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A parastrophic equivalence in quasigroups

Ján Duplák

Abstract

In this paper there are found of "lowest" representants of classes of a parastrophic
equivalence in quasigroups satisfying identities of the type

w1¤1(w2¤2 . . . (wn¤nx))) l x, 1 < n,
where ¤i is a parastrophe of ¤1 for all i 6 n and w1, . . . , wn are terms in Q(·)
and its parastrophes that not contain variable x. These representants are listed
for 1 < n < 5 by a personal computer.

1. Introduction
With any given quasigroup (Q, ·) there are associated �ve operations
∗, /, \, 4, 5 (see the following part 1) that we shall call conjugates
of (·) (see [1], [4]) or parastrophes of (·) (see [3]). If a quasigroup (Q, ·)
satis�es a given identity, say I, then in general, for example (Q, /) will
satisfy a di�erent conjugate identity, say II. Therefore it is in some
sense true that the theory of quasigroups that satisfy the identity I is
equivalent to the theory of quasigroups which satisfy the identity II,
as has been remarked by Stein in [4].

In [3], Sade has given some general rules for determining the iden-
tities satis�ed by the parastrophes of a quasigroup (Q, ·) when (Q, ·)
satis�es a given identity involving some elements of the set

∑
(·) =

{·, ∗, /,5, \,4}. In [4], Stein has listed the conjugate identities for a
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number well-known identities. More extensive list is given in Belousov
[1]. With respect to a parastrophic equivalence, Belousov in [2] has
given a classi�cation of all quasigroups identities which are of the type
x¤1

(
x¤2(x¤3y)

)
l y, where ¤i ∈

∑
(·) for all i = 1, 2, 3.

In this paper we give a generalization and a simpli�cation of meth-
ods used in [2].

2. Preliminaries
Let (Q, ·) be a �xed quasigroup, T = {L,R, T, L−1, R−1, T−1}, and∑

(·) = {·, ∗, /,5,\,4}, where x · y = z ⇔ y ∗ x = z ⇔ z/y = x ⇔
y5 z = x ⇔ x \ z = y ⇔ z 4 x = y.

Further, let Lax = a · x, Rax = x · a, L
/
ax = a/x, R5

a x = x5 a,
Tax = x \ a, LaL

−1
a x = x, ... Then it holds the relations given by

Table 1. This table we read like this: L5 = R−1, (R−1)\ = T−1,
..., ϕ2(R

−1) = ϕ2R
−1 = (R−1)/ = R, ϕ5R = L−1, R−1

a = (Ra)
−1,

T−1
a = (Ta)

−1.

Table 1

· ∗ / 5 \ 4
L L R T−1 R−1 L−1 T

R R L R−1 T−1 T L−1

T T T−1 L−1 L R R−1

L−1 L−1 R−1 T R L T−1

R−1 R−1 L−1 R T T−1 L

T−1 T−1 T L L−1 R−1 R

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

From this table directly follows that (ϕix)−1 = ϕi(x
−1) for all

i ∈ {0, 1, ..., 5} and for all x ∈ T . If (Q, ¤) is a quasigroup, then
the mappings L�a , R�a , ..., (T−1

a )� are called translations of ¤. Every
operation in

∑
(·) is named a parastrophe of (·).
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If a quasigroup (Q, ·) satis�es a given identity, for example

y l (x \ yz)/zx , (1)

then in general each of its parastrophes will satisfy a di�erent conju-
gate identities. Thus, for example, (1) is equivalent to y · zx l x \ yz;
if denote zx = u, yz = v and yu = t (i.e. x = z \ u, z = y \ v,
u = y \ t), then

t l
(
(y \ v) \ (y \ t)

) \ v . (2)
Hence, (Q, ·) satis�es (1) i� (Q, \) satis�es (2). If (2) is written with
terms of (Q, ·), then obtain

c l (ab · ac)b . (3)

Thus (3) is a conjugate identity to (1). Further, from (3) we have
RbLabLa l 1, i.e. LaRbLab l 1. Whence c l a · (ab · c)b and if denote
a = y, ab = z, c = z \ x, then

y l
(
x · (y \ z)

)5 (z \ x) (4)

is a conjugate identity to (1). (4) we get from (1) if all operations in
(1) are substituted by Table 2, i.e. (·) is substituted by \ = ϕ4(·),
∗ by 4 = ϕ4(∗) , . . . , 4 by ∗ = ϕ4(4) (see Sade [3]).

Table 2 Table 3
· ∗ / 5 \ 4

· · ∗ / 5 \ 4
∗ ∗ · 5 / 4 \
/ / 4 · \ 5 ∗
5 5 \ ∗ 4 / ·
\ \ 5 4 ∗ · /

4 4 / \ · ∗ 5
ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ0 ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ1 ϕ1 ϕ0 ϕ5 ϕ4 ϕ3 ϕ2

ϕ2 ϕ2 ϕ3 ϕ0 ϕ1 ϕ5 ϕ4

ϕ3 ϕ3 ϕ2 ϕ4 ϕ5 ϕ1 ϕ0

ϕ4 ϕ4 ϕ5 ϕ3 ϕ2 ϕ0 ϕ1

ϕ5 ϕ5 ϕ4 ϕ1 ϕ0 ϕ2 ϕ3

The identities (1) and (4) may be written by the way as

R/
zxL

\
xRz l 1, R5

z\xLxR
\
z l 1
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and with respect to Table 1 and Table 2

R−1
zx L−1

x Rz l 1, T−1
z\xLxTz l 1 .

The ordered tripletes R−1L−1R , T−1LT may be assigned to the iden-
tities (2), (3). Therefore the triple R−1L−1R will be called conjugate
to the triple T−1LT .

In what follows we shall denote:

N = {0, 1, 2, 3, . . .},
T = {L,R, T, L−1, R−1, T−1},

[0, n) = {0, 1, 2, 3, . . . , n− 1}, n ∈ N, n > 0,

T n = {α : α is a map [0, n) → T } for all n ∈ N, n > 0,

if α ∈ T n then α = An−1 . . . A2A1A0 and α(i) = Ai for all i ∈ [0, n),

T ∞ = T ∪ (T × T ) ∪ (T × T × T ) ∪ . . . ,

l(α) = n ⇐⇒ α ∈ T n,

ω : T ∞ → T ∞, (ωα)(i) = α((i + 1)(modn)) for all i ∈ [0, n),
it holds α ∈ T n ⇒ ωα ∈ T n,

σ : T ∞ → T ∞, (σα)(j) = α(n− 1− j) for n = l(α) and
for all j ∈ [0, n),

ρ : T → T , L 7→ L−1 7→ L, R 7→ R−1 7→ R, T 7→ T−1 7→ T,
i.e. ρ(A) = A−1 for all A ∈ T ,

ρ : T ∞ → T ∞, (ρα)(i) = ρ
(
α(i)

)
for all j ∈ [0, n), n = l(α),

κ : T → [0, 6), L 7→ 0, R 7→ 1, T 7→ 2, L−1 7→ 3, R−1 7→ 4,
T−1 7→ 5,

κ : T ∞ → N, κα =
n−1∑
i=0

10iκ(α(i)), n = l(α),

α < β for α, β ∈ T ∞ ⇐⇒ κα < κβ,

ϕi : T ∞ → T ∞, (ϕiα)(j) = ϕi(α(j)) for all i ∈ [0, 6) and
j ∈ [0, n), n = l(α), where ϕi : T → T is given in Table 1,

P1 − be the group generated by {ϕi : T ∞ → T ∞, i ∈ [0, 6) },



A parastrophic equivalence in quasigroups 11

P − the group generated by the set P1 ∪ {ρσ, ω},
( these maps are de�ned upon T ∞),

ϕi+6 : T ∞ → T ∞, ϕi+6 = σρϕi for all i ∈ [0, 6), where
ϕi : T → T is given in Table 1,

C(i, j, k)(α) = κ
(
(ωkϕiα

)
(j)

)
for all i ∈ [0, 12), j, k ∈ [0, n), n = l(α).

Lemma 1.1. Let α ∈ T ∞, n = l(α) and let j, k ∈ [0, n). Then the
following relations hold

(i) σ2 = ρ2 = 1, ωσω = σ, ω−1(α) = ωn−1(α), ωk(α) = ωt(α)
if k ≡ t(modn),

(ii) every two elements of the set {ω, σ, ρ, ϕ2, ϕ4} commute,
besides ω, σ and ϕ2, ϕ4,

(iii) P1 = {ϕi : i ∈ [0, 12)}; P1 is generated by {ϕ2, ϕ4},
(iv) P = {ωkϕi : k ∈ N, i ∈ [0, 12)},
(v) C(i, j, 0)(α) = i + (−1)iκα(j)(mod 6) for i = 0, 1,

(vi) C(i, j, 0))(α) = 1− i + (−1)i+1κα(j)(mod 6) for i = 2, 3, 4, 5,
(vii) C(i + 6, j, 0)(α) = C(i, n− 1− j, 0) + 3(mod 6) for i ∈ [0, 6),

(viii) C(i, j, k)(α) = C(i, (j − k)(mod 6), 0)(κα) for i ∈ [0, 12).

Proof. (i) ωσωα(j) = ωσ
(
α(j+1)

)
= ωα(n−1−j−1) = α(n−1−j) =

σα(j). The rest of the proof is straightforward when we use Table 1
� Table 3 .

De�nition 1.2. α, β ∈ T ∞ are called parastrophic equivalent if there
exists ϕ ∈ P such that ϕ(α) = β.

Obviously the parastrophic equivalence is an equivalence relation;
by [α] it will be denoted the class of the relation that comprises α.
With respect to (iv) we have

[α] = {ωkϕi(α) : i ∈ [0, 12), k ∈ [0, n), n = l(α) } ,

and by (v) � (viii)

[α] = {C(i, n− 1, k)(α)C(i, n− 2, k)(α) . . . C(i, 0, k)(α) : i ∈ [0, 12) } ,
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where k ∈ [0, n), n = l(α).
In the following (by a personal computer) it will be found the

lowest element of a class [α] for all α ∈ T n and 1 < n < 5.

2. The parastrophic equivalence in T 2 − T 4

Theorem 2.1. Let n ∈ {2, 3, 4}. Then every α in T n is parastrophic
equivalent to exactly one of the following elements

LL LR LT LL−1 (PE2)

LLL LLR LLT LLL−1 (PE3)

LRT LRL−1 LRR−1 LRT−1

LTR−1 LR−1T

LLLL LLTR LRLR LTLT (PE4)

LLLR LLTT LRLT LTLL−1

LLLT LLTL−1 LRLL−1 LTLR−1

LLLL−1 LLTR−1 LRLR−1 LTT−1L−1

LLRR LLL−1R LRLT−1 LL−1LL−1

LLRT LLL−1T LRTL−1 LL−1T−1T

LLRL−1 LLL−1L−1 LRTR−1

LLRR−1 LLR−1R LRL−1T

LLRT−1 LLR−1T LRL−1R−1

LLT−1R LRL−1T−1

LRR−1T

LRR−1L−1

LRT−1T

LRT−1L−1

LRT−1R−1

In [1] V.D. Belousov de�nes: A primitive quasigroup (Q, ·, \, /) is
a Π−quasigroup of type (α, β, γ) if α, β, γ ∈ ∑

(·) and the quasigroup
satis�es the identity

Lα
xLβ

xLγ
x l 1.
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This identity is equivalent to the identity AxBxCx l 1 for some
A,B, C ∈ T , A−1 6= B, C 6= B−1, A 6= C−1. Therefore we can
say that Q is a quasigroup of type ABC.

By Belousov [2], two Π−quasigroups of types ABC, DEF , re-
spectively, are called parastrophic equivalent if ABC = ϕ(DEF ) for
some ϕ ∈ P ; it is in the view of the de�nition of the parastrophic
equivalence given in this paper. Thus if from 10 elements of the set
PE3 delete LLL−1, LRR−1, LRL−1 then obtain 7 elements that de-
termine 7 equivalence classes of the parastrophic equivalence relation
listed in [2, Table 1].

If we want to determine the equivalence class of the parastrophic
equivalency (for example) of the identity

(x/y) \ (y \ x) l x (5)

(see [2, p. 16]), then proceed like this: (5) is equivalent to

y \ x l (x/y)x,

i.e.
Rx l RxL

/
x

whence by Table 1
Tz l RzT

−1
z

and also

RzT
−1
z T−1

z l 1, ϕ3(RT−1T−1) = R−1LL.

Hence (5) is parastrophic equivalent to

LxLxR
−1
x l 1,

i.e. x · xy l yx in (Q, /).
The lowest element of the set [RT−1T−1] we can determine by a

computer. Similarly we can proceed for arbitrary ABC ∈ T 3; more
generally, for arbitrary x ∈ T n, n > 1.

By a computer we can get card(PE5) = 148, card(PE6) = 718,
card(PE7) = 3441.
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On intuitionistic fuzzy subquasigroups
of quasigroups

Kyung Ho Kim, Wiesªaw A. Dudek and Young Bae Jun

Abstract

In this paper, we introduce the notion of an intuitionistic fuzzy subquasigroup of
a quasigroup G, and then some related properties are investigated. Characteriza-
tions of intuitionistic fuzzy subquasigroup of a quasigroup G are given.

1. Introduction
After the introduction of the concept of fuzzy sets by Zadeh [11],
several researches were conducted on the generalizations of the notion
of fuzzy set. The idea of �intuitionistic fuzzy set� was �rst published
by Atanassov [1, 2], as a generalization of the notion of fuzzy set.
Jun and Kim considered the intuitionistic fuzzi�cation of near-rings
[8]. In [6], Dudek introduced the notion of fuzzy subquasigroup of
a quasigroup G. Fuzzy subquasigroups with respect to a norm are
considered by Dudek and Jun in [7]. In this paper, we apply the
concepts of intuitionistic fuzzy sets to subquasigroups of a quasigroup
and introduce the notion of an intuitionistic fuzzy subquasigroup of a
quasigroup, and then some related properties are investigated. Also,
we discuss equivalence relations on the family of all intuitionistic fuzzy
subquasigroups of a quasigroup.
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Keywords: quasigroup, fuzzy subquasigroup, Intutionistic fuzzy subquasigroup



16 K. H. Kim, W. A. Dudek and Y. B. Jun

2. Preliminaries
A groupoid (G, ·) is called a quasigroup if each of the equations ax = b,
xa = b has a unique solution for any a, b ∈ G. A quasigroup (G, ·)
may be also de�ned as an algebra (G, ·, \, /) with the three binary
operations · , \, / satisfying the identies

(xy)/y = x, x\(xy) = y, (x/y)y = x and x(x\y) = y.

We say also that (G, ·, \, /) is an equasigroup (i.e., equationally de-
�nable quasigroup) [9] or a primitive quasigroup [3]. The quasigroup
(G, ·, \, /) corresponds to quasigroup (G, ·), where

x\y = z ⇐⇒ xz = y and x/y = z ⇐⇒ zy = x.

A quasigroup is called unipotent if xx = yy for all x, y ∈ G. These
quasigroups are connected with Latin squares which have one �xed
element in the diagonal (cf. [5]). Such quasigroups may be de�ned
as quasigroups (G, ·) with the special element θ satisfying the identity
xx = θ. In this case also x\θ = x and θ/x = x for all x ∈ G.

A nonempty subset S of a quasigroup G = (G, ·, \, /) is called a
subquasigroup of G if it is closed under these three operations · , \, / ,
i.e., if x ∗ y ∈ S for all ∗ ∈ {·, \, /} and x, y ∈ S.

By a fuzzy set µ in a set G we mean a function µ : G → [0, 1].
The complement of µ, denoted by µ, is the fuzzy set in G given by
µ(x) = 1− µ(x) for all x ∈ G.

For a unipotent quasigroup G = (G, ·, \, /) and a fuzzy set µ in
G, let Gµ denote the set of all elements of G such that µ(x) = µ(θ),
i.e.,

Gµ = {x ∈ G : µ(x) = µ(θ)}.
Im(µ) denote the image set of µ, a∧b = min{a, b}, a∨b = max{a, b}.

An intuitionistic fuzzy set (IFS for short) of a nonempty set X is
de�ned by Atanassov (cf. [2]) in the following way.
De�nition 2.1. An intuitionistic fuzzy set A of a nonempty set X is
an object having the form

A = {(x, µA(x), γA(x)) : x ∈ X},
where the functions µA : X → [0, 1] and γA : X → [0, 1] denote the
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degree of membership (namely µA(x)) and the degree of nonmember-
ship (namely γA(x)) of each element x ∈ X to the set A, respectively,
and 0 6 µA(x) + γA(x) 6 1 for all x ∈ X.

For the sake of simplicity, we shall use the symbol A = (µA, γA)
for the intuitionistic fuzzy set A = {(x, µA(x), γA(x)) : x ∈ X}.

The concept of fuzzy subquasigroups was introduced in [6].

De�nition 2.2. A fuzzy set µ in a quasigroup G = (G, ·, \, /) is called
a fuzzy subquasigroup of G if

µ(xy) ∧ µ(x\y) ∧ µ(x/y) > µ(x) ∧ µ(y)

for all x, y ∈ G.

It is clear that this de�nition is equivalent to the following.

De�nition 2.3. A fuzzy set µ in a quasigroup G = (G, ·, \, /) is a
fuzzy subquasigroup of G if

µ(x ∗ y) > µ(x) ∧ µ(y)

for all ∗ ∈ {·, \, /} and all x, y ∈ G.

3. Intuitionistic fuzzy subquasigroups
In what follows let G = (G, ·, \, /) denote a quasigroup, and we start
by de�ning the notion of intuitionistic fuzzy subquasigroups.
De�nition 3.1. An intuitionistic fuzzy set A = (µA, γA) in G is
called an intuitionistic fuzzy subquasigroup of G if

(IF1) µA(x ∗ y) > µA(x) ∧ µA(y) and γA(x ∗ y) 6 γA(x) ∨ γA(y)

hold for all x, y ∈ G.

Proposition 3.2. If A = (µA, γA) is an intuitionistic fuzzy subquasi-
group of a quasigroup G, then

(i) µA(x ∗ y) ∧ µA(x) = µA(x ∗ y) ∧ µA(y) = µA(x) ∧ µA(y),
(ii) γA(x ∗ y) ∨ γA(x) = γA(x ∗ y) ∨ γA(y) = γA(x) ∨ γA(y)

for all x, y ∈ G.
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Proof. (i) is by Proposition 3.4 from [6].
(ii) We �rst consider the case x ∗ y = xy. Since (xy)/y = x for

all x, y ∈ G, we have
γA(xy) ∨ γA(y) 6

[
γA(x) ∨ γA(y)

] ∨ γA(y)

= γA(x) ∨ γA(y) = γA((xy)/y) ∨ γA(y)

6
[
γA(xy) ∨ γA(y)

] ∨ γA(y)

= γA(xy) ∨ γA(y),

which proves that γA(xy) ∨ γA(y) = γA(x) ∨ γA(y).

In the similar way, using the identity x\(xy) = y, we can show
that γA(xy) ∨ γA(x) = γ(x) ∨ γA(y).

Next we prove that the result for the case x ∗ y = x\y. Since
x(x\y) = y for all x, y ∈ G, we get

γA(x) ∨ γA(y) = γA(x) ∨ γA

(
x(x\y)

)

6 γA(x) ∨ [
γA(x) ∨ γA(x\y)

]
= γA(x) ∨ γA(x\y)

6 γA(x) ∨ [
γA(x) ∨ γA(y)

]
= γA(x) ∨ γA(y).

Thus γA(x) ∨ γA(x\y) = γA(x) ∨ γA(y).

Noticing that x\y = z ⇐⇒ xz = y, we obtain
γA(x\y) ∨ γA(y) = γA(z) ∨ γA(xz) = γA(z) ∨ γA(x)

= γA(x\y) ∨ γA(x) = γA(x) ∨ γA(y).

Finally, we should prove the result for the case x ∗ y = x/y. Using
the equality (x/y)y = x, we have

γA(x) ∨ γA(y) = γA

(
(x/y)y

) ∨ γA(y)

>
[
γA(x/y) ∨ γA(y)

] ∨ γA(y) = γA(x/y) ∨ γA(y)

>
[
γA(x) ∨ γA(y)

] ∨ γA(y) = γA(x) ∨ γA(y).

It follows that γA(x/y) ∨ γA(y) = γA(x) ∨ γA(y).

Since x/y = z ⇐⇒ zy = x for all x, y, z ∈ G, we get
γA(x/y) ∨ γA(x) = γA(z) ∨ γA(zy) = γA(z) ∨ γA(y)

= γA(x/y) ∨ γA(y) = γA(x) ∨ γA(y).

This completes the proof.
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Corollary 3.3. Let A = (µA, γA) be an intuitionistic fuzzy subquasi-
group of G and let ∗ ∈ {·, \, /}. Then µA(x ∗ y) = µA(x) ∧ µA(y)
(resp. γA(x ∗ y) = γA(x) ∨ γA(y) ) whenever µA(x) 6= µA(y) (resp.
γA(x) 6= γA(y) ).

Proof. Straightforward.

Lemma 3.4. If A = (µA, γA) is an intuitionistic fuzzy subquasi-
group of G and e is a left ( right ) neutral element of (G, ·), then
µA(e) > µA(x) and γA(e) 6 γA(x) for all x ∈ G.

Proof. Indeed, if ex = x, then also x/x = e and µA(e) = µA(x/x) >
µA(x) ∧ µA(x) = µA(x). Similarly γA(e) = γA(x/x) 6 γA(x).

Lemma 3.5. If A = (µA, γA) is an intuitionictic fuzzy subquasigroup
of a unipotent quasigroup G, then µA(θ) > µA(x) and γA(θ) 6 γA(x)
for all x ∈ G.

Proof. Since xx = θ for all x ∈ G, we have
µA(θ) = µA(xx) > µA(x) ∧ µA(x) = µA(x)

and
γA(θ) = γA(xx) 6 γA(x) ∨ γA(x) = γA(x)

for all x ∈ G.

Theorem 3.6. If A = (µA, γ) is an intuitionistic fuzzy subquasigroup
of G, then so is ¤A, where ¤A = {(x, µA(x), 1− µA(x)) : x ∈ G}.
Proof. It is su�cient to show that µA satis�es the second condition
of (IF1). For any x, y ∈ G, we have

µA(x ∗ y) = 1− µA(x ∗ y) 6 1− [
µA(x) ∧ µA(y)

]

=
[
1− µA(x)

] ∨ [
1− µA(y)

]
= µA(x) ∨ µA(y).

Therefore ¤A is an intuitionistic fuzzy subquasigroup of G.
Theorem 3.7. Let G = (G, ·, \, /) be a unipotent quasigroup. If
A = (µA, γA) is an intuitionistic fuzzy subquasigroup of G, then
Gµ = {x ∈ G : µA(x) = µA(θ)} and Gγ = {x ∈ G : γA(x) = γA(θ)}
are subquasigroups of G.
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Proof. Obviously Gµ 6= ∅ 6= Gγ. Let x, y ∈ Gµ and ∗ ∈ {·, \, /}.
Then µA(x ∗ y) > µA(x) ∧ µA(y) = µA(θ). Since µA(θ) > µA(z) for
all z ∈ G, it follows that µA(x ∗ y) = µA(θ), i.e., x ∗ y ∈ Gµ.

Similarly x, y ∈ Gγ implies γA(x∗y) 6 γA(x)∨γA(y) = γA(θ) and
so γA(x ∗ y) = γA(θ), i.e., x ∗ y ∈ Gγ. This completes the proof.

Corollary 3.8. If A = (µA, γA) is an intuitionistic fuzzy subquasi-
group of G and e is a left ( right ) neutral element of (G, ·), then
Gµ = {x ∈ G : µA(x) = µA(e)} and Gγ = {x ∈ G : γA(x) = γA(e)}
are subquasigroups of G.

For any α ∈ [0, 1] and fuzzy set µ of G, the set

U(µ; α) = {x ∈ G : µ(x) > α} (resp. L(µ; α) = {x ∈ G : µ(x) 6 α})

is called an upper (resp. lower) α-level cut of µ.

Theorem 3.9. If A = (µA, γ) is an intuitionistic fuzzy subquasigroup
of G, then the sets U(µA; α) and L(γA; α) are subquasigroups of G
for every α ∈ Im(µA) ∩ Im(γA).

Proof. Let α ∈ Im(µA) ∩ Im(γA) ⊆ [0, 1] and ∗ ∈ {·, \, /} and let
x, y ∈ U(µA; α). Then µA(x) > α and µA(y) > α. It follows from
the �rst condition of (IF1) that

µA(x ∗ y) > µA(x) ∧ µA(y) > α so that x ∗ y ∈ U(µA; α).

If x, y ∈ L(γA; α), then γA(x) 6 α and γA(y) 6 α, and so

γA(x ∗ y) 6 γA(x) ∨ γA(y) 6 α.

Hence we have x ∗ y ∈ L(γA; α). Therefore U(µA; α) and L(γA; α)
are subquasigroups of G.

Theorem 3.10. Let A = (µA, γA) be an IFS in G such that the
nonempty sets U(µA; α) and L(γA; α) are subquasigroups of G for all
α ∈ [0, 1]. Then A = (µA, γA) is an intuitionistic fuzzy subquasigroup
of G.
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Proof. Let α ∈ [0, 1]. Assume that U(µA; α) 6= ∅ and L(γA; α) 6= ∅
are subquasigroups of G. We must show that A = (µA, γA) satis�es
the condition (IF1).

Let ∗ ∈ {·, \, /}. If the �rst condition of (IF1) is false, then there
exist x0, y0 ∈ G such that µA(x0 ∗ y0) < µA(x0) ∧ µA(y0). Taking

α0 =
1

2

[
µA(x0 ∗ y0) +

[
µA(x0) ∧ µA(y0)

] ]
,

we have µA(x0 ∗ y0) < α0 < µA(x0)∧µA(y0). It follows that x0, y0 are
in U(µA; α0) but x0 ∗ y0 6∈ U(µA; α0), which is a contradiction.

Assume that the second condition of (IF1) does not hold. Then
γA(x0 ∗ y0) > γA(x0) ∨ γA(y0) for some x0, y0 ∈ G. Let

β0 =
1

2

[
γA(x0 ∗ y0) +

[
γA(x0) ∨ γA(y0)

] ]
.

Then γA(x0 ∗ y0) > β0 > γA(x0) ∨ γA(y0) and so x0, y0 ∈ L(γA; β0)
but x0 ∗ y0 6∈ L(γA; β0). This is a contradiction.

Thus (IF1) must be satis�ed.

Theorem 3.11. Let H be a subquasigroup of G and let A = (µA, γA)
be an IFS in G de�ned by

µA(x) =

{
α0 if x ∈ H,

α1 otherwise,
γA(x) =

{
β0 if x ∈ H,

β1 otherwise,

for all x ∈ G and αi, βi ∈ [0, 1] such that α0 > α1, β0 < β1 and
αi + βi 6 1 for i = 0, 1. Then A = (µA, γA) is an intuitionistic fuzzy
subquasigroup of G and U(µA; α0) = H = L(γA; β0).

Proof. Let x, y ∈ G and let ∗ ∈ {·, \, /}. If any one of x and y does
not belong to H, then

µA(x ∗ y) > α1 = µA(x) ∧ µA(y)
and

γA(x ∗ y) 6 β1 = γA(x) ∨ γA(y).
Therefore A = (µA, γA) is an intuitionistic fuzzy subquasigroup of a
quasigroup G. Obviously U(µA; α0) = H = L(γA; β0).
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Corollary 3.12. Let χH be the characteristic function of a subquasi-
group H of G. Then H = (χH , χH) is an intuitionistic fuzzy sub-
quasigroup of G.

Theorem 3.13. If A = (µA, γA) is an intuitionistic fuzzy subquasi-
group of G, then

µA(x) = sup{α ∈ [0, 1] : x ∈ U(µA; α)}
and

γA(x) = inf{α ∈ [0, 1] : x ∈ L(γA; α)}
for all x ∈ G.

Proof. Let δ = sup{α ∈ [0, 1] : x ∈ U(µA; α)} and let ε > 0 be given.
Then δ − ε < α for some α ∈ [0, 1] such that x ∈ U(µA; α). This
means that δ − ε < µA(x) so that δ 6 µA(x) since ε is arbitrary.

We now show that µA(x) 6 δ. If µA(x) = β, then x ∈ U(µA; β)
and so

β ∈ {α ∈ [0, 1] : x ∈ U(µA; α)}.
Hence

µA(x) = β 6 sup{α ∈ [0, 1] : x ∈ U(µA; α)} = δ.
Therefore

µA(x) = δ = sup{α ∈ [0, 1] : x ∈ U(µA; α)}.

Now let η = inf{α ∈ [0, 1] : x ∈ L(γA; α)}. Then
inf{α ∈ [0, 1] : x ∈ L(γA; α)} < η + ε

for any ε > 0, and so α < η+ε for some α ∈ [0, 1] with x ∈ L(γA; α).
Since γA(x) 6 α and ε is arbitrary, it follows that γA(x) 6 η.

To prove γA(x) > η, let γA(x) = ζ. Then x ∈ L(γA; ζ) and thus
ζ ∈ {α ∈ [0, 1] : x ∈ L(γA; α)}. Hence

inf{α ∈ [0, 1] : x ∈ L(γA; α)} 6 ζ,

i.e., η 6 ζ = γA(x). Consequently
γA(x) = η = inf{α ∈ [0, 1] : x ∈ L(γA; α)},

which completes the proof.
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Theorem 3.14. Let {Hα : α ∈ Λ}, where Λ is a nonempty subset of
[0, 1], be a collection of subquasigroups of G such that

(i) G =
⋃

α∈Λ

Hα,

(ii) α > β ⇐⇒ Hα ⊂ Hβ for all α, β ∈ Λ.
Then an intuitionistic fuzzy set A = (µA, γA) de�ned by

µA(x) = sup{α ∈ Λ : x ∈ Hα} and γA(x) = inf{α ∈ Λ : x ∈ Hα}
for all x ∈ G is an intuitionistic fuzzy subguasigroup of G.
Proof. According to Theorem 3.10, it is su�cient to show that the
nonempty sets U(µA; α) and L(γA; β) are subquasigroups of G.

In order to prove that U(µA; α) 6= ∅ is a subquasigroup of G, we
consider the following two cases:

(i) α = sup{δ ∈ Λ : δ < α} and (ii) α 6= sup{δ ∈ Λ : δ < α}.

Case (i) implies that
x ∈ U(µA; α) ⇐⇒ (

x ∈ Hδ for all δ < α
) ⇐⇒ x ∈ ⋂

δ<α

Hδ ,

so that U(µA; α) =
⋂

δ<α

Hδ which is a subquasigroup of G.

For the case (ii), we claim that U(µA; α) =
⋃

δ>α

Hδ . If x ∈ ⋃
δ>α

Hδ

then x ∈ Hδ for some δ > α. It follows that µA(x) > δ > α, so that
x ∈ U(µA; α). This shows that

⋃
δ>α

Hδ ⊆ U(µA; α).

Now assume that x 6∈ ⋃
δ>α

Hδ . Then x 6∈ Hδ for all δ > α. Since

α 6= sup{δ ∈ Λ : δ < α}, there exists ε > 0 such that (α−ε, α)∩Λ = ∅.
Hence x 6∈ Hδ for all δ > α − ε, which means that if x ∈ Hδ

then δ 6 α − ε. Thus µA(x) 6 α − ε < α, and so x 6∈ U(µA; α).
Therefore U(µA; α) ⊆ ⋃

δ>α

Hδ , and thus U(µA; α) =
⋃

δ>α

Hδ , which is

a subquasigroup of G.
Now we prove that L(γA; β) is a subquasigroup of G. We consider

the following two cases:
(iii) β = inf{η ∈ Λ : β < η} and (iv) β 6= inf{η ∈ Λ : β < η}.
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For the case (iii) we have
x ∈ L(γA; β) ⇐⇒ (

x ∈ Hη for all η > β
) ⇐⇒ x ∈ ⋂

η>β

Hη

and hence L(γA; β) =
⋂

η>β

Hη which is a subquasigroup of G.

For the case (iv), there exists ε > 0 such that (β, β + ε) ∩ Λ = ∅.
We will show that L(γA; β) =

⋃
η6β

Hη . If x ∈ ⋃
η6β

Hη then x ∈ Hη

for some η 6 β. It follows that γA(x) 6 η 6 β so that x ∈ L(γA; β).
Hence

⋃
η6β

Hη ⊆ L(γA; β).

Conversely, if x /∈ ⋃
η6β

Hη then x /∈ Hη for all η 6 β, which implies

that x /∈ Hη for all η < β + ε, i.e., if x ∈ Hη then η > β + ε. Thus
γA(x) > β + ε > β, i.e., x /∈ L(γA; β). Therefore L(γA; β) ⊆ ⋃

η6β

Hη

and consequently L(γA; β) =
⋃

η6β

Hη which is a subquasigroup of G.
This completes the proof.

Theorem 3.15. A = (µA, γA) is an intuitionistic fuzzy subquasigroup
of G i� µA and γA are fuzzy subquasigroups of G.
Proof. Let A = (µA, γA) be an intuitionistic fuzzy subquasigroup of
G. Then clearly µA is a fuzzy subquasigroup of G. Let x, y ∈ G and
∗ ∈ {·, \, /}. Then

γA(x ∗ y) = 1− γA(x ∗ y) > 1− [
γA(x) ∨ γA(y)

]

=
[
1− γA(x)

] ∧ [
1− γA(y)

]
= γA(x) ∧ γA(y) .

Hence γA is a fuzzy subquasigroup of G.
Conversely suppose that µA and γA are fuzzy subquasigroups of

G. If x, y ∈ G and ∗ ∈ {·, \, /}, then
1− γA(x ∗ y) = γA(x ∗ y) > γA(x) ∧ γA(y)

=
[
1− γA(x)

] ∧ [
1− γA(y)

]

= 1− [
γA(x) ∨ γA(y)

]
,

which proves γA(x∗y) 6 γA(x)∨γA(y). This completes the proof.
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If H is a subquasigroup of G, then H = (χH , χH) is an intuition-
istic fuzzy subquasigroup of G from Corollary 3.12, where χH is the
characteristic function of H.

Let IFS(G) be the family of all intuitionistic fuzzy subquasigroups
of G and α ∈ [0, 1] be a �xed real number. For any A = (µA, γA)
and B = (µB, γB) from IFS(G) we de�ne two binary relations Uα

and Lα on IFS(G) as follows:

(A,B) ∈ Uα ⇐⇒ U(µA; α) = U(µB; α)

and
(A,B) ∈ Lα ⇐⇒ L(γA; α) = L(γB; α) .

These two relations Uα and Lα are equivalence relations, give rise
to partitions of IFS(G) into the equivalence classes of Uα and Lα,
denoted by [A]Uα and [A]Lα for any A = (µA, γA) ∈ IFS(G), respec-
tively. And we will denote the quotient sets of IFS(G) by Uα and
Lα as IFS(G)/Uα and IFS(G)/Lα, respectively.

If S(G) is the family of all subquasigroups of G and α ∈ [0, 1],
then we de�ne two maps Uα and Lα from IFS(G) to S(G) ∪ {∅}
as follows:

Uα(A) = U(µA; α) and Lα(A) = L(γA; α),

respectively, for each A = (µA, γA) ∈ IFS(G). Then the maps Uα

and Lα are well-de�ned.

Theorem 3.16. For any α ∈ (0, 1), the maps Uα and Lα are sur-
jective from IFS(G) onto S(G) ∪ {∅}.
Proof. Let α ∈ (0, 1). Note that 0∼ = (0,1) is in IFS(G), where 0
and 1 are fuzzy sets in G de�ned by 0(x) = 0 and 1(x) = 1 for all
x ∈ G. Obviously, Uα(0∼) = Lα(0∼) = ∅. If H is a subquasigroup
of G, then for the intuitionistic fuzzy subquasigroup H = (χH , χH),
Uα(H) = U(χH ; α) = H and Lα(H) = L(χH ; α) = H. Hence Uα

and Lα are surjective.

Theorem 3.17. The quotient sets IFS(G)/Uα and IFS(G)/Lα are
equipotent to S(G) ∪ {∅} for any α ∈ (0, 1).
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Proof. Let α ∈ (0, 1) and let Uα : IFS(G)/Uα −→ S(G) ∪ {∅} and
Lα : IFS(G)/Lα −→ S(G) ∪ {∅} be the maps de�ned by

Uα([A]Uα) = Uα(A) and Lα([A]Lα) = Lα(A),

respectively, for each A = (µA, γA) ∈ IFS(G).
If U(µA; α) = U(µB; α) and L(γA; α) = L(γB; α) for A = (µA, γA)

and B = (µB, γB) from IFS(G), then (A,B) ∈ Uα and (A, B) ∈ Lα,
whence [A]Uα = [B]Uα and [A]Lα = [B]Lα . Hence the maps Uα and
Lα are injective.

To show that the maps Uα and Lα are surjective, let H be a
subquasigroup of G. Then for H = (χH , χH) ∈ IFS(G) we have
Uα([H]Uα) = U(χH ; α) = H and Lα([H]Lα) = L(χH ; α) = H. Also
0∼ = (0,1) ∈ IFS(G). Moreover Uα([0∼]Uα) = U(0; α) = ∅ and
Lα([0∼]Lα) = L(1; α) = ∅. Hence Uα and Lα are surjective.

For any α ∈ [0, 1], we de�ne another relation Rα on IFS(G) as
following:

(A,B) ∈ Rα ⇐⇒ U(µA; α) ∩ L(γA; α) = U(µB; α) ∩ L(γB; α)

for any A = (µA, γA) and B = (µB, γB) from IFS(G). Then the
relation Rα is also an equivalence relation on IFS(G).

Theorem 3.18. For any α ∈ (0, 1) and any A = (µA, γA) ∈ IFS(G)
the map Iα : IFS(G) −→ S(G) ∪ {∅} de�ned by

Iα(A) = Uα(A) ∩ Lα(A)

is suriective.

Proof. Indeed, if α ∈ (0, 1) is �xed, then for 0∼ = (0,1) ∈ IFS(G)
we have

Iα(0∼) = Uα(0∼) ∩ Lα(0∼) = U(0; α) ∩ L(1; α) = ∅ ,

and for any H ∈ S(G), there exists H = (χH , χH) ∈ IFS(G) such
that Iα(H) = U(χH ; α) ∩ L(χH ; α) = H.
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Theorem 3.19. For any α ∈ (0, 1), the quotient set IFS(G)/Rα is
equipotent to S(G) ∪ {∅}.
Proof. Let α ∈ (0, 1) and let Iα : IFS(G)/Rα −→ S(G) ∪ {∅} be a
map de�ned by

Iα([A]Rα) = Iα(A) for each [A]Rα ∈ IFS(G)/Rα.

If Iα([A]Rα) = Iα([B]Rα) for any [A]Rα , [B]Rα ∈ IFS(G)/Rα , then

U(µA; α) ∩ L(γA; α) = U(µB; α) ∩ L(γB; α),

hence (A,B) ∈ Rα and [A]Rα = [B]Rα . It follows that Iα is injective.
For 0∼ = (0,1) ∈ IFS(G) we have Iα(0∼) = Iα(0∼) = ∅. If

H ∈ S(G), then for H = (χH , χH) ∈ IFS(G), Iα(H) = Iα(H) = H.
Hence Iα is a bijective map.
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On the classes of algebras reciprocally

closed under direct products

O. U. Kirnasovsky

Abstract

The class K of algebras with the property that two algebras belongs to K i�
their direct product belongs to K is studied.

The class K of algebras with the property that two algebras be-
longs to K i� their direct product belongs to K is called reciprocally
closed under direct products. The formula Φ is reciprocally preserved
under direct products if the class of algebras satisfying Φ is recipro-
cally closed under direct products (cf. [1]).

Three following assertions are evident.

Proposition 1. A class of algebras closed under direct products and
homomorphisms is reciprocally closed under direct products.

Proposition 2. A class of idempotent algebras closed under direct
products and subalgebras is reciprocally closed under direct products.

Proposition 3. The conjunction of formulas of a �xed signature,
which are reciprocally preserved under direct products, is reciprocally
preserved under direct products. Similarly, the intersection of classes
of algebras reciprocally closed under direct products is a class of alge-
bras reciprocally closed under direct products.

In this paper by a groupoid we mean an algebra (Q, f) with one
(binary or n-ary) operation f . A groupoid (Q, f) in which for all

2000 Mathematics Subject Classi�cation: 20N15
Keywords: n-ary quasigroup, isotope
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1 6 i 6 n and ai ∈ Q the equation

f(a1, . . . , ai−1, xi, ai+1, . . . , an) = ai

has a unique solution xi ∈ Q (denoted by f i(a1, . . . , an)) is called a
quasigroup. A loop is a quasigroup with a neutral element; a semigroup
- an associative groupoid; a group - an associative quasigroup.

A formula Φ of the signature Ω is called conjunctively-positive i�
its record has no predicate letter, except the symbols of equality, no
logical connective, except the symbols of conjunction, and no term,
except terms of the signature Ω.

A formula Φ is prenex almost conjunctively-positive formula of a
signature Ω, i� all quanti�ers and symbols �∃!� in its shortened record,
obtained only by reductions to the symbols �∃!�, precede the quanti�er-
free part, and the shortened record has no predicate letter, except the
symbols of equality, no logical connective, except the symbols of con-
junction, and no term, except terms of the signature Ω. Obviously,
prenex normal form of a conjunctively-positive formula of a signature
Ω is a prenex almost conjunctively-positive formula of the signature
Ω.

Lemma 4. Every prenex almost conjunctively-positive formula is re-
ciprocally preserved under direct products.

Proof. The given formula is equivalent to a closed formula of the form

(Q1x1) . . . (Qkxk)(w1 = w2 & . . . &w2m−1 = w2m), (1)

where Q1, ..., Qk are quanti�ers ∀, ∃ and symbols �∃!�, and w1, ..., w2m

are terms of the signature of the given formula. The formula (1) has
the signature of algebras of some type. Fix arbitrary algebras 〈G,Ω1〉
and 〈H,Ω2〉 of the type. Denote the direct product of the �rst of them
by the second of them by 〈M,Ω〉. Validity of the formula (1) in the
algebra 〈M,Ω〉 is equivalent to the formula

(Q1〈y1, z1〉 ∈M) . . . (Qk〈yk, zk〉 ∈M)P (〈y1, z1〉, . . . , 〈yk, zk〉), (2)

where P (x1, . . . , xk) is the quanti�er-free part of the formula (1). Next,
the formula (2) is equivalent to the formula

(Q1y1 ∈ G, z1 ∈ H) . . . (Qkyk ∈ G, zk ∈ H) (P ′(y1, . . . , yk) &
&P ′′(z1, . . . , zk)),

(3)
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where P ′ and P ′′ are formulas obtained from P by the way of the re-
placement of every propositional variable xi respectively with yi and zi

and of every functional variable f of the signature Ω with the respec-
tive functional variable (f1 of the signature Ω1 and f2 of the signature
Ω2 respectively). At last, formula (3) and, therefore, formula (2), are
equivalent to the formula

((Q1y1 ∈ G) . . . (Qkyk ∈ G)P ′(y1, . . . , yk)) &

& ((Q1z1 ∈ H) . . . (Qkzk ∈ H)P ′′(z1, . . . , zk)),

that is equivalent to simultaneous validity of the formula (1) in both
〈G,Ω1〉 and 〈H,Ω2〉 algebras.

Corollary 5. Every conjunctively-positive formula is reciprocally pre-
served under direct products.

Corollary 6. The class of all quasigroups (of all groups, of all semi-
groups, of all monoids, of all loops) is reciprocally closed under direct
products.

As it is well known, the direct product ρ× τ of binary relations ρ
and τ is de�ned as the relation

〈a, b〉(ρ× τ)〈c, d〉 ⇐⇒ (a ρ c) & (b τ d).

It is clear, that for mappings f and g the relation f × g is a mapping
with the domain equal to the Cartesian product of the domains of the
mappings f and g and (f × g)(〈x, y〉) = 〈f(x), g(y)〉.

A groupoid (G, g) is called an isotope of a binary semigroup (Q,+)
i� there exists a collection 〈α1, . . . , αn, α〉 of bijections from the set
G onto the set Q satisfying the identity

αg(x1, . . . , xn) = α1x1 + · · ·+ αnxn. (4)

An isotope of a group is called also a group isotope. It is easy to see
that an isotope of a group is a quasigroup. A transformation α of
a set Q is called a linear transformation of a group (Q,+) if there
exist an endomorphism θ and a right translation Rc of this group
such that α = Rcθ. An isotope of a group (Q,+) de�ned by (4) is
called i-linear if the bijections αi and α are linear transformations of
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(Q,+). An isotope is linear if it is i-linear for all i. Obviously, every
groupoid isomorphic to a linear or i-linear group isotope is a linear or,
respectively, i-linear group isotope.

Lemma 7. The direct product of an isotope (A, g) of a semigroup
(G,+) by an isotope (B, h) of a semigroup (H, ·) de�ned by (4) and

βh(x1, . . . , xn) = β1x1 · . . . · βnxn

is an isotope (C, f) of the semigroup (M, ◦) determined by

(M, ◦) = (G×H, ◦) = (G,+)× (H, ·)
and by

(α× β)f(x1, . . . , xn) = (α1 × β1)x1 ◦ . . . ◦ (αn × βn)xn,

where α1, . . . , αn and α are bijections from A onto G, and β1, . . . , βn

and β are bijections from B onto H.

Proof. Indeed, let f be the operation of the given direct product of
the isotopes of the semigroups. Then

(α× β)f(〈x1, y1〉, . . . , 〈xn, yn〉)
= (α× β)(〈g(x1, . . . , xn), h(y1, . . . , yn)〉)
= 〈αg(x1, . . . , xn), βh(y1, . . . , yn)〉
= 〈α1x1 + . . .+ αnxn, β1y1 · . . . · βnyn〉
= 〈α1x1, β1y1〉 ◦ . . . ◦ 〈αnxn, βnyn〉
= (α1 × β1)〈x1, y1〉 ◦ . . . ◦ (αn × βn)〈xn, yn〉,

which completes the proof.

If (Q, f) is a quasigroup of an arity n > 2 then (Q, f, f 1, . . . , fn) is
called the primitive quasigroup which corresponds to the quasigroup
(Q, f). Such quasigroup maybe de�ned as an algebra (Q, f, f 1, . . . , fn)
with n+ 1 n-ary operations satisfying 2n identities:

f(x1, . . . , xi−1, f
i(x1, . . . , xn), xi+1, . . . , xn) = xi,

f i(x1, . . . , xi−1, f(x1, . . . , xn), xi+1, . . . , xn) = xi.

A congruence on a quasigroup (Q, f) is called normal if it is a con-
gruence on the corresponding primitive quasigroup.
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Lemma 8. The homomorphic image of a group isotope, where the
congruence which corresponds to the respective homomorphism is nor-
mal, is a group isotope.

Proof. Let (Q, f) be the given group isotope, ϕ the given homo-
morphism of the group isotope (Q, f) onto a groupoid (G, g), and π
the respective normal congruence on (Q, f). Then π is a congruence
on the primitive quasigroup (Q, f, f 1, . . . , fn). Denote the respective
natural homomorphism by ψ. From [2] it follows that the class of all
n-ary group isotopes is a variety of quasigroups. Therefore, the class
of all primitive quasigroups which correspond to n-ary group isotopes
is closed under homomorphisms, whence ψ is a homomorphism of the
group isotope (Q, f) onto some group isotope (Q/π, h). Hence (G, g)
is a group isotope.

Lemma 9. A homomorphism of a quasigroup (Q, f) into a quasi-
group (G, g) is a homomorphism of a quasigroup (Q, f, f 1, . . . , fn) into
a quasigroup (G, g, g1, . . . , gn).

Proof. Denote the given homomorphism by ϕ. Let a1, . . ., an be ar-
bitrary elements from Q, and i be a natural number not greater than
n. If bi = f i(a1, . . . , an), then

ϕai = ϕf(a1, . . . , ai−1, bi, ai+1, . . . , an)

= g(ϕa1, . . . , ϕai−1, ϕbi, ϕai+1, . . . , ϕan),

whence, it follows that

ϕf i(a1, . . . , an) = ϕbi = gi(ϕa1, . . . , ϕan)

for all a1, . . ., an ∈ Q and all 1 6 i 6 n. Thus we have the identity

ϕf y(x1, . . . , xn) = gy(ϕx1, . . . , ϕxn).

This completes the proof.

Corollary 10. The congruence which corresponds to a homomor-
phism of a quasigroup into a quasigroup is normal.

Corollary 11. If there exists a homomorphism ϕ of a group isotope
into a quasigroup (Q, f), then the groupoid (Imϕ, f) is a group isotope.
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Proof. It is enough to add the statement of Lemma 8 to the statement
of Corollary 10.

Example 14. Let (Q,+) be an arbitrary in�nite group. Since the
sets Q and Q2 have the same cardinal number, then there exists
a bijection f of Q2 onto Q. Let (Q3, ∗) be the direct product
(Q,+)× (Q,+)× (Q,+) and let (Q3, g) be the isotope of the group
(Q3, ∗) de�ned by the identity

g(x1, . . . , xn) = αx1 ∗ . . . ∗ αxn,

where n > 2 is an arbitrary �xed number and α is a substitution of
Q3 de�ned by the identity

α(〈x, y, z〉) = 〈f−1(x), f(y, z)〉.

Let ϕ be a mapping ϕ : Q3 → Q2 such that

ϕ : 〈x, y, z〉 7→ 〈x, y〉,

and let h be the operation of the arity n > 2 de�ned on Q2 by the
formula

h(〈x1, y1〉, . . . , 〈xn, yn〉) = ϕg(〈x1, y1, z1〉, . . . , 〈xn, yn, zn〉),

where z1, . . . , zn ∈ Q are arbitrary.
The operation h is not dependent on that choice of z1, . . . , zn ∈ Q,

since for the direct product (Q2, ?) of the group (Q,+) we have

ϕg(〈x1, y1, z1〉, . . . , 〈xn, yn, zn〉)
= ϕ(α(〈x1, y1, z1〉) ∗ . . . ∗ α(〈xn, yn, zn〉))
= ϕ(〈f−1(x1), f(y1, z1)〉 ∗ . . . ∗ 〈f−1(xn), f(yn, zn)〉)
= ϕ(〈f−1(x1) ? . . . ? f

−1(xn), f(y1, z1) + . . .+ f(yn, zn)〉)
= f−1(x1) ? . . . ? f

−1(xn).

Moreover, from these equalities it follows that the operation h is not
a quasigroup one, since all divisions are multivalued. But the identity

h(ϕx1, . . . , ϕxn) = ϕg(x1, . . . , xn)
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holds. Thus, ϕ is a homomorphism of the group isotope (Q3, g) onto
the groupoid (Q2, h), which is not even a quasigroup. The congruence
corresponding to it by Lemma 8 is not normal.

Theorem 13. The class of all group isotopes is reciprocally closed
under direct products.

Proof. By Lemma 7 the direct product of two group isotopes of the
same arity is a group isotope. Let the direct product (M, f) of a
groupoid (G, g) by a groupoid (H, h) be a group isotope. By Corollary
6 the groupoids (G, g) and (H, h) are quasigroups. It is easy to see
that the mappings ϕ1 and ϕ2 from the group isotope (M, f) into the
quasigroups (G, g) and (H, h) respectively, for which

(∀x ∈ G)(∀y ∈ H)(ϕ1(〈x, y〉) = x & ϕ2(〈x, y〉) = y),

are homomorphisms of the group isotope (M, f) onto the quasigroups
(G, g) and (H, h), respectively. By Corollary 11 these two quasigroups
are group isotopes.

Theorem 14. The class of all i-linear n-ary group isotopes, where i
and n are �xed numbers, is reciprocally closed under direct products.

Proof. By Lemma 7 the direct product of two i-linear n-ary group
isotopes is an i-linear group isotope. Let the direct product (M, f) of
a groupoid (G, g) by a groupoid (H, h) be i-linear n-ary group isotope.
By Theorem 13 (G, g) and (H, h) are group isotopes. The repeated
application of Lemma 7 gives i-linearity of these group isotopes.

Corollary 15. The class of all linear group isotopes is reciprocally
closed under direct products.

In spite of the collection of the above results and the results of
Horn from [1] which describe the structure of the classes of algebras
reciprocally closed under direct products, the question about criterion
for a class of algebras to be reciprocally closed under direct products,
or, at least, for a formula to be reciprocally preserved under direct
products, remains open.
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Quasigroups and Related Systems 7 (2000), 37 − 44Squares in quadratial quasigroupsVladimir VoleneAbstrat"Geometrial" onept of square is de�ned and investigated in any quadratialquasigroup.A groupoid (Q, ·) is said to be quadratial if the identity
ab · a = ca · bc (1)holds and the equation ax = b has a unique solution x ∈ Q for any

a, b ∈ Q (f. [10℄ and [3℄). Every quadratial groupoid (Q, ·) is aquasigroup, i.e. the equation xa = b has a unique solution x ∈ Q forany a, b ∈ Q. In a quadratial quasigroup (Q, ·) the identities
aa = a (idempoteny), (2)

a · ba = ab · a (elastiity), (3)
ab · a = ba · b, (4)

ab · cd = ac · bd (mediality) (5)and the equivaleny
ab = c ⇐⇒ bc = ca (6)hold (f. [10℄).If C is the set of all points of an Eulidean plane and if a groupoid

(C, ·) is de�ned so that aa = a for any a ∈ C and for any two2000 Mathematis Subjet Classi�ation: 20N05Keywords: quadratial quasigroup



38 V. Volenedi�erent points a, b ∈ C the point ab is the entre of the positivelyoriented square with two adjaent verties a and b (Fig. l), then (C, ·)is a quadratial quasigroup. The �gures in this quasigroup (C, ·) anbe used for illustration of "geometrial" relations in any quadratialquasigroup (Q, ·) and for motivation of the study of this quasigroup.From now on let (Q, ·) be any quadratial quasigroup. The ele-ments of the set Q are said to be points.If an operation • is de�ned on the set Q by
a • b = ab · a = ca · bc, (7)then (Q, •) is an idempotent medial ommutative quasigroup (f. [2℄),i.e. the identities

a • a = a, (8)
(a • b) • (c • d) = (a • c) • (b • d), (9)

a • b = b • ahold, and the operations · and • are mutually medial, i.e. the identity
ab • cd = (a • c)(b • d) (10)holds. For any two points a and b the point a • b is said to be themidpoint of a and b (f. Fig. 1).

Fig. 1. Fig. 2.Theorem 1. If any three of four produts ab, bc, cd, da are equal,then all four produts are equal (cf. F ig. 2).



Squares in quadratial quasigroups 39Proof. Let ab = bc = cd. The equality bc = cd implies by (6) db = c.Therefore, by (4), we obtain
bd · b = db · d = cd = ab,where from it follows bd = a and then by (6) �nally da = ab.Corollary 1. Any three of four equalities

ab = o, bc = o, cd = o, da = o (11)imply the remaining equality.A quadrangle (a, b, c, d) is said to be a square and is denoted by
S(a, b, c, d) if any three of four produts ab, bc, cd, da (and then allfour produts) are equal. More exatly, a quadrangle (a, b, c, d) is saidto be a square with the entre o and is denoted by So(a, b, c, d) if anythree of four equalities (11) (and then all four equalities) hold.If (e, f, g, h) is a yli permutation of (a, b, c, d), then S(a, b, c, d)implies S(e, f, g, h) and So(a, b, c, d) implies So(e, f, g, h).The point o is said to be the entre of a square on a segment (a, b)if So(a, b, c, d) holds for some points c and d .Let us prove some simple results about squares.Theorem 2. S(a, b, c, d) implies So(a, b, c, d), where o = a•c = b•d.
(cf. F ig. 2)Proof. Let So(a, b, c, d) holds. From (11) we obtain

o
(2)
= oo = da · cd

(7)
= a • c,and analogously o = b • d.Theorem 3. The statement S(a, b, c, d) is equivalent with any of four

(and then all four) equalities
ac = d, bd = a, ca = b, db = c. (12)



40 V. VoleneProof. Aording to the proof of Theorem 1 S(a, b, c, d) implies bd =
a, db = c and analogously ac = d, ca = b. Conversely, beause ofylial permutations of (a, b, c, d), it su�es to prove the impliations

ac = d, bd = a =⇒ S(a, b, c, d),

ac = d, ca = b =⇒ S(a, b, c, d).From ac = d and bd = a by (6) it follows cd = da and da = aband then Theorem 1 implies S(a, b, c, d).If ac = d and ca = b, then we obtain
ab = a · ca

(3)
= ac · a = da = ac · a

(4)
= ca · c = bcand Theorem 1 implies S(a, b, c, d) again.Corollary 2. For any two points a and b it holds Sa•b(a, ba, b, ab)and ba • ab = a • b (cf. F ig. 1).Theorem 4. Let So′(a

′, b′, c′, d′) holds. The statements So(a, b, c, d),
Soo′(aa′, bb′, cc′, dd′), So′o(a

′a, b′b, c′c, d′d) are equivalent.Proof. It is su�ient to prove that the equalities ab = o and aa′
·bb′ =

oo′ are equivalent if a′b′ = o′ holds. But, this is obvious, beause of
ab · o′ = ab · a′b′

(5)
= aa′

· bb′.For any point p we obviously have Sp(p, p, p, p). Therefore:Corollary 3. The following three statements:
So(a, b, c, d), Spo(pa, pb, pc, pd), Sop(ap, bp, cp, dp)are mutually equivalent.Theorem 5. So(a, b, c, d) implies So(ba, cb, dc, ad) and ad • ba = a,

ba • cb = b, cb • dc = c, dc • ad = d (cf. F ig. 2).



Squares in quadratial quasigroups 41Proof. So(a, b, c, d) obviously implies So(b, c, d, a) and aording toTheorem 4 it follows So(ba, cb, dc, ad) beause of oo
(2)
= o. Further weobtain

ad • ba
(10)
= (a • b)(d • a)

(9)
= (a • b)(a • d) =

(10)
= aa • bd

(2)
= a • bd

(12)
= a • a

(8)
= a.Theorem 6. Let So′(a

′, b′, c′, d′) holds. The statements So(a, b, c, d)and So•o′(a • a′, b • b′, c • c′, d • d′ ) are equivalent.Proof. It su�es to prove the equivaleny of the equalities ab = o and
(a • a′)(b • b′) = o • o′ if the equality a′b′ = o′ holds. This is obviousbeause of

ab • o′ = ab • a′b′
(10)
= (a • a′)(b • b′).Corollary 4. So(a, b, c, d) ⇐⇒ Sp•o(p • a, p • b, p • c, p • d).Corollary 5. So(a, b, c, d) =⇒ So(a • b, b • c, c • d, d • a).Theorem 7. If ab = c, b • c = d, c • a = e, a • b = f , then

bc = ca = f , af = e, fb = d and Sc•f (e, f, d, c) (cf. F ig. 3).
Fig. 3.Proof. By Corollary 2 we have Sf (a, ba, b, c) and ba • c = f . There-fore, Corollary 4 implies Sc•f (e, f, d, c) beause of c•a = e, c•ba = f ,

c • b = d, c • c = c. Further, we obtain
bc = b · ab

(3)
= ba · b

(7)
= b • a = f ,
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ca = ab · a

(7)
= a • b = f ,

af = a(a • b)
(8)
= (a • a)(a • b)

(10)
= aa • ab

(2)
= a • c = e,

fb = (a • b)b
(8)
= (a • b)(b • b)

(10)
= ab • bb

(2)
= c • b = d.Theorem 8. If b′ and c′ are the entres of squares on the segments

(c, a) and (a, b), then b • c is the entre of a square on the segment
(c′, b′) (cf. F ig. 4).

Fig. 4.Proof. As ca = b′ and ab = c′, so we have c′b′ = ab · ca
(7)
= b • c.In the ase of the quasigroup (C, ·) Theorem 8 proves a statementfrom [1℄, [7℄, [8℄, [9℄ and [11℄ whih an be stated as a very famousproblem of Captain Kidd burried treasure (f. [6℄ and [4℄).The rotation about a point a through a (positively oriented) rightangle is a transformation x 7−→ y of points suh that xy = a.Theorem 9. If b′, b′′, c′, c′′ are the entres of squares on the seg-ments (c, a), (a, c), (a, b), (b, a), then the rotation about the point

b • c through a right angle maps the segment (c′, b′′) onto the segment
(b′, c′′) (cf. F ig. 4).Proof. We have the equality from the above proof and analogously

b′′c′′ = ac · ba
(5)
= ab · ca

(7)
= b • c.



Squares in quadratial quasigroups 43Theorem 10. Let So(p, a, u, b) be �xed. If (p, a′, u′, b′) is a squarewith the enter o, then (o, b • a′, o′, a • b′) is a square with the entre
o • o′ and a • b′ = oo′, b • a′ = o′o, ba′ = b′a = u • u′ (cf. F ig. 5).

Fig. 5.Proof. By Theorem 6 from So(u, b, p, a) and So′(p, a
′, u′, b′) it follows

So•o′(u • p, b • a′, p • u′, a • b′). But, u • p = o and p • u′ = o′ and weobtain So•o′(o, b • a′, o′, a • b′), where from oo′ = a • b′, o′o = b • a′follows by Theorem 3.In the ase of the quasigroup (C, ·) Theorem 10 proves a resultfrom [2℄ and [5℄.Referenes[1℄ L. Banko�: Problem 540, Crux Math. 6 (1980), 114.[2℄ A. I. Chegodaev: Appliation of geometri transformation inproblem solving, (in Russian), Mat. v ²kole 1962, 88 − 89.[3℄ W. A. Dudek: Quadratial quasigroups, Quasigroups and Re-lated Systems 4 (1997), 9 − 13.[4℄ A. Dunkels: Problem 400, Crux Math. 4 (l978), 284.[5℄ V. M. Fishman: Solving of problems by geometri transforma-tions, (in Russian), Kvant 1975, No. 7, 30 − 35.
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Remarks on polyadic groups

Alexander M. Gal'mak

Abstract

We prove that an n-ary semigroup (G, [ ] ) is an n-ary group (n > 3) i� there
exists d ∈ G such that for every a, b ∈ G and some �xed i, j ∈ {1, . . . , n − 1} the

following two equations [
(i)
a ,

(n−i−1)

b , x ] = d and [ y,
(n−j−1)

b ,
(j)
a ] = b are solvable.

Generalizing the group result from [4], V. I. Tyutin proved in [3]
that an n-ary group (G, [ ] ) may be de�ned as an n-ary semigroup
(G, [ ] ) in which for some �xed d ∈ G and every a, b ∈ G the following
two equations

[
(n−1)

a , x ] = b, [ y,
(n−1)

a ] = d

are solvable.
On the other hand, the author proved in [2] the following charac-

terization of n-ary group

Theorem 1. An n-ary semigroup (G, [ ] ) is an n-ary group i� for
every a, b ∈ G and some �xed i, j ∈ {1, . . . , n − 1} the following two
equations

[
(i)
a ,

(n−i−1)

b , x ] = b, [ y,
(n−j−1)

b ,
(j)
a ] = b

are solvable.

Note that this theorem was also obtained by W. A. Dudek as a
consequence of some general results (cf. [1]).

2000 Mathematics Subject Classi�cation: 20N15
Keywords: n-ary semigroup, n-ary group
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Theorem 2. An n-ary semigroup (G, [ ] ) is an n-ary group (n > 3)
i� there exists d ∈ G such that for every a, b ∈ G and some �xed
i, j ∈ {1, . . . , n− 1} the following equations

[
(i)
a ,

(n−i−1)

b , x ] = d, [ y,
(n−j−1)

b ,
(j)
a ] = b

are solvable.

Proof. It is clear that in an n-ary group (G, [ ] ) these equations have
unique solutions for every a, b, d ∈ G and every i, j ∈ {1, . . . , n− 1}.

On the other hand, if (G, [ ] ) is an n-ary semigroup in which there
exists an element d such that for some �xed i, j ∈ {1, . . . , n− 1} and
every a, b ∈ G these equations are solvable, then there are elements
u, v, w, z ∈ G such that

[
(n−1)

d , u] = d, [v,
(n−j−1)

a ,
(j)

d ] = a, [w,
(n−1)

a ] = a, [
(i)
a ,

(n−i−1)

b , z] = d.

For such u, v, w, z, d ∈ G and every a ∈ G we have also

[ a,
(n−2)

d , u ] = a, [ w,
(n−2)

a , d ] = d, [
(n−2)

d , u, a ] = a,

because

[ a,
(n−2)

d , u ] = [ [ v,
(n−j−1)

a ,
(j)

d ],
(n−2)

d , u ] = [ v,
(n−j−1)

a ,
(j−1)

d , [
(n−1)

d , u ] ]

= [ v,
(n−j−1)

a ,
(j−1)

d , d ] = [ v,
(n−j−1)

a ,
(j)

d ] = a ,

[ w,
(n−2)

a , d ] = [ w,
(n−2)

a , [
(i)
a ,

(n−i−1)

b , z ] ] = [ [ w,
(n−1)

a ],
(i−1)
a ,

(n−i−1)

b , z ]

= [ a,
(i−1)
a ,

(n−i−1)

b , z ] = [
(i)
a ,

(n−i−1)

b , z ] = d

and

[
(n−2)

d , u, a ] = [ [ w,
(n−2)

a , d ],
(n−3)

d , u, a ] = [ w,
(n−3)

a , [ a,
(n−2)

d , u ], a ]

= [ w,
(n−3)

a , a, a ] = [ w,
(n−1)

a ] = a.

As a consequence we obtain

[
(i)
a ,

(n−i−1)

b , [ z,
(n−3)

d , u, b ] ] = [ [
(i)
a ,

(n−i−1)

b , z ],
(n−3)

d , u, b ]

= [ d,
(n−3)

d , u, b ] = [
(n−2)

d , u, b ] = b,
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which proves that x = [ z,
(n−3)

d , u, b ] is the solution of the �rst equa-
tion from our Theorem 1.

Since the second equation in Theorem 2 is the same as the sec-
ond equation in Theorem 1 and has (by the assumption) a solution,
Theorem 1 shows that (G, [ ] ) is an n-ary group.

This completes the proof.

Corollary. An n-ary semigroup (G, [ ] ) is an n-ary group (n > 3)
i� there exists d ∈ G such that for every a, b ∈ G (at least) one of the
following pairs of equations is solvable:

a) [ a,
(n−2)

b , x ] = d, [ y,
(n−2)

b , a ] = b;

b) [a,
(n−2)

b , x ] = d, [ y,
(n−1)

a ] = b;

c) [
(n−1)

a , x ] = d, [ y,
(n−2)

b , a] = b;

d) [
(n−1)

a , x ] = d, [ y,
(n−1)

a ] = b.

In the same manner as the above Theorem 2 we can prove

Theorem 3. An n-ary semigroup (G, [ ] ) is an n-ary group (n > 3)
i� there exists d ∈ G such that for every a, b ∈ G and some �xed
i, j ∈ {1, . . . , n− 1} the following equations

[
(i)
a ,

(n−i−1)

b , x ] = b, [ y,
(n−j−1)

b ,
(j)
a ] = d

are solvable.

Putting in this Theorem i = j = n− 1, we obtain Tyutin's de�ni-
tion of n-ary groups mentioned at the beginning of this paper.
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