
Quasigroups and related systems, 3 (1996), 1�5

Generalized Moufang G�loops

Alexander S. Basarab

Abstract

In this note some relations among generalized Moufang loops and G-loops are
considered.

A loop Q(·) is called:

(a) a G-loop [1], if every loop which is isotopic to Q(·) is also iso-
morphic to it;

(b) a generalized Moufang loop [2], if one of the following identities
holds:

x · (yz ·x) = I(I−1y ·I−1x) ·zx , (x ·yz) ·x = xy ·I−1(Ix ·Iz) ;

(c) an Osborn loop [2], if the identity

xy · (Θxz · x) = (x · yz) · x

holds, where Θx is a permutation which depends on x ;

(d) a K-loop [3], if the following identities hold:

(x · yIx) ·xz = x · yz and (y ·x) · ((I−1xz) ·x) = yz ·x , (1)

where Ix = x−1 and I−1x =−1 x ;
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(e) a VD-loop, if we have the equalities

(·)x = (·)L−1
x Rx

x and x(·) = (·)R−1
x Lx , (2)

which are true for any x ∈ Q , where

(·)x = (·)(Lx, 1, Lx) , x(·) = (·)(1, Rx, Rx) .

Any K-loop (any VD-loop) is a G-loop and any VD-loop is an Osborn
loop.

Theorem 1. A generalized Moufang loop Q(·) is a K-loop if and only
if x2 ∈ N for any x ∈ Q .

Proof. For a generalized Moufang loop Q(·) the property WIP is
universal [2]. Therefore, by a result from [4], one has the autotopy
T = (R−1

y Lz, R
−1
x Ly, LzR

−1
x ), where z = I−1(y · x). By identifying x

and y in the autotopy T , one obtains

T1 = (R−1
x LI−1(x·x) , R−1

x Lx , LI−1(x·x)R
−1
x .

In any generalized Moufang loop I−1(x ·x) = I(x ·x) holds, hence T1

provides the equality

R−1
x LI(x·x)u ·R−1

x Lxv = LI(x·x)R
−1
x (u · v). (3)

Let v = 1 in (3), then

R−1
x LI(x·x) = LI(x·xR

−1
x . (4)

Identity (4) implies T1 = (LI(x·x)R
−1
x , R−1

x Lx , LI(x·xR−1
x ). Hence T−1

1

implies L−1
x Rx is a pseudoautomorphism with the right companion

α1 = RxL
−1
I(x·x)1 = (x · x) · x. Thus

(·)x2·x = (·)R−1
x Lx (5)

In any generalized Moufang loop the equalities

Ix(·) = (·)x (6)
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RxLI−1x = L−1
x Rx , LxRIx = R−1

x Lx (7)
hold.

Let x2 ∈ N , where N is the nucleus of the generalized Moufang
loop Q(·). Since (·)x2 = (·) (5) implies (·)x = (·)R−1

x Lx , or, in other
words,

T2 = (Rx , L−1
x Rx , Rx) = (Rx , RxLI−1x , Rx)

(by (7)) is an autotopy, that yields yx · (I−1xz ·x) = yz ·x, which coin-
cides with the second equality from (1). By using (6) in the equality
(·)x = (·)R−1

x Lx we obtain Ix(·) = (·)R−1
x Lx , and consequently, have the

autotopy
T3 = (L−1

x Rx , RIxL
−1
x Rx , RIxL

−1
x Rx) = (L−1

x Rx , L−1
x , L−1

x )

or
T−1

3 = (R−1
x Lx Lx , Lx) = (LxRIx , Lx , Lx) ,

hence (x · yIx) · xz = x · yz, meaning that the �rst equality from (1) is
true. Thus, if in the generalized Moufang loop Q(·), x2 ∈ N for any
x ∈ Q, then Q(·) is a K-loop.

Now, let the generalized Moufang loop Q(·) be a K-loop, then the
equality (5) and the equality (·)x = (·)R−1

x Lx are true and they imply
(·)x2·x = (·)x , or (·)x2 = (·) , or x2 ∈ N .

Theorem 2. A generalized Moufang loop Q(·) is a VD-loop, if x4 ∈ N
whichever x ∈ Q .

Proof. If Q(·) is a generalized Moufang loop, then (5) holds, so:
((·)x2·x)x = ((·)R−1

x Lx)x or (·)x4 = (·)R−1
x Lx

x . Suppose x4 ∈ N ,
then (·)x4 = (·) , hence (·)R−1

x Lx
x = (·) , and (·)x = (·)L−1

x Rx . The
equalities Ix(·) = (·)x = (·)L−1

x Rx supply x(Ix(·)) = x((·)L−1
x Rx) or

(·) = x(·)L−1
x Rx . If in the generalized Moufang loop Q(·) one has

x4 ∈ N for every x ∈ Q , then Q(·) is a VD-loop. In each generalized
Moufang loop the equality

(·)x4 = (·)R−1
x Lx

x (8)
holds. If the generalized Moufang loop is a VD-loop then (2) implies

(·)R−1
x Lx

x = (·) . (9)
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(8) and (9) provide (·)x4 = (·) , therefore x4 ∈ N .

Theorem 3. Each VD-loop is an Osborn loop.

Proof. Let Q(·) be a VD-loop, then the equalities (2) are true, that is
(·)x = (.)L−1

x Lx . They imply the autotopies

S = (LxR
−1
x Lx , R−1

x Lx , LxR
−1
x Lx)

and
S1 = (L−1

x Rx , RxL
−1
x Rx , RxL

−1
x Rx) .

By multiplying the autotopies S and S1 we obtain

SS1 = (Lx , R−1
x LxRxL

−1
x Rx , LxR

−1
x LxRxL

−1
x Rx) ,

which carries out the equality

Lxu ·R−1
x LxRxL

−1
x Rxv = LxR

−1
x LxRxL

−1
x Rx(u · v) . (10)

Let v = 1 in (10) (1 is the unit of the loop Q(·)), then
RxLx = LxR

−1
x LxRxL

−1
x Rx (11)

and
L−1

x RxLx = R−1
x LxRxL

−1
x Rx) . (12)

Applying (11) and (12) to (10), we obtain

Lxu · (R−1
x L−1

x RxLxv · x) = RxLx(u · v) or xu ·Θxvx = (x · uv) · x ,

that is Q(·) is an Osborn loop.

Theorem 3 implies

Corollary 1. The three nuclei of each VD-loop Q(·) coincide, i.e.
Nr = Nm = Nl = N . Moreover, N is a normal subloop in Q(·) .

Proposition 1. A K-loop Q(·) is a VD-loop if x2 ∈ N for any x ∈ Q.
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Proof. The following equalities are consequences of the de�nition of
K-loops:

(·)x = (·)R−1
x Lx and x(·) = (·)L−1

x Rx .

By means of the properties of the derived operations, one has
((·)x)x = ((·)R−1

x Lx)x and x(x(·)) = x((·)L−1
x Rx)

or
(·)x2 = (·)R−1

x Lx
x and x2(·) =x (·)L−1

x Rx (13)
If x2 ∈ N then

(·)x2 = (·) and x2(·) = (·) . (14)
By using (14) in (13), we obtain (·) = (·)R−1

x Lx
x and (·) = x(·)L−1

x Rx ,
or (·)x = (·)L−1

x Rx and x(·) = (·)R−1
x Lx however, this means Q(·) is

a VD-loop.

Proposition 2. A VD-loop Q(·) is a K-loop if x2 ∈ N for any x ∈ Q.
The proof is analogous to that of Proposition 1.
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Monoquasigroups isotopic to groups

Vladimir I. Izbash

Abstract
In this work the quasigroups isotopic to groups are considered. The necessary
and su�cient conditions are found which the isotopy must satisfy so that the
corresponding group isotope be: monogenic quasigroup, momoquasigroup.

1. Introduction
The algebraic systems generated by one element (monogenic systems)
are the simplest in the lattice-theoretic sense in every class of algebraic
systems (in some cases, such as quasigroups, semigroups, in order to
be able always to talk about lattice, we need to consider the empty set
as a subsystem). These systems are contained as subsystems in some
other systems. More precisely, every non-empty system of some class
of algebraic systems includes some monogenic systems of this class as
its subsystems. Hence the structure of algebraic systems depends on
the structure of their monogenic systems.

In such classes of algebraic systems as groups and semigroups the
monogenic systems are the cyclic groups and semigroups, respectively,
which are completely described, as it is well known. In other classes
it is very di�cult to describe monogenic systems.

De�nition 1. A quasigroup generated by one its element is called a
monogenic quasigroup.
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De�nition 2. A quasigroup generated by every its element is called
a monoquasigroup.

From the de�nition it is clear that monoquasigroups have no non-
trivial subquasigroups and, hence, its lattice of subquasigroups con-
sists of one element. A nontrivial (or proper) subquasigroup is a sub-
quasigroup di�erent from the empty subquasigroup and the quasi-
group itself [1].

Researching di�erent kinds of functional completeness of universal
algebras, A. V. Kuznetzov and A. F.Danilichenko A. F. announced
during The First All-Union Symposium on the Theory of Quasigroups
and its Applications (Suchumi, 1968) that for every positive integer n
there exists a monoquasigroup with |Q| = n, where by |Q| we denote
the order of Q .

A quasigroup (Q , ·) is said to be without congruences if it has no
congruences except ε = Q × Q = Q 2 (the complete relation on Q)
and ω = {(a, a) : a ∈ Q} (the equality relation on Q, sometimes called
the diagonal of Q 2 ).

T. Kepka has proved in [4] that a quasigroup (Q , ·) such that
3 ≤ |Q| ≤ ℵ0 is isotopic to a monoquasigroup. In [3] is proved

Theorem 1.
a) Every quasigroup (Q , ·) such that 3 ≤ |Q| ≤ ℵ0 is isotopic to a
monoquasigroup without congruences.
b) Every quasigroup (Q , ·) such that 5 ≤ |Q| ≤ ℵ0 is isotopic to a
monoquasigroup without congruences and automorphisms.

A quasigroup without automorphisms is a quasigroup with the
unitary group of automorphisms. There exist no monoquasigroups
with more than the countable order, because a �nitely generated free
algebra with a �nite set of operations has at most the countable order
[5]. A quasigroup (Q , ·) with |Q| = 1 satis�es Theorem 1a and a
quasigroup (Q , ·) with |Q| = 2 is a group and does not satis�es
Theorem 1a.

In [3] a class of order 2ℵ0 of pairwise non-isomorphic monoquasi-
groups without congruences and without automorphisms is given. This
fact allows us to assert that it is not very probably to describe mono-



Monoquasigroups isotopic to groups 9

quasigroups or monogenic quasigroups. Therefore to describe mono-
quasigroups we shall restrict ourselves to particular classes. In the
class of all idempotent quasigroups and the class of all loops there are
no monoquasigroups except single-element groups. In other classes it
is rather di�cult to give examples of monoquasigroups.

Below we consider only quasigroups with the order greater than 2
and smaller than ℵ0 .

2. Preliminaries
A groupoid (i.e. a set (Q, ·) with a binary operation ”∃” on Q ) is
called a quasigroup if equations ax = b , ya = b have unique solutions
for any elements a, b ∈ Q. In a quasigroup (Q , ·) a mapping x → ax
is called the left translation by a and is denoted by La . The right
translation by a is the mapping x → xa that is denoted by Ra . For
any a ∈ Q the translations Ra and La are permutations on the set
Q and belong to the permutation group S(Q) .

A non-empty subset H of the quasigroup (Q , ·) is a subquasigroup
of (Q, ·) provided (H , ·) is a quasigroup with respect to the operation
”∃”. The empty set ∅ will be considered as a subquasigroup i� the
intersection of all non-empty subquasigroups of (Q , ·) is ∅. The set-
theoretic intersection of all subquasigroups of (Q , ·) containing a sub-
set M of Q is a subquasigroup that will be denoted by 〈M〉 and will
be called the subquasigroup generated by M . The class L(Q , ·) of all
subquasigroups of a quasigroup (Q , ·) is a complete lattice with re-
spect to the set-theoretic intersection and "generate" operation. The
last element in L(Q , ·) is the intersection of all non-empty subquasi-
groups and the greatest element is (Q , ·).

Let ” ∗ ” and ” ◦ ” be two operations de�ned on Q. The operation
” ∗ ” is said to be isotopic to ” ◦ ” if there exist three permutations
α, β, γ ∈ S(Q) such that

x ∗ y = γ−1(αx ◦ βy) (1)

for all x, y ∈ Q .
We also say that (Q , ∗) and (Q , ◦) are isotopic, or that (Q , ∗)
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is an isotop of (Q , ◦) of the form (1). Shortly we write this as

(Q , ∗) : x ∗ y = γ−1(αx ◦ βy), α, β, γ ∈ S(Q) , x, y ∈ Q .

Then triple (α, β, γ) of permutations such that the relation (1) holds
is called the isotopy of (Q , ◦) .

If in (1) γ is the identical permutation ε, then (Q , ∗) is said to
be a principal isotope of (Q , ◦).

If in (1) α = β = γ , then

x ∗ y = γ−1(γx ◦ γy) ,

which means that γ is an isomorphism between (Q, ∗) and (Q, ◦). The
equality (1) is equivalent to

x ∗ y = γ−1(αγ−1γ x ◦ βγ−1γ y) .

Whence we have proved the following:

Theorem 2 ([1] Theorem 1.2). An isotope (Q , ∗) such that x ∗ y =
γ−1(αx ◦βy), α, β, γ ∈ S(Q), x, y ∈ Q is isomorphic to the principal
isotope (Q ,⊗), where x⊗ y = αγ−1x◦βγ−1y, α, β, γ ∈ S(Q), x, y ∈
Q, and γ is the isomorphism between them.

3. Group isotopes
Let (Q, ·) be a group with the unit element e. We will �nd the neces-
sary and su�cient conditions which the isotopy must satisfy in order
that the corresponding isotope of (Q, ·) be a monogenic group; mono-
quasigroup (Theorem 3). Since an isomorphism keeps the number of
generators, then taking into consideration Theorem 2 it is su�cient to
�nd these conditions for principal isotopes of a group (Q , ·).

Lemma 1. For a principal isotope

(Q, ∗) : x ∗ y = ϕx · ψy, ϕ, ψ ∈ S(Q), x, y ∈ Q
of a group (Q , ·) with the unit e there exist permutations α, β ∈ S(Q)
such that βe = e and x ∗ y = αx · βy , i.e.

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), βe = e, x, y ∈ Q . (2)
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Proof. For every x, y ∈ Q we have

x ∗ y = ϕx · ψy = ϕx · ψe · (ψe)−1ψy = Rψeϕx · L(ψe)−1ψy = αx · βy ,

where α = Rψeϕ and β = L(ψe)−1ψ . Moreover,

βe = L(ψe)−1ψe = (ψe)−1ψe = e ,

which completes the proof.

For all α ∈ S(Q), H ⊆ Q put

αH = {αh : h ∈ H } .

Lemma 2. For an isotope

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), βe = e, x, y ∈ Q
of a group (Q , ·) with the unit e the following conditions are equivalent
a) e ∈ (H , ∗) ∈ L(Q , ∗) ,

b) αH = H = βH and (H , ·) ∈ L(Q , ·) .

Proof. Let e ∈ (H , ∗) ∈ L(Q , ∗) . Then for any x ∈ H, we have
x∗e ∈ (H , ∗) and x∗e = αx ·βe = αx ·e = αx . Hence αx ∈ H and,
as x is an arbitrary element, we have αH ⊆ H. For any x ∈ H there
exists y ∈ H such that x = y ∗ e, since (H , ∗) is a subquasigroup
of (Q , ∗) and e ∈ H. From the last equality we get y = α−1x and
α−1H ∈ H since x is an arbitrary element of H. Therefore H ⊆ αH
and we have H = αH. Let h ∈ H be such that αh = e. For any
x ∈ H we have h ∗ x ∈ H and h ∗ x = αh · βx = e · βx = βx.
Therefore βx ∈ H for any x ∈ H, so βH ⊆ H. There exists y ∈ H
such that h ∗ y = x for any x ∈ H. Then

h ∗ y = αh · βy = e · βy = βy = x

and y = β−1(x). Hence β−1H ⊆ H, H ⊆ βH and �nally we have
βH = H. So, the restrictions of α and β to H are permutations on
H, and (H, ·) is an associative quasigroup isotopic to the quasigroup
(H, ∗) since x · y = α−1x ∗ β−1y, i.e. (H, ·) ∈ L(Q, ∗). Therefore we
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have proved that e ∈ (H, ∗) ∈ L(Q , ∗) implies αH = H = βH and
(H, ·) ∈ L(Q , ·).

The converse implication is trivial.

For any ϕ ∈ S(Q) put

StabL(Q ,·)ϕ = {H ⊆ Q : (H, ·) ∈ L(Q , ·) and ϕH = H } .

Lemma 3. A quasigroup

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), βe = e, x, y ∈ Q

which is isotopic to a group (Q , ·) with the unit e is generated by e
if and only if

StabL(Q ,·)α ∩ StabL(Q ,·)β = {Q} . (3)

Proof. Let (Q , ∗) be generated by the unit e and

H ∈ StabL(Q ,·)α ∩ StabL(Q ,·)β .

Then (H, ·) ∈ L(Q) and αH = H = βH. By Lemma 2 we get
(H, ∗) ∈ L(Q , ∗) and (H, ∗) = (Q , ∗) as e ∈ (H, ∗). Hence

StabL(Q ,·)α ∩ StabL(Q ,·)β = {Q} .

Conversely, let the relation (3) holds and (H, ∗) ∈ L(Q , ∗), where
e ∈ (H, ∗). By Lemma 2 we have αH = H = βH and from (3) we
get H = Q. Therefore (Q , ∗) is generated by the unit e.

Directly from Lemmas 1 and 3 we get

Corollary 1. A quasigroup

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), x, y ∈ Q ,

which is isotopic to a group (Q , ·) with the unit e is generated by e
if and only if

StabL(Q ,·)Rβeα ∩ StabL(Q ,·)L
−1
βe β = {Q} . (4)
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Proof. By Lemma 1 we get the equalities x ∗ y = Rβeαx · L−1
βe βy and

L−1
βe βe = e. The equality (4) follows from Lemma 3.
Remark that relation (4) gives αe · βe 6= e, otherwise the set {e}

is a subquasigroup of (Q , ∗), contrary to (4).

Now we will �nd the condition for a quasigroup

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), x, y ∈ Q

to be generated by any its element a ∈ Q , a 6= e.
Let us consider the isotope

(Q , ◦) : x ◦ y = x · a−1y, x, y ∈ Q

for any �xed element a ∈ Q. This isotope is a group with the unit
a and the left translation La of a group (Q , ·) is an isomorphism
between groups (Q , ·) and (Q , ◦), i.e. we have La(x · y) = Lax ◦Lay.
Then the equality

L−1
a (x ◦ y) = L−1

a x · L−1
a y

and implications

(H, ·) ∈ L(Q , ·) ⇒ (LaH, ◦) ∈ L(Q , ◦) ,

(H, ◦) ∈ L(Q , ◦) ⇒ (L−1
a H, ·) ∈ L(Q , ·) (5)

hold. The quasigroup (Q , ∗) is an isotope of a group (Q , ◦) with the
unit a since we have x ∗ y = αx · βy = αx ◦Laβy. By Corollary 1 the
quasigroup (Q , ∗) is generated by a if and only if the equality

StabL(Q ,◦)R̂
−1
Laβaα ∩ StabL(Q ,◦)L̂

−1
LaβaLaβ = {Q} (6)

holds, where by R̂x , L̂x we denote the translations by x on the group
(Q , ◦).
Remark. If the equality (6) holds, then we have αa · βa 6= a. The
following equalities hold for any a, u ∈ Q:



14 V. I. Izbash

L−1
u = Lu−1 ,

L̂u = LuLa−1 = Lua−1 , L̂−1
u = LaLu−1 = Lau−1 ,

R̂u = RuRa−1 = Ra−1u , R̂−1
u = RaRu−1 = Ru−1a ,

where a−1, u−1 are the inverses of a, u in (Q , ·). Then

R̂Laβaα = R̂aβaα = Ra−1·aβaα = Rβaα ,

L̂−1
LaβaLaβ = L̂−1

aβaLaβ = La(βa)−1a−1Laβ = La(βa)−1β .

Now the equality (6) can be rewritten in the following way:

StabL(Q ,◦)Rβaα ∩ StabL(Q ,◦)La(βa)−1β = {Q} . (7)

Lemma 4. For any ϕ ∈ S(Q) we have
StabL(Q ,◦)ϕ = La(StabL(Q ,·)La−1ϕLa)

and
StabL(Q ,◦)ϕ = {LaH : (H, ·) ∈ L(Q , ·) and La−1ϕLaH = H} .

Proof. If (H, ·) ∈ L(Q , ·) and La−1ϕLaH = H, then ϕLaH = LaH
and (LaH, ◦) ∈ StabL(Q ,◦)ϕ since (LaH, ◦) ∈ L(Q , ◦). Hence we have

StabL(Q ,◦)ϕ ⊇ La(StabL(Q ,·)La−1ϕLa) .

Conversely, let (Ĥ, ◦) ∈ StabL(Q,◦)ϕ. Then ϕĤ = Ĥ and we can
write

ϕLaLa
−1Ĥ = LaLa

−1Ĥ

which get
La−1ϕLaL

−1
a Ĥ = L−1

a Ĥ .

Hence,
(L−1

a Ĥ, ·) ∈ StabL(Q ,·)La−1ϕLa

as (L−1
a Ĥ, ·) ∈ L(Q , ·) by (5). Therefore

StabL(Q,◦)ϕ ⊆ La(StabL(Q,·)La−1ϕLa)

and the statement of the lemma is proved.
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Now the equality (7) can be rewritten as

La(StabL(Q,·)La−1RβaαLa) ∩ La(StabL(Q,·)L(βa)−1βLa) = {Q} ,

from which we have

StabL(Q,·)La−1RβaαLa ∩ StabL(Q,·)L(βa)−1βLa = {Q} . (8)

So, we have proved the following:

Theorem 3. A quasigroup
(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), x, y ∈ Q

isotopic to a group (Q , ·) with the unit e is:
a) generated by an element a ∈ Q i� the equality (8) holds,
b) a monoquasigroup i� the equality (8) holds for any a ∈ Q .

Corollary 2. If a quasigroup (Q , ∗) isotopic to a group (Q , ·) with
the unit e is a monoquasigroup, then αx · βx 6= x for all x ∈ Q.

Proof. In fact, if αa · βa = a for some a ∈ Q, then a is an idempo-
tent. Thus (Q , ∗) is not generated by a, contrary to the assertion of
the corollary.

Proposition 1. The order of a subquasigroup of a group isotope
(Q ,⊕) divides the order of the quasigroup (Q,⊕).

Proof. Let (H,⊕) be a subquasigroup of a group isotope (Q ,⊕) and
∅ 6= H 6= Q. By Albert's Theorem the isotope

(Q , •) : x • y = R−1
a x⊕ L−1

a y

is a group for every element a ∈ H and (H, •) is a subgroup of (Q , •)
as a ∈ H. In a group the order of subgroup divides the order of the
group.
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Corollary 3. Every proper subquasigroup of a group isotope of prime
order is a single-element set.

Corollary 4. The isotope
(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), x, y ∈ Q

of a group (Q , ∗) of a prime order is a monoquasigroup if and only if
αx · βx 6= x for all x ∈ Q.

Proof. Let αx · βx 6= x for all x ∈ Q and |Q| be a prime num-
ber. The isotope (Q , ∗) has not single-element subquasigroups since
x∗ = αx · βx 6= x for all x ∈ Q. From Corollary 3 we obtain that
(Q , ∗) is generated by any its element, i.e. is a monoquasigroup.

By Corollary 2 the relation αx · βx 6= x holds in (Q , ∗) for all
x ∈ Q. We will adopt some of the above results for right loops princi-
pally isotopic to groups, i.e. we will �nd the necessary and su�cient
conditions for a right loop isotopic to a group to be generated by any
its non-unit element, therefore to have no proper subloops. A results
can be obtained for left loops isotopic to groups.

Recall that a right (left) loop is a quasigroup (Q , ∗) with the right
(left) unit f (respectively - (e)) i.e. such elements that x ∗ f = x
( e ∗ x = x ) for all x ∈ Q. The sets {f}, {e} and Q are right (left)
subloops of (Q , ∗) called improper subloops. All other subloops are
called proper subloops.

For all a ∈ Q put
Sa(Q) = {ψ ∈ S(Q) : ψa = a } .

Proposition 2. A right loop isotopic to a group (Q , ·) with the unit
e is isomorphic to some right loop

(Q , ◦) : x ◦ y = x · ϕy, ϕ ∈ Se(Q), x, y ∈ Q
with the unit e.

Proof. To prove that, by Theorem 2 it is su�cient to consider right
loops principally isotopic to groups. Let

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q)
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be a right loop isotopic to a group (Q , ·) and f be the right unit of
(Q , ∗). For every x ∈ Q we have x = x ∗ f = αx · βf and we obtain

α = R−1
(βf) = R(βf)−1 .

Therefore

x ∗ y = R(βf)−1x · βy = x(βf)−1βy = x · L(βf)−1βy

for all x, y ∈ Q. Let us consider the isotope

(Q , ◦) : x ◦ y = x · L(βf)−1βLfy, x, y ∈ Q .

Remark that L(βf)−1βLfe = e, i.e. (Q , ◦) is a right loop with the unit
e. The loop (Q , ◦) is isomorphic to (Q , ∗) since

Lf (x ◦ y) = Lf (x · L(βf)−1βLfy) = Lfx · L(βf)−1βLfy = Lfx ∗ Lfy

for all x, y ∈ Q.

The following assertion can be proved in a way analogous to that
used in Theorem 3.

Lemma 5. A right loop
(Q , ∗) : x ∗ y = x · αy, α ∈ Se(Q), x, y ∈ Q

isotopic to a group (Q , ·) with the unit e has no proper subloops if
and only if

StabL(Q,·)α = {{e}, Q}.

Lemma 6. A right loop
(Q , ∗) : x ∗ y = x · αy, α ∈ S(Q), αf = e, x, y ∈ Q

isotopic to a group (Q , ·) with the unit e has no proper subloops if
and only if

StabL(Q,·)αLe = {{e},Q}

Proof. The right loop (Q , ∗) is isomorphic to the right loop
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(Q , ◦) : x ◦ y = x · αLfy, x, y ∈ Q .
In fact

Lf (x ◦ y) = Lf (x · αLfy) = Lfx · αLfy = Lfx ∗ Lfy

for all x, y ∈ Q. Then the right loop (Q , ∗) has no proper subloops
provided that (Q , ◦) has no ones. Now we apply Lemma 5 to the right
loop (Q , ◦) and this completes the proof of our Lemma.

Corollary 5. The loop isotopic to a group of prime order has no
proper right subloops.

Proof. The assertion follows from Lemma 6 taking into account that
a group of a prime order has no proper subgroups.

Theorem 4. Let (Q , ·) be a group with the unit e. The right loop
(Q , ∗) : x ∗ y = γ−1(αx · βy), α, β, γ ∈ S(Q), x, y ∈ Q

with the right unit f has no proper right subloops if and only if
StabL(Q,·)L(βf)−1βγ−1Lγf = {{e}, Q}

Proof. By Theorem 2 the right loop (Q , ∗) is isomorphic to the right
loop

(Q , ∗) : x ∗ y = γ−1(αx · βy), α, β, γ ∈ S(Q), x, y ∈ Q
with the unit γf . For every x ∈ Q we have

x = x ◦ γf = αγ−1x · βf ,

hence αγ−1 = R(βf)−1 . Therefore
x ◦ y = R(βf)−1x · βγ−1y = x · (βf)−1βγ−1y = x · L(βf)−1βγ−1y .

Let us consider the isotope
(Q ,×) : x× y = x · L(βf)−1βγ−1L(γf)y, x, y ∈ Q .

This isotope is a right loop with the right unit e and the translation
Lγf is an isomorphism between (Q ,×) and (Q , ◦). Now we apply
Lemma 5 to the right loop (Q ,×) and this completes the proof.
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4. Examples
1. Let (Q , ·) = 〈h〉 be a cyclic group generated by h ∈ Q and
|Q| = r, 3 ≤ r ≤ ℵ0. Let e be the unit of the group (Q , ·), I be
the permutation of (Q , ·) de�ned by Ix = x−1, α = (e h) be the
transposition of elements e and h. Then the isotope

(Q , ∗) : x ∗ y = αx · Iy, x, y ∈ Q
is a monoquasigroup which satis�es the identity x ∗ (x ∗ y) = y. In
fact

x ∗ (x ∗ y) = αx · I(αx · Iy) = αx · Iαx · y = y .

Recall that every element of the group (Q , ·) = 〈h〉 is a power of the
element h and every its subgroup is the cyclic subgroup generated by
some power hk of h. To prove that (Q , ∗) is a monoquasigroup, by
Lemma 3, it is su�cient to prove the equality

StabL(Q,·)α ∩ StabL(Q,·)I = {Q} .

This equality holds since we have αe = h and the group (Q , ·) is the
unique subgroup of (Q , ·) which contains h.

Now we will prove that every subquasigroup (H, ∗) of (Q , ∗) con-
tains e. Really, if hk ∈ (H, ∗) for k 6= 1, then e = hk · h−k ∈ (H, ∗).
If h ∈ (H, ∗), then h−1 = e · h−1 = αh · Ih = h ∗ h ∈ (H, ∗) and
e ∈ (H, ∗) as it is proved above.
2. Let (Q , ·) = 〈h〉 be a cyclic group with the unit e generated
by h ∈ Q, |Q| = n, 3 ≤ n ≤ ℵ0 and α be a cyclic permutation
(hh2h3...hn−1). Then the isotope

(Q , ∗) : x ∗ y = x · αy, x, y ∈ Q
is a right loop with the unit e and has no proper right subloops.

Really, we have x ∗ e = x · αe = x · e = x for all x ∈ Q and
thus (Q , ∗) is a right loop with the unit e. If 1 ≤ k ≤ n − 2, then
αhk = hk+1 and αh−1 = αhn−1 = h. Now, if a subgroup of the cyclic
group 〈h〉 contains elements hk and hk+1, then it contains h as a
solution of the equation hk · x = hk+1, and thus it coincides with 〈h〉.
Hence, we have

StabL(Q,·)α = {{e},Q},
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and thus (Q , ∗) has no proper right subloops.
3. Let (Q , ·) = 〈h〉 be the in�nite cyclic group generated by the
element h ∈ Q. Let e be the unit of (Q, ·) and α be the following
permutation: αe = e, αh−1 = h, αhk = hk+1 for all k 6= 1. Like that
in the example 2 we can prove that the right loop

(Q , ∗) : x ∗ y = x · αy, x, y ∈ Q
has no proper right subloops.
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Frobenius groups and one-sided S-systems

Evghenii A. Kuznetsov

Abstract

Frobenius groups are studied by the means of systems of orthogonal operations,
naturally being built over these groups.

1. Introduction
De�nition 1. [4,8] The transitive irregular permutation group G act-
ing on a set E is called a Frobenius group, if Stab(G) = 〈id〉 for any
a, b ∈ E, a 6= b.

Frobenius groups are one of the classical group classes in permu-
tation group theory. The studying of these groups was begun in the
Frobenius article [3] at the beginning of 20th century and was con-
tinued by M.Hall [4], H.Wielandt [8] etc. Frobenius proved in [3] by
means of character group theory that there exists an invariant regular
subgroup consisting of all �xed-point free permutations and the iden-
tity permutation in a �nite Frobenius group (Frobenius theorem). It is
not known any other proof of this theorem (without using of character
group theory) till now.

In present article a 1-1 correspondence between Frobenius groups
and one-sided S-systems of orthogonal operations [1] (on the same set
of symbols E), whose cell permutations form a group, is built.

1991 Mathematics Subject Classi�cation: 20N05, 20N10, 08A55
Keywords: Frobenius group, orthogonal operation
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In the section 2 the incident system of (left) cosets in an arbitrary
�nite Frobenius group G by stabilizer Sta(G) (a ∈ E) is investigated.
It is proved that this incident system is an algebraic m-net [2], where
m = |Sta(G)|.

In the section 3 the construction of two systems of the orthogonal
operations over an arbitrary �nite Frobenius group G is given. It is
proved that they form a left and a right S-systems [1]. Some other
properties of these one-sided S-systems are studied too. A number-
ing correlation between permutations degree n and m = |Sta(G)| is
obtained. As a corollary of this correlation it is proved that �nite
Frobenius p-groups doesn't exist (the negative answer on the problem
6.55 from [5] in a �nite case). At the end of the part 2 the right (left)
cell permutations of right (left) S-system are de�ned and it is shown
that the set of all cell permutations forms a group coinciding with the
group G.

In the section 3 an arbitrary right (left) S-systems of binary idem-
potent quasigroups on some set E (�nite or in�nite) are investigated.
In any right (left) S-system of operations the cell functions are in-
troduced, and it is proved that all these functions are permutations
on the set E. If the set of all cell permutations forms a group (with
respect to natural operation of composition), then this group is a
Frobenius group. As a corollary, the proof of Frobenius theorem is
obtained (when the set E is �nite). Another construction of one-sided
S-systems of operations on E over the Frobenius group G, no depend-
ing from the cardinality of the set E, are given in order to demonstrate
preserving of the correspondence between Frobenius groups and one-
sided S-systems of operations on E with the property mentioned above
in the case when the set E is in�nite.

We will use the following notations:

Ha = Sta(G) is the stabilizer of the element a ∈ E in the group G,

0, 1 are two distinguished elements in the set E,

E∗ = {0} ∪ {h(1) : h ∈ H0 = St0(G)} ⊆ E.
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2. Incident system of cosets
In this paragraph we suppose that the set E is �nite, i.e. the permu-
tations from the Frobenius group G have the �nite degree n = |E|.

In a Frobenius group all subgroups Ha (a ∈ E) are conjugate and
so we can denote

m = |H0| = |Ha| .
At last, we can suppose the elements from E are renamed so that

E∗ = {0, 1, ..., m}.

Let's consider all (left) cosets Hb
a = {α ∈ G : α(a) = b} in

G by the subgroup Ha and de�ne the following incident system
R =< X,L, I >:

points from X are (left) cosets Hb
a,

lines from L are permutations α ∈ G,
incidence I is a belonging relation, i.e.

(a, b)I[α] ⇔ ( point Hb
a )I( line α)

def⇔ ( α ∈ Hb
a ). (1)

De�nition 2. By an algebraic k-net [2] we mean an incidence sys-
tem R =< X,L, L1, ..., Lk, I > consisting of the point set X, the
line set L which is separated on k distinct classes of "parallel" lines
l1, L2, ..., Lk, and the incidence relation I between elements from X
and L, which satisfy the following two conditions:
1) any two lines from the di�erent classes Li and Lj are incident to

one and only one point from X,
2) every point from X is incident to one and only one line from each

class Li.

Lemma 1. The system R =< X,L, I > de�ned in (1) is an algebraic
m-net.

Proof. According to Frobenius theorem [8], in a �nite Frobenius group
G of permutations of degree n all �xed-point-free permutations with
the identity permutation form a transitive invariant subgroup A, more-
over, |A| = n. It is easy to see that A is a group transversal (see [6])
in G to Ha ∀a ∈ E.
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Let's de�ne the classes Li of "parallel" lines in L by the following:
Li = {αhi : α ∈ A, hi ∈ H0, hi(1) = i}, i = 1, ..., n .

Note that hi = id and Li = A.

Lemma A. Let α, β ∈ L and α 6= β . The following conditions are
equivalent:

1) both of lines α and β are in the class Li for some i,
2) α(t) 6= β(t) ∀t ∈ E.

Proof of Lemma A. 1) ⇒ 2). Let α, β ∈ Li and α 6= β. Let's assume
there exists t0 ∈ E such that α(t0) = β(t0). Then we have

α0hi(t0) = β0hi(t0),
α0(t1) = β0(t1)

where α0, β0 ∈ A, t1 = hi(t0). The last equality contradicts the regu-
larity of the group A. So

α(t) 6= β(t) ∀t ∈ E.

2) ⇒ 1). Let α, β ∈ L, α 6= β and
α(t) 6= β(t) ∀t ∈ E.

The set A is a (left) transversal in G to H0, so we have
α = α0hi, β = β0hj,

where α0, β0 ∈ A, hi, hj ∈ H0. It is necessary to prove that hi = hj.
We have

α0hi(t) 6= β0hj(t) ∀t ∈ E,
α−1

0 β0hjh
−1
i (t′) 6= t′ ∀t′ = hi(t) ∈ E,

i.e. γ0 = α−1
0 β0hjh

−1
i is a �xed-point-free permutation. Then γ0 ∈ A

and we obtain
hjh

−1
i = hk = β−1

0 α0γ0 ∈ H0 ∩ A = {id},
i.e. hi = hj. The proof of Lemma A is completed.

Let's return to the proof of Lemma 1. It is necessary to check
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the realization of the conditions 1) and 2) from De�nition 2 for the
incidence system R =< X,L, I >.

a) Let α and β be two di�erent lines from the di�erent classes Li

and Lj. Then there exist element t0 ∈ E such that

α(t0) = β(t0) = d, (2)
(in a contrary case we would have α(t) 6= β(t) ∀t ∈ E, and so
α, β ∈ Lk for some k according to Lemma A. Moreover, there exist
an unique element t0 ∈ E satisfying (2), because in a opposite case
the permutation α−1β would �x two di�erent elements from E and so
α−1β = id according to De�nition 1. So we have:

α, β ∈ Hd
t0
,

i.e. the lines α and β are incident to the unique point Hd
t0
. The con-

dition 1) is proved.

b) Let Hb
a be an arbitrary point from X. This point is incident

to all lines αi ∈ G such that αi ∈ Hb
a, i.e. αi(a) = b. By means of

Lemma A we obtain that di�erent such lines αi lie in di�erent classes
Li. As |Hb

a| = |Ha| = m, then the point Hb
a is incident to m di�erent

lines αi from di�erent classes Li; moreover, it is incident to an unique
line in each class Li. The number of classes Li is equal to m, so every
of these classes consists of a line being incident to the point Hb

a. The
condition 2) is proved.

The proof of Lemma 1 is completed.

3. One-sided S-systems being constructed
over a Frobenius group

In this paragraph we will suppose that Frobenius group G is �nite.
Let's de�ne the following two binary operations (·) and (∗):

(·) : E × E → E,
x · y = z

def⇐⇒ z = ϕx(y),
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where ϕx ∈ A, ϕx(0) = x,
(∗) : E∗ × E → E,

0 ∗ v
def⇐⇒ 0,

u 6= 0 : u ∗ v = w
def⇐⇒ w = hu(v),

where hu ∈ H0, hu(1) = u. Note that (∗) is a partial operation.

Lemma 2. The following statements are true:
1) < E, ·, 0 > ∼= A,
2) < E∗ − {0}, ∗, 1 > ∼= H0,
3) x ∗ (y · z) = (x ∗ y) · (x ∗ z) ∀x ∈ E∗, ∀y, z ∈ E,
4) every permutation h ∈ H0 is an automorphism of the subgroup A,
5) G = {αa,b : αa,b(x) = a · (b ∗ x), a ∈ E b ∈ E∗ − {0}}.

Proof. 1) Let's consider the following mapping
α : < E, ·, 0 >→ A , α(x) = ϕx

where x ∈ E and the permutation ϕx is de�ned above. Then α is
a bijection, because the group A is regular on the set E. Further we
have

(α(x · y))(0) = ϕx·y(0) = x · y.
On the other hand we have

(α(x)α(y))(0) = ϕxϕy(0) = ϕx(y) = x · y .

So we obtain
(α(x · y))(0) = x · y = (α(x)α(y))(0),

and
α(x · y) = α(x)α(y),

because the group A is regular (i.e. sharply transitive) on the set E.
We obtain that the mapping α is an isomorphism.

2) can be proved analogously, and the isomorphism is determined
by the mapping

β : < E∗ − {0}, ∗, 1 > → H0 , β(u)
def
= hu,

where u ∈ E∗ − {0} and the permutation hu is de�ned above.
3) and 4) can be proved analogously to 3) of Lemma 8 from [7].
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5) can be proved analogously to Lemma 9 from [7].

Note that α0,1 ≡ id and αa,1(x) = a · x is a �xed-point-free
permutation if a 6= 0; moreover {αa,1}a∈E ≡ A.

Now let's de�ne the following partial ternary operation
( , , ) : E × E∗ × E → E,

(x, a, y)
def
= x · (a ∗ (x−1 · y)), (3)

where a ∈ E∗, x, y ∈ E, and x−1 is the inverse element to x in
< E, ·, 0 >.

Lemma 3. The following statements are true:
1) (x, 0, y) = x, (x, 1, y) = y,

(x, a, x) = x, (0, a, 1) = a, ∀a ∈ E∗, x, y ∈ E.
2) The system of operations Aa(x, y) = (x, a, y) (a ∈ E∗ − {0}) is

a right S-system.
3) The operations (x, a, y) and (x, b, y) are orthogonal for any a 6= b,

and they are quasigroups for a 6= 0, 1.
4) The operations (x, a, y) and x◦y = x−1 ·y are orthogonal for any

a ∈ E∗.

Proof. 1) (x, 0, y) = x · (0 ∗ (x−1 · y)) = x · 0 = x,
(x, 1, y) = x · (1 ∗ (x−1 · y)) = x · x−1 · y = y,

(x, a, x) = x · (a ∗ (x−1 · x)) = x · (a ∗ 0) = x · 0 = x,
(0, a, 1) = 0 · (a ∗ (0−1 · 1)) = a ∗ 1 = a.

2) According to the de�nition from [1], a system of operations
Aa(x, y) (a ∈ E∗ ⊆ E) on some set E is a right (left) S-system, if for
any a, b ∈ E∗ and x, y ∈ E there exists c = c(a, b) ∈ E∗ such that the
following equality

(Aa ◦ Ab)(x, y) = Aa(x,Ab(x, y)) = Ac(x, y)

holds, and moreover, the system < Au, ◦, A1 >, where u 6= 0, is a
group (correspondingly, if for any a, b ∈ E∗ and x, y ∈ E there exist
such c = c(a, b) ∈ E∗ that the following equality
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(Aa • Ab)(x, y) = Aa(Ab(x, y), y) = Ac(x, y)

holds, and moreover, the system < Au(u 6= 1), •, A0 > is a group).
According to the equality (3) we obtain for the operations Aa(x, y) =

(x, a, y) and Ab(x, y) = (x, b, y) (where a, b ∈ E∗ − {0} ):
(Aa ◦ Ab)(x, y) = Aa(x,Ab(x, y)) = (x, a, (x, b, y)) =

= x · (a ∗ (x−1 · (x · (b ∗ (x−1 · y))))) =
= x · (a ∗ b ∗ (x−1 · y)) = Aa∗b(x, y).

With the help of Lemma 2, we obtain that the system < Au, ◦, A1 >,
where u 6= 0 is a group (this group is isomorphic to the group H0),
i.e. the system of operations Aa(x, y) = (x, a, y) is a right S-system.

3) We notice that for any a ∈ E∗, z ∈ E,
(a ∗ z)−1 = a ∗ x−1.

Really, with the help of Lemma 2, we obtain
(a ∗ z) · (a ∗ z−1) = a ∗ (z · z−1) = a ∗ 0 = 0,
(a ∗ z−1) · (a ∗ z) = a ∗ (z−1 · z) = a ∗ 0 = 0.

Further, let we have the following system
{

(x, a, y) = c,
(x, b, y) = d,

where a, b ∈ E∗, a 6= b, c, d ∈ E are arbitrary given elements.
If a = 0 then x = c, y = c · (b−1 ∗ (c−1 · d)) , i.e. this system has

an unique solution in E ×E; so the operations (x, a, y) and (x, b, y)
are orthogonal. If b = 0 then we obtain the same result.

Let a, b 6= 0. Then we have
{

(x, a, y) = c
(x, b, y) = d

⇐⇒
{

x · (a ∗ (x−1 · y)) = c
x · (b ∗ (x−1 · y)) = d

⇐⇒
{

a ∗ (x−1 · y) = x−1 · c
b ∗ (x−1 · y) = x−1 · d ⇐⇒

{
(a ∗ (x−1 · y))−1 = c−1 · x
(b ∗ (x−1 · y))−1 = d−1 · x ⇐⇒

{
a ∗ (y−1 · x) = c−1 · x
b ∗ (y−1 · x) = d−1 · x ⇔ a(−1) ∗ (c−1 · x) = y−1 · x = b(−1) ∗ (d−1 · x),
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where a−1 is the inverse element to a in < E∗ − {0}, ∗, 1 >. From
the last equality we obtain

c−1 · x = (a ∗ b−1) ∗ ((d−1 · c) · (c−1 · x)),
i.e. (see Lemma 2)

c−1 · x = αd−1·c,a∗b(−1)(c−1 · x)

As a 6= b then a ∗ b(−1) 6= 1; so the permutation αd−1·c,a∗b(−1) has
an unique �xed-point element p0. So we obtain that x = c · p0,
y = c · p0 · (a(−1) ∗ p0), i.e. the operations (x, a, y) and (x, b, y) are
orthogonal.

4) We have for any a ∈ E∗ − {0} and c, d ∈ E:
{

(x, a, y) = c
x ◦ y = d

⇐⇒
{

x · (a ∗ (x−1 · y)) = c
x−1 · y = d

⇐⇒
{

x · (a ∗ d) = c
y = x · d ⇐⇒

{
x = c · (a ∗ d)−1

y = c · (a ∗ d)−1 · d,

i.e. the operations (x, a, y) and x ◦ y are orthogonal.

By an analogical way it can be de�ned one more partial ternary
operation

[x, t, y] : E × E∗ × E → E

[x, a, y]
def
= (a ∗ (x · y−1)) · y , a ∈ E∗.

Lemma 4. The following statements are true:
1) [x, 0, y] = y, [x, 1, y] = x,

[x, a, x] = x, [1, a, 0] = a, ∀a ∈ E∗, x, y ∈ E.
2) The system of operations Aa(x, y) = [x, a, y] (a ∈ E∗ − {0}) is a

left S-system.
3) The operations [x, a, y] and −[x, b, y] are orthogonal for any a 6= b

and they are quasigroups for a 6= 0, 1.
4) The operations [x, a, y] and x • y = x · y−1 are orthogonal for any

a ∈ E∗.

Proof. 1). It is evident.



30 E. A. Kuznetsov

2)-4) can be proved analogously to the proof of Lemma 3.

Remark. There is a 1-1 correspondence between algebraic m-net
from Lemma 1 and some system of m orthogonal operations on the
set E. De�ning the partial ternar < x, t, y > by the following:

(a, b)I[c, d] ⇐⇒ < a, c, b >= d,
where I is the incidence relation, we obtain

< x, a, y >= y · (a ∗ x)−1, a ∈ E∗

This system of operations is not a left or a right S-system of operations.

Let's return back to the ternary operation (x, a, y).

Lemma 5. The following statements are true:
1) The mapping αb,a(x) = b · (a ∗ x) , b ∈ E, a ∈ E∗ − {0}, x ∈ E
is an isomorphism between operations (x, c, y) and (x, a ∗ c ∗ a−1, y).
2) The mapping αb,I is an automorphism of the operation (x, c, y)
for any b ∈ E, c ∈ E∗.

Proof. 1) We have:
αb,a((x, c, y)) = b · (a ∗ (x · (c ∗ (x−1 · y)))) =

= b · (a ∗ x) · (a ∗ c ∗ (x−1 · y)) =

= b · (a ∗ x) · ((a ∗ c ∗ a(−1)) ∗ a ∗ (x−1 · y)) =

= b · (a ∗ x) · ((a ∗ c ∗ a(−1)) ∗ ((a ∗ x−1) · (a ∗ y))) =

= b · (a ∗ x) · ((a ∗ c ∗ a(−1)) ∗ ([(a ∗ x)−1 · b−1] · [b · (a ∗ y)])) =

= (αb,a(x)) · ((a ∗ c ∗ a(−1)) ∗ ((αb,a(x))−1 · (αb,a(y)))) =

= (αb,a(x), a ∗ c ∗ a(−1), αb,a(y)).
It means that the mapping αb,a is an isomorphism between operations
(x, c, y) and (x, a ∗ c ∗ a−1, y).

2) is an evident corollary of 1).
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Lemma 6. The following equality is true:
n− 1 = km

for some k ∈ N , i.e. (|E∗| − 1) | (|E| − 1).

Proof. (see [1] too). Let a1 ∈ E and a1 6= 0. Let's consider the
following equalities:

A1(0, a1) = (0, 1, a1) = 1 ∗ a1 = a1

A2(0, a1) = (0, 2, a1) = 2 ∗ a1

. . . . . . . . . . . . . . . . . .

Am(0, a1) = (0,m, a1) = m ∗ a1.
All values in the right sides of the equalities are di�erent. Really, we
have

a ∗ a1 6= b ∗ a1, a 6= b

because < E∗ − {0}, ∗, 1 > is a group.
Let's denote

M1 = {Ai(0, a1) : i = 1, ...,m} , |M1| = m.
Let a2 6= 0 and a2 ∈ E\M1. By analogy with above we have:

A1(0, a2) = a2

A2(0, a2) = 2 ∗ a2

. . . . . . . . . . . .

Am(0, a2) = m ∗ a2

and we obtain analogously that the right sides of these equalities are
di�erent. Let's denote

M2 = {Ai(0, a2) : i = 1, ..., m} , |M2| = m

If we assume that
M1 ∩ M2 6= ∅,

i.e. there exists b ∈ M1 ∩ M2, then there exist such k, r ∈ E∗ − {0}
that

b = Ak(o, a1) = Ar(o, a2),
b = k ∗ a1 = r ∗ a2

a2 = r(−1) ∗ k ∗ a1 = k′ ∗ a1 , k′ = r(−1) ∗ k,
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i.e. a2 ∈ M1, contradicting to the choosing of the element a2. Con-
tinuing this process up to the complete exhaustion of the set E, we
obtain

E\{0} =
k∐

i=1
Mi ,

moreover, Mi ∩ Mj = ∅ if i 6= j, and |Mi| = m for every i = 1, ..., k.
Then

|E − {0}| = k · |M1| ,
n− 1 = k ·m

and Lemma 6 is proved.

Corollary. Finite nontrivial (i.e. m > 1 and n > 1) Frobenius p-
group does not exist.

Proof. Let's assume the contrary and let G be a Frobenius p-group
with m,n > 1. Then we have

|G| = p′ , m = |H0| | |G| ⇒ m = ps, s > 0,
n = |A| | |G| ⇒ n = pt, t > 0.

With the help of Lemma 6 we obtain
n− 1 = k ·m
p t − 1 = k · ps

p t − k · ps = 1

that is impossible because the left part of the last equality is divisible
by number p, but the right one is not divisible.

This corollary gives a negative solution of the problem 6.55 from
Kourovskaya notebook [5] in the case of a �nite Frobenius group.

Lemma 7. The mappings
ϕb,a(x) = (b, a, x),

ψb,a(x) = (b, a, (0, a(−1), x)),
where b ∈ E, a ∈ E∗−{0, 1} and a(−1) is inverse to a in the group
< E∗−{0}, ∗, 1 >, form a permutation group, which is isomorphic to
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the group G.

Proof. By means of Lemma 2 we have for a ∈ E∗\{0, 1} and b ∈ E:
ϕb,a(x) = (b, a, x) = b · (a ∗ (b−1 · x)) = b · (a ∗ b−1) · (a ∗ x) = αc,a(x),
where

c = b · (a ∗ b−1) = (b, a, 0).
In a such way it can be represented all the permutations αb,a from G,
except the permutations like αb,1. Further we obtain
ψb,a(x) = (b, a, (0, a(−1), x))

= b · (a ∗ (b−1 · (a(−1) ∗ x))) = b · (a ∗ b−1) · x = αc,1(x)
where

c = b · (a ∗ b−1) = (b, a, 0).
In a such way it can be represented all the permutations from G
like αb,1. It means that the set of permutations like ϕb,a and ψb,a

(a ∈ E∗\{0, 1} and b ∈ E) coincides with the set of permutations
αb,a. By the help of Lemma 2 we obtain that this set of permutations
forms a group, which is isomorphic to the group G.

The mappings like ϕb,a and ψb,a are called right cell permutations
of the ternar (x, t, y) (cf. [7]).

It is evident, that the analogous symmetric constructions can be
done for the ternar [x, t, y] too.

4. One sided S-systems of operations, whose
cell permutations forms a group

In this paragraph the set E may be as �nite as in�nite.
Let A0(x, y), A1(x, y), ..., Am(x, y), ... be a collection of binary op-

erations on some set E (E∗ = {0, 1, ..., m, ...} is the set of indexes of
th operations Ai(x, y), and moreover, E∗ ⊆ E), and let this collection
forms a right S-system of indempotent quasigroups A1(x, y), i 6= 0, 1,
i.e.

A0(x, y) = x , A1(x, y) = y , Ai(x, x) = x,
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(Aa ◦ Ab)(x, y) = Aa(x,Ab(x, y)) = Ac(x, y) (4)
for some c ∈ E∗−{0}, moreover, system < Au, ◦, A1 >, where u 6= 0,
is a group. Rewrite (4) as a (partial) ternary operation (x, t, y) :

( , , ) : E × E∗ × E → E , E∗ ⊆ E, 0, 1 ∈ E,
(x, t, y) = At(x, y),

i.e.
(x, 0, y) = x , (x, 1, y) = y,

∀ a, b ∈ E∗ − {0} : (x, a, (x, b, y)) = (x, c, y) (5)
for some c = c(a, b) ∈ E∗ − {0},

(x, a, x) = x ∀ x ∈ E, ∀ a ∈ E∗. (6)

It is easy to prove that all operations (x, a, y) are mutually or-
thogonal for di�erent a ∈ E∗. As all the operations (x, a, y) are
mutually orthogonal and the identity (6) is true, we obtain that all
values (0, a, 1) are di�erent for di�erenet a ∈ E∗. So renumerating
the indexes from E∗ it can obtain the following identity (a ∈ E∗):

(0, a, 1) = a. (7)

Let's de�ne the following operation (∗) on the set E∗:
(∗) : E∗ ∗ E∗ → E∗,

0 ∗ a = a ∗ 0 = 0,
x, y, z 6= 0 , x ∗ y = z ⇐⇒ (x, a, (x, b, y)) = (x, c, y).

As a corollary of (4) and (5) we obtain the system < E∗ − {0}, ∗, 1 >
is a group. Further we have from (5) when x = 0 and y ∈ E∗ − {0}:

(0, a, (0, b, y)) = (0, a ∗ b, 1), ∀ a, b ∈ E − {0}. (8)

If y = 1, then we obtain from (8) with the help of (7):
(0, a, b) = (0, a, (0, b, 1)) = (0, a ∗ b, 1) = a ∗ b.

So ∀ a, b, y ∈ E∗ − {0} we obtain from (8):
(0, a, (0, b, y)) = (0, a, b ∗ y) = a ∗ (b ∗ y) =
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= (a ∗ b) ∗ y = (0, a ∗ b, y) = (0, (0, a, b), y),
i.e. the operation x • y = (0, x, y) on the set E∗ − {0} is a group,
and this operation coincide with the operation (∗) from the initial S-
system.

Lemma 8. The mappings
ϕb,a(x) = (b, a, x), b ∈ E, a ∈ E∗ − {0},

ψb,a,d(x) = (b, a, (d, a(−1), x)), b, d ∈ E, a ∈ E∗ − {0},
are permutations on the set E.

Proof. We have from (5):
ϕb,1(x) = (b, 1, x) = x,

ψb,a,d(x) = (b, a, (b, a(−1), x)) = (b, a ∗ a(−1), x) = x,
ψb,1,d(x) = (b, 1, (d, 1, x)) = x.

If a ∈ E∗ − {0}, then for any arbitrary b and a the mapping
ϕb,a(x) = L

(a)
b (x) is a left translation in the quasigroup (x, a, y) with

respect to the element b, i.e. it is a permutation. If a ∈ E∗ − {0, 1},
then for any arbitrary b, a and d we have:

ψb,a,d(x) = L
(a)
b L

(a(−1))
d (x),

i.e. the mapping ψb,a,d is a composition of two translations: L
(a)
b in

the quasigroup (x, a, y) and L
(a(−1))
d in the quasigroup (x, a(−1), y); so

it is a permutation too.

Lemma 9. The following statements are true:
1) permutation ϕb,a (b ∈ E, a ∈ E∗ − {0, 1}) has one and only one

�xed element b,
2) permutation ψb,a,d (b, d ∈ E, a ∈ E∗ − {0, 1}) is a �xed-point-

free permutation, if b 6= d,
3) the set of permutations

T = {ψb,a0,0 : b ∈ E, a0 is a �xed element from E∗ − {0, 1}}
is transitive on the set E.

Proof. 1) We have



36 E. A. Kuznetsov

ϕb,a(b) = (b, a, b) = b.
Let's assume there exists an element x0 ∈ E, x0 6= b such that

ϕb,a(x0) = x0.
Then we obtain

(b, a, x0) = x0.
But it is evident that

(x0, a, x0) = x0.
As the operation (x, a, y) is a quasigroup and xo 6= b we obtain a
contradiction between the last two equalities. So

ϕb,a(x) 6= x

for any x ∈ E − {b}.

2) Let's assume there exists an element x0 ∈ E such that b 6= d
and

ψb,a,d(x0) = x0,
i.e.

(b, a, (d, a(−1), x0)) = x0.
Then we obtain with the help of (5)

(b, a(−1), x0) = (b, a(−1), (b, a, (d, a(−1), x0))) =

= (b, a(−1) ∗ a, (d, a(−1), x0)) = (b, 1, (d, a(−1), x0)) =

= (d, a(−1), x0),
i.e. b = d (because the operation (x, a(−1), y) is a quasigroup when
a 6= 0, 1). We obtain a contradiction; so if b 6= d, then ϕb,a,d(x) 6= x
for any x ∈ E.

3) Let a0 be an arbitrary element from E∗ − {0, 1}. We have for
an arbitrary �xed element c ∈ E:

ϕt,a0,0(c) = (t, a0, (0, a
(−1)
0 , c)) = (t, a0, a

(−1)
0 ∗ c) = R

(a0)

a
(−1)
0 ∗c(t),

where R
(a)
b denotes the right translation in the quasigroup (x, a, y)

with respect to the element b ∈ E. As the mapping R
(a0)

a
(−1)
0 ∗c is a

permutation on the set E, so for any c, d ∈ E there exists an element
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t0 ∈ E such that we have
ψt0,a0,0(c) = R

(a0)

a
(−1)
0 ∗c(t0) = d,

i.e. the set T is a transitive set of permutations on E.

Lemma 10. Let permutations ϕb,a and ψb,a,d where b, d ∈ E, a ∈
E∗−{0}), form a group G under the natural product of permutations.
Then G is a Frobenius group.

Proof is an easy corollary of Lemma 9.

Lemma 11. Let the set E be a �nite one. If the conditions of Lemma
10 take place, then the set of �xed-point-free permutations

T = {ψb,a0,0 : b ∈ E, is any �xed element from E∗ − {0, 1}}
with the identity permutation id = ψ0,a0,0 is a normal subgroup in the
Frobenius group G.

Proof. Let the conditions of Lemma hold. Then G is a �nite Frobenius
group of permutations of degree n, where n = |E|. It is easy to show
that the group G contains exactly n−1 �xed-point-free permutations
(see [4]). As the set T contains exactly n−1 di�erent �xed-point-free
permutations (see Lemma 9), so T contains all the �xed-point-free
permutations of group G.

Let's denote
Ha = Sta(G), a ∈ E.

As the set T is a transitive set of permutations on E, so T is a left
transversal in the group G to its subgroup Ha for any a ∈ E. So we
have

t−1
i tj 6∈ Ha ∀ i 6= j.

Then we obtain that t−1
i tj is a �xed-point-free permutation, i.e.

t−1
i tj = tk

for some element tk ∈ T , because the set T contains all the �xed-point-
free permutations of the group G. So all �xed-point-free permutations
of the group G with the identity permutation id form a group which
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is a normal subgroup of the group G.

By means of Lemmas 10 and 11 we obtain that there exist nor-
mal subgroups, consisting from �xed-point-free permutations and the
identity permutation, in the �nite Frobenius groups, which are groups
of cell permutations of the right S-system.

Further we will demonstrate one more method of de�nition of the
operations (x, a, y) by an arbitrary Frobenius group (that method is
di�erent from the method described in the part 3; moreover, that
method does not use the fact of existing a normal subgroup in the
Frobenius group and is independent for the cardinality of the set E.

Let G be an arbitrary Frobenius group of permutations on some
set E and 0, 1 be two distinct distinguished elements from E. As the
group G is transitive on the set E, then there exists a set of n permu-
tations P = {σx}x∈E such that σx(0) = x ∀ x ∈ E, and σ0 = id.
Let's de�ne the operation (x, a, y) as follows:

(x, 0, y) = x , (x, 1, y) = y ,

∀ a ∈ E∗, a 6= 0, 1, (x, a, y) = z ⇐⇒ z = α(y) ,

where α ∈ G, α(x) = x, β(1) = (σ−1
x ασx)(1) = a.

(9)

This de�nition is correct, because there exist an unique permutation
h = H0 = St0(G) satisfying the condition h(1) = a and so there exist
an unique permutation α ∈ G satisfying the condition (9).

Lemma 12. The operation (x, a, y) (de�ned by (9)) satis�es the fol-
lowing properties:
1) (0, a, 1) = a, (x, a, x) = x,
2) ∀ a, b ∈ E∗ : (x, a, (x, b, y)) = (x, c, y) for some c = c(a, b) ∈ E∗.

Proof. 1) We have

(0, a, 1) = u ⇐⇒




u = α(1)
α(0) = 0
β(1) = a

which implies σ = id, α = β, and in the consequence u = α(1) =
β(1) = a, i.e. (0, a, 1) = a.
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Similarly

(x, a, x) = u ⇔




u = α(x)
α(x) = x
β(1) = a

⇒ u = α(x) = x,

i.e. (x, a, x) = x.

2). If a = 0, then we have
(x, a, (x, b, y)) = x = (x, 0, y) ⇒ c = c(0, b) = 0.

If b = 0, then we have
(x, a, (x, b, y)) = (x, a, x) = x = (x, 0, y) ⇒ c = c(a, 0) = 0.

Let a, b 6= 0. Then we obtain

(x, a, (x, b, y)) = u ⇐⇒
{

(x, a, v) = u
(x, b, y) = v

⇐⇒

⇐⇒





α(x) = x, α(v) = u
σ−1

x ασx = ha, ha(1) = a
α1(x) = x, α1(y) = v

σ−1
x α1σx = hb, hb(1) = b

⇐⇒

⇐⇒





u = α(v) = αα1(y)
αα1(x) = α(x) = x
σ−1

x αα1σx = σ−1
x ασxσ

−1
x α1σx = hahb = hc

c = hc(1) = hahb(1) = ha(b)

⇐⇒





u = γ(y) = (c, x, y) = (x, ha(b), y)
γ = αα1

γ(x) = x
σ−1

x γσx = hc

i.e.
(x, a, (x, b, y)) = (x, c, y).

So we have demonstrated that it can de�ne a right S-system of idem-
potent operations (x, a, y) over an arbitrary Frobenius group G with
the help of equalities (9).

Moreover, it can de�ne the left S-system of idempotent operations
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[x, a, y] over an arbitrary Frobenius group G changing symmetrically
the de�nitive equalities (9).
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On loops with universal elasticity

Paraskovya N. Syrbu

Abstract

A property P of a loop Q(·) is called universal for Q(·) if it holds in every loop
isotopic to Q(·) ([1,2]). Loops with universal law of elasticity are considered in
this article. Necessary and su�cient conditions for a commutative IP -loop with
universal elasticity to be a Moufang loop are proved.

Loops with universal law of elasticity x · yx = xy · x were mentioned
in [2] and partially studied in [6]. It is our purpose in this paper to
continue the study of algebraic properties of loops with universal elas-
ticity. It was shown in [6] that the identity of elasticity x · yx = xy · x
is universal for a loop Q(·) if and only if one of identities

x\[(xy/b)(a\xb)] = a\[(ay/b)(a\xb)] (1)
or

[(bx/a)(b\yx)]/x = [(bx/a)(b\ya)]/a , (2)

holds in the primitive loop Q(·, /, \). So, the identities (1) and (2) are
equivalent in Q(·, /, \). More, they are symmetric (dual). If Q(·) is an
IP -loop then each of the identities (1) and (2) is equivalent in Q(·) to
the following identity:

[x(az · y) · zx]a = x[az · (y · zx)a] , (3)

which is universal for a loop Q(·) if and only if Q(·) is a Moufang loop.
1991 Mathematics Subject Classi�cation: 20N05
Keywords: quasigroup, loop, Moufang loop, isotopy, elasticity
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It is clear that each Moufang loop is a loop with universal elasticity.
More, the class of Moufang loops is strictly contained in that of loops
with universal elasticity. The following examples give loops with uni-
versal elasticity which are not Moufang.

Example 1. Let R(+, ·) be the ring of integers modulo 2 and Q = R3.
De�ne on Q the operation (·) as follows:

(i , j , k) · (p , q , r) = (i + p , j + q , k + r + jp + jpq + ijq) .
Q(·) is a loop with universal elasticity of order 8 and exponent 4 (with
(0, 0, 0) as a neutral element).

Example 2. Let Q(+, ·) be the ring from Example 1 and Q = R3.
De�ne on Q the operation (·):

(i , j , k) · (p , q , r) = (i + p , j + q , k + r + ijp + ipq).
Then Q(·) is a loop with universal elasticity (not Moufang).

In what follows will be useful the identity

(bx · ay)x · ab = bx · a(yx · ab) , (4)

which is equivalent to (3). Indeed, making the substitutions:a → az−1,
x → z−1x and after this z−1 → b in (3), we �nd the identity (4),
and analogously, from (4) follows (3).

I. As it was shown in [6], loops with universal elasticity are strong
power-associative (i.e. each element generates an associative subloop).

Let Q(◦) be a strong power-associative loop. De�ne a new loop
Q(·) as follows:

x · y = x//y(−1) ,

where "//" is the left division in Q(◦), y · y(−1) = 1, 1 is the neutral
element of Q(·). Then

x ◦ y = x/y(−1) ,

where "/" is the left division in Q(·).
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Proposition 1.
i) 1 = e , where e is the unit of Q(◦),

ii) if x ◦ x−1 = e , then x−1 = x(−1) = (−1)x ,

where −1x · x = x · x(−1) = 1 for every x in Q(·).

Proof. i) Indeed, as
x = x ◦ e = x/e(−1),

we have x = x · e(−1) . So e(−1) = 1 , or e = 1.

ii) Q(◦) is strong power-associative and
e = x−1 ◦ x = x−1/x(−1),

so
x−1 = ex(−1) = x(−1).

Now
(−1)x · x = e =⇒ (−1)x = e/x = e ◦ x−1 = x−1.

Proposition 2. Q(·) is a LIP -loop if and only if the permutation
I : x → x−1 is an antiautomorphism of Q(◦).

Proof. Let Q(·) be a LIP -loop, i.e. x−1 · xy = y for every x, y in Q
hence y/xy = x−1. Making the substitution x → x/y and using the
strong power-associativity of Q(◦) , we get y/x = (x/y)−1, i.e.

y ◦ x−1 = (x ◦ y−1)−1 or y−1 ◦ x−1 = (x ◦ y)−1 .

The proof is reversible.

Remind that B3-loops have been considered in [3, 4] by A.Gwaramija.
A loop Q(·) is called a B3-loop (or a medial Bol loop) if Q(·, /, \)
satis�es the identity

x(yz\x) = (x/z)(y\x) .

Mention that the loops from Examples 1 and 2 are B3-loops as well.
We have below another proof of a Gwaramija's result.
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Corollary. (A. Gwaramija [4]) If Q(·) is a left Bol loop, then Q(◦)
is a B3-loop.

Proof. It is known ([2]) that a B3-loop is a loop for which the identity

(xy)−1 = y−1x−1

is universal and a left Bol loop is a loop with universal LIP -property.
Let Q(◦) be a B3-loop and consider an arbitrary principal isotope
(∗) = (◦)(α,β,ε) of Q(◦). If Q(◦) is a B3-loop, then I(x ∗ y) = Iy ∗ Ix,
or

I(αx/Iβy) = I(αx ◦ βy) = I(x ∗ y) = Iy ∗ Ix = αIy ◦ βIx = αIy/Iβx.
So we get

I(αx/Iβy) = αIy/IβIx ,

or, making the substitution x → α−1x and after that x → x · Iβy
in the last equality, we obtain:

Ix = αIy/[IβIα−1(x · Iβy)] ,
αIy = Ix · [IβIα−1(x · Iβy)] ,

or �nally,
y = Ix • (x • y) ,

where (•) = (·)(ε,IβIα−1,ε). So, if Q(·) is a left Bol loop, then each its
principal isotope (•) (de�ned above) has the LIP -property and this
fact implies that every principal isotope (∗) = (◦)(α,β,ε) of Q(◦)
satis�es the identity I(x ∗ y) = Iy ∗ Ix.

Proposition 3. Q(◦) is a RIP -loop if and only if Q(·) is a RIP -loop.

Proof. Let Q(◦) be a RIP -loop. If by "//" is denoted the left division
in Q(◦), then we have x//y = xy−1 . So

(y ◦ x) ◦ x−1 = y =⇒ y//x−1 = y ◦ x =⇒ yx = y ◦ x

for every x, y in Q. Conversely, if yx · x−1 = y for every x, y in Q
then y/x−1 = u · x or y ◦ x = y · x . So the operations (·) and (◦)
coincide in both cases.
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Let Q(◦) be a loop with universal elasticity and Q(·) be the loop
de�ned in previous propositions: x ◦ y = x/y−1 for every x, y ∈ Q
(where (/) is the left division for (·)).

Proposition 4. Q(·) is left alternative if and only if the identity
(x ◦ y ◦ x−1)2 = (x ◦ y) ◦ (y ◦ x−1)

holds in Q(◦).

Proof. If Q(◦) is left alternative, i.e. x · xy = x2 · y, for every x, y in
Q, then the equality

x//(x//y−1)−1 = (x//x−1)//y−1

is true for every x, y in Q as x//y = xy−1. Now using x//x−1 = x2 in
the previous equality (Q(◦) is strong power-associative) and replacing
x by x ◦ y−1 we get:

(x ◦ y−1)//x−1 = (x ◦ y−1)2//y−1

or
[(x ◦ y−1)//x−1] ◦ y−1 = (x ◦ y−1)2 . (5)

But Q(◦) is a loop with universal elasticity, so it satis�es the identity

(x ◦ y) ◦ x−1 = x ◦ (y ◦ x−1)

(which is a corollary of (1) for x = b = e). From the last identity
(using y → y−1//x−1) we get

(x ◦ y−1)//x−1 = x ◦ (y−1//x−1)

and using this identity in (5) it follows

[x ◦ (y−1//x−1)] ◦ y−1 = (x ◦ y−1)2 ,

or after replacing y−1 by y ◦ x−1 in the last equality:

(x ◦ y) ◦ (y ◦ x−1) = (x ◦ y ◦ x−1)2 .
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The proof is reversible.

II. An element a of a loop Q(·) is called Moufang, if for every
x, y ∈ Q we have ax · ya = a(xy · a) ([5]). Denote

M = {a ∈ Q : ax · ya = a(xy · a) ∀ x, y ∈ Q} .

The Moufang center of a loop is de�ned as the set of all elements c
such that

c2 · xy = cx · cy
for all x, y ∈ Q. It is known ([5]), that the Moufang center of a Mo-
ufang loop Q(·) is a commutative subloop of Q(·). More, if N is the
nucleus, C is the Moufang center and Z is the center of a Moufang
loop, then N ∩C = Z. For an arbitrary loop Q(·) the fact that c ∈ C
does not necessarily imply cx = xc.

Proposition 5. The Moufang center C(·) of an IP -loop with univer-
sal elasticity Q(·) is a commutative subloop of Q(·).

Proof. Let a ∈ C and put y = e in a2 · xy = ax · ay , where e is the
unit of Q(·). We get

a2x = a2(xe) = ax · a = a · xa .
So

a2 · x = a · ax = a · xa

and ax = xa for every x ∈ Q. Here was used the law of left alterna-
tivity which holds in IP -loops with universal elasticity as was proved
in [6]. We shall prove below that C(·) is a subloop of Q(·). If a ∈ C
then replacing x by au and y by av in the equality a2 · xy = ax · ay
we get

a2(au · av) = a2u · a2v , or a4 · uv = a2u · a2v

for every u, v ∈ Q . Hence a2 ∈ C. Let a, b ∈ C. Then

a4(b2 · xy) = a4(bx · by) = (a2 · bx)(a2 · by) = (ab · ax)(ab · ay) ,

for every x, y ∈ Q. But

a4(b2 · xy) = a2b2 · (a2 · xy) = a2b2 · (ax · ay) ,
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for every x, y ∈ Q and

a2b2 = a2 · bb = ab · ab = (ab)2 ,

so we get
(ab)2(ax · ay) = (ab · ax)(ab · ay) ,

for every x, y ∈ Q , i.e. ab ∈ C. If a ∈ C then we get

a−2 · uv = a−1u · a−1v ,

after replacing x by a−1u and y by a−1v in a2 · xy = ax · ay . So,
a−1 ∈ C and C(·) is a commutative subloop of Q(·).

Corollary. If Q(·) is an IP -loop with universal elasticity then
C ≤ M ≤ Q.

The following proposition contains some properties of the Moufang
elements in IP -loops with universal elasticity.

Proposition 6. Let Q(·) be an IP -loop with universal elasticity.
Then a ∈ M if and only if at least one of the equalities

i) (ax · y)x = a · xyx, ii) axa · y = a(x · ay),
iii) x(y · xa) = xyx · a, iv) x · aya = (xa · y)a,
v) xy · ax = x · ya · x, vi) xa · yx = x · ay · x

holds for every x, y ∈ Q.

Proof. To prove this proposition we need the following identities which
are corollaries of (3) and (4):

(a) (x · ay · x)a = x(a · yx · a) ,
(b) (uv · zu)v = u(vz · uv) ,
(c) (v · uy) · uv = v[u(y · uv)] ,
(d) vu · (yu · v) = [(vu · y)u]v .

Indeed, the identity (a) can be obtained from (3) taking z = e; the
identity (b) is a corollary of (4) for x → b−1u , a → vb−1, y = b and
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after this b−1 = z ; the identity (c) was obtained replacing x by z−1,
a by uz−1 and after that z−1 by v in (3); (c) and (d) are symmetric.
Consider c ∈ M and substitute x by c in (a):

(c · ay · c)a = c(a · yc · a).
Hence

(ca · yc)a = c(a · yc · a)

or, replacing yc by y :
(ca · y)a = c · aya

for every a, y ∈ Q , so i) is proved.
Analogously, taking u = c in (b) we get: czc · v = c(x · cv) for

every v, z ∈ Q , i.e. ii) holds. For a = c in (a) we have:
(x · cy · x)c = x(c · yx · c) = x(cy · xc) ,

so
(x · cy · x)c = x(cy · xc) ,

and after replacing cy by y : xyx · c = x(y · xc) for every x, y ∈ Q,
i.e. iii) is proved.

Taking v = c in (b) we get
(uc · zu)c = u(cz · uc) = u(c · zu · c) ,

so
(uc · zu)c = u(c · zu · c)

or, replacing zu by z : (uc · x)c = u · czc for every u, z ∈ Q , i.e. iv)
is proved.

Substitute now u by c in (c) and using ii) we get:
(v · cy)cv = v[c(y · cv)] = v(cyc · v) ,

hence
(v · cy) · cv = v(cyc · v) ,

or vz · cv = v(zc · v) , where by z was denoted cy , i.e. we get v).
Analogously, taking u = c in (d) we have:

vc · (yc · v) = [(vc · y)c]v = (v · cyc)v ,
so

vc · (yc · v) = (v · cyc)v ,
or (putting yc = z) vc · zv = (v · cz)v , for every v, z ∈ Q , i.e. vi) is
proved. In each of this cases the proof is reversible, so Proposition 6
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is proved.

A bijection γ on Q is called a right (left) pseudo-automorphism of
a quasigroup Q(·) if there exists at least one element c ∈ Q such that

γx · (γy · c) = γ(xy) · c , (c · γx)γy = c · γ(xy) ,
for every x, y ∈ Q. The element c is called a companion of γ ([1,5]).
It is known ([1]), that every companion of a pseudo-automorphism in
IP -loops is a Moufang element. Let Q(·) be a loop with the law of
elasticity. A bijection Θ on Q is called a semiautomorphism of Q(·), if

Θ(xyx) = Θx ·Θy ·Θx

for every x, y ∈ Q and Θe = e. It is known ([1]) that every pseudo-
automorphism of a Moufang loop is its semiautomorphism.

Proposition 7. Any pseudo-automorphism of an IP -loop Q(·) with
universal elasticity is its semiautomorphism.

Proof. Let ϕ be a pseudo-automorphism of a loop Q(·) with universal
elasticity and c be a right companion of ϕ. Since

ϕ(xy) · c = ϕx · (ϕy · c)
for every x, y ∈ Q, then

ϕ(xyx) · c = ϕx · [ϕ(yx) · c] = ϕx · [ϕy · (ϕx · c)] = (ϕx · ϕy · ϕx)c

because c is a Moufang element and so we can apply here iii) from
Proposition 6. Hence ϕ(xyx) = ϕx · ϕy · ϕx for every x, y ∈ Q. The
proof is analogous in the case when c is a left companion of ϕ. Note
that ϕe = e for every pseudo-automorphism of an IP -loop with uni-
versal elasticity. Indeed, such loops are left and right alternative, so
taking x = y = e in ϕ(xy) · c = ϕx · (ϕy · c) , we get ϕe · c = (ϕe)2c ,
thus e = ϕe.

III. Let Q(·) be an IP -loop with universal elasticity and de�ne on
Q the operation (+) by

x + y = xy−1x
for every x, y ∈ Q. Then the groupoid Q(+) is called the core of Q(·).
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Remind ([1]) that the core of a Moufang loop Q(·) is a left-distributive
groupoid and it is a quasigroup if and only if the mapping x → x2 is
a permutation on Q. For our class of loops an analogous proposition
is true.

Proposition 8. The core Q(+) of an IP -loop with universal elasticity
is a quasigroup if and only if the mapping x → x2 is a permutation
on Q.

Proof. Let Q(+) be a quasigroup. Then there exists for each a ∈ Q an
unic element x ∈ Q such that x + e = a , where e is the unity of the
loop Q(·). So the equation xe−1x = x2 = a has an unique solution in
Q(·) and consequently, x → x2 is a permutation on Q.

Conversely, suppose that the mapping ψ : x → x2 is a permuta-
tion on Q. The equation a + x = b where a, b ∈ Q or ax−1a = b has
the unique solution x = ab−1a. Consider now the equation x + a = b,
i.e. xa−1x = b, where a, b ∈ Q. The last equation is equivalent to
xa−1x · a−1 = ba−1. Returning to (3) and making the substitution
x = e, y = a, we get

[(az · a)z]a = az · (az · a) ,
or, using the alternativity of Q(·),

(az · a)z · a = (az)2 · a ,
so by (a) from Proposition 6:

aza · z = a · zaz = (az)2

for every a, z ∈ Q. Now the considered equation x · a−1xa−1 = ba−1

can be represented as follows:
(xa−1)2 = ba−1

and it has an unique solution because ψ is a permutation on Q.

Note that the core of an IP -loop with universal elasticity is a
groupoid with the law of elasticity. Indeed, using (c),

(x + y) + x = xy−1x · (x−1 · xy−1x) = xy−1x · y−1x =

= x(y−1x)2 = x(y−1xy−1 · x) = x(yx−1y)−1x = x + (y + x)
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for every x, y ∈ Q.

Proposition 9. The core Q(+) of an IP -loopQ(·) with universal elas-
ticity is a left-distributive groupoid if and only if the following identity

x(y · xzx · y)x = xyx · z · xyx (6)

holds in Q(·).

Proof. Let Q(+) be a left-distributive groupoid, i.e.

x + (y + z) = (x + y) + (x + z) ,
or

x · y−1zy−1 · x = xy−1x · x−1zx−1 · xy−1x .

After replacing y−1 by y and z by xzx in the last identity we shall
obtain (6).

Corollary 1. ([1]) The core of a Moufang loop is a left-distributive
groupoid.

Corollary 2. If Q(·) is a commutative IP -loop with universal elas-
ticity for which the mapping x → x2 is a bijection, then Q(·) is
a commutative Moufang loop if and only if its core Q(+) is a left-
distributive quasigroup.

Proof. Let Q(+) be a left-distributive quasigroup. The identities of
alternativity and the identity (d) hold in Q(·) (see [6]). So, from (6)
we have:

x2(y2 · x2z) = (x2y)2z = x4y2 · z = x2y2x2 · z .
For x2 → x and y2 → y in the last identity we get

x(y · xz) = xyx · z ,
thus Q(·) is a commutative Moufang loop. The converse statement is
proved in [1].
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Proposition 10. The core Q(+) of an IP -loop Q(·) with universal
elasticity is right-distributive if and only if the identity

xyx · z · xyx = xzx · yz−1y · xzx (7)

holds in Q(·).

Proof follows from the law of right-distributivity.

Corollary. Let a quasigroup Q(+) be the left-distributive core of an
IP -loop with universal elasticity Q(·). Then Q(+) is right-distributive
if and only if the identity

xy2x = yx2y (8)

holds in Q(·).

Proof. Let Q(·) be a loop with the identity (8). For y → zyz in (8)
we get

x(zyz)2x = zyz · x2 · zyz

or, using the left-distributivity of Q(+) and (8):
x(zyz)2x = z(y · zx2z · y)z .

Now we shall apply (8) to the last identity:
x(zyz)2x = z(y · xz2x · y)z ,

or, after replacing y → z−1yz−1 :
xy2x = z(z−1yz−1 · xz2x · z−1yz−1)z .

So
z−1 · xy2x · z−1 = z−1yz−1 · xz2x · z−1yz−1

and, making the substitutions y → y2 , z → z−1 in the last identity
and using (8),

z · y2x2y2 · z = yz2y · xz−2x · yz2y .

But Q(+) is a left-distributive groupoid, hence taking z = e in (6),
we get

x · yx2y · x = (xyx)2 .
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Thus from (8) and the last identity it follows
x · xy2x · x = x2y2x2 = (xyx)2

((xpy)xq = xp(yxq) in all IP -loops) and from these identities, using
(8), we get

z(yxy)2z = yz2y · xz−2x · yz2y ,
or

yxy · z2 · yxy = yz2y · xz−2x · yz2y .
Making the substitution z2 → z in the last identity, we obtain

yxy · z · yxy = yzy · xz−1x · yzy ,

i.e. Q(+) is right-distributive.
Conversely, let Q(+) be a right-distributive and left-distributive

groupoid. Then the identities (6) and (7) hold in Q(·). Hence
x(y · xzx · y)x = xzx · yz−1y · xzx ,

and for z = e
x · yx2y · x = x2y2x2 = x · xy2x · x .

Thus yz2y = xy2x , which completes the proof.
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On topological n-ary semigroups

Wiesªaw A. Dudek and Vladimir V. Mukhin

Abstract

In this note some we describe topologies on n-ary semigroups induced by families
of deviations.

1. Introduction
Topological n�groups were investigated by many authors. For ex-
ample, �upona proved in [5] that each topological n�group can be
embedded into a topological group. �iºovi¢ described topological me-
dial n�groups (cf. [20]), topological n�groups with the Baire property
(cf. [21]) and proved a topological analog of Hosszú theorem (cf. [19]).
Crombez and Six described a fundamental system of open neighbor-
hoods of a �xed element (cf. [4]). Endres proved that every topo-
logical n�group is homeomorphic to some canonical topological group
(cf. [9]). Topologies induced by norms are considered by Boujuf and
Mukhin (cf. [2] ). Balci Dervis ( cf. [1] ) described free topological
n�groups. In [12] is described a method of embedding topological
abelian n�semigroups in topological n�group.

On the other hand, we known that topological n�semigroups have
many properties which are not true for binary semigroups.

In this paper we investigate topologies on n�semigroups and n�
groups determined by families of left invariant deviations. We describe

1991 Mathematics Subject Classi�cation: 20N15, 22A30
Keywords: n-ary semigroup, n-ary group, topological semigroup, deviation



74 W. A. Dudek and V. V. Mukhin

the conditions under which such topology is compatible with the n�
ary operation. We �nd also the necessary and su�cient conditions for
the topologically embedding a semiabelian topological n�semigroup in
a topological n�group.

2. Preliminaries
Traditionally in the theory of n-ary groups we use the following abbre-
viated notation: the sequence xi, ..., xj is denoted by xj

i (for j < i
this symbol is empty). If xi+1 = ... = xi+k = x, then instead of xi+k

i+1

we write (k)
x . Obviously (0)

x is the empty symbol. In this notation the
formula

f(x1, ..., xi, xi+1, ..., xi+k, xi+k+1, ..., xn) ,

where xi+1 = ... = xi+k = x , will be written as f(xi
1,

(k)
x , xn

i+k+1) .
If m = k(n− 1) + 1, then the m-ary operation g given by

g(x
k(n−1)+1
1 ) = f(f(..., f(f︸ ︷︷ ︸

k−times

(xn
1 ), x2n−1

n+1 ), ...), x
k(n−1)+1
(k−1)(n−1)+2)

will be denoted by f(k). In certain situations, when the arity of g does
not play a crucial role, or when it will di�er depending on additional
assumptions, we write f(.) , to mean f(k) for some k = 1, 2, ....

An n�ary operation f de�ned on G is called associative if

f(f(xn
1 ), x2n−1

n+1 ) = f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i )

holds for all x1, x2, ..., x2n−1 ∈ G and i = 1, 2, ..., n. The set G
together with one associative operation f is called an n�ary semigroup
(brie�y: n�semigroup). An n�semigroup (G, f) in which for for all
a1, a2, ..., an, b ∈ G there exits an uniquely determined xi ∈ G such
that f(ai−1

1 , xi, a
n
i+1) = b is called an n�group.

From this de�nition it follows that a group (a semigroup) is a 2-
group (a 2�semigroup) in the above sense. Moreover, it is worthwhile
to note that, under the assumption of the associativity of f , it su�ces
only to postulate the existence of a solution of the last equation at
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the places i = 1 and i = n or at one place i other than 1 and n (cf.
[13], p.21317). This means that an n�group may be considered as an
algebra (G, f, f1, fn) with one associative n�ary operation f and two
n�ary operations f1, fn such that

f(f1(a
n
2 , b), a

n
2 ) = f(an

a , fn(an
2 , b)) = b (1)

for all an
2 , b ∈ G.

Following E.L.Post ([13], p.282) the solution of the equation

f(x, a, ..., a, f(a, ..., a)) = a

is denoted by a[−2]. An n�semigroup (G, f) with an unary operation
[−2] : G → G satisfying some natural identities is an n�group (cf.
[16]).

The map x 7→ f(aj−1
1 , x, an

j+1) is called an j�th n�ary translation
determined by a1, ..., an. In an n�group each n�ary translation is a
bijection.

In an n�group (G, f) for any sequence an−2
1 there exists only one

a ∈ G such that

f(x, an−2
1 , a) = f(an−2

1 , a, x) = f(a, an−2
1 , x) = f(x, a, an−2

1 ) = x

for all x ∈ G (cf. [17]). An element a is called inverse for an−2
1 . In the

binary case, i.e. in the case n = 2, when the sequence an−2
1 is empty

by the inverse we mean the neutral element of a group (G, f) .
A sequence an

2 is called a left (right) neutral sequence if f(an
2 , x) =

x (respectively f(x, an
2 ) = x) holds for all x ∈ G. A left and right

neutral sequence is called a neutral sequence. In an n�group for every
sequence an−2

1 may be extended to a neutral sequence, but there are
n�semigroups without left (right) neutral sequences.

Let (G, f) be an n�semigroup and let an−1
2 be �xed. Then (G, ∗),

where
x ∗ y = f(x, an−1

2 , y) (2)
is a semigroup, which is called a binary retract of (G, f) and is denoted
by retan−1

2
(G, f). A binary retract of an n�group is a group. Moreover,

all binary retracts of a given n�group are isomorphic (cf. [7]), but n�
groups with the same retract are not isomorphic, in general.
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By so-called Hosszú theorem (cf. [11] or [7]), every n�group (G, f)
has the form

f(xn
1 ) = x1 ∗ β(x2) ∗ β2(x3) . . . ∗ βn−1(xn) ∗ b , (3)

where an
2 is a �xed right neutral sequence of (G, f) , (G, ∗) =

retan−1
2

(G, f), b = f(
(n)
an) and β(x) = f(an, x, an−1

2 ).
The identical result holds for n�semigroups with a right neutral

sequence.

3. Topology
An n�semigroup (G, f) de�ned on a topological space (G, T ) is called
a topological n�semigroup if the operation f is continuous in all vari-
ables together.

A topological n�group is de�ned as a topological n�semigroup with
two additional continuous operations f1 and fn satisfying (1) (cf. [5]).
A topological n�group may be de�ned also a topological n�semigroup
with additional continuous operation [−2]. These de�nitions are equiv-
alent (cf. [15]).

It is clear that retracts of a topological n�semigroup (n�group) are
topological semigroups (groups). Obviously all translations of a topo-
logical n�semigroup (n�group) are continuous maps. On the other
hand, every n�ary operation which may by written in the form (3),
where ∗ and β are continuous, is continuous in all variables together.
Thus the following lemma is true.

Lemma 3.1. Assume that an n�semigroup (G, f) with a topology T
has a right neutral sequence an

2 . Then (G, f, T ) is a topological n�
semigroup if and only if retan−1

2
(G, f) is a topological semigroup and

β(x) = f(an, x, an−1
2 ) is continuous.

Corollary 3.2. An n�group (G, f) de�ned on a topological space
(G, T ) is a topological n�group if and only if there exists a right neu-
tral sequence an

2 such that x ∗ y = f(x, an−1
2 , y), β(x) = f(an, x, an−1

2 )
and [−2] : x 7→ x[−2] are continuous.
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Proposition 3.3. An n�group (G, f) de�ned on a topological space
(G, T ) is a topological n�group if and only if there exists a right neu-
tral sequence an

2 such that retan−1
2

(G, f) is a topological semigroup,
β(x) = f(an, x, an−1

2 ) and s : x → s(x), where f(s(x), an−1
2 , x) = an,

are continuous.

Proof. Let an
2 be a �xed right neutral sequence on an n�group (G, f) .

If (G, ∗) = retan−1
2

(G, f) is a topological semigroup and β(x) =

f(an, x, an−1
2 ) is continuous, then (G, f) is a topological n�semigroup

by Lemma 3.1.
Moreover, an is the neutral element of (G, ∗) and s(x) is the

solution of f(s(x), an−1
2 , x) = an, i.e. s(x) ∗ x = an in (G, ∗). Thus

s(x) is the inverse of x in (G, ∗). Hence (G, ∗) is a topological group,
because s(x) is continuous, by the assumption.

Since f(z, cn
2 ) = f(f(z, an

2 ), cn
2 ) = z ∗ f(an, c

n
2 ) for all cj ∈ G,

then the solution z of f(z, cn
2 ) = b in (G, f) is the solution of

z ∗ f(an, cn
2 ) = b in (G, ∗), then z continuously depends on b and

f(an, cn
2 ). Thus z is a continuous function of variables b, c2, ..., cn.

This, for b = c2 = ... = cn−1 = x, cn = f(x, ..., x), implies that
z = x[−2] is a continuous function of x. Thus (G, f) is a topological
n�group.

The converse is obvious.

Corollary 3.4. Let T be a locally compact topology on an n�group
(G, f) with a right neutral sequence an

2 . If for every b ∈ G transla-
tions x 7→ f(x, an−1

2 , b), x 7→ f(b, an−1
2 , x) and x 7→ f(an, x, an−1

2 )
are continuous, then (G, f, T ) is a topological n�group.

Proof. In the group (G, ∗) = retan−1
2

(G, f) translations x 7→ x ∗ b
and x 7→ b ∗ x are continuous for every b ∈ G. Thus, by the theorem
of Ellis (cf. Theorem 3 in [8]), (G, ∗) is a topological group. In this
group s(x) de�ned in the previous Proposition is a continuous oper-
ation. Hence (G, f) is a topological n�group.
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4. Deviations
By a deviation de�ned on a nonempty set X we mean every map
ϕ : X ×X → [0, +∞) such that ϕ(x, x) = 0, ϕ(x, y) = ϕ(y, x) , and
ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y) for all x, y, z ∈ X. A deviation ϕ de�ned
on a semigroup (group) (G, ·) is left invariant if ϕ(cx, cy) = ϕ(x, y)
for all c, x, y ∈ G. A deviation ϕ de�ned on an n�semigroup (G, f) is
a left invariant if

ϕ(f(cn−1
1 , x), f(cn−1

1 , y)) = ϕ(x, y)

for all x, y, cn−1
1 ∈ G.

Theorem 4.1 ([2]) . A binary semigroup (group) (G, ·) with a topol-
ogy T is a topological semigroup (group) if and only if there exists a
family Φ of continuous left invariant deviations on G which induces
T and ϕz ∈ Φ for every z ∈ G and ϕ ∈ Φ, where ϕz is de�ned by
ϕz(x, y) = ϕ(xz, yz).

In the case of an n�semigroup (G, f) every deviation ϕ on (G, f)
induces a new deviation (ϕ, k, cn

2 ) de�ned by

(ϕ, k, cn
2 )(x, y) = ϕ(f(ck

2, x, cn
k+1), f(ck

2, y, cn
k+1)) ,

where cn
2 ∈ G and k = 1, ..., n are �xed.

Theorem 4.2. Let an
2 be a right neutral sequence of an n�semigroup

(G, f) . If a topology T on G is induced by the family Φ of deviations
such that for all x, y, z ∈ G and ϕ ∈ Φ

(a) ϕ(f(z, an−1
2 , x), f(z, an−1

2 , y)) = ϕ(x, y),
(b) (ϕ, 1, an−1

2 , z), (ϕ, 2, an, a
n−1
2 ) ∈ Φ,

then (G, f) is a topological n�semigroup.

Proof. Let Φ be as in the assumption. By (a) every ϕ ∈ Φ is a left
invariant deviation on a semigroup (G, ∗) = retan−1

2
(G, f). From (b)

we obtain

ϕz(x, y) = ϕ(x ∗ z, y ∗ z) = ϕ(f(x, an−1
2 , z), f(y, an−1

2 , z)) =
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= (ϕ, 1, an−1
2 , z)(x, y)

for every z ∈ G, which gives ϕz ∈ Φ. By Theorem 4.1 (G, ∗) is a
topological semigroup.

Let ε > 0. If x, x0 ∈ G are such that (ϕ, 2, an, an−1
2 )(x, x0) < ε,

where ϕ ∈ Φ, then
ϕ(β(x), β(x0)) = ϕ(f(an, x, an−1

2 ), f(an, x0, a
n−1
2 )) =

= (ϕ, 2, an, a
n−1
2 )(x, x0) < ε ,

which proves that β is continuous. Lemma 3.1 �nish the proof.

Theorem 4.3. An n�group (G, f) with a topology T is a topological
n�group if and only if there exists the family Φ of deviations such that
a topology T is induced by Φ and for some right neutral sequence an

2

of G and for all x, y, z ∈ G, ϕ ∈ Φ the conditions (a), (b) from the
previous theorem are satis�ed.

Proof. Let (G, f, T ) be a topological n�group. Then the retract
(G, ∗) = retan−1

2
(G, f) is a binary topological group for every choice

of a2, ..., an−1 ∈ G . Thus, by Theorem 4.1, there exists the family
Φ of continuous left invariant deviations of (G, ∗) which induces the
topology T . Hence, for all x, y, z ∈ G and ϕ ∈ Φ, we have

ϕ(f(z, an−1
2 , x), f(z, an−1

2 , y)) = ϕ(z ∗ x, z ∗ y) = ϕ(x, y),

which proves (a).
Moreover, since for all a2, ..., an−1 ∈ G there exista an ∈ G such

that an
2 is a right neutral sequence, then from the above follows

ϕ(f(cn−1
1 , x), f(cn−1

1 , y)) =

= ϕ(f(cn−1
1 , f(an, an−1

2 , x)), f(cn−1
1 , f(an, a

n−1
2 , y))) =

= ϕ(f(f(cn−1
1 , an), an−1

2 , x)), f(f(cn−1
1 , an), an−1

2 , y))) = ϕ(x, y)

for all c1, ..., cn−1 ∈ G.
Thus every ϕ ∈ Φ is a left invariant deviation of an n�group

(G, f) . Hence also (ϕ, k, cn
2 ) is a left invariant deviation for ev-

ery k = 1, 2, ..., n and all c1, ..., cn−1 ∈ G. Obviously (ϕ, k, cn
2 ) is
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also left invariant on (G, ∗) and (ϕ, k, cn
2 ) ∈ Φ. Therefore (ϕ, 1, an

2 ),
(ϕ, 2, an, an−1

2 ) ∈ Φ, which proves (b).
Conversely, if a topology T is induced by the family Φ of deviations

satisfying (a) and (b), then, by Theorem 4.1, (G, ∗) = retan−1
2

(G, f)
is a binary topological group. Similarly as in the proof of Theo-
rem 4.2 from (ϕ, 2, an, an−1

2 ) ∈ Φ follows that the translation β(x) =
f(an, x, an−1

2 ) is continuous. Proposition 3.3 completes the proof.

5. Embedding of topological n�semigroups
The necessary and su�cient conditions for the embedding of topolog-
ical semigroup in topological group are described by N. J. Rothman
(cf. [14]) and F. Christoph (cf. [3]). In this section we give some
generalizations of these results.

As it is well known (cf. for example [13] or [6]) an n�semigroup
(G, f) is called semiabelian or (1, n)�commutative if

f(x, an−1
2 , y) = f(y, an−1

2 , x)

holds for all x, y, a2, ..., an−1 ∈ G, and cancellative if

f(ai−1
1 , x, an

i+1) = f(ai−1
1 , y, an

i+1) =⇒ x = y

for all i = 1, 2, ..., n and x, y, a1, ..., an ∈ G . Every n�group is obvi-
ously cancellative.

Now we use the construction of the quotient n�group presented
during the Gomel's algebraic conference (1995) by A. M. Gal'mak
and V. V. Mukhin.

Let (G, f) be a cancellative semiabelian n�semigroup. Then the
relation

〈x, y〉 ∼ 〈z, t〉 ⇐⇒ f(2)(
(n−1)

y ,
(n)
z ) = f(2)(

(n−1)

t ,
(n)
x )

de�ned on G × G is an equivalence relation. Indeed, the re�exivity
and symmetry are obvious. We prove the transitivity.

Let 〈x, y〉 ∼ 〈z, t〉 and 〈z, t〉 ∼ 〈u, v〉 . Then

f(2)(
(n−1)

y ,
(n)
z ) = f(2)(

(n−1)

t ,
(n)
x ) and f(2)(

(n−1)

t ,
(n)
u ) = f(2)(

(n−1)
v ,

(n)
z ) .
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Hence

f(3)(
(n−1)

t ,
(n)
x ,

(n−1)
v ) = f(3)(

(n−1)
y ,

(n)
z ,

(n−1)
v ) = f(3)(

(n−1)
y ,

(n−1)
v ,

(n)
z ) =

= f(3)(
(n−1)

y ,
(n−1)

t ,
(n)
u ) = f(3)(

(n−1)

t ,
(n−1)

y ,
(n)
u ) ,

which by the cancellativity gives f(2)(
(n−1)
x ,

(n)
v ) = f(2)(

(n−1)
y ,

(n)
u ) .

Since (G, f) is semiabelian, then

f(2)(
(n−1)
x ,

(n)
v ) = f(2)(

(n−1)
v ,

(n)
x ) ,

and in the consequence

f(2)(
(n−1)

v ,
(n)
x ) = f(2)(

(n−1)
y ,

(n)
u ) ,

which proves the transitivity.
In the set G∗ = G × G/ ∼ of all equivalence classes 〈xi, yi〉 we

de�ne the new n�ary operation

f ∗( 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xn, yn〉 ) = 〈 f(xn
1 ) , f(yn

1 ) 〉 .
If 〈xi, yi〉 ∼ 〈si, ti〉 for all i = 1, 2, ..., n, then also

f(2)(
(n−1)
yi ,

(n)
si ) = f(2)(

(n−1)

ti ,
(n)
xi)

and
f(f(2)(

(n−1)
y1 ,

(n)
s1), ... , f(2)(

(n−1)
yn ,

(n)
sn)) = f(f(2)(

(n−1)

t1 ,
(n)
x1), ... , f(2)(

(n−1)

tn ,
(n)
xn)) .

But every semiabelian n�semigroup is also medial ( see [10] ), i.e.
it satis�es

f(f(x1n
11 ), f(x2n

21 ), . . . , f(xnn
n1 )) = f(f(xn1

11 ), f(xn2
12 ), . . . , f(xnn

1n )) .

Then the last identity may be written in the form

f(2)

( (n−1)

f(yn
1 ),

(n)

f(sn
1 )

)
= f(2)

( (n−1)

f(tn1 ),
(n)

f(xn
1 )

)
,

which proves that

〈 f(xn
1 ) , f(yn

1 ) 〉 ∼ 〈 f(sn
1 ) , f(tn1 ) 〉 .
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Hence the operation f ∗ is well de�ned. It is clear that this operation
is also associative and (1, n)�commutative.

Now let
x = f(·)

(
a,

(n−1)(n−2)

d ,
(n−1)(n−1)

c
)

and
y = f(·)

(
b,

(n−1)(n−1)

d ,
(n−1)n

c
)
,

where a, b, c, d are �xed elements from G. Then, using (1, n)�commu-
tativity, we obtain

f(·)
(
f(y,

(n−1)

d ), . . . , f(y,
(n−1)

d )︸ ︷︷ ︸
(n−1)−times

,
(n)
a

)
=

= f(·)
(
b,

(n−1)(n−1)

d ,
(n−1)n

c ,
(n−1)

d︸ ︷︷ ︸ , . . . , b,
(n−1)(n−1)

d ,
(n−1)n

c ,
(n−1)

d︸ ︷︷ ︸︸ ︷︷ ︸
(n−1)−times

,
(n)
a

)
=

= f(·)
( (n−1)

b ,
(n)
a ,

(n−1)2n

d ,
(n−1)2n

c
)

= W1

and

f(·)
( (n−1)

b , f(x,
(n−1)

c ), . . . , f(x,
(n−1)

c )︸ ︷︷ ︸
n−times

)
=

f(·)
( (n−1)

b , a,
(n−1)(n−1)

d ,
(n−1)(n−2)

c ,
(n−1)

c︸ ︷︷ ︸, ... , a,
(n−1)(n−1)

d ,
(n−1)(n−2)

c ,
(n−1)

c︸ ︷︷ ︸︸ ︷︷ ︸
n−times

)

= f(·)
( (n−1)

b ,
(n)
a ,

(n−1)2n

d ,
(n−1)2n

c
)

= W2 .

Since W1 = W2 , then

f(·)
(
f(y,

(n−1)

d ), ..., f(y,
(n−1)

d )︸ ︷︷ ︸
(n−1)−times

,
(n)
a

)
= f(·)

( (n−1)

b , f(x,
(n−1)

c ), ..., f(x,
(n−1)

c )︸ ︷︷ ︸
n−times

)

which proves that

〈 f(x,
(n−1)

c ) , f(y,
(n−1)

d ) 〉 = 〈a, b〉 ,
i.e.
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f ∗( 〈x, y〉, 〈c, d〉, . . . , 〈c, d〉︸ ︷︷ ︸
n−1times

) = 〈a, b〉 .

Hence for all 〈a, b〉, 〈c, d〉 ∈ G∗ the last equation has the solution
〈x, y〉 ∈ G∗.

In the similar way we prove that for all 〈a, b〉, 〈c, d〉 ∈ G∗ there
exists 〈x, y〉 ∈ G∗ such that

f ∗(〈c, d〉, . . . , 〈c, d〉︸ ︷︷ ︸
(n−1)−times

, 〈x, y〉 ) = 〈a, b〉 .

This proves (cf. [18]) that (G∗, f ∗) is a semiabelian n�group.
The map p(x) = 〈x, x〉 is a homomorphic embedding of an n�

semigroup (G, f) in an n�group (G∗, f ∗). Indeed,
p(f(xn

1 )) = 〈f(xn
1 ) , f(xn

1 )〉 =

= f ∗(〈x1, x1〉, . . . , 〈xn, xn〉) = f ∗(p(x1), . . . , p(xn))

and p(x) = p(y) implies 〈x, x〉 = 〈y, y〉, i.e.

f(2)(
(n−1)
x ,

(n)
y ) = f(2)(

(n−1)
y ,

(n)
x ) = f(2)(

(n−1)
x ,

(n−1)
y , x) ,

which by the cancellativity gives x = y. Thus the following lemma is
true.

Lemma 5.1. Every semiabelian cancellative n-semigroup may be em-
bedded into a semiabelian n-group.

Lemma 5.2. If ϕ is a left invariant deviation of a cancellative semi-
abelian n�semigroup (G, f) , then

ϕG( 〈x, y〉, 〈z, t〉 ) = ϕ(f(2)(
(n−1)

t ,
(n)
x ) , f(2)(

(n−1)
y ,

(n)
z ) )

is a left invariant deviation on G∗ such that ϕG(p(x), p(y)) = ϕ(x, y).

Proof. From the de�nition of ϕG follows ϕG( 〈x, x〉, 〈x, x〉 ) = 0 and
ϕG( 〈x, y〉, 〈z, t〉 ) = ϕG( 〈z, t〉, 〈x, y〉 ).

Moreover, if 〈x, y〉 ∼ 〈u, v〉, where 〈x, y〉, 〈u, v〉 ∈ G×G, then

f(2)(
(n−1)

v ,
(n)
x ) = f(2)(

(n−1)
y ,

(n)
u )
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and

ϕG( 〈x, y〉, 〈z, t〉 ) = ϕ(f(2)(
(n−1)

t ,
(n)
x ) , f(2)(

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

v ,
(n−1)

t ,
(n)
x ) , f(2)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

t ,
(n−1)

v ,
(n)
x ) , f(3)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

t ,
(n−1)

y ,
(n)
u ) , f(3)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

y ,
(n−1)

t ,
(n)
u ) , f(3)(

(n−1)
y ,

(n−1)
v ,

(n)
z ) ) =

= ϕ(f(2)(
(n−1)

t ,
(n)
u ) , f(2)(

(n−1)
v ,

(n)
z ) ) = ϕG( 〈u, v〉, 〈z, t〉 )

which proves that ϕG is well de�ned.

Now, for all 〈x, y〉, 〈z, t〉 ∈ G×G we have

ϕG( 〈x, y〉, 〈z, t〉 ) = ϕ(f(2)(
(n−1)

t ,
(n)
x ) , f(2)(

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

v ,
(n−1)

t ,
(n)
x ) , f(3)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) ≤

≤ ϕ(f(3)(
(n−1)

v ,
(n−1)

t ,
(n)
x ) , f(3)(

(n−1)
y ,

(n−1)

t ,
(n)
u ) )

+ ϕ(f(3)(
(n−1)

y ,
(n−1)

t ,
(n)
u ) , f(3)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

t ,
(n−1)

v ,
(n)
x ) , f(3)(

(n−1)

t ,
(n−1)

y ,
(n)
u ) )

+ ϕ(f(3)(
(n−1)

y ,
(n−1)

t ,
(n)
u ) , f(3)(

(n−1)
y ,

(n−1)
v ,

(n)
z ) ) =

= ϕ(f(2)(
(n−1)

v ,
(n)
x ) , f(2)(

(n−1)
y ,

(n)
u ) ) + ϕ(f(2)(

(n−1)

t ,
(n)
u ) , f(2)(

(n−1)
v ,

(n)
z ) ) =

= ϕG( 〈x, y〉, 〈u, v〉 ) + ϕG( 〈u, v〉, 〈z, t〉 ).
Hence ϕG is a deviation on G∗.

To prove that ϕG is left invariant observe that for all i = 1, ..., n−1,
and ai, bi, an−1, x, y, u, v ∈ G we have

ϕG

(
f(〈a1, b1〉, ..., 〈an−1, bn−1〉, 〈x, y〉), f(〈a1, b1〉, ..., 〈an−1, bn−1〉, 〈u, v〉)

)
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= ϕG

(
〈f(an−1

1 , x), f(bn−1
1 , y)〉, 〈f(an−1

1 , u), f(bn−1
1 , v)〉

)
=

= ϕ
(
f(2)( f(bn−1

1 , v), ..., f(bn−1
1 , v)︸ ︷︷ ︸

(n−1)−times

, f(an−1
1 , x), ..., f(an−1

1 , x)︸ ︷︷ ︸
n−times

) ,

f(2)( f(bn−1
1 , y), ..., f(bn−1

1 , y)︸ ︷︷ ︸
(n−1)−times

, f(an−1
1 , u), ..., f(an−1

1 , u)︸ ︷︷ ︸
n−times

)
)
.

By the associativity and (1, n)�commutativity of f , the last formula
may be written in the form

ϕ
(
f(.)( . . . ,

(n−1)
v ,

(n)
x ) , f(.)( . . . ,

(n−1)
y ,

(n)
u )

)
,

which, together with the fact that ϕ is left invariant, implies

ϕ
(
f(2)(

(n−1)
v ,

(n)
x ) , f(2)(

(n−1)
y ,

(n)
u )

)
= ϕG( 〈x, y〉, 〈u, v〉 ).

This proves that ϕG is a left invariant deviation on G∗.

Moreover

ϕG(p(x), p(y)) = ϕG( 〈x, x〉, 〈y, y〉 ) = ϕ
(
f(2)(

(n−1)
y ,

(n)
x ) , f(2)(

(n−1)
x ,

(n)
y )

)

= ϕ
(
f(2)(

(n−1)
y ,

(n−1)
x , x) , f(2)(

(n−1)
x ,

(n−1)
y , y)

)
=

= ϕ
(
f(2)(

(n−1)
y ,

(n−1)
x , x) , f(2)(

(n−1)
y ,

(n−1)
x , y)

)
= ϕ(x, y),

which completes our proof.

Theorem 5.3. A cancellative semiabelian n�semigroup (G, f) with a
topology T may be topologically embedded in a topological n�group if
and only if a topology T is induced by a some family of left invariant
deviations de�ned on G.

Proof. If a cancellative semiabelian n�semigroup (G, f) with a topol-
ogy T is topologically embedded in a topological n�group (H, f) with
a topology TH , then TH is induced by some family Φ of deviations
such that

ϕ(f(z, an−1
2 , x) , f(z, an−1

2 , y) ) = ϕ(x, y),
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where x, y, z ∈ H and a2, ..., an is a right neutral sequence of an n�
group H (Theorem 4.3). Since in an n�group H for all a2, ..., an−1 ∈ H
there exists an ∈ H such that a2, ..., an is a right neutral sequence,
then in the above formula all x, y, z, a2, ..., an−1 are arbitrary. This
proves that all ϕ ∈ Φ are left invariant deviations.

Conversely, if a topology T on a cancellative semiabelian n�semigroup
(G, f) is induced by a some family Φ of left invariant deviations, then
every ϕG de�ned in Lemma 5.2 is a left invariant deviation on G∗. By
Theorem 4.3 the family {ϕG}ϕ∈Φ induces on G∗ the topology TG such
that G∗ is a topological n�group and p(x) = 〈x, x〉 is a topological
embedding of (G, f, T ) in (G∗, f ∗, TG).
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Characteristic of ordered Menger systems
of multiplace functions

V. V. Varenick

Abstract

In this article the abstract characterization of Menger systems and some Menger
T -systems of multiplace functions is given. These multiplace functions can have
di�erent number of variables.

1. Introduction
In his work [1] K. Menger has formulated the problem of abstract
characterization of sets of functions of several variables on which the
operation of superposition is given and the relation of continuation of
functions is marked. This problem for functions with the number of
variables n = 1 was solved by B. M. Schein [2] and for �xed n ≥ 2 was
examined by V. S. Trokhimenko. But in a general case, when n takes
di�erent natural values it is open until the present moment. In this
article the author solves the word problem for the so-called Menger
systems and some Menger T -systems of multiplace functions. The
results of the work were partially presented during the Colloquium on
Semigroups in Szeged (1994).

1991 Mathematics Subject Classi�cation: 20N15, 06F99
Keywords: Menger algebra, algebra of multiplace functions, superassociativity
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2. Preliminaries
Let A be a set, n � natural number. Then, every partial mapping
f : An → A is called a n�place function, where An is the n-th Cartesian
power of A. The set of all n-place functions, which are considered on
A, is denoted by Fn(A). Now let (Fn(A))n∈I be some family of sets
denoted above, where I ⊆ N (N is the set of natural numbers).
For any n,m1, ..., mn ∈ I and f ∈ Fn(A), gi ∈ Fmi

(A) (i =
1, ..., n), by f [g1...gn] a m-place function will be denoted, where
m = max(m1, ..., mn) and for all a1, ..., am ∈ A the following identity
holds:

f [g1...gn](a1, ..., am) = f(g1(a1, ..., am1), ..., gn(a1, ..., amn)) . (1)

Doing so, we consider that the left and right members of (1) are de-
termined or not determined simultaneously. The operation

(f, g1, ..., gn) ξ f [g1...gn]

will be denoted by On. It is evident that the family of operations
(On)n∈I satis�es the so-called condition of superassociativity

f [g1...gn][h1...hm] = f [g1[h1 ... hm1 ]...gn[h1...hmn ]] , (2)

where
f ∈ Fn(A), gi ∈ Fmi

(A), i = 1, ..., n, m = max(m1, ..., mn) .
Let (Φn)n∈I be a family of subsets, which is stable regarding operations
(On)n∈I , where Φn ⊂ Fn(A), n ∈ I, (ζΦn , χΦn)n∈I is a family of pairs
of binary relations such that

(f, g) ∈ ζΦn ⇐⇒ f ⊂ g (3)

(f, g) ∈ χΦn ⇐⇒ Dom f ⊂ Dom g (4)
for all f, g ∈ Φn, where Domf is the domain of de�nition for f . Then
the systems (Φn,On)n∈I will denote the Menger T -systems. The forms
(Φn,On, ζΦn , χΦn)n∈I , (Φn,On, ζΦn)n∈I and (Φn,On, χΦn)n∈I will de-
note (respectively) fundamentally ordered projection (f.o.p.) Menger
systems, fundamentally ordered (f.o.) Menger systems and projection
quasi-ordered (p.q-o.) Menger systems of multiplace functions. If in
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(1) m = m1 = ... = mn, then we come to the notion of Menger system
of multiplace functions in the sense of work [6]. We similarly intro-
duce the de�nition of f.o.p. and p.q-o. Menger systems of multiplace
functions.

An abstract Menger T-system of rank I will be called a family
(Gn,On)n∈I , where I ⊂ N , (Gn)n∈I are non-empty sets, such
that Gn ∩ Gm = ∅ for any n,m ∈ I ; for every n ∈ I On is
a mapping, which brings to conformity for every (n + 1)-th of the
elements (x, y1, yn) from Gn × Gm1 × ... × Gmn , m1, ..., mn ∈ I ;
the element x[y1, ..., yn] is from Gm, where m = max(m1, ..., mn),
and it satis�es the identity of superassociativity of the form (2). If
m = m1 = ... = mn , then we obtain the de�nition of an abstract
Menger system [3], [6].

The Menger system of rank I is called weakly unitary if for every
n ∈ I the set Gn contains such elements en

1 , ..., e
n
n that for every

element g from Gn the identity g[en
1 , ..., e

n
n] = g is true.

By (Tn)n∈I we shall denote the family of sets of polynomials for
the (weakly unitary) Menger (T−) system (Gn,On)n∈I that is de�ned
in the following way: let {xn : n ∈ I} be a set of di�erent subject
variables, then we can consider:
a) xn ∈ Tn for every n ∈ I,
b) if t ∈ Tm, g1, ..., gi−1, gi+1, ..., gn ∈ Gm, g ∈ Gn , then

g[g1...gi−1t gi+1...gn] ∈ Tm ,
for every i = 1, ..., n and m ∈ I.

If t ∈ Tn and g ∈ Gn, where n ∈ I, then by t(g) we shall
denote the element from G n which is obtained as a result of realization
of all operations after the substitution of g for variable xn in the
polynomial t.

Let (Gn,On)n∈I be the (weakly unitary) Menger (T−) system
of rank I , then the family of binary relations (ρn)n∈I such that
ρn ⊂ Gn ×Gn , is called:
� stable, if for all n,m ∈ I, x, y ∈ Gn, xi, yi ∈ Gm, i = 1, ..., n

(x, y) ∈ ρn ∧ {(x1, y1), ..., (xn, yn)} ⊂ ρm ⇒ (x[x1...xn] , y[y1...yn]) ∈ ρm,
� v-regular, if for any n,m ∈ I, u ∈ Gn, xi, yi ∈ Gm, i = 1, ..., n

(x1, y1), ..., (xn, yn) ⊂ ρm ⇒ (u[x1...xn] , u[y1...yn]) ∈ ρm,
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� l-regular, if for all n,m ∈ I, x, y ∈ Gn, z1, ..., zn ∈ Gm

(x, y) ∈ ρn ⇒ (x[z1...zn] , y[z1...zn]) ∈ ρm.

A family of subsets (Wn)n∈I (where Wn ⊂ Gn) is called a l-ideal,
if for all n,m ∈ I, g ∈ Gn, ȳ ∈ Gn

m, x ∈ Wm and i = 1, ..., n it is
true that

g[ȳ |i x] ∈ Wm ,
where [y |i x] denotes (y1, ..., yi−1, x, yi+1, ..., yn) .

Let us consider two Menger T -systems of rank I : G = (Gn,On)n∈I

and G ′ = (G′
n , O′

n∈I). By a homomorphism G on G ′ we'll denote the
family (P n)n∈I , where P n is a mapping Gn on G′

n for every n ∈ I
such that for all n,m1, ..., mn ∈ I, g ∈ Gn, gi ∈ Gm, i = 1, ..., n the
following identity holds:

Pm(g[g1...gn]) = P n(g)[pm1(g1)...P
mn(gn)] , (5)

where m = max(m1, ..., mn). If every mapping P n is one-to-one then
such a homomorphism is called a proper one (or isomorphism). A
homomorphism of the Menger T -system G on some Menger system
of multiplace functions is called a representation of G by functions.
The notions of homomorphism, isomorphism and representation are
de�ned similarly for the Menger systems.

Consider the family of pairs (En,Wn)n∈I on Menger (T−)system
(Gn,On)n∈I , where for every n ∈ I En is a relation of equivalence on
Gn, and Wn is either an empty set or a En-class; the family (En)n∈I is
v-regular and (Wn)n∈I is an l-ideal. Let (Ha)a∈An denote the family of
En-classes that is di�erent from Wn, and let it be one-to-one indexed
by elements of a set An. We �nd that An ∩ Am = ∅ for any n,m ∈ I
if n 6= m. Let {Cn : n ∈ I} be the set of di�erent elements that
do not fall into A =

⋃
n∈I

An. For every n ∈ I denote by In the set
{m : m ∈ I ∧m < n}, and by I ′n � the set I\(In ∪ {n}) . Let

Bn =
∏

m∈In

Am × {Cn} × ∏
m∈I′n

Am , A =
∏

n∈I
An , =n = A

n ∪Bn
n

(for the Menger T -systems we �nd that Bn = ∅ and =n = A
n). For

every element g ∈ Gn, n ∈ I, we'll determine n-place function such
that:
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(a1, ..., an, b̄ ) ∈ P n(g) ⇐⇒
(a1, ..., an) ∈ =n ∧ (∀i ∈ I)(g[Ha1<i>...Han<i>] ⊂ Hb<i>) (6)

where ak < i > denotes the component of the vector ak that belongs
to the set Ai for i 6= n; and to the set An ∪ {Cn} for i = n. It can be
shown that the family of mappings (P n)n∈I (where P n : g 7→ P n(g))
is a representation of Menger (T−)system G by multiplace functions
which in future will be called the simplest.

3. Results
Let (Φn,On)n∈I be some Menger (T−) system of multiplace functions,
(ζΦn)n∈I and (χΦn)n∈I be the family of binary relations that are de-
�ned by means of (3) and (4). In the future, instead of (f, g) ∈ ζΦn

and (f, g) ∈ χΦn we'll write f ⊂n g and f ↽n g respectively.

Proposition 1. On the Menger (T−) system (Φn,On)n∈I of multi-
place functions set (ζΦn)n∈I is the stable family of relations of order
and set (χΦn)n∈I is the l-regular family of quasi-order being for every
n ∈ I; the inclusion ζΦn ⊂ χΦn is true too.

Proof. It is evident that ζΦn is an order and χΦn � a quasi-order on
Φn, therefore it is necessary to verify only the conditions of stability
and l-regularity.

Let f ⊂n g, fi ⊂m gi, i = 1, ..., n, and (a1, ..., am, c) ∈ f [f1...fn].
Then there will exist such elements b1, ..., bn that (a1, ..., an, bi) ∈ fi,
i = 1, ..., n, and (b1, ..., bn, c) ∈ f . Therefore, (a1, ..., am, bi) ∈ gi,
i = 1, ..., n, and (b1, ..., bn, c) ∈ g, whence (a1, ..., am, c) ∈ g[g1...gn].
And so

f [f1...fn] ⊂m g[g1...gn] .
Stability of (ζΦn)n∈I is proved.

Now assume that f ↽n g, i.e. Dom f ⊂ Dom g and f, g ∈ Φn. Let
h1, ..., hn ∈ Φm and (a1, ..., am) ∈ Dom f [h1...hn]. The latter means
that there exists an element c, such that (a1, ..., am, c) ∈ f [h1...hn].
Then, for some b1, ..., bn : (a1, ..., am, bi) ∈ hi, i = 1, ..., n , and
(b1, ..., bn, c) ∈ f ; consequently (b1, ..., bn) ∈ Dom f . Therefore,



94 V. V. Varenick

(b1, ..., bn) ∈ Dom g. Thus, (a1, ..., am, bi) ∈ hi, i = 1, ..., n, and
(b1, ..., bn, d) ∈ g for some element d.

The latter means that (a1, ..., am, d) ∈ g[h1...hn] for some d, i.e.
(a1, ..., am, ) ∈ Dom g[h1...hn] . Then

f [h1...hn] ↽m g[h1...hn] ,

therefore, the l-regularity of family (χΦn)n∈I is proved. The inclusion
ζΦn ⊂ χΦn is evident (for every n ∈ I).

Proposition 2. Let the families of relations (ζΦn)n∈I , (χΦn)n∈I be
de�ned on the Menger (T−) system (Φn,On)n∈I of multiplace func-
tions. Then they satisfy the following conditions:

f1 ⊂n f2 ∧ g ⊂n t1(f1) ∧ g ⊂n t2(g2) ⇒ g ⊂n t2(f1) , (7)

g1 ⊂n f ∧ g2 ⊂n f ∧ g1 ↽n g2 ⇒ g1 ⊂n g2 , (8)

g1 ⊂n g2 ∧ f ↽n g1 ∧ f ↽n u[ω |j g2] ⇒ f ↽n u[ω |j g1] , (9)

f [h1...hn] ↽m h1 , (10)
for any n,m ∈ I, i = 1, ..., n, f, f1, f2, g, g1, g2 ∈ Φn, ω ∈ Gm

n ,
u, h1, ..., hn ∈ Φm, j = 1, ...,m, t1, t2 ∈ Tn.

Proof. Let the premise of condition (7) be valid, then, from f1 ⊂n f2,
we obtain that f1 = f2 ◦+Dom f1

(the restriction of function f2 on the
domain of the function f1 is denoted by f2◦+Dom f1

). From g ⊂n t1(f1)
follows Dom g ⊂ Dom f1, therefore from g ⊂n t2(f2) we obtain that

g = g ◦+Dom f1
⊂ t2(f2)◦Dom f1 = t2(f2 ◦+Dom f1

) = t2(f1) .
Thus, g ⊂n t2(f1) . The condition (7) is proved.

Let now the premise of condition (8) be valid, then from g1 ⊂n f
and g2 ⊂n f we have g1 = f ◦ +Dom g1

and g2 = f ◦ +Dom g2
,

respectively. Since g1 ↽n g2 , then Dom g1 ⊂ Dom g2 , therefore
f ◦+Dom g1

⊂ f ◦+Dom g2
, i.e. g1 ⊂ g2. The condition (8) is proved.

The following condition (9) is proved similarly (7), therefore we must
prove validity of (10).

Let (a1, ...am) ∈ Dom f [h1...hn], therefore (a1, ..., am, c) ∈ f [h1...hn]
for some element c , and there exists vector (b1, ..., bn) for which
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(b1, ..., bn, c) ∈ f and (a1, ..., am, bi) ∈ hi, i = 1, ..., n. Therefore, we
obtain (a1, ..., am) ∈ Domhi . Thus, Dom f [h1...hn] ⊂ Domhi which
was needed to prove.

Theorem. A (weakly unitary) Menger (T−) system of the form
(Gn,On, ζn, χn)n∈I , where ζn , χn are �xed binary relations on Gn,
is isomorphic to some f.o.p. Menger (T−) system of multiplace func-
tions if and only if it is a stable family of relations of order, (χn)n∈I

is a l-regular family of relations of quasi-order such that ζn ⊂ χn for
every n ∈ I, and the following conditions hold:

g1 ≤n g ∧ g2 ≤n g ∧ g1 ↽n g2 ⇒ g1 ≤n g2 , (11)
g[h1...hn] ↽m hi , (12)

g1 ≤n g2 ∧ g ↽n g1 ∧ g ↽n u[ω |j g2] ⇒ g ↽n u[ω |j g1] , (13)

for all n,m ∈ I, i = 1, ..., n, j = 1, ..., m, g, g1, g2 ∈ Gn,
u, h1, ..., hn ∈ Gm, ω = (ω1, ..., ωm) ∈ Gm

n , where g1 ≤n g2, g1 ↽n g2

mean that (g1, g2) ∈ ζn and (g1, g2) ∈ χn, respectively.

Proof. The necessity of conditions of the theorem follows from Propo-
sitions 1 and 2, therefore we�ll dwell on the proof of their su�-
ciency. So, let the Menger (weakly unitary T−) system of the form
(Gn,On, ζn, χn)n∈I satis�es all conditions of the theorem. Easily can
be proved that for all n ∈ I, g, g1, g2 ∈ Gn, t1, t2 ∈ Tn the conditions:

g1 ≤n g2 ∧ g ↽n t1(g1) ∧ g ↽n t2(g2) ⇒ g ↽n t2(g1) , (14)
g1 ≤n g2 ∧ g ↽n t1(g1) ∧ g ↽n t2(g2) ⇒ g ↽n t2(g1) , (15)

are valid.
Let G denote the Cartesian power of the sets of the family (Gn)n∈I .

For every g from G we shall assign a family of pairs of the form
(Eg<n>,Wg<n>)n∈I , where Eg<n> = E1

g<n> ∩ E2
g<n>, and E1

g<n>, E2
g<n>,

Wg<n> are de�ned as follows:

(g1, g2) ∈ E1
g<n> ⇔ (∀t ∈ Tn) [g〈n〉 ≤n t(g1) ⇔ g〈n〉 ≤n t(g2)] , (16)

(g1, g2) ∈ E2
g〈n〉 ⇔ (∀t ∈ Tn) [g〈n〉 ↽n t(g1) ⇔ g〈n〉 ↽n t(g2)] (17)



96 V. V. Varenick

Wg<n> = Gn\χn〈g〈n〉〉 , (18)
for all g, g1, g2 ∈ Gn , where

χn〈g〈n〉〉 = {x : g〈n〉 ↽n x} .

It is easy to see that (Eg<n>)n∈I is the v-regular family of relations
of equivalency and (Wg<n>)n∈I is an l-ideal family of Eg<n>-classes, if
Wg<n> 6= ∅ for every n ∈ I. Therefore, as it is shown in the previous
part, the family (Eg<n>,Wg<n>)n∈I de�nes the simplest representation
of the system (Gn,On)n∈I with the help of multiplace functions, which
we denote by (P n

g )n∈I . If u, v ∈ G, u 6= v, then for every g ∈ Gn,
n ∈ I we'll �nd that the n-place functions P n

u (g) and P n
v (g) are given

on disjoint sets. Let now
P n(g) =

⋃
u∈G

P n
u (g),

then the family (P n)n∈I is a representation of (Gn,On)n∈I with the
help of multiplace functions.

Let's prove that for every n ∈ I and any g1, g2 ∈ Gn

g1 ↽n g2 ⇐⇒ DomP n(g1) ⊂ DomP n(g2) .

Indeed, if DomP n(g1) ⊂ DomP n(g2), then it means that
for every u ∈ G:

DomP n
u (g1) ⊂ DomP n

u (g2)

for every u ∈ G.
The latter inclusion means that for a1, ..., an ∈ A

n such that
(a1, ..., an) ∈ =n, the implication

(a1, ..., an) ∈ DomP n
u (g1) ⇒ (a1, ..., an) ∈ DomP n

u (g2) (19)

is valid. This condition, as it is easily to see, is equivalent to
(∀ b) (∃ c) (a1, ..., an, b) ∈ P n

u (g1) ⇒ (a1, ..., an, c) ∈ P n
u (g1) ,

which, in its turn means

(∀ b) (∃ c)
[
(∀ i ∈ I)

(
g1[Ha1<i>...Han<i>] ⊂ Hb<i>

)
⇒

⇒ (∀k ∈ I) ( g2[Ha1<k>...Han<k>] ⊂ Hc<k> ) ] . (20)
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It can be proved that (20) is equivalent to the formula

(∀ (x1, ..., xn) ∈ Dn) (∀k ∈ I)

( g1[x1〈k〉...xn〈k〉] 6∈ Wu<k> ⇒ g2[x1〈k〉...xn〈k〉] 6∈ Wu<k> ) , (21)
where

Dn = G
n ∪ En

n , En =
∏

m∈In

Gm × {en} × ∏
m∈I′n

Gm ,

(for the weakly unitary Menger T -system we suppose En = ∅),
en 6∈ Gn and g[en...en] = g for every g ∈ Gn by the de�nition. Let
the condition (21) ful�ll: x1, ..., xn ∈ En

n , k = n, and let u be an
element from G such that u〈n〉 = g1, then we obtain:

g1[en...en] 6∈ Wg1 ⇒ g2[en...en] 6∈ Wg1 , (22)

i.e. g1 6∈ Wg1 ⇒ g2 6∈ Wg1 .

So g1 6∈ Wg1 is true for every g1 ∈ Gn, and (22) can be written as
g2 ∈ Wg1 , i.e. g1 ↽n g2 .

Conversely, let
(a) g1 ↽n g2 ,
(b) g1[x1〈k〉...xn〈k〉] 6∈ Wu<k>

for some u ∈ G, k ∈ I, x1, ..., xn ∈ Dn.
So (χn) is an l-regular family, and from (a) we obtain

g1[x1〈k〉...xn〈k〉] ↽k g2[x1〈k〉...xn〈k〉] .
The condition (b) means that

u〈k〉 ↽k g1[x1〈k〉...xn〈k〉] ,
therefore, due to transitivity of χn we have

u〈k〉 ↽k g2[x1〈k〉...xn〈k〉] ,
i.e. g2[x1〈k〉...xn〈k〉] 6∈ Wu<k> . Thus, (21) is proved. Hence,

Dom P n
u (g1) ⊂ Dom P n

u (g2)

for every u ∈ G, i.e. Dom P n(g1) ⊂ Dom P n(g2) . Let's prove now
that for every n ∈ I and any g1, g2 ∈ Gn the condition g1 ≤n (g2) is
valid if and only if the inclusion P n(g1) ⊂ P n(g2) is true.

Indeed, if P n(g1) ⊂ P n(g2) , then for every u ∈ G we have
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P n
u (g1) ⊂ P n

u (g2) . This inclusion means that

(a1, ..., an, b) ∈ P n
u (g1) ⇒ (a1, ..., an, b) ∈ P n

u (g2) (23)

for any a1, ..., an, b ∈ A, where (a1, ..., an) ∈ =n. According to the
de�nition of the simplest representation the condition (22) can be
rewritten as follows:

(∀i ∈ I) ( g1[Ha1<i>...Han<i>] ⊂ Hb<i> ) ⇒

⇒ (∀k ∈ I) ( g2[Ha1<k>...Han<k>] ⊂ Hb<k> ) , (24)

for all a1, ...an, b ∈ A, where (a1, ..., an) ∈ =n. One can check that
(24) is equivalent to the formula:

(∀(x1, ..., xn ∈ Dn) (∀k ∈ I) (g1[x1〈k〉...xn〈k〉] 6∈ Wu<k> ⇒
⇒ g1[x1〈k〉...xn〈k〉] ≡ g2[x1〈k〉...xn〈k〉] (Eu < k >) ) (25)

Assume that x1, ..., xn ∈ En
n , k = n in the condition (25) and

let u be an element from G, such that u〈n〉 = g1, then we obtain
g1 ≡ g2(Eg1), whence it follows: g1 ≡ g2(E1

g1
). The latter according to

formula (16), means that

(∀t ∈ Tn) ( g1 ≤n t(g1) ⇐⇒ g1 ≤n t(g2) ). (26)

Let t be the variable xn, then from (26) it follows that g1 ≤n g2.
Conversely, suppose that g1 ≤n g2 and

g1[x1〈k〉...xn〈k〉] 6∈ Wu<k>

for any u ∈ G, (x1, ..., xn) ∈ Dn, k ∈ I. We must prove that

g1[x1〈k〉...xn〈k〉] ≡ g2[x1〈k〉...xn〈k〉] (Eu<k>) (27)

is valid.
For this purpose we must check if the condition (27) is valid for

every relation E i
u<k>, i = 1, 2, which is de�ned with the help of the

formulas (16) and (17). Let
u〈k〉 ≤k t(g1[x1〈k〉...xn〈k〉])

for some t ∈ Tk. Since the family (ζn)n∈I is stable, then from g1 ≤n g2



Characteristic of ordered Menger systems 99

we obtain
t(g1[x1〈k〉...xn〈k〉]) ≤k t(g2[x1〈k〉...xn〈k〉]) ,

therefore
u〈k〉 ≤k t(g2[x1〈k〉...xn〈k〉]) .

Suppose now that

(c) u〈k〉 ≤k t(g2[x1〈k〉...xn〈k〉])

is valid, where t ∈ Tk.
Since g1 ≤n g2 and

g1[x1〈k〉...xn〈k〉] 6∈ Wu<k>

then it is evident that
g1[x1〈k〉...xn〈k〉] ≤k g2[x1〈k〉...xn〈k〉]

and
u〈k〉 ↽k g1[x1〈k〉...xn〈k〉] ,

whence considering (c) and (15) we obtain
u〈k〉 ≤k t(g1[x1〈k〉...xn〈k〉]) .

This means that (27) is true for E1
u<k>.

Now, let

(d) u〈k〉 ↽k t(g1[x1〈k〉...xn〈k〉])

be valid for some t ∈ Tk.
Since g1 ≤n g2 then as it has been stated above

t(g1[x1〈k〉...xn〈k〉]) ≤k t(g2[x1〈k〉...xn〈k〉]) ,
therefore,

t(g1[x1〈k〉...xn〈k〉]) ↽k t(g2[x1〈k〉...xn〈k〉]) ,
hence,

(e) u〈k〉 ↽k t(g2[x1〈k〉...xn〈k〉]) .

Conversely, let (c) be valid. From g1 ≤n g2 we obtain
g1[x1〈k〉...xn〈k〉] ≤k g2[x1〈k〉...xn〈k〉] ,
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therefore, according to (14),
u〈k〉 ↽k t(g1[x1〈k〉...xn〈k〉])

it will be true. Thus, (27) is true for E2
u<k>. Thus, (25) is valid because,

as it has been stated above, it is equivalent to P n
u (g1) ⊂ P n

u (g2) , where
u ∈ G. Thus P n(g1) ⊂ P n(g2), n ∈ I, g1, g2 ∈ Gn, which was needed
to prove.

Finally, let us suppose that P n(g1) = P n(g2) for some g1, g2 ∈ Gn.
Then P n(g1) ⊂ P n(g2) and P n(g2) ⊂ P n(g1) . Therefore g1 ≤n g2

and g2 ≤n g1, whence g1 = g2 , since ζn is an order. So we have
proved that the (weakly unitary T−) Menger system G is isomorphic
to f.o.p. Menger (T−) system of multiplace functions. The theorem
is proved.

Corollary 1. A (weakly unitary T−) Menger system of the form
(Gn,On, ζn)n∈I (where ζn ⊂ Gn×Gn) is isomorphic to some f.o. (T−)
Menger system of multiplace functions if and only if (ζn)n∈I is a stable
family of relations of order, satisfying the condition:

g1 ≤n g2 ∧ g ≤n t1(g1) ∧ g ≤n t2(g2) ⇒ g ≤n t2(g1) (28)

for all n ∈ I, g, g1, g2 ∈ Gn, t1, t2 ∈ Tn.

Proof. Supposing χn = δn ◦ ζn , where δn ⊂ Gn ×Gn and
(g1, g2) ∈ δn ⇐⇒ (∃ t ∈ Tn) g1 = t(g2) ,

we come to the conclusion that the system (Gn,On, ζn, χn)n∈I satis�es
all the conditions of the theorem.

Corollary 2. A (weakly unitary T−) Menger system of the form
(Gn,On, χn)n∈I (where χn ⊂ Gn × Gn) is isomorphic to some p.q-o.
(T−) Menger system of multiplace functions if and only if (χn)n∈I is
a l-regular family of relations of quasi-order satisfying the condition
(12).

Proof. Supposing ζn = ∆Gn in the theorem, where ∆Gn is the
identical relation on Gn, we obtain the present corollary.
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We must remark that analogous results for semigroups [2] and for
Menger algebras [4] may obtain from the proved theorem.

Finally I would like to express my gratitude to V. S. Trokhimenko
for the useful advice given to the author of the article.
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