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On B-algebras and quasigroups

Jung R. Cho and Hee Sik Kim

Abstract

In this paper we discuss further relations between B-algebras and quasigroups.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCT-algebras (|2, 3]). It is known that the class of BCK-
algebras is a proper subclass of the class of BCI-algebras. In [4, 5] Q. P.
Hu and X. Li introduced a wide class of abstract algebras: BC H-algebras.
They have shown that the class of BCI-algebras is a proper subclass of
the class of BC' H-algebras. J. Neggers and H. S. Kim introduced in [§]
the notion of d-algebras, i.e. algebras satisfying (1) zx = 0, (5) 0z = 0,
(6) zy = 0 and yx = 0 imply =z = y, which is another useful gene-
ralization of BC'K-algebras, and then they investigated several relations
between d-algebras and BC K-algebras as well as some other interesting
relations between d-algebras and oriented digraphs. Recently, Y. B. Jun,
E. H. Roh and H. S. Kim introduced in [6] a new notion, called an BH-
algebra, determined by (1), (2) 20 = = and (6), which is a generalization
of BCH/BC1I/BCK-algebras. They also defined the notions of ideals and
boundedness in BH-algebras, and showed that there is a maximal ideal
in bounded BH-algebras. J. Neggers and H. S. Kim introduced in [9] and
investigated a class of algebras which is related to several classes of algebras
of interest such as BCH/BCI/BCK-algebras and which seems to have
rather nice properties without being excessively complicated otherwise. In
this paper we discuss further relations between B-algebras and other topics,
especially quasigroups. This is a continuation of [9].
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2. Preliminaries

A B-algebra is a non-empty set X with a constant 0 and a binary operation
“." (denoted by juxtaposition) satisfying the following axioms:

(1) zz=0,

(2) 20==x,

3)  (zy)z = z(2(0y))
for all z,y,z € X.

Example 2.1. It is easy to see that X = {0,1,2,3,4,5} with the multipli-
cation:

T W N~ OO
W UL i = O N
B~ W Ot O N N
N = O Ot Wl W
— O N W O

O N o W Ot ot

T W N~ Of -

is a B-algebra.
The following result is proved in [9].

Proposition 2.2. If (X;-,0) is a B-algebra, then

(1) x(yz) = (x(02))y,
(i) (zy)(0y) = =,
(1i1) xz =yz implies v =y

forall z,y,z € X.

A B-algebra (X;-,0) is said to be 0-commutative if x(0y) = y(0z) for
any x,y € X.

The B-algebra from the above example is not 0-commutative, since we
have 3-(0-4) =2#1=4-(0-3). A simple example of a 0-commutative
B-algebra is a Boolean group. It is not difficult to see that a B-algebra is
a Boolean group iff it satisfies one from the following identities: Ox = z,

ry = yx, (zy)z = z(yz).
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3. B-algebras and quasigroups

Lemma 3.1. Let (X;-,0) be a B-algebra. Then for all z,y € X
(1) xy =0 implies x =y,
(i) Ox =0y implies =y,
(z51) 0(0z) = .
Proof. (i) Trivially follows from Proposition 2.2 (iii) and the fact that
0=yy.
(ii) If Oz = Oy, then

0 =2z = (z2)0 = (0(02)) = 2(0(0y)) = (zy)0 = =y,

and hence x =y by (i).

(iii) For any =z € X, since Oz = (0z)0 = 0(0(0z)) by (ii), we have
x = 0(0x). O

Theorem 3.2. In any B-algebra the left cancellation law holds.

Proof. Assume that xy = xz. Then 0(zy) = 0(xz). By Proposition 2.2 (i),
we obtain that (0(0y))z = (0(0z))z. By Lemma 3.1 (iii) we have yr = zz.
Hence y = z by Proposition 2.2 (iii). O

Let L, and R, be the left and right translation of X (respectively), i.e.
let Lo(z) = ax and Ry(x) = za for all x € X.

Lemma 3.3. If (X;-,0) is a B-algebra, then
(i) Lo is a bijection,
) Ro=R;'=idx,
(131) L and R4 are injective for all a € X,
) Lgl(O cx) = Lal(Lo(m)) =z and
0- (Lal(:v)) = LO(L61($)) =z for v € X.
Proof. (i) Since 0(0x) = x, L% =idx and so Ly is a bijection.
(ii) is a consequence of (2).

(iii) follows from Proposition 2.2 (iii) and Theorem 3.2. O

Lemma 3.4. L, and R, are surjective for all a € X.
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Proof. Let ¢ € X. Putting b= (Ly'(c)) - (0-a), we obtain

La(b) = La(Lg () (0- @) = a- (Lg () - (0- a))
= (a-a)- (Lg" () = 0- (Lg'(e) = c.

Thus L, is surjective.

by Proposition 2.2 (ii). Hence R, is surjective. O
Theorem 3.5. Every B-algebra is a quasigroup.
Proof. By Lemma 3.3 (iii) and Lemma 3.4. O

Proposition 3.6. A B-algebra (X;-,0) satisfies the identity (yz)x =y
if and only if it is a loop and O is its neutral element.

Proof. 1f a B-algebra (X;-,0) satisfies the identity (yz)z = y, then putting
y = 0 in this identity we have (0z)z = 0, which by Lemma 3.1 (i) gives
0z = z. Hence 0 is the neutral element of (X;-,0). By Theorem 3.5
(X;-,0) is a loop.
Conversely, if 0 is the neutral element of a B-algebra (X;-,0), then
(yz)z = y(z(0)) = y(zz) =y0 =y

for all z,y € X. This proves the proposition. O

Theorem 3.7. A B-algebra satisfies the identity x(xy) =y if and only if
it 15 0-commutative.

Proof. 1f a B-algebra (X;-,0) satisfies the identity x(zy) =y, then

(z(0y))y = z(y(0(0y))) = z(yy) = 20 = z = y(yz)
y(y(0(0z))) = (y(0z))y .

Hence we have (z(0y))y = (y(0x))y. Then, by the right cancellation law,
we obtain z(0y) = y(0x).
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The converse statement is proved in [9)]. O

Remark. A B-algebra satisfying the identity x(xy) = y is not, in general,
a loop. Indeed, if (G,+,0) is an abelian group, then G with the operation
x -y =x —y is an example of a O-commutative B-algebra, which satisfies
this identity but it is not a loop.

References

[1] R. H. Bruck: A survey of binary systems, Springer-Verlag, New York,
1971.

[2] Q. P. Hu and X. Li On BCH -algebras, Math. Seminar Notes 11
(1983), 313 — 320.

[3] Q. P. Hu and X. Li: On proper BCH-algebras, Math. Japon. 30
(1985), 659 — 661.

[4] K. Iséki and S. Tanaka: An introduction to theory of BCK -algebras,
Math. Japon. 23 (1978), 1 — 26.

[5] K. Iséki: On BCI-algebras, Math. Seminar Notes 8 (1980), 125—130.

[6] Y. B. Jun, E. H. Roh and H. S. Kim: On BH -algebras, Sci.
Mathematicae 1 (1998), 347 — 354.

[7] J. Meng and Y. B. Jun: BCK -algebras, Kyung Moon Sa Co., Seoul
1994.

[8] J. Neggers and H. S. Kim: On d-algebras, Math. Slovaca 49 (1999),
19 — 26.

[9] J. Neggers and H. S. Kim, On B-algebras, (submitted)

[10] J. Neggers and H. S. Kim, A fundamental theorem of B-homo-
morphism for B-algebras, Inter. Math. J. 2 (2002), (to appear)

Jung R. Cho Received March 21, 2001
Department of Mathematics

Pusan National University

Pusan 609-735, Korea

jungcho@hyowon.pusan.ac.kr



J. R. Cho and H. S. Kim

Hee Sik Kim

Department of Mathematics
Hanyang University

Seoul 133-791, Korea
heekim@hanyang.ac.kr



Quasigroups and Related Systems 8 (2001), 7 — 14

Non-associative algebraic system in cryptology.

Protection against "meet in the middle" attack

Jézsef Dénes and Tamas Dénes

Abstract

In this paper we shall mention an algorithm of zero knowledge proof based on Latin
squares. We shall define the DL,,(n) type Latin squares, which have a further property
that is stronger than the pan-Hamiltonian squares: Every pair of DL,,(n) rows and

columns is a cycle of length n, if n is prime.

1. Basic notions

In general the cryptology is based on fields which are commutative and asso-
ciative. There is a method which studies the evolution of differences during
encryption of pairs of plaintexts, and derives the most likely keys from a
pool of many pairs. It is called differential cryptanalysis. Differential crypt-
analysis can also be used to find collisions in "hash" functions. For DES
(Data Encryption Standard) like cryptosystems the differences are usually
in terms of exclusive or of the intermediate data in the pair. Differential
cryptanalysis might apply "meet in the middle attack" (introduced in [2]).

Definition 1.1. Meet in the Middle Attack: An attack in which the evolu-
tion of the data is studied from both directions: from the plaintext forwards
towards an intermediate round and from the ciphertext backwards towards
the same intermediate round. If the results at the intermediate round are
not the same in both directions, then the tested value of the key is not the
real value. If both results are the same in several encryptions, then the
tested value of the key is the real value with high probability.
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Details in cryptography one can learn e.g. [14]. The Latin squares are
the tools for generalizations of finite field (see [6]).

Definition 1.2. A finite set J on which two binary operations are defined
(4) and (e) such J is a loop with respect to the operation (4) with identity
element 0 say, J\{0} is a group with respect to the operation (e) and for
which for all a,b,c € J the following distributive laws

a(b+c)=ab+ac and (b+c)a=ba+ ca

hold, is called a neofield.

A neofield is not necessarily commutative or associative. Neofields can
be applied in cryptology (see [6]). Neofields were first introduced by L. J.
Paige in 1949. In [3] the applications of algebraic systems without associa-
tivity and commutativity has been predicted to apply in the future.

The number of Latin squares without associativity and commutativity
is much larger than group tables (see e.g. [1]).

The cryptosystems based on quasigroups are as follows: equipment of
hardware encryption (patent [8], theoretical construction [4], [7]), hash func-
tion (see [5]), transposition cipher (see [10]) and Hamming distances (see
[11]). A cipher system based on neofield (see [6]).

In the remaining part of the this paper we shall mention an algorithm
of zero knowledge proof based on Latin squares.

2. Zero knowledge protocol

The classical method of authenticating a person by means of a machine is the
use of a password (PIN number). There are many problems involved with
the improper use of passwords. More sophisticated than simple passwords
the challenge-and-response protocol.

It’s hard to believe, but procedures exist that enable user A to convince
user B that he knows a secret without giving B the faintest idea of what
the secret is. Such procedures are naturally enough called zero knowledge
protocols.

Jean-Jacques Quisquater and Louis Guillou explain zero-knowledge with
a story about a cave (see [13]|). The cave, illustrated in Figure 1. has a
secret.

Someone who knows the magic words can open the secret door between
C and D. To everyone else, both passages lead to dead ends.
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Peggy knows the secret of the cave. She wants to prove her knowledge
to Victor, but she doesn’t want to reveal the magic words. Here’s how she
convinces him:

(1) Victor stands at point A.

(2) Peggy walks all the way into the cave, either to point C or point D.

(3) After Peggy has disappeared into the cave, Victor walks to point B.

(4) Victor shouts to Peggy, asking her either to:

(a) come out of the left passage or
(b) come out of the right passage.

(5) Peggy complies, using the magic words to open the secret door if

she has to.

(6) Peggy and Victor repeat steps (1) through (5) n times.

O00oooOooaad A OO00o0o0oOoan
O00oooOooaad OO00o0o0oOoan
O00oooOooaad OO00o0o0oOoan
Oodagd oOo
Oodagd B oOo
Oodagd oOo
Oodagd O00oooOooaad oOo
Oodagd O00oooOooaad oOo
Oodagd O00oooOooaad oOo
Oodagd O00oooOooaad oOo
Oodagd O00oooOooaad oOo
Oodagd oOo
Oodagd oOo
Oodagd ¢|D oOo
O00o0O00boooooooboooboOoo
O00o0O00boooooooboooboOoo
O00o0O00boooooooboooboOoo
Figure 1.

3. DD algorithm

Assume the users (uy, ua, ..., ug) form a network. u; has public-key L, L;Li
(denote two isotopic Latin squares at order n and secret-key I,,, (denotes
the isotopism of L, upon L;Ll) u; wants to prove identity for u; but he
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doesn’t want to reveal the secret-key (zero-knowledge proof).

1. u; randomly permutes L,,; to produce another Latin square H.
2. u; sends H to u;.
3. u; asks u; either to:
a. prove that H and L;i are isotopic,
b. prove that H and L,,, are isotopic.
4. u; complies. He either
a. prove that H and L;i are isotopic,
b. prove that H and L,,, are isotopic.

5. u; and u; repeat steps 1. through 4. n times.

One of the present authors gave a lecture on DD Algorithm in 1996
at USC (Los Angeles), Prof L. Welch made a comment. Prof L. Welch
said that the security of the scheme varying on Latin squares which used
as a public-keys. Strongest so called pan-Hamiltonian Latin squares. Pan-
Hamiltonian Latin squares are introduced by J. Wanless (see [15]).

Definition 3.1. A Latin square L at order n is a pan-Hamiltonian if every
row cycle of L has length n.

Pan-Hamiltonian squares have applications besides the cryptography in
the combinatorics. These squares have no proper subrectangles.

Pan-Hamiltonian Latin squares has been called a C-type Latin squares
(see [7]). When n is not prime, a C-type n x n Latin square cannot be a
group table. For all n > 7 there exists a C-type Latin square of order n
that is not group table (see [7]).

Infinitely many values of p prime (p > 11 and p = 2(mod 3)) there
exists a C-type Latin square of order p which cannot based on a group (see
[7]).

In [12] gave what is believed to be the first published example of a sym-
metric 11 x 11 Latin square (see Figure 2.) which, although not cyclic, has
the property that the permutation between any two rows is an 11-cycle. In
[12] there was proved how this 11 x 11 Latin square can be obtained by a
general construction for n x n Latin square where n is prime with n > 11.
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0* 1* 2 4 8 5 10 9 7 3 6
1 6 3 5 9 10 0 2 4 7
3 1 6 10 7 9 0 4 5 8

4 5 6 2 1* 9 3 7 0 8 10
8 9 10 1 4 2 7 6 3 0 5
L= 5 10 7 9 2* 8 4 3 1* 6 0
10 0 9 3 7 4 5 8 6 2 1
9 2 0 7 6 3 8§ 10 5 1 4
7 8 4 0 3 1 6 5 9 10 2
3 4 5 8 0 6 2 1 10 9
6 7 8 10 5 0 1 2 9 3

Figure 2.

One of the present authors introduced an algorithm in [9]. (This algo-
rithm has been called DT algorithm.) The DT algorithm lexicography listed
all elements of the symmetric group of degree n (Sy,) (71,72, ..., Tn1 € Sp).

—~

DT algorithm can be demonstrated (n = 4) in Figure 3.

114 10.

0
— (U] w [\] [\ —
w — [\V] w — [\
=
—~
o

o |||l =]~ ]] e
= e~ a]|]lec]|]|
(98]
[\&]
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13. 1 19. 13

14, 2|1 20. 1|3

15. 1 21. 2|3

16, 1)1 22. 2|3

17. 1 23. 43

18, 31 24, 43
Figure 3.

The correspondence one to one the permutations of degree n and natu-
ral numbers 1 to n!l. DT algorithm has the property for arbitrary natural
number 1 < m < (n — 1)! there corresponds a single subset of S,, contain-
ing n permutations, which are the rows of a Latin square of order n (see
(1)). These Latin squares (denote DL, (n)) uniquely determines the row
permutations as follows:

Tm
T(n—1)14m
T2(n—1)4+m
DL, (n) = 1<m< (n-1)! (1)

T(n—1)(n—1)"4+m

A subset of Latin squares DL,,(n) of order n will defined by two pa-
rameters (n, m). Consequently to store or transmission of the Latin square
is not necessarily the original matrix. Similarly to this property is really
applicable to zero-knowledge-proof in the cryptography.

Applying the Wilson theorem (If p is prime number, then (p—1)!4+1=
0(mod p)) to the DT algorithm (see [9]), then we have the next theorem:

Theorem 1. If p is prime number, then the DL,,(p) are pan-Hamiltonian
squares.
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Example 1. n=5and m=1

m 1 2 3 45
m25 2 41 5 3
DLi(5)=| m9 | =4 5 2 3 1
73 5 3 4 1 2
T97 315 2 4

Example 2. n =5 but the Latin square is not DL,,(n) type:

T 1 2 3 45
T43 4 5 2 1 3
LB)y=| m7 | =5 3 4 2 1
88 3 4 1 5 2
114 21 5 3 4

(14 235 (15 234
™M3=\ 41 5923 TT=\ 51 349
(13 245 (12 345
=\ 31 459 e =\ 91 534

From the point of view of cryptology the DL,,(n) type Latin squares
have a further property that is stronger than the pan-Hamiltonian squares:

Every pair of DL,(n) rows (and columns, its number k = ( ;L >) s a
cycle of length n (see [9]).
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On some old and new problems in n-ary groups

Wiestaw A. Dudek

Abstract

In this paper some old unsolved problems connected with skew elements in n-ary groups

are discussed.

1. Introduction

A nonempty set G together with one n-ary operation f:G"™ — G is called
an n-ary groupoid and is denoted by (G, f). We say that this groupoid
is i-solvable or solvable at the place i if for all aq, ..., a,,b € G there exists
x; € G such that

flar, ..., ai—1, 2, Giq1, - a) = b. (1)

If this solution is unique, we say that this groupoid is uniquely i-solvable.
An n-ary groupoid which is uniquely i-solvable for every i = 1,2,...,n is
called an n-ary quasigroup or n-quasigroup (cf. [3]).
We say that an n-ary groupoid (G, f) is (i, j)-associative if

flar,..;ai—1, f(@is oy Gitn—1), Qitn, -, A2n—1)

= f(ab sy Aj—1, f(aj7 L) ajJrnfl)a Ajtns - a2n71)7
holds for all ay,...,a9,—1 € G. If an n-ary operation is (i, j)-associative for
every i,j € {1,...,n}, then it is called associative. An n-ary groupoid with
an associative operation is called an n-ary semigroup or n-semigroup. An

n-semigroup which is also an n-quasigroup is called an n-ary group (briefly:
n-group) or a polyadic group (cf. [31]) .

2000 Mathematics Subject Classification: 20N15, 08N05

Keywords: n-ary group, skew element, variety
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For n = 2 it is an ordinary group. For infinite n, where n is a countable
infinite number, it is an infinitary group. Unfortunately all such groups are
trivial (have only one element), but there are non-trivial infinitary quasi-
groups and semigroups (cf. [4]). In connection with this we assume through-
out the whole text that 3 < n < 0.

The first idea of such generalization of groups was presented by E. Kas-
ner in the lecture at the fifty-third annual meeting of the American As-
sociation for the Advancement of Science, reported by L. G. Weld in The
Bulletin of the American Mathematical Society in 1904 (cf. [25]), but the
first formal definition was given by W. Dérnte in the paper [6] based on his
dissertation prepared under the inspiration of E. Noether.

Sets with one n-ary operation having different properties were investi-
gated by many authors. For example, J. Certaine [5| and D. H. Lehmer
[27] described some natural ternary (i.e. m = 3) operations defined on a
group. Some ternary groupoids having interesting applications to projec-
tive and affine geometry were considered by R. Baer [2|, H. Prifer [32], A.
K. Sushkevich [39] and V. V. Vagner [41]. Ternary quasigroups are used in
[37] and [38] to the characterization of Mendelsohn and Steiner quadruple
systems.

On the other hand, G. A. Miller [28] described sets of group elements
involving only products of more than n elements. Some n-ary operations
have interesting applications in physics. For example, Y. Nambu [29] pro-
posed in 1973 the generalization of classical Hamiltonian mechanics based
on the Poisson bracket to the case when the new bracket, now called the
Nambu bracket, is an n-ary operation on classical observables. The au-
thor of [40] suspects that different n-ary structures such as n-Lie algebras,
Lie ternary systems and linear spaces with additional internal n-ary op-
erations, might clarify many important problems of modern mathematical
physics (Yang-Baxter equation, Poisson-Lie groups, quantum groups). For
example, ternary Zs—graded algebras are important (cf. [26]) for their ap-
plications in physics of elementary interactions. Unfortunately, from the
mathematical point of view all such structures are rather complicated, es-
pecially for n > 3.

The above definition of an n-ary group is a generalization of H. Weber’s
formulation of axioms of groups. Similar generalization of L. E. Dickson’s
axioms one leads to n-ary groups (G, f ) derived from a group (G, - ), i.e. to
n-ary groups with the operation

flzr, 20, ... xn) =21 T2+ ... - Ty

(cf. [1] and [33]). But for every n > 3 there are n-groups which are not
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derived from any group (cf. [6], [9], [10]).

E. L. Post observed in [31] that under the assumption of the n-ary
associativity it suffices only to postulate the existence of the solution of (1)
at the place ¢ = 1 and ¢ = n, or at one place ¢ other than 1 and n. Then
one can prove uniqueness of the solution of (1) for alli =1,2,...,n.

Also the assumption on the associativity can be given in the weaker
form. For example, in [18] the following theorem is proved.

Theorem 1. (Dudek, Glazek, Gleichgewicht 1977) An n-ary groupoid
(G, f) is an n-ary group if and only if (at least) one of the following condi-
tions is satisfied:

a) the (i,i+ 1)-associative law holds for some i € {2,...,n—2} and the
equation (1) is uniquely solvable for i and some k > i,

b) the (1,2)-associative law holds and the equation (1) is solvable for
i = n and uniquely solvable for i =1,

¢) the (n—1,n)-associative law holds and the equation (1) is solvable for
i =1 and uniquely solvable for i =n.

The class of n-ary groups can be characterized also as the class of n-ary
semigroups with two binary operations satisfying two simple identities, or
as the class of m-ary semigroups in which some two equations containing
only two variables are solvable (cf. [13]).

2. Skew elements and endomorphisms

According to the definition of an n-ary group (G, f) for every x € G there
exists only one z € G such that

This element is called skew to x and is denoted by Z. Since for every
x € G there exists only one z, the above equation induces on G the new
unary operation ~: x — Z . This means that an n-ary group (G, f) can
be considered as an algebra (G, f,”) of type (n,1) with two fundamental
operations: an n-ary one f and an unary one ~: x — I, which gives
some analogy with the binary case when a group is considered as an algebra
(G,-, 1) of type (2,1). In a binary group we have ze = x for all 2 and some
fixed e. For n = 3 this identity can be generalized to the form f(z,e,e) =«
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or f(z,x,e) = x. The first form, for a ternary group derived from a binary
group (G,-), implies that e is the neutral element of (G, ), the second —
that e is the inverse of = (in (G, -), obviously). Thus, in some sense, the
skew element is a common generalization of the identity and the inverse
element of a binary group.

In n-ary groups derived from binary groups we have z = z?~"

and

fly,z, ...,z x) = fa,. ., Ty 2,y) = Y (2)

for all z,y, where T can appear at any place under the sign of the n-ary
operation. This shows that in an n-ary group derived from a group (G, -)
of the exponent n — 2 the neutral element of (G, -) is skew to every z € G.
In an n-ary group derived from a group (G,-) of the exponent n — 3 we
have z = 2! and z # g for all = # y. If the exponent of (G,-) is equal
ton—1, then z = x for all z € G.

An element & = T is called idempotent. It is also defined by the equation
f(z,...,z) = z. For every n > 3 there are n-ary groups without idempo-
tents and m-ary groups in which only some elements are idempotent (cf.
[10]). A group in which all elements are idempotent is called an idempotent
group.

The operation ~: x — Z plays an important role in the theory of n-ary
groups and in their applications to affine geometry (cf. [21] and [35]). This
operation can be used also to the definition of n-ary groups (cf. [23] and
[18]). The minimal axioms system defining of n-ary groups is given in the
following theorem proved in [8].

Theorem 2. (Dudek 1980) The class of n-ary groups (G, f) coincides with
the variety of all (1,2)-associative n-ary groupoids (G, f ) with an additional
unary operation ~: x — T satisfying the identity (2), where T appears at
one fized place.

It is not difficult to see that in an n-ary group (G, f) derived from a
commutative group the following identity holds:

f(x17x27"'7x’n):f(517§27"’7xn)' <3>
It holds also in the non-commutative 8-group derived from the group S5 and
in every idempotent n-group. For z1 = z9 = ... =z, = x it is satisfied in

any n-ary group.
From the proof of Theorem 3 in [22]| it immediately follows that this
identity holds in all medial (in the sense of Belousov [3]) n-ary groups, i.e.
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in all n-ary groups in which the identity

f(f($11,9012, e ,$1n)7 f(fU21, Z22,. .. ,932n), Sy f(l‘nl,xnz, cee ,fﬁnn))
= f(f(x11?$21a cee 7xn1)7 f($12,l'22, cee >$n2)> ) f(xML):UQTLa cee 7':UTLTL))
is satisfied. For n = 2 it is the standard medial (entropic) law, which in

the case of groups gives the commutativity. For n > 3 it not implies the
commutativity of n-ary groups.

Since an n-ary group (G, f) is medial if and only if there exists a € G
such that f(z,a,...,a,y) = f(y,a,...,a,z) for all x,y € G (cf. [§]), the
Hosszt theorem (cf. [24]) suggests the following result proved in [10].

Theorem 3. (Dudek 1988) If for an n-ary group (G, f) there exists a
commutative group (G,+), an element b € G, and an automorphism ¢ of
(G, +) such that @(b) =b, " L(x)==x forallx € G and

flm1, @, .., 20) = 21 + @(x2) + 92 (23) + ... + " 2(p_1) + 7 + b,
then (3) is satisfied.

Unfortunately the converse statement is not true.
In connection with this the following problem was posed in [10].

Problem 1. Describe the class of all n-ary groups satisfying (3), i.e. the

class of n-ary groups for which h(x) = x is an endomorphism.

For n = 3 the answer is simple, because as proved W. Dérnte (cf. [6])

in all ternary groups we have f(x,y,z) = f(;, Z_/,:;) This means that a
ternary group satisfies (3) if and only if it is medial.

For n > 3 the problem is open. We know only the partial answer basing
on the general connections between homomorphisms of n-ary groups and
homomorphisms of their retracts (Theorem 2 from [20]).

Theorem 4. A mapping h : G — G is an endomorphism of an n-ary group
(G, f) if and only if there exists a € G such that

(Z) h(f(xaaa"'acL?y)):f(h(x)7b7"'7b7h(y))>
(i) h(f(@, 2, a,....a)) = F(B h(z),b,...,b),
(iii) h(f(a,a,...,a)) = f(b,b,...,b)

8
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forall xz,y € G and b= h(a).
Proof. Let h : G — G be an endomorphism of an n-ary group (G, f). If
h(a) = b, then, according to the identity (2) and Theorem 2,

h(y) = h(f(yvaa sy @y EL) = f(h(y)vb’ . .,b,h(@)),

which gives h(a) = b. Now, the conditions (i), (ii) and (iii) are obvious.
Conversely, assume that a mapping h : G — G satisfies the above three
conditions for all z,y € G, some fixed a € G and b = h(a).
From the proof of Hosszu theorem given by E. I. Sokolov (cf. [36] or
[19]) it immediately follows that (G,+), where x +y = f(z,qa,...,a,y),

is a binary group, o(z) = f(a,z,a,...,a) its automorphism such that for

c= f(a,a,..., a) the following identity
flzy,zo,...,xp) =21+ @(x2) + P2 (x3) + ... + " Hap) +¢ (5)

holds. Similarly, for z oy = f(x,b,...,b,y), ¥(x) = f(b,z,b,...,b) and
d= f(b,b,...,b), we have

f(@r, @, wn) = w10 p(xa) 0 P (w3) 0 0" (wg) 0l

Thus h(z +y) = h(z) o h(y) by (i), h(e(z)) = ¢(h(z)) by (ii), and
h(c) = d by (iii). Therefore

h(f(z1,22,...,70)) = h(z1 + o(@2) + ©*(23) + ... + " Hayp) + ¢
= h(x1) o Y(h(x2)) oY% (h(z3)) o ... 0" Y(h(xy,)) o d
= f(h(x1), h(22), ..., h(2n)),

which proves that h is an endomorphism. O

Putting in the above theorem h(z) = z, we obtain

Corollary 1. An n-ary group (G, f) satisfies (3) if and only if there exists
a € G such that

(i) flz,a,...,ay) = f(x,a,...,a,Y),
(i) f(a,z,a,...,a) = f(a,z,a,...,a),
(iii) f(a,a,...,a) = f(a,a,...,a)

for all x,y € G, where a is skew to a.
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Corollary 2. An n-ary group (G, f) with an idempotent a € G satisfies
(3) if and only if for all z,y € G, we have

(1/) f($’a7""a’y):f(i’a/7""a/7§)7

(i) f(a,z,a,...,a) = f(a,z,a,...,a).

Proof. Indeed, if a € G is an idempotent, then a = a and, in the con-

sequence, a = a, which together with f(a,...,a) = a gives the condition
(73¢) from Corollary 1. The rest is obvious. O
In the same manner as Theorem 4, putting = +vy = f(z,a,a,...,a,y),

() :f(a,$,_&,a,...,a), c= f(a,a,...,a)and zoy = f(x,b,b,...,b,y),
W(x) = f(b,x,b,b,....b), d= f(b,b,...,b), we can prove

Theorem 5. A mapping h : G — G is an endomorphism of an n-ary group
(G, f) if and only if there ezists a € G such that

(i) h(f(z,a.a,....a,y)) = f(h(z),b,....b h(y)),

(ii) h(f(a,z,a,a,...,a)) = f(b,h(x),b,b,...,b),

(113) h(f(a,a,...,a)) = f(bb,...,b)
for all x,y € G and b= h(a).

Putting in this theorem h(z) = x, we obtain

Corollary 3. An n-ary group (G, f) satisfies (3) if and only if there exists
a € G such that

(i) flz,a,a,...,a,y) = f(z,a,a,...,a,Y),
(i) f(a,z,a,a,...,a) = fla,x,a,a,...,a),
(iii) f(a,a,...,a) = f(a,a,...,a)

for all z,y € G, where a is skew to a.

Corollary 4. If an n-ary group (G, f) has an element a € G such that

(1) f(z,a,a,...,a,y) :f(a_s,g,a,...,a,g),

(ii) f(a,z,a,a,...,a) = f(a,z,a,a,...,a)

for all z,y € G, then h(z) =z is an endomorphism of (G, f).
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Proof. 1t is not difficult to verify (using (2) and Theorem 2) that for z+4y =

f(z,a,a,...,a,y), o) = f(a,z,a,a,...,a) and ¢ = f(a,a,...,a) the
identity (5) holds. Obviously (G, +) is a group and a is its neutral element.

Thus a = a+a and, in the consequence, a = a +a = a + a by (i). Hence

a =a and ¢ = a. Therefore, in our case, the identity (5) has the form

f(@1,m2,. . 2n) = 21 + @(x2) + @*(x3) + ... + " H(2n) .

But, by (i) and (i7), for all z,y € G we have z +y =x + v, o(r) = p(x),
which gives

flx1,o,...,x0) = 21 + @(x2) + ©2(x3) + ... + " L(z,,)
=21 +@(22) + @*(3) + ...+ " (2n)

= f(z1,T2,...,2y).
Hence h(z) = = is an endomorphism of an n-ary group (G, f). O

The converse is not true. Indeed, in an n-ary group (Z, f ), where Z is

the set of integers, f(z1,...,2n) =21+...+2,+1, h(z) == (2—n)z—1
is an endomorphism, but (i) and (ii) are not satisfied. Moreover in this n-

ary group T # y for z # 1. But there are n-groups in which == y for all
x,%y. In such n-groups one fixed element is skew to all others. Obviously
this element is an idempotent. This suggest the following characterization
given in [11].

Theorem 6. (Dudek 1990) An n-ary group satisfies the identity =y if
and only if it is derived from a binary group of the exponent t|n — 2.

If an element a is skew to all x € G, then an n-group (G, f) is derived
from a binary group (G, o), where zoy = f(x,a,...,a,y). Obviously a is
the identity of (G, o). Moreover, by (2), for all z € G we have
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Conversely, if there exists a € G such that (9) holds for all z,y € G,
then f(a,z,...,z,a) = f(a,...,a). Therefore, applying (2), we obtain

fla,...,a,a)=a= f(a,z,...,2,x) = f(a,z,...,z, f(a,...,a,a,7))
= f(f(a,z,...,z,a),a,...,a,a,7)
= f(f(a,...,a),a,...,a,a,z) = f(a,...,a, f(a,...,a,a,2))
= f(a,...,a,z),

which implies a =2 for all z € G.

Thus the following theorem is true.

Theorem 7. An n-ary group satisfies the identity x = y if and only if there
exists a € G such that (9) holds for all z,y € G.

Problem 2. Describe n-ary groups in which x 7&& for all x # .
Problem 3. When h(x) =x is an automorphism ?

Let 29 =z and let 25t be the skew element to z*), where k > 0.
In other words, 20 =z, z() =z, z®? :g, zB) =7, etc.

For example, in a 4-group derived from the additive group Zg, we have
= 6z (mod8), = 4z (mod8) and z*) = 0(mod8) for k > 3. In the
n-group derived from the additive group of integers: z*) #£ z® for all
x#0 and k # t. But in any ternary group ==z for all = (cf. [6]).

If ¥ =2 and §g® =y for some k,t > 1, then z=Yy if and only if
z =y. If h(z) =7 is an automorphism, then h(z) = ) is an auto-
morphism, too. The converse is not true, because h(z) =z is an identity

automorphism of any ternary group, but h(z) =z is an automorphism only
in the case when this group is medial.

Problem 4. Describe the class Wy of n-ary groups in which h(z) = z*)
is an endomorphism (automorphism).

Obviously W1 C Wa C W3 C ... C Wg. When Wy = Wk+1 ?

As a simple consequence of Theorem 4, for h(zx) = z®) | we obtain
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Corollary 5. h(z) = 2 is an endomorphism of an n-ary group (G, f)
if and only if there exists a € G such that

(i) F@aay = f@®am, . a® go),
(i) f@aa-.a) " =@k, z® a®, .. a®),
i) Flaa,.a) ™ = fat+d g+ +1))

forall z,y € G.

Corollary 6. If an n-ary group (G, f) contains an element a such that
a=a®, then h(z)=z® is an endomorphism of (G, f) if and only if
@) T oy = fat
@) Faza...a) " = flaz®,a,... a),
i) Faa,...a) " = faa...,a)
forall z,y € G.

8
8
<
=
~—

Corollary 7. If an n-ary group (G, f) contains an idempotent a, then

h(z) = 2 is an endomorphism if and only if
(1/) f(:'U’ a/7’ A ’a’ y) (k) = f(j(k)’a/’ A ’a/7 g(k) ))
(/I/IZ) f(a’ x’ a" ..7(1/) (k) = f(a/’ j(k‘)’a?’ "’a)

forall z,y € G.

We finish this section by the following problem.
Problem 5. Describe the class Uy of n-ary groups in which z%) = 5*)
for all elements x, y.

The class Uy contains n-ary groups with only one k-skew element, i.e.
n-ary groups in which there exists only one element a such that a = z(*)
for all z. Obviously U; Cc U C Uz C ...

It is not difficult to see that a ternary group belongs to Uy if and only
if it is trivial (has only one element). The class Uj coincides with the class
of all n-ary groups derived from binary groups of the exponent ¢n — 2
(Theorem 6). Generally, all n-ary groups derived from the binary group of

the exponent ¢ | (n—2)* belong to Uy, but Uy contains also other groups.
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3. Sequences

Now we consider the sequence

vz, 2@ 70 7@ =)

PERIRITI g ..

If an n-ary group (G, f ) is finite, then obviously z*) = z(*) for some k # t.
(In a 6-ary group derived from the additive group Zjs for z = 1 we have:
1,8,4,8,4,8,4,... ) But in some infinite n-ary groups (for example in an
n-ary group derived from the additive group of integers) k) £ 70 for all
k #t.

In connection with this the following two problems were posed in [10].

Problem 6. Describe infinite n-ary groups in which % % ™) for all
k#m and all x € G.

Problem 7. Describe n-ary groups in which there exists a natural number
k such that T®) =z for all m >k and all z € G.

Following E. L. Post (cf. [31], p.282), we define the n-ary power putting

flz<Ft=1> 2 .. x) for k>0,
et = for k=0,
y: fly,a<F 1> x . 2)=2 for k<O,

ie. z<0> =g

A minimal natural number & (if it exists) such that <> = z is called
an n-ary order of x and is denoted by ord,(x).
It is not difficult to verify that the following exponential laws hold

<s1> .<sa> <>\  .<S1Fs2+. A nt1>
f(z , T e, ST =g nti>

($<r>)<s> — p<rs(n—1)+s+r> _ (x<s>)<r>‘

Using the above laws we can see that Z = <!> and, in the consequence

72 — (z<71>)<—1> = g<n—3>

5(3) — (($<71>)<71>)<71>

)
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and so on. Generally: z(*) = (z(#=D)<=1> for all k > 1. This implies that
) = 2<5> for

k-1 k
i 2—-n)f -1
Se= -y o=
=0

Obviously ord,(z) is a divisor of ord,(z), and ord,(x) is a divisor of
Card(G). This last fact is a simple conclusion from Lagrange’s theorem for
finite n-ary groups (sf. [31], p.222). Hence

ordn(z) = ordy(z) = ord,(2?) > ord,(z%) > ...

The first natural questions are:
1. When ord,(z) = ord,(z) ?
2. When there exists k such that ord,(z*)) = ord, (z®) for all t >k ?
3. When tlinglo ord,(zW) =17

From some results obtained by E. L. Post for a finite n-ary group gene-
rated by one element (cf. [31], p.283), we can deduce that

<s>) _ OT‘dn(.CU)

ordn ~ ged{s(n — 1)+ 1, ord,(z)}

whenever ord,(z) is finite. Therefore for k > 1, we have

7Ry = <sk>) = ordn(z)
ord, (z\")) = ord, (x ) ged{n — 2, ord,(z)}

Thus
ordp(z) = ordn(z) = ord,(2?) = ord,(z®)) = ...

Moreover, ord,(z) = ord,(x) < oo if and only if ord,(xz) and n —2 are
relatively prime. Obviously tli)r& ord,(F®) =1 if and only if ord,(z) is a
divisor of n — 2.

This, together with Theorem 2 from [7], gives the following characteri-
zation of orders of skew elements.

Theorem 5. If ord,(xz) = p{*p3*...p%m, where pi, p2, ... ,pm are prime
numbers, then for all t > 1 we have ord,(z®) = 1 or ord,(z®) =
pItps? .. PRk, where k<m and prtn—2,p2tn—2, ..., pptn—2.
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Corollary 8. If every prime divisor of Card(G) is a divisor of n—2, then
all skew elements of an n-ary group (G, f) are idempotent.

A commutative n-ary group with this property is derived from some
(commutative) binary group. All idempotents of such n-ary group are neu-
tral elements in the sense of W. Dérnte (cf. [6]). The set of all neutral
elements of a given m-ary group is empty or forms a commutative n-ary
subgroup of this group (cf. [17]).

4. Special subgroups

An element x of an n-ary group (G, f) is called potent if for some natural
k > 1 an element z<F> is idempotent. For any natural n > 3 there exist
infinitely many pairwise non-isomorphic n-ary groups containing at least
one potent element (cf. [17]). It is not difficult to see that x is potent if
and only if 2<!> is idempotent, or equivalently, if and only if ord,(z) is a
divisor of n.

Problem 8. When the set of all potents of a given n-ary group is an n-ary
(normal) subgroup ?

In [10] is considered the class Vi of n-ary groups in which z) = z
holds for all z. This class is a variety, VkN Vg1 = Vi1 and Vi C Vi
for any natural k,m. Any Vy contains the variety of medial n-ary groups
(and in the consequence — the variety of all commutative n-ary groups).
But it contains also non-medial n-ary groups. Vg contains the variety of
ternary groups.

Problem 9. Describe the variety Vi .

Note that if h(z) = Z*) is an endomorphism of an n-ary group, then
the relation
T ppYy < T = y(’“)

is a congruence on (G, f) and
G®) = {z%) |z e G}
is an n-ary subgroup of (G, f). Also

E® ={zeq|z® =2}
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is an n-ary subgroup, if it is non-empty.

Generally E®) c G| but in some cases E®) = G¥). For example, in
ternary groups we have E(%) = G(2%) for all natural k. Unfortunately, this
not implies F(ZF+1) = GE&+1) - Nevertheless in ternary groups G*) = G
for all k.

Moreover, E®) e Vi, E®W) c k) E6) ¢ B6k) - Bl apstl) = pA),
GHD = (R and

GoaWo>a¥ 500 5 ..

In finite n-ary groups G® = GE+Y = = for some k € N, but in an

n-ary group derived from the additive group of integers G®*) #£ G(™) for
all k #£ m.

Problem 10. Describe the class of all n-ary groups (or only medial groups)
satisfying the descending chain condition for G®*) .

If G® = @ for some k > 1, then also GV = G. Conversely, if
G = @G, then G@ = (G(l))(l) — @, and, in the consequence, G*) = G
for all k> 1. Thus the question on the equation G*) = G can be reduced
to the question on the equation G = G.

Problem 11. Describe n-ary groups in which GV = G.

G®) and E®) are n-ary subgroups also in some n-ary groups in which
h(z) = ) is not an endomorphism. A simple illustration of such situation
is a 4-group derived from the symmetric group S3. In this 4-group we have
GFH =@ = W = F®) = {2 ¢ 83| 22 = ¢} and 2z = z for all

).

x € S3, but f(a,za,2)# f(a,z,a,z) for a=(12), y=(123
Problem 12. Describe n-ary groups in which G is an n-ary subgroup.
Problem 13. Describe n-ary groups in which E® is an n-ary subgroup.

In a distributive n-ary group, i.e. in an n-ary group satisfying the iden-
tity
f(l‘l, ceey l‘n) = f(.’El, ceey Lj—1, .%l', L1y eeey :L‘n) 5 (10)
where ¢ =1,2,...,n, we have

f(nfl) — p = p<n1>
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(cf. [14]). In such n-ary group all elements have the same finite n-ary order

which is a divisor of n — 1. Moreover, if ord,(z) = k, then z<t> = z(*k—1)
and (") = z<F=t> for ¢t = 0,1,...,k. Thus the smallest n-ary subgroup
containing x has the form

Cp={z,z<", . z<F1>} = {z,z,..., 7% D},

where k = ord,(x). Obviously C, is commutative and has no proper sub-
groups. This suggest the following theorem proved in [14].

Theorem 6. (Dudek 1995) Any distributive n-ary group is a set-theoretic
union of disjoint cyclic and isomorphic n-ary groups without proper sub-
groups.

Theorem 7. (Dudek 1995) Let aob = f(a,x,...,z,b), where x is an ar-
bitrary element of a distributive n-ary group (G, f). Then C, is a normal
subgroup of (G, o) and every coset of Cy in (G,0) is an n-ary subgroup of
(G, f) isomorphic to (Cy, f).

Problem 14. Prove or disprove the converse of the above theorems.

A distributive n-ary group is a set-theoretic union of commutative sub-
groups but it is not commutative in general. Indeed, ift > 2, (t —1)|(n—1)
and p = t"~! — 1, then p(x) = tz(modp) is an automorphism of the addi-
tive group Z, such that ¢" !(z) = xz(modp) for all x € Z, and p(b) = b
for b=1+t+t>+...+¢" 2 It is not difficult to see that Z, with the
operation

fx1, 29, . x) = (21 + @(@2) + oo + " 2(20_1) + T + b)(mod p)

is a distributive n-ary group in which z(*) = (z — kb)(modp). This n-ary
group is a set-theoretic union of ¢ disjoint commutative n-ary subgroups
Co, C1, . . ., Cy_1, but it is only medial.

Any medial distributive n-ary group (G, f) is autodistributive (cf. [9]),
i.e. the operation f is distributive with respect to itself. This means that
for every ¢ =1,2,...,n the following identity is satisfied

f(xlv o 7xi—1af(y17y27' . '7yn)7wi+17 B 7:1371) =
f(f(wh ey Li—15,Y1, Ti4-1, - - '7xn)7' . '7f(x17 oy Li—1yYny Ti41, - - '7xn))~

Any autodistributive n-ary group is distributive (cf. [9]), but for any
n > 3 there exists at least one idempotent distributive n-ary group which
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is not autodistributive. Such n-ary group can be induced by the group
(C3,e) and its automorphism ¢(z,y, 2) = (ax, oy, az), where C is the set
of complex numbers,

(z,y,2) o (a,b,c) = (x+a,b+xc+y,z+c)

and « is a primitive (n — 1)-th root of unity (see [14], Theorem 6). For
any n > 7 there are also non-idempotent distributive groups which are not
autodistributive. Ternary distributive groups are autodistributive and vice
versa. For n =4,5,6 the problem is open.

In a distributive n-ary group (G, f) the operation “: x — Z is an au-
tomorphism and induces the cyclic invariant subgroup Auts (G, f) in the
group of all automorphism Aut (G, f) and in the group Auts (G, f) of all
splitting-automorphism in the sense of Plonka (cf. [30]).

Problem 15. Describe the structure of groups: Aut(G, f)/Auts (G, f),
Aut (G, f)/Auts (G, ) and Auts (G, f)/Auts (G, f).

If h is a splitting-automorphism of (G, f), then (as it is not difficult to
see) h(x) = h"(x) for every z € G.

Problem 16. When Auts (G, f) = Auts (G, f) ?

Note by the way (cf. [14]), that if (H, f) is an n-ary subgroup of an
autodistributive n-ary group (G, f), then for every i = 1,...,n and for all
ai,as,...,a, € G the coset

{f(al,...,ai_l,h,ai+1,...,an)|h6H}

is an n-ary subgroup of (G, f) isomorphic to (H, f).
Moreover, in medial autodistributive n-ary groups

{f(al, .. .,ai_l,h,ai_H, .. ,an) | h e G(k)} = G(k) =G
for all £ > 0, and
{f(a,l, R ,ai_l,h,aHh - ,an) ’ h e E(t)} = E(t) =G

for ¢ such that 2<*> =z for all # € G. In this case we have also G*¥) = G
and E® = G.

Unfortunately, this situation is not characteristic for medial autodis-
tributive n-ary groups, because it takes place in some non-medial and non-
autodistributive n-ary groups, too.
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5. Fuzzy subgroups
By a fuzzy set p in a set G we mean a function u: G — [0, 1]. The set
L(p,t) ={z € G : p(z) > t},

where ¢ € [0,1] is fixed, is called a level subset of p.

A fuzzy set p defined on a binary groupoid (G,-) is called a fuzzy
subgroupoid of G if p(x-y) > min{pu(x), u(y)} for all x,y € G. A fuzzy
set p defined on a quasigroup (G,-,\,/) is called a fuzzy subquasigroup of
G if p(z*xy) > min{u(z), p(y)} for all z,y € G and * € {-,\,/}. A fuzzy
set o defined on a group (G,-) is called a fuzzy subgroup (or Rosenfeld’s
fuzzy subgroup) of G if it is a fuzzy subgroupoid such that pu(z=') > u(x)
(or equivalently: u(z~!) = u(x)) for all x € G. (See the series of papers in
Fuzzy Sets and Systems.)

The above concepts can be extended to n-ary systems in the way pro-
posed in [16]. Namely, a fuzzy set u defined on an n-ary groupoid (G, f)
will be called an n-ary fuzzy subgroupoid of G if

u(f(xy,xo, ..., zn)) = min{p(zy), ..., plzy)}

will be satisfied for all x1,...,2, € G.
This extension is good because for n = 2 it gives the standard defini-

tion. Moreover, all main results obtained for n = 2 can be proved also for
n > 2 (cf. [16]).

Theorem 8. (Dudek 2000) A fuzzy set p of an n-ary groupoid (G, f) is
an n-ary fuzzy subgroupoid of G if and only if for every t € [0,1], L(p,t)
is either empty or an n-ary subgroupoid of (G, f). Moreover, any n-ary
subgroupoid of (G, f) can be realized as a level subgroupoid of some n-ary
fuzzy subgroupoid.

Theorem 9. (Dudek 2000) If a fuzzy set p of an n-ary groupoid (G, f) has
the finite set of values tg >t1 > ... >ty and So CS1 C ... C Sy, =G are
n-ary subgroupoids of (G, f) such that u(Sk \ Sk—1) =t for 0 < k < m,
where S_1 =0, then p is an n-ary fuzzy subgroupoid.

Theorem 10. (Dudek 2000) If every n-ary fuzzy subgroupoid p defined
on (G, f) has the finite set of values, then every descending chain of n-ary
subgroupoids of (G, f) terminates at finite step.
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A fuzzy set p defined on G is said to be normal if there exists x € G such
that u(z) = 1. A simple example of normal fuzzy sets are characteristic
functions of subsets of G.

If an n-ary groupoid (G, f) is unipotent (cf. [12]), i.e. if there exists an
element 6 € G such that f(x,z,...,z) =6 for all x € G, then a fuzzy set
p defined on G is normal if and only if p(6) = 1.

The set N(G) of all normal n-ary fuzzy subgroupoids defined on an
n-ary groupoid (G, f) is partially ordered by the relation

1 p = p) < plz)

for all = € G.

For any n-ary fuzzy subgroupoid u of (G, f) there exists p € N(G) such
that u C p. Moreover, if (G, f) is unipotent, then the maximal element of
(N(G),C) is either constant or characteristic function of some subset of G.

An n-ary subquasigroup of an n-ary quasigroup (G, f) must be defined
as a non-empty subset S of G closed with respect to n + 1 operations
fofW . f®™ ie. as asubset S of G such that g(x1,...,z,) € S for all
T1,....,2n € S and all g € F = {f, fO, f@ .. f®} where f) is the
i-th inverse operation of f (cf. [3] or [13]). This means that an n-ary fuzzy
quasigroup must be defined as a fuzzy set such that

w(g(z, 2, ..., xy)) = min{u(xy), ..., pla,)}

for all 1,...,x2, € G and g € F.

For such defined n-ary fuzzy quasigroups many of classical results are
proved in (cf. [16]).

The problem is with the fuzzification on m-ary groups. As it is well
known (cf. [6]), a non-empty subset S of an n-ary group (G, f) is an n-ary
subgroup of (G, f) if it is closed with respect to f and z € S for every
x € S. Thus, by the analogy to the binary case, an n-ary fuzzy subgroup
can be defined as an n-ary fuzzy subgroupoid p such that u(z) > p(z) for
all z € G or as an n-ary fuzzy subgroupoid u such that pu(z) = u(x) for all
zeG.

Unfortunately these two concepts are not equivalent. Indeed, it is not
difficult to see that in the unipotent 4-ary group derived from the additive
group Z4 the map p defined by 1(0) =1 and p(x) = 0.5 for all x # 0 is an
example of fuzzy subgroupoid in which p(z) > p(x) for all x € Zy. Thus
w is a fuzzy subgroup in the first sense. It is not a fuzzy subgroup in the
second sense because for z = 2 we have u(z) > p(z).
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These two concepts of an n-ary fuzzy group are equivalent for ternary
groups and for all n-ary groups satisfying the identity z(*) = z, where k > 0
depends (or not) on z.

Problem 17. Find the connection between n-ary fuzzy subgroups of a given
n-ary group and fuzzy subgroups of its binary retracts (creating group).

6. r-adic skew elements

r-adic skew elements were introduced by S. A. Rusakov (cf. [34]) as a
generalization of skew elements and were used to the investigation of some
properties of n-ary groups connected with their subgroups.

According to [34], an element @ of an n-ary group (G, f) is called skew
of type k and is denoted by a®1) if the equation

f(@F > a,... a,a)=a

is satisfied. By the r-adic skew element of type k, where k,r € N and
a9 = g, we mean an element

(k1)

d(k’ r) _ qlk,r—1)

It is easy to see that a(>™) = a("), i.e. r-adic skew elements of type k =1
are skew in the sense of Dornte.

Moreover, r-adic skew elements of type k can be used to the definition
of n-ary groups and have similar (but not identical) properties as elements
skew in the sense of Dérnte. For example, a*") = a<Sk> where

(1—k(n— 1)) —1

n—1

Skr =

and

o ordn(a)
W%m(»_gwﬂﬂn—ﬂ—nﬂm%mn'
But on the other hand, in a ternary group derived from the additive group
of integers we have @ = —a, a® = a and a®") # a*Y = (1—2k)ta for all
k> 1 and r # t. In this group we have also a*" = @23 for all t € N.
Problems for r-adic skew elements are similar to the problems posed for
skew elements in the sense of Dérnte. For example, when a*") = ¢ or
when h(z) = z#") is an automorphism.
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Transversals in groups. 3.
Semidirect product of a transversal operation

and subgroup
Eugene A. Kuznetsov

Abstract

The investigation of transversals in groups beginned in [6, 7] is continued in a present
article. The main aim of this article is a demonstration of a natural way of a construction
of a semidirect product of a left quasigroup with two-sided unit and some group by the

help of transversals.

The present article is a continuation of a cycle of works about the inves-
tigations of transversals in groups, beginned in [6, 7]. As it is known, the
concept of transversal is introduced for investigation of left (right) cosets in
a group by its proper subgroup. The case when this subgroup is not normal,
is the most interesting one.

T
In [6] it was proved that the operation of (E, (o)), corresponding to the
left transversal T' in a group G to its subgroup H, is a left quasigroup with
two-sided unit 1. So, by the natural way, the following problem is appears

define correctly such product of the left quasigroup (F, @, 1) with two-sided
unit 1 and a subgroup H that the result of this product will be isomorphic
to the initial group G.

The analogous investigations took place in [8, 9, 2] and especially in [10].
In these works we may see some formula (formula (7) in the present article)
of a semidirect product mentioned above. But in these works the way of a
construction of this formula is not clear and, moreover, the uniqueness of
this formula as a formula of a semidirect product satisfying the conditions
mentioned above was not shown.

2000 Mathematics Subject Classification: 20N15
Keywords: group, loop, transversal, permutation, semidirect product
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The author of this article want to show the natural way of constructing
of above mentioned product by the help of the concept of transversal in a
group. The uniqueness of the formula (7) of semidirect product satisfying
the conditions mentioned above immediately follows from the method of
constructing.

1. Necessary definitions and notations

Definition 1. A system (FE,-) is called a left (right) quasigroup, if for ar-
bitrary a,b € F the equation x -a = b (respectively: a-y = b) has a unique
solution in the set E. If (E,-) in the same times is a left and right quasi-
group, then it is called a quasigroup. A quasigroup containing an element
e satisfying the identity z-e =-e-x = e is called a loop.

Definition 2. (cf. [1]) Let G be a group and H its subgroup. A complete
system T = {t;};cp of representatives of the left (right) cosets of H in G
(e =t; € H) is called a left (right) transversal in G to H.

Let T = {t; }icp be a left transversal in G to H. We can define correctly
(see |1, 7]) the following operation on the set E (E is an index set; left
cosets in G to H are numbered by indexes from E):

T
:c(‘)y:z g toty =t:h, heH.

In [7] it is proved that (£, -) is a left quasigroup with two-sided unit 1.

Below we assume (for simplicity) that Coreq(H) = e and we study a
permutation representation G of a group G by its left cosets of a subgroup
H. According to [5], we have G = G, where

N def
ix)=y &

Note that H = St;(G).

gt H = t,H.

Lemma 1. ([6], Lemma 4) Let T' be an arbitrary left transversal in G to
H. Then the following statements are true:

1. h(1)=1 VheH.

. T - .
2. Foranyx,y€c E tx(y)zm(-)y; ti(x) =t (1) = x;
. (T) (T) .
i) =a\y; ) =2\1 @) =1,

(T) (T) )

T
where \ is the left division m<E,(-),1 > (e x\y=z<=uz - 'z=y).



Transversals in groups. 3. 39

Since an arbitrary element g € G is contained in some left coset of H in
G, then it can be a uniquely represented in the form:
g = tyh, (1)

where t, € T, h € H.
Let g1g92 = g3 be the product of two arbitrary elements of G. According
to the representation (1) we have

tyzhityho =t h3. (2)
Let x @ Yy = . In view of Lemma 1 we have
t.(1) = ( ) = tohatyha(1) = ity (1) = i (y) = w0 ha(y). (3)

Applying (2) and (3) we obtain

— -1
hs =1} txhltyhg = tI.A

| R -1 -1
o lettuhe = (6 bty () (6 htyhy b,

h1(y)

which implies

_ N -1 R
tohityhy = tmhl(y)(tml(y)txthl(y))( L Yhihy . (4)

Now let .
t-Ltaty,

t=1 ht,h1
h(u)

loy =
o(u,h) =
(for details see [10]).
Lemma 2. The following sentences are true:
1) Za’b € H for any a,b e E.
2) @¢(u,h) € H for anyue€ E and h € H.
Proof. 1) For any a,b € E we have
(1) = Eyibfaty(1) = Erbfa(b) = f2 (e b) = (a @ b)\(a o b) =
ie. lopeSt(G)=H.

2) For any v € E and h € H we obtain
Bl h)(1) = £ (ﬁ)hf (1) = i (1)
o (u N\ (A (



40 E. A. Kuznetsov

Remark 1. All permutations lAavb generate the group
LI((E,-, 1)) = (lapla,b € E),

which is called a left inner mapping group of operation (E,-,1). In view of
Lemma 2 we have

LI(<E7'>1>) gf{ (5)

Remark 2. In [10] it is shown that ¢(u, LI((E,-,1))) € LI((E,-, 1)), for
any u € F, i.e. all elements of the group LI((E,-, 1)) satisfy both the
conditions of Lemma 2.

2. Semidirect products

The investigations in the previous chapter lead us in the natural way to the
definition of a product of the left quasigroup (FE,e,1) with two-sided unit
1 and a group H (satisfying some conditions connected with the operation
in (E,e,1)).

Let (F,e,1) be a left quasigroup with two-sided unit 1 and let H be a
permutation group on the set £ (H C St;(SE)) such that

Va,b € B lap = L 0 LoLy € H,

Yu€ B, Yhe H ¢(uh) =Ly} hL,h~t€H, (6)

where L, is the left translation by a in (E,e,1). In the set
ExH={(u,h)lue E,he H}

we define the operation

(s ) * (v, h2) (w0 11 (0), Ty (o) (0, B ) R ) (7)

(see [10]). In view of (6) this definition is correct.
On the set E we define the function:
(u,h): E— E,
(u, h)(x) e h(z),
Lemma 3. The following sentences are true:

1. The function (u,h): E — E is an action, i.e.

(a) it is a permutation on the set F,
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(0) if (u,h1)(x) = (v,he)(x) for all z € E, then uw=v and hy = ha,

2. (u, h1)((v, h2)(x)) = ((u, h1) * (v, he))(z) for any x € E, where * is
defined by (7),

3. (1,id) is an unit of (E x H,x),

4. (R~ Y (u\1), (LyhLp-1401))"") is an inverse element of (u,h) in
(E x H,*,(1,id)),

5. G = (E x H,x,(1,id)) is a group.

Proof. la. According to (8), we have (u,h)(x) = u e h(x) = L,h(z). Be-

cause L, is a permutation of the set F, then also L,h is a permutation of
E. Obviously (1,id)(x) = x.

Ib. If (u,h1)(z) = (v, he)(x) for all z € E, then Lyhi(x) = Lyha(x).
This for x =1 gives L, = L,. Thus u = v. Hence hi(z) = ho(z) for all
x € F, and, in the consequence, hy = ho.

2. For a = (u, hy) and B = (v, hs) we have
a(B(z)) = (u, h1)((v, he)(x)) = (u, h1)(v ® ha(x))
— w o hy(veha(x)) = Luhi Loho() .
But on the other hand
((uy h1) * (v, h2)) () = (u ® h1(v), Ly py (v) (v, h1)h1ho)(2)

= (uehi(v)) ® Ly o LuLny )Ly, (1 Lohy Hhiha ()

= Luah, (v) Loy, (v Lul1 Loha(x) = Luhi Lyha(x)

So (u, h)((v, he)(2)) = ((u, h1) * (v, ha)) ().

3. According to the previous paragraph we have
((u, h1) * (v, he))(x) = Lyhi Lyho(z), 9)
which gives
((1,4d) * (u, h))(z) = Liid Lyh(x) = Lyh(z) = (u, h)(z)

for any = € E. Thus (1,id) * (u, h) = (u, h).
We obtain also

((u,h) * (1,id))(z) = LyhLyid (x) = Lyh(x) = (u, h)(x).
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Hence (u,h)*(1,id) = (u, h), which proves that (1,id) is a two-sided unit.
4. According to the general properties of {Ly}uer in LM((E, e, 1)) to
LI((E,e,1)) C H we have L;'= L,h' for some ' € H. So
(h 1\ L), (L, th-1<u\1>>—1> — (AL, L g h ML)
= (h=Y(u\1), L ( \Uh_lLu\lhh”) = (R~ Y(u\1),o(u\1,h 1) € E x H.

But by (9) we have also
((w, h) % (W1 (u\1), (LuhLp-1001)) 1) (2)

= LuhLp-1(\1)L WL (2) = =,

= 1( \1)
which proves (u,h) * (h™'(u\1), (LuhLp-1(01)) " = (1,id).
In the same way

(R (u\D), (LuhLp-1(u\1) ~" * (u, h))(2)
= L1 Ly it Ly Luh(z) =
implies (h™'(u\1), (LuhLp-10,01)) " * (u, h) = (1,id).
5. It is a simple consequence of 2, 3 and 4. O
Lemma 4. Let G = (E x H,x,(1,id)) be a group. Then
1. H=(H* * (1,id)) (where H* = {(1,h)|h € H}) is a subgroup of G
and it is isomorphic to the group H.
2. T = {(u,id)|u € E} is a left transversal in G to its subgroup H and
the operation of (E, (:C), 1) coincides with the operation of (E,e,1).
Proof. 1. According to (9) we have
((1,h1) % (1, h2))(x) = hiha(x) = (1, hihe)(x),

which proves that H= (H*, *,
bijection ¢ : H* — H, ¢((1
groups H and H.

(1,id)) is a subgroup of G. Moreover, the
,h)) = h defines an isomorphism between

2. In view of (9) we have
((u,id) * (1, h))(z) = Lyid L1h(x) = Lyh(x) = (u, h)(x),
which gives (u,id) * (1,h) = (u, h). Then for any u € E the set
Hy, = (u,id) « H* = {(u,h)|h € H}
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is a left coset of H in G. Obviously (u,id) € H, and (1,id) € H; = H.
So, T = {(u,id)|u € E} is a left transversal in G to its subgroup

. T T
H. Moreover, for (E, (o), 1) we have wu @ v=2z, (u,id)* (v,id) = (z,h),

T
z=wuev and h =I[,,, which implies u(o)v:uov. O

3. The case of a left A;-loop

Note that if in the previous part of this work the permutation h € H is an
automorphism of (F, e, 1), then any u,x € F we have

hL,h™'(z) = h(ue h™'(2)) = h(u) ® & = Ly, (2).

Thus hLyh™' = Ly and @(u,h) = Ly hLuh™" = Ly, Ly = id.

This means that the study of the general construction of a semidirect
product from the previous chapter can be interesting in the case when

LI((E,e,1)) C H C Aut ((E,e,1)).

In this case the left loop (E, e, 1) is a left special loop (left A;-loop) and (7)
can be written in the form

(u, hl) * (’U, hg) = (u L] hl(v), lu,hl(v)hth)- (10)

Obviously such defined product has all properties mentioned in Lemmas 3
and 4.

Remark 3. By Lemma 3, for any v € £ and h € H we have
(ua h)_l = (h_l(u\1)> (LuLu\lh)_1>7
and, in the consequence, (u,id)™' = (u\1, (LyLy1) ™).

Remark 4. Formula (10) coincides with the formula of a gyrosemidirect
product of a left gyrogroup and its gyroautomorphism group (see [11, 4]).
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Subtree-counting loops

Francois Lemieux, Cristopher Moore and Denis Thérien

Abstract

An important objective of the algebraic theory of languages is to determine the com-
binatorial properties of the languages recognized by finite groups and semigroups. In
[20], finite nilpotent groups are characterized as those groups that have the ability to
count subwords. In this paper, we attempt to generalize this result to finite loops. We
introduce the notion of subtree-counting and define subtree-counting loops. We prove a
number of algebraic results. In particular, we show that all subtree-counting loops and
their multiplication groups are nilpotent. We conclude with several small examples and

a number of open questions related to computational complexity.

1. Introduction

A body of recent work focuses on the computational complexity of various
problems involving algebraic structures, such as evaluating circuits and ex-
pressions [2, 3, 4], predicting cellular automata [15, 16], solving equations
[11], and communication complexity [19]. While these algebraic problems
are interesting in their own right, they also offer elegant characterizations
of some low-lying complexity classes, and may even help us prove new sep-
arations between them.

Most of this work has dealt with associative structures, namely groups,
semigroups and monoids, largely because the idea of a syntactic monoid is
familiar from the theory of finite-state automata. However, some progress
has been made in the non-associative case as well |5, 6, 13, 10, 17|. Here,
concepts such as solvability generalize in several competing ways, and find-
ing the appropriate one for a given problem can be difficult. For instance,
the complexity of circuit evaluation and expression evaluation over loops

2000 Mathematics Subject Classification: 20N05, 68Q70
Keywords: finite loop, nilpotency, formal language, tree, subtree.
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is determined by two different generalizations of solvability, which we call
polyabelianness (being a certain kind of product of Abelian groups) and
M-solvability (having a solvable multiplication group) [17].

In this paper, we attempt to generalize the concept of nilpotence, by
building on Thérien’s result that nilpotent groups are characterized by
counting subwords up to some constant size [20]. In the non-associative
case, we expect subwords to become subtrees, and so we explore loops
which count subtrees of constant size. We find that many of the properties
of nilpotent groups hold true for these loops as well.

The paper is structured as follows. After defining some terms in alge-
bra, we review the properties of nilpotent groups and their ability to count
subwords. We then introduce the notion of subtree counting and define
subtree-counting loops. We prove a number of algebraic results relating
these to nilpotent and M-nilpotent loops. We conclude with several small
examples and a number of open questions related to computational com-
plexity.

2. Algebraic definitions

For the theory of quasigroups and loops, we refer the reader to [1, 7, 8, 18].
We will use the following terms, and additional definitions are given in the
text.

By a groupoid (G, -) is mean a binary operation f : G x G — G, written
f(a,b) = a - b or simply ab. The order of a groupoid is the number of
elements in G, written |G].

A quasigroup is a groupoid whose multiplication table is a Latin square,
in which each symbol occurs once in each row and each column. Equiv-
alently, for every a,b there are unique elements a/b and a\b such that
(a/b) -b = a and a - (a\b) = b; thus the left (right) cancellation property
holds, that bc = bd (resp. cd = bd) implies ¢ = d.

An identity is an element 1 such that 1-a =a-1 = a for all a. A loop
is a quasigroup with an identity.

A groupoid is associative if a-(b-¢) = (a-b)-cfor all a,b,c. A semigroup
is an associative groupoid, and a monoid is a semigroup with identity. A
group is an associative quasigroup; groups have inverses and an identity. In
a group, the order of an element a is the smallest p > 0 such that o =1
(or pa =0 in an Abelian group).

Two elements a,b commute if a-b="b-a. A groupoid is commutative if
all pairs of elements commute. Commutative groups are also called Abelian.



Subtree-counting loops 47

We will use + instead of - for products in an Abelian group, and call the
identity O instead of 1. The simplest Abelian group is the cyclic group
Zp ={0,1,...,p — 1}, the set of integers with addition mod p.

A subgroupoid (subquasigroup, subloop, etc.) of a finite groupoid G is a
subset H C G such that b; - by € H for all by,bs € H. The subgroupoid
generated by a set .S, consisting of all possible products of elements in .5, is
written (S).

A homomorphism is a function ¢ from one groupoid (A,-) to another
(B, ) such that p(a-b) = ¢(a) x(b). An isomorphism is a one-to-one and
onto homomorphism; we will write A = B if A and B are isomorphic.

An equivalence relation is a relation ~ that is reflexive and transitive.
Its index is the number of equivalence classes. An equivalence relation is a
congruence with respect to G if a ~ b and ¢ ~ d implies that ac ~ bd. (For
infinite quasigroups, we also demand that a/c ~ b/d and a\c ~ b\d.) We
can then define a groupoid G/ ~ whose elements are ~’s equivalence classes,
and the obvious map from G to G/~ is a homomorphism. Conversely, for
any homomorphism ¢ we can define a congruence a ~ b if p(a) = ¢(b).
The groupoid G/~ is called a quotient or factor of G. A groupoid is simple
if it has no factors other than {1} and itself.

A divisor is a factor of a subgroupoid. Since a sub of a factor is the
factor of a sub, the divisor relation is the transitive closure of the sub and
factor relations.

The left (right) cosets of a subloop H C G are the sets

aH ={ah|h € H} and Ha={ha|h e H}
for each a € G. A subloop H is normal if the following hold for all a,b € G:
aH = Ha, a(bH)= (ab)H, and (aH)b= a(Hb)
Then the relation
a~b if a=0bh forsome heH

is a congruence, the left and right cosets coincide, and the cosets form a
quotient subloop G/H.

The commutator of two elements in a loop is [a,b] = ab/ba, i.e. the
unique element such that ab = [a,b](ba). The associator of three ele-
ments is [a,b,c] = (ab)c/a(bc), i.e. the unique element such that (ab)c =
[a, b, c](a(bc)). The subloop ([G, G], [G, G, G]) generated by all possible com-
mutators and associators in a loop G is called the commutator-associator
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subloop or derived subloop G'. It is normal, and it is the smallest subloop
such that the quotient G/G’ is an Abelian group.
The derived series of a loop G is the series of normal subloops

GZGQDGlDGQD-"

where G,11 = G}. A loop is solvable of degree k if Gy = {1}.
The center of a loop is the set of elements that associate and commute
with everything,

Z(Q) ={c|cx = zc, c(zy) = (xc)y = x(yc) for all z,y € G}.

It is a normal subloop of G, and is always an Abelian group.

The upper central series of aloopis {1} = Zy C Z1 C --- where Z;11/7;
is the center of G/Z;. The lower central seriesis G =Ty D T'1 D --- where
iy = ([G,Ty], |G, G, T;]) is generated by the commutators and associators
of I'; with elements of G. A loop is nilpotent of class k if Z;, = G or if
I'y = {1}; these turn out to be equivalent and k is the same in either case.

In a groupoid G, we can define left and right multiplication as functions
L,(b) = a-b and R,(b) = b - a, namely the rows and columns of the
multiplication table. The left (right) multiplication semigroup M (G) (resp.
Mp(@)) is the set of functions on G generated by the L, (resp. the R,),
and the multiplication semigroup is the set of functions generated by both.
If G is a quasigroup, the L, and R, are permutations, so M (G), Mgr(G)
and M(G) are groups.

A pseudovariety is a class of groupoids V such that subgroups, factors,
and finite direct products of groupoids in V are also in V. The solvable and
nilpotent loops both form pseudovarieties.

For a given alphabet A, we define the groupoid A(T) as the smallest set
that includes A and such that whenever f and ¢ belong to A() then their
formal product (fg) also belongs to A(*). It is isomorphic to the set of
non-empty binary trees whose leaves are labelled with elements of A, or the
set of parenthesized words generated by the grammar S — (S-S5), S — A.
The free groupoid over A is the set A®) = A U {1}, where 1 is the empty
tree. The free monoid over A is the associative version of this, namely the
set A* of finite words over A, where the product is by concatenation and 1
is the empty word.

The yield of a labelled tree is the word formed by reading its leaves
from left to right, which is clearly a homomorphism from A®) to A*. Thus
free monoids are factors of free groupoids under the congruence that iden-
tifies trees with the same yield, and so removes the non-associativity of the
groupoid.
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Moreover, every finite groupoid (monoid) is a divisor of the free groupoid
(monoid) over some finite alphabet, i.e. it can be derived from a free object
by imposing some congruence with a finite index.

The length of a word w, or the number of leaves in a tree w, is denoted
|w|. Except for the free algebras, all loops used in this paper are finite.

3. Nilpotence and subword counting

Counting subwords is a well-known operation in combinatorial algebra (e.g.
Ch. 6 of [14]). If x and w are two words over some alphabet A, then |z|, is
the number of ways that = can be written

T = Yowi1yYy1wse - - - WrYk

where wjws - - -w = w and y; € A*. For instance, |ababl,, = 3. (Note that
many authors write () instead of |z|,.) If 2 and y are both words over A,
we can define the subword counts of their product recursively:

’xy‘w = Z ’x‘u’y‘v (1)

u,v € A*
uv = w

summing over all the ways to break w into a pair of words.

In a group or monoid, we can define two words as equivalent if they
evaluate to the same element. It is interesting to ask what exactly about
a long word makes it evaluate to one element or another; different groups
are ‘sensitive’ to different properties of the word. To make this precise,
we say that a language L C A* is recognized by a monoid M if there is
a homomorphism h from A* to M, and a subset K C M, such that L =
h~Y(K). In other words, h maps each symbol of A to an element of M, and
L is the set of words where the resulting string evaluates to an accepting
element of M.

In the associative case, Thérien [20] showed that nilpotent groups are
exactly those that are sensitive to counting subwords up to a certain fixed
length. Specifically, define an equivalence class NZ that counts, mod p,
subwords of length up to k:

z~py if |zly = |yly modp forall |u| <k

It is easy to show from Equation 1 that this is a congruence. Then we have
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Theorem 1 (Thérien). If a group G has order p and is generated by m
elements, it is nilpotent of class k if and only if it is a divisor of A*/~%
where A is the free monoid on m symbols. Therefore, any language recog-
nized by G is a union of equivalence classes of ~%.

Thus nilpotent groups can be characterized completely by the combina-
torics of subwords.

For instance, if we take the free group with two generators a and b and
count the subwords a, b, ab and ba mod 2, we get an 8-element group

{1, a, b, ab, ba, aba, bab, abab}

Note, for instance, that abab = baba since (mod 2) both have zero a’s, zero
b’s, one ab, and one ba. Furthermore, abab commutes with every element.
The reader can check that this is isomorphic to the dihedral group Dy, the
symmetries of the square, where a and b correspond to reflections around
axes 45° apart, and abab is a 180° rotation.

Similarly, if we have two generators ¢ and j and we count i’s and j’s
mod 2, but combine the counts of ¢4, jj and ji by adding them together
mod 2, we get the quaternion group Qs = {1, +i,+j, +k}. The combined
count of i, jj and ji gives the sign if ij = k is defined as positive, which
makes sense since i° = j2 = —1 and ji = —k.

To put it differently, {a,b}*/~3 is a 32-element group, of which both
Dy and Qg are factors. (Since there are six subwords of length < 2, namely
a, b, aa, ab, ba and bb, in principle this group could have 64 elements.
However, subword counts are not independent of each other.)

4. Subtree-counting loops

In the non-associative case, subwords presumably become subtrees. Count-
ing subtrees is actually simpler than counting subwords, since there is only
one way to divide a binary tree into smaller ones. The intuitive definition
seems to be the following, where x, y, u, v are elements of the free groupoid
A™ and a,b € A are generators:

\1!a=0
lali =0
lala =1
lalp =0

[(@Y)la = |z]a + |Yla
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Given p > 2 and k > 0, define = ~} y iff |z], = |y|u (mod p) for all
u € A® of size at most k. The following lemma follows directly from the
definition:

Lemma 2. The relation Nﬁ 1$ a congruence of finite index.

Define D} = {z € A¥ |z ~} 1}
Lemma 3. A(*)/Nz is a finite loop with identity DY,

Proof. We want to prove that (zy) ~¥ (zz) implies y ~} ¢z (the proof of
left cancellation is symmetric). It suffices to show that for all s € A®) of
size less than k, |(zy)|s = |(z2)|s implies that |y|s = |zs.

The proof is by mathematical induction on |s|. This is clear when
|s| < 1. Otherwise s = (uv) and

2]s + |yls + 12|ulylo
|[z]s + |2]s + |7|ul2]o
|(z2)]s (mod p)

[(zy)ls

Hence, there exists some constant ¢ = |z|, such that
lyls +clylo = |2]s + ¢|z] (mod p)

By the inductive hypothesis, we have that |y|, = |z],. So, we obtain
Yl(uwo) = |2l(uw) and y ~ 2. O

Definition 1. Loops that divide A(*)/NZI; are called subtree-counting loops
of class k.

When a subtree-counting loop is express as an algebra (G,-,\,/), we
can deduce how to count subtrees in quotients z/y and y\z:

Lemma 4.
a) |z/yla = y\vla = |2]a — |yla if a€ A
b) |7/ylww = |2|uww — |Yluww — |2/Ylu [yl
c) [Y\zlw = 2]uw — |Yluww — |Ylu [¥\20

Proof.
|z]a = [(2/Y)Yla = |2/Yla + |Y]a

Zluw = [(2/Y)Yluw = |2/Yluw + Yluww + [2/Ylu [Y]o
and similarly for y\z. O
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The definition of A®)/~% implies that for any s,t € A™) satisfying
s ~b t, we have that s and ¢ evaluate to the same element in AWM/ ~.
This property is generalized in the following lemma.

Lemma 5. A loop G is subtree-counting if and only if there exists two
positive integers k and p such that for any s,t € G satisfying s ~p t,
we have that s and t evaluate to the same element in G.

Proof. Let G be a subtree counting loop and consider first the special case
where G = A™) / ~%. Without loss of generality, we can assume that A C G,
which means that A is a basis for G. By definition, we know that for all
z,y € AD) if 2 ~ y, then = and y evaluate to the same element in G.

Let h: G — AM) be any mapping such that h(g) evaluates to g, for all
g € G and such that h(a) = a for all @ € A. We can extend h in the natural
way to a groupoid morphism h : G — A Thus, for any t € G, we
have that ¢ and h(t) evaluate to the same element in G.

Let u € G™) be such that |u| < k, let X (u) be the set of all leaves of u
that are in A, and let Y (u) be the set of all other leaves. Given v € A
we are interested by the occurrences of v in h(u) that contains all the leaves
from X (u) and at least one leaf from h(g), for each g € Y (u). We denote
the number of such occurrences with ||h(u)||,. We have

()= > sk~ [Ih(w)]
uwe G
[u] < [v]

Hence, s ~} t implies that h(s) ~} h(t) and that s and ¢ evaluate to the
same element in G.

Consider now the general case where G divides A®*)/ ~p. Let S be a
subloop of G and let h : S — G be a loop morphism. Define the func-
tion h™' : G — S by choosing h~!(g) to be any element in S such that
h(h=%(g)) = g and extend it in the natural way to a groupoid morphism
A=t G = (h1(G)) ).

Let 7,y € G™) be such that  ~ y. Then, we must have h=!(z) ~/
h~!(y) and, since h~!(z) and h~!(y) belong to A*)/~P they both evaluate
to the same element in S. Since h is a morphism, x and y must evaluate to
the same element in G.

The other direction of the proof is immediate. ]
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5. Properties of subtree-counting loops

Let G = AW/ ~P where p > 2 and k > 1. Let n: A® — A/ P
be the natural morphism. For 0 < i < k, let DY = {2 € A® |z ~P 1}
and define AP = 7(D?), a normal subloop of G. We can then define the
following descending series of normal subloops, which we call the subtree
series:

G=A{2AYD--- DA} ={1}

This series can still be defined if G is a proper divisor of A(*)/ ~4. In this
case, there exists a subloop S C A(*)/Nz and a loop morphism A : 5 — G.
Hence, it suffices to define A? = h(n(D¥)NS).

Commutators and associators are contained in various AI; because their
counts of small subtrees cancel out, as the next two lemmas show.

Lemma 6. If x € A} and y € A, then their commutator [z, y] € AJ 4.

Proof. Let S be defined as above. We observe that any commutator y of
G is the morphic image of a commutator z in S. Hence, if 2 € n(D?) then
y € AP, Consequently, it suffices to consider the case where G = A/ ~p.
The reader can show that |[z,y]|, =0 (mod p) for all a € A, and that

[, Yllww = |7lu [Ylo — |Ylu [7]o — [, y]|u [yz]» (mod p)

If |[z, y]|w = 0 for all words shorter than uv, then the last term is zero, and
the first two terms are also zero unless |u| > k and |v| > [ or vice versa.
Thus the shortest subword with nonzero count in [z,y] has length at least

k+1+2, so [z,y] € Agyisa. U
Lemma 7. If z € A, y € A7, and z € A}, then their associator
[x,y,z] € AZ+l+m+2'

Proof. Again, it is sufficient to consider the case where G = A®) [~ A As
in the previous lemma, |[z,y, 2]l =0 for all @ € A. If u = rs and v = tw,
then

|[l',y, Z”uv = |x|r |y|s |Z|tw - |x|rs |y|t |Z|w - |[{L‘, Y, Z”u |(5L'y)z|v (mOdp)

(the first and second terms, respectively, disappear if |u| = 1 or |[v| = 1). So
the shortest word with nonzero count must be the product of three words
of length greater than k, [ and m respectively; its length is then at least
E+14+m+3,s0 [z,9,2] € Aktitmta O
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Thérien’s result [20] shows that in the associative case, subtree-counting
and nilpotence are the same thing. In the non-associative case, this is still
true in one direction:

Theorem 8. If a loop G is subtree-counting of class k, it is nilpotent of
class k.

Proof. Assume G divides A®)/ ~4 for some p and k. Recall the definition
of the lower central series I';, We have Al =Ty = G, and I'; C A? follows
by induction from lemmas 3 and 4 for all ¢ > 0. Therefore, if A} = {1},
then Ty = {1}. O

If the loop is commutative, we can make this stronger:

Theorem 9. If a loop G is commutative and subtree-counting of class k,
it 1s nilpotent of class [k/2].

Proof. Al =Ty = G, and if all commutators are the identity, then I'; C A,
follows by induction from lemma 4 for all ¢ > 0. Therefore, if A} = {1},
then I'; = {1} where 2j > 1. O

Nilpotence implies solvability |7], but we can show that a loop’s solv-
ability degree is exponentially smaller than its subtree-counting class:

Theorem 10. If a loop G is subtree-counting of class k, it is solvable
of degree [logy(k + 1)]. If it is also commutative, it is solvable of degree

[logs(k +1)].

Proof. Recall the definition of the derived series G;. We have A = G =
G, and G; C A implies Gj;1 C A}, | by lemmas 3 and 4. Therefore,
Gy C Ab, | forall i >0, so if A} = {1} then I'; = {1} where 27 > k + 1.
If all commutators are the identity, then G C A} implies Gj;1 C AL,
by lemma 4. Therefore G; C A%, |, so if A} = {1} then I'; = {1} where
3 >k+1. O

We close this section with a characterization of the first few classes of
subtree-counting loops. Recall that the center of aloop is the set of elements
that commute and associate with all other elements. We also say that a
loop is associator-distributive if [wz,y, z] = [w,y, 2] [z, y, z] and similarly on
the other two variables. Then:

Theorem 11. Suppose a loop is subtree-counting of class k. If k =1, it is
an Abelian group. If k =2, it is a group and nilpotent of class 2. If k = 3,
1t 15 associator-distributive and its associators are in its center.
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Proof. If k =1, all commutators and associators are the identity by lemmas
3 and 4. If k£ = 2, all associators are the identity by lemma 4, so it is a
group and is subword-counting of class 2. If k = 3, we can check that an
associator [u,v,w] commutes with any element = by counting subtrees. If

|£E [U7an]|s = |x|8 + |[U,’U,’LU]|S = |[’LL,U,’LU] '7:’8 (mOdp)

since [u,v,w] contains no subtrees of size 1 or 2 by Lemma 7. A similar
argument shows that an associator associates with any pair of elements. To
show associator-distributivity, since [wz, y, z] contains no subtrees of size 1
or 2, we just have to count subtrees of size 3. If a,b,c € A, then

[wz, y, 2]|(ab)e = [wzla [yl [2]c (mod p)
= (Jwla + [7]a) |ylb |2]c (mod p)
[w, y, 2]l (ab)e + |17, Y 2] (ab)c (mod p)
[w,y, 2][z, Y, 2]|(ap) (mod p)

and similarly for a(bc). O

6. M-nilpotence and nilpotence

If we think of left and right multiplication as functions L,(b) = ab and
Ry (b) = ba, the L, and R, are permutations given by the rows and columns
of the multiplication table. Recall that the left (right) multiplication group
of a loop G is the group generated by the L, (resp. R,), and the multipli-
cation group M(QG) is generated by both.

In [17], we used the idea of M-solvability, the property of having a
solvable multiplication group, to address the complexity of expression eval-
uation in loops. Here, we will say that a loop is M-nilpotent of class k if
its multiplication group is nilpotent of class k, and left (right) M-nilpotent
if its left (right) multiplication group is.

The following inclusions are known |7, 21]:

M-nilpotent = nilpotent = M-solvable = solvable

For groups, M(G) is in the variety generated by G, so M-nilpotence and
nilpotence coincide. In the non-associative case, however, the M-nilpotent
loops are a proper subclass of the nilpotent ones. For instance, the following
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loop is nilpotent of class 2:

1 2 3 45 6
21 4 3 6 5
345 6 21
4 3 6 5 1 2
5 6 1 2 3 4
6 5 2 1 4 3

Its derived subloop {1,2} is also its center. However, its left, right and full
multiplication groups are all equal to a 24-element group which is solvable
of degree 2 but not nilpotent.

Then we can show that subtree-counting loops are M-nilpotent:

Theorem 12. If a loop G is subtree-counting of class k, then it is M-
nilpotent of class k.

Proof. Define a spine as a tree where every node has at most one child

which is not a leaf. An element of M(G) is characterized by its action on

the elements of G. Since the multiplications L, and R, add leaves on the

left and right, an element of M(G) corresponds to |G| spines of the same

shape one for each element. For instance, L, Ry L. corresponds to the spines
) for each = € G as shown in figure 1.

?_\‘A‘A'@.z@

Figure 1: A spine corresponding to m = L, RpL. and its subtrees of size 3.

Let m € M(G), and call these spines m(x) for each x € G. For each =z,
the spines m(z) have two kinds of subtrees, namely those that don’t include
x and those that do. If a subtree of m(z) of size k doesn’t include z, it
corresponds to a subword of m of size k. If it does include z, it corresponds
to a subword of m of size k — 1. In either case, the subtrees of m(z) are
dictated by the subwords of m of the same size or smaller.

Therefore, if mi, mg € M(G) have the same subword counts of size k
or less, then for all x their spines m;j(x) and mg(x) have the same subtree
counts of size k or less. Since G is subtree-counting of class k, mi(z) =
ma(x) for all z € G, but this means that m; = mgy. Thus M(G) is subword-
counting of class k, and by theorem 1 it is nilpotent of class k. O
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We can also obtain a partial converse to the last part of theorem 11, with
a purely algebraic corollary. Recall the notion of associator-distributivity
from the previous section. Then:

Theorem 13. If a loop G has the following properties:
e (5 is associator-distributive, and
o all of G’s associators are in its center, and

e there is a set of generators A for G such that the subgroup of Mp(G)
generated by their right multiplications, ({Rq|a € A}) is nilpotent
of class k,

then it is subtree-counting of class max(3,k). Therefore, G is M-nilpotent
of class max(3,k).

Proof. If we are given a tree in G™), we start by rewriting it as a tree in
A®) by replacing elements of G with products of elements of A. Now define
a (left) combin A™ as a tree where every node’s right child, if it has one, is
a leaf. Inductively, the empty tree is a comb, and ca is a comb if ¢ is a comb
and a € A. Since the parenthesization of a comb is fixed, we can denote it
without ambiguity by its yield, e.g. ((ab)c)d is simply denoted abed.

Then we start by converting an arbitrary tree to a comb with the same
yield which is equivalent with respect to G, keeping track of the associators
as we do so. We do this inductively, first transforming subtrees of depth
2, then subtrees of depth 3, and so on. Suppose that at some point in this
process we are about to transform a subtree ¢. If ¢ is already a comb, there
is nothing to do. Otherwise, t = ba where b =by-- by and a = a; - - - a; are
two combs of size k > 1 and | > 2, where bj,a; € A for all j,i. To apply
the transformation, we use the following:

ba ="b(ay - a)
= (blay---aj—1))ar[byar---aj—1, a]

= (by---brar @) Hizg[ba ar---ai_1,ai)

Since associators are in the center of GG, each one can be moved to the side
of the expression as it is created.
Now since G is associator-distributive, we can write this product of

associators as
-1

kol
ITIT 115 an i

Jj=1li=2h=1

.
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There is a bijection between the associators [b;, ap,a;] in this product and
the subtrees b;(apa;) of size 3 rooted at the node where b and a meet. By
induction, the transformation of a tree into a left comb creates precisely one
associator [a, b, ¢] for each subtree a(bc) where a,b,c € A.

Thus we can convert a tree into an equivalent comb, and the product of
associators it takes to do this is a function only of subtrees of size 3. Since
a left comb in A™ is formed by composing a series of right multiplications
R, for a € A, and since these generate a nilpotent group of class k£, we can
evaluate the comb by counting subcombs of size k. Since the comb has the
same yield as the original tree, this is the same as counting subtrees of size
k in the original tree and combining subtrees of the same yield.

Thus the value of the tree is determined by counting subtrees of size
max(3, k), so G is subtree-counting of this class. Finally, G is M-nilpotent
of class max(3,%k) by Theorem 12. O

Obviously, the third condition of Theorem 13 is satisfied whenever G
is right-M-nilpotent of class k. For instance, consider the octonion loop
O16, which consists of 16 elements {£1,+i,+j, +k, +F, +I,+J +K}. Its
multiplication table is

which we extend to elements with minus signs in the obvious way. Just as
the quaternions are commutative up to a sign, the octonions are associa-
tive up to a sign. Since all commutators and associators are in the center
{£1}, Os6 is nilpotent of class 2. Moreover, the reader can check that it
is associator-distributive and its right multiplication group (which has 128
elements) is nilpotent of class 2. Therefore, it is subtree-counting of class
3, and its full multiplication group (which has 1024 elements) is nilpotent
of class 3.

The reader might hope that all nilpotent loops of class 2 are associator-
distributive. This is not the case, as we will show below.
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7. Examples

If we take the free groupoid on one generator {1, a, aa, a(aa), (aa)a, ...} and
consider equivalence classes that count subtrees up to size 3 (mod 2), then
{a}*)/ ~2 is a subtree-counting loop of class 3 with 8 elements. It is an
extension of Zs by Z4, and its multiplication table is

1 23 45 6 7 8
214365 87
3412785 6
4 3 21876 5 2)
5 6 8 7 3 4 21
6 5 78 4 3 1 2
7T 8 6 51 2 4 3
8 7 5 6 21 3 4

The eight elements can be represented by 1, 2 = a((aa)a), 3 = aa, 4 =
a(a(a((aa)a))), 5 = a, 6 = a(a((aa)a)), 7 = (aa)a, and 8 = a(aa). In
fact, there are no non-associative subtree-counting loop with fewer than 8
elements, since the smallest non-associative nilpotent loops have 6 elements,
and these all have a multiplication group ZgZs of order 24 that is solvable
but not nilpotent (here ¢ is the wreath product [12]).

Counting subtrees of size 3 mod p for larger p gives class 3 loops of size
cp? where ¢ appears to depend only on p(mod 6):

1 if p(mod6)=1orbH

. 2 if p(mod6)=2or4
) 3 if p(mod6) =3
6 if p(mod6) =0

We have checked this for p < 25, and we conjecture it is true for all p.
Counting subtrees up to size 4(mod 2) gives a subtree-counting loop of class
4 with 128 = 27 elements, and counting mod 3 gives 729 = 3% elements.

All of these loops are generated by a single element, like the free groupoid
of which they are factors. For an example with two generators, if we take the
free groupoid on two generators a,b and impose the relations a? = b? = 1
and zy = yx for all x,y, we get a subtree-counting loop of class 3 with 16
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elements. Its multiplication table is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
5 6 7 8 1 2 3 4 13 14 15 16 10 9 12 11
6 5 8 7 2 1 4 3 14 13 16 15 9 10 11 12
7T 8 5 6 3 4 1 2 15 16 13 14 12 11 10 9
8§ 7 6 5 4 3 2 1 16 15 14 13 11 12 9 10
9 10 11 12 13 14 15 16 1 2 3 4 7 8 5 6
10 9 12 11 14 13 16 15 2 1 4 3 8 7 6 5
11 12 9 10 15 16 13 14 3 4 1 2 5 6 7 8
12 11 10 9 16 15 14 13 4 3 2 1 6 5 8 7
13 14 15 16 10 9 12 11 7 8 5 6 1 2 3 4
14 13 16 15 9 10 11 12 8 7 6 5 2 1 4 3
15 16 13 14 12 11 10 9 5 6 7 8 3 4 1 2
6 15 14 13 11 12 9 10 6 o5 8 7 4 3 2 1

where the generators are (say) 5 = a and 9 = b. Counting (mod 3),
(mod 4), and mod 5 gives loops of 81, 256, and 625 elements respectively.

Going back to a one-symbol alphabet and counting (mod?2) the five
subtrees of depth 2 or less, a, aa, (aa)a, a(aa) and (aa)(aa), gives a 16-
element loop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
21 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 5 6 9 10 11 12 1 2 14 13 15 16 8 7
4 3 6 5 10 9 12 11 2 1 13 14 16 15 7 8
5 6 7 8 2 1 4 3 13 14 16 15 10 9 11 12
6 5 8 7 1 2 3 4 14 13 15 16 9 10 12 11
T 8 1 2 13 14 15 16 6 5 9 10 12 11 3 4
8§ 7 2 1 14 13 16 15 5 6 10 9 11 12 4 3
9 10 11 12 4 3 6 5 15 16 7 8 2 1 14 13
10 9 12 11 3 4 5 6 16 1b 8 7 1 2 13 14
1 12 14 13 16 15 9 10 7 8 1 2 4 3 6 5
12 11 13 14 15 16 10 9 8 7 2 1 3 4 5 6
13 14 15 16 8 7 2 1 12 11 4 3 5 6 9 10
14 13 16 1 7 8 1 2 11 12 3 4 6 5 10 9
15 16 10 9 11 12 14 13 3 4 6 &5 7 8 2 1
6 15 9 10 12 11 13 14 4 3 5 6 8 7 1 2
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Here {1, 2} is a normal subloop, and dividing it out gives the 8-element loop
(2) above.

If we count just the balanced trees a, aa and (aa)(aa) up to depth 2,
we get another 8-element loop,

1 23 45 6 7 8
23416 7 85
3456 7 81 2
416 7 85 2 3
5 6 7 8 1 2 3 4
6 7 8 5 2 3 41
78 1 2 3 45 6
8 52 3 416 7

where the generator is (say) 2 = a. This loop is not isomorphic to (2) since
only two elements give the identity when squared. It is commutative but
not associative, since (22)3 = 5 but 2(23) = 1. However, like (2) it is an
extension of Zo by Zy4.

In fact, all loop extensions of Zs by Z4 are nilpotent and M-nilpotent,
since Zo ! Zy4 is nilpotent of class 4. Similarly, all loop extensions of Zy by
Z3 are M-nilpotent, since Za ! Z3 is nilpotent of class 3. We do not know if
all of these are subtree-counting.

This loop also shows that, unlike the derived series and the central lower
series, the subtree series can halt for a while and then continue downward.
Ay ={1,3,5,7} is generated by 3 = a? and is isomorphic to Z4, while Ay
and Agz coincide and are both {1,5 = (aa)(aa)}. Finally, Ay = {1}. Thus

Ag DAL DAy =A3D A4

In general, counting (mod 2) balanced trees with one generator up to depth
k gives a subtree-counting loop of class 2¥ and size 2¥*1. Thus, in the non-
associative case, a loop of size n can have a subtree-counting degree linear in
n, whereas the nilpotence degree of a loop can be at most logarithmic in n.
This suggests that determining when a given loop is not subtree-counting
may require exponentially more computation than telling when a loop is
not nilpotent.

As these examples show, we can choose to count some subset S of the
set of trees of size less than or equal to k, instead of all of them. This will be
a congruence, and so will give a well-defined loop, if and only if S is closed
under subtrees, i.e. uv € S implies © € S and v € S. For instance, we can
choose to count subtrees up to a certain depth rather than a certain size;
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balanced subtrees up to a certain depth; left or right combs of a certain
depth; and so on.

If we define loops as (balanced) subtree-counting of depth k in the obvious
way, we have

Lemma 14. If a loop is subtree-counting of class k, then it is (balanced)
subtree-counting of depth k. If it is (balanced) subtree-counting of depth d,
then it is subtree-counting of class 2¢.

Proof. A subtree of size k is contained in a balanced subtree of depth at
most k, and a subtree of depth d has size at most 2¢. O

However, a tree which is not a comb is not contained in a comb of
any size, so the subcomb-counting loops might be a proper subclass of the
subtree-counting ones.

8. Open questions

We have introduced the class of subtree-counting loops and show that it is
a subclass of the M-nilpotent loops. However, we still don’t know if this
inclusion is strict. If so, it would be interesting to have some examples and
investigate their combinatorial properties.

A more basic problem is that we have no decision algorithm to deter-
mine if a finite loop G of order g is subtree-counting. This is equivalent to
determining if there exist p and k such that G divides A/~ for some
alphabet A. If G is subtree-counting, then we can take p = g and A = G
since it must be a morphic image of H = G®*/ ~¥. Since G/AY is an
abelian group divided by Z,, then g must be a multiple of p. This implies
that G divides G*)/ ~1.

Finding k seems to be more difficult. However, we observe that in order
to compute the number of subtrees of depth d > 1, it seems necessary to
have some information about the number of subtrees of depth d — 1. This
suggests that the number of elements in a subtree-counting loop G of class
k must be at least log k and that G must divide G(*)/Ngg. We conjecture
that this is true, in which case a decision algorithm would exist.

Another set of open questions come from the theory of computational
complexity, especially low-level parallel complexity classes. For instance,
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expressions and circuits over solvable groups can be evaluated in the classes
ACC" and ACC!, while over non-solvable groups these problems are NC!-
complete and P-complete respectively (see [3, 4, 15] for definitions of these
classes and proofs of these results). Similarly, equations over nilpotent
groups can be solved in polynomial time, while for non-solvable groups this
problem is NP-complete [11] and for solvable groups quasipolynomial time
is believed to suffice. Finally, languages defined over groups have constant
multiplayer communication complexity if and only if they are nilpotent [19].

Subtree-counting loops can be shown to have many of the same com-
plexity properties as nilpotent groups, suggesting that subtree-counting may
play the same role for loops that nilpotence does for groups. However, we
have not yet been able to prove the converse computational hardness re-
sults for non-subtree-counting loops. In particular, we would like to know
if any expressions or programs over non-subtree-counting loops can always
express the logical AND of an arbitrary number of variables. We hope that
techniques from loop theory can be applied to this and other complexity-
theoretic questions.
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On quadratic B-algebras

Hee Kon Park and Hee Sik Kim

Abstract

In this paper we introduce the notion of quadratic B-algebra which is a medial quasigroup,
and obtain that every quadratic B-algebra on a field X with | X | > 3, is a BCI-algebra.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BC1I-algebras ([6, 7]). It is known that the class of BCK-
algebras is a proper subclass of the class of BCI-algebras. In [4, 5] Q. P.
Hu and X. Li introduced a wide class of abstract algebras: BC H-algebras.
They have shown that the class of BCI-algebras is a proper subclass of
the class of BC'H-algebras. J. Neggers and H. S. Kim ([10]) introduced
the notion of d-algebras, i.e. algebras (X;x,e) defined by (i) zxxz = e,
(v) exx =e, (vi) z*xy =e and y*z = e imply x =y, which is
another useful generalization of BC' K-algebras, and then they investigated
several relations between d-algebras and BCK-algebras as well as some
other interesting relations between d-algebras and oriented digraphs. Y.
B. Jun, E. H. Roh and H. S. Kim introduced in [8] a new notion, called
an BH-algebra, i.e. algebras (X;x*,e) satisfying (i), (ii) = *e = x and
(vi), which is a generalization of BCH/BCI/BCK-algebras. They also
defined the notions of ideals and boundedness in BH-algebras, and showed
that there is a maximal ideal in bounded BH-algebras. J. Neggers, S.
S. Ahn and H. S. Kim (cf. [10]) introduced the notion of a )-algebra, and
generalized some theorems discussed in BC'I-algebras. Recently, J. Neggers
and H. S. Kim introduced and investigated a class of algebras, called a B-
algebra (|12, 13]), which is related to several classes of algebras of interest
such as BCH/BCI/BCK-algebras and which seems to have rather nice
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Keywords: B-algebra, (Q-algebra, BCI-algebra
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properties without being excessively complicated otherwise. B-algebras are
also unipotent quasigroups which plays an important role in the theory of
Latin squares (cf. [3]).

In this paper we introduce the notion of quadratic B-algebra which is a
medial quasigroup, and obtain that every quadratic B-algebra on a field X
with | X | > 3, is a BCI-algebra.

2. B-algebras

A B-algebra (cf. [12]) is a non-empty set X with a constant e and a binary
operation * satisfying the following axioms:

(1) z*xx=e,

(i) zxe=u,

(1i1) (xxy)*xz=xzx(z2x(ex*xy))
for all z,y,z € X.

Example 2.1. (cf. [12]) Let X be the set of all real numbers except for a
negative integer —n. Define a binary operation * on X by

nz—y)

Txy =
Y n-+vy

Then (X;%*,0) is a B-algebra with e = 0.

Example 2.2. (cf. [13]) Let X ={0,1,2,3,4,5} be a set with the follow-
ing table:

T W N~ O %
UL W N~ OO
W O s = O N
=W Ot O NN
N = O O W W
= O N W O
O N~ W oy ot

Then (X;%*,0) is a B-algebra with e = 0.

In [2] the following result is proved.
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Lemma 2.3. Let (X;x,e) be a B-algebra. Then we have the following
statements.

(a) If xxy=-e then v =1y for any z,y € X.
(b) If exx=exy, then x =y for any x,y € X.
(c) ex(exxz)=ux foranyze X.
J. Neggers, S. S. Ahn and H. S. Kim introduced in [10] the notion of
Q-algebra, as an algebra (X, ;*,e) satisfying (), (i¢) and
(iv) (xxy)xz=(rx*x2)xy

for any z,y,z € X. It is easy to see that B-algebras and Q-algebras are
different notions. For example, X = {0,1,2,3} with * defined by the
following table:

W N = O *
W N = OO
W o O O
W O O O
O O O OoOlw

is a Q-algebra ([10]), but not a B-algebra, since (3 *2)x1 =0 # 3 =
3% (1% (0x2)). Example 2.2 is a B-algebra ([13]), but not a Q-algebra, since
(5%3)x4=3#4=(5x4)*3.

Theorem 2.4. (cf. [10]) Every Q-algebra satisfying the conditions (iv) and

(vit) (z*xy)x(xxz)=z2%y
for any x,y,z € X, is a BCI-algebra.

3. Quadratic B-algebras

Let X be a field with | X | > 3. An algebra (X; ) is said to be quadratic if
x * y 1s defined by

:c*y:a1x2+a2xy+a3y2+a4x+a5y+a6,

where ai,...,ag € X are fixed.

A quadratic algebra (X;x*) is said to be a quadratic B-algebra if for
some fixed e € X it satisfies the conditions (i), (#4) and (¢4¢). Similarly,
a quadratic algebra (X;x) is said to be a quadratic Q-algebra if for some
fixed e € X it satisfies the conditions (i), (i¢) and (iv).
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In [10] it is proved that in every quadratic Q-algebra (X;x*,e) the op-
eration * has the form zxy =2 —y +e.
We prove that the similar result is true for quadratic B-algebras.

Theorem 3.1. Let X be a field with |X| > 3. Then every quadratic B-
algebra (X;x*,e), e € X, has the form x+xy =z —y+e, where z,y € X.

Proof. Let
xxy=Ax> + Bxy +Cy’+ Dx + Ey + F (1)

for some fixed A,B,C,D,E,F € X.
Consider (7). Then

e=x+xx=(A+B+C)z*+(D+E)x+ F. (2)
Let £ =0 in (2). Then we obtain F' = e. Hence (1) turns out to be
zxy= Az’ + Bxy+ Cy>+Dx+ Ey+e (3)
If y=ux in (3), then
e=xzxx=(A+B+C)2*+(D+E)x+e,

for any « € X, and hence we obtain A+ B+C=0=D+FE,ie. E=-D
and B =—A — C. Hence (3) turns out to be

zxy=(x—y)(Az — Cy+ D) +e. (4)
Let y =e in (4). Then by (i7) we have
x=xxe=(r—e)(Adx — Ce+ D) +e,

ie. (Az—Ce+ D —1)(xz—e)=0. Since X is a field, either z —e =0 or
Az —Ce+ D —1=0. Since |X| > 3, we have Az —Ce+ D —1=0, for
any x € X. This means that A =0, 1 — D + Ce = 0. Thus (4) turns out
to be

rxy=(zr—y)+Cx-y)le—y) +te (5)
To satisfy the condition (iv) we need to determine the constant C, but

its computation is so complicated that we use Lemma 2.3 (iii) instead. If
we replace e by z, and x by y respectively in (5), then
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exx=(e—x)+Cle—x)(le—x)+e. (6)

It follows that

ex(exx)=ex[le—x)+Ce—x)*+¢]
=z—-Ce—2)>+Cle—2){1+Cle—x)}?
=2+ C3(e—2)t+20%(e — x)3.

Since x = e * (e x x), we obtain
C?%(e — x)*{—Cx +2+ Ce} = 0.

Since X is a field with |X| > 3, we obtain C = 0. This means that ev-
ery quadratic B-algebra (X;#*,e) has the form = *xy = x — y + e, where
x,y € X, completing the proof. O

It follows from Theorem 3.1 that the quadratic B-algebras are medial
quasigroups (cf. [1]).

Example 3.2. Let R be the set of all real numbers. Define x %y =
x —y+ 2. Then (R;*,v/2) is a quadratic B-algebra.

Example 3.3. Let £ = GF(p"™) be a Galois field. Define xxy =z —y+e,
e € K. Then (K;x,e) is a quadratic B-algebra.

As a simple consequence of Theorem 3.1 and results proved in [10] we
obtain:

Proposition 3.4. Let X be a field with |X| > 3. Then every quadratic
B-algebra on X is a Q-algebra, and conversely.

Proposition 3.5. Let X be a field with |X| > 3. If (X;*,e) is a quadratic
B-algebra, then (x xy)* (xx2) =zxy for any x,y,z € X.

Proof. Straightforward. O

Theorem 3.6. Let X be a field with |X| > 3. Then every quadratic
B-algebra on X is a BCI-algebra.

Proof. It is an immediate consequence of Proposition 3.5 and Theorem
2.4. O
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Algebras of vector-valued functions

Valentin S. Trokhimenko

Abstract

Superpositions (compositions) of multiplace functions have various applications in the
modern mathematics, especially in the algebraic theory of automata [1], [3], [4]. It is
known that any automaton with n entrances and m exits can be defined by some
functions of the form f: A" — A™, which are called multiplace vector-valued functions.
There are two types of compositions of such functions: serial o and parallel * which
were considered by B. Schweizer and A. Sklar in [5], [6], [7]. In this paper we find
the abstract characterization of algebras of the form (®,o0,x, A, F'), where ® is the set
of multiplace vector-valued functions stable for compositions o,* and containing two
functions A(z) = z, F(z,y) = y. We also describe the case when ® contains all vector-
valued functions defined on a fixed set A. Automorphisms of such algebra are described

too.

1. Introduction

Any mapping f : A" — A™, where n,m € N are fixed and A is a non-
empty set, is called a multiplace vector-valued function (or simply wvector-
function) of degree n and rank m (cf. [5]). The degree and the rank of the
multiplace vector-valued function f is denoted by af and Bf, respectively.
vf = af—p0f is called the index of f. The set of all multiplace vector-valued
functions of degree n and rank m defined on a fixed set A is denoted by
T(A™, A™).

According to [5], [6] and [7], on the set T(A) = |J 7T(A", A™) we

n,meN

consider two binary operations: the serial composition o and the parallel

composition x, which are defined in the following way:

2000 Mathematics Subject Classification: 20N15, 08N05
Keywords: vector valued function
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Definition 1. The serial composition fog of vector-functions f,g € T (A)
is defined by

(f 09)(a1,. . .,ad) = f(bl, c. 7baf)baf—|—1 .. ‘bd—'yga (1)

where ai,...,aq € A, d = max{af + vg,ag}, b1,...,bg—yy € A and
bi...ba—rg = glai,...,00g)0ag+1 - - . aq.

Definition 2. The parallel composition of vector-functions f,g € T(A) is
a vector-function f xg defined by

(fxg)(at,...,aq) = fla1,...,aaqf)g(ai, ..., ang), (2)

where ai,...,aq0 € A and d = max{af,ag}.

It is easy to see that these operations are associative. Moreover, in
the case af = (g, serial composition reduces to ordinary composition of
functions.

Let I7', where n € N, 1 <14 < n, be an n-place i-th projection of A, i.e.
I'(a1,...,an) = a; forallay,...,a, € A. Obviously al]' =n, SI' =1 for
all 1 <i<néeN. Putting A(x) = I{(z) =2 and F(z,y) = I3(x,y) = ¥,
we can verify that

I'=(Fo(FxA)""oF!
foranyn € N, 1 <i<n and f € T(A), where f©= A and "' = fofm.
If the subset ® of 7(A) contains A, F' and is closed under operations

o, %, then a system (®,0,*, A, F) is called an algebra of vector-functions.
In the case ® = 7(A) we say that this algebra is symmetrical.

2. The main result

In this section we find an abstract characterization of algebras of vector
valued-functions.

First we consider an algebra (G,o,*,e€, f) of type (2,2,0,0) satisfying
the following six axioms:

Axiom 1. (G,0) and (G,*) are semigroups and e is the unit of (G,o0).

Let e? denotes the expression (f o (f % e))P~" o fi=1 where p € N,
1<i<pand (fo(fxe)’=f'=e.
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Axiom 2. For each g € G there exist m,n € N such that
go(ep*---*eg):g, (6({*-~*eg)og:g
forall p<n, g<m, p,geN and
go(ePx---xeb)#g, (elx---xel)og#yg
for any p>mn, ¢ > m.

The numbers n and m are called degree and rank of g and are denoted
by ag, Bg, respectively.

Axiom 3. For any g1,92 € G the following conditions

(a) ae=pPe=pf=1, af =2,

(0) algr *g2) = max{agi, agz}, B(g1*9g2) = Bgr + Bga,

(c) a(giog2) = max{agi+792, 292},  B(g1092) = max{Bg1, Bg2—vg1},
where vg = ag — (g, hold.

Axiom 4. fo (g1 *g2) = g2 for all g1,92 € G such that ag = age and
Bg1 = Bg2 = 1.
Axiom 5. For all g1,92,93 € G

(a) g1o(g2xg3) = (g91092)*gs, if ag < Bgz,

(b) (g1x92)093=(g1093)*(92093), if Bgs <min{agy, ags}.

Axiom 6. For dall g1,92,93,94 € G
(a) (g1x92)0(g3*ga) =(g1093) % (920 (93*94)), if ag1 <ags,
agr = fg3, ags = B(g3* ga),
(0) (91xg2) 0 (g3*ga) = (g10(g3*9ga)) * (92093), if agrL> ags,
ags = Bg3, agr = (g3 * gs).

Now we can prove some auxiliary results on the algebra (G,o,*,e, f).

Proposition 1. For all g1,92 € G we have
(a) v(g1092) =791 + 792,
(0) (g1 % g2) =791 + 792 — min{ag:, ags}.
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Proof. By simple application of the above Axiom 3(c). O

Proposition 2. For each n € N and all 1 < 1 < n the equations ae} = n,
Bei =1 are true.

Proof. Indeed, let g be an element of G such that Bg = 1. Then, by
Axiom 3(c), we obtain ag"™ =nag —n+1 and Fg"™ = 1. Further

act = a((fo (fxe)" "o =) = maxfa((fo (fxe))" ™) + 4L, af 1},

But a(fo(fxe)) =2 and B(fo(fxe)) =1 by our Axiom 3. Thus
al(fo(fxe))"™) =n—i+1l, B((fo(fre)"") =1, af' =i
Bf~1 =1. Hence ael = max{n,z} =n.

Similarly we can prove (e}’ = 1. O

Proposition 2 implies that the equation

po(erx-xey) =ef (3)

is satisfied for all n € N and 1 <7< n.

Proposition 3. For all ¢1,...,9, € G such that agy = -+ = ag, and
Bg1 = --- = Bgn =1, the equation

o (g1 %% gn) = gi (4)

1s satisfied for alln € N and 1 <17 < n.

Proof. First let n = 2. If i =2, then, according to Axiom 4, we have

o(g1xg2) = fol(g1%g2) =92.

If i =1, then e% o(g1xg2) = fo(f*e)o(g1*ga). Hence by Axioms 6(b)
and 4 we obtain

o(g1xg2)=fo ((fo(gl *92)> *(6091)) = fol(g2*g1)=a.
Now let n > 2, 1 <i<n. Then

o(grx---xgn)=(e)" "o f o (gix e xgn)
=(e})" "o f'%0 ((fo (g1 *gz)) *93*"'*971)
= (e2)" o fim2 0 (gg K -+ x gn).
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Repeating this procedure we obtain
o (g1 % xgn) = (e1)" "0 (gix % gn)

i
= (eD)" " 10(( gz*gz+1)>*gi+2*~--*gn>
= ()" o (gixgiraKk ek gn) =+

= e} o (gi* gn) = Gi-

This completes the proof. [

Proposition 4. If z1,...,x € G are such that

n=p0x+ -+ pPxr and m=max{azy,...,ar;},
then
e?o(ml*---*xk)—efpoxpo(e’fl*---*eg”%) (5)
p—1 p p—l
for all 1 < i< n, where ) fr; <i< Z zj and s=1— ) fx;.
j=1 j=1 =1

Proof. Let n; = fx; for all x; € G, i =1,...,k. By Axiom 3(b) we have
a(xy * -+ x ) = max{awy,...,ar;} = m. Applying Axiom 2 we obtain

e?o(xl**wk):
e?o(((e?l*---*e%)oxl)*---*<(erf’“*---*ezz)oxk>)o(e’f*---*efnl).

Further, by Axiom 5(b)

e?o(x1*~--*a;k):e?o((e’floxl)*--w(e%oxl)*---*

* (e o) x -k (ent o)) o (e w o w el

This, together with Axiom 6 and Proposition 3, implies
efo(xyx--xxp)=¢€}o ((e’fl oxlo(e’ln*---*eglxl))*---*
*(622 oxyo (e’ln*---*eglxk))) = e oxpo(ef" xxeny ),

which completes the proof. ]

Theorem 1. An algebra (G,o,x,e, f) of type (2,2,0,0) is isomorphic to
some algebra of vector-functions if and only if it satisfies Axioms 1 — 6.
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Proof. The necessity of Theorem is evident. We prove the sufficiency. For
this let (G, o, %, e, f) be an algebra satisfying Axioms 1 — 6 and let G,, be
the set of all elements g € G such that ag = n and Bg = 1. It is clear that
Gn # 0 for every n € N, because el € Gy for all 1 < i < n. Note that

GpoNGp =0 for n #m. Let G = X G, be the Cartesian power of the
neN

family sets (G)nen- B B
For each g € G we define the vector-function P, : G" — G™, where
n = ag, m = g, putting Py(Z1,...,%Tn) =Y1...Ym if and only if

gi(k)=e"ogo (a?l(k)**i’n(k)> (6)

forevery 1<i<m and k=1,2,...

We prove that the mapping P : g — P, is an isomorphism between
algebras (G,o,%,e, f) and (®,0,%, A, F), where ® ={P,;|g € G}.

First observe that P. = A and Py = F. Indeed, if P.(Z) =7 for some
z,y € G, then (k) = el oeoz(k) = z(k) for all k = 1,2,..., because
el = e is the unit of (G,o). Thus y(k) = z(k), k = 1,2,... So, P.(z) = 7.
Hence P, = A. Analogously, from Axiom 4, we deduce P; = F.

Now prove that P(g1 0 g2) = P(g1) o P(g2) for all ¢g1,92 € G, i.e.

Pgiog, = Pg, 0 Py, . (7)

Let n; = agi, m;j = Bg;, i = 1,2, n = max{ni + g2, n2} and m =
max{mi, ma — vg1}. By Axiom 3(c) n = a(g1 o g2), m = B(g1 © g2).
Thus the degree and the rank of the function P, .4, are equal n and m,
respectively. Let

U1 Um = Pgrogs (T1,- ., Tn)

for some Z1,...,%n,Y1,---,Ym € G. If ny > mgy then m = m;. Therefore,
by (6), we have

i(k) = e 0 gu o gy o (F1(K) %+ % Fulk))

forall 1<¢<m and k=1,2,... Since the equation
ny = B(T1(k) %+ x T (R))

is true, Axiom 5(a) gives

gi(k) =€ ogio (<92 o (5:1(145) X *:EnQ(k:))) * Tpgt1 (k) %+ *;ﬁn(k))
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Applying to this equation Axioms 2 and 6, we obtain

Gik) = ogro (e vemz) oge o (:(k) %%y (R)) )

* Tpgt1(k) * - * T (k)
—eMogo ((egnzogw (ail(k)*---*a‘:nz(k)»*---*
x(emzogeo (B1(k) % %y () ) % By (k) %% 2 (R) ).
Let Z1...2Zmy = Py, (Z1,...,Zn,), ie.
zi(k) = €] o0 ga o (T1(k) x -+ - x Ty, (k)
forall 1<i<mo and k=1,2,... Then
Gilk) = € 0 g1 0 (21 (k) % -+ 2y (8) % g1 () -+ 2 (R) )

forall 1<¢<my and k=1,2,... Thus

Ut Umi = Py (Z1,- ., Zmgy Trgt1, - - Tn)-
Therefore
U1 Ymy = Py (Pyo(T1, ..., Ty )y Tgt1s - -+, Tn)s
ie. Y1...Ym = (Py 0 Py,)(Z1,...,%y), which proves (7) for n; > ma,
m = mi.

Now let n; < ma. Then n = ny and m = ma — vg1. Hence, for all
1<i<m, k=1,2,... we have

yi(k) =e"ogiogao <51(k) *"'*fn(k?)>
=e"ogyo (egm*--'*emg) o0g0 (fl(k)*'--*fnz,(k)>
=el"ogio ((eTQ 0ggo (j;l(k)**j:m(k)>) Kok
* <efn1§ 0 go© (fl(k)*---*azm(k))))
=e"ogyo <Zl(k)*~~*2m2(k:)>.

Now applying Axiom 5(a) we obtain

Gi(k) = el o ((gl o <Zl(k) oo *zm(k)» s Zr 1 (k) % - - *Zmz(k)>. (8)
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If 1 << my, then applying Proposition 4 to (8) we get

(k) = " 0 g1 0 (21(k) -+ 20, ()

for k=1,2,... Therefore

U1 Gmy = Py (Z1, ..., Zny)-

For m; < i < m we have y;(k) = Ziyyg, (k), where k= 1,2,... Whence
Umidl - = Znidl - - Zmg- S0,
Ui -Um = Py (21, Zn)) Zny41 - - - Zmo
which, by Definition 1, gives 41 ...9m = (Py, 0 Py,)(Z1,...,Zpn). Thus
Pylogs (T1,. .., @n) = (Py, 0 Py, )(Z1,...,Tn)

for all Z1,...,Z, € G. This proves (7).

To verify P(g1 x g2) = P(g1) x P(g2) , i.e

Pg1*92 = Pgl * sz (9)

for all g1,92 € G, assume that n; = ag;, m; = 8g; for 1 = 1,2, and n =
max{ni,na}, m = mi + my. By Axiom 3(b), n = a(g1 * 92) = a(Py,4g.):
m = B(g1* g2) = ﬁ(Psh*gz)' Let

U1 Ym = Pyrugs(T1, ..., Tp)
for some Z1,...,Zn,¥1,---,Ym € G. Then, according to (6),
Yi(k) = €i" o (g1 % g2) o (T1(k) * - - - * T (K)) (10)
forall 1<i<m and k=1,2,.

Assume that n1 < no. Then n = no. Therefore, by Axiom 6, the
equation (10) can be written in the form

Gi(k) = e¢o<(glo(fl(k)*. : -*fm(k)))*<ggo<a_cl(k)*~ : -*:En(k)))>. (11)

For 1 < i < m; the above equation and Proposition 4 imply

gi(k) =€/ ogio (:El(k),...,:fm(k:)), k=1,2,...
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Hence §i...0m; = Py (T1,...,%n,).
In the same manner, for m; + 1 < ¢ < m, we obtain

Gi(k) =€ ogy0 (:El(k:) *...*:fn(k)), k=12,...

and Ymy4+1---Ym = Py (Z1,...,Zy). Thus g1 ...0m = (Py %Py, )(ZT1,...,Tn).
Hence
P91*92(z1""7fn) = (Pgl*Pg2)(j17""'fn)

for all Z1,...,%, € G. This proves (9) in the case n; < na.
The case ng < n; is analogous.

Now we prove that P is one-to-one. Let P, = P,, for some g1,92 € G.
Then ag; = ags, 891 = Bg2. Therefore

"o gy o (il(k) *---*:En(k)) = M ogyo (jl(k) ,- ..*zn(k:)) (12)

forall 1 <t < m= g, jl,...,i:neé, where n=ag; and k=1,2,...
This for 7; = &; = (el,e3,... el el elt? . ) €@, j=1,...,n and

y GG 96y
k=n, gives
etogro(ef x---Kxep)=el'ogao (el x---xep).

Thus ef" o g1 =e€" oge for all 1 < i< m, and in the consequence

(ef"ogi)*x--*(emogr)=(el"oga)x---*(epoga).
Hence (ef* x---xe)og; = (ef" x---*epr) o g2, which implies g; = go.

This completes the proof that P : g — P, is an isomorphism between
algebras (G,o,*,e, f) and (®,0,%, A, F), where & = {P; | g € G}. O

3. Symmetrical algebras

An algebra (G, o,x,e, f) of type (2,2,0,0) satisfying Axioms 1 — 6 is called
a V-algebra.

Let G = (G, 0,%,¢, f) be a fixed V-algebra and let G’ = (G',0,x, €', )
be some other algebra of type (2,2,0,0).

Definition 3. A homomorphism P : G — G’ is called a v-homomorphism,
if g# go(elx---xe}) implies P(g) # P(go (e} x---xep)) forany g € G
and n € N.
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It is easy to see that if P is a v-homomorphism of a V-algebra G onto
an algebra G', then G’ is a V-algebra too. In this case ag = aP(g) and
Bg = BP(g) for any g € G. Conversely, if P is a homomorphism of a
V-algebra G onto a V-algebra G’ such that ag = aP(g) and 8 = SP(g) for
all g € G, then P is a v-homomorphism.

Definition 4. A subset H of a V-algebra G is called a v-ideal, if for all
r€G, hy,....,hy, € H 1 <i<n,wheren = ax and m = [z, the condition
e"oxo(hyx---xhy,) € H is satisfied.

Generalizing the concept of dense ideals in semigroups (cf. [2]), we say
that an ideal H of a V-algebra G is dense if and only if

(a) any v-homomorphism of G, which is not an isomorphism, induces on
H a homomorphism, which is not an isomorphism,

(b) if G is a V-subalgebra of V-algebra G’ # G and H is a v-ideal of
G’, then there exists a v-homomorphism of G’, which is not an isomor-
phism, but induces on H an isomorphism.

Now consider the symmetrical algebra of vector-functions
T=(T(A),o,x,A F).

It is easy to verify that it satisfies Axioms 1 — 6, i.e. it is a V-algebra.

By Hj we denote the set of all functions ¢, such that a € A and
va(x) = a for all x € A. Clearly, ap, = By, = 1 for all a € A and
(H4,o0) is a semigroup of left zeros.

The following three theorems are generalizations of similar results proved
for transformation semigroups [2].

Theorem 2. The set Hy is a dense v-ideal of ¥ = (T (A),o0,x, A, F).

Proof. Let b € T(A), @ays---»Pa, € Ha, where n = atp and ay,...,a,
are elements of A. Suppose that

¢(a1,...,an):b1...bm

for some by, ..., by € A, where m = B1. We have ([["ov)(ar,...,a,) =b;
for 1 < i< m, because I/"(b1,...,by) =0b;. If ¢ € A, then

(L 0 ) (Par (€); -+ s Pan (€)) = b, (€);
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ie. (I" o9 o (@ay * - *pa,))(c) = wp,(c). So,
Igno/l/}o(soal*.”*soan)zgpbiGHA‘

This proves that H,4 is a v-ideal of %.

Now let P be a v-homomorphism of ¥, which is not an isomorphism.
Hence, there are 11,19 € 7(A) such that 11 # ¥y and P(¢1) = P(2).
The last equation gives aP(¢1) = aP(¢2) and BP(¢1) = BP(12). So,

there are elements aq,...,a, € A such that
1/11((11,...,04”) 7’57112(@1»---,@11)-
Let ¥i(ay,...,an) = b1...by, and ¥a(ai,...,an) = c1...Cn, where n,m

are degree and rank of functions 1,19 respectively. Thus by # ¢; for some
1 <i<m, because by...by, # c1...cp. Whence ¢y, # ;. But

P(pp,) = P(I" o910 (¢ay %+ % Pay,))

= P(Ii") o P(¢1) o (P(ay) * -+ * P(¢a,))
= P(Ii") o P(¢2) o (P(¢ay) * - -+ * P(¢a,))
= P(I" otp3 0 (¢ay * - * ¢a,)) = P(pe,)-

Thus, P induces on H4 a homomorphism, which is not isomorphism.

Now assume that H4 is a v-ideal of V-algebra G = (G, 0, %, A, F) and
T is a proper subalgebra of G. For each element ¢ € G we consider the
function A\; € 7(A) defined in the following way:

bl"'bm:>‘9(a17--'aan)<:>> /\ Iimogo((/’al*"‘*gpan):@bw (13)
=1

where n =ag, m = (g, a1,...,0,,b1,...,by € A. It is not difficult to see
that the mapping P : g — Ay is a v-homomorphism of G into T. Since
T(A) C G and T(A) # G, for g € G\ T(A) we have g # P(g) = Ag.
But P(\g) = Ag, by (13). Therefore P(g) = P()\y). Thus, P is a v-
homomorphism, which is not an isomorphism, and which induces on H4
an identical isomorphism. O

Theorem 3. A V-algebra G = (G, 0, %, e, f) is isomorphic to some symmet-
rical algebra of vector-functions if and only if it contains a dense v-ideal H,
which is a semigroup of left zeros under the operation o and ah = fh =1

forall h € H.
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Proof. The necessity follows from Theorem 2. To prove the sufficiency we
consider the mapping P : G — 7 (H) defined by the formula

m
Y = PQ)@1, . m) &= N\ = e ogo (maexzn)  (14)
i=1
forall g € G and x1,...,%n,Y1,--.,Ym € H, where n = ag, m = Bg. From
(14) it follows that P(e) = A, P(f) = F. It is not difficult to verify that
P is a v-homomorphism, which induces on H an isomorphism. But H is a
dense v-ideal of G, therefore, according to the definition of a dense v-ideal,
P must be an isomorphism. Hence, a v-ideal Hy is a dense v-ideal of a ho-
momorphic image of (G, o0, %€, f),i.e. (P(G),o0,%,A,F), because (Hy,o)
is isomorphic to (H, o). But, by Theorem 2, a v-ideal Hy is a dense v-ideal
of (T(H),o,%,A, F), therefore P(G) C 7(H) implies P(G) =7 (H). This
proves that G is isomorphic to a symmetrical algebra of vector-functions. O

Let f: A — A be some one-to-one mapping. By P; we denote the
mapping 7 (A) — 7 (A) defined by the condition

Pf(go)(al, ce ,an) =by...b,, <
FHb) - 7 bm) = @(fHan), -+, fH(an))

for all ¢ € T(A) and ay,...,ap,b1,...,by € A, where n = ap, m = (.
It is easy to see that Py is an automorphism of T = (7(A),0,%, A, F).
Such defined automorphism is called inner.

Theorem 4. Every automorphism of ¥ = (T (A),o0,%, A, F) is inner.

Proof. Let A be some automorphism of ¥ = (7(A),o0,% A, F), then
AMA) = A and A(F) = F. Therefore A\(I]') = I for n € N and any
1 <@ < n. Thisimplies ap = aX(p) and Bp = BA(p) for every ¢ € T(A).

We have also A(p,) € Ha for all a € A. Indeed, for any ¢ € T (A)
such that ayp = (Y = 1, holds @1 0¥ = ¢,, where a € A. Therefore
©a © X 1(pp) = pa, where b € A. Thus, Awa 0 A7) = AMpa), i.e.
AM@a) ©op = A(pa). Since Hy is a v-ideal of T, then A(¢q) o ¢p € Hg, i.e.
)‘(Spa) € HA-

Now consider the one-to-one correspondence fy: A — A such that

(a7 b) € f)x <~ ((Pav()ob) €A

for any a,b € A.
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Evidently A(pa) = ¢f,(a) and A ) = ) for each a € A.
Thus, for all ¢ € T(A) and ay,...,an,b1,...,by € A, where n = ap,
m = By, we have

by...bym = Ae)(a1,...,ap)

m
= /\ Pt = IMoypo (Sof;l(al)*"'*spf;l(a"))
i=1

= ) ) = (), (an)
> by...by, = Pp () a1,...,an).

So, A= Py,, i.e. A is an inner automorphism. O
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Representations of positional algebras
Valentin S. Trokhimenko

Abstract

In the paper we consider representations of positional algebras in the sense of V. D. Be-
lousov [1] by partial multiplace functions. We prove that any such representation has a

special construction.

On the sets of multiplace functions of several arities one often considers
the binary operations of superpositions, which are called positional superpo-
sitions. Such operations are used in the theory of functional equations and
in the theory of n-ary quasigroups [1|. Thus the study of positional algebras
and their representations by multiplace functions has the particular inter-
est. For descriptions of such representations we use the generalization of the
method of determining pairs, which B. M. Schein considered for semigroups
of transformations [2].

A positional algebra is a partial algebra of the form

1 2 n
&= (G+,+,...,+,...),

1 2 n
where +,4,...,+,... are partial binary operations on a set G satisfying

the Axioms A — As.

1
Ay {z} +{y} #0 for all z,y € G.
Ao For every x € G there exists n € N such that
i<n e {a} + {y} £0

forall i € N and y € G.
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Let « be the binary relation on G x N such that (z,n) € « if and only
if
(Vie N)(Vy € G) (i <n<= {2} +{y} #0). (1)
Proposition 1. The relation « is single valued.

Proof. Let (z,n) € a and (z,m) € « for some z € G, n,m € N. Assume
that n # m, then we suppose, without restricting generality, that n < m.
According to (1) we have

(Vi eN)(Vy € G) (i <ne {x}+{y} £0), (2)
(Vi e N) (Vy € G) (i <m <= {2} + {y} #0). (3)

As it is not difficult to see (2) is equivalent to
(Vi e N) (Vy € G) (i>n<:>{x}jr{y}:(2)). (4)

From (3) it follows {z} ¥ {y} # 0 for all y € G. Since m > n, then, from

(4), for each y € G we obtain {z} ¥ {y} = 0. The obtained contradiction
proves that n = m. O

Further by the arity of an element x € G we mean the value a(z) and
we denote it by |z|. Thus, || = a(x). From the definition of « it follows

that for x,y € G and ¢ € N the result of z —T— y is defined if and only if
i < |x|.

Ag Forall z,y € G, i € N, if i < |z|, then
i
[z +yl = le]+lyl - 1.

A4 For z,y,z € G and n,m € N such that n < |z|, m < |y|, we have

n m n n+m—1

r+y+z2)=@+y + =z.

Aj For z,y,z € G and n,m € N such that m <n < |z|, holds

n m m n+|z|—1

@ty +z=(r+z) + v
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Let 7,,(A) = T(A™, A) be the set of all full multiplace functions (i.e.
operations) on a set A. For all f,g € T(A) = U, ey Fn(A) such that

K2
|fl =n, |g| = m we define a positional superposition + (i € N) putting:

(f + 9)(@r™ ) = f(ai™, g(alt™Y), anrm ) (5)

where ai,...,ap1m-1 € A and af denotes the sequence a;,a;y1,...,a; if
t < j, and the empty symbol if ¢ > j.

An algebra (7 (A), 41—, —?—, ...) is called a symmetrical positional algebra
of operations, its subalgebras — positional algebras of operations.

Let F,,(A) be the set of all partial n-place transformations on A and let
O, be an empty mapping from A" into A. On the set

F(A) = | FalA) U {0}

neN

we consider partial binary operations + (1 € N) defined for f € F,(A),
g € Fn(A) and ay,...,an+m-1,b,¢c € A by the formula

(a’l”rm_l,c) ef —?— g <— (Hb)<(a§+m_1,b) EgAN (a’flba;‘jﬁ_l,c) € f)
i i (6)
If f+ g is an empty transformation, then we put f + g = Opym—1-
We assume that O, —ZF Om = Opim—1 for all n,m € N and i < n.
We assume also that f %Z— O, = 0, —ZF g = Opym—1. It is clear that

1 2

the system (F(A),+,+,...) is a positional algebra. This algebra is called
a symmetrical positional algebra of multiplace functions, its subalgebras —
positional algebras of multiplace functions.

12 12
Let &, = (Gy,+,+,...) and &3 = (Ga,+,+,...) be two positional
algebras. The mapping P : G; — G2 such that

1. |g| = |P(g)| for each g € Gy,

%

2. P(g1 + g2) = P(g1) + P(g2) for all g1,90 € G1 and i < |g1],

We put n = |f| if and only if f € T(A", A).

Analougously we define the operations er on the set of all relations.
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is called a strong homomorphism of &1 into B5. A strong homomorphism
of a positional algebra & into a symmetrical positional algebra of operations
(multiplace functions) is called a representation of ® by operations (or by
multiplace functions). A representation which is an isomorphism is called
faithful (or isomorphic).

Let & = (G, —}-, j—, ...) be a positional algebra, e — an element not be-
longing to G, G* = G U {e}. We put |e| = 1, e—}- e = e, e%l-gzg,
g Jlr e =g for every g € G and ¢ < |g|. It is not difficult to see that
&* = (G, %1—, 42—, ...) is a positional algebra.

The following theorem was proved by V. D. Belousov (cf. [1]).

Theorem 1. Every positional algebra is isomorphic to some positional al-
gebra of operations.

Corollary 1. FEvery positional algebra is isomorphic to some positional
algebra of multiplace functions and to some positional algebra of relations.

Let & = (G,—IF,?F, ...) be a positional algebra, A — a non-empty set,
Q(A) - the set of all words on it. If wy,...,w, € Q(A), then the word
W = wjwy...wy is the sum of words wj,ws,...,w,. By l(w) we denote
the length of w € Q(A). For each word w € Q(A) of length I(w) = n by
e¥ we denote some equivalence relation on G,, = {g € G||g| = n}, which
corresponds to w. So, €¥ C Gy(,) X Gy

Let £ = (¥)“€B, where B C Q(A), be a family of equivalence relations.

Definition 1. A family £ is called permissible for positional algebra &, if
for all g,z;,y; € G, i=1,...,n and n = |g|

1 1
71 = YEM) A AT = Ya(E) = gz, = gt yn (e,

n—1

1
where g+ denotes (...((g ¥ Tn) + Tp—1)...)
n

4+~

xI.
Definition 2. A family W = (W*)*<B, where W is a subset of Giw),

is an l-ideal, if for all g,z € G, k # 1, k,i = 1,...,n, where |g| = n and
Wwi) = 1(w) + > j—q g [zk| the following implication is valid:

w Ly 0 Loy wr
heW* = ((g9 + =, )—i—h)‘—l—lmi,lEW )
n 11—



Representations of positional algebras 91

Definition 3. By a determining pair of a positional algebra & we mean an
ordered pair (£, W), where £ is a family of equivalence relations permissible
for a positional algebra &*, W is an l-ideal of a family of subsets W* such
that WY is either empty or an “-class.

By (HY)acr, , where W # HY for all a € 1,,, we denote the family of
all e¥-classes (uniquely indexed by elements of some fixed set I,,) such that
the following implication, where n = |g|, holds

n Hwn n-l H“’nfl 1 Hw1 le“'wn
(---((g+ Hg) + Hay—y)...) + HG C HJU™on,
= b=c. (7)

n 7 n—1 / 1 / rw!
(.. ((g+ Har) + Hai™l)...) + Hel C HI™

Obviously for I, N I, = 0 the condition (7) is satisfied.

For every g € G, |g|] = n, we define the partial n-place function
Pewy(g), where (€,W) is a determining pair of a positional algebra &,
putting

n n—1 1 e,
(a1,0) € Peyy(g) <= (... ((g + Hyr) + Hgn=')...)+ HJt € H*
(8)
for some wy,...,w, € Q(A).

Theorem 2. If (£,W) is a determining pair of a positional algebra

n

1 2
&= (G;+,+,...,+,...),
then the mapping Peyy) @ g — Pew) (9), where g € G, is its representa-
tion by multiplace functions.

Proof. Let g1, g2 be arbitrary elements of G such that |gi| = n, |g2| = m.
Assume that (af™™ 1 ¢) € Piew) (91 i g2) for i < n. Then, by (8), we
obtain

i n+m—1 n—1

1
(. (g +g2) + Hemm )+ )+ HEE C HOwmm,

An+m—1
If x; €e Hy', t=1,...,n+m—1, then

7 1
1 ceWn4m—
(gl + 92) + Tptm—1 € HZ)I Wntm=t s

n+m—1

which, by the axioms of a positional algebra, gives

i 1 . i i 1 1
(1 +92) + Tpymoa= (91 =+ xn+m—1> + (92 +xi+m—l> + T
n+m—1 n m i—1
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Therefore
i+l i+m i 1 7 1 1 W1...Wntm—1
(91 _rt xn+m—1) + <g2$xi+m—1> ,+1 Ty € HZ orim=t o (9)
i

Hence

o i Lo, Loy o1 )
(90 wittnan) + (b ) ) ahoy gweronnss,

Since the family W is an [-ideal, then from the last condition follows

1 .
that go —I—x§+m_1 ¢ Wwi-Witm—1
m

Suppose that
1. s
92 $x§+m_1 € Hy et (10)

This, by the permissibility of &£, gives
M witme1) ™1 T Wi Wigm—1
...<92+Hai'+m_1> + .. )+ HCHY ,

which implies '
(at™ 1 b) € Peywy(g2) - (11)

Thus (9) together with (10) proves that

n n—1 a1l g o -1 i—2i-2 1
g1+ Hyrim=b 4+ e+ Helfw + Hy o=t Hy o 4 - + H,!
is contained in HZ'“"m=1  Hence
i—1 -1
(a7 'bali ! c) € Pewy(gr)- (12)

Now, comparing (11) with (12) we obtain

(@™ ¢) € Pewy(g1) + Piew(g2) -

So, we have proved that

i i
Pewy (g1 + g2) C Piewy(91) + Piew)(g2) -
The converse inclusion can be proved in the similar way. Thus

% %

Piewy(91 + g2) = Pew(91) + Pewy(g2)
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for all g1,92 € G and i < n. Hence Pg)y) is a representation of the
positional algebra &.

The fact that P yy)(g) is a function is a consequence of the permissi-
bility of &. O

We say that a representation P of a given positional algebra is generated
by a determining pair if there exists a determining pair (£, W) of this algebra
such that P = Pg ).

Theorem 3. Every representation of a positional algebra by multiplace
functions is generated by some of its determining pair.

Proof. Let P be a representation of a positional algebra & = (G} %1—, %2—, o)
by multiplace functions on a set A. For each vector af = (ai,...,a,) € A"
we define the binary relation e C G, x G, and the subset W% C G,
putting (for g, 91,92 € Gy)

91 = g2(e1) <= P(g1){af) = P(g2){al),

g € W4 < P(g){a}) = 0.
Moreover, let

I(G) ={neN|(Eg € G)n =gl},

Ep={e"|a} € A",neI(Q)},
Wp = {W% |a} € A", n € I(G)}.
We prove that (Ep,Wp) is a determining pair of the positional algebra

& such that P = P, w,)-

It is clear that €™ is an equivalence relation on G,. To prove that Ep
is permissible for the positional algebra &*, let g € G, |g| = n and

mi bm2 mn

1 =y1(e" ), za=ya(er ), ..., Tp = yYn(eT ).

This, by the definition, implies
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which gives

P(g) (P(a1){al"), P(a2) (b72), ... Plan) (e

= P(g) (P(y){a™), Pu2) (472), -, Plyn)(el™)).

That is equivalent to

(Po) ¥ )™ - 4 Plan)) aope )

n—1

= (P(g) T P(yl))<aleT2...cgnn>.

Since P is a homomorphism, we have

1 1
Plgtab)af™ ...} = Plg+yb) (el . ™),

So, Ep is permissible for the positional algebra &*.

To prove that Wp is an [l-ideal, consider g,z; € G, |g| = n, |z;| = m;,

1 n
i=1,...,n. By the definition |g+aL|= > m; =m.
n i=1

1 n 1 .
If g+xl ¢ W' then P(g+al)(al) # 0, whence
n n

(Plo) ¥ Plan)™ - £ P+ - 4 Plan) ) (o) #0,

therefore

P(g)(P@1){al"). ..., Pla){ai= 1), o Plan)am_,)) #0,
i—1 irm;

where s;_1 = > my . Hence P(xz)<a§zji71m> #0, ie x; & WY for
k=1

eachi=1,...,n. So, Wp is an [-ideal and, in the consequence, (Ep, Wp)
is a determining pair of the positional algebra &.

To prove that P = Pg, w,), let af € A", b€ A and
Hy' = {g € Gu| P(g){at) = {b}},

g€ H « (a7,b) € P(g).
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It is clear that e € H? for any a € A. Also it is not difficult to see that
{H," |b e A} is the set of £%-classes, which are disjoint with W .
The set of all such classes satisfies (7). Indeed, if

n cmn o n—1 1 am ™l cmn
9+Hbi + ...+Hb11 CHcl 1
and ! / / !
n /™M n—1 1 a1 " ™
g+H," + -+ M, CH;' T
then

!
my mn 1M /My

1 1
gtal e H Y and g4yle HSY OO
n n

d/mfi
1

dyt ) . .
where z; € H,! | y; € Hy, ,i=1,...,n,d € {a,...,c}. Since P is a
homomorphism

¢ = Pg)(P@)(@]™), ... Paa) (")) = P(g)(br, . bn)

ie. ¢=d. So, the condition (7) is satisfied.

Now let (b7, c) € P(g), where |g| = n. Therefore g € HY . But ee Hbii,
1
t=1,...,n, and g = g+e imply
n
n n—1 n—1 1 pr
g+ H + HY U4+ HP COHY

which gives

(b15¢) € Pepwp)(9)- (13)
Conversely, if (13) holds, then for some aj™,...,c]"" we have
mn n—1 1 mi mi Mmn,
p $ ngll n+ S H;)lll C Hgl ..y
. 1 1 o™l emn am™l cmn
This means that g+, € H¢' YoforaeHy ..., an € Hy . Thus
n n

1
P(z1)(a™) =b1 ..., P(zn)(c]"™) = b, and (a]"* ..., c) € P(g+xL).

But P is a homomorphism, hence

n n—1 1
(af"...c",c) € P(g) + P(xzn) + ---+ P(z1).
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Therefore
c=P(g)(P(e)(@™), ..., P@a)(c]")) = P(9)(b1,. .. ba) = Pg)(B]),

whence (b7, c) € P(g).
So, P(g9) = Pepwp)(g) forall g € G, which proves P = P, yy,). O

Problems
1. Describe all representations of positional algebras by n-ary relations.

2. Find an abstract characterization of symmetrical positional algebras of
operations (multiplace functions, n-ary relations).

3. Find an abstract characteristic of the class of all positional algebras of
multiplace functions ordered by the relation of the sei-theoretical inclu-
ston.

(For n-ary relations this problem was solved by F. M. Sokhatsky in [3].)

4. Describe all automorphisms of the symmetrical positional algebra of ope-
rations (multiplace functions, n-ary relations).

References

[1] V. D. Belousov: n-ary quasigroups, (Russian), Stiinta, Kishinev
1972.

[2] B. M. Schein: Lectures on transformation semigroups, (Russian),
Special course. Izdat. Saratov. Univ., Saratov 1970. (English transla-
tion: Lectures on semigroups of transformations, Amer. Math. Soc.
Translations, II ser. 113 (1979), 123 — 181.)

[3] F. M. Sokhatsky: On positional algebras, (Russian), Mat. Issled. 71,
(1983), 104 — 117.

Department of Mathematics Received September 29, 2001
Pedagogical University

21100 Vinnitsa

Ukraine

e-mail: vtrokhim@sovauma.com



Quasigroups and Related Systems 8 (2001), 97 — 104

The abstract groups (3, 3 | 3, p),
their subgroup structure,

and their significance for Paige loops
Petr Vojtéchovsky

Abstract

For most (and possibly all) non-associative finite simple Moufang loops, three generators
of order 3 can be chosen so that each two of them generate a group isomorphic to
(3,31]3,p). The subgroup structure of (3,3]3,p) depends on the solvability of a certain

quadratic congruence, and it is described here in terms of generators.

1. Introduction

Moufang loops and, more generally, diassociative loops are usually an abun-
dant source of two-generated groups. In the end, this is what diassociativ-
ity is all about: every two elements generate an associative subloop, i.e. a
group. (We refer the reader not familiar with the theory of loops to [5].)
This short paper emerged as an offshoot of our larger-scale program to fully
describe the subloop structure of all non-associative finite simple Moufang
loops, sometimes called Paige loops.

Let M*(q) denote the Paige loop constructed over F' = GF'(q) as in [4].
That is, M*(q) consists of vector matrices

M:<ﬁb>’

where a, b € F, o, 3 € F3, det M = ab— o -3 = 1, and where M is
identified with —M. The multiplication in M*(q) coincides with the Zorn

2000 Mathematics Subject Classification: 20D30, 20N10
Keywords: non-associative finite simple Moufang loop, Paige loop, the abstract
group (3, 3 | 3, p), loop generator, quadratic congruence
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matrix multiplication
a « c v\ ac+a-0 ay+da— (X6
B b 5 d) \ cB+bl+axy By +bd ’

where « - 3 (resp. a x 3) is the standard dot product (resp. cross product).
We have shown in [6, Theorem 1.1] that every M*(q) is three-generated,
and when ¢ # 9 is odd or ¢ = 2 then the generators can be chosen as

(1 e (1 e _ 0 ues (1)
g1 = 0 1 y 92 = O 1 , g3 = _u—le3 1 )

where u is a primitive element of F' (cf. [6, Proposition 4.1]). In particular,
note that g1, g2 and g3 generate M*(p) for every prime p. We find it more
convenient to use another set of generators.

Proposition 1. Let ¢ # 9 be an odd prime power or ¢ = 2. Then M*(q)
15 generated by three elements of order three.

Proof. Let us introduce

0 (0,0,u)
94 = g3g1 = (0 u _ufl) 1 s
0 (0,0, u)
It follows from (1) that M*(q) is generated by g3, g4, and gs. One easily
verifies that these elements are of order 3. ]

The groups (g3, g4), (93, g5) and (g4, g5) play therefore a prominent role
in the lattice of subloops of M*(q). As we prove in Section 3, each of them
is isomorphic to the group (3, 3 | 3, p), defined below.

2. The abstract groups (3, 3 | 3, p)
The two-generated abstract groups (I, m | n, k) defined by presentations
Lm|n, k)= (z,y|a'=y™=(zy)" = (" "y)") (2)

were first studied by Edington [3], for some small values of I, m, n and k.
The notation we use was devised by Coxeter [1] and Moser [2]|, and has a
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deeper meaning that we will not discuss here. From now on, we will always
refer to presentation (2) when speaking about (I, m | n, k).

The starting point for our discussion is Theorem 2, due to Edington |3,
Theorem IV and pp. 208-210]. (Notice that there is a typo concerning the
order of (3, 3| 3, n), and a misprint claiming that (3, 3 | 3, 3) is isomorphic
to Ay.). For the convenience of the reader, we give a short, contemporary
proof.

Theorem 2 (Edington). The group G = (3,3 | 3, n) exists for every
n > 1, is of order 3n?, and is non-abelian when n > 1. It contains a
normal subgroup H = (x?y, xy?) = C,, x Cy,. In particular, G = Cs when
n=1, G= Ay when n =2, and G is the unique non-abelian group of order
27 and exponent 3 when n = 3.

Proof. Verify that (3,3 | 3, 1) is isomorphic to C5. Let n > 1. Since
w(@*y)zt =yt = y(2Py)y~' € H, and 2 (zy*)z = v’z =y (ay?)y €
H, the subgroup H is normal in G. It is an abelian group of order at most
n? since 2%y - xy? = x(zy)?y = z(zy) "y = zy? - 2%y. Clearly, G/H = C;
(enumeration of cosets works fine), and hence |G| = 3|H| < 3n?.

Let N = (a) x (b) =2 C,, x Cp, and K = (f) < Aut(N), where f is
defined by f(a) = a='b, f(b) = a~!. Let E be the semidirect product of
N and K via the natural action of K on N. We claim that E is non-
abelian, and isomorphic to (3,3 | 3, n) with generators x = (1, f) and
y = (a, f). Wehave (a, /) = (af(a), 12) = (b, ), (b, 21, ) = (b, id),
and (1, f)(b, f?) = (a~!,id). Thus E is non-abelian, and generated by
(1, f), (a, f). A routine computation shows that (1, f)? = (a, f)? =
(1, F)a, ) = (1, ) Ma, P = 1.

The group E proves that |G| = 3|H| = 3n%. In particular, H = C,, x
Ch. O

We would like to give a detailed description of the lattice of subgroups
of (3,3 ] 3, p) in terms of generators x and y. From a group-theoretical
point of view, the groups are rather boring, nevertheless, the lattice can be
nicely visualized. The cases p = 2 and p = 3 cause troubles, and we ezxclude
them from our discussion for the time being.

Lemma 3. Let G and H be defined as before. Then H is the Sylow p-
subgroup of G, and contains p + 1 subgroups H(i) = (h(7)), for 0 < i < p,
or p = o0, all isomorphic to C,. We can take

h(i) = 22y(ey?), for 0<i<p and h(co) = zy*.
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There are p? Sylow 3-subgroups G(k, 1) = (g(k, 1)), for 0 < k, | < p, all
1somorphic to Cs. We can lake

g(k, 1) = (%) F(ay®) 2 (a®y)* (xy?).

Proof. The subgroup structure of H is obvious. Every element of G\ H has
order 3, so there are p? Sylow 3-subgroups of order 3 in G. The subgroup
H acts transitively on the set of Sylow 3-subgroups. (By Sylow Theorems,
G acts transitively on the copies of C3. As |G| = 3p?, the stabilizer of each
Cs under this action is isomorphic to C'3. Since p and 3 are relatively prime,
no element of H can be found in any stabilizer.) This shows that our list
of Sylow 3-subgroups is without repetitions, thus complete. O

For certain values of p (see below), there are no other subgroups in G.
For the remaining values of p, there are additional subgroups of order 3p.

If K < G has order 3p, it contains a unique normal subgroup of order p,
say L < H. Since L is normalized by both K and H, it is normal in G. Then
G/L is a non-abelian group of order 3p, and has therefore p subgroups of
order 3. Using the correspondence of lattices, we find p subgroups of order
3p containing L (the group K is one of them).

Lemma 4. The group H(i) is normal in G if and only if
i +i+1=0(modp). (3)

Ifp=1 (mod 3), there are two solutions to (3). For other values of p, there
s no solution.

Proof. We have
e h(i)e = a2y (zy?) e = xyPy? (ay®) e
= (zy?)(yP2)"™ = (a2y) =0TV (2y?).

Thus 2~ 'h(i)z belongs to H (i) if and only if (z2y) ~HDi(2y?) = (22y)(xy?)?,
i.e. if and only if 7 satisfies (3). Similarly,

y 1 h(i)y =y 2Py (ay?) 'y = () (xy?)y* (zy?)'y

= (v2z)(zy?) (y2x)" = (z?y) TV (zy?).

Then y~1h(i)y belongs to H(i) if and only if i satisfies (3).

The quadratic congruence (3) has either two solutions or none. Pick
a € GF(p)*, a # 1. Then a® + a+ 1 = 0 if and only if a® = 1, since
a® —1=(a—1)(a®> + a+ 1). This simple argument shows that (3) has a
solution if and only if 3 divides p — 1 = |GF(p)*|. O
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Theorem 5 (The Lattice of Subgroups of (3,3 | 3, p)). For a prime

p>3,letG=(3,3|3,p), H=(2?y, zy?), h(i) = 2%y(zy?)" for 0 <i < p,
h(oo) = xy®, H(i) = (h(i)), g(k, 1) = (2%y) " (ay®)x(z?y)* (xy?)" for
0<k,l<p, and G(k, 1) = (g(k, )>

Then H(oo) = Cp, H(i) = Cp, G(k, 1) = Cs are the minimal subgroups
of G, and H(i) V H(j) = H = Cp x Cp for every i # j. When 3 does
not divide p — 1, there are no other subgroups in G. Otherwise, there are
additional 2p non-abelian mazximal subgroups of order 3p; p for each 1 <
i < p satisfying i> = 1 (mod p). These subgroups can be listed as K (i, [) =
H(i) vG(0,1), for 0 <l < p. Then H(i)V GK, ') = K(i,1) if and
only if ' — 1 = ik’ (mod p); otherwise H(i) V G(k', l') = G. Finally, let
(k, 1) # (K, U"). Then G(k,1) vV G(K', ') = H(i) V G(k, 1) if and only if
there is 1 < i < p satisfying i = 1 (mod p) such that I! — 1 = (k' — k)i
(mod p); otherwise G(k, )V G(K', ') =G.

The group (3,3 | 3, 2) is isomorphic to A4, the alternating group on
4 points, and (3, 3 | 3, 3) is the unique non-abelian group of order 27 and
exponent 3.

Proof. Check that h(i)~tg(k, )h(i) = g(k + 1,1+ i), and conclude that
H(i)V G(k, 1) = H(i) V G(K, ) if and only if ' — | = i(k' — k) (mod p).
This also implies that, for some 1 < i < p, H(i) V G(K', ') equals K (i, 1) if
and only if I’ — I = ik’ (mod p) and i® =1 (mod p).

Finally, if S = G(k, 1)V G(K', ') # G, it contains a unique H (i) < G.
Moreover, we have S = H(i) V G(k, 1) = H(i) V G(K', ') solely on the
grounds of cardinality, and everything follows. 0

We illustrate Theorem 5 with p = 7. The congruence (3) has two solu-
tions, i = 2 and i = 4. The subgroup lattice of (3, 3 | 3, 7) is depicted in the
3D Figure 1. The 49 subgroups G(k, l) are represented by a parallelogram
that is thought to be in a horizontal position. All lines connecting the sub-
groups G(k, 1) with K(2, 0) and K (4, 0) are drawn. The lines connecting
the subgroups G(k, 1) with K (2, j), K(4, j), for 1 < j < p, are omitted for
the sake of transparency. The best way to add these missing lines is by the
means of affine geometry of GF(p) x GF(p). To determine which groups
G(k, 1) are connected to the group K(i, j), start at G(0, j) and follow the
line with slope 7, drawn modulo the parallelogram.

The group A4 fits the description of Theorem 5, too, as can be seen from
its lattice of subgroups in Figure 2. So does the group (3, 3 | 3, 3).
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o i

Figure 1: The lattice of subgroups of (3, 3 | 3, 7)
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Figure 2: The subgroup structure of Ay
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3. Three subgroups

We promised to show that each of the subgroups (gs, g4), (93, 95), (94, g5)
of M*(q) is isomorphic to (3, 3 | 3, p).

Proposition 3.1. Let g3, g4, g5 be defined as above, ¢ = p". Then
the three subgroups (g3, g4), (93, 95), (94, g5) of M*(p") are isomorphic to
(3,313,p),if q#9 is odd or g =2.

Proof. We prove that G1 = (g3, g4) = (3, 3 | 3, p); the argument for the
other two groups is similar. We have g5 = g3 = (g394)% = (g493)3

(95 '94)” = (9394)P = e. Thus G1 < (3, 3| 3, p). Also, H1 = (9394, 9393)
Cp x Cp. When p # 3, we conclude that |G1| = 3p?, since G contains an
element of order 3. When p = 3, we check that g3 ¢ Hi, and reach the
same conclusion.

11l

(I

We finish this paper with a now obvious observation, that in order to
describe all subloops of M*(q), one only has to study the interplay of the
isomorphic subgroups (gs, g4), (93, g5), and (g4, gs)-
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