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Some structures of Hom-Poisson color algebras

Ibrahima Bakayoko and Sylvain Attan

Abstract. In many previous papers, the authors used an algebra endomorphism to twist the
original algebraic structures in order to produce the corresponding Hom-algebraic structures.
In this work, we use a bijective linear map, an element of centroid, an averaging operator, a
Rota-Baxter operator or a multiplier to produce a Hom-Poisson color algebra from a given one.

1. Introduction

Poisson algebras are algebras which has simultaneously a Lie and a commutative
associative algebra structures satisfying the Leibniz identity. They naturally ap-
pear in very different forms and contexts. Many examples coming from geometry
and mathematical physics lead to a certain type of Poisson structures. These
are always a key element coming along with interesting problems in the fields of
classical/quantum mechanics, differential geometry and algebraic geometry.

The first motivation to study nonassociative Hom-algebras comes from quasi-
deformations of Lie algebras of vector fields, in particular q-deformations of Witt
and Virasoro algebras [1, 5, 6, 8, 9]. Hom-Lie algebras were first introduced by
Hartwig, Larsson and Silvestrov in order to describe q-deformations of Witt and
Virasoro algebras using σ-derivations [7]. The corresponding associative type ob-
jects, called Hom-associative algebras were introduced by Makhlouf and Silvestrov
in [10]. Next, generalizations of Hom-type algebras are introduced and discussed
in the framework of color algebras. In particular, Hom-associative color algebras
[11] has been introduced as a generalization of both Hom-associative algebras and
associative color algebras. Furthermore, relying on the well-known relationship
between (Hom-)associative and (Hom-)Lie algebras, Hom-Lie color algebras were
also introduced in [11] as a natural generalization of Hom-Lie algebras and as a
special case of quasi-hom-Lie algebras. It is proved that the commutator of any
Hom-associative color algebras gives rise to Hom-Lie color algebras and a way to
obtain Hom-Lie color algebras from classical Lie color algebras along with even
color algebra endomorphisms is presented. Also, we have introduced a multiplier
σ on an abelian group and constructions of new Hom-Lie color algebras from given
ones by the σ-twists are obtained. Furthermore, Hom-Poisson color algebras are
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introduced in [3] as the color version of Hom-Poisson algebras [4]. Some construc-
tions of Hom-Poisson color algebras from Hom-associative color algebras which
twisting map is an averaging operator or from a given Hom-Poisson color algebra
together with an averaging operator or from a Hom-post-Poisson color algebra are
given in [4]. In particular, it is shown that any Hom-pre-Poisson color algebra leads
to a Hom-Poisson color algebra. Moreover, in [2] is obtained a description of Hom-
Poisson color algebras by using only one operation of its two binary operations via
the polarisation-depolarisation process.

The goal of this paper is to give a continuation of constructions of Hom-Poisson
color algebras [4]. While many authors working on Hom-algebras use a morphism
of Hom-algebras to build another one, we ask ourselves if there are others kinds
of twists which are not morphisms such that we can get Hom-algebraic structures
from others one. To give a positive answer to the above question, we organize this
paper as follows. In Section 2, we recall some basic definitions about Rota-Baxter
Hom-associative color algebras and Rota-Baxter Hom-Lie color algebras as well as
averaging operators and centroids. In Section 3, we give the main results of the
paper. The proceeding is by twisting the original multiplications of Hom-Poisson
color algebras by a bijective linear map, an element of centroid, an averaging
operator, a Rota-Baxter operator or a multiplier.

Throughout this paper, all graded vector spaces are assumed to be over a field
K of characteristic different from 2.

2. Definitions

In this section, we recall some relevant definitions about G-graded vetor space and
color Hom-algebras. In particular, we recall the notion of a color Hom-associative
algebra as well as the one of a color Hom-Lie algebra. Some examples are given
and some results are also proved.

First, let recall that if G is an abelian group, a vector space L is said to be
G-graded if, there exists a family (La)a∈G of vector subspaces of L such that
L = ⊕a∈GLa . An element u ∈ L is said to be homogeneous of degree a ∈ G if
u ∈ La. The set of all homogeneous elements in L is denoted by H(L).

Definition 2.1. Let G be an abelian group. A map ε : G × G → K∗ is called a
skew-symmetric bicharacter on G if the following identities hold:

(1) ε(a, b)ε(b, a) = 1,

(2) ε(a, b+ c) = ε(a, b)ε(a, c),

(3) ε(a+ b, c) = ε(a, c)ε(b, c),

for all a, b, c ∈ G.

Remark 2.2. (1) Observe that ε(a, 0) = ε(0, a) = 1, ε(a, a) = ±1 for all a ∈ G.
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(2) If x and y are two homogeneous elements of degree a and b respectively and
ε is a bicharacter, then we shorten the notation by writing ε(x, y) instead
of ε(a, b). Also unless stated, in the sequel all the graded space are over
the same abelian group G and the bicharacter will be the same for all the
structures.

Example 2.3. For G = Zn2 = {(α1, . . . , αn)|αi ∈ Z2},

ε((α1, . . . , αn), (β1, . . . , βn)) := (−1)α1β1+···+αnβn

is a skew-symmetric bicharacter.

Definition 2.4. Let G be an abelian group. A bicharacter on G is a map
δ : G×G→ K∗ defined by

δ(x, y) := σ(x, y)σ(y, x)−1 for all x, y, z ∈ G

where σ : G×G→ K∗ is any mapping such that

σ(x, y + z)σ(y, z) = σ(x, y)σ(x+ y, z), for all x, y, z ∈ G.

In this case, σ is called a multiplier on G and δ the bicharacter associated with σ.

Example 2.5. If we define the mapping σ : G×G→ R∗ by

σ((i1, i2), (j1, j2)) := (−1)i1j2 , for all ik, jk ∈ Z2, k = 1, 2,

it is easy to verify that σ is a multiplier on G and

δ((i1, i2), (j1, j2)) := (−1)i1j2−i2j1 , for all ik, jk ∈ Z2, i = 1, 2.

is a bicharacter on G.

Definition 2.6. A color Hom-algebra is a quadruple (A,µ, ε, α) in which

(1) A is a G-graded vector space i.e., A =
⊕

a∈GAa,

(2) µ : A × A → A is an even bilinear map i.e., µ(Aa, Ab) ⊂ Aa+b, for all
a, b ∈ G,

(3) α : A→ A is an even linear map i.e., α(Aa) ⊂ Aa for all a ∈ G,

(4) ε : G×G→ K∗ is a bicharacter.

Definition 2.7. AHom-associative color algebra is a color Hom-algebra (A,µ, ε, α)
satisfying the Hom-associativity condition:

asµ(x, y, z) := µ(α(x), µ(y, z))− µ(µ(x, y), α(z)) = 0,

for all x, y, z ∈ H(A).
If, in addition, µ satisfies µ = ε(·, ·)µop i.e., µ(x, y) = ε(x, y)µ(y, x) for all

x, y ∈ H(A) (ε-commutativity), the Hom-associative color algebra (A,µ, ε, α) is
said to be a ε-commutative Hom-associative color algebra.
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Whenever, α = IdA we recover associative color algebra.

Proposition 2.8. Let (A,µ, ε) be an associative color algebra and α : A → A be
an even linear map such that (A,µ, ε, α) is a Hom-associative color algebra. Then,
for any fixed element ξ ∈ A, the quadruple (A,µξ, ε, α) is a Hom-associative color
algebra with

µξ(x, y) := xξy,

for all x, y ∈ H(A).

Proof. For any x, y, z ∈ H(A) we have

asµξ(x, y, z) = µξ(µξ(x, y), α(z))− µξ(α(x), µξ(y, z))
= (xξy)ξα(z)− α(x)ξ(yξz)
= x(ξyξ)α(z)− α(x)(ξyξ)z (associativity)
= (xξyξ)α(z)− (xξyξ)α(z) ( Hom-associativity)
= 0. �

Now, we recall the definition of Hom-Lie color algebra.

Definition 2.9. A Hom-Lie color algebra is a color Hom-algebra (A, [ , ], ε, α)
satisfying

(1) [x, y] = −ε(x, y)[y, x] (ε-skew-symmetry),

(2) ε(z, x)[α(x), [y, z]] + ε(x, y)[α(y), [z, x]] + ε(y, z)[α(z), [x, y]] = 0 (color Hom-
Jacobi identity)

for any x, y, z ∈ H(A).

Example 2.10. It is clear that Lie color algebras are examples of Hom-Lie color
algebras by setting α = id . If, in addition, ε(x, y) = 1 (resp. ε(x, y) = (−1)|x||y|)
then, the Hom-Lie color algebra is a classical Lie algebra (resp. Lie superalgebra).
Moreover, Hom-Lie algebras (resp. Hom-Lie superalgebras) are also obtained when
ε(x, y) = 1 (resp. ε(x, y) = (−1)|x||y|). See [11] for other examples as Hom-Lie
color sl(2,K), Heisenberg Hom-Lie color algebra and Hom-Lie color algebra of
Witt type.

Definition 2.11. i) A Rota-Baxter Hom-associative color algebra of weight λ ∈ K
is a Hom-associative color algebra (A, ·, ε, α) together with an even linear map
R : A→ A that satisfies the identities

R ◦ α = α ◦R, (1)

R(x) ·R(y) = R
(
R(x) · y + x ·R(y) + λx · y

)
, (2)

for all x, y ∈ H(A).
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ii) A Rota-Baxter Hom-Lie color algebra of weight λ ∈ K is a Hom-Lie color
algebra (L, [ , ], ε, α) together with an even linear map R : L → L that satisfies
the identities

R ◦ α = α ◦R,

[R(x), R(y)] = R
(
[R(x), y] + [x,R(y)] + λ[x, y]

)
, (3)

for all x, y ∈ H(L).

Example 2.12. Consider the abelian multiplicative group G = {−1,+1} and the
G-graded 2-dimensional vector space A = A(−1) ⊕ A(1) = 〈e2〉 ⊕ 〈e1〉. Then the
quintuple (A, ·, ε, α,R) is a Rota-Baxter Hom-associative color algebra of weight
λ with

• the multiplication: e1 ·e1 := −e1, e1 ·e2 := e2, e2 ·e1 := e2, e2 ·e2 := e1,

• the bicharacter: ε(i, j) := (−1)(i−1)(j−1)/4,

• the even linear map α : A→ A defined by α(e1) := e1, α(e2) := −e2,

• the Rota-Baxter operator R : A → A given by R(e1) := −λe1, R(e2) :=
−λe2.

Definition 2.13. Let k > 0 be an integer.
i) An αk-averaging operator over a Hom-associative color algebra (A,µ, ε, α),

is an even linear map β : A→ A such that

α ◦ β = β ◦ α, (4)
β(µ(β(x), αk(y)) = µ(β(x), β(y)) = β(µ(αk(x), β(y))), (5)

for all x, y ∈ H(A).
ii) An αk-averaging operator over a Hom-Lie color algebra (L, [, ], ε, α), is an

even linear map β : L→ L such that

α ◦ β = β ◦ α,
[β(x), β(y)] = β([β(x), αk(y)]), (6)

for all x, y ∈ H(L).

Definition 2.14. Let k > 0 be an integer.
An element of αk-centroid of a Hom-associative color algebra (A, ·, ε, α), is an

even linear map β : A→ A such that

β ◦ α = α ◦ β, (7)
β(x · y) = β(x) · αk(y) = αk(x) · β(y), (8)

for all x, y ∈ H(A).
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In the case of a Hom-Lie color algebra (L, [ , ], ε, α), an element of αk-centroid
is an even linear map β : L→ L such that

β ◦ α = α ◦ β,
β([x, y]) = [β(x), αk(y)], (9)

for all x, y ∈ H(L).

Observe that β([x, y]) = [αk(x), β(y)] thanks to the ε-skew-symmetry.

3. Hom-Poisson Color Algebras
This section is devoted to various constructions of Hom-Poisson color algebras. It
contains relevant results of this paper. In the most proofs, we don’t establish the
ε-skew-symmetry condition as well as the color Hom-Jacobi identity.

Definition 3.1. A Hom-Poisson color algebra consists of a G-graded vector space
A, a multiplication µ : A×A→ A, an even bilinear bracket { , } : A×A→ A and
an even linear map α : A→ A such that :

(1) (A,µ, ε, α) is a Hom-associative color algebra,

(2) (A, { , }, ε, α) is a Hom-Lie color algebra,

(3) the Hom-Leibniz color identity

{α(x), µ(y, z)} = µ({x, y}, α(z)) + ε(x, y)µ(α(y), {x, z}),

is satisfied for any x, y, z ∈ H(A).

A Hom-Poisson color algebra (A,µ, { , }, ε, α) in which µ is ε-commutative is
said to be a commutative Hom-Poisson color algebra.

Example 3.2. Let A = A(0) ⊕ A(1) = 〈e1, e2〉 ⊕ 〈e3〉 be a 3-dimensional graded
vector space and · : A×A→ A and [ , ] : A×A→ A the multiplications defined by

e1 · e1 := e1, e1 · e2 := e2, e1 · e3 := ae3, e2 · e1 := e2,

e2 · e1 :=
1

a
e2, e2 · e3 := e3, e3 · e1 := ae3, [e2, e3] := e3

and the omitted products being zero. Then, the quintuple (A, ·, [ , ], ε, α) is a
Hom-Poisson color algebra with

α(e1) := e1, α(e2) := e2, α(e3) := ae3,

and any bicharacter ε.

Theorem 3.3. Let (P, ·, [ , ], ε, α) be a Hom-Poisson color algebra and a map
σ : G×G→ K∗ be a symmetric multiplier on G i.e.,
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(1) σ(x, y) = σ(y, x),∀x, y ∈ G,

(2) σ(x, y)σ(z, x+ y) is invariant under cyclic permutation of x, y, z ∈ G.

Then, Pσ = (P, ·σ, [ , ]σ, ε, α) is also a Hom-Poisson color algebra with

x ·σ y := σ(x, y)x · y and [x, y]σ := σ(x, y)[x, y],

for any x, y ∈ H(P ).

Proof. For any homogeneous elements x, y, z ∈ P ,

as·σ (x, y, z) = (x ·σ y) ·σ α(z)− α(x) ·σ (y ·σ z)
= σ(x, y)σ(x+ y, z)(x · y) · z − σ(x, y + z)σ(y, z)α(x) · (y · z)
= σ(x, y)σ(x+ y, z)as·(x, y, z)

= 0.

Thus the Hom-associativity condition holds in Pσ. Next, the color Hom-Jacobi
identity follows from [11]. Finally, for verifying the Hom- Leibniz color identity
consider any homogeneous elements x, y, z ∈ P ,

[α(x), y ·σ z]σ

= [α(x), σ(y, z)y · z]σ

= σ(y, z)σ(x, y + z)[α(x), y · z]
= σ(y, z)σ(x, y + z)[x, y] · α(z) + σ(y, z)σ(x, y + z)ε(x, y)α(y) · [x, z]
= σ(x, y)σ(z, x+ y)[x, y] · α(z) + σ(z, x)σ(y, z + x)ε(x, y)α(y) · [x, z]
= σ(z, x+ y)[x, y] ·σ α(z) + σ(y, x+ z)ε(x, y)α(y) ·σ [x, z]

= [x, y]σ ·σ α(z) + ε(x, y)α(y) ·σ [x, z]σ. �

The following theorem can be proved as the previous one.

Theorem 3.4. Let (P, ·, [ , ], ε, α) be a Hom-Poisson color algebra and a map
δ : G × G → K∗ be the bicharacter associated with the multiplier σ on G. Then,
(P, ·σ, [ , ]σ, εδ, α) is also a Hom-Poisson color algebra with

x ·σ y := σ(x, y)x · y, [x, y]σ := σ(x, y)[x, y] and εδ(x, y) := ε(x, y)σ(x, y)σ(y, x)−1,

for any x, y ∈ H(P ). Moreover, an endomorphism of (P, ·, [ , ], ε, α) is also an
endomorphism of (P, ·σ, [ , ]σ, εδ, α).

Theorem 3.5. Let (P ′, ·′, [ , ]′, ε, α′) be a Hom-Poisson color algebra and P a
graded vector space with an even bilinear map "·", a ε-skew-symmetric even bilin-
ear bracket ”[, ]” and an even linear map α. Let f : P → P ′ be an even bijective
linear map such that f ◦ α = α′ ◦ f ,

f(x · y) = f(x) ·′ f(y) and f([x, y]) = [f(x), f(y)]′,∀x, y ∈ H(P ).

Then (P, ·, [ , ], ε, α) is a Hom-Poisson color algebra.
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Proof. First, we obtain for all x, y, z ∈ H(P ),

(x · y) · α(z)− α(x) · (y · z)

= f−1
(
(f(x) ·′ f(y)) ·′ f(α(z))

)
− f−1

(
f(α(x)) ·′ (f(y) ·′ f(z))

)
= f−1

(
(f(x) ·′ f(y)) ·′ α′(f(z)− α′(f(x)) ·′ (f(y) ·′ f(z))

)
.

Thus, the Hom-associativity identity follows from the one in P ′. Similarly, we get
the color Hom-Jacobi identity. Finally, for any x, y, z ∈ H(P ), the Hom-Leibniz
color identity is proved as follows

[α(x), y · z] = f−1[f(α(x)), f(y · z)]′

= f−1[f(α(x)), f
(
f−1

(
f(y) ·′ f(z)

))
]′

= f−1[α′(f(x)), f(y) ·′ f(z)]′

= f−1
(
[f(x), f(y)]′ ·′ α′(f(z)) + ε(x, y)α′(f(y)) ·′ [f(x) ·′ f(z)]′

)
= f−1

(
f
(
f−1[f(x), f(y)]′

)
·′ α′(f(z))

)
+ε(x, y)f−1

(
α′(f(y)) ·′ f

(
f−1[f(x) ·′ f(z)]′

))
= f−1

(
f([x, y]) ·′ f(α(z))

)
+ ε(x, y)f−1

(
f(α(y)) ·′ f([x · z])

)
= [x, y] · α(z) + ε(x, y)α(y) · [x · z]. �

Definition 3.6. Let (P, ·, [ , ], ε, α) be a Hom-Poisson color algebra. An even
linear map β : P → P is said to be

(1) an element of αk-centroid of P if (7), (8) and (9) hold.

(2) an αk-averaging operator of P if (4), (5) and (6) hold.

(3) a Rota-Baxter operator over P if (1), (2) and (3) hold.

Example 3.7. The even linear map R : P → P defined on the Hom-Poisson color
algebra of Example 3.2, by

R(e1) := −λe1, R(e2) := −λe2, R(e3) := −λe3,

is a Rota-Baxter operator of weight λ on P .

Example 3.8. If (A,µ, ε, α,R) is a Rota-Baxter Hom-associative color algebra,
then

(A,µ, { , } := µ− ε(· , ·)µop, ε, α,R),

is a Rota-Baxter Hom-Poisson color algebra.
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Now, we have the following result whose proof is similar to the one of the
previous.

Theorem 3.9. Let P • := (P, ·, [ , ], ε, α) be a Hom-Poisson color algebra and
β : P → P be an element of α0-centroid of P . If we define the multiplications
∗ : P × P → P and { , } : P × P → P by

x ∗ y := x · y and {x, y} := [β(x), y],∀x, y ∈ H(P ), (10)

then P ∗ := (P, ∗, { , }, ε, α) is also a Hom-Poisson color algebra. Moreover, the
map β : (P, ∗, { , }, ε, α) −→ (P, ·, [ , ], ε, α) becomes a morphism of Hom-Poisson
color algebras.

Proof. It is clear that the Hom-associativity identity in P ∗ follows from the one
in P •. Next, the color Hom-Jacobi identity is proved as follows

ε(z, x){α(x), {y, z}}+ ε(x, y){α(y), {z, x}}+ ε(y, z){α(z), {x, y}}
= ε(z, x)[β(α(x)), [β(y), z]] + ε(x, y)[β(α(y)), [β(z), x]] + ε(y, z)[β(α(z)), [β(x), y]]

= ε(z, x)[β(α(x)), β([y, z])] + ε(x, y)[β(α(y)), β([z, x])] + ε(y, z)[β(α(z)), β([x, y])]

= β2(ε(z, x)[α(x), [y, z]] + ε(x, y)[α(y), [z, x]] + ε(y, z)[α(z), [x, y]])

= β2(0) = 0.

In order to prove the Hom-Leibniz color identity we consider x, y, z ∈ H(P ). Then

{α(x), y ∗ z} = [β(α(x)), y · z] = [α(β(x)), y · z]
= [β(x), y] · α(z) + ε(x, y)α(y)) · [β(x), z]
= {x, y} ∗ α(z) + ε(x, y)α(y) ∗ {x, y}. �

Theorem 3.10. Let (P, ·, [ , ], ε, α) be a Hom-Poisson color algebra and β : P → P
be an α0-averaging operator. Then with the products defined as

x ∗ y := β(x) · β(y) and {x, y} := [β(x), β(y)],∀x, y ∈ H(P ), (11)

(P, ∗, { , }, ε, α) is a Hom-Poisson color algebra.

Proof. First, the ε-skew-symmetry is obvious to obtain. Next, let x, y, z ∈ H(P ),
then

(x ∗ y) ∗ α(z)− α(x) ∗ (y ∗ z)
= β(β(x) · β(y)) · β(α(z))− β(α(x)) · β(β(y) · β(z))

= β
(
(β(x) · β(y)) · α(β(z))− α(β(x)) · (β(y) · β(z))

)
= β(0) = 0,
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which is the Hom-associativity. Similarly, we get the color Hom-Jacobi identity as
follows

ε(z, x){α(x), {y, z}}+ ε(x, y){α(y), {z, x}}+ ε(y, z){α(z), {x, y}}
= ε(z, x)[β(α(x)), β([β(y), β(z)])] + ε(x, y)[β(α(y)), β([β(z), β(x)])]

+ε(y, z)[β(α(z)), β([β(x), β(y)])]

= β
(
ε(z, x)[α(β(x)), [β(y), β(z)]] + ε(x, y)[α(β(y)), [β(z), β(x)]]

+ε(y, z)[α(β(z)), [β(x), β(y)]]
)

= β(0) = 0.

Finally, let us prove the Hom-Leibniz color identity as follows

{α(x), y ∗ z} = [β(x), β(y ∗ z)]
= [βα(x), β(β(y) · β(z))]
= [αβ(x), β2(y) · β(z)]
= [β(x), β2(y)] · αβ(z) + ε(x, y)αβ2(y) · [β(x), β(z)]
= β[β(x), β(y)] · βα(z) + ε(x, y)αβ2(y) · [β(x), β(z)]
= β[β(x), β(y)] · βα(z) + ε(x, y)β2α(y) · β([x, β(z)])

= β[β(x), β(y)] · βα(z) + ε(x, y)β
(
βα(y) · β([x, β(z)])

)
= β[β(x), β(y)] · βα(z) + ε(x, y)β

(
βα(y) · [β(x), β(z)])

)
= β[β(x), β(y)] · βα(z) + ε(x, y)βα(y) · β[β(x), β(z)]
= {x, y} ∗ α(z) + ε(x, y)α(y) ∗ {x, z}. �

The following theorem is proved by a straighforward calculation.

Theorem 3.11. Let (P, ·, [ , ], ε) be a Poisson color algebra and β : P → P an
α0-averaging operator. Then with the products

x ∗ y := β(x) · y and {x, y} := [β(x), y],∀x, y ∈ H(P ), (12)

(P, ∗, { , }, ε, β) becomes a Hom-Poisson color algebra.

Theorem 3.12. Let (P, ·, [ , ], ε, α) be a Hom-Poisson color algebra and β : P → P
be an injective αk-averaging operator. Then with the products

x ∗ y := β(x) · αk(y) and {x, y} := [β(x), αk(y)],∀x, y ∈ H(P ) (13)

(P, ∗, { , }, ε, α) is a Hom-Poisson color algebra. Moreover, β : (P, ∗, { , }, ε, α) →
(P, ·, [ , ], ε, α) is a morphism of Hom-Poisson color algebras.
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Proof. Note that the ε-skew-symmetry is obvious to prove. Next, to prove the
Hom-associativity, pick x, y, z ∈ H(P ) then

β
(
(x ∗ y) ∗ α(z)− α(x) ∗ (y ∗ z)

)
= β

(
β(β(x) · αk(y)) · αk+1(z)− βα(x) · αk(β(y) · β(z))

)
= β

(
(β(x) · αk(y)

)
· αβ(z)− αβ(x) · β

(
β(y) · αk(z)

)
= (β(x) · β(y)) · α(β(z))− α(β(x)) · (β(y) · β(z))
= 0.

Similarly,

β
(
ε(z, x){α(x), {y, z}}+ ε(x, y){α(y), {z, x}}+ ε(y, z){α(z), {x, y}}

)
= β

(
ε(z, x)[βα(x), αk([β(y), αk(z)])] + ε(x, y)[βα(y), αk([β(z), αk(x)])]

+ε(y, z)[βα(z), αk([β(x), αk(y)])]
)
= ε(z, x)[βα(x), β([β(y), αk(z)])]

+ε(x, y)[βα(y), β([β(z), αk(x)])] + ε(y, z)[βα(z), β([β(x), αk(y)])]

= ε(z, x)[α(β(x)), [β(y), β(z)]] + ε(x, y)[α(β(y)), [β(z), β(x)]]

+ε(y, z)[α(β(z)), [β(x), β(y)]]

= β(0) = 0,

which is the color Hom-Jacobi identity. Finally, let us prove the Hom-Leibniz color
identity as follows

β({α(x), y ∗ z}) = [βα(x), αk(y ∗ z)] = [βα(x), αk(β(y) · αk(z))]
= [βα(x), β(β(y) · αk(z))] = [αβ(x), β(y) · β(z)]
= [β(x), β(y)] · αβ(z) + ε(x, y)αβ(y) · [β(x), β(z))]
= β[β(x), αk(y)] · αβ(z) + ε(x, y)αβ(y) · β[β(x), αk(z))]

= β
(
β[β(x), αk(y)] · αk+1(z) + ε(x, y)βα(y) · αk[β(x), αk(z))]

)
= β

(
β{x, y} · αk+1(z) + ε(x, y)βα(y) · αk{x, z}

)
= β

(
{x, y} ∗ α(z) + ε(x, y)α(y) ∗ {x, z}

)
. �

Theorem 3.13. Let (P, ·, [ , ], ε, α) be a Hom-Poisson color algebra and the map
R : P → P be a Rota-Baxter operator of weight λ ∈ K on P . Then P is a
Hom-Poisson color algebra with the multiplications:

x ∗ y := R(x) · y + x ·R(y) + λx · y,
{x, y} := [R(x), y] + [x,R(y)] + λ[x, y],
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for all x, y ∈ H(P ). Moreover, R is a morphism of Hom-Poisson color algebra
(P, ∗, { , }, ε, α) onto (P, ·, [ , ], ε, α).

Proof. First, let x, y, z ∈ H(P ), then

(x ∗ y) ∗ α(z) = R(x ∗ y) · α(z)− (x ∗ y) ·Rα(z) + λ(x ∗ y) · α(z)
= (R(x) ·R(y)) · α(z) + (R(x) · y)αR(z) + (x ·R(y)) · αR(z) + λ(x ∗ y) · αR(z)
+λ(R(x) · y) · α(z) + λ(x ·R(y)) · α(z) + λ(x · y) · α(z)
= αR(x) · (R(y) · z) + αR(x) · (y ·R(z)) + α(x) · (R(y) ·R(z)) + λα(x) · (y ·R(z))
+λαR(x) · (y · z) + λα(x) · (R(y) · z) + λ(x · y) · α(z),

and also,

α(x) ∗ (y ∗ z) = Rα(x) · (y ∗ z) + α(x) · (y ∗ z) + λα(x) · (y ∗ z)
= αR(x) · (R(y) · z) + αR(x) · (y ·R(z)) + α(x) · (R(y) ·R(z)) + λα(x) · (y ·R(z))
+λαR(x) · (y · z) + λα(x) · (R(y) · z) + λ(x · y) · α(z)
(using (1), (2) and rearranging terms)

therefore, the Hom-associativity holds. Next, we get by using Equation (3) that

ε(z, x){α(x), {y, z}} = ε(z, x)
(
[Rα(x), {y, z}] + [α(x), R({y, z})] + λ[α(x), {y, z}]

)
= ε(z, x)

(
[αR(x), [R(y), z]] + [αR(x), [y,R(z)]] + λ[αR(x), [y, z]] + [α(x), [R(y), R(z)]]

λ[α(x), [R(y), z]] + λ[α(x), [y,R(z)]] + λ2[α(x), [y, z]]
)

and similarly, after rearranging terms

ε(x, y){α(y), {z, x}}

= ε(x, y)
(
[αR(y), [z,R(x)]] + [α(y), [R(z), R(x)]] + λ[α(y), [z,R(x)]]

+[αR(y), [R(z), x]] + λ[αR(y), [z, x]] + λ[α(y), [R(z), x]] + λ2[α(y), [z, x]]
)
,

ε(y, z){α(z), {x, y}}

= ε(y, z)
(
[αR(z), [x,R(y)]] + [α(z), [R(x), R(y)]] + λ[α(z), [x,R(y)]]

+[αR(z), [R(x), y]] + λ[αR(z), [x, y]] + λ[α(z), [R(x), y]] + λ2[α(z), [x, y]]
)
.

Then adding memberwise these two previous equalities, we observe that the color
Hom-Jacobi identity in (P, ∗, { , }, ε, α) follows from the one in (P, ·, [ , ], ε, α).
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Finally, let us prove the Hom-Leibniz color identity as follows

{α(x), y ∗ z}
= {α(x), R(y)z + yR(z) + λyz}
= [Rα(x), R(y)z + yR(z) + λyz] + [α(x), R(R(y)z + yR(z) + λyz)]

+λ[α(x), R(y)z + yR(z) + λyz]

= [Rα(x), R(y)z] + [Rα(x), yR(z)] + λ[Rα(x), yz] + [α(x), R(y)R(z)]

+λ[α(x), R(y)z] + λ[α(x), yR(z)] + λ2[α(x), yz].

By the Hom-Leibniz the color identity in (P, ·, [ , ], ε, α),

{α(x), y ∗ z}
= [R(x), R(y)]α(z) + ε(x, y)α(R(y))[R(x), z] + [R(x), y]α(R(z))

+ε(x, y)α(y) · [R(x), R(z)] + λ[R(x), y]α(z) + λε(x, y)α(y) · [R(x), z]
+[x,R(y)]α(R(z)) + ε(x, y)α(R(y))[x,R(z)] + λ[x,R(y)]α(z)

+ε(x, y)λαR(y)[x, z] + λ[x, y]α(R(z)) + λε(x, y)α(y)[x,R(z)]

+λ2[x, y]α(z) + λ2ε(x, y)α(y)[x, z].

By reorganizing the terms, we have

{α(x), y ∗ z}
= [R(x), R(y)]α(z) + [R(x), y]α(R(z)) + λ[x, y]α(R(z)) + [x,R(y)]α(R(z))

+λ[R(x), y]α(z) + λ[x,R(y)]α(z) + λ2[x, y]α(z)

+ε(x, y)α(R(y))[R(x), z] + ε(x, y)α(R(y))[x,R(z)] + ε(x, y)λαR(y)[x, z]

+ε(x, y)α(y)[R(x), R(z)] + λε(x, y)α(y)[R(x), z] + λε(x, y)α(y)[x,R(z)]

+λ2ε(x, y)α(y)[x, z]

= R
(
[R(x), y]α(z) + [x,R(y)] + λ[x, y]

)
α(z)

+
(
[R(x), y] + [x,R(y)] + λ[x, y]

)
α(R(z))

+λ
(
[R(x), y] + [x,R(y)] + λ[x, y]

)
α(z)

+ε(x, y)α(R(y))
(
[R(x), z] + [x,R(z)] + λ[x, z]

)
+ ε(x, y)α(y)[R(x), R(z)]

+λε(x, y)α(y)
(
[R(x), z] + [x,R(z)] + λ[x, z]

)
.

=
(
[R(x), y] + [x,R(y)] + λ[x, y]

)
∗ α(z)

+ε(x, y)α(y) ∗
(
[R(x), z] + [x,R(z)] + λ[x, z]

)
.

= {x, y} ∗ α(z) + ε(x, y)α(y) ∗ {x, z}. �

The following result can be proved easily.
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Theorem 3.14. Let (P, ·, [ , ], ε, α) be a Hom-Poisson color algebra over a field K
and suppose K̂ an extension of K. Then, the graded K-vector space

K̂⊗ P =
∑
g∈G

(K⊗ P )g =
∑
g∈G

K⊗ Pg

is a Hom-Poisson color algebra with

(1) the associative product (ξ ⊗ x) ·′ (η ⊗ y) := ξη ⊗ (x · y),

(2) the bracket [ξ ⊗ x, η ⊗ y]′ := ξη ⊗ [x, y],

(3) the even linear map α′(ξ ⊗ x) := ξ ⊗ α(x),

(4) the bicharacter ε(ξ + x, η + y) := ε(x, y),

for all ξ, η ∈ K̂ and x, y ∈ H(P ).

Theorem 3.15. Let (A, ·, ε, αA) be a commutative Hom-associative color algebra
and (P, ∗, [ , ], ε, αP ) be a Hom-Poisson color algebra. Then the tensor product
A⊗P endowed with the even linear map α = αA⊗αP : A⊗P → A⊗P, the even
bilinear maps � : (A⊗P )×(A⊗P )→ A⊗P and { , } : (A⊗P )×(A⊗P )→ A⊗P
defined, for any a, b ∈ H(A), x, y ∈ H(P ), by

(1) α(a⊗ x) := αA(a)⊗ αP (x),

(2) (a⊗ x) � (b⊗ y) := ε(x, b)(a · b)⊗ (x ∗ y),

(3) {a⊗ x, b⊗ y} := ε(x, b)(a · b)⊗ [x, y],

is a Hom-Poisson color algebra.

Proof. First, let a, b, c ∈ H(A) and x, y, z ∈ H(P ). By the Hom-associativity of ·
and ∗ , we get: (

(a⊗ x) � (b⊗ y)
)
� α(c⊗ z)

= ε(x, b)ε(x+ y, c)(a · b) · αA(c)⊗ (x ∗ y) ∗ αP (z)
= ε(x, b)ε(x, c)ε(y, c)(a · b) · αA(c)⊗ (x ∗ y) ∗ αP (z)

= α(a⊗ x) �
(
(b⊗ y) � (c⊗ z)

)
.

Hence the Hom-associativity of � holds. Next, we get

ε(c+ z, a+ x){α(a⊗ x), {b⊗ y, c⊗ z}}

= ε(c, a)ε(x, b)ε(y, c)ε(z, a)ε(z, x)
(
αA(a) · (b · c)⊗ [αP (x), [y, z]]

)



Some structures of Hom-Poisson color algebras 15

and similarly, by the ε-commutativity and the Hom-associativity of ·, we get

ε(a+ x, b+ y){α(b⊗ y), {c⊗ z, a⊗ x}}

= ε(c, a)ε(x, b)ε(y, c)ε(z, a)ε(x, y)
(
αA(a) · (b · c)⊗ [αP (y), [z, x]]

)
,

ε(b+ y, c+ z){α(c⊗ z), {a⊗ x, b⊗ y}}

= ε(c, a)ε(x, b)ε(y, c)ε(z, a)ε(y, z)
(
αA(a) · (b · c)⊗ [αP (z), [x, y]]

)
.

Thus the color Hom-Jacobi identity in (P, �, { , }, ε, α) follows from the one in
(P, ∗, [ , ], ε, α). Finally, let us prove the Hom-Leibniz color identity as follows

{α(a⊗ x), (b⊗ y) � (c⊗ z)}
= ε(y, c){αA(a)⊗ αP (x), (b · c)⊗ (y ∗ z)}
= ε(y, c)ε(x, b+ c)αA(a) · (b · c)⊗ [αP (x), y ∗ z]
= ε(y, c)ε(x, b+ c)αA(a) · (b · c)⊗ ([x, y] ∗ αP (z) + ε(x, y)αP (y) ∗ [x, z]
= ε(y, c)ε(x, b)ε(x, c)αA(a) · (b · c)⊗ [x, y] ∗ αP (z) +
ε(y, c)ε(x, b+ c)ε(x, y)(a · b) · αA(c)⊗ αP (y) ∗ [x, z]

= ε(x, b)ε(x+ y, c)(a · b) · αA(c)⊗ [x, y] ∗ αP (z) +
ε(y, c)ε(x, b+ c)ε(x, y)ε(a, b)(b · a) · αA(c)⊗ αP (y) ∗ [x, z]

= ε(x, b)(a · b⊗ [x, y]) � (αA(c)⊗ αP (z)) +
ε(y, c)ε(x, b)ε(x, y)ε(a, b)(αA(b)⊗ αP (y)) � (a · c⊗ [x, z])

= {a⊗ x, b⊗ y} � α(c⊗ z) + ε(a+ x, b+ y)α(b⊗ y) � {a⊗ x, c⊗ z}. �
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Biquasigroups linear over a group

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We determine the structure of biquasigroups (Q, ◦, ∗) satisfying variations of
Polonijo’s Ward double quasigroup identity (x ◦ z) ∗ (y ◦ z) = x ∗ y, including those that are
linear over a group.

1. Introduction
J.M. Cardoso and C.P. da Silva, inspired by Ward’s paper [11] on postulating the
inverse operations in groups, introduced in [1] the notion of Ward quasigroups as
quasigroups (Q, ◦) containing an element e such that x ◦ x = e for all x ∈ Q, and
satisfying the identity (x ◦ y) ◦ z = x ◦ (z ◦ (e ◦ y)). Polonijo [8] proved that these
two conditions can be replaced by the identity:

(x ◦ z) ◦ (y ◦ z) = x ◦ y. (1)

In [1] it is proved that if (Q, ◦) is a Ward quasigroup, then (Q, ·), where x · y =
x◦(e◦y), is a group in which e = x◦x and x−1 = e◦x for all x ∈ Q. Also, x◦e = x,
e◦(e◦x) = x and e◦(x◦y) = y◦x. Conversely, if (Q, ·) is a group, then Q with the
operation x◦y = x ·y−1 is a Ward quasigroup (cf. [11]). Other characterizations of
Ward quasigroups can be found in [2] and [10], some applications in [5]. Note that
the Ward quasigroups corresponding to commutative groups sometimes are called
subtractive quasigroups (cf. [6] and [12]). A Ward quasigroup (Q, ◦) is subtractive if
and only if it is medial (that is, it satisfies the identity (x◦y)◦(z◦w) = (x◦z)◦(y◦w))
if and only if it is left modular (that is, it satisfies the identity x◦(y◦z) = z◦(y◦x))
(cf. Lemma 2.4, [3]).

A biquasigroup, i.e. an algebra of the form (Q, ◦, ∗) where (Q, ◦) and (Q, ∗) are
quasigroups, is called a Ward double quasigroup if it satisfies the identity

(x ◦ z) ∗ (y ◦ z) = x ∗ y. (2)

Obviously each Ward quasigroup (Q, ◦) can be considered as a Ward double
quasigroup of the form (Q, ◦, ◦). Ward double quasigroups have a similar charac-
terization as Ward quasigroups.

Theorem 1.1. (cf. [7]) A biquasigroup (Q, ◦, ∗) is a Ward double quasigroup if
and only if there is a group (Q,+) and bijections α, β on Q such that x◦y = x−βy
and x ∗ y = α(x− y).

2010 Mathematics Subject Classification: 20M15, 20N02
Keywords: Biquasigroups, linear quasigroups, Ward quasigroups.
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Note that Ward double quasigroups are distinct from the double Ward quasi-
groups considered by Fiala (cf. [4]).

Let us consider the identity (2). Keeping the variables x, y and z the same and
varying only the quasigroup operations ◦ and ∗, there are sixteen possible identi-
ties. Eight of these have reversible versions obtained by replacing the operation
◦ with the operation ∗ and, simultaneously, replacing the operation ∗ with the
operation ◦.

For example, the identity (x ◦ z) ∗ (y ∗ z) = x ◦ y has the reversible version
(x ∗ z) ◦ (y ◦ z) = x ∗ y. So, if we are to consider all possible versions of Theorem
1.1, we need to explore the following identities:

(x ◦ z) ◦ (y ◦ z) = x ◦ y, (3)
(x ◦ z) ◦ (y ◦ z) = x ∗ y, (4)
(x ◦ z) ◦ (y ∗ z) = x ◦ y, (5)
(x ◦ z) ∗ (y ◦ z) = x ◦ y, (6)
(x ◦ z) ◦ (y ∗ z) = x ∗ y, (7)
(x ◦ z) ∗ (y ∗ z) = x ◦ y, (8)
(x ◦ z) ∗ (y ∗ z) = x ∗ y. (9)

The biquasigroup (Q, ◦, ◦) satisfies identity (3) if and only if (Q, ◦) is a Ward
quasigroup. Our interest is in finding non-trivial models of the other six identities,
where ‘non-trivial’ means that the set Q has more than one element. In particu-
lar, since Ward quasigroups are unipotent, we will be interested in biquasigroups
(Q, ◦, ∗) where (Q, ◦) or (Q, ∗) is unipotent, both are unipotent or when one or
both are Ward quasigroups.

Note that a biquasigroup (Q, ◦, ∗), where (Q, ∗) is a commutative group and
x ◦ y = x ∗ y−1 satisfies identities (1) through (9) if and only if (Q, ∗) is a Boolean
group.

2. Main Results

We will now characterize the biquasigroups satisfying the identities (2) to (9). First
we will describe their general properties then we will characterize biquasigroups
linear over a group and satisfying identities (2) to (9).

1. Recall that a quasigroup (Q, ·) is linear over a group (cf. [9]) if there exists a
group (Q,+), its automorphisms ϕ,ψ and a ∈ Q such that x · y = ϕx + a + ψy
for all x, y ∈ Q. Consequently, a biquasigroup (Q, ◦, ∗) will be called linear over a
group if both its quasigroups (Q, ◦) and (Q, ∗) are linear over the same group, i.e.
if there is a group (Q,+), its automorphisms ϕ,ψ, α, β and elements a, b ∈ Q such
that

x ◦ y = ϕx+ a+ ψy and x ∗ y = αx+ b+ βy.
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According to the Toyoda Theorem (cf. [9]), a quasigroup (Q, ·) is medial if and
only if it is linear over a commutative group with commuting automorphisms ϕ,ψ.
In an analogous way we can shows that a quasigroup (Q, ·) is paramedial, that is
it satisfies the identity (x · y) · (z · u) = (u · y) · (z · x) if and only if it is linear
over a commutative group with automorphisms ϕ, ψ such that ϕ2 = ψ2. Based
on these facts we say that a biquasigroup (Q, ◦, ∗) is medial (paramedial) if both
its quasigroups (Q, ◦) and (Q, ∗) are medial (paramedial) and linear over the same
commutative group.

A biquasigroup (Q, ◦, ∗) is unipotent if there is q ∈ Q such that x◦x = q = x∗x
for and all x ∈ Q. If both quasigroups (Q, ◦) and (Q, ∗) are idempotent then we
say that (Q, ◦, ∗) is an idempotent biquasigroup.

2. We will start with biquasigroups satisfying the identity (2).
A general characterization of such biquasigroups is given by Theorem 1.1. Now

we describe a biquasigroup linear over a group (Q,+) and satisfying identity (2).
From (2) for x = y = z = 0 we obtain αa+ b+ βa = b, This together with (2)

implies ϕ = ε (the identity map). Thus

αx+ αa+ αψz + b+ βy + βa+ βψz = αx+ b+ βy.

This for z = 0 gives

αa+ b+ βy + βa = b+ βy = αa+ b+ βa+ βy.

So βy + βa = βa + βy, i.e. a is in the center Z(Q,+) of the group (Q,+). Thus
using (2) and the above facts we obtain αψz + b + βy + βψz = b + βy. Hence
αv+ u+ βv = u for all u, v ∈ Q. Thus β = −α and consequently αv+ u = u+αv
for all u, v ∈ Q, which means that (Q,+) is a commutative group.

In this way we have proved the “only if” part of the following Theorem. The
second part is trivial.

Theorem 2.1. A biquasigroup (Q, ◦, ∗) linear over a group (Q,+) is a Ward
double quasigroup (that is, it satisfies (2)) if and only if (Q,+) is a commutative
group, x ◦ y = x+ ψy + a and x ∗ y = αx− αy + b.

Obviously such a biquasigroup is medial. The quasigroup (Q, ◦) has a right
neutral element and the quasigroup (Q, ∗) is unipotent. Moreover, a biquasigroup
(Q, ◦, ∗) satisfying (2) is paramedial if and only if ψ2 = ε.

3. Now consider biquasigroups satisfying the identity (3).
Since this identity contains only one operation, it is enough to examine the

quasigroup (Q, ◦). Quasigroups satisfying (3) were characterized at the beginning
of this paper. If a quasigroup (Q, ◦) linear over a group (Q,+) satisfies (3), then
ϕ = ε and a + ψa = 0. So (3) for y = 0, can be reduced to ψz + ψ2z = 0.
This means that ψz = −z and (Q,+) is a commutative group. Consequently
x ◦ y = x− y + a.
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Theorem 2.2. A quasigroup (Q, ◦) linear over a group (Q,+) satisfies (3) if and
only if (Q,+) is a commutative group and x ◦ y = x− y+ a for some fixed a ∈ Q.

This quasigroup is medial, paramedial, unipotent and has a right neutral ele-
ment.

Note that (Q, ◦) is a Ward quasigroup if and only if there is a group (Q,+)
and an element a ∈ Q such that x ◦ y = x− y + a. The group (Q,+) need not be
commutative.

4. Will now consider a biquasigroup (Q, ◦, ∗) satisfying the identity (4), i.e.

(x ◦ z) ◦ (y ◦ z) = x ∗ y.

Theorem 2.3. If a biquasigroup (Q, ◦, ∗) satisfies the identity (4), then both quasi-
groups (Q, ◦) and (Q, ∗) are unipotent with q ∈ Q such that x ◦ x = q = x ∗ x and
x ∗ y = (x ◦ y) ◦ q = q ◦ (y ◦ x) for all x, y ∈ Q.

Proof. If (Q, ◦) is idempotent, then x = (x ◦ x) ◦ (x ◦ x) = x ∗ x. So (Q, ∗) is
idempotent too. If (Q, ∗) is idempotent, then x = x ∗ x = (x ◦ z) ◦ (x ◦ z) for
all x, z ∈ Q. In particular, for z = x′ ∈ Q such that x = x ◦ x′ we obtain
x = x◦x. This shows that both these quasigroups are idempotent or none of them
are idempotent.

If both are idempotent, then x ◦ z = (x ◦ z) ◦ (x ◦ z) = x ∗ x = x = x ◦ x for all
x, z ∈ Q, which implies x = z. Hence Q has only one element. So it is unipotent.

Now suppose both quasigroups (Q, ◦) and (Q, ∗) are not idempotent. Then
there exists b ∈ Q such that b ∗ b = q 6= b and for any x ∈ Q there exist x′, x′′ ∈ Q
such that b ◦ x′ = x and x ◦ x′′ = x. Then x ◦ x = (b ◦ x′) ◦ (b ◦ x′) = b ∗ b = q
and x ∗ x = (x ◦ x′′) ◦ (x ◦ x′′) = x ◦ x = q. Hence, (Q, ◦) and (Q, ∗) are unipotent,
with q = x ◦ x = x ∗ x for all x ∈ Q. Also, x ∗ y = (x ◦ x) ◦ (y ◦ x) = q ◦ (y ◦ x) and
x ∗ y = (x ◦ y) ◦ (y ◦ y) = (x ◦ y) ◦ q.

Corollary 2.4. If a biquasigroup (Q, ◦, ∗) satisfies (4) and (Q, ◦) has a right
neutral element, then (Q, ◦) = (Q, ∗) is a Ward quasigroup. If (Q, ◦) has a left
neutral element, then x ∗ y = y ◦ x. If (Q, ◦) has a neutral element, then (Q, ◦) =
(Q, ∗) is a commutative Ward quasigroup.

Any medial unipotent quasigroup (Q, ◦) can be ’extended’ to a medial unipo-
tent biquasigroup (Q, ◦, ∗) satisfying the identity (4), as follows.

Proposition 2.5. If (Q, ◦) is a medial unipotent quasigroup, then (Q, ◦, ∗), where
x ◦ x = q and x ∗ y = (x ◦ y) ◦ q for all x, y ∈ Q, is a biquasigroup satisfying (4).
Moreover, if q is a left neutral element of (Q, ◦), then x ∗ y = y ◦ x.

Proof. Indeed, (Q, ∗) is a quasigroup and x ∗ y = (x ◦ y) ◦ q = (x ◦ y) ◦ (z ◦ z) =
(x◦z)◦(y ◦z). Also, if q is a left neutral element of (Q, ◦), then x∗y = (x◦y)◦q =
(x ◦ y) ◦ (x ◦ x) = (x ◦ x) ◦ (y ◦ x) = y ◦ x.
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Let (Q, ◦, ∗) be a biquasigroup linear over a group (Q,+). If it satisfies (4),
then ϕa + a + ψa = b and α = ϕ2. So (4) for x = y = 0 and ψz = a gives
2ϕa + a + 2ψa = b = ϕa + a + ψa which implies a = b. Consequently a ◦ a = a.
Thus, by Theorem 2.3, a = q and x ∗ y = a ◦ (y ◦ x). Hence

x ∗ 0 = a ◦ (0 ◦ x) = αx+ a = ϕa+ a+ ψa+ ψ2x = a+ ψ2x

and
a = x ◦ x = αx+ a+ βx = a+ ψ2x+ βx.

This gives ψ2x + βx = 0, i.e. β = −ψ2. Hence x ∗ y = ϕ2x + a − ψ2y. Since
x ◦ x = a = z ∗ z we also have ϕx + a = a − ψx and ϕ2z + a = a + ψ2z. This
for x = ϕz gives ϕ2z + a = a − ψϕz. Hence a + ψ2z = a − ψϕz. Consequently,
ψ = −ϕ and x ◦ y = ϕx+ a−ϕy. So a = x ◦ x = ϕx+ a−ϕx. Thus a ∈ Z(Q,+).
Also ϕ2 = ψ2.

Therefore, x ◦ y = ϕx + a − ϕy and x ∗ y = ϕ2x + a − ϕ2y. Inserting these
operations to (4) we obtain −ϕ2z − ϕ2y + ϕ2z = −ϕ2y for all y, z ∈ Q. Hence
(Q,+) is a commutative group. Consequently (Q, ◦, ∗) is medial and unipotent.
This proves the “only if” part of the Theorem 2.6 below. The proof of the “if” part
follows from a direct calculation and is omitted

Theorem 2.6. A biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies the
identity (4) if and only if (Q,+) is a commutative group, x ◦ y = ϕx+ a−ϕy and
x ∗ y = ϕ2x+ a− ϕ2y.

It is clear that such a biquasigroup is medial and paramedial. If a = 0 then it
is unipotent.

5. Will now consider a biquasigroup (Q, ◦, ∗) satisfying the identity (5), i.e.

(x ◦ z) ◦ (y ∗ z) = x ◦ y.

Theorem 2.7. If a biquasigroup (Q, ◦, ∗) satisfies the identity (5), then both quasi-
groups (Q, ◦) and (Q, ∗) have only one idempotent. This idempotent is a right
neutral element of these quasigroups. Moreover, (Q, ∗) is unipotent.

Proof. For each x ∈ Q there is uniquely determined x ∈ Q such that x ◦ x = x.
Then for x, y ∈ Q, by (5), we have

x ◦ y = (x ◦ x) ◦ (y ∗ x) = x ◦ (y ∗ x).

So, y = y ∗ x for each y ∈ Q. Also y ◦ y = (y ◦ x) ◦ (y ∗ x) = (y ◦ x) ◦ y, hence
y = y ◦ x for all y ∈ Q. Thus e = x is a right neutral element of (Q, ◦) and (Q, ∗).
There are no other idempotents in (Q, ◦) and (Q, ∗). Indeed, if a ∗ a = a, then for
each x ∈ Q

x ◦ a = (x ◦ a) ◦ (a ∗ a) = (x ◦ a) ◦ a,
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so x ◦ a = x = x ◦ e. Hence a = e. Similarly for a ◦ a = a we have

a ◦ x = (a ◦ a) ◦ (x ∗ a) = a ◦ (x ∗ a),

which implies x ∗ a = x = x ∗ e, so also in this case a = e.
For each x ∈ Q there exists x′ ∈ Q such that x ∗ x = x ◦ x′. Thus, by (5),

(x ◦ x) ◦ e = x ◦ x = (x ◦ x) ◦ (x ∗ x) = (x ◦ x) ◦ (x ◦ x′),

which implies e = x ◦ x′ = x ∗ x. So, (Q, ∗) is unipotent.

The following example shows that (Q, ◦) may not be unipotent.

Example 2.8. Let (Q, ◦) be a group. Then (Q, ◦, ∗), where x ∗ y = y−1 ◦ x is an
example of a biquasigroup satisfying (5) in which only one of quasigroups (Q, ◦)
and (Q, ∗) has a left neutral element. Moreover, (Q, ∗) is unipotent but (Q, ◦) is
unipotent only in the case when it is a Boolean group.

Corollary 2.9. If in a biquasigroup (Q, ◦, ∗) satisfying (5) one of quasigroups
(Q, ◦) or (Q, ∗) is idempotent, then Q has only one element.

Proposition 2.10. Let (Q, ◦, ∗) be a biquasigroup satisfying (5). If (Q, ◦) is a
Ward quasigroup, then (Q, ◦) = (Q, ∗).

Proof. Since (Q, ◦) is a Ward quasigroup, there exists a group (Q, ·) such that
x ◦ y = x · y−1 and e ◦ (x ◦ y) = y ◦ x, where e is the neutral element of the group
(Q, ·) (cf. [1]). Then x ◦ y = (x ◦x) ◦ (y ∗x) = e ◦ (y ∗x) and so x ◦ y = e ◦ (y ◦x) =
e ◦ (e ◦ (x ∗ y)) = x ∗ y. Hence (Q, ◦) = (Q, ∗).

Proposition 2.11. Let (Q, ◦, ∗) be a biquasigroup satisfying (5). If (Q, ◦) is
medial and unipotent, then (Q, ◦) = (Q, ∗).

Proof. For every x, y ∈ Q there exists z ∈ Q such that x ∗ y = x ◦ z. Since (Q, ◦)
is medial,

(x ◦ x) ◦ e = x ◦ x = (x ◦ y) ◦ (x ∗ y) = (x ◦ y) ◦ (x ◦ z) = (x ◦ x) ◦ (y ◦ z).

Thus, y ◦ z = e = y ◦ y, where e is the right neutral element of (Q, ◦). Therefore
y = z and consequently, x ∗ y = x ◦ y.

Proposition 2.12. A biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies
(5) if and only if a group (Q,+) is a commutative group, x ◦ y = x+ψy−ψb and
x ∗ y = x− y + b.

Proof. If a biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies (5), then
ϕa + a + ψb = a and ϕ = ε. Thus a + ψb = 0. This together with (5) for y = 0
gives ψz + ψβz = 0. So, βz = −z for all z ∈ Q. Thus (Q,+) is a commutative
group. Consequently, α = ε. Therefore, x ◦ y = x+ ψy − ψb, x ∗ y = x− y + b.

The proof of the converse follows from a direct calculation and is omitted.
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A biquasigroup (Q, ◦, ∗) linear over a group and satisfying (5) is medial and
both its quasigroups (Q, ◦) and (Q, ∗) have the same right neutral element. If
ψ2 = ε then this biquasigroup is also paramedial.

6. Will now consider a biquasigroup (Q, ◦, ∗) satisfying the identity (6), i.e.

(x ◦ z) ∗ (y ◦ z) = x ◦ y.

Theorem 2.13. A biquasigroup (Q, ◦, ∗) satisfies the identity (6) if and only if
there is a group (G, ·) and a bijection α on Q such that x ◦ y = (αx)−1 · (αy) and
x ∗ y = x · y−1.

Proof. ⇒: Let x, y, z ∈ Q. Then for fixed q ∈ Q there are x′, y′, z′ ∈ Q such that
and x = x′ ◦ q, y = y′ ◦ q and z = z′ ◦ q. Then, x ∗ z = (x′ ◦ q) ∗ (z′ ◦ q) = x′ ◦ z′
and y ∗ z = (y′ ◦ q) ∗ (z′ ◦ q) = y′ ◦ z′. So,

(x ∗ z) ∗ (y ∗ z) = (x′ ◦ z′) ∗ (y′ ◦ z′) = x′ ◦ y′ = (x′ ◦ q) ∗ (y′ ◦ q) = x ∗ y.

Therefore, (Q, ∗) is a Ward quasigroup and there exists a group (Q, ·) such that
x∗y = x ·y−1 and x ·y = x∗(e∗y), where e = w∗w for any w ∈ Q and x−1 = e∗x.

Let x ∈ Q. Then, e = (x◦z)∗(x◦z) = x◦x. So, e∗(x◦y) = (y◦y)∗(x◦y) = y◦x,
for any y ∈ Q. Let αx = e ◦ x. Then, (αx)−1 = e ∗ (e ◦ x) = x ◦ e. Thus,
(αx)−1 · (αy) = (x ◦ e) · (e ◦ y) = (x ◦ e) ∗ (e ∗ (e ◦ y)) = (x ◦ e) ∗ (y ◦ e) = x ◦ y.
⇐: Let x, y, z ∈ Q. Then, (x ◦ z) ∗ (y ◦ z) = [(αx)−1 · (αz)] ∗ [(αy)−1 · (αz)] =

(αx)−1 · (αz) · (αz)−1 · (αy) = (αx)−1 · (αy) = x ◦ y.

Corollary 2.14. If a biquasigroup (Q, ◦, ∗) satisfies the identity (6), then it is
unipotent.

Corollary 2.15. If in a biquasigroup (Q, ◦, ∗) satisfying the identity (6) one of
quasigroups (Q, ◦) and (Q, ∗) is commutative, then also the second is commutative.
In this case both quasigroups are induced by the same Boolean group.

Proposition 2.16. A biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies
the identity (6) if and only if a group (Q,+) is commutative, x ◦ y = ϕx− ϕy + a
and x ∗ y = x− y + a.

Proof. If a biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies the identity
(6) then αa + b + βa = a and α = ε. So, b + βa = 0. Thus (6) for x = y = 0
gives ψz + βψz = 0 which means that βv = −v for each v ∈ Q. Hence (Q,+) is
commutative and a = b. Therefore x ∗ y = x− y + a. Substituting this operation
to (6) we obtain x ◦ y = ϕx− ϕy + a.

The converse statement is obvious.

Corollary 2.17. A linear biquasigroup satisfying the identity (6) is unipotent.
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7. Will now consider a biquasigroup (Q, ◦, ∗) satisfying the identity (7), i.e.

(x ◦ z) ◦ (y ∗ z) = x ∗ y.

A simple example of a biquasigroup (Q, ◦, ∗) satisfying the identity (7) is a
commutative group (Q,+) with the operations x ◦ y = y − x and x ∗ y = x + y.
This biquasigroup is medial, both quasigroups (Q, ◦) and (Q, ∗) have left neutral
element but only the first is unipotent.

Suppose now that in a biquasigroup (Q, ◦, ∗) satisfying the identity (7) the first
quasigroup is medial and the second is idempotent. Then, by Toyoda Theorem (cf.
[9]), there exists a commutative group (Q,+) and its commuting automorphisms
ϕ,ψ such that x◦y = ϕx+ψy+a for some fixed a ∈ Q. Then x∗y = (x◦y)◦(y∗y) =
(x◦y)◦y = ϕ2x+ϕψy+ψy+ϕa+a. This, by (7), implies ϕ2−ϕ = ε, ϕ+ϕψ+ψ = 0
and ϕa = −a. Thus a = 0 and x∗y = ϕ2x+ϕψy+ψy. Since (Q, ∗) is idempotent,
ϕ2 + ϕψ + ψ = ε. Hence x ∗ y = ϕ2x+ y − ϕ2y = ϕ2x− ϕy. Consequently (Q, ∗)
is medial. Therefore (Q, ◦, ∗) is medial too.

In this way we have proved

Proposition 2.18. If in a biquasigroup (Q, ◦, ∗) satisfying the identity (7) the
first quasigroup is medial and the second is idempotent, then the second is medial
too and there exists a commutative group (Q,+) and its commuting automorphisms
ϕ,ψ such that ϕ+ϕψ+ψ = 0, ϕ2 = ϕ+ ε, x ◦ y = ϕx+ψy and x ∗ y = ϕ2x−ϕy.

Conversely we have:

Proposition 2.19. Let (Q,+) be a commutative group and ϕ,ψ be its commuting
automorphisms such that ϕ+ ϕψ + ψ = 0 and ϕ2 = ϕ+ ε. Then (Q, ◦, ∗), where
x ◦ y = ϕx + ψy and x ∗ y = ϕ2x − ϕy, is a medial biquasigroup satisfying the
identity (7).

Proof. This is a straightforward calculation.

As a consequence of the above results we obtain

Corollary 2.20. An idempotent medial biquasigroup (Q, ◦, ∗) satisfies the identity
(7) if and only if there exist a commutative group (Q,+) and its automorphism ϕ
such that x ◦ y = ϕx+ y − ϕy, x ∗ y = ϕ2x− ϕy and ϕ2 = ϕ+ ε.

In the case of quasigroups induced by the group Zn we have stronger result.
For simplicity the value of the integer t > 0 modulo n will be denoted by [t]n.

Corollary 2.21. An idempotent medial biquasigroup induced by the group Zn

satisfies the identity (7) if and only if has the form (Zn, ◦, ∗), where x ◦ y =
[ax+ (1− a)y]n, x ∗ y = [a2x+ (1− a2)y]n and [a2 − a]n = 1.

Corollary 2.22. For every a > 3 there is an idempotent medial biquasigroup of
order n = a2 − a − 1 satisfying (7). It has the form (Zn, ◦, ∗), where x ◦ y =
[ax + (1 − a)y]n and x ∗ y = [(a + 1)x − ay]n, or x ◦ y = [(1 − a)x + ay]n and
x ∗ y = [(2− a)x+ (a− 1)y]n.
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Proposition 2.23. A medial biquasigroup (Q, ◦, ∗) satisfies the identity (7) if and
only if there exist a commutative group (Q,+) and its commuting automorphisms
ϕ,ψ such that x ◦ y = ϕx + ψy + c, x ∗ y = ϕ2x − ϕy + d, ϕψ + ε = 0 and
ϕc+ ψd+ c = d for some fixed c, d ∈ Q.

Proposition 2.24. A medial biquasigroup (Zn, ◦, ∗) satisfies the identity (7) if
and only if there exists a, b, c, d ∈ Zn such that [ab + 1]n = 0, [ac + bd + c]n = d,
x ◦ y = [ax+ by + c]n and x ∗ y = [a2x− ay + d])n.

For linear biquasigroup we have the following result.

Theorem 2.25. A biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies the
identity (7) if and only if (Q,+) is a commutative group, x ◦ y = ϕx + ψy + a,
x ∗ y = ϕ2x+ ψϕ2y + b, ϕψ + ψ2ϕ2 = 0 and ϕa+ a+ ψb = b.

Proof. If a biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies (7), then
ϕa+ a+ ψb = b and ϕ2 = α. Thus (7) can be reduced to

ϕa+ ϕψz + a+ ψαy + ψb+ ψβz = b+ βy,

which for z = 0 gives ϕa + a + ψαy + ψb = b + βy = (ϕa + a + ψb) + βy. Hence
ψαy+ψb = ψb+βy. So ψαy = ψb+βy−ψb. Therefore the previous identity implies
ϕψz+a+ψb+βy+ψβz = a+ψb+βy. Since every element v ∈ Q can be presented
in the form v = a + ψb + βy, the last identity means that ϕψz + v + ψβz = v
for all v, z ∈ Q. This implies ϕψ = −ψβ. Hence ϕψz + v = v − ψβz = v + ϕψz.
So, (Q,+) is commutative. Applying these facts to (7) we can see that β = ψα.
Hence x ◦ y = ϕx+ ψy + a and x ∗ y = ϕ2x+ ψϕ2y + b.

The proof of the converse follows from a direct calculation and is omitted.

8. Will now consider a biquasigroup (Q, ◦, ∗) satisfying the identity (8), i.e.

(x ◦ z) ∗ (y ∗ z) = x ◦ y.

Proposition 2.26. If a biquasigroup (Q, ◦, ∗) satisfies (8), then (Q, ∗) has no
more than one idempotent. If such idempotent exists then it is a right neutral
element of a quasigroup (Q, ∗). Moreover, if x ◦ x = u for some u ∈ Q and all
x ∈ Q, then x ◦ y = x ∗ (y ∗ x), x ∗ x = w and w ◦ u = w for all x, y ∈ Q.

Proof. Let e ∗ e = e. Since (Q, ◦) is a quasigroup, each z ∈ Q can be expressed in
the form z = x ◦ e. Thus z = x ◦ e = (x ◦ e) ∗ (e ∗ e) = z ∗ e, so e is a right neutral
element of (Q, ∗). If ē is the second idempotent of (Q, ∗), then ē ∗ e = ē = ē ∗ ē.
Therefore ē = e, so (Q, ∗) has no more than one idempotent. If x ◦ x = u for
all x ∈ Q, then, by (8), u ∗ (x ∗ x) = (x ◦ x) ∗ (x ∗ x) = x ◦ x = u. Analogously
u ∗ (y ∗ y) = u. Thus, x ∗ x = y ∗ y = w for some w ∈ Q, i.e. (Q, ∗) is unipotent
and w is its right neutral element. Then, x ◦ y = (x ◦ x) ∗ (y ∗ x) = u ∗ (y ∗ x) and
w ◦ u = (w ◦ w) ∗ (u ∗ w) = u ∗ u = w.
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Let (Q, ◦, ∗) be linear over a group (Q,+). If it satisfies (8), then αa+b+βb = a,
α = ε and βb = −b. Thus (8) can be reduced to

ψz + b+ βy + βb+ β2z = ψy. (10)

This for y = 0 gives ψz + β2z = 0. So, ψ = −β2 and ψb = −b = βb.
Now putting y = b in (10) we obtain ψz + b + βb + βb + β2z = ψb, i.e.

−β2z+βb+β2z = ψb = βb. So, βb+β2z = β2z+βb. This means that b is in the
center of (Q,+). Thus putting z = 0 in (10) and using the above facts, we obtain
β = ψ = −β2. Hence β = −ε. So (Q,+) is commutative, x ◦ y = ϕx− y + a and
x ∗ y = x− y + b.

In this way, we have proved the “only if” part of Theorem 2.27 below. The
proof of the converse part of Theorem 2.27 follows from a direct calculation and
is omitted.

Theorem 2.27. A biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies (8)
if and only if (Q,+) is commutative, x ◦ y = ϕx− y + a and x ∗ y = x− y + b.

Corollary 2.28. A linear biquasigroup satisfying (8) is medial.

Corollary 2.29. A medial biquasigroup induced by the group Zn satisfies (8) if
and only if x ◦ y = [ax− y+ c]n and x ∗ y = [x− y+ d]n for some a, c, d ∈ Zn such
that (a, n) = 1.

9. Finally, let us consider a biquasigroup (Q, ◦, ∗) satisfying the identity (9), i.e.

(x ◦ z) ∗ (y ∗ z) = x ∗ y.

Theorem 2.30. In a biquasigroup (Q, ◦, ∗) satisfying the identity (9) the quasi-
groups (Q, ◦) and (Q, ∗) have no more than one idempotent. If such idempotent
exists then it is a common right neutral element of these quasigroups.

Proof. Assume (Q, ◦) has an idempotent a. Then a∗a = (a◦a)∗(a∗a) = a∗(a∗a)
and so a∗a = a. Analogously, for a∗a = a we have a∗a = (a◦a)∗(a∗a) = (a◦a)∗a,
which implies a ◦ a = a. So, (Q, ◦) and (Q, ∗) have the same idempotent. Then
for each x ∈ Q x ∗ a = (x ◦ a) ∗ (a ∗ a) = (x ◦ a) ∗ a, which implies x = x ◦ a.
Thus a is a right neutral element of (Q, ◦). On the other hand, x ◦ a = x gives
x ∗ x = (x ◦ a) ∗ (x ∗ a) = x ∗ (x ∗ a), and consequently x = x ∗ a. Thus, a is a right
neutral element of (Q, ◦) and (Q, ∗).

Corollary 2.31. If in a biquasigroup (Q, ◦, ∗) satisfying (9) the quasigroup (Q, ∗)
is unipotent, then (Q, ◦) = (Q, ∗) and (Q, ◦) is a Ward quasigroup.

Proof. Let x ∗ x = a for all x ∈ Q and some a ∈ Q. Then a ∗ a = x ∗ x = (x ◦ x) ∗
(x ∗ x) = (x ◦ x) ∗ a. Therefore, x ◦ x = a, i.e. (Q, ◦) is unipotent. Consequently,
a∗(x∗y) = (y◦y)∗(x∗y) = y∗x, which implies x◦y = (x◦y)∗a = (x◦y)∗(y∗y) = x∗y.
Hence (Q, ◦) = (Q, ∗) and (9) coincides with (1). This means that (Q, ◦) is a Ward
quasigroup.
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Theorem 2.32. A biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfying the
identity (9) is medial and can be presented in the form x ◦ y = x− β2y − βb and
x∗y = x+βy+b, where (Q,+) is a commutative group, β ∈ Aut(Q,+) and b ∈ Q.
This biquasigroup has a right neutral element e = −ϕ−1b.

Conversely, if (Q,+) is a commutative group, β ∈ Aut(Q,+), b ∈ Q, x ◦ y =
x− β2y − βb and x ∗ y = x+ βy + b, then the biquasigroup (Q, ◦, ∗) satisfies (9).

Proof. If a biquasigroup (Q, ◦, ∗) linear over a group (Q,+) satisfies the identity
(9), then αa+ b+ βb = b and ϕ = ε. So, (9) can be reduced to

αa+ αψz + b+ βαy + βb+ β2z = b+ βy, (11)

which for z = 0 gives αa + b + βαy + βb = b + βy = αa + b + βb + βy. Since
αa = b = b − βb, the last implies βαy = βb + βy − βb. This together with (11)
(for y = v) gives

αa+ αψz + b+ βb+ βv + β2z = b+ βv. (12)

Now adding βv on the right side to (11) and putting y = 0 we get

αa+ αψz + b+ βb+ β2z + βv = b+ βv.

Comparing this identity with (12) we obtain βv+ β2z = β2z+ βv for all v, z ∈ Q.
This shows that (Q,+) is a commutative group. Consequently, βαy = βy, so
α = ε. This by αa + b + βb = b gives a = −βb. Again putting y = 0 in (11) and
using the above facts we obtain ψ = −β2. Therefore, x ◦ y = x − β2y − βb and
x ∗ y = x+ βy + b.

The proof of the converse part of the Theorem follows from a direct calculation
and is omitted.

Proposition 2.33. A medial biquasigroup (Zn, ◦, ∗) satisfies the identity (9) if
and only if x ◦ y = [x− a2y− ab]n, x ∗ y = [x+ ay+ b]n, where a, b ∈ Zn are fixed
and (a, n) = 1.

Example 2.34. Let n = a2 + 1 > 4. Then (Zn, ◦, ∗), where x ◦ y = [x+ y]n and
x ∗ y = [x+ ay]n is an example of a biquasigroup satisfying (9).

10. Many authors study linear quasigroups of the second type, namely quasigroups
(Q, ·) where, in the definition of the operation, the constant element is not placed
in the middle of the formula but at its end, i.e. x · y = ϕx+ ψy + a.

Biquasigroups of this type satisfying the identities (2)− (9) coincide with the
quasigroups of the previous type. Namely, if a biquasigroup Q̂ = (Q, ◦, ∗) with
the operations x ◦ y = ϕx + ψy + a and x ∗ y = αx + βy + b, where α, β, ϕ, ψ
are automorphisms of a group (Q,+), satisfies (2) then αa + βa = 0 and ϕ = ε.
Thus αψz + αa + βy + βψz + βa = βy. This for y = 0 and ψz = v gives
αv = −βa − βv − αa. Since α and β are automorphisms of (Q,+) the last
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expression for v = u+ w implies β(u+ w) = βw + βu. Thus βu+ βw = βu+ βw
for all u,w ∈ Q. Hence (Q,+) is a commutative group. Such biquasigroups are
described in subsection 2.

If a biquasigroup (Q, ◦, ◦) with x◦y = ϕx+ψy+a satisfies (3), then ϕa+ψa = 0,
ϕ = ε and ψz + a + ψy + ψ2z + ψa = ψy, which for y = a gives ψ = −ε. This
shows that (Q,+) is a commutative group and x ◦ y = x − y + a. Also in the
case when (Q, ◦) with x ◦ y = ϕx+ a+ ψy satisfies (1), the group (Q,+) must be
commutative and x ◦ y = x− y + a. This means that these two cases coincide.

If a biquasigroup Q̂ satisfies (4), then ϕa + ψa + a = b and α = ϕ2. Because
by Theorem 2.3 we have q = ϕ0 + ψ0 + a = α0 + β0 + b, must be q = a = b.
Consequently, a = ϕx + ψx + a. This implies ϕ = −ψ, which together with
(x ◦ 0) ◦ (x ◦ 0) = a implies ϕ2x+ ϕa− ϕ2x− ϕa = 0. Hence ϕx+ a = a+ ϕx for
all x ∈ Q. So, a is in the center of (Q,+). Therefore this case is reduced to the
case described in subsection 4.

If a biquasigroup Q̂ satisfies (5), then by Theorem 2.7 the quasigroup (Q, ∗)
has a right neutral element e. Thus x = x ∗ e = αx + βe + b for all x ∈ Q. In
particular 0 = 0 ∗ e = βe+ b. Consequently, x = x ∗ e = αx and x ∗ y = x+βy+ b.
Applying this formula to (5) we can see that ϕ = ε and ϕb = −a. Therefore the
identity (5) can be written in the form

ψz + a+ ψy + ψβz = ψy + a.

This for z = 0 implies a + ψy = ψy + a. Hence a is in the center of (Q,+). Also
b is in the center of (Q,+) because ϕb = −a. Thus this case reduces to the case
from subsection 5.

By Corollary 2.14 any quasigroup satisfying (6) is unipotent. Thus if Q̂ satisfies
(6), then α0 + β0 + b = b implies b = x ∗ x = αx + βx + b, i.e. βx = −αx for all
x ∈ Q. From (6) it follows α = ε. Thus βx = −x. Since β is an automorphism of
(Q,+), (Q,+) is commutative. Hence this case reduces to subsection 6.

If a biquasigroup Q̂ satisfies (7), then ϕa+ψb+ a = b which together with (7)
fort x = y = 0 implies

ϕψz + ϕa+ ψβz + ψb+ a = b = ϕa+ ψb+ a.

Thus ϕψz = ϕa − ψβz − ϕa. Since ϕψ and ψβ are automorphisms of (Q,+) the
last for z = u+ v gives

ϕψ(u+ v) = ϕa− ψβ(u+ v)− ϕa.

On the other side,

ϕψu+ ϕψv = ϕa− ψβu− ϕa+ ϕa− ψβv − ϕa = ϕa− ψβ(v + u)− ϕa.

Comparing these two expression we obtain ψβ(u+ v) = ψβ(v + u). Hence (Q,+)
is a commutative group and this case reduces to 7.

If a biquasigroup Q̂ satisfies (8), then αa+βb+b = a and α = ε. This together
with (8) for x = y = 0 implies ψz + a + β2z = a. Hence β2z = −a − ψz + a.
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From this for z = u + v, in a similar way as in the previous case, we obtain
ψ(u + v) = ψ(v + u). Therefore (Q,+) is a commutative group and this case
reduces to 8.

The case when Q̂ satisfies (9) reduces to 9. Indeed, in this case αa + βb = 0,
which together (9) for x = y = 0 shows that β2z = −αa − αψz − βb. From this
we compute αψ(u+ v) = αψ(v + u). Hence (Q,+) is commutative.
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w-supplemented property in the lattices

Shahabaddin Ebrahimi Atani

Abstract

Let L be a lattice with the greatest element 1. In this paper, we introduce and investigate the
latticial counterpart of the filter-theoretical concepts of w-supplemented. The basic properties
and possible structures of such filters are studied.

1. Introduction
The notion of an order plays an important role not only throughout mathematics
but also in adjacent such as logic and computer science, hence, ought to be in the
literature. The beauty of lattice theory derives in part from the extreme simplicity
of its basic concepts: (partial) ordering, least upper and greatest lower bounds.
In structure, lattices lie between semigroups and rings. In this respect, it closely
resembles group theory. Thus lattices and groups provide two of the most basic
tools of universal algebra, and in particular the structure of algebraic systems is
usually most clearly revealed through the analysis of appropriate lattices. In this
paper, we extend several concepts from module theory to lattice theory. The main
difficulty is figuring out what additional hypotheses the lattice or filter must satisfy
to get similar results. Nevertheless, growing interest in developing the algebraic
theory of lattices can be found in several papers and books (see for example [2, 4,
5, 6, 7]).

The notion of a supplement submodule was introduced in [10] in order to char-
acterize semiperfect modules, that is projective modules whose factor modules
have projective cover. For submodules U and V of a module M , V is said to be a
supplement of U in M or U is said to have a supplement V in M if U+V = M and
U ∩V � V . The module M is called supplemented if every submodule of M has a
supplement in M . See [4] and [12] for results and the definitions related to supple-
ments and supplemented modules. In a series of papers, Zöschinger has obtained
detailed information about supplemented and related modules [14]. Supplemented
modules are also discussed in [11]. Recently, several authors have studied differ-
ent generalizations of supplemented modules. Rad-supplemented modules have
been studied in [13] and [3]. See [13]; these modules are called generalized sup-
plemented modules. For submodules U and V of a module M , V is said to be
a rad-supplement of U in M or U is said to have a rad-supplement V in M if

2000 MSC: 06B35; 05C25.
Keywords: Lattice; filter; semisimple; w-supplemented.



32 S. Ebrahimi Atani

U + V = M and U ∩ V ⊆ rad(V ). M is called a rad-supplemented module if
every submodule of M has a rad-supplement in M . We shall say that a module
M is w-supplemented if every semisimple submodule of M has a supplement in M
[1]. Recently, the study of the supplemented property in the rings, modules, and
lattices has become quite popular (see for example [1, 3, 4, 8, 9, 12, 13]. Supple-
mented property in the lattices have already been investigated in [8]. This paper
is based on another variation of supplemented filters. In fact, in the present paper,
we are interested in investigating (amply) w-supplemented filters in a distributive
lattice with 1 to use other notions of w-supplemented, and associate which exist
in the literature as laid forth in [1] (see Sections 2 and Section 3).

Let us briefly review some definitions and tools that will be used later [2]. By
a lattice we mean a poset (L,6) in which every couple elements x, y has a g.l.b.
(called the meet of x and y, and written x∧y) and a l.u.b. (called the join of x and
y, and written x∨y). A lattice L is complete when each of its subsets X has a l.u.b.
and a g.l.b. in L. SettingX = L, we see that any nonvoid complete lattice contains
a least element 0 and greatest element 1 (in this case, we say that L is a lattice with
0 and 1). A lattice L is called a distributive lattice if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
for all a, b, c in L (equivalently, L is distributive if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for
all a, b, c in L). A non-empty subset F of a lattice L is called a filter, if for a ∈ F ,
b ∈ L, a 6 b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so if L is a lattice with
1, then 1 ∈ F and {1} is a filter of L). A proper filter P of L is said to be maximal
if E is a filter in L with P $ E, then E = L. If F is a filter of a lattice L, then the
radical of F , denoted by rad(F ), is the intersection of all maximal subfilters of F .

Let L be a lattice. If A is a subset of L, then the filter generated by A, denoted
by T (A), is the intersection of all filters that is containing A. A filter F is called
finitely generated if there is a finite subset A of F such that F = T (A). A subfilter
G of a filter F of L is called small in F , written G � F , if, for every subfilter H
of F , the equality T (G ∪H) = F implies H = F [8]. A subfilter G of F is called
essential in F , written G E F , if G ∩ H 6= {1} for any subfilter H 6= {1} of F .
Let G be a subfilter of a filter F of L. A subfilter H of F is called a supplement
of G in F if F = T (G ∪ H) and H is minimal with respect to this property, or
equivalently, F = T (G∪H) and G∩H � H. H is said to be a supplement subfilter
of F if H is a supplement of some subfilter of F . F is called a supplemented filter
if every subfilter of F has a supplemented in F . A subfilter G of a filter F of L has
ample supplements in F if, for every subfilter H of F with F = T (H ∪ G), there
is a supplement H ′ of G with H ′ ⊆ H. If every subfilter of a filter F has ample
supplements in F , then we call F amply supplemented. Let G,H be subfilters of a
filter F of L. If F = T (G∪H) and G∩H � F , then H is called a weak supplement
of G in F . If every subfilter of F has a weak supplement in F , then F is called
a weak supplemented filter. If F = T (G ∪ H) and G ∩ H ⊆ rad(H), then H is
called a rad-supplement of G in F . If every subfilter of F has a rad-supplement in
F , then F is called a rad-supplemented filter.

A lattice L is called semisimple, if for each proper filter F of L, there exists a
filter G of L such that L = T (F ∪G) and F ∩G = {1}). In this case, we say that
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F is a direct summand of L, and we write L = F ⊕ G. A filter F of L is called
a semisimple filter, if every subfilter of F is a direct summand. A simple lattice
(resp. filter), is a lattice (resp. filter) that has no filters besides the {1} and itself.
For a filter F , Soc(F ) = T (∪i∈ΛFi), where {Fi}i∈Λ is the set of all simple filters
of L contained in F .

Proposition 1.1. [6, 7] A non-empty subset F of a lattice L is a filter if and only
if x∨ z ∈ F and x∧y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since x = x∨ (x∧y),
y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ L.

Proposition 1.2. [8, Lemma 2.4, Theorem 2.6 and Theorem 2.9] Let F be a filter
of a distributive lattice L with 1.

(1) If A� F and C ⊆ A, then C � F .
(2) If A,B are subfilters of F with A� B, then then A is a small subfilter in

subfilters of F that contains the subfilter of B. In particular, A� F .
(3) If F1, F2, . . . , Fn are small subfilters of F , then T (F1∪F2∪· · ·∪Fn) is also

small in F .
(4) If A,B,C and D are subfilters of F with A� B and C � D, then

T (A ∪ C)� T (B ∪D).
(5) Let G,H be subfilters of F such that H is a supplement of G in F . If

F = T (U∪H) for some subfilter U of G, then H is a supplement of U in F.

(6) rad(F ) = T (∪G�FG).
(7) Every finitely generated subfilter of rad(F ) is small in rad(F ).
(8) x ∈ rad(F ) if and only if T ({x})� rad(F ).

Lemma 1.3. [8, Proposition 2.1]
(1) Let A be an arbitrary non-empty subset of L. Then

T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an 6 x for some ai ∈ A (1 6 i 6 n)}.
Moreover, if F is a filter and A is a subset of L with A ⊆ F , then T (A) ⊆ F ,
T (F ) = F and T (T (A)) = T (A).

(2) Let A,B and C be subfilters of a filter F of L. Then T (T (A ∪B) ∪ C) ⊆
T (A ∪ T (B ∪ C)). In particular, if F = T (T (A ∪B) ∪ C), then F =

T (T (C ∪B) ∪A) = T (T (A ∪ C) ∪B).
(3) (Modular law) If F1, F2, F3 are filters of L with F2 ⊆ F1, then

F1 ∩ T (F2 ∪ F3) = T (F2 ∪ (F1 ∩ F3)).

2. Basic Properties of w-supplemented Filters

Throughout this paper, we shall assume unless otherwise stated, that L is a dis-
tributive lattice with 1. In this section we collect some basic properties concerning
w-supplemented filters of L. Our starting point is the following lemma.

Lemma 2.1. Every subfilter of a semisimple filter of L is semisimple.
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Proof. Assume that K is a subfilter of a semisimple filter F of L and let G be a
subfilter of K. By assumption, F = T (G∪H) and H ∩G = {1} for some subfilter
H of F . Then by modular law, K = K ∩ T (G ∪ H) = T (G ∪ (H ∩ K)) and
G ∩ (H ∩K) = {1}, as required.

Lemma 2.2. Let F be a filter of L such that F = T (G∪H), where H is a subfilter
of F and G is a semisimple subfilter of F . Then F = G′ ⊕H for some subfilter
G′ of G.

Proof. By assumption, G = (G ∩ H) ⊕ G′ for some subfilter G′ of G. Then by
Lemma 1.3, F = T (H ∪T ((G∩H)∪G′)) = T (G′ ∪T (H ∪ (G∩H))) = T (G′ ∪H)
and G′ ∩H = G ∩G′ ∩H = {1}. So F = G′ ⊕H.

Lemma 2.3. Let U, V be subfilters of a filter F of L such that V is a direct
summand of F with U ⊆ V . Then U � F if and only if U � V .

Proof. If U � V , then U � F by Proposition 1.2 (2). Conversely, assume that
U � F and F = T (V ∪ V ′) with V ∩ V ′ = {1}. Let V = T (U ∪ K) for some
subfilter K of V . It follows from Lemma 1.3 that

F = T (V ′ ∪ T (U ∪K)) = T (U ∪ T (V ′ ∪K));

hence F = T (V ′ ∪K) since U � F . Now it is enough to show that V ⊆ K. Let
x ∈ V . Then x ∈ T (V ′ ∪K) gives x = x ∨ (v′ ∧ k) = (x ∨ v′) ∧ (x ∨ k) for some
v′ ∈ V ′ and k ∈ K. Since x ∨ v′ ∈ V ∩ V ′ = {1}, we get x = x ∨ k ∈ K, as
required.

Lemma 2.4. Let F be a filter of L. Then the following hold:

(1) Soc(rad(F ))� F .

(2) If G is a semisimple subfilter of F such that G ⊆ rad(F ), then G� F .

Proof. (1). Put G = Soc(rad(F )) and suppose that F = T (G ∪ K) for some
subfilter K of F . Set H = G ∩K. Then we have G = H ⊕H ′ for some subfilter
H ′ of G ⊆ rad(F ), F = T (K ∪ T (H ∪ H ′)) = T (H ′ ∪ T (H ∪ K)) = T (H ′ ∪ K)
and {1} = H ∩ H ′ = (G ∩ K) ∩ H ′ = H ′ ∩ K; hence F = H ′ ⊕ K. We claim
that H ′ = {1}. To see this, it suffices to show that every simple subfilter of H ′ is
{1}. If S is any simple subfilter of H ′ ⊆ rad(F ), then S is a direct summand of
H ′; hence it is a direct summand of F . By Proposition 1.2 (7), S � rad(F ) which
implies that S � F by Proposition 1.2 (2). Thus S is a direct summand of F and
is small in F and hence S = {1}. Thus F = T (K) = K. This completes the proof.

(2). By assumption, G ⊆ rad(F ) gives G = Soc(G) ⊆ Soc(rad(F )). Now the
assertion follows from (1) and Proposition 1.2 (1).
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Definition 2.5. A filter F of L is called w-supplemented, if every semisimple
subfilter of F has a supplement in F .

We next give three other characterizations of w-supplemented filters.

Theorem 2.6. Let F be a filter of L. Then the following statements are equivalent.
(1) F is w-supplemented.
(2) Every semisimple subfilter of F has a supplement that is a direct summand.
(3) Every semisimple subfilter of F has a weak supplement.
(4) Every semisimple submodule of F has a rad-supplement.

Proof. (1) ⇒ (2) Let G be a semisimple subfilter of F . Then F = T (G ∪H) and
G ∩H � H for some subfilter H of F . By Lemma 2.2, there exists a subfilter G′
of G such that F = G′ ⊕H.

(2)⇒ (3). Let G be a semisimple subfilter of F . Then By (2), F = T (G ∪H)
and G ∩H � H for some subfilter H of F . By Proposition 1.2 (2), G ∩H � H
gives G ∩H � F ; hence G has a weak supplement.

(3)⇒ (4). Let G be a semisimple subfilter of F . By assumption, F = T (G∪H)
and G∩H � F for some subfilter H of F . By Lemma 2.2, there exists a subfilter
G′ of G such that F = G′ ⊕ H. Since G ∩ H ⊆ H and G ∩ H � F , we get
G ∩H � H by lemma 2.3. This implies G ∩H ⊆ rad(H) by Proposition 2.1 (6).
Thus H is rad-supplement of G in F .

(4) ⇒ (1). Let G be a semisimple subfilter of F . By (4), F = T (G ∪H) and
G ∩ H ⊆ rad(H) for some subfilter H of F . Since G ∩ H ⊆ rad(H) ⊆ rad(F ),
Lemma 2.4 and Lemma 2.1 gives G ∩H � F . Since G is semisimple, by Lemma
2.2, F = G′⊕H for some subfilter G′ of G. So we get G∩H � H by Lemma 2.3.
This completes the proof.

Corollary 2.7. Let F be a filter of L. Then F is w-supplemented if and only if
for each semisimple submodule G of F , there exists a decomposition F = F1 ⊕ F2

such that F1 is a subfilter of G and G ∩ F2 � F2.

Proof. Apply Theorem 2.6

Proposition 2.8. If F is a w-supplemented filter of L, then F = X ⊕S for some
semisimple subfilter X and a subfilter S of F .

Proof. Let G be a semisimple subfilter of F . If there is no G 6= {1}, then F =
F⊕{1} and result follows. Otherwise, by assumption, F = T (G∪S) and G∩S � S
for some subfilter S of F . By Lemma 2.1, there exists a semisimple subfilter
X of G such that G = (G ∩ S) ⊕ X; hence by Lemma 1.3, F = T (G ∪ S) =
T (S ∪ T ((G∩ S)∪X)) = T (X ∪ T (S ∪ (G∩ S))) = T (X ∪ T (S)) = T (X ∪ S) and
X ∩ S = (G ∩ S) ∩X = {1}. So F = X ⊕ S.

Theorem 2.9. Every direct summand of a w-supplemented filter F of L is w-
supplemented.
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Proof. Let G be a direct summand of F . Then F = T (G ∪H) and G ∩H = {1}
for some subfilter H of F . Let S be a semisimple subfilter of G. If S = {1},
then G trivially w-supplemented. So we may assume that S 6= {1}. Since S is a
semisimple subfilter of F , we have F = T (S∪K) and S∩K � K for some subfilter
K of F . Then by modular law, G = G∩T (S ∪K) = T (S ∪ (K ∩G)). It is enough
to show that S ∩ (K ∩G) = K ∩S � K ∩G. By Lemma 2.2, G = T (S′∪ (K ∩G))
and S′ ∩ (K ∩ G) = S′ ∩K = {1} for some subfilter S′ of S. That is, K ∩ G is
a direct summand of G. By Proposition 1.2 (2), S ∩K � K gives S ∩K � F .
Since S ∩K ⊆ G and G is a direct summand of F , we get K ∩ S � G by Lemma
2.3. As K ∩ G is a direct summand of G, K ∩ S ⊆ K ∩ G and K ∩ S � G, we
obtain K ∩ S � K ∩G by Lemma 2.3. This completes the proof.

Lemma 2.10. Let H,G be subfilters of F such that T (H ∪G) has a supplement
of U in F and H ∩ T (U ∪ G) has a supplement V in H. Then T (U ∪ V ) is a
supplement of G in F .

Proof. To simplify our notation let B = T (U ∪G)∩H ⊆ T (U ∪G). By hypothesis,
T (U ∪ T (H ∪ G)) = F , U ∩ T (H ∪ G) � U , T (V ∪ B) = H and V ∩ B =
V ∩ T (U ∪ G) = A � V . By Lemma 1.3, we have F = T (U ∪ T (H ∪ G)) =
T (H ∪ T (U ∪G)) = T (T (B ∪ V ) ∪ T (U ∪G)) =

T (V ∪ T (B ∪ T (U ∪G))) = T (V ∪ T (U ∪G)) ⊆ T (G ∪ T (U ∪ V )) ⊆ F ;

hence F = T (G∪T (U ∪V )). It is enough to show that T (U ∪V )∩G� T (U ∪V ).
Since T (G ∪ V ) ⊆ T (H ∪ G) and F = T (G ∪ T (U ∪ V )) = T (U ∪ T (G ∪ V )),
Proposition 1.2 (5) gives U also is a supplement of T (G ∪ V ) in F which implies
that C = T (G ∪ V ) ∩ U � U . Now by Proposition 1.2 (4), T (U ∪ V ) ∩ G ⊆
T (A ∪ C)) � T (U ∪ V ); hence T (U ∪ V ) ∩ G � T (U ∪ V ) by Proposition 1.2
(1).

Theorem 2.11. Let F1, F2 and F be filters of L such that F = F1 ⊕ F2. If F1

and F2 are w-supplemented, then F is w-supplemented.

Proof. Let K be a semisimple subfilter of F . At the first we show that F1∩T (K ∪
F2) is a semisimple subfilter of F1. Assume that G is a subfilter of F1 ∩T (K ∪F2)
and let x ∈ G. Then there are elements h ∈ K and f2 ∈ F2 such that x =
x ∨ (h ∧ f2) = (x ∨ h) ∧ (x ∨ f2). Then x ∨ f2 ∈ G ∩ F2 ⊆ F1 ∩ F2 = {1} which
implies that x = x ∨ h ∈ K; hence G ⊆ K. By Lemma 2.1, G is semisimple. If
G = F1 ∩ T (K ∪ F2), we are done. So we may assume that G 6= F1 ∩ T (K ∪ F2).
There exists a subfilter G′ of K such that K = G⊕G′. Then by Lemma 1.3,

F1 ∩ T (K ∪ F2) = F1 ∩ T (T (G ∪G′) ∪ F2) ⊆ T (G ∪ T (G′ ∪ F2)) ∩ F1

= T (G ∪ (F1 ∩ T (G′ ∪ F2))) with F1 ∩ T (G′ ∪ F2) 6= {1}.
As

G ∪ (F1 ∩ T (G′ ∪ F2)) ⊆ F1 ∩ T (K ∪ F2),
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we get T (G ∪ (F1 ∩ T (G′ ∪ F2))) ⊆ F1 ∩ T (K ∪ F2); hence

F1 ∩ T (K ∪ F2) = T (G ∪ (F1 ∩ T (G′ ∪ F2)).

It is enough to show that G∩ (F1∩T (G′∪F2)) = G∩T (G′∪F2) = {1}. Let z ∈ G
and z ∈ T (G′ ∪F2). Thus z = z ∨ (g′ ∧ f) = (z ∨ g′)∧ (z ∨ f) for some g′ ∈ G′ and
f ∈ F2. Since z ∨ g′ ∈ G∩G′ = {1} and z ∨ f ∈ G∩F2 = {1}, we get z = 1. Thus
A = F1∩T (K∪F2) is a semisimple subfilter of F1. Similarly, B = F2∩T (K∪F1) is
a semisimple subfilter of F2. Then A and B have supplements V1 and V2 in F1 and
F2, respectively. Clearly, F = T (F∪{1}) = T (T (F1∪F2)∪K) = T (F2∪T (F1∪K))
has a supplement {1} in F . If G = T (F1∪K) and H = F2, then V2 is a supplement
T (F1 ∪ K) in F by Lemma 2.10. Also F1 ∩ T (K ∪ V2) ⊆ F1 ∩ T (F2 ∪ K) gives
F1∩T (V2∪K) is semisimple by Lemma 2.1 which implies that it has a supplement
S in F1. Again applying Lemma 2.10, T (V2 ∪S) is a supplement of K in F . Thus
F is w-supplemented.

Corollary 2.12. Every finite direct sum of w-supplemented filters of L is w-
supplemented.

Proof. Apply Theorem 2.11.

Proposition 2.13. Let G be a subfilter of a filter F of L. Then the following
hold:

(1) If A is the intersection of filters of L which are essential in F , then
A = Soc(F ).

(2) Soc(G) = G ∩ Soc(F ) and Soc(Soc(F )) = Soc(F ).

Proof. (1). Let Soc(F ) = T (∪i∈IFi), where {Fi}i∈I is the set of all simple filters
of L contained in F . Let G E F . For each i ∈ I, Fi ∩ G 6= 1 which implies
that Fi ⊆ G; hence Soc(F ) ⊆ A. For the reverse inclusion, it is enough to show
that A is semisimple. Let G be a filter of L such that G ⊆ A. If G E F , then
A ⊆ G; so G = A. So we may assume that G is not essential in F . Let G′ be a
complement of G in F ; so T (G ∪G′) E F by [8, Lemma 2.15 (3)]. It follows that
G ⊆ A ⊆ T (G ∪ G′); thus A = A ∩ T (G ∪ G′) = T (G ∪ (A ∩ G′)) by Lemma 1.3
which implies that A = G ⊕ (A ∩ G′); hence A is semisimple. Thus A ⊆ Soc(F ),
and so we have equality.

(2). Let Soc(F ) = T (∪i∈IFi), where {Fi}i∈I is the set of all simple filters of L
contained in F . Since the inclusion Soc(G) ⊆ G ∩ Soc(F ) is clear, we will prove
the reverse inclusion. Let x ∈ G ∩ Soc(F ). So x = x ∨ (f1 ∧ f2 ∧ · · · ∧ ft) =
(x ∨ f1) ∧ · · · ∧ (x ∨ ft) for some fj ∈ Fij (1 6 j 6 t). If for each 1 6 j 6
t, Fij ⊆ G, then we are done. Therefore, without loss of generality, we can
assume that Fi1 , Fi2 , · · · , Fim 6⊆ G (so G ∩ Fi1 = {1}, · · ·G ∩ Fim = {1}) and
Fim+1

, · · · , Fit ⊆ G. As for each 1 6 j 6 m, Fij , G are filters, we get x ∨ fij = 1;
hence x = (x ∨ fm+1) ∧ · · · ∧ (x ∨ ft) ∈ T (Fm+1 ∪ · · · ∪ Ft) ⊆ Soc(G), and so we
have equality. Finally, if G = Soc(F ), then Soc(Soc(F )) = Soc(F ).
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Lemma 2.14. If F is a filter of L with Soc(F )� F , then F is w-supplemented.

Proof. It is clear that if Soc(F ) = {1}, then F is w-supplemented. Let G be a
semisimple subfilter of F . Since Soc(F ) is the largest semisimple subfilter of F ,
then G ⊆ Soc(F ) � F which implies that G � F by Proposition 1.2 (1). Now
F = T (F ∪ G) and G ∩ F = G � F gives G has a supplement in F . Thus F is
w-supplemented.

Theorem 2.15. Let F be a filter of L. Then F is w-supplemented if and only if
Soc(F ) has a supplement in F .

Proof. If F is w-supplemented, then Soc(F ) has a supplement in F since it is
semisimple. Conversely, let H be a supplement of Soc(F ) in F . Then by Propo-
sition 2.13, F = T (H ∪ Soc(F )) and Soc(H) = H ∩ Soc(F ) � H; hence H is
w-supplemented by Lemma 2.14. By Lemma 2.2, F = H ⊕ S, where S is a
semisimple subfilter of F (so it is w-supplemented). Thus F is w-supplemented
by Theorem 2.11.

A subfilter G of a filter F of L is said to be radical if rad(G) = G.
Proposition 2.16. Every radical filter F of L is w-supplemented.

Proof. Since Soc(F ) = Soc(rad(F ))� F by Lemma 2.4, we get F is w-supplemented
by Lemma 2.14.

Definition 2.17. A filter F of L is called amply w-supplemented, if F = T (A∪B),
where A is a semisimple subfilter of F , then B contains a supplement of A.

Theorem 2.18. Let F be a filter of L. Then F is w-supplemented if and only if
F is amply w-supplemented.

Proof. Clearly, if F is amply w-supplemented, then it is w-supplemented. Con-
versely, let A be a semisimple subfilter of F such that F = T (A ∪ B). It suffices
to show that B contains a supplement of A in F . Since A ∩ B is semisimple, we
have F = T (H ∪ (A ∩ B)) and A ∩ B ∩ H � H for some subfilter H of F . By
Lemma 2.2, F = H ⊕ F1 for some subfilter F1 of A ∩ B. Then by Lemma 1.3,
B = B ∩ T (H ∪ F1) = T (F1 ∪ (H ∩B)) and

F = T (A ∪ T (F1 ∪ (B ∩H))) = T ((B ∩H) ∪ T (A ∪ F1)) = T ((B ∩H) ∪A)

with B∩H ⊆ B. It follows that H = H ∩T ((B∩H)∪A) = T ((B∩H)∪ (H ∩A)).
Since H ∩ A is semisimple, by Lemma 2.2, H = (B ∩H) ⊕K for some subfilter
K of H ∩ A. Now B ∩ H is a direct summand of H and A ∩ B ∩ H � H gives
A ∩B ∩H � H ∩B by Lemma 2.3, as required.

Lemma 2.19. Let F be a filter of L such that rad(F ) E F . Let K ⊆ G ⊆ F be
subfilters of F and assume K to be a direct summand of F . Then rad(K) = rad(G)
if and only if G = K.
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Proof. Let rad(K) = rad(G). By assumption, F = K ⊕ K ′ for some subfilter
K ′ of F . Then by modular law, G = G ∩ T (K ∪ K ′) = T (K ∪ (K ′ ∩ G)) with
K ∩ (K ′ ∩ G) = {1}. Then rad(G) = T (rad(K) ∪ rad(G ∩ K ′)) with rad(G) ∩
rad(G∩K ′) = {1} by [8, Proposition 2.16] (so rad(G∩K ′) = {1}). Clearly, G∩K ′
is a supplement of K in G. If rad(G) = rad(K), then by [8, Theorem 2.9 (3)],
{1} = rad(G ∩K ′) = (G ∩K ′) ∩ rad(F ) which implies that G ∩K ′ = {1} since
rad(F ) E F , and so G = K. The other implication is clear.

Theorem 2.20. Let F be a filter of L such that rad(F ) E F . Then the following
statements are equivalent:

(1) F is w-supplemented;

(2) Every semisimple submodule of F is a direct summand;

(3) Soc(F ) is a direct summand of F .

Proof. (1)⇒ (2). Let G be a semisimple subfilter of F . By (1), there is a subfilter
K of F such that F = T (G∪K) and G∩K � K. By Lemma 2.2, F = K⊕G′ for
some subfilter G′ of G. By [8, Proposition 2.16], we have rad(G) = rad(G′) = {1}
which implies that G = G′ by Lemma 2.19. Thus F = K ⊕G.

(2) ⇒ (3). Since Soc(F ) is semisimple subfilter of F , we get it is a direct
summand of F by (2).

(3)⇒ (1). Let G be a semisimple subfilter of F . So G is a subfilter and a direct
summand of Soc(F ); hence G is a direct summand of F by (3). So F = G ⊕ H
and G∩H = {1} � H for some subfilter H of F . Thus F is w-supplemented.

Corollary 2.21. Let F be a filter of L such that rad(F ) E F . If F is w supple-
mented, then every subfilter of F is w-supplemented.

Proof. Assume that G is a subfilter of F and let K be a semisimple subfilter of
G. By Theorem 2.20, there exists a subfilter H of F such that F = K ⊕H. By
modularity, G = G ∩ T (K ∪H) = T (K ∪ (G ∩H)) with K ∩ (G ∩H) = {1}, that
is, G = K ⊕ (G ∩H). Therefore G is w-supplemented.

Definition 2.22. We say that a filter F of L is totally w-supplemented, if every
subfilter of F is w-supplemented. A lattice L is called a V -lattice if rad(F ) = {1}
for every filter F of L.

Proposition 2.23. For a V -lattice L and a filter F of L, the following statements
are equivalent:

(1) F is w-supplemented;

(2) F is amply w-supplemented;

(3) F is totally w-supplemented.
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Proof. (1)⇔ (2). The proof is followed from Theorem 2.18.
(1) ⇔ (3). Let F be totally w-supplemented. Since F ⊆ F , F is also w-

supplemented. Conversely, assume that F is w-supplemented and G be a subfilter
of F . We will show that G is w-supplemented. Let K be a semisimple subfilter
of G. By assumption, there is a subfilter H of F such that F = T (H ∪ K) and
H ∩ K � H. So H ∩ K ⊆ rad(H) ⊆ rad(F ) = {1}; hence F = H ⊕ K. By
modularity, G = G ∩ T (K ∪H) = T (K ∪ (G ∩H)) with K ∩ (G ∩H) = {1}; so
G = K ⊕ (G ∩H). Thus G is w-supplemented.

Proposition 2.24. Let F = F1⊕F2 be a filter of L such that rad(F ) E F , where
F1 and F2 are totally w-supplemented filters. Then F is totally w-supplemented.

Proof. Let G be a subfilter of F and K be a semisimple subfilter of G. Clearly,
F1 and F2 are w-supplemented; so F is w-supplemented by Theorem 2.11. Then
F = T (K ∪ H) and K ∩ H � H for some subfilter H of F . By Lemma 2.2,
F = K ′ ⊕H for some subfilter K ′ of K. By Lemma 2.19, K = K ′ which implies
that F = K ⊕H. So by modular law, G = G ∩ T (H ∪K) = T (K ∪ (G ∩H)) and
K ∩ (G ∩H) = K ∩H � H. Hence G is w-supplemented.

Theorem 2.25. Let F = F1 ⊕ F2 be a filter of L such that F2 is semisimple.
Then F is totally w-supplemented if and only if F1 is totally w-supplemented.

Proof. It suffices to show that if F1 is totally w-supplemented, then F is totally
w-supplemented. Let G be a subfilter of F . Since F2 is semisimple, there is a
subfilter H of F2 such that F2 = (G∩F2)⊕H (so G∩H = {1} and H∩F1 = {1}).
By Lemma 1.3, since

F = T (F1 ∪ T ((G ∩ F2) ∪H)) = T ((G ∩ F2) ∪ (F1 ∪H)),

we get G = T ((G∩F2)∪(G∩T (F!∪H))) with (G∩F2)∩(G∩T (F1∪H)) = {1}, that
is, G = (G∩F2)⊕ (G∩ (F1⊕H)). If x ∈ G∩T (F1∪H), then x = (x∨f1)∧ (x∨h)
for some f1 ∈ F1 and h ∈ H. As x ∨ h ∈ G ∩ H = {1}, we get x ∈ F1, and so
G ∩ (F1 ⊕ H) is a subfilter of F1; hence it is w-supplemented. Also, G ∩ F2 is
w-supplemented since it is semisimple. Now the assertion follows from Theorem
2.11.

3. W -supplemented Quotient Filters
Quotient lattices are determined by equivalence relations rather than by ideals as
in the ring case. If F is a filter of a lattice (L,6), we define a relation on L, given
by x ∼ y if and only if there exist a, b ∈ F satisfying x ∧ a = y ∧ b. Then ∼ is an
equivalence relation on L, and we denote the equivalence class of a by a ∧ F and
these collection of all equivalence classes by L

F . We set up a partial order 6Q on L
F

as follows: for each a∧F, b∧F ∈ L
F , we write a∧F 6Q b∧F if and only if a 6 b. It

is straightforward to check that (LF ,6Q) is a poset. The following notation below
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will be kept in this section: Let a ∧ F, b ∧ F ∈ L
F and set X = {a ∧ F, b ∧ F}.

By definition of 6Q, (a ∨ b) ∧ F is an upper bound for the set X. If c ∧ F is any
upper bound of X, then we can easily show that (a ∨ b) ∧ F 6Q c ∧ F . Thus
(a∧F )∨Q (b∧F ) = (a∨ b)∧F . Similarly, (a∧F )∧Q (b∧F ) = (a∧ b)∧F . Thus
(LF ,6Q) is a lattice.

Remark 3.1. Let G be a subfilter of a filter F of L.
(1) If a ∈ F , then a ∧ F = F . By the definition of 6Q, it is easy to see that

1 ∧ F = F is the greatest element of L
F .

(2) If a ∈ F , then a ∧ F = b ∧ F (for every b ∈ L) if and only if b ∈ F . In
particular, c ∧ F = F if and only if c ∈ F . Moreover, if a ∈ F , then
a ∧ F = F = 1 ∧ F .

(3) By the definition 6Q, we can easily show that if L is distributive, then L
F

is distributive.
(4) F

G = {a ∧G : a ∈ F} is a filter of L
G .

(5) If K is a filter of L
G , then K = F

G for some filter F of L.
(6) If H is a filter of L such that G ⊆ H and F

G = H
G , then F = H.

(7) If H and V are filters of L containing G, then F
G ∩

H
G = V

G if and only if
V = H ∩ F .

(8) If H is a filter of L containing G, then T (F∪H)
G = T (HG ∪

F
G ).

Proposition 3.2. Every quotient of a semisimple filter of L is semisimple.

Proof. LetK be a subfilter of a semisimple filter F . We show that F
K is semisimple.

Let G
K be a subfilter of F

K . Since F is semisimple, F = T (G∪H) with G∩H = {1}
for some subfilter H of F . Then we have F

K = T (G∪H)
K =

T (G ∪ T (H ∪K))

K
= T (

G

K
∪ T (H ∪K)

K
)

and G
K ∩

T (H∪K)
K = G∩T (H∪K)

K . It is enough to show that G ∩ T (H ∪ K) = K.
Clearly, K ⊆ G ∩ T (H ∪ K). For the reverse inclusion, suppose that x ∈ G ∩
T (H ∪K). Then x = x ∨ (h ∧ k) = (x ∨ h) ∧ (x ∨ k) for some h ∈ H and k ∈ K.
As x ∨ h ∈ G ∩H = {1}, we get x = x ∨ k ∈ K, and so we have equality. Thus
F
K = G

K ⊕
T (H∪K)

K .

Proposition 3.3. Let H and G be subfilters of a filter F of L. IF H is semisimple,
then T (H∪G)

G is a semisimple subfilter in F
G .

Proof. Let U
G be a subfilter of T (H∪G)

G (so U ⊆ T (H ∪ G)). By assumption,
H = (H ∩ U) ⊕ K for some subfilter K of H (so U ∩ K = {1}). At first we
show that T (U ∪ K) = T (H ∪ G). Since U ⊆ T (H ∪ G) and K ⊆ H, we get
T (U ∪K) ⊆ T (H ∪G). For the reverse inclusion, by Lemma 1.3, we have

T (H∪G) = T (G∪T (K∪(H∩U))) ⊆ T (G∪T (U∪K)) ⊆ T (K∪T (U∪G)) = T (U∪K),
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and so we have equality. Next we show that T (U ∪K) = T (U ∪ T (G∪K)). Since
the inclusion T (U ∪ K) ⊆ T (U ∪ T (G ∪ K)) is clear, we will prove the reverse
containment. Let x ∈ T (U ∪T (G∪K)). Then x = (x∨u)∧ (x∨ t) for some u ∈ U
and t ∈ T (G∪K) which implies that x = (x∨u)∧(x∨t∨g)∧(x∨t∨k) ∈ T (K∪U)
for some g ∈ G and k ∈ K. Thus T (U ∪ T (G ∪K)) = T (U ∪K) = T (G ∪ H)).
Clearly, G ⊆ U ∩ T (G ∪K). If z ∈ U ∩ T (G ∪K), then z = (z ∨ g) ∧ (z ∨ k) for
some g ∈ G and k ∈ K. As z ∨ k ∈ U ∩K = {1}, we get z = z ∨ g ∈ G; hence
G = U ∩ T (G ∪ U). Now we have

T (
U

G
∪ T (G ∪K

G
) =

T (U ∪ T (G ∪K))

G
=

T (H ∪G)

G

and U
G ∩

T (G∪K)
G = U∩T (G∪K)

G = G
G = {G}. Thus T (H∪G)

G = U
G ⊕

T (G∪K)
G .

Theorem 3.4. Let G be a subfilter a filter F of L such that G� F . If G and F
G

are w-supplemented, then F is w-supplemented.

Proof. If H is any semisimple subfilter of F , then T (H∪G)
G is a semisimple subfilter

in F
G by Proposition 3.3. If F

G = T (H∪G)
G , then F = T (H ∪ G). By Lemma 2.2,

F = H ′⊕G for some subfilter H ′ of H which implies that F is w-supplemented as
a finite direct sum of w-supplemented filters. So we may assume that F

G 6=
T (H∪G)

G .
By assumption, there exists a subfilter K

G of F
G such that F

G = T (T (H∪G)
G ∪ K

G ) =
T (K∪T (H∪G))

G = T (K∪H)
G and T (H∪G)

G ∩ K
G = T (H∪G)∩K

G = T (G∪(H∩K)
G � K

G . Since
F = T (K∪H), it is enough to show that H∩K � K. Let K = T (X∪(H∩K)) for
some subfilter X of K. Then K

G = T (T (G∪(H∩K)
G ∪ T (X∪G)

G ). Since T (G∪(H∩K)
G �

K
G , then K

G = T (X∪G)
G ; hence K = T (X∪G). As F = T (K∪H), there is a subfilter

U of H such that F = K ⊕U by Lemma 2.2. As K is a direct summand of F and
G ⊆ K, G � F gives G � K by Lemma 2.3; hence K = X. Thus H ∩K � K.
This completes the proof.

Theorem 3.5. Let F be a filter of L. If every semisimple subfilter of F
rad(F ) is

a direct summand, then F is (amply) w-supplemented. In particular, if F
rad(F ) is

semisimple, then F is (amply) w-supplemented.

Proof. Let G be a semisimple subfilter of F . Then by Proposition 3.3, T (G∪rad(F ))
rad(F )

is a semisimple subfilter of F
rad(F ) . If

T (G∪rad(F ))
rad(F ) = F

rad(F ) , then T (G ∪ rad(F )) =

F . Thus F = rad(F ) ⊕ G′ for some subfilter G′ of G by Lemma 2.2. Since
G ∩ rad(F ) is semisimple and G ∩ rad(F ) ⊆ rad(F ), G ∩ rad(F ) � F by Lemma
2.4 and also by Lemma 2.3, G∩rad(F )� rad(F ) since rad(F ) is a direct summand
of F . Thus F is w-supplemented. So we may assume that T (G∪rad(F ))

rad(F ) 6= F
rad(F ) .

By assumption and Lemma 1.3, there is a subfilter H
rad(F ) of F

rad(F ) such that

F

rad(F )
= T (

T (G ∪ rad(F ))

rad(F )
∪ H

rad(F )
) =

T (G ∪H)

rad(F )
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and T (G∪rad(F ))
rad(F ) ∩ H

rad(F ) = T (rad(F )∪(G∩H))
rad(F ) = {rad(F )}; so F = T (G ∪ H) and

T (rad(F )∪(G∩H)) = rad(F ) (so G∩H ⊆ rad(F )). By Lemma 2.2, F = H⊕K for
some subfilter K of G. Since G∩H is semisimple, by Lemma 2.4, G∩H � F . By
Lemma 2.3, since H is a direct summand of F and G∩H � F , we get G∩H � H.
Therefore, F is w-supplemented. The in particular statement is clear.

Definition 3.6. A lattice L is called a semilocal lattice if F
rad(F ) is semisimple for

every filter F of L.

Corollary 3.7. If L is a semilocal lattice. Then the following hold:
(1) Every filter of L is (amply) w-supplemented.
(2) Every filter of L is totally w-supplemented.

Proof. Apply Theorem 3.5.
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SS-supplemented property in the lattices

Shahabaddin Ebrahimi Atani, Mehdi Khoramdel,
Saboura Dolati Pish Hesari and Mahsa Nikmard Rostam Alipour

Abstract. Let L be a lattice with the greatest element 1. We introduce and investigate the
latticial counterpart of the filter-theoretical concepts of ss-supplemented. The basic properties
and possible structures of such filters are studied.

1. Introduction

Since Kasch and Mares [13] have defined the notions of perfect and semiperfect
for modules, the notion of a supplemented module has been used extensively by
many authors. For submodules U and V of a module M , V is said to be a sup-
plement of U in M or U is said to have a supplement V in M if U + V = M
and U ∩ V � V . The module M is called supplemented if every submodule of M
has a supplement in M . In a series of papers, Zöschinger has obtained detailed
information about supplemented and related modules [17]. Supplemented modules
are also discussed in [14]. Recently, several authors have studied different general-
izations of supplemented modules. Rad-supplemented modules have been studied
in [15] and [3]. See [15]; these modules are called generalized supplemented mod-
ules. For submodules U and V of a module M , V is said to be a rad-supplement
of U in M or U is said to have a rad-supplement V in M if U + V = M and
U ∩ V ⊆ rad(V ). M is called a rad-supplemented module if every submodule of
M has a rad-supplement in M . We shall say that a module M is w-supplemented
if every semisimple submodule of M has a supplement in M [1]. We say that
V is an ss-supplement U in M if M = U + V and U ∩ V � V and V ∩ U is
semisimple. We call a module M is ss-supplemented if every submodule of M has
an ss-supplement in M [12]. Recently, the study of the supplemented property
in the rings, modules, and lattices has become quite popular (see for example [2,
3, 4, 10, 11, 12, 13]. Supplemented property (resp. w-supplemented property) in
the lattices have already been investigated in [7] (resp. [6]). This paper is based
on another variation of supplemented filters. In fact, in the present paper, we
are interested in investigating strongly local filters and (amply) ss-supplemented
filters in a distributive lattice with 1 to use other notions of ss-supplemented, and
associate which exist in the literature as laid forth in [12] (see Sections 2, 3, 4).

2010 Mathematics Subject Classification: 06B05.
Keywords: Lattice; Filter; Small; semisimple; SS-supplemented.
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Let us briefly review some definitions and tools that will be used later [2]. By
a lattice we mean a poset (L,6) in which every couple elements x, y has a g.l.b.
(called the meet of x and y, and written x ∧ y) and a l.u.b. (called the join of
x and y, and written x ∨ y). A lattice L is complete when each of its subsets X
has a l.u.b. and a g.l.b. in L. Setting X = L, we see that any nonvoid complete
lattice contains a least element 0 and greatest element 1 (in this case, we say
that L is a lattice with 0 and 1). A lattice L is called a distributive lattice if
(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in L (equivalently, L is distributive if
(a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A non-empty subset F of a lattice
L is called a filter, if for a ∈ F , b ∈ L, a 6 b implies b ∈ F , and x ∧ y ∈ F for
all x, y ∈ F (so if L is a lattice with 1, then 1 ∈ F and {1} is a filter of L). A
proper filter P of L is said to be maximal if E is a filter in L with P $ E, then
E = L. If F is a filter of a lattice L, then the radical of F , denoted by rad(F ), is
the intersection of all maximal subfilters of F .

Let L be a lattice. If A is a subset of L, then the filter generated by A, denoted
by T (A), is the intersection of all filters that is containing A. A filter F is called
finitely generated if there is a finite subset A of F such that F = T (A). A subfilter
G of a filter F of L is called small in F , written G � F , if, for every subfilter H
of F , the equality T (G ∪H) = F implies H = F [7]. A subfilter G of F is called
essential in F , written G E F , if G ∩ H 6= {1} for any subfilter H 6= {1} of F .
Let G be a subfilter of a filter F of L. A subfilter H of F is called a supplement
of G in F if F = T (G ∪ H) and H is minimal with respect to this property, or
equivalently, F = T (G∪H) and G∩H � H. H is said to be a supplement subfilter
of F if H is a supplement of some subfilter of F . F is called a supplemented filter
if every subfilter of F has a supplemented in F . A subfilter G of a filter F of L has
ample supplements in F if, for every subfilter H of F with F = T (H ∪ G), there
is a supplement H ′ of G with H ′ ⊆ H. If every subfilter of a filter F has ample
supplements in F , then we call F amply supplemented. Let G,H be subfilters
of a filter F of L. If F = T (G ∪ H) and G ∩ H ⊆ rad(H), then H is called a
rad-supplement of G in F . If every subfilter of F has a rad-supplement in F , then
F is called a rad-supplemented filter.

A lattice L is called semisimple, if for each proper filter F of L, there exists
a filter G of L such that L = T (F ∪ G) and F ∩ G = {1}). In this case, we
say that F is a direct summand of L, and we write L = F ⊕ G. A filter F of
L is called a semisimple filter, if every subfilter of F is a direct summand. A
simple lattice (resp. filter), is a lattice (resp. filter) that has no filters besides
the {1} and itself. For a filter F , Soc(F ) = T (∪i∈ΛFi), where {Fi}i∈Λ is the set
of all simple filters of L contained in F . In [17], Zhou and Zhang generalized
the concept of socle a module M to that of Socg(M) by considering of all simple
submodules ofM that are small inM in place of the class of all simple submodules
of M , that is, Socg(M) =

∑
{N � M : N is simple}. For a filter F , we define

Socg(F ) = T (∪i∈ΛFi), where {Fi}i∈Λ is the set of all simple filters of L contained in
F and Fi � F for each i ∈ Λ. Clearly, Socg(F ) ⊆ Soc(F ) and Socg(F ) ⊆ rad(F ).
Let F be a filter of a lattice L. F is called hollow if F 6= {1} and every proper
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subfilter G of F is small in F . F is called local if it has exactly one maximal
subfilter that contains all proper subfilters.

Proposition 1.1. (cf. [9], [8]) A non-empty subset F of a lattice L is a filter if
and only if x ∨ z ∈ F and x ∧ y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since
x = x ∨ (x ∧ y), y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all
x, y ∈ L.

Proposition 1.2. (cf. [6]) Let F be a filter of a distributive lattice L with 1.
(1) If A� F and C ⊆ A, then C � F .
(2) If A,B are subfilters of F with A� B, then A is a small subfilter in

subfilters of F that contains the subfilter of B. In particular, A� F .
(3) rad(F ) = T (∪G�FG).
(4) Every finitely generated subfilter of rad(F ) is small in rad(F ).
(5) x ∈ rad(F ) if and only if T ({x})� F .
(6) If F1, F2, . . . , Fn are small subfilters of F , then T (F1∪F2∪· · ·∪Fn) is also

small in F .

Lemma 1.3. (cf. [6])
(1) T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an 6 x for some ai ∈ A (1 6 i 6 n)} an

arbitrary non-empty subset A of L. Moreover, if F is a filter and A is a
subset of L with A ⊆ F , then T (A) ⊆ F , T (F ) = F and T (T (A)) = T (A).

(2) T (T (A ∪B) ∪C) ⊆ T (A ∪ T (B ∪C)) for subfilters A,B,C of a filter F of
L. In particular, F = T (T (C ∪B) ∪A) = T (T (A ∪ C) ∪B) for all
F = T (T (A ∪B) ∪ C).

(3) (Modular law) F1 ∩ T (F2 ∪ F3) = T (F2 ∪ (F1 ∩ F3)) for filters F1, F2, F3 of
L such that F2 ⊆ F1.

Proposition 1.4. (cf. [11])
(a) Let G be a semisimple subfilter of a filter F of L such that G ⊆ rad(F ).

Then G� F .
(b) Let H and G be subfilters of a filter F of L . Then the following hold:

(1) If H is semisimple, then T (H∪G)
G is a semisimple subfilter in F

G .
(2) If Soc(F ) = ∩KEFK.
(3) Soc(G) = G ∩ Soc(F ).

(c) Let U, V be subfilters of a filter F of L such that V is a direct summand of
F with U ⊆ V . Then U � F if and only if U � V .

2. Strongly Local Filters

Throughout this paper, we shall assume unless otherwise stated, that L is a dis-
tributive lattice with 1. In this section we collect some properties concerning
strongly local filters of L. Our starting point is the following lemma.
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Lemma 2.5. Let F be a filter of L. Then the following hold:
(1) If E is a simple subfilter of F , then E = T ({a}) for some 1 6= a ∈ E.
(2) If f1, f2, . . . , fn ∈ F , then T (T ({f1}) ∪ . . . ∪ T ({fn})) = T ({f1, . . . , fn}).
(3) If F is semisimple, then F is a direct sum of a finite family of simple

subfilters if and only if F is finitely generated.

Proof. (1). Since E is simple, there is an element 1 6= a ∈ E such that T ({a}) 6=
{1} is a subfilter of E; hence E = T ({a}).

(2). Since the inclusion A = T ({f1, . . . , fn}) ⊆ T (T ({f1})∪ . . .∪T ({fn})) = B
is clear we will prove the reverse inclusion. Let x ∈ B. Then a1 ∧ a2 ∧ · · · ∧ an 6 x
for some ai ∈ T ({fi}) (1 6 i 6 n). By assumption, there exist s1, s2, . . . , sn ∈ L
such that ai = fi ∨ si (1 6 i 6 n). Then (f1 ∨ s1) ∧ . . . ∧ (fn ∨ sn) 6 x. Since for
each i, fi 6 fi ∨ si and fi ∈ A, we get fi ∨ si ∈ A (1 6 i 6 n); so x ∈ A, and so
we have equality.

(3). Let F = F1 ⊕ · · · ⊕ Fn, where for each i (1 6 i 6 n), Fi is a simple
subfilter of F , so by (1), Fi = T ({fi}) for some 1 6= fi ∈ Fi. Then by (2),
F = T (T ({f1}) ∪ · · · ∪ T ({fn})) = T ({f1, . . . , fn}). Thus F is finitely generated.
Conversely, suppose that F = T (A), where A = {e1, . . . , em}. As F is semisimple,
we can write F = T (∪i∈IFi), where for each i ∈ I, Fi is simple. We can now pick
out a finite collection i1, i2, . . . , ir of elements of I such that ei ∈ T (Fi1 ∪ · · ·∪Fir )
for 1 6 i 6 m. But then F = T (Fi1 ∪ · · · ∪ Fir ), that is, F = Fi1 ⊕ · · · ⊕ Fir .

Proposition 2.6. If F is a filter of L, then Socg(F ) = rad(F ) ∩ Soc(F ).

Proof. It suffices to show that rad(F ) ∩ Soc(F ) ⊆ Socg(F ). Let a ∈ rad(F ) ∩
Soc(F ). Then T ({a}) is semisimple and so there exist simple subfilters Fi of F
such that T ({a}) = F1 ⊕ · · · ⊕ Fn by Lemma 2.5 (3). By Proposition 1.2 (5),
T ({a}) � rad(F ); hence it is small in F by Proposition 1.2 (2). Since for each i,
Fi ⊆ T ({a}), we get Fi � F by Proposition 1.2 (1). Thus a ∈ T ({a}) ⊆ Socg(F ),
and so we have equality.

A filter F is called indecomposable if F 6= {1} and F = T (G∪H) with G∩H =
{1}, then either G = {1} or H = {1}.

Lemma 2.7. Let F be an indecomposable filter of L. Then F is either simple or
Soc(F ) ⊆ rad(F ).

Proof. If F is simple, we are done. Thus we may assume that F is not simple. It
suffices to show that Soc(F )� F by Proposition 1.2 (3). Let F = T (K ∪ Soc(F ))
for some subfilter K of F . By assumption, there is a semisimple subfilter H
of Soc(F ) such that Soc(F ) = (Soc(F ) ∩ K) ⊕ H, and so by Lemma 1.3 (2),
F = T (K∪T (H∪(Soc(F )∩K))) = T (K∪H)andK∩H = H∩(Soc(F )∩K) = {1}.
Since F is indecomposable and not simple, we get H = {1}; hence F = K. Thus
Soc(F )� F , as required.
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By [6, Remark 2.19 (2)], every local filter is hollow and by [6, Remark 2.19
(1)], every hollow filter is indecomposable. Using Proposition 2.6 and Lemma 2.7
we have the following Corollary:

Corollary 2.8. Let F be a local filter of L such that it is not simple. Then
Socg(F ) = Soc(F ).

Definition 2.9. A filter F of L is called strongly local if it is local and rad(F ) is
semisimple. A filter F of L is called radical if F has no maximal subfilters, that
is, F = rad(F ).

Assume that F is a filter of L and let P (F ) be the filter generated by ∪G⊆FG,
where for each subfilter G of F , G = rad(G), that is, P (F ) = T (∪G⊆FG), where
G = rad(G). It is easy to see that P (F ) ⊆ rad(F ).

Lemma 2.10. If F is a filter of L, then P (F ) is the largest radical subfilter of F .

Proof. It suffices to show that P (F ) ⊆ rad(P (F )). If x ∈ P (F ), then there exist
radical subfilters G1, ..., Gn of F and g1 ∈ G1,.., gn ∈ Gn such that g1∧· · ·∧gn 6 x.
Since g1 ∈ G1 = rad(G1), . . . , gn ∈ Gn = rad(Gn), by Proposition 1.2 (5) we have
T ({gi}) � Gi, for each 1 6 i 6 n. By Proposition 1.2 (2), T ({gi}) � P (F ), for
each 1 6 i 6 n. Therefore gi ∈ rad(P (F )), for each 1 6 i 6 n. This implies that
x ∈ rad(P (F )).

Proposition 2.11. If a filter F of L is strongly local, then F is reduced (that is,
P (F ) = {1}).

Proof. Since rad(F ) is semisimple and P (F ) ⊆ rad(F ) ⊆ Soc(F ), we get P (F )
is semisimple and so P (F ) = rad(P (F )) = {1} by [6, Proposition 2.16 (2)] and
Lemma 2.10, as required.

Example 2.12. The collection of ideals of Z, the ring of integers, form a lattice
under set inclusion which we shall denote by L(Z) with respect to the following
definitions: mZ∨nZ = (m,n)Z andmZ∧nZ = [m,n]Z for all idealsmZ and nZ of
Z, where (m,n) and [m,n] are greatest common divisor and least common multiple
of m,n, respectively. Note that L(Z) is a distributive complete lattice with least
element the zero ideal and the greatest element Z. Then by [7, Proposition 2.1
(iii) and Theorem 3.1 (ii)], every simple filter of L(Z) is of the form F = {Z, pZ}
for some prime number p. Let P be the set of all prime numbers. For each p ∈ P,
set Fp = {Z, pZ}. Then {Fp}p∈P is the set of all simple filters of L(Z). Moreover,
by [7, Lemma 3.1], m = L(Z) \ {0} is the only maximal filter of L(Z); so L(Z)
is a local filter of L(Z) (so it is hollow). If G is a proper subfilter of L(Z) with
G 6= rad(G), then G has a maximal subfilter, say H. There exists x ∈ G such that
x /∈ H; hence T (H ∪ T ({x})) = G. By [6, Remark 2.19 (4)], G has a supplement
K in L(Z); so by Lemma 1.3,

L(Z) = T (T (H ∪ T ({x})) ∪K) = T (H ∪ T (K ∪ T ({x})));
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hence L(Z) = H which is impossible since T (K ∪ T ({x})) � L(Z). Thus
P (L(Z)) = m 6= {1}. If L(Z) = T (∪p∈PFp), then {0} = pi1Z ∧ · · · ∧ pikZ =
pi1 · · · pikZ, a contradiction. So L(Z) is not semisimple. Similarly, rad(L(Z)) = m
is not semisimple. Therefore the condition "strongly" in the Proposition 2.11 is
necessary.

3. SS-supplemented Filters
In this section, the basic properties and possible structures of ss-supplemented
filters are investigated. Our starting point is the following lemma.

Lemma 3.1. Let G and H be subfilters of a filter F of L. If G is a maximal
subfilter of F , then H is a supplement of G in F if and only if F = T (G∪H) and
H is local.

Proof. Let H be a supplement of G in F . By [6, Theorem 2.9 (4)], H is cyclic,
and G ∩ H = rad(H) is a (the unique) maximal subfilter of H; so H is local.
Conversely, let H be local (so it is hollow) and F = T (G∪H). If H ∩G = H, then
F = G which is impossible. Thus H ∩G 6= H. Now H is hollow gives H ∩G� H.
Thus H is a supplement of G in F .

Definition 3.2. Let G be any subfilter of a filter F of L. We say that H is an
ss-supplement G in F if F = T (G∪H) and G∩H � H and G∩H is semisimple.
We call a filter F ss-supplemented if every its subfilter has an ss-supplement in F .

A subfilter G of F has ample ss-supplements in F if every subfilter K of F
such that F = T (K ∪G) contains an ss-supplement of G in F . We call a filter F
amply ss-supplemented if every subfilter of F has ample ss-supplements in F .

We next give two other characterizations of ss-supplements filters.

Proposition 3.3. Let G,H be subfilters of a filter F of L. Then the following
statements are equivalent:

(1) F = T (G ∪H) and G ∩H ⊆ Socg(H);
(2) F = T (G ∪H) and G ∩H ⊆ rad(H) and G ∩H is semisimple;
(3) F = T (G ∪H) and G ∩H � H and G ∩H is semisimple.

Proof. (1) ⇒ (2). By (1) and Proposition 2.6, G ∩H is semisimple and G ∩H ⊆
rad(H) ∩ Soc(H) ⊆ rad(H).

(2)⇒ (3). It is clear by (2) and Proposition 1.4 (a).
(3)⇒ (1). It is clear by (3) and Proposition 2.6.

Analogous to that Lemma 3.1 we have the following proposition:

Proposition 3.4. Let G and H be subfilters of a filter F of L. If G is a maximal
subfilter of F , then H is a ss-supplement of G in F if and only if F = T (G ∪H)
and H is strongly local.



SS-supplemented property in the lattices 51

Proof. Let H be an ss-supplement of G in F . By [6, Theorem 2.9 (4)], H is local
with the unique maximal subfilter G ∩H = rad(H); so H is strongly local since
G∩H is semisimple. Conversely, since H is local and F = T (G∪H), we can write
G ∩ H ⊆ rad(H). Now rad(H) is semisimple gives G ∩ H is semisimple. Hence,
H is an ss-supplement of G in F .

Lemma 3.5. Let G be a subfilter of a ss-supplemented filter F of L. If G � F ,
then G ⊆ Socg(F ). In particular, if rad(F )� F , then rad(F ) ⊆ Soc(F ).

Proof. Let H be an ss-supplement of G in F . Then F = T (G ∪H) and G � F
gives H = F and G = G ∩H is semisimple; so G ⊆ rad(F ) ∩ Soc(F ) = Socg(F )
by Proposition 2.6. The in particular statement is clear.

Let F be a local filter of L (so it is hollow). It is easy to see that F has
no supplement subfilter except for {1} and F . Thus every local filter is amply
supplemented. Analogous to that we have:

Proposition 3.6. Every strongly local filter of L is amply ss-supplemented.

Proof. Let F be a strongly local filter (so rad(F ) is semisimple). Then F is local
and so it is amply supplemented. If G is a proper subfilter of F , then F = T (F∪G)
and G = G ∩ F � F ; so G ⊆ rad(F ); hence G is semisimple. Thus F is amply
ss-supplemented.

Proposition 3.7. If F is a hollow filter of L, then F is (amply) ss-supplemented
if and only if it is strongly local.

Proof. Assume that F is ss-supplemented and let x ∈ rad(F ). By Proposition
1.2 (5), T ({x}) � rad(F ), and so it is small in F by Proposition 1.2 (2). As
F is ss-supplemented, it follows from Lemma 3.5 that x ∈ T ({x}) ⊆ Socg(F ) =
rad(F ) ∩ Soc(F ); hence x ∈ Soc(F ), and so rad(F ) ⊆ Soc(F ). Suppose that
F = rad(F ). Then F = rad(F ) = Soc(F ), and so F is semisimple. Thus F = {1}
by [6, Proposition 2.16 (2)]. This is a contradiction because F is hollow. So we
may assume that F 6= rad(F ), that is, F is local by [6, Theorem 2.21]. Hence F
is strongly local. The other implication follows from Proposition 3.6.

The following example shows in general a (amply) supplemented filter need not
be (amply) ss-supplemented.

Example 3.8. Assume that R is a local Dedekind domain with unique maximal
ideal P = Rp and let E = E(R/P ), the R-injective hull of R/P . For each positive
integer n, set An = (0 :E Pn). Then by [9, Lemma 2.6], every non-zero proper
submodule of E is equal to Am for some m with a strictly increasing sequence of
submodules A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · . The collection of submodules
of E form a complete lattice which is a chain under set inclusion which we shall
denote by L(E) with respect to the following definitions: An∨Am = An+Am and
An∧Am = An∩Am for all submodules An and Am of E. Then by [7, Example 2.3



52 Ebrahimi Atani, Khoramdel, Hesari, Alipour

(b)], every proper filter of L(E) is of the form [An, E] for some n. Clearly, L(E)
is a hollow filter which is not local. As hollow filters are (amply) supplemented,
L(E) is (amply) supplemented. However, L(E) is not (amply) ss-supplemented
filter by Proposition 3.7.

Theorem 3.9. If F is a filter of L with rad(F )� F , then the following statements
are equivalent:

(1) F is ss-supplemented;
(2) F is supplemented and rad(F ) has an ss-supplement in F ;
(3) F is supplemented and rad(F ) ⊆ Soc(F ).

Proof. (1)⇒ (2). It is clear.
(2) ⇒ (3). Since rad(F ) � F and rad(F ) has ss-supplement in F , we get

F is a supplement of rad(F ); hence rad(F ) = rad(F ) ∩ F is semisimple. Thus
rad(F ) ⊆ Soc(F ).

(3)⇒ (1). Let G be a subfilter of F . By assumption, there exists a subfilter H
of F such that F = T (G∪H) and G∩H � H. Then G∩H ⊆ rad(H) ⊆ rad(F ) ⊆
Soc(F ); so G ∩H is semisimple. It means that F is ss-supplemented.

Corollary 3.10. If F is a finitely generated filter of L, then F is ss-supplemented
if and only if it is supplemented and rad(F ) ⊆ Soc(F ).

Proof. By Theorem 3.9, it suffices to show that rad(F ) � F . Assume that F =
T (A), where A = {a1, . . . , an} and let F = T (H ∪ rad(F )) for some subfilter H of
F . Since rad(F ) = T (∪G�FG), there exists a finite subfilters Fi1 � F , Fi2 � F ,
. . ., Fir � F such that ai ∈ T (T (Fi1 ∪ · · · ∪ Fir ) ∪H) for 1 6 i 6 r which implies
that F = T (T (Fi1 ∪ · · · ∪ Fir ) ∪H); hence H = F by Proposition 1.2 (6)..

Lemma 3.11. If K and H are semisimple filters of L, then T (K∪H) is semisim-
ple.

Proof. Let G be a subfilter of T (K ∪ H). There exist a subfilter K ′ of K and
a subfilter H ′ of H such that K = (G ∩ K) ⊕ K ′ (so K ′ ∩ G = {1}) and H =
(H∩G)⊕H ′ (soH ′∩G = {1}). If x ∈ G∩T (K ′∪H ′), then a∧b 6 x for some a ∈ K ′
and b ∈ H ′; so x = (x∨a)∧ (x∨ b) = 1. Thus G∩T (K ′ ∪H ′) = {1}. It enough to
show that T (H∪K) = T (G∪T (K ′∪H ′)). Since the inclusion T (G∪T (K ′∪H ′)) ⊆
T (K ∪H) is clear, we will prove the reverse inclusion. Let z ∈ T (K ∪H). Then
c ∧ d 6 z for some c ∈ K = T ((G ∩K) ∪K ′) and d ∈ H = T ((H ∩ G) ∪H ′). It
follows that there are elements c1 ∈ G∩K, c2 ∈ K ′, d1 ∈ G∩H and d2 ∈ H ′ such
that c1 ∧ c2 6 c and d1 ∧ d2 6 d; hence (c1 ∧ d1)∧ (c2 ∧ d2) 6 z, where c1 ∧ d1 ∈ G
and c2 ∧ d2 ∈ T (H ′ ∪K ′) which implies that z ∈ T (G ∪ T (K ′ ∪H ′)), and so we
have equality. Thus T (K ∪H) = G⊕ T (K ′ ∪H ′).

Proposition 3.12. Let F1 and G be subfilters of a filter F of L with F1 ss-
supplemented. If there is a ss-supplement for T (F1 ∪ G) in F , then the same is
true for G.
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Proof. Let X be an ss-supplement of T (F1 ∪G) in F and Y is an ss-supplement
T (X ∪ G) ∩ F1 in F1. Then by an argument like that in [6, Proposition 2.10],
we get F = T (G ∪ T (X ∪ Y )) and T (X ∪ Y ) ∩ G � T (X ∪ Y ). Moreover,
A = X∩T (Y ∪G) is semisimple as a subfilter of the semisimple filter X∩T (F1∪G).
Also, Y ∩ (F1 ∩ T (X ∪ G)) = Y ∩ T (X ∪ G) = B is semisimple; so T (A ∪ B) is
semisimple by Lemma 3.11. Since T (A∪B) = G∩ T (X ∪ Y ), we get T (X ∪ Y ) is
an ss-supplement of G in F .

Theorem 3.13. Let F1 and F2 be subfilters of F such that F = T (F1 ∪ F2). If
F1 and F2 are ss-supplemented, then F is ss-supplemented.

Proof. Let G be a subfilter of F . The subfilter {1} is ss-supplement of F =
T (F1 ∪ T (F2 ∪ G)) in F . Since F1 is ss-supplemented, T (F2 ∪ G) has an ss-
supplement in F by Proposition 3.12. Again applying Proposition 3.12, G has an
ss-supplement in F . This completes the proof.

Corollary 3.14. If F1, . . . , Fn are ss-supplemented filters of L, then T (Uni=1Fi)
is an ss-supplemented filter.

Proof. Apply Theorem 3.13.

Lemma 3.15. Let F be a filter of L. If every subfilter of F is ss-supplemented,
then F is amply ss-supplemented.

Proof. LetG andH be subfilters of F such that F = T (G∪H). By the assumption,
H = T ((G∩H)∪H ′), (G∩H)∩H ′ = G∩H ′ � H ′ and G∩H ′ is semisimple for
some subfilter H ′ of H. Since F = T (G ∪ T ((G ∩H) ∪H ′)) = T (G ∪H ′), we get
G has ample ss-supplements in F . Thus F is amply ss-supplemented.

Lemma 3.16. Assume that F is a amply ss-supplemented filter of L and let H
be an ss-supplement subfilter in F . Then H is amply ss-supplemented.

Proof. Let H be an ss-supplement of a subfilter G of F . Let X and Y be subfilters
of H such that H = T (X ∪ Y ). Then

F = T (H ∪G) = T (G ∪ T (X ∪ Y )) = T (Y ∪ T (G ∪X)).

As F is amply ss-supplemented, T (X ∪ G) has an ss-supplement Y ′ ⊆ Y in F ;
so F = T (Y ′ ∪ T (X ∪ G)) = T (G ∪ T (X ∪ Y ′)). Since X ∪ Y ′ ⊆ X ∪ Y , we
obtain T (X ∪ Y ′) ⊆ T (X ∪ Y ) = H. Then H is an ss-supplement of G in F gives
H = T (X ∪ Y ′) by minimality of H. Moreover, X ∩ Y ′ ⊆ T (G ∪X) ∩ Y ′ � Y ′,
and so X ∩ Y ′ � Y ′ by Proposition 1.2 (1). As T (G ∪ X) ∩ Y ′ is semisimple,
X ∩ Y ′ ⊆ T (G ∪X) ∩ Y ′ is semisimple. Thus H is amply ss-supplemented.

The next theorem gives a more explicit description of amply ss-supplemented
filters.
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Theorem 3.17. For a filter F of L, the following statements are equivalent:
(1) F is amply ss-supplemented;
(2) Every subfilter G of F is of the form G = T (X ∪ Y ), where X is ss-supp

lemented and Y ⊆ Socg(F ).

Proof. (1)⇒ (2). Assume that F is amply ss-supplemented and let G be a subfilter
of F . Since F is ss-supplemented, G has an ss-supplements H in F ; so F =
T (H ∪ G). By the assumption, there exists a subfilter X of G such that X is
an ss-supplement of H in F ; so F = T (X ∪H). Set Y = G ∩H. Since H is an
ss-supplement of G in F , we have Y = G∩H ⊆ Socg(H) ⊆ Soc(F ) by Proposition
3.3. By the modular law, G = G ∩ T (X ∪ H) = T (X ∪ (G ∩ H)) = T (X ∪ Y ),
where Y ⊆ Socg(F ) and X is ss-supplemented by Lemma 3.16.

(2)⇒ (1). By the assumption, if G is a subfilter of F , then G = T (X ∪Y ) with
X is ss-supplemented and Y ⊆ Socg(F ) ⊆ Soc(F ) (so Y is ss-supplemented). By
Theorem 3.13, G is ss-supplemented. Therefore F is amply ss-supplemented by
Lemma 3.15.

Corollary 3.18. For a filter F of L, the following statements are equivalent:
(1) F is amply ss-supplemented;
(2) Every subfilter of F is ss-supplemented;
(3) Every subfilter of F is amply ss-supplemented.

Proof. Apply Theorem 3.17.

4. SS-supplemented Quotient Filters
Quotient lattices are determined by equivalence relations rather than by ideals as
in the ring case. If F is a filter of a lattice (L,6), we define a relation on L, given
by x ∼ y if and only if there exist a, b ∈ F satisfying x ∧ a = y ∧ b. Then ∼ is an
equivalence relation on L, and we denote the equivalence class of a by a ∧ F and
these collection of all equivalence classes by L

F . We set up a partial order 6Q on L
F

as follows: for each a∧F, b∧F ∈ L
F , we write a∧F 6Q b∧F if and only if a 6 b. It

is straightforward to check that (LF ,6Q) is a poset. The following notation below
will be kept in this section: Let a ∧ F, b ∧ F ∈ L

F and set X = {a ∧ F, b ∧ F}.
By definition of 6Q, (a ∨ b) ∧ F is an upper bound for the set X. If c ∧ F is any
upper bound of X, then we can easily show that (a ∨ b) ∧ F 6Q c ∧ F . Thus
(a∧F )∨Q (b∧F ) = (a∨ b)∧F . Similarly, (a∧F )∧Q (b∧F ) = (a∧ b)∧F . Thus
(LF ,6Q) is a lattice.

Remark 4.1. Let G be a subfilter of a filter F of L.
(1). If a ∈ F , then a ∧ F = F . By the definition of 6Q, it is easy to see that

1 ∧ F = F is the greatest element of L
F .

(2). If a ∈ F , then a ∧ F = b ∧ F (for every b ∈ L) if and only if b ∈ F . In parti-
cular, c∧F = F if and only if c ∈ F . Also, if a ∈ F , then a∧F = F = 1∧F .

(3). By the definition 6Q, we can easily show that if L is distributive, then L
F is
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distributive.
(4). F

G = {a ∧G : a ∈ F} is a filter of L
G .

(5). If K is a filter of L
G , then K = F

G for some filter F of L.
(6). If H is a filter of L such that G ⊆ H and F

G = H
G , then F = H.

(7). If H and V are filters of L containing G, then F
G ∩

H
G = V

G if and only if
V = H ∩ F .

(8). If H is a filter of L containing G, then T (F∪H)
G = T (HG ∪

F
G ).

Proposition 4.2. Every quotient filter of a strongly local filter of L is strongly
local.

Proof. Let G be a subfilter of a strongly local filter F of L. Clearly, if H is a
subfilter of F with G ⊆ H, then H is a maximal subfilter of F if and only if HG is a
maximal subfilter of FG ; so the quotient filter F

G is local. By assumption, rad(FG ) =
rad(F )
G ⊆ Soc(F )

G =
∩KEFK

G ⊆ ∩K
G EF

G

K
G ⊆ Soc(FG ); so rad(FG ) is semisimple. Thus

F
G is strongly local.

Lemma 4.3. Let G,H,K be filters of L such that H � K. Then T (H∪G)
G �

T (K∪G)
G .

Proof. Let T (K∪G)
G = T (UG ∪

T (H∪G)
G ) = T (U∪T (H∪G))

G for some subfilter U
G of

T (K∪G)
G (so U ⊆ T (K∪G)); hence T (K∪G) = T (U∪H). As K = K∩T (U∪H) =

T (H ∪ (U ∩K)), we get U ∩K = K since H � K. It follows that T (K ∪G) ⊆ U ,
and so T (K∪G)

G = U
G .

Theorem 4.4. If F is an ss-supplemented filter, then every quotient filter of F
is ss-supplemented.

Proof. Assume that F is an ss-supplemented filter and let F
G be a quotient filter

of F . Let H
G be a subfilter of F

G . By the assumption, there exists a subfilter K
of F such that F = T (K ∪ H), K ∩ H � H and H ∩ K is semisimple. Then
F
G = T (HG ∪

T (K∪G)
G ) and

H

G
∩ T (K ∪G)

G
=
H ∩ T (K ∪G)

G
=
T ((H ∩K) ∪G)

G
� T (K ∪G)

G

by Lemma 4.3 and Lemma 1.3. Since H ∩K is semisimple, it follows from Propo-
sition 1.4 that H

G ∩
T (K∪G)

G = T ((H∩K)∪G)
G is semisimple; so T (K∪G)

G is an ss-
supplement of HG in F

G . This completes the proof.

Corollary 4.5. If F is an amply ss-supplemented filter of L, then every quotient
filter of F is amply ss-supplemented.



56 Ebrahimi Atani, Khoramdel, Hesari, Alipour

Proof. Let V
X be a subfilter of F

X such that F
X = T ( VX ∪

U
X ) for some subfilter U

X

of F
X ; so F = T (V ∪ U). Since F is amply ss-supplemented, there is a subfilter

H ⊆ U such that H is a ss-supplement of V in F . By a similar argument like
that in Theorem 4.4, T (H∪X)

X ⊆ U
X is a ss-supplement V

X in F
X . Thus F

X is amply
ss-supplemented.

Lemma 4.6. Let G and H be subfilters of a filter F of L such that F = T (G∪H).
If K is a proper subfilter of F such that G $ K, then K ∩H is a proper subfilter
of H.

Proof. If H ⊆ K, then F = T (G∪H) gives F = K, a contradiction. Thus H * K
and K ∩ H 6= H. By the relations, K = K ∩ T (G ∪ H) = T (G ∪ (H ∩K)) and
K 6= G, we obtain K ∩H 6= {1}. Therefore, K ∩H is a proper subfilter of H.

Lemma 4.7. Let G and H be proper subfilters of a filter F of L. If F = T (G∪H)
and H is simple, then G is a maximal subfilter of F .

Proof. If K is a subfilter of F such that G $ K $ F , then K ∩ H is a proper
subfilter of H by Lemma 4.6 which is impossible since H is simple. This completes
the proof.

Proposition 4.8. Let G and H be subfilters of a filter F of L. Assume H to be
a supplement of G in F . Then the following hold:

(1). If K is a maximal subfilter of H, then T (G∪K) is a maximal subfilter of
F . In this case, K = T (G ∪K) ∩H.

(2). If rad(F )� F , then G is contained in a maximal subfilter of F .

Proof. (1). Since K is a maximal subfilter of H, we find K 6= H. Since H is a
supplement of G in F , we get F 6= T (G∪K). As G∩H � H and K is a maximal
subfilter of H, we conclude that H ∩ G ⊆ K; hence K = T (K ∪ (G ∩ H)) =

H ∩ T (G ∪ K). Since H
K is simple and F

K = T (HK ∪
T (G∪K)

K ), we conclude that
T (G∪K)

K is a maximal filter of F
K by Lemma 4.7 which implies that T (G ∪K) is a

maximal subfilter of F which contains G.
(2). If G ⊆ rad(F ), then the assertion is clear. If G * rad(F ), then by [6,

Theorem 2.9 (3)], rad(H) = H ∩ rad(F ) 6= H, i.e. there is a maximal subfilter K
of H. Now the assertion follows from (1).

Definition 4.9. Let F be a filter of L. F is called the internal direct sum of the
set {Fi : i ∈ I} of subfilters of F : F = ⊕i∈IFi if and only if F = T (∪i∈IFi) and
for each j ∈ I, Fj ∩ T (∪i∈Ii6=j

Fi) = {1}.

Lemma 4.10. If {Fi}i∈I is an indexed set of subfilters of a filter F of L with
F = ⊕i∈IFi, then rad(F ) = ⊕i∈Irad(Fi) and Soc(F ) = ⊕i∈ISoc(Fi).
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Proof. By the assumption, for each i ∈ I, rad(Fi) = Fi ∩ rad(F ) by [6, Theo-
rem 2.9 (3)]. It suffices to show that rad(F ) ⊆ ⊕i∈Irad(Fi). Let x ∈ rad(F ).
Then (xi1 ∧ xi2 ∧ · · · ∧ xik) 6 x, where xi1 ∈ Fi1 ⊆ rad(F ), . . . , xik ∈ Fik ⊆
rad(F ). Therefore, F = ⊕i∈IFi gives there exist subfilters Ft1 , · · · , Fts of F
such that xi1 ∈ Ft1 ∩ rad(F ) = rad(Ft1), . . . , xik ∈ Fts ∩ rad(F ) = rad(Fts);
so x ∈ T (rad(Ft1) ∪ · · · ∪ rad(Fts)) ⊆ ⊕i∈Irad(Fi), and so we have equality. Since
the inclusion ⊕i∈ISoc(Fi) ⊆ Soc(F ) is clear, we will prove the reverse inclusion.
Let z ∈ Soc(F ). Then

z = (z ∨ a1) ∧ · · · ∧ (z ∨ an)

for some a1 ∈ Fj1 ⊆ F, . . . , an ∈ Fjn ⊆ F ; hence z ∨ a1 ∈ Fj1 ∩ Soc(F ) =
Soc(Fj1), . . . , z ∨ an ∈ Fjn ∩ Soc(F ) = Soc(Fj1). It follows that z ∈ T (Soc(Fj1) ∪
· · · ∪ Soc(Fjn)) ⊆ ⊕i∈ISoc(Fi). This completes the proof.

Let L, L′ be two lattice. Then a lattice homomorphism f : L → L′ is a map
from L to L′ satisfying f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) for all
x, y ∈ L. A bijective lattice homomorphism f is called a lattice isomorphism (in
this case we write L ∼= L′).

Lemma 4.11. If A and B are filters of L, then T (A∪B)
A

∼= B
A∩B .

Proof. Define f : B
A∩B →

T (A∪B)
A by f(b ∧ (A ∩ B)) = b ∧ A. It is clear that f is

well-defined. We will show f is one-to-one: Let f(b1 ∧ (A∩B)) = f(b2 ∧ (A∩B)),
where b1, b2 ∈ B. Then b1∧A = b2∧A; and so b1∧c1 = b2∧c2 for some c1, c2 ∈ A.
Hence

(b1 ∧ c1) ∨ (b1 ∧ b2) = (b2 ∧ c2) ∨ (b2 ∧ b1)

The left side is equal to [b1∨(b1∧b2)]∧[c1∨(b1∧b2)] = b1∧[c1∨(b1∧b2)]. Similarly,
the right side is equal to b1 ∧ [c1 ∨ (b1 ∧ b2)]. Thus b1 ∧ (A ∩ B) = b2 ∧ (A ∩ B).
We claim f is surjective: Let z ∧ A ∈ T (A∪B)

A , where z ∈ T (A ∪ B). Hence there
exist a ∈ A, b ∈ B such that a∧ b 6 z. Thus (z ∨ b)∧ a = (z ∧ a)∨ (b∧ a) = z ∧ a.
Therefore (z ∨ b)∧A = z ∧A. Thus f((z ∨ b)∧ (A∩B)) = (z ∨ b)∧A = z ∧A and
(z ∨ b) ∧ (A ∩ B) ∈ B

A∩B . Now, we show that f is a lattice homomorphism. Let
b1∧(A∩B), b2∧(A∩B) ∈ B

A∩B . Then f((b1∧(A∩B))∧Q (b2∧(A∩B))) = f((b1∧
b2)∧(A∩B)) = (b1∧b2)∧A = (b1∧A)∧Q(b2∧A) = f(b1∧(A∩B))∧Qf(b2∧(A∩B)).

Similarly, f((b1∧(A∩B))∨Q (b2∧(A∩B))) = f(b1∧(A∩B))∨Qf(b2∧(A∩B)).
This completes the proof.

Lemma 4.12. Assume that {Fi}i∈I is an indexed set of subfilters of a filter F of
L such that F = ⊕i∈IFi and let G be a subfilter of F . Then F

G = ⊕i∈I T (Fi∪G)
G .

Proof. For each j ∈ I, let x∧G ∈ T (Fj∪G)
G ∩T (∪i∈Ii6=j

T (Fi∪G)
G ). Then x ∈ T (Fj∪G)

gives there exist fj ∈ Fj and gj ∈ G such that x∧G = ((x∨ fj)∧ (x∨ gj))∧G =
(x∨fj)∧G; so x = fj∨x ∈ Fj . Similarly, there are subfilters Fi1 , . . . , Fis such that
x ∈ T (∪sk=1k 6=j

Fik); hence x = 1. Thus T (Fj∪G)
G ∩ T (∪i∈Ii6=j

T (Fi∪G)
G ) = {1 ∧ G}.



58 Ebrahimi Atani, Khoramdel, Hesari, Alipour

It is enough to show that F
G ⊆ ⊕i∈I

T (Fi∪G)
G . Let y ∧ G ∈ F

G . Then there exist
fi1 ∈ Fi1 , . . . , fit ∈ Fit such that fi1∧· · ·∧fit 6 y; so (fi1∧G)∧Q · · ·∧Q (fit∧G) 6

y ∧G. It follows that y ∧G ∈ T (
T (Fi1

∪G)

G ∪ · · · ∪ T (Fit∪G
G ) ⊆ T (∪i∈I T (Fi∪G

G )), as
required.

Remark 4.13. Let F be a filter of F .
(1). If G is a hollow subfilter of a filter F of L that is not small in F . Then there

exists a proper subfilter K of F such that F = T (G ∪K). Since G is hollow,
we get G∩K � G. Thus G is a supplement in F . Thus rad(G) = G∩ rad(F )
by [6, Theorem 2.9 (3)].

(2). If G is a direct summand of F such that G� F , then G = {1}.
(3). A filter F of L is said to be coatomic if every proper subfilter of F is contained

in a maximal subfilter of F . It is easy to see that rad(F )� F .

Lemma 4.14. Let {Hα}α∈A be an indexed set of simple subfilters of the filter F
of a lattice L. If F = T (∪α∈AHα), then for each subfilter K of F there is a subset
B of A such that {Hα}α∈B is independent and F = K ⊕ (T (∪α∈BHα)).

Proof. Let K be a subfilter of F . Then there is a subset B of A maximal with
respect to conditions that {Hα}α∈B is independent and K ∩ (T (∪α∈BHα)) = {1}.
Let M = T (K ∪ (T (∪α∈BHα))). For each α ∈ A, we have either Hα ∩M = {1} or
Hα∩M = Hα. If Hα∩M = {1}, then we have a contradiction with the maximality
of B. Thus Hα ⊂M for each α ∈ A, hence F = K ⊕ (T (∪α∈BHα)).

Proposition 4.15. Let F = ⊕i∈IFi be a filter of L, where each Fi is a local filter.
If rad(F )� F , then F is supplemented.

Proof. By [6, Theorem 2.21] and Remark 4.13, for each i ∈ I, Fi is not small in
F (so rad(Fi) = Fi ∩ rad(F ) 6= Fi) and Fi

rad(Fi)
is simple. Let U be a subfilter of

F . By Lemma 4.11 and Lemma 4.12, we have F̄ = F
rad(F ) = ⊕i∈I T (Fi∪rad(F ))

rad(F )
∼=

⊕i∈I Fi

rad(Fi)
is a direct sum of simple filters, and so F̄ = Ū⊕(⊕i∈J Fi

rad(Fi)
) for some

J ⊆ I, where Ū = T (U∪rad(F ))
rad(F ) , by Lemma 4.15. Now we set V̄ = ⊕i∈J Fi

rad(Fi)
)

(so V = ⊕i∈JFi). Since F̄ = Ū ⊕ V̄ , we get that F = T (rad(F ) ∪ T (U ∪ V ))
which implies F = T (U ∪ V ) since rad(F ) � F . Moreover, Ū ∩ V̄ = {rad(F )}
gives U ∩ V ⊆ rad(F ); so U ∩ V � F by Proposition 1.2 (1). Since V is a direct
summand of F , U ∩ V � V by Proposition 1.4 (c). Thus F is supplemented.

Theorem 4.16. Let F = ⊕i∈IFi be a filter of L, where each Fi is a strongly local
filter. Then F is ss-supplemented and coatomic.

Proof. Since Fi is strongly local for every i ∈ I, it is local and rad(Fi) ⊆ Soc(Fi)
(i ∈ I). It then follows from Lemma 4.10 that rad(F ) = ⊕i∈Irad(Fi) ⊆ ⊕i∈ISoc(Fi)
= Soc(F ); hence rad(F )� F by Proposition 1.4 (a). As strongly local filters are
local, Proposition 4.16 gives F is supplemented. Therefore, F is ss-supplemented
by Theorem 3.9. Let H be a proper subfilter of F . By Proposition 4.8 (2), H is
contained in a maximal subfilter of F , that is, F is coatomic.
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Hom-Jacobi-Jordan and Hom-antiassociative
algebras with symmetric invariant nondegenerate

bilinear forms

Cyrille Essossolim Haliya and Gbêvèwou Damien Houndedji

Abstract. The aim of this paper is first to introduce and study quadratic Hom-Jacobi-Jordan
algebras, which are Hom-Jacobi-Jordan algebras with symmetric invariant nondegenerate bilin-
ear forms. We provide several constructions leading to examples. We reduce the case where
the twist map is invertible to the study of involutive quadratic Jacobi-Jordan algebras. Also ele-
ments of a representation theory for Hom-Jacobi-Jordan algebras, including adjoint and coadjoint
representations are supplied with application to quadratic Hom-Jacobi-Jordan algebras.

Secondly, introduce a hom-antiassociative algebra built as a direct sum of a given hom- anti-
associative algebra (A, ·, α) and its dual (A∗, ◦, α∗), endowed with a non-degenerate symmetric
bilinear form B, where · and ◦ are the products defined on A and A∗, respectively, α and α∗

stand for the corresponding algebra homomorphisms.

1. Introduction

The Hom-algebra structures arose first in quasi-deformation of Lie algebras of
vector fields. Discrete modifications of vector fields via twisted derivations lead to
Hom-Lie and quasi-Hom-Lie structures in which the Jacobi condition is twisted.
The first examples of q-deformations, in which the derivations are replaced by
σ-derivations, concerned the Witt and Virasoro algebras, see for example [2, 9,
10, 11, 12, 14, 16]. A general study and construction of Hom-Lie algebras are
considered in [13, 17, 18] and a more general framework bordering color and super
Lie algebras was introduced in [13, 17, 18, 19]. In the subclass of Hom-Lie algebras
skew-symmetry is untwisted, whereas the Jacobi identity is twisted by a single
linear map and contains three terms as in Lie algebras, reducing to ordinary Lie
algebras when the twisting linear map is the identity map.

In [21] and [22], the theory of Hom-coalgebras and related structures are de-
veloped. Further development could be found in [3, 4, 15].

The quadratic Lie algebras, also called metrizable or orthogonal, are inten-
sively studied, one of the fundamental results of constructing and characterizing
quadratic Lie algebras is due to Medina and Revoy (see [23]) using double exten-
sion, while the concept of T ∗-extension is due to Bordemann (see [7]). The T ∗-

2010 Mathematics Subject Classification: 16T25, 05C25, 16S99, 16Z05.
Keywords: Hom-Jacobi-Jordan algebra, hom-antiassociative algebra, representation,
quadratic form
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extension concerns nonassociative algebras with nondegenerate associative sym-
metric bilinear form, such algebras are called metrizable algebras. In [7], the
metrizable nilpotent associative algebras and metrizable solvable Lie algebras are
described. The study of graded quadratic Lie algebras could be found in [5].
Jacobi-Jordan algebras (JJ algebras for short) were introduced in [8] in 2014 as
vector spaces A over a field k, equipped with a bilinear map · : A×A → A satis-
fying the Jacobi identity and instead of the skew-symmetry condition valid for Lie
algebras the commutativity x · y = y · x, for all x, y ∈ A is imposed. This class of
algebras appear under different names in the literature reflecting, perhaps, the fact
that it was considered from different viewpoints by different communities, some-
times not aware of each other’s results (see [27] for more details). Wörz-Busekros
in [26] relates these type of algebras with Bernstein algebras. One crucial remark
is that JJ algebras are examples of the more popular and well-referenced Jordan
algebras [1, 24] introduced in order to achieve an axiomatization for the algebra of
observables in quantum mechanics. In [8] the authors achieved the classification of
these algebras up to dimension 6 over an algebraically closed field of characteristic
different from 2 and 3. There’s two entertaining facts on Jacobi-Jordan algebras.
The first one is that in [1] prove that a finite dimensional JJ algebras is Frobenius
if and only if there exists an invariant non degenerate bilinear form (Proposition
1.8). The other entertaining fact (noted in [25]) is that Jacobi-Jordan algebras
can be produced from antiassociative algebras the same way as they are produced
from associative ones. Hence there’s a strong link in between antiassociative alge-
bras and Jacobi-Jordan algebras. By antiassociative algebras, we mean algebras
subject to operation (a, b) → ab satisfying (ab)c + a(bc) = 0 for each a, b and c.
This class of algebras first arise in the literature specially in [25] where the au-
thors gave their main properties. The purpose of this paper on the first hand is
to study and construct quadratic Hom-Jacobi-Jordan algebras as S. Benayadi and
A. Makhlouf did for the case of Lie algebra structures in [6]. On the other hands
to establish a double construction of hom-antiassociative algebra equipped with a
non degenerate symmetric invariant bilinear form.

In the first Section, we define the notions of Hom-Jacobi-Jordan algebras, Hom-
antiassociative algebras and their related propreties. Some key constructions of
Hom-Jacobi-Jordan algebras are derived. Section 2 is dedicated to a theory of rep-
resentations of Hom-Jacobi-Jordan algebras including adjoint and coadjoint repre-
sentations. In Section 3, we introduce the notion of quadratic Hom-Jacobi-Jordan
algebra and give some properties. Several procedures of construction leading to
some examples are provided in Section 4. We show in Section 5 that there exists
biunivoque correspondence between some classes of Jacobi-Jordan algebras and
classes of Hom-Jacobi-Jordan algebras. In Section 6, we introduce the concepts
of matched pairs of hom-antiassociative algebras and establish some properties.
In Section 7, we give and discuss of double constructions of multiplicative hom-
antiassociative algebras. In section 8, we end with some concluding remarks.
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2. Preliminaries
In the following we give the definitions of Hom-Jacobi-Jordan and Hom- anti-
associative algebraic structures generalizing the well known Jacobi-Jordan and
antiassociative algebras. Also we define in this case the notion of modules over
Hom-algebras.

Throughout the article we let K be an algebraically closed field of characteristic
0. We mean by a Hom-algebra a triple (A,µ, α) consisting of a vector space A, a
bilinear map µ and a linear map α. In all the examples involving the unspecified
products are either symmetric or zero.

The notion of Hom-Lie algebra was introduced by Hartwig, Larsson and Sil-
vestrov in [13, 17, 18] motivated initially by examples of deformed Lie algebras
coming from twisted discretizations of vector fields. In this article, we follow
notations from [20]. In this part, we analogously define the Hom-Jacobi-Jordan
algebras which is a kind of deformation of Jacobi-Jordan algebras. But first let’s
recall the notions antiassociative and Jacobi-Jordan algebras.

Definition 2.1. [25] Let "·" be a bilinear product in a vector space A. Suppose
that it satisfies the following law:

(x · y) · z = −x · (y · z). (2.1)

Then, we call the pair (A, ·) an antiassociative algebra.

Definition 2.2. [27] An algebra (g, [ , ]) over K is called Jacobi-Jordan if it is
commutative:

[x, y] = [y, x], (2.2)

and satisfies the Jacobi identity:

[[x, y], z] + [[z, x], y] + [[y, z], x] = 0 (2.3)

for any x,y,z ∈ g.

Theorem 2.3. [27] Given an antiassociative algebra (A, ·), the new algebra A†
with multiplication give by the "anticommutator"

[a, b] =
1

2
(a · b+ b · a) , (2.4)

is a Jacobi-Jordan algebra.

Since Jacobi-Jordan algebras are commutative, the left and right actions of an
algebra coincide, so we can speak about just modules.

Definition 2.4. [27] A vector space V is a module over a Jacobi-Jordan algebra
g, if there is a linear map (a representation) ρ : g→ End(V ) such that

ρ([x, y])(v) = −ρ(x)(ρ(y)v)− ρ(y)(ρ(x)v) (2.5)

for any x, y ∈ g and v ∈ V .
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Definition 2.5. A Hom-Jacobi-Jordan algebra is a triple (g, [ , ], α) consisting of
a linear space g on which [ , ] : g× g→ g is a bilinear map and α : g→ g a linear
map satisfying

[x, y] = [y, x], (symmetry) (2.6)
	x,y,z [α(x), [y, z]] = 0 (Hom-Jacobi condition) (2.7)

for all x, y, z from g, where 	x,y,z denotes summation over the cyclic permutation
on x, y, z.

We recover classical Jacobi-Jordan algebra when α = idg and the identity (2.7)
is the Jacobi identity in this case.

Proposition 2.6. Every symmetric bilinear map on a 2-dimensional linear space
defines a Hom-Jacobi-Jordan algebra.

Proof. The Hom-Jacobi identity (2.7) is satisfied for any triple (x, x, y).

Let (g, µ, α) and g′ = (g′, µ′, α′) be two Hom-Jacobi-Jordan algebras. A linear
map f : g→ g′ is a morphism of Hom-Jacobi-Jordan algebras if

µ′ ◦ (f ⊗ f) = f ◦ µ and f ◦ α = α′ ◦ f.

In particular, Hom-Jacobi-Jordan algebras (g, µ, α) and (g, µ′, α′) are isomor-
phic if there exists a bijective linear map f such that

µ = f−1 ◦ µ′ ◦ (f ⊗ f) and α = f−1 ◦ α′ ◦ f.

A subspace I of g is said to be an ideal if for x ∈ I and y ∈ g we have [x, y] ∈ I
and α(x) ∈ I. A Hom-Jacobi-Jordan algebra in which the anticommutator is not
identically zero and which has no proper ideals is called simple.

Example 2.7. Let {x1, x2, x3} be a basis of a 3-dimensional linear space g over
K. The following bracket and linear map α on g = K3 define a Hom-Jacobi-Jordan
algebra over K:

[x1, x1] = −bx3,
[x2, x2] = ax3,
[x3, x3] = ax3,

[x1, x2] = b(−x1 + 1
2x3),

[x1, x3] = b
2x2,

[x2, x3] = 2(ax1 + bx3),

α(x1) = x1,
α(x2) = 2x2,
α(x3) = 2x3

with [x2, x1], [x3, x1] and [x3, x2] defined via symmetry. It’s a Jacobi-Jordan alge-
bra only in case b = 0 and a = 0 or b = 0 and a 6= 0, since

[x1, [x2, x3]] + [x3, [x1, x2]] + [x2, [x3, x1]] =
b2

2
x2 + abx3.

For simplicity we will use in the sequel the following terminology and notations.
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Definition 2.8. Let (g, [·, ·], α) be a Hom-Jacobi-Jordan algebra. The Hom-
algebra is called

• a multiplicative Hom-Jacobi-Jordan algebra if for all x, y ∈ g we have
α([x, y]) = [α(x), α(y)];

• a regular Hom-Jacobi-Jordan algebra if α is an automorphism;

• an involutive Hom-Jacobi-Jordan algebra if α is an involution, that is α2 = id.

The center of the Hom-Jacobi-Jordan algebra is denoted Z(g) and defined by

Z(g) = {x ∈ g : [x, y] = 0 ∀y ∈ g}.

We give in the following the definition of Hom-antiassociative algebra which
provide a different way for constructing Hom-Jacobi-Jordan algebras by extend-
ing the fundamental construction of Jacobi-Jordan algebras from antiassociative
algebras via anticommutator bracket multiplication.

Definition 2.9. A Hom-antiassociative algebra is a triple (A,µ, α) consisting of
a linear space A, µ : A×A→ A is a bilinear map and α : A→ A is a linear map,
satisfying

µ(α(x), µ(y, z)) = −µ(µ(x, y), α(z)). (2.8)

We can talk about functor from the category of Hom-antiassociative algebras
in the category of Hom-Jacobi-Jordan algebras.

Proposition 2.10. Let (A,µ, α) be a Hom-antiassociative algebra defined on the
linear space A by the multiplication µ and a homomorphism α. Then the triple
(A, [ , ], α), where the bracket is defined for x, y ∈ A by [x, y] = µ(x, y) + µ(y, x),
is a Hom-Jacobi-Jordan algebra.

Proof. The bracket is obviously symmetric and with a direct computation we have

[α(x), [y, z]] + [α(z), [x, y]] + [α(y), [z, x]]

= µ(α(x), µ(y, z)) + µ(α(x), µ(z, y)) + µ(µ(y, z), α(x)) + µ(µ(z, y), α(x))

+ µ(α(z), µ(x, y)) + µ(α(z), µ(y, x)) + µ(µ(x, y), α(z)) + µ(µ(y, x), α(z))

+µ(α(y), µ(z, x))+µ(α(y), µ(x, z))+µ(µ(z, x), α(y))+µ(µ(x, z), α(y)) = 0. �

A structure of module over Hom-associative algebras is defined in [21] and [22].
Here we define the analogous notion over Hom-antiassociative algebras as follows.

Definition 2.11. Let (A, µ, α) be a Hom-antiassociative algebra. A (left) A-
module is a triple (M,f, γ) where M is a K-vector space and f, γ are K-linear
maps, f : M → M and γ : A ⊗ M → M , such that the following diagram
commutes:

A⊗A⊗M µ⊗f−→ A⊗Myα⊗γ ↓γ

A⊗M γ−→ M
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Remark 2.12. A Hom-antiassociative algebra (A, µ, α) is a left A-module with
M = A, f = α and γ = µ.

The following result shows that Jacobi-Jordan algebras deform into Hom-
Jacobi-Jordan algebras via endomorphisms.

Theorem 2.13. Let (g, [ , ]) be a Jacobi-Jordan algebra and α : g → g be a
Jacobi-Jordan algebra endomorphism. Then gα = (g, [ , ]α, α) is a Hom-Jacobi-
Jordan algebra, where [ , ]α = α◦ [ , ]. Moreover, suppose that (g′, [ , ]′) is another
Jacobi-Jordan algebra and α′ : g′ → g′ is a Jacobi-Jordan algebra endomorphism.
If f : g→ g′ is a Jacobi-Jordan algebra morphism that satisfies f ◦α = α′ ◦ f then

f : (g, [ , ]α, α) −→ (g′, [ , ]′α′ , α
′)

is a morphism of Hom-Jacobi-Jordan algebras.

Proof. Observe that [α(x), [y, z]α]α = α[α(x), α[y, z]] = α2[x, [y, z]]. Therefore the
Hom-Jacobi identity for gα = (g, [ , ]α, α) follows obviously from the Jacobi identity
of (g, [ , ]). The symmetry and the second assertion are proved similarly.

In the sequel we denote by gα the Hom-Jacobi-Jordan algebra (g, α ◦ [ , ], α)
corresponding to a given Jacobi-Jordan algebra (g, [ , ]) and an endomorphism α.
We say that the Hom-Jacobi-Jordan algebra is obtained by composition.

Proposition 2.14. Let (g, [ , ], α) be a regular Hom-Jacobi-Jordan algebra. Then
(g, [ , ]α−1 = α−1 ◦ [ , ]) is a Jacobi-Jordan algebra.

Proof. It follows from
	x,y,z[x, [y, z]α−1 ]α−1 =	x,y,zα−1([x, α−1([y, z])]) =	x,y,zα−2[α(x), [y, z]] = 0.

Remark 2.15. In particular the proposition is valid when α is an involution.

We may also derive new Hom-Jacobi-Jordan algebras from a given multiplica-
tive Hom-Jacobi-Jordan algebra using the following procedure.

Definition 2.16. Let (g, [ , ], α) be a multiplicative Hom-Jacobi-Jordan algebra
and n > 0. The nth derived Hom-algebra of g is defined by

g(n) =
(
g, [ , ](n) = αn ◦ [ , ], αn+1

)
. (2.9)

Note that g(0) = g and g(1) =
(
g, [ , ](1) = α ◦ [ , ], α2

)
.

Observe that for n > 1 and x, y, z ∈ g we have

[[x, y](n), αn+1(z)](n) = αn([αn([x, y]), αn+1(z)]) = α2n([[x, y], α(z)]).

Hence, one obtains the following result.
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Theorem 2.17. Let (g, [ , ], α) be a multiplicative Hom-Jacobi-Jordan algebra.
Then its nth derived Hom-algebra is a Hom-Jacobi-Jordan algebra.

In the following we construct Hom-Jacobi-Jordan algebras involving elements
of the centroid of Jacobi-Jordan algebras. Let (g, [·, ·]) be a Jacobi-Jordan algebra.
An endomorphism θ ∈ End(g) is said to be an element of the centroid if
θ[x, y] = [θ(x), y] for any x, y ∈ g. The centroid is defined by

Cent(g) = {θ ∈ End(g) : θ[x, y] = [θ(x), y], ∀x, y ∈ g}.

The same definition is assumed for Hom-Jacobi-Jordan algebra.

Proposition 2.18. Let (g, [·, ·]) be a Jacobi-Jordan algebra and θ ∈ Cent(g). Set
for x, y ∈ g

{x, y} = [θ(x), y],

[x, y]θ = [θ(x), θ(y)].

Then (g, {·, ·}, θ) and (g, [·, ·]θ, θ) are Hom-Jacobi-Jordan algebras.

Proof. For θ ∈ Cent(g) we have [θ(x), y] = θ([x, y]) = θ([y, x]) = [θ(y), x] =
[x, θ(y)]. Then

{x, y} = [θ(x), y] = [θ(y), x] = θ[y, x] = {y, x}.

Also we have

{θ(x), {y, z}} = [θ2(x), {y, z}] = [θ2(x), [θ(y), z]]

= θ([θ(x), [θ(y), z]]) = [θ(x), θ([θ(y), z])]

= [θ(x), [θ(y), θ(z)]].

It follows 	x,y,z {θ(x), {y, z}} =	x,y,z [θ(x), [θ(y), θ(z)]] = 0 since (g, [ , ]) is a Lie
algebra. Therefore the Hom-Jacobi is satisfied. Thus (g, {·, ·}, θ) is a Hom-Jacobi-
Jordan algebra.

Similarly we have the symmetry and the Hom-Jacobi identity satisfied for
(g, [·, ·]θ, θ). Indeed

[x, y]θ = [θ(x), θ(y)] = [θ(y), θ(x)] = [y, x]θ,

and

[θ(x), [y, z]θ]θ = [θ2(x), θ([y, z]θ)] = [θ2(x), θ([θ(y), θ(z)]] = θ2([θ(x), [θ(y), θ(z)]],

which leads to 	x,y,z [θ(x), [y, z]θ]θ = θ2(	x,y,z [θ(x), [θ(y), θ(z)]]) = 0.
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3. Representations of Hom-Jacobi-Jordan Algebras
In this section we introduce a representation theory of Hom-Jacobi-Jordan algebras
and discuss the cases of adjoint and coadjoint representations for Hom-Jacobi-
Jordan algebras.

Definition 3.1. Let (g, [ , ], α) be a Hom-Jacobi-Jordan algebra. A representation
of g is a triple (V, ρ, β), where V is a K-vector space, β ∈ End(V ) and
ρ : g→ End(V ) is a linear map satisfying

ρ([x, y]) ◦ β = −ρ(α(x)) ◦ ρ(y)− ρ(α(y)) ◦ ρ(x) ∀x, y ∈ g (3.1)

One recovers the definition of a representation in the case of Jacobi-Jordan
algebras by setting α = Idg and β = IdV .

Definition 3.2. Let (g, [ , ], α) be a Hom-Jacobi-Jordan algebra. Two representa-
tions (V, ρ, β) and (V ′, ρ′, β′) of g are said to be isomorphic if there exists a linear
map φ : V → V ′ such that

∀x ∈ g ρ′(x) ◦ φ = φ ◦ ρ(x) and φ ◦ β = β′ ◦ φ.

Proposition 3.3. Let (g, [ , ]g, α) be a Hom-Jacobi-Jordan algebra and (V, ρ, β)
be a representation of g. The direct summand g⊕ V with a bracket defined by

[x+ u, y + w] := [x, y]g + ρ(x)(w) + ρ(y)(u) ∀x, y ∈ g ∀u,w ∈ V (3.2)

and the twisted map γ : g⊕ V → g⊕ V defined by

γ(x+ w) = α(x) + β(u) ∀x ∈ g ∀u ∈ V. (3.3)

is a Hom-Jacobi-Jordan algebra.

Proof. The symmetry of the bracket is obvious. We show that the Hom-Jacobi
identity is satisfied:

Let x, y, z ∈ g and ∀u, v, w ∈ V.

	(x,u),(y,v),(z,w) [γ(x+ u), [y + v, z + w]]
= 	(x,u),(y,v),(z,w) [α(x) + β(u), [y, z]g + ρ(y)(w)− ρ(z)(v)]

= 	(x,u),(y,v),(z,w) [α(x), [y, z]g]g + ρ(α(x)(ρ(y)(w)− ρ(z)(v)) + ρ([y, z]g)(β(u))

= 	(x,u),(y,v),(z,w) ρ(α(x)(ρ(y)(w)) + ρ(α(x)(ρ(z)(v)) + ρ(α(y)(ρ(z)(u))

+ρ(α(z)(ρ(y)(u))

= ρ(α(x)(ρ(y)(w)) + ρ(α(x)(ρ(z)(v)) + ρ(α(y)(ρ(z)(u))ρ(α(z)(ρ(y)(u))

+ρ(α(y)(ρ(z)(u)) + ρ(α(y)(ρ(x)(w)) + ρ(α(z)(ρ(x)(v)) + ρ(α(x)(ρ(z)(v))

+ρ(α(z)(ρ(x)(v)) + ρ(α(z)(ρ(y)(u)) + ρ(α(x)(ρ(y)(w)) + ρ(α(y)(ρ(x)(w))

= 0,

where 	(x,u),(y,v),(z,w) denotes summation over the cyclic permutation on
(x, u), (y, v), (z, w).
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Now, we discuss the adjoint representations of a Hom-Jacobi-Jordan algebra.

Proposition 3.4. Let (g, [ , ], α) be a Hom-Jacobi-Jordan algebra and
ad : g → End(g) be an operator defined for x ∈ g by ad(x)(y) = [x, y]. Then
(g, ad, α) is a representation of g.

Proof. Since g is a Hom-Jacobi-Jordan algebra, the Hom-Jacobi condition on
x, y, z ∈ g is

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0

and may be written as

ad[x, y](α(z)) = −ad(α(x))(ad(y)(z))− ad(α(y))(ad(x)(z)).

Then the operator ad satisfies

ad[x, y] ◦ α = −ad(α(x)) ◦ ad(y)− ad(α(y)) ◦ (ad(x).

Therefore, it determines a representation of the Hom-Jacobi-Jordan algebra g.

We call the representation defined in the previous proposition the adjoint rep-
resentation of the Hom-Jacobi-Jordan algebra.

In the following, we explore the dual representations and coadjoint representa-
tions of Hom-Jacobi-Jordan algebras.

Let (g, [ , ], α) be a Hom-Jacobi-Jordan algebra and (V, ρ, β) be a representation
of g. Let V ∗ be the dual vector space of V .

We define a linear map ρ̃ : g→ End(V ∗) by ρ̃(x) = −tρ(x).
Let f ∈ V ∗, x, y ∈ g and u ∈ V . We compute the right hand side of the

identity (3.1)

−(ρ̃(α(x))◦ρ̃(y)−ρ̃(α(y))◦ρ̃(x))(f)(u)=−(ρ̃(α(x))(ρ̃(y)(f))−ρ̃(α(y))(ρ̃(x)(f)))(u)

= ρ̃(y)(f)(ρ(α(x))(u))+ρ̃(x)(f)(ρ(α(y))(u))

= −f(ρ(y)ρ(α(x))(u))− f(ρ(x)ρ(α(y))(u))

= −f(ρ(y)ρ(α(x))− ρ(x)ρ(α(y))(u)).

On the other hand, we set that the twisted map for ρ̃ is β̃ =t β, then the left hand
side of (3.1) writes

((ρ̃([x, y])β̃)(f))(u) = (ρ̃([x, y])(f ◦ β)(u) = −f ◦ β(ρ([x, y])(u)).

Therefore, we have the following proposition:

Proposition 3.5. Let (g, [·, ·], α) be a Hom-Jacobi-Jordan algebra and (V, ρ, β) be
a representation of g. The triple (V ∗, ρ̃, β̃), where ρ̃ : g → End(V ∗) is given
by ρ̃(x) = −tρ(x), defines a representation of the Hom-Jacobi-Jordan algebra
(g, [·, ·], α) if and only if

β ◦ ρ([x, y]) = −ρ(x)ρ(α(y))− ρ(y)ρ(α(x)). (3.4)
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We obtain the following characterization in the case of adjoint representation.

Corollary 3.6. Let (g, [ , ], α) be a Hom-Jacobi-Jordan algebra and (g, ad, α) be
the adjoint representation of g, where ad : g→ End(g). We set ãd : g→ End(g∗)

and ãd(x)(f) = −f ◦ ad(x). Then (g∗, ãd, α̃) is a representation of g if and only if

α([[x, y], z]) = [x, [α(y), z]] + [y, [α(x), z]] ∀x, y, z ∈ g. (3.5)

4. Quadratic Hom-Jacobi-Jordan Algebras

In this section we extend the notion of quadratic Jacobi-Jordan algebra to Hom-
Jacobi-Jordan algebras and provide some properties. But let’s first define quadratic
Jacobi-Jordan algebra.

Definition 4.1. Let (g, [ , ]) be a Jacobi-Jordan algebra and B : g × g → K a
symmetric nondegenerate bilinear form satisfying

B([x, y], z) = B(x, [y, z]) ∀x, y, z ∈ g. (4.1)

The identity (4.1) may be written B([x, y], z) = −B(y, [x, z]) and is called an
invariance ofB. The triple (g, [ , ], B) is called the quadratic Jacobi-Jordan algebra.

More generally, for nonassociative algebras (A, ·), a triple (A, ·, B) where B is
a symmetric nondegenerate bilinear form satisfying

B(x · y, z) = B(x, y · z) ∀x, y, z ∈ A (4.2)

defines a quadratic algebra, called also metrizable algebra. A bilinear form B
satisfying (4.2) is said to be invariant form.

Definition 4.2. Let (g, [ , ], α) be a Hom-Jacobi-Jordan algebra and B : g×g→ K
be an invariant symmetric nondegenerate bilinear form satisfying

B(α(x), y) = B(x, α(y)) ∀x, y ∈ g. (4.3)

The quadruple (g, [ , ], α,B) is called a quadratic Hom-Jacobi-Jordan algebra.
If α is an involution (resp. invertible), the quadratic Hom-Jacobi-Jordan alge-

bra is said to be involutive (resp. regular) quadratic Hom-Jacobi-Jordan algebra
and we write for shortness IQH-Jacobi-Jordan algebra (resp. RQH-Jacobi-Jordan
algebra).

We recover the notion of quadratic Jacobi-Jordan algebra when α is the identity
map. One may consider a larger class with a definition without condition (4.3).
We may also introduce in the following a generalized quadratic Hom-Jacobi-Jordan
algebra notion where the invariance is twisted by a linear map.
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Definition 4.3. A Hom-Jacobi-Jordan algebra (g, [ , ], α) is called Hom-quadratic
if there exist a pair (B, γ) where B : g × g → K is a symmetric nondegenerate
bilinear form and γ : g→ g is a linear map satisfying

B([x, y], γ(z)) = −B(γ(y), [x, z]) ∀x, y, z ∈ g. (4.4)

We call the identity (4.4) the γ-invariance of B. We recover the quadratic
Hom-Jacobi-Jordan algebras when γ = id.

Proposition 4.4. Let (g, [·, ·], α) be a Hom-Jacobi-Jordan algebra. If there exists
B : g× g→ K a bilinear form such that the quadruple (g, [·, ·], α,B) is a quadratic
Hom-Jacobi-Jordan algebra then

1. (g∗, ãd, α̃) is a representation of g.
2. The representations (g, ad, α) and (g∗, ãd, α̃) are isomorphic.

Proof. To prove the first assertion, we should show that for any z we have

α ◦ ad([x, y])(z) + ρ(x)ad(α(y))(z) + ad(y)ad(α(x))(z) = 0, (4.5)

that is
α[[x, y], z] + [x, [α(y), z]] + [y, [α(x), z]] = 0.

Let u ∈ g

B(α[[x, y], z] + [x, [α(y), z]] + [y, [α(x), z]], u)

= B(α[[x, y], z], u) +B([x, [α(y), z]], u) +B([y, [α(x), z]], u)

= B([[x, y], z], α(u))−B([α(y), z], [x, u])−B([α(x), z], [y, u])

= −(B(z, [[x, y], α(u)]) +B(z, [α(y), [x, u]]) +B(z, [α(x), [y, u]]))

= −(B(z, [[x, y], α(u)] + [α(y), [x, u]]) + [α(x), [y, u]])

= −(B(z, [α(u), [y, x]]) + [α(y), [x, u]]) + [α(x), [u, y]]))

= 0.

This proves (4.5) since B is nondegenerate.
For the second assertion let’s consider the map φ : g→ g? defined by x→ B(x, ·)
which is bijective since B is nondegenerate. It’s obvious to prove that φ is also a
module morphism.

Definition 4.5. Let (g, [·, ·], α,B) be a quadratic Hom-Jacobi-Jordan algebra.

1. An ideal I of g is said to be nondegenerate if B|I×I is nondegenerate.

2. The quadratic Hom-Jacobi-Jordan algebra is said to be irreducible (or B-
irreducible) if g doesn’t contain any nondegenerate ideal I such that I 6= {0}
and I 6= g.

3. Let I be an ideal of g. The orthogonal I⊥ of I with respect to B is defined
by {x ∈ g : B(x, y) = 0 ∀y ∈ I}.
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Remark 4.6. Let I be a nondegenerate ideal of a quadratic Hom-Jacobi-Jordan
algebra (g, [·, ·], α,B). Then (I, [ , ]|I×I , α|I,B|I×I) is a quadratic Hom-Jacobi-
Jordan algebra.

Lemma 4.7. Let (g, [·, ·], α) be a multiplicative Hom-Jacobi-Jordan algebra. Then
the center Z(g) is an ideal of g.

Proof. We have [g,Z(g)] = {0} ⊆ Z(g). Let x ∈ Z(g) and y ∈ g. For any z ∈ g
the invariance and the symmetry of B leads to B([α(x), y], z) = B(α(x), [y, z]) =
B(x, α([y, z])) = B(x, [α(y), α(z)]) = B([x, α(y)], α(z)]) = 0 (since x ∈ Z(g)).

Then for any y ∈ g we have [α(x), y] = 0 since B is nondegenerate. Thus
α(x) ∈ Z(g).

Lemma 4.8. Let (g, [·, ·], α,B) be a quadratic Hom-Jacobi-Jordan algebra and I
be an ideal of g. Then the orthogonal I⊥ of I with respect to B is an ideal of g.

Proof. It is clear that [g, I⊥] ⊆ I⊥. Let y ∈ I and z ∈ I⊥, then B(α(y), z) =
B(y, α(z)) = 0 since α(I) ⊆ I. We conclude that I⊥ is an ideal of g.

Proposition 4.9. Let (g, [·, ·], α,B) be a quadratic Hom-Jacobi-Jordan algebra.
Then g = g1 ⊕ · · · ⊕ gn such that

1. gi is an irreducible ideal of g, for any i ∈ {1, · · · , n},
2. B(gi, gj) = {0}, for any i, j ∈ {1, · · · , n} such that i 6= j,

3. (gi, [·, ·]|gi×gi , α|gi , B|gi×gi) is an irreducible quadratic Hom-Jacobi-Jordan
algebra.

Proof. By induction on the dimension of g.

Now, let g = (g, [ , ], α,B) be a quadratic multiplicative Hom-Jacobi-Jordan
algebra. We provide in the following some observations.

Proposition 4.10. If the linear map α is an automorphism and the center
Z(g) = {0} then α is an involution i.e. α2 = id.

Proof. For x, y, z ∈ g we have

B([α(x), y], z) = B(α(x), [y, z]) = B(x, α([y, z])

= B(x, [α(y), α(z)]) = B([x, α(y)], α(z))

= B(α([x, α(y)]), z) = B([α(x), α2(y)], z).

Then B([α(x), y]−[α(x), α2(y)], z) = 0 which may be written B([α(x), y−α2(y)], z)
= 0. Hence, for any x, y ∈ g we have [α(x), (id− α2)(y)] = 0. Since α is bijective
and Z(g) = {0} then α2 = id.
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Proposition 4.11. There exist two nondegenerate ideals I, J of g = (g, [ , ], α,B)
such that

1. B(I, J) = {0},
2. g = I ⊕ J ,
3. α|I is nilpotent and α|J is invertible.

Proof. The fitting decomposition with respect to the linear map α leads to the
existence of an integer n such that g = I⊕J , where I = Ker(αn) and J = Im(αn),
such that α(I) ⊆ I, α(J) ⊆ I, α|I is nilpotent and α|J is invertible.

Let x ∈ g, y ∈ I. We have αn([x, y]) = [αn(x), αn(y)] = 0 since αn(y) = 0,
and [x, y] ∈ I. Then [g, I] ⊆ I. In addition αn(α(y)) = αn+1(y) = 0 which implies
that α(y) ∈ Ker(αn). Therefore I is an ideal of g.

Let x, y ∈ J then there exist x′, y′ ∈ g such that x = αn(x′) and y = αn(y′). We
have [x, y] = [αn(x′), αn(y′)] = αn([x′, y′]) ∈ J. In addition α(J) ⊆ J . Therefore
J is a subalgebra.

Let x ∈ I and y ∈ J . There exists y′ ∈ g such that y = αn(y′). For any
z ∈ g, we have B([x, y], z) = −B([y, x], z) = −B(y, [x, z]) = −B(αn(y′), [x, z]) =
−B(y′, αn([x, z]) = −B(y′, [αn(x), αn(z)]) = 0. Then [x, y] = 0, since B is a
nondegenerate bilinear form. We conclude that I = Im(αn) is an ideal of g and
[I, J ] = 0.

Now let x ∈ I and y = αn(y′) ∈ J , where y′ ∈ g. We have B(x, y) =
B(x, αn(y′)) = B(αn(x), y′) = 0 since αn(x) = 0. Therefore B(I, J) = 0.

Corollary 4.12. Let (g, [·, ·], α,B) be a quadratic Hom-Jacobi-Jordan algebra which
is B-irreducible. Then either α is nilpotent or α is an automorphism of g.

5. Constructions and Examples
We show in the following some constructions leading to some examples of quadratic
Hom-Jacobi-Jordan algebras. We use Theorem 2.13 and Theorem 2.17 to provide
some classes of quadratic Hom-Jacobi-Jordan algebras starting from an ordinary
quadratic Jacobi-Jordan algebras, respectively from any multiplicative quadratic
Hom-Jacobi-Jordan algebra. Also we provide constructions using elements in the
centroid of a Jacobi-Jordan algebras and constructions of T ∗-extension type.

Let (g, [ , ], B) be a quadratic Jacobi-Jordan algebra. We denote by AutS(g, B)
the set of symmetric automorphisms of g with respect of B, that is automorphisms
f : g→ g such that B(f(x), y) = B(x, f(y)), ∀x, y ∈ g.

Proposition 5.1. Let (g, [ , ], B) be a quadratic Jacobi-Jordan algebra and α ∈
AutS(g, B). Then gα = (g, [ , ]α, α,Bα), where for any x, y ∈ g

[x, y]α = [α(x), α(y)] (5.1)

Bα(x, y) = B(α(x), y), (5.2)

is a quadratic Hom-Jacobi-Jordan algebra.
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Proof. The triple (g, [ , ]α, α) is a Hom-Jacobi-Jordan algebra by Theorem 2.13.
The linear form Bα is nondegenerate since B is nondegenerate and α bijective.
We show that the identity (4.1) is satisfied by gα = (g, [ , ]α, α,Bα). Let

x, y, z ∈ g, then

Bα([x, y]α, z) = B(α([α(x), α(y)]), z) = B([α(x), α(y)], α(z))

= B(α(x), [α(y), α(z)]) (Invariance of B)

= B(α(x), [y, z]α) = Bα(x, [y, z]α).

Therefore Bα is invariant.
We have α ∈ AutS(gα, Bα). Indeed

α([x, y]α) = α([α(x), α(y)]) = [α2(x), α2(y)] = [α(x), α(y)]α,

and

Bα(α(x), y) = B(α(α(x)), y) = B(α(x), α(y)) = Bα(x, α(y)). �

The following theorem permits to obtain new quadratic Hom-Jacobi-Jordan
algebras starting from a multiplicative quadratic Hom-Jacobi-Jordan algebra.

Proposition 5.2. Let (g, [ , ], α,B) be a multiplicative quadratic Hom-Jacobi-
Jordan algebra. For any n > 0, the quadruple

g(n) =
(
g, [ , ](n) = αn ◦ [ , ], αn+1, Bαn

)
, (5.3)

where Bαn is defined for x, y ∈ g by Bαn(x, y) = B(αn(x), y), determine a multi-
plicative quadratic Hom-Jacobi-Jordan algebra.

Proof. The triple g(n) =
(
g, [ , ](n) = αn ◦ [ , ], αn+1

)
is a Hom-Jacobi-Jordan

algebra by Theorem 2.17.
Since α ∈ Aut(g) by induction we have αn ∈ Aut(g). The bilinear form Bαn is

nondegenerate because B is nondegenerate and αn is bijective. It is is symmetric.
Indeed

Bαn(x, y) = B(αn(x), y) = B(x, αn(y)) = B(αn(y), x) = Bαn(y, x).

The invariance of Bαn is given by

Bαn([x, y]
n, z) = B(αn ◦ αn([x, y]), z) = B(αn([x, y]), αn(z)) = B([αn(x), αn(y)], αn(z))

= B(αn(x), [αn(y), αn(z)]) = B(αn(x), αn([y, z])) = Bαn(x, [y, z]
n).

We have also Bαn(αn(x), y) = Bαn(x, αn(y)), indeed

Bαn(αn(x), y) = B(α2n(x), y) = B(αn(x), αn(y)) = Bαn(x, αn(y)). �

We provide here a construction a Hom-Jacobi-Jordan algebra L and also the double
extension of {0} by L see [23].
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Proposition 5.3. Let (g, [ , ]g) be a Jacobi-Jordan algebra and g∗ be the under-
lying dual vector space. The vector space L = g ⊕ g∗ equipped with the following
product

[ , ] : L × L → L, (x+ f, y + h) 7→ [x, y]g + f ◦ ady + h ◦ adx (5.4)

and a bilinear form

B : L × L → K, (x+ f, y + h) 7→ f(y) + h(x) (5.5)

is a quadratic Jacobi-Jordan algebra, which we denote by L.

In the sequel we denote L by T ∗(g) and B by B0.

Theorem 5.4. Let (g, [ , ]) be a Jacobi-Jordan algebra and α ∈ Aut(g). Then the
endomorphism Ω := α+ tα of T ∗(g) is a symmetric automorphism of T ∗(g) with
respect to B0 if and only if Im(α2 − id) ⊆ Z(g), where Z(g) is the center of g.
Hence, if Im(α2− id) ⊆ Z(g) then (T ∗0 (g)Ω, [ , ]Ω,Ω, BΩ) is a RQH-Jacobi-Jordan
algebra where Ω = α+ tα.

Proof. Let x, y ∈ g and f, h ∈ g∗.

Ω([x+ f, y + h]) = Ω([x, y]g + f ◦ ady + h ◦ adx)

= α([x, y]g) + f ◦ ady ◦ α+ h ◦ adx ◦ α,

and

[Ω(x+ f),Ω(y + h)] = [α(x) + f ◦ α, α(y) + h ◦ α]

= [α(x), α(y)]g + f ◦ α ◦ adα(y) + h ◦ α ◦ adα(x).

Then Ω([x+ f, y + h]) = [Ω(x+ f),Ω(y + h)] if and only if

∀x, y ∈ g, f ◦ ady ◦ α+ h ◦ adx ◦ α = f ◦ α ◦ adα(y) + h ◦ α ◦ adα(x).

That is for all z ∈ g

f([y, α(z)]) + h([x, α(z)]) = f(α[α(y), z]) + h(α[α(x), z]).

Hence, Ω is an automorphism of T ∗(g) if and only if f([x, α(y)]) = f(α[α(x), y]),
∀f ∈ g∗ ∀x, y ∈ g, which is equivalent to [x, α(y)] = α[α(x), y] ∀x, y ∈ g.

As a consequence, Ω ∈ Aut(T ∗0 (g)) if and only if [α2(x)−x, α(y)]g = 0 ∀x, y ∈ g,
i.e. Im(α2 − id) ⊆ Z(g), since α ∈ Aut(g).

In the following we show that Ω is symmetric with respect to B0. Indeed, let
x, y ∈ g and f, h ∈ g∗

B0(Ω(x+ f), y + h) = B0(α(x) + f ◦ α, y + h) = f ◦ α(y) + h(α(x))

= f ◦ α(y) + h ◦ α(x) = B0(x+ f, α(y) + h ◦ α)

= B0(x+ f,Ω(y + h)).

The last assertion is a consequence of the previous calculations and Proposition
3.3.
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In the following we provide examples which show that the class of Jacobi-Jordan
algebras with automorphisms satisfying the condition Im(α2(x) − x) ∈ Z(g) is
large. We consider first Jacobi-Jordan algebras with involutions.

Corollary 5.5. Let (g, [ , ]g) be a Jacobi-Jordan algebra and θ ∈ Aut(g) such
that θ2 = id (θ is an involution), then θ2(x) − x = 0 ∈ Z(g) for all x ∈ g. Thus
(T ∗0 (g)Ω, [ , ]Ω,Ω, BΩ) is a RQH-Jacobi-Jordan algebra where Ω = α+ tα.

Example 5.6. Considering an involution on a Jacobi-Jordan algebra g is equiv-
alent to have a Z2-graduation on g. From the above he Jacobi-Jordan algebras
with involutions are symmetric.

Starting from a Jacobi-Jordan algebra one may construct a symmetric Jacobi-
Jordan algebra in the following way :

Let (g, [·, ·]) be a Jacobi-Jordan algebra, we consider the Jacobi-Jordan algebra
(L, [·, ·]L) where L = g× g and the bracket defined by for all x, y, x′, y′ ∈ g by
[(x, y), (x′, y′)]L := ([x, x′], [y, y′]).

It is easy to check that the map θ : L→ L, (x, y) 7→ (y, x) is an automorphism
of L. Then the trivial T ∗-extension of L has Ω = θ+ tθ as a symmetric automor-
phism with respect to B0. Moreover, Ω is an involution. According to Corollary
5.5, we have (T ∗0 (L)Ω, [ , ]Ω,Ω, (B0)Ω) is a quadratic Hom-Jacobi-Jordan algebra.

Example 5.7. Let g = V ⊕Z(g), where V 6= {0} is a subspace of the vector space
g with [V, V ] = [g, g] ⊆ Z(g). Let λ : g → Z(g) be a nontrivial linear map and
α : g→ g is an endomorphism of g defined by

α(v + z) := v + λ(v) + z ∀v ∈ V ∀z ∈ Z(g).

We have α([v + z, v′ + z′]) = α([v, v′]) = [v, v′] since [v, v′] ∈ Z(g).
Also [α(v + z), α(v′ + z′)]) = [v, v′]. Therefore, the map α is an injective

Jacobi-Jordan algebra morphism. Thus α is an automorphism of g.
Moreover, if v ∈ g and z ∈ Z(g), we have

(α2 − id)(v + z) = α2(v + z)− (v + z) = α(v + λ(v) + z)− (v + z)

= v + 2λ(v) + z − v − z = 2λ(v).

Then α2−id 6= 0 and Im(α2−id) ⊆ Z(g). It follows that (T ∗0 (g)Ω, [ , ]Ω,Ω, (B0)Ω),
where Ω = α+t α, is a RQH-Jacobi-Jordan algebra.

It is clear that T ∗0 (g)Ω is 2-nilpotente. It ’s also a quadratic Jacobi-Jordan
algebra.

Proposition 5.8. Let A be an anticommutative antiassociative algebra and g be
a Jacobi-Jordan algebra. If A has an automorphism θ such that
Im(θ2 − id) ⊆ Ann(A), where Ann(A) denotes the annihilator of A, then the
endomorphism θ̃ := idg ⊗ θ of g ⊗ A is an automorphism of the Jacobi-Jordan
algebra (g⊗A, [ , ]), where [x⊗a, y⊗b] := [x, y]g⊗ab for all x, y ∈ g and a, b ∈ A.
In addition, Im(θ̃2 − idg⊗A) ⊆ Z(g ⊗A). Then (T ∗0 (g ⊗A)Ω, [ , ]Ω,Ω, (B0)Ω) is
a RQH-Jacobi-Jordan algebra. Moreover, if θ2 6= idA then θ̃2 6= idg⊗A.

Proof. It follows from direct calculation and Theorem 5.4.
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6. Connection Between Algebras
We establish a connection between some classes of Jacobi-Jordan algebras (resp.
quadratic Jacobi-Jordan algebras) and classes of Hom-Jacobi-Jordan algebras (resp.
quadratic Hom-Jacobi-Jordan algebras).

Theorem 6.1. There exists a biunivoque correspondence between the class of
Jacobi-Jordan algebras (quadratic Jacobi-Jordan algebras) admitting involutive au-
tomorphisms (symmetric involutive automorphisms) and the class of Hom-Jacobi-
Jordan algebras (quadratic Hom-Jacobi-Jordan algebras) where twist maps are in-
volutive automorphisms (symmetric involutive automorphisms).

Proof. Let (g, [ , ]) be a symmetric Jacobi-Jordan algebra with θ an involutive
automorphism of g. Then, according to Theorem 2.13, (gθ, [ , ]θ, θ) is a Hom-
Jacobi-Jordan algebra where θ is an involutive automorphism of gθ. Moreover, if
g has an invariant scalar product B such that θ is symmetric with respect to B,
we have seen that

Bθ : gθ × gθ → K, (x, y) 7→ Bθ(x, y) := B(θ(x), y) (6.1)

defines a quadratic structure on gθ.
Conversely, let (H, [ , ]H , θ) be a Hom-Jacobi-Jordan algebra where θ is an

involutive automorphism of H.
We will untwist the Hom-Jacobi-Jordan algebra structure by considering the

vector space H and the bracket

[ , ] : H ×H → H (x, y) 7→ [x, y] := [θ(x), θ(y)]H . (6.2)

Obviously the new bracket is bilinear and symmetric. We show that it satisfies
the Jacobi identity.

Indeed, for x, y, z ∈ H we have

[x, [y, z]] = [θ(x), θ([y, z])]H = [θ(x), θ([θ(y), θ(z)]H)]H

= [θ(x), [θ2(y), θ2(z)]H)]H = [θ(x), [y, z]H)]H .

Thus
	x,y,z [x, [y, z]] =	x,y,z [θ(x), [y, z]H)]H = 0.

Thus (H, [ , ]) is a Jacobi-Jordan algebra.
Furthermore, for x, y ∈ H

θ([x, y]) = θ([θ(x), θ(y)]H) = [θ2(x), θ2(y)]H = [x, y]H

and
[θ(x), θ(y)] = [θ2(x), θ2(y)]H = [x, y]H .

Then θ([x, y]) = [θ(x), θ(y)]. Therefore θ is an involutive automorphism of the
Jacobi-Jordan algebra (H, [ , ]).
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Also for x, y ∈ H

[x, y]θ : = [θ(x), θ(y)] = [θ2(x), θ2(y)]H = [x, y]H .

Then (H, [ , ]θ, θ) is the Hom-Jacobi-Jordan algebra (H, [ , ]H , θ).
Now, let (H, [ , ]H , θ, B) be a quadratic Hom-Jacobi-Jordan algebra.
The bilinear form

T : H ×H → K, (x, y) 7→ T (x, y) = B(θ(x), y) (6.3)

is symmetric and nondegenerate.
Indeed, for Let x, y, z ∈ H, we have

T ([x, y], z) = B(θ([x, y]), z) = B(θ[θ(x), θ(y)]H , z) = B([x, y]H , z)

= B(x, [y, z]H) = B(θ(x), θ([y, z]H)) θ is B-symmetric
= B(θ(x), [θ(y), θ(z)]H)) = B(θ(x), [y, z])) = T (x, [y, z]).

Then T is invariant. In the other hand,

T (θ(x), y) = B(x, y) = B(θ(x), θ(y)) = T (x, θ(y)).

That is θ is symmetric with respect to T . Therefore (H, [ , ], T ) is a quadratic
Jacobi-Jordan algebra and (H, [ , ]θ, θ, Tθ) is an IQH-Jacobi-Jordan algebra.

Now we discuss the connection between Hom-Jacobi-Jordan algebras where the
twist map is in the centroid and quadratic Jacobi-Jordan algebras. Let (g, [ , ], B)
be a quadratic Jacobi-Jordan algebra and θ ∈ Cent(g) such that θ is invertible
and symmetric with respect to B. We set

CentS(g) = {θ ∈ Cent(g) : θ symmetric with respect to B}.

We consider

Bθ : g× g→ K (x, y) 7→ Bθ(x, y) := B(θ(x), y). (6.4)

Then Bθ is symmetric, nondegenerate and invariant. Indeed,

Bθ({x, y}, z) = Bθ([θ(x), y], z) = B(θ([θ(x), y]), z)

= B([θ(x), y], θ(z)) = B(θ(x), [y, θ(z)])

= B(θ(x), [θ(y), z]) = B(θ(x), {y, z})
= Bθ(x, {y, z}).

Also,
Bθ(θ(x), y) = B(θ2(x), y) = B(θ(x), θ(y)) = Bθ(x, θ(y)).

Then (g, { , }, θ, Bθ) is a quadratic Hom-Jacobi-Jordan algebra.
Notice that Bθ is an invariant scalar product of the Jacobi-Jordan algebra g.
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We have also that (g, [ , ]θ, θ, Bθ) is a quadratic Hom-Jacobi-Jordan algebra.
Indeed,

Bθ([x, y]θ, z) = Bθ([θ(x), θ(y)], z) = B(θ([θ(x), θ(y)]), z)

= B([θ(x), θ(y)], θ(z)) = B(θ(x), [θ(y), θ(z)])

= B(θ(x), [y, z]θ) = Bθ(x, [y, z]θ).

Observe that

θ([x, y]θ) = θ[θ(x), θ(y)] = [θ2(x), θ(y)] = [θ(x), y]θ.

θ({x, y}) = θ[θ(x), y] = [θ2(x), y] = {θ(x), y}.

We may say that θ ∈ Cent(g, { , }) and θ ∈ Cent(g, [ , ]θ).
Conversely, let (g, [ , ], α) be a Hom-Jacobi-Jordan algebra such that

α ∈ Cent(g, [ , ], α).
We define a new bracket as {x, y} := [α(x), y]. Then (g, { , })) is a Jacobi-

Jordan algebra. Indeed, the bracket is symmetric and

{x, {y, z}} = [α(x), [α(y), z]],

{y, {z, x}} = [α(y), [α(z), x] = [α2(y), [z, x]],

{z, {x, y}} = [α(z), [α(x), y]] = [α(z), [x, α(y)]].

Then

	x,y,z {x, {y, z}} = [α(x), [α(y), z]] + [α2(y), [z, x]] + [α(z), [x, α(y)]] = 0.

We may define another bracket which gives rise to also a Jacobi-Jordan algebra
by [x, y]α := [α(x), α(y)]. Indeed, the bracket is symmetric and

[x, [y, z]α]α = [α(x), α([α(y), α(z)])] = [α(x), [α2(y), α(z)]] = [α2(x), [α(y), α(z)]],

[y, [z, x]α]α = [α(y), α([α(z), α(x)])] = [α(y), [α2(z), α(x)]] = [α2(y), [α(z), α(x)]],

[z, [x, y]α]α = [α(z), α([α(x), α(y)])] = [α(z), [α2(x), α(y)]] = [α2(z), [α(x), α(y)]].

Therefore

[α2(x), [α(y), α(z)]] + [α2(y), [α(z), α(x)]] + [α2(z), [α(x), α(y)]] = 0.

Now if there is an invariant scalar product B on (g, [ , ]) and assume that α is
invertible and symmetric with respect to B. Consider the bilinear form Bα defined
by Bα(x, y) = B(α(x), y). We have

Bα({x, y}, z) = B(α({x, y})]), z) = B(α([α(x), y], z) = B(α(x), [y, α(z)])

= B(α(x), [α(y), z]) = Bα(x, {y, z}).



80 C. E. Haliya and G. D. Houndedji

Similarly we have

Bα([x, y]α, z) = B(α([α(x), α(y)]), z) = B([α(x), α(y)], α(z))

= B(α(x), [α(y), α(z)]) = B(α(x), [y, z]α)

= Bα(x, [y, z]α).

Therefore (g, { , }, Bα) and (g, [ , ]α, Bα) are quadratic Jacobi-Jordan algebras.
Hence, we have the following theorem:

Theorem 6.2. There exists a biunivoque correspondence between the class of
Jacobi-Jordan algebras (quadratic Jacobi-Jordan algebras) admitting an element
in the centroid (symmetric invertible element in the centroid) and the class of
Hom-Jacobi-Jordan algebras (quadratic Hom-Jacobi-Jordan algebras) where twist
map is in the centroid (symmetric invertible element in the centroid).

7. Bimodules of Hom-antiassociative Algebras
Definition 7.1. A hom-antiassociative algebra is said to be multiplicative if the
triple (A, ·, α) consisting of a linear space A, K-bilinear map ·: A⊗A → A and a
linear space map α : A → A satisfies

α(x · y) = α(x) · α(y) (multiplicativity). (7.1)

Example 7.2. Let {e1, e2} be a basis of a 2-dimensional vector space A over K.
The following multiplication · and map on A define a hom-antiassociative algebra:

e1 · e1 = e2,
α(e1) = a1e1 + a2e2, α(e2) = 0, (7.2)

where a1, a2 ∈ K.

Definition 7.3. A hom-module is a pair (V, β) where V is a K-vector space and
β : V → V is a linear map.

Definition 7.4. Let (A, ·, α) be a hom-antiassociative algebra and let (V, β) be a
hom-module. Let l, r : A → gl(V ) be two linear maps. The quadruple (l, r, β, V )
is called a bimodule of A if

l(x · y)β(v) = −l(α(x))l(y)v, r(x · y)β(v) = −r(α(y))r(x)v,

l(α(x))r(y)v = −r(α(y))l(x)v, (7.3)

β(l(x)v) = l(α(x))β(v), (7.4)

β(r(x)v) = r(α(x))β(v), (7.5)

for all x, y ∈ A, v ∈ V .
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Proposition 7.5. Let (l, r, β, V ) a hom-bimodule of a hom-antiassociative algebra
(A, ·, α). Then the direct sum A ⊕ V of vectors spaces is turned into a hom-
antiassociative algebra by defining multiplication in A⊕ V by

(x1 + v1) ∗ (x2 + v2) = x1 · x2 + (l(x1)v2 + r(x2)v1),

(α⊕ β)(x1 + v1) = α(x1) + β(v1)

for all x1, x2 ∈ A, v1, v2 ∈ V.

Proof. Let v1, v2, v3 ∈ V and x1, x2, x3 ∈ A. Set

[(x1+v1)∗(x2+v2)]∗(α(x3)+β(v3))=−(α(x1)+β(v1))∗[(x2+v2)∗(x3+v3)]. (7.6)

After computation of (7.6), one easily obtains the conditions of (7.3). Hence the
proposition is established.

We denote such a hom-antiassociative algebra (A⊕V, ∗, α+β) or An−1
l,r,α,β V.

Example 7.6. Let (A, ·, α) be a multiplicative hom-antiassociative algebra. Let
L·(x) and R·(x) denote the left and right multiplication operators, respectively,
that is, L·(x)(y) = x ·y,R·(x)(y) = y ·x for any x, y ∈ A. Let L· : A → gl(A) with
x 7→ L·(x) and R· : A → gl(A) with x 7→ R·(x) (for every x ∈ A) be two linear
maps. Then (L·, 0, α), (0, R·, α) and (L·, R·, α) are bimodules of (A, ·, α).

Proposition 7.7. Let (l, r, β, V ) be a bimodule of a multiplicative hom-antiassocia-
tive algebra (A, ·, α). Then (l ◦αn, r ◦αn, β, V ) is a bimodule of A for any entiger
n > 1.

Proof. We have:
l ◦ αn(x · y)β(v) = l(αn(x) · αn(y))β(v) = −l(α(αn(x)))l(αn(y))v

− l(αn+1(x))l(αn(y))v = −l ◦ αn(α(x))l ◦ αn(y)v.

Similarly, the other relations are established.

Example 7.8. Let (A, ·, α) be a multiplicative hom-antiassociative algebra. Then
(L· ◦ αn, R· ◦ αn, α,A) is a bimodule of A for any entiger n > 1.

Example 7.9. Let (A, ·, α) be a multiplicative antiassociative algebra. Also let
β : A → A be a morphism. Then Aβ = (A, ·β = β ◦ ·, αβ = β ◦ α) is also a
multiplicative hom-antiassociative algebra. Hence (L·β ◦ αnβ , R·β ◦ αnβ , αβ ,A) is a
bimodule of A for any integer n > 0.

Theorem 7.10. Let (A, ·, α) and (B, ◦, β) be two hom-antiassociative algebras.
Suppose that there are linear maps lA, rA : A → gl(B) and lB, rB : B → gl(A)
such that (lA, rA, β,B) is a bimodule of A and (lB, rB, α,A) is a bimodule of B,
satisfying the following conditions:

lA(α(x))(a ◦ b) = −lA(rB(a)x)β(b)− (lA(x)a) ◦ β(b), (7.7)

rA(α(x))(a ◦ b) = −rA(lB(b)x)β(a)− β(a) ◦ (rA(x)b), (7.8)
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lB(β(a))(x · y) = −lB(rA(x)a)α(y)− (lB(a)x) · α(y), (7.9)
rB(β(a))(x · y) = −rB(lA(y)a)α(x)− α(x) · (rB(a)y), (7.10)

lA(lB(a)x)β(b) + (rA(x)a) ◦ β(b) + rA(rB(b)x)β(a) + β(a) ◦ (lA(x)b) = 0, (7.11)
lB(lA(x)a)α(y) + (rB(a)x) · α(y) + rB(rA(y)a)α(x) + α(x) · (lB(a)y) = 0, (7.12)

for any x, y ∈ A, a, b ∈ B. Then, there is a hom-antiassociative algebra structure
on the direct sum A⊕ B of the underlying vector spaces of A and B given by

(x+a)∗(y+b) = (x · y+lB(a)y+rB(b)x)+(a ◦ b+lA(x)b+rA(y)a), (7.13)

(α⊕ β)(x+a) = α(x)+β(a) (7.14)

for all x, y ∈ A, a, b ∈ B.

Proof. Let v1, v2, v3 ∈ V and x1, x2, x3 ∈ A. Set

[(x1+v1)∗(x2+v2)]∗(α(x3)+β(v3)) = −(α(x1)+β(v1)) ∗ [(x2+v2)∗(x3+v3)]. (7.15)

After computation of (7.15), we obtain (7.7) – (7.12). Hence the theorem is
proved.

This hom-antiassociative algebra will be denoted by (A ./−1 B, ∗, α+ β) or by
A ./−1,lA,rA,β

lB,rB,α
B.

Definition 7.11. Let (A, ·, α) and (B, ◦, β) be two hom-antiassociative algebras.
Suppose that there are linear maps lA, rA : A → gl(B) and lB, rB : B → gl(A)
such that (lA, rA, β) is a bimodule of A and (lB, rB, α) is a bimodule of B. If
the equations (7.7) - (7.12) are satisfied, then (A,B, lA, rA, β, lB, rB, α) is called a
matched pair of hom-antiassociative algebras.

8. Quadratique Hom-antiassociative Algebras
In this section, we consider the multiplicative hom-antiassociative algebra (A, ·, α)
such that α involutive, i.e., α2 = idA.

Definition 8.1. Let V1, V2 be two vector spaces. For a linear map φ : V1 → V2,
we denote the dual (linear) map by φ∗ : V ∗2 → V ∗1 given by

〈v, φ∗(u∗)〉 = 〈φ(v), u∗〉 for all v ∈ V1, u
∗ ∈ V ∗2 .

Lemma 8.2. Let (l, r, β, V ) be a bimodule of a multiplicative hom-antiassociative
algebra (A, ·, α).
(i) Let l∗, r∗ : A → gl(V ∗) be the linear maps given by

〈l∗(x)u∗, v〉 = 〈l(x)v, u∗〉, 〈r∗(x)u∗, v〉 = 〈r(x)v, u∗〉 (8.1)

for all x ∈ A, u∗ ∈ V ∗, v ∈ V . Then, (r∗, l∗, β∗, V ∗) is a bimodule of (A, ·, α).
(ii) (r∗, 0, β∗, V ∗) and (0, l∗, β∗, V ∗) are also bimodules of A.
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Proof. (i): Let (l, r, β, V ) be a bimodule of a multiplicative hom-antiassociative
algebra (A, ·, α). Show that (r∗, l∗, β∗, V ∗) is a bimodule of A.

Let x, y ∈ A, u∗ ∈ V ∗, v ∈ V , we have

〈r∗(x · y)β∗(u∗), v〉 = 〈β(r(x · y)v), u∗〉 = 〈r(α(x · y))β(v), u∗〉
= 〈r(α(x) · α(y))β(v), u∗〉 = 〈−r(α2(y))r(α(x))v, u∗〉
= 〈−(r(y)r(α(x)))∗u∗, v〉 = 〈−r∗(α(x))r∗(y)u∗, v〉

leading to r∗(x · y)β∗(u∗) = −r∗(α(x))r∗(y)u∗.

〈l∗(x · y)β∗(u∗), v〉 = 〈β(l(x · y)(v)), u∗〉 = 〈l(α(x · y))β(v), u∗〉
= 〈l(α(x) · α(y))β(v), u∗〉 = 〈−l(α2(x))l(α(y))β(v), u∗〉
= 〈−(l(x)l(α(y)))∗u∗, v〉 = 〈−l∗(α(y))l∗(x)u∗, v〉

giving l∗(x · y)β∗(u∗) = −l∗(α(y))l∗(x)u∗.

〈r∗(α(x))l∗(y)u∗, v〉 = 〈l(y)r(α(x))v, u∗〉
= 〈l(α2(y))r(α(x))v, u∗〉 = 〈(l ◦ α)(α(y))(r ◦ α)(x))v, u∗〉
= 〈−r(α2(x))l(α(y))v, u∗〉
= 〈−r(x)l(α(y))v, u∗〉 = 〈−l∗(α(y))r∗(x)u∗, v〉

providing that r∗(α(x))l∗(y)u∗ = −l∗(α(y))r∗(x)u∗.

〈β∗(r∗(x))u∗, v〉 = 〈r(x)(β(v)), u∗〉 = 〈r(α2(x))(β(v)), u∗〉
= 〈(r ◦ α)(α(x))(β(v)), u∗〉
= 〈β(r(α(x)))v, u∗〉 = 〈r∗(α(x))β∗(u∗), v〉.

Then β∗(r∗(x))u∗ = r∗(α(x))β∗(u∗).
Similarly, we show that β∗(l∗(x))u∗ = l∗(α(x))β∗(u∗). Hence, (r∗, l∗, β∗, V ∗)

is a bimodule of A.
(ii): Similarly, we can show also that (r∗, 0, β∗, V ∗) and (0, l∗, β∗, V ∗) are well

bimodules of A.

Definition 8.3. Let (A, ·, α) be a hom-antiassociative algebra and B : A×A → K
be a non degenerate symmetric bilinear form on A. B is said α-invariant if

B(α(x) · α(y), α(z)) = B(α(x), α(y) · α(z)).

Definition 8.4. We call (A, α,B) a double construction of an involutive quadratic
hom-antiassociative algebra associated to (A1, α1) and (A∗1, α∗1) if

(1) A = A1 ⊕A∗1 as the direct sum of vector spaces;
(2) (A1, α1) and (A∗1, α∗1) are hom-antiassociative subalgebras of (A, α) with

α = α1 ⊕ α∗1;
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(3) B is the natural non-degenerate (α1⊕α∗1)-invariant symmetric bilinear form
on A1 ⊕A∗1 given by

B(x+ a∗, y + b∗) = 〈x, b∗〉+ 〈a∗, y〉, (8.2)

B((α+ α∗)(x+ a∗), y + b∗) = B(x+ a∗, (α+ α∗)(y + b∗)) (8.3)

for all x, y ∈ A1, a
∗, b∗ ∈ A∗1 where 〈 , 〉 is the natural pair between the vector

space A1 and its dual space A∗1.

Let (A, ·, α) be an involutive hom-antiassociative algebra. Suppose that there
is an involutive hom-antiassociative algebra structure ” ◦ ” on its dual space A∗.
We construct an involutive hom-antiassociative algebra structure on the direct
sum A ⊕ A∗ of the underlying vector spaces of A and A∗ such that (A, ·, α) and
(A∗, ◦, α∗) are hom-subalgebras and equipped with the non-degenerate (α1⊕α∗1)-
invariant symmetric bilinear form on A ⊕ A∗ given by the equation (8.2). That
is, (A ⊕ A∗, α ⊕ α∗, B) is an involutive quadratic hom- antiassociative algebra.
Such a construction is called a double construction of an involutive quadratic
hom-antiassociative algebra associated to (A, ·, α) and (A∗, ◦, α∗).

Theorem 8.5. Let (A, ·, α) be an involutive hom-antiassociative algebra. Sup-
pose that there is an involutive hom-antiassociative algebra structure ” ◦ ” on its
dual space A∗. Then, there is a double construction of an involutive quadratic
hom-antiassociative algebra associated to (A, ·, α) and (A∗, ◦, α∗) if and only if
(A,A∗, R∗· , L∗· , α∗, R∗◦, L∗◦, α) is a matched pair of involutive hom-antiassociative
algebras.

Proof. Let us consider the four maps

L∗· : A → gl(A∗), 〈L∗· (x)u∗, v〉 = 〈L·(x)v, u∗〉 = 〈x · v, u∗〉,
R∗· : A → gl(A∗), 〈R∗· (x)u∗, v〉 = 〈R·(x)v, u∗〉 = 〈v · x, u∗〉,
R∗◦ : A∗ → gl(A), 〈R∗◦(x∗)u, v∗〉 = 〈R◦(x∗)v∗, u〉 = 〈v∗ ◦ x∗, u〉,
L∗◦ : A∗ → gl(A), 〈L∗◦(x∗)u, v∗〉 = 〈L◦(x∗)v∗, u〉 = 〈x∗ ◦ v∗, u〉,

for all x, v, u ∈ A, x∗, v∗, u∗ ∈ A∗.
If (A,A∗, R∗· , L∗· , α∗, R∗◦, L∗◦, α) is a matched pair of multiplicative hom-anti-

associative algebras, then (A ./−1 A∗, ∗, α+ α∗) is a multiplicative hom-antiasso-
ciative algebra with its product ∗ given by the equation (7.13) and the bilinear
form B(·, ·) defined by the equation (8.2) is (α⊕ α∗)-invariant, that is
B[(α(x) + α∗(a∗)) ∗ (α(y) + α∗(b∗)), (α(z) + α∗(c∗))]

= B[α(x) + α∗(a∗), (α(y) + α∗(b∗)) ∗ (α(z) + α∗(c∗))]

for all x, y ∈ A∗, a∗, b∗ ∈ A∗ and
(x+ a∗) ∗ (y + b∗) = (x · y + lB(a)y + rB(b)x) + (a ◦ b+ lA(x)b+ rA(y)a)

with lA = R∗· , rA = L∗· , lB = R∗◦, rB = L∗◦.
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Indeed,

B[(α(x) + α∗(a∗)) ∗ (α(y) + α∗(b∗)), (α(z) + α∗(c∗))]

= B[(α(x) · α(y) + lA∗(α
∗(a∗))α(y) + rA∗(α

∗(b∗))α(x)) + (α∗(a∗) ◦ α∗(b∗)
+ lA(α(x))α∗(b∗) + rA(α(y))α∗(a∗)), α(z) + α∗(c∗)]

= 〈α(x) · α(y), α∗(c∗)〉+ 〈α∗(c∗) ◦ α∗(a∗), α(y)〉+ 〈α∗(b∗) ◦ α∗(c∗), α(x)〉
+ 〈α∗(a∗) ◦ α∗(b∗), α(z)〉+ 〈α(z) · α(x), α∗(b∗)〉+ 〈α(y) · α(z), α∗(a∗)〉

and

B[α(x) + α∗(a∗), (α(y) + α∗(b∗)) ∗ (α(z) + α∗(c∗))]

= B[α(x) + α∗(a∗), (α(y) · α(z) + lA∗(α
∗(b∗))α(z) + rA∗(α

∗(c∗))α(y))

+ (α∗(b∗) ◦ α∗(c∗) + lA(α(y))α∗(c∗) + rA(α(z))α∗(b∗))]

= 〈α(x), α∗(b∗) ◦ α∗(c∗)〉+ 〈α∗(c∗), α(x) · α(y)〉+ 〈α∗(b∗), α(z) · α(x)〉
+ 〈α(y) · α(z), α∗(a∗)〉+ 〈α∗(a∗) ◦ α∗(b∗), α(z)〉+ 〈α(c∗) ◦ α∗(a∗), α(y)〉.

Thus, B is well (α⊕ α∗)-invariant. Conversely, let

x ∗ a∗ = lA(x)a∗ + rA∗(a
∗)x, a∗ ∗ x = lA∗(a

∗)x+ rA(x)a?,

for x ∈ A, a∗ ∈ A∗. Then, (A,A∗, R∗· , L∗· , α∗, R∗◦, L∗◦, α) is a matched pair of mul-
tiplicative hom-antiassociative algebras, since the double construction of the invo-
lutive quadratic hom-antiassociative algebra associated to (A, ·, α) and (A∗, ◦, α∗)
produces the equations (7.7) – (7.12).

Theorem 8.6. Let (A, ·, α) be an involutive hom-associative algebra. Suppose
that there is an involutive hom-associative algebra structure ” ◦ ” on its dual space
(A∗, α∗). Then, (A,A∗, R∗· , L∗· , α∗, R∗◦, L∗◦, α) is a matched pair of involutive hom-
associative algebras if and only if for any x ∈ A and a∗, b∗ ∈ A∗,

R∗· (α(x))(a∗ ◦ b∗) = −R∗· (L∗◦(a∗)x)α∗(b∗)− (R∗· (x)a∗) ◦ α∗(b∗), (8.4)

R∗· (R
∗
◦(a
∗)x)α∗(b∗)+L∗· (x)a∗◦α∗(b∗)=−L∗· (L∗◦(b∗)x)α∗(a∗)−α∗(a∗)◦(R∗·(x)b∗). (8.5)

Proof. Obviously, (8.4) gives (7.7) and (8.5) reduces to (7.11) when lA = R∗· ,
rA = L∗· , lB = lA∗ = R∗◦, rB = rA∗ = L∗◦. Now, show that

(7.7)⇔ (7.8)⇔ (7.9)⇔ (7.10) and (7.11)⇔ (7.12).

Suppose (8.4) and (8.5) are satisfied and show that one has:

L∗· (α(x))(a∗ ◦ b∗) = −L∗· (R∗◦(b∗)x)α∗(a∗)− α∗(a∗) ◦ (L∗· (x)b∗),

R∗◦(α
∗(a∗))(x · y) = −R∗◦(L∗· (x)a∗)α(y)− (R∗◦(a)x) · α(y),

L∗◦(α
∗(a∗))(x · y) = L∗◦(R

∗
· (y)a∗)α(x) + α(x) · (L∗◦(a∗)y),

R∗◦(R
∗
· (x)a∗)α(y) + (L∗◦(a

∗)x) · α(y) + L∗◦(L·(y)a∗)α(x) + α(x) · (R∗◦(a)y) = 0.
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We have:
〈R∗· (x)a∗, y〉 = 〈L∗· (y)a∗, x〉 = 〈y · x, a∗〉,

〈R∗◦(b∗)x, a∗〉 = 〈L∗◦(a∗)x, b∗〉 = 〈a∗ ◦ b∗, x〉,
α∗(R∗· (x)a∗) = R∗· (α(x))α∗(a∗), α∗(L∗· (x)a∗) = L∗· (α(x))α∗(a∗), (8.6)
α(R∗◦(a

∗)x) = R∗◦(α
∗(a∗))α(x), α(L∗◦(a

∗)x) = L∗◦(α
∗(a∗))α(x), (8.7)

for all x, y ∈ A, a∗, b∗ ∈ A∗. Set α(x) = z, α(y) = t, α∗(a∗) = c∗ and α∗(b∗) = d∗.
Then

〈−R∗· (α(x))(a∗ ◦ b∗), y〉 = 〈−y · α(x), a∗ ◦ b∗〉 = 〈−(L·(y) ◦ α)x, a∗ ◦ b∗〉
= 〈−x, α∗(L∗·(y)(a∗ ◦ b∗))〉 = 〈−L∗· (α(y))α∗(a∗ ◦ b∗), x〉
= 〈−L∗·(α(y))(α∗(a∗)◦α∗(b∗)), x〉=〈−L∗·(α(y))(c∗◦d∗), x〉,

〈−R∗· (L∗◦(a∗)x)α(b∗), y〉 = 〈−y · L∗◦(a∗)x, α∗(b∗)〉 = 〈−L∗· (y)(α∗(b∗)), L∗◦(a
∗)x〉

= 〈−L∗◦(a∗)x, L∗· (y)(α∗(b∗))〉 = 〈−a∗ ◦ (L∗· (y)(α∗(b∗))), x〉
= 〈−α∗(c∗) ◦ (L∗· (y)(d∗)), x〉,

〈(R∗· (x)a∗) ◦ α∗(b∗), y〉 = 〈−R∗◦(α∗(b∗))y,R∗· (x)a∗〉 = 〈−a∗, (R∗◦(α∗(b∗))y) · x〉
= 〈−L∗· [R∗◦(α∗(b∗))y]a∗, x〉 = 〈−L∗· (R∗◦(d∗)y)α∗(c∗), x〉

leading to (7.7) ⇔ (7.8).

〈L∗(α(x))(a∗ ◦ b∗), y〉 = 〈−a∗ ◦ b∗, α(x) · y〉 = 〈−R∗◦(b∗)(α(x) · y), a∗〉
= 〈−R∗◦(α∗(d∗))(z · y), a∗〉,

〈α∗(a∗)◦(L∗· (x)b∗), y〉= 〈α∗(a∗), R∗◦(L∗· (x)b∗)y〉 = 〈a∗, α[R∗◦(L
∗
· (x)b∗)y]〉

= 〈a∗, R∗◦[α∗(L∗· (x)b∗)]α(y)〉 = 〈a∗, R∗◦[L∗· (α(x))α∗(b∗)]α(y)〉
= 〈a∗, R∗◦(L∗· (z)d∗)α(y)〉,

〈L∗· (R∗◦(b∗)x)α∗(a∗), y〉 = 〈(R∗◦(b∗)x) ◦ y, α∗(a∗)〉 = 〈α[(R∗◦(b
∗)x) ◦ y], a∗〉

= 〈(R∗◦(α∗(b∗))α(x)) ◦ α(y), a∗〉 = 〈R∗◦(d∗)z · α(y), a∗〉

giving (7.8) ⇐⇒ (7.9).

〈R∗(α(x))(a∗ ◦ b∗), y〉 = 〈a∗ ◦ b∗, y · α(x)〉 = 〈L·(a∗)b∗, y · z〉
= 〈L∗◦(a∗)(y · z)〉 = 〈L∗◦(α∗(c∗))(y · z)〉,

〈(R∗· (x)a∗) ◦ α∗(b∗), y〉 = 〈α∗(b∗), L∗· (R∗· (x)a∗)y〉 = 〈b∗, α∗[L∗· (R∗· (x)a∗)y]〉
= 〈b∗, L∗· (R∗· (α(x))α∗(a∗))α(y)〉
= 〈b∗, L∗· (R∗· (z)c∗)α(y)〉,
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〈R∗· (L∗◦(a∗)x)α∗(b∗), y〉 = 〈y · L∗◦(a∗)x, α∗(b∗)〉 = 〈α(y) · α(L∗◦(a
∗)x), b∗〉

= 〈α(y) · L∗◦(α∗(a∗))α(x), b∗〉 = 〈α(y) · L∗◦(c∗)z, b∗〉

providing that (7.7) ⇐⇒ (7.10).

〈L∗· (L∗◦(b∗)x)α∗(a∗), y〉 = 〈(L∗◦(b∗)x) · y, α∗(a∗)〉 = 〈a∗, α(L∗◦(b
∗)x) · α(y)〉

= 〈a∗, L∗◦(α∗(b∗))α(x) · α(y)〉 = 〈a∗, L∗◦(d∗)z · α(y)〉,

〈α∗(a∗) ◦ (R∗· (x)b∗), y〉 = 〈R∗◦(R∗◦(x)b∗)y, α∗(a∗)〉 = 〈α∗(a∗) ◦ (R∗· (x)b∗), y〉
= 〈α[R∗◦(R

∗
◦(x)b∗)y], a∗〉 = 〈R∗◦[R∗◦(α(x))α∗(b∗)]α(y), a∗〉

= 〈R∗◦(R∗· (z)d∗)α(y), a∗〉,

〈(L∗· (x)a∗) ◦ α∗(b∗), y〉 = 〈R∗◦(α∗(b∗))y, L∗· (x)a∗〉 = 〈x · (R∗◦(d∗)y), a∗〉
= 〈α(z) · (R∗◦(d∗)y), a∗〉,

〈R∗· (R∗◦(a∗)x)α∗(b∗), y〉 = 〈y ·R∗◦(a∗)x, α∗(b∗)〉 = 〈α∗(b∗), L·(y)(R∗◦(a
∗)x)〉

= 〈(L∗· (y)(d∗), R∗◦(a
∗)x〉 = 〈L∗· (y)d∗ ◦ a∗, x〉

= 〈L∗◦(L∗· (y)d∗)x, a∗〉 = 〈L∗◦(L∗· (y)d∗)α(z), a∗〉

implying that (7.11) ⇐⇒ (7.12).
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On completely regular 2-duo semigroups

Panuwat Luangchaisri and Thawhat Changphas

Abstract. We present characterizations of completely regular 2-duo semigroups using (2, 0)-
ideals, (0, 2)-ideals, (2, 2)-ideals and (2, 2)-quasi-ideals of semigroups. We then consider 2-duo
semigroups when every (2, 2)-ideal is quasi-prime.

1. Introduction

Let S be a semigroup. An element a ∈ S is said to be regular if there exits x ∈ S
such that a = axa, and S is said to be regular if every element of S is regular.
Let A be a nonempty subset of S. We say that A is a left ideal (respectively, right
ideal) of S if SA ⊆ A (respectively, AS ⊆ A). A is called a two-sided ideal of S
if it is both a left and a right ideal of S. S is called a duo semigroup if its left
ideals and right ideals are two-sided. In [6], the author characterized regular duo
semigroups by left ideals and right ideals.

Let m and n be non-negative integers. A subsemigroup A of a semigroup S is
said to be an (m,n)-ideal of S if AmSAn ⊆ A. Here, A0S = SA0 = S. An (m,n)-
ideal was firstly introduced by S. Lajos in [4]; the author considered (m,n)-ideals
on regular duo semigroups in [5]. The results were extended to ordered semigroups
by L. Bussaban and T. Changphas in [1].

In this paper, we define an n-duo semigroup extending the concept of duo
semigroups. We then characterize completely regular 2-duo semigroups by (2, 2)-
ideals. Moreover, we consider when (2, 2)-ideals of 2-duo semigroups are all quasi-
prime.

2. Main Results

Definition 2.1. (cf. [2],[3],[8]) Let S be a semigroup and let a ∈ S. We say that
a is completely regular if a ∈ a2Sa2. A semigroup S is completely regular if every
element of S is completely regular.

Definition 2.2. Let S be any semigroup and let n be a non-negative integer. We
say that S is an n-duo semigroup if it satisfies the following conditions:

(i) Every (n, 0)-ideal of S is a (0, n)-ideal of S;

2010 Mathematics Subject Classification: 20M17
Keywords: 2-duo semigroup, completely regular, (m,n)-ideal, quasi-prime
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(ii) Every (0, n)-ideal of S is an (n, 0)-ideal of S.

Let A be a nonempty subset of a semigroup S. The set L(A) (respectively,
R(A)) is a left (respectively, right) ideal of S generated by A. It is well known
that L(A) = A∪SA and R(A) = A∪AS. Moreover, the set L(A) coincide the set
R(A) on duo semigroups. By Theorem 2.4 and Example 2.3, we show that every
duo semigroup is an n-duo semigroup (n > 2), but the converse is not generally
true.

Example 2.3. Let S = {a, b, c, d}. Consider a semigroup S with an associative
operation defined by:

· a b c d
a a a a a
b a a a a
c a a a a
d a a b a

Then (S, ·) is a 2-duo semigroup, but it is not a duo semigroup.

Theorem 2.4. Let S be a semigroup. If S is a duo semigroup, then S is an n-duo
semigroup where n > 2.

Proof. Assume that S is a duo semigroup. Let A be an (n, 0)-ideal of S. Then

AnS ⊆ An−1(A ∪AS)

= An−1R(A)

= An−1L(A)

= An−1(A ∪ SA)

= An ∪An−1SA

⊆ A ∪An−1SA.

Continue in the same manner, we obtain that

AnS ⊆ A ∪ SAn ⊆ A.

Thus, A is a (0, n)-ideal of S. Similarly, we have that every (0, n)-ideal of S is an
(n, 0)-ideal of S. Therefore, S is an n-duo semigroup.

Let S be a semigroup. For each a ∈ S, the symbol J(m,n)(a) stands for the
(m,n)-ideal of S generated by a. S. Lajos proved in [4] that

J(a)(m,n) =

m+n⋃
i=1

ai
⋃

amSan.

It is observed that J(0,2)(a) = J(2,0)(a) for all a ∈ S if S is a 2-duo semigroup.
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Theorem 2.5. Let S be a semigroup. Then S is a completely regular 2-duo
semigroup if and only if the following conditions hold:

(1) (A2 ∪A2S)2 = A for all (0, 2)-ideals A of S;

(2) (B2 ∪ SB2)2 = B for all (2, 0)-ideals B of S.

Proof. Assume that S is a completely regular 2-duo semigroup. Let A be a (0, 2)-
ideal of S. Then A = A2 because

A ⊆ A2SA2 ⊆ A3 ⊆ A2 ⊆ A.

Next, we prove the main equation of this theorem. Consider

A = A2

= (A ∪A)2

⊆ (A2 ∪A2SA2)2

⊆ (A2 ∪A2S)2

⊆ A2

= A.

Therefore, (A2 ∪ A2S)2 = A. If B is a (2, 0)-ideal of S, we can proceed similarly
and then we obtain (B2 ∪ SB2)2 = B.

Conversely, assume that (1) and (2) hold. Let A be a (0, 2)-ideal of S. Then

A2S = (A2 ∪A2S)2(A2 ∪A2S)2S

⊆ (A2 ∪A2S)2S

⊆ (A2 ∪A2S)(A2S)

⊆ (A2 ∪A2S)(A2 ∪A2S)

= A.

Thus, A is a (2, 0)-ideal of S. Similarly, if B is a (2, 0)-ideal of S, then by (2) we
obtain B is a (0, 2)-ideal of S. Therefore, S is 2-duo.

To prove that S is completely regular, let a ∈ S. Consider

a ∈ J(a)(2,0) = ((J(a)(2,0))
2 ∪ (J(a)(2,0))

2S)2

=
(
(J(a)(2,0))

2 ∪ (J(a)(2,0))
2S
) (

(J(a)(0,2))
2 ∪ (J(a)(2,0))

2S
)

⊆
(
a2 ∪ a2S

) (
(J(a)(0,2))

2 ∪ J(a)(2,0)
)

⊆
(
a2 ∪ a2S

) (
a2 ∪ Sa2 ∪ J(a)(0,2)

)
=
(
a2 ∪ a2S

)
(a ∪ a2 ∪ Sa2)

⊆ a3 ∪ a4 ∪ a2Sa2.

Thus, a is completely regular.
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Theorem 2.6. Let S be any semigroup. Then S is a completely regular 2-duo
semigroup if and only if

(B2 ∪B2S)2 = B = (B2 ∪ SB2)2

for all (2, 2)-ideal B of S.

Proof. Assume that S is a completely regular 2-duo semigroup. Let B be a (2, 2)-
ideal of S. Then

(B2 ∪B2S)2 ⊆ B4 ∪B4S ∪B2SB2 ∪B2SB2S

⊆ B ∪B4S

⊆ B ∪BS

⊆ B ∪B2SB2S

⊆ B ∪B(B2SB2)SB2S.

Since SB2 is a (0, 2)-ideal of S and S is a 2-duo semigroup, it follows that

B ∪B(B2SB2)SB2S = B ∪B3(SB2SB2)S

⊆ B ∪B3SB2

⊆ B ∪B2SB2

⊆ B.

According to the proof of Theorem 2.5, we have that B = B2. Thus,

B = B4 ⊆ (B2 ∪B2S)2.

Therefore, B = (B2 ∪BS)2. Similarly, B = (B2 ∪B2S). Hence,

(B2 ∪B2S)2 = B = (B2 ∪B2S).

Conversely, let A be a (0, 2)-ideal of S. Then A is a (2, 2) ideal of S. By
assumption,

A = (A2 ∪A2S)2.

On the same way, we obtain that

B = (B2 ∪ SB2)

for every (2, 0)-ideal B of S. By Theorem 2.5, S is a completely regular 2-duo
semigroup.

Definition 2.7. Let S be a semigroup and let m,n be non-negative integers. A
subsemigroup Q of S is said to be an (m,n)-quasi-ideal of S if SQm ∩QnS ⊆ Q.
Here, Q0S = SQ0 = S.
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Theorem 2.8. Let S be a semigroup. Then S is a completely regular 2-duo semi-
group if and only if

(Q2 ∪Q2S)2 = Q = (Q2 ∪ SQ2)2

for all (2, 2)-quasi-ideal Q of S.

Proof. Assume that S is a completely regular 2-duo semigroup. Let Q be a (2, 2)-
quasi-ideal of S. Then

(Q2 ∪Q2S)2 = Q2 ∪Q4S ∪Q2SQ2 ∪Q2SQ2S ⊆ Q2S

and

(Q2 ∪Q2S)2 = Q4 ∪Q4S ∪Q2SQ2 ∪Q2SQ2S

⊆ Q2SQ2 ∪ SQ2S

⊆ SQ2 ∪ SQ2S

⊆ SQ2 ∪ SQ(Q2SQ2)S

⊆ SQ2 ∪ SQ2SQ2S

⊆ SQ2 ∪ SQ2

= SQ2.

Thus, (Q2 ∪Q2S)2 ⊆ QS2 ∩ SQ2 ⊆ Q. The opposite inclusion is obtained by the
following equation:

Q ⊆ Q2SQ2 ⊆ (Q2 ∪Q2S)2.

Similarly, we have
Q = (Q2 ∪ SQ2)2.

This implement has been proven.
Conversely, let A and B be a (0, 2)-ideal of S and a (2, 0)-ideal of S, respectively.

Then A and B are (2, 2)-quasi-ideals as well. By assumption, we have

A = (A2 ∪A2S)2

and
B = (B2 ∪ SB2)2.

By Theorem 2.5, we have that S is a completely regular 2-duo semigroup.

Example 2.9. Let S = {0, 1, 2, 3} and defined a binary operation on S by

· a b c d
a a b a d
b b a b d
c a b c d
d d d d d.
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Then (S, ·) is a semigroup. We have that {d}, {a, b, d} and S are only (2, 2)-ideals
of S. Moreover every (2, 2)-ideal B of S satisfies the equation

(B2 ∪B2S)2 = B = (B2 ∪ SB2)2.

Thus, S is a completely regular 2-duo semigroup.

Lemma 2.10. Let S be a semigroup. Then S is completely regular if and only if
A = A2 for every (2, 2)-ideal A of S.

Proof. Assume that S is completely regular. Let A be a (2, 2)-ideal of S. Then

A ⊆ A2SA2 ⊆ A2S(A2SA2)(A2SA2) ⊆ (A2SA2)(A2SA2) ⊆ A2 ⊆ A.

Thus, A = A2.
Conversely, assume that A = A2 for every (2, 2)-ideal A of S. Let a ∈ S. Then

a ∈ J(2,2)(a)

= (J(2,2)(a))
2

⊆ a2 ∪ a3 ∪ a4 ∪ a2Sa2.

Thus, a ∈ a2Sa2. This implies that S is completely regular.

Remark 2.11. If S is completely regular, then AB is a (2, 2)-ideal of S for all
(2, 2)-ideals A,B of S.

Definition 2.12. Let S be a semigroup. A (2, 2)-ideal P of S is said to be quasi-
prime if

AB ⊆ P ⇒ A ⊆ P or B ⊆ P

for all (2, 2)-ideals A,B of S.

Definition 2.13. Let S be a semigroup. A (2, 2)-ideal P of S is said to be quasi-
semiprime if

A2 ⊆ P ⇒ A ⊆ P

for every (2, 2)-ideal A of S.

Recall and apply Lemma 2.11 in [7], we have the following lemma:

Lemma 2.14. Let S be a semigroup. Then A = A2 for every (2, 2)-ideal A of S
if and only if every (2, 2)-ideal of S is quasi-semiprime.

Theorem 2.15. Let S be a 2-duo semigroup. Then every (2, 2)-ideal of S is quasi-
prime if and only if S is completely regular and (2, 2)-ideals of S form a chain by
inclusion.
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Proof. Assume that every (2, 2)-ideal of S is quasi-prime. Then they are quasi-
semiprime as well. By Lemma 2.14, we have that A = A2 for every (2, 2)-ideal A
of S. By Theorem 2.10, S is completely regular. Next, we show that (2, 2)-ideals
of S form a chain by inclusion. Let A,B be (2, 2)-ideals of S. By Remark2.11,
we obtain that AB is also a (2, 2)-ideal of S. By assumption, AB is quasi-prime.
Then we have two cases to consider:

Case 1: A ⊆ AB. Then

A ⊆ AB ⊆ A(B2SB2) ⊆ AB2SB(B2SB2) ⊆ AB2SB2SB2.

Since B2S is a (2, 0)-ideal of S and S is a 2-duo semigroup, it follows that B2S is
a (0, 2)-ideal of S. Thus,

AB2SB2SB2 ⊆ B2SB2 ⊆ B.

These imply that A ⊆ B.
Case 2: B ⊆ A. Then

B ⊆ AB ⊆ (A2SA2)B ⊆ (A2SA2)ASA2B ⊆ ASA2SA2B.

Since SA2 is a (0, 2)-ideal of S and S is a 2-duo semigroup, it follows that SA2 is
a (2, 0)-ideal of S. Thus,

ASA2SA2B ⊆ A2SA2 ⊆ A.

These imply that B ⊆ A. From Case 1 and Case 2, we conclude that (2, 2)-ideals
of S form a chain by inclusion.

To prove the opposite direction, let P be a (2, 2)-ideal of S. Assume that A,B
are (2, 2)-ideals of S such that AB ⊆ P . If A ⊆ B, then

A = A2 ⊆ AB ⊆ P.

Otherwise, B ⊆ A implies that

B = B2 ⊆ AB ⊆ P.

Thus, P is quasi-prime.
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A new design of the signature schemes

based on the hidden discrete logarithm problem

Dmitriy N. Moldovyan, Alexandr A. Moldovyan, Nikolay A. Moldovyan

Abstract. A new design of the signature scheme based on the computational complexity of the
hidden discrete logarithm problem, which meets the criterion of elimination of periodicity asso-
ciated with the value of the discrete logarithm, is introduced as a candidate for post-quantum
public-key cryptoscheme. The used design criterion is oriented to provide security to the known
and potential future quantum attacks. Three different 6-dimensional finite non-commutative
associative algebras sets over the field GF (p) are considered as the algebraic support of the
developed signature have algorithm that is characterized in using a commutative finite group
possessing 2-dimensional cyclicity as a hidden group. Besides, the following two different types
of masking operations are applied: i) operations that are mutual commutative with the expo-
nentiation operation and ii) operations that are free of this property.

1. Introduction

Development of practical post-quantum (PQ) public-key (PK) cryptosystems is
a current challenge in the area of cryptography, which attracts considerable at-
tention from the research community [15, 16]. The most widely used in practice,
PK cryptographic algorithms and protocols are not resistant to quantum attacks
(attacks on computations on a quantum computer), since they are based on the
computational difficulty of the factoring problem (FP) and the discrete logarithm
problem (DLP) each of which can be solved in polynomial time on a quantum
computer [2, 18]. Quantum algorithms for solving the FP and DLP exploit the
extremely high efficiency of quantum computers to perform a discrete Fourier
transform [3] which is used to calculate the period length of periodic functions. In
particular, to solve DLP, one constructs a periodic function containing a period
with the length depending on the value of the logarithm.

Among the computationally difficult problems used as a basic primitive of PQ
PK cryptoschemes the hidden discrete logarithm problem (HDLP) [4, 6, 8] is of
particular interest for the development of PQ signature schemes [13, 7] having high
performance and comparetively small size of the PK and signature.

2010 Mathematics Subject Classification: 94A60, 16Z05, 14G50, 11T71, 16S50
Keywords: non-commutative algebra, finite associative algebra, single-sided units, post-
quantum cryptography, public-key cryptoscheme, signature scheme, discrete logarithm prob-
lem, hidden logarithm problem
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Recently [10], an enhanced design criterion has been proposed to provide the
resistance of the HDLP-based signature schemes to quantum attacks. That crite-
rion consists in the requirement to eliminate periodicities depending on the value
of the discrete logarithm when defining periodic functions on the base of public
parameters of the signature scheme. The signature scheme proposed in [10] meets
the said design criterion, however, that scheme uses a doubled verification equation
reducing the rate and increasing the signature size.

The present paper consideres another design of HDP-based signature schemes
meeting the advanced criterion of PQ resistance. The introduced new signature
scheme has significantly smaller size of signature and PK.

2. Preliminaries

2.1. Masking operations and hidden logarithm problem

Usually the HDLP is defined in finite non-commutative associative algebras
(FNAAs) [6, 7, 13]. The HDLP can be briefly described as follows. It is a selected
a random cyclic group having sufficiently large prime order, which is represented
by its generator G. Then one computes the PK in the form of the pair of vectors
Z = ψ1 (G) and Y = ψ2 (Gx) , where x is private key; ψ1 and ψ2 are masking
operations representing two different homomorphism-map (or automorphism-map)
operations which are mutually commutative with the exponentiation operation.

Due to using the masking operations ψ1 and ψ2 the vectors Z and Y are
contained in different cyclic groups. Each of the masking operations is mutually
comutative with the exponentiation operation, therefore, one can use a DLP-based
signature (for example, well-known Schnorr signature algorithm [17]) and replace
in it the signature verification procedure using the values G and Gx by a signa-
ture verification procedure using the values Z and Y . To compute a signature, a
potential forger needs to know only the value x that is a discrete logarithm value
in a hidden cyclic group, no element of which is known to the forger. The ratio-
nale of the security of the HDLP-based signature scheme is connected with the
fact that every set of periodic functions constructed using the public parameters
of the signature scheme takes on values in many different cyclic groups contained
in FNAA used as algebraic support. Therefore, the Shor quantum algorithm is
not directly applicable to compute the value x, even in the case when a periodic
function contains a period depending on the value x although.

For example, in the case of the signature scheme [13] the function F (i, j) =
Y i ◦ Zj , where ◦ denotes the multiplication operation in the FNAA, contains a
period of the length (−1, x), however one cannot select a fixed cyclic group such
that the function F (i, j) take on with sufficiently high probability the values in
the fixed cyclic group.

Thus, for the development of the HDLP-based signature schemes, one can
formulate the following design criterion:
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Criterion 1. The periodic functions constructed on the base of public parame-
ters of the signature scheme and containing a period with the length depending on
the discrete logarithm value should take on values in different finite cyclic groups
contained in the FNAA used as algebraic support. Besides, no cyclic group can be
pointed out as a preferable finite group for the values of the function F (i, j).

However, the future progress in quantum computations can lead to developing
new quantum algorithms that will allow one to compute the period length for
periodic functions that take on values in algebraic sets that are not groups. Possible
emergence of such quantum algorithms will mean breaking the known HDLP-based
signature schemes.

In the paper [10] the following strengthened criterion for ensuring the security
of the HDLP-based cryptoschemes to hypothetic quantum attacks is proposed:

Criterion 2. Based on the public parameters of the signature scheme, the
construction of a periodic function containing a period with the length depending
on the discrete logarithm value should be a computationally intractable task.

Using Criterion 2, in the present paper, a new HDLP-base signature scheme is
developed which has smaller sizes of signature and PK.

2.2. The used 6-dimensional FNAAs
Suppose a finite m-dimensional vector space is defined over the ground finite field
GF (p). Then defining additionally the vector multiplication that is distributive
at the right and at the left relatively the addition operation one gets a finite
m-dimensional algebra. Some algebra element (m-dimensional vector) A can be
denoted in the following two forms: A = (a0, a1, . . . , am−1) and A =

∑m−1
i=0 aiei,

where a0, a1, . . . , am−1 ∈ GF (p) are called coordinates; e0, e1, ... em−1 are basis
vectors.

The vector multiplication operation (◦) of two m-dimensional vectors A and B
is defined as follows:

A ◦B =

m−1∑
i=0

m−1∑
j=0

aibj(ei ◦ ej),

where every of the products ei ◦ ej is to be replaced by a single-component vector
λek, where λ ∈ GF (p), indicated in the cell at the intersection of the ith row and
jth column of so called basis vector multiplication table (BVMT) like Tables 1, 2,
and 3. To define the associative vector multiplication operation, the BVMT should
define the associative multiplication of all possible triples of the basis vectors
(ei, ej , ek) :

(ei ◦ ej) ◦ ek = ei ◦ (ej ◦ ek) .

Three different 6-dimensional FNAAs defined by Tables 1, 2, and 3 with the
structural constant λ 6= 0 are considered as the algebraic support of the HDLP-
based signature scheme described in the next Section 3. The BVMT shown as
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Tablea 1 is constructed using a unified method [12] for setting FNAA of arbitrary
even dimensions. Other two BVMTs are presented as alternative variants of setting
the 6-dimensional FNAAs which also suit well for applying them as an algebraic
support of the proposed signature scheme.

Every of these FNAAs contains a global two-sided unit. The unit in the algebra
defined by Tables 1 and 3 represents the vector E = (1, 0, 0, 0, 0, 0). The unit in
the algebras defined by Table 2 is the vector E = (0, 0, 0, 1, 0, 0). Invertible vectors
having prime order of sufficiently large size are used as parameters of the signature
scheme. In every of the said FNAAs the maximum order of the elements is equal to
ωmax = p

(
p2 − 1

)
and the algebras are set over the field GF (p) with characteristic

equal to prime p = 2q + 1, where q is a 255-bit prime number.

It is easy to see that every of the considered FNAAs contains a large number
of different commutative groups possessing 2-dimensional cyclicity. The notion of
µ-dimensional cyclicity was proposed in [11, 14] in order to highlight the finite
groups generated by a minimum generator system including µ elements of the
same order.

Consider the vector Vd = (d, 0, 0, 0, 0, 0), where d is primitive element in GF (p).
Evidently, the vector Vd is generator of the cyclic group Γd including all vectors of
the form (i, 0, 0, 0, 0, 0), where i 6= 0, and every vector V ∈ Γd satisfies the condition
A ◦ V = V ◦A, since multiplication by V represents the scalar multiplication.

Suppose the vector J /∈ Γd has order equal to p − 1. Then the minimum
generator system < J, Vd > defines the finite commutative group possessing 2-
dimensional cyclicity and having the order Ω = (p− 1)

2. Every of the considered
6-dimensional FNAAs contains a large number of different commutative groups of
the said type and the cyclic group Γd is contained in every of these commutative
groups.

Table 1

The BVMT [12] setting the 6-dimensional FNAA used as algebraic support

◦ e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 e1 λe0 e5 λe4 e3 λe2
e2 e2 e3 e4 e5 e0 e1
e3 e3 λe2 e1 λe0 e5 λe4
e4 e4 e5 e0 e1 e2 e3
e5 e5 λe4 e3 λe2 e1 λe0
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Table 2

The BVMT setting the first alternative 6-dimensional FNAA; λ 6= 0.

◦ e0 e1 e2 e3 e4 e5
e0 λe3 e2 λe1 e0 λe5 e4
e1 e4 e5 e0 e1 e2 e3
e2 λe5 e4 λe3 e2 λe1 e0
e3 e0 e1 e2 e3 e4 e5
e4 λe1 e0 λe5 e4 λe3 e2
e5 e2 e3 e4 e5 e0 e1

Table 3

The BVMT setting the second alternative 6-dimensional FNAA; λ 6= 0.

◦ e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 e1 λe0 λe4 λe5 e2 e3
e2 e2 λe5 λe0 λe4 e3 e1
e3 e3 λe4 λe5 λe0 e1 e2
e4 e4 e3 e1 e2 e5 e0
e5 e5 e2 e3 e1 e0 e4

3. The proposed signature scheme

3.1. Setting the hidden commutative group

One can use different values of the structural constant λ 6= 0 in the BVMTs defining
the 6-dimensional FNAAs used as an algebraic support of the developed signature
scheme. For any fixed value λ every of the said algebras contains sufficiently
large number of commutative groups with 2-dimensional cyclicity. Computation
of the private and public parameters of the signature scheme begins with setting a
private hidden finite commutative group Γ<G,Q> that is generated by the minimum
generator system < G,Q > that includes two vectors G and Q each of which has
order equal to the prime q. Actually, the group Γ<G,Q> of the order q2 is set as
computation of the vectors G and Q of the order q, which is performed as follows:

1. Select a random invertible vector R1 and compute G1 = R
2p(p+1)
1 6= E.

2. Select a random invertible vector R2 and compute G2 = R
2p(p+1)
2 6= E.

3. If G1 ◦G2 = G2 ◦G1, then go to step 1. Otherwise, take G = G1.
4. Select a random integer r and compute b = r2 mod p 6= 1.

5. Performing scalar multiplication, compute the vector Q = bG.

One can easily see that the order of each of the vectors G and Q is equal
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to the prime q, therefore we have the minimum generator system < G,Q > of
the commutative group with 2-dimensional cyclicity, which has order equal to the
value q2.

3.2. Masking operations and computation of the public key.
Two different types of masking operations are used:

i) the automorphism map operation ψB(X) = B◦X◦B−1, where B is an invert-
ible vector (private value), which is a mutually commutative the exponentiation
operation;

ii) map operations that are not mutually commutative with the exponentiation
operation, which are defined as FAB(X) = A◦X ◦B−1 and FBA(X) = B◦X ◦A−1.

Computation of the PK in the form of the triple of vectors (U, Y, Z) is performed
as follows:

1. Generate at random the minimum generator system < G,Q > of the hidden
commutative group Γ<G,Q> possessing the 2-dimensional cyclicity.

2. Generate at random the invertible vector B of the order p2 − 1, , which
satisfies the conditions G ◦B 6= B ◦G, and compute the vector Y = B ◦G ◦B−1.

3. Generate at random the integers x (1 < x < q) and w (1 < w < q) and the
invertible vector A of the order p2−1, which satisfies the conditions A◦B 6= B ◦A
and A ◦ G 6= G ◦ A. Then compute the vectors U = A ◦ Gx ◦ Q ◦ B−1 and
Z = B ◦Qw ◦A−1.

The integers x,w and the vectors G, Q, A, and B are the private parameters
of the signature scheme. The private key represents the subset {x,w,G,Q,A} of
private elements that are used when computing a signature. The size of the PK
(U, Y, Z) is equal to 576 bytes.

3.3. Signature generation algorithm:
1. Generate at random the integers k (1 < k < q) and t (1 < t < q). Then

compute V = A ◦GkQt ◦A−1.
2. Using a specified hash function fH , compute the first signature element e:

e = fH (M,V ) , where M is a document to be signed.
3. Compute the second s and third σ signature elements as one of the two

solutions of the following system of two congruences{
es2 + xs+ xσ = k mod q;

s+ ws+ σ + wσ = t mod q.

If this system has no solution, then go to step 1.
On average, computation of one 96-byte signature (e, s, σ) requires performing

the signature generation procedure two times. On the whole, the computational
difficulty of the signature computation procedure is roughly equal to four exponen-
tiation operations in the 6-dimensional FNAA selected as the algebraic support of
the signature scheme.
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3.4. Verification and correctness of the signature scheme

Signature verification procedure includes the following steps:
1. Using the signature (e, s, σ) and the PK (U, Y, Z), compute the vector

V ′ = (U ◦ Y es ◦ Z)
s ◦ (U ◦ Z)

σ
.

2. Compute the hash function value e′ = fH (M,V ′) .
3. If e′ = e, then the signature is genuine. Otherwise, the signature is rejected.
The computational difficulty of the signature verification procedure is roughly

equal to three exponentiation operations in the 6-dimensional FNAA. Correct-
ness proof of the signature scheme consists in proving that the signature (e, s, σ)
computed correctly will pass the verification procedure as a genuine signature.

Correctness proof:

V ′1 = (U ◦ Y es ◦ Z)
s ◦ (U ◦ Z)

σ
=

=
(
A ◦Gx ◦Q ◦B−1 ◦

(
B ◦G ◦B−1

)es ◦B ◦Qw ◦A−1)s ◦
◦
(
A ◦Gx ◦Q ◦B−1 ◦B ◦Qw ◦A−1

)σ
=

=
(
A ◦Gx ◦Q ◦Ges ◦Qw ◦A−1

)s ◦A ◦Gxσ ◦Qσ ◦Qwσ ◦A−1 =

= A ◦Gxs ◦Qs ◦Ges
2

◦Qws ◦Gxσ ◦Qσ+wσ ◦A−1 =

= A ◦Ges
2+xs+xσ ◦Qs+ws+σ+wσ ◦A−1 = A ◦Gk ◦Qt ◦A−1 = V.

Since V ′ = V , the equality e′ = e holds true, i. e. the signature is accepted as
a genuine one.

4. Discussion

Consider some periodic functions composed on the base of public parameters of
the introduced signature scheme.

1. Suppose the function F1(i, j) = (Z ◦ U)
i ◦ Y j = B ◦ Gxi+j ◦ Qwi+i ◦ B−1

includes a period with the length (δi, δj) . Then, we have{
xδi + δj ≡ 0 mod q;

(w + 1)δi ≡ 0 mod q.

From the last system, one gets δi ≡ δj ≡ 0 mod q. The last means the function
F1(i, j) possesses only the periodicity connected with the value q that is the order
of cyclic groups contained in the hidden commutative group with 2-dimensional
cyclicity.

2. Suppose the function F2(i, j) = (U ◦ Y ◦ Z)
i ◦ (U ◦ Z)

j
= A ◦ Gxi+i+xj ◦

Qi+wi+j+wj ◦ A−1 contains a period with the length (δi, δj) . Then, taking into
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account that G and Q are generators of different cyclic groups of the same order
q, we have {

(x+ 1)δi + xδj ≡ 0 mod q;

(w + 1)δi + (w + 1)δj ≡ 0 mod q.

The main determinant of this system of two linear equations is not equal to zero,
therefore, δi ≡ δj ≡ 0 mod q, i. e., the function F2(i, j) also possesses only the
periodicity connected with the value q.

3. Suppose the function F3(i, j, k) = (U ◦ Z)
i◦
(
U ◦ Y j ◦ Z

)k
= B◦Gxi+xk+jk◦

Qwi+i+k+wk ◦B−1 contains a period with the length (δi, δj) . Then we have{
xδi + xδk + jδk + kδj + δjδk ≡ 0 mod q;

(w + 1)δi + (w + 1)δk ≡ 0 mod q.

When solving the last system of two linear congruencies relatively, the unknowns
δi, δj , and δk, one obtains solutions that depend on the values j and k, except the
solution (δi, δj , δk) = (0, 0, 0). This means that the function F3(i, j, k) possesses
only the periodicity with the length (q, q, q), i. e., the function F3(i, j, k) also
possesses only the periodicity connected with the order of the vectors G and Q.

Thus, the proposed signature scheme meets the advanced design criterion of
PQ resistance.

Among the nine signature algorithms developed in framework of the NIST com-
petition as candidates for PQ signature standard the algorithms Falcon [https://
falcon-sign.info/], Dilithium [https://pq-crystals.org/dilithium/index.shtml], Rain-
bow [1], and qTESLA [https://qtesla.org/] attracts attention from the view point
of the trade off between rate and size of the PK and the signature. Table 4
presents a rough comparison of the proposed signature algorithm with Falcon-512,
Dilithium-1024x768, Rainbow, and qTESLA-p-I (versions related to the 128-bit
security level).

The signature algorithm proposed in this article has a significant advantage
in the size of the signature, but it is inferior in performance than Falcon-512.
However, for potential versions of the proposed signature scheme, which will be
implemented using a 4-dimensional FNAA with two-sided global unit as the alge-
braic support, the rate can be increased by 2.25 times (with simultaneous reducing
the PK size to the value 384 bytes). Suitable 4-dimensional FNAAs are presented,
for example, in papers [5, 9]. When using a 256-bit prime integer as the value q,
one can expect the 128-bit security is provided for the both cases of the algebra di-
mension m = 6 and m = 4. However consideration of the security of the proposed
signature scheme represents a task of individual study.

5. Conclusion
This paper introduces a HDLP-based signature scheme that meets the advanced
design criterion of PQ resistance, significant merit of which is the significantly
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Table 4

Comparison with the NIST candidates for PQ signature standard

Signature signature publi-key sign. gener. sign. verific.
scheme size, bytes size, bytes rate, arb. un. rate, arb. un.

Falcon-512 657 897 50 25
Dilithium 2044 1184 15 10
Rainbow 64 150000 – –

qTESLA-p-I 2592 15000 20 40
Proposed
m = 6 96 576 30 40

Proposed
m = 4 96 384 65 90
[10] 192 768 85 65

smaller size of both the signature and the PK in comparison with the earlier
proposed analog [10]. The used design method is characterized in applying both
the masking operations that are mutually commutative with the exponentiation
operation and the masking operations that are free of such properties. Another
feature of the introduced cryptoscheme is the use of the signature verification
equation with cascade exponentiation.

In comparison with the PQ signature schemes that are currently considered as
candidates for PQ signature standards, the propose scheme is significantly more
practical. Besides, implementation of the last one on the base of one of the 4-
dimensional FNAA with two-sided global units, which are described in [5, 9], will
supposedly also provide 128-bit security, but will have 2.25 times higher perfor-
mance rate.
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Characterizations of ordered k-regularities

on ordered semirings

Pakorn Palakawong na Ayutthaya and Bundit Pibaljommee

Abstract. We investigate the connections among some types of ordered k-regularities of ordered
semirings and give some of their characterizations using their ordered k-ideals, prime ordered k-
ideals, semiprime ordered k-ideals and pure ordered k-ideals.

1. Introduction
Regularities are important and interesting properties to research on algebraic
structures, especially, semigroups and semirings. Some notable types of regulari-
ties defined by Kehayopulu [7,8] and Kehayopulu and Tsingelis [9] on semigroups
and ordered semigroups are the bases of many works about regularities on semir-
ings and ordered semirings. A semiring, a well-known generalization of a ring, is
an algebraic system (S,+, ·) such that (S,+) and (S, ·) are semigroups connected
by a distributive law. Originally, the regular property of a semiring (S,+, ·) is
defined on (S, ·) as a similar way of a regular ring defined by von Neumann [11].
He called a semiring (S,+, ·) to be regular if the semigroup (S, ·) is regular, i.e.,
for each a ∈ S, a = axa for some x ∈ S. However, in the sense of Bourne [3], a
semiring (S,+, ·) is regular if for each a ∈ S, a + axa = aya for some x, y ∈ S.
Later, Adhikari, Sen and Weinert [1] renamed Bourne regular semirings to be k-
regular semirings. It is easy to obtain that a k-regular semiring is a generalization
of a regular semiring. In 1958, Henriksen [5] defined a more restricted class of ide-
als in a semiring, which he called k-ideals, a considerably useful kind of ideals to
characterize k-regular semirings. Afterwards, Bhuniya and Jana [2, 6] defined the
notions of quasi-k-ideals and k-bi-ideals of semirings and use them to characterize
k-regular and intra k-regular semirings.

A notable generalization of semirings is an ordered semiring. In the sense of
Gan and Jiang [4], an ordered semiring (S,+, ·,6) is a semiring (S,+, ·) together
with a partially ordered relation 6 on S satisfying the compatibility property.
In 2014, Mandal [10] defined an ordered semiring (S,+, ·,6) to be regular and k-
regular if for each a ∈ S, a 6 axa and a+axa 6 aya for some x, y ∈ S, respectively.
In 2016, we gave some characterizations of regular, left regular, right regular, and
intra-regular ordered semirings using many kinds of their ordered ideals in [12].
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Keywords: ordered k-ideal, prime ordered k-ideal, semiprime ordered k-ideal, pure ordered
k-ideal, ordered semiring, ordered k-regular semiring.
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Later, Patchakheio and Pibaljommee [16] defined an ordered semiring (S,+, ·,6)
to be ordered k-regular if a ∈ (aSa] for all a ∈ S. This notion is a generalization
of k-regular ordered semirings defined by Mandal. Moreover, in [16] they gave the
notions of left ordered k-regular, right ordered k-regular, left weakly ordered k-
regular and right weakly ordered k-regular semirings and characterize them using
their ordered k-ideals. In 2017, Senarat and Pibaljommee [18] used prime and
irreducible ordered k-bi-ideals to characterize left and right weakly ordered k-
regular semirings.

In our previous works [13–15, 17], we characterized ordered k-regular, left or-
dered k-regular, right ordered k-regular, ordered intra k-regular, completely or-
dered k-regular, left weakly ordered k-regular, right weakly ordered k-regular
and fully ordered k-idempotent semirings in terms of many kinds of their or-
dered k-ideals. In this work, we recollect all types of mentioned kinds of ordered
k-regularities, investigate connections among them and left generalized ordered
k-regular, right generalized ordered k-regular and generalized ordered k-regular
semirings and give some more their characterizations. Furthermore, we use the
concepts of prime ordered k-ideals, semiprime ordered k-ideals and pure ordered
k-ideals of ordered semirings to characterize some kinds of ordered k-regularities.

2. Preliminaries

An ordered semiring [4] is a system (S,+, ·,6) consisting of the semiring (S,+, ·)
and the partially ordered set (S,6) connected by the compatibility property. If
(S,+) is commutative, (S,+, ·,6) is called additively commutative [1]. Throughout
this work, we simple write S instead of an ordered semiring (S,+, ·,6) and always
assume that it is additively commutative.

For any ∅ 6= A,B ⊆ S, we denote A + B = {a + b ∈ S | a ∈ A, b ∈ B},
AB = {ab ∈ S | a ∈ A, b ∈ B}, (A] = {x ∈ S | x 6 a for some a ∈ A} and

ΣA =

{∑
i∈I

ai | ai ∈ A and I is a finite nonempty set

}
.

The k-closure [16] of ∅ 6= A ⊆ S is denoted by A = {x ∈ S | x+ a 6 b for some
a, b ∈ A}. By the elementary properties of the finite sums Σ, the operator ( ] and
the k-closure of a nonempty subset of an ordered semiring, we refer to [13–16].
Nevertheless, we give the following lemma to be useful accessories for reaching the
main results.

Lemma 2.1. Let A and B be nonempty subsets of an ordered semiring S. The
following statements hold:

(i) Σ(A] ⊆ (ΣA];

(ii) (A] = ((A]];
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(iii) A(B] ⊆ (A] (B] ⊆ (ΣAB] and (A]B ⊆ (A] (B] ⊆ (ΣAB];
(iv) A + (B] ⊆ (A] + (B] ⊆ (A + B];

(v) (A(B]] ⊆ ((A] (B]] ⊆ (ΣAB] and ((A]B] ⊆ ((A] (B]] ⊆ (ΣAB];

(vi) (A + (B]] ⊆ ((A] + (B]] ⊆ (A + B].

A nonempty subset A of an ordered semiring S such that A + A ⊆ A is called
a left (resp. right) ordered k-ideal of S if SA ⊆ A (resp. AS ⊆ A) and A = A.
If A is both a left and a right ordered k-ideal of S, then A is called an ordered
k-ideal [16] of S. A nonempty subset Q of S is called an ordered quasi-k-ideal [13]
of S if (ΣQS] ∩ (ΣSQ] ⊆ Q and Q = Q. A nonempty subset B of S such that
B + B ⊆ B, B2 ⊆ B and B = B is said to be an ordered k-bi-ideal [18] (resp.
ordered k-interior ideal) [14] of S if BSB ⊆ B (resp. SBS ⊆ B).

For a ∈ S, by the notations L(a), R(a), J(a), Q(a), B(a) and I(a), we mean
the intersection of all left ordered k-ideals, right ordered k-ideals, ordered k-ideals,
ordered quasi-k-ideals, ordered k-bi-ideals and ordered k-interior ideals of S con-
taining a, respectively. Now, we recollect their constructions which occur in [13–16]
as follows.

Lemma 2.2. For ∅ 6= A ⊆ S, the following statements hold:

(i) L(a) = (Σa + Sa];
(ii) R(a) = (Σa + aS];

(iii) J(a) = (Σa + Sa + aS + ΣSaS];

(iv) Q(a) = (Σa + ((aS] ∩ (Sa])];
(v) B(a) = (Σa + Σa2 + aSa];

(vi) I(a) = (Σa + Σa2 + ΣSaS].

We define the relations L and R on an ordered semiring S by

L := {(x, y) ∈ S × S | L(x) = L(y)} and R := {(x, y) ∈ S × S | R(x) = R(y)}.

3. Ordered k-regularities of Ordered Semirings
We recall the notions of some types of ordered k-regularities of ordered semirings
as the following definition.

Definition 3.1. An ordered semiring S is called:

(i) ordered k-regular if a ∈ (aSa] for all a ∈ S (cf. [16]);
(ii) left ordered k-regular if a ∈ (Sa2] for all a ∈ S (cf. [16]);

(iii) right ordered k-regular if a ∈ (a2S] for all a ∈ S (cf. [16]);
(iv) completely ordered k-regular if S is ordered k-regular, left ordered k-regular

and right ordered k-regular (cf. [15]);
(v) ordered intra k-regular if a ∈ (ΣSa2S] for all a ∈ S (cf. [14]);

(vi) left weakly ordered k-regular if a ∈ (ΣSaSa] for all a ∈ S (cf. [16]);
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(vii) right weakly ordered k-regular f a ∈ (ΣaSaS] for all a ∈ S (cf. [16]);
(viii) fully ordered k-idempotent if I = (ΣI2] for each ordered k-ideal I of S (cf.

[15]).

According to Definition 3.1(viii), we note that an ordered semiring S is fully
ordered k-idempotent if and only if a ∈ (ΣSaSaS] for all a ∈ S [15].

Here, we give two lemmas which will be significantly used later.

Lemma 3.2. An ordered semiring S is ordered intra k-regular if a ∈ (Σa2 + ΣSa2S]
for all a ∈ S.

Proof. Let a ∈ S. Assume that

a ∈ (Σa2 + ΣSa2S]. (1)

Using (1), we get

a2 = aa ∈ (Σa2 + ΣSa2S] (Σa2 + ΣSa2S] ⊆ (Σ(Σa2 + ΣSa2S)(Σa2 + ΣSa2S)]

⊆ (Σ(Σa4 + ΣSa2S]] ⊆ (Σ(ΣSa2S]] = (ΣSa2S]. (2)

Using (1) and (2), we obtain

a ∈ (Σa2 + ΣSa2S] ⊆ (Σ(ΣSa2S] + ΣSa2S] ⊆ ((ΣSa2S] + (ΣSa2S]]

⊆ ((ΣSa2S + ΣSa2S]] = (ΣSa2S].

Therefore, S is ordered intra k-regular.

Lemma 3.3. If an ordered semiring S is ordered intra k-regular, then J(a) =
(ΣSaS] for all a ∈ S.

Proof. Let a ∈ S. Assume that S is ordered intra k-regular. Then

J(a) = (Σa + Sa + aS + ΣSaS]

⊆ (Σ(ΣSa2S] + S(ΣSa2S] + (ΣSa2S]S + ΣS(ΣSa2S]S]

⊆ ((ΣSa2S] + (ΣSa2S] + (ΣSa2S] + (ΣSa2S]]

⊆ ((ΣSa2S + ΣSa2S + ΣSa2S + ΣSa2S]]

= ((ΣSa2S]] = (ΣSa2S] ⊆ (ΣSaS].

On the other hand, we show that (ΣSaS] ⊆ J(a). Let s ∈ ΣSaS and t ∈ Σa +
Sa+aS. Then s+(t+s) 6 t+s+s such that t+s, t+s+s ∈ Σa+Sa+aS+ΣSaS
and so s ∈ Σa + Sa + aS + ΣSaS ⊆ (Σa + Sa + aS + ΣSaS] = J(a). This means
that ΣSaS ⊆ J(a). It follows that (ΣSaS] ⊆ (J(a)] = J(a).
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Theorem 3.4. [16] An ordered semiring S is ordered k-regular if and only if
R ∩ L = (RL] for every right ordered k-ideal R and left ordered k-ideal L of S.

Corollary 3.5. [13] An ordered semiring S is ordered k-regular if and only if
a ∈ (R(a)L(a)] for all a ∈ S.

Now, we give more characterizations of an ordered k-regular semiring in terms
of many kinds of their ordered k-ideals.

Theorem 3.6. The following conditions are equivalent:

(i) S is ordered k-regular;
(ii) B ∩L ⊆ (BL] for every ordered k-bi-ideal B and left ordered k-ideal L of S;

(iii) R ∩B ⊆ (RB] for every right ordered k-ideal R and ordered k-bi-ideal B of
S;

(iv) R ∩ B ∩ L ⊆ (RBL] for every right ordered k-ideal R, ordered k-bi-ideal B
and left ordered k-ideal L of S;

(v) B ∩ I = (BIB] for every ordered k-bi-ideal B and ordered k-interior ideal I
of S;

(vi) B ∩ J = (BJB] for every ordered k-bi-ideal B and ordered k-ideal J of S;
(vii) B ∩ I ∩ L ⊆ (BIL] for every ordered k-bi-ideal B, ordered k-interior ideal I

and left ordered k-ideal L of S;
(viii) Q∩ I ∩L ⊆ (QIL] for every ordered quasi-k-ideal Q, ordered k-interior ideal

I and left ordered k-ideal L of S;
(ix) R∩ I ∩L ⊆ (RIL] for every right ordered k-ideal R, ordered k-interior ideal

I and left ordered k-ideal L of S;
(x) B ∩ J ∩L ⊆ (BJL] for every ordered k-bi-ideal B, ordered k-ideal J and left

ordered k-ideal L of S;
(xi) Q ∩ J ∩L ⊆ (QJL] for every ordered quasi-k-ideal Q, ordered k-ideal J and

left ordered k-ideal L of S;
(xii) R ∩ J ∩ L ⊆ (RJL] for every right ordered k-ideal R, ordered k-ideal J and

left ordered k-ideal L of S;
(xiii) R∩ I ∩B ⊆ (RIB] for every right ordered k-ideal R, ordered k-interior ideal

I and ordered k-bi-ideal B of S;
(xiv) R∩ I ∩Q ⊆ (RIQ] for every right ordered k-ideal R, ordered k-interior ideal

I and ordered quasi-k-ideal Q of S;
(xv) R ∩ J ∩B ⊆ (RJB] for every right ordered k-ideal R, ordered k-ideal J and

ordered k-bi-ideal B of S;
(xvi) R ∩ J ∩Q ⊆ (RJQ] for every right ordered k-ideal R, ordered k-ideal J and

ordered quasi-k-ideal Q of S.

Proof. (i)⇒ (ii). Let B and L be an ordered k-bi-ideal and a left ordered k-ideal
of S, respectively. If x ∈ B ∩ L then by (i), x ∈ (xSx] ⊆ (BSL] ⊆ (BL].
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(ii)⇒ (i). Let a ∈ S. By (ii), a ∈ B(a)∩L(a) ⊆ (B(a)L(a)]. Since every right
ordered k-ideal is an ordered k-bi-ideal [13], we get a ∈ (B(a)L(a)] ⊆ (R(a)L(a)].
By Corollary 3.5, S is ordered k-regular.

(i) ⇒ (iii). and (iii) ⇒ (i) can be proved in a similar way of (i) ⇒ (ii) and
(ii)⇒ (i), respectively.

(i) ⇒ (iv). Let R, B and L be a right ordered k-ideal, an ordered k-bi-
ideal and a left ordered k-ideal of S, respectively. If x ∈ R ∩ B ∩ L then by (i),
x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (RSBSL] ⊆ (RBL].

(iv) ⇒ (i). Let a ∈ S. By (iv), a ∈ R(a) ∩ B(a) ∩ L(a) ⊆ (R(a)B(a)L(a)] ⊆
(R(a)L(a)]. Using Corollary 3.5, S is ordered k-regular.

(i)⇒ (v). Let B and I be an ordered k-bi-ideal and an ordered k-interior ideal
of S, respectively. If x ∈ B ∩ I then by (i), x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆
(BSISB] ⊆ (BIB]. Clearly, (BIB] ⊆ B ∩ I. Hence, B ∩ I = (BIB].

(v) ⇒ (vi). It follows from the fact that every ordered k-ideal is an ordered
k-interior ideal [14].

(vi) ⇒ (i). Let a ∈ S. By (vi), a ∈ B(a) ∩ J(a) = (B(a)J(a)B(a)]. Since
every one-sided ordered k-ideal is an ordered k-bi-ideal [13], a ∈ (B(a)J(a)B(a)] ⊆
(R(a)J(a)L(a)] ⊆ (R(a)L(a)]. Using Corollary 3.5, S is ordered k-regular.

(i) ⇒ (vii). Let B, I and L be an ordered k-bi-ideal, an ordered k-interior
ideal and a left ordered k-ideal of S, respectively. If x ∈ B ∩ I ∩ L then by (i),
x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (BSISL] ⊆ (BIL].

(vii) ⇒ (viii). It follows from the fact that every ordered quasi-k-ideal is an
ordered k-bi-ideal [12].

(viii) ⇒ (ix). It follows from the fact that every right ordered k-ideal is an
ordered quasi-k-ideal [12].

(ix) ⇒ (i). Let a ∈ S. By (ix), a ∈ R(a) ∩ I(a) ∩ L(a) ⊆ (R(a)I(a)L(a)] ⊆
(R(a)L(a)]. Using Corollary 3.5, S is ordered k-regular.

(i)⇒ (x)⇒ (xi)⇒ (xii)⇒ (i) can be proved in a similar way of (i)⇒ (vii)⇒
(viii)⇒ (ix)⇒ (i).

(i) ⇒ (xiii). Let R, I and B be a right ordered ideal, an ordered k-interior
ideal and an ordered k-bi-ideal of S, respectively. If x ∈ R ∩ I ∩ B then by (i),
x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (RSISB] ⊆ (RIB].

(xiii) ⇒ (xiv). It follows from the fact that every ordered quasi-k-ideal is an
ordered k-bi-ideal [13].

(xiv)⇒ (i). Let a ∈ S. By (xiv), a ∈ R(a) ∩ I(a) ∩Q(a) ⊆ (R(a)I(a)Q(a)] ⊆
(R(a)Q(a)]. Using the fact that every left ordered k-ideal is an ordered quasi-k-
ideal [13], a ∈ (R(a)Q(a)] ⊆ (R(a)L(a)]. By Corollary 3.5, S is ordered k-regular.

(i) ⇒ (xv) ⇒ (xvi) ⇒ (i) can be proved in a similar way of (i) ⇒ (xiii) ⇒
(xiv)⇒ (i).

Definition 3.7. Let a be an element of an ordered semiring S. Then a is called:
left generalized ordered k-regular (resp. right generalized ordered k-regular, gener-
alized ordered k-regular) if a ∈ (Sa] (resp. a ∈ (aS], a ∈ (ΣSaS]).
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If a is left generalized ordered k-regular (resp. right generalized ordered k-
regular, generalized ordered k-regular) for all a ∈ S, then S is called left generalized
ordered k-regular (resp. right generalized ordered k-regular, generalized ordered k-
regular).

Remark 3.8. Let a and b be elements of an ordered semiring S. If a is left (resp.
right) generalized ordered k-regular and aLb (aRb), then b is also left (resp. right)
generalized ordered k-regular.

Proof. Let a, b ∈ S. If a is left generalized ordered k-regular and aLb, then

b ∈ L(a) = (Σa + Sa] ⊆ (Σ(Sa] + Sa] ⊆ (Sa] ⊆ (SL(b)]

⊆ (S(Σb + Sb]] ⊆ (ΣSb + Sb] = (Sb + Sb] = (Sb].

Hence, b is also left generalized ordered k-regular.

Remark 3.9. Let a and b be elements of an ordered semiring S such that a is
generalized ordered k-regular. If aLb or aRb, then b is also generalized ordered
k-regular.

Proof. Let a, b ∈ S. Assume that a is generalized ordered k-regular and aLb. Then

b ∈ L(a) = (Σa + Sa] ⊆ (Σ(ΣSaS] + S(ΣSaS]] ⊆ ((ΣSaS] + (ΣSaS]] ⊆ (ΣSaS]

⊆ (ΣSL(b)S] ⊆ (ΣS(Σb + Sb]S] ⊆ (ΣSbS + ΣSbS] = (ΣSbS].

Hence, b is generalized ordered k-regular. The case of aRb can be proved similarly.

Connections among eleven types of ordered k-regularities can be summarized
by the following diagram. Each arrow represents the implication between two
regularities and its converse is not generally true.
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Example 3.10. Let S = {a, b, c, d}. Define two binary operations + and · on S
by the following tables:

+ a b c d
a a b c d
b b b c d
c c c c d
d d d d d

and

· a b c d
a a a c d
b a a c d
c a a c d
d a a c d

Define a binary relation6 on S by6:= {(a, a), (b, b), (c, c), (d, d), (a, d), (b, d), (c, d)}.
Then (S,+, ·,6) is an ordered semiring.
Since x ∈ (ΣSx2S] = S for all x ∈ S, we have that S is ordered intra k-regular

and hence S is fully ordered k-idempotent and generalized ordered k-regular.
Since x ∈ (Σx2S] = S for all x ∈ S, we have that S is right ordered k-regular

and hence S is right weakly ordered k-regular and right generalized ordered k-
regular.

However, b /∈ (Sb] = {a} and so S is not left generalized ordered k-regular.
Consequently, S is not left weakly ordered k-regular and also neither left ordered
k-regular nor ordered k-regular.

Example 3.11. Consider the set S = {a, b, c, d} together with the operation +
and the relation 6 of Example 3.10. Define a binary operation · on S by the
following table:

· a b c d
a a a a a
b a a a a
c c c c c
d d d d d

Then (S,+, ·,6) is an ordered semiring.
Since x ∈ (ΣSx2S] = S for all x ∈ S, we have that S is ordered intra k-regular

and hence S is fully ordered k-idempotent and generalized ordered k-regular.
Since x ∈ (ΣSx2] = S for all x ∈ S, we have that S is left ordered k-regular

and hence S is left weakly ordered k-regular and left generalized ordered k-regular.
However, b /∈ (bS] = {a} and so S is not right generalized ordered k-regular.

Consequently, S is not right weakly ordered k-regular and also neither right ordered
k-regular nor ordered k-regular.

Example 3.12. Let S = {a, b, c}. Define two binary operations + and · on S by
the following tables:

+ a b c
a a b c
b b b c
c c c c

and

· a b c
a a a a
b a a a
c a b c
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Define a binary relation 6 on S by 6:= {(a, a), (b, b), (c, c), (a, b), (a, c), (b, c)}.
Then (S,+, ·,6) is an ordered semiring. Since a ∈ (Sa] = {a}, b ∈ (Sb] = {a, b}
and c ∈ (Sc] = S, we get that S is left generalized ordered k-regular. However,
b /∈ (ΣSbS] = {a} and so S is not generalized ordered k-regular. Consequently, S
is not fully ordered k-idempotent and also not left weakly ordered k-regular.

Example 3.13. Consider the set S = {a, b, c} together with the operation + and
the relation 6 of Example 3.12. Define a binary operation · on S by the following
table;

· a b c
a a a a
b a a b
c a a c

Then (S,+, ·,6) is an ordered semiring. Since a ∈ (aS] = {a}, b ∈ (bS] = {a, b}
and c ∈ (cS] = S, we get that S is right generalized ordered k-regular. However,
b /∈ (ΣSbS] = {a} and so S is not generalized ordered k-regular. Consequently, S
is not fully ordered k-idempotent and also not left weakly ordered k-regular.

Example 3.14. Consider the set S = {a, b, c} together with the operation + and
the relation 6 of Example 3.12. Define a binary operation · on S by the following
table;

· a b c
a a a a
b a a b
c a b c

Then (S,+, ·,6) is an ordered semiring. Since a ∈ (ΣSaS] = {a}, b ∈ (ΣSbS] =
{a, b} and c ∈ (ΣScS] = S, we get that S is generalized ordered k-regular. How-
ever, S is not fully ordered k-idempotent because b /∈ (ΣSbSbS] = {a}.

4. Prime and Semiprime Ordered k-ideals
Now, we use the concepts of prime and semiprime ordered k-ideals to characterize
several kinds of ordered k-regularities on ordered semirings.

Definition 4.1. A nonempty subset T of an ordered semiring S is said to be
prime if for any a, b ∈ S, ab ∈ T implies a ∈ T or b ∈ T .

Definition 4.2. A nonempty subset T of an ordered semiring S is said to be
semiprime if for any a ∈ S, a2 ∈ T implies a ∈ T .

It is clear that every prime subset of an ordered semiring is semiprime but not
conversely.
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Example 4.3. Consider the ordered semiring (N,+, ·,6) such that N is the set of
all natural numbers, + is the usual addition, · is the usual multiplication and 6 is
the natural order. We easily get that 2N is a prime subset and 6N is a semiprime
subset of (N,+, ·,6). However, 6N is not prime because 2 · 3 ∈ 6N but 2, 3 /∈ 6N.

Theorem 4.4. An ordered semiring S is left (right) ordered k-regular if and only
if every left (right) ordered k-ideal of S is semiprime.

Proof. Assume that S is left ordered k-regular. Let L be a left ordered k-ideal of
S and x ∈ S. If x2 ∈ L then by assumption, x ∈ (Sx2] ⊆ (SL] ⊆ (L] = L. Hence,
L is semiprime.

Conversely, assume that every left ordered k-ideal of S is semiprime. Let a ∈ S.
Since a2 belongs to L(a2) a semiprime left ordered k-ideal, we get

a ∈ L(a2) = (Σa2 + Sa2] (3)

Using (3), we obtain

a2 = aa ∈ a(Σa2 + Sa2] ⊆ (Σa3 + Sa2] ⊆ (Sa2] (4)

Using (3) and (4), we obtain

a ∈ (Σa2 + Sa2] ⊆ (Σ(Sa2] + Sa2] ⊆ (Sa2].

Therefore, S is left ordered k-regular.

Theorem 4.5. [15] An ordered semiring S is completely ordered k-regular if and
only if every ordered k-bi-ideal of S is semiprime.

Theorem 4.6. [15] An ordered semiring S is both left and right ordered k-regular
if and only if every ordered quasi-k-ideal of S is semiprime.

Theorem 4.7. An ordered semiring S is ordered intra k-regular if and only if
every ordered k-interior ideal of S is semiprime.

Proof. Assume that S is ordered intra k-regular. Let I be an ordered k-interior
ideal of S and x ∈ S. If x2 ∈ I then by assumption, x ∈ (ΣSx2S] ⊆ (ΣSIS] ⊆
(ΣI] = I. Hence, I is semiprime.

Conversely, assume that every ordered k-interior ideal I of S is semiprime.
Let a ∈ S. Since a2 belongs to I(a2) a semiprime ordered k-interior ideal, we get
a ∈ I(a2) = (Σa2 + Σa4 + ΣSa2S] ⊆ (Σa2 + ΣSa2S]. By Lemma 3.2, S is ordered
intra k-regular.

We note that every ordered k-ideal of an ordered semiring is an ordered k-
interior ideal [13, 14] and they coincide in ordered intra k-regular semirings [14].
As a consequence of Theorem 4.7 and using the above fact, we obtain the following
corollary.
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Corollary 4.8. An ordered semiring S is ordered intra k-regular if and only if
every ordered k-ideal of S is semiprime.

Theorem 4.9. An ordered semiring S is ordered intra k-regular and the set of
all ordered k-ideals of S forms a chain if and only if every ordered k-ideal of S is
prime.

Proof. Let T be an ordered k-ideal of S and let a, b ∈ S be such that ab ∈ T .
Using Lemma 3.3, we have J(a) = (ΣSaS], J(b) = (ΣSbS] and J(ab) = (ΣSabS].
We show that J(a) ∩ J(b) ⊆ J(ab). Let z ∈ J(a) ∩ J(b). Then

z2 ∈ J(b)J(a) = (ΣSbS] (ΣSaS] ⊆ (ΣSbSaS]. (5)

If w ∈ bSa, then w2 ∈ bSabSa ⊆ SabS ⊆ (ΣSabS] = J(ab). By assumption
and Theorem 4.7, J(ab) is semiprime and so w ∈ J(ab). Thus, bSa ⊆ J(ab). By
(5), it turns out that z2 ∈ (ΣS(bSa)S] ⊆ (ΣSJ(ab)S] ⊆ (ΣJ(ab)] = J(ab). Since
J(ab) is semiprime, z ∈ J(ab). Hence, J(a) ∩ J(b) ⊆ J(ab). Since the set of all
ordered k-ideals of S is a chain, J(a) ⊆ J(b) or J(b) ⊆ J(a). If J(a) ⊆ J(b), then
a ∈ J(a) = J(a) ∩ J(b) ⊆ J(ab) = (ΣSabS] ⊆ (ΣSTS] ⊆ T . If J(b) ⊆ J(a), then
b ∈ J(b) = J(a)∩ J(b) ⊆ J(ab) = (ΣSabS] ⊆ (ΣSTS] ⊆ T . Therefore, T is prime.

Conversely, assume that every ordered k-ideal of S is prime. Let A and B
be ordered k-ideals of S. We want to show that A ⊆ (ΣAB] or B ⊆ (ΣAB].
Suppose that B * (ΣAB]. There exists b ∈ B such that b /∈ (ΣAB]. Then for
any a ∈ A, we have that ab ∈ AB ⊆ (ΣAB]. Since (ΣAB] is prime, a ∈ (ΣAB]
and so A ⊆ (ΣAB]. Hence, A ⊆ (ΣAB] ⊆ (ΣB] = B or B ⊆ (ΣAB] ⊆ (ΣA] = A.
It follows that the set of all ordered k-ideals of S forms a chain. By assumption,
every ordered k-ideal of S is also semiprime. Hence, by Theorem 4.7, S is ordered
intra k-regular.

Using the fact that every ordered k-ideal is an ordered k-interior ideal, together
with Theorem 4.9, we directly obtain the following corollary.

Corollary 4.10. An ordered semiring S is ordered intra k-regular and the set of
all ordered k-ideals of S forms a chain if and only if every ordered k-interior ideal
of S is prime.

5. Pure Ordered k-ideals
In this section, we present the notions of left pure, right pure, quasi-pure, bi-pure,
left weakly pure and right weakly pure ordered k-ideals of ordered semirings and
use them to characterize ordered k-regular, left weakly ordered k-regular, right
weakly ordered k-regular and fully ordered k-idempotent semirings.

Definition 5.1. An ordered k-ideal A of an ordered semiring S is called left pure
(resp. right pure) if x ∈ (Ax] (resp. x ∈ (xA]) for all x ∈ A.



118 P. Palakawong na Ayutthaya and B. Pibaljommee

Theorem 5.2. Let A be an ordered k-ideal of an ordered semiring S. Then A
is left pure (resp. right pure) if and only if A ∩ L = (AL] for every left ordered
k-ideal L (resp. R ∩A = (RA] for every right ordered k-ideal R) of S.

Proof. (i) Assume that A is left pure. Let L be a left ordered k-ideal of S. If
x ∈ A∩L, then x ∈ (Ax] ⊆ (AL]. Therefore, A∩L ⊆ (AL]. Clearly, (AL] ⊆ A∩L.
Hence, A ∩ L = (AL].

Conversely, let x ∈ A. Using assumption and Lemmas 2.1 and 2.2, we get

x ∈ A ∩ L(x) = (AL(x)] = (A(Σx + Sx]] ⊆ ((ΣAx + ASx]]

⊆ (Ax + Ax] ⊆ (Ax].

Hence, A is a left pure ordered k-ideal of S.
(ii) It can be proved similarly.

Definition 5.3. An ordered k-ideal A of an ordered semiring S is called quasi-pure
if x ∈ (xA] ∩ (Ax] for all x ∈ A.

It is clear that every quasi-pure ordered k-ideal of an ordered semiring is both
left pure and right pure.

Theorem 5.4. An ordered k-ideal A of an ordered semiring S is quasi-pure if and
only if A ∩Q = (QA] ∩ (AQ] for every ordered quasi-k-ideal Q of S.

Proof. Assume that A is quasi-pure. Let Q be an ordered quasi-k-ideal of S. If
x ∈ A ∩ Q, then x ∈ (xA] ∩ (Ax] ⊆ (QA] ∩ (AQ]. Thus, A ∩ Q ⊆ (QA] ∩ (AQ].
Clearly, (QA] ∩ (AQ] ⊆ A ∩Q. Hence, A ∩Q = (QA] ∩ (AQ].

Conversely, let x ∈ A. Using assumption and Lemmas 2.1 and 2.2, we get

x ∈ A ∩Q(x) = (Q(x)A] ∩ (AQ(x)]

= ((Σx + ((xS] ∩ (Sx])]A] ∩ (A(Σx + ((xS] ∩ (Sx])]]

⊆ ((Σx + (xS]]A] ∩ (A(Σx + (Sx]]]

⊆ ((Σx + xS]A] ∩ (A(Σx + Sx]]

⊆ (ΣxA + xSA] ∩ (ΣAx + ASx]

⊆ (xA + xA] ∩ (Ax + Ax] ⊆ (xA] ∩ (Ax].

Hence, A is a quasi-pure ordered k-ideal of S.

Definition 5.5. An ordered k-ideal A of an ordered semiring S is called bi-pure
if x ∈ (xAx] for all x ∈ A.

It is easy to obtain that every bi-pure ordered k-ideal of an ordered semiring
is quasi-pure.
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Theorem 5.6. An ordered k-ideal A of an ordered semiring S is bi-pure if and
only if A ∩B = (BAB] for every ordered k-bi-ideal B of S.

Proof. Assume that A is bi-pure. Let B be an ordered k-bi-ideal of S. If x ∈ A∩B,
then x ∈ (xAx] ⊆ (BAB]. Thus, A∩B ⊆ (BAB]. Clearly, (BAB] ⊆ A∩B. Hence,
A ∩B = (BAB].

Conversely, let x ∈ A. Using assumption and Lemmas 2.1 and 2.2, we get

x ∈ A ∩B(x) = (B(x)AB(x)] = ((Σx + Σx2 + xSx]A(Σx + Σx2 + xSx]]

⊆ (ΣxAx] = (xAx].

Hence, A is a bi-pure ordered k-ideal of S.

Definition 5.7. An ordered k-ideal A of S is called left weakly pure (resp. right
weakly pure) if A∩ I = (ΣAI] (resp. I ∩A = (ΣIA]) for every ordered k-ideal I of
S.

We note that every left (resp. right) pure ordered k-ideal of an ordered semiring
is left (resp. right) weakly pure.

Now, we characterize some kinds of ordered k-regularities by pure and weakly
pure ordered k-ideals of ordered semirings.

Lemma 5.8. [17] Let S be an ordered semiring. Then the following statements
hold:

(i) if a ∈ (Σa2 + aSa + Sa2 + ΣSaSa] for any a ∈ S, then S is left weakly
ordered k-regular;

(ii) if a ∈ (Σa2 + aSa + a2S + ΣaSaS] for any a ∈ S, then S is right weakly
ordered k-regular.

Theorem 5.9. An ordered semiring S is left (resp. right) weakly ordered k-regular
if and only if every ordered k-ideal of S is left (resp. right) pure.

Proof. Assume that S is left weakly ordered k-regular. Let A be an ordered k-ideal
of S and let x ∈ A. By assumption, x ∈ (ΣSxSx] ⊆ (ΣSASx] ⊆ (ΣAx] = (Ax].
Hence, A is left pure.

Conversely, let a ∈ S. By assumption, we obtain that J(a) is left pure. Using
Lemmas 2.1 and 2.2 and Theorem 5.2, we obtain that

a ∈ J(a) ∩ L(a) = (J(a)L(a)] = ((Σa + aS + Sa + ΣSaS] (Σa + Sa]]

⊆ (Σa2 + aSa + Sa2 + ΣSaSa].

By Lemma 5.8(i), we get that S is left weakly ordered k-regular.

As a consequence of Theorem 5.9 and the fact that every quasi-pure ordered
k-ideal is both left pure and right pure, we directly obtain the following corollary.
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Corollary 5.10. An ordered semiring S is both left and right weakly ordered k-
regular if and only if every ordered k-ideal of S is quasi-pure.

We note that an ordered k-ideal of an ordered semiring is bi-pure if and only
if it is an ordered k-regular subsemiring. Accordingly, we obtain the following
remark.

Remark 5.11. An ordered semiring S is ordered k-regular if and only if every
ordered k-ideal of S is bi-pure.

Proof. Assume that S is ordered k-regular. Let A be an ordered k-ideal of S and
let x ∈ A. By the ordered k-regularity of S, we have that x ∈ (xSx] ⊆ (xSxSx] ⊆
(xSASx] ⊆ (xSAx] ⊆ (xAx]. Hence, A is bi-pure.

The converse is obvious since S itself is a bi-pure ordered k-ideal and so S is
ordered k-regular.

Corollary 5.12. [15] Let S be an ordered semiring. If

a ∈ (Σa2 + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS]

for all a ∈ S, then S is fully ordered k-idempotent.

Theorem 5.13. Let S be an ordered semiring. Then

(i) if S is fully ordered k-idempotent, then every ordered k-ideal of S is both left
and right weakly pure;

(ii) if every ordered k-ideal of S is left weakly pure or right weakly pure, then S
is fully ordered k-idempotent.

Proof. (i). Assume that S is fully ordered k-idempotent. Let A and I be any
ordered k-ideals of S. By assumption, it turns out that if x ∈ A ∩ I, then

x ∈ (ΣSxSxS] ⊆ (ΣSASIS] ⊆ (ΣASI] ⊆ (ΣAI] and

x ∈ (ΣSxSxS] ⊆ (ΣSISAS] ⊆ (ΣISA] ⊆ (ΣIA].

So, A∩ I ⊆ (ΣAI] and A∩ I ⊆ (ΣIA]. Clearly, (ΣAI] ⊆ A∩ I and (ΣIA] ⊆ A∩ I.
Hence, A ∩ I = (ΣAI] = (ΣIA] and thus A is both left and right weakly pure.

(ii). Assume that every ordered k-ideal of S is left weakly pure. Let a ∈ S.
Then J(a) is left weakly pure. It follows that J(a) = (ΣJ(a)J(a)]. By Lemmas
2.1 and 2.2, we obtain that

a ∈ J(a) = (ΣJ(a)J(a)] = (Σ(Σa + Sa + aS + ΣSaS] (Σa + Sa + aS + ΣSaS]]

= (Σ(Σa2 + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS]]

= (Σa2 + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS].

By Corollary 5.12, we obtain that S is fully ordered k-idempotent.
It can be proved analogously if every ordered k-ideal of S is right weakly

pure.
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Magnifying elements of some semigroups

of partial transformations

Chadaphorn Punkumkerd and Preeyanuch Honyam

Abstract. Let X be a nonempty set and let P (X) denote the semigroup (under the compo-
sition) of partial transformations from a subset of X to X and E(X) denote the subsemigroup of
P (X) containing surjective partial transformations onX. For a fixed nonempty subset Y ofX, let
PT (X,Y ) = {α ∈ P (X) | (domα ∩ Y )α ⊆ Y } and PT(X,Y ) = {α ∈ P (X) | (domα ∩ Y )α = Y }.
We give necessary and sufficient conditions for elements in semigroups PT (X,Y ) and PT(X,Y )

to be left or right magnifying.

1. Introduction
Let S be a semigroup. An element a ∈ S is called a left (right) magnifying element
if there exist a proper subset M of S such that S = aM (S =Ma). Such elements
are mentioned in 1963 by E. S. Ljapin [5]. M. Gutan showed in [1] that there exists
semigroups containing both strong and non-strong magnifying elements. In [2] he
proved that every semigroup containing magnifying elements is factorizable. In [3]
he proposed the method of construction of semigroups having good left magnifying
elements.

Let B(X) be the set of all binary relations on the set X. Then P (X), where
P (X) = {α ∈ B(X) | α : A → B when A,B ⊆ X}, is a semigroup called the
semigroup of partial transformations on X. The semigroup of surjective partial
transformations on X is denoted by E(X), i.e. E(X) = {α ∈ P (X) | ranα = X}.
The necessary and sufficient conditions for elements of P (X) to be the left or right
magnifying elements were found in [6].

T (X) = {α ∈ P (X) | domα = X} is a semigroup called the full transforma-
tion semigroup on X. ET (X) = E(X) ∩ T (X) is a semigroup of surjective full
transformations on X.

For a fixed nonempty subset Y of X, let

T (X,Y ) = {α ∈ T (X) | Y α ⊆ Y } and T(X,Y ) = {α ∈ T (X) | Y α = Y },

where Y α = {yα | y ∈ Y }. Then T (X,Y ) and T(X,Y ) are subsemigroups of T (X).
T(X,Y ) is also a subsemigroup of T (X,Y ).

2010 Mathematics Subject Classification: 20M10, 20M20
Keywords: left magnifying element, right magnifying element, partial transformation semi-
group, partial transformation semigroup with invariant set
This research was supported by Chiang Mai University.
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The semigroups PT (X,Y ) and PT(X,Y ) are defined similarly. Namely,

PT (X,Y ) = {α ∈ P (X) | (domα ∩ Y )α ⊆ Y }
and

PT(X,Y ) = {α ∈ P (X) | (domα ∩ Y )α = Y },

where domα is the domain of α and (domα ∩ Y )α = {zα | z ∈ domα ∩ Y }.
Then PT (X,Y ) and PT(X,Y ) are subsemigroups of P (X). PT(X,Y ) also is a sub-
semigroup of PT (X,Y ).

The purpose of this paper is providing the necessary and sufficient conditions
for elements in semigroups PT (X,Y ) and PT(X,Y ) to be left or right magnifying.

2. Preliminaries

Throughout this paper, the cardinality of a setX is denoted by |X| andX = A ∪̇B
means X is a disjoint union of A and B. The proper subset B of a set A is denoted
by B ⊂ A.

For α, β ∈ P (X), αβ ∈ P (X) is defined by x(αβ) = (xα)β for all x ∈ dom (αβ).
The identity map on X, i.e. idX , is the identity element of PT (X,Y ) and PT(X,Y ).
The empty function onX, i.e. ∅X is a zero element of PT (X,Y ) but ∅X 6∈ PT(X,Y ).

For α ∈ P (X), we write

α =

(
Xi

ai

)
where the subscript i belongs to some (unmentioned) index set I, the abbreviation
{ai} denotes {ai | i ∈ I}. Then ranα = {ai} and aiα−1 = Xi.

For α ∈ PT (X,Y ), we write

α =

(
Ai Bj Ck

ai bj ck

)
where Ai ∩ Y 6= ∅; Bj , Ck ⊆ X \ Y ; {ai} ⊆ Y, {bj} ⊆ Y \ {ai} and {ck} ⊆ X \ Y .

For α ∈ PT(X,Y ), we write

α =

(
Ai Bj

ai bj

)
where Ai ∩ Y 6= ∅; Bj ⊆ X \ Y ; {ai} = Y, {bj} ⊆ X \ Y .

If X is finite, then Y is also finite. So we get PT (X,Y ) and PT(X,Y ) are
finite semigroups. Since finite semigroups do not contain left and right magnifying
elements (cf. [4]), we will consider only the case when X is an infinite set.

3. Left Magnifying Elements in PT (X, Y )

Lemma 3.1. If α ∈ PT (X,Y ) is a left magnifying element in PT (X,Y ), then
domα = X, α is injective and yα−1 ⊆ Y for all y ∈ Y ∩ ranα.
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Proof. Assume that α is a left magnifying element in PT (X,Y ). Then there
exists a proper subset M of PT (X,Y ) such that αM = PT (X,Y ). Since idX ∈
PT (X,Y ), there exists β ∈M such that αβ = idX . Thus X = dom idX ⊆ domα
and hence domα = X. Since idX is injective, we also have α is injective. Since
α is not an empty function, we have Y ∩ ranα 6= ∅. Let y ∈ Y ∩ ranα and let
x ∈ yα−1. Then xα = y and so x = xidX = xαβ = yβ ∈ Y . So yα−1 ⊆ Y for all
y ∈ Y ∩ ranα.

Lemma 3.2. If α ∈ PT (X,Y ) is a left magnifying element in PT (X,Y ), then α
is not surjective.

Proof. Assume that α is a left magnifying element in PT (X,Y ) and α is surjective.
Then there exists M ⊂ PT (X,Y ) such that αM = PT (X,Y ). By Lemma 3.1, we
get domα = X, α is injective and yα−1 ⊆ Y for all y ∈ Y ∩ ranα. Then

α =

(
ai bj
yi zj

)
where {ai} = Y = {yi} and {ai}∪̇{bj} = X = {yi}∪̇{zj}. There is

α−1 =

(
yi zj
ai bj

)
∈ PT (X,Y )

such that α−1α = idX . Let β ∈ PT (X,Y ). Then αβ ∈ PT (X,Y ). Since
PT (X,Y ) = αM , we get αβ = αγ for some γ ∈ M . So β = idXβ = α−1(αβ) =
α−1(αγ) = idXγ = γ ∈ M . Thus PT (X,Y ) ⊆ M that contradicts with M is a
proper subset of PT (X,Y ). Therefore, α is not surjective.

Theorem 3.3. α ∈ PT (X,Y ) is a left magnifying element in PT (X,Y ) if and
only if the following statements hold:

1. domα = X,
2. yα−1 ⊆ Y for all y ∈ Y ∩ ranα and
3. α is injective but not surjective.

Proof. Assume that α is a left magnifying element in PT (X,Y ). By the above
lemmas, we have domα = X, yα−1 ⊆ Y for all y ∈ Y ∩ ranα and α is injective
but not surjective.

Conversely, choose M = {δ ∈ PT (X,Y ) | dom δ 6= X} and assume that the
conditions 1-3 hold. Then we get M ⊂ PT (X,Y ). Let β ∈ PT (X,Y ). If β = ∅X ,
then there is ∅X ∈M such that β = α∅X . If β 6= ∅X , we let Y = {ai} ∪̇ {bj} when
domβ ∩ Y = {ai} and X \ Y = {sk} ∪̇ {tl} when dom, β ∩ (X \ Y ) = {sk}. Then

α =

(
ai bj sk tl
yi zj uk vl

)
where {yi}, {zj} ⊆ Y and {uk}, {vl} ⊆ X \ Y . Since α is not surjective, we have
ranα 6= X. Define γ : {yi} ∪ {uk} → X by

γ =

(
yi uk
aiβ skβ

)
.
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Since α is injective, γ is well-defined. Since (dom γ ∩ Y )γ = {yi}γ = {aiβ} ⊆ Y ,
γ ∈ PT (X,Y ). But dom γ = {yi} ∪ {uk} ⊆ ranα 6= X, so γ ∈M .

Let x ∈ domβ = {ai} ∪ {sk} = dom(αγ).
If x = ai for some i ∈ I, then x(αγ) = ai(αγ) = (aiα)γ = yiγ = aiβ = xβ.
If x = sk for some k ∈ K, then x(αγ) = sk(αγ) = (skα)γ = ukγ = skβ = xβ.

Thus β = αγ. Hence PT (X,Y ) = αM . Therefore, α is a left magnifying element
in PT (X,Y ).

Taking Y = X in Theorem 3.3 we obtain

Corollary 3.4. α ∈ P (X) is a left magnifying element in P (X) if and only if
domα = X and α is injective but not surjective.

Example 3.5. Let X = N and Y = 2N. Define

α =

(
n

n+ 2

)
n∈N

.

Then (domα ∩ Y )α = (2N)α = 2N\{2} ⊆ Y and so α ∈ PT (X,Y ). Moreover,
we get domα = N = X, yα−1 ⊆ Y for all y ∈ Y ∩ ranα and α is injective but α is
not surjective. By Theorem 3.3, α is a left magnifying element in PT (X,Y ). By
the proof of Theorem 3.3, there exists M = {δ ∈ PT (X,Y ) | dom δ 6= N = X} ⊂
PT (X,Y ) such that αM = PT (X,Y ).

4. Right Magnifying Elements in PT (X, Y )

Lemma 4.1. If α ∈ PT (X,Y ) is a right magnifying element in PT (X,Y ), then
α is surjective.

Proof. Assume that α is a right magnifying element in PT (X,Y ). Then there is a
proper subsetM of PT (X,Y ) such thatMα = PT (X,Y ). Since idX ∈ PT (X,Y ),
there exists β ∈ M such that βα = idX . From idX is surjective, this implies α is
surjective.

Lemma 4.2. If α ∈ PT (X,Y ) is a right magnifying element in PT (X,Y ), then
yα−1 ∩ Y 6= ∅ for all y ∈ Y .

Proof. Assume α is a right magnifying element in PT (X,Y ). Then there exists a
proper subset M of PT (X,Y ) such that Mα = PT (X,Y ). By Lemma 4.1, α is
surjective.

Suppose that y0α−1 ∩ Y = ∅ for some y0 ∈ Y and define

β =

(
Y
y0

)
.

Then β ∈ PT (X,Y ). Since Mα = PT (X,Y ), there is γ ∈ M such that γα = β.
But α is surjective and y0α−1 ∩ Y = ∅, so y0α−1 ⊆ X \ Y . Thus for each y ∈ Y ,
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y0 = yβ = (yγ)α. So yγ ∈ y0α−1 ⊆ X \ Y which is a contradiction. Therefore
yα−1 ∩ Y 6= ∅ for all y ∈ Y .

Lemma 4.3. If α ∈ PT (X,Y ) is a right magnifying element in PT (X,Y ), then
domα 6= X or α is not injective.

Proof. Assume that α is a right magnifying element in PT (X,Y ). By Lemmas 4.1
and 4.2, α is surjective and yα−1 ∩ Y 6= ∅ for all y ∈ Y . Suppose that domα = X
and α is injective. Let X = {ai} ∪ {bj} be such that Y = {ai}. Then

α =

(
ai bj
yi zj

)
where {yi} = Y and {zj} = X \ Y . There is α−1 ∈ PT (X,Y ) such that αα−1 =
idX . Let β ∈ PT (X,Y ). Then βα ∈ PT (X,Y ). Since PT (X,Y ) = Mα, we
have βα = δα for some δ ∈ M . Thus β = (βα)α−1 = (δα)α−1 = δ ∈ M .
Hence PT (X,Y ) ⊆ M . That yields M = PT (X,Y ) which contradicts with M ⊂
PT (X,Y ). Therefore, domα 6= X or α is not injective.

Theorem 4.4. α ∈ PT (X,Y ) is a right magnifying element in PT (X,Y ) if and
only if the following statements hold:

1. α is surjective,
2. yα−1 ∩ Y 6= ∅ for all y ∈ Y and
3. domα 6= X or α is not injective.

Proof. Assume that α is a right magnifying element in PT (X,Y ). Conditions 1-3
are a consequence of Lemmas 4.1, 4.2 and 4.3.

Conversely, assume that conditions 1-3 are satisfied. We have two cases.
Case 1: domα 6= X. Choose M = {δ ∈ PT (X,Y ) | δ is not surjective}. Then

M ⊂ PT (X,Y ). Let β ∈ PT (X,Y ). Then

β =

(
Ai Bj Ck

ai bj ck

)
.

where Ai ∩ Y 6= ∅; Bj , Ck ⊆ X \ Y ; {ai} ⊆ Y, {bj} ⊆ Y \ {ai} and {ck} ⊆ X \ Y .
Since α is surjective, we have ranβ ⊆ X = ranα. From yα−1 ∩ Y 6= ∅ for all
y ∈ Y , we have aiα−1 ∩ Y 6= ∅ 6= bjα

−1 ∩ Y . Choose dai
∈ aiα

−1 ∩ Y and
dbj ∈ bjα−1 ∩ Y . Then daiα = ai and dbjα = bj . Since ranβ ⊆ ranα, we have
ck ∈ ranα and we can choose c′k ∈ domα such that c′kα = ck. Define

γ =

(
Ai Bj Ck

dai
dbj c′k

)
.

Then γ ∈ PT (X,Y ). Since ran γ ⊆ domα 6= X, γ is not surjective. Thus γ ∈M .
Let dom(γα) = (ran γ ∩ domα)γ−1 = (ran γ)γ−1 = dom γ = domβ and

x ∈ domβ.
If x ∈ Ai for some i ∈ I, then x(γα) = (xγ)α = daiα = ai = xβ.
If x ∈ Bj for some j ∈ J , then x(γα) = (xγ)α = dbjα = bj = xβ.
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If x ∈ Ck for some k ∈ K, then x(γα) = (xγ)α = c′kα = ck = xβ.
Thus γα = β and hence PT (X,Y ) ⊆ Mα which implies that Mα = PT (X,Y ).
Case 2: α is not injective. Choose M = {δ ∈ PT (X,Y ) | δ is not surjective}.
Then M ⊂ PT (X,Y ). Let β ∈ PT (X,Y ). Then

β =

(
Ai Bj Ck

ai bj ck

)
.

where Ai ∩ Y 6= ∅; Bj , Ck ⊆ X \ Y ; {ai}, {bj} ⊆ Y and {ck} ⊆ X \ Y .
Let γ ∈ PT (X,Y ) be as in Case 1. Since α is not injective, there is x0 ∈ ranα

and distinct elements x1, x2 ∈ domα such that x1α = x0 = x2α. Note that
ranβ ⊆ ranα. If x0 ∈ ranβ, then there is exactly one (either x1 or x2) in ran γ.
If x0 6∈ ranβ, then x1, x2 6∈ ran γ. Thus γ is not surjective and so γ ∈ M .
Analogously as in Case 1, we get γα = β and hence PT (X,Y ) ⊆Mα. This means
that Mα = PT (X,Y ).

Therefore, α is a right magnifying element in PT (X,Y ).

For Y = X we obtain the following corollary.

Corollary 4.5. α ∈ P (X) α is a right magnifying element in P (X) if and only
if α is surjective and (domα 6= X or α is not injective).

Example 4.6. Let X = N and Y = 2N. Define

α =

(
1 {2, 3} 4 {5, 6} n+ 2
1 2 3 4 n

)
n≥5

and β =

(
1 4 5 8 n+ 4
1 2 3 4 n

)
n≥5

.

Then (domα∩Y )α = (2N)α = 2N ⊆ Y and (domβ∩Y )β = (2N\{2, 6})β = 2N ⊆
Y. So α, β ∈ PT (X,Y ). It is clear that α is surjective. Furthermore, yα−1 ∩ Y 6= ∅
for all y ∈ Y and α is not injective but domα = N = X. We can see that β is a
bijection and yβ−1 ∩ Y 6= ∅ for all y ∈ Y but domβ = N \ {2, 3, 6, 7} 6= X. By
Theorem 4.4, α, β are right magnifying elements in PT (X,Y ). Then by the proof
of Theorem 4.4, there is M = {δ ∈ PT (X,Y ) | δ is not surjective} ⊂ PT (X,Y )
such that Mα = PT (X,Y ) and Mβ = PT (X,Y ).

5. Left Magnifying Elements in PT(X,Y )

Lemma 5.1. If α ∈ PT(X,Y ) is a left magnifying element in PT(X,Y ), then
domα = X and α is injective.

Proof. Assume that α is a left magnifying element in PT(X,Y ). Then there exists
a proper subset M of PT(X,Y ) such that αM = PT(X,Y ). Since idX ∈ PT(X,Y ),
there exists β ∈M such that αβ = idX . Thus domα = X and α is injective.

Lemma 5.2. If α ∈ PT(X,Y ), where Y 6= X, is a left magnifying element in
PT(X,Y ), then α is not surjective.
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Proof. Given Y 6= X. Assume that α is a left magnifying element in PT(X,Y ) and
α is surjective. Then there exists M ⊂ PT(X,Y ) such that αM = PT(X,Y ). By
Lemma 5.1, we get domα = X and α is injective. Thus α is a bijection on X.
Since αβ ∈ PT(X,Y ) = αM , αβ = αγ for some γ ∈M . So β = γ and hence β ∈M .
Thus PT(X,Y ) ⊆ M . So M = PT(X,Y ) which is a contradiction. Therefore, α is
not surjective.

Theorem 5.3. If Y 6= X, then α ∈ PT(X,Y ) is a left magnifying element in
PT(X,Y ) if and only if domα = X and α is injective but not surjective.

Proof. Let Y 6= X. Assume that α is a left magnifying element in PT(X,Y ). By
Lemmas 5.1 and 5.2, we have domα = X and α is injective but not surjective.
Conversely, assume that domα = X and α is injective but not surjective. Choose
M = {δ ∈ PT(X,Y ) | dom δ 6= X}. Then M ⊂ PT(X,Y ).

We prove that αM = PT(X,Y ). Let β ∈ PT(X,Y ) and Y = {ai} ∪̇ {bj} where
domβ ∩ Y = {ai} and X \ Y = {sk}∪̇{tl} when domβ ∩ (X \ Y ) = {sk}. Then

α =

(
ai bj sk tl
yi zj uk vl

)
where Y = {yi} ∪ {zj} and {uk}, {vl} ⊆ X \ Y . Define γ : {yi} ∪ {uk} → X by

γ =

(
yi uk
aiβ skβ

)
.

Since α is injective, γ is well-defined and (dom γ ∩ Y )γ = {yi}γ = {aiβ} =
(domβ ∩ Y )β = Y , hence γ ∈ PT(X,Y ). Since α is not surjective, from dom γ =
{yi} ∪ {uk} ⊆ ranα 6= X it follows γ ∈ M . But x(αγ) = (xα)γ = xβ for all
x ∈ domβ = {ai} ∪ {sk} = dom(αγ). Hence αγ = β and so αM = PT(X,Y ). So,
α is a left magnifying element in PT(X,Y ).

Theorem 5.4. E(X) has no left magnifying elements.

Proof. Suppose that α is a left magnifying element in E(X). Then α is a left
magnifying element in PT(X,Y ) when Y = X. By Lemma 5.1, domα = X and
α is injective. Since α ∈ E(X), α is surjective. Then there is α−1 ∈ E(X) such
that α−1α = idX . Since α is left magnifying, there is M ⊂ E(X) such that
αM = E(X). Let β ∈ E(X). Analogously as in the proof of Lemma 5.2, we
obtain β ∈ M . Thus M = E(X). That is a contradiction. Hence, E(X) has no
left magnifying elements.

Example 5.5. Let X = N and Y = 2N. Define

α =

(
2n− 1 2n
2n+ 1 2n

)
n∈N

.

Since (domα ∩ Y )α = (2N)α = 2N = Y, α ∈ PT(X,Y ), domα = N = X and α is
injective. But ranα = N \ {1} 6= X, then α is not surjective. By Theorem 5.3, α
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is a left magnifying element in PT(X,Y ). Let M = {δ ∈ PT(X,Y ) | dom δ 6= N}.
Then, analogously as in the proof of Theorem 5.3, for each β ∈ PT(X,Y ), there
exists γ ∈M such that αγ = β. Thus PT(X,Y ) = αM for some M ⊂ PT(X,Y ).

6. Right Magnifying Elements in PT(X,Y )

Lemma 6.1. If α ∈ PT(X,Y ) is a right magnifying element in PT(X,Y ), then α is
surjective.

Proof. Assume that α is a right magnifying element in PT(X,Y ). Then Mα =
PT(X,Y ) for some proper subset M of PT(X,Y ). Since idX ∈ PT(X,Y ), there exists
β ∈M such that βα = idX . So, α must be surjective.

Lemma 6.2. If α ∈ PT(X,Y ) is a right magnifying element in PT(X,Y ), then
domα 6= X or α is not injective.

Proof. Assume α is a right magnifying element in PT(X,Y ). Then Mα = PT(X,Y )

for some M ⊂ PT(X,Y ). Suppose that domα = X and α is injective. By Lemma
6.1, α is surjective. Let β ∈ PT(X,Y ). Then βα ∈ PT(X,Y ). Since PT(X,Y ) =Mα,
we have βα = δα for some δ ∈ M . Since α is a bijection on X with Y α = Y , we
get β = δ ∈M. Hence PT(X,Y ) ⊆M . That yieldsM = PT(X,Y ) which contradicts
with M ⊂ PT(X,Y ). Therefore, domα 6= X or α is not injective.

Theorem 6.3. α ∈ PT(X,Y ) is a right magnifying element in PT(X,Y ) if and only
if α is surjective and (domα 6= X or α is not injective).

Proof. Assume that α is a right magnifying element in PT(X,Y ). By Lemmas 6.1
and 6.2, α is surjective and (domα 6= X or α is not injective).

Conversely, assume that α is surjective and (domα 6= X or α is not injective).
We have two cases:

Case 1: domα 6= X. Choose M = {δ ∈ PT(X,Y ) | δ is not surjective}. Then
M ⊂ PT(X,Y ). Let β ∈ PT(X,Y ). Then

β =

(
Ai Bj

ai bj

)
.

where Ai ∩ Y 6= ∅, Bj ⊆ X \ Y , {ai} = Y and {bj} ⊆ X \ Y. (domα ∩ Y )α = Y
implies yα−1 ∩ Y 6= ∅ for all y ∈ Y . Then aiα

−1 ∩ Y 6= ∅ and dai
α = ai

for dai ∈ aiα
−1 ∩ Y . Since ranβ ⊆ ranα, bj ∈ ranα and b′jα = bj for somee

b′j ∈ domα. Define

γ =

(
Ai Bj

dai b′j

)
.

Then γ ∈ PT(X,Y ). Since ran γ ⊆ domα 6= X, γ is not surjective. Thus γ ∈ M .
Consequently, x(γα) = (xγ)α = xβ for all x ∈ domβ = dom(γα). Hence γα = β
and PT(X,Y ) ⊆Mα which gives Mα = PT(X,Y ).
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Case 2: α is not injective. Choose M = {δ ∈ PT(X,Y ) | δ is not surjective}.
Then M ⊂ PT(X,Y ). Let β ∈ PT(X,Y ). Then

β =

(
Ai Bj

ai bj

)
.

where Ai ∩ Y 6= ∅; Bj ⊆ X \ Y ; {ai} = Y and {bj} ⊆ X \ Y . Let γ ∈ PT(X,Y )

be as in Case 1. Since α is not injective, there is x0 ∈ ranα and distinct elements
x1, x2 ∈ domα such that x1α = x0 = x2α. Obviously ranβ ⊆ ranα. If x0 ∈ ranβ,
then there is exactly one (either x1 or x2) in ran γ. If x0 6∈ ranβ, then x1, x2 6∈
ran γ. Thus γ is not surjective and so γ ∈M . Analogously as in Case 1, we obtain
γα = β. Hence PT(X,Y ) ⊆Mα. This means that Mα = PT(X,Y ). Therefore, α is
a right magnifying element in PT(X,Y ).

Corollary 6.4. α ∈ E(X) is a right magnifying element in E(X) if and only if
domα 6= X or α is not injective.

Example 6.5. Let X = N and Y = 2N. Define

α =

(
2n 2n+ 1
2n 2n− 1

)
n∈N

and β =

(
1 2 {3, 4} {5, 6} n+ 2
1 2 3 4 n

)
n>5

.

Then (domα ∩ Y )α = 2N = (domβ ∩ Y )β and so α, β ∈ PT(X,Y ). It is clear that
α is injective. Since ranα = N = X, α is surjective. but domα = N \ {1} 6= X, so
domβ = N = X and β is surjective but not injective. By Theorem 6.3, α, β are
right magnifying elements in PT(X,Y ). Then there is M = {δ ∈ PT(X,Y ) | δ is not
surjective} ⊂ PT(X,Y ) such that Mα = PT(X,Y ) and Mβ = PT(X,Y ).

Added in proof (January 5, 2021 ). One of the Reviewers informed us that
the results of our Sections 3 and 4 are similar to results obtained in the paper:
R. Chinram, S. Buapradist, N. Yaqoob, P. Petchkaew, Left and right magnify-
ing elements in some generalized partial transformation semigroups, submitted to
Commun. Algebra, but the proofs are different.
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Characterizations of regularities on ordered

semirings by idempotency of ordered ideals

Kongpop Siribute, Pakorn Palakawong na Ayutthaya
and Jatuporn Eanborisoot

Abstract. We characterize regular, intra-regular, left weakly regular, right weakly regular and
fully idempotent ordered semirings using idempotency of several kinds of ordered ideals including
left ordered ideals, right ordered ideals, ordered ideals, ordered quasi-ideals, ordered bi-ideals and
ordered interior ideals. Moreover, we characterize (m,n)-regular ordered semirings in terms of
their ordered (m,n)-ideals.

1. Introduction

The notion of a regular semiring was defined as a similar way of a regular ring
defined by von Neumann [6], i.e., for each element a of a semiring S, a = axa
for some x ∈ S (equivalently, a ∈ aSa for all a ∈ S). Later, in sense of Ahsan,
Mordeson and Shabir [2], a semiring S is called intra-regular if for each a ∈ S,
a =

∑
i∈I xia

2yi for some xi, yi ∈ S and finite index set I. This notion is equivalent
to a ∈ ΣSa2S for all a ∈ S where ΣSa2S is the set of all finite sums of elements
in Sa2S. In 1993, Ahsan [1] called a semiring S to be fully idempotent if every
ideal of S is idempotent. We are able to study the fully idempotency of a semiring
as a kind of regularities due to the fact that a semiring S is fully idempotent if
and only if a ∈ ΣSaSaS for all a ∈ S. Later, Shabir and Anjum [12] studied the
concept of a right k-weakly regular hemiring in terms of its fuzzy ideals. They
defined a hemiring to be right k-weakly regular if a ∈ ΣaSaS for all a ∈ S.

An ordered semiring is a notable generalization of a semiring, in other words,
a semiring S is an ordered semiring together with the relation {(x, x) | x ∈ S}. In
sense of Gan and Jiang [4], an ordered semiring is a semiring S together with a
partial order on S satisfying the compatibility property. In [4], the notion of an
ordered ideal of an ordered semiring was defined. In 2012, Mandal [5] introduced
the notion of a regular ordered semiring by for each a ∈ S, a 6 axa for some
x ∈ S, i.e., a ∈ (aSa] for all a ∈ S.

In this work, as generalizations of intra-regular semirings [2] and fully idem-
potent semirings [1], we give the notions of intra-regular ordered semirings and

2010 Mathematics Subject Classification: 16Y60, 06F25.
Keywords: ordered semiring, regular ordered semiring, ordered ideal, fully idempotent ordered
semiring, (m,n)-regular ordered semiring, ordered (m,n)-ideal.
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fully idempotent ordered semirings. In addition, as a similar way of [12], we study
the notion of left weakly regular and right weakly regular ordered semirings in
the form a ∈ (ΣSaSa] and a ∈ (ΣaSaS] for all a ∈ S, respectively. Then, we
use idempotency of left ordered ideals, right ordered ideals, ordered ideals, or-
dered quasi-ideals, ordered bi-ideals and ordered interior ideals to characterize
mentioned kinds of regularities on ordered semirings. Moreover, we define an or-
dered (m,n)-ideals of an ordered semiring in a similar way of an (m,n)-ideals of
an ordered semigroup defined by Sanborisoot and Changphas [11] and also study
it on an (m,n)-regular ordered semiring as an analogous way on an (m,n)-regular
ordered semigroup [3]. In conclusion, we have that the idempotency of each kind
of ordered ideals of an ordered semiring is able to lead the ordered semiring to be
different kinds of regularities.

2. Preliminaries

An ordered semiring [4] is a system (S,+, ·,6) such that (S,+, ·) is a semiring
and (S,6) is a poset satisfying the compatibility property, i.e., if a 6 b, then
a + c 6 b + c, c + a 6 c + b, ac 6 bc and ca 6 cb for all a, b, c ∈ S. An element 0
of an ordered semiring (S,+, ·,6) is called an absorbing zero if x + 0 = x = 0 + x
and x0 = 0 = 0x for all x ∈ S.

Throughout this work, we simply write S instead of an ordered semiring
(S,+, ·,6) and always assume that S is additively commutative (i.e., a+ b = b+a
for all a, b ∈ S) together with an absorbing zero 0.

For ∅ 6= A,B ⊆ S, we denote that A + B = {a + b | a ∈ A, b ∈ B},
AB = {ab | a ∈ A, b ∈ B} and (A] = {x ∈ S | x 6 a for some a ∈ S}.
The set of all finite sums of elements in ∅ 6= A ⊆ S is denoted by ΣA ={∑

i∈I ai | ai ∈ A and I is a finitie set
}
. If I = ∅, then we set

∑
i∈I ai = 0 for

all ai ∈ S.
For basic properties of the finite sums Σ and the operator ( ], we refer to [8–10]

However, we give the following useful remark which will be used in the main results.

Remark 2.1. Let A and B be nonempty subsets of an ordered semiring S. Then
(Σ(A](B]] ⊆ (ΣAB].

Definition 2.2. Let A be a nonempty subset of an ordered semiring S such that
A + A ⊆ A and A = (A]. Then A is called:

(i) a left (right) ordered ideal [4] of S if SA ⊆ A (AS ⊆ A);
(ii) an ordered ideal [4] of S if A is both a left and a right ordered ideal of S;
(iii) an ordered quasi-ideal [7] of S if (ΣAS] ∩ (ΣSA] ⊆ A;
(iv) an ordered bi-ideal of S if A2 ⊆ A and ASA ⊆ A;
(v) an ordered interior ideal of S if A2 ⊆ A and SAS ⊆ A.
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Let A be a nonempty subset of an ordered semiring S. We denote the notation
L(A), R(A), J(A), Q(A) and I(A) to be the smallest left ordered ideals, right
ordered ideals, ordered ideals, ordered quasi-ideals and ordered interior ideals of S
containing A, respectively. We recall constructions of L(A), R(A) J(A) and Q(A)
which occur in [7] as follows.

Lemma 2.3. Let A be a nonempty subset of an ordered semiring S. The following
statements hold:

(i) L(A) = (ΣA + ΣSA];
(ii) R(A) = (ΣA + ΣAS];

(iii) J(A) = (ΣA + ΣSA + ΣAS + ΣSAS];
(iv) Q(A) = (ΣA + ((ΣAS] ∩ (ΣSA])].

Lemma 2.4. Let A be a nonempty subset of an ordered semiring S. Then I(A) =
(ΣA + ΣA2 + ΣSAS].

Proof. Let ∅ 6= A ⊆ S. and I = (ΣA + ΣA2 + ΣSAS]. Clearly, I + I ⊆ I, I = (I]
and A ⊆ I. We have

I2 = (ΣA + ΣA2 + ΣSAS](ΣA + ΣA2 + ΣSAS]

⊆ ((ΣA + ΣA2 + ΣSAS)(ΣA + ΣA2 + ΣSAS)]

⊆ (ΣA2 + ΣSAS] ⊆ I and
SIS = S(ΣA + ΣA2 + ΣSAS]S

⊆ (S(ΣA + ΣA2 + ΣSAS)S]

⊆ (ΣSAS + ΣSA2S + ΣSSASS]

⊆ (ΣSAS + ΣSAS + ΣSAS] = (ΣSAS] ⊆ I.

So, I is an ordered interior-ideal of S containing A. If J is an ordered interior-
ideal of S containing A, then I = (ΣA + ΣA2 + ΣSAS] ⊆ (ΣJ + ΣJ2 + ΣSJS] ⊆
(ΣJ + ΣJ + ΣJ ] = (ΣJ ] = J .

In a particular case of A = {a} for some a ∈ S, we write L(a), R(a), J(a),
Q(a) and I(a) instead of L({a}), R({a}), J({a}), Q({a}) and I({a}), respectively.
The following corollary is directly obtained by Lemma 2.3 and 2.4.

Corollary 2.5. Let a be an element of an ordered semiring S. The following
statements hold:

(i) L(a) = (Σa + Sa];
(ii) R(a) = (Σa + aS];

(iii) J(a) = (Σa + Sa + aS + ΣSaS];
(iv) Q(a) = (Σa + ((aS] ∩ (Sa])];
(v) I(A) = (Σa + Σa2 + ΣSaS].
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To define the notion of an ordered (m.n)-ideal of an ordered semiring S, for
any ∅ 6= A,B ⊆ S, we set AmBA0 = AmB, A0BAn = BAn and A0BA0 = B for
all non-negative integers m,n.

Definition 2.6. Let m and n be non-negative integers. A subsemiring A of an
ordered semiring S such that A = (A] is called an ordered (m,n)-ideal of S if
AmSAn ⊆ A.

Clearly, ∅ 6= A ⊆ S is an ordered (0, 0)-ideal of S if and only if A = S. It is
easy to see that a left ordered ideal, a right ordered ideal and an ordered bi-ideal
of an ordered semiring is an ordered (0, 1)-ideal, an ordered (1, 0)-ideal and an
ordered (1, 1)-ideal, respectively.

For a nonempty subset A of an ordered semiring S, we denote the notation
[A](m,n) to be the smallest ordered (m,n)-ideal of S containing A.

Theorem 2.7. Let A be a nonempty subset of an ordered semiring S. Then

[A](m,n) = (ΣA + ΣA2 + . . . + ΣAm+n + ΣAmSAn]

for all non-negative integers m and n.

Proof. Let ∅ 6= A ⊆ S and X = (ΣA + ΣA2 + . . . + ΣAm+n + ΣAmSAn]. It is
clear that A ⊆ X 6= ∅, X = (X] and X + X ⊆ X. We obtain that

X2=(ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn]·(ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn]

⊆((ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn)·(ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn)]

⊆(ΣA2+ΣA3+. . .+ΣAm+n+ΣAm+n+1+. . .+ΣA2m+2n+ΣAmSAn]

⊆(ΣA2+ΣA3+. . .+ΣAm+n+ΣAmSAn+. . .+ΣAmSAn+ΣAmSAn]

=(ΣA2+ΣA3+. . .+ΣAm+n+ΣAmSAn] ⊆ X and

XmSXn = ((ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn])mS

·((ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn])n

⊆ ((ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn)m]S

·((ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn)n]

⊆ (ΣAm+ΣAmS]S(ΣAn+ΣSAn]

⊆ (ΣAmS+ΣAmS](ΣAn+ΣSAn]

= (ΣAmS](ΣAn+ΣSAn] ⊆ ((ΣAmS)(ΣAn+ΣSAn)]

⊆ (ΣAmSAn+ΣAmSSAn] ⊆ (ΣAmSAn+ΣAmSAn]

= (ΣAmSAn+ΣAmSAn] = (ΣAmSAn] ⊆ X.

Now, X is an ordered (m,n)-ideal of S containing A. Let Y be an ordered (m,n)-
ideal of S containing A. ThenX = (ΣA+ΣA2+. . .+ΣAm+n+ΣAmSAn] ⊆ (ΣY +
ΣY 2 + . . .+ ΣY m+n + ΣY mSY n] ⊆ (ΣY + ΣY + . . .+ ΣY + ΣY ] = (ΣY ] = Y .
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In a particular case of A = {a} for some a ∈ S, we write [a](m,n) instead of
[{a}](m,n). The following corollary is directly obtained by Theorem 2.7.

Corollary 2.8. Let a be an element of an ordered semiring S. Then

[a](m,n) = (Σa + Σa2 + . . . + Σam+n + amSan]

for all non-negative integers m and n.

We immediately get that [a](1,1) is the smallest ordered bi-ideal of S containing
a for any elements a of an ordered semiring S; accordingly, we use the notation
B(a) instead of [a](1,1).

Corollary 2.9. Let a be an element of an ordered semiring S. Then B(a) =
(Σa + Σa2 + aSa].

3. Main Results
Definition 3.1. We call an ordered semiring S to be:

(i) regular [5] if a ∈ (aSa] for all a ∈ S;
(ii) intra-regular if a ∈ (ΣSa2S] for all a ∈ S;

(iii) left weakly regular if a ∈ (ΣSaSa] for all a ∈ S;
(iv) right weakly regular if a ∈ (ΣaSaS] for all a ∈ S.

Lemma 3.2. An ordered semiring S is both regular and intra-regular if and only
if a ∈ (aSa2Sa] for all a ∈ S.

Proof. Assume that S is both regular and intra-regular. Let a ∈ S. It follows
that a ∈ (aSa] ⊆ (aS(aSa]] ⊆ (aSaSa] ⊆ (aS(ΣSa2S]Sa] ⊆ (a(ΣSa2S]a] ⊆
((ΣaSa2Sa]] = (aSa2Sa]. Conversely, if a ∈ (aSa2Sa] for all a ∈ S, then a ∈
(aSa2Sa] ⊆ (aSa] and a ∈ (aSa2Sa] ⊆ (Sa2S] ⊆ (ΣSa2S]. Hence, S is regular
and intra-regular.

Definition 3.3. A nonempty subset T of an ordered semiring S is called idempo-
tent if T = (ΣT 2].

Definition 3.4. An ordered semiring S is called fully idempotent if every ordered
ideal of S is idempotent.

Example 3.5. (i) (N,+, ·,=) is an ordered semiring where N is the set of all
natural numbers, + is the usual addition, · is the usual multiplication and = is the
equal relation. We have that the ordered ideal 2N is idempotent in (N,+, ·,=).

(ii) (N,+, ·,6) is an ordered semiring where ≤ is the natural ordered relation.
Since (N,+, ·,6) has no proper ordered ideal and N = (ΣN2], it is fully idempotent.

We characterize fully idempotent ordered semirings by idempotency of ordered
ideals.
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Theorem 3.6. The following statements are equivalent:

(i) S is fully idempotent;
(ii) J1 ∩ J2 = (ΣJ1J2] for all ordered ideals J1 and J2 of S;

(iii) J(a) ∩ J(b) = (ΣJ(a)J(b)] for all a, b ∈ S;
(iv) J(a) = (Σ(J(a))2] for all a ∈ S;
(v) a ∈ (ΣSaSaS] for all a ∈ S.

Proof. (i)⇒ (ii). Let J1 and J2 be ordered ideals of S. Then (ΣJ1J2] ⊆ (ΣJ1] = J1
and (ΣJ1J2] ⊆ (ΣJ2] = J2. It follows that (ΣJ1J2] ⊆ J1 ∩ J2. It is easy to show
that J1 ∩ J2 is an ordered ideal of S. By (i), we get J1 ∩ J2 = (Σ(J1 ∩ J2)2] =
(Σ(J1 ∩ J2)(J1 ∩ J2)] ⊆ (ΣJ1J2].

(ii)⇒ (iii). and (iii)⇒ (iv) are obvious.
(iv)⇒ (v). Let a ∈ S. By (iv), we obtain that

a ∈ J(a) = (Σ(J(a))2] = (Σ(Σa + Sa + aS + ΣSaS](Σa + Sa + aS + ΣSaS]]

⊆ (Σ(Σa + Sa + aS + ΣSaS)(Σa + Sa + aS + ΣSaS)]

⊆ (Σ(Σa2 + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS)]

⊆ (Σa2 + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS]. (1)

Using equation (1), we get that

a ∈ (aS + ΣSaS + ΣSaSaS] (2)
a ∈ (Sa + ΣSaS + ΣSaSaS]. (3)

Using equations (2) and (3), we get that

a2 = aa ∈ (aS + ΣSaS + ΣSaSaS](Sa + ΣSaS + ΣSaSaS]

⊆ ((aS + ΣSaS + ΣSaSaS)(Sa + ΣSaS + ΣSaSaS)]

⊆ (aSa + ΣaSaS + ΣSaSa + ΣSaSaS]. (4)

Using equations (2) and (3) again, we get that

aSa ⊆ (Sa + ΣSaS + ΣSaSaS]S(aS + ΣSaS + ΣSaSaS]

⊆ ((Sa + ΣSaS + ΣSaSaS)S](aS + ΣSaS + ΣSaSaS]

⊆ (ΣSaS + ΣSaSaS](aS + ΣSaS + ΣSaSaS]

⊆ ((ΣSaS + ΣSaSaS)(aS + ΣSaS + ΣSaSaS)]

⊆ (ΣSaSaS]. (5)

Using equation (2), we get that

SaSa ⊆ SaS(aS + ΣSaS + ΣSaSaS] ⊆ (ΣSaSaS]. (6)

Using equation (3), we get that

aSaS ⊆ (Sa + ΣSaS + ΣSaSaS]SaS ⊆ (ΣSaSaS]. (7)
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Using equations (4), (5), (6) and (7) we get that

a2 ∈ (aSa + ΣaSaS + ΣSaSa + ΣSaSaS]

⊆ ((ΣSaSaS] + Σ(ΣSaSaS] + Σ(ΣSaSaS] + ΣSaSaS]

⊆ ((ΣSaSaS] + (ΣSaSaS] + (ΣSaSaS] + (ΣSaSaS]]

⊆ ((ΣSaSaS + ΣSaSaS + ΣSaSaS + ΣSaSaS]]

= (ΣSaSaS]. (8)

Using equation (8), we get that

a2S ⊆ (ΣSaSaS]S ⊆ (ΣSaSaS] (9)

Sa2 ⊆ S(ΣSaSaS] ⊆ (ΣSaSaS] (10)

Sa2S ⊆ S(ΣSaSaS]S ⊆ (ΣSaSaS]. (11)

Using equations (1) and (5)–(11), we obtain that

a ∈ (Σa + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS]

⊆ (Σ(ΣSaSaS] + (ΣSaSaS] + (ΣSaSaS] + Σ(ΣSaSaS]

+ (ΣSaSaS] + Σ(ΣSaSaS] + Σ(ΣSaSaS] + ΣSaSaS]

⊆ ((ΣSaSaS] + (ΣSaSaS] + (ΣSaSaS] + (ΣSaSaS]

+ (ΣSaSaS] + (ΣSaSaS] + (ΣSaSaS] + (ΣSaSaS]]

⊆ ((ΣSaSaS + ΣSaSaS + ΣSaSaS + ΣSaSaS

+ ΣSaSaS + ΣSaSaS + ΣSaSaS + ΣSaSaS]]

= (ΣSaSaS].

(v) ⇒ (i). Let J be an ordered ideal of S. Clearly, (ΣJ2] ⊆ (ΣJ ] = J . If
x ∈ J , then by (v), we get x ∈ (ΣSxSxS] ⊆ (ΣSJSJS] ⊆ (ΣJJ ] = (ΣJ2] and so
J ⊆ (ΣJ2]. Hence, J = (ΣJ2] and thus S is fully idempotent.

In general, every ordered ideal of an ordered semiring is an ordered interior
ideal but not conversely [7]. However, they are same in fully idempotent ordered
semirings.

Proposition 3.7. Ordered ideals and ordered interior ideals coincide in fully idem-
potent ordered semirings.

Proof. Let I be an ordered interior ideal of an ordered semiring S. Assume that S
is fully idempotent. If x ∈ IS, then by Theorem 3.6, x ∈ (ΣSxSxS] ⊆ (ΣSxS] ⊆
(ΣS(IS)S] ⊆ (ΣSIS] ⊆ (ΣI] = I. Similarly, we have that SI ⊆ I. Hence, I is an
ordered ideal of S.

Using Theorem 3.6 and Proposition 3.7, we directly obtain the following corol-
lary as characterizations of fully idempotent ordered semirings by idempotency of
ordered interior ideals.
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Corollary 3.8. The following statements are equivalent:
(i) S is fully idempotent;

(ii) I1 ∩ I2 = (ΣI1I2] for all ordered interior ideals I1 and I2 of S;
(iii) I(a) ∩ I(b) = (ΣI(a)I(b)] for all a, b ∈ S;
(iv) I(a) = (Σ(I(a))2] for all a ∈ S.

Now, we use idempotency of ordered quasi-ideals to characterize an ordered
semiring which is both regular and intra-regular.

Theorem 3.9. The following statements are equivalent:
(i) S is both regular and intra-regular;

(ii) every ordered quasi-ideal of S is idempotent, i.e., Q = (ΣQ2] for all ordered
quasi-ideals Q of S;

(iii) Q(a) = (Σ(Q(a))2] for all a ∈ S.

Proof. (i) ⇒ (ii). Assume that S is both regular and intra-regular. Let Q be an
ordered quasi-ideal of S. Obviously, (ΣQ2] ⊆ (ΣQ] = Q (every ordered quasi-
ideal is always a subsemiring [7]). If x ∈ Q, then using Remark 3.2, we get
x ∈ (xSx2Sx] = (xSxxSx] ⊆ (QSQQSQ] ⊆ (QQ] = (Q2] ⊆ (ΣQ2] (every ordered
quasi-ideal is an ordered bi-ideal [7] and so QSQ ⊆ Q for every ordered quasi-ideal
Q of an ordered semiring S). Hence, Q = (ΣQ2] and so Q is idempotent.

(ii)⇒ (iii). It is obvious.
(iii) ⇒ (i). Assume that (iii) holds and let a ∈ S. Since every left (right)

ordered ideal is an ordered quasi-ideal [7], we obtain that
a ∈ Q(a) = (ΣQ(a)Q(a)] ⊆ (ΣR(a)L(a)] (12)
a ∈ Q(a) = (ΣQ(a)Q(a)] ⊆ (ΣL(a)R(a)]. (13)

We consider equation (12). Using Corollary 2.5, it turns out that
a ∈ (ΣR(a)L(a)] = (Σ(Σa + aS](Σa + Sa]]

⊆ (Σ(Σa + aS)(Σa + Sa)] ⊆ (Σ(Σa2 + aSa)]

⊆ (Σa2 + aSa]. (14)

Using equation (14), we get that
a2 = aa ∈ a(Σa2 + aSa] ⊆ (Σa3 + aSa] ⊆ (ΣaSa + aSa] = (aSa + aSa] = (aSa].

Using equation (14) again, we obtain that
a ∈ (Σa2 + aSa] ⊆ (Σ(aSa] + aSa] ⊆ ((ΣaSa] + aSa]

= ((aSa] + aSa] ⊆ ((aSa + aSa]] = (aSa].

Now, S is regular. We consider equation (13). Using Corollary 2.5. We get
a ∈ (ΣL(a)R(a)] = (Σ(Σa + Sa](Σa + aS]]

⊆ (Σ(Σa + Sa)(Σa + aS)] ⊆ (Σ(Σa2 + Σa2S + ΣSa2 + ΣSa2S)]

⊆ (Σa2 + Σa2S + ΣSa2 + ΣSa2S] = (Σa2 + a2S + Sa2 + ΣSa2S]. (15)
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Using equation (15), we get that

a2 = aa ∈ (Σa2 + a2S + Sa2 + ΣSa2S](Σa2 + a2S + Sa2 + ΣSa2S]

⊆ ((Σa2 + a2S + Sa2 + ΣSa2S)(Σa2 + a2S + Sa2 + ΣSa2S)]

⊆ (Σa4 + ΣSa2S] ⊆ (ΣSa2S + ΣSa2S] = (ΣSa2S]. (16)

Using equation (16), we get that

a2S ⊆ (ΣSa2S]S ⊆ (ΣSa2S] and Sa2 ⊆ S(ΣSa2S] ⊆ (ΣSa2S]. (17)

Using equations (15), (16) and (17), we have that

a ∈ (Σa2 + a2S + Sa2 + ΣSa2S]

⊆ (Σ(ΣSa2S] + (ΣSa2S] + (ΣSa2S] + ΣSa2S]

⊆ ((ΣSa2S] + (ΣSa2S] + (ΣSa2S] + (ΣSa2S]]

⊆ (ΣSa2S + ΣSa2S + ΣSa2S + ΣSa2S] = (ΣSa2S].

Now, S is intra-regular. Therefore, S is both regular and intra-regular.

In general, every ordered quasi-ideal of an ordered semiring is an ordered bi-
ideal but not conversely [7]. However, they coincide in regular ordered semirings.
Using this fact and Theorem 3.9, we obtain the following corollary as characteri-
zations of an ordered semiring which is both regular and intra-regular by idempo-
tency of ordered bi-ideals.

Corollary 3.10. The following statements are equivalent:
(i) S is both regular and intra-regular;

(ii) every ordered bi-ideal of S is idempotent, i.e., B = (ΣB2] for all ordered
bi-ideals B of S;

(iii) B(a) = (Σ(B(a))2] for all a ∈ S.

Now, we use idempotency of left ordered ideals to characterize a left weakly
regular ordered semiring.

Theorem 3.11. The following statements are equivalent:
(i) S is left weakly regular;

(ii) every left ordered ideal of S is idempotent, i.e., L = (ΣL2] for all left ordered
ideals L of S;

(iii) L(a) = (Σ(L(a))2] for all a ∈ S.

Proof. (i) ⇒ (ii). Let L be a left ordered ideal of S. Clearly, (ΣL2] ⊆ (ΣL] = L.
If x ∈ L, then by (i), we get that x ∈ (ΣSaSa] ⊆ (ΣSLSL] ⊆ (ΣLL] = (ΣL2].
Hence, L = (ΣL2].

(ii)⇒ (iii). It is obvious.
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(iii)⇒ (i). Let a ∈ S. Using Corollary 2.5, we obtain that
a ∈ L(a) = (ΣL(a)L(a)] = (Σ(Σa + Sa](Σa + Sa]]

⊆ (Σ(Σa + Sa)(Σa + Sa)] ⊆ (Σ(Σa2 + aSa + Sa2 + ΣSaSa)]

⊆ (Σa2 + aSa + Sa2 + ΣSaSa] (18)

Using equation (18), we get that
a ∈ (Σa2 + aSa + Sa2 + ΣSaSa] ⊆ (Sa + ΣSaSa]. (19)

Using equation (19), we get that
a2 = aa ∈ (Sa + ΣSaSa](Sa + ΣSaSa]

⊆ ((Sa + ΣSaSa)(Sa + ΣSaSa)] ⊆ (ΣSaSa]. (20)

Using equation (19) again, we get that
aSa ⊆ (Sa + ΣSaSa]S(Sa + ΣSaSa] ⊆ ((Sa + ΣSaSa)S](Sa + ΣSaSa]

⊆ (ΣSaS](Sa + ΣSaSa] ⊆ ((ΣSaS)(Sa + ΣSaSa)] ⊆ (ΣSaSa]. (21)

Using equation (20), we get that

Sa2 ⊆ S(ΣSaSa] ⊆ (S(ΣSaSa)] ⊆ (ΣSaSa]. (22)

Using equations (18) and (20)–(22), it turns out that
a ∈ (Σa2 + aSa + Sa2 + ΣSaSa]

⊆ (Σ(ΣSaSa] + (ΣSaSa] + (ΣSaSa] + ΣSaSa]

⊆ ((ΣSaSa] + (ΣSaSa] + (ΣSaSa] + (ΣSaSa]]

⊆ ((ΣSaSa + ΣSaSa + ΣSaSa + ΣSaSa]] = (ΣSaSa].

Therefore, S is left weakly regular.

As a duality of Theorem 3.11, we obtain characterizations of right weakly regu-
lar ordered semirings in terms of idempotency of right ordered ideals analogously.

Theorem 3.12. The following statements are equivalent:
(i) S is right weakly regular;

(ii) every right ordered ideal of S is idempotent, i.e., R = (ΣR2] for all right
ordered ideals R of S;

(iii) R(a) = (Σ(R(a))2] for all a ∈ S.

To define the notion of an (m,n)-regular ordered semiring, for any elements a
and for any nonempty subsets B of an ordered semiring S, we set amBa0 = amB,
a0Ban = Ban and a0Ba0 = B for all non-negative integers m and n.

Definition 3.13. Let m and n be non-negative integers. An ordered semiring S
is called (m,n)-regular if a ∈ (amSan] for all a ∈ S.
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Theorem 3.14. Let S be an ordered semiring and m, n be positive integers. Then
the following statements hold:

(i) S is (m, 0)-regular if and only if R = (RmS] for each ordered (m, 0)-ideal R
of S;

(ii) S is (0, n)-regular if and only if L = (SLn] for each ordered (0, n)-ideal L of
S.

Proof. (i). Assume that S is (m, 0)-regular. Let R be an ordered (m, 0)-ideal of
S. If a ∈ R, then a ∈ (amS] ⊆ (RmS] implies R ⊆ (RmS]. Clearly, (RmS] ⊆ R.
Hence, R = (RmS].

Conversely. let a ∈ S. By assumption and Corollary 2.8, we obtain that
a ∈ [a](m,0) = (([a](m,0))

mS] = (((Σa + Σa2 + . . . + Σam + amS])mS]

⊆ (((Σa + Σa2 + . . . + Σam + amS)m]S]

⊆ (((Σa + Σa2 + . . . + Σam + amS)mS]]

= ((Σa + Σa2 + . . . + Σam + amS)mS]

⊆ ((Σam + ΣamS)S] ⊆ (ΣamS + ΣamS] = (ΣamS] = (amS].

Therefore, S is (m, 0)-regular.
(ii). It can be proved in a similar way of (i).

It is not interesting to characterize a (0, 0)-regular ordered semiring S because
a ∈ (a0Sa0] = (S] = S for all a ∈ S. Consequently, we obtain the following
theorem as a characterization of an (m,n)-regular ordered semiring where m and
n are not being zero at the same time.

Theorem 3.15. Let m and n be non-negative integers where m and n are not
being zero at the same time. An ordered semigroup S is (m,n)-regular if and only
if R ∩ L = (RmLn] for every ordered (m, 0)-ideal R and every ordered (0, n)-ideal
L of S.

Proof. The case of m 6= 0, n = 0 and m = 0, n 6= 0 is directly follows from
Theorem 3.14(i) and (ii), respectively. Hence, we assume that m 6= 0 and n 6= 0.

Assume that S is (m,n)-regular. Let R and L be an ordered (m, 0)-ideal and
an ordered (0, n)-ideal of S, respectively. If x ∈ R ∩ L, then by assumption,
x ∈ (amSan] ⊆ (RmSLn] ⊆ (RmLn] implies R∩L ⊆ (RmLm]. Clearly, (RmLn] ⊆
R ∩ L. Hence, R ∩ L = (RmLn].

Conversely, let a ∈ S. Then by assumption and Corollary 2.8, we get

a ∈ [a](m,0) ∩ [a](0.n) = ([a]m(m,0)[a]n(0.n)]

= ((Σa + Σa2 + . . . + Σam + amS]m(Σa + Σa2 + . . . + Σan + San]n]

⊆ ((Σa + Σa2 + . . . + Σam + amS)m](Σa + Σa2 + . . . + Σan + San)n]]

⊆ (((Σa + Σa2 + . . . + Σam + amS)m)(Σa + Σa2 + . . . + Σan + San)n)]]

= ((Σa + Σa2 + . . . + Σam + amS)m)(Σa + Σa2 + . . . + Σan + San)n)]
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⊆ ((Σam + amS)(Σan + San)] ⊆ (Σam+n + amSan]

⊆ (Σam+n−1(Σam+n + amSan] + amSan] ⊆ (Σ(amSan + amSan] + amSan]

⊆ ((amSan] + amSan] ⊆ ((amSan + amSan]] = (amSan].

Therefore, S is (m,n)-regular.
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Half-isomorphisms whose inverses are also

half-isomorphisms

Giliard Souza dos Anjos

Abstract. Let (G, ∗) and (G′, ·) be groupoids. A bijection f : G → G′ is called a half-
isomorphism if f(x ∗ y) ∈ {f(x) · f(y), f(y) · f(x)}, for any x, y ∈ G. A half-isomorphism of a
groupoid onto itself is a half-automorphism. A half-isomorphism f is called special if f−1 is also
a half-isomorphism. In this paper, necessary and sufficient conditions for the existence of special
half-isomorphisms on groupoids and quasigroups are obtained. Furthermore, some examples of
non-special half-automorphisms for loops of infinite order are provided.

1. Introduction

A groupoid consists of a nonempty set with a binary operation. A groupoid (Q, ∗)
is called a quasigroup if for each a, b ∈ Q the equations a ∗ x = b and y ∗ a = b
have unique solutions for x, y ∈ Q. A quasigroup (L, ∗) is a loop if there exists
an identity element 1 ∈ L such that 1 ∗ x = x = x ∗ 1, for any x ∈ L. The
fundamental definitions and facts from groupoids, quasigroups, and loops can be
found in [1, 14].

Let (G, ∗) and (G′, ·) be groupoids. A bijection f : G → G′ is called a
half-isomorphism if f(x ∗ y) ∈ {f(x) · f(y), f(y) · f(x)}, for any x, y ∈ G. A half-
isomorphism of a groupoid onto itself is a half-automorphism. We say that a half-
isomorphism is trivial when it is either an isomorphism or an anti-isomorphism.

In 1957, Scott [15] showed that every half-isomorphism on groups is trivial. In
the same paper, the author provided an example of a loop of order 8 that has a
nontrivial half-automorphism, then the result for groups can not be generalized
to all loops. Recently, a similar version of Scott’s result was proved for some
subclasses of Moufang loops [3, 6, 8] and automorphic loops [10]. A Moufang loop
is a loop that satisfies the identity x(y(xz)) = ((xy)x)z, and an automorphic loop
is a loop in which every inner mapping is an automorphism [2]. We note that there
are Moufang loops and automorphic loops that have nontrivial half-automorphisms
[4, 9, 11].

In [10], the authors defined the concept of special half-isomorphism. A half-
isomorphism f : G → G′ is called special if the inverse mapping f−1 : G′ → G is

2010 Mathematics Subject Classification: 20N02, 20N05
Keywords: half-isomorphism, half-automorphism, special half-isomorphism, groupoid, quasi-
group, loop.
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also a half-isomorphism. It is easy to construct an example of a half-isomorphism
that is not special, as we can see below.

Example 1.1. Let G = {1, 2, . . . , 6} and consider the following Cayley tables of
(G, ∗) and (G, ·):

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 1 5 6 4 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 4 2 3 1 5

Note that (G, ∗) is isomorphic to C6, the cyclic group of order 6, and (G, ·) = L
is a nonassociative loop. Consider the mapping f : C6 → L defined by f(x) = x, for
all x ∈ G. For x, y ∈ G such that x 6 y and (x, y) 6= (3, 5), we have y ∗x = x∗ y =
x·y. Furthermore, 3∗5 = 5∗3 = 5·3. Thus, f is a half-isomorphism. From 3·5 = 4
and 3∗5 = 5∗3 = 1, it follows that f−1(3 ·5) 6∈ {f−1(3)∗f−1(5), f−1(5)∗f−1(3)},
and hence f−1 is not a half-isomorphism.

We note that providing some examples for the case of non-special half-automor-
phisms can be very complicated. For finite loops, every half-automorphism is
special [10, Corollary 2.7], and in section 3 we show that the same is valid for
finite groupoids.

As we can see in Example 1.1, in general, a half-isomorphism does not preserve
the structure of the loop. For instance, C6 is associative and commutative and
has a subgroup H = {1, 3, 5}, while L is nonassociative and noncommutative, and
f(H) is not a subloop of L. However, the inverse mapping of a half-isomorphism
can preserve some structure, like the commutative property and subloops [10,
Proposition 2.2]. The same naturally holds for special half-isomorphisms.

This paper is organized as follows: Section 2 presents the definitions and ba-
sic results about half-isomorphisms. In Section 3, some presented results in [10]
on half-isomorphisms in loops are generalized to groupoids. In Section 4, the
concept of principal h-groupoid of a groupoid is defined, and then a necessary
and sufficient condition for the existence of special half-isomorphisms between
groupoids is obtained. Furthermore, equations related to the number of special
half-automorphisms, automorphisms and anti-automorphisms of a groupoid are
obtained. In Section 5, the concept of principal h-quasigroup of a quasigroup is
defined, and then the set of these quasigroups is described. Some examples of
non-special half-automorphisms in loops are provided in Section 6.

2. Preliminaries
Here, the required definitions and basic results on half-isomorphisms are stated.
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Definition 2.1. Let G and G′ be groupoids. We will say that G is half-isomorphic

to G′, denoted by G
H∼= G′, if there exists a special half-isomorphism between G

and G′. Note that
H∼= is an equivalence relation. If G is isomorphic to G′, we write

G ∼= G′.

The next proposition assures that quasigroups half-isomorphic to loops are also
loops.

Proposition 2.2. Let (G, ∗) and (G′, ·) be groupoids and f : G → G′ be a half-
isomorphism. If G′ has an identity element 1, then f−1(1) is the identity element
of G.

Proof. Let x = f−1(1) ∈ G. For y ∈ G, we have that {f(x ∗ y), f(y ∗ x)} ⊂
{1 · f(y), f(y) · 1} = {f(y)}. Since f is a bijection, we have x ∗ y = y ∗ x = y.
Therefore, x is an identity element of G.

Now, let (G, ∗), (G′, ·), (G′′, •) be groupoids, and f : G→ G′ and g : G′ → G′′

be half-isomorphisms. For x, y ∈ G, we have

gf(x ∗ y) ∈ {g(f(x) · f(y)), g(f(y) · f(x))} = {gf(x) • gf(y), gf(y) • gf(x))}.

Thus, gf is a half-isomorphism. If f and g are special half-isomorphisms, then
(gf)−1 = f−1g−1 is also a special half-isomorphism.

We denote the sets of the half-automorphisms, special half-automorphisms, and
trivial half-automorphisms of a groupoid G by Half (G), Half S(G), and HalfT (G),
respectively. Note that automorphisms and anti-automorphisms are always special
half-automorphisms, and consequently HalfT (G) ⊂ Half S(G) ⊂ Half (G).

For f, g ∈ Half (G), we already see that fg ∈ Half (G). The identity mapping
Id of G is the identity element of Half (G). Thus, Half (G) is a group if and only
if it is closed under inverses, which is equivalent to Half (G) = Half S(G). In
particular, Half S(G) is always a group.

A composition of two automorphisms or two anti-automorphisms is an auto-
morphism, and if f is an automorphism and g is an anti-automorphism, then fg
and gf are anti-automorphisms and g−1fg is an automorphism. Thus, HalfT (G)
is a group and the automorphism group of G, denoted by Aut(G), is a normal
subgroup of HalfT (G).

The following result summarizes the discussion above.

Proposition 2.3. Let G be a groupoid. Then:
(a) Half S(G) is a group and Half T (G) is a subgroup of Half S(G).
(b) Half (G) is a group if and only if Half (G) = Half S(G).
(c) Aut(G) /Half T (G).

Remark 2.4. It is shown in Section 6 that in general Half (G) is not a group.
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3. Special Half-isomorphisms on Groupoids

Considering (G, ∗) and (G′, ·) as groupoids, define the following set:

K(G) = {(x, y) ∈ G×G | xy = yx}

The next two results are respectively extensions of Proposition 2.3 and Theorem
2.5 of [10] to groupoids. We note that the proofs are similar to the ones for
corresponding results given in [10].

Lemma 3.1. Let f : G→ G′ be a half-isomorphism. Then

ψ(G,G′) : K(G′) →K(G)

(x, y) 7→ (f−1(x), f−1(y))

is injective.

Proof. For (x, y) ∈ K(G′), we have

{f(f−1(x) ∗ f−1(y)), f(f−1(y) ∗ f−1(x))} ⊆ {x · y, y · x} = {x · y}.

Then, f(f−1(x)∗f−1(y))=f(f−1(y)∗f−1(x)), so f−1(x)∗f−1(y)=f−1(y)∗f−1(x).
Thus, (f−1(x), f−1(y)) ∈ K(Q) and the mapping ψ(G,G′) is well-defined.

Now, let (x, y), (x′, y′) ∈ K(G′) such that ψ(G,G′)((x, y)) = ψ(G,G′)((x
′, y′)).

Then, f−1(x) = f−1(x′) and f−1(y) = f−1(y′). Since f is a bijection, the mapping
ψ(G,G′) is injective.

Theorem 3.2. Let f : G→ G′ be a half-isomorphism. Then, the following state-
ments are equivalent:

(a) f is special.
(b) {f(x ∗ y), f(y ∗ x)} = {f(x) · f(y), f(y) · f(x)} for any x, y ∈ G.
(c) For all x, y ∈ G such that x ∗ y = y ∗ x, we have f(x) · f(y) = f(y) · f(x).
(d) ψ(G,G′) is a bijection.

Proof. (a)⇒ (b). Let x, y ∈ G. Since, by the assumption, f is a half-isomorphism,
we have {f(x ∗ y), f(y ∗ x)} ⊆ {f(x) · f(y), f(y) · f(x)}. Since f−1 is a half-isomor-
phism, we have {f−1(f(x) · f(y)), f−1(f(y) · f(x))} ⊆ {x ∗ y, y ∗ x}, and hence
{f(x) · f(y), f(y) · f(x)} ⊆ {f(x ∗ y), f(y ∗ x)}.

(b)⇒ (c). Let x, y ∈ G such that x∗y = y ∗x. Then, f(x∗y) = f(y ∗x). Using
the hypothesis, we get {f(x) · f(y), f(y) · f(x)} = {f(x ∗ y), f(y ∗x)} = {f(x ∗ y)},
and therefore f(x) · f(y) = f(y) · f(x).

(c) ⇒ (d). From Lemma 3.1, we know that ψ(G,G′) is injective. Let (x, y) ∈
K(G). By hypothesis, we have f(x) · f(y) = f(y) · f(x), and then (f(x), f(y)) ∈
K(G′). It is clear that ψ(G,G′)((f(x), f(y))) = (x, y), and hence ψ(G,G′) is a
bijection.
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(d) ⇒ (a). Let x, y ∈ G′. If (x, y) ∈ K(G′), then (f−1(x), f−1(y)) ∈ K(G)
since ψ(G,G′) is a bijection. Thus, f(f−1(x) ∗ f−1(y)) = x · y, and therefore
f−1(x · y) = f−1(x) ∗ f−1(y). If (x, y) 6∈ K(G′), then (f−1(x), f−1(y)) 6∈ K(G)
since ψ(G,G′) is a bijection. Consequently, we have

{f(f−1(x) ∗ f−1(y)), f(f−1(y) ∗ f−1(x))} = {x · y, y · x},

and hence f−1(x · y) ∈ {f−1(x) ∗ f−1(y), f−1(y) ∗ f−1(x)}.

As direct consequences of Lemma 3.1 and Theorem 3.2, we have the following
corollaries.

Corollary 3.3. Let f : G→ G′ be a half-isomorphism. If |K(G)| = |K(G′)| <∞,
then f is special.

Corollary 3.4. Let G be a groupoid such that |K(G)| < ∞. Then, Half (G) is a
group.

Corollary 3.5. Let G be a finite groupoid. Then, Half (G) is a group.

A loop is diassociative if any two of its elements generate an associative subloop.
Moufang loops and groups are examples of diassociative loops. In [8, Lemma 2.1],
the authors showed that the item (c) of Theorem 3.2 holds for any half-isomorphism
on diassociative loops. Therefore, we have the next result.

Corollary 3.6. Let (L, ∗) and (L′, ·) be diassociative loops. Then, every half-
isomorphism between L and L′ is special.

Remark 3.7. The Corollary 3.6 cannot be extended for some important classes
of loops. In Example 6.1, a non-special half-isomorphism between a right Bol loop
and a group is introduced. A loop is called right Bol loop if it satisfies the identity
((xy)z)y = x((yz)y).

This section is finished with a property of half-isomorphic groupoids.

Proposition 3.8. If G
H∼= G′, then:

(a) Half (G) ∼= Half (G′)

(b) Half S(G)
∼= Half S(G

′).

Proof. Let φ : G→ G′ be a special half-isomorphism and ϕ : Half (G)→ Half (G′)
by ϕ(f) = φfφ−1. It is clear that ϕ is a bijection. For f, g ∈ Half (G), we have
ϕ(fg) = φfgφ−1 = φfφ−1φgφ−1 = ϕ(f)ϕ(g). Thus, Half (G) ∼= Half (G′). The
rest of the claim is concluded from the fact that ϕ(Half S(G)) = Half S(G

′).

Remark 3.9. If G
H∼= G′, then Aut(G) is not isomorphic to Aut(G′) in general

(see Example 4.6).
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4. Principal h-Groupoids of G
In this section, G0 = (G, ∗) is considered as a noncommutative groupoid.

Let (G′, •) be a groupoid such that G0

H∼= (G′, •). Then, there exists a special
half-isomorphism f of G0 into (G′, •). Define an operation · on G by x · y =
f−1(f(x) • f(y)). Thus, f is an isomorphism of (G, ·) into (G′, •), and hence
Id : G0 → (G, ·) is a special half-isomorphism, where Id is the identity mapping of
G.

A groupoid (G, ·) for which Id : G0 → (G, ·) is a special half-isomorphism is
called a principal h-groupoid of G0. Therefore, the following result is at hand.

Proposition 4.1. Let G′ be a groupoid. Then, G0

H∼= G′ if and only if G′ is
isomorphic to a principal h-groupoid of G0.

Denote by M(G0) the set of the principal h-groupoids of G0. Note that for
(G, ·), (G, •) ∈M(G0), we have (G, ·) = (G, •) if x · y = x • y, for all x, y ∈ G,
which is equivalent to Id being an isomorphism between (G, ·) and (G, •).

Let (G, ·) ∈ M(G0). Since Id : G0 → (G, ·) is a special half-isomorphism, we
have

{x ∗ y, y ∗ x} = {x · y, y · x}, for all x, y ∈ G. (1)

If (x, y) ∈ K(G0), then x · y = y · x = x ∗ y. For each pair (x, y), (y, x) ∈
G × G \K(G0), there are two possible values for x · y and y · x by (1). Thus, if
G is finite, we have 2|G×G\K(G0)|/2 possibilities for a principal h-groupoid of G0.
Hence, the following result is at hand.

Proposition 4.2. If G is finite, then |M(G0)| = 2(|G|
2−|K(G0)|)/2.

DefineMI(G0) = {G′ ∈M(G0) |G′ ∼= G0} and let S(G) be the set of permu-
tations of G. For G′ = (G, ·) ∈MI(G), define

Iso(G′, G0) = {f ∈ S(G) | f is an isomorphism of G′ into G0}.

Note that Iso(G0, G0) = Aut(G0). In the next result, we determine a relationship
between Half S(G0), Aut(G0) andMI(G0).

Proposition 4.3. We have:
(a) Iso(G′, G0) ⊂ Half S(G0), for every G′ ∈MI(G0).
(b) For each G′ ∈MI(G0), Iso(G′, G0) is a right coset of Aut(G0) in Half S(G0),

that is, there exists f ∈ Half S(G0) such that Iso(G′, G0) = Aut(G0)f .
(c) For G1, G2 ∈MI(G0), if Iso(G1, G0) ∩ Iso(G2, G0) 6= ∅, then G1 = G2.
(d) Half S(G0) =

⋃
G′∈MI(G0)

Iso(G′, G0).

(e) |MI(G0)| = [Half S(G0) : Aut(G0)], which is the index of Aut(G0) in
Half S(G0).
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Proof. (a). For G′ = (G, ·) ∈ MI(G0), let f ∈ Iso(G′, G0). Then f(x · y) =
f(x)∗f(y), for all x, y ∈ G. By (1), {f(x ·y), f(y ·x)} = {f(x)∗f(y), f(y)∗f(x)},
for all x, y ∈ G. By Theorem 3.2, f ∈ Half S(G0).

(b). Fix f ∈ Iso(G′, G0). It is clear that gf−1 ∈ Aut(G0), for every g ∈
Iso(G′, G0), and αf ∈ Iso(G′, G0), for every α ∈ Aut(G0). Hence, we have the
desired result.

(c). Let f ∈ Iso(G1, G0) ∩ Iso(G2, G0). Note that Id = f−1f : G1 → G2 is an
isomorphism. From the definition ofM(G0), it follows that G1 = G2.

(d). Let f ∈ Half S(G0). Define the operation · on G by x·y = f−1(f(x)∗f(y)),
for all x, y ∈ G. Note that f : (G, ·) → (G, ∗) is an isomorphism. Furthermore,
since f ∈ Half S(G0), and f(x · y) = f(x) ∗ f(y) and f(y · x) = f(y) ∗ f(x),
for all x, y ∈ G, we have {x · y, y · x} = {x ∗ y, y ∗ x}, for all x, y ∈ G. Thus,
G′ = (G, ·) ∈MI(G0), and hence f ∈ Iso(G′, G0).

(e). It is a consequence of the previous items.

As a consequence of the Proposition 3.8 and the item (e) of Proposition 4.3,
we have the following result.

Corollary 4.4. Let G′, G′′ be groupoids such that G′
H∼= G′′ and Half S(G

′) is
finite. Then,

|MI(G
′)| · |Aut(G′)| = |MI(G

′′)| · |Aut(G′′)|.

Define GT0 = (G, ·), where x · y = y ∗ x, for all x, y ∈ G, and denote the set
of anti-automorphisms of G0 by Ant(G0). Since G0 is noncommutative, we have
Aut(G0) ∩Ant(G0) = ∅.

Proposition 4.5. G0 has an anti-automorphism if and only if GT0 ∈MI(G0). In
this case, |Ant(G)| = |Aut(G)|.

Proof. Note that a bijection f of G is an anti-automorphism of G0 if and only if
f is an isomorphism of G0 into GT0 . The rest of the claim is concluded from the
item (b) of Proposition 4.3.

Example 4.6. Let Q = {1, 2, ..., 8} and consider the following Cayley tables of
(Q, ∗) and (Q, ·):

∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 6 5 7 8
2 2 1 4 3 5 6 8 7
3 4 3 1 2 7 8 5 6
4 3 4 2 1 8 7 6 5
5 5 6 8 7 1 2 4 3
6 6 5 7 8 2 1 3 4
7 8 7 6 5 3 4 1 2
8 7 8 5 6 4 3 2 1

· 1 2 3 4 5 6 7 8
1 1 2 4 3 6 5 7 8
2 2 1 3 4 5 6 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 6 8 7 1 2 4 3
6 6 5 7 8 2 1 3 4
7 8 7 6 5 3 4 1 2
8 7 8 5 6 4 3 2 1
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We have (Q, ∗) and (Q, ·) being quasigroups. Note that, for x, y ∈ Q:

x ∗ y =

{
y · x, if (x, y) ∈ {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2)},
x · y, otherwise.

Thus, (Q, ·) ∈ M((Q, ∗)). Using the LOOPS package [13] for GAP [5] we get
|Aut((Q, ∗))| = 4 and |Aut((Q, ·))| = 8. This illustrates Remark 3.9.

Note that |K((Q, ∗))| = 16, and hence |M((Q, ∗))| = 224 = 16777216. Using a
GAP computation with the LOOPS package, we get that there are 64 quasigroups
inM((Q, ∗)) and |MI((Q, ∗))| = 12. By Proposition 4.3, we have |Half ((Q, ∗))| =
48 and |MI((Q, ·))| = 6.

It is observed that the number of quasigroups in M((Q, ∗)) is much smaller
than |M((Q, ∗))|. In the next section, we will see that the same occurs for any
finite noncommutative quasigroup.

5. Principal h-Quasigroups of Q
Here, Q0 = (Q, ∗) is considered as a noncommutative quasigroup. A quasigroup
(Q, ·) is a principal h-quasigroup of Q0 if (Q, ·) ∈M(Q0). Denote byN (Q0) the set
of the principal h-quasigroups of Q0. It is clear thatMI(Q0) ⊂ N (Q0) ⊂M(Q0).
The next result is concluded from Proposition 4.1.

Proposition 5.1. Let Q′ be a quasigroup. Then Q0

H∼= Q′ if and only if Q′ is
isomorphic to a principal h-quasigroup of Q0.

Now, we describe N (Q0). For (x, y), (x′, y′) ∈ Q × Q \ K(Q0), we say that
(x, y) ∼ (x′, y′) if one of the following holds:

(i) (x′, y′) = (y, x),
(ii) x = x′ and {x ∗ y, y ∗ x} ∩ {x ∗ y′, y′ ∗ x} 6= ∅,
(iii) y = y′ and {x ∗ y, y ∗ x} ∩ {x′ ∗ y, y ∗ x′} 6= ∅.

We say that (x, y) ≡ (x′, y′) if there are z1, z2, ..., zl ∈ Q×Q\K(Q0) such that
(x, y) ∼ z1 ∼ z2 ∼ ... ∼ zl ∼ (x′, y′).

The relation ∼ is reflexive and symmetric, and hence ≡ is an equivalence rela-
tion. Denote by r(Q0) the number of equivalence classes of ≡ on Q×Q \K(Q0).

Suppose that Q is finite and let τ = {(x1, y1), (x2, y2), ..., (xr(Q0), yr(Q0))} be a
set of representatives of the equivalence classes of ≡ on Q×Q \K(Q0). Consider
Z2 = {0, 1}, and for σ = {σ1, σ2, ..., σr(Q0)} ∈ Zr(Q0)

2 , define the operation
σ• on Q

by:

x
σ• y =

{
x ∗ y, if (x, y) ∈ K(Q0) or (x, y) ≡ (xi, yi), where σi = 0,
y ∗ x, if (x, y) ≡ (xi, yi), where σi = 1.

Denote (Q,
σ•) by Qσ and let Nτ (Q0) = {Qσ |σ ∈ Zr(Q0)

2 }. Note that Nτ (Q0) ⊂
M(Q0) and |Nτ (Q0)| = 2r(Q0).

Theorem 5.2. If Q is finite, then N (Q0) = Nτ (Q0). So, |N (Q0)| = 2r(Q0).
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Proof. Let Qσ ∈ Nτ (Q0). Since Q is finite, in order to prove that Qσ is a
quasigroup, we only need to show that the cancellation laws are satisfied, that
is, x

σ• y = x
σ• y′ ⇒ y = y′ and x

σ• y = x′
σ• y ⇒ x = x′.

Let x, y, y′ ∈ Q be such that x
σ• y = x

σ• y′. If (x, y) ∈ K(Q0), then
x ∗ y = y ∗ x ∈ {x∗y′, y′ ∗x}, and hence y = y′. Now suppose that (x, y) 6∈ K(Q0).
We have four possibilities:

(i) x
σ• y = x ∗ y and x

σ• y′ = x ∗ y′,
(ii) x

σ• y = y ∗ x and x
σ• y′ = y′ ∗ x,

(iii) x
σ• y = x ∗ y and x

σ• y′ = y′ ∗ x,
(iv) x

σ• y = y ∗ x and x
σ• y′ = x ∗ y′.

In (i) and (ii), it is immediately seen that y = y′.
For (iii) and (iv), we have (x, y) ∼ (x, y′). Hence, there exists (xi, yi) ∈ τ

such that (x, y) ≡ (xi, yi) and (x, y′) ≡ (xi, yi). By definition of
σ•, we have either

x
σ• y = x ∗ y and x

σ• y′ = x ∗ y′, or x
σ• y = y ∗ x and x

σ• y′ = y′ ∗ x.
Since (x, y) 6∈ K(Q0), it follows that (x, y′) ∈ K(Q0). Similarly to the case
(x, y) ∈ K(Q0), one can conclude that y = y′.

Thus, the cancellation law x
σ• y = x

σ• y′ ⇒ y = y′ holds in Qσ. The second
cancellation law can be proven similarly. Therefore, Qσ ∈ N (Q0).

Conversely, let Q′ = (Q, ·) ∈ N (Q0). Then, there exists σ ∈ Zr(Q0)
2 such that

xi · yi = xi
σ• yi, for any (xi, yi) ∈ τ . For (x, y) ∈ K(Q0), it is vividly deduced that

x · y = x
σ• y.

Consider (xi, yi) ∈ τ . Then, yi · xi = yi
σ• xi. Let (x, y) ∈ Q × Q \

{(xi, yi), (yi, xi)} such that (x, y) ∼ (xi, yi). By (1) and the definition of
σ•, we

have x · y 6= xi · yi = xi
σ• yi and x

σ• y 6= xi
σ• yi, and therefore the only possibility

is x ·y = x
σ• y. For every (x, y) ∼ (xi, yi), one can use the previous arguments and

result in x′ · y′ = x′
σ• y′, for all (x′, y′) ∼ (x, y). Since Q is finite, this procedure

must end at some point, and hence x · y = x
σ• y, for all (x, y) ≡ (xi, yi). As a

result, we have Q′ = Qσ.

By Proposition 4.2, if Q is finite, then r(Q0) 6 (|Q|2 − |K(Q0)|)/2. The next
proposition provides a better estimate for r(Q0). According to this result, it is
seen that |N (Q0)| is much smaller that |M(Q0)|.

Proposition 5.3. If Q is finite, then

r(Q0) 6 (|Q|2 − |K(Q0)|)/6 and |N (Q0)| 6 3
√
|M(Q0)|.

In particular, |M(Q0)| > 8.

Proof. Let (x, y) ∈ Q × Q \ K(Q0) and [(x, y)] be the equivalence class of (x, y)
with respect to ≡. Since Q0 is a quasigroup, there are x′, y′ ∈ Q such that x′ 6= x,
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y′ 6= y, (x′, y) ∼ (x, y), and (x, y′) ∼ (x, y). We have x 6= y, x′ 6= y and x 6= y′

since (x, y), (x′, y), (x, y′) 6∈ K(Q0). Thus,

|[(x, y)]| > |{(x, y), (x′, y), (x, y′), (y, x), (y, x′), (y′, x)}| = 6.

Hence, |Q × Q \ K(Q0)| > 6 r(Q0). The rest of the claim follows from Proposi-
tion 4.2, Theorem 5.2 and the fact that r(Q0) > 1.

If Q is finite and r(Q0) is small, one can generate all quasigroups of N (Q0)
computationally. Then, by using Propositions 5.1 and 4.5 it can be verified if a
quasigroup Q′ is half-isomorphic to Q0 and generated all elements of Half (Q0).
However, r(Q0) can be a large number even for groups of small order, and therefore
generating all the quasigroups of N (Q0) becomes computationally unviable. The
next example illustrates both situations. In this example, r(Q0) and |M(Q0)| are
obtained by using GAP computing with the LOOPS package [5, 13].

Example 5.4. (a). Let A5 be the alternating group of order 60. We have that
r(A5) = 91, and hence |N (A5)| = 291. Furthermore, |M(A5)| = 21650.

(b). The LOOPS package for GAP contains all nonassociative right Bol loops of
order 141 (there are 23 such loops). The right Bol loops of this order were classified
in [7]. If L is one of these loops, then 3 6 r(L) 6 8, and hence |N (L)| 6 256.
Furthermore, |M(L)| > 25405.

By Proposition 2.2, every quasigroup half-isomorphic to a loop is also a loop.
Consequently, the same results as those presented for quasigroups in this section
can be proven for loops. For more structured classes of loops, as it is seen in the
following result, one can provide more information about the loops of N (L).

Proposition 5.5. Let G be a finite noncommutative group. Then, |MI(G)| = 2.

Proof. From Scott’s result [15], we have Half (G) = Half T (G). Since G is non-
commutative, the mapping J : G → G, defined by J(x) = x−1, is an anti-
automorphism of G. By Proposition 4.5, we have |Half (G)| = 2|Aut(G)|. Thus,
the claim follows from Proposition 4.3.

In fact, the previous proposition can be extended to any noncommutative loop
that has an anti-automorphism and where every half-automorphism is trivial, such
as the noncommutative loops of the subclass of Moufang loops in [8, Thereom 1.4],
which include the noncommutative Moufang loops of odd order [3]. Notice that
this result cannot be extended even to all Moufang loops. In [16, Example 4.6],
a noncommutative Moufang loop L of order 16 is given for which |MI(L)| =
[Half (L) : Aut(L)] = 16.

6.AConstruction of aNon-specialHalf-automorphism
Let G be a nonempty set with binary operations ∗ and · such that there exists
a non-special half-isomorphism f : (G, ∗) → (G, ·). Define G∞ =

∏∞
i=1G. The
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elements of G∞ will be denoted by (xi) = (xi)
∞
i=1, where xi ∈ G, for all i. For

(xi), (yi) ∈ G∞, define the operation (xi) • (yi) = (zi), where

zj =

{
xj ∗ yj , if j is odd,
xj · yj , if j is even.

Then, (G∞, •) is a groupoid. It is easy to see that if (G, ∗) and (G, ·) are
quasigroups (loops), then (G∞, •) is also a quasigroup (loop). Define the mapping
φ : G∞ → G∞ by φ(xi) = (yi), where

yj =

 f(x1), if j = 2,
xj+2, if j is odd,
xj−2, if j > 2 and j is even.

Thus, φ is a bijection and in each entry of (xi) it behaves like an isomorphism
or a half-isomorphism. Hence, φ is a half-automorphism of G∞. Since f is a
non-special half-isomorphism, there are x, y ∈ G such that f−1(x · y) 6∈ {f−1(x) ∗
f−1(y), f−1(y) ∗ f−1(x)}. Then,

φ−1((x)∞i=1 • (y)∞i=1) 6∈ {φ−1((x)∞i=1) • φ−1((y)∞i=1), φ
−1((y)∞i=1) • φ−1((x)∞i=1)}.

Therefore, φ is a non-special half-automorphism of G∞.
In example 1.1, we have loops C6 = (G, ∗) and L = (G, ·) for the condi-

tions above, hence the loop G∞ has a non-special half-automorphism. Note that
Half (G∞) is not a group.

In the following example, a non-special half-isomorphism between a right Bol
loop and a group is provided. This example is obtained by using MACE4 [12].

Example 6.1. Let G = {1, 2, ..., 8} and consider the following Cayley tables of
(G, ∗) and (G, ·):

∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 6 3 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 8 1 7 6 5
5 5 6 7 1 8 2 3 4
6 6 5 8 7 2 1 4 3
7 7 8 5 3 6 4 1 2
8 8 7 6 5 4 3 2 1

· 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 7 6 8 1 3 2 4
6 6 8 5 7 2 4 1 3
7 7 5 8 6 3 1 4 2
8 8 6 7 5 4 2 3 1

We have (G, ∗) = L as a right Bol loop and (G, ·) being isomorphic to D8,
which is the dihedral group of order 8. The permutation f = (3 5 7)(4 6 8) of G
is a half-isomorphism of L into D8. Since |K(L)| = 56 and |K(D8)| = 40, f is
a non-special half-isomorphism by Theorem 3.2. Since L and D8 are right Bol
loops, G∞ is also a right Bol loop, and from the previous construction we have a
non-special half-automorphism in a right Bol loop of infinite order.
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Acknowledgments. Some calculations in this work have been made by using the
finite model builder MACE4, developed by McCune [12], and the LOOPS package
[13] for GAP [5].
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