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Transversals in groups. 2.
Loop transversals in a group by the same

subgroup

Eugene A. Kuznetsov

Abstract

Connections between di�erent loop transversals in an arbitrary group G of the
same subgroup H are demonstrated. It is shown that any loop transversal in an
arbitrary group G of its subgroup H can be represented through one �xed loop
transversal of H in G by the determined way. The case of a group transversal of
H in G is described.

1. Introduction
This article is a continuation of [6]. The connections between di�erent
loop transversals in an arbitrary group G of the same subgroup H are
described. These transversals play very a important role in solving
some well-known problems. For example, the problem of existence of
a �nite projective plane of order n is reduced to the existence of a loop
transversal of Stab(Sn) in Sn (see [7]).

We give some necessary de�nitions and notations:
E is a set of indexes (E contains the distinguished element 1, left

(right) cosets in a group G by its subgroup H is indexed by the
elements from E);

e is the unit of a group G;
1991 Mathematics Subject Classi�cation: 20N15
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2 E. A. Kuznetsov

CoreG(H) is the maximal proper subgroup of G contained in H,
which is normal in G;

Sta(K) is the stabilizer of an element a in a permutation group K.

De�nition 1. Let G be a group and H its proper subgroup. A com-
plete system T = {ti}i∈E of representatives of the left (right) cosets of
H (e = t1 ∈ T ) is called a left (right) transversal of H in G (or "to"
H in G � see [4]). (A system of representatives of left cosets of H is
complete if t, u ∈ T , u−1t ∈ H implies that t = u.)

Let T be a left transversal of H in G. We can correctly introduce
the following operation on the set E:

x
(T )· y = z

def⇐⇒ txty = tzh, h ∈ H.

Lemma 1. System < E,
(T )· , 1 > is a right quasigroup with two-sided

unit 1.

Proof. See Lemma 1 in [6].

De�nition 2. Let T be a left (right) transversal of H in G. If the
system < E,

(T )· , 1 > is a loop (group), then T is called a loop (group)
transversal of H in G.

Remark 1. As we can see in [6], Lemma 10, a loop transversal T of
H in G is a two-sided transversal of H in G, i.e. it is both left and
right transversal of H in G. So we can simply say "loop transversal".

According to Cayley theorem any group K can be represented as
a permutation group of degree m = card K and this representation is
regular. So any group K can be represented as a group transversal of
St1(Sm) in Sm..

Lemma 2. The following conditions are equivalent for any left trans-
versal of H in G:

1) T is a loop transversal of H in G;
2) T is a left transversal in G of πHπ−1 for any π ∈ G;
3) πTπ−1 is a left transversal of H in G for any π ∈ G.

Proof. See [1] and [4].
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In the sequel the case CoreG(H) = {e} will be considered. Accord-
ing to [5], Theorem 12.2.1, in this case we have Ĝ ∼= G, where Ĝ is a
permutation representation of the group G. If H is a subgroup of G,
then

ĝ(x) = y
def⇐⇒ gtxH = tyH.

Lemma 3. If T is a left transversal of H in G, then
1) ĥ(1) = 1 ∀h ∈ H,
2) For any x, y ∈ E t̂x(y) = x

(T )· y, t̂1(x) = t̂x(1) = x,

t̂−1
x (y) = x

(T )

\ y, t̂−1
x (1) = x

(T )

\ 1, t̂−1
x (x) = 1,

where
(T )

\ is a left division in the system < E,
(T )· , 1 >.

3) The following conditions are equivalent:
a) T is a loop transversal of H in G,
b) T̂ = {t̂x}x∈E is a sharply transitive set of permutations on E.

Proof. See Lemma 4 in [6].

2. Connection between loop transversals
Let T be an arbitrary �xed left transversal of a subgroup H in a group
G. It is evident (see [6], equation (8)), that any other left transversal
of H in G can be represented in the following form

sx = txh
(T→S)
x , h(T→S)

x ∈ H, x ∈ E.

Lemma 4. The system < E,
(S)· , 1 > can be obtained from the system

< E,
(T )· , 1 > in the following way

x
(S)· y = x

(T )· ĥ(T→S)
x (y). (1)

Proof. See Lemma 13 in [6].

Lemma 5. The system < E,
(S)· , 1 > is a loop i� the operations (T )·

and B(x, y) = (ĥ
(T→S)
x )−1(y) are orthogonal.
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Proof. (see also Theorem 2 from [3]) According to Lemma 1 the sys-
tem < E,

(S)· , 1 > is a right quasigroup with the two-sided unit 1. So
it is su�cient to prove the existence and uniqueness of solution of the
equation

x
(S)· a = b

for any �xed a, b ∈ E. We have

x
(S)· a = b ⇐⇒ x

(T )· ĥ
(T→S)
x (a) = b ⇐⇒

{
ĥ

(T→S)
x (a) = z

x
(T )· z = b

⇐⇒
{

(ĥ
(T→S)
x )−1(z) = a

x
(T )· z = b

⇐⇒
{

B(x, z) = a

x
(T )· z = b

So the existence and uniqueness of solution of the equation x
(S)· a = b

is equivalent to the existence and uniqueness of solution of the last
system, which gives the orthogonality of (T )· and B(x, z).

This means that if T is a �xed left transversal of H in G, then
any loop transversal S of H in G may be represented through T by
formula (1) according to the orthogonality condition from Lemma 5.

V.D. Belousov proved in [2] (Lemma 3) the following criterion

Lemma 6. An operation A(x, y) de�ned on the set E is orthogonal
to the operation C(x, y) i� C(x, y) can be represented in the form:

C(x, y) = K(B(x, y), A(x, y)), (2)

where B(x, y) is an operation orthogonal to A(x, y), and K(x, y) is a
left invertible operation on the set E (i.e. K(x, a) = b has a unique
solution in E for any �xed a, b ∈ E ).

For a given left transversal T of H in G the problem of the choice of
a set {hx}x∈E such that the operations (T )· and B(x, y) = ĥ−1

x (y) are
orthogonal is not solved. But if the transversal T of H in G is a loop
transversal, then according to Lemma 2, πTπ−1 is a loop transversal
for any π ∈ G. Fixing some h0 ∈ H \ {e} and choosing

T h0 = {rx′ = h0txh
−1
0 | tx ∈ T},



Transversals in groups 5

we obtain a new loop transversal T h0 of H in G which does not
coincide with T , because CoreG(H) = {e}.

Lemma 7. The permutation ĥ0 : E → E is an isomorphism of the
systems < E,

(T )· , 1 > and < E,
(T h0 )· , 1 >.

Proof. According to the de�nition of T h0 , we obtain:

x
(T )· y = z ⇐⇒ txty = tzh, h ∈ H

⇐⇒ (h0txh
−1
0 )(h0tyh

−1
0 ) = (h0tzh

−1
0 )(h0hh−1

0 ), h ∈ H

⇐⇒ rx′ry′ = rz′h
′, h′ = (h0hh−1

0 ) ∈ H

⇐⇒ x′
(T h0)· y′ = z′.

Since
x′ = r̂x′(1) = ĥ0t̂xĥ

−1
0 (1) = ĥ0t̂x(1) = ĥ0(x), (3)

then we obtain

ĥ0(x)
(T h0 )· ĥ0(y) = ĥ0(z) = ĥ0(x

(T )· y), (4)

i.e. permutation ĥ0 is an isomorphism of the systems < E,
(T )· , 1 >

and < E,
(T h0 )· , 1 >.

According to Lemma 4 there exists the set {h(T→T h0 )
x }x∈E such

that the operation (T h0)· may be obtained from the operation (T )· by

x
(T h0)· y = x

(T )· ĥ(T→T h0 )
x (y). (5)

Lemma 8. The operation B1(x, y) = (ĥ
(T→T h0)
x )−1(y) has the form

B1(x, y) = x
(T h0 )

\ (x
(T )· y). (6)

Proof. Let ĥ
(T→T h0 )
x (y) = z. Then y = (ĥ

(T→T h0)
x )−1(z). So (5) can

be rewritten in the form

x
(T h0 )· (ĥ

(T→T h0 )
x )−1(z) = x

(T )· z.



6 E. A. Kuznetsov

As the system < E,
(T h0 )· , 1 > is a loop, we obtain from the last equality

(ĥ
(T→T h0 )
x )−1(z) = x

(T h0 )

\ (x
(T )· z).

Then we have

B1(x, y) ® (ĥ(T→T h0 )
x )−1(y) = x

(T h0 )

\ (x
(T )· y) , (7)

which completes the proof of the Lemma.

According to Lemma 5, B1(x, y) = (ĥ
(T→T h0 )
x )−1(y) and (T )· are

orthogonal operations. So, according to Lemma 6, any operation
C(x, y), being orthogonal to (T )· may be written in the form:

C(x, y) = K(B1(x, y), x
(T )· y), (8)

where B1(x, y) is the operation from (7) and K(x, y) is a left invert-
ible operation on the set E.

Let P = {px}x∈E be an arbitrary left transversal of H in G. The
operation (P )· is connected with (T )· by the the formula (1) and <

E,
(P )· , 1 > is a loop i� the corresponding set {h(T→P )

x }x∈E satis�es

(ĥ(T→P )
x )−1(y) = C(x, y) = K(B1(x, y), x

(T )· y), (9)

where B1(x, y) is the operation from (7) and K(x, y) is a some left
invertible operation on the set E.

Because K(x, y) is left invertible on the set E, we can write it as
K(x, y) = ϕy(x),

where ϕy is a permutation on E (for any y ∈ E). Using (7), we can
rewrite (9) in the form

(ĥ(T→P )
x )−1(y) = ϕ

x
(T )· y

(x
(T h0 )

\ (x
(T )· y)) . (10)

But by (1)

x
(P )· y = x

(T )· ĥ(T→P )
x (y),



Transversals in groups 7

where set {h(T→P )
x }x∈E satis�es (10).

Let ĥ
(T→P )
x (y) = z. Then y = (h

(T→P )
x )−1(z) and

x
(P )· (h

(T→P )
x )−1(z) = x

(T )· z,

(h
(T→P )
x )−1(z) = x

(P )

\ (x
(T )· z).

According to (10), we have

x
(P )

\ (x
(T )· z) = ϕ

x
(T )· z

(x
(T h0)

\ (x
(T )· z)),

which for u = x
(T )· z gives

x
(P )

\ u = ϕu(x
(T h0 )

\ u). (11)

So for the loop transversal P = {px}x∈E and any x ∈ E we have

p̂−1
x (y) = ϕy(x

(T h0)

\ y) . (12)

Lemma 9. The the following conditions hold for all x ∈ E:
1) ϕx(1) = 1,

2) ϕx(x) = x,

3) αx(y) = ϕy(x
(T h0 )

\ y) is a permutation from the group Ĝ.

Proof. 1) Because p̂−1
x (x) = 1 for any x ∈ E, we obtain from (12)

1 = p̂−1
x (x) = ϕx(x

(T h0 )

\ x) = ϕx(1).

2) As p̂−1
1 (x) = x for any x ∈ E, then

x = p̂−1
1 (x) = ϕx(1

(T h0 )

\ x) = ϕx(x).

3) Since for any x ∈ E the re�ection p̂x is a permutation from the

group Ĝ, then according to (12), the re�ection αx(y) = ϕy(x
(T h0 )

\ y) is
a permutation from the group Ĝ.
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Now we can prove

Theorem 1. Let T = {tx}x∈E be a loop transversal of H in G. If a
left transversal P = {px}x∈E of H in G is connected with T by (1),
then the following statements are equivalent:

1) P is a loop transversal,
2) P is connected with T by (12), where ϕx is as in Lemma 9

and
(T h0 )

\ is as in Lemma 7. Operations (P )· and (T h0 )· are
connected by (11).

Proof. 1) =⇒ 2) If P is a loop transversal of H in G, then (by Lemma
5) operations (T )· and B(x, y) = (ĥ

(T→P )
x )−1(y) are orthogonal and

(according to Lemma 6)

(ĥ(T→P )
x )−1(y) = K(B1(x, y), x

(T )· y),

where B1(x, y) is the operation from (7) and K(x, y) is left invertible
on the set E.

Because K(x, y) is left invertible on E, we can write it in the form
K(x, y) = ϕy(x),

where ϕy is a permutation on E (for any y ∈ E). The rest follows
Lemma 9.

2) =⇒ 1) If the conditions of the statement 2 hold, then there
exists a set {h(T→P )

x }x∈E such that

px = txh
(T→P )
x , h

(T→P )
x ∈ H,

x
(P )· y = x

(T )· ĥ
(T→P )
x (y).

So we have
p−1

x = (h
(T→P )
x )−1t−1

x ,
which by Lemma 3 implies

ϕy(x
(T h0)

\ y) = p̂−1
x (y) = (ĥ(T→P )

x )−1t̂−1
x (y) = (ĥ(T→P )

x )−1(x
(T )

\ y) .
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This for y = x
(T )· z gives

ϕ
x
(T )· z

(x
(T h0)

\ (x
(T )· z)) = (ĥ(T→P )

x )−1(z) .

Since operations (T )· and B1(x, z) = x
(T h0 )

\ (x
(T )· z) = (ĥ

(T→T h0 )
x )−1(z)

are orthogonal (see Lemma 8), the last equality may be written as

(ĥ(T→P )
x )−1(z) = K(B1(x, z), x

(T )· z),

where K(x, y) = ϕy(x) is a left invertible operation E.
But by Lemma 6 operations (T )· and B2(x, z) = (ĥ

(T→P )
x )−1(z) are

orthogonal. Thus by Lemma 5 the system < E,
(P )· , 1 > is a loop, i.e.

P is a loop transversal of H in G.

3. A group transversal
As a simple consequence of our Theorem 1 we obtain

Theorem 2. Let T = {tx}x∈E be a group transversal of H in G. If a
left transversal P = {px}x∈E of H in G is connected with T by (1),
then the following statements are equivalent:

1) P is a loop transversal,
2) P is connected with T by the formula

p̂−1
x (y) = ϕy(x

−1 (T h0 )· y) , (13)

where ϕx is as in Lemma 9 and x−1 is the inverse of x in the
group < E,

(T h0 )· , 1 >, which is isomorphic to < E,
(T )· , 1 >.

Corresponding operations (P )· and (T h0 )· are connected by

x
(P )

\ y = ϕy(x
−1 (T h0)· y) . (14)

From this Theorem we obtain the criterion of the existence of a
loop transversal of H in G.
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Theorem 3. If CoreG(H) = {e}, d = (G : H) = card E, then the
following statements are equivalent:

1) There exists a loop transversal of H in G.
2) There exists a set {ϕx}x∈E of permutations on E such that

a) ϕx ∈ St1,x(Sd) ∀x ∈ E,

b) For any x ∈ E the re�ection αx(y) = ϕy(y
(T h0 )

− x) (where

the operation
(T h0 )

− is the inverse operation in the �xed group
< Zd,

(T h0 )

+ , 1 >, which is isomorphic to the group < Zd, +, 0 >)

is a permutation from the group Ĝ.

Proof. 1) =⇒ 2) Let P = {px}x∈E be a loop transversal of H in
G. Using a permutation representation Ĝ of the group G we see that
P̂ = {p̂x}x∈E is a loop transversal of Ĥ in Ĝ. According to Lemma 3,
the set P̂ is a sharply transitive set of permutations on the set E; so
P̂ = {p̂x}x∈E is a loop transversal of H∗ = St1(Sd) in the symmetric
group Sd (see [6]).

By the help of the regular representation of left translations the
abelian group < Zd, +, 0 > may be represented as a group transversal
T of H∗ = St1(Sd ) in Sd (see Remark 1). According to Theorem 2,
the loop transversal P̂ = {p̂x}x∈E may be represented as the group
transversal T h0 by the formula

p̂−1
x (y) = ϕy(−x

(T h0 )

+ y) = ϕy(y
(T h0 )

− x) , (15)

where permutations {ϕx}x∈E are as in Lemma 9.

By Lemma 7 operations
(T )

+ and
(T h0 )

+ are isomorphic. Moreover
p−1

x ∈ G implies p̂−1
x ∈ Ĝ. Thus putting αx(y) = p̂−1

x (y), we see that
the conditions a and b from statement 2 hold.

2 =⇒ 1) Let P = {px}x∈E be a set of permutations de�ned by the
formula:

p̂−1
x (y)

def
= ϕy(−x

(T h0 )

+ y).

Then we have for any x ∈ E

p̂−1
x (x) = ϕx(−x

(T h0 )

+ x) = ϕx(1) = 1 =⇒ px(1) = x,
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p̂−1
1 (x) = ϕx(−1

(T h0 )

+ x) = ϕx(x) = x =⇒ p1(x) = x.
This means that P = {px}x∈E is a left transversal of H in G.

Using the analogous method as in the proof of su�ciency of Theo-
rem 1 we can prove the existence of a loop transversal of H in G.
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Free R-n-modules

L crimioara Iancu

Abstract

We de�ne the canonical presentation of an R-n-module, in terms of its largest
n-submodule with zero and of an idempotent commutative n-group. We give a
construction for the free R-n-module with zero, as well as a canonical presentation
for the free R-n-module. We give the number of zero-idempotents of a �nitely
generated free R-n-module. The last theorem states that, for n > 3, free R-n-
modules are isomorphic if and only if their free generating sets have the same
cardinality.

1. Notations and preliminary results
In [1], N. Celakoski has de�ned n-modules as a natural generalization
of the usual binary notion; however, for his further results he imposed
a strong restriction, namely that the commutative n-group involved
has a unique neutral element. In [4] we restart the study of n-modules
by dropping this restriction.

In this section we shall brie�y recall some of the de�nitions and
results in [4] and we shall make some additional comments. We use
the following conventional notation: the sequence ai, . . . , aj of j−i+1
terms of an n-ary sum is denoted by aj

i and if ai = ai+1 = . . . = aj = a

then the sequence is denoted by
(j−i+1)

a ; if i > j, then aj
i denotes an

empty sequence. Denote by a〈k〉 the k-th power of a, which is de�ned
1991 Mathematics Subject Classi�cation: 20N15, 16D10, 16D40
Keywords: free n-module, canonical presentation



14 L. Iancu

by:
a〈0〉 = a and a〈k〉 = [a〈k−1〉,

(n−1)
a ]+, k ∈ Z

In particular, a〈−1〉 = a, where a denotes the querelement of a.
Throughout this paper R denotes an associative ring with unity

1 6= 0.
De�nition 1.1. We call left R-n-module a commutative n-group
(M, [ ]+) together with an external operation µ : R ×M → M which
satis�es the axioms:
A1) µ(r, [xn

1 ]+) =
[
µ(r, x1), . . . , µ(r, xn)

]
+

A2) µ
(
(r1 + · · ·+ rn), x

)
=

[
µ(r1, x), . . . , µ(rn, x)

]
+

A3) µ(r · r′, x) = µ
(
r, µ(r′, x)

)

A4) µ(1, x) = x

for all x, x1, . . . , xn ∈ M and all r, r′, r1, . . . , rn ∈ R.
We describe a right R-n-module by replacing in the above de�nition
axiom A3) by A3') µ(r · r′, x) = µ

(
r′, µ(r, x)

)
. As in the binary case,

the theory of right n-modules can be deduced from the theory of left
n-modules and conversely. For this reason, we shall deal in the sequel
with left n-modules, and by R-n-modules we shall always understand
left R-n-modules.

Since we are dealing with left n-modules, denote the element µ(r, x)
by rx. As immediate consequences of the axioms, note:

(r1+r2)x = [r1x, r2x,
(n−2)

0x ]+, (−r)x = [0x, 0x,
(n−3)
rx , rx]+,

rx = rx, x = (−n+2)x =
(
(−1)+ · · ·+(−1)

)
x.

The empty n-group may be regarded as an R-n-module for any ring
R. If M is a non-empty R-n-module, then it necessarily has at least
one neutral element; indeed, for every x ∈ M , the element 0x is a
neuter in (M, [ ]+) (or an idempotent, since the two notions coincide
in commutative n-groups). Note that 0x〈k〉 = 0x, ∀x ∈ M, ∀k ∈ Z (in
particular 0x = 0x).

n-Submodules, congruences and homomorphisms are de�ned in the
obvious way. If S is a non-empty n-submodule of an R-n-module M ,
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then the relation ρS de�ned by xρSy ⇔ ∃sn
2 ∈ S : y = [x, sn

2 ]+ is
a congruence on M . This correspondence is not a bijection, still it
allows us to de�ne the factor module M/S = M/ρS.

The set of all neuters of the n-group (M, [ ]+) is denoted by NM

(or simply by N ) and the set of all neuters of the form 0x, for some
x ∈ M , is denoted by N0M (or sometimes just N0). N0 is an n-
submodule of N and they are both n-submodules of M . The elements
of N0 are characterized by the following: e ∈ N0 ⇔ re = e, ∀r ∈ R.
The elements of N0 will be called zero-idempotents; in particular, if
N0 consists of exactly one element, then this element is called a zero
of the n-module and it is denoted by 0.

If f : M1 → M2 is a homomorphism of R-n-modules, then:

1) f(N1) ⊆ N2 and f(N01) ⊆ N02;

2) f(x) = f(x), ∀x ∈ M1;

3) the set Ker f = {x ∈ M1 | f(x) ∈ N02} is an n-submodule of M1

and N01 ⊆ Ker f .

2. The canonical presentation
2.1. We have introduced in [4] a class of n-submodules of an R-n-
module which will play an important role in the study of n-modules.
Let M be an R-n-module. For each e ∈ N0, the set

Me = {x ∈ M | 0x = e}
is an n-submodule with zero (the element e) of M . The n-submodules
Me are all isomorphic and they form a partition of M . Note that
M/N0 ' Me. In fact, the whole structure of an R-n-module is de-
termined by: the structure of an R-n-module with zero (Me) and the
structure of an idempotent commutative n-group (N0).

Indeed, if we start from an R-n-module (B, [ ], µ) with zero 0 and
an idempotent commutative n-group (A, [ ]◦), we can build an R-n-
module M (unique up to isomorphism) such that Me ' B, ∀e ∈ N0M

and N0M ' A, as follows:
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• the set M is de�ned as the disjoint union, indexed by A, of copies

of the set B: M =
◦⋃

e∈A

Be; denote by (x, e) the elements of Be;

• the external operation ν : R×M → M is de�ned by
ν
(
r, (x, e)

)
=

(
µ(r, x), e

)
;

• n-ary addition is de�ned by
[
(x1, e1), . . . , (xn, en)

]
+

=
(
[xn

1 ], [en
1 ]◦

)
.

A straightforward computation shows that (M, [ ]+, ν) is an R-n-
module such that
N0M = {(0, e) | e ∈ A} ' A and M(0,e) = {(x, e) | x ∈ B} ' B,

for each (0, e) ∈ N0M . Moreover, given an R-n-module T and per-
forming the above construction by using some Te instead of B and
N0T instead of A one obtains an R-n-module M which is isomorphic
to T . A very natural isomorphism to consider is

ϕ : T → M, ϕ(x) =
(
[x,

(n−2)

0x , e]+, 0x
)
.

This shows that an R-n-module M is completely described by its
largest n-submodule(s) with zero Me and by N0M . This way of de-
scribing an R-n-module will be called canonical presentation. We have
used disjoint union in order to construct an R-n-module with a given
canonical presentation, because this was the natural way to make the
connections with the Me's and with N0. Yet, for practical reasons, it
is simpler to consider the R-n-module being described as the Carte-
sian product B×A, together with the operations de�ned above. Note
that the map p1 : B × A → B, p1

(
(x, e)

)
= x is a homomorphism

of R-n-modules, and the map p2 : B × A → A, p2

(
(x, e)

)
= e is a

homomorphism of n-groups.
2.2. The canonical presentation of an R-n-module will prove its use-
fulness in the study of n-submodules and in the study of homomor-
phisms. Indeed, let M be an R-n-module with the canonical presen-
tation (B, [ ], µ) and (A, [ ]◦), as above. Then any n-submodule of M
has a canonical presentation of the form (B′, [ ], µ) and (A′, [ ]◦), where
B′ is an n-submodule of B and A′ is an n-subgroup of A.
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Now let f : M1 → M2 be a homomorphism of R-n-modules and
take an arbitrary zero-idempotent e ∈ N01. Then ϕ : N01 → N02,
ϕ(x) = f(x) and ψ : M1e → M2f(e), ψ(x) = f(x) are both homomor-
phisms. Moreover, the converse also holds, namely: if ϕ : A1 → A2 is
a homomorphism of n-groups and ψ : B1 → B2 is a homomorphism of
R-n-modules, then the map f : M1 → M2 de�ned by

f ((x, e)) = (ψ(x), ϕ(e))

is a homomorphism of R-n-modules (where M1 and M2 have the
canonical presentations B1, A1 and B2, A2 respectively).

Injective and surjective homomorphisms can be also characterized
in terms of the data of the canonical presentation.
Proposition 2.3. Let f : M1 → M2 be a homomorphism of R-n-
modules. Then

1) f is injective i� Ker f = N01 and the restriction f |N01 is
injective;

2) f is surjective i� for each e′ ∈ N02 there exists e ∈ N01 such
that M2e′ = f(M1e).

Proof. 1) Suppose f is injective and x ∈ Ker f , i.e. f(x) ∈ N02. Then
f(x) = 0f(x) = f(0x), which implies x = 0x and hence x ∈ N01.

Conversely, if Ker f = N01 and the restriction f |N01 is injective,
let f(x1) = f(x2). Then, for an arbitrary e ∈ N01, we have

f
(
[x1,

(n−3)
x2 , x2, e]+

)
= f(e) ∈ N02,

i.e. [x1,
(n−3)
x2 , x2, e]+ ∈ Ker f = N01. Since f |N01 is injective, it follows

that [x1,
(n−3)
x2 , x2, e]+ = e, hence x1 = x2.

2) Suppose f is surjective and e′ ∈ N02. Then there exists x ∈ M1

such that e′ = f(x); but e′ = 0e′ = 0f(x) = f(0x) ∈ f(N01). Denote
0x by e ∈ N01 and let y ∈ M2e′ (this means 0y = e′). Now there exists
u ∈ N01 and z ∈ M1u such that y = f(z). The element [z,

(n−2)
u , e]+

belongs to M1e and f
(
[z,

(n−2)
u , e]+

)
= f(z) = y. Thus, we have proved

that for each e′ ∈ N02 there exists e ∈ N01 such that M2e′ ⊆ f(M1e);
the other inclusion is obvious. The converse follows immediately from
the fact that the n-submodules M2e′ form a partition of M2.
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3. Free n-modules with zero
R-n-modules with zero can be regarded as universal algebras having
as domain of operations: an n-ary operation, a nullary operation and
a family of unary operations, indexed by R, all of which satisfy the
axioms A1)�A4). The class of R-n-modules with zero is a variety
� it is closed under taking homomorphic images, subalgebras and
direct products. This ensures the existence of free R-n-modules with
zero. In this section we will provide a construction, very similar to
the binary case, of the free R-n-module with zero having an arbitrary
free generating set X.

Let A be an R-n-module with zero. The elements a1, . . . , ak ∈ A,
where k ≡ t(modn−1), are called linearly independent if

[r1a1, . . . , rkak,
(n−t)

0 ]+ = 0 implies r1 = . . . = rk = 0

and linearly dependent otherwise. A subset X of A is linearly indepen-
dent if any �nite subset of X is linearly independent. X is a basis of A
if X is not empty, if X generates A, and if X is linearly independent.
It is easy to prove that if X is a basis of A, then in particular A 6= {0}
if R 6= {0} and every element of A has a unique expression as a linear
combination of elements of X.
Proposition 3.1. An R-n-module A with zero, which has a basis X,
is free on X in the variety of R-n-modules with zero.
Proof. Let T be an R-n-module with zero and a mapping α : X → T .
Every element a ∈ A has a unique expression of the form:

a = [r1x1, . . . , rkxk,
(n−t)

0A ]+

where k ≡ t(mod n−1) and r1, . . . , rk ∈ R, x1, . . . , xk ∈ X.

De�ne α̃ : A → T by α̃(a) = [r1α(x1), . . . , rkα(xk),
(n−t)

0T ]+; a simple
computation shows that α̃ is a homomorphism of R-n-modules and
α̃ ◦ i = α. Moreover, α̃ is the unique homomorphism with this prop-
erty.
Corollary 3.2. Two R-n-modules with zero, having bases whose car-
dinalities are equal, are isomorphic.
For this reason, we denote the R-n-module with zero free on X by
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F0(X).
Let X 6= ∅ be an arbitrary set and a mapping f : X → R. As

usual, de�ne
supp f = {x ∈ X | f(x) 6= 0}

and
R(X) = {f ∈ RX | | supp f | < ∞}.

We de�ne a natural structure of R-n-module with zero on R(X) as
follows:

[f1, . . . , fn]+(x) = f1(x) + · · ·+ fn(x), (rf)(x) = r · f(x).
The zero element is the function o : X → R, o(x) = 0, ∀x ∈ X.

Proposition 3.3. If R 6= {0} is a ring and X 6= ∅ is an arbitrary set,
then R(X) has a basis of the same cardinality as X.

Proof. A basis of R(X) is the set B = {fx | x ∈ X}, where fx : X → R

is de�ned by fx(y) =
{ 1, y = x

0, y 6= x
.

One can easily check that B is linearly independent; furthermore,
if f ∈ R(X) with supp f = {x1, . . . , xk}, where k ≡ t(modn−1), then
f = [f(x1) · fx1 , . . . , f(xk) · fxk

,
(n−t)
o ]+.

Like in the binary case (see [5]), one can easily prove that if
F0(X) ' F0(Y ) and X is in�nite, then Y is in�nite too and |X| = |Y |.

4. Free n-modules
The class of all R-n-modules is again a variety, so free R-n-modules
exist. We will give in this �nal section a canonical presentation for the
free R-n-module on an arbitrary set as well as a theorem concerning
the number of zero-idempotents of a free R-n-module with a �nite free
generating set.

Note that, similar to the case of R-n-modules with zero, two free
R-n-modules having free generating sets whose cardinalities are equal,
are isomorphic.
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Theorem 4.1. Let X 6= ∅ be an arbitrary set and F be the R-n-mo-
dule having the following canonical presentation:

(a) F0(X) as largest n-submodule with zero;
(b) the abelian n-group G with the presentation

〈
X | [(n)

x ]+ = x, ∀x ∈ X
〉

as idempotent commutative n-group.
Then the R-n-module F is free and X is its free generating set.
Proof. First, let us make some necessary remarks.
1) The n-group G described in (b) is the free idempotent abelian n-
group with the free generating set X (it is easy to see that the class
of idempotent abelian n-groups is a variety; as for the construction of
free abelian n-groups, see the paper of F. M. Sioson [6]).
2) By 2.1, the elements of F have the form (y, g), where y ∈ F0(X)
and g ∈ G. We shall identify each x ∈ X with the pair (x, x) ∈ F ; in
other words, we de�ne an "inclusion" α : X → F , by α(x) = (x, x).

Let M be an arbitrary R-n-module having the canonical presenta-
tion B, A, where B is an R-n-module with zero and A is an idempotent
abelian n-group, as in 2.1. This means that we will describe the el-
ements of M as pairs (b, a) ∈ B × A. Let now f : X → M be an
arbitrary map. We will use f for de�ning two other maps u and v as:

u : X → B, u(x) = p1 (f(x)) (1)
v : X → A, v(x) = p2 (f(x)) (2)

Since F0(X) is the free R-n-module with zero on X and B is an R-n-
module with zero, it follows that there exists a unique homomorphism
ũ : F0(X) → B such that ũ(x) = u(x), ∀x ∈ X. By using a similar
argument, it follows that there exists a unique homomorphism of n-
groups ṽ : G → A such that ṽ(x) = v(x), ∀x ∈ X. We are now able
to de�ne the homomorphism f̃ which makes the following diagram
commutative:

F -
f̃

M

6
α

©©©©©©©©©*

f

X
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namely, for all (y, g) ∈ F , put f̃ ((y, g)) = (ũ(y), ṽ(g)). We have seen
in 2.2 that a map de�ned in the above way is a homomorphism of
R-n-modules. Further, for all x ∈ X we have

(f̃ ◦ α)(x) = f̃
(
(x, x)

)
=

(
p1

(
f(x)

)
, p2

(
f(x)

))
= f(x)

which shows that f̃ ◦ α = f . The uniqueness of f̃ follows from the
uniqueness of ũ and ṽ and from 2.2.
Corollary 4.2. Let X, Y be two non-empty sets. If F (X) ' F (Y )
and X is in�nite, then Y is in�nite too and |X| = |Y |.
Proof. It follows immediately from the preceding theorem and from
the similar result for free R-n-modules with zero.
Lemma 4.3. Let n be an integer, n > 3, X a set with |X| = k, k > 1
and F (X) the R-n-module free on X. Then N0F (X) has (n−1)k−1

elements.
Proof. Indeed, N0 is equal to

{[
(t1)

0x1,
(t2)

0x2, . . . ,
(tk)

0xk]+ | 0 6 ti 6 n−2, t1 + · · ·+ tk ≡ 1(modn−1)}
or, equivalently, N0 ' G, where G is the idempotent abelian n-group
described in Theorem 4.1. Every element of N0 can be described by
a uniquely determined function f : {1, . . . , k−1} → {0, 1, . . . , n−2} as
follows:

e = [
(f(1))

0x1 , . . . ,
(f(k−1))

0xk−1 ,
(n−r)

0xk ]+

where f(1) + · · · + f(k−1) = t(n−1) + r, 2 6 r 6 n. This corre-
spondence between elements of N0 and such functions is obviously a
bijection and so |N0| = (n−1)k−1.
Corollary 4.4. Let n be an integer, n > 3 and X, Y two non-
empty sets. If F (X) ' F (Y ) and X is �nite, then Y is �nite too
and |X| = |Y |.
Proof. It follows from 2.2, Theorem 4.1 and the preceding lemma.
The following theorem is a direct consequence of the preceding results
in this section.
Theorem 4.5. Let n be an integer, n > 3, and let X, Y be two non-
empty sets. Then F (X) ' F (Y ) i� |X| = |Y |.
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On n-modules with chain conditions

L crimioara Iancu

Abstract

We show that the maximal n-submodules of an n-module are determined by the
maximal n-subgroups of the n-group of its zero-idempotents and by the maxi-
mal n-submodules of its maximal n-submodule with zero. We state some results
concerning R-n-modules with chain conditions analogous to the Jordan�Hölder
Theorem, to Fitting's Lemma, to Krull�Remack�Schmidt Theorem.

1. Introduction
R-n-modules are de�ned as a natural generalization of the usual bi-
nary notion. In [5] and [6] we restart the study of n-modules by
dropping the restriction imposed by N. Celakoski in [1], namely that
the commutative n-group involved has a unique neutral element. In
this paper we continue our investigation on R-n-modules by studying
the maximal n-submodules of an n-module in terms of its canonical
presentation and by retrieving some of the results on modules with
chain conditions for the n-ary case.

In the sequel, we use the same conventional notations as in [5] and
[6]: the sequence ai, . . . , aj of j−i+1 terms of an n-ary sum is denoted
by aj

i and if ai = ai+1 = . . . = aj = a then the sequence is denoted by
(j−i+1)

a ; if i > j, then aj
i denotes an empty sequence. Denote by a〈k〉

the k-th power of a, which is de�ned by:

a〈0〉 = a and a〈k〉 = [a〈k−1〉,
(n−1)

a ]+, k ∈ Z
1991 Mathematics Subject Classi�cation: 20N15, 16D10, 16D40
Keywords: R-n-module, maximal n-submodule, chain condition
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In particular, a〈−1〉 = a, where a denotes the querelement of a.
The purpose of this introductory section is to recall some of the

de�nitions and results in [5] and [6], which will be used in the sections
to follow.

Throughout this paper R denotes an associative ring with unity
1 6= 0. For reasons similar to the ones employed in the binary case, we
deal only with left n-modules and so by R-n-module we will always
understand left R-n-module.
De�nition 1.1. We call left R-n-module a commutative n-group
(M, [ ]+) together with an external operation µ : R ×M → M which
satis�es the axioms:
A1) µ(r, [xn

1 ]+) =
[
µ(r, x1), . . . , µ(r, xn)

]
+
,

A2) µ
(
(r1 + · · ·+ rn), x

)
=

[
µ(r1, x), . . . , µ(rn, x)

]
+
,

A3) µ(r · r′, x) = µ
(
r, µ(r′, x)

)
,

A4) µ(1, x) = x

for all x, x1, . . . , xn ∈ M and all r, r′, r1, . . . , rn ∈ R.

Denote the element µ(r, x) by rx and as immediate consequences
of the axioms, note:

(r1+r2)x = [r1x, r2x,
(n−2)

0x ]+ , (−r)x = [0x, 0x,
(n−3)
rx , rx]+ ,

rx = rx , x = (−n+2)x =
(
(−1)+ · · ·+(−1)

)
x.

The empty n-group may be regarded as an R-n-module for any
ring R. If M is a non-empty R-n-module, then it necessarily has at
least one neutral element; indeed, for every x ∈ M , the element 0x is
a neuter in (M, [ ]+) (or an idempotent, since the two notions coincide
in commutative n-groups). Note that 0x〈k〉 = 0x, ∀x ∈ M, ∀k ∈ Z (in
particular 0x = 0x ).

n-Submodules, congruences and homomorphisms are de�ned in the
obvious way. If S is a non-empty n-submodule of an R-n-module M ,
then the relation ρS de�ned by xρSy ⇔ ∃sn

2 ∈ S : y = [x, sn
2 ]+ is

a congruence on M . This correspondence is not a bijection, still it
allows us to de�ne the factor module M/S = M/ρS.

The set of all neuters of the n-group (M, [ ]+) is denoted by NM (or
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simply byN ) and the set of all neuters of the form 0x, for some x ∈ M ,
is denoted by N0M (or sometimes just N0). N0 is a n-submodule of N
and they are both n-submodules of M . The elements of N0 are called
zero-idempotents and they are characterized by:

e ∈ N0 ⇐⇒ re = e, ∀r ∈ R,
which shows that the n-submodules of N0 coincide with the n-sub-
groups of N0. If N0 consists of exactly one element, then this element
is called a zero of the n-module and it is denoted by 0.

If f : M1 → M2 is a homomorphism of R-n-modules, then:
1) f(N1) ⊆ N2 and f(N01) ⊆ N02,
2) f(x) = f(x), ∀x ∈ M1,
3) the set Ker f = {x ∈ M1 | f(x) ∈ N02} is an n-submodule of M1

and N01 ⊆ Ker f .
The set HomR(M1, M2) is a commutative n-group with respect to the
operation:

[f1, . . . , fn]+(x) =
[
f1(x), . . . , fn(x)

]
+

.

Any homomorphism α with α(M1) ⊆ N02 is called nullary homomor-
phism and it is a neutral element of this n-group. For each e ∈ N02,
denote by θe the homomorphism given by θe(x) = e, ∀x ∈ M1. The
set EndR M is an (n, 2)-ring with respect to the above addition and to
the usual multiplication of maps. An endomorphism f of M is called
nilpotent if there exists an integer k ≥ 1 such that fk is a nullary
endomorphism.

We have introduced in [5] a class of n-submodules and a class of
automorphisms of an R-n-module which play an important role in the
study of n-modules. Let M be an R-n-module. For each e ∈ N0, the
set Me = {x ∈ M | 0x = e} is an n-submodule with zero (the element
e) of M . The n-submodules Me are all isomorphic and they form a
partition of M . The maps ϕe,f : M → M, ϕe,f (x) = [x,

(n−2)
e , f ]+ are

all automorphisms, for each pair of zero-idempotents e, f ∈ N0, and
ϕe,f (Me) = Mf . Note that M/N0 ' Me. In fact, the whole structure
of an R-n-module is determined by: the structure of an R-n-module
with zero (Me) and the structure of an idempotent commutative n-
group (N0). This is called the canonical presentation of the R-n-
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module M (see [6]).
Injective and surjective homomorphisms are characterized in [6] in

terms of the data of the canonical presentation.
Proposition 1.2. Let f : M1 → M2 be a homomorphism of R-n-
modules. Then f is

(1) injective i� Ker f = N01 and the restriction f |N01 is injective,
(2) surjective i� for each e′ ∈ N02 there exists e ∈ N01 such that

M2e′ = f(M1e).

2. Maximal submodules of an n-module
We study in this section the maximal submodules of an R-n-module,
in terms of the canonical presentation of the R-n-module considered.
Theorem 2.1. Let M be an R-n-module. Then:

(1) If N is a maximal n-subgroup of N0, then there exists a unique
maximal n-submodule S of M such that N0S = N .

(2) If S is a maximal n-submodule of M , which does not contain
N0, then N0S is a maximal n-subgroup of N0.

Proof. (1) It is easy to check that the set S =
⋃
e∈N

Me is an n-submodule

of M , with N0S = N .
Take now an n-submodule T of M with S ⊂ T ⊆ M and let

x ∈ T \ S. Then e = 0x ∈ T and e 6∈ S (since e ∈ S implies x ∈ S).
This shows that N0T ⊃ N0S = N , hence N0T = N0.

For any y ∈ M one of the following holds: (a) f = 0y ∈ N (and
so y ∈ S ⊂ T ) or (b) f ∈ N0 \N (and so y 6∈ S). We show that even
in the latter case, we still have y ∈ T . Indeed, ∀s ∈ S ∃! t ∈ N0S ⊂ S

such that: y = [f,
(n−2)

s , t]+. Since f ∈ T , s, t ∈ S ⊂ T it follows that
y ∈ T . Hence T = M and so S is maximal.

Let V be a maximal n-submodule of M , with N0V = N = N0S.
Then V ⊆ S (indeed, if x ∈ V then 0x ∈ N0V = N0S = N , so x ∈ S)
which, together with maximality of V , implies V = S.

(2) Let S be a maximal n-submodule of M with N0 \ S 6= ∅, i.e.
N0S ⊂ N0. Consider an n-submodule A of N0 such that N0S ⊂ A ⊆
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N0 and let e ∈ A \ N0S. Then 〈S ∪ {e}〉 = M and ∀a ∈ N0 ∃ k ∈ N
and sn

k+1 ∈ S such that a = [
(k)
e , sn

k+1]+. By multiplying with zero, we
obtain: a = 0a = [

(k)
e , en

k+1]+, with ei = 0si, i = 1, . . . , n and e ∈ M ,
ei ∈ N0S ⊂ A, i = k + 1, . . . , n. Now, since A is an n-submodule, we
deduce that a ∈ A and so A = N0.

The above theorem shows that there exists a bijective correspon-
dence between the set of maximal n-submodules of N0 and the set
of maximal n-submodules of M which do not contain N0. A natural
question arises: what can one say about the maximal n-submodules
of M which do contain N0 ?
Theorem 2.2. Let M be an R-n-module with the canonical presen-
tation: B ' Me, A ' N0. Then:

(1) If B has a maximal n-submodule, then M has a maximal n-
submodule which contains N0.

(2) If M has a maximal n-submodule which contains N0, then B
has a maximal n-submodule.

Proof. (1) Let V be a maximal n-submodule of B and take an arbitrary
zero-idempotent e ∈ N0. Since B ' Me, it follows that Me has a
maximal n-submodule Se which is isomorphic to V . Then for every
f ∈ N0, the set Sf = ϕe,f (Se) is a maximal n-submodule of Mf . De�ne
the subset S of M by: S =

⋃

f∈N0

Sf . We will show that S is a maximal

n-submodule of M which contains N0. Clearly N0 ⊆ S (since f ∈ Sf ,
∀f ∈ N0); equality holds when V = {0}.

Let x ∈ S; then ∃f ∈ N0 such that x ∈ Sf . Since Sf is an
n-submodule it follows that rx ∈ Sf , ∀r ∈ R and so rx ∈ S, ∀r ∈ R.

Let x1, . . . , xn ∈ S; then ∃fi ∈ N0 such that xi ∈ Sfi
and, conse-

quently, ∃yi ∈ Se such that xi = [yi,
(n−2)

e , fi]+. Now we have

[xn
1 ]+ = [y1,

(n−2)
e , f1, . . . , yn,

(n−2)
e , fn]+

= [[yn
1 ]+,

(n−2)
e , [fn

1 ]+]+ ∈ ϕe,[fn
1 ]+(Se) = S[fn

1 ]+ ⊆ S

and so S is an n-submodule of A.
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Let T be an n-submodule of M , S ⊂ T ⊆ M and take x ∈ T \ S.
De�ne u = 0x and we have x ∈ Mu \ Su. Then x̃ = ϕu,e(x) ∈ Me \ Se

(if x̃ ∈ Se then ϕe,u(x̃) = (ϕe,u ◦ ϕu,e)(x) = x ∈ Su, contradiction)
and x̃f = ϕe,f (x̃) ∈ Mf \ Sf , ∀f ∈ N0 (if x̃f ∈ Sf then ∃z ∈ Se such
that x̃f = ϕe,f (z), or ϕe,f (x̃) = ϕe,f (z) which implies x̃ = z ∈ Se,
contradiction). Hence T contains at least one such element x̃f for
each set Mf \ Sf , f ∈ N0 and so Mf = 〈Sf ∪ {x̃f}〉, ∀f ∈ N0. Now
∀y ∈ M ∃f ∈ N0 such that y ∈ Mf ; then there exists k ∈ N and

sk+1, . . . , sn ∈ Sf such that: y = [
(k)

x̃f , s
n
k+1]+. Since x̃f ∈ T and

sk+1, . . . , sn ∈ Sf ⊆ S ⊂ T , it follows that y ∈ T and this shows that
T = M .

(2) Let S ⊂ M be a maximal n-submodule of M which containsN0.
For each e ∈ N0 de�ne the subset Se of S by: Se = {x ∈ S | 0x = e}.
Clearly, Se = S ∩Me and so Se is an n-submodule of Me (and of S).
Moreover, S =

⋃
e∈N0

Se.

We show that, for any e ∈ N0, the n-submodule Se is maximal
in Me. For this, let T be an n-submodul of Me, Se ⊂ T ⊆ Me and
take x ∈ T \ Se. Then x 6∈ S and so 〈S ∪ {x}〉 = M . It follows that
∀y ∈ Me ∃k ∈ N and sk+1, . . . , sn ∈ S such that

y = [
(k)
x , sn

k+1]+ = [
(k)
x ,

(n−k−1)
e , [

(k)
e , sn

k+1]+]+.

By multiplying with 0 we obtain that the element [
(k)
e , sn

k+1]+ ∈ S be-
longs to Me, which means that [

(k)
e , sn

k+1]+ ∈ Se. Since x ∈ T and
e, [

(k)
e , sn

k+1]+ ∈ Se ⊂ T , then y ∈ T . Hence T = Me.

The above theorem shows that an n-module M has maximal n-sub-
modules which contain N0 if and only if the n-submodules Me have
maximal n-submodules.
De�nition 2.3. An R-n-module M is simple if its only congruences
are the equality and the universal relation.
Remark 2.4. 1) M is simple i� its only non�void n-submodules are:
{e}, with e ∈ N0 and M itself.
2) M is simple i� it has one of this canonical presentations:
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(a) a simple R-n-module with zero and N0 = {0},
(b) the R-n-module with zero is B = {0} and N0 is a simple idempo-
tent commutative n-group.
Theorem 2.5. Let M be an R-n-module and S ⊂ M be a non-void
n-submodule. S is maximal i� M/S is simple.
Proof. Suppose M/S is simple and let T be an n-submodule of M ,
with S ⊆ T ⊆ M . Then T/S is an n-submodule of M/S and
so T/S either consists of exactly one coset (which is obviously S,
since T ⊇ S), or T/S = M/S. Now T/S = M/S implies that
∀x ∈ M, ∃t ∈ T, sn−1

1 ∈ S ⊆ T such that x = [t, sn−1
1 ]+, i.e. x ∈ T .

This shows that either T = S or T = M .
Suppose S is maximal and consider two cases: N0 ⊆ S or N0 \S 6=

∅. If N0 ⊆ S then M/S is an n-module with zero. Let now T be an
n-submodule of M/S. Then p−1(T ) is an n-submodule of M which
contains S, so we have either p−1(T ) = S or p−1(T ) = M . This shows
that T is either the zero n-submodule or T = M/S.

If N0 \ S 6= ∅, then M/S does not have a zero element; we prove
�rst that each coset x̂ ∈ M/S contains at least one idempotent e ∈ N0

or, equivalently, that each coset is an n-submodule of M . Take now
a coset ŷ ∈ M/S, ŷ 6= S and a zero-idempotent e ∈ N0 \ S. Then
S ⊂ 〈S ∪ {e}〉 and so 〈S ∪ {e} = M , hence y can be expressed as
y = [

(k)
e , sn

k+1]+, with k ≥ 1, sn
k+1 ∈ S, and further

y =
[
[
(k)
e ,

(n−k)

f ]+,
(k−1)

f , sn
k+1

]
+

= [e′,
(k−1)

f , sn
k+1]+,

for any f ∈ N0 ∩ S. This shows that e′ ∈ ŷ.
Thus we have proved that each coset x̂ ∈ M/S is an n-submodule

of M . If ê ∈ M/S and f ∈ N0 ∩ S, then ϕf,e(S) is a maximal n-
submodule of M , which is contained in ê, hence ϕf,e(S) = ê. Take
now an n-submodule T of M/S. If T consists of more than one el-
ement, say ê, f̂ ∈ T , then we have ê ⊂ p−1(T ) ⊆ M . This implies,
since ê � as n-submodule of M � is maximal, that p−1(T ) = M , and
so T = M/S.
Proposition 2.6. If M is a simple R-n-module, then every endomor-
phism of M is either of type θe or an automorphism.
Proof. If M is simple, then by Remark 2.4 it follows that either M
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has a zero element and exactly two n-submodules: {0} and M , or
M = N0M and its submodules are: {x}, ∀x ∈ M and M . In the �rst
case, if f ∈ EndR(M) then either Ker f = {0} or Ker f = M , i.e. f
is either injective or the zero endomorphism. If f is injective, then
Imf = M .

In the second case, either Imf = M or Imf = {e}, e ∈ M , i.e.
either f is surjective or f = θe. If f is surjective, let e ∈ M . Then
f−1(e) is a non�void n-submodule of M , so it is either a one�element
set or the whole of M . Since f is surjective, it follows that ∀e ∈ M ,
the set f−1(e) consists of one element only.

3. Artinian and Noetherian n-modules
De�nition 3.1. An R-n-module M is called Artinian if the set of its
n-submodules satis�es the DCC (Descending Chain Condition), and
it is called Noetherian if the set of its n-submodules satis�es the ACC
(Ascending Chain Condition).

Note that every n-submodule of an Artinian (Noetherian) n-modu-
le is Artinian (Noetherian) too.

As in the binary case, the following characterization of a Noethe-
rian n-module holds:
Proposition 3.2. An R-n-module is Noetherian i� any n-submodule
of M is �nitely generated.
Proof. Similar to the one for the binary case (see [8]). If M is Noethe-
rian and S is an n-submodule of M , it follows that the set of all
�nitely generated n-submodules of S contains a maximal element A.
Since A is �nitely generated, it follows that ∀x ∈ S, the n-submodule
[(n−1)

A , Rx
]
+
of S is �nitely generated which, together with the maxi-

mality of A, implies
[(n−1)

A ,Rx
]
+

= A, and so x ∈ A. This proves that
S = A. For the converse, see the proof for the binary case.

Proposition 3.3. If A
f→ B

g→ C → 0, is an exact sequence of
R-n-modules and the homomorphism f is injective, then:

1) B is Artinian i� A and C are Artinian,
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2) B is Noetherian i� A and C are Noetherian.
Proof. 1) Suppose B is Artinian. Since f is injective, it follows that A
is isomorphic to the n-submodule f(A) of B, and hence it is Artinian.
Let C1 ⊇ C2 ⊇ C3 ⊇ . . . be a descending chain of n-submodules of
C. Then g−1(C1) ⊇ g−1(C2) ⊇ g−1(C3) ⊇ . . . is a descending chain of
n-submodules of B (with g−1(Ck) 6= ∅, if Ck 6= ∅). Since B is Artinian,
it follows that there exists k > 0 such that g−1(Cm) = g−1(Ck), for
m > k. But this implies � since g is surjective � that Cm = Ck, for
m > k.

Conversely, assume A and C are Artinian and let

B1 ⊇ B2 ⊇ B3 ⊇ . . . (dc)

be a descending chain of n-submodules of B. By intersecting the
terms of the chain (dc) with f(A), we obtain a descending chain of
n-submodules of f(A):

B1 ∩ f(A) ⊇ B2 ∩ f(A) ⊇ B3 ∩ f(A) ⊇ . . . .

Since f(A) is Artinian, it follows that there exists k > 0 such that
Bm∩ f(A) = Bk ∩ f(A), for m > k. By applying g to the terms of the
chain (dc) we obtain the descending chain of n-submodules of C:

g(B1) ⊇ g(B2) ⊇ g(B3) ⊇ . . . ,

so there exists l > 0 such that g(Bm) = g(Bl), for m > l. De�ne
t = max{k, l}; we show that Bm = Bt, for m > t. Note that if
g(Bl) = ∅, then Bl = ∅, hence Bm = Bl = ∅, for m > l; similarly, if
Bk ∩ f(A) = ∅, then Bk ∩ N0B = ∅ (because f(A) = Ker g ⊇ N0B),
hence Bk = ∅, i.e. Bm = Bk = ∅, for m > k. We may therefore assume
that Bk∩f(A) 6= ∅ and g(Bl) 6= ∅. Let b ∈ Bt ; g(Bt) = g(Bm) implies
that ∃b′ ∈ Bm such that g(b) = g(b′). For e ∈ Bm ∩ N0B (such an
element exists, since Bm 6= ∅) we have:

[
g(b),

(n−3)

g(b′), g(b′), g(e)
]
+

= g(e) ∈ N0C

and hence [b,
(n−3)

b′ , b′, e]+ ∈ Ker g. Since m > t, we have Bm ⊆ Bt and

[b,
(n−3)

b′ , b′, e]+ ∈ Bt ∩Ker g = Bt ∩ f(A) = Bm ∩ f(A).
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Now [b,
(n−3)

b′ , b′, e]+ ∈ Bm, b′, e ∈ Bm implies b ∈ Bm. This shows that
Bt ⊆ Bm.

2) The fact that if B is Noetherian then A and C are Noetherian
is proved by a similar argument as above.

For the converse, we make the same constructions and use the
same notations (of course by using an ascendant chain this time). We
will show that Bm = Bt, for m > t. Let b ∈ Bm; g(Bt) = g(Bm)
implies that ∃b′ ∈ Bt such that g(b) = g(b′). For e ∈ Bt ∩ N0B we

have
[
g(b),

(n−3)

g(b′), g(b′), g(e)
]
+

= g(e) ∈ N0C and hence [b,
(n−3)

b′ , b′, e]+ ∈
Ker g. Since m > t, we have Bt ⊆ Bm and

[b,
(n−3)

b′ , b′, e]+ ∈ Bm ∩Ker g = Bm ∩ f(A) = Bt ∩ f(A).

Now [b,
(n−3)

b′ , b′, e]+, b′, e ∈ Bt implies b ∈ Bt and this shows that
Bm ⊆ Bt.
Corollary 3.4.
1) If S is an n-submodule of the R-n-module A, then A is Artinian

(Noetherian) i� S and A/S are Artinian (Noetherian).
2) Let A1, . . . , Am be R-n-modules with zero. The R-n-module

A1 × · · · × Am is Artinian (Noetherian) i� A1, . . . , Am are all
Artinian (Noetherian).

Proof. 1) The sequence S
i→ A

p→ A/S → 0 , where i is the inclusion
and p is the natural homomorphism, satis�es the hypotheses of the
preceding proposition.

2) The sequence A1 × · · · × An−1
f→ A1 × · · · × An

pn→ An → 0 is
exact and the homomorphism f de�ned by

f
(
(a1, . . . , an−1)

)
= (a1, . . . , an−1, 0)

is injective.
Lemma 3.5. Let B1, B, C1, C be n-submodules of the R-n-module M ,
with B1 ⊆ B ⊆ M, C1 ⊆ C ⊆ M, B1 ∩ C1 6= ∅. Then
〈B1 ∪ (B ∩ C)〉/〈B1 ∪ (B ∩ C1)〉 ' 〈C1 ∪ (B ∩ C)〉/〈C1 ∪ (B1 ∩ C)〉.
Proof. Identical to the one for the binary case (see [4]); we can apply
the isomorphism theorems because B1 ∩ C1 6= ∅.
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Lemma 3.6. (Schreier) Let M = S0 ⊇ S1 ⊇ . . . ⊇ Sr = e and
M = T0 ⊇ T1 ⊇ . . . ⊇ Ts = e be two chains of n-submodules of the
R-n-module M , where e ∈ N0. De�ne Sij = 〈Si ∪ (Si−1 ∩ Tj)〉 and
Tij = 〈Tj ∪ (Tj−1 ∩ Si)〉, for all 0 6 i 6 r, 0 6 j 6 s, and we obtain
isomorphic re�nements of the two chains:

Si−1 = Si0 ⊇ Si1 ⊇ . . . ⊇ Sis = Si, 0 6 i 6 r

Tj−1 = T0j ⊇ T1j ⊇ . . . ⊇ Trj = Tj, 0 6 j 6 s

Si,j−1

/
Sij ' Ti−1,j

/
Tij .

Proof. Identical to the one for the binary case (see [4]); the preceding
lemma is applicable because the zero-idempotent e belongs to each
term of the two chains.

The de�nition of a composition series of an R-n-module is naturally
transferred from R-modules, namely: a composition series of an R-n-
module M is a �nite, strictly decreasing series of n-submodules of M ,

M = S0 ⊃ S1 ⊃ . . . ⊃ Sm = {e}, e ∈ N0 (c)

which does not admit strictly decreasing re�nements. The series (c)
is a composition series of M i� each Si, i = {1, . . . , m} is a maximal
n-submodule of Si−1, i.e. i� the factor n-modules Si−1/Si are simple.
One can easily check the validity of the Jordan-Hölder Theorem, with
just one additional comment: if

M = S0 ⊃ S1 ⊃ . . . ⊃ Sm = {e} (c1)
M = T0 ⊃ T1 ⊃ . . . ⊃ Tr = {f} (c2)

are two composition series of M , then in order to use Schreier's Lemma
one needs that the series (c1) and (c2) have the same last term. For this
purpose, we apply to each term of the series (c2) the automorphism
ϕf,e and we obtain the series:

ϕf,e(M) = M ⊃ ϕf,e(T1) ⊃ . . . ⊃ ϕf,e(Tr) = {e} (c3)

which is still a composition series. Schreier's Lemma may now be
applied. So, if an R-n-module M has a composition series, then all
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its composition series have the same length, and this will be called the
length of M (and we say that M has �nite length). If M does not
have composition series, then we say it has in�nite length.

As in the binary case, the following hold:
1) If S is an n-submodule of M , then l(M) = l(S) + l(M/S).
2) If S1, S2 are n-submodules of M , then

l(S1) + l(S2) = l(
〈
S1 ∪ S2

〉
) + l(S1 ∩ S2).

3) If the sequence A
f→ B

g→ C → 0 is exact and the homomor-
phism f is injective, then l(B) = l(A) + l(C).

By using a similar argument to the one employed for usual R-
modules (see [8]), one proves the following
Theorem 3.7. An R-n-module M has composition series (i.e. M
has �nite length) i� M is Artinian and Noetherian.
Proposition 3.8. Let f : M → M be an endomorphism of the R-n-
module M .

1) If M is Artinian, then f is an automorphism i� f is injective.
2) If M is Noetherian, then f is an automorphism i� f is surjective.

Proof. 1) Assume f is injective; then M ⊇ f(M) ⊇ f 2(M) ⊇ . . .,
hence there exists m such that fm(M) = fm+1(M) = . . .. This implies
that ∀y ∈ M∃x ∈ M such that fm(y) = fm+1(x), so y = f(x).

2) Assume f is surjective; then N0 ⊆ f−1(N0) ⊆ f−2(N0) ⊆ . . .,
hence there exists m such that f−m(N0) = f−(m+1)(N0) = . . .. Now
take x ∈ Ker f , that is, f(x) ∈ N0. Since fm is surjective, ∃x′ ∈
M such that x = fm(x′), whence fm+1(x′) = f(x) ∈ N0, or x′ ∈
f−(m+1)(N0) = f−m(N0). So fm(x′) ∈ N0 and x ∈ N0. This proves
that Ker f = N0 and, since f is surjective, that f(N0) = N0. We may
then de�ne the surjective endomorphism

f1 : N0 → N0, f1(x) = f(x), ∀x ∈ N0.

Being Noetherian, M is �nitely generated, which in turn implies that
N0 is �nite (see [6], Theorem 3.3) and so f1 is injective too. This
shows (by 1.2) that f is also injective.
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Corollary 3.9. If f : M → M is an endomorphism of an R-n-module
of �nite length, then the following are equivalent:

1) f is an automorphism,
2) f is injective,
3) f is surjective.

De�nition 3.10. Let M be an R-n-module and let {Mi}i∈I be a
family of n-submodules of M . We say that M is the (internal) direct
sum of the family {Mi}i∈I if

(1) M = 〈
⋃
i∈I

Mi〉

(2) there exists an n-submodule N of N0 such that for every j ∈ I

we have Mj ∩ 〈
⋃

i6=j

Mi〉 = N .

In this case, we say that M is the N-direct sum of the family {Mi}i∈I ;
in particular, for N = ∅ or N = {e} we call it 0-direct sum or 1-direct
sum, respectively.
Remark 3.11. 1) Every n-submodule ∅ 6= N ⊆ N0 determines an
N -decomposition of M , namely: M =

⋃
e∈N

Me ⊕N0. In particular, for

each zero-idempotent e ∈ N0 we have a decomposition of M into a
1-direct sum:

M = Me ⊕N0 (D)
2) For each zero-idempotent e ∈ N0 we have a class of decompositions
of M into 0-direct sums:

M = Me ⊕
(⊕f 6=eTf

)
(D')

where each Tf is equal either to Mf or to {f}.
De�nition 3.12. An n-module B with zero is called decomposable if
B can be expressed as a direct sum B = B1 ⊕B2, with B1 6= {0} and
B2 6= {0}. Otherwise, B is called indecomposable.

An n-module M is called indecomposable if Me is indecomposable
and N0 is simple.
Remark 3.13. 1) Simple n-modules are indecomposable.
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2) An n-submodule N of N0 is indecomposable i� it is simple.
3) If the n-module M is indecomposable, then its only decompositions

in which M itself does not appear as a summand, are those of the
forms (D) and (D').

De�nition 3.14. A decomposition of an n-module into a direct sum
of n-submodules is called a canonical decomposition if
(1) it is obtained from (D) by further decomposition of the two sum-

mands,
(2) the direct sum employed is a 1-direct sum,
(3) it does not contain summands which are one-element sets or the

empty set.

In a canonical decomposition the summands are either n-modules
with zero or n-submodules (n-subgroups) of N0.
Theorem 3.15. (Fitting's lemma) If M is an R-n-module of �nite
length and f : M → M is an endomorphism, then there exists an
integer m > 1 such that M = fm(M)⊕Ker fm.
Proof. Similar to the one for the binary case (see [7] or [8]). Since
M is Artinian, it follows � as in the proof of the preceding theorem �
that there exists m > 1 such that fm(M) = fm+1(M) = . . ., whence
fm(M) = f 2·m(M). De�ne the map g : fm(M) → fm(M), g(x) =
fm(x) and note that g is a surjective endomorphism. Now fm(M) is
Noetherian, being an n-submodule of M , so g is an automorphism.
Therefore, we have

fm(M) ∩Ker fm = Ker g = N0fm(M) ⊆ N0.
In addition to that, for any x ∈ M there exists y ∈ M such that
fm(x) = g

(
fm(y)

)
and so

[
fm(x),

(n−3)

fm(fm(y)), fm(fm(y)), fm(e)
]
+

= fm(e),

∀e ∈ N0. It follows that the element u =
[
x,

(n−3)

fm(y), fm(y), e
]
+
belongs

to Ker fm and: x = [fm(y), u,
(n−2)

e ]+.
This shows that M =

〈
fm(M) ∪Ker fm

〉
.

Corollary 3.16. Assume that M is an indecomposable R-n-module
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of �nite length.
1) If f is an endomorphism of M , then:

a) f is an automorphism or
b) Ker f = N0, ∃e ∈ N0 : f(M) = Me and the map

g : Me → Me, g(x) = f(x) is an automorphism or
c) f is nilpotent in the (n, 2)-ring EndR M .

2) If M is with zero, then any endomorphism of M is either
nilpotent or an automorphism.

3) If M is with zero, and fi ∈ EndR M, i ∈ {1, 2, . . . , m},
m ≡ r(modn−1), while f = [f1, . . . , fm,

(n−r)

θ ]+ is an auto-
morphism, then there exists i0 ∈ {1, . . . ,m} such that fi0

is an automorphism.
Proof. 1) It follows from the preceding theorem that there exists m > 1
such that M = fm(M) ⊕ Ker fm. Since M is indecomposable, we
have either fm(M) = N0 or Ker fm = N0. In the �rst case, fm is
a nullary endomorphism and so f is nilpotent; in the second case we
have either fm(M) = M or fm(M) = Me, for a certain e ∈ N0. If
fm(M) = M , then f(M) = M , so f is a surjective homomorphism and
from Corollary 3.9 it follows that f is an automorphism. If fm(M) =
Me, then (as in the proof of the preceding theorem) Me = fm(M) =
fm+1(M) = f(Me) and therefore the endomorphism g : Me → Me is
surjective, so (by Corollary 3.9 ) it is an automorphism.

Now Ker fm = N0 implies that Ker f = N0, while the fact that N0

is simple implies that f(N0) is either a one-element set or the whole
of N0. If f(N0) = N0, then the map h : N0 → N0 is a surjective
endomorphism, so an automorphism. But this fact, together with
Ker f = N0, implies that f is injective, hence f is an automorphism,
which contradicts fm(M) = Me. Therefore there exists u ∈ N0 such
that f(N0) = {u}; now f(Me) = Me implies that u = e. Take now
y ∈ f(M) and x ∈ M cu y = f(x). If x ∈ Me, then y = f(x) ∈ Me; if
x ∈ Mv, v 6= e, then let x′ be the uniquely determined element of Me

such that x = [x′,
(n−2)

e , v]+. Now we have

y = f(x) = [f(x′),
(n−2)

f(e), f(v)]+ = [f(x′),
(n−1)

e ]+ = f(x′) ∈ Me

which proves that f(M) ⊆ Me.
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2) Direct consequence of 1).
3) The proof is by induction on m.

If m = 1, then f = [f1,
(n−1)

θ ]+ = f1, so f1 is an automorphism. Let
now m > 2 and assume that the statement is true for m−1. The
equation f = [f1, . . . , fm,

(n−r)

θ ]+ implies, by right multiplication with
f−1, the following:

idM = [g1, . . . , gm,
(n−r)

θ ]+ ,
where gi = fi ◦ f−1. If g1 is an automorphism, then f1 is an automor-
phism and i0 = 1; otherwise, it follows from 2) that g1 is nilpotent,
i.e. ∃k > 1 such that gk

1 = θ. It follows now

[idM ,
(n−3)
g1 , g1, θ]+ ◦ [idM , g1, . . . , g

k−1
1 ,

(n−t)

θ ]+

= idM = [idM , g1, . . . , g
k−1
1 ,

(n−t)

θ ]+ ◦ [idM ,
(n−3)
g1 , g1, θ]+

and so the map

[idm,
(n−3)
g1 , g1, θ]+ = [g2, . . . , gm,

(n−r+1)

θ ]+

is an automorphism for which we can apply the induction hypothesis.
This completes the proof.

Using arguments identical to those employed in the binary case
([7], [8]), one can prove the following
Theorem 3.17. If A is an R-n-module with zero, Artinian or Noethe-
rian, then M can be decomposed as a �nite direct sum of indecompos-
able n-submodules.
Also the Krull�Remack�Schmidt Theorem can be immediately trans-
ferred to the case of R-n-modules with zero: Let B 6= {0} be an
R-n-module with zero which is both Artinian and Noetherian. Then
B is a �nite direct sum of indecomposable n-submodules. Up to a
permutation, the indecomposable components in such a direct sum
are uniquely determined up to isomorphism.
Remark 3.18. Let us return now to the general case of R-n-modules
(not necessarily with zero): it follows that the problem of decom-
posing an R-n-module M of �nite length into a �nite direct sum of
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indecomposables can be reduced to the decomposition of N0M (since
M = Me ⊕ N0M and Me is an n-module with zero). Recall that if
M is Noetherian, then the idempotent abelian n-group N0M is �nite
and |N0M | divides (n−1)k−1, where k is the cardinal of the generat-
ing set. Also recall that, by Remark 3.13, an n-submodule of N0 is
indecomposable if and only if it is simple. Take e ∈ N0M and let
G = redeN0M be the binary reduce of N0M with respect to the ele-
ment e (i.e. x + y = [x,

(n−2)
e , y]+); G is a (bi)group of exponent n−1.

Note that x1+ · · ·+xn = [xn
1 ]+, which shows that N0M = extn G. Take

the decomposition (unique up to isomorphism) of G into a direct sum
of indecomposable subgroups of the form Zpr , with p prime:

G = G1 ⊕ · · · ⊕Gt (d1)

and immediately obtain the following decomposition for N0M :

N0M = extn G = extn G1 ⊕ · · · ⊕ extn Gt (d2)

We still did not solve the problem, since not all these summands are
simple: in fact, extn Gi is simple i� Gi is of the form Zp, p prime. So,
it remains to describe the possible decompositions of extn Zpr , r > 1,
where pr | n−1. Unfortunately, for this case one cannot prove the
uniqueness of decomposition, as the following example shows.
Example 3.19. Take n = 9 and A = ext9 Z8. The 9-group A has
four 9-subgroups of order 2, namely: A1 = {1, 5}, A2 = {2, 6}, A3 =
{3, 7}, A4 = {0, 4} and the following decompositions into direct sums:

A =A1 ⊕ A2 = A1 ⊕ A4 = A3 ⊕ A2 = A3 ⊕ A4

=Ai ⊕ Aj ⊕ Ak = A1 ⊕ A2 ⊕ A3 ⊕ A4

where i, j, k are distinct numbers in {1, 2, 3, 4}. Note that the four
9-subgroups of order 2 are mutually disjoint, which means that any
decomposition of A into direct sum of indecomposables is necessarily
a 0-direct sum; it is easy to check that in fact this statement is true
for any n-group of the form extn Zpr , with r > 1 and pr | n−1. Also
note that A1 ⊕ A3 = {1, 3, 5, 7} ' ext9 Z4, which shows that 0-direct
sums with respectively isomorphic summands can give non-isomorphic
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results.

Summarizing, if M is a Noetherian R-n-module, then one of the
following situations occurs:

• N0M is simple. This is precisely the case when its order is a
prime number p (with p | n−1);

• N0M is not simple and it has a unique (up to isomorphism)
decomposition into a �nite 1-direct sum of indecomposable n-
submodules. This is precisely the case when every binary reduce
has in its decomposition (d1) only summands of the form Zpi

,
with pi prime numbers.

• N0M is not simple and it can be decomposed into �nite 0-direct
sums of indecomposables only. This is precisely the case when
every binary reduce has at least one summand of the form Zpr ,
p prime and r > 1, in the decomposition (d1).

The above discussion leads us to a weaker version of the Krull�
Remack�Schmidt theorem for n-modules, in the special case when
n−1 = p1 . . . pk (the prime factorization of n−1 is multiplicity-free).
Theorem 3.20. Let n > 2 be an integer such that n−1 = p1 . . . pk

and let M be an R-n-module which is both Artinian and Noetherian.
Then M has a �nite canonical decomposition into indecomposable n-
modules. Up to a permutation, the indecomposable components are
uniquely determined up to isomorphism.

The above theorem allows us to reduce the problem of decomposing
an R-n-module into a direct sum of indecomposable n-submodules to
the problem of decomposing an R-n-module with zero and an abelian
n-group. Both these decompositions can be done by using the binary
reduces of the two structures and then their n-ary extensions. To be
more precise, if B is an R-n-module with zero, then its binary reduce
with respect to an element b ∈ B is the module B with the operations:

x + y = [x,
(n−3)

b , b, y]+, r • x = [rx,
(n−3)

rb , rb, b]+ ,
for our purpose (decomposition), it is useful to consider the binary
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reduce with respect to the zero element. The n-ary extension with
respect to an element a of an R-module A is the R-n-module A, with
the following operations:

[xn
1 ]+ = x1 + · · ·+ xn − (n−1)a , r ? x = rx− ra + a ,

and a is the zero element in the n-ary extension. Furthermore, one
can easily check that for any a, b ∈ B we have extn

b (reda M) ' M ; in
particular, extn

0 (red0 M) = M . Note that we can talk about unique
decomposition only if it is canonical, as the following example shows.
Example 3.21. Let (Z30, +, ·) be the ring of integers modulo 30. We
de�ne on the set M = Z30 a structure of Z-7-module by:

[x7
1]+ = x1 + · · ·+ x7 and k • x = (6k+25) · x .

Then we have

NM = N0M = {0, 5, 10, 15, 20, 25}, M0 = {0, 6, 12, 18, 24}

and the following canonical decomposition of M :

M = {0, 6, 12, 18, 24} ⊕ {0, 15} ⊕ {0, 10, 20}

which is unique up to isomorphism.
However, we can give two di�erent (non�canonical) decompositions

of M into 1-direct sums of indecomposable n-submodules, namely:

M ={0, 3, 6, 9, 12, 15, 18, 21, 24, 27} ⊕ {0, 10, 20}
={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28} ⊕ {0, 15} .
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Some linear conditions and their
application to describing group isotopes

Fedir M. Sokhatsky

Abstract

The uniqueness of a canonical decomposition of a group isotope is proved in [1].
Now we characterize components of a canonical decomposition of a group isotope
from the main classes of quasigroups.

1. Some known results and notions
A groupoid (A, ◦) is called an isotope of a groupoid (B, ·), if there are
bijections α, β, γ from A to B such that the equality

γ(x ◦ y) = α(x) · β(y)

holds for all x, y ∈ A. The triple (α, β, γ) is called an isotopy between
(A, ◦) and (B, ·). Bijections α, β, γ are called left, right and middle
components of this isotopy. A groupoid isotopic to a group (G, +) is
called a group isotope. (G, +) is called a decomposition group. It is
easy to see that a group isotope is a quasigroup.

A transformation α of a group (Q, +) is called: unitary if α(0) = 0;
linear (alinear) if there exist a, b ∈ Q and an automorphism (antiau-
tomorphism) θ of the group (Q, +) such that α(x) = a + θ(x) + b for
all x ∈ Q; left and right monoregular if it satis�es the identity

α(x + x) = α(x) + x and α(x + x) = x + α(x),

1991 Mathematics Subject Classi�cation: 20N15
Keywords: group, loop, quasigroup
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respectively. A linear unitary transformation is an automorphism.
If the left (right) and middle components of an isotopy are linear

transformations of a decomposition group, then the isotopy is called
left (right) linear. If the left (right) component is alinear but the
middle component is linear then the corresponding isotope is called
left (rigdt) alinear. A left and right linear (alinear) group isotope is
called linear (alinear). A quasigroup linearly isotopic to a group is
called a linear quasigroup. If, in addition, the group is abelian then
the quasigroup is said to be abelian.

The right side of

x · y = αx + a + βy , (1)

is called a (middle) canonical decomposition determined by an element
0 ∈ Q of a group isotope (Q, ·), if (Q, +) is a group (with 0 as its
neutral element) and α, β are unitary permutations of (Q, +). α and
β are called coe�cients of the canonical decomposition, a � the free
member, (Q; +) � the canonical decomposition group.

Left and right canonical decompositions are determined by:

x · y = a + αx + βy, x · y = αx + βy + a,

respectively. These three canonical decompositions are uniquely de-
termined by an arbitrary element 0 from the set Q (cf. [1]).

In [1] the following two lemmas are proved.

Lemma 1. If for permutations α, β, γ, δ, µ of a group (Q, +) the
identity α(β(x) + γ(y)) = δ(x) + µ(y) holds, then α is a linear
transformation of (Q, +). If in addition α0 = 0, then α is an auto-
morphism of (Q, +).

Lemma 2. If (1) is a canonical decomposition of a group isotope (Q, ·)
and α is an automorphism of its decomposition group (Q, +), then in
(Q, ·) we have

x/y = α−1x− α−1βy − α−1a = α−1x + α−1I−1
a Ia + α−1I−1

a Iβy, (2)

x® y = α−1y − α−1βx− α−1a = α−1I⊕a Iβx⊕ α−1I⊕a Ia⊕ α−1y. (3)
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In the sequel will be used the following result from [2].

Theorem 3. Let (Q, ·, Ω) be a quasigroup algebra, where (Q, ·) is
a group isotope. If in the words υ1, υ2, υ3, υ4, υ of the signature
{·} ∪ Ω a variable x (a variable y) appears only in the words υ1, υ3

(respectively, υ2, υ4 ) and, in addition, exactly one time in at least one
of them, then the group isotope is:

1) left linear, if the identity (υ1(x) ·υ2(y)) ·υ = υ3(x) ·υ4(y) holds
in (Q, ·, Ω),

2) right linear, if the identity υ · (υ1(x) · υ2(y)) = υ3(x) · υ4(y)
holds in (Q, ·, Ω),

3) left alinear, if the identity (υ1(x) · υ2(y)) · υ = υ4(y) · υ3(x)
holds in (Q, ·, Ω),

4) right alinear, if the identity υ · (υ1(x) · υ2(y)) = υ4(y) · υ3(x)
holds in (Q, ·, Ω).

It is easy to see that the following lemma is true.

Lemma 4. If a group isotope (Q, ·) has the canonical decomposition
(1), then

ex = x\x = β−1(−a− αx + x), (4)

1x = x/x = α−1(x− βx− a), (5)

R−1
ex

(u) = α−1(u− x + αx), (6)

L−1
1x

(u) = β−1(βx− x + u),

where ex and 1x are de�ned by the identities xex = 1xx = x.

Also the following two results are proved in [2].

Theorem 5. Let {x0, . . . , xn} be the set of all variables in the words
w, v of the signature (·, /, \) and let 0 be a �xed element of Q. If
a quasigroup (Q, ·) is abelian or linear and in the words w, v every
appearance of every variable is not contained between two appearances
of another variable, then the following conditions are equivalent:

1) the identity w = v holds in (Q, ·, /, \),
2) w(0, ..., 0, xi, 0, ..., 0) = v(0, ..., 0, xi, 0, ..., 0) holds in (Q, ·, /, \)

for every i = 0, 1, . . . , n,
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3) w(0, . . . , 0) = v(0, . . . , 0) and for the middle 0-canonical de�
composition sums of all coe�cients of every variable in w and
v are identical.

Theorem 6. Let (Q, ·, Ω) be a quasigroup algebra, where (Q, ·) is a
group isotope. If the identity w1(x) · w2(y) = w3(y) · w4(x) holds and
two pairs of its subwords (w1, w4) and (w2, w3) contain all appearances
of variables x and y (respectively) and there exists only one appearance
of x in w1 or w4 (respectively, y in w2 or w3), then (Q, ·) is isotopic
to a commutative group.

2. Some linear conditions
The aim of this section is description of positions of variables in some
identities implying relations between the coe�cients of the group iso-
tope in the canonical decomposition.
Lemma 7. Let ω be a word in a quasigroup algebra (Q, ·, Ω), where
(Q, ·) is a group isotope. Then the left bracketting

ω = (. . . ((ωn ◦
n

υn−1) ◦
n−1

υn−2) ◦
n−2

. . . ) ◦
1
υ0,

where ◦
i
∈ {·, /} and υi is a subword of the word ω, can be represented

in the additive form

αknωn + αkn−1ρn−1a + αkn−1ρn−1βυn−1 + ... + αk0ρ0a + αk0ρ0βυ0,
where (1) denotes the canonical decomposition of (Q, ·), ki denotes
the di�erence between the numbers of operations (·) and (/) in the
sequence (◦

1
, ◦

2
, ..., ◦

i
) and

ρi :=

{
ε, if ( ◦

i+1
) = (·),

α−1I−1
a I, if ( ◦

i+1
) = (/),

for i = 0, 1, . . . , n− 1.
Proof. We use the induction by n. For n = 1 we have

ω = αω1 + a + βυ0, if (◦
1
) = (·),

ω
(3)
= αω1 + α−1I−1

a Ia + α−1I−1
a Iβυ, if (◦

1
) = (/).
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These decompositions coincide with the additive form, since k0 = 0,
k1 = 1 − 0 = 1, ρ0 = ε when (◦

1
) = (·), and k1 = 0 − 1 = −1, k0 = 0,

ρ0 = α−1I−1
a I when (◦

1
) = (/).

Assume, now that the lemma is true for n− 1. If in the left brack-
etting of ω we denote ωn ◦

n
υn−1 by ωn−1, then, by the assumption on

n− 1, we obtain

ω = (. . . (ωn−1 ◦
n−1

υn−2) ◦
n−3

. . . ) ◦
1
υ0

= αkn−1(ωn ◦
n

υn−1) + αkn−2ρn−2a + αkn−2ρn−2βυn−2 + ...

... + αk0ρ0a + αk0ρ0βυ0,

which in the case (◦
n
) = (·) gives ωn−1 = αωn + a + βυn−1. But

kn = kn−1 + 1 and ρn−1 = ε, therefore
ω = αkn−1(αωn + a + βυn−1) + αkn−1ρn−1a + αkn−2ρn−2βυn−2 + . . .

. . . + αk0ρ0a + αk0ρ0ω0

= αkn−1+1ωn +αkn−1a+αkn−1βυn−1+αkn−1ρn−1a+αkn−2ρn−2βυn−2+

. . . + αk0ρ0a + αk0ρ0ω0,
which coincides with the additive form of ω.

In the case (◦
n
) = (/) we have kn = kn−1− 1, ρn−1 = Iα−1I−1

a and

ωn−1
(2)
= α−1ωn + ρn−1a + ρn−1βυn−1.

Therefore

ω = αkn−1(α−1ωn + ρn−1a + ρn−1βυn−1) + αkn−2ρn−2a

+αkn−2ρn−2βυn−2 + . . . + αk0ρ0a + αk0ρ0ω0,
which also gives the additive form of ω.

Corollary 8. A left bracketting ω = (. . . ((υn · υn−1) · υn−2) · . . .) · υ0)
of the word ω in a left linear group isotope (Q, ·) can be written in the
form
ω = αnυn + αn−1a + αn−1βυn−1 + αn−2a + αn−2βυn−2 + . . . + a + βυ0.
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Proof. Putting (◦
1
) = ... = (◦

n
) = (·) in Lemma 7 we obtain the above

corollary, since in this case ρi = ε for all i = 0, . . . , n.

Theorem 9. Assume that the identity ω = υ holds in a quasigroup
algebra (Q, ·, /, \, Ω), where (Q, ·) is a left linear group isotope, and
the �rst variables in ω and υ are identical and appear in these words
only once. If all nodal operations of the overwords of the �rst variable
belong to the set {·, /}, then the left coe�cient α of the canonical
decomposition of (Q, ·) satis�es the condition αk1−k2−k3+k4 = ε, where
k1, k3 are the numbers of all nodal operations of the �rst variable
overwords of ω and υ respectively, coinciding with (·), and k2, k4 are
those coinciding with (/).

Proof. Let (1) be the canonical decomposition of (Q, ·) and let x
be the �rst variable in ω and υ. Applying Lemma 7 to the full left
bracketting we see that these words begin with the variable x and that
the left and right side of the identity ω = υ may be written in the form
given in Corollary 8. This means that the subword υ0 contains only
one variable x. Since this variable does not appear in other subwords,
then replacing of all other variables by elements of Q we obtain

αk1−k2(x) + b = αk3−k4(x) + c,

where b, c are some �xed elements from Q. Since for x = 0 we have
b = c, therefore αk1−k2 = αk3−k4 , which completes the proof.

Lemma 10. Let ω be a word in a quasigroup algebra (Q, ·, Ω), where
(Q, ·) is a group isotope. Then the right bracketting

ω = υ0 ◦
1
(υ1 ◦

2
. . . ◦

n−1
(υn−1 ◦

n
ωn) . . . ),

where ◦
i
∈ {·, \} and υi are subwords of the word ω, can be represented

in the additive form
ω = βk0ν0υ0 + βk0ν0a + βk1ν1αυ1 + βk1ν1a + ...

... + βkn−1νn−1αυn−1 + βkn−1ν0βυn−1a + βknωn,
where (1) denotes the canonical decomposition of (Q, ·), ki denotes
the di�erence between the numbers of operations (·) and (\) in the
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sequence (◦
1
, ◦

2
, ..., ◦

i
) and

νi :=

{
ε, if ( ◦

i+1
) = (·),

β−1IaI, if ( ◦
i+1

) = (\),
for i = 0, 1, . . . , n− 1.
Proof. The proof is analogous to the proof of Lemma 7.
Corollary 11. A right bracketting ω = υ0 · (υ1 · . . . · (υn−1 · υn) . . . )
of the word ω of a right linear group isotope (Q, ·) can be written in
the form

ω = αυ0 + a + βαυ1 + βa + β2αυ2 + β2a + · · ·+ βn−1a + βnυn.

Proof. The proof is analogous to the proof of Corollary 8.
Theorem 12. Assume that the identity ω = υ hold in a quasigroup
algebra (Q, ·, /, \, Ω), where (Q, ·) is a right linear group isotope, and
the last variables in ω and υ are identical and appear in these words
only once. If all nodal operations of the overwords of the last variable
belong to the set {·, \}, then the right coe�cient β of the canonical
decomposition of (Q, ·) satis�es the condition βk1−k2−k3+k4 = ε, where
k1, k3 are the numbers of all nodal operations of the last variable
overwords of ω and υ respectively, coinciding with (·), and k2, k4 are
those coinciding with (\).
Proof. The proof is analogous to the proof of Theorem 9.

3. Axiomatics of some classes of isotopes
In this section we �nd criteria for a group isotope to belong to the
main classes of quasigroups.

3.1. Moufang, Bol and IP-quasigroups
As it is well-known, a quasigroup (Q, ·) is called

left IP -quasigroup, if there exists a transformation λ such that

λx · (x · y) = y,
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right IP -quasigroup, if there exists a transformation ρ such that

(x · y) · ρ(y) = x,

Moufang quasigroup, if:
(xy · z)y = x · y(eyz · y),
y(x · yz) = (y · x1y)y · z,

left Bol quasigroup, if:

z(x · zy) = R−1
ez

(z · xz) · y,

right Bol quasigroup, if:

(yz · x)z = y · L−1
1z

(zx · z).

Theorem 13. For a group isotope (Q, ·) the following statements are
equivalent:

1) (Q, ·) is a left IP -quasigroup,
2) (Q, ·) is a left Bol quasigroup,
3) the right coe�cient of the canonical decomposition of (Q, ·) is

involutive automorphism of the decomposition group.

Proof. 1) =⇒ 3). Assume that the group isotope (Q; ·) is a left IP-
quasigroup. Then, by the canonical decomposition (1) of (Q, ·), the
equation de�ning a left IP-quasigroup may be written in the form

αλ(x) + a + β(α(x) + a + β(y)) = y,

where λ is as in the de�nition of a left IP-quasigroup.
This means that

β(Raα(x) + β(y)) = IRaαλ(x) + y,

where I(x) = −x, holds for all x, y ∈ Q. Thus, according to Theo-
rem 1, β is a linear transformation of the group (Q, +). Moreover, β
(as a component of the canonical decomposition) is a unitary permu-
tation of (Q, +). Hence, β is an automorphism of (Q, +).
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Applying this fact and Theorem 12 to the equality de�ning a left
IP-quasigroup we obtain the relation β2−0+0−0 = ε, which shows that
β is an involutive automorphism of (Q, +).

3) =⇒ 1). Let (Q, ·) be an isotope of a group (Q, +), (1) its
canonical decomposition and β an involutive automorphism of (Q, +).
Putting

λ = α−1R−1
a IβRaα (7)

we obtain a transformation λ of Q such that

λ(x) · (x · y) = Raαλ(x) + β(Raα(x) + β(y))

= Raαα−1R−1
a IβRaα(x) + βRaα(x) + β2(y)

= −βRaα(x) + βRaα(x) + y = y.

Hence (Q, ·) is a left IP-quasigroup.
2) =⇒ 3). Let a group isotope (Q, ·) be a left Bol quasigroup.

Fixing z in the identity de�ning a left Bol loop and applying Theorem 3
we obtain the right linearity of (Q, ·). Because this identity is balanced
with respect to y, then Theorem 12 implies β3−0+0−1 = ε, where β is
a right coe�cient of the canonical decomposition of (Q, ·). Thus β is
an involutive automorphism.

3) =⇒ 2). If β in the canonical decomposition (1) of (Q, ·) is an
involutive automorphism of (Q, +), then

R−1
ez

(z · xz) · y (1)
= αR−1

ez
(z · xz) + a + βy

(6)
= (z · xz)− z + αz + a + βy

(1)
= αz + a + β(αx + a + βz)− z + αz + a + βy

= αz + a + βαx + βa + z − z + αz + a + βy

= αz + a + βαx + βa + αz + a + βy.

Similarly

z(x · zy)
(1)
= αz + a + β(αx + a + β(αz + a + βy))

= αz + a + βαx + βa + αz + a + βy,

which proves that (Q, ·) is a left Bol quasigroup.
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Theorem 14. For a group isotope (Q, ·) the following statements are
equivalent:

1) (Q, ·) is a right IP -quasigroup,
2) (Q, ·) is a right Bol quasigroup,
3) the left coe�cient of the canonical decomposition of (Q, ·) is

an involutive automorphism of the decomposition group.

Proof. The proof is analogous to the proof of Theorem 13.

Theorem 15. For a group isotope (Q, ·) the following statements are
equivalent:

1) (Q, ·) is an IP -quasigroup,
2) (Q, ·) is a Moufang quasigroup,
3) (Q, ·) is a Bol quasigroup,
4) all coe�cients of the canonical decomposition of (Q, ·) are in-

volutive automorphisms of the decomposition group.

Proof. The equivalence of 1), 3) and 4) follows from Theorems 13 and
14.

2) ⇐⇒ 4). Let (Q, ·) be a Moufang quasigroup. Putting

υ1 = xy, υ2 = z, υ = y, υ3 = x, υ4 = y(eyz · y)

in the �rst identity de�ning this quasigroup and applying Theorem
3 we obtain the right linearity of (Q, ·). In the analogous way, the
second identity from the de�nition of a Moufang quasigroup gives the
left linearity of (Q, ·). Thus (Q, ·) is a linear group isotope. But for
linear group isotopes this equivalence is proved in [4].

A left (right) symmetri c quasigroup is de�ned as a quasigroup
satisfying the identity x · (x · y) = y (respectively, (x · y) · y = x). A
quasigroup which is left and right symmetric is called symmetric or a
TS-quasigroup.

Corollary 16. A group isotope (Q, ·) is a left (right) symmetric quasi-
group i� the decomposition group (Q, +) is commutative and the right
(left) coe�cient β of its canonical decomposition is an automorphism
of (Q, +) such that β(x) = −x for all x ∈ Q.
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Proof. Every left symmetric quasigroup is a left IP -quasigroup, where
λ = ε. From the proof of Theorem 13 follows β = I, i.e. β(x) = −x for
all x ∈ Q. But such de�ned β is an automorphism only in commutative
groups. The converse is obvious.

In the case of a right symmetric quasigroup the proof is analogous.

3.2. F-quasigroups
Note that a left (right) F-quasigroup is de�ned as a quasigroup (Q, ·)
satisfying the identity

x · yz = xy · exz, (8)

(respectively, xy · z = x1z · yz).

Theorem 17. A group isotope (Q, ·) with a canonical decomposition
(1) is a left F-quasigroup i� β is an automorphism of the group (Q, +),
β commutes with α and α satis�es the identity

α(x + y) = x + αy − x + αx. (9)

Proof. Let (Q, ·) be a group isotope satisfying (8). If (1) is a canonical
decomposition of (Q, ·), then (8) together with Theorem 3 imply that
β is an automorphism of (Q, +).

Moreover, (8) for z = β−1(−a) and x = α−1(t− a) gives

t + βαy = α(t + βy) + γt, (10)

where γ is a some permutation of Q.
This identity y = 0 implies γt = −αt + t. Hence (10) may be

written in the form

t + βαy = α(t + βy)− αt + t,

which for t = 0 gives αβ = βα. This fact together with the transpo-
sition of βy and y in (10) implies

t + αy = α(t + y)− αt + t,
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which proves (9).
Conversely, let (Q, ·) be a group isotope with the canonical decom-

position described in Theorem.
Putting y = −x in (9) we obtain 0 = x + α(−x)− x + α(x), i.e.

x + α(−x) = −αx + x. (11)
Hence
xy · exz

(1)
= α(αx + a + βy) + a + β(αex + a + βz)

= α((αx + a) + βy) + a + β(αex) + βa + β2z
(9)
= αx+ a+αβy− (αx+ a)+α(αx+ a)+ a+αβex +βa+β2z
(4)
= αx + a + αβy − (αx + a) + α(αx + a) + a+

+α(−(αx + a) + x) + βa + β2z
(9)
= αx + a + αβy − (αx + a) + α(αx + a) + a− (αx + a)+

+αx + αx + a + α(−(αx + a)) + βa + β2z

= αx + a + αβy − (αx + a) + α(αx + a) + (αx + a+

+α(−(αx + a))) + βa + β2z

(11)
= αx + a + αβy − (αx + a) + α(αx + a)− α(αx + a)+

+(αx + a) + βa + β2z

= αx + a + αβy + βa + β2z

= αx + a + βαy + βa + β2z = αx + a + β(αy + a + βz)

= x · (y · z),
which proves that (Q, ·) is a left F-quasigroup.

Corollary 18. If a group isotope is a left F-quasigroup, then it is right
linear. It is linear i� the left coe�cient of its canonical decomposition
commutes with every inner automorphism of the decomposition group.

Proof. The �rst part follows from Theorem 17. If a linear group iso-
tope is a left F-quasigroup, then, as it is proved in [4], the left co-
e�cient of its canonical decomposition commutes with every inner
automorphism of the decomposition group.
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Conversely, if α commutes with every inner automorphism of the
group (Q, +), then (9) may be rewritten in the form:

α(x + y) = α(x + y − x) + αx,
which for u = x + y − x implies α(u + x) = αu + αx. Hence α is an
automorphism of the group (Q; +).

Corollary 19. If a group isotope is a left F-quasigroup, then it is left
alinear i� its decomposition group is commutative.

Proof. Theorem 17 implies (9), which may be rewritten in the form
αy + αx = x + αy − x + αx, because α is an antiautomorphism of
(Q, +). This implies the commutativity of the group (Q, +).

The converse is obvious.

Theorem 20. A group isotope (Q, ·) with a canonical decomposition
(1) is a right F-quasigroup i� α is an automorphism of the group
(Q, +), α commutes with β and β satis�es the identity

β(y + z) = βz − z + βy + z.

Proof. The proof is analogous to the proof of Theorem 17.

3.3. Alternative quasigroups
A quasigroup (Q, ·) is called left (right) alternative if it satis�es the
identity x · (x · z) = (x · x) · z (respectively, (x · y) · y = x · (y · y) ).

Theorem 21. A group isotope (Q, ·) with the canonical decomposition
(1) is left alternative i� β = ε and α = R−1

a θ−1, where θ is a right
monoregular permutation of the group (Q, +).

Proof. If a group isotope (Q, ·) with the canonical decomposition (1)
is left alternative, then the identity x · (x · z) = (x · x) · z may be
rewritten in the form

αx + a + β(αx + a + βz) = α(αx + a + βx) + a + βz.

Replacing in this identity a + βz by z and αx by x we obtain

x + a + β(x + z) = α(x + a + βα−1x) + z,
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which for z = 0 gives

x + a + βx = α(x + a + βα−1x). (12)

Therefore the previous identity may be written in the form

x + a + β(x + z) = x + a + βx + z.

Hence β(x + z) = βx + z, and in the consequence β = ε. Thus (12)
implies

α−1(x + a + x) = x + a + α−1x.

Replacing x by x− a we see that θ = R−1
a α−1 is a right monoregular

permutation.
Conversely, let the relations β = ε and θ be a right monoregular

permutation of the group (Q; +), then

x · (x · z)
(1)
= αx + a + β(αx + a + βz) = αx + a + αx + a + z

= (αx + a + αx) + a + z = α(αx + a + x) + a + z

(1)
= (x · x) · z

completes the proof.

Corollary 22. A left alternative group isotope is a left loop.

Proof. Indeed, β = ε implies

(α−1(−a)) · y (1)
= α(α−1(−a)) + a + y = −a + a + y = y

for every y ∈ Q. Thus α−1(−a) is a left unit of (Q, ·).
In the similar way as Theorem 21 we can prove

Theorem 23. A group isotope (Q, ·) with the canonical decomposition
(1) is a right alternative quasigroup i� α = ε, and β = R−1

a θ−1, where
θ is a left monoregular permutation of the group (Q, +).

Corollary 24. A right alternative group isotope is a right loop.
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3.4. Semimedial quasigroups
A quasigroup (Q, ·) is called left semimedial if it satis�es the identity

xx · yz = xy · xz,

and right semimedial if it satis�es the identity xy · zz = xz · yz. A
quasigroup which is left and right semimedial is called semimedial.
It is a special case of so-called medial quasigroups, i.e. quasigroups
satisfying the identity xy · uv = xu · yv.

Theorem 25. A group isotope (Q, ·) is left semimedial i� there exists
a group (Q, +), an element a ∈ Q, a permutation α of Q and an
automorphism β of (Q, +) such that

Lαaβα = αRaβ, (13)
x · y = αx + βy + a, (14)

α(x + y) = αx + βx + αy − βx (15)

for all x, y ∈ Q.

Proof. By Theorem 3, a left semimedial group isotope (Q, ·) is right
linear and has the decomposition (14), where β is an automorphism
of the group (Q, +).

Thus from (14) and 00 · yz = 0y · 0z, where βz = −a, we obtain
αa + βαy = α(βy + a), which gives (13) and

βαy = −αa + α(βy + a).

This together with (14) and xx·yz = xy·xz for βz+a = 0, βy+a = u
and αx = v implies

α(v + βx + a)− αa + αu = α(v + u) + βv,

which for u = 0 gives α(v + βx + a)− αa = αv + βv.
Applying this identity to the previous we obtain (15).
Conversely, if a group isotope (Q, ·) has the canonical decomposi-

tion (14) such that (13) and (15) are satis�ed, then
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xx · yz
(14)
= α(xx) + β(yz) + a

(14)
= α(αx + βx + a) + β(αy + βz + a) + a

(15)
= α2x + βαx + α(βx + a)− βαx + βαy + β2z + βa + a

(13)
= α2x + βαx + αa + βαx− βαx + βαy + β2z + βa + a

= α2x + βαx + αa + βαy + β2z + βa + a.

and
xy · xz

(14)
= α(xy) + β(xz) + a

(14)
= α(αx + βy + a) + β(αx + βz + a) + a

(15)
= α2x + βαx + α(βy + a)− βαx + βαx + β2z + βa + a

(13)
= α2x + βαx + αa + βαy + β2z + βa + a.

This proves that (Q, ·) is left semimedial.

Corollary 26. A left semimedial group isotope is right linear. It is
left linear i� it is medial.

Proof. The �rst part of the statement follows from Theorem 25. By
Toyoda-Bruck's Theorem a medial group isotope is linear, and by [4]
a semimedial linear group isotope is medial.

Theorem 27. A group isotope (Q, ·) is right semimedial i� there exists
a group (Q, +), an element a ∈ Q, an automorphism α of (Q, ·) and
a permutation β of Q such that β(x + y) = −αy + αx + αy + βy,
βLaα = Rβaαβ and x · y = a + αx + βy for all x, y ∈ Q.

Proof. The proof is analogous to the proof of Theorem 25.

Corollary 28. A group isotope is medial i� it is semimedial.

Corollary 29. A group isotope (Q, ·) is commutative i� its decompo-
sition group is commutative and α = β.

Corollary 30. A group isotope (Q, ·0 is unipotent i� it has the de-
composition x · y = αx− αy + a or x · y = a + βx− βy.

Corollary 31. The canonical decomposition group of a commutative
unipotent group isotope is a Boolean group.
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Invertible elements in associates
and semigroups. 2

Fedir M. Sokhatsky and Olena Yurevych

Abstract

This work is a continuation of [12]. Some additional invertibility criteria for ele-
ments of associates and n-ary semigroups are found. The corresponding axiomatics
for polyagroups and n-ary groups are established.

The study of (i, j)-associative (n + 1)-ary groupoids is reduced in
[8] to the study of so-called associate of the type (s, n), where s|n.
A bracketting rule and a decomposition of the main operation was
described in [10]. Some criteria of invertibility of elements are found
in [12]. Here, we give some additional criteria of invertibility and �nd
axiomatics for polyagroups and n-groups.

The following theorem is proved in [10]

Theorem 1. Let (Q, f) be an associate of a type (r, s, n). If the
words w1 and w2 di�er from each other by the bracketting only and the
coordinate of every f 's occurrence in the words w1 and w2 is divisible
by r and also there exists a one-to-one correspondence between f 's
occurrences in the word w1 and those in the word w2 such that the
corresponding coordinates are congruent modulo s, then the formula
w1 = w2 is an identity in (Q, f).

By the coordinate of the i-th occurrence of the symbol f in a word w
is mean a number of all individual variables and constants, appearing

1991 Mathematics Subject Classi�cation: 20N15
Keywords: associate, invertible element
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in the word w from the beginning of w to the i-th occurrence of the
operation symbol f .

A transformation λi,a of the set Q, which is determined by the
equality

λi,a(x) = f(
i
a, x,

n−i
a ), (1)

is said to be an i-th shift of the groupoid (Q, f) induced by an element
a. Hence, the i-th shift is a partial case of the translation (see [1]). If
the i-th shift is a substitution of the set Q, then the element a is called
i-invertible. If an element a is i-invertible for all i = 0, 1, . . . , n, then it
is called invertible. Invertible elements in n-semigroups are described
by Gluskin in [6] and [7].

The following theorem is proved in [12]

Theorem 2. An element a ∈ Q is invertible in an associate (Q, f) of
the type (s, n) i� there exists an element ā ∈ Q such that

f(ā, a, . . . a, x) = x, f(x, a, . . . a, ā) = x (2)

for all x ∈ Q.

1. Criterion of invertibility
Corollary 1. An element a is invertible in an associate (Q, f) of the
type (s, n) i� there exist â and ă such that

f(â, a, . . . , a, x) = x, f(x, a, . . . , a, ă) = x (3)

hold for all x ∈ Q.

Proof. If an element a is r-multiple invertible, then (2) are true ac-
cording to Theorem 2. Therefore (3) with â = ă = ā hold.

Conversely, assume that (3) hold. Putting x = ă in the �rst equal-
ity, and x = â in the second, we obtain

f(â, a, . . . , a, ă) = ă and f(â, a, . . . , a, ă) = â.

Hence â = ă. Thus (2) hold.
The invertibility of a follows from Theorem 2.
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Lemma 1. If an element a is i-invertible in an associate (Q, f) of
the type (s, n), then every i-th skew element to a is also j-th skew for
all j ≡ i (mod s).
Proof. Since the i-th shift induced by a is a substitution of the set Q,
then

a = λ−1
i,aλi,a(a)

(1)
= λ−1

i,af(
n+1
a )

(1)
= λ−1

i,af(
j
a, λi,aλ

−1
i,a (a),

n−j
a )

(4)
= λ−1

i,af(
j
a, f(

i
a, āi,

n−i
a ),

n−j
a )

T1
= λ−1

i,af(
i
a, f(

j
a, āi,

n−j
a ),

n−i
a )

(1)
= λ−1

i,aλi,af(
j
a, āi,

n−j
a ) = f(

j
a, āi,

n−j
a ).

Thus f(
j
a, āi,

n−j
a ) = a. This means, that āi is the j-th skew to a.

If an element a of a multiary groupoid is i-invertible, then the
element λ−1

i,a (a) coincides with the i-th skew of the element a, which is
denoted by āi (ā := ā0) and is determined by the equality

f(
i
a, āi,

n−i
a ) = a. (4)

The following theorem is valid.
Theorem 3. In any associate (Q, f) of the type (s, n) for any element
a and for any i = 0, 1, . . . , n − 1; k = 1, . . . , n

s
− 1 the following

conditions are equivalent:
1) a is invertible;
2) a is i- and (n− i)-invertible;
3) there exist elements â and ă from Q such that

f(
i
a, â,

n−i−1
a , x) = x and f(x,

n−i−1
a , ă,

i
a) = x (5)

hold for all x ∈ Q.
4) a is ks-invertible.

Proof. 1) ⇒ 2) by the de�nition of invertibility.
2) ⇒ 3). Since the element a is i- and (n − i)-invertible, the i-th

and (n− i)-th shifts are substitutions of the set Q.
Let i 6 n− s. To prove the relation (5), we consider the following

equalities:
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x = λ−1
i,aλi,a(x)

(1)
= λ−1

i,af(
i
a, x,

n−i
a )

L1
= λ−1

i,af(
i
a, x,

s−1
a , f(

n−s−i
a , ā(n−i),

i+s
a ),

n−s−i
a )

T1
= λ−1

i,af(
i
a, f(x,

n−i−1
a , ā(n−i),

i
a),

n−i
a )

(1)
= λ−1

i,aλi,af(x,
n−i−1

a , ā(n−i),
i
a) = f(x,

n−i−1
a , ā(n−i),

i
a).

Hence, the second equality from (5) holds.
To prove the �rst, observe that

x = λ−1
n−i,aλn−i,a(x)

(1)
= λ−1

n−i,af(
n−i
a , x,

i
a)

L1
= λ−1

n−i,af(
n−s−i

a , f(
i+s
a , āi,

n−s−i
a ),

s−1
a , x,

i
a)

T1
= λ−1

n−i,af(
n−i
a , f(

i
a, āi,

n−i−1
a , x),

i
a)

(1)
= λ−1

n−i,aλn−i,af(
i
a, āi,

n−i−1
a , x) = f(

i
a, āi,

n−i−1
a , x).

This proves that for i 6 n− s the relation (5) holds.
Let i > s. At �rst, we prove the validity of the relations

f(
i−s
a , āi,

n−i+s−1
a , x) = x, (6)

f(x,
n−i+s−1

a , ā(n−i),
i−s
a ) = x. (7)

Make a chain of conclusions:
x = λ−1

i,aλi,a(x)
(1)
= f(

i
a, λ−1

i,a (x),
n−i
a )

(4)
= λ−1

i,af(
i−s
a , f(

i
a, āi,

n−i
a ),

s−1
a , x,

n−i
a )

T1
= λ−1

i,af(
i
a, f(

i−s
a , āi,

n−i+s−1
a , x),

n−i
a )

(1)
= λ−1

i,aλi,af(
i−s
a , āi,

n−i+s−1
a , x) = f(

i−s
a , āi,

n−i+s−1
a , x).

This proves (6). To prove (7) note that

x = λ−1
n−i,aλn−i,a(x)

(1)
= λ−1

n−i,af(
n−i
a , x,

i
a)

(4)
= λ−1

n−i,af(
n−i
a , x,

s−1
a , f(

n−i
a , ā(n−i),

i
a),

i−s
a )

T1
= λ−1

n−i,af(
n−i
a , f(x,

n−i+s−1
a , ā(n−i),

i−s
a ),

i
a)
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(1)
= λ−1

n−i,aλn−i,af(x,
n−i+s−1

a , ā(n−i),
i−s
a ) = f(x,

n−i+s−1
a , ā(n−i),

i−s
a ).

Using the obtained relation, we get correctness of the �rst of equal-
ities (5). Indeed,

x
(6)
= f(

i−s
a , āi,

n−i+s−1
a , x)

(4)
= f(f(

i
a, āi,

n−i
a ),

i−s−1
a , āi,

n−i+s−1
a , x)

T1
= f(

i
a, āi,

n−i−1
a , f(

i−s
a , āi,

n−i+s−1
a , x))

(6)
= f(

i
a, āi,

n−i−1
a , x).

In the same way:

x
(7)
= f(x,

n−i+s−1
a , ā(n−i),

i−s
a )

(4)
= f(x,

n−i+s−1
a , ā(n−i),

i−s−1
a , f(

n−i
a , ā(n−i),

i
a))

T1
= f(f(x,

n−i+s−1
a , ā(n−i),

i−s
a ),

n−i−1
a , ā(n−i),

i
a)

(6)
= f(x,

n−i−1
a , ā(n−i),

i
a),

which proves the second equality from (5). Thus 2) implies 3).

3) ⇒ 4). If i = 0, then (5) implies (3), which, by Corollary 1,
proves that a is an invertible element. In particular, it is j-invertible
for all j.

If i > 0, then for

â := f(
i
a, f(āi,

n−1
a , āi),

n−i−1
a , ā(n−i)), (8)

ă := f(āi,
n−i−1

a , f(ā(n−i),
n−1
a , ā(n−i)),

i
a) (9)

we have
f(â,

n−1
a , x)

(8)
= f(f(

i
a, f(āi,

n−1
a , āi),

n−i−1
a , ā(n−i)),

n−1
a , x)

T1
= f(

i
a, f(āi,

n−i−1
a , f(

i
a, āi,

n−i−1
a , ā(n−i)),

i
a),

n−i−1
a , x)

(5)
= f(

i
a, f(āi,

n−i−1
a , ā(n−i),

i
a),

n−i−1
a , x)

(5)
= f(

i
a, āi,

n−i−1
a , x)

(5)
= x.

The second equality from (3) may be proved in the same way. Indeed,

f(x,
n−1
a , ă)

(9)
= f(x,

n−1
a , f(āi,

n−i−1
a , f(ā(n−i),

n−1
a , ā(n−i)),

i
a))

T1
= f(x,

n−i−1
a , f(

i
a, f(āi,

n−i−1
a , ā(n−i),

i
a),

n−i−1
a , ā(n−i)),

i
a)
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(5)
= f(x,

n−i−1
a , f(

i
a, āi,

n−i−1
a , ā(n−i)),

i
a)

(5)
= f(x,

n−i−1
a , ā(n−i),

i
a)

(5)
= x.

Hence, the relations (3) are valid and therefore, by Corollary 1, the
element a is invertible.

4) ⇒ 1). Let j ≡ 0 (mod s), 0 < j < n, i.e. j = ks, where
k = 1, . . . , n/s− 1, and let an element a be j-invertible.

Since the element a is ks-invertible, the ks-th shift is a substitution
of the set Q. Observe that for

y := λ−1
ks,a(z), z := λks,a(y). (10)

the following two equalities hold

λ−1
ks,af(z,

ks−1
a , x,

n−ks
a ) = f(λ−1

ks,a(z),
n−1
a , x), (11)

λ−1
ks,af(

ks
a, x,

n−ks−1
a , z) = f(x,

n−1
a , λ−1

ks,a(z)). (12)

Indeed,

λ−1
ks,af(z,

ks−1
a , x,

n−ks
a )

(10)
= λ−1

ks,af(λks,a(y),
ks−1
a , x,

n−ks
a )

(1)
= λ−1

ks,af(f(
ks
a, y,

n−ks
a ),

ks−1
a , x,

n−ks
a )

T1
= λ−1

ks,af(
ks
a, f(y,

n−1
a , x),

n−ks
a )

(1)
= λ−1

ks,aλks,af(y,
n−1
a , x)

(1)
= f(y,

n−1
a , x)

(10)
= f(λ−1

ks,a(z),
n−1
a , x).

Similarly
λ−1

ks,af(
ks
a, x,

n−ks−1
a , z)

(1)
= λ−1

ks,af(
ks
a, x,

n−ks−1
a , f(

ks
a, y,

n−ks
a ))

T1
= λ−1

ks,af(
ks
a, f(x,

n−1
a , y),

n−ks
a )

(1)
= λ−1

ks,aλks,af(x,
n−1
a , y)

(1)
= f(x,

n−1
a , y)

(10)
= f(x,

n−1
a , λ−1

ks,a(z)).

Now, putting z := a in (11) we obtain
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λ−1
ks,af(

ks
a, x,

n−ks
a ) = f(λ−1

ks,a(a),
n−1
a , x),

λ−1
ks,aλks,a(x) = f(āks,

n−1
a , x),

which together with the de�nitions of a shift and the de�nition of a
skew element gives

x = f(āks,
n−1
a , x) (13)

for all x ∈ Q. This means, that the �rst equality from (3) holds. To
verify the second one we put z = a in (12). Then

λ−1
ks,af(

ks
a, x,

n−ks
a ) = f(x,

n−1
a , λ−1

ks,a(a)),
which, as in the previous case, implies

λ−1
ks,aλks,a(x) = f(x,

n−1
a , āks)

Thus

x = f(x,
n−1
a , āks) (14)

for all x ∈ Q. Corollary 1 and (13), (14) imply the invertibility of a.
This completes the proof of Theorem 3.

Note, that for binary semigroups the following assertion is valid.
Lemma 2. Let (Q, ·) be a binary semigroup and shift λ0,a ( λ1,a ) be
a substitution of Q, then the element er := λ−1

0,a(a) ( e` := λ−1
1,a(a)) is a

right ( respectively left ) unit, and a−1
r := λ−2

0,a(a) (a−1
` := λ−2

1,a(a)) is a
right ( respectively left ) inverse element of the element a in semigroup
(Q, ·).
Proof. Indeed,

λ0,a(x · er) = x · er · a = x · λ0,a(er) = x · λ0,aλ
−1
0,a(a) = x · a = λ0,a(x).

Since λ0,a is a substitution of the set Q, then the proved equality

λ0,a(x · er) = λ0,a(x)

gives x · er = x for all x ∈ Q, that is the element er is a right unit
element in the semigroup (Q, ·).
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In the same way one can prove that e` is a left unit element in
(Q, ·).

To establish that the element a−1
r is a right inverse of a, note that

λ0,a(a · a−1
r ) = a · a−1

r · a = a · λ0,aλ
−2
0,a(a) = a · λ−1

0,a(a) = a · er = a.

Applying λ−1
0,a to the equality λ0,a(a · a−1

r ) = a, we get

a · a−1
r = λ−1

o,a(a) = er.

Hence, the element a is right invertible.
Similarly we can prove that the element a−1

` is a left inverse of a,
when the shift λ1,a is a substitution of the set Q.

Corollary 2. An element a of a binary semigroup is invertible i� it
is 0-invertible and 1-invertible simultaneously.

An element a of an associate (Q, f) of the type (s, n) is said to
be: right ( left ) invertible, if the shift λ0,a (respectively λ1,a) is a
substitution of the set Q.

An element a of an (n+1)-ary groupoid (Q, f) will be called inner
invertible, if the shift λi,a is a substitution of the set Q for some
i = 1, . . . , n− 1.

Corollary 3. An element a is invertible in an associate (Q, f) of the
type (s, n) i� it is right and left invertible simultaneously.

The Proof follows from the point 2) of Theorem 3 when i = 0.

Corollary 4. In any (n + 1)-ary semigroup (Q, f) for any element a
and for any numbers i = 1, . . . , n − 1; k = 1, . . . , n

s
− 1 the following

assertions are equivalent:
1) a is invertible,
2) a is inner invertible,
3) a is right and left invertible,
4) there exist elements â and ă in Q such that for arbitrary x ∈ Q

the following equalities hold:

f(
i
a, â,

n−i−1
a , x) = x, f(x,

n−i−1
a , ă,

i
a) = x. (15)
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2. Axiomatics of polyagroups
De�nition 1. A groupoid (Q, f) is called a polyagroup of a type (s, n)
i� it is a quasigroup and an associate of the type (s, n).

It is easy to see that for s = 1 a polyagroup of a type (s, n) is an
(n + 1)-ary group.

Directly from Theorem 3 and the de�nition of a polyagroup we
obtain:
Theorem 4. In an associate (Q, f) of the type (s, n) for any i =
0, 1, . . . , n− 1 the following conditions are equivalent:

1) the associate is a polyagroup,
2) every element of the associate is invertible,
3) every element of the associate is i- and (n− i)-invertible,
4) for every element y there exist elements ŷ and y̆ in Q such

that for arbitrary x ∈ Q the following two equalities hold

f(
i
y, ŷ,

n−i−1
y , x) = x, f(x,

n−i−1
y , y̆,

i
y) = x,

5) every element is ks-invertible, for some k = 1, . . . , n
s
− 1.

Since for s = 1 a polyagroup of a type (s, n) is an (n + 1)-group
(an associate of the type (1, n) is an (n + 1)-semigroup), then as a
simple consequence of the above Theorem, we obtain the following
characterizations of (n + 1)-ary groups, which are proved in [3 � 5].

Corollary 5. In an (n+1)-semigroup (Q, f) for any i = 0, 1, . . . , n−1
the following assertions are equivalent:

1) a semigroup is an (n + 1)-group,
2) every element of the semigroup is invertible,
3) every element is a right and left invertible,
4) every element is inner invertible,
5) for every element y there exist elements ŷ and y̆ in Q such

that for arbitrary x ∈ Q the following two equalities hold

f(
i
y, ŷ,

n−i−1
y , x) = x, f(x,

n−i−1
y , y̆,

i
y) = x.
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On TS-n-groups

Janez U²an

Abstract

In this article totally simmetric n-group is described as an n-groupoid (Q,B)
in which the following laws hold: B(x, y, an−2

1 ) = B(y, x, an−2
1 ),

B(a, cn−2
1 , B(B(B(z, cn−2

1 , z), cn−2
1 , b), cn−2

1 , B(B(z, cn−2
1 , z), cn−2

1 , a))) = b,
B(x, an−2

1 , y) = B(x, an−2
1 , B(B(y, an−2

1 , y), an−2
1 , y)) and

B(B(x, z, bn−2
1 ), B(y, an−2

1 , z), an−2
1 ) = B(x, y, bn−2

1 ).

1. Introduction
De�nition 1.1. Let (Q,A) be an n-quasigroup and n > 2. Also let
α be a permutation in the set {1, 2, ..., n + 1}. Moreover, let

Aα(xn
1 ) = an+1 ⇐⇒ A(xα(1), ..., xα(n)) = xα(n+1)

for all xn+1
1 ∈ Q. We say that (Q,A) is a totally simmetric n-

quasigroup ( brie�y: TS-n-quasigroup) i� for any permutation α on
{1, 2, ..., n + 1} we have Aα = A. In the case when α = (1, n + 1)
instead of Aα we write −1A. Similarly in the case α = (n, n + 1)
instead of Aα we write A−1.
Proposition 1.2. Let (Q,A) be an n-group, −1 its inversing opera-
tion, e its {1, n}-neutral operation and n > 2. Also let

(a) −1A(x, an−2
1 , y) = z ⇐⇒ A(z, an−2

1 , y) = x,
(b) A−1(x, an−2

1 , y) = z ⇐⇒ A(x, an−2
1 , z) = y

1991 Mathematics Subject Classi�cation: 20N15
Keywords: n−groupoid, n−semigroup, n−quasigroup, n−group, {i, j}-neutral

operation on n−groupoid, inversing operation on n−group, TS-n−group
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for all x, y, z ∈ Q and for every an−2
1 ∈ Q. Then, for all x, y ∈ Q and

for every an−2
1 ∈ Q the following equalities hold

(1) −1A(x, an−2
1 , y) = A(x, an−2

1 , (an−2
1 , y) −1),

(2) A−1(x, an−2
1 , y) = A((an−2

1 , x) −1, an−2
1 , y),

(3) e(an−2
1 ) = −1A(x, an−2

1 , x),
(4) (an−2

1 , x) −1 = −1A( −1A(x, an−2
1 , x), an−2

1 , x),
(5) A(x, an−2

1 , y) = −1A(x, an−2
1 , −1A( −1A(y, an−2

1 , y), an−2
1 , y)).

Proof. To prove (2) observe that
A−1(x, an−2

1 , y) = z ⇐⇒ A(x, an−2
1 , z) = y

⇐⇒ A((an−2
1 , x) −1, an−2

1 , A(x, an−2
1 , z)) = A((an−2

1 , x) −1, an−2
1 , y)

⇐⇒ A(A((an−2
1 , x) −1, an−2

1 , x), an−2
1 , z) = A((an−2

1 , x) −1, an−2
1 , y)

⇐⇒ A(e(an−2
1 ), an−2

1 , z) = A((an−2
1 , x) −1, an−2

1 , y)

⇐⇒ z = A((an−2
1 , x) −1, an−2

1 , y).
The rest is proved in [7].

As a simple consequence of [2], [3] and [4] (see also [6]) we obtain:
Proposition 1.3. Let n > 2. An n-group (Q,A) is a TS-n-group i�
there exist a boolean group (Q, ·) and element b ∈ Q such that

A(xn
1 ) = x1 · . . . · xn · b

for all xn
1 ∈ Q.

2. Results
From the above we conclude that the following proposition holds.
Proposition 2.1. Let (Q,B) be a TS-n-group with n > 2. Then

(i) B(B(x, z, bn−2
1 ), B(y, an−2

1 , z), an−2
1 ) = B(x, y, bn−2

1 ),
(ii) B(a, cn−2

1 , B(B(B(z, cn−2
1 , z), cn−2

1 , b), cn−2
1 ,

B(B(z, cn−2
1 , z), cn−2

1 , a))) = b,
(iii) B(x, an−2

1 , y) = B(x, an−2
1 , B(B(y, an−2

1 , y), an−2
1 , y)),

(iv) B(x, y, an−2
1 ) = B(y, x, an−2

1 ).
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Theorem 2.2. If the following laws
(i) B(B(x, z, bn−2

1 ), B(y, an−2
1 , z), an−2

1 ) = B(x, y, bn−2
1 ),

(ii) B(a, cn−2
1 , B(B(B(z, cn−2

1 , z), cn−2
1 , b), cn−2

1 ,
B(B(z, cn−2

1 , z), cn−2
1 , a))) = b,

(iii) B(x, an−2
1 , y) = B(x, an−2

1 , B(B(y, an−2
1 , y), an−2

1 , y)),
(iv) B(x, y, an−2

1 ) = B(y, x, an−2
1 )

hold in an n-groupoid (Q,B), n > 2, then (Q,B) is a TS-n-group.
Proof. For n > 2 the following statements hold.

1◦ Let (Q,B) be an n-groupoid. If the following two laws
B(B(x, z, bn−2

1 ), B(y, an−2
1 , z), an−2

1 ) = B(x, y, bn−2
1 ),

B(a, cn−2
1 , B(B(B(z, cn−2

1 , z), cn−2
1 , b), cn−2

1 ,
B(B(z, cn−2

1 , z), cn−2
1 , a))) = b

hold in (Q, B), then there is an n-group (Q,A) such that −1A = B.
(see Theorem 2.2 in [7]).

2◦ There exists the n-ary operation −1B in Q such that (Q, −1B)
is an n-group and −1B = B.

Indeed, by 1◦, we conclude that there is an n-group (Q,A) such
that −1A = B. Hence
−1( −1A)(x, an−2

1 , y) = z ⇔ −1A(z, an−2
1 , y) = x ⇔ A(x, an−2

1 , y) = z.
Moreover for all x, y ∈ Q and an−2

1 ∈ Q we have
B(x, an−2

1 , y) = B(x, an−2
1 , B(B(y, an−2

1 , y), an−2
1 , y)),

and
−1B(x, an−2

1 , y) = B(x, an−2
1 , B(B(y, an−2

1 , y), an−2
1 , y)),

which proves that −1B = B.
3◦ For all x ∈ Q and for every sequence an−2

1 over Q we have
(an−2

1 , x) −1 = x (see Proposition 1.2 and Remark 1.3 in [7]). Thus
B −1 = B, because by [7] we have

B −1(x, an−2
1 , y) = B((an−2

1 , x) −1, an−2
1 , y).

4◦ For all x, y ∈ Q and for every sequence an−2
1 over Q the fol-

lowing equality holds B(x, an−2
1 , y) = B(y, an−2

1 , x). Indeed,
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B(x, an−2
1 , y) = z ⇐⇒ −1B(x, an−2

1 , y) = z ⇐⇒ B(z, an−2
1 , y) = x

⇐⇒ B −1(z, an−2
1 , y) = x ⇐⇒ B(z, an−2

1 , x) = y

⇐⇒ −1B(y, an−2
1 , x) = z ⇐⇒ B(y, an−2

1 , x) = z.

5◦ Let n ≥ 3 and e be a {1, n}-neutral operation of the n-group
(Q,B). Then for all x, y ∈ Q and for every sequence an−2

1 over Q the
following equality holds

B(e(an−2
1 ), x, an−2

1 ) = x.
To prove it we consider the new operation F de�ned by

F (x, an−2
1 )

def
= B(x, e(an−2

1 ), an−2
1 ).

Then
B(F (x, an−2

1 ), e(an−2
1 ), an−2

1 ) = B(B(x, e(an−2
1 ), an−2

1 ), e(an−2
1 ), an−2

1 )

and
B(F (x, an−2

1 ), e(an−2
1 ), an−2

1 ) = B(x,B(e(an−2
1 ), an−2

1 , e(an−2
1 )), an−2

1 ).
This implies

B(F (x, an−2
1 ), e(an−2

1 ), an−2
1 ) = B(x, e(an−2

1 ), an−2
1 ).

Thus
F (x, an−2

1 ) = x ⇐⇒ B(x, e(an−2
1 ), an−2

1 ) = x.
But by (iv) we have

B(e(an−2
1 ), x, an−2

1 ) = B(x, e(an−2
1 ), an−2

1 ) = x,
which completes the proof of 5◦.

6◦ Let (Q, {., ϕ, b}) be an arbitrary nHG-algebra associated to the
n-group (Q,B) (see [8]). Then, by Proposition 1.6 from [8], there is
at least one sequence an−2

1 ∈ Q such that
x · y = B(x, an−2

1 , y) and ϕ(x) = B(e(an−2
1 ), x, an−2

1 )

for all x, y ∈ Q. Whence, by 4◦ and 5◦, we conclude that
x · y = y · x and ϕ(x) = x.

Thus
e(an−2

1 ) · x = x · e(an−2
1 ) = B(x, an−2

1 , e(an−2
1 )) = x
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and
(an−2

1 , x) −1 · x = x · (an−2
1 , x) −1 = B(x, an−2

1 , (an−2
1 , x) −1) = e(an−2

1 )

by [7]. Hence x −1 def
= (an−2

1 , x) −1 = x, which by our Proposition 1.3
completes the proof.

Remark 2.3. Let (K, ·), where K = {1, 2, 3, 4}, be the Klein's
group with the multiplication de�ned by the following table:

· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Then the permutation ϕ of K de�ned by

ϕ =

(
1 2 3 4
1 2 4 3

)

is an automorphism of (K, ·) and (K, {·, ϕ, 2}) is a 3HG-algebra
associated to a 3-group (K, A), where

A(x, y, z) = x · ϕ(y) · z · 2.

Moreover, e(x) = 2 · ϕ(x), (a, x) −1 = x, and −1A = A = A−1.
It is not di�cult to see that the laws (i)−(iii) hold in this 3-group,

but A(2, 4, 2) = 4 6= 3 = A(4, 2, 2).
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Fuzzy subquasigroups over a t-norm

Wiesªaw A. Dudek and Young Bae Jun

Abstract
In this paper, using a t-norm T , we introduce the notion of idempotent T -fuzzy
subquasigroups of quasigroups, and investigate some of their properties. Also
we describe fuzzy subquasigroups induced by t-norms in the direct product of
quasigroups.

1. Introduction
Following the introduction of fuzzy sets by Zadeh [13], the fuzzy set
theory developed by Zadeh himself and others have found many appli-
cations in the domain of mathematics and elsewhere. For example, in
[7] Liu studied fuzzy subrings as well as fuzzy ideals in rings. Proper-
ties of some fuzzy ideals in semirings are investigated in [8]. Connec-
tions between fuzzy groups and so-called level subgroups are found in
[3], [4] and [10]. The similar results for quasigroups are proved in [6].

In this paper, using a t-norm T , we introduce the notion of idem-
potent T -fuzzy subquasigroups of quasigroups, and investigate some
of their properties. Next we use a t-norm to construct T -fuzzy sub-
quasigroups in the �nite direct product of quasigroups.

2. Preliminaries
As it is well known, a groupoid (G, ·) is called a quasigroup if for any
a, b ∈ G each of the equations ax = b, xa = b has a unique solution

1991 Mathematics Subject Classi�cation: 20N15, 94D05
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in G. A quasigroup may be also de�ned as an algebra (G, ·, \, /) with
three binary operations ·, \, / satisfying the identities

(xy)/y = x, x \ (xy) = y, (x/y)y = x, x(x \ y) = y

(cf. [2] or [9]). We say that such de�ned quasigroup (G, ·, \, /) is an
equasigroup (i.e. equationally de�nable quasigroup) [9] or a primitive
quasigroup [2]. Obviously, these two de�nitions are equivalent because

x \ y = z ⇐⇒ xz = y, x/y = z ⇐⇒ zy = x.

A nonempty subset S of a quasigroup G = (G, ·, \, /) is called a
subquasigroup if it is closed with respect to these three operations,
i.e., if x ∗ y ∈ S for all x, y ∈ S and ∗ ∈ {·, \, /}.

The class of all equasigroups forms a variety. This means that a
homomorphic image of an equasigroup is an equasigroup. Also every
subset of an equasigroup closed with respect to these three operations
is an equasigroup.

Note that in case when a quasigroup is de�ned as a set with only
one operation, a homomorphic image is not in general a quasigroup.
It is only a groupoid with division. Similarly a homomorphic preimage
of a quasigroup (G, ·) is not a quasigroup. Also a subset closed with
respect to this multiplication is not a quasigroup (cf. [2]).

For the general development ot the theory of quasigroups the unipo-
tent quasigroups, i.e., quasigroups with the identity xx = yy, play an
important role. These quasigroups are connected with Latin squares
which have one �xed element in the diagonal (cf. [5]). Such quasi-
groups may be de�ned as quasigroups G with the special element θ
satisfying the identity xx = θ. Obviously, θ is uniquely determined
and it is an idempotent, but, in general, it is not the (left, right)
neutral element.

To avoid repetitions we use the following conventions: "a quasi-
group G" always denotes an equasigroup (G, ·, \, /); G always denotes
a nonempty set.

A function µ : G → [0, 1] is called a fuzzy set in a quasigroup G.
The set µα = {x ∈ G : µ(x) > α}, where α ∈ [0, 1] is �xed, is called
a level subset of µ. Im(µ) denotes the imege set of µ.

Let µ and ρ be two fuzzy sets de�ned on G. According to [13]
we say that µ is contained in ρ , and denote this fact by µ ⊆ ρ , i�
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µ(x) 6 ρ(x) for all x ∈ G. Obviously µ = ρ i� µ(x) = ρ(x) for all
x ∈ G.

According to [6], a fuzzy set µ in a quasigroup G = (G, ·, \, /) is
called a fuzzy subquasigroup of G if

min{µ(xy), µ(x \ y), µ(x/y)} > min{µ(x), µ(y)}

for all x, y ∈ G. It is clear, that this condition may be written as

µ(x ∗ y) > min{µ(x), µ(y)}

for all ∗ ∈ {·, \, /} and x, y ∈ G.
A fuzzy subquasigroup µ of a quasigroup G is called normal if

µ(xy) = µ(yx) for all x, y ∈ G. It is not di�cult to see that µ is
normal i� µ(x \ y) = µ(y/x) for all x, y ∈ G.

The following two results are proved in [6].
Proposition 2.1. A fuzzy set µ of a quasigroup G = (G, ·, \, /) is a
fuzzy subquasigroup i� for every α ∈ [0, 1], µα is either empty or a
subquasigroup of G.

Proposition 2.2. If µ is a fuzzy subquasigroup of a unipotent quasi-
group (G, ·, \, /, θ), then µ(θ) > µ(x) for any x ∈ G.

3. T-fuzzy subquasigroup
According to [1], by a t-norm, we mean a function T : [0, 1]× [0, 1] →
[0, 1] satisfying the following conditions:

(T1) T (α, 1) = α ,
(T2) T (α, β) 6 T (α, γ) whenever β 6 γ ,
(T3) T (α, β) = T (β, α) ,
(T4) T (α, T (β, γ)) = T (T (α, β), γ)

for all α, β, γ ∈ [0, 1].

A simple example of a t-norm is a function T (α, β) = min{α, β}.
Generally, T (α, β) 6 min{α, β} and T (α, 0) = 0 for all α, β ∈ [0, 1].
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Moreover, ([0, 1]; T ) is a commutative semigroup with 0 as the neutral
element. In particular it is medial, i.e.,

T (T (α, β), T (γ, δ)) = T (T (α, γ), T (β, δ))

holds for all α, β, γ, δ ∈ [0, 1].
Let T1 and T2 be two t-norms. We say that T1 dominates T2 and

write T1 À T2 if

T1(T2(α, β), T2(γ, δ)) > T2(T1(α, γ), T1(β, δ))

for all α, β, γ, δ ∈ [0, 1] (cf. [1]). Obviously T À T for all t-norms.
The set of all idempotents with respect to T , i.e. the set

ET = {α ∈ [0, 1] | T (α, α) = α}

is a subsemigroup of ([0, 1], T ). If Im(µ) ⊆ ET then a fuzzy set
µ is called an idempotent with respect to a t-norm T (brie�y: T -
idempotent).
De�nition 3.1. A fuzzy set µ in G is called a fuzzy subquasigroup of
G with respect to a t-norm T ( brie�y, a T -fuzzy subquasigroup ) if

µ(x ∗ y) > T (µ(x), µ(y))

for all x, y, z ∈ G and ∗ ∈ {·, \, /}.

Since min{α, β} > T (α, β) for all α, β ∈ [0, 1], every fuzzy sub-
quasigroup is also a T -fuzzy subquasigroup, but not conversely as seen
in the following example.
Example 3.2. Let G = {0, a, b, c} be the Klein's group with the
following Cayley table:

· 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0
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De�ne a fuzzy set µ in G by µ(0) = 0, 8, µ(a) = 0, 7, µ(b) = 0, 6,
µ(c) = 0, 5. It is not di�cult to see that a function Tm de�ned by
Tm(α, β) = max{α + β − 1, 0} for all α, β ∈ [0, 1] is a t-norm.

By routine calculations, we known that µ(x ∗ y) > Tm(µ(x), µ(y))
for all x, y ∈ G, which shows that µ is a Tm-fuzzy subquasigroup of
G, which is not Tm-idempotent. It is not a fuzzy subquasigroup since
µ(c) = µ(ab) < min{µ(a), µ(b)}.

But a fuzzy set ν de�ned by ν(0) = ν(a) = 1 and ν(b) = ν(c) = 0
is a Tm-idempotent fuzzy subquasigroup of G. It is also a fuzzy sub-
quasigroup.
Proposition 3.3. If a fuzzy set µ is idempotent with respect to a
t-norm T , then T (α, β) = min{α, β} for all α, β ∈ Im(µ).
Proof. Indeed, if α and β are in Im(µ), then

min{α, β} > T (α, β) > T (min{α, β}, min{α, β}) = min{α, β},
which completes the proof.
Corollary 3.4. Every T -idempotent fuzzy subquasigroup is also a
fuzzy subquasigroup.

By application of Proposition 2.1 we obtain
Corollary 3.5. Every nonempty level set of a T -idempotent fuzzy
subquasigroup de�ned on a quasigroup G is a subquasigroup of G.
Corollary 3.6. Let T be an idempotent t-norm. Then a fuzzy set
de�ned on a quasigroup G is a T -fuzzy subquasigroup i� it is a fuzzy
subquasigroup.

Now we consider the converse of Corollary 3.4.
Theorem 3.7. Let a fuzzy set µ on a quasigroup G be idempotent
with respect to a t-norm T . If each nonempty level set µα is a sub-
quasigroup of G, then µ is a T -idempotent fuzzy subquasigroup.
Proof. Assume that each nonempty level set µα is a subquasigroup of
G. Then µ is a fuzzy subquasigroup of G (by Proposition 2.1), and so

µ(x ∗ y) > min{µ(x), µ(y)} = T ( µ(x), µ(y) )
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by Proposition 3.3. Hence µ is a T -idempotent fuzzy subquasigroup
of a quasigroup G.

Theorem 3.8. Let µ be a T -fuzzy subquasigroup of G, where T is a
t-norm and α ∈ [0, 1]. Then
(i) if α = 1, then µα is either empty or is a subquasigroup of G,
(ii) if T = min, then µα is either empty or is a subquasigroup of G.

Proof. (i) Assume that α = 1 and µα 6= ∅. Then there exist x, y ∈ µα

such that µ(x) > 1 and µ(y) > 1 . Thus
µ(x ∗ y) > T ( µ(x), µ(y) ) > T (1, 1) = 1

so that x ∗ y ∈ µ1. Hence µ1 is a subquasigroup of G.
(ii) is a consequence of Proposition 2.1.

Note that a fuzzy set µ de�ned in our Example 3.2 is a non-
idempotent Tm-fuzzy subquasigroup in which µ1 is empty and µ0,6 is
not a subquasigroup of G. This proves that the analog of Proposition
2.1 for T -fuzzy subquasigroups is not true.

4. Fuzzy sets induced by norms
Let T be a t-norm and let µ and ν be two fuzzy sets in G. Then the
T -product of µ and ν, denoted by [µ · ν]

T
, is de�ned as

[µ · ν]
T
(x) = T (µ(x), ν(x))

for all x ∈ G.
Obviously [µ · ν]

T
is a fuzzy set in G such that [µ · ν]

T
= [ν · µ]

T
.

Moreover, if µ and ν are normal, then so is [µ · ν]
T∗ .

Theorem 4.1. Let T be a t-norm and let µ and ν be T -fuzzy sub-
quasigroups of G. If a t-norm T ∗ dominates T , then T ∗-product
[µ · ν]

T∗ is a T -fuzzy subquasigroup of G.
Proof. Indeed, for x, y ∈ G we have

[µ · ν]
T∗ (x ∗ y) = T ∗(µ(x ∗ y), ν(x ∗ y))

> T ∗(T (µ(x), µ(y)), T (ν(x), ν(y)))
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> T (T ∗(µ(x), ν(x)), T ∗(µ(y), ν(y)))

= T ([µ · ν]
T∗ (x), [µ · ν]

T∗ (y)) ,

which proves that [µ · ν]
T∗ is a T -fuzzy subquasigroup of G.

Corollary 4.2 The T -product of T -fuzzy subquasigroups is a T -fuzzy
subquasigroup.

Let G and H be nonempty sets and let f : G → H be an arbitrary
mapping. If ν is a fuzzy set in f(G) then µ = ν ◦ f is the fuzzy set
in G, which is called the preimage of ν under f .

It is not di�cult to see that the following lemma is true.
Lemma 4.3. Let T be a t-norm and let G and H be two quasigroups.
If h : G → H is an onto homomorphisms of quasigroups, ν is a fuzzy
subquasigroup of H and µ the preimage of ν under h, then µ is a
fuzzy subquasigroup of G. Moreover, µ is normal i� ν is normal. If
ν is T -idempotent, then so is µ.
Proposition 4.4. Let T and T ∗ be t-norms in which T ∗ dominates
T and let G , H be two quasigroups. If h : G → H be an onto
homomorphism of quasigroups, then for any T -fuzzy subquasigroups µ
and ν of H, we have

h−1([µ · ν]
T∗ ) = [h−1(µ) · h−1(ν)]

T∗ .

Proof. By Lemma 4.3 h−1(µ), h−1(ν) and h−1([µ · ν]
T∗ ) are T -fuzzy

subquasigroups of G.
Moreover for x ∈ G we have

[h−1([µ · ν]
T∗ )](x) = [µ · ν]

T∗ (h(x)) = T ∗(µ(h(x)), ν(h(x)))

= T ∗([h−1(µ)](x), [h−1(ν)](x)) = [h−1(µ) · h−1(ν)]
T∗ (x),

which completes the proof.

We say that a fuzzy set µ in G has a sup property if, for all subset
S ⊆ G, there exists s0 ∈ S such that µ(s0) = sup

s∈S
µ(s). In this case

for any mapping f de�ned on G we can de�ne in f(G) the fuzzy set
µf putting µf (y) = sup

x∈f−1(y)

µ(x) for all y ∈ f(G) (cf. [12]).
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Let f : G → H be a homomorphisms of quasigroups and let T be
a continuous t-norm (continuous with respect to the usual topology).
Then sets A1 = f−1(y1) and A2 = f−1(y2), where y1, y2 ∈ f(G)
are nonempty subsets of f(G). Similarly, A3 = f−1(y1 ∗ y2), where
∗ ∈ {·, \, /} is a �xed operation.

Consider the set

A1 ∗ A2 = {a1 ∗ a2, | a1 ∈ A1, a2 ∈ A2}.
If x ∈ A1 ∗ A2, then x = x1 ∗ x2 for some x1 ∈ A1 and x2 ∈ A2, and
so

f(x) = f(x1 ∗ x2) = f(x1) ∗ f(x2) = y1 ∗ y2 ,

which implies x ∈ f−1(y1 ∗ y2) = A3. Thus A1 ∗ A2 ⊆ A3 for any
operation ∗ ∈ {·, \, /}.

Therefore
µf (y1 ∗ y2) = sup

x∈f−1(y1∗y2)

µ(x) = sup
x∈A3

µ(x)

> sup
x∈A1∗A2

µ(x) > sup
x1∈A1, x2∈A2

µ(x1 ∗ x2)

> sup
x1∈A1, x2∈A2

T (µ(x1), µ(x2)) .

Since t-norm T is (by the assumption) continuous, for every ε > 0
there exists δ > 0 such that

sup
x1∈A1

µ(x1)− t1 6 δ and sup
x2∈A2

µ(x2)− t2 6 δ

implies
T

(
sup

x1∈A1

µ(x1), sup
x2∈A2

µ(x2)

)
− T (t1, t2) 6 ε .

This for t1 = µ(a1), t2 = µ(a2), where a1 ∈ A1, a2 ∈ A2, gives

T

(
sup

x1∈A1

µ(x1), sup
x2∈A2

µ(x2)

)
6 T (µ(a1), µ(a2)) + ε .

Consequently
µf (y1 ∗ y2) > sup

x1∈A1, x2∈A2

T (µ(x1), µ(x2))

> T

(
sup

x1∈A1

µ(x1), sup
x2∈A2

µ(x2)

)
= T (µf (y1), µf (y2)) ,
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which shows that µf is a T-fuzzy subquasigroup of f(G).
Thus we have the following

Theorem 4.5. Let T be a continuous t-norm and let f be a homo-
morphism on a quasigroup G. If a T -fuzzy subquasigroup µ of G has
the sup property, then µf is a T -fuzzy subquasigroup of f(G).

Since the function "min" is a continuous t-norm, then, as a simple
consequence of the above theorem, we obtain
Corollary 4.6. If a fuzzy subquasigroup µ of G has the sup property,
then µf is a fuzzy subquasigroup of f(G) for every homomorphism
f de�ned on G.

5. Direct products of fuzzy subquasigroups
Let T be a �xed t-norm. If µ1 and µ2 are two fuzzy sets on G1 and
G2 (respectively), then µ de�ned on G1 ×G2 by the formula

µ(x1, x2) = T (µ1(x1), µ2(x2)),
is a fuzzy set on G1 ×G2, which is denoted by µ1 × µ2.

Proposition 5.1. If µ1 and µ2 are T -fuzzy subquasigroup of quasi-
groups G1 and G2 (respectively ), then µ1×µ2 is a T -fuzzy subquasi-
group of the direct product G1 × G2. Moreover, if µ1 and µ2 are
T -idempotent, then so is µ1 × µ2.
Proof. Let (x1, x2), (y1, y2) be in G1 ×G2. Then
(µ1 × µ2)((x1, x2) ∗ (y1, y2)) = (µ1 × µ2)(x1 ∗ y1, x2 ∗ y2)

= T (µ1(x1 ∗ y1), µ2(x2 ∗ y2))

≥ T (T (µ1(x1), µ1(y1)), T (µ2(x2), µ2(y2)))

= T (T (µ1(x1), µ2(x2)), T (µ1(y1), µ2(y2)))

= T ((µ1 × µ2)(x1, x2), (µ1 × µ2)(y1, y2)).

Hence µ1 × µ2 is a T -fuzzy subquasigroup of G1 × G2. Obviously, if
µ1 and µ2 are T -idempotent, then so is µ1 × µ2.
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The relationship between T -fuzzy subquasigroups µ×ν and [µ·ν]
can be viewed via the following diagram

G - G×G
d

?

[µ · ν]T

?

µ

?

ν

´
´

´
´

´
´

´
´́+

µ× ν

I ¾ I × I
T

where I = [0, 1] and d : G → G×G is de�ned by d(x) = (x, x).
Applying Lemma 3.2 from [1] it is not di�cult to see that [µ · ν]T

is the preimage of µ× ν under d.
Note by the way, that our T -product is di�erent from the product

of fuzzy sets studied by Liu [7] and Sessa [11].

Now we generalize this idea to the product of n > 2 T -fuzzy sub-
quasigroups. We �rst need to generalize the domain of t-norm T to
n∏

i=1

[0, 1] as follows:

De�nition 5.2. The function Tn :
n∏

i=1

[0, 1] → [0, 1] is de�ned by

Tn(α1, α2, . . . , αn) = T (αi, Tn−1(α1, . . . , αi−1, αi+1, . . . , αn))

for all 1 6 i 6 n, where n > 2, T2 = T and T1 = id (identity).

Using the induction on n, we have the following two lemmas.
Lemma 5.3. For every t-norm T and every αi, βi ∈ [0, 1], where
1 6 i 6 n and n > 2, we have

Tn(T (α1, β1), T (α2, β2), . . . , T (αn, βn))

= T (Tn(α1, α2, . . . , αn), Tn(β1, β2, . . . , βn)).
Lemma 5.4. For a t-norm T and every α1, . . . , αn ∈ [0, 1], where
n > 2, we have

Tn(α1, . . . , αn) = T (. . . T (T (T (α1, α2), α3), α4), . . . , αn)

= T (α1, T (α2, T (α3, . . . T (αn−1, αn) . . .))).
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Theorem 5.5. Let T be a t-norm and let G =
n∏

i=1

Gi be the direct
product of quasigroups {Gi}n

i=1. If µi is a T -fuzzy subquasigroup of
Gi, where 1 6 i 6 n, then µ =

n∏
i=1

µi de�ned by

µ(x) = (
n∏

i=1

µi)(x1, x2, . . . , xn) = Tn(µ1(x1), µ2(x2), . . . , µn(xn))

for all x = (x1, x2, . . . , xn) ∈ G, is a T -fuzzy subquasigroup of G.
Moreover, if all µi are T -idempotent, then so is µ.
Proof. Now let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) be any ele-
ments of G =

n∏
i=1

Gi. Then by Lemma 5.3 we have

µ(x ∗ y) = (
n∏

i=1

µi)((x1, x2, . . . , xn) ∗ (y1, y2, . . . , yn))

= (
n∏

i=1

µi)((x1 ∗ y1, x2 ∗ y2, . . . , xn ∗ yn))

= Tn(µ1(x1 ∗ y1), µ2(x2 ∗ y2), . . . , µn(xn ∗ yn))

> Tn(T (µ1(x1), µ1(y1)), T (µ2(x2), µ2(y2)), . . . , T (µn(xn), µn(yn)))

= T (Tn(µ1(x1), µ2(x2), . . . , µn(xn)), Tn(µ1(y1), µ2(y2), . . . , µn(yn)))

= T ((
n∏

i=1

µi)(x1, x2, . . . , xn), (
n∏

i=1

µi)(y1, y2, . . . , yn))

= T (µ(x), µ(y)) .

Therefore µ =
n∏

i=1

µi is a T -fuzzy subquasigroup of G.
Applying Lemma 5.3 it is not di�cult to see that µ is T -idempotent

if all µi are T -idempotent.
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