Quasigroups and related systems, voll, .no.l(l), 19'94

ABELIAN QUASIGROUPS ARE T-QUASIGROUPS

Galina B. Belyavskaya

Abstract

By means of known results with respect to  algebras of a congruence meoedular variety it
is proved that abelian (in the sense of McKenzie) quasigroups, ie. quasigroups coinciding
with their centre, are T-quasigroups and conversely.

In the literature on quasigroups it was accepted medial quasigroups to call
abelian quasigroups. However, the latest investigations of the centre of
quasigroups show that the class of abelian (in the sense of McKenzie [1])
quasigroups is the class of T-quasigroups introduced and thoroughly studied
in [2,3] and including medial quasigroups.

In this note we shall prove this fact by means of known results with respect
to algebras of modular varieties.

Let A be an universal algebra. According to the definition from [1,4] the centre
of A is the set Z(A) of all pairs (a,l’))e/i2 such that for each term operation
{x,%,....,y,) of A4, each u,ved™ |

Ha,u)=t(a,v) < t(b,u) = 1{b,v).

The centre Z(A) is a congruence on A.

An algebra A is called abelian if Z(A) = A?.

In [5,6] the concept of the h-centre Z, , he®, of a quasigroup @Q() was
introduced and studied. Z;, is a normal subset of @( )} and defines the normal
congruence 0,(-). It was proved that if Z, forms a subquasigroup of ,Q(-),
coincides with its h-centre (Z, = @) for each heQ.

In [7] it was proved that ©, = Z(Q) where Z(Q) is the centre of the
corresponding primitive quasigroup  @(-\,/). These results mean that the

then this subquasigroup is a T-quasigroup [5,6], and each T-quasigroup @)

definition of Z, 1is an inner characterization of the centre Z(@). It also implies

that in the variety of all primitive quasigroups the abelian quasigroups are
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T-quasigroups, and conversely. It is a long way to prove this. The aim of this note
is to prove directly that a primitive quasigroup Qf -,\,/ ) is abelian if and
only if it is a T-quasigroup by means of known results on universal algebras of
a congruence modular (shortly, modular) variety. To prove this we need a
number of necessary concepts and results with respect to algebras of modular
varieties.

First we remind that if an algebra A lies in a modular variety, then its
centre can be characterized by means of a commutator of congruences. For the
first time the theory of commutators and the centre was given for universal
algebras of permutable (or Mal'cev) varieties and thoroughly studied by
J.DH.Smith in [8] Later this theory was developed by many authors in
algebras of modular varieties. In [9] JDHSmith called a quasigroup Q(-,\,/)
coinciding with its centre (i.ean abelian primitive quasigroup in the sense of
McKenzie) a 3-quasigroup.

Let o, be congruences on an algebra A of a modular variety (o,BeConA).

According to [10] define the congruence A&, on o by
&, = <((a,a),(b,b))(a,b) B >,,
ie. A’i is the congruence generated in o (viewed as a subalgebra of AxA). In

other words, 4’ is the smallest congruence relation on o containing the set

{((a,a),(b,b))i(a,b) eB}.

The commutator {o,}] of two congruences o, on A is defined as follows:

o, B1= {(x, )%, ) 85, (%, )}

A congruence O on an algebra A of a congruence modular variety is called

central if [8,4*]=0,, where
0,4 = {(a,a)la € A}.

In this case the centre Z(A) is exactly the largest central congruence on A ([1],
Lemma 5.2) Hence, an algebra A of a modular variety is abelian iff
[4%, 4% ]1=0,.

All abelian algebras in a modular variety form a subvariety. A variety is
called abelian if every algebra of this variety is abelian.

According to Definition 5.3 [1] a congruence o on A is called abelian if
[a,a]=0,. It is evident that each central congruence is abelian since

(o) <[, Q%] =0,
implies
[o,a]=0,.
Let f be a n-ary term operation of an algebra A,

7
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}uzxi’,}:y{'j:z{‘ eA”,
and .

f(x-y+z) :‘f(xl -V tI,% -¥2 +23,..,%, "'yn+zn)'

Definition 1[1]. An algebra A of a modular variety is called affine if there
is an abelian group A=< A,+,—> having the same universe as 4 , and a 3-ary
term operation (x,y,z) on A, such that:

1) x,y,z2)=x-y+z forall x,y,ze A;

2) f(x-y+2)=f(x)-fO)+f(2)

for each m-ary term operation f and x,y,zeAd".

The condition 2) is equivalent to the following statement:
each operation (and each term operation) of the algebra A is affine with

respect to the group A4, ie. for any given mn-ary operation F there are
endomorphisms «;,a,,...,a, of 4 and an element a <A such that

n
F(x() = o,x +a
i=]

(see [1], p46).

According to Corollary 5.9 [1] in a modular wvariety every abelian algebra is
affine, and conversely.

We also need the following result due to C.Herrmann [11] (see also Theorem
3.4 [12]).

Theorem 1 [11]. If R is a modular variety, then there exists aterm p(x,y,z) such
that for each algebra A €N, each abelian o €ConA, each acA onthe a-class
d/«a containing the element d, operations "+,-" of an abelian group are defined such that jfor
all ab,ced/a:

pla.b,cy=a-b+c,
and for each signature n-ary operation for all a,b,c € A" such that for i <n a;,b;,c; are «
~equivalent, the equality
fla+b=c)=f(a)+f(B)~ f(c)
holds.

From Theorem 1, Pefinition 1 and Corollary 5.9 [1] it follows
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Corollary 1. Let o be an abelian congruence of an algebra A of a modular variety and
the a-class d/a forms a subalgebra of A for some d e A. Then this subalgebra is
affine and so an abelian algebra.

At last, we remind that the primitive quasigroup is an algebra Q(,\,/)

with three binary operations which satisfy the laws:
x(x\y)=y, (x/y)y=x, x\(xy)=y, (@) y=x.

It is known that the class of all primitive quasigroups forms a permutable
(and thus a modular) variety.

A quasigroup @Q(:) is called a T-quasigroup [2,3], if there exist an abelian
group Q(+), its automorphosms o,} and an element a eQ such that

xy = ax +fy+a

for all x,y eQ. ,

Medial quasigroups are a special case of T-quasigroups when the
automorphisms o and [ commute.

Now we can easy prove for quasigroups the following

Lemma. Let o be an abelian congruence on a quasigroup Qf.\/) anda oc-class H
be a subquasigroup of ((-\/). Then H isa T-quasigroup.

Proof. By Corollary 1 H(-\,/) is an affine quasigroup so
xy =ox+fy+a,
where o, are endomorphisms of the abelian group (H,*+,-). Put x=0 (0 is the
zero of Q(+)), then |
Oy =Py+a.
Hence P is a permutation on @ since Q) is a quasigroup. Analogously, o is a
permutation on Q. Hence, H(:)is a T-quasigroup.

Note that according to Lemma 33 [3], if Q(:) is a T-quasigroup and
xy=ox+fy+a
where  a,BeAutQ(+), Q(+) is an abelian group, then
x\y=-plox+p7'y-pa,

1 I

xly=a"lx-aBy-ala,

ie. @\) and @(/) are also T-quasigroups.

Theorem 2, A quasigroup Q(.,\/) isabelian if and only ifitis a T-quasigroup.
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Proof. If Q(-\./) is abelian, then [0* 0?]=0 and. by Lemma Q\,/)
is a T-quasigroup.
Conversely, let Q(-\,/) be a T-quasigroup:
xy =ox+By+a (1)
Prove that Q(-\,/) is affine. For this consider the Mal'cev term
1(x,b,y) = (x/(b\b))-(b\ y)
for Q(-,\.,/), ie.

((x,b,) = R\x- I3, (2)
(here
bey =b, R, x=xe,, Lyx=bx),
since

b\b=e,, xley=R'x, b\y=1IL;'y.
From (2) it follows that #(x,b,y) is a loop with the identity element be, =5. But
(1) means that the abelian group @(+) is principally isotopic to the quasigroup
Q() so according to Albert's Theorem the loop 1?#(x,b,y) is an abelian group
isomorphic to Q(+). Moreover, from the proof of Albert's Theorem (see [13, p. 17])
it follows that
Hx,b,y)=x~-b+y
since the loop [(x,b,y) is principally isotopic to ((+). Therefore the condition 1)
from the definition of an affine algebra holds.
The condition 2) is also true since it is equivalent to the fact that each of the
operations (), (/) and (\) has the form
f(x,y)=ox+Py+a,
where o, are some endomorphisms of the same abelian group @(+). This
completes the proof.

Corollary 2. If Qf.\/} isa T-quasigroup, then [o,B]l=0 for all congruences o, of
Q(’?-‘r/)'

Indeed, [o,B]<[Q?,0%1=0.

Now we can note that primitive T-quasigroups as abelian algebras of a
modular variety have all properties established with respect to these algebras.
Many of such properties can be found in [2] in addition to the properties of the
T-quasigroups from [2,3,5,6].
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In conclusion remark that if we take some variety of primitive quasigroups,
then the abelian quasigroups can be a special case of T-quasigroups. For
example, according to Theorem 7 [6] the abelian quasigroups in the variety of all
idempotent quasigroups are medial distributive quasigroups, and in the variety
of all commutative quasigroups the abelian quasigroups are medial (commutative)
quasigroups (Corellary 6 [6]).
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ONE-SIDED T-QUASIGROUPS AND IRREDUCIBLE BALANCED
IDENTITIES

Galina B. Belyavskaya, Abduffo H. Tabarov

Abstract

Left and right T-quasigroups are considered. It is proved that all primitive left (right)
T-quasigroups form the wvariety which can be characterized by two identities. Some
varieties of primitive left (right) T-quasigroups and T-quasigroups characterized by
irreducible batanced identities are picked out.

Introduction.

It is known that all primitive quasigroups isotopic {o groups form the
variety characterized by one identity [1].

The class of linear quasigroups plays the important role in this variety. As
V.D.Belousov has shown in [1] these quasigroups are closely connected with
irreducible balanced identities in quasigroups.

A quasigroup &) is called linear (over a group) if a group (+) its
automorphisms @, and an element c¢e() exists such that

Xy = (@x+c+\yy | (1)
for all x,yeQ.

The automorphisms ¢,y are called determining automorphisms for the
quasigroup @Qf-).

In {2} the concept of linear quasigroup was generalized as follows.

A quasigroup Q) is called a left (right) linear quasigroup if there exist
group. Q(+), its automorphism ¢ (y) and an one-to-one mapping B (o) of @ onto
@ such that

. xy=@x+By (xy=ax+yy)
for all x,yeQ.

© 1994 by G.B.Belyavskaya, A.H Tabarov
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As it was shown in [2], left (right) linear quasigroups are closely connected
with the left (right) nucleus in quasigroups. They also arised in [1] in the
investigation of irreducible balanced identities in quasigroups. ‘

All primitive left linear quasigroups form the variety characterized by the
following identity:

[x(u\y)]z =[x(u\u)]- (u\yz).. (2)

Analogously, all primitive right linear quasigroups are characterized by the
identity

x[(y/u)z] = (xy Ju)-[(u/u)z] (3)
(Corollary 2 [2]).

All primitive linear quasigroups also form the variety which can be
characterized by the identities (2) and (3) (Corollary 3 [2]) or the unique
identity _
xy -uv=1xu-(a,y v) (4)
where ¢, is a mapping of @ in @ depending on u (Theorem 1 [3]). It is easy
to see that ¢, is an one-to-one mapping of @ onto Q:

ey =[u\(u/u)y u)/ (u\u).

The T-quasigroups, ie. the quasigroups linear over abelian groups, are the
special case of linear quasigroups. These quasigroups were introduced and
studied in detail in [4,5] The well known medial quasigroups are a special
case of T-quasigroups.

In [6] it was proved that the T-quasigroups play a role in the theory of
gquasigroups comparable to that of abelian groups among groups. Namely, a
quasigroup coincides with its centre iff it is a T-quasigroup (see Theorem 6 [6]).

In [6] the variety of all primitive T-quasigroups 1is characterized by two
identities: (4) and the identity

xy-uv=(fv y)ux, (5)
where
By ={(x{(x/xv))/ x]/(x\x). *

In this article we consider the one-sided T-quasigroups (left and right
T-quasigroups) and prove that all primitive left (right) T-quasigroups form the
variety, which can be characterized by two identities. We also pick out a
number of varieties of primitive left (right) T-quasigroups and
T-quasigroups characterized by irreducible balanced identities.
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1. Left (right) T-quasigroups and their characterization.

The following case of a left linear quasigroup @) arised in [1] due to
V.D.Belousov when he studied quasigroups with irreducible balanced identities:
xy = gx +fy,
where @(+) is an abelian group, ¢ is its automorphism, B is an one-to-one
mapping of @ onto . Using this we say that a quasigroup Q(-) is a left (right)
T-quasigroup, briefly, a LT-quasigroup (RT-quastgroup) if @Q(:) is a left

(right) linear quasigroup over an abelian group.

First, we recall that the primitive quasigroup @(.\,/) corresponds to each
quasigroup Q(:), where

Xy=zodx\z=yozl/y=x

We also note that according to Lemma 1 [2] a left linear quasigroup, which
is simultaneously a right linear quasigroup, is a linear quasigroup. From this
Lemma it immediately follows that if a LT-quasigroup is a RT-quasigroup,
then it is a T-quasigroup.

Theorem 1. All primitive LT-quasigroup form the variety characterized by the following
two identities
[x(e\p) )z = [xG\w)]- (u\ yz), (6)
(x/w)(u\y)=(y/u)(u\x). (7)
All primitive  RT-quasigroups are characterized by the identity (7) and the following
identity
x[(y/w)z]= (xy /w)[(u/)z]. (8)

Proof. According to Corollary 2 [2] the identity (6) means that @Q(-) is left
linear over a group @(-+). But (7) implies that Q(+) is an abelian group. Really,
write (7) as follows

R;l.x.L;]yzRu—Iy_Lglx’ 9)
where R, L, are the translations of @(-) with respect to an element w ()
Ryx=xu, L,x=ux
Fixing in (9) the element u, we obtain that
Xoy = yox,

10
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where o) is a loop principally isotopic ta Qf:). Hénce, the loop Qo) is
commutative. By the Albert's theorem (see, for exarﬁple, Theorem 1.4 [7]) the
loop Q(o) is an abelian group. Thus, @(-)isa  LT-guasigroup.

Conversely, if Q(-) is a LT-quasigroup, then it is left linear over an abelian
group @Q(+) and by Corollary 2 [2] Q) satisfies the identity (6). Next, since
the group @Q(+) is abelian, then by the Albert's theorem each loop, isotopic to
Q(+), is commutative. Hence, the equality (9) is satisfied for all x,y,u €, ie. the
identity (7) halds. This completes the proof for the LT-quasigroups.

The proof. for the RT-quasigroups is similar if we take into account that the
identity (8) characterizes the wvariety of all right linear quasigroups (see
Corollary 2 [2]). '

In the introduction it was noted that the wvariety of all primitive
T-quasigroups is characterized by two identities (4) and (5). From Theorem 1
an another characterization of T-quasigroups follows.

Corollary 1. The variety of all primitive T-quasigroups can be characterized by three
identities (6),(7) and (8).

Indeed, it follows from above that if a  LT-quasigroup (-} is also a
RT-quasigroup, then @) is a T-quasigroup. The converse follows from

Theorem 1.

2, LT-quasigroups, RT-quasigroups, T-quasigroups and
balanced identities.

Now we recall that an identity
Wy = W,y

defined on a quasigroup -} is called balanced if each variable &, which occurs on
one side w) of the identity, occurs on the another side w, too and if no
variable oceurs in w; or 3w, more than once. This definition is due to A.Sade
(see [8]). All balanced identities can be separated on two kinds. An identity
wy=w, is kind 1 if the elementsin w; and w, are equally ordered and is kind
2 otherwise.

An identity w;=w, is called reductble [1] if either

11
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(i) each of w; and w, contains a "free element" & so that w; is of the
form wx or xv; and w, likewise is the form wmwx or xvy (where wu; or v
represents a subword of the word w; fori=12), or

(ii) w; has the product xy of two free elements x and y as a subword and
w, has one of the produet xy or yx as a subword, or the dual of this
statement. |

An identity which is not reducible is called irreducible.

V.D.Belousov has proved the following remarkable theorem (Theorem 3 [1]):
a quasigroup which satisfies an irreducible balanced identity is isotopic 1o a
group.

Let

(1, %9, %) = (. ((21x2)%3).. )%,

ey oxe 1= % (% (L (o2 (1% D))
and min means that m is a divisor of n. By |¢| we denote the order of the
automorphism ¢ and let Sy denotes the set of all one-to-one mappings of @

ocnto Q.

A mapping | yeSp is called a quasiautomorphism of a quasigroup Q(-) if
there exist one-to-one mappings o, €S, such that

Y(xy) = ax-By.
According to Lemma 2.5 [7] if y is & quasiautomorphism of a group Q(+), then
7%= Reyyx = Ly X,
where y,,7, are automorphisms of Q(+);
Rx=x+s, Lx=s5+x.
V.D.Belousov in [1,p.79] has proved the following important for us statement,

which can be formulated as follows

Theorem 2 [1). Let Qf) be a LT-quasigroup:
xy = ox + By,

¢ is an automorphism of the group O(t) of the order m, © is a permutation of the set M =
{0.1,....n}, where mn, satisfying the conditions:

(1) 80 =0,

(2) Bn=n,

(3} Bi=i(modm)
Jor each i € M. Then the following irreducible balanced identity of kind 2

(oY1 Yn-1Vn) = (DooYe1 - Yoen-1)Yen) (10)

is satisfied in ().

12
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-Coﬁversebl, if the identity (10) holdsin a quasigroup (J(}) for a nonidentity permutation ©
of Mithen Q() is a LT-quasigroup:
Xy = @x+By,
-;}Ftke automorphism © has a finite order m which is a divisor of (Qi—-i). for each

;—~ 0.1,...n and the permutation O satisfies the conditions (1), (2), and (3).

~ For our aims the next special case of Theorem 2 [1] is useful

Theorem 3 . Let O(;) be a LT-quasigroup:

- xy = ox + By,
‘Je l m,. m§n Then Q) satisfies the following irreducible balanced identity of kind 2:
(VoY1 Yn-1¥n) = )y Yu-130)- (11)

| Cormrsebz, if a quasigroup Q) satisfies the identity (11), then Q(-_)‘ is a

' LT-quasigroup:
'_ - | xy = @x +py,

and the order m of the automorphism is a divisor of .

For the proof it is enough to observe that the identity (11)is (10)if ©=(0n),
where: (0n) - is a transposition (a cycle of the lenght two). Evidently, ©=(0n),
| satlsﬁes each of conditions (1), (2), (3).

Remark that the case m = n corresponds to the 1dent1ty (11) of a "minimal
-1enght“ |

+The, analogue of Theorem 2 [1] is true for RT-quasigroups if we take the
identity | |

Dyndn-1--- 1Yox]1=[YenYo(u-1y- - YorVeoX]
instead of (10), but we shall formulate and prove the analog of Theorem 3
.phéggigg-_-a little the outline of the proof of the corresponding statement from

The’urem 4. Let Q) be a RI-quasigroup:

: Xy =ax+\y,
| I k, k|i. Then the following irreducible balanced identity of kind 2:
iy - yyvoex] =Wy nxl (12)

is satisfied in Q).
Conversely, if the identity (12) is satisfied in a quasigroup () for some 121, then
Q¢ isa RI-quasigroup.

13
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Xy = ox+\y,
and the order & of the automorphism y is a divisor of 1.

Proof. Let Q(-) be a RT-quasigroup:
Xy = 0X + Yy,
\w|=k, k|l. Then
(e ¥l = 31 - 00X)). ) =
= o) + oy + WP+ Aoy +y e =
= QY+ Yoy + \uzay,_z +o Yy HYX =
= Yoy X)) ) =ayi-r yixl
Conversely, let the identity (12) be satisfied in a quasigroup

some /21 By Theorem 3 from [1] Q(:) isisotopic toa group Q(t+):

xy = Ax +8y
where 1,6 €55. That is why from (12) we have
Dyt Yyox]= yilyimr »ivex] =
=My +8y i1 yex]= Mo +8[yiy - yiixd
Fix x andall y,,j#0./, in this equality:
Ay +81yg = Wyg +81y;

Q) for

(13)

for some 8§ €Sy. But by Lemma 11 from [1] a group @Q(+) is abelian if the

equality
ox +fy = yy +0x
is satisfied in Q(+) for some a,B,v,0€S).

Next show that 8 from (13) is a quasiautomorphism of the abelian group

Q(+). The identity (12) means that

Y11 - (ex))-. ) = Yoo n (px))-. ).
Let /=3, then (14) can be written as follows

Ay +0(Ayry +0[yia.. iyox])) =

= Mo +8(Ayp +0 iz yix]).
Put in this equality

X=Ay =3 =y =0,
where 0 is the identity element of Q(+), then
Ay +811-y = 8(Ay1 +021)
for the corresponding §;,8; €S5p5. Hence, 6 is a quasiautomorphism
Let now [ = 2, then (14) implies
Ayy +8(An +8(yex)) = Ayp +8(Ay +8(y;x)).
Put here Ay, =x=0, then
14

(14)

of Q(+).



One-sided T-quasigroups and ..

Ayy +83y; =8(Ay; +0,4¥3)
for 83,84 €5g. At last, let 1=1, then from (14) we have

My +8(ypx) = Ay +0(3x),
or

?\;yl +d'x = 6()1113'),
if we put Ay, =0.
Thus, in all cases we obtain that & is a quasiautomorphism of
According to Lemma 2.5 [7]
' dx = 5+ yx,
where \/ is an automorphism of Q(+), s €(Q. Hence,
xy = Ax +0y = ax + Wy,
where
o = Ax +s.
Using (15) in (14) we have
oy + ey +ylayy +oy oy + ylayy oyt =
=g + yayy_g + wzay,_z +. ..+w{’1ayl + w’ay, + \p“"]x

whence

wyy 9 oy = o + v ey,

v (oo — ayy) = oy ~ayy.

Therefore, y'x=x for every xeQ, so the order Jy| of the automorphism

a divisor of 1 This completes the proof.
Theorems 3 and 4 imply

Corollary 2. Let Q) be a T-quasigroup:
Xy = Qx+e+yy,

Q).

(15)

Y is

lol=m, W=k, min, kL. Then the identities (11),(12) are satisfied in Q(). Conversely, if the

identifies (11) and (12) hold for certain ni=21 in quasigroup  Q(.), then Q) is
GHASTErON].

Xy = Qx+c+yy,
el | oand | L

Prooi. Since every T-quasigroup is a LT-quasigroup and

a 1-

a

fi-guesigroup, the first statement follows at once from Theorems 3 and 4.

Lanersely, according to Theorem 4 if (12) is satisfied in a quasigroup Q(-) for

Lm0, then @(+) 1s a RT-quasigroup:

15
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Xy = Ax+8y = ax +yy,
(see (15)). and |y| is a divisor of I Next, using the equalities (11) and (13), we can

prove that A is a quasiautomorphism of Q(+):
Ax = @Qx +1,
where teQ, ¢cAutQ(+) and |p||n. The proof is similar to that of the case

for in Theorem 4. Thus,
Xy =Ax+0p=Qx+t+s+yYy=Qx+c+yy,
where ¢ = tts, |p||n, |v|!l. This completes the proof.

3. Some subvarieties of the varieties of
LT- (RT-) quasigroups and T-quasigroups.

The above proved results present the posibility to pick out some varieties of
primitive  LT-quasigroups, RT-quasigroups and T-quasigroups, which are
characterized by irreducible balanced identities of kind 2 and depend on the
orders of their determining automorphisms.

We begin with the following Lemma which means that the order of a
determining automorphism ¢ (y) of a LT-quasigroup (RT-quasigroup) @)
is its invariant and does not depend on a group over which @(:) is left (right)

linear.

Lemma 1.
(i) Let Q) bea LT-quasigroup and

xy = ox+PBy = propy,
where © (-(E) is an automorphism of the abelian group Q(+) (Q(o)), B,E €Sp. Then
ox =R, ERa“lx forcertain aeQ (Rx=x+a) ie |(p|=|5|.
(i1) Let Q() be a RT-quasigroup and
B Xy = QX + Yy = axoyy,
where edutQ(+), ¥ edutQ(o). Then vy =R, YRy for some acQ, ie. |y|=|yl.

Proof. Let
xy = e+ fy = grofy,
peAutQ(+), © eAutQ(o).

16
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In this case the group (o) is principally isotopic to the group @(+). By Albert’s
Theorem (J(o) is isomorphic to @(+). Moreover, there exists such an element
ae() that
R, (xoy)=Rx+R,y, Rx=x+a

(see the proof of Albert’'s Theorem in {7], p.17). Hence, using the equality

R, x=x -a,
we have

xy = grofy = R;'(R,0x + R,By) =
=R, 0R; (x+a)+By = R, oR; 'x +By

( ﬁl y=R, 60+[§y, 0 is the identity element of @(+)), since

0= R, 0R;
is an automorphism of @(+). Thus,

xy =gr+By=qux+fy
whence by x=0 have
B=B,0=01,l0=lo)=/o]
The second part of Lemma 1 is proved analogously.

Corollary 3. If O() isa T-quasigroup and
Xy = QX+ e+ Yy = Qrocoyy,
then
g =R, R,
w=R,wR;,
ie.  lol=lol lvl=jw!

The proof follows immediately from Lemma 2.

Now let m,n be natural numbers. Denote by in,, (W) the class of all
LT-quasigroups (RET-quasigroups) with determining automorphisms whose orders
are devisors of m {of n). In other words, a LT-quasigroup (a RT-quasigroup) Q(-)
lies in Sﬂf,, (R it xy=ox+Py (xy =ox+yy) for certain abelian group &(+), its
automorphism ¢ (y) such that 0" =g (y" =¢),ie. |p||m (w||n). Here & is the
identity mapping of @.

By W,, we denote the class of all T-quasigroups with a pair (@,y) of the

determining automorphisms such that

17
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o7 =y" =¢.
Hence, a T-quasigroup @Qf:) belongs to R, , iff
Xy =ox+c+yy,
lpl | m and |y||n

for some abelian group Q(%).
From Lemma 1 it follows at once that

R AR =R (AL, AR, =97, )

(mn)
where (m,n) is the greatest common divisor of m,n. In particular, if p,g are
prime numbers, then

RARE=R] (R, R =R)).

Next we prove
Lemma 2, ®,, = ‘.R,’,, R

Proof. It is clear, that
R, C Re, AR
Let €(-) occurs in Ean and ). Then there exists abelian groups @(+) and
(o), their automorphisms ¢ and ‘q}-, such that
m —n
¢ =y =€

and

xy = gx+fy = axoyy (16)
for some a,B &Sy In this case there exists such an element ae(Q that

R,(xoy)=R,x+R,y
(see the proof of Lemma 1). Hence, from (16) by x=0 we have

By = alayy = R ! (R,00+ R, wy) =
= —a+a+a0+R YR (a+y)=c+yy,

wheie
| c=al+ RGGO,
since w 4w is an automorphism of Q(+). Thus,
lwi=lwl,
XY =0x +C+ Y,

and g,

o J3

a5 reguired.

18
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ey B poy . e
Now denote by MR, RN, Rmn  the classes of corresponding primitive

LT-quasigroups, RT-quasigroups and T-quasigroups.

Theorem 5.
(i) E_ﬁi,,_ is a variety of primitive LI-quasigroups characterized by the identity
(Y1 Y ) = (V1 V2. Y10 ) (17)
(ii) R, is a variety of primitive RT- ~quasigroups  characterized by the identity
[YnYua--21Yox) = WoYea - Yivax] (18)
(iil) Ry is a variety of primitive T-quasigroups  characterized by the identities
(17) and (18).

Proof.
(i) Let Q(-)eR! :
. xy=gx+By, |of | m,
then Q(-) satisfies (17) by the first part of Theorem 2. Conversely, if Q)
satisfies (17), then it is a LT-quasigroup by the second part of Theorem 2 and

| C xp=oxaby. ol lm,
ie. Q)ew! .

(ii) follows similarly from Theorem 3.

(iii) is a consequence of Lemma 2, (i) and (ii).

Next we consider some special cases of the above varieties.
The variety ﬁf (1}  includes all quasigroups such that
xy=x+By (w=ax+y), afeSy
over all abelian groups @Q(+) (@ iS a nonfixed set). These wvarieties are
characterized by the identities
Yo =XYoo (N YeX = Yo yix),
respectively.
The variety _‘5{-"5 (ﬁ;) includes all quasigroups from 51“{ (gﬁ) and
quasigroups of the form
Xy =ex+fy,  [of=2
(o =oor+yy,  |yl=2)
If Q)=Rs (Q(-Je®s), then Q) satisfies the identity
X¥o-y)ya = (2 1) Yo,
G W Yex) = yo (- yax)),
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and onnEisely
L..¢ .,2 be simple numbers. Then iRi, (‘I{;) contains all quasigroups from

?ﬁ{_ (5?;) and all LT-quasigroups (RT-quasigroups) with the determining
automorphisms of the order p (of the order g). If @ )eRpg, then it has one of
the next forms: '
y=ex+ctyy,  lol=p, |vi=g
xy=¢x+cty,  lol=p,
xy=x+c+yy, lvl=gq,
Xy =Xx+c+y.

Finally we note that the variety of all abelian groups is contained in every

. =l = =
variety from 0, ER:, Ron for any m,n.
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TRANSVERSALS IN GROUPS.1. ELEMENTARY PROPERTIES

Evgenii A. Kuznetsov

Abstract

In this work the elementary properties of transversals in groups are studied.

1. Introduction. Necessary definitions and notations.

The present work deals with the properties of specific sets of representatives of

left (right) cosets in groups to its subgroups. These sets are called left (right)
transversals in groups to its subgroups. They were introduced in [1] and studied in
[1,2,6] ete, |

We shall use the following notations:
A is an index set (A contains a distinguished element 1); left (right) cosets in a

group G to its subgroup H are numbered by the indexes from A;

M is the {-th left coset in a group G to its subgroup H;
H; is the i-th right coset in a group G to its subgroup H;

e is the unit of group;

Core(H) is the maximal subgroup contained in H and normal in G;

St,(K) is the stabilizor of an element ¢ in a permutation group K.

Definition 1. Let G be a group and H a subgroup in G. A complete

system T of representatives of the left (right) cosets in G to H (e=1, €T) is called

a left (right) transversal in G to H.

Definition 2. A left transversal T in G to 7 whieh is also a right transversal in

G to H is called a two-sided transversal in G to H.

© 1994 by E.AKuznetsov
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Transversals in groups. 1. Elementary properties

Remark. If we study a two-sided transversal T in G to H . then we shall
consider that '
L€ HNH,
for any ieA and 1, e7. We can always succeed in this by a corresponding

renumeration of cosets.

Let T be a transversal (left or right) in G to H. We can introduce correctly
the following operations on A:
ikj=vout;=th heH ’ (1)
if T is a left transversal, and
loj=w<>tit;=ht,, heH (2)

if T is a right transversal.
Lemma 1. The system < A,* 1> is a right quasigroup with the unit 1.

Proof. Let arbitrary elements a,bcA be given. Let us consider the
following equation:
ar*x =5, (3)
We have from the Definition 1: there exists an element w €A such that
' =t,h, heH.
Then
loty = thL, (4)
le.
axu=h,
So a solution of the equation (3) exists. Assume it is not unique. Then there
exists an element veA such that
arv=h & wvxu ()
Therefore we have ’
i, =, heH (6)
From (4) and (6) it follows that
| Iafuh- = fatvhf] )
L=th,
‘and then v=u, because only one element from T lies in every coset in G to H.
We have a contradiction with (5). So « is the wunique solution of the equation
(3), i.e. the system <A*> is a right quasigroup.
We have for any aeA .
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a¥1=c,
te=th hecH,
t.=1,h", heH,
and then c¢=a, ie. g*l=a. We can prove that I*a=a for any ael

analogously. The proof is complete,
Lemma 1", The system < A,o0,1> is a left quasigroup with the unit 1.
The proof is similar to the proof of Lemma 1.

Definition 3. Let T b u left (right) transversal in G to H. If the system
<A*,1> (<A,0,1>) is a looyp, then T is called a left (right) loop transversal in
G to H If <Ax1> (reopectively, <A,0,1>) is a group, then T is called a
left (vight) group transversci in G to H.

The next Lemma reduces the investigation of transversals in groups to the case
when Corez;(H)=<e> (for loop transversals an analogous result was proved

in [2]).

Lemma 2. Let T be a left ransversal in G to H and
¢©:.G— G'=G/Coreg (H)
the natural homomorphism. 1ho: we have:
1. The set
T'={p(t )]t €T, x €A}
is a left ransversal in G' to [['= H/Core;(H);
2. <Ael>=<AL¥ 1>,
where "®" is the operation corresponding to the transversal T';

Proof.
1. Let us denote:  7.'=¢(/,). Then we have:

)t eH,
(0t 0(1,) ep(H),
(1 't,) €(H),
(177, Coreg(H)=hy-Coreg(H), hyeH,

t;lty cH,
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Transversals in groups. 1. Elementary properties

ie. =Yy, because Core;(H)c H. Since for any g'cG' there exists geG
that g'=o(g), then

g=thy,
g'=0(g) = o(t,h) =0t )ol) =1,'h',

where fy'e H'. It means T is a left transversalin G' to H'.
2. We have:
xey=u,
L=k, HeH',
ot Jo(t,)=1,"", HeH,
LR =l ) = ol ) =1a, B, B e,

X*y=u,

ie. for any x,y €A
X*y=xey,

It means that

<A l>=<A ¥ I>

Lemma 2°. Let T be a right transversal in G to H and
¢©.G=>G'=G/Coren (H)
the natural homomorphism., Then we have:
1. The set
T={o(t ), €T, x €A}
isa right transversal in (' to H'=H/Cores(H);
2. <A,x,1»=<A,0,1>,

"

where "x" is the operation corresponding to transversai T

The proof is analogous to that of Lemma 2.

Lemma 3. In notations of Lemma 2 (or Lemma 2°):
Cares(H'Y=<e >,

Proof. et us assume
Cores (H") = My #<e >.

The complete inverse-image @'}(M'n) = M, is a subgroup in G. We have:
ecMy, = Core;(H)=Kerp= o (e} q}"l(Mo) = M,,
MycH = My=0"'(My)ce (H')=H.

25
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Let g be an arbitrary element from G and
Mg - ngg_l '
Then
o(My)=0(ghig™) = p()o(M; X9 (2) ™" = g' Mog'™' = My,
because M, is a normal subgroup in G' Therefore we have for any element
geG:
Mg =My =07 (Mo) = M,
ie. M; is a normal subgroup in G. This fact is in a contradiction with (*)
and (**) {see above); therefore we have:
Cores (H')=<e >,
The proof is complete.

A v
Let us consider the permutation representations G and G of group G by

the left and right cosets to subgroup H.Let T be a left transversal in G to H;
then by the definition:

FaY
Analogously, if T is a right transversal in G to H, then by the definition:

gx)=y< Hi,g=Ht,
It is well known (see [4]) that

Al W
G=G=G/Cores(H).

Lemma 4. [f T is an arbitrary left transversal in G fto H then:

A
1. Ffor any heH: D=1
2. For any x,y€A:

S A -1
(V)=xxy, 1. (y)=x\y,

A_l A—]

S A
no)=t.(D=x, t, ()=x\1, I
(where xxy=z<>x\z=yp),
Y

x (=1
3.[1] The following conditions are equivalent:
a. T is a left loop itransversal in G to H;

A Fa
b. The set T'={t.},cn Isasharply transitive set of permutations on A.
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Transversals in groups. 1. Elementary properties

Proof, 1. It is trivial.
2. We have:

A
tx()’.)zw@txlszwa@w:x*y;

Al

L, (y):z@rgltyH:tzHc:-tsztxtzH¢:>y=x*z<:>zzx\y.

Therefore we have as a corollary:

A A
(x)=lxx=x, ((D=x*1=x,

A 1 A -l

., D=x\1, 1, (X)=x\x=1,

3. We have the following sequence of equivalent assertions:
(T is a left loop transversal in G to H) &
(the system < A,*,1> is a loop) &
(T is a left transversal in GG to I and the equation x*g =54 has the unique solution
in A for any given q,b €A} &

A
(the equation f,(a)=5 has the unique solution in A for any given a,beA) <

[l
(the set {f,},.pn 1s a sharply transitive set of permutations on A).

Lemma 4. If T is an arbitrary right transversal in G to H then:

\%
1, Forany hecH: A(D=1;
2, fForany x,yeA:

v vl
L, (y)y=yox, t, ()y=y//x,
% v vl vl
Hxy=t,(M=x,  DH=V/x, . (x)=1,
(where y//x=z< zox=y);
3. The following conditions are equivalent:
a. T is a right loop transversal n G to H;

v v
b, The set T'={t,},.cn Is @ sharply transitive set of permutations on A.

The proof is analogous to that of Lemma 4.
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2. Two-sided transversals in groups.

Lemma 5. Let T be a two-sided transversal in G to H. Then for any x,y € A:
L y\(x\D)=(xo)\],

H\ "

where is the left inverse operalion gf "
2. (/) ix=11/1(x*y),
where "//" is the right inverse operation of "o".

Proof. 1. Using Lemma 4 we have:

xoy=zoht, =rt, heHe i h=17"heH <

] -1 -1

~1 A
¢:>t:, fl (H=t, (1)@.1‘; (x\D=z\1 y\(x\1)=2z\1,

Therefore
yi(x\) =(xoy)\L
2. It is proved analogously.

Corollary. For any two-sided transversal in G to H
xky=1loxoy=1

The proof is obvious.

Lemma 6. Les T be a two-sided transversal in G to H. Then the following conditions are
equivalent.
1. For any x,y eA:
' X¥y=xop;
2. The system <A, 1> is a WIP-loop;
3. The system <A,ql> is a WIP-loop,

Proof. The definition of WIP-loop one can find in [5].
1.=>2. Let us have for any x,yeA
X* Y= Xxoy;
Then the system <A,* /1> is a left and right quasigroup with the unit 1
simultaneously, ie. <A,*,1> is a loop. Moreover, using Lemma 5 we have:
Yy x\D) =(x* P\ (xxy)x{(y\(x\D)) =1 (7)
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Let
(x*y)y*z=1
Using the identity (7) we obtain
z=y\x\D) > xx(y*z) = 1.
Therefore using a characterization of WIP-loop (see [5], p.87) we get: system
<A,*,1> is a WIP-loop.
2.=1. Let the system <A,*,1> be a WIP-loop. Then for any x,ye€A
(x* )\ 1= y\(x\1).
Using Lemma 5 we have for any x,y A
X* y = X OY.
1.3. It is proved analogously.

Lemma 7. Let T be a left transversal in G to H. Then following conditions are
equivalen!: |
1. I is a two-sided transversal in G to H;

2. The equation x*a=1 has the unique solution in A for any given aeA.

Proof. 1.2, Let T be a two-sided transversal in G to H. Then using the
corollary to Lemma 5 we have for any given acA
x*a=1xoa=1
The equation xoa=1 has the unique solution in A for any given aeA. Then
the equation x*a=1 satisfies the same property.
2,21, Let the condition 2 holds. Then the mapping o which is defined by
oA = A,
o{x) mu<>ukx =],
is a permutation on A. Then we have for any x eA:
ta(x)tx = Eh EH,
tﬂ(,‘c) :ht;l EH‘;X,
Hiyy = HIT
Therefore we get: firstly
(Hta(.r))m(H[a(y)) *J,
(HETDY A (HES ) = @,
L H)N(H)zE=x=y,
secondly, for any geG thereexist 7,7 and hyeH such that:
g-l= rr:hO’
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It means that the set
Ii = {fa(x)lx EA} =1
is a right transversal in G to H; ie. T is a two-sided transversal in G to H.

The proof is complete.

Lemma 7* Let T be a right transversal in G to H. Then following conditions are
equivalent: |

1. T is a two-sided transversal in G to H;

2. The equation aox =1 has the unique solution in A for any given a €A,

The proof is analogous to that of Lemma 7.

Remark. O.Ore has proved in {3]: if the index (G:H) is finite, then there exists a
two-sided transversal in G to H.

Lemma 8. Let T be a two-sided transversal in G to H and CéreG( H)=<e>. Then for
any heH

h= o (t, H' ,
HEA( h(u} )

h= (' Ht, ),
ueh hiu)

Proof. We will prove the first equality; the second equality can be
proved by the same way. For any weA we get:

huy=v e ht,H=t,H e he(t, ),

he(t, Ht).
h{u)
Therefore we obtain
hen(t, HEY.
neh  hu)
Let us assume that
e M (/A HY.
y ue/\( oy T )
Then we have for any weA
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Transversals in groups. 1. Elementary properties

he(it, HHthWohht H=1, Ho
1 & hay " ) A, I
A AN -
& hi(u) = h(u) < (h7h) eCoreg(H) =<e>=>hy = h.
It means that
h= (L, HYH.
e h(u)
The proof is complete.

3. Loop and group transversals in groups.

Lemma 9. Let T be a left (vight) transversal in G to H. Then the following conditions
are equivalent:

1. The system <A, 1> (<A,0,l>)  is a loop;

2. T is a left (right) transversal in G to THR ™ Jor any neG;

3. The set =l'm ' is a left (right) ransversal in G to H forany mneG.

The proof is contained in [1,2].

As we can see from the next Lemma the simplest example of two-sided

transversals are loop transversals.

Lemma 10, The following propositions are equivalent:
1. T is a left loop transversal in G to H;
2. T is a right loop transversal in G to H;

Proof. 1.=2. Let T be a left loop transversal in G to H. Using Lemma 9 we
‘have for any x,yeA (x=#y)
(t;'1,) e(xHn ™) *)
for any m €(G. Assume that T is not a right loop transversal in G to H. Then by
Lemma 9 there exist ny;€G and x;,), €A such that

-1
Ly, = Tohmy 1 o JTEH X # yg.
Then we get:

-1

— 4=l ~1_-1
f—ot,l’()_t}’onah L)

IR I
Iy, =Tl nyp,
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where m :=t;:n0. The last equality contradicts (*). It means, that T is a right

loop transversal in G to H.
2.>1. The proof is analogous.

Lemma 11. Let T be a left (right} group transversal in G to H. Then for any
x,yeA

X*y = xoy.

Proof. Let T be a left (right) group transversal in G to H. By Lemma 10 T is

a two-sided transversal in G to H. Then using Lemma 6 we have for any
x,y el

X*y = X0y,
because any group is a WIP-loop. The proof is complete.

Let us introduce the next notations:

-1
Aiasy) = Loyl

if T be a left transversal; and

_ ~1
Boyy = Lyt

x'ytxoy

if T be a right transversal

Lemma 12. Let Coreg(H)=<e> and T be a left (right) transversal in G to H,
Then the following conditions are equivalent:

1. T is a group transversal in G tfo H;
2, For any x,y €A

Hamy =€ Oy =)
3. For any x,yeA

Tely = lyey  (tely = lroy).

Proof. We shall prove these equivalences for a left transversal T in G to
H. The proof in the case of a right transversal in G to H is analogous.

1.=2. Let T be a left group transversal in G to H. Using Lemma 4 we have for
any x,y€A:

A AL A A Al
Py () = Lany tx £ y(U) = 1 auy (x% (Yu)) =
= (e )\ ek (yra)) = (e )N ((x* y)ru) = u,
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A
ie. h(xsy) =id. It means that
Hereyy €Coreg(H) =<e > Ay = €.
2.=>3. It is evident.
3.=1. Let us have
!

x*y

Ixty =

for any x,y €A. Then
Losymuy = Exlyon = Uy = Loayly = Han o
le.
xx(yku) = (x*y)tu,
and therefore the system <A #,1> is a group. It means that T is a group
transversal in G to H.
The proof is camplete,

4, Connection between different transversals
of the same subgroup in a group.

We shall consider below that Core;(H)=<e>.

Let T be an arbitrary two-sided transversalin G to H. It is ¢bvious that
any left transversal L in G to H may be represented by T in the following
way:

Le=tKY, hD cH, xeA, (8)

and any right transversal R in G to H may be represented by T in the following
way!

re=hPt,, B eH, xeA, (9)

N
Remark 1. If we pass to the permutation representation G (in the case of a

\¥2
left transversal L) or G (in a case of the right transversal R), we obtain

A A /\(1) A
X'= lx'(].):t_xhx (1):tx(]):x,
v V(Z)V v

X'"=re(y=(Dhy tx=tx(1)=x
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Remark 2. If a two-sided transversal § may' be represented by a transversal
T by formulas (8) and (9), then

sy = 1,80 =KDt | (10)

Remark 3. The following equalities are obvious:

N A2) v
KD =bP =e,  hy ()=x, he (x)=x"

Let "®" and "@®" be notations of the operations on A which correspond to the
new transversals L and R.

Lemma 13. The jfollowing assertions are ftrue:
A

L x@y=x*(hx (¥)).
w2
2. x@y=(hy (x))oy.

Proof. 1, We have:
S¢Sy = Syg b, hef,
1 A1 BD = 1o B b, heH,

A A A A A A A
tx hx ty hy (I) = t_r@y hx@yh(l),

A
x®y = x*(hx (¥))

2. The proof is analogous to that of 1.

Lemma 14. Let T be an arbitrary Iwo-sided transversal in G to H. Then the
following statements are irue:

1. If a left transversal I can be represented by a transversal T by the formula (8),
then

1,-1 -1
t AV = 0 (o Fitye,)

2. If a right transversal R can be represented by a transversal T by the formula (9),
then

£ h P, = s (zf"l 1 Ht o).
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Proof. 1. Using Lemma 8 we have:

W= (L HLD).

ueA p. (1)

Therefore by Lemma 13

thi])t;} = M (Ixt,\(]) Ht;lt;_l) =
ue he (1) '

- ry,—1
= (1 ALD Htx-u)z M (tx®uHix*u)-
KEA  sah (w) ueh

2. The proof is analogous to that of 1.
5. Structural theorem.

Lemma 15. Lef K be a subgroup in G and Hc K< G. Then:

L if T isaleft (right) ransversal in G fo H, then there exists a right (lefi)
subquasigroup < Ay,*,1> (<Ay,0,1>)  in the right (left) quasigroup < A,* 1>
(<A,0,1>); moreover, if (G H)=|Al<co, then |A,| divides IA]-,'

2If T is-a two-sided transversal in G to H, then all assertions from 1 take place;

3. If T is a loop transversal in G to H then:

<Ay, ¥, 1> is a subloop in the loop <A *,1>;
<Aj,0,1> is a subloop. in the loop <A,0,1>,
and if |A|<o, then |A,] divides |Al.

Proof, 1. Let us consider a partition of the subgroup K on the left cosets of
de subgroup H:

K=u,H= v kH

f‘EA;_ iEA;
Itis evident that this partition can be completed to a partition of G on the
left casets of H:

G:UfH.
feA
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Therefore there exists a left subtransversal I, c X in a left transversal T, which is
indexed by elements of A;. All products of elements from 7} lie in K and so the
system <A;,*,1> is a subsystemin <A, * 1>,
The proof for the system <Aj,0,1> is analogous.
If (G:H)=|A|=my <=, then:
A= (K. H)=my <o,
(GK)=m, <x,
We obtain:
(G:H)=(0:X)-(X:H),
My = My -y,
ie. |A4] divides [A]
2, It is an easy corollary of 1.

3. If T is a loop transversal in G to H then the system <A,*,1> is a loop. By
the point 1 of this Lemma the system <A,,*,1> is a subsystem in a loop

<A*1>,ie. <Ay * 1> is a subloop in <A,*,1>. Analogously for the system
<Aj,0,1>.

Corollary. Let a loop transversal in G to H does not exist. Then a loop transversal

in G to H for any group G oG does not exist too.

Proof. It is an easy corollary of Lemma 15.

6. A criterion of loop transversal
existence in a group.

Lemma 16. Let Coreg(H)=<e >, H =5,(8;), d=|Al=(G.H). Then the following
assertions are equivalent:
1. There exists a loop transversal in G to H;
2. There exists a set {h.}..n satisfying the following conditions:

Fa
a. m=id and for any x e A\{1}

A A .
h e((Ix)-GYnH;
b. forany ueA

o\ {(1u)(1x)f§;(1u)H"(1x)} %)
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Transversals in groups. 1. Elementary properties

3. There exists a set (P}, .\ satisfying the following conditions:

AD | A
a.h =id and h eH for any uel;

b. for any xeA

AlH)
m {Gm((lu)h (x)H" (lu))} = &,
4. x K(G)= S,
A |
where h =id and
Al
K(G)= u H{Gm( N ((1u)h (la(x)H (1))}

D, 2Dy HY D‘GSd

Proof,
1..>2. Let T be a loop transversal in G ta H, Coreg(H)=<e> and (G:H)=d. Let

us. consider the loop L=<A,*, 1> corresponding to the transversal T and take left
and right translations of the loop L:

L,(x)= z:*x—t (x),

R, (x)= r*u—t (u)
Since Core;(H)=<e>, then G G and the degree of permutations from f} is
equal d. Sets
L'={LjueA}, R ={R,JucA}
are loop transversals in G to H, because L is a loop. By Lemma 4, L' and R are
sharply transitive sets of permutations on A. Therefore again by Lemma 4 I

and R are loop transversals in S, to H =8t,(5;). Then for any #eA there

exists an unique element /i, €H * such that

Luhiy = Rouy»
where ¢ is a permutation on A. Therefore for any # €A there exists an unique

element A, eH " such that

A
Lu h(“)(x) = R(p(u) (x) (*)
for any x eA. If x=1, then we have from (*):
u=L,(1)= R(p(::)(l) = @(u).

Therefore the identity (*) may be written in the following form

A A A

t Ao (x) =1 (u)
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for any x €A. Then we hav.e for an_jr x eA:
thoot i =t 5,
Py €0 L, H 1),
and therefore
Hay € 0 & e, H H. (11)

Let us consider the following two-sided transversal £, in §; to H "
By ={(lx)lx €A},
where (1x) is a transposition of §;. Since T is a two-sided transversal (see
Lemma 10), then there exists a set {h },.x (see (8)), such that

FAY
N A
L, =(x)h,, x=zL (11"
We have for any xeA\{1}:
" PAN A T
H oh, =((1¥)1,) e((1x)-G),

Fa A "
a, e((Ix) G)nH .
Using this and (11)-(11") we have for any weA:

By = (hyhy) € mA((zu)(lx)ii;(1u)H’“(1x)). (12)

By Lemma 8 (since Corez;(H)=<e>) the intersection in (12) consists of an unique
element (if this intersection exists). Then the identity (12) may be written in a
following form:

mA{(lu)_(1x)é;(1u)H‘ (1)} = 2.

2.=>3. Let conditions of 2, hold. Then by 2.b. and (12) we have for any weA:

A Al A{)

(t)(1x) A (lu)yly,  (Ax)=h

Ax) .
for any x €A\{l} and some A €H .In particular, from 2.bh. we get:

Al A
ho= o ((0h, H' (1x)) ={id}.

Therefore we abtain:

A /\(u) /\(x) A(N)
h, = ((Ix)(yh () )7 () e(Q)(Auyh  (1x)H (lu)).

Using 2.a. we have for any xeA\{l} and weA:
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Alt)
b e H' ~((10)G) ~((Dmh  (0H (1)),

and therefore

NED)

h & r“w {H m((lx)G)m((lx)(Iu)h (lx)H (L))} (13)
Using Lemma 8 and (13) we get
A /\(")
h, = o {((lx)G)ﬁ((lx)(lu)h (lx)H (lu))},
A

because h =id. Therefore we have for any x eh:

Alu) A
I {Gm ((w)h  (OH (W) = ((x)h)# .

3.=4. Let all condltmns of 3. hold. Then we have for any a€§; and xeA:

A Alw)
(G () () H (1))} = @.

A(u)

Therefore for the set (A },., we obtain

RO
H{ ~ (Gm((lzr)h (I (x)H (1n)))} # 2.

e.sd Len "€
Then
K(G)=4d,
where K(G) is the set defined in the condition 4. of this Lemma.
4,=1, Let conditions of 4. hold. We know (see Lemma 8) that the

intersection

/\(u)
A {(h (1) H (lu)}

is either empty or contains an unique element g,. Therefore we have:

Al
g, = m {(lu)h (lx)H (lu}},

A\u) .
g.eithiyh ()H ()}  for any ueA,

Alti)
g.(W)H =)k (Ix)H for any ueA,

A Alw)

g, (wy=ueh (x) for any uweA,
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where operation "e" corresponds to the transversal
Fy ={(1x)]x eA}.
So the following two conditions are equivalent:
a) forany ael,

A Al .
[TGA(A @k (aG)H ()} 2;

xehA
b) for any xe€A the mapping
AlR)
Y W=ush (x)
is a permutation on A .
Let us define the following operation on A:
A
xy=v,0)=yeh (x)
and prove that the system <A,,1> is a loop.

We have for the operation "e" (see (1)):

x, if y=1I
xey=<1 if y=x;
yo if y=lx

Therefore.

A
x-I=1leh (x)=lex=x;

/\(x)'
Lx=xeh ()=xel=x

We have for given a,beA:
a-x=boy (x)=bo>x=y] (b)
Since vy is a permutation on A, such an element x in A is unique. Finally, we

get for arbitrary given a,beA:

x-a=25,
Al@)
aeh (x)=b,
Ala) L, if b=a,
h (x) =4 d, If b= 1
Ala)

b, if h (x)#la
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1, if b=a;
Ala)
={(h )(a), if b=
Ala)
() L@y, i b=la

So the system < A,. 1> is a loop.
Finally we can see:

A ALX)
g.()=xsh (a)=a-x=L,(x),
A A A
where [, is a left translation on <A, 1> Since g, G, then L, G, ie. the

set
L={LlaeA}

is a loop transversal in G to H. The proof is complete.

Lemma 17, In notations of Lemma 16 the following assertions is true for any
TES,

K(G)n™' = K(nGr™).
Proof. Using the proof of Lemma 16 we have:

K(G)= H(Cm )b

&5q xeA

where L is an arbitrary loop on A. Then we have for any neS,:

T:K(G)n"—u u {n(H(GmL T =

xeA

=Y U {TTrGr) A (Logyn ™D} =

4 yep

U A[T(G YA Ly = K(xG™),
I a'eS, s
where L‘a Is a left translation in a some loop L. The last equality is based on

the following sequence of statements: .
T is a loop transversal in G to H «

for any o €G the set (aTa'l) is a left transversal in G to H <
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forany mnel; and aeG the set (ma(me) Yy s

A A
a left transversal in (nGn™l) to (JtHn'I) <

for any neS; and o, e(aGrn”') the set (o (n?n Do) s
A ' A
a left transversal in (nGn*‘) to (nH n"l) Pt

A Pt
T=(xTx™") is a loop transversal in (xG ) to (rH=n").

The proof is complete.
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SHARPLY k-TRANSITIVE SETS OF PERMUTATIONS
AND LOOP TRANSVERSALS IN §,

Evgenii A. Kuznetsov

Abstract

The work is devoted to the investigation of sharply  k-transitive sets of permutations
which are a natural generalization of sharply k-transitive groups. Its main result is the
establishment of the connection between such notions as sharply k-transitive sets of
permutations, sharply k-transitive loops of permutations (introduced by F.Bonetti, G.Lunardon
and K.Strambach) and loop transversals.

One special class of sets of permutations - sharply multiple transitive
permutation sets - is  studied in this work. These sets are the natural
generalization of sharply multiple transitive permutation groups [3,4,5), but in
contrast to the former are not described in the mathematical literature. On the
other side, wvarious known algebraical and geometrical problems are
reduced to the research of conditions of existance and properties of sets
mentioned above ([1], the end of §1.7; [2]). ,

To find the connection between the sets mentioned above, sharply
k-transitive loops of permutations [9] and loop transversals in groups [6,7]
is the main aim of this investigation. This connection allows us to describe
the pure combinatorical objects - sharply multiple transitive sets of
permutations - in terms of loop {fransversals of subgroups in groups. Moreover,
since there exists a connection between finite projective planes and sharply
2-transitive sets of permutations (sce [2,8]), the well-known problems of existence
and of the number of projective planes of given order may be reformulated and
studied in terms of loop tr_ansvefsals in the symmetric group S,.

The main result of this work is

© 1994 by E.A.Kuznetsov
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Theorem 1. Let X be a set, cardX=n and 1<k<n. Then the following conditions are
equivalent: _

1. there exists a sharply k-transitive set of permutations on X;

2. there exists a sharply k-transitive loop of permutations on X;

3. there exists a loop transversal in S, 10 Sty 4 (S,);

It is supposed that 1,2,... €X.

Using the results from [2,8] and the Theorem 1, we have

Theorem 2. The following conditions are equivalent:
1. there exists a finite projective plane of order n;

2. there exists a loop transversal in §, to 8t1,(8,),

Let us pass to the detailed description of the paper results with all necessary

definitions and notations. _
1. The necessary definitions.

Definition 1.[1] A set M of permutations on X is called sharply (strongly)
k-transitive (l<ks<tardX), if for any two k-tuples (a;,...,a;) and (&,...,b.) of
different elements from X there exist the unique permutation oeM |
satisfying the following conditions:

afa;)=b
for any i=1,.,k If the set M is closed relative to the multiplication of

permutations, then M is a sharply k-transitive group of permutations on X.

Definition 2.[9] A loop G is called a loop of permutations on the set X, if
there exists a map (action)
fiGxX— X,
f(g,x)=g(x),
which satisfies the following conditions:
1. e(x) =2 forany xeX, where e is the unit of the loop G;
2. If b lies in the kernel of the leop G ([10], p.13), then
(ab)(x) = afb(x))

for any aeG and xeX|
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3. There exists an element x; €X such that the set
G, ={a eGla(xg) = xp}
is a subloop in G, and:
a)If b erﬂ and aeG, then
(ba)(xo) = b(a(xy));
b) If a,a0 €G and a(xy) # xp, then
(aya)(xp) # a3 (xp);
¢) If ay Gy (y,), then

(@ )(xp) # ay(xp);

f a loop of permutations on X is sharply k-transitive (as a set of permutations),
then it is called a sharply k-transitive loop of permutations on X.

Definition 3. Let G be a group and H a subgroup of G. A complete system T
of representatives of the left (right) coseis in G to H (unit e<T) is called the left
(right) transversal in G to H.

We can correctly introduce on T the following operation:
Wby =ty <> hts =t:h, heH. (1)
If the system <7,%,e> is a loop, then the transversal T in G to H is called the
loop transversal.

In [6] it was proved

Lemma 1. The following conditions are equivalent for left (right) transversal T in G to
H: '
1. T isaloop transversal,
2. T isaleft (right) transversal in G to nHn™ Jor any meG;
3. wHn s aleft (right) ransversal in & to H forany meG.

2. Proof of the Theorem 1.

Definition 4. Let M be a set of permutations on X. If ideM (where id is the
identity permutation on X), then the set M is called a reduced set of permutations.
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Lemma 2. The following conditions are equivalent:
1. There exists a sharply k-transitive set of permutations on X;
2. There exists areduced sharply k-transitive set of permutations on X.

Proof, 2.=1. It is evident.
1.2, Let M be a sharply k-transitive set of permutations on X, If ideM then
all is proved. Let idgM. Let wus take an arbitrary element oy eM and

introduce the following set:
My = {o5'Blp €M} = o5 M.

Since ogeM then ideM,, ie. M; is a reduced set of permutations. Let
(a1,...,a;) and (by,...,b.) be any two k-tuples of different elements from X. Using
the sharply k-transitivity of M we have that there exists the unique permutation
BpeM such that

by(a;) = ap(b;)
for any i=1,..,k, ie.

(et Bod@y) = &,
for any ¢=1,..,k. Therefore there exists the unique permutation 1y, :cxa]BO eM
such that

Yo(a) =4

for any i=I,..k, i.e. M, is a sharply k-transitive set of permutations.

Lemma 3. The following conditions are equivalent:
1. My isareduced sharply k-transitive set of permutations on X;

2. My is a loop transversal in §, 1o St 4(S,); n=cardX.

Proof. 1.2, Let M, be a reduced sharply k-transitive set of
permutations on X, cardX=n. The left (right) cosets in S, to  subgroup

Hy =8t 4(8,) are sets of the following kind:
G ={aelS,lal)=a;,i=1,..,k},

@) tty
where (a),...,a;) may be any k-tuples of different elements from X. Using the
sharply k-transitivity of M, obtain that every coset of §, to H, contains
exactly one element from M,, idelM, too. It means M, is the left transversal in
S, to Hy.

We must prove that M, is a loop transversal in §, to Hy. It is sufficient (see
Lemma 1) to prove that A, is a left transversal in S, to nHozr"l, where
reS,. Let © be an arbitrary element from S, and |
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ni)=a;, i=1..,k

Then we have

(™ )(a;) = (i) = =(i) = g
for any A e€H,, ie.

nHon ™ = Sty o (S,)=Hy.
Let us define the following sets:
Gy =oH,,
where o €M,. It is obvious that G = H,. If we assume |
Y €{Gy nGpY# B, axb,

then
y=am=Bh, MhcHy,
a_IB:h}h{l cH,,
ie.
B=aH,,
and

az(a;) =ay(a;)

for any #=1,..,k. It's impossible, since M, is sharply k-transitive set. So

GGy =0, if axf.
Let g be an arbitrary element from §, and
g(a,\):C,-, I=1,,k

Then since M, is a k-transitive set of permutations, there exists an element

oy € M, such that

Oto(a,--):(:,-, izl,...,k,
Therefore

(ag'e)a) = a3’ (e) =g,
- for any i=1,..,k, ie.

(0'g) € Hy
and
geaoy =Gy, .

It is proved that {Gy}uep, is a complete system of left cosets in

Ma,,.a,(Sp); therefore M, is a left transversal in S, to Sta,. .z, (Sp)-

2.>1. The reasoning is carried out in the opposite direction.
The proof is complete.
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Lemma 4. 7he following conditions are equivalent:
1. There exists a sharply k-transitive loop of permutations on X;
2. There exists aloop transversal in. S, to St; 4 (S,); n=cardX.

Proof, 1.=>2. A sharply k-transitive loop of permutations on X is a sharply
k-transitive set of permutations on X. Therefore this implication is a corcllary of
Lemma 3.

2.=>1. Let T be a loop transversal in §, to Sf; .(S,). Then the system
A=<T,* id> is a loop, where "*" is defined in (1). We shall show that this loop is
a sharply k-transitive loop of permutations on X.

The reflection f (see Definition 2) is defined naturally, because  TcS,. It is
necessary to prove that the conditions 1.-3. from Definition 2 are satisfied.
Let us denote H =351 ,(5,)

The condition 1. is satisfied, because ideT and id is the wunit of the

loop A. _
Let us verify condition 2. Let &, lie in the kernel of the loop A, ie for any

x,yeA:
(bo*x)* y = bo* (x*y),
(x* y)xby = x*(y*by),
(x*bo )y = x*(bo* y).
From the last equality we have
xbohi k3" = xboyhi W,
where
xhby = xboly, by =dyyhs,
(x*bo)* y = (x*bo)yhy, x*(bp*y)=x(by* V)hy, Mn.ho,h3,hy €H.
Then for any yeA
mt=(h'y ) ey ™),
where A = (hy ih; lI72) € H. Therefore

h{l en(H = M (gHg"}):CoreS (H) =<id>,
yed gss, §

because T is a transversal in §, to H, Therefore & =id, and
| x*by = xby
for any x€A. Then for any xeX and aeAd
(axby)(x) = (aby)(x) = a(by(x)).
Let us show that condition 3. from Definition 2 is- satisfied. We will take
Xy =1€.X. Then the set
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Sharply k-transitive sets of permutations...

Gy ={a edja(l)=1}
is a subloop in A. Indeed, ideG), and if o, €G; then we have for y=a*p:
(1) = (o*B)(1) = (aBA)(1) = (aB)(1) = a(l) = 1,
where heH, ie. vy €Gy, and Gy is closed under the operation "*" in A.
If e and aeA then
(b*a)(1) = (bah)(1) = (ba)(1) = b(a(1)),
where heH, ie. condition 3a. is satisfied.
If a,a5e4 and a;#1 then
(@y* @ (1) = (@ah)(1) = (@0, X(1) = ay (ay (1)) % a3 (1),
because a, is a permutation from S,, heH. Therefore the condition 3b. is
satisfied.
1f
ay G,y = {a & Ao (1) = a (1D},
then
(@ *a (1) = (ayh)(1) = (a0 )(1) = az (ay (D) = &, (1),
where heH, e condition 3c. is satisfied.
It means that A is a loop of permutations on X. Using Lemma 3 we have that
A is a sharply k-transitive set of permutations on X. Therefore A is a sharply k-
transitive loop of permutations on X. The proof is complete.

Theorem 1 is a simple corollary from Lemmas 2-4.

3. Proof of Theorem 2.

The author of this paper has proved in [8] the existence of correspondence
between a projective plane of order mn and the DK-ternar of order n
coordinatizing this plane. Up to certain four fixed points in general position on
the projective plane this is a 1-1 correspondence. In Theorem 5 from [8] is
proved that the cell permuiations of a DK-ternar form a sharply 2-transitive
set of permutations of degree n. It means that a projective plane of order =
exists if and only if a sharply 2-transitive set of permutations of degree =
exists (see [2] too). Using this reasonings we get Theorem 2 from the Theorem
1 when k=2 |
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OSBORN'S G-LOOPS

Alexandr S. Basarab

Abstract

It is proved, that if in a loop Q(') the equality
(')f—'lx:!x(‘)
holds for every xe@, then Q{) is a G-loop. From this result it follows that:

a) An Osborn's loop Q') in which x2 e/N for every ze@ isa G-loop;
b} Every 1-loop is a G-loop.

In the present work we continue the study of the eclass of G-loops which
sprang tfrom works {1], {2]. It is proved that if in the loop Q) the equality
(),,=50)
holds for every xe@Q, then @) is a G-loop.
Firstly we remind for some definitions and results which are necessary for
proof of the main result of the present work.
The operation (), defined by the equality
() = ()bt
is called the right derivative operation of (-). Analogously, the operation
LR..R,
o) = ()

is called the left derivative operation of (-) (a is a fixed element of @, Q) is a
loop).

A loop @) is called a G-loop, if all the right and left derivative operations of
the loop Q(} are isomorphic to the operation ().

A loop Q(-) 1s a G-loop if and only if every loop @(-) which is isotopic to Q()
will be isomorphic to Q(-) (see [3]). |

A loop Q() in which the equality

I{xy)- Px= Iy

© 1994 by AC Basarab
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holds is called an WIP,-loop. In a WIFP;-loop translations L, and R, ar

connected as follows:

L I =RE, I'RuI=L} (

If T=(o,B,y) is an autotopy of an WIP,-loop Q(:), then
T= " Pol® 1By and T =(73R1%,17 17 od) @
are also autotopies of the loop Q).

Theorem 1. 4 loop Qf) in which the equality
(')I-lxzfx(‘) (3
holds for every xe(Q is a G-loop.

Proof. Let (3) be fulfilled in the loop Q(-), then
()(Lr‘ L1 ) (.)(LRLx»RIx),

whence .we get the autotopy
T:(L_‘-l ’ ]x ;LI—l )

From T the equality
(I ey) Rplz =% Ry (y-2) (4
follows. In (4) putting KRz instead of 2 and after that Ixr instead of x we ge
sy z=xRp (r-d’x). . (5
Let z=I(x:-y) in (B), then
L=x-Rp (¥ 1(x-y)-I*x),
whence
= R (y-1(xp) ),
y-I(xy)lzx =Rp Ix,
yA(p) =1,

I(x-y)-I*x =1y,
ie. Q) is an WIP,-loop. Applying (2) and (1) to T we obtain

= (I R 2L P IRy =
= (R IR R RRG Y R REHR Ty =
={a” ,R,xa ,RIxa '),
a"11=1,
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whence it follows
=0)=0% (6)
From (3) and (6) it follows
=6 =05,
ie. the loop (‘) is a G-loop.
A loop in which the identity
xy 0,zx =(x yz)-x
is fulfilled, where 0, 1is a substitution depending on &, is called Osborn's
loop.
It is proved in [4], that a loop @(-) is an Osborn's loop if and only if
(=) (7)

for every xe@.
Statement 1. A Osborn's loop Q) inwhich *eN Jor every xe(Q isa G-loop.

Proof. Let in an Osborn’s loop x> eN for every xe(, then x?

1

=#n, where n
eN or n 'x-x=1, whence
wly=1",
x=nl"lx, (8)
Using (8) in (7) we get
() =0 = (')n]"}x =((n )1—1x = (')I*‘x’
S0
(')I—II:Ix('),
ie. we have got (3). By Theorem 1 the loop Q(:) is a G-loop.

In the work [5] i-loops have been studied. A loop @(:) in which the equality
My udy=u(v-(y-x))/ yx (9)
holds for arbitrary x,y,u,ve®@ is called an iloop. If a-b=c, then alc=b, but

b:Lglc, S0 a'\chglc; similarly, if ba=c, then c¢c/a=R; le. Now the equality (9)
can be written as

LGy -u)-vYy = RN (v- yx))

or changing v by R;x'v as

(9 u)Ryv=xy- Ry, (u-v). (10)
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At the end of [5] the author notes: "It seems to be difficult to answer
the question, are i-loops G-loops".

Statement 2. [very i-loop is a G-loop.

Proof. Let Q(-) be an i-loop, then (10) holds, whence it follows that

T =(Ly R}, LR

is an autotopy of the loop Q(:) and then
(= ya (). (11)
Put in (11} y=e, then
=20} 12)
Using (12) in (11) we get
()= (=32 (),

ie.
() (13)
Let y=1Ix in (13}, then
() rex (),
then Ix-x=»n, where mnc¢N ar nilx.ox= 1, but Iex=1 and then

nlx=1"% or nl"lx=1Ix Change.in (12) = by Iz, then
2= Or=0 1, = (O, = O
i.e.
()= 10)s
and we again obtain (3). By Theorem 1 Qf:) is a G-loop.

Statement 3. [f inan Osborn’s foop Q) x> =1 forevery xeQ,then Of) is an
abelian group (1 is the identity element of the loop Q(-)).

Proof. If Q(J 1is an Osborn’s loop and x* =1 for every xe() , then
x=x"'=Ix and

R, =R, (14)
But in the Osbarn’s loop
Ry = 'R L,. (15)
From (14) and (15) it follows
LxR;l =R.L,

and then the autotopy
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T=(L.R;},L.R))
of the loop @} takes the form:
T=(L, R LR = (L, RV R L),

whence
ny‘ R;}Z = RxLx(y'z)- (16)
Let z=y in (16), then
ny'R;]yz 11
Ly=R:y,
RLy=y,
and then (16) has the form:
Ly z=y Rz,
Xy-z=y-zx, (17)
Let z=1 in (17), then
Xy = yx.

From (17) and (18) it follows that Q(:) is an abelian group.

Statement 4. An Osborn's loop Q(-) inwhich X eN Jorevery xe(Q and N #{1} is

an extension of a group by means of an abelian group.

Proof. The kernel N of the loop Qf-) is nontrivial and is a normal subloop
of Q(:). The factor-loop ¢/ N() is an Osborn's loop in which ;2' =1 for every

xeQ/N (1 is the identity of the loop (Q/N()) By Statement 3 the loop
(/N(-) is an abelian group. |
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LOOPS WITH UNIVERSAL ELASTICITY

Paraskowya N. Syrbu

Abstract

An identity is called universal for a loop Q(:), it it holds in this loop and in each principal
isotope of Q(-). Loops with universal law of elasticity, ie.

Xy X=X yX,

are investigated in this note.

Invariant properties on isotopy of quasigroups, ie. universal properties of
quasigroups, represent an important part in the theory of quasigroups and loops.
The theory of algebraic nets gives, in particular, examples of such properties: all
loops which coordinate the same net are isotopic between themselves and the
identities which follow from the closure conditions of this net are universal for
each of these loops. For example, Bol and Moufang identities are universal for
loops. Our subject of investigations is the loop with universal law of elasticity (or
symply, with wuniversal elasticity), its properties and connections with some
classes of well known loops such as Bol and Moufang loops.

Let Q(-) be a loop with universal elasticity, ie. a loop for which the law of
elasticity

X yx=xy-x
is universal. Denote by (Q(*) a principal isotope of @(-), ie.
ey =Rylx- L'y,
where
T=(R;, ;")

is the isotopy, R, (L,) is the right (left) multiplication by the element a. The
universality of the identity

| X YX=xy-x
for @(-) involves the fact that the law of elasticity

© 1994 by P.N.Syrbu
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(x* y)*x = x*(y*x)
holds in every LP-isotope Q(*) of Q(-). Now, replace (*) by () in the last
identity. We get the following identity in Q(:):
RMR;'x- 13'y) L'e = Ry'x- I (R 'y Ly )

or

(xy / 2)(b\xz2) = x(b\[(by / 2)(b\x2)]) (1)
and

(bx /1 2)(b\yx) = ([(bx/2)(b\yz)}/ z)x (2)

where we replaced a by 2z

Proposition 1. The law of elasticity is universal for the loop Q) iff the identity (1)
((2)) holds in the primitive loop Qf./\).

The following proposition gives some properties of loops with universal

elasticity.

Proposition 2, [f Q) is a loop with universal elasticity, then

(i) O¢) is strong power-associative (i.e. every Iits element generates an associative
subloop);

(ii) N,=N,, where N, is the left and N, is the right nucleus of Q();

(iii) Al (three) nucleiof Qf) coincide iff each element of the middle nucleus is a Bol

element,

Proof, (i) It is known (see [1], pp.46-47) that if the identity
2

x-xt=xx

is universal for the loop Q(-), then Q(:) is strong power-associative.
(ii) To prove this we will need the following identity:
(x/2) yx=([(x/2) yx]/2)x
(it follows from (2) taking b=e, where e is the unit of Qf-), y— yz,x = bx; here
and below by "x—y" we will mean "x is replased by y"). If xeN, in the last
identity, then
(x/2)y=[(x/2)-yz]/ 2,

or

Xy-z=Xx-yz,
ie. xeN, and N, c N, Conversely, taking 2=e in (1) we have:

xy -(b\x) = x(b\[by-(b\x)]).

If xeXN, in the last identity, then
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¥(6\x)=b\[By-(B\X)],
or
b-yx=by-x,
ie. xeN,, andso N,=N,.
(iii) Let us remind that an element a of the loop Q(-) is called a Bol element
if the equality
a(x-ay)=(a-xa)y
is valid for every x,y €. Suppose that a is a Bol element of the lcop @(-) and
aeN,, where by », we denote the middle nucleus of Qf-):
N, ={aecQOlxa-y=x-ay for every x,y €(}.
Then
a(xa-y)=a(x-ay}=(a-xa)y =(ax-a)y,
SO
a(xa-y)=(a-xa)y,
~or, after replacing x— xa,
a-xy =ax-y, _
ite. aeN;=N,,and N, N,=N,. Further,if @ is a Bol element of @(:) and
aehN;=N,, then
ax-ay=a(x-ay)=(a-xa)y = (ax-a)y.

So
ax-ay = (ax-a)y,
or after replacing x—alx,
X-ay=xa-y,
ie. aelN, and
N;=N.C N,

Now this proposition follows from the next result of Florea (see [3]): all (three)
nuclei of a loop coincide if and only if each element of these nuclei is a Moufang
and Bol element at the same time.

Remark 1. A loop with universal elasticity satisfies the equality
xPy.x9 = xP . x4
for every x,ye(Q, where p and g are arbitrary integers (for the proof of this

proposition see {2]).

A loop Q) is called a middle Bol loop if it satisfies the identity
(z/x)(y\z)=z(yx\2).
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Proposition 3. 4 loop Q() with universal elasticity and such that
yo-b=yz-z
for all y. b,z c(, is a middle Bol loop.

Proof. Make the replacement y->x\y in (1), then
[6(x\y)/ z)(B\xz) = b(x \[(¥/ 2)(B\xz))).
Now replace y — yz in the last identity:
[b(x\yz)/ z)(b\xz) = b(x \[y(b\x2)]),
or, if x=yz:
(b1 2)(0\(yz-2)) = b(yz \y(B\(yz - 2))]).
Suppose that
yb-b=yz 2z,
for all y,b,z €. Then
yb=(yz:z)/b,
or
b=(yz-2)/(y\b),
if we replace b-—)jﬂ\b. So,
b\(yz-z) = y\b,
and
(b/z)(y\b)=b(yz\b)
for all b,y,ze€(Q, ie. Q() is a middle Bol loop.

Remark 2. We will see in what follows that the loop (-} under the
conditions of Proposition 3 is associative and so is an abelian group.

A loop Q) is called a LIP-loop (a RIP-loop), ie. a loop with left inverse
property (right inverse property) if

xxy=y (OxxT'=y)
holds for every x,ye(Q. A loop is called an IP-loop if it is a LIP-loop and a
RIP-loop at the same time.

Proposition 4. 4 loop with universal elasticity satisfies the left alternative law

xxy=x’.y
iff it has the right inverse property.

Proof. Denote by e the unit element of the loop Q) and replace in (1)

z—x"' and y—>e. As Q) is strong power-associative, we get
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X267 = x(B\[(B/x" B, (3)
If Q) satisfies the left alternative law, then
b =x.xp!
and from (3) we get
¥ =b\[(B/xN)6],
that is
bix™ =bx
or

bx-x'=b
for every x,b€(Q (see Remark 1). Conversely, if @Q(:) has the right inverse

property, then

blx!=bx
and using Remark 1 and the identity (3), we have:

%267 = x[b\(bx- b~ = x[B\(b-xb )] =x-xb ",

ie. @) satisfies the left alternative law.
Analogously, but begining with (2), we can prove the following
Proposition 5. 4 loop with universal elasticity satisfies the right alternative law
yeox =yt

iff it has the left inverse property.

Corollary. 4 loop with universal elasticity is a IP-loop iff it satisfies the left and right
alternative laws.

Proposition 6. A loop with universal elasticity has the left inverse property iff it has
the right inverse property.

Proof. Let Q(-) be a LIP-loop with universal elasticity. From the identity

bx-(b\(by-x))=(bx y)x 4)
(this identity follows from (2) when y->by,z=¢), if y= (bx)‘l, we get
bl(bx)  x1=b(bx) ' x (5)

"Iaz‘a“l). Now let us make the replacement y-—yz and

(the elasticity involvs
b=e in (1):
x(y-xz)=[(x- y2) /2] xz (6)

and suppose that y=(xz)~! in (6). Then
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[x/xz]z=x((xz)"'2),
and if x=b,z=1x:

[b/bx]x = b[(bx) ' x]. (7)
From (5) and (7) we have

b/bx =b(bx)"!
and so
bxtx=b

for every x,be€(, ie. Q) is a RIP-loop. Conversely, let Q) be a RIP-loop

with universal elasticity. Substitute y—» (xz)"'] in the identity (6):

[x(xz) ']z = x((x2)7'2). (8)

Take in (4) y=(bx)"": |

b(bx\x)=b(bx) - x.
Now, because of the last identity and (8) we get:

b(bx\x) = b((bx) ' x),
or

b(b7x) =x,

forall x,be,ie. Q) isa LIP-loop.

Corollary. If Qf) isa loop with universal elasticity, then the following properties are
equivalent in Q).
right inverse property;
lefi inverse property;
right alternative law;

left alternative law.

Now, let us consider IP-loops with universal elasticity. Each of the identities
(1) and (2) is equivalent in such a loop to the following identity:
(xz-by)z -bx =xz-b(yz-bx) (9)
(Indeed, in a IP-loop are valid the equalities:
x\y= x y
and
x/y= xy'l
for every x,y €(@. Now, to prove this use the last two equalities in (1) and (2) and
make the replacements x—xz”7! ,y—> l’:n“'ly,.z"1 >z, b in (1) and
X b"]x,y—-)yz'1 in (2)).
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It is known (see [4]) that in a IP-loop all (three) nuclei coincide, Denote by N
the nucleus of the IP-loop Q(-).

Proposition 7. The commutative IP-loop Qf) with universal elasticity and x* eN
Jor all x Q, is associative.

Proof. To prove this, make the replacement z—>xz and b—bx in (§) and
use Propositions 4,5 and the fact that x*> e N , for all xeQ:
[z(bx-y) xz]b=z[bx-(y-x2)b]
Now, if y=2z in the last identity then
(bx - x2)b = 2(bx)?,
or, using the commutativity of @(-) and substituting x = b x:
x(b7'x2)-b=1?,
xb =t b =xtr b =t b = x(x-zb™),
b lxz= x-zb7l,
xbl.z= x-b_lz,
so, the loop Q(-) is an abelian group.

Corollary. 4 [P-loop Q() with universal elasticity and such that x* =1 Jor all
x € isassociative,

Proposition 8. The identily (9) involves both inverse properties in the loop.

1

Proof. Substitute &d=¢ and y=z" in (9). Then we have:

(xz-z‘l)z-x-—-xz-x,
or
xzozl=x
for all x,ze(Q, ie. @(+) is a RIP-loop. Analogously, from (9) (making the

replacement z=e,y=5b"') we have
x-bx =x-b(b71 bx),
or

x=b"1.bx
for every x,be€(); hence, Q(:) isa LIP-loop.

Corollary 1. The loop which satisfies the identity (9) is a loop with universal
elasticity.
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Corollary 2. The identity (9) is universal for Q() iff Q) is a Moufang loop.

Indeed, according to the information given up, the identities (1) and (9)
are equivalent in an IP-loop.

Remark 3. The identity (1) follows from the identity (9) but, in general, these
two identities are not equivalent. For instance, the loop from the example given
below satisfies the identity (1) but it is not an IP-loop, hence it does not
satisfy (9).

Cc -1 O 7 = W N

O -3 O " = W o =
-1 0 U O W o = NN
D O 0 =1 N = o o
B N =3 00 = D2 O v I
B O N = 00 ~3 O
O b = DN -3 o 03.03
R = B T o0 =1 |3
= W e Oy U -3 0 &

Using the computer the author proved that in loops of order n, where #n<6,
the identity (1) and Bol's middle law
(z/x)(y\2)=z()x\z)
are equivalent. For other loop orders this question is open.
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ON LINEAR ISOTOPES OF CYCLIC GROUPS

Sokhatskyj Fedir, Syvakivskyj Peftro

Abstract

A description of all cyclic group mn-ary linear isotopes is found to within isomorphism.
Some results on their automorphism group and endomorphism sernigroup are given.

An operative (G;f) will be called a multiplace isotope of the group (Q;+) iff
there exists a sequence (yy,...,Y,,Y), named isotopy, of one-to-one mappings from

G onto @ such that

-1
f(xbx?,s"'axn):—“ Y (lel +72x2+“-+7nxn)

holds for all x;,x,,...,x, in G. If all isotopy components are linear transformations

n
of the group, then it will be called linear one. (Here and henceforth a linear
transformation o of a group (@;+) is a mapping from  into @ such that
ox =0x+c, where 8 is an automorphism and c¢ is an arbitrary element of the
group). According to Albert's theorem isomorphism of group isotopes implies
isomorphism of the corresponding groups. So, it is enough to find an isomorphical
test for isotopes of the same arbitrary fixed group. In this article we do it for a
cyclic group, describe all its linear isotopes up to isomorphism, consider their
automorphism groups and endomorphism semigroups. In the next works we shall
consider the general case, but the main results one may find in [1].

Let Z be the integer ring and C=Z or C=Z,=Z/mZ. 1t is easy to verify
that any mn-ary linear isotope of a cyclic group is isomorphic to (C;f} defined by
the equality

Sep%2,000%,) = yxy HipXxy +. AR, X, +a (1)
where #hy,h,,...,h, are invertible elements in the ring C (denote by C" the group
of ones). In this case the elements #&,h,...,s, will be called coefficients of (C;f)
and a will be its free member. Let (C;g) be defined by equality

g(xy,%,...,%, ) =kixy HhoXo +. 4k, x, +b (2)
and o be a homomorphism from (C;g} into (Q;f), ie. the equality

© 1994 by F.M.Sokhatskyj, P.B.Syvakivskyj
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a(k Xy +kyxy +.. +k, X, +b) = o) + hyax,+.. +h,0x, +a (3)
halds for all x,x,,...,x, in C. In particular, replacing x;,..x, by 0 and x;,x;
by the suitable expressions we have the equality

alx +y)=px+yy
for some transformations B,y of the set C. Applying Lemma 2.5 from {2] we get

ox =kx+c

for some k,c of the set C. It is clear the element k is invertible together with
the transformation o, ie. when these isctopes are isomorphic. The relationship

(3) with x=x,=..=x,=0 gives the dependence
kb = +hy+...+h,-Dc+a 4)
and with x;=0 forall j=i and x;=1 it gives
kk, =hk, i=1,. . n, (5)

in the ring C. The last equalities in the infinite ring for homomorphic isotopes
mean that the corresponding sequenses of the coeffitients coincide. If the ring
C is finite the relation (5)is equivalent to congruence

ki =h(mod ™), i=1,..,n,
h)

ie.

kie—2, +h, i=1,..,n, (6)

where s=GCD(k,m). Hence, we can make the following conclusions.

Lemma 1. 4 transformation o of the set Z,, is a homomorphism of the isotope (Z,,;g)
into (2,,,f) defined by (2) and (1) respectively if and only if there exist elements k¢
in Z, such that

ax =kx+¢
and the relationships (4) and (6) hold

Lemma 2. A transposition o of the set Z is a homomorphic mapping from the isotope
(Z:g) into (Z.f) defined by (2) and (1) if and only if there exist elements k,c such that the
equalities

ax=hkx+¢, k=h, i=)..,n

H ¥

and (4) hold.

Corollary. Different sequences of invertible elements of the ring C def ne nonisomorphic
linear isotopes of the cyclic group (C,+).
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Lemma 3. Let (C;f] and (C;g) be finear isotopes defined by the equalities (1) and
g(x),%a,...,x, ) =X +pxy+.. . +h,x, +b.
Then a substitution o. of the set C will be an isomorphism between them if and only if
ax=kx+c and kb=pc+a
for some element ¢ and invertible element k of the ring C, where
nw=h +h+. . +h, -1

To establish an isomorphical test for the linear isotopes we need the
following,

Lemma 4. For every integer a there exists a number r which is relatively prime to m
and
d = ra(mod m),
where d = GCD(a,m).

Proof. Let a; and m; De integers defined by the equalities a=ad and
m=md, and t be a product of all prime integers having the same exponent in the

factorizations ¢ and b into prime numbers. We can take r such that
(a; — tmy)r = }(mod m).

Theorem 1, Any linear isotope (Z,,;, f) defined by (1) Is isomorphic to the isotope
(Z,,8) defined by the following equality
g(x],xz,...,xn)zhlxl +}bx2+...+hnxn+d, (7)
where d=GCD(p,ma) and Qp=h+h+. +h -1

Proof. We adopt the notations a,=GCD(a,m), py=GCD(p,m), then
d = GCD(ay,1y) and the lemma 4 implies the existence of a number a which is
relatively prime to p, and
d = xay(mod py). (8)
Let us denote by z the product of all prime divisors of the number m not
dividing the number «. Since every prime divisor of the integer m divides
exactly one of the numbers x,4,,z, then the integers r=x+p,z and m are
relatively prime. Lemma 4 implies the existence of numbers 7 and # which
are relatively prime to m and
agp = an(mod m),
Hg = w5 (mod m),
and the relationship (8) implies the equality
d = apx + Ry
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for some integer y. For this reason
d = ag(x + oz — WoZ) + Ul = apr — Wpldpz — y) =
= (anr — 1y (apz - y) X (mod m).
So, after the notations k=rr and c=nr(az-y) we get the relationship
ka = (uc+d)(mod m),
which completes the proof according to lemma 3.

Theorem 2. Any linear isotope of a cyclic m order group is isomorphic to exactly one
isofope (Z,;g) defined by the equality (7), where M h,,....h, Iis a sequence of invertible
elements of thering Z,, and d is a common divisor of n=m+h+..+h,-1 and m.

Proof. Any linear isotope of a cyclic group G is isomarphic to a linear isotope
of the group Z,. According to theorem 1, it is isomorphic to the isotope (Z,;g)
satisfying to the conditions of this theorem. Let us consider two different isotopes
(Z,.8) and (Z,;g2,). If they have the different sequences of their
coefficients, then by the corollary of lemma 1 these isotopes are not isomorphic.
When the isotopes differ from each other only by their free members named a,b
and taken a<b, then by lemma 3 the existence of an isomorphism of the
isotopes is equivalent to the existence of numbers k,c such that

kb = uc+a(mod m)

holds. Under the conditions of the theorem the numbers a,b are common divisors
of the integers u,m and ¥k is relatively prime to a, so b is divided by a A

contradiction.

If we consider group isotopes of a prime order, we can give more exact
information following from the theorem 2.

Corollary 1. Any n-ary linear group isotope of the prime order p is isomorphic:
1) one to the other, if the sum of the coeffitients is not the identity transformation;
2) to exactly one of the isotopes (Z,,g) or (Z,.81) defined by (1) witha=0 and

a=1, respectively, in contrary case.

Define F(n,m) as the number of all pairwise nonisomorphic n-ary linear
isotopes of the m order cyclic groups. According to theorem 2, F(n,m) is the
cardinal number of the set

{(h!’hZ""-'thd)lhl’hZ’"'?hn GZ::,CI' ED(hl +h2+---+hn - I,m)},
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where Z,:: denotes a set of all pairwise noncongruent by modulo m integers,
which are relatively prime to m and D(k,m) is the set of all common divisors
of the integers k and m. We put the following problem:

what is the analytical expression of the number function F(n,m)?
Here we shall give a solution of this problem for prime m.

Corollary 2. There exist exactly

+D(p-D" + (-1
F(n, py="P Xp-D" +(-1
p
n-ary linear group isotopes of a prime order p up to isomorphism,

Proof. Let us denote by £,; the number of all sequences (4 Ay, ,h,) with
My +hy+..+h, =i(mod p)
and

O<hy,hy,....h, <p.
It is easy to see that
kn,O +kn,l +"'+kn,p«~1 = (p_ 1)n’ (9)
Let
W +hy+...+h, = j(mod p),
then there exists exactly one number #4,,; with conditions
b +hyt.. +h, + R,y =i(mod p),
O0<hy<p
if and only if j#i. So, the equalities
by =(p-D"-k,;, i=0,1,.,n,
hold. Since k=0 and
k],l =k12 =...= kJ-P“J = 1,
then

kn,l = n2 =...= k 1= kn,o —(—1)"

= Ky p-

for every n=1,2,.... From (9) we have
kn,l + (" I)” + (p"" 1)'J":'r,l = (P—' l)n,

and

k= 27D =Y
p

Hence, by corollary 1 we get
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_{p)(p-D"+ ™
r

+(p-1)"

F(H,p) — (p — ])nl;_ (—I)“

A description of all linear isotopes of infinite cyclic groups is given by the
following theorem.

Theorem 3. Any linear isotope of an infinite cyclic group is isomorphic 1o exactly
one linear isotope (Z;f) defined by (1), where

1) a=0,1,2,.., if u=40;

2) a=20, if w=-11;

3)a:OJv”U%U, if ws-Lo,

where p=h+h+. . +h, -1

Proof. An isomorphical test of such isotopes is given by lemma 2 and is
expressed by the relationship (4). Since in this case k=1 or k=-1, then the
isomorphism of the isotopes means that one of the equalities

b=uc+a or -b=uc+a (10)
is true. Let (=0, then the isomorphism is possible iff b=zta. Hence all isotopes
with a>0 are pairwise nonisomorphic. If p=+1, then c¢=bta give an
isomorphism of any pair of linear isotopes with the same coeffitient sequence.
Finally, let p#-1,0,1, then the equalities (10) mean that

b=a(modp),

So, in this case any linear isvfone is isomorphic Lo exactly one isotope defined by (1)

with a:O,I,...,[i%f]. The piecd has been completed.
The immediate corollary of the icmmas 1,2 is
Lemma 5. 4 wransformation o of the set C is an endomorphism of the isotope (C.f)
defined by (V) if and only if there exist elements &k and ¢ of C such that
ux=kx+c¢, (k-Da=pc,

where W=+ hy+o 4, - L

e next statements is obvious (we denote the semidirect product by "4").
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Corollary. If the isotope (C.f) is defined by (1) and a=0, then the relations
End(C,f)zKeru¢C, Aut(C,f)z=KerueC
hold. In particular, End(C, f) is a subnearing of the linear transformation nearing of the
group (C;+).

Theorem 3, lemma 5 and its corollary permit to calculate the endomorphism
semigroup and the automorphism group of the arbitrary linear isotope of the
infinite cyclic group. We shall express these results in the following theorem.

Theorem 4. lLet (Z;f) be an arbitrary isotope of the infinite cyclic group (Z;+),
where Z is the ring of integers, and (1) be its decomposition. If we denote
W=k +hp+..+h, -1 and d=GCD(a,n), then the following conditions are fulfilled:

1) End(Z, f)=ZeZ Aut(Z,f)=Z,¢Z, when a=n=0;

2) End(Z; f)=Z,Aut (Z, )= Z,, when a=0 and p=+0;
3) End(Z,fY=Aut(Z, f)=(Z,+), when a=0 and n=0;
4) End(Z, f)=(Z;),Aut(Z; )= Z,, when a#0 and p=zl1,

5) End(z;f);(-32+1;-),Auz(z;f)_—~:zz, when a#0 and 1 =42a;
6) End(Z: f)z(%ZH;-),Aut(Z; F)={1}, when a#0 and p#0,+1,42a.

Proof, We consider the case pu=#0,£], a#0 only because other ones are

obvious. By the lemma 5 we have the equality

a_p
k-1)—==c.
(k-D—=1
It implies the existence of an integer t such that

k-1=F: and c=f—t,
d d

i.e. any endomorphism has the expression

cx(x)=(%t+1)x+%t

for some integer ¢ It is easy to see that the converse statement is true as
well. Thus, we have established an one-to-one correspondence between
semigroups ‘

End(Q.f) and (%zn).
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It is easy to verify that it is an isomorphism. In particular, the group of all

invertible elements of the semigroup (%Z +1) is isomorphic to the automorphism

group of the linear isotope (Z;f). If an integer is invertible, then it belongs to
{-1,1}. Let

ie. g-t:—Z. Then ¢==1,+2 and the numbers 7,4 have different signs. Since

as[!%(], then d<a<y|, so t=1 if pu<0 and t=-1 if u>0. Moreover, the

relationships both |uj=2d and d<a<u| hold only if a=d.

A problem of description of endomorphism semigroup and automarphism
group of a finite linear isotope is still open. We shall single out some relationships
only.

Denote by M(f) (M*( f)) the set of all coefficients of endomorphisms
(respectively isomorphisms), i.e.

M{f)={k|(Fc)a € End((Q; f), where ox=#hkx-+c},
M (f) = {kl(3c)a € Aut (0, f), where ox=kx+c},
It is easy to verify that (M(f);) is a monoid and (M '( f);) is a subgroup of all

its invertible elements. The lemma 5 implies

Corollary. A transformation o of the set Z, is an endomorphism of the isotope
(Z,;f) defined by (1) if and only if ox=ikx+c and
(k —1Dc = pc(mod m), (11)
where W=h +h+. . . +h —1 »

After the theorem 2 and the corollary of the lemma 5 we shall only consider

the case
a # 0(mod m)

and a is a common divisor of g and m. The relationship (11} means that

k= —E'-c,+ 1(med —rﬁ),
a a

ie,
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k EEHEcH(modm)
a a

for some integer t. So,

m L
k E;Zm +;Zm +1.

It is easy to verify that the converse statement is true as well. Thus

M(f)="2,+E7 +1
a a

and

M(H=z,~nz,+227 1), | (12)
(24 a

It is easy to make sure that

1) the transformations o and B defined by
ox = kx + c(mod m),
Bx = kyx +c{mod m)

are endomorphisms of (Z,;f) if and only if

k| eﬂZm +k.
a

2) the transformations o and P defined by
ox = kx + c(mod m),
Bx = kx +¢;(mod m)

are endomorphisms of (Z,;f) if and only if

m
¢ eme +c,

where d = GCD(u,m).

These assertions imply the following relationships for the sets FEnd(Z,;f)
and Auwl(Z,,f):

End(Z,,f)= U (EZ,,,+H~C+1)X(EZ",+C), (13)
cel, @ a d

End(Z,: )= u (27 +k)x(2z +(E)“’(3)'195;‘Q)
L ey a ™ d " °d d 7
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AUt (Zyif) = U (o Dyt ) N2y )X (2 b), (14)

Ey-1 (4 —
Aut(Zy )= U (2Z, 102 x(2Z,+ () (4 Da,
ke (f) a d d d

where @ is the Euler's phi-function. From (13) and (14) it follows

Proposition 1. In the linear isotope (Z,,; f) defined by (1) with
h +hy+..,+h, = 1(mod m)
the following relationships

End(Z,, ) = Zyy x (= Zpy +1),
a

Aut(Z,, f)=Z, x ((—n-i-Zm +DNZ,)
a

hold. If in addition a=1, then the endomorphism semigroup coincides with the automorphism
group and is isomorphic to Z,,.

Proposition 2. An automorphism group of a linear isotope of prime order p s

isomorphic 0 Z, HolZ, or Z,,.
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A COMMON FORM FOR AUTOTOPIES OF n-ARY GROUP
WITH THE INVERSE PROPERTY

Leonid A. Ursu

Abstract

In this article it is proved that every component of an autotopy of =n-IP-group is its
quasiautomorphism and a common form of quasiautomorphisms and autotopies of such groups is
also established.

A quasigroup Q(A) of arity mn is called a n-group [1] if the following
identities

F—~1 +=1 2n-1 f—1 +n=-1 2n-1
A(xi ’A(xll'+" )’xf-I’-T] )::A(x]] :A(xj‘ " ):xj-rltl)

hold in it for all x¥'eQ® andall i,jeln, i#]. _
There exist n-ary groups without an identity element and mn-ary groups
with more than one identity elements [1].
A group Q(A) of arity n is called symmetric [1] if
Axg1) = A(x])
for every xi €(Q" and every a €S,, where §, isthe symmetric group:

of the degree n. ‘
According to the Gluskin-Hosszu theorem [1] each n-group Q(A) is reduced

to a binary group Q{'):
A(x]') = xy - gxy - 07x3. 0", - K,
where ¢ is an automorphism of Q(}, k¥ is a fixed element of @ and
| ok=k, o Tx=k-xkl
If QA) is a symmeiric n-group without an identity element, then
A(x)) =% -xy - x30...0%, - k. (1)
If Q(A) is a symmetric n-group with an identity element, then

A(x()=x; Xy - X37...%,,, (2)

© 1994 by L.AUrsu
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where Q) is an abelian group.
A quasigroup Q(A) of arity n is called a quasigroup with the inverse
property (briefly a n-IP-quasigroup) [1] if there exist such substitutions v; of

Q, i,J ef;;, v; =& (e is the identity substitution) that the identities
i—1
A({V.!‘jxj}lj:] ’ A(xil)’ {v{jxj}'}:l'-l'l) = X;

hold for every x{ eQ", i eln

The matrix

4 € Viz Vi3 .- Vi 8.‘

Vai E V23 s Vzn g

(V,j) = | V31 Va2 £E ... V3, £
Lvnl Via Vp3 ... & € J

is called an ‘nverse matrix of Q(A)

It is known [2], that the inverse property holds only in the following
n-groups:

a) all symmetric n-groups with an identity element. For such a gfoup the

inverse matrix is

fe 1 1 .. 1 ¢)
I ¢ I ... I &
D=1 I e .. I €]|; (3)

J I I .. & ¢
b) all symmetric n-groups without an identity element. For them

(e 1L, I, T I I
I s I, I I I €
L, IL g I I I e
o= "* ; (4)
ka ka I £ I I £
L L 111 e e
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¢) all nonsymmetric n-groups without an identity element which are
reduced to binary abelian groups. For such n-groups

9’ =5, K =e,
where e is the identity element of Qf), ie.
AT ) =3, 0%y X3 QX QX - X, - K. (5)
In this case Q(A) has an odd arity and

(e 1 1 1 .. I &)
Iy ¢ Il lo ... Ip ¢
l I e I .. I ¢ '
O\ = .
) Ip Iop lo € ... Ik e}’ (6)
LI I I I .. e ]

An ordered (n+I)-tuple T=(af™) of subtitutions of @ is called an
autotopy of a n-group Q(A) if
o Ao ) = AGT).

nl
In particular, (o )=a is called an automorphism of Q(A).

The set of all autotopies of Q(A) forms a group with respect to the
multiplication of substitutions. This group is dencted by 3,.

The chief component «,,; of an autotopy 7T=(a") of a n-group is
called a quasiautomorphism of this group [1)

All quasiautomorphisms of a n-group form the group [1].

In this article it is proved that every component of an autotopy of
n-IP-group 1is its guasiautomorphism and a common form of
quasiautomorphisms and autotopies of such groups is also established.

Let T=(a},8) be an autotapy of a nonsymmetric n-IP-group  Q(A):

SA(X]) = A{{ox;Yy)- |
Denote
(@)= A({oe}isy)

Then, according to (5),

SA(xy' ) =B (x; - Pxp - X3 - QXg... QX _y - X, k) = A({ot,-x‘-}{-“___l)..
By
X| =Xy ==X F Xy ==X, =€

79



L.AUrsu

we abtain
SRyx; = Li(a)o,x;,
whence
o; = L7 (a)0R; (7)
for each odd #, and
o; = L7 (a)8Ryo (8)
for cach even i, ie€l,n, where Ryx=x-k.
Thus,
T= (17" (a), L7 (a)8e871, 131 (@), L3} (a)8057",...,5R; 6 71)8R,, (9)
since

Ro=0R,: Rox=qx-k=q(x -ok)=0(x k)= oR,x.

If @A) is a symmetric n-group without an identity element, according to (1)
weput ¢@=g¢ in (9). In the case when @A) is a symmetric n-group with an
identity element we put ¢=R, =¢ in (9) according 1o (2).

Lemma 1. All components of an autotopy T=(u],d) of a n-IP-group O(A) are

quasiautomorphisms if L, (5), 0, R, @ SG), are quasiautomorphisms of Q(A4).

The proof follows from (7), (8) and the fact that the set of all
guasiautomorphisms of Q(4) forms a group.

Proposition. All components of any autotopy of a n-group Q(A4) of the form

A(xy Y =2 0xg - X3 OXge.QX, | X, - K,

where () is an abelian group, are its quasiautomorphisms.

Proof. We have for each odd i:

Li(@)A(]) = A({e e}, A e i) =
=0 € POy 03¢ POy ... PO, _1e- X)  PXp - X3 PXye..."OX;_; -
X QX Nppan Oy X, k0O € O sl PO, 8 O, e k=
=X QX - X3 Qx4 Oxy - (L€ QU E - 038 POLge- QA g€ X; ¢
QU 1€ Q28 Py, 1€ LK) QX g X QX Xy K=

= A(xi™, Ao e x {o e ), xha) = AGT Li@)xg, x0y),

ie. L,-(E) is a quasiautomorphism of Q(A).
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For each even 1
— . ,_1
Li (a)A(xi') = A({aje}_’jzl » A(x{’)r {aje};::l'-l-l) =
= 0L POLye - Cl3€- POL4e ... POL_1€° PX) * Xo - PX3 X4 PX;_)
X QX Xy QX k- A€ Q26 QU 18-y k=
= QX1 Xy QX3 X X (G1€ - OUpe - Ol3e - PUI4e-... Oliy€ Xy -
0416 Qo€ QU 18 0L, € k) X Xy Xjyp. Xy g OX, K =
0
= A({(pxj}‘jﬂ,Li (a)x;q, {(ij}?ﬂ),
ie. L (5) is a quasiautomorphism of Q(A).
We also have
Ry A(x] ) =Ry (x93 X3 @xg 9,y - X,y oK) =

= X] - OXy X3 QXge.. Xy R x, k= A(x{"l,ka,, ),

n—-1

ie. (E,Rk,Rk)ESA.
Note that ¢ is an automorphism of Q(A). Indeed,
QACX] ) = Q(X) @xy - X3 Xy QX - X,y K} =

= Xy - X QX3 Xy Xy 0X, K = A({ox 1),
If Q(A) is a symmetric n-group without an identity element, then in the
proof <wo put @=ge according (1). If Q(A4) is a  symmetric =n-group with an
identity element, then put ¢ =R, —=¢. Using Lemma 1 we complete the proof.

Lemma 2, Each quasiautomorphism § of a n-IP-group (Q(4)
A ) =% @xy - X3 Xy Xy Xy ok
has the form

where 0, issome automorphism of Qf).

Proof. Let T=(a},8) be an autotopy of a nonsymmetric n-IP-group
Q(A) without an identity element, which is reduced to a binary abelian group
Q)

A(X] ) = Xy Xy - X3 - QXye.o0X,_y - X, - K.
Transforming (7) and (8) we receive
o, = LY (@)dR, = L;(Ia)dR,
for each odd 7 and
o = I;(a)8R 0 = L;(19a)oRyo
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for each even 1, where

(Ia) A({Jo,e}" ’

i=1

(Ioa) = A({Tooe}L,).
Indeed, according to (6), by odd +{ it follows from

A({Ia e} _1,A({a e}j X, {aje}'}m.“),{Iocje}j.ﬂ.ﬂ) =x
that
Lo L(a)x=x, L'(a)x=L(la)x.

By even ¢ from

A({Too b2 A({a eVl x, o ey, ), Ugo el ) = x
it follows that
L(lga)L,(a)x=x, IL1(a)x=L(loa)x.
Hence, |
T =(1(Ia)8Ry., L (Ioa)8Ry @, L3 (1a)8Ry , Ly (Ioa)3Ryo, ..., L, (Ia)oR, ,3),
le,
SA(x!") = A(L;(Ia)8R %y, L (Ia)dR,oxy , Ly(Ta)SR, x5, .., L, (IaYoR, x,,) =
= A(ABR xy, Iase, ..., Jae), A(Toa e, 0R, 0x5 , fpae, ..., fpa,€),
L A(oe,.. Io, e,0R, %)) = Ry x; - Ipoe-. - Jo e k-
@(Joaqe- QORLOx; - Ipaze- foye-... Jopa,e k). - Joe- Tpage-.. - dR,x, k- -k =
=0Rpxy - I e-Ipoye- Toze - Ipoe-. - Jo,e - k-OR, px; - Tov e Ipaqe - Tose - Jpogye-.. - Ja e
ke OR0x,_ - Ioe Jpo,e- fage - Tpaye-. Joye- k-8R x,,
since  fpx = opix. But
BA(xT )y =d(xy- Oxy - X3 - QXg-... %, - k) = BR (X1 - @xy - X3 0X4...-X,, ),
and

loe- Ipase- Iose- Ioage. .. Ioe -k = f(dle (PO e-Oae- P e O e k) =

n
= JA({ae}f.)) = BA(e) = IB(e-pe-e-ge-...e- k) = Ik,
therefore |
6Rk (xl -(px2 -x3 -(px4-...-x”) = (Bkal Iﬁk)(ﬁRk(pxz Iﬁk)(SRk(px -1 'Iﬁk)‘ﬁkan.

Changing x,; for ¢x, (2i<n), and multiplying both parts of the last
equality by 8k we get
ORE(x) - xy...-x, ) IOk = (OR, x; - IOk) - (BRy x, - IBk)-...- (B8R, x,, - Idk).
Let ' )
OR x- Bk = 0yx. (11)
Then |
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Bo(x - X%, ) = Ogxy - Bgxy-...Bpx,,,
ie. B, is an automorphism of Q(-). It follows from (11) that
OR,x = Rg;Opx
whence (10) follows.
Note, that if Q(A) is a symmetric n-IP-group without an identity element,
then o¢=¢g, ie
A(xY =% %%, - K,
and according to (1) and (4)
a; = Li(a)8Ry = Li(IL,a)8R,, ieln,
where

L (_Isz)x = A(x,IL 04, Il 0qe, Toe, ... [a€),

Ly(ILa)x = A(IL e, x, I 0qe, Jage, ... Joe),

Ly (_I_L;c?)x = A(IL e, [ 0qe,x, Ioe,. .., Jo,e),
Ly (Ea)x = A(IL one, Il ome, fose, x, Intse, .., foue),

-------------------------

L,(ILa)x = A(IL e, I aqe, Joe,.., Jo, e, X).

Thus,
T=({L (TLga)3Re Yy, 8),
ie.
8A(x{') = A(AQGR, Xy, [L aqse, 1L 0qe, Taye,..., I e),
A(IL,one,8R x, Il 0ze, Jage, ... Jo,e),
A(lL ove, IL oqe, 0 x5, Ja e, . Jou,€),
A(IL,aqe, ILaqe, Toze, 8RR x4, l0ise, ..., I, €),
o AL e, I 0qe, Tose,... Io,,_e,0R,x,)) =
=OR, x; Jo,e-Tk-Jage- Tk - Io,e-. . - do,e k-
doe Ik-8Ryx, - Ioze - Ik lage-.. .- Joe k-
Joqe-Ik-Ioqae - Tk -8R x5 - Ioagze.. - Jo,e- k-
doye- Ik Ioqe- Ik Toqe-0Ryx, - fose-...-Io e k-
Lolane Tk Toye- Tk foge-. . T, _je-8R x, - k-k =
=(ORyx;  Jove- Iose-. Joe- Tk - (BRxy - Toye - Ioge-.. I ,e - Tk) -
O x, oy e foqee lage - T)-OR x,, .
Next, since
SA(X)) = B8R, (% Xg-...x,),
Toye-Joge.. Jae Tk =1(ae-oqe...ae k)=
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= HA({oe}ly) = BA(e) = B(e-e-..e-k) = Ik,

then, multiplying both parts of this equality by Bk, we have
OR, (x; x3-...-x, ) = (OR, xy - I0k) - (ORy x5 - BOk)-...-(8Ry x,, - IBK).
Let
. SRy x - Iok = 0,x.
Then
O (X1 -%2"...°%,, ) = 0% -0px5-..-0px,,,

ie Oy isan automorphism of Q() and (10) is true.

If Q@A) is a symmetric n-group with an identity element, then the proof is
analogous to that of a nonsymmetric n-IP-group when ¢ =g, k=e. Note that in

this case the automorphism 0,= Rg;ﬁ of @) is also an automorphism of
Q(A), since
eoA(X?) = Gg(x] : xz«...-xn) = eoxl 'eoxz'...'eox" = A(eoxl ,Qoxz,. ,.,Box,,).

Now we can easy prove the following

Theorem. Everyautotopy T=(a],d) of a n-IP-group Q(A):

A(xT) =X - Xy - X3 QX4 QX1 X, o K
has the form

T =(L7'(a) Ry, L;'(a)0p5 ' Ry, L3 (a) R,

- - ) (12)
L} (@)6p5 'Rg,,.... L, (a)Rg,, 8R; '6 ' Ry, )6,

where 0, = ngISRk is an automorphism of the binary abelian group Qf-).

Proof. Let 7=(a},8) be an autotopy of a m-IP-group @(A). Then according
to (9) this autotopy has the form '

T =(I;" (@) R, L3 (@)505 ™ Rye, L3 (@) Ry,
L' (a)5¢8 ™ Ry ..., L7 (a) Ry, 6R; ' Ry JRI6R,,.
But, by Lemma 2,

R3p8R, =8
is an automorphism of @Q(-) in all cases. The theorem is proved.

From this theorem it follows that
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1) if Q(A) is a symmetric n-IP-group without an identity element, then
according (1) with ¢ =¢ we have

I'= (L' (@) Ry, 17 (@)Rsy.,..., L (@) Rey ,OR; 87 Ry 0o,
2)if Q(A) is a symmetric n-IP-group with an identity element, then in
accord with (2), where ¢@=¢ and k=e¢, (12) takes on the form

T= ({L;'(@)Rse Yiet Roe B0, (13)
where 0, :Rg,_,lﬁ is an automoerphism of Q() and @Q(A). In this case the form
of an autotopy can be simplified. Really, since for each jieln

L (@) Rspx = Ly (T Rsx = A({Joje}'i, x-Be, (o e}y ) =
n
= Ioe Joge-. . Joy_je-x-84(e) o6 . Jo,e =
=loye-Ioqe .. . Jo; e x o dge... o8 0ue ;e ae- o e - Jo,e=

=X 0 = Ruiex,

L
Ogx = RiIox = R, Br = Bx - Joe = 84( e ,x, ¢ ) bA(e) =

= Qe . 018 OLX Oy €. e Joye oy e Joe - To, e o e =
-1
= 0% foue = Rpy 00x = R o01;X,

then (13) takes on the form
T = ({ R, Ji=1, Rse )80, (14)

where GozR;llea,- is an automorphism of Qf:) and Q(A).

Note that when n=2 the known result from [3] for abelian groups follows.
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