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Quasigroup power sets and cyclic S�systems

Galina B. Belyavskaya

Abstract

We give new constructions of power sets of quasigroups (latin squares) based on
pairwise balanced block designs and complete cyclic S-systems of quasigroups.

1. Introduction
Let L be a �xed latin square of order n with elements of the set Q =
{0, 1, . . . , n − 1} and (α0, α1, . . . , αn−1) be an ordered set of permutations
α0, α1, . . . , αn−1, where row i of L is the image of (0, 1, . . . , n − 1) under
the permutation αi, 0 6 i 6 n − 1. We write L = (α0, α1, . . . , αn−1). If
R = (β0, β1, . . . , βn−1) is another latin square of order n, then the prod-
uct square LR is de�ned as (α0β0, α1β1, . . . . . . , αn−1βn−1), where αiβi

denotes the usual product of the permutation αi on βi.
Let L be a latin square of order n and m a positive integer greater than

one. If L2, L3, . . . , Lm are all latin squares, then {L,L2, . . . , Lm} is called a
latin power set of size m. This concept was introduced explicitly in [7] and
implicitly in [13]. In this case the latin squares L,L2, . . . , Lm are pairwise
orthogonal [15], Theorem 1.

The authors of [7] conjectured that for all n 6= 2, 6 there exists a latin
power set consisting of at least two n × n latin squares. This problem
was also put by J. Dénes in [5]. A proof of this conjecture would provide

2000 Mathematics Subject Classi�cation: 20N05, 20N15
Keywords: latin square, latin power set, S-system of quasigroups, block design, quasi-

group.
Acknowledgment: The research described in this publication was made possible in

part by Award No. MM2-3017 of the Moldovan Research and Development Association
(MRDA) and U.S. Civilian Research & Development Foundation for the Independent
States of the Former Soviet Union (CRDF).



2 G. B. Belyavskaya

a new disproof of the Euler conjecture (if n = 4k + 2, then there is no
pair of orthogonal latin squares of order n). A construction in [7], based
on Mendelsohn designs, gives in�nitely many counterexamples to the Euler
conjecture but unfortunately the construction does not work when n ≡ 2
(mod 6). In [7] it was proved that for 7 6 n 6 50 and for all larger n except
possibly those of the form 6k + 2 there exists a latin power set containing
at least two latin squares of order n.

In [8] J. Dénes and P.J. Owens gave a new construction of power sets of
p× p latin squares for all primes p > 11 not based on group tables. Such
latin power sets of prime order can be used to obtain latin power sets of a
composite order by the known methods.

The main construction of [8] is based on a circular Tuscan square.

As is noted in [8], for both theoretical and practical reasons it is im-
portant to �nd latin power sets that are not based on group tables (the
sets given in [8] are constructed by using rearrangements of rows of a group
table). It is important, for example, for a ciphering device, whose algorithm
is based on latin power sets [9]. It is obvious that latin power sets based on
non-group tables are preferable to those based on group tables because the
greater irregularity makes the cipher safer.

In this article we use an algebraic approach to latin power sets. In
Section 1 some necessary information from [1, 2, 3] concerning S-systems
of quasigroups is given. In Section 2 we use cyclic S-systems (they are a
particular case of latin power sets) and pairwise balanced block designs of
index one (BIB(v, b, r, k, 1)) for the construction of quasigroup power sets
of di�erent sizes.

The suggested construction, in particular, is used to obtain power sets
of quasigroups of all orders n = 12t + 8 = 6(2l + 1) + 2, t, l > 1, i.e. for
any n = 6k + 2 where k is an odd number, k > 3.

In Section 3, there is described a composite method of constructing
quasigroup (latin) power sets based on pairwise balanced block designs of
index one of type (v; k1, k2, . . . , km) (BIB(v; k1, k2, . . . , km)). At the end
of this section the sizes of quasigroup power sets are given that can be
constructed using some known block designs and cyclic S-systems by means
of the suggested methods.
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2. Cyclic S-systems as quasigroup power sets
Let Q(A) and Q(B) be groupoids. Mann's (right) multiplication B · A of
the operation B on A is de�ned in the following way [14]:

B ·A(x, y) = B(x, A(x, y)), x, y ∈ Q.

The operation (·) on the set of all operations de�ned on the set Q is asso-
ciative, i.e. (A ·B) ·C = A · (B ·C). If Q(A) and Q(B) are quasigroups and
L,R are the latin squares corresponding to them, then

B ·A(x, y) = βxαxy,

where βxy = B(x, y), αxy = A(x, y) and βx (αx) is row x of R (L).
Thus, Mann's (right) multiplication of quasigroups corresponds to the

product of the respective latin squares and conversely.
Let A = B, then we get

A ·A = A2, A ·A ·A = A3, . . . , A ·A · · · · ·A︸ ︷︷ ︸
m

= Am.

If A,A2, . . . , Am are quasigroups, then {A,A2, . . . , Am} is called a quasi-
group power set (brie�y QPS), {L,L2, . . . , Lm} is the latin power set corre-
sponding to this QPS.

Let Σ = {A,B, C, . . . } be a system of binary operations given on Q.
De�nition 1. [1] A system of operations Q(Σ) is called an S�system if

1. Σ contains the unit operations F and E (F (x, y) = x, E(x, y) = y
∀x, y ∈ Q ) and the remaining operations de�ne quasigroups,

2. A ·B ∈ Σ′ for all A,B ∈ Σ′, where Σ′ = Σ \ F ,

3. A∗ ∈ Σ for all A ∈ Σ, where A∗(x, y) = A(y, x).
An S-system Q(Σ) is �nite if Q is a �nite set. In �nite Q(Σ) for any

A ∈ Σ is de�ned A−1 as the solution of the equation A(a, x) = b, i.e.
A−1(a, b) = x. Then A−1 = Ak ∈ Σ for some natural k, because the set of
all invertible to the right operations on Q forms a �nite group with respect
to the right multiplication of operations. In this group E is the unit and
A−1 ·A = A ·A−1 = E.

We remind the reader that two binary operations A and B de�ned
on Q are said to be orthogonal if the pair of equations A(x, y) = a and
B(x, y) = b has a unique solution for any elements a, b ∈ Q.

All operations of an S-system Q(Σ) are pairwise orthogonal and the
following properties of �nite S-systems are also important:
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1. Σ′ is a group with respect to the (right) multiplication of operations,
E is the unit of this group and A−1 is the inverse element of A.

2. All the quasigroups of Q(Σ) are idempotent, if |Σ| > 4, where |Σ| is
the number of operations of Q(Σ).

Theorem 1. (Theorem 4.3 in [1]) Let Q(Σ) be an S−system, |Q| = n,
|Σ| = k, then k − 1 divides n− 1 and r = n−1

k−1 > k or r = 1.

In [1] the number r is called an index of the S-system Q(Σ). The
number k is called order of Q(Σ).

An S-system is called complete if r = 1 (in this case n = k). It then
contains n− 2 quasigroups.

A characterization for a �nite complete S-system was given in [1], The-
orem 4.6.

De�nition 2. [3] An S-system Q(Σ) of order k is called cyclic if Σ′(·),
where Σ′ = Σ \ F and (·) represents composition of operations (called
Mann's multiplication above), is a cyclic group.

By Corollary 1 of [3] a complete S-system Q(Σ) is cyclic i� it is an
S-system over a �eld Q( ·, +), i.e. i� every operation of Σ has the form

Aa(x, y) = (1− a)x + ay, a, x, y ∈ Q, (1)

where 1 is the unit of the multiplicative group of the �eld.

Remark 1. If Q(Σ), Σ = {F, E,A, A2, . . . , Ak−2}, is a complete cyclic
S−system of order k, then

A(x, y) = (1− a)x + ay,

where the element a is a generating element of the multiplicative (cyclic)
group of a �eld. Indeed, it is easy to prove that

Al(x, y) = (1− al)x + aly, l = 1, 2, . . . , k − 2,

and Ak−1 = E i� ak−1 = 1.
Conversely, if an element a is a generating element of the multiplicative

group of a �eld, then the quasigroup Aa of (1) generates a complete cyclic
S−system.
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Every cyclic S-system of order k and index r corresponds to a quasi-
group power set of size k − 2 and consists of quasigroups of order n =
rk − r + 1.

From the results of [2, 3], the description of an arbitrary cyclic S-system
by means of a �eld and an incomplete balanced block design can be obtained.
First we need the following de�nitions.

De�nition 3. [6] A balanced incomplete block design (or BIB(v, b, r, k, λ))
is an arrangement of v elements a1, a2, . . . , av by b blocks such that

1. every block contains exactly k di�erent elements;

2. every element appears in exactly r di�erent blocks;

3. every pair of di�erent elements (ai, aj) appears in exactly λ blocks.

De�nition 4. [2] A BIB(v, b, r, k, 1) is called an S(r, k)−con�guration
if k is a prime power, i.e. k = pα.

It is known that the parameters of a BIB(v, b, r, k, 1) satisfy the follow-
ing equalities

v = rk − r + 1, b =
rk − r + 1

k
r .

In accordance with Theorem 1 of [2] a cyclic S-system of index r and
order k exists i� there exists an S(r, k)-con�guration.

Let us give a construction of an S-system of order k and index r for
the case of a cyclic S-system.

Let an S(r, k)-con�guration be given on a set Q, where |Q| = v =
rk − r + 1, and let Q1, Q2, . . . , Qb be its blocks. Let H(+, · ) be a �eld
of order k (such a �eld exists as k is a prime power) and let H(Σ̃), Σ̃ =
{F, E, A1, A2, . . . , Ak−2}, be a complete cyclic S-system over this �eld.

1. On the block Qi (i = 1, 2, . . . , b) we de�ne a quasigroup Qi(A
(i)
j ),

j = 1, 2, . . . , k − 2, isomorphic to the quasigroup H(Aj) of the S-
system H(Σ̃):

A
(i)
j (x, y) = α−1

i Aj(αix, αiy) = Aαi
j (x, y),

where αi is an arbitrary one-to-one mapping of the set Qi upon H,
i = 1, 2, . . . , b.
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2. Then, on the set Q, we de�ne the operations Bj , j = 1, 2, . . . , k − 2,
in the following way:

Bj(x, y) =

{
A

(i)
j (x, y), if x, y ∈ Qi, x 6= y,

x, if x = y.

By Theorem 1 of [2] the system Q(Σ), Σ = {F, E,B1, . . . , Bk−2}, is
an S-system of index r and order k. It is called an S−system over the
�eld H(+, · ) and the S(r, k)−con�guration. Moreover, by Theorem 3 of
[3] such an S-system is cyclic and any S-system over a �eld and an S(r, k)-
con�guration is cyclic.

If Σ̃ = {F,E, A,A2, . . . , Ak−2}, then by (1) and Remark 1

Aj(u, v) = Aj(u, v) = (1− aj)u + ajv, j = 1, 2, . . . , k − 2,

u, v ∈ H, where the element a is a generating element of the multiplicative
group of the �eld H(+, · ).

Hence,

A
(i)
j (x, y) = α−1

i ((1− aj)αix + (aj · αiy)) = α−1
i Aj(αix, αiy)

= (Aj)αi(x, y) = (Aαi)j(x, y), x, y ∈ Qi,

since it is easy to see that (A · B)α = Aα · Bα if α is an isomorphism,
(A ·B)α(x, y) = α−1[(A ·B)(αx, αy)]. Then

Bj(x, y) = Bj(x, y) =
{

(Aαi)j(x, y), if x, y ∈ Qi, x 6= y,
x, if x = y

and Σ = {F, E,B,B2, . . . , Bk−2}.
In an Appendix we give an illustrative example of this construction.

3. Direct product of quasigroup power sets
Let Q1(A1), Q2(A2) be two binary groupoids. On the set Q1 × Q2 which
consists of all pairs (a1, a2), where ai ∈ Qi, i = 1, 2, de�ne the direct product
A1 ×A2 of the operations A1 and A2:

(A1 ×A2)((x1, x2), (y1, y2)) = (A1(x1, y1), A2(x2, y2)).

If A1, A2 are quasigroup operations, then A1 × A2 also is a (binary)
quasigroup operation.
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Proposition 1. (A1 ×A2)m = Am
1 ×Am

2 for any natural number m.

Proof. Let m = 2, then

(A1 ×A2)2((x1, x2), (y1, y2)) =

= (A1 ×A2)((x1, x2), (A1 ×A2)((x1, x2), (y1, y2))) =

= (A1 ×A2)((x1, x2), (A1(x1, y1), A2(x2, y2))) =

= (A1(x1, A1(x1, y1)), A2(x2, A2(x2, y2))) =

= (A2
1(x1, y1), A2

2(x2, y2)) = (A2
1 ×A2

2)((x1, x2), (y1, y2)) .

Hence,
(A1 ×A2)2 = A2

1 ×A2
2 .

But then

(A1 ×A2)3 = (A1 ×A2)(A1 ×A2)2 = (A1 ×A2)(A2
1 ×A2

2)

since the Mann's multiplication (·) of operations is associative. Using that
we can similarly show that

(A1 ×A2)3 = A3
1 ×A3

2 .

Hence, by induction on the integer m, we may deduce that Proposition 1
is true.

Let Q1(A1), Q2(A2), . . . , Qn(An) be binary groupoids. On the set
Q1 ×Q2 × · · · ×Qn de�ne the direct product of the operations A1, . . . , An

(A1 ×A2 × · · · ×An)((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =
= (A1(x1, y1), A2(x2, y2), . . . , An(xn, yn)).

Proposition 1 at once implies

Corollary 1. (A1 ×A2 × · · · ×An)m = Am
1 ×Am

2 × · · · ×Am
n .

Now let us consider the following n QPSs:

Qi(Σi), Σi = {Ai, A
2
i , . . . , A

mi
i }, i = 1, 2, . . . , n,

and on the set Q1 ×Q2 × · · · ×Qn de�ne the set

Σ1 × Σ2 × · · · × Σn = {(A1 ×A2 × · · · ×An),
(A2

1 ×A2
2 × · · · ×A2

n), . . . , (Am
1 ×Am

2 × · · · ×Am
n )},
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where m = min{m1,m2, . . .mn}. By Corollary 1

Σ1 × Σ2 × · · · × Σn = {(A1 ×A2 × · · · ×An),
(A1 ×A2 × · · · ×An)2, . . . , (A1 ×A2 × · · · ×An)m},

and (Q1 ×Q2 × · · · ×Qn)(Σ1 × Σ2 × · · · × Σn) is a QPS of size m which
consists of quasigroups of order |Q1| · |Q2| · . . . · |Qn|. We call this QPS the
direct product of QPSs Qi(Σi), i = 1, 2, . . . , n.

Theorem 2. Let n = pu1
1 pu2

2 . . . pus
s , where for all i = 1, . . . , s, the pi are

prime numbers, the ui are natural numbers and m = min{pu1
1 , . . . , pus

s } > 4.
Then there exists a quasigroup power set containing m− 2 quasigroups of
order n.

Proof. Let
pu1
1 6 pu2

2 6 · · · 6 pus
s , where pui

i 6= 2, 3,

and Qi(Σi) =
{

F, E,Ai, A
2
i , . . . , A

p
ui
i −2

i

}

be a complete cyclic S-system of order pui
i = |Qi|, i = 1, 2, . . . , s. By

Corollary 1 of [3] such an S-system is an S-system over a �eld of order pui
i

and its binary operations have the form (1). Using the direct product of
QPSs, we deduce that (Q1 ×Q2 × · · · ×Qs)(Σ1 ×Σ2 × · · · ×Σs) is a QPS
of size pu1

1 − 2 containing quasigroups of order n.

Note that, under di�erent representations of a number n by powers of
prime numbers, the quasigroup power sets obtained by Theorem 2 are dif-
ferent. For example, if n = 7 ·52 we can construct a QPS of 5 quasigroups,
whereas for n = 5 · 5 · 7 we obtain a QPS of 3 quasigroups of order n.

As has been noted, numbers of the form 6k +2 present de�nite di�cul-
ties for the construction of latin power sets (or QPSs). As an application
of Theorem 2 let us consider numbers of this form when k is odd, i.e.

n = 6(2t + 1) + 2 = 12t + 8 = 22(3t + 2), t > 1

( n = 20, 32, 44, 56, . . . , 92, 104, . . . , 140, 152, . . . ).

Corollary 2. Let n = 12t + 8, t > 1. Then there exists a QPS containing
at least two quasigroups of order n. If t = 4k, k > 1 then there exists a
QPS containing at least three quasigroups. Moreover, if k = 1, then there
exists a QPS of �ve quasigroups. For 2 6 k 6 9 there exists a QPS of six
quasigroups.
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Proof. The number n = 22(3t + 2) is not divisible by three. This implies
that, in the factorization of n into prime powers, all pαi

i > 4 and so, accord-
ing to Theorem 2, there exists a QPS consisting of at least two quasigroups
of order n.

Let t = 4k, k > 1, then n = 23(6k + 1) where 6k + 1 is an odd
number > 7 that is not divisible by 2 and 3. Thus, the number 5 is the
least possible divisor of 6k + 1 and by Theorem 2, there exists a QPS of
three quasigroups of order n.

By Theorem 2 there exist QPSs of at least �ve quasigroups of order
n = 56 ( t = 4, k = 1). If t = 4k, 2 6 k 6 8, then 6k + 1 =
13, 19, 25, 31, 37, 43, 49 . . . and there exist QPSs of at least six quasigroups
of order n = 104 = (23 ·13), 152 = (23 ·19), 200, 248, . . . , 392 = (23 ·72).

4. Quasigroup power sets and BIB(v;k1,k2, . . . ,ks)

To obtain a further construction of QPSs, we use a generalization of the
concept of a balanced incomplete block design called by R.C. Bose and
S.S. Shrikhande a pairwise balanced block design of index unity and type
(v; k1, k2, . . . , ks) (for brevity, we shall write BIB(v; ks

1)) (see [6], page 400;
[12], page 271). Such a design comprises a set of v elements arranged in
b =

s∑
i=1

bi blocks such that there are b1 blocks each of which contains k1

elements; b2 blocks each of which contains k2 elements, ... bs blocks each of
which contains ks elements (ki 6 v for i = 1, 2, . . . , s), and in which each
pair of the v distinct elements occurs together in exactly one of the b blocks.

The latter condition implies that

v(v − 1) =
s∑

i=1

biki(ki − 1).

If k1 = k2 = · · · = ks = k, then we obtain the (pairwise) balanced incom-
plete block design (BIB(v, b, r, k, 1)).

By Theorem 11.2.2 [6] if a pairwise balanced block design of index unity
and type (v; ks

1) exists and for each ki there exists a set of qi − 1 mu-
tually orthogonal latin squares of that order then it is possible to con-
struct a set of q − 2 mutually orthogonal latin squares of order v, where
q = min{q1, q2, . . . , qs}.

We prove that an analogous statement is true for latin power sets (that
is for QPSs) using a constructing of idempotent quasigroups by means of
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BIB(v; ks
1) given in [4] (see also [10]). First, we describe brie�y the con-

struction of such quasigroups from [4].
Let Q1, Q2, . . . , Qb be blocks of BIB(v; ks

1), given on a set Q, and
Q1(A1), Q2(A2), . . . , Qb(Ab) be idempotent quasigroups. Note that, in con-
trast to [4], we assume for the sake of simplicity that these quasigroups are
given on the blocks of the BIB.

De�ne the operation (·) on the set Q in the following way:

x · y =
{

Ai(x, y), if x, y ∈ Qi, x 6= y;
x, if x = y.

(2)

The groupoid Q(·) is an idempotent quasigroup and the operation (·)
will be denoted by

(·) = A = [Ai]bi=1(v; ks
1). (3)

The quasigroup Q(·) consists of quasigroups de�ned on the blocks of the
BIB(v; ks

1).
Now we prove the following

Proposition 2. In (3), let Ai be an idempotent quasigroup for any i =
1, 2, . . . , b. Then

Ak = [Ak
i ]

b
i=1(v; ks

1) (4)
for any natural number k.

Proof. First notice that x,A(x, y) ∈ Qi where x 6= y, i� x, y ∈ Qi. Granted
this and the idempotency of A and Ai for any i = 1, 2, . . . , b, by (2) we have

A2(x, y) = A(x,A(x, y)) =

=
{

Ai(x, A(x, y)), if x,A(x, y) ∈ Qi, A(x, y) 6= x;
x, if A(x, y) = x;

=
{

Ai(x, Ai(x, y)), if x, y ∈ Qi, x 6= y;
x, if x = y;

=
{

A2
i (x, y), if x, y ∈ Qi, x 6= y;

x, if x = y.

Thus,
A2 = [A2

i ]
b
i=1(v; ks

1). (5)
Further, since A,Ai, A

2
i are idempotent quasigroups for all i = 1, 2, . . . , b,

then using (2) and (5) we have

A3(x, y) = A2(x,A(x, y)) =
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=
{

A2
i (x, A(x, y)), if x,A(x, y) ∈ Qi, A(x, y) 6= x;

x, if A(x, y) = x;

=
{

A2
i (x, Ai(x, y)), if x, y ∈ Qi, x 6= y;

x, if x = y;

=
{

A3
i (x, y), if x, y ∈ Qi, x 6= y;

x, if x = y.

Hence,
A3 = [A3

i ]
b
i=1(v; ks

1).

Extending this argument (that is, using induction on the index l) and taking
into account that Al

i, i = 1, 2, . . . , b, l = 1, 2, . . . , k − 1, and Al, l =
1, 2, . . . , k − 1, are all idempotent quasigroups we obtain equality (4).

Now it is easy to prove the following

Theorem 3. Suppose that there exists a BIB of index unity and type
(v; k1, k2, . . . , ks) and that, for every ki, i = 1, 2, . . . , s, there exists a QPS
of a size m with idempotent quasigroups of order ki. Then there exists a
QPS of m quasigroups of order v.

Proof. Let a BIB(v; ks
1) be given on a set Q and have the blocks , Q1, Q2,

. . . , Qb, |Qi| ∈ {k1, k2, . . . , ks}. Let the following quasigroup power sets of
size m on these blocks be given:

Q1(Σ1) : Σ1 = {A1, A
2
1, . . . , A

m
1 },

Q2(Σ2) : Σ2 = {A2, A
2
2, . . . , A

m
2 },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qb(Σb) : Σb = {Ab, A
2
b , . . . , A

m
b },

where Q1(A1), Q2(A2), . . . , Qb(Ab) are idempotent quasigroups (then all
their powers in the power sets are also idempotent).

Consider the following quasigroups on the set Q:

C1 = [Ai]bi=1(v; ks
1), C2 = [A2

i ]
b
i=1(v; ks

1), . . . , Cm = [Am
i ]bi=1(v; ks

1).

Using (4) we obtain that C2 = C2
1 , C3 = C3

1 , . . . , Cm = Cm
1 . Hence,

Q(Σ) : Σ = {C1, C
2
1 , . . . , Cm

1 } is a QPS of size m containing quasigroups
of order v.

Corollary 3. If there exists a BIB(v; ks
1) where ki, i = 1, 2, . . . , s are

powers of primes and t = min{k1, k2, . . . , ks} > 4, then there exists a QPS
containing t− 2 quasigroups of order v.
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Proof. As ki, i = 1, 2, . . . , s, are prime powers then, by Corollary 1 of [3],
for every ki there exists a complete cyclic S-system (over a �eld of order ki).
This S-system contains ki − 2 (idempotent) quasigroups. Now, applying
Theorem 3 completes the proof.

Corollary 4. Let k, k + 1,m, x be prime powers, 4 6 k 6 m, 4 6 x 6 m,
t = min{k, x}. Then there exists a QPS which contains t − 2 quasigroups
of order v = km + x.

Proof. Let N(m) denote the largest possible number of mutually orthogonal
latin squares of order m which can exist in a single mutually orthogonal set
and k 6 N(m) + 1 6 m, x 6 m. Then (see [6], p. 412�413) there exists a
BIB(km + x; k, k + 1, x,m) of index unity.

Since m is a prime power then there exists a complete set of mutually
orthogonal latin squares (i.e. N(m) = m − 1) of order m. In this case the
equalities k 6 m and k 6 N(m) + 1 are equivalent. Finally use Corol-
lary 3 taking into account that under our conditions min{k, k + 1, x, m} =
min{k, x}.

Next we apply Theorem 3, Corollary 3 and Corollary 4 to construct a
number of QPSs using some known BIBs (v; b, r, k, 1) and BIBs (v; ks

1).
Let a BIB(v, b, r, k, 1) be given on a set Q, |Q| = v. By removing

one element from this BIB, we can obtain a BIB(v − 1; k − 1, k), that
contains r blocks of k−1 elements and b− r blocks of k elements. In the
table presented below we give initial BIBs (v, b, r, k, 1) (with the numbers
assigned to them in the Table of Appendix I of [12]), the corresponding
BIB(v− 1; k− 1, k), the size of QPS obtained by Corollary 3 and also that
obtained by Theorem 2 (for comparison) for the same values of v.
BIB No. BIB BIB Size QPS Size QPS
from [12] (v; b, r, k, 1) (v − 1; k − 1, k) by Cor. 3 by Th. 2

7 (21, 21, 5, 5, 1) (20; 4, 5) 2 2
11 (25, 30, 6, 5, 1) (24; 4, 5) 2 −
25 (57, 57, 8, 8, 1) (56; 7, 8) 5 5
36 (64, 72, 9, 8, 1) (63; 7, 8) 5 5
37 (73, 73, 9, 9, 1) (72; 8, 9) 6 6
42 (41, 82, 10, 5, 1) (40; 4, 5) 2 3
45 (81, 90, 10, 9, 1) (80; 8, 9) 6 3
51 (45, 99, 11, 5, 1) (44; 4, 5) 2 2
108 (61, 183, 15, 5, 1) (60; 4, 5) 2 −

[6], p.403 (22; 4, 7) 2 −
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Now we use Corollary 4 to obtain new QPSs with quasigroups of order
v = km + x, where the numbers k,m, x satisfy the conditions of the corol-
lary. In the table given below, we present some BIB(km+x; k, k+1, x,m)
with such values of k,m, x and also the sizes of the QPSs (with quasigroups
of order v = km + x ) constructed by Corollary 4 and Theorem 2 corre-
sponding to them.

BIB Size of QPS Size of QPS
(km + x; k, k + 1, x, m) v = km + x by Cor. 4 by Th. 2

(60; 7, 8, 4, 8) 60 = 22 · 3 · 5 2 −
(63; 7, 8, 7, 8) 63 = 32 · 7 5 5
(69; 8, 9, 5, 8) 69 = 3 · 23 3 −
(76; 8, 9, 4, 9) 76 = 22 · 19 2 2
(80; 8, 9, 8, 9) 80 = 24 · 5 6 3
(92; 8, 9, 4, 11) 92 = 22 · 23 2 2
(93; 8, 9, 5, 11) 93 = 3 · 31 3 −
(95; 8, 9, 7, 11) 95 = 5 · 19 5 3
(96; 8, 9, 8, 11) 96 = 25 · 3 6 −
(99; 8, 9, 11, 11) 99 = 32 · 11 6 7
(108; 8, 9, 4, 13) 108 = 22 · 33 2 2
(111; 8, 9, 7, 13) 111 = 3 · 37 5 −
(112; 8, 9, 8, 13) 112 = 24 · 7 6 5
(115; 8, 9, 11, 13) 115 = 5 · 23 6 3
(132; 8, 9, 4, 16) 132 = 22 · 3 · 11 2 −
(133; 8, 9, 5, 16) 133 = 7 · 19 3 5
(135; 8, 9, 7, 16) 135 = 33 · 5 5 3
(136; 8, 9, 8, 16) 136 = 23 · 17 6 6
(140; 8, 9, 4, 17) 140 = 22 · 5 · 7 2 2
(141; 8, 9, 5, 17) 141 = 3 · 47 3 −
(141; 8, 9, 13, 16) 141 = 3 · 47 6 −
(143; 8, 9, 7, 17) 143 = 11 · 13 5 9
(144; 8, 9, 8, 17) 144 = 24 · 32 6 7
(145; 8, 9, 9, 17) 145 = 5 · 29 6 3
(147; 8, 9, 11, 17) 147 = 3 · 72 6 −
(152; 8, 9, 16, 17) 152 = 23 · 19 6 6
(153; 8, 9, 17, 17) 153 = 32 · 17 6 7
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The parameters of the following BIBs (km + x; k, k + 1, x, m):
(20; 4, 5, 4, 4), (24; 4, 5, 4, 5), (25; 4, 5, 5, 5), (32; 4, 5, 4, 7),
(33; 4, 5, 5, 7), (35; 4, 5, 7, 7), (36; 4, 5, 4, 8), (37; 4, 5, 5, 8),
(39; 4, 5, 7, 8), (40; 4, 5, 8, 8), (40; 4, 5, 4, 9), (41; 4, 5, 5, 9),

(43; 4, 5, 7, 9), (44; 4, 5, 8, 9), (45; 4, 5, 9, 9)

also satisfy the conditions of Corollary 4. Using these BIBs one can con-
struct QPSs containing at least two quasigroups of order v.

Appendix
Now we give an illustrative example using the construction of QPSs from
Section 2.

Let H(⊕, · ), where H = {0, 1, 2, 3, 4, }, be the �nite �eld formed by the
residues modulo 5. The element 2 is a generating element of the (cyclic)
multiplicative group of this �eld, so we take the quasigroup A(x, y) =
(1− 2)x + 2y = 4x + 2y as the de�ning quasigroup for a complete (cyclic)
S−system H(Σ̃), Σ̃ = {F, E, A, A2, A3}. The Cayley table of the quasi-
group A is as follows:

A 0 1 2 3 4
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4

As a block design we use the following
BIB(v, b, r, k, 1) = BIB(21, 21, 5, 5, 1) = S(5, 5)

on the set Q = {1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, k, m, n, p} of 21
elements and 21 blocks:

B1 : 1, 2, 3, 4, 5, B8 : 3, 7, a, h, n, B15 : 5, 8, b, h, k,
B2 : 2, 6, a, e, k, B9 : 4, 7, d, g, k, B16 : 1, k, m, n, p,
B3 : 3, 6, b, g, p, B10 : 5, 7, c, e, p, B17 : 2, 9, d, h, p,
B4 : 4, 6, c, h,m, B11 : 1, e, f, g, h, B18 : 3, 9, c, f, k,
B5 : 5, 6, d, f, n, B12 : 2, 8, c, g, n, B19 : 4, 9, b, e, n,
B6 : 1, a, b, c, d, B13 : 3, 8, d, e, m, B20 : 5, 9, a, g, m,
B7 : 2, 7, b, f, m, B14 : 4, 8, a, f, p, B21 : 1, 6, 7, 8, 9.

This block design is isomorphic to the �nite projective plane of order 4
and corresponds to a complete set of orthogonal latin squares of order 4.
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According to the results of Section 2 it is su�cient to construct the quasi-
group Q(B):

B(x, y) =
{

Aαi , if x, y ∈ Qi, x 6= y,
x, if x = y.

Then Q(Σ), Σ = {B,B2, B3} is a QPS. The Cayley table for the quasi-
group Q(B) we �ll out by subquasigroups given on the blocks of the BIB.
These subquasigroups are isomorphic to the quasigroup H(A):
B(x, y) = α−1

i A(αix, αiy), x, y ∈ Qi or B(βix, βiy) = βiA(x, y), x, y ∈ H,

βi = α−1
i , i = 1, 2, ..., 21, αi : Qi → H, αi =

(
a0 a1 a2 a3 a4

0 1 2 3 4

)
,

if Qi = {a0, a1, a2, a3, a4 } (in the order of listing). For example

α1 =
(

1 2 3 4 5
0 1 2 3 4

)
, α15 =

(
5 8 b h k
0 1 2 3 4

)
.

The quasigroup Q(B) is de�ned by the following table.

B 1 2 3 4 5 6 7 8 9 a b c d e f g h k m n p
1 1 3 5 2 4 7 9 6 8 b d a c f h e g m p k n
2 5 2 4 1 3 a b c d k m n p 6 7 8 9 e f g h
3 4 1 3 5 2 b a d c n p k m 8 9 6 7 f e h g
4 3 5 2 4 1 c d a b p n m k 9 8 7 6 g h e f
5 2 4 1 3 5 d c b a m k p n 7 6 9 8 h g f e
6 9 k p m n 6 8 1 7 e g h f 2 5 3 4 a c d b
7 8 m n k p 1 7 9 6 h f e g 5 2 4 3 d b a c
8 7 n m p k 9 6 8 1 f h g e 3 4 2 5 b d c a
9 6 p k n m 8 1 7 9 g e f h 4 3 5 2 c a b d
a d e h f g 2 3 4 5 a c 1 b k p m n 6 9 7 8
b c f g e h 3 2 5 4 1 b d a n m p k 8 7 9 6
c b g f h e 4 5 2 3 d a c 1 p k n m 9 6 8 7
d a h e g f 5 4 3 2 c 1 b d m n k p 7 8 6 9
e h a d b c k p m n 6 9 7 8 e g 1 f 2 3 4 5
f g b c a d n m p k 8 7 9 6 1 f h e 3 2 5 4
g f c b d a p k n m 9 6 8 7 h e g 1 4 5 2 3
h e d a c b m n k p 7 8 6 9 g 1 f h 5 4 3 2
k p 6 9 7 8 e g h f 2 5 3 4 a c d b k n 1 m
m n 7 8 6 9 h f e g 5 2 4 3 d b a c 1 m p k
n m 8 7 9 6 f h g e 3 4 2 5 b d c a p k n 1
p k 9 6 8 7 g e f h 4 3 5 2 c a b d n 1 m p
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The subquasigroup on the block B15 has the following Cayley table:

5 8 b h k

5 5 b k 8 h
8 k 8 h 5 b
b h 5 b k 8
h b k 8 h 5
k 8 h 5 b k

The subquasigroup on B1 is in the left top corner of the Cayley table of
the quasigroup Q(B).

From the quasigroup Q(B) it is easy to obtain the quasigroups B2 and
B3. Thus we obtain a QPS {B, B2, B3}.
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The topological quasigroups
with multiple identities

Mitrofan M. Choban and Liubomir L. Kiriyak

Abstract

In this article we describe the topological quasigroups with (n, m)-identities, which are
obtained by using isotopies of topological groups. Such quasigroups are called the (n, m)-
homogeneous quasigroups. Our main goal is to extend some a�rmations of the theory
of topological groups on the class of topological (n, m)-homogeneous quasigroups.

1. General notes
A non-empty set G is said to be a groupoid relative to a binary operation
denoted by · or by juxtaposition, if for every ordered pair a, b of elements
of G, is de�ned a unique element ab ∈ G.

If the groupoid G is a topological space and the multiplication operation
(a, b) → a · b is continuous, then G is called a topological groupoid.

A groupoid G is called a groupoid with division, if for every a, b ∈ G the
equations ax = b and ya = b have solutions, not necessarily unique.

A groupoid G is called reducible or cancellative, if for each equality
xy = uv the equality x = u is equivalent to the equality y = v.

A groupoid G is called a primitive groupoid with the divisions, if there
exist two binary operations l : G × G → G, r : G × G → G such that
l (a, b) ·a = b, a ·r (a, b) = b for all a, b ∈ G. Thus a primitive groupoid with
divisions is a universal algebra with three binary operations.

If in a topological groupoid G the primitive divisions l and r are con-
tinuous, then we can say that G is a topological primitive groupoid with
continuous divisions.

2000 Mathematics Subject Classi�cation: 20N15
Keywords: medial guasigroup, (n, m)-identity, isotope, measure
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A primitive groupoid G with divisions is called a quasigroup if every of
the equations ax = b and ya = b has unique solution. In the quasigroup G
the divisions l, r are uniques.

An element e ∈ G is called an identity if ex = xe = x for every x ∈ X.
A quasigroup with an identity is called a loop.

If a multiplication operation in a quasigroup (G, ·) with a topology is
continuous, then G is called a semitopological quasigroup.

If in a semitopological quasigroup G the divisions l and r are continuous,
then G is called a topological quasigroup.

A quasigroup G is called medial if it satis�es the law xy · zt = xz · yt for
all x, y, z, t ∈ G.

If a medial quasigroup G contains an element e such that e · x = x
(x · e = x) for all x in G, then e is called a left (right) identity element of G
and G is called a left (right) medial loop.

Let N = {1, 2, ...} and Z = {...,−2,−1, 0, 1, 2, ...}. We shall use the
terminology from [3, 5].

2. Multiple identities
We consider a groupoid (G,+). For every two elements a, b from (G,+)
we denote

1 (a, b, +) = (a, b,+) 1 = a + b ,
n (a, b, +) = a + (n− 1) (a, b, +) ,
(a, b, +)n = (a, b,+) (n− 1) + b

for all n > 2.
If a binary operation (+) is given on a set G, then we shall use the

symbols n(a, b) and (a, b)n instead of n (a, b, +) and (a, b, +)n.

De�nition 1. Let (G,+) be a groupoid, n > 1 and m > 1. The element e
of a groupoid (G,+) is called an (n,m)-zero of G if e+ e = e and n (e, x) =
(x, e) m = x for every x ∈ G. If e + e = e and n (e, x) = x for every x ∈ G,
then e is called an (n,∞)-zero. If e + e = e and (x, e) m = x for every
x ∈ G, then e is called an (∞,m)-zero. It is clear that e ∈ G is an
(n,m)-zero, if it is an (n,∞)-zero and an (∞,m)-zero.

Remark 1. In the multiplicative groupoid (G, ·) the element e is called an
(n,m)-identity. The notion of the (n,m)-identity was introduced in [4].
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Theorem 1. Let (G, ·) be a multiplicative groupoid, e ∈ G and the following
conditions hold:

1. ex = x for every x ∈ G;
2. x2 = x · x = e for every x ∈ G;
3. x · yz = y · xz for all x, y, z ∈ G;
4. For every a, b ∈ G there exists a unique point y ∈ G such that ay = b.

Then e is a (1, 2)-identity in G.

Proof. Fix x ∈ G. Pick y ∈ G such that xe · y = x. By virtue of the
condition 2 we have x · (xe · y) = x · x = e, i.e. x · (xe · y) = e. From the
condition 3 it follows that xe · xy = e. It is clear that xe · xe = e. Thus
xe · xy = xe · xe, xy = xe and y = e. Therefore (x · e) · e = (x · e) · y = x
and e is a (1, 2)-identity. The proof is complete.

Example 1. Let (G,+) be a commutative additive group with a zero 0.
Consider a new binary operation x · y = y − x. Then (G, ·) is a medial
quasigroup with a (1, 2)-identity 0. If x + x 6= 0 for some x ∈ G, then 0 is
not an identity in (G, ·).

Theorem 2. Let (G, ·) be a multiplicative groupoid, e ∈ G and the following
conditions hold:

1. ex = x for every x ∈ G;
2. x · x = e for every x ∈ G;
3. xy · uv = xu · yv for all x, y, u, v ∈ G;
4. If xa = ya, then x = y.

Then G is a medial quasigroup with a (1, 2)-identity e.

Proof. If x ∈ G, then xe · e = xe · xx = xx · ex = e · ex = x. Thus e is a
(1, 2)-identity.

Consider the equation xa = b. Then xa · e = b · e, xa · ee = be and
xe · ae = be. Thus (xe · ae) · (be) = e, (xe · b) · (ae · e) = e, (xe · b) a = e,
(xe · b) · (ea) = e, (xe · e) · (ba) = e and x · ba = e. Therefore x · ba = ba · ba
and x = ba. Since ba · a = ba · ea = be · aa = be · e = b, the element
x = ba is a unique solution of the equation xa = e. Now we consider the
equation ay = b. In this case be = ay · e = ay · aa = aa · ya = e · ya = ya.
Thus y = be · a is a unique solution of the equation ay = b. The proof is
complete.
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Corollary 1. Let (G, ·) be a left medial loop, e ∈ G and x2 = e for every
x ∈ G. Then e is a (1, 2)-identity.

3. Homogeneous isotopes
De�nition 2. Let (G,+) be a topological groupoid. A groupoid (G, ·) is
called a homogeneous isotope of the topological groupoid (G,+) if there
exist two topological automorphisms ϕ,ψ : (G,+) → (G, +) such that
x · y = ϕ (x) + ψ (y) for all x, y ∈ G.

If h : X → X is a mapping, then h1 (x) = h (x) and hn (x) = h
(
hn−1 (x)

)
for all x ∈ X and n > 2.

De�nition 3. Let n,m 6 ∞. A groupoid (G, ·) is called an (n,m)-homoge-
neous isotope of a topological groupoid (G,+) if there exist two topological
automorphisms ϕ, ψ : (G,+) → (G,+) such that:

1. x · y = ϕ (x) + ψ (y) for all x, y ∈ G;
2. ϕψ = ψϕ;
3. If n < +∞, then ϕn (x) = x for every x ∈ G.
4. If m < +∞, then ψm (x) = x for every x ∈ G.

De�nition 4. A groupoid (G, ·) is called an isotope of a topological groupoid
(G,+), if there exist two homeomorphisms ϕ, ψ : (G,+) → (G,+) such that
x · y = ϕ (x) + ψ (y) for all x, y ∈ G.

Under the conditions of De�nition 4 we shall say that the isotope (G, ·) is
generated by the homeomorphisms ϕ, ψ of the topological groupoids (G,+)
and denote (G, ·) = g (G,+, ϕ, ψ).

Theorem 3. Let (G, +) be a topological groupoid, ϕ,ψ : G → G be homeo-
morphisms and (G, ·) = g (G,+, ϕ, ψ). Then:

1. (G,+) =
(
G, ·, ϕ−1, ψ−1

)
;

2. (G, ·) is a topological groupoid;
3. If (G, +) is a reducible groupoid, then (G, ·) is a reducible groupoid

too;
4. If (G,+) is a groupoid with a division, then (G, ·) is a groupoid with

a division too;
5. If (G, +) is a topological primitive groupoid with a division, then (G, ·)
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is a topological primitive groupoid with a division too;
6. If (G,+) is a topological quasigroup, then (G, ·) is a topological quasi-

group too;
7. If n,m, p, k ∈ N and (G, ·) is an (n,m)-homogeneous isotop of

the groupoid (G,+) and e is a (k, p)-zero in (G, +), then e is an
(mk, np)-identity in (G, ·).

Proof. We have x · y = ϕ (x) + ψ (y). Therefore

ϕ−1(x) · ψ−1(y) = ϕ
(
ϕ−1(x)

)
+ ψ

(
ψ−1(y)

)
= x + y

and (G,+) = g
(
G, ·, ϕ−1, ψ−1

)
. The assertion 1 is proved. The assertion 2

and 3 are obvious.
Let (G,+, r, l) be a topological primitive groupoid with the divisions,

where l : G × G → G and r : G × G → G be continuous primitive
divisions. Then the mappings l1(a, b) = ϕ−1 (l (ψ(a), b)) and r1(a, b) =
ψ−1 (r (ϕ(a), b)) are the divisions of the groupoid (G, ·) . The divisions l1,
r1 are continuous if and only if the divisions l, r are continuous. The asser-
tions 4, 5 and 6 are proved.

Let (G, ·) be an (n,m)-homogeneous isotope of the groupoid (G,+) and
e be a (k, p)-zero in (G, +). We mention that ϕq(e) = ψq(e) = e for every
q ∈ N . If k < +∞, then in (G, +) we have qk (e, x, +) = x for each x ∈ G
and for every q ∈ N .

Let m < +∞ and ψm(x) = x for all x ∈ G.
Then 1 (e, x, ·) = 1 (e, ψ(x),+) and q (e,x, ·) = q (e, ψq(x), +) for every

q > 1. Therefore

mk (e, x, ·) = mk
(
e, ψmk(x),+

)
= mk (e, x,+) = x.

Analogously we obtain that

(e, x, ·) np = (e, ϕnp(x), +)np = (e, x, +)np = x.

Hence e is an (mk, np)-identity in (G, ·). The statement 7 is proved.
The proof of Theorem 3 is complete.

Remark 2. Let (G, +) be a topological quasigroup, a, b ∈ G and ϕ,ψ be
two automorphisms of (G, +). If x · y = (a + ϕ(x)) + (ψ(y) + b), then we
denote (G, ·) = g (G, +, ϕ, ψ, a, b) . It is clear that (G, ·) is a topological
quasigroup too. If ϕ1(x) = a+ϕ(x) and ψ1(x) = ψ(x)+ b, then ϕ1, ψ1 are
homeomorphism of (G,+) and (G,+, ϕ, ψ, a, b) = (G,+, ϕ1, ψ1) .
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4. The homogeneous isotopes and congruences
We consider a topological groupoid (G,+). If α is a relation on G, then
α(x) = {y ∈ G : xαy} for every x ∈ G.

An equivalence relation α on G is called a congruence on (G,+) if
from xαu and yαv it follows (x + y) α (u + v). If (G, +) is a primitive
groupoid with divisions l and r, then we consider that l (x, y) αl (u, v) and
r (x, y)αr (u, v) provided xαu and yαv.

Two congruences α and β on G are called conjugate if there exists a
topological automorphism ϕ : G → G such that the relation xαy is
equivalent to the relation ϕ(x)βϕ(y).

Let α, β be two conjugate congruences on G and ϕ be the topologi-
cal automorphism for which the relation xαy is equivalent to the relation
ϕ(x)βϕ(y). Let α (x) = {y ∈ G : xαy}. Then ϕ (α(x)) = β (ϕ(x)). If
{βµ : µ ∈ M} is a family of congruences on (G, +), then there exists the
intersection β = ∩{βµ : µ ∈ M}, where β (x) = ∩{βµ (x) : µ ∈ M}. The
relation xβy is hold, if and only if xβµy is hold for every µ ∈ M .

Theorem 4. Let (G, ·) = g (G,+, ϕ, ψ) be an isotope of the topological
primitive groupoid (G,+) with the divisions {r, l} , ϕ, ψ be topological au-
tomorphisms of (G,+), and α be a congruence on the groupoid (G,+, l, r).
Then:

1. If (G, ·) is a homogeneous isotope, then there exists a countable set
of congruences {βn : n ∈ N} of the groupoid (G,+), conjugate to α,
such that α ∈ {βn :n ∈ N} and β = ∩{βn : n ∈ N} is a common
congruence of the groupoids (G, +) and (G, ·).

2. If (G, ·) is an (n,m)-homogeneous isotope of the groupoid (G,+), and
n,m < +∞, then there exists a �nite set of congruences {βi : i 6 nm}
of the groupoid (G,+), conjugate to α, such that β = ∩{βi : i 6 nm}
is a common congruence of the groupoids (G,+) and (G, ·).

Proof. Let Z be the set of all integer numbers. If n = 0, then ϕ0(x) = x for
all x ∈ G. If n ∈ Z and n < 0, then ϕn =

(
ϕ−1

)−n. Denote by {hn : n ∈ Z}
the set of the all automorphisms
{

ϕk1 ◦ ψm1 ◦ ϕk2 ◦ ψm2 ◦ ... ◦ ϕkn ◦ ψmn : n ∈ N, k1,m1, ..., kn,mn ∈ Z
}

.

If ϕψ = ψϕ, then

{hn : n ∈ Z} =
{

ϕk ◦ ψm : k,m ∈ Z
}

.
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For each n ∈ N we de�ne the congruence βn (x) = hn (α (x)) for all x ∈ G.
Denote β = ∩{βk : k ∈ N}. Then ϕ (β (x)) = ψ (β (x)) = β (x) for each

x ∈ G. Hence β is a common congruence of groupoids (G,+) and (G, ·).
Suppose that automorphisms ϕ and ψ satisfy the De�nition 3 and (G, ·) is
an (n,m)-isotope of groupoid (G,+). In this case we have

ϕk1 · ψq1 · ϕk2 · ψq2 · ... · ϕkn · ψqn =
(
ϕk1+...+kn

)
· (ψq1+...+qn

)

Therefore

{hk : k ∈ N} =
{
ϕi · ψj : i = 1, . . . , n, j = 1, . . . , m

}
= {hk : k 6 nm}

and the set {βn : n ∈ N} is �nite and contains no more than nm distinct
elements. The proof is complete.

Remark 3. Let α and β be two conjugate congruences on a topological
groupoid G. Then:

1. The sets α (x) are Gδ-sets i� the sets β (x) are Gδ-sets in G.
2. The sets α (x) are closed in G i� the sets β (x) are closed in G.
3. The sets α (x) are open in G i� the sets β (x) are open in G.

Remark 4. Let {βn : n ∈ N ′ ⊂ N} be a family of congruences on a topo-
logical goupoid G and β = ∩{βn : n ∈ N}. Then:

1. If the sets βn (x) are Gδ-sets in G, then the sets β (x) are Gδ-sets in
G too.

2. If the set N ′ is �nite and the sets βn (x) are open, then the sets β (x)
are open in G.

5. General properties of medial quasigroups
Let (G, ·) be a topological medial quasigroup. By virtue of Toyoda's The-
orem [7] there exist a binary operation (+) on G, two elements 0, c ∈ G
and two topological automorphisms ϕ,ψ : (G,+) → (G,+) such that
(G,+) is a topological commutative group, 0 is the zero of (G,+) and
(G, ·) = g (G,+, ϕ, ψ, 0, c) is a homogeneous isotope of (G,+). In particu-
lar, ϕψ = ψϕ.

In [2] G.B. Beleavskaya has proved a generalization of Toyoda's Theo-
rem.
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Theorem 5. Let (G,+) be a topological quasigroup, 0 ∈ G, 0 + 0 = 0, ϕ, ψ
be two automorphisms of (G,+) and (G, ·) = (G,+, ϕ, ψ) . Then:

1. {0} is a subquasigroup of the quasigroups (G, +) and (G, ·) .

2. If n < +∞, then 0 is an (n,∞)-identity of (G, ·) i� ϕn(x) = x for
every x ∈ G.

3. If m < +∞, then 0 is an (∞,m)-identity of (G, ·) i� ψm(x) = x
for every x ∈ G.

4. If n,m < +∞, then 0 is an (n,m)-identity of (G, ·) i� ϕn(x) =
ψm(x) = x for every x ∈ G.

Proof. Let n < +∞. If ϕn(x) = x for every x ∈ G, then from Theorem 3 it
follows that 0 is an (n, +∞)-identity in (G, ·).

Let 0 be an (n,∞)-identity in (G, ·). By construction, ϕ (0) = ψ (0) = 0
and x · y = ϕ(x) + ψ(y). Then (x, 0) k = ϕk(x) and (0, x) k = ϕk(x) for
every k ∈ N . Since (x, 0) n = x we obtain that ϕn(x) = x. The proof is
complete.

Consider on G some equivalence relation α. Denote by G/α the col-
lection of classes of equivalence α (x) and πα : G → G/α is the natural
projection. On G/α we consider the quotient topology. The mapping πα is
continuous. If α is a congruence on (G, ·) (or on (G,+)), then the mapping
πα is open.

An equivalence relation α on G is called compact if the sets α (x) are
compact.

Theorem 6. Let (G,+) be a commutative topological group, 0 be a zero
of (G,+), c ∈ G, ϕ and ψ be two automorphisms of the topological group
(G,+) and (G, ·) = g (G, +, ϕ, ψ, 0, c) . If the space G contains a non-empty
compact subset F of countable character, then for every open subset U of
G containing 0 there exists a compact equivalence relation αU on G such
that:

1. αU (0) ⊆ U .
2. αU is a congruence on (G, ·).
3. αU is a congruence on (G,+).
4. The natural projection πU = παU : G → G/αU is an open perfect

mapping.
5. The space G/αU is metrizable.
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Proof. We consider that 0 ∈ F ⊆ U . Fix a sequence {Un : n ∈ N} of open
subsets of G such that for every open set V containing F there exists n ∈ N
such that F ⊆ Un ⊆ V . Suppose that F ⊆ Un and Un+1 ⊆ Un for every
n ∈ N .

Then there exists a sequence {Vn : n ∈ N} of open sets of G such that
for every n ∈ N we have:
• Vn+1 + Vn+1 ⊆ Vn ⊆ Un, clGVn+1 ⊆ Vn and Vn = −Vn,
• ϕ (Vn+1) ∪ ψ(Vn+1) ⊆ Vn.

We put H = ∩{Vn : n ∈ N}. By construction, H is a compact subgroup
and the natural projection π : G → G/H is open and perfect. Let α (x) =
x + H for every x ∈ G. Then α is a congruence on (G,+). Suppose that
xαz and yαv. Then

x · y = ϕ (x) + ψ (y) + c,

z · v = ϕ (z) + ψ (v) + c,

ϕ (x)− ϕ (z) ∈ H, ψ (y)− ψ (v) ∈ H.

Thus
(x · y)− (z·v) =

= (ϕ (x) + ψ (y))− (ϕ (z) + ψ (v)) =
= (ϕ (x)− ϕ (z)) + (ψ (y)− ψ (v)) ∈ H.

Therefore α is a congruence on (G, ·) too.
It is clear that the space G/H is metrizable. The proof is complete.

Corollary 2. A �rst countable topological medial quasigroup is metrizable.

A space X is called a paracompact p-space if there exists a perfect map-
ping g : X → Y onto some metrizable space Y (see [1]).

Corollary 3. If a topological medial quasigroup contains a non-empty com-
pact subset of countable character then it is a paracompact space p-space and
admits an open perfect homomorphism onto a medial metrizable quasigroup.

Corollary 4. A �ech complete topological medial quasigroup is paracom-
pact and admits an open perfect homomorphism onto a complete metrizable
medial quasigroup.

Corollary 5. A locally compact medial quasigroup is paracompact and ad-
mits an open perfect homomorphism onto a metrizable locally compact me-
dial quasigroup.
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6. On Haar measures on medial quasigroups
By B(X) denote the family of all Borel subsets of the space X.

A non-negative real-valued function µ de�ned on the family B(X) of
Borel subsets of a space X is said to be a Radon measure on X if it has the
following properties:
− µ(H) = sup{µ(F ) : F ⊆ H, F is a compact subset of H} for every

H ∈ B(X);

− for every point x ∈ X there exists an open subset Vx containing
x such that µ(Vx) < ∞.

De�nition 5. Let (A, ·) be a topological quasigroup with the divisions
{r, l}. A Radon measure µ on A is called:
− a left invariant Haar measure, if µ (U) > 0 and µ (xH) = µ (H) for

every non-empty open set U ⊆ A, a point x ∈ A and a Borel set
H ∈ B(A);

− a right invariant Haar measure, if µ (U) > 0 and µ (Hx) = µ (H)
for every non-empty open set U ⊆ A, a point x ∈ A and Borel set
H ∈ B(A);

− an invariant Haar measure if µ (U) > 0 and µ (xH) = µ (Hx) =
µ (l (x,H)) = µ (r (H, x)) = µ (H) for every non-empty open set
U ⊆ A, a point x ∈ A and a Borel set H ∈ B(A);

De�nition 6. We say that on a topological quasigroup (A, ·) there exists
a unique left (right) invariant Haar measure, if for every two left (right)
invarinat Haar measures µ1, µ2 on A there exists a constant c > 0 such that
µ2 (H) = c · µ1 (H) for every Borel set H ∈ B(A).

If (G, +) is a locally compact commutative group, then on G there
exists a unique invariant Haar measure µG (see [6]).

Theorem 7. Let (G, ·) be a locally compact medial quasigroup, (G,+)
be a commutative topological group, ϕ, ψ : G → G be automorphisms of
(G,+), b ∈ G and (G, ·) = g (G,+, ϕ, ψ, 0, b) . On the group (G,+) consider
the invariant Haar measure µG. Then :

1. On (G, ·) the right (left) invariant Haar measure is unique.
2. If µ is a left (right) invariant Haar measure on (G, ·) , then µ is a

left (right) invariant Haar measure on (G,+) too.
3. On (G, ·) there exists some right invariant Haar measure if and only
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if µG(ϕ(H)) = µG(H) for every H ∈ B(A).
4. If n < +∞, and on G there exists some (n, +∞)−identity, then on

(G, ·) the measure µG is a unique right invariant Haar measure.
5. If m < +∞, and on G there exists some (+∞,m)−identity, then

on (G, ·) the measure µG is a unique left invariant Haar measure.
6. If n, m < +∞, and on G there exists some (n,m)−identity, then

on (G, ·) the measure µG is a unique invariant Haar measure.

Proof. Let µ be a right invariant Haar measure on (G, ·). Since x · y =
ϕ (x) + ψ (y) +b for all x, y ∈ G, then Hx = ϕ(H) + ψ(H) + b. Thus µ
is an invariant Haar measure on (G,+) and there exists a constant c > 0
such that µ (H) = c · µG (H) . Thus µG is a right invariant Haar measure
on (G, ·). The assertions 1,2 and 3 are proved.

Consider some topological automorphism h of (G,+). Then µh (H) =
µG (h (H)) is an invariant Haar measure on (G,+) . There exists a constant
ch > 0 such that µh (H) = µG (h (H)) = ch · µG (H) for every Borel subset
H ∈ B(G). In particular, µG

(
hk (H)

)
= ck

hµG (H) for every k ∈ N . If
n < +∞ and 0 is an (n, +∞)−identity, then ϕn(x) = x for every x ∈ G
and cn

ϕ = 1. Thus cϕ = 1, µG (H) = µG (h (H)) and µG is a right invariant
Haar measure on (G, ·) . The assertions 4, 5 and 6 are proved. The proof is
complete.

In this way we can prove the following results.

Theorem 8. Let (G,+) be a topological quasigroup and (G, ·) be an (n,m)-
homogeneous isotope of (G,+). Then:

1. On (G,+) there exists a left (right) invariant Haar measure if and
only if on (G, ·) there exists a left (right) invariant Haar measure.

2. If on (G,+) the a left (right) invariant Haar measure is unique, then
on (G, ·) the a left (right) invariant Haar measure is unique too.

Theorem 9. On a compact medial quasigroup G there exists a unique Haar
measure µ for which µ (G) = 1.

Theorem 10. Let (G,+) be a locally compact group, µG be the left in-
variant Haar measure on (G,+) and ϕ,ψ : G → G be the topological
automorphism of (G,+). Fix c ∈ G and consider the binary operation
x · y = ϕ(x) + ψ(y) + c. Then:

1. (G, ·) is a topological quasigroup.
2. If µG (ψ(H)) = µG (H) for every Borel subset H ∈ B(G), then µG
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is a left invariant Haare measure on (G, ·).
3. If m ∈ N and ψm(x) = x for every x ∈ G, then µG is a left invariant

Haar measure on (G, ·).
4. If (G,+) is a compact group, then µG is an invariant Haar measure

on (G, ·).

7. Examples
Example 2. Let (R, +) be a topological commutative group of real num-
bers, a > 0, b > 0 , ϕ(x) = ax, ψ(y) = bx and x · y = ϕ(x) + ψ(y). Then
(R, ·) is a commutative locally compact medial quasigroup. If H = [c, d],
then 0 ·H = [ac, ad] and H · 0 = [bc, bd]. Thus:
− on (G, ·) there exists some right invariant Haar measure if and only

if a = 1;

− on (G, ·) there exists some left invariant Haar measure if and only if
b = 1;

− if a 6= 1 and b 6= 1, then on (G, ·) does not exist any left or right
invariant Haar measure.

Example 3. Denote by Zp = Z/pZ = {0, 1, ..., p − 1} the cyclic Abelian
group of order n. Consider the Abelian group (G, +) = (Z5, +) and ϕ (x) =
2x, ψ (x) = 4x. Then (G, ·) = g (G, +;ϕ,ψ) is a medial quasigroup and
each element from (G, ·) is (2, 4)-identity in G.

Example 4. Consider the Abelian group (G, +) = (Z5,+) and ϕ (x) =
ψ (x) = 3x. Then (G, ·) = g (G,+;ϕ, ψ) is medial quasigroup and all ele-
ments from (G, ·) are the (4, 4)-identities in G.

Example 5. Consider the commutative group (G,+) = (Z5,+) , ϕ(x) =
2x, ψ(x) = 2x + 1 and x · y = 2x + 2y + 1. Then (G, ·) = g (G,+;ϕ,ψ, 0, 1)
is a commutative medial quasigroup and (G, ·) does not contain (n,m)-
identities.

Example 6. Consider the commutative group (G, +) = (Z, +) , ϕ(x) =
x, ψ(x) = x + 1 and x · y = x + y + 1. Then (G, ·) = g (G,+;ϕ,ψ) is a
medial quasigroup and (G, ·) does not contain (n,m)-identities. On (G, ·)
there exists an invariant Haar measure.
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Example 7. Let (G, +) be an Abelian group and x + x 6= 0 for each
x ∈ G. For example (G, +) ∈ {(Zp, +) : p ∈ N, p > 2}. Denote ϕ (x) = x
and ψ (x) = −x for each x ∈ G. Then (G, ·) = g (G,+;ϕ, ψ) is a medial
quasigroup and (G, ·) contains the unique (1, 2)-identity, which coincide
with the zero element in (G,+).

Example 8. Let (G,+) = (Z7, +) , and ϕ (x) = 3x and ψ (x) = 5x. Then
(G, ·) = g (G,+;ϕ,ψ) is a medial quasigroup. In this case 0 and 3 are
(12, 6)-identities.
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Product of the symmetric group with
the alternating group on seven letters

Mohammad R. Darafsheh

Abstract

We will �nd the structure of groups G = AB where A and B are subgroups of G with
A isomorphic to the alternating group on 7 letters and B isomorphic to the symmetric
group on n > 5 letters.

1. Introduction
If A and B are subgroups of the group G and G = AB, then G is called
a factorizable group and A and B are called factors of the factorization.
We also say that G is the product of its subgroups A and B. If any of
A or B is a non-proper subgroup of G, then G = AB is called a trivial
factorization of G, and by a non-trivial or a proper factorization we mean
G = AB with both A and B are proper subgroups of G. It is an interesting
problem to know the groups with proper factorization. Of course not every
group has a proper factorization, for example an in�nite group with all
proper subgroups �nite has no proper factorization, also the Janko simple
group J1 of order 175 560 has no proper factorization. In what follows
G is assumed to be a �nite group. Now we recall some research papers
towards the problem of factorization of groups under additional conditions
on A and B. In [8] factorization of the simple group L2(q) are obtained
and in [1] simple groups G with proper factorizations G = AB such that
(|A|, |B|) = 1 are given. Factorizations G = AB with A ∩ B = 1 are
called exact and in [18] such factorizations for the alternating and symmetric
groups are investigated. If A and B are maximal subgroups of G and
G = AB, then this is called a maximal factorization of G. In [11] all

2000 Mathematics Subject Classi�cation: 20D40
Keywords: factorization, simple group, symmetric group



34 M. R. Darafsheh

maximal factorizations of the simple groups and their automorphism groups
are obtained. Factorizations of sporadic simple groups and simple groups
of Lie type with rank 1 or 2 as the product of two simple subgroups are
obtained in [6] and [7] respectively. In [12] all groups with factorization
G = AB, with A and B simple subgroups of G such that a Sylow 2-subgroup
of A has rank 2 and a Sylow 2-subgroup of B is elementary abelian are
completely classi�ed.

Factorizations of groups involving alternating or symmetric groups have
been investigated in some papers. In [10] groups G with factorization
G = AB, where A ∼= B ∼= A5, are classi�ed and in [13] groups G = AB
where A is a non-abelian simple group and B is isomorphic to to the alter-
nating group on 5 letters are determined. In a series of papers G.L. Walls
considered factorizations G = AB of a group G with both factors simple
[14], [15]. In [16] he began the study of factorizations when one factor is
simple and the other is almost simple. To begin this study it is natural to
start with the case where one factor is isomorphic to a simple alternating
group and the other is isomorphic to a symmetric group. In [3] we classi�ed
all groups G with factorization G = AB where A ∼= A6 and B is isomorphic
to a symmetric group on n > 5 letter, and in [4] we determined all groups
G with factorization G = AB where A is a simple group and B ∼= S6. Mo-
tivated by the above results and to get a picture for the general case, in this
paper we will study groups G with factorization G = AB, where A ∼= A7

and B is isomorphic to a symmetric group on n > 5.

2. Preliminary results
In this section we obtain results which are needed in the proof of our main
Theorem. Suppose Ω is a set of cardinality m and G is a k-homogeneous,
1 6 k 6 m, group on Ω. If H is a k-homogeneous subgroup of G, then it
is easy to see that G = G(∆)H where ∆ is a subset of cardinality k in Ω.
We can give some factorization of groups using the previous observation. It
is easy to verify that the order of a subgroup of A7 is one of the numbers
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 36, 60, 72, 120, 168, 360
or 2520 and therefore the index of a proper subgroup of A7 is one of the
numbers 7,15, 21, 35, 42, 70, 105, 120, 126, 140, 210, 252, 280, 315, 360,
420, 504, 630, 840, 1260 or 2520. Therefore A7 has transitive action on
sets of cardinality equal to any of the latter numbers. Therefore we always
have the factorization Sn+1 = SnA7 where n = 6, 14, 20, 34, 41, 69, 104,
119, 125, 139, 209, 251, 279, 314, 359, 419, 503, 629, 839, 1259 or 2519. It
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is well-know that A7 has a 2-transitive action on 15 points and hence we
have the factorization S15 = S13A7. If we consider the 7-transitive action
of A7 on 7 points we also have the factorizations S7 = SnA7, 2 6 n 6 7.
Therefore we have the following Lemma.

Lemma 1.
(a) Sn+1 = A7Sn and An+1 = A7An for n = 6, 14, 20, 34, 41, 69, 104,

119, 125, 139, 209, 251, 279, 314, 359, 419, 503, 629, 839, 1259 or
2519.

(b) S15 = A7S13 and A15 = A7S13.
(c) S7 = A7Sn for 2 6 n 6 7.

In the following Lemmas we will �nd a special kind of factorizations for
the alternating and symmetric groups.

Lemma 2. Let m, r, n > 5 be natural numbers. If Am = ArAn or Am =
ArSn are proper factorizations, then either r = m − 1 and Am has a
transitive subgroup isomorphic to An or Sn which gives the factorizations
Am = Am−1An and Am = Am−1Sn, or (m, r, n) = (10, 6, 8), (15, 7, 13),
(15, 8, 13), (10, 8, 6) giving the factorizations A10 = A6A8 = A6S8,
A15 = A7A13 = A7S13, A15 = A8A13 = A8S13 and A10 = A8S6.
Moreover all the above factorizations occurs.

Proof. We use Theorem D of [11], but note that the case (ii) of this Theorem
can not happen for these special factorizations of Am stated in our Theorem.
First we assume Am = ArAn. In this case without loss of generality we
may assume Am−k E Ar 6 Sm−k × Sk for some k, 1 6 k 6 5, and An is
k-homogeneous on m letter. Since the factorization is proper hence m > r
and m > n. If m − k = 1, then from 1 6 k 6 5 we get m = 6 and we
have the factorization A6 = A5A5. Hence m − k = r. If k = 1, then
Am = Am−1An and An has a transitive action on m letters. If k > 2, then
since m > n, from [9] and [5] we get k = 2 and the 2-transitive actions of
Ar occurs if and only if (r,m) = (5, 6), (6, 10), (7, 15), (8, 15). since we have
assumed m, r, n > 5, so we obtain the triples listed in the Lemma.

Next we assume Am = ArSn. Again we use Theorem D in [11], but we
must consider two cases

Case (i). Am−k E Ar 6 Sm−k × Sk for some k, 1 6 k 6 5, and Sn is
k-homogeneous on m letters. Reasoning as above we must have m− k = r.
If k = 1, then Am = Am−1Sn and Sn must have a transitive permutation
representation on m points. Otherwise since Sn has no k > 2 transitive
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permutation representations except the trivial ones we don't get a possibil-
ity. However S6 has a 2-transitive permutation representations on 10 points
giving the factorization A10 = A8S6.

Case (ii). Am−k E Sn 6 Sm−k × Sk for some k, 1 6 k 6 5, and Ar

is k-homogeneous on m points. In this case m − k = 1 is not possible,
hence m − k = n. Since we must have m > n − 2, so k = 1 is not possi-
ble. Natural k-homogeneous permutation representation of Ar don't give
proper factorizations, therefore we must have Ar = A5,A6,A7 or A8 act-
ing 2-transitively on sets of cardinality 6, 10, 15 and 15 respectively. In this
case we obtain (m, r, n) = (6, 5, 4), (10, 6, 8), (15, 7, 13), (15, 8, 13), (10, 8, 6)
and the admissible triples are the ones listed in the Lemma.

Lemma 3. Let m, r, n > 5 be integers and Sm = ArSn be a non-trivial
factorization of Sm. Then we have one of the following possibilities:

(a) n = m− 1 and Ar has a transitive action on m points and the
factorization Sm = ArSm−1 occurs.

(b) r = m− 1 and Sn has a transitive action on r points and moreover
2m | n!.

(c) (m, r, n) = (10, 6, 8), (15, 7, 13), (15, 8, 13) and the factorizations
S10 = A6S8, S15 = A7S13, S15 = A8S13 all occurs.

(d) (m,n, r) = (10, 8, 6) and S10 = A8S6.

Proof. Again we use Theorem D of [11], knowing that case (ii) of the
Theorem does not hold in this special case. We consider two cases. Note
that m > r and m > n.

Case (i). Am−k ESn 6 Sm−k×Sk and Ar has a k-homogeneous action
on m letters. If k = 1, then n = m − 1 and we have the factorization
Sm = Sm−1Ar where Ar acts transitively on m letters. If k > 2, then by
[9] and [5] the only non-trivial k-homogeneous representation of Ar on m
letters occurs if and only if k = 2 and (m, r) = (6, 5), (10, 6), (15, 7), (15, 8)
and for these pairs we have n = 4,8,13,13 respectively. Therefore cases (a)
and (c) are proved and it is clear that the appropriate factorizations exists.

Case (ii). Am−k E Ar 6 Sm−k × Sk and Sn has a k-homogeneous
action on m letters. In this case Sn does not have a k-homogeneous action
on m letters except the trivial ones if k > 2. In the case of k = 2, S6 has
a non-trivial 2-transitive action on 10 letters. Therefore k = 1 which forces
r = m − 1 and if we have the factorization Sm = Am−1Sn, then Sn must
act on m letters transitively and order consideration yields 2m | n!. In this
way we obtain cases (b) and (d) and the Lemma is proved.
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3. Factorizations involving A7

To obtain our main result concerning groups with factorizations G = A7Sn,
n > 5 we need to know about simple primitive groups of certain degrees,
and these degrees are indices of subgroups of A7 which are greater than
1. In section 2 we listed the 21 possible numbers, and we see that ex-
cept 1260 and 2520 the rest of them are less than 1000. Simple primitive
groups of degree up to 1000 are listed in [5] and we can obtain the sim-
ple primitive groups with the degree we want. These are listed in Table I.
But we don't know about the simple primitive groups of degree 1260 and
2520 in the existing literature. The following Lemma deals with these cases.

Lemma 4. Suppose G is not an alternating simple group but G is a simple
permutation group of degree 1260 or 2520. Then it is not possible to decom-
pose G as G = A7An, for any n.

Proof. According to the classi�cation of �nite simple groups any �nite non-
abelian simple group is isomorphic to either an alternating group, a sporadic
group or a simple group of Lie type. Since G is written as the product of
two simple groups results of [6] show that G can not be a sporadic simple
group. If G is a simple group of Lie type, then by [7] the only possibility
is L2(9) = A5A5 which is not possible because L2(9) is not a permutation
group of degree 1260 or 2520. Therefore we assume that G is a simple group
of Lie type with Lie rank at least 3. Here we use results about the minimum
index of a subgroup of a group of Lie type and consider the following cases.

(i). For Ln(q), n > 4, the proper subgroups have index at least qn−1
q−1 and

form qn−1
q−1 6 2520 we get the following possibilities: L4(2), L4(3), L4(4),

L4(5), L4(7), L4(8), L4(9), L4(11), L4(13), L5(2), L5(3), L5(4), L5(5),
L5(7), L6(2), L6(3), L6(4), L7(2), L8(2), L9(2), L10(2), L11(2). L4(2) ∼=
A8 is not the case. If L4(3) = A7An, then by [2] we see thatL4(3) does
not contain a subgroup isomorphic to A7. If L4(4) = A7An, then since
17||L4(4)| we must have n > 17, but in this case we must have 13||L4(4)|
which is not the case. Now using similar argument as above we rule out all
the above possibilities.

(ii). For Un(q), n > 6, the proper subgroups have index at least (qn −
(−1)n)(qn−1 − (−1)n−1)/(q2 − 1) and for this number to be at least 2520
we get only U6(2). If U6(2) = A7An, then since 11||U6(2)| we must have
n > 11, but then from [2] we see that U6(2) does not have a subgroup
isomorphic to A11.
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(iii). For S2m(q),m > 3, the proper subgroup have index at least q2m−1
q−1

when q > 2 and at least 2m(2m−1) when q = 2 and m > 2. In this case the
following symplectic groups are the possibilities S6(2), S6(3), S6(4), S8(2),
S10(2), S12(2), and again using [2] and order consideration we rule out the
possibility G = A7An.

(iv). For Oε
2m(q),m > 4, ε ≡ ±, the proper subgroups have index at least

(qm−1)(qm−1+1)/(q−1) when ε ≡ + and at least (qm+1)(qm−1−1)/(q−1)
when ε ≡ − except for the case (q, ε) = (2, +) when a proper subgroup
has index at least 2m−1(2m − 1). For O2m+1(q), m > 3, q odd, the proper
subgroups have index at least (q2m − 1)/(q − 1) except when q = 3 and in
this latter case the minimum index is (q2m − qm)/2. Now for this index to
be at most 2520 we obtain the following orthogonal groups O7(3), O±

8 (2),
O±

8 (3), O±
10(2), O±

12(2). Again order consideration rules out the possibility
G = A7An.

(v). For G to be an exceptional simple group of Lie type we use the
argument in the proof of Theorem 9 in [5] from which only the possibilities
E6(q) or F4(q) can arise and both of them are ruled out by order consider-
ation. The Lemma is now proved.

Theorem 5. If M = A7An is a simple group, then
(a) M = An for n > 7,
(b) M = A15 = A7A13,
(c) M = An+1 = A7An for n = 14, 20, 34, 41, 69, 104, 119, 125, 139,

219, 251, 279, 314, 359, 419, 503, 629, 839, 1259 or 2519.

Proof. Case (a) corresponds to the trivial factorization of M . Now suppose
M = A7An is a non-trivial factorization of a simple group M . If C is a
maximal subgroup of M containing An, then we have [M : C]|[A7 : A7∩C].
Therefore M is a simple primitive group of degree equal to the index of a
proper subgroup of A7. If M is an alternating group, then by Lemma 2
we get cases (b) and (c). Therefore we assume M is not an altrnating
group. By Lemma 4 M can not be a primitive group of degree 1260 or
2520. Therefore we may assume M is a simple primitive group of degree
less than 1000. Simple primitive groups of these special degrees are listed
in Table I. Now using [6] and [7] the only cases that need to be considered
are S6(2), S8(2), O+

8 (2) or J2. If S6(2) = A7An, then since 29||S6(2)| we
must have n > 8 and by [2] we get n = 8. But in this case if S6(2) = A7A8,
then |A7∩A8| = 35 which is a contradiction because A7 does not contain a
subgroup of order 35. Order consideration rules out the possibilities S8(2)
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or O+
8 (2) to be factorized as A7An, for any n. By [2] the group J2 does not

contain a subgroup isomorphic to A7, and the Lemma is proved now.

Table I. Simple primitive groups of certain degrees

degree Groups

7 A7, L2(7)

15 A15,A6,A7,A8

21 A21,A7, L2(7), L3(4)

35 A35,A7,A8

42 A42

70 A70

105 A105,A15, L3(4)

120 A120,A9,A10, L2(16), L3(4), S4(4), S6(2), S8(2), O+
8 (2)

126 A126,A9,A10, L2(125), U3(5), U4(3)

140 A140, L2(139)

210 A210,A10,A21

252 A252, L2(251)

280 A280,A9, L3(4), U4(3), J2

315 A315, S6(2), J2

360 A360, L2(359)

420 A420, L2(419)

504 A504, L2(503)

630 A630,A36

840 A840,A9, L2(839), J2

Lemma 6. There is no non-trivial factorization G = A7Sn with G simple
except G = A15 = A7S13.
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Proof. Let G be a simple group with a non-trivial factorization G = A7Sn

for some natural number n. If G is isomorphic to an alternating group,
then by Lemma 2 the only possibility is G = A15 = A7S13. Hence we
assume G is not an alternating group. As in the proof of Lemmas if C is
a maximal subgroup of G containing Sn, then [M : C]|[A7 : A7 ∩ C] = d
and so G is represented as a simple primitive group of degree d where d is
the index of a proper subgroup of A7. First we consider simple primitive
groups of degree d 6 1000 which are listed in Table I. We can exclude the
linear groups L2(q) and the groups L3(4), S4(4) and J2 as by [2] they don't
contain the alternating group of degree 7. Therefore we have to examine the
groups S6(2), S8(2), O+

8 (2), U3(5) or U4(3) for appropriate decomposition. If
S8(2) = A7Sn, then since 17||S8(2)| we must have n > 17, but in this case
we must have 13||Sn| which is a contradiction. If O+

8 (2) = A7Sn. then
order consideration implies n > 12 which is a contradiction because by [2]
O+

8 (2) does not contain a subgroup isomorphic to S12. For S6(2) = A7Sn

order consideration yields n = 8, but then |A7 ∩ S8| = 70 contradicting
the fact that A7 does not have a subgroup of order 70. If U3(5) = A7Sn,
then since 53||U5(3)| we must have n > 10 which is not possible because,
by [2], the group U3(5) does not contain a subgroup isomorphic to S10. If
U4(3) = A7Sn, then order consideration will imply n > 9, which is not
possible because, by [2], U4(3) does not contain a subgroup is isomorphic
to S9.

Secondly we should consider simple primitive groups G of degree d >
1000 which can be written as G = A7Sn, and these degrees are 1260 and
2520. But by Lemma 4 we know a list of simple groups which possibly have
this property. Now case by case examination of these groups, with the same
method as used in the proof of Lemma 4, will end to a contradiction. The
Lemma is proved now.

Lemma 7. Let H = AB,A ∼= A7, B ∼= An, be a proper factorization of a
group H and H 6∼= A × B. Then H is isomorphic to an alternating group
Am for possible m.

Proof. Let N be a normal subgroup of H. Since A is a simple group
therefore N ∩ A = A or 1. If N ∩ A = A, then A ⊆ N and we will have
H = AB = NB and by [15] we must have H = B, H ∼= A × B or H =
Hol (Z2×Z2×Z2), and non of them is the case. Therefore N ∩A = 1 and
similarly N ∩B = 1.

Now assume N is a maximal normal subgroup of G. We have H
N =
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(AN
N )(BN

N ) and AN
N

∼= A ∼= A7 and BN
N

∼= B ∼= An, and hence the simple
group H

N is the product of A7 and An and by Theorem 5 we must have
H
N
∼= Am for suitable m. Now by [17] we must have N = 1 and H ∼= Am.

This completes the proof.

Now we state and prove our �nal result.
Theorem 8. Let G be a group such that G = AB, A ∼= A7 and B ∼= Sn,
n > 5, then one of the following cases occurs:

(a) G ∼= A7,
(b) G ∼= Sn, n > 7,
(c) G ∼= A7 × Sn,
(d) G ∼= A15 = A7Sn,
(e) G ∼= Sn+1 = A7Sn, n = 14, 20, 34, 41, 69, 104, 119, 125, 139, 219,

251, 279, 314, 359, 419, 503, 629, 839, 1259 or 2519,
(f) G ∼= S15 = A7S13 or G ∼= A15 × Z2 = A7S13,
(g) G ∼= (A7 ×A7)〈τ〉, τ an automorphism of order 2 of A7 and

A7 ×A7 is the minimal normal subgroup of G,
(h) G ∼= (A7 ×An)〈τ〉, n 6= 7, where τ acts as an automorphism of

order 2 on both factors (in this case A7 or An is the minimal
normal subgroup of G ).

Proof. We will use Lemma 4 of [3]. Let M be a minimal normal subgroup
of G = AB, G 6∼= A×B, where A ∼= A7 and B ∼= Sn, n > 5. Then we have
the following possibilities.

(i). M = G = AB is simple . In this case by Lemma 6 only G ∼= A15 =
A7S13 is possible which is case (d) of our Theorem.

(ii). G = MB, M = AB′ is simple, where B′ ∼= An denotes the
commutator subgroup of B. If M = A or B′, then we get trivial factor-
izations which are case (a) and case (b) of our Theorem. Therefore we
assume M = AB′, A ∼= A7, B

′ ∼= An, is a simple group with non-trivial
factorization. By Lemma 5 we must have either M ∼= A15 = A7A13 or
M ∼= An+1 = A7An for the n's speci�ed in the Theorem. In the latter case
[G : M ] = 2, hence G = M〈τ〉 where τ is an element of order 2 in Sn\An.
Now in the latter case the same reasoning as used in the proof of Theorem
4 in [16] yields G = Sn+1, which is the case (e) of the Theorem. In the case
of M ∼= A15 = A7A13 if τ acts as an inner automorphism on M we obtain
A15×Z2

∼= A7S13 and if τ acts as an outer automorphism on M we obtain
S15

∼= A7S13 which are included in case (f) of the Theorem.
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(iii). G = MB, B ∼= Sn,M ∼= A7×A7. In this case n = 7 and therefore
G ∼= (A7 × A7)〈τ〉, with τ an automorphism of order 2 and A7 × A7 a
minimal normal subgroup of G, which is the case (g) of the Theorem.

(iv). M = A or B′, AB′ ∼= A × B′ ∼= A7 × An, [G : AB′] = 2. In
this case G = (A7 ×An)〈τ〉 where τ acts as an automorphism of order 2
on both factors with A7 or An as the minimal normal subgroup of G. This
is the case (h) in our Theorem.

(v). Finally we must have M ∩ A = M ∩ B = 1, |M ||[A : A ∩ B] and
|M ||[B : A∩B], furthermore |M |.|A∩B| = |AM

M ∩ BM
M |. We will show that

no new possibilities arise in this case and the proof of our Theorem will
be completed. M is isomorphic to the direct product of isomorphic simple
groups. From |M ||[A : A∩B] it follows that if M is abelian, then |M | = 2,
3, 4, 5, 7, 8, 9 and if M is non-abelian, then M ∼= A5,A6, L2(7) or A7.

Now the groups A,B and G act on M by conjugation with the kernels
CA(M)EA,CB(M)EB and C = CG(M) respectively. If CA(M) = 1, then
A would be isomorphic to a subgroup of Aut(M) and by the structure of M
the only possibility is M = A which has been considered above. Therefore
CA(M) = A which implies A 6 CG(M) = C. Now CB(M) = 1, B′ or
B because B ∼= Sn, n > 5. Since A 6 C we must have G = AB = CB
and hence |A||C ∩ B| = |C||A ∩ B|. We have C ∩ B = CB(M), and if
CB(M) = 1, then A = C and A ∩ B = 1. Since C E G we consider the
group H = AB′ = CB′ where A and B′ are simple alternating groups and
[G : H] = 2. Now by Lemma 6 either this factorization is not proper or
H ∼= A × B′ or H isomorphic to an alternating group. If the factorization
is not proper, then either A ⊆ B′ or B′ ⊆ A contradicting A ∩B = 1. The
other cases force G to be a symmetric group which is considered above. If
CB(M) = B, then B 6 CG(M) and we will get M 6 Z(G).

Finally we will assume CB(M) = B ∩ C = B′. Now from G = AB =
CB we get [G : C] = 2. We know that [A ∩ B : A ∩ B′] = 1 or 2. If
[A ∩ B : A ∩ B′] = 2, then |AB′| = |AB| = |G| implying G = AB′ ⊆ C or
G = C which is a contradiction. Therefore A ∩B = A ∩B′ from which we
obtain |AB′| = 1

2 |G| = |C|, hence C = AB′.
Our arguments so far show that either M 6 Z(G) or C = AB′ where

A ∼= A7 and B′ ∼= An. If C = AB′ then the factorization must be proper
because M E C and A and B′ are simple groups, therefore by Lemma 7
either C ∼= A × B′ or C ∼= Am for suitable m. If C ∼= A × B′, then as
[G : C] = 2 we will obtain case (f) again. The case C ∼= Am can not
happen because M E C. Now we will deal with the case M 6 Z(G). We
have G

M
∼= (AM

M )(BM
M ) with AM

M
∼= A ∼= A7 and BM

M
∼= B ∼= Sn and by
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induction either G = MB ∼= M × B or G
M = Sn+1 for n's as in case (e) of

the Theorem. Now the same reasoning as used in the proof of Theorem 4
in [16] leads to a contradiction. The Theorem is proved now.
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Rough set theory applied to BCI-algebras

Wiesław A. Dudek, Young Bae Jun and Hee Sik Kim

Abstract

As a generalization of subalgebras/ideals in BCI-algebras, the notion of rough sub-
algebras/ideals is introduced, and some of their properties are discussed.

1. Introduction

In 1982, Pawlak introduced the concept of a rough set (see [13]). This
concept is fundamental for the examination of granularity in knowledge. It
is a concept which has many applications in data analysis (see [14]). An
algebraic approach to rough sets has been given by Iwiński [7]. Rough set
theory is applied to semigroups and groups (see [10, 11]). In 1994, Biswas
and Nanda [2] introduced and discussed the concept of rough groups and
rough subgroups. Recently, Jun [8] applied rough set theory to BCK-
algebras. In this paper, we apply the rough set theory to BCI-algebras,
and we introduce the notion of upper/lower rough subalgebras/ideals in
BCI-algebras, and discuss some of their properties.

Note that BCI-algebras are an algebraic characterization of some types
of non-classical logics. Moreover, BCI-algebras are also a generalization
of BCK-algebras. On the other side, BCI-algebras are a generalization of
T -quasigroups, too. Namely, as it is proved in [3] and [4], a BCI-algebra
is a quasigroup if and only if it is medial. Such BCI-algebra is uniquely
determined by some abelian group. In fact, such BCI-algebra is isotopic to
this group. The class of associative BCI-algebras coincides with the class
of Boolean groups.

2000 Mathematics Subject Classification: 06F35, 03G25, 68T30
Keywords: upper/lower approximation, definable, upper/lower rough subalgebra
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2. Preliminaries

Recall that a BCI-algebra is an algebra (G, ∗, 0) of type (2, 0) satisfying
the following axioms: for every x, y, z ∈ G,

• ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
• (x ∗ (x ∗ y)) ∗ y = 0,

• x ∗ x = 0,

• x ∗ y = 0 and y ∗ x = 0 imply x = y.

For any BCI-algebra G, the relation 6 defined by x 6 y if and only if
x ∗ y = 0 is a partial order on G. In any BCI-algebra the following two
identities hold:

(P1) x ∗ 0 = x,
(P2) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

A non-empty subset S of a BCI-algebra G is said to be a subalgebra of
G if x ∗ y ∈ S whenever x, y ∈ S. A non-empty subset A of a BCI-algebra
G is called an ideal of G, denoted by A v G, if

• 0 ∈ A,

• x ∗ y ∈ A and y ∈ A imply x ∈ A.

An ideal A of a BCI-algebra G is said to be closed if 0 ∗ x ∈ A for all
x ∈ A. Note that an ideal of a BCI-algebra may not be a subalgebra in
general, but every closed ideal is closed with respect to a BCI-operation,
i.e. it is a subalgebra (cf. [5]).

A non-empty subset A of a BCI-algebra G is called a p-ideal of G if it
satisfies the following two conditions

• 0 ∈ A,

• (x ∗ z) ∗ (y ∗ z) ∈ A and y ∈ A imply x ∈ A.

Note that in BCI-algebras every p-ideal is an ideal, but not converse
(see [15]).

Let ρ be a congruence relation on G, that is, ρ is an equivalence relation
on G such that (x, y) ∈ ρ implies (x ∗ z, y ∗ z) ∈ ρ and (z ∗ x, z ∗ y) ∈ ρ for
all z ∈ G. The set of all equivalence classes of G with respect to ρ will be
denoted by G/ρ. On G/ρ we define an operation ∗ putting [x]ρ∗[y]ρ = [x∗y]ρ
for all [x]ρ, [y]ρ ∈ G/ρ. It is clear that such operation is well-defined, but
(G/ρ, ∗, [0]ρ) may not be a BCI-algebra, because G/ρ does not satisfy the
fourth condition of a BCI-algebra.



Rough set theory applied to BCI-algebras 47

For any non-empty subsets A and B of a BCI-algebra G we define the
complex multiplication putting A ∗B = {x ∗ y | x ∈ A, y ∈ B}.

3. Roughness of some ideals

Let V be a set and ρ an equivalence relation on V and let P(V ) denote
the power set of V . For all x ∈ V, let [x]ρ denote the equivalence class of
G with respect to ρ. Define the functions ρ− and ρ− from P(V ) to P(V )
putting for every S ∈ P(V )

ρ−(S) = {x ∈ V | [x]ρ ⊆ S},
ρ−(S) = {x ∈ V | [x]ρ ∩ S 6= ∅}.

S
V

S ⊂ V ρ−(S) ⊆ S S ⊆ ρ−(S)

ρ−(S) is called the lower approximation of S while ρ−(S) is called the
upper approximation. The set S is called definable if ρ−(S) = ρ−(S) and
rough otherwise. The pair (V, ρ) is called an approximation space.

Directly from the definition by simple calculations we can see that the
following proposition holds.

Proposition 1. Let A and B be non-empty subsets of a BCI-algebra G.
If ρ is a congruence relation on G, then the following hold:

(1) ρ−(A) ⊆ A ⊆ ρ−(A),
(2) ρ−(A ∪B) = ρ−(A) ∪ ρ−(B),
(3) ρ−(A ∩B) = ρ−(A) ∩ ρ−(B),
(4) A ⊆ B implies ρ−(A) ⊆ ρ−(B) and ρ−(A) ⊆ ρ−(B),
(5) ρ−(A ∪B) ⊇ ρ−(A) ∪ ρ−(B),
(6) ρ−(A ∩B) ⊆ ρ−(A) ∩ ρ−(B),
(7) ρ−(A) ∗ ρ−(B) ⊆ ρ−(A ∗B),
(8) ρ−(A) ∗ ρ−(B) ⊆ ρ−(A ∗B) whenever ρ−(A) ∗ ρ−(B) 6= ∅ and

ρ−(A ∗B) 6= ∅.
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Proposition 2. If ρ is a congruence relation on a BCI-algebra G, then
the following are equivalent:

(1) x ∗ y ∈ [0]ρ and y ∗ x ∈ [0]ρ imply (x, y) ∈ ρ,
(2) ρ is regular, i.e. [x]ρ ∗ [y]ρ = [0]ρ = [y]ρ ∗ [x]ρ implies [x]ρ = [y]ρ,
(3) (G/ρ, ∗, [0]ρ) is a BCI-algebra.

Proof. (1) ⇒ (2) Suppose [x]ρ ∗ [y]ρ = [0]ρ = [y]ρ ∗ [x]ρ. Then [x ∗ y]ρ =
[0]ρ = [y ∗ x]ρ, and so (x ∗ y, 0) ∈ ρ and (y ∗ x, 0) ∈ ρ. It follows from (1)
that (x, y) ∈ ρ. Hence [x]ρ = [y]ρ.

(2) ⇒ (3) Obvious.
(3) ⇒ (1) Let x, y ∈ G be such that x ∗ y ∈ [0]ρ and y ∗ x ∈ [0]ρ. Then

[x]ρ ∗ [y]ρ = [x ∗ y]ρ = [0]ρ = [y ∗ x]ρ = [y]ρ ∗ [x]ρ .

It follows from the fourth condition of the definition of a BCI-algebra that
[x]ρ = [y]ρ. Thus (x, y) ∈ ρ. This completes the proof.

Theorem 3. If ρ is a congruence relation on G, then [0]ρ is a closed ideal,
and hence a subalgebra of G.

Proof. Obviously, 0 ∈ [0]ρ. Let x, y ∈ G be such that x ∗ y ∈ [0]ρ and
y ∈ [0]ρ. Then (x ∗ y, 0) ∈ ρ and (y, 0) ∈ ρ. Since ρ is a congruence
relation on G, it follows from (P1) that (x ∗ y, x) = (x ∗ y, x ∗ 0) ∈ ρ so
that (x, 0) ∈ ρ, that is, x ∈ [0]ρ. If x ∈ [0]ρ, then (x, 0) ∈ ρ and hence
(0 ∗x, 0) = (0 ∗ x, 0 ∗ 0) ∈ ρ, that is, 0 ∗ x ∈ [0]ρ. Hence [0]ρ is a closed ideal
of G.

Definition 4. A non-empty subset S of a BCI-algebra G is called an upper
(resp. a lower) rough subalgebra (or, (closed) ideal) of G if the upper (resp.
nonempty lower) approximation of S is a subalgebra (or, (closed) ideal) of
G. If S is both an upper and a lower rough subalgebra (or, (closed) ideal)
of G, we say that S is a rough subalgebra (or (closed) ideal) of G.

Theorem 5. Every subalgebra is a rough subalgebra.

Proof. Let S be a subalgebra of a BCI-algebra G. Taking A = B = S in
Proposition 1(8), we have

ρ−(S) ∗ ρ−(S) ⊆ ρ−(S ∗ S) ⊆ ρ−(S)

because S is a subalgebra of G. Hence ρ−(S) is a subalgebra of G, that is, S
is a lower rough subalgebra of G. We now show that ρ−(S) is a subalgebra
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of G. Let x, y ∈ ρ−(S). Then [x]ρ ∩ S 6= ∅ and [y]ρ ∩ S 6= ∅. Thus there
exist ax, ay ∈ S such that ax ∈ [x]ρ and ay ∈ [y]ρ. It follows that (ax, x) ∈ ρ
and (ay, y) ∈ ρ so that (ax ∗ ay, x ∗ y) ∈ ρ, that is, ax ∗ ay ∈ [x ∗ y]ρ.
On the other hand, since S is a subalgebra of G, we have ax ∗ ay ∈ S.
Hence ax ∗ ay ∈ [x ∗ y]ρ ∩ S, that is, [x ∗ y]ρ ∩ S 6= ∅. This shows that
x ∗ y ∈ ρ−(S). Therefore S is an upper rough subalgebra of G. This
completes the proof.

For any subset I of a BCI-algebra G, define a relation ρ(I) on G induced
by I in the following way:

(x, y) ∈ ρ(I) ⇐⇒ x ∗ y, y ∗ x ∈ I.

ρ(I)−(S) is called the lower approximation of S by I, while ρ(I)−(S) is
called the upper approximation by I. In the case ρ(I)−(S) = ρ(I)−(S) we
say that S is called definable with respect to I. In otherwise S is rough with
respect to I. Obviously ρ(I)−(G) = G = ρ(I)−(G) for any I v G. This
means that any BCI-algebra is definable with respect to any its ideal.

If I is an ideal of G, then ρ(I) is a regular congruence relation on G (see
[9]). Note that in the case of BCI-quasigroups every subalgebra is an ideal.
The converse is not true (see [4]), but a finite subset of such quasigroup is
an ideal if and only if it is a subalgebra. Thus in BCI-algebras all relations
ρ(I) induced by a finite set I are regular congruences.

The following example shows that there exists non-empty subset S of G
which is not an ideal, but for which S is an upper rough subalgebra of G.
Hence we know that the notion of an upper rough subalgebra is an extended
notion of a subalgebra.

Example 6. Let G = {0, a, b, c, d} be a BCI-algebra with the following
Cayley table:

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0

¡
¡

@
@
¡

¡
@

@

r
r r

r
r

0

a b

c

d

Then I = {0, a} v G, and thus [0]ρ(I) = [a]ρ(I) = I, [b]ρ(I) = {b},
[c]ρ(I) = {c}, and [d]ρ(I) = {d}. Consider a subset S = {a, b} of G which is
not a subalgebra of G. Then ρ(I)−(S) = {0, a, b} which is a subalgebra.

On the other hand, for M = {0, a, c} which is a subalgebra but not an
ideal, we have ρ(I)−(M) = ρ(I)−(M) = M . Hence M is definable with



50 W. A. Dudek, Y. B. Jun and H. S. Kim

respect to I. It is not to difficult to see that M is not definable with respect
to J = {0, b} v G.

Proposition 7. Every non-empty subset of a BCI-algebra is definable with
respect to the trivial ideal {0}.
Proof. If a ∈ [x]ρ({0}) then (a, x) ∈ ρ({0}) and so a ∗ x ∈ {0} and
x ∗ a ∈ {0}. It follows that a = x so that [x]ρ({0}) = {x} for all x ∈ G.
Hence

ρ({0})−(S) =
{
x ∈ G | [x]ρ({0}) ⊆ S

}
= S

and
ρ({0})−(S) =

{
x ∈ G | [x]ρ({0}) ∩ S 6= ∅} = S.

This completes the proof.

Lemma 8. If I and J are ideals of a BCI-algebra G such that I ⊆ J ,
then ρ(I) ⊆ ρ(J).

Proof. If (x, y) ∈ ρ(I), then x ∗ y ∈ I ⊆ J and y ∗ x ∈ I ⊆ J . Hence
(x, y) ∈ ρ(J), completing the proof.

Remark 9. Let I and J be ideals of G such that I 6= J . Then ρ(I)−(J) is
not an ideal of G in general. Indeed, it is easy to see that I = {0, a} and
J = {0, b} are ideals of a BCI-algebra G defined in Example 6. But

ρ(I)−(J) = {x ∈ G | [x]ρ(I) ⊆ J} = {b}

is not an ideal of G.

The following example shows that there exists a non-ideal J of G for
which J is an upper rough ideal of G with respect to an ideal of G. Hence
we know that the notion of an upper rough ideal is an extended notion of
an ideal.

Example 10. Consider a BCI-algebra G = {0, a, b, c, d} with the following
Cayley table:

∗ 0 a b c d

0 0 0 c b c
a a 0 c b b
b b b 0 c c
c c c b 0 0
d d c b a 0

r

r

r r

r

0

a

b c

d
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Then for I = {0, a} v G we have [0]ρ(I) = [a]ρ(I) = I, [b]ρ(I) = {b}, and
[c]ρ(I) = [d]ρ(I) = {c, d}. Thus for J = {0, b, c}, which is not an ideal of G,
we obtain

ρ(I)−(J) = {x ∈ G | [x]ρ(I) ∩ J 6= ∅} = {0, a, b, c, d} v G.

Theorem 11. Let I ⊆ J be two ideals of a BCI-algebra G. Then

(1) ρ(I)−(J) (6= ∅) is an ideal of G, that is, J is a lower rough ideal of G
with respect to I.

(2) ρ(I)−(J) is an ideal of G, that is, J is an upper rough ideal of G with
respect to I. Moreover if J is closed, then so is ρ(I)−(J).

Proof. (1) Let x ∈ [0]ρ(I). Then x = x∗0 ∈ I ⊆ J and so [0]ρ(I) ⊆ J . Hence
0 ∈ ρ(I)−(J). Let x, y ∈ G be such that x∗y ∈ ρ(I)−(J) and y ∈ ρ(I)−(J).
Then [y]ρ(I) ⊆ J and

[x]ρ(I) ∗ [y]ρ(I) = [x ∗ y]ρ(I) ⊆ J.

Let ax ∈ [x]ρ(I) and ay ∈ [y]ρ(I). Then (ax, x) ∈ ρ(I) and (ay, y) ∈ ρ(I),
which imply (ax ∗ ay, x ∗ y) ∈ ρ(I). Hence ax ∗ ay ∈ [x ∗ y]ρ(I) ⊆ J. Since
ay ∈ [y]ρ(I) ⊆ J , it follows that ax ∈ J . Therefore [x]ρ(I) ⊆ J , or equiva-
lently, x ∈ ρ(I)−(J). This shows that ρ(I)−(J) is an ideal of G.

(2) Obviously, 0 ∈ ρ(I)−(J). Let x, y ∈ G be such that y ∈ ρ(I)−(J)
and x∗y ∈ ρ(I)−(J). Then [y]ρ(I)∩J 6= ∅ and [x∗y]ρ(I)∩J 6= ∅, and so there
exist u, v ∈ J such that u ∈ [y]ρ(I) and v ∈ [x ∗ y]ρ(I). Hence (u, y) ∈ ρ(I)
and (v, x ∗ y) ∈ ρ(I) which imply y ∗ u ∈ I ⊆ J and (x ∗ y) ∗ v ∈ I ⊆ J.
Since u, v ∈ J and J is an ideal, it follows that y ∈ J and x ∗ y ∈ J so
that x ∈ J . Note that x ∈ [x]ρ(I), thus x ∈ [x]ρ(I)∩J , that is, [x]ρ(I)∩J 6= ∅.
Therefore x ∈ ρ(I)−(J), and consequently J is an upper rough ideal of G
with respect to I. Now let x ∈ ρ(I)−(J). Then [x]ρ(I) ∩ J 6= ∅, and so
there exists ax ∈ J such that ax ∈ [x]ρ(I). Since J is closed, it follows that
0 ∗ ax ∈ J and hence

0 ∗ ax ∈
(
[0]ρ(I) ∗ [x]ρ(I)

) ∩ J = [0 ∗ x]ρ(I) ∩ J,

that is, [0 ∗ x]ρ(I) ∩ J 6= ∅. Hence 0 ∗ x ∈ ρ(I)−(J). This completes the
proof.
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Lemma 12. ([15, Theorem 4.1]) An ideal I of a BCI-algebra G is a p-ideal
if and only if for each x, y, z ∈ G,

(x ∗ z) ∗ (y ∗ z) ∈ I implies x ∗ y ∈ I.

It is not difficult to see that in the case of BCI-quasigroups every ideal
is a p-ideal and conversely.

Theorem 13. Let I v G and let J be a p-ideal of a BCI-algebra G
containing I. Then ρ(I)−(J) ( 6= ∅) and ρ(I)−(J) are p-ideals of G.

Proof. Let x, y, z ∈ G be such that (x ∗ z) ∗ (y ∗ z) ∈ ρ(I)−(J). Then
(
[x]ρ(I) ∗ [z]ρ(I)

) ∗ (
[y]ρ(I) ∗ [z]ρ(I)

)
= [(x ∗ z) ∗ (y ∗ z)]ρ(I) ⊆ J.

Let w ∈ [x ∗ y]ρ(I) = [x]ρ(I) ∗ [y]ρ(I). Then w = ax ∗ ay for some
ax ∈ [x]ρ(I) and ay ∈ [y]ρ(I). From ax ∈ [x]ρ(I) and ay ∈ [y]ρ(I), we have
(ax, x) ∈ ρ(I) and (ay, y) ∈ ρ(I). Taking az ∈ [z]ρ(I), then (az, z) ∈ ρ(I).
Since ρ(I) is a congruence relation, we get (ax ∗ az, x ∗ z) ∈ ρ(I) and
(ay ∗ az, y ∗ z) ∈ ρ(I), and thus

(
(ax ∗ az) ∗ (ay ∗ az), (x ∗ z) ∗ (y ∗ z)

) ∈ ρ(I).

This means that

(ax ∗ az) ∗ (ay ∗ az) ∈ [(x ∗ z) ∗ (y ∗ z)]ρ(I) ⊆ J.

Since J is a p-ideal, it follows from Lemma 12 that w = ax ∗ ay ∈ J so that
[x ∗ y]ρ(I) ⊆ J , or equivalently, x ∗ y ∈ ρ(I)−(J). Combining Theorem 11(1)
and Lemma 12, ρ(I)−(J) is a p-ideal of G.

Now let x, y, z ∈ G be such that (x ∗ z) ∗ (y ∗ z) ∈ ρ(I)−(J) and
y ∈ ρ(I)−(J). Then [y]ρ(I) ∩ J 6= ∅ and [(x ∗ z) ∗ (y ∗ z)]ρ(I) ∩ J 6= ∅, and
thus there are a, b ∈ J such that a ∈ [y]ρ(I) and b ∈ [(x ∗ z) ∗ (y ∗ z)]ρ(I).
Hence (a, y) ∈ ρ(I) and

(
b, (x ∗ z) ∗ (y ∗ z)

) ∈ ρ(I), which imply that
y ∗ a ∈ I ⊆ J and

(
(x ∗ z) ∗ (y ∗ z)

) ∗ b ∈ I ⊆ J . Since J is an ideal and
since a, b ∈ J , we have y ∈ J and (x ∗ z) ∗ (y ∗ z) ∈ J . Since J is a p-ideal,
it follows that x ∈ J . Note that x ∈ [x]ρ(I), and thus x ∈ [x]ρ(I) ∩ J , that
is, [x]ρ(I) ∩ J 6= ∅. Therefore x ∈ ρ(I)−(J). This completes the proof.
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A note on the Akivis algebra
of a smooth hyporeductive loop

A. Nourou Issa

Abstract

Using the fundamental tensors of a smooth loop and the di�erential geometric character-
ization of smooth hyporeductive loops, the Akivis operations of a local smooth hypore-
ductive loop are expressed through the two binary and the one ternary operations of the
hyporeductive triple algebra (h.t.a.) associated with the given hyporeductive loop. Those
Akivis operations are also given in terms of Lie brackets of a Lie algebra of vector �elds
with the hyporeductive decomposition which generalizes the reductive decomposition of
Lie algebras. A nontrivial real two-dimensional h.t.a. is presented.

1. Introduction
A quasigroup is a set Q with a binary operation of multiplication denoted
by ◦ or juxtaposition such that the knowledge of any two of x, y, z in the
equation x ◦ y = z uniquely speci�es the third. A loop is a quasigroup
(Q, ◦) with a two-sided identity e. In the case when Q is a neighborhood
of the �xed point e in a smooth (real �nite-dimensional) manifold and the
operation ◦ is a smooth function Q × Q → Q, then (Q, ◦) is called a local
smooth loop.

As for Lie groups, an in�nitesimal theory for smooth quasigroups is
considered by M. A. Akivis (see [1], [2], [3]). If (Q, ◦) is a smooth loop then
in a su�ciently small neighborhood of e, the binary operation ◦ has the
following Taylor expansion [1]:

(x ◦ y)i = xi + yi + τ i
jkx

jyk + µi
jklx

jxkyl + νi
jklx

jykyl + ...

2000 Mathematics Subject Classi�cation: 22A99, 17D99, 20N05, 53C99
Keywords: quasigroup, loop, hyporeductive algebra, Akivis algebra
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where the quantities µi
jkl and νi

jkl have the properties µi
jkl = µi

kjl and
νi

jkl = νi
jlk. The so-called fundamental tensors αi

jk, βi
ljk of the given smooth

loop (Q, ◦, e) are de�ned as follows:

αi
jk =

1
2

(
τ i
jk − τ i

kj

)
, βi

ljk = 2µi
jkl − 2νi

jkl + αs
jkα

i
sl − αi

jsα
s
kl .

The commutator and the associator at the identity e of (Q, ◦, e) are
expressed in terms of the fundamental tensors αi

jk and βi
ljk as follows:

(x ◦ y)i − (y ◦ x)i = 2αi
jkx

iyk + o(ρ2),

[(x ◦ y) ◦ z]i − [x ◦ (y ◦ z)]i = βi
ljkx

lyjzk + o(ρ3),

where ρ = max(|xi|, |yi|).
Therefore the tensor αi

jk (respectively βi
ljk) characterizes the principal

part of the deviation degree from commutativity (respectively associativ-
ity) of the loop (Q, ◦, e). It should be noted that these expressions of the
commutator and the associator hold in any smooth loop (more precisely,
in a su�ciently small neighborhood of any element of that loop) and the
tensors αi

jk and βi
ljk are de�ned at any point of the manifold Q (cf. [1]).

For αi
jk = 0 and βi

ljk = 0, the loop (Q, ◦, e) becomes locally an abelian
group and for βi

ljk = 0 it is a local Lie group.
Using the fundamental tensors, the tangent space TeQ may be provided

with a structure of a binary-ternary algebra (the tangent algebra of the
smooth loop ) if de�ne

(X ¦ Y )i = 2αi
jkX

jY k , [X, Y, Z]i = βi
ljkX

lY jZk , (1)

for all X,Y, Z ∈ TeQ. It is shown [2] that ¦ and [−,−,−] satisfy the
following identities

X ¦X = 0, (2)

[X,X, X] = 0, (3)

σ{XY ¦ Z} = σ{[X, Y, Z]} − σ{[Y, X, Z]}, (4)

where σ denotes the cyclic sum with respect to X,Y, Z and juxtaposition is
used to reduce the number of brackets, that is XY ¦ Z means (X ¦ Y ) ¦ Z.
Following [4], a (real �nite-dimensional) vector space is called an Akivis
algebra if it carries a bilinear operation ¦ and a trilinear operation [−,−,−]
satisfying the identities (2) − (4). The identity (4) is known as the Akivis
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identity. Hereafter we shall refer to the operations ¦ and [−,−,−] as de�ned
in (1) as to the Akivis operations.

We will be interested in the situation when a smooth loop (Q, ◦, e) is
related to an a�ne connection space (Q,∇). In [8], [11] a construction of
a loop centered at a �xed point e of (Q,∇) is given. Such a loop is called
the geodesic loop of (Q,∇) at the point e (it turns out that e is the two-
sided identity element of that loop). Moreover the geodesic loop operation
◦ is supplemented by an unary multiplication (t, x) 7→ tx of any element x
∈ (Q, ◦, e) by a real scalar t, giving rise to the concept of a geodesic odule
(see [11]). The identity

((t + u)x) ◦ y = tx ◦ (ux ◦ y) (5)

is called the left monoalternative property, where t and u are real numbers;
likewise is de�ned the right monoalternative property. The right monoal-
ternative property plays a key role in the di�erential geometric theory of
some classes of loops. It turns out that (see [3]) for a geodesic loop (Q, ◦, e)
of an a�ne connection space (Q,∇), its fundamental tensors are expressed
in terms of the torsion and curvature of the space (Q,∇) as follows:

αi
jk = − 1

2
T i

jk(e), βi
ljk =

1
2

(
Ri

l,jk −∇kT
i
lj

)
(e) . (6)

Accordingly the Akivis operations of (Q, ◦, e) are also expressed in terms of
the torsion and curvature of (Q,∇).

For the general theory of speci�c classes of smooth loops it is sometimes
convenient to give the explicit form of their Akivis operations. This is easy,
according to (6), whenever a suitable di�erential geometric theory is built
for a given class of smooth loops. The tangent algebra to a smooth Bol
loop is called a Bol algebra (see [10], [15]) while the tangent algebra to a
smooth homogeneous loop is called a Lie triple algebra (see [9], [12]). One
observes that a Bol algebra (resp. a Lie triple algebra) is an Akivis algebra
of a smooth Bol loop (resp. a smooth homogeneous loop) with additional
conditions.

In [5] the Lie triple algebra of a smooth homogeneous loop was related
to its Akivis algebra. It is our purpose in this note to do the same for
hyporeductive loops since they are a generalization both of Bol loops and
homogeneous loops ([13], [14]). Here the approach is geometric in the sense
of (6) (see Section 2) and algebraic meaning that the Akivis operations of
a smooth hyporeductive loop are expressed in terms of the Lie brackets
of a Lie algebra satisfying some speci�c conditions (see Section 3). We
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wonder whether the method of the algebraic calculus of formal power series,
developed in [5] for the case of smooth homogeneous loops, could be applied
to smooth hyporeductive loops.

2. Tangent algebras to smooth hyporeductive loops:
hyporeductive triple algebras (h.t.a.)

A loop (Q, ◦, e) is said left hypospecial if there exists b(x, y) ∈ Q with x, y ∈
Q such that b(x, e) = e = b(e, x) and the mapping φ(x, y) = Lb(x,y)lx,y has
the property

φLzφ
−1 = L(φz)/b(x,y)

where Luv = u ◦ v, lu,v = L−1
u◦vLuLv and / denotes the right division in

(Q, ◦, e). A left hyporeductive loop is a left hypospecial loop with the left
monoalternative property (5). Similarly is de�ned a right hyporeductive
loop. An in�nitesimal theory for smooth hyporeductive loops is initiated
by L.V. Sabinin in [13], [14], where he constructed a tangent algebra for such
loops that is called a hyporeductive algebra. It should be noted that there is
a one-to-one correspondance between hyporeductive algebras and smooth
hyporeductive loops. In [6] (see also [7]) a di�erential geometric study for
smooth hyporeductive loops is suggested. In particular it is shown that a
smooth hyporeductive loop (Q, ◦, e) can locally be seen as an a�ne con-
nection space (Q,∇) with zero curvature satisfying the following structure
equations

dωi =
1
2

T i
jk ωj ∧ ωk, (7)

dT i
jk =

(
T i

ls(T
s
jk + as

jk)− ri
l,jk

)
ωl, (8)

where as
jk and ri

l,jk are constants and ai
jk = −ai

kj , ri
l,jk = −ri

l,kj . More-
over, the geodesic loop at a �xed point of an a�ne connection space with
structure equations (7), (8) is a (right) hyporeductive loop. Using the known
di�erential geometric techniques we obtained [6] that the integrability cri-
teria of (7), (8) constitute the determining identities of a hyporeductive
algebra if we set

(X.Y )i = ai
jkX

jY k , (X ∗ Y )i = (−T i
jk(e)− ai

jk)X
jY k ,

< Z; X, Y >i = −ri
l,jkX

jY kZk , (9)

for X,Y, Z ∈ TeQ. The operations ∗ , . and < −;−,− > are linked by a
certain set of identities ([6], [7], [14]). They are as follows:
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σ { ξ . (η . ζ)− < ξ; η, ζ > } = 0 ,

σ { ζ ∗ (ξ . η) } = 0 ,

σ {< θ; ζ, ξ . η > } = 0 ,

κ. < ζ; ξ, η > −ζ. < κ; ξ, η > + < ζ.κ; ξ, η >=
=< ξ∗η; ζ, κ > − < ζ∗κ; ξ, η > +ζ∗ < κ; ξ, η > −κ∗ < ζ; ξ, η > +
+(ξ ∗ η) ∗ (ζ ∗ κ) + (ξ ∗ η).(ζ ∗ κ) ,

χ.(κ. < ζ; ξ, η > −ζ. < κ; ξ, η > + < ζ.κ; ξ, η >) +
+ << χ; ξ, η >; ζ, κ > − << χ; ζ, κ >; ξ, η > +
+ < χ; ζ,< κ; ξ, η >> − < χ; κ,< ζ; ξ, η >>= 0 ,

χ ∗ (κ . < ζ; ξ, η > −ζ . < κ; ξ, η > + < ζ . κ; ξ, η >) = 0 ,

< θ; χ, κ . < ζ; ξ, η > −ζ . < κ; ξ, η > + < ζ . κ; ξ, η >> = 0 ,

κ . < ζ; ξ, η > −ζ . < κ; ξ, η > + < ζ . κ; ξ, η > +
+ η . < ξ; ζ, κ > −ξ . < η; ζ, κ > + < ξ . η; ζ, κ >= 0 ,

ζ∗ < κ; ξ, η > −κ∗ < ζ; ξ, η > +ξ∗ < η; ζ, κ > +η∗ < ξ; ζ, κ >= 0 ,

Σ{< (< ξ . η; ζ, κ > +η . < ξ; ζ, κ > −ξ . < η; ζ, κ >);λ, µ > +
+ < λ.µ; < η; ζ, κ >, ξ > +µ . < λ;< η; ζ, κ >, ξ > −
−λ . < µ; < η; ζ, κ >, ξ > −(< λ.µ;< ξ; ζ, κ >, η > +
+µ . < λ; < ξ; ζ, κ >, η > −λ < µ; < ξ; ζ, κ >, η >) } = 0 ,

Σ{ (< µ; < η; ζ, κ >, ξ > − < µ;< ξ; ζ, κ >, η >) ∗ λ+
+(< λ; < ξ; ζ, κ >, η > − < λ; < η; ζ, κ >, ξ >) ∗ µ} = 0 ,

Σ{< θ; (< µ; < η; ζ, κ >, ξ > − < µ; < ξ; ζ, κ >, η >), λ > +
+ < θ; (< λ; < ξ; ζ, κ >, η > − < λ; < η; ζ, κ >, ξ >), µ > } = 0 ,

where σ denotes the cyclic sum with respect to ξ, η, ζ and Σ the one with
respect to pairs (ξ, η), (ζ, κ), (λ, µ). Any (real �nite-dimensional) vector
space with two anticommutative bilinear operations and one trilinear, skew-
symmetric with respect to the two last variables, operation satisfying those
identities is called an abstract hyporeductive triple algebra (h.t.a. for short).



60 A. N. Issa

It is worthy of note that such identities are obtained [14] if work out
the Jacobi identities of the Lie algebra of vector �elds enveloping the given
hyporeductive algebra and satisfying some speci�c conditions.

We give an example of a nontrivial real 2-dimensional h.t.a.

Example. Let m be a 2-dimensional algebra over the �eld of real numbers
with basis {u, v}. De�ne on m the following operations:

u ∗ v = u, u.v = v, < u; u, v >= v, < v; u, v >= 0

with the symmetries u ∗ u = 0 = u.u, < t;u, u >= 0, where t = u or
v. Then it could be checked that m is a nontrivial h.t.a. that is not a Bol
algebra nor a Lie triple algebra.

We have the following theorem whose proof is somewhat elementary in
view of structure equations (7), (8) above.

Theorem 1. Let (Q, ◦, e) be a given smooth local hyporeductive loop and
(TeQ, ., ∗, < −;−,− >) be the corresponding (up to an isomorphism) h.t.a.
Then the Akivis operations ¦ and [−,−,−] of (Q, ◦, e) are linked with ., ∗,
< −;−,− > as follows:

(i) X ¦ Y = X.Y + X ∗ Y ,
(ii) [X, Y, Z] = − 1

2
(

< Z; X, Y > +Z ¦ (X ∗ Y )
)

for all X, Y, Z ∈ TeQ.

Proof. Let (X ∗ Y )i = bi
jkX

jY k, that is bi
jk = −T i

jk(e) − ai
jk. Then from

(1), (6) and (9) we get (i).
Next, from (8) we know that −ri

l,jk = (∇lT
i
jk + T i

lsb
s
jk)(e). Therefore,

since < Z;X,Y >i= −ri
l,jkX

jY kZ l = ((∇lT
i
jk + T i

lsb
s
jk)(e))X

jY kZ l, from
(1), (6) we get (ii) (recall that Ri

l,jk = 0).

Remark 1. (a) Using (i) the Akivis operation [X,Y, Z] in (ii) can also be
expressed by ¦ and . as follows:

(iii) [X, Y, Z] = − 1
2
(

< Z; X, Y > +Z ¦ (X ¦ Y )− Z ¦ (X.Y )) .
(b) From (i) and (ii) we see that if X.Y = 0 for all X, Y ∈ TeQ, then
X ¦ Y = X ∗ Y and [X,Y, Z] = (−1/2)(< Z; X, Y > +Z ¦ (X ¦ Y )) and we
are in the situation of Bol algebras (see [10], [15]). Likewise for X∗Y = 0 for
all X, Y ∈ TeQ we get X ¦ Y = X.Y and [X, Y, Z] = (−1/2) < Z; X, Y >
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and we have the case of Lie triple algebras [5].

With the remarks above one could think of the operation . (resp. ∗)
as of a deviation degree of a h.t.a. from a Bol algebra (resp. a Lie triple
algebra). Although the transformations are somewhat tedious and lengthy,
one could write down the determining identities of a h.t.a. in terms of the
Akivis operations ¦, [−,−,−] and the operation . (or ∗).

3. An alternative approach
Let m be a (real �nite-dimensional) vector space of covariantly constant
vector �elds of an a�ne connection space with zero curvature (Q,∇) and
e ∈ Q a �xed point. Let g be the Lie algebra of vector �elds generated
by m and such that g = m + [m,m] (here [m,m] denotes the subset of g
generated by all [X,Y ] with X,Y ∈ m) and let h be the subalgebra of g
de�ned by h = {X ∈ g : X(e) = o}. Then

g = m +̇ h (10)

(direct sum of vector spaces; see [16]). Additionally let assume that there
exists in g a subspace n such that

g = m +̇ n (direct sum of subspaces), (11)

[n,m] ⊂ m. (12)
A pair (g, h) with the decomposition (10) such that (11), (12) hold is said
hyporeductive ([13], [14]).

Proposition 2. The hyporeductive pair (g, h) with conditions (10) − (12)
induces on m a structure of a h.t.a.

Proof. If X, Y ∈ m then [X, Y ] ∈ g and the decomposition (11) induces a
binary operation, say ., on m

Xi.Xj = [Xi, Xj ]nm (13)

(here and in the sequel [X, Y ]wv denotes the projection on v parallely w),
where Xs (s = 1, ..., l, l = dim m) constitute a basis of m. We denote by
D(Xi, Xj) = [Xi, Xj ] − Xi.Xj (i 6= j) the basis elements of n. Further,
using (10) and (12), we de�ne on m a binary operation

Xi ∗Xj = [Xi, Xj ]hm −Xi.Xj (14)
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and a ternary operation

< Xk;Xi, Xj >= −[Xk, D(Xi, Xj)]. (15)

Now using the procedure described in [13], [14] one could write down the
Jacobi identities in g with respect to the set {Xα, D(Xβ, Xγ)} of basis
elements. This in turn leads to the set of determining identities of a h.t.a.
so that (m, ., ∗, < −;−,− >) becomes a h.t.a. of vector �elds.

Above we considered m as the linear space of covariantly constant vec-
tor �elds on an a�ne connection manifold (Q,∇) with zero curvature; this
is intended for a relation with local smooth loops with the right monoal-
ternative property and, further, with local smooth hyporeductive loops.
Speci�cally we mean the following. If e is a �xed point on (Q,∇), then
m may be identi�ed with the tangent space TeQ and therefore, in the case
when m is a h.t.a., TeQ is a h.t.a. Moreover, since (Q,∇) has zero curva-
ture, the geodesic loop (Q, ., e) of (Q,∇) centered at the point e has the
right monoalternative property [15] and, if TeQ is a h.t.a., (Q, ., e) has the
(right) hypospecial property ([6], [7]). Thus we get a (right) hyporeduc-
tive geodesic loop (Q, ., e) with TeQ as its tangent algebra. But then from
(6), (8), (9), (13), (14) and (15) we see that its Akivis operations have the
following expressions through the Lie brackets of g:

X ¦ Y = [X, Y ]hm , (16)

[X, Y, Z] =
1
2
(
[Z, [X, Y ]mn ]− [Z, [X, Y ]hm ]hm + [Z, [X,Y ]nm ]hm

)
. (17)

Thus we have the following

Theorem 3. Let g be a real �nite-dimensional Lie algebra generated by
a subspace of vector �elds and let (g, h) be the hyporeductive pair with the
hyporeductive decomposition (10)− (12). Then the Akivis operations of the
local smooth hyporeductive loop corresponding (up to an isomorphism) to
the h.t.a. in g are expressed as in (16), (17).

One observes that we have worked with an h.t.a. of covariantly constant
vector �elds in a smooth a�ne connection space with zero curvature. But
one can also start from a structure of abstract h.t.a. given on the tangent
space W to a �xed point e of that connection space and then extend this
structure to the one of a h.t.a. of covariantly constant vector �elds V
through the identi�cation of W with V = {Xξ : Xξ(e) = ξ ∈ W}.
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We conclude with the following remarks in full analogy with the ones
we done in Section 2.

Remark 2. (a) We get the Bol theory ([10], [15]) if n = [m,m], i.e.
[X,Y ]nm = 0 in which case we have g = m +̇ h, and [[m,m],m] ⊂ m so that
(17) reads

[X, Y, Z] = 1
2
(
[Z, [X, Y ]]− [Z, [X, Y ]hm ]hm

)

((16) remains the same).
(b) The hyporeductive pair (g, h) (see (10)− (12)) becomes reductive when
n coincides with h, i.e. g = m +̇ h and [h,m] ⊂ m. Therefore the Akivis
operation (17) reduces to the following

[X,Y, Z] = 1
2 [Z, [X, Y ]mh ]

(again (16) remains the same) and one observes that we get precisely the
Akivis operations of the local smooth loop associated with the correspond-
ing reductive decomposition ([5]).
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A note on trimedial quasigroups

Michael K. Kinyon and J. D. Phillips

Abstract

The purpose of this brief note is to sharpen a result of Kepka [2] [3] about the axiomati-
zation of the variety of trimedial quasigroups.

A groupoid is medial if it satis�es the identity wx · yz = wy · xz. A
groupoid is trimedial if every subgroupoid generated by 3 elements is me-
dial. Medial groupoids and quasigroups have also been called abelian, en-
tropic, and other names, while trimedial quasigroups have also been called
triabelian, terentropic, etc. (See [1], especially p. 120, for further back-
ground.)

In [2] [3], Kepka showed that a quasigroup satisfying the following three
identities must be trimedial.

xx · yz = xy · xz (1)
yz · xx = yx · zx (2)

(x · xx) · uv = xu · (xx · v) (3)

The converse is trivial, and so these three identities characterize trimedial
quasigroups. Here, we show that, in fact, (2) and (3) are su�cient to char-
acterize this variety (as a subvariety of the variety of quasigroups). Note
that in the theorem we only assume left cancellation, not the full strength
of the quasigroup axioms.

Theorem. A groupoid with left cancellation which satis�es (2) and (3)
must also satisfy (1).

Proof. (x·xz)(xx·yz) = (x·xx)(xz·yz) = (x·xx)(xy·zz) = (x·xy)(xx·zz) =
(x · xy)(xz · xz) = (x · xz)(xy · xz). Now cancel.

2000 Mathematics Subject Classi�cation: 20N05
Keywords: medial, trimedial
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In [2] [3], Kepka showed that the following single identity characterizes
trimedial quasigroups:

[(xx · yz)]{[xy · uu][(w · ww) · zv]} = [(xy · xz)]{[xu · yu][wz · (ww · v)]}.

Using the theorem we can sharpen this.

Corollary. The following identity characterizes trimedial quasigroups:

[(xy · uu)][(w · ww) · zv] = [(xu · yu)][wz · (ww · v)].

Proof. To obtain (2) set z = ww and use right cancellation. To obtain (3)
set y = u and use left cancellation.
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Transversals in groups. 4.
Derivation construction

Eugene A. Kuznetsov

Abstract

In the present work the derivation construction is studied by means of transversals
in a group to a proper subgroup. It is shown that the method of derivation may be
understood as a connection between di�erent transversals in a group to a subgroup.

1. Introduction
The method of derivation has appeared in Dickson's works at the �rst time.
It has been used to construct near�elds and quasi�elds from �elds and skew-
�elds (see [14], [15]). Karzel [6] axiomatized and generalized this method
for groups. Kiechle [7] gave a generalization of method of derivation which
applied to construct loops with determined conditions by the help of groups.

In a present work the derivation construction is studied by means of
transversals in a group to a proper subgroup. It is shown that the method of
derivation may be understood as a connection between di�erent transversals
in a group to a subgroup. It give us a possibility to generalize the deriva-
tion construction for loops, i.e. to construct loops with some determined
conditions by the help of some �good� loops.

2. Necessary de�nitions and notations
De�nition 1. [2] A system 〈E, ·〉 is called a right (left) quasigroup, if for
arbitrary a, b ∈ E the equation x · a = b ( a · y = b ) has a unique solution
in the set E. If in quasigroup 〈E, ·〉 there exists element e ∈ E such that

x · e = e · x = e

2000 Mathematics Subject Classi�cation: 20N15
Keywords: group, loop, transversal, derivation
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for every x ∈ E, then system 〈E, ·〉 is called a loop.

De�nition 2. [1] Let G be a group and H be a subgroup in G. A complete
system T = {ti}i∈E of representatives of the left (right) cosets of H in G
(e = t1 ∈ H) is called a left (right) transversal in G to H.

Let T = {ti}i∈E be a left transversal in G to H. We can de�ne correctly
(see [1, 9]) the following operation on the set E (E is an index set; left
cosets of H in G are numbered by indexes from E):

x
(T )· y = z

def⇐⇒ txty = tzh, h ∈ H. (1)

In [1] (and [9]) it is proved that 〈E,
(T )· 〉 is a left quasigroup with two-

sided unit 1.
Below we shall consider (for simplicity) that CoreG(H) = e (where

CoreG(H) = ∩
g∈G

gHg−1

is the maximal normal subgroup of the group G contained in the subgroup
H) and shall study a permutation representation Ĝ of group G by left cosets
on the subgroup H. According to [5], we have Ĝ ∼= G, where

ĝ(x) = y
def⇐⇒ gtxH = tyH.

Note that Ĥ = St1(Ĝ).

Lemma 1. ([9], Lemma 4) Let T be an arbitrary left transversal in G to
H. Then the following statements are true:

1. ĥ(1) = 1 for all h ∈ H.

2. For every x, y ∈ E we have: t̂x(y) = x
(T )· y, t̂1(x) = t̂x(1) = x,

t̂−1
x (y) = x

(T )

\ y, t̂−1
x (1) = x

(T )

\ 1, t̂−1
x (x) = 1

where
(T )

\ is the left division in the system 〈E,
(T )· , 1〉

(i.e. x
(T )

\ y = z ⇔ x
(T )· z = y).

Let us denote
l
(T )
a,b = L−1

a
(T )· b

LaLb
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where La(x) = a
(T )· x is a left translation in the left loop 〈E,

(T )· , 1〉. The
group

LI( 〈E,
(T )· , 1〉 ) = 〈 l(T )

a,b | a, b ∈ E 〉
is called a left inner permutation group. It is easy to see that

l
(T )
a,b (x) = (a

(T )· b)
(T )

\ (a
(T )· (b

(T )· x)) = t̂−1

a
(T )· b

t̂at̂b(x) . (2)

Note that for every a, b ∈ E l
(T )
a,b (1) = 1.

De�nition 3. A left loop 〈E, ·, 1〉 is called

1. left alternative, if for every x, y ∈ E : x · (x · y) = (x · x) · y,
2. left IP-loop (or LIP-loop), if for every x ∈ E there exists the element

x′ ∈ E such that x′ · (x · y) = y for every y ∈ E,

3. left Al-loop, if for every a, b ∈ E la,b ∈ Aut(〈E, ·, 1〉).

Lemma 2. Let a set T = {ti}i∈E be a left transversal in the group G to
its subgroup H. Then the following conditions are equivalent:

1. The system 〈E,
(T )· , 1〉 is a left Al-loop,

2. For every α ∈ LI(〈E,
(T )· , 1〉) we have αT̂α−1 ⊆ T̂ .

Proof. 1 =⇒ 2. Let the system 〈E,
(T )· , 1〉 be a left Al-loop, i.e. let

l
(T )
a,b = t̂−1

a·b t̂at̂b ∈ Aut(〈E,
(T )· , 1〉)

for every a, b ∈ E. Then

LI(〈E,
(T )· , 1〉) ⊆ Aut(〈E,

(T )· , 1〉). (3)

Let α ∈ LI(〈E,
(T )· , 1〉). Because αt̂xα−1 ∈ Ĝ for every x ∈ E, then

αt̂xα−1 = t̂uĥ1 (4)

for some u ∈ E and h1 ∈ H. In view of Lemma 1 we have

u = t̂u(1) = t̂uĥ1(1) = α t̂xα−1(1) = α t̂x(1) = α(x),
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i.e. the equation (4) may be rewritten in the following form

αt̂xα−1 = t̂α(x)ĥ1 . (5)

On the other hand, for every x, y ∈ E

t̂xt̂y = t̂
x
(T )· y

l(T )
x,y ,

αt̂xα−1αt̂yα
−1 = αt̂

x
(T )· y

α−1αl(T )
x,y α−1,

which, by (5), gives

t̂α(x)ĥ1t̂α(y)ĥ2 = t̂
α(x

(T )· y)
ĥ3 αl(T )

x,y α−1

for some h2, h3 ∈ H. In view of Lemma 1 we have also

t̂α(x)ĥ1t̂α(y)ĥ2(1) = t̂
α(x

(T )· y)
ĥ3 αl(T )

x,y α−1(1),

α(x)
(T )· ĥ1(α(y)) = α(x

(T )· y). (6)

But α ∈ LI(〈E,
(T )· , 1〉). Thus, by (3), we have α(x

(T )· y) = α(x)
(T )· α(y).

So, by (6), we obtain:

α(x)
(T )· ĥ1(α(y)) = α(x)

(T )· α(y)

for every x, y ∈ E. Since the system 〈E,
(T )· , 1〉 is a left quasigroup with

two-sided unit 1, for every y ∈ E we get

ĥ1(α(y)) = α(y).

Function α is a permutation on the set E, so for every z ∈ E ĥ1(z) = z,
i.e. h1 = e. Then in view of (5) we obtain:

αt̂xα−1 = t̂α(x) ∈ T̂ (7)

for every α ∈ LI(〈E,
(T )· , 1〉) and x ∈ E.

2 =⇒ 1. (See [8]) Let for every α ∈ LI(〈E,
(T )· , 1〉) and x ∈ E exists an

element u ∈ E such that

αt̂xα−1 = t̂u ∈ T̂ . (8)
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Then, in view of Lemma 1, we have

u = t̂u(1) = α t̂xα−1(1) = α t̂x(1) = α(x),

i.e. the equation (8) may be rewritten in the following way

αt̂xα−1 = t̂α(x). (9)

But every x, y ∈ E we have

t̂xt̂y = t̂
x
(T )· y

l(T )
x,y .

Then
αt̂xα−1αt̂yα

−1 = αt̂
x
(T )· y

α−1αl(T )
x,y α−1,

which, by (9), gives

t̂α(x)t̂α(y) = t̂
α(x

(T )· y)
αl(T )

x,y α−1

and, in the consequence,

αl(T )
x,y α−1 ∈ LI(〈E,

(T )· , 1〉) ⊆ Ĥ ,

because α, l
(T )
x,y ∈ LI(〈E,

(T )· , 1〉). Now, applying the de�nition of the left
transversal T , we obtain

α(x)
(T )· α(y) = α(x

(T )· y).

This means that α ∈ Aut(〈E,
(T )· , 1〉) and 〈E,

(T )· , 1〉 is a left Al-loop.

Lemma 3. Let 〈E, ·, 1〉 be a left loop. Then the following statements are
true:

1. System 〈E, ·, 1〉 is LIP-loop if and only if for every a ∈ E: if a ·a′ = 1
for some a′ ∈ E then la,a′ = id.

2. System 〈E, ·, 1〉 is left alternative if and only if la,a = id for every
a ∈ E.

Proof. See [7].
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3. Derivation as a connection between transversals
in a group by the same subgroup

Let us remind the general method of derivation used for construction of
loops [7], section 7.

Let 〈A, ·, 1〉 be a group. The function ϕ : A → SA such that ϕ(a) ⇀↽ ϕa,
ϕ1 = id and ϕa(1) = 1 for any a ∈ A is called a weak derivation. It is
called a derivation if furthemore for all a, b ∈ A there exists a unique x ∈ A
such that x · ϕx(a) = b.

In [7], section 7, it was proved the following

Lemma 4. Let 〈A, ·, 1〉 be a group with a weak derivation ϕ. Let us de�ne
the operation

x ◦ y
def
= x · ϕx(y). (10)

Then:
1. The system 〈A, ◦, 1〉 is a left loop with two-sided unit 1 (the identity

elements of 〈A, ·, 1〉 and 〈A, ◦, 1〉 coincide). Moreover, for all a ∈ A
if a ◦ a′ = 1, then a′ = ϕ−1

a (a−1).
2. If ϕ is a derivation, then system 〈A, ◦, 1〉 is a loop.

The system 〈A, ◦, 1〉 is called a derived (left) loop. If ϕa ∈ AutA for
every a ∈ A, then derivation is called automorphic derivation.

For the connection between two di�erent left transversals in a group G
by the same subgroup H see [9, 10].

Let T = {tx}x∈E and P = {px}x∈E are two left transversals in a group
G to its subgroup H. It is evident that for every x ∈ E px = txh(x) for
some collection {h(x)}x∈E , h(x) ∈ H. As it was proved in [9], for systems

〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 corresponding to the transversals T and P , by
formula (1), we have:

x
(P )· y = x

(T )· ĥ(x)(y). (11)
It is easy to see that formulas (10) and (11) almost coincide; moreover,

ĥ(1) = id and ĥ(x)(1) = 1 for every x ∈ E. Note that unlike the deriva-

tion construction described above the system 〈E,
(T )· , 1〉 is not a group; in a

general case it is a left loop with two-sided unit. This means that the con-
struction of new operations by the help of the connection between di�erent
left transversals in a group G to its subgroup H (formula (11)) generalize
the derivation method (formula (10)). So the construction of weak deriva-
tion from formula (10) may be generalized up to the class of left loops which
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are corresponding to the left transversals in a some group G to its subgroup
H. The system 〈E,

(P )· , 1〉 from formula (11) will be called derived left loop
and the set of permutations {ĥ(x)}x∈E will be called a deriving set.

Lemma 5. Let 〈E,
(P )· , 1〉 be a derived left loop obtained by the method of

weak derivation (formula (11)) from the left loop 〈E,
(T )· , 1〉 by the help of

derived set {ĥ(x)}x∈E. Then the following sentences are true:

1. Two-sided units of the left loops 〈E,
(P )· , 1〉 and 〈E,

(T )· , 1〉 coincide.
2. If

(P )

a−1 is a right inverse to the element a in 〈E,
(P )· , 1〉, then

(P )

a−1 =

ĥ−1
(a)(

(T )

a−1), where
(T )

a−1 is a right inverse to the element a in 〈E,
(T )· , 1〉.

3. The left loop 〈E,
(P )· , 1〉 is a loop (i.e. weak derivation is a derivation)

if and only if the operations 〈E,
(T )· , 1〉 and B(x, y) = ĥ−1

(x)(y) are
orthogonal.

Proof. 1. It is easy to see that if 1 is a unit in 〈E,
(T )· , 1〉, then

1
(P )· x = 1

(T )· ĥ(1)(x) = 1
(T )· x = x,

x
(P )· 1 = x

(T )· ĥ(x)(1) = x
(T )· 1 = x.

2. If
(P )

a−1 is a right inverse to a in 〈E,
(P )· , 1〉, then a

(P )·
(P )

a−1 = 1. Thus

a
(T )· ĥ(a)(

(P )

a−1) = 1 and
(P )

a−1 = ĥ−1
(a)(

(T )

a−1).

3. (See also [3], [10]) It is enough to prove that the equation x
(P )· a = b has

a unique solution in E for any �xed a, b ∈ E if and only if the operations
〈E,

(T )· , 1〉 and B(x, y) = ĥ−1
(x)(y) are orthogonal, i.e. if and only if the system

{
x

(T )· y = a
B(x, y) = b

has a unique solution in the set E × E for any a, b ∈ E.
We have





x
(P )· a = b

x
(T )· ĥ(x)(a) = b

⇐⇒
{

ĥ(x)(a) = z

x
(T )· z = b

⇐⇒
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⇐⇒
{

ĥ−1
(x)(z) = a

x
(T )· z = b

⇐⇒
{

B(x, z) = a

x
(T )· z = b

Last system has a unique solution if and only if the operations 〈E,
(T )· , 1〉

and B(x, y) = ĥ−1
(x)(y) are orthogonal.

Remark 1. According to Cayley's Theorem (see [5], theorem 12.1.1, 12.1.3)
every group K may be represented as a permutation group on the set K;
this representation is regular. So any group K may be represented as a
group transversal in SK to St1(SK). Then the construction of weak deriva-
tion of an arbitrary group 〈A, ·, 1〉 to the derived left loop 〈A, ◦, 1〉 may be
represented as a construction of the left transversal P = {px}x∈E in the
group SA to St1(SA) by the help of the group transversal A∗ = {tx}x∈E in
the group SA to St1(SA). The corresponding system 〈E,

(A)· , 1〉 is isomor-
phic to the group 〈A, ·, 1〉 and the system 〈E,

(P )· , 1〉 is isomorphic to the
derived left loop 〈A, ◦, 1〉.
Remark 2. The construction of weak derivation may also take place when
there exists a group transversal T in the group G to its subgroup H. Then
any other left transversal P in the group G to its subgroup H may be
represented as a weak derivation of the group transversal T by the help of
the deriving set {ĥ(x)}x∈E ⊂ Ĥ.

Remark 3. The construction of automorphic derivation may be naturally
represented as a connection between left transversals in the group G to its
subgroup H, where G is a semidirect product (see [13], [11]) of a left loop
〈E, ·, 1〉 and group H, and LI(〈E, ·, 1〉) ⊆ H ⊆ Aut(〈E, ·, 1〉).

4. Automorphic derivations
Let us investigate the case of weak automorphic derivation of left loops, i.e.
the case of weak derivation with the condition

{ĥ(x)}x∈E ⊆ Aut(〈E, ·, 1〉).

Lemma 6. Let 〈E,
(P )· , 1〉 be a derived left loop, which is obtained from a

left loop 〈E,
(T )· , 1〉 by means of weak automorphic derivation by the help of

the deriving set {ĥ(x)}x∈E. We have
1. The following conditions are equivalent:
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(a) α ∈ Aut(〈E,
(T )· , 1〉) is an automorphism of 〈E,

(P )· , 1〉,
(b) αĥ(x)α

−1 = ĥ(α(x)) for every x ∈ E,

(c) α ∈ Aut(〈E,
(P )· , 1〉) is an automorphism of 〈E,

(T )· , 1〉.

2. l
(P )
a,b = ĥ−1

(a
(P )· b)

l
(T )

a,ĥ(a)(b)
ĥ(a)ĥ(b) for every a, b ∈ E,

3. The system 〈E,
(P )· , 1〉 is left alternative if and only if for every a ∈ E

ĥ
(a

(P )· a)
= l

(T )

a,ĥ(a)(a)
ĥ2

(a).

4. The system 〈E,
(P )· , 1〉 is a LIP-loop if and only if for every a ∈ E

ĥ−1
(a) = ĥ(ĥ−1

(a)
(a′))l

(T )
a,a′, where a′ =

(T )

a−1.

5. The system 〈E,
(P )· , 1〉 is a left Bol loop if and only if for every a, b ∈ E

ĥ
(a

(P )· (b
(P )· a))

= l
(T )

a,ĥ(a)(b
(P )· a)

ĥ(a)l
(T )
b,h(b)(a)ĥ(b)ĥ(a).

6. The system 〈E,
(P )· , 1〉 is a group if and only if for every a, b ∈ E

ĥ
(a

(P )· b)
= l

(T )

a,ĥ(a)(b)
ĥ(a)ĥ(b).

Proof. 1. (a) ⇐⇒ (b). If α ∈ Aut(〈E,
(T )· , 1〉), we have for every x, y ∈ E

α(x)
(P )· α(y) = α(x

(P )· y),

α(x)
(T )· ĥ(α(x))α(y) = α(x

(T )· ĥ(x)(y)) = α(x)
(T )· α ĥ(x)(y),

ĥ(α(x))α(y) = α ĥ(x)(y),

ĥ(α(x)) = αĥ(x)α
−1.

(c) ⇐⇒ (b). For every x, y ∈ E we have x
(T )· y = x

(P )· ĥ−1
(x)(y). So the

result follows as before.
2. Because of ĥ(a) ∈ Aut(〈E,

(T )· , 1〉) for every a ∈ E, so we have for
every a, b, x ∈ E

a
(P )· (b

(P )· x) = (a
(P )· b)

(P )· l
(P )
a,b (x),

a
(T )· ĥ(a)(b

(T )· ĥ(b)(x)) = (a
(T )· ĥ(a)(b))

(T )· ĥ
(a

(P )· b)
l
(P )
a,b (x),

a
(T )· (ĥ(a)(b)

(T )· ĥ(a)ĥ(b)(x)) = (a
(T )· ĥ(a)(b))

(T )· ĥ
(a

(P )· b)
l
(P )
a,b (x),
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(a
(T )· ĥ(a)(b))

(T )

\ (a
(T )· (ĥ(a)(b)

(T )· ĥ(a)ĥ(b)(x))) = ĥ
(a

(P )· b)
l
(P )
a,b (x).

In view of formula (2) we obtain for every x ∈ E

l
(T )

a,ĥ(a)(b)
ĥ(a)ĥ(b)(x) = ĥ

(a
(P )· b)

l
(P )
a,b (x),

l
(P )
a,b = ĥ−1

(a
(P )· b)

l
(T )

a,ĥ(a)(b)
ĥ(a)ĥ(b).

3. According to Lemma 3 the system 〈E,
(P )· , 1〉 is left alternative if and

only if l
(P )
a,a = id for every a ∈ E. So by the condition 2) the result follows.

4. According to Lemma 3 the system 〈E,
(P )· , 1〉 is a LIP-loop if and only

if for every a ∈ E: if a
(P )· a′′ = 1 for some a′′ ∈ E, then l

(P )
a,a′′ = id. So in

view of the proposition 2) of present Lemma we obtain

id = ĥ−1

(a
(P )· a′′)

l
(T )

a,ĥ(a)(a
′′)

ĥ(a)ĥ(a′′) = l
(T )

a,ĥ(a)(a
′′)

ĥ(a)ĥ(a′′).

Because of a′′ = ĥ−1
(a)(

(T )

a−1), then ĥ−1
(a) = ĥ(ĥ−1

(a)
(a′′′))l

(T )
a,a′′′ , where a′′′ =

(T )

a−1.
5. It is easy to prove (see [7]) that the left Bol identity

(a
(P )· (b

(P )· a)
(P )· x = a

(P )· (b
(P )· (a

(P )· x)))

for every a, b, x ∈ E is equivalent to the identity l
(P )

a,b
(P )· a

= (l(P )
b,a )−1 for

every a, b ∈ E. So in view of the condition 2) of the present Lemma we
obtain

ĥ−1

(a
(P )· (b

(P )· a))
l
(T )

a,ĥ(a)(b
(P )· a)

ĥ(a)ĥ
(b

(P )· a)
= ĥ−1

(a)ĥ
−1
(b) l

(T )−1

b,ĥ(b)(a)
ĥ

(b
(P )· a)

,

ĥ
(a

(P )· (b
(P )· a))

= l
(T )

a,ĥ(a)(b
(P )· a)

ĥ(a)l
(T )

b,ĥ(b)(a)
ĥ(b)ĥ(a).

6. It is easy to prove that system 〈E,
(P )· , 1〉 is a group if and only if

l
(P )
a,b = id for every a, b ∈ E. So in view of the condition 2) of present
Lemma we obtain the result.

Corollary 1. Let the general assumptions of Lemma 6 hold. If the system
〈E,

(P )· , 1〉 is a group, then the system 〈E,
(T )· , 1〉 is an Al-loop.
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Proof. In view of proposition 6) of Lemma 6 if the system 〈E,
(P )· , 1〉 is a

group then ĥ
(a

(P )· b)
= l

(T )

a,ĥ(a)(b)
ĥ(a)ĥ(b). Because of ĥ(a) ∈ Aut(〈E,

(T )· , 1〉) for

every a ∈ E, then l
(T )

a,ĥ(a)(b)
∈ Aut(〈E,

(T )· , 1〉) for every a, b ∈ E. But ĥ(a)

is a permutation on the set E for every a ∈ E, then l
(T )
a,c ∈ Aut(〈E,

(T )· , 1〉)
for every a, c ∈ E. So 〈E,

(T )· , 1〉 is an Al-loop.

4.1. An automorphic derivation of group

Let us apply the previous lemma to the case when 〈E,
(T )· , 1〉 is a group.

Lemma 7. (See [7]) Let 〈E,
(P )· , 1〉 be a derived left loop, which is obtained

from a group 〈E,
(T )· , 1〉 by means of weak automorphic derivation by the

help of deriving set {ĥ(x)}x∈E. Then the following statements are true:
1. The following conditions are equivalent:

(a) α ∈ Aut(〈E,
(T )· , 1〉) is an automorphism of 〈E,

(P )· , 1〉,
(b) αĥ(x)α

−1 = ĥ(α(x)) for every x ∈ E,

(c) α ∈ Aut(〈E,
(P )· , 1〉) is an automorphism of the operation 〈E,

(T )· , 1〉.
2. l

(P )
a,b = ĥ−1

(a
(P )· b)

ĥ(a)ĥ(b) ∈ Aut(〈E,
(T )· , 1〉) for every a, b ∈ E,

3. The system 〈E,
(P )· , 1〉 is left alternative if and only if for every a ∈ E

ĥ
(a

(P )· a)
= ĥ2

(a).

4. The system 〈E,
(P )· , 1〉 is LIP-loop if and only if for every a ∈ E

ĥ−1
(a) = ĥ(ĥ−1

(a)
(a′)), where a′ =

(T )

a−1.

5. The system 〈E,
(P )· , 1〉 is a left Bol loop if and only if for every a, b ∈ E

ĥ
(a

(P )· (b
(P )· a))

= ĥ(a)ĥ(b)ĥ(a).

6. The system 〈E,
(P )· , 1〉 is a group if and only if for every a, b ∈ E

ĥ
(a

(P )· b)
= ĥ(a)ĥ(b).

Proof. It is the evident corollary of Lemma 6, because l
(T )
a,b = id for every

a, b ∈ E, if the system 〈E,
(T )· , 1〉 is a group. See also [7].
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Corollary 2. Let the conditions of Lemma 7 hold. If for every h ∈ H we
have hh(x)h

−1 = h(ĥ(x)), then the system 〈E,
(P )· , 1〉 is an Al-loop.

Proof. It is evident because LI(〈E,
(P )· , 1〉) ⊆ Ĥ for every left transversal

P in a group G to a subgroup H.

Corollary 3. (See [15]) Let the conditions of Lemma 7 hold. If 〈E,
(P )· , 1〉

is a group, then 〈H(∗), ·, h(1)〉, where H(∗) ⇀↽ {h(x)|x ∈ E}, is a subgroup of
the group H.

Proof. It is an evident corollary of 4) and 6) from Lemma 7.

4.2. An automorphic derivation of Al-loop

Let us apply Lemma 6 in a case when 〈E,
(T )· , 1〉 is an Al-loop.

Lemma 8. Let 〈E,
(P )· , 1〉 be a derived left loop, which is obtained from the

Al-loop 〈E,
(T )· , 1〉 by means of weak automorphic derivation by the help of

the deriving set {ĥ(x)}x∈E . Then:

1. l
(P )
a,b = ĥ−1

(a
(P )· b)

l
(T )

a,ĥ(a)(b)
ĥ(a)ĥ(b) ∈ Aut(〈E,

(T )· , 1〉) for every a, b ∈ E,

2. 〈E,
(P )· , 1〉 is an Al-loop if and only if for every α ∈ LI(〈E,

(P )· , 1〉)
we have αĥ(x)α

−1 = ĥ(α(x)).

Proof. 1. Since the system 〈E,
(T )· , 1〉 is an Al-loop, l

(T )
a,b ∈ Aut(〈E,

(T )· , 1〉)
for every a, b ∈ E. But by the de�nition of a weak automorphic derivation
ĥ(x) ∈ Aut(〈E,

(T )· , 1〉) for every x ∈ E. Thus, by the condition 2) of Lemma
6, we obtain our thesis.

2. If 〈E,
(P )· , 1〉 is a Al-loop, then in view of 1) from Lemma 6 and

1) from the present Lemma it is equivalent to l
(P )
a,b ĥ(x)l

(P )−1
a,b = ĥ

(l
(P )
a,b (x))

for every a, b ∈ E. Since LI(〈E,
(P )· , 1〉) = 〈l(P )

a,b |a, b ∈ E〉, for every α ∈
LI(〈E,

(P )· , 1〉) we obtain αĥ(x)α
−1 = ĥ(α(x)). But according to the condition

2) of the present Lemma we have LI(〈E,
(P )· , 1〉) ⊆ Aut(〈E,

(T )· , 1〉).
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Corollary 4. Let 〈E,
(T )· , 1〉 be an Al-loop and G = LM(〈E,

(T )· , 1〉) its left
multiplication group. Then the system 〈E,

(P )· , 1〉 is an Al-loop if and only
if αh(x)α

−1 = h(α(x)) for every α ∈ LI(〈E,
(P )· , 1〉).

Proof. Since the system 〈E,
(T )· , 1〉 is an Al-loop and H = LI(〈E,

(T )· , 1〉),
every element h ∈ H is an automorphism of 〈E,

(T )· , 1〉. So in this case every
weak derivation of the Al-loop 〈E,

(T )· , 1〉 is an automorphic weak derivation.
In view of the condition 2) of Lemma 8 we obtain the necessity.

Corollary 5. Let the conditions of Corollary 4 hold. If for every h ∈ H we
have hh(x)h

−1 = h(h(x)), then the system 〈E,
(P )· , 1〉 is an Al-loop.

Proof. It is a consequence of our Corollary 4, because LI(〈E,
(P )· , 1〉) ⊆ H

for every left transversal P in a group G to a subgroup H.

De�nition 4. A transversal T in the group G by its subgroup H is called
a gyrotransversal if T−1 = T and hTh−1 ⊆ T for every h ∈ H.

Lemma 9. Let the set T = {tx}x∈E be a gyrotransversal in the group G
by the subgroup H. Then htxh−1 = tĥ(x) and t−1

x = tx\1 for every h ∈ H,
x ∈ E.

Proof. As the set T = {tx}x∈E is a gyrotransversal in the group G by the
subgroup H, so for every h ∈ H we have hTh−1 ⊆ T , i.e. htxh−1 = tv,
where v = t̂v(1) = ĥ t̂xĥ−1(1) = ĥ t̂x(1) = ĥ (x). Thus htxh−1 = tĥ(x).

By the de�nition we have also T−1 = T , i.e. t−1
x = tz for every x ∈ T ,

where z = t̂z(1) = t̂−1
x (1) = x\1. Thus t−1

x = tx\1.

Lemma 10. Let the conditions of Lemma 8 hold. If T is a gyrotransversal
in the group G by a subgroup H, then the following conditions are equivalent:

1. the set P is a gyrotransversal in the group G by a subgroup H,
2. hh(x)h

−1 = h(ĥ(x)) and h−1
(x) = h(x\1) for every h ∈ H, x ∈ E.

Proof. 1. =⇒ 2. Let the conditions of the present Lemma hold and let
P be a gyrotransversal in the group G by its subgroup H. Then, by the
de�nition, for h ∈ H we have hPh−1 ⊆ P and P−1 = P , which implies
htxh(x)h

−1 = tuh(u) for all h ∈ H, x ∈ E and some u ∈ E. Thus

u = t̂u(1) = t̂uĥ(u)(1) = ĥ t̂xĥ(x)ĥ
−1(1) = ĥ t̂x(1) = ĥ (x).
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Thus the previous equation can be rewritten in the form htxh(x)h
−1 =

tĥ (x)h(ĥ (x)) and, in the consequence, in the form

t−1

ĥ (x)
htxh−1 = h(ĥ (x))hh−1

(x)h
−1 . (12)

As the set T is a gyrotransversal in the group G by the subgroup H, so,
by Lemma 9, htxh−1 = tĥ (x) for h ∈ H and x ∈ E. Hence (12) has the
form e = h(ĥ (x))hh−1

(x)h
−1, i.e. hh(x)h

−1 = h(ĥ (x)), which proves the �rst
condition of 2.

To prove the second, observe that P−1 = P implies (txh(x))−1 = twh(w)

for x ∈ E, where

w = t̂w(1) = t̂wĥ(w)(1) = (t̂xĥ(x))
−1(1) = ĥ−1

(x)t̂
−1
x (1) = ĥ−1

(x)(x\1).

This means that the equation (txh(x))−1 = twh(w) can be written in the
form h−1

(x)t
−1
x = tĥ−1

(x)
(x\1)h(ĥ−1

(x)
(x\1)), i.e. in the form

h(ĥ−1
(x)

(x\1)) = t−1

ĥ−1
(x)

(x\1)
h−1

(x)t
−1
x = (t−1

ĥ−1
(x)

(x\1)
h−1

(x)tx\1h(x))h
−1
(x)t

−1
x\1t

−1
x .

This together with htxh−1 = tĥ (x) gives t−1

ĥ−1
(x)

(x\1)
h−1

(x)tx\1h(x) = e, i.e.

h(ĥ−1
(x)

(x\1)) = h−1
(x)t

−1
x\1t

−1
x , which by hh(x)h

−1 = h(ĥ (x)) implies the equa-
tion h(ĥ−1

(x)
(x\1)) = h−1

(x)h(x\1)h(x).

So we can write the equation h(ĥ−1
(x)

(x\1)) = h−1
(x)t

−1
x\1t

−1
x in the form

h−1
(x)h(x\1)h(x) = h−1

(x)t
−1
x\1t

−1
x , i.e. txtx\1h(x\1)h(x) = e.

Since the set T is a gyrotransversal in the group G by a subgroup H,
by Lemma 9, for every x ∈ E we have t−1

x = tx\1, which together with
txtx\1h(x\1)h(x) = e implies h(x\1)h(x) = e. Hence h−1

(x) = h(x\1). This
proves the second condition of 2.

2. =⇒ 1. Let the conditions of Lemma 8 hold. If hh(x)h
−1 = h(ĥ(x))

and h−1
(x) = h(x\1) for all h ∈ H, x ∈ E, then, by Lemma 9, for every h ∈ H

and x ∈ E we have

hpxh−1 = htxh(x)h
−1 = (htxh−1)(hh(x)h

−1) = tĥ(x)h(ĥ(x)) = pĥ(x),
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i.e. hPh−1 ⊆ P . Moreover, by Lemma 9, for every x ∈ E we have also

p−1
x = (txh(x))

−1 = h−1
(x)t

−1
x = h(x\1)tx\1 =

= h(x\1)tx\1h
−1
(x\1)h(x\1) = tĥ(x\1)(x\1)h(x\1) =

= tĥ(x\1)(x\1)h(ĥ(x\1)(x\1))h
−1

(ĥ(x\1)(x\1))
h(x\1) =

= tĥ(x\1)(x\1)h(ĥ(x\1)(x\1))h(x\1)h
−1
(x\1)h

−1
(x\1)h(x\1) =

= tĥ(x\1)(x\1)h(ĥ(x\1)(x\1)) = pĥ(x\1)(x\1) ∈ P.

This together with hPh−1 ⊆ P proves that set P is a gyrotransversal in the
group G by a subgroup H.

5. Examples
Using propositions that are proved in the previous section, we will demon-
strate some methods of construction of Al-loops by the help of groups and
Al-loops.

Lemma 11. If K is a group, Inn (K) the group of its inner automorphisms,
M = K × Inn (K) the semidirect product of K and Inn (K), then the set
D = {(x, αax)|x ∈ K}, where ax ∈ K are the indexes depended on x ∈ K,
is a left transversal in the group M by a subgroup H = Inn (K). Moreover,
if αu(ax) = aαu(x) for every x, u ∈ K/Z(K), where Z(K) is the center of

K, then the system 〈K,
(D)· , 1〉 is an Al-loop.

Proof. Let the conditions of the Lemma hold. Because Inn (K) ⊆ AutK,
then for the group transversal K0 = {(x, id)|x ∈ K} in the group M by
subgroup H = Inn (K) any weak derivation of group 〈K,

(K)· , 1〉 is a weak
automorphic derivation. According to Corollary 5, the system 〈K,

(D)· , 1〉 is
an Al-loop if αuαaxα−1

u = αaαu(x)
for x ∈ K, αu ∈ Inn (K).

This shows that for every x, u, y ∈ K holds αuαaxα−1
u (y) = αaαu(x)

(y).
Therefore

(uaxu−1)y(ua−1
x u−1) = αu(axu−1yua−1

x ) = αuαax(u−1yu) =

= αuαaxα−1
u (y) = αaαu(x)

(y) = aαu(x)y a−1
αu(x) .

Hence αu(ax)y(αu(ax))−1 = aαu(x)y a−1
αu(x) and ααu(ax) = αaαu(x)

.

So, if αu(ax) = aαu(x) holds, the system 〈K,
(D)· , 1〉 is an Al-loop.
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Corollary 6. Let the conditions of Lemma 11 hold. If αu(ax) = aαu(x),
then ax ∈ CK(x) for every x ∈ K, where CK(x) is the centralizer of x in
the group K.
Proof. It follows from αu(ax) = aαu(x) for u = x.

Remark 4. In the case ax = x we obtain so-called diagonal transversal
D = {(x, αx)|x ∈ K} investigated in [4].
Remark 5. For ax = xm, where m ∈ Z − {0, 1} is �xed, we obtain the
generalized diagonal transversals D = {(x, αm

x )|x ∈ K} described in [12].
Now we will demonstrate the method of constructing of Al-loops by the

help of Al-loop L with nontrivial right nucleus Nr(L).

Lemma 12. Let the conditions of Lemma 8 hold. If ĥ(x) = l
(T )

x,x
(T )· c0

, where

c0 ∈ Nr(〈E,
(T )· , 1〉), c0 6= 1, then the system 〈E,

(P )· , 1〉 is an Al-loop.

Proof. Since the system 〈E,
(T )· , 1〉 is an Al-loop, then

ĥ(x) = l
(T )

x,x
(T )· c0

∈ LI(〈E,
(T )· , 1〉) ⊆ Aut(〈E,

(T )· , 1〉), (13)

i.e. the weak derivation of Al-loop 〈E,
(T )· , 1〉 onto left loop 〈E,

(P )· , 1〉 is
a weak automorphic derivation. Moreover, in view of 1), Lemma 8 and
(13) we obtain l

(P )
a,b = ĥ−1

(a
(P )· b)

l
(T )

a,ĥ(a)(b)
ĥ(a)ĥ(b) ∈ LI(〈E,

(T )· , 1〉) for every
a, b ∈ E, i.e.

LI(〈E,
(P )· , 1〉) ⊆ LI(〈E,

(T )· , 1〉). (14)

But c0 ∈ Nr(〈E,
(T )· , 1〉). Then l

(T )
a,b (c0) = c0 for every a, b ∈ E. So

α(c0) = c0 for every α ∈ LI(〈E,
(T )· , 1〉). Then, by (7) and (14), for every

x ∈ E and α ∈ LI(〈E,
(P )· , 1〉) we obtain:

αĥ(x)α
−1 = αl

(T )

x,x
(T )· c0

α−1 = αt̂−1

x
(T )· (x

(T )· c0)
t̂xt̂

x
(T )· c0

α−1 =

= (αt̂−1

x
(T )· (x

(T )· c0)
α−1)(αt̂xα−1)(αt̂

x
(T )· c0

α−1) =

= t̂−1

α(x
(T )· (x

(T )· c0))
t̂α(x)t̂

α(x
(T )· c0)

= t̂−1

α(x)
(T )· α(x

(T )· c0)
t̂α(x)t̂

α(x
(T )· c0)

=

= l
(T )

α(x),α(x
(T )· c0)

= l
(T )

α(x),α(x)
(T )· α(c0)

= l
(T )

α(x),α(x)
(T )· c0

= ĥ(α(x)) .
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This, by 2) of Lemma 8, proves that 〈E,
(P )· , 1〉 is an Al-loop.

Remark 6. The set {h(x)}x∈E may be chosen in the another way. For
example ĥ(x) = l

(T )

x,c0
(T )· x

, or, in the general case ĥ(x) = l
(T )
R1(x,c1),R2(x,c2),

where R1, R2 are terms of two variables on E. If c1, c2 ∈ Nr(〈E,
(T )· , 1〉),

then the system 〈E,
(P )· , 1〉 is an Al-loop.
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Dual positive implicative hyper K-ideals of type 3

Lida Torkzadeh and Mohammad M. Zahedi

Abstract

In this note �rst we de�ne the notion of dual positive implicative hyper K-ideal of type
3, where for simplicity is written by DPIHKI − T3. Then we determine all of the non-
isomorphic hyper K-algebras of order 3, which have D = {0, 1} as a DPIHKI −T3. To
do this �rst we show that D = {1} and D = {1, 2} can not be DPIHKI − T3. Then we
prove some lemmas which are needed for proving the main theorem. Finally we conclude
that there are exactly 219 non-isomorphic hyper K-algebras of order 3 with the requested
property.

1. Introduction
The hyperalgebraic structure theory was introduced by F. Marty [7] in
1934. Around the 40's, several authors worked on hypergroups, especially
in France and in the United States, but also in Italy, Russia and Japan.
Over the following decades, many important results appeared, but above
all since 70's onwards the most luxuriant �ourishing of hyperstructures has
been seen (see for example [4]). Hyperstructures have many applications to
several sectors of both pure and applied sciences.

Imai and Iéki [5] in 1966 introduced the notion of a BCK-algebra. Re-
cently [2, 3, 9] Borzooei, Jun and Zahedi et .al. applied the hyperstructure
to BCK-algebras and introduced the concept of hyper K-algebra which is a
generalization of BCK-algebra. In [1], the authors have de�ned 8 types of
positive implicative hyper K-ideals. Now in this note we de�ne the notion
of dual positive implicative hyper K-ideal of type 3, then we obtain some
related results which have been mentioned in the abstract.

2000 Mathematics Subject Classi�cation: 03B47, 06F35, 03G25
Keywords: hyperstructure, hyper K-algebra, dual positive implivative hyper K-ideal.
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2. Preliminaries
De�nition 2.1. Let H be a non-empty set and ” ◦ ” be a hyperoperation
on H, that is ” ◦ ” is a function from H ×H to P∗(H) = P(H)\{∅}. Then
H is called a hyper K-algebra if it contains a constant 0 and satis�es the
following axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x < x,
(HK4) x < y, y < x =⇒ x = y,
(HK5) 0 < x,

for all x, y, z ∈ H, where x < y is de�ned by 0 ∈ x ◦ y and for every
A,B ⊆ H, A < B is de�ned by ∃ a ∈ A, ∃ b ∈ B such that a < b.

Note that if A,B ⊆ H, then by A ◦ B we mean the set-theoretic union
of all a ◦ b such that a ∈ A, b ∈ B.

The main properties of hyper K-algebras are described in [2] and [3].
For example in [2] the following theorem is proved.

Theorem 2.2. Let (H, ◦, 0) be a hyper K-algebra. Then for all x, y, z ∈ H
and for all non-empty subsets A, B and C of H we have:

(i) x ◦ y < z ⇐⇒ x ◦ z < y, (vi) x ∈ x ◦ 0,
(ii) (x ◦ z) ◦ (x ◦ y) < y ◦ z, (vii) (A ◦ C) ◦ (A ◦B) < B ◦ C,
(iii) x ◦ (x ◦ y) < y, (viii) (A ◦ C) ◦ (B ◦ C) < A ◦B,
(iv) x ◦ y < x, (ix) A ◦B < C ⇐⇒ A ◦ C < B,
(v) A ⊆ B =⇒ A < B, (x) A ◦B < A.

De�nition 2.3. Let (H, ◦, 0) be a hyper K-algebra. If there exist an
element 1 ∈ H such that 1 < x for all x ∈ H, then H is called a bounded
hyper K-algebra and 1 is said to be the unit of H.

3. Dual positive implicative hyper K-algebras
From now H is a bounded hyper K-algebra with unit 1 and 1 ◦ x = Nx.

De�nition 3.1. A non-empty subset D of H is called a dual positive
implicative hyper K-ideal type 3 (shortly: DPIHKI-T3) if

(i) 1 ∈ D,
(ii) N((Nx ◦Ny) ◦Nz) < D and N(Ny ◦Nz) < D imply

N(Nx ◦Nz) ⊆ D, ∀ x, y, z ∈ H.
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Example 3.2. Let H = {0, 1, 2}. Then the following table shows a hyper
K-algebra structure on H with unit 1.

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

And I = {0, 1} is a DPIHKI − T3.

Theorem 3.3. A non-empty subset D of H is a DPIHKI − T3 if and
only if N(Nx ◦Nz) ⊆ D for all x, z ∈ H.

Proof. Let D be a DPIHKI − T3. Then by De�nition 2.1 and Theorem
2.3 (x) we conclude that N((Nx ◦ Ny) ◦ Nz) < D and N(Ny ◦ Nz) < D
for all x, y, z ∈ H. So by hypothesis we get that N(Nx ◦ Nz) ⊆ D for all
x, z ∈ H. The converse statement is obvious.

To avoid repetitions let in the sequel H = {0, 1, 2} be a bounded hyper
K-algebra with unit 1.

Lemma 3.4. In H we have 1 ◦ 0 = {1}.

Proof. On the contrary let 1 ◦ 0 6= {1}. Then we must have 1 ◦ 0 = {1, 2}.
By (HK2) we have (1◦0)◦2 = (1◦2)◦0, so 0 ∈ 2◦2 ⊆ (1◦0)◦2 = (1◦2)◦0.
Thus there exists x ∈ 1 ◦ 2 such that 0 ∈ x ◦ 0, which implies that x < 0,
thus from (HK4) and (HK5) we get that x = 0. Hence 0 ∈ 1 ◦ 2, that is
1 < 2. Since 2 < 1, thus 2 = 1, which is a contradiction.

Lemma 3.5. For all x ∈ H we have NNx = x if and only if 1 ◦ 1 = {0}
and 1 ◦ 2 = {2}.

Proof. Let NNx = x, i.e. 1 ◦ (1 ◦ x) = x for all x. Since 1 ◦ (1 ◦ 2) = 2, we
get that 0 6∈ 1 ◦ 2 and 1 6∈ 1 ◦ 2. So 1 ◦ 2 = {2}. Now since 1 ◦ (1 ◦ 1) = 1,
we conclude that 1 6∈ 1 ◦ 1 and 2 6∈ 1 ◦ 1. Thus 1 ◦ 1 = {0}.

The converse follows from Lemma 3.4 and hypothesis.

Lemma 3.6. Let D1 = {1} and D2 = {1, 2} in H. Then D1 and D2 are
not DPIHKI − T3.

Proof. Since 0 ∈ 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 1)) = N(N0 ◦N1), 0 6∈ D1 and 0 6∈ D2,
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then by Theorem 3.3 D1 and D2 are not DPIHKI − T3.

Lemma 3.7. Let D = {0, 1} in H. Then the following hold:
(i) if 2 ∈ 1 ◦ 2, then D is not a DPIHKI − T3,
(ii) if 2 ∈ 1 ◦ 1, then D is not a DPIHKI − T3.

Proof. (i) Since 2 ∈ 1 ◦ 2 ⊆ 1 ◦ ((1 ◦ 2) ◦ (1 ◦ 1)) = N(N2 ◦N1) and 2 6∈ D,
then, by Theorem 3.3, D is not DPIHKI − T3.

(ii) The proof is similar as (i).

Theorem 3.8. Let D = {0, 1} in H. Then D is a DPIHKI − T3 if and
only if 2 6∈ 1 ◦ 2 and 2 6∈ 1 ◦ 1.

Proof. Let 2 6∈ 1 ◦ 2 and 2 6∈ 1 ◦ 1. Thus 1 ◦ 2 = {1} and 1 ◦ 1 = {0, 1} or
1 ◦ 1 = {0}. Now by some calculations we can get that N(Nx ◦Nz) ⊆ D,
for all x, z ∈ H.

Conversely, on the contrary let 2 ∈ 1 ◦ 2 or 2 ∈ 1 ◦ 1. Then Lemma 3.7
(i), (ii) gives a contradiction. Thus 2 6∈ 1 ◦ 2 and 2 6∈ 1 ◦ 1.

Remark 3.9. From now let D = {0, 1} be a DPIHKI − T3. Thus:
(i) From Theorem 3.8 we conclude that 1 ◦ 2 = {1} and 1 ◦ 1 = {0, 1} or

1 ◦ 1 = {0}.
(ii) By (HK2) we have (1 ◦ 1) ◦ 0 = (1 ◦ 0) ◦ 1 and (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1.

Thus by (i) and Lemma 3.4 we conclude that 0 ◦ 0 ⊆ {0, 1} and
0 ◦ 2 ⊆ {0, 1}.

Lemma 3.10. If 2 ◦ 2 = {0} and 0 ◦ 0 = {0} in H, then 2 ◦ 0 = {2}.

Proof. By (HK2) we have (2 ◦ 0) ◦ 2 = (2 ◦ 2) ◦ 0 = 0 ◦ 0 = {0}. If 1 ∈ 2 ◦ 0,
then 1 ◦ 2 ⊆ (2 ◦ 0) ◦ 2 = {0}. Thus 1 ◦ 2 = {0}, which is a contradiction
because 1◦2 = {1}, by Remark 3.9 (i). Thus 1 6∈ 2◦0 , hence 2◦0 = {2}.

Lemma 3.11. If 2 ◦ 2 = {0} and 0 ◦ 1 = {0} in H, then 1 6∈ 2 ◦ 1.

Proof. On the contrary let 1 ∈ 2 ◦ 1. By (HK2) we have (2 ◦ 1) ◦ 2 =
(2 ◦ 2) ◦ 1 = 0 ◦ 1 = {0}. Thus by Remark 3.9 (i) and hypothesis we have
1 ∈ 1 ◦ 2 ⊆ (2 ◦ 1) ◦ 2 = {0}, which is a contradiction.



Dual positive implicative hyper K-ideals of type 3 89

Lemma 3.12. If 2 ◦ 1 = {0, 2} and 1 ◦ 1 = {0} in H, then 2 ◦ 0 = {2}.

Proof. On the contrary let 2 ◦ 0 6= {2}. Then we must have 2 ◦ 0 = {1, 2}.
By (HK2) we have (2 ◦ 1) ◦ 0 = (2 ◦ 0) ◦ 1. By hypothesis we have
(2 ◦ 1) ◦ 0 = {0, 1, 2} and (2 ◦ 0) ◦ 1 = {0, 2}, which is a contradiction.

Lemma 3.13. Let 0 ◦ 1 = {0, 1} and 0 ◦ 2 = {0} in H.
(i) If 2 ◦ 2 ⊆ {0, 2}, then 2 ◦ 1 6⊆ {0, 2}.
(ii) If 2 ◦ 2 = {0, 1} or 2 ◦ 2 = {0, 1, 2}, then 2 ◦ 1 6= {0}.

Proof. (i) On the contrary let 2 ◦ 1 ⊆ {0, 2}. If 2 ◦ 1 = {0, 2} by (HK2) we
have (2 ◦ 2) ◦ 1 = (2 ◦ 1) ◦ 2. By hypothesis we have (2 ◦ 2) ◦ 1 = {0, 1} if
2 ◦ 2 = {0} and (2 ◦ 2) ◦ 1 = {0, 1, 2} if 2 ◦ 2 = {0, 2}. On the other hand
(2 ◦ 1) ◦ 2 = {0} if 2 ◦ 2 = {0} and (2 ◦ 1) ◦ 2 = {0, 2} if 2 ◦ 2 = {0, 2}, which
is a contradiction. If 2 ◦ 1 = {0}, then the proof is similar as the case of
2 ◦ 1 = {0, 2}.

The proof of (ii) is similar as (i).

Lemma 3.14. Let 0 ◦ 1 = {0, 2} in H. Then:
(i) 2 ◦ 2 6⊆ {0, 1},
(ii) 2 ◦ 1 6⊆ {0, 1},
(iii) if 1 ◦ 1 = {0}, then 2 ◦ 2 6= {0, 1, 2},
(iv) if 0 ◦ 0 = {0}, then 2 ◦ 0 = {2},
(v) if 2 ◦ 2 = {0, 1, 2}, then 0 ◦ 2 = {0, 1}.

Proof. (i) On the contrary let 2◦2 ⊆ {0, 1}. By (HK2) we have (0◦2)◦1 =
(0 ◦ 1) ◦ 2. If 2 ◦ 2 = {0} by hypothesis and Remark 3.9 we get that
(0◦1)◦2 ⊆ {0, 1} and (0◦2)◦1 = {0, 2} or {0, 1, 2}, which is a contradiction.
If 2 ◦ 2 = {0, 2}, then the proof is similar as the case of 2 ◦ 2 = {0}.

The proof of the other cases are similar as above by considering the
suitable modi�cations.

Lemma 3.15. Let 0 ◦ 1 = {0, 1, 2} in H. Then:
(i) 2 ◦ 2 6⊆ {0, 1},
(ii) 2 ◦ 1 6⊆ {0, 1},
(iii) if 2 ◦ 2 = {0, 2} and 0 ◦ 2 = {0}, then 2 ◦ 1 6= {0, 2},
(iv) if 2 ◦ 1 = {0, 2} and 1 6∈ 2 ◦ 2, then 0 ◦ 2 = {0, 1}.

Proof. (i) On the contrary let 2◦2 ⊆ {0, 1}. By (HK2) we have (0◦2)◦1 =
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(0 ◦ 1) ◦ 2. If 2 ◦ 2 = {0} , then by hypothesis and Remark 3.9 we get that
(0 ◦ 1) ◦ 2 = {0, 1} and (0 ◦ 2) ◦ 1 = {0, 1, 2}, which is a contradiction. If
2 ◦ 2 = {0, 2}, then the proof is similar as the case of 2 ◦ 2 = {0}.

The proof of the other cases are similar as above by considering the
suitable modi�cations.

Lemma 3.16. If 2 ◦ 1, 2 ◦ 2 and 0 ◦ 1 ⊆ {0, 2}, then 0 ◦ 2 = {0}.

Proof. By (HK2) we have (2 ◦ 1) ◦ 2 = (2 ◦ 2) ◦ 1 ⊆ {0, 2}. Since
0 ◦ 2 ⊆ (2 ◦ 1) ◦ 2 ⊆ {0, 2}, and by Remark 3.9 (ii) 2 6∈ 0 ◦ 2, we get
that 0 ◦ 2 = {0}.

Lemma 3.17. Let 2 ◦ 1 = {0} in H. Then:
(i) if 1◦1 = {0, 1} and 2◦2 = {0, 1} or {0, 1, 2}, then 0◦2 = {0, 1},
(ii) if 0 ◦ 0 = {0} and 1 ◦ 1 = {0, 1}, then 2 ◦ 0 = {2},
(iii) if 0 ◦ 1 = {0, 1}, then 0 ◦ 2 = {0, 1},
(iv) if 0 ◦ 0 = {0, 1}, then 2 ◦ 0 = {1, 2}.

Proof. (i) By (HK2) we have (2 ◦ 2) ◦ 1 = (2 ◦ 1) ◦ 2. Now (2 ◦ 2) ◦ 1 = {0, 1}
and (2 ◦ 1) ◦ 2 = 0 ◦ 2, therefore 0 ◦ 2 = {0, 1}.

(ii) On the contrary let 2 ◦ 0 6= {2}. Then we must have 2 ◦ 0 = {1, 2}.
By (HK2) we have (2 ◦ 1) ◦ 0 = (2 ◦ 0) ◦ 1, which is contradiction, because
1 ∈ (2 ◦ 0) ◦ 1, while 1 6∈ (2 ◦ 1) ◦ 0 = {0}.

The proofs of (iii) and (iv) are similar.

Lemma 3.18. Let 2 ◦ 1 = {0, 2} in H. Then:
(i) if 1 ∈ 0 ◦ 1 and 1 6∈ 2 ◦ 2, then 0 ◦ 2 = {0, 1},
(ii) if 0 ◦ 0 = {0, 1}, then 2 ◦ 0 = {1, 2}.

Proof. (i) On the contrary let 0◦2 6= {0, 1}. Then we must have 0◦2 = {0},
by Remark 3.9 (ii). By (HK2) we have (2 ◦ 1) ◦ 2 = (2 ◦ 2) ◦ 1. Now by
hypothesis we have (2 ◦ 1) ◦ 2 ⊆ {0, 2} and 1 ∈ (2 ◦ 2) ◦ 1, which is a
contradiction.

The proof of (ii) is similar as (i).

Lemma 3.19. If 2 ◦ 2 ⊆ {0, 2} and 0 ◦ 0 = {0, 1}, then 2 ◦ 0 = {1, 2}.

Proof. On the contrary let 2 ◦ 0 6= {1, 2}. Then we must have 2 ◦ 0 = {2}.
By (HK2) we have (2 ◦ 2) ◦ 0 = (2 ◦ 0) ◦ 2. Now by hypothesis we have
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1 ∈ (2 ◦ 2) ◦ 0 and 1 6∈ (2 ◦ 0) ◦ 2, which is a contradiction.

Now we are ready to determine all of hyper K-algebras of order 3, in
which D = {0, 1} is a DPIHKI − T3.

Theorem 3.20 (Main theorem) There are 219 non-isomorphic bounded hy-
per K-algebras of order 3, to have D = {0, 1} as a DPIHKI − T3.

Proof. Let H = {0, 1, 2} and 1 be its unit. The following table shows
a probable hyper K-algebra structure on H, in which D = {0, 1} is a
DPIHKI − T3:

◦ 0 1 2
0 a11 a12 a13

1 a21 a22 a23

2 a31 a32 a33

By Remark 3.9 we have a21 = 1 ◦ 0 = {1} , a22 = 1 ◦ 1 = {0} or {0, 1},
a23 = 1 ◦ 2 = {1}, a11 = 0 ◦ 0 ⊆ {0, 1} and a13 = 0 ◦ 2 ⊆ {0, 1}. Also since
H is bounded, then by (HK3) and (HK5) we have 0 ∈ a12

⋂
a32

⋂
a33.

There are two cases for a22 = 1 ◦ 1. Let 1 ◦ 1 = {0}. Then by (HK2) we
have (1 ◦ 1) ◦ 0 = (1 ◦ 0) ◦ 1, so 0 ◦ 0 = {0}. Similarly (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1
implies that 0 ◦ 2 = {0}. We will show that in this case there exist exactly
40 non-isomorphic hyper K-algebras. In the other hand if 1 ◦ 1 = {0, 1},
then by Remark 3.9 (ii) we get that 0 ◦ 0 ⊆ {0, 1} and 0 ◦ 2 ⊆ {0, 1}
and in this situation we will obtain exactly 179 non-isomorphic hyper K-
algebras other than the previous 40 ones. So totally we have 219 di�erent
non-isomorphic bounded hyper K-algebras of order 3, to have D = {0, 1}
as a DPIHKI − T3. Now we give the details. To do this we consider two
main cases 1 ◦ 1 = {0} and 1 ◦ 1 = {0, 1}, and many subcases of them.
1. 1 ◦ 1 = {0}

We consider some subcases as follows:
1.1. 0 ◦ 1 = {0}

In this case also we consider 4 states as follows:
1.1.1. 2 ◦ 2 = {0}

By Lemmas 3.10 and 3.11 we must have 2 ◦ 0 = {2} and 2 ◦ 1 ⊆ {0, 2}.
So there exist 2 hyper K-algebras as follows:

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 2} {0}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0} {0}
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1.1.2. 2 ◦ 2 = {0, 1}
By (HK2) We have (2◦2)◦1 = (2◦1)◦2. We get that (2◦2)◦1 = {0}.

If 1 ∈ 2 ◦ 1 or 2 ∈ 2 ◦ 1, then 1 ∈ (2 ◦ 1) ◦ 2 = {0}, which is a contradiction.
Thus 1 6∈ 2 ◦ 1 and 2 6∈ 2 ◦ 1, hence 2 ◦ 1 = {0}. So there exists two hyper
K-algebras as follows:

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0} {0, 1}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0} {0, 1}

1.1.3. 2 ◦ 2 = {0, 2}
If 2 ◦ 1 = {0, 2}, then by Lemma 3.12 we have 2 ◦ 0 = {2}. So there

exists seven hyper K-algebras as follows:
◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 2} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1, 2} {0, 2}

1.1.4. 2 ◦ 2 = {0, 1, 2}
We prove that 2 ◦ 1 6= {0, 2}. On the contrary, let 2 ◦ 1 = {0, 2}. By

(HK2) we have (2 ◦ 2) ◦ 1 = (2 ◦ 1) ◦ 2, while (2 ◦ 2) ◦ 1 = {0, 2} and
(2 ◦ 1) ◦ 2 = {0, 1, 2}, which is a contradiction. So there exist six hyper
K-algebras:

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1} {0, 1, 2}
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1.2. 0 ◦ 1 = {0, 1}
In this case also we consider four states as follows:

1.2.1. 2 ◦ 2 = {0}
By Lemmas 3.10 and 3.13(i) we have 2 ◦ 0 = {2} and 2 ◦ 1 6⊆ {0, 2}. So

there exist two hyper K-algebras as follows:
◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0}

1.2.2. 2 ◦ 2 = {0, 1}
By Lemma 3.13 (ii) we have 2 ◦ 1 6= {0}. If 2 ◦ 1 = {0, 2}, then by

Lemma 3.12 we have 2 ◦ 0 = {2}. So there exist �ve hyper K-algebras:
◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1, 2} {0, 1}

1.2.3. 2 ◦ 2 = {0, 2}
By Lemma 3.13 (i) we have 2 ◦ 1 6⊆ {0, 2}. So there exist four hyper

K-algebras as follows:
◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1, 2} {0, 2}

1.2.4. 2 ◦ 2 = {0, 1, 2}
This case is similar to 1.2.2. So there exist �ve hyper K-algebras:
◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0, 1, 2}
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◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

1.3. 0 ◦ 1 = {0, 2}
In this case we have only one state, since by Lemma 3.14 (i), (ii) we

have 2 ◦ 2 6⊆ {0, 1} and 2 ◦ 2 6= {0, 1, 2}.
1.3.1. 2 ◦ 2 = {0, 2}

By Lemma 3.14 (i), (iv) we have 2◦1 6⊆ {0, 1} and 2◦0 = {2}. So there
exist two hyper K-algebras as follows:

◦ 0 1 2

0 {0} {0, 2} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 2} {0}
1 {1} {0} {1}
2 {2} {0, 2} {0, 2}

1.4. 0 ◦ 1 = {0, 1, 2}
We have two states, since 2 ◦ 2 6⊆ {0, 1}, by Lemma 3.15 (i).

1.4.1. 2 ◦ 2 = {0, 2}
By Lemma 3.15 (ii), (iii) we have 2 ◦ 1 6⊆ {0, 1} and 2 ◦ 1 6= {0, 2}. So

there exist two hyper K-algebras as follows:
◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1, 2} {0}

1.4.2. 2 ◦ 2 = {0, 1, 2}
By Lemma 3.15 (ii) we have 2 ◦ 1 6⊆ {0, 1}. If 2 ◦ 1 = {0, 2}, then by

Lemma 3.12 we have 2 ◦ 0 = {2}. So there exist three hyper K-algebras:
◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0} {1}
2 {2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

Now we consider the following case:
2. 1 ◦ 1 = {0, 1}

This case has two subcases 0 ◦ 0 = {0} or {0, 1}.
2.1. 0 ◦ 0 = {0}

We consider the following subcases as:
2.1.1. 0 ◦ 1 = {0}

In this case also we consider four states as follows:
2.1.1.1. 2 ◦ 2 = {0}
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By Lemmas 3.10 and 3.11 we have 2 ◦ 0 = {2} and 1 6∈ 2 ◦ 1. If
2 ◦ 1 ⊆ {0, 2}, then by Lemma 3.16 we have 0 ◦ 2 = {0}. So there exist two
hyper K-algebras as follows:

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0} {0}

2.1.1.2. 2 ◦ 2 = {0, 1}
If 2 ◦ 1 = {0}, then by Lemma 3.17 (i), (ii) we have 0 ◦ 2 = {0, 1} and

2 ◦ 0 = {2}. So there exist 13 hyper K-algebras as follows:
◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0} {0, 1}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1}

2.1.1.3. 2 ◦ 2 = {0, 2}
If 2 ◦ 1 ⊆ {0, 2}, then 0 ◦ 2 = {0} by Lemma 3.16. If 2 ◦ 1 = {0}, then

2 ◦ 0 = {2} by Lemma 3.17 (i). So there exist 11 hyper K-algebras:
◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0} {0, 2}
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◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 2}

2.1.1.4. 2 ◦ 2 = {0, 1, 2}
If 2 ◦ 1 = {0}, then by Lemma 3.17 (i), (ii) we have 0 ◦ 2 = {0, 1} and

2 ◦ 0 = {2}. So there exist 13 hyper K-algebras as follows:
◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0} {0, 1, 2}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1, 2}

2.1.2. 0 ◦ 1 = {0, 1}
In this case also we consider four states as follows:
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2.1.2.1. 2 ◦ 2 = {0}
By Lemma 3.10 we have 2◦0 = {2}. If 0◦2 = {0}, then by Lemma 3.13

(i) we have 2 ◦ 1 6⊆ {0, 2}. So there exist six hyper K-algebras as follows:
◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0} {0}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0}

2.1.2.2. 2 ◦ 2 = {0, 1}
If 2 ◦ 1 = {0}, then by Lemma 3.17 (i), (ii) we have 0 ◦ 2 = {0, 1} and

2 ◦ 0 = {2}. So there exist 13 hyper K-algebras as follows:

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1}

2.1.2.3. 2 ◦ 2 = {0, 2}
If 2 ◦ 1 = {0}, then by lemma 3.17 (i), (ii) we have 0 ◦ 2 = {0, 1} and

2◦0 = {2}. If 2◦1 = {0, 2}, then by Lemma 3.18 (i) we have 0◦2 = {0, 1}.
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So there exist 11 hyper K-algebras as follows:

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

2.1.2.4. 2 ◦ 2 = {0, 1, 2}
This case is similar as the case of 2.1.2.2. So there exist 13 hyper K-

algebras as follows:

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1, 2}
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◦ 0 1 2

0 {0} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

2.1.3. 0 ◦ 1 = {0, 2}
In this case we have two states since by Lemma 3.14 (i) we obtain

2 ◦ 2 6⊆ {0, 1}.
2.1.3.1. 2 ◦ 2 = {0, 2}

If 2 ◦ 1 = {0, 2}, then by Lemma 3.16 we have 0 ◦ 2 = {0}. By Lemma
3.14 (i), (iv) we have 2 ◦ 1 6⊆ {0, 1} and 2 ◦ 0 = {2}. So there exist three
hyper K-algebras as follows:

◦ 0 1 2

0 {0} {0, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 2} {0}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 2} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 2}

2.1.3.2. 2 ◦ 2 = {0, 1, 2}
By Lemma 3.14 (i), (iv), (v) we must have 2 ◦ 1 6⊆ {0, 1}, 2 ◦ 0 = {2}

and 0 ◦ 2 = {0, 1}. So there exist two hyper K-algebras as follows:
◦ 0 1 2

0 {0} {0, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

2.1.4. 0 ◦ 1 = {0, 1, 2}
By Lemma 3.15 (i) we have 2◦2 6⊆ {0, 1}, thus in this case we have only

two states as follows:
2.1.4.1. 2 ◦ 2 = {0, 2}

By Lemma 3.15 (i) we have 2 ◦ 1 6⊆ {0, 1}. If 2 ◦ 1 = {0, 2}, then by
Lemma 3.18 (i) we have 0 ◦ 2 = {0, 1}. So there exist six hyper K-algebras
as follows:

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 2}
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2.1.4.2. 2 ◦ 2 = {0, 1, 2}
By Lemma 3.15 (ii) we have 2 ◦ 1 6⊆ {0, 1}. So there exist eight hyper

K-algebras as follows:

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

Now we consider the following case:
2.2. 0 ◦ 0 = {0, 1}

We consider some subcases as follows:
2.2.1. 0 ◦ 1 = {0}

In this case also we consider four states as follows:
2.2.1.1. 2 ◦ 2 = {0}

By Lemmas 3.19 and 3.11 we have 2 ◦ 0 = {1, 2} and 1 6∈ 2 ◦ 1. Since
1 6∈ 2 ◦ 1, hence 2 ◦ 1 ⊆ {0, 2} and by Lemma 3.16 we have 0 ◦ 2 = {0}. So
there exist two hyper K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0} {0}

2.2.1.2. 2 ◦ 2 = {0, 1}
If 2 ◦ 1 ⊆ {0, 2}, then by Lemmas 3.17 (iv) and 3.18 (ii) we have

2◦0 = {1, 2}. If 2◦1 = {0}, then by Lemma 3.17 (i) we have 0◦2 = {0, 1}.
So there exist 11 hyper K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0} {0, 1}
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◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1}

2.2.1.3. 2 ◦ 2 = {0, 2}
By Lemma 3.19 we have 2◦0 = {1, 2}. If 2◦1 ⊆ {0, 2}, then by Lemma

3.16 we have 0 ◦ 2 = {0}. So there exist six hyper K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0} {0, 2}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 2}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

2.2.1.4. 2 ◦ 2 = {0, 1, 2}
This case is similar to 2.2.1.2. So there exist 11 hyper K-algebras:

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}
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◦ 0 1 2

0 {0, 1} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1, 2}

2.2.2. 0 ◦ 1 = {0, 1}

Consider the following four states:
2.2.2.1. 2 ◦ 2 = {0}

By Lemma 3.19 we have 2 ◦ 0 = {1, 2}. If 2 ◦ 1 ⊆ {0, 2}, then by Lem-
mas 3.17 (iii) and 3.18 (i) we have 0 ◦ 2 = {0, 1}. So there exist six hyper
K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0} {0}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0}

2.2.2.2. 2 ◦ 2 = {0, 1}

If 2 ◦ 1 ⊆ {0, 2}, then by Lemmas 3.17 (iv) and 3.18 (ii) we have
2◦0 = {1, 2}. If 2◦1 = {0}, then by Lemma 3.17 (iii) we have 0◦2 = {0, 1}.
So there exist 11 hyper K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1}
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◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1}

2.2.2.3. 2 ◦ 2 = {0, 2}
By Lemma 3.19 we have 2 ◦ 0 = {1, 2}. If 2 ◦ 1 ⊆ {0, 2}, then by Lem-

mas 3.18 (i) and 3.17 (i) we have 0 ◦ 2 = {0, 1}. So there exist six hyper
K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0} {0, 2}

2.2.2.4. 2 ◦ 2 = {0, 1, 2}
If 2 ◦ 1 ⊆ {0, 2}, then by Lemmas 3.17 (iv) and 3.18 (ii) we have

2◦0 = {1, 2}. If 2◦1 = {0}, then by Lemma 3.17 (i) we have 0◦2 = {0, 1}.
So there exist 11 hyper K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1} {0, 1, 2}
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2.2.3. 0 ◦ 1 = {0, 2}
By Lemma 3.14 (i) we have 2 ◦ 2 6⊆ {0, 1}. Thus this case has only two

stats as follows:
2.2.3.1. 2 ◦ 2 = {0, 2}

By Lemmas 3.14 (ii) and 3.19 we have 2 ◦ 1 6⊆ {0, 1} and 2 ◦ 0 = {1, 2}.
If 2 ◦ 1 = {0, 2}, then by Lemma 3.16 we have 0 ◦ 2 = {0}. So there exist
three hyper K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0, 2} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 2}

◦ 0 1 2

0 {0, 1} {0, 2} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0, 1} {0, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

Case 2.2.3.2. 2 ◦ 2 = {0, 1, 2}.
By Lemmas 3.14 (ii), (v) we have 2 ◦ 1 6⊆ {0, 1} and 0 ◦ 2 = {0, 1}. If

2 ◦ 1 = {0, 2}, then by Lemma 3.18 (ii) we have 2 ◦ 0 = {1, 2}. So there
exist three hyper K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

2.2.4. 0 ◦ 1 = {0, 1, 2}
By Lemma 3.15 (i) we have 2 ◦ 2 6⊆ {0, 1}. Thus this case has only two

states as follows:
2.2.4.1. 2 ◦ 2 = {0, 2}

By Lemmas 3.15 (i) and 3.19 we have 2 ◦ 1 6⊆ {0, 1} and 2 ◦ 0 = {1, 2}.
If 2 ◦ 1 = {0, 2}, then by Lemma 3.18 (i) we have 0 ◦ 2 = {0, 1}. So there
exist three hyper K-algebras as follows:

◦ 0 1 2

0 {0, 1} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

◦ 0 1 2

0 {0, 1} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 2}

◦ 0 1 2

0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 2}

2.2.4.2. 2 ◦ 2 = {0, 1, 2}
By Lemma 3.15 (ii) we have 2 ◦ 1 6⊆ {0, 1}. If 2 ◦ 1 = {0, 2}, then by

Lemma 3.18 (ii) we have 2◦0 = {1, 2}. So there exist six hyper K-algebras
as follows:
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◦ 0 1 2

0 {0, 1} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1, 2} {0, 1}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

◦ 0 1 2

0 {0, 1} {0, 1, 2} {0}
1 {1} {0, 1} {1}
2 {2} {0, 1, 2} {0, 1, 2}

Now we show that each pair of the above 219 hyper K-algebras are
not isomorphic together. On the contrary let (H1, ◦1, 0) and (H2, ◦2, 0) be
isomorphic. then there exists an isomorhpism f : H1 → H2. So f(x ◦1 y) =
f(x)◦2 f(y) , for all x, y ∈ H , thus we have f(01) = 02, f(1) = 2, f(2) = 1.
But f(1 ◦1 2) = f({1}) = {2} and f(1) ◦2 f(2) = 2 ◦ 1 ⊇ {0}, which is a
contradiction, since 0 6∈ f(1 ◦1 2) = {2}.
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