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Transversals in groups. 2.
Loop transversals in a group by the same

subgroup

Eugene A. Kuznetsov

Abstract

Connections between different loop transversals in an arbitrary group G of the
same subgroup H are demonstrated. It is shown that any loop transversal in an
arbitrary group G of its subgroup H can be represented through one fixed loop
transversal of H in G by the determined way. The case of a group transversal of
H in G is described.

1. Introduction

This article is a continuation of [6]. The connections between different,
loop transversals in an arbitrary group G of the same subgroup H are
described. These transversals play very a important role in solving
some well-known problems. For example, the problem of existence of
a finite projective plane of order n is reduced to the existence of a loop
transversal of St,;(S,) in S, (see [7]).

We give some necessary definitions and notations:

E is a set of indexes (E contains the distinguished element 1, left
(right) cosets in a group G by its subgroup H is indexed by the
elements from FE);

e is the unit of a group G;
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2 E. A. Kuznetsov

Coreg(H) is the maximal proper subgroup of G contained in H,
which is normal in G,

St.(K) is the stabilizer of an element a in a permutation group K.

Definition 1. Let G be a group and H its proper subgroup. A com-
plete system T' = {¢; };,cr of representatives of the left (right) cosets of
H (e=t €T)is called a left (right) transversal of H in G (or "to”
H in G —see [4]). (A system of representatives of left cosets of H is
complete if t,u € T, u='t € H implies that t = u.)

Let T be a left transversal of H in G. We can correctly introduce
the following operation on the set E:

T e
Dy=z &L 44 =th heH.

T
Lemma 1. System < F, (-), 1 > s a right quasigroup with two-sided
unit 1.

Proof. See Lemma 1 in [6]. O

Definition 2. Let T be a left (right) transversal of H in G. If the

T
system < E,(-), 1 > is a loop (group), then T is called a loop (group)
transversal of H in G.

Remark 1. As we can see in [6], Lemma 10, a loop transversal 7" of
H in G is a two-sided transversal of H in G, i.e. it is both left and
right transversal of H in G. So we can simply say "loop transversal".

According to Cayley theorem any group K can be represented as
a permutation group of degree m = card K and this representation is
regular. So any group K can be represented as a group transversal of

St1(Sy) in Sp..

Lemma 2. The following conditions are equivalent for any left trans-
versal of H in G:

1) T is a loop transversal of H in G;

2) T is a left transversal in G of THr™' for any m € G;

3) wTn~1 is a left transversal of H in G for any 7 € G.

Proof. See [1] and [4]. O
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In the sequel the case Coreq(H) = {e} will be considered. Accord-
ing to [5], Theorem 12.2.1, in this case we have G = G, where G is a
permutation representation of the group G. If H is a subgroup of G,
then

g(x) =y &, gt.H =t,H.

Lemma 3. If T is a left transversal of H in G, then

~

1) h(1)=1 VheH,
%) Foranyz,y € E iy(y) =z~ y, ti(z)=i,(1) =,

~

. (T)
tly)=x\y, t7()=z\1 tlx)=1
() (T)
where \ s a left division in the system < E, -1 >.

3) The following conditions are equivalent:

a) T is a loop transversal of H in G,
b) T = {t,}rer is a sharply transitive set of permutations on E.

Proof. See Lemma 4 in [6]. O

2. Connection between loop transversals

Let T be an arbitrary fixed left transversal of a subgroup H in a group
G. It is evident (see [6], equation (8)), that any other left transversal
of H in G can be represented in the following form

sy =t,hT=9  pI=9 c g gekF.

S
Lemma 4. The system < F, (-), 1 > can be obtained from the system

T
< F, (-), 1 > an the following way

s T) -
2Py =a D hI-9 ), (1)
Proof. See Lemma 13 in [6]. O
(5) (1)

Lemma 5. The system < E, -, 1 > is a loop iff the operations
and B(z,y) = (thTHS))_1 y) are orthogonal.
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Proof. (see also Theorem 2 from [3]) According to Lemma 1 the sys-

5
tem < F, (-), 1 > is a right quasigroup with the two-sided unit 1. So
it is sufficient to prove the existence and uniqueness of solution of the

equation

s
x(-)a:b

for any fixed a,b € E. We have

(S) (T) > (T—5) W9 (a) = 2
r-a=b<= - hy (a) =b <= (T)
x - z=5>
(iL;THS))—l(Z) — B(Z’, z) =a
<~ (T) <~ (T)
r - z=25b x - z=b

S
So the existence and uniqueness of solution of the equation x < a=>o
is equivalent to the existence and uniqueness of solution of the last

T
system, which gives the orthogonality of (-) and B(z, z). O

This means that if T is a fixed left transversal of H in G, then
any loop transversal S of H in G may be represented through 7' by
formula (1) according to the orthogonality condition from Lemma 5.

V.D. Belousov proved in [2] (Lemma 3) the following criterion

Lemma 6. An operation A(x,y) defined on the set E is orthogonal
to the operation C(x,y) iff C(z,y) can be represented in the form:

C(l‘,y) :K(B(I7y),A([E,y)), (2)

where B(x,y) is an operation orthogonal to A(x,y), and K(z,y) is a
left invertible operation on the set E (i.e. K(x,a) = b has a unique
solution in E for any fized a,b € E ). [

For a given left transversal 7" of H in G the problem of the choice of

. (T) 5 g
a set {h;}zep such that the operations - and B(z,y) = h,'(y) are
orthogonal is not solved. But if the transversal 1" of H in G is a loop
transversal, then according to Lemma 2, 777! is a loop transversal
for any 7 € G. Fixing some hy € H \ {e} and choosing

Th = {ry = hot,hy' | t, € T},
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we obtain a new loop transversal 7" of H in G which does not
coincide with 7', because Coreg(H) = {e}.

Lemma 7. The permutation iLo : E — FE is an isomorphism of the
T Tho

systems < E,(-),l > and < E,( . ),1 >

Proof. According to the definition of T"° | we obtain:

(T)
x - y=z<=>tt,=th, heH

< (hotzhg ") (hotyhg ') = (hot.hg ) (hohhg'), h € H
< Tg/Ty = Tzlh/, h/ = (hohh&l) cH

o (T?O) y/ —
Since
2’ = 7y (1) = hotyhy ' (1) = hot,(1) = ho(w), (3)
then we obtain
(1) ; . (D)
ho(x) o(y) = ho(z) = ho(z "+" y), (4)
. . . . (T)
i.e. permutation hg is an isomorphism of the systems < E, -1 >
(Tho)
and < FE, - |1 >. Il

According to Lemma 4 there exists the set {h;(,;THThO)}er such
Tho T
that the operation ) may be obtained from the operation @ by

(Tho) (T) » (ph
r - y=x - h(zT TO)(y). (5)

Lemma 8. The operation Bi(x,y) = (iLQ(UTHThO))’l(y) has the form

@0 (@
Bi(z,y) =2 \ (z - y). (6)

Proof. Let lAngHThO)(y) = 2. Then y = (lAz(zT_)ThO))*l(z). So (5) can
be rewritten in the form

ThO) ~(p_, T
( ‘0) (h(T Th0)>_1(z> :x( )

s €T - 2.
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Tho
As the system < F, . ), 1 > is aloop, we obtain from the last equality

R (Tho)
TN =\ (2 2).

Then we have

2 (T—Th0)\—1 (T"0) (1)
Bi(z,y) = (BTN y) =2 \ (z-y), (7)

which completes the proof of the Lemma. O
~ T, T

According to Lemma 5, By(z,y) = (hY" Tho))’l(y) and 7 are

orthogonal operations. So, according to Lemma 6, any operation

T
C(z,y), being orthogonal to @ may be written in the form:

(T)

C(l’,y):K(Bl(ZL‘,y),ZL‘ ' y)7 (8)

where Bj(z,y) is the operation from (7) and K(z,y) is a left invert-
ible operation on the set E.

Let P = {p,}.cr be an arbitrary left transversal of H in G. The
P T
operation D is connected with ) by the the formula (1) and <

P - :
E, (-), 1 > is a loop iff the corresponding set {hS ~},cp satisfies

(T)

(RPN Yy) = Cla,y) = K(Bi(z,y),z - y), (9)

where Bj(x,y) is the operation from (7) and K(z,y) is a some left
invertible operation on the set F.
Because K (z,y) is left invertible on the set E, we can write it as

K(z,y) = ¢y(2),
where ¢, is a permutation on E (for any y € E). Using (7), we can

rewrite (9) in the form

(T"o) (T)

(ﬁiT*P))‘l(y)zwx<r>y($ \ (@ -Ty). (10)

But by (1)
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where set {h{’ " },cp satisfies (10).

Let A" (y) = z. Then y = (b "")~1(2) and

P - T

)z).

(P) T
(WT=D)1(z) = 2\ ("

According to (10), we have

(P) (T) (Tho)
z\ (z - 2)= ¢x<r>z(9€ \ (=
. (GO
which for v =2 - 2 gives

(P) (T"0)
r\u=gp,(z \ u). (11)

So for the loop transversal P = {p,}.crp and any x € E we have

1 (T"0)
P (y) = @ylz \ y). (12)
Lemma 9. The the following conditions hold for all x € E:
1) ¢.(1) =1,
(Tho) .
3) ax(y) =wy(x \ y) is a permutation from the group G.
Proof. 1) Because p,'(z) =1 for any x € E, we obtain from (12)

(T"0)
1 :ﬁ:Zl(x) =p(z \ 7)= ().

2) As p;'(z) = x for any x € E, then
. (Tho)
=P (1) = (1 \ 7) = @a(x).

3) Since for any x € E the reflection p, is a permutation from the
N (Th0)
group G, then according to (12), the reflection a,(y) = ¢,(z \ y) is

a permutation from the group G. O
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Now we can prove

Theorem 1. Let T = {t,}.cr be a loop transversal of H in G. If a
left transversal P = {py}ser of H in G is connected with T by (1),
then the following statements are equivalent:

1) P s a loop transversal,

2) P is connected with T by (12), where @, is as in Lemma 9
@ OO A
and \ is as in Lemma 7. Operations - and -

connected by (11).

are

Proof. 1) = 2) If P isaloop transversal of H in G, then (by Lemma

. (T) >
5) operations - and B(z,y) = (h y) are orthogonal and

(according to Lemma 6)

(hT=P)Y(y) = K(Bi(z,y),2 "~

x

Y),

where Bj(z,y) is the operation from (7) and K (z,y) is left invertible
on the set E.
Because K (x,y) is left invertible on E, we can write it in the form

K(z,y) = ¢y(x),
where ¢, is a permutation on E (for any y € E). The rest follows
Lemma 9.
2) = 1) If the conditions of the statement 2 hold, then there
exists a set {AY " },cp such that

pe =t.h50 . WP e H,
(P) (T) 5 (7P
v y=a ().

x

which by Lemma 3 implies

(ThO) ~—1 1 (T—P)\—17-1 7 (T—P)\—1 @
oy(r \ y) =0, (y)=(hy ")t (y)=(hy ") (z\y).
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. T .
This for y =2 -z gives
(T"o) (T)

o (x\ (z 2)) = (R (z).

T (Th0) (7 ~ (T
Since operations D and Bi(z,2z) =2z \ (z w z) = (h;T Tho))_l(z)

are orthogonal (see Lemma 8), the last equality may be written as

(T)

(hgcT_)P))_%Z) = K(BI(JJ,Z)7$ ) Z)7

where K(z,y) = ¢,(x) is a left invertible operation E.
T T (T—
But by Lemma 6 operations T and By(x,z) = (hg(gT P))_l(z) are

P
orthogonal. Thus by Lemma 5 the system < E, (-), 1 > is a loop, i.e.
P is a loop transversal of H in G. O]

3. A group transversal

As a simple consequence of our Theorem 1 we obtain

Theorem 2. Let T = {t,}.cr be a group transversal of H in G. If a
left transversal P = {p.}szerp of H in G is connected with T by (1),
then the following statements are equivalent:

1) P is a loop transversal,
2) P is connected with T by the formula

1 _, (Tho)

Dr () = @yl Y) , (13)

1

where @, 1s as in Lemma 9 and =" is the inverse of x in the

(Tho) S ‘ (T)
group < E, - 1>, which is isomorphic to < E, -",1 >

. . (P) (Tho)
Corresponding operations - and -~ are connected by
® (@)
\y=p,(z" - y). (14)

From this Theorem we obtain the criterion of the existence of a
loop transversal of H in G.
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Theorem 3. If Coreq(H) = {e}, d = (G : H) = card E, then the
following statements are equivalent:

1) There exists a loop transversal of H in G.

2) There exists a set {@, trer of permutations on E such that

a) ¢, € St1,(Sq) VrekE,
(Tho)
b) For any x € E the reflection o, (y) = ¢,(y — x) (where
(Tho)
the operation — s the inverse operation in the fixed group
(T"0)
< Zg, + ,1>, which is isomorphic to the group < Zy,+,0 >)

s a permutation from the group G.

Proof. 1) = 2) Let P = {p,}.cr be a loop transversal of H in
G. Using a permutation representation G of the group G we see that
P= {Pz}zep is a loop transversal of H in G. According to Lemma 3,
the set P is a sharply transitive set of permutations on the set E; so
P = {py}ocr is a loop transversal of H* = St;(S;) in the symmetric
group Sy (see [6]).

By the help of the regular representation of left translations the
abelian group < Z4, 4,0 > may be represented as a group transversal
T of H* = St,(Sq) in S; (see Remark 1). According to Theorem 2,
the loop transversal P = {Pz}zep may be represented as the group
transversal 770 by the formula

- (Tho) (Tho)
Py () =gy + y) =9,y — ), (15)

where permutations {¢, }.cp are as in Lemma 9.
(T) (Tho) )
By Lemma 7 operations + and + are isomorphic. Moreover

p;' € G implies p;' € G. Thus putting a.(y) = P, (y), we see that
the conditions a and b from statement 2 hold.
2= 1) Let P = {p,}.cr be aset of permutations defined by the
formula:
Tho
i) gy~ 1)

Then we have for any x € F

o (Tho)

pml('r> = §0m<_x + 1:) - 8033(1) =1 = px(l) =,
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. (Tho)
pr () = (=1 + ) =p(x) =2 = pi(z) =2

This means that P = {p,}.cp is a left transversal of H in G.

Using the analogous method as in the proof of sufficiency of Theo-

rem 1 we can prove the existence of a loop transversal of H in G. [
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Free R-n-modules
L3crimioara lancu

Abstract

We define the canonical presentation of an R-n-module, in terms of its largest
n-submodule with zero and of an idempotent commutative n-group. We give a
construction for the free R-n-module with zero, as well as a canonical presentation
for the free R-n-module. We give the number of zero-idempotents of a finitely
generated free R-n-module. The last theorem states that, for n > 3, free R-n-
modules are isomorphic if and only if their free generating sets have the same

cardinality.

1. Notations and preliminary results

In [1], N. Celakoski has defined n-modules as a natural generalization
of the usual binary notion; however, for his further results he imposed
a strong restriction, namely that the commutative n-group involved
has a unique neutral element. In [4] we restart the study of n-modules
by dropping this restriction.

In this section we shall briefly recall some of the definitions and
results in [4] and we shall make some additional comments. We use
the following conventional notation: the sequence a;, ..., a; of j—i+1
terms of an n-ary sum is denoted by af andifa; = a1 = ... =a; =a

—i+1

then the sequence is denoted by v a ); if © > j, then af denotes an
empty sequence. Denote by a'® the k-th power of a, which is defined

1991 Mathematics Subject Classification: 20N15, 16D10, 16D40
Keywords: free n-module, canonical presentation



14 L. Tancu

by:
n—1
' =a and o = [a<’“_1>,( a )]+, kel

In particular, a'=" = @, where @ denotes the querelement of a.
Throughout this paper R denotes an associative ring with unity

1 0.

Definition 1.1. We call left R-n-module a commutative n-group
(M,[]+) together with an external operation p: R x M — M which
satisfies the axioms:

Al) [2]4) = [pu(r @), ..., p(r, xn)Lr

A2) p((ri+--+rn),x )Z[M(T’1,Jf)7-~;ﬂ(rmx)]+

p(r,
A3) p(r-r',x) = u(r p(r',x))
Ad) u(l,x) =

for all z,x1,...,2, € M and all r,7",r,...,7, € R.

We describe a right R-n-module by replacing in the above definition
axiom A3) by A3") u(r-r',z) = p(r’, u(r,z)). As in the binary case,
the theory of right n-modules can be deduced from the theory of left
n-modules and conversely. For this reason, we shall deal in the sequel
with left n-modules, and by R-n-modules we shall always understand
left R-n-modules.

Since we are dealing with left n-modules, denote the element p(r, x)
by rx. As immediate consequences of the axioms, note:

(n—2) n—3
(ri+r)x = [riz,rox, 0x |4, (—r)x = [0x, Oz, (Tx),rf]Jr,

TT = IT, T=(-n+2)z = ((-1)+- - +(-1))z.

The empty n-group may be regarded as an R-n-module for any ring
R. If M is a non-empty R-n-module, then it necessarily has at least
one neutral element; indeed, for every x € M, the element Oz is a
neuter in (M, []+) (or an idempotent, since the two notions coincide
in commutative n-groups). Note that 0% = 0z, Vo € M, Yk € Z (in
particular 0z = 07T).

n-Submodules, congruences and homomorphisms are defined in the
obvious way. If S is a non-empty n-submodule of an R-n-module M,
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then the relation pg defined by zpsy < sy € S : y = [z,sh], is
a congruence on M. This correspondence is not a bijection, still it
allows us to define the factor module M/S = M/ps.

The set of all neuters of the n-group (M,[];) is denoted by Ny,
(or simply by N) and the set of all neuters of the form Oz, for some
r € M, is denoted by Noys (or sometimes just Np). Ny is an n-
submodule of V" and they are both n-submodules of M. The elements
of Ny are characterized by the following: e € Ny < re = e, Vr € R.
The elements of Ny will be called zero-idempotents; in particular, if
Ny consists of exactly one element, then this element is called a zero
of the n-module and it is denoted by 0.

If f: My — Ms is a homomorphism of R-n-modules, then:

1) f(N) CN; and f(Nor) € Nog;

2) [(@) = [(x), Vo € My;

3) the set Ker f = {x € My | f(x) € Ny2} is an n-submodule of M;
and Ny C Ker f.

2. The canonical presentation

2.1. We have introduced in [4] a class of n-submodules of an R-n-
module which will play an important role in the study of n-modules.
Let M be an R-n-module. For each e € N, the set

M,={zx e M |0z =ce}

is an n-submodule with zero (the element e) of M. The n-submodules
M, are all isomorphic and they form a partition of M. Note that
M/Ny ~ M,. In fact, the whole structure of an R-n-module is de-
termined by: the structure of an R-n-module with zero (M,.) and the
structure of an idempotent commutative n-group (Np).

Indeed, if we start from an R-n-module (B, [], ) with zero 0 and
an idempotent commutative n-group (A, [],), we can build an R-n-
module M (unique up to isomorphism) such that M, ~ B,Ve € Ny
and Ny ~ A, as follows:
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e the set M is defined as the disjoint union, indexed by A, of copies
of the set B: M = UBE5 denote by (z,e) the elements of B;

e€cA

e the external operation v: R x M — M is defined by
v(r,(2,¢)) = (u(r2).€)

e n-ary addition is defined by
[(:cl, e1)y - (xn, en)Lr = ([:cﬁ, [e?]o).

A straightforward computation shows that (M,[],,v) is an R-n-
module such that

Nom ={(0,¢e) |e€ A} ~¥ A and M, = {(z,e) |z € B} ~ B,

for each (0,e) € Noy. Moreover, given an R-n-module T' and per-
forming the above construction by using some 7, instead of B and
Nor instead of A one obtains an R-n-module M which is isomorphic
to T'. A very natural isomorphism to consider is

n—2
o: T — M, ¢(x)= ([x,(Ox),e]+,Oa:).

This shows that an R-n-module M is completely described by its
largest n-submodule(s) with zero M, and by Ngy. This way of de-
scribing an R-n-module will be called canonical presentation. We have
used disjoint union in order to construct an R-n-module with a given
canonical presentation, because this was the natural way to make the
connections with the M,’s and with Nj. Yet, for practical reasons, it
is simpler to consider the R-n-module being described as the Carte-
sian product B x A, together with the operations defined above. Note
that the map p;: B x A — B, pl((x,e)) = x is a homomorphism
of R-n-modules, and the map ps: B x A — A, pQ((.r,e)) =eis a
homomorphism of n-groups.

2.2. The canonical presentation of an R-n-module will prove its use-
fulness in the study of n-submodules and in the study of homomor-
phisms. Indeed, let M be an R-n-module with the canonical presen-
tation (B, [], ) and (A4,[]s), as above. Then any n-submodule of M
has a canonical presentation of the form (B’,[], u) and (A, [],), where
B’ is an n-submodule of B and A’ is an n-subgroup of A.
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Now let f: M; — My be a homomorphism of R-n-modules and
take an arbitrary zero-idempotent e € Ny;. Then ¢: Ny; — No,
o(r) = f(x) and Y: My — My, Y¥(x) = f(x) are both homomor-
phisms. Moreover, the converse also holds, namely: if ¢: A — As is
a homomorphism of n-groups and ¢ : By — B5 is a homomorphism of
R-n-modules, then the map f: M; — M defined by

f(@,e)) = (¥(z),¢(e))
is a homomorphism of R-n-modules (where M; and M, have the
canonical presentations By, A; and By, Ay respectively).
Injective and surjective homomorphisms can be also characterized
in terms of the data of the canonical presentation.

Proposition 2.3. Let f: My — My be a homomorphism of R-n-
modules. Then
1) f is injective iff Ker f = Ny1 and the restriction f|n,, 18
mjective;
2) f is surjective iff for each ¢ € Ny there exists e € Ny such
that Mse = f(M;,).

Proof. 1) Suppose f is injective and x € Ker f, i.e. f(z) € No2. Then
f(x) =0f(x) = f(0x), which implies © = 0x and hence x € Ny,.

Conversely, if Ker f = Ny and the restriction f|y;, is injective,
let f(x1) = f(x3). Then, for an arbitrary e € Ny, we have

(n=3) __
f([xla T ,$2,€]+) - f(e) S J\/027
n—3
ie. [xl,(xz ),x_Q, e]l+ € Ker f = Npyi. Since f|n,, is injective, it follows

(n=3) _
that [z, xo ,T3,e|+ = e, hence z1 = 5.

2) Suppose [ is surjective and € € Nyy. Then there exists 2 € M
such that ¢/ = f(x); but ¢ = 0’ = 0f(x) = f(0z) € f(No1). Denote
0z by e € No; and let y € My (this means Oy = €’). Now there exists

n—2
u € Noy and z € My, such that y = f(z). The element [z,( u ),e]+
n—2
belongs to M;. and f([z,( u ), e]+) = f(2) = y. Thus, we have proved
that for each ¢ € Npy there exists e € Ny such that My C f(My.);
the other inclusion is obvious. The converse follows immediately from
the fact that the n-submodules My, form a partition of M. O
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3. Free n-modules with zero

R-n-modules with zero can be regarded as universal algebras having
as domain of operations: an n-ary operation, a nullary operation and
a family of unary operations, indexed by R, all of which satisfy the
axioms Al)-A4). The class of R-n-modules with zero is a variety
— it is closed under taking homomorphic images, subalgebras and
direct products. This ensures the existence of free R-n-modules with
zero. In this section we will provide a construction, very similar to
the binary case, of the free R-n-module with zero having an arbitrary
free generating set X.

Let A be an R-n-module with zero. The elements aq,...,a, € A,
where k = t(modn—1), are called linearly independent if

[rai, ..., reag, (n()t)h =0 implies r=...=r,=0

and linearly dependent otherwise. A subset X of A is linearly indepen-
dent if any finite subset of X is linearly independent. X is a basis of A
if X is not empty, if X generates A, and if X is linearly independent.
It is easy to prove that if X is a basis of A, then in particular A # {0}
it R # {0} and every element of A has a unique expression as a linear
combination of elements of X.

Proposition 3.1. An R-n-module A with zero, which has a basis X,
15 free on X in the variety of R-n-modules with zero.

Proof. Let T be an R-n-module with zero and a mapping a: X — T
Every element a € A has a unique expression of the form:
(n—t)
a=[rioy,...,reE, 04 ]y

where k = t(modn—1) and ry,...,r. € R, xq,..., 7 € X.
(n—t)
Define a: A — T by a(a) = [ra(z),...,mka(xg), Or |1; asimple

computation shows that « is a homomorphism of R-n-modules and
aoi = a. Moreover, & is the unique homomorphism with this prop-
erty. |

Corollary 3.2. Two R-n-modules with zero, having bases whose car-
dinalities are equal, are isomorphic.

For this reason, we denote the R-n-module with zero free on X by
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Fo(X).
Let X # () be an arbitrary set and a mapping f: X — R. As
usual, define

supp [ = {z € X | f(z) # 0}
and
R = {f € R* | [supp f| < co}.

We define a natural structure of R-n-module with zero on R as
follows:

1o fali () = fo@) + -+ ful), (rf)(2) =7 f(2).

The zero element is the function o: X — R, o(z) =0, Vz € X.

Proposition 3.3. If R # {0} is a ring and X # 0 is an arbitrary set,
then R has a basis of the same cardinality as X.

Proof. A basis of R™) is the set B = {f, | v € X}, where f,: X — R

is defined by f.(y) = { (1)’ z ; i )

One can easily check that B is linearly independent; furthermore,
if f € RX) with supp f = {z1,..., 2}, where k = t(modn—1), then

f =) Forr s fan) - fon "0 T O

Like in the binary case (see [5]), one can easily prove that if
Fo(X) ~ Fy(Y) and X is infinite, then Y is infinite too and | X| = |Y].

4. Free n-modules

The class of all R-n-modules is again a variety, so free R-n-modules
exist. We will give in this final section a canonical presentation for the
free R-n-module on an arbitrary set as well as a theorem concerning
the number of zero-idempotents of a free R-n-module with a finite free
generating set.

Note that, similar to the case of R-n-modules with zero, two free
R-n-modules having free generating sets whose cardinalities are equal,
are isomorphic.
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Theorem 4.1. Let X # () be an arbitrary set and F be the R-n-mo-
dule having the following canonical presentation:

(a) Fo(X) as largest n-submodule with zero;

(b) the abelian n-group G with the presentation

(X () =2, Vo e X)
as idempotent commutative n-group.
Then the R-n-module F' 1s free and X 1is its free generating set.

Proof. First, let us make some necessary remarks.
1) The n-group G described in (b) is the free idempotent abelian n-
group with the free generating set X (it is easy to see that the class
of idempotent abelian n-groups is a variety; as for the construction of
free abelian n-groups, see the paper of F. M. Sioson [6]).
2) By 2.1, the elements of F' have the form (y,g), where y € Fy(X)
and g € G. We shall identify each x € X with the pair (z,z) € F; in
other words, we define an "inclusion" a: X — F, by a(z) = (z,x).
Let M be an arbitrary R-n-module having the canonical presenta-
tion B, A, where B is an R-n-module with zero and A is an idempotent
abelian n-group, as in 2.1. This means that we will describe the el-
ements of M as pairs (b,a) € B x A. Let now f: X — M be an
arbitrary map. We will use f for defining two other maps u and v as:

u: X' = B, u(x) = p:(f(x)) (1)
vi X = A, w(x) =pa(f(2)) (2)

Since Fyp(X) is the free R-n-module with zero on X and B is an R-n-
module with zero, it follows that there exists a unique homomorphism
u: Fo(X) — B such that u(x) = u(x), Vx € X. By using a similar
argument, it follows that there exists a unique homomorphism of n-
groups 0: G — A such that v(z) = v(z), YV € X. We are now able

to define the homomorphism f which makes the following diagram
commutative:
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namely, for all (y,¢) € F, put f ((y,9)) = (@(y),7(g)). We have seen
in 2.2 that a map defined in the above way is a homomorphism of
R-n-modules. Further, for all x € X we have

(foa)(z) = f((z,2)) = (0 (f(2)),p(f(2))) = f(2)

which shows that fo « = f. The uniqueness of ffollows from the
uniqueness of © and v and from 2.2. |

Corollary 4.2. Let X, Y be two non-empty sets. If FI(X) ~ F(Y)
and X is infinite, then Y is infinite too and | X| =Y.

Proof. 1t follows immediately from the preceding theorem and from
the similar result for free R-n-modules with zero. U

Lemma 4.3. Let n be an integer, n > 3, X a set with | X| =k, k> 1
and F(X) the R-n-module free on X. Then Norx) has (n—1)""1
elements.

Proof. Indeed, N, is equal to

(t1)  (t2) (k)

[0z1,0xg,...,0z]4+ |0 <t <n—2, t; + -+t = 1(modn—1)}
or, equivalently, Ny ~ G, where G is the idempotent abelian n-group
described in Theorem 4.1. Every element of Ny can be described by
a uniquely determined function f: {1,...,k—1} — {0,1,...,n—2} as
follows:

(f(1) (f(k=1)) (n—r)
e=1[0x1,..., Oxk_q, Oxg |4
where f(1) 4+ --- + f(k—1) = t(n—1) +r, 2 < r < n. This corre-
spondence between elements of Ay and such functions is obviously a
bijection and so [Ng| = (n—1)F1. 0

Corollary 4.4. Let n be an integer, n = 3 and X, Y two non-
empty sets. If F(X) ~ F(Y) and X is finite, then Yis finite too
and | X| =Y.

Proof. 1t follows from 2.2, Theorem 4.1 and the preceding lemma. U

The following theorem is a direct consequence of the preceding results
in this section.

Theorem 4.5. Let n be an integer, n = 3, and let X, Y be two non-
empty sets. Then F(X) ~ F(Y) iff | X| =1|Y].
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On n-modules with chain conditions

Lacrimioara lancu

Abstract

We show that the maximal n-submodules of an n-module are determined by the
maximal n-subgroups of the n-group of its zero-idempotents and by the maxi-
mal n-submodules of its maximal n-submodule with zero. We state some results
concerning R-n-modules with chain conditions analogous to the Jordan—-Hdolder
Theorem, to Fitting’s Lemma, to Krull-Remack—Schmidt Theorem.

1. Introduction

R-n-modules are defined as a natural generalization of the usual bi-
nary notion. In [5] and [6] we restart the study of nm-modules by
dropping the restriction imposed by N. Celakoski in [1|, namely that
the commutative n-group involved has a unique neutral element. In
this paper we continue our investigation on R-n-modules by studying
the maximal n-submodules of an n-module in terms of its canonical
presentation and by retrieving some of the results on modules with
chain conditions for the n-ary case.

In the sequel, we use the same conventional notations as in [5] and

[6]: the sequence ay, . .., a; of j—i+1 terms of an n-ary sum is denoted
by @] and if a; = a;41 = ... = a; = a then the sequence is denoted by
(j—i+1)

a ;if ¢ > j, then af denotes an empty sequence. Denote by at*)
the k-th power of a, which is defined by:

n—1
a‘ =a and ¥ = [a<k_1>,( a )]+, kelkZ

1991 Mathematics Subject Classification: 20N15, 16D10, 16D40
Keywords: R-n-module, maximal n-submodule, chain condition
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In particular, a\=" = @, where @ denotes the querelement of a.

The purpose of this introductory section is to recall some of the
definitions and results in [5] and [6], which will be used in the sections
to follow.

Throughout this paper R denotes an associative ring with unity
1 # 0. For reasons similar to the ones employed in the binary case, we
deal only with left n-modules and so by R-n-module we will always
understand left R-n-module.

Definition 1.1. We call left R-n-module a commutative n-group
(M,[]+) together with an external operation p: R x M — M which
satisfies the axioms:

AL) p(r [2f]) = [ulr,z),. o p(r @)

A2) p((ri+-+r),2) = [p(r, o ,...,u(rn,x)]+,
A3) p(r-r',z) = p(r,n(r',z)),
Ad) p(l,z) ==z

for all z,x1,...,2, € M and all r,7",r,...,7, € R.

Denote the element p(r,z) by rx and as immediate consequences
of the axioms, note:
(n—2) (n—3)
(ri+re)z = [riz, oz, 0z |4, (—r)z = [0x,0x, T2, 7T,
TT =1T, T=(-n+2)z = ((-1)+---+(-1))z.

The empty n-group may be regarded as an R-n-module for any
ring R. If M is a non-empty R-n-module, then it necessarily has at
least one neutral element; indeed, for every z € M, the element Ox is
a neuter in (M, [];) (or an idempotent, since the two notions coincide
in commutative n-groups). Note that 0% = 0z, Vo € M, Yk € Z (in
particular 0z = 07 ).

n-Submodules, congruences and homomorphisms are defined in the
obvious way. If S is a non-empty n-submodule of an R-n-module M,
then the relation pg defined by zpsy < 3s§ € S : y = [z,s5]; is
a congruence on M. This correspondence is not a bijection, still it
allows us to define the factor module M/S = M/ps.

The set of all neuters of the n-group (M, []+) is denoted by Ny, (or



On n-modules with chain conditions 25

simply by V) and the set of all neuters of the form 0z, for some 2 € M,
is denoted by Noas (or sometimes just ). Ny is a n-submodule of N
and they are both n-submodules of M. The elements of N are called
zero-idempotents and they are characterized by:

eeNy<=re=e, VreR,

which shows that the n-submodules of N coincide with the n-sub-
groups of Ny. If N consists of exactly one element, then this element
is called a zero of the n-module and it is denoted by 0.
If f: My — M5 is a homomorphism of R-n-modules, then:
1) f(N1) SNz and f(Nor) € Nog,
2) f(@) = f(z), Vo € My,
3) the set Ker f = {z € M, | f(x) € N2} is an n-submodule of M,
and Ny C Ker f.

The set Hompg (M, Ms) is a commutative n-group with respect to the
operation:

frs- - fal+ (@) = [fi(@), - ful@)] -

Any homomorphism a with a(M;) C Ny is called nullary homomor-
phism and it is a neutral element of this n-group. For each e € Nog,
denote by 6. the homomorphism given by 0.(x) = e, Vx € M;. The
set Endg M is an (n, 2)-ring with respect to the above addition and to
the usual multiplication of maps. An endomorphism f of M is called
nilpotent if there exists an integer k > 1 such that f* is a nullary
endomorphism.

We have introduced in [5] a class of n-submodules and a class of
automorphisms of an R-n-module which play an important role in the
study of n-modules. Let M be an R-n-module. For each ¢ € N, the
set M, = {x € M | Ox = e} is an n-submodule with zero (the element

e) of M. The n-submodules M, are all isomorphic and they form a
n—2
partition of M. The maps ¢, r: M — M, ¢, ((z) = [x,( e ),f]Jr are

all automorphisms, for each pair of zero-idempotents e, f € Ny, and
©e.r(M,) = M;. Note that M/Ny ~ M,. In fact, the whole structure
of an R-n-module is determined by: the structure of an R-n-module
with zero (M,) and the structure of an idempotent commutative n-
group (Np). This is called the canonical presentation of the R-n-
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module M (see [6]).
Injective and surjective homomorphisms are characterized in 6] in
terms of the data of the canonical presentation.

Proposition 1.2. Let f: My — Ms be a homomorphism of R-n-
modules. Then f 1is

(1) injective iff Ker f = No1 and the restriction f|n,, is injective,

(2) surjective iff for each ¢’ € Noy there exists e € Noi such that
MQe’ = f(Mle>-

2. Maximal submodules of an n-module

We study in this section the maximal submodules of an R-n-module,
in terms of the canonical presentation of the R-n-module considered.

Theorem 2.1. Let M be an R-n-module. Then:

(1) If N is a mazimal n-subgroup of No, then there exists a unique
mazimal n-submodule S of M such that Nog = N.

(2) If S is a mazimal n-submodule of M, which does not contain
Ny, then Nys is a mazimal n-subgroup of No.

Proof. (1) It is easy to check that the set S = U M, is an n-submodule
eeN

of M, with Nys = N.

Take now an n-submodule T of M with S € T C M and let
z€T\S. Then e =0z € T and e ¢ S (since e € S implies z € 5).
This shows that Myr D Nys = N, hence Nor = N,

For any y € M one of the following holds: (a) f = 0y € N (and
soyeScT)or (b) feN\N (and so y € S). We show that even
in the latter case, we still have y € T. Indeed, Vs € S3!'t € Nyg C S

such that: y = [f, (n§2),t]+. Since f € T, s,t € S C T it follows that
y € T. Hence T'= M and so S is maximal.

Let V be a maximal n-submodule of M, with Moy = N = Npgs.
Then V C S (indeed, if z € V then 0z € Noy = Nog = N, so z € S)
which, together with maximality of V', implies V = §S.

(2) Let S be a maximal n-submodule of M with Ny \ S # 0, i.e.
Nos € Np. Consider an n-submodule A of Ny such that Nyg C A C
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No and let e € A\ Nys. Then (SU{e}) = M and Va € NyIk € N

k
and si,; € S such that a = [(e), Sii1)+- By multiplying with zero, we

k
obtain: a = 0a = [(e),eZH]Jr, with e;, = 0s;, i =1,...,nand e € M,
e; € Nos C A, i =k+1,...,n. Now, since A is an n-submodule, we
deduce that a € A and so A = N, O

The above theorem shows that there exists a bijective correspon-
dence between the set of maximal n-submodules of Ay and the set
of maximal n-submodules of M which do not contain Ny. A natural
question arises: what can one say about the maximal n-submodules
of M which do contain Ny ?

Theorem 2.2. Let M be an R-n-module with the canonical presen-
tation: B ~ M,, A~ Ny. Then:
(1) If B has a mazimal n-submodule, then M has a mazimal n-
submodule which contains N.

(2) If M has a mazimal n-submodule which contains Ny, then B
has a mazimal n-submodule.

Proof. (1) Let V' be a maximal n-submodule of B and take an arbitrary
zero-idempotent e € Ny. Since B ~ M., it follows that M, has a
maximal n-submodule S, which is isomorphic to V. Then for every
[ € N, the set S§ = @, £(S.) is a maximal n-submodule of M;. Define

the subset S of M by: S = U S¢. We will show that S is a maximal

JeNo
n-submodule of M which contains Ny. Clearly Ny C S (since f € Sy,

Vf € Np); equality holds when V' = {0}.
Let x € S; then 3f € Nj such that € Sy. Since Sy is an
n-submodule it follows that rz € Sy, Vr € R and so ro € S, Vr € R.

Let q,...,x, € S; then 3f; € N such that x; € Sy, and, conse-
n—2
quently, Jy; € S, such that x; = [yz-,( e ), fil+- Now we have

n (n—2) (n—2)
[‘rl]-i-:[yh € 7f17"'7yn7 € 7fn]+
(-2 .
e UTs € wepyi (Se) = Sppyy €

and so S is an n-submodule of A.

=[]+
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Let T be an n-submodule of M, S C T C M and take x € T'\ S.
Define u = 0z and we have z € M, \ S,. Then & = p, () € M.\ S
(if 7 € S, then Yeu(Z) = (Peu © Pue)(r) = x € S, contradiction)
and Ty = @ () € Mg\ Sy, Vf € Ny (if £y € Sy then 3z € S, such
that 5 = @e f(2), or e () = @e r(2) which implies & = 2z € S,
contradiction). Hence T contains at least one such element Z; for
each set My \ Sy, f € Ny and so My = (Sy U {Zs}), Vf € Ny. Now
Vy € M 3f € Ny such that y € My; then there exists £ € N and

k
Skt1,-.-,5n, € Sy such that: y = [(j;,SZH]JF. Since £y € T and
Ski1,---,5, € Sy €5 C T, it follows that y € T and this shows that
T =M.

(2) Let S C M be a maximal n-submodule of M which contains Nj.
For each e € N define the subset S, of S by: S, = {x € S| Ox = e}.
Clearly, S. = SN M, and so S, is an n-submodule of M, (and of S).
Moreover, S = U Se.

eeNo
We show that, for any e € Ny, the n-submodule S, is maximal

in M,. For this, let T" be an n-submodul of M., S. C T  C M, and
take x € T\ Se. Then = ¢ S and so (S U {z}) = M. It follows that
Vy € M, 3k € N and sj41,...,8, € S such that

" ]) (n—k—1) (K)
y:[xvsk—l—l]-l—:[xa € 7[eask+1]+]+'

k
By multiplying with 0 we obtain that the element [(e), Spi1l+ € S be-

k
longs to M., which means that [(6),SZ+1]+ € S,.. Since x € T and

k
e, [(e), spi1l+ € Se CT, then y € T. Hence T' = M,. O

The above theorem shows that an n-module M has maximal n-sub-
modules which contain Ny if and only if the n-submodules M, have
maximal n-submodules.

Definition 2.3. An R-n-module M is simple if its only congruences
are the equality and the universal relation.

Remark 2.4. 1) M is simple iff its only non—void n-submodules are:
{e}, with e € Ny and M itself.
2) M is simple iff it has one of this canonical presentations:
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(a) a simple R-n-module with zero and Ny = {0},
(b) the R-n-module with zero is B = {0} and N is a simple idempo-
tent commutative n-group.

Theorem 2.5. Let M be an R-n-module and S C M be a non-void
n-submodule. S is mazimal iff M /S is simple.

Proof. Suppose M/S is simple and let T" be an n-submodule of M,
with S € T C M. Then T/S is an n-submodule of M/S and
so T/S either consists of exactly one coset (which is obviously S,
since T' 2 S), or T/S = M/S. Now T/S = M/S implies that
Vo € M, 3t €T, s" ' €S CTsuchthat x = [t, s} '], ie. 2 €T.
This shows that either "= S or T'= M.

Suppose S is maximal and consider two cases: Ny C S or Ny \ S #
0. If Ny € S then M/S is an n-module with zero. Let now T be an
n-submodule of M/S. Then p~'(T) is an n-submodule of M which
contains S, so we have either p~!(T') = S or p~*(T') = M. This shows
that 7" is either the zero n-submodule or 7' = M/S.

If Vo \ S # 0, then M/S does not have a zero element; we prove
first that each coset & € M/S contains at least one idempotent e € N
or, equivalently, that each coset is an n-submodule of M. Take now
a coset y € M/S, § # S and a zero-idempotent e € Ny \ S. Then

S C (SU{e}) and so (S U{e} = M, hence y can be expressed as
k
Y= [(e),s’,;”H]Jr, with & > 1,5, € S, and further
(k) (n=k)  (k—1) N (k—1) .
Yy = [[67 f ]+7 f 7Sk+1]+ = [6,7 f 7Sk+1]+7

for any f € Ny NS. This shows that €' € 7.

Thus we have proved that each coset & € M/S is an n-submodule
of M. If é € M/S and f € Ny NS, then ¢;.(S) is a maximal n-
submodule of M, which is contained in é, hence ¢ (S) = é. Take
now an n-submodule 7" of M/S. If T consists of more than one el-
ement, say é, f € T, then we have ¢ C p~'(T) C M. This implies,
since é — as n-submodule of M — is maximal, that p~*(T) = M, and
soT = M/S. O

Proposition 2.6. If M is a simple R-n-module, then every endomor-
phism of M is either of type 6. or an automorphism.

Proof. If M is simple, then by Remark 2.4 it follows that either M
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has a zero element and exactly two n-submodules: {0} and M, or
M = Ny and its submodules are: {z}, Vo € M and M. In the first
case, if f € Endg(M) then either Ker f = {0} or Ker f = M, ie. f
is either injective or the zero endomorphism. If f is injective, then
Imf =M.

In the second case, either Imf = M or Imf = {e}, e € M, i.e.
either f is surjective or f = .. If f is surjective, let e € M. Then
f!(e) is a non-void n-submodule of M, so it is either a one-element
set or the whole of M. Since f is surjective, it follows that Ve € M,
the set f~!(e) consists of one element only. O

3. Artinian and Noetherian n-modules

Definition 3.1. An R-n-module M is called Artinian if the set of its
n-submodules satisfies the DCC (Descending Chain Condition), and
it is called Noetherian if the set of its n-submodules satisfies the ACC
(Ascending Chain Condition).

Note that every n-submodule of an Artinian (Noetherian) n-modu-
le is Artinian (Noetherian) too.

As in the binary case, the following characterization of a Noethe-
rian n-module holds:

Proposition 3.2. An R-n-module is Noetherian iff any n-submodule
of M 1is finitely generated.

Proof. Similar to the one for the binary case (see [8]). If M is Noethe-
rian and S is an n-submodule of M, it follows that the set of all
finitely generated n-submodules of S contains a maximal element A.
Since A is finitely generated, it follows that Va € S, the n-submodule

(n—1)
[ A ,Rx] N of S is finitely generated which, together with the maxi-

(n—1)
mality of A, implies [ A ,Rxh = A, and so x € A. This proves that
S = A. For the converse, see the proof for the binary case. O

Proposition 3.3. If A LB4Lo o 0, is an exact sequence of
R-n-modules and the homomorphism f is injective, then:

1) B is Artinian iff A and C are Artinian,
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2) B is Noetherian iff A and C' are Noetherian.

Proof. 1) Suppose B is Artinian. Since f is injective, it follows that A
is isomorphic to the n-submodule f(A) of B, and hence it is Artinian.
Let C7 2 C; O C3 O ... be a descending chain of n-submodules of
C. Then ¢g71(C1) D g7 H(Cs) D g7 1(C3) D ... is a descending chain of
n-submodules of B (with ¢=(Cy) # 0, if Cy, # 0). Since B is Artinian,
it follows that there exists k > 0 such that ¢~*(C,,) = g~'(C), for
m > k. But this implies — since g is surjective — that C,, = C}, for
m > k.
Conversely, assume A and C are Artinian and let

B12B22B32 (dC)

be a descending chain of n-submodules of B. By intersecting the
terms of the chain (dc) with f(A), we obtain a descending chain of
n-submodules of f(A):

BiNf(A) 2 ByNf(A) D B3N f(A)D....

Since f(A) is Artinian, it follows that there exists & > 0 such that
BN f(A) = ByN f(A), for m > k. By applying g to the terms of the
chain (dc) we obtain the descending chain of n-submodules of C:

g(B1) 2 g(B2) 2 9(B3) 2 ...,

so there exists [ > 0 such that ¢g(B,,) = ¢(B;), for m > [. Define
t = max{k,(}; we show that B,, = By, for m > t. Note that if
g(B;) = 0, then B, = 0, hence B,, = B; = (), for m > [; similarly, if
Br N f(A) = 0, then By N Nog = 0 (because f(A) = Kerg 2 Nyp),
hence By, = (), i.e. B,, = B, = (), for m > k. We may therefore assume
that BN f(A) # 0 and g(B;) # 0. Let b € B;; g(B;) = g(B,,) implies
that 3V € B, such that g(b) = g(b'). For e € B,, N Nyp (such an
element exists, since B, # () we have:

(-3 _
[9(b), 9(b'), g('), g(e)] , = g(e) € Noc

(n=3) _
and hence [b, O |V, e]; € Kerg. Since m > t, we have B,,, C B, and

(n=3)
b, V' ,b,el, € BBNKerg= B;,N f(A) = B,,N f(A).
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(n=3) _
Now [b, V' |V, e]y € B, V,e € B, implies b € B,,. This shows that
B, C By,.

2) The fact that if B is Noetherian then A and C' are Noetherian
is proved by a similar argument as above.

For the converse, we make the same constructions and use the
same notations (of course by using an ascendant chain this time). We
will show that B,, = By, for m > t. Let b € B,; g(B;) = g(Bn)
implies that 30" € B; such that g(b) = g(V'). For e € B, N Ny we

(n—=3)  _ (n=3) _
have [g(b), g(t'),g(¥'), g(e)], = g(e) € Noc and hence [b, V' ¥, e]; €
Ker g. Since m > t, we have B, C B,, and
(n=3) _
b, b V,e]ly € BoNKerg=B,,Nf(A)=DB,nNf(A).
(n=3) _
Now [b, V' ,U,e|y,b,e € B, implies b € B, and this shows that
B, C B;. g

Corollary 3.4.

1) If S is an n-submodule of the R-n-module A, then A is Artinian
(Noetherian) iff S and A/S are Artinian (Noetherian).

2) Let Ay,..., Ay be R-n-modules with zero. The R-n-module
Ay X - x Ay, is Artinian (Noetherian) iff As, ..., A, are all
Artinian (Noetherian).

Proof. 1) The sequence S LAl A/S — 0, where ¢ is the inclusion
and p is the natural homomorphism, satisfies the hypotheses of the
preceding proposition.

2) The sequence Aj X --- x A, LAl X - x A, B8 A, — 0is
exact and the homomorphism f defined by
f((ala s 7an—1)) = (ah ceey Gp_1, O)
is injective. O
Lemma 3.5. Let By, B,C1,C be n-submodules of the R-n-module M,
wzthBlngM, ClgCQM,BlﬂCl#Q). Then
(B1U(BNQ))/(BiU(BNCY)) ~(C1U(BNC))/{CrU (B NC)).

Proof. Identical to the one for the binary case (see [4]); we can apply
the isomorphism theorems because B; N C; # (). O
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Lemma 3.6. (Schreier) Let M = Sp 2 S 2 ... 2 S, = e and
M =Ty 2Ty O... 2T, = e be two chains of n-submodules of the
R-n-module M, where e € Ny. Define Si; = (S; U (S;-1 NT})) and
Ty, = (T;U(T;21NS;)), forall 0<i<r 0<j<s, and we obtain
1somorphic refinements of the two chains:

1 <r

Sii1=802812...28:=25;, 0<
0<Jy<s

T'_lzngQleQ...QTrj:T‘

J 7

Sz‘,j—l/Sz‘j = Tz‘—Lj/Tij :

Proof. Identical to the one for the binary case (see [4]); the preceding
lemma is applicable because the zero-idempotent e belongs to each
term of the two chains. |

The definition of a composition series of an R-n-module is naturally
transferred from R-modules, namely: a composition series of an R-n-
module M is a finite, strictly decreasing series of n-submodules of M,

M=5>5D>...0S8,={e}, ecNy (c)

which does not admit strictly decreasing refinements. The series (c)
is a composition series of M iff each S;, i = {1,...,m} is a maximal
n-submodule of S;_1, i.e. iff the factor n-modules S;_;/S; are simple.
One can easily check the validity of the Jordan-Ho6lder Theorem, with
just one additional comment: if

M:SODle...DSm:{e} (Cl)
M=T,0T1D>...0T, ={f} (c2)
are two composition series of M, then in order to use Schreier’s Lemma
one needs that the series (¢;) and (co) have the same last term. For this

purpose, we apply to each term of the series (c2) the automorphism
¢ and we obtain the series:

Pre(M) =M D ¢e(Th) O ... DO ¢re(T) = {e} (cs)

which is still a composition series. Schreier’s Lemma may now be
applied. So, if an R-n-module M has a composition series, then all
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its composition series have the same length, and this will be called the
length of M (and we say that M has finite length). If M does not
have composition series, then we say it has infinite length.

As in the binary case, the following hold:

1) If S is an n-submodule of M, then (M) =1(S)+1(M/S).
2) If S, Sy are n-submodules of M, then
1(Sy) +1(Ss) = l(<51 U Sg>) +1(S1NSy).

3) If the sequence A L. B4 ¢ = 0 is ezact and the homomor-
phism f is injective, then (B) =1(A) +1(C).

By using a similar argument to the one employed for usual R-
modules (see [8]), one proves the following

Theorem 3.7. An R-n-module M has composition series (i.e. M
has finite length) iff M is Artinian and Noetherian.

Proposition 3.8. Let f: M — M be an endomorphism of the R-n-
module M.

1) If M is Artinian, then f is an automorphism iff f is injective.
2) If M is Noetherian, then f is an automorphism iff f is surjective.

Proof. 1) Assume f is injective; then M 2 f(M) D f*(M) 2 ...,
hence there exists m such that f™(M) = f™* (M) = .... This implies
that Yy € M3x € M such that f™(y) = f™(x), so y = f(x).

2) Assume f is surjective; then Ny C f~H(Np) C f2(Np) C ...,
hence there exists m such that f~™(Np) = f~™*D(A) = .... Now
take x € Ker f, that is, f(z) € Np. Since f™ is surjective, 32’ €
M such that x = f™(2'), whence f™*(2/) = f(z) € No, or o' €
fMDNG) = f7™NG). So f™(2') € Ny and © € Np. This proves
that Ker f = N and, since f is surjective, that f(Ny) = No. We may
then define the surjective endomorphism

fi: No = Ny, filz) = f(x), Vo e Ng.

Being Noetherian, M is finitely generated, which in turn implies that
Ny is finite (see [6], Theorem 3.3) and so f; is injective too. This
shows (by 1.2) that f is also injective. O



On n-modules with chain conditions 35

Corollary 3.9. If f: M — M is an endomorphism of an R-n-module
of finite length, then the following are equivalent:

1) f is an automorphism,

2) f is injective,

3) f is surjective.

Definition 3.10. Let M be an R-n-module and let {M,;};,c; be a
family of n-submodules of M. We say that M is the (internal) direct
sum of the family {M,;};e; if

(1) M= (M)
iel
(2) there exists an n-submodule N of Ny such that for every j € T
we have M; N <UMZ> = N.
i#]
In this case, we say that M is the N-direct sum of the family {M;};cr;

in particular, for N = () or N = {e} we call it 0-direct sum or 1-direct
sum, respectively.

Remark 3.11. 1) Every n-submodule § # N C N, determines an

N-decomposition of M, namely: M = U M, & Ny. In particular, for

eeEN
each zero-idempotent e € Ny we have a decomposition of M into a

1-direct sum:
M =M, Ny (D)

2) For each zero-idempotent e € Ny we have a class of decompositions
of M into O-direct sums:

M=DM.,® (@f;éeTf) (D)

where each T} is equal either to My or to {f}.

Definition 3.12. An n-module B with zero is called decomposable if
B can be expressed as a direct sum B = By @ By, with By # {0} and
By # {0}. Otherwise, B is called indecomposable.

An n-module M is called indecomposable if M, is indecomposable
and N is simple.

Remark 3.13. 1) Simple n-modules are indecomposable.
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2) An n-submodule N of Nj is indecomposable iff it is simple.

3) If the n-module M is indecomposable, then its only decompositions
in which M itself does not appear as a summand, are those of the
forms (D) and (D’).

Definition 3.14. A decomposition of an n-module into a direct sum
of n-submodules is called a canonical decomposition if

(1) it is obtained from (D) by further decomposition of the two sum-
mands,

(2) the direct sum employed is a 1-direct sum,

(3) it does not contain summands which are one-element sets or the
empty set.

In a canonical decomposition the summands are either n-modules
with zero or n-submodules (n-subgroups) of Nj.

Theorem 3.15. (Fitting’s lemma) If M is an R-n-module of finite
length and f: M — M 1is an endomorphism, then there exists an
integer m > 1 such that M = f™(M) & Ker f™.

Proof. Similar to the one for the binary case (see [7| or [8]). Since
M is Artinian, it follows — as in the proof of the preceding theorem —
that there exists m > 1 such that f™(M) = f™" (M) = ..., whence
(M) = (M), Define the map g: f"(M) — fm(M), g(x) =
f™(z) and note that ¢ is a surjective endomorphism. Now [ (M) is
Noetherian, being an n-submodule of M, so ¢ is an automorphism.
Therefore, we have

f™(M) NKer f™ = Ker g = Nogmry C No.

In addition to that, for any x € M there exists y € M such that
f™(@) = g(f™(y)) and so
(n—3)
L™ (@), £ (™), (@), f ()], = fm(e),
(n—3)
Ve € Nj. It follows that the element u = [z, f™(y), f™(¥), €] . belongs

to Ker f™ and: = = [f™(y), u, (ngz)]Jr.

This shows that M = (f™(M) UKer f™). O

Corollary 3.16. Assume that M is an indecomposable R-n-module
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of finite length.

1) If f is an endomorphism of M, then:
a) [ is an automorphism or
b) Ker f =Ny, Je € Ny: f(M) = M, and the map
g: M, — M., g(z)= f(x) is an automorphism or
c¢) f is nilpotent in the (n,2)-ring Endg M.
2) If M is with zero, then any endomorphism of M is either
nilpotent or an automorphism.
3) If M is with zero, and f; € Endg M, i€ {1,2,...,m},

(n—r)
m = r(modn—1), while f={[f1,..., fm, 0 ]+ 1is an auto-

morphism, then there exists iy € {1,...,m} such that f;
18 an automorphism.

Proof. 1) It follows from the preceding theorem that there exists m > 1
such that M = f™(M) @ Ker f™. Since M is indecomposable, we
have either f™(M) = Ny or Ker f™ = Njy. In the first case, f™ is
a nullary endomorphism and so f is nilpotent; in the second case we
have either f™(M) = M or f™(M) = M., for a certain e € Ny. If
f™(M) = M, then f(M) = M, so f is a surjective homomorphism and
from Corollary 3.9 it follows that f is an automorphism. If f™(M) =
M., then (as in the proof of the preceding theorem) M, = f™(M) =
S M) = f(M,.) and therefore the endomorphism g: M, — M, is
surjective, so (by Corollary 3.9 ) it is an automorphism.

Now Ker f™ = Nj implies that Ker f = A, while the fact that N
is simple implies that f(Np) is either a one-element set or the whole
of No. If f(Ny) = N, then the map h: Ny — Ny is a surjective
endomorphism, so an automorphism. But this fact, together with
Ker f = N, implies that f is injective, hence f is an automorphism,
which contradicts f™(M) = M,. Therefore there exists u € Ny such
that f(Ny) = {u}; now f(M.) = M, implies that u = e. Take now
ye€ f(M)and z € M cuy = f(z). If z € M,, then y = f(z) € M,; if

x € M,, v # e, then let 2’ be the uniquely determined element of M,
(n—2)

such that = = [2/, e ", v];. Now we have

(n—2) (n—1)

y=fla) =[f(=), fle), fW)ls = [f(@), e ]y = f(a') € M.
which proves that f(M) C M..



38 L. Tancu

2) Direct consequence of 1).

3) The proof is by induction on m.

(n—1)
If m =1, then f =[f1, 6 |+ = f1, so f1 is an automorphism. Let

now m > 2 and assume that the statement is true for m—1. The

(n—)
equation f = [f1,..., fm, 0 ]+ implies, by right multiplication with
=1, the following:
. (n—r)
1dM:[gl7"'7gma 0 ]-l—a
where g; = f; o f~1. If g is an automorphism, then f; is an automor-
phism and iy = 1; otherwise, it follows from 2) that g; is nilpotent,
i.e. 3k > 1 such that g¥ = 0. Tt follows now
. (n=3) __ i ., (n—t)
[ldM7 g1 79179]4- © [ldMaglu S 795C 17 6 ]+
: . _y (D) L (n=3)
= 1d]W = [ldMaglu R 7.95g 17 0 ]-‘r o [lde g1 79170]—1-
and so the map
. (n=3) (n—r+1)
[ldm7 9 79170]4- - [927"'7ng 6 ]—l—
is an automorphism for which we can apply the induction hypothesis.
This completes the proof. U

Using arguments identical to those employed in the binary case
(|7], [8]), one can prove the following

Theorem 3.17. If A is an R-n-module with zero, Artinian or Noethe-
rian, then M can be decomposed as a finite direct sum of indecompos-
able n-submodules.

Also the Krull-Remack—Schmidt Theorem can be immediately trans-
ferred to the case of R-n-modules with zero: Let B # {0} be an
R-n-module with zero which is both Artinian and Noetherian. Then
B is a finite direct sum of indecomposable n-submodules. Up to a
permutation, the indecomposable components in such a direct sum
are uniquely determined up to isomorphism.

Remark 3.18. Let us return now to the general case of R-n-modules
(not necessarily with zero): it follows that the problem of decom-
posing an R-n-module M of finite length into a finite direct sum of
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indecomposables can be reduced to the decomposition of Nyys (since
M = M, ® Noy and M, is an n-module with zero). Recall that if
M is Noetherian, then the idempotent abelian n-group Ny is finite
and [Ny | divides (n—1)*=1, where k is the cardinal of the generat-
ing set. Also recall that, by Remark 3.13, an n-submodule of Nj is
indecomposable if and only if it is simple. Take ¢ € Ny and let

G = red, Nyys be the binary reduce of Nyys with respect to the ele-

n—2
ment e (ie. x +y = [x,( e ),y]+); G is a (bi)group of exponent n—1.

Note that z1+ - - - +x,, = [2}]+, which shows that Ny, = ext™ G. Take
the decomposition (unique up to isomorphism) of G into a direct sum
of indecomposable subgroups of the form Z,-, with p prime:

G=G D - DGy (dv)
and immediately obtain the following decomposition for Ny;:
Noyy =ext"G =ext"G,L @ --- P ext” G, (ds)

We still did not solve the problem, since not all these summands are
simple: in fact, ext™ G; is simple iff G, is of the form Z,, p prime. So,
it remains to describe the possible decompositions of ext” Z,-, r > 1,
where p” | n—1. Unfortunately, for this case one cannot prove the
uniqueness of decomposition, as the following example shows.

Example 3.19. Take n = 9 and A = ext?Zg. The 9-group A has
four 9-subgroups of order 2, namely: A; = {1,5}, Ay = {2,6}, A3 =
{3,7}, Ay = {0,4} and the following decompositions into direct sums:

A=A QA=A 0A =A3 0 A =A30 A4
=Ai @A DA =A1®A D A3D Ay

where 1, j, k are distinct numbers in {1,2,3,4}. Note that the four
9-subgroups of order 2 are mutually disjoint, which means that any
decomposition of A into direct sum of indecomposables is necessarily
a O-direct sum; it is easy to check that in fact this statement is true
for any n-group of the form ext™ Z,, with » > 1 and p" | n—1. Also
note that A, ® Az = {1,3,5,7} ~ ext? Z,, which shows that 0-direct
sums with respectively isomorphic summands can give non-isomorphic
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results.

Summarizing, if M is a Noetherian R-n-module, then one of the
following situations occurs:

e Ny is simple. This is precisely the case when its order is a
prime number p (with p | n—1);

e Noy is not simple and it has a unique (up to isomorphism)
decomposition into a finite 1-direct sum of indecomposable n-
submodules. This is precisely the case when every binary reduce
has in its decomposition (d;) only summands of the form Z,,,
with p; prime numbers.

e Ny is not simple and it can be decomposed into finite O-direct
sums of indecomposables only. This is precisely the case when
every binary reduce has at least one summand of the form Z,-,
p prime and r > 1, in the decomposition (d;).

The above discussion leads us to a weaker version of the Krull-
Remack—Schmidt theorem for n-modules, in the special case when
n—1=p;...px (the prime factorization of n—1 is multiplicity-free).

Theorem 3.20. Let n > 2 be an integer such that n—1 = py...pg
and let M be an R-n-module which is both Artinian and Noetherian.
Then M has a finite canonical decomposition into indecomposable n-
modules. Up to a permutation, the indecomposable components are
uniquely determined up to isomorphism.

The above theorem allows us to reduce the problem of decomposing
an R-n-module into a direct sum of indecomposable n-submodules to
the problem of decomposing an R-n-module with zero and an abelian
n-group. Both these decompositions can be done by using the binary
reduces of the two structures and then their n-ary extensions. To be
more precise, if B is an R-n-module with zero, then its binary reduce
with respect to an element b € B is the module B with the operations:

(n=3) _ (n=3) _
r+y=[z, b ,byl, rex =[rz, rb ,rbb]; ,

for our purpose (decomposition), it is useful to consider the binary
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reduce with respect to the zero element. The n-ary exrtension with
respect to an element a of an R-module A is the R-n-module A, with
the following operations:

[0y =214+ -+ 25 — (n—1)a, rxxr=rr—ra+a,

and a is the zero element in the n-ary extension. Furthermore, one
can easily check that for any a,b € B we have ext}(red, M) ~ M; in
particular, extg(redg M) = M. Note that we can talk about unique
decomposition only if it is canonical, as the following example shows.

Example 3.21. Let (Zsg, +, ) be the ring of integers modulo 30. We
define on the set M = Zj3y a structure of Z-7-module by:

2]y =21+ ---+2; and kex=(6k+25) .
Then we have
Nur = Noar = {0,5,10,15,20,25}, My = {0,6,12,18,24}
and the following canonical decomposition of M:
M ={0,6,12,18,24} & {0, 15} & {0, 10,20}

which is unique up to isomorphism.
However, we can give two different (non—canonical) decompositions
of M into 1-direct sums of indecomposable n-submodules, namely:

M ={0,3,6,9,12,15,18,21, 24,27} & {0, 10, 20}
—={0,2,4,6,8,10,12, 14, 16, 18,20, 22, 24, 26,28} & {0, 15} .
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Some linear conditions and their
application to describing group isotopes

Fedir M. Sokhatsky

Abstract

The uniqueness of a canonical decomposition of a group isotope is proved in [1].
Now we characterize components of a canonical decomposition of a group isotope

from the main classes of quasigroups.

1. Some known results and notions

A groupoid (A4, o) is called an isotope of a groupoid (B, -), if there are
bijections «, (3, v from A to B such that the equality

Y(zoy) = alz)- B(y)

holds for all z,y € A. The triple («, 3,7) is called an isotopy between
(A,0) and (B, ). Bijections «, [3, v are called left, right and middle
components of this isotopy. A groupoid isotopic to a group (G,+) is
called a group isotope. (G,+) is called a decomposition group. Tt is
easy to see that a group isotope is a quasigroup.

A transformation « of a group (Q, +) is called: unitary if a(0) = 0;
linear (alinear) if there exist a,b € () and an automorphism (antiau-
tomorphism) 6 of the group (@, +) such that a(z) = a + 6(z) + b for
all z € Q; left and right monoreqular if it satisfies the identity

alz+z)=a(z)+z and alr+z) =12+ a(x),

1991 Mathematics Subject Classification: 20N15
Keywords: group, loop, quasigroup
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respectively. A linear unitary transformation is an automorphism.

If the left (right) and middle components of an isotopy are linear
transformations of a decomposition group, then the isotopy is called
left (right) linear. If the left (right) component is alinear but the
middle component is linear then the corresponding isotope is called
left (rigdt) alinear. A left and right linear (alinear) group isotope is
called linear (alinear). A quasigroup linearly isotopic to a group is
called a linear quasigroup. If, in addition, the group is abelian then
the quasigroup is said to be abelian.

The right side of

rx-y=ar+a+ Py, (1)

is called a (middle) canonical decomposition determined by an element
0 € @ of a group isotope (Q,-), if (Q,+) is a group (with 0 as its
neutral element) and «, § are unitary permutations of (Q,4+). « and
0 are called coefficients of the canonical decomposition, a — the free
member, (Q; +) — the canonical decomposition group.

Left and right canonical decompositions are determined by:

x-y=a+ar+ By, x-y=ar+ Py +a,

respectively. These three canonical decompositions are uniquely de-
termined by an arbitrary element 0 from the set @ (cf. [1]).

In [1] the following two lemmas are proved.

Lemma 1. If for permutations «, 3, v, 9§, p of a group (Q,+) the
identity  o(B(x) + v(y)) = 0(x) + puly) holds, then o is a linear
transformation of (Q,+). If in addition a0 = 0, then « is an auto-
morphism of (Q,+).

Lemma 2. If (1) is a canonical decomposition of a group isotope (Q, -)
and « is an automorphism of its decomposition group (Q,+), then in
(Q,-) we have

zfy=a v —afy—ata=a e +a [ a+ o By, (2)

roy=aly—afr—ata=a  PIBr®a PTad aly. (3)
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In the sequel will be used the following result from [2].

Theorem 3. Let (Q,-,Q) be a quasigroup algebra, where (Q,-) is
a group isotope. If in the words vy, vy, V3, V4, v of the signature
{-} UQ a variable x (a variable y) appears only in the words vy, vs
(respectively, va, vy ) and, in addition, exactly one time in at least one
of them, then the group isotope is:

1) left linear, if the identity (vi(z)-v2(y))-v = v3(x)-v4(y) holds
i (Qv K Q);

2) right linear, if the identity v - (vi(x) - va(y)) = v3(x) - V4(y)
holds in (Q,-,2),

3) left alinear, if the identity (vi(x) - ve(y)) - v = v4(y) - v3(x)
holds in (@, -, ),

4) right alinear, if the identity v - (vi(z) - v2(y)) = valy) - v3(T)
holds in (Q, -, ).

It is easy to see that the following lemma is true.

Lemma 4. If a group isotope (Q,-) has the canonical decomposition
(1), then

e, =2\ =7 (—a—ar+ ), (4)
l,=x/z=a 'z — Bz —a), (5)
R Y(u) =a(u—z+ azx), (6)

Li}(u) = 6716z — x +u),
where e, and 1, are defined by the identities we, = 1,20 = .

Also the following two results are proved in [2].

Theorem 5. Let {xg,...,x,} be the set of all variables in the words
w, v of the signature (-, /,\) and let 0 be a fized element of Q. If
a quasigroup (Q,-) is abelian or linear and in the words w,v every
appearance of every variable is not contained between two appearances
of another variable, then the following conditions are equivalent:

1) the identity w = v holds in (Q,-, /,\),
2) w(0,...,0,2;0,...,0) =v(0,...,0,z;,0,...,0) holds in (Q,-,/,\)

for every 1 =0,1,...,n,
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3) w(0,...,0) =v(0,...,0) and for the middle 0-canonical de—
composition sums of all coefficients of every variable in w and
v are identical.

Theorem 6. Let (Q,-,Q)) be a quasigroup algebra, where (Q,-) is a
group isotope. If the identity wi(x) - wo(y) = ws(y) - wa(x) holds and
two pairs of its subwords (w1, wy) and (wq, w3) contain all appearances
of variables x and y (respectively) and there exists only one appearance
of  in wy or wy (respectively, y in wy or ws), then (Q,-) is isotopic
to a commutative group.

2. Some linear conditions

The aim of this section is description of positions of variables in some
identities implying relations between the coefficients of the group iso-
tope in the canonical decomposition.

Lemma 7. Let w be a word in a quasigroup algebra (Q,-,2), where
(Q,-) is a group isotope. Then the left bracketting

w=(...(whovp_1) © Uu_2) O ...)0uWy,
n n—1 n—2 1

where o € {-, /} and v; is a subword of the word w, can be represented

in the additive form

aFrw, + af=1p,_1a+ oaFr=1p,_1Bu,_1 + ... + k0 pga + k0 poBuy,

where (1) denotes the canonical decomposition of (Q,-), k; denotes
the difference between the numbers of operations (-) and (/) in the
sequence (c1>, S o) and

3 i (0)=0)
e { oML i (0) = (),
for 1=0,1,...,n—1.
Proof. We use the induction by n. For n = 1 we have
w = awi + a + By, if (?) = (),

W aw; +a U a+ o S B, if <?) =)
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These decompositions coincide with the additive form, since ky = 0,
kt=1—-0=1, pg = ¢ when (?):(-),and/ﬁ:()—l:—l, ko = 0,

po=a 'I7'T when (<1>) = (/).

Assume, now that the lemma is true for n — 1. If in the left brack-
etting of w we denote w, ov,_1 by w,_1, then, by the assumption on
n

n — 1, we obtain

w={(...(wp—1 © Up_2) o ...)0Uy
n— n—3 1

= a*n1(w, ovp_1) + aFn2p, a4+ akr2p, oBu, o+ ...
n

oo+ a™poa 4+ ok po Buy,
which in the case (2) = (-) gives w,_1 = aw, + a + fv,_1. But
k,=k,_1+1 and p,_1 = ¢, therefore
w = af1(aw, +a+ Bu,_1) +aFtp,_1a+ oFr2p, oBu, o+ ...

.4 pya + ok pow

= a1ty +afr-ta+aFn=1 Bu, g +ak1p, a4 a2, o Bu, ot
oot OékopoCL + Oékopowo,
which coincides with the additive form of w.

In the case (o) = (/) we have k, =k, 1 — 1, p,_1 = [a I and

a

2
Wn—1 (:) a_lwn + Pn—10 + pn—lﬁvn—l-

Therefore

w = "1 (o w, + pp1a + pp-1B0n-1) + a"2p, _sa
+akn=2p, B0, o+ ...+ a*poa + a* pow,

which also gives the additive form of w. O]

Corollary 8. A left bracketting w = (... ((Up - Up—1) - Up—2)-...) - p)
of the word w in a left linear group isotope (Q,-) can be written in the
form

w=a"v,+a" ta+ a1 Bu,_1 +a" 2a+a" 2PBu,_o+ ... +a+ Bu.
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Proof. Putting (c1>) =...=(0) =(-) in Lemma 7 we obtain the above

corollary, since in this case p; = ¢ forall 1 =0,..., n. O

Theorem 9. Assume that the identity w = v holds in a quasigroup
algebra (Q, -, /,\,$), where (Q,-) is a left linear group isotope, and
the first variables in w and v are identical and appear in these words
only once. If all nodal operations of the overwords of the first variable
belong to the set {-,/}, then the left coefficient o of the canonical
decomposition of (Q,-) satisfies the condition o* ~F2~Fstks — ¢ yhere
ki, ks are the numbers of all nodal operations of the first variable
overwords of w and v respectively, coinciding with (-), and ks, ks are
those coinciding with (/).

Proof. Let (1) be the canonical decomposition of (Q,-) and let =
be the first variable in w and v. Applying Lemma 7 to the full left
bracketting we see that these words begin with the variable = and that
the left and right side of the identity w = v may be written in the form
given in Corollary 8. This means that the subword vy contains only
one variable x. Since this variable does not appear in other subwords,
then replacing of all other variables by elements of () we obtain

MR (g) + b= aFs TR (2) + ¢,

where b, ¢ are some fixed elements from ). Since for x = 0 we have
b = ¢, therefore a'=* = a#~k4 which completes the proof. Il

Lemma 10. Let w be a word in a quasigroup algebra (Q,-, <)), where
(Q,-) is a group isotope. Then the right bracketting

w:UOclv(Ulg...ngl(vn_lgwn)...),

where o € {-,\} and v; are subwords of the word w, can be represented
(]

in the additive form
w = Brvyug + Bovga + fFrvian, + e +
e T ﬁknilynflavnfl + ﬁknilVOanfla + ﬁknwn;

where (1) denotes the canonical decomposition of (Q,-), k; denotes
the difference between the numbers of operations (-) and (\) in the



Some linear conditions 49

sequence (<1>, 05 o) and
(2

N o (z$1) =0,
v = 6L, if (o)=1(\),

for 1 =0,1,...,n—1.
Proof. The proof is analogous to the proof of Lemma 7. O

Corollary 11. A right bracketting w = vo - (V1 - ...+ (Up—1 - Up)...)
of the word w of a right linear group isotope (Q,-) can be written in
the form

w = avy + a+ Bav, + Ba + FPavy + FPa+ -+ a4 By,
Proof. The proof is analogous to the proof of Corollary 8. O]

Theorem 12. Assume that the identity w = v hold in a quasigroup
algebra (Q, -, /,\, ), where (Q,-) is a right linear group isotope, and
the last variables in w and v are identical and appear in these words
only once. If all nodal operations of the overwords of the last variable
belong to the set {-,\}, then the right coefficient 3 of the canonical
decomposition of (Q,-) satisfies the condition [*¥1—F2=Fstks — ¢ yhere
ki, k3 are the numbers of all nodal operations of the last variable
overwords of w and v respectively, coinciding with (-), and ks, ks are
those coinciding with (\).

Proof. The proof is analogous to the proof of Theorem 9. L

3. Axiomatics of some classes of isotopes

In this section we find criteria for a group isotope to belong to the
main classes of quasigroups.

3.1. Moufang, Bol and IP-quasigroups

As it is well-known, a quasigroup (@, -) is called

left I P-quasigroup, if there exists a transformation A\ such that

At (z-y) =y,
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right I P-quasigroup, if there exists a transformation p such that

(@-y)- ply) ==,
Moufang quasigroup, if:
(y - 2)y =z - yleyz - y),
y(z-yz) = (y-zly)y - 2,

left Bol quasigroup, if:

z2(x - 2y) = Re_zl(z cx2) -y,
right Bol quasigroup, if:

(yz-z)z=y- L' (22 2).

Theorem 13. For a group isotope (Q,-) the following statements are
equivalent:
1) (@,") is a left I P-quasigroup,
2) (Q,-) is a left Bol quasigroup,
3) the right coefficient of the canonical decomposition of (Q,-) is
involutive automorphism of the decomposition group.

Proof. 1) = 3). Assume that the group isotope (Q;-) is a left TP-
quasigroup. Then, by the canonical decomposition (1) of (Q,-), the
equation defining a left IP-quasigroup may be written in the form

aX(z) +a+ fla(r) +a+5(y)) = v,

where A is as in the definition of a left IP-quasigroup.
This means that

B(R.a(x) + B(y)) = IR, aX(z) + v,

where I(z) = —x, holds for all z,y € Q. Thus, according to Theo-
rem 1, 3 is a linear transformation of the group (@, +). Moreover, (3
(as a component of the canonical decomposition) is a unitary permu-
tation of (@, +). Hence, 3 is an automorphism of (Q, +).
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Applying this fact and Theorem 12 to the equality defining a left
[P-quasigroup we obtain the relation 327999 = ¢ which shows that
B is an involutive automorphism of (@, +).

3) = 1). Let (Q,-) be an isotope of a group (Q,+), (1) its
canonical decomposition and 3 an involutive automorphism of (Q, +).
Putting

A=a 'R'IBR.a (7)

we obtain a transformation A of () such that

Ax) - (2 -y) = RaaA(z) + B(Raa(x) + 5(y))
= Reao™ R BRy0(x) + SRaa(x) + 32(y)
= —6Ra0é(l') + ﬂRaOé(-T) +y=y.
Hence (Q,-) is a left IP-quasigroup.

2) = 3). Let a group isotope (@Q,-) be a left Bol quasigroup.
Fixing 2 in the identity defining a left Bol loop and applying Theorem 3
we obtain the right linearity of (@, -). Because this identity is balanced
with respect to v, then Theorem 12 implies 337*%~1 = ¢, where 3 is
a right coefficient of the canonical decomposition of (@, -). Thus [ is
an involutive automorphism.

3) = 2). If [ in the canonical decomposition (1) of (@Q,-) is an
involutive automorphism of (@, +), then
RNz x2)-y @ aR Nz z2)+a+ Py
@(z-xz)—z—l—oaz—l—a—i—ﬂy

Qaz—i—a—l—ﬁ(am—i—a—i—ﬁz)—z—i—az—i—a—l—ﬁy
=az+a+Par+pfa+z—z+az+a+ Py
= az+a+ Pax + Ba+ az+ a+ By.

Similarly

z(a:.zy)(é)az—i—a—l—ﬁ(ax—l—a—i-ﬁ(aZﬂL&-i-ﬁy))

= az+a+ Pax + Ba+ az+ a+ By,

which proves that (Q,-) is a left Bol quasigroup. O
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Theorem 14. For a group isotope (Q,-) the following statements are
equivalent:
1) (Q,) is a right I P-quasigroup,
2) (Q,) is a right Bol quasigroup,
3) the left coefficient of the canonical decomposition of (Q,-) is
an involutive automorphism of the decomposition group.

Proof. The proof is analogous to the proof of Theorem 13. [

Theorem 15. For a group isotope (Q,-) the following statements are
equivalent:

1) (Q,) is an I P-quasigroup,

2) (Q,") is a Moufang quasigroup,

3) (Q,-) is a Bol quasigroup,

4) all coefficients of the canonical decomposition of (Q,-) are in-
volutive automorphisms of the decomposition group.

Proof. The equivalence of 1), 3) and 4) follows from Theorems 13 and
14.
2) <= 4). Let (Q, ) be a Moufang quasigroup. Putting

vi=aY, V=2, v=Y, V3=, Uy=7y(e,z y)

in the first identity defining this quasigroup and applying Theorem
3 we obtain the right linearity of (Q,-). In the analogous way, the
second identity from the definition of a Moufang quasigroup gives the
left linearity of (Q,-). Thus (Q,-) is a linear group isotope. But for
linear group isotopes this equivalence is proved in [4]. O]

A left (right) symmetri ¢ quasigroup is defined as a quasigroup
satisfying the identity z - (z - y) = y (respectively, (z-y) -y =1z). A
quasigroup which is left and right symmetric is called symmetric or a
TS-quasigroup.

Corollary 16. A group isotope (Q, ) is a left (right) symmetric quasi-
group iff the decomposition group (Q,+) is commutative and the right
(left) coefficient B of its canonical decomposition is an automorphism

of (Q,+) such that B(x) = —z for all x € Q.
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Proof. Every left symmetric quasigroup is a left I P-quasigroup, where

A = &. From the proof of Theorem 13 follows § = I, i.e. f(z) = —x for

all x € (). But such defined § is an automorphism only in commutative
groups. The converse is obvious.

In the case of a right symmetric quasigroup the proof is analogous.

O

3.2. F-quasigroups

Note that a left (right) F-quasigroup is defined as a quasigroup (@, )
satisfying the identity

T Yz =1y ez, (8)
(respectively, xy - z = z1, - yz).

Theorem 17. A group isotope (Q,-) with a canonical decomposition
(1) is a left F-quasigroup iff 5 is an automorphism of the group (Q, +),
B commutes with o and « satisfies the identity

alr+y)=c+ay—z+ az. (9)

Proof. Let (Q,-) be a group isotope satisfying (8). If (1) is a canonical
decomposition of (@, -), then (8) together with Theorem 3 imply that
3 is an automorphism of (@, +).

Moreover, (8) for z = 7'(—a) and z =a '(t — a) gives

t+ Bay = alt + By) +t, (10)

where v is a some permutation of ().
This identity y = 0 implies vt = —at + t. Hence (10) may be
written in the form

t+ Bay = a(t + By) — at +1,

which for ¢t = 0 gives a3 = fa. This fact together with the transpo-
sition of By and y in (10) implies

t+ay=a(t+y) —at+t,
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which proves (9).

Conversely, let (@, -) be a group isotope with the canonical decom-
position described in Theorem.

Putting y = —z in (9) we obtain 0 =z + a(—z) — z + a(x), i.e.

r+a(—r) = —ax + . (11)
Hence
1

:cy-emz(:)a(ax—l—a—l—ﬁy)—l-avLﬁ(ozex—l—a—kﬁz)

= a((az + a) + By) + a + Blae,) + fa + 2z

9
© ar+a+afy — (ax+a) + a(ar +a) + a+ afe, + Ba+ 322

@om:+a+ozﬁy—(aa:—i—a)—l—a(ax—l—a)—ira—i—
+a(—(ax + a) + z) + Ba + (*z
©)
=ar+a+afy— (ax+a)+alar+a)+a— (ax+a)+
+axr + az + a + a(—(ax +a)) + Ba + 32z
=ar+a+afy — (ax +a) + alax + a) + (az + a+
ta(=(az +a))) + Ba+ 2

= ar +a+ afy — (ax + a) + a(ar + a) — a(ax + a)+

+(ax +a) + fa+ %z
=ax +a+ abBy + PBa+ (%=

=ax+a+ Bay+ Ba+ (%2 = ar+a+ Blay + a+ B2)
=T (y . Z),
which proves that (Q,-) is a left F-quasigroup. ]

Corollary 18. If a group isotope is a left F-quasigroup, then it is right
linear. It 1s linear iff the left coefficient of its canonical decomposition
commutes with every inner automorphism of the decomposition group.

Proof. The first part follows from Theorem 17. If a linear group iso-
tope is a left F-quasigroup, then, as it is proved in [4], the left co-
efficient of its canonical decomposition commutes with every inner
automorphism of the decomposition group.
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Conversely, if & commutes with every inner automorphism of the
group (@, +), then (9) may be rewritten in the form:

alz+y)=alr+y—z)+axz,

which for u = x +y — x implies a(u + =) = au + ax. Hence « is an
automorphism of the group (Q;+). Il

Corollary 19. If a group isotope is a left F-quasigroup, then it is left
alinear iff its decomposition group is commutative.

Proof. Theorem 17 implies (9), which may be rewritten in the form
ay +ar = x + ay — r + ax, because « is an antiautomorphism of
(Q,+). This implies the commutativity of the group (Q,+).

The converse is obvious. O]

Theorem 20. A group isotope (Q,-) with a canonical decomposition
(1) is a right F-quasigroup iff « is an automorphism of the group
(Q,+), a commutes with B and (B satisfies the identity

Bly+2z)=pz—2z+B8y+ 2

Proof. The proof is analogous to the proof of Theorem 17. O

3.3. Alternative quasigroups

A quasigroup (Q, -) is called left (right) alternative if it satisfies the
identity x - (x-2) = (z-x) -2z (respectively, (x-y)-y=x-(y-y) ).

Theorem 21. A group isotope (Q, ) with the canonical decomposition
(1) is left alternative iff B = ¢ and o = R;'07, where 0 is a right
monoregular permutation of the group (Q,+).

Proof. Tf a group isotope (Q,+) with the canonical decomposition (1)
is left alternative, then the identity x - (x-z) = (z - 2) -z may be
rewritten in the form

axr +a+ flaxr +a+ Bz) = alax + a+ fz) + a + Bz.
Replacing in this identity a + 5z by z and ax by = we obtain

t+a+Bx+2) =alx+a+ fatz) + 2,
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which for z = 0 gives
z+a+Br=al®+a+ o ). (12)
Therefore the previous identity may be written in the form
r+a+Bx+z)=c+a+ P+ 2.

Hence ((x + z) = fx + z, and in the consequence = ¢. Thus (12)
implies
alz+at+z)=z+a+ta 'z

Replacing = by = — a we see that § = R, 'a™!

permutation.
Conversely, let the relations 3 = ¢ and 6 be a right monoregular
permutation of the group (Q;+), then

is a right monoregular

x-(x-z)(é)aa:+a+ﬁ(aa:~l—a+ﬁz):ax+a—|—ozx—|—a~|—z

=(ar+a+axr)+a+z=alax+a+z)+a+z
completes the proof. O

Corollary 22. A left alternative group isotope is a left loop.

Proof. Indeed, § = e implies

(a7 (=a)) -y ala” (~a) +a+y=—at+a+y=y
for every y € Q. Thus a~!(—a) is a left unit of (Q, ). O
In the similar way as Theorem 21 we can prove

Theorem 23. A group isotope (Q,-) with the canonical decomposition
(1) is a right alternative quasigroup iff o = ¢, and 3 = R;'07', where
0 is a left monoreqular permutation of the group (Q,+).

Corollary 24. A right alternative group isotope is a right loop.
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3.4. Semimedial quasigroups

A quasigroup (Q, -) is called left semimedial if it satisfies the identity
T Yz = xY - TZ,

and right semimedial if it satisfies the identity xy - 2z = zz - yz. A
quasigroup which is left and right semimedial is called semimedial.
It is a special case of so-called medial quasigroups, i.e. quasigroups
satisfying the identity zy - uwv = xu - yv.

Theorem 25. A group isotope (Q,-) is left semimedial iff there exists
a group (Q,+), an element a € Q, a permutation o of Q and an
automorphism 3 of (Q,+) such that

Loofa = aR,p, (13)
r-y=oar+Py+a, (14)
az+y) =ar+ fr+ ay — Bz (15)

for all x,y € Q.

Proof. By Theorem 3, a left semimedial group isotope (@, -) is right
linear and has the decomposition (14), where [ is an automorphism
of the group (@, +).

Thus from (14) and 00 - yz = Oy - 0z, where 3z = —a, we obtain
aa + fay = a(PBy + a), which gives (13) and

Bay = —aa + a(fy + a).

This together with (14) and zz-yz = xy-xz for fz+a =0, fy+a = u
and ax = v implies

a(v+ fr+a) —aa+ou=alv+u)+ fv,

which for u =0 gives a(v+ fz + a) — aa = av + f.

Applying this identity to the previous we obtain (15).

Conversely, if a group isotope (@, -) has the canonical decomposi-
tion (14) such that (13) and (15) are satisfied, then
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T yz = a(zx) + B(yz) +a

(E)a(aerﬁera)+ﬂ(0zy+ﬁz+@)+a

12 o’x + Bax + a(Bz + a) — Bax + Bay + (%2 + Ba+a

(£)a2x+ﬁa:p+aa+ﬁa$—Ba:ﬂ+ﬁay+522+ﬁa+a

= o’z + Bax + aa + Bay + Bz + Ba + a.

and
(14)

xy-xz = alzy) + B(rz) + a

(1:4)04(04:104—ﬁy+a)+B(ax+ﬁz+a)—|—a

= o’z + fBax + By + a) — faz + fazx + (%2 + fa+a

= o’r + fax + aa + Bay + 32z + fa + a.

This proves that (Q,-) is left semimedial. O

Corollary 26. A left semimedial group isotope is right linear. It is
left linear iff it 1s medial.

Proof. The first part of the statement follows from Theorem 25. By
Toyoda-Bruck’s Theorem a medial group isotope is linear, and by [4]
a semimedial linear group isotope is medial. Il

Theorem 27. A group isotope (Q, -) is right semimedial iff there exists
a group (Q,+), an element a € Q, an automorphism « of (Q,-) and
a permutation 5 of Q such that B(z +vy) = —ay + ax + ay + Py,
BL,a = Rg,a8 and x -y =a+ax+ By for all z,y € Q.

Proof. The proof is analogous to the proof of Theorem 25. L
Corollary 28. A group isotope is medial iff it is semimedial.

Corollary 29. A group isotope (Q,-) is commutative iff its decompo-
sition group is commutative and o = 3.

Corollary 30. A group isotope (Q,-0 is unipotent iff it has the de-
composition -y =ar —ay+a or r-y=a+ Pr— Py.

Corollary 31. The canonical decomposition group of a commutative
unipotent group isotope is a Boolean group.
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Invertible elements 1n assoclates
and semigroups. 2

Fedir M. Sokhatsky and Olena Yurevych

Abstract

This work is a continuation of [12]. Some additional invertibility criteria for ele-
ments of associates and n-ary semigroups are found. The corresponding axiomatics
for polyagroups and n-ary groups are established.

The study of (i, j)-associative (n + 1)-ary groupoids is reduced in
[8] to the study of so-called associate of the type (s,n), where s|n.
A bracketting rule and a decomposition of the main operation was
described in [10]. Some criteria of invertibility of elements are found
in [12]. Here, we give some additional criteria of invertibility and find
axiomatics for polyagroups and n-groups.

The following theorem is proved in [10]

Theorem 1. Let (Q, f) be an associate of a type (r,s,n). If the
words wy and wy differ from each other by the bracketting only and the
coordinate of every f’s occurrence in the words wy and wq is divisible
by v and also there erists a one-to-one correspondence between f’s
occurrences in the word wy, and those in the word wo such that the
corresponding coordinates are congruent modulo s, then the formula
wy = we is an identity in (Q, f).

By the coordinate of the i-th occurrence of the symbol f in a word w
is mean a number of all individual variables and constants, appearing

1991 Mathematics Subject Classification: 20N15
Keywords: associate, invertible element
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in the word w from the beginning of w to the i-th occurrence of the
operation symbol f.

A transformation \;, of the set (), which is determined by the
equality
n—i

Nalz) = f(a,2,7a"), (1)

is said to be an i-th shift of the groupoid (Q, f) induced by an element
a. Hence, the i-th shift is a partial case of the translation (see [1]). If
the i-th shift is a substitution of the set (), then the element a is called
t-invertible. If an element a is ¢-invertible for all = 0,1,...,n, then it
is called #nwvertible. Invertible elements in n-semigroups are described
by Gluskin in [6] and [7].

The following theorem is proved in [12]

Theorem 2. An element a € Q is invertible in an associate (Q, f) of
the type (s,n) iff there exists an element a € @ such that

f(a,a,...a,z) =z, f(z,a,...a,a) =x (2)

for all x € Q.

1. Criterion of invertibility

Corollary 1. An element a is invertible in an associate (Q, f) of the
type (s,n) iff there exist a and a such that

f(a,a,...,a,x) ==, flz,a,...;a,a) =x (3)
hold for all x € Q.

Proof. If an element a is r-multiple invertible, then (2) are true ac-
cording to Theorem 2. Therefore (3) with a = @ = a hold.
Conversely, assume that (3) hold. Putting x = a in the first equal-
ity, and x = a in the second, we obtain
f(a,a,...;a,a)=a and f(a,a,...,a,a)=a.
Hence @ = a. Thus (2) hold.
The invertibility of a follows from Theorem 2. |
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Lemma 1. If an element a is i-invertible in an associate (Q, f) of
the type (s,n), then every i-th skew element to a is also j-th skew for
all 7 =14 (mod s).

Proof. Since the i-th shift induced by a is a substitution of the set @,
then

0 = A Nia(@) @A FCE) YA @ A @), ")

7,0 2,a

A n—i

WAL, flaa,"a’),"a’) B AT (o, fb,a, "), ")
1) -1 J _; n—J Jj o
= Ai,aAivaf(a7az7 a ) = f(a7a’27 a )

Thus f((Jz, ai,nc_tj) = a. This means, that a’ is the j-th skew to a. O

If an element a of a multiary groupoid is i-invertible, then the
element )\;al(a) coincides with the i-th skew of the element a, which is
denoted by @’ (a := a") and is determined by the equality

fa,a@,"a’) = a. (4)

The following theorem is valid.

Theorem 3. In any associate (Q, f) of the type (s,n) for any element
a and for any i = 0,1,....,n —1; k = 1,...,2 — 1 the following
conditions are equivalent:

1) a is invertible;

2) a is i- and (n —i)-invertible;

3) there exist elements a and a from Q such that

f(a,a,

hold for all x € Q.
4) a is ks-invertible.

1

i

o x)=xz and f(:c,n_ciz_l,d,a) =z (5)

i
a

Proof. 1) = 2) by the definition of invertibility.

2) = 3). Since the element a is i- and (n — i)-invertible, the i-th
and (n — i)-th shifts are substitutions of the set Q.

Let ¢ < n—s. To prove the relation (5), we consider the following
equalities:
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v =\ a(e) © A f(a, 2,7

L fa, f( a=.'6")," )

S, flea et Z%c’i),"&i)

DA Naf (2, ’1, a0, a) = f(z," @ a0, q).
Hence, the second equality from (5) holds.
To prove the first, observe that

Tl

n

T = Anlz a)\ﬂ*iyﬂ( ) )\nlz af( ai7x7 CZL)
z+s 71- n— sfz' s—1 7
)\nlzaf< 7f( )7 a,x,a)

n—i . n—i—1 )
/\nlmf( a,f(a,a, a ,x)a)

n—

. n—i—

i om—i i om—i—
)\nlza n—1i,a (CL?aza a ,.CE) = f(a7a17 a ,l’).
This proves that for i < n — s the relation (5) holds.
Let 7 > s. At first, we prove the validity of the relations

f(iZLS, at, niiakl, T) =1, (6)
fla,"d a0 ) = o (7)
Make a chain of conclusions:
= Nahiale) & @A @), BN f(@al ), ")
Dol p(a a8 ),
0 )\;;)\i,af(ias, di7n—ias—17 2) = f(ias’ ai,n—ias—lj o).
This proves (6). To prove (7) note that
2= Anial(r) BN (a2 a)
AL (a6, )

Dot ra fa," 7 d a0 'aY), a)
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n— Z+S 1 i—S n—i+s—1 1—s

)\nlza n— ’Hlf( ’a(n—i)’ a):f(l', a 7&(71—1’)’ CL).

Using the obtained relation, we get correctness of the first of equal-
ities (5). Indeed,

i—s . n—it+s—1 7 n—i, t—s—1 . n—its—1
a

x@f(a7az7 ,’%)(;i)f(f(a’a}’a/)’ a 76_117 a 7x)
Op@a, o plaa,"
In the same way:
(7) f( n— z+s 17a(n7i)7i&s)

D p," a0, e p(a a0, a))

= (e,
which proves the second equality from (5). Thus 2) implies 3).

nz+sl

9 9

am=0'a’), " a0 a) Y pe, " a, a),

3) = 4). If i = 0, then (5) implies (3), which, by Corollary 1
proves that a is an invertible element. In particular, it is j-invertible
for all 7.

If ¢ > 0, then for

a:= fla, f@, "a,a)," @ ,am), (8)
a=f@," @, f@","a',a" ", a) ()
we have
fa,"a’ )2 f(f(a, f@, e at), " a ), e )
T1 7 n 1 % n—i—1 n—i—1

_f( a 1) = 1.

n—1 . n—i—1

fla,"a' a) 2 f,"a, f@,"a, f@mn,"a' an), a))

o a a),"a a9, a)
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i—1

n 1 . n—1i n—i—1
a

2@ faa a0 Y e, a0 a) P
Hence, the relations (3) are valid and therefore, by Corollary 1, the
element a is invertible.

4) = 1). Let j = 0 (mod s), 0 < j < n, i.e. j = ks, where
k=1,...,n/s — 1, and let an element a be j-invertible.
Since the element a is ks-invertible, the ks-th shift is a substitution
of the set ). Observe that for
= Nal2)y 2= Aisa(y)- (10)

the following two equalities hold

_ ks—1 n—ks n—1
Mesa (2, a2 a ) = f(N,(2), a ), (11)
1 ks n—ks—1
Aks,af(CL’x’ a 7Z> f(flf a )\ksa( )) (12)
Indeed,
ks—1 n— ks (10) ks—1 n—ks

Aksaf(z a.,z, ) )\ksaf()\ksa( )’ a.,x, a )

n—ks, ks—1 n—ks

1 ._ ks
= )‘k;af(f(aay, a), a,r, a)

LS f(ya @), d)
O A Meaf v, "a o) Y fy, " x)
2 (2), " x).
Similarly
Nedaf ("0 2) B (676 f (")
DN, f(z,"a ), a)

1) | _ n—1
= /\k;’a)\ks,af(x7 a ay)

(1) n—1 (10)
= (I, a 7y) = f(x a )‘ksla( ))

Now, putting z :=a in (11) we obtain
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_ ks n—ks _ n—1
)\ksl,af(CL?x’ a ) - f(/\ksl,a(a)7 a 71:))
NokMesalw) = f(@,"a’,x),

which together with the definitions of a shift and the definition of a
skew element gives

n—1

r = f@, a,x) (13)

for all x € ). This means, that the first equality from (3) holds. To
verify the second one we put z = a in (12). Then

n—ks

_ ks n—1 . _
)‘ksl,af(CL?xﬂ a ) = f(xa a 7/\ksl,a(a))a
which, as in the previous case, implies

n—1

A,;j,akks,a(x) = f(x, a ,a*)
Thus
v = f(x, a,a") (14)

for all x € Q. Corollary 1 and (13), (14) imply the invertibility of a.
This completes the proof of Theorem 3. u

Note, that for binary semigroups the following assertion is valid.

Lemma 2. Let (Q,-) be a binary semigroup and shift \oo (A1a) be
a substitution of Q, then the element e, := Ay ,(a) (€, := A{4(a)) is a
right ( respectively left ) unit, and a;* == X\;2(a) (a;' := A\{2(a)) is a
right ( respectively left ) inverse element of the element a in semigroup
(Q7 )

Proof. Indeed,

Mol €e)=x-¢-a=x-Nale,)=x- )\O,a)\a’cll(a) =2-a= Nalx).
Since Ao, is a substitution of the set ), then the proved equality
Xoa( - €) = Noa(2)

gives x - e, = x for all z € @, that is the element e, is a right unit
element in the semigroup (@, ).
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In the same way one can prove that e, is a left unit element in

(Qv )

To establish that the element a ! is a right inverse of a, note that
Xala-a, ) =a-a"a=a-AA\a(a) =a-Agala) =a-e =a.
Applying Ay, to the equality Aoq(a-a; ') =a, we get
a-a;' =X, (a) = e

Hence, the element a is right invertible.
Similarly we can prove that the element agl is a left inverse of a,
when the shift \; , is a substitution of the set Q). O

Corollary 2. An element a of a binary semigroup is invertible iff it
15 0-invertible and 1-invertible simultaneously.

An element a of an associate (@, f) of the type (s,n) is said to
be: right ( left ) invertible, if the shift A\, (respectively A1,) is a
substitution of the set Q).

An element a of an (n+ 1)-ary groupoid (@, f) will be called inner
invertible, if the shift \;, is a substitution of the set () for some
i=1,....n—1.

Corollary 3. An element a is invertible in an associate (Q, f) of the
type (s,m) iff it is right and left invertible simultaneously.

The Proof follows from the point 2) of Theorem 3 when i = 0.

Corollary 4. In any (n + 1)-ary semigroup (Q, f) for any element a
and for any numbers 1 =1,....,n—1; k=1,...,% — 1 the following
assertions are equivalent:
1) a is invertible,
2) a is inner invertible,
3) a is right and left invertible,
4) there exist elements a and a in Q such that for arbitrary x € Q
the following equalities hold:

fla,a,"a L x)=x,  f(z."a ,a,a) = (15)
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2. Axiomatics of polyagroups

Definition 1. A groupoid (Q, f) is called a polyagroup of a type (s,n)
iff it is a quasigroup and an associate of the type (s,n).

It is easy to see that for s =1 a polyagroup of a type (s,n) is an
(n 4 1)-ary group.

Directly from Theorem 3 and the definition of a polyagroup we
obtain:

Theorem 4. In an associate (Q, f) of the type (s,n) for any i =
0,1,...,n — 1 the following conditions are equivalent:

the associate s a polyagroup,

every element of the associate is invertible,

every element of the associate is i- and (n — i)-invertible,

for every element y there exist elements y and 3 in @ such
that for arbitrary x € Q) the following two equalities hold

N I N
S e N N

n—i—1 n 1

FW.g, v ey =x,  fla, ¥ Y =z

5) every element is ks-invertible, for some k=1,...,% — 1.

Since for s = 1 a polyagroup of a type (s,n) is an (n + 1)-group
(an associate of the type (1,n) is an (n + 1)-semigroup), then as a
simple consequence of the above Theorem, we obtain the following
characterizations of (n 4 1)-ary groups, which are proved in 3 — 5.

Corollary 5. In an (n+1)-semigroup (Q, f) for anyi=0,1,...,n—1
the following assertions are equivalent:
1) a semigroup is an (n + 1)-group,
every element of the semigroup is invertible,
every element is a right and left invertible,
every element is inner invertible,
for every element y there exist elements y and y in Q) such
that for arbitrary x € Q) the following two equalities hold

w N

Ot W~
— — — ~—

7 3 —i—1 7
Wy, ¥ ,z)=u=, flx, v ,9,9) ==z
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On TS-n-groups

Janez Usan

Abstract

In this article totally simmetric n-group is described as an n-groupoid (Q, B)
in which the following laws hold: B(z,y,a'"%) = B(y,z,a}?),
B(a,c 2 B(B(B(z,c!2,2),c72b), ¢ 2, B(B(z, 2, 2), V2 a))) = b,
B(z,ai~%y) = B(w,ai ™%, B(B(y,a1~*,y),ay "% y)) and
B(B(z,2,b17%), B(y,a ™% 2),a{~*) = B(x,y, b/ 7).

1. Introduction

Definition 1.1. Let (Q, A) be an n-quasigroup and n > 2. Also let
a be a permutation in the set {1,2,...,n + 1}. Moreover, let

Aa(l'rf) = Qpt1 A(:L‘a(l), ...,l‘a(n)) = Za(ntl)

for all 27" € Q. We say that (Q,A) is a totally simmetric n-

quasigroup ( briefly: T'S-n-quasigroup) iff for any permutation a on
{1,2,..,n+ 1} we have A* = A. In the case when a = (1,n + 1)
instead of A® we write ~'A. Similarly in the case o = (n,n + 1)
instead of A* we write A7l

Proposition 1.2. Let (Q, A) be an n-group, ~' its inversing opera-
tion, e its {1,n}-neutral operation and n > 2. Also let

() "MA(z,0]7%y) =2 = Az, d] 7% y) =7,

(b) AM@,ai 2 y) =2 = Alr,al2z) =y

1991 Mathematics Subject Classification: 20N15
Keywords: n—groupoid, n—semigroup, n—quasigroup, n—group, {i, j }-neutral
operation on n—groupoid, inversing operation on n—group, TS-n—group



82 J. Usan

for all z,y,z € Q and for every a} 2 € Q. Then, for all v,y € Q and
for every al™% € Q the following equalities hold
1) “UAw,ai ™ y) = Az, a7, (0172 y) 7,
2) AMw, 0l y) = A(a7™?2) T ai ),
3) e(a}?) = Ax,at 1),
4) (a7 2) 7t = TA( Az, a7 2), a7 ),
(5) Alz,ai % y) = “Alz,ai ™% ~A( Ay, a7 y) a1 y)).
Proof. To prove (2) observe that

(
(
(
(

ANz, a} P y) =2 <= A(z,a]7%, 2) =y

= A((a] 7%, 2) 7Y a7 Az, 6] 7 2)) = A((a 7% @) a7 y)
= A(A((a1™%2) a1 0),01 7 2) = A((a ™%, @) a7 y)
<= Ale(a!™?), a1 7%, 2) = A((a7 7%, 2) 7' al % y)
= 2= A((a}%2) 7 a} 2 y).

The rest is proved in [7]. O

As a simple consequence of [2], [3] and [4] (see also [6]) we obtain:

Proposition 1.3. Let n > 2. An n-group (Q, A) is a TS-n-group iff
there exist a boolean group (Q,-) and element b € Q such that

Al =x1-... 2, b

for all =} € Q.

2. Results

From the above we conclude that the following proposition holds.
Proposition 2.1. Let (Q, B) be a TS-n-group with n > 2. Then

B(B(Z, 0711_27 Z), 0711_27 a))) = b;

(it1) B(z,ai%y) = B(z,al% B(B(y,a} >, y),a! "> y)),
(iv) B(z,y,ai”?) = B(y,z,a}™?).
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Theorem 2.2. If the following laws
(i) B(B(w,2b/7%), B(y,ai™, 2),ay"*) = B(x,y,by7%),
(i) Bla,c} %, B(B(B(z, 2, 2), 72, b), ¢} 2,
B(B(z,¢{™% 2),¢{7 %, a))) =0,
(i) B(r,ay~*y) = B(z, a1, B(B(y,ai %, y),a!,y)),
(iv) B(x,y,ai™?) = B(y,z,a17%)
hold in an n-groupoid (Q, B), n > 2, then (Q, B) is a TS-n-group.
Proof. For n > 2 the following statements hold.
1° Let (Q, B) be an n-groupoid. If the following two laws
B(B(w,2,b;7%), B(y,a{ ™% 2),ai™?) = B(a,y,b1™?),
Bla,c} % B(B(B(z, 2, 2),c72,b), ¢} 2,
B(B(z,c72,2),ct2,a))) = b
hold in (Q, B), then there is an n-group (Q, A) such that A = B.
(see Theorem 2.2 in [7]).

2° There exists the n-ary operation ~!Bin Q such that (Q, ~!B)
is an n-group and ~'B = B.

Indeed, by 1°, we conclude that there is an n-group (@, A) such
that ~'A = B. Hence

W) (2,0t y) =2 Az a] R y) =0 & Az, al TP y) = 2.
Moreover for all 2,y € Q and a} % € Q we have
B(x,a!™?,y) = B(x,a!™*, B(B(y. ai"*,y),a1 ™%, y)),
and
“'B(x,ai % y) = B(z,ai 7%, B(B(y, a1, y), a1 %, y)),
which proves that ~!B = B.
3°  For all # € Q and for every sequence a’ 2 over () we have

(a?72,2) 7' = x (see Proposition 1.2 and Remark 1.3 in [7]). Thus
B! = B, because by [7] we have

Bz, at % y) = B((al %, z) 71, a2, y).

4°  For all 2,y € Q and for every sequence a2 over @ the fol-

lowing equality holds B(z,a} %,y) = B(y,a} %, x). Indeed,
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B(z,ai* y) = 2 <= "'B(z,a] ", y) = 2 <= B(z,a] ",y) =2
& B Y(z,a]%y) =1+ B(z,a} % 1) =

n—2

< “'B(y,a} %, 1) = 2 <= B(y,a} %, 1) = 2

5° Let n > 3 and e be a {1, n}-neutral operation of the n-group
(Q, B). Then for all z,y € Q and for every sequence a} 2 over @ the
following equality holds

B(e(ay™?),z,a7?) = .
To prove it we consider the new operation F' defined by
F(r,a}7)  Bla,e(a} ™), a} ™).
Then
B(F(z,ai7%),e(a}™?),ai™") = B(B(w,e(ay™"),ai %), e(a] ™), a]™?)
and
B(F(z,a77%),e(a]™?),a1™") = Bz, B(e(a "), ay"*, e(ay %)), a1 ?).
This implies
B(F(z,a;7%),e(a]™%),a!™?) = B(z,e(a!™?), a7 ™).
Thus

F(z,a} %) = 2 <= B(a,e(a} %), a7 ?)

= .
But by (iv) we have

B(e(a™®),x,a{7%) = B(z,e(a{™?),a!™?) =z,
which completes the proof of 5°.

6° Let (@, {., ¢, b}) be an arbitrary nHG-algebra associated to the
n-group (@, B) (see [8]). Then, by Proposition 1.6 from [8], there is
at least one sequence a2 € @ such that
v y=DB(xa "y and @)= Blela] ),z a0 )
for all =,y € ). Whence, by 4° and 5°, we conclude that
r-y=y-x and o(r)==r.
Thus

e(ay?) x=x-e(a]?) = B(z,ai " e(a] %)) ==
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and

(@ 2) e =a-(af%2) 7 = Bla,ay %, (a7 7% 2) 1) = e(a;™?)
by [7]. Hence z =1 = (a}™%,2) ! = 2, which by our Proposition 1.3
completes the proof. O

Remark 2.3. Let (K,-), where K = {1,2,3,4}, be the Klein’s
group with the multiplication defined by the following table:

1 2 3 4

111 2 3 4

212 1 4 3

313 4 1 2

414 3 2 1

Then the permutation ¢ of K defined by

(1234
“\1243

is an automorphism of (K,:) and (K, {,¢,2}) is a 3HG-algebra
associated to a 3-group (K A) where
z) =

Moreover, e(r) =2-¢(z), (a,) ' =z, and "A=A=A"1

It is not difficult to see that the laws (i) — (i77) hold in this 3-group,
but A(2,4,2) = 4 £ 3 = A(4,2,2).
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Fuzzy subquasigroups over a t-norm

Wiestaw A. Dudek and Young Bae Jun

Abstract

In this paper, using a t-norm 7', we introduce the notion of idempotent T-fuzzy
subquasigroups of quasigroups, and investigate some of their properties. Also
we describe fuzzy subquasigroups induced by t-norms in the direct product of

quasigroups.

1. Introduction

Following the introduction of fuzzy sets by Zadeh [13], the fuzzy set
theory developed by Zadeh himself and others have found many appli-
cations in the domain of mathematics and elsewhere. For example, in
[7] Liu studied fuzzy subrings as well as fuzzy ideals in rings. Proper-
ties of some fuzzy ideals in semirings are investigated in [8]. Connec-
tions between fuzzy groups and so-called level subgroups are found in
[3], 4] and [10]. The similar results for quasigroups are proved in [6].

In this paper, using a t-norm 7', we introduce the notion of idem-
potent T-fuzzy subquasigroups of quasigroups, and investigate some
of their properties. Next we use a t-norm to construct 7T-fuzzy sub-
quasigroups in the finite direct product of quasigroups.

2. Preliminaries

As it is well known, a groupoid (G, ) is called a quasigroup if for any
a,b € G each of the equations ax = b, ra = b has a unique solution

1991 Mathematics Subject Classification: 20N15, 94D05
Keywords: quasigroup, fuzzy subquasigroup
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in G. A quasigroup may be also defined as an algebra (G, -, \, /) with
three binary operations -, \,/ satisfying the identities

(zy)/y=2, z\(zy)=vy, (/y)y=x x(x\y) =y

(cf. |2] or [9]). We say that such defined quasigroup (G,-,\,/) is an
equasigroup (i.e. equationally definable quasigroup) (9] or a primitive
quasigroup [2]. Obviously, these two definitions are equivalent because

r\y=z<=axz=y, z/y=z<=zy=nur.

A nonempty subset S of a quasigroup G = (G, -, \,/) is called a
subquasigroup if it is closed with respect to these three operations,
ie,if zxye S forall z,y €S and * € {-\,/}.

The class of all equasigroups forms a variety. This means that a
homomorphic image of an equasigroup is an equasigroup. Also every
subset of an equasigroup closed with respect to these three operations
is an equasigroup.

Note that in case when a quasigroup is defined as a set with only
one operation, a homomorphic image is not in general a quasigroup.
It is only a groupoid with division. Similarly a homomorphic preimage
of a quasigroup (G, ) is not a quasigroup. Also a subset closed with
respect to this multiplication is not a quasigroup (cf. [2]).

For the general development ot the theory of quasigroups the unipo-
tent quasigroups, i.e., quasigroups with the identity xx = yy, play an
important role. These quasigroups are connected with Latin squares
which have one fixed element in the diagonal (cf. [5]). Such quasi-
groups may be defined as quasigroups G with the special element 6
satisfying the identity zz = 6. Obviously, 6 is uniquely determined
and it is an idempotent, but, in general, it is not the (left, right)
neutral element.

To avoid repetitions we use the following conventions: "a quasi-
group G"always denotes an equasigroup (G,-,\,/); G always denotes
a nonempty set.

A function p : G — [0,1] is called a fuzzy set in a quasigroup G.
The set p, ={z € G : u(x) > a}, where a € [0,1] is fixed, is called
a level subset of u. Im(u) denotes the imege set of p.

Let u and p be two fuzzy sets defined on G. According to [13]
we say that p is contained in p, and denote this fact by p C p, iff
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pu(z) < p(z) for all o € G. Obviously u = p iff u(z) = p(z) for all
reG.

According to [6], a fuzzy set u in a quasigroup G = (G,-,\,/) is
called a fuzzy subquasigroup of G if

min{y(zy), p(z \ y), w(z/y)} = min{p(z), p(y)}

for all =,y € G. It is clear, that this condition may be written as

pw(z +y) = min{pu(z), p(y)}

forall e {-,\,/} and z,y € G.

A fuzzy subquasigroup p of a quasigroup ¢ is called normal if
p(zy) = p(yx) for all z,y € G. It is not difficult to see that p is
normal ift u(z\ y) = u(y/z) for all z,y € G.

The following two results are proved in [6].

Proposition 2.1. A fuzzy set p of a quasigroup G = (G,-,\,/) is a
fuzzy subquasigroup iff for every a € [0,1], po is either empty or a
subquasigroup of G. O

Proposition 2.2. If u is a fuzzy subquasigroup of a unipotent quasi-
group (G, -,\,/,0), then p(0) > p(x) for any = € G. O
3. T-fuzzy subquasigroup

According to [1], by a t-norm, we mean a function 7": [0,1] x [0,1] —
[0, 1] satisfying the following conditions:

(Th) T(a,1)=a,

(Ty) T(a,B) < T(c,y) whenever (<7,
(T3> T(Oé, ﬁ) = T( ,Oé) 3

(Ty) T(a,T(3,7)) = T(T(e, B),7)

A simple example of a t-norm is a function T'(«, §) = min{a, 3}.
Generally, T'(c, #) < min{a, f} and T'(«,0) = 0 for all o, 8 € [0, 1].
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Moreover, ([0, 1]; T") is a commutative semigroup with 0 as the neutral
element. In particular it is medial, i.e.,

T(T(«, ), T(,9)) = T(T(ev, ), T(5,0))

holds for all «, 3,v,d € [0, 1].
Let T} and T, be two t-norms. We say that 77 dominates 75 and
write T1 > TQ if

TI(T2<a76)7 T2<77 5)) = T2<T1(0577)7 Tl(ﬁvé))

for all «, 3,7v,6 € [0,1] (cf. [1]). Obviously 7> T for all t-norms.
The set of all idempotents with respect to 7', i.e. the set

Er={a€0,1 | T(a,a) = a}

is a subsemigroup of ([0,1],7"). If Im(u) C Er then a fuzzy set
p is called an idempotent with respect to a t-norm T (briefly: T'-
idempotent).

Definition 3.1. A fuzzy set p in G is called a fuzzy subquasigroup of
G with respect to a t-norm T ( briefly, a T-fuzzy subquasigroup ) if

w(x xy) = T(u(r), p(y))

for all z,y,z € G and * € {-\,/}.

Since min{a, f} > T(«, B) for all «, 3 € [0, 1], every fuzzy sub-
quasigroup is also a T-fuzzy subquasigroup, but not conversely as seen
in the following example.

Example 3.2. Let G = {0,a,b,c} be the Klein’s group with the
following Cayley table:

0 a b ¢
0/0 a b ¢
ala 0 ¢ b
b|b ¢ 0 a
cle b a O
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Define a fuzzy set p in G by ©(0) = 0,8, u(a) = 0,7, u(b) = 0,6,
p(c) = 0,5. It is not difficult to see that a function 7,, defined by
Tm(a, B) = max{a+ § — 1, 0} for all o, 3 € [0,1] is a t-norm.

By routine calculations, we known that pu(x xy) > T, (u(z), p(y))
for all z,y € G, which shows that u is a T),-fuzzy subquasigroup of
G, which is not T},-idempotent. It is not a fuzzy subquasigroup since
p(c) = p(ab) < min{pu(a), p(b)}.

But a fuzzy set v defined by v(0) = v(a) = 1 and v(b) = v(c) =0
is a T),-idempotent fuzzy subquasigroup of G. It is also a fuzzy sub-
quasigroup. U

Proposition 3.3. If a fuzzy set u is idempotent with respect to a
t-norm T, then T(«, ) = min{a, 5} for all o, 5 € Im(pu).

Proof. Indeed, if « and (3 are in Im(u), then
min{a, 8} > T(a, 8) > T(min{a, 3}, min{a, 5}) = min{a, 5},
which completes the proof. U

Corollary 3.4. Fvery T-idempotent fuzzy subquasigroup is also a
fuzzy subquasigroup. U

By application of Proposition 2.1 we obtain

Corollary 3.5. Fvery nonempty level set of a T-idempotent fuzzy
subquasigroup defined on a quasigroup G is a subquasigroup of G. O

Corollary 3.6. Let T be an idempotent t-norm. Then a fuzzy set
defined on a quasigroup G is a T-fuzzy subquasigroup iff it is a fuzzy
subquasigroup. U

Now we consider the converse of Corollary 3.4.

Theorem 3.7. Let a fuzzy set p on a quasigroup G be idempotent
with respect to a t-norm T . If each nonempty level set (o 1s a sub-
quasigroup of G, then w is a T-idempotent fuzzy subquasigroup.

Proof. Assume that each nonempty level set p, is a subquasigroup of
G. Then p is a fuzzy subquasigroup of G (by Proposition 2.1), and so

p(z *y) = min{p(x), u(y)} = T(p(), 1wy))
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by Proposition 3.3. Hence pu is a T-idempotent fuzzy subquasigroup
of a quasigroup G. O

Theorem 3.8. Let pu be a T-fuzzy subquasigroup of G, where T is a
t-norm and o € [0, 1]. Then

(i) if a=1, then u, is either empty or is a subquasigroup of G,
(ii) if T = min, then pu, is either empty or is a subquasigroup of G.
Proof. (i) Assume that « =1 and i, # 0. Then there exist x,y € 14
such that p(z) > 1 and p(y) > 1. Thus
p(xxy) = T(p),p(y)) > T(1,1) =1
so that x xy € puy. Hence p; is a subquasigroup of G.

(ii) is a consequence of Proposition 2.1. O

Note that a fuzzy set p defined in our Example 3.2 is a non-
idempotent 7},-fuzzy subquasigroup in which p; is empty and po¢ is
not a subquasigroup of G. This proves that the analog of Proposition
2.1 for T-fuzzy subquasigroups is not true.

4. Fuzzy sets induced by norms

Let T be a t-norm and let u and v be two fuzzy sets in G. Then the
T-product of 1 and v, denoted by [u - V], , is defined as

- V] (2) = T(pu(x), v(z))
for all z € G.
Obviously [ -v], is a fuzzy set in G such that [u-v], = [v- yl,.
Moreover, if © and v are normal, then sois [p-v],..

Theorem 4.1. Let T be a t-norm and let p and v be T-fuzzy sub-
quasigroups of G. If a t-norm T* dominates T, then T*-product
(- V), is a T-fuzzy subquasigroup of G.

Proof. Indeed, for x,y € G we have

- V] (@5 y) = T (u(e + y),v(e + y))
> T"(T(u(x), m(y)), T(v(z),v(y)))
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> T(T"(u(x), v(z)), T (1(y), v(y)))
=T([p-v],. (), [1-v],. (),

which proves that [ - v].. is a T-fuzzy subquasigroup of G. O

T*

Corollary 4.2 The T-product of T-fuzzy subquasigroups is a T'-fuzzy
subquasigroup. O

Let G and H be nonempty sets and let f : G — H be an arbitrary
mapping. If v is a fuzzy set in f(G) then p=wvo f is the fuzzy set
in GG, which is called the preimage of v under f.

It is not difficult to see that the following lemma is true.

Lemma 4.3. Let T be a t-norm and let G and H be two quasigroups.
If h:G — 'H is an onto homomorphisms of quasigroups, v is a fuzzy
subquasigroup of 'H and u the preimage of v under h, then u is a
fuzzy subquasigroup of G. Moreover, i is normal iff v is normal. If
v is T-idempotent, then so is L. O

Proposition 4.4. Let T and T™ be t-norms in which T dominates
T and let G, H be two quasigroups. If h : G — H be an onto
homomorphism of quasigroups, then for any T-fuzzy subquasigroups p
and v of 'H, we have

h=H([p - v]p) = (W) - P (W)

Proof. By Lemma 4.3 h™'(u), h=*(v) and h~*([u-v],.) are T-fuzzy
subquasigroups of G.
Moreover for © € G we have

[ (- vl )l(2) = [ ] (W) = T (p(h()), v(h(z)))
=T (b= (W](x), [~ @))(x)) = W71 (1) - A~ (V)] (),
which completes the proof. O

We say that a fuzzy set p in G has a sup property if, for all subset
S C G, there exists sg € S such that u(sg) = sup p(s). In this case
seS

for any mapping f defined on G we can define in f(G) the fuzzy set

p/ putting p/(y) = sup p(x) forall y € f(Q) (cf. [12]).
z€f~1(y)
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Let f:G — H be a homomorphisms of quasigroups and let T be
a continuous t-norm (continuous with respect to the usual topology).
Then sets A; = f~'(y1) and Ay = f~(y2), where y1,12 € f(G)
are nonempty subsets of f(G). Similarly, Az = f~*(y; * y2), where
€ {-,\,/} is a fixed operation.

Consider the set

Al*AQZ{al*(IQ, | aleAl, CLQGAQ}.

If x € Ay % Ay, then x = 21 % 29 for some x; € A; and 29 € A, and
SO

f(@) = f(z1x22) = f(21) * f22) = Y1 % Y2,
which implies = € f~'(y; * y2) = As. Thus A; * Ay C Aj for any
operation x € {-\,/}.

Therefore
Wy xy) = sup  p(z) = sup p(x)
z€ f=1(y1%y2) z€A3
z sup p(x) = sup  p(zy k32)
r€A1xAg T1E€A1, x2€A2
z  sup  T(u(@1), plz2)) .

r1€A1, 22€A2

Since t-norm 7T is (by the assumption) continuous, for every ¢ > 0
there exists 0 > 0 such that

sup p(x1) —t; <9 and  sup pu(xg) —ty <0
z1€AL x2€A2

implies

T ( sup (1), sup M(b)) —T(t1, t2) <e.

T1€AL r2€A2

This for t; = p(ay), ta = p(az), where ay € Ay, ay € Ay, gives

T < sup p(zy), sup ,u(xg)) <T(pfar), plaz)) + <.
T1€AL T €A

Consequently

Wy xys) = sup T(p(ar), p(s))

r1€A1,32€A2

>T < sup u(xy), sup M(xz)) = T(uf(yl), uf(yg)),

x1€A1 $2€A2
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which shows that u/ is a T-fuzzy subquasigroup of f(G).
Thus we have the following

Theorem 4.5. Let T be a continuous t-norm and let f be a homo-
morphism on a quasigroup G. If a T-fuzzy subquasigroup p of G has
the sup property, then p' is a T-fuzzy subquasigroup of f(G). |

Since the function "min" is a continuous t-norm, then, as a simple
consequence of the above theorem, we obtain

Corollary 4.6. If a fuzzy subquasigroup p of G has the sup property,
then p' is a fuzzy subquasigroup of f(G) for every homomorphism
f defined on G. O

5. Direct products of fuzzy subquasigroups

Let T be a fixed t-norm. If p; and po are two fuzzy sets on GGy and
G (respectively), then p defined on G; x G by the formula

M(xla x2) = T(:ul(xl)v M?(xQ))a
is a fuzzy set on G x Gg, which is denoted by pq X po.
Proposition 5.1. If py and ps are T-fuzzy subquasigroup of quasi-
groups Gy and Gy (respectively ), then py X ps is a T-fuzzy subquasi-

group of the direct product Gy x Gy. Moreover, if u1 and ps are
T-idempotent, then So is 11 X fio.

Proof. Let (z1,x2), (y1,y2) be in G; X Ga. Then

(1 X p2) (w1, 22) * (Y1, 42)) = (1 X p2) (@1 % Y1, T2 % yo)
=T(p1(z1 % Y1), pa(r2 * ya))
> T(T(pa (1), pa(y1)), T(pa(w2), p2(y2)))
=T (T(pr(21), pa(@2)), T(pa(y1)s p2(y2)))
=T((1 x p2) (1, 22), (1 X p12)(Y1, y2))-

Hence py X pg is a T-fuzzy subquasigroup of G; x Go. Obviously, if
w1 and ps are T-idempotent, then so is iy X pio. |
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The relationship between T-fuzzy subquasigroups pxv and [p-V]
can be viewed via the following diagram

d
G GxG
WX v
[ vir BV
T
1 I x1

where [ =[0,1] and d: G — G x G is defined by d(z) = (x,x).

Applying Lemma 3.2 from [1] it is not difficult to see that [u- vy
1s the preimage of pu X v under d.

Note by the way, that our T-product is different from the product
of fuzzy sets studied by Liu |7] and Sessa [11].

Now we generalize this idea to the product of n > 2 T-fuzzy sub-
quasigroups. We first need to generalize the domain of t-norm T to
n

1110, 1] as follows:

i=1
Definition 5.2. The function T, : [][0,1] — [0,1] is defined by
i=1
To(ay, g, . yon) =T, Tra (o, o i, Qg oo Q)

for all 1 <i<n,where n>2, To =T and Ty = id (identity).

Using the induction on n, we have the following two lemmas.
Lemma 5.3. For every t-norm T and every «;, B; € [0,1], where
1<2<n and n > 2, we have

T,(T (o, 51), T(2, Ba), ..., T(am, Bn))

=T(To(a1,,...,a0), Th(B1, B2, -, Bn)). O
Lemma 5.4. For a t-norm T and every a,...,a, € [0,1], where
n = 2, we have
To(ag,...,an) =T(..T(T(T(an,a0),a3),04), - . ., ()
=T (a1, T(ag, T(ag,... T(ap_1,00)...))). O
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Theorem 5.5. Let T be a t-norm and let G = [] G; be the direct
i=1
product of quasigroups {G: . If wi 18 a T-fuzzy subquasigroup of

G;, where 1 <1< n, then p= H Wi defined by

pz) = (:1_[1 i) (@1, Ty oo Tn) = Topa (1), pa(w2), - oo s pin(20))

for all © = (x1,29,...,2,) € G, is a T-fuzzy subquasigroup of G.
Moreover, if all p; are T-idempotent, then so is p.

Proof. Now let = = (x1,29,...,2,), ¥ = (Y1,%2,-..,Yn) be any ele-
ments of G = [[ G;. Then by Lemma 5.3 we have

o) = (T ) () (0, 90)

(ﬁl (T * Y1, Ta* Yoy oo Ty k¥ Yp))

=T (g1 (21 % 1), pa(@2 * Y2), - oo, (T * Yp))

2 T(T(pa (1), (1)), T(pa(z2), pa(y2)), - - T(pn(zn), 1n(yn)))
- T(Tn( 1($1)7 :U’2(x2)7 tee 7/“LTL(‘7;”>>7 Tn(ﬂl(:yl)v M2(y2)7 cee nun(yn)))
= T((];[ ) (21,2, ), (T 1) (s y2s - - Yn)

i=1

= T(p(x), py)) -
Therefore = [] p; is a T-fuzzy subquasigroup of G.

=1
Applying Lemma 5.3 it is not difficult to see that p is T-idempotent
if all p; are T-idempotent. |

References

[1] M. T. Abu Osman: On some product of fuzzy subgroups, Fuzzy
Sets and Systems 24 (1987), 79 — 86.

[2] V. D. Belousov: Foundations of the theory of quasigroups and
loops, Nauka, Moscow 1967.

[3] P. Bhattacharya and N. P. Mukherjee: Fuzzy relations and
fuzzy groups, Inform. Sci. 36 (1985), 267 — 282.



98

W. A. Dudek and Y. B. Jun

[4] P. S. Das: Fuzzy groups and level subgroups, J. Math. Anal.
Appl. 84 (1981), 264 — 269.

[5] J. Dénes and A. D. Keedwell: Latin squares an their appli-
cations, New York 1974.

[6] W. A. Dudek: Fuzzy subquasigroups, Quasigroups and Related
Systems 5 (1998), 81 — 98.

[7] W. J. Liu: Fuzzy invariant subgroups and fuzzy ideals, Fuzzy
Sets and Systems 8 (1982), 133 — 139.

[8] D. S. Malik and J. N. Mordeson: FEztensions of fuzzy subring
and Fuzzy ideals, Fuzzy Sets and Systems 45 (1992), 245 — 251.

[9] H. O. Pflugfelder: Quasigroups and loops: introduction, Sigma
Series in Pure Math., vol. 7, Heldermann Verlag, Berlin 1990.

[10] A. Rosenfeld: Fuzzy groups, J. Math. Anal. Appl. 35 (1971),
512 — 517.

[11] S. Sessa: On fuzzy subgroups and fuzzy ideals under triangular
norm, Fuzzy Sets and Systems 13 (1984), 95 — 100.

[12] Y. Yu, J. N. Mordeson and S. C. Chen: Elements of L-
algebras, Lecture Notes in Fuzzy Math., Creighton Univ. Ne-
braska 1994.

[13] L. A. Zadeh: Fuzzy sets, Inform. Control 8 (1965), 338 — 353.

Received December 28, 1999

W. A. Dudek Y. B. Jun

Institute of Mathematics Department of Mathematics Education

Technical University of Wroctaw Gyeongsang National University

Wybrzeze Wyspianskiego 27 Chinju 660-701

50-370 Wroctaw Korea

Poland

e-mail: dudek@im.pwr.wroc.pl e-mail : ybjun@nongae.gsnu.ac.kr



	1-11_Transversals in groups. 2. Loop transversals in a group by the same subgroup
	13-22_Free R-n-modules
	23-42_On n-modules with chain conditions
	43-59_Some linear conditions and their application to describing group isotopes
	61-70_Invertible elements in associates and semigroups, 2
	81-86_On TS-n-groups
	87-98_Fuzzy subquasigroups over a t-norm

