,2,... n. It follows that a < asiria 4+ asgrsa + -+ - +
aSprna = a(siry + sar2 + -+ + sprp)a € aSa. Thus, a € (aSa]. Therefore, S is
regular. O

As a consequence of Theorem 3.4 and Theorem 3.5, we obtain the following
result.

Corollary 3.6. Let S be an ordered semiring. Then RpL if and only if AN B =
(AB] for all nonempty set A € F(R) and for all nonempty set B € F(L).

Theorem 3.7. Let S be a commutative ordered semiring, A be a nonempty subset
of S and RpL. Then A is an ordered ideal of S if and only if there exist H € F(R)
and K € F(L) such that A = (HK].

Let S be an ordered semiring. We denote the C-closure operation RV L on S
by M. Note that (M) is the set of all ordered ideals of S (including empty set).

Theorem 3.8. Let S be an ordered semiring. Then the following statements are
equivalent:
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(i) LpL;

(1) LpM;

(#it) S is left regular and R < L.
Proof. (i) = (ii). Since LpL and by Lemma 3.1, we obtain LpM.

(74) = (4i4). Assume that LpM. By Theorem 3.3, we have R < L. It follows
that L = M. For any = € S, we get
z € (BrinL(z)M(2)] = (XginL(2)L(2)]

(Nz? + meSa:Q + iz St + X pin Sz S|
(N2? + 2, S2% + £ i R(2)2 + 244, SR(2) 7]
(
(

)
)

Nz2 + Efmez + X L(z)x + Z4inSL(z) 2]
Nz? + X 4, 527

= (N2? 4 Sz?].
Then there exist k1 € N, s € S such that

NN NN

r < kix? + sz (1)

Similarly, there exist k; € N, € S such that 22 < koz* + rz*. Hence, k12? <
kikox*+kirat. From (1), we have z < kykox*+kira*+sz?. This implies 2 € (Sx?].
Therefore, S is left regular.

(#9i) = (7). Assume that S is left regular and R < L. Then for any = € S, we
get x € (Sz?) C (SzL(z)] C (L(z)L(z)] € (EfimL(z)L(x)]. By Theorem 3.3, it
turns out LpL. O

Theorem 3.9. Let S be an ordered semiring. Then the following statements are
equivalent:

(i) RpR;
(7i) MpR;
(#it) S is right regular and L < R.
Proof. The proof of this theorem is similar to Theorem 3.8. O

An ordered semiring S is called left simple (right simple, simple) if S has no
proper left (right, two-sided) ordered ideal.

Now we give characterizations of left simple, right simple and simple as the
following theorem which is easy to verify.

Theorem 3.10. Let S be an ordered semiring. Then
(i) S is left simple if and only if L =1;
(i¢) S is right simple if and only if R =1;

(#i1) S is simple if and only if M = 1.
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4. Ordered k-regular semirings

In this section, we define a relation on the set of all closure operations on an ordered
semiring S and characterizes an ordered k-regular semiring by the relation.
The k-closure of a nonempty subset A of an ordered semiring S is defined by

A={zeS|Ja,be A, z+a<b}.

Lemma 4.1. [11] Let S be an ordered semiring and A be a nonempty subset of

S. If A+ AC A then A C (A] = (A].

Let A be a nonempty subset of S. We note that if A is closed under addition

then (A] is also closed.

Definition 4.2. [11] A left (right, two-sided) ordered ideal A of an ordered semir-
ing S is called a left ordered k-ideal (right ordered k-ideal, ordered k-ideal) if A = A.

In [11], it is known that if A is a left (right, two-sided) ideal of S then (A] is
the smallest left ordered k-ideal (right ordered k-ideal, ordered k-ideal) containing
A.

Definition 4.3. [11] An ordered semiring S is called left (right) ordered k-regular
if a € (Sa?](a € (a295]) for all a € S and called ordered k-regular if a € (aSa] for
all a € S.

Theorem 4.4. [11] An ordered semiring S is ordered k-regular if and only if

AN B = (AB] for all right ordered k-ideal A and for all left ordered k-ideal B of
S.

Let S be an ordered semiring. We define a relation 8 on C(S) by letting
U,V eC(9),
UBV <= ANB = (X4,AB]
for all nonempty set A € F(U) and for all nonempty set B € F(V).

By the definition of 5, we have the following lemma.

Lemma 4.5. Let S be an ordered semiring and U, U,V , V' € C(S) such that
UBV. If U LU and V < V' then U' V',

Lemma 4.6. [11] Let S be an ordered semiring and A be a nonempty subset of
S. Then

(1) (ZpinA+ XpinSA] is the smallest left ordered k-ideal of S containing A;

(it) (ZfinA+ XinAS] is the smallest right ordered k-ideal of S containing A.
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Let (S,4+,-, <) be an ordered semiring. Then we define mappings L; and Ry,
on Sub(S) by letting A C S,

; , "
Lk(A):{ ézfznAJrzfmSA], ;fiig’

)

and

- (AT 4y

It is easy to show that Lj and Ry are closure operations on Sub(S) and if A # ()
then Ly(A) and Ry (A) are left ordered k-ideal and right ordered k-ideal of S,
respectively.

Now, we show that F(Ly) is the set of all left ordered k-ideals of S (including
the empty set). Let A be a left ordered k-ideal of S. Then we obtain A C Ly (A) =
(EfinA + XpinSA] C (A] = A. Hence, A € F(Ly). Conversely, let A € F(L;)\{0}.
By Lemma 4.6, we get A = Ly (A) = (X0 A + X1 SA] is a left ordered k-ideal of
S. Similarly, we have F(Ry) is the set of all right ordered k-ideals of S (including
the empty set).

Lemma 4.7. Let S be an ordered semiring and A be a nonempty subset of

S. Then Efln(AS] g (EflnAS] = Zfzn(ZﬁnAS] and Zfln(SA] g (EflnSA] =

Erin(ZrinSA].

Proof. Since X5, AS is closed under addition, then (3, AS] is also closed. Since

(AS] C (X4inAS] and (X4, AS] is closed under addition, we have X;,(AS] C

(EfinAS] and Efm(meAS] g (ZfinAS}. Hence, (EfmAS] = Efi”(zfmAS]. Sim-
ilarly, we have X4, (SA] C (EfinSA] = Ein (X finSA]. O

For any element a of an ordered semiring S, Na means {na | n € N}.
As a consequence of definitions of Ly and Ry, we have the following lemma.

Lemma 4.8. Let S be an ordered semiring and a € S. Then Ly (a) = (Na + Sa]
and Ry (a) = (Na + aS].

Theorem 4.9. Let S be an ordered semiring and U,V € C(S). Then UBV if
and only if R, < U, Ly <V and z € (X4;,U(z)V(z)] for all z € S.

Proof. (=). Assume that UBV. We first show that R, < U. Let A € F(U)\{0}.
It is clear that S € F(V). By assumption, A = ANS = (¥, AS]. By Lemma
4.7, we have A C R}C(A) = (EflnA—‘ermAS] = (Efin(meAS] +ZfinAS] =
((EfznAS] + EfinAS] - ((EfmAS]] = (EfmAS} = A. Hence, Rk(A) = A. Thus,
A € F(Ry). It follows that Ry < U. Similarly, Ly < V. Since U,V € C(S5), we
obtain z € U(z) NV (z) for all x € S. Since U(z) € F(U) and V(x) € F(V), we
obtain U(z) N V(z) = (X4, U(x)V(2)]. Thus, z € (X4, U(z)V(x)] for all z € S.
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(<). Assume that Ry, < U,L; < V and z € (24, U(z)V(z)] for all z € S.
We show that UBV. Let A € F(U)\ {0} and B € F(V) \ {0}. By assumption,
A € F(Ry) and B € F(Lg). We obtain (X5, AB] C (X4, AS] C (X4inA] C (4] =
A and (X4, AB] C (X4inSB] € (X B] € (B] = B. Hence, (X;;,,AB] C AN B.
Let + € AN B. Then U(z) C A and V(z) C B. By assumption, we have z €
(2fnU(2)V(2)] € (XfinAB]. Hence, ANB C (£, AB]. Thus, ANB = (£4;, AB].
Therefore, UBV. O

The following theorem gives a characterization of an ordered k-regular semiring
by closure operations.

Theorem 4.10. An ordered semiring S is ordered k-regular if and only if Ry GLy.

Proof. (=). Assume that S is ordered k-regular. Let a € S. Then we have a €
(aSa) C (Rg(a)SLg(a)] € (Ri(a)Li(a)] C (EjinRi(a)Li(a)]. By Theorem 4.9,
we obtain Ry (L.

(«<). Assume that RyfSLy. Let a € S. Then a € (X4, Ri(a)Ly(a)] by The-
orem 4.9. Since (X;;nRi(a)Li(a)] C (aS] and (ZfimRi(a)Li(a)] C (Sa], we

get a € (aS] N (Sa]. Since (aS] € F(Ry),(Sa] € F(L) and RyfSLy, we ob-

tain a € (X, (aS] (Sa]]. There exist x,2’ € (Xfi,(aS] (Sa]] such that a + = <

z’. But z,2" € (Xin(aS] (Sda], so there exist x1,z9,...,2p,21,..., 2, € (aS5],

Y1,Y25 -+ Yns Y15 -+ Yy € (Sa such that z < ¥ 2,y and 2" < XYL, 2%y;. For
each 1 < i < n, we get

u;, (2)
(%

i (3)

L < ash,v; < tia,v) < tha for some s;, s, ¢, 1, € S. From (2),
we have z;y; + wy; < ujy;. From (3), we have w;y; + w;v; < uv) and uly; +
uwiv; < uwivi. Hence, z;y; + wiy; + wiv; + ujv; < uly; + wv; + ujv;. Then we get
wiy + wv; + uiy < wvl + vy < asitia + asitia = a(sit] + siti)a € aSa and
wiy; +uiv; Fulv; < uv; +uv) < asitia+asitia = a(sit; + sit;)a € aSa. It follows
that z;y; € (aSal. Hence, X 2;y; € (aSa]. Similarly, we obtain X7, 2%y’ €

where u; < as;,u

(aSa). Since x < X 2;y; and o' < XL 2%y}, we have x,2" € ((aSa]] = (aSal.
Then there exist ¢,c’'d,d’ € (aSa] such that © + ¢ < d and 2’ + ¢ < d'. Tt follows
that a+x+c+c <2’ 4+c+cd <c+d €(aSal and x + ¢+ <d+ € (aSa).
Thus, a € (aSa]. Therefore, S is ordered k-regular. O

By Theorem 4.4 and Theorem 4.10, we have the following result.

Corollary 4.11. Let S be an ordered semiring. Then Ry 5Ly, if and only if ANB =
(AB] for all nonempty set A € F(Ry) and for all nonempty set B € F(Ly).

Example 4.12. Let S = {a,b,c} with a partially ordered set < be defined
a < b < c. Define binary operations + and - on S by the following tables.
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+la b ¢ a b c
ala a a q alb b b
bla b c| ™ blb b b
cla ¢ c b b b

Then we have (S,+,-, <) is an ordered semiring. Moreover, (X, R(z)L(z)] = S

for every x € S. Tt follows that z € (X4, R(z)L(x)] for every « € S. By Theorem
4.9 and Theorem 4.10, we obtain that S is an ordered k-regular semiring.

Theorem 4.13. Let S be a commutative ordered semiring, A be a nonempty
subset of S and RyPLg. Then A is an ordered k-ideal of S if and only if there
exist H € F(Ry) and K € F(Ly) such that A = (HK].

Proof. (=). Assume that A is an ordered k-ideal of S. Let H = Ry (A) and K =
L;(A). Then we have H € F(Ry) and K € F(L). Since S is a commutative
ordered semiring, H = A = K. Let a € A. Since R;fLy,a € (Ry(a)Lg(a)] €
(Rix(A)Ly(A)] = (HK]. Hence, A C (HK]. Since A* C A, (HK| = (A2] C (4] =
A. Therefore, A = HK.

(«<=). Assume that there exist H € F(Ry,) and K € F(Ly) such that A = (HK].

Since RyfLy, we have H N K = (HK]. Since A = (HK| = HNK and S is

commutative, A is an ordered ideal. Since A = (HK] = (HK] = A, A is an
ordered k-ideal. O

Let S be an ordered semiring. We denote the C-closure operation Ry V Ly
on S by My. Note that F(Mjy) is the set of all ordered k-ideals of S (including
empty set).

Theorem 4.14. Let S be an ordered semiring. Then the following statements are
equivalent:

(1) LySLy;
(12) LipSM;
(7i1) S is left ordered k-regular and Ry < L.

Proof. (i) = (ii). Since Ly SLj, and by Lemma 4.5, we obtain Ly M.

(#i) = (4i1). Assume that LiSMj. By Theorem 4.9, we have Ry < Lg. It
follows that Ly = My. For any = € S, we get

€ (BfinLi(x)Mg(2)] = (X pinLi(z) Ly ()]

(NxQ + EfinSlQ + mexS:v + meS:L‘SSC}
(NfEQ + EfinSﬂC2 + Emek(x)x -+ EﬂnSRk(I)(E]
(Na2 + X5, S22 + Zgin L () + Xfin SLg(2) 2]
(
= (

NN 1NN

Nz2 + ¥, S22]
Nz2 4 Sz?].
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Then there exist y,z € (Nz? + Sz?] such that z +y < 2. It follows that there
exist k1,ks € N,s,t € S such that y < kia? + sz2, 2 < kox? + tz2. Similarly,
there exist u,v € (Nz? + Sz?] such that 2% + u < v. It follows that there exist
ks, ks € N,q,r € S such that v < kza* +g2*, v < kgx* +r2t. Since 22 +u < v, we
obtain k122 +kiu < kv and kox?+kou < kov. Hence, y+kiu < kix? +s22+ku <
kv 4 sa? < kikaz® + kyrat + sz? and 2 + kou < kox? + ta? + kou < kov + ta2 <
koksx* + kora* +ta?. It turns out v+ kiu+ kou < k1kaz* + kira* + sz + koksz? +
kogz* € Sz? and z + kiu + kou < kokax? + korz* + tx? + kiksa® + kigzt € S22,
Since z +y < z, we get © +y + kju + kou < 2 + kyu + kpu. This implies that
x € (Sz?]. Therefore, S is left ordered k-regular.

(#91) = (¢). Assume that S is left ordered k-regular and Ry < Lj. Then
z € (S2?] C (SzLi(z)] € (Lp(z)Li(z)] € (XfimLi(z)Lg(x)] for all z € S. By
Theorem 4.9, it turns out Ly SLy. O

Theorem 4.15. Let S be an ordered semiring. Then the following statements are
equivalent:

(1) RifRy;
(i) MySR;
(#it) S is right ordered k-regular and Ly, < Ry.

Proof. The proof of this theorem is similar to Theorem 4.14. O

An ordered semiring S is called left k-simple (right k-simple, k-simple) if S has
no proper left (right, two-sided) ordered k-ideal.

Theorem 4.16. Let S be an ordered semiring. Then
(1) S is left k-simple if and only if Ly = 1;
(i¢) S is right k-simple if and only if Ry =1;

(iii) S is k-simple if and only if M = L.

Proof. (i). Assume that S is left k-simple. It is clear that Ly (@) = @ = I((). Let
A be a nonempty subset of S. Then we have Li(A) = (Xfin A+ XsinSA] =S =
I(A). Hence, L, = I. Conversely, if A is a left ordered k-ideal, then we obtain
S=I(A) =Lg(4) = (ZfinA+25nSA] C (Al = A C S. Hence, A = S. Thus, S
is left k-simple.

The proof of (i7) and (ii7) are similar to (7). O
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