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Centrally isotopic quasigroups

Galina B. Belyavskaya

Abstract

Relation of central isotopy between usual quasigroups is considered. The con-
nection of this relation with central isotopy relation of equasigroups and with the
abelian subgroup of the multiplication group of a quasigroup corresponding to the
centre congruence of this quasigroup is established.

1. Introduction
In the work [10] and in Chapter III of [8] J.D.H.Smith has considered
the relation of central isotopy between equasigroups (i.e. primitive
quasigroups). This relation is tighter than isotopy but looser than
isomorphism. In the base of this relation lies the concept of the cen-
tre congruence of an equasigroup Q(·, \, /), introduced in the same
works. In the articles [2, 3] the concept of the h-centre Zh for an
usual quasigroup Q(·) where h is an arbitrary �xed element of Q was
introduced and it was proved that the h-centre de�nes a normal con-
gruence which is called the centre congruence of Q(·) and does not
depend on the element h. Finally, in article [5] a proof was given that
the centre congruence of a quasigroup Q(·) coincides with the centre
congruence of the equasigroup Q(·, \, /), corresponding to Q(·). Thus,
it was established that the h -centre is an inner characterization of the
centre congruence of an equasigroup.
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In this article we consider the relation of central isotopy between
usual quasigroups, establish its connection with the relation of central
isotopy of the corresponding equasigroups and also with the abelian
subgroup Γ of the multiplication group of a quasigroup Q(·). This sub-
group was picked out in [4] and corresponds to the centre congruence
of a quasigroup (Γh = Zh for any h ∈ Q).

2. Preliminaries
An algebra Q(·, \, /) with the three binary operations ·, \, / satisfying
the identities

(xy)/y = x, x \ (xy) = y, (x/y)y = x, x(x \ y) = y

is called an equasigroup [6] (or a primitive quasigroup [1]).
A groupoid Q(·) is called a quasigroup if each of the equations ax =

b, xa = b has a unique solution for any a, b ∈ Q. The equasigroup
Q(·, \, /) corresponds to quasigroup Q(·) where

x \ y = z ⇐⇒ xz = y, x/y = z ⇐⇒ zy = x.

The quasigroups Q(\) and Q(/) are called the right inverse and
the left inverse quasigroups for Q(·) respectively.

A quasigroup Q(·) is said to be isotopic to a quasigroup P (◦) if
there exist three bijections α, β, γ : Q → P such that αa ◦ βb = γ(ab)
for all a, b ∈ Q. The ordered triple T = (α, β, γ) is called an isotopy.

According to [10], two equasigroups Q(·, \, /) and P (◦, \\, //) are
called isotopic if for each operation ω from ◦, \\, // (·, \, /, respec-
tively) there exist bijections θ1, θ2 and θ3 : Q → P such that

θ1aωθ2b = θ3(aωb)

for all a, b ∈ Q.
It is easy to see that if equasigroups Q(·, \, /) and P (◦, \\, //) are

isotopic then the pairs of the quasigroups Q(·) and P (◦), Q(\) and
P (\\), Q(/) and P (//) are isotopic, and conversely, isotopy of any
such pair implies isotopy of corresponding equasigroups (it su�ces to
make the suitable permutation in the triplet of bijections).
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According to [8], a congruence α of an equasigroup Q(·, \, /) is
central i� the diagonal Q̂ = {(q, q) | q ∈ Q} is a normal subquasigroup
on α, i.e. if it is a class of some congruence V on α. In his case the
congruence α is considered as a subquasigroup of the direct product
(Q×Q)(·, \, /) containing the diagonal Q̂. This congruence V on α is
said to centre α [6].

By Theorem III.3.10 from [8] an equasigroup Q(·, \, /) has a unique
maximal central congruence called the centre congruence ζ(Q) (or
ζ(·, \, /)) of Q(·, \, /). Thus, the centre congruence ζ(Q) of an equasi-
group Q(·, \, /) is the (unique) maximal subquasigroup in (Q×Q)(·, \, /)
containing the diagonal Q̂ as a normal subquasigroup.

Let V be the congruence centering the centre congruence of an
equasigroup P (◦, \\, //).
De�nition 1. An equasigroup Q(·, \, /) is said to be a central isotope
of an equasigroup P (◦, \\, //) i� there is a bijection θ : Q → P ,
called a central shift, such that for each of the operations ◦, \\, //
(correspondingly, ·, \, /) denoted ω, there is an element (pω, p̄ω) of
ζ(P ) such that

(pω, p̄ω)V (θ(q1ωq2), θq1ωθq2) (1)
for each pair q1, q2 of elements of Q.

In [8] the following properties of central isotopy were proved.
- Centrally isotopic equasigroups are isotopic (Proposition III.4.2.).
- Isomorphic equasigroups are centrally isotopic (Proposition III.4.3).
- A central shift θ : Q → P mapping an idempotent of Q to an
idempotent of P is an isomorphism (Proposition III.4.4).

- Central isotopy is an equivalence relation. Further, if θ : Q → P
is a central shift and the centre congruence ζ(Q) of Q is centered
by W , then θ̂ζ(Q) = ζ(P ) and θW center ζ(P ), where

θ̂ : Q×Q → P × P ; (q1, q2) 7→ (θq1, θq2)
and

θ : (Q×Q)× (Q×Q) → (P × P )× (P × P ) ;
((q1, q2), (q3, q4)) 7→ ((θq1, θq2), (θq3, θq4)) .

(Theorem III.4.5).
- Centrally isotopic quasigroups have isomorphic multiplication
groups (Proposition III.4.6).
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In articles [2, 3] the concept of h-centre Zh of a quasigroup Q(·)
where h is an arbitrary �xed element in Q was introduced. It was
also proved that the h-centre Zh de�nes the same normal congruence
θz(·) on Q(·) by any h ∈ Q. This congruence is called the centre
congruence of the quasigroup Q(·). Remind that each congruence of
an equasigroup Q(·, \, /) is a normal congruence in Q(·) and conversely.

Let the centre congruence ζ(Q) of an equasigroup Q(·, \, /) be de-
noted by ζ(·, \, /). By Theorem 1 from [5]

ζ(·, \, /) = θz(·) = θz(\) = θz(/),

where Q(\) and Q(/) are the right inverse and the left inverse quasi-
groups for Q(·). Thus, the h-centre Zh is the ζ(·, \, /)-class containing
the element h.

Let G(·) be the multiplication group of a quasigroup Q(·), i.e. the
group generated by its translations La, Ra (Lax = ax, Rax = xa) for
all a ∈ Q. In [4] it was picked out an abelian normal subgroup Γ in G(·)
corresponding to the centre congruence and acting sharply transitively
on each h-centre, h ∈ Q. The subgroup Γ is characterized by means
of the groups of left and right regular mappings of a quasigroup Q(·),
in the sense of [9]. Recall these concepts.

Let Q(·) be a quasigroup. A mapping λ (ρ) of the set Q onto Q
is called left (right) regular if there is a mapping λ∗ (ρ∗) such that

λx · y = λ∗(xy), x · ρy = ρ∗(xy) (2)

for each x, y ∈ Q. The mappings λ, λ∗, ρ, ρ∗ are permutations on Q
and λ∗ (ρ∗) is called a conjugate to λ (ρ). The set of all left (right)
regular mappings of a quasigroup (the set of all mappings conjugate
to them) forms the group Λ, respectively Λ∗ (R, correspondingly, R∗).
These groups are subgroups of the multiplication group G(·) of Q(·)
since

λ∗ = R−1
x λRx = LλxL

−1
x , ρ∗ = LxρL−1

x = RρxR
−1
x (3)

for each x ∈ Q.
Let CoreG(H) be the maximal normal subgroup of a group G which

lies in a subgroup H. By Theorem 1 from [4] Zh = Γh where
Γ = CoreG(Λ ∩R) = CoreG(Λ∗ ∩R∗) ,
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Zh is the h-centre of a quasigroup Q(·), G is the multiplication group
of Q(·).

In view of Corollary 3 from [4]
Γ = {RxR

−1
y | (x, y) ∈ θz(·)} = {LxL

−1
y | (x, y) ∈ θz(·)}

= {RxR
−1
h | x ∈ Zh} = {LxL

−1
h | x ∈ Zh}

for any arbitrary �xed h in Q.

3. Isotopic quasigroups and the subgroup Γ

Let an equasigroup Q(·, \, /) be a central isotope of P (◦, \\, //). Then
condition (1) means that for all q1, q2 of Q the pairs of the form
(θ(q1q2), θq1 ◦ θq2) lie in the same class of the congruence V centering
the centre congruence ζ(P ) of the equasigroup P (◦, \\, //). Analo-
gously, in the same class by V all pairs (θ(q1/q2), θq1//θq2) (all pairs
(θ(q1 \ q2), θq1 \ \θq2) ) are contained. But, as it was noted above, the
diagonal P̂ is one of the classes of the congruence V , so all classes of
V have the form

P̂ (a1, b1) = {(p, p)(a1, b1) | p ∈ P, (a1, b1) ∈ ζ(P )}.
Thus

(θ(q1q2), θq1 ◦ θq2) = (p, p) ◦ (a1, b1)
and

θ(q1q2) = p ◦ a1, θq1 ◦ θq2 = p ◦ b1

for all q1, q2 ∈ Q. From these equalities it follows that
R−1

b1
(θq1 ◦ θq2) = R−1

a1
θ(q1q2) = p,

or

(θq1 ◦ θq2) = Rb1R
−1
a1

θ(q1q2) (4)

where Rax = x ◦ a, i.e.

T1 = (θ, θ, Rb1R
−1
a1

θ) (5)

is an isotopy of the quasigroups Q(·) and P (◦). In the same way we
establish that

T2 = (θ, θ, Rb2R
−1
a2

θ) (6)
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is an isotopy of Q(\) and P (\\), Rax = x \ \a, and
T3 = (θ, θ, Rb3R

−1
a3

θ) (7)

is an isotopy of Q(/) and P (//), Rax = x//a, for some (a2, b2), (a3, b3)
in ζ(P ). Therefore, if an equasigroup Q(·, \, /) is a central isotope of
P (◦, \\, //) and θ is a central shift of this central isotopy, then there
are the three isotopies (5), (6), (7) of the quasigroups Q(·) and P (◦)
(Q(\) and P (\\), Q(/) and P (//) correspondingly) for some (a1, b1),
(a2, b2), (a3, b3) in ζ(P ).

Let θP
z denote the centre congruence of a quasigroup P (◦). It is

natural to give the following
De�nition 2. A quasigroup Q(·) is said to be a central isotope of a
quasigroup P (◦) i� there are a bijection θ : Q → P , a pair (a, b) ∈ θP

z

such that
RbR

−1
a θ(q1q2) = θq1 ◦ θq2 (8)

for all q1, q2 ∈ Q, where Rax = x ◦ a.

In this case T = (θ, θ, RbR
−1
a θ) is an isotopy between Q(·) and

P (◦).
Let Γ(◦) be the subgroup of the multiplication group G(◦) of a

quasigroup P (◦) corresponding to the centre congruence θP
z of P (◦)

(in the sense of Theorem 1 from [4]). Then we can give the following
statement that is equivalent to De�nition 2 (see also Corollary 3 in
[4]).
Proposition 1. A quasigroup Q(·) is a central isotope of a quasigroup
P (◦) i� there are a bijection θ : Q → P and α ∈ Γ(◦) such that

αθ(q1q2) = θq1 ◦ θq2 (9)

for all q1, q2 ∈ Q.

A substitution α on P (a bijection θ) we shall call a central tor-
sion (a central shift) of the central isotopy de�ned by (9). By a cen-
tral torsion of a quasigroup P (◦) we mean its isotope P (∗), where
x ∗ y = α−1(x ◦ y) for all x, y ∈ P , α ∈ Γ(◦).
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From Proposition 1 we have
Corollary 1. If a quasigroup Q(·) is a central isotope of P (◦), then
Q(·) ∼= P (∗), where P (∗) is a central torsion of P (◦).
Proof. Indeed, let x ∗ y = α−1(x ◦ y), α ∈ Γ(◦), for all x, y ∈ P . From
(9) it follows that

q1q2 = θ−1α−1(θq1 ◦ θq2) = θ−1(θq1 ∗ θq2)

i.e. Q(·) ∼= P (∗).

Thus, a central isotopy is a sequential taking of a central torsion
and an isomorphism.

Now we shall prove the following
Theorem 1. An equasigroup Q(·, \, /) is centrally isotopic to an
equasigroup P (◦, \\, //) i� the quasigroup Q(·) is centrally isotopic
to P (◦).
Proof. Let an equasigroup Q(·, \, /) be a central isotope of P (◦, \\, //),
then as it was shown above, the quasigroup Q(·) is a central isotope
of P (◦) (see (4)).

Conversely, let a quasigroup Q(·) be centrally isotopic to a quasi-
group P (◦), i.e.

θq1 ◦ θq2 = RbR
−1
a θ(q1q2) (10)

for all q1, q2 ∈ Q where θ is a central shift, (a, b) ∈ θP
z . But then for

all q1, q2 ∈ Q

R−1
a θ(q1q2) = R−1

b (θq1 ◦ θq2) = p ∈ P
and

θ(q1q2) = p ◦ a, θq1 ◦ θq2 = p ◦ b.
Whence,

(θ(q1q2), θq1 ◦ θq2) = (p, p) ◦ (a, b) ∈ P̂ ◦ (a, b).
It means that all pairs of such form lie in the same class of the congru-
ence V centering the centre congruence of the equasigroup P (◦, \\, //)
since from (a, b) ∈ θP

z it follows that (a, b) ∈ ζ(·, \, /) (see Theorem
1 in [5]). Hence, the condition of De�nition 1 is satis�ed for the op-
erations (·) and (◦).We shall show that this condition holds for the
operations (/) and (//) ((\) and (\\)).
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From (10) it follows that

RaR
−1
b (θq1 ◦ θq2) = θ(q1q2) (11)

for all q1, q2 ∈ Q. But (a, b) ∈ θP
z , so by Theorem 1 from [4]

RaR
−1
b ∈ Γ(◦) ⊆ Λ∗ ∩R∗.

If λ∗ ∈ Γ(◦), then by (3)
λ = R−1

x λ∗Rx ∈ Γ(◦)

for any x ∈ P since Γ(◦) is a normal subgroup in the multiplication
group G(◦) of P (◦). So λ = RcR

−1
d for some pair (c, d) ∈ θP

z by
Corollary 3 in [4]. Now by the de�nition of a left regular mapping (see
(2)) we get

RaR
−1
b (θq1 ◦ θq2) = RcR

−1
d θq1 ◦ θq2

for all q1, q2 ∈ Q. Taking into account (11), we have

θ(q1q2) = RcR
−1
d θq1 ◦ θq2,

i.e. T1 = (RcR
−1
d θ, θ, θ) is an isotopy between Q(·) and P (◦). But

then T ′
1 = (θ, θ, RcR

−1
d ) is an isotopy between Q(/) and P (//).

Indeed, if αx ◦ βy = γ(xy) = γz, then γz//βy = αx = α(z/y), i.e.
(α, β, γ) → (γ, β, α).

Therefore,
RcR

−1
d θ(q1/q2) = θq1//θq2

and, as in the �rst case, we receive that

(θ(q1/q2), θq1//θq2) = (p1 ◦ d, p1 ◦ c) ∈ P̂ ◦ (d, c)

for (d, c) ∈ θP
z and for all q1, q2 ∈ Q, i.e. all pairs (θ(q1/q2), θq1//θq2)

lie in the same class. This means that the condition of De�nition 1
holds for the operations (/) and (//).

It remains to check this condition for the operations (\) and (\\).
Since Γ(◦) is a normal subgroup in G(◦) and RaR

−1
b ∈ Γ(◦) ⊆ R∗,

then RaR
−1
b = ρ∗ and ρ = L−1

x ρ∗Lx ∈ Γ(◦) for any x ∈ P (see (3)). By
Corollary 3 from [4] there exists a pair (s, t) ∈ θP

z such that ρ = RsR
−1
t

and so
RaR

−1
b (θq1 ◦ θq2) = θq1 ◦RsR

−1
t θq2
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by the de�nition of a right regular mapping (see (2)). Taking into
account (11), we get

θ(q1q2) = θq1 ◦RsR
−1
t θq2

and T2 = (θ, RsR
−1
t θ, θ) is an isotopy between Q(·) and P (◦). But

then T ′
2 = (θ, θ, RsR

−1
t θ) is an isotopy between Q(\) and P (\\) and

so
R−1

t θ(q1 \ q2) = R−1
s (θq1 \ \θq2).

From this equality it follows that

(θ(q1 \ q2), θq1 \ \θq2) ∈ P̂ ◦ (t, s), (t, s) ∈ θP
z .

This proves that Q(·, \, /) is an isotope of P (◦, \\, //) with the
central shift θ in the sense of De�nition 1.

From this proof and Proposition 1 the following result follows.
Corollary 2 The transformation of central isotopy of quasigroups is
invariant with respect to parastrophy of quasigroups (i.e. with respect
to passage to a conjugate quasigroup).
Corollary 3. If a quasigroup Q(·) is a central isotope of a quasigroup
P (◦), then there exist substitutions α, α1, α2 from Γ(◦) such that

αθ(q1q2) = θq1 ◦ θq2,

θ(q1q2) = α1θq1 ◦ θq2,

θ(q1q2) = θq1 ◦ α2θq2

for all q1, q2 ∈ Q.

Using now Theorem III.4.5 from [8], we get
Corollary 4. Central isotopy of quasigroups is an equivalence rela-
tion.

Theorem III.4.5 in [8] describes how a central shift acts at the
centre congruence. The following statement shows how a central shift
and a central torsion act at the Zh-centres, i.e. at the classes of the
centre congruence.
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Proposition 2. Let a quasigroup Q(·) be a central isotope of P (◦) with
a central shift θ and a central torsion α, Zh(·), h ∈ Q (Zh(◦), h ∈ P )
be the h-centre of Q(·) (of P (◦)). Then

αZh(◦) = Zh(◦), θZh(·) = Zθh(◦).
Proof. Let α ∈ Γ(◦). Taking into account Theorem 1 in [4], we get

αZh(◦) = α(Γ(◦)h) = Γ(◦)h = Zh(◦),
since α ∈ Γ(◦). Comparing Theorem 1 from [4] and Theorem III.4.5
from [8], we get θ̂θz(·) = θz(◦), where

θ̂ : Q×Q → P × P ; (q1, q2) 7→ (θq1, θq2).

Then for any h ∈ Q

θ̂(Zh(·), h) = (θZh(·), θh) ∈ θz(◦)
and so θZh(·) ⊆ Zθh(◦). But θz(·) = θ̂−1θz(◦), (Zθh(◦), θh) ⊆ θz(◦).
From these equalities it follows that θ−1Zθh(◦) ⊆ Zh(·) . Hence,
θZh(·) = Zθh(◦).

According to Proposition III.4.6 from [8], centrally isotopic equasi-
groups have isomorphic multiplication groups. It is found that an
analogous result is true for subgroups Γ(·) and Γ(◦).
Proposition 3. If a quasigroup Q(·) is centrally isotopic to a quasi-
group P (◦) with a central shift θ, then Γ(·) ∼= Γ(◦), namely, Γ(·) =
θ−1Γ(◦)θ.
Proof. Let x · y = θ−1α−1(θx ◦ θy), α ∈ Γ(◦). Then Ra = θ−1α−1R̃θaθ

for all a ∈ Q, where Ra (R̃θa) is a right translation in Q(·) (in P (◦)).
From the last equality we get

RaR
−1
b = θ−1α−1R̃θaR̃

−1
θb αθ, a, b ∈ Q.

Using this equality, Corollary 3 from [4] and Theorem III.4.5 from [8],
we obtain

Γ(·) = θ−1α−1Γ(◦)αθ = θ−1Γ(◦)θ,

since α ∈ Γ(◦).
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The centre Z(·) of a loop Q(·), i.e. the set of a ∈ Q such that

ax · y = a · xy, x · ya = xy · a, ax = xa

for all x, y ∈ Q is a subloop of Q(·) (cf. [7]). Note that Z(·) is also the
h-centre for h = e, where e is the unit of the loop Q(·) (cf. [2]).

It is known that every quasigroup is isotopic to a loop. This result
is not true in the case of central isotopy.
Theorem 2. A quasigroup P (◦) is centrally isotopic to a loop i� there
exists an element a ∈ P such that R̃a = L̃a ∈ Γ(◦) where R̃ax = x ◦ a,
L̃ax = a ◦ x.
Proof. By Corollary 1 it su�ces to consider the case when a central
shift is equal to the identity mapping. Let a quasigroup P (◦) be
centrally isotopic to a loop P (·) with a central torsion α. Then P (·)
is centrally isotopic to the quasigroup P (◦) with the central torsion
α−1: xy = α(x ◦ y), α ∈ Γ(·), since by Proposition 3 Γ(·) = Γ(◦). Let
e be the unit of the loop P (·), then

e · x = x · e = α(e ◦ x) = α(x ◦ e) = x,

i.e. R̃e = L̃e = α−1 ∈ Γ(◦). Conversely, let there exist an element
a ∈ P in quasigroup P (◦) such that R̃a = L̃a = α ∈ Γ(◦). Then the
quasigroup P (·): xy = α−1(x ◦ y) is a loop with the unit a.
Corollary 5. Every loop Q(◦) with nontrivial centre Z(◦) is centrally
isotopic to a loop with a nonidentical central torsion.
Proof. Indeed, if a ∈ Z(◦) 6= ∅, then Ra = La ∈ Γ(◦) since by Corollary
3 from [4] Γ(◦) = {RaR

−1
e = Ra, a ∈ Z(◦) = Ze} where e is the unit

of Q(◦) and the quasigroup Q(·): x · y = R−1
a (x ◦ y) is a loop with

the unit a , centrally isotopic to the loop Q(◦). It means that Q(◦) is
a central isotope of Q(·) with the central torsion R−1

a ∈ Γ(◦), since in
this case Γ(·) = Γ(◦) by Proposition 3.
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Incidence systems over groups that can be
supplemented up to projective planes

Eugene A. Kuznetsov

Abstract
In the present article incidence systems over groups, which can be supple-

mented up to the projective planes by two lines, are studied. All such groups and
projective planes are described.

1. Introduction
At present di�erent methods of determination of projective planes
over some algebraic systems are known. Algorithms of constructing
projective planes over �elds, near-�elds, semi�elds [3, 4], complete
systems of orthogonal Latin squares [4, 1], ternary systems [3, 4, 1, 6],
loop transversals in groups [10] etc. are described. In process of �nding
the new projective planes researchers more often abandon traditional
methods of describing projective planes, and use construction of such
incidence systems over universal algebras [2, 5, 11, 13] (in particular,
over groups [14, 12]), that can be supplemented up to projective planes
in some natural way.

One of the most natural methods of constructing the incidence
system over group, that can be supplemented up to projective plane,
consists of the following:

�points� of incidence system are all elements of group G,
�lines� of incidence system are left (right) cosets by some

1991 Mathematics Subject Classi�cation: 20N15
Keywords: group, projective plane, incidence system
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collection of subgroups of group G, and incidence relation
is a belonging relation. This incidence system is supple-
mented up to projective plane π by the addition of all
points of l lines.

It is shown in [14] that if l = 1 then the group G is an elementary
abelian group and projective plane π is the desarguesian plane. It is
shown in [12] that if l = 2 then over group GK of linear transformations
of a �eld K a projective plane can be constructed (by the method
mentioned above), which is the desarguesian plane. In general case, if
l = 2, the problem of describing all groups, that can be supplemented
up to projective planes by the method mentioned above, is open. The
solution of this problem will be given in the present article.

2. Necessary de�nitions and notations
De�nition 1. A DK-ternar is a system < E, (x, t, y), 0, 1 > (where
(x, t, y) is a ternary operation on the set E and 0, 1 are the distin-
guished elements in E), if the following conditions hold:

1. (x, 0, y) = x,
2. (x, 1, y) = y,
3. (x, t, x) = x,
4. (0, t, 1) = t,
5. if a, b, c, d are arbitrary elements from E and a 6= b, then the

system {
(x, a, y) = c
(x, b, y) = d

has a unique solution in E × E.
6. E is �nite or
(a) if a, b, c are arbitrary elements from E and c 6= 0, (c, a, 0) 6= b,

then the system{
(x, a, y) = b
(x, t, y) 6= (c, t, 0) ∀t ∈ E

has a unique solution in E × E.
(b) if a, b are arbitrary elements from E and b 6= 0, then the

inequality (a, t, b) 6= (x, t, 0) ∀t ∈ E has a unique solution
in E.



Incidence systems over groups 37

De�nition 2. A group G is called sharply double transitive permuta-
tion group on a set E, if the following conditions hold:

1. For any two pairs (a, b) and (c, d) (where a 6= b, c 6= d) of ele-
ments from E there exists an unique permutation α ∈ G such
that α(a) = c, α(b) = d.

2. Set E is �nite, or for any elements a, b ∈ E (where a 6= b) there
exists an unique �xed-point-free permutation α ∈ G such that
α(a) = b.

De�nition 3. An incidence system Σ(G) of left (right) cosets over
the system Σ of some subgroups of a group G is an incidence system
< A, L, I > such that:

1. �Points� from A (ΣG-points) are all elements of the group G.
2. �Lines� from L (ΣG-lines) are left (right) cosets by the sub-

groups from Σ.
3. An incidence relation is a belonging relation.

3. Main theorems
The main results of the present article are contained in the following
two theorems.
Theorem 1. Let G be a group and Σ be a such system of subgroups of
the group G that system Σ(G) can be supplemented up to some projec-
tive plane π by all points of two lines. Then the following statements
are true:
1. Group G is isomorphic to a sharply double transitive permutation

group on some set E.
2. Plane π is a plane dual to the translations plane.
Theorem 2. Let conditions of Theorem 1 hold and all subgroups from
Σ are centralizators of non-identity elements of group G. Then the
following statements are true:
1. Group G is isomorphic to the group GK of linear transformations

of some �eld K.
2. Plane π is the desarguesian plane.

Theorem 2 gives a negative answer to the problem 4.70 from [7].
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4. Preliminary statements
Lemma 3. Let π be an arbitrary projective plane. On plane π coor-
dinates (a, b), (m), (∞) for points and [a, b], [m], [∞] for lines (where
set E is some set with the distinguished elements 0, 1 and a, b,m ∈ E)
can be introduced such that if we de�ne a ternary operation (x, t, y) on
the set E by the formula

(x, t, y) = z
def⇐⇒ (x, y) ∈ [t, z],

then system < E, (x, t, y), 0, 1 > is a DK-ternar.

Proof. See Lemma 1 in [9].

De�ne the following binary operation (x,∞, y) on the set E:

(x,∞, 0)
def
= x,{

(x,∞, y) = u
(x, y) 6= (u, 0)

def⇐⇒ (x, t, y) 6= (u, t, 0) ∀t ∈ E.

According to condition 6(b) of De�nition 1, the operation (x,∞, y)
is de�ned correctly.

Lemma 4. Operation (x,∞, y) satis�es the following conditions:

1.

{
(x,∞, y) = (u,∞, v)
(x, y) 6= (u, v)

⇐⇒ (x, t, y) 6= (u, t, v) ∀t ∈ E.

2. (x,∞, x) = 0.

3. if a, b, c are an arbitrary elements from E, then system{
(x, a, y) = b
(x,∞, y) = c

has a unique solution in E × E.

Proof. See Lemma 4 in [9].

Let < E, (x, t, y), 0, 1 > be a DK-ternar. Let (a, b), (m), (∞) be
points and [a, b], [m], [∞] (where a, b, m ∈ E) be lines. We de�ne the
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following incidence relation I between points and lines:

(a, b) I [c, d] ⇐⇒ (a, c, b) = d
(a, b) I [d] ⇐⇒ (a,∞, b) = d

(a) I [c, d] ⇐⇒ a = c
(a) I [∞], (∞) I [d], (∞) I [∞]

(a, b) I [∞] ⇐⇒ (a) I [d] ⇐⇒ (∞) I [c, d] ⇐⇒ false.

(1)

Lemma 5. The incidence system < X, L, I >, where
X = {(a, b), (m), (∞) | a, b, m ∈ E},
L = {[a, b], [m], [∞] | a, b, m ∈ E},
I - incidence relation de�ned in (1),

is a projective plane.

Proof. See Lemma 5 in [9].

5. Proof of Theorem 1
Let conditions of Theorem 1 hold.

Lemma 6. All subgroups from the set Σ of subgroups of a group G
are exactly all ΣG-lines on a projective plane π, which are incident to
ΣG-point E (E is the unit of G).

Proof. Since the unit of a group is included to any of its subgroup,
ΣG-point E is incident to all ΣG-lines-subgroups of the plane π, i.e.
it is incident to all subgroups from Σ. Because cosets by the same
subgroup in the group G are not intersected, ΣG-point E can not be
incident to some ΣG-line, which di�ers from ΣG-lines-subgroups.

De�ne on the plane π coordinates such that the following condi-
tions hold:

1. ΣG-point E has coordinates (0, 1).

2. Supplementary lines L1 and L2 of the plane π (which is not
ΣG-lines) have coordinates [0] and [∞].
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It can be done in the following way, assuming by de�nition:

L1 = [0], L2 = [∞], L1 ∩ L2 = (∞).

Let M1,M2 be arbitrary lines on plane π, which are incident to the
ΣG-point E and are not incident to the point (∞). Let

O = M1 ∩ L1, I = M2 ∩ L1, X = M1 ∩ L2, Y = M2 ∩ L2.

Points X, Y, O, I are four points in a general position on the plane
π (this means that any line contains at most two of these points).
Introducing coordinates on π according to Lemma 1 from [9] (see also
Lemma 3), we obtain the necessary coordinatization.

According to coordinatization introduced above, we obtain

M1 = [0, 0], M2 = [1, 1],

and ΣG-lines M1 and M2 contain exactly by two supplemented points
(i.e. points, which are incident to supplemented lines of the plane π)
- points (0, 0) and (0), (1, 1) and (1), correspondingly.

We examine the following two classes of �parallel� lines on the plane
π - cosets by subgroups M1 and M2:

M
(0)
1 = M1, M

(1)
1 , ... M

(k)
1 , ...

M
(0)
2 , M

(1)
2 = M2, ... M

(m)
2 , ...

Since cosets M
(i)
1 (M (j)

2 ) either don't intersect or coincide, then as lines
of π, they can intersect only in supplemented points of the plane π.
Lemma 7. All lines M

(i)
1 ( M

(j)
2 ) intersect in the same supplemented

point of the plane π.
Proof. Assume the contrary, i.e. there exist two di�erent lines M

(i)
1

and M
(j)
1 such that

M1 ∩M
(i)
1 = (0, 0), M1 ∩M

(j)
1 = (0).

But lines M
(i)
1 and M

(j)
1 must intersect in a supplemented point of the

plane π too. We have:

(0, 0) ∈ M
(i)
1 =⇒ M

(i)
1 = [i, 0],

(0) ∈ M
(j)
1 =⇒ M

(j)
1 = [0, j].
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But the line [i, 0] is incident to only two supplemented points of π: the
point (0, 0) = [i, 0] ∩ [0] and the point (i) = [i, 0] ∩ [∞]. Analogously,
line [0, j] is incident to only two supplemented points of π: the point
(0) = [0, j] ∩ [∞] and the point (j, j) = [0, j] ∩ [0]. Since

(0, 0) = M1 ∩M
(i)
1 6= M

(j)
1 ∩M

(i)
1 6= M1 ∩M

(j)
1 = (0),

then (i) = M
(j)
1 ∩M

(i)
1 = (j, j) , which is a contradiction.

For the class of lines M
(j)
2 the proof is analogous.

We will suppose below that cosets by subgroups from the set Σ are
left cosets. Proof of Theorem 1 in the case of right cosets by subgroups
from the set Σ is analogous.

According to Lemma 5, only following four cases may take place:

Case 1. ⋂
i

M
(i)
1 = (0),

⋂
j

M
(j)
2 = (1).

Case 2. ⋂
i

M
(i)
1 = (0, 0),

⋂
j

M
(j)
2 = (1, 1).

Case 3. ⋂
i

M
(i)
1 = (0),

⋂
j

M
(j)
2 = (1, 1).

Case 4. ⋂
i

M
(i)
1 = (0, 0),

⋂
j

M
(j)
2 = (1).

Case 2 is reduced to Case 1 by rearrangement of supplemented
lines L1 = [0] and L2 = [∞] before coordinatization of the plane π.
Cases 3 and 4 are impossible. Indeed, if Case 3 holds, then

⋂
i

M
(i)
1 = (0) =⇒ M

(i)
1 = [0, i],

⋂
j

M
(j)
2 = (1, 1) =⇒ M

(j)
2 = [j, 1].

So we obtain M
(1)
1 = [0, 1] = M

(0)
2 , i.e. for some g1, g2 ∈ G

g1 · [0, 0] = g1 ·M (0)
1 = g2 ·M (1)

2 = g2 · [1, 1].

Whence we obtain [1, 1] = (g−1
2 g1) · [0, 0].
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Because [0, 0] 6= [1, 1], then (g−1
2 g1) /∈ [0, 0] . So we have

e /∈ (g−1
2 g1) /∈ [0, 0] = [1, 1] 3 e.

That is a contradiction. Impossibility of Case 4 is shown analogously.
In Case 1 we have:

(0) ∈ M
(i)
1 =⇒ M

(i)
1 = [0, i],

(1) ∈ M
(j)
2 =⇒ M

(j)
2 = [1, j].

For M
(i)
1 = [0, i]

.
= Ai and M

(j)
2 = [1, j]

.
= Bj we have

A0 ∩B1 = [0, 0] ∩ [1, 1] = (0, 1)

Ai ∩Bj =

{
[0, i] ∩ [1, j], if i 6= j
[0, i] ∩ [1, i], if i = j

=

{
(i, j) ∈ G, if i 6= j
(i, i) /∈ G, if i = j.

Now let
at =

{
A0 ∩Bt, if t 6= 0
c0 = B0 ∩ A1, if t = 0

bt =

{
B1 ∩ At, if t 6= 1
c0 = B0 ∩ A1, if t = 1.

Obviously At = bt · A0 and Bt = at ·B1.

Lemma 8. The following statements are true:
1. (A0 · c0) ∩B1 = (B1 · c0) ∩ A0 = ∅.
2. (A0 · c0) ∩ A0 = (B1 · c0) ∩B1 = ∅.
3. At · c0 = Bt and Bt · c0 = At for t ∈ E.

Proof. 1. We prove only the �rst equality. The proof of the second
is analogous. Assume the contrary, i.e. that there exists an element
g0 ∈ G such that

g0 ∈ (A0 · c0) ∩B1 = (A0 · (A1 ∩B0)) ∩B1.

Then we obtain
{

g0 ∈ B1

g0 ∈ A0 · (A1 ∩B0)
⇐⇒





g0 = b ∈ B1

g0 ∈ (a · A1) ∩ (a ·B0)
a ∈ A0

⇐⇒
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{
a ∈ A0

B1 3 b = (a · A1) ∩ (a ·B0)
⇐⇒

{
a ∈ A0

a ·B0 = B1
⇐⇒

{
a−1 ∈ A0

B0 = a−1 ·B1
⇐⇒

{
a−1 ∈ A0

a−1 ∈ B0
=⇒ a−1 ∈ A0 ∩B0 = ∅.

We have obtained a contradiction.
2. As in the previous case assume that there exists an element

g0 ∈ G such that
g0 ∈ (A0 · c0) ∩ A0 = (A0 · (A1 ∩B0)) ∩ A0 .

Then {
g0 ∈ A0, g0 = a · c0

a ∈ A0, c0 = A1 ∩B0
⇐⇒

{
c0 ∈ B0

c0 = (a−1 · g0) ∈ A0 ,

which implies c0 = A0 ∩B0 = ∅. But this is impossible.
The obtained contradiction proves the �rst equality.
The proof of the second is analogous.
3. Observe that Bt = at ·B1 and at ∈ A0 for any t 6= 0.

According to statement 1 of the Lemma, for any t 6= 0 we have
(A0 · c0) ∩Bt = (at · a−1

t ) · ((A0 · c0) ∩ (at ·B1))

= at · ((a−1
t · A0 · c0) ∩B1)

= at · ((A0 · c0) ∩B1) = at · ∅ = ∅,
which gives

A0 · c0 = B0. (2)
As we have At = bt · A0 (where b1 = c0 and bt ∈ B1 for t 6= 1) for any
t, then from (2) we obtain

At · c0 = bt · A0 · c0 = bt ·B0 = Bα(t) . (3)
According to statement 2 of the Lemma, we have for any t

(At · c0)∩At = (bt ·A0 · c0)∩ (bt ·A0) = bt · ((A0 · c0)∩A0) = bt · ∅ = ∅,
which together with (3) implies Bα(t) ∩ At = ∅.

It means that Bα(t) = Bt for any t. Applying (3) we obtain
At · c0 = Bt, which completes the proof of the �rst equality. Anal-
ogously we can prove the second equality.
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Corollary 1. The following equality is true c0 = c−1
0 .

Proof. From the above Lemma
c2
0 = c0 · c0 = (A1 ∩B0) · c0 = (A1 · c0) ∩ (B0 · c0) = B1 ∩ A0 = e,

which gives c0 = c−1
0 .

Lemma 9. There exists a coordinatization of plane π such that it
satis�es all conditions mentioned above and the following equalities
hold:

[t, t] = bt · [0, 0] · b−1
t = bt · A0 · b−1

t

for any t ∈ E.

Proof. According to Lemma 6 and Corollary 1 we have

b0 · A0 · b−1
0 = e · A0 · e = A0 = [0, 0],

b1 · A0 · b−1
1 = c0 · A0 · c−1

0 = c0 · A0 · c0 = c0 ·B0 = B1 = [1, 1].

To determine the coordinatization of the plane π, we choose the ΣG-
lines M1 = A0 and M2 = B1 arbitrarily - they must only be incident
to the point (0, 1) and mustn't be incident to the point (∞). Let us
determine the new coordinatization of π, taking instead of ΣG-line
M2 some ΣG-line M3, which is incident to the point (0, 1), but is
not incident to the point (∞) and is di�erent from ΣG-lines M1 and
M2. This new coordinatization is determined in the same way as the
coordinatization described above. Using the analogous reasonings, we
obtain M3 = g0 ·M1 · g−1

0 .

But in the initial coordinatization for some t0 ∈ E we have
g0 ∈ bt0 · A0, i.e. g0 = bt0 · ak ,

where ak ∈ A0. Thus
M3 = (bt0 · ak) ·A0 · (bt0 · ak)

−1 = bt0 · (ak ·A0 · a−1
k ) · b−1

t0 = bt0 ·A0 · b−1
t0 .

By the help of renaming of points (a, a) (a 6= 0, 1), which are incident
to the line [0], we obtain M3 = [t0, t0], i.e.

[t0, t0] = M3 = bt0 · A0 · b−1
t0

.
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Using the analogous reasonings for every ΣG-line Mi, which is inci-
dent to the point (0, 1) and is not incident to the point (∞), we obtain
[t, t] = bt · A0 · b−1

t for any t ∈ E. This completes our proof.

Let αx,y be the ΣG-point (x, y) = [0, x] ∩ [1, y] = Ax ∩By (x 6= y)

and let Ĝ be the representation of the group G determined by the
following permutations:

αx,y(t) = u
def⇐⇒ αx,y · At = Au. (4)

Lemma 10. The following statements are true:
1. The permutation group Ĝ is isomorphic to the group G.
2. αx,y(0) = x, αx,y(1) = y for any x 6= y from E.
3. For any �xed elements a, b ∈ E, (a 6= b), there exists an uniquely

determined permutation αu,v such that αu,v(0) = a, αu,v(1) = b.

4. For any �xed pairs (a, b), (c, d) ∈ E × E, (a 6= b, c 6= d), there
exists an uniquely determined permutation αu,v ∈ Ĝ such that

αu,v(a) = c, αu,v(b) = d.

5. For any �xed a, b ∈ E, (a 6= b), there exists an uniquely determined
�xed-point-free permutation αu,v such that αu,v(a) = b.

Proof. 1. As we can see from (4), the representation Ĝ is a represen-
tation of the group G by left cosets with respect to the subgroup A0.
According to Theorem 5.3.2 from [3], the kernel of this representation
is a subgroup H0 of G such that H0 ⊆ A0 and H0 C G.

Taking g = c0 = A1 ∩B0, we obtain

A0 ⊇ H0 = c0H0c
−1
0 ⊆ c0A0c

−1
0 = B1,

i.e.
H0 ⊆ A0 ∩B1 = e.

So representation (4) is the exact representation, and Ĝ w G.
2. We have

αx,y(0) = u ⇐⇒ αx,y · A0 = Au =⇒ αx,y ∈ Au.
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Directly from the de�nition of αx,y we obtain u = x, i.e. αx,y(0) = x.
By Lemma 6 we have

αx,y(1) = v ⇐⇒ αx,y · A1 = Av ⇐⇒ αx,y · A1 · c0 = Av · c0

⇐⇒ αx,y ·B1 = Bv =⇒ αx,y ∈ Bv.

This gives y = v, i.e. αx,y(1) = y.
3. Let a, b ∈ E, (a 6= b). Since αa,b(0) = a and αa,b(1) = b, then

the necessary permutation αu,v ∈ Ĝ exists and coincides with αa,b.
If there exists the other permutation αu,v ∈ Ĝ such that αu,v(0) = a,
αu,v(1) = b, then for the permutation αk,m = α−1

a,bαu,v we have:

αk,m(0) = α−1
a,bαu,v(0) = α−1

a,b(a) = 0,

αk,m(1) = α−1
a,bαu,v(1) = α−1

a,b(b) = 1.

Moreover, applying (4) and Lemma 6, we obtain
{

αk,m · A0 = A0

αk,m · A1 = A1
⇐⇒

{
αk,m ∈ A0

αk,m · A1 · c0 = A1 · c0
⇐⇒

{
αk,m ∈ A0

αk,m ·B1 = B1
⇐⇒

{
αk,m ∈ A0

αk,m ∈ B1
⇐⇒ αk,m = A0 ∩B1 = e.

Thus α−1
a,bαu,v = e, i.e. αu,v = αa,b. Hence the permutation αu,v is a

uniquely determined.
4. Let a, b, c, d ∈ E, a 6= b, c 6= d and αu0,v0

def
= αc,dα

−1
a,b. Then

αu0,v0(a) = αc,dα
−1
a,b(a) = αc,d(0) = c,

αu0,v0(b) = αc,dα
−1
a,b(b) = αc,d(1) = d,

i.e. we have proved the existence of necessary permutation αu,v ∈ Ĝ.
If αr,s ∈ Ĝ and αr,s(a) = c, αr,s(b) = d, then for the permutation

γ = αr,sαa,b we have

γ(0) = αr,sαa,b(0) = αr,s(a) = c,

γ(1) = αr,sαa,b(1) = αr,s(b) = d.

By the statement 3 of the Lemma we obtain γ ≡ αc,d , i.e.

αr,s = αc,dα
−1
a,b = αu0,v0 .
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This proves that the permutation αu,v is uniquely determined.
5. Let a, b ∈ E, a 6= b. Since

G =

(⋃

k∈E

[k, k]

)
∪ [(0,∞, 1)]

is the set of all ΣG-lines, which are incident to ΣG-point (0, 1), then
we can obtain the following equivalent systems (by Lemmas 6 and 7):

{
αx,y(a) = b
αx,y(t) 6= t ∀t ∈ E

⇐⇒
{

αx,y · Aa = Ab

αx,y · At 6= At ∀t ∈ E
⇐⇒

{
αx,y · ba · A0 = ba · A0

αx,y · bt · A0 6= bt · A0 ∀t ∈ E
⇐⇒

{
αx,y · ba ∈ Ab

αx,y · bt /∈ bt · A0 ∀t ∈ E

⇐⇒








a = 1, b 6= 1
αx,y · c0 ∈ Ab

αx,y /∈ btA0b
−1
t ∀t ∈ E




a 6= 1, b 6= a
αx,y · ba ∈ Ab

αx,y /∈ btA0b
−1
t ∀t ∈ E

⇐⇒

⇐⇒








a = 1, b 6= 1
αx,y ∈ Ab · c0 = Bb

αx,y /∈ btA0b
−1
t ∀t ∈ E




a 6= 1, b 6= a
αu,v = αx,y · ba ∈ Ab

b−1
a · αu,v /∈ (b−1

a bt)A0(b
−1
a bt)

−1 ∀t ∈ E

⇐⇒

⇐⇒








a = 1, b 6= 1
αx,y ∈ Bb

αx,y /∈ btA0b
−1
t ∀t ∈ E




a 6= 1, b 6= a
αu,v = αx,y · ba ∈ Ab

b−1
a · αu,v /∈ bt́′A0b

−1
t′ ∀t′ ∈ E

⇐⇒

⇐⇒








a = 1, b 6= 1
αx,y ∈ Bb

αx,y /∈ [t, t] ∀t ∈ E



a 6= 1, b 6= a
αu,v = αx,y · ba ∈ Ab

b−1
a · αu,v /∈ [t′, t′] ∀t′ ∈ E

⇐⇒
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⇐⇒








a = 1, b 6= 1
αx,y ∈ Bb

αx,y ∈ [(0,∞, 1)]



a 6= 1, b 6= a
αu,v = αx,y · ba ∈ Ab

b−1
a · αu,v ∈ [(0,∞, 1)]

⇐⇒

⇐⇒




{
a = 1, b 6= 1
αx,y = [1, b] ∩ [(0,∞, 1)]{
a 6= 1, b 6= a
αx,y = ([0, b] ∩ ba · [(0,∞, 1)]) · b−1

a

As we can see from the last system, the existence and uniqueness of
the necessary permutation αx,y in Ĝ is obvious.

The last lemma shows (according to De�nition 2) that the group
G is isomorphic to a sharply double transitive permutation group on
E.

By Theorem 20.7.1 from [3] the group G is isomorphic to the group

H = {αa,b|αa,b(x) = a + x · (b− a), b 6= a}

of linear transformations of some near�eld K =< E, +, ·, 0, 1 > (a def-
inition of a near�eld is given in [3, 9]). It is easy to see that the group
operation in G can be expressed by the operations of the near�eld K
in the following way:

αa,b · αc,d = αa+c·(b−a),a+d·(b−a). (5)

Now we consider the following ternary operation:

[x, t, y]
def
= x + t · (y − x),

[x,∞, y] = x− y.

Over D-ternar < E, [x, t, y], 0, 1 > a projective plane π∗ can be con-
structed (see Lemma 3), which is the plane dual to translation plane
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[3, 8]. The incidence relation I∗ on plane π∗ is determined by:

(a, b) I∗ [c, d] ⇐⇒ d = a + c · (b− a)
(a, b) I∗ [d] ⇐⇒ d = a− b

(a) I∗ [c, d] ⇐⇒ a = c
(a) I∗ [∞], (∞) I∗ [d], (∞) I∗ [∞]

(a, b) I∗ [∞] ⇐⇒ (a) I∗ [d] ⇐⇒ (∞)I∗[c, d] ⇐⇒ false.

(6)

Lemma 11. The initial plane π, which has been constructed over an
incidence system Σ(G) by supplementing two lines, is isomorphic to
the plane π∗.

Proof. According to Lemma 4, ΣG-point (0, 1) (the unit e of group
G) is incident only to ΣG-lines of π, which are subgroups from the
system Σ (i.e. lines [c, c], c ∈ E and [(0,∞, 1)]). Since G w H then
the point (0, 1) of the plane π∗ is incident to the lines [c, c], c ∈ E and
[−1] = [[0,∞, 1]]. Let
Mc = {αa,b·αu,v|(u, v)I∗[c, c], c be an arbitrary �xed element from E},

R = {αa,b · αz,w|(z, w)I∗[−1]},
where (a, b) is an arbitrary �xed point of the plane π∗, which is not
incident to the lines [0] and [∞]. In order to prove the isomorphism
of the planes π and π∗, it is su�cient to prove that the set Mc is a
line [c, d] on π∗ (for some d ∈ E) and the set R is a line [h] on π∗ (for
some h ∈ E). By the help of (5) and (6) we obtain

(k, l) ∈ Mc ⇐⇒
{

αk,l = αa,b · αu,v

(u, v)I∗[c, c]
⇐⇒





k = a + u · (b− a)
l = a + v · (b− a)
c = u + c · (v − u)

⇐⇒

k + c · (l − k) = a + u · (b− a) + c · (a + v · (b− a)− a− u · (b− a))
= a + u · (b− a) + c · (v − u) · (b− a)
= a + (u + c · (v − u)) · (b− a) = a + c · (b− a) = d,

i.e. (k, l)I∗[c, d].

Analogously,

(k, l) ∈ R ⇐⇒
{

αk,l = αa,b · αz,w

(z, w)I∗[−1]
⇐⇒





k = a + z · (b− a)
l = a + w · (b− a)
−1 = z − w

⇐⇒
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k − l = a + z · (b− a)− a− w · (b− a)
= (z − w) · (b− a) = (−1) · (b− a) = a− b = h,

i.e. (k, l)I∗[h], which completes our proof.

Theorem 1 follows from the above lemmas.

6. Proof of Theorem 2
Let the assumption of Theorem 2 be satis�ed.

Lemma 12. Let H = Ca(G) be the centralizer of a ∈ G, a 6= e. Then
for any h ∈ H −{e} we have Ch(G) = H and H is an abelian group.

Proof. It is evident that e, h ∈ Ch(G) for any h ∈ H −{e}. If h1 6= k2

and h1, h2 ∈ H − {e}, then
h1 ∈ Ca(G) ⇐⇒ h−1

1 ah1 = a ⇐⇒ a−1h1a = h1 ⇐⇒ a ∈ Ch1(G),

h2 ∈ Ca(G) ⇐⇒ h−1
2 ah2 = a ⇐⇒ a−1h2a = h2 ⇐⇒ a ∈ Ch2(G),

i.e. {e, a} ⊂ Ch1(G) ∩ Ch2(G).
But the centralizers Ch1(G) and Ch2(G) are lines in the plane π,

so either they coincide or they have no more than one common point.
Then we obtain

Ch1(G) ≡ Ch2(G) ≡ Ch(G)

for any h ∈ H − {e}. Since a ∈ Ca(G) = H then for any h ∈ H − {e}
we have H = Ch(G). So for any h1, h2 ∈ H

h1 ∈ H = Ch2(G) ⇐⇒ h−1
1 h2h1 = h2 ⇐⇒ h2h1 = h1h2,

i.e. H is an abelian group.

This means that all ΣG-lines [c, c] of the plane π are abelian groups.
According to (5) we have for any a, b ∈ E − {0} :

α0,a · α0,b = α0,b·a, (0, a)I∗[0, 0].

So multiplication of the near�eld K =< E, +, ·, 0, 1 > is commutative,
i.e. K is a �eld. Then the group G is isomorphic to the group GK
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of linear transformations of the �eld K. The plane π is isomorphic to
the plane π∗, which is constructed by the natural way over the �eld
K, i.e. it is desarguesian [3, 8].

The proof of Theorem 2 is complete.
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Invertible elements in associates and
semigroups. 1

Fedir Sokhatsky

Abstract

Some invertibility criteria of an element in associates, in particular in n-ary
semigroups, are given. As a corollary, axiomatics for polyagroups and n-ary groups
are obtained.

Invertible elements play a special role in the theory of n-ary groupo-
ids. For example, the structure of operations in an associate without
invertible elements is still open. However, in the associate of the type
(r, s, n) the structure of its operation is determined by Theorem 4
from [2] as soon as there exists at least one r-multiple invertible el-
ement in it. In particular, this theorem reduces the study of the
groupoid to the study of associate of the type (1, s, n) with invertible
elements. Since, as was shown in [3], a binary semigroup with an in-
vertible element is exactly a monoid, so we will take the characteristic
to introduce a notion of multiary monoid.

1. Necessary informations
Let (Q; f) be an (n + 1)-ary groupoid. The operation f and the
groupoid (Q; f) are called (i, j)-associative, if the identity

f(x0, . . . , xi−1, f(xi, . . . , xi+n), xi+n+1, . . . , x2n)

= f(x0, . . . , xj−1, f(xj, . . . , xj+n), xj+n+1, . . . , x2n).

1991 Mathematics Subject Classi�cation: 20N15
Keywords: polyagroup, invertible element, n-ary group
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holds in (G; f).

De�nition 1. A groupoid (Q; f) of the arity n + 1 is said to be an
associate of the type (r, s, n), where r divides s, s divides n, and n > s,
if it is (i, j)-associative for all (i, j) such, that i ≡ j ≡ 0 (mod r), and
i ≡ j (mod s). In an associate of the type (s, n), that is of the type
(1, s, n), the number s will be called a degree of associativity, and the
associative operation f will be called s-associative. The least of the
associativity degrees will be called a period of associativity.

The following theorem is proved in [4].

Theorem 1. Let (Q; f) be an associate of a type (r, s, n). If the words
w1 and w2 di�er from each other by bracketting only; the coordinate
of every f 's occurrence in the words w1 and w2 is divisible by r and
there exists an one-to-one correspondence between f 's occurrences in
the word w1 and those in the word w2 such that the corresponding
coordinates are congruent modulo s, then the formula w1 = w2 is an
identity in (Q; f).

Here the coordinate of the i-th occurrence of the symbol f in a
word w is called a number of all individual variables and constants,
appearing in the word w from the beginning of w to the i-th occurrence
of the operation symbol f .

To de�ne an invertible element we need the notion of a shift.
Let (Q; f) be an (n + 1)-ary groupoid. The notation i

a denotes a
sequence a, . . . , a (i times).

A transformation λi,a of the set Q, which is determined by the
equality

λi,a(x) = f(
i
a, x,

n−i
a ), (1)

is said to be an i-th shift of the groupoid (Q; f), induced by an element
a. Hence, the i-th shift is a partial case of the translation (see [1]). If
an i-th shift is a substitution of the set Q, then the element a is called
i-invertible. If an element a is i-invertible for all i multiple of r, then
it is called r-multiple invertible, when r = 1 it is called invertible. The
unit is always invertible, since, it determines a shift being an identity
transformation.
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The notion of an invertible element for binary and n-ary groupoids
coincides with a well known one. Namely, if (Q; ·) is a semigroup, and
a is its arbitrary invertible element, that is the shifts λ0,a and λ1,a

are substitutions of the set Q, then it is easy to prove (see [3]), that
the elements λ−1

0,a(a), λ−1
1,a(a) are right and left identity elements in the

semigroup. Therefore, λ−1
0,a(a) = λ−1

1,a(a) is an identity element, left
and right inverse elements of the element a are λ−2

1,a(a) and λ−2
0,a(a)

respectively. Thus, a−1 := λ−2
1,a(a) = λ−2

0,a(a) is an inverse element of a.
If an element a of a multiary groupoid is i-invertible, then the

element λ−1
i,a (a) coincides with the i-th skew element of a, which is

denoted by āi, where ā = ā0, and it is determined by the equality

f(
i
a, āi,

n−i
a ) = a.

The following two lemmas are proved in [2]

Lemma 2. If in an associate of the type (r, s, n) an element a is s-
multiple invertible and i ≡ 0 (mod s), then there exists a unique i-th
skew of the element a, and, in addition, the equality

ā = āi (2)

holds.

Lemma 3. In every associate of the type (r, s, n) for every s-multiple
invertible element of the element a and for all i ≡ 0 (mod s) the
following identities are true

f(
i
a, ā,

n−i−1
a , x) = x, f(x,

n−i−1
a , ā,

i
a) = x. (3)

2. Criteria of invertibility of elements
One of the main results of this article is the following.

Theorem 4. An element a ∈ Q is r-multiple invertible in an associate
(Q; f) of the type (r, s, n) i� there exists an element ā ∈ Q such that

f(ā, a, . . . a, x) = x, f(x, a, . . . a, ā) = x (4)

holds for all x ∈ Q.
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Proof. If an element a is r-multiple invertible in (Q; f), then the
relation (4) follows from (3) when i = 0.

Let the relationship (4) hold. To establish the invertibility of the
element a, we have to prove the existence of an inverse transformation
for every of the shifts induced by the element a. This follows from the
following lemma.
Lemma 5. Let (Q; f) be an associate of the type (r, s, n). If for a ∈ Q
there exists an element ā satisfying (4), then every i-th shift, induced by
a, has an inverse transformation, which can be found by the formulae

λ−1
0,a(x) = f

(
x,

n−s−1
a , ā,

s−1
a , ā

)
,

λ−1
n,a(x) = f

(
ā,

s−1
a , ā,

n−s−1
a , x

)
,

λ−1
i,a (x) = f

(
n−s−i

a , ā,
s−1
a , x,

i−1
a , ā

)
, when 0 < i 6 n− s,

λ−1
i,a (x) = f

(
ā,

n−i−1
a , x,

s−1
a , ā,

i−s
a

)
, when s 6 i < n.

(5)

Proof of Lemma. If i in (3) is a multiple of s, then

x
(4)
= f(ā,

n−1
a , x)

(4)
= f(ā,

i−1
a , f(

n
a, ā),

n−i−1
a , x)

Th1
= f(f(ā,

n
a),

i−1
a , ā,

n−i−1
a , x)

(4)
= f(

i
a, ā,

n−i−1
a , x).

The other relationships from (3) are proved by the same way:

x
(4)
= f(x,

n−1
a , ā)

(4)
= f(x,

n−i−1
a , f(ā,

n
a),

i−1
a , ā)

Th1
= f(x,

n−i−1
a , ā,

i−1
a , f(

n
a, ā))

(4)
= f(x,

n−i−1
a , ā,

i
a).

Let us prove that the transformation λ−1
0,a, which is determined by the

equality (5) is inverse to λ0,a.

λ−1
0,aλ0,a(x)

(5)
= f(λn,a(x),

n−s−1
a , ā,

s−1
a , ā)

(1)
= f(f(x,

n
a),

n−s−1
a , ā,

s−1
a , ā)

Th1
= f(x,

n−s−1
a , f(

n
a, ā),

s−1
a , ā)

(3)
= f(x,

n−1
a , ā)

(3)
= x ,

λ0,aλ
−1
0,a(x)

(5)
= λ0,af(x,

n−s−1
a , ā,

s−1
a , ā)

(1)
= f(f(x,

n−s−1
a , ā,

s−1
a , ā),

n
a)

Th1
= f(x,

n−s−1
a , ā,

s−1
a , f(ā,

n
a))

(3)
= f(x,

n−s−1
a , ā,

s
a)

(3)
= x.
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Hence λ0,aλ
−1
0,a = λ−1

0,aλ0,a = ε, where ε is the identity mapping. Thus,
the transformation λ−1

0,a, determined by the equality (5), is inverse to
the shift λ0,a. Analogously one can prove the other equalities from
(5).

λ−1
n,aλn,a(x)

(5)
= f(ā,

s−1
a , ā,

n−s−1
a , λn,a(x))

(1)
= f(ā,

s−1
a , ā,

n−s−1
a , f(

n
a, x))

Th1
= f(ā,

s−1
a , f(ā,

n
a),

n−s−1
a , x)

(3)
= f(ā,

n−1
a , x)

(3)
= x ,

λn,aλ
−1
n,a(x)

(5)
= λn,af(ā,

s−1
a , ā,

n−s−1
a , x)

(1)
= f(

n
a, f(ā,

s−1
a , ā,

n−s−1
a , x))

Th1
= f(f(

n
a, ā),

s−1
a , ā,

n−s−1
a , x)

(3)
= f(

s
a, ā,

n−s−1
a , x)

(3)
= x.

Let number i 6 n− 3 be a multiple of r. Then

λi,aλ
−1
i,a (x)

(5)
= f(

i
a, f(

n−s−i
a , ā,

s−1
a , x,

i−1
a , ā),

n−i
a )

(3)
= f(

i
a, f(

n−s−i
a , ā,

s−1
a , x,

i−1
a , ā),

n−i−1
a , f(

n
a, ā))

Th1
= f(f(

n−s
a , ā,

s−1
a , x),

i−1
a , f(ā,

n
a),

n−i−1
a , ā) =

(3)
= f(f(

n−s
a , ā,

s−1
a , x),

n−1
a , ā)

(3)
= f(x,

n−1
a , ā)

(3)
= x.

If i = n− s, then the equality (5) de�nes the transformation

λ−1
n−s,a(x) = f(ā,

s−1
a , x,

n−s−1
a , ā) ,

which implies

λ−1
n−s,aλn−s,a(x)

(1)
= f(ā,

s−1
a , f(

n−s
a , x,

s
a),

n−s−1
a , ā)

Th1
= f(f(ā,

n−1
a , x),

n−1
a , ā)

(3)
= f(x,

n−1
a , ā)

(3)
= x.

If i < n− s, then

λ−1
i,aλi,a(x)

(5)
= f(

n−s−i
a , ā,

s−1
a , f(

i
a, x,

n−i
a ),

i−1
a , ā)

(3)
= f(f(ā,

n
a),

n−s−i−1
a , ā,

s−1
a , f(

i
a, x,

n−i
a ),

i−1
a , ā)

Th1
= f(f(ā,

n−i−1
a , f(

n−s
a , ā,

s
a),

i−1
a , x),

n−1
a , ā)

(3)
= x.
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If i > s, then

λi,aλ
−1
i,a (x)

(5)
= f(

i
a, f(ā,

n−i−1
a , x,

s−1
a , ā,

i−s
a ),

n−i
a )

(3)
= f(f(ā,

n
a),

i−1
a , f(ā,

n−i−1
a , x,

s−1
a , ā,

i−s
a ),

n−i
a )

Th1
= f(f(ā,

i−1
a , f(

n
a, ā),

n−i−1
a , x),

s−1
a , ā,

n−s
a )

(3)
= x.

To prove λ−1
i,aλi,a(x) = ε, we consider two cases: i = s and i > s. If

i = s, then (5) can be rewritten as λ−1
s,a(x) = f(ā,

n−s−1
a , x,

s−1
a , ā).

Therefore we get

λ−1
s,aλs,a(x)

(1)
= f(ā,

n−s−1
a , f(

s
a, x,

n−s
a ),

s−1
a , ā)

Th1
= f(f(ā,

n−1
a , x),

n−1
a , ā)

(3)
= f(x,

n−1
a , ā)

(3)
= x.

If i > s, then

λ−1
i,aλi,a(x)

(5)
= f(ā,

n−i−1
a , f(

i
a, x,

n−i
a ),

s−1
a , ā,

i−s
a )

(3)
= f(ā,

n−i−1
a , f(

i
a, x,

n−i
a ),

s−1
a , ā,

i−s−1
a , f(

n
a, ā))

Th1
= f(f(ā,

n−1
a , x),

n−i−1
a , f(

s
a, ā,

n−s
a ),

i−1
a , ā)

(3)
= x.

The lemma and the theorem has been proved.

Since for r = s = 1 we obtain an (n + 1)-ary semigroup, then the
following corollary is true.

Corollary 1. An element a ∈ Q is invertible in an (n + 1)-ary semi-
group (Q; f) i� there exists an element ā ∈ Q such that (4) holds for
all x ∈ Q.

3. Monoids and invertible elements
In the associate of the type (r, s, n) the structure of its operation is
determined by Theorem 4 from [2] as soon as there exists at least one
r-multiple invertible element in it. In particular, this theorem implies
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(see Corollary 11 in [2]) that the study of the groupoid reduces to the
study of an associate of the type (1, s, n) with invertible elements, that
is why we will consider the last ones only. Since, as it was shown above,
a binary semigroup with an invertible element is exactly a monoid, so
we will use this characteristic to introduce its generalization and we
will call it invert (a multiary monoid was called a semigroup with an
identity element).

Since every invertible element of an invert determines some de-
composition monoid, natural questions on the relations between the
algebraic notions for a monoid and decomposition monoids as well as
about relations between di�erent decompositions of the same monoid
arise. Here we will consider this relation between the sets of invertible
elements.

De�nition 2. An associate of the type (1, s, n) containing at least
one invertible element will be called an invert of the type (s, n).

When s = 1, then an invert is an (n+1)-ary semigroup containing
at least one invertible element. So, every (n + 1)-ary monoid is an
invert.

If an invert has at least one neutral element e, then, as follows from
the results given below, the automorphism of its e-decomposition is
identical, therefore its associativity period is equal to one, that is, such
invert is a monoid. Every (n + 1)-ary group is an invert, since every
its element is invertible.

The next statement, which follows from Theorem 4 in [2], gives a
decomposition of the operation of an invert.

Theorem 6. Let (Q; f) be an (n + 1)-ary invert of the associativity
period s. Then for every its invertible element 0 there exists a unique
triple of operations (+, ϕ, a) such, that (Q; +) is a semigroup with a
neutral element 0, an automorphism ϕ and an invertible element a,
which satis�es the following relations:

ϕn(x) + a = a + x, ϕs(a) = a, (6)
f(x0, x1, . . . , xn) = x0 + ϕ(x1) + ϕ2(x2) + · · ·+ ϕn(xn) + a. (7)

And conversely, if an endomorphism ϕ and an element a of an
semigroup (Q; +) are connected by the relations (6), then the groupoid
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(G; f) determined by the equality (7) is an (n+1)-ary associate of the
associativity degree s.

We will use the following terminology: (Q; +) is called a monoid
of the 0-decomposition; ϕ is said to be an automorphism of the 0-
decomposition; a is called a free member of the 0-decomposition; +,
ϕ, a are called components of the 0-decomposition; and (Q; +, ϕ, a) is
said to be an algebra of the 0-decomposition of the invert (Q; f).

Lemma 7. Let k be a nonnegative integer, which is not greater than
n and is a multiple of s, 0 is an arbitrary invertible element of the
invert (Q; f), then the components of its 0-decomposition are uniquely
determined by the following equalities

x + y = f(x,
k−1

0 , 0̄,
n−k−1

0 , y);

a = f(0, 0, . . . , 0); −a = 0̄;

ϕi(x) = λ−1
0,0λi,0(x) = f(

i

0, x,
n−i−1

0 , 0̄);

ϕ−i(x) = λ−1
n,0λn−i,0(x) = f(0̄,

n−i−1

0 , x,
i

0)

(8)

for all i = 1, . . . , n− 1.

Proof. In [2] the �rst three of the equalities were proved. Since n
divides s, then (6) implies ϕn(a) = a, therefore

ϕn(0̄) = ϕn(−a) = −ϕn(a) = −a = 0̄.

The transformation ϕ is an automorphism of the semigroup (Q; f),
therefore ϕ(0) = 0 and

ϕi(x) = ϕi(x)− a + a = 0 + ϕ(0) + · · ·+ ϕi−1(0) + ϕi(x)+

+ϕi+1(0) + · · ·+ ϕn−1(0) + ϕn(0̄) + a
(6)
= f(

i

0, x,
n−i−1

0 , 0̄).

Let us now make use of the relationships (5):

λ−1
0,0λi,0(x)

(5)
= f(f(

i

0, x,
n−i

0 ),
n−s−1

0 , 0̄,
s−1

0 , 0̄)

Th1
= f(

i

0, x,
n−i−1

0 , f(
n−s

0 , 0̄,
s−1

0 , 0̄))
(3)
= f(

i

0, x,
n−i−1

0 , 0̄)
(7)
= ϕi(x).
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λ−1
n,0λn−i,0(x)

(5)
= f(0̄,

s−1

0 , 0̄,
n−s−1

0 , f(
n−i

0 , x,
i

0)) =

Th1
= f(f(0̄,

s−1

0 , 0̄,
n−s

0 ),
n−i−1

0 , x,
i

0)
(3)
= f(0̄,

n−i−1

0 , x,
i

0)
(7)
= 0̄ + ϕ(0) + · · ·+ ϕn−i(x) + ϕn−i+1(0) + · · ·+ ϕn(0) + a
(6)
= −a + ϕn(ϕ−i(x)) + a

(6)
= ϕ−i(x).

The lemma is proved.

Corollary 2. Under the notations of Theorem 6 the associativity pe-
riod of the invert is equal to the least of the numbers s, such that
ϕs(a) = a, i.e. it is equal to the length of the orbit of the element a,
when we consider the action of the cyclic group 〈ϕ〉 generated by the
automorphism ϕ.

If an element x is invertible in an a-decomposition monoid, then
its inverse element will be denoted by −x〈a〉 or by x−1

〈a〉 depending on
additive or multiplicative notation of the a-decomposition monoid. It
should be noted that the element −x〈a〉 is uniquely determined by the
elements a and x.

Theorem 8. An element of an invert will be invertible i� it is invert-
ible in one (hence, in every) of the decomposition monoids.

Proof. Let (Q; f) be an invert of the type (s, n) with an invertible
element 0 and (Q; +) be a 0-decomposition monoid. Let x be invertible
in (Q; f) and let

−x〈0〉 := f(0,
n−s−1

x , x̄,
s−1
x , 0). (9)

To prove that the element −x〈0〉 is inverse to x, we will use the equality
(8) when k = s.

x + (−x〈0〉)
(8)
= f(x,

s−1

0 , 0̄,
n−s−1

0 ,−x〈0〉)

(9)
= f(x,

s−1

0 , 0̄,
n−s−1

0 , f(0,
n−s−1

x , x̄,
s−1
x , 0))

Th1
= f(f(x,

s−1

0 , 0̄,
n−s

0 ),
n−s−1

x , x̄,
s−1
x , 0)

(3)
= f(

n−s
x , x̄,

s−1
x , 0)

(3)
= 0.
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−x〈0〉 + x
(8)
= f(−x〈0〉,

s−1

0 , 0̄,
n−s−1

0 , x)

(9)
= f(f(0,

n−s−1
x , x̄,

s−1
x , 0),

s−1

0 , 0̄,
n−s−1

0 , x)

Th1
= f(0,

n−s−1
x , x̄,

s−1
x , f(

s

0, 0̄,
n−s−1

0 , x))
(3)
= f(0,

n−s−1
x , x̄,

s
x)

(3)
= 0.

Hence, the element −x〈0〉 is inverse to x in (Q; +).
Conversely, let the element x be invertible in the 0-decomposition

monoid (Q; +). Then the element

f(0, x, . . . , x, 0)
(7)
= ϕx + ϕ2x + · · ·+ ϕn−1x + a

is invertible in (Q; +) too. Let us de�ne the element x̄ by

x̄ = −f(0, x, . . . x, 0)〈0〉. (10)

In particular, this means that

x̄ + f(0, x, . . . x, 0)〈0〉 = 0.

Then for any element y of Q we get the following relations:

y = 0 + y = x̄ + f(0,
n−1
x , 0) + y

(8)
= f(f(x̄,

s−1

0 , 0̄,
n−s−1

0 , f(0,
n−1
x , 0)),

s−1

0 , 0̄,
n−s−1

0 , y)

Th1
= f(f(x̄,

s−1

0 , 0̄,
n−s

0 ),
n−1
x , f(

s

0, 0̄,
n−s−1

0 , y))
(3)
= f(x̄,

n−1
x , y) ,

y = y + 0
(10)
= y + f(0,

n−1
x , 0) + x̄

(8)
= f

(
f(y,

s−1

0 , 0̄,
n−s−1

0 , f(0,
n−2
x , 0)),

s−1

0 , 0̄,
n−s−1

0 , x̄
)

Th1
= f

(
f(y,

s−1

0 , 0̄,
n−s−1

0 ),
n−2
x , f(

s

0, 0̄,
n−s−1

0 , x̄)
)

(3)
= f(y,

n−2
x , x̄).

From Theorem 4 we get the invertibility of the element x in the invert
(Q; f).

Corollary 3. The sets of all invertible elements of multiary monoid
and decomposition monoids are pairwise equal.
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Corollary 4. Let 0 be an invertible element of a monoid (Q; f) of
the type (s, n) and let k be multiple of s. Then the element x will be
invertible in (Q; f) i� there exists an element −x〈0〉 such that

f(x,
s−1

0 , 0̄,
n−s−1

0 ,−x〈0〉) = f(−x〈0〉,
s−1

0 , 0̄,
n−s−1

0 , x) = 0 (11)

hold.

Proof. The equality (11) according to the equalities (8) means the
truth of the relations x+(−x〈0〉) = −x〈0〉+x = 0, where (Q; +) is the
0-decomposition monoid, that is the element x is invertible in (Q; +).
Hence, by Theorem 8 it will be invertible in the associate (Q; f).

Lemma 9. Let (Q; f) be an invert of the type (s, n), (+, ϕ, a) be its
0-decomposition. A triple (·, ψ, b) of operations de�ned on Q will be a
decomposition of (Q; f) i� there exists an invertible in (Q; +) element
e satisfying the conditions

x · y = x− e + y, ψ(x) = e + ϕ(x)− ϕ(e),

b = e + ϕ(e) + ϕ2(e) + · · ·+ ϕn(e) + a.
(12)

The algebra (Q; ·, ψ, b) in this case will be e-decomposition of the invert
(Q; f).

Proof. Let (·, ψ, b) be e-decomposition of the invert (Q; f), then

x · y (8)
= f(x,

s−1
e , ē,

n−s−1
e , y)

(7)
= x + ϕe + · · ·+ ϕs−1(e)+

+ϕs(ē) + ϕs+1(e) + · · ·+ ϕn−1(e) + ϕn(y) + a

(6)
= x + (ϕ(e) + · · ·+ ϕs−1(e) + ϕ3(ē)+

+ϕs+1(e) + · · ·+ ϕn−1(e) + a) + y .

Hence x ·y = x+ c+ y for some c ∈ Q and all x, y ∈ Q. In particular,
when x = e, y = 0 and x = 0, y = e we get the invertibility of the
element c in (Q; +), and the relation c = −e. Next,

ψ(x)
(8)
= f(e, x,

n−2
e , ē)

(7)
= e + ϕ(x) + ϕ2(e) + · · ·+

+ϕn−1(e) + ϕn(ē) + a = e + ϕ(x) + d
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for some d ∈ Q. But e = ψ(e) = e + ϕ(e) + d, therefore d = −ϕ(e).
On the other hand, let an element e be invertible in (Q; +) and

determine a triple of operations (·, ψ, b) on Q by the equalities (12).
The invertibility of the element e in the invert (Q; f) is ensured by
Theorem 8. If the component of the e-decomposition of the invert
(Q; f) are denoted by (◦, χ, c), then just proved assertion gives

x ◦ y = x− e + y, χ(x) = e + ϕ(x)− ϕ(e),

c = e + ϕ(e) + ϕ2(e) + · · ·+ ϕn(e) + a .

Therefore (·, ψ, b) = (◦, χ, c). This means, that (·, ψ, b) will be a de-
composition of (Q; f).

We say that the monoids (Q; ·) and (Q; +) di�er from each other
by a unit, if the equality x · y = x − e + y holds for some invertible
in (Q; +) element e, because they coincide once their units coincide.
This relationship between monoids is stronger than isomorphism since
the translations L−1

e and R−1
e are isomorphic mappings from one to

the other. Therefore the following statement is obvious.

Corollary 5. Any two decomposition monoids of the same invert dif-
fer from each other by a unit.

Theorem 10. The set of all invertible elements of an invert is its
subquasigroup and coincides with the group of all invertible elements
of any of its decomposition monoids.

Proof. Let (Q; f) be an invert of the type (s, n) and let (+, ϕ, a) be
its 0-decomposition. Theorem 8 implies that the sets of all invertible
elements of groupoids (Q; f) and (Q; +) coincide. Denote this set by
G. Inasmuch as G is a subgroup of the monoid (Q; +) and ϕG = G,
a ∈ G, so for any elements c0, c1, . . . , cn ∈ G the element

f(c0, c1, . . . , cn)
(7)
= c0 + ϕ(c1) + ϕ2(c2) + · · ·+ ϕn(cn) + a

is in G also. Furthermore for any number i = 0, 1, . . . , n the solu-
tion of f(c0, . . . , ci−1, x, ci+1, . . . , cn) = c , where c ∈ G, is unique and
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coincides with the element

x
(6)
= ϕ−i

(
− ϕi−1(ci−1)− · · · −ϕ(c1)− c0 + c− a−

−ϕn(cn)− · · · − ϕi+1(ci+1)
)
.

(13)

which is in G too. Hence, (G; f) is a subquasigroup of (Q; f).

Theorem 11. The period of associativity of the invert determined
by (θ, a) coincides with the number of di�erent skew elements of an
invertible element and with the length of the orbit < θ > (a), where
< θ > is the automorphism group generated by θ.

Proof. Let number s be the period of associativity of the (n + 1)-ary
invert (Q; f) and let x be any of its invertible elements. Denote by
(∗, ψ, b) the x-decomposition of the invert (Q; f). Since

f(
i
x, ψn−i(x̄),

n−i
x )

(8)
= f(

i
x, f(

n−i
x , x̄,

i−1
x , x̄),

n−i−1
x , f(

n
x, x̄))

Th1
= f(f(

n
x, x̄),

i−1
x , f(x̄,

n
x),

n−i−1
x , x̄)

(3)
= f(

n
x, x̄) = x,

then the i-th skew x̄i of the element x is determined by the equality

x̄i = ψn−i(x̄)
(8)
= f(

n−i
x , x̄,

i−1
x , x̄), i = 0, 1, . . . , n. (14)

Inasmuch as, in accordance with the equality (8),

ψs(x̄) = ψs(b−1) = (ψs(b))−1 = b−1 = x̄,

there are at most s di�erent skew elements of the element x: Namely
x̄, x̄1, . . . , x̄s−1.

Suppose, for some numbers i, j with i < j < s, the i-th and j-th
skew elements of x coincide. The results obtained imply the equality
ψn−i(x̄) = ψn−j(x̄), so that ψj−i(x̄) = x̄. The last equality together
with equality ψs(x̄) = x̄ give the relation ψd(x̄) = x̄, where d =
g.c.d.(s, j − i). In view of (8) this implies ψd(b) = b. It follows from
Theorem 6 that the pair (d, n) will be a type of the invert (Q; f).
At the same time d < s. A contradiction to the de�nition of the
associativity period.
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Thus, the element x has exactly s skew elements. They are de-
termined by the relation (14) and by any full collection of pairwise
noncongruent indices modulo s.

Corollary 6. If one of skew elements of an invertible element x of
a monoid coincides with x, then all skew elements of x are equal and
this invert is a semigroup.

Proof. Let 0̄i = 0. The relation (14) implies ϕn−i(0̄) = 0, where ϕ
denotes an automorphism of the 0-decomposition. Apply to the last
equality ϕi we obtain ϕn(0̄) = ϕi(0).

Since ϕn(0̄) = ϕn(−a) = −ϕn(a) = −a = 0̄, then accounting to (8)
we obtain f(

i

0, 0,
n−i−1

0 , 0̄) = 0̄, that is 0̄ = 0. Thus a = f(0, . . . , 0) = 0
and ϕ(a) = ϕ(0) = 0 = a. Hence, by Theorem 11 the associativity
period of the invert is equal to 1, i.e. the invert is a semigroup.

Corollary 7. An invert of associativity period s has at least s + 1
di�erent invertible elements.

Corollary 8. An invert having at most two invertible elements is
associative i.e. is a semigroup.

Proof. If an invert has exactly one invertible element, then it will be
associative by Corollary 6, since its skews coincide with it. If the in-
vert has exactly two invertible elements a and b, then ā0 = a or ā0 = b.
If ā0 = a, then according to Corollary 6 the invert is a semigroup. If
ā0 = b, then Theorem 11 implies ā1 = a. And Theorem 11 implies
that the invert is a quasigroup.

Axiomatics of polyagroups
Both for binary and for n-ary cases an associative quasigroup is called
a group. Therefore, retaining this regularity we will introduce the no-
tion of a polyagroup.
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De�nition 3. When s < n the s-associative (n + 1)-ary quasigroup
we will call a nonsingular polyagroup of the type (s, n).

It is easy to see, that s = 1 means the polyagroup is an (n+1)-ary
group. Theorem 6 implies an analogue of Gluskin-Hosszú theorem.

Proposition 12. Any polyagroup of the type (s, n) is (i, j)-associative
for all i, j with i ≡ j (mod s). When s is its associativity period, then
no other (i, j)-associativity identity holds.

Theorem 13. Let (Q; f) be an associate of the type (s, n) and s < n,
n > 1. Then the following statements are equivalent

1) (Q; f) is a polyagroup,
2) every element of the associate is invertible,
3) for every x ∈ Q there exists x̄ ∈ Q such that

f(x̄, x, . . . , x, y) = f(y, x, . . . , x, x̄) = y (15)

holds for all y ∈ Q,
4) (Q; f) has an invertible element 0 and for every x ∈ Q there

exists y ∈ Q such that

f(x,
s−1

0 , 0̄,
n−s−1

0 , y) = 0, f(y,
s−1

0 , 0̄,
n−s−1

0 , x) = 0 (16)

holds.

Proof. 1)⇔2) follows from Theorem 10; 2)⇔3) from Corollary 1;
2)⇔4) from Corollary 4.

When s = 1 we get a criterion for n-ary groups.

Corollary 9. Let (Q; f) be (n+1)-ary a semigroup. Then the follow-
ing statements are equivalent

1) (Q; f) is an (n + 1)-ary group,
2) every element of the semigroup is invertible,
3) for every x ∈ Q there exists x̄ ∈ Q such that (15) holds for every

y ∈ Q,
4) (Q; f) has an invertible element 0 and for every x ∈ Q there

exists y ∈ Q such that (16) hold.
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Symmetric n-loops with the inverse
property

Leonid A. Ursu

Abstract
It is proved that the matrix ‖Iij‖, where the substitutions Iij are de�ned by

the equalities
(

i−1
e , x,

j−i−1
e , Iijx,

n−j
e

)
= e is one of the inversion matrices of the

symmetric n-IP -loop with an unique unit e. From this result it follows that the
matrix ‖Iij‖ is a unique inversion matrix of such loops of an odd arity.

A quasigroup Q(A) of arity n is said to be an IP -quasigroup [1]
if there exist substitutions νij, i, j = 1, n, on Q with νii = ε (ε is
the identical substitition) such that the equalities (the identities with
parameters)

A({νijxj}i−1
j=1, A(xn

1 ), {νijxj}n
j=i+1) = xi (1)

hold for any xi ∈ Q, i ∈ 1, n.
The substitutions νij are called inversion substitutions and the

matrix ‖νij‖ is called an inversion matrix, i ∈ 1, n, j ∈ 1, n + 1, where
νi,n+1 = ε for all i. The rows of this matrix are called inversion systems
(rows) of an n-IP -quasigroup.

A quasigroup Q(A) of an arity n is said to be an IP -quasigroup if
the following equalities

Aπi = ATi (2)
hold for all i ∈ 1, n, where πi is the transposition (i, n + 1), Aπi is the
i-th inverse operation for A and

Ti = ({νij}i−1
j=1, ε, {νij}n

j=i+1, ε).

1991 Mathematics Subject Classi�cation: 20N15
Keywords: n-ary quasigroup, IP-loop, autotopy
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If an n-IP -quasigroup Q(A) has a unit e, then it is called an n-IP -
loop.

In [1] the substitutions Iij are de�ned by the equalities

A
(

i−1
e , x,

j−i−1
e , Iijx,

n−j
e

)
= e (3)

in an n-loop Q(A) with a unit e for any x ∈ Q, i, j ∈ 1, n, with
Iii = Ii,n+1 = ε. From (3) it follows that I−1

ij = Iji and Iije = e.
The following equality (cf. [1])

Iijx = Li(ēj)νjix (4)

shows a relation between Iij and νij, where

ēj = {νjke}n
k=1, νjje = e,

Li(ēj)x = A(νj1e, νj2e, . . . , νj,i−1e, x, νj,i+1e, . . . , νjne).

It is evident that Li(ēj) is a substitution on Q. From (4) we get the
following equality for the corresponding matrices

‖Iij‖ = ‖Li(ēj)‖ · ‖νji‖. (5)

An (n+1)-tuple T = (αn+1
1 ) of substitutions on Q is called an autotopy

for an n-quasigroup Q(A) if AT = A.
A quasigroup Q(A) of arity n is said to be symmetric (cf. [2]) if

A(xαn
α1 ) = A(xn

1 )

for all xn
1 ∈ Qn and any α ∈ Sn where Sn is the symmetric qroup of

degree n.
It is known that an n-IP -quasigroup (n > 2) can have more than

one inversion matrix [1]. In [2] some examples of nonsymmetric n-IP -
loops with the inversion matrix ‖Iij‖ are constructed.

Related to this V.D. Belousov has asced the following questions.
Is the matrix ‖Iij‖ always one of the inversion matrices of an n-

IP -loop ?
Does an n-IP -loop exist such that the matrix ‖Iij‖ is a unique

inversion matrix ?
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In this article some properties of the symmetric n-IP -loops are
established and answers are given to the V.D. Belousov's questions
for such loops.

Let Q(A) be a symmetric n-IP -quasigroup with an inversion ma-
trix ‖νij‖. Then the following properties are true.

1. A symmetric n-IP -quasigroup is de�ned by a unique identity.
Indeed, let the i-th inverse identity

A({νikxk}i−1
k=1, A(xn

1 ), {νikxk}n
k=i+1) = xi

holds in an n-IP -quasigroup Q(A). Then

A({νikxk}i−1
k=1, A(xn

1 ), {νikxk}n
k=i+1) =

A({νikxk}j−1
k=1, A(xj−1

1 , xi, x
n
j+1), {νikxk}n

k=j+1) = xi.

Thus, the j-th inverse identity holds in Q(A) for all j = 1, 2, . . . , i−1,
i+1, . . . n. It means that if ({νik}i−1

k=1, ε, {νik}n
k=i+1, ε) is the i-th row of

the inversion matrix ‖νij‖, then ({νik}j−1
k=1, ε, {νik}n

k=j+1, ε) is the j-th
row of this matrix, i, j ∈ 1, n, i 6= j.

Hence if one inversion row is known, then the inversion matrix is
known.

2. If (νi1, νi2, . . . , νi,i−1, ε, νi,i+1, . . . , νin, ε) is the i-th inversion
row, i ∈ 1, n, of a symmetric n-IP -quasigroup, then any permutation
of the substitutions νik, k = 1, 2, . . . , i − 1, i + 1, . . . , n, of this row is
the i-th inverse row of the quasigroup.

In fact, from

A({νikxk}i−1
k=1, A(xn

1 ), {νikxk}n
k=i+1) = xi

it follows that
A({νikxk}i−1

k=1, νitxj, {νikxk}i−1
k=j+1, A(xn

1 ), {νikxk}t−1
k=i+1, νijxt, {νikxk}n

t+1)

= A({νikxk}j−1
k=1, νijxt, {νikxk}i−1

k=j+1, A(xj−1
1 , xt, x

i−1
j+1, xi, x

t−1
i+1, xj, x

n
t+1),

{νikxk}t−1
k=i+1, νitxj, {νikxk}n

k=t+1) = xi

for any i, j, t ∈ 1, n, j < i < t.
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Next, for the sake of simplicity we shall take the �rst inversion iden-
tity, i.e. the �rst inversion row, as de�nition of an n-IP -quasigroup.
The corresponding inversion matrix we shall denote by ‖ν1‖.

3. If T = (αn
1 , β) is an autotopy of a symmetric n-IP -quasigroup

Q(A), then T̃ = (ασn
σ1 , β) is an autotopy of Q(A) also for any σ ∈ Sn.

In other words, any permutation of the �rst n components of an
autotopy of a symmetric n-IP -quasigroup is an autotopy of this quasi-
group as well.

Indeed, the equality

A({αkxk}i−1
k=1, αixi, {αkxk}j−1

k=i+1, αjxj, {αkxk}n
k=j+1) = βA(xn

1 )

implies that
A({αkxk}i−1

k=1, αjxj, {αkxk}j−1
k=i+1, αixi, {αkxk}n

k=j+1)

= βA(xi−1
1 , xj, x

j−1
i+1 , xi, x

n
j+1),

i.e. Ti,j = (αi−1
1 , αj, α

j−1
i+1 , αi, α

n
j+1, β) is an autotopy of Q(A) for any

i, j ∈ 1, n, i 6= j.

4. If T = (α1, α2, . . . , αi, . . . , αn, β) is an autotopy of a symmet-
ric n-IP -quasigroup Q(A) with an inversion system (ε, ν12, . . . , ν1n, ε)
(i.e. with an inverse matrix ‖ν1‖), then

(β, ν12α2ν12, ν13α3ν13, . . . , ν1,i−1αi−1ν1,i−1,

ν1iα1ν1i, ν1,i+1αi+1ν1,i+1, . . . , ν1nαnν1n, αi)

is an autotopy of this quasigroup for any i ∈ 1, n.

In fact, if (α1, α2, . . . , αi, . . . , αn, β) ∈ AA, where AA is the auto-
topy group of Q(A), then by property 3

(αi, α2, α3, . . . , αi−1, α1, αi+1, . . . , αn, β) ∈ AA.

and by the property of autotopies of n-IP -quasigroups, proved in [1],
(β, ν12α2ν12, ν13α3ν13, . . . , ν1,i−1αi−1ν1,i−1, ν1iα1ν1i,

ν1,i+1αi+1ν1,i+1, . . . , ν1nαnν1n, αi) ∈ AA.
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As a corollary from this result, we get that if
T1 = (ε, ν12, ν13, . . . , ν1n, ε)

is an inversion system of a symmetric n-IP -quasigroup, then

T 2
1 = (ε, ν2

12, ν
2
13, . . . , ν

2
1n, ε)

is its autotopy, since T =
(

n+1
ε

)
∈ AA.

5. Let Q(A) be a symmetric n-IP -loop with a unit e and with an
inversion matrix ‖ν1‖. Then ν2

1j = ε for any j ∈ 2, n.

Indeed, from the equality

A(A(xk
1), {ν1ixi}n

i=2) = x1

by x1 = x2 = · · · = xj−1 = xj+1 = · · · = xn = e we get

A(xj, {ν1ie}j−1
i=2 , ν1jxj, {ν1ie}n

i=j+1) = e.

Changing in this equality xj for ν1je we get

A(ν1je, {ν1ie}j−1
i=2 , ν2

1je, {ν1ie}n
i=j+1) = e

or A(ν2
1je, {ν1ie}n

i=2) = e. Thus, Aπ1(e, {ν1ie}n
i=2) = ν2

1je from which
according to (2) and symmetry we have

A(e, {ν2
1ie}n

i=2) = ν2
1je.

But T 2
1 ∈ AA so A(e, {ν2

1ie}n
i=2) = A

(
n
e
)

= e and ν2
1je = e for all

j ∈ 2, n.
Now from

A(x1, {ν2
1ixi}n

i=2) = A(xn
1 )

by x1 = x2 = · · · = xj−1 = xj+1 = · · · = xn = e, xj = x, j > 1, one
has ν2

1jx = x for any j ∈ 2, n.

6. If (ε, ν12, ν13, . . . , ν1n, ε) is an inversion system of a symmetric
n-IP -loop with a unique unit, then

(
i−1
ε , ν1iν1j,

j−i−1
ε , ν1jν1i,

n−j+1
ε

)
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is an autotopy of this loop for any i, j ∈ 2, n.

This statement follows from properties 2 and 5 since the product
(in the sense of component-wise multiplication) of two i-th inversion
systems of an n-IP -quasigroup is an autotopy of this quasigroup [1].

In fact, let (ε, ν12, . . . , ν1i, . . . , ν1n, ε) be an inversion system of a
symmetric n-IP -loop. Then by property 2

(ε, ν12, . . . , ν1,i−1, ν1j, ν1,i+1, . . . , ν1,j−1, ν1i, ν1,j+1, . . . , ν1n, ε)

is an inversion system of this loop too, and their product (since ν2
1i = ε)

(
i−1
ε , ν1iν1j,

j−i−1
e , ν1jν1i,

n−j−1
ε

)

is an autotopy of the loop for all i, j ∈ 2, n.

7. In a symmetric n-IP -loop Q() with an inversion matrix ‖ν1‖
the following equalities are true
ν1i(x

n
1 ) = (ν1ixi, ν12x2, ν13x3, . . . , ν1,i−1xi−1, ν1ixi, ν1,i+1xi+1, . . . , ν1nxn)

for any i ∈ 2, n.

Indeed, from

((xn
1 ), ν12x2, . . . , ν1,i−1xi−1, ν1ixi, ν1,i+1xi+1, . . . , ν1nxn) = x1

it follows that

(ν1ixi, ν12x2, . . . , ν1,i−1xi−1, (x
n
1 ), ν1,i+1xi+1, . . . , ν1nxn) = x1.

Using (2) and taking into account that ν2
1i = ε for all i ∈ 2, n we

get
(xi−1

1 , ν1i(x
n
1 ), xn

i+1) = ν1ixi

or
(ν1i(x

n
1 ), xi−1

2 , x1, x
n
i+1) = ν1ixi.

Using (2) again one has
ν1i(x

n
1 ) = (ν1ixi, ν12x2, ν13x3, . . . , ν1,i−1xi−1, ν1ix1, ν1,i+1xi+1, . . . , ν1nxn)
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for any i ∈ 2, n.

8. In a symmetric n-IP -loop
a) all substitutions Iij are equal, i.e. Iijx = Ix for any i, j ∈ 1, n,

i 6= j and any x ∈ Q,
b) I2 = ε.

We prove these statements.

a) Let e be a unit of a symmetric n-IP -loop. Then from the
equalities

(
i−1
e , x,

j−i−1
e , Iijx,

n−j
e

)
=

(
k−1
e , x,

t−k−1
e , Iktx,

n−t
e

)
= e

it follows that
(

i−1
e , x,

j−i−1
e , Iijx,

n−j
e

)
=

(
i−1
e , x,

j−i−1
e , Iktx,

n−j
e

)
,

i.e. Iijx = Iktx = Ix for all i, j, k, t ∈ 1, n, i 6= j, k 6= t and any x ∈ Q.

b) Changing in
(

i−1
e , x,

j−i−1
e , Ix,

n−1
e

)
= e the element x for Ix we

get
(

i−1→ e, Ix,
j−i−1→ e, I2x,

n−j→ e
)

= e =
(

i−1
e , Ix,

j−i−1
e , x,

n−j
e

)

from which it follows that

I2x = x for any x ∈ Q.

It is known (cf. [1]) that
i) the product of two autotopies of an n-quasigroup is an autotopy,
ii) the product of two i-th inversion systems, i ∈ 1, n, of an n-IP -

quasigroup is an autotopy,
iii) the product of an autotopy and an inversion system of

an n-IP -quasigroup is an inversion system of this quasigroup.

The analogous results are true for the product of corresponding
matrices.
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Let Q(A) be a symmetric n-IP -loop with a unique unit e and with
an inversion matrix ‖ν1‖. Then a connection between the substitute
I and the inversion substitutions ν1i is given by the following equality
(see [1])

Ix = (e, ν12e, . . . , ν1,i−1e, ν1ix, ν1,i+1e, . . . , ν1ne) = Li(ē)ν1ix (6)

where
Li(ē)x = (e, ν12e, . . . , ν1,i−1e, x, ν1,i+1e, . . . , ν1ne)

are substitutions of Q, i ∈ 1, n, (ē) = (e, ν12e, . . . , ν1ne).
Denote by OA the set of all inversion matrices and by AA the set

of all matrices of autotopies of a symmetric n-IP -loop Q(A). Let
‖L‖ = ‖Li(ē)‖. Then the equality (6) takes the form

‖I‖ = ‖L‖ · ‖ν1‖, (7)

i.e.



ε I I · · · I I ε
I ε I · · · I I ε
· · · · · · · · · · · · · · · · · · · · ·
I I I · · · I I ε


 =




ε L2(ē) L3(ē) · · · Ln−1(ē) Ln(ē) ε
L2(ē) ε L3(ē) · · · Ln−1(ē) Ln(ē) ε
· · · · · · · · · · · · · · · · · · · · ·

L2(ē) L3(ē) L4(ē) · · · Ln−1(ē) ε ε


×

×




ε ν12 ν13 · · · ν1,n−1 ν1n ε
ν12 ε ν13 · · · ν1,n−1 ν1n ε
· · · · · · · · · · · · · · · · · · · · ·
ν12 ν13 ν14 · · · ν1,n−1 ε ε


 .

From (7) it follows that

‖I‖ ∈ OA ⇐⇒ ‖L‖ ∈ AA. (8)

Theorem 1. The matrix ‖I‖ is one of the inversion matrices of a
symmetric n-IP -loop with a unique unit.
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Proof. Let Q(A) = Q( ) be a symmetric n-IP -loop with an inversion
matrix ‖ν1‖ and with a unique unit e. Then (ε, ν12, ν13, . . . , ν1n, ε) ∈
OA, and by property 3 any permutation of the �rst n substitutions of
this inversion system gives an inversion system of this loop. According
to property 6

(
i−1
ε , ν1iν1j,

j−i−1
ε , ν1jν1i,

n−j+1
ε

)
∈ AA

for any i, j ∈ 2, n. By property 3 any permutation of the �rst n com-
ponents is an autotopy of the loop. Thus, by 1 < i < j < n, we have

(ν1i, ν1j, ν12, ν13, . . . , ν1,i−1, ν1,i+1, . . . , ν1,j−1, ν1,j+1, . . . , ν1n, ε, ε)×
×(ν1jν1i, ν1iν1j,

n−1→ ε) = (ν1iν1jν1i, ν1jν1iν1j, ν12, ν13, . . .

. . . , ν1,i−1, ν1,i+1, . . . , ν1,j−1, ν1,j+1, . . . , ν1n, ε, ε) ∈ OA.
Then by property 5

(ε, ν1j, ν12, ν13, . . . , ν1,i−1, ν1,i+1, . . . , ν1,j−1, ν1i, ν1,j+1, . . . , ν1n, ε)×
×(ν1iν1jν1i, ν1jν1iν1j, ν12, ν13, . . . , ν1,i−1, ν1,i+1, . . . , ν1,j−1, ν1,j+1, . . .

. . . , ν1n, ε, ε) = (ν1iν1jν1i, ν1iν1j,
j−3→ ε, ν1i,

n−j+1→ ε) ∈ AA .
Next,

(ν1iν1jν1i, ν1iν1j,
j−3→ ε, ν1i,

n−j+1→ ε) · (ε, ν1jν1i,
j−3→ ε, ν1iν1j,

n−j+1→ ε)

= (ν1iν1jν1i,
j−2→ ε, ν1j,

n−j+1→ ε) ∈ AA.
Now use properties 4 and 5:

(
j−1
ε , ν1j,

n−j
ε , ν1iν1jν1i

)
∈ AA,

i.e.
ν1iν1jν1iA(xn

1 ) = A(xj−1
1 , ν1jx, xn

j+1).

From these equalities by x1 = x2 = · · · = xj−1 = xj+1 = · · · = xn = e
we get that

ν1iν1jν1ix = ν1jx.

Replacing x by ν1ix and using property 5 one has

ν1iν1jx = ν1jν1ix (9)
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for all x ∈ Q and any i, j ∈ 1, n.
Now let Q(A) have an odd arity. Then by property 6 and equality

(9) the equality

(x, ν1iν1je, νijν1ie, ν1iν1je, ν1jν1ie, . . . , ν1iν1je, ν1jν1ie) = x

implies (
ν1i

k−1
ν1je, x, ν1i

n−k
ν1j e

)
= x

for any k ∈ 1, n and x ∈ Q. Thus, ν1iν1je = e, since n− 1 is an even
number and e is a unique unit. But then ν1ie = ν1je for any i, j ∈ 2, n
since the inverse substitutions have order two. Therefore,

ν12e = ν13e = · · · = ν1ne.

Next, since (
i−1
ε , ν1iν1j,

j−i−1
ε , ν1jν1i,

n−j+1
ε

)
∈ AA

then
(

i−1
e , x,

n−i
e

)
= x implies
(

i−1
e , ν1iν1jx,

j−i−1
e , ν1jν1ie,

n−j
e

)
= x,

from which receive ν1iν1jx = x and ν1ix = ν1jx for any i, j ∈ 2, n and
any x ∈ Q. From (x, ν12e, ν13e, . . . , ν1ne) = x (see (1) by i = 1) it
follows that

(
i−1
ν12e, x,

n−i
ν12e

)
= x for any i ∈ 1, n and x ∈ Q. Thus,

ν12e = ν13e = · · · = ν1ne = e and the equality

Ix = (e, ν12e, ν13e, . . . , ν1,i−1e, ν1ix, ν1,i+1e, . . . , ν1ne)

implies Ix = ν1ix for any i ∈ 2, n, x ∈ Q.
Now from (6) we have that Li(ē) = ε. Thus, ‖L‖ = ‖E‖, where

‖E‖ is the identical matrix, i.e. the matrix consisting of ε, and so
‖L‖ ∈ AA. But according to (8) and (7)

‖I‖ = ‖ν1‖. (10)

Now let Q(A) have an even arity. In this case

(ε, ν12ν13 . . . ν1n, ν13ν14 . . . ν1nν12, ν14ν15 . . . ν1nν12ν13, . . .
. . . , ν1nν12ν13 . . . ν1,n−1, ε) ∈ AA
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and according to (9)
(
ε, ν12ν13

n−1· · ·ν1n, ε
)
∈ AA.

Hence, by property 3 from
(

i−1
e , x,

n−i
e

)
= x it follows that

(
ν12ν13

i−1· · ·ν1ne, x, ν12ν13
n−i· · ·ν1ne

)
= x

for all i ∈ Q, i.e. ν12ν13 . . . ν1ne = e. On the other hand, since n is an
even arity, then

T = (ε, ν13ν14 . . . ν1n, ν12ν14ν15 . . . ν1n, . . . , ν12ν13 . . . ν1,i−1ν1,i+1 . . . ν1n,
. . . , ν12ν13 . . . ν1,n−1, ε) ∈ AA.

Using this autotopy, equality (9) and property 5 we get

Li(ē)x = (e, ν12e, ν13e, . . . , ν1,i−1e, x, ν1,i+1e, . . . , ν1ne) =
(e, ν12ν13 . . . ν1ne, ν12ν13 . . . ν1ne, . . . , ν12ν13 . . . ν1,i−1ν1,i+1 . . . ν1nx,

ν12ν13 . . . ν1ne, . . . , ν12ν13 . . . ν1ne) = ν12ν13 . . . ν1,i−1ν1,i+1 . . . ν1nx

for any i ∈ 2, n. Thus,

(ε, L2(ē), L3(ē), . . . , Li(ē), . . . , Ln(ē), ε) ∈ AA.

It means that ‖L‖ ∈ AA. Then by (8) ‖I‖ ∈ AA and
Ix = (e, ν12e, ν13e, . . . , ν1,i−1e, ν1ix, ν1,i+1e, . . . , ν1ne) =

(e, ν12ν13 . . . ν1ne, ν12ν13 . . . ν1ne, . . . , ν12ν13 . . . ν1,i−1ν1iν1,i+1 . . . ν1nx,

ν12ν13 . . . ν1ne, . . . , ν12ν13 . . . ν1ne) = ν12ν13 . . . ν1nx.
The theorem is proved.

Corollary 1. Any symmetric n-IP -loop of an odd arity with a unique
unit has only one inversion matrix, namely, the matrix ‖I‖.

This statement follows from the proof of the �rst part of Theorem,
since any inversion matrix of a symmetric n-IP -loop of an odd arity
with a unique unit coincides with the matrix ‖I‖.
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