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Characterizations of highly non-associative

quasigroups and associative triples

Viacheslav A. Artamonov, Sucheta Chakrabarti, Saibal Kumar Pal

Abstract. Number of associative triples of quasigroup plays an important role in development

of quasigroup based cryptographic schemes. In this paper we present algebraic properties of

highly non-associative quasigroups and derive the criteria for polynomial completeness based on

their multiplicative groups. We develop an algorithm to check the polynomial completeness of

the quasigroup Q from its Latin square representation, which is based on the criteria derived

by using element of Mult(Q) with speci�c cycle structure. We also develop and implement an

algorithm for deriving associative triples of �nite quasigroups based on commutators of their

Latin squares. Experimental results on quasigroups of di�erent order and all quasigroups of

order 4 of di�erent classes are reported.

1. Introduction

Crypto community has focused on usage of non-commutative and non-associative
algebraic structures in cryptography more intensively from the beginning of this
century. Quasigroups are good choice of this type of algebraic structures for cryp-
tographic purpose [2, 10, 11, 16]. The security of quasigroup based cryptographic
primitives depend on its algebraic properties. Highly non-associative is one of the
signi�cant algebraic properties for cryptographic suitable choice of quasigroup [6].

Highly non-associative quasigroups were considered in [13, 18]. It was shown in
[4] that almost all �nite quasigroups Q have the property that the multiplication
group Mult(Q) contains symmetric or alternative group. In other words, the ratio
of number of quasigroups having this property and total number of quasigroups
of �nite order n tends to 1 as n→∞. From a practical point of view quasigroups
of order n, 4 6 n 6 256 are frequently used in cryptography.

In the present paper we consider the problem of characterizing the highly non-
associative quasigroup Q of �nite order from its multiplicative group Mult(Q).
Also one of our main aim is to develop an algorithm for testing polynomial com-
pleteness based on these algebraic properties. It is the main algebraic parameter
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for cryptographically suitable choice of quasigroups. Another signi�cant param-
eter for suitable choice of quasigroups is the number of associative triples. The
number of associative triples of di�erent classes of �nite quasigroups was studied
by di�erent researchers [6, 7, 8, 9]. In this paper we also deal with the problem
of development of algorithm for derivation of associative triples of a quasigroup
of �nite order by algebraic approach from its Latin square. The smallest number
of associative triples plays an important role to resist some known cryptographic
attacks.

In this paper �rst we discuss the preliminaries of quasigroups, their Latin
squares and polynomial completeness in �2. Some properties of a�ne quasigroups
are discussed in �3. Section 4 deals with the characterization of highly non-
associative quasigroups, polynomial completeness and simplicity by using mul-
tiplicative group Mult(Q) of a quasigroup Q. Also in this section we present the
algorithm for testing the polynomial completeness of a quasigroup from its Latin
square by using the cycle structure of permutations of Q which are belong to
Mult(Q). Section 5 deals with the development of algorithm and experiments of
computation of associative triplets and its total numbers from a given Latin square.
Also we present experimental results on associative triples over all quasigroups of
order 4.

2. Preliminaries

A quasigroup is a set Q with a binary operation of multiplication such that for all
a, b ∈ Q the equations ax = b, ya = b have unique solutions x = a�b, y = b�a.
Then the class of quasigroups form a variety of algebras with three operations
xy, x�y, x�y which is de�ned by identities

(xy)�y = x = (x�y)y x�(xy) = y = x(x�y). (1)

Each quasigroup Q can be given by a Latin square

x1 . . . xn
x1 a11 . . . a1n
... . . . . . . . . .
xn an1 . . . a11

(2)

of size n. The elements of Q are {x1, . . . , xn}, each entry aij stands for the product
xixj in the quasigroup Q.

Let x · y, x ∗ y be two quasigroup multiplications on a set Q. We say that
multiplication x∗y is an isotope of multiplication x ·y if there exists permutations
π, π1, π2 on Q such that

x ∗ y = π
(
π−11 (x) · π−12 (y)

)
(3)
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for all x, y ∈ Q. Here (π, π1, π2) is called an isotopy and the two quasigroups (Q, )
and (Q, ∗) are said to be isotopic. If π is an identity permutation then it is called
principal isotopy.

In terms of the Latin square (2) it means that we replace it by the square

x1 . . . xn
x1 b11 . . . b1n
... . . . . . . . . .
xn bn1 . . . b11

, (4)

where

bij = π
(
π−11 (xi) · π−12 (xj)

)
= π

(
aπ−1

1 (xi),π
−1
2 (xj)

)
. (5)

It means that we rearrange columns and rows of Q using permutations π2 and π1,
respectively, and afterwards permute elements of the obtained Latin square using
π.

The next Proposition follows from (3) and (5).

Proposition 2.1. Let Q be a quasigroup of order n with a Latin square (2).
Denote the sets of its row and column permutations by

{σ1, . . . , σn}, {τ1, . . . , τn}. (6)

If (π, π1, π2) is an isotopy of Q then (6) is replaced by the sets

{πσπ−1
1 (1)π

−1
2 , . . . , πσπ−1

1 (n)π
−1
2 } = {πσrπ−12 , 1 6 r 6 n},

{πτπ−1
2 (1)π

−1
1 , . . . , πτπ−1

2 (n)π
−1
1 } = {πτsπ−11 , 1 6 s 6 n}.

(7)

In particular the sets

{σij = σiσ
−1
j | 1 6 i, j 6 n}, {τij = τiτ

−1
j | 1 6 i, j 6 n} (8)

are replaced by the sets

{πσπ−1
1 (i)σ

−1
π−1
1 (j)

π−1 | 1 6 i, j 6 n} = {πσrsπ−1 | 1 6 r, s 6 n},

{πτπ−1
2 (i)τ

−1
π−1
2 (j)

π−1 | 1 6 i, j 6 n} = {πτklπ−1 | 1 6 k, l 6 n},
(9)

respectively.

The multiplication group Mult(Q) is the permutation group of the set Q gen-
erated by permutations (6). By [13, Theorem 2] dihedral, symmetric, alternating,
general linear, projective general linear groups as well as Mathieu groupsM11, M12

can occur as Mult(Q) for some quasigroup Q.
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Denote by G(Q) the subgroup of Mult(Q) generated by elements (8). Note
that G(Q) is generated by elements σi1, τi1 where 2 6 i 6 n. Since (4) is a Latin
square the elements σi1, 2 6 i 6 n, are distinct and non-identical. Adding to them
the identity element we can conclude that the order of the group H(Q) generated
by all elements σi1 where 2 6 i 6 n is at least n = |Q|. Since G(Q) ⊇ H(Q), the
order of G(Q) is greater or equal to the order of Q.

The next Theorem is close to [13, Theorem 1].

Theorem 2.2. Under an isotopy (π, π1, π2) the group G(Q) is mapped to πG(Q)π−1.
In particular if by Albert theorem Q is isotopic to a loop Q′ then G(Q) is conjugate
to the group G(Q′) which coincides with MultQ′.

Proof. Let e = xi be the identity of a loop Q′. Then σi = τi is the iden-
tity permutation. Then σjσ

−1
i = σj and similarly τjτ

−1
i = τj for all j. Hence

πG(Q)π−1 = G(Q′) = MultQ′. Now we can apply (9).

Note that σi is a permutation Lxi of left multiplication by xi, and τj is a
permutation Rxj of right multiplication by xj .

Theorem 2.3. The following conditions are equivalent:

(i) any pair of permutations σij , τrs from (8) commute between themselves;

(ii) Q is isotopic to a group;

(iii) the order of H(Q) is equal to the order of Q.

Proof. Suppose that (ii) holds. Using Theorem 2.2 we can replace Q by an isotopic
copy Q which is a group. By the associativity law, permutations σi, τr commute
and (i) follows.

Suppose that (i) holds. We can assume that Q is a loop. Taking x1 = e we see
that σi1 = σi and τr1 = τr. So for any a ∈ Q we have

(xia)xr = τrσi1a = σi1τra = xi(axr).

So Q is associative and therefore a group.
Suppose that (iii) holds. Then H(Q) = {σi1 | 1 6 i 6 n}. By (9), Theorem 2.2

and by Albert theorem we can assume that Q is a loop with unit element x1 = e.
Now for any indices i, j there exists an index k such that σi1σj1 = σk1. Applying
these maps to e = x1 we get xixj = xk. It means that the map xi → σi1 is an
isomorphism of Q and the group H(Q). Hence (ii) holds.

Suppose that (ii) holds. Without loss of generality we can assume that Q is a
group. Then the map H(Q) is the group of left translations by elements of Q and
this group is isomorphic to Q. So (iii) follows.

Theorem 2.4. The following conditions are equivalent:

(i) any pair of permutations from (8) commute;
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(ii) Q is isotopic to an abelian group;

(iii) G(Q) is an abelian group;

(iv) Q is isotopic to the abelian group G(Q);

(v) The order of H(Q) is equal to the order of G(Q) and to the order of Q.

Proof. Note that conditions (i) and (iii) are equivalent since the elements (8)
generate G(Q).

Now let (i) and (iii) hold. By Albert's theorem Q is isotopic to a loop Q′. Then
G(Q) = MultQ′ by Theorem 2.2 is an abelian group. Hence for any x, y, a ∈ Q′
we have (xa)y = x(ay) and x(ya) = y(xa). It follows that mutiplication in Q′ is
associative and commutative. Thus Q′ is a group and (ii) holds.

Conversely if (ii) holds then G(Q) = MultQ′ is an abelian group by Theorem
2.2.

Finally if equivalent conditions (i) � (iii) hold, then G(Q) is isomorphic to
MultQ′ where Q′ is an abelian group. In this case MultQ′ ' Q′. Thus G(Q) ' Q′
and (iv) holds. Conversely (iv) implies (iii).

Suppose that (v) holds. Then Q is isotopic to a group by Theorem 2.3. So we
can assume that Q is a group with a unit element x1. By (v) we have τi1 = σj1
for some j. It means that xix = xxj for any x ∈ Q. Setting x = x1 we get xj = xi
and obtain commutativity law in Q. So (ii) holds.

The same argument shows that (v) implies (ii).

3. A�ne quasigroups

A universal algebra Q is a�ne if there exists a structure of additive abelian group
on Q such that any basic n-ary operation f on Q has the form

f(x1, . . . , xn) = α1(x1) + · · ·+ αn(xn) + c,

where α1, . . . , αn are group endomorphisms of (Q,+) and c ∈ Q. Following this
de�nition we call a quasigroup Q is a�ne or a T -quasigroup if there exists a
structure of an abelian group < Q,+, 0,− > in Q such that

xy = α(x) + β(y) + c (10)

for some automorphisms α, β of the group < Q,+, 0,− > and for some element
c ∈ Q. It is easy to see that a quasigroup is a�ne if and only if the group oper-
ations < Q,+, 0,− > are polynomials with respect to the quasigroup operations
< Q, ·,�,� >.

Note that the a�ne quasigroup is isotopic to the abelian group 〈Q,+〉. In fact
take π1 = α−1, π2 = β−1 and π(x) = x+ c.

Hence we have
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Proposition 3.1. If Q is an a�ne quasigroup then G(Q) is isomorphic to the

group < Q,+, 0,− >.

An equivalence relation ℘ in a quasigroup Q is a congruence if ℘ is a sub-
quasigroup in direct square Q×Q. A quasigroup Q is simple if it has only trivial
congruences. It means in particular that any quasigroup homomorphism from Q
to any other quasigroup is either an embedding or its image is a one-element set.

Proposition 3.2. Let Q be a �nite simple a�ne quasigroup. Then (Q,+) is

an elementary abelian p-group for some prime p and |Q| = pd for some positive

integer d. The group Mult(Q) is embedded into the group of a�ne transformations

Aff(Q) of Q as a vector space over the �eld Fp with p elements. In particular G(Q)
is a normal subgroup in Mult(Q) isomorphic to 〈Q,+〉.

Proof. Let A be a subgroup in (Q,+) which is stable under α, β. De�ne a relation
u ∼ v ⇐⇒ u − v ∈ A. It is easy to check that ∼ is a congruence. So if Q is a
simple quasigroup then (Q,+) has no non-trivial subgroups stable under α, β. In
particular for any divisor p of the order of Q the set {x ∈ Q | px = 0} is non-zero
and therefore it coincides with (Q,+). Hence Q is a vector space over the �eld
Fp.

Corollary 3.3. A simple �nite quasigroup Q is polynomially complete if either of

conditions is satis�ed:

(i) the order of Q is not a prime power,

(ii) the order of Q is a power of a prime p, and G(Q) is not an elementary abelian

p-group whose order is equal to the order of Q,

(iii) Mult(Q) has no normal abelian subgroups.

The class of quasigroups with the given property is stable under isotopies.

Use Proposition 3.2 and [1, Corollary 3.4]

Proposition 3.4. Let Q be an a�ne quasigroup of a prime order p. Then the

order of each cycle occurring in permutations τj , σi is a divisor of p − 1. In

particular the order of each permutation τj , σi is a divisor of p− 1.

Proof. A�ne quasigroup is de�ned on residue group Z/p by (10). So we can
conclude that α(x) = kx, β(y) = my, where k,m are coprime with p.

Fix an element y = xj . Then Ry = τj . By induction on t we can prove that

τ tj (x) = ktx+
(
kt−1 + · · ·+ 1

)
(my + c) .

Let τj have a cycle of length t generated by an element x, then

x = ktx+
(
kt−1 + · · ·+ 1

)
(my + c)
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and therefore
(kt − 1)x+

(
kt−1 + · · ·+ 1

)
(my + c) = 0.

Suppose �rst that
a = kt−1 + · · ·+ 1 ∈ Z/p \ 0.

Canceling by a, we obtain (k − 1)x + my + c = 0 or τj(x) = x. So τj has a cycle
of length 1.

Suppose now that
a = kt−1 + · · ·+ 1 = 0

in Z/p. Then kt = 1. Since k is coprime with p we can conclude that t is a divisor
of p− 1.

Proposition 3.5. Let Q be an a�ne quasigroup of a prime order p. Then Mult(Q)
is an extension of an abelian translation group by a cyclic group of order dividing

p− 1.

Proof. By (10) each mapRy, Lx is an a�ne transformation ofQ = Fp and therefore
it has the form x→ αx+ c where α is a non-zero element of Fp.

There exists a surjective group homomorphism Aff(Fp) → F∗p sending each
map x 7→ αx + c to α ∈ F∗p. The image is a subgroup of the cyclic group F∗p and
the kernel consists of translations x 7→ x+ c, c ∈ Q.

Proposition 3.6. Let Q be an a�ne quasigroup. Then the operations x�y, x�y
are also a�ne. Conversely, if an operation x�y (x�y) is a�ne then Q is a�ne.

Proof. Let (10) holds. Then by (1)

y = x(x�y) = αx+ β(x�y) + c

and therefore
x�y = −β−1αx+ β−1y − β−1c.

Similarly
x = (x�y)y = α(x�y) + βy + c

implies
x�y = α−1x− α−1βy − α−1c.

Thus the operations x�y, x�y are a�ne.
Suppose now that x�y = γx+ δy + d is a�ne. Then

y = x�(xy) = γx+ δ(xy) + d

and
xy = −δ−1γx+ δ−1y − δ−1d

is an a�ne operation. The case of a�ne operation x�y is similar.
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Take fundamental operations xy, x�y, y�x in a quasigroup Q and of all
nullary operations �xing elements from Q. Now consider all �nitary operations
in Q which are obtained from fundamental ones by compositions, identi�cations
and permutations of variables. The operations on Q which are obtained by this
process are called polynomial. A quasigroup Q is polynomially complete if any
�nitary operation on Q is polynomial.

Theorem 3.7 ([12]). A �nite quasigroup Q is polynomially complete, if and only

if Q is simple and non-a�ne quasigroup.

It is well known that a quasigroup Q is simple if and only if Mult(Q) is primitive
permutation group of Q. The following section deals with characterization of
polynomial completeness of highly non-associative quasigroups and its invariant
class under isotopy by using Mult(Q) and G(Q).

4. Highly non-associative quasigroups

A quasigroup Q is highly non-associative if Mult(Q) = Sym(Q).
By a de�nition of a quasigroup the group Mult(Q) of a quasigroup Q acts

transitively on the set Q.

Proposition 4.1 ([17]). Let Q be a quasigroup of order n such that Mult(Q) is

a doubly transitive permutation group on Q. Then Q is simple. In particular, if

n > 4 and Mult(Q) ⊇ An then Q is simple. A highly non-associative quasigroup

of any order is simple.

Proof. Suppose ℘ is a congruence in Q. Let ℘(c) be a class containing c ∈ Q and
d ∈ ℘(c)\c. By double transitivity there exists g ∈ Mult(Q) such that g(c) = c and
g(d) /∈ ℘(c). Since ℘ is a congruence (c, d) ∈ ℘ implies (g(c), g(d)) = (c, g(d)) ∈ ℘,
which is not the class.

If a quasigroup Q is highly non-associative then Mult(Q) = Sym(Q) is a doubly
transitive group. If n > 4, then An is again a doubly transitive group.

The next Proposition generalizes [1, Proposition 3.13].

Proposition 4.2. Let Q be a quasigroup of order n. Suppose that Mult(Q) con-

tains a simple non-identical subgroup G whose images under any group homomor-

phisms into any symmetric group Sq is identical provided q < n and q | n. Then

Q is simple.

Proof. Suppose that Q has a proper congruence ℘. If x ∈ Q then the maps Lx, Rx
permute congruence classes of ℘. Hence there exists a group homomorphism π
from MultQ into the group Sq of permutations of Q/℘. As it was shown in [3]
orders of each congruence classes of ℘ are equal and therefore the order q of Q/℘
is a divisor of the order of Q. By assumption π(G) = 1 which means that G acts
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identically on Q/℘. It means that each class of the congruence ℘ is stable under
the action of G.

Let x ∈ Q and C the class of ℘ containing x. The order of C is equal to
n
q < n . Since C is stable under action of G there exists a group homomorphism

ξ : G → Sn
q
. By assumption ξ(G) = 1. It means that g(x) = x for any g ∈ G, a

contradiction. Hence Q is simple.

Corollary 4.3. Let Q be a quasigroup of order n and G a simple non-identical

subgroup of Mult(Q). Suppose that the order of G does not divide q! for any

proper factor q of n. Then any homomorphisms of G into any symmetric group

Sq is identical provided q < n and q | n. In particular Q is simple.

Proof. Let π : G → Sq be a homomorphism where q < n and q | n. Then the
order of the image π(G) divides q!. If π is not identical then by simplicity of G
the order of π(G) is equal to the order of G, a contradiction.

Theorem 4.4. Let Q be a �nite quasigroup of order n and Mult(Q) contain a

subgroup isomorphic the alternative subgroup Am, where

m > max
([n

2

]
+ 1, 5

)
. (11)

Then Q is polynomially complete. In particular a highly non-associative quasigroup

of order n > 5 is polynomially complete.

Proof. To prove the theorem we need the following two lemmas.

Lemma 4.5. The group G, isomorphic to Am yields the assumption of Proposition

4.2.

Proof. Let π be a non-identical homomorphism of G = Am into Sr where r | n
and r < n. Since Am is simple the map π is injective and therefore m!

2 , the order
of Am divides r!, the order of Sr. Thus m! | 2 · r!. It is required to mention that

r 6
[n

2

]
and

m >
[n

2

]
+ 1.

Hence ([n
2

]
+ 1
)

! | 2 ·
[n

2

]
!.

It follows that
[
n
2

]
+ 1 | 2 and

[
n
2

]
= 1. In this case r = 1 and

5!

2
| m!

2
| r! = 1,

a contradiction.
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Lemma 4.6. Let p be an odd prime. Then p+ 1 6
[
p2

2

]
.

Proof. Since p > 3 we have

p2 − 2p− 2 = (p− 1)2 − 3 > 22 − 3 = 1 > 0.

Hence p2 > 2p+ 2 and the proof follows.

Now it follows from Lemma 4.5 and Propositions 4.2, 3.2 Q is a vector space
over the �eld Fp for some prime p of dimension d.

The maps Lx, Ry are a�ne transformations of the vector space Q by (10).
Therefore Mult(Q) consists of a�ne transformations of (Q,+).

Recall some basic facts related to the group Aff(Q) of a�ne transformations
of (Q,+). Let f ∈ Aff(Q) and f(x) = α(x) + c where α ∈ GL(d,Fp) and c ∈ Q.
Put ζ(f) = α. Then ζ : Aff(q) → GL(d,Fp) is a surjective group homomorphism
with abelian kernel consisting of translations f(x) = x+ c, c ∈ Q. Since Am is a
nonabelian simple group the homomorphism ζ mapsAm injectively into GL(d,Fp).
Moreover there is a surjective group homomorphism det : GL(d,Fp) → F∗p with
kernel SL(d,Fp). The group F∗p of nonzero elements of the �eld Fp is abelian.
Again by simplicity of Am we have det (ζ(Am)) = 1. It means that ζ embeds Am

into SL(d,Fp) and by Lagrange's theorem m!
2 divides the order of SL(d,Fp) which

is equal to

(pd − 1)(pd − p) · · · (pd − pd−1)

p− 1
= p

d(d−1)
2 (pd − 1)(pd−1 − 1) · · · (p2 − 1).

Since m >
[
pd

2

]
+ 1 we can conclude that

([
pd

2

]
+ 1

)
! | 2p

d(d−1)
2 (pd − 1)(pd−1 − 1) · · · (p2 − 1). (12)

Note that by de�nition pd−1 6 pd

2 . Hence the product (pd−1−1) · · · (p2−1) occurs

in
([

pd

2

]
+ 1
)

!. After cancellation in (12) we obtain

pd−1
(
pd−1 + 1

)
| 2p

d(d−1)
2 (pd − 1)

and therefore
(
pd−1 + 1

)
| 2(pd − 1). Note that

2p+ 2 = −2
(
pd − 1

)
+ 2p

(
pd−1 + 1

)
.

Hence (
pd−1 + 1

)
| 2(p+ 1). (13)
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Let p = 2. Then d > 3, because n = 2d > 5. So in (13) we have
(
2d−1 + 1

)
| 6.

Then d = 1, 2, a contradiction.

Now let p be an odd prime and (13) holds. If d > 3, then

pd−1 + 1 > p2 + 1 > 2(p+ 1),

a contradiction.

Let d = 2. Then in (12) we have([
pd

2

]
+ 1

)
! | 2p(p2 − 1) = 2p(p− 1)(p+ 1). (14)

Cancel (14) by (p−1)p(p+1). Then by Lemma 4.6, 1 · . . . ·(p−2) ·(p+2) · · · | 2,
and therefore p+ 2 divides 2, a contradiction, since p is an odd prime.

So (12) is impossible and Q is not a�ne. Therefore Q is polynomially complete.

In particular, if Mult(Q) is highly non-associative, then Mult(Q) contains Sn
and Am, where m is from (11).

Proposition 4.7. Let Q be a quasigroup of order n > 5. Suppose that there exists
an element of Mult(Q) with a cycle decomposition containing a cycle of prime

length p > n
2 and n− p 6= 0, 1. Then MultQ is simple and MultQ contains An if

one of the following conditions is satis�ed:

(i) n > p+ 3

(ii) n = p+ 2 and n− 1 6= 2t, t ∈ N.

Proof. Let σ ∈ Mult(Q) and σ = σ1 · · ·σm a decomposition into a product of
independent cycles and the length of σ1 is equal to p. Then the lengths of other
cycles σj , j > 1 is less than p. Let d be the least common multiple of orders of
cycles σj , j > 1. Then d is coprime with p. Therefore σd = σd1 ∈ Mult(Q) is
a cycle of prime length p �xing n − p elements of Q. Hence σ1 ∈ Mult(Q) and
therefore

σ2 · · ·σm = σ−11 σ ∈ Mult(Q).

The group G = 〈σ1〉 has a prime order. Hence it is a simple subgroup in Mult(Q).
Suppose there exists a homomorphism f : G → Sq where q < n and q | n. So
q 6 n

2 , p >
n
2 so n

2 < p and therefore q < p.

The image f(G) has order p so p | q! where (q, p) = 1. It follows that p can't
divide q!, a contradiction. Hence f(G) = 1.

By Proposition 4.2 we obtain that Q is simple and therefore MultQ is primitive
group of permutations.

Now since n− p 6= 0, 1, so either

(i) n− p > 3, then, by [14, Theorem 1.2, Corollary 1.3], An ⊆ Mult(Q), or
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(ii) n−p = 2 then by [14, Theorem 1.2, Corollary 1.3] we obtain An ⊆ Mult(Q),
if n−1 = p+1 is not a prime power. Suppose that p+1 = qt for some prime
q. Then qt − 1 = p and (q − 1) | p which means that q = 2. So in this case if
n− 1 6= 2t then the proposition holds.

By using Proposition 4.7 in a restricted domain and Theorem 4.4 we develop
an algorithm (Figure 1) to identify polynomially complete quasigroups of order
n > 5 based on their Latin square representations. Compute Mult(Q) from Q is
computationally expensive. Hence in this algorithm we choose the element from Q
of Mult(Q) and it able to identify a subclass of polynomially complete quasigroup
using lesser computation. The algorithm is given below:

Algorithm

Input : n× n Latin square of the quasigroup Q of order n
Output : Decision - quasigroup is polynomially complete / unidenti�ed
Steps :

1. �ag=0

2. for i = 1 : n

• Decompose row permutation σi of Q into disjoint cycles

• Check whether there exists a sub-cycle of σi of prime length p ∈
[[

n
2

]
+ 1, n− 2

]
� if yes, then check whether

(n− p > 3) or (n− p = 2&n 6= 2t for t ∈ N)

� if yes then �ag=1; break; endif

endif

endfor

3. if �ag=0 then repeat step2 for column permutation τj , 1 6 j 6 n, of Q

endif

4. if �ag=1 print : Polynomially Complete

else print : unidenti�ed

endif

Figure 1: Algorithm for identifying polynomially complete quasigroup of order > 5.

The following example shows the application of the algorithm to identify the
polynomially complete quasigroup Q from the given corresponding Latin square
by testing the cycle structures of row / column permutations of Q ⊆ Mult(Q).

Let Q be a �nite quasigroup Q of order n = 7. The corresponding 7× 7 Latin
square is given below
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1 2 3 4 5 6 7

1 1 4 3 7 2 6 5
2 5 1 7 4 6 3 2
3 6 2 1 5 7 4 3
4 7 3 2 6 1 5 4
5 3 6 5 2 4 1 7
6 2 5 4 1 3 7 6
7 4 7 6 3 5 2 1

Following the steps of the algorithm described in Figure 1, for i = 4, σ4 has a
sub-cycle of length p = 5. Now n − p = 2 &n − 1 = 6 6= 2t for t ∈ N. So by the
algorithm it is identi�ed as polynomially complete.

Recall that the Klein subgroup V4 of S4 consists of an identity permutation
and of all three 2× 2-cycles. The order of V4 is equal to 4 and it is isomorphic to
Z2 × Z2.

Proposition 4.8. Let Q be a quasigroup of order 4. Suppose that Mult(Q) does

not contain a cycle of length 3. Then Mult(Q) is contained in a Sylow 2-group
Syl2 of S4 which is a semi-direct product of the Klein group V4 and a subgroup of

order 2 generated by 2-cycle.

Proof. By assumption each non-identical element from Mult(Q) ⊆ S4 is either
a 4-cycle or a product of independent 2-cycles. It means that each element of
Mult(Q) has order 1, 2, 4. So it is contained in Sylow 2-subgroup of S4.

Proposition 4.9. Let Q be a quasigroup of order 4 in which Mult(Q) has a

3-cycle. Then the group Mult(Q) contains A4. Hence if there is also an odd per-

mutation among its row or column permutations then Q is highly non-associative

and therefore polynomially complete.

Proof. Let a 3-cycle σ exist. By [1, Proposition 3.13] the quasigroup Q is simple.

Let G = Mult(Q) and H a subgroup in G �xing the same element as σ. Then
σ belongs to H. Hence the order of H is divisible by 3 and also |G| = 4|H| because
G acts transitively on Q. Hence the order of G is divisible by 12.

Since G is a subgroup of S4 we can conclude that the order of G is either 12
or 24. So either G = A4 or G = S4.

If in addition there exists an odd permutation from Mult(Q) ⊃ A4, then
Mult(Q) = S4. By [1, Proposition 4.4] Q is not a a�ne quasigroup.

Proposition 4.10. Let Q be a non-simple quasigroup of order 4. Then Mult(Q)
is contained in Sylow 2-subgroup Syl2 of S4. Note that the commutator of Syl2 is

contained in V4 and it has order 2.

Proof. If Q is non-simple then Mult(Q) does not contain 3-cycles by Proposition
4.9. Apply Proposition 4.8.
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Proposition 4.11. Let |Q| = pd for some prime p and Mult(Q) is embedded into

the group of all a�ne transformations of a vector space V of dimension d over the

�eld Fp with p elements. Then Q can be identi�ed with V and

xy = x ∗ y + α(x) + β(y) + c, c ∈ Q,

where x ∗ y is a bilinear multiplication in Q such that α, β and the maps

x 7→ x ∗ y + α(x), y 7→ x ∗ y + β(y) (15)

are invertible linear operators in Q.

Proof. By assumption on the order of Q and on action of Mult(Q) we can identify
Q with the vector space V of dimension d over the �eld Fp such that the maps of
left and right multiplication became a�ne transformations on Q. More precisely,
for any x, y ∈ Q we have

xy = Lxy = βx(y) + γ(x), γ(x) ∈ Q;

xy = Ryx = αy(x) + δ(y), δ(y) ∈ Q,

where βx, αy are invertible linear operators in Q for any x, y ∈ Q.
Setting β = β0, α = α0 we get

0y = β(y) + γ(0) = δ(y);

x0 = α(x) + δ(0) = γ(x).

Hence
xy = βx(y) + α(x) + δ(0) = αy(x) + β(y) + γ(0).

Setting x = y = 0 we obtain δ(0) = γ(0) and therefore

βx(y)− β(y) = αy(x)− α(x)

is a bilinear multiplication x ∗ y in Q. Finally, αy(x) = x ∗ y + α(x) and it follows
that xy has the required form.

As we have noticed above α, β are invertible linear operators. Since Q is a
quasigroup the maps (15) are also invertible linear operators for any x, y ∈ Q.

Consider a quasigroup
1 2 3 4

1 2 1 3 4
2 1 3 4 2
3 4 2 1 3
4 3 4 2 1

.

In this example the �st row is the cycle (1, 2), the second row is the cycle
(2, 3, 4). It also contains a cycle (1, 3, 2, 4) and by Theorem 4.9 it is highly non-
associative. Therefore by Proposition 4.1 it is simple.



Non-associative quasigroups and associative triples 15

Consider another quasigroup

1 2 3 4
1 3 2 4 1
2 4 1 3 2
3 1 4 2 3
4 2 3 1 4

. (16)

In this example row permutations are

(1, 3, 4), (1, 4, 2), (2, 4, 3), (1, 2, 3). (17)

Column permutations are

(1, 3)(2, 4), (1, 2)(3, 4), (1, 4)(2, 3), ε, (18)

where ε is the identity permutation. So by Proposition 4.9 this is a simple quasi-
groups whose Mult(Q) = A4. So simplicity does no imply highly-nonassociativity.

Now we shall characterize invariant class of polynomially complete highly non
associative quasigroup under isotopy.

Proposition 4.12. Let Q be a �nite quasigroup of order n > 5. Suppose that the

group G(Q) from � 2 contains a subgroup isomorphic to Am, m > max( |Q|2 +1, 5).
The class of quasigroups Q with given property is stable under isotopies. All of

them are polynomially complete.

Apply Theorems 2.2 and 4.4.

5. Method for derivation of associative triples

In this section we present a method for deriving associative triples of quasigroups
of order n. It is based on commutators of row and column permutations of its
Latin squares. Here we also give an algorithm for this scheme.

Recall that a triple (x, a, y) of elements of a quasigroup Q is associative if
x(ay) = (xa)y. In other words LxRya = RyLxa, where Lx, Ry are maps of left
multiplication by x and right multiplication by y.

Suppose that a �nite quasigroup Q of order n is given by its Latin square (2)
with row and column permutations σ1, . . . , σn, τ1, . . . , τn. Let x = xi, y = xj .
So Lx = σi, Ry = τj . Then LxRya = σiτja, RyLxa = τjσia. Hence a triple
(xi, a, xj) is associative if and only if σiτja = τjσia. It can be written in equivalent
form σ−1i τ−1j σiτja = a. If we use group commutator [σ−1i , τ−1j ] = σ−1i τ−1j σiτj then

we can write [σ−1i , τ−1j ]a = a.
So we have
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Proposition 5.1. A triple (xi, a, xj) is associative if and only if a is a �xed

element of the permutation [σ−1i , τ−1j ].

So the number of associative triples is equal to a sum of numbers of all �xed
elements under commutators [σ−1i , τ−1j ] for all i, j = 1, . . . , n.

The algorithm for associative triples of a quasigroup Q of order n is developed
based on commutators of column and row permutations of its Latin square by
using Proposition 5.1. The algorithm is given below.

Algorithm

Input : n× n Latin square of the quasigroup Q of order n
Output : Associative triples of Q and total number
Steps :

1. Write all row (σ1, . . . , σn) & (τ1, . . . , τn) permutations of Latin square

2. Write all σ−11 , . . . , σ−1n &τ−11 , . . . , τ−1n

3. Calculate [σ−1i , τ−1j ] = σ−1i τ−1j σiτj

4. Represent each [σ−1i , τ−1j ] is cycle form

5. Write all elements xk ∈ Q such that xk does not belong to any nontrivial cycle
of [σ−1i , τ−1j ] and denote by xk

6. Associative triples for each [σ−1i , τ−1j ] are (xi, xk, xj)∀xk

7. Total number of associative triples =
∑

#xk for each i, j where 1 6 i, j 6 n

Figure 2: Algorithm for associative triples.

This algorithm �rst calculates n2 number of commutators and directly calcu-
late associative triples directly instead of calculations of 2n3 triplets of the form
(xy)z, x(yz) and comparing them to derive associative triplets.

The following example shows application of the algorithm for a quasigroup of
order 5. Consider a quasigroup Q of order 5 with the Latin square

1 2 3 4 5

1 4 2 3 5 1
2 5 1 4 2 3
3 2 3 5 1 4
4 3 5 1 4 2
5 1 4 2 3 5

.
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Then the row and column permutations are

σ1 = (1, 4, 5), σ2 = (1, 5, 3, 4, 2), σ3 = (1, 2, 3, 5, 4),

σ4 = (1, 3)(, 2, 5), σ5 = (2, 4, 3),

τ1 = (1, 4, 3, 2.5), τ2 = (1, 2)(4, 5), τ3 = (1, 3, 5, 2, 4),

τ4 = (1, 5, 3), τ5 = (2, 3, 4).

A calculations by algorithm given in Figure 2 shows that the following com-
mutators have �xed elements:

commutators
�xed

elements
associative
triples

number of
associative
triples

[σ−1
1 , τ−1

1 ] = (1, 2, 4) x3, x5 (x1, x3, x1), (x1, x5, x1) 2

[σ−1
1 , τ−1

2 ] = (1, 5)(2, 4) x3 (x1, x3, x2) 1

[σ−1
1 , τ−1

4 ] = (1, 3)(4, 5) x2 (x1, x2, x4) 1

[σ−1
1 , τ−1

5 ] = (1, 3, 4) x2, x5 (x1, x2, x5), (x1, x5, x5) 2

[σ−1
2 , τ−1

4 ] = (2, 5, 3) x1, x4 (x2, x1, x4), (x2, x4, x4) 2

[σ−1
2 , τ−1

5 ] = (2, 5, 4)) x1, x3 (x2, x1, x5), (x2, x3, x5) 2

[σ−1
4 , τ−1

4 ] = (1, 5)(2, 3) x4 (x4, x4, x4) 1

[σ−1
5 , τ−1

1 ] = (1, 2, 3) x4, x5 (x5, x4, x1), (x5, x5, x1) 2

[σ−1
5 , τ−1

4 ] = (3, 4, 5) x1, x2 (x5, x1, x4), (x5, x2, x4) 2

[σ−1
5 τ−1

5 ] = ε xi, ∀i (x5, xi, x5) ∀i 5

The total number of associative triples is equal to 20. This algorithm can
explicitly able to compute the associative triples of any �nite order quasigroups
and hence total number of associative triples. In our experiment we �nd the lowest
number of associative triples for quasigroup of order 5 is 20.

In the following section we present experimental results of number of associative
triples for all quasigroups of order 4 of di�erent algebraic classes considered in [2].

6. Experimental results

The algorithm for derivation of associative triples of quasigroups of �nite order
is implemented. It has been succesfully applied on di�erent order of quasigroups.
From algebraic point of view we classify the the quasigroups of order 4 in four
di�erent classes [2] which are viz. (i) Simple and a�ne quasigroups (ii) Simple
and non-a�ne quasigroups (Polynomially complete), (iii) Non-simple and a�ne
quasigroups and (iv) Non-simple and non-a�ne quasigroups. Experiments are
carried out on the set of all quasigroups of order 4 to �nd out the number of
associative triples of di�erent classes. Experimental results show that number of
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associative triples are either 16 or 24 for simple cases and 32 or 64 for non-simple
cases. So, 16 is the minimum number of associative triples of quasigroups of order
4 [9].

The table given below shows the number of quasigroups and corresponding
associative triples of each class.

Classes
Number of
quasigroups

Number of
associative triples

Simple and a�ne 104 16

Simple and non-a�ne
(polynomially complete)

240
144

16
24

Non-simple and a�ne
48
8

32
64

Non-simple and non-a�ne
24
8

32
64

Figure 3: Associative triples of di�erent classes of quasigroups of order 4

From algebraic point of view we know that cryptographic suitable quasigroups
are polynomially complete [1]. Minimum number of associative triples is also
an important algebraic property for good choice of cryptographic quasigroups.
Experimental results show that cryptographic suitable quasigroups of order 4 are
240 beloging to the polynomially complete class. It is also observed that number
of associative triples of non-simple quasigroups are always greater than simple
quasigroups of order 4. Therefore, quasigroups belonging to the non-simple class
are unsuitable for cryptographic purpose.
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On some algebraic properties

of order of an element of a multigroup

Johnson Aderemi Awolola and Paul Augustine Ejegwa

Abstract. The concept of multigroups is a generalization of groups whereby the underlying

structure is a multiset over a group X. As a continuation of the study of various algebraic

structures of multisets, the concept of order of an element with respect to multigroup is introduced

and some of its related results outlined. Also, the Lagrange's theorem for regular multigroup

is described, and the restriction to regular multigroup makes the theorem �exible showing an

analogy to that of group theory.

1. Introduction

The conception of multiset was introduced by N.G. de Bruijn under the idea of
classical set theory. According to George Cantor,

By a set we are to understand any collection M of de�nite and distinct objects m
of our intuition or thought (which will be called the "element" of M) into a whole.

One unavoidable consequence of Cantor's de�nition is that no element can
occur more than once in a classical set. Indeed, this aspect of Cantorian set
theory does not go hand in hand with many situations arising in solving real
world problems. For example, the repeated roots of x2 − 2x + 1 = 0, repeated
observations in statistical samples, repeated hydrogen atoms in a water molecule,
H2O, etc. need to be considered signi�cant. Once we admit the restriction of
de�niteness on the nature of objects forming a set, we have multisets. Details on
fundamentals of multiset, multiset applications and various algebraic structures
de�ned via multiset can be found in [3], [6], [7], [8], [9].

Very recently, [4] introduced multigroups as a natural generalization of the con-
cept of groups which di�ers from the earlier de�nition given in [2], and established
some of its fundamental properties. The recent de�nition of multigroup which
follows [5] is adopted for the results presented in this paper. The aim of this paper
is to present the notion of order of an element with respect to multigroup and
outline some of its related results.

2010 Mathematics Subject Classi�cation: 03E72, 06D72, 11E57, 19A22
Keywords: Multiset, multigroup, order of an element of a multigroup.
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2. Preliminaries

De�nition 2.1. A multiset (mset) A drawn from a crisp (ordinary) set X is
represented by a count function CA de�ned as CA : X → D = {0, 1, 2, . . .}.

For x ∈ X, CA(x) denotes the number of times the element x in the mset A
occurs. The representation of the mset A drawn from X = {x1, x2, . . . , xn} is

[x1, x2, ...xn]m1,m2,...mn

such that xi appears mi (i = 1, 2, ..., n) times in A.

De�nition 2.2. An mset is called regular or constant if all its elements occur with
the same multiplicity.

De�nition 2.3. Let X be a group. A multiset A over X is called a multigroup

over X if the count function A or CA satis�es the following conditions.

(i) CA(xy) > CA(x) ∧ CA(y), ∀x, y ∈ X,

(ii) CA(x−1) > CA(x), ∀x ∈ X.

The set of all multigroups over X is denoted by MG(X).

If A ∈MG(X), it follows that CA(x−1) = CA(x) and CA(e) > CA(x) .

De�nition 2.4. Let H ∈MG(X). For any x ∈ X, xH and Hx de�ned by

CxH(y) = CH(x−1y)

and
CHx(y) = CH(yx−1), ∀y ∈ X,

are respectively called the left and right mcosets of H in X.

De�nition 2.5. Let A ∈MG(X). Then A is called regular if the count function
A occurs with the same multiplicity. The set of all regular multigroups over X is
denoted by RMG(X).

Proposition 2.6. (cf. [4]) Let A ∈ MG(X). Then the following assertions are

equivalent.

(i) CA(xy) = CA(yx), ∀x, y ∈ X.

(ii) CA(xyx−1) = CA(y), ∀x, y ∈ X.

(iii) CA(xyx−1) > CA(y), ∀x, y ∈ X.

(iv) CA(xyx−1) 6 CA(y), ∀x, y ∈ X.

Other de�nitions and facts one can �nd in [1].
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3. Order of an element of a multigroup

De�nition 3.7. Let A ∈MG(X) and x ∈ X. If there exists a positive integer n
such that CA(xn) = CA(e), then the least such positive integer is called the order

of an element x with respect to A. If no such n exists, x is said to be of in�nite
order with respect to A. The order of an element x with respect to A is denoted
by OA(x).

Example 3.8. LetX = (R−{0}, ·) and A = [1,−1]3,2. Then CA((−1)2) = CA(1).
Therefore OA(−1) = 2. But for any x ∈ R − {1, 0,−1}, @ n ∈ Z+ such that
CA(xn) = CA(1). Therefore OA(x) =∞, ∀x ∈ R− {1, 0,−1}.

Equality of O(x) = O(y) does not imply OA(x) = OA(y), as shown in the
below.

Example 3.9. Let {e, a, b, c} be the Klein's 4-group and A = [e, a, b, c]3,2,3,2.
Clearly, O(a) = O(b) but OA(a) = 2 and OA(b) = 1, since CA(b) = CA(e).

Remark 3.10. If H = {x ∈ X | CA(x) = CA(e)} 6 X, then OA(x) = ~, the
order of x relative to H (i.e., the smallest positive integer n such that xn ∈ H, if
∃ such a positive integer). In particular, if H is trivial subgroup {e} of X, then
OA(x) = O(x), the (classical) order of x in X.

De�nition 3.11. Let A ∈ MG(X). The order of A denoted by O(A) is de�ned
as O(A) = Σx∈XCA(x), i.e., the total number of all multiplicities of its element.

Proposition 3.12. If H 6 X and A ∈ MG(X), then O(A|H) 6 O(A), where

A|H means A restricted to H.

Proof. Straightforward.

Proposition 3.13. (Lagrange's theorem for RMG)
Let H 6 X, A|H ∈ RMG(H) and A ∈ RMG(X). Then O(A|H)|O(A).

Proof. Let O(A) = n. By Proposition 2.6, we have O(A|H) 6 n. If O(A|H) = n,
then the result is trivial. Now, we assume that O(A|H) < n. Let O(A|H) = m,
∀x ∈ H. Then if k is the count function of each left mcoset A in X, then O(A) =
CxA(y) · O(A|H) ∀y ∈ X. By Lagrange's theorem for regular multigroup, n|m.
Hence the proof.

Example 3.14. Consider the subgroup H = {1,−1} of X = {1,−1, i,−i} such
that A = [1,−1, i,−i]2,2,2,2 and A|H = [1,−1]2,2. Then O(A) = 8, O(A|H) = 4
and CiA(−i) = CA(1) = 2. Hence, O(A|H)|O(A).

Corollary 3.15. If H 6 X, x ∈ H and A|H ∈ RMG(H), then OA|H(x)|O(A|H).

Proof. Since A|H ∈ RMG(H), for some positive integer m we have CA|H(xm) =
CA|H(e). Hence, OA|H(x) = m. Now, H is a subgroup of X and A|H ∈ RMG(H)
such that O(A|H) = n. If for any x ∈ H, r = Cx(A|H)(y) = CA|H(x−1y) ∀y ∈ H,
then n = rm. Hence n|m.
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Proposition 3.16. Let A ∈MG(X). Then OA(x) = OA(x−1).

Proof. By de�nition, OA(x) = n. So, CA(xn) = CA(e). Thus, CA((xn)−1) =
CA(e−1), i.e., CA((x−1)n) = CA(e), which implies OA(x−1) > n. Hence m > n.

Also, OA(x−1) = m implies CA((x−1)m) = CA(e). So, CA((xm)−1) = CA(e),
i.e., CA(xm) = CA(e). Thus, OA(x) > m. Hence n > m. Therefore, n = m.

Proposition 3.17. If x ∈ X and A ∈ MG(X) such that O(A) is even, then

CA(xO(A)) = CA(e).

Proof. Let OA(x) = n. Then O(A) = m ·OA(x), where

xO(A) = xm ·OA(x) = (xn)m.
Then

CA(xO(A)) = CA((Xn)m) > CA(xn) = CA(e).

Therefore, CA(xO(A)) > CA(e).
Since A ∈ MG(X), then CA(e) > CA(y) ∀y ∈ X. So, CA(xO(A)) 6 CA(e).

Hence, CA(xO(A)) = CA(e).

Proposition 3.18. Let A ∈ MG(X) and x ∈ X. If there exists m ∈ Z+, such

that CA(xm) = CA(e), then OA(x)|m.

Proof. Let OA(x) = n. By division algorithm, there exists integers s and t such
that m = ns + t, 0 6 t < n. Then

CA(xt) = CA(xm−ns) = CA(xm(xn)−s) > CA(xm) ∧ CA((xn)−s)

= CA(e) ∧ CA((xns)−1) = CA((xns)−1)

= CA(xns) = CA((xn)s) > CA(xn) = CA(e).

Thus, CA(xt) = CA(e). Hence, t = 0 by minimality of n, i.e., m = ns.

Proposition 3.19. Let A ∈MG(X) and let x, y ∈ X be such that (OA(x), OA(y))
= 1 and xy = yx. If CA(xy) = CA(e), then CA(x) = CA(y) = CA(e).

Proof. Let OA(x) = n and OA(y) = m. Then

CA(e) = CA(xy) 6 CA((xy)m) = CA(xmym).

Hence, CA(xmym) = CA(e). Now,

CA(xm) = CA(xmymy−m) > CA(xmym) ∧ CA(y−m) = CA(e) ∧ CA(e) = CA(e).

Thus, CA(xm) = CA(ym) = CA(e). Therefore, n|m by Proposition 3.18. But
(n,m) = 1. Thus, n = 1 i.e., CA(x) = CA(xn) = CA(e). Similarly, CA(y) =
CA(e).

Proposition 3.20. Let A ∈MG(X). Then OA(xm) 6 OA(x).
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Proof. By de�nition, OA(x) = n means CA(xn) = CA(e). Then CA((xn)m) =
CA(em), hence CA(xnm) = CA(e). So, CA((xm)n) = CA(e), i.e, OA(xm) 6 n.
Consequently, OA(xm) 6 OA(x).

Proposition 3.21. Let A ∈MG(X). Then OA(xyx−1) 6 OA(y).

Proof. Let OA(xyx−1) = m and OA(y) = n. Then

CA((xyx−1)2) = CA((xyx−1)(xyx−1)) = CA(xy(x−1x)yx−1)

= CA(x(ye)yx−1) = CA(xy2x−1).

In general, CA((xyx−1)n) = CA(xynx−1) 6 CA(yn) = CA(e) = OA(y).

Remark 3.22. If A ∈MG(X), then OA(xyx−1) = OA(y).

Proposition 3.23. Let A ∈ MG(X) and OA(x) = n, where x ∈ X. If m ∈ Z
with (m,n) = d, then OA(xm) = n

d .

Proof. Let OA(xm) = t. Now, for m
d = k ∈ Z+,

CA((xm)
n
d ) = CA(xnk) > CA(xn) = CA(e).

By Proposition 3.18, t|(n
d ). Since (m,n) = d, then ∃ i, j ∈ Z such that ni+mj = d.

Therefore,

CA(xtd) = CA(xt(ni+mj)) > CA((xn)ti) ∧ CA(((xm)t)j)

> CA(xn) ∧ CA((xm)t)

> CA(e) ∧ CA(e) = CA(e).

Thus, n|( t
d ) by Proposition 3.18, this implies (n

d )|t, consequently t = n
d .

Putting in the above Proposition d = 1 we obtain

Corollary 3.24. Let A ∈ MG(X) and OA(x) = n, where x ∈ X. If m ∈ Z with

(m,n) = 1, then OA(xm) = OA(x).

Proposition 3.25. Let A ∈MG(X) and OA(x) = n, where x ∈ X. Then for all

i ≡ j(mod n), i, j ∈ Z, we have OA(xi) = OA(xj).

Proof. Let OA(xi) = t and OA(xj) = s. Assume i = j + nk and k ∈ Z. Then

CA((xi)s) = CA((xj+nk)s) > CA((xj)s) ∧ CA((xn)ks)

> CA(e) ∧ CA(e) = CA(e)

implies CA((xi)s) = CA(e). Therefore, t|s. Similarly, by CA((xj)t) = CA(e) we
obtain s|t. Thus, t = s.
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Nilpotency of gb-triple systems

Guy Roger Biyogmam

Abstract. gb-triple systems are among the generalizations of Leibniz algebras (which includes

Lie algebras) to ternary algebras. In this paper, we extend several results established on nilpotent

Lie algebras to gb-triple systems. In particular we prove an analogue of Engel's theorem for gb-

triple systems and establish some properties of nilpotent gb-triple systems in connection with

their Frattini ideal. Also, we show the invariance of the nilradical under derivations.

1. Introduction

In recent years, Lie algebras have been generalized to several algebraic structures
endowed with a multilinear operation. In particular, 3-Lie algebras [12] and Lie
triple systems [8, 14] are generalizations of Lie algebras to ternary algebras. An-
other ternary algebra in this picture is Leibniz 3-algebras [10] which generalizes
Leibniz algebras introduced by J. L. Loday [17] as a non commutative version of
Lie algebras. A considerable amount of research (see [2, 3, 9, 11, 16]) has been
devoted in extending classical theorems of Lie algebras to these generalizations.
This paper is a continuation of investigations on gb-triple systems; a new algebraic
structure recently introduced in [6] as another generalization of Leibniz algebras
to ternary operations, and further investigated in [7].

Our purpose in this work is the study of nilpotency on gb-triple systems. In
Section 3 we introduce the Frattini subalgebra and ideal of gb-triple systems and
extend their classical properties known on Lie algebras to gb-triple systems. In
Section 4, we prove that a gb-triple system g for which the Frattini ideal φ(g) is
a 3-sided ideal is nilpotent if and only if the quotient gb-triple system g/φ(g) is
nilpotent. We also prove an analogue of Engel's theorem for gb-triple systems,
thanks to the fact that the bracket operator generates the Lie algebra of inner
derivations as in the case of all algebras mentioned above. In Section 5, we show
that the nilradical 2-sided (right) ideal of a gb-triple system is invariant under
derivations.

For the remainder of this paper, we assume that K is a �eld of characteristic
di�erent to 2, all tensor products are taken over K and all algebras are �nite
dimensional.

2010 Mathematics Subject Classi�cation: 17A30, 17A32, 17A40
Keywords: Triple systems, Leibniz 3-algebras, Leibniz algebras, nilpotency.
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2. gb-triple systems

In this section, we recall preliminaries about gb-triple systems and de�ne the quo-
tient gb-triple system.

De�nition 2.1. (cf. [6]) A gb-triple system is a K -vector space g equipped with
a trilinear operation [−,−,−]g : g×3 −→ g satisfying the identity

[x, y, [a, b, c]g]g = [a, [x, y, b]g, c]g − [[a, x, c]g, y, b]g − [x, [a, y, c]g, b]g. (2.1)

De�nition 2.2. (cf. [6]) Let (g, [−,−,−]g) be a gb-triple system. A subspace S
of g is a subalgebra of g if (S, [−,−,−]g) be a gb-triple system.

Example 2.3. See Example 2 and Example 8 in [6].

De�nition 2.4. (cf. [6]) A subalgebra I of a gb-triple system g is called ideal

(resp. left ideal, right ideal) of g if it satis�es the condition
[
g, I, g

]
g
⊆ I (resp.[

g, g, I
]
g
⊆ I, resp.

[
I, g, g

]
g
⊆ I). If I satis�es these three conditions, then I is

called a 3-sided ideal.

Remark 2.5. (cf. [6]) If S is a subalgebra of a gb-triple system g, then the left

normalizer

Nl
g(S) :=

{
x ∈ g :

[
x, S, g

]
g
⊆ S

}
and the right normalizer

Nr
g(S) :=

{
x ∈ g :

[
g, S, x

]
g
⊆ S

}
of S in g are also subalgebras of g. Note that this statement is not true for Leibniz
algebras since the right normalizer of a subalgebra of a (left) Leibniz algebra need
not be a subalgebra (see [5, Example 1.7]).

Moreover, S is an ideal of g if and only if Nl
g(S) = g = Nr

g(S).

De�nition 2.6. (cf. [6]) Given a gb-triple system g, the center Z(g) and the
derived algebra of g are de�ned respectively by

Z(g) =
{
x ∈ g :

[
g, x, g

]
g
= 0
}

and [
g, g, g

]
=
{[
a1, a2, a3

]
g
, a1, a2, a3 ∈ g

}
.

g is said to be perfect if
[
g, g, g

]
g
= g, and abelian if

[
g, g, g

]
g
= 0.

De�nition 2.7. The full center Zf (g) of a gb-triple system g is de�ned by

Zf (g) = Z(g) ∩
{
x ∈ g :

[
g, g, x

]
g
= 0 and

[
x, g, g

]
g
= 0
}
.
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The following result is straightforward.

Proposition 2.8. A gb-triple system g is abelian if and only if Zf (g) = g.

Note that Z(g) is an ideal of g while Zf (g) and
[
g, g, g

]
g
are 3-sided ideals of

g. Let I be a 3-sided ideal of a gb-triple system g. Then the quotient space g/I
has a natural gb-triple system structure given by the bracket

[x+ I, y + I, z + I]g/I = [x, y, z] + I. (2.2)

Notice that if x+ I = x′ + I, y + I = y′ + I and z + I = z′ + I, then

[x, y, z]g = [x′ + (x− x′), y′ + (y − y′), z′ + (z − z′)]g
= [x′, y′, z′]g + [x′ + (x− x′), y − y′, z′ + (z − z′)]g

+ [(x− x′), y′, z′ + (z − z′)]g + [x′, y′, (z − z′)]g

and thus [x, y, z]g + I = [x′, y′, z′]g + I since x− x′ ∈ I, y − y′ ∈ I and z − z′ ∈ I
as I is a 3-sided ideal. That the bracket (2.2) satis�es the identity (2.1) follows by
de�nition.

De�nition 2.9. g/I endowed with the bracket (2.2) is called quotient gb-triple
system of g by I.

Recall that if V is a vector space endowed with a trilinear operation σ : V ×
V × V −→ V, then a map d : V −→ V is called a derivation with respect to σ if

d(σ(x, y, z)) = σ(d(x), y, z) + σ(x, d(y), z) + σ(x, y, d(z)) (2.3)

Remark 2.10. Let g be a gb-triple system. Then by [7, Remark 3.9], the Lie
algebra Der(g) of derivations of g has a gb-triple system structure when endowed
with the bracket

{d1, d2, d3} =
[
d2,
[
d1, d3

]
Der(g)

]
Der(g)

.

Remark 2.11. For every derivation d of g and x, y, y′, z ∈ g, it follows by (2.3)
and by setting σ = [−,−,−]g that

[x, y + d(y′), z]g = [x, y, z]g − [d(x), y′, z]g − [x, y′, d(z)]g + d([x, y′, z]g).

So if I is an ideal of g, then I+ d(I) is also an ideal of g.

3. The Frattini subalgebra of gb-triple systems

This section is devoted to the introduction of the Frattini subalgebra and Frattini
ideal of gb-triple systems.

De�nition 3.1. A maximal subalgebra m of a gb-triple system g is a proper sub-
algebra of g such that no proper subalgebra S strictly contains m.
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Remark 3.2. Let m be a maximal left ideal of a gb-triple system g. Then as m
is a left ideal of g, m ⊆ Nr

g(m). Now since m is maximal, then Nr
g(m) = m or

Nr
g(m) = g.

De�nition 3.3. The intersection of all maximal subalgebras of a gb-triple system
g is the subalgebra F (g) of g called the Frattini subalgebra.

De�nition 3.4. The largest ideal of a gb-triple system g contained in F (g) is
denoted φ(g) and called the Frattini ideal of g.

Proposition 3.5. Let g be a non perfect gb-triple system. Then F (g) ⊆ [g, g, g]g.
In particular, F (g) = 0 if g is abelian.

Proof. By contradiction, let x ∈ F (g) with x /∈ [g, g, g]g. Any subalgebra S of
g with dimension dimg − 1 containing [g, g, g]g and with x /∈ S is a maximal
subalgebra of g. A contradiction with x ∈ F (g).

Following the proofs of [2, Propositions 2.1, 2.2, 2.4], it is easy to show that
the following statements which hold for Leibniz 3-algebras also hold for gb-triple
systems.

Proposition 3.6. Let g be a gb-triple system and I an ideal of g. Then there are

proper subalgebras Sand S′ of g such

(1) g = I+ S i� I is not contained in F (g).

(2) g = I+ S′ i� I is not contained in φ(g).

Proposition 3.7. Let g be a gb-triple system, I an ideal of g and S a subalgebra

of g. Then the following statements hold:

(1) If S + F (g) = g, then S = g.

(2) If S + φ(g) = g, then S = g.

(3) If I ⊆ F (S), then I ⊆ F (g).

(4) If I ⊆ φ(S), then I ⊆ φ(g).

(5) If F (S) is an ideal of g, then F (S) ⊆ F (g).

(6) If φ(S) is an ideal of g, then φ(S) ⊆ φ(g).

(7) (F (g) + I)/I ⊆ F (g/I).

(8) (φ(g) + I)/I ⊆ φ(g/I).

(9) If I ⊆ F (g), then F (g)/I = F (g/I).

(10) If I ⊆ φ(g), then φ(g)/I = φ(g/I).
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(11) If F (g/I) = 0, then F (g) ⊆ I.

(12) If φ(g/I) = 0, then φ(g) ⊆ I.

(13) If S is minimal with respect to g = I+ S, then I ∩ S ⊆ g.

(14) If I is abelian and I∩φ(g) = 0, then g = I+K for some subalgebra K of g.

Proof. The proof is similar to the case of Lie 3-algebras (see [2]).

4. Nilpotency of gb-triple systems

4.1. De�nition and Examples

De�nition 4.1. The lower central series of a gb-triple system g is the sequence
of subalgebras de�ned by g(s+1) = [g, g(s), g] with g(1) = g.

A gb-triple system g is nilpotent if this sequence terminates, i.e., g(s) = 0 for
some positive integer s. The smallest of such values s is called class of nilpotency

of g.

Remark 4.2. Let g be a nontrivial nilpotent gb-triple system of class s. Then the
following holds.

(1) g has a non trivial center. Indeed, since there is some positive integer s
such that g(s) = 0 i.e. [g, g(s−1), g]g = 0, it follows that g(s−1) ⊆ Z(g).

(2) g is abelian if and only if its class is s = 2.

Proposition 4.3. Let g be a gb-triple system. Then g is nilpotent if and only if

g/Zf (g) is nilpotent

Proof. If g is nilpotent of class s, then [g, g(s−1), g]g = g(s) = 0. Using (2.2),

it is easy to show that
(
g/Zf (g)

)(s)
= g(s)/Zf (g) = Zf (g). Therefore g/Zf (g)

is nilpotent. Conversely, if g/Zf (g) is nilpotent of class s, then g(s)/Zf (g) =(
g/Zf (g)

)(s)
= Zf (g). This implies that g(s) ⊆ Zf (g). So g(s+1) = [g, g(s), g]g ⊆

[g, Zf (g), g]g = 0. Hence g is nilpotent.

It is worth mentioning that the above de�nition of nilpotency appears to extend
the de�nition of nilpotency for both left and right Leibniz algebras [11].

The following theorem classi�es a subfamily of two dimensional nilpotent com-
plex gb-triple systems.

Theorem 4.4. Up to isomorphisms, there are three two-dimensional nilpotent

complex gb-triple systems with one dimensional derived algebra.

Proof. Among the seven two-dimensional complex gb-triple systems with one di-
mensional derived algebra established in the proof of [6, Theorem 11], only the
following are nilpotent, all with class of nilotency s = 3.
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g2 : [ai, aj , ak]g =

{
αa1, if i, j, k = 2

0, else
,

g3 : [ai, aj , ak]g =


a1, if i = 1, j, k = 2

−a1, if i, j = 2, k = 1

0, else

,

g6 : [ai, aj , ak]g =


a1, if i = 1, j, k = 2

−a1, if i, j = 2, k = 1

αa1, if i, j, k = 2

0, else

,

with α 6= 0.

It was shown in [3] that every maximal subalgebra m of a nilpotent 3-Lie
algebra L is an ideal of L. The following example shows that this statement does
not hold for gb-triple systems, and Corollary 4.7 shows that the result holds if m
is a maximal left ideal (or right ideal).

Example 4.5. Consider the nilpotent gb-triple system g3 above with basis {a1, a2}.
The one-dimensional subspace with basis {a2} is a maximal subalgebra of g3, but
not an ideal of g3 since [a1, a2, a2]g = a1 /∈< a2 > .

As in Lie algebras, we say that a gb-triple system g satis�es the right normalizer
condition if there is no proper subalgebra S of g such thatNr

g(S) = S. The following
result which holds for groups and Leibniz algebras also holds gb-triple systems, and
the proof is similar.

Proposition 4.6. Nilpotent gb-triple systems satisfy the right normalizer condi-

tion.

Corollary 4.7. If m is a maximal left or rihgt ideal of a nilpotent gb-triple system

g, then m is an ideal of g.

Proof. Since g is nilpotent, it follows from Proposition 4.6 that m 6= Nr
g(m). So by

Remark 3.2, Nr
g(m) = g. Hence m is an ideal of g.

4.2. Engel's Theorem for gb-triple systems

De�nition 4.8. (cf. [17]) A Leibniz algebra (sometimes called a Loday algebra,
named after Jean-Louis Loday) is a K vector space L with a bilinear product [−,−]
satisfying the Leibniz identity

[x, [y, z]] = [[x, y] z] + [y, [x, z]] (4.1)
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.
A Leibniz algebra L is nilpotent if L<s> = 0 for some positive integer s, where

L<1> = L and L<s+1> = [L,L<s>]. A 2-sided ideal of L is a subalgebra I of L
satisfying [I, L] ⊆ L and [L, I] ⊆ L.

Proposition 4.9. Every Leibniz algebra L has a gb-triple system structure given

by the bracket

{x, y, z} = [[x, z], y].

Proof. To check that {−,−,−} satis�es the identity (2.1), let x, y, a, b, c ∈ L; we
have on one hand

{x, y, {a, b, c}}+ {{a, x, c}, y, b} = [[x, {a, b, c}], y] + [[{a, x, c}, b], y]
=
[
[x, [[a, c], b]], y] + [[[a, c], x], b], y

]
=
[
[[a, c], [x, b]], y

]
.

On the other hand

{a, {x, y, b}, c} − {x, {a, y, c}, b} =
[
[a, c], {x, y, b}

]
−
[
[x, b], {a, y, c}

]
=
[
[a, c], [[x, b], y]

]
−
[
[x, b], [[a, c],y]

]
.

The equality holds by the identity (4.1).

Now recall that for a gb-triple system g, g⊗2 is a Leibniz algebra (see [6, Propo-
sition 2.1]) when endowed with the bracket[

a1 ⊗ a2, b1 ⊗ b2
]
g⊗2 =

[
a1, b1, a2

]
g
⊗ b2 + b1 ⊗

[
a1, b2, a2

]
g
.

Lemma 4.10. Let k be a positive integer such that k > 2. Then for all a1, b1, a2, b2,
. . . , ak, bk, g1, g2 ∈ g we have[

a1 ⊗ b1,
[
a2 ⊗ b2,

[
. . . , [ak ⊗ bk, g1 ⊗ g2]g⊗2

]
g⊗2

]
g⊗2

]
g⊗2

= [a1, [a2, [. . . [ak, g1, bk]g . . .]g, b2]g, b1]g ⊗ g2
+ g1 ⊗ [a1, [a2, [. . . [ak, g2, bk]g . . .]g, b2]g, b1]g

+

k−1∑
i=1

[a1, [a2, . . . , [âi, . . . [ak, g1, bk]g . . . , b̂i]g, . . . b2]g, b1]g ⊗ [ai, g2, bi]g

+

k−1∑
i=1

[ai, g1, bi]g ⊗ [a1, [a2, . . . , [âi, . . . [ak, g2, bk]g . . . , b̂i]g, . . . b2]g, b1]g,

where ĝ means that the variable g is deleted.

Proof. The proof follows by induction and by the formula (2.1) in [6, Proposition
2.1].
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Corollary 4.11. If g is a nilpotent gb-triple system of class s, then g⊗2 is a

nilpotent Leibniz algebra of class s+ 1.

Proof. The proof follows directly by Lemma 4.10.

Recall also that the map Ag1⊗g2 : g −→ g de�ned by Ag1⊗g2(z) = [g1, z, g2]g is
a derivation of g, and the subspace A(g) =

{
Ag1⊗g2 | g1, g2 ∈ g

}
is a Lie algebra

(see [6, Proposition 2.1]) with respect to the product[
Aa1⊗a2 , Ab1⊗b2

]
A(g)

= Aa1⊗a2 ◦Ab1⊗b2 −Ab1⊗b2 ◦Aa1⊗a2 .

Proposition 4.12. Let g be a gb-triple system, K=
{
g1 ⊗ g2 ∈ g⊗2 |Ag1⊗g2 = 0

}
.

If h := g⊗2/K is a nilpotent Leibniz algebra of class s, then g⊗2 is a nilpotent

Leibniz algebra of class s+ 1.

Proof. From the proof of [6, Proposition 2.4], we have

A[a1⊗a2,b1⊗b2]g⊗2
=
[
Aa1⊗a2

, Ab1⊗b2
]
A(g)

for all a1, a2, b1, b2 ∈ g. It follows that K is a 2-sided ideal of g⊗2. Since h is

nilpotent of class s, ad
(s)
h (h) =

{
[h1, [h2, [. . . , [hs, h]h]h]h]h, h1, h2, . . . , hs, h ∈ h

}
=

K. This implies that ad
(s)
g⊗2(g

⊗2) ⊆ K. Now for all g1 ⊗ g2 ∈ K and a ⊗ b ∈ g⊗2,
we have

adg1⊗g2(a⊗ b) = [g1 ⊗ g2, a⊗ b]g⊗2

= [g1, a, g2]g ⊗ b+ a⊗ [g1, b, g2]g

= Ag1⊗g2(a)⊗ b+ a⊗Ag1⊗g2(b) = 0.

So [K, g⊗2]g⊗2 = adK(g⊗2) = 0. Therefore

ad
(s+1)
g⊗2 (g⊗2) =

[
ad

(s)
g⊗2(g

⊗2), g⊗2
]
g⊗2 ⊆ [K, g⊗2]g⊗2 = 0.

Hence g⊗2 is nilpotent of class s+ 1.

The following theorem is known as Engel's Theorem. It was extended to Leibniz
algebras in [1].

Theorem 4.13. (cf. [13]) A Lie algebra L is nilpotent if and only if adx is nil-

potent for any x ∈ L, where adx(y) := [x, y].

Note that the Leibniz algebras version of Theorem 4.13 could be used to prove
Proposition 4.12.

The following is a Engel-like Theorem for gb-triple system.

Theorem 4.14. A gb-triple system g is nilpotent if and only if Ag1⊗g2 is nilpotent

for every g1, g2 ∈ g.
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Proof. Assume that g is nilpotent. Then g(s) = 0 for some positive integer s. So
for every g, a1, . . . , as−1, b1, . . . , bs−1 ∈ g,

[a1, [a2, [. . . , [as−1, g, bs−1]g . . .]g, b2]g, b1]g = 0.

that is

Aa1⊗b1 ◦Aa2⊗b2 ◦ . . . ◦Aas−1⊗bs−1(g) = 0.

In particular,(
Ag1⊗g2 ◦Ag1⊗g2 ◦ . . . ◦Ag1⊗g2︸ ︷︷ ︸

(s-1)-times

)
(g) = 0 for every g1, g2 ∈ g.

So for every g1, g2 ∈ g, Ag1⊗g2 is nilpotent.
Conversely, assume that Ag1⊗g2 is nilpotent for every g1, g2 ∈ g. So the Lie

algebra A(g) =
{
Ag1⊗g2 | g1, g2 ∈ g

}
is a Lie algebra of nilpotent linear maps.

Moreover, by the proof of [6, Proposition 3.6], A(g) is an ideal of Der(g), and
thus a closed subset of End(g). It follows by [9, Theorem 3.5] that the associative
subalgebra generated by A(g) is nilpotent. So there exists a positive integer s such
that(

Aa1⊗b1 ◦Aa2⊗b2 ◦ . . . ◦Aas⊗bs
)
(g) = 0 for all g, a1, . . . , as, b1, . . . , bs ∈ g.

This implies that

[a1, [a2, [. . . , [as, g, bs]g . . .]g, b2]g, b1]g = 0 for all g, a1, . . . , as, b1, . . . , bs ∈ g.

Hence g(s+1) = 0. Therefore g is nilpotent.

Corollary 4.15. Let g be a gb-triple system. Then if g is nilpotent, so is any

subalgebra S of g.

Proof. Let S be a subalgebra of g. If S is not nilpotent, then by Theorem 4.14

there exists g1, g2 ∈ S such that the restriction A
(s)
g1⊗g2 |S 6= 0 for all positive

integer s. But this implies that A
(s)
g1⊗g2 6= 0 for all positive integer s. So Ag1⊗g2 is

not nilpotent, and thus g is not nilpotent by Theorem 4.14.

Corollary 4.16. If L is nilpotent as a Leibniz algebra, then L is also nilpotent as

a gb-triple system.

Proof. For all g1, g2 ∈ g, Ag1⊗g2 = ad[g1,g2] by Proposition 4.9. The result now
follows by applying both Engel's theorems for Leibniz and gb-triple systems.

4.3. Nilpotent ideals of gb-triple systems

For an ideal I of a gb-triple system g, consider the series de�ned by I(0) = g, and
I(s+1) = [I, I(s), g] with I(1) = I where s is a positive integer, s > 1.

Proposition 4.17. I(s) is an ideal of g for every integer s > 0.
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Proof. The cases s = 0, 1 are trivial. By induction, assume that for s > 2, I(s−1)

is an ideal of g and let x, y, z ∈ g, b ∈ I and a ∈ I(s−1). Then it follows from the
identity (2.1) that

[x, [b, a, z]g, y]g = [b, a, [x, z, y]g]g + [[x, b, y]g︸ ︷︷ ︸
∈ I

, a, z]g + [b, [x, a, y]g︸ ︷︷ ︸
∈ I(s−1)

, z]g ∈ I(s).

So I(s) is an ideal of g.

Proposition 4.18. Let I1 and I2 be two ideals of g such that I1 ⊆ I2. Then

I
(s)
1 ⊆ I

(s)
2

for all integer s > 0.

Proof. The cases s = 0, 1 are trivial. By induction, assume that the result is true

for s > 2. Then I
(s+1)
1 = [I1, I

(s)
1 , g]g ⊆ [I2, I

(s)
2 , g]g = I

(s+1)
2 .

De�nition 4.19. An ideal I of g is nilpotent if I(s) = 0 for some positive integer

s. The smallest of such values s is called class of nilpotency of I.

The following lemma provides the �tting decomposition of a gb-triple system
relative to a derivation in A(g).

Lemma 4.20. Let g be a �nite dimensional gb-tiple system and g1, g2 ∈ g. Then

g = g0 ⊕ g1

with g0 =
{
x ∈ g | A(s)

g1⊗g2(x) = 0 for some integer s > 0
}
and Ag1⊗g2(g) = g

Proof. Apply the Fitting Lemma [15, Chapter 2] on the linear transformation
Ag1⊗g2 .

The spaces g0 and g1 are called the Fitting null and one-components of g with
respect to Ag1⊗g2 .

The following theorem was proved in [4] for Lie algebras and in [18] for n-Lie
algebras.

Theorem 4.21. Let g be a gb-triple system. If I1 and I2 are 3-sided ideals of g
such that I1 ⊆ φ(g) ∩ I2 and I2/I1 is nilpotent, then I2 is nilpotent.

Proof. We proceed by contradiction. Assume that I2 is not nilpotent. Then by

Theorem 4.14, there exists g1, g2 ∈ I2 such that A
(s)
g1⊗g2(x) 6= 0 for all positive

integer s. By Lemma 4.20 let g0 and g1 be the Fitting null and one-components of
g with respect to Ag1⊗g2 . Since I2 is a 3-sided ideal, it follows that g1 ⊆ I2. Also,

since I2/I1 is nilpotent we have I
(k)
2 ⊆ I1 for some positive integer k. It follows

by de�nition of g1 that g1 = A
(k)
g1⊗g2(g1) ⊆ I

(k)
2 ⊆ I1. Therefore g1 ⊆ φ(g). So
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g = g0 + φ(g). Now since by [6, Proposition 2.6] Ag1⊗g2 is a derivation of g, g0 is
a subalgebra of g. So there is a maximal subalgebra m that contains g0. Since by
de�nition φ(g) ⊆ m , it follows that m = g. This contradicts the maximality of m.
Therefore I2 is nilpotent.

Corollary 4.22. Every 3-sided ideal of a gb-tiple system g contained in the Frat-

tini ideal φ(g) is nilpotent. In particular, if φ(g) is a 3-sided ideal, then φ(g) is a

nilpotent ideal of g.

Proof. Let I be a 3-sided ideal of g such that I ⊆ φ(g). The result follows from
Theorem 4.21 by setting I1 = I2 = I. In particular, take I = φ(g) to show that
φ(g) is nilpotent.

Corollary 4.23. Let g be a gb-triple system for which φ(g) is a 3-sided ideal.

Then g/φ(g) is nilpotent if and only if g is nilpotent.

Proof. The �rst implication follows from Theorem 4.21 by setting I1 = φ(g) and
I2 = g. Conversely, if g is nilpotent, then g(s) = 0 for some positive integer s. So(
g/φ(g)

)(s)
= g(s)/φ(g) = φ(g).

5. Invariance of the nilradical under derivations

The following Lemma which was proved (see [9, Lemma 3.3]) for Leibniz 3-algebras
also holds for gb-triple systems, and the proof is identical.

Lemma 5.1. For every derivation d of g and every positive integer s,

ds([x, y, z]g) =
∑

i+j+k=s

s!

i!j!k!

[
di(x), dj(y), dk(z)

]
g
. (5.1)

Analogues of the following results were established in [16] for Leibniz 3-algebras.

Proposition 5.2. Let I be an ideal of a gb-triple system g and d a derivation of

g. Then (
d(I)

)(s) ⊆ ds(I(s)) (5.2)

for all positive integer s.

Proof. Notice that the assertion is trivial for s = 1. Now assume by induction that
the result holds for any positive integer s, then(
d(I)

)(s+1)
=
[
d(I),

(
d(I)

)(s)
, g
]
g
⊆
[
d(I),

(
ds(I(s)

)
, g
]
g
⊆ ds+1

(
I(s+1)

)
by (5.1).
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Proposition 5.3. Let I be an ideal of a gb-triple system g and d a derivation of

g. Then for all s > 2,

(
I+ d(I)

)(s) ⊆ I+
(
d(I)

)(s)
+

s−1∑
i=1

di(I(s)). (5.3)

Proof. We verify the assertion for s = 2.(
I+ d(I)

)(2)
= [I+ d(I), I+ d(I), g]g

⊆ I+ [I, d(I), g]g + [d(I), d(I), g]g

⊆ I+ d(I(2)) + (d(I))(2) by (5.1).

Now assume by induction that the result holds for any positive integer s, then(
I+ d(I)

)(s+1)
=
[
I+ d(I),

(
I+ d(I)

)(s)
, g
]
g

⊆
[
I+ d(I), I+

(
d(I)

)(s)
+

s−1∑
i=1

di(I(s)), g
]
g

⊆ I+ [I, (d(I))(s), g]g +

s−1∑
i=1

[
I, di(I(s)), g

]
g

+ [d(I), (d(I))(s), g]g +

s−1∑
i=1

[
d(I), di(I(s)), g

]
g

⊆ I+ ds(I(s+1))︸ ︷︷ ︸
by (5.2) and (5.1)

+

s−1∑
i=1

di(I(s+1))︸ ︷︷ ︸
by (5.1)

+(d(I))(s+1)

+

s−1∑
i=1

di+1(I(s+1)) by (5.1)

⊆ I+ 2

s∑
i=1

di(I(s+1)) + (d(I))(s+1)

⊆ I+

s∑
i=1

di(I(s+1)) + (d(I))(s+1).

For the remainder of this paper, we assume that all ideals are also right ideals.
We call them 2-sided (right) ideals.

Lemma 5.4. If I1 and I2 are 2-sided (right) ideals of a gb-triple system g, then(
I1 + I2

)(s) ⊆ ∑
i+j=s,
06i,j6s

I
(i)
1

⋂
I
(j)
2 .
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Proof. By de�nition,
(
I1+I2

)(1)
= I1+I2 = I

(1)
1

⋂
I
(0)
2 +I

(0)
1

⋂
I
(1)
2 since I

(0)
1 =

I
(0)
2 = g. By induction, assume the result holds for

(
I1 + I2

)(s−1)
. Then

(
I1 + I2

)(s)
= [I1 + I2,

(
I1 + I2

)(s−1)
, g]g

= [I1,
(
I1 + I2

)(s−1)
, g]g + [I2,

(
I1 + I2

)(s−1)
, g]g

⊆ [I1, I
(s−1)
1 , g]g +

s−2∑
r=1

[
I1, I

(s−r−1)
1

⋂
I
(r)
2 , g

]
g
+ [I1, I

(s−1)
2 , g]g

+ [I2, I
(s−1)
1 , g]g +

s−2∑
r=1

[
I2, I

(s−r−1)
1

⋂
I
(r)
2 , g

]
g
+ [I2, I

(s−1)
2 , g]g

⊆
∑

i+j=s,
06i,j6s

I
(i)
1

⋂
I
(j)
2

because [
I1, I

(s−r−1)
1

⋂
I
(r)
2 , g

]
g
⊆ I

(s−r)
1

⋂
I
(r)
2 ,[

I2, I
(s−r−1)
1

⋂
I
(r)
2 , g

]
g
⊆ I

(s−r−1)
1

⋂
I
(r+1)
2 ,

and [
I1, I

(s)
2 , g

]
g
⊆ I

(1)
1

⋂
I
(s)
2 ,

[
I2, I

(s)
1 , g

]
g
⊆ I

(s)
1

⋂
I
(1)
2

as I
(s−r−1)
1 , I

(r)
2 , I

(s)
1 , I

(s)
2 are ideals and I1, I2 are right ideals.

Proposition 5.5. If I1 and I2 are nilpotent 2-sided (right) ideals of g, then I1+I2
is also a nilpotent 2-sided (right) ideal of g.

Proof. This follows by de�nition and using Lemma 5.4. More precisely one shows
that if I1 is nilpotent of class s1 and I2 is nilpotent of class s2, then I1 + I2 is
nilpotent of class s1 + s2.

As a consequence of Proposition 5.5, the sum of all nilpotent 2-sided (right)
ideals of g is also nilpotent and contains all nilpotent 2-sided (right) ideals of g.
It is the unique maximal nilpotent 2-sided (right) ideal called nilradical 2-sided
(right) ideal of g and denoted N.

The following result shows that N is invariant under derivations of g.

Corollary 5.6. For every derivation d of g, we have d(N) ⊆ N.

Proof. Since N is nilpotent, N(s) = 0 for some positive integer s. Then by (5.2)

and (5.3), it follows that
(
N + d(N)

)(s) ⊆ N +
(
d(N)

)(s) ⊆ N + ds(N(s)) ⊆ N.

Now by Proposition 4.18,
(
N+ d(N)

)(2s) ⊆ N(s) = 0. Thus N+ d(N) is nilpotent.
Therefore N+ d(N) ⊆ N as N is maximal. Hence d(N) ⊆ N.
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Semi-prime and meet weak closure operations

in lower BCK-semilattices

Hashem Bordbar, Mohammad Mehdi Zahedi and Young Bae Jun

Abstract. The notion of semi-prime (resp., meet) weak closure operation is introduced, and

related properties are investigated. Characterizations of a semi-prime (resp. meet) closure oper-

ation are discussed. Examples which show that the notion of semi-prime weak closure operation

is independent to the notion of meet weak closure operation.

1. Introduction

Semi-prime closure operations on ideals of BCK-algebras are introduced in the
paper [2], and a �nite type of closure operations on ideals of BCK-algebras are
discussed in [1]. As a general form of closure operations on ideals of BCK-algebras,
Bordbar et al. [3] introduced the notion of weak closure operations on ideals of
BCK-algebras. Regarding weak closure operation, they de�ned �nite type and
(strong) quasi-primeness, and investigated related properties. They also discussed
positive implicative (resp., commutative and implicative) weak closure operations,
and provided several examples to illustrate notions and properties.

In this paper, we introduce the notion of semi-prime (resp., meet) weak clo-
sure operation in lower BCK-semilattices, and investigate their properties. We
discuss characterizations of a semi-prime (resp. meet) closure operation. We pro-
vide examples to show that the notion of semi-prime weak closure operation is
independent to the notion of meet weak closure operation.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K.
Iséki and was extensively investigated by several researchers. We refer the reader
to the books [5, 6] for further information regarding BCK/BCI-algebras.

Suppose that X is a BCK-algebra. De�ne a binary relation 6 on X as follows:

x 6 y if and only if x ∗ y = 0

2000 Mathematics Subject Classi�cation: 06F35, 03G25.
Keywords: non-zeromeet element, meet ideal, relative annihilator, semi-prime (resp., meet)
weak closure operation.
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for any x, y ∈ X. Then (X,6) is a partially ordered set (see [5]), and we say that
6 is the BCK-ordering on X.

A partially ordered set (X,6) is called a lower (resp., upper) semilattice if any
two elements in X have the greatest lower bound (resp., least upper bound). If
(X,6) is both a lower semilattice and an upper semilattice, we call it a lattice (see
[5]).

A BCK-algebra X is called a lower BCK-semilattice (see [6]) if X is a lower
semilattice with respect to the BCK-order.

In what follows, let X be a lower BCK-semilattice and I(X) a set of all ideals
of X unless otherwise speci�ed.

De�nition 1 ([3]). An element x of X is called a zeromeet element of X if the
condition

(∃ y ∈ X \ {0}) (x ∧ y = 0)

is valid. Otherwise, x is called a non-zeromeet element of X.

For a subset A of a BCK-algebra X, denote by 〈A〉 the generated ideal by A.
If A = {a}, then 〈A〉 is denoted by 〈a〉.

Denote by Z(X) the set of all zeromeet elements of X, that is,

Z(X) = {x ∈ X | x ∧ y = 0 for some nonzero element y ∈ X}.

De�nition 2 ([4]). For any nonempty subsets A and B of X, we de�ne a set

(A :∧ B) := {x ∈ X | x ∧B ⊆ A}

which is called the relative annihilator of B with respect to A.

Lemma 1 ([4]). If A and B are ideals of X, then the relative annihilator (A :∧ B)
of B with respect to A is an ideal of X.

De�nition 3 ([3]). Amapping cl : I(X)→ I(X) is called a weak closure operation

on I(X) if the following conditions are valid.

(∀A ∈ I(X)) (A ⊆ cl(A)) , (1)

(∀A,B ∈ I(X)) (A ⊆ B ⇒ cl(A) ⊆ cl(B)) . (2)

In what follows, we use Acl instead of cl(A).

3. Semi-prime and meet weak closure operations

De�nition 4. For any nonempty subsets A and B of X, we denote

A ∧B := 〈{a ∧ b | a ∈ A, b ∈ B}〉

which is called the meet ideal of X generated by A and B. In this case, we say
that the operation �∧� is a meet operation. If A = {a}, then {a} ∧ B is denoted
by a ∧B. Also, if B = {b}, then A ∧ {b} is denoted by A ∧ b.
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Theorem 1. If A and B are ideals of X, then so is the meet set

A ∧B = {a ∧ b | a ∈ A, b ∈ B}

based on A and B.

Proof. Obviously, 0 ∈ A∧B. Let x ∈ A∧B and y ∗x ∈ A∧B for x, y ∈ X. Then
x = a ∧ b and y ∗ x = a′ ∧ b′ where a, a′ ∈ A and b, b′ ∈ B. Since a ∧ b 6 a and A
is an ideal, we have x = a ∧ b ∈ A. Similarly, we have

y ∗ x = a′ ∧ b′ 6 a′ ∈ A.

Since A is an ideal of X, it follows that y ∈ A. By the similar way, we get y ∈ B.
Therefore,

y = y ∧ y ∈ {a ∧ b | a ∈ A, b ∈ B} = A ∧B

and A ∧B is an ideal of X.

Obviously, A ∧B = B ∧A for any nonempty subsets A and B of X. If A and
B are ideals of X, then

A ∧B = {a ∧ b | a ∈ A, b ∈ B}.

Given ideals A and B of X, we consider two ideals

A ∧Bcl and (A ∧B)cl,

and investigate their relations where �cl� is a weak closure operation on I(X).
The following example shows that there exist ideals A and B of X such that

A ∧Bcl * (A ∧B)cl.

Example 1. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

Note that X has �ve ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2}
and A4 = X. De�ne a map cl : I(X) → I(X) by Acl

0 = A0, A
cl
1 = A3, A

cl
2 = A3,

Acl
3 = A4 and Acl

4 = A4. Then �cl� is a weak closure operation on I(X), and

A1 ∧Acl
2 = A1 ∧Acl

3 = A1 * A0 = Acl
0 = (A1 ∧A2)

cl.
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Proposition 1. For any element a of X, we have

〈a〉 = a ∧X. (3)

Proof. Suppose that p ∈ a ∧X. Then there exist b1, b2, . . . , bn ∈ {a ∧ x | x ∈ X}
such that (. . . ((p ∗ b1) ∗ b2) ∗ . . .) ∗ bn = 0. Let bi = a ∧ ai where ai ∈ X for
i = 1, 2, . . . , n. Since b1 6 a, it follows from (a2) that

(p ∗ a) ∗ b2 6 (p ∗ b1) ∗ b2. (4)

Since b2 6 a, we have
(p ∗ a) ∗ a 6 (p ∗ a) ∗ b2. (5)

By (4) and (5), we have

(p ∗ a) ∗ a 6 (p ∗ b1) ∗ b2.

Continuing this way, we get

p ∗ an = (. . . ((p ∗ a) ∗ a) ∗ . . .) ∗ a 6 (. . . ((p ∗ b1) ∗ b2) ∗ . . .) ∗ bn = 0.

Hence p ∗ an = 0, that is, p ∈ 〈a〉. Therefore a ∧X ⊆ 〈a〉.
Conversely, suppose that p ∈ 〈a〉. Then there exists n ∈ N such that p∗an = 0,

that is, (. . . ((p ∗ a) ∗ a) ∗ . . .) ∗ a = 0. Since a = a ∧ a, we conclude that

(. . . ((p ∗ (a ∧ a)) ∗ (a ∧ a)) ∗ . . .) ∗ (a ∧ a) = 0.

Also a ∧ a ∈ {a ∧ x | x ∈ X}, and so p ∈ 〈{a ∧ x | x ∈ X}〉 = a ∧X. Therefore
a ∧X = 〈a〉.

De�nition 5. A weak closure operation �cl� on I(X) is said to be semi-prime if

(∀A,B ∈ I(X))(A ∧Bcl ⊆ (A ∧B)cl). (6)

Example 2. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 4 0

Note that X has �ve ideals A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 2, 3}
and A4 = X. De�ne a map cl : I(X) → I(X) by Acl

0 = A0, A
cl
1 = A2, A

cl
2 = A2,

Acl
3 = A4 and Acl

4 = A4. It is routine to check that �cl� is a semi-prime weak
closure operation on I(X).
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Proposition 2. If �cl� is a semi-prime weak closure operation on I(X), then

(∀a ∈ X)(∀A ∈ I(X))
(
a ∧Acl ⊆ (a ∧A)cl

)
. (7)

Proof. Suppose that �cl� is a semi-prime weak closure operation on I(X). Then

a ∧Acl ⊆ 〈a〉 ∧Acl ⊆ (〈a〉 ∧A)cl = (a ∧A)cl

for any a ∈ X and A ∈ I(X) by using Proposition 1.

In Proposition 2, if �cl� is a weak closure operation on I(X) which is not semi-
prime, then (7) is not true in general, that is, there exist a ∈ X and A ∈ I(X)
such that a ∧Acl * (a ∧A)cl as seen in the following example.

Example 3. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

Then Z(X) = {0} and X has nine ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 3},
A3 = {0, 1, 2}, A4 = {0, 1, 4}, A5 = {0, 1, 2, 3}, A6 = {0, 1, 3, 4}, A7 = {0, 1, 2, 4}
and A8 = X. Let cl : I(X)→ I(X) be a function de�ned by Acl

4 = A6, A
cl
7 = A8

and Acl
i = Ai for i = 1, 2, 3, 5, 6, 8. Then �cl� is a weak closure operation on I(X).

But it is not semi-prime since

Acl
4 ∧A2 = A6 ∧A2 = A2 * A1 = Acl

1 = (A4 ∧A2)
cl.

On the other hand, we have

3 ∧Acl
4 = 3 ∧A6 = A2 * A1 = Acl

1 = (3 ∧A4)
cl

for a non-zeromeet element 3 of X.

We provide conditions for a weak closure operation to be semi-prime.

Theorem 2. If a weak closure operation �cl� on I(X) satis�es the condition (7),
then it is semi-prime.

Proof. We �rst show that

(〈b1〉+ 〈b2〉) ∧A ⊆ 〈b1〉 ∧A+ 〈b2〉 ∧A (8)
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for all A ∈ I(X) and b1, b2 ∈ X. If z ∈ (〈b1〉 + 〈b2〉) ∧ A, then there exist
x ∈ 〈b1〉+ 〈b2〉 and a ∈ A such that z = x∧a. Since x ∈ 〈b1〉+ 〈b2〉 = 〈〈b1〉∪ 〈b2〉〉,
we have

(. . . ((x ∗ s1) ∗ s2) ∗ . . .) ∗ sn = 0 (9)

for some si ∈ 〈b1〉∪〈b2〉, 1 6 i 6 n. Since si ∈ 〈b1〉 or si ∈ 〈b2〉 for i ∈ {1, 2, . . . , n},
it follows from (9) that x ∈ 〈b1〉 or x ∈ 〈b2〉. Hence

z = x ∧ a ∈ 〈b1〉 ∧A or z = x ∧ a ∈ 〈b2〉 ∧A,

and thus z ∈ 〈b1〉 ∧ A+ 〈b2〉 ∧ A. Therefore (8) is valid. Let B be an ideal of X.
Then B =

∑
b∈B

〈b〉 and 〈b〉∧Acl = b∧X ∧Acl = b∧Acl by Proposition 1. It follows

from (8) and (7) that

B ∧Acl =

(∑
b∈B

〈b〉

)
∧Acl ⊆

∑
b∈B

(
〈b〉 ∧Acl

)
=
∑
b∈B

(
b ∧Acl

)
⊆
∑
b∈B

(b ∧A)
cl
.

Since b ∈ B =
∑
b∈B

〈b〉, we have b ∧A ⊆
∑
b∈B

〈b〉 ∧A and so

(b ∧A)cl ⊆

(∑
b∈B

〈b〉 ∧A

)cl

.

Hence
∑
b∈B

(b∧A)cl ⊆
(∑

b∈B

〈b〉 ∧A

)cl

= (B ∧A)cl. Therefore B ∧Acl ⊆ (B ∧A)cl

and �cl� is a semi-prime weak closure operation on I(X).

De�nition 6. A weak closure operation �cl� on I(X) is said to be meet if it
satis�es:

(∀A ∈ I(X)) (∀a ∈ X \ Z(X))
(
(a ∧A)cl = a ∧Acl

)
. (10)

Example 4. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 2 1 0 0
4 4 4 4 4 0

Note that X has �ve ideals A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2, 3}
and A4 = X. Let cl : I(X)→ I(X) be a function de�ned by Acl

0 = A0, A
cl
1 = A3,

Acl
2 = A3, A

cl
3 = A3 and Acl

4 = A4. By routine calculations, we know that �cl� is a
meet weak closure operation on I(X).
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The following example shows that there exists a weak closure operation that
is not meet.

Example 5. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 2
3 3 2 1 0 2
4 4 4 4 4 0

Recall that X has six ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2, 3},
A4 = {0, 1, 4} and A5 = X. Let cl : I(X) → I(X) be a function de�ned by
Acl

0 = A0, A
cl
1 = A3, A

cl
2 = A4, A

cl
3 = A3, A

cl
4 = A4 and Acl

5 = A5. Then �cl� is a
weak closure operation on I(X), but it is not meet since

3 ∧Acl
1 = 3 ∧A3 = A1 6= A3 = Acl

1 = (3 ∧A1)
cl

for a non-zeromeet element 3 of X.

We consider relations between (z ∧ A :∧ z) and A for any ideal A and z ∈
X \ Z(X). We can easily prove that A ⊆ (z ∧ A :∧ z). But the reverse inclusion
is not true in general as seen in the following example.

Example 6. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

For a non-zeromeet element 2 and an ideal A = {0, 1, 2} of X, we have

(2 ∧ {0, 1, 2} :∧ 2) = X * A.

In the following proposition, we discuss conditions for the inclusion (z ∧ A :∧
z) ⊆ A to be true. We �rst consider the following condition:

(∀a, b ∈ X)(∀z ∈ X \ Z(X))((a ∗ b) ∧ z ≤ (a ∧ z) ∗ (b ∧ z)), (11)

The following examples show that the inequality (11) does not hold in general.

Example 7. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.
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∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 1
3 3 3 3 0

Note that 1 is a non-zeromeet element of X and

(2 ∗ 3) ∧ 1 = 1 � 0 = (2 ∧ 1) ∗ (3 ∧ 1),

which shows that the inequality (11) is not true.

Proposition 3. If X satis�es the condition (11), then (z∧A :∧ z) ⊆ A and hence

(z ∧A :∧ z) = A for every A ∈ I(X) and z ∈ X \ Z(X).

Proof. Suppose that a ∈ (z ∧ A :∧ z). Then a ∧ z ∈ z ∧ A, and so there exist
a1, a2, . . . , an ∈ A such that

(. . . ((a ∧ z) ∗ (a1 ∧ z)) ∗ (a2 ∧ z)) ∗ . . . ∗ (an ∧ z) = 0.

It follows from the condition (11) that

(. . . ((a ∗ a1) ∗ a2) ∗ . . . ∗ an) ∧ z

6 (. . . ((a ∧ z) ∗ (a1 ∧ z)) ∗ (a2 ∧ z)) ∗ . . . ∗ (an ∧ z) = 0

and so that (. . . ((a ∗ a1) ∗ a2) ∗ . . . ∗ an) ∧ z = 0. Since z ∈ X \ Z(X), it follows
that

(. . . ((a ∗ a1) ∗ a2) ∗ . . .) ∗ an = 0.

Hence a ∈ A, and therefore (z ∧A :∧ z) ⊆ A.

The following example illustrates Proposition 3.

Example 8. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

Note that 4 is the only non-zeromeet element of X and there are nine ideals:
A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 3}, A4 = {0, 1, 2}, A5 = {0, 1, 3},
A6 = {0, 2, 3}, A7 = {0, 1, 2, 3} and A8 = X. We know that

(4 ∧Ai :∧ 4) = (Ai :∧ 4) = Ai

for i = 0, 1, 2, . . . , 8.
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We consider a characterization of a meet weak closure operation.

Theorem 3. Let X satisfy the condition (11) and let �cl� be a weak closure

operation on I(X). Then �cl� is meet if and only if it satis�es the following

properties:

〈a〉cl = 〈a〉 and Acl = ((a ∧A)cl :∧ a) (12)

for any a ∈ X \ Z(X) and any ideal A of X.

Proof. Suppose that �cl� is a meet weak closure operation on I(X). Let a be a
non-zeromeet element and A be an ideal of X. Then, by Propositions 1 and 3, we
have

〈a〉cl = (a ∧X)cl = a ∧Xcl = a ∧X = 〈a〉

and
((a ∧A)cl :∧ a) = (a ∧Acl :∧ a) = Acl,

respectively.
Conversely, suppose that the condition (12) is valid. For a non-zeromeet ele-

ment a and an ideal A of X, we have

a ∧Acl = a ∧ ((a ∧A)cl :∧ a) ⊆ (a ∧A)cl.

If z ∈ (a ∧A)cl, then z ∈ 〈a〉cl = 〈a〉 since a ∧A ⊆ 〈a〉. Thus

z ∈ 〈a〉cl = 〈a〉 = a ∧X,

and so z = a ∧ b for some b ∈ X. Hence a ∧ b ∈ (a ∧ A)cl, i.e., b ∈ ((a ∧ A)cl :∧
a) = Acl. Therefore z = a ∧ b ∈ a ∧Acl and the proof is complete.

The notion of semi-prime weak closure operation is independent to the notion
of meet weak closure operation as seen in the following examples.

Example 9. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 1 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

Note that Z(X) = {0, 1, 2, 3} and X has �ve ideals: A0 = {0}, A1 = {0, 1, 2},
A2 = {0, 3}, A3 = {0, 1, 2, 3} and A4 = X. Let �cl : I(X)→ I(X)� be a mapping
de�ned by Acl

0 = A1, A
cl
1 = A3, A

cl
2 = A3, A

cl
3 = A3 and Acl

4 = A4. Then �cl� is a
meet weak closure operation on I(X). But it not semi-prime since

Acl
1 ∧A2 = A3 ∧A2 = A2 * A1 = Acl

0 = (A1 ∧A2)
cl.
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Example 10. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 2
3 3 3 2 0 3
4 4 4 4 4 0

Then Z(X) = {0} and X has �ve ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2, 3},
A3 = {0, 1, 4} and A4 = X. Let �cl : I(X) → I(X)� be a mapping de�ned by
Acl

0 = A1, A
cl
1 = A4, A

cl
2 = A4, A

cl
3 = A4 and Acl

4 = A4. Then �cl� is a semi-prime
weak closure operation on I(X). But it is not meet since

4 ∧Acl
2 = 4 ∧A4 = A3 6= A4 = (4 ∧A2)

cl.
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Covering semigroups

of topological n-ary semigroups

Wieslaw A. Dudek and Vladimir V. Mukhin

Abstract. We construct a topology on the covering (enveloping) semigroup of an n-ary topo-

logical semigroup, and study the properties of the constructed topology. Conditions under which

this covering semigroup is a topological semigroup are obtained too.

1. Introduction

An n-ary semigroup (G, [ ]) with a topology τ is called a topological n-ary semi-
group if (G, τ) is a topological space such that the n-ary operation [ ] de�ned on
G is continuous (in all variables together). Such n-ary semigroups and groups
were studied by many authors in various directions. �upona [4] proved that each
topological n-ary group (G, [ ]) can be embedded into some topological (binary)
group called the universal covering group of (G, [ ]). Moreover, on this universal
covering group G∗ of (G, [ ]) one can de�ne a topology τ such that G∗, endowed
with this topology, is a topological group (cf. [4]). The base of this topology is
formed by sets of the form U1 · U2 · . . . · Uk, where Ui, i = 1, 2, . . . , k < n are open
subsets of G. Crombez and Six [3] showed that each topological n-ary group is
homeomorphic to some topological group. Stronger result was obtained by Endres
[8]: a topological n-ary group and a normal subgroup of index n− 1 of the corre-
sponding covering group are homeomorphic. On the other hand, any topological
n-ary group is uniquely determined by some topological group and some its home-
omorphism (cf. [14]). Hence topological properties of topological groups may be
moved to topological n-ary groups and conversely.

In the case of n-ary semigroups the situation is more complicated. Similarly
as in case of n-ary groups, for any topological n-ary semigroup can be constructed
the covering semigroup. Connections between the topology of this covering semi-
group and the topology of its initial an n-ary semigroup are described in [10]
(see also [7] and [11]). In some cases an n-ary semigroup with a locally compact
topology can be topologically embedded into a locally compact binary group as
an open set (for deteils see [10]). If additionaly, this n-ary semigroup is cancella-
tive and commutative, and all its inner translations (shifts), i.e., mappings of the
form ϕi(x) = [a1ldots, ai−1, x, ai+1, . . . , an], where a1, . . . , an are �xed elements,

2010 Mathematics Subject Classi�cation: 20N15, 22A15, 22A30
Keywords: topological n-ary semigroup, topological semigroup, free covering semigroup.
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are both continuous and open, then this n-ary semigroupis can be topologically
embedded into a locally compact n-ary group as an open n-ary subsemigroup [12].

In this paper, the construction of a free covering semigroup of a topological
n-ary semigroup presented in [6] is generalized to an arbitrary covering semigroup.
On this covering semigroup is constructed a topology with the following proper-
ties: the right and left shifts are continuous mappings (Theorem 2.2); if an n-ary
operation is continuous in all variables, then this n-ary semigroup is an open sub-
space of the corresponding covering semigroup (Theorem 3.1). In Theorem 3.3 are
given su�cient conditions under which a Hausdor� topology of an n-ary semigroup
can be extended to a Hausdor� topology of its covering semigroup. An explicit
description of a base of a topology of an n-ary topological semigroup with some
open translations is presented in Theorem 3.7.

2. Topologies on covering semigroups

Let (G, [ ]) be an n-ary semigroup with n > 2. The symbol [x1, . . . , xs] means that
s = k(n−1)+1 and the operation [ ] is applied k times to the sequence x1, . . . , xs.
Consequently, [x] means x.

By Gk we denote the Cartesian product of G. If G is a subset of a semigroup
(S, ·), then by G(k) we denote the set G·G· . . . ·G (k times).

A binary semigroup (S, ·) is a covering (enveloping) semigroup of an n-ary semi-
group (G, [ ]) if S is generated by the set G and [x1, x2, . . . , xn] = x1 · x2 · . . . · xn
for all x1, x2, . . . , xn ∈ G. If additionally, the sets G, G(2), G(3), . . . , G(n−1) are
disjoint and their union gives S, then (S, ·) is called the universal covering semi-
group. For each n-ary semigroup there exists such universal covering semigroup
[5].

Below we describe connections between the the topology of an n-ary semigroup
and the topology of its free covering semigroup. For this we use the construction
of free covering semigroup proposed in [5] and the following proposition from [2]
(Chapter 1, �3, Proposition 6).

Proposition 2.1. Let ρ be an equivalence relation on a topological space X. Then
a map f of X/ρ into a topological space Y is continuous if and only if f ◦ ϕ,
where ϕ is a cannonical map of X onto X/ρ, is continuous on X.

Let (S, ·) be a covering semigroup of an n-ary semigroup (G, [ ]). Consider the

free semigroup F over the set G. Then F =
∞⋃
k=1

Gk and the operation on F is

de�ned by
(x1, . . . , xp) · (y1, . . . , ym) = (x1, . . . , xp, y1, . . . , ym). (1)

For any elements α = (x1, x2, . . . , xp), β = (y1, y2, . . . , ym) from F we de�ne the
relation Ω by putting:

αΩβ ⇐⇒ x1 · x2 · . . . · xp = y1 · y2 · . . . · ym. (2)
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Such de�ned relation is a congruence on F . Thus, the set F = F/Ω = {α : α ∈ F},
where α = {β ∈ F : αΩβ}, with the operation α ∗ β = αβ is a semigroup.
ϕ : α 7→ α is a canonical mapping from F onto F . Moreover, the mapping
π : α 7→ x1 · x2 · . . . · xp is an isomorphism of semigroups (F , ∗) and (S, ·). Because
π(ϕ(Gi)) = G(i) for i = 1, 2, . . . , n−1 and the union of all ϕ(Gi) covers F , then, in
the case when (S, ·) is the universal covering semigroup of (G, [ ]), the sets ϕ(Gi)
are pairwise disjoint. So, the semigroups (F , ∗) and (S, ·) can be identi�ed. Also
can be assumed that ϕ(Gi) = G(i) for i = 1, 2, . . . , n− 1.

Let τ be a topology on G, τk = τ×· · ·×τ (k times) � a topology on Gk. By τF we
denote this topology on F which is the union of all topologies τk. Then, obviously,
the operation (1) is continuous in the topology τF . The quotient topology (with
respect to the relation Ω) of the topology τF is denoted by τ . It is the strongest
topology on F for which the mapping ϕ is continuous.

Theorem 2.2. Let (G, [ ]) be an n-ary semigroup with a free covering semigroup
F and τ be a topology on G. Then each left and each right shift on (F , τ) is a
continuous mapping. Each set F i = ϕ(Gi), i = 1, 2, . . . , n− 1, is open. If (S, ·) is
the universal covering semigroup of (G, [ ]), then each set F i is open-closed.

Proof. Let Ra and ra be right shifts in F and F , respectively. Then ϕ ◦ Ra =
ra ◦ ϕ. Since ϕ and Ra are continuous, by Proposition 2.1, ra is continuous too.
Analogously we can prove the continuity of left shifts.

The second statement of the theorem follows from the fact that the sets ϕ−1(Fi)

=
∞⋃
k=0

Gk(n−1)+i ∈ τF are saturated with respect to the relation Ω.

In the case when (S, ·) is a universal covering semigroup of (G, [ ]) the open
sets Fi, i = 1, . . . , n− 1, form a partition of F and, therefore, are open-closed.

We will need also the following result proved in [9].

Proposition 2.3. Let S be a locally compact, σ-compact Hausdor� topological
semigroup and θ be a closed congruence on S. Then S/θ is a topological semigroup.

3. Topologies on universal covering semigroups

An n-ary semigroup (G, [ ]) with a topology τ is called a topological n-ary semigroup
if (G, τ) is a topological space such that the n-ary operation [ ] is continuous (in
all variables together).

Theorem 3.1. If (G, [ ], τ) is a topological n-ary semigroup, then topologies τ and
τ coincide on G.

Proof. Let U ∈ τ , U ⊂ G. Then ϕ−1(U) ∈ τF . Thus U = ϕ−1(U) ∩G ∈ τ .
Let now U ∈ τ and α = (a1, . . . , ap) ∈ ϕ−1(U). Then, a1 ∗ . . . ∗ ap ∈ U ,

where p = k(n − 1) + 1, and consequently, [a1, . . . , ap] = a1 ∗ . . . ∗ ap ∈ U . Since
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the operation [ ] is continuous in all variables, in the topology τ there are the
neighborhoods V1, . . . , Vp of points a1, . . . , ap such that [x1, . . . , xp] ∈ U for all
xi ∈ Vi, i = 1, . . . , p. Therefore, ϕ(x1, . . . , xp) = x1 ∗ . . . ∗ xp = [x1, . . . , xp] ∈ U.
Consequently, ϕ−1(U) ⊃ V1 × . . .× Vp ∈ τF . So ϕ−1(U) ∈ τF . This together with
saturation of ϕ−1(U) gives U ∈ τ .

Example 3.2. Consider on the real interval G = (1,+∞) the ternary operation
[x1, x2, x3] = x1 + x2 + x3 and the topology τ which is a union on the topology τ1
on (1, 2], the discrete topology on (2, 3] and the usual topology on (3,+∞), where
the sets (a, b] with 1 6 a 6 b 6 2 form the basis of the topology τ1. Such de�ned
ternary operation is continuous in all variables together and the semigroup (G,+)
is the covering semigroup for (G, [ ]). The shift x 7→ x + 1.5 is not a continuous
map, since the preimage of the open set {3} is not an open set. So, on the set G
the topologies τ and τ are di�erent.

Note that the topology τ is the union of the usual topology on (3,+∞) and
the topology on (1, 3] with the base of the form (a, b], where 1 6 a 6 b 6 3.

Consider the set S = G∪G1, where G1 = (2,+∞)×{0}, with the commutative
binary operation ∗ de�ned for x, y ∈ G in the following way:

x ∗ y = (x+ y, 0),
x ∗ (y, 0) = (y, 0) ∗ x = x+ y,

(x, 0) ∗ (y, 0) = (x+ y, 0).

It is easy to verify that (S, ∗) a commutative universal covering semigroup of
an n-ary semigroup (G, [ ]). On G the topology τ coincides with the topology τ ,
but the restriction of τ to G1 gives the topology with the base formed by sets
(a, b]× {0} and (c, d)× {0}, where 2 6 a 6 b 6 4 6 c 6 d.

Theorem 3.3. If in the universal covering semigroup (S, ·) of an n-ary semigroup
(G, [ ]) with the Hausdor� topology τ for any x1, . . . , xi, y1, . . . , yi ∈ G such that
x1 · . . . · xi 6= y1 · . . . · yi, where 1 6 i < n, there are zi+1, . . . , zn ∈ G such that

x1 · . . . · xi · zi+1 · . . . · zn 6= y1 · . . . · yi · zi+1 · . . . · zn or

zi+1 · . . . · zn · x1 · . . . · xi 6= zi+1 · . . . · zn · y1 · . . . · yi,

then the topology τ on F is the Hausdor� topology, too.

Proof. Consider the �rst case when for some x1, . . . , xi, y1, . . . , yi, zi+1, . . . zn ∈ G
we have

∼
x= x1 · . . . · xi 6= y1 · . . . · yi =

∼
y and x = x1 · . . . · xi · zi+1 · . . . · zn 6=

y1 · . . . ·yi ·zi+1 · . . . ·zn = y. τ is the Hausdor� topology, so there are neighborhoods
Ux and Uy of x and y such that Ux ∩Uy = ∅. Since shifts in (F , τ) are continuous

and x =
∼
x · ∼z , y =

∼
y · ∼z for

∼
z= zi+1 · . . . · zn, there are neighborhoods Wx and Wy

of points
∼
x and

∼
y such that Wx·

∼
z⊂ Ux and Wy·

∼
z⊂ Uy. So, Wx ∩Wy = ∅. Thus

τ is the Hausdor� topology.
The second case can be proved analogously.
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Corollary 3.4. If the universal covering semigroup of an n-ary semigroup (G, [ ])
with the Hausdor� topology τ is left or right cancellative, then the topology τ on
F is the Hausdor� topology.

Theorem 3.5. If the universal covering semigroup (S, ·) of a topological n-ary
semigroup (G, [ ]) with the Hausdor� topology τ has at least one left or right can-
cellable element, then the congruence Ω is a closed subset in a topological space
(F×F, τF×τF ).

Proof. Suppose that in (F ×F, τF ×τF ) the sequence (αξ, βξ)ξ∈A ∈ Ω converges
to (α, β). This means that in the topological space (F, τF ) the sequences (αξ)ξ∈A
and (βξ)ξ∈A converge to α and β, respectively.

Let α = (x1, . . . , xp) ∈ Gp, β = (y1, . . . , yq) ∈ Gq. Since Gp, Gq are dis-
joint open-closed subsets in (F, τF ), there is an index ξ0 ∈ A such that αξ =

(xξ1, . . . , x
ξ
p) ∈ Gp and βξ = (yξ1, . . . , y

ξ
q) ∈ Gq for all ξ > ξ0. Therefore, for ξ > ξ0

we have xξ1 · . . . · xξp = yξ1 · . . . · yξq . Consequently,

af · xξ1 · . . . · xξp = af · yξ1 · . . . · yξq (3)

for any left cancellable element a ∈ S and all natural f .
Obviously, a = a1 · . . . · ak for some a1, . . . , ak ∈ G and k < n. Moreover,

for each natural f such that fk > n there is a natural r satisfying the condition
r(n − 1) + 1 6 fk + p < (r + 1)(n − 1) + 1. Thus fk + p − s = r(n − 1) + 1 for
some 0 6 s < k. Consequently,

a1 · . . . as · [as+1, . . . , ak, a1, . . . , ak︸ ︷︷ ︸, . . . , a1, . . . , ak︸ ︷︷ ︸︸ ︷︷ ︸
f−1 times

, xξ1, . . . , x
ξ
p] =

a1 · . . . as · [as+1, . . . , ak, a1, . . . , ak︸ ︷︷ ︸, . . . , a1, . . . , ak︸ ︷︷ ︸︸ ︷︷ ︸
f−1 times

, yξ1, . . . , y
ξ
p].

By previous results, τ is the Hausdor� topology which on G coincides with τ
and each left shift in (F , τ) is a continuous mapping. So, if in (G, τ) the sequence
(xξi )ξ∈A converge to xi and (yξi )ξ∈A converge to yi, then (3) implies a ·x1· . . . ·xp =
a · y1· . . . · yq, which, by the cancellativity of a, gives x1· . . . · xp = y1· . . . · yq. Thus
(α, β) ∈ Ω and Ω is a closed subset of (F×F, τF×τF ).

For a right cancellable element the proof is similar.

Theorem 3.6. If the universal covering semigroup (S, ·) of a topological n-ary
semigroup (G, [ ]) with the locally compact and σ-compact Hausdor� topology τ has
at least one left or right cancellable element, then (F , ∗) is a topological semigroup
with respect to the topology τ .

Proof. Note that the topology τF on F is a locally compact, σ-compact, and the
congruence Ω is a closed subset of F . Then, by Proposition 2.3, (F , ∗, τ) is a
topological semigroup.
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Theorem 3.7. Let in a topological n-ary semigroup (G, [ ], τ) for certain 1 6 p < n
all translations x 7→ [c1, . . . , cp, x, cp+1. . . . , cn−1] be continuous. If the universal
covering semigroup (S, ·) of (G, [ ]) is cancellative, then (F , ∗, τ) is a topological
semigroup, G is an open-closed subset in F and the family

B = {A1 · . . . ·Ak : A1, . . . , Ak ∈ τ, k = 1, . . . , n− 1}
forms the base of the topology τ .

Proof. Let A1, . . . , Ak be open sets in τ . We will show that the set A1 · . . . ·Ak is
open in τ .

Let a ∈ G, a1 ∈ A1, . . . , ak ∈ Ak. Then

[
(l)
a , a1, . . . , ai−1, Ai, ai+1, . . . , ak,

(n−k−l)
a ] ⊂ [

(l)
a ,A1, . . . , Ak,

(n−k−l)
a ]

for all k + l 6 n, i 6 k and l+ i = p+ 1, where
(s)
a means the sequence a, . . . , a (s

times). By hypothesis, the set [
(l)
a , a1, . . . , ai−1, Ai, ai+1, . . . , ak,

(n−k−l)
a ] is open in

G. Since

[
(l)
a ,A1, . . . , Ak,

(n−k−l)
a ] =

k⋃
i=1

aj∈Aj

[
(l)
a , a1, . . . , ai−1, Ai, ai+1, . . . , ak,

(n−k−l)
a ],

the set [
(l)
a ,A1, . . . , Ak,

(n−k−l)
a ] also is open in G.

As was noted earlier, (F , ∗) as a semigroup isomorphic to (S, ·), can be identi�ed
with (S, ·) and treated as a cancellative semigroup.

Consider the translation λ : F → F de�ned by λ(x) = apxan−p−1. We have

λ−1([
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ]) = A1 · . . . ·Ak. (4)

Indeed, if x ∈ λ−1([
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ]), then

λ(x) = apxan−p−1∈ [
(p)
a ,A1· . . . ·Ak,

(n−p−1)
a ] = ap ·A1 · . . . ·Ak ·an−p−1 = apyan−p−1

for some y ∈ A1· . . . ·Ak, which, by cancellativity, implies x = y. So, x ∈ A1 · . . . ·Ak.
On the other hand, if x ∈ A1 · . . . ·Ak, then

apxan−p−1 ∈ ap ·A1 · . . . ·Ak · an−p−1 = [
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ].

Thus x ∈ λ−1([
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ]). This completes the proof of (4).

The set [
(p)
a ,A1· . . . ·Ak,

(n−p−1)
a ] is open in G, hence, by Theorem 3.1, it is open

in (F , τ). By Theorem 2.2, the mapping λ is continuous and therefore A1· . . . ·Ak =

λ−1([
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ]) ∈ τ .

If U ⊂ G(k), U ∈ τ and a1, . . . , ak ∈ G such that a1 · . . . · ak ∈ U, then
W = ϕ−1(U) ∈ τ , where ϕ(x) = a1 · . . . · ak · x is a left shift in F . Consequently
W ∈ τ , because W ⊂ G. So, for any a ∈ G, the set
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[
(n−k+p)

a , a1, . . . , ak−1,W,
(n−p−1)

a ] = [
(p−1)
a , [

(n−k+1)
a , a1, . . . , ak−1],W,

(n−p−1)
a ]

is an open subset of G.
Since in (G, τ) the n-ary operation [ ] is continuous in all variables, there exist

the family of open neighborhoods U1, . . . , Uk of the points a1, . . . , ak, respectively,
such that

[
(n−k+p)

a , U1, . . . , Uk,
(n−p−1)

a ] ⊂ [
(n−k+p)

a , a1, . . . , ak−1,W,
(n−p−1)

a ].

Thus, in F , we have

an−k+p ·U1 · . . . · Uk · an−p−1 ⊂ an−k+p · a1 · . . . · ak−1 ·W · an−p−1.

Because a1 · . . . · ak−1 ·W ⊂ U , the last implies

an−k+p · U1 · . . . · Uk · an−p−1 ⊂ an−k+p · U · an−p−1.

This, in view of the cancellativity, gives U1 · . . . ·Uk ⊂ U .
By virtue of the arbitrariness of the point a1· . . . ·ak ∈ U, we conclude that the

family B is a base of the topology τ on F .
Now we will show that the binary operation de�ned in F is continuous in

the topology τ . Let g = s · t for some s = a1 · . . . · ai, t = b1 · . . . · bj , where
a1, . . . , ai, b1, . . . , bj ∈ G and 1 6 i, j < n. If C ∈ B and g ∈ C, then C = C1 ·. . .·Ck
for some k < n and ∅ 6= Ci ∈ τ . Let g = c1 · . . . · ck for some ci ∈ Ci. If i+ j < n,
then s · t = a1 · . . . · ai · b1 · . . . · bj = c1 · . . . · ck. Thus i+ j = k.

From the cancellativity of the binary operation in F and the continuity of the
n-ary operation [ ], we conclude that there exist open neighborhoods A1, . . . , Ai
of the points a1, . . . , ai, respectively, and open neighborhoods B1, . . . , Bj of the
points b1, . . . , bj such that A1 · . . . · Ai · B1 · . . . · Bj ⊂ C1 · . . . · Ck = C. Since
A = A1 · . . . · Ai and B = B1 · . . . · Bj are open neighborhoods of the points s, t,
respectively, the last inclusion implies A ·B ⊂ C.

In the case i+j > n we have c1 · . . . ·ck = a1 · . . . ·ai ·b1 · . . . ·bj = a ·bn−i+1 · . . . ·bj
for a = [a1, . . . , ai, b1, . . . , bn−i]. So, as above, we conclude that k = i+ j − n and
there are open neighborhoods D,Bn−i+1, . . . , Bj of the points a, bn−i+1, . . . , bj ,
respectively, such that D · Bn−i+1 · . . . · Bj ⊂ C1 · . . . · Ck = C. Since the n-ary
operation [ ] is continuous, then there are open neighborhoods A1, . . . , Ai of the
points a1, . . . , ai and open neighborhoods B1, . . . , Bn−i of the points b1, . . . , bn−i
such that [A1, . . . , Ai, B1, . . . , Bn−i] ⊂ D. Thus, for A = A1·. . .·Ai, B = B1·. . .·Bj
we have A,B,∈ B, A · B ⊂ C and s ∈ A, t ∈ B. This proves that the binary
multiplication de�ned in F is continuous in the topology τ .

Corollary 3.8. If (G, [ ], τ) is a topological n-ary group, then its universal covering
group (F , ∗) is a topological group with the topology τ .

The proof follows immediately from the preceding theorem and the results of
[4], where is proved that the operation of taking inverse element is continous if the
family B is a base of the corresponding topology.
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Identities in right Hom-alternative superalgebras

A. Nourou Issa

Abstract. Some fundamental identities characterizing right Hom-alternative superalgebras are

found. These identities are the Z2-graded Hom-versions of well-known identities in right alter-

native algebras.

1. Introduction

A right alternative algebra is an algebra satisfying the right alternative identity:

(xy)y = x(yy).

If, moreover, it satis�es the left alternative identity (xx)y = x(xy), then it is called
an alternative algebra. Alternative algebras were studied ([28]) in connection with
some problems related to projective planes (see also [17]). The 8-dimensional
Cayley algebra is an example of an alternative algebra that is not associative. For
fundamentals on alternative algebras, one may refer to [5], [19], [27].

As a generalization of alternative algebras, right alternative algebras were �rst
studied in [1], where an example of a �ve-dimensional right alternative algebra
that is not left alternative is constructed. For further studies on right alternative
algebras one may refer, e.g., to [11], [21], [22] (see also [27] and references therein).

A Z2-graded generalization of Lie theory is considered in [4] and [16] with the
introduction of the Z2-graded version of Lie algebras (now called Lie superalge-
bras). Next, the Z2-gradation of algebras is extended to other types of algebras in
[10], [20] and [26].

Another generalization of usual algebras is the one of Hom-type generalization
of algebras with the introduction of Hom-Lie algebras in [8] (see also [12], [13]).
The de�ning identity of a Hom-Lie algebra is a twisted version of the usual Jacobi
identity by a linear map, and the corresponding twisted associative algebra, called
Hom-associative algebra, is introduced in [15]. Since then, various Hom-type al-
gebras were de�ned and studied (see, e.g., [15], [14], [2], [23], [24], [9], [7], [3]).
Observe that, in general, the twisting map in a Hom-algebra is neither injective
nor surjective (see, e.g., [6] for a study on this topic). A Z2-graded generalization
of Hom-Lie algebras is de�ned in [2].

In [25] the Hom-versions of some well-known identities in right alternative
algebras ([11], [21], [22]) are found. The purpose of this short paper is to discuss

2010 Mathematics Subject Classi�cation: 17A30, 17A70, 17D15.

Keywords: right alternative superalgebra, Hom-algebra, right Hom-alternative superalgebra.
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the Z2-graded versions of the identities found in [25]. Other identities are also
proposed. These Hom-super identities could be useful as a working tool in further
investigations related to Hom-alternative superalgebras.

In Section 2 we recall some useful notions on Hom-superalgebras and prove
some general identities that hold in any Hom-superalgebra. In Section 3 we de�ne
the Z2-graded Hom-version of the function g(w, x, y, z) (that is �rst de�ned in [11]
for right alternative algebras, and its Hom-version is de�ned in [25]) and we prove
that it is identically zero. Next, using essentially the identity g(w, x, y, z) = 0 along
with the Hom-Teichmüller identity, we prove some fundamental identities charac-
terizing right Hom-alternative superalgebras. As a consequence, we obtained the
Z2-graded Hom-version of the right Bol identity.

All vector spaces and algebras are considered over a ground �eld of character-
istic not 2.

2. De�nitions and some general results

Let Z2 = {0, 1} be the �eld of integers modulo 2. A vector space A is said to be
Z2-graded if A = A0 ⊕A1 (then A is also called a superspace).

De�nition 2.1. A triple (A, ·, α) is called a (binary) Hom-superalgebra (i.e., a
Z2-graded binary Hom-algebra), if A is a superspace, �·� a binary operation on
A such that Ai · Aj ⊆ Ai+j , i, j ∈ Z2, and α a linear self-map of A such that
α(Ai) ⊆ Ai (and then α is said to be even). The subspaces A0 and A1 are called
respectively the even and odd parts of the Hom-superalgebra A; so are also called
the elements from A0 and A1 respectively.

All elements in A are assumed to be homogeneous, i.e., either even or odd. For
a given homogeneous element x ∈ Ai (i = 0, 1), by x = i we denote its parity.
Since α is even, α(x) = x (we shall use this fact in the sequel without any further
comment). In order to reduce the number of braces, we use juxtaposition whenever
applicable and so, e.g., xy · z means (x · y) · z. Moreover, for simplicity and where
there is no danger of confusion, we write xy in place of x · y.

In a Hom-superalgebra (A, ·, α), the supercommutator and the super Jordan
product of any two elements x, y ∈ A are de�ned respectively as

[x, y] := xy − (−1)x yyx and x ◦ y := xy + (−1)x yyx.

For any x, y, z ∈ A, the Hom-associator (x, y, z) is de�ned as

(x, y, z) := xy · α(z)− α(x) · yz.

De�nition 2.2. ([2]). A Hom-superalgebra (A, ·, α) is called a Hom-Lie super-
algebra if it is super anticommutative and satis�es the super Hom-Jacobi identity,
i.e.,

xy = −(−1)xyyx, and
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xy · α(z) + (−1)x(y+z)yz · α(x) + (−1)z(x+y)zx · α(y) = 0

for all x, y, z ∈ A. A Hom-superalgebra (A, ·, α) is said to be Hom-Lie admis-
sible, if (A, [, ], α) is a Hom-Lie superalgebra.

De�nition 2.3. A Hom-superalgebra A is said to be right Hom-alternative if

(x, y, z) = −(−1)y z(x, z, y) (right superalternativity) (2.1)

for all x, y, z ∈ A. If the left superalternativity (x, y, z) = −(−1)x y(y, x, z) holds
in A, then A is said to be Hom-alternative i.e., −(−1)x y(y, x, z) = (x, y, z) =
−(−1)y z(x, z, y) (superalternativity).

If A has zero odd part, then (2.1) reads as (x, y, z) = −(x, z, y) which is the
linearized form of the right Hom-alternativity xy · α(y) = α(x) · yy.

The following trilinear function is introduced in [2]:

S(x, y, z) := (x, y, z) + (−1)x(y+z)(y, z, x) + (−1)z(x+y)(z, x, y)

(this de�nition di�ers from the one in [2] by the factor (−1)x z).
Consider in a Hom-superalgebra A the following multilinear function

f(w, x, y, z) := (wx, α(y), α(z))− (α(w), xy, α(z)) + (α(w), α(x), yz)

−α2(w)(x, y, z)− (w, x, y)α2(z).

The following identities hold in any Hom-superalgebra.

Proposition 2.4. Let (A, ·, α) be a Hom-superalgebra. Then

• f(w, x, y, z) = 0, (2.2)

• [xy, α(z)]− α(x)[y, z]− (−1)y z[x, z]α(y) =

(x, y, z)− (−1)y z(x, z, y) + (−1)z(x+y)(z, x, y), (2.3)

• [xy, α(z)]− [x, y]α(z) + (−1)y z[xz, α(y)]− (−1)y z[x, z]α(y) =

(−1)x y(y, x, z) + (−1)z(x+y)(z, x, y), (2.4)

• [xy, α(z)] + (−1)x(y+z)[yz, α(x)] + (−1)z(x+y)[zx, α(y)] = S(x, y, z), (2.5)

• (x ◦ y) ◦ α(z)− (−1)y z(x ◦ z) ◦ α(y) =
S(x, y, z)− (−1)x yS(y, x, z)− 2(−1)z(x+y)(z, x, y) + [α(x), [y, z]] (2.6)

for all w, x, y, z in A.

Proof. The identity (2.2) follows by direct expansion of associators in f(w, x, y, z).
Next we have

[xy, α(z)]− α(x)[y, z]− (−1)y z[x, z]α(y) = xy · α(z)− (−1)z(x+y)α(z) · xy
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−α(x)(yz− (−1)y zzy)− (−1)y z(xz− (−1)y zzx)α(y) = {xy ·α(z)−α(x) · yz}
−(−1)y z{xz · α(y)− α(x) · zy}+ (−1)z(x+y){zx · α(y)− α(z) · xy}
= (x, y, z)− (−1)y z(x, z, y) + (−1)z(x+y)(z, x, y)

and so we get (2.3). As for (2.4), we compute

[xy, α(z)]− [x, y]α(z) + (−1)y z[xz, α(y)]− (−1)y z[x, z]α(y) = xy · α(z)
−(−1)z(x+y)α(z)·xy−(xy−(−1)x̄ȳyx)α(z)+(−1)ȳz̄(xz·α(y)−(−1)y(x+z)α(y)·xz)
−(−1)y z(xz − (−1)x zzx)α(y) = (−1)x y(yx · α(z)− α(y) · xz)
+(−1)z(x+y)(zx · α(y)− α(z) · xy) = (−1)x y(y, x, z) + (−1)z(x+y)(z, x, y),

which gives (2.4).

The identity (2.5) follows by expansion of associators in the right-hand side
and next rearrangement of terms.

Starting from the right-hand side of (2.6), we have

S(x, y, z)− (−1)x yS(y, x, z)− 2(−1)z(x+y)(z, x, y) + [α(x), [y, z]]

= (x, y, z)− (−1)x y+xz+y z(z, y, x) + (−1)x(y+z)(y, z, x)

−(−1)z(x+y)(z, x, y) + (−1)x y(y, x, z)− (−1)y z(x, z, y) + [α(x), [y, z]]

= (x◦y)·α(z)+(−1)z(x+y)α(z)·(x◦y)−(−1)y z(x◦z)·α(y)−(−1)x yα(y)·(x◦z)
(developing associators and commutators and next rearranging terms)

= (x ◦ y) ◦ α(z)− (−1)y z(x ◦ z) ◦ α(y)
and so we get (2.6). �

The identity (2.2) is usually called the Hom-Teichmüller identity ([24], [25]).
Note that, up to (−1)y z, the identity (2.4) is symmetric with respect to y and z.

Upon the additional requirement of right superalternativity or alternativity on
(A, ·, α), the following corollaries hold.

Corollary 2.5. If (A, ·, α) is a right Hom-alternative superalgebra, then

• (x ◦ y) ◦ α(z)− (−1)y z(x ◦ z) ◦ α(y) = 2(x, y, z) + [α(x), [y, z]], (2.7)

• [x, y]α(z)− α(x)[y, z]− (−1)y z[xz, α(y)] = 2(x, y, z)− (−1)x y(y, x, z), (2.8)

• S(x, y, z) + (−1)y zS(x, z, y) = 0, (2.9)

• [x ◦ y, α(z)] + (−1)x(y+z)[y ◦ z, α(x)] + (−1)z(x+y)[z ◦ x, α(y)] = 0, (2.10)

• [[x, y], α(z)] + (−1)x(y+z)[[y, z], α(x)] + (−1)z(x+y)[[z, x], α(y)] = 2S(x, y, z)
(2.11)

for all x, y, z in A. In particular, (A, ·, α) is Hom-Lie admissible if and only if
S(x, y, z) = 0.

Proof. The application of the right superalternativity (2.1) to the right-hand
side of (2.6) gives (2.7). Subtracting memberwise (2.4) from (2.3) and next using
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(2.1), we get (2.8). The identity (2.9) follows by direct expansion of S(x, y, z) and
S(x, z, y) in terms of associators and the use of (2.1). In order to prove (2.10),
one starts from (2.9) by replacing S(x, y, z) and S(x, z, y) with their respective
expressions from (2.5). Next, rearranging terms with the de�nition of the super
Jordan product in mind, one gets (2.10).

In (2.3) let permute x and y and next multiply by (−1)x y to get

[(−1)x yyx, α(z)]− (−1)x yα(y)[x, z]− (−1)x(y+z)[y, z]α(x)

= (−1)x y(y, x, z)− (−1)x(y+z)(y, z, x) + (−1)x y+z(x+y)(z, y, x). (2.12)

Now, subtracting memberwise (2.12) from (2.3), we get

[xy, α(z)]−α(x)[y, z]− (−1)y z[x, z]α(y)− [(−1)x yyx, α(z)]− (−1)x yα(y)[x, z]

−(−1)x y[y, z]α(x) = (x, y, z)− (−1)y z(x, z, y) + (−1)z(x+y)(z, x, y)

−(−1)x y(y, x, z) + (−1)x(y+z)(y, z, x)− (−1)x y+z(x+y)(z, y, x)
i.e.,

{[xy, α(z)]− [(−1)x yyx, α(z)]}+ {(−1)x(y+z)[y, z]α(x)− α(x)[y, z]}
+{−(−1)y z[x, z]α(y) + (−1)x yα(y)[x, z]}
= {(x, y, z)− (−1)y z(x, z, y)}+ {−(−1)x y(y, x, z) + (−1)x(y+z)(y, z, x)}
+{(−1)z(x+y)(z, x, y)− (−1)x y+z(x+y)(z, y, x)}

and so, by the de�nition of the supercommutator and the right superalternativity
(2.1), we come to (2.11).

The last assertion is obvious. �

Corollary 2.6. If (A, ·, α) is a right Hom-alternative superalgebra, then

[x◦y, α(z)] = (−1)y z[x, z]◦α(y)+α(x)◦ [y, z]+2(x, y, z)+2(−1)x y(y, x, z) (2.13)

for all x, y, z in A. Moreover, if (A, ·, α) is Hom-alternative, then

[x ◦ y, α(z)] = (−1)y z[x, z] ◦ α(y) + α(x) ◦ [y, z]. (2.14)

Proof. Adding (2.3) and (2.12) and next rearranging terms, we obtain

[x ◦ y, α(z)]− α(x) ◦ [y, z]− (−1)y z[x, z] ◦ α(y)
= {(x, y, z)− (−1)y z(x, z, y)}+ {(−1)x y(y, x, z)− (−1)x(y+z)(y, z, x)}
+{(−1)x y+z(x+y)(z, y, x) + (−1)z(x+y)(z, x, y)}
= 2(x, y, z) + 2(−1)x y(y, x, z) (by the right superalternativity)

which proves (2.13).

The identity (2.14) follows from (2.13) by the left superalternativity. �

Remark. If (A, ·, α) has zero odd part, then the identities (2.2)− (2.14) reduce to
their ungraded counterparts in Hom-algebras.
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3. Main results

Throughout this section, unless stated otherwise, (A, ·, α) denotes a right Hom-
alternative superalgebra and we will prove some fundamental identities character-
izing right Hom-alternative superalgebras.

First, we de�ne on (A, ·, α) the following multilinear function

g(x,w, y, z) := (−1)w(y+z)(α(x), α(w), yz) + (−1)w z(α(x), α(y), wz)

−(−1)w z+w y+y z(x,w, z)α2(y)− (x, y, z)α2(w).

One observes that if A has zero odd part and α = Id, then the function
g(x,w, y, z) is precisely the one de�ned in [11]. As a tool in the proof of part of
the results below, we show that g(x,w, y, z) is identically zero.

Lemma 3.1. For all w, x, y, z in A, the following identity holds:

g(x,w, y, z) = 0. (3.1)

Proof. By (2.2) and right superalternativity (2.1), we have

0 = (−1)w(y+z)f(x,w, y, z)− (−1)y zf(x, z, y, w)+ (−1)w z+w y+y zf(x,w, z, y)

+(−1)w zf(x, y, w, z)− (−1)y(w+z)f(x, z, w, y) + f(x, y, z, w)

= (−1)w(y+z){(xw, α(y), α(z))− (α(x), wy, α(z)) + (α(x), α(w), yz)

−α2(x)(w, y, z)− (x,w, y)α2(z)}
−(−1)y z{(xz, α(y), α(w))− (α(x), zy, α(w)) + (α(x), α(z), yw)

−α2(x)(z, y, w)− (x, z, y)α2(w)}
+(−1)w z+w y+y z{(xw, α(z), α(y))− (α(x), wz, α(y)) + (α(x), α(w), zy)

−α2(x)(w, z, y)− (x,w, z)α2(y)}
+(−1)w z{(xy, α(w), α(z))− (α(x), yw, α(z)) + (α(x), α(y), wz)

−α2(x)(y, w, z)− (x, y, w)α2(z)}
−(−1)y(w+z){(xz, α(w), α(y))− (α(x), zw, α(y)) + (α(x), α(z), wy)

−α2(x)(z, w, y)− (x, z, w)α2(y)}
+{(xy, α(z), α(w))− (α(x), yz, α(w)) + (α(x), α(y), zw)

−α2(x)(y, z, w)− (x, y, z)α2(w)}
= 2[(−1)w(y+z)(α(x), α(w), yz) + (−1)w z(α(x), α(y), wz)

−(−1)w z+w y+y z(x,w, z)α2(y)− (x, y, z)α2(w)] (after rearranging terms)

= 2g(x,w, y, z)

and so we get (3.1). �

We can now prove the following
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Theorem 3.2. In (A, ·, α), the identities

(wx, α(y), α(z))+(α(w), α(x), [y, z])=(−1)x(y+z)(w, y, z)α2(x)+α2(w)(x, y, z),
(3.2)

(α(x), α(z), y ◦ w) = (α(x), z ◦ y, α(w)) + (−1)w y(α(x), z ◦ w,α(y)) (3.3)

hold for all w, x, y, z in A.

Proof. We have

0 = f(w, x, y, z)− g(w, z, x, y) (by (2.2) and (3.1))

= (wx, α(y), α(z))− (α(w), xy, α(z)) + (α(w), α(x), yz)− α2(w)(x, y, z)

−(w, x, y)α2(z)− (−1)z(x+y)(α(w), α(z), xy)− (−1)y z(α(w), α(x), zy)

+(−1)x(y+z)+y z(w, z, y)α2(x) + (w, x, y)α2(z)

= (wx, α(y), α(z)) + (α(w), α(x), [y, z])

−(−1)x(y+z)(w, y, z)α2(x)− α2(w)(x, y, z), (by right superalternativity)

which yields (3.2). As for (3.3), we proceed as follows.

0 = (−1)w yf(x, z, w, y) + f(x, z, y, w) (by (2.2))

={(−1)w y(xz, α(w), α(y))− (−1)w y(α(x), zw, α(y)) + (−1)w y(α(x), α(z), wy)

−(−1)w yα2(x)(z, w, y)− (−1)w y(x, z, w)α2(y)}
+{(xz, α(y), α(w))− (α(x), zy, α(w)) + (α(x), α(z), yw)

−α2(x)(z, y, w)− (x, z, y)α2(w)}
= −(−1)w y(α(x), zw, α(y))− (α(x), zy, α(w)) + (α(x), α(z), yw)

+(−1)w y(α(x), α(z), wy) + (−1)w(y+z)(x,w, z)α2(y) + (−1)y z(x, y, z)α2(w)

+[(−1)w̄ȳ(xz, α(w), α(y))+(xz, α(y), α(w))−(−1)w̄ȳα2(x)(z,w,y)−α2(x)(z,y,w)]

= (α(x), zw, α(y))−(α(x), zy, α(w))+(α(x), α(z), yw)+(−1)w y(α(x), α(z), wy)

+(−1)w(y+z)(x,w, z)α2(y) + (−1)y z(x, y, z)α2(w)

(since, by right superalternativity, the expression in bracket above is zero)

= −(−1)w y(α(x), zw, α(y))− (α(x), zy, α(w)) + (α(x), α(z), yw)

+(−1)w y(α(x), α(z), wy) + (−1)w(y+z)+y z(α(x), α(w), yz)

+(−1)z(w+y)(α(x), α(y), wz) (by (3.1))

= −(−1)w y(α(x), zw, α(y))− (α(x), zy, α(w)) + (α(x), α(z), y ◦ w)
−(−1)y z(α(x), yz, α(w))− (−1)w(y+z)(α(x), wz, α(y)),

which leads to (3.3). �

In order to prove the identity (3.5) below, we �rst prove that the following
identity holds in (A, ·, α).

Lemma 3.3. The identity
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(−1)(t+y)(w+z)+ty[(α(x), yz, α(w)) + (−1)w z(α(x), yw, α(z)) + (x, y, z)α2(w)

+(−1)w z(x, y, w)α2(z)] · α3(t) + [(α(x), tz, α(w)) + (−1)w z(α(x), tw, α(z))

+(x, t, z)α2(w) + (−1)w z(x, t, w)α2(z)] · α3(y)

=(−1)y(t+w+z)(α2(x), α2(y), α(t) · (z ◦w))+(−1)y(w+z)(α2(x), α2(t), α(y) · (z ◦w))
(3.4)

holds for all t, w, x, y, z in A.

Proof. Starting from the left-hand side of (3.4), we have

(−1)(t+y)(w+z)+ty[(α(x), yz, α(w)) + (−1)w z(α(x), yw, α(z)) + (x, y, z)α2(w)

+(−1)w z(x, y, w)α2(z)] · α3(t) + [(α(x), tz, α(w)) + (−1)w z(α(x), tw, α(z))

+(x, t, z)α2(w) + (−1)w z(x, t, w)α2(z)] · α3(y)

= (−1)(t+y)(w+z)+ty(α(x), yz, α(w))α3(t)

+(−1)(t+y)(w+z)+ty+w z(α(x), yw, α(z))α3(t)

+(α(x), tz, α(w))α3(y) + (−1)w z(α(x), tw, α(z))α3(y)

−(−1)(t+y)(w+z)+ty+w(y+z)[(−1)y(w+z)+w z(x,z,y)α2(w) + (x,w,y)α2(z)] ·α3(t)

−(−1)w(t+z)[(−1)t(w+z)+w z(x,z,t)α2(w) + (x,w,t)α2(z)] · α3(y)

(by right superalternativity)

= (−1)(t+y)(w+z)+ty(α(x), yz, α(w))α3(t)

+(−1)(t+y)(w+z)+t y+w z(α(x), yw, α(z))α3(t) + (α(x), tz, α(w))α3(y)

+(−1)w z(α(x), tw, α(z))α3(y)

−(−1)(t+y)(w+z)+ty[(−1)z(w+y)+w(y+z)(α(x), α(z), wy)

+(−1)y z+w(y+z)(α(x), α(w), zy)] · α3(t)− [(−1)z(t+w)+w(t+z)(α(x), α(z), wt)

+(−1)tz+w(t+z)(α(x), α(w), zt)] · α3(y) (by (3.1))

= (−1)(t+y)(w+z)+t y(α(x), yz, α(w))α3(t)

+(−1)(t+y)(w+z)+t y+w z(α(x), yw, α(z))α3(t) + (α(x), tz, α(w))α3(y)

+(−1)w z(α(x), tw, α(z))α3(y) + (−1)(t+y)(w+z)+ty[(−1)w(y+z)(α(x), wy, α(z))

+(−1)y z(α(x), zy, α(w))] · α3(t) + [(−1)w(t+z)(α(x), wt, α(z))

+(−1)tz(α(x), zt, α(w))] · α3(y) (by right superalternativity)

= (−1)(t+y)(w+z)+ty[(α(x), yz, α(w)) + (−1)w z(α(x), yw, α(z))

+(−1)w(y+z)(α(x), wy, α(z)) + (−1)y z(α(x), zy, α(w))] · α3(t)

+[(α(x), tz, α(w)) + (−1)w z(α(x), tw, α(z)) + (−1)w(t+z)(α(x), wt, α(z))

+(−1)tz(α(x), zt, α(w))] · α3(y) = (−1)(t+y)(w+z)+ty[(−1)w z(α(x), α(y), wz)

+(α(x), α(y), zw)] · α3(t) + [(−1)w z(α(x), α(t), wz) + (α(x), α(t), zw)] · α3(y)

(applying (3.3) to each of the expressions in brackets above)
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= {(−1)(t+y)(w+z)+ty(α(x), α(y), zw)α3(t) + (α(x), α(t), zw)α3(y)}
+{(−1)w z+(t+y)(w+z)+ty(α(x), α(y), wz)α3(t) + (−1)w z(α(x), α(t), wz)α3(y)}
= (−1)y(t+w+z)(α2(x), α2(y), α(t) · zw) + (−1)y(w+z)(α2(x), α2(t), α(y) · zw)
+(−1)w̄z̄[(−1)y(t+w+z)(α2(x),α2(y),α(t)·wz)+(−1)y(w+z)(α2(x),α2(t),α(y) ·wz)]
(applying (3.1) to each of the expressions in {· · · } above) and so we get (3.4). �

We are now in position to prove the following

Theorem 3.4. The identity

(−1)(t+y)(w+z)+ty[(x, y, z)α2(w) + (−1)w z(x, y, w)α2(z)] · α3(t)

+[(x, t, z)α2(w) + (−1)w z(x, t, w)α2(z)] · α3(y)

−(−1)t(y+z)+y(w+z)α((x, y, z))α2(tw)− (−1)(t+z)(w+y)+w yα((x, y, w))α2(tz)

−(−1)w yα((x, t, z))α2(yw)− (−1)z(w+y)α((x, t, w))α2(yz) = 0 (3.5)

holds for all t, w, x, y, z in A.

Proof. Relying essentially on (3.1) and (3.4), we compute

0 = g(α(x), α(y), tz, α(w)) + (−1)(t+y)(w+z)+tyg(α(x), α(t), yz, α(w))

+(−1)w zg(α(x), α(y), tw, α(z)) + (−1)(t+z)(w+y)+tz+w yg(α(x), α(t), yw, α(z))

= (−1)y(t+w+z)[(α2(x), α2(y), tz · α(w)) + (−1)w z(α2(x), α2(y), tw · α(z))]
+(−1)y(w+z)[(α2(x), α2(t), yz · α(w)) + (−1)w z(α2(x), α2(t), yw · α(z))]
+(−1)y(w+z)+t(y+z)[(α2(x), α(yz), α(tw))+(−1)(y+z)(t+w)(α2(x), α(tw), α(yz))]

−(−1)t(y+z)+y(w+z)(α(x), α(y), α(z))α2(tw)

−(−1)(t+z)(w+y)+w y(α(x), α(y), α(w))α2(tz)

−(−1)y w(α(x), α(t), α(z))α2(yw)− (−1)z(w+y)(α(x), α(t), α(w))α2(yz)

−(−1)(t+y)(w+z)+ty(α(x), yz, α(w))α3(t)

−(−1)(t+y)(w+z)+ty+w z(α(x), yw, α(z))α3(t)

−(α(x), tz, α(w))α3(y)−(−1)w z(α(x), tw, α(z))α3(y) (after rearranging terms)

= (−1)y(t+w+z)(α2(x), α2(y), α(t) · zw + (−1)w zα(t) · wz)
+(−1)y(w+z)(α2(x), α2(t), α(y) · zw + (−1)w zα(y) · wz)
+[(−1)y(w+z)+t(y+z)(α2(x), α(yz), α(tw))+(−1)(y+z)(t+w)(α2(x), α(tw), α(yz))]

−(−1)t(y+z)+y(w+z)(α(x), α(y), α(z))α2(tw)

−(−1)(t+z)(w+y)+w y(α(x), α(y), α(w))α2(tz)

−(−1)y w(α(x), α(t), α(z))α2(yw)− (−1)z(w+y)(α(x), α(t), α(w))α2(yz)

−(−1)(t+y)(w+z)+ty(α(x), yz, α(w))α3(t)

−(−1)(t+y)(w+z)+ty+w z(α(x), yw, α(z))α3(t)
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−(α(x), tz, α(w))α3(y)− (−1)w z(α(x), tw, α(z))α3(y)

(by right superalternativity)

=(−1)y(t+w+z)(α2(x),α2(y),α(t)·(z◦w))+(−1)y(w+z)(α2(x),α2(t),α(y)·(z◦w))
+(−1)y(w+z)+t(y+z)[(α2(x), α(y)α(z), α(t)α(w))

+(−1)(t+w)(y+z)(α2(x), α(t)α(w), α(y)α(z))]

−(−1)t(y+z)+y(w+z)α((x, y, z))α2(tw)− (−1)(t+z)(w+y)+w yα((x, y, w))α2(tz)

−(−1)y wα((x, t, z))α2(yw)− (−1)z(w+y)α((x, t, w))α2(yz)

−(−1)(t+y)(w+z)+ty(α(x), yz, α(w))α3(t)

−(−1)(t+y)(w+z)+ty+w z(α(x), yw, α(z))α3(t)− (α(x), tz, α(w))α3(y)

−(−1)w z(α(x), tw, α(z))α3(y)

(by linearity of the associator and multiplicativity)

={(−1)y(t+w+z)(α2(x),α2(y),α(t)·(z◦w))+(−1)y(w+z)(α2(x),α2(t),α(y)·(z◦w))
−(−1)(t+y)(w+z)+ty(α(x), yz, α(w))α3(t)

−(−1)(t+y)(w+z)+ty+w z(α(x), yw, α(z))α3(t)

−(α(x), tz, α(w))α3(y)− (−1)w z(α(x), tw, α(z))α3(y)}
−(−1)t(y+z)+y(w+z)α((x, y, z))α2(tw)− (−1)(t+z)(w+y)+w yα((x, y, w))α2(tz)

−(−1)y wα((x, t, z))α2(yw)− (−1)z(w+y)α((x, t, w))α2(yz)

= {(−1)(t+y)(w+z)+ty(x, y, z)α2(w)α3(t)

+(−1)(t+y)(w+z)+ty+w z(x, y, w)α2(z) · α3(t)

+(x, t, z)α2(w) · α3(y) + (−1)w z(x, t, w)α2(z) · α3(y)}
−(−1)t(y+z)+y(w+z)α((x, y, z))α2(tw)− (−1)(t+z)(w+y)+w yα((x, y, w))α2(tz)

−(−1)y wα((x, t, z))α2(yw)− (−1)z(w+y)α((x, t, w))α2(yz)

(applying (3.4) to the expression in {· · · } above), which is (3.5). �

Remark. It is easily seen that the identities (3.1)− (3.5) are the Z2-graded gen-
eralization of identities

(α(x), α(w), yz) + (α(x), α(y), wz)− (x,w, z)α2(y)− (x, y, z)α2(w) = 0, (3.6)

(wx, α(y), α(z)) + (α(w), α(x), [y, z]) = α2(w)(x, y, z) + (w, y, z)α2(x), (3.7)

(α(x), y2, α(z)) = (α(x), α(y), yz + zy), (3.8)

(α2(x), α2(y), α(y) · z2) = (α(x), yz, α(z))α3(y) + (x, y, z)α2(z) · α3(y), (3.9)

(x, y, z)α2(y) · α3(z) = (x, y, z)α2(zy) (3.10)

respectively, all of which could be found in [25].

As it could be seen below, some Z2-graded Moufang-type identities hold in
right Hom-alternative superalgebras.
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Theorem 3.5. In (A, ·, α) the identity

(xy · α(z))α2(w) + (−1)y z+w y+w z(xw · α(z))α2(y)

= α2(x)(yz · α(w)) + (−1)y z+w y+w zα2(x)(wz · α(y)) (3.11)

holds for all w, x, y, z in A.

Proof. In (A, ·, α), we have (−1)w(y+z)(α(x), α(w), yz) + (−1)w z(α(x), α(y), wz)

= (−1)y z+w y+w z(x,w, z)α2(y) + (x, y, z)α2(w) (by (3.1))

i.e., by the right superalternativity,

−(α(x), yz, α(w))− (−1)y z+w y+w z(α(x), wz, α(y))

= (−1)y z+w y+w z(x,w, z)α2(y) + (x, y, z)α2(w). (3.12)
Therefore one gets (3.11) if expand associators in (3.12). �

Remark. The ungraded version of (3.11) is proved in [25]. For α = Id in (3.11),
one gets

(xy · z)w + (−1)y z+w y+w z(xw · z)y = x(yz · w) + (−1)y z+w y+w zx(wz · y)
and if, moreover, A has zero odd part and y = w, one gets the right Bol identity
(xy · z)y = x(yz · y) formerly called the �right Moufang identity� (see, e.g., [17]
and [27]). Consistent with this observation, (3.11) may be called the �right super
Hom-Bol identity�.

Remark. In case when (A, ·, α) is Hom-alternative, then (3.12) yields

(−1)x(y+z)(yz, α(x), α(w)) + (−1)x(w+z)+w(y+z)+y z(wz, α(x), α(y))

= (−1)z(x+y)(z, x, y)α2(w) + (−1)z(x+y)+w y(z, x, w)α2(y). (3.13)

If, moreover, A has zero odd part and α = Id, then (3.13) reads as

(yz, x, w) + (wz, x, y) = (z, x, y)w + (z, x, w)y

which is the linearized form of the middle Moufang identity ([27])

(yz, x, y)− (z, x, y)y = 0.

In this sense, the identity (3.12) is (in part) close to the middle Moufang identity.

In [18] (identity (9)) the following identity is proved to hold in right alternative
algebras:

(x, z, y ◦ w) = 2(x, z, w)y − 2(x, y, z)w + (x, [z, y], w) + (x, [z, w], y).

Its Z2-graded Hom-version is given by

Theorem 3.6. In (A, ·, α) the identity

(α(x), α(z), y ◦ w) = 2(−1)w y(x, z, w)α2(y)− 2(−1)y z(x, y, z)α2(w)

+(α(x), [z, y], α(w)) + (−1)w y(α(x), [z, w], α(y)) (3.14)
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holds for all w, x, y, z in A.

Proof. We have

(α(x), α(z), y ◦ w) = (α(x), z ◦ y, α(w)) + (−1)w y(α(x), z ◦ w,α(y)) (see (3.3))
= (α(x), zy, α(w)) + (−1)y z(α(x), yz, α(w)) + (−1)w y(α(x), zw, α(y))

+(−1)w(y+z)(α(x), wz, α(y))

= (α(x), [z, y], α(w)) + 2(−1)y z(α(x), yz, α(w)) + (−1)w y(α(x), [z, w], α(y))

+2(−1)w(y+z)(α(x), wz, α(y))

= (α(x), [z, y], α(w)) + (−1)w y(α(x), [z, w], α(y))

+2{(−1)y z(α(x), yz, α(w)) + (−1)w(y+z)(α(x), wz, α(y))}
= (α(x), [z, y], α(w)) + (−1)w y(α(x), [z, w], α(y))

−2(−1)y z{(−1)y z+w y+w z(x,w, z)α2(y) + (x, y, z)α2(w)} (by (3.1))

= (α(x), [z, y], α(w)) + (−1)w y(α(x), [z, w], α(y))

+2(−1)w y(x, z, w)α2(y)− 2(−1)y z(x, y, z)α2(w)

(by the right superalternativity) and so we get (3.14). �
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Enumeration of exponent three IP loops

Majid Ali Khan, Shahabuddin Muhammad, Nazeeruddin Mohammad,

Asif Ali

Abstract. Inverse Property Loops (IP Loops) are important algebraic structures that fall

between loops and groups. Enumerating isomorphism classes of higher order IP loops is an ar-

duous task due to enormous number of isomorphism copies. This paper describes a systematic

approach to e�ciently eliminate isomorphic copies, which reduces the time to enumerate isomor-

phism classes. Using the proposed approach, we count and enumerate exponent 3 IP loops of

order 15. To the best of our knowledge, this count is reported for the �rst time in the litera-

ture. Further, we also computationally verify and enumerate the existing results for exponent

3 IP loops of order up to 13. The results show that even after applying stringent condition of

exponent 3, a good number of isomorphism classes exist. However, when associativity property

is applied, the total number of isomorphism classes reduces drastically. This provides an insight

that instead of exponent 3 property, associativity is mainly responsible for the low population of

isomorphism classes in groups.

1. Introduction

A quasigroup is a groupoid G with a binary operation ∗ such that x ∗ a = y and
b ∗ x = y have unique solutions for each x, y ∈ G. A quasigroup is a loop if and
only if it contains an identity element e such that x ∗ e = x = e ∗x for each x ∈ G.
A loop L is called an inverse property (IP) loop if it has a two sided inverse x−1

such that x−1 ∗ (x ∗ y) = y = (y ∗ x) ∗ x−1 for each x, y ∈ L. A Steiner loop is
an IP loop of exponent 2 (x ∗ x = e or x2 = e for all x ∈ L). Also, extensively
studied Moufang loops are IP loops satisfying x ∗ (z ∗ (y ∗ z)) = ((x ∗ z) ∗ y) ∗ z.

IP loops form an important class since they represent a generalization of Steiner
loops, Moufang loops, and groups. Further, IP loops represent those groupoids
whose power sets are exactly the semi-associative relation algebras [19].

The smallest IP loop which is not a group is of order 7. But the number of
IP loops increases quickly with the increase in the order of the loop as there are
10,341 IP loops available for n = 13. The IP loops having order greater than 13
are not reported in the literature because of the huge search space. On the other
hand, the number of groups does not necessarily increase with the increase in their

2010 Mathematics Subject Classi�cation: 20N05, 05B15
Keywords: 3 IP Loops, Groups, Isomorphism Classes, Associativity, Symmetry Breaking.
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order. For example, the number of groups for any given prime order is always one.
Enumeration of very highly structured loops like Moufang loops is possible up to
comparatively high orders [30], where as less structured loops such as nilpotent
loops have not been enumerated so far for higher orders [8].

The IP loops of exponent 3 satisfy the following property: (x∗x)∗x = x∗(x∗x)
= e for all x ∈ L (i.e., x2 = x−1 ). For any order n, the IP loops of exponent
3 exists when either n ≡ 1 (mod 6) or n ≡ 3 (mod 6) [31]. Figure 1 shows an
example exponent 3 IP loop of order 15.

* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x x2 x-1

e=0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0 0
1 1 2 0 5 7 4 9 3 11 8 14 13 6 10 12 1 2 2
2 2 0 1 7 5 3 12 4 9 6 13 8 14 11 10 2 1 1
3 3 6 8 4 0 10 2 13 1 12 11 14 7 5 9 3 4 4
4 4 8 6 0 3 13 1 12 2 14 5 10 9 7 11 4 3 3
5 5 11 10 2 1 6 0 9 14 4 12 7 13 8 3 5 6 6
6 6 4 3 14 9 0 5 11 13 7 2 1 10 12 8 6 5 5
7 7 10 12 1 2 14 13 8 0 11 6 3 5 9 4 7 8 8
8 8 3 4 11 14 12 10 0 7 13 1 9 2 6 5 8 7 7
9 9 14 13 6 12 1 11 2 5 10 0 4 8 3 7 9 10 10

10 10 5 7 13 11 8 3 14 12 0 9 6 4 2 1 10 9 9
11 11 13 5 10 8 9 14 1 6 3 7 12 0 4 2 11 12 12
12 12 7 14 9 13 2 8 10 4 5 3 0 11 1 6 12 11 11
13 13 9 11 12 10 7 4 6 3 2 8 5 1 14 0 13 14 14
14 14 12 9 8 6 11 7 5 10 1 4 2 3 0 13 14 13 13

Figure 1: IP loop of exponent 3 with order 15

The class of elementary abelian p-groups is very small; for example, the total
number of abelian 3-groups having order up to 1000 is only seven. It is generally
believed that the exponent property (xp = e) is responsible for such a low popula-
tion of abelian 3-groups. However, we have observed that the number of IP loops
of exponent 3 exists in a large quantity; there are 27,765 such IP loops of order
less than or equal to 15. This provides us the notion that the exponent property
is not keeping the population of groups so small. Rather, we demonstrate that it
is the associative property that is reducing the number of groups.

This paper advances counting the history of loops and presents for the �rst
time the count of IP loops of exponent 3 having order 15. The presented results
are obtained through enumeration and hence are available for inspection. In this
paper, our contributions are as follows:

• We have enumerated, for the �rst time, the IP loops of exponent 3 having
order 15.

• We have compared the associativity and exponent properties in IP loops and
concluded that associativity is more stringent than exponent property.
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• We have computationally veri�ed and enumerated existing IP loops of expo-
nent 3 having order up to 13.

The rest of the paper is organized as follows. Section 2 describes the history
of counting Latin squares and loops. The proposed systematic approach to count
isomorphism classes of IP Loops is discussed in Section 3. Results and the related
discussions are presented in Section 4.

Key milestones in Latin Square
(LS) counting

Historical study details

Reduced LS up to N=5
Euler (1782) [10]
Cayley (1890) [7]
MacMahon (1915) [18] used a di�erent
method to count, but obtained a wrong an-
swer

Reduced LS up to N=6
Frolov (1890) [12]
Tarry (1900) [32]
Jacob(1930) [15]-incorrectly

Main classes, isotopy classes,
and reduced LS up to N=6

Schonhardt (1930) [29]

Isotopy classes up to N=6 Fisher and Yates (1934) [11]
Main classes and Norton (1939)[24] -incorrectly
isotopy classes for N=7 Sade (1951) [26]

Saxena (1951) [28] using MacMahon's ap-
proach

Main classes for N=8
Arlazarov et al (1978) [3]-incorrectly
Kolesova et al (1990) [17]

Isotopy classes Brown (1968) [6]-incorrectly
up to N=8 Kolesova et al (1990) [17]
Reduced LS for N=8 Wells (1967) [33]
Reduced LS for N=9 Bammel and Rothstein (1975)
Reduced LS for N=10 McKay and Rogoyski (1995) [21]
Reduced LS for N=11 McKay and Wanless (2005) [22]
Main classes and isotopy classes
for N=9, 10

McKay, Meynert and Myrvold (2007) [20]

Main classes and isotopy classes
for N=11

Hulpke, Kaski and Östergård (2011) [14]

Table 1: History of counting Latin Squares
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2. Related work

Earliest history of counting Latin Squares (LS) goes back to at least 1782 as
the number of reduced LS of order 5 was known to Euler [10] and Cayley [7].
However, as noted by McKay et al [20], the counting has been constantly troubled
by published errors. The history of counting reduced Latin squares and Loops is
summarized in Tables 1 and 2. These tables show the main achievements and the
related studies.

Key milestones in Isomor-
phism classes of Loops and
Quasigroups counting

Historical study details

Loops up to N = 6 Schonhardt (1930) [29], Albert (1944) [1] and
Sade (1970) [27]

Loops up to N = 7 Brant and Mullen (1985) [5]
Loops for N=8 QSCGZ (2001) [25], Guerin (2001) [20]
Loops up to N= 10 McKay, Meynert and Myrvold (2007) [20]
Quasigroups up to N= 6 Bower (2000) [20]
Quasigroups up to N= 10 McKay, Meynert and Myrvold (2007) [20]
Quasigroups and Loops of
N= 11

Hulpke, Kaski and Östergård (2011) [14]

Inverse Property Loops up
to N=13

Slaney and Ali (2008) [2]

Table 2: History of counting loops and quasigroups

Although researchers had interest in Latin squares, there has been considerable
delay in achieving consecutive milestones. This was because of sheer computational
complexity of the problem. These historical results were obtained through deduced
mathematical formulas [23, 13], applying algorithmic approaches [27, 33, 4] or
formulating them as constraint programming problems [2, 9]. In this paper we used
constraint programming approach to further explore IP loops. We obtained for the
�rst time the IP loops of exponent 3 of order up to 15. The algorithmic strategies
applied to overcome the computational complexity to obtain these results are
discussed in the following sections.

3. Enumerating isomorphism classes of IP loops

In order to count the number of IP loops of any order, we model the system as �-
nite domain constraint satisfaction problem (CSPs), where the range of the binary
operation ∗ is a CSP variable whose domain consists of elements of the algebra.
Then the constraints related to Latin square, loop, and IP loop properties are ap-
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plied on CSP variables. Constraint solver explores the state space in order to �nd
all possible solutions that satisfy the speci�ed constraints. For higher orders (even
for order greater than 10) the state space becomes too large to perform exhaustive
search for all IP loops. Therefore, we added more constraints for symmetry break-
ing which resulted into reduced state space. The constraints used for symmetry
breaking along with other constraints are given in Table 3.

The solutions generated by constraint solver have enormous number of isomor-
phic copies. These redundant isomorphic copies need to be eliminated in order
to get the count of isomorphism classes. The following subsection describes the
techniques used to eliminate isomorphic copies from these solutions.

No. Name Constraint

1 Latin square ∀row : ∀i, j ∈ row, xi = xj ⇒ i = j
∀col : ∀i, j ∈ col, yi = yj ⇒ i = j

2 Loop ∀x : e ∗ x = x = x ∗ e
3 IP loop ∀x, y ∈ L : x−1∗(x∗y) = (y∗x)∗x−1 = y
4 Basic symmetry

breaking in IP loop
|x− x−1| ≤ 1

5 Odd and even sym-
metry breaking

Odd/Even symmetry breaking con-
straints of [2]

6 Isomorphism ∗1 Isom.∗2 ⇔ ∀i, j ∈ ∗1, f(i ∗1 j) =
f(i) ∗2 f(j)

7 Exponent 3 ∀x : (x ∗ x) ∗ x = e = x ∗ (x ∗ x)
8 Group ∀x, y, z : (x ∗ y) ∗ z = x ∗ (y ∗ z)

Table 3: Constraints for exponent 3 IP loops and symmetry breaking

3.1. Valid mapping generation

Given two IP Loops (L1, ∗) and (L2, .), �nding whether these loops are isomorphic
to each other boils down to checking if there exists a bijective function f : L1 → L2

such that for all u and v in L1: f(u ∗ v) = f(u).f(v). In our case, L1 (n × n) is
isomorphic to L2 (n × n) if ∀i, j ≤ n, f(L1[i][j]) = L2[f(i)][f(j)]. Here f is any
permutation of 1...n elements. Finding isomorphism in this way, by applying the
above formula for all permutations of f is extremely time consuming and involves
huge number of possibilities for even slightly large n. However, we observed that
there are many permutations (mappings) of f which do not satisfy the isomorphic
relation f(m1[i][j]) = m2[f(i)][f(j)] for all values of i, j ≤ n because of constraints
shown in Table 3. We consider these mappings as invalid and discard them. We use
constraint solver to �nd all valid mappings which satisfy isomorphic relationship
between two IP Loops. Figure 2 represents valid mapping generation process.

The constraint solver models the system by specifying the relevant constraints
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Figure 2: Schematic diagram of valid mappings generator

from Table 3. After the constraints are embedded in the model, the constraint
solver searches the state space to �nd those permutations that satisfy these con-
straints. All such permutations are called �valid mappings�. If the set S represents
all the permutations of f and the set Sv represents all the valid maps then Sv ⊆ S.
The obtained valid mappings are then used to �nd isomorphism classes.

Figure 3 shows an example of invalid mapping f(4 5). This mapping, if applied
to a valid IP loop structure (shown on left) will produce an algebraic structure
(shown on right) which does not satisfy the basic symmetry breaking constraint
(i.e., |x− x−1| ≤ 1). For example, in the algebraic structure on the right side, for
x = 3; x−1 = 5 and thus |x− x−1| > 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 5 7 4 9 3 11 8 14 13 6 10 12 1 2 0 4 5 7 9 3 11 8 14 13 6 10 12
2 0 1 7 5 3 12 4 9 6 13 8 14 11 10 2 0 1 7 3 4 12 5 9 6 13 8 14 11 10
3 6 8 4 0 10 2 13 1 12 11 14 7 5 9 3 6 8 5 10 0 2 13 1 12 11 14 7 4 9
4 8 6 0 3 13 1 12 2 14 5 10 9 7 11 4 11 10 2 6 1 0 9 14 5 12 7 13 8 3
5 11 10 2 1 6 0 9 14 4 12 7 13 8 3 5 8 6 0 13 3 1 12 2 14 4 10 9 7 11
6 4 3 14 9 0 5 11 13 7 2 1 10 12 8 : f (4   5) 6 5 3 14 0 9 4 11 13 7 2 1 10 12 8
7 10 12 1 2 14 13 8 0 11 6 3 5 9 4 ≈ 7 10 12 1 14 2 13 8 0 11 6 3 4 9 5
8 3 4 11 14 12 10 0 7 13 1 9 2 6 5 8 3 5 11 12 14 10 0 7 13 1 9 2 6 4
9 14 13 6 12 1 11 2 5 10 0 4 8 3 7 9 14 13 6 1 12 11 2 4 10 0 5 8 3 7

10 5 7 13 11 8 3 14 12 0 9 6 4 2 1 10 4 7 13 8 11 3 14 12 0 9 6 5 2 1
11 13 5 10 8 9 14 1 6 3 7 12 0 4 2 11 13 4 10 9 8 14 1 6 3 7 12 0 5 2
12 7 14 9 13 2 8 10 4 5 3 0 11 1 6 12 7 14 9 2 13 8 10 5 4 3 0 11 1 6
13 9 11 12 10 7 4 6 3 2 8 5 1 14 0 13 9 11 12 7 10 5 6 3 2 8 4 1 14 0
14 12 9 8 6 11 7 5 10 1 4 2 3 0 13 14 12 9 8 11 6 7 4 10 1 5 2 3 0 13

Figure 3: Example of an invalid mapping which produces an algebraic structure (on the
right) that does not satisfy the basic symmetry breaking constraint (|x− x−1| ≤ 1)

Detecting isomorphism classes using valid mappings drastically increases the
e�ciency because Sv is usually much smaller than S. For example, for IP loop of
order 15, the possible number of mappings (|S|) is approximately 87 billion but
there are only 509,086 valid mappings (i.e., |Sv| is 0.0005% of |S|). This results in
much faster isomorphic detection.

Table 4 shows the reduced number of valid mappings and their impact on
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the time taken to identify isomorphism classes for three di�erent problems. In
all the three cases, we observed considerable improvement in time when detecting
isomorphism. This improvement is even more signi�cant for higher order IP loops.
For example, for IP loop of order 11, the time taken to identify isomorphism classes
is reduced by a factor of 500 when valid mappings were used.
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(sec)

Latin Square 161280 1411 120 120 138 138 2
(Order 5)

IP Loop 6464 49 3628800 3654 5085 10 5
(Order 11)

IP Loop of
exponent 3

22000 64
≈ 479×

106
34804

≈
864000

571 185

(Order 13)

Table 4: Time reductions obtained using valid mappings and tree-based approaches

3.2. Tree representation of isomorphism classes

In order to identify a new isomorphism class, we need to check a newly found solu-
tion against all the previously found isomorphism classes using all valid mappings.
This results in a large number of computations, and even with the reduced set
of mappings the computational time was too high. After careful examination of
isomorphism classes we discovered that these classes have similar structure (ele-
ments), and with proper organization of isomorphism classes several computations
can be eliminated. So we devised a scheme that represents isomorphism classes
using a tree-based structure to reduce redundant computations.

The tree structure is built such that each branch of the tree represents one
isomorphism class. All new isomorphism classes are added to the existing tree. As
long as two isomorphism classes have the same element values, they are represented
by a single branch in the tree. If element values di�er at any depth in a branch, a
new o�shoot is created to represent all the subsequent values.
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This representation reduces the memory needed to maintain isomorphism classes,
especially when the number of isomorphism classes are high. In addition to mem-
ory saving, the tree-based approach drastically improves the speed in detecting
isomorphism classes in two ways. First, by eliminating redundant computations
since one node in the tree represents elements of many isomorphism classes. Sec-
ond, by discarding all the siblings of a node whenever it satis�es the isomorphism
constraint.

The last column in Table 4 (i.e., Time with |Sv| and Tree) shows the results
obtained by using tree representation on di�erent problems. As anticipated, the
reduction in time depends on the number of isomorphism classes. For example the
time taken to detect isomorphism classes with tree representation was reduced by
a factor of 2 when the number of isomorphism classes was 45, whereas the time
taken was reduced by a factor of 45 when the number of isomorphism classes was
6808.

Figure 4: Proposed distributed system to identify isomorphism classes

3.3. Distributed system

With the help of reduced mappings and tree representation, isomorphism classes of
IP loops up to order 13 can be enumerated in reasonable time using a single desktop
machine. However for higher orders, even after reducing the set of mappings and
the number of comparisons, the number of isomorphic copies are still too high to
be managed by a standalone system. To cope up with this problem, we developed
a distributed system for identifying isomorphism classes as shown in Figure 4. The
distributed system takes a single input �le containing solutions provided by the
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constraint solver and breaks it up into several �les each containing a manageable
subset of the solutions. Each node (i.e., a processor) in the distributed system
selects one of the input �les for exclusive use and produces the isomorphism classes
using valid mappings and tree representation as described in previous sections. The
output is written into an intermediate �le for further processing. These output �les
can still contains isomorphic copies as the nodes are unaware of the isomorphism
classes found by each other. Therefore, another node exhaustively searches all the
intermediate �les to produce the �nal set of isomorphism classes.

Order
Total

solutions
Isomorphism classes |Sv| (|S|)

Time
(sec)

non-
associative

associative
(groups)

5 0 0 0 0 (24) < 1

7 2 1 0 48 (720) < 1

9 10 1 1
276

(40,320)
< 1

11 0 0 0
2402

(3,628,800)
< 1

13 22, 000 64 0
43804
(≈ 479
million)

210

15 71, 149, 968 27, 698 0
509086
(≈ 87
billion)

334, 725
≈ 93 hours
(for total
solutions)

Table 5: IP loops of exponent 3

4. Results and discussions

We modeled the system as �nite domain CSPs and used a generic constraint solver
JaCoP to generate IP loops. We were able to verify the results up to IP loops of
order 11 using JaCoP. However, we encountered severe memory and latency issues
for higher orders. Therefore, we tried another leading constraint solver Google's
or-tools and were able to resolve the memory and latency issues. We modeled all
IP loop constraints in or-tools and enumerated IP loops of higher order. The valid
mappings and tree representation were used to speed up the process of �nding
isomorphism classes.

The results for IP loops of exponent 3 are shown in Table 5. We have veri�ed
the known results till order 13 and produced new results for order 15. For IP
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loops of exponent 3 having order 13, or-tools constraint solver produced 22, 000
solutions. It took 210 seconds on a general desktop to �nd all the 64 isomorphism
classes.

For IP loops of exponent 3 having order 15, constraint solver produced roughly
71 million solutions. It took about 28 hours to get these results. 27, 698 isomor-
phism classes were found by using the distributed system described in Section 3.3.
It was executed on 71 di�erent processors on 20 general desktop computers. It
took about 4 days to �nd the complete set of isomorphism classes.

Generating IP loops of higher orders gave us new perspective about the alge-
braic structures and their properties. As shown in the Table 5, the number of
non-associative isomorphism classes has a reasonable size for higher orders. How-
ever, their size plummets to very small number as soon as associativity property is
added to the structure. This clearly indicates that it is the associativity property
that is seldom present in algebraic structures thus drastically reducing the number
of isomorphism classes.

Size of automorphism
group

Number of exponent 3
IP loops

1 25899
2 1385
3 171
4 140
6 50
8 22
12 10
16 2
21 3
24 13
168 1
192 1
1344 1

Table 6: Size of automorphism group of exponent 3 IP loops of order 15

We have also computed the size of automorphism groups of exponent 3 IP loops
of order 15 which is shown in Table 6. The IP loop with largest automorphism
group is shown in Figure 5.

Another interesting thing to note is the count of 3 × 3 Latin subsquares in
exponent 3 IP loops due to their role in a conjecture by van Rees [16]. Table 7
shows the count of 3 × 3 Latin subsquares in exponent 3 IP loops and Figure 6
shows two exponent 3 IP loops of order 15 which have the highest count of 3× 3
Latin subsquares. Both these loops have 91 such Latin subsquares.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 5 6 4 3 9 10 8 7 13 14 12 11
2 0 1 6 5 3 4 10 9 7 8 14 13 11 12
3 6 5 4 0 1 2 11 12 14 13 8 7 9 10
4 5 6 0 3 2 1 12 11 13 14 7 8 10 9
5 3 4 2 1 6 0 14 13 12 11 9 10 7 8
6 4 3 1 2 0 5 13 14 11 12 10 9 8 7
7 10 9 12 11 13 14 8 0 1 2 3 4 6 5
8 9 10 11 12 14 13 0 7 2 1 4 3 5 6
9 7 8 13 14 11 12 2 1 10 0 6 5 4 3

10 8 7 14 13 12 11 1 2 0 9 5 6 3 4
11 14 13 7 8 10 9 4 3 5 6 12 0 1 2
12 13 14 8 7 9 10 3 4 6 5 0 11 2 1
13 11 12 10 9 8 7 5 6 3 4 2 1 14 0
14 12 11 9 10 7 8 6 5 4 3 1 2 0 13

Figure 5: IP loop of exponent 3 with order 15 having the largest automorphism group
(size=1344)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 5 7 9 11 12 10 3 13 14 4 8 6
2 0 1 9 12 3 14 4 13 5 8 6 7 10 11
3 11 8 4 0 14 2 9 6 13 1 10 5 7 12
4 10 6 0 3 12 8 13 2 7 11 1 14 9 5
5 13 12 7 1 6 0 11 14 8 2 3 10 4 9
6 4 10 11 13 0 5 3 9 14 12 7 2 1 8
7 14 9 1 5 10 13 8 0 11 4 2 6 12 3
8 3 11 14 10 4 12 0 7 2 5 9 13 6 1
9 7 14 12 2 11 1 6 3 10 0 13 8 5 4

10 6 4 8 14 13 7 1 12 0 9 5 3 11 2
11 8 3 13 6 1 9 14 5 4 7 12 0 2 10
12 5 13 2 9 8 4 10 1 6 14 0 11 3 7
13 12 5 6 11 7 10 2 4 1 3 8 9 14 0
14 9 7 10 8 2 3 5 11 12 6 4 1 0 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 5 7 9 11 12 10 4 13 14 3 6 8
2 0 1 12 9 3 13 4 14 5 8 6 7 10 11
3 10 8 4 0 13 2 5 11 12 6 1 14 9 7
4 11 6 0 3 7 10 14 2 13 1 8 9 5 12
5 14 12 9 1 6 0 11 3 8 2 13 10 7 4
6 4 10 8 14 0 5 13 9 3 12 7 2 11 1
7 13 9 1 12 10 4 8 0 11 14 2 6 3 5
8 3 11 13 6 14 12 0 7 2 5 9 4 1 10
9 7 14 2 5 11 1 6 13 10 0 4 8 12 3

10 6 3 14 11 4 7 1 12 0 9 5 13 8 2
11 8 4 10 13 1 9 3 5 14 7 12 0 2 6
12 5 13 7 2 8 14 10 1 6 3 0 11 4 9
13 12 7 11 8 2 3 9 6 1 4 10 5 14 0
14 9 5 6 10 12 8 2 4 7 11 3 1 0 13

Figure 6: IP loops of exponent 3 with order 15 having the highest count of 3× 3 Latin
subsquares
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Count of 3× 3
Latin

subsquares

Number of
exponent 3 IP

loops

Count of 3× 3
Latin

subsquares

Number of
exponent 3 IP

loops

7 992 34 44
9 856 35 34
10 2083 36 25
11 457 37 59
12 1996 38 20
13 2676 39 10
14 1046 40 19
15 2430 41 14
16 2440 42 4
17 1279 43 32
18 2022 45 5
19 1977 46 5
20 988 47 2
21 1397 48 3
22 1090 49 14
23 619 50 2
24 705 51 4
25 626 52 3
26 332 53 1
27 422 55 13
28 293 58 1
29 175 61 1
30 159 67 1
31 177 73 1
32 62 91 2
33 80

Table 7: Number of exponent 3 IP loops of order 15 grouped by count of 3 × 3 Latin
subsquares
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On bi-bases of a semigroup

Pisit Kummoon and Thawhat Changphas

Abstract. Based on the results of bi-ideals generated by a non-empty subset of a semigroup

S, we introduce the concept which is called bi-bases of the semigroup S. Using the quasi-order

de�ned by the principal bi-ideals of S, we give a characterization when a non-empty subset of S

is a bi-base of S.

1. Preliminaries

Let S be a semigroup. A subset A of the semigroup S is called a two-sided base

(or simply base) of S if it satis�es the following two conditions:

(i) S = A ∪ SA ∪AS ∪ SAS;

(ii) if B is a subset of A such that S = B ∪ SB ∪BS ∪ SBS, then B = A.

This notion was �rst introduced and studied by I. Fabrici [3]. In fact, using the
quasi-order de�ned by principal two-sided ideals of S, the author gave a charac-
terization when a non-empty subset of S is a base of S. Moreover, the structure of
semigroups containing two-sided bases was described. Indeed, using the concepts
of left ideals and right ideals generated by a non-empty set, the concepts of left
bases and right bases of a semigroup were introduced by T. Tamura before the
concept of two-sided bases (see [7]). In [2], I. Fabrici studied the structure of a
semigroup containing one-sided bases. In [4], I. Fabrici and T. Kepka showed that
there is a relation between bases and maximal ideals of a semigroup. The results
obtaind by I. Fabrici [3] have been extended to ordered semigroups by T. Chang-
phas and P. Summaprab (see [1]). As in the line of I. Fabrici ([3], [2]) mentioned
before, the main purpose of this paper is to introduce the concept which is called
bi-bases of a semigroup. We also de�ne the quasi-order using principal bi-ideals
of S, and give a characterization when a non-empty subset of S is a bi-base of S.

Let S be a semigroup, and A,B non-empty subsets of S. The set product AB
of A and B is de�ned to be the set of all elements ab with a in A and b in B. That
is

AB = {ab | a ∈ A, b ∈ B}.

For a ∈ S, we write Ba for B{a}, and similarly for aB.

2010 Mathematics Subject Classi�cation: 20M20

Keywords: semigroup, two-sided ideal, bi-ideal, two-sided base, bi-base, quasi-order
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A subsemigroup B of a semigroup S is called a bi-ideal ([5], [6]) of S if

BSB ⊆ B.

This notion generalizes the notion of one-sided ideals and two-sided ideals of a
semigroup.

Let S be a semigroup, and Bi a bi-ideal of S for each i in an indexed set I. It is

known that if
⋂
i∈I

Bi 6= ∅, then
⋂
i∈I

Bi is a bi-ideal of S. Moreover, for a non-empty

subset A of S, the intersection of all bi-ideals of S containing A, denoted by (A)b,
is the smallest bi-ideal of S containing A. And it is of the form

(A)b = A ∪AA ∪ASA.

In particular, for A = {a}, we write ({a})b by (a)b (see [6]).

2. Main Results

We begin this section with the following de�nition of bi-bases of a semigroup.

De�nition 2.1. Let S be a semigroup. A subset B of S is called a bi-base of S
if it satis�es the following two conditions:

(i) S = (B)b (i.e. S = B ∪BB ∪BSB);

(ii) if A is a subset of B such that S = (A)b, then A = B.

Example 2.2. Let S = {r, s, t, u} be a semigroup with the binary operation
de�ned by:

· r s t u
r r s r r
s s r s s
t r s t u
u r s u t

We have that the bi-bases of S are: B1 = {t} and B2 = {u}.

Example 2.3. Let S = {p, q, r, s} be a semigroup with the binary operation
de�ned by:

· p q r s
p p p p p
q p p p p
r p p q q
s p p q q

It is a routine matter to check that S has only one bi-base: B = {r, s}.
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Example 2.4. Let S = {a, b, c, d, x, y} be a semigroup with the binary operation
de�ned by:

· a b c d x y
a a b c d x y
b b c a y d x
c c a d x y d
d d x y a b c
x x y d c a b
y y d x b c a

We have that the singleton sets consisting of an element of S are bi-bases of S.

First, we have the following useful lemma:

Lemma 2.5. Let B be a bi-base of a semigroup S, and a, b ∈ B. If a ∈ bb ∪ bSb,
then a = b.

Proof. Assume that a ∈ bb ∪ bSb, and suppose that a 6= b. We consider

A = B \ {a}.

Then A ⊂ B. Since a 6= b, b ∈ A. We will show that (A)b = S. Clearly, (A)b ⊆ S.
Let x ∈ S. Then, by (B)b = S, we have x ∈ B ∪ BB ∪ BSB. There are three
cases to consider:

Case 1: x ∈ B.
Subcase 1.1: x 6= a. Then x ∈ B \ {a} = A ⊆ (A)b.
Subcase 1.2: x = a. By assumption,

x = a ∈ bb ∪ bSb ⊆ AA ∪ASA ⊆ (A)b.

Case 2: x ∈ BB. Then x = b1b2 for some b1, b2 ∈ B.
Subcase 2.1: b1 = a and b2 = a. By assumption,

x = b1b2 ∈ (bb ∪ bSb)(bb ∪ bSb) = bbbb ∪ bbbSb ∪ bSbbb ∪ bSbbSb

⊆ AAAA ∪AAASA ∪ASAAA ∪ASAASA ⊆ ASA ⊆ (A)b.

Subcase 2.2: b1 6= a and b2 = a. By assumption and A = B \ {a}, we have

x = b1b2 ∈ (B \ {a})(bb ∪ bSb) = (B \ {a})bb ∪ (B \ {a})bSb
⊆ AAA ∪AASA ⊆ ASA ⊆ (A)b.

Subcase 2.3: b1 = a and b2 6= a. By assumption and A = B \ {a}, we have

x = b1b2 ∈ (bb ∪ bSb)(B \ {a}) = bb(B \ {a}) ∪ bSb(B \ {a})
⊆ AAA ∪ASAA ⊆ ASA ⊆ (A)b.
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Subcase 2.4: b1 6= a and b2 6= a. From A = B \ {a},

x = b1b2 ∈ (B \ {a})(B \ {a}) = AA ⊆ (A)b.

Case 3: x ∈ BSB. Then x = b3sb4 for some b3, b4 ∈ B and s ∈ S.
Subcase 3.1: b3 = a and b4 = a. By assumption,

x = b3sb4 ∈ (bb ∪ bSb)S(bb ∪ bSb) = bbSbb ∪ bbSbSb ∪ bSbSbb ∪ bSbSbSb

⊆ AASAA ∪AASASA ∪ASASAA ∪ASASASA

⊆ ASA ⊆ (A)b.

Subcase 3.2: b3 6= a and b4 = a. By assumption and A = B \ {a}, we have

x = b3sb3 ∈ (B \ {a})S(bb ∪ bSb) = (B \ {a})Sbb ∪ (B \ {a})SbSb
⊆ ASAA ∪ASASA ⊆ ASA ⊆ (A)b.

Subcase 3.3: b3 = a and b4 6= a. By assumption and A = B \ {a}, we have

x = b3sb4 ∈ (bb ∪ bSb)S(B \ {a}) = bbS(B \ {a}) ∪ bSbS(B \ {a})
⊆ AASA ∪ASASA ⊆ ASA ⊆ (A)b.

Subcase 3.4: b3 6= a and b4 6= a. From A = B \ {a}, hence

x = b3sb4 ∈ (B \ {a})S(B \ {a}) = ASA ⊆ (A)b.

Hence, (A)b = S. And this is a contradiction. Thus a = b.

Lemma 2.6. Let B be a bi-base of a semigroup S. Let a, b, c ∈ B. If a ∈ cb∪ cSb,
then a = b or a = c.

Proof. Assume that a ∈ cb ∪ cSb, and suppose that a 6= b and a 6= c. We set

A = B \ {a}.

Then A ⊂ B. Since a 6= b and a 6= c, we have b, c ∈ A. We will show that
(A)b = S. Clearly, (A)b ⊆ S. Let x ∈ S. By (B)b = S, x ∈ B ∪BB ∪BSB.

We consider three cases:

Case 1: x ∈ B.
Subcase 1.1: x 6= a. Then x ∈ B \ {a} = A ⊆ (A)b.
Subcase 1.2: x = a. By assumption, x = a ∈ cb ∪ cSb ⊆ AA ∪ASA ⊆ (A)b.

Case 2: x ∈ BB. Then x = b1b2 for some b1, b2 ∈ B.
Subcase 2.1: b1 = a and b2 = a. By assumption,

x = b1b2 ∈ (cb ∪ cSb)(cb ∪ cSb) = cbcb ∪ cbcSb ∪ cSbcb ∪ cSbcSb

⊆ AAAA ∪AAASA ∪ASAAA ∪ASAASA

⊆ ASA ⊆ (A)b.
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Subcase 2.2: b1 6= a and b2 = a. By assumption and A = B \ {a}, we have

x = b1b2 ∈ (B \ {a})(cb ∪ cSb) = (B \ {a})cb ∪ (B \ {a})cSb
⊆ AAA ∪AASA ⊆ ASA ⊆ (A)b.

Subcase 2.3: b1 = a and b2 6= a. By assumption and A = B \ {a}, we have

x = b1b2 ∈ (cb ∪ cSb)(B \ {a}) = cb(B \ {a}) ∪ cSb(B \ {a})
⊆ AAA ∪ASAA ⊆ ASA ⊆ (A)b.

Subcase 2.4: b1 6= a and b2 6= a. From A = B \ {a}, hence

x = b1b2 ∈ (B \ {a})(B \ {a}) = AA ⊆ (A)b.

Case 3: x ∈ BSB. Then x = b3sb4 for some b3, b4 ∈ B and s ∈ S.
Subcase 3.1: b3 = a and b4 = a. By assumption we have

x = b3sb4 ∈ (cb ∪ cSb)S(cb ∪ cSb) = cbScb ∪ cbScSb ∪ cSbScb ∪ cSbScSb

⊆ AASAA ∪AASASA ∪ASASAA ∪ASASASA

⊆ ASA ⊆ (A)b.

Subcase 3.2: b3 6= a and b4 = a. By assumption and A = B \ {a}, we have

x = b3sb3 ∈ (B \ {a})S(cb ∪ cSb) = (B \ {a})Scb ∪ (B \ {a})ScSb
⊆ ASAA ∪ASASA ⊆ ASA ⊆ (A)b.

Subcase 3.3: b3 = a and b4 6= a. By assumption and A = B \ {a}, we have

x = b3sb4 ∈ (cb ∪ cSb)S(B \ {a}) = cbS(B \ {a}) ∪ cSbS(B \ {a})
⊆ AASA ∪ASASA ⊆ ASA ⊆ (A)b.

Subcase 3.4: b3 6= a and b4 6= a. From A = B \ {a}, hence

x = b3sb4 ∈ (B \ {a})S(B \ {a}) = ASA ⊆ (A)b.

Hence (A)b = S. This is a contradiction, and thus a = b.

To give a characterization when a non-empty subset of a semigroup is a bi-base
of the semigroup we need the quasi-order de�ned as follows:

De�nition 2.7. Let S be a semigroup. De�ne a quasi-order on S by, for any

a, b ∈ S,

a 6b b :⇔ (a)b ⊆ (b)b.

The following example shows that the relation 6b de�ned above is not, in
general, a partial order.
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Example 2.8. From Example 2.4, we have that (a)b ⊆ (b)b (i.e., a 6b b) and
(b)b ⊆ (a)b (i.e., b 6b a), but a 6= b. Thus, 6b is not a partial order on S.

Lemma 2.9. Let B be a bi-base of a semigroup S. If a, b ∈ B such that a 6= b,
then neither a 6b b, nor b 6b a.

Proof. Assume that a, b ∈ B such that a 6= b. Suppose that a 6b b; then

a ∈ (a)b ⊆ (b)b.

By assumption we have a 6= b, so a ∈ bb ∪ bSb. By Lamma 2.5, a = b. This is a
contradiction. The case b 6b a can be proved similarly.

Lemma 2.10. Let B be a bi-base of a semigroup S. Let a, b, c ∈ B and s ∈ S:

(1) If a ∈ bc ∪ bcbc ∪ bcSbc, then a = b or a = c.

(2) If a ∈ bsc ∪ bscbsc ∪ bscSbsc, then a = b or a = c.

Proof. (1). Assume that a ∈ bc ∪ bcbc ∪ bcSbc, and suppose that a 6= b and a 6= c.
Let

A = B \ {a}.

Then A ⊂ B. Since a 6= b and a 6= c, we have b, c ∈ A. We will show that
(B)b ⊆ (A)b, if su�ces to show that B ⊆ (A)b. Let x ∈ B. If x 6= a, then x ∈ A,
and so x ∈ (A)b. If x = a, then by assumption we have

x = a ∈ bc ∪ bcbc ∪ bcSbc ⊆ AA ∪AAAA ∪AASAA ⊆ ASA ⊆ (A)b.

Thus, B ⊆ (A)b. This implies (B)b ⊆ (A)b. Since B is a bi-base of S,

S = (B)b ⊆ (A)b ⊆ S.

Therefore S = (A)b. This is a contradiction.
(2). Assume that a ∈ bsc∪ bscbsc∪ bscSbsc, and suppose that a 6= b and a 6= c.

Let
A = B \ {a}.

Then A ⊂ B. Since a 6= b and a 6= c, we have b, c ∈ A. We will show that
(B)b ⊆ (A)b, if su�ces to show that B ⊆ (A)b. Let x ∈ B. If x 6= a, then x ∈ A,
and so x ∈ (A)b. If x = a, then by assumption we have

x = a ∈ bsc ∪ bscbsc ∪ bscSbsc ⊆ ASA ∪ASAASA ∪ASASASA

⊆ ASA ⊆ (A)b.

Thus, B ⊆ (A)b. This implies (B)b ⊆ (A)b. Since B is a bi-base of S,

S = (B)b ⊆ (A)b ⊆ S.

Therefore, S = (A)b. This is a contradiction.
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Lemma 2.11. Let B be a bi-base of a semigroup S.

(1) For any a, b, c ∈ B, if a 6= b and a 6= c, then a 
b bc.

(2) For any a, b, c ∈ B and s ∈ S, if a 6= b and a 6= c, then a 
b bsc.

Proof. (1). For any a, b, c ∈ B, let a 6= b and a 6= c. Suppose that a 6b bc, we have

a ∈ (a)b ⊆ (bc)b = bc ∪ bcbc ∪ bcSbc.

By Lamma 2.10 (1), it follows that a = b or a = c. This contradicts to assumption.
(2). For any a, b, c ∈ B and s ∈ S, let a 6= b and a 6= c. Suppose that a 6b bsc,

we have a ∈ (a)b ⊆ (bsc)b = bsc∪ bscbsc∪ bscSbsc. By Lamma 2.10 (2), it follows
that a = b or a = c. This contradicts to assumption.

We now prove the main result of this paper.

Theorem 2.12. A non-empty subset B of a semigroup S is a bi-base of S if and

only if B satis�es the following conditions:

(1) For any x ∈ S,

(1.a) there exists b ∈ B such that x 6b b; or

(1.b) there exist b1, b2 ∈ B such that x 6b b1b2; or

(1.c) there exist b3, b4 ∈ B, s ∈ S such that x 6b b3sb4.

(2) For any a, b, c ∈ B, if a 6= b and a 6= c, then a 
b bc.

(3) For any a, b, c ∈ B and s ∈ S, if a 6= b and a 6= c, then a 
b bsc.

Proof. Assume �rst that B is a bi-base of S; then S = (B)b. To show that (1)
holds, let x ∈ S. Then x ∈ B ∪BB ∪BSB.

We consider three cases:
Case 1: x ∈ B. Then x = b for some b ∈ B. This implies (x)b ⊆ (b)b. Hence

x 6b b.
Case 2: x ∈ BB. Then x = b1b2 for some b1, b2 ∈ B. This implies (x)b ⊆

(b1b2)b. Hence x 6b b1b2.
Case 3: x ∈ BSB. Then x = b3sb4 for some b3, b4 ∈ B, s ∈ S. This implies

(x)b ⊆ (b3sb4)b. Hence x 6b b3sb4.
The validity of (2) and (3) follow, respectively, from Lemma 2.11 (1), and

Lemma 2.11 (2).
Conversely, assume that the conditions (1), (2) and (3) hold. We will show

that B is a bi-base of S. Clearly, (B)b ⊆ S. By (1), S ⊆ (B)b, and S = (B)b. It
remains to show that B is a minimal subset of S with the property S = (B)b.

Suppose that S = (A)b for some A ⊂ B. Since A ⊂ B, there exists b ∈ B \ A.
Since b ∈ B ⊆ S = (A)b and b /∈ A, it follows that b ∈ AA ∪ASA.

There are two cases to consider:
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Case 1: b ∈ AA. Then b = a1a2 for some a1, a2 ∈ A. We have a1, a2 ∈ B.
Since b /∈ A, so b 6= a1 and b 6= a2. Since b = a1a2, so (b)b ⊆ (a1a2)b. Hence
b 6b a1a2. This contradicts to (2).

Case 2: b ∈ ASA. Then b = a3sa4 for some a3, a4 ∈ A and s ∈ S. Since
b /∈ A, we have b 6= a3 and b 6= a4. Since A ⊂ B, a3, a4 ∈ B. Since b = a3sa4, so
(b)b ⊆ (a3sa4)b. Hence, b 6b a3sa4. This contradicts to (3).

Therefore, B is a bi-base of S as required, and the proof is completed.

In Example 2.2, we have that {u} is a bi-base of S where as it is not a sub-
semigroup of S. So, we �nd a condition in order that a bi-base is a subsemigroup.

Theorem 2.13. Let B be a bi-base of a semigroup S. Then B is a subsemigroup

of S if and only if B satis�es the following conditions: For any b, c ∈ B, bc = b or

bc = c.

Proof. By Lemma 2.6, and B is a subsemigroup of S implies for any b, c ∈ B,
bc = b or bc = c. The opposit direction is clear.

Question. It was proved in [3] (Theorem 3) that for any two two-sided bases of a
semigroup have the same cardinality. This is hold true for an ordered semigroup
(see [1], Theorem 2.10). Here, we ask for bi-bases of a semigroup. Indeed, is it

true that for any two bi-bases of a semigroup have the same cardinality?
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Deniable-encryption protocols

based on commutative ciphers

Nicolai A. Moldovyan, Alexei V. Shcherbacov and Mikhail A. Eremeev

Abstract. There are considered three new deniable encryption protocols representing practical

interest. The sender-deniable and sender&receiver-deniable ones have been designed on the base

of combining commutative encryption function (Vernam cipher) with probabilistic public key

encryption (RSA algorithm), subexponential resistance to coercive attack being obtained. To

get exponential deniability it is proposed to use the ElGamal-like probabilistic algorithm based

on computational di�culty of discrete logarithm on elliptic curves instead of the RSA one. The

third DE protocol is based on the Pohlig−Hellman exponentiation cipher and represents a plan-

ahead shared-key bi-deniable scheme satisfying criterion of computational indistinguishability

from probabilistic encryption protocol. Each of the proposed deniable encryption schemes is a

three-pass protocol.

1. Introduction

1.1. Deniable encryption

Encryption is usually used to provide con�dentiality of the messages sent via inse-
cure public channels, when a potential adversary can intercepts the send messages.
In the case of intercepting the sent ciphertext he is unable to read the message un-
til disclosing the decryption key. The widely used private-key (AES, IDEA, RC5,
Serpent et. al.) and public-key (RSA, ElGamal et. al.) encryption algorithms [22]
provide computational infeasibility of disclosing the key while performing crypt-
analysis of the ciphertext. In some particular applications of the cryptographic
protocols it is required to provide security against potential coercive attacks. The
main feature of the model of the coercive adversary (coercer) consists in his having
power to force sender or/and receiver to open both the source message and the
decryption key [2]. After he gets the private key he can check that with the opened
key the intercepted ciphertext is decrypted into the opened message.

The notion of deniable encryption (DE) relates to cryptoschemes that are re-
sistant to coercive attacks. Deniability is provided with possibility to decrypt the

2010 Mathematics Subject Classi�cation: 94A60, 11S05.
Keywords: cryptography, public encryption, commutative encryption, deniable encryption,
shared key, probabilistic encryption
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ciphertext intercepted by the coercer in di�erent ways. The sender or/and the
receiver open a fake message instead of the secret one and the coercive adver-
sary is not able to disclose their lie. Practical application of the DE algorithms
and protocols is connected with providing data secrecy, secure communications
via public channels. They are also applicable for preventing vote buying in the
internet-voting systems [1, 12] and for providing secure multiparty computations
[9]. There are distinguished sender-deniable [4, 8, 19], receiver-deniable [13, 25],
and bi-deniable [20, 21], schemes in which coercer attacks the sender of secret
message, the receiver, and the both parties of the communication protocol, re-
spectively.

One should also mention the issue about time at which the attacked parties
have to decide on the fake message. In the plan-ahead DE protocols the fake
message is selected at time of encryption. There are known practical public-key
DE schemes [16, 17] and shared-key DE ones [18] in which the fake message is
�xed and selected before or during the encryption process. From theoretic point
of view the �exible DE protocols represent signi�cant interest, in which the fake
massage can be selected arbitrary at time of the coercive attack.

Signi�cant part of the papers devoted to the design and analysis of �exible DE
protocols consider the case of the sender-deniable public-key encryption protocols
[1, 4, 8]. A possible general scheme of such protocols is as follows. The secret
message M is encrypted with public-encryption algorithm E and public key P
using a random value r : C = EP (M, r), where C is the produced cryptogram
(ciphertext). While being coerced the sender (receiver) opens to adversary the fake
messageM ′ and another random value r′ (fake opening) such that EP (M

′, r′) = C,
where r′ 6= r. The value r contains some trapdoor information unavailable to
coercer, which is used by receiver to decide on the pair (M ′, r′) containing real
message. Papers [3, 11, 21] considered some problems connected with construction
of the �exible public key DE protocols having super-polynomial security. Recent
paper [24] gave the �rst construction of sender-deniable encryption schemes with
super-polynomial security, where a coercive adversary has negligible advantage in
distinguishing real and fake messages.

Present paper proposes a novel design of the DE protocols based on combin-
ing the probabilistic public encryption with the commutative encryption function
implemented with Vernam algorithm. The paper introduces a computationally
e�cient sender-deniable encryption protocol as well as sender&receiver deniable
one in which using respective fake key the ciphertext can be decrypted in arbitrary
fake message selected after performing the protocol, namely, at time of coercive
attack. The both protocols have super-polynomial security that is de�ned by sub-
exponential security of the RSA public encryption algorithm put into the base of
the protocols. The proposed protocols are based on combining the probabilistic
public encryption with commutative encryption implemented with the Vernam ci-
pher. The proposed design can be implemented with using the ElGamal-like public
encryption on elliptic curves, providing exponential resistance to coercive attack.
As compared with the known �exible public key DE protocols the proposed ones
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have the following merits: i) simplicity of the design, ii) su�ciently high perfor-
mance, iii) comparatively low overhead in terms of the ciphertext size, and iv)
using only one XOR operation to generate a fake opening at time of attack.

1.2. Commutative encryption

Encryption function E is called commutative if it satis�es the following condition

EK [EQ(M)] = EQ[EK(M)],

where K and Q are encryption keys and M is some plaintext, for arbitrary keys
K and Q 6= K. The property of commutativity of some encryption function is
exploited in Shamir's no key protocol (also called Shamir's three-pass protocol
[14]) described as follows. Suppose Alice wishes to send the secret message M to
Bob, using a public channel and no shared key. For this purpose they can use the
following protocol that provides privacy, but not authentication:

1. Alice chooses a random key K and encrypts the messageM using a commu-
tative encryption function E : C1 = EK(M), where C1 is the produced ciphertext.
Then she sends the ciphertext C1 to Bob.

2. Bob chooses a random key Q and encrypts the message the ciphertext
C1 using the function E as follows: C2 = EQ(C1), where C2 is the produced
ciphertext. Then he sends the ciphertext C2 to Alice.

3. Alice decrypts the ciphertext C2 obtaining the ciphertext C3 : C3 =
E−1K (C2). Then she sends the ciphertext C3 to Bob.

Having received the ciphertext C3 Bob computes the value M ′ = E−1Q (C3).
Due to commutativity of the encryption function the values M ′ and M are equal,
i.e., the protocol works correctly. Indeed, one has the following:

M ′ = E−1Q (C3) = E−1Q [E−1K (C2)] = E−1Q [E−1K [EQ(C1)]] =

E−1Q [E−1K [EQ(EK(M))]] = E−1Q [E−1K [EK(EQ(M))]] = E−1Q [EQ(M)] =M.

The described three-pass protocol provides security to passive attacks (po-
tential adversary only intercepts the values sent via public channel), if the used
commutative encryption function E is secure to the know-input-text attack.

Indeed, if the function E is not secure to such attack, then the passive adversary
(after his intercepting the ciphertexts C1, C2, and C3) is able to compute Bob's
local key Q from the equation C2 = EQ(C1) and then the secret message M =
E−1Q (C3).

The Vernam cipher represents the simplest commutative cipher. It consists in
simple adding the key to the message M in accordance with the formula

C =M ⊕K,

where K is the single-use random chosen key such that |K| = |M | (the bit-length
of some value x is denoted as |x|) and ⊕ is the bit-wise modulo 2 addition operation
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(the XOR operation). Unfortunately it cannot be used in frame of the Shamir's
three-pass protocol, since it is not secure to the known-plaintext attack.

The appropriate commutative encryption function is provided by the exponen-
tiation-encryption method proposed by Pohlig and Hellman in [7].

The last method is described as follows. Suppose p is a 2464-bit prime such
that number (p− 1) contains a large prime divisor q, for example, p = 2q + 1.

To select an encryption/decryption key (e, d) one needs to generate a random
256-bit number e that is mutually prime with (p − 1) and then to compute d =
e−1 mod p− 1. The encryption procedure is described with the formula

C =M−e mod p.

Decryption of the ciphertext C is performed as computing the value

M = C−d mod p.

The Pohlig-Hellman algorithm is secure against the known plaintext (cipher-
text) attack and can be used in Shamir's no-key protocol.

In the present paper it is also proposed bi-deniable shared-key protocol based
on commutative encryption implemented with the Pohlig-Hellman exponentiation
cipher. Justifying the bi-deniability of the proposed protocol is performed on the
base of the criterion of computational indistinguishability [18] from the probabilis-
tic three-pass protocol applied for encrypting a fake message.

2. Sender&reciever-deniable three pass protocol

In frame of the protocol described below the RSA cryptoscheme [23] is used for
performing the public encryption with receiver's (Bob's) public key (n, e) that is
generated simultaneously with his private key d as follows. Bob selects two strong
[6] primes p and q having large size (for example, 1232 bits). The value n is com-
puted as product of the primes: n = pq. Then it is selected a random number
e that is relatively prime to Euler phi function ϕ(n) = (p − 1)(q − 1) and has
comparatively small size (for example, 32 bits) to provide faster encryption. The
private key d is computed as follows d = e−1 mod ϕ(n). Probabilistic encryption
of some message M < (n div 2257) is performed with the public key as computing
the ciphertext C = (M ||ρ)e mod n, where || is the concatenation operation; ρ is a
random chosen bit string having size exacly equal to 256 bits. Decryption of the ci-
phertext C is performed using the private key as followsM =

(
Cd mod n

)
div 2256.

The random value ρ is an internal randomization parameter actual in frame of the
operation of probabilistic public encryption. The protocols described below do
not use any information contained in the value ρ destination of which consist only
in randomizing the ciphertext. The parameter ρ takes on di�erent values at each
step of the probabilistic RSA encryption and they are not to be saved in computer
or hardware memory.
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The proposed sender-deniable public encryption protocol is described as fol-
lows.

1. To send the secret message M (|M | < |nB div 2257|, where (nB , eB) is
Bob's public key) Alice generates a random bit string K such that |K| = |M | and
computes the value C =M ⊕K and the ciphertext

C1 = (C||ρ)eB mod nB = ((M ⊕K)||ρ)eB mod nB .

Then she sends the value C1 to Bob.
2. Using his private key dB Bob decrypts the ciphertext C1: C||ρ = CdB1 mod

nB , generates a random bit string Q such that |Q| = |C| and computes the cipher-
text

C2 = C ⊕Q =M ⊕K ⊕Q.

Then he sends the value C2 to Alice.
3. Alice computes the ciphertext

C3 = ((C2 ⊕K)||ρ)eB mod nB = ((M ⊕Q)||ρ)eB mod nB

and sends the value C3 to Bob.
Bob decrypts the ciphertext C3 : (M ⊕ Q)||ρ = (C3)

dB mod nB and discloses
the secret message M as follows: M = (M ⊕Q)⊕Q.

If some coercive adversary intercepts the ciphertexts C1, C2, and C3 and then
forces Alice to open the secret message and her local key, then she chooses some
fake messageM ′ such that |M ′| = |M |, computes the fake local key K ′ =M⊕K⊕
M ′, and opens the values M ′ and K ′ as the values had been used at step 1 of the
protocol. From the ciphertext C2 coercer can compute the value Q′ = C2⊕M ′⊕K ′
for which the following inequality holds M ′ ⊕ Q′ 6= M ⊕ Q. However the coercer
has no computational possibility to disclose Alice's lie due to the probabilistic
encryption performed at step 3 which gives di�erent pseudo-random ciphertexts
while encrypting the same input value arbitrary number of times.

Thus, the coercer is unable to demonstrate inequality M ′ ⊕ Q′ 6= M ⊕ Q
performing public encryption of its left part, using Bob's public key, therefore the
described protocol is sender-deniable one. However the protocol is not a receiver-
deniable one, since while being coerced Bob should open both his local key Q and
his private key dB . Using the value dB the coercer is able to disclose Bob's lie, if
Bob will open fake key Q′ 6= Q.

The described protocol can be modi�ed into sender- and receiver-deniable one
with using Alice's public key (nA, eA) at step 2 of the protocol. The modi�ed
protocol looks as follows:

1. To send the secret messageM (|M | < |n div 2257|, where n = min{nA, nB},)
Alice generates a random bit stringK such that |K| = |M | and computes the value
C =M ⊕K and the ciphertext

C1 = (C||ρ)eB mod nB = ((M ⊕K)||ρ)eB mod nB .
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Then she sends the ciphertext C1 to Bob.

2. Using his private key dB Bob decrypts the ciphertext C1 : C||ρ = CdB1 mod
nB , generates a random bit string Q such that |Q| = |C| and computes the value
C ′2 = C ⊕Q =M ⊕K ⊕Q and the ciphertext

C2 = (C ′2||ρ)
eA mod nA = ((M ⊕K ⊕Q)||ρ)eA mod nA.

Then he sends the ciphertext C2 to Alice.

3. Alice computes the values C ′2||ρ = CdA2 mod nA and

C3 = (C ′′||ρ)eB mod nB = ((M ⊕Q)||ρ)eB mod nB

and sends the value C3 to Bob.

Bob decrypts the ciphertext C3 : (M ⊕ Q)||ρ = (C3)
dB mod nB and discloses

the secret message M as follows: M = (M ⊕Q)⊕Q.
Like the initial version, the modi�ed version of the protocol resists the sender-

side coercive attack. Besides, it is also a receiver-deniable protocol. Indeed, if
some coercive adversary intercepts the ciphertexts C1, C2, and C3 and then forces
Bob to open the secret message and his local key, then Bob chooses some fake
message M ′ such that |M ′| = |M |, computes the fake local key Q′ =M ⊕Q⊕M ′,
and opens the values M ′ and Q′ as the real values used during execution of the
protocol. The coercer can compute the value C =M ⊕K =M ′⊕K ′, where K ′ is
fake Alice's local key, from the ciphertext C1 and the value C ′′ =M ′⊕Q′ from the
ciphertext C2. For two di�erent messagesM ′ andM the following inequality holds
M ′⊕K ′⊕Q′ 6=M⊕K⊕Q. However, due to using probabilistic public encryption,
the coercer has no computational possibility to disclose Bob's lie performing many
times the encryption of the left part of the inequality with Aice's public key. The
coercer is also unable to compute the value M ⊕K ⊕Q performing decryption of
the ciphertext C2, since he does not know the Alice's private key.

It should be noted that the last protocol is not fully bi-deniable, since it does not
resist simultaneous coercive attack on both the sender and the receiver. Indeed,
while being simultaneously coerced Alice and Bob should open both their local
keys K and Q and their private keys dA and dB . Using the values dA and dB the
coercer is able to disclose Alice's and/or Bob's lie, if Alice and/or Bob will open
fake keys K ′ 6= K and/or Q′ 6= Q.

The described three-pass protocols are su�ciently practical since only four and
six modulo exponentiation operations are performed during the �rst and second
described protocols, respectively. The both protocols provide security de�ned by
computational di�culty of the factoring n problem (about 2128 modulo multi-
plications in the case of 2464-bit modulus n). The second protocol provides au-
thentication due to using both the Alice's public key and Bob's public key. The
�rst protocol provides authentication of one party of the protocol only, namely,
authentication of the receiver of the message.
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3. Bi-deniable three-pass protocol

For constructing a practical bi-deniable encryption protocol the following design
criteria have been used:

1) the protocol should use a key (128 to 2048 bits) shared by sender and receiver
of secrete message;

2) the base encryption procedure should be implemented as the modulo expo-
nentiation operation in the �nite �eld GF (2s), where s = 128 to 2048;

3) the protocol should provide bi-deniability, i.e., it should resist simultaneous
coercive attacks on the sender and on the receiver;

4) under coercive attack the parties of the protocol disclose a fake shared key
and their local fake keys as secret values; when using the fake keys, decryption
of the ciphertexts (sent during the deniable-encryption protocol) should recover a
fake message;

5) ciphertexts produced at all steps of the protocol should be computationally
indistinguishable from the ciphertexts produced by some probabilistic-encryption
protocol in the case when the last protocol is used for encrypting some fake message
using the disclosed keys.

Construction of the shared-key bi-deniable encryption protocols is connected
with the design of respective probabilistic three-pass protocol, which is associ-
ated with the �rst one. The next subsection introduces appropriate probabilistic-
encryption protocol.

3.1. Associated probabilistic-encryption protocol

Suppose Alice and Bob share a secret key representing an irreducible binary poly-
nomial µ(x) of the degree s = 128 to 1024. To encrypt some secret message
M Alice represents the message as sequence of the s-bit data blocks Mi : M =
(M1,M2, ,Mi, ,Mz). To send securely the message M to Bob she can use the
following probabilistic-encryption protocol.

1. Alice generates her local key as pair of values (eA, dA), where random value
eA is mutually prime with the value 2s − 1 and dA = e−1A mod 2s − 1. Then for
each value i = 1, 2, . . . , z she generates random binary polynomials ρA(x) of the
degree s − 1 and ηA(x) of the degree s such that ηA(x) 6= µ(x) and, considering
each data block as binary polynomial, encrypts the messageM in accordance with
the formula

CAi = {ηA(x)[η−1A (x)MeA
i mod µ(x)] + µ(x)[µ−1(x)ρA(x) mod ηA(x)]}

mod µ(x)ηA(x).
(1)

Then Alice sends the ciphertext

CA = (CA1, CA2, . . . , CAi, . . . , CAz)

to Bob.
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2. Bob generates his local key (eB , dB), where random value eB is mutually
prime with the value 2s − 1 and dB = e−1B mod 2s − 1. Then for each value
i = 1, 2, . . . , z he computes the value C ′Bi = CeBAi mod µ(x) = MeAeB

i mod µ(x),
generates random binary polynomials ρB(x) of the degree s− 1 and ηB(x) of the
degree s such that ηB(x) 6= µ(x) and encrypts each data block CAi mod µ(x) in
accordance with the formula

CBi = {ηB(x)[η−1B (x)C ′Bi mod µ(x)] + µ(x)[µ−1(x)ρB(x) mod ηB(x)]}
mod µ(x)ηB(x),

(2)

where i = 1, 2, . . . , z. Then Bob sends the ciphertext

CB = (CB1, CB2, . . . , CBi, . . . , CBz)

to Alice.
3. For each value i = 1, 2, . . . , z Alice computes the value CBi mod µ(x) =

MeAeB
i mod µ(x), generates random binary polynomials ρ′A(x) of the degree s− 1

and η′A(x) of the degree s such that η′A(x) 6= µ(x) and encrypts each data block
CBi mod µ(x) in accordance with the formula

C ′Ai = {η′A(x)[η′ −1A (x)CdABi mod µ(x)] + µ(x)[µ(x)−1ρ′A(x) mod η′A(x)]}
mod µ(x)η′A(x).

(3)

Then Alice sends the ciphertext

C ′A = (C ′A1, C
′
A2, . . . , C

′
Ai, . . . , C

′
Az)

to Bob. Bob discloses the secret message M = (M1,M2, . . . ,Mi, . . . ,Mz) comput-
ing the values C ′i = C ′Ai mod µ(x) =MeB

i mod µ(x) and Mi = C ′ dBi mod µ(x) for
i = 1, 2, . . . , z.

In the described protocol for probabilistic encryption the ciphertexts CA, CB ,
and C ′A sent via public channel have size that is exactly two times larger than
the size of the input data blocks Mi. Security of the protocol is provided due to
good confusion and di�usion properties of the exponentiation operation and due
to using the modulus µ(x) as secret key. It is worth to mention that in the case
of su�ciently large size of the key µ(x) (|µ(x)| > 1024 bits) the protocol resists
attacks based on the known shared key, i.e., if the adversary gets the key µ(x)
after the protocol have been performed, then he also will not be able to compute
the secret message M . However after the key µ(x) becomes known for potential
adversary the protocol will provide secrecy (in possible further use of the protocol)
but not authentication.

3.2. Bi-deniable encryption scheme

Suppose Alice and Bob share a secret key representing the pair of mutually ir-
reducible binary polynomials µ(x) and η(x) of the degree s = 128 to 1024. To
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encrypt some secret message T Alice represents the message as sequence of the
s-bit data blocks Ti : T = (T1, T2, . . . , Ti, . . . , Tz). To provide bi-deniability of
encrypting the secret message T they can use the following three-pass protocol.

1. Alice generates some fake message M = (M1,M2, . . . ,Mi, . . . ,Mz) repre-
sented as sequence of s-bit data blocks and two local keys (eA, dA) and (εA, δA)
such that dA = e−1A mod 2s − 1 and δA = ε−1A mod 2s − 1.

Then for each value i = 1, 2, . . . , z she computes the ciphertext block CAi as
follows:

1.1. Compute the intermediate ciphertext blocks C
(M)
Ai and C

(T )
Ai :

C
(M)
Ai =MeA

i mod µ(x) and C
(T )
Ai = T εAi mod η(x).

1.2. Compute the (2s)-bit ciphertext block CAi as solution of the system of
congruences {

CAi ≡ C(M)
Ai mod µ(x)

CAi ≡ C(T )
Ai mod η(x)

(4)

Then Alice sends the ciphertext CA = (CA1, CA2, . . . , CAi, . . . , CAz) to Bob.
2. Bob generates two local keys (eB , dB) and (εB , δB) such that dB = e−1B mod

2s − 1 and δB = ε−1B mod 2s − 1. Then for each value i = 1, 2, . . . , z he computes
the ciphertext block CBi as follows:

2.1. Compute the intermediate ciphertext blocks C
(M)
Ai and C

(T )
Ai :

C
(M)
Ai = CAi mod µ(x) and C

(T )
Ai = CAi mod η(x).

2.2. Compute the intermediate ciphertext blocks C
(M)
Bi and C

(T )
Bi :

C
(M)
Bi =

(
C

(M)
Ai

)eB
mod µ(x) =MeAeB

i mod µ(x) and

C
(T )
Bi =

(
C

(T )
Ai

)εB
mod η(x) = T εAεBi mod η(x).

2.3. Compute the (2s)-bit ciphertext block CBi as solution of the system of
congruences {

CBi ≡ C(M)
Bi mod µ(x)

CBi ≡ C(T )
Bi mod η(x).

(5)

Then Bob sends the ciphertext CB = (CB1, CB2, . . . , CBi, . . . , CBz) to Alice.
3. Then for each value i = 1, 2, . . . , z Alice computes the ciphertext block C ′Ai

as follows:
3.1. Compute the intermediate ciphertext blocks C

(M)
Bi and C

(T )
Bi : C

(M)
Bi =

CBi mod µ(x) and C
(T )
Bi = CBi mod η(x).

3.2. Compute the intermediate ciphertext blocksC
′ (M)
Ai and C

′ (T )
Ai : C

′ (M)
Ai =(

C
(M)
Bi

)dA
mod µ(x) =MeB

i mod µ(x) and C
′ (T )
Ai =

(
C

(T )
Bi

)δA
mod η(x) = T εBi mod

η(x).
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3.3. Compute the (2s)-bit ciphertext block C ′Ai as solution of the system of
congruences {

C ′Ai ≡ C
′ (M)
Ai mod µ(x)

C ′Ai ≡ C
′ (T )
Ai mod η(x).

(6)

Then Alice sends the ciphertext C ′A = (C ′A1, C
′
A2, . . . , C

′
Ai, . . . , C

′
Az) to Bob.

Bob discloses the secret message T = (T1, T2, . . . , Ti, . . . , Tz) computing the

values C
′ (T )
Ai = C ′Ai mod η(x) = T εBi mod η(x) and Ti =

(
C
′ (T )
Ai

)δB
mod η(x) for

i = 1, 2, . . . , z.

Respectively, Bob discloses the fake messageM computing the values C
′ (M)
Ai =

C ′Ai mod µ(x) =MeB
i mod µ(x) and Mi =

(
C
′ (M)
Ai

)dB
mod µ(x).

When being coerced simultaneously, Alice and Bob open the fake message
M = (M1,M2, . . . ,Mi, . . . ,Mz), the shared key µ(x), and their local keys (eA, dA)
and (eB , dB).

They also declare about using the three-pass probabilistic-encryption protocol
described in Subsection 3.1. Distinguishing the bi-deniable encryption protocol
from the probabilistic encryption protocol is a computationally di�cult problem,
therefore the protocol described in Subsection 3.2 provides bi-deniability.

4. Disscusion

Di�erent variants of the protocols described in Section 2 can be constructed using
di�erent variants of the commutative cipherEK with the single-use key K, and/or
di�erent public encryption algorithms.

For example, the encryption procedure EK can be de�ned with formula

C =M ∗K,

where ∗ is one of the following operations: modulo 2|M | addition (subtraction),
modulo n addition (subtraction), modulo n multiplication. Instead of the RSA
public encryption algorithm one can use the ElGamal algorithm [5]. The last
modi�cation is interesting from practical point of view since it gives possibility to
provide more secure encryption in the case of implementing the ElGamal public-
encryption algorithm with using elliptic curves [10]. Indeed, in the last case one can
provide exponential security of the deniable encryption and higher performance.
Besides the ElGamal algorithm is probabilistic in its nature. Using the Rabin
public-encryption algorithm [14] is also possible, but not so attractive.

One can note that the second �exible public key DE protocol from Section 2
resists the coercive attack on the sender or on the receiver, but it does not resist
coercive attack performed simultaneously on the both parties. Indeed, resistance
to last attack means that the sender and the receiver select the same fake mes-
sage, however to have such possibility they need some pre-agreed information that
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indicates what fake message should be selected. Appropriate modi�cation of the
source protocol is possible, however it becomes a plan-ahead DE protocol that
has no evident advantages as compared with protocols of such type introduced
in [16, 17].

As compared with the �exible sender-side DE protocols [1, 8] in which the
message is encrypted consecutively bit by bit (each bit is sent in form of the |n|-
bit pseudorandom number, |n| > 1024) in the proposed protocols the message is
transformed as a single data block that provides signi�cantly higher performance.
Besides, the proposed protocols provide simple and very fast procedure (perform-
ing one XOR operation) for computing the fake random input (sender's local key)
connected with the fake message.

The bi-deniable encryption scheme presented in Section 3 uses the Pohlig-
Hellman modulo-exponentiation cipher represented in a speci�c form in which the
modulus that is the binary polynomial µ(x) serves as shared key. Therefore such
implementation provides su�ciently high security even in the case when binary
polynomial µ(x) has su�ciently small degree (128 6 s 6 768). If the modulus
µ(x) has high degree (s > 1024), the protocol becomes resistant to the known-
key attacks. However, if the shared key is compromised the protocol will not
provide authentication, like in the case of the probabilistic-encryption algorithm
from Subsection 3.1.

Resistance to the simultaneous coercive attacks on Alice and Bob is provided
due to fact that Bob using the fake key is able to disclose correctly the fake
message M generated by Alice at the �rst step of the protocol. Besides, the
ciphertexts CA, CB , and C ′A computed at steps 1, 2, and 3, correspondingly,
look like the ciphertexts produced during performing the probabilistic-encryption
protocol from subsection 3.1, when M serves as input message. In other words
the proposed bi-deniable encryption protocol is computationally indistinguishable
from the proposed probabilistic encryption protocol for the coercer intercepting the
ciphertexts CA, CB , and C

′
A sent via communication channel. Indeed, computation

of each block CAi of the ciphertex CA in accordance with formula (1) gives solution
of the following system relatively unknown CAi{

CAi ≡MeA
i mod µ(x)

CAi ≡ ρA(x) mod ηA(x).

The �rst congruence coincide with the �rst congruence in system (4) and for given
value CAi and arbitrary ηA(x) of the degree s such that ηA(x) 6= µ(x) we have
one value ρA(x) that satis�es the second congruence of the last system (namely,
ρA(x) = CAi mod ηA(x)).

Computation of each block CBi of the ciphertex CB in accordance with formula
(2) gives solution of the following system relatively unknown CBi{

CBi ≡MeAeB
i mod µ(x)

CBi ≡ ρB(x) mod ηB(x).
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The �rst congruence coincide with the �rst congruence in system (5) and for given
value CBi and arbitrary ηB(x) of the degree s such that ηB(x) 6= µ(x) we have
one value ρB(x) that satis�es the second congruence of the last system (namely,
ρB(x) = CBi mod ηB(x)).

Computation of each block C ′Ai of the ciphertex CA in accordance with formula
(3) gives solution of the following system relatively unknown C ′Ai{

C ′Ai ≡ (Mi)
eB mod µ(x)

C ′Ai ≡ ρ′A(x) mod η′A(x).

The �rst congruence coincide with the �rst congruence in system (6) and for
given value C ′Ai and arbitrary η

′
A(x) of the degree s such that η

′
A(x) 6= µ(x) we have

one value ρ′A(x) that satis�es the second congruence of the last system (namely,
ρ′A(x) = C ′Ai mod η′A(x)).

Thus, the ciphertexts CA, CB , and C ′A produced during performing the bi-
deniable encryption protocol could be produced while performing the probabilistic-
encryption protocol. To prove the ciphertexts were produced with the three-pass
protocol for simultaneous encryption of two messages M and T , the coercer has
to disclose the secret message from the ciphertexts, however this seems to be a
computationally infeasible problem.

A possible modi�cation of the protocols from Section 3 can be get with using
the binary polynomials ηA(x), ηB(x), η

′
A(x), and η(x) having degree s′ < s (the

message T is to be divided into s′-bit data blocks Ti). In the modi�ed protocols
the ciphertext blocks have size s + s′ < 2s and for smaller values s′ applying the
bi-deniable encryption protocol looks more believably as applying the probabilistic-
encryption protocol. In the case of probabilistic-encryption protocol one can use
su�ciently small values s′ = 4 to 64. In the case of the bi-deniable encryption
protocol one has some restriction: 64 < s′ < s, where s = 128 to 1024. This
restriction is connected with using the value η(x) as shared secret key.

Indeed, to provide deniability the value η(x) and the local key εA (εA < 2s
′
)

should be su�ciently large, for example, |η(x)|+ |εA| > 128 bits. For small values
s′ (for example, for s′ = 4 to 16) the coercer using the values µ(x) and eA (that
are to be opened in the case of coercive attack) can �nd easily the secret values
η(x) and εA with help of the exhaustive-search method.

5. Conclusion

There have been proposed sender-deniable, sender&receiver-deniable, probabilis-
tic, and bi-deniable encryption schemes representing three-pass protocols based
on using commutative ciphers. The probabilistic-encryption protocol has been de-
signed as protocol associated with the bi-deniable encryption protocol, however it
has independent practical interest. To get higher performance of the bi-deniable
encryption protocol one can design its modi�cation on the base of commutative



Deniable-encryption protocols 107

encryption operation implemented as multiplying points of elliptic curves de�ned
over �nite �elds GF (p) and GF (2s) [15].

The last remark can be attributed also to the design of two �exible public key
DE protocols from section 2 in the case of using the ElGamal public encryption
algorithm (that is a probabilistic one) in frame of the protocols. For such pro-
tocols, besides higher performance, such variants of the �exible sender-deniable
and sender&receiver-deniable public encryption DE protocols will provide expo-
nential resistance to coercive attacks in the case of implementing the ElGamal-like
algorithm on the base of elliptic curves.

Another interesting research problem is connected with using the commutative
encryption functions to design no-key DE protocols.
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Characterizations of ordered k-regular semirings

by ordered quasi k-ideals

Pakorn Palakawong na Ayutthaya and Bundit Pibaljommee

Abstract. We introduce the notion of ordered quasi k-ideals of ordered semirings and use them

to characterize ordered k-regular semirings.

1. Introduction

In 1936, von Neumann [7] de�ned a ring S to be regular if for any a ∈ S there
exists x ∈ S such that a = axa. Later, Bourne [3] de�ned a semiring S to be
regular if for any a ∈ S there exist x, y ∈ S such that a + axa = aya. In 1996,
Adhikari, Sen and Weinert [1] renamed the Bourne regularity to be k-regular and
investigated some of its properties. The notion of a quasi-ideal was de�ned by
Steinfeld [11] for semigroups in 1956. Then, in 2004, Shabir, Ali and Batool [10]
investigated some properties of quasi-ideals and used quasi-ideals to characterize
regular semirings. In 2011, Bhuniya and Jana [2] de�ned k-bi-ideals on semirings
and used them to characterize k-regular and intra-k-regular semirings. Later, Jana
[5] introduced the notion of quasi k-ideals on semirings and characterized k-regular
and intra-k-regular semirings by their quasi k-ideals which were a continuation of
[2]. In 2011, Gan and Jiang [4] introduced the notion of ordered semirings, de�ned
their ordered ideals and studied some of their properties. In 2014, Mandal [6]
called an ordered semiring S to be regular if for any a ∈ S there exists x ∈ S such
that a 6 axa and to be k-regular if for any a ∈ S there exist x, y ∈ S such that
a + axa 6 aya. Later, Patchakhieo and Pibaljommee [9] introduced the notion
of ordered k-regular semirings as a generalization of k-regular ordered semirings,
de�ned ordered k-ideals on ordered semirings and characterized ordered k-regular
semirings using their ordered k-ideals.

In this paper, we introduce the notion of ordered quasi k-ideals of ordered
semirings, investigate some of their properties, study connections between them
and other ordered k-ideals and use them to characterize ordered k-regular semir-
ings.
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2. Preliminaries

A semiring is an algebraic structure (S,+, ·) such that (S,+) and (S, ·) are semi-
groups which are connected by the distributive law. An ordered semiring is a
system (S,+, ·,6) such that (S,+, ·) is a semiring, (S,6) is a partially ordered set
and the relation 6 is compatible with the operations + and · on S. An ordered
semiring S is called additively commutative if a + b = b + a for all a, b ∈ S.

In this paper, we assume that S is an additively commutative ordered semiring.
For any nonempty subsets A,B of S, we denote AB = {ab ∈ S | a ∈ A, b ∈ B},

A + B = {a + b ∈ S | a ∈ A, b ∈ B} and (A] = {x ∈ S | x 6 a for some a ∈ A}.
A nonempty subset A of S such that A + A ⊆ A and A = (A] is called a left

ordered ideal (right ordered ideal) of S if SA ⊆ A ( AS ⊆ A). We call A an ordered

ideal [4] if A is both a left ordered ideal and a right ordered ideal.
Let A,B be nonempty subsets of S. We denote some notations as follows.

ΣA =

{
n∑

i=1

ai ∈ S | ai ∈ A,n ∈ N

}
,

ΣAB =

{
n∑

i=1

aibi ∈ S | ai ∈ A, bi ∈ B,n ∈ N

}
.

In case of A = {a} for some a ∈ S, we write Σa instead of Σ{a}.
Let ∅ 6= A ⊆ S. Then A is called an ordered quasi-ideal [8] of S if A + A ⊆ A,

A = (A] and (ΣSA] ∩ (ΣAS] ⊆ A. Obviously, every ordered quasi-ideal is a
subsemiring. We call A an ordered bi-ideal (ordered interior ideal) of S if A2 ⊆ A,
A = (A] and ASA ⊆ A (SAS ⊆ A).

The k-closure [9] of a nonempty subset A of S is de�ned by

A = {x ∈ S | x + a 6 b for some a, b ∈ A}.

Now, we give some properties on an ordered semiring which will be used later
as the following two lemmas such that their proofs are not di�cult.

Lemma 2.1. Let A,B,C be nonempty subsets of S. Then

(i) A ⊆ ΣA and Σ(ΣA) = ΣA;

(ii) if A ⊆ B then ΣA ⊆ ΣB;

(iii) A(ΣB) ⊆ (ΣA)(ΣB) ⊆ ΣAB,

(ΣA)B ⊆ (ΣA)(ΣB) ⊆ ΣAB;

(iv) Σ(A + B) ⊆ ΣA + ΣB;

(v) Σ(A ∪B) = ΣA ∪ ΣB;

(vi) Σ(A ∩B) ⊆ ΣA ∩ ΣB;

(vii) Σ(A] ⊆ (ΣA];

(viii) A ⊆ (A] and ((A]] = (A];

(ix) if A ⊆ B then (A] ⊆ (B];

(x) A(B] ⊆ (A](B] ⊆ (AB],
(A]B ⊆ (A](B] ⊆ (AB];

(xi) A + (B] ⊆ (A] + (B] ⊆ (A + B];

(xii) (A ∪B] = (A] ∪ (B];

(xiii) (A ∩B] ⊆ (A] ∩ (B].
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Lemma 2.2. Let A,B be nonempty subsets of S. Then

(i) ΣA ⊆ ΣA;

(ii) if A + A ⊆ A, then A ⊆ A and A = (A] = (A];

(iii) if A ⊆ B, then A ⊆ B;

(iv) AB ⊆ AB and AB ⊆ AB;

(v) if A and B are closed under addition, then A + B ⊆ A + B;

(vi) A ∪B ⊇ A ∪B;

(vii) A ∩B ⊆ A ∩B (the equality holds if A,B are closed under addition, A = A
and B = B and also holds for arbitrary intersection);

(viii) if A + A ⊆ A, then A ⊆ (A] ⊆
(
A
]

= A ⊆ (A].

As a consequence of Lemma 2.1 and 2.2, we obtain the following lemma.

Lemma 2.3. Let A,B be nonempty subsets of S such that A and B are closed

under addition. Then:

(i) A(B] ⊆ (AB] and (A]B ⊆ (AB];
(ii) (A] (B] ⊆ (ΣAB];

(iii) ΣA(B] ⊆ (ΣA(B]] ⊆ (Σ(A] (B]] ⊆ (ΣAB],

Σ(A]B ⊆ (Σ(A]B] ⊆ (Σ(A] (B]] ⊆ (ΣAB];

(iv) ((A] + (B]] ⊆ (A + B].

It is not di�cult to prove that if a nonempty subset A of S is closed under
addition then (A], A and (A] are also closed.

Now, we recall the notions of some types of ordered k-ideals which occur in
[9] as follows. A left ordered k-ideal (resp. right ordered k-ideal, ordered k-ideal,
ordered k-bi-ideal, ordered k-interior ideal) A of S is a left ordered ideal (resp.
right ordered ideal, ordered ideal, ordered bi-ideal, ordered interior ideal) of S
satisfying the condition if x ∈ S such that x + a ∈ A for some a ∈ A then x ∈ A.

It is easy to prove that the following lemma is true on ordered semirings.

Lemma 2.4. Let ∅ 6= A ⊆ S. Then the following statements hold:

(i) (ΣSA] is a left ordered k-ideal of S;

(ii) (ΣAS] is a right ordered k-ideal of S;

(iii) (ΣSAS] is an ordered k-ideal of S.

As a spacial case of Lemma 2.4, if A = {a} then we obtain that (Sa], (aS] and
(ΣSaS] is a left ordered k-ideal, right ordered k-ideal and ordered k-ideal of S,
respectively.

By Lk(A), Rk(A), Jk(A) and Bk(A) we denote the smallest left ordered k-
ideal, right ordered k-ideal, ordered k-ideal and ordered k-bi-ideal of S containing
A, respectively.
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Theorem 2.5. (cf. [9]) For any ∅ 6= A ⊆ S we have:

(i) Lk(A) = (ΣA + ΣSA];

(ii) Rk(A) = (ΣA + ΣAS];

(iii) Jk(A) = (ΣA + ΣSA + ΣAS + ΣSAS].

It is not di�cult to prove that a subsemiring B of S is an ordered k-bi-ideal of
S if and only if BSB ⊆ B and B = B.

Theorem 2.6. Bk(A) = (ΣA + ΣA2 + ΣASA] for any ∅ 6= A ⊆ S.

Proof. Let ∅ 6= A ⊆ S and B = (ΣA + ΣA2 + ΣASA]. Firstly, we show that B is
an ordered k-bi-ideal of S. Since ΣA + ΣA2 + ΣASA is closed under addition, B
is also closed. By Lemma 2.3(ii) and Lemma 2.1(i), we obtain

B2 = (ΣA + ΣA2 + ΣASA] (ΣA + ΣA2 + ΣASA]

⊆ (Σ(ΣA + ΣA2 + ΣAS)(ΣA + ΣA2 + ΣSA)]

⊆ (Σ(ΣA2 + ΣA3 + ΣASA + ΣA4 + ΣA2SA + ΣASA + ΣASA2 + ΣASSA)]

⊆ (ΣA2 + ΣASA] ⊆ B.

Using Lemma 2.3(i, ii), we have

BSB = (ΣA + ΣA2 + ΣASA]S(ΣA + ΣA2 + ΣASA]

⊆ (ΣA + ΣAS + ΣASA] (ΣSA + ΣSA2 + ΣSASA]

⊆ (ΣA + ΣAS] (ΣSA] ⊆ (Σ(ΣA + ΣAS)(ΣSA)] ⊆ (ΣASA].

Let x ∈ (ΣASA]. Then x + (z + x) 6 z + x + x for every z ∈ ΣA + ΣA2 and so

x ∈ ΣA + ΣA2 + (ΣASA], since z + x, z + x + x ∈ ΣA + ΣA2 + (ΣASA]. Thus

(ΣASA] ⊆ ΣA + ΣA2 + (ΣASA]. Using Lemma 2.2(viii) and Lemma 2.3(iv), we

have BSB ⊆ (ΣASA] ⊆ ΣA + ΣA2 + (ΣASA] ⊆ (ΣA + ΣA2 + ΣASA] = B. By
Lemma 2.2(ii), we get B = B. This means that B is an ordered k-bi-ideal of S.

Secondly, we show that A ⊆ B. Let x ∈ ΣA. Then x + (x + w) 6 x + x + w
for every w ∈ ΣA2 + ΣASA and so x ∈ ΣA + ΣA2 + ΣASA, since x + w, x +
x + w ∈ ΣA + ΣA2 + ΣASA. It follows that A ⊆ ΣA ⊆ ΣA + ΣA2 + ΣASA ⊆
(ΣA + ΣA2 + ΣASA] = B.

Finally, let C be an ordered k-bi-ideal of S containing A. Then

B = (ΣA + ΣA2 + ΣASA] ⊆ (ΣC + ΣC2 + ΣCSC] ⊆ (ΣC] = C.

Therefore, B is the smallest ordered k-bi-ideal of S containing A.
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3. Ordered quasi k-ideals

Here, we give the notion of ordered quasi k-ideals of ordered semirings, study their
properties and investigate connections between them and other ordered k-ideals.

De�nition 3.1. Let ∅ 6= Q ⊆ S such that Q+Q ⊆ Q. Then Q is called an ordered

quasi k-ideal of S if

(i) (ΣSQ] ∩ (ΣQS] ⊆ Q;

(ii) if x 6 y for some y ∈ Q then x ∈ Q (i.e., Q = (Q]);

(iii) if x + a ∈ Q for some a ∈ Q then x ∈ Q.

It is easy to see that every ordered quasi k-ideal Q of S is a subsemiring because
Q2 ⊆ SQ ∩QS ⊆ Q.

Theorem 3.2. Let ∅ 6= Q ⊆ S and Q + Q ⊆ Q. Then Q is an ordered quasi

k-ideal of S if and only if (ΣSQ] ∩ (ΣQS] ⊆ Q and Q = Q.

Proof. Let Q be an ordered quasi k-ideal of S. Clearly, Q ⊆ Q. Let x ∈ Q. Then
x+ y 6 z for some y, z ∈ Q and so x+ y ∈ (Q] = Q. Thus, x ∈ Q. Hence, Q = Q.

Conversely, we consider Q ⊆ (Q] ⊆ Q = Q. Thus, Q = (Q]. Let x ∈ S such
that x + y ∈ Q = (Q] for some y ∈ Q. So, x + y 6 q for some q ∈ Q. Hence,
x ∈ Q = Q.

Note that every left ordered k-ideal (right ordered k-ideal, ordered k-ideal) of
S is an ordered quasi k-ideal. The converse is not true as the following example
shows.

Example 3.3. Let S = {a, b, c}. De�ne a binary operation + on S by b + b = b
and a + x = x + a = x, c + x = x + c = c for all x ∈ S. De�ne a binary operation
· on S by for any y ∈ S, xy = a if x = a and xy = b, otherwise. De�ne a
binary relation ≤ on S by 6:= {(a, a), (b, b), (c, c), (a, b)}. Now, (S,+, ·,6) is an
additively commutative ordered semiring. Let Q = {a}. Clearly, Q + Q ⊆ Q and
Q = (Q]. We have (ΣSQ] ∩ (ΣQS] = (Σ{a, b}] ∩ (Σ{a}] = {a, b} ∩ {a} = {a} = Q
and Q = Q. This shows that Q is an ordered quasi k-ideal. Since SQ = {a, b} * Q,
this follows that Q is not a left ordered k-ideal of S.

Also every ordered quasi k-ideal of S is an ordered k-bi-ideal, but not con-
versely.

Example 3.4. Let S = {a, b, c, d, e}. De�ne a binary operation + on S by a+x =
x + a = x for all x ∈ S, b + b = b, e + e = e and x + y = d otherwise. De�ne a
binary operation · on S by for any y ∈ S, xy = yx = a if x ∈ {a, b} and xy = b
otherwise. De�ne a binary relation 6 on S by

6 := {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, e), (a, d), (b, d), (c, d), (e, d)}.
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Now, (S,+, ·,6) is an additively commutative ordered semiring. Let B = {a, e}.
It is easy to show that B is an ordered k-bi-ideal of S, but not an ordered quasi
k-ideal, since (ΣSB] ∩ (ΣBS] = {a, b} * B.

Theorem 3.5. The intersection of a right ordered k-ideal and a left ordered k-ideal
of S is an ordered quasi k-ideal.

Proof. Let R and L be a right and a left ordered k-ideal of S, respectively. Then

(Σ(R ∩ L)S] ∩ (ΣS(R ∩ L)] ⊆ (ΣRS] ∩ (ΣSL] ⊆ (ΣR] ∩ (ΣL] = R ∩ L.

We consider R ∩ L = R ∩ L = R ∩ L. By Theorem 3.2, we obtain R ∩ L is an
ordered quasi k-ideal of S.

The converse of Theorem 3.5 is not true as the following example shows.

Example 3.6. Let S = {a, b, c, d, e, f, g, h}. De�ne binary operations + and · by
the following tables:

+ a b c d e f g h
a a b c d e f g h
b b a e f c d h g
c c e a g b h d f
d d f g a h b c e
e e c b h a g f d
f f d h b g a e c
g g h d c f e a b
h h g f e d c b a

· a b c d e f g h
a a a a a a a a a
b a b g a h b g h
c a d a a d d a d
d a d a a d d a d
e a f g a e f g e
f a f g a e f g e
g a a a a a a a a
h a b g a h b g h

De�ne a binary relation 6 on S by 6:= {(x, x) | x ∈ S}.
Then (S,+, ·,6) is an additively commutative ordered semiring. Let Q =

{a, c}. Clearly, Q + Q ⊆ Q and Q = (Q]. We consider

(ΣSQ] ∩ (ΣQS] = {a, g} ∩ {a, d} = {a, g} ∩ {a, d} = {a} ⊆ Q.

It is easy to see that Q = Q. By Theorem 3.2, Q is an ordered quasi k-ideal of S.
If Q = R ∩L for some a right ordered k-ideal R and a left ordered k-ideal L of S,
then c ∈ R ∩ L. We have g = c + cb ∈ R and g = bc ∈ L. Then g ∈ R ∩ L = Q,
but g /∈ Q. This give a contradiction.

As a consequence of Lemma 2.4 and Theorem 3.5, we have that (ΣSA]∩(ΣAS]
is an ordered quasi k-ideals of S for any ∅ 6= A ⊆ S.

For ∅ 6= A ⊆ S, we denote Qk(A) as the smallest ordered quasi k-ideal of S
containing A. Now, we give the construction of Qk(A) as follows.

Theorem 3.7. Let ∅ 6= A ⊆ S. Then Qk(A) = (ΣA + (ΣSA] ∩ (ΣAS]].
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Proof. Let ∅ 6= A ⊆ S and Q = (ΣA + (ΣSA] ∩ (ΣAS]]. Firstly, we show that Q
is an ordered quasi k-ideal. It is easy to show that Q is closed under addition.
Using Lemma 2.3(i) and (iv), we obtain

(ΣSQ] ∩ (ΣQS] ⊆ (ΣSQ] = (ΣS(ΣA + (ΣSA] ∩ (ΣAS]]] ⊆ (ΣS(ΣA + (ΣSA]]]

⊆ (ΣS(ΣA + ΣSA] ⊆ (Σ(ΣSA + ΣSSA]] ⊆ ((Σ(ΣSA)]] ⊆ (ΣSA].

Similarly, we have (ΣSQ]∩(ΣQS] ⊆ (ΣAS]. So, (ΣSQ]∩(ΣQS] ⊆ (ΣSA]∩(ΣAS].
If q ∈ (ΣSA]∩ (ΣAS] then q+a′ + q 6 a′ + q+ q ∈ ΣA+ (ΣSA]∩ (ΣAS] for every

a′ ∈ ΣA. So, (ΣSA] ∩ (ΣAS] ⊆ ΣA + (ΣSA] ∩ (ΣAS]. By Lemma 2.2(ii), we get

(ΣSQ] ∩ (ΣQS] ⊆ (ΣSA] ∩ (ΣAS] ⊆ ΣA + (ΣSA] ∩ (ΣAS] ⊆ Q.

Using Lemma 2.2(viii), Q = Q. By Theorem 3.2, Q is an ordered quasi k-ideal.
Secondly, we show that A ⊆ Q. If a ∈ ΣA then a + a + w 6 a + a + w and

a + a + w ∈ ΣA + (ΣSA] ∩ (ΣAS], for every w ∈ (ΣSA] ∩ (ΣAS]. This implies

A ⊆ ΣA ⊆ ΣA + (ΣSA] ∩ (ΣAS] ⊆ (ΣA + (ΣSA] ∩ (ΣAS]] = Q.

Finally, let K be an ordered quasi k-ideal of S such that A ⊆ K. Then

Q = (ΣA + (ΣSA] ∩ (ΣAS]] ⊆ (ΣK + (ΣSK] ∩ (ΣKS]] ⊆ (K + K] ⊆ (K] = K.

Therefore, Q is the smallest ordered quasi k-ideal of S containing A.

As a spacial case of Theorem 3.7, if A = {a} for some a ∈ S then we obtain

Qk(a) = (Σa + (Sa] ∩ (aS]].
Note that a nonempty intersection of a family of ordered quasi k-ideals of S is

an ordered quasi k-ideal of S.
An element e of S is called an identity of S if ea = a = ae for all a ∈ S.

Corollary 3.8. Let ∅ 6= A ⊆ S. If S has an identity then

(i) Lk(A) = (ΣSA];

(ii) Rk(A) = (ΣAS];

(iii) Jk(A) = (ΣSAS];

(iv) Bk(A) = (ΣASA];

(v) Qk(A) = (ΣSA] ∩ (ΣAS].

As a spacial case of Corollary 3.8, if A = {a} then we have Lk(a) = (Sa],
Rk(a) = (aS], Jk(a) = (ΣSaS], Qk(a) = (Sa] ∩ (aS] and Bk(a) = (aSa].

If S has an identity element, then the converse of Theorem 3.5 is true.
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Theorem 3.9. If S has an identity, then ordered quasi k-ideals and ordered k-bi-
ideals coincide.

Proof. Assume that S has an identity. Let B be an ordered k-bi-ideal of S and let
x ∈ (ΣSB] ∩ (ΣBS]. Using Lemma 2.3(i), (iii), we obtain

x ∈ Bk(x) = (xSx] ⊆ ((ΣBS]S(ΣSB]] ⊆ (ΣBSSSB] ⊆ (ΣBSB] ⊆ (ΣB] = B.

This shows that B is an ordered quasi k-ideal of S.

Theorem 3.10. If S has an identity, then every ordered quasi k-ideal of S can

be written in the form Q = R ∩ L for some a right ordered k-ideal R and a left

ordered k-ideal L of S.

Proof. Let Q be an ordered quasi k-ideal of S. Clearly, Q ⊆ Rk(Q) ∩ Lk(Q). By
Corollary 3.8, we have Rk(Q) = (ΣQS] and Lk(Q) = (ΣQS]. Hence, Rk(Q) ∩
Lk(Q) = (ΣQS] ∩ (ΣQS] ⊆ Q. Therefore, Q = Rk(Q) ∩ Lk(Q).

4. Ordered k-regular semirings

First, we review the notion of a k-regular ordered semiring given by Mandal [6] and
the notion of an ordered k-regular semiring de�ned by Patchakhieo and Pibaljom-
mee [9] which is a generalization of Mandal k-regularity as follows.

De�nition 4.1. An element a of S is called regular (resp. k-regular, ordered k-
regular) if a 6 axa (resp. a + axa 6 aya, a ∈ (aSa]) for some x, y ∈ S. We call S
regular (resp. k-regular, ordered k-regular) if every element of S is regular (resp.
k-regular, ordered k-regular).

Obviously, S is ordered k-regular if and only if A ⊆ (ΣASA] for each A ⊆ S.

Theorem 4.2. (cf. [9]) An ordered semiring S is ordered k-regular if and only if

R ∩ L = (RL] for every right ordered k-ideal R and left ordered k-ideal L of S.

Corollary 4.3. An ordered semiring S is ordered k-regular if and only if A ⊆
(Rk(A)Lk(A)] for each A ⊆ S.

Remark 4.4. If S is ordered k-regular then ordered k-ideals and ordered k-interior
ideals coincide.

Proof. Let J be an ordered k-ideal of S. Then SJS ⊆ SJ ⊆ JS ⊆ J and so J is
an ordered k-interior ideal. Conversely, let I be an ordered k-interior ideal of S.
If x ∈ IS, then x ∈ (xSx] ⊆ (ISSIS] ⊆ (ISIS] ⊆ (II] ⊆ (I] = I. So, IS ⊆ I
Similarly, we obtain SI ⊆ I. Therefore, I is an ordered k-ideal of S.

Now, we show that if S is ordered k-regular, then the converse of Theorem 3.5
is true.
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Theorem 4.5. If S is ordered k-regular, then their ordered quasi k-ideals coincide
with their ordered k-bi-ideals.

Proof. Assume that S is ordered k-regular. Let B be an ordered k-bi-ideal of S
and let x ∈ (ΣSB]∩ (ΣBS]. Using Lemma 2.3(i), (iii) and by assumption, we get

x ∈ (xSx] ⊆ ((ΣBS]S(ΣSB]] ⊆ (ΣBSSSB] ⊆ (ΣBSB] ⊆ (ΣB] = B.

This shows that B is an ordered quasi k-ideal of S.

Theorem 4.6. If S is ordered k-regular, then every ordered quasi k-ideal of S can

be written in the form Q = R ∩ L for some a right ordered k-ideal R and a left

ordered k-ideal L of S.

Proof. Let Q be an ordered quasi k-ideal. Clearly, Q ⊆ Rk(Q)∩Lk(Q). If x ∈ ΣQ
then x ∈ (xSx] ⊆ (xS] ⊆ ((ΣQ)S] ⊆ (ΣQS]. Thus ΣQ ⊆ (ΣQS]. We consider

(ΣQS] ⊆ (ΣQ + ΣQS] ⊆ ((ΣQS] + ΣQS] ⊆ (ΣQS]. This means that Rk(Q) =
(ΣQ + ΣQS] = (ΣQS]. Similarly, we can show that Lk(Q) = (ΣSQ]. It follows
that Rk(Q) ∩ Lk(Q) = (ΣQS] ∩ (ΣSQ] ⊆ Q. Therefore, Q = Rk(Q) ∩ Lk(Q).

Here, we use ordered quasi k-ideals to characterize ordered k-regular semirings.

Theorem 4.7. The following statements are equivalent:

(i) S is ordered k-regular;

(ii) B = (BSB] for every ordered k-bi-ideal of S;

(iii) Q = (QSQ] for every ordered quasi k-ideal of S.

Proof. (i)⇒ (ii): Let S be ordered k-regular and B be an ordered k-bi-ideal of S.
Clearly, (BSB] ⊆ (B] = B. If x ∈ B then x ∈ (xSx] ⊆ (BSB]. So, B = (BSB].

(ii) ⇒ (iii): It is clear, since every ordered quasi k-ideal is an ordered k-bi-
ideal.

(iii)⇒ (i): Assume that (iii) holds. Let A ⊆ S. Then

A ⊆ Qk(A) = (Qk(A)SQk(A)] ⊆ (Rk(A)SLk(A)] ⊆ (Rk(A)Lk(A)].

By Corollary 4.3, we obtain that S is ordered k-regular.

Theorem 4.8. An ordered semiring S is ordered k-regular if and only if for every

ordered k-bi-ideal B, ordered k-ideal J and left ordered k-ideal L of S we have

B ∩ J ∩ L ⊆ (BJL].

Proof. Assume that S is ordered k-regular. Let B, J and L be an ordered k-
bi-ideal, an ordered k-ideal and a left ordered k-ideal of S, respectively. Let

x ∈ B ∩ J ∩ L. By assumption, we get x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆
(BSJSL] ⊆ (BSL]. Hence, B ∩ J ∩ L ⊆ (BJL].
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Conversely, let R and L be a right ordered k-ideal and a left ordered k-ideal
of S, respectively. We obtain R ∩ L = R ∩ S ∩ L = (RSL] ⊆ (RL]. On the other
hand, we know that (RL] ⊆ R ∩ L. So, (RL] = R ∩ L. By Theorem 4.2, S is
ordered k-regular.

Theorem 4.9. The following statements are equivalent:

(i) S is ordered k-regular;

(ii) Q∩ I = (QIQ] for every ordered quasi k-ideal Q and ordered k-interior ideal

I of S;

(iii) Q ∩ J = (QJQ] for every ordered quasi k-ideal Q and ordered k-ideal J of

S;

(iv) Q∩L ⊆ (QL] for every ordered quasi k-ideal Q and left ordered k-ideal L of

S;

(v) R ∩Q ⊆ (RQ] for every right ordered k-ideal R and ordered quasi k-ideal Q
of S;

(vi) R ∩Q ∩ L ⊆ (RQL] for every right ordered k-ideal R, ordered quasi k-ideal
Q and left ordered k-ideal L of S.

Proof. Let Q, I, J,R and L be an ordered quasi k-ideal, an ordered k-interior
ideal, an ordered k-ideal, a right ordered k-ideal and a left ordered k-ideal of S,
respectively.

(i)⇒ (ii): Assume that S is ordered k-regular and let x ∈ Q ∩ I. By assump-

tion, we obtain x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (QSISQ] ⊆ (QIQ]. For the
opposite inclusion, we consider (QIQ] ⊆ (QSQ] ⊆ (Q] = Q and (QIQ] ⊆ (SIS] ⊆
(I] = I. Therefore, Q ∩ I = (QIQ].

(ii)⇒ (iii): It is obvious.
(iii) ⇒ (i): Assume that (iii) holds. By assumption, we get Q = Q ∩ S =

(QSQ]. By Theorem 4.7, S is ordered k-regular.
(i)⇒ (iv): If x ∈ Q ∩ L, then x ∈ (xSx] ⊆ (QSL] ⊆ (QL].
(iv) ⇒ (i): Assume that (iv) holds. Then we obtain R ∩ L ⊆ (RL], since

every right ordered k-ideal is an ordered quasi k-ideal. Clearly, (RL] ⊆ R∩L. So,
R ∩ L = (RL]. By Theorem 4.2, S is ordered k-regular.

(i)⇒ (v): If x ∈ R ∩Q, then x ∈ (xSx] ⊆ (RSQ] ⊆ (RQ].
(v)⇒ (i): It can be proved in a similar way of (iv)⇒ (i).
(i) ⇒ (vi): Assume that S is ordered k-regular and let x ∈ R ∩ Q ∩ L. Then

x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (RSQSL] ⊆ (RQL].
(vi)⇒ (i): Assume that (vi) holds. We get R∩L = R∩S∩L ⊆ (RSL] ⊆ (RL].

Clearly, (RL] ⊆ R ∩ L. So, R ∩ L = (RL]. By Theorem 4.2, S is ordered k-
regular.

De�nition 4.10. An ordered semiring S is said to be an ordered k-duo-semiring

if every one-sided (left or right) ordered k-ideal of S is an ordered k-ideal of S.
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It is clear that every multiplicatively commutative ordered semiring is an or-
dered k-duo-semiring, but the converse is not true as the following example shows.

Example 4.11. Let S = {a, b, c, d, e}. De�ne a binary operation + on S by
a+x = x+a = x for all x ∈ S and x+ y = c otherwise. De�ne a binary operation
· on S by ax = xa = a for all x ∈ S, bb = bd = dd = e and xy = c otherwise.
De�ne a binary relation 6 on S by

6 := {(a, a), (b, b), (c, c), (d, d), (e, e), (e, c)}.

Then (S,+, ·,6) is an ordered semiring which is not multiplicatively commutative,
since bd 6= db. We have {a} and S are only ordered one-sided k-ideals of S.
Obviously, all of them are ordered ideals of S. This shows that S is an ordered
k-duo-semiring.

Theorem 4.12. The following statements are equivalent:

(i) S is an ordered k-duo-semiring;

(ii) Rk(A) = Lk(A) for each A ⊆ S;

(iii) Rk(a) = Lk(a) for each a ∈ S.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are obvious.
(iii)⇒ (i): Assume that (iii) holds and let R be a right ordered k-ideal of S.

Let x ∈ R, s ∈ S. By assumption, we obtain sx ∈ SLk(x) ⊆ Lk(x) = Rk(x) ⊆
Rk(R) = R. This shows that R is a left ordered k-ideal of S. Similarly, we can
show that if L is a left ordered k-ideal of S then L is a right ordered k-ideal of S.
Therefore, S is an ordered k-duo-semiring.

As a consequence of Theorem 4.5, 4.6 and De�nition 4.10, we obtain the fol-
lowing corollary.

Corollary 4.13. If an ordered k-duo-semiring S is ordered k-regular, then its

ordered k-ideals, ordered k-interior ideals, ordered quasi k-ideals and its ordered

k-bi-ideals coincide.

Theorem 4.14. Let S be an ordered k-duo-semiring. Then the following state-

ments are equivalent:

(i) S is ordered k-regular;

(ii) B1 ∩B2 = (B1B2] for every ordered k-bi-ideals B1 and B2 of S;

(iii) Q1 ∩Q2 = (Q1Q2] for every ordered quasi k-ideals Q1 and Q2 of S;

(iv) J1 ∩ J2 = (J1J2] for every ordered k-ideal J1 and J2 of S.

Proof. (i) ⇒ (ii): Let B1, B2 be ordered k-bi-ideals of S. By Corollary 4.13, B1

and B2 are ordered k-ideals of S. By Theorem 4.2, we obtain B1 ∩B2 = (B1B2].
(ii)⇒ (iii) and (iii)⇒ (iv) are obvious.
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(vi) ⇒ (i): Assume that (iv) holds. Let A ⊆ S. Since S is an ordered k-duo-
semiring, Jk(A) = Lk(A) = Rk(A). By assumption, we obtain

A ⊆ Jk(A) = Jk(A) ∩ Jk(A) = (Jk(A)Jk(A)] = (Rk(A)Lk(A)].

By Corollary 4.3, we get S is ordered k-regular.
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Prime ordered k-bi-ideals in ordered semirings

Permpoon Senarat and Bundit Pibaljommee

Abstract. Various types of ordered k-bi-ideals of ordered semirings are investigated. Several

characterizations of ordered k-bi-idempotent semirings are presented.

1. Introduction

The notion of a semiring was introduced by Vandiver [8] as a generalization of a
ring. Gan and Jiang [2] investigated an ordered semiring with zero and introduced
several notions, for example, ordered ideals, minimal ideals and maximal ideals of
an ordered semiring. Han, Kim and Neggers [3] investigated properties orders in a
semiring. Henriksen [4] de�ned more restrict class of ideals in semiring known as
k-ideals. Several characterizations of k-ideals of a semiring were obtained by Sen
and Adhikari in [6, 7]. In [1], Akram and Dudek studied properties of intuinistic
fuzzy left k-ideals of semirings. An ordered k-ideal in an ordered semiring was
characterized by Patchakhieo and Pibaljommee [5].

In this paper, we introduce the notion of an ordered k-bi-ideal, a prime or-
dered k-bi-ideal, a strongly prime ordered k-bi-ideal, an irreducible and a strongly
irreducible ordered k-bi-ideals of an ordered semiring. We introduce the concept
of an ordered k-bi-idempotent semiring and characterize it using prime, strongly
prime, irreducible and strongly irreducible ordered k-bi-ideals.

2. Preliminaries

A semiring is a triplet (S,+, ·) consisting of a nonempty set S and two operations
+ (addition) and · (multiplication) such that (S,+) is a commutative semigroup,
(S, ·) is a semigroup and a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all
a, b, c ∈ S.

A semiring (S,+, ·) is called a commutative if (S, ·) is a commutative semigroup.
An element 0 ∈ S is called a zero element if a+ 0 = 0 + a = a and a · 0 = 0 = 0 · a.

A nonempty subset A of a semiring (S,+, ·) is called a left (right) ideal of S if
x + y ∈ A for all x, y ∈ A and SA ⊆ A (AS ⊆ A). We call A an ideal of S if it
is both a left and a right ideal of S. A subsemiring B of a semiring S is called a
bi-ideal of S if BSB ⊆ B.

2010 Mathematics Subject Classi�cation: 20N20, 20N25, 06F05.

Keywords: ordered semiring, ordered k-bi-ideal, prime right ordered k-bi-ideal.
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Let (S,6) be a partially ordered set. Then (S,+, ·,6) is called an ordered
semiring if (S,+, ·) is a semiring and the relation 6 is compatible with the opera-
tions + and ·, i.e., if a 6 b, then a+x 6 b+x, x+a 6 x+ b, ax 6 bx and xa 6 xb
for all a, b, x ∈ S.

Let (S,+, ·,6) be an ordered semiring. For nonempty subsets A, B of S and
a ∈ S, we denote

(A] = {x ∈ S | x 6 a for some a ∈ A},
AB = {xy ∈ S | x ∈ A, y ∈ B},
ΣA = {

∑
i∈I

ai ∈ S | ai ∈ A and I is a �nite subset of N},

ΣAB = {
∑
i∈I

aibi ∈ S | ai ∈ A, bi ∈ B and I is a �nite subset of N} and

Na = {na ∈ S | n ∈ N}.

Instead of writing an ordered semiring (S,+, ·,6), we simply denote S as an
ordered semiring.

A left (right) ideal A of an ordered semiring S is called a left (right) ordered
ideal of S if for any x 6 a for some a ∈ A implies x ∈ A. We call A an ordered
ideal if it is both a left and a right ordered ideal of S.

A left (right) ordered ideal of A of a semiring S is called a left (right) ordered
k-ideal of S if x + a = b for some a, b ∈ A implies x ∈ A. We call A an ordered
k-ideal of S if it is both a left and a right ordered k-ideal of S.

The k-closure of a nonempty subset A of an ordered semiring S is de�ned by

A = {x ∈ S | ∃ a, b ∈ A, x + a 6 b}.

Now, we recall the results concerning to the k-closure given in [5].

Lemma 2.1. Let S be an ordered semiring and A,B be nonempty subsets of S.

(i) (A] ⊆ (A].

(ii) If A ⊆ B, then A ⊆ B.

(iii) (A]B ⊆ (AB] and A(B] ⊆ (AB].

Lemma 2.2. Let A be a nonempty subset of an ordered semiring S. If A is closed
under addition, then (A] and (A] are also closed.

Lemma 2.3. Let S be an ordered semiring and A,B be nonempty subsets of S
with A + A ⊆ A and B + B ⊆ B. Then

(i) A ⊆ (A] ⊆ A ⊆ (A];

(ii) (A] = (A];
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(iii) A + B ⊆ A + B ⊆ A + B;

(iv) (A] + (B] ⊆ (A] + (B] ⊆ (A + B];

(v) A B ⊆ (A] (B] ⊆ (ΣAB];

(vi) A(ΣB) ⊆ ΣAB and (ΣA)B ⊆ ΣAB.

Lemma 2.4. Let S be an ordered semiring and A be a nonempty subset of S with

A + A ⊆ A. Then ((A]] = (A].

Theorem 2.5. Let S be an ordered semiring and A be a left ideal (resp. right
ideal, ideal). Then the following conditions are equivalent:

(i) A is a left ordered k-ideal (resp. right ordered k- ideal, ordered k-ideal) of S;

(ii) if x ∈ S, x + a 6 b for some a, b ∈ A, then x ∈ A;

(iii) A = A.

Theorem 2.6. Let S be an ordered semiring and A be a nonempty subset of S.
If A is a left ideal (resp. right ideal, ideal), then (A] is the smallest left ordered
k-ideal (resp. right ordered k-ideal, ordered k-ideal) containing A.

From Theorem 2.6, we have A is an ordered k-ideal if and only if (A] = A.

Theorem 2.7. Let S be an ordered semiring. If the intersection of a family of left
ordered k-ideals (resp. right ordered k-ideal, ordered k-ideal) is not empty, then it
is a left ordered k-ideal (resp. right ordered k-ideal, ordered k-ideal).

For a nonempty subset A of an ordered semiring S, we denote by Lk(A), Rk(A)
and Mk(A) the smallest left ordered k-ideal, the smallest right ordered k-ideal and
the smallest ordered k-ideal of S containing A, respectively. For any a ∈ S, we
denote Lk(a) = Lk({a}), Rk(a) = Rk({a}) and Mk(a) = Mk({a}).

Theorem 2.8. Let S be an ordered semiring and a ∈ S. Then

(i) Lk(A) = (ΣA + ΣSA];

(ii) Rk(A) = (ΣA + ΣAS];

(iii) Mk(a) = (ΣA + ΣSA + ΣAS + ΣSAS].

Corollary 2.9. Let S be an ordered semiring and a ∈ S. Then

(i) Lk(a) = (Na + Sa];

(ii) Rk(a) = (Na + aS];

(iii) Mk(a) = (Na + Sa + Sa + ΣSaS].
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3. Prime ordered k-bi-ideals

First, we begin with the de�nition of an ordered k-bi-ideal of an ordered semiring
and give some concepts in ordered semirings that we need in this section.

De�nition 3.1. An ordered subsemiring B of an ordered semiring S is said to be
an ordered k-bi-ideal of S if

(i) BSB ⊆ B;

(ii) if x ∈ S, a + x = b for some a, b ∈ B, then x ∈ B;

(iii) if x ∈ S, x 6 b for some b ∈ B, then x ∈ B.

We note that every right ordered k-ideal or left ordered k-ideal is an ordered
k-bi-ideal of S.

Example 3.2. Let S = {A,B,C,D,E, F}, where A =

[
∅ ∅
∅ ∅

]
, B =

[
{1} ∅
∅ ∅

]
,

C =

[
{1} {1}
∅ ∅

]
, D =

[
{1} ∅
{1} ∅

]
, E =

[
{1} {1}
{1} ∅

]
, F =

[
{1} {1}
{1} {1}

]
.

We de�ned operations + and · on S by letting U =

[
a1 a2
a3 a4

]
, V =

[
b1 b2
b3 b4

]

U + V =

[
a1 ∪ b1 a2 ∪ b2
a3 ∪ b3 a4 ∪ b4

]
and

U · V =

[
(a1 ∩ b1) ∪ (a2 ∩ b3) (a1 ∩ b2) ∪ (a2 ∩ b4)
(a3 ∩ b1) ∪ (a4 ∩ b3) (a3 ∩ b2) ∪ (a4 ∩ b4)

]
.

The tables of both operations are shown as follows.

+ A B C D E F
A A B C D E F
B B B C D E F
C C C C E E F
D D D E D E F
E E E E E E F
F F F F F F F

and

· A B C D E F
A A A A A A A
B A B B D D D
C A C C F F F
D A B B D D D
E A C C F F F
F A C C F F F

We de�ned a partially ordered relation 6 on L by

U 6 V if and only if a1 ⊆ b1, a2 ⊆ b2, a3 ⊆ b3 and a4 ⊆ b4.

Then A 6 B 6 C 6 E 6 F and A 6 B 6 D 6 E 6 F .
We can see that (S,+, ·,6) is an ordered semiring and T = {A} is its ordered

k-ideal, Y = {A,B,C} is a left ordered k-ideal but not a right ordered k-ideal,
Z = {A,B,D} is a right ordered k-ideal but not a left ordered k-ideal and X =
{A, B} is an ordered k-bi-ideal but not a left or a right ordered k-ideal.
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Theorem 3.3. Let B be a bi-ideal of an ordered semiring S. Then the following
statements are equivalent.

(i) B is an ordered k-bi-ideal of S.

(ii) If a + x 6 b for some a, b ∈ B, then x ∈ B.

(iii) B = B.

Proof. (i) ⇒ (ii): Let B be an ordered k-bi-ideal of S. If x + a 6 b for some
a, b ∈ B and x ∈ S. Then x + a ∈ B. It follows that there exists p ∈ B such that
x + a = p. By assumption, x ∈ B.

(ii) ⇒ (iii): Let x ∈ B. Then there exist a, b ∈ B such that x + a 6 b. By
assumption, we have x ∈ B. Thus, B = B.

(iii) ⇒ (i): Assume that B = B. Let x ∈ S such that x + a = b for some
a, b ∈ B. Then x ∈ B. By assumption, we have x ∈ B. By Lemma 2.3(i),
(B] ⊆ B = B. Altogether, B is an ordered k-bi-ideal of S.

Theorem 3.4. Let B be a bi-ideal of an ordered semiring S. Then (B] is the
smallest ordered k-bi-ideal of S containing B.

Proof. It is clear that B ⊆ (B]. By Lemma 2.2, (B] is closed under addition. By

Lemma 2.1(iii) and Lemma 2.4, we have (B] (B] ⊆ ((B]B] ⊆ ((BB]] ⊆ ((B]] =
(B]. By Lemma 2.1(iii), (B]S(B] ⊆ (ΣBSB] ⊆ (B]. Thus, (B] is a bi-ideal of S.

By Lemma 2.3(ii), we have (B] = (B]. By Theorem 3.3, (B] is an ordered k-bi-
ideal of S. LetK be an ordered k-bi-ideal of S containing B. Then (B] ⊆ (K] = K
and (B] ⊆ K = K. Then (B] is the smallest ordered k-bi-ideal of S containing
B.

Corollary 3.5. A bi-ideal B of an ordered semiring S is an ordered k-bi-ideal if
and only if (B] = B.

Theorem 3.6. If intersection of a family of ordered k-bi-ideals of an ordered
semiring S is not empty, then it is an ordered k-bi-ideal of S.

De�nition 3.7. An ordered k-bi-ideal B of S is called a semiprime ordered k-bi-
ideal if (ΣA2] ⊆ B implies A ⊆ B for any ordered k-bi-ideal A of S.

De�nition 3.8. An ordered k-bi-ideal B of S is called a prime ordered k-bi-ideal
if (ΣAC] ⊆ B implies A ⊆ B or C ⊆ B for any ordered k-bi-ideal A, C of S.

De�nition 3.9. An ordered k-bi-ideal B of S is called a strongly prime ordered k-
bi-ideal if (ΣAC]∩ (ΣCA] ⊆ B implies A ⊆ B or C ⊆ B for any ordered k-bi-ideal
A, C of S.

Obviously, every strongly prime ordered k-bi-ideal of S is a prime ordered k-
bi-ideal and every prime ordered k-bi-ideal of S is a semiprime ordered k-bi-ideal.

The following example shows that every prime ordered k-bi-ideal need not to
be a strongly prime ordered k-bi-ideal.
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Example 3.10. Let S = {a, b, c}. We de�ne operations + and · on S as the
following tables.

+ a b c
a a b c
b b b c
c c c c

and

· a b c
a a a a
b a b b
c a c c

We de�ned a partially ordered relation 6 on S by 6:= {(a, a), (b, b), (c, c), (a, b)}.
We can show that (S,+, ·,6) is an ordered semiring and {a}, {a, b}, {a, c} and S

are all ordered k-bi-ideals of S. Now, we have {a} is prime but not strongly prime,
since (Σ{a, b}{a, c}] ∩ (Σ{a, c}{a, b}] = {a} but {a, b} * {a} and {a, c} * {a}.

Example 3.11. Let S = {a, b, c, d, e, f}. We de�ne operations + and · on S as
the following tables.

+ a b c d e f
a a b c d e f
b b b c d e f
c c c c e e f
d d d e d e f
e e e e e e f
f f f f f f f

and

· a b c d e f
a a a a a a a
b a a a b b c
c a b c b c c
d a a a d d f
e a b c d e f
f a d f d f f

We de�ned a partially ordered relation 6 on S by

6 := {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (a, c), (a, d), (a, e),

(b, c), (b, d), (b, e), (c, e), (d, e)}.

The sets T = {a}, X = {a, b}, Y = {a, b, c}, Z = {a, b, d} and S are all ordered
k-bi-ideals of S. We �nd that Y,Z and S are strongly prime ordered k-bi-ideals, X
is a semiprime ordered k-bi-ideal but not prime and T is not a semiprime ordered
k-bi-ideal.

De�nition 3.12. An ordered k-bi-ideal B of S is called an irreducible ordered
k-bi-ideal if for any ordered k-bi-ideal A and C of S, A∩C = B implies A = B or
C = B.

De�nition 3.13. An ordered k-bi-ideal B of S is called a strongly irreducible
ordered k-bi-ideal if for any ordered k-bi-ideal A and C of S, A ∩ C ⊆ B implies
A ⊆ B or C ⊆ B.

It is clear that every strongly irreducible ordered k-bi-ideal of S is an irreducible
ordered k-bi-ideal of S.

Theorem 3.14. If intersection of any family of prime ordered k-bi-ideals (or
semiprime ordered k-bi-ideals) of S is not empty, then it is a semiprime ordered
k-bi-ideal.
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Proof. Let {Ki | i ∈ I} be a family of prime ordered k-bi-ideals of S. Assume that⋂
i∈I

Ki 6= ∅. For any ordered k-bi-ideal B of S, (ΣB2] ⊆
⋂
i∈I

Ki implies (ΣB2] ⊆ Ki

for all i ∈ I. Since Ki are prime ordered k-bi-ideals, B ⊆ Ki for all i ∈ I. Hence,
B ⊆

⋂
i∈I

Ki. Thus,
⋂
i∈I

Ki is semiprime.

Theorem 3.15. If B is a strongly irreducible and semiprime ordered k-bi-ideal of
an ordered semiring S, then B is a strongly prime ordered k-bi-ideal of S.

Proof. Let B be a strongly irreducible and semiprime ordered k-bi-ideal of S. Let
(ΣAC]∩(ΣCA] ⊆ B for any ordered k-bi-ideals A and C of S. Since (Σ(A ∩ C)2] ⊆
(ΣAC] and (Σ(A ∩ C)2] ⊆ (ΣCA]. We have (Σ(A ∩ C)2] ⊆ (ΣAC]∩(ΣCA]. Since
A∩C is an ordered k-bi-ideal and B is a semiprime ordered k-bi-ideal, A∩C ⊆ B.
Since B is a strongly irreducible ordered k-bi-ideal, A ⊆ B or C ⊆ B. Thus, B is
a strongly prime ordered k-bi-ideal of S.

Theorem 3.16. If B is an ordered k-bi-ideal of an ordered semiring S and a ∈ S
such that a 6∈ B, then there exists an irreducible ordered k-bi-ideal I of S such that
B ⊆ I and a 6∈ I.

Proof. Let K be the set of all ordered k-bi-ideals of S containing B but not con-
taining a. Then K is a nonempty set, since B ∈ K. Clearly, K is a partially ordered
set under the inclusion of sets. Let H be a chain subset of K. Then ∪H ∈ K. By
Zorn's Lemma, there exists a maximal element in K. Let I be a maximal element
in K. Let A and C be any two ordered k-bi-ideals of S such that A ∩ C = I.
Suppose that I ⊂ A and I ⊂ C. Since I is a maximal element in K, we have a ∈ A
and a ∈ C. Then a ∈ A ∩ C = I which is a contradiction. Thus, C = I or A = I.
Therefore, I is an irreducible ordered k-bi-ideal.

Theorem 3.17. A prime ordered k-bi-ideal B of an ordered semiring S is a prime
one sided ordered k-ideal of S.

Proof. Let B be a prime ordered k-bi-ideal of S. Suppose B is not a one sided
ordered k-ideal of S. It follows (BS] * B and (BS] * B. Then (ΣBS] * B and

(ΣSB] * B. Since B is a prime ordered k-bi-ideal, (Σ(ΣBS] (ΣSB]] * B. By
Lemma 2.3(v),

(Σ(ΣBS] (ΣSB]] ⊆ ΣΣ(ΣBS)(ΣSB)]] ⊆ ΣΣ(ΣBSSB)]]

⊆ Σ(ΣBSSB)]] ⊆ Σ(ΣB)]] ⊆ (ΣB] = B.

This is a contradiction. Therefore, (ΣBS] ⊆ B or (ΣSB] ⊆ B. Thus, B is a prime
one sided ordered k-ideal of S.

Theorem 3.18. Let B be an ordered k-bi-ideal of an ordered semiring S. Then
B is prime if and only if for a right ordered k-ideal R and a left ordered k-ideal L
of S, (ΣRL] ⊆ B implies R ⊆ B or L ⊆ B.
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Proof. Assume that B is a prime ordered k-bi-ideal of S. Let R be a right ordered
k-ideal and L be a left ordered k-ideal of S such that (ΣRL] ⊆ B. Since R
and L are ordered k-bi-ideals of S, R ⊆ B or L ⊆ B. Conversely, let A and
C be any two ordered k-bi-ideals of S such that (ΣAC] ⊆ B. Suppose that
C 6⊆ B. Let a ∈ A and c ∈ C\B. Then (Na + aS] ⊆ A and (Nc + Sc] ⊆ C. We

have (Σ(Na + aS] (Nc + Sc]] ⊆ (ΣAC] ⊆ B. By assumption, (Na + aS] ⊆ B or
(Nc + Sc] ⊆ B. But (Nc + Sc] 6⊆ B implies that (Na + aS] ⊆ B. Then a ∈ B.
Thus, A ⊆ B and B is a prime ordered k-bi-ideal of S.

4. Fully ordered k-bi-idempotent semirings

In this section, we assume that S is an ordered semiring with zero.

De�nition 4.1. An ordered semiring S is said to be fully ordered k-bi-idempotent
if (ΣB2] = B for any ordered k-bi-ideal B of S.

Example 4.2. The ordered semiring S de�ned in Example 3.2 is fully ordered
k-bi-idempotent. The ordered semiring S de�ned in Example 3.11 is not fully
ordered k-bi-idempotent, since (ΣX2] = T 6= X.

Theorem 4.3. Let S be an ordered semiring. Then the following statements are
equivalent.

(i) S is fully ordered k-bi-idempotent.

(ii) A ∩ C = (ΣAC] ∩ (ΣCA] for any ordered k-bi-ideal A and C of S.

(iii) Each ordered k-bi-ideal of S is semiprime.

Proof. (i)⇒ (ii): Assume that (ΣB2] = B for any ordered k-bi-ideal B of S. Let
A and C be any two ordered k-bi-ideals of S. By Theorem 3.6, A∩C is an ordered
k-bi-ideal of S. By assumption, A ∩ C = (Σ(A ∩ C)2] = (Σ(A ∩ C)(A ∩ C)] ⊆
(ΣAC]. Similarly, we get A ∩ C ⊆ (ΣCA]. Therefore, A ∩ C ⊆ (ΣAC] ∩ (ΣCA].
Since ΣAC is closed under addition, by Lemma 2.2, (ΣAC] is also closed under
addition. By Lemma 2.3(vi),

(ΣAC)(ΣAC) ⊆ ΣACAC ⊆ ΣASAC ⊆ ΣAC.

Then ΣAC is an ordered subsemiring of S. By Lemma 2.3(vi),

(ΣAC)S(ΣAC) ⊆ (ΣACS)(ΣAC) ⊆ ΣACSAC ⊆ ΣASSAC ⊆ ΣASAC ⊆ ΣAC.

Thus, ΣAC is a bi-ideal of S. By Theorem 3.4, (ΣAC] is an ordered k-bi-ideal of
S. Similarly, (ΣCA] is an ordered k-bi-ideal. By Theorem 3.6, (ΣAC] ∩ (ΣCA] is
an ordered k-bi-ideal of S. By assumption, Lemma 2.3(v), (vi) and Lemma 2.4,
we have
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(ΣAC] ∩ (ΣCA] = (Σ((ΣAC] ∩ (ΣCA])((ΣAC] ∩ (ΣCA])]

⊆ (Σ(ΣAC] (ΣCA]] ⊆ (Σ(ΣACCA]] ⊆ (Σ(ΣASA]] ⊆ A.

Similarly, we can show that (ΣAC]∩ (ΣCA] ⊆ C. Thus, (ΣAC]∩ (ΣCA] ⊆ A∩C.
Hence, (ΣAC] ∩ (ΣCA] = A ∩ C.

(ii)⇒ (iii): Let B be an ordered k-bi-ideal of S. Suppose that (ΣA2] ⊆ B for
any ordered k-bi-ideal A of S. By assumption, we have A = A ∩ A = (ΣAA] ∩
(ΣAA] = (ΣAA] ⊆ B. Hence, B is semiprime.

(iii) ⇒ (i): Let B be an ordered k-bi-ideal of S. Since (ΣB2] is an ordered
k-bi-ideal, by assumption, (ΣB2] is semiprime. Since (ΣB2] ⊆ (ΣB2], B ⊆ (ΣB2].
Clearly, (ΣB2] ⊆ B. This shows that S is ordered k-bi-idempotent.

Theorem 4.4. Let S be a fully ordered k-bi-idempotent semiring and B be an
ordered k-bi-ideal of S. Then B is strongly irreducible if and only if B is strongly
prime.

Proof. Assume that B is strongly irreducible. Let A and C be any two ordered k-
bi-ideals of S such that (ΣAC]∩ (ΣCA] ⊆ B. By Theorem 4.3, (ΣAC]∩ (ΣCA] =
A ∩ C. Hence, A ∩ C ⊆ B. By assumption, we have A ⊆ B or C ⊆ B. Thus, B
is a strongly prime ordered k-bi-ideal of S. Conversely, assume that B is strongly
prime. Let A and C be any two ordered k-bi-ideals of S such that A∩C ⊆ B. By
Theorem 4.3, (ΣAC] ∩ (ΣCA] = A ∩ C ⊆ B. By assumption, we have A ⊆ B or
C ⊆ B. Thus, B is a strongly irreducible ordered k-bi-ideal of S.

Theorem 4.5. Every ordered k-bi-ideal of an ordered semiring S is a strongly
prime ordered k-bi-ideal if and only if S is a fully ordered k-bi-idempotent semiring
and the set of all ordered k-bi-ideals of S is totally ordered.

Proof. Assume that every ordered k-bi-ideal of S is strongly prime. Then every
ordered k-bi-ideal of S is semiprime. By Theorem 4.3, S is a fully ordered k-
bi-idempotent semiring. Let A and C be any two ordered k-bi-ideals of S. By
Theorem 3.6, A ∩ C is an ordered k-bi-ideal of S. By assumption, A ∩ C is a
strongly prime ordered k-bi-ideal of S. By Theorem 4.3, (ΣAC]∩ (ΣCA] = A∩C.
Then A ⊆ A ∩ C or C ⊆ A ∩ C. Therefore, A = A ∩ C or C = A ∩ C. Thus,
A ⊆ C or C ⊆ A. Conversely, assume that S is a fully ordered k-bi-idempotent
semiring and the set of all ordered k-bi-ideals of S is a totally ordered set. Let B
be any ordered k-bi-ideal of S. Let A and C be any two ordered k-bi-ideals of S
such that (ΣAC] ∩ (ΣCA] ⊆ B. By Theorem 4.3, A ∩ C = (ΣAC] ∩ (ΣCA] ⊆ B.
By assumption, A ⊆ C or C ⊆ A. Hence, A∩C = A or A∩C = C. Thus, A ⊆ B
or C ⊆ B. Therefore, B is a strongly prime ordered k-bi-ideal of S.

Since every strongly prime ordered k-bi-ideal is a prime ordered k-bi-ideal and
by Theorem 4.3 and 4.5, we have the following corollary.
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Corollary 4.6. Let the set of all ordered k-bi-ideals of S be a totally ordered set
under inclusion of sets. Then every ordered k-bi-ideal of S is strongly prime if and
only if every ordered k-bi-ideal of S is prime.

Theorem 4.7. If the set of all ordered k-bi-ideals of an ordered semiring S is a
totally ordered set under inclusion of sets, then S is a fully ordered k-bi-idempotent
if and only if each ordered k-bi-ideal of S is prime.

Proof. Assume that S is a fully ordered k-bi-idempotent semiring. Let B be
any ordered k-bi-ideal of S and A, C be any two ordered k-bi-ideals of S such
that (ΣAC] ⊆ B. By assumption, we have A ⊆ C or C ⊆ A. Without loss of
generality, suppose that A ⊆ C. Then A = (ΣAA] ⊆ (ΣAC] ⊆ B. Hence, B is a
prime ordered k-bi-ideal of S. Conversely, assume that every ordered k-bi-ideal of
S is prime. Then every ordered k-bi-ideal of S is semiprime. By Theorem 4.3, S
is a fully ordered k-bi-idempotent semiring.

Theorem 4.8. If S is a fully ordered k-bi-idempotent semiring and B is a strongly
irreducible ordered k-bi-ideal of S, then B is a prime ordered k-bi-ideal.

Proof. Let B be a strongly irreducible ordered k-bi-ideal of a fully ordered k-bi-
idempotent semiring S. Let A and C be any two ordered k-bi-ideals of S such
that (ΣAC] ⊆ B. Since A ∩ C is also an ordered k-bi-ideal of S. By assumption,
(Σ(A ∩ C)2] = A ∩ C. Consider A ∩ C = (Σ(A ∩ C)2] = (Σ(A ∩ C)(A ∩ C)] ⊆
(Σ(AC] ⊆ B. Since B is a strongly irreducible ordered k-bi-ideal of S, A ⊆ B or
C ⊆ B. Hence, B is a prime ordered k-bi-ideal of S.

5. Right ordered k-weakly regular semirings

First, we recall the de�nition of a right ordered k-weakly regular semiring and
some of its properties given by Patchakhieo and Pibaljommee [5] which we need
to use in this section. Then we give characterizations of right ordered k-weakly
regular semirings using ordered k-bi-ideals.

An ordered semiring S is said to be a right ordered k-weakly regular semiring
if a ∈ (Σ(aS)2] for all a ∈ S.

Theorem 5.1. Let S be an ordered semiring. Then the following statements are
equivalent.

(i) S is a right ordered k-weakly regular.

(ii) (ΣA2] = A for every right ordered k-ideal A of S.

(iii) A ∩ I = (ΣAI] for every right ordered k-ideal A of S and every ordered
k-ideal I of S.

Theorem 5.2. An ordered semiring S is right ordered k-weakly regular if and
only if B ∩ I ⊆ (ΣBI] for any ordered k-bi-ideal B and ordered k-ideal I of S.
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Proof. Let S be a right ordered k-weakly regular semiring, B be an ordered k-bi-
ideal and I be an ordered k-ideal of S. Let a ∈ B ∩ I. By Lemma 2.1(iii), Lemma
2.3(v) and Lemma 2.4, we have

a ∈ (Σ(aS)2] = (Σ(aS)(aS)] ⊆ (Σ(aS)(Σ(aS)(aS)]S] ⊆ (Σ((aS)(Σ(aS)(aS))S]]

⊆ (Σ(Σ(aSa)(SaSS)]] ⊆ ((Σ(BSB)(SIS)]] ⊆ ((ΣBI]] = (ΣBI].

Therefore, B ∩ I ⊆ (ΣBI].

Conversely, assume thatB∩I ⊆ (ΣBI] for any ordered k-bi-idealB and ordered
k-ideal I of S. Let R be a right ordered k-ideal of S. Then R is an ordered k-
bi-ideal of S. By assumption, Lemma 2.8, Lemma 2.1(iii), Lemma 2.3(vi) and
Lemma 2.4, we have

R = R ∩Mk(R)

⊆ (ΣRMk(R)] = (ΣR(ΣR + ΣRS + ΣSR + ΣSRS]]

⊆ (Σ(ΣR2 + ΣR2S + ΣRSR + ΣRSRS]]

⊆ (ΣR2 + ΣR2 + ΣR2 + ΣR2]

= (ΣR2].

Then R = (ΣR2]. Thus, by Theorem 5.1, S is a right ordered k-weakly regular
semiring.

Theorem 5.3. An ordered semiring S is right ordered k-weakly regular if and
only if B ∩ I ∩ R ⊆ (ΣBIR] for any ordered k-bi-ideal B, ordered k-ideal I and
right ordered k-ideal R of S.

Proof. Let S be a right ordered k-weakly regular semiring, B be an ordered k-
bi-ideal, I be an ordered k-ideal and R be a right ordered k-ideal of S. Let
a ∈ B ∩ I ∩ R. By assumption, Lemma 2.1(iii), Lemma 2.3(vi) and Lemma 2.4,
we have

a ∈ (Σ(aS)2] = (Σ(aS)(aS)] ⊆ (Σ(aS)(Σ(aS)(aS)]S]

⊆ (Σ(Σa(SaS)(aS)]] ⊆ ((ΣBIR]] = (ΣBIR].

Therefore, B ∩ I ∩R ⊆ (ΣBIR].

Conversely, assume that B ∩ I ∩ R ⊆ (ΣBIR] for any ordered k-bi-ideal B,
ordered k-ideal I and right ordered k-ideal R of S. Since R is an ordered k-bi-
ideal of S and S is also an ordered k-ideal of S. By assumption, R = R∩S ∩R ⊆
(ΣRSR] ⊆ (ΣR2]. Therefore, R = (ΣR2]. By Theorem 5.1, S is right ordered
k-weakly regular.
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On orthogonal systems of ternary quasigroups

admitting nontrivial paratopies

Parascovia Syrbu and Dina Ceban

Abstract. In the present work we describe all orthogonal systems consisting of three ternary

quasigroup operations and of all (three) ternary selectors, admitting at least one nontrivial

paratopy. In [11] we proved that there exist precisely 48 orthogonal systems of the considered

form, admitting at least one paratopy, which components are three quasigroup operations, or two

quasigroup operations and a selector. Now we show that there exist precisely 105 such systems,

admitting at least one nontrivial paratopy which components are two selectors and a quasigroup

operation, or three selectors.

1. Introduction

An n-ary groupoid (Q,A) is called an n-ary quasigroup if in the equality

A(x1, x2, . . . , xn) = xn+1

any element of the set {x1, x2, . . . , xn+1} is uniquely determined by the other n
elements. If (Q,A) is an n-ary quasigroup and σ ∈ Sn, then the operation σA
de�ned by the equivalence:

σA(xσ1, xσ2, . . . , xσn) = xσ(n+1) ⇔ A(x1, x2, . . . , xn) = xn+1,

for every x1, x2, . . . , xn, xn+1 ∈ Q, is called a σ-parastrophe (or, simply, a paras-

trophe) of (Q,A). The operation σA is called a principal parastrophe of A if
σ(n + 1) = n + 1. The main notions and general properties of n-ary quasigroups
may be found in [3]. Following [3], we will denote by πi the transposition (i, n+1),
where i ∈ {1, 2, . . . , n}, so (i,n+1)A = πiA.

The n-ary operations A1, A2, . . . , An, de�ned on a set Q, are called orthogonal

if, for every a1, a2, . . . , an ∈ Q, the system of equations

{Ai(x1, x2, . . . , xn) = ai}i=1,n

has a unique solution in Q. A system of n-ary operations A1, A2, . . . , As, de-
�ned on a set Q, where s > n, is called orthogonal if every n operations of this

2010 Mathematics Subject Classi�cation: 20N15
Keywords: ternary quasigroup, orthoghonal system, paratopy
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system are orthogonal. For every mapping θ : Qn → Qn there exist, and are
unique, n n-ary operations A1, A2, . . . , An, de�ned on Q, such that θ((xn1 )) =
(A1(xn1 ), A2(xn1 ), . . . , An(xn1 )), for every (xn1 ) ∈ Qn, where by (xn1 ) we denote
(x1, . . . , xn). Moreover, the mapping θ is a bijection if and only if the opera-
tions A1, A2, . . . , An are orthogonal. The operations E1, E2, . . . , En, de�ned on
Q, where Ei(x

n
1 ) = xi, for every x1, x2, . . . , xn ∈ Q, i = 1, 2, . . . , n, are called

n-ary selectors. An n-ary operation A is a quasigroup operation if and only if the
system {A,E1, E2, . . . , En} is orthogonal. Orthogonal systems of n-ary operations
(quasigroups) are considered in [1], [5], [7], [10]. Algebraic transformations of or-
thogonal systems of operations, that keep the orthogonality, have been de�ned
and considered in [2] and [6].

If Σ = {A1, A2, . . . , An, E1, E2, . . . En} is an orthogonal system, then we will
denote the system {A1θ,A2θ, . . . , Anθ,E1θ,E2θ, . . . , Enθ} by Σθ. Any bijection
θ : Qn → Qn is called a paratopy of Σ if Σθ = Σ (cf. [2]).

V. Belousov proved in [2] that there exist precisely nine orthogonal systems of
the form Σ = {A,B, F,E}, where A and B are binary quasigroups de�ned on a
set Q and F , E are the binary selectors on Q, which admit at least one nontrivial
paratopy. He also shown that many paratopies of Σ imply identities of length
�ve with two variables (called minimal identities) in one of two quasigroups of Σ.
Later, (see [4]) V. Belousov obtained a classi�cation of such identities. It is known
that minimal identities in quasigroups imply the orthogonality of some pairs of
their parastrophes.

It is shown in [11] and in the present paper that there exists precisely 153
orthogonal systems, consisting of three ternary quasigroups and the ternary selec-
tors, which admit at least one nontrivial paratopy. Moreover, the paratopies of
these systems imply 67 identities. In [8] each of these identities is reduced to one
of the following four types:

I. αA(βA, γA, δA) = E1,
II. αA(βA, γA,E1) = E2,
III. αA(βA,E1, E2) = γA(δA,E1, E3),
IV. αA(βA,E1, E2) = γA(δA,E1, E2),

where A is a ternary quasigroup operation and α, β, γ, δ ∈ S4. It is known that
some of the obtained identities imply the orthogonality of parastrophes of the
corresponding quasigroups ([3], [10], [11]).

Let Σ = {A1, A2, A3, E1, E2, E3}, where A1, A2, A3 are ternary quasigroups
de�ned on a set Q and E1, E2, E3 are the ternary selectors on Q, be an or-
thogonal system and let θ : Q3 → Q3, θ = (B1, B2, B3), be a mapping, where
B1, B2, B3 are ternary operations on Q. If θ is a paratopy of Σ, then Σθ =
{A1θ,A2θ,A3θ,E1θ,E2θ,E3θ} = {A1θ,A2θ,A3θ,B1, B2, B3} = Σ, which imply
{B1, B2, B3} ⊂ Σ, i.e. all paratopies of Σ are triplets of operations from Σ. We
study the necessary and su�cient conditions when a triplet of operations from Σ
de�nes a paratopy of Σ. As the ternary selectors E1, E2, E3 are �xed, we consider
the tuples containing all possible distributions of the ternary selectors in their posi-
tions. In [11] we examined the paratopies which components are three quasigroup



Orthogonal systems with nontrivial paratopies 135

operations, or two quasigroup operations and a ternary selector.
In the present article we continue the investigation of the paratopies of Σ,

and prove that there exist 105 such orthogonal systems, that admit at least one
nontrivial paratopy consisting of a ternary quasigroup and two ternary selectors,
or of three ternary selectors.

2. Paratopies consisting of two ternary selectors

and a ternary quasigroup operation

It is proved in this section that there exist precisely 87 orthogonal systems Σ =
{A1, A2, A3, E1, E2, E3}, consisting of three ternary quasigroup operations A1, A2,
A3 and three ternary selectors E1, E2, E3, admitting at least one paratopy, which
components are two ternary selectors and a ternary quasigroup operation.

Lemma 2.1. The triplet (E1, E2, A1) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A2 = A1(E1, E2, A1), A3 = π3A1 and A1(E1, E2, A1(E1, E2, A1)) = π3A1;
2. A3 = A1(E1, E2, A1), A2 = π3A1 and A1(E1, E2, A1(E1, E2, A1)) = π3A1;
3. A1 = π3A2(E1, E2, A3) = π3A3(E1, E2, A2).

Proof. Let the triplet (E1, E2, A1) be a paratopy of the system Σ. As E1θ =
E1, E2θ = E2, E3θ = A1, we obtain Σθ = {A1θ,A2θ,A3θ,E1, E2, A1}, that is
{A1θ,A2θ,A3θ} = {E3, A2, A3}.

1. IfA1θ = A2, A2θ = A3, A3θ = E3, then θ
2 = (E1, E2, A2), θ3 = (E1, E2, A3),

θ4 = ε. From A1θ = A2 it follows

A2 = A1(E1, E2, A1). (1)

Also, A1θ = A2 implies A1θ
3 = E3, i.e. A1(E1, E2, A3) = E3, so

A3 = π3A1. (2)

Moreover, from A1θ = A2 it follows A1θ
2 = A3, i.e. A1(E1, E2, A2) = A3. Using

(1) and (2) in the last equality, we get

A1(E1, E2, A1(E1, E2, A1)) = π3A1. (3)

Conversely, if (1), (2) and (3) hold, then (1) implies A1θ = A2. From (2) it
follows A3θ = π3A1(E1, E2, A1), hence A3θ = E3. Using (1) and (2) in (3), we get
A1(E1, E2, A2) = A3, hence A2 = π3A1(E1, E2, A3), which implies A2θ = π3A1.
Using (2) in the last equality, we obtain A2θ = A3.

2. If A1θ = A2, A2θ = E3, A3θ = A3, then A3θ = A3, i.e. A3(E1, E2, A1) = A3,
implies A1 = E3, which is a contradiction as A1 is a quasigroup.

3. If A1θ = A3, A2θ = A2, A3θ = E3, then A2θ = A2, i.e. A2(E1, E2, A1) = A2,
implies A1 = E3, which is a contradiction as A1 is a quasigroup.
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4. IfA1θ = A3, A2θ = E3, A3θ = A2, then θ
2 = (E1, E2, A3), θ3 = (E1, E2, A2),

θ4 = ε. From A1θ = A3 it follows

A3 = A1(E1, E2, A1). (4)

Also, A1θ = A3 implies A1θ
3 = E3, i.e. A1(E1, E2, A2) = E3, so

A2 = π3A1. (5)

Moreover, from A1θ = A3 it follows A1θ
2 = A2, i.e. A1(E1, E2, A3) = A2. Using

(4) and (5) in the last equality, we get

A1(E1, E2, A1(E1, E2, A1)) = π3A1. (6)

Conversely, if (4), (5) and (6) hold, then (4) implies A1θ = A3. From (5) it
follows A2θ = π3A1(E1, E2, A1), hence A2θ = E3. Using (4) and (5) in (6), we get
A1(E1, E2, A3) = A2, hence A3 = π3A1(E1, E2, A2), which implies A3θ = π3A1.
Using (5) in the last equality, we obtain A3θ = A2.

5. If A1θ = E3, A2θ = A2, A3θ = A3, then A2θ = A2, i.e. A2(E1, E2, A1) = A2,
implies A1 = E3, which is a contradiction as A1 is a quasigroup.

6. If A1θ = E3, A2θ = A3, A3θ = A2, then A2θ = A3 implies

A1 = π3A2(E1, E2, A3). (7)

From A3θ = A2 it follows

A1 = π3A3(E1, E2, A2). (8)

Conversely, if (7) and (8) hold, then (8) implies A3θ = A2. From (7) it follows
A2θ = A3 and A1θ = π3A2(E1, E2, A2), so A1θ = E3.

Lemma 2.2. The triplet (E2, E1, A1) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A2 = A1(E2, E1, A1), A3 = (12)π3A1 and A1(E1, E2, A1(E2, E1, A1)) = (12)π3A1;
2. A3 = A1(E2, E1, A1), A2 =(12)π3 A1 and A1(E1, E2, A1(E2, E1, A1)) = (12)π3A1;
3. A1 =π3 A2(E2, E1, A2) =π3 A3(E2, E1, A3);
4. A1(E2, E1, A1) = E3, A2(E2, E1, A1) = A3.

Proof. Let the triplet (E2, E1, A1) be a paratopy of the system Σ. As E1θ =
E2, E2θ = E1, E3θ = A1, we obtain Σθ = {A1θ,A2θ,A3θ, E2, E1, A1}, so there are
six possible cases:

1. IfA1θ = A2, A2θ = A3, A3θ = E3, then θ
2 = (E1, E2, A2), θ3 = (E2, E1, A3),

θ4 = ε. From A1θ = A2 it follows

A2 = A1(E2, E1, A1). (9)

Also, A1θ = A2 implies A1θ
3 = E3, that is A1(E2, E1, A3) = E3, so

A3 =(12)π3 A1. (10)
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Moreover, A1θ = A2 implies A1θ
2 = A3, i.e. A1(E1, E2, A2) = A3. Using (9) and

(10) in the last equality we get

A1(E1, E2, A1(E2, E1, A1)) =(12)π3 A1. (11)

Conversely, if (9), (10) and (11) hold, then from (9) it follows A1θ = A2 and
(10) implies A3θ =π3 A1(E1, E2, A1), so A3θ = E3. Using (9) and (10) in (11)
we get A1(E1, E2, A2) = A3, which implies A2 =π3 A1(E1, E2, A3), hence A2θ =
π3A1(E2, E1, E3). Using (10) in the last equality, we obtain A2θ = A3.

2. If A1θ = A2, A2θ = E3, A3θ = A3, then θ
2 = (E1, E2, A2). From A3θ = A3 it

follows A3θ
2 = A3, i.e. A3(E1, E2, A2) = A3, so A2 = E3, which is a contradiction,

as A2 is a quasigroup operation.
3. If A1θ = A3, A2θ = A2, A3θ = E3, then θ

2 = (E1, E2, A3). From A2θ = A2 it
follows A2θ

2 = A2, i.e. A2(E1, E2, A3) = A2, so A3 = E3, which is a contradiction,
as A3 is a quasigroup operation.

4. IfA1θ = A3, A2θ = E3, A3θ = A2, then θ
2 = (E1, E2, A3), θ3 = (E2, E1, A2),

θ4 = ε. From A1θ = A3 it follows

A3 = A1(E2, E1, A1). (12)

Also, A1θ = A3 implies A1θ
3 = E3, i.e. A1(E2, E1, A2) = E3, so

A2 =(12)π3 A1. (13)

Moreover, A1θ = A3 implies A1θ
2 = A2, i.e. A1(E1, E2, A3) = A2. Using (12) and

(13) in the last equality we get

A1(E1, E2, A1(E2, E1, A1)) =(12)π3 A1. (14)

Conversely, if (12), (13) and (14) hold, then from (12) it follows A1θ = A3 and
(13) implies A2θ =π3 A1(E1, E2, A1), so A2θ = E3. Using (12) and (13) in (14) we
get A1(E1, E2, A3) = A2, which implies A3 =π3 A1(E1, E2, A2), therefore A3θ =
π3A1(E2, E1, E3). Using (13) in the last equality, we obtain A3θ = A2.

5. If A1θ = E3, A2θ = A2, A3θ = A3, then θ
2 = ε. From A2θ = A2 it follows

that
A1 =π3 A2(E2, E1, A2). (15)

From A3θ = A3 it follows

A1 =π3 A3(E2, E1, A3). (16)

Conversely, if (15) and (16) hold, then (15) implies A2θ = A2 and (16) implies
A3θ = A3. Also, from (16) we get A1θ = π3A3(E1, E2, A3), so A1θ = E3.

6. If A1θ = E3, A2θ = A3, A3θ = A2, then θ
2 = ε. From A1θ = E3 it follows

A1(E2, E1, A1) = E3, (17)
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and A2θ = A3 can be written in the form

A3 = A2(E2, E1, A1). (18)

Conversely, if (17) and (18) hold, then (17) implies A1θ = E3 and (18) implies
A2θ = A3. Also, from (18) it follows A3θ = A2(E1, E2, E3), i.e. A3θ = A2.

Lemma 2.3. The triplet (E1, A1, E2) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A2 = A1(E1, A1, E2), A3 =(23)π3 A1 and

A1(E1,
(23)π3 A1, A1(E1, A1, E2)) = E3;

2. A1 =π2 A3(E1, A3, E2), A2 =π3 A3(E1, E3, A3) and

A3(E1,
π3 A3(E1, E3, A3),π2 A3(E1, A3, E2)) = A3;

3. A1 =π2 A2(E1, A2, E2), A3 =π3 A2(E1, E3, A2) and

A2(E1,
π3 A2(E1, E3, A2),π2 A2(E1, A2, E2)) = A2;

4. A2 =(23)π3 A1, A3 = A1(E1, A1, E2) and

A1(E1,
(23)π3 A1, A1(E1, A1, E2)) = E3;

5. A1 =(23)π2 A1 =π2 A2(E1, A2, E2) =π2 A3(E1, A3, E2).

Proof. Let the triplet (E1, A1, E2) be a paratopy of the system Σ. As E1θ =
E1, E2θ = A1, E3θ = E2, we obtain Σθ = {A1θ,A2θ,A3θ,E3, A2, A3}, that is
{A1θ,A2θ,A3θ} = {E3, A2, A3}.

1. IfA1θ = A2, A2θ = A3, A3θ = E3, then θ
2 = (E1, A2, A1), θ3 = (E1, A3, A2),

θ4 = (E1, E3, A3), θ5 = ε. From A1θ = A2 it follows

A2 = A1(E1, A1, E2). (19)

Also, A1θ = A2 implies A1θ
4 = E2, i.e. A1(E1, E3, A3) = E2, so

A3 = (23)π3A1. (20)

Moreover, A1θ = A2 implies A1θ
3 = E3, i.e. A1(E1, A3, A2) = E3. Using (19) and

(20) in the last equality, we get

A1(E1,
(23)π3A1, A1(E1, A1, E2)) = E3. (21)

Conversely, if (19), (20) and (21) hold, then (19) implies A1θ = A2 and (20)
implies A3θ = π3A1(E1, E2, A1), so A3θ = E3. Using (19) and (20) in (21), we
get A1(E1, A3, A2) = E3, which implies A2 = π3A1(E1, A3, E3), hence A2θ =
π3A1(E1, E3, E2). Using (20) in the last equality, we obtain A2θ = A3.

2. IfA1θ = A2, A2θ = E3, A3θ = A3, then θ
2 = (E1, A2, A1), θ3 = (E1, E3, A2),

θ4 = ε. From A3θ = A3 it follows

A1 = π2A3(E1, A3, E2). (22)

Also, from A3θ = A3 it follows A3θ
3 = A3, i.e. A3(E1, E3, A2) = A3, so

A2 = π3A3(E1, E3, A3). (23)
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Moreover, A3θ = A3 implies A3θ
2 = A3, i.e. A3(E1, A2, A1) = A3, Using (22) and

(23) in the last equality, we obtain

A3(E1,
π3A3(E1, E3, A3), π2A3(E1, A3, E2)) = A3. (24)

Conversely, if (22), (23) and (24) hold, then (22) implies A3θ = A3 and (23)
implies A2θ = π3A3(E1, E2, A3), so A2θ = E3. Using (22) and (23) in (24), we
get A3(E1, A2, A1) = A3, which implies A1 = π3A3(E1, A2, A3), hence A1θ =
π3A3(E1, E3, A3). Using (23) in the last equality, we get A1θ = A2.

3. IfA1θ = A3, A2θ = A2, A3θ = E3, then θ
2 = (E1, A3, A1), θ3 = (E1, E3, A3),

θ4 = ε. From A2θ = A2 it follows

A1 = π2A2(E1, A2, E2). (25)

Also, from A2θ = A2 it follows A2θ
3 = A2, i.e. A2(E1, E3, A3) = A2, so

A3 = π3A2(E1, E3, A2). (26)

Moreover, A2θ = A2 implies A2θ
2 = A2, i.e. A3(E1, A3, A1) = A2. Using (25) and

(26) in the last equality, we obtain

A2(E1,
π3A2(E1, E3, A2), π2A2(E1, A2, E2)) = A2. (27)

Conversely, if (25), (26) and (27) hold, then (25) implies A2θ = A2 and (26)
implies A3θ = π3A2(E1, E2, A2), so A3θ = E3. Using (25) and (26) in (27), we
get A2(E1, A3, A1) = A2, which implies A1 = π3A2(E1, A3, A2), hence A1θ =
π3A2(E1, E3, A2). Using (26) in the last equality, we get A1θ = A3.

4. IfA1θ = A3, A2θ = E3, A3θ = A2, then θ
2 = (E1, A3, A1), θ3 = (E1, A2, A3),

θ4 = (E1, E3, A2), θ5 = ε. From A1θ = A3 it follows

A3 = A1(E1, A1, E2). (28)

Also, A1θ = A3 implies A1θ
4 = E2, i.e. A1(E1, E3, A2) = E2, so

A2 = (23)π3A1. (29)

Moreover, A1θ = A3 implies A1θ
3 = E3, i.e. A1(E1, A2, A3) = E3. Using (28) and

(29) in the last equality, we obtain

A1(E1,
(23)π3A1, A1(E1, A1, E2)) = E3. (30)

Conversely, if (28), (29) and (30) hold, then (28) implies A1θ = A3 and (29)
implies A2θ = π3A1(E1, E2, A1), so A2θ = E3. Using (28) and (29) in (30), we
get A1(E1, A2, A3) = E3, which implies A3 = π3A1(E1, A2, E3), hence A3θ =
π3A1(E1, E3, E2). Using (29) in the last equality, we get A3θ = A2.

5. If A1θ = E3, A2θ = A2, A3θ = A3, from A1θ = E3 it follows

A1 = (23)π1A1. (31)
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The equality A2θ = A2 implies

A1 = π2A2(E1, A2, E2). (32)

From A3θ = A3 it follows

A1 = π2A3(E1, A3, E2). (33)

Conversely, if (31), (32) and (33) hold, then (31) implies A1θ = E3, from (32) it
follows A2θ = A2 and (33) implies A3θ = A3.

6. If A1θ = E3, A2θ = A3, A3θ = A2, then θ
2 = (E1, E3, A1), θ3 = ε. Remark

that A2 = A2θ
3 = A3θ

2 = A2θ = A3, which is a contradiction, as Σ is an
orthogonal system.

Lemma 2.4. The triplet (E2, A1, E1) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A1 =(132)π2 A3, A2 = A3(E3, E1, A3) and
(132)π2A3(E2,

(132)π2 A3, E1) = A3(E3, E1, A3);
2. A1 =π2 A3(E2, A3, E1), A2 =π3 A3(E3, E1, A3) and

π2A3(π3A3(E3, E1, A3), A3,
π2 A3(E2, A3, E1)) = E3;

3. A1 =π2 A2(E2, A2, E1), A3 =π3 A2(E3, E1, A2) and
π2A2(π3A2(E3, E1, A2), A2,

π2 A2(E2, A2, E1)) = E3;
4. A1 =(132)π2 A2, A3 = A2(E3, E1, A2) and

A2(A2, E3, A2(E3, E1, A2)) = (132)π2A2;
5. A1 =π2 A2(E2, A2, E1) =π2 A3(E2, A3, E1) and A1 = (132)π2A1;
6. A1 =π1 A2(A2, E3, E2), A3 = A2(E3, E1,

π1 A2(A2, E3, E2)) and

A1 = (132)π2A1.

Proof. Let the triplet (E2, A1, E1) be a paratopy of the system Σ. As E1θ =
E2, E2θ = A1, E3θ = E1, we obtain Σθ = {A1θ,A2θ,A3θ, E2, A1, E1}, that is
{A1θ,A2θ,A3θ} = {E3, A2, A3}.

1. IfA1θ = A2, A2θ = A3, A3θ = E3, then θ
2 = (A1, A2, E2), θ3 = (A2, A3, A1),

θ4 = (A3, E3, A2), θ5 = (E3, E1, A3), θ6 = ε. From A3θ = E3 it follows

A1 =(132)π2 A3. (34)

The equality A2θ = A3 implies A2θ
6 = A3θ

5, so

A2 = A3(E3, E1, A3). (35)

Using (34) and (35) in A1θ = A2, we get

(132)π2A3(E2,
(132)π2 A3, E1) = A3(E3, E1, A3). (36)

Conversely, if (34), (35) and (36) hold, then from (34) it follows A3θ = E3.
The equality (35) implies A2θ = A3. Using (34) and (35) in (36), we obtain
A1(E2, A1, E1) = A2, which implies A1θ = A2.
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2. IfA1θ = A2, A2θ = E3, A3θ = A3, then θ
2 = (A1, A2, E2), θ3 = (A2, E3, A1),

θ4 = (E3, E1, A2), θ5 = ε. From A3θ = A3 it follows

A1 = π2A3(E2, A3, E1). (37)

Also, A3θ = A3 implies A3θ
4 = A3, i.e. A3(E3, E1, A2) = A3, so

A2 =π3 A3(E3, E1, A3). (38)

The equality A1θ = A2 implies A1θ
2 = E3. From (37) and A1θ

2 = E3, we get
π2A3(A2, A3, A1) = E3 so, using (37) and (38) in the last equality, we obtain

π2A3(π3A3(E3, E1, A3), A3,
π2 A3(E2, A3, E1)) = E3. (39)

Conversely, if (37), (38) and (39) hold, then from (37) it follows A3θ = A3. The
equality (38) implies A2θ = π3A3(E1, E2, A3), so A2θ = E3. Using (37) and (38)
in (39), we get π2A3(A2, A3, A1) = E3, which implies A1 = π3A3(A2, E3, A3), so
A1θ =π3 A3(E3, E1, A3). Using (38) in the last equality, we obtain A1θ = A2.

3. IfA1θ = A3, A2θ = A2, A3θ = E3, then θ
2 = (A1, A3, E2), θ3 = (A3, E3, A1),

θ4 = (E3, E1, A3), θ5 = ε. From A2θ = A2 it follows

A1 =π2 A2(E2, A2, E1). (40)

Also, A2θ = A2 implies A2θ
4 = A2, i.e. A2(E3, E1, A3) = A2, so

A3 =π3 A2(E3, E1, A2). (41)

The equality A1θ = A3 implies A1θ
2 = E3 so, using (40) in A1θ

2 = E3, we get
π2A2(A3, A2, A1) = E3. Now, from (40), (41) and the last equality, we obtain

π2A2(π3A2(E3, E1, A2), A2,
π2 A2(E2, A2, E1)) = E3. (42)

Conversely, if (40), (41) and (42) hold, then from (40) it follows A2θ = A2. The
equality (41) implies A3θ =π3 A2(E1, E2, A2), so A3θ = E3. Using (40) and (41)
in (42), we get π2A2(A3, A2, A1) = E3, which implies A1 = π3A2(A3, E3, A2), so
A1θ =π3 A2(E3, E1, A2). Using (41) in the last equality, we obtain A1θ = A3.

4. IfA1θ = A3, A2θ = E3, A3θ = A2, then θ
2 = (A1, A3, E2), θ3 = (A3, A2, A1),

θ4 = (A2, E3, A3), θ5 = (E3, E1, A2), θ6 = ε. From A2θ = E3 it follows

A1 =(132)π2 A2. (43)

The equality A3θ = A2 implies A3θ
6 = A2θ

5, so

A3 = A2(E3, E1, A2). (44)

From A1θ = A3 it follows A1θ
6 = A2θ

4, i.e. A1 = A2(A2, E3, A3), using (43) and
(44) in the last equality, we get

A2(A2, E3, A2(E3, E1, A2)) =(132)π2 A2. (45)
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Conversely, if (43), (44) and (45) hold, then from (43) it follows A2θ = E3. The
equality (44) implies A3θ = A2. Using (43) and (44) in (45), we obtain A1 =
A2(A2, E3, A3), which implies A1θ = A2(E3, E1, A2) and using (44) in the last
equality, we get A1θ = A3.

5. If A1θ = E3, A2θ = A2, A3θ = A3, then from A1θ = E2 it follows

A1 = (132)π2A1. (46)

The equality A2θ = A2 implies

A1 =π2 A2(E2, A2, E1). (47)

From A3θ = A3 it follows

A1 =π2 A3(E2, A3, E1). (48)

Conversely, if (46), (47) and (48) hold, then from (46) and (47) it follows A1θ = E3

and A2θ = A2, respectively, and (48) implies A3θ = A3.
6. IfA1θ = E3, A2θ = A3, A3θ = A2, then θ

2 = (A1, E3, E2), θ3 = (E3, E1, A1),
θ4 = ε. From A1θ = E3 it follows

A1 = (132)π2A1. (49)

From A2θ = A3 it follows A2θ
2 = A2, i.e. A2(A1, E3, E2) = A2, so

A1 =π1 A2(A2, E3, E2). (50)

The equality A3θ = A2 implies A3θ
4 = A2θ

3, so A3 = A2(E3, E1, A1). Using (50)
in the last equality, we get

A3 = A2(E3, E1,
π1 A2(A2, E3, E2)). (51)

Conversely, if (49), (50) and (51) hold, then (49) implies A1θ = E3, therefore θ
2 =

(A1, E3, E2), θ3 = (E3, E1, A1) and θ4 = ε. From (50) it follows A2(A1, E3, E2) =
A2, so A2θ

2 = A2, which implies A2θ
3 = A2θ. Using (50) in (51), we obtain

A3 = A2(E3, E1, A1), so A3 = A2θ
3. From A2θ

3 = A2θ. and A3 = A2θ
3 it follows

A2θ = A3. The equality A3 = A2θ
3 also implies A3θ = A2.

Lemma 2.5. The triplet (A1, E1, E2) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A3 =(132)π1 A1, A2 = A1(A1, E1, E2) and

A1(E3,
(132)π1 A1, A1(A1, E1, E2)) = E2;

2. A1 =π1 A3(A3, E1, E2), A2 =π3 A3(E2, E3, A3) and

A3(E3,
π3 A3(E2, E3, A3),π1 A3(A3, E1, E2)) = A3;

3. A1 =π1 A2(A2, E1, E2), A3 =π3 A2(E2, E3, A2) and

A2(E3,
π3 A2(E2, E3, A2),π1 A2(A2, E1, E2)) = A2;

4. A2 =(132)π3 A1, A3 = A1(A1, E1, E2) and

A1(E3,
(132)π3 A1, A1(A1, E1, E2)) = E2;

5. A1 =π1 A2(A2, E1, E2) =π1 A3(A3, E1, E2) and A1 = (123)π1A1;
6. A1 = π2A2(E3, A2, E1), A3 = A2(π2A2(E3, A2, E1), E1, E2) and A1 = (123)π1A1.
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The proof is analogous to that of Lemma 2.4.

Lemma 2.6. The triplet (A1, E2, E1) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A2 = A1(A1, E2, E1), A3 =(13)π3 A1 and

A1((13)π3A1, E2, A1(A1, E2, E1)) = E1;
2. A1 =π1 A3(A3, E2, E1), A2 =π3 A3(E3, E2, A3) and

A3(π3A3(E3, E2, A3), E2,
π1 A3(A3, E2, E1)) = A3;

3. A1 =π1 A2(A2, E2, E1), A3 =π3 A2(E3, E2, A2) and

A2(π3A2(E3, E2, A2), E2,
π1 A2(A2, E2, E1)) = A2;

4. A1 =(13)π1 A1 =π1 A2(A2, E2, E1) =π1 A3(A3, E2, E1);
5. A3 = A1(A1, E2, E1), A2 =(13)π3 A1 and

A1((13)π3A1, E2, A1(A1, E2, E1)) = E3.

The proof is analogous to that of Lemma 2.3.

Lemma 2.7. The triplet (E1, E3, A1) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A2 = A1(E1, E3, A1), A3 =(23)π2 A1 and

A1(E1, A1(E1, E3, A1),(23)π2 A1) = E2;
2. A1 = π3A3(E1, E3, A3), A2 = π2A3(E1, A3, E2) and

A3(E1,
π3A3(E1, E3, A3), π2A3(E1, A3, E2)) = A3;

3. A1 = π3A2(E1, E3, A2), A3 = π2A2(E1, A2, E2) and

A2(E1,
π3A2(E1, E3, A2), π2A2(E1, A2, E2)) = A2;

4. A3 = A1(E1, E3, A1), A2 =(23)π2 A1 and

A1(E1, A1(E1, E3, A1),(23)π2 A1) = E2;
5. A1 = π3A2(E1, E3, A2) = π3A3(E1, E3, A3) and A1 = (23)π3A1.

The proof is analogous to that of Lemma 2.3.

Lemma 2.8. The triplet (E3, E1, A1) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A1 =(123)π3 A3, A2 = A3(E2, A3, E1) and

A3(A3, A3(E2, A3, E1), E2) =(123)π3 A3;
2. A1 = π3A3(E3, E1, A3), A2 = π2A3(E2, A3, E1) and

A3(π2A3(E2, A3, E1),π3 A3(E3, E1, A3), E2) = A3;
3. A1 =π3 A2(E3, E1, A2), A3 =π2 A2(E2, A2, E1) and

A2(π2A2(E2, A2, E1),π3 A2(E3, E1, A2), E2) = A2;
4. A1 =(123)π3 A2, A3 = A2(E2, A2, E1) and

A2(A2, A2(E2, A2, E1), E2) = (123)π3A2;
5. A1(E3, E1, A1) = E2, A1 =π3 A2(E3, E1, A2) =π3 A3(E3, E1, A3);
6. A1 =π1 A2(A2, E3, E2), A3 = A2(E2,

π1 A2(A2, E3, E2), E1) and

A1 = (123)π3A1.

The proof is analogous to that of Lemma 2.4.
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Lemma 2.9. The triplet (E1, A1, E3) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A2 = A1(E1, A1, E3), A3 = π2A1 and

A1(E1, A1(E1, A1, E3), E3) = π2A1;
2. A3 = A1(E1, A1, E3), A2 = π2A1 and

A1(E1, A1(E1, A1, E3), E3) = π2A1;
3. A1 = π2A2(E1, A3, E3) = π2A3(E1, A2, E3).

The proof is analogous to that of Lemma 2.1.

Lemma 2.10. The triplet (E3, A1, E1) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A3 =(13)π2 A1, A2 = A1(E3, A1, E1) and

A1(E1, A1(E3, A1, E1), E3) = (13)π2A1;
2. A3 = A1(E3, A1, E1), A2 =(13)π2 A1 and

A1(E1, A1(E3, A1, E1), E3) = (13)π2A1;
3. A1 =π2 A2(E3, A2, E1) = π2A3(E3, A3, E1);
4. A1(E3, A1, E1) = E2, A3 = A2(E3, A1, E1).

The proof is analogous to that of Lemma 2.2.

Lemma 2.11. The triplet (A1, E1, E3) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A2 = A1(A1, E1, E3), A3 = (12)π2A1 and

A1((12)π2A1, A1(A1, E1, E3), E3) = E2;
2. A1 = π1A3(A3, E1, E3), A2 = π2A3(E2, A3, E3) and

A3(π2A3(E2, A3, E3), π1A3(A3, E1, E3), E3) = A3;
3. A1 = π1A2(A2, E1, E3), A3 = π2A2(E2, A2, E3) and

A2(π2A2(E2, A2, E3), π1A2(A2, E1, E3), E3) = A2;
4. A3 = A1(A1, E1, E3), A2 = (12)π2A1 and

A1((12)π2A1, A1(A1, E1, E3), E3) = E2;
5. A1 = π1A2(A2, E1, E3) = π1A3(A3, E1, E3) and A1 = (12)π1A1.

The proof is analogous to that of Lemma 2.3.

Lemma 2.12. The triplet (A1, E3, E1) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A2 = A1(A1, E3, E1), A3 =(123)π2 A1 and

A1(E2, A1(A1, E3, E1),(123)π2 A1) = E3;
2. A1 =π1 A3(A3, E3, E1), A2 =π2 A3(E3, A3, E2) and

A3(E2,
π1 A3(A3, E3, E1),π2 A3(E3, A3, E2)) = A3;

3. A1 =π1 A2(A2, E3, E1), A3 =π2 A2(E3, A2, E2) and

A2(E2,
π1 A2(A2, E3, E1),π2 A2(E3, A2, E2)) = A2;

4. A2 =(123)π2 A1, A3 = A1(A1, E3, E1) and

A1(E2, A1(A1, E3, E1),(123)π2 A1) = E3;
5. A1 =π1 A2(A2, E3, E1) =π1 A3(A3, E3, E1) and A1 = (132)π1A1;
6. A1 =π3 A2(E2, E1, A2), A3 = A2(E3,

π3 A2(E2, E1, A2), E2) and
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A1 = (132)π1A1.

The proof is similar to the proof of Lemma 2.4.

Lemma 2.13. The triplet (E2, E3, A1) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A2 = A1(E2, E3, A1), A3 = (123)π1A1 and

A1(A1(E2, E3, A1), (123)π1A1, E1) = E2;
2. A1 = π3A3(E2, E3, A3), A2 = π1A3(A3, E1, E2) and

A3(π3A3(E2, E3, A3), π1A3(A3, E1, E2), E1) = A3;
3. A1 = π3A2(E2, E3, A2), A3 = π1A2(A2, E1, E2) and

A2(π3A2(E2, E3, A2), π1A2(A2, E1, E2), E1) = A2;
4. A3 = A1(E2, E3, A1), A2 = (123)π1A1 and

A1(A1(E2, E3, A1), (123)π1A1, E1) = E2;
5. A1 = π3A2(E2, E3, A2) = π3A3(E2, E3, A3) and A1 = (132)π3A1;
6. A1 = π2A2(E3, A2, E1), A3 = A2(E2, E3,

π2A2(E3, A2, E1)) and

A1 = (132)π3A1.

The proof is similar to the proof of Lemma ??.

Lemma 2.14. The triplet (E3, E2, A1) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A2 = A1(E3, E2, A1), A3 =(123)π1 A1 and

A1(A1(E3, E2, A1), E2,
(123)π1 A1) = E1;

2. A1 =π3 A3(E3, E2, A3), A2 =π1 A3(A3, E2, E1) and

A3(π3A3(E3, E2, A3), E2,
π1 A3(A3, E2, E1)) = A3;

3. A1 =π3 A2(E3, E2, A2), A3 =π1 A2(A2, E2, E1) and

A2(π3A2(E3, E2, A2), E2,
π1 A2(A2, E2, E1)) = A2;

4. A1 =(123)π3 A2, A3 = A2(A2, E2, E1) and

A2(A2(A2, E2, E1)) =(123)π3 A2;
5. A1(E3, E2, A1) = E1, A1 =π3 A2(E3, E2, A2) =π3 A3(E3, E2, A3).

The proof is similar to the proof of Lemma 2.3.

Lemma 2.15. The triplet (E2, A1, E3) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A2 = A1(E2, A1, E3), A3 = (12)π1A1 and

A1(A1(E2, A1, E3), (12)π1A1, E3) = E1;
2. A1 = π2A3(E2, A3, E3), A2 = π1A3(A3, E1, E3) and

A3(π2A3(E2, A3, E3), π1A3(A3, E1, E3), E3) = A3;
3. A1 = π1A2(E2, A2, E3), A3 = π1A2(A2, E1, E3) and

A2(π2A2(E2, A2, E3), π1A2(A2, E1, E3), E3) = A2;
4. A3 = A1(E2, A1, E3), A2 = (12)π1A1 and

A1(A1(E2, A1, E3), (12)π1A1, E3) = E1;
5. A1 = π2A2(E2, A2, E3) = π2A3(E2, A3, E3) and A1 = (12)π2A1.

The proof is similar to the proof of Lemma 2.3.
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Lemma 2.16. The triplet (E3, A1, E2) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A3 =(132)π1 A1, A2 = A1(E3, A1, E2) and

A1(A1(E3, A1, E2), E1,
(132)π1 A1) = E3;

2. A1 =π2 A3(E3, A3, E2), A2 =π1 A3(A3, E3, E1) and

A3(π2A3(E3, A3, E2), E1,
π1 A3(A3, E3, E1)) = A3;

3. A1 =π2 A2(E3, A2, E2), A3 =π1 A2(A2, E3, E1) and

A2(π2A2(E3, A2, E2), E1,
π1 A2(A2, E3, E1)) = A2;

4. A2 =(132)π1 A1, A3 = A1(E3, A1, E2) and

A1(A1(E3, A1, E2), E1,
(132)π1 A1) = E3;

5. A1 =π2 A2(E3, A2, E2) =π2 A3(E3, A3, E2) and A1 = (132)π2A1;
6. A1 =π3 A2(E2, E1, A2), A3 = A2(π3A2(E2, E1, A2), E3, E1) and

A1 = (132)π2A1.

The proof is similar to the proof of Lemma 2.4.

Lemma 2.17. The triplet (A1, E2, E3) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A2 = A1(A1, E2, E3), A3 = π1A1 and

A1(A1(A1, E2, E3), E2, E3) = π1A1;
2. A3 = A1(A1, E2, E3), A2 = π1A1 and

A1(A1(A1, E2, E3), E2, E3) = π1A1;
3. A1 = π1A2(A3, E2, E3) = π1A3(A2, E2, E3).

The proof is similar to the proof of Lemma 2.1.

Lemma 2.18. The triplet (A1, E3, E2) is a paratopy of the system Σ if and only

if one of the following conditions holds:

1. A3 =(23)π1 A1, A2 = A1(A1, E3, E2) and

A1(A1(A1, E3, E2), E2, E3) = (23)π1A1;
2. A3 = A1(A1, E3, E2), A2 =(23)π1 A1 and

A1(A1(A1, E3, E2), E2, E3) = (23)π1A1;
3. A1 =π1 A2(A2, E3, E2) =π1 A3(A3, E3, E2);
4. A3 = A2(A1, E3, E2) and A1(A1, E3, E2) = E1.

The proof is similar to the proof of Lemma 2.2.

From Lemmas 2.1− 2.18 we get the following theorem.

Theorem 1. There exist precisely 87 orthogonal systems consisting of three ternary

quasigroup operations and the ternary selectors, that admit at least one nontrivial

paratopy, which components are two ternary selectors and a ternary quasigroup

operation.
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3. Paratopies consisting of three ternary selectors

In the third section it is shown that there exist precisely 18 orthogonal systems
Σ = {A1, A2, A3, E1, E2, E3}, consisting of three ternary quasigroup operations
A1, A2, A3 and the ternary selectors, which admit at least one nontrivial paratopy,
which components are three ternary selectors.

Lemma 3.1. The triplet (E1, E3, E2) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A1 = (23)A1, A2 = (23)A2, A3 = (23)A3;
2. A3 = (23)A2, A1 = (23)A1;
3. A2 = (23)A1, A3 = (23)A3;
4. A3 = (23)A1, A2 = (23)A2.

Proof. Let the triplet (E1, E3, E2) be a paratopy of the system Σ. As E1θ =
E1, E2θ = E3, E3θ = E2, we obtain Σθ = {A1θ,A2θ,A3θ,E1, E2, E3}, that is
{A1θ,A2θ,A3θ} = {A1, A2, A3}.

1. If A1θ = A1, A2θ = A2, A3θ = A3, then A1θ = A1 implies

A1 = (23)A1. (52)

From A2θ = A2 it follows
A2 = (23)A2. (53)

The equality A3θ = A3 implies

A3 = (23)A3. (54)

Conversely, if (52), (53) and (54) hold, then (52) implies A1θ = A1, from (53) it
follows A2θ = A2 and (54) implies A3θ = A3.

2. If A1θ = A1, A2θ = A3, A3θ = A2, then A1θ = A1 implies

A1 = (23)A1. (55)

From A2θ = A3 it follows
A3 = (23)A2. (56)

Conversely, if (55) and (56) hold, then (55) implies A1θ = A1 and from (56) it
follows A2θ = A3. Also, (56) implies A3θ = A2.

3. If A1θ = A2, A2θ = A1, A3θ = A3, then A1θ = A2 implies

A2 = (23)A1. (57)

From A3θ = A3 it follows
A3 = (23)A3. (58)

Conversely, if (57) and (58) hold, then (57) implies A1θ = A2 and from (58) it
follows A3θ = A3. Also, (57) implies A2θ = A1.
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4. If A1θ = A2, A2θ = A3, A3θ = A1, then θ
2 = ε. The equalities A1θ = A2

and A2θ = A3 imply A1 = A1θ
2 = A2θ = A3, which is a contradiction, as Σ is an

orthogonal system of quasigroups.
5. If A1θ = A3, A2θ = A2, A3θ = A1, then A2θ = A2 implies

A2 = (23)A2. (59)

From A1θ = A3 it follows

A3 = (23)A1. (60)

Conversely, if (59) and (60) hold, then (59) implies A2θ = A2 and from (60) it
follows A1θ = A3. Also, (59) implies A3θ = A1.

6. If A1θ = A3, A2θ = A1, A3θ = A2, then θ
2 = ε. The equalities A1θ = A3

and A3θ = A2 imply A1 = A1θ
2 = A3θ = A2, which is a contradiction, as Σ is an

orthogonal system of quasigroups.

Lemma 3.2. The triplet (E2, E1, E3) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A1 = (12)A1, A2 = (12)A2, A3 = (12)A3;
2. A3 = (12)A2, A1 = (12)A1;
3. A2 = (12)A1, A3 = (12)A3;
4. A3 = (12)A1, A2 = (12)A2.

The proof is similar to the proof of Lemma 3.1.

Lemma 3.3. The triplet (E3, E2, E1) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A1 = (13)A1, A2 = (13)A2, A3 = (13)A3;
2. A3 = (13)A2, A1 = (13)A1;
3. A2 = (13)A1, A3 = (13)A3;
4. A3 = (13)A1, A2 = (13)A2.

The proof is similar to the proof of Lemma 3.1.

Lemma 3.4. The triplet (E2, E3, E1) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A1 = (132)A1, A2 = (132)A2, A3 = (132)A3;
2. A2 = (132)A1, A3 = (123)A1;
3. A3 = (132)A1, A2 = (123)A1.

Proof. Let the triplet (E2, E3, E1) be a paratopy of the system Σ. As E1θ =
E2, E2θ = E3, E3θ = E1, we obtain Σθ = {A1θ,A2θ,A3θ,E1, E2, E3}, that is
{A1θ,A2θ,A3θ} = {A1, A2, A3}.

1. If A1θ = A1, A2θ = A2, A3θ = A3, then then A1θ = A1 implies

A1 = (132)A1. (61)
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From A2θ = A2 it follows
A2 = (132)A2. (62)

The equality A3θ = A3 implies

A3 = (132)A3. (63)

Conversely, if (61), (62) and (63) hold, then (61) implies A1θ = A1, from (61) it
follows A2θ = A2 and (61) implies A3θ = A3.

2. If A1θ = A1, A2θ = A3, A3θ = A2, then θ2 = (E3, E1, E2), θ3 = ε. The
equalities A2θ = A3 and A3θ = A2 imply A2 = A2θ

3 = A3θ
2 = A2θ = A3, which

is a contradiction, as Σ is an orthogonal system of quasigroup.
3. If A1θ = A2, A2θ = A1, A3θ = A3, then θ2 = (E3, E1, E2), θ3 = ε. The

equalities A1θ = A2 and A2θ = A1 imply A1 = A1θ
3 = A2θ

2 = A1θ = A2, which
is a contradiction, as Σ is an orthogonal system of quasigroup.

4. If A1θ = A2, A2θ = A3, A3θ = A1, then A1θ = A2 implies

A2 = (132)A1. (64)

From A2θ = A3 it follows A3 = (132)A2. Using (64) in the last equality, we get

A3 = (123)A1. (65)

Conversely, if (64) and (65) hold, then (64) implies A1θ = A2 and from (65)
it follows A3θ = A1. Also, (64) implies A2θ = (123)A1. Using (65) in the last
equality, we get A2θ = A3.

5. If A1θ = A3, A2θ = A1, A3θ = A2, then A1θ = A3 implies

A3 = (132)A1. (66)

From A3θ = A2 it follows A2 = (132)A3. Using (66) in the last equality, we get

A2 = (123)A1. (67)

Conversely, if (66) and (67) hold, then (66) implies A1θ = A3 and from (67)
it follows A2θ = A1. Also, (66) implies A3θ = (123)A1. Using (67) in the last
equality, we get A3θ = A2.

6. If A1θ = A3, A2θ = A2, A3θ = A1, then θ2 = (E3, E1, E2), θ3 = ε. The
equalities A1θ = A3 and A3θ = A1 imply A1 = A1θ

3 = A3θ
2 = A1θ = A3, which

is a contradiction, as Σ is an orthogonal system of quasigroup.

Lemma 3.5. The triplet (E3, E1, E2) is a paratopy of the system Σ if and only if

one of the following conditions holds:

1. A1 = (123)A1, A2 = (123)A2, A3 = (123)A3;
2. A2 = (123)A1, A3 = (132)A1;
3. A3 = (123)A1, A2 = (132)A1.
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The proof is similar to the proof of Lemma 3.4.

From Lemmas 3.1− 3.5 we obtain the following theorem.

Theorem 2. There exist precisely 18 orthogonal systems, consisting of three

ternary quasigroup operations and the ternary selectors, that admit at least one

nontrivial paratopy, which components are three ternary selectors.
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A note on a class of gyrogroups

Marius T rn uceanu

Abstract. We give a necessary and su�cient condition for a gyrogroup to be gyrocommutative.

We also prove that under a suitable assumption two �nite groups central by a 2-Engel group are

isomorphic if and only if their associated gyrogroups are isomorphic.

1. Introduction

Gyrogroups are suitable generalization of groups, whose origin is described in
[7, 8]. They share remarkable analogies with groups. In fact, every group forms a
gyrogroup under the same operation. Many of classical theorems in group theory
also hold for gyrogroups, including the Lagrange theorem [4], the fundamental
isomorphism theorems [5], and the Cayley theorem [5] (for all these theorems
see also [3]). Gyrogroup actions and related results, such as the orbit-stabilizer
theorem, the orbit decomposition theorem, and the Burnside lemma have been
studied in [6].

The present note deals with a connection between groups and gyrogroups,
namely with the gyrogroup associated to any group central by a 2-Engel group
(see [1]). We determine conditions for such a gyrogroup to be gyrocommutative
and for such two gyrogroups to be isomorphic. An interesting conservative functor
between a subcategory of groups and the category of gyrogroups is constructed,
as well.

Recall that a groupoid (G,�) is called a gyrogroup if its binary operation
satis�es the following axioms:

1. There is an element e ∈ G such that e� a = a for all a ∈ G.
2. For every a ∈ G, there is an element a′ ∈ G such that a′ � a = e.

3. For all a, b ∈ G, there is an automorphism gyr[a, b] ∈ Aut(G,�) such that

a� (b� c) = (a� b)� gyr[a, b](c) (left gyroassociative law)
for all c ∈ G.

4. For all a, b ∈ G, gyr[a� b, b] = gyr[a, b]. (left loop property)

Moreover, if
a� b = gyr[a, b](b� a) (gyrocommutative law)

for all a, b ∈ G, then (G,�) is called a gyrocommutative gyrogroup.

2010 Mathematics Subject Classi�cation: 20F99, 20D99, 20N05.

Keywords: gyrogroup, gyrocommutative gyrogroup, gyrogroup isomorphism.
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We remark that the axioms in the above de�nition imply the right counterparts.
In particular, any gyrogroup has a unique two-sided identity e, and an element a
of the gyrogroup has a unique two-sided inverse a′. Given two elements a, b of a
gyrogroup G, the map gyr[a, b] is called the gyroautomorphism generated by a and

b. By Theorem 2.10 of [7], the gyroautomorphisms are completely determined by
the gyrator identity

gyr[a, b](c) = (a� b)′ � [a� (b� c)]

for all a, b, c ∈ G. Obviously, every group forms a gyrogroup under the same
operation by de�ning the gyroautomorphisms to be the identity automorphism,
but the converse is not in general true. From this point of view, gyrogroups
suitably generalize groups.

Recall also that gyrogroup homomorphism is a map between gyrogroups that
preserves the gyrogroup operations. A bijective gyrogroup homomorphism is called
a gyrogroup isomorphism. We say that two gyrogroups G1 and G2 are isomorphic,
written G1

∼= G2, if there exists a gyrogroup isomorphism from G1 to G2. Given
a gyrogroup G, a gyrogroup isomorphism from G to itself is called a gyrogroup

automorphism of G.
One of the most interesting purely algebraic classes of gyrogroups is introduced

in [1], as follows. De�ne on a group (G, ·) the binary operation

a� b = a2ba−1,∀ a, b ∈ G.

Then, by Theorem 3.7 of [1], we have:

Theorem 1. (G,�) is a gyrogroup if and only if (G, ·) is central by a 2-Engel
group.

In what follows we will call (G,�) the gyrogroup associated to a given group

(G, ·), which is assumed to be central by a 2-Engel group. Note that in this case
the gyroautomorphism generated by two elements a and b of G is given by

gyr[a, b] = ϕ[a,b−1],

where ϕ[a,b−1] is the inner automorphism of G induced by the commutator [a, b−1]
of a and b−1.

We are now in a position to characterize the gyrocommutativity of (G,�).

Theorem 2. (G,�) is gyrocommutative if and only if the inner automorphism

group of (G, ·) is of exponent 3.

Clearly, if (G, ·) is commutative, then the binary operations · and � coincide,
and (G,�) is gyrocommutative. Note that there is also a non- commutative group,
which is central by a 2-Engel group, such that its associated gyrogroup is gyro-
commutative (e.g. the group of upper triangular matrices over F3 with diagonal
(1,1,1)).

Next, let (G1, ·) and (G2, ·) be two �nite groups central by a 2-Engel group, and
let (G1,�) and (G2,�) be their associated gyrogroups. Clearly, if (G1, ·) ∼= (G2, ·),
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then a group isomorphism from G1 to G2 is also a gyrogroup isomorphism from
(G1,�) to (G2,�), that is, (G1,�) ∼= (G2,�). A su�cient condition for the
converse to be true is given in the following theorem.

Theorem 3. If 3 - |G1|, then (G1, ·) ∼= (G2, ·) if and only if (G1,�) ∼= (G2,�).

From Theorem 3 we obtain the following corollary.

Corollary 4. Let (G, ·) be a group central by a 2-Engel group such that 3 - |G|.
Then the group of all gyrogroup automorphisms of (G,�) coincides with the group

of all automorphisms of (G, ·).

Finally, we observe that there is an interesting conservative functor F between
the category C of �nite groups central by a 2-Engel group whose order is not
divisible by 3 and the category of gyrogroups, which associates to each object
(G, ·) in C the gyrogroup (G,�) and to each homomorphism f in C the gyrogroup
homomorphism F (f) = f .

Much of our notation is standard and will usually not be repeated here. Ele-
mentary notions and results on groups can be found in [2].

2. Proofs of the main results

Proof of Theorem 2. In our case the gyrocommutative law becomes

a2ba−1 = ϕ[a,b−1](b
2ab−1), ∀ a, b ∈ G,

which means
b3a = ab3, ∀ a, b ∈ G,

i.e.,
b3 ∈ Z(G), ∀ b ∈ G.

Obviously, this condition is equivalent to exp(Inn(G)) = 3 in view of the group
isomorphism G/Z(G) ∼= Inn(G).

Proof of Theorem 3. Assume that (G1,�) ∼= (G2,�) and let f : G1 −→ G2 be a
gyrogroup isomorphism. Then f is a bijection and

(1) f(a2ba−1) = f(a)2f(b)f(a)−1, ∀ a, b ∈ G.

If ei is the identity of Gi, i = 1, 2, we infer that f(e1) = e2, by taking a = b = e1
in (1). Also, by taking b = a and b = a−1 in (1), respectively, one obtain

f(a2) = f(a)2 and f(a−1) = f(a)−1, ∀ a ∈ G1.

Next, let us write (1) with a−1ba and a−1b−1 instead of b, respectively. Then

(2) f(ab) = f(a)2f(a−1ba)f(a)−1

and

(3) f(aba−1) = f(a)f(ba)f(a)−2.
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Replace a with a−1 in (3). Then f(a−1ba) = f(a)−1f(ba−1)f(a)2, which together
with (2) leads to

f(ab) = f(a)f(ba−1)f(a).

By writing this equality with ba instead of b, we �nd

f(aba) = f(a)f(b)f(a), ∀ a, b ∈ G1.

Finally, replacing in this identity b with a2ba−1, we obtain

(5) f(a3b) = f(a)3f(b), ∀ a, b ∈ G1,

and taking b = e1 in (5) gives

(6) f(a3) = f(a)3, ∀a ∈ G1.

We are now in a position to prove that f is a group homomorphism.
Let x, y ∈ G1. Since 3 - |G1|, we have 3 -o(x) and consequently gcd(3, o(x)) = 1,

i.e., 1 = 3α+ o(x)β for some integers α and β. It follows that

x = x3α+o(x)β = x3αxo(x)β = x3α.

Then (5) and (6) lead to

f(xy) = f(x3αy) = f((xα)3y) = f(xα)3f(y) = f(x3α)f(y) = f(x)f(y),

as desired. Hence f is a group isomorphism, completing the proof.

References

[1] T. Foguel and A.A. Ungar, Gyrogroups and the decomposition of groups into

twisted subgroups and subgroups, Paci�c J. Math. 197 (2001), 1− 11.

[2] B. Hupert, Endliche Gruppen, I, II, Springer Verlag, Berlin, 1967, 1968.

[3] T. Suksumran, The algebra of gyrogroups: Cayley's theorem, Lagrange's theorem,

and Isomorphism theorems, in Essays in Math. and Appl.: In Honor of V. Arnold,
eds. T.M. Rassias and P.M. Pardalos (Springer, 2016), pp. 369− 437.

[4] T. Suksumran and K. Wiboonton, Lagrange's theorem for gyrogroups and the

Cauchy property, Quasigroups Related Systems 22 (2014), 283− 294.

[5] T. Suksumran and K. Wiboonton, Isomorphism theorems for gyrogroups and

L-subgyrogroups, J. Geom. Symmetry Phys. 37 (2015), 67− 83.

[6] T. Suksumran, Gyrogroup actions: A generalization of group actions, J. Algebra
454 (2016), 70− 91.

[7] A.A. Ungar, Analytic hyperbolic geometry and Albert Einstein's Special Theory of

Relativity, World Scienti�c, Hackensack, NJ, 2008.

[8] A.A. Ungar, A gyrovector space approach to hyperbolic geometry, Synthesis Lec-
tures on Mathematics and Statistics 4, Morgan and Claypool, San Rafael, 2009.

Received September 20, 2016

Faculty of Mathematics, �Al.I. Cuza� University, Ia³i, Romania

E-mail: tarnauc@uaic.ro



Quasigroups and Related Systems 25 (2017), 155− 164

On nuclei and conuclei of S-quantales

Xia Zhang and Tingyu Li

Abstract. S-quantales have been proved to be injectives in the category of S-posets with S-

submultiplicative order-preserving mappings as morphisms. In this work, algebraic investigations

on S-quantales are presented. A representation theorem of an S-quantale according to nuclei

is obtained, quotients of an S-quantale with respect to nuclei and congruences are completely

studied. Simultaneously, the relationship between S-subquantales and conuclei of an S-quantale

is established.

1. Preliminary

Various quantale-like structures (quantales, locales, quantale modules, quantale
algebras, unital quantales etc.) have been studied for decades and they have useful
applications in algebra, logic and computer science ([3], [6], [11], [12]). In [11],
algebraic properties and applications of quantales are well studied. The idea was
then extended to groupoid quantales [7], involutive quantales [9], [5], sup-lattices
[10], quantale mudules [4], [14], [13], and quantale algebras [15], [8], etc. Recently,
Zhang and Laan in [16] introduced a new kind of quantale-like structure, named
S-quantales. It has been shown that S-quantles play an important role in the
theory of injectivity on the category of S-posets with S-submultiplicative order-
preserving mappings as morphisms. In fact, injectives in this category are exactly
S-quantales. The purpose of this paper is to make a contribution on algebraic
investigations of S-quantales. Lets us �rst recall some basic de�nitions.

In this work, S is always a pomonoid, i.e., a monoid S equipped with a partial
order 6 such that ss′ 6 tt′ whenever s 6 t, s′ 6 t′ in S. A poset (A, 6) together
with a mapping A × S → A (under which a pair (a, s) maps to an element of A
denoted by as) is called a right S-poset, denoted by AS , if for any a, b ∈ A, s, t ∈ S,

1. a(st) = (as)t,

2. a1 = a,

3. a 6 b, s 6 t imply that as 6 bt.
A left S-poset can be de�ned similarly. In this paper we only consider right

S-posets, therefore we will omit the word �right�.

2010 Mathematics Subject Classi�cation: 06F99
Keywords: S-quantale, Nucleus, Conucleus, S-poset
This research is supported by Natural Science Foundation of Guangdong Province, China
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Let AS and BS be S-posets. A mapping f : AS → BS is said to be S-
submultiplicative if f(a)s 6 f(as) for any a ∈ AS , s ∈ S. We call f an S-poset
homomorphism if it preserves both S-actions and orders.

An S-poset AS is said to be an S-quantale ([16]) if

(1) the poset A is a complete lattice;

(2) (
∨
M)s =

∨
{ms | m ∈M} for each subset M of A and each s ∈ S.

An S-quantale homomorphism is a mapping between S-quantales which pre-
serves both S-actions and arbitrary joins. An S-subquantale of an S-quantale AS
is indeed the relative subposet of AS which closed under S-actions and arbitrary
joins.

We begin with properties of S-quantale homomorphisms and mappings between
S-quantales with right adjoints. Then a representation theorem of quotients for
S-quantales by nuclei is presented. The important topic of relations between the
lattices of nuclei and congruences of an S-quantale is fully investigated. Dually,
the connection on S-subquantales and conuclei is studied.

2. Mappings and homomorphisms

Let f : P → Q be a join-preserving mapping of posets. By the adjoint functor
theorem ([1]), f has a unique right adjoint f∗ : Q→ P , ful�lling

f(x) 6 y ⇐⇒ x 6 f∗(y), (1)

for any x ∈ P, y ∈ Q, and hence

f(f∗(y)) 6 y, x 6 f∗(f(x)). (2)

Given an S-quantale QS , and any s ∈ S, the mapping s− : QS → QS de�ned
by s(a) = as for each a ∈ QS , preserves all joins, and thus has a unique right
adjoint, denoted by s∗, satisfying

s(a) 6 b⇐⇒ a 6 s∗(b), (3)

and
s(s∗(a)) 6 a, a 6 s∗(s(a)), (4)

for each a, b ∈ QS . It holds evidently that s∗(a)s 6 a, ∀a ∈ QS .

Proposition 2.1. Let QS be an S-quantale. Then for any b ∈ QS , s, t ∈ S, the
following statements hold.

1. s∗(t∗(b)) = (st)∗(b),

2. s∗(b)s = b⇐⇒ (∃a ∈ QS) as = b,

3. s∗(bs) = b⇐⇒ (∃a ∈ QS) b = s∗(a).
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Proof. We note that for any x, b ∈ QS , s, t ∈ S,

x 6 s∗(t∗(b))⇐⇒ xs 6 t∗(b)⇐⇒ xst 6 b⇐⇒ x 6 (st)∗(b),

by (3), so we obtain 1. 2 and 3 can be proved similarly.

Proposition 2.2. Let f : PS → QS be an S-quantale homomorphism. Then

f∗(s∗(a)) = s∗(f∗(a))

for any a ∈ QS , s ∈ S.

Proof. By (1) and f preserving S-actions, we have

f∗(s∗(a)) 6 s∗(f∗(a))⇐⇒ f∗(s∗(a))s 6 f∗(a)⇐⇒ f(f∗(s∗(a))s) 6 a

⇐⇒ f(f∗(s∗(a))s 6 a⇐⇒ f(f∗(s∗(a)) 6 s∗(a),

for each a ∈ QS . But the �nal inequality natural follows by (2), we soon get that
f∗(s∗(a)) 6 s∗(f∗(a)). One may dually gain that s∗(f∗(a)) 6 f∗(s∗(a)).

Recall that for a poset P , a monotone mapping j on P is said to be a closure

operator if it is both increasing and idempotent.

De�nition 2.3. Let QS be an S-quantale, j a closure operator on QS . We call j
a nucleus if it is S-submultiplicative, i.e.,

j(a)s 6 j(as)

for each a ∈ QS , s ∈ S.

Lemma 2.4. Let QS be an S-quantale, j a nucleus on QS. Then

j(s∗(a)) 6 s∗(j(a))

for all a ∈ QS , s ∈ S.

Proof. Keep in mind that s∗(a)s 6 a, ∀a ∈ QS , s ∈ S, we immediately get that
j(s∗(a))s 6 j(s∗(a)s) 6 j(a), and thus j(s∗(a)) 6 s∗(j(a)) by (3).

Lemma 2.5. Let f :PS → QS be an S-quantale homomorphism. Then f∗ :QS →
PS is S-submultiplicative.

Proof. By (2), f(f∗(a)) 6 a, ∀a ∈ QS , it follows that f(f∗(a)s) = f(f∗(a))s 6 as,
and hence f∗(a)s 6 f∗(as) by (1).

Lemma 2.6. Let f : PS → QS be an S-quantale homomorphism. Then f∗f is a

nucleus on PS.

Proof. If a 6 b for a, b ∈ PS , then f(a) 6 f(b), and thus f∗f(a) 6 f∗f(b) by the
fact that f∗ preserves arbitrary meets.

Directly applying (2), we hence obtain that a 6 f∗f(a) and

f∗f(a) 6 f∗f(f∗f(a)) = f∗(ff∗)(f(a)) 6 f∗(f(a)),
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for any a ∈ PS . So f∗f is a closure operator.
In addition, Lemma 2.5 provides that

(f∗f)(a)s = (f∗(f(a))s 6 f∗(f(a)s) = (f∗f)(as),

for any a ∈ QS , s ∈ S. Consequently, f∗f is a nucleus as desired.

3. Nuclei and a representation theorem

For an S-quantale QS , we write Nuc(QS) for the set of all nuclei on QS . Nuc(QS)
will therefore become a complete lattice if it is equipped with the pointwise order.
The following properties of nuclei can be easily gained.

Lemma 3.1. (cf. [16]) Let QS be an S-quantale, j a nucleus on QS. Then for

any a ∈ QS , s ∈ S, j(as) = j(j(a)s).

Lemma 3.2. Let QS be an S-quantale, j a nucleus on QS. Then

j
(∨
i∈I

j(ai)
)
= j
(∨
i∈I

ai

)
, ∀ai ∈ QS , i ∈ I.

Proof. Follows from the property of j being a closure operator.

Lemma 3.3. Let QS be an S-quantale, j, j̃ ∈ Nuc(QS). Then the following

statements hold.

1. j 6 j̃ ⇐⇒ j̃j = j̃;

2. j 6 j̃ ⇐⇒ ∀x, y ∈ QS , j(x) = j(y)⇒ j̃(x) = j̃(y).

Given a nucleus j on an S-quantale QS . Write

Qj = {a ∈ QS | j(a) = a}.
Then Qj becomes an S-quantale with the S-action de�ned by

a ◦ s = j(as), a ∈ A, s ∈ S,
and the order inherited from QS , where the joins are given by∨j

D = j (
∨
D)

for any D ⊆ Qj (cf. [16]).

Proposition 3.4. Let QS be an S-quantale, PS ⊆ QS an S-subquantale. Then

PS = Qj for some nucleus j i� PS is closed under meets and s∗(a) ∈ PS whenever

a ∈ PS.

Proof. Suppose that PS = Qj for some nucleus j on QS . It is routine to check that∧
A ∈ PS for any A ⊆ PS . Note that for any a ∈ PS , j(s∗(a)) 6 s∗(j(a)) = s∗(a)

by Lemma 2.4, one gets that s∗(a) ∈ PS , as well.
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On the contrary, de�ne a mapping j on QS by

j(x) =
∧
{a ∈ PS | x 6 a} , ∀x ∈ QS .

Straightforward veri�cation shows that j is a closure operator.
For any x ∈ QS , s ∈ S, a ∈ PS , since xs 6 a ⇔ x 6 s∗(a) by (3), and

s∗(a) ∈ PS by the assumption, it follows that

j(xs) 6 a⇒ xs 6 j(xs) 6 a⇒ j(x) 6 s∗(a)⇒ j(x)s 6 a,

and results in j(x)s 6 j(xs). Therefore, j is a nucleus on QS .
By the de�nition of j and the fact that PS being closed under meets, we �nally

achieve that PS = Qj .

Let QS be an S-quantale, P(Q) the power set of Q. De�ne an S-action on
P(Q) by

I · s = {as | a ∈ I, s ∈ S}, ∀I ⊆ Q.
Then (P(Q)S , ·,⊆) becomes an S-quantale. The following theorem provides a
representation of an S-quantale according to quotients w.r.t. nuclei.

Theorem 3.5. (Representation Theorem) Let QS be an S-quantale. Then there

exists a nucleus j on P(Q)S such that QS ∼= P(Q)j.

Proof. De�ne a mapping j on P(Q)S by

j(I) =
(∨

I
)y, ∀I ∈ P(Q)S .

Clearly, j is a closure operator. Suppose that I ⊆ QS and x ∈ j(I). Then
xs 6 (

∨
I)s =

∨
(Is) for all s ∈ S, gives that xs ∈ j(Is). Thus j(I) · s ⊆ j(Is).

We note that for any I ⊆ QS , j(I) = I i� I = a ↓ for some a ∈ QS . Therefore,

P(Q)j = {I ∈ P(Q)S | I = j(I)} = {I ⊆ QS | I = a ↓ for some a ∈ QS}.

Now de�ne a mapping σ : QS → P(Q)j by

σ(a) = a ↓, ∀a ∈ QS .

Then σ is certainly bijective. We remain to show that σ is a homomorphism. By
virtue of

σ
(∨
i∈I

ai

)
=
(∨
i∈I

ai

)y =
(∨(⋃

i∈I
ai ↓

))y = j
(⋃
i∈I

ai ↓
)
=

j∨
i∈I

σ(ai),

for any ai ∈ QS , i ∈ I, and

σ(a) ◦ s = j (σ(a) · s) = j(a ↓ ·s) =
(∨

(a ↓ ·s)
)y

=
(∨
{xs | x 6 a}

)y = (as) ↓= σ(as),

for each a ∈ QS , s ∈ S, we �nally achieve that σ is an isomorphism between
S-quantales QS and P(Q)j .
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4. Quotients of S-quantales

Let QS be an S-quantale. A congruence ρ on QS is an equivalence relation on QS
which is compatible both with S-actions and joins, and has the further property
that Q/ρ equipped with a partial order becomes an S-quantale, and the canonical
mapping π : QS → (Q/ρ)S is an S-quantale homomorphism. Similar to the case of
S-posets ([2]), a simple way for Q/ρ being an S-quantale is that Q/ρ accompanies
an order �v" de�ned by a ρ-chain, that is,

[a]ρ v [b]ρ ⇐⇒ a6
ρ
b, ∀a, b ∈ QS ,

where a6
ρ
b is given by a sequence

a 6 a1 ρ a
′

1 6 a2 ρ a
′

2 6 .... 6 an ρ a
′

n 6 b,

for ai, a
′

i ∈ QS , i = 1, 2.., n. We see at once that in the S-quantale (Q/ρ,v),∨
i∈I [ai]ρ =

[∨
i∈I ai

]
ρ
, ∀ai ∈ QS .

Let us denote by Con(QS) the set of all congruences on QS . Then Con(QS) is
a complete lattice with the inclusion as order.

This section is devoted to presenting the intrinsic relationship between the
posets Nuc(QS) and Con(QS), respectively. We begin with the following results.

Lemma 4.1. Let QS be an S-quantale, ρ ∈ Con(QS), π : QS → (Q/ρ)S be the

canonical mapping. Then π = ππ∗π.

Proof. By Lemma 2.6, π∗π is a nucleus on QS . So for any a ∈ QS , one has that
a 6 π∗π(a), and hence π(a) 6 ππ∗π(a). However, (1) indicates that ππ∗π(a) 6
π(a). Consequently, we get that π(a) = ππ∗π(a).

Let us write π∗π in Lemma 4.1 as jρ. As usual, π is a homomorphism on QS
such that ρ = kerπ.

Lemma 4.2. Let QS be an S-quantale, ρ ∈ Con(QS), π : QS → (Q/ρ)S be the

canonical mapping. Then kerjρ = kerπ.

Proof. Follows by Lemma 4.1.

Lemma 4.3. Let QS be an S-quantale, j a nucleus on QS. Then kerj is a con-

gruence on QS.

Proof. From Lemma 3.1, we have j(as) = j(j(a)s), ∀a ∈ QS , s ∈ S. Thus for any
(a, b) ∈ kerj, s ∈ S,

j(as) = j(j(a)s) = j(j(b)s) = j(bs),

that is, (as, bs) ∈ kerj. Moreover, derived from Lemma 3.2, we obtain that

j
(∨

i∈I ai

)
= j
(∨

i∈I j(ai)
)
= j
(∨

i∈I j(bi)
)
= j
(∨

i∈I bi

)
,

for any (ai, bi) ∈ kerj, i ∈ I. Therefore, (
∨
i∈I ai,

∨
i∈I bi) ∈ kerj as needed.
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Now we are ready to characterize the concrete relationship between nuclei and
congruences of an S-quantale.

Theorem 4.4. Let QS be an S-quantale. Then there exists an isomorphism ϕ :
Nuc(QS)→ Con(QS) as posets. Moreover, for each j ∈ Nuc(QS), Qj ∼= (Q/ϕ(j))S
as S-quantales.

Proof. De�ne a mapping ϕ : Nuc(QS)→ Con(QS) by

ϕ(j) = kerj,

for each j ∈ Nuc(QS). Then by Lemma 4.3, kerj is a congruence on QS . From
Lemma 3.3(2), we obtain that ϕ is an order embedding.

Suppose that ρ ∈ Con(QS), and π : QS → (Q/ρ)S is the canonical mapping.
Then by Lemma 4.2, we have

ϕ(jρ) = kerjρ = kerπ = ρ.

We hence conclude that Nuc(QS) is isomorphic to Con(QS) as posets.
For each j ∈ Nuc(QS), de�ne f : (Q/kerj)S → Qj and g : Qj → (Q/kerj)S as

f([a]kerj) = j(a),

for each [a]kerj ∈ (Q/kerj)S , and

g(a) = [a]kerj ,

for any a ∈ Qj . We need to show that f and g are invertible S-quantale homo-
morphisms.

Obviously, f is well-de�ned. For any a ∈ QS , s ∈ S, since j(j(a)s) = j(as) by
Lemma 3.1, we obtain that

f([a]kerjs) = f([as]kerj) = j(as) = j(j(a)s) = j(a) ◦ s = f([a]kerj) ◦ s.

Moreover, Lemma 3.2 yields that

f
(∨
i∈I

[ai]kerj

)
= f

([∨
i∈I

ai

]
kerj

)
= j
(∨
i∈I

ai

)
= j
(∨
i∈I

j(ai)
)
=
∨
i∈I

j(ai)=
∨
i∈I

(f [ai]kerj),

for each [ai]kerj ∈ (Q/kerj)S , i ∈ I. Therefore, f is an S-quantale homomorphism.
It is clear that g is an S-poset homomorphism. Furthermore, the equalities

g
(∨
i∈I

ai

)
= g
(
j
(∨
i∈I

ai

))
=
[
j
(∨
i∈I

ai

)]
kerj

=
[∨
i∈I

ai

]
kerj

=
∨
i∈I

[ai]kerj =
∨
i∈I

g(ai),

for any ai ∈ Qj , i ∈ I indicate that g is an S-quantale homomorphism. We then
achieve our aim by the �nal step, that is, for all a ∈ Qj ,

f(g(a)) = f([a]kerj) = j(a) = a,

and

g(f([a]kerj)) = g(j(a)) = [j(a)]kerj = [a]kerj ,

for any a ∈ QS .
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5. Conuclei and S-subquantales

In this section, we introduce the notion of conuclei on an S-quantale QS , and
discuss the relationship between conuclei and S-subquantales of QS .

De�nition 5.1. Let QS be an S-quantale. We call a coclosure operator g on QS
a conucleus if it is S-submultiplicative.

Dually to Theorem 3.5, which represented quotients of an S-quantale by nuclei,
the following theorem establishes the relation between conuclei and S-subquantales
of an S-quantale.

Theorem 5.2. Let QS be an S-quantale, g a conucleus on QS. Then

Qg = {a ∈ QS | g(a) = a}

is an S-subsquantale of QS. Moreover, for any S-subquantale PS of QS, there is

a conucleus g on QS, such that PS = Qg.

Proof. Firstly, we have∨
A =

∨
{g(a) | a ∈ A} 6 g (

∨
{a | a ∈ A}) = g (

∨
A),

for any A ⊆ Qg, and
as = g(a)s 6 g(as) 6 as,

for each a ∈ Qg, s ∈ S. It turns out that Qg is an S-subquantale of QS .
Next, suppose that PS is an S-subquantale of QS . De�ne a mapping g on QS

as
g(b) =

∨
{a ∈ PS | a 6 b}, ∀b ∈ QS .

Straightforward proving shows that g is order-preserving and g(b) 6 b, ∀b ∈ QS .
Recall that PS is join closed, g(b) ∈ PS , and hence

g(b) 6
∨
{a ∈ PS | a 6 g(b)} = g(g(b)).

So g is a coclosure operator. Together with the inequalities

g(b)s =
∨
{a ∈ PS | a 6 b} · s =

∨
{as ∈ PS | a 6 b}

6
∨
{a ∈ PS | a 6 bs} = g(bs),

for any b ∈ QS , s ∈ S, we consequently obtain that g is a conucleus on QS .
By the de�nition of g, we immediately get that b 6 g(b), ∀b ∈ PS . So PS ⊆ Qg.

Another inclusion is clear. Therefore, PS = Qg as required.

Given an S-quantale QS , write CoNuc(QS) as the poset of all conuclei on QS
equipped with pointwise order, and Sub(QS) the poset of all S-subquantales of
QS with inclusion as order, respectively. Theorem 5.3 describes the potential
connection between the posets Sub(QS) and CoNuc(QS).
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Theorem 5.3. Let QS be a �xed S-quantale. Then there is an isomorphism

k : Sub(QS) → CoNuc(QS) as posets, such that for any MS ∈ Sub(QS) we have

MS = Qk(MS).

Proof. De�ne mappings h : CoNuc(QS)→ Sub(QS) and k : Sub(QS)→ CoNuc(QS)
as

h(g) = Qg, ∀g ∈ CoNuc(QS),

and
k(MS) = gMS

, ∀MS ∈ Sub(QS),

respectively, where gMS
is given by

gMS
(a) =

∨
{m ∈MS | m 6 a} =

∨
{MS ∩ a ↓}, ∀a ∈ QS .

It is routine to check that gMS
is a coclosure operator. In addition, for any s ∈ S,

a ∈ QS , the inequalities

gMS
(a)s =

(∨
{m ∈MS | m 6 a}

)
s =

∨
{ms ∈MS | m 6 a}

6
∨
{m ∈MS | m 6 as} = gMS

(as)

show that gMS
is S-submultiplicative, and hence a conucleus. k being order-

preserving is clear.
By Theorem 5.2, h is well-de�ned. Assume that m,n ∈ CoNuc(QS) with

m 6 n. Then a = m(a) 6 n(a) 6 a, for any a ∈ Qm, indicate that a ∈ Qn. Thus
h is order-preserving.

We next show that hk = idSub(QS), i.e., QgMS
= MS , ∀MS ∈ Sub(QS). This

follows by the fact that

gMS
(x) =

∨
(MS ∩ x ↓) = x,

for any x ∈ MS , and conversely, QgMS
⊆ MS by the reason that MS is closed

under joins.
It remains to prove that kh = idCoNuc(QS), i.e., gQf

= f , ∀f ∈ CoNuc(QS).
Suppose that a ∈ QS . Then

f(a) 6 a 6
∨

(Qf ∩ a ↓) = gQf
(a).

Conversely, for any x ∈ Qf ∩ a ↓, x = f(x) 6 f(a) give rise to that f(a) is an
upper bound of Qf ∩ a ↓. Therefore, we achieve that gQf

(a) = f(a) and �nally,
Sub(QS) ∼= CoNuc(QS) as needed.
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