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On the 20th of February 1995 we celebrated the 70th hirthday
of the great Moldavian mathematician Valentin Danilovich Belousov,
the famous specialist in the field of quasigroup theory, algebraic nets
and functional equations. He was not only the creatar of the
quasigroup school in Moldova but also the excellent teacher.

V.D.Belousov was born in Bel'tsy, Moldavia. After studies in
mathematics at Kishinev pedagogical Institute (1944-1947) he spent a
short time as a school teacher and then taught at Bel'tsy pedagogical
Institute. In 1954-1956 V.D.Belousov was a graduate student of
Moscow State University, where the famous Russian algebraist
professor A.G.Kurosh was his chief. Here he defended his candidate
thesis (1958). In 1960-1961 V.D.Belousov was at Wisconsin University
(USA), where he worked with the famous American scientist in the
area of quasigroup theory professor R.HBruck. Beginning with 1962
up to 1988 he was Chair of the algebra and mathematical logic
department in Institute of Mathematics of Moldavian Academy of

Sciences and head of the algebra and geometry chair of Kishinev
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State University (1967-1977). In 1966 he defended the doctoral thesis
"Systems of quasigroups with generalised identities” and in 1968 was
elected Corresponding Member of the Academy of Pedagogical
Sciences of USSR,

V.D.Belousov was the pioneer in the area of quasigroup and
loop theory in USSR and carried the great contribution at the
development of this theorv He studied many questions of general
quasigroup theory, such as the groups associated with quasigroups
(multiplication groups of guasigroups) derivative operations of loops,
regular mapping groups and nucler of quasigroups, autotopies and
antiautotopies of quasigroups, groups of inner substitutions with
respect to an element, normal subquasigroups, isotopy and crossed
isotopy of quasigroups and others. V.D.Belousov also investigated
different classes of quasigroups and loops, particularly IP-quasigroups,
F-quasigroups, I'S-quasigroups, Cl-quasigroups, Stein’s quasigroups,
I-quasigroups and I-loops, Bol loops. Especially deep results he
recelved relative to the distributive quasigroups. His theorem that
each distributive quasigroup is isotopic to a comrnutative Moufang
loop is well known. V.DBelousov also studied left-distributive
guasigroups and loops isotopic t them. Many results are described in
his monograph "Foundations of quasigroup and loop theory” {Russian,
Moscow, "Nauka”, 1967).

In the important paper "Balunced identities in quasigroups’
(Russian, Matem. shormk, « 70{112), Nel, 1966, p. 55-97) V.1).Belousov
found the elegant characterisation of the quasigroups with balanced
identities, having established their connections with linear (over
groups) quasigroups. By his great paper "Systems of quasigroups with
generalised identities” {Russian, Uspehi mat. nauk. v. XX, Nel (121),
1965, p.75-146) V.D.Belousov created a new branch of quasigroup



theory, haviig shown that the considered systems are connected with
the solutions of corresponding functional equations on quasigroups. In
this work he studied the systems of quasigroups with generalized
identities of assocativily (mediality, distributivity, transitivity) and
with the generaiised Stein's identity (S-systems).

A large cvew of Belousov's work is devoted to the solving of
different functioni! equations on quasigroups, such as the functional
cquations ot geaeral  associativity, distributivity, mediality, the
functionad Moufany equation. In solving of the functional equation of
general  assocrativity  Belousov's theorem about four quasigroups
connected by the associative law plays the fundamental role. These
theorem states that all of these four quasigroups are isotopic to the
same group. The through study of the functional equations of general
assoctativity 1or noary case led V.D.Belousov to the new concept of a
positional algebra ot quasigroups. The elements of such an algebra are
quasigroups given on the same set, their operations are superpositions,
each identity 15 a {unctional equation.

Belousov published a number of works devoted to the study of
n-ary quasigroups. These works laid the {foundation of n-ary
quasigroup theory. Many of his results in these directions are reflected
in his munsgraph "n-Ary quasigroups” (Russian, Kichinev, "Stiintsa”,
19725 This book contains an information about general concepts for
n-ary case, different classes of n-ary quasigroups (n-groups, medial
quasigroups, 7N -quasifroups, Menger's quasigroups, IP-quasigroups,
(7,7)-assacialive  guasigroups), positional algebras of quasigroups,
reducibility of quasigroups and different cases of the functional
equation of we nersd associativity,

The monsgraphs "Algebraic nets wad quasigroups” (Russian,

wishinev,  =tuntza” 1971 and "Configurations in  algebraic nets”
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{Russian, Kishinev, "Stiintsa”, 1979) by V.D.Belousov reflect his great
contribution in the theory of algebraic nets (or webs as they are
sometimes called) and open up a new area linking algebra, geometry
and combinatorics.

Further on, by mean of original algebraic methods V.D.Belousov
studied some combinatorial questions of quasigroup (or Latin square)
theory, such as admissibility, prolongation, ortogonality, parastrophy-
invariant ortogonality of quasigroups (Latin squares). In his work
"Systems of orthogonal operations” ( Russian and English, Mat.
sbornic. v. T7(119), Nel, 1968, p. 33-52) he established the connection
between orthogonal systems of operations and orthogonal systems of
quasigroups (OSQ) and studied the parastrophy transformation of an
OSQ. His elegant work "Parastrophy-orthogonal quasigroups” (Russian,
Pre-print, IM AN SSRM, Kishinev, 1983) is devoted to research of the
minimal identities in quasigroups, connected with ortogonality of
definite quasigroup parastrophes.

Belousov's mathematical works got worldwide recognition and
have been representing a source of inspiration for further research.
He published six scientific monographs and more than 130 works. His
numerous. pupils work in many countries. He served on the Editorial
Board of "Aequationes Mathematicae" from 1967 to 1975.

V.D.Belousov was not only a scientist. His teaching activity was
also important for Moldova mathematics. He was a great personality
of Moldavian cuiture, a person full of generosity, warmth and
refinement. Valentin Danilovich Belousov devoted the life to science, a

life that will always be an example and impulse for his followers.
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The list of Belousov's principle works one can find in the
shornic "Quasigroups and their systems” (Russian, Matem. Issled, vyp.
113, Kishinev, 1990).

Galina Belyavskaya
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About some algebraic systems related with
projective planes

Evgenii A. Kuznefsov

Abstract

The present article is a survey of author’s results on the investigations
of algebraic structures related with projective planes, some new
theorems are proved too.

The projective plane is the incidence structure <X, /. 7>
which satisfies the following axioms:

1} Given any two distinet points from X there exists just one
line from L incident with both of them.

2) Given any two distinct lines from L there exists just one
point from X incident with both of them.

3) There exist four points such that a line incident with any
two of them is not incident with either of the remaining two.

This article is a survey of some author’s results (see [2,7]) about
algebraic structures related with projective planes (finite as a rule, if
the contrary is not stipulated), some new theorems are proved tco.
The main aim of article is to demonstrate the correlations in the

following scheme:
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About some algebraic systems..

unique solution in the set E. If in quasigroup <£FK,> there exists

element e¢e€ £ such that
X-g=¢e-x=Xx
for any xek, then system <FE.> iscalled a loop.

Definition 2. [2] A system <£E (x,,¥),01> is called a
DK-ternar (eg. a set E with ternary operation (x,r,y) and
distinguished elements 0,1 F), if the following conditions hold:

1. (x0,y)=x

2). (e Ly)=y;

3). (x,f,x)=x

4). 0,1, )=0;

D). If a,b,c and d are arbitrary elements from E and

a % b, then the system
{(x,a,y) =,
(x,0,y)=d,
has an unique solution in £ xE.
6). Either set E is finite, or
a) if ab,c are arbitrary elements from E and
¢#0, (¢,a,0)#b, then the system
{ (x,a,y)=0,
(x,t,y)#(c,1,0) Viel,
has an unique solution in £ xE.
b) if a,b are arbitrary elements from E and /=0, then
inequality
(a,t,b)#(x,10) Viek

has an unique solution in £.
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If the set E is finite, then conditions 6a) and 6h) are corollaries
of the conditions 1)-5) of Definition 2. Proof of this statement will be

given later.

Definition 3. A set M of permutations on a set X is called
sharply (strongly} 2-transitive, if for any two pairs (a,h) and (c.d)
of different elements from X there exists an unique permutation
ae M satisfying the following conditions

ala)=c, alb)=d.

Definition 4. [3] Let G be a group and H be a subgroup mn G.

A complete system T of representatives of the left (right) cosets in G
toH (e=t eH) is called a left (right} transversal in G to H.

ILet T be a transversal (left or right) in G to H. We can
introduce correctly the following operations on A (A is an index set;
left (right) cosets in G to H are numbered by indexes from A):

rj=v >t =thheH,
if T is a left transversal, and
*j=w > 11, =kt heH,

if T is a nght transversal

Definition 5. Let T be a left (right) transversal in G to H. If
the system <A,*1> (<Apel>} is a loop, then T is called a left
{right) loop transversal in G to H.
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1. Projective plane and DK-ternar

Lemma 1. Let 71 be a projective plane. It is possible to
introduce coordinates (a,b),(m), (=) for points and {[a,b],{m],[x] for
lines from =n (where a,bme E, E is some set with distinguished
elements 0 and 1), such that for operation (x,t,y), where

def
(x,t,y)=z < (x,y)elt:z],

the system < E,(x,¢, ¥),01> isa DK-ternar.

Proof. Let © be an arbitrary projective plane. Let XY, O, he

arbitrary four points in the general position on =.
Suppose, by definition,
[AY}=[»},  [Of]=]0)
0 =1(0,0); I=(}).
Then

def
[oc]~[0] = (e0).
All other points of the line [(] are attributed by definition by the
symbols (a,a) {where ag#0]l), and different points are attributed by
different symbols.
Let P be an arbitrary point from m and P ¢[x] Let us have

[AR]N[0]=(a,a); "
{YPIn[0]=(b,b).
Then suppose, by definition,

def
P =(a,b).

19
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ko] [0}

It is evident that points of the line [0} will have their own
coordinates.

Let [L} be an arbitrary line from 7 and (x) ¢ [L]. Let us
have

L] = (01 :
{u 0N v (mm 2

[L] N [x] = Z;

Then suppose by definition:

oef
Z ={(m).
In particular,
X = (0}, Y =(1).
Suppose by definition:
od
() v (d,0) =[d]} (3)

Finally, let [S] be an arbitrary line from n and {x) ¢ [S].

Let us have

11
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Sl {x] = (c);
{[]m{w] (©) @

(S}~ {0} = (d a);
Then suppose by definition:

odf
[S] = [c d].
Let us define the ternary operation (xf ¥) by the condition of

Lemma, e.g.

cef
ty=u < xyelity

and verify that conditions 1)-6) of Definition 2 hold.
a). (x,0,y)=1x.
(x,0,y)=u < (x,y)e[0,u] <
<> {(the points (x,y),(0) and (w,») lie in a common line (see (4)) —
= (u,0)={0](x, ) (D]=(x,x) = w=x
b). (x.], y)=y.
The proof is analogous to that of a).
c). (x,1,x)=x.
(x,t,x)=u < (x,x)e[t,u]
<> (the points (x,x),(¢) and (w,u) liein a common line (see (4)) —
= u=x
d). (0,t,1)=1.
0,t)=u < ODHe[t,v] <
¢»> (thepoints (0,1),(/) and (w,un) lie in a common line (see (4)) =
= (u=t (see(2)).
e). Let ab,c,d be arbitrary elements from E and a=b.
Then we have
{(r,a,y)= 5 {(x,y) e [a,¢]
(x,0,y)=d, (x,y) € [b,d]

There exists an unique such point (x,y) in the projective plane =

< (x,y)=la,cln[b,d]

12
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f). If E is a finite set, then the proof is completed. Let E be
an infinite set, a,b,c arbitrary elements from E and ¢ =#0,{(c,a,0)= 5.
Then we have
(x,y)ela,b]
(c,0) ¢ [a,b] <>

{ (x,a,y)=b,
(x, _
(x,v)u(eO)=[t,ul] Yiue

t,y)={c,t0) Vtelk,

{ (x,y) € [a,b]
(x, ¥)u(c,0)=[c]

There exists an unique such point {(x,y) in the projective plane m.

< (x,v)=[a, b]lnc]

The proof of the condition 6b) of Definition 2 is analogous to

that of 6a). Thus the system < FE (x ¢, v).0,1> is a DK-ternar. [}

Lemma 2. Let <FE.((x,,y),01> bea DK-ternar and a be an
arbitrary fixed element from E, a=0,1. Then the system <FE{(x,a,y)>

18 a quasigroup.

Proof. Let the conditions of Lemma hold. Then we have for
arbitrary bce E
(x,a,y)=c; (x,a,y)=¢;
&>
y = b, L(xLy)=b,

There exists the unique solution (x;,b) of the last system in FExF,

(x,a,c)=¢ < {

Then the equation (x,a,b)=c¢ has a unique solution x, in E. The

reasoning for the equation (b,q,y)=c is analogous. %
Lemma 3. Let the conditions 1)-5) of Definition 2 hold true

and the set E be finite. Then conditions 6a} and 6b) of Definition 2
hold.

13
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Proof. Let conditions of Lemma hold. Let a,b,c be arbitrary

elements from E, c¢#0, (c,a,0)2b. We will demonstrate that the

system

(x,a,y)=5,
(x,1,y)=(c,1,0) Vtek,

has an unique solution in £ x £ (e.g. the condition 6a} of Definition 2

holds).
Let us study the system

| (ay)=b
((x, 4, y)={c,2,0);

for every fixed ¢ € £ -{a}. This system has a unique solution (x,,y,)
in I'x k. Let us assume that
L #£ 1,
{(xrl Yo )= (%0, 30, ),
Then the system

{ (x,4,y)=(c,4,0),
(x,1y,y)=(c,15,0);

has two distinct solutions (¢,0) and (x;,3,)=(x,,y,) in Exk
((xrl Y ) # (¢,0), since (xﬁ ., Yy y=b#{c,a,0)). It contradicts the
condition 5) of Definition 2. So
(% Y )2 (X, 0,) & h#h.
Then
card{(x,,y,)] te E-{a}} = card{E-— fa}y =n-1,

where »=card £. From the other side,

card{(x,y)l (x,a,y)= b} =,

14
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since this number is equal to the number of cells with the element b
in table of the operation (x,a,y) (see Lemma 2 too). So there exists

an unique pair (x,, V) € £ x [ that satisfies the following system:

(xOsa,yO) = bs
(xoa)’())i(xn)’:) VteF- {a}:
This pair (xy,);) is the unique solution of the initial system from the

condition 6a) of Definition 2, e.g. this condition holds.

Proof of the condition 6b} is analogous to that of 6a). L]

Let us introduce the following binary operation (x,oc, ¥) on E:

def
(x,00,0) = 0,
(x,oo,y): u, def 1
() e@oy, & ZENF@L0) viek

As we can see from the condition 6b) of Definition 2, the operation

(x,,y) is defined correctly.

Lemma 4, Operation {x,w, y) satisfies the following conditions:

1) {(x’m’y):("’m’v); < (e, y)=(utv) Yiek (5)

(x, y) # (u,v),
2)  (x,o,x)=0
3}  There exists an unique solution in Ex E of the system
JL(x,a.y) = b,
(x,%0,y)=¢,
for an arbitrary fixed a bcc E.

4) System < E (x,00,y)> is a quasigroup.

15



About some algebraic systems...

Proof. 1). Let
{(x,oo, yY=(u,0,v)=d,
(x, ) # (u,v),
Then we have by the definition of the operation (x,x, y):
(x,1,y)#(d,1,0) VtekE, (6)
(n,t,v)=(d,10) ViekE (7)
Assume that there exists 7, € £ such that
(x, 1, )= (0,4, v) = Wy, (8)
Then the system
{ (x.25, ¥) = wy;
(x,6,yy=(d,10) Vte L
has two distinct solutions: (x,y) and (u,v) (see (6)-(8)). It contradicts
condition 6a) of Definition 2, since
(x,0,y)=(u,r,v) Viek.
Conversely, let
(xq, 1, Y0) % (1,1,vy) VieE (9)
Then we have (when ¢=0})
Xp Uy Yo F Vo,
Le. (xg,¥0) # (14,V0)-
Let
(xp, %, ¥y)=d.
Then we have by the definition of the operation (x,x, y):

(xp,2, ¥n) = (d,1,0) VieE (10)
Let us agssume that there exists /, € £ such that
(1y.15,v) = (d,45,0) = z,. (11)
Then the system
{ (x.20.¥)= Zo;
(x, 1, ¥) = {xp,1,y9) ViekL,

16
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has two distinet solutions: (w,,vy) and (d,0) (see (9)-(11)). It
contradicts the condition 6a) of Definition 2, since
(1,8, vg) 2 (d, 1,0y Vel
Then we have by the definition of the operation (x,=x,y):
(#,%¢,vq) = d = (xy,%, yy).
2). By the definition of the operation (x,x,y) we have
(0,2,0)=0
If x+0, then
0,1,y =0=x={(x,t,x) Vtelk,
{see condition 3) of Definition 2) and thus
(x,20,x)=(0,%,0)=0
(see p. 1) of this Lemma).
3). Let ab,c be arbitrary fixed elements from E.
Case A: ¢=0,
Then the system from the condition 3) of Lemma has the
following form

(x,%,y)=0,
It is easy to see that the pair (x,y)=(bb) is a solution of system (12).
Let us assume that there exists other solution (x',)'}=(5,4) of the

system (12). Then we have

(x',a,y")=0&; (x',a,3')=b,
(x'.2,y)=0=(ho.b), — |(x.,y)=(btby=h Viek

It is impossible, since there exists an unique solution (b b) of the
system (12).

Case B: (c,a,0)=4b

Then the system from the condition 3) of Lemma has the

following form

17
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{(x,a,y) =b=(c,a0), (13)

(x,%, y)= ¢ ={c,0,0);
It is easy to see that the pair (x,y)=(c,0) is a solution of the
system (13). Let us assume that there exists other solution
(x',¥')#(c,0) of the system (13). Then we have
{(x',a,y‘):(c,a,ox { (x',a,y')=(c,a,0);
{x',0, ¥')={(c,,0), (x',1,y"y#(c,1,0) YrekE,
It is impossible, since there exists an unique solution of the
system (13).
Case C: ¢c#0 and (c,a,0)=b
Then the system from the condition 3) of Lemma has the
following form

(x,a,y)= &,
{(x, (14)

Ly)={(c,t0) Vielk,
System (14) has an unique solution in £ x E (see the condition 6a) of
Definition 2).

4). Proof is analogous to that of Lemma 3. [

Let us introduce points (a,b),(m),(«<) and lines [a,b],[m], =]
{where a,b,me F) and define an incident relation [ between points

and lines by the following way (see [2]):
(a,b)l[c,d] <> (a,c.b)=d,
(a,p)ld] < (a,%,b)=d,
(a)l[c,d] < a=c, (15)
(@)[=], ()], (2){[=],
(a,b)I[x] <> (a)l{d) <> (o)][c,d] <> False.

18
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Lemma 5. The incidence system <P, 1., I >, where
P={(a,b),(m),(x)|a,b,m & E},
L={[a,b),[m],[c}|a,b,m < E},

I 1s the incidence relation from (15)

is a projective plane.

Proof. Let us verify the axioms of projective plane.

1). An arbitrary two distinct lines are intersected in unigue

oint.
a). The lines {a.b} and [c.d}:
If a=c, then we have from (15):
[a,6]1n[c,d]=]a,b][a,d]=(a).
If we assume that there exists a point (x,y) which lies both on lines
[a,6] and [a.,d], then
{(x,y)f[a,b]; o {(x,a,y)=b;
(x, yMia,d}, (x,a,y)=d,

ie. [a,bl=[a,d]. It is impossible since [a,#] and [a,d] are distinct

= b=d,

lines.

If a=c, then we have

{(x,y)lta,b]; o {(x,a,y):b-,
(x, y)fc,d], (x,c,y)=d,

By the condition 5) from Definition 2 there exists an unique such
point (x,y).

b). The lines [a,#] and {[d]:

We have

{(x,y)l[a,b]; . {(x,a,ym;
(x, »){d]; (x,,¥)=d,

19
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As we can see from the statement 3) of Lemma 4 there exists an
unique such point (x, y).
c). The lines [a,4] and [x], [m] and [d], [m] and [x]
We have
[a, 6] [>]=(a),
[min[d]= (=),
[m} [l = ().

2). There exists an_ unigque common_line for arbitrarv_two

distinct points,
a). The points {(a,6) and (c,d):
If there exists an element 7, € £ such that
(a,1y,b)=(c.ty,d)=f, (16)

theﬁ we have

(@, by (c,d)=[fo, /1 |
As we can see from the condition 5) of Definition 2, only one element
t, € £ with the condition (16) may exist.

If
(a,1,b)# (c,1,d) ViekE,

then by the statement 1) of Lemma 4 we have

(a,%,b)=(c,0,d)=h,

and
(a,b)u(c,d)=[h].
b). The points (a,b) and (m), (a,b) and {x), {m) and (n),
(m) and ().

We have
(a,by(my=[m,(a,mb)],
(a,b) (=)= [{a,=,b}],
(m)w(m)={=},
(myw (=)= {=x]

20
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3). There exist four points in a common position.

These points are (0,0),(1,0),(0) and (). Really, we have
(0,0)0(10)=[1,0],  (1,0y(0)=[01],
(0,000(0)=10,0],  (LO)w(=)=]1],
(0,0)u(0)=10},  (O)(w)=[x}

2, Cell permutations and pair loop of DK-ternar

Lemma 6. Let the system <k (x,z,y)0,l> be a DK-ternar. Let
a,b be arbitrary elements from E and a=##h. Then any unary

operation
a, p(1)=(a,i,b) (17)

is a permutation on the set E.

Proof. Let the conditions of Lemma hold. We can prove the

following: if 4 =1, then a,,(#)#a,,(#). Let us assume that there

exist f,t, € E such that

f] z 12,
(a,’iab):(aa’?,)b): k;
Then the system
{(x, f,y)=k;
(x’ tz:y) - k:
has two distinct solutions in Ex E: (a,h) and (k k). It contradicts

condition 5) of Definition 2.

Let us prove that for any ce £ there exists ¢, € [/ such that

c=a, 5({f)). We have (see Lemmas 4 and 5):

21
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C:aa,bUO) <>
o c=(a,l,h) <
< (ab)e[fy,c] <
<> (points (a,b),(fy) and (c,c) lie
in a common line in the projective plane n) <
& (th)=[xln[(a,b)u(e,c))

There exists an unique such element £, € F.

The permutations from Lemma 6 are called cell permutations.

Lemma 7. Cell permutations satisfy of the following conditions:

1). All cell permutations are distir ~¢:

2). (a,p 18 a fixed-point-/ 2z cell permutation) <>
{(a,00,b)=(0,,1)).

3). There exists fixed-point-free permutation v on E such that
we can describe all fixed-point-free cell permutations (with the
identity cell permutation ay;(?)) by the following form:

alt)=(a,;,\a)),  (M0)=1).

4). The set M of all cell permutations of DK-ternar is sharply

2-transitive on the set E,

Proof. 1). Let us have
(=0, 4(t) Yiek

Then
a=(a,0,b)=0a,,(0)=0.4(0)=(c,0,d)=c,
b=(al,b)=0,,()=0a.4)=(c1,d)=d,

ie. (a,h)={(c,d). Thus if (a,b)#(c,d), then a,,#a.,, eg all cell

permutations are distinct.
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2). (o, is a fixed-point-free cell permutation) <<
< (a,t,b)y=t=(0,)]) VieEk <
< (a,%,6)=(0,%1)
(see 1) from Lemma 4).

3). It is a trivial corollary of 2} and the statement 4) of Lemma

4). Let ab,c,d be arbitrary elements of E and a=#bc#d.
Then we have
o, (@)=c (x,a,¥)=¢
{ax,;.(b):d; < {(x,b,y)-:d;
By the condition 5) of Definition 2 there exists an unique solution

(x,y) of the last system; moreover, x %y, since c¢#d. So the set M

of all cell permutations is sharply 2-transitive on E. [

Lemma 8, Let M= {aa,b} ; be a set of permutations on the

ahe lf
set E (E 1is a finite set with distinguished elements 0 and 1), and
the following conditions hold:
1) (IO._‘ = ld,
2) (X.a’b(O) =4, aa,b(l) = b;
3) Set M is a sharply 2-transitive set of permutations on E.

Let us suppose by definition:

def
(x’ t’ x) = x?

def
(xLy) = o (1), if x+y

Then system < £&,(x,t,y),0,1l> 1is a DK-ternar.
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Proof is a trivial verification of the conditions 1)-5) of

Definition 2.

Let the system <Z (x,f,y),0,l> be a finite DK-ternar. Let us
define on set
ExE-{A}= {< a,b>labe Ea+ b} the following binary operation:

def
<x, > <z,u> = <(x,z,y){x,uy)> (18)

Lemma 9. The system <ExE—-{A}, .. <0l>> 15 a loop.

Proof is given in [2].
This loop is called a pair loop of the DK-ternar < £,(x,f,v),01>.

Lemma 10. Let us have a finite set E with distinguished
elements 0 and 1. Let on the set Ex FE—-{A} a binary operation “*“
is defined such that system <ExFE-{A},,<0l>> 15 a loop. Then the
next conditions are equivalent:

1)  The system <FExE—-{A},,,<0]1>> 1is a pair loop of some
DK-ternar;

2) The following quasiidentities hold on < Ex [ —{A},,<01>>:

a) (<x,y>-<z,u>=<y,w>) = (<X, y> <UI>=<W,V>),

b} (x,y> <zju>=<yvw>nz0) = (<x,y> <0 u>=<x,w>),

c) (ex,y>-<zu>=<yw>uzl) = (<x,y> <lLus=<yw>),

Proof is given in [2]
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3. Pair loop of DK-ternar as a loop with conditions

on cosets by two subloops

Lemma 11, Let the system <A, e> be a finite loop of order
n(n—1). Then the following conditions are equivalent:
1). The loop < A,,e> is isomorphic to the pair loop of some
finite DK-ternar.
2). Loop < A,;,e> satisfies the following conditions:
a). There exist two subloops A, and B, in the loop A,
such that
card 4, = card B, = n—1, Ay By = {e}.
b). The loop A may be represented in a form of
disjunctive unifications of left cosets A, and B, by the subloops 4,
and B, respectively:

ieE JEE

where E 15 an index set, cardE =#n.

c). It is true forany i,je k:

1y if i=j, then
AN By ={x;},

and  X; #Xg,, when (i, j)={k,m); moreover, any
X € A may be represented in that form;
2) if 1=/, then 4,"B;=0.

d). The element a,= A4 "B, satisfies the following
conditions:
1) a, e N,.(4), where N_(4) is a right kernel of
the loop A;

2) A"'a()::BI', Bj'aU:AJ,
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e). It is true for any cy € A:
C()'A,-:Aj, C[)'B‘:-’:Bj, Yie kL,

Proof.

1) = 2). Let loop <A e> is isomorphic to the pair loop
<fx E-{A};,<0]1l>> of some finite DK-ternar. Let us verify that the
conditions 1)-5) of Lemma hold.

1). Let us study the following subsets of the pair loop:

Ay ={<0,x >x € E~{0}},
B = {< x,1>jx € E—{l}}.
If cardk=n, then cardd, =cardB =n-1. Since
<0,x> <0 y>=<0/40,y, x)>

<xl> < yl>=<(x,y1)]>
<0]l>e 4y B;;

then 4, and B; are subloops of the pair loop. Finally, it is evident

that
Ay By ={< 01>},

2). Consider the following subsets of the pair loop:
A= {< 1Ly>lyek~{},i is afixed element from E}

B;=

| (1)
{< x, j>x e E—{j}, j is a fixed element from £};
It is evident that

v 4= v <hyr=ExE-{A}= A

ieE ivelr
i#y

v Bi= v <x, jr=ExE-{A}= 4
jek FRIN
i#x

By the help of Lemma 10 we obtain
<t yg> <Qu>=<iw> = <l yy>-A4y=4;

<xp, fro<ul>maw j> D <xy, j> By =8,
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ie. the sets A, and B, are left cosets by the subloops 4, and B5

respectively.
3). It is evident since
{<i,j>}=A4;n 8B,
<hLi>g ExE~{A}.
4). We have
A By = {<1,0 >}
and by the help of Lemma 10 we obtain
(<x,y> <uz>r<l0>=<v,w> <l0>=<w v>=
=< X, y> <o u>=<x, y>(<uzc> <10>),
ie. <10>e N,.(4). We have too
<hLy> - <l0>=<y,i> = A-<0>=248;
<x,jr <l0>=<jx> = BJ-- <1,0>= 4
5). Let <a,b,> be an arbitrary element from /A x//—{A}.
Then we have for any i1, € E:
<@y, by >+ <y, ¥y >=<(ap,do, b ). (@, y.by) >=< jo, W >,
le,
<ay,by>-4; =A4; forsome jyelk
Analogously we obtain

<dy,by>-B;,= B, forsome kel
2) = 1)
Let the conditions 1)-5) of the present lemma hold for the

loop < A,,e>. Let us define the following reflection

0 A ExE-{A};
def
oA, "B;) = <i,j>

The reflection ¢ is a bijection (see the condition 3) of lemma). Let us

define the following operation “* on the set ExFE-{A}:
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def
<i j>-<km> = QX5 Xt )

where x, = A4,NB,. Operation “* is defined correctly, since ¢ iss
bijection. Moreover, since |
Xy - Xpm) =<4, j > < hym >= O(x;)- Xy, ),

then ¢ is an isomorphism of the loop < A4,,¢> on some pair log
<ExE-{A},,,<0]1> (and ¢(e)=0¢(4; ~B)=<0]1>).

Let us prove that this pair loop is a pair loop of some finite
DK-ternar. It is necessary to verify that the conditions 1)-3) of
Lemma 10 hold.

a). Let us have

<X, P> < Z, U=V, W >,

Then
x,,w:(p“l(<v,w>)=(p'1(<x,y>-<z,u>): |
=@ <X, y>) 0 <z, u>)= Xy Xy (20
By the help of the condition 4) we obtain
Yy @9 =(4,NB,) @ = (4,-a)"\(B, )= B, N A, =x,,, (1)
and
(Xpy " Xz} Ap = Xy - (X - ). (22)

From (20)-(22) we obtain
Xy = Xy A0 =Xy, - Xz ) Ay = Xy, (X A0} = X ) - X,
ie.
W,V 5= Xy ) =YXy, Xy ) =< X, Y >0 < th, 2 >
The quasiidentity 1) from Lemma 10 holds.
b). Let us have

<X,y > <zu>=<vw> u#0
Then

Xy = Xy " X gy,
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By means of the condition 5) we obtain
A, "B, =x,, = X "Xy = Xy (4, n,)= (23)
=(xg - A )N (xy, - B)=A4,B,

By virtue of the condition 3) we obtain for any /i, & £
4 ={zet B je E-tig) ={x, 17 e £ fi})
But the set 4; is a left coset by the subloop 4, and so there exists
Xy, € A such that
Xpg Ay = A, (24)
Since ee€ 4, then x, €4 ;eg x,=x,,; forsome j &k Then
we obtain from (24)
Xivjo Ay =4,
and since J; was an arbitrary element from F, then
Xy Ay = Ay (25)
for any x € L. From (23) and (25) it follows that
Xy Xy = Xy, (Ag VB = (X, )Xy, B = A By = xy. (26)
By the help of the conditions 2} and 3) of this lemma and the
identities {23)-{26) we obtain
A, = A, B, =B,
ie. v=mw=1{.In accord with (15)
Xy * Xy = Xxres
ie.
<x,y > <0,u>=0(xy, ) ¢(Xg,) = Xy, Xgu ) = PXyyy ) =< X, W >
The quasiidentity 2) of Lemma 10 holds.
c). Proof of quasiidentity 3) of Lemma 10 is analogously to that

H

of h).
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84. Sharply 2-transitive sets of permutations degree n

and loop transversals in §, to 5t,,(S5,)

Let us return to the set of cell permutations of some finit

DK-ternar. The following statement is true.

Lemma 12. Let E be a finite set and {E|=n. The following

conditions are equivalent:

1). Aset T is a loop transversal in S, to 81, ,(8,), wher
a,b e E are arbitrary fixed distinct elements;

2). Aset T isa sharply 2-transit:: : set of permutations on E;

3) Aset T isa sharply 2-tranc.i.we permutation loop on E;

The permutation loop is defined in [6].

Proof is given in [7]. L]

§5. Loop of points of a projective plane

In this paragraph it will be proved the definition of such binary
operation on the set of points of a projective plane, which is identical
to the operation of pair loop of DK-ternar corresponding to that plane.
This operation will be a loop (see §2) and since the loop of points

mentioned above will be called a loop of points of a projective plane.
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Let us have a projective plane =® and a DK-ternar
corresponding to it (see §1). Let us demonstrate the method of a
purely geometrical construction (with the help of an incidence relation
only) of the point (v,w) by the points (x,y) and (z,#) (where
x#y z#u), where <v,w>=<Xx,y>-<z,u> in the pair loop of the
DK-ternar mentioned above. The sequence of the construction will be

described step by step below.

X =(0), 0 =(0,0),

b Y=(1), T=(1)

are four points in a common position on the plane =

Huh={1  (00)vn=[0]
(0)w(0,0)=[00];,  (O)yu@)=[=x}

2).
3. [0,0]~[L1]=(0,)).

4), 0)yu(z,u)=[0,:z]; (Dou(z,u)y={Lul

5). [0,2]~[0)=(z,z), [, 2] [0])= (2,10},
6). (0O.Hyu(uw,u)={u,uj, (Ohu(z,z)=[zz]

7). [u,ul"{x] = (u), [z, 2] [x]=(z)

8) (x, yyo(u)y={u,(x,u, y)]=[u,w],
(@)=l (s )= (0]
9). [u, win[0]=(w,w), z,vIN[0]=(v,v).

10). (0O)u(v,v)=[0,v], (Hhu(w,w)=[l,w]
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11).  [O,v]n[L,w]=(v,w).
The point (v,w) is constructed.

| (0) |z.w]
(x.y) /

[0]

[0.0] (w.w)

[1.w]

{0.1)

[]

Fig. 1.

It is easy to see that we used the incidence relation only in the

construction described above. Then this construction is independent

from a coordinatization on the plane @ and could be done without

some coordinates on .
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Quasigroups and related systems, 2(1995), Nel(2)

Isomorphisms of quasigroups isotopic to groups

Viadimir 1. l1zbash

Abstract

In this nole quasigroups isotopic to groups are considered. The necessar
and sufficient conditions for two quasigroups isotopic to the same group to he
isomorphic are found. The form of isomorphism of two quasigroups isotopic to the
same group and the form of automorphism of a group isotope are given. For :
T-quasigroup with an idempotent the group of automorphisms is described.

1. Introduction

We consider quasigroup operations defined on the same set ()
It will be convenient to recall some of the terminology of quasigroup
theory.

The quasigroup (Q,) is a groupoid ((J;;) with the unique
division. For each ae () we have two transformations of the
underlying set (). They are called the left and the right translation by
a and they are defined by

l,x=a-x and Rx=x-q
for every x e (J.
~Since (();) is a quasigroup, both these transformations are
permutations and hence they belong to the permutations group S(Q)

of ().

@© Izbash V.I. 1995
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The left (right) loop is a quasigroup (Q,) with the left (right)
unite ¢ (f) such that e-x=x (x- f=x) for every xe(.

The element 1 of a quasigroup ((Q,) is said to be a unit of
(Q,) if forevery x of QO

l'x=x-1=x.

A loop is a quasigroup with the unit.

By Aut(();) we denote the group of all automorphisms of
(@,).

o

For each ae () put
S.(@)={o € $(0)|aa=a}.

Let "" and "*" be two operations defined on (). The
operation  "o" is said to be isotopic to "#", if there exist three
permutations a,B,y € $(Q) such that

x+y=7" (ax o By) (1)
forall x,y €.

We also say that ((J,*) and ((,°) are isotopic, or that ((J),*)
s an isotope of ((),o) of the form x*y:y"(czxoﬁy). Shortly we
write this as

(0.*) xry=y (axoBy), o.ByeS(Q) x.yeQ

The triple (a,B,y) of permutations such that the relations (1)
hold is called the isotopy of (Q,0).

If in (1) vy is the identical permutation &, then (Q,*) is said
to be the principal isotope of ((),0).

Ifin (1) a=B=v, then

xty=y"'(yxoyy), (2)
which means that y is an automorphism between (Q.*) and (Q,°).

The equality (1) is equivalent to the following equality
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exy =y Ny lyx o By ly ), (3)

whence we have proved the following

Theorem 1 ({1] Theorem 1.2). An isotope
(@*) xry=y (axoBy), aByeS@) xyeQ
is isomorphic to the principal isotope
(O®) x®y=ay xoBy"y, aByeSQ), xyeQ,

and vy 1is the isomorphism between them.

Theorem 2 ({1} Theorem 1,3) For arbitrary fixed elements
a,b e Q the isotope
@) xxy=Rl'x-Lily, xye0,
is a loop with unit e¢=b-a, where R,,I, are translations of a

quasigroup ((J,;) by a and b respectively.

Theorem 3 ({1} Theorem 1.4). If a loop (Q.,°) is isotopic to a
group ((),), then it is a group isomorphic to (0,).

A permutation vy e S(Q) is called a quasiautomorphism of a
group ((2,) if there exist two permutations o, € S(?) such that
x-y=7 ox-By)
holds for all x,y e (.
Quasiautomorphisms of a group () are described by the

next

Lemma 1 ([1] Lemma 2.5) A permutation y<S(Q) is a
quasiautomorphism of a group (Q,) if and only if there exist
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element s € O, automorphisms (po,(sp'o € Aut(Q,;) such that y= R, or

Y= Ls(p(] :

The following equalities hold in a group (Q,):
R'=R ., I =Ly RRy=Ry, Lily=1ly,

OR, = Rpa®, ©L, = Ly,0. ola”)=(oa)",

1

where ¢ e Au(Q,), a is the inverse of a in ((.).

In abelian group (Q;) we have R,=L, forevery ac(.

2. Isomorphism of group isotopes

An isotope of a group is called a group isotope.
Let
(Q’*): x*y:ax'ﬁy: a:ﬁe‘y(Q): .r,yGQ,
(Q,c): Xoy=0qax: Bly: aI:BI & S(Q), xye Q9
be two isotopes of a group ({),).

(4)

Suppose that ((),*) and ((Q,°) are isomorphic. Then there
exists a permutation 8¢ S(Q) such that
B(x* y)=0x - By
or
&(ax - By)=oy0x - B,0y (5}
for all x,y e Q.
Let 1@ be the unit of the group (Q,) and e¢e(Q be such

that fBe=1. Putting in (5) y=e¢ and 6 'x instead of x in (5) we obtain

8087\ x = a;x - BBe. Therefore
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o = R;'0a87,
where a=,0e.
From (5) using (6) we find
B(cce - By) = R; '0af™'0x- B0y = R; 'Bocx - B,6y.

1

Replacing here x for o x we get

8(x- fy)= R;'6x- B,6y.
Putting here x=1 we obtain
6By = R;'01- B,0y.
Hence
B=67"1,8,
with b= R;'01

Analogously we will obtain a relation for o,a; and 0.

(6)

Let fe( be such that af =1 Putting in (5) x= f and 07y

instead of y we obtain
06"y = 0u8f - Byy.
Therefore
L =17'ope!
where c=o,8f.
From (5) and (8) we find
Box - y)=o0x- L;'Gy
and if y=1 we have
Bax = a,0x L;lel.
Hence
a=0""R;a6,
where d=[7'91

Now the equality (5) can be rewritten in the following way

38
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07" RyoyBx - 071 1,B,0y) = 00x - B8y,

From this equality, replacing x for e“la["x and y for

077y we get
x-y::G(G‘lex-G"]Lby). (10)

Therefore 0 is a quasiautomorphism of the group ({J,).

By Lemma 1 there exist se Q and 0, € Aur((J,;) such that
0= R0, Then (9) and (7) can be rewritten in the following way
respectively:

o=6;'R'R,0yR0,, (11)
where d=I.'R8,1=1I.'s, c=a,R8,f =0,(8,f ), and
B=8'R;'LsPi R 6y, (12)
where b= R'RO,1=R's, a=pR0pe=P(8e s)
Using (11),(12) and the equality 6= R0, we find from (10):
Xy = RO(60' R Rox- 0" Ry Ly y) = (RS Rye- RSy y) =
=(xd- 5" Yby- 575 = ((x- L2's)s T MR s )= ((xe s e y) =
= (e Nsa™ y) = ey R B80S (5 BiRBe) )y =
= (e, R,0,/) s+ (B1ROye) - v
Therefore
(4RO f) s (BiRBye) ™ =1 (13)
So, if @ is an isomorphism of quasigroups ((),*) and ({),°), then
there exist s @ and 6;e Aut(Q,) such that equalities (11)-(13)
hold and 6=R_0,.

Conversely, let se () and 6, € Anf((),) satisfy equalities (11)-

(13) and 6=R.0,. Then
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RBo(x*y) = R8y(85' R, Rjoq R Box - 05 R LB ROy y) =
= Ry(R Ry RByx - Ry LBy RBoy) = Ry Ryoy R@yx - LBy R By y =
= (o {0gx - $)ds™ }(b- BBy - s = (et @y sHL s 57 W R, s B8y - ) =
= (o (Bpx - 5)- oy (B £ - ) s 57T )5 B(Bpe - ) 1By By - 5) =
=0oy(8px- 5)-By(8yy - 8)= ROyx o R, y,
ie. RO, is an isomorphism of the quasigroups ((.*) and (Q,).

Thus, we have proved

Theorem 4. A permutation 0¢c S(Q) is an isomorphism of
isotopes ((),*) and ((,°) defined by (4) if and only if there exist s € (
and 8, € Aut{(),;) such that the relations {11)-{13) hold ,where 1 15 the
unit of the group (QJ;).

Let
(@2} xey=y (ox-By), oByeS@) xyeQ,
(Q,g)i x;)’:Yi"](alx'BU’), oz, By, vy € 8(Q), x,y &, o
be two isotopes of a group (Q,) and let
(Q.*) x’;y=0-¥"‘x- By ly, aByeS@) x,ye, 5)

@2 xsy=ami'x-Bi'y, w.BLn eS@) vy <0,
be isotopes of (Q’f) and (Q,_c;) respectively. By Theorem 1 it
follows that 'y(xt]vy):'yx’!k'yy and ‘yl(x;y)zy,x;y,y hold for all
x,ye(,eg v isan isomorphism between (Q’T) and (Q,T), and ¥,
is an isomorphism between (Q,:) and (Q,j';). If % is an isomorphism
between (Q,';) and (Q,;),i:e. l(xry)zkx;ly holds far all x,y e,

then
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Vi Ay Ceo p)=yT Myx*yp) =7 s kyp)= v Ayxo v hyy,
whence y{lly is an isomorphism between ((,) and (Q,;_).
1
Conversely, let 6 be an isomorphism between ((,o} and
I

(Q,;), eg. O(x ?y)zﬂxgey holds for all x,ye 3. Then for p=y,0y"
we obtain

Orxy)=y,8(y 'xoy ) =1,y 'xoBy y) =y 0y 'x2y,07"y.
Since x and y are arbitrary, from the last equality we conclude that

1 is an isomorphism between (Q,T) and (Q,‘:).

So, we have proved the next

Lemma 2. A permutation 8 e S((QQ) is an isomorphism between

isotopes (Q,t;) and (Q,;) defined by (14), if and only if there exists
an isomorphism py between quasigroups (Q_,T} and ( Q,’:), defined by

(15), such that 0=y, py.
From Lemma 2 and Theorem 4 we obtain

Theorem 5. A permutation 6€ S((J) is an isomorphism between
isotopes ((),*) and ((Q,c) defined by (14), if and only if there exist
se and 8, € Aut(Q,) such that 8=v]'R8,y and relations

ay” =0;'R'Ra.y, R8O, .
By ' =0;'R;'LBY;'RS,. - (18)
(07 RO )5 By, 'RBe) ' = 1,
hold, with d = (o,y;'R8, )" s, b=s-B,y;'R8,e)", [=vyal, e=vyB"l,
where 1 is the unit of the group (Q)).
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If in Theorem 5 the quasigroup ({J,*) is replaced by (0,9},

then we obtain the following

Corollary 1. A permutation 6 € S{(Q) is an automorphism of the
isotope (Q,0) xoy =vylox-By), aByeSQ), x,yeQ of a group ({),)
if and only if there exist se( and 0, € Aut(Q,;) such that
8=y"'RB,y and relations (16} hold for o, =a, B, =B, y, =Y.

We will adapt some of the above results for right loops
principal isotopic to the same group.

Let ({J;) be a group with the unit 1 and a principal isotope

(Q.*)xty=oxBy, o.B,eSQ), xyeQ
be a right loop with the unit ¢. Then we have
x =x*e = ox-fe
for all x e @, from which it follows that
a=K

(fey*-
Therefore
- _ S
ory=Ro xBy=x(Be) Py=x-L By
Let us consider the isotope
(Q,0) xop=x. L(pﬂ).,BL‘,y, x,ye Q.
We note that
L(ﬂe)“BL*-‘l =,
ie. ((),°) is a right loop with the unit 1. The right loop (Q,?) is
isomorphic to the right loop ({J,*), since
L(xey)y=1,(x- Ly BLyy=Lx L, BLy=Lx+Ly.

From this equality and Theorem 1 we have
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Proposition 1. Every right loop which is isotopic to a group
(Q,) with the unit 1 is isomorphic to a right loop
(Qp) xoy=x-ay, a,€S(0), x,ye(

with the same unit 1.

The following statement is a direct corollary from Theorem 5.

Proposition 2. A permutation ©0¢c S(Q)) 1is an isomorphism
between right loops
Q%) x*ry=x-oy, ae$(Q), x,ye{)
and
Qo) xoy=x-Py, e S(Q), x,ye
if and only if 0€ Aut(Q,) and a=67'ps.

Corollary 2. For a right loop
(2.%) x*y=x-ay, ae (), x.y e,
which is isotopic to a group (Q, ) with the unit 1 the equalities
Aut(Q,*y=Z np 40} = {0 € Aut(Q, )| pa = oo}
hold.

Proof. The statement follows from Proposition 2 replacing

(@) by (O.*). r

Corollary 3. For a right loop
(Q‘J*): x*y::JC-(ly, (X'ESI(Q)a X,yEQ
which is isotopic to a group (Q,) with the unit 1 we have

Aut(Q,*)= {g},

43



Izbash V1.

provided that
o & Zg oy Aut(Q N = {w e SIQ) [wo = ow, ¢ € Aut((. ).

Proof. It follows directly from Corollary 2. B

Corollary 4. For a right loop
(O*) xry=x-ay, ac §{Q), x,yc
which s isotopic to a group (Q,) with the unit 1 we have
Aut(Q,* )= Aut(Q,),
provided that
a € Zg o) {Aut(0.)} = {y e S | vo = oy, @ € dw(Q.)}.

Proof. It fallows from Corollary 2.

3. Automorphisms of a T-quasigroup

We will use Corollary 1 to describe automorphisms of a
T-quasigroup.
We recall that a T-quasigroup (Q,*) is an isotope
x*y:r(px+wy+g-—.:(px+Rgxpy (17)
of an abelian group (Q+), where o, we Aut(Q+), ge(
Rx=x+g [2]
Let 0 be the zero in ((J,+). Then, by Corollary 1 a permutation
8e S((2) is an automorphism of the quasigroup (17) if and only if
there exist se () and 9, € Aur(()+) such that 0= R0, and relations
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0=6;'R'R0R 0,
Rw=65"R;' IR WR6,,

——cps+s—ngRg90\u_'(*g)r 0, {18)
b5~ RayRByw ' (—g).
d=~@s+s.

hold.

Here w’l(—g) is a solution of the equation Ryyx=0. Relations
(18) can be simplified.

The first equality of (18) can be written as follows:

0= 07 RIRQRBy = 07 R Ry Ros08 =
- 9_1R5~tps+s+(puq)90 =0 l(pe{)-
Further we have
b= 5~ RawRBow ' (—8) =5~ Ry (yBoy ™ (~g)+ys) =
=5+ yBoy " (~g) = s g,
-1 p-1 —
ng = 90 Rs Lb Rg \'I”RSOO = 9()1R~.vaRg / {VS\UBO =
i -1 -1
= 80 ]Ls+b+g+tps\peo ~ eﬂ RWOW-'I(g)WGO - eﬂ \UGOR\IJNI(},')'
Therefore
—1 _ ~1 — _ -
9{) l]fe() —-Rg\URw_i(g) —-Rg WR\V_I(-g} = RgR__g\V = Y,
ie. wd, =0,y Consequently 8, is an element of the centralizer
C= Z.4rrl(Q,+){(pv )
of automorphisms ¢ and vy in the group Auwi((),+). Granting this
we obtain
0=~@s+5— RYROW ' (~8)=~@s+5— R R, wBu ™' (-g) =
=—-ps+5+Q)g - ys— g,

from which the equality

45



Izbash V.I.

OS+yYs—-s=0,g—g
holds.
Conversely, for 8, and s<( such that
ps+ys—s=8g - g
we find
ROy (x* y)= RBy(ox+wy + &)= R(8y0x +Byuy + 6,g) =
= @Bpx +yOyy +0pg + 5 =@Opx +yOpy +os+ ys+ g =
= 0(8yx +5)+ WOy ++5)+ g = ORByx + yRByy + g =
= ROyx* ROy

Thus we have proved the following

Proposition 3. A permutation 8¢ $(QJ) is an automorphism of
a T-quasigroup (17) if and only if there cxist s (Q and
8 € C=Zug.1)i0, W} = o € Aut(Q+)| o = oo, ay=ya},
such that 0=R0, and o@s+ys—-s=0,g—g.

In some cases the automorphism group of the T-quasigroup (17)
can be described.

Let us denote

N={seQ|os+ys—s=0},
Ry ={R,|ne N},
Ay=18y € C=Zyyn0.)10, W} [6g = g}

It is easy to see that (N, +) 1is a subgroup of (Q,+). From
Proposition 3 it follows that 4, and Ry are subgroups of Awf((Q,*)
and 4, is a subgroup of Aw/(Q+). Since

0=0,0=0,(0s+ys—5)= 005+ yBys — 0,5
and

0=0;'0=0;'"(ps+ys—s5)= 0855+ yB;'s - 6;ls
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for 8, eC and se N, then we get ;N =N, where
Oy N = {Oyn|n e N}.
Let
RO, € Aut(Q,*), se(, 0y¢e Au(Q+), nelN.
Then
ROR, = RsReoneo = R()On RO,

So, CIRN(I-IC_ZR;V for every o€ Aut((),*¥), hence Ry, is a
normal subgroup of Auwt(Q,*).

It is evident that a permutation K. is an automorphism of the
group (Q,+) if and only if ¢=0, eg. R. is the identical
permutation €. Therefore Ry "A4,={e} and a semidirect product
Ry x A, is a subgroup of Aut((),*). Also we have Aui(Q,*)=R, xC if
g=0.

So we have proved the following

Proposition 4. Let (Q.+) be an abelian group with zero 0, and
OQ®) x®y=x+yy, 0,y e dui(Q+), x,ye 0
be 2 T-quasigroup. Then
Aut(Q @)= Ry xC,
where

C= ZAH!(Q.+){(D: v,
Ry ={R 1se€ Q, os+wys=0}.

We note that medial quasigroups that contain at Jleast one

idempotent [3] and transitive distributive quasigroups {4] satisfy

Proposition 4.
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4, Examples

In the following example the efficiency of Theorem 5 and
Corollary 1 is visually demonstrated.
Let ((J);)=(h be the infinite cyclic group which is generated

by an element g, a=(h"""?) be the transposition of element:

-2

#' and & (e, ahD=82 ah®)=h"' ax)=x foreve

xeQ, Wlzxzh™, o,=(hh*) be the transposition of element

h and #°, I be the permutation of (Q;) defined by Jr=x""
Consider isotopes

(Op): xey=oux-ly, x,ye(,

(0% xry=orly, xyeQ

We will prove that ((,*) and ({,°) are isomorphic.

Remark that in this case elements f and e from the
Theorem 5 are equal to the unit 1 of the group (Q.), whence the
third relation of (16) is equivalent to the equality

(o) s(Is) ™ =1,
Element 1 and h and only they satisfy the above equality. Itl is also
known that Awi(Q;)=1{e,]}. By Theorem 5 permutations
Re=¢, Ri=1, Rg=K, R,J and only they can be isomorphisms
between (Q,*) and (Q,°). Let us verify the first two conditions of
(16) for s=1 and 6,=/. We have d=1, #=1and foy/=a, =11 The
validity of the equality [o,f = a is verified directly and the equality

I=]JI is trivial. Hence [ is an isomorphism between ((,*) and

(an)’
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Now we will find Awt(Q,c). As above we can show that
permutations Re=¢, RI=1, Rg=R,, R,/ and only they can be
sutomorphisms of ((J,o). The identical permutation is automorphism
- in every algebraic system. It is easy to see nevertheless that Rg

satisfies Corollary 1. As it was shown above Jo,/=a #a, then

I'¢ Aut(()0).

For R we obtain

2

b=hIny ' '=hh=H d=@h) " h=p"h=h" o +R'RoyR,
since
R_R_oyRh=R_\R o’ =R R _h=
=R 1=h"zoyh=h’
So, R, ¢ Aut((),»). For R,/ we have
d=( R h=(h) " h=h"h=1
and
IR;'R ey Ryd = IR, ,ai Ry ] %0,
since
IR 2oy RyIH = IR oy Ryh™ = IR Leh™ =
=IR ;b =1’ =k =h=o,h’,
e, R I¢ Autl(Q,°). Therefore
Aut(Q,o)= {e}.
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Linear isotopes of small order groups

Oleg U. Kirnasovsky

Abstract

The first part of the results of computer investigation of linear group
isotopes is given. The first section of the work is auxiliary. It contains beloning
criterions to the known classes of quasigroups. The second section contains:
an algorithm for description of linear group isotopes; a tull list of palrwise non-
isomorphic linear group isotopes up to 15 order; a full list of subquasigroups of
every isotope. For each quasigroup the beloning to the known classes of
quasigroups is singled out.

A groupoid (G;} is called an isotope of a groupoid (Q;+), iff
there exists a  triple (a,B,y) of bijections, called an <isotopy,
such that the relation

y(x -y} =ox +Py
holds. An isotope of a group is called a group isotope. An isotope of a
group is called Iinear if every component of a corresponding isotopy
is a linear transformation of the group (recall, a transformation o 1is
said to be linear in the group (Q;+), iff there exist an automorphism
of the group and an element ¢ such that ox=0x+c for all re()
It s easy to verify that any groupoid isomorphic 1o a linear group
isotope is a linear group isotope as well. So, the class of all linear

group isotopes forms a variety and medial and T-quasigroups are

® Kirnasovsky O.U. 1995



Linear isotopes of small order groups

its subvarieties. An additional information on group isotopes and
linear group isotopes one can find in [1], [2] and {3].

Here, using the results of the work {3] we continue that
study. Namely, in the first part of the article we give: a criterion for
a linear group isotope to belong to each of 22 the most singnificant
classes of quasigroups; a full list of pairwise nonisomorphic linear
group isotopes up to 15 order; a number of all these isotopes of every
order (£195).

The author expresses his great thanks to Mr. Vassyl

Bassovsky, who gave the possibilities of the computer version of the

text.

1. Some necessary properties

We shall write “isotope (a,B,y) of the groupoid (Q;+)” instead
of isotope (0;*), defined by the equality x*y=v '(ax+83)”, where q,
f3, y are substitutions of the set Q.
Up to isomorphism every isotope ((Q.} of a group (Q;)
can be defined by the equality
Xy=@x +yy+c, (1)
where ¢, Wy are unitary substitutions of the group (0+) (ie.
o0=y0=0} If (Q;) is linear, then ¢, v are automorphisms of
(0,1 {see [3] and Theorem 1.6 here).

As wusual, the signs f, and ¢, denote a left and right local
units of a of the quasigroup operation (-):

J.ra=a-e, =a,
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¢ denotes the identical transformation of arbitrary fixed set.
I. denotes inner automorphism of the group operation (+):

[ x=—-c+x+c
A commutation of the arbitrary operation (+) is denoted by (&) and
defined by x@y=y+x., A groupoid ((J) is said to be a
commutation of a groupoid ((;+).

-

A class of groupoids will be called commutation of a class K

¢of groupoids and will be denoted by K *, if X  consists of all
commutations of groupoids from K

A formuls Mo, w,c+, 19 .J, A), being an equality with no
propositional constant and having the propositional variables
O,\,¢,X],...,X,, binary functional variables +e 4 and unary ones
I.J only, will be called a beloning criterion of a linear isotope to a
dass K, where K is some class of groupoids, if from the facts that
¢ is an element of a group (0.+); ¢,y are elements of the
group (H,#)= Aut(Q+), [1,J are inverse operations in these two
groups respectively; and A HxQ > (@ is such a function, that
A, x)=ox is true, it follows the equivalence of predicate expressed
by the formula Vx;..x, ®o,y,c+,/e.J, 4) to the beloning of the
linear isotope (0,y,c) of the group (Q;+) to the class K

Theorem 1.1. If M o,w,c,+,19e.J,4) 1isa belnning criterion of

2 linear isotope to a class K of groupoids, then a beloning criterion

of ¢ linear isotope to the class K * one can get by replacing every

subterm of the type w+v, where u,v are arbitrary terms, with

viu in the formula /.y, 1.,c+ e, J,A).
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Proof. Let ¢ be an element of a group (Q+), o,w be
elements of the group (H,8)=Au(Q,+), [I,J be the inverse
operations in these groups and

AHxQ—(Q

be a function such that A{a,x)=oax. Then the predicate expressed
by the formula V.. .x, ™o, w,c,+, /0,7, 4) is equivalent to the
beloning of linear isotope {¢,w,c) of the group (Q;+) to a class K
Note, that ¢ is an element of the group ((,®) as well, the inverse
in the groups (Q;4+) and (Q;®) for any element from the set Q is
the same, and an automorphism groups of these groups
coincide.

Hence, a predicate, expressed Ly a formula obtained in a way
described in the theorem, coincide -vith the predicate, expressed
by the formula Vx..x, ™/, /.0,c®, /s J A), and is equivalent to
the beloning of the linear isotape (I.y,/.¢,c) of the group (Q;®) to
the class K. But if ((J;) is such an isotope, then

xy=luwx@loy®c=c+Ioyv+1 yx,
whence
x@y=c+lLox+l.yy=ex+yy+c,

le. this is equivalent to the beloning of the linear isotope (¢,y,c)

of the group (Q+) tothe class X ‘. Thus, the theorem is true. [

Lemma 1.2,

(Kin..nK,) =K n..nK, (Kyu UK,) =K u. UK.,

Lemma 1.3. If for automorphisms ¢,y of a group (Q;+) the
equality
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Qt+w=¢
holds, then the group is abelian.

Proof. Really, if for some elements w,ve (Q w+v#v+u, then

v u+ov=(0+ W ut (0 + gty =
= (pw"‘uﬂf +v+ \p(p"lv # (p\u""lu+ V4 + W;i‘, —
=+ vy uro W)=y uro v

A contradiction.

Note, that only in abelian group the mapping I (/x=-x) is an
automorphism.

Recall the following

Definition 1. By right F-, right symmetrical, RIP-, right Bol,
right distributive, right semimedial, right alternative quasigroup and
by right loop it is called a groupoid (), such that its
commutation ((Q,®) has the left respective condition. By F-, T'S-,
IP-, Bol, distributive, semimedial, alternative quasigroup is called a
quasigroup fulfilling the left and right respective condition
simultaneously. An idempotent TS-quasigroup (Moufang) is called
Steiner (respectively CH-) quasigroup. A quasigroup having at least
one idempotent element is said to be a peak. If a quasigroup has

no subquasigroup exept itself then it is called monoquasigroup.

Theorem 1.4. A belonging criterion of a linear isotope (@,y,c)
of a group (Q;+) to a class of quasigroups K is defined by the

following table
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N name definition criterion
1 commutative Xy = yx (p =\, the group is abelian
2 medial Xy uv=xu-yv QY= Y@, the group s
abelian
3 idempotent XX =X e+y=t, c¢=0 the
group is abelian
4 left F X-yz=xy-e.z ¢ commutes with Y and
with all inner
automorphisms of the group
8 right F see Definition 1 [ .y commutes with @ and
with all inner
automorphisms af the group
6 left symmetrical X.xy=y W= -, the group is
abelian
7 | right symmetrical see Definition 1 O =&, the group is
abeliun
5 _LIP exists a substitution A, (f “\i;)z =g
for which Ax-xy=1y "
9 RIP see Definition 1 (02 —g
10 Mufang (xy-z)y=x- y(ey:- ¥), (p2 - (L«W)z =g
Wx-yz)=(y-xf, )y =
11 left Bol z(x'.'-:y)Z Iz;l(:x:)y (}(lp).‘.} =g
12 right Bol see Definition I (Pz —g
13 left distributive X-yz=XxXy-xz o+w=¢, ¢=10, the
group 1s abelian
14 | right distributive see Definition 1 eo+y=¢, ¢=0, the
group is abelian
15 left loop fx = fy lwy=¢
16 right loop see Definition 1 P=t
17 ¢ left semimedial XX Yo =Xy xz QY= \yp, the group s
abelian
18 | right semimedial see Definition I QY= WY@, the group is
' abelian
19 primary commutative, o=vy, {(Vx)3x=0), the
semimedial, group is abelian
VY- VX = XX XX
20 left alternative X-XZ=Xx-z Q= [cw = g
21| right alternative see Definition 1 o=fy=¢
22 elastic Xy X =Xxyx QU= P, OC=we,
(Vo) 7, 0(—x +@x) =
=y wx — !;i;r‘ N
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Proof. The points 1)-3) are evident. The points 6), 8), 11), 15),
18) follow from the points 7), 9}, 12), 16), 17) correspondingly when
applying Theorem 1.1 and Lemma 1.2.

4) The identity x-yz=xy-e,z is equivalent to

OX+ Wy +ys+c)+c=o(ox +yy+c)+
oy (-px+x - )+ yz+c)+c,
Le.
OX + YOV = 01X + QUY +OC — WO OX + WOy X — Yoy ¢,
this with x=0 implies
WY = QU +0c — Yoy ¢,
whence o¢c=woy'c and w¢=oy. Hence,
PX+QYY = 0°X + QYY +C ~0°X 4 OX — ¢c,
Le.
X+Yy+c=Qx+yy+c—ox +x,
or
X+V—X=QX+V-—0X,
whence [ v=0/ (¢"'v). Hence, {o=0/..

5) By Theorem 1.1, Lemma 1.2 and the just proved point 4)
the identity xy-z=xf.-yz is equivalent to a conjuction of the
commutation of the automorphisms /¢,/y and the equality

~x+v+x=~l yx+v+{ yx.
From the second condition it follows that
~x+ I yu+x =1 y(-x+u+x),
ie. 11wy=1lwyl, this with x=— implies v/ =/vy. Applying the
first condition we have [oly= Iy, ie ol vw=1yo.

9) The parameter identity xy.-py=x Is equivalent to a

conjuction of the equalities ¢’=¢ and p=y IL R oy. Really, if

the identity holds and y =0, then, accounting (1), we have o'x+a=x
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for some ae (. This means that ¢’=g¢ and a=0. So, th
identity can be rewritten as
X+QYy+Qctypy+c=x.
Consequently, p=vy /L R oy. Conversly, let the above equalitie
hold, then
Xy py = Q(ex+yy+c)+wy (—pc—ouy —¢) te =
=X+QYY+OC—PC —QYy —c+e =X,

7) To the proof of the point 9) we have to add that p=c¢
ie. @=-g=1 (since, as it is easy to see, oc=-c) It means, i
particular, that the group is abelian.

10) From the first equality with y=:=0 and accountin

(1) we have that
O'x+a=oex+h

for all xe @ and for some elements a,be Q. It is easy to see tha
the last equality is equivalent to a=b and ¢’ =¢. So, ¢’ =¢
By Theorem 1.1 from the second equality and from the jus
proved assertion we have ([w)=s. It is easy to verify that th
converse statement is true as well.

12) The right Bol identity is the following:

(yz-x) :y-l,:“,;(:x-z).

When x=:=0, we have a relation ¢@’y+a=qy+b for all ye(
and for some elements a.be (. So, ¢’ —=¢. It is easy to verify that
the converse statement is true as well,

13}, 14) The quasigroup 15 idempotent, S0,
@+w=¢ <¢=0 and the group is abelian. The converse statement is

evident.
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16) The relation (1) implies ¢ w'{ gx+x+¢). The
existence of a right identity means that o -e¢ forall x,ye(.
It is easy to see, that the equality ¢ =¢, isequivalentto o=¢.

17) In the linear group isotope the Ileft semimedial
identity is equivalent to

QUX +QC + WY = @Yy -+ rdx, (2)
this with p=0 implies wo=¢l y. Then the equality (2) will be
rewritten as x+y=y+x, ie. (Q:4+) is abelian Hence, [ =g, and
then oy = wo.

19) By 1),17),18) e@=w and (.4} 1is ahelian. Then the
identity

Yy oYX = xx- xx
is equivalent to 3¢’y =3¢’x, or 3y=3x. Replacing with y=0, we
have
(Vx)(3x = 0).
That, in particular, means the truth of the equality 3y = 3x.
20) The identity x-xz=xx-z is equivalent to
OX + WOX + Wi +C = @' X + QWX + QC + 1t
If x=u=0, then ¢c=c¢ and then the additional equality x=0
gives the relation ww+c=c+u, ie. Jy=-¢ Since w=171" then
ox+1'ox+ 1 urc=0p'x+0l 'x+ ooou,
le. @x+c=0'x+@c. Accounting @c=¢ we have o -, whence, in
particular, it follows that ¢@c=c.

21) By 15), 16), 20) the left alternativity (and then right
alternativity) of linear group isotopes may hold exactly for loops.

22) The identity xy-x=x yx is equivalent to

PIX +QYY + OC + WYX = QX + WOV - Y X+ e
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If x=y=0, then ¢@c=yc, and then, with x=0, we shall
obtain ¢y=we¢. Then
@ X + 1+ Yo+ yx = ox + -+ yrx +ye,
or
~Uu—Qx+ @ x +1=yx +ye—yx —ye,
ie,

1o(=x+@x)=yyx -1 "'x).
The theorem implies the following resuit immedately.

Corollary 1.5. The following classes of linear isotopes coinside:
a) left semimedial = right semimedial = semimedial = medial;
b) left distributive = right distributive = distributive = idempotent;
¢c) CH=TS,
d) left Bol = LIP;
e) right Bol = RIP;
f) Bol = Mufang = IP;
g) left alternative = right alternative = alternative = loops = groups;

h) distributive Steiner quasigroups = Steiner quasigroups.

The pairs <o,y> <@,y> of the unitary substitutions are
said to be midle-isoequal (left-isoequal, right-isoequal) in a group
(0;+), if there exist elements a,b € 0, such that the isotopes (0,
and (Q;x), defined by the equalities Xy =Qx+a+yy and
X*y=Qx +a+\y {respectively Xy =a-+@x+ \yy and
Xy =b+ox+yy, xy=@x+yy+a and x+xy=@x-+yy-+b), are isomorphic.

We recall some results, obtained by F. Sokhatsky in [3], in

the following statement.
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Theorem 1.6. The following assertions are true.

a) An isomorphism of group isotopes implies an
isomorphism of the corresponding groups.

b) There exists a bijection between the sets of all isotopes of
isomorphic  groups such that the corresponding isotopes are
isomorphic.

c) For every element 0 of a group isotope (Q,f) there
exists exactly one quadruple (+,o,,a,,¢), such that (Q;4) is a
group with a neutral element 0, and q,,q, are  unitary
substitutions of the group (0O;+) and

S y)=a+ox+o,y,  glx,y)=b+Pix+B,y (3)
hold (the right side of the equality is called “left canonical
decomposition”).

d) If (3) are canonical decompositions of (O, f) and (Q,g)
respectively, then the group isotopes are isomorphic if and only if
there exist c e, 8e Aut(Q,+), such that:

Ob=a+ac+a,c—c,
0B,x =c-a,c-ac+a,(Br+c)+a,c-c,
0B,x =c~o,c+a,(Bx+c)-c.

e) If pairs <o,y> and <@, y> of unitary substitutions
are left-isoequal in a group (Q;+), then there exists a bijection

between the set of all isotopes of the type (o9,w,L.') and the set of all
isotopes of the type (¢,y,L;') of the group (Q.+) such that the

corresponding isotopes are isomorphic.
f) Every subquasigroup of an isotope of a group is a right coset
of the group by some of its subgroup.
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Theorem 1.7. Linear isotopes (o,wv,a) and (3,4,b) of
a group {(Q;¥) are disomorphic if and only if there exist such
ce (), 0e Aut(Q,+), that
Ob=qpc+yctra-c, 0p=¢6 [ By=vyd

Proof. Let us denote the operations in the given isotopes
by fand g respectively. Then
fxe,y)y=a+lox+1yy,  glx,y)=b+L,0ox+1,up.

By Theorem 1.6 d) (Q,f)=((0;g) if and only if there exist
ce ,0e Au{Q+) such that

Ob=a+1,pc+ 1 yc—c,

0,6 =/ 1,0+l el a®6,

911,% Iiaq;c~c1a‘119~

Accounting that 0], = I3;0, we'll substitute the first equality intc
the second and the third ones:

06 =00,  I,.00=yd.

It remains to simplify the first equality. : f]

Theorem 18. If pairs <o¢,y> and <¢,yw> of unitary

substitutions are right-isoequal in a group (Q;+), then there exists a
bijection between the set of all isotopes of the type (o,y, R By and

the set of all isotopes of the type (¢,W, R, Y of the group, such

that the corresponding isotopes are isomorphic.

Proof. Really, then there exist a,b € 0, for which the isotopes
() and (Qx), defined by the equalities
Xp=Qx+yy+a, XxXy=@x+yy+b,
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are isomorphic. Then (0;e) = (0.®), where

xey=yx=gy+yx+a=a®yx® oy,
x®y=b®yx DGy,

te. <y > and <y,¢> are left-iscequal in the group (Q;®).
By Theorem 1.6 €) there exists a bijection between the set of
isotopes of the type (Q,f) and (Q;g), where
fx,y)=cOByx Doy,
g(x,y)=dOyx O gy,
for which the respective isotopes are isomorphic.
Then the commutations of the corresponding isotopes are

isomorphic, but these are the isotopes (@,y, R Y and (@, R;}l) of
the group (0;+). (

To describe the algorithm given below we have to cite the

following evident assertion.
Proposition 1.9. If (H+) is a subgroup of the group (0.4,
then H+a=H+b ifandonly if (a-b)ec H.

2. A description of isotopes

Let us describe all linear group isotopes up to the 15-th order up
to isomorphism. The obtained isotopes will be classified accoding
to the known classes of quasigroups; the full list of subquasigroups of

every isotope will be given.
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Linear isotopes of small order groups

By Theorem 1.6 a),b) the problem can be solved for every of
28 groups of the indicated order separately (up to isomorphism)
Let a group (0;+) be given, ie. an order, a neutral element
generators and a Cayley table are known. Let us apply the following

algorithm to the group.

Algorithm. First, using generators, we construct a sequence o
the formation of all other elements (besides the neutral element)
We verify also whether or not the group is abelian; we construct s
table of all)inverse elements of the group. We find all subgroups
(except the group itself) of the given group, looking through all proper
subsets, whose number of elements is a factor of the order of the
group. It is enough to verify the closure of the subset under the main
operation only. Furthermore, using Proposition 1,9 we find all right
cosets of the group by all subgroups, other than the given group
We find all automorphisms of the group. For this purpose consider
all injectional mappings from the generator set into the group and
their extentions to endomorphisms, ie. -using the properties
00=0, o(x+y)=¢x+¢y. If its kernel is trivial, then it is an
automorphism,

Remember the actions of all automorphisms on all elements of
the group, and also find the identity automorphism (it moves no one
of the generators in contrast to the others).

If the group is abelian, we find the automorphism /[=-¢

as well (it maps every generator to its inverse and only I does it}
Furthermore, we construct Cayley table for automorphisms. If ¢
and v are automorphisms of the group, then the only

automorphism @y acts on every of the generators t, as ¢ acts
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on yt Construct a table for inverse automoiphisms by verifyving, if

a compaosition coinsides with &

Let us find the correspondence ¢ -»/! it is enough to verify
the actions of the automorphisms on generators). We create a  table
A of the size kxk, where k is the number of all automorphisms
and fill with “+”. Consider, in turn, all pairs of auiomorphisms. Let
<g,¢> be a nextin turn pair. If the respective box in the table A
contains a sign “-”, we consider the next pair. {)therwise, we create
a table B, filled with “+”, of the size being cqua! to the order of
the group. For all pairs <8,¢>e Auf{(Q:+)x () we do the following: if

(07007 @) v (7o 8) vl ¢

then we put “-” in the box of the table 4, corresponding to the pair
<8“(p9,(1qx9)*"w6>; otherwise, for every e¢lement m  of the group
(when the corresponding box contains “+” in the table B} if
M:B"I(q)c +ye+m—c¢) has a number, which s reater than the
number of the element m, then in the table B we put "-" In the
hox corresponding to the element n. As the result, we get all triples
<o,¥,a> where a runs the set of all elements of the group having
the sign “+” in the table B.

Having run all the table 4 w- obiain, according to
Theorems 1.7, 1.8, a list of all linear isotopes of the group (0O.4).
Using Theorems 1.4, 1.6 f), we select in this list the isotopes
from the known classes of quasigroups and find all subguasigroups of
every isotope.

This algorithm was applied to all 28 groups up to the 15-th
order using a personal computer. Linear sotopes of the first and

the second orders are isomorphic to groups of the same order.
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Thus, we consider linear isotopes of order greater than two. To
account the results on such groups, we need some designations.

The elements of the group H be denoted as follows:

e "0 'm-1"if H=2,,

e "y where <x,y> is a corresponding vector, f H=Z xZ,
or H=2yx1s;

® da+2b+c, where <a,b,c> is a corresponding vector, if
H=12yx2yx 1,

e "xy' if H=D, (diedr group) and a corresponding element
is obtained after the application of y symmetries with respect to
a fixed axis of the m-angle and then of x elementary turns in
the fixed direction,;

® "1" , n i"

"j"," k“,”"ln,"—fu,"—j","'"k" as usual, if H = Q"-{r

e "xy" where ¢ is a corresponding element and #pl=x, ¢2=y, if
H = A, is an alternating group;
e "mn", where a™b" is a corresponding element, if

H=G,={a"t"{m=0123,n=012 a=8 =1 ba=ab’}

As sequences of the generators select the following: "I" in
cyclic groups; "4","2""I" in Z,xZyxZ,; """/ in (g "13"."21" in
Aq; "0","01" in the others. The automorphisms will be denoted by a
sequence of images of the generators.

All right cosets by all subgroups (except the group itself) will
be numbered. The writing "N ay,..a,+8, ,5" 1in the next
paragraph means that the number N is denoted a subgroup H

created by the generators 4,..,q,, and the numbers N+, N+/

are the cosets H+b, . ,H+b respectively.
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26:

17:

19:
38:

16:

17:
39

13

Group Z;. 1: 0+1,2.

Group Z,. 1: 0+1,2,3; 5: 2+1.

Group 7. 1: 0+1,..,4.

Group Z;. 1. 0+1,.,5; 7: 3+1,2; 10: 2+1.
Group Z,;.1: 0+1,..,6.

Group 7Z5. 1: 0+1,.,7; 9: 4+1,2,3; 13: 2+1.

Group Z,. 1:0+1,.,8; 10: 3+1,2.

Group Z,. 1: 0+1,.,9; 11: 5+1,...4; 16: 2+1.

Group Z;;. 1: 0+1,.,10.

Group Z,. 1: 0+1,.,11; 13: 6+1,.5; 19: 4+1,23; 23: 3+1,2;
2+1,

Group 73 L. 0+1,.,12.

Group 7, 1: 0+1,.,13; 15: 7+1,.,6; 22: 2+1.

Group 7. 1: 0+1,.,14; 16: 5+1,..4; 21: 3+1,2.

Group Z,xZ,.1: 00+01,10,11; 5: 01+10; 7: 16+01; 9: 11+01.

Group Z,xZ,. 1:00+01,10,.,31; 9: 01+10,20,30; 13: 20+01,10,11;
21+01,10,11; 21: 01,20+10; 23: 10+01; 25: 11+01.

Group Z xZ,. 1: 00+01,10,..,51; 13: 01+10,20,..50;
30+61,10,..,21; 25: 31+01,10,.,21; 31: 20+061,10,11; 35: 01,30+10,20;
01,20+10; 40: 10+01; 42: 11+01.

Group Z;xZ;. 1: 00+01,02,.,22; 10: 01+10,20; 13: 10+01,02,
11+01,02; 19: 12+01,02.

Group ZoxZyxZy 10 0+1,7, 9 14246, 13: 2+145;
3+1,4.5; 21: 4+1,2,3; 25: 5+1,2.3; 29: 6+1,2 3; 33: 7+1,2,3; 37: 1,2+4;
1,4+2; 41: 1,6+2; 43: 2,41, 45: 2,5+1; 47: 3,4+1; 49: 3,5+1.

Group D 1: 00+01,10,.,21; 7: 01+10,11; 10: 11+01,20;
21+01,10; 16: 10+01,
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Group D,. 1: 00+01,10,.,31; 9: 01+10,11,20; 13: 11+01,20,21;
17: 20+401,10,11; 21: 21+01,10,30; 25: 31+01,10,11; 29: 01,2010,
31:10+01; 33: 11,20+01.

Group Ds. 1: 00+01,10,..,41; 11: 01+10,11.20,21;
16: 11+01,20,21,30; 21:  21+01,10,30,31; 26 314+01,10,11 40,
31: 41+4+01,10,11,20; 36: 10+01.

Group D;. 1. 00+01,10,..51; 13: 01+10,11,..30
19: 11+01,20,21,30,3%; 25: 21+401,10,30,31,40; 31 30: +01,10,..21
37:  31+01,10,11,40,41; 43: 41+01,10,11,20,50; 9. 51+01,10,.21
55: 20+01,10,11; 59: 01,30+10,11; 62: 11,30+01,20; 65 21,30+01 10
68: 01,20+10; 70: 10+01; 72: 11,20+01.

Group D 1: 00+01,10,..,61; 15 01+10,11,..,31
22: 11+01,20,21,..,40; 29: 21+01,10,30,31,40,41; 36: 31+01,10,11,40,41,50
43:  41401,10,11,20,50,51; 50: 51+01,10,.,21,60; 57: 61+01,10,.,30
64: 10+01.

Group (g 1: 1+ij,..,-k; 9: -1+ij3k; 13: i+j; 15 j+i; 17 k+i

Group A4;. 1. 12+13,14,..43; 13: 21+13,14,31,32,34;
19: 34+13,14,.,24; 25: 43+13,14,.,24; 31 13+21,23,24 35 23+13,14,41 
390 24+13,14,31; 43: 32+13,14,21; 47 21,34+13,14.

Group Gy, 1: 00+01,02,..,32; 13: 20+01,02,.,12; 19: 01+10,20,30
23: 10+01,02; 26: 11+01,02; 29: 12-+01,02; 32: 03,20+10.

Now we number the sequences of the numbers of cosets
(regardless of the groups). The notations
"Noay+h-¢,.,a.+b.-¢," in the next paragraph msans that with the
number N (this will be an integer or an integer with a letter) a
sequence

(11,(11 +C],.,.?C71 +[ﬁcl,az,az+(;2,...,az ‘+“h:(2, IR P hi.('_&.
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is denoted.  Here, instead of "a+ b 1" "a+1-",
"a+0-c""a+b-c,d+e- [" (where d=a+bc) we write
"a+b""awe ,d","a+b-c+e- f'  respectively. The empty sequence

will be denoted with the number 1.

2a: 1; 2b: 11; 2c¢: 17; 2d: 18; 2e: 19; 2f: 20; 2g: 21, 2h: 22; 2i: 23,
2k: 33; 21: 34; 2m: 35; 2n: 36; 20: 37; 2p: 3Y9; 2q: 45; 2r: 46; 2s: 47;
2t: 48; 2u: 49; 2v: 50; 2w: 64; 2x: 65; 3a(4c): 1,5; 3b: 1,9; 3c: 1D9;
3d: 1,13; 3e: 1,16; 3f: 1,19; 3g: 1,25; 3h: 1,36; 3i: 1,39; 3} 1,45;
3k: 1,64; 31. 39D8; 3m: 3,16; 3n: 3,36; 3o: 3,64; 3p: 417, 3q: 4,37,
3r: 465; 3s: 5,16, 3t 5,36; 3u: 5,49; 3v: 5,64 3w: 6B4; 3x: 6,37;
Jy: 6,6b; 3z: 7,36; 3A: 7,64; 3B: 8,37, 3C: 8.,6h; 3D: 9,36, 3E: 9,64;
3F: 10,37, 3G: 10,65; 3H: 11,48; 3I. 11,64, 371 12,47, 3K: 12,65
3L: 13,64; 3M: 14,65; 3N: 2087; 30: 20,33; 3P: 2295; 3Q: 22,33;
3R: 32,43; 3S: 33,43; 3T: 58,71; 4a: 1,2; 4b: 14, 4c{3a): 1,5, 4d: 1,6,
de: 1,7; 4f: 1,8; 4g: 31+1; 4h: 33+1; ba: 1+2; 5b: 14,7, 5c: 1,5,9;
5d: 1,6,8; 5e: 10+2; 5f: 16+2; 5g: 21+2; 5h: 35+2; 6a: 1,793, 6b: 1,7D9;
be: 1,11B5; 6d: 1,11,36; 6e: 1,13,39; 6f: 1,1587; 6g: 1,15,64; 6h: 1,16E3;
6i: 1,1665; 6j: 1,314; 6k: 285,17, 61: 29,37, 6m: 2,15,65; 6n: 2,31,48;
o: 3,31,49; 7a: 1,9®4; 7b: 1,906, Tc: 1+2-8;‘ 7d: 1,1388; T7e: 1,13,45;
7. 1,13,47; 7g: 1,17,31; Th: 1,25,39; Ti: 1,25,45; 7. 1+2:24; Tk: 1,33,45,
M 2+28; Tm: 2,18,32; "n: 2,26,48; 70: 3B8D7; Tp: 3,19.31; Tq: 485,
r 409,47; 7s: 4,20,32; Tt: 5,23,49; Tu: 6B4E8; Tv THIDT; Tw: T+2-12;
x: 8+24; Ty: 8®4D5; Tz: 8+2.12;, TA: 88,1249, 7B. 10,2349,
7C: 126,47, 8a: 1,2,39; 8b: 1,6/45; 8c: 1,7,49; 8d: 1,8,45; 8e: 5,849,
8f. 665,48; 9a: 1+3; 9b: 1,2,7,8; 9c: 14,6,7, 9d: 31+3, 10a: 1,579,
10b:  33@6+143; 10c: 58,6992+1;, 1la: 1,59®7, 11b: 1,68]16G;

69



Linear isotopes of small order groups

12a: 1,2,9+1; 12b: 1,2,13+1; 12¢: 1,4D9+1; 12d: 1,4,33®3; 12e: 1,5(8D2;
12f: 1,6,9+1; 12g: 3,4D7+1; 12h: 3,8B3+1; 12i: 7,8B3+1; 13a: 1,1366,32;
13b: 1,31,55,70; 13c: 2,14®5,32; 13d: 2,32,66,71; 13e: 3,1554,32;
13f: 3,33,67,70; 13g: 4,34,58,71; 13h: 5,17®3733; 131: 9.33,55,70;
13j: 11@645,33; 13k: 11,35,67,70; 14a: 1,12,3147.  14b: 27,3148
15a: 1+4; 1b6b: 16+4; 16a: 1,13@664D3; 168hL 1,13060409;
16c: 1,19,319405; 16d: 1,2566049D7, ! e 1,31,55,655,
16f: 4,1684®3,33; 16g: 5,35,565@6@9; 16h! 5,35,55,6604;
16i:  6,36,56®4,71;  16j:  8,3258+1,71. 16k 10+2:6+1,33
161: 12,36,58®2,71; 17a: 1,8+3-4; 17b: 1,13+2:647, 17c: 1+2.1208,45
17d: 4+2.956,47, 17e: 999+189,47; 18a: 1,9D4+2.2; 18b: [,13@8+2-2;
18¢: 1,17,29+2.2; 18d: 1,25,39B6D4; 18e; 268+2.302; 18f: 3,19,30+143;
18g: 6D4+2.3®2; 18h: 6,18,29@03®2; 18i: 7G4DH3+13; 18} 7,19,30+1®3;
18k: 8,20,30®2+1; 19a: 1,2,13+1,39; 19b: 1,2,31+1&3; 1%c: 1,4,3393,49;
i8d: 1,7,31+42.2; 19e: 1,8,31®3+1; 20a: 1,7+3.3;, 20b: 1H9+3.3;
21: 1,2,5,6,39; 22: 24,617, 23: 1,13,3143€4; 24a: 49947+
24h: 999,47+2; 25a: 1+3.3+2; 25b: 1,5,9B7+2. 26a: 1+216+2
26b: 14,7®9+2;  27a: 1,31,55,68+2-2; 27k 3.33,57,60+143
27c: 6,36,56,68®302;, 27d: 9,33,55,68+2-2; 27¢: 11,35,57,69+133;
28: 3,5,82,31,49; 20a: 1+3.2+3; 29b: 1,5,9,314+2; 29¢: 1.6,808+3; 29d:
1+4.5+2; 30: 1+6; 3la: 1,9+34+2.2; 31k 1+2-80468+2.2;
3le: 1+2.1208+2.64; 31d: 2,999D4DTHIDH2; 32a: 1+5.2,36; 32b:
2+4.2+1,37; 33: 1,1145.:5; 34a: 1,1306@4+3-3;  34b: 1,31,5504+2 305
34c: 9,33,650503B4B3; 3ba: 1,5E5P3,47+2; 35h: 6,7 9B9 47+2; 36: 1+7;
37a: 1,4,5,8®5+3; 37b: 1,6+6; 38a: 1,2,56D7+334; 38b: 1,2,7.8,31+4
39a: 1,13+3-604D3+2.2; 39b: 1,313,310 54 @H0+2.2;
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39¢: 2,13,3206,563D9D3D2; 40: {+8; 4{. 1,+54+2-2;
42a: 2+2-4,32+2.2,56B5,71; 42b: 2+2-4 32+2.2 56 665,
§2¢: 4+2,164+2®203,33, 42d: 4+2.4 32422 bBHBTHH,
42e: 10+2664+204+1,33; 43a: 1+7.2,64; 43b: 2+62+1,65; 44: 1,15+7.7,
45: 1,13+3-6+4.4; 46: 23,8B3+1B647+2; 47a: 145.2+5; 47bh: 1+5-3+5;
48:  1+10;, 4% 1+3.4+3.204+3; 49b 1592503+ 10264+2D5,
5: 1,2,5,6,9+1,31+18©3+2; 51: 142 8BH3H2,31,43H4+2; 52a: 1+11;
52b:  1+8DT7+2; 53 14+12; 54:  2+2.4D3,32+3.2,56309D3D2;
55: 147247 56: 1,9+7.4+6-2; 57: 1,13+7-6(4+3.3+2.2; 58: 1+11,31+6;
59 14+3-4+6-2B3+1D2D4+3+2.2; 60: 1+20; 61: 1+22,

Now we give a full list of the obtained isotopes. Every linear
isotope (9,w,c) will be imagined as follows: a sign for ¢, comma
(*,"), a sign for vy, comma, a sign for c, a sequence of the signs
‘" and central dot () (“i” on the k-th place means the truth of
the k-th property from the given below in the paragraph (*) list,
and “”7 the property is false), a number of the sequence of proper
subguasigroups of the isotope, fullstop (“”) If ¢ is a neutral
element of the group, then the sign for neutral element and the

comma before it are omitted; if ¢ is the same as in the privious

isotope, then the sign for ¢ and the comma after it are omitted, if

both, then the signs for ¢ and for w coincide; the sign “/¢”
will be written instead of “o,y,c¢”. If all properties are false, only
one central dot will be written. If the proper subquasigroups in the
isotope are absent, a number of the sequence of subquasigroups

ie. 1) will be omitted.

71



Linear isotopes of small order groups

Note, that the numeration of the subquasigroup sequences are
selected in such a way that the upper semilattices of
subquasigroups (the order 1is inclusion) are isomorphic for
different isotopes iff in the corresponding integers are the same.

Commutativity of an isotope ane ca‘n verify using the
equality ¢ =wy. An isotope is: idempotent (a peak) iff there are (is)
all (at least one) one-element subsets in the f{ull list of
subquasigroups;, a monoquasigroup if there is no subquasigroups; left
(right) symmetrical, iff the group is abelian and the equality
y=-& (respectively ¢=-g) holds (it is enough to verify it on the
generators only); primary, iff the equality ¢=vw only in groups 7,
and Z;xZ3; a right loop, if the equality o¢=¢ is true. There i
no point in giving mediality for cyclic (7;-7;5) and nonabelian
(D3 ~D75,03,4,,G,5) groups. The subsets of left and right
F-quasigroups in the set of isotopes on abelian groups coincide
with the subset of medial ones. Left loops in that set are defined by
the equality w=¢.

(*) Hence, with the signs “i” and “” we denote.

» for isotopes of cyclic groups 1) LiP-quasigroups, 2) RIP-
quasigroups and 3) elastic guasigroups;

o for isotopes of non-cyclic abelian groups 1) medial quasigroups,
2) LIP-quasigroups, 3) RIP-quasigroups and 4) elastic quasigroups;

e for isotopes of nonabelian groups 1) - 2) feft and right F-
quasigroups, 3) LIP-quasigroups, 4) RIP-quasigroups, 5) left loops

and 6) elastic quasigroups.

Group 7,. 1,1iii2a. 2ii-Za. 2,1ii-2a. 2iiiba. /1iit.
Group Z,. 1,1iii3a. 3ii-3a. 3,1ii-3a. 3iii3a.
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Group Z;. 1 liii2a. 21.2a. 3-i-2a. 4ii-2a. 2,1i-2a. 2-i2a. 3-2a. 4ii1ba.
/1i-i. 3,11-2a. 2-2a. 3-i1ba. /1-1 4i-2a. 4,1ii-2a. 2ii1ba. /11 3.i-2a. 4iii2a,

Group Z,. 1,liii6a. bii-6a. 5,1ii-6a. 511i29a. /1iii’b.

Group Z,. 1 1liii2a. 2.i-2a. 3-i-2a. 4-i-2a. 51.2a; 611-2a. 2. 11-2a. 2-12a,
3-2a. 4-2a. 5-2a. 6i-i30a. /11 3,1i-2a. 2-2a. 3-12a. 4-2a 5-130a. /1. 6i-2a,
4,1i--2a. 2-2a. 3-2a. 4-i30a. /1-1. 5-2a. 6i--2a. 5,1i-2a. 2-7a. 3-i30a. /1. 4 2a.
5-i2a. 6i--2a. 6,1ii-2a. 2-ii30a. /1. 3i-2a. 4-i-2a. 5:1-2a. 6iji2a.

Group Z. 1 liii%a. 3ii-7a. 5ii-7a. 7ii-7a. 3,11i-7a. 3in7a 5i-7a. Tii-Ta,
5111-7a. 3ii-7a. Biii7a. 7ii-7a. 7,1ii-7a. 3ii-7a. bii-Ta. 7iii7a

Group Z,. 1,liii3¢c. 21-3c 44-3c. 51-3c. 793¢ 8i+3c. 2,11-3c 2 -125a.
/i 43¢, 5-i25a. /1. 7-3c 8ii52a. /1 /3i-iBe 4 li-lc 2 3e. 4-i3¢ 53¢
-3¢ 8i-3c. 5,1i-3c. 212ha. /1. 4-3¢c. 5-ib2a. /1-1. /3-ib~ 7 3c. 81i25a. /i
7.1i-3c. 2:3c. 4-3c. 5-3¢. 7-i13c. 8i-3c. 8,1ii-3c. 21i52a /11 /3dibe. 41-3c.
>1i25a. /1. 7-1-3c. 81ii2ba. /1iil.

Group Z,. 1 1liiifec. 3.i-6¢c. 7i-6c. 9ii-6e. 3,1 6. 3-i47a. /1-i2c.
76c. 9i-6e. 7,1i-6c. 3-6c. 7-ibc. 9i-i47a. /li-2¢ 9 1i-Bc 36 7-ii47a.
/1.1 2¢. Qiiibe.

Group Z;,. 1,liii2a. 21-2a. 3-i-2a. 4.1-2a. 51-2a. 6:12a Ti-2Za. 8i-2a.
HiZa. 1001-2a, 2,1i-2a, 2-12a. 3-2a. 4-2a. 5-2a. 6-2a. 7-2u. 8-2a 4Y-2a 10ii48a.
St 3,1i-2a. 2-2a, 3-i2a. 4-2a. 5-2a. 6:2a. 7-2a. BZa $148s 1. 101-2a.
$1i-2a. 2-2a. 3-2a. 4-12a. 5-2a. 6-2a. 7-2a. 8-148a. /1. 9 2a 1061-2a 5 1i-2a.
22a. 3-2a. 4-2a. 5-12a, 6-2a. 7-148a. /1. 8.2a. 9.2a. 10:-Z2a 6 1i-2a. 2-2a.
Y2a. 4-2a, 5-2a. 6-148a. /1-i. 7-2a. 8-2a. 92a. 10i-Za 7 1i-2a 22a 3-2a
$2a. 5-148a. /1. 6.2a. 7-i2a. 8-2a. 9-2a. 1(h--2a. 8 1i-2a 22a 3.2a. 4-i48a.
1. 52a. 6:2a. 7-2a. 8:i2a. 9-2a. 10i-2a. 9,1i-2a. 2.2a. 3348 1. 4.2a 52a.
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6-2a. 7-2a. 8:2a. 9-i12a. 10i-2a. 10,1§i-2a. 2ii48a. /14 33-2a 44.2a. 5iZa
6.i-2a. 7-i2a. 8i-2a. 91 2a. 10iii2a.

Group 7. 1,liiil6a. 5ii-16a. 7ii-16a. llii-1ta. 5,1ii-16a. 5iii49a
/1ii3P. Tii-16a. 11§i49a. /1ii-3N. 7,1ii-16a. 5ii-16a. 7iiii6a. 11ii-18a
i1,1ii-16a. 5ii-49a. /131-3N. 7ii-16a, 11iii49a. /1iii3P,

Group 7j;. 1,liii2a. 24-2a. 34-2a. 4i-2a. 5:i2a 6i-2a. 712a. 8ila
91-2a, 104-2a. 114-2a. 12ii-2a. 2,1i-2a. 2-i2a. 3-2a. 4-2a, 5-2a. 6.2a. 7-2a.
8-2a. 9-2a. 10-2a. 11.2a. 121i53a. /1i-. 3,1i-2a, 2.2a. 3-12a. 4.2a. 5.2a. 6.2a
7-2a. 8-2a. 9-2a. 10-2a. 11-153a. /1, 12i-2a. 4,1i-2a. 2:2a. 3-2a. 4-i2a. 5-2a.
6-2a. 7-2a. 82a. 9-2a. 10-i53a. /1. 1}-2a. 12i-2a. 5,1i-2a. 2.2a. 3-2a. 4.2
5-i2a. 6-2a. 7-2a. 8-2a. 9-i53a. /1., 10-2a. 11-2a. 12i-2a. 6,1i-2a. 2.2a. 3-2a,
4-2a. 5-2a. 6-12a. 7-2a. 8-i53a. /1. 9.2a. 10-2a. 11-2a. 12--2a. 7,1i-2a. 2-2a.
3-2a. 4-2a. 5-2a. 6-2a. 7-ib63a. /1-i. 8-2a. 9-2a. 10-2a. 11-2a 12 2a. 8,1i-2a.
22a 3-2a. 42a 52a. 6-i53a. /1. 7-2a. 8-i2a. 9-2a. 1(-2a. 11-2a. 12i-Za.
9,1i-2a. 2-2a. 3-2a. 4-2a. 5-ib3a. /1. 6-2a. 7-2a. 8-2a. %-i2a. 10-2a. 11-2a
12i-2a. 10,1i~2a. 2-2a. 3-2a. 4-i53a. /1. 5.2a. 6-2a. 7-2a. 8-2a. §-2a. 10-i2a.
i1-2a. 12-2a. 11,1i-2a. 2-2a. 3-i53a. /1-. 4-2a. 5.2a. 6.2a. 72a &-2a. 9-Za.
H+-Za, 11-i2a. 12i-2a. 12,1ii-2a. 2ii53a. /14 34-2a. 4i2a 5§24 Bi2a
712a. 812a. 9i2a. 10-i-2a. 11-i-2a. 12iji2a.

Group Z;,. 1,1iii6f. 34-6f 54-6f 9i6f. 11-i-6f. 13in-6f. 3,11-6f. 3-i6f,
5-ib5a. /121 9-6f. 11.6f. 13i-6f. 5,1i-6{. 3.455a. /1-2i. 5i6f 9.6f 11-6f.
i3i-6f 9,1i-6f 3-6f 5.6f 9-i6f 11.6f. 13ii55a. /1121 11,116 3.6f. 56f
9-6f. 11-155a. /1121 13i-6f 13,1i-6f 34-6f 5i.6f 94i5ha. /1125 114-6f
136t

Group 75 1,1iii6i 24-6i. 4ii-61. 7-1-6i. 861 11ii-5i 13i6i 14ii-6i
2,061, 2-i29d. /1-i2e. 4i-47b. /1i-2h. 7-6L 8:20d. /1-2c. 11i 294 /1i-2d.
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1361, 14i61a. /1i-. /3i-5g. /5iil5b. 4,1ii-6i 21-47h. ; 1i-2h. 4iii6i 7-ii47h.
/1421, 8461 11i-6i. 13461 14ii-6i 7,1i-6i 2.6i 4ii47h. /1i-2i. 7-i6i. 8-6i.
11i-6i. 13-61. 14i~47b. /1i-2h. 8,1i-6i 2.20d. /1-2c. 4i-6i. 7-6i. 8-i61a. /1.0
13.ibg. /5-i16b, 11i-29d. /li-2e. 13-47b. /1.2h, 14i-29d. /13i-2f 11,1ii-6i,
24294, /1i2d. 4ii6h Ti6i 8i20d /liZe. 11iiz8d. /1§i2f. 134-6i
4ii-29d. /1ii-2c. 13,1i-6i 2-6i 4i-6i 7-6L 847b. /i 2h. 11i-6i 13-i47b.
/14121, 14i-6i. 14,1ii-6i. 24i6la. /1. /3i.Bg /54il5b 4165 7447b. /1i2h.
4-29d. /1-4-2F 113-29d. /1ii-2c. 135-61 14i129d. /15iiZ,

Group  7Z,xZ,  0110,0110iiii3b. 0111-i-4a  /01.i-1001jii-3b.

011-i-4a. /1048 0111,01104-4a. /0Li-. 0111i-i%a. 1001ii-2a. 1110i-i9a.
0i--. 1001,0110iii-3b. 0111i4-2a. 1001iiii10a.
Group  Z,xZ,.  1001,100liiii31a. 10214i-18b. 1101iii-17a.
1121i-7d. 3001iii-31a. 1021,1001iii-18b. 1021i#ii18b. 11014i-7d. 1121-1.7d.
3001iii-18b. 3021iii-18b. 1101,1001iii-17a. 10214i-7d. 1101iiii17a. 1121-i-7d.
W001ii-17a. 3101iii-17a. 1121,1001ii-7d. 10214-7d. 1101-i-7d. 1121i-i7d.
3001ii-7d. 3121i--7d. 3001,1001iii-31a. 1021iii-18b. 1101172, 1121i4.7d.
001iii31a.

Group Z;xZ,. 1001,1001iiii39a. 1031jii-16¢. 1) 30i4-6j. 2130ii-16d.
13144-6§. 5001iii-39a. 1031,1001iit-16¢. 1031iiil6c. 11014i-19e. /01t 2m.
1130-419b.  /01.-42m.  21304-19b.  /104i2n. 2131 319e.  /10-i-2n.
001iii-16¢. 5031ifi-16c. 1130,1001ii-6j. 10314-19b. /91i-2m. 1130i-i6j.
130-i-19d.  /104-2n.  2131i--38b.  /0li-2m. 4i3ii-i38b, /01i--2m.
0015i-6§. 5130i-6j. 2130,1001ii16d. 108141190, /104i2n. 1130-i-19d.
0-i2n. 2130i49b. /10638, 21314502 /0145 /10-i4h. /110
1301i1-16d. 5001i#i-40b. /10ii-8R. 50811502, /i04i- /20-i-4g. /30-i-5h.
131,1001-6j. 10314-19e. /104-2n. 11301 -38L. /G:i-2m. 2130-50a.
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/014-5h. /104-4h. /1l4- 21313-i20b. /101-i2k. 4131%-6i. 5001ii-20h
/10ii-2l.  5130i-i68a. /0li--5h. /10i-. /20i-i9d.  5001,10071ii-3%
1031iii-16c.  1130i4-6j.  2130iii-49b.  /10iii-3R.  21:31ii.29b. /10§42
5001iiii5%. /10iiii10b.

Group Z;xZ;. 0110,0110iiii209¢. /D1iiii2g. 0111 4-2a. 01122
0120-i-2a. 0121-1-26a. /01-i. 0122-i-3f. 0211-i-11b. /01-i-2f. 0212-i-3¢
0220iii-6h. 0221-i-5a. /01-I. 0222-i-2a. 1001iii-6h. 1002ii-2a. 101112
10124i-3e. 1021-i-5a. /10-i. 1022ii11b. /104i-2g. 11021-3f 11122
1121-i-5a. /104 1202:ii-26b. /01-i-. 1222-i-5b. /10-i- 2002iii-29¢. /01iii-
2012-i-2a. 2022-i-2a. 2122-i-2a. 0111,01104-2a. 0111i-i2a. 01125d. /01
0120-5a. /01-. 0121-2a. €122:2a. 0220-i-5a. /01.I.. n221-2a 0222 %
1001ii-2a. 10124i-2a. 1021:5d. /10-. 1112i-2a. 112055 /10 12201140
/O0li--. 2002ii-2a. 2110i-2a. 2221i-2a. 0112,01104-2a. 0111.5d. /0L
0112i-i2a. 0120-2a. 0121:2a. 0122:5a. /01.. 0220--2a. (221i-2a. 022254
/01 1001ii-2a. 1011-2a. 10224i-5a. /104-. 1110i-va. 1120-5c. /10
1222i-i40a. /01i-. 2002ii--2a. 2111i--2a. 2220i-2a. 0120,01104-2a. 011158
/01 0112:2a. 0120i-i2a. 0121-2a. 0122-5c. /01-. 0210i- 2a. 0211-5a. /01
0212-2a. 1001ii-2a. 10124-5d. /10-I-. 10224-2a. 1112-5¢. /10- 1121i- 2
1211i-i40a. /01i-. 2002ii-2a, 2122i--2a. 2212i--2a. 0121.01104-26a /01.].
0111-2a. 0112-2a. 0120-Za. 0121i-i25b. /0li-i. 0122.2a. 0210-5a. /0¢
0211-2a. 0212i--3e. 0220-i-1la. /01i-2c. 100Lii-3e. 1002424 1011.5d
/10 1022i-2a. 1110-5a. /10.. 1120-2a. 1210i-i52b. /017 /11i-i5f
12115b. /10 2002i-i25b. /0lii-. 2120i-3e. 0122,01104-3f. 0111.2a
0112-5a. /01-. 0120-5¢c. /01-. 0121.2a. 0122i-i3f. 0210-2a. 0211i--3f. 021252
/01.. 02204-3f. 1001ii-3f. 10024-2a. 10124-5a. /104~ 1021.2a 11105
/10-. 1120i--3f. 1121-2a. 1210-5b. /10-. 2002ii--3f. 2210i---£. 1001,0110iii-6h.
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011114-2a.  0112i4-2a. 0120ii-2a. 01211i-3e.  012213-3f.  10011i1i20b.
200211-20b.  2002,011061i1-29¢c.  /01iii-2f. 0111ii2a. 011214 2a. 0120i4-2a.
0121i4i25b. /01i-i-. 0122i--3f. 1001iii-20b. 2002iiii60a. /01iiiibe,

Group 72, x7Z,xZ,. 124,124iiii3lc. 125-1-19a. /1.i-2p. 126-i-Te.
134-1-7h. 136-i4b. /1-6I. 137-i2a. 146-i-4e. /1. 147-i8c. /1-i2v.
196-1-3). 157-1-2a. 1656-1-8a. /1-1-2p. 174iii-18d. 236-i-12d. /-1 237-1-3g.
241-4-19¢. /14i2v. 243-i-2a. 245-i-4a. /1-I. 24711-7). 256-12a. 263-i-12d.
/2-1.. 265-14a. /2-1. 273-ide. /2.1 276-ide. /1.1, 326iii-17¢. 351.i-Tk.
3761-1-7i. 421iii-31c. 125,124.1-19a. /1.-2p. 125i-i6e. 126.12¢. /1. 127-3d.
134-8a. /1-2p. 135:31 136-2a. 137-4b. /1. 142:4e. /1. 143.4e. /1. 1464e.
/1. 147-4e. /1. 152-2a. 153-2a. 156-2a. 157-2a. 1624b. /1. 163.2a. 1648a.
/1-2p. 172-2a. 173-4b. /1. 174-i--8a. /1i-2p. 214-4a, /2. 217 2a. 234-4a. /1.
237-4b. /1. 241.--2a. 243.4d. /1.. 2471-4f. /1. 251-4h. /1. 253.4d. /1.
204-4a. /1. 261-2a. 2634d. /2. 267-2a. 2714e. /1. 273-9c. /1. /2. /3.
274-9b. /1. /2. /3. 3144a /2. 316-2a. 324-12b. /1- 3264-12¢. /1.
346-4f. /1. 354-4a. /1-. 3649b. /1. /2. /3. 376-2a 413.4e. /2. 421ii-6e.
423i-3d. 431.i-31, 453-2a. 463.4f. /2. 516-3a. /4. 524i-i138a. /1i-2p.
526-37a. /1. /4-. /5. 534-21a. /1-2p. /4-2p. /52p. H46-3a. /1. H76.3a. /1.
126,124-1--7e. 125-12¢. /1-. 126i--i7e. 134-4b. /1. 135-2a. 136.2a. 1374a. /1.
i42.4e. /2., 143.9c. f1.. /2.0 /3-. 147-.9b. /1.0 /2. /3. 152401 4 153-8b.
/2-2q. 156-8d. /2.2q. 197-4a. /2. 1634d. /1. 164 2a. 654 /1. 172-2a.
174.1-8d. /1-i-2r. 175-2a. 234.4b. /1. 235-2a. 241-i-2a. 243.4b. /1. 245-2a.
2473-4a. [l 2583-2a. 254-2a. 261-4b. /2. 263.2a. 20b-2a. 267-4a. /2.
2114e. /2. 2744e. /1. 3241-Te. 325:12c. /1. 341-4d. /1. 3454f /1.
354-8d. /1-2r. 361-9c. /1. /2. /3. 367-8b. /1. /2. /3. 421ii-Te. 4231 Te,
4251-12¢c. /41 523-12e. /1. 623ii-Te. 136,124-i-4b. /1-i- 125.2a. 126-2a.
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127.4a. /1. 136i-i2a. 137-4a. /1. 1424b. /2. 1434d. /2. 1474a. /2
152-4e. /2. 153-9c. /1. /2. /3- 157-9b. /1. /2. /3. 162-2a. 164-4f. /1.
165-2a. 173-4d. /1. 174-i-2a. 175:4f. /1.. 243-2a. 247-i- 4a. /1i~ 254-4f. /1.
261.4e. /2-. 267-9b, /1. /2. /3. 273i-2a. 34Bi-2a. 357-da. /1. 421ii-2a
517i-i36a. /1i-. 652i-2a. 764i-2a. 137,1244-2a. 1254b. /1. 1264a. /1.
127-2a. 136-4a. /1. 137i-i2a. 142.4d. /2. 1434b, /2. 1464a. /2. 152.9c
/1. /2. /3. 153-4e. /2. 156.9b. /1. /2. /3. 1632a 164.2a. 1654f. /1.
172-4d. /1-. 174i-4f. /1.1~ 175-2a. 241-i-4d. /1-- 245 2a. 253i--Za. 256-4a
/1. 2654e. /1. 2764a. /2. 364i-2a. 376:9b. /1. /2. /3. 42lii-2a
516i-i36a. /1L~ 672i--2a. 745i-.2a. 421,124iii-31c. 125ii6e. 126ii7Te
136i4-2a. 137i-2a. 421iiii56a.

Group D, 1001,1001iiiiii20a. /0liii-6k.  10i-i-3s.
1011,10014i4-3e. /01-i--3p. /10-3s. /20-3m. 2001,1001.iii-6b. /01-ii~22a
/10--i-3m. /11-ii-2c.

Group D, 1001,1001iiiii4la. /0%iiii-31d. /10iii-18]. 1011i-i-7g.
/01ii-7z. 1011,10014ii7g. /0Ll-i--7s. /18di-Tw. 1011.7g. /01-i--7m.

3001,1001iiiii-31b.  /0%iiii-i31d.  /10iiii-18f.  /1%iiii-18k.  1011-i-7g.
/01-ii-Ts. 3011,1001iit-7g. /01-ii-7z. /104ii-7p. 101L-1-Tg /01-ii-Tm.

/11-ii-72.
Group Ds. 1001,1001fiiii33a. /01idi-6l. /101-i-3D. 2001i-i-6d.
/01i-i-61. 1011,10014i4-3h. /01-i~3q. /10-3D. /20-3z. /30-3t. /40-3n.

2001-3h. /01-3B. 2001,1001-ii-i-6d. /01-i--32b. /10-3t. /1l-i--Z2o 2001-6d.
/01-61. /10-3z. /11-3q. 3001,1001.i-i-6d. /01-i-6l. /16-3z /1i-1--3F.
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Group Dy 1001,100111i1157a. /011 0-38c. /101127
1011i-1-13b. /01i4i-161. /20iiii--34c. 1011,1001414-13b. /01-1-13g. /110-13k.
/20-13i. 101113b. /G1-i--13d. /1013k. /204131 1021,1001.i-i-27a.
/01-1.-27c. /10-27e. /20-27d. 1011-13b. /01-i-13g. /10-13k. /20.i--13i
1031,10011iii-34b.  /01i-i-16j. /10i-i-13k.  10ilei-13b.  /01i-i--16i.
/20ilii-i34c.  5001,1001.1ii-39b.  /01-ii-Bda  /10--1-27b. /11-i-10c,

1011-4--13b.  /01-i1--3T. /11-ii-42a.  /204ii-16g.  5011,1001.iiii-16e.

/01-§i-3T. /10-i-13f. /21-ii-42d. 1011-i-13b, /01-1i-42b. /11.-ii-3T.
' /20-ii~16h.

Group ). 1001,1001iiiiid4a. /01i4i-6m. /10i1-3L. 2001i-i--6g.

/20-3L /30-3E. /40-3A. /50-3v. /60-30. 2001-3k. /01-3C:. 3001-3k. /01-3K.
2001,10014i-16g. /01-i~43b. /10-3A. /11-i--2x. 2001-6g. /01-6m. /10-3v.
/11-3r. 3001-6g. /01-6m. /10-3L /11-3G. 3001,1001-ii6g. /01-i--6m.
/10-3v. /11-i--3M. 2001-6g. /01-43b. /10-3L /11.2x. 3001.6g. /01-6m.
/10-3E. /11-3r. 4001,10014ii6g. /01-i--6m. /10-3L /11-i-3C. 2001.6g.
/01-6m.  /10-3E.  /11.3M.  3001-6g. /0143b. /1030, /112x

/11.3C. 3001-43a. /01-6m. /102w. /11-3M. 6001,1001341-6g. /01--ii-6m.

/10-i-80.  /11-ii-3K. 2001--i-43a. /0l-i-Em  10-i2w,  /11-i-3y.
3001.-i~6g. /01-i-6m. /10-i-3L. /11-1-3C.

ik12f, /i jiii7c. /iebeTo. fkeite Wy, jke12f /ieiiZg /i fkeie
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ik-12f. /iv jiiiiTe. /ii-To. /kii-Ty. jk12f /i9-12g /i ki

........

jiijiei-7e. /ii-i-Tv. iki-i-3b. jitiiiiil8a. /iiiii-18g. j-iij-ii-7e. /1eieTv

/23i-i-7B. 1334,13214i-i-6k. /13-28a. /14-6n. /21-i-3J. /23.3H. /24.2u.
1421i--14a. /21.i-2s. /23.2u. /24-8f 1421,13214iii-23a. /13-i-14b

/21-ii-17d. /34-ii--17e. 1421-ii-7f. /14-ii-7t. /23-+1-TA /24--i-Tn.

Group Gi.. 1001,1001i{iii34a. /01i i-13e. /10i4i-16k
3001iiii-34a.  /0li-i-13e. /10idi-16f.  1002,1001.tii-16b.  /01-i-13c
/10-ii-42e. /11-ii-3Q. 3001iii-16b. /01-i-13c. /10-ii-42c. /11-i-30.
1101,10014i4-13a. /01-13e. /0213c. /10-i-13j. 3001-i--13a. /01-13e

/0li-i~13e.  /10ii-16k.  3002,10014iii-16b. /014 13c.  /10-ii-42c.
/11-i-30.  30014ii-16b.  /01-i-13c.  /10-ii-42e.  /11-i-3Q.
3101,10014i-13a. /01-13e. /0213c. /10-i--13h. 001ii-13a. /01-13e.

Hence, we can sum up the number characteristics (up to
isomorphism) of group isotopes up to the 15-th order in the

following table. In the table it is denoted with },,  the direct
product of the group Z,, by the group Z,, with /; the direct

product of the group J; by the group /Z,, and with /32 the
direct product of the group Z; by itself.
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order 2| 3 3 5 8 e g
Group | L | L[| Zo | Va | L 2 | D5 | Ll | 73 1 Pa ] G
. L éL _
oflinear | 1 | 5 | 4 | 15]19| 5 | 11} 41 ] i85 26 | 341 | 28 | 47
isotopes ; i
I S ¢ -
9 10 11 12 IR Y 14 15
Zo 1 Z5 V Zw| Ds | Zu | Z | Vi | D | Ay | Oiof A | Zag | 1y | Zas
R I A
48 | 1831 19 | 37 [ 100} 20 { 75 | 44 | 4z | 49 11550 43 | 79 | 95

Thus, there exist exactly 1554 linear isotopes of the group up

to

exactly

61
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isotopes up to isomorphism.

1. Belyavskaya G.B.
Quasigroups and related systems, {1994}, Nol, p.
2. Sokhatsky F., Syvakivsky P. On linear isot
Quasigroups and related systems, 1{1994), Nol, p.
3. Sokhatsky F.N. About of group isotopes {{/kr tinmiom)

journ. (to appear].

References

Ri

Abelian  quasigroups

(are

1-7.

56576,

the 15-th order inclusively. One can conclude that there exist

semilattices of subquasigroups of the linear

T-quasigroups.

pes of eyclic groups.

Tkr. matem.




Linear isotopes of small order groups

4. Belousov V.D. Foundations of the theory of quasigroups and loops
(Russian). Moscow, “Nauka”, 1967, 224p.

5. Bruck R.H. A survey of binary systems. Berlin, 1958,

6. Kirnasovsky O.U., Sokhatsky F. Number of small order
T-quasigroups up to isomorphism. Abstracts of the Third International
algebraic conference, Krasnoyarsk, August 23-28, 1993, p. 405.

7. Schukin K.K. The group action on quasigroup. Kishinev,
publishing department of Kishinev State Univ., 1985, 90p.

8. Hall M. Group theory (Russian). Moscow, IL, 1962, 468p.

9. Kostrikin A.I. The introduction to algebra. Moscow, “Nauka”,
1977, 496p.

10. Kargapolov M.l., Merzlyakov Yu.d. Group theory (Russian).
Moscow, “Nauka”, 1982, 288p.

11. Mendelsohn A. The introduction to mathematical logic (Russian).
Moscow, “Nauka”, 1976, 320p.

12, Izbash V.I. Monoquasigroups and quasigroups with distributive
lattice of subquasigroups. Candidate diss., Kishinev, 1992, 108p.

13. Gretzer G. Universal theory of lattices (Russian). Moscow, “Mir”,
1582, 454p.

14. Skornyakov L.A. The elements of lattice theory (Russian)
Moscow, “Nauka”, 1982, 160p.

Kirnasovsky O.U.
department of algebra, Received Desember 23, 1994
Vinnytsa State Pedagogical Institute,
32, Chervonopraporna str,,
Vinnytsa, 287100,
UKRAINE

82



Quasigroups and related systems, 2(1995), Nel(2)

Sharply 2-transitive permutation groups. 1

Evgenii A. Kuznetsov

Abstract

In this article a sharply 2-transitive permutation groups on some
set E (finite or infinite) are studied.

Sharply 2-transitive permutation groups were described by
Zassenhaus in [1,2]. He proved (see [3] too), for example, that sharply
J-transitive permutation group G on a finite set of symbols E is a
group G of linear transformations of some near-field < EA0>:

G = {aab ’ a,p(0)=a-t+bh, az0, ab,ic E}.
In the case when the set E is infinite, the problem of description of
sharply 2-transitive permutation groups on E is opened. Some
investigations in this direction were pursued in [4,5,6,7]. The same
problem was formulated by Mazurov in |8, Ne 11.52}.

In this work we try to describe some new approach to problem

- mentioned above by means of transversals in groups. Necessary

- definitions and propositions may be found in [9] and in the author’s

article [13] in this issue too.

© Kuznetsov E.A. 1995
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§1. Preliminary lemmas and a partition on cases

Let G be a sharply 2-transitive permutation group on au

arbitrary set E.

Lemma 1. All elements of order 2 from G are in orne and the

same class of conjugate elements.

Proof was given in [3] ¥

Since G is a sharply 2-transitive permutation group, then only
the identity permutation id fixes more than one symbol from E. So we

obtain the following two cases:

Case 1. Every element of order 2 from G is a fired-point-free
permutation on E.
Case 2. Every element of order 2 from G has exactly one fixed

point from E.

Lemma 2, Let o and f be distinct elements of order 2 from G.

Then the permutation vy = af} is a fixed-point-free permutation on E.

Proof was given in [3]

Let 0 and 1 be some distinguished distinct elements from E

Denote

84



Sharply 2-transitive permutation groups.l.

§2. A loop transversal in group G and its properties

Lemma 3. In both of cases 1 and 2 there exists a left transversal

I'in G to H, which consists from id and elements of order 2.

Proof. By the definition (see [9,10] a complete system T of
epresentatives of the left (right) cosets in G 1o Hy is called a left

right) transversal in G to H,.
If case 1 takes place, then we define the following set of

jermutations from G

I'= {tj}jEE;

o ;5 0
1=\ 0o if j#0; {1)

to — ld

Then T is a left transversal in G to Hy and for any =1

0 j ..
2_ o
tf"(o J ..)*’d’

ince only the identity permutation id fixes more than one symbol

rom E. So all nonidentity elements from T have order 2.

Let the case 2 takes place. Note (see proof in {3]), that for any
iven j, € £ there exists an unique element o« G of arder 2 such
hat afiy)=1iy. So there exists an unique element «, ¢ &G of order 2

uch that a(0)=0; moreover, a, € H,. Then define the following set

Tz{t_,.}jeE;

o ;)
rjzj 0 if j =0, (2)

Iﬂ =Gy
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Then T is a left transversal in G to Hy and further proof is analogous

to the same in case 1. 3

Lemma 4. Transversal T is a normal (invariant) subset in the

group G.

Proof. Let case 1 takes place. We have for any je F and e

W = 1h, (3)
where ke E he H, (since T is a left transversal in G to Hy). If =0,
then

ntn = nid- w7 =id =4,

If j#0, then we have from (3)

b=t ("), (4)
‘By means of Lemma 2 we obtain: product in the right part of (4) has
to be equal to id. Then we obtain

h=g'(m;m ") =1d,

since he Hy. Then for any jeF and ne(G we have from (3)

-1 _
TU‘J-')T —'tk>

7! T
From the last equality we have
Tern'fn=nin"" ,
where 7'=7n"! e G. So, for any me( we have
Tg?t:T?t“',
le.

T=nIn"t
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Then T is a normal subset in G.

Proof in case 2 is analogous to that in case 1. L

Lemma 5. Sef T 1s:
a loop transversal in G to Hg in case ;

a stable transversal [10] in G to Hy in rase 2

Proof. As we can see from Lemma 4,
T=nlrn"
for any meG. Then for any ne(; the set 7"=xln =7 is a left
transversal in G to Hgy. So by means of [10, theorem 2.1] we obtain

that T is a loop (correspondingly, stable) transversal in G to Hy, H

We can correctly introduce (see {9,10]) the following operation

on the set E:

def
i.j:kc:’zitj:tkh? h&:}jo

Then we obtain from Lemma 5 (see [9,1¢] too} that the system
<E:0> is:
a loop with the identity element 0 in case 1;

a quasigroup with the right identity efement # in case 2.

Lemma 6. Let's define the following permutation representation

a
(t of a group G by the left cosets to Hgy with the help of a left

transversal in G to Hy:

A def
gx)=y gl Hy =1, H,

Then we have
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4N A
G=G and g(x)=g(x)

forany xe ik,

Proof. Let all conditions of the Lemma hold. Then we have

N
glu)=v,
gtuHO = rvHCb
gtu = f‘,h, he HO!
8,0} = £, ,(0) = £,(0),
glu)=v,
~n T
ie. glu)y=g(u) for any weE. So the reflection @ g-—>g is an

"N
isomorphism between groups G and G. N

Lemma 7. The following identities hold on <E-0>:
1. x-x=0

2. x-(x-y)=y,

3. M=V

4 x-(y-(x z)=(x-(y-x))-z; (left Bol identity)

5. System <[E-0> is a left G-quasigroup.

Proof. All definitions see in [11]
1. We have forany xeF
to=id=t:=t1 =t h heH,,

e x-x=0,

2. We have for any x,ye F

Ly, =1, A, he Hy,

y:
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=1 h=1 0 h=1 K, He Hy

x(xey)o
le. x-(x-y)=y.
3. We have
X (x y)=y.
Since system < FE.0> is a quasigroup (in both of cases 1 and 2) then

we can replace: x = % Then we obtain for any y,ze F

()z=y

4. Let us denote

Therefore

B = (e et Y = =0

Xy Xy Vv x Txey yixtxys
Then we obtain by Lemma 6 and [9]:
hx,y(”) = tx-ytxty(”)z (x-y)-(x-(y-u)) (b)

-1
he (=20t )=y (x-((x-y)-u) (6)
for any w e E. From Lemma 4 we obtain for any x,yeF

~1
LAt =Lt =1,

xIyly
where
z=L(0)=t0,,(0)=x(y-x)
Now we have
Le(ux) = Dbyl = 0yl o = U pofle vy o

So

Py = Mo (7)

X, )X

From (5)-(7) it follows that for any x,y,uec £
(x-(y-xP(x-((y-x)uP=x-(y-((y x) )
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Since system < £-0> is a quasigroup (in both of cases 1 and 2) then
we can replace: w=(y-x) -#. Then we obtain
(x-(y-x))-(x- W)= x-(y-w).
Finally, we can replace: z=Xx-w. Then we have for any x, y rec f
(x-(y-x))-c=x-(y-(x-z),
since
x-z=x-(xwW)=w,
(see 2.). We proved that the system <FE: 0> is
laft Bol loop in case 1;
left Bol quasigroup in case 2;
{see definitions in 11, 12}).
5. We have for any ac £
1, =10 he Hy,
told = ' he Hy,

a‘x*y'n a‘xy'a o
-
1
hGH{},

s Lt 0 = g 0 R

xla
ta(xaYa(yala = la(xviafalt HE Hy;
Pa{x) R(0,(0)) = R0, (x- y)),
where
0,(n)=a-(u-a) *)
is a permutation on E. Then ¢, is a left pseudoautomorphism with
the companion a. Moreover, any element a < E is a companion of the

left pseudoautomorphism ¢, of the form (*); ie system <Z£.0> is

a left G-quasigroup [11].

Let us return to the subgroup H, of the group G. Any
nonidentity element #e H, is a fixed-point-free permutation on the
set £ —{0}. Moreover, since G is a sharply 2-transitive permutation

group on K, then H, is a sharply transitive permutation group on
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k-{0}. So for a distinguished element leF {(120) and for any
je E-{0} there exists an unique element hj € Hy such that hi(1)= ;.

Then we can define correctly the following operation on £:
def
rj=koh(j)=k if 120
def
0% j = 0

(8)

Lemma 8. The following statements are tri.¢
1. xx0=0, x*l=Ixx=x,
2. <k-{0}*%]1>= Hy;
3. xx(y-z)=(x*y) (x*z},
4. The system <E,0> isa left sperial quasigroup.

Proof. Nesessary definitions are in [11]
1. We have for any x e £ {0}
x¥0=u & u=h(0)=0 > xx=0,
x*l=v < v=h(Q)=x => x*
rx=w < w=h(x)
But A(1)=1, since A =1d. So we obtain
W= R(x)=x,
ie. Fx=1x.
2. Let us define the following reflection

¢ £-{0} — Hy.

def
o(x) = hx :

It is easy to see that ¢ is a bijection; morecover
O)p(y) = hh, = h, = (=)

where
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z=h,()=hh,(1)=h(y)=x*y,
le,
e(x)0(y)= olx*y),
and ¢ is an isomorphism.
3. Since T is a normal subset in G (see Lemma 4) then for any

ie L and h, € Hy we obtain

htiy =1,
where
k=1,(0)= ht#;'(0)= ht(0)= h(i)=ui
So, for any i€ £ and we E-{0} we obtain
htihy =t (9)
Then we have for any we E-{0}:
Ity =1, b, he Hy,
Bt = bt BT, b Hy,
Mty WK =t BURAR, he H,
Lslysy = Lot s A€ Hy,
(xx)-(1x y)=1¢(x - y). (10)
Finally,
(0*x)-(0*y)=0-0=0=0%(x- y).
4. We can write the equality (10) in the following form
h(x)-h(¥)=h,(x-y)
for any u,x,y € £. So, any permutation A, € H, is an automorphism
of the system <£E, 0> Then the permutation 4, , (see (2)) is an

automorphism of the system <«<F 0> forany x,ye€ E. Since

I |
he,=LLLL,

L

then system < K. 0> is a left special quasigroup.
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Lemma 9.

G= {aa,b

0 p(x)=a-((a-byx), azh, abeE}

Proof. Since T is a left loop transversal (in case 1) or a stable
transversal (in case 2) in G to H,, then we can respresent any
element ge G in the form

g= 1l =Py,
where 1, €7, h,, € Hy, a#b. So we obtain for any xe £
g(x)=1thp(x)=t,((a - by x)=a-((a- b} x)= 0, p(x),
moreover,
g0)=a-0=a, g()=a-(a-b)=b,
ie.

8(x)=0tg0),g1y(X). (11)

Let us define the following two operations on E:

def
(x,a,y) = x-((x- yya)=a, (aj, (12)

def
(x:‘w:y): x-y. (13)

Definition. [11] Two operations <[> and <ZXe> are called

x-y=a,
xey=b

has an unique solution in Ex £ for any given a,be L.

orthogonal, if the system
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Lemma 10. The following statements are true:
(x0,y)=x; (xLy)=y,
. (xnix)=x (01)=¢
{(x,00)=x, (x,%,x)=0;
2). The operations (x,a,y) and (x,0,y) are orthogonal
forany ae k£,

3). The operations (x,a,y) and (x,b,y) are orthogonal

for any given abe E,axb

Proof. 1). We have
(x0,y)=x-0=x;
(x,,y)=x-(x y)=y,
(xswao): x-0= X,
(x,,x)=x-(0*t)=x-0=x,
(x,w,x):X'x-_—-o;
(0,£1)=0-((0- 1 1) = 0 (7).
But by means of (11) we obtain
(O, L) =ag,(r)=id(r)=1.
2). Let a be an arbitrary given element from E. Then we have
for any given b,ce £
(xsa:y):b; x'((x'y)*a):b;
p— <~
{x-(c*a) = b, { X = %c.a);
< - Y .
y=x-c Y“(%c*a))'ca
ie. there exists an unique solution (x,y)=( %m),( %c..a))- ¢) of the
initial system in ExFE.
3. Let a,b(a#5b) be an arbitrary given elements from E.

Then we have for any given ¢, de £: if c#d, then
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{(x,a,y) =G . {x-((x-y)*a) =c {O"x,y(a) =¢,
(x.b,9)=d, |x-((x-yrb)=d, |o,,b)=4,
Since G is a sharply 2-transitive permutation group on E, then by
Lemma 9 we obtain that there exists an unique such pair
(x,y)e ExE.
If ¢=d, then we have
(x.ay)=¢ |x-((x-ypa)=c, [(x-ypa=x-c
{(x,b,y)%'; Q{x-«x-y)*b):c; C’{(x-y)*b: x-c,
(e ypra=(x-ypb
((x-ypa)(x yrb)=0
(x-y)(a-b)=0
Since a#b, then a -b+0. So we get
x-y=0,

ie. x=y. Then pair (x,y)=(c,c) is an unique solution of the initial

system. 0

As we can see from Lemma 10, the system < {x,/,»),01> is
a DK-ternar [13] without the conditions 6a) and 6b) of Definition 2
from {13), and the operation (x,%,y) is a supplemented operation

to it.

Lemma 11. The following statements are true:
1). The operation (x,a,y} 1s a quasigroup for any given
azx0]1;
2). (x,(u,2,v), y)={(x,01,¥),2,(x, ¥, ¥));
3). The permutation o,; is an automorphism of the
operation (x,c,y) for any given ab,cc kE, axb; ie. any operation

(x,c,y) admits the sharply 2-transitive automorphism group G.

95



Kuznetsov E.A.

Proof. 1). It is proved in [13].
2). As we can see from Lemma 9,
G = {a, plotg p(1) = (@,1,6),,a £ b,a,b & E}.
Then we have for any x,y,u,v,ze E x#y u=v.
Oy y " Oy (2) = 0y ((2) (14)
for some w,se€ E,w=s. We obtain from (14)
Oy Oy (2)=a, (1,2,v))=(x,(1,2,v),y),
W=y, (0)=a,, o, ,(0)=a, (u)=(x,uy),
5=y, s()=ay -0, (D=0, (V)=(x,v, ).
So
(x,(u,2,v), )= ((x,1, ¥),2,(x,v, ¥)).
When x=y or wu=v the last identity is a trivial corollary of 1},

Lemma 190.
3). Let a,b,c be arbitrary given elements from E, a # 5. Then

we have from 2)

(a,(x,c,y),6)=((a,x,b),c,(a, y,b)),
o, p((x, 6, ¥)) = (a, p(x),C,0, 5(¥)),

ie. the permutation «a,, is an automorphism of the operation

(xn c) y)' H

Lemma 12. The operations (x,a,y) and (x,C,¥y)=y-x are

orthogonal for any ac E.

Proof. We prove at first the following identity
(e p)- ! = (e u) 2 (u- (x-2)) 7 (15)

for any xuze L uz0,uzx.-z. Really, we have from (b) for

any =0
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(o) (x-Qu-1))= B (1) = By ) (2)= B f (%2 = (Ox- 1) (- (e 1)L,

(x-a)- (x- (u-1)) = ((x - 20)- G- (- )17 (16)
If r=u, then we have from (16)
(e-u)- (e D)) = ((x - w) xpeu™” (17)
| It r=u-(x-z), then we obtain from (16)
() (x- - D)= ((x-u) 2 (- (x- 2)) (18)

The identity (15) follows from (17)-(18).
Further on, we have for any given abcc £
a) If ¢=0, then

{(x,a.y)ﬂz {x-((x-y)*a):a
<>

& X = = Q
(%09 =0 y x=0 y
ie. the pair (x,y)=(5,8) is an unique solution of the initial system.

b), If a=0 then

s U4 ):b, :b}
{g Z i)zc- ‘”{ y).cxzc- & (5,3)=(5,%).

¢). Let a#0,c#0. Then
{(x,a,y)=b; {x-((x'y)*a):b; {x-((r yra)=1b;
< < <>

(x,0,¥)=c¢; yx=c, X=Yy-C,
{(y-c)-«(y'c)-yrm:b; {«y-c)-y}va:(y-c)-b;
<> pom—
xX=y-C, X=y-c

Let us denote: z=c ' y, b= ¢ b Then the last system is equivalent
to the following system
=D z= 1y A -1
{( )=z Bpa 19)
x=(c*z) C
If =1 then we obtain from (15)

(- x=(Ce 1 22 (x-2)) 7, (20)
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for any x,ze E x-z#1 Using (2D) in (19), we obtain the following

system

{((s-l)-b')*(l-(z-b’)) = )-bpa

x={c*z) ¢

I(Zb‘):a, (C *y)-(c ’!’fb)zi.ai
(2 D)-6=0, & (c"l*y)-lzc”i#b; A
x={c*z)-C, X=y-c,
fo _ ((C"“(l-a))/b) c.

y,b-_—c#[l«a)’, i y:(cn(lla}y.
<> ye=b, < x =B "

X=y-C,
y=5;
Assume that (x,y)::(b,%), then we obtain from the initial system:

b-((b- (G yra)=b,
(b-(Yyra=0.

Since a =0, then
b-(¥)=",
=0,
b=c¢-b,
c=0.
But ¢=0 by the conditions of the case c). Then we abtain: the pai
(x,y):(((c"(]'“%}c,(”(m%) js an unique solution of the initial system

in the case c). Proof is completed. U
Remark. Note that the collection P of operations (x.a,y)ael

and  (x,%,y) (or (x,0,¥)) is a complete system of orthogonal

operations, ie. there is no such an operation «®y  which 1

orthogonal to all operations from P.
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On superassociative group isotopes

Fedir Sokhatsky

Abstract

it is proved ihai every Menger quasigroup {grouplike Menger algebra) is
an Q-algebra. Relations between such algebraw notions das. hormmomorphism,
subquasigroup, congruence relations and so on of a Menger gquasigroup and the
corresponding notions of its decomposition algebra are found. A criterion for the
group isotope to be a superassociative is established. Some main algebraic
notions in superassociative group isotopes are considered.

One of the well known generalization of the binary
associativity is the superassocialivity. it s an  abstract
characteristic of the class of all (ntljaiy Menger algebras of
n-ary transformations of a set. When 21, « Menger aigebra 1s a
semigroup of transformations and the superassociativity is the
binary associativity ({see [l]). In this conrection works appear,
where algebraic structure of Menger alzebras and grouplike Menger
algebras (i.e. superassociative guasigroups! are oesont Por example,
the warks of VS, Trokhimenkes 0L WA Dudek {31,
Ya.N. Yaroker {b}], HL. Skala [6] and so on

The main purpose of the aiticle is (o begin the study of
superassotiative group isotopes, but it 15 necenary 1o consider some
modification of the fundamental results f Menver alpaebras, We do it

in sections 1 and 2. The principal results «f secivernc 5 are a canonical

© Sokhatsky F.M. 1995
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decomposition of an arbitrary group isotope and its  uniqueness
{(Lemma 3.1); conditions for a group isotope to be
superassociative and linear (Theorem 3.2 and Corollary 3.3);
conditions for a transformation of the basic :et to be a
homomorphism or an isomorphism of superassociative group
isotopes of the same group (Theorem 3.6) as well as an
endomorphism or an automorphism of a superassociative group
isotope of a group (Corollary 3.7);, criteria for a subset to be a
subquasigroup and a normal subquasigroup of a superassociative
group isotope (Theorem 3.8).

The author expresses his great thanks to Mr. Vassyl

Bassovsky, who gave the possibilities of the computer teatment of the

text.

1. General notes

A groupoid (O, f) of an arity n+l1 is called
superassociative or Menger algebra of rang n, if the superassociative
law holds:

S s Y2t o z) = SO S D22 H s 5 (1)

Let (O;f) be a Menger algebra. A binary groupoid (QO;),
defined by

x-y=fx,y,..,¥) (2)
is associative. It follows from the equality {1), when
YW=y =.=2y,=y and =I5, =.=z,=C. (():) 1s called a diagonal

semigroup of (({; f).
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To expound the text we firstly recall (see [B)]), that i-th shift
defined by a of the (n+1)-ary groupoid (Q,/) 1is a transformation
Ai, defined by

Aia(x)= fla,. .,a,x,a, .a)

i times
“Shift” 1is understood as a translation where all elements defining 1t
are equel.

If the i-th shift defined by an =lement e is a
substitution of the set @, then the element a is called i-invertible,
and if A, ,{(x) is an identity transformation, then it is called
i-unit element of the groupoid (Q;f); U-invertible (0-unit) and
n~invertible (n-unit) elements also will be called right invertible

(right unit) and left invertible (left unit) respectively.

Lemma 1.1. If a is a left (right) invertible element in a
binary semigroup ((J;), then the element ¢, =3, (a) (e, = X7 ()
is its left (right) unit and the element

a' =27 (@) (a,'=1} () is aleft (right) inverse of a.

Proof. We shall prove the lemma for the Tright” case only,
since the proof of the “left" case is dual The assotiative law implies
the following equalities

Ao xyy=x-yya=x-(aj=x-Ar_ (v
Replacing x with A7, (x) and applying ,,(x) to the both side
of this equality we have
Moo (X p)=x-2g (V).

Using this equality we can infer the following e:jualities
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x-e=x-1,, @)= A7, (x-a) =4, A, (x)=x
a-a”' =a A (@ =xy (a- A, @) =X (@)=L (ar=e
The lemma is proved.

Thus, the following assertion is evident.

Corollary 1.2. A binary semigroup has a left (right) unit iff it
has a left (right) invertible element. A binary semigroup has a unit

iff it has an invertible element.

It is easy to see that the right shift of a superassociative
groupoid will be a right shift of its diagonal semigroup. The same is
true for the right invertible and right unit elements. This permits

to establish the truth of the following statement.

Corollary 1.3. A superassociative groupeid has a right unit if

and only if it has a right invertible element.

We define n-ary operation [..] on the set Q@ by

def
[x]r":xﬂ]:f(€>xls---:xn)a {3)
where e is a right unit of the superassociative groupoid (Q, 7). Using
this relation it is easy to prove the following statement, which is «

generalization of Theorem 3.8 from [4]

Theorem 1.4. If an (n+1)-ary superassociative groupoid (O, 1)
has at least one right invertible element a, then its diagonal
semigroup operation () defined by (2), the operation {.} defined
by (3} with e=1] (a), and the operation [ are connected by the

following relations:
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fx e nz)=x05,..,2,1 (4)

oo ¥nl 2=y 2,050, 2] (5)
And conversely, if an associative operation () is right distributive
under some  mn-ary operation [.], then the operation f defined by
(4) will be superassociative,

In this case ((Q;,[..]) will be called a decomposition algebra of

the superassociative groupoid (0, f).

Proof. By Lemma 1.3, the element e is a right unit of the
diagonal semigroup, so the equalities (4) and (5) follow from the
equalities (1) with y =y, =.=y, =~¢ and «=e, z,=z,= =z =z
respectively. The converse statement is a partial case of Lemma 3.7

from [4). L

For example, if (Q,+,) is a ring, then the ternary groupoid
(@, f) defined by
Feey,z)=x(y+z)
is a Menger algebra. Some other examples can be found in [4].

This theorem implies immediately the following result.

Corollary 1.5. Let a superassociative groupoid has a right
invertible element a, then its diagonal semigroup has a left unit if
ond only if the operation [.] defined bty the equality (3) with

e=My.(a) is idempotent.
Proof. Let the diagonal semigroup of the groupoid (Q;f)

has left wunit, then it coincides with a right unit e of the

semigroup. According to (2), the equality ¢-x=x is equivalent to
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the equality  f(e,x,..x)=x, which, in turn, is equivalent to the

equality [x,..,x]=x. The corollary is proved. &

Corollary 1.6. {7] A superassociative groupoid (Q,f) of the
arity n+1 is a quasigroup if and only if there exist a group (Q;) and
an idempotent quasigroup (Q;[..]) such that the relations (4), (5
hold.

Proof. In the quasigroup (Q,f) every element is right
invertible and, hence, according to Theorem 1.4 the relations
{4), (5) hold. Since the operation [.] is defined by the equality
(3), then it is a quasigroup as well. It remains to use the following

statement, which is a corollary of Theorem 1 from [11] O

Proposition 1.7. If one of functions f,g, h 1is a repetition-
free superposition of two others and two of them are quasigroups,

then the third one will be a quasigroup as well.

A superassociative quasigroup is called grouplike Menger
algebra. The following assertion is a corollary of Lemma 1.1 and
Theorem 1.4

Corollary 1.8. The diagonal semigroup of a superassociative
groupoid is a group if and only if every element of the groupoid
is right invertible and the diagonal semigroup has a left

invertible element.

To prove this corollary note that a semigroup is a group if it has

a unit and every element has a right inverse.
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Ya.N. Yaroker in {[5] has found another criterion: a diagonal
semigroup is a group if and only if the Menger algebra has no proper
s- and v-ideal, that is iff the diagonal semigroup has no proper left

and right ideals.

Corollary 1.9. If in a superassociative groupowd the diagonal

semigroup is a grou=, then tts decomposition clgebra 1s an {2-group.

The truth of the corollary follows directly from Corollary
1.8 and the definition of an Q-group: an algebra (0+Q) is called
an -group ,if (@4 i1sa group and A0, 03-- 0 for all operations
nefd.

A T1ing is a {I-group as well, while the cperation from Q1 ={}
is distributive under the group operation of the ring, but in the
superassociative groupoid the situation is quite the reverse. From
Corollary 1.9 aad the conclusions from  [9] one can  get a

number of results for such (O-groups

2. On some algebraic notions

&

Let us consider a connection between e «dgebralc notions of a

Menger quasigroup and its decomposition algebra.
Theorem 2.1. A subset of a grouplike Menger algebra is a

subguasigroup of it if ond only if it is o subguasigroup of its

decomposition algebra.
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Proof. Let (Q,f) be a grouplike Menger algebra of an arity
n+1 and let (QO.[...]) be its decomposition algebra.

e

If H is a subquasigroup of (O, /), then for arbitrary

elements a, b from H a-b=f(ab, b)eH and a'=H, since it is a
solution of the equation
b=x-a=f(x,a,..q)

So, the set H is a subgroup of the diagonal group (Q;,). In
particular, it means that the unit e of the group is in the set H,
and then for arbitrary elements a,,..,a,,6 from the set H the
results [a,,..,a,]=f(e,a,,..,a,)e H and a solution of the equation

b={a,,. . .a ,xa,,. .al=f(ea,. .a_.xa.,, .a)
belongs to the set H. Thus, the set H is a subquasigroup of the
algehra (0,.[...)).

Conversly, if a subset H of the set Q is a subquasigroup of
the quasigroup algebra (¢, [..]), then the equality (4} implies
that the subset H is closed under the operation f The solution of
the equation

b=f{x,a, . ,a)=xla,..a.l
belongs to the set H since H is a subgroup of the diagonal group.
The equation
fay,a,,..,a_,x,a,..,..a)=b
one can rewrite as
[a,,...,a,.,_,,x,am,...,an]za(;]-b,
then an element x exists, it is unique and belongs to H as soon as

the elements a,,a,,..,a,b belong to the set H. The theorem is

catly

proved.
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Theorem 2.2. A mapping © from one grouplilce algebra ointo
the other will be homomorphic (isomorphic) if and only & © ‘s a
homomorphic (isomorphic) mapping between ihe correspondimg

decomposition algebras.

Proof. Let (0, 7). (G.h) be grouplike slgebras and let
(0.0 and (G,+,[..1) be their decomposition: algebiras, then
@e{x V) =pf(x,y, yY=hlex @v, . Qv)=@x gy,
olfx,,...x, D=gf(e,x., . x,)=h{pe.qx,, . ax ) -
= 0,@x,, QX ) =[x, ]

The converse 1s evident.

Corollary 2.3. Any endomorphism (aeutomarphismi or a
grouplike algebra is an  endomorphism  (automorphism) of the

corresponding decomposition algebra and vice versa

Recall, a congruence of a quasigroup is called normal, if
the corresponding quotient-groupoid is a  quasigroup also; a
subquasigroup is called mormal, if it is a <¢iass by a normal
ccngruence.

¥

In a group every congruence is normal and exactiy one of 1ls

classes is a normal subgroup, namely, the class ‘ontainung the unit
element of the group In a quasigroup this i« w0 e Hhere exyst
infinite quasigroups having non normal congruences and theye exist
quasigroups having congruence with no subguasigroup as its class Ip
an idempotent quasigroup every class by a normal congruence is a
subquasigroup. There is the same situation i the theory of n-ary
sroups and polygroups as in the theory of quasigroups. The

following resoning shows, that in a groupitke Menger algebra the

108



Sokhatsky F.N.

uniqueness is the same as in the group theory. Immediatly from

Theorem 2.2 we have the truth of the following statements.

Corollary 2.4. Any normal congruence of a grouplike algebra
is a normal congruence of the corresponding decomposition algebra

and vice versa.

Corollary 2.5. Exactly one of congruence classes of a grouplike
algebra 1s a subquasigroup, namely, the class containing the wunit

element of the diagonal group.

Corolilary 2.6. Every normal congruence of a Menger
quasigroup s an equivalence relation corresponding to a partition by
the normal subgroups of the diagonal group, which are normal

subquasigroups of the decomposition algebra.

A full description of all congruences {including one-side
congruences) in grouplike Menger algebras was obtained by

V.S.Trokhimenko in [2}

3. Superassociative group isotopes

In this section superassociative group isotopes are under

consideration.
A group 1isotope or an isotope of a group ((;#) of the

arity n+{ is a groupoid (Q,f) defined by

f(x05x]""axn): T"I(Yﬂx() . y}x!.“'.}’n"rn )s (6)
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where 7v,,..,7,,Y are bijections between the sots @ and &. If all
of the bijections are linear transformations of the group () (a is
linear, iff ox=0x+a for some ae( and an automorphism 6 of the
group (Gpe)), then the isotope (G;f) is called Ilinear. It is easy to
prove that a groupoid being isomorphic to a lincar group isotope is a

linear group isotope as well. The following statement is true.

Lemma 3.1. Let (Q;f) be an (n+1)-ary isotope of a group,
then for any element e of the set @ there exists exactly one
sequence of operations (,dg,...,o,,a) such that (O:) is a group
with a unit element e; o,..,o, ore unitary substitutions of the set @,
ie. afey=¢, i=0L. ,m aeQ and the following equality

F(Xg, Xy, .0, %, ) = 0pXy - O Xy, @, X, & (7)

holds. The isotope (O, f) 1is linear iff «,,.,¢, are aumorphisms

of (Uy)-

In this case, let us use the following terminology: a
decomposition (7} will be called e-canonical, permutations ay,. o,
will be called decomposition coefficients, and the clement a will be

called a free member.

Proof. Let (6) holds. On the set & we define a group

operation (+):

xty=y" (yxeyy)
Then we rewrite the equality (6} as follows:

...,L ' ~] ..m.‘g__ N
f(x():"':xn):’y f0x0+y Y])fi“i”{‘? f_:»*;r”}'

Replacing (+) with (), where x.-y=y-c+y, ie sv4y=(x+e) y,

and y"l'yx,, by «,, *y""ﬁyx,-Re by o, /=01 .4 1  we have
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f(x{bxl:“-sxn):aoxﬂ'a'lx!""'a'nxn’ (8)
It is clear, the operations  (-) and (+) are isomerphic and the unit
element in (Q;) is e Suppose, that g, .,¢,; are unitary

and ae=+e, i=01..n then we consider the following notation
_ -1 1 _ . .

ali Xp = QX - (Cl,;e) ’ Ay Xipy ~ (C{,t’)- (af Xk

As a result we have the relation
J (X0, Xy, 00 ) = Glg X 01X, g O X Oy Xy Oy Xy O,
where the first substitutions «y,..,0,;,@'; are wunitary. After the
finite number of the steps we obtain the equality (8), where the
substitutions o,,...,0,.; are unitary. Consider a new notation
-1
al" x" = a!lxﬂ ' (aﬂe) ? aﬂd a-= aH{"

Thus, we obtain the equality (7). To prove the wuniqueness we

assume that the decomposition
S0, %,..,%,)= Boxo @ By @ BB x, & b
is e-canonical as well, ie. e@x=x®e=x, PBe=Pe- Be-e. Then
a=fle,..,e})=b and
ax -a=fe,..,ex)=Bx @b

So, we obtain

QoXy @ X, 0= f(xg,e,..,e,x,)=Byx, BB x, ©b=B,x (o x -a)
for all x,ye Q. Replacing «,x, -a with y we have

oy, -y =Pox, By,

Since the element e is a common unit of the operations ()} and
(®), then from the last equality and y=e we have o, B,, and so
the operations () and (®) coincide. Hence,

ax-aa’ = fle,..,x,e, . e)a" =@x®b)ya =Ppx a-a - B x
for all xe(, then o, =B, forall /-0l » YLemma is

proved.
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Using this lemma we may establish the truth of the following

Theorem 3.2. A group isotope (Q,f) is superassociative if and
only if
S, X, X, ) =X, -a,x, -0, X, (9)
for some wnitary substitutions «,,..,o, of the group (Q,), which
satisfy the following conditions:
a0y =y, (10)

ay.a yol{x-y)=ax-oy.ay, i=0..n {11)

Proof. Let a superassociative quasigroup (¢, /) of arity »+l
be an jsotope of some group and let (7} be its  e-canonical
decomposition, where e is a unit of its diagonal group From the
uniqueness of the e-canonical decomposition of the group isotope
(,+), from the equalities (4), (7) and the idempotence of the
operation [..] the relations o ,=e, (»=() and

b, yl=0y o,y ay, (12)

follow, since

Corel. 1.5 (3) Lemmpia 3.}
e = le,..e}=f(ee,. &) = a

The idempotence of [.] is equivalent to the identity (10).
Thus, the distributivity relation (5) will be rewritten as follows:
QX 0, X, X, Y=o, (), (g, o e - ),
Setting x, =e forall j#i in the last equality we obtain
ax-y=o(y). . a (y)o (x-y)-a {v) . a )
In the left side of it we replace y with its value from the equality
(10), and then we cancel it out of «,,y..-a_y. As a result we obtain

the relation (11).
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Converse, let the operation f on the set @ be defined by
the equality {9) by such unitary substitutions «o,,...a, of the
group (Q,), that the relations (10) and (11) hold. To prove the
superassociativity of the operation f we defined an operation

i..] by (12). Hence, we obtain the following equalities:
[xla--':xu]'y =

(109
=0y QX X, Y =

{h

=0 X WXy O X, Oq YOy P O, Y
(1hH
=Xy QX Uy Xy "0 G Ve Oy Ve an{xn ¥y =
an
=X QaXy . Oy 2 Xy g YO Y. Oy 2 V- o, (X, 1 V) an(xn "y =
(i1) (1)

==X 'Cll_}«"(lz(x"z '_}’)'.,:(X,,(xn y) =

02)
:U.](x] ) y)'a.?(xfi ' y} "an(xn .)") =

:[xl‘y"“:xn'y}'

By Theorem 1.4 the triple (Q,.{...]) Is a decomposition of
the superassociative groupoid (@,f), which is a quasigroup, since
the operation f is a repetition-free superposition of the

guasigroup operations (-} and [..] (see Proposition 1.7) Theorem &

proved.

Corollary 3.3. For any superassociative group isotope {(Q,f
with a canonical decomposition (9) the following statements are
equivalent:

1} the isotope ((Q,f) 1is linear,;

2} w, is an automorphism of the group (Q,);

3) the group (Q,) 1is commutative.
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Proof. The relations (11} with /=2 give the following

equality:
ay-o,{xy)=o,x-a,y-a,y,
are equivalent 1f, in addition, the

which implies that 2) and 3)
(L1} mean that

is commutative, then the relation.

autemnnrphism  of  the

group (Q&')

of the substitutions o, 1S an

every
group.

An (n+lj-ary sotvpe /73 of an abelian

Corollary 34.
1if and only i theve cwist an abelian

group will be superassociative
group (Q;+) and a sequence

that the following equalities are true
S, X, )= X o x oo X, E

a,,a,,..,a, of its automorphisms such

By Theorem 2.2, an isomorphism of greuplike algebras implies
that the

an isomorphism of its diagonal groups. It isc easy o prove

converse is true as well.

Proposition 3.5. If groups are isomorphic. then there exists a
hijection between the sets of superassociative isoispes of this groups

such that the corresponding isotopes are isomorph

Hence, from here on it suffices to consider superassociative
(¢ % An isomorphism

isotopes of the same arbitrary fixed group

criterion for them is in the following

6 of the wt Q@ 1s «

of o supsrcssocatioe isotope
({720 of o oagroup (Q0) with

Theorem 3.6. A transformation

homomorphism (isomorphism)

{0, 1) in a superassociative sotope
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the canonical decompositions &.a,,. o) and €.B,,...B,)
respectively if and only if g is an endomorphism
(automorphism) of the group (Q,) and the follmving relations are

true
0B, =00, i=12,. .7

Proof. From Theorem 2.2 and the relation (12) it follows
that the group isotopes are homomorphic (isomorphic} if and only
if the transformation 8 is an endomorphism (automorphism} of the
diagonal group (Q,) and the following relation fulfils:

8B, x, Pox, B x, )= bx,-a,0x, a Bx
for all x,x,,..x,€0. In particular, when x =e for all j=i, we

obtain the necessary relations. The converse is evident,

Corollary 3.7. A transformation @ of a2 set @ is an
endomorphism (automorphism)} of a superassociative 1sotope ((,f)
with a canonical decomposition (9) if and only if 6 is an
endomorphism  (automorphism) of the diagonal group (Q,)
and commutes with every coefficient of the canonical

decomposition.

In the following assertion we shall describe the subquasigroups

of the superassociative group isotopes.

Theorem 3.8. A subset of a superassociative group
isotope is a subquasigroup of it if and only if it is a subgroup of the
diagonal group and invariant wunder all components of its

canonical decomposition.
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Proof. Let (Q,f) be a superassociative isotope and (9) be
its canonical decomposition. After Theorem 2.1 it remains to
elucidate which conditions are necessary for a subgroup H of
the diagonal group to be a subquasigroup of the quasigroup
()LD, where (12) defines the operation {.]. Hence, the
subgroup H is a subquasigroup of ({;[..]) iff in the equality

0L, X, + O, X, 0L, X, = A
any n elements from the set H uniquely determine the
(n+1)-th element which is in the set H as well The first part of
this assertion is fulfilled, since (Q;[..) is a quasigroup. It
remains to show the belonging of this element to the set H. From the

last equality with 4 =e for all ;#i we have the following
statement: in the equality ok =k the elements »# and h belong

to the set H simultaneously, that is all=H. The reverse is

7

obvious. The theorem is proved. L

Corollary 3.9. A subset of a superassociative group isotope is
its mormal subquasigroup if and only if it is a normal subgroup
of the diagonal group and it is invariant under all components of

its canonical decomposition.

Comparing the results of the article [12} with the
assertions given here we have the f{ollowing properties for

superassociative isotopes of the cyclic groups:
1) superassociative cyclic group isotopes are nonisomorphic,

if their canonical decomposition groups coincide and the

corresponding sequences of coefficients are different;
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2) endomorphisms, automorphisms, subguasigroups, normal
subquasigroups, congruences of a superassociative isotope of a cyclic

group are the same as in the group;

-+ (=D(p -1
3) there exist exactly ((p D % of

(nit)-ary (n>1) superassociative group isotopes of prime order p

up to isomorphism.
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THE INTERPRETATION AND EQUIVALENCE
OF THE VARIETY OF n-GROUPS

Antoni Chronowski

Abstract

In this paper the varieties of n-ary groups are sturdied from the point of
view of the interpretation and equivalence.

In this paper we deal with the interpretation and equivalence
of the variety of n-groups. First of all, we shall recall some
definitions and theorems from the theory of universal algebras (ct
[4]). We use the letter A to denote the universe of the algebra A.
Let F be a similarity type of an algebra A. The subset of all n-ary

function symbols in F is denoted by ¥, for n=012

Definition 1, Let F be a similarity type. Let w={012, . n. . }
By a term (of type F} we mean an element of the term algebra 7 (o)

We put :z, =(n), and the terms =z, (ne®@) are called variables.

For every n=0 the term algebra 7, (n) is the subalgebra of
Tr(w) generated by Z,={z9,2),..,2,4}- If n=0, then Z,=C. If
Iy=©, then the algebra 7;(0) does not exist.

Assume that 4 is an algebra of type F. If pe7,(®n) then

pé denotes the term operation of the algebra 4 determined by the

© Chronowski A. 1995
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term p. We use the symbols Clo{d) and Pol(4) to denote the
clones of term operations and polynomial operations of an algebra 4,

respectively.

Definition 2. Two algebras A4 and B are called term
equivalent if

(i) A=85,

(ii) Clo{4)= Clo(B).

Definition 3. Two algebras A4 and B are called
polynomially equivalent if

(i) 4=B8,

(ii) Pol(4)="Pol(B).

Definition 4. Let V and W be varieties of respective
similarity types F and G. By an interpretation of V in W a
mapping D F — 1;(0) is meant satisfying the following conditions:

D1y If fekF, and n>0, then D(f)= fp e T;(n),

(D2) If fek, then D(f)=jfpel;1) and the equation
Ip(z0) = fp(z) is valid in W,

(D3) For every algebra AeW, the algebra

AP = (4, fA(f € F)) belongs to the variety V.

Definition 5. By an equivalence of varieties V and W a pair
of interpretations (D,E) is meant satisfying the following
conditions:

1) D is an interpretation of V in W,

2) E is an interpretation of W in V;
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3) VdeWw: A% =4
4) YBeV: B®-=p

Now we present the fundamental definitions and theorems
from the theory of mn-groups (cf. [1], {b], [6]). For simplicity of

notation, it will be convenient to abbreviate x,,  x,, as x{". If

: k
X; = Xp =..= X3 = X, then we write x".

Definition 6. An algebra A=(4,f) endowed with an n-ary
operation f A" > A4 (n>=2) is called an mn-groupoid ( a groupoid

for mn=2).

Definition 7. An n-groupoid A=(A4,f) is said to be an
n-group if the following conditions hold:

(1) for all x;,..,xy, ;€ 4 the associative law

. . __ 1 -1 RIT
SO Gy = L A0 T
holds for all 7 je{l, .. n};
(2) for every kef{l,..,n} and forall xy.x, v _;.x.4, %, €4

there exists an uniquely element -, € A such that

k=l _
JOq 2 XE) = X,

Theorem 1 (cf [2]). An n-groupoid A=(A f) is an n-group
if and only if
FO) = 0 a0) 02 ) o2 (0, ) a v, (3)

for all x,,..,x, € A, where the following conditions hold:

(1) (A.,'.e) isa group;
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(ii) a€ A 1is a fixed element;
(iii) oe Anrl'(A,-,"1 @), al@)=a, o N x)wa x- a’ for ewvery

xe 4.

Definition 8. An algebra A" =(4.. ' c.oc”' a) fulfilling the
conditions (3) and (1)-(iii)) of Theorem 1 iz called an a-uigebro
associated with the n-group A=(4,f)

For simplicity, this algebra will be denoted by A™ =(4, o a)

From now on, we consider n-groups with 2 3.

Theorem 2 {(cf. [1}). If A=(A,f) 15 an n-group, then there 15 a
unary operation x —x on the set A such tha!

fGx" 2=y and  flyx" x)=y (4)

for all x,y e A. Conversely, if a nonempty set A carries an mn-ary

operation f and a unary operation x —»x satisfying the conditions

(1} and (4), then A=(A,f) is an n-group.

In view of Theorem 2, an n-group will often be defined as an

algebra A=(A, f-) equipped with an n-srv operation f and an
unary operation x-»x satisfving the conditions (1) and (4). The
element x is usually called a skew element.

Let A=(A4,f-) be an n-group. Let pe 4 be an arbitrary
fixed element. Using the Sokolov method (cf {6}) we can construct an
o-algebra A" =(A4,,0,a) associated with the n-group A=(4,1-)

in the following way.

Define the binary operation according t5 the formula

x-y=f0, P v
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for all x,ye 4. Let aw A —> A be the mapping defined by

a(x)= f(p,x,p"™)
for x € A. Finally, let us take
a=f(p")
The a-algebra 4™ =(4,,0,a) associated with the n-group
A=(4,f,-) and constructed by means of the above method will be
denoted by A;"):(A,-,a,a). |
From Theorem 2 it follows that the class of all n-groups is a

variety which will be denoted by V,. It is easy to verify that

ey, 2)= fx,p,)"7>,2)

is a Malcev term for V,. Thus the variety V, is congruence-
permutable.

For n=3 we define an algebra

AN =(4, e 0,07 a) (5)

fulfilling the following conditions:

G) (4,,7},e) is a group:

() Vr,yed ofx-y)=o(x) a(y),

(ii) Vx € 4 ofa \(x))=a N o(x)) = x;

(iv) afa)=a,

(v) Vxe d o '(x)=a-x-al

For simplicity, this algebra will be denoted by ;1(” Y= (A;,0,9).

Definition 9. The algebra A4 defined by (5) is called an

c-algebra.
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For an arbitrary fixed n >3 the class of all a-algebras 4"

is a Malcev variety and it will be denoted by W, .

Theorem 3. The wvariety ¥V, is interpretable info the
variety W,

H-

Proof. Let us consider the sgimilarity types /' ={f -} and

',a} of the varieties V, and W, respectively. We

rn

G={"1,e,00
define the mapping D. F - 7;(0) according to the formulas:
D(f)=z-a(z) -a*{z) a3z, )-a z,
where z;,z2,5,..,z, € I;(1nn) are variables, and
D) =at "2 ENY e Y e
where z e I;;(1) is a variable. It follows immediately that conditions

(D1) and (D2) of Definition 4 are satisfied.  Assume that
éz(A,-,"l,e,a,a'"l,a) e W_. Let us take
Oy =xaln) o () o (x, ) a v,
x=ala" Y P el
for all x,x,. .,x,¢ A. It is easy to check that ,;10 ={A4, f,-yelV,.

Consequently, the condition {D3)} holds.

Corollary 1. For every a-algebra A« W,  there exists an n-

group AP eV, such that Clo(4? )y < Clot 4).

The variety W, is not interpretable into the vartety V.
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Example X. Consider the Klein group with the wuniverse

A ={e,a, b c}. The mapping
afe)=e, afa)=b, a(h)=a, alc)=c
is an automorphism of the above group. We define the J3-group
A=(A4, f,~) as follows
S (3, %2, %3) = 0 )x;3

for all  x;,x5,x3€ 4. The 3-group 4 has the two different
one-element 3-subgroups with the subinverses {e} and {c}. On the

other hand, there are no «o-algebras of the variety W; with two

different one-element o-subalgebras.

Definition 10. Let us consider an algebra A=(4,f—-p)
fulfilling the following conditions:

(i) the reduct (4, f,-) is an n-group,

(ii) p is a constant 0-ary operation such that p=p.

An algebra A=(A,f,-,p) is called an n-group with constant.

The class V,? of all n-groups with constant is a Malcev variety.

Let W be a class of all o-algebras A" =(A. " e,q,a”ta) of

the wvariety W,  such that a=e. In this case we write
A" = (4.7 ea,a!). Since any  w-algebra 4= (4, eaa™h
belongs to the class of Q-groups (cf. [3]) with Q={o,0 '}, it will be

referred to as an o-group. The class W,? is a Malcev variety.

Theorem 4. The varieties V. and W) are equivalent.
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Proof. lLet F={f- p} and G;{l,'""},z?_.{.‘::.._,(;{"!_} be similarity

types of the varieties V,? and W, respectively. We define the
mapping D I — I;{w) as follows:
D(f)= 20 ols) @iz ez,
where z,,..,z, € I5{(n) are variables,
D(m-)-.:a”'z(:q)a..-az(::”l]»a‘f.(,:f"}}

D(p)=z-z ",
where : e T;(1) is a variable.
The conditions (D1) and (D2) are -atistied. Suppose that
AN =(4. 7 eaa e H{,,O. Let us put:
SO =3 a00) Qg oo™y,
x=a"2 (Y af (7Y alx )
p=e
for all x,%,.,x,€A. It is eusy o check that
(AP = (4, f~e)e V" Thus, D is an interpretation of I, in ).
Next, we define the mapping £ G - I:{(0) as follows:
EC)= f(z.p" 52)
where z),zy € 7:(2) are variables,
ECY)=f(p.2,2" 0
Ee)= f(z,2"" |
E(@)= f(p,z,p""),
E@™)= (" 0
where e 7p(1) is a variable
'The mapping E satisfies the conditions (31} and (D2}
Suppose that 4=(4, f,-.p)e V,?. Let us put:

- ne-do
xpoXp = jlx, prT e )
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3

x7V= f(px,x" ),

e=p,
a(x)= f(p,x,p" ™),
o« ()= f(p" x, p)
for all  x,x,x, € 4.
Using the Sokolov method it is easy 1o c¢heck that
AE:(A,-,"'I,e,a,a'"l)eW,?. Thus E is an interpretation of W_,i’ in I—-",f)
A straightforward computation shows that (__/{I_(”-))DF = A" and

AP = 4. The pair of interpretations (/,F) is an equivalence of

varieties V,,O and W,? :

As an immediate consequence of Theorem 4 e obtain the

following corollary.

Corollary 2. If A 1is an n-group with constant p, then the

algebras A and _Agf_j') are term equivalent.

Proposition 1. Let A=(A,f,-,p) be a 3-group with an
arbitrary firxed constant p (not necessarily p = } ). The algebras 4

and 4;3):(/4,-,(1,(1) are term equivalent.

Proof. Since
x-y=f(x,p,y),
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x7 = f(p.x,p),
e=p,
a(x)= f(p.x,p),
o' (x)= [, p),
a=f(p,p.p)
for all x,y e A, we conclude that Clo(ﬁg))c Clo(A). We have
FO,%0,x3)=x-alx; )-a-xs,
x=a -a(x“] )
-1

p=a

for all x,x,%;,%; € 4. Consequently, Clo(4)c:Clo(4%”). i

On the whole, an n-group A4 with an arbitrary fixed constant
p {not necessarily p=p ) is not term equivalent tc an @-algebra AE,”)

for n>3. Consider a suitable example.

Example 2. Let Z; be the additive group of the integers
modulo 4. Consider the 4-group A=(7;,f -1} with constant 1
defined according to the formula

f(x?)=x1+x2+x3+x4 +2
for all x;,xy,x3,%4 € Z4. Define the mapping
M= 0, ¢1)=3, ¢2)=2, o03)=1

The mapping © is an automorphism of the algebra

_4%4):(24,"'#124,2), but it is not an automerphism of the 4-group 4.

Thus the algebras 4 and éﬁ‘ﬂ are not term equivalent.
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Proposition 2. Let A=(4,f.-) be an n-group, and let
A = (4. 0,a) bean a-algebra associated with the n-group A. Then

the algebras A and A" are polynomially equivalent.

Proof. Since

2 -2, |
FOe)=x - a(xy) o (e )0 (x, ) @ x,,,

x=a oY o (x 7 ofx 1y,

eza*.

It is easy to prove that
x.y:f(x:'e”.-:;:lz;’y)?
x—'l = f(e, ;?x"_3’e)?
a(x)= fle,x,¢" 7 e).
al(x)= fle,e" > x,)

for all x,y & 4. Therefore Pol(4""))c Pol(4). 2

Corclary 3. Let A=(4 f-) be an wegroup. and let
AM = (A 0,0) be an a-algebra associated with the n-group 4. Then

there extsts o constant p e 4 such that the algelva {-=(4.7-,p) 1is

term equivaient to the «-algebra A%

It is sufficient to take p=e.
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ON DISTRIBUTIVE n-ARY GROUPS

Wieslaw A. Dudek

Abstract

The classes of medial n-groups, distributive n-groups and autodistributive
n-groups are described. These are the classes of n-ary groups (/7 > 3) in which

the unary operation » X=X (2=X is a unique soluiion of the eqguation
Sf{x,x,...x,z)=Xx inan n-ary group) plays an important roie.

1. Introduction

As it is well known {11}, [8], [4], an n-ary group (n = 3) may

be defined as an m-ary semigroup (G,f) with a special unary

operation » x -» X, 1e. as an universal algeirra (7, f, ) of type
{n,1). Since the equation
.f(x?'r?“')xP:) = 'x

has in any n-ary group (G,f) a unique solution =:=¥, then the

operation : x—X is a uniquely defined bv the operation f. The
element :z=X is called skew to x. Obvicusly y=x iff x is an
idempotent. In general ¥ # ¥, but in some n-ary groups ((,f) there
exists an element 2z such that -=Xx for all » e (. All such n-ary
groups are derived (cf. [7]) from a binary group of the exponent
kl(n—2).

In this paper we describe some classes of mn-ary groups in

which the operation DX X plavs a very important role.

© Dudek W.A, 1995
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Because for n=2 such groups are trivial, we considger only the case

n > 3. Used terminology and notion are standard.

2. Medial n-groups

From the proof of Theorem 3 in [10] it follosws that any medial

n-ary group satisfies the identity

‘f(xln)::"f(i—],fz,...,f”}. (1)
Hence an n-ary group (G, f) is medial ift it 1s Abelian as an

algebra (G,f,") of type (,1). On the other hand. one can prove
(cf. [4]) that n-ary group (G, f) is medial iff there exists ae (s
such that

{n-2) (n-2)

flx, a ,y)=f(y, a .5
for all x,y € G, ie. iff the binary retract of ({s, Y 13 commutative
(cf. [4], [6])

Note that the identity (1) is satisfied also in some non-medial
n-ary groups. For example, (1} holds in the 8-group derived from the
group S§;. It is also satisfied in all idempotent n-ary groups.

(s

Let x= 79 and let .‘f(”"” be the skew element to ¥

where s>0. In other words, let V=% 5% % ete For example,

ina 4-group (G, f) derived from the additive group Zg, we have

%=6x{(mod B), ¥=4x(mod8), ¥ -0

for every s23. But in the n-ary group (7. /) derived from the
additive group of integers we have PARLIS A T

1f =x, then
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ord, (x)=ord, (fm)
for any natural t, where ord,(x) denotes the n-ary order of x, ie.

the minimal natural number p (f it exists) such that x*" =x. By

x> we mean x if 5=0,and f P x, . x) if s>1 (cf [3]

or [D)).
One can prove {cf. [3]) that ™ =x iff ord (x) divides

mo me
In particular X¥=x iff ord,(x) divides »-3. Hence in any ternary
group (G,f) wehave X=x forall xeG. Note also that if the
n~ary order of x is finite, then
ord, (x)= ord (X)
iff ord (x) and n-2 are relatively prime.
It is clear that if an n-ary group (G, f) satisfies (1), then for

all s> 0 it satisfies also

(s) -
FOdy = fEY D, )
Therefore if an n-ary group (G, f) satisfies (1), then the mapping
¢, defined by the formula

by(x)= 5
is an m-ary endomorphism of (G, f). Obviously ¢.0,=6,,, and
¢, is the identity endomorphism of (G, f) iff 9 =x for all
x € G. Thus the set of all ¢, forms the cyclic subsemigroup of the
semigroup End(G, f).
Moreover, the relation p, defined on ((, f) by the
formula (x,p)ep, iff FI=3, ie iff G ()=o) is a

congruence on (G, f) Obviously, py<p,<p, forany s<{,

134



On distributive n-ary groups

If the set
E,={xeGlx=,(x)}

is non-empty, then it is an n-ary subgroup of an n-ary group (G, f)
with (1) Itisclearthat E cFE. cE, and £ "k 4=F.

Similarly, it is not difficult to verify that if (1) holds in (G, f),
then for any s the set

GO = (x| x e G}

is an n-ary subgroup of (G, f). Moreover, ( S (GEN for all
s,t ¢ N and GQGU)QGQ)_:_J_._ Obviously, for any finite mn-ary
group there exists e N such that G=G" forall szt On
the other hand, the n-ary group (G,f) derived from the additive

group of all integers is an example of an  n-ary group with

GO 2G for s#t  (GY contains all integers which are divided

by (n-2)°).

3. Distributive n-groups

Let (G,f) be an n-ary group in which the n-ary operation
f is distributive with respect to itself , ie. an n-ary group in which
the identity
SO IOM ) = SO ) Sy SO Y xin),
holds for all =12, .,n. Such groups are called autodistributive
n-groups {cf. [6]). One can prove {(cf. [5], Theorem 3) that every

autodistributive n-group (G, f) satisfies

FOY= FOd7 x,x0, (2)
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where i=12,...,n. An n-ary group (G, f) satisfying (2) will be called
distributive.

Let (G, f) be an m-ary semigroup with a unary operation ¢
such that  f(e,x,.. x,¢(x)=x forall xe (. If for any =12, .,n
holds also the identity

SO = S0 00, xl),
then (G, f.4) isa (f/d)-algebra in the sense of HJHoehnke {12} If

(G,f) is an n-ary group, then we have a distributive n-group.

because ¢(x)= x.

Proposition 1. Let (G,f) be an n-ary semigroup with the
above defined unary oreration ¢ Then (G,f) is a distributive

n-group iff it is a cancellative n-semigroup.

Proof. Suppose that an mn-semigroup (G, f) is cancellative. |

Then

f(xl 4 xH-l) f(x{ - b x1+l

implies a=¥56 (cf. [b]). If ¢ is distributive with respect to f, then
{n-2) {n--1)

FCx {x)x)= ¢(f(X)) JOx d(x)) =x
Thus for ye G we have

(n=2)
f(y, x ¢(X) X)= f(y t ¢>(X) SO x H(x),x))=
{(n-3) {13}

=f(f(y, x 6(x),x), x ,0(x),x),

which (by cancellation) gives

(n-3)
fly, x ,6(x),x)=y.
Similarly
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(n-2) (n-2} (-3
f( X ,‘b(x),}"):“ ‘f(f( X ‘d)(r)ﬂ 1\’ & 7ib{x }? ‘,i'g)é -
(11--2) {n-2)

= £ % 000 S( x L9001,
implies

{n-21

F{ x Ld(x) vie ¢

Hence for all x,y € &G we have

(-3} (n-13

SO, x dx)x)= fOx oleivh- o,
which proves (cf. {4}, [8]) that ((r,f) 1s a distributive n-group and

®x)=x. The converse is obvious. ]

As it is well known (cf. [4], [8]) for »>2 an mn-ary group

may be defined as an mn-semigroup (G, f) with a unary operation

¥ —» ¥ in which so-called Dornte's identities

(n—7-1Y  (J-1) ] G-y dner
f(y! X :"x:’_: X ):f(]'}a X X, x !}F}:"_}‘ (3}

hold for all /,j=12 .. ,n-1

Using these identities and (2) it 15 not difficult to verify that

the following lemma is true.

{H-1) {71}

Lemma 1. In any distributive a-group v X and ¥ =X .

Corollary 1. Any distributive n-grouy satisfies {1). Moreover,
for xe G wehavealso x=f(¥.%,.. 8= fir.r. _x)
Lemma 2. In distributive n-groups
(a) x<k> - f(n—lﬁk),

(b} f-ck:» . (i—<k+l>)<lz> ’
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(c) fOi x> xl )= (fO )™
for all k=0]1,..n-1 and i=12,.. .. n

Proof. We prove only (a). For k=0 this condition is obvious. If

it holds for some ¢<n-1, then for f+1 we have

n-1) {n-1)
x ) f(-x-‘(ﬂ -1 1)’ x }

(n ; )I) —(n Iﬂ(ml))

x<f+]> — f(x<f>

>

— f(f(n-2~t)

3

which completes the proof of (a).

The condition {c) is a simple consequence of (2} and (a).

Corollary 2. If in a distributive n-group (G,f) ord (x)=)p

for some x & (G, then 2P = x and xk=¥P k) for k=01, .p.

Corollary 3. If p 1is a minimal natural number such that

x=%P)  for some element x of a distributive n-group, then .

ord, (x)=p.
Proof. See the proof of Corollary 10 from [5].

Lemma 3. All elements of a distributive n-group have the same
fiite n-ary order which divides n—1.

Proof. As a simple consequence of Lemma 2 {(a} we obtain

x“" = x. This shows that all elements of a distributive n-group
have a finite n-ary order which is a divisor of n -1 (cf. [3]).
Now, if ord, (x)=1, ord,(y)=s, then

v (2 Y1 (n=3) <> — (n=3) VyaS LI
x:f(x,}-’, y ):f(x,yv Y > Y ):('f(x,}/, B Y% 5_},‘))‘ .Y ,
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by (3) and Lemma 2 . Therefore /s Similaily we obtain  y= y™""

and sf. Hence 5=/, which proves that all elements have the same

n-ary order.

Theorem 1. Any distributive n-group is o set-theoretic union
of disjoint cyclic and isomorphic gutodistributive n-groups without

proper subgroups.

Proof. Let ord (x)=¢ and let ¢ i an  n-ary subgroup

N a B R e
generated by x Then (. = {x,xd:’,):(")}) Lx } Since all elements

have the same n-ary order, then (', has no preper subgroups and
any two subgroups ', and C, are isomorphic. Such subgroups are

autodistributive by Theorem 4 from [5} {This fact follows also

s
i

from our Corollary 12).

Corollary 4. A distrivutive n-group is idempotent or has no
any idempotents.

Theorem 2, Let = be an arbitrary element of a distributive
n-group (G,f). Then C, is the nermal subgroup of the retract
ret (G, f) and every coset of (', m  rei G0 s an m-ary

subgroup of (G.f) dsomorphicto ({, 7

fn~2)

Proof. Let (G#)=ret {G,f), ie let geb= f{a, x b} forall

o £l . e -
a,beG (cf. [9]). Then T R {{;%). Moreaver,
- 2 = . v e e ‘
C,={xx ...x'}  and C, i3 a coyoic  subgioup of the order

f=ord (x}) in (Ge). Itis normal, becavse by (2) and (3) we get
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{n-1) {n-2) (n—1)
aex=f(a, x )=f(X, x ,f(a, x )=
(n-1}) (n—-2) {n-1)

=f(x ,f(a, x ,XN=f( x ,a)=veq
forall ae(.

Moreover, for every k=12,...,/ we have also

i (n-2) P el {1n-2) o
aex™ = fa, x , %= f@* b, x ¥y=a*h,

which gives ae(,=C, for every aeG. This completes our proof.

Since by  Corollary 2 (,'xz{xj,f‘""_,.H,,r”'"“}, where

f_“—l} - ‘g”“])

t=ord,(x). Then =3  implies and, in the

consequence, x=y. This proves that in a distributive n-group any

endomorphism ¢ x &) is one-to-one and there is only t

different endomorphisms ¢, Obviously any such endomorphism is

also "onto" because for every xeG there exists y=x""e(C
such that x=4¢,(y). Thus ¢4.¢,.. .9, form a cyclic subgroup in
the group AuiG, f) of all automorphism of (G, f). Since

&(F)=d(x) for all automorphisms of an arbitrary n-ary group , then
this subgroup is invariant in the group Aw/{(G, f). Obviously any ¢,
is a splitting-automorphism in the sense of Plonka [13].

Thus we obtain the following result.

Proposition 2. If (G, f) is a distributive n-group , then the

operation : x-»Xx induces the cyclic subgroup in the group
Aul(G, f) of automorphisms of (G, f). Moreover, this subgroup is
imvariant in the group Aut(G,f) and in the group of all splitting-
automorphisms of (G, f).
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From the above results it follows also thate G=FE = G for
any distributive n-group (G, f). Thus the class V, of n-ary groups
(G,f) such that G=FE, (cf [6], Problem 4} contains the class of
distributive n-groups. The class of distributive n-groups is also
contained in the class of all n-ary groups satisfying the descending
chain condition for G (cf. [6], Problem 5)

The class of all n-ary groups ({for fixed =n) is a variety
(cf. [11], [8]). The class of all distributive n-groups is a subvariety of
this variety. From Theorem 1 it follows that any free mn-group in
this subvariety is a set-theoretic union of disjoint cyclic
autodistributive n-groups with n-1 elements which have no

proper subgroups, but in general this n-group is not autodistributive.

‘Theorem 3. Awn n-ary group {{ 5 Fy is distributive iff it has

the form
Fxy=x 00z, oW x,e o *x ox, b, (4)
where b 1s a fixed central element of a group {{r#) with the
identity e. #"7=e, 0 s an cutomorphism of ((s0), Gb=b,

2 I 51 , ,
xolxelrxe ol “x=¢ ond 6 "x=x jorall xedi;i

Proof. According to the well known €iluskin-Hosszu theorem
any n-ary group has the form (G, /)= den, ), (77 ¢4 (21 for example [9]),
ie. for any m-ary group ((,f) there exist a group ((Ge), be(,
and an automorphism 0 of {(: ) such that §b=b,
@ x=-pexeb! forall xeG and
Flxly=x, o8x, o Fxye ' ek

If 8 and b are as in our theorem . then direct computations
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show that ¥=xeb"> forall xeG and (G,f)=derny,(Ge) is a
distributive n-group.

Conversely, if (G, f)=dery;(G.e) is a distributive n-group
and e is the identity of (G,e), then (2) and (3) imply

(n-1) (n=2) (n-1)
xebh=f(x, e )=f(C, e ,f(x, e )=
{n-1) (n-2) (n-1)

=f( e, f(x, e ,@)N=f( e ,x)=0"xep
which shows that 0" is an identity mapping and xeb=bex

forall xeG.

{n-1)
Since e= f(e, ¢ )=¢€%b, then b~ is skew to e Thus
(n-2) (n-1) o
e=f(x, x ,e)=f( x ,E):xoexoezxt..oe"“x,

. 3 -. ~1 . ~ AR
and in particular ¢=5"", which completes our proof. ¥

Corollary 5. If (G, [f)=dery;,(Ge) s a distributive n-group,
ther. ord (x}=ord,(b) forall xeG.

g 2 2 — . 7
Proof. Since e=xelxe0°re " x for all x ¢ {7, then

a i {n-1) ,
X fF P x )= e (x e Ox 0 OPxe. #6 Ux)e b=

mxF P ez =xebF,

then x**=¢ iff & =¢. Hence ord, (x) = ord,(b). _

Corollary 6. A distributive n-group (G,f) is idempotent
iff G, [)=dery (Ge).
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Corollary 7. An mn-ary group (G,r5)=der ,(G»), where & is

arn identity mapping, is distributive iff the exponent of (G,e)
divides n-1.

Corollary 8. A ternary group (G,[f) is distributive iff there

exist a commutative group (G,#) and an element b< G such that

b=b"1 and f(x,y,s):xoy—l-ztb.

Proof. If a ternary group (G, [f)=den,(G,») is distributive,

then b =¢ and xsO0x=e¢. Hence 8x=x"' and ((rs) 1is a

commutative group. The converse is obvious. i

Corollary 9. The class of all distributive 3-groups is a proper

subvariety of a variety of medial 3-groups.

Theorem 4. For any w23 there exists a medial distributive

n-group which is not derived from any group of the arity L<n.

Proof. Let Z, e the additive group of rests modulo
p= "1 1 where =2 and (-D|(n-1). Then 6x=x(modp) is an
automorphism of the group Z, such that 6" y=x forall xe Z,

and 0b=5h for b=1+1+2+ 4+1"7%. The n-ary  group
(G, f)=dergp(Z,+,) is medial, because the creasing group Z, is
commutative {cf, [4], {6] ). Since, in this n-group ¥=x-b(modp) for

all x e Z,, then it is also distributive,
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!

Suppose now that our n-ary group (Z,,f) is derived from

some k-ary group (Z,,g). Then n=s(k-1)+1,

(k1)1 : f-1)+]
M = g ggGh )i, i (5)
and for @=0 there exists deZ, (d isskew to 0 in (Z,,g) ) such

that for all be Z, we have (cf. (3))

(k-2) (h-2}
gb, 0 ,d)=g(d, 0,b)

and

(n-2) {(k—-2) (n—k)
f(bOd)g(dObO)

For b4=1 the last identity gives (i+d)§(cf+-tﬁ'hl}(m0dp)» ie.

)= O(mod p), which for 122 and 2<k<n is impossible.
Obtained contradiction proves that our n-group i1s not derived from

any k-group of the arity & <n, which finish the proof

Qbserve that for t=2 the mn-ary group constructed in the

above proof is idempotent. Thus the following statement is true.
Corollary 18, For any n=z3 there exisis v medicl idempotent

distributive n-group which is not derived frovn uny yvoup of the

artty k< n.
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4, Autodistributive n-groups

Any commutative autodistributive n-ary group (G, f) may be
considered as an algebra (G, f,f) of type (nn). In this case it is an
(r,n)-ring in the sense of G.Cupona [2] and G.Crombez [1]. It is also
a special case of (f/g)~algebras described by HJ Hoehnke [12].

Since a commutative idempotent n-ary group is
autodistributive, then for any natural n23  there exists an

(n,n)-ring in which all elements are identities of this (n,n)-ring,

Theorem 5. An n-group (G, f) is autodistributive iff it has
the form
Fely=x 99x, 8 xq0. 00" 25 L ox, b,
where b is a fired element of a commutative group ((G,») with the

identity e, 0 1is an automorphism of (G,») such that 0b=5,
xoOxelPxe o8 2x=¢ and @ 'x=x forall xeG.

Proof. Direct computations show that any ﬁ-group
(G, f)=derg 1 (G ), where (Ge), 8 and b are as in our theorem, is
autodistribytive.

Conversely, if (G, f) is an autodistributive n-group, then (by
Theorem 8 from [5]) it is also distributive and has the form described

in our Theorem 3.

Mdreover, the autodistributivity of ((, /) implies
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(n-2) (n-23

Oxebelyeb= f(f(ex, ¢ )y, ¢ )=
(n-2) (n-2) {n-2) (-1

=f(fley, e ) flxy, e ), fley, e ). fley, ¢ N
=0yeheOxe@ yobe o0 yeheh-:
= eyobo9x082(yoeyo_”oe”_zy‘)ob” -
=0yehelxebh,

which gives the commutativity of ((,e). This complets vur proof. i
Corollary 11. Any autodistributive n-group is medial.
Comparing the above result and Theorem 3 we obtain

Corollary 12. A distributive n-group is uutodistributive iff it is

<85 - -dertved from a commutative group, t.e. if7 it is medial

This together with Corollary 7 sives  the  following
characterization of autodistributive n-groups which are b-derived
from a some binary group

Coroilavy 13 An ni-ary group (G, f)=den p40r 2. where & is
an identity mapping, ts autodistributive iff the yroup ({;/e) is

commutative and its exponent divides »n- 1.

'Thus for n<7 all distributive n-groups b-derived from a
some binary group are autodistributive. I¥or # 7 there are
distributive b-derived mn-groups which are not autodistributive. As
an example of such 7-groups we may consider 7-groups b-derived

from the symrmetric group S
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Observe that Corollaries 9 and 12 give the following

connection between distributive and autodistributive 3-groups.

Corollary 14. Any distributive 3-group is aurodistributive and

vice versa.

Theorem 6. For any #n>3  there exists a non-reducible

idempotent distributive n-group which is not autodistributive.

Proof. Let C be the field of complex nimber. It is not

difficult to verify that G=(" with the multiplication defined by
the formula
(x,y,2)e{a,bcy=(x+a,y+bc+c)

1s a non~commutative group with the identity e= {000} The map
Xx, y,z)= (ot.x,azy,az), where «a is a primitive (1-1)th root of unity,
is an automorphism of (G,9) such that 0 = x and
xelxe@xe o “x=¢ for all xeG. Thus an  m-group
(7, 1) =dery (G9) is idempotent and distributive  {Theorem 3).
Obviously it is not autodistributive (Corollary 12}

Now we prove that this n-group is not denved from anv group
of the arity 4k <n. Indeed, if an n-group (G, /[f)=der ((i®) s
derived from a some binary group with the identity ¢ then for all

x e ( we have

(n-1) (n--2)

f('r? C ): f(c!i x’ ('. ):: 'r?
which implies xre8c=ceBx. This for x=¢ gives Oc=c. Hence ¢=e¢

and Ox=x for every x e, which is incompatible with the
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definition of 0. Thus this n-group is not derived from a binary
group.
If it is derived from some k-ary (k>2) group ((s,g), then

n=s(k-1)+1, s22 and (b) holds. Moreover, Dornte’s identities for

(G,g£) and (5) show that

(k-2)  (k-2) (k-2) (k-3)  (k-2) (k-2)
fx, x ,x, x ,x,., x ,X)=f(x,X, x ,x, x ¥, x ,X)

for all x € G, where x denotes the skew element in (G, g). Hence
xe0x=xe0x, which for x=e gives €=0¢. Therefore ¢=¢ and
Ox=x, which is incompatible with the definition of 6. This

]

contradiction completes the proof. %

Theorem 7. There exist non-reducible and non-idempotent

distributive n-groups which are not autodistributive.

Proof. Let K be a fixed field of the characteristic p# 0. As in
the proof of the previous theorem, it is not difficult to verify that
G=K> with the multiplication

(x,y,z2)e(a,b,c)=(x+a,y+xc+b c+c)

1s a non-commutative group with the identity ¢ =(0,0,0). Moreover,
for any natural mz=2 such that pl/m, the map O(x,y,z)=(ox,y Bz),
where off=1 and o is a primitive mth root of unity of K, is
an automorphism of ((;,#) such that ©66=54 for b=(010). Since
0"x = x, xeOxexe o 2x=¢ and bex=xeb forall xe( and
n=pm+l, then an n-group (G, f)=dery,(Ge} is distributive but
not autodistributive,

In a similar way as in the previous proof we can see that this

n-group is not derived from any binary group. It is not derived from
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any k-ary (k>2) group, too. Indeed , if it is derived from a some
k-ary  group (G,g), then as in the previous proof
n=s(k-1)+1, 522 and xeOr=xefx for all xe{. From this
identity it follows that e=(0,y0) and a=(,u1) for a=(,0]).

Therefore

(k-2)  (k-2)  (k-2) (k-2
fla . ae e e, e .., e &)=¢ (6)

implies 0= l+a+a+. .40 Thus of'=1 and k-I= tm, because
o 15 a primitive mth root of unity. Hence pm=n-1=smm, and in
the consequence s= p. Therefore #n= p(k-1)+1. Thus from (6} for
ag=€¢ we obtain e={¢)’ ¢b, which is impossible because py+1i=0
has no any solutions in K. This contradiction proves that our n-ary

group is not reducible to any lk-group. This completes the proof. [}
From the above proof it follows that non-reducible
non-idempotent distributive n-groups which are not autodistributive

exist for some n>7 For n=456 this problem is open.

Corollary 15. For any »n>3 there exist un autodistributive

n-group which is not derived from any group of the arity m<n.

Proof. Such n-groups are constructed in the proof of the

Theorem 4. ]
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