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IK-loops

Alexander S. Basarab

Abstract

A loop Q(·) is called a K-loop, if the identities:
(x · yIx) · xz = x · yz , (y · x) · (I−1xz · x) = yz · x
( Ix = x−1 , I−1x = −1x , I−1x · z = −1x · z )

hold. A K-loop is called an IK-loop if the substitution I is an automorphism of
the loop. It is proved that: a K-loop generated by one element is solvable; in a IK-
loop the center Z(Q) and the nucleus N coincide and every IK-loop is nilpotent.
Examples of K-loops, generated by one element are given.

In [1] and [2] the following result is obtained: in a K-loop Q(·) the
nucleus N is a nontrivial (N 6= {e} ) normal subloop and the quotient
loop Q/N (·) is an abelian group. If a K-loop Q(·) is not a group, then
the nucleus N of this loop has a nontrivial center Z(N ).

Proposition 1. If a loop Q(·) has a nontrivial nucleus N , which is
a normal subloop of Q(·) and (x, y, z) is the associator of elements
x, y, z ∈ Q, then (x, y, z)n = n(x, y, z) , where n ∈ N .

Proof. For every x, y, z ∈ Q and n ∈ N we have

xy · zn = (xy · z) · n = (x · yz) · (x, y, z)n . (1)

Since N is a normal subloop of Q(·), then for every x ∈ Q and n ∈ Q
there exist n′, n′′ ∈ N such that

xn = n′x , nx = xn′′ . (2)
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Applying (2) to xy · zn , we get
xy · zn = xy · n1z = xyn1 · z = (x · n2y) · z = (xn2 · y) · z =

(n3x · y) · z = n3(xy · z) = (xn2 · yz) · (x, y, z) = (x · n2yz) · (x, y, z) =

= (x · yn1z) · (x, y, z) = (x · yz)n · (x, y, z) = (x · yz) · n(x, y, z)

that is
xy · zn = (x · yz) · n(x, y, z) . (3)

If follows from (1) and (3) that (x, y, z)n = n(x, y, z) , which was to
be proved.

Corollary 1. If a (nongroup) loop Q(·) has a nontrivial nucleus N
which is a normal subloop of Q(·) and the associator of any three ele-
ments of Q belongs to N , then N has a nontrivial center Z(N ).

In [2] it is proved that in a K-loop Q(·) the nucleus N contains the
associator of any three elements of Q.

Corollary 2. (Theorem 3 from [1]) If a K-loop Q(·) is not a group,
then the nucleus N of Q(·) has a nontrivial center.

Proposition 2. The center Z(N ) of the nucleus N of a K-loop Q(·)
is a normal subloop of Q(·).

Proof. In a K-loop Q(·) the nucleus N is a normal subloop of Q(·),
therefore, L−1

x Rxc ∈ N for every c ∈ N and every x ∈ Q .
If z ∈ Z(N ) , then

z · L−1
x Rxc = L−1

x Rxc · z . (4)

From the de�nition of a K-loop we have the autotopy

T = (R−1
x Lx , Lx , Lx) . (5)

Applying (5) to the equality (4), we get
R−1

x Lxz · LxL
−1
x Rxc = Lx(L

−1
x Rxc · z)
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or
(R−1

x Lxz · c) = (LxL
−1
x (cz · x)Ix)

or
R−1

x Lxz · c = c · (x · zIx) ,
hence R−1

x Lxz · c = c ·LxRIxz . Every K-loop is an Osborn loop where
RIx = L−1

x R−1
x Lx and then
R−1

x Lxz · c = c · LxL
−1
x R−1

x Lxz
or

R−1
x Lxz · c = c ·R−1

x Lxz ,
which proves that R−1

x Lxz ∈ Z(N ).

Proposition 3. If a K-loop Q(·) is not a group, the quotient loop
Q/Z(N ) is a group.

Proof. From Proposition 2 it follows that Z(N ) is a normal subloop
of Q(·), hence there exists the quotient loop Q/Z(N ) , in which

aZ(N ) · (bZ(N ) · cZ(N )) =

= aZ(N ) = (ab · c)Z(N ) = (ab · c) · (a, b, c)ZN ) .

As (a, b, c) ∈ Z(N ) , we have
(ab · c) · (a, b, c)Z(N ) = (ab · c)Z(N ) = abZ(N ) · cZN ) =

= (aZ(N ) · bZ(N )) · cZ(N ) .

Thus,
aZ(N ) · (bZ(N ) · cZ(N )) = (aZ(N ) · bZ(N ) · cZ(N )) ,

so the operation (·) on Q/Z(N ) is associative.

De�nition 1. The loop Q(·) is called solvable if it has a series of the
form

Q = Q0 ⊇ Q1 ⊇ Q2 ⊇ ... ⊇ Qm = E ,
where Qi is a normal subloop of Qi−1 and the quotient loop Qi−1/Qi

is an abelian group.

Theorem 1. A K-loop generated by one element is solvable.
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Proof. Let an element a ∈ Q generates the K-loop Q(·) . From Propo-
sition 3 we obtain that Q/Z(N ) is a group. If ϕ is a homomorphism
of Q(·) on Q/Z(N ) , then the group Q/Z(N ) is also generated by
an element, namely by ϕ(a). But a group generated by an element is
cyclic and since Z(N ) is an abelian group, the loop Q(N ) is solv-
able.

Corollary. Every subloop of a K-loop generated by one element is
solvable.

Example 1. ([3], p.193). Let F be a �eld, F ′ be the set of nonzero
elements of F . De�ne on the set Q = F ′ × F the operation (·) as
follows:

(a, x) · (b, y) = (a · b , (a−1 − 1) · (b−1 − 1) + b−1x + y) .

Then Q(·) is a K-loop. The nucleus N of this loop consists of pairs
(1, x), x ∈ F . The operation (·) is commutative on N . Indeed,

(1, x) · (1, y) = (1 , x + y) = (1 , y + x) = (1, y) · (1, x)

hence, N is an abelian group. But then the loop Q(·) from this ex-
ample is solvable (for any �eld F).

For F = Z3 we get a K-loop consisting of six elements:

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 1 6 4 5
3 3 1 2 5 6 4
4 4 5 6 2 3 1
5 5 6 4 1 2 3
6 6 4 5 3 1 2

This loop is generated by any of elements 4, 5, 6, so by Theorem 1 it
is solvable.

Example 2. Let R be a commutative ring (which is not Z2 and the
zero ring). De�ne on Q = R×R the operation (·)
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(a, x) · (b, y) = (a + b , x + y + ab2 )

for any (a, x), (b, y) ∈ Q. Then Q(·) is a K-loop. If R = Z3, we get a
loop of 9 elements:

• 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 3 1 5 6 4 8 9 7
3 3 1 2 6 4 5 9 7 8
4 4 5 6 8 9 7 3 1 2
5 5 6 4 9 7 8 1 2 3
6 6 4 5 7 8 9 2 3 1
7 7 8 9 2 3 1 6 4 5
8 8 9 7 3 1 2 4 5 6
9 9 7 8 1 2 3 5 6 4

This loop is one generated by each of the elements 4, 5, 6, 7, 8, 9. By
Theorem 1 it is solvable.

Note that in this example the permutation I ( Ix = x−1 ) is an
automorphism of Q(·).

De�nition 2. A K-loop is called an IK-loop if the permutation I is
an automorphism of Q(·), i.e. I(x · y) = Ix · Iy for every x, y ∈ Q.

Proposition 4. If N is the nucleus of the loop Q(·), then for any
x ∈ Q and c ∈ N the equalities

I(c · x) = Ix · Ic , I(x · c) = Ic · Ix (6)

hold up.

Proof. Directly from the equality cx · I(c · x) = 1 it follows that
x · I(c ·x) = x−1 or I(c ·x) = L−1

x Ic or I(c ·x) = LIxL
−1
Ix L−1

x Ic. But
LxLIxc = x · Ixc = (x · Ix) · c = c .

Hence, L−1
Ix L−1

x Ic = Ic and then I(c · x) = LIxIc = Ix · Ic. The
second equality can be proved similarly.
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Proposition 5. The center Z(Q) and the nucleus N of an IK-loop
Q(·) coincide.

Proof. Let Q(·) be an IK-loop. Then the permutation I is an au-
tomorphism of Q(·) and I(x · y) = Ix · Iy for any x, y ∈ Q. In
particular, if x ∈ Q and c ∈ N , then

I(c · x) = Ic · Ix . (7)

From (6) and (7) it follows that

Ix · Ic = Ic · Ix . (8)

From (8) and c ∈ N we obtain c ∈ Z(Q), therefore

N ⊆ Z(Q) . (9)

But from the de�nition of the center of a loop it follows that

Z(Q) ⊆ N . (10)

Thus, from (9) and (10) we get Z(Q) = N .

De�nition 3. A loop Q(·) is nilpotent if it has a �nite invariant series
Q = Q0 ⊇ Q1 ⊇ Q2 ⊇ ... ⊇ Qk = E ,

where every quotient loop Qi−1/Qi is contained in the center of the
loop Q/Qi (i = 1, 2, ..., k).

Theorem 2. Every IK-loop Q(·) is nilpotent.

Proof. Let Q(·) be a nongroup IK-loop, then Q(·) has a nontrivial
nucleus N , which by Proposition 5 coincides with the center of Q(·),
i.e. N = Z(Q). Hence, for the loop Q(·) there is a series of normal
subloops

Q = Q0 ⊇ Q1 ⊇ Q2 = E ,
satisfying the condition: Qi−1/Qi ⊆ Z(Q/Qi) , i = 1, 2 , and this
means that Q(·) is nilpotent.
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Quadratical quasigroups

Wiesªaw A. Dudek

Abstract

Quadratical quasigroups, which have a beautiful geometrical interpretation, are
characterized by commutative groups and some of their automorphisms.

A groupoid (G, ·) is said to be quadratical if the identity

xy · x = zx · yz (1)

holds and the equation ax = b has a unique solution x ∈ G for all
a, b ∈ G.

Quadratical groupoids arose originally from the geometrical situa-
tion described by the �eld of complex numbers C and the operation
∗ on C de�ned by

x ∗ y = (1− q)x + qy ,

where q = 1
2
(1 + i) (cf. [3] or [4]). The geometrical interpretation of

(G, ∗) motivates us to the further study of quadratical groupoids.
Quadratical groupoids are idempotent quasigroups (cf. [4]). Such

quasigroups are also medial and distributive (cf. [4]). This means (cf.
Theorem 8.3 from [2]) that such quasigroups are transitive. Hence (cf.
Theorem 8.1 from [2]) every quadratical groupoid is isotopic to some
commutative Moufang loop.

The above results together with the above example suggest that
every quadratical groupoid may be described by some commutative
group and some of its automorphisms.
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Theorem. A groupoid (G, ·) is a quadratical quasigroup if and only
if there exists a commutative group (G, +) in which for every a ∈ G
the equation z + z = a has a unique solution z = 1

2
a ∈ G and ϕ, ψ are

automorphisms of (G, +) such that for all x, y ∈ G

xy = ϕ(x) + ψ(y), (2)

ϕ(x) + ψ(x) = x, (3)
2ψϕ(x) = x. (4)

Proof. Since a quadratical groupoid (G, ·) is a transitive distributive
quasigroup, then from results obtained in [1] it follows that there exists
a commutative group (G, +) and its automorphisms ϕ, ψ such that
(2) and (3) hold.

Replacing in (1) an element x by 0 (i.e. by the neutral element of
(G, +)) and applying (2) we obtain

ϕψ(y) = ϕ2(z) + ψϕ(y) + ψ2(z),

which for y = 0 gives

ϕ2(z) + ψ2(z) = 0. (5)

Hence
ϕψ(y) = ψϕ(y) (6)

for every y ∈ G.
Since from (3) immediately follows ϕ2(x) + ϕψ(x) = ϕ(x) and

ψ2(x) + ψϕ(x) = ψ(x), then

ϕ2(x) + ψ2(x) + ϕψ(x) + ψϕ(x) = ϕ(x) + ψ(x) = x,

which together with (5) and (6) implies (4).
Now applying (2) and (6) to the identity y = xy · yx, which holds

in all quadratical groupoids (cf. [4] Theorem 1) we obtain

y = ϕ2(x) + ϕψ(y) + ψϕ(y) + ψ2(x) = ϕψ(y) + ϕψ(y) .

Hence
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ϕ−1(y) = ψ(y) + ψ(y)

for all y ∈ G. This proves that every a ∈ G (a = ϕ−1(y)) may be
written as a = z + z.

If also a = u + u for some u ∈ G, then there exists v ∈ G such
that u = ψ(v). Hence

a = ψ(v) + ψ(v) = ϕ−1(v) ,

which gives ϕ−1(y) = ϕ−1(v). Thus y = v and, in the consequence,
z = u. This proves that the equation a = z + z has a unique solution
for every a ∈ G.

Conversely, assume that (G, +) is a commutative group in which
for every a ∈ G there is only one x = 1

2
a such that x + x = a. If

ϕ and ψ are automorphisms of (G, +) satisfying (3) and (4), then
a groupoid (G, ·) de�ned by (2) is a quasigroup and its quasigroup
operation may be written in the form

xy = x + ψ(y − x). (7)

From (3) and (4) we obtain also

ψ2(x)− ψ(x) =
1

2
x

for all x ∈ G.
This together with (7) (after some simpli�cations) gives

xy · x = x− ψ(x) + ψ2(x) + ψ(y)− ψ2(y) = 1
2
x + 1

2
y ,

zx·yz = ψ(x)−ψ2(x)+ψ(y)−ψ2(y)+z−2ψ(z)+2ψ2(z) = 1
2
x+ 1

2
y,

which proves (1). Hence this groupoid is a quadratical quasigroup.

Corollary 1. A �nite quadratical quasigroup has odd order.
Proof. Indeed, by Cauchy's theorem, in a group of even order there
are at least two elements x satisfying x + x = 0.
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Corollary 2. A quadratical groupoid de�ned by the additive group of
a �eld (F, +, · ) with char F 6= 2 has the form

x ∗ y = ax + (1− a)y ,

where a ∈ F is a solution of the equation

2a2 − 2a + 1 = 0 . (8)

Proof. All automorphisms of the additive group of F have the form
ϕ(x) = ax , where a ∈ F. Moreover, (3) and (4) are equivalent to (8).
Hence a quasigroup de�ned by ϕ(x) = ax and ψ(x) = (1 − a)x is
quadratical if and only if a satis�es (8).

Now we compute all quadratical quasigroups of order n ≤ 24. As
it is well known commutative groups of odd order n ≤ 24 are (up to
isomorphism) either Zn or Z3×Z3. In the �rst case all automorphisms
have the form ϕ(x) = ax, where a ∈ {1, 2, ..., n − 1}. Hence, by the
Theorem, all quadratical quasigroups de�ned on Zn have the form
xy = ax+by, where a+b ≡ 1(mod n), 2ab ≡ 1(mod n) and n is odd.
Direct computations show that for odd n ≤ 24 the last two equations
have solutions (listed bellow) only for n = 5, 13, 17.

n 5 13 17

a 2 4 3 11 7 11

b 4 2 11 3 11 7

This means that a quadratical quasigroup de�ned on the group
Zn , n ≤ 24, has the form

x ∗ y = 2x + 4y(mod 5),
x ∗ y = 4x + 2y(mod 5),
x ∗ y = 3x + 11y(mod 13),
x ∗ y = 11x + 3y(mod 13),
x ∗ y = 7x + 11y(mod 17),
x ∗ y = 11x + 7y(mod 17).
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In the second case, all automorphisms are determined (as a linear
transformations of the vector space Z3 × Z3 ) by some matrices (in
the basis e1 = (1, 0), e2 = (0, 1) ) such that A + B ≡ I(mod 3) and
2AB ≡ I(mod 3). Direct calculations show that the matrix A has the
forms:[

0 1
1 1

]
,

[
0 2
2 1

]
,

[
1 1
1 0

]
,

[
1 2
2 0

]
,

[
2 1
2 2

]
,

[
2 2
1 2

]
.

Computing B and replacing obtained matrices by corresponding linear
transformations, we see that the quadratical quasigroup de�ned on the
group Z3 × Z3 has one of the following forms:

(x, y) ∗ (z, u) = (y + z + 2u , x + y + 2z),

(x, y) ∗ (z, u) = (2y + z + u , 2x + y + z),

(x, y) ∗ (z, u) = (x + y + 2u , x + 2z + u),

(x, y) ∗ (z, u) = (x + 2y + u , 2x + z + u),

(x, y) ∗ (z, u) = (2x + y + 2z + 2u , 2x + 2y + z + 2u),

(x, y) ∗ (z, u) = (2x + 2y + 2z + u , x + 2y + 2z + 2u).
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About some computer investigation of the
endomorphisms of the linear isotopes of

small order non-cyclic groups

Oleg U. Kirnasovsky and Sergej Sevastianov

Abstract

The order of the automorphism group and the endomorphism monoid of linear
isotopes for non-cyclic groups are found up to 15-th order.

1. Introduction
A groupoid (Q; ·) is called a linear isotope of a group (Q; +), or a
linear group isotope, i� there exist an element a and automorphisms
ϕ, ψ of the group such that the equality

x · y = ϕx + ψy + a (1)

holds. It is easy to see that a group isotope is a quasigroup.
The group isotopes were studied in [3], [4] and [5]. Isomorphisms

between two group isotopes are described in [1]. The list of all pairwise
non-isomorphic linear group isotopes up to 15-th order is printed in
[2]. This list contains 1554 quasigroups. Exactly 975 of them are
linear isotopes of non-cyclic groups.

Combining the results from [2] and [3] we obtain the following

1991 Mathematics Subject Classi�cation: 20N05
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Lemma. A permutation α of a linear isotope (Q; ·) of a group (Q; +)
de�ned by the equality (1) is an endomorphism of the isotope i�

α = Rcθ, θϕ = ϕθ, Iϕcθψ = ψθ, θa = ϕc + ψc + a− c

for some element c and some endomorphism θ of the group, where Rc

denotes the right translation of the group with an element c, and Iϕc

denotes the inner automorphism Iϕcx = −ϕc + x + ϕc.

2. Description of the main algorithm
An algorithm, which describes all linear isotopes of an arbitrary �xed
group de�ned by its Cayley table and its generator system, is given in
[2]. Let us alter the algorithm supplementing it with some part.

Note that for a real computer employment it is useful to execute
two almost the same algorithms. In the �rst one we limit ourself to
the search of the list of all linear isotopes of the given group saving on
magnetic information carriers the respective ordinal numbers of the
automorphisms and of the free members from the canonical decom-
positions. It gives us the possibility in the second algorithm to avoid
the preservation of the Cayley table (which is important in the �rst
algorithm) of the automorphism group of the given group which econ-
omizes the necessary operative memory. There is also no necessity to
use blocks, which were needed in the initial algorithm from [2].

To construct the second algorithm we add to the algorithm from
[2] new blocks:

1. we compose information on the endomorphisms of the given
group as we did it in [2] for automorphisms, and, in addition,
we construct the table where every square corresponds to each
next endomorphism and contains the information about its bi-
jectivity;

2. in the certain place of the algorithm we read the parameters of
each next linear group isotope;

3. looking over all pairs 〈θ, c〉, where θ is an endomorphism of the
given group and c is an element of the group, we verify ful�ll-
ment of the equalities of criterion, given in the Lemma; if Rcθ



Endomorphisms of non-cyclic groups 17

is an endomorphism of the investigated isotope, we add the unit
to the score of number of the endomorphisms of the isotope (en-
domorphism doesn't appear twice, because di�erent pairs de�ne
di�erent endomorphisms);

4. taking into account that the transformation Rcθ is an automor-
phism of this isotope i� the transformation θ is bijective, we
calculate the number of automorphisms of the isotope remem-
bering the respective pairs in an individual table (in fact, we can
remember the ordinal numbers of θ and c);

5. if the number of the automorphisms is not greater than 15, we
create the Cayley table of the automorphism group of the iso-
tope; for this purpose, we make the search of all triples 〈α, β, γ〉
of the automorphisms of this isotope, and we put γ = αβ i� γ
and αβ de�ne the same act on the basis set;

6. we determine commutativity of the automorphism group and the
number of its subgroups in the same way as we did for the main
group in [2]; these two characteristics together with the order of
this automorphism group synonymously de�ne this group up to
isomorphism, since its order is not greater than 15.

3. Main results
This algorithm was applied to all 13 non-cyclic groups up to 15-th
order inclusively using IBM PC.

If (abcd, efgh, ij) is the representation from [2] for a linear isotope
of the group D3, then for the linear isotope of the 12-th order group

G12 = 〈 a, b | a4 = b3 = 1, ba = ab2 〉
with the representation (d

′
cba, h

′
gfe, ji), where

d ≡ d
′
(mod 2), h ≡ h

′
(mod 2),

the number of all endomorphisms is twice greater than the number
of all endomorphisms of the respective isotope of the group D3. The
automorphism group is isomorphic to the direct product of the group
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Z2 on the automorphism group of the respective isotope of the group
D3 (recall, that Z2 ×D3 ' D6).

The numbers of all automorphisms and all endomorphisms are
given across the symbol / . With that, the automorphism groups hav-
ing the order up to 15 are discerned with the help of the letter placed
after the number of the automorphisms. If such group is cyclic, then
this letter is omitted. We use also the following symbols:

• the group Z2 × Z2 is denoted as 4a ,

• the group Z6 × Z2 is denoted as 12a ,

• the group Z3 × Z3 is denoted as 9a ,

• the group Z2 × Z2 × Z2 is denoted as 8a ,

• the group D3 is denoted as 6a ,

• the group D4 is denoted as 8b ,

• the group D6 is denoted as 12b ,

• the group A4 is denoted as 12c .

The symbol * denotes the automorphism group of the isotope
which is isomorphic to the respective group.

The group Z2 × Z2.
2/4. 2/4. 2/2. 2/4. 2/4. 2/2. 2/4. 2/2. 3/4. 3/4. 12c/16. 4a/4. 2/4. 3/4.
6a/16*.

The group Z4 × Z2.
8b/32*. 4a/8. 4a/8. 4/8. 8b/32. 4a/8. 4a/8. 2/4. 2/4. 4a/8. 4a/8. 4a/8.
2/4. 4a/8. 2/4. 4a/8. 4a/8. 4/8. 2/4. 2/4. 4/8. 4/8. 4/8. 8b/32. 4a/8.
4a/8. 4/8. 8b/32.

The group Z6 × Z2.
12b/48*. 4a/12. 6/12. 4a/12. 6/12. 12b/48. 4a/12. 4a/12. 4a/12. 4a/6.
4a/12. 4a/6. 4a/12. 4a/6. 4a/12. 4a/6. 4a/12. 4a/12. 6/12. 4a/12.
4a/6. 6/12. 4a/12. 4a/6. 24/48. 8a/12. 24/48. 8a/12. 6/12. 6/12. 4a/12.
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4a/12. 4a/6. 4a/12. 4a/6. 12b/36. 6/12. 12b/36. 12b/18. 6/12. 6/6.
4a/12. 12b/36. 6/12. 12b/36. 6/6. 6/12. 12b/18. 6/12. 4a/12. 4a/6.
24/48. 8a/12. 12b/36. 12b/18. 6/12. 6/6. 18/36. 9a/12. 6/12. 18/36.
9a/12. 72/144. 24/36. 12a/12. 36/48. 12b/48. 4a/12. 6/12. 12b/36.
6/12. 18/36. 9a/12. 36/144. 18/48.

The group Z3 × Z3.
12b/27. 6/9. 2/3. 2/3. 2/3. 6a/9. 3/3. 2/3. 6a/9. 3/3. 2/3. 4a/9. 6a/9.
3/3. 2/3. 4a/9. 2/3. 2/3. 2/3. 6a/9. 3/3. 6a/9. 3/3. 2/3. 2/3. 6a/9. 3/3.
6a/9. 3/3. 6a/9. 3/3. 12b/27. 6/9. 2/3. 2/3. 2/3. 2/3. 8/9. 6a/9. 3/3.
6a/9. 3/3. 2/3. 2/3. 6a/9. 3/3. 2/3. 8/9. 8/9. 2/3. 6a/9. 3/3. 8/9. 6a/9.
3/3. 72/81. 9a/9. 8/9. 8/9. 8/9. 2/3. 6a/9. 3/3. 8/9. 2/3. 2/3. 6a/9.
3/3. 2/3. 8/9. 6a/9. 3/3. 8/9. 2/3. 6a/9. 3/3. 8/9. 6a/9. 3/3. 72/81.
9a/9. 8/9. 8/9. 8/9. 2/3. 6a/9. 3/3. 2/3. 8/9. 2/3. 6a/9. 3/3. 8/9.
6a/9. 3/3. 2/3. 8/9. 6a/9. 3/3. 2/3. 6a/9. 3/3. 8/9. 72/81. 9a/9. 8/9.
8/9. 8/9. 6a/9. 3/3. 2/3. 2/3. 2/3. 18/27. 9a/9. 2/3. 6a/9. 3/3. 2/3.
6/9. 6a/9. 3/3. 6/9. 2/3. 6a/9. 3/3. 2/3. 6a/9. 3/3. 2/3. 54/81. 9a/9.
27/27. 6a/9. 3/3. 18/27. 9a/9. 6/9. 2/3. 2/3. 6a/9. 3/3. 6a/9. 3/3. 2/3.
6/9. 2/3. 6/9. 6a/9. 3/3. 2/3. 6/9. 2/3. 6a/9. 3/3. 2/3. 6a/9. 3/3. 6/9.
2/3. 6a/9. 3/3. 6/9. 6/9. 4a/9. 8/9. 8/9. 8/9. 6/9. 6/9. 48/81*. 48/81.
12b/27. 6/9. 8/9. 8/9. 8/9. 18/27. 9a/9. 6/9. 48/81. 432/729. 54/81.

The group Z2 × Z2 × Z2.
8b/32. 2/8. 2/4. 2/4. 2/4. 2/4. 2/2. 1/2. 2/4. 2/2. 2/4. 2/2. 1/2. 1/2.
2/4. 2/2. 4a/8. 2/4. 2/2. 1/2. 2/8. 2/4. 1/2. 2/4. 2/2. 2/4. 1/2. 2/4.
2/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 4a/8. 2/4. 4/8. 8b/32. 2/8. 2/4. 3/8.
2/4. 2/2. 1/2. 2/4. 2/2. 1/2. 1/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 2/4.
2/2. 2/4. 2/2. 1/2. 1/2. 1/2. 1/2. 2/4. 2/2. 1/2. 2/4. 2/2. 1/2. 2/4.
2/2. 2/4. 2/2. 2/4. 2/2. 1/2. 2/4. 2/2. 2/4. 2/2. 1/2. 2/4. 2/2. 2/4.
2/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 1/2. 2/4. 2/2. 1/2. 2/4. 2/2. 4a/8.
4a/4. 4a/4. 4a/4. 4a/8. 4a/4. 4a/4. 4a/4. 2/4. 2/2. 1/2. 2/4. 2/2. 2/4.
2/2. 2/4. 2/2. 2/4. 2/2. 4a/8. 4a/4. 4a/4. 4a/4. 1/2. 2/4. 2/2. 3/8.
1/2. 1/2. 1/2. 2/4. 2/2. 2/4. 2/2. 12c/32. 4a/8. 4a/8. 4a/4. 4a/4. 4a/4.
4a/8. 4a/4. 4a/4. 4a/4. 2/4. 2/2. 2/4. 2/2. 2/4. 2/4. 2/2. 4/8. 2/4. 2/2.
1/2. 1/2. 2/4. 2/2. 2/4. 2/2. 4a/8. 4a/4. 4a/4. 4a/4. 4a/8. 4a/4. 4a/4.
4a/4. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 1/2. 2/4. 2/2.
1/2. 2/4. 2/2. 1/2. 2/4. 2/2. 1/2. 1/2. 2/4. 2/2. 1/2. 2/4. 2/2. 1/2.
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1/2. 2/4. 2/2. 1/2. 1/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 4/8. 2/4. 2/2.
2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 4a/8. 4a/4. 4a/4. 4a/4. 4a/8. 4a/4. 4a/4.
4a/4. 4/8. 2/4. 2/4. 2/2. 2/4. 2/2. 4/8. 2/4. 2/2. 1/2. 1/2. 2/4. 2/2.
7/8. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 4a/8. 4a/4. 4a/4.
4a/4. 4a/8. 4a/4. 4a/4. 4a/4. 1/2. 2/4. 2/2. 1/2. 2/4. 2/2. 1/2. 2/4.
2/2. 1/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 4a/8. 4a/4. 4a/4. 4a/4. 7/8. 7/8.
2/4. 2/2. 7/8. 56/64. 8a/8. 7/8. 7/8. 1/2. 2/4. 2/2. 2/4. 2/2. 1/2. 2/4.
2/2. 7/8. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 4a/8. 4a/4. 4a/4. 4a/4. 2/4. 2/2.
4a/8. 4a/4. 4a/4. 4a/4. 1/2. 1/2. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 1/2. 2/4.
2/2. 1/2. 7/8. 2/4. 2/2. 2/4. 2/2. 2/4. 2/2. 7/8. 4a/8. 4a/4. 4a/4. 4a/4.
7/8. 56/64. 8a/8. 7/8. 7/8. 8b/32. 3/8. 4/8. 7/8. 7/8. 168/512*.

The group D3.
6a/10*. 2/4. 3/4. 3/4. 1/2. 3/4. 3/4. 2/4. 2/6. 1/2. 1/1.

The group D4.
8b/36*. 4a/20. 8b/12. 4/6. 4a/6. 4/6. 2/4. 4/6. 4/6. 2/4. 4/6. 8b/12.
4a/8. 8b/12. 4/6. 4a/6. 4a/20. 4a/20. 4a/8. 4a/8. 2/4. 2/4. 4a/6. 2/4.
4a/6. 2/4. 4a/6. 4a/6.

The group D5.
20/26*. 4/6. 5/6. 4/6. 4/6. 5/6. 1/2. 5/6. 5/6. 5/6. 5/6. 1/2. 1/2. 4/6.
4/10. 1/2. 1/1. 4/6. 4/6. 1/2. 1/2. 4/6. 4/6. 1/2. 1/2. 4/6. 4/10. 1/2.
1/1. 4/6. 4/6. 1/2. 1/2. 4/10. 4/6. 1/1. 1/2.

The group D6.
12b/64*. 4a/24. 6/16. 6/8. 4a/8. 12b/20. 6/8. 2/4. 6/8. 6/8. 6/8. 2/4.
6/8. 6/8. 6/16. 2/8. 6/16. 6/16. 6/8. 2/4. 6/8. 6/8. 12b/20. 4a/8. 6/8.
6/8. 4a/8. 12b/20. 4a/24. 4a/32. 2/8. 2/4. 2/4. 2/2. 4a/12. 4a/8. 4a/8.
2/2. 2/4. 4a/12. 2/4. 4a/12. 2/2. 4a/8.

The group D7.
42/50*. 6/8. 7/8. 6/8. 6/8. 6/8. 6/8. 7/8. 1/2. 7/8. 7/8. 7/8. 7/8. 7/8.
7/8. 1/2. 1/2. 1/2. 1/2. 6/8. 6/14. 1/2. 1/1. 6/8. 6/8. 1/2. 1/2. 6/8.
6/8. 1/2. 1/2. 6/8. 6/8. 1/2. 1/2. 6/8. 6/14. 1/2. 1/1. 6/8. 6/8. 1/2.
1/2. 6/8. 6/8. 1/2. 1/2. 6/8. 6/8. 1/2. 1/2. 6/8. 6/14. 1/2. 1/1. 6/8.
6/8. 1/2. 1/2. 6/8. 6/8. 1/2. 1/2. 6/14. 6/8. 1/1. 1/2. 6/8. 6/8. 1/2.
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1/2. 6/14. 6/8. 1/1. 1/2. 6/8. 6/8. 1/2. 1/2.

The group Q8.
4a/6. 2/4. 4a/6. 1/3. 1/1. 4a/6. 2/4. 4a/6. 2/4. 2/4. 2/2. 2/2. 1/3. 1/1.
1/3. 1/1. 3/4. 1/2. 3/4. 1/2. 3/7. 1/1. 2/4. 4/6. 4/6. 1/3. 1/1. 4/6.
2/4. 4/6. 2/4. 2/4. 2/2. 2/2. 4a/6. 4/6. 3/4. 24/28*. 8b/12. 2/4. 2/4.
1/2. 8b/12. 4a/8. 8b/12. 4/6. 4a/6.

The group A4.
24/33*. 3/6. 8b/9. 4a/9. 4/5. 3/6. 3/9. 3/6. 1/2. 1/2. 1/1. 1/5. 1/1.
1/1. 1/3. 4a/9. 1/5. 4a/5. 1/1. 2/3. 4a/21. 1/4. 4a/5. 1/1. 2/5. 4/5.
1/1. 1/3. 4/5. 2/3. 2/5. 1/1. 1/1. 4/5. 4/9. 8b/9. 1/2. 4a/5. 8b/9. 2/3.
4a/5. 4/5. 2/3.

The authors express their great thanks to Dr. Fedir Sokhatsky for
the permanent attention to their work.

References
[1] V. I. Izbash: Isomorphisms of quasigroups isotopic to groups,

Quasigroups and Related Systems 2 (1995), 34− 50.

[2] O. U. Kirnasovsky: Linear isotopes of small order groups,
Quasigroups and Related Systems 2 (1995), 51− 82.

[3] F. Sokhatsky: On isotopes of groups. I, (Ukrainian), Ukrain.
Math. Zh. 47 (1995), 1387− 1398.

[4] F. Sokhatsky: On isotopes of groups. II, (Ukrainian), Ukrain.
Math. Zh. 47 (1995), 1692 − 1703. (English translation in
Ukrainian Math. J. 47 (1995), 1935− 1948.)

[5] F. Sokhatsky: On isotopes of groups. III, (Ukrainian), Ukrain.
Math. Zh. 48 (1996), 251− 259.

Department of Algebra Received 15 September 1997
Vinnytsia State Pedagogical University
Vinnytsia 287100
Ukraine



Quasigroups and Related Systems, 4 (1997), 23�38

The transitive and multitransitive
automorphism groups of the multiplace

quasigroups

Oleg U. Kirnasovsky

Abstract

In this paper, for every k, the multiplace group isotopes, which have k−transitive
automorphism groups, are described.

1. Introduction
A groupoid (G; g) is called an isotope of a group (Q; +), i� for some
bijections γ1, . . ., γn and γ of G on Q the equality

γg(x1, . . . , xn) = γ1x1 + . . . + γnxn

holds. The groupoid (G; g) is called also a group isotope. A groupoid
(G; g) is called a linear isotope of a group (G; +) i� there are auto-
morphisms α1, . . . , αn of a group (G; +) such that

g(x1, . . . , xn) = α1x1 + . . . + αnxn + a

for some �xed a ∈ G. It is easy to see that every group isotope is
a quasigroup. Also a quasigroup isomorphic to a linear isotope is a
linear isotope.

Let S(Q) be a permutation group of Q. We say that a group S(Q)
is k-times transitive (or k-transitive) on the set H ⊂ Q, where k is a

1991 Mathematics Subject Classi�cation: 20N05, 20N15
Keywords: quasigroup, isotopy, n-ary quasigroup
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�xed cardinal number, i� |H| ≥ k, σ(H) = H for every σ ∈ S(Q)
and for each bijection ϕ : A → B of k-element subsets A, B of H
there exists α ∈ S(Q) such that αx = ϕx for all x ∈ A.

1-transitive group will be also called transitive. The words �on the
set H� will be omitted if H = Q.

The D-quasigroups, i.e. the �nite binary quasigroups having double-
transitive automorphism groups, are investigated in [3]. The �nite
binary groupoids having double-transitive automorphism groups are
described in [2]. Here we continue the investigation for the case of the
multiplace quasigroups.

The author would like to expresses his sincere thanks to Dr. Volody-
myr Derech for suggesting the problem. Author also expresses his
great thanks to Dr. Fedir Sokhatsky for his very useful comments.

2. Some individual cases
Theorem 1. The automorphism group of an unary quasigroup (Q; f)
is transitive i� either all cycles of f are in�nite, or all these cycles are
�nite and have the same length.

Proof. Let the automorphism group be transitive and
(x1, . . . , xn), (. . . , y1, . . . , yn, . . .)

be some cycles of f , and let the length of the second cycle be greater
than n (or be in�nite). Transitivity of the automorphism group implies
the existence of an automorphism α of the unary quasigroup (Q; f),
for which αx1 = y1. Then α commutes with f , and in the consequence,
with fn. Thus yn+1 = fny1 = fnαx1 = αfnx1 = αx1 = y1, which is
a contradiction.

On the other hand, let all cycles of f have the same (may be
in�nite) length and let x, y ∈ Q be arbitrary elements. If they are in
the same cycle, then there exists a positive integer n such that fnx = y
and fn is an automorphism of (Q; +). If x = x1, y = y1, and

(. . . , x1, . . . , xn, . . .), (. . . , y1, . . . , yn, . . .)

are di�erent cycles of f , then the permutation α being the product of
all cycles of the type (xi, yi) is an automorphism of (Q; f), with the
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condition αx = y. This proves the transitivity.

We say that a groupoid (Q; h) is derived from a group (Q; +), i�

h(x1, . . . , xn) = x1 + . . . + xn . (1)

Lemma 2. Every quasigroup with at most 3 elements is a linear iso-
tope of a cyclic group.

Proof. Let (Q; f) be a quasigroup. For |Q| = 1 the lemma is evident.
Let |Q| > 1. We consider the ring (Q; +, ·). The element 0 is an
idempotent of the operation g:

g(x1, . . . , xn) = f(x1, . . . , xn)− f(0, . . . , 0).

De�ne the operation h by
h(x1, x2, . . . , xn) =

= g(g(1, 0, . . . , 0) · x1, g(0, 1, 0, 0, . . . , 0) · x2, . . . , g(0, . . . , 0, 1) · xn).

We prove that the groupoid (Q; h) is derived from the cyclic group
(Q; +). For |Q| = 2 the equality is easy provable by the induction
on the number of the appearances of the element 1 in the collection
〈x1, . . . , xn〉. Let |Q| = 3. Denote by ri the number of the appearances
for an element i in the collection 〈x1, . . . , xn〉. For k = 0 we have:

h(0, . . . , 0) = g(0, . . . , 0) = 0.

Assume by the induction that this is true for k = j. We prove it for
k = j + 1. At �rst, we consider the case when r1 and r2 are positive.
Then we replace either one of the appearances of the element 1 by the
element 0, or one of the appearances of the element 2 by the element
0. In this case the result of the operation will be changed because h is
a quasigroup operation. Then by the inductive hypothesis the result
of the application of h to the given collection is not equal modulo 3
to none of the numbers

(r0 + 1) · 0 + (r1 − 1) · 1 + r2 · 2, (r0 + 1) · 0 + r1 · 1 + (r2 − 1) · 2,

and consequently, is equal to 0 · r0 + 1 · r1 + 2 · r2 = r1 + 2r2.
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Now, let r1 = 0, then r2 6= 0, since k > 0. For r2 = 1 the statement
follows from the construction of the operation h. If r2 > 1, then we
replace either one of the appearances of the element 2 by the element
0, or one of the appearances of the element 2 by the element 1. Then
by the hypothesis and by the statement proved above, the result of
the application of h to the given collection is not equal modulo 3 to
none of the numbers

(r0 + 1) · 0 + r1 · 1 + (r2 − 1) · 2, r0 · 0 + (r1 + 1) · 1 + (r2 − 1) · 2.

Now, let r2 = 0. Then we replace either one of the appearances of the
element 1 by the element 0, or one of the appearances of the element
1 by the element 2. Thence, analogously by the inductive hypothesis
and by the statement proved above, we receive that the result of the
application of h to the given collection is not equal modulo 3 to none
of the numbers

(r0 + 1) · 0 + (r1 − 1) · 1 + r2 · 2, r0 · 0 + (r1 − 1) · 1 + (r2 + 1) · 2,

which completes the proof.

As a consequence of the above Lemma we obtain

Corollary 3. The automorphism group of the quasigroup (Q; f) with
|Q| = 2 is double-transitive.

A group S(Q) is called k-cotransitive, where k is some �xed cardi-
nal number, i� |Q| ≥ k, and for every bijection ϕ : Q \ A → Q \ B,
where A and B are arbitrary k-subsets of Q, there exists α ∈ S(Q)
such that αx = ϕx for all x ∈ Q \ A.

It is clear that with |Q| = n < ℵ0 such k-cotransitivity is equiva-
lent to the (n− k)-times transitivity of this group.

Lemma 4. Let (Q, Ω) be an algebra containing in�nitary opera-
tions perhaps. If a subset M of Q is k-transitive with |M | + 1 ≤
k, |Q\M | ≥ 2, or k-cotransitive with |Q\M | ≥ k + 1, |Q\M | ≥ 2,
then M is a subalgebra of the given algebra.
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Proof. Since the case of the k-transitivity follows from the case of the
k-cotransitivity, we prove only the case of the k-cotransitivity. If M is
not a subalgebra, then there exist an operation σ of this algebra and
the sequence

〈xi | i ∈ I〉 (2)

(the cardinal number of I and the arity of σ are equal), such that

(∀i ∈ I) xi ∈ M, y = σ(〈xi | i ∈ I〉) /∈ M. (3)

But for |Q\M | ≥ 2 there exists z ∈ Q\M such that z 6= y. Moreover,
the k-cotransitivity implies the existence of an automorphism ϕ of
(Q, Ω) for which ϕy = z and ϕxi = xi for all i ∈ I. Thus

z = ϕy = ϕσ(〈xi | i ∈ I〉) = σ(〈ϕxi | i ∈ I〉) = σ(〈xi | i ∈ I〉),

which is impossible.

Corollary 5. If the automorphism group of an algebra (Q, Ω) is k-
transitive and the maximal power of the arities of the operations of the
algebra exists and is equal to n, where n + 1 ≤ k, n + 1 < |Q|, then
each non-empty subset of the set Q is a subalgebra.

Proof. If we assume the contrary, then we get the existence of an oper-
ation σ ∈ Ω and of a collection (2), for which the conditions (3) hold.
But this contradicts to the existence of M = {xi | i ∈ I} concerning
the operation σ, although such existence follows from the previous
Lemma.

Theorem 6. The automorphism group of an unary quasigroup (Q; f),
where |Q| > 2, is double-transitive i� f is the identical permutation.
In this case the automorphism group is |Q|-transitive.

Proof. If the automorphism group is double-transitive, then f is the
identical substitution, by Lemma 4. On the other hand, every substi-
tution of Q commutes with the identical permutation, and in the con-
sequence, it is an automorphism of the respective unary quasigroup.
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Theorem 7. The automorphism group of the quasigroups (Q; f) with
|Q| = 3 is triple-transitive i� the quasigroup is idempotent.

Proof. By Lemma 2, given quasigroup is a linear isotope of a cyclic
group. Such triple-transitivity is equivalent to the isomorphism of
the given automorphism group to the holomorph of the cyclic group.
From results of [4] it follows that such isomorphism is equivalent to
idempotency of the quasigroup (Q; f).

Lemma 8. Non-one-element quasigroups, in which all one-element
and two-element subsets are their subquasigroups, have odd arities and
are described by the system of identities f(u1, . . . , un) = un+1, where
metavariables u1, . . ., un+1 accept values in the set of the propositional
variables {x; y}, and, besides un+1 coincides with propositional vari-
able x or y, appearing in the sequence u1, . . ., un odd number of times.

Proof. Indeed, let {a; b} be �xed. At once we throw the case away
when the arity of the quasigroup is equal to zero, because then the
lemma conditions are false. The oddness of the operation arity fol-
lows by evident way from the assertion on the operation value, since
an operation of an even arity may have each from the elements a and
b odd number of times in the role of arguments. And we prove the
assertion about the operation value by the induction on the number
k of the appearances, for example, of the element b in the role. If
k = 0, then the assertion follows from Lemma 4. Let with k = i the
assertion be true. We have to prove it for k = i+1. By Lemma 4, the
operation value on the given collection is equal to either a or b. It re-
mains to take into account that we must get other value, if we replace
one of the appearances of b on a, because f is a quasigroup operation.

Theorem 9. The automorphism group of a quasigroup (Q; f) with
|Q| = 4 is quadruple-transitive i� the arity of the operation is odd and
the quasigroup is derived from the group Z2 × Z2.

Proof. Let the automorphism group be quadruple-transitive. We de-
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�ne on the set Q an operation (+) being isomorphic to the operation
of the group Z2 × Z2. Using Lemmas 4 and 8 we get the oddness of
the arity n of the quasigroup (Q; f) and the truth of the formula

f(x1, . . . , xn) = x1 + . . . + xn (4)
for the case, when |{x1; . . . ; xn}| ≤ 2, since in the group (Q; +) the
identity 2x = 0 holds.

We prove (4) for the other cases. We will do it by the induction
on the value of the product

P = (a + 1)(b + 1)(c + 1)(d + 1),

where a, b, c and d are numbers of the appearances of each of four
elements of Q in the collection of the arguments of the operation f in
(4). Without restricting the generality we assume that

a ≥ b ≥ c ≥ d,

whence we have c > 0 (with c = 0 the statement has just been proved
above). Let u, v, w ∈ Q correspond to the numbers a, b and c re-
spectively. In the �xed collection of all arguments of the operation
f we make three independent changes (in so doing, we receive three
individual collections). First: we replace an arbitrary appearance of
the element v with the element u. Second: we replace an arbitrary
appearance of the element w with the element u. And third: we re-
place an arbitrary appearance of the element w with the element v.
In this case the value of the product P is respectively replaced by the
products

P1 = (a + 2)b(c + 1)(d + 1),
P2 = (a + 2)(b + 1)c(d + 1),
P3 = (a + 1)(b + 2)c(d + 1),

which are less than P . By the inductive hypothesis, values of f on
three obtained collections are pairwise di�erent and all of them must
be di�erent from the value on the given collection, because f is a
quasigroup operation. But values of the right side of (4) on all these
four collections are also pairwise di�erent. Therefore, taking into ac-
count that |Q| = 4, we get the truth of the formula (4) on the given
collection. The rest follows from the fact that the given automorphism
group is isomorphic to Hol(Z2 × Z2), and the holomorph consists of
all substitutions of the basis set.
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3. The general case
Lemma 10. For all mappings α1, . . ., αn of a group (Q; +) and for
the mappings β1, . . ., βn de�ned by

βi = α1 + . . . + αi, where i = 0, . . . , n, (5)

the equality of the subgroups

{ψ ∈ Aut(Q; +) |ψβi = βiψ, i = 1, . . . , n} =
= {ψ ∈ Aut(Q; +) |ψαi = αiψ, i = 1, . . . , n}

of the group Aut(Q; +) holds.

Proof. Let ψ commute with αi when i = 1, . . . , n. Then, for each i we
have that

ψβi = ψ(α1 + . . . + αi) = ψα1 + . . . + ψαi =
= α1ψ + . . . + αiψ = (α1 + . . . + αi)ψ = βiψ.

Now on the contrary, let ψ commute with βi when i = 1, . . . , n. It is
evident that ψ commutes with β0 as well. Then, for all i, we have that
ψαi = −ψβi−1 + ψβi−1 + ψαi = −ψβi−1 + ψ(βi−1 + αi)

= −ψβi−1 + ψβi = −βi−1ψ + βiψ = −βi−1ψ + (βi−1 + αi)ψ

= (−βi−1 + βi−1 + αi)ψ = αiψ.

We denote by Lc and Rc respectively the left and right translations
of the group operation (+), by Ic the inner automorphism L−1

c Rc, and
by ε the identical permutation.

For shortening of the statement wording we reach agreement about
uni�ed notations further in this point (except the end of the article).
Namely: let us �x an arbitrary group, denoted as (Q; +), its arbitrary
element, denoted as a, an arbitrary integer greater than one, denoted
as n, arbitrary n unitary substitutions, denoted as α1, . . ., αn. Under
these designations let us �x also the notation (Q; f) for the group
isotope speci�ed by the equality

f(x1, . . . , xn) = α1x1 + . . . + αnxn + a,
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also the notation β0, . . ., βn for the mappings of the set Q speci�ed by
the equalities (5) (here, it is natural that β0 is the null-endomorphism
of the given group). Finally, let us �x the notation H for the subgroup
of Aut(Q; +), consisting of all automorphisms, stated in Theorem 10,
and the notation γ for the mapping, speci�ed by the equality γ =
Raβn − ε.

During the conference in Barnaul (1991) F. Sokhatsky announced
the following result.

Theorem 11. A transformation α is an endomorphism of a group
isotope (Q; f) i� α = Rcθ for some endomorphism θ of the group
(Q; +) and some element c such that

θa + c = α1c + . . . + αnc + a, (6)
RαicIα1c+...+αi−1cθαi = αiRcθ for all i = 1, . . . , n. (7)

Theorem 12. A transformation α is an endomorphism of a group
isotope (Q; f) i� α = Rcθ for some element c and for some endomor-
phism θ of the group (Q; +) such that

θa + c = βnc + a, (8)
Rβicθβi = βiRcθ for all i = 1, . . . , n. (9)

Proof. The equality (6) is equivalent to (8), therefore by Theorem
11 it is enough to show that (7) is equivalent to (9). Replace the
number n by as arbitrary number k and let us prove the equivalence
of the obtained systems for all natural k, not greater than n. Make
that by the induction on k. For when k = 1 we have one equality in
both systems only, which are equivalent, because β1 = α1, Iβ0c = ε.
Assume that for i = m these systems are equivalent. For i = m + 1
the equality (9) may be rewritten in the form

Rαm+1cRβmcθ(βm + αm+1) = (βm + αm+1)Rcθ. (10)

Since (9) holds when i = m, then

(βm + αm+1)Rcθ = βmRcθ + αm+1Rcθ = Rβmcθβm + αm+1Rcθ,

and hence, (10) may be rewritten in the form

Rαm+1cRβmcθ(βm + αm+1) = Rβmcθβm + αm+1Rcθ,
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that is

θβm + Rαm+1cRβmcθαm+1 = θβm + Lβmcαm+1Rcθ,

whence after equivalent transformations we have

Rαm+1cIβmcθαm+1 = αm+1Rcθ,

which is equivalent to (7) with i = m + 1. This completes the proof.

Theorem 13. The automorphism group of a group isotope (Q; f) is
transitive i� for every element c ∈ Q there exists an automorphism θ
of the group (Q; +) such that (9) holds and the element θ−1γc is the
image of the element a under the action of some transformation from
the group H.

Proof. Let Aut(Q; f) be transitive. Then for every c ∈ Q there exists
an automorphism α of of the group isotope (Q; f) which maps the
neutral element of (Q; +) to c. By Theorem 12 it means that for each
c ∈ Q there exists an automorphism θ of (Q; +) satisfying (8) and (9).
From (8) we have that θ−1γc = a, but the identical automorphism of
(Q; +) maps a to itself and commutes with all βi.

On the other hand, let for every c ∈ Q there exist an automorphism
θ of (Q; +) satisfying (9), and thereto for these c and θ, the element
θ−1γc is the image of a under the action of some automorphism ψ
from H. Then for these triples of c, θ and ψ we have

θψa + c = θθ−1(βnc + a− c) + c = βnc + a,

Rβicθψβi = Rβicθβiψ = βiRcθψ for all i = 1, . . . , n, (11)

whence taking into account bijectivity of the transformations of Rcθψ
we have, by Theorem 12, that they are automorphisms of the group
isotope (Q; f). Consequently, for an arbitrary �xed x, y ∈ Q there
are automorphisms θ′, ψ′, θ′′ and ψ′′ such that Rxθ

′ψ′ and Ryθ
′′ψ′′ are

automorphisms of the group isotope (Q; f). But

Ryθ
′′ψ′′(Rxθ

′ψ′)−1x = Ryθ
′′ψ′′(ψ′)−1(θ′)−1R−1

x x

= Ryθ
′′ψ′′(ψ′)−1(θ′)−10 = Ry0 = y,
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whence Aut(Q; f) is transitive.

Corollary 14. If transformations β1, . . ., βn are endomorphisms (for
example, if the group (Q; +) is abelian and its isotope (Q; f) is linear)
of a group (Q; +) then the automorphism group of a group isotope
(Q; f) is transitive i� one of the following equivalent conditions holds:

• the set Im γ is a subset of the set of images of a under the action
of all transformations of the group H;

• for all x, y ∈ Im γ there exists a transformation ϕ from the group
H which maps x to y.

Proof. If β1, . . ., βn are endomorphisms of (Q; +), then (9) means that
θ belongs to H. Since all groups are non-empty, then by Theorem 13,
Aut(Q; f) is transitive i� for each c ∈ Q there are transformations θ
and ψ from H such that ψa = θ−1γc, i.e.

δa = γc, (12)

where δ = θψ. Hence, Aut(Q; f) is transitive i� for every c ∈ Q there
exists a transformation δ from H such that (12) holds, i.e, i� Imγ is a
subset of the set of all images of a under the action of all transforma-
tions from H. We prove the equivalence of the two conditions of our
corollary criterion. Let Im γ be a subset of the set of all images of a
under the action of all transformations from the group H. Then for
all x, y ∈ Imγ there exist transformations ϕ1 and ϕ2 from H such that
ϕ1a = x, ϕ2a = y. Thus ϕ2ϕ

−1
1 x = y. Hence, the second condition

follows from the �rst one. Let now the second condition holds. Since
γ maps the neutral element of (Q; +) to a, then a belongs to Im γ.
Hence, for every y ∈ Im γ there exists ϕ ∈ H, for which ϕx = y. And
this is the �rst of the two conditions of the corollary criterion.

Corollary 15. If transformations β1, . . ., βn are endomorphisms of
a group (Q; +) and the group H is transitive on the set Im γ, then the
automorphism group of a group isotope (Q; f) is transitive.
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Corollary 16. If βn = ε, transformations β1, . . ., βn−1 are endo-
morphisms of a group (Q; +), and a is central in this group, then the
automorphism group of the group isotope (Q; f) is transitive.

Proof. Im γ has only one element, which under the action of the trans-
formation ε is mapped to itself. Hence, by Corollary 14, the group
Aut(Q; f) is transitive.

Corollary 17. The automorphism group of an idempotent group iso-
tope (Q; f), where β1, . . ., βn are endomorphisms of the group (Q; +),
is transitive.

Corollary 18. The automorphism group of an idempotent group iso-
tope (Q; f) is transitive i� for every element c ∈ Q there exists an
automorphism θ of the group (Q; +) such that (9) holds.

Proof. Idempotency of the isotope (Q; f) gives βn = ε and a = 0.
Therefore Im γ contains only the neutral element of (Q; +). Since the
identical transformation commutes with all mappings, then Theorem
13 completes our proof.

Example. Let (Q; +) be a cyclic group Z6, and

n = 3, a = 0, α1 = ε,

α2 =

(
0 1 2 3 4 5
0 1 4 5 2 3

)
, α3 =

(
0 1 2 3 4 5
0 5 2 1 4 3

)
.

Then the group isotope (Q; f) is idempotent. The map:

β2 =

(
0 1 2 3 4 5
0 2 0 2 0 2

)
,

is not an endomorphism of the group (Q : +) because

β2(1 + 1) = β22 = 0 6= 4 = 2 + 2 = β21 + β21.

But the group Aut(Q; +) is transitive. Indeed, by Corollary 18, for
verifying of transitivity of this group it is enough to show that for
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every c ∈ Q there exists an automorphism θ of (Q; +) satisfying (9).
In the group Z6 there are two automorphisms: ε and −ε. When i = 1
and when i = 3, both of them satisfy (9). For i = 2 (9) has the form

(∀x ∈ Q) θβ2x + β2c = β2(θx + c).

If c ∈ {0; 2; 4}, then θ = ε and:
β2(θx + c) = β2(x + c) = β2x = β2x + β2c = θβ2x + β2c.

If c ∈ {1; 3; 5}, then θ = −ε and:
β2(θx + c) = β2(−x + c) = β2(x + c) = 2− β2x

= β2c− β2x = −β2x + β2c = θβ2x + β2c.

This proves that Aut(Q; f) is transitive.

Theorem 19. A transitive automorphism group of a group isotope
(Q; f) with |Q| > 2 is double-transitive i� (Q; f) is idempotent, the
group H is transitive on the set of all non-neutral elements of the
group (Q; +).

Proof. While proving Lemma 4 in the both directions, we can consider
that (Q; f) is idempotent. Then, by Corollary 18, for every c ∈ Q there
exists an automorphism θ of (Q; +) satisfying (9). Since βn = ε, and
a = 0 (because (Q; f) is idempotent), then for every c and for every
automorphism θ of (Q; +) (8) holds. Hence, by Theorem 12 the map-
ping α is an automorphism of the group isotope (Q; f) i� α = Rcθ
for some c and some automorphism θ of (Q; +) satisfying (9). Let
Aut(Q; f) be double-transitive, then for all non-neutral x, y ∈ Q there
exist c and an automorphism θ of (Q; +) such that (9) holds and also

Rcθ0 = 0, Rcθx = y.

From the �rst of these equalities we obtain that c = 0, and hence,
θx = y. From (9) follows that θ belongs to the group H. It is also
obvious that θ maps all non-neutral elements of (Q; +) to non-neutral,
and in the consequence, the group H is transitive on Q\{0}. Let now
x, y, c ∈ Q and x 6= 0, y 6= c. By the above, there exists an automor-
phism θ of (Q; +) satisfying (9). Since the group H is transitive on
Q\{0}, then there exists ψ ∈ H, for which ψx = θ−1(y− c). Then we
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have (11) and α0 = c, αx = y, where the mapping α = Rcθψ is an
automorphism of the group isotope (Q; f). If now we take arbitrary
di�erent elements z, t ∈ Q, then, analogously as in previous case, we
obtain the existence of an automorphism β of the group isotope (Q; f),
for which β0 = z, βx = t. Then for the automorphism βα−1 of the
group isotope (Q; f) we have

βα−1c = β0 = z, βα−1y = βx = t.

Hence, the group Aut(Q; f) is double-transitive.

Theorem 20. The automorphism group of a group isotope (Q; f),
where |Q| > 3, is triple-transitive i� n is odd, (Q; f) is derived from
(Q; +) and (Q; +) is an abelian group of period 2 whose automorphism
group is double-transitive on the set of all non-neutral elements of the
group (Q; +).

Proof. Assume that Aut(Q; +) is triple-transitive. By Lemmas 4 and
8 the number n is odd, the group isotope is idempotent, and

f( 0, . . . , 0,︸ ︷︷ ︸
(i−1)−times

x, 0, . . . , 0) = x for all i = 1, . . . , n,

f(x, x, 0, . . . , 0) = 0.

Thus αi = ε and 2x = 0, because from idepotency of (Q; f) we have
that a = 0. This means that (Q; +) is abelian. Then by Theorem 12 all
automorphisms of the group isotope (Q; f) are transformations of the
form Rcθ, where c ∈ Q, and θ is an automorphism of (Q; +). If the
automorphism group of the group isotope (Q; f) is triple-transitive,
then for x1, x2, y1, y2 ∈ Q such that |{0; x1; x2}| = |{0; y1; y2}| = 3
there exist c and an automorphism θ of (Q; +), for which

Rcθ0 = 0, Rcθx1 = y1, Rcθx2 = y2.

From the �rst equality we obtain c = 0, and hence, θx1 = y1, θx2 =
y2, which means that Aut(Q; +) is double-transitive on Q\{0}. A
contrary, let Aut(Q; +) be double-transitive on Q\{0}, and x1, x2, x3,
y1, y2, y3 ∈ Q be such that |{x1; x2; x3}| = |{y1; y2; y3}| = 3. Then
there exists an automorphism θ of (Q; +), for which

θ(x2 − x1) = y2 − y1, θ(x3 − x1) = y3 − y1.
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This for c = y1 − θx1 gives the automorphism Rcθ of group isotope
(Q; f) such that

Rcθx1 = θx1 + (y1 − θx1) = y1,
Rcθx2 = θ(x2 − x1) + Rcθx1 = (y2 − y1) + y1 = y2,
Rcθx3 = θ(x3 − x1) + Rcθx1 = (y3 − y1) + y1 = y3.

This proves that the group Aut(Q; +) is triple-transitive.

Theorem 21. The automorphism group of a non-unary quasigroup
(Q; f) with |Q| > 4 is not quadruple-transitive.

Proof. If it is not quadruple-transitive, then by Lemmas 4 and 8, for
arbitrary a, b, c ∈ Q we have

f(a, c, . . . , c) = a,
f(a, a, c, . . . , c) = c,
f(c, b, c, c, . . . , c) = b.

Thus f(a, b, c, . . . , c) /∈ {a; b; c}, which is impossible by Lemma 4.

Note. It is easy to see that every automorphism of an operation f is
an automorphism of an arbitrary diagonal operation induced by f , i.e.
the operation of the arity k de�ned by the term f(xγ1 , . . . , xγn), where
γ is a permutation of {1,. . . ,n} on the set consisting of k indexes.
Whence, the k-transitivity of the automorphism group of (G; f) im-
plies the k-transitivity of the automorphism group of each diagonal
operation induced by f .
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n-groups as n-groupoids with laws

Janez U²an

Abstract

In this article n-group (Q,A) is described as an n-groupoid (Q,B) in which the
following two laws hold: B(B(x, z, bn−2

1 ), B(y, an−2
1 , z), an−2

1 ) = B(x, y, bn−2
1 )

and B(a, cn−2
1 , B(B(B(z, cn−2

1 , z), cn−2
1 , b), cn−2

1 , B(B(z, cn−2
1 , z), cn−2

1 , a))) = b.

1. Preliminaries
1.1. De�nition. Let n ≥ 2 and let (Q, A) be an n�groupoid. We
say that (Q,A) is a Dörnte n�group (brie�y: n�group) i� it is an n�
semigroup and an n�quasigroup as well.

1.2. Proposition. ([17]) Let n ≥ 2 and let (Q,A) be an n�groupoid.
Then the following statements are equivalent:

(i) (Q,A) is an n-group,

(ii) there are mappings −1 and e respectively of the sets Qn−1 and
Qn−2 into the set Q such that the following laws hold in the
algebra (Q, {A, −1, e}) (of the type 〈n, n− 1, n− 2〉)
(a) A(xn−2

1 , A(x2n−2
n−1 ), x2n−1) = A(xn−1

1 , A(x2n−1
n )) ,

(b) A(e(an−2
1 ), an−2

1 , x) = x ,
(c) A((an−2

1 , a) −1, an−2
1 , a) = e(an−2

1 ) ,

1991 Mathematics Subject Classi�cation: 20N15, 03B30
Keywords: n−groupoid, n−semigroup, n−group, {i, j}−neutral operation
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(iii) there are mappings −1 and e respectively of the sets Qn−1 and
Qn−2 into the set Q such that the following laws hold in the
algebra (Q, {A, −1, e}) (of the type 〈n, n− 1, n− 2〉)

(ā) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ) ,
(b̄) A(x, an−2

1 , e(an−2
1 )) = x ,

(c̄) A(a, an−2
1 , (an−2

1 , a) −1) = e(an−2
1 ) .

1.3. Remarks. e is an {1, n}�neutral operation of n�groupoid
(Q,A) i� algebra (Q, {A, e}) of type 〈n, n − 2〉 satis�es the laws (b)
and (b̄) from 1.2 (cf. [14]). The notion of {i, j}�neutral operation
(i, j ∈ {1, ..., n}, i < j) of an n�groupoid is de�ned in a similar way
(cf. [14]). Every n�groupoid has at most one {i, j}�neutral opera-
tion. In every n�group (n ≥ 2) there is an {1, n}�neutral operation
(cf. [14]). There are n�groups without {i, j}�neutral operation with
{i, j} 6= {1, n}. In [16], n�groups with {i, j}�neutral operations, for
{i, j} 6= {1, n} are described. Operation −1 from 1.2 is a generalization
of the inverse operation in a group. In fact, if (Q,A) is an n�group,
n ≥ 2, then for every a ∈ Q and for every sequence an−2

1 over Q is
(an−2

1 , a)−1 = E(an−2
1 , a, an−2

1 ) ,

where E is an {1, 2n−1}�neutral operation of the (2n−1)-group (Q,
2

A),
2

A (x2n−1
1 ) = A(A(xn

1 ), x2n−1
n+1 ) (cf. [15]). (For n = 2, a−1 = E(a), a−1

is the inverse element of the element a with respect to the neutral
element e(∅) of the group (Q,A).)

1.4. Proposition. ([18]) Let n ≥ 2 and let (Q,A) be an n-groupoid.
Then, (Q,A) is an n-group i� the following statements hold:

(1) (∀xi ∈ Q)2n−1
1 A(A(xn

1 ), x2n−1
n+1 ) = A(xn−1

1 , A(x2n−1
n )) ,

(2) (∀xi ∈ Q)2n−1
1 A(xn−2

1 , A(x2n−2
n−1 ), x2n−1) = A(xn−1

1 , A(x2n−1
n )) or

(∀xi ∈ Q)2n−1
1 A(A(xn

1 ), x2n−1
n+1 ) = A(x1, A(xn+1

2 ), x2n−1
n+2 ) ,

(3) for every an
1 ∈ Q there is at least one x ∈ Q and at least one

y ∈ Q such that A(an−1
1 , x) = an and A(y, an−1

1 ) = an .
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Note that the following proposition has been proved in [13]:
An n�semigroup (Q,A) is an n�group i� for each an

1 ∈ Q there exists
at least one x ∈ Q and at least one y ∈ Q such that the following
equalities hold: A(an−1

1 , x) = an and A(y, an−1
1 ) = an.

This assertion has been already formulated in [11], but the proof
is missing there. W.A. Dudek has pointed my attention to this fact.
Similar issues have been considered in [5] (Proposition 1).

1.5. Proposition. Let n ≥ 3 and let (Q,A) be an n-groupoid. Also
let:

(i) the 〈1, 2〉�associative law holds in (Q,A) ,

(ii) for every x, y, an−1
1 ∈ Q the following implication holds
A(x, an−1

1 ) = A(y, an−1
1 ) ⇒ x = y.

Then (Q,A) is an n-semigroup.

Proposition 1.5 is a part of proposition 3.5 from [17]. In the proof
of this proposition we use the method of E. I. Sokolov from [11].

1.6. Proposition. Let (Q, A) be an n�group, −1 its inverse opera-
tion, e its {1, n}�neutral operation and n ≥ 2. Also let

−1A(x, an−2
1 , y) = z

def⇐⇒ A(z, an−2
1 , y) = x

for all x, y, z ∈ Q and for every sequence an−2
1 over Q. Then, for all

x, y ∈ Q and for every sequence an−2
1 over Q the following equalities

hold:

(1̄) −1A(x, an−2
1 , y) = A(x, an−2

1 , (an−2
1 , y)−1) ,

(2̄) e(an−2
1 ) = −1A(x, an−2

1 , x) ,

(3̄) (an−2
1 , x)−1 = −1A(−1A(x, an−2

1 , x), an−2
1 , x) ,

(4̄) A(x, an−2
1 , y) = −1A(x, an−2

1 ,−1A( −1A(y, an−2
1 , y), an−2

1 , y)) .
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Sketch of the proof.
a) −1A(x, an−2

1 , y) = z ⇐⇒ A(z, an−2
1 , y) = x ⇐⇒

A(A(z, an−2
1 , y), an−2

1 , (an−2
1 , y)−1) = A(x, an−2

1 , (an−2
1 , y)−1) ⇐⇒

A(z, an−2
1 , A(y, an−2

1 , (an−2
1 , y)−1)) = A(x, an−2

1 , (an−2
1 , y)−1) ⇐⇒

A(z, an−2
1 , e(an−2

1 )) = A(x, an−2
1 , (an−2

1 , y)−1) ⇐⇒
z = A(x, an−2

1 , (an−2
1 , y)−1) .

b) −1A(x, an−2
1 , x) = e(an−2

1 ) ⇐⇒ A(e(an−2
1 ), an−2

1 , x) = x .

c) −1A(−1A(x, an−2
1 , x), an−2

1 , x) = (an−2
1 , x)−1 ⇐⇒

A((an−2
1 , x)−1, an−2

1 , x) = −1A(x, an−2
1 , x) ⇐⇒

A((an−2
1 , x)−1, an−2

1 , x) = e(an−2
1 ) .

d) A(x, an−2
1 , y) = −1A(x, an−2

1 ,−1A(−1A(y, an−2
1 , y), an−2

1 , y)) ⇐⇒
x = A(A(x, an−2

1 , y), an−2
1 , (an−2

1 , y)−1) ⇐⇒
x = A(x, an−2

1 , A(y, an−2
1 , (an−2

1 , y)−1)) ⇐⇒
x = A(x, an−2

1 , e(an−2
1 )) .

2. Results
2.1. Theorem. Let n ≥ 2 and let (Q,A) be an n�group. Further-
more, let B = −1A, where

−1A(x, zn−2
1 , y) = z ⇐⇒ A(z, zn−2

1 , y) = x

for all x, y, z ∈ Q and for every sequence zn−2
1 over Q. Then the

following laws
(i) B(B(x, z, bn−2

1 ), B(y, an−2
1 , z), an−2

1 ) = B(x, y, bn−2
1 ) ,

(ii)

B(a, cn−2
1 , B(B(B(z, cn−2

1 , z), cn−2
1 , b), cn−2

1 , B(B(z, cn−2
1 , z), cn−2

1 , a))) = b

hold in the n�groupoid (Q,B). Moreover, for all x, y ∈ Q and for
every sequence an−2

1 over Q the following equality holds
B(x, an−2

1 , y) = A(x, an−2
1 , (an−2

1 , y)−1 ) ,
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where −1 is an inverse operation of the n�group (Q, A) .

Proof. Let n ≥ 2 and let (Q,A) be an n�group, −1 its inverse operation
and e its {1, n}�neutral operation. Also let

(0) −1A(x, zn−2
1 , y) = z

def⇐⇒ A(z, zn−2
1 , y) = x

for all x, y, z ∈ Q and for every sequence zn−2
1 over Q.

1) By 1.1 and (0), we conclude that for all x, y, z, u, v ∈ Q , for every
sequence an−2

1 over Q and for every sequence bn−2
1 over Q the following

series of implications holds
A(A(x, y, an−2

1 ), z, bn−2
1 ) = A(x,A(y, an−2

1 , z), bn−2
1 ) =⇒

−1A(A(x,A(y, an−2
1 , z), bn−2

1 ), z, bn−2
1 ) = A(x, y, an−2

1 ) =⇒
−1A(A(x, u, bn−2

1 ), z, bn−2
1 ) = A(x, −1A(u, an−2

1 , z), an−2
1 ) =⇒

−1A(v, z, bn−2
1 ) = A( −1A(v, u, bn−2

1 ), −1A(u, an−2
1 , z), an−2

1 ) =⇒
−1A(v, u, bn−2

1 ) = −1A( −1A(v, z, bn−2
1 ), −1A(u, an−2

1 , z), an−2
1 ) .

But
A(y, an−2

1 , z) = u ⇐⇒ y = −1A(u, an−2
1 , z), A(x, u, bn−2

1 ) = v ⇐⇒
⇐⇒ x = −1A(v, u, bn−2

1 ).
Whence, by the substitution B = −1A, we conclude that

B(B(x, z, bn−2
1 ), B(y, an−2

1 , z), an−2
1 ) = B(x, y, bn−2

1 )

holds in the n�groupoid (Q,B).

2) By 1.1, 1.2, 1.3 and (0), we conclude that for all a, b, x ∈ Q and for
every sequence cn−2

1 over Q the following series of equivalences holds
−1A(a, cn−2

1 , x) = b ⇐⇒ A(b, cn−2
1 , x) = a ⇐⇒

A((cn−2
1 , b)−1, cn−2

1 , A(b, cn−2
1 , x)) = A((cn−2

1 , b)−1, cn−2
1 , a) ⇐⇒

x = A((cn−2
1 , b)−1, cn−2

1 , a) ⇐⇒
A(x, cn−2

1 , (cn−2
1 , a)−1 ) = A(A((cn−2

1 , b)−1, cn−2
1 , a), cn−2

1 , (cn−2
1 , a)−1 ) ⇐⇒

A(x, cn−2
1 , (cn−2

1 , a)−1 ) = (cn−2
1 , b)−1 ⇐⇒

−1A((cn−2
1 , b)−1, cn−2

1 , (cn−2
1 , a)−1 ) = x ⇐⇒

−1A( −1A( −1A(z, cn−2
1 , z), cn−2

1 , b), cn−2
1 , −1A( −1A(z, cn−2

1 , z), cn−2
1 , a)) = x .
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But
(cn−2

1 , c)−1 = −1A(e(cn−2
1 ), cn−2

1 , c) ⇐⇒ e(cn−2
1 ) = A((cn−2

1 , c)−1, cn−2
1 , c)

and
e(cn−2

1 ) = −1A(z, cn−2
1 , z) ⇐⇒ z = A(e(cn−2

1 ), cn−2
1 , z) .

Whence, by the substitution B = −1A, we conclude that (ii) holds in
the n�groupoid (Q,B).

3) By the substitution B = −1A and by Proposition 1.6, we conclude
that for all x, y ∈ Q and for every sequence an−2

1 over Q the following
equality holds

B(x, an−2
1 , y) = A(x, an−2

1 , (an−2
1 , y)−1 ) .

2.2. Theorem. Let n ≥ 2 and let (Q,B) be an n�groupoid in which
the laws (i) and (ii) from the previous theorem holds. Then, there is
an n-group (Q,A) such that −1A = B . Moreover, for all x, y ∈ Q and
for every sequence an−2

1 over Q the following equalities hold
e(an−2

1 ) = B(x, an−2
1 , x) ,

(an−2
1 , x)−1 = B(B(x, an−2

1 , x), an−2
1 , x) ,

A(x, an−2
1 , y) = B(x, an−2

1 , B(B(y, an−2
1 , y), an−2

1 , y)) ,
where −1 is an inverse operation, and e is an {1, n}�neutral operation
of the n�group (Q,A).

Proof. By (ii), we conclude that the following statement holds:

1o For every an
1 ∈ Q there is at least one x ∈ Q such that

B(an−1
1 , x) = an .

Furthermore, the following statements hold:

2o (∀a ∈ Q) (∀z ∈ Q) (∀ci ∈ Q)n−2
1 B(a,B(z, cn−2

1 , z), cn−2
1 ) = a .

3o For every an
1 ∈ Q there is exactly one y ∈ Q such that

B(y, an−1
1 ) = an .

4o There exists n�ary operation −1B in Q such that for all
x, y ∈ Q and for every sequence an−1

1 over Q



n-groups as n-groupoids with laws 73

(ō) −1B(x, an−1
1 ) = y ⇐⇒ B(y, an−1

1 ) = x .

5o For every an
1 ∈ Q there is exactly one y ∈ Q such that

−1B(y, an−1
1 ) = an .

6o For every an
1 ∈ Q there is at least one x ∈ Q such that

−1B(an−1
1 , x) = an .

7o The 〈1, 2〉�associative law holds in (Q, −1B) .

8o (Q, −1B) is an n�semigroup.

Sketch of the proof of 2o.

a) n ≥ 3. Putting z = y in (i) we obtain
B(B(x, y, bn−2

1 ), B(y, an−2
1 , y), an−2

1 ) = B(x, y, bn−2
1 )

which together with 1o gives
(∀x, y ∈ Q) (∀bi ∈ Q)n−3

1 (∀a ∈ Q) (∃bn−2 ∈ Q) B(x, y, bn−2
1 ) = a .

b) n = 2. As in the previous case from (i) we obtain
B(B(x, y), B(y, y)) = B(x, y) ,

which for B(x, y) = a (by 1o) proves that
(∀x ∈ Q) (∀a ∈ Q) (∃y ∈ Q) B(a,B(y, y)) = a ,

(∀y ∈ Q) (∀u ∈ Q) (∃c ∈ Q) y = B(u, c) ,
B(y, y) = B(B(u, c), B(u, c)) = B(u, u) ,

which completes the proof of 2o.

Sketch of the proof of 3o and 4o.
a) B(x, a, bn−2

1 ) = B(y, a, bn−2
1 ) =⇒

B(B(x, a, bn−2
1 ), B(u, an−2

1 , a), an−2
1 )=B(B(y, a, bn−2

1 ), B(u, an−2
1 , a), an−2

1 )

=⇒ B(x, u, bn−2
1 ) = B(y, u, bn−2

1 ) .
Now, putting u = A(v, bn−2

1 , v) and using 2o, we obtain

B(x,B(v, bn−2
1 , v), bn−2

1 ) = B(y,B(v, bn−2
1 , v), bn−2

1 ) =⇒ x = y.
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b) B(x, a, bn−2
1 ) = c ⇐⇒

B(B(x, a, bn−2
1 ), B(u, an−2

1 , a), an−2
1 ) = B(c, B(u, an−2

1 , a), an−2
1 ) ⇐⇒

B(x, u, bn−2
1 ) = B(c, B(u, an−2

1 , a), an−2
1 )

by (i). Putting u = A(v, bn−2
1 , v) we obtain

B(x,B(v, bn−2
1 , v), bn−2

1 ) = B(c, B(B(v, bn−2
1 , v), an−2

1 , a), an−2
1 ) ,

which (by 2o) is equivalent to
x = B(c, B(B(v, bn−2

1 , v), an−2
1 , a), an−2

1 ) .

Sketch of the proof of 5o.
−1B(x, cn−1

1 ) = u ⇐⇒ B(u, cn−1
1 ) = x ,

−1B(y, cn−1
1 ) = v ⇐⇒ B(v, cn−1

1 ) = y .
Thus

x = y =⇒ u = v and u = v ⇒ x = y .

Sketch of the proof of 6o.
−1B(a, an−2

1 , x) = b ⇐⇒ B(b, an−2
1 , x) = a .

Sketch of the proof of 7o.
B(v, u, bn−2

1 ) = B(B(v, z, bn−2
1 ), B(u, an−2

1 , z), an−2
1 ) =⇒

B(v, z, bn−2
1 ) = −1B(B(v, u, bn−2

1 ), B(u, an−2
1 , z), an−2

1 ) =⇒
B( −1B(x, u, bn−2

1 ), z, bn−2
1 ) = −1B(x,B(u, an−2

1 , z)an−2
1 ) =⇒

B( −1B(x, −1B(y, an−2
1 , z), bn−2

1 ), z, bn−2
1 ) = −1B(x, y, an−2

1 ) =⇒
−1B( −1B(x, y, an−2

1 ), z, bn−2
1 ) = −1B(x, −1B(y, an−2

1 , z), bn−2
1 ) .

Since
B(v, u, bn−2

1 ) = x ⇐⇒ −1B(x, u, bn−2
1 ) = v

and
B(u, an−2

1 , z) = y ⇐⇒ −1B(y, an−2
1 , z) = u .

Sketch of the proof of 8o.
The case n = 2 follows from 7o. The case n ≥ 3 is a consequence of
7o, 5o and 1.5 .
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Now, by 5o, 6o, 8o, 1.4, (ō) and the substitution A = −1B , we
conclude that (Q,A) is an n�group. Hence, 1.3 and 1.6 completes the
proof.

2.3. Remark. In this paper n�group (Q, A), n ≥ 2, is described as
an n�groupoid (Q, −1A) with two laws. Similarly, the n�group (Q,A)
can be described as the n�groupoid (Q,A−1) such that

A−1(x, an−2
1 , y) = z ⇐⇒ A(x, an−2

1 , z) = y .
Variety of groups of the type 〈2〉 has been considered in [7] (see, also
[8] and [3]). The investigation of this paper was extended in [12] for
groups, for rings and, more generally, for Ω-groups. In [6] group is
described as an groupoid (Q, B) which satis�es one law (i.e. our (i)
for n = 2) and in which the equality B(a, x) = b has at least one
solution x for each a, b ∈ Q.
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On ordered n−groups

Janez U²an and Mali²a �iºovi¢

Abstract

Among the results of the paper is the following proposition. Let (Q, {·, ϕ, b})
be an arbitrary nHG−algebra associated to the n-group (Q,A), where n ≥ 3.
If ≤ is a partial order de�ned on Q, then, (Q,A,≤) is an ordered n−group i�
(Q, ·,≤) is an ordered group and for every x, y ∈ Q the following implication holds
x ≤ y =⇒ ϕ(x) ≤ ϕ(y).

1. Preliminaries
De�nition 1.1. Let n ≥ 2 and let (Q,A) be an n−groupoid. Then:
(a) (Q, A) is an n−semigroup i� for every i, j ∈ {1, . . . , n}, i < j the

following law (called the (i, j)−associativity) holds

A(xi−1
1 , A(xi+n−1

i ), x2n−1
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−1

j+n ) ,

(b) (Q,A) is an n−quasigroup i� for every i ∈ {1, . . . , n} and for every
an

1 ∈ Q is exactly one xi ∈ Q such that

A(ai−1
1 , xi, a

n−1
i ) = an ,

(c) (Q,A) is a Dörnte n�group (brie�y: n-group) i� is an n-semigroup
and an n−quasigroup.

1991 Mathematics Subject Classi�cation: 20N15
Keywords: n−semigroup, n−quasigroup, n−group, {1, n}−neutral operation,

nHG−algebra.
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A notion of an n−group was introduced by W. Dörnte in [2] as a
generalization of the notion of a group.

Proposition 1.2. [10] Let n ≥ 2 and let (Q,A) be an n−groupoid.
Then the following statements are equivalent:

(i) (Q,A) is an n−group,

(ii) there are mappings −1 and e respectively of the sets Qn−1 and
Qn−2 into the set Q such that in the algebra (Q, {A,−1 , e}) of
the type < n, n− 1, n− 2 > the following laws hold:

(a) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )) ,

(b) A(e(an−2
1 ), an−2

1 , x) = x ,

(c) A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ) ,

(iii) there are mappings −1 and e respectively of the sets Qn−1 and
Qn−2 into the set Q such that in the algebra (Q, {A,−1 , e}) of
the type < n, n− 1, n− 2 > the following laws hold:

(a) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ) ,

(b) A(x, an−2
1 , e(an−2

1 )) = x ,

(c) A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ).

Remark 1.3. e is an {1, n}−neutral operation of n−grupoid (Q,A)
i� algebra (Q, {A, e}) of type < n, n−2 > satis�es the laws (b) and (b).
The notion of {i, j}−neutral operation (i, j ∈ {1, . . . , n}, i < j) of an
n−groupoid is de�ned in a similar way (cf. [6]). In every n−groupoid
there is at most one {i, j}−neutral operation. A {1, n}−neutral oper-
ation there exists in every n−group, but there are n−groups without
{i, j}−neutral operations with {i, j} 6= {1, n} (cf. [9]). Operation −1

is a generalization of the inverse operation in a group. In fact, if (Q,A)
is an n−group, n ≥ 2, then for every a ∈ Q and for every sequence
an−2

1 over Q is
(an−2

1 , a)−1 = E(an−2
1 , a, an−2

1 ) ,
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where E is an {1, 2n − 1}−neutral operation of the (2n − 1)−group
(Q,

2

A) de�ned by
2

A(x2n−1
1 ) = A(A(xn

1 ), x2n−1
n+1 ) (cf. [7]). Obviously,

for n = 2, a−1 = E(a); a−1 is the inverse element of the element a
with respect to the neutral element e(∅) of the group (Q,A).

Theorem 1.4. (Hosszú�Gluskin Theorem) (cf. [5], [4])
For every n−group (Q,A), n ≥ 3, there is an algebra (Q, {·, ϕ, b})
such that the following statements hold:

1◦ (Q, ·) is a group,
2◦ ϕ ∈ Aut(Q, ·) ,
3◦ ϕ(b) = b ,
4◦ for every x ∈ Q, ϕn−1(x) · b = b · x ,
5◦ for every xn

1 ∈ Q, A(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b.

De�nition 1.5. [8] We say that an algebra (Q, {·, ϕ, b}) is a Hosszú�
Gluskin algebra of order n (n ≥ 3) (brie�y: nHG�algebra) i� it satis�es
1◦−4◦ from the above theorem. If it satis�es also 5◦, then we say that
an nHG� algebra (Q, {·, ϕ, b})) is associated to the n−group (Q,A).

Proposition 1.6. [8] Let n ≥ 3, let (Q,A) be an n−group, and e
its {1, n}− neutral operation. Further on, let cn−2

1 be an arbitrary se-
quence over Q and let for every x, y ∈ Q

B(cn−2
1 )(x, y) = A(x, cn−2

1 , y) ,

ϕ(cn−2
1 )(x) = A(e(cn−2

1 ), x, cn−2) and
b(cn−2

1 ) = A(e(cn−2
1 ), e(cn−2

1 ), . . . , e(cn−2
1 )).

Then, the following statements hold
(i) (Q, {B(cn−2

1 ), ϕ(cn−2
1 ), b(cn−2

1 ))} is an nHG−algebra associated to the
n−group (Q,A) and

(ii) CA = {(Q, {B(cn−2
1 ), ϕ(cn−2

1 ), b(cn−2
1 )}) : cn−2

1 ∈ Q } is the set of all
nHG−algebras associated to the n−group (Q,A).

Proposition 1.7. [8] Let (Q, A) be an n�group, e its {1, n}�neutral
operation and n ≥ 3. Then for every an−2

1 ∈ Q and every 1 ≤ i ≤ n−2
there is exactly one xi ∈ Q such that e(ai−1

1 , xi, a
n−3
i ) = an−2 .
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2. Main results
De�nition 2.1. Let (Q,A) be an n−group, n ≥ 2. If ≤ is a partial
order on Q such that

x ≤ y ⇒ A(zi−1
1 , x, zn−1

i ) ≤ A(zi−1
1 , y, zn−1

i ) (1)

for all x, y, z1, ..., zn−1 ∈ Q and i ∈ {1, 2, ..., n− 1}, then, we say that
(Q,A,≤) is an ordered n−group.

Note that in the case n = 2 (Q,A,≤) is an ordered group in the
sense of [3].

Theorem 2.2. Let ≤ be a partial order on Q. Also, let n ≥ 3 and let
(Q,A) be an n−group. In addition, let (Q, {·, ϕ, b}} be an arbitrary
nHG−algebra associated to the n−group (Q,A). Then, (Q,A,≤) is
an ordered n−group i� for all x, y, z ∈ Q the following two formulas
hold

x ≤ y ⇒ xz ≤ yz ∧ zx ≤ zy (2)

x ≤ y ⇒ ϕ(x) ≤ ϕ(y)). (3)

Proof. Let (Q,A,≤) be an ordered n−group and let n ≥ 3. Also, let e
be an {1, n}−neutral operation of the n−group (Q,A). In addition, let
(Q, {·, ϕ, b}) be an arbitrary nHG−algebra associated to the n−group
(Q,A). Then, by Proposition 1.6, there is at least one sequence cn−2

1

over Q such that for every x, y ∈ Q the following two equalities hold:

x · y = A(x, cn−2
1 , y) ,

ϕ(x) = A(e(cn−2
1 ), x, cn−2

1 ).

Hence, by De�nition 2.1, we conclude that the formulas (2) and (3)
hold in (Q, {·, ϕ, b}).

Conversely, let (Q, {·, ϕ, b}) be an arbitrary nHG−algebra associ-
ated to the n−group (Q,A). Also, let ≤ be a partial order on Q. As-
sume that an nHG− algebra (Q, {·, ϕ, b}) satis�es (2) and (3). Then,
for every x, y, zn−2

1 ∈ Q and i ∈ {1, 2, ..., n} it satis�es also (1).
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Indeed, for 1 ≤ i ≤ n − 1 x ≤ y implies ϕi−1(x) ≤ ϕi−1(y) ,
and in the consequence

z1 · . . . · ϕi−2(zi−1) · ϕi−1(x) ≤ z1 · . . . · ϕi−2(zi−1) · ϕi−1(y) ,

which gives
z1 · . . . · ϕi−2(zi−1) · ϕi−1(x) · ϕi(zi) · . . . · b · zn−1 ≤

z1 · . . . · ϕi−2(zi−1) · ϕi−1(y) · ϕi(zi) · . . . · b · zn−1 .

Hence, by De�nition 1.5, we conclude that (1) holds.
The cases i = 1 and i = n are obvious.

Example 2.3. Let (Z, +) be the additive group of all integers, and
let ≤ by the natural order de�ned on Z. Then Z with the ternary
operation A de�ned by

A(x, y, z) = x + (−y) + z

is a 3�group.
Moreover, (Z, {+, ϕ, 0}), where ϕ(x) = −x , is an nHG−algebra

associated to a 3�group (Z, A).
Since for every x, y ∈ Z x ≤ y implies ϕ(y) ≤ ϕ(x) , we conclude

(by Theorem 2.2) that (Z,A,≤) is not an ordered 3−group.

Example 2.4. Let (Z, +,≤) be as in the previous example. Let

B(xn
1 ) = x1 + x2 + ... + xn + 2

for every xn
1 ∈ Z, n ≥ 3. Then, (Z, B) is an n−group with (Z, {+, id, 2})

as its associated nHG−algebra. Obviously (Z, B,≤) is an ordered
n−group.

Moreover, (Z,C,≤) and (Z,D,≤) where

C(xn
1 ) = x1 + x2 + ... + xn ,

D(xn
1 ) = x1 + x2 + ... + xn + (−2)

are ordered n−groups as well.
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Theorem 2.5. Let (Q,≤) be a chain. Also, let (Q,A) be an n−group,
−1 its inverse operation, e its {1, n}−neutral operation and n ≥ 3.
Moreover, let a be an arbitrary element of the set Q and an−2

1 be an
sequence over Q such that e(an−2

1 ) = a . Then

(i) ({x : a ≤ x}, A) is an n−subsemigroup of the n−group (Q,A)

i� a ≤ A(
n
a) ,

(ii) ({x : (an−2
1 , A(

n
a))−1 ≤ x}, A) is an n−subsemigroup of the

n−group (Q,A) i� A(
n
a) ≤ a ,

(iii) let a ≤ A(
n
a) and let c be an arbitrary element of the set Q such

that a ≤ c. Then ({x : c ≤ x}, A) is an n−subsemigroup of the
n−group (Q,A),

(iv) let A(
n
a) ≤ a and let c be an arbitrary element of the set Q

such that (an−2
1 , A(

n
a))−1 ≤ c. Then ({x : c ≤ x}, A) is an

n−subsemigroup of the n−group (Q,A).

Proof. 1) Let a be an arbitrary element of the set Q. Also let an−2
1 be

an sequence over Q such that e(an−2
1 ) = a . Moreover, let

(a) x · y = A(x, an−2
1 , y) ,

(b) ϕ(x) = A(a, x, an−2
1 ) ,

(c) b = A(
n
a) ,

(d) x−1 = (an−2
1 , x)−1

for all x, y ∈ Q. Then:
1o (Q, {·, ϕ, b}) is an nHG−algebra associated to (Q,A),
2o a = e(an−2

1 ) is a neutral element of the group (Q, ·),
3o −1 is an inverse operation of the group (Q, ·).

By Theorem 2.2 and 1o, we conclude that
4o (Q, ·,≤) is a linearly ordered group,
5o x ≤ y ⇒ ϕ(x) ≤ ϕ(y) for all x, y ∈ Q.

2) Assume now that ({x : a ≤ x}, A) is an n−subsemigroup of the
n−group (Q,A). Then for all xn

1 ∈ Q from xn
1 ∈ {x : a ≤ x} follows

A(xn
1 ) ∈ {x : a ≤ x}), whence we conclude that a ≤ A(

n
a).
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Conversely, let a ≤ A(
n
a). Hence, by 4o and 5o, we conclude that

for every sequence xn
1 over Q the following implications hold:

n∧
i=1

xi ∈ {x : a ≤ x} ⇒ a ≤ x1 · ϕ(x2) · ... · ϕn−1(xn) · b ⇒ a ≤ A(xn
1 ),

i.e.
(∀xi ∈ Q)n

1 (
n∧

i=1
xi ∈ {x : a ≤ x} ⇒ A(xn

1 ) ∈ {x : a ≤ x}).

3) Let ({x : (an−2
1 , A(

n
a))−1 ≤ x}, A) be an n−subsemigroup of the

n−group (Q,A). Then for all
n∧

i=1
xi ∈ {x : b−1 ≤ x} ⇒ A(xn

1 ) ∈ {x : b−1 ≤ x}

by (c), (d). Whence, by 4o, ϕ(b) = b, ϕ(b−1) = b−1 we conclude that

b−1 ≤ A(b−1, b−1, ... , b−1) = b−1 · ϕ(b−1) · ... · ϕn−2(b−1) · b · b−1

= b−1 · b−1 · ... · b−1 · b · b−1,
i.e. bn−2 ≤ a. Hence b ≤ a by 4o.

On the other hand, if A(
n
a) ≤ a, then, by (c),(d) and 1◦-4◦, we

have a ≤ b−1, whence, by 1◦ and ϕ(b−1) = b−1, we obtain
b−1 ≤ b−1 ≤ b−1

a ≤ b−1 ≤ ϕ(b−1)
. . . . . . . . . . . .
. . . . . . . . . . . .
a ≤ b−1 ≤ ϕn−2(b−1)

b ≤ b ≤ b

b−1 ≤ b−1 ≤ b−1 .
Hence, by 4◦, 1◦ and 1.5, we conclude that

b−1 ≤ b−1 · ϕ(b−1) · ... · ϕn−2(b−1) · b · b−1 = A(b−1, b−1, . . . , b−1) ,
i.e.

b−1 ≤ A(b−1, b−1, . . . , b−1),
whence, by (i), we see that ({x : b−1 ≤ x}, A) is an n-subsemigroup
of the n-group (Q,A).
4) Let a ≤ A(

n
a) = b. Also let c be an arbitrary element of the set Q

such that a ≤ c. Since a ≤ b, then
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(a) c · ϕ(c) · . . . · ϕn−1(c) · a ≤ c · ϕ(c) · . . . · ϕn−1(c) · b.
By 1◦, 2◦, 5◦ and a ≤ c, we obtain: c ≤ c, a ≤ ϕ(c), ... , a ≤ ϕn−1(c),
whence, by 2◦, 4◦ and 5◦, we conclude that

(b) c ≤ c · ϕ(c) · . . . · ϕn−1(c) = c · ϕ(c) · . . . · ϕn−1(c) · a.
By (a) and (b), we conclude that

c ≤ c · ϕ(c) · . . . · ϕn−1(c) · b,
i.e. c ≤ A(

n
c). Hence, by (i) ({x : c ≤ x}, A) is an n-subsemigroup

of the n-group (Q,A).
5) Let A(

n
a) ≤ a. Also let c be an arbitrary element of the set Q such

that b−1 ≤ c. Hence, by 1◦, 1.5, 2◦, 4◦ and 5◦, we conclude

c = c · a · . . . · a · b · b−1 = c · ϕ(a) · . . . · ϕn−2(a) · b · b−1

≤ c · ϕ(b−1) · . . . · ϕn−2(b−1) · b · b−1

≤ c · ϕ(c) · . . . · ϕn−2(c) · b · c
= A(

n
c),

whence, by (i) we prove that ({x : c ≤ x}, A) is an n-subsemigroup
of the n-group (Q,A).

Remark 2.6. The above theorem describes so-called the right cone
(cf. [3]), i.e. the set Kr(c) = {x : c ≤ x} . The analogous result holds
for the left cone Kl(c) = {x : x ≤ c}.

3. Four propositions more
Proposition 3.1. If (Q,A,≤) is an ordered n−group (n ≥ 2), then

(∀x ∈ Q) (∀y ∈ Q) (∀zj ∈ Q)n−1
1

n∧
i=1

(x ≤ y ⇐⇒ A(zi−1
1 , x, zn−1

i ) ≤ A(zi−1
1 , y, zn−1

i ) ).

Proof. We prove only ⇐ since the implication ⇒ is obvious.
1) In the case i = 1, A(x, an−2

1 , a) ≤ A(y, an−2
1 , a) implies

A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) ≤ A(A(y, an−2

1 , a), an−2
1 , (an−2

1 , a)−1),



On ordered n−groups 85

and in the consequence
A(x, an−2

1 , A(a, an−2
1 , (an−2

1 , a)−1)) ≤ A(y, an−2
1 , A(a, an−2

1 , (an−2
1 , a)−1)),

which gives
A(x, an−2

1 , e(an−2
1 )) ≤ A(y, an−2

1 , e(an−2
1 )). Hence x ≤ y.

2) The case i = n may be proved analogously.
3) Let now i ∈ {2, . . . , n− 1}. Then

A(ai−1
1 , x, an−1

i ) ≤ A(ai−1
1 , y, an−1

i ) ⇒
A(bn−1

i , A(ai−1
1 , x, an−1

i ), bi−1
1 ) ≤ A(bn−1

i , A(ai−1
1 , y, an−1

i ), bi−1
1 ) ⇒

A(A(bn−1
i , ai−1

1 , x), an−1
i , bi−1

1 ) ≤ A(A(bn−1
i , ai−1

1 , y), an−1
i , bi−1

1 ) ⇒
A(bn−1

i , ai−1
1 , x) ≤ A(bn−1

i , ai−1
1 , y) ⇒ x ≤ y.

Proposition 3.2. Let (Q,A,≤) be an ordered n−group and let n ≥ 2.
Also, let −1 be an inverse operation of the n−group (Q,A). Then

(∀x, y ∈ Q) (∀aj ∈ Q)n−1
1 x ≤ y ⇔ (an−1

1 , y)−1 ≤ (an−1
1 , x)−1.

Proof. x ≤ y ⇔ A((an−2
1 , x)−1, an−2

1 , x) ≤ A((an−2
1 , x)−1, an−2

1 , y) ⇔
e(an−2

1 ) ≤ A((an−2
1 , x)−1, an−2

1 , y) ⇔ A(e(an−2
1 ), an−2

1 , (an−2
1 , y)−1) ≤

≤ A(A((an−2
1 , x)−1, an−2

1 , y), an−2
1 , (an−2

1 , y)−1) ⇔
(an−2

1 , y)−1 ≤ A((an−2
1 , x)−1, an−2

1 , A(y, an−2
1 , (an−2

1 , y)−1)) ⇔
(an−2

1 , y)−1 ≤ A((an−2
1 , x)−1, an−2

1 , e(an−2
1 )) ⇔

(an−2
1 , y)−1 ≤ (an−2

1 , x)−1.

Proposition 3.3. Let (Q,A,≤) be an ordered n−group and let n ≥ 3.
Also, let e be an {1, n}−neutral operation of the n−group (Q,A).
Then

(∀x ∈ Q) (∀y ∈ Q) (∀aj ∈ Q)n−3
1

n−2∧
i=1

( x ≤ y ⇔ e(ai−1
1 , y, an−3

i ) ≤ e(ai−1
1 , x, an−3

i ) ).

Proof. Since A(a, xn−2
1 , b) = A(A(a, yn−2

1 , (yn−2
1 , e(xn−2

1 ))−1), yn−2
1 , b)

by Theorem 4 from [7], then
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x ≤ y ⇔ A(a, ai−1
1 , x, an−3

i , b) ≤ A(a, ai−1
1 , y, an−3

i , b) ⇔
A(A(a, cn−2

1 , (cn−2
1 , e(ai−1

1 , x, an−3
i ))−1), cn−2

1 , b) ≤
A(A(a, cn−2

1 , (cn−2
1 , e(ai−1

1 , y, an−3
i ))−1), cn−2

1 , b) ⇔
A(a, cn−2

1 , (cn−2
1 , e(ai−1

1 , x, an−3
i ))−1) ≤

A(a, cn−2
1 , (cn−2

1 , e(ai−1
1 , y, an−3

i ))−1) ⇔
(cn−2

1 , e(ai−1
1 , x, an−3

i ))−1 ≤ (cn−2
1 , e(ai−1

1 , y, an−3
i ))−1 ⇔

e(ai−1
1 , y, an−3

i ) ≤ e(ai−1
1 , x, an−3

i ) .

Proposition 3.4. Let (Q,A,≤) be an ordered n−group and let n ≥ 3.
Also, let −1 be an inverse operation of the n−group (Q,A). Then

(∀x ∈ Q) (∀y ∈ Q) (∀b ∈ Q)(∀aj ∈ Q)n−3
1

n−2∧
i=1

( x ≤ y ⇒ (ai−1
1 , y, an−3

i , b)−1 ≤ (ai−1
1 , x, an−3

i , b)−1 ).

Proof. Since x ≤ y implies
E(ai−1

1 , y, an−3
i , b, ai−1

1 , y, an−3
i ) ≤ E(ai−1

1 , y, an−3
i , b, ai−1

1 , x, an−3
i )

and
E(ai−1

1 , y, an−3
i , b, ai−1

1 , x, an−3
i ) ≤ E(ai−1

1 , x, an−3
i , b, ai−1

1 , x, an−3
i ),

then from the transitivity of ≤ follows that x ≤ y implies
E(ai−1

1 , y, an−3
i , b, ai−1

1 , y, an−3
i ) ≤ E(ai−1

1 , x, an−3
i , b, ai−1

1 , x, an−3
i ).

This completes the proof because
(ai−1

1 , z, an−3
i , b)−1 = E(ai−1

1 , z, an−3
i , b, ai−1

1 , z, an−3
i ).

References
[1] G. Crombez: On partially ordered n−groups, Abh. Math. Sem.,

Hamburg 38 (1972), 141−−146.

[2] W. Dörnte: Untersuchengen über einen verallgemeinerten
Gruppenbegri�, Math. Z. 29 (1928), 1− 19.



On ordered n−groups 87

[3] L. Fuchs: Partially ordered algebraic systems, Pergamon Press,
Oxford 1963.

[4] L. M. Gluskin: Positional operatives, (Russian), 68(110)
(1965), 444− 472.

[5] M. Hosszú: On the explicit form of n−group operations, Publ.
Math., Debrecen 10 (1963), 88− 92.

[6] J. U²an: Neutral operations of n−groupoids, (Russian), Rev. of
Research, Fac.of Sci. Univ. of Novi Sad, Math. Ser. 18.2 (1988),
117− 126.

[7] J. U²an: A comment on n−groups, Rev. of Research, Fac. of Sci.
Univ. of Novi Sad, Math. Ser. 24.1 (1994), 281−−288.

[8] J. U²an: On Hosszú�Gluskin algebras corresponding to the same
n−group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math.
Ser. 25.1 (1995), 101−−119.

[9] J. U²an: On n−groups with {i, j}−neutral operation for {i, j} 6=
{1, n}, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math.
Ser. 25.2 (1995), 167− 178.

[10] J. U²an: n−groups, n ≥ 2, as varieties of type 〈n, n− 1, n− 2〉,
Algebra and Model Theory, Collection of papers edited by A. G.
Pinus and K. N. Ponomaryov, Novosibirsk 1997, 182− 208.

Received September 20 1997 and in revised form March 29, 1999

J. U²an M. �iºovi£
Institute of Mathematics Faculty of Technical Science
University of Novi Sad University of Kragujevac
Trg D. Obradovi¢a 4 Svetog Save 65
21000 Novi Sad 32000 �a£ak
Yugoslavia Yugoslavia



Quasigroups and Related Systems, 4 (1997), 89–102

NLPN Sequences over GF (q)

Czesław Kościelny

Abstract

PN sequences over GF (q) are unsuitable directly for cryptography because of their
strong linear structure. In the paper it is shown that in order to obtain the sequence
with the same occurence of elements and with the same length as PN sequence,
but having non-linear structure, it simply suffices to modulate the PN sequence by
its cyclic shift using two-input quasigroup operator. Thus, such new sequences,
named NLPN sequences, which means Non-Linear Pseudo-Noise sequences, can
be easily generated over GF (q) for q ≥ 3. The method of generating the NLPN
sequences is exhaustively explained by a detailed example concerning non-linear
pseudo-noise sequences over GF (8). In the other example the way of constructing
good keys generator for generalized stream-ciphers over the alphabet of order 256
is sketched. It is hoped that NLPN sequences will find many applications in such
domains as cryptography, Monte-Carlo methods, spread-spectrum communication,
GSM systems, random number generators, scrambling, testing VLSI chips and
video encryption for pay-TV purposes.

1. Introduction

Non-binary pseudo-random sequences over GF (q) of length qm−1,
called PN sequences have been known for a long time [3,6,7]. Altho-
ugh they are used in many domains of modern technology, they are

1991 Mathematics Subject Classification: 94A55, 94A60, 20N05
Keywords: PN sequences, NLPN sequences, random number generators, cryp-

tographic keys for generalized stream ciphers, finite field arithmetic, fast software
encryption, quasigroups, Latin squares.
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unsuitable directly for cryptographic applications, mainly because of
their strong linear structure. Therefore, several concepts have been
proposed in order to demolish this structure (e.g. non-linear filter ge-
nerators [2,7] and multiplexed sequences [4]), consisting in non-linear
filtering or modulating PN sequences over GF (2).

The presented method concerns sequences over GF (q) for q ≥ 3
and it uses a quasigroup operators in order to transform PN sequence
into a sequence, having much more randomness than the former. Thus
the generator of NLPN sequences consists of two identical linear shift
registers with feedback, determined by the same primitive polynomial
of degree m over GF (q), which are equipped with the possibility of
tuning the initial states. The method is very simple and it is well
adapted for both software and hardware implementations.

2. A Quasigroup-Based Method of Constructing
NLPN Sequences over GF (q) and Their Properties

Let
a = a0a1 · · ·aqm−2 (1)

be an arbitrary sequence of elements from GF (q), and let

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai ai+1 · · · ai+m+c−1

ai+1 ai+2 · · · ai+m+c

· · · · · ·
· · · · · ·
· · · · · ·
ai+m+c−1 ai+m+c · · · a2(i+m+c−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

be an (c + m) × (c + m) matrix over GF (q), the rows of which
are consecutive elements from the sequence (1). The subscripts i,
0 ≤ i ≤ qm − 2, are taken modulo qm − 1.
Definition: A sequence (1) is called a non-linear PN sequence and
further denoted as NLPN sequence, if

∃ i, 0 ≤ i ≤ qm − 2, ∃ c ≥ 1 [det(R) �= 0], (3)
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and if in the sequence only one element of GF (q) occurs qm−1 − 1
times, while every other element from GF (q) occurs qm−1 times.

The presented method stems from the following

Conjecture: Let q = pk > 2, p - prime, k - positive integer ≥ 1 and
let a and ai denote a PN sequence of length qm − 1 over GF (q) and
its cyclic shift i places to the right, respectively. Then there exist a
quasigroup

Q = 〈SQ, •〉, (4)

of order q, viz. |SQ| = q, SQ - set of the elements of a quasigroup,
represented in the same manner as the elements of GF (q), such that
sequences

a • ai, ai • a (5)

are NLPN sequences, if

i �= 0 (mod (qm − 1)/(q − 1)). (6)

It may be supposed that in the case when in the main diagonal of
the quasigroup’s operation table any element occurs only once, the
fulfilment of condition (6) may not be required.

The number of quasigroups, satisfying this conjecture is not yet
known, and one would rather expect that it will not be determined
in the near future. The experiments show, however, that it is hard
to find a true quasigroup, which does not produce NLPN sequences
according to the presented method.

The proof of the conjecture is the subject of current work and will
be reported in due course.

At present, the author knows only the following properties of NLPN
sequences:

Property I – The Number of Occurrences of Elements of GF (q) in an
NLPN sequence: If 0 denotes the identity element of the additive
group of GF (q), then the element equal to 0 • 0 occurs in the
NLPN sequence qm−1 − 1 times, while the remaining elements of
GF (q) occur in this sequence qm−1 times.

An algebraic system 〈SQ, •〉 is called a quasigroup if there is a binary ope-
ration • defined in SQ and if, when any two elements a, b ∈ SQ are given, the
equations a • x = b and y • a = b, each, have exactly one solution [1].
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Property II – The Set of All NLPN Sequences Derived from One PN
Sequence and One Quasigroup Q: Let SNLPN denote the set of
all different NLPN sequences generated by one PN sequence and
one quasigroup. Then

k(qm − 1) ≥ |SNLPN| ≥ k(qm − q − 1), (7)

where k = 1 if a quasigroup Q is abelian, and k = 2 if it is
non-abelian. This number depends on the elements forming the
main diagonal of the quasigroup’s operation table.

Property III – Autocorrelation function: Each NLPN sequence belon-
ging to SNLPN has distinct autocorrelation function resembling
the autocorrelation function of the random sequence of elements
of GF (q) having the length qm − 1.

3. Example 1

Since the presented method is rather a new one, it will now be
exhaustively explained.

Let 8-element finite field GF (8) = 〈{0, 1, . . . , 7}, +, ·〉 be construc-
ted using the polynomial x3 +x+1. Then the operations + and · can
be defined as follows:

x + y = x XOR y,

x · y =

{
0 if x = 0 or y = 0,
etn(nte(x) + nte(y) (mod 7)) otherwise.

It is easy to observe that the above representation of GF (8) results
from the assumption that α, primitive element of GF (8) and also a
root of the polynomial x3 + x + 1 over GF (2), is denoted by 2. Thus,
αi = etn(i) for i = 0, 1, . . . , 6. The functions nte(x) and etn(x),
named according to the tasks which they perform (nte - number to
exponent of α conversion, etn - exponent of α to number conversion)
are defined in Table 1.
The values of nte(0) and etn(7) are not used, therefore, they are not
defined.
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Table 1: Functions nte(x) and etn(x) used for Multiplying

in GF (8)

x 0 1 2 3 4 5 6 7
nte(x) ? 0 1 3 2 6 4 5
etn(x) 1 2 4 3 6 7 5 ?

Table 2: Addition and Multiplication Tables in GF (8)

+ 0 1 2 3 4 5 6 7 · 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0
1 1 0 3 2 5 4 7 6 1 0 1 2 3 4 5 6 7
2 2 3 0 1 6 7 4 5 2 0 2 4 6 3 1 7 5
3 3 2 1 0 7 6 5 4 3 0 3 6 5 7 4 1 2
4 4 5 6 7 0 1 2 3 4 0 4 3 7 6 2 5 1
5 5 4 7 6 1 0 3 2 5 0 5 1 4 2 7 3 6
6 6 7 4 5 2 3 0 1 6 0 6 7 1 5 3 2 4
7 7 6 5 4 3 2 1 0 7 0 7 5 2 1 6 4 3

Although the operations in GF (8) are simple, the reader can easier
follow the presented example by using the tables of addition and mul-
tiplication in GF (8), given in Table 2.

Let s= s0s1 · · · s62 be a PN sequence obtained from the primitive
polynomial x2 + 2x + 2 over GF (8). Therefore

si+2 = 2si+1 + 2si, i = 0, 1, . . . , 60.

If one specifies the initial values as s0 = 1, s1 = 0, then the whole PN
sequence will be

s = concat(γ, αγ, α2γ, α3γ, α4γ, α5γ, α6γ) = s0s1 · · · s62, (8)

where γ = 102476232 and α = 2. Finally s =

102476232204357464403615373306721656607542717705134525501263141.
(9)
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Further let

si = s62−i+1s62−i · · · s0s1 · · · sisi+1 · · · s62−i

where i ∈ {0, 1, . . . , 62} and the subscripts are computed modulo
63, denote the PN sequence s shifted i places to the right. Let also

Q = 〈{0, 1, 2, 3, 4, 5, 6, 7}, •〉,
be a quasigroup with operation • defined in Table 3.

Table 3: Operation Table in the Quasigroup Q
• 0 1 2 3 4 5 6 7
0 4 5 7 1 6 0 2 3
1 3 2 0 6 1 7 5 4
2 5 3 6 7 0 1 4 2
3 0 1 2 3 4 5 6 7
4 6 0 3 5 2 4 7 1
5 1 7 4 2 5 3 0 6
6 7 6 5 4 3 2 1 0
7 2 4 1 0 7 6 3 5

A half of all NLPN sequences s(i) = s • si, where

i ∈ {1, 2, . . . , 62} \ {9, 18, 27, 36, 45, 54},
obtained by means of the proposed method from the PN sequence s
in Tables 4 and 5 is presented. One can get the other half of these
sequences as s(i) = si • s since the quasigroup Q is non-abelian. In
this way one quasigroup of order 8 and one primitive polynomial of
degree 2 over GF (8) give 110 different NLPN sequences. Taking into
account that the number of primitive polynomials of degree 2 over
GF (8) equals to 18, that the total number of loops of order 8 is equal
to 535,281,401,856 [1], and that there are much more quasigroups of
the same order, which are not loops, one may easily appreciate the
importance of the proposed method for cryptograhic practice, where
q is often of order of a few dozen or of several hundreds.

A loop 〈L, +〉 is a quasigroup with an identity element: that is, a quasigroup
in which there exists an element e ∈ L with the property that e + x = x + e = x
for every x ∈ L.
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Table 4: A Half of the Set SNLPN Obtained from the PN

Sequence (9) and the Quasigroup defined in Table 3

i s(i)=s • si

1 255370427676426137260457507317320602122640144531715514303356601
2 153613266773050402764760163714244571223111705436350203407562552
3 263025074613217521224332645334055046103062611556404775377171076
4 650047642475242244166311331510073165626075577137476332500120235
5 513246520223341635434115006104576700553374246776271117267625300
6 027076306037221372507355423652026411074044335664411653711155762
7 274543315661640356215010470326674427131771352505070621356022743
8 356706013572701553663245674011416024725404653233121726102735047

10 705011710356255755370363776467042220412016456321452427633163140
11 001645433050047113572712554663275634010172123620374566734521627
12 771426667360111207312535367423756172430264504300501304654275251
13 106467324752172331773501405761703406215255341423566615432200706
14 661362516410474652122404073533301721600657255150767123574307342
15 210412103625154073236564224300741314156217033577557056360267467
16 757265155377377066367102210412505357424352062334264041601601413
17 303572651553624260674054312064621153713747560226017340137057214
19 435444056106143562050516613277777051362273665011573743023224012
20 232666741604071740251705732375206263167154470512361430325505134
21 452122330174514315061634456215151430327567326032607667005477720
22 033157117003532057554621277674163322063525054616636024727410441
23 172050553764236663711327014725060754237020263402435146455116317
24 766140201312546470323617122431170513405570730353675250672426564
25 400356275155431426076425140260366547316624712027731271030315573
26 331210372500356324652167441073540445760310317210255672124666775
28 525163673236570223400600344157104144572551513761660376213402277
29 724652022331034534305724601456261005471127647365337712616517005
30 221737250630762465202271116353433550170435766560146247314740510
32 054431571071165620565573042616732743021236210635542170706243374
33 473761402163775174014203521224402615333456137006162552057703665
34 536032465202264106453374560171031677565037102713447501222147653
35 322341164534445001601413265055372376777676001262772005115323456
37 615755361426737300130222462507465473652422300171134600563711754
38 417630614127066251037777375202230126354130551074345325061546246
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Table 5: Continuation of Table 4

i s • si

39 637521223407615433157033104572652504664766743114002216521073507
40 712507476324602122331041543405613641457705115372026573665030672
41 207104562657503604277646061362117775114503207524623102331434355
42 551554704270633771462026725113667216520723431730033455204014166
43 623400735433106716104547750554710237673200422166525461517236123
44 314064237521273417635306157006007532751053724275463264166104521
46 165536132716661014720075251737636335202734027451041062473045425
47 560601357215005367426743417130212452506106364757322644270533711
48 120224411735313150706136572750557623276363150467203520410674644
49 464277763111322703025151764236523274301345403055216406076650157
50 730773534305720611356250055470424736466441221317110165620752326
51 602233007454360577171170627565534012617331634122240754535642061
52 111171045720525546732653630703122067250546672470612731464453033
53 367453440517130145627520536032764660704221176254530537171212630
55 075202244066304441510144135627511566032307771601227235753637536
56 676674170462023025113756246521227340635143016103313077552554470
57 016323752022410764533430711601354255055661467673700442762372115
58 577317031267452510417461652122343033534615620704756760251360024
59 426515547132657647003062037251645762375712274063054134012061331
60 134305600701407275755442326776315110261602536415724357426331260
61 062714625014753236521266300635447107007413542652153311775764203
62 370135726565567732616672703020135201736532445207644413150441102

For such values of q the number of quasigroups can be expressed as a
factorial of astronomical number. Speaking more precisely, the number
of quasigroups of order n equals to the number of latin squares of the
same order L(n), which, for n > 10 satisfies [5]

n∏
k=1

k!
n
k ≥ L(n) ≥ n!2n

nn2 . (10)

At last it may be interesting to see the autocorrelation functions
of several NLPN sequences over GF (8) and to compare them with au-
tocorrelation functions of a PN sequence and of a random sequence.
Therefore, one period of the autocorrelation function for all PN sequ-
ences si in Fig. 1 can be seen.
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Figure 1: Autocorrelation function of all sequences si

This function is of course the same for all PN sequences of length 63
over GF (8), no matter which primitive polynomial of degree 2 over
GF (8) has been used.
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Figure 2: Autocorrelation function of the sequence s•s14

Figures 2, 3, 4 and 5 show one period of NLPN sequences s(i) =s • si

for i = 14, 28, 42 and 56, respectively, while one period of the auto-
correlation function of truly random sequence of length 63 over GF (8)

413402332717176544257642215026016410750637616550600040162402102
(11)

with the occurrence of elements

0 − 12, 1 − 9, 2 − 9, 3 − 4, 4 − 8, 5 − 6, 6 − 9, 7 − 6
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in Fig. 6 is presented.
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Figure 3: Autocorrelation function of the sequence s•s28
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Figure 4: Autocorrelation function of the sequence s•s42

The autocorrelation function ρ(i) is here defined as follows. Let A be
the number of places where the sequence s0s1 · · · s62 and its cyclic shift
sisi+1 · · · si−1 agree, and D the number of places where they disagree.
Then

ρ(i) =
A − D

63
.
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Figure 5: Autocorrelation function of the sequence s•s56
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Figure 6: Autocorrelation function of the random sequence (10)

4. Example 2

In the same manner as in Example 1 the Tables of addition and
multiplication in GF (256) = 〈{0, 1, . . . , 255}, +, ·〉 were constructed
using the primitive polynomial x8 +x4 +x3 +x2 +1 over GF (2). Then
the primitive polynomial P (x) = x3 + 132x2 + 152x + 2 over GF (256)
was found and the PN sequence s of length 16777215 was generated
using the following recurrence relation over GF (256)

si+3 = 132si+2 + 152si+1 + 2si, i = 0, 1, . . . , 16777214.
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This sequence and its cyclic shift si, i satisfying (5), was written to
the disk files, say, F1 and F2. To create a disk file F3 containing
NLPN sequence of length 16777215, as a quasigroup Q an isotope [1]
of the additive group of GF (256) was used. The generated NLPN
sequence was then tested by means of the battery of DIEHARD tests
of randomness [10], passing them all perfectly. Compared with the
length of the NLPN sequence (16777215 Bytes), which may be used
as a cryptographic key, to generate it one can use significantly smaller
data, namely 65545 Bytes at most (addition table in the quasigroup
Q, coefficients of the polynomial P (x), three Bytes of initial condition
for the recurrence relation and the number of places in the cyclic shift
– about 0.39% of 16777215 Bytes). Since

7.53 · 10102804 ≥ L(256) ≥ 3.04 · 10101723,

it is evident that in a very easy way one can construct simple yet very
good generators of cryptographic keys for universal stream-ciphers
over the alphabet, containing 256 characters (ASCII code), using
NLPN sequences.

5. Conclusions

In the paper only a tiny piece of the iceberg’s tip of the possi-
bilities, resulting from the application of quasigroups for generating
the sequences of elements of GF (q) with the desired complexity and
degree of randomness is presented. E.g. by applying two PN sequen-
ces of the same length, but generated by the feedback shift registers,
specified by two various primitive polynomials of the same degree,
to the inputs of a quasigroup operator, an almost random non-linear
sequence will appear on its output with an irregular, but flat distri-
bution of elements and with a high degree of complexity (as, e.g, the
sequence (11)). Furthermore, it is possible to combine different quasi-
group operators with all linear and non-linear devices and to construct
random GF (q)-element generators with controlled properties, having
many various structures.

The method is especially convenient for fast software encryption.
However, it also should be noted that there exists a large class of
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quasigroup operators which are easily implemented by means of bi-
nary logical circuits, appropriate for the implementation of very se-
cure and extremely fast hardware-oriented quasigroup-based generali-
zed stream-ciphers [6].
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