Generalized Moufang G-loops

Alexander S. Basarab

Abstract

In this note some relations among generalized Moufang loops and G-loops are considered.

A loop $\mathcal{Q}(\cdot)$ is called:
(a) a G-loop [1], if every loop which is isotopic to $\mathcal{Q}(\cdot)$ is also isomorphic to it;
(b) a generalized Moufang loop [2], if one of the following identities holds:

$$
x \cdot(y z \cdot x)=I\left(I^{-1} y \cdot I^{-1} x\right) \cdot z x, \quad(x \cdot y z) \cdot x=x y \cdot I^{-1}(I x \cdot I z)
$$

(c) an Osborn loop [2], if the identity

$$
x y \cdot\left(\Theta_{x} z \cdot x\right)=(x \cdot y z) \cdot x
$$

holds, where Θ_{x} is a permutation which depends on x;
(d) a K-loop [3], if the following identities hold:

$$
\begin{equation*}
(x \cdot y I x) \cdot x z=x \cdot y z \quad \text { and } \quad(y \cdot x) \cdot\left(\left(I^{-1} x z\right) \cdot x\right)=y z \cdot x \tag{1}
\end{equation*}
$$

where $I x=x^{-1}$ and $I^{-1} x==^{-1} x$;

Keywords: Moufang loop, Osborn loop, G-loop
(e) a $V D$-loop, if we have the equalities

$$
\begin{equation*}
(\cdot)_{x}=(\cdot)_{x}^{L_{x}^{-1} R_{x}} \quad \text { and } \quad{ }_{x}(\cdot)=(\cdot)^{R_{x}^{-1} L_{x}} \tag{2}
\end{equation*}
$$

which are true for any $x \in \mathcal{Q}$, where

$$
(\cdot)_{x}=(\cdot)^{\left(L_{x}, 1, L_{x}\right)}, \quad{ }_{x}(\cdot)=(\cdot)^{\left(1, R_{x}, R_{x}\right)} .
$$

Any K-loop (any $V D$-loop) is a G-loop and any $V D$-loop is an Osborn loop.

Theorem 1. A generalized Moufang loop $\mathcal{Q}(\cdot)$ is a K-loop if and only if $x^{2} \in N$ for any $x \in \mathcal{Q}$.

Proof. For a generalized Moufang loop $\mathcal{Q}(\cdot)$ the property $W I P$ is universal [2]. Therefore, by a result from [4], one has the autotopy $T=\left(R_{y}^{-1} L_{z}, R_{x}^{-1} L_{y}, L_{z} R_{x}^{-1}\right)$, where $z=I^{-1}(y \cdot x)$. By identifying x and y in the autotopy T, one obtains

$$
T_{1}=\left(R_{x}^{-1} L_{I^{-1}(x \cdot x)}, R_{x}^{-1} L_{x}, L_{I^{-1}(x \cdot x)} R_{x}^{-1}\right.
$$

In any generalized Moufang loop $I^{-1}(x \cdot x)=I(x \cdot x)$ holds, hence T_{1} provides the equality

$$
\begin{equation*}
R_{x}^{-1} L_{I(x \cdot x)} u \cdot R_{x}^{-1} L_{x} v=L_{I(x \cdot x)} R_{x}^{-1}(u \cdot v) . \tag{3}
\end{equation*}
$$

Let $v=1$ in (3), then

$$
\begin{equation*}
R_{x}^{-1} L_{I(x \cdot x)}=L_{I(x \cdot x} R_{x}^{-1} \tag{4}
\end{equation*}
$$

Identity (4) implies $T_{1}=\left(L_{I(x \cdot x)} R_{x}^{-1}, R_{x}^{-1} L_{x}, L_{I(x \cdot x} R_{x}^{-1}\right)$. Hence T_{1}^{-1} implies $L_{x}^{-1} R_{x}$ is a pseudoautomorphism with the right companion $\alpha_{1}=R_{x} L_{I(x \cdot x)}^{-1} 1=(x \cdot x) \cdot x$. Thus

$$
\begin{equation*}
(\cdot)_{x^{2} \cdot x}=(\cdot)^{R_{x}^{-1} L_{x}} \tag{5}
\end{equation*}
$$

In any generalized Moufang loop the equalities

$$
\begin{equation*}
I_{x}(\cdot)=(\cdot)_{x} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
R_{x} L_{I^{-1} x}=L_{x}^{-1} R_{x}, \quad L_{x} R_{I_{x}}=R_{x}^{-1} L_{x} \tag{7}
\end{equation*}
$$

hold.
Let $x^{2} \in N$, where N is the nucleus of the generalized Moufang loop $\mathcal{Q}(\cdot)$. Since $(\cdot)_{x^{2}}=(\cdot) \quad(5)$ implies $(\cdot)_{x}=(\cdot)^{R_{x}^{-1} L_{x}}$, or, in other words,

$$
T_{2}=\left(R_{x}, L_{x}^{-1} R_{x}, R_{x}\right)=\left(R_{x}, R_{x} L_{I^{-1} x}, R_{x}\right)
$$

(by (7)) is an autotopy, that yields $y x \cdot\left(I^{-1} x z \cdot x\right)=y z \cdot x$, which coincides with the second equality from (1). By using (6) in the equality $(\cdot)_{x}=(\cdot)^{R_{x}^{-1} L_{x}}$ we obtain $I_{x}(\cdot)=(\cdot)^{R_{x}^{-1} L_{x}}$, and consequently, have the autotopy

$$
T_{3}=\left(L_{x}^{-1} R_{x}, R_{I x} L_{x}^{-1} R_{x}, R_{I x} L_{x}^{-1} R_{x}\right)=\left(L_{x}^{-1} R_{x}, L_{x}^{-1}, L_{x}^{-1}\right)
$$

or

$$
T_{3}^{-1}=\left(R_{x}^{-1} L_{x} L_{x}, L_{x}\right)=\left(L_{x} R_{I x}, L_{x}, L_{x}\right),
$$

hence $\left(x \cdot y I_{x}\right) \cdot x z=x \cdot y z$, meaning that the first equality from (1) is true. Thus, if in the generalized Moufang loop $\mathcal{Q}(\cdot), x^{2} \in N$ for any $x \in Q$, then $\mathcal{Q}(\cdot)$ is a K-loop.

Now, let the generalized Moufang loop $\mathcal{Q}(\cdot)$ be a K-loop, then the equality (5) and the equality $(\cdot)_{x}=(\cdot)^{R_{x}^{-1} L_{x}}$ are true and they imply $(\cdot)_{x^{2} \cdot x}=(\cdot)_{x}$, or $(\cdot)_{x^{2}}=(\cdot)$, or $x^{2} \in N$.

Theorem 2. A generalized Moufang loop $\mathcal{Q}(\cdot)$ is a VD-loop, if $x^{4} \in N$ whichever $x \in \mathcal{Q}$.

Proof. If $\mathcal{Q}(\cdot)$ is a generalized Moufang loop, then (5) holds, so: $\left((\cdot)_{x^{2} \cdot x}\right)_{x}=\left((\cdot)^{R_{x}^{-1} L_{x}}\right)_{x} \quad$ or $\quad(\cdot)_{x^{4}}=(\cdot)_{x}^{R_{x}^{-1} L_{x}}$. Suppose $x^{4} \in N$, then $(\cdot)_{x^{4}}=(\cdot)$, hence $(\cdot)_{x}^{R_{x}^{-1} L_{x}}=(\cdot)$, and $(\cdot)_{x}=(\cdot)^{L_{x}^{-1} R_{x}}$. The equalities $I_{x}(\cdot)=(\cdot)_{x}=(\cdot)^{L_{x}^{-1} R_{x}}$ supply ${ }_{x}\left(I_{x}(\cdot)\right)={ }_{x}\left((\cdot)^{L_{x}^{-1} R_{x}}\right)$ or $(\cdot)={ }_{x}(\cdot)^{L_{x}^{-1}} R_{x}$. If in the generalized Moufang loop $\mathcal{Q}(\cdot)$ one has $x^{4} \in N$ for every $x \in \mathcal{Q}$, then $\mathcal{Q}(\cdot)$ is a $V D$-loop. In each generalized Moufang loop the equality

$$
\begin{equation*}
(\cdot)_{x^{4}}=(\cdot)_{x}^{R_{x}^{-1} L_{x}} \tag{8}
\end{equation*}
$$

holds. If the generalized Moufang loop is a $V D$-loop then (2) implies

$$
\begin{equation*}
(\cdot)_{x}^{R_{x}^{-1} L_{x}}=(\cdot) . \tag{9}
\end{equation*}
$$

(8) and (9) provide $(\cdot)_{x^{4}}=(\cdot)$, therefore $x^{4} \in N$.

Theorem 3. Each VD-loop is an Osborn loop.
Proof. Let $\mathcal{Q}(\cdot)$ be a $V D$-loop, then the equalities (2) are true, that is $(\cdot)_{x}=(.)^{L_{x}^{-1} L_{x}}$. They imply the autotopies

$$
S=\left(L_{x} R_{x}^{-1} L_{x}, R_{x}^{-1} L_{x}, L_{x} R_{x}^{-1} L_{x}\right)
$$

and

$$
S_{1}=\left(L_{x}^{-1} R_{x}, R_{x} L_{x}^{-1} R_{x}, R_{x} L_{x}^{-1} R_{x}\right)
$$

By multiplying the autotopies S and S_{1} we obtain

$$
S S_{1}=\left(L_{x}, R_{x}^{-1} L_{x} R_{x} L_{x}^{-1} R_{x}, L_{x} R_{x}^{-1} L_{x} R_{x} L_{x}^{-1} R_{x}\right),
$$

which carries out the equality

$$
\begin{equation*}
L_{x} u \cdot R_{x}^{-1} L_{x} R_{x} L_{x}^{-1} R_{x} v=L_{x} R_{x}^{-1} L_{x} R_{x} L_{x}^{-1} R_{x}(u \cdot v) \tag{10}
\end{equation*}
$$

Let $v=1$ in (10) (1 is the unit of the loop $\mathcal{Q}(\cdot))$, then

$$
\begin{equation*}
R_{x} L_{x}=L_{x} R_{x}^{-1} L_{x} R_{x} L_{x}^{-1} R_{x} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.L_{x}^{-1} R_{x} L_{x}=R_{x}^{-1} L_{x} R_{x} L_{x}^{-1} R_{x}\right) \tag{12}
\end{equation*}
$$

Applying (11) and (12) to (10), we obtain $L_{x} u \cdot\left(R_{x}^{-1} L_{x}^{-1} R_{x} L_{x} v \cdot x\right)=R_{x} L_{x}(u \cdot v) \quad$ or $\quad \mathrm{xu} \cdot \Theta_{\mathrm{x}} \mathrm{vx}=(\mathrm{x} \cdot \mathrm{uv}) \cdot \mathrm{x}$, that is $\mathcal{Q}(\cdot)$ is an Osborn loop.

Theorem 3 implies
Corollary 1. The three nuclei of each VD-loop $\mathcal{Q}(\cdot)$ coincide, i.e. $N_{r}=N_{m}=N_{l}=N$. Moreover, N is a normal subloop in $\mathcal{Q}(\cdot)$.

Proposition 1. A K-loop $\mathcal{Q}(\cdot)$ is a VD-loop if $x^{2} \in N$ for any $x \in \mathcal{Q}$.

Proof. The following equalities are consequences of the definition of K-loops:

$$
(\cdot)_{x}=(\cdot)^{R_{x}^{-1} L_{x}} \quad \text { and } \quad{ }_{x}(\cdot)=(\cdot)^{L_{x}^{-1} R_{x}}
$$

By means of the properties of the derived operations, one has

$$
\left((\cdot)_{x}\right)_{x}=\left((\cdot)^{R_{x}^{-1} L_{x}}\right)_{x} \quad \text { and } \quad{ }_{x}(x(\cdot))={ }_{x}\left((\cdot)^{L_{x}^{-1} R_{x}}\right)
$$

or

$$
\begin{equation*}
(\cdot)_{x^{2}}=(\cdot)_{x}^{R_{x}^{-1} L_{x}} \quad \text { and } \quad x^{2}(\cdot)=x_{x}(\cdot)^{L_{x}^{-1} R_{x}} \tag{13}
\end{equation*}
$$

If $x^{2} \in N$ then

$$
\begin{equation*}
(\cdot)_{x^{2}}=(\cdot) \quad \text { and } \quad x^{2}(\cdot)=(\cdot) \tag{14}
\end{equation*}
$$

By using (14) in (13), we obtain $(\cdot)=(\cdot)_{x}^{R_{x}^{-1} L_{x}}$ and $(\cdot)={ }_{x}(\cdot) L_{x}^{-1} R_{x}$, or $(\cdot)_{x}=(\cdot)^{L_{x}^{-1} R_{x}}$ and ${ }_{x}(\cdot)=(\cdot)^{R_{x}^{-1} L_{x}}$ however, this means $\mathcal{Q}(\cdot)$ is a $V D$-loop.

Proposition 2. A VD-loop $\mathcal{Q}(\cdot)$ is a K-loop if $x^{2} \in N$ for any $x \in \mathcal{Q}$. The proof is analogous to that of Proposition 1.

References

[1] V. D. Belousov: Foundations of the Theory of Quasigroups and Loops, (Russian), "Nauka", Moscow, 1967.
[2] A. S. Basarab: A class of WIP-loops, (Russian), Mat. Issled. 2 (1967), 3-24.
[3] A. S. Basarab: K-loops, Buletinul AS RM, Matematica 1(7) (1992), $28-33$.
[4] J. M. Osborn: Loops with weak inverse property, Pacific J. Math. 10 (1960), 295 - 304.

Department of Physics and Mathematics Received August 20, 1995
Tiraspol State University
5 Iablocikin str.
Kishinau, 277050
MOLDOVA

Monoquasigroups isotopic to groups

Vladimir I. Izbash

Abstract

In this work the quasigroups isotopic to groups are considered. The necessary and sufficient conditions are found which the isotopy must satisfy so that the corresponding group isotope be: monogenic quasigroup, momoquasigroup.

1. Introduction

The algebraic systems generated by one element (monogenic systems) are the simplest in the lattice-theoretic sense in every class of algebraic systems (in some cases, such as quasigroups, semigroups, in order to be able always to talk about lattice, we need to consider the empty set as a subsystem). These systems are contained as subsystems in some other systems. More precisely, every non-empty system of some class of algebraic systems includes some monogenic systems of this class as its subsystems. Hence the structure of algebraic systems depends on the structure of their monogenic systems.

In such classes of algebraic systems as groups and semigroups the monogenic systems are the cyclic groups and semigroups, respectively, which are completely described, as it is well known. In other classes it is very difficult to describe monogenic systems.

Definition 1. A quasigroup generated by one its element is called a monogenic quasigroup.

1991 Mathematics Subject Classification: 20N05
Keywords: monogenic quasigroup, isotopy
V. I. Izbash

Definition 2. A quasigroup generated by every its element is called a monoquasigroup.

From the definition it is clear that monoquasigroups have no nontrivial subquasigroups and, hence, its lattice of subquasigroups consists of one element. A nontrivial (or proper) subquasigroup is a subquasigroup different from the empty subquasigroup and the quasigroup itself [1].

Researching different kinds of functional completeness of universal algebras, A. V. Kuznetzov and A. F.Danilichenko A. F. announced during The First All-Union Symposium on the Theory of Quasigroups and its Applications (Suchumi, 1968) that for every positive integer n there exists a monoquasigroup with $|\mathcal{Q}|=n$, where by $|\mathcal{Q}|$ we denote the order of \mathcal{Q}.

A quasigroup (\mathcal{Q}, \cdot) is said to be without congruences if it has no congruences except $\varepsilon=\mathcal{Q} \times \mathcal{Q}=\mathcal{Q}^{2}$ (the complete relation on \mathcal{Q}) and $\omega=\{(a, a): a \in \mathcal{Q}\}$ (the equality relation on \mathcal{Q}, sometimes called the diagonal of $\left.\mathcal{Q}^{2}\right)$.
T. Kepka has proved in [4] that a quasigroup (\mathcal{Q}, \cdot) such that $3 \leq|\mathcal{Q}| \leq \aleph_{0}$ is isotopic to a monoquasigroup. In [3] is proved

Theorem 1.

a) Every quasigroup (\mathcal{Q}, \cdot) such that $3 \leq|\mathcal{Q}| \leq \aleph_{0}$ is isotopic to a monoquasigroup without congruences.
b) Every quasigroup (\mathcal{Q}, \cdot) such that $5 \leq|\mathcal{Q}| \leq \aleph_{\mathbf{0}}$ is isotopic to a monoquasigroup without congruences and automorphisms.

A quasigroup without automorphisms is a quasigroup with the unitary group of automorphisms. There exist no monoquasigroups with more than the countable order, because a finitely generated free algebra with a finite set of operations has at most the countable order [5]. A quasigroup (\mathcal{Q}, \cdot) with $|\mathcal{Q}|=1$ satisfies Theorem 1a and a quasigroup (\mathcal{Q}, \cdot) with $|\mathcal{Q}|=2$ is a group and does not satisfies Theorem 1a.

In [3] a class of order $2^{\aleph_{0}}$ of pairwise non-isomorphic monoquasigroups without congruences and without automorphisms is given. This fact allows us to assert that it is not very probably to describe mono-
quasigroups or monogenic quasigroups. Therefore to describe monoquasigroups we shall restrict ourselves to particular classes. In the class of all idempotent quasigroups and the class of all loops there are no monoquasigroups except single-element groups. In other classes it is rather difficult to give examples of monoquasigroups.

Below we consider only quasigroups with the order greater than 2 and smaller than \aleph_{0}.

2. Preliminaries

A groupoid (i.e. a set (\mathcal{Q}, \cdot) with a binary operation " \exists " on \mathcal{Q}) is called a quasigroup if equations $a x=b, y a=b$ have unique solutions for any elements $a, b \in \mathcal{Q}$. In a quasigroup (\mathcal{Q}, \cdot) a mapping $x \rightarrow a x$ is called the left translation by a and is denoted by L_{a}. The right translation by a is the mapping $x \rightarrow x a$ that is denoted by R_{a}. For any $a \in \mathcal{Q}$ the translations R_{a} and L_{a} are permutations on the set \mathcal{Q} and belong to the permutation group $\mathcal{S}(\mathcal{Q})$.

A non-empty subset H of the quasigroup (\mathcal{Q}, \cdot) is a subquasigroup of (\mathcal{Q}, \cdot) provided (H, \cdot) is a quasigroup with respect to the operation $" \exists$ ". The empty set \emptyset will be considered as a subquasigroup iff the intersection of all non-empty subquasigroups of (\mathcal{Q}, \cdot) is \emptyset. The settheoretic intersection of all subquasigroups of (\mathcal{Q}, \cdot) containing a subset M of \mathcal{Q} is a subquasigroup that will be denoted by $\langle M\rangle$ and will be called the subquasigroup generated by M. The class $L(\mathcal{Q}, \cdot)$ of all subquasigroups of a quasigroup (\mathcal{Q}, \cdot) is a complete lattice with respect to the set-theoretic intersection and "generate" operation. The last element in $L(\mathcal{Q}, \cdot)$ is the intersection of all non-empty subquasigroups and the greatest element is (\mathcal{Q}, \cdot).

Let "*" and " \circ " be two operations defined on \mathcal{Q}. The operation " *" is said to be isotopic to "○" if there exist three permutations $\alpha, \beta, \gamma \in \mathcal{S}(\mathcal{Q})$ such that

$$
\begin{equation*}
x * y=\gamma^{-1}(\alpha x \circ \beta y) \tag{1}
\end{equation*}
$$

for all $x, y \in \mathcal{Q}$.
We also say that $(\mathcal{Q}, *)$ and (\mathcal{Q}, \circ) are isotopic, or that $(\mathcal{Q}, *)$
is an isotop of (\mathcal{Q}, \circ) of the form (1). Shortly we write this as

$$
(\mathcal{Q}, *): x * y=\gamma^{-1}(\alpha x \circ \beta y), \quad \alpha, \beta, \gamma \in \mathcal{S}(\mathcal{Q}), \quad x, y \in \mathcal{Q} .
$$

Then triple (α, β, γ) of permutations such that the relation (1) holds is called the isotopy of (\mathcal{Q}, \circ).

If in (1) γ is the identical permutation ϵ, then $(\mathcal{Q}, *)$ is said to be a principal isotope of (\mathcal{Q}, \circ).

If in (1) $\alpha=\beta=\gamma$, then

$$
x * y=\gamma^{-1}(\gamma x \circ \gamma y),
$$

which means that γ is an isomorphism between $(\mathcal{Q}, *)$ and (\mathcal{Q}, \circ). The equality (1) is equivalent to

$$
x * y=\gamma^{-1}\left(\alpha \gamma^{-1} \gamma x \circ \beta \gamma^{-1} \gamma y\right) .
$$

Whence we have proved the following:
Theorem 2 ([1] Theorem 1.2). An isotope $(\mathcal{Q}, *)$ such that $x * y=$ $\gamma^{-1}(\alpha x \circ \beta y), \alpha, \beta, \gamma \in \mathcal{S}(\mathcal{Q}), x, y \in \mathcal{Q}$ is isomorphic to the principal isotope (\mathcal{Q}, \otimes), where $x \otimes y=\alpha \gamma^{-1} x \circ \beta \gamma^{-1} y, \alpha, \beta, \gamma \in \mathcal{S}(\mathcal{Q}), x, y \in$ \mathcal{Q}, and γ is the isomorphism between them.

3. Group isotopes

Let (\mathcal{Q}, \cdot) be a group with the unit element e. We will find the necessary and sufficient conditions which the isotopy must satisfy in order that the corresponding isotope of (\mathcal{Q}, \cdot) be a monogenic group; monoquasigroup (Theorem 3). Since an isomorphism keeps the number of generators, then taking into consideration Theorem 2 it is sufficient to find these conditions for principal isotopes of a group (\mathcal{Q}, \cdot).

Lemma 1. For a principal isotope

$$
(\mathcal{Q}, *): x * y=\varphi x \cdot \psi y, \quad \varphi, \psi \in \mathcal{S}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

of a group (\mathcal{Q}, \cdot) with the unit e there exist permutations $\alpha, \beta \in \mathcal{S}(\mathcal{Q})$ such that $\beta e=e$ and $x * y=\alpha x \cdot \beta y$, i.e.

$$
\begin{equation*}
(\mathcal{Q}, *): x * y=\alpha x \cdot \beta y, \quad \alpha, \beta \in \mathcal{S}(\mathcal{Q}), \quad \beta e=e, \quad x, y \in \mathcal{Q} . \tag{2}
\end{equation*}
$$

Proof. For every $x, y \in \mathcal{Q}$ we have

$$
x * y=\varphi x \cdot \psi y=\varphi x \cdot \psi e \cdot(\psi e)^{-1} \psi y=R_{\psi e} \varphi x \cdot L_{(\psi e)^{-1}} \psi y=\alpha x \cdot \beta y
$$

where $\alpha=R_{\psi e} \varphi$ and $\beta=L_{(\psi e)^{-1}} \psi$. Moreover,

$$
\beta e=L_{(\psi e)^{-1}} \psi e=(\psi e)^{-1} \psi e=e,
$$

which completes the proof.

For all $\alpha \in \mathcal{S}(\mathcal{Q}), H \subseteq \mathcal{Q}$ put

$$
\alpha H=\{\alpha h: h \in H\} .
$$

Lemma 2. For an isotope

$$
(\mathcal{Q}, *): x * y=\alpha x \cdot \beta y, \quad \alpha, \beta \in \mathcal{S}(\mathcal{Q}), \quad \beta e=e, \quad x, y \in \mathcal{Q}
$$

of a group (\mathcal{Q}, \cdot) with the unit e the following conditions are equivalent
a) $e \in(H, *) \in L(\mathcal{Q}, *)$,
b) $\alpha H=H=\beta H \quad$ and $\quad(H, \cdot) \in L(\mathcal{Q}, \cdot)$.

Proof. Let $e \in(H, *) \in L(\mathcal{Q}, *)$. Then for any $x \in H$, we have $x * e \in(H, *)$ and $x * e=\alpha x \cdot \beta e=\alpha x \cdot e=\alpha x$. Hence $\alpha x \in H$ and, as x is an arbitrary element, we have $\alpha H \subseteq H$. For any $x \in H$ there exists $y \in H$ such that $x=y * e$, since $(H, *)$ is a subquasigroup of $(\mathcal{Q}, *)$ and $e \in H$. From the last equality we get $y=\alpha^{-1} x$ and $\alpha^{-1} H \in H$ since x is an arbitrary element of H. Therefore $H \subseteq \alpha H$ and we have $H=\alpha H$. Let $h \in H$ be such that $\alpha h=e$. For any $x \in H$ we have $h * x \in H$ and $h * x=\alpha h \cdot \beta x=e \cdot \beta x=\beta x$. Therefore $\beta x \in H$ for any $x \in H$, so $\beta H \subseteq H$. There exists $y \in H$ such that $h * y=x$ for any $x \in H$. Then

$$
h * y=\alpha h \cdot \beta y=e \cdot \beta y=\beta y=x
$$

and $y=\beta^{-1}(x)$. Hence $\beta^{-1} H \subseteq H, H \subseteq \beta H$ and finally we have $\beta H=H$. So, the restrictions of α and β to H are permutations on H, and (H, \cdot) is an associative quasigroup isotopic to the quasigroup $(H, *)$ since $x \cdot y=\alpha^{-1} x * \beta^{-1} y$, i.e. $(H, \cdot) \in L(\mathcal{Q}, *)$. Therefore we
have proved that $e \in(H, *) \in L(\mathcal{Q}, *)$ implies $\alpha H=H=\beta H$ and $(H, \cdot) \in L(\mathcal{Q}, \cdot)$.

The converse implication is trivial.

For any $\varphi \in \mathcal{S}(\mathcal{Q})$ put

$$
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \varphi=\{H \subseteq \mathcal{Q}:(H, \cdot) \in L(\mathcal{Q}, \cdot) \quad \text { and } \quad \varphi H=H\} .
$$

Lemma 3. A quasigroup

$$
(\mathcal{Q}, *): x * y=\alpha x \cdot \beta y, \quad \alpha, \beta \in \mathcal{S}(\mathcal{Q}), \quad \beta e=e, \quad x, y \in \mathcal{Q}
$$

which is isotopic to a group (\mathcal{Q}, \cdot) with the unit e is generated by e if and only if

$$
\begin{equation*}
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \alpha \cap \operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \beta=\{\mathcal{Q}\} . \tag{3}
\end{equation*}
$$

Proof. Let $(\mathcal{Q}, *)$ be generated by the unit e and

$$
H \in \operatorname{Sta}_{L(\mathcal{Q}, \cdot)} \alpha \cap \operatorname{Sta}_{L(\mathcal{Q}, \cdot)} \beta .
$$

Then $(H, \cdot) \in L(\mathcal{Q})$ and $\alpha H=H=\beta H$. By Lemma 2 we get $(H, *) \in L(\mathcal{Q}, *)$ and $(H, *)=(\mathcal{Q}, *)$ as $e \in(H, *)$. Hence

$$
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \alpha \cap \operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \beta=\{\mathcal{Q}\} .
$$

Conversely, let the relation (3) holds and $(H, *) \in L(\mathcal{Q}, *)$, where $e \in(H, *)$. By Lemma 2 we have $\alpha H=H=\beta H$ and from (3) we get $H=\mathcal{Q}$. Therefore $(\mathcal{Q}, *)$ is generated by the unit e.

Directly from Lemmas 1 and 3 we get
Corollary 1. A quasigroup

$$
(\mathcal{Q}, *): x * y=\alpha x \cdot \beta y, \quad \alpha, \beta \in \mathcal{S}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

which is isotopic to a group (\mathcal{Q}, \cdot) with the unit e is generated by e if and only if

$$
\begin{equation*}
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} R_{\beta e} \alpha \cap \operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{\beta e}^{-1} \beta=\{\mathcal{Q}\} . \tag{4}
\end{equation*}
$$

Proof. By Lemma 1 we get the equalities $x * y=R_{\beta e} \alpha x \cdot L_{\beta e}^{-1} \beta y$ and $L_{\beta e}^{-1} \beta e=e$. The equality (4) follows from Lemma 3.

Remark that relation (4) gives $\alpha e \cdot \beta e \neq e$, otherwise the set $\{e\}$ is a subquasigroup of $(\mathcal{Q}, *)$, contrary to (4).

Now we will find the condition for a quasigroup

$$
(\mathcal{Q}, *): x * y=\alpha x \cdot \beta y, \quad \alpha, \beta \in \mathcal{S}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

to be generated by any its element $a \in \mathcal{Q}, a \neq e$.
Let us consider the isotope

$$
(\mathcal{Q}, \circ): x \circ y=x \cdot a^{-1} y, \quad x, y \in \mathcal{Q}
$$

for any fixed element $a \in \mathcal{Q}$. This isotope is a group with the unit a and the left translation L_{a} of a group (\mathcal{Q}, \cdot) is an isomorphism between groups (\mathcal{Q}, \cdot) and (\mathcal{Q}, \circ), i.e. we have $L_{a}(x \cdot y)=L_{a} x \circ L_{a} y$. Then the equality

$$
L_{a}^{-1}(x \circ y)=L_{a}^{-1} x \cdot L_{a}^{-1} y
$$

and implications

$$
\begin{align*}
& (H, \cdot) \in L(\mathcal{Q}, \cdot) \Rightarrow\left(L_{a} H, \circ\right) \in L(\mathcal{Q}, \circ), \\
& (H, \circ) \in L(\mathcal{Q}, \circ) \Rightarrow\left(L_{a}^{-1} H, \cdot\right) \in L(\mathcal{Q}, \cdot) \tag{5}
\end{align*}
$$

hold. The quasigroup $(\mathcal{Q}, *)$ is an isotope of a group (\mathcal{Q}, \circ) with the unit a since we have $x * y=\alpha x \cdot \beta y=\alpha x \circ L_{a} \beta y$. By Corollary 1 the quasigroup $(\mathcal{Q}, *)$ is generated by a if and only if the equality

$$
\begin{equation*}
\operatorname{Stab}_{L(\mathcal{Q}, \circ)} \hat{R}_{L_{a} \beta a}^{-1} \alpha \cap \operatorname{Stab}_{L(\mathcal{Q}, \circ)} \hat{L}_{L_{a} \beta a}^{-1} L_{a} \beta=\{\mathcal{Q}\} \tag{6}
\end{equation*}
$$

holds, where by \hat{R}_{x}, \hat{L}_{x} we denote the translations by x on the group (\mathcal{Q}, \circ).

Remark. If the equality (6) holds, then we have $\alpha a \cdot \beta a \neq a$. The following equalities hold for any $a, u \in \mathcal{Q}$:

$$
\begin{gathered}
L_{u}^{-1}=L_{u^{-1}} \\
\hat{L}_{u}=L_{u} L_{a^{-1}}=L_{u a^{-1}}, \quad \hat{L}_{u}^{-1}=L_{a} L_{u^{-1}}=L_{a u^{-1}} \\
\hat{R}_{u}=R_{u} R_{a^{-1}}=R_{a^{-1} u}, \quad \hat{R}_{u}^{-1}=R_{a} R_{u^{-1}}=R_{u^{-1} a}
\end{gathered}
$$

where a^{-1}, u^{-1} are the inverses of a, u in (\mathcal{Q}, \cdot). Then

$$
\begin{gathered}
\hat{R}_{L_{a} \beta a} \alpha=\hat{R}_{a \beta a} \alpha=R_{a^{-1 \cdot a \beta a}} \alpha=R_{\beta a} \alpha \\
\hat{L}_{L_{a} \beta a}^{-1} L_{a} \beta=\hat{L}_{a \beta a}^{-1} L_{a} \beta=L_{a(\beta a)^{-1} a^{-1}} L_{a} \beta=L_{a(\beta a)^{-1} \beta} .
\end{gathered}
$$

Now the equality (6) can be rewritten in the following way:

$$
\begin{equation*}
\operatorname{Stab}_{L(\mathcal{Q}, \mathrm{o})} R_{\beta a} \alpha \cap \operatorname{Stab}_{L(\mathcal{Q}, \mathrm{o})} L_{a(\beta a)^{-1}} \beta=\{\mathcal{Q}\} . \tag{7}
\end{equation*}
$$

Lemma 4. For any $\varphi \in \mathcal{S}(\mathcal{Q})$ we have

$$
\operatorname{Stab}_{L(\mathcal{Q}, \circ)} \varphi=L_{a}\left(\operatorname{Sta}_{L(\mathcal{Q}, \cdot)} L_{a^{-1}} \varphi L_{a}\right)
$$

and

$$
\operatorname{Stab}_{L(\mathcal{Q}, \circ)} \varphi=\left\{L_{a} H:(H, \cdot) \in L(\mathcal{Q}, \cdot) \text { and } L_{a^{-1}} \varphi L_{a} H=H\right\}
$$

Proof. If $(H, \cdot) \in L(\mathcal{Q}, \cdot)$ and $L_{a^{-1}} \varphi L_{a} H=H$, then $\varphi L_{a} H=L_{a} H$ and $\left(L_{a} H, \circ\right) \in \operatorname{Stab}_{L(\mathcal{Q}, \circ)} \varphi$ since $\left(L_{a} H, \circ\right) \in L(\mathcal{Q}, \circ)$. Hence we have

$$
\operatorname{Stab}_{L(\mathcal{Q}, \mathrm{o})} \varphi \supseteq L_{a}\left(\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{a^{-1}} \varphi L_{a}\right) .
$$

Conversely, let $(\hat{H}, \circ) \in \operatorname{Stab}_{L(\mathcal{Q}, \circ)} \varphi$. Then $\varphi \hat{H}=\hat{H}$ and we can write

$$
\varphi L_{a} L_{a}^{-1} \hat{H}=L_{a} L_{a}^{-1} \hat{H}
$$

which get

$$
L_{a^{-1}} \varphi L_{a} L_{a}^{-1} \hat{H}=L_{a}^{-1} \hat{H}
$$

Hence,

$$
\left(L_{a}^{-1} \hat{H}, \cdot\right) \in \operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{a^{-1}} \varphi L_{a}
$$

as $\left(L_{a}^{-1} \hat{H}, \cdot\right) \in L(\mathcal{Q}, \cdot)$ by (5). Therefore

$$
\operatorname{Stab}_{L(\mathcal{Q}, \circ)} \varphi \subseteq L_{a}\left(\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{a^{-1}} \varphi L_{a}\right)
$$

and the statement of the lemma is proved.

Now the equality (7) can be rewritten as

$$
L_{a}\left(\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{a^{-1}} R_{\beta a} \alpha L_{a}\right) \cap L_{a}\left(\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{(\beta a)^{-1}} \beta L_{a}\right)=\{\mathcal{Q}\}
$$

from which we have

$$
\begin{equation*}
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{a-1} R_{\beta a} \alpha L_{a} \cap \operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{(\beta a)^{-1}} \beta L_{a}=\{\mathcal{Q}\} \tag{8}
\end{equation*}
$$

So, we have proved the following:
Theorem 3. A quasigroup

$$
(\mathcal{Q}, *): \quad x * y=\alpha x \cdot \beta y, \quad \alpha, \beta \in \mathcal{S}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

isotopic to a group (\mathcal{Q}, \cdot) with the unit e is:
a) generated by an element $a \in \mathcal{Q}$ iff the equality (8) holds,
b) a monoquasigroup iff the equality (8) holds for any $a \in \mathcal{Q}$.

Corollary 2. If a quasigroup $(\mathcal{Q}, *)$ isotopic to a group (\mathcal{Q}, \cdot) with the unit e is a monoquasigroup, then $\alpha x \cdot \beta x \neq x$ for all $x \in \mathcal{Q}$.

Proof. In fact, if $\alpha a \cdot \beta a=a$ for some $a \in \mathcal{Q}$, then a is an idempotent. Thus $(\mathcal{Q}, *)$ is not generated by a, contrary to the assertion of the corollary.

Proposition 1. The order of a subquasigroup of a group isotope (\mathcal{Q}, \oplus) divides the order of the quasigroup (\mathcal{Q}, \oplus).

Proof. Let (H, \oplus) be a subquasigroup of a group isotope (\mathcal{Q}, \oplus) and $\emptyset \neq H \neq \mathcal{Q}$. By Albert's Theorem the isotope

$$
(\mathcal{Q}, \bullet): x \bullet y=R_{a}^{-1} x \oplus L_{a}^{-1} y
$$

is a group for every element $a \in H$ and (H, \bullet) is a subgroup of (\mathcal{Q}, \bullet) as $a \in H$. In a group the order of subgroup divides the order of the group.

Corollary 3. Every proper subquasigroup of a group isotope of prime order is a single-element set.

Corollary 4. The isotope

$$
(\mathcal{Q}, *): \quad x * y=\alpha x \cdot \beta y, \quad \alpha, \beta \in \mathcal{S}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

of a group $(\mathcal{Q}, *)$ of a prime order is a monoquasigroup if and only if $\alpha x \cdot \beta x \neq x$ for all $x \in \mathcal{Q}$.

Proof. Let $\alpha x \cdot \beta x \neq x$ for all $x \in \mathcal{Q}$ and $|\mathcal{Q}|$ be a prime number. The isotope $(\mathcal{Q}, *)$ has not single-element subquasigroups since $x *=\alpha x \cdot \beta x \neq x$ for all $x \in \mathcal{Q}$. From Corollary 3 we obtain that $(\mathcal{Q}, *)$ is generated by any its element, i.e. is a monoquasigroup.

By Corollary 2 the relation $\alpha x \cdot \beta x \neq x$ holds in $(\mathcal{Q}, *)$ for all $x \in \mathcal{Q}$. We will adopt some of the above results for right loops principally isotopic to groups, i.e. we will find the necessary and sufficient conditions for a right loop isotopic to a group to be generated by any its non-unit element, therefore to have no proper subloops. A results can be obtained for left loops isotopic to groups.

Recall that a right (left) loop is a quasigroup $(\mathcal{Q}, *)$ with the right (left) unit f (respectively - (e)) i.e. such elements that $x * f=x$ $(e * x=x)$ for all $x \in \mathcal{Q}$. The sets $\{f\},\{e\}$ and \mathcal{Q} are right (left) subloops of $(\mathcal{Q}, *)$ called improper subloops. All other subloops are called proper subloops.

For all $a \in \mathcal{Q}$ put

$$
\mathcal{S}_{a}(\mathcal{Q})=\{\psi \in \mathcal{S}(\mathcal{Q}) \quad: \quad \psi a=a\} .
$$

Proposition 2. A right loop isotopic to a group (\mathcal{Q}, \cdot) with the unit e is isomorphic to some right loop

$$
(\mathcal{Q}, \circ): \quad x \circ y=x \cdot \varphi y, \quad \varphi \in \mathcal{S}_{e}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

with the unit e.

Proof. To prove that, by Theorem 2 it is sufficient to consider right loops principally isotopic to groups. Let

$$
(\mathcal{Q}, *): \quad x * y=\alpha x \cdot \beta y, \quad \alpha, \beta \in \mathcal{S}(\mathcal{Q})
$$

be a right loop isotopic to a group (\mathcal{Q}, \cdot) and f be the right unit of $(\mathcal{Q}, *)$. For every $x \in \mathcal{Q}$ we have $x=x * f=\alpha x \cdot \beta f$ and we obtain

$$
\alpha=R_{(\beta f)}^{-1}=R_{(\beta f)^{-1}}
$$

Therefore

$$
x * y=R_{(\beta f)^{-1}} x \cdot \beta y=x(\beta f)^{-1} \beta y=x \cdot L_{(\beta f)^{-1}} \beta y
$$

for all $x, y \in \mathcal{Q}$. Let us consider the isotope

$$
(\mathcal{Q}, \circ): x \circ y=x \cdot L_{(\beta f)^{-1}} \beta L_{f} y, \quad x, y \in \mathcal{Q}
$$

Remark that $L_{(\beta f)^{-1}} \beta L_{f} e=e$, i.e. (\mathcal{Q}, \circ) is a right loop with the unit e. The loop (\mathcal{Q}, \circ) is isomorphic to $(\mathcal{Q}, *)$ since

$$
L_{f}(x \circ y)=L_{f}\left(x \cdot L_{(\beta f)^{-1}} \beta L_{f} y\right)=L_{f} x \cdot L_{(\beta f)^{-1}} \beta L_{f} y=L_{f} x * L_{f} y
$$

for all $x, y \in \mathcal{Q}$.

The following assertion can be proved in a way analogous to that used in Theorem 3.

Lemma 5. A right loop

$$
(\mathcal{Q}, *): \quad x * y=x \cdot \alpha y, \quad \alpha \in \mathcal{S}_{e}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

isotopic to a group (\mathcal{Q}, \cdot) with the unit e has no proper subloops if and only if

$$
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \alpha=\{\{e\}, \mathcal{Q}\} .
$$

Lemma 6. A right loop

$$
(\mathcal{Q}, *): \quad x * y=x \cdot \alpha y, \quad \alpha \in \mathcal{S}(\mathcal{Q}), \quad \alpha f=e, \quad x, y \in \mathcal{Q}
$$

isotopic to a group (\mathcal{Q}, \cdot) with the unit e has no proper subloops if and only if

$$
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \alpha L_{e}=\{\{e\}, \mathcal{Q}\}
$$

Proof. The right loop $(\mathcal{Q}, *)$ is isomorphic to the right loop

$$
(\mathcal{Q}, \circ): \quad x \circ y=x \cdot \alpha L_{f} y, \quad x, y \in \mathcal{Q} .
$$

In fact

$$
L_{f}(x \circ y)=L_{f}\left(x \cdot \alpha L_{f} y\right)=L_{f} x \cdot \alpha L_{f} y=L_{f} x * L_{f} y
$$

for all $x, y \in \mathcal{Q}$. Then the right loop $(\mathcal{Q}, *)$ has no proper subloops provided that (\mathcal{Q}, \circ) has no ones. Now we apply Lemma 5 to the right loop (\mathcal{Q}, \circ) and this completes the proof of our Lemma.

Corollary 5. The loop isotopic to a group of prime order has no proper right subloops.

Proof. The assertion follows from Lemma 6 taking into account that a group of a prime order has no proper subgroups.

Theorem 4. Let (\mathcal{Q}, \cdot) be a group with the unit e. The right loop

$$
(\mathcal{Q}, *): \quad x * y=\gamma^{-1}(\alpha x \cdot \beta y), \quad \alpha, \beta, \gamma \in \mathcal{S}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

with the right unit f has no proper right subloops if and only if

$$
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} L_{(\beta f)^{-1}} \beta \gamma^{-1} L_{\gamma f}=\{\{e\}, \mathcal{Q}\}
$$

Proof. By Theorem 2 the right loop $(\mathcal{Q}, *)$ is isomorphic to the right loop

$$
(\mathcal{Q}, *): \quad x * y=\gamma^{-1}(\alpha x \cdot \beta y), \quad \alpha, \beta, \gamma \in \mathcal{S}(\mathcal{Q}), \quad x, y \in \mathcal{Q}
$$

with the unit γf. For every $x \in \mathcal{Q}$ we have

$$
x=x \circ \gamma f=\alpha \gamma^{-1} x \cdot \beta f
$$

hence $\alpha \gamma^{-1}=R_{(\beta f)^{-1}}$. Therefore

$$
x \circ y=R_{(\beta f)^{-1}} x \cdot \beta \gamma^{-1} y=x \cdot(\beta f)^{-1} \beta \gamma^{-1} y=x \cdot L_{(\beta f)^{-1}} \beta \gamma^{-1} y .
$$

Let us consider the isotope

$$
(\mathcal{Q}, \times): \quad x \times y=x \cdot L_{(\beta f)^{-1}} \beta \gamma^{-1} L_{(\gamma f)} y, \quad x, y \in \mathcal{Q}
$$

This isotope is a right loop with the right unit e and the translation $L_{\gamma f}$ is an isomorphism between (\mathcal{Q}, \times) and (\mathcal{Q}, \circ). Now we apply Lemma 5 to the right loop (\mathcal{Q}, \times) and this completes the proof.

4. Examples

1. Let $(\mathcal{Q}, \cdot)=\langle h\rangle$ be a cyclic group generated by $h \in \mathcal{Q}$ and $|\mathcal{Q}|=r, 3 \leq r \leq \aleph_{0}$. Let e be the unit of the group $(\mathcal{Q}, \cdot), I$ be the permutation of (\mathcal{Q}, \cdot) defined by $I x=x^{-1}, \alpha=(e h)$ be the transposition of elements e and h. Then the isotope

$$
(\mathcal{Q}, *) \quad: x * y=\alpha x \cdot I y, \quad x, y \in \mathcal{Q}
$$

is a monoquasigroup which satisfies the identity $x *(x * y)=y$. In fact

$$
x *(x * y)=\alpha x \cdot I(\alpha x \cdot I y)=\alpha x \cdot I \alpha x \cdot y=y
$$

Recall that every element of the group $(\mathcal{Q}, \cdot)=\langle h\rangle$ is a power of the element h and every its subgroup is the cyclic subgroup generated by some power h^{k} of h. To prove that $(\mathcal{Q}, *)$ is a monoquasigroup, by Lemma 3, it is sufficient to prove the equality

$$
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \alpha \cap \operatorname{Stab}_{L(\mathcal{Q}, \cdot)} I=\{\mathcal{Q}\}
$$

This equality holds since we have $\alpha e=h$ and the $\operatorname{group}(\mathcal{Q}, \cdot)$ is the unique subgroup of (\mathcal{Q}, \cdot) which contains h.

Now we will prove that every subquasigroup $(H, *)$ of $(\mathcal{Q}, *)$ contains e. Really, if $h^{k} \in(H, *)$ for $k \neq 1$, then $e=h^{k} \cdot h^{-k} \in(H, *)$. If $h \in(H, *)$, then $h^{-1}=e \cdot h^{-1}=\alpha h \cdot I h=h * h \in(H, *)$ and $e \in(H, *)$ as it is proved above.
2. Let $(\mathcal{Q}, \cdot)=\langle h\rangle$ be a cyclic group with the unit e generated by $h \in \mathcal{Q},|\mathcal{Q}|=n, 3 \leq n \leq \aleph_{0}$ and α be a cyclic permutation $\left(h h^{2} h^{3} \ldots h^{n-1}\right)$. Then the isotope

$$
(\mathcal{Q}, *): \quad x * y=x \cdot \alpha y, \quad x, y \in \mathcal{Q}
$$

is a right loop with the unit e and has no proper right subloops.
Really, we have $x * e=x \cdot \alpha e=x \cdot e=x$ for all $x \in \mathcal{Q}$ and thus $(\mathcal{Q}, *)$ is a right loop with the unit e. If $1 \leq k \leq n-2$, then $\alpha h^{k}=h^{k+1}$ and $\alpha h^{-1}=\alpha h^{n-1}=h$. Now, if a subgroup of the cyclic group $\langle h\rangle$ contains elements h^{k} and h^{k+1}, then it contains h as a solution of the equation $h^{k} \cdot x=h^{k+1}$, and thus it coincides with $\langle h\rangle$. Hence, we have

$$
\operatorname{Stab}_{L(\mathcal{Q}, \cdot)} \alpha=\{\{e\}, \mathcal{Q}\}
$$

and thus $(\mathcal{Q}, *)$ has no proper right subloops.
3. Let $(\mathcal{Q}, \cdot)=\langle h\rangle$ be the infinite cyclic group generated by the element $h \in \mathcal{Q}$. Let e be the unit of (\mathcal{Q}, \cdot) and α be the following permutation: $\alpha e=e, \alpha h^{-1}=h, \alpha h^{k}=h^{k+1}$ for all $k \neq 1$. Like that in the example 2 we can prove that the right loop

$$
(\mathcal{Q}, *): \quad x * y=x \cdot \alpha y, \quad x, y \in \mathcal{Q}
$$

has no proper right subloops.

References

[1] V. D. Belousov: Foundations of the theory of quasigroups and loops, (Russian), "Nauka", Moscow 1967.
[2] V. I. Izbash: About quasigroups isotopic to groups, Inst. Math. and CC AN MSSR, Khishinev, 1989, Dep. VINITI 29.06.89, no. 4298-B89.
[3] V. I. Izabash: Monoquasigroups without congruences and without automorphisms, (Russian), Izv. AN Rep. Moldova ser. Matematika, (1)4 (1992), $66-76$.
[4] T. V. Kepka: A note on simple Quasigroups, Acta Univ. Carol. Math. et Phys., 19 (1978), 59 - 60.
[5] L. A. Skornyakov: Elements of general algebra (Russian), "Nauka", Moscow 1983.

Department of Quasigroups Theory
Institute of Mathematics
Academy of Sciences of Moldova
Academiei str. 5
277028 Kishinau
MOLDOVA

Frobenius groups and one-sided S-systems

Evghenii A. Kuznetsov

Abstract

Frobenius groups are studied by the means of systems of orthogonal operations, naturally being built over these groups.

1. Introduction

Definition 1. $[4,8]$ The transitive irregular permutation group G acting on a set E is called a Frobenius group, if $S t_{a b}(G)=\langle i d\rangle$ for any $a, b \in E, a \neq b$.

Frobenius groups are one of the classical group classes in permutation group theory. The studying of these groups was begun in the Frobenius article [3] at the beginning of 20th century and was continued by M.Hall [4], H.Wielandt [8] etc. Frobenius proved in [3] by means of character group theory that there exists an invariant regular subgroup consisting of all fixed-point free permutations and the identity permutation in a finite Frobenius group (Frobenius theorem). It is not known any other proof of this theorem (without using of character group theory) till now.

In present article a 1-1 correspondence between Frobenius groups and one-sided S-systems of orthogonal operations [1] (on the same set of symbols E), whose cell permutations form a group, is built.

1991 Mathematics Subject Classification: 20N05, 20N10, 08A55
Keywords: Frobenius group, orthogonal operation

In the section 2 the incident system of (left) cosets in an arbitrary finite Frobenius group G by stabilizer $S t_{a}(G)(a \in E)$ is investigated. It is proved that this incident system is an algebraic m-net [2], where $m=\left|S t_{a}(G)\right|$.

In the section 3 the construction of two systems of the orthogonal operations over an arbitrary finite Frobenius group G is given. It is proved that they form a left and a right S-systems [1]. Some other properties of these one-sided S-systems are studied too. A numbering correlation between permutations degree n and $m=\left|S t_{a}(G)\right|$ is obtained. As a corollary of this correlation it is proved that finite Frobenius p-groups doesn't exist (the negative answer on the problem 6.55 from [5] in a finite case). At the end of the part 2 the right (left) cell permutations of right (left) S-system are defined and it is shown that the set of all cell permutations forms a group coinciding with the group G.

In the section 3 an arbitrary right (left) S-systems of binary idempotent quasigroups on some set E (finite or infinite) are investigated. In any right (left) S-system of operations the cell functions are introduced, and it is proved that all these functions are permutations on the set E. If the set of all cell permutations forms a group (with respect to natural operation of composition), then this group is a Frobenius group. As a corollary, the proof of Frobenius theorem is obtained (when the set E is finite). Another construction of one-sided S-systems of operations on E over the Frobenius group G, no depending from the cardinality of the set E, are given in order to demonstrate preserving of the correspondence between Frobenius groups and onesided S-systems of operations on E with the property mentioned above in the case when the set E is infinite.

We will use the following notations:
$H_{a}=S t_{a}(G)$ is the stabilizer of the element $a \in E$ in the group G,
0,1 are two distinguished elements in the set E,

$$
E^{*}=\{0\} \cup\left\{h(1): h \in H_{0}=S t_{0}(G)\right\} \subseteq E .
$$

2. Incident system of cosets

In this paragraph we suppose that the set E is finite, i.e. the permutations from the Frobenius group G have the finite degree $n=|E|$.

In a Frobenius group all subgroups $H_{a}(a \in E)$ are conjugate and so we can denote

$$
m=\left|H_{0}\right|=\left|H_{a}\right|
$$

At last, we can suppose the elements from E are renamed so that

$$
E^{*}=\{0,1, \ldots, m\}
$$

Let's consider all (left) cosets $H_{a}^{b}=\{\alpha \in G: \alpha(a)=b\}$ in G by the subgroup H_{a} and define the following incident system $\mathcal{R}=<X, \mathcal{L}, I>$:
points from X are (left) cosets H_{a}^{b},
lines from \mathcal{L} are permutations $\alpha \in G$,
incidence I is a belonging relation, i.e.

$$
\begin{equation*}
(a, b) I[\alpha] \Leftrightarrow\left(\text { point } H_{a}^{b}\right) I(\text { line } \alpha) \stackrel{\text { def }}{\Leftrightarrow}\left(\alpha \in H_{a}^{b}\right) . \tag{1}
\end{equation*}
$$

Definition 2. By an algebraic k-net [2] we mean an incidence system $\mathcal{R}=<X, \mathcal{L}, L_{1}, \ldots, L_{k}, I>$ consisting of the point set X, the line set \mathcal{L} which is separated on k distinct classes of "parallel" lines $l_{1}, L_{2}, \ldots, L_{k}$, and the incidence relation I between elements from X and \mathcal{L}, which satisfy the following two conditions:

1) any two lines from the different classes L_{i} and L_{j} are incident to one and only one point from X,
2) every point from X is incident to one and only one line from each class L_{i}.

Lemma 1. The system $\mathcal{R}=<X, \mathcal{L}, I>$ defined in (1) is an algebraic m-net.

Proof. According to Frobenius theorem [8], in a finite Frobenius group G of permutations of degree n all fixed-point-free permutations with the identity permutation form a transitive invariant subgroup A, moreover, $|A|=n$. It is easy to see that A is a group transversal (see [6]) in G to $H_{a} \forall a \in E$.

Let's define the classes L_{i} of "parallel" lines in \mathcal{L} by the following:

$$
L_{i}=\left\{\alpha h_{i}: \alpha \in A, h_{i} \in H_{0}, \quad h_{i}(1)=i\right\}, \quad i=1, \ldots, n
$$

Note that $h_{i}=i d$ and $L_{i}=A$.
Lemma A. Let $\alpha, \beta \in \mathcal{L}$ and $\alpha \neq \beta$. The following conditions are equivalent:

1) both of lines α and β are in the class L_{i} for some i,
2) $\alpha(t) \neq \beta(t) \quad \forall t \in E$.

Proof of Lemma A. 1) $\Rightarrow 2$). Let $\alpha, \beta \in L_{i}$ and $\alpha \neq \beta$. Let's assume there exists $t_{0} \in E$ such that $\alpha\left(t_{0}\right)=\beta\left(t_{0}\right)$. Then we have

$$
\begin{aligned}
\alpha_{0} h_{i}\left(t_{0}\right) & =\beta_{0} h_{i}\left(t_{0}\right), \\
\alpha_{0}\left(t_{1}\right) & =\beta_{0}\left(t_{1}\right)
\end{aligned}
$$

where $\alpha_{0}, \beta_{0} \in A, t_{1}=h_{i}\left(t_{0}\right)$. The last equality contradicts the regularity of the group A. So

$$
\alpha(t) \neq \beta(t) \quad \forall t \in E .
$$

2) $\Rightarrow 1)$. Let $\alpha, \beta \in \mathcal{L}, \alpha \neq \beta$ and

$$
\alpha(t) \neq \beta(t) \quad \forall t \in E .
$$

The set A is a (left) transversal in G to H_{0}, so we have

$$
\alpha=\alpha_{0} h_{i}, \quad \beta=\beta_{0} h_{j},
$$

where $\alpha_{0}, \beta_{0} \in A, h_{i}, h_{j} \in H_{0}$. It is necessary to prove that $h_{i}=h_{j}$. We have

$$
\begin{gathered}
\alpha_{0} h_{i}(t) \neq \beta_{0} h_{j}(t) \quad \forall t \in E, \\
\alpha_{0}^{-1} \beta_{0} h_{j} h_{i}^{-1}\left(t^{\prime}\right) \neq t^{\prime} \quad \forall t^{\prime}=h_{i}(t) \in E,
\end{gathered}
$$

i.e. $\gamma_{0}=\alpha_{0}^{-1} \beta_{0} h_{j} h_{i}^{-1}$ is a fixed-point-free permutation. Then $\gamma_{0} \in A$ and we obtain

$$
h_{j} h_{i}^{-1}=h_{k}=\beta_{0}^{-1} \alpha_{0} \gamma_{0} \in H_{0} \cap A=\{i d\},
$$

i.e. $h_{i}=h_{j}$. The proof of Lemma A is completed.

Let's return to the proof of Lemma 1. It is necessary to check
the realization of the conditions 1) and 2) from Definition 2 for the incidence system $\mathcal{R}=<X, \mathcal{L}, I>$.
a) Let α and β be two different lines from the different classes L_{i} and L_{j}. Then there exist element $t_{0} \in E$ such that

$$
\begin{equation*}
\alpha\left(t_{0}\right)=\beta\left(t_{0}\right)=d \tag{2}
\end{equation*}
$$

(in a contrary case we would have $\alpha(t) \neq \beta(t) \quad \forall t \in E$, and so $\alpha, \beta \in L_{k}$ for some k according to Lemma A. Moreover, there exist an unique element $t_{0} \in E$ satisfying (2), because in a opposite case the permutation $\alpha^{-1} \beta$ would fix two different elements from E and so $\alpha^{-1} \beta=i d$ according to Definition 1. So we have:

$$
\alpha, \beta \in H_{t_{0}}^{d}
$$

i.e. the lines α and β are incident to the unique point $H_{t_{0}}^{d}$. The condition 1) is proved.
b) Let H_{a}^{b} be an arbitrary point from X. This point is incident to all lines $\alpha_{i} \in G$ such that $\alpha_{i} \in H_{a}^{b}$, i.e. $\alpha_{i}(a)=b$. By means of Lemma A we obtain that different such lines α_{i} lie in different classes L_{i}. As $\left|H_{a}^{b}\right|=\left|H_{a}\right|=m$, then the point H_{a}^{b} is incident to m different lines α_{i} from different classes L_{i}; moreover, it is incident to an unique line in each class L_{i}. The number of classes L_{i} is equal to m, so every of these classes consists of a line being incident to the point H_{a}^{b}. The condition 2) is proved.

The proof of Lemma 1 is completed.

3. One-sided S-systems being constructed over a Frobenius group

In this paragraph we will suppose that Frobenius group G is finite.
Let's define the following two binary operations (\cdot) and $(*)$:

$$
\begin{gathered}
(\cdot): E \times E \rightarrow E, \\
x \cdot y=z \stackrel{\text { def }}{\Longleftrightarrow} z=\varphi_{x}(y),
\end{gathered}
$$

where $\varphi_{x} \in A, \varphi_{x}(0)=x$,

$$
\begin{gathered}
(*): E^{*} \times E \rightarrow E \\
0 * v \stackrel{\text { def }}{\Longleftrightarrow} 0 \\
u \neq 0: u * v=w \stackrel{\text { def }}{\Longleftrightarrow} w=h_{u}(v)
\end{gathered}
$$

where $h_{u} \in H_{0}, h_{u}(1)=u$. Note that $(*)$ is a partial operation.
Lemma 2. The following statements are true:

1) $<E, \cdot, 0>\cong A$,
2) $<E^{*}-\{0\}, *, 1>\cong H_{0}$,
3) $x *(y \cdot z)=(x * y) \cdot(x * z) \quad \forall x \in E^{*}, \quad \forall y, z \in E$,
4) every permutation $h \in H_{0}$ is an automorphism of the subgroup A,
5) $G=\left\{\alpha_{a, b}: \alpha_{a, b}(x)=a \cdot(b * x), a \in E b \in E^{*}-\{0\}\right\}$.

Proof. 1) Let's consider the following mapping

$$
\alpha:<E, \cdot, 0>\rightarrow A, \quad \alpha(x)=\varphi_{x}
$$

where $x \in E$ and the permutation φ_{x} is defined above. Then α is a bijection, because the group A is regular on the set E. Further we have

$$
(\alpha(x \cdot y))(0)=\varphi_{x \cdot y}(0)=x \cdot y
$$

On the other hand we have

$$
(\alpha(x) \alpha(y))(0)=\varphi_{x} \varphi_{y}(0)=\varphi_{x}(y)=x \cdot y
$$

So we obtain

$$
(\alpha(x \cdot y))(0)=x \cdot y=(\alpha(x) \alpha(y))(0)
$$

and

$$
\alpha(x \cdot y)=\alpha(x) \alpha(y)
$$

because the group A is regular (i.e. sharply transitive) on the set E. We obtain that the mapping α is an isomorphism.
2) can be proved analogously, and the isomorphism is determined by the mapping

$$
\beta:<E^{*}-\{0\}, *, 1>\rightarrow H_{0}, \quad \beta(u) \stackrel{\text { def }}{=} h_{u}
$$

where $u \in E^{*}-\{0\}$ and the permutation h_{u} is defined above.
$3)$ and 4) can be proved analogously to 3) of Lemma 8 from [7].
5) can be proved analogously to Lemma 9 from [7].

Note that $\alpha_{0,1} \equiv i d$ and $\alpha_{a, 1}(x)=a \cdot x$ is a fixed-point-free permutation if $a \neq 0$; moreover $\left\{\alpha_{a, 1}\right\}_{a \in E} \equiv A$.

Now let's define the following partial ternary operation

$$
\begin{gather*}
(,,): E \times E^{*} \times E \rightarrow E \\
(x, a, y) \stackrel{\text { def }}{=} x \cdot\left(a *\left(x^{-1} \cdot y\right)\right) \tag{3}
\end{gather*}
$$

where $a \in E^{*}, x, y \in E$, and x^{-1} is the inverse element to x in $<E, \cdot, 0>$.

Lemma 3. The following statements are true:

1) $(x, 0, y)=x, \quad(x, 1, y)=y$, $(x, a, x)=x, \quad(0, a, 1)=a, \quad \forall a \in E^{*}, \quad x, y \in E$.
2) The system of operations $A_{a}(x, y)=(x, a, y)\left(a \in E^{*}-\{0\}\right)$ is a right S-system.
3) The operations (x, a, y) and (x, b, y) are orthogonal for any $a \neq b$, and they are quasigroups for $a \neq 0,1$.
4) The operations (x, a, y) and $x \circ y=x^{-1} \cdot y$ are orthogonal for any $a \in E^{*}$.

Proof. 1) $\quad(x, 0, y)=x \cdot\left(0 *\left(x^{-1} \cdot y\right)\right)=x \cdot 0=x$,

$$
\begin{gathered}
(x, 1, y)=x \cdot\left(1 *\left(x^{-1} \cdot y\right)\right)=x \cdot x^{-1} \cdot y=y \\
(x, a, x)=x \cdot\left(a *\left(x^{-1} \cdot x\right)\right)=x \cdot(a * 0)=x \cdot 0=x \\
(0, a, 1)=0 \cdot\left(a *\left(0^{-1} \cdot 1\right)\right)=a * 1=a
\end{gathered}
$$

2) According to the definition from [1], a system of operations $A_{a}(x, y)\left(a \in E^{*} \subseteq E\right)$ on some set E is a right (left) S-system, if for any $a, b \in E^{*}$ and $x, y \in E$ there exists $c=c(a, b) \in E^{*}$ such that the following equality

$$
\left(A_{a} \circ A_{b}\right)(x, y)=A_{a}\left(x, A_{b}(x, y)\right)=A_{c}(x, y)
$$

holds, and moreover, the system $<A_{u}, \circ, A_{1}>$, where $u \neq 0$, is a group (correspondingly, if for any $a, b \in E^{*}$ and $x, y \in E$ there exist such $c=c(a, b) \in E^{*}$ that the following equality

$$
\left(A_{a} \bullet A_{b}\right)(x, y)=A_{a}\left(A_{b}(x, y), y\right)=A_{c}(x, y)
$$

holds, and moreover, the system $<A_{u}(u \neq 1), \bullet, A_{0}>$ is a group $)$.
According to the equality (3) we obtain for the operations $A_{a}(x, y)=$ (x, a, y) and $A_{b}(x, y)=(x, b, y)$ (where $\left.a, b \in E^{*}-\{0\}\right)$:

$$
\begin{gathered}
\left(A_{a} \circ A_{b}\right)(x, y)=A_{a}\left(x, A_{b}(x, y)\right)=(x, a,(x, b, y))= \\
=x \cdot\left(a *\left(x^{-1} \cdot\left(x \cdot\left(b *\left(x^{-1} \cdot y\right)\right)\right)\right)\right)= \\
=x \cdot\left(a * b *\left(x^{-1} \cdot y\right)\right)=A_{a * b}(x, y) .
\end{gathered}
$$

With the help of Lemma 2, we obtain that the system $<A_{u}, \circ, A_{1}>$, where $u \neq 0$ is a group (this group is isomorphic to the group H_{0}), i.e. the system of operations $A_{a}(x, y)=(x, a, y)$ is a right S-system.
3) We notice that for any $a \in E^{*}, z \in E$,

$$
(a * z)^{-1}=a * x^{-1}
$$

Really, with the help of Lemma 2, we obtain

$$
\begin{aligned}
& (a * z) \cdot\left(a * z^{-1}\right)=a *\left(z \cdot z^{-1}\right)=a * 0=0 \\
& \left(a * z^{-1}\right) \cdot(a * z)=a *\left(z^{-1} \cdot z\right)=a * 0=0
\end{aligned}
$$

Further, let we have the following system

$$
\left\{\begin{array}{l}
(x, a, y)=c \\
(x, b, y)=d
\end{array}\right.
$$

where $a, b \in E^{*}, a \neq b, c, d \in E$ are arbitrary given elements.
If $a=0$ then $x=c, y=c \cdot\left(b^{-1} *\left(c^{-1} \cdot d\right)\right)$, i.e. this system has an unique solution in $E \times E$; so the operations (x, a, y) and (x, b, y) are orthogonal. If $b=0$ then we obtain the same result.

Let $a, b \neq 0$. Then we have

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ (x , a , y) = c } \\
{ (x , b , y) = d }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x \cdot\left(a *\left(x^{-1} \cdot y\right)\right)=c \\
x \cdot\left(b *\left(x^{-1} \cdot y\right)\right)=d
\end{array} \Longleftrightarrow\right.\right. \\
& \left\{\begin{array} { l }
{ a * (x ^ { - 1 } \cdot y) = x ^ { - 1 } \cdot c } \\
{ b * (x ^ { - 1 } \cdot y) = x ^ { - 1 } \cdot d }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\left(a *\left(x^{-1} \cdot y\right)\right)^{-1}=c^{-1} \cdot x \\
\left(b *\left(x^{-1} \cdot y\right)\right)^{-1}=d^{-1} \cdot x
\end{array} \Longleftrightarrow\right.\right. \\
& \left\{\begin{array}{l}
a *\left(y^{-1} \cdot x\right)=c^{-1} \cdot x \\
b *\left(y^{-1} \cdot x\right)=d^{-1} \cdot x
\end{array} \Leftrightarrow a^{(-1)} *\left(c^{-1} \cdot x\right)=y^{-1} \cdot x=b^{(-1)} *\left(d^{-1} \cdot x\right),\right.
\end{aligned}
$$

where a^{-1} is the inverse element to a in $<E^{*}-\{0\}, *, 1>$. From the last equality we obtain

$$
c^{-1} \cdot x=\left(a * b^{-1}\right) *\left(\left(d^{-1} \cdot c\right) \cdot\left(c^{-1} \cdot x\right)\right)
$$

i.e. (see Lemma 2)

$$
c^{-1} \cdot x=\alpha_{d^{-1} \cdot c, a * b(-1)}\left(c^{-1} \cdot x\right)
$$

As $a \neq b$ then $a * b^{(-1)} \neq 1$; so the permutation $\alpha_{d^{-1 \cdot c, a * b(-1)}}$ has an unique fixed-point element p_{0}. So we obtain that $x=c \cdot p_{0}$, $y=c \cdot p_{0} \cdot\left(a^{(-1)} * p_{0}\right)$, i.e. the operations (x, a, y) and (x, b, y) are orthogonal.
4) We have for any $a \in E^{*}-\{0\}$ and $c, d \in E$:

$$
\begin{aligned}
\left\{\begin{array} { c }
{ (x , a , y) = c } \\
{ x \circ y = d }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
x \cdot\left(a *\left(x^{-1} \cdot y\right)\right)=c \\
x^{-1} \cdot y=d
\end{array} \Longleftrightarrow\right.\right. \\
\left\{\begin{array} { c }
{ x \cdot (a * d) = c } \\
{ y = x \cdot d }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
x=c \cdot(a * d)^{-1} \\
y=c \cdot(a * d)^{-1} \cdot d,
\end{array}\right.\right.
\end{aligned}
$$

i.e. the operations (x, a, y) and $x \circ y$ are orthogonal.

By an analogical way it can be defined one more partial ternary operation

$$
\begin{gathered}
{[x, t, y]: E \times E^{*} \times E \rightarrow E} \\
{[x, a, y] \stackrel{\text { def }}{=}\left(a *\left(x \cdot y^{-1}\right)\right) \cdot y, \quad a \in E^{*} .}
\end{gathered}
$$

Lemma 4. The following statements are true:

1) $[x, 0, y]=y, \quad[x, 1, y]=x$, $[x, a, x]=x, \quad[1, a, 0]=a, \quad \forall a \in E^{*}, \quad x, y \in E$.
2) The system of operations $A_{a}(x, y)=[x, a, y]\left(a \in E^{*}-\{0\}\right)$ is a left S-system.
3) The operations $[x, a, y]$ and $-[x, b, y]$ are orthogonal for any $a \neq b$ and they are quasigroups for $a \neq 0,1$.
4) The operations $[x, a, y]$ and $x \bullet y=x \cdot y^{-1}$ are orthogonal for any $a \in E^{*}$.

Proof. 1). It is evident.
2)-4) can be proved analogously to the proof of Lemma 3 .

Remark. There is a 1-1 correspondence between algebraic m-net from Lemma 1 and some system of m orthogonal operations on the set E. Defining the partial ternar $\langle x, t, y\rangle$ by the following:

$$
(a, b) I[c, d] \Longleftrightarrow<a, c, b>=d
$$

where I is the incidence relation, we obtain

$$
<x, a, y>=y \cdot(a * x)^{-1}, a \in E^{*}
$$

This system of operations is not a left or a right S-system of operations.

Let's return back to the ternary operation (x, a, y).
Lemma 5. The following statements are true:

1) The mapping $\quad \alpha_{b, a}(x)=b \cdot(a * x), \quad b \in E, a \in E^{*}-\{0\}, x \in E$ is an isomorphism between operations (x, c, y) and $\left(x, a * c * a^{-1}, y\right)$. 2) The mapping $\alpha_{b, I}$ is an automorphism of the operation (x, c, y) for any $b \in E, \quad c \in E^{*}$.

Proof. 1) We have:

$$
\begin{gathered}
\alpha_{b, a}((x, c, y))=b \cdot\left(a *\left(x \cdot\left(c *\left(x^{-1} \cdot y\right)\right)\right)\right)= \\
=b \cdot(a * x) \cdot\left(a * c *\left(x^{-1} \cdot y\right)\right)= \\
=b \cdot(a * x) \cdot\left(\left(a * c * a^{(-1)}\right) * a *\left(x^{-1} \cdot y\right)\right)= \\
=b \cdot(a * x) \cdot\left(\left(a * c * a^{(-1)}\right) *\left(\left(a * x^{-1}\right) \cdot(a * y)\right)\right)= \\
=b \cdot(a * x) \cdot\left(\left(a * c * a^{(-1)}\right) *\left(\left[(a * x)^{-1} \cdot b^{-1}\right] \cdot[b \cdot(a * y)]\right)\right)= \\
=\left(\alpha_{b, a}(x)\right) \cdot\left(\left(a * c * a^{(-1)}\right) *\left(\left(\alpha_{b, a}(x)\right)^{-1} \cdot\left(\alpha_{b, a}(y)\right)\right)\right)= \\
=\left(\alpha_{b, a}(x), a * c * a^{(-1)}, \alpha_{b, a}(y)\right) .
\end{gathered}
$$

It means that the mapping $\alpha_{b, a}$ is an isomorphism between operations (x, c, y) and $\left(x, a * c * a^{-1}, y\right)$.
$2)$ is an evident corollary of 1).

Lemma 6. The following equality is true:

$$
n-1=k m
$$

for some $k \in \mathcal{N}$, i.e. $\quad\left(\left|E^{*}\right|-1\right) \mid(|E|-1)$.

Proof. (see [1] too). Let $a_{1} \in E$ and $a_{1} \neq 0$. Let's consider the following equalities:

$$
\begin{gathered}
A_{1}\left(0, a_{1}\right)=\left(0,1, a_{1}\right)=1 * a_{1}=a_{1} \\
A_{2}\left(0, a_{1}\right)=\left(0,2, a_{1}\right)=2 * a_{1} \\
\ldots \ldots \ldots \ldots \ldots \\
A_{m}\left(0, a_{1}\right)=\left(0, m, a_{1}\right)=m * a_{1}
\end{gathered}
$$

All values in the right sides of the equalities are different. Really, we have

$$
a * a_{1} \neq b * a_{1}, \quad a \neq b
$$

because $<E^{*}-\{0\}, *, 1>$ is a group.
Let's denote

$$
M_{1}=\left\{A_{i}\left(0, a_{1}\right): i=1, \ldots, m\right\}, \quad\left|M_{1}\right|=m
$$

Let $a_{2} \neq 0$ and $a_{2} \in E \backslash M_{1}$. By analogy with above we have:

$$
\begin{gathered}
A_{1}\left(0, a_{2}\right)=a_{2} \\
A_{2}\left(0, a_{2}\right)=2 * a_{2} \\
\ldots \ldots \ldots \cdots \\
A_{m}\left(0, a_{2}\right)=m * a_{2}
\end{gathered}
$$

and we obtain analogously that the right sides of these equalities are different. Let's denote

$$
M_{2}=\left\{A_{i}\left(0, a_{2}\right): i=1, \ldots, m\right\}, \quad\left|M_{2}\right|=m
$$

If we assume that

$$
M_{1} \cap M_{2} \neq \emptyset
$$

i.e. there exists $b \in M_{1} \cap M_{2}$, then there exist such $k, r \in E^{*}-\{0\}$ that

$$
\begin{gathered}
b=A_{k}\left(o, a_{1}\right)=A_{r}\left(o, a_{2}\right) \\
b=k * a_{1}=r * a_{2} \\
a_{2}=r^{(-1)} * k * a_{1}=k^{\prime} * a_{1}, \quad k^{\prime}=r^{(-1)} * k,
\end{gathered}
$$

i.e. $a_{2} \in M_{1}$, contradicting to the choosing of the element a_{2}. Continuing this process up to the complete exhaustion of the set E, we obtain

$$
E \backslash\{0\}=\coprod_{i=1}^{k} M_{i},
$$

moreover, $M_{i} \cap M_{j}=\emptyset$ if $i \neq j$, and $\left|M_{i}\right|=m$ for every $i=1, \ldots, k$. Then

$$
\begin{gathered}
|E-\{0\}|=k \cdot\left|M_{1}\right|, \\
n-1=k \cdot m
\end{gathered}
$$

and Lemma 6 is proved.

Corollary. Finite nontrivial (i.e. $m>1$ and $n>1$) Frobenius p group does not exist.

Proof. Let's assume the contrary and let G be a Frobenius p-group with $m, n>1$. Then we have

$$
\begin{gathered}
|G|=p^{\prime}, \quad m=\left|H_{0}\right|| | G \mid \Rightarrow m=p^{s}, \quad s>0, \\
n=|A|| | G \mid \Rightarrow n=p^{t}, \quad t>0 .
\end{gathered}
$$

With the help of Lemma 6 we obtain

$$
\begin{gathered}
n-1=k \cdot m \\
p^{t}-1=k \cdot p^{s} \\
p^{t}-k \cdot p^{s}=1
\end{gathered}
$$

that is impossible because the left part of the last equality is divisible by number p, but the right one is not divisible.

This corollary gives a negative solution of the problem 6.55 from Kourovskaya notebook [5] in the case of a finite Frobenius group.

Lemma 7. The mappings

$$
\begin{gathered}
\varphi_{b, a}(x)=(b, a, x), \\
\psi_{b, a}(x)=\left(b, a,\left(0, a^{(-1)}, x\right)\right),
\end{gathered}
$$

where $b \in E, a \in E^{*}-\{0,1\}$ and $a^{(-1)}$ is inverse to a in the group $<E^{*}-\{0\}, *, 1>$, form a permutation group, which is isomorphic to
the group G.
Proof. By means of Lemma 2 we have for $a \in E^{*} \backslash\{0,1\}$ and $b \in E$:
$\varphi_{b, a}(x)=(b, a, x)=b \cdot\left(a *\left(b^{-1} \cdot x\right)\right)=b \cdot\left(a * b^{-1}\right) \cdot(a * x)=\alpha_{c, a}(x)$,
where

$$
c=b \cdot\left(a * b^{-1}\right)=(b, a, 0)
$$

In a such way it can be represented all the permutations $\alpha_{b, a}$ from G, except the permutations like $\alpha_{b, 1}$. Further we obtain

$$
\begin{aligned}
& \psi_{b, a}(x)=\left(b, a,\left(0, a^{(-1)}, x\right)\right) \\
& \quad=b \cdot\left(a *\left(b^{-1} \cdot\left(a^{(-1)} * x\right)\right)\right)=b \cdot\left(a * b^{-1}\right) \cdot x=\alpha_{c, 1}(x)
\end{aligned}
$$

where

$$
c=b \cdot\left(a * b^{-1}\right)=(b, a, 0)
$$

In a such way it can be represented all the permutations from G like $\alpha_{b, 1}$. It means that the set of permutations like $\varphi_{b, a}$ and $\psi_{b, a}$ $\left(a \in E^{*} \backslash\{0,1\}\right.$ and $\left.b \in E\right)$ coincides with the set of permutations $\alpha_{b, a}$. By the help of Lemma 2 we obtain that this set of permutations forms a group, which is isomorphic to the group G.

The mappings like $\varphi_{b, a}$ and $\psi_{b, a}$ are called right cell permutations of the ternar (x, t, y) (cf. [7]).

It is evident, that the analogous symmetric constructions can be done for the ternar $[x, t, y]$ too.

4. One sided S-systems of operations, whose cell permutations forms a group

In this paragraph the set E may be as finite as infinite.
Let $A_{0}(x, y), A_{1}(x, y), \ldots, A_{m}(x, y), \ldots$ be a collection of binary operations on some set $E\left(E^{*}=\{0,1, \ldots, m, \ldots\}\right.$ is the set of indexes of th operations $A_{i}(x, y)$, and moreover, $E^{*} \subseteq E$), and let this collection forms a right S-system of indempotent quasigroups $A_{1}(x, y), \quad i \neq 0,1$, i.e.

$$
A_{0}(x, y)=x, \quad A_{1}(x, y)=y, \quad A_{i}(x, x)=x
$$

$$
\begin{equation*}
\left(A_{a} \circ A_{b}\right)(x, y)=A_{a}\left(x, A_{b}(x, y)\right)=A_{c}(x, y) \tag{4}
\end{equation*}
$$

for some $c \in E^{*}-\{0\}$, moreover, system $<A_{u}, \circ, A_{1}>$, where $u \neq 0$, is a group. Rewrite (4) as a (partial) ternary operation (x, t, y) :

$$
\begin{gathered}
(,,): E \times E^{*} \times E \rightarrow E, \quad E^{*} \subseteq E, \quad 0,1 \in E, \\
(x, t, y)=A_{t}(x, y)
\end{gathered}
$$

i.e.

$$
\begin{gather*}
(x, 0, y)=x, \quad(x, 1, y)=y \\
\forall a, b \in E^{*}-\{0\}:(x, a,(x, b, y))=(x, c, y) \tag{5}
\end{gather*}
$$

for some $c=c(a, b) \in E^{*}-\{0\}$,

$$
\begin{equation*}
(x, a, x)=x \quad \forall x \in E, \quad \forall a \in E^{*} . \tag{6}
\end{equation*}
$$

It is easy to prove that all operations (x, a, y) are mutually orthogonal for different $a \in E^{*}$. As all the operations (x, a, y) are mutually orthogonal and the identity (6) is true, we obtain that all values $(0, a, 1)$ are different for differenet $a \in E^{*}$. So renumerating the indexes from E^{*} it can obtain the following identity $\left(a \in E^{*}\right)$:

$$
\begin{equation*}
(0, a, 1)=a . \tag{7}
\end{equation*}
$$

Let's define the following operation $(*)$ on the set E^{*} :

$$
\begin{gathered}
(*): E^{*} * E^{*} \rightarrow E^{*} \\
0 * a=a * 0=0 \\
x, y, z \neq 0, \quad x * y=z \Longleftrightarrow(x, a,(x, b, y))=(x, c, y)
\end{gathered}
$$

As a corollary of (4) and (5) we obtain the system $<E^{*}-\{0\}, *, 1>$ is a group. Further we have from (5) when $x=0$ and $y \in E^{*}-\{0\}$:

$$
\begin{equation*}
(0, a,(0, b, y))=(0, a * b, 1), \forall a, b \in E-\{0\} \tag{8}
\end{equation*}
$$

If $y=1$, then we obtain from (8) with the help of (7):

$$
(0, a, b)=(0, a,(0, b, 1))=(0, a * b, 1)=a * b
$$

So $\forall a, b, y \in E^{*}-\{0\}$ we obtain from (8):

$$
(0, a,(0, b, y))=(0, a, b * y)=a *(b * y)=
$$

$$
=(a * b) * y=(0, a * b, y)=(0,(0, a, b), y)
$$

i.e. the operation $x \bullet y=(0, x, y)$ on the set $E^{*}-\{0\}$ is a group, and this operation coincide with the operation $(*)$ from the initial S system.

Lemma 8. The mappings

$$
\begin{gathered}
\varphi_{b, a}(x)=(b, a, x), \quad b \in E, \quad a \in E^{*}-\{0\} \\
\psi_{b, a, d}(x)=\left(b, a,\left(d, a^{(-1)}, x\right)\right), \quad b, d \in E, \quad a \in E^{*}-\{0\},
\end{gathered}
$$

are permutations on the set E.
Proof. We have from (5):

$$
\begin{gathered}
\varphi_{b, 1}(x)=(b, 1, x)=x \\
\psi_{b, a, d}(x)=\left(b, a,\left(b, a^{(-1)}, x\right)\right)=\left(b, a * a^{(-1)}, x\right)=x \\
\psi_{b, 1, d}(x)=(b, 1,(d, 1, x))=x
\end{gathered}
$$

If $a \in E^{*}-\{0\}$, then for any arbitrary b and a the mapping $\varphi_{b, a}(x)=L_{b}^{(a)}(x)$ is a left translation in the quasigroup (x, a, y) with respect to the element b, i.e. it is a permutation. If $a \in E^{*}-\{0,1\}$, then for any arbitrary b, a and d we have:

$$
\psi_{b, a, d}(x)=L_{b}^{(a)} L_{d}^{(a(-1)}(x)
$$

i.e. the mapping $\psi_{b, a, d}$ is a composition of two translations: $L_{b}^{(a)}$ in the quasigroup (x, a, y) and $L_{d}^{\left(a^{(-1)}\right)}$ in the quasigroup $\left(x, a^{(-1)}, y\right)$; so it is a permutation too.

Lemma 9. The following statements are true:

1) permutation $\varphi_{b, a}\left(b \in E, a \in E^{*}-\{0,1\}\right)$ has one and only one fixed element b,
2) permutation $\psi_{b, a, d}\left(b, d \in E, \quad a \in E^{*}-\{0,1\}\right)$ is a fixed-pointfree permutation, if $b \neq d$,
3) the set of permutations
$T=\left\{\psi_{b, a_{0}, 0}: b \in E, \quad a_{0}\right.$ is a fixed element from $\left.E^{*}-\{0,1\}\right\}$ is transitive on the set E.

Proof. 1) We have

$$
\varphi_{b, a}(b)=(b, a, b)=b .
$$

Let's assume there exists an element $x_{0} \in E, x_{0} \neq b$ such that

$$
\varphi_{b, a}\left(x_{0}\right)=x_{0} .
$$

Then we obtain

$$
\left(b, a, x_{0}\right)=x_{0} .
$$

But it is evident that

$$
\left(x_{0}, a, x_{0}\right)=x_{0} .
$$

As the operation (x, a, y) is a quasigroup and $x_{o} \neq b$ we obtain a contradiction between the last two equalities. So

$$
\varphi_{b, a}(x) \neq x
$$

for any $x \in E-\{b\}$.
2) Let's assume there exists an element $x_{0} \in E$ such that $b \neq d$ and

$$
\psi_{b, a, d}\left(x_{0}\right)=x_{0},
$$

i.e.

$$
\left(b, a,\left(d, a^{(-1)}, x_{0}\right)\right)=x_{0} .
$$

Then we obtain with the help of (5)

$$
\begin{gathered}
\left(b, a^{(-1)}, x_{0}\right)=\left(b, a^{(-1)},\left(b, a,\left(d, a^{(-1)}, x_{0}\right)\right)\right)= \\
=\left(b, a^{(-1)} * a,\left(d, a^{(-1)}, x_{0}\right)\right)=\left(b, 1,\left(d, a^{(-1)}, x_{0}\right)\right)= \\
=\left(d, a^{(-1)}, x_{0}\right)
\end{gathered}
$$

i.e. $b=d$ (because the operation $\left(x, a^{(-1)}, y\right)$ is a quasigroup when $a \neq 0,1)$. We obtain a contradiction; so if $b \neq d$, then $\varphi_{b, a, d}(x) \neq x$ for any $x \in E$.
3) Let a_{0} be an arbitrary element from $E^{*}-\{0,1\}$. We have for an arbitrary fixed element $c \in E$:

$$
\varphi_{t, a_{0}, 0}(c)=\left(t, a_{0},\left(0, a_{0}^{(-1)}, c\right)\right)=\left(t, a_{0}, a_{0}^{(-1)} * c\right)=R_{a_{0}^{(-1)} * c}^{\left(a_{0}\right)}(t)
$$

where $R_{b}^{(a)}$ denotes the right translation in the quasigroup (x, a, y) with respect to the element $b \in E$. As the mapping $R_{a_{0}^{(-1)} * c}^{\left(a_{0}\right)}$ is a permutation on the set E, so for any $c, d \in E$ there exists an element
$t_{0} \in E$ such that we have

$$
\psi_{t_{0}, a_{0}, 0}(c)=R_{a_{0}^{(-1)} * c}^{\left(a_{0}\right)}\left(t_{0}\right)=d
$$

i.e. the set T is a transitive set of permutations on E.

Lemma 10. Let permutations $\varphi_{b, a}$ and $\psi_{b, a, d}$ where $b, d \in E, a \in$ $\left.E^{*}-\{0\}\right)$, form a group G under the natural product of permutations. Then G is a Frobenius group.

Proof is an easy corollary of Lemma 9.

Lemma 11. Let the set E be a finite one. If the conditions of Lemma 10 take place, then the set of fixed-point-free permutations $T=\left\{\psi_{b, a_{0}, 0}: b \in E\right.$, is any fixed element from $\left.E^{*}-\{0,1\}\right\}$ with the identity permutation id $=\psi_{0, a_{0}, 0}$ is a normal subgroup in the Frobenius group G.

Proof. Let the conditions of Lemma hold. Then G is a finite Frobenius group of permutations of degree n, where $n=|E|$. It is easy to show that the group G contains exactly $n-1$ fixed-point-free permutations (see [4]). As the set T contains exactly $n-1$ different fixed-point-free permutations (see Lemma 9), so T contains all the fixed-point-free permutations of group G.

Let's denote

$$
H_{a}=S t_{a}(G), \quad a \in E
$$

As the set T is a transitive set of permutations on E, so T is a left transversal in the group G to its subgroup H_{a} for any $a \in E$. So we have

$$
t_{i}^{-1} t_{j} \notin H_{a} \quad \forall i \neq j
$$

Then we obtain that $t_{i}^{-1} t_{j}$ is a fixed-point-free permutation, i.e.

$$
t_{i}^{-1} t_{j}=t_{k}
$$

for some element $t_{k} \in T$, because the set T contains all the fixed-pointfree permutations of the group G. So all fixed-point-free permutations of the group G with the identity permutation $i d$ form a group which
is a normal subgroup of the group G.

By means of Lemmas 10 and 11 we obtain that there exist normal subgroups, consisting from fixed-point-free permutations and the identity permutation, in the finite Frobenius groups, which are groups of cell permutations of the right S-system.

Further we will demonstrate one more method of definition of the operations (x, a, y) by an arbitrary Frobenius group (that method is different from the method described in the part 3; moreover, that method does not use the fact of existing a normal subgroup in the Frobenius group and is independent for the cardinality of the set E.

Let G be an arbitrary Frobenius group of permutations on some set E and 0,1 be two distinct distinguished elements from E. As the group G is transitive on the set E, then there exists a set of n permutations $P=\left\{\sigma_{x}\right\}_{x \in E}$ such that $\sigma_{x}(0)=x \quad \forall x \in E$, and $\sigma_{0}=i d$. Let's define the operation (x, a, y) as follows:

$$
(x, 0, y)=x, \quad(x, 1, y)=y
$$

$\forall a \in E^{*}, \quad a \neq 0,1, \quad(x, a, y)=z \Longleftrightarrow z=\alpha(y)$,
where $\alpha \in G, \quad \alpha(x)=x, \quad \beta(1)=\left(\sigma_{x}^{-1} \alpha \sigma_{x}\right)(1)=a$.
This definition is correct, because there exist an unique permutation $h=H_{0}=S t_{0}(G)$ satisfying the condition $h(1)=a$ and so there exist an unique permutation $\alpha \in G$ satisfying the condition (9).

Lemma 12. The operation (x, a, y) (defined by (9)) satisfies the following properties:

1) $(0, a, 1)=a, \quad(x, a, x)=x$,
2) $\forall a, b \in E^{*}:(x, a,(x, b, y))=(x, c, y)$ for some $c=c(a, b) \in E^{*}$.

Proof. 1) We have

$$
(0, a, 1)=u \Longleftrightarrow\left\{\begin{array}{l}
u=\alpha(1) \\
\alpha(0)=0 \\
\beta(1)=a
\end{array}\right.
$$

which implies $\sigma=i d, \alpha=\beta$, and in the consequence $u=\alpha(1)=$ $\beta(1)=a$, i.e. $\quad(0, a, 1)=a$.

Similarly

$$
(x, a, x)=u \Leftrightarrow\left\{\begin{array}{l}
u=\alpha(x) \\
\alpha(x)=x \\
\beta(1)=a
\end{array} \Rightarrow u=\alpha(x)=x\right.
$$

i.e. $(x, a, x)=x$.
2). If $a=0$, then we have

$$
(x, a,(x, b, y))=x=(x, 0, y) \Rightarrow c=c(0, b)=0
$$

If $b=0$, then we have

$$
(x, a,(x, b, y))=(x, a, x)=x=(x, 0, y) \Rightarrow c=c(a, 0)=0 .
$$

Let $a, b \neq 0$. Then we obtain

$$
\begin{aligned}
(x, a,(x, b, y))=u \Longleftrightarrow\left\{\begin{aligned}
(x, a, v)=u \\
(x, b, y)=v
\end{aligned}\right. & \Longleftrightarrow \\
& \Longleftrightarrow\left\{\begin{array}{rr}
\alpha(x)=x, & \alpha(v)=u \\
\sigma_{x}^{-1} \alpha \sigma_{x}=h_{a}, & h_{a}(1)=a \\
\alpha_{1}(x)=x, & \alpha_{1}(y)=v \\
\sigma_{x}^{-1} \alpha_{1} \sigma_{x}=h_{b}, & h_{b}(1)=b
\end{array} \Longleftrightarrow\right. \\
\Longleftrightarrow & \Longleftrightarrow\left\{\begin{array}{l}
u=\alpha(v)=\alpha \alpha_{1}(y) \\
\alpha \alpha_{1}(x)=\alpha(x)=x \\
\sigma_{x}^{-1} \alpha \alpha_{1} \sigma_{x}=\sigma_{x}^{-1} \alpha \sigma_{x} \sigma_{x}^{-1} \alpha_{1} \sigma_{x}=h_{a} h_{b}=h_{c} \\
c=h_{c}(1)=h_{a} h_{b}(1)=h_{a}(b)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
u=\gamma(y)=(c, x, y)=\left(x, h_{a}(b), y\right) \\
\gamma=\alpha \alpha_{1} \\
\gamma(x)=x \\
\sigma_{x}^{-1} \gamma \sigma_{x}=h_{c}
\end{array}\right.
\end{aligned}
$$

i.e.

$$
(x, a,(x, b, y))=(x, c, y)
$$

So we have demonstrated that it can define a right S-system of idempotent operations (x, a, y) over an arbitrary Frobenius group G with the help of equalities (9).

Moreover, it can define the left S-system of idempotent operations
$[x, a, y]$ over an arbitrary Frobenius group G changing symmetrically the definitive equalities (9).

References

[1] V. D. Belousov: Systems of quasigroups with generalized identities, (Russian), Uspiehi Mat. nauk 20 (1965), 75 - 146.
[2] V. D. Belousov: Algebraic nets and quasigroups (Russian), "Shtiintsa", Khishinev 1971.
[3] G. Frobenius: Über primitive Gruppen des Grades n under Classe n-1, S. B. Akad. Berlin, 1902, 455 - 459.
[4] M. Hall: Groups Theory, (Russian), "Nauka", Moscow 1962.
[5] Kurovskaya notebook, 11th edition, Novosibirsk 1992.
[6] E. A. Kuznetsov: Transversal in groups. 1.Elementary properties, Quasigroups and related systems 1 (1994), $22-42$.
[7] E. A. Kuznetsov: Sharply 2-transitive permutation groups I., Quasigroups and related systems, 2 (1995), $83-100$.
[8] H. Wielandt: Finite permutation groups, Acad. Press, N.Y., 1964.

Department of Quasigroups Theory Received November 25, 1995
Institute of Mathematics
Academy of Sciences of Moldova
Academiei str. 5
277028 Kishinau
MOLDOVA

On loops with universal elasticity

Paraskovya N. Syrbu

Abstract

A property P of a loop $Q(\cdot)$ is called universal for $Q(\cdot)$ if it holds in every loop isotopic to $Q(\cdot)([1,2])$. Loops with universal law of elasticity are considered in this article. Necessary and sufficient conditions for a commutative $I P$-loop with universal elasticity to be a Moufang loop are proved.

Loops with universal law of elasticity $x \cdot y x=x y \cdot x$ were mentioned in [2] and partially studied in [6]. It is our purpose in this paper to continue the study of algebraic properties of loops with universal elasticity. It was shown in [6] that the identity of elasticity $x \cdot y x=x y \cdot x$ is universal for a loop $Q(\cdot)$ if and only if one of identities

$$
\begin{equation*}
x \backslash[(x y / b)(a \backslash x b)]=a \backslash[(a y / b)(a \backslash x b)] \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
[(b x / a)(b \backslash y x)] / x=[(b x / a)(b \backslash y a)] / a \tag{2}
\end{equation*}
$$

holds in the primitive loop $Q(\cdot, /, \backslash)$. So, the identities (1) and (2) are equivalent in $Q(\cdot, /, \backslash)$. More, they are symmetric (dual). If $Q(\cdot)$ is an $I P$-loop then each of the identities (1) and (2) is equivalent in $Q(\cdot)$ to the following identity:

$$
\begin{equation*}
[x(a z \cdot y) \cdot z x] a=x[a z \cdot(y \cdot z x) a], \tag{3}
\end{equation*}
$$

which is universal for a loop $Q(\cdot)$ if and only if $Q(\cdot)$ is a Moufang loop.

Keywords: quasigroup, loop, Moufang loop, isotopy, elasticity

It is clear that each Moufang loop is a loop with universal elasticity. More, the class of Moufang loops is strictly contained in that of loops with universal elasticity. The following examples give loops with universal elasticity which are not Moufang.

Example 1. Let $R(+, \cdot)$ be the ring of integers modulo 2 and $Q=R^{3}$. Define on Q the operation (\cdot) as follows:

$$
(i, j, k) \cdot(p, q, r)=(i+p, j+q, k+r+j p+j p q+i j q) .
$$

$Q(\cdot)$ is a loop with universal elasticity of order 8 and exponent 4 (with $(0,0,0)$ as a neutral element).

Example 2. Let $Q(+, \cdot)$ be the ring from Example 1 and $Q=R^{3}$. Define on Q the operation (•):

$$
(i, j, k) \cdot(p, q, r)=(i+p, j+q, k+r+i j p+i p q) .
$$

Then $Q(\cdot)$ is a loop with universal elasticity (not Moufang).

In what follows will be useful the identity

$$
\begin{equation*}
(b x \cdot a y) x \cdot a b=b x \cdot a(y x \cdot a b), \tag{4}
\end{equation*}
$$

which is equivalent to (3). Indeed, making the substitutions: $a \rightarrow a z^{-1}$, $x \rightarrow z^{-1} x$ and after this $z^{-1} \rightarrow b$ in (3), we find the identity (4), and analogously, from (4) follows (3).
I. As it was shown in [6], loops with universal elasticity are strong power-associative (i.e. each element generates an associative subloop).

Let $Q(\circ)$ be a strong power-associative loop. Define a new loop $Q(\cdot)$ as follows:

$$
x \cdot y=x / / y^{(-1)}
$$

where " / /" is the left division in $Q(\circ), \quad y \cdot y^{(-1)}=1,1$ is the neutral element of $Q(\cdot)$. Then

$$
x \circ y=x / y^{(-1)},
$$

where " $/$ " is the left division in $Q(\cdot)$.

Proposition 1.

i) $1=e$, where e is the unit of $Q(\circ)$,
ii) if $x \circ x^{-1}=e$, then $x^{-1}=x^{(-1)}={ }^{(-1)} x$, where ${ }^{-1} x \cdot x=x \cdot x^{(-1)}=1$ for every x in $Q(\cdot)$.

Proof. i) Indeed, as

$$
x=x \circ e=x / e^{(-1)}
$$

we have $x=x \cdot e^{(-1)}$. So $e^{(-1)}=1$, or $e=1$.
ii) $Q(\circ)$ is strong power-associative and

$$
e=x^{-1} \circ x=x^{-1} / x^{(-1)}
$$

so

$$
x^{-1}=e x^{(-1)}=x^{(-1)}
$$

Now

$$
{ }^{(-1)} x \cdot x=e \Longrightarrow{ }^{(-1)} x=e / x=e \circ x^{-1}=x^{-1} .
$$

Proposition 2. $Q(\cdot)$ is a LIP-loop if and only if the permutation $I: x \rightarrow x^{-1}$ is an antiautomorphism of $Q(\mathrm{o})$.

Proof. Let $Q(\cdot)$ be a $L I P$-loop, i.e. $x^{-1} \cdot x y=y$ for every x, y in Q hence $y / x y=x^{-1}$. Making the substitution $x \rightarrow x / y$ and using the strong power-associativity of $Q(\circ)$, we get $y / x=(x / y)^{-1}$, i.e.

$$
y \circ x^{-1}=\left(x \circ y^{-1}\right)^{-1} \quad \text { or } \quad y^{-1} \circ x^{-1}=(x \circ y)^{-1} .
$$

The proof is reversible.

Remind that B_{3}-loops have been considered in [3, 4] by A.Gwaramija. A loop $Q(\cdot)$ is called a B_{3}-loop (or a medial Bol loop) if $Q(\cdot, /, \backslash$) satisfies the identity

$$
x(y z \backslash x)=(x / z)(y \backslash x) .
$$

Mention that the loops from Examples 1 and 2 are B_{3}-loops as well. We have below another proof of a Gwaramija's result.

Corollary. (A. Gwaramija [4]) If $Q(\cdot)$ is a left Bol loop, then $Q(\circ)$ is a B_{3}-loop.

Proof. It is known ([2]) that a B_{3}-loop is a loop for which the identity

$$
(x y)^{-1}=y^{-1} x^{-1}
$$

is universal and a left Bol loop is a loop with universal LIP-property. Let $Q(\circ)$ be a B_{3}-loop and consider an arbitrary principal isotope $(*)=(\circ)^{(\alpha, \beta, \epsilon)}$ of $Q(\circ)$. If $Q(\circ)$ is a B_{3}-loop, then $I(x * y)=I y * I x$, or
$I(\alpha x / I \beta y)=I(\alpha x \circ \beta y)=I(x * y)=I y * I x=\alpha I y \circ \beta I x=\alpha I y / I \beta x$.
So we get

$$
I(\alpha x / I \beta y)=\alpha I y / I \beta I x,
$$

or, making the substitution $x \rightarrow \alpha^{-1} x$ and after that $x \rightarrow x \cdot I \beta y$ in the last equality, we obtain:

$$
\begin{aligned}
& I x=\alpha I y /\left[I \beta I \alpha^{-1}(x \cdot I \beta y)\right], \\
& \alpha I y=I x \cdot\left[I \beta I \alpha^{-1}(x \cdot I \beta y)\right],
\end{aligned}
$$

or finally,

$$
y=I x \bullet(x \bullet y),
$$

where $(\bullet)=(\cdot)^{\left(\epsilon, I \beta I \alpha^{-1}, \epsilon\right)}$. So, if $Q(\cdot)$ is a left Bol loop, then each its principal isotope (\bullet) (defined above) has the LIP-property and this fact implies that every principal isotope $(*)=(\circ)^{(\alpha, \beta, \epsilon)}$ of $Q(\circ)$ satisfies the identity $I(x * y)=I y * I x$.

Proposition 3. $Q(\circ)$ is a RIP-loop if and only if $Q(\cdot)$ is a RIP-loop.
Proof. Let $Q(\circ)$ be a $R I P$-loop. If by "//" is denoted the left division in $Q(\circ)$, then we have $x / / y=x y^{-1}$. So

$$
(y \circ x) \circ x^{-1}=y \Longrightarrow y / / x^{-1}=y \circ x \Longrightarrow y x=y \circ x
$$

for every x, y in Q. Conversely, if $y x \cdot x^{-1}=y$ for every x, y in Q then $y / x^{-1}=u \cdot x$ or $y \circ x=y \cdot x$. So the operations (\cdot) and (o) coincide in both cases.

Let $Q(\circ)$ be a loop with universal elasticity and $Q(\cdot)$ be the loop defined in previous propositions: $x \circ y=x / y^{-1}$ for every $x, y \in Q$ (where (/) is the left division for (\cdot)).

Proposition 4. $Q(\cdot)$ is left alternative if and only if the identity

$$
\left(x \circ y \circ x^{-1}\right)^{2}=(x \circ y) \circ\left(y \circ x^{-1}\right)
$$

holds in $Q(\circ)$.
Proof. If $Q(\circ)$ is left alternative, i.e. $x \cdot x y=x^{2} \cdot y$, for every x, y in Q, then the equality

$$
x / /\left(x / / y^{-1}\right)^{-1}=\left(x / / x^{-1}\right) / / y^{-1}
$$

is true for every x, y in Q as $x / / y=x y^{-1}$. Now using $x / / x^{-1}=x^{2}$ in the previous equality $(Q(\circ)$ is strong power-associative) and replacing x by $x \circ y^{-1}$ we get:

$$
\left(x \circ y^{-1}\right) / / x^{-1}=\left(x \circ y^{-1}\right)^{2} / / y^{-1}
$$

or

$$
\begin{equation*}
\left[\left(x \circ y^{-1}\right) / / x^{-1}\right] \circ y^{-1}=\left(x \circ y^{-1}\right)^{2} . \tag{5}
\end{equation*}
$$

But $Q(\circ)$ is a loop with universal elasticity, so it satisfies the identity

$$
(x \circ y) \circ x^{-1}=x \circ\left(y \circ x^{-1}\right)
$$

(which is a corollary of (1) for $x=b=e$). From the last identity (using $y \rightarrow y^{-1} / / x^{-1}$) we get

$$
\left(x \circ y^{-1}\right) / / x^{-1}=x \circ\left(y^{-1} / / x^{-1}\right)
$$

and using this identity in (5) it follows

$$
\left[x \circ\left(y^{-1} / / x^{-1}\right)\right] \circ y^{-1}=\left(x \circ y^{-1}\right)^{2},
$$

or after replacing y^{-1} by $y \circ x^{-1}$ in the last equality:

$$
(x \circ y) \circ\left(y \circ x^{-1}\right)=\left(x \circ y \circ x^{-1}\right)^{2} .
$$

The proof is reversible.
II. An element a of a loop $Q(\cdot)$ is called Moufang, if for every $x, y \in Q$ we have $a x \cdot y a=a(x y \cdot a)$ ([5]). Denote

$$
M=\{a \in Q: a x \cdot y a=a(x y \cdot a) \forall x, y \in Q\} .
$$

The Moufang center of a loop is defined as the set of all elements c such that

$$
c^{2} \cdot x y=c x \cdot c y
$$

for all $x, y \in Q$. It is known ([5]), that the Moufang center of a Moufang loop $Q(\cdot)$ is a commutative subloop of $Q(\cdot)$. More, if N is the nucleus, C is the Moufang center and Z is the center of a Moufang loop, then $N \cap C=Z$. For an arbitrary loop $Q(\cdot)$ the fact that $c \in C$ does not necessarily imply $c x=x c$.

Proposition 5. The Moufang center $C(\cdot)$ of an IP-loop with universal elasticity $Q(\cdot)$ is a commutative subloop of $Q(\cdot)$.

Proof. Let $a \in C$ and put $y=e$ in $a^{2} \cdot x y=a x \cdot a y$, where e is the unit of $Q(\cdot)$. We get

$$
a^{2} x=a^{2}(x e)=a x \cdot a=a \cdot x a .
$$

So

$$
a^{2} \cdot x=a \cdot a x=a \cdot x a
$$

and $a x=x a$ for every $x \in Q$. Here was used the law of left alternativity which holds in $I P$-loops with universal elasticity as was proved in [6]. We shall prove below that $C(\cdot)$ is a subloop of $Q(\cdot)$. If $a \in C$ then replacing x by $a u$ and y by $a v$ in the equality $a^{2} \cdot x y=a x \cdot a y$ we get

$$
a^{2}(a u \cdot a v)=a^{2} u \cdot a^{2} v, \quad \text { or } \quad a^{4} \cdot u v=a^{2} u \cdot a^{2} v
$$

for every $u, v \in Q$. Hence $a^{2} \in C$. Let $a, b \in C$. Then

$$
a^{4}\left(b^{2} \cdot x y\right)=a^{4}(b x \cdot b y)=\left(a^{2} \cdot b x\right)\left(a^{2} \cdot b y\right)=(a b \cdot a x)(a b \cdot a y),
$$

for every $x, y \in Q$. But

$$
a^{4}\left(b^{2} \cdot x y\right)=a^{2} b^{2} \cdot\left(a^{2} \cdot x y\right)=a^{2} b^{2} \cdot(a x \cdot a y)
$$

for every $x, y \in Q$ and

$$
a^{2} b^{2}=a^{2} \cdot b b=a b \cdot a b=(a b)^{2}
$$

so we get

$$
(a b)^{2}(a x \cdot a y)=(a b \cdot a x)(a b \cdot a y)
$$

for every $x, y \in Q$, i.e. $a b \in C$. If $a \in C$ then we get

$$
a^{-2} \cdot u v=a^{-1} u \cdot a^{-1} v
$$

after replacing x by $a^{-1} u$ and y by $a^{-1} v$ in $a^{2} \cdot x y=a x \cdot a y$. So, $a^{-1} \in C$ and $C(\cdot)$ is a commutative subloop of $Q(\cdot)$.

Corollary. If $Q(\cdot)$ is an IP-loop with universal elasticity then $C \leq M \leq Q$.

The following proposition contains some properties of the Moufang elements in $I P$-loops with universal elasticity.

Proposition 6. Let $Q(\cdot)$ be an IP-loop with universal elasticity. Then $a \in M$ if and only if at least one of the equalities
i) $(a x \cdot y) x=a \cdot x y x$,
ii) $a x a \cdot y=a(x \cdot a y)$,
iii) $x(y \cdot x a)=x y x \cdot a$,
iv) $x \cdot a y a=(x a \cdot y) a$,
v) $x y \cdot a x=x \cdot y a \cdot x$,
vi) $x a \cdot y x=x \cdot a y \cdot x$
holds for every $x, y \in Q$.
Proof. To prove this proposition we need the following identities which are corollaries of (3) and (4):
(a) $(x \cdot a y \cdot x) a=x(a \cdot y x \cdot a)$,
(b) $\quad(u v \cdot z u) v=u(v z \cdot u v)$,
(c) $(v \cdot u y) \cdot u v=v[u(y \cdot u v)]$,
(d) $v u \cdot(y u \cdot v)=[(v u \cdot y) u] v$.

Indeed, the identity (a) can be obtained from (3) taking $z=e$; the identity (b) is a corollary of (4) for $x \rightarrow b^{-1} u, a \rightarrow v b^{-1}, y=b$ and
after this $b^{-1}=z$; the identity (c) was obtained replacing x by z^{-1}, a by $u z^{-1}$ and after that z^{-1} by v in (3); (c) and (d) are symmetric. Consider $c \in M$ and substitute x by c in (a):

$$
(c \cdot a y \cdot c) a=c(a \cdot y c \cdot a) .
$$

Hence

$$
(c a \cdot y c) a=c(a \cdot y c \cdot a)
$$

or, replacing $y c$ by y :

$$
(c a \cdot y) a=c \cdot a y a
$$

for every $a, y \in Q$, so i) is proved.
Analogously, taking $u=c$ in (b) we get: $c z c \cdot v=c(x \cdot c v)$ for every $v, z \in Q$, i.e. ii) holds. For $a=c$ in (a) we have:

$$
(x \cdot c y \cdot x) c=x(c \cdot y x \cdot c)=x(c y \cdot x c),
$$

so

$$
(x \cdot c y \cdot x) c=x(c y \cdot x c),
$$

and after replacing $c y$ by $y: x y x \cdot c=x(y \cdot x c)$ for every $x, y \in Q$, i.e. iii) is proved.

Taking $v=c$ in (b) we get

$$
(u c \cdot z u) c=u(c z \cdot u c)=u(c \cdot z u \cdot c),
$$

so

$$
(u c \cdot z u) c=u(c \cdot z u \cdot c)
$$

or, replacing $z u$ by $z:(u c \cdot x) c=u \cdot c z c$ for every $u, z \in Q$, i.e. iv) is proved.

Substitute now u by c in (c) and using ii) we get:

$$
(v \cdot c y) c v=v[c(y \cdot c v)]=v(c y c \cdot v),
$$

hence

$$
(v \cdot c y) \cdot c v=v(c y c \cdot v)
$$

or $v z \cdot c v=v(z c \cdot v)$, where by z was denoted $c y$, i.e. we get v$)$. Analogously, taking $u=c$ in (d) we have:

$$
v c \cdot(y c \cdot v)=[(v c \cdot y) c] v=(v \cdot c y c) v
$$

so

$$
v c \cdot(y c \cdot v)=(v \cdot c y c) v
$$

or (putting $y c=z) \quad v c \cdot z v=(v \cdot c z) v$, for every $v, z \in Q$, i.e. vi) is proved. In each of this cases the proof is reversible, so Proposition 6
is proved.

A bijection γ on Q is called a right (left) pseudo-automorphism of a quasigroup $Q(\cdot)$ if there exists at least one element $c \in Q$ such that

$$
\gamma x \cdot(\gamma y \cdot c)=\gamma(x y) \cdot c, \quad(c \cdot \gamma x) \gamma y=c \cdot \gamma(x y)
$$

for every $x, y \in Q$. The element c is called a companion of $\gamma([1,5])$. It is known ([1]), that every companion of a pseudo-automorphism in $I P$-loops is a Moufang element. Let $Q(\cdot)$ be a loop with the law of elasticity. A bijection Θ on Q is called a semiautomorphism of $Q(\cdot)$, if

$$
\Theta(x y x)=\Theta x \cdot \Theta y \cdot \Theta x
$$

for every $x, y \in Q$ and $\Theta e=e$. It is known ([1]) that every pseudoautomorphism of a Moufang loop is its semiautomorphism.

Proposition 7. Any pseudo-automorphism of an IP-loop $Q(\cdot)$ with universal elasticity is its semiautomorphism.

Proof. Let φ be a pseudo-automorphism of a loop $Q(\cdot)$ with universal elasticity and c be a right companion of φ. Since

$$
\varphi(x y) \cdot c=\varphi x \cdot(\varphi y \cdot c)
$$

for every $x, y \in Q$, then

$$
\varphi(x y x) \cdot c=\varphi x \cdot[\varphi(y x) \cdot c]=\varphi x \cdot[\varphi y \cdot(\varphi x \cdot c)]=(\varphi x \cdot \varphi y \cdot \varphi x) c
$$

because c is a Moufang element and so we can apply here iii) from Proposition 6. Hence $\varphi(x y x)=\varphi x \cdot \varphi y \cdot \varphi x$ for every $x, y \in Q$. The proof is analogous in the case when c is a left companion of φ. Note that $\varphi e=e$ for every pseudo-automorphism of an $I P$-loop with universal elasticity. Indeed, such loops are left and right alternative, so taking $x=y=e$ in $\varphi(x y) \cdot c=\varphi x \cdot(\varphi y \cdot c)$, we get $\varphi e \cdot c=(\varphi e)^{2} c$, thus $e=\varphi e$.
III. Let $Q(\cdot)$ be an $I P$-loop with universal elasticity and define on Q the operation $(+)$ by

$$
x+y=x y^{-1} x
$$

for every $x, y \in Q$. Then the groupoid $Q(+)$ is called the core of $Q(\cdot)$.

Remind ([1]) that the core of a Moufang loop $Q(\cdot)$ is a left-distributive groupoid and it is a quasigroup if and only if the mapping $x \rightarrow x^{2}$ is a permutation on Q. For our class of loops an analogous proposition is true.

Proposition 8. The core $Q(+)$ of an IP-loop with universal elasticity is a quasigroup if and only if the mapping $x \rightarrow x^{2}$ is a permutation on Q.

Proof. Let $Q(+)$ be a quasigroup. Then there exists for each $a \in Q$ an unic element $x \in Q$ such that $x+e=a$, where e is the unity of the loop $Q(\cdot)$. So the equation $x e^{-1} x=x^{2}=a$ has an unique solution in $Q(\cdot)$ and consequently, $x \rightarrow x^{2}$ is a permutation on Q.

Conversely, suppose that the mapping $\psi: x \rightarrow x^{2}$ is a permutation on Q. The equation $a+x=b$ where $a, b \in Q$ or $a x^{-1} a=b$ has the unique solution $x=a b^{-1} a$. Consider now the equation $x+a=b$, i.e. $x a^{-1} x=b$, where $a, b \in Q$. The last equation is equivalent to $x a^{-1} x \cdot a^{-1}=b a^{-1}$. Returning to (3) and making the substitution $x=e, y=a$, we get

$$
[(a z \cdot a) z] a=a z \cdot(a z \cdot a)
$$

or, using the alternativity of $Q(\cdot)$,

$$
(a z \cdot a) z \cdot a=(a z)^{2} \cdot a
$$

so by (a) from Proposition 6:

$$
a z a \cdot z=a \cdot z a z=(a z)^{2}
$$

for every $a, z \in Q$. Now the considered equation $x \cdot a^{-1} x a^{-1}=b a^{-1}$ can be represented as follows:

$$
\left(x a^{-1}\right)^{2}=b a^{-1}
$$

and it has an unique solution because ψ is a permutation on Q.

Note that the core of an $I P$-loop with universal elasticity is a groupoid with the law of elasticity. Indeed, using (c),

$$
\begin{aligned}
& (x+y)+x=x y^{-1} x \cdot\left(x^{-1} \cdot x y^{-1} x\right)=x y^{-1} x \cdot y^{-1} x= \\
= & x\left(y^{-1} x\right)^{2}=x\left(y^{-1} x y^{-1} \cdot x\right)=x\left(y x^{-1} y\right)^{-1} x=x+(y+x)
\end{aligned}
$$

for every $x, y \in Q$.
Proposition 9. The core $Q(+)$ of an IP-loop $Q(\cdot)$ with universal elasticity is a left-distributive groupoid if and only if the following identity

$$
\begin{equation*}
x(y \cdot x z x \cdot y) x=x y x \cdot z \cdot x y x \tag{6}
\end{equation*}
$$

holds in $Q(\cdot)$.
Proof. Let $Q(+)$ be a left-distributive groupoid, i.e.

$$
x+(y+z)=(x+y)+(x+z)
$$

or

$$
x \cdot y^{-1} z y^{-1} \cdot x=x y^{-1} x \cdot x^{-1} z x^{-1} \cdot x y^{-1} x .
$$

After replacing y^{-1} by y and z by $x z x$ in the last identity we shall obtain (6).

Corollary 1. ([1]) The core of a Moufang loop is a left-distributive groupoid.

Corollary 2. If $Q(\cdot)$ is a commutative IP-loop with universal elasticity for which the mapping $x \rightarrow x^{2}$ is a bijection, then $Q(\cdot)$ is a commutative Moufang loop if and only if its core $Q(+)$ is a leftdistributive quasigroup.

Proof. Let $Q(+)$ be a left-distributive quasigroup. The identities of alternativity and the identity (d) hold in $Q(\cdot)$ (see [6]). So, from (6) we have:

$$
x^{2}\left(y^{2} \cdot x^{2} z\right)=\left(x^{2} y\right)^{2} z=x^{4} y^{2} \cdot z=x^{2} y^{2} x^{2} \cdot z
$$

For $x^{2} \rightarrow x$ and $y^{2} \rightarrow y$ in the last identity we get

$$
x(y \cdot x z)=x y x \cdot z,
$$

thus $Q(\cdot)$ is a commutative Moufang loop. The converse statement is proved in [1].

Proposition 10. The core $Q(+)$ of an IP-loop $Q(\cdot)$ with universal elasticity is right-distributive if and only if the identity

$$
\begin{equation*}
x y x \cdot z \cdot x y x=x z x \cdot y z^{-1} y \cdot x z x \tag{7}
\end{equation*}
$$

holds in $Q(\cdot)$.
Proof follows from the law of right-distributivity.

Corollary. Let a quasigroup $Q(+)$ be the left-distributive core of an IP-loop with universal elasticity $Q(\cdot)$. Then $Q(+)$ is right-distributive if and only if the identity

$$
\begin{equation*}
x y^{2} x=y x^{2} y \tag{8}
\end{equation*}
$$

holds in $Q(\cdot)$.
Proof. Let $Q(\cdot)$ be a loop with the identity (8). For $y \rightarrow z y z$ in (8) we get

$$
x(z y z)^{2} x=z y z \cdot x^{2} \cdot z y z
$$

or, using the left-distributivity of $Q(+)$ and (8):

$$
x(z y z)^{2} x=z\left(y \cdot z x^{2} z \cdot y\right) z .
$$

Now we shall apply (8) to the last identity:

$$
x(z y z)^{2} x=z\left(y \cdot x z^{2} x \cdot y\right) z,
$$

or, after replacing $y \rightarrow z^{-1} y z^{-1}$:

$$
x y^{2} x=z\left(z^{-1} y z^{-1} \cdot x z^{2} x \cdot z^{-1} y z^{-1}\right) z
$$

So

$$
z^{-1} \cdot x y^{2} x \cdot z^{-1}=z^{-1} y z^{-1} \cdot x z^{2} x \cdot z^{-1} y z^{-1}
$$

and, making the substitutions $y \rightarrow y^{2}, z \rightarrow z^{-1}$ in the last identity and using (8),

$$
z \cdot y^{2} x^{2} y^{2} \cdot z=y z^{2} y \cdot x z^{-2} x \cdot y z^{2} y
$$

But $Q(+)$ is a left-distributive groupoid, hence taking $z=e$ in (6), we get

$$
x \cdot y x^{2} y \cdot x=(x y x)^{2} .
$$

Thus from (8) and the last identity it follows

$$
x \cdot x y^{2} x \cdot x=x^{2} y^{2} x^{2}=(x y x)^{2}
$$

$\left(\left(x^{p} y\right) x^{q}=x^{p}\left(y x^{q}\right)\right.$ in all IP-loops) and from these identities, using (8), we get

$$
z(y x y)^{2} z=y z^{2} y \cdot x z^{-2} x \cdot y z^{2} y
$$

or

$$
y x y \cdot z^{2} \cdot y x y=y z^{2} y \cdot x z^{-2} x \cdot y z^{2} y
$$

Making the substitution $z^{2} \rightarrow z$ in the last identity, we obtain

$$
y x y \cdot z \cdot y x y=y z y \cdot x z^{-1} x \cdot y z y
$$

i.e. $Q(+)$ is right-distributive.

Conversely, let $Q(+)$ be a right-distributive and left-distributive groupoid. Then the identities (6) and (7) hold in $Q(\cdot)$. Hence

$$
x(y \cdot x z x \cdot y) x=x z x \cdot y z^{-1} y \cdot x z x
$$

and for $z=e$

$$
x \cdot y x^{2} y \cdot x=x^{2} y^{2} x^{2}=x \cdot x y^{2} x \cdot x
$$

Thus $y z^{2} y=x y^{2} x$, which completes the proof.

References

[1] V. D. Belousov: Fundations of the theory of quasigroups and loops, (Russian), "Nauka", Moscow 1967.
[2] V. D. Belousov: Algebraic nets and quasigroups (Russian), "Shtiintsa", Khishinev 1976.
[3] A. A. Gwaramija: To the theory of B_{3}-loops, Trudi Gruz. In-ta Subtrop. Hoz-va, 13 (1969), 653 - 656.
[4] A. A. Gwaramija: About one class of loops, (Russian), Uchen. Zapiski 375 (1978), $25-34$.
[5] H. O. Plugfelder, Quasigroups and loops: Introduction, Helderman Verlag, Berlin, 1990.
[6] P. N. Syrbu: Loops with universal elasticity, Quasigroups and Rel. Systems 1 (1994), 57-65.

Department of Quasigroups Theory Received November 15, 1995
Institute of Mathematics
Academy of Sciences of Moldova
Academiei str. 5
277028 Kishinau
MOLDOVA

On topological n-ary semigroups

Wiesław A. Dudek and Vladimir V. Mukhin

Abstract

In this note some we describe topologies on n-ary semigroups induced by families of deviations.

1. Introduction

Topological n-groups were investigated by many authors. For example, Cupona proved in [5] that each topological n-group can be embedded into a topological group. Žižović described topological medial n-groups (cf. [20]), topological n-groups with the Baire property (cf. [21]) and proved a topological analog of Hosszú theorem (cf. [19]). Crombez and Six described a fundamental system of open neighborhoods of a fixed element (cf. [4]). Endres proved that every topological n-group is homeomorphic to some canonical topological group (cf. [9]). Topologies induced by norms are considered by Boujuf and Mukhin (cf. [2]). Balci Dervis (cf. [1]) described free topological n-groups. In [12] is described a method of embedding topological abelian n-semigroups in topological n-group.

On the other hand, we known that topological n-semigroups have many properties which are not true for binary semigroups.

In this paper we investigate topologies on n-semigroups and $n-$ groups determined by families of left invariant deviations. We describe

Keywords: n-ary semigroup, n-ary group, topological semigroup, deviation
the conditions under which such topology is compatible with the $n-$ ary operation. We find also the necessary and sufficient conditions for the topologically embedding a semiabelian topological n-semigroup in a topological n-group.

2. Preliminaries

Traditionally in the theory of n-ary groups we use the following abbreviated notation: the sequence x_{i}, \ldots, x_{j} is denoted by x_{i}^{j} (for $j<i$ this symbol is empty). If $x_{i+1}=\ldots=x_{i+k}=x$, then instead of x_{i+1}^{i+k} we write $\stackrel{(k)}{x}$. Obviously $\stackrel{(0)}{x}$ is the empty symbol. In this notation the formula

$$
f\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{i+k}, x_{i+k+1}, \ldots, x_{n}\right)
$$

where $x_{i+1}=\ldots=x_{i+k}=x$, will be written as $f\left(x_{1}^{i}, \stackrel{(k)}{x}, x_{i+k+1}^{n}\right)$.
If $m=k(n-1)+1$, then the m-ary operation g given by

$$
g\left(x_{1}^{k(n-1)+1}\right)=\underbrace{f(f(\ldots, f(f}_{k-\text { times }}\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}), \ldots), x_{(k-1)(n-1)+2}^{k(n-1)+1})
$$

will be denoted by $f_{(k)}$. In certain situations, when the arity of g does not play a crucial role, or when it will differ depending on additional assumptions, we write $f_{(.)}$, to mean $f_{(k)}$ for some $k=1,2, \ldots$.

An n-ary operation f defined on G is called associative if

$$
f\left(f\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=f\left(x_{1}^{i-1}, f\left(x_{i}^{n+i-1}\right), x_{n+i}^{2 n-1}\right)
$$

holds for all $x_{1}, x_{2}, \ldots, x_{2 n-1} \in G$ and $i=1,2, \ldots, n$. The set G together with one associative operation f is called an n-ary semigroup (briefly: n-semigroup). An n-semigroup (G, f) in which for for all $a_{1}, a_{2}, \ldots, a_{n}, b \in G$ there exits an uniquely determined $x_{i} \in G$ such that $f\left(a_{1}^{i-1}, x_{i}, a_{i+1}^{n}\right)=b$ is called an n-group.

From this definition it follows that a group (a semigroup) is a $2-$ group (a 2-semigroup) in the above sense. Moreover, it is worthwhile to note that, under the assumption of the associativity of f, it suffices only to postulate the existence of a solution of the last equation at
the places $i=1$ and $i=n$ or at one place i other than 1 and n (cf. [13], p. 213^{17}). This means that an n-group may be considered as an algebra (G, f, f_{1}, f_{n}) with one associative n-ary operation f and two n-ary operations f_{1}, f_{n} such that

$$
\begin{equation*}
f\left(f_{1}\left(a_{2}^{n}, b\right), a_{2}^{n}\right)=f\left(a_{a}^{n}, f_{n}\left(a_{2}^{n}, b\right)\right)=b \tag{1}
\end{equation*}
$$

for all $a_{2}^{n}, b \in G$.
Following E.L.Post ([13], p.282) the solution of the equation

$$
f(x, a, \ldots, a, f(a, \ldots, a))=a
$$

is denoted by $a^{[-2]}$. An n-semigroup (G, f) with an unary operation ${ }^{[-2]}: G \rightarrow G$ satisfying some natural identities is an n-group (cf. [16]).

The map $x \mapsto f\left(a_{1}^{j-1}, x, a_{j+1}^{n}\right)$ is called an j-th n-ary translation determined by a_{1}, \ldots, a_{n}. In an n-group each n-ary translation is a bijection.

In an n-group (G, f) for any sequence a_{1}^{n-2} there exists only one $a \in G$ such that

$$
f\left(x, a_{1}^{n-2}, a\right)=f\left(a_{1}^{n-2}, a, x\right)=f\left(a, a_{1}^{n-2}, x\right)=f\left(x, a, a_{1}^{n-2}\right)=x
$$

for all $x \in G$ (cf. [17]). An element a is called inverse for a_{1}^{n-2}. In the binary case, i.e. in the case $n=2$, when the sequence a_{1}^{n-2} is empty by the inverse we mean the neutral element of a group (G, f).

A sequence a_{2}^{n} is called a left (right) neutral sequence if $f\left(a_{2}^{n}, x\right)=$ x (respectively $f\left(x, a_{2}^{n}\right)=x$) holds for all $x \in G$. A left and right neutral sequence is called a neutral sequence. In an n-group for every sequence a_{1}^{n-2} may be extended to a neutral sequence, but there are n-semigroups without left (right) neutral sequences.

Let (G, f) be an n-semigroup and let a_{2}^{n-1} be fixed. Then $(G, *)$, where

$$
\begin{equation*}
x * y=f\left(x, a_{2}^{n-1}, y\right) \tag{2}
\end{equation*}
$$

is a semigroup, which is called a binary retract of (G, f) and is denoted by $r e t_{a_{2}^{n-1}}(G, f)$. A binary retract of an n-group is a group. Moreover, all binary retracts of a given n-group are isomorphic (cf. [7]), but $n-$ groups with the same retract are not isomorphic, in general.

By so-called Hosszú theorem (cf. [11] or [7]), every n-group (G, f) has the form

$$
\begin{equation*}
f\left(x_{1}^{n}\right)=x_{1} * \beta\left(x_{2}\right) * \beta^{2}\left(x_{3}\right) \ldots * \beta^{n-1}\left(x_{n}\right) * b \tag{3}
\end{equation*}
$$

where a_{2}^{n} is a fixed right neutral sequence of $(G, f),(G, *)=$ $r e t_{a_{2}^{n-1}}(G, f), \quad b=f\left(a_{n}^{(n)}\right)$ and $\beta(x)=f\left(a_{n}, x, a_{2}^{n-1}\right)$.

The identical result holds for n-semigroups with a right neutral sequence.

3. Topology

An n-semigroup (G, f) defined on a topological space (G, \mathcal{T}) is called a topological n-semigroup if the operation f is continuous in all variables together.

A topological n-group is defined as a topological n-semigroup with two additional continuous operations f_{1} and f_{n} satisfying (1) (cf. [5]). A topological n-group may be defined also a topological n-semigroup with additional continuous operation ${ }^{[-2]}$. These definitions are equivalent (cf. [15]).

It is clear that retracts of a topological n-semigroup (n-group) are topological semigroups (groups). Obviously all translations of a topological n-semigroup (n-group) are continuous maps. On the other hand, every n-ary operation which may by written in the form (3), where $*$ and β are continuous, is continuous in all variables together. Thus the following lemma is true.

Lemma 3.1. Assume that an n-semigroup (G, f) with a topology \mathcal{T} has a right neutral sequence a_{2}^{n}. Then (G, f, \mathcal{T}) is a topological $n-$ semigroup if and only if $\operatorname{ret}_{a_{2}^{n-1}}(G, f)$ is a topological semigroup and $\beta(x)=f\left(a_{n}, x, a_{2}^{n-1}\right)$ is continuous.

Corollary 3.2. An n-group (G, f) defined on a topological space (G, \mathcal{T}) is a topological n-group if and only if there exists a right neutral sequence a_{2}^{n} such that $x * y=f\left(x, a_{2}^{n-1}, y\right), \beta(x)=f\left(a_{n}, x, a_{2}^{n-1}\right)$ and ${ }^{[-2]}: x \mapsto x^{[-2]}$ are continuous.

Proposition 3.3. An n-group (G, f) defined on a topological space (G, \mathcal{T}) is a topological n-group if and only if there exists a right neutral sequence a_{2}^{n} such that $\operatorname{ret}_{a_{2}^{n-1}}(G, f)$ is a topological semigroup, $\beta(x)=f\left(a_{n}, x, a_{2}^{n-1}\right)$ and $s: x \rightarrow s(x)$, where $f\left(s(x), a_{2}^{n-1}, x\right)=a_{n}$, are continuous.

Proof. Let a_{2}^{n} be a fixed right neutral sequence on an n-group (G, f). If $(G, *)=\operatorname{ret}_{a_{2}^{n-1}}(G, f)$ is a topological semigroup and $\beta(x)=$ $f\left(a_{n}, x, a_{2}^{n-1}\right)$ is continuous, then (G, f) is a topological n-semigroup by Lemma 3.1.

Moreover, a_{n} is the neutral element of $(G, *)$ and $s(x)$ is the solution of $f\left(s(x), a_{2}^{n-1}, x\right)=a_{n}$, i.e. $s(x) * x=a_{n}$ in $(G, *)$. Thus $s(x)$ is the inverse of x in $(G, *)$. Hence $(G, *)$ is a topological group, because $s(x)$ is continuous, by the assumption.

Since $f\left(z, c_{2}^{n}\right)=f\left(f\left(z, a_{2}^{n}\right), c_{2}^{n}\right)=z * f\left(a_{n}, c_{2}^{n}\right)$ for all $c_{j} \in G$, then the solution z of $f\left(z, c_{2}^{n}\right)=b$ in (G, f) is the solution of $z * f\left(a_{n}, c_{2}^{n}\right)=b$ in $(G, *)$, then z continuously depends on b and $f\left(a_{n}, c_{2}^{n}\right)$. Thus z is a continuous function of variables b, c_{2}, \ldots, c_{n}. This, for $b=c_{2}=\ldots=c_{n-1}=x, c_{n}=f(x, \ldots, x)$, implies that $z=x^{[-2]}$ is a continuous function of x. Thus (G, f) is a topological n-group.

The converse is obvious.

Corollary 3.4. Let \mathcal{T} be a locally compact topology on an n-group (G, f) with a right neutral sequence a_{2}^{n}. If for every $b \in G$ translations $x \mapsto f\left(x, a_{2}^{n-1}, b\right), x \mapsto f\left(b, a_{2}^{n-1}, x\right)$ and $x \mapsto f\left(a_{n}, x, a_{2}^{n-1}\right)$ are continuous, then (G, f, \mathcal{T}) is a topological n-group.

Proof. In the group $(G, *)=\operatorname{ret}_{a_{2}^{n-1}}(G, f)$ translations $x \mapsto x * b$ and $x \mapsto b * x$ are continuous for every $b \in G$. Thus, by the theorem of Ellis (cf. Theorem 3 in $[8]),(G, *)$ is a topological group. In this group $s(x)$ defined in the previous Proposition is a continuous operation. Hence (G, f) is a topological n-group.

4. Deviations

By a deviation defined on a nonempty set X we mean every map $\varphi: X \times X \rightarrow[0,+\infty)$ such that $\varphi(x, x)=0, \varphi(x, y)=\varphi(y, x)$, and $\varphi(x, y) \leq \varphi(x, z)+\varphi(z, y)$ for all $x, y, z \in X$. A deviation φ defined on a semigroup (group) (G, \cdot) is left invariant if $\varphi(c x, c y)=\varphi(x, y)$ for all $c, x, y \in G$. A deviation φ defined on an n-semigroup (G, f) is a left invariant if

$$
\varphi\left(f\left(c_{1}^{n-1}, x\right), f\left(c_{1}^{n-1}, y\right)\right)=\varphi(x, y)
$$

for all $x, y, c_{1}^{n-1} \in G$.

Theorem 4.1 ([2]) . A binary semigroup (group) (G, \cdot) with a topology \mathcal{T} is a topological semigroup (group) if and only if there exists a family Φ of continuous left invariant deviations on G which induces \mathcal{T} and $\varphi_{z} \in \Phi$ for every $z \in G$ and $\varphi \in \Phi$, where φ_{z} is defined by $\varphi_{z}(x, y)=\varphi(x z, y z)$.

In the case of an n-semigroup (G, f) every deviation φ on (G, f) induces a new deviation (φ, k, c_{2}^{n}) defined by

$$
\left(\varphi, k, c_{2}^{n}\right)(x, y)=\varphi\left(f\left(c_{2}^{k}, x, c_{k+1}^{n}\right), f\left(c_{2}^{k}, y, c_{k+1}^{n}\right)\right),
$$

where $c_{2}^{n} \in G$ and $k=1, \ldots, n$ are fixed.

Theorem 4.2. Let a_{2}^{n} be a right neutral sequence of an n-semigroup (G, f). If a topology \mathcal{T} on G is induced by the family Φ of deviations such that for all $x, y, z \in G$ and $\varphi \in \Phi$
(a) $\varphi\left(f\left(z, a_{2}^{n-1}, x\right), f\left(z, a_{2}^{n-1}, y\right)\right)=\varphi(x, y)$,
(b) $\left(\varphi, 1, a_{2}^{n-1}, z\right),\left(\varphi, 2, a_{n}, a_{2}^{n-1}\right) \in \Phi$,
then (G, f) is a topological n-semigroup.
Proof. Let Φ be as in the assumption. By (a) every $\varphi \in \Phi$ is a left invariant deviation on a semigroup $(G, *)=\operatorname{ret}_{a_{2}^{n-1}}(G, f)$. From (b) we obtain

$$
\varphi_{z}(x, y)=\varphi(x * z, y * z)=\varphi\left(f\left(x, a_{2}^{n-1}, z\right), f\left(y, a_{2}^{n-1}, z\right)\right)=
$$

$$
=\left(\varphi, 1, a_{2}^{n-1}, z\right)(x, y)
$$

for every $z \in G$, which gives $\varphi_{z} \in \Phi$. By Theorem $4.1(G, *)$ is a topological semigroup.

Let $\varepsilon>0$. If $x, x_{0} \in G$ are such that $\left(\varphi, 2, a_{n}, a_{2}^{n-1}\right)\left(x, x_{0}\right)<\varepsilon$, where $\varphi \in \Phi$, then

$$
\begin{aligned}
\varphi\left(\beta(x), \beta\left(x_{0}\right)\right)=\varphi\left(f\left(a_{n}, x, a_{2}^{n-1}\right)\right. & \left., f\left(a_{n}, x_{0}, a_{2}^{n-1}\right)\right)= \\
= & \left(\varphi, 2, a_{n}, a_{2}^{n-1}\right)\left(x, x_{0}\right)<\varepsilon
\end{aligned}
$$

which proves that β is continuous. Lemma 3.1 finish the proof.

Theorem 4.3. An n-group (G, f) with a topology \mathcal{T} is a topological n-group if and only if there exists the family Φ of deviations such that a topology \mathcal{T} is induced by Φ and for some right neutral sequence a_{2}^{n} of G and for all $x, y, z \in G, \varphi \in \Phi$ the conditions (a), (b) from the previous theorem are satisfied.

Proof. Let (G, f, \mathcal{T}) be a topological n-group. Then the retract $(G, *)=\operatorname{ret}_{a_{2}^{n-1}}(G, f)$ is a binary topological group for every choice of $a_{2}, \ldots, a_{n-1} \in G$. Thus, by Theorem 4.1, there exists the family Φ of continuous left invariant deviations of $(G, *)$ which induces the topology \mathcal{T}. Hence, for all $x, y, z \in G$ and $\varphi \in \Phi$, we have

$$
\varphi\left(f\left(z, a_{2}^{n-1}, x\right), f\left(z, a_{2}^{n-1}, y\right)\right)=\varphi(z * x, z * y)=\varphi(x, y)
$$

which proves (a).
Moreover, since for all $a_{2}, \ldots, a_{n-1} \in G$ there exista $a_{n} \in G$ such that a_{2}^{n} is a right neutral sequence, then from the above follows

$$
\begin{aligned}
& \varphi\left(f\left(c_{1}^{n-1}, x\right), f\left(c_{1}^{n-1}, y\right)\right)= \\
& \quad=\varphi\left(f\left(c_{1}^{n-1}, f\left(a_{n}, a_{2}^{n-1}, x\right)\right), f\left(c_{1}^{n-1}, f\left(a_{n}, a_{2}^{n-1}, y\right)\right)\right)= \\
& \left.\left.\quad=\varphi\left(f\left(f\left(c_{1}^{n-1}, a_{n}\right), a_{2}^{n-1}, x\right)\right), f\left(f\left(c_{1}^{n-1}, a_{n}\right), a_{2}^{n-1}, y\right)\right)\right)=\varphi(x, y)
\end{aligned}
$$

for all $c_{1}, \ldots, c_{n-1} \in G$.
Thus every $\varphi \in \Phi$ is a left invariant deviation of an n-group (G, f). Hence also $\left(\varphi, k, c_{2}^{n}\right)$ is a left invariant deviation for every $k=1,2, \ldots, n$ and all $c_{1}, \ldots, c_{n-1} \in G$. Obviously $\left(\varphi, k, c_{2}^{n}\right)$ is
also left invariant on $(G, *)$ and $\left(\varphi, k, c_{2}^{n}\right) \in \Phi$. Therefore $\left(\varphi, 1, a_{2}^{n}\right)$, $\left(\varphi, 2, a_{n}, a_{2}^{n-1}\right) \in \Phi$, which proves (b).

Conversely, if a topology \mathcal{T} is induced by the family Φ of deviations satisfying (a) and (b), then, by Theorem 4.1, $(G, *)=\operatorname{ret}_{a_{2}^{n-1}}(G, f)$ is a binary topological group. Similarly as in the proof of Theorem 4.2 from $\left(\varphi, 2, a_{n}, a_{2}^{n-1}\right) \in \Phi$ follows that the translation $\beta(x)=$ $f\left(a_{n}, x, a_{2}^{n-1}\right)$ is continuous. Proposition 3.3 completes the proof.

5. Embedding of topological n -semigroups

The necessary and sufficient conditions for the embedding of topological semigroup in topological group are described by N. J. Rothman (cf. [14]) and F. Christoph (cf. [3]). In this section we give some generalizations of these results.

As it is well known (cf. for example [13] or [6]) an n-semigroup (G, f) is called semiabelian or $(1, n)$-commutative if

$$
f\left(x, a_{2}^{n-1}, y\right)=f\left(y, a_{2}^{n-1}, x\right)
$$

holds for all $x, y, a_{2}, \ldots, a_{n-1} \in G$, and cancellative if

$$
f\left(a_{1}^{i-1}, x, a_{i+1}^{n}\right)=f\left(a_{1}^{i-1}, y, a_{i+1}^{n}\right) \Longrightarrow x=y
$$

for all $i=1,2, \ldots, n$ and $x, y, a_{1}, \ldots, a_{n} \in G$. Every n-group is obviously cancellative.

Now we use the construction of the quotient n-group presented during the Gomel's algebraic conference (1995) by A. M. Gal'mak and V. V. Mukhin.

Let (G, f) be a cancellative semiabelian n-semigroup. Then the relation

$$
\langle x, y\rangle \sim\langle z, t\rangle \Longleftrightarrow f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{z})=f_{(2)}(\stackrel{(n-1)}{t}, \stackrel{(n)}{x})
$$

defined on $G \times G$ is an equivalence relation. Indeed, the reflexivity and symmetry are obvious. We prove the transitivity.

Let $\langle x, y\rangle \sim\langle z, t\rangle$ and $\langle z, t\rangle \sim\langle u, v\rangle$. Then

$$
f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{z})=f_{(2)}(\stackrel{(n-1)}{t}, \stackrel{(n)}{x}) \quad \text { and } \quad f_{(2)}(\stackrel{(n-1)}{t}, \stackrel{(n)}{u})=f_{(2)}(\stackrel{(n-1)}{v}, \stackrel{(n)}{z}) .
$$

Hence

$$
\begin{aligned}
f_{(3)}\left(\begin{array}{c}
(n-1) \\
t
\end{array}, \stackrel{(n)}{x}, \stackrel{(n-1)}{v}\right)= & f_{(3)}(\stackrel{n-1)}{y}, \stackrel{(n)}{z}, \stackrel{(n-1)}{v})=f_{(3)}\left(\begin{array}{c}
(n-1) \\
y
\end{array}, \stackrel{n-1)}{v}, \stackrel{(n)}{z}\right)= \\
& =f_{(3)}(\stackrel{(n-1)}{y}, \stackrel{(n-1)}{t}, \stackrel{(n)}{u})=f_{(3)}\left(\begin{array}{c}
(n-1) \\
t
\end{array}, \stackrel{(n-1)}{y}, \stackrel{(n)}{u}\right),
\end{aligned}
$$

which by the cancellativity gives $f_{(2)}(\stackrel{(n-1)}{x}, \stackrel{n}{v})=f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{n}{u})$.
Since (G, f) is semiabelian, then

$$
f_{(2)}(\stackrel{n-1)}{x}, \stackrel{(n)}{v})=f_{(2)}(\stackrel{(n-1)}{v},(\stackrel{n}{x}),
$$

and in the consequence

$$
f_{(2)}(\stackrel{n-1)}{v}, \stackrel{(n)}{x})=f_{(2)}(\stackrel{(n-1)}{y},(\stackrel{n}{u}),
$$

which proves the transitivity.
In the set $G^{*}=G \times G / \sim$ of all equivalence classes $\left\langle x_{i}, y_{i}\right\rangle$ we define the new n-ary operation

$$
f^{*}\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle, \ldots,\left\langle x_{n}, y_{n}\right\rangle\right)=\left\langle f\left(x_{1}^{n}\right), f\left(y_{1}^{n}\right)\right\rangle .
$$

If $\left\langle x_{i}, y_{i}\right\rangle \sim\left\langle s_{i}, t_{i}\right\rangle$ for all $i=1,2, \ldots, n$, then also

$$
f_{(2)}\left(\begin{array}{c}
(n-1) \\
y_{i}, \\
s_{i}
\end{array}\right)=f_{(2)}\left(\begin{array}{c}
(n-1) \\
t_{i}
\end{array}, \stackrel{(n)}{x_{i}}\right)
$$

and

But every semiabelian n-semigroup is also medial (see [10]), i.e. it satisfies

$$
f\left(f\left(x_{11}^{1 n}\right), f\left(x_{21}^{2 n}\right), \ldots, f\left(x_{n 1}^{n n}\right)\right)=f\left(f\left(x_{11}^{n 1}\right), f\left(x_{12}^{n 2}\right), \ldots, f\left(x_{1 n}^{n n}\right)\right) .
$$

Then the last identity may be written in the form

$$
f_{(2)}\left(\stackrel{(n-1)}{\left.\left.f\left(y_{1}^{n}\right), \stackrel{(n)}{s_{1}^{n}}\right)\right)=f_{(2)}\left(\stackrel{(n-1)}{f\left(t_{1}^{n}\right)}, f\left(\stackrel{(n)}{f\left(x_{1}^{n}\right)}\right), ~\right.}\right.
$$

which proves that

$$
\left\langle f\left(x_{1}^{n}\right), f\left(y_{1}^{n}\right)\right\rangle \sim\left\langle f\left(s_{1}^{n}\right), f\left(t_{1}^{n}\right)\right\rangle .
$$

Hence the operation f^{*} is well defined. It is clear that this operation is also associative and $(1, n)$-commutative.

Now let

$$
x=f_{(\cdot)}\left(a, \stackrel{(n-1)(n-2)}{d},{ }_{c}^{(n-1)(n-1)}\right)
$$

and

$$
y=f_{(\cdot)}(b, \stackrel{(n-1)(n-1)}{d}, \stackrel{(n-1) n}{c}),
$$

where a, b, c, d are fixed elements from G. Then, using $(1, n)$-commutativity, we obtain

$$
\begin{aligned}
& f_{(\cdot)}(\underbrace{f(y, \stackrel{(n-1)}{d}), \ldots, f(y, \stackrel{(n-1)}{d})}_{(n-1)-\text { times }}, \stackrel{(n)}{a})=
\end{aligned}
$$

$$
\begin{aligned}
& =f_{(\cdot)}\left(\stackrel{(n-1)}{b}, \stackrel{(n)}{a}, \stackrel{(n-1)^{2} n}{d}, \stackrel{(n-1)^{2} n}{c}\right)=W_{1}
\end{aligned}
$$

and
$f_{(\cdot)}(\stackrel{(n-1)}{b}, \underbrace{f(x, \stackrel{(n-1)}{c}), \ldots, f\left(x,{ }_{(n-1)}^{c}\right)}_{n-\text { times }})=$

$$
=f_{(\cdot)}\left(\begin{array}{c}
(n-1) \\
b
\end{array}, \stackrel{(n)}{a}, \stackrel{(n-1)^{2} n}{d}, \stackrel{(n-1)^{2} n}{c}\right)=W_{2} .
$$

Since $W_{1}=W_{2}$, then
$f_{(\cdot)}(\underbrace{f(y, \stackrel{(n-1)}{d}), \ldots, f(y, \stackrel{(n-1)}{d})}_{(n-1)-\text { times }}, \stackrel{(n)}{a})=f_{(\cdot)}(\stackrel{(n-1)}{b}, \underbrace{f\left(x,{ }_{(n-1)}^{c}\right), \ldots, f(x, \stackrel{(n-1)}{c})}_{n-\text { times }})$
which proves that

$$
\langle f(x, \stackrel{(n-1)}{c}), f(y, \stackrel{(n-1)}{d})\rangle=\langle a, b\rangle,
$$

i.e.

$$
f^{*}(\langle x, y\rangle, \underbrace{\langle c, d\rangle, \ldots,\langle c, d\rangle}_{n-1 \text { times }})=\langle a, b\rangle .
$$

Hence for all $\langle a, b\rangle,\langle c, d\rangle \in G^{*}$ the last equation has the solution $\langle x, y\rangle \in G^{*}$.

In the similar way we prove that for all $\langle a, b\rangle,\langle c, d\rangle \in G^{*}$ there exists $\langle x, y\rangle \in G^{*}$ such that

$$
f^{*}(\underbrace{\langle c, d\rangle, \ldots,\langle c, d\rangle}_{(n-1)-\text { times }},\langle x, y\rangle)=\langle a, b\rangle .
$$

This proves (cf. [18]) that $\left(G^{*}, f^{*}\right)$ is a semiabelian n-group.
The map $p(x)=\langle x, x\rangle$ is a homomorphic embedding of an $n-$ semigroup (G, f) in an n-group $\left(G^{*}, f^{*}\right)$. Indeed,

$$
\begin{aligned}
& p\left(f\left(x_{1}^{n}\right)\right)=\left\langle f\left(x_{1}^{n}\right), f\left(x_{1}^{n}\right)\right\rangle= \\
& \\
& =f^{*}\left(\left\langle x_{1}, x_{1}\right\rangle, \ldots,\left\langle x_{n}, x_{n}\right\rangle\right)=f^{*}\left(p\left(x_{1}\right), \ldots, p\left(x_{n}\right)\right)
\end{aligned}
$$

and $p(x)=p(y)$ implies $\langle x, x\rangle=\langle y, y\rangle$, i.e.

$$
f_{(2)}(\stackrel{(n-1)}{x}, \stackrel{(n)}{y})=f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{x})=f_{(2)}(\stackrel{(n-1)}{x}, \stackrel{(n-1)}{y}, x)
$$

which by the cancellativity gives $x=y$. Thus the following lemma is true.

Lemma 5.1. Every semiabelian cancellative n-semigroup may be embedded into a semiabelian n-group.

Lemma 5.2. If φ is a left invariant deviation of a cancellative semiabelian n-semigroup (G, f), then

$$
\varphi_{G}(\langle x, y\rangle,\langle z, t\rangle)=\varphi\left(f_{(2)}(\stackrel{(n-1)}{t}, \stackrel{(n)}{x}), f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{z})\right)
$$

is a left invariant deviation on G^{*} such that $\varphi_{G}(p(x), p(y))=\varphi(x, y)$.
Proof. From the definition of φ_{G} follows $\varphi_{G}(\langle x, x\rangle,\langle x, x\rangle)=0$ and $\varphi_{G}(\langle x, y\rangle,\langle z, t\rangle)=\varphi_{G}(\langle z, t\rangle,\langle x, y\rangle)$.

Moreover, if $\langle x, y\rangle \sim\langle u, v\rangle$, where $\langle x, y\rangle,\langle u, v\rangle \in G \times G$, then

$$
f_{(2)}(\stackrel{(n-1)}{v}, \stackrel{(n)}{x})=f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{u})
$$

and

$$
\begin{aligned}
& \varphi_{G}(\langle x, y\rangle,\langle z, t\rangle)=\varphi\left(f_{(2)}\left(\begin{array}{c}
(n-1) \\
t
\end{array}, \stackrel{(n)}{x}\right), f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{z})\right)= \\
& =\varphi\left(f_{(3)}(\stackrel{(n-1)}{v}, \stackrel{(n-1)}{t}, \stackrel{(n)}{x}), f_{(2)}(\stackrel{n-1)}{v}, \stackrel{(n-1)}{y}, \stackrel{(n)}{z})\right)= \\
& =\varphi\left(f_{(3)}\left(\begin{array}{c}
(n-1) \\
t
\end{array}, \stackrel{n-1)}{v}, \stackrel{(n)}{x}\right), f_{(3)}(\stackrel{n-1)}{v}, \stackrel{(n-1)}{y}, \stackrel{(n)}{z})\right)= \\
& =\varphi\left(f_{(3)}\left(\begin{array}{c}
(n-1) \\
t
\end{array}, \stackrel{(n-1)}{y}, \stackrel{(n)}{u}\right), f_{(3)}(\stackrel{n-1)}{v}, \stackrel{(n-1)}{y}, \stackrel{(n)}{z})\right)= \\
& =\varphi\left(f_{(3)}(\stackrel{(n-1)}{y}, \stackrel{(n-1)}{t}, \stackrel{(n)}{u}), f_{(3)}(\stackrel{(n-1)}{y}, \stackrel{n-1)}{v}, \stackrel{(n)}{z})\right)= \\
& =\varphi\left(f_{(2)}(\stackrel{(n-1)}{t}, \stackrel{(n)}{u}), f_{(2)}(\stackrel{(n-1)}{v}, \stackrel{(n)}{z})\right)=\varphi_{G}(\langle u, v\rangle,\langle z, t\rangle)
\end{aligned}
$$

which proves that φ_{G} is well defined.
Now, for all $\langle x, y\rangle,\langle z, t\rangle \in G \times G$ we have

$$
\begin{aligned}
& \varphi_{G}(\langle x, y\rangle,\langle z, t\rangle)=\varphi\left(f_{(2)}(\stackrel{(n-1)}{t}, \stackrel{(n)}{x}), f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{z})\right)= \\
& =\varphi\left(f_{(3)}(\stackrel{(n-1)}{v}, \stackrel{(n-1)}{t}, \stackrel{(n)}{x}), f_{(3)}(\stackrel{n-1)}{v}, \stackrel{(n-1)}{y}, \stackrel{n}{z})\right) \leq \\
& \leq \varphi\left(f_{(3)}(\stackrel{n-1)}{v}, \stackrel{(n-1)}{t}, \stackrel{(n)}{x}), f_{(3)}(\stackrel{(n-1)}{y}, \stackrel{(n-1)}{t}, \stackrel{n}{u})\right) \\
& +\varphi\left(f_{(3)}(\stackrel{(n-1)}{y}, \stackrel{(n-1)}{t}, \stackrel{(n)}{u}), f_{(3)}(\stackrel{(n-1)}{v}, \stackrel{(n-1)}{y}, \stackrel{(n)}{z})\right)= \\
& =\varphi\left(f_{(3)}(\stackrel{(n-1)}{t}, \stackrel{n-1)}{v}, \stackrel{(n)}{x}), f_{(3)}(\stackrel{n-1)}{t}, \stackrel{(n-1)}{y}, \stackrel{(n)}{u})\right) \\
& +\varphi\left(f_{(3)}(\stackrel{(n-1)}{y}, \stackrel{n-1)}{t}, \stackrel{(n)}{u}), f_{(3)}(\stackrel{n-1)}{y}, \stackrel{n-1)}{v}, \stackrel{(n)}{z})\right)= \\
& =\varphi\left(f_{(2)}(\stackrel{(n-1)}{v}, \stackrel{(n)}{x}), f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{u})\right)+\varphi\left(f_{(2)}(\stackrel{(n-1)}{t}, \stackrel{(n)}{u}), f_{(2)}(\stackrel{(n-1)}{v}, \stackrel{(n)}{z})\right)= \\
& =\varphi_{G}(\langle x, y\rangle,\langle u, v\rangle)+\varphi_{G}(\langle u, v\rangle,\langle z, t\rangle) .
\end{aligned}
$$

Hence φ_{G} is a deviation on G^{*}.
To prove that φ_{G} is left invariant observe that for all $i=1, \ldots, n-1$, and $a_{i}, b_{i}, a_{n-1}, x, y, u, v \in G$ we have
$\varphi_{G}\left(f\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n-1}, b_{n-1}\right\rangle,\langle x, y\rangle\right), f\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n-1}, b_{n-1}\right\rangle,\langle u, v\rangle\right)\right)$

$$
\begin{aligned}
& =\varphi_{G}\left(\left\langle f\left(a_{1}^{n-1}, x\right), f\left(b_{1}^{n-1}, y\right)\right\rangle,\left\langle f\left(a_{1}^{n-1}, u\right), f\left(b_{1}^{n-1}, v\right)\right\rangle\right)= \\
& =\varphi(f_{(2)}(\underbrace{f\left(b_{1}^{n-1}, v\right), \ldots, f\left(b_{1}^{n-1}, v\right)}_{(n-1) \text {-times }}, \underbrace{f\left(a_{1}^{n-1}, x\right), \ldots, f\left(a_{1}^{n-1}, x\right)}_{n-\text { times }}) \\
& f_{(2)}(\underbrace{f\left(b_{1}^{n-1}, y\right), \ldots, f\left(b_{1}^{n-1}, y\right)}_{(n-1) \text {-times }}, \underbrace{f\left(a_{1}^{n-1}, u\right), \ldots, f\left(a_{1}^{n-1}, u\right)}_{n \text {-times }})) .
\end{aligned}
$$

By the associativity and $(1, n)$-commutativity of f, the last formula may be written in the form

$$
\varphi\left(f_{(.)}(\ldots, \stackrel{(n-1)}{v}, \stackrel{(n)}{x}), f_{(.)}(\ldots, \stackrel{(n-1)}{y}, \stackrel{(n)}{u})\right)
$$

which, together with the fact that φ is left invariant, implies

$$
\varphi\left(f_{(2)}(\stackrel{(n-1)}{v}, \stackrel{(n)}{x}), f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{u})\right)=\varphi_{G}(\langle x, y\rangle,\langle u, v\rangle)
$$

This proves that φ_{G} is a left invariant deviation on G^{*}.
Moreover

$$
\begin{aligned}
& \varphi_{G}(p(x), p(y))=\varphi_{G}(\langle x, x\rangle,\langle y, y\rangle)=\varphi\left(f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n)}{x}), f_{(2)}(\stackrel{(n-1)}{x}, \stackrel{(n)}{y})\right) \\
& \left.=\varphi\left(f_{(2)} \stackrel{(n-1)}{y}, \stackrel{n-1)}{x}, x\right), f_{(2)}(\stackrel{(n-1)}{x}, \stackrel{(n-1)}{y}, y)\right)= \\
& \\
& =\varphi\left(f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n-1)}{x}, x), f_{(2)}(\stackrel{(n-1)}{y}, \stackrel{(n-1)}{x}, y)\right)=\varphi(x, y)
\end{aligned}
$$

which completes our proof.

Theorem 5.3. A cancellative semiabelian n-semigroup (G, f) with a topology \mathcal{T} may be topologically embedded in a topological n-group if and only if a topology \mathcal{T} is induced by a some family of left invariant deviations defined on G.

Proof. If a cancellative semiabelian n-semigroup (G, f) with a topology \mathcal{T} is topologically embedded in a topological n-group (H, f) with a topology \mathcal{T}_{H}, then \mathcal{T}_{H} is induced by some family Φ of deviations such that

$$
\varphi\left(f\left(z, a_{2}^{n-1}, x\right), f\left(z, a_{2}^{n-1}, y\right)\right)=\varphi(x, y)
$$

where $x, y, z \in H$ and a_{2}, \ldots, a_{n} is a right neutral sequence of an $n-$ group H (Theorem 4.3). Since in an n-group H for all $a_{2}, \ldots, a_{n-1} \in H$ there exists $a_{n} \in H$ such that a_{2}, \ldots, a_{n} is a right neutral sequence, then in the above formula all $x, y, z, a_{2}, \ldots, a_{n-1}$ are arbitrary. This proves that all $\varphi \in \Phi$ are left invariant deviations.

Conversely, if a topology \mathcal{T} on a cancellative semiabelian n-semigroup (G, f) is induced by a some family Φ of left invariant deviations, then every φ_{G} defined in Lemma 5.2 is a left invariant deviation on G^{*}. By Theorem 4.3 the family $\left\{\varphi_{G}\right\}_{\varphi \in \Phi}$ induces on G^{*} the topology \mathcal{T}_{G} such that G^{*} is a topological n-group and $p(x)=\langle x, x\rangle$ is a topological embedding of (G, f, \mathcal{T}) in $\left(G^{*}, f^{*}, \mathcal{T}_{G}\right)$.

References

[1] Balci Dervis: Zur Theorie der topologischen n-Gruppen, Minerva Publikation, Munich 1981.
[2] H. Buzhuf, V. V. Mukhin: Topologies on semigroups and groups defined by families of deviations and norms, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1997), 74 - 77, (transl. in Russian Math. (Iz. VUZ 41 (1997), No. 5, 71 - 74)).
[3] F. Christoph: Embedding topological semigroups in topological groups, Semigroup Forum 1 (1970), 224 - 231.
[4] G. Crombez, G. Six: On topological n-groups, Abhand. Math. Semin. Univ. Hamburg 41 (1974), 115 - 124.
[5] G. Čupona: On topological n-groups, Bull. Soc. Math. Phys. R.S.Macédoine 22 (1971), 5-10.
[6] W. A. Dudek: Remarks on n-groups, Demonstratio Math. 13 (1980), $165-181$.
[7] W. A. Dudek, J. Michalski: On a generalization of Hosszú theorem, Demonstratio Math. 15 (1982), 783 - 805.
[8] R. Ellis: Locally compact transformation group, Duke Math. J. 24 (1957), $119-125$.
[9] N. Endres: On topological n-groups and their corresponding groups, Discussiones Math., Algebra and Stochastic Methods 15 (1995), $163-169$.
[10] K. Głazek, B. Gleichgewicht: Abelian n-groups, Colloquia Math. Soc. J. Bolyai 29 "Universal Algebra", Esztergom (Hungary) 1997, 195 - 202 (North-Holland, Amsterdam 1982).
[11] M. Hosszú: On the explicit form of n-group operations, Publ. Math. Debrecen 10 (1963), 88 - 92.
[12] V. V. Mukhin, H. Boujuf: On embedding n-ary abelian topological semigroups in n-ary topological groups, (in Russian) Voprosy Algebry 9 (1996), $153-157$.
[13] E. L. Post: Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350.
[14] N. J. Rothman: Embedding of topological semigroups, Math. Ann. 139 (1960), 197 - 203.
[15] S. A. Rusakov: On two definitions of topological n-ary groups, (Russian) Voprosy Algebry 5 (1990), $86-91$.
[16] S. A. Rusakov: Algebraic n-ary systems, (Russian), Izd. Navuka, Minsk 1992.
[17] F. M. Sioson: On free abelian m-groups, I, Proc. Japan. Acad. 43 (1967), 876 - 879.
[18] V. I. Tyutin: On the axiomatics of n-ary groups, Dokl. Acad. Nauk BSSR 29 (1985), 691-693.
[19] M. R. Žižović: Topological analog of Hosszú-Gluskin's theorem, (Serbian), Mat. Vesnik 13 (28) (1976), 233 - 235.
[20] M. R. Žižović: Topological medial n-quasigroups, Proc. Algebraic Conference, Novi Sad 1981, p. 61 - 66.
[21] M. R. Žižović, Lj.D.Kočinac: Some remarks on n-groups, Zb. rad.Fil. fak. u Nišu, ser. Mat. 2 (1988), $69-71$.

Received May 10, 1997

W.A.Dudek
Institute of Mathematics
Technical University
Wybrzeże Wyspiańskiego 27
50-370 Wroctaw
Poland
e-mail: dudek@im.pwr.wroc.pl
or
Higher College of Engineering
ul. Jaworzyńska 151
59-200 Legnica
Poland

V. V.Mukhin

Department of Mathematics
Technological University
Sverdlova str. 13 a
200630 Minsk
Belarus

Characteristic of ordered Menger systems of multiplace functions

V. V. Varenick

Abstract

In this article the abstract characterization of Menger systems and some Menger T-systems of multiplace functions is given. These multiplace functions can have different number of variables.

1. Introduction

In his work [1] K. Menger has formulated the problem of abstract characterization of sets of functions of several variables on which the operation of superposition is given and the relation of continuation of functions is marked. This problem for functions with the number of variables $n=1$ was solved by B. M. Schein [2] and for fixed $n \geq 2$ was examined by V. S. Trokhimenko. But in a general case, when n takes different natural values it is open until the present moment. In this article the author solves the word problem for the so-called Menger systems and some Menger T-systems of multiplace functions. The results of the work were partially presented during the Colloquium on Semigroups in Szeged (1994).

1991 Mathematics Subject Classification: 20N15, 06F99
Keywords: Menger algebra, algebra of multiplace functions, superassociativity

2. Preliminaries

Let A be a set, n - natural number. Then, every partial mapping $f: A^{n} \rightarrow A$ is called a n-place function, where A^{n} is the n-th Cartesian power of A. The set of all n-place functions, which are considered on A, is denoted by $F_{n}(A)$. Now let $\left(F_{n}(A)\right)_{n \in I}$ be some family of sets denoted above, where $I \subseteq N$ (N is the set of natural numbers). For any $n, m_{1}, \ldots, m_{n} \in I$ and $f \in F_{n}(A), \quad g_{i} \in F_{m_{i}}(A) \quad(i=$ $1, \ldots, n)$, by $f\left[g_{1} \ldots g_{n}\right]$ a m-place function will be denoted, where $m=\max \left(m_{1}, \ldots, m_{n}\right)$ and for all $a_{1}, \ldots, a_{m} \in A$ the following identity holds:

$$
\begin{equation*}
f\left[g_{1} \ldots g_{n}\right]\left(a_{1}, \ldots, a_{m}\right)=f\left(g_{1}\left(a_{1}, \ldots, a_{m_{1}}\right), \ldots, g_{n}\left(a_{1}, \ldots, a_{m_{n}}\right)\right) . \tag{1}
\end{equation*}
$$

Doing so, we consider that the left and right members of (1) are determined or not determined simultaneously. The operation

$$
\left(f, g_{1}, \ldots, g_{n}\right) \xi f\left[g_{1} \ldots g_{n}\right]
$$

will be denoted by \mathcal{O}_{n}. It is evident that the family of operations $\left(\mathcal{O}_{n}\right)_{n \in I}$ satisfies the so-called condition of superassociativity

$$
\begin{equation*}
f\left[g_{1} \ldots g_{n}\right]\left[h_{1} \ldots h_{m}\right]=f\left[g_{1}\left[h_{1} \ldots h_{m_{1}}\right] \ldots g_{n}\left[h_{1} \ldots h_{m_{n}}\right]\right], \tag{2}
\end{equation*}
$$

where

$$
f \in F_{n}(A), \quad g_{i} \in F_{m_{i}}(A), \quad i=1, \ldots, n, \quad m=\max \left(m_{1}, \ldots, m_{n}\right)
$$

Let $\left(\Phi_{n}\right)_{n \in I}$ be a family of subsets, which is stable regarding operations $\left(\mathcal{O}_{n}\right)_{n \in I}$, where $\Phi_{n} \subset F_{n}(A), n \in I, \quad\left(\zeta_{\Phi_{n}}, \chi_{\Phi_{n}}\right)_{n \in I}$ is a family of pairs of binary relations such that

$$
\begin{gather*}
(f, g) \in \zeta_{\Phi_{n}} \Longleftrightarrow f \subset g \tag{3}\\
(f, g) \in \chi_{\Phi_{n}} \Longleftrightarrow \operatorname{Dom} f \subset \operatorname{Dom} g \tag{4}
\end{gather*}
$$

for all $f, g \in \Phi_{n}$, where $\operatorname{Dom} f$ is the domain of definition for f. Then the systems $\left(\Phi_{n}, \mathcal{O}_{n}\right)_{n \in I}$ will denote the Menger T-systems. The forms $\left(\Phi_{n}, \mathcal{O}_{n}, \zeta_{\Phi_{n}}, \chi_{\Phi_{n}}\right)_{n \in I},\left(\Phi_{n}, \mathcal{O}_{n}, \zeta_{\Phi_{n}}\right)_{n \in I}$ and $\left(\Phi_{n}, \mathcal{O}_{n}, \chi_{\Phi_{n}}\right)_{n \in I}$ will denote (respectively) fundamentally ordered projection (f.o.p.) Menger systems, fundamentally ordered (f.o.) Menger systems and projection quasi-ordered (p.q-o.) Menger systems of multiplace functions. If in
(1) $m=m_{1}=\ldots=m_{n}$, then we come to the notion of Menger system of multiplace functions in the sense of work [6]. We similarly introduce the definition of f.o.p. and p.q-o. Menger systems of multiplace functions.

An abstract Menger T-system of rank I will be called a family $\left(G_{n}, \mathcal{O}_{n}\right)_{n \in I}$, where $I \subset N,\left(G_{n}\right)_{n \in I}$ are non-empty sets, such that $G_{n} \cap G_{m}=\emptyset$ for any $n, m \in I$; for every $n \in I \quad \mathcal{O}_{n}$ is a mapping, which brings to conformity for every $(n+1)$-th of the elements $\left(x, y_{1}, y_{n}\right)$ from $G_{n} \times G_{m_{1}} \times \ldots \times G_{m_{n}}, m_{1}, \ldots, m_{n} \in I$; the element $x\left[y_{1}, \ldots, y_{n}\right]$ is from G_{m}, where $m=\max \left(m_{1}, \ldots, m_{n}\right)$, and it satisfies the identity of superassociativity of the form (2). If $m=m_{1}=\ldots=m_{n}$, then we obtain the definition of an abstract Menger system [3], [6].

The Menger system of rank I is called weakly unitary if for every $n \in I$ the set G_{n} contains such elements $e_{1}^{n}, \ldots, e_{n}^{n}$ that for every element g from G_{n} the identity $g\left[e_{1}^{n}, \ldots, e_{n}^{n}\right]=g$ is true.

By $\left(T_{n}\right)_{n \in I}$ we shall denote the family of sets of polynomials for the (weakly unitary) Menger ($T-$) system $\left(G_{n}, \mathcal{O}_{n}\right)_{n \in I}$ that is defined in the following way: let $\left\{x_{n}: n \in I\right\}$ be a set of different subject variables, then we can consider:
a) $x_{n} \in T_{n}$ for every $n \in I$,
b) if $t \in T_{m}, g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n} \in G_{m}, g \in G_{n}$, then

$$
g\left[g_{1} \ldots g_{i-1} t g_{i+1} \ldots g_{n}\right] \in T_{m}
$$

for every $i=1, \ldots, n$ and $m \in I$.
If $t \in T_{n}$ and $g \in G_{n}$, where $n \in I$, then by $t(g)$ we shall denote the element from G_{n} which is obtained as a result of realization of all operations after the substitution of g for variable x_{n} in the polynomial t.

Let $\left(G_{n}, \mathcal{O}_{n}\right)_{n \in I}$ be the (weakly unitary) Menger ($T-$) system of rank I, then the family of binary relations $\left(\rho_{n}\right)_{n \in I}$ such that $\rho_{n} \subset G_{n} \times G_{n}$, is called:

- stable, if for all $n, m \in I, x, y \in G_{n}, x_{i}, y_{i} \in G_{m}, \quad i=1, \ldots, n$ $(x, y) \in \rho_{n} \wedge\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subset \rho_{m} \Rightarrow\left(x\left[x_{1} \ldots x_{n}\right], y\left[y_{1} \ldots y_{n}\right]\right) \in \rho_{m}$, - v-regular, if for any $n, m \in I, u \in G_{n}, x_{i}, y_{i} \in G_{m}, i=1, \ldots, n$

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \subset \rho_{m} \Rightarrow\left(u\left[x_{1} \ldots x_{n}\right], u\left[y_{1} \ldots y_{n}\right]\right) \in \rho_{m},
$$

- l-regular, if for all $n, m \in I, x, y \in G_{n}, z_{1}, \ldots, z_{n} \in G_{m}$

$$
(x, y) \in \rho_{n} \Rightarrow\left(x\left[z_{1} \ldots z_{n}\right], y\left[z_{1} \ldots z_{n}\right]\right) \in \rho_{m}
$$

A family of subsets $\left(W_{n}\right)_{n \in I}$ (where $W_{n} \subset G_{n}$) is called a l-ideal, if for all $n, m \in I, g \in G_{n}, \bar{y} \in G_{m}^{n}, x \in W_{m}$ and $i=1, \ldots, n$ it is true that

$$
g\left[\left.\bar{y}\right|_{i} x\right] \in W_{m},
$$

where $\left[\left.\bar{y}\right|_{i} x\right]$ denotes $\left(y_{1}, \ldots, y_{i-1}, x, y_{i+1}, \ldots, y_{n}\right)$.
Let us consider two Menger T-systems of rank $I: \mathcal{G}=\left(G_{n}, \mathcal{O}_{n}\right)_{n \in I}$ and $\mathcal{G}^{\prime}=\left(G_{n}^{\prime}, \mathcal{O}_{n \in I}^{\prime}\right)$. By a homomorphism \mathcal{G} on \mathcal{G}^{\prime} we'll denote the family $\left(P^{n}\right)_{n \in I}$, where P^{n} is a mapping G_{n} on G_{n}^{\prime} for every $n \in I$ such that for all $n, m_{1}, \ldots, m_{n} \in I, g \in G_{n}, g_{i} \in G_{m}, i=1, \ldots, n$ the following identity holds:

$$
\begin{equation*}
P^{m}\left(g\left[g_{1} \ldots g_{n}\right]\right)=P^{n}(g)\left[p^{m_{1}}\left(g_{1}\right) \ldots P^{m_{n}}\left(g_{n}\right)\right] \tag{5}
\end{equation*}
$$

where $m=\max \left(m_{1}, \ldots, m_{n}\right)$. If every mapping P^{n} is one-to-one then such a homomorphism is called a proper one (or isomorphism). A homomorphism of the Menger T-system \mathcal{G} on some Menger system of multiplace functions is called a representation of \mathcal{G} by functions. The notions of homomorphism, isomorphism and representation are defined similarly for the Menger systems.

Consider the family of pairs $\left(\mathcal{E}_{n}, W_{n}\right)_{n \in I}$ on Menger $(T-)$ system $\left(G_{n}, \mathcal{O}_{n}\right)_{n \in I}$, where for every $n \in I \quad \mathcal{E}_{n}$ is a relation of equivalence on G_{n}, and W_{n} is either an empty set or a \mathcal{E}_{n}-class; the family $\left(\mathcal{E}_{n}\right)_{n \in I}$ is v-regular and $\left(W_{n}\right)_{n \in I}$ is an l-ideal. Let $\left(H_{a}\right)_{a \in A_{n}}$ denote the family of \mathcal{E}_{n}-classes that is different from W_{n}, and let it be one-to-one indexed by elements of a set A_{n}. We find that $A_{n} \cap A_{m}=\emptyset$ for any $n, m \in I$ if $n \neq m$. Let $\left\{C_{n}: n \in I\right\}$ be the set of different elements that do not fall into $A=\bigcup_{n \in I} A_{n}$. For every $n \in I$ denote by I_{n} the set $\{m: m \in I \wedge m<n\}$, and by I_{n}^{\prime} - the set $I \backslash\left(I_{n} \cup\{n\}\right)$. Let

$$
B_{n}=\prod_{m \in I_{n}} A_{m} \times\left\{C_{n}\right\} \times \prod_{m \in I_{n}^{\prime}} A_{m}, \quad \bar{A}=\prod_{n \in I} A_{n}, \quad \Im_{n}=\bar{A}^{n} \cup B_{n}^{n}
$$

(for the Menger T-systems we find that $B_{n}=\emptyset$ and $\Im_{n}=\bar{A}^{n}$). For every element $g \in G_{n}, n \in I$, we'll determine n-place function such that:

$$
\begin{gather*}
\left(\bar{a}_{1}, \ldots, \bar{a}_{n}, \bar{b}\right) \in P^{n}(g) \Longleftrightarrow \\
\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right) \in \Im_{n} \wedge(\forall i \in I)\left(g\left[H_{\left.\left.\overline{a_{1}}<i>\ldots H_{\overline{a_{n}}<i>}\right] \subset H_{\bar{b}<i>}\right)}\right)\right. \tag{6}
\end{gather*}
$$

where $\overline{a_{k}}<i>$ denotes the component of the vector \bar{a}_{k} that belongs to the set A_{i} for $i \neq n$; and to the set $A_{n} \cup\left\{C_{n}\right\}$ for $i=n$. It can be shown that the family of mappings $\left(P^{n}\right)_{n \in I}$ (where $P^{n}: g \mapsto P^{n}(g)$) is a representation of Menger $(T-)$ system \mathcal{G} by multiplace functions which in future will be called the simplest.

3. Results

Let $\left(\Phi_{n}, \mathcal{O}_{n}\right)_{n \in I}$ be some Menger ($T-$) system of multiplace functions, $\left(\zeta_{\Phi_{n}}\right)_{n \in I}$ and $\left(\chi_{\Phi_{n}}\right)_{n \in I}$ be the family of binary relations that are defined by means of (3) and (4). In the future, instead of $(f, g) \in \zeta_{\Phi_{n}}$ and $(f, g) \in \chi_{\Phi_{n}}$ we'll write $f \subset_{n} g$ and $f \leftharpoondown_{n} g$ respectively.

Proposition 1. On the Menger $(T-)$ system $\left(\Phi_{n}, \mathcal{O}_{n}\right)_{n \in I}$ of multiplace functions set $\left(\zeta_{\Phi_{n}}\right)_{n \in I}$ is the stable family of relations of order and set $\left(\chi_{\Phi_{n}}\right)_{n \in I}$ is the l-regular family of quasi-order being for every $n \in I$; the inclusion $\zeta_{\Phi_{n}} \subset \chi_{\Phi_{n}}$ is true too.

Proof. It is evident that $\zeta_{\Phi_{n}}$ is an order and $\chi_{\Phi_{n}}$ - a quasi-order on Φ_{n}, therefore it is necessary to verify only the conditions of stability and l-regularity.

Let $f \subset_{n} g, f_{i} \subset_{m} g_{i}, i=1, \ldots, n$, and $\left(a_{1}, \ldots, a_{m}, c\right) \in f\left[f_{1} \ldots f_{n}\right]$. Then there will exist such elements b_{1}, \ldots, b_{n} that $\left(a_{1}, \ldots, a_{n}, b_{i}\right) \in f_{i}$, $i=1, \ldots, n$, and $\left(b_{1}, \ldots, b_{n}, c\right) \in f$. Therefore, $\left(a_{1}, \ldots, a_{m}, b_{i}\right) \in g_{i}$, $i=1, \ldots, n$, and $\left(b_{1}, \ldots, b_{n}, c\right) \in g$, whence $\left(a_{1}, \ldots, a_{m}, c\right) \in g\left[g_{1} \ldots g_{n}\right]$. And so

$$
f\left[f_{1} \ldots f_{n}\right] \subset_{m} g\left[g_{1} \ldots g_{n}\right]
$$

Stability of $\left(\zeta_{\Phi_{n}}\right)_{n \in I}$ is proved.
Now assume that $f \leftharpoondown_{n} g$, i.e. $\operatorname{Dom} f \subset \operatorname{Dom} g$ and $f, g \in \Phi_{n}$. Let $h_{1}, \ldots, h_{n} \in \Phi_{m}$ and $\left(a_{1}, \ldots, a_{m}\right) \in \operatorname{Dom} f\left[h_{1} \ldots h_{n}\right]$. The latter means that there exists an element c, such that $\left(a_{1}, \ldots, a_{m}, c\right) \in f\left[h_{1} \ldots h_{n}\right]$.
Then, for some $b_{1}, \ldots, b_{n}:\left(a_{1}, \ldots, a_{m}, b_{i}\right) \in h_{i}, i=1, \ldots, n$, and $\left(b_{1}, \ldots, b_{n}, c\right) \in f ;$ consequently $\left(b_{1}, \ldots, b_{n}\right) \in \operatorname{Dom} f$. Therefore,
$\left(b_{1}, \ldots, b_{n}\right) \in \operatorname{Dom} g$. Thus, $\left(a_{1}, \ldots, a_{m}, b_{i}\right) \in h_{i}, i=1, \ldots, n$, and $\left(b_{1}, \ldots, b_{n}, d\right) \in g$ for some element d.

The latter means that $\left(a_{1}, \ldots, a_{m}, d\right) \in g\left[h_{1} \ldots h_{n}\right]$ for some d, i.e. $\left(a_{1}, \ldots, a_{m},\right) \in \operatorname{Dom} g\left[h_{1} \ldots h_{n}\right]$. Then

$$
f\left[h_{1} \ldots h_{n}\right] \leftharpoondown_{m} g\left[h_{1} \ldots h_{n}\right],
$$

therefore, the l-regularity of family $\left(\chi_{\Phi_{n}}\right)_{n \in I}$ is proved. The inclusion $\zeta_{\Phi_{n}} \subset \chi_{\Phi_{n}}$ is evident (for every $n \in I$).

Proposition 2. Let the families of relations $\left(\zeta_{\Phi_{n}}\right)_{n \in I},\left(\chi_{\Phi_{n}}\right)_{n \in I}$ be defined on the Menger $(T-)$ system $\left(\Phi_{n}, \mathcal{O}_{n}\right)_{n \in I}$ of multiplace functions. Then they satisfy the following conditions:

$$
\begin{gather*}
f_{1} \subset_{n} f_{2} \wedge g \subset_{n} t_{1}\left(f_{1}\right) \wedge g \subset_{n} t_{2}\left(g_{2}\right) \Rightarrow g \subset_{n} t_{2}\left(f_{1}\right), \tag{7}\\
g_{1} \subset_{n} f \wedge g_{2} \subset_{n} f \wedge g_{1} \leftharpoondown_{n} g_{2} \Rightarrow g_{1} \subset_{n} g_{2} \tag{8}\\
g_{1} \subset_{n} g_{2} \wedge f \leftharpoondown_{n} g_{1} \wedge f \leftharpoondown_{n} u\left[\left.\bar{\omega}\right|_{j} g_{2}\right] \Rightarrow f \leftharpoondown_{n} u\left[\left.\bar{\omega}\right|_{j} g_{1}\right] \tag{9}\\
f\left[h_{1} \ldots h_{n}\right] \leftharpoondown_{m} h_{1} \tag{10}
\end{gather*}
$$

for any $n, m \in I, i=1, \ldots, n, f, f_{1}, f_{2}, g, g_{1}, g_{2} \in \Phi_{n}, \bar{\omega} \in G_{n}^{m}$, $u, h_{1}, \ldots, h_{n} \in \Phi_{m}, j=1, \ldots, m, t_{1}, t_{2} \in T_{n}$.

Proof. Let the premise of condition (7) be valid, then, from $f_{1} \subset_{n} f_{2}$, we obtain that $f_{1}=f_{2} \circ \pm_{\text {Dom } f_{1}}$ (the restriction of function f_{2} on the domain of the function f_{1} is denoted by $\left.f_{2} \circ \pm_{\text {Dom } f_{1}}\right)$. From $g \subset_{n} t_{1}\left(f_{1}\right)$ follows $\operatorname{Dom} g \subset \operatorname{Dom} f_{1}$, therefore from $g \subset_{n} t_{2}\left(f_{2}\right)$ we obtain that

$$
g=g \circ \pm_{\text {Dom } f_{1}} \subset t_{2}\left(f_{2}\right) \circ_{\text {Dom } f_{1}}=t_{2}\left(f_{2} \circ \pm_{\text {Dom } f_{1}}\right)=t_{2}\left(f_{1}\right) .
$$

Thus, $g \subset_{n} t_{2}\left(f_{1}\right)$. The condition (7) is proved.
Let now the premise of condition (8) be valid, then from $g_{1} \subset_{n} f$ and $g_{2} \subset_{n} f$ we have $g_{1}=f \circ \pm_{\text {Domg }_{1}}$ and $g_{2}=f \circ \pm_{\text {Dom } g_{2}}$, respectively. Since $g_{1} \leftharpoondown_{n} g_{2}$, then $\operatorname{Dom} g_{1} \subset \operatorname{Dom} g_{2}$, therefore $f \circ \pm_{\text {Domg }_{1}} \subset f \circ \pm_{\text {Domg }_{2}}$, i.e. $g_{1} \subset g_{2}$. The condition (8) is proved. The following condition (9) is proved similarly (7), therefore we must prove validity of (10).

Let $\left(a_{1}, \ldots a_{m}\right) \in \operatorname{Dom} f\left[h_{1} \ldots h_{n}\right]$, therefore $\left(a_{1}, \ldots, a_{m}, c\right) \in f\left[h_{1} \ldots h_{n}\right]$ for some element c, and there exists vector $\left(b_{1}, \ldots, b_{n}\right)$ for which
$\left(b_{1}, \ldots, b_{n}, c\right) \in f$ and $\left(a_{1}, \ldots, a_{m}, b_{i}\right) \in h_{i}, i=1, \ldots, n$. Therefore, we obtain $\left(a_{1}, \ldots, a_{m}\right) \in \operatorname{Dom} h_{i}$. Thus, $\operatorname{Dom} f\left[h_{1} \ldots h_{n}\right] \subset \operatorname{Dom} h_{i}$ which was needed to prove.

Theorem. A (weakly unitary) Menger ($T-$) system of the form $\left(G_{n}, \mathcal{O}_{n}, \zeta_{n}, \chi_{n}\right)_{n \in I}$, where ζ_{n}, χ_{n} are fixed binary relations on G_{n}, is isomorphic to some f.o.p. Menger ($T-$) system of multiplace functions if and only if it is a stable family of relations of order, $\left(\chi_{n}\right)_{n \in I}$ is a l-regular family of relations of quasi-order such that $\zeta_{n} \subset \chi_{n}$ for every $n \in I$, and the following conditions hold:

$$
\begin{gather*}
g_{1} \leq_{n} g \wedge g_{2} \leq_{n} g \wedge g_{1} \leftharpoondown_{n} g_{2} \Rightarrow g_{1} \leq_{n} g_{2} \tag{11}\\
g\left[h_{1} \ldots h_{n}\right] \leftharpoondown_{m} h_{i}, \tag{12}\\
g_{1} \leq_{n} g_{2} \wedge g \leftharpoondown_{n} g_{1} \wedge g \leftharpoondown_{n} u\left[\left.\bar{\omega}\right|_{j} g_{2}\right] \Rightarrow g \leftharpoondown_{n} u\left[\left.\bar{\omega}\right|_{j} g_{1}\right] \tag{13}
\end{gather*}
$$

for all $n, m \in I, \quad i=1, \ldots, n, \quad j=1, \ldots, m, \quad g, g_{1}, g_{2} \in G_{n}$, $u, h_{1}, \ldots, h_{n} \in G_{m}, \bar{\omega}=\left(\omega_{1}, \ldots, \omega_{m}\right) \in G_{n}^{m}$, where $g_{1} \leq_{n} g_{2}, g_{1} \leftharpoondown_{n} g_{2}$ mean that $\left(g_{1}, g_{2}\right) \in \zeta_{n}$ and $\left(g_{1}, g_{2}\right) \in \chi_{n}$, respectively.

Proof. The necessity of conditions of the theorem follows from Propositions 1 and 2, therefore weŠll dwell on the proof of their sufficiency. So, let the Menger (weakly unitary $T-$) system of the form $\left(G_{n}, \mathcal{O}_{n}, \zeta_{n}, \chi_{n}\right)_{n \in I}$ satisfies all conditions of the theorem. Easily can be proved that for all $n \in I, g, g_{1}, g_{2} \in G_{n}, t_{1}, t_{2} \in T_{n}$ the conditions:

$$
\begin{align*}
& g_{1} \leq_{n} g_{2} \wedge g \leftharpoondown_{n} t_{1}\left(g_{1}\right) \wedge g \leftharpoondown_{n} t_{2}\left(g_{2}\right) \Rightarrow g \leftharpoondown_{n} t_{2}\left(g_{1}\right), \tag{14}\\
& g_{1} \leq_{n} g_{2} \wedge g \leftharpoondown_{n} t_{1}\left(g_{1}\right) \wedge g \leftharpoondown_{n} t_{2}\left(g_{2}\right) \Rightarrow g \leftharpoondown_{n} t_{2}\left(g_{1}\right), \tag{15}
\end{align*}
$$

are valid.
Let \bar{G} denote the Cartesian power of the sets of the family $\left(G_{n}\right)_{n \in I}$. For every \bar{g} from \bar{G} we shall assign a family of pairs of the form $\left(\mathcal{E}_{\bar{g}<n>}, W_{\bar{g}<n>}\right)_{n \in I}$, where $\mathcal{E}_{\bar{g}<n>}=\mathcal{E}_{\bar{g}\langle n>}^{1} \cap \mathcal{E}_{\bar{g}<n>}^{2}$, and $\mathcal{E}_{\bar{g}\langle n>}^{1}, \mathcal{E}_{\bar{g}\langle n>}^{2}$, $W_{\bar{g}<n>}$ are defined as follows:

$$
\begin{align*}
&\left(g_{1}, g_{2}\right) \in \mathcal{E}_{\bar{g}\langle n\rangle}^{1} \Leftrightarrow\left(\forall t \in T_{n}\right)\left[\bar{g}\langle n\rangle \leq_{n} t\left(g_{1}\right) \Leftrightarrow \bar{g}\langle n\rangle \leq_{n} t\left(g_{2}\right)\right], \tag{16}\\
&\left(g_{1}, g_{2}\right) \in \mathcal{E}_{\bar{g}\langle n\rangle}^{2} \Leftrightarrow\left(\forall t \in T_{n}\right)\left[\bar{g}\langle n\rangle \leftharpoondown_{n} t\left(g_{1}\right) \Leftrightarrow \bar{g}\langle n\rangle \leftharpoondown_{n} t\left(g_{2}\right)\right] \tag{17}
\end{align*}
$$

$$
\begin{equation*}
W_{\bar{g}<n\rangle}=G_{n} \backslash \chi_{n}\langle\bar{g}\langle n\rangle\rangle, \tag{18}
\end{equation*}
$$

for all $g, g_{1}, g_{2} \in G_{n}$, where

$$
\chi_{n}\langle\bar{g}\langle n\rangle\rangle=\left\{x: \bar{g}\langle n\rangle \leftharpoondown_{n} x\right\} .
$$

It is easy to see that $\left(\mathcal{E}_{\bar{g}<n>}\right)_{n \in I}$ is the v-regular family of relations of equivalency and $\left(W_{\bar{g}<n>}\right)_{n \in I}$ is an l-ideal family of $\mathcal{E}_{\bar{g}<n>}$-classes, if $W_{\bar{g}<n>} \neq \emptyset$ for every $n \in I$. Therefore, as it is shown in the previous part, the family $\left(\mathcal{E}_{\bar{g}<n>}, W_{\bar{g}<n>}\right)_{n \in I}$ defines the simplest representation of the system $\left(G_{n}, \mathcal{O}_{n}\right)_{n \in I}$ with the help of multiplace functions, which we denote by $\left(P_{\bar{g}}^{n}\right)_{n \in I}$. If $\bar{u}, \bar{v} \in \bar{G}, \bar{u} \neq \bar{v}$, then for every $g \in G_{n}$, $n \in I$ we'll find that the n-place functions $P_{\bar{u}}^{n}(g)$ and $P_{\bar{v}}^{n}(g)$ are given on disjoint sets. Let now

$$
P^{n}(g)=\bigcup_{\bar{u} \in \bar{G}} P_{\bar{u}}^{n}(g)
$$

then the family $\left(P^{n}\right)_{n \in I}$ is a representation of $\left(G_{n}, \mathcal{O}_{n}\right)_{n \in I}$ with the help of multiplace functions.

Let's prove that for every $n \in I$ and any $g_{1}, g_{2} \in G_{n}$

$$
g_{1} \leftharpoondown_{n} g_{2} \Longleftrightarrow \operatorname{Dom} P^{n}\left(g_{1}\right) \subset \operatorname{Dom} P^{n}\left(g_{2}\right)
$$

Indeed, if $\operatorname{Dom} P^{n}\left(g_{1}\right) \subset \operatorname{Dom} P^{n}\left(g_{2}\right)$, then it means that
for every $\bar{u} \in \bar{G}$:

$$
\operatorname{Dom} P_{\bar{u}}^{n}\left(g_{1}\right) \subset \operatorname{Dom} P_{\bar{u}}^{n}\left(g_{2}\right)
$$

for every $\bar{u} \in \bar{G}$.
The latter inclusion means that for $\overline{a_{1}}, \ldots, \overline{a_{n}} \in \bar{A}^{n}$ such that $\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right) \in \Im^{n}$, the implication

$$
\begin{equation*}
\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right) \in \operatorname{Dom} P_{\bar{u}}^{n}\left(g_{1}\right) \Rightarrow\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right) \in \operatorname{Dom} P_{\bar{u}}^{n}\left(g_{2}\right) \tag{19}
\end{equation*}
$$

is valid. This condition, as it is easily to see, is equivalent to

$$
(\forall \bar{b})(\exists \bar{c})\left(\overline{a_{1}}, \ldots, \overline{a_{n}}, \bar{b}\right) \in P_{\bar{u}}^{n}\left(g_{1}\right) \Rightarrow\left(\overline{a_{1}}, \ldots, \overline{a_{n}}, \bar{c}\right) \in P_{\bar{u}}^{n}\left(g_{1}\right),
$$

which, in its turn means

$$
\begin{align*}
&(\forall \bar{b})(\exists \bar{c}) {\left[(\forall i \in I)\left(g_{1}\left[H_{\overline{a_{1}}<i>} \ldots H_{\overline{a_{n}}<i>}\right] \subset H_{\bar{b}<i>}\right) \Rightarrow\right.} \\
&\left.\left.\quad \Rightarrow(\forall k \in I)\left(g_{2}\left[H_{\overline{a_{1}}<k>}\right) H_{\overline{a_{n}}<k>}\right] \subset H_{\bar{c}<k>}\right)\right] . \tag{20}
\end{align*}
$$

It can be proved that (20) is equivalent to the formula

$$
\begin{align*}
& \left(\forall\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right) \in D_{n}\right)(\forall k \in I) \\
& \left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \notin W_{\bar{u}<k\rangle} \Rightarrow g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \notin W_{\bar{u}<k>}\right), \tag{21}
\end{align*}
$$

where

$$
D_{n}=\bar{G}^{n} \cup E_{n}^{n}, \quad E_{n}=\prod_{m \in I_{n}} G_{m} \times\left\{e_{n}\right\} \times \prod_{m \in I_{n}^{\prime}} G_{m},
$$

(for the weakly unitary Menger T-system we suppose $E_{n}=\emptyset$), $e_{n} \notin G_{n}$ and $g\left[e_{n} \ldots e_{n}\right]=g$ for every $g \in G_{n}$ by the definition. Let the condition (21) fulfill: $\overline{x_{1}}, \ldots, \overline{x_{n}} \in E_{n}^{n}, k=n$, and let \bar{u} be an element from \bar{G} such that $\bar{u}\langle n\rangle=g_{1}$, then we obtain:

$$
\begin{equation*}
g_{1}\left[e_{n} \ldots e_{n}\right] \notin W_{g_{1}} \Rightarrow g_{2}\left[e_{n} \ldots e_{n}\right] \notin W_{g_{1}} \tag{22}
\end{equation*}
$$

i.e.

$$
g_{1} \notin W_{g_{1}} \Rightarrow g_{2} \notin W_{g_{1}}
$$

So $g_{1} \notin W_{g_{1}}$ is true for every $g_{1} \in G_{n}$, and (22) can be written as $g_{2} \in W_{g_{1}}$, i.e. $g_{1} \leftharpoondown_{n} g_{2}$.

Conversely, let
(a) $g_{1} \leftharpoondown_{n} g_{2}$,
(b) $g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \notin W_{\bar{u}<k\rangle}$
for some $\bar{u} \in \bar{G}, k \in I, \overline{x_{1}}, \ldots, \overline{x_{n}} \in D_{n}$.
So $\left(\chi_{n}\right)$ is an l-regular family, and from (a) we obtain

$$
g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \leftharpoondown_{k} g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] .
$$

The condition (b) means that

$$
\bar{u}\langle k\rangle \leftharpoondown_{k} g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right],
$$

therefore, due to transitivity of χ_{n} we have

$$
\bar{u}\langle k\rangle \leftharpoondown_{k} g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right],
$$

i.e. $g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \notin W_{\bar{u}<k>}$. Thus, (21) is proved. Hence,

$$
\operatorname{Dom} P_{\bar{u}}^{n}\left(g_{1}\right) \subset \operatorname{Dom} P_{\bar{u}}^{n}\left(g_{2}\right)
$$

for every $\bar{u} \in \bar{G}$, i.e. $\operatorname{Dom} P^{n}\left(g_{1}\right) \subset \operatorname{Dom} P^{n}\left(g_{2}\right)$. Let's prove now that for every $n \in I$ and any $g_{1}, g_{2} \in G_{n}$ the condition $g_{1} \leq_{n}\left(g_{2}\right)$ is valid if and only if the inclusion $P^{n}\left(g_{1}\right) \subset P^{n}\left(g_{2}\right)$ is true.

Indeed, if $P^{n}\left(g_{1}\right) \subset P^{n}\left(g_{2}\right)$, then for every $\bar{u} \in \bar{G}$ we have
$P_{\bar{u}}^{n}\left(g_{1}\right) \subset P_{\bar{u}}^{n}\left(g_{2}\right)$. This inclusion means that

$$
\begin{equation*}
\left(\overline{a_{1}}, \ldots, \overline{a_{n}}, \bar{b}\right) \in P_{\bar{u}}^{n}\left(g_{1}\right) \Rightarrow\left(\overline{a_{1}}, \ldots, \overline{a_{n}}, \bar{b}\right) \in P_{\bar{u}}^{n}\left(g_{2}\right) \tag{23}
\end{equation*}
$$

for any $\overline{a_{1}}, \ldots, \overline{a_{n}}, \bar{b} \in \bar{A}$, where $\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right) \in \Im_{n}$. According to the definition of the simplest representation the condition (22) can be rewritten as follows:

$$
\begin{gather*}
(\forall i \in I)\left(g_{1}\left[H_{\overline{a_{1}}<i>} \cdots H_{\overline{a_{n}}<i>}\right] \subset H_{\bar{b}<i>}\right) \Rightarrow \\
\left.\Rightarrow(\forall k \in I)\left(g_{2}\left[H_{\overline{a_{1}}<k>}\right) H_{\overline{a_{n}}<k>}\right] \subset H_{\bar{b}<k>}\right), \tag{24}
\end{gather*}
$$

for all $\overline{a_{1}}, \ldots \overline{a_{n}}, \bar{b} \in \bar{A}$, where $\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right) \in \Im_{n}$. One can check that (24) is equivalent to the formula:

$$
\begin{align*}
& \left(\forall (\overline { x _ { 1 } } , \ldots , \overline { x _ { n } } \in D _ { n }) (\forall k \in I) \left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \notin W_{\bar{u}<k>} \Rightarrow\right.\right. \\
& \left.\quad \Rightarrow g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \equiv g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\left(\mathcal{E}_{\bar{u}}<k>\right)\right) \tag{25}
\end{align*}
$$

Assume that $\overline{x_{1}}, \ldots, \overline{x_{n}} \in E_{n}^{n}, k=n$ in the condition (25) and let \bar{u} be an element from \bar{G}, such that $\bar{u}\langle n\rangle=g_{1}$, then we obtain $g_{1} \equiv g_{2}\left(\mathcal{E}_{g_{1}}\right)$, whence it follows: $g_{1} \equiv g_{2}\left(\mathcal{E}_{g_{1}}^{1}\right)$. The latter according to formula (16), means that

$$
\begin{equation*}
\left(\forall t \in T_{n}\right)\left(g_{1} \leq_{n} t\left(g_{1}\right) \Longleftrightarrow g_{1} \leq_{n} t\left(g_{2}\right)\right) . \tag{26}
\end{equation*}
$$

Let t be the variable x_{n}, then from (26) it follows that $g_{1} \leq_{n} g_{2}$.
Conversely, suppose that $g_{1} \leq_{n} g_{2}$ and

$$
g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \notin W_{\bar{u}<k\rangle}
$$

for any $\bar{u} \in \bar{G},\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right) \in D_{n}, k \in I$. We must prove that

$$
\begin{equation*}
g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \equiv g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\left(\mathcal{E}_{\bar{u}<k\rangle}\right) \tag{27}
\end{equation*}
$$

is valid.
For this purpose we must check if the condition (27) is valid for every relation $\mathcal{E}_{\bar{u}<k>}^{i}, i=1,2$, which is defined with the help of the formulas (16) and (17). Let

$$
\bar{u}\langle k\rangle \leq_{k} t\left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right)
$$

for some $t \in T_{k}$. Since the family $\left(\zeta_{n}\right)_{n \in I}$ is stable, then from $g_{1} \leq_{n} g_{2}$
we obtain

$$
t\left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right) \leq_{k} t\left(g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right),
$$

therefore

$$
\bar{u}\langle k\rangle \leq_{k} t\left(g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right) .
$$

Suppose now that
(c) $\bar{u}\langle k\rangle \leq_{k} t\left(g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right)$
is valid, where $t \in T_{k}$.
Since $g_{1} \leq_{n} g_{2}$ and

$$
g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \notin W_{\bar{u}<k>}
$$

then it is evident that

$$
g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \leq_{k} g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]
$$

and

$$
\bar{u}\langle k\rangle \leftharpoondown_{k} g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right],
$$

whence considering (c) and (15) we obtain

$$
\bar{u}\langle k\rangle \leq_{k} t\left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right)
$$

This means that (27) is true for $\mathcal{E}_{\bar{u}<k>}^{1}$.
Now, let
(d) $\bar{u}\langle k\rangle \leftharpoondown_{k} t\left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right)$
be valid for some $t \in T_{k}$.
Since $g_{1} \leq_{n} g_{2}$ then as it has been stated above

$$
t\left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right) \leq_{k} t\left(g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right),
$$

therefore,

$$
t\left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right) \leftharpoondown_{k} t\left(g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right),
$$

hence,
(e) $\bar{u}\langle k\rangle \leftharpoondown_{k} t\left(g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right)$.

Conversely, let (c) be valid. From $g_{1} \leq_{n} g_{2}$ we obtain

$$
g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right] \leq_{k} g_{2}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right],
$$

therefore, according to (14),

$$
\bar{u}\langle k\rangle \leftharpoondown_{k} t\left(g_{1}\left[\overline{x_{1}}\langle k\rangle \ldots \overline{x_{n}}\langle k\rangle\right]\right)
$$

it will be true. Thus, (27) is true for $\mathcal{E}_{\bar{u}\langle k\rangle}^{2}$. Thus, (25) is valid because, as it has been stated above, it is equivalent to $P_{\bar{u}}^{n}\left(g_{1}\right) \subset P_{\bar{u}}^{n}\left(g_{2}\right)$, where $\bar{u} \in \bar{G}$. Thus $P^{n}\left(g_{1}\right) \subset P^{n}\left(g_{2}\right), n \in I, g_{1}, g_{2} \in G_{n}$, which was needed to prove.

Finally, let us suppose that $P^{n}\left(g_{1}\right)=P^{n}\left(g_{2}\right)$ for some $g_{1}, g_{2} \in G_{n}$. Then $P^{n}\left(g_{1}\right) \subset P^{n}\left(g_{2}\right)$ and $P^{n}\left(g_{2}\right) \subset P^{n}\left(g_{1}\right)$. Therefore $g_{1} \leq_{n} g_{2}$ and $g_{2} \leq_{n} g_{1}$, whence $g_{1}=g_{2}$, since ζ_{n} is an order. So we have proved that the (weakly unitary $T-$) Menger system \mathcal{G} is isomorphic to f.o.p. Menger ($T-$) system of multiplace functions. The theorem is proved.

Corollary 1. A (weakly unitary $T-$) Menger system of the form $\left(G_{n}, \mathcal{O}_{n}, \zeta_{n}\right)_{n \in I}$ (where $\zeta_{n} \subset G_{n} \times G_{n}$) is isomorphic to some f.o. ($T-$) Menger system of multiplace functions if and only if $\left(\zeta_{n}\right)_{n \in I}$ is a stable family of relations of order, satisfying the condition:

$$
\begin{equation*}
g_{1} \leq_{n} g_{2} \wedge g \leq_{n} t_{1}\left(g_{1}\right) \wedge g \leq_{n} t_{2}\left(g_{2}\right) \Rightarrow g \leq_{n} t_{2}\left(g_{1}\right) \tag{28}
\end{equation*}
$$

for all $n \in I, g, g_{1}, g_{2} \in G_{n}, t_{1}, t_{2} \in T_{n}$.
Proof. Supposing $\chi_{n}=\delta_{n} \circ \zeta_{n}$, where $\delta_{n} \subset G_{n} \times G_{n}$ and

$$
\left(g_{1}, g_{2}\right) \in \delta_{n} \Longleftrightarrow\left(\exists t \in T_{n}\right) g_{1}=t\left(g_{2}\right),
$$

we come to the conclusion that the system $\left(G_{n}, \mathcal{O}_{n}, \zeta_{n}, \chi_{n}\right)_{n \in I}$ satisfies all the conditions of the theorem.

Corollary 2. A (weakly unitary $T-$) Menger system of the form $\left(G_{n}, \mathcal{O}_{n}, \chi_{n}\right)_{n \in I}$ (where $\chi_{n} \subset G_{n} \times G_{n}$) is isomorphic to some p.q-o. $(T-)$ Menger system of multiplace functions if and only if $\left(\chi_{n}\right)_{n \in I}$ is a l-regular family of relations of quasi-order satisfying the condition (12).

Proof. Supposing $\zeta_{n}=\Delta_{G_{n}}$ in the theorem, where $\Delta_{G_{n}}$ is the identical relation on G_{n}, we obtain the present corollary.

We must remark that analogous results for semigroups [2] and for Menger algebras [4] may obtain from the proved theorem.

Finally I would like to express my gratitude to V. S. Trokhimenko for the useful advice given to the author of the article.

References

[1] K. Menger: The algebra of functions: past, present, future, Rend. Math. 20 (1961), 409 - 430.
[2] B. M. Schein: Representation of order semigroups, (Russian), Math. Sbornik 65 (1964), 188 - 197.
[3] B. M. Schein, V. S. Trokhimenko: Algebras of multiplace functions, Semigroup Forum 17 (1979), 1 - 64.
[4] F. Sokhatskij: Abstract characterisations of some classes of operation algebras, Proc. Third Intern. Algebr. Conf. Krasnojarsk (1993), $442-443$.
[5] V. S. Trokhimenko: The order algebras of multiplace functions, (Russian), Izv. Vyssh. Ucebn. Zaved. ser. Math. 1 (1971), 90 - 98.
[6] H. Whitlock: A composition algebra for multiplace functions, Math. Ann. 157 (1964), 167 - 178.

Kyevskaya str. 45/43, Received March 08, 1995 286032 Vinnytsa
UKRAINE

