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On topological semi-hoops

Mona Aaly Kologani, Nader Kouhestani and Rajab A. Borzooei

Abstract. We investigate topological structuers on a semi-hoop A and under conditions show

that there exists a topology T on A such that (A, T ) is a topological semi-hoop. We prove

that for each cardinal number α, there exists a topological semi-hoop of order α. Finally, the

separation axioms on topological semi-hoops are study and show that for any in�nite cardinal

number α there exists a Hausdor� topological semi-hoop of order α with non-trivial topology.

1. Introduction

Algebra and topology, the two fundamental domains of mathematics, play com-
plementary roles. Topology studies continuity and convergence and provides a
general framework to study the concept of a limit. Algebra studies all kinds of
operations and provides a basis for algorithms and calculations. Many of the most
important objects of mathematics represent a blend of algebraic and of topological
structures. Topological function spaces and linear topological spaces in general,
topological groups and topological �elds and topological lattices are objects of this
kind. Very often an algebraic structure and a topology come naturally together.
The rules that describe the relationship between a topology and algebraic opera-
tion are almost always transparent and natural the operation has to be continuous,
jointly continuous, jointly or separately. In the 20th century many topologists and
algebraists have contributed to topological algebra. In this paper, we introduce
the notion of topological semi-hoop and derive here conditions that imply a semi-
hoop to be a topological semi-hoop. We prove that for each cardinal number α,
there exists at least a topological semi-hoop of order α. Also, we study separation
axioms on topological semi-hoop and show that for any in�nite cardinal number
α there exists a Hausdor� topological semi-hoop of order α with non-trivial topol-
ogy. We prove that a Hausdor� topological semi-hoop algebra exists and we try
to study some properties of it. Also, we investigate that under what conditions a
topological semi-hoop can be a Hausdor�, connected, T0 and T1-spaces.
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2. Preliminaries

In this section, we recollect some de�nitions and results which will be used in this
paper and we shall not cite them every time they are used.

De�nition 2.1. An algebra (A,�,→,∧, 1) of type (2, 2, 2, 0) is called a semi-hoop

if it satis�es the following conditions:
(SH1) (A,∧, 1) is a ∧-semilattice with upper bound 1,
(SH2) (A,�, 1) is a commutative monoid,
(SH3) (x� y)→ z = x→ (y → z), for all x, y, z ∈ A.

On a semi-hoop A we de�ne x 6 y if and only if x → y = 1. It is easy to see
that ” 6 ” is a partial order relation on A and for any x ∈ A, x 6 1. A semi-hoop
A is bounded if there exists an element 0 ∈ A such that 0 6 x, for all x ∈ A. We
let x0 = 1, xn = xn−1�x, for all n ∈ N. In a bounded semi-hoop A, we de�ne the
negation ′ on A by, x′ = x→ 0, for all x ∈ A. If (x′)′ = x, for all x ∈ A, then the
bounded semi-hoop A is said to have the Double Negation Property, or (DNP) for
short. A semi-hoop A is called a hoop if x�(x→ y) = y�(y → x), for all x, y ∈ A.
A semi-hoop A is called a t-semi-hoop, if xt y = ((x→ y)→ y)∧ ((y → x)→ x)
and t is a join operation on A.

The following proposition provides some properties of semi-hoops.

Proposition 2.2. (cf. [7]) Let A be a semi-hoop. Then the following hold, for all

x, y, z ∈ A:
(i) x� y 6 z if and only if x 6 y → z,

(ii) x� y 6 x, y,
(iii) x 6 y → x,
(iv) x� (x→ y) 6 y,
(v) x 6 y implies z → x 6 z → y,

(vi) x 6 y implies y → z 6 x→ z,
(vii) (x→ y) 6 (y → z)→ (x→ z),
(viii) (x→ y)� (y → z) 6 (x→ z).

Remark 2.3. (cf. [7]) t-semi-hoop (A,t,∧) is a distributive lattice.

De�nition 2.4. Let A be a semi-hoop. A non-empty subset F of A is called a
�lter of A if,

(F1) x, y ∈ F implies x� y ∈ F ,
(F2) x 6 y and x ∈ F imply y ∈ F , for any x, y ∈ A.

We use F(A) to denote the set of all �lters of A. Clearly, 1 ∈ F , for all
F ∈ F(A). F ∈ F(A) is called a proper �lter if F 6= A. It can be easily seen
that, if A is a bounded semi-hoop, then a �lter is proper if and only if it is not
containing 0.

Let (A,�,→,∧, 1) be a semi-hoop and F ∈ F(A). We de�ne a binary relation
∼F on A by x ∼F y if and only if x→ y, y → x ∈ F , for any x, y ∈ A. Then ∼F
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is a congruence on A. Let A/F = {x/F | x ∈ A}, where x/F = {y ∈ A | x ∼F y}.
Then the binary relation 6 on A/F which is de�ned by:

x/F 6 y/F if and only if x→ y ∈ F.

is a partial order relation on A/F . Thus (A/F,⊗, ,u, 1A/F ) is a semi-hoop,
where for any x, y ∈ A:

1A/F = 1/F, x/F ⊗ y/F = (x� y)/F, x/F  y/F = (x→ y)/F

and x/F u y/F = (x ∧ y)/F.

Recall that a set X with a family T of it's subsets is called a topological space,
denoted by (X, T ), if X, ∅ ∈ T and T is closed under �nite intersections and
arbitrary unions. The members of T are called open sets of X and the complement
of U ∈ T , that is U c, is said to be a closed set. If B is a subset of X, the smallest
closed set containing B is called the closure of B and denoted by B. A subfamily
{Uα} of T is said to be a base of U if for each x ∈ U ∈ T , there exists an α such
that x ∈ Uα ⊆ U, or equivalently, each U ∈ T is the union of members of {Uα}. A
subset P of topological space (X, T ) is said to be a neighborhood of x ∈ X if there
exists an open set U such that x ∈ U ⊆ P. Now, let (A, T ) be a topological space.
We have the following separation axioms in (A, T ):

T0: For each x, y ∈ A and x 6= y, at least one of them has an open neighborhood
not containing the other.

T1: For each x, y ∈ A and x 6= y, there exists two open sets U and V such that
x ∈ U and y /∈ U , and y ∈ V and x /∈ V .

T2: For each x, y ∈ A and x 6= y, both have disjoint open neighborhoods U
and V such that x ∈ U and y ∈ V .

3. Topological semi-hoops

De�nition 3.1. Let T be a topology on semi-hoop (A,�,→,∧, 1) and let ∗ be
one of the operations �,→,∧. Then

(i) (A, ∗, 1) is called right topological semi-hoop if for each a ∈ A, the map
ra : A→ A, de�ned by x→ x∗a is continuous, or equivalently, for any x ∈ A
and each open neighborhood U of x ∗ a, there exists an open neighborhood
V of x such that V ∗ a ⊆ U . In this case, we also call that operation ∗ is
continuous in �rst variable.

(ii) (A, ∗, T ) is called topological semi-hoop, if ∗ : A × A ↪→ A is continuous, or
equivalently, if for any x, y ∈ A and any open neighborhoodW of x∗y, there
exist two open sets U and V such that x ∈ U , y ∈ V and U ∗ V ⊆W .

(iii) (A, T ) is called (right)topological semi-hoop, if (A,�,→,∧, T ) is (right) topo-
logical semi-hoop.
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For U, V ⊆ A we de�ne U � V , U → V and U ∧ V as follows:

U � V = {x� y | x ∈ U, y ∈ V }, U → V = {x→ y | x ∈ U, y ∈ V }

and U ∧ V = {x ∧ y | x ∈ U, y ∈ V }

Example 3.1. (cf. [4]) (i) Let A = {0, a, b, c, 1} and

� 0 a b c 1

0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

x∧y = x�(x→ y). By routine calculations, A with these operations is a bounded
semi-hoop. De�ne the topology T = {∅, {0}, {a, b}, {1, c}, {a, b, c, 1}, A}. Then it
is easy to see that (A, T ) is a topological semi-hoop.

(ii) Let A = {a, b, 1} be a chain. Then de�ne, for any x, y ∈ A, x ∧ y =
min{x, y} and the operations � and → on A as follows:

� 1 a b

1 1 a b
a a a a
b b a a

→ 1 a b

1 1 a b
a 1 1 1
b 1 b 1

It is easy to see that A with these operations is a semi-hoop. We de�ne the
topology T = {∅, {a}, A}. Then by routine calculations, (A,�,→,∧, T ) is a right
topological semi-hoop. But (A,→, T ) is not one topological semi-hoop. Because
1 → a = a ∈ {a} such that A and {a} are two open sets of 1 and a, respectively,
such that A→ {a} = A * {a}.

Theorem 3.2. Let (A,→, T ) be a topological semi-hoop. If {1} is an open set,

then (A, T ) is a topological semi-hoop.

Proof. Let {1} be an open set and x ∈ A. Since (A,→, T ) is a topological semi-
hoop and x→ x = 1 ∈ {1}, there is an open sets U such that x ∈ U , x→ U = {1}
and U → x = {1}, which implies that U = {x}. Hence, T is a discrete topology
on A and so (A, T ) is a topological semi-hoop.

Theorem 3.3. Let (A,�,→,∧, 1) be a semi-hoop and F be a family of �lters

which is closed under intersections. Then there exists a topology T on A such that

(A, T ) is a topological semi-hoop.

Proof. De�ne T = {U ⊆ A | ∀x ∈ U, ∃F ∈ F(A) such that x/F ⊆ U}. For
each x ∈ A and F ∈ F , the set x/F ∈ T , because if y is an arbitrary element
of x/F , then y ∈ y/F = x/F . It is easy to see that T is a topology on A. We
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prove that ∗ ∈ {�,→,∧} is continuous. For this, suppose x∗ y ⊆ U ∈ T such that
∗ ∈ {�,→,∧}. Then for some F ∈ F , (x ∗ y)/F ⊆ U , and so x/F ∗ y/F ⊆ U .
Since x/F and y/F are two open neighborhoods of x and y, respectively, such
that x/F ∗ y/F ⊆ (x ∗ y)/F ⊆ U . Hence, ∗ is continuous. Therefore, (A, T ) is a
topological semi-hoop.

Theorem 3.4. Let (A,�,→,∧, T ) be a topological semi-hoop such that, for any

∅ 6= U ∈ T , 1 ∈ U and a /∈ A. Suppose Aa = A∪{a}. Then there exists a topology

Ta on Aa such that (Aa, Ta) is a topological semi-hoop.

Proof. De�ne the operation u, ⊗ and  on Aa as follows,

x⊗ y =

 x� y if x ∈ A, y ∈ A
a if x ∈ Aa, y = a
a if x = a, y ∈ Aa

, x y =

 x→ y if x ∈ A, y ∈ A
a if x ∈ A, y = a
1 if x = a, y ∈ Aa

x u y = x⊗ (x y)

By routine calculation, we can see that (Aa,⊗, ,u, 1) is a semi-hoop. It is easy
to verify that Ta = {U ∪ {a} | U ∈ T } ∪ {∅} is a topology on Aa. Now, we prove
that (Aa, Ta) is a topological semi-hoop. For this, we prove that ⊗ and  are
continuous.

Let x ⊗ y ∈ U ∪ {a}. In the following cases, we �nd two sets V,W ∈ Ta such
that x ∈ V , y ∈W and V ⊗W ⊆ U ∪ {a}.

Case 1. If x, y ∈ A, then x ⊗ y = x � y ∈ U . Since � is continuous,
there exist V,W ∈ T such that x ∈ V , y ∈ W and x � y ∈ V � W ⊆ U . If
z1 ∈ V ∪ {a} and z2 ∈ W ∪ {a}, then z1 ⊗ z2 ∈ {z1 � z2, a} ⊆ U ∪ {a}. Hence,
V ∪ {a} ⊗W ∪ {a} ⊆ U ∪ {a}.

Case 2. If x = a and y ∈ A, then x = a ∈ {a} ∈ Ta, y ∈ Aa ∈ Ta and
{a} ⊗Aa = {a} ⊆ U ∪ {a}.

Case 3. If x = y = a, then x = y = a ∈ {a} ∈ Ta and {a} ⊗ {a} = {a} ∈
U ∪ {a}.

These Cases prove that (Aa,⊗, Ta) is a topological semi-hoop.
Now, we prove that  is continuous. For this, let x  y ∈ U ∪ {a}. In

the following cases, we �nd two sets V,W ∈ Ta such that x ∈ V , y ∈ W and
V  W ⊆ U ∪ {a}.

Case 1. If x, y ∈ A, then x  y = x → y ∈ U . Since → is continuous, there
exist V,W ∈ T such that x ∈ V , y ∈W and x→ y ∈ V →W ⊆ U . If z1 ∈ V ∪{a}
and z2 ∈ W ∪ {a}, since, for any U ∈ T , 1 ∈ U , then z1  z2 ∈ {z1 → z2, a, 1} ⊆
U ∪ {a}. Hence, V ∪ {a} W ∪ {a} ⊆ U ∪ {a}.

Case 2. If x = a and y ∈ A, then x = a ∈ {a} ∈ Ta, y ∈ Aa ∈ Ta and
{a} Aa = {1} ⊆ U ∪ {a}.

Case 3. If x ∈ A and y = a, then x ∈ Aa ∈ Ta, y = a ∈ {a} ∈ Ta and
Aa  {a} = {a, 1} ⊆ U ∪ {a}.

Case 4. If x = y = a, then x = y = a ∈ {a} ∈ Ta and {a}  {a} = {1} ∈
U ∪ {a}.
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These Cases prove that (Aa, , Ta) is a topological semi-hoop. According to
de�nition of u, since ⊗ and are continuous, it is clear that u is continuous, too.
Therefore, (Aa, Ta) is a topological semi-hoop.

Theorem 3.5. For any n > 2 there exists a topological semi-hoop of order n.

Proof. Let A be a semi-hoop of order n > 1. It is clear that, T = {A, ∅} is a
topology on A, and so (A, T ) is a topological semi-hoop. Now, suppose x /∈ A.
De�ne Ax = A ∪ {x}. Then by Theorem 3.4, there exist the operations u, ⊗,
 and topology Tx on Ax such that (Ax, Tx) is a topological semi-hoop. Since
Tx = {∅, {x}, Ax}, it is clear that Tx is a non-trivial topology on Ax.

Theorem 3.6. For any countable set A such that 1 ∈ A, there exists a topological

semi-hoop algebra on A.

Proof. Consider A = {x0 = 1, x1, x2, . . .} as a countable subset and de�ne the
operation ∧, � and → on A as follows,

xi ∧ xj = xi � xj = xmax{i,j} and xi → xj =

{
1 if i > j
xj if i < j

xi 6 xj if and only if xi → xj = 1.

By routine calculation, we can see that (A,�,→,∧, 1) is a semi-hoop. The set
Fn = {1, x1, . . . , xn}, for any n > 1 is a �lter of A. Let B = {Fn | n > 1}.
By Theorem 3.3, there is a non-trivial topology T on A such that (A, T ) is a
topological semi-hoop.

Theorem 3.7. Let (A,�,→,∧, 1, T ) be a topological semi-hoop and α be a cardi-

nal number. If | A |6 α, then there exists a topological semi-hoop (B,⊗, ,u, 1,U)
such that | B |> α, 1 ∈ U ∈ U and A is a subalgebra of B.

Proof. Let Γ be a collection of a topological semi-hoops (H, ◦, 99K,∩, 1,U) such
that for any A ⊆ H we have ◦ |A= �, 99K|A=→ and ∩ |A= ∧.

The following relation is a partial order on Γ:

(H,◦,99K,∩,1,U)6(K,?,#,u,1,V)⇔ H⊆K, ?|H =◦,# |H =99K,u|H =∩, U⊆V.

Let
∑

= {(Hi, ◦i, 99Ki,∩i, 1,Ui) | i ∈ I} be a chain in Γ. Put H =
⋃
i∈I Hi and

U =
⋃
i∈I Ui. If x and y are two elements of H, since

∑
is a chain, then for some

i ∈ I, x, y ∈ Hi. De�ne x ◦ y = x ◦i y, x 99K y = x 99Ki y and x ∩ y = x ∩i y.
We prove that ◦, 99K and ∩ are operations on H. Suppose x, y ∈ Hi ∩Hj . Since∑

is a chain, Hi ⊆ Hj or Hj ⊆ Hi. Without the lost of generality, assume that
Hi ⊆ Hj . Let ∗ ∈ {◦, 99K,∩}. Then ∗j |Hi= ∗i. So x∗j y = x∗iy. This proves that
∗ is an operation on H. Now, it is easy to see that (H, ◦, 99K,∩, 1) is a semi-hoop
such that ◦ |A= �, 99K|A=→ and ∩ |A= ∧.

On the other hand, since
∑

is a chain, U is a topology on H. We prove that
(H, ◦, 99K,∩, 1,U) is a topological semi-hoop. Let ∗ ∈ {◦, 99K,∩} and x∗y ∈ U ∈ U .
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Then there exists an i ∈ I such that x∗y = x∗i y ∈ U ∈ Ui. Since ∗i is continuous
in (Hi,Ui), there are V,W ∈ Ui such that x ∈ V , y ∈ W and V ∗i W ⊆ U . This
proves that ∗ is continuous in (H,U). Thus, (H, ◦, 99K,∩, 1,U) is an upper bound
for
∑
. By Zorn's Lemma, Γ has a maximal element. Suppose (B,⊗, ,u, 1,U)

is a maximal element of Γ. We prove that | B |> α. If | B |< α, then for some
non-empty set C, | B ∪ C |= α. Take a ∈ C −B and put H = B ∪ {a}. Then by
Theorem 3.4, it is easy to see that H with the following operations

x • y =

 x⊗ y if x ∈ B, y ∈ B
a if x ∈ H, y = a
a if x = a, y ∈ H

xy y =

 x y if x ∈ B, y ∈ B
a if x ∈ B, y = a
1 if x = a, y ∈ H

and x u1 y = x • (xy y)

is a semi-hoop. The set D = U ∪{{a}} is a subbase for a topology V on H. Similar
to the proof of Theorem 3.4, we can see that, (H,V) is a topological semi-hoop.
But (H, •,y,u1,V) is a member of Γ that (B,⊗, ,u, 1,U) < (H, •,y,u1,V),
which is a contradiction. Therefore, | B |> α and A is a subalgebra of B.

Theorem 3.8. Let α be an in�nite cardinal number. Then there is a topological

semi-hoop of order α.

Proof. Let X be a set of cardinality α, 0, 1 ∈ X, A = {x0 = 1, x1, x2, . . .} �
a countable subset of X such that 0 /∈ A. Similar to Theorem 3.6, de�ne the
operation ∧, �, → and 6 on A as follows,

xi ∧ xj = xi � xj = xmax{i,j} and xi → xj =

{
1 if i > j
xj if i < j

xi 6 xj if and only if xi → xj = 1.

By routine calculation, we can see that (A,�,→,∧, 1) is a semi-hoop. The set
Fn = {1, x1, . . . , xn}, for any n > 1 is a �lter of A. Let B = {Fn | n > 1}.
By Theorem 3.3, there is a non-trivial topology T on A such that (A, T ) is a
topological semi-hoop. Now, de�ne the binary operation ⊗,  and u on X as
follows,

x⊗y =


x� y if x ∈ A, y ∈ A
x if x /∈ A, y ∈ A
y if x ∈ A, y /∈ A
0 if x /∈ A, y /∈ A

x y =



x→ y if x ∈ A, y ∈ A
y if x ∈ A, y /∈ A
1 if x /∈ A, y ∈ A
1 if x, y /∈ A, x = y
1 if x, y /∈ A ∪ {0}, x 6= y
1 if x = 0, y /∈ A ∪ {0}
0 if x /∈ A ∪ {0}, y = 0

and x u y =

{
0 if x, y /∈ A ∪ {0}, x 6= y

x⊗ (x y) otherwise.
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By routine calculation, we can see that (X,⊗, ,u, 0, 1) is a bounded semi-hoop
of order α and the set C = T ∪ {{x} | x /∈ A} is a subbase for a topology U on
X. Since {1} /∈ U , U is a non-trivial topology on X. In the following cases we will
show that (X,⊗, ,u,U) is a topological semi-hoop. For this, let x⊗ y ∈ U ∈ C.

Case 1. If x, y ∈ A, then x ⊗ y = x � y ∈ U ∈ T . Since � is continuous in
(A, T ), there are V,W ∈ T containing x, y, respectively, such that V �W ⊆ U .
Hence, V ⊗W ⊆ U , which implies that ⊗ is continuous in (X,U).

Case 2. If x /∈ A and y ∈ A, then x ⊗ y = {x} ⊆ U . Now {x} and A, both,
belong to U and x ∈ {x}, y ∈ A and {x} ⊗A = {x} ⊆ U .

Case 3. If x ∈ A and y /∈ A, then A and {y} are two elements of U such that
x ∈ A, y ∈ {y} and x⊗ y = {y}, and so A⊗ {y} = {y} ⊆ U .

Case 4. If x, y /∈ A, then x ⊗ y = {0} ⊆ U . Then {x} and {y} are two open
sets in U which contains x, y, respectively, and {x} ⊗ {y} = {0} ⊆ U .

These Cases prove that (X,⊗,U) is a topological semi-hoop.
Now, we prove that  is continuous. For this, let x y ∈ U . In the following

cases, we �nd two sets V,W ∈ U such that x ∈ V , y ∈W and V  W ⊆ U .
Case 1. If x, y ∈ A, then x y = x→ y ∈ U ∈ T . Since → is continuous in

(A, T ), there are V,W ∈ T containing x, y, respectively, such that V → W ⊆ U .
Hence, V  W ⊆ U , which implies that  is continuous in (X,U).

Case 2. If x ∈ A and y /∈ A, then x  y = {y} ⊆ U . Thus, A and {y}
are two elements of U such that x ∈ A, y ∈ {y} and x  y = {y}, and so
A {y} = {y} ⊆ U .

Case 3. If x /∈ A and y ∈ A, then x  y = {1} ⊆ U . Now {x} and A, both,
belong to U and x ∈ {x}, y ∈ A and {x} A = {1} ⊆ U .

Case 4. If x, y /∈ A and x = y, then x  y = {1} ⊆ U . Then {x} is an open
set in U which contains x and {x} {x} = {1} ⊆ U .

Case 5. If x, y /∈ A∪{0} and x 6= y, then x y = {1} ⊆ U . Then {x} and {y}
are two open sets in U which contains x, y, respectively, and {x} {y} = {1} ⊆ U .

Case 6. If x = 0 and y /∈ A ∪ {0}, then x y = {1} ⊆ U . Then {0} and {y}
are two open sets in U which contains x, y, respectively, and {x} {y} = {1} ⊆ U .

Case 7. If x /∈ A ∪ {0} and y = 0, then x y = {0} ⊆ U . Then {x} and {0}
are two open sets in U which contains x, y, respectively, and {x} {y} = {0} ⊆ U .

These Cases prove that (X, ,U) is a topological semi-hoop. According to
de�nition of u, since ⊗ and are continuous, then u is continuous, too. Therefore,
there is a topological semi-hoop of order α.

Theorem 3.9. Let α be an in�nite cardinal number. Then there is a right topo-

logical semi-hoop of order α, which is not a topological semi-hoop.

Proof. Let A be a set with cardinal number α such that 0, 1 ∈ A. Consider a
countable subset A1 = {x0 = 1, x1, x2, . . .} of A and de�ne

xi ∧ xj = xi � xj = xmax{i,j} and xi → xj =

{
1 if i > j
xj if i < j
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xi 6 xj if and only if xi → xj = 1

By routine calculations, we can see that (A1,�,→,∧, 1) is a semi-hoop. If
Ui = {xi, xi+1, xi+2, . . .}, then B = {Ui | i = 1, 2, 3, . . .} is a base for a topology
TA1 on A1. We prove that (A1,�,→,∧, 1, TA1) is a right topological semi-hoop.
For this, let xi�xj ∈ U ∈ TA1 . If i 6 j, then xi�xj = xj ∈ U . Since xj ∈ Uj , we
have xj ∈ Uj ∩U , then xi�xj = xi� (Uj ∩U) = Uj ∩U ⊆ U . By the similar way,
if i > j, then xi�xj = xi ∈ U . Since � is commutative, xj �xi ∈ xj � (Ui ∩U) =
Ui∩U ⊆ U . Hence, (A1,�, TA1

), and so (A1,�,∧, TA1
) is a topological semi-hoop.

Now, suppose xi → xj ∈ U ∈ TA1 . If i > j, then xi → xj = 1 ∈ U . Since A1 is
only open neighborhood of {1}, U = A1. Clearly, xj ∈ A1 and xi → A1 ⊆ A1 = U .
If i < j, then xi → xj = xj ∈ U . Since B is a base for TA1

, xj ∈ Uj ⊆ U . Since
i < j, xi → Uj = Uj ⊆ U . Therefore, (A1,→, TA1

) is a right topological semi-
hoop. But this space is not a topological semi-hoop, because x1 ∈ U1, x2 ∈ U2

and x1 → x2 = x2 ∈ U2, but 1 = x2 → x2 ∈ U1 → U2 /∈ U2. Similar to Theorem
3.8, let A with the following operations,

x⊗y =


x� y if x ∈ A1, y ∈ A1

x if x /∈ A1, y ∈ A1

y if x ∈ A1, y /∈ A1

0 if x /∈ A1, y /∈ A1

x y =



x→ y if x ∈ A1, y ∈ A1

y if x ∈ A1, y /∈ A1

1 if x /∈ A1, y ∈ A1

1 if x, y /∈ A1, x = y
1 if x, y /∈ A1 ∪ {0}, x 6= y
1 if x = 0, y /∈ A1 ∪ {0}
0 if x /∈ A1 ∪ {0}, y = 0

and x u y =

{
0 if x, y /∈ A ∪ {0}, x 6= y

x⊗ (x y) otherwise.

Then (A,⊗, ,u, 0, 1) is a bounded semi-hoop. As the proof of Theorem 3.8, we
can prove that B = TA1

∪ {{x} | x /∈ A1} is a subbase for a topology U on A such
that (A,⊗, ,u, 0, 1,U) is a right topological bounded semi-hoop. But  is not
continuous in (A,U), because → is not continuous in (A1, TA1

).

4. Hausdor� topological semi-hoops

Theorem 4.1. Let (A, T ) be a topological semi-hoop and F(A) a basis of T .
Then, for all x ∈ A, x2 = x if and only if (A, T ) is a T0-space.

Proof. (⇒) Let x2 = x, for all x ∈ A. Then xn = x, for all n ∈ N. Suppose
x, y ∈ A and x 6= y. Since F(A) is a basis of T , the �lters 〈x〉 and 〈y〉 are two
open neighborhoods of x and y, respectively. If y ∈ 〈x〉 and x ∈ 〈y〉, then there
exist n,m ∈ N such that xn 6 y and ym 6 x. Hence, x 6 y and y 6 x, and so
x = y, which is a contradiction.
(⇐) Let (A, T ) be a T0-space and x ∈ A. If x2 6= x, then there exists U ∈ F(A)
such that x ∈ U and x2 /∈ U or there exists V ∈ F(A) such that x /∈ V and
x2 ∈ V . But both statements are not correct, because U and V ∈ F(A).
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Theorem 4.2. Let (A, T ) be a topological semi-hoop and U be an open neighbor-

hood of 1. Then,

(i) if for each x ∈ A, U → x is an open neighborhood of x, then (A, T ) is

T0-space,

(ii) if for each x ∈ A, U�x is an open neighborhood of x, then (A, T ) is T0-space.

Proof. (i). Let x, y ∈ A and x 6= y. Then U → x ∈ T and U → y ∈ T . If
x ∈ U → y and y ∈ U → x, then by Proposition 2.2(v), y 6 x and x 6 y. Hence,
x = y, which is a contradiction. Therefore, (A, T ) is T0-space.

(ii). The proof is similar (i).

Theorem 4.3. Let (A,→, T ) be a topological semi-hoop. Then (A,→, T ) is T0-
space if and only if for any 1 6= x ∈ A, there exist U ∈ T such that x ∈ U and

1 /∈ U .

Proof. Let x, y ∈ A and x 6= y. Then x → y 6= 1 or y → x 6= 1. Without the lost
of generality, suppose x→ y 6= 1. Then there exist a U ∈ T such that x→ y ∈ U
and 1 /∈ U . Since→ is continuous, there are P,Q ∈ T such that x ∈ P , y ∈ Q and
P → Q ⊆ U . If x ∈ Q, then 1 = x → x ∈ P → Q ⊆ U , which is a contradiction.
So, x /∈ Q. Hence, (A,→, T ) is T0-space. The proof of converse is clear.

Theorem 4.4. If α is an in�nite cardinal number, then there is a T0 topological

semi-hoop of order α, which it's topology is non-trivial.

Proof. Let (A,�,→,∧, T ) and (X,⊗, ,u,U) be topological semi-hoops in Theo-
rem 3.8. It is clear that U is non-trivial. Let x ∈ X −{1}. If x ∈ A, then for some
n > 1, x /∈ Fn. Hence, x ∈ x/Fn ∈ U and 1 /∈ x/Fn. If x /∈ A, then x ∈ {x} ∈ U
and 1 /∈ {x}. Now, by Theorem 4.3, (X,⊗, ,u,U) is a topological semi-hoop of
order α.

In the next example, we have a topological semi-hoop that is T1-space.

Example 4.2. Let A be a t-semi-hoop such that x2 = x, for all x ∈ A. Suppose
Aa = {x ∈ A | x > a} and B = {Aa | a ∈ A}. We claim that B is a basis of a
topology on A. For this, it is clear that x ∈ Ax, for all x ∈ A. Suppose x ∈ Aa∩Ab,
for a, b ∈ A. Then a 6 x and b 6 x. Since A is a t-semi-hoop, we have a t b 6 x,
and so x ∈ Aatb. Also, if x ∈ Aatb, then a, b 6 a t b 6 x. Hence, x ∈ Aa ∩ Ab.
Thus, Aa ∩ Ab = Aatb. Therefore, B is a basis of a topology T on A. Now, we
prove that (A,�, T ) is a T1 topological semi-hoop. For this, let x, y, c ∈ A such
that x � y ∈ Ac. Then c 6 x � y. By Proposition 2.2(ii), c 6 x � y 6 x, y, then
x, y ∈ Ac. Thus, x � y ∈ Ac � Ac. Let z ∈ Ac � Ac. Then there exist a, b ∈ Ac
such that z = a � b. Since a, b > c, we have a � b > c � c. Then by assumption,
a � b > c. Hence, z = a � b ∈ Ac, and so Ac � Ac ⊆ Ac. Then (A,�, T ) is a
topological semi-hoop. Now, suppose x, y ∈ A such that x 6= y. Then x ∈ Ax and
y ∈ Ay. If y ∈ Ax and x ∈ Ay, then x 6 y and y 6 x. This implies that x = y,
which is a contradiction. Therefore, (A,�, T ) is a T1 topological semi-hoop.
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Theorem 4.5. Let (A,→, T ) be a topological semi-hoop. Then (A, T ) is a T1-
space if and only if it is a T0-space.

Proof. Let (A, T ) be a T0-space and x 6= y. Then x → y 6= 1 or y → x 6= 1.
Without the lost of generality, suppose x → y 6= 1. Then there exist a U ∈ T
such that x → y ∈ U and 1 /∈ U or x → y /∈ U and 1 ∈ U . First assume that
x → y ∈ U and 1 /∈ U . Since → is continuous, there are P,Q ∈ T such that
x ∈ P , y ∈ Q and P → Q ⊆ U . If x ∈ Q, then 1 = x → x ∈ P → Q ⊆ U , which
is a contradiction. Similarly, y /∈ P . Now, if 1 ∈ U and x → y /∈ U , then since
1 = x → x = y → y ∈ U , there are V,W ∈ T such that x ∈ V and y ∈ W such
that V → V ⊆ U and W → W ⊆ U . If y ∈ V , then x→ y ∈ V → V ⊆ U , which
is a contradiction. Similarly, x /∈ W . Therefore, (A, T ) is a T1-space. The proof
of converse is clear.

Corollary 4.6. If α is an in�nite cardinal number, then there is a T1 topological

semi-hoop of order α which it's topology is non-trivial.

Proof. By Theorems 4.4 and 4.5, the proof is clear.

Theorem 4.7. Let (A,→, T ) be a topological semi-hoop. Then the following state-

ments are equivalent:

(i) (A,→, T ) is Hausdor�.

(ii) {1} is closed.

(iii) for any 1 6= x ∈ A, there exist two open sets U and V of 1 and x, respectively,
such that U ∩ V = ∅.

(iv) (A,→, T ) is T1-space.

Proof. (i)⇒ (ii). Since A is Hausdor�, it is clear that {1} is closed.
(ii) ⇒ (iii). Let {1} be closed and x 6= 1. Then 1 → x = x ∈ A − {1} ∈ T .

Since → is continuous, there exist two open neighborhoods U and V of 1 and x,
respectively, such that U → V ⊆ A − {1}. If z ∈ U ∩ V , then 1 = z → z ∈ U →
V ⊆ A− {1}, which is a contradiction. Therefore, U ∩ V = ∅.

(iii)⇒ (iv). Let x, y ∈ A and x 6= y. Then x→ y 6= 1 or y → x 6= 1. Without
the lost of generality, suppose x → y 6= 1. By (iii), there exist two disjoint open
sets U and V which contain x → y and 1, respectively. Since → is continuous,
there are P,Q ∈ T such that x ∈ P , y ∈ Q and P → Q ⊆ U . If x ∈ Q, then
1 = x → x ∈ P → Q ⊆ U , which is a contradiction. So, x /∈ Q. Similarly, y /∈ P .
Hence, (A,→, T ) is T1-space.

(iv) ⇒ (i). Let x, y ∈ A and x 6= y. Then x → y 6= 1 or y → x 6= 1. Without
the lost of generality, suppose x → y 6= 1. Since T is a T1-space, there exist two
open neighborhoods U and V of x → y and 1, respectively, such that 1 /∈ U and
x → y /∈ V . Since → is continuous, there exist P,Q ∈ T such that x ∈ P , y ∈ Q
and P → Q ⊆ U . If z ∈ P ∩ Q, then 1 = z → z ∈ U , which is a contradiction,
and so P ∩Q = ∅. By the similar way, other case is clear. Therefore, (A,→, T ) is
Hausdor�.
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Corollary 4.8. If α is an in�nite cardinal number, then there is a Hausdor�

topological semi-hoop of order α, which it's topology is non-trivial.

Proof. By Corollary 4.6 and Theorem 4.7, the proof is clear.

Suppose A is a semi-hoop algebra and F is a proper �lter of A. De�ne
∑

=
{U ∈ F(A) | ∃ F ∈ F(A) such that F ⊆ U} and f :

∑
↪→ F(A/F ) is a map such

that f(U) = U/F , for all U ∈
∑
. Then it is easy to prove that f is a one to one

corresponding among
∑

and F(A/F ).
Let T be a topology on semi-hoop algebra A, F ∈ F(A) and π : A ↪→ A/F be

canonical epimorphism. Then the set T̃ = {U ⊆ A/F | π−1(U) ∈ T } is a topology
on A/F . T̃ is called quotient topology.

It is easy to see that πF : (A, T ) ↪→ (A/F, T̃ ) is continuous. Also, it is easy to
prove that if ∗ ∈ {�,→,∧} and (A, ∗, T ) is a topological semi-hoop algebra, then

(A/F, ∗, T̃ ) is a topological quotient semi-hoop algebra provided πF : A ↪→ A/F
is an open map.

Proposition 4.9. Let (A,→, T ) be a topological semi-hoop, F ∈ F(A) and T̃ be

quotient topology on A/F . If πF : A ↪→ A/F is an open map, then

(i) F is open if and only if (A/F, T̃ ) is discrete.

(ii) F is closed if and only if (A/F,→, T̃ ) is Hausdor�.

Proof. (i). Let F be open. Since πF : A ↪→ A/F is an open map, the set

πF (F ) = 1/F belongs to T̃ . Since (A/F,→, T̃ ) is a topological semi-hoop, by

Theorem 3.2, (A/F, T̃ ) is discrete. Conversely, suppose (A/F, T̃ ) is discrete. Then
1/F is an open set. Since πF : A ↪→ A/F is continuous, F = πF

−1(1/F ) ∈ T .
(ii). (⇒) By assumption, F is closed, then F c is open. Thus, for any x, y ∈ A,

if x → y ∈ F c, then there are two open neighborhood U and V of x and y,
respectively, such that U → V ⊆ F c, because → is continuous. Also, since π is
open, so π(U) and π(V ) are two open neighborhoods of x/F and y/F , respectively,
such that π(U) → π(V ) ⊆ π(U → V ) ⊆ π(F c). If z/F ∈ π(U) ∩ π(V ), then
1/F = z/F → z/F ∈ π(U)→ π(V ) ⊆ π(F c), which is a contradiction. Therefore,

(A/F,→, T̃ ) is Hausdor�.
(⇐) Since A/F is Hausdor�, the set {1/F} is closed in A/F , and so F =

π−1(1/F ) is closed in A.

5. Connected topological semi-hoop

A topological space A is said to be disconnected if it is the union of two disjoint
non-empty open sets. Otherwise, A is said to be connected. Also, (A, T ) is called
locally connected at x ∈ A, if for every open subset V containing x, there exists
a connected, open subset U with x ∈ U ⊆ V . Connected component, a maximal
subset of a topological space that can not be covered by the union of two disjoint
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open sets. The components of any topological space X form a partition of X,
they are disjoint, non-empty, and their union is the whole space. A topological
space X is totally disconnected if the connected components in X are the one-point
sets. Also, we know that the image of a connected space under a continuous map
is connected and a �nite cartesian product of connected spaces is connected (cf.
[10]).

Proposition 5.1. Let (A, T ) be a topological semi-hoop. If C is connected com-

ponents of 1, then C is a closed �lter of A.

Proof. Let C be connected component of 1 and x ∈ C. Since � is continuous, x�C
is a connected set which contains x. Since x ∈ (x�C)∩C, the set (x�C)∪C is a
connected set containing 1. Hence, (x�C)∪C ⊆ C. This implies that x�C ⊆ C,
so C � C ⊆ C. Now, suppose x 6 y and x ∈ C, then 1 = x → y ∈ C → y.
Since → is continuous, C → y is a connected set. Hence, C → y ⊆ C. So,
y = 1 → y ∈ C → y ⊆ C. Therefore, C is a �lter of A. Since C is component,
clearly it is closed.

Recall a semi-hoop A is locally �nite if only �lters of A are {1} and A.

Theorem 5.2. Let (A, T ) be a topological locally �nite semi-hoop. Then (A, T )
is connected or totally disconnected.

Proof. Suppose (A, T ) is not connected. Let C be connected component of 1.
Then by Proposition 5.1, C is a closed �lter of A. Since (A, T ) is not connected,
C = {1}. Let Cx be connected component of x ∈ A. Since → is continuous,
x → Cx is a connected set containing 1 = x → x. Hence, x → Cx ⊆ C = {1}.
Thus, x→ Cx = 1. By the similar way, Cx → x = 1. This implies that Cx = {x},
and so (A, T ) is totally disconnected.

Lemma 5.3. Let A be a semi-hoop and F ∈ F(A). Then x� a = y� b, for some

a, b ∈ F if and only if x/F = y/F in A/F .

Proof. (⇒) Let x�a = y�b, for some a, b ∈ F . Since x�a 6 y�b, by Proposition
2.2(i), a 6 x → (y � b). Since F ∈ F(A) and a ∈ F , by (F2), x → (y � b) ∈ F .
Moreover, by Proposition 2.2(ii) and (v), y � b 6 y, and so x→ (y � b) 6 x→ y.
Since F ∈ F(A) and x → (y � b) ∈ F , by (F2), x → y ∈ F . By the similar way,
y → x ∈ F . Therefore, x/F = y/F .
(⇐) Let x/F = y/F , for x, y ∈ A. Then x → y ∈ F and y → x ∈ F . Thus,
there exists a ∈ F such that y → x = a. Since a → (y → x) = 1, by (SH3),
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(a� y)→ x = 1, and so a� y 6 x. Then

[a� (x→ y)]→ [x→ (a� y)] by (SH3)

= (x→ y)→ [a→ (x→ (a� y))] by (SH3)

= (x→ y)→ [(x� a)→ (a� y))] by (SH3)

= (x→ y)→ [x→ (a→ (a� y))] by (SH3)

= (x� (x→ y))→ (a→ (a� y)) by Proposition 2.2(iv) and (vi)

> y → (a→ (a� y)) by (SH3)

= (a� y)→ (a� y)

= 1

Then a � (x → y) 6 x → (a � y). Since F ∈ F(A), a, x → y ∈ F , by (F1),
a� (x→ y) ∈ F and by (F2), x→ (a� y) ∈ F . Then there exists b ∈ F such that
x→ (a� y) = b. Thus, b→ [x→ (a� y)] = 1. By (SH3), (b� x)→ (a� y) = 1,
and so b�x 6 a�y. By the similar way, a�y 6 b�x. Therefore, a�y = b�x.

Proposition 5.4. Let (A, T ) be a topological semi-hoop and C be a connected

component of 1 in A. Then the following statements hold,

(i) if D is a closed subset of A/C such that π−1(D) is disconnected, then D is

disconnected,

(ii) if (A, T ) is disconnected, then (A/C, T̃ ) is disconnected.

Proof. (i). π−1(D) = X∪Y , whereX, Y are two non-empty disjoint closed subsets
of π−1(D) and hence, A. It is clear that X ⊆ π−1(π(X)). Let z ∈ π−1(π(X)).
Then there exists x ∈ X such that x/F = z/F . By Lemma 5.3, x � a = z � b,
for some a, b ∈ C. Given Cx and Cz, two connected component of x and z,
respectively. Then x�a ∈ x�C ⊂ Cx and z�b ∈ z�C ⊂ Cz. Since z�b = x�a,
Cx ∩ Cz 6= ∅. Hence, Cx ∪ Cz is connected. This means that Cx = Cz, and so
z ∈ X. Therefore, X = π−1(π(X)). Since X is closed in A, π(X) is closed in A/C.
By the similar way, Y = π−1(π(Y )) and π(Y ) is a closed subset of A/C. On the
other hand, π−1(π(X) ∩ π(Y )) = X ∩ Y = ∅ implies that π(X) ∩ π(Y ) = ∅. So,
D = π(X) ∪ π(Y ), where π(X) and π(Y ) are two disjoint closed subsets of A/C.
Hence, D is disconnected.

(ii). Let (A, T ) be disconnected. Since π−1(A/C) = A, by (i), (A/C, T̃ ) is
disconnected.

Theorem 5.5. Let (A, T ) be a topological semi-hoop, C be a connected component

of 1 in A and π : A→ A/C be open canonical epimorphism. Then A/C is totally

disconnected.

Proof. Let C be the connected component of 1 in A. Then by Proposition 5.1,
C is a closed �lter of A. Let K be a connected component of 1/C in A/C.
If 1/C 6= x/C, for some x/C ∈ A/C, then C is a proper subset of π−1(K).
Hence, π−1(K) is not connected. Since K is closed in A/C, by Proposition 5.4,
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K is disconnected, which is contradiction. Therefore, K = {1}. Suppose Kx is
connected component of x/C in A/C. Since → is continuous in A/C, Kx → x/C
is connected and 1/C ∈ Kx → x/C. Then Kx → x/C ⊆ K = {1/C}. Similarly,
x/C → Kx ⊆ K = {1/C}. Hence, for each y/C ∈ Kx, y/C → x/C = 1/C and
x/C → y/C = 1/C. So, x/C = y/C. This implies that Kx = {x/C}. Therefore,
A/C is totally disconnected.
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On some generalized ideals in ternary semigroups

Mohammad Yahya Abbasi and Sabahat Ali Khan

Abstract. We characterize the relationship between minimal m-right, minimal (p, q)-lateral,

minimal n-left ideal and m-right simple, (p, q)-lateral simple, n-left simple ternary semigroups.

Further, some existing results of regular ternary semigroups are studied.

1. Preliminaries

The idea of invesigation of n-ary algebras i.e., the sets with one n-ary operation
was given by Kasner [5]. Investigation of ideals in ternary semigroup was initiated
by Sioson [8]. He also de�ned regular ternary semigroups.

A non-empty set S with a ternary operation S × S × S → S, written as
(x1, x2, x3) 7→ [x1, x2, x3], is called a ternary semigroup if it satis�es the following
identity, for any x1, x2, x3, x4, x5 ∈ S,

[[x1x2x3]x4x5] = [x1[x2x3x4]x5] = [[x1x2[x3x4x5]].

For any positive integersm and n withm 6 n and any elements x1, x2, . . . , x2n+1

of a ternary semigroup, we can write

[x1x2 . . . x2n+1] = [x1x2 . . . .[[xmxm+1xm+2]xm+3xm+4] . . . x2n+1].

Example 1.1. [1] The set

S =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
is a ternary semigroup under matrix multiplication.

De�nition 1.2. A non-empty subset I of a ternary semigroup S is called:
• a left ideal of S if SSI ⊆ I,
• a lateral ideal of S if SIS ⊆ I,
• a right ideal of S if ISS ⊆ I,
• a two-sided ideal if it is left and right ideal of S,
• an ideal of S if I is a left, right and lateral ideal of S.

An ideal I of a ternary semigroup S is called proper if I 6= S and idempotent

if III = I.

2010 Mathematics Subject Classi�cation: 20N10, 06B10
Keywords: Ternary semigroup, generalized ideal.
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Proposition 1.3. Let S be a ternary semigroup and a ∈ S. Then the principal

(1) left ideal generated by ′a′ is given by L(a) = SSa ∪ {a}

(2) right ideal generated by ′a′ is given by R(a) = aSS ∪ {a}

(3) lateral ideal generated ′a′ is given by M(a) = SaS ∪ SSaSS ∪ {a}

(4) ideal generated by ′a′ is given by I(a) = aSS ∪ SaS ∪ SSaSS ∪ SSa ∪ {a}.

De�nition 1.4. An element a in a ternary semigroup S is called regular if there
exists an element x ∈ S such that axa = a.

2. Main results

De�nition 2.1. Let S be a ternary semigroup. Then a ternary subsemigroup
• R is called an m-right ideal of S if RS2m ⊆ R.
• M is called a (p, q)-lateral ideal of S if (SpMSq ∪ Sp+1MSq+1) ⊆M .
• L is called an n-left ideal of S if S2nL ⊆ L.
where m,n, p, q are positive integers and p+ q is an even positive integer.

S is called anm-right (resp. (p, q)-lateral, n-left) simple if S is a uniquem-right
(resp. (p, q)-lateral, n-left) ideal of S.

Example 2.2. Let S be a set of all strictly lower triangular matrices of order 6
over Z−0 , the set of all non-positive integers, i.e.,

S = {(aij)6×6 | aij = 0 if i 6 j and aij ∈ Z−0 if i > j}.

Then S is a ternary semigroup under the usual multiplication of matrices over
Z−0 while S is not a semigroup under the same operation. It is easy to see that

Mgen = {(aij) ∈ S : a43 = a ∈ Z−0 and aij = 0 otherwise}.

is a ternary subsemigroup of S and Mgen is a (3, 1)-lateral ideal of S. Now

SMgenS = {(aij) | a51, a52, a61, a62 ∈ Z−0 and aij = 0 otherwise} * Mgen.

Therefore Mgen is not a lateral ideal of S.

Example 2.3. Let S be a set of all strictly upper triangular matrices of order 7
over Z−0 , i.e.,

S = {(aij)7×7 | aij = 0 if i > j and aij ∈ Z−0 if i < j}.

Then S is a ternary semigroup under the usual multiplication of matrices over Z−0
while S is not a semigroup under the same operation. Then it is easy to see that

M = {(aij) ∈ S | a45 ∈ Z−0 and aij = 0 otherwise}
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is a ternary subsemigroup of S andM is a (3, 3)-lateral ideal of S. Now

SMS = {(aij) ∈ S | a16, a17, a26, a27, a36, a37 ∈ Z−0 and aij = 0 otherwise} * M,

S2MS2 ∪ S3MS3 = {(aij) ∈ S | a17, a27 ∈ Z,
0 and aij = 0 otherwise} * M,

S3MS ∪ S4MS2 = {(aij) ∈ S | a16, a17 ∈ Z−0 and aij = 0 otherwise} * M.

ThereforeM is not an (1, 1)-lateral, (2, 2)-lateral and (3, 1)-lateral ideal of S.

Remark 2.4. We know that for a right ideal R, a lateral ideal M and a left ideal
L of a ternary semigroup S, RML ⊆ R ∩ M ∩ L. But this result is not true
for an m-right ideal R, an (p, q)-lateral ideal M and an n-left ideal L of a ternary
semigroup S.

Lemma 2.5. Let S be a ternary semigroup.

(1) Let {Ri : i ∈ I} be a family of m-right ideals of S. Then
⋂

i∈I Ri is also an

m-right ideal of S if
⋂

i∈I Ri 6= ∅.

(2) Let {Mi : i ∈ I} be a family of (p, q)-lateral ideals of S. Then
⋂

i∈I Mi is also

a (p, q)-lateral ideal of S if
⋂

i∈I Mi 6= ∅.

(3) Let {Li : i ∈ I} be a family of n-left ideals of S. Then
⋂

i∈I Li is also an n-left
ideal of S if

⋂
i∈I Li 6= ∅.

Theorem 2.6. Let S be a ternary semigroup. Then

(1) Every m-right ideal is an (m+m1)-right ideal of S, where m1 is a non-negative

integer.

(2) Every (p, q)-lateral ideal is a (p+ p1, q + q1)-lateral ideal of S, where p1 and

q1 are non-negative integers and p1 + q1 is even.

(3) Every n-left ideal is an (n+ n1)-left ideal of S, where n1 is a non-negative

integer.

Proof. (2). We have

Sp+p1MSq+q1 ∪ Sp+p1+1MSq+q1+1 ⊂ Sp+p1−2MSq+q1−2 ∪ Sp+p1−1MSq+q1−1

⊂ . . . ⊂ Sp+1MSq+1 ∪ SpMSq ⊂M,

if p1, q1 are odd, and

Sp+p1MSq+q1 ∪ Sp+p1+1MSq+q1+1 ⊂ . . . ⊂ SpMSq ∪ Sp+1MSq+1 ⊂M,

if p1, q1 are even.
Hence in all the two cases, M is a (p+ p1, q + q1)-lateral ideal of S.
Proofs of (1) and (3) are similar.

Corollary 2.7. Let S be a ternary semigroup and A be its ternary subsemigroup.

If A is a (p, q)-lateral ideal of S. Then, for any positive integer n:

(1) A will be an (np, nq)-lateral ideal of S.

(2) A will be a (pn, qn)-lateral ideal of S.
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Lemma 2.8. For any non-empty subset A of a ternary semigroup S

(1) AS2m is an m-right ideal of S,

(2) SpASq ∪ Sp+1ASq+1 is a (p, q)-lateral ideal of S,

(3) S2nA is an n-left ideal of S.

Lemma 2.9. For any non-empty subset A of a ternary semigroup S

(1) (A∪A3∪A5∪ . . .∪A2m−1)∪AS2m is the smallest m-right ideal of S containing

A,

(2) (A∪A3∪A5∪. . .∪Ap+q−1)∪(Sp+1ASq+1∪SpASq) is the smallest (p, q)-lateral
ideal of S containing A,

(3) (A∪A3 ∪A5 ∪ . . .∪A2n−1)∪ S2nA is the smallest n-left ideal of S containing

A,

where m,n, p, q are positive integers and p+ q is an even positive integer.

Proof. (1). Let R = (
⋃m

i=1 A
2i−1)∪ AS2m and x, y, z ∈ R. Clearly A ⊆ R.

If x, y, z ∈
⋃m

i=1 A
2i−1, then xyz ∈ Ar. So, xyz ∈

⋃m
i=1 A

2i−1 for r 6 2m − 1,
and we have xyz ∈ AS2m for r > 2m− 1.

If x, y, z ∈ AS2m, then obviously xyz ∈ AS2m. Therefore R is a ternary
subsemigroup of S.

To show R is an m-right ideal of S. We have

RS2m = ((
⋃m

i=1 A
2i−1) ∪AS2m)S2m = (

⋃m
i=1 A

2i−1)S2m ∪ (AS2m)S2m

⊆ AS2m ⊆ R.

Finally it remains to prove that R is the smallest m-right ideal of S containing A.
For this suppose that R1 is an m-right ideal of S containing A. Then

R = (
⋃m

i=1 A
2i−1) ∪AS2m ⊆ (

⋃m
i=1 R

2i−1
1 ) ∪R1S

2m ⊆ R1 ∪R1 = R1.

Hence R is the smallest m-right ideal of S containing A.

(2). Let M = (
⋃m

i=1 A
2i−1 ∪ (SpASq) ∪ Sp+1ASq+1), where p+ q = 2m, and

x, y, z ∈ M . Clearly A ⊆ M . Now we have following two cases:
Case 1: x, y, z ∈

⋃m
i=1 A

2i−1, then xyz ∈ An. If n 6 p + q − 1, then we have
xyz ∈ (

⋃m
i=1 A

2i−1). If n > p+ q − 1, then xyz ∈ (SpASq ∪ Sp+1ASq+1).
Case 2: x, y, z ∈ SpASq ∪ Sp+1ASq+1. Then, as it is easy to show, xyz ∈

SpASq ∪ Sp+1ASq+1.
Therefore M is a ternary subsemigroup of S. It is easy verify that M is a

(p, q)-lateral ideal of S.
Finally it remains to prove that M is the smallest (p, q)-lateral ideal of S

containing A. For this suppose that M1 is a (p, q)-lateral ideal of S containing A.
Then

M = (
⋃p+q−1

i=1 Ai ∪ (SpASq ∪ Sp+1ASq+1))

⊆ (
⋃p+q−1

i=1 M i
1 ∪ (SpM1S

q ∪ Sp+1M1S
q+1)) ⊆M1.
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Hence M is the smallest (p, q)-lateral ideal of S containing A.
The proof of (3) is analogous.

Furthermore, for any a ∈ S we have:

R(a) = aS2m ∪ {a, a3, a5, . . . , a2m−1} is an m-right ideal generated by a;

M(a) = (Sp+1aSq+1 ∪ SpaSq) ∪ {a, a3, a5, . . . , ap+q−1} is a (p, q)-lateral ideal
generated by a;

L(a) = S2na ∪ {a, a3, a5, . . . , a2n−1} is an n-left ideal generated by a.

Theorem 2.10. Let A and B be ternary subsemigroups of S such that A ⊆ B
and B3 = B. If A is a (p, q)-lateral ideal of S, then it is a lateral ideal of B.

Proof. Suppose A and B are two ternary subsemigroups of S such that A ⊆ B and
B3 = B. If A is an (p, q)-lateral ideal of S, then Sp+1ASq+1 ∪ SpASq ⊆ A. Now
we have BAB ∪B2AB2 = BAB3 ∪B3BABB3 or B3AB ∪B3BABB3. Proceed
in this way, we get BAB ∪B2AB2 = BpABq ∪Bp+1ABq+1. Now

BAB ∪B2AB2 = BpABq ∪Bp+1ABq+1 ⊆ SpASq ∪ Sp+1ASq+1 ⊆ A.

This shows that A is a lateral ideal of B.

Corollary 2.11. If S is a ternary semigroup such that S3 = S, then every its

(p, q)-lateral ideal is its lateral ideal.

Corollary 2.12. An idempotent (p, q)-lateral ideal of a ternary semigroup S is

its lateral ideal.

Theorem 2.13. Let S be a ternary semigroup. Then:

(1) An m-right ideal R is minimal if and only if aS2m = R for all a ∈ R.

(2) A (p, q)-lateral ideal M is minimal if and only if (SpaSq ∪Sp+1aSq+1) = M
for all a ∈M .

(3) An n-left ideal L is minimal if and only if S2na = L for all a ∈ L.

Proof. (2) Suppose that a (p, q)-lateral ideal M is minimal. Let a ∈ M . Then
SpaSq ∪ Sp+1aSq+1 ⊆ SpMSq ∪ Sp+1MSq+1 ⊆ M . By Lemma 2.8(2), we have
SpaSq ∪ Sp+1aSq+1 is a (p, q)-lateral ideal of S. As M is minimal (p, q)-lateral
ideal of S therefore SpaSq ∪ Sp+1aSq+1 = M .

Conversely, suppose that SpaSq ∪ Sp+1aSq+1 = M for all a ∈ M . Let M
′

be a (p, q)-lateral ideal of S contained in M . Let m ∈ M
′
. Then m ∈ M . By

assumption, we have SpmSq ∪ Sp+1mSq+1 = M for all m ∈ M . Now M =
SpmSq ∪ Sp+1mSq+1 ⊆ SpM

′
Sq ∪ Sp+1M

′
Sq+1 ⊆ M

′
. This implies M ⊆ M

′
.

Thus, M = M
′
. Hence, M is a minimal (p, q)-lateral ideal of S.

Proofs of (1) and (3) are similar.
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Theorem 2.14. Let S be a ternary semigroup. Then:

(1) S is an m-right simple if and only if aS2m = S for all a ∈ S.

(2) S is a (p, q)-lateral simple if and only if SpaSq ∪ Sp+1aSq+1 = S for all

a ∈ S.

(3) S is an n-left simple if and only if S2na = S for all a ∈ S.

Proof. (2) Assume that S is a (p, q)-lateral simple, we have that S is a minimal
(p, q)-lateral ideal of S. By the Theorem 2.13(2), SpaSq ∪ Sp+1aSq+1 = S for all
a ∈ S.

Conversely, suppose that SpaSq ∪ Sp+1aSq+1 = S for all a ∈ S. By the
Theorem 2.13(2), S is a minimal (p, q)-lateral ideal of S, and therefore S is a
(p, q)-lateral simple.

Proofs of (1) and (3) are analogous.

Lemma 2.15. If R is an m-right ideal of S and T is a ternary subsemigroup of

S and if T is an m-right simple such that T ∩R 6= ∅, then T ⊆ R.

Proof. Assume that T is an m-right simple such that T ∩ R 6= ∅. Let a ∈ T ∩ R.
By Lemma 2.8, we have aT 2m ∩ T is an m-right ideal of T . This implies that
aT 2m ∩ T = T . Hence T ⊆ aT 2m ⊆ RS2m ⊆ R, so T ⊆ R.

Lemma 2.16. If M is a (p, q)-lateral ideal of S and T is a ternary subsemigroup

of S and if T is a (p, q)-lateral simple such that T ∩M 6= ∅, then T ⊆M .

Proof. Proof is similar to the Lemma 2.15.

Lemma 2.17. If L is an n-left ideal of S and T is a ternary subsemigroup of S
and if T is an n-left simple such that T ∩ L 6= ∅, then T ⊆ L.

Proof. Proof is similar to the Lemma 2.15.

Theorem 2.18. Let S be a ternary semigroup. Then:

(1) If an m-right ideal R of S is an m-right simple ternary semigroup, then R
is a minimal m-right ideal of S.

(2) If a (p, q)-lateral ideal M of a ternary semigroup S is a (p, q)-lateral simple

ternary semigroup, then M is a minimal (p, q)-lateral ideal of S.

(3) If an n-left ideal L of a ternary semigroup S is an n-left simple ternary

semigroup, then L is a minimal n-left ideal of S.

Proof. (2) Assume that M is a (p, q)-lateral simple. Let A be a (p, q)-lateral ideal
of S such that A ⊆M . Then A∩M 6= ∅, it follows from Lemma 2.16, that M ⊆ A.
Hence A = M , so M is a minimal (p, q)-lateral ideal of S.

(1) and (3) can be proved analogously.
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Theorem 2.19. Let S be a regular ternary semigroup. Then:

(1) Every m-right ideal is a right ideal.

(2) Every (p, q)-lateral ideal is a lateral ideal.

(3) Every n-left ideal is a left ideal.

Proof. (2) Let M be a (p, q)-lateral ideal of S and a ∈ SMS ∪ SSMSS. Then
there exists x1, x2, x3, x4, x5, x6 ∈ S and m1,m2 ∈ M such that a = x1m1x2

or a = x3x4m2x5x6. Since S is regular, for any m1,m2 ∈ M there exists
x7, x8 ∈ S such that m1 = m1x7m1 or m2 = m2x8m2. Hence a = x1m1x7m1x2

or a = x3x4m2x8m2x5x6. Therefore a ∈ SMSMS ⊆ S3MS or a ∈ S2MSMS2 ⊆
S4MS2. Thus, by the property of regularity, we see that a ∈ SpMSq or a ∈
Sp+1MSq+1 implies a ∈ SpMSq ∪ Sp+1MSq+1. As M is a (p, q)-lateral ideal, it
implies a ∈ SpMSq ∪ Sp+1MSq+1 ⊆ M . Therefore SMS ∪ S2MS2 ⊆ M and
hence M is a lateral ideal of S.

Proofs of (1) and (3) are similar.

Theorem 2.20. If a ternary semigroup S is an m-right and an n-left simple.

Then it is regular.

Proof. Suppose that S is an m-right and an n-left simple. Let a ∈ S. Then by
the Theorem 2.14(1) and (3), aS2m = S and S2na = S. Now

a ∈ S = aS2m = aS2(m−1)S2 = aS2(m−1)SS2na = aS2(m−1)S3S2(n−1)a ⊆ aSa.

This shows that a ∈ aSa. Hence for any a ∈ S there exists x ∈ S such that a =
axa. Therefore a is regular. Hence S is regular.
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Unit and unitary Cayley graphs

for the ring of Gaussian integers modulo n

Ali Bahrami and Reza Jahani-Nezhad

Abstract. Let Zn[i] be the ring of Gaussian integers modulo n and G(Zn[i]) and GZn[i] be the

unit graph and the unitary Cayley graph of Zn[i], respectively. In this paper, we study G(Zn[i])

and GZn[i]. Among many results, it is shown that for each positive integer n, the graphs G(Zn[i])

and GZn[i] are Hamiltonian. We also �nd a necessary and su�cient condition for the unit and

unitary Cayley graphs of Zn[i] to be Eulerian.

1. Introduction

Finding the relationship between the algebraic structure of rings using properties
of graphs associated to them has become an interesting topic in the last years.
There are many papers on assigning a graph to a ring, see [1], [3], [4], [5], [7], [6],
[8], [10], [11], [12], [17], [19], and [20].

Let R be a commutative ring with non-zero identity. We denote by U(R),
J(R) and Z(R) the group of units of R, the Jacobson radical of R and the set of
zero divisors of R, respectively. The unitary Cayley graph of R, denoted by GR,
is the graph whose vertex set is R, and in which {a, b} is an edge if and only if
a − b ∈ U(R). The unit graph G(R) of R is the simple graph whose vertices are
elements of R and two distinct vertices a and b are adjacent if and only if a + b
in U(R) . There are many papers where these two concepts have been discussed.
See for examples [4], [8], [19], [20], [22] and [23].

The following facts are well known, see for examples Silverman (2006), [2] and
[16]. The set of all complex numbers a + ib, where a and b are integers, form an
Euclidean domain with the usual complex number operations and Euclidian norm
N(a+ib) = a2+b2. This domain will be denoted by Z[i] and will be called the ring
of Gaussian integers. Let n be a natural number and let (n) be the principal ideal
generated by n in Z[i], and let Zn = {0, 1, 2, . . . , n− 1} be the ring of integers

modulo n. Then the factor ring Z[i]
(n) is isomorphic to Zn[i], which implies that

Zn[i] is a principal ideal ring. The ring Zn[i] is called the ring of Gaussian integers

modulo n. Let p be a prime integer. Then p ≡ 1(mod 4) if and only if there are
integers a , b such that p = a2+ b2 if and only if there exists an integer c such that

2010 Mathematics Subject Classi�cation: 13A99, 16U99, 05C50
Keywords: Unit graph, unitary Cayley graph, Gassian integers, girth, diameter, Eulerian
graph, Hamiltonian graph
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c2 ≡ −1(mod p). Moreover, if n is a natural number, then there exist integers a
and b, relatively prime to p such that pn = a2 + b2, and there exists an integer z
such that z2 ≡ −1(mod pn). It was shown that a+ ib is a unit in Zn[i] if and only

if a2 + b
2
is a unit in Zn. If n =

∏s
j=1 a

kj
j is the prime power decomposition of

the positive integer n, then Zn[i] is the direct product of the rings Z
a
kj
j

[i]. Also

if m = tk for some prime t and positive integer k, then Zm[i] is local ring if and
only if t = 2 or t ≡ 3(mod 4).

In this article, some properties of the graphs G(Zn[i]) and GZn[i] are studied.
The diameter, the girth, chromatic number, clique number and independence num-
ber, in terms of n, are found. Moreover, we prove that for each n > 1, the graphs
G(Zn[i]) and GZn[i] are Hamiltonian. We also �nd a necessary and su�cient
condition for the unit and unitary Cayley graphs of Zn[i] to be Eulerian.

A local ring is a ring with exactly one maximal ideal. A local ring with
�nitely many maximal ideals is called semi− local ring. For classical theorem and
notations in commutative algebra, the interested reader is referred to [9].

Throughout this paper all graphs are simple (with no loop and multiple edges).
For a graph G, V (G) and E(G) denote the vertex set and edge set of G respectively.
The set of vertices adjacent to a vertex v in the graph G is denoted by N(v). The
degree deg(v) of a vertex v in the graph G is the number of edges of G incident
with v. The graph G is called k−regular if all vertices of G have degree k, where k
is a �xed positive integer. A walk (of length k) in a graph G between two vertices
a, b is an alternating sequence a = v0, e1, v1, e2, . . . , ek, vk = b of vertices and edges
in G, denoted by

a = v0 −→ v1 −→ . . . −→ vk = b,

such that ei = {vi−1, vi} for all 1 6 i 6 k. If the vertices in a walk are all distinct,
it de�nes a path in G. A trail between two vertices a, b is a walk between a and
b without repeated vertices. A cycle of a graph is a path such that the start and
end vertices are the same. A Hamiltonian path (cycle) in G is a path (cycle) in G
that visits every vertex exactly once. A graph is called Hamitonian if it contains
a Hamiltonian cycle. Also a graph G is called connected if for any vertices a and
b of a graph G there is a path between a and b. A connected graph G is called
Eulerian if there exists a closed trail containing every edge of G. For distinct
vertices a and b of a graph G, let d(a, b) be the length of a shortest path from a
to b; if no such paths exists, we set d(a, b) =∞. The diameter of G is de�ned as

diam(G) = sup{d(a, b); a, b ∈ V (G)}.

The girth ofG, denoted by gr(G) is the length of a shortest cycle inG, (gr(G) =∞
if G contain no cycle ). For a positive integer r, a graph is called r − partite if
the vertex set admits a partition into r classes such that vertices in the same
partition class are not adjacent. A r−partite graph is called complete if every
two vertices in di�erent parts are adjacent. The complete 2− partite graph (also
called the complete bipartite graph) with exactly two partitions of size n and m,
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is denoted by Kn,m. A graph G is called a complete graph if every two distinct
vertices in G are adjacent. A complete graph with n vertices is denoted by Kn.
A clique of a graph is a complete subgraph. A maximum clique is a clique of the
largest possible size in a given graph. the clique number, ω(G) of a graph G is
the number of vertices in a maximum clique in G. An independent set in a graph
is a set of pairwise non-adjacent vertices. The independence number, α(G) of a
graph G is the size of a largest independet set of G. A subset M of the edge set
of G, is called a matching in G if no two of the edges in M are adjacent. In other
words, if for any two edges e and f in M , both the end vertices of e are di�erent
from the end vertices of f . A perfect matching of a graph G is a matching of

G containing
n

2
edges, the largest possible, meaning perfect matchings are only

possible on graphs with an even number of vertices. A perfect matching sometimes
called a complete matching or 1− factor. A coloring of a graph is a labeling of
the vertices with colors such that no two adjacent vertices have the same color.
The smallest number of colors need to color the vertices of a graph G is called its
chromatic number, and denoted by χ(G). Let G1 and G2 be two vertex-disjoint
graphs. The tensor product or Kronecker product of G1 and G2 is denoted by
G1 ⊗G2. That is, V (G1 ⊗G2) = V (G1)× V (G2); two distinct vertices (a,b) and
(c,d) are adjacent if and only if a is adjacent to c in G1 and b adjacent to d in G2.
We refer the reader to [13] and [15] for general references on graph theory.

2. The unit and unitary Cayley graphs for Ztn[i]
In this section we �nd the diameter and girth of the unit and unitary Cayley
graphs of Ztn [i] where t is a prime integer. Three cases are considered: When
t = 2, t ≡ 3(mod 4) or t ≡ 1(mod 4). In this article p and q will denote prime
integers such that p ≡ 1(mod 4) and q ≡ 3(mod 4).

2.1. The unit and unitary Cayley graphs for Z2n [i]

Proposition 2.1. [4, Proposition 2.2]

(a) Let R be a ring. Then GR is a regular graph of degree |U(R)|.

(b) Let S be a local ring with mamximal ideal m. Then GS is a complete muti-

partite graph whose partite sets are the cosets of m in S. In paticular, GS is

a compelete graph if and only if S is a �eld.

Lemma 2.2. For each positive integer n, GZ2n [i] is a complete bipartite graph

K22n−1,22n−1 .

Proof. For each positive integer n, Z2n [i] is a local ring with its only maximal ideal
m = (1 + 1i) and the number of units in Z2n[i] is 22n−1, see [2] and [14]. Since

| Z2n [i]

(1+1i)
| = 2, by Proposition 2.1, we conclude that GZ2n [i] is a complete bipartite

graph K22n−1,22n−1 .
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Lemma 2.3. [20, Lemma 4.1] Let R be a �nite ring. For j ∈ R, the following

statements are equivalent:

(a) j ∈ JR

(b) j + u ∈ U(R) for any u ∈ U(R).

Theorem 2.4. [19, Theorem 2.6] Let R be a �nite ring. Then the following

statements hold.

(a) If (R,m) is a local ring of even order, then G(R) ∼= GR.

(b) If R is a ring of odd order, then G(R) � GR

Proposition 2.5. [19, Corollary 2.3] Let R be a �nite ring. Then 2 ∈ U(R) if

and only if |R| is odd.

Theorem 2.6. Let R be a �nite ring and R ∼= R1 × R2 × · · · × Rn. Then the

following statements are equivalent:

(i) 2 ∈ J(R).

(ii) GR = G(R).

(iii) For every i with 1 6 i 6 n, |Ri| is even.

Proof. Let 2 ∈ J(R) and a, b be two distict elements of R. Since

(a− b) + (a+ b) = 2a.

By Lemma 2.3,

a− b ∈ U(R) if and only if a+ b ∈ U(R).

This means that GR = G(R).
Now supoose that GR = G(R) and R ∼= R1 × R2 × · · · × Rn. If n = 1 then

by Proposition 2.5, we deduce that |R| is even. Now assume that n > 1. Since
GR = G(R), we have for every i with 1 6 i 6 n, GRi = G(Ri). Hence by the �rst
case, for every i with 1 6 i 6 n, |Ri| is even.

Finally, if for every i with 1 6 i 6 n, |Ri| be even. Then by Proposition 2.5, we
have 2 /∈ U(Ri); 1 6 i 6 n. This implies that 2 ∈ J(Ri), and therefore 2 ∈ J(R).
This completes the proof.

Corollary 2.7. For each positive integer n, GZ2n [i] = G(Z2n [i]).

Proof. Since |Z2n [i]| is even, by Proposition 2.5, we have 2 /∈ U(Z2n [i]). Therefore
2 ∈ J(Z2n [i]). By using Theorem 2.6 we conclude that GZ2n [i] = G(Z2n [i]).

Corollary 2.8. Let n be a positive integer. Then the following statements hold:

(i) diam(GZ2n [i]) = diam(G(Z2n [i])) = 2
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(ii) gr(GZ2n [i]) = gr(G(Z2n [i])) = 4.

Proof. For each positive integer n, GZ2n
= G(Z2n [i]) is a complete bipartite graph

with |Z2n [i]| ≥ 4, Hence

diam(GZ2n [i]) = diam(G(Z2n [i])) = 2

and

gr(GZ2n [i]) = gr(G(Z2n [i])) = 4.

2.2. The unit and unitary Cayley graphs for Zqn[i], q ≡ 3(mod4)

Theorem 2.9. Let n be a positive integer. Then the following statements hold:

(i) GZqn [i] is a complete q2− partite graph.

(ii) GZqn [i] � G(Zqn [i])

Proof. If q ≡ 3(mod 4), then Zq[i] is a �eld with q2 elements see [2]. By Proposition

2.1, GZq [i] is a complete graph with q2 vertices. If n > 1, then Zqn[i] ∼= Z[i]
(qn) is a

local ring with maximal ideal m = (q) see [2]. Also, the number of units in Zqn [i]
is q2n − q2n−2, see [14]. Clearly, |Zqn [i]m | = q2. Hence by proposition 2.1, GZqn [i] is

a complete q2− partite graph.
Since |Zqn [i]| is odd, by Theorem 2.4, GZqn [i] � G(Zqn [i])

Corollary 2.10. For each positive integer n, the following statements hold:

(i) diam(GZqn[i]
=

{
1 for n = 1
2 for n > 1

.

(ii) diam(G(Zqn[i])) = 2.

(iii) gr(GZqn[i]
) = gr(G(Zqn [i])) = 3.

Proof. Let n = 1, then G(GZq [i]) is a complete graph with q2 vertices. This implies
that diam(GZq [i]) = 1 and gr(GZq [i]) = 3. Also in this case G(Zq[i]) is a complete
q2+1
2 − partite graph. Thus

diam(G(Zq[i])) = 2 and gr(G(Zq[i])) = 3.

Now suppose that n > 1. In this case, GZqn [i] is a complete q2− partite graph.
Therefore,

diam(GZqn [i]) = 2 and gr(GZqn [i]) = 3.

Since, G(
Zqn [i]
(q)

) is a complete q2+1
2 − partite graph, we obtain that

diam(G(Zqn[i])) = 2 and gr(G(Zqn[i])) = 3.
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2.3. The unit and unitary Cayley graphs for Zpn[i], p ≡ 1(mod4)

Theorem 2.11. Let n be a positive integer. Then the following statements hold:

(i) diam(GZpn [i]) = diam(G(Zpn [i])) = 2.

(ii) gr(GZpn [i]) = gr(G(Zpn [i])) = 3.

Proof. Let p be a prime integer that is congruent to 1 modulo 4. Then there exist
integer numbers a, b such that

p = a2 + b2 = (a+ ib)(a− ib)

and

Zp[i] ∼=
Z[i]
(p)
∼= (

Z[i]
(a+ ib)

)× (
Z[i]

(a− ib)
).

Also the ideals (a + ib) and (a − ib) are the only maximal ideals in Zp[i] see [2].
The number of units in Zp[i] is (p− 1)2, see [14]. By [19, Theorem 3.5], we have

diam(GZpn [i]) = diam(G(Zpn [i])) = 2.

On the other hand, in view of the proof of [8, Proposition 5.10] and [4, Theorem3.2],
we obtain

gr(GZpn [i]) = gr(G(Zpn [i])) = 3.

To investigate the more general case, let p ≡ 1(mod 4), n > 1. By an argoment
similar to that above, we conclude that

Zpn [i] ∼=
Z[i]
(pn)

∼= (
Z[i]

((a+ ib)n)
)× (

Z[i]
((a− ib)n)

) ∼= Zpn × Zpn .

The number of units in Zpn [i] is (pn−pn−1)2, see [14]. Note that, Zpn is a local ring

with only maximal ideal, m = (p), and hence |Zp
n

m
| = p. Hence by [19, Theorem

3.5], we have that

diam(GZpn [i]) = diam(G(Zpn [i])) = 2.

On the other hand, in view of the proof of [8, Proposition 5.10] and [4, Theorem3.2],
we obtain gr(GZpn [i]) = gr(G(Zpn [i])) = 3.

3. The unit and unitary Cayley graphs for Zn[i]
In this section, the integers qj and ps are used implicitly to denote primes congruent
to 3 modulo 4 and primes congruent to 1 modulo 4 respectively. The general case
is now investigated.
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3.1. Diameter and girth for the graphs GZn[i] and G(Zn[i])

Now we �nd the diameter and girth of the unit and unitary Cayley graphs of
G(Zn[i]) where n > 1 is an integer.

Remark 3.1. If R is a �nite commutative ring, then R ∼= R1 × R2 × · · · × Rt,
where each Ri is a �nite commutative local ring with maximal ideal mi by [9,
Theorem 8.7]. This decomposition is unique up to permutation of factors. Since
(u1, . . . , ut) is a unit of R if and only if each ui is a unit in Ri, we see immediately
that

GR ∼= GR1 ⊗GR2 · · · ⊗GRt and G(R) ∼= G(R1)⊗G(R2) · · · ⊗G(Rt)

We denote by Ki the (�nite) residue �eld
Ri
mi

and fi = |Ki|. We also assume

(after appropriate permutation of factors) that f1 6 f2 6 . . . 6 ft.

Remark 3.2. If n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s is the prime power decomposition

of the positive integer n, then Zn[i] is the direct product of the rings

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i].

Also the number of units in Zn[i] is

22k−1 ×
∏m
j=1(q

2αj
j − q2αj−2

j )×
∏l
s=1(p

βs
s − pβs−1

s )2 see [2] and [14].

Theorem 3.3. Let n > 1 be an integer with at least two distinct prime factors.

Then diam(GZn[i]) = diam(G(Zn[i])) =
{

2 for 2 - n,
3 for 2 |n.

Proof. Let n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s . By Remark 3.2,

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i].

This shows that, Zn[i] is isomorphic to a direct product of �nite local rings, Ri

such that for every i, |Ri
mi
| = 2 or q2j or ps. Since n > 1 is an integer with at least

two distinct prime factors, we have J(Zn[i]) 6= {0}.
By [4, Theorem 3.1], we conclude that

diam(GZn[i]) =

{
2 for 2 - n,
3 for 2 |n.

On the other hand, by [8, Theorem 5.7] we have

diam(G(Zn[i])) =
{

2 for 2 - n,
3 for 2 |n.

Theorem 3.4. Let n > 1 be an integer with at least two distinct prime factors.

Then



196 A. Bahrami and R. Jahani-Nezhad

gr(GZn[i]) =

{
4 for 2 - n
3 for 2 |n

and

gr(G(Zn[i])) ∈ {3, 4}.

Proof. By an argoment similar to that above, we conclude that

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i].

Thus, by [4, Theorem 3.2], we obtain

gr(GZn[i]) =

{
4 for 2 - n,
3 for 2 |n.

On the other hand, J(Zn[i]) 6= {0}. Thus, in view of the proof of [8, Theorem
5.10], we have gr(G(Zn[i])) ∈ {3, 4}.

3.2. When are GZn[i] and G(Zn[i]) Hamiltonian or Eulerian?

In the following, we prove that for each integer n > 1, the graphs G(Zn[i]) and
GZn[i] are Hamiltonian

Theorem 3.5. For each integer n > 1, the graphs G(Zn[i]) and GZn[i] are Hami-

tonian.

Proof. Let n > 1 be an integer. By Corollary 2.10, Corollary 2.8, Theorem 2.11
and Theorem 3.3, the graphs , G(Zn[i]) and GZn[i] are connected. Thus by [23,
Theorem 2.1], G(Zn[i]) is Hamiltonian graph. On the other hand, by [21, Lemma
4], we conclude that GZn[i] is Hamiltonian graph.

Now, we are going to �nd a necessary and su�cient condition for G(Zn[i]) and
GZn[i] to be Eulerian. we recall the following well-known propossition.

Proposition 3.6. A connected graph G is Eulerian if and only if the degree of

each vertex of G is even.

Theorem 3.7. Let n > 1 be an integer. Then the following statements hold:

(i) The graph G(Zn[i]) is Eulerian if and only if 2 |n.

(ii) The graph GZn[i] is Eulerian if and only if 2 |n.

Proof. First Suppose that G(Zn[i]) and GZn[i] are Eulerian. Since these graphs
are connected, by Propossition 3.6 we deduce that the degree of each vertex of
G(Zn[i]) and GZn[i] are even. On the other hand

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i]
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and so

|U(Zn[i])| = 22k−1 ×
∏m
j=1(q

2αj
j − q2αj−2

j )×
∏l
s=1(p

βs
s − pβs−1

s )2.

Since GZn[i] and G(Zn[i]) are |U(Zn[i])|−regular graph by Proposition 2.1, and [8,
Proposition 2.4], we deduce that Zn[i] has a direct factor of the form Z2k [i], and
so 2 |n. Conversely, suppose that 2 |n. Thus |Zn[i)| is even. Hence by Proposition
2.5, 2 /∈ U(Zn[i]). On the other hand, GZn[i] and G(Zn[i]) are connected and
|U(Zn[i])|−regular graphs by Proposition 2.1 and [8, Proposition 2.4]. This means
that

|U(Zn[i])| = 22k−1 ×
∏m
j=1(q

2αj
j − q2αj−2

j )×
∏l
s=1(p

βs
s − pβs−1

s )2

is even and so the degree of each vertex of GZn[i] and G(Zn[i]) are even, and
therefore these graphs are Eulirian.

3.3. Some graph invariants of GZn[i] and G(Zn[i])

In the following, we study chromatic, clique and independence numbers of the
Graphs GZn[i] and G(Zn[i]).

Theorem 3.8. Let n > 1 be an integer and n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s .

(i) If 2 |n, then χ(GZn[i]) = ω(GZn[i]) = 2 and α(GZn[i]) =
n2

2
.

(ii) If 2 - n, then
χ(GZn[i]) = ω(GZn[i]) = min{ps, q2j | 1 6 s 6 l, 1 6 j 6 m, ps |n, qj |n}

and

α(GZn[i]) =
n2

min{ps, q2j | 1 6 s 6 l, 1 6 j 6 m, ps |n, qj |n}
.

Proof. Let 2 |n, and k, be the biggest positive integer such that 2k |n. Since

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i],

thus Zn[i] has a direct factor of the form Z2k [i]. Since |
Z2k [i]

m
| = 2, by [4, Propo-

sition 6.1], we conclude that χ(GZn[i]) = ω(GZn[i]) = 2 and α(GZn[i]) =
n2

2
.

Now suppose that 2 - n. This yields that Zn[i] is isomorphic to a direct product of

�nite local rings, Ri such that for every i, |Ri
mi
| = q2j or ps. Thus by [4, Proposition

6.1], we have

χ(GZn[i]) = ω(GZn[i]) = min{ps, q2j | 1 6 s 6 l, 1 6 j 6 m, ps |n, qj |n}

and
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α(GZn[i]) =
n2

min{ps, q2j | 1 6 s 6 l, 1 6 j 6 m, ps |n, qj |n}
.

Proposition 3.9. [13, Corollary 16.6] Every nonempty regular bipartite graph has

a perfect matching

Lemma 3.10. [18, Lemma 2.3] If G is a bipartite graph with a perfect matching

and H is a Hamiltonian graph, then α(G⊗H) =
|V (G)| × |V (H)|

2
.

Theorem 3.11. Let n > 1 be an integer and n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s .

(i) If 2 |n, then χ(G(Zn[i])) = ω(G(Zn[i])) = 2 and α(G(Zn[i])) =
n2

2

(ii) If 2 - n, then

χ(G(Zn[i]))=ω(G(Zn[i]))=
1

2m+l
×
m∏
j=1

(q
2αj
j −q

2αj−2
j )×

l∏
s=1

(pβss −pβs−1
s )2+m+2l

and α(G(Zn[i])) 6
n2

2
.

Proof. Let n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s . Then

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i].

Assume that 2 |n. Then by Proposition 2.5, 2 /∈ U(Zn[i]). Hence, in view of the
proof of [22, Theorem 2.2], we have

χ(G(Zn[i])) = ω(G(Zn[i])) = 2.

Since 2 |n, Zn[i] has a direct factor of the form Z2k [i]. Moreover, G(Z2k [i]) is
a nonempty regular graph. Thus, by Proposition 3.9 G(Z2k [i]) has a perfect

matching. On the otherhand, by Theorem 3.5, G(
∏m
j=1 Zqαjj [i] ×

∏l
s=1 Zpβss [i])

is Hamiltonian graph. Therefore, by Lemma 3.10,

α(G(Zn[i])) =
n2

2
.

Now suppose that 2 - n. Thus 2 ∈ U(Zn[i]). By an argoment similar to that
above, we conclude that

χ(G(Zn[i])) = ω(G(Zn[i])) =
1

2m+l
×

m∏
j=1

(q
2αj
j −q2αj−2

j )×
l∏

s=1

(pβss −pβs−1
s )2+m+2l.

Let n =
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i]. Then

Zn[i] ∼=
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i]

and so we have
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Z2[i]× Zn[i] ∼= Z2[i]×
∏m
j=1 Zqjαj [i]×

∏l
s=1 Zpβss [i].

Thus,

α(G(Z2[i]× Zn[i])) ∼= α(G(Z2[i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i])).

Now by part (i), we coclude that

α(G(Z2[i]× Zn[i])) = 2n2.

On the other hand,

α(G(Z2[i]× Zn[i])) ≥ α(G(Z2[i]))× |Zn[i]| = 4× α(G(Zn[i])).

This implies that α(G(Zn[i])) 6
n2

2
.
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On ordered semigroups

containing covered one-sided ideals

Thawhat Changphas and Pisan Summaprab

Abstract. In this paper, the notion of covered left ideals of ordered semigroups will be intro-

duced, and it is proved that the set of all covered left ideals of a given ordered semigroup is a

sublattice of the lattice of all left ideals if the ordered semigroup. And then the structure of

ordered semigroups containing covered left ideals will be studied. For the results of covered right

ideals of ordered semigroups can be considered similarly.

1. Preliminaries

A proper left ideal M of a semigroup (without order) S is said to be a covered left

ideal of S if
M ⊆ S(S\M).

This notion was �rst introduced and studied by I. Fabrici [2]. Indeed, the author
studied the structure of semigroups containing covered one-sided ideals. The pur-
pose of this paper is to extend Fabrici's results to ordered semigroups. In fact,
we introduce the concept of covered one-sided ideals of ordered semigroups, and
study the structure of ordered semigroups containing covered one-sided ideals. For
the concept of covered two-sided ideals of ordered semigroups can be found in [1].

A partially ordered semigroup (or simply an ordered semigroup) is a semigroup
(S, ·) together with a partial order 6 that is compatible with the semigroup oper-
ation, meaning that, for any x, y, z ∈ S,

x 6 y implies zx 6 zy and xz 6 yz.

For A, B nonempty subsets of an ordered semigroup (S, ·,6), the set product
AB is de�ned to be the set of all elements xy in S where x ∈ A and y ∈ B. We
write (A] for the set of all elements x in S such that x 6 a for some a ∈ A, i.e.,

(A] = {x ∈ S | x 6 a for some a ∈ A}.

In particular, we write Ax for A{x}, and similarly for {x}A. It is observed that
the following hold:

2000 Mathematics Subject Classi�cation: 06F05

Keywords: ordered semigroup, left ideal, right base, maximal left ideal, covered left ideal.
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(1) A ⊆ (A];

(2) A ⊆ B ⇒ (A] ⊆ (B];

(3) (A](B] ⊆ (AB];

(4) (A
⋃
B] = (A]

⋃
(B];

(5) ((A]] = (A].

Let (S, ·,6) be an ordered semigroup. Analogousely to the concept in lattice
ordered rings (see [4], p. 142), a non-empty subset A of S is called a left (resp.
right) ideal of S if it satis�es the following conditions:

(i) SA ⊆ A (resp. AS ⊆ A);

(ii) for any x ∈ A and y ∈ S, y 6 x implies y ∈ A.

If A is both a left and a right ideal of S, then A is called a two-sided ideal, or
simply an ideal of S. A left ideal A of S is called a proper left ideal of S if A ⊂ S.
The symbol ⊂ stands for proper subset of sets. For proper right ideals and proper
ideals of S are de�ned similarly. A proper left (resp. right, two-sided) ideal A
of S is said to be maximal if for any left (resp. right, two-sided) ideal B of S,
A ⊂ B ⊆ S implies B = S. Finally, if S does not contain proper left (resp. right,
two-sided) ideals, we call it left (resp. right, two-sided) simple. It is easy to see
that the union or intersection of two two-sided ideals of S is a two-sided ideal of
S. For any element a of S the principal left ideal generated by a of S is of the
form

L(a) = (a
⋃

Sa].

Analogousely to the concept of Green's relations in semigroups, the equivalence
relation L is de�ned on S by, for any a, b in S,

aLb⇐⇒ L(a) = L(b).

The L-class containing a in S will be denoted by La. The set of all L-classes of S
forms a quasi-ordered:

La � Lb ⇐⇒ L(a) ⊆ L(b).

The symbol La ≺ Lb means La � Lb, but La 6= Lb.
Let a be any element of an ordered semigroup (S, ·,6). If La is not maximal,

then La ≺ Lb for some b in S. Then L(a) ⊂ L(b). We now have the following
lemma.

Lemma 1.1. Let a be any element of an ordered semigroup (S, ·,6). If L(a) is

not proper subset of any principal left ideal of S, then La is maximal with respect

to the quasi-order �.
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Lemma 1.2. Let L be a subset of an ordered semigroup (S, ·,6). Then L is a

maximal L-class (with respect to �) of S if and only if S\L is a maximal left ideal

of S.

Proof. Assume �rst that L is a maximal L-class of S. Let L = La for some
a ∈ S. Let y ∈ S and x ∈ S\La. If yx ∈ La, then, by x /∈ La, we have
L(a) = L(yx) ⊂ L(x). That is La ≺ Lx, which contradicts to the assumption.
Hence S(S\La) ⊆ S\La. Let x ∈ S\La and y ∈ S be such that y 6 x. Then
Ly � Lx. If y ∈ La, then Ly is a maximal L-class of S; hence La = Lx. This is a
contradiction. Thus y ∈ S\La. This shows that S\La is a left ideal of S. To show
that S\La is a maximal left ideal of S, we suppose that there is a left ideal A of S
such that (S\La) ⊂ A. Let z ∈ A\(S\La), and thus L(a) = L(z). If b ∈ La, then

L(b) = L(a) = L(z) ⊆ A.

Thus La ⊆ A, and S = A.

Conversely, assume that S\L is a maximal left ideal of S. Choose a in S\(S\L).
We have L = La. To see this, let x ∈ La. If x ∈ S\L, then

a ∈ L(a) = L(x) ⊆ S\L.

This is a contradiction. Thus x ∈ L, and La ⊆ L. Let x ∈ L. Since S\L ⊂
(S\L)

⋃
L(x), we have (S\L)

⋃
L(x) = S. Similarly, (S\L)

⋃
L(a) = S. Since

x ∈ (S\L)
⋃
L(a), we have x ∈ L(a), and so L(x) ⊆ L(a). Similarly, L(a) ⊆ L(x).

Thus L(x) = L(a), and x ∈ La. Therefore, L ⊆ La. Finally, by Lemma 1.1, it
su�ces to show that L(a) is not proper subset of L(x) for all x in S. Let x ∈ S.
If x ∈ L, then L(a) = L(x). If x ∈ S\L, then L(x) ⊆ S\L; hence L(a) 6⊆ L(x).
This completes the proof.

2. Covered left ideals in ordered semigroups

We begin this section with the de�nition of covered left ideals of an ordered semi-
group. For the concept of covered right ideals of an ordered semigroups can be
de�ned dually, and the results for ordered semigroups containing covered right
ideals are left-right dual.

De�nition 2.1. A proper left ideal L of an ordered semigroup (S, ·,6) is called a

covered left ideal of S if

L ⊆ (S(S\L)].

In this example we consider an ordered semigroup from [7] and [8].

Example 2.2. Let (S, ·,6) be an ordered semigroup such that S = {a, b, c, d, e}
and
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· a b c d e
a a b a a a
b a b a a a
c a b a a a
d a b a a a
e a b a a e

6 = {(a, a), (a, b), (a, e), (b, b), (c, b), (c, c), (c, e), (d, d), (d, b), (d, e), (e, e)}.

The covering relation is given by:

< = {(a, b), (a, e), (c, b), (c, e), (d, b), (d, e)}.

The left ideals of S are {a}, {a, c}, {a, d}, {a, c, d}, {a, b, c, d}, {a, c, d, e} and S. It
can be observed that the covered left ideals of S are {a}, {a, c}, {a, d}, {a, c, d}.

In this example we consider an ordered semigroup from [9].

Example 2.3. Let (S, ·,6) be an ordered semigroup such that S = {a, b, c, d, f}
and

· a b c d e
a b d a b e
b d b b d e
c d b c d e
d b d d b e
e e e e e e

6 = {(a, a), (b, b), (b, c), (b, e), (c, c), (d, a), (d, d), (d, e), (e, e)}.

The covering relation is given by:

< = {(b, c), (b, e), (d, a), (d, e)}.

The left ideals of S are {b, d, e}, {a, b, d, e} and S, and the covered left ideal of S
is {b, d, e}.

Now, we will prove that the set of all covered left ideals of an ordered semigroup
is a sublattice of the lattice of all left ideals.

Proposition 2.4. If L1 and L2 are di�erent proper left ideals of an ordered semi-

group (S, ·,6) such that L1

⋃
L2 = S, then both L1, L2 are not covered left ideals

of S.

Proof. Assume that L1 and L2 are di�erent proper left ideals of an ordered semi-
group (S, ·,6) such that L1

⋃
L2 = S. Sine L1

⋃
L2 = S, we have S\L1 ⊆ L2 and

S\L2 ⊆ L1. If L1 is a covered left ideal of S, then

L1 ⊆ (S(S\L1)] ⊆ (SL2] ⊆ L2.
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Since L1

⋃
L2 = S, it follows that S = L2. This is a contradiction. Similarly,

L2 is a covered left ideal of S implies S = L1. This is a contradiction. Thus the
assertion is proved.

The following corollary is a consequence of Proposition 2.4.

Corollary 2.5. If an ordered semigroup (S, ·,6) contains more than one maximal

left ideals, then non of them is a covered left ideal of S.

Proposition 2.6. Let (S, ·,6) be an ordered semigroup. If L1 and L2 are covered

left ideals of S, then L1

⋃
L2 is a covered left ideal of S.

Proof. Assume that L1 and L2 are covered left ideals of S; thus L1 ⊆ (S(S\L1)]
and L2 ⊆ (S(S\L2)]. Let x ∈ L1

⋃
L2. If x ∈ L1, then, by L1 ⊆ (S(S\L1)], we

have x ∈ (Sa] for some a ∈ S\L1. If a ∈ S\(L1

⋃
L2), then x ∈ (S(S\(L1

⋃
L2))].

If a ∈ L1

⋃
L2, then a ∈ L2; hence a ∈ (Sb] for some b in S\L2. We have

x ∈ (Sa] ⊆ ((S](Sb]] = (SSb] ⊆ (Sb].

If b ∈ L1, then a ∈ L1. This is a contradiction. Thus b ∈ S\(L1

⋃
L2), and so x ∈

(S(S\(L1

⋃
L2))]. Similarly, x ∈ L2 implies x ∈ (S(S\(L1

⋃
L2))]. This proves

that L1

⋃
L2 is a covered left ideal of S.

Proposition 2.7. Let L be a left ideal of an ordered semigroup (S, ·,6). If L1 is

a covered left ideal of S, then L1 ∩ L is a covered left ideal of S.

Proof. If L1 is a covered left ideal of S, then L1 ⊆ (S(S\L1)]; hence

L1 ∩ L ⊆ L1 ⊆ (S(S\L1)] ⊆ (S(S\(L1 ∩ L))].

This shows that L1 ∩ L is a covered left ideal of S.

Corollary 2.8. Let (S, ·,6) be an ordered semigroup. If L1 and L2 are covered

left ideals of S, then L1 ∩ L2 is a covered left ideal of S.

We now state the main theorem of this section followed by Proposition 2.6 and
Corollary 2.8.

Theorem 2.9. The set of all covered left ideals of an ordered semigroup (S, ·,6)
is a sublattice of the lattice of all left ideals of (S, ·,6).

3. Ordered semigroups with covered left ideals

The purpose of this section is to study the structure of ordered semigroups con-
taining covered left ideals.

Theorem 3.1. An ordered semigroup (S, ·,6) with the cardinal |S| > 1 contains

no covered left ideals if and only if S is a union of disjoint minimal left ideals.
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Proof. Assume �rst that S contains no covered left ideals. Let a ∈ S. If a /∈
(Sa], then (Sa] ⊆ (S(S\(Sa])]. Thus (Sa] is a covered left ideal of S. This is a
contradiction. Hence a ∈ (Sa]. Let L be a proper left ideal of S. If L ⊂ (Sa], then
L is a covered left ideal of S. This is a contradiction. Hence (Sa] is a minimal left
ideal of S. Let a, b ∈ S such that a 6= b and (Sa] 6= (Sb]. If L = (Sa] ∩ (Sb], then
L is a proper subset of (Sa] or (Sb]. Thus L is a covered left ideal of S. This is a
contradiction. Hence (Sa] ∩ (Sb] = ∅. Therefore, S =

⋃
i∈I(Sai].

Conversely, assume that S =
⋃

i∈I Li where, for each i ∈ I, Li is a minimal
left ideal of S. We set

A =
⋃

i∈J Li, B =
⋃

i∈I−J Li.

Then S = A
⋃
B. By Proposition 2.4, neither A nor B is a covered left ideal of S.

This completes the proof.

Theorem 3.2. Let (S, ·,6) be an ordered semigroup. If S is not left simple, then

S contains a covered left ideal.

Proof. Assume that S is not left simple. Then S contains a proper left ideal L.
Since (S(S\L)] is a left ideal of S, we have L ∩ (S(S\L)] is a proper left ideal of
S. By

L ∩ (S(S\L)] ⊆ (S(S\L)] ⊆ (S(S\(L ∩ (S(S\L)]))],

it follows that L ∩ (S(S\L)] is a covered left ideal of S.

The concept of right bases of an ordered semigroup was de�ned in [3] as follows:

De�nition 3.3. A subset A of an ordered semigroup (S, ·,6) is called a right base

of S if it satis�es the following conditions:

(i) S = (A
⋃
SA];

(ii) if B is a subset of A such that S = (B
⋃
SB], then B = A.

Here, we provide some more examples: In this example we consider an ordered
semigroup from [6].

Example 3.4. Let (S, ·,6) be an ordered semigroup such that the multiplication
and the order relation are de�ned by:

· a b c d e
a a e c d e
b a b c d e
c a e c d e
d a e c d e
e a e c d e

6 = {(a, a), (a, d), (b, b), (c, c), (c, e), (d, d), (e, e)}.
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The covering relation is given by:

< = {(a, d), (c, e)}.

We have {b, d} is the right base of S.

In this example we consider an ordered semigroup from [5].

Example 3.5. Let (S, ·,6) be an ordered semigroup such that the multiplication
and the order relation are de�ned by:

· a b c d e
a a a c a c
b a a c a c
c a a c a c
d d d e d e
e d d e d e

6 = {(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c), (c, e),
(d, d), (d, e), (e, e)}.

The covering relation is given by:

< = {(a, b), (b, c), (b, d), (c, e), (d, e)}.

The right bases of S are {e} and {c}.

A covered left ideal L of an ordered semigroup (S, ·,6) is called the greatest

covered left ideal of S if every covered left ideal of S contained in L. If an ordered
semigroup contains the greatest covered left ideal, we shall denote it by Lg.

To give a necessary condition so that an ordered semigroup contains one-sided
bases we need the following lemma.

Lemma 3.6. Let (S, ·,6) be an ordered semigroup containing the greatest covered

left ideal Lg. If Lg ⊂ (S2], then the following conditions hold:

(1) for every L-class in (S2]\Lg is maximal;

(2) L(a) = (Sa] for all a in (S2]\Lg.

Proof. Assume that Lg ⊂ (S2]. Then (S2]\Lg is non-empty. Frits we prove the
second assertion. Let a be an element of (S2]\Lg. Since Lg is an left ideal of S,
it follows that La ⊆ (S2]\Lg. Then a ∈ (Sb] for some b in S. Sine (Sb] ⊆ L(b),
we have L(a) ⊆ L(b). Suppose that b /∈ La; thus La 6= Lb. If b ∈ L(a), then
L(a) = L(b); hence La = Lb. This is a contradiction. Then b ∈ S\L(a). This
implies L(a) ⊆ (S(S\L(a))]. Thus L(a) is a covered left ideal of S. By Proposition
2.6, Lg

⋃
L(a) is a covered left ideal of S. Since a /∈ Lg, Lg ⊂ Lg

⋃
L(a). This is

a contradiction. This shows that b ∈ La. Hence L(a) ⊆ (Sb] ⊆ L(b) = L(a). Then
L(a) = (Sb] = L(b). Clearly, (Sa] ⊆ L(a). If b 6 a, then L(a) = (Sb] ⊆ (Sa];
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hence L(a) ⊆ (Sa]. If b ∈ (Sa], then Sb ⊆ S(Sa] ⊆ (S(Sa]] ⊆ (SSa] ⊆ (Sa].
Therefore, L(a) = L(b) = (Sb] ⊆ (Sa].

We now prove the rest of the assertion. Let La be a L-class in (S2]\Lg. Suppose
that L(a) ⊆ L(c) for some c in S. Then a ∈ (c

⋃
Sc]; thus a ∈ (c] or a ∈ (Sc]. Each

of the cases implies (Sa] ⊆ (Sc], so L(a) ⊆ (Sc]. Sine c ∈ S\L(a), it follows that
L(a) is a covered left ideal of S; hence Lg ⊂ Lg

⋃
L(a). This is a contradiction.

This proves that any L-class in (S2]\Lg is maximal.

Theorem 3.7. Let (S, ·,6) be an ordered semigroup containing the greatest cov-

ered left ideal Lg. Then S contains a right base if satis�es the following two

condition:

(1) Lg ⊂ (S2];

(2) any two element a, b in S\(S2], neither La � Lb nor Lb � La

Proof. Assume that Lg ⊂ (S2] and for any two elements a, b in S\(S2] are incom-
pairable. By

Lg ⊆ (S(S\Lg)] ⊆ (S2] ⊆ S

there are two families of L-class to consider: C1 = {La|a ∈ S\(S2]},
C2 = {La|a ∈ (S2]\Lg}. We take one element from each L-class in C1 and C2,
and let A be the set of all elements we take, we claim that A is a right base of S.
For convenience we let L(A) = (A

⋃
SA]. To show that S = L(A), it su�ces to

show that Lg, (S2]\Lg and S\(S2] are subset of L(A).
a) Let x ∈ Lg. Then x ∈ (S(S\Lg)], or equivalent x ∈ (Sb] for some b in S\Lg

We have b ∈ La for some a ∈ S\(S2] or a ∈ (S2]\Lg. Then by the constructing A
we have b ∈ L(A). Thus x ∈ L(A).

b) If x ∈ (S2]\Lg, then there exists a1 ∈ A such that x ∈ L(a1); hence x ∈ L(A).
c) If x ∈ S\(S2], then there exists a2 ∈ A such that x ∈ L(a2) ⊆ L(A).
Finally, we show that A is the minimal subset of S such that S = L(A). By

Lemma 1.2, it follow that for every La in C2 is maximal. Moreover, every La

in C1 is also maximal since for any elements a, b in S\(S2], neither La � Lb nor
Lb � La. Now, let B be a proper subset of A such that S = (B

⋃
SB]. Let

x ∈ A\B. Then x 6 y for some y ∈ B
⋃
SB. Since y ∈ L(b) for some b in B, it

follows that L(x) ⊂ L(b). This contradicts to the constructing of A. The proof is
completed.

Let (S, ·,6) be an ordered semigroup. An left ideal L of S is called the greatest
left ideal of S if every proper left ideal of S contained in L. If an ordered semigroup
(S, ·,6) contains the greatest left ideal, we denote The left ideal by L∗.

Theorem 3.8. Assume an ordered semigroup (S, ·,6) contains only one maximal

ideal L. If L is a covered left ideal of S, then L is the greatest left ideal of S.

Proof. This is easy to see because if T is a proper left ideal of S, then T ⊆ L.
Hence L = L∗.
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Theorem 3.9. Let (S, ·,6) be an ordered semigroup with the property every proper

ideal of S is a covered left ideal of S. Then either

(1) S contains L∗, or

(2) S = (S2] and for any proper left ideal L and for every left ideal L(a) ⊆ L,
there is b in S\L such that L(a) ⊂ L(b) ⊂ S.

Proof. If Lx and Ly are maximal L-classes of S such that Lx 6= Ly, then by Lemma
1.2, we have Lc

x = S\Lx and Lc
y = S\Ly are maximal proper left ideals of S such

that non of them is a covered left ideal of S. This is a contradiction. Then S
contain no di�erent maximal L-classes; hence S contains one maximal L-class or
S does not contain maximal L-class.

If S contains one maximal L-class Lx. Then Lc
x = S\Lx is a maximal proper

left ideal of S. By assumption, Lc
x is a covered left ideal of S. By Theorem 3.8,

Lc
x = L∗.
Assume that S does not contain maximal L-classes. We will show that S =

(S2].Suppose (S2] ⊂ S. Then there exists y in S\(S2]. If L(y) = S, then S
contains a maximal L-class. This is impossible. Then L(y) ⊂ S, and thus L(y) ⊆
(S(S\L(y))]. Then y ∈ (S2]. This is a contradiction.

Let L be a proper left ideal of S and let L(a) ⊆ L. Since L ⊆ (S(S\L)], there
exists b in S\L such that a ∈ (Sb], and hence L(a) ⊆ L(b) ⊆ S. Since b ∈ S\M ,
so L(a) ⊂ L(b). By assumption, L(b) ⊂ S.

Theorem 3.10. Assume an ordered semigroup (S, ·,6) satis�es one the following

two condition:

(1) S contains L∗ which is a covered left ideal of S.

(2) S = (S2] and for any proper left ideal L and for every left ideal L(a) ⊆ L,
there is b in S\L such that L(a) ⊆ L(b).

Then every proper left ideal of S is a covered left ideal of S.

Proof. Let L be a proper left ideal of S. First we assume that S satis�es (1). Then
L ⊆ L∗. Since S\L∗ ⊆ S\L, it follows that L ⊆ L∗ ⊆ (S(S\L∗)] ⊆ (S(S\L)]. This
shows that L is a covered left ideal of S.

Secondary, we assume that S satis�es (2). Let x ∈ L; thus L(x) ⊆ L. Then
there is b in S\L such that L(x) ⊆ L(b). We have S = (S2], so b ∈ (Sd] for some
d in S. Since b ∈ S\L, d ∈ S\L. Hence x ∈ (Sd] ⊆ (S(S\L)]. This shows that
L ⊆ (S(S\L)].

De�nition 3.11. We say that the principal left ideals of an ordered semigroup

(S, ·,6) are updirected if for every a, b ∈ S there is c ∈ S such that {a, b} ⊆ L(c).

Theorem 3.12. If all proper left ideals of an ordered semigroup (S, ·,6) are cov-

ered, then the principal left ideals of S are updirected.
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Proof. Suppose that there exist two elements a, b ∈ S such that there is no c ∈ S
with {a, b} ⊆ L(c). It is su�cient to show that there exists a left ideal of S which
is not covered. Let

L = {x ∈ S | a /∈ L(x)}.

We have L 6= ∅ because a ∈ L. If x ∈ S and y ∈ L, then xy ∈ L. Otherwise, we
have a ∈ L(xy) ⊆ L(y). This is a contradiction. If x ∈ S and y ∈ L such that
x 6 y, then L(x) ⊆ L(y). Since a /∈ L(y), a /∈ L(x). Thus x ∈ L. Hence L is a left
ideal of S. Moreover, b ∈ L. Indeed, if b /∈ L, then a ∈ L(b); hence {a, b} ⊆ L(b).
This is a contradiction. Finally, we have to show that b /∈ (S(S\L)]. Suppose that
b ∈ (S(S\L)] such that b 6 xy for some x ∈ S and y ∈ S\L. This implies that
{a, b} ⊆ L(y) which is a contradiction.
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On the lattice of congruences

on completely regular semirings

Rajib Debnath and Anjan Kumar Bhuniya

Abstract. A semiring S is called completely regular if it is the disjunctive union of its subrings.

If S is a completely regular semiring, then the Green's relationH+ is a congruence on S and S/H+

is an idempotent semiring. Let V be a variety of idempotent semirings. Here we characterize the

lattice C(S) of all congruences on S when S is completely regular and S/H+ ∈ V. The lattice

C(S) can be embedded into the product of the lattice V(S) of all V-congruences on S and the

latticeM(S) of all additive idempotent-separating congruences on S if and only if S is τ -modular

completely regular semiring such that S/H+ ∈ V.

1. Introduction

A semigroup is called completely regular if it is the (disjunctive) union of its
subgroups. Completely regular semigroups were introduced in [3] by A. H. Cli�ord,
though he used the terminology `semigroups admitting relative inverses' to refer to
such semigroups. Such semigroups have been studied extensively. For an account
of the theory of completely regular semigroups, we refer to the book [13].

A semiring is a (2, 2) algebra (S,+, ·) such that both the additive reduct (S,+)
and the multiplicative reduct (S, ·) are semigroups and connected by the distribu-
tive laws

x(y + z) = xy + xz, (x+ y)z = xz + yz.

An element e ∈ S is called an additive idempotent if e + e = e. The set of all
additive idempotents of S is denoted by E+(S). A semiring S is called additive

regular if the additive reduct (S,+) is a regular semigroup. By an idempotent

semiring we mean a semiring S such that both the additive reduct (S,+) and
(S, ·) are bands. If moreover, the reduct (S,+) is commutative then S is called a
b-lattice. Also we refer to [5] for the unde�ned terms and notions in semirings and
[6] for background on semigroups.

Let us denote the Green's relations L,R,D and H on the additive reduct (S,+)
by L+, R+, D+ and H+, respectively. Also we denote the L+,R+,D+ and H+

classes of x ∈ S by L+
x , R

+
x , D

+
x and H+

x , respectively. A semiring S is called an
idempotent semiring (b-lattice, distributive lattice) of rings if there is a congruence

2010 Mathematics Subject Classi�cation: 16Y60.

Keywords: Semiring, ring, completely regular, idempotent, modular lattice.
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ρ on S such that the quotient semiring S/ρ is an idempotent semiring (b-lattice,
distributive lattice) and each ρ-class is a ring.

Rings and distributive lattices both are semirings with commutative regular
addition. So, it is interesting to consider the semirings which are subdirect pro-
ducts of rings and distributive lattices. Such semirings were studied by Bandelt
and Petrich [1]. The study was continued by Ghosh [4] and he characterized the
Cli�ord semirings, equivalently, the semirings which are strong distributive lattices
of rings. Pastijn and Guo [12] proved that the semirings which are disjoint unions
of rings form a variety and they established various structure theorems for such
semirings. They proved that if S is a disjoint union of its subrings then H+ is an
idempotent semiring congruence on S. The term `completely regular semiring' was
�rst used by Sen, Maity and Shum [16] to mean the semirings which are disjoint
union of skew-rings (rings without commutativity of addition).

In [2], we establish several equivalent characterizations for the semirings which
are the disjunctive unions of rings. Let (S,+, ·) be the disjunctive union of its
subrings. Then the additive reduct (S,+) is the disjunctive union of its subgroups.
For every x ∈ S, denote the zero in the subgroup (H+

x ,+) of (S,+) by xo and
the unique inverse of x in H+

x by x′. Then xo = x + x′ = x′ + x. Hence S can
be treated as an algebra (S,+, ·,′ ) of type (2, 2, 1), where the reduct (S,+, ·) is a
semiring and the reduct (S,+,′ ) is a completely regular semigroup. The following
result is useful.

Lemma 1.1. [2] Let S be a semiring. Then the following conditions are equivalent:

(i) S is the (disjunctive) union of its subrings;

(ii) for every x, y ∈ S there exists unique x′ ∈ S such that

x = x+ x′ + x, x+ x′ = x′ + x, (x′)′ = x, x+ yo + xo + y = xo + y+ x+ yo

and xxo = xo, where xo = x+ x′;

(iii) H+ is an idempotent semiring congruence on S and each H+-class is a ring;

(iv) S is an idempotent semiring of rings.

De�nition 1.2. A semiring S is called completely regular if it satis�es either of
the four equivalent conditions in Lemma 1.1.

Throughout the rest of this article, unless otherwise stated, S stands for a
completely regular semiring.

It follows from a result of Kapp and Schneider [8] that the lattice C(S) of
all congruences on a semigroup S can be embedded in the product of certain
sublattices if the semigroup S is completely simple. The problem of embedding
the lattice C(S) in a product of sublattices, when S is an arbitrary band of groups,
was characterized by C. Spitznagel [17]. The principal tool used in these two texts
is the τ -relation introduced by Reilly and Scheiblich [14]. In this last article, this
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relation is marked with θ ([14], Theorem 3.4). Also there are many other articles
devoted to these directions [6], [7], [11].

The set of all congruences on a semiring S is a complete lattice, which we
denote by C(S). A sublattice L of C(S) is called a modular sublattice if the
lattice L is modular. It is well known that if the congruences in L commute then
L is modular. The trace of a congruence ρ on a completely regular semiring S is
de�ned by:

tr ρ = ρ ∩ (E+(S)× E+(S)).

De�ne a relation τ on the lattice C(S) by: for ρ, σ ∈ C(S),

ρτσ if tr ρ = tr σ.

In Section 2, we characterize completely regular semirings S in terms of the
maximum additive idempotent-separating congruence on S. In Section 3, we show
that each τ -class in the lattice C(S) of all congruences on an additive regular
semiring S contains at most one V-congruence on S, where V is a variety of idem-
potent semirings. We also have a necessary and su�cient condition for the greatest
element of each τ -class to be a V-congruence. In Section 4, we prove that the lat-
tice C(S) of all congruences on a τ -modular completely regular semiring S can be
embedded in a certain product lattice.

Now let us �x the following notations:

C(S): the lattice of all congruences on S;
M(S): the lattice of all additive idempotent-separating congruences on S;
D+(S): the lattice of all congruences on S that are contained in D+;
V(S): the lattice of all V-congruences on S;
ρV : the minimum V-congruence on S;
β: the minimum idempotent semiring congruence on S;
δ: the minimum b-lattice congruence on S;
η: the minimum distributive lattice congruence on S;
µ: the maximum additive idempotent-separating congruence on S.

2. Additive idempotent separating congruences

A congruence ρ on S is called additive idempotent-separating if each ρ-class con-
tains at most one additive idempotent, i.e., for every e, f ∈ E+(S), eρf implies
e = f . In this section, we characterize a completely regular semiring S by the
maximum additive idempotent-separating congruence µ on itself.

In [10], Lallement proved that on a regular semigroup S, a congruence ρ is
idempotent separating if and only if ρ ⊆ H on S. Since S is a completely regular
semiring, the additive reduct (S,+) is a regular semigroup, and so it follows that
µ ⊆ H+.

Now we have the following result.
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Theorem 2.1. Let S be an additive regular semiring and V be a variety of idem-

potent semirings. Then the following statements are equivalent:

(i) S is a completely regular semiring such that S/H+ ∈ V;

(ii) µ = H+ = ρV and x+ yo + xo + y = xo + y + x+ yo for every x, y ∈ S;

(iii) µ = ρV and x+ yo + xo + y = xo + y + x+ yo for every x, y ∈ S.

Proof. Equivalence of (ii) and (iii) is trivial and so we omit the proof.

(i) ⇒ (ii): Suppose that aH+b in S. Then aρVH+bρV in S/H+. Since each
H+-class contains at most one additive idempotent, aρV = bρV . Hence H+ ⊆ ρV
and it follows that µ ⊆ H+ ⊆ ρV . Now S/H+ ∈ V implies that ρV ⊆ H+. SinceH+

is an additive idempotent separating congruence, H+ ⊆ µ. Thus µ = H+ = ρV .

(ii)⇒ (i): Suppose that the condition (ii) holds. Then H+ = ρV implies that
S/H+ ∈ V. Let H be an H+-class in S. Since H+ is an idempotent semiring
congruence on S, H is an additive regular subsemiring of S and, by Lallement's
Lemma, contains an additive idempotent. Hence (H,+) is a group. Now for every
x, y ∈ S, x+ yo +xo + y = xo + y+x+ yo implies that (H,+) is an abelian group.
Thus H is a subring of S and so S is a completely regular semiring.

Now we have the following immediate consequence. Though it is a particular
case of the above lemma, but useful.

Corollary 2.2. Let S be any additive regular semiring. Then the following state-

ments are equivalent.

(i) S is a completely regular semiring (b-lattice of rings, distributive lattice of

rings);

(ii) µ = H+ = β ( δ, η ) and x+yo +xo +y = xo +y+x+yo for every x, y ∈ S;

(iii) µ = β ( δ, η ) and x+ yo + xo + y = xo + y + x+ yo for every x, y ∈ S.

3. The relation τ on C(S)

The relation τ on C(S) has many interesting properties when S is a completely
regular semiring. Before coming into the main features let us �rst prove some
lemmas.

The proof of the following result is similar to Lemma 2.1 [15], still for the sake
of completeness we would like to include a proof.

Lemma 3.1. Let S be an additive regular semiring and α be an additive idempo-

tent separating congruence on S. Then for every γ ∈ C(S), (α ∨ γ, γ) ∈ τ .
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Proof. Let γ ∈ C(S). Consider the relation h = {(a, b) ∈ S × S : (aγ, bγ) ∈ H+}
on S. Then h is an equivalence relation on S and H+ ⊆ h and γ ⊆ h. Let
(e, f) ∈ h ∩ (E+(S) × E+(S)). Then (eγ) H+ (fγ). Since H+ is an additive
idempotent separating congruence, eγ = fγ and hence (e, f) ∈ γ ∩ (E+(S) ×
E+(S)). Therefore h ∩ (E+(S) × E+(S)) ⊆ γ ∩ (E+(S) × E+(S)). Since α
separates additive idempotents, γ ⊆ α ∨ γ ⊆ H+ ∨ γ ⊆ h and consequently
γ ∩ (E+(S) × E+(S)) = h ∩ (E+(S) × E+(S)) = (α ∨ γ) ∩ (E+(S) × E+(S)).
Therefore (α ∨ γ, γ) ∈ τ .

Since H+ is an additive idempotent separating congruence on a completely
regular semiring, we have, in particular:

Corollary 3.2. Let S be a completely regular semiring. Then for every α ∈ C(S),
(α ∨H+, α) ∈ τ .

We omit the proof of the following result, since it is similar to the proof of
Theorem 2.2 [15].

Lemma 3.3. If S is an additive regular semiring, then the relation τ is a complete

lattice congruence on C(S).

Let V be a variety of idempotent semirings. Then a congruence σ on an additive
regular semiring S is a V-congruence if and only if σ contains ρV , the minimum
V-congruence on S. Therefore we have:

Theorem 3.4. Let S be an additive regular semiring and V be a variety of idem-

potent semirings. Then each τ -class in C(S) contains at most one V-congruence
on S. In addition, if S is a completely regular semiring such that S/H+ ∈ V, then
each τ -class contains exactly one V-congruence.

Proof. Let α, γ be two V-congruences on S such that (α, γ) ∈ τ . Then ρV ⊆ α and
ρV ⊆ γ. Let xαy. Since S/ρV is an idempotent semiring it follows, by Lallement's
Lemma, that there exist e, f ∈ E+(S) such that eρVx and fρVy. Then eρVxαyρVf
which implies that (e, f) ∈ α. Since (α, γ) ∈ τ it follows that (e, f) ∈ γ, and so
ρV ⊆ γ implies that xγy. Therefore α ⊆ γ. Similarly we have γ ⊆ α, and �nally
α = γ.

Now suppose that S is a completely regular semiring such that S/H+ ∈ V.
Then for every α ∈ C(S), ρV ⊆ H+ ⊆ α ∨ H+ implies that α ∨ H+ is a V-
congruence. Also it follows from Lemma 3.1 that α ∨ H+ is in the τ -class of
α.

In particular, we have:

Corollary 3.5. Let S be an additive regular semiring. Then each τ -class in C(S)
contains at most one idempotent semiring (b-lattice, distributive lattice) congru-

ence. If moreover, S is a completely regular semiring (b-lattice of rings, distribu-

tive lattice of rings), then each τ -class contains exactly one idempotent semiring

(b-lattice, distributive lattice) congruence.
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Following result shows that for every congruence α on S, the join α ∨ H+ in
C(S) gives important information about α.

Theorem 3.6. Let S be a completely regular semiring and α, γ ∈ C(S). Then

(α, γ) ∈ τ if and only if α ∨H+ = γ ∨H+.

Proof. First suppose that (α, γ) ∈ τ . Then, by Corollary 3.2, (α∨H+, α) ∈ τ and
(γ ∨H+, γ) ∈ τ and it follows that (α ∨H+, γ ∨H+) ∈ τ . Also both α ∨H+ and
γ ∨ H+ are idempotent semiring congruences and so, by Theorem 3.4, it follows
that α ∨H+ = γ ∨H+.

Conversely suppose that α ∨ H+ = γ ∨ H+. Then (α ∨ H+, α) ∈ τ and
(γ ∨H+, γ) ∈ τ implies that (α, γ) ∈ τ .

Following result can be proved similarly to Theorem 3.4 (ii) [14]. So we omit
the proof.

Lemma 3.7. Let S be an additive regular semiring. Then each τ -class in C(S)
is a complete modular sublattice of C(S) with the greatest and least elements.

The following theorem gives a necessary and su�cient condition for the greatest
element of each τ -class in C(S) to be a V-congruence on S, where V is a variety
of idempotent semirings.

Theorem 3.8. Let S be a completely regular semiring and V be a variety of

idempotent semirings. Then the greatest element of each τ -class in C(S) is a

V-congruence if and only if S/H+ ∈ V.

Proof. First suppose that S is a completely regular semiring such that S/H+ ∈ V.
Then H+ = ρV , by Theorem 2.1. Let α ∈ C(S) and γ be the greatest element of
the τ -class of α. Now, by Corollary 3.2, (α∨H+, α) ∈ τ and so H+ ⊆ α∨H+ ⊆ γ.
Thus γ is a V-congruence.

Conversely, suppose that the greatest element of each τ -class is a V-congruence.
Since µ is the greatest element of the τ -class of ∆S , µ is a V-congruence. Also,
on every additive regular semiring, µ ⊆ H+ ⊆ ρV . Therefore µ = H+ = ρV and it
follows, by Theorem 2.1, that S/H+ ∈ V.

Now we have the following important corollary.

Corollary 3.9. Let S be a completely regular semiring. Then the greatest element

of each τ -class is an idempotent semiring congruence.

Moreover, the greatest element of each τ -class is a b-lattice (distributive lattice)
congruence if and only if S is a b-lattice (distributive lattice) of rings.

4. Embedding of C(S) in a product lattice

Let V be a variety of idempotent semirings and S be a completely regular semiring
such that S/H+ ∈ V. Then for every α ∈ C(S), H+ ⊆ α ∨ H+ implies that
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α ∨H+ ∈ V(S) and α ∧H+ ⊆ H+ implies that α ∧H+ is an additive idempotent
separating congruence. Thus we have a mapping φ : C(S)→ V(S)×M(S) de�ned
by: for every α ∈ C(S),

φ(α) = (α ∨H+, α ∧H+).

Lemma 4.1. Let V be a variety of idempotent semirings and S be a completely

regular semiring such that S/H+ ∈ V. Then φ is one-to-one.

Proof. Suppose that α, γ ∈ C(S) are such that φ(α) = φ(γ). Then α∨H+ = γ∨H+

and α ∧H+ = γ ∧H+. It follows, by Theorem 3.6, (α, γ) ∈ τ . Let (x, y) ∈ α and
e ∈ E+(S)∩H+

x , f ∈ E+(S)∩H+
y . Then e = xo α yo = f implies that (e, f) ∈ α,

and so (e, f) ∈ γ. Now x = (x+ e)γ(x+ f) and y = (f + y)γ(e+ y) together with
eαf imply that (e+ y)α(f + y) = yαx = (x+ e)α(x+ f), and so (e+ y)α(x+ f).
Also e H+ x and y H+ f imply that (e+ y)H+(x+ f). Thus (e+ y)H+ ∧α(x+ f)
and so (e+y)γ∧H+(x+f). Hence xγ(x+f)γ(e+y)γy and it follows that α ⊆ γ.
Similarly γ ⊆ α. Thus α = γ.

Theorem 4.2. Let S be a completely regular semiring and α ∈ C(S). Then

α = ᾱ ∨ (α ∧H+), where ᾱ is the smallest element of τ -class of α.

Proof. Let α ∈ C(S). Then α ∧H+ is an additive idempotent separating congru-
ence, which implies that α ∧ H+τH+ and so, by Corollary 3.2, ᾱ ∨ (α ∧ H+) τ
ᾱ ∨ H+ τ ᾱ τ α. Therefore, by Theorem 3.6, α ∨ H+ = [ᾱ ∨ (α ∧ H+)] ∨ H+.
Now ᾱ, α ∧H+ ⊆ α implies that [ᾱ ∨ (α ∧H+)] ∧H+ ⊆ α ∧H+. Also, α ∧H+ ⊆
ᾱ ∨ (α ∧ H+),H+ and hence α ∧ H+ ⊆ [ᾱ ∨ (α ∧ H+)] ∧ H+. Thus we have
α ∧ H+ = [ᾱ ∨ (α ∧ H+)] ∧ H+. Therefore φ(α) = φ(ᾱ ∨ (α ∧ H+)) and so
α = ᾱ ∨ (α ∧H+).

Theorem 4.3. Let S be a completely regular semiring such that S/H+ ∈ V. Then

φ is ∧-preserving.

Proof. We have (α ∨H+) ∧ (γ ∨H+) τ (α ∧ γ) and (α ∧ γ) ∨H+ τ (α ∧ γ). Then
it follows that (α ∧ γ) ∨ H+ τ (α ∨ H+) ∧ (γ ∨ H+). Since both (α ∧ γ) ∨ H+

and (α ∨ H+) ∧ (γ ∨ H+) are V-congruences it follows, by Theorem 3.4, that
(α∧γ)∨H+ = (α∨H+)∧(γ∨H+). Also we have (α∧γ)∧H+ = (α∧H+)∧(γ∧H+).
Therefore φ is ∧-preserving.

Corollary 4.4. Let S be a completely regular semiring such that S/H+ ∈ V. Then

V(S) is lattice isomorphic with C(S)/τ .

Let V be a variety of idempotent semirings and S be a completely regular
semiring such that S/H+ ∈ V. Denote the restriction of φ to D+(S) by φ̃. Thus

the mapping φ̃ : D+(S)→ V(S)×M(S) is given by: for every α ∈ D+(S),

φ̃(α) = (α ∨H+, α ∧H+).
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Theorem 4.5. Let V be a variety of idempotent semirings and S be a completely

regular semiring such that S/H+ ∈ V. Then φ̃ is ∨-preserving.

Proof. Let α, γ ∈ D+(S). Then α ∧ H+, γ ∧ H+ ⊆ (α ∨ γ) ∧ H+ implies that
(α ∧ H+) ∨ (γ ∧ H+) ⊆ (α ∨ γ) ∧ H+. Suppose that (x, y) ∈ (α ∨ γ) ∧ H+. Then
(x, y) ∈ α ∨ γ implies that there exists a positive integer n and xi, yi ∈ S, i =
1, 2, . . . , n such that

xαx1γy1αx2γy2α · · ·αxnγyn = y.

Since α, γ ⊆ D+, it follows that xi, yi ∈ D+
x = D+

y . Also xH+y implies that
H+

x = H+
y . Suppose that e is the identity element in H+

x . Then

x = (e+x+e)α(e+x1+e)τ(e+y1+e)α · · ·α(e+xn+e)γ(e+yn+e) = (e+y+e) = y.

Since D+
x = D+

y is a completely simple semiring, e + xi + e, e + yi + e ∈ e +
D+

x + e = H+
x for each i. Therefore we have (x, y) ∈ (α ∧H+) ∨ (γ ∧H+) and so

(α∨ γ)∧H+ ⊆ (α∧H+)∨ (γ ∧H+). Hence (α∨ γ)∧H+ = (α∧H+)∨ (γ ∧H+).
Also we have (α∨ γ)∨H+ = (α∨H+)∨ (γ ∨H+). This completes the proof.

Let L be a lattice, and ζ a lattice congruence on L. We say that L is ζ- modular

if for every a, b, c ∈ L, the conditions a ≥ b, (a, b) ∈ ζ, a∧c = b∧c and a∨c = b∨c,
imply that a = b. A semiring S is said to be τ -modular if the lattice C(S) of all
congruences on S is τ -modular. Thus:

De�nition 4.6. A semiring S is called τ -modular if for every ρ, σ, ξ ∈ C(S), the
conditions σ ⊆ ρ, στρ, ρ ∧ ξ = σ ∧ ξ and ρ ∨ ξ = σ ∨ ξ imply that ρ = σ.

Lemma 4.7. Let S be a τ -modular completely regular semiring. Then for every

α, γ ∈ C(S), α ∨ [(α ∧H+) ∨ (γ ∧H+)] = α ∨ [(α ∨ γ) ∧H+].

Proof. Let α, γ ∈ C(S). Then (α ∧ H+) ∨ (γ ∧ H+) ⊆ (α ∨ γ) ∧ H+ implies that
α∨ [(α∧H+)∨ (γ ∧H+)] ⊆ α∨ [(α∨ γ)∧H+]. Also α∨ [(α∧H+)∨ (γ ∧H+)] =
[α ∨ (α ∧ H+)] ∨ (γ ∧ H+) = α ∨ (γ ∧ H+). Now (γ ∧ H+)τ(α ∨ γ) ∧ H+ implies
that [α∨ (γ ∧H+)] τ α∨ [(α∨ γ)∧H+]. Thus by τ -modularity, it su�ces to show
γ∨[α∨(γ∧H+)] = γ∨[α∨[(α∨γ)∧H+]] and γ∧[α∨(γ∧H+)] = γ∧[α∨[(α∨γ)∧H+]].
Now γ ∨ α ⊆ γ ∨ [α ∨ (γ ∧ H+)] ⊆ γ ∨ [α ∨ [(α ∨ γ) ∧ H+]] ⊆ γ ∨ [α ∨ (α ∨ γ)] =
γ ∨ (α ∨ γ) = γ ∨ α, implies the �rst equality. For the other equality, we have
γ ∧ [α ∨ (γ ∧ H+)] ⊆ γ ∧ [α ∨ [(α ∨ γ) ∧ H+)]] ⊆ γ ∧ [α ∨ H+]. Hence it su�ces
to show that γ ∧ [α ∨ H+] ⊆ γ ∧ [α ∨ (γ ∧ H+)]. For this, it is su�cient to
show that γ ∧ (α ∨ H+) ⊆ α ∨ (γ ∧ H+). Suppose that (x, y) ∈ γ ∧ (α ∨ H+).
Then (xo, yo) ∈ α ∨ H+. Since (α, α ∨ H+) ∈ τ , we have (xo, yo) ∈ α. Thus
xo = (xo +xo) α (xo +yo) H+ (x+y) H+ (x+y)o, so that (xo, (x+y)o) ∈ α∨H+.
Then (α, α ∨ H+) ∈ τ implies that (xo, (x + y)o) ∈ α, and so (yo, (x + y)o) ∈ α.
Since the D+-classD(x+y) is completely simple, we have ((x+y)o+x+(x+y)o) H+

((x + y)o + y + (x + y)o). Thus x = (xo + x + xo) α ((x + y)o + x + (x + y)o) γ
∧H+((x + y)o + y + (x + y)o) α (yo + y + yo) = y, and so (x, y) ∈ α ∨ (γ ∧ H+).
This completes the proof.
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Theorem 4.8. Let V be a variety of idempotent semirings and S be a τ -modular

completely regular semiring such that S/H+ ∈ V. Then φ is ∨-preserving.

Proof. Let α, γ ∈ C(S). Then (α∧H+)∨(γ∧H+) ⊆ (α∨γ)∧H+. Since both (α∧
H+)∨(γ∧H+), (α∨γ)∧H+ are contained inH+, (α∧H+)∨(γ∧H+) τ (α∨γ)∧H+.
Therefore, by τ -modularity, it su�ces to show that α ∨ [(α ∧ H+) ∨ (γ ∧ H+)] =
α ∨ [(α ∨ γ) ∧ H+] and α ∧ [(α ∧ H+) ∨ (γ ∧ H+)] = α ∧ [(α ∨ γ) ∧ H+]. First
equality holds by Lemma 4.7. Since α ∧ H+ ⊆ (α ∧ H+) ∨ (γ ∧ H+), we have
α ∧ H+ = α ∧ (α ∧ H+) ⊆ α ∧ [(α ∧ H+) ∨ (γ ∧ H+)) ⊆ α ∧ [(α ∨ γ) ∧ H+] =
[α∧ (α∨ γ)]∧H+] = α∧H+. Therefore (ρ∨ γ)∧H+ = (ρ∧H+)∨ (γ ∧H+). Also
we have (ρ ∨ γ) ∨H+ = (ρ ∨H+) ∨ (γ ∨H+). This completes the proof.

Theorem 4.9. Let V be a variety of idempotent semirings and S be a completely

regular semiring. If φ : C(S) −→ V(S) ×M(S) is an embedding, then S is τ -
modular.

Proof. Let σ, ρ be two congruences on S such that σ ⊆ ρ, στρ and ξ is a congruence
such that σ ∨ ξ = ρ ∨ ξ and σ ∧ ξ = ρ ∧ ξ. Clearly σ ∧H+ ⊆ ρ ∧H+, and since φ
is an embedding, we have (σ ∧ H+) ∨ (ξ ∧ H+) = (σ ∨ ξ) ∧ H+ = (ρ ∨ ξ) ∧ H+ =
(ρ∧H+)∨ (ξ ∧H+). Also, (σ ∧H+)∧ (ξ ∧H+) = (σ ∧ ξ)∧H+ = (ρ∧ ξ)∧H+ =
(ρ∧H+)∧(ξ∧H+). Since, by Lemma 3.7, the τ -class of H+ is a modular sublattice
of C(S), we have σ ∧H+ = ρ∧H+. Also σ τ ρ implies that σ ∨H+ = ρ∨H+, by
Theorem 3.6. Since φ is one-to-one, σ = ρ. Thus S is τ -modular.

Now combining Theorem 4.1, 4.3, 4.8 and 4.9, we get the following result.

Theorem 4.10. Let V be a variety of idempotent semirings and S be a completely

regular semiring such that S/H+ ∈ V. Then the function φ : C(S)→ V(S)×M(S)
de�ned by φ(α) = (α∨H+, α∧H+) is an embedding if and only if S is τ -modular.
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On prime and primary avoidance theorem

for subsemimodules

Manish Kant Dubey and Poonam Sarohe

Abstract. We study some important results of prime and primary subsemimodules. We also

prove the primary avoidance theorem for subsemimodules.

1. Introduction

Prime and primary submodules play crucial role in ring and module theory. These
concepts were widely studied in [1], [2], [3], [6], [8], [9]. C. P. Lu in [8], proved
the prime avoidance theorem for submodules. El-Atrash and Ashour in [7], proved
primary avoidance theorem for submodules. Several authors have studied and
explored these concepts in semimodule theory. In this paper, we study the con-
cepts of prime and primary subsemimodules and prove several results analogous
to module theory.

By a semiring, we mean an algebraic structure (S,+, 0S) such that (S, ·) is
a semigroup and (S,+, 0S) is a commutative monoid in which the multiplication
is distributive with respect to the addition both from the left and from the right
and 0S is the additive identity of S and also 0Sx = x0S = 0S for all x ∈ S. A
nonempty subset I of a semiring S is called an ideal of S if a, b ∈ I and s ∈ S,
then a + b ∈ I and sa, as ∈ I. An ideal I of a semiring S is called subtractive if
a, a+ b ∈ I, b ∈ S, then b ∈ I. An ideal I of a semiring S is called prime if ab ∈ I,
then either a ∈ I or b ∈ I. If I is an ideal of S, then the radical of I is de�ned as
Rad(I) =

√
I = {a ∈ S : a2 ∈ I}. An ideal I of a semiring S is called a primary

ideal of S if ab ∈ I, then either a ∈ I or b ∈
√
I. Let S be a semiring. A left

S-semimodule M is a commutative monoid (M,+) which has a zero element 0M ,
together with an operation S ×M →M ; denoted by (a, x)→ ax such that for all
a, b ∈ S and x, y ∈M ,

1. a(x+ y) = ax+ ay,

2. (a+ b)x = ax+ bx,

3. (ab)x = a(bx),

4. 0Sx = 0M = a0M .

2010 Mathematics Subject Classi�cation: 16Y30, 16Y60

Keywords: Semimodule, aubtractive subsemimodule, prime subsemimodule, primary sub-

semimodule.
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A proper subsemimodule N of an S-semimodule M is called subtractive if
a, a + b ∈ N , b ∈ M then b ∈ N . The associated ideal of a subsemimodule N of
M is de�ned as (N : M) = {a ∈ S : aM ⊆ N}. A proper subsemimodule N of an
S-semimodule M is said to be strong subsemimodule if for each x ∈ N there exists
y ∈ N such that x+ y = 0.

We shortly summarize the content of the paper: In the �rst section, by applying
the prime avoidance theorem for subsemimodules [10], we prove the extended
version of prime avoidance theorem for subsemimodules. In the second section,
we prove some results on primary subsemimodules and by using the technique of
e�cient covering of subsemimodules, we prove the primary avoidance theorem for
subsemimodules.

Throughout this paper, S will always denote a commutative semiring with
identity 1 6= 0 and S-semimodules means semimodules.

2. Prime subsemimodules

A proper subsemimodule N of an S-semimodule M is called prime if whenever
rm ∈ N then rM ⊆ N or m ∈ N .

We start with the following obvious results

Theorem 2.1. If N is a maximal subsemimodule of an S-semimodule M , then

N is a prime subsemimodule of M .

Corollary 2.2. Let M be an S-semimodule and N be a proper subsemimodule of

M . If N is a subtractive subsemimodule of M and m ∈M \N . Then the following

statements holds:

1. (N : M) is a subtractive ideal of S.

2. (0 : M) and (N : m) are subtractive ideals of S.

Corollary 2.3. Let N be a prime subsemimodule of an S-semimodule M. Then
for each m ∈M \N, (N : M) and (N : m) are prime ideals of S.

Theorem 2.4. Let N1, N2, . . . , Nn be subsemimodules of an S-semimodule M

and let N be a prime subsemimodule of M . If
n⋂

i=1

Ni ⊆ N , then there exists an

1 6 i 6 n such that Ni ⊆ N or (Ni : M) ⊆ (N : m) where m ∈M \N .

Proof. Suppose Ni * N and (Ni : M) * (N : m) where m ∈ M \ N and for all
1 6 i 6 n. For particular, i = k, we have Nk * N , then there exists an mk ∈ M
such that mk ∈ Nk but mk /∈ N . Also, there exist ai ∈ (Ni : M) such that
ai /∈ (N : mk) for all i 6= k. This gives aimk ∈ Ni and aimk /∈ N . Therefore,
aimk ∈ Ni ∩Nk for all i 6= k. So a1a2 . . . ak−1ak+1 . . . anmk ∈ N1 ∩ . . .∩Nn ⊆ N .
This implies, a1a2 . . . ak−1ak+1 . . . an ∈ (N : mk). By Corollary 2.3, (N : mk) is a
prime ideal. Therefore, we have ai ∈ (N : mk) for i 6= k, a contradiction. Hence
there exists an i such that Ni ⊆ N or (Ni : M) ⊆ (N : m), where m ∈M \N .



On prime and primary avoidance theorem for subsemimodules 223

Theorem 2.5. Let M be an S-semimodule, N be an arbitrary subsemimodule

of M and N1, N2, . . . , Nn be subtractive prime subsemimodules of M . Suppose

(Nj : M) * (Ni : m) for all m ∈ M \ Ni with i 6= j. If N * Ni for all i, then
there exists an element x ∈ N such that x /∈ ∪Ni; hence, N * ∪Ni.

Proof. Since N * Ni, then there exists mi ∈ N such that mi /∈ Ni for all i. By
Corollary 2.3, (Ni : mi) is a prime ideal of S. By the given hypothesis, there exists
rj ∈ (Nj : M) and rj /∈ (Ni : mi) for i 6= j. Let si = r1r2 . . . ri−1ri+1 . . . rn =∏

j 6=i rj . Let xi = misi for all i. Then xi = misi ∈ Nj for all j 6= i. But xi /∈ Ni

because, if xi ∈ Ni then misi ∈ Ni, so si ∈ (Ni : mi), a contradiction. Let
x = x1 + x2 + . . . + xn. Then x = xi +

∑
j 6=i xj . Since

∑
j 6=i xj ∈ Ni, therefore

x /∈ Ni otherwise we would have xi ∈ Ni which is a contradiction, so x /∈ ∪Ni.
Also, mi ∈ N for all i, therefore x ∈ N and hence N * ∪Ni.

Let N1, N2, . . . , Nn be subsemimodules of M . De�ne a covering N ⊆ N1∪N2∪
. . . ∪ Nn is e�cient if no Ni is super�uous for 1 6 i 6 n. In otherwords, we say
N = N1 ∪N2 ∪ . . . ∪Nn is an e�cient union if none of the N ′is may be excluded.
Any cover or union consisting of subsemimodules of M be reduced to an e�cient
one, called an e�cient reduction, by deleting any unnecessary terms.

Theorem 2.6. (cf. [5]) Let N = N1 ∪ N2 ∪ . . . ∪ Nn be an e�cient union of

subtractive subsemimodules of an S-semimodule M . Then
n⋂

i=1

Ni =
n⋂

i=1
i6=j

Ni for any

j ∈ {1, 2, . . . , n}.

Proposition 2.7. (cf. [10]) Let N ⊆ N1 ∪ N2 . . . ∪ Nn be an e�cient covering

consisting of subtractive subsemimodules of an S-semimodule M , where n > 2. If

(Nj : M) * (Nk : M) for every j 6= k, then no Nk for k ∈ {1, 2, . . . , n} is a prime

subsemimodule of M .

Theorem 2.8. (The prime avoidance theorem, cf. [10])
Let M be an S-semimodule, N1, N2, ..., Nn a �nite number of subtractive subsemi-

modules of M and N be a subsemimodule of M such that N ⊆ N1 ∪N2 . . . ∪Nn,

(n > 2). Assume that at most two of the Ni's are not prime and that (Nj : M) *
(Nk : M) for every j 6= k. Then, N ⊆ Nk for some k.

Now, we come to our main theorem which is a more general form of the above
theorem.

Theorem 2.9. (Extended prime avoidance theorem for subsemimodules)
Let M be an S-semimodules and N1, N2, ..., Nr be subtractive prime subsemimodues

of M such that (Ni : M) * (Nj : M) for i 6= j, r > 1. Let m ∈ M be such that

mS +N *
r⋃

i=1

Ni. Then there exists n ∈ N such that m+ n /∈
r⋃

i=1

Ni.
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Proof. Suppose that m lies in each of N1, . . . , Nk but none of Nk+1, Nk+2, . . . , Nr.

If k = 0, then m = m+0 /∈
r⋃

i=1

Ni and so there is nothing to prove. Assume that it

is true for k > 1. Now, N *
k⋃

i=1

Ni, for otherwise by prime avoidance theorem for

semimodules, we would have a contradiction. Therefore, there exists p ∈ N \(N1∪
N2∪. . .∪Nk). Also, we have Nk+1∩. . .∩Nr * N1∪. . .∪Nk. Otherwise, since Nj is
a prime subsemimodule, by prime avoidance theorem, we haveNk+1∩. . .∩Nr ⊆ Nj

for some 1 6 j 6 k. This implies (Nk+1 ∩ . . . ∩ Nr : M) ⊆ (Nj : M) for some
1 6 j 6 k, that is, (Nk+1 : M) ∩ . . . ∩ (Nr : M) ⊆ (Nj : M) for some 1 6 j 6 k.
Therefore, (Ni : M) ⊆ (Nj : M) where k + 1 6 i 6 r and 1 6 j 6 k, which
contradicts to the hypothesis that (Ni : M) * (Nj : M) for i 6= j. Thus, there
exists b ∈ (Nk+1 : M)∩ . . .∩(Nr : M)\(N1 : M)∪ . . .∪(Nk : M). Let n = bp ∈ N .

Also, n ∈
r⋂

j=k+1

Nj and n = bp /∈ N1 ∪ . . . ∪ Nk (if n = bp ∈ N1 ∪ . . . ∪ Nk, then

we have n ∈ Ni for some i ∈ {1, 2, . . . k}, since Ni is prime, either b ∈ (Ni : M) or
p ∈ Ni for 1 6 i 6 k), a contradiction. Thus, n ∈ (Nk+1∩. . .∩Nr)\(N1∪. . .∪Nk).

Consequently, m+ n /∈
r⋃

i=1

Ni.

Next, we prove that if N is a �nitely generated subsemimodule of an S-
semimodule M satisfying the assumption of prime avoidance theorem for sub-
semimodules, then there is a linear combination of the generators of N also avoids
n⋃

i=1

Ni.

Theorem 2.10. Let M be an S-semimodule and N = 〈m1,m2, ...,mr〉 be a �nitely

generated subsemimodule of M . Let N1, N2, . . . , Nn be subtractive prime subsemi-

modules of M such that N * Ni for each i, 1 6 i 6 n and (Ni : M) * (Nn : M) for
each i 6= j. Then there exist b2, . . . , br ∈ S such that x = m1+ b2m2+ ...+ brmr /∈
n⋃

i=1

Ni.

Proof. We prove assertion by induction on n. Without loss of generality, we sup-
pose that Ni * Nj for all i 6= j. If n = 1, then clearly x = m1+b2m2+ ...+brmr /∈
N1. So, we have done. Assume that the result is true for (n − 1) subtrac-
tive prime subsemimodules of M . Then there exist c2, c3, . . . , cr ∈ S such that

y = m1 + c2m2 + ... + crmr /∈
n−1⋃
i=1

Ni. If y /∈ Nn, then there is nothing to prove.

So assume that y ∈ Nn. If m2, ...,mr ∈ Nn, then from the expression for y, we
have m1 ∈ Nn (as Nn is a subtractive), which is a contradiction to the fact that
N * Nn. So for some i, mi /∈ Nn. Without loss of generality, suppose i = 2.
By given hypothesis (Ni : M) * (Nn : M) for i 6= n. Therefore, there exists
ri ∈ (Ni : M) such that ri /∈ (Nn : M) where i 6= n. Let r = r1r2r3 . . . rn1

.
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Then c = m1 + (c2 + r)m2 + . . .+ crmr /∈
n⋃

i=1

Ni, which is a contradiction to our

assumption.

3. The primary avoidance theorem

In this section, we study some properties of primary subsemimodules and prove
primary avoidance theorem for subsemimodules.

De�nition 3.1. A proper subsemimodule N of an S-semimodule M is called
primary if whenever am ∈ N for some a ∈ S and m ∈ M , then m ∈ N or
a ∈

√
(N : M), where

√
(N : M)= {a ∈ S : atM ⊆ N, for some t ∈ Z+}.

Theorem 3.2. If N is a primary subsemimodule of M and m ∈ M \ N , then√
(N : m)= {r ∈ S : rnm ∈ N, for some n ∈ Z+} is a prime ideal of S.

Proof. Let rs ∈
√
(N : m) for some r, s ∈ S. Then (rs)n ∈ (N : m) for some

positive integer n. Therefore, rn(snm) ∈ N . Since N is primary, we have either
rn ∈ (N : M) or snm ∈ N . Thus, r ∈

√
(N : M) or s ∈

√
(N : m). Since√

(N : M) ⊆
√
(N : m), we get r ∈

√
(N : m) or s ∈

√
(N : m). Hence

√
(N : m)

is a prime ideal of S.

Theorem 3.3. Let N be a primary subsemimodule of an S-semimodule M . Then

(N : M) is a primary ideal of S, and hence
√
(N : M) is a prime ideal of S.

Proof. The proof is easy and hence omitted.

De�nition 3.4. Let N be a primary subsemimodule of an S-semimoduleM . Then
N is called a P -primary subsemimodule of M , when P =

√
(N : M) is a prime

ideal of S.

Proposition 3.5. Let M be an S-semimodule and N be a strong subsemimodule

of M and suppose a ∈ S. If P is a prime ideal of S, a /∈ P such that Q = (N : a)
is a P -primary in M , then N = Q ∩ (N + aM). Furthermore, N is a P -primary

in N + aM , where (N : a) = {m ∈M : am ∈ N}.

Proof. Clearly, N ⊆ Q ∩ (N + aM). Let x ∈ (N + aM) ∩ Q. Then x = n + am
where n ∈ N and m ∈ M . Since N is strong, there exists n1 ∈ N such that
n + n1 = 0. Now, x = n + am implies x + n1 = (n + n1) + am = 0 + am. Thus,
we have x + n1 = am ∈ Q, as x and n1 both are in Q. Since Q is a P -primary
and a /∈ P , we have m ∈ Q, which implies am ∈ N . Therefore, x = n+ am ∈ N .
Hence, (N + aM) ∩Q ⊆ N .

Next, we show that N is a P -primary in (N + aM). Let rx ∈ N for some
r ∈ S and x ∈ (N + aM) \ N . Then x = n + am for some n ∈ N and m ∈ M .
Since N is a strong subsemimodule of M , therefore there exist n1 ∈ N such that
n + n1 = 0. Now, adding n1 on both sides, we have x + n1 = n + n1 + am. This
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implies, rx + rn1 = ram where r ∈ S. Since ram ∈ N gives rm ∈ (N : a) = Q
and Q is P -primary. If m ∈ Q, then x = n + am ∈ N, which is a contradiction.
Hence, m /∈ Q. Therefore, r ∈ P . Therefore, N is a P - primary in (N + aM).

The following theorem can be proved easily.

Theorem 3.6. Let M and M ′ be S-semimodules, f : M −→ M ′ be an epimor-

phism and N is a proper subsemimodue of M ′. Then N is a primary subsemimo-

dule of M ′ if and only if f−1(N) is a primary subsemimodule of M .

Theorem 3.7. Let M and M ′ be S-semimodules, f : M −→ M ′ be an epimor-

phism such that f(0) = 0 and N be a subtractive strong subsemimodule of M . If

N is a primary subsemimodule of M with kerf ⊆ N , then f(N) is a primary

subsemimodule of M ′

Proof. LetN be a primary subsemimodule ofM and ax ∈ f(N) for some a ∈ S and
x ∈ M ′. Since ax ∈ f(N), there exists an element x′ ∈ N such that ax = f(x′).
Since f is an epimorphism and x ∈ M ′, then there exists y ∈ M such that
f(y) = x. As x′ ∈ N and N is a strong subsemimodule of M , therefore there
exists x′′ ∈ N such that x′ + x′′ = 0, which gives f(x′ + x′′) = 0. Therefore,
ax+ f(x′′) = 0 or f(ay) + f(x′′) = 0 implies ay + x′′ ∈ kerf ⊆ N . Thus, we have
ay ∈ N , since N is a subtractive subsemimodule of M . Since N is a primary, we
conclude that a ∈

√
(N : M) or y ∈ N . Thus, a ∈ f(

√
(N : M)) ⊆

√
f(N : M) or

f(y) ∈ f(N) and hence a ∈
√
(f(N) : M ′) or x ∈ f(N). Thus, f(N) is a primary

subsemimodule of M ′.

Theorem 3.8. Let N1, N2, . . . , Nn be subsemimodule of an S-semimodule M and

let N be a primary subsemimodule of M . If
n⋂

i=1

Ni ⊆ N , then there exists an

1 6 i 6 n such that Ni ⊆ N or (Ni : M) ⊆
√

(N : m) where m ∈M \N .

Proof. Suppose Ni * N and (Ni : M) *
√
(N : m) where m ∈M \N and for all

1 6 i 6 n. For, i = k, we have Nk * N , then there exists an mk ∈ M such that

mk ∈ Nk but mk /∈ N . Also, there exist ai ∈ (Ni : M) such that ai /∈
√
(N : mk)

for all i 6= k. This gives aimk ∈ Ni and for every positive integer pi, a
pi

i mk /∈ N .
Therefore, api

i mk ∈ Ni ∩ Nk for all i 6= k. So (ap1

1 ap2

2 . . . a
pk−1

k−1 a
pk+1

k+1 . . . apn
n )mk ∈

N1 ∩ . . . Nn ⊆ N . Let l = max{p1, p2, . . . , pk−1, pk+1, . . . , pn}. Therefore,
(a1a2 . . . ak−1ak+1 . . . an)

lmk ∈ N . This implies, (a1a2 . . . ak−1ak+1 . . . an)
l ∈

(N : mk) and hence a1a2 . . . ak−1ak+1 . . . an ∈
√
(N : mk). By Theorem 3.2,√

(N : mk) is a prime ideal. Therefore, we have ai ∈
√
(N : mk) for i 6= k, a

contradiction. Hence there exists an i such that Ni ⊆ N or (Ni : M) ⊆
√
(N : m)

where m ∈M \N .

Theorem 3.9. Let N be a P -primary subsemimodule of M . Then (N : r) is a

P -primary subsemimodule of M containing N for all r ∈
√
(N : M) \ (N : M).
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Proof. Let r ∈
√

(N : M) \ (N : M). Clearly, N ⊆ (N : r). Let s ∈ S and
m ∈ M be such that sm ∈ (N : r). Therefore, srm ∈ N . Since N is primary,
we have either s ∈

√
(N : M) or rm ∈ N , that is snM ⊆ N or m ∈ (N : r)

for some positive integer n. Hence sn ∈ ((N : r) : M) or m ∈ (N : r) for some
positive integer n. Thus, (N : r) is a primary ideal of M . Next, we show that√
(N : M) =

√
(N : r) : M . Since, N ⊆ (N : r), we have (N : M) ⊆ ((N : r) : M)

and therefore,
√
(N : M) ⊆

√
((N : r) : M). Let s ∈

√
((N : r) : M). Therefore,

sn ∈ ((N : r) : M), for some positive integer n. This gives, rsn ⊆ (N : M).
Since N is a primary subsemimodule of M , (N : M) is a primary ideal of S.
Therefore, rsn ⊆ (N : M) implies s ∈

√
(N : M), since r /∈ (N : M). Thus,√

(N : r) : M ⊆
√
(N : M). Hence,

√
(N : M) =

√
(N : r) : M .

Theorem 3.10. Let N be a subsemimodule of an S-semimodule M such that

N ⊆ N1 ∪ N2 for some subtractive subsemimodules N1, N2 of M . Then either

N ⊆ N1 or N ⊆ N2.

Proof. The proof is straightforward.

Now, by using Theorem 2.6, we prove the following proposition.

Proposition 3.11. Let N ⊆ N1∪N2∪ . . .∪Nn be an e�cient union of subtractive

subsemimodules of an S-semimodule M , where n > 1. If
√

(Nj : M) *
√
(Nk : M)

for every j 6= k, then no Nk for k ∈ {1, 2, . . . , n} is a primary subsemimodule of

M .

Proof. Suppose that Nk is a primary subsemimodule of M for some 1 6 k 6 n.
Since N ⊆ N1 ∪N2 ∪ . . .∪Nn is an e�cient covering, N = (N ∩N1)∪ (N ∩N2)∪
. . . ∪ (N ∩ Nn) is an e�cient union, otherwise for some i 6= j, N ∩ Ni ⊆ N ∩ Nj

and this imply N = (N ∩ N1) ∪ . . . ∪ (N ∩ Ni−1) ∪ (N ∩ Ni+1) ∪ . . . (N ∩ Nn)
and thus we get N ⊆ N1 ∪ . . . ∪ Ni−1 ∪ Ni+1 ∪ . . . ∪ Nn, a contradiction. Hence
for every k ∈ {1, 2, ..., n} there exists an element `k ∈ N \Nk. Also, by Theorem
2.6, we have

⋂
j 6=k

(N ∩ Nj) ⊆ N ∩ Nk. Since Nk is a primary subsemimodule of

M , by Theorem 3.2, we have
√
(Nk : M) is a prime ideal of S. By hypothesis, if

j 6= k,
√
(Nj : M) *

√
(Nk : M) so there exists an sj ∈

√
(Nj : M) \

√
(Nk : M).

Now, s =
∏
j 6=k

sj ∈
√
(Nj : M) but s =

∏
j 6=k

sj 6∈
√
(Nk : M). Since s =

∏
j 6=k

sj ∈√
(N1 : M)

√
(N2 : M)...

√
(Nk−1 : M)

√
(Nk+1 : M)...

√
(Nn : M) but s =

∏
j 6=k

sj 6∈√
(Nk : M), where sj ∈

√
(Nj : M), where 1 6 j 6 n. Therefore, for some pos-

itive integers m1,m2, ...mn, we have sm1
1 ∈ (N1 : M), sm2

2 ∈ (N2 : M), ..., smn
n ∈

(Nn : M). Let l = max{m1,m2, ...,mn}. Then for j 6= k, sl ∈ (Nj : M) but
sl /∈ (Nk : M). Therefore, sllk ∈ N ∩ Nj for every j 6= k but sllk /∈ (N ∩ Nk)

because if sllk ∈ (N ∩Nk), then slk ∈ Nk. This gives, lk ∈ Nk or s ∈
√

(Nk : M),
since Nk is primary. Therefore, sllk /∈ (N ∩ Nk), which is a contradiction to the
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fact that
⋂
j 6=k

(N ∩Nj) ⊆ N ∩Nk. Therefore, no Nk is primary subsemimodule of

M .

Now, we come to our main theorem of this paper.

Theorem 3.12. (The Primary Avoidance Theorem)
Let N1, N2, ..., Nn be subtractive subsemimodules of an S-semimodule M and let N
be a subsemimodule of M such that N ⊆ N1 ∪N2 ∪ . . .∪Nn. Suppose that at most

two of Nk's are not primary subsemimodule of M and
√
(Nj : M) *

√
(Nk : M)

for every j 6= k. Then N ⊆ Nk for some k.

Proof. Assume that the covering is e�cient. Then n 6= 2. Also by Proposition
3.12, n < 2 (as

√
(Nj : M) *

√
(Nk : M) for every j 6= k). Therefore, n = 1.

Hence N ⊆ Nk for some k.

Theorem 3.13. (Extended Version of Primary Avoidance Theorem)
Let M be an S-semimodules and N1, N2, ..., Nr subtractive primary subsemimodues

of M such that
√
(Ni : M) *

√
(Nj : M) for i 6= j, r > 1. Let m ∈ M be such

that mS +N *
r⋃

i=1

Ni. Then there exists n ∈ N such that m+ n /∈
r⋃

i=1

Ni.

Proof. Suppose thatm lies in each ofN1, N2, . . . , Nk but in none ofNk+1, Nk+2, . . .

, Nr. If k = 0, we havem = m+0 /∈
r⋃

i=1

Ni and so there is nothing to prove. Assume

that it is true for k > 1. Now, N *
k⋃

i=1

Ni, for otherwise by primary avoidance

theorem for semimodules, we would have a contradiction. Therefore, there exists
p ∈ N \ (N1 ∪ N2 ∪ . . . ∪ Nk). Thus, we have Nk+1 ∩ . . . ∩ Nr * N1 ∪ . . . ∪ Nk.
Otherwise, since N ′js are primary subsemimodules, by primary avoidance theorem,
we have Nk+1 ∩ . . .∩Nr ⊆ Nj for some 1 6 j 6 k. This implies (Nk+1 ∩ . . .∩Nr :

M) ⊆ (Nj : M) for some 1 6 j 6 k, gives
√

(Nk+1 : M) ∩ . . . ∩ (Nr : M) ⊆√
(Nj : M) for some 1 6 j 6 k. This gives,

√
(Nk+1 : M) ∩ . . . ∩

√
(Nr : M) ⊆√

(Nj : M) for some 1 6 j 6 k. Therefore,
√
(Ni : M) ⊆

√
(Nj : M), (since√

(Ni : M)'s are subtractive prime ideals for all i) where k + 1 6 i 6 r and

1 6 j 6 k, which contradicts to the hypothesis that
√
(Ni : M) *

√
(Nj : M) for

i 6= j. Thus, there exists b ∈ (Nk+1 : M)∩. . .∩(Nr : M)\(N1 : M)∪. . .∪(Nk : M).

Let n = bp, then n ∈ N . Also, n ∈
r⋂

j=k+1

Nj and n = bp /∈ N1 ∪ . . . ∪ Nk

(since if n = bp ∈ N1 ∪ . . . ∪ Nk, then n = bp ∈ Ni for some 1 6 i 6 k and
since Ni is primary, either b ∈

√
(Ni : M) or p ∈ Ni for 1 6 i 6 k). Thus,

n ∈ (Nk+1 ∩ . . . ∩Nr) \ (N1 ∪ . . . ∪Nk). Also, m ∈ N1, N2, . . . Nk , it follows that

m+ n /∈
r⋃

i=1

Ni.
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Normal submultigroups and comultisets

of a multigroup

Paul Augustine Ejegwa and Adeku Musa Ibrahim

Abstract. We study properties of normal submultigroups. It is shown that if A is a multigroup

of a group X and B is a submultigroup of A, the union and intersection of comultisets of B in

A are identical and equal to B.

1. Introduction

The notion of multigroup was �rst mentioned in [3] and de�ned as algebraic system
that satis�ed all the axioms of group except that the binary operation is multi-
valued. This perspective is neither in conformity with the idea of multisets nor in
alignment with other non-classical group studied in [8]. Also, the generalizations
of group theory as multigroup in [5, 7, 9] are not within the framework of multiset.

The perspective of multigroups in [10, 11] seem to be better o� because the
notion of multiset was captured but however, do not de�ne multigroup via count
function of multiset. In [6], the concept of multigroups was introduced via count
function of multiset and some properties were discussed. Further studies on the
concept of multigroups via multisets can be found in [1, 2, 4].

In this paper, we study some properties of normal submultigroups, propose
conjugate and normalizer in multigroups, and obtain some results. The homo-
morphic properties of normal submultigroups are explicated. Finally, we explore
the idea of comultisets of a multigroup mentioned in [6] and deduce some results.
We show that the union and intersection of comultisets of a submultigroup of a
multigroup are identical and equal to the submultigroup.

2. Preliminaries

In this section, we present some existing de�nitions and results that are useful in
the subsequent sections.

De�nition 2.1. Let X = {x1, x2, . . . , xn, . . .} be a set. A multiset A over X is a
cardinal-valued function, that is, CA : X → N such that for x ∈ Dom(A) implies

2010 Mathematics Subject Classi�cation: 03E72, 06D72, 11E57, 19A22.
Keywords: Abelian multigroup, comultiset, multiset, multigroup, submultigroup, normalizer,
normal submultigroup.
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A(x) is a cardinal and A(x) = CA(x) > 0, where CA(x) denoted the number of
times an object x occur in A. Whenever CA(x) = 0, implies x /∈ Dom(A). We
denote the set of all multisets over X by MS(X).

A multiset A = [a, a, b, b, c, c, c] can be represented as A = [a, b, c]2,2,3. Di�erent
forms of representing multiset exist other than this.

De�nition 2.2. Let A and B be multisets over X. Then A is called a submultiset
of B written as A ⊆ B if CA(x) 6 CB(x) for all x ∈ X. Also, if A ⊆ B and
A 6= B, then A is called a proper submultiset of B and denoted as A ⊂ B. Thus
A = B means that CA(x) = CB(x) for all x ∈ X. A multiset A with the property
CA(x) = CB(y) for all x, y ∈ X, is called regular. Otherwise it is irregular.

De�nition 2.3. Let A and B be multisets over X. Then the intersection and
union of A and B, denoted by A ∩ B and A ∪ B respectively, are de�ned by the
rules that for any object x ∈ X,

(i) CA∩B(x) = CA(x) ∧ CB(x),

(ii) CA∪B(x) = CA(x) ∨ CB(x),

where ∧ and ∨ denote minimum and maximum respectively.

De�nition 2.4. Let X be a group. A multiset G is called a multigroup of X if it
satis�es the following conditions:

(i) CG(xy) > CG(x) ∧ CG(y) ∀x, y ∈ X,

(ii) CG(x
−1) = CG(x) ∀x ∈ X,

where CG denotes count function of G from X into a natural number N.

For any multigroup A its inverse A−1 is de�ned by

CA−1(x) = CA(x
−1) ∀x ∈ X.

The set of all multigroups of X is denoted by MG(X). It is worthy of note
that every multigroup is a multiset but the converse is not true.

De�nition 2.5. Let A ∈MG(X). A submultiset B of A is called a submultigroup
of A denoted by B v A if B form a multigroup. A submultigroup B of A is a
proper submultigroup denoted by B @ A, if B v A and A 6= B.

De�nition 2.6. Let {Ai}i∈I , I = 1, . . . , n be an arbitrary family of multigroups
of X. Then

C⋂
i∈I Ai

(x) =
∧
i∈I

CAi
(x) ∀x ∈ X

and
C⋃

i∈I Ai
(x) =

∨
i∈I

CAi(x) ∀x ∈ X.

The family of multigroups {Ai}i∈I of X is said to have inf/sup assuming chain if
either A1 ⊆ A2 ⊆ . . . ⊆ An or A1 ⊇ A2 ⊇ . . . ⊇ An respectively.
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De�nition 2.7. Let A,B ∈ MG(X). Then the product of A and B denoted as
A ◦B, is de�ned by

CA◦B(x) =
∨
{CA(y) ∧ CB(z) | x = yz, y, z ∈ X}.

Proposition 2.8. Let A ∈MG(X). Then

(i) A∗ = {x ∈ X | CA(x) > 0},

(ii) A∗ = {x ∈ X | CA(x) = CA(e)},

where e is the identity element of X, are subgroups of X.

De�nition 2.9. Let A and B be multisets over groups X and Y and f : X −→ Y
be a homomorphism. Then

(i) the image of A under f , denoted by f(A), is a multiset of Y de�ned by

Cf(A)(y) =

{ ∨
x∈f−1(y) CA(x), f−1(y) 6= ∅

0, otherwise

for each y ∈ Y .

(ii) the inverse image of B under f , denoted by f−1(B), is a multiset of X
de�ned by Cf−1(B)(x) = CB(f(x))∀x ∈ X.

De�nition 2.10. Let X and Y be groups and let A ∈MG(X) and B ∈MG(Y ),
respectively.

(i) A homomorphism f from X to Y is called a weak homomorphism from A to
B if f(A) ⊆ B. If f is a weak homomorphism of A into B, then we say that,
A is weakly homomorphic to B denoted by A ∼ B.

(ii) An isomorphism f from X to Y is called a weak isomorphism from A to B
if f(A) ⊆ B. If f is a weak isomorphism of A into B, then we say that, A is
weakly isomorphic to B denoted by A ' B.

(iii) A homomorphism f from X to Y is called a homomorphism from A to B if
f(A) = B. If f is a homomorphism of A onto B, then A is homomorphic to
B denoted by A ≈ B.

(iv) An isomorphism f from X to Y is called an isomorphism from A to B if
f(A) = B. If f is an isomorphism of A onto B, then A is isomorphic to B
denoted by A ∼= B.

Theorem 2.11. Let X and Y be groups and f : X → Y be an isomorphism. If
A ∈MG(X) and B ∈MG(Y ), then f(A) ∈MG(Y ) and f−1(B) ∈MG(X).
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3. Properties of normal submultigroups

Let A ∈ MG(X) is said to be abelian if CA(xy) = CA(yx) for all x, y ∈ X. If
A,B ∈MG(X) and A ⊆ B, then A is called a normal submultigroup of B if

CA(xyx
−1) > CA(y) ∀x, y ∈ X.

Example 3.1. Let X = {e, a, b, c} be a Klein 4-group such that

ab = c, ac = b, bc = a, a2 = b2 = c2 = e.

Suppose A = [e, a, b, c]3,2,3,2 and B = [e, a, b, c]5,2,4,2 are multigroups of X satisfy-
ing the axioms in De�nition 2.4. Clearly, A ⊆ B. Then A is a normal submulti-
group of B since

CA(aba
−1) = CA(b) = 3 > CA(b), CA(bab

−1) = CA(a) = 2 > CA(a),

CA(cbc
−1) = CA(b) = 3 > CA(b), CA(bcb

−1) = CA(c) = 2 > CA(c).

De�nition 3.2. Let A ∈MG(X) and x, y ∈ X. Then x and y are called conjugate
elements in A if

CA(x) = CA(yxy
−1) ∀x, y ∈ X.

Two multigroups A and B of X are conjugate to each other if for all x, y ∈ X,

CA(y) = CB(xyx
−1) and CB(x) = CA(yxy

−1), i.e.,

CA(y) = CBx(y) and CB(x) = CAy (x).

Remark 3.3. If A,B ∈ MG(X) and A is a normal submultigroup of B. Then
A∗ is a normal subgroup of B∗ and A

∗ is a normal subgroup of B∗. Moreover, A
is normal if and only if A−1 is normal.

Proposition 3.4. Let A,B ∈MG(X). Then the following statements are equiv-
alent.

(i) A is a normal submultigroup of B,

(ii) CA(xyx
−1) = CA(y) ∀x, y ∈ X,

(iii) CA(xy) = CA(yx) ∀x, y ∈ X.

Proof. Straightforward.

Proposition 3.5. Let A,B ∈ MG(X) such that A ⊆ B and CA(x) = CA(y) for
all x, y ∈ X. Then the following assertions are equivalent.

(i) A is a normal submultigroup of B.

(ii) CA(yx) > CA(xy) ∧ CB(y) ∀x, y ∈ X.
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Proof. (i) ⇒ (ii). Since A is a normal submultigroup of B and CA(x) = CA(y),
by Proposition 3.4 we have CA(yx) = CA(y(xy)y

−1) > CA(xy) ∧ CB(y) for all
x, y ∈ X.

(ii) ⇒ (i). Since CA(yx) > CA(xy) ∧ CB(y), CA(xy) > CA(yx) ∧ CB(y), it
implies CA(xy) = CA(yx). Proposition 3.4 completes the proof.

Proposition 3.6. Let X be a group, A a submultigroup of G ∈MG(X) and B a
submultiset of G. If A and B are conjugate, then B is a submultigroup of G.

Proposition 3.7. Let A,B,C ∈MG(X) such that A and B are normal submulti-
groups of C. If A ⊆ B ⊆ C, then A ∩B and A ∪B are normal submultigroups of
C.

Proposition 3.8. Let A be a submultigroup of B ∈MG(X). Then A is a normal
submultigroup of B if and only if x ∈ X is constant on the conjugacy classes of
A.

Proof. Suppose that A is a normal submultigroup of B. Then

CA(y
−1xy) = CA(xyy

−1) = CA(x) ∀x, y ∈ X.

This implies that, x ∈ X is constant on the conjugacy classes of A.
Conversely, let x ∈ X be constant (that is, �xed) on each conjugacy classes of

A. Then CA(xy) = CA(xyxx
−1) = CA(x(yx)x

−1) = CA(yx) ∀x, y ∈ X. Hence,
A is normal.

We now give an alternative formulation of the notion of normal submultigroup
in terms of commutator of a group. First, we recall that if X is a group and
x, y ∈ X, then the element x−1y−1xy is usually depicted by [x, y] and is called the
commutator of x and y.

Theorem 3.9. Let A,B ∈ MG(X) such that A ⊆ B. Then A is a normal
submultigroup of B if and only if

(i) CA([x, y]) > CA(x) ∀x, y ∈ X.

(ii) CA([x, y]) = CA(e) ∀x, y ∈ X, where e is the identity of X.

Proof. (i). Suppose A is a normal submultigroup of B. Let x, y ∈ X, then

CA(x
−1y−1xy) > CA(x

−1) ∧ CA(y
−1xy) = CA(x) ∧ CA(x) = CA(x).

Conversely, assume that A satis�es the inequality. Then for all x, y ∈ X,

CA(x
−1yx) = CA(yy

−1x−1yx) > CA(y) ∧ CA([y, x]) = CA(y).

Thus, CA(x
−1yx) > CA(y) for all x, y ∈ X. Hence A is normal.

(ii). Let x, y ∈ X. Suppose A is a normal submultigroup of B. We know
that A is a normal submultigroup of B ⇔ CA(xy) = CA(yx) ⇔ CA(x

−1y−1x) =
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CA(y
−1) ⇔ CA(x

−1y−1xyy−1) = CA(y
−1) ⇔ CA([x, y]y

−1) = CA(y
−1) for all

x, y ∈ X. Consequently, CA([x, y]) = CA(y
−1y) = CA(e) for all x, y ∈ X.

Conversely, assume CA([x, y]) = CA(e) for all x, y ∈ X. Then CA(x
−1y−1xy) =

CA(e), so, CA((yx)
−1xy) = CA(e). That is, CA(xy) = CA(yx) for all x, y ∈ X.

Thus, A is a normal submultigroup of B.

Theorem 3.10. Let A be a normal submultigroup of G ∈MG(X). Then
⋂

x∈X Ax

is normal and is the largest normal submultigroup of G that is contained in A.

Proof. Suppose Ax ∈ MG(X)∀x ∈ X. Then for all y ∈ X, we observe that
{Ax | x ∈ X} = {Axy | x ∈ X}. Thus,∧

x∈X
CAx(yzy−1) =

∧
x∈X

CA(xyzy
−1x−1) =

∧
x∈X

CA((xy)z(xy)
−1)

=
∧
x∈X

CAxy (z) =
∧
x∈X

CAx(z) ∀y, z ∈ X.

Hence,
⋂

x∈X Ax is a normal submultigroup of G.
Now let B be a normal submultigroup of G such that B ⊆ A. Then B =

Bx ⊆ Ax∀x ∈ X. Thus, B ⊆
⋂

x∈X Ax. Therefore,
⋂

x∈X Ax is the largest normal
submultigroup of G that is contained in A.

De�nition 3.11. Let A be a submultigroup of B ∈ MG(X). Then the it nor-
malizer of A in B is the set given by

N(A) = {g ∈ X | CA(gy) = CA(yg) ∀y ∈ X}.

We now note that

N(A) = {g ∈ X | CAg (y) = CA(y) ∀y ∈ X}.

It su�ces to note that, CA(gy) = CA(yg) for all y ∈ X implies CA(g
−1yg) = CA(y)

for all y ∈ X. Then CA(g
−1yg) = CA(y) gives CA(g

−1(gy)g) = CA(gy), i.e.,
CA(yg) = C(gy) for all y ∈ X.

Example 3.12. Let X = {g1, g2, g3, g4, g5, g6, g7, g8} such that

g1 =

(
1 0
0 1

)
, g2 =

(
0 −1
1 0

)
, g3 =

(
−1 0
0 −1

)
, g4 =

(
0 1
−1 0

)
,

g5 =

(
1 0
0 −1

)
, g6 =

(
−1 0
0 1

)
, g7 =

(
0 1
1 0

)
, g8 =

(
0 −1
−1 0

)
be a group under matrix multiplication, and A ⊆ B ∈MG(X) such that

A = [g101 , g
5
2 , g

7
3 , g

5
4 , g

5
5 , g

5
6 , g

7
7 , g

8
8 ]

satisfying the axioms in De�nition 2.4. Using De�nition 3.11, N(A) = {g1, g3, g7, g8}.
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Theorem 3.13. Let A be a submultigroup of B ∈ MG(X). Then the following
assertions hold.

(i) N(A) is a subgroup of X.

(ii) A is a normal submultigroup of B if and only if N(A) = X.

Proof. (i). Let g, h ∈ N(A). Then CAgh(x) = C(Ah)g (x) = CAh(x) = CA(x) for
all x ∈ X since CAg (x) = CA(g

−1xg) = CA(x). Hence gh ∈ N(A). Again, let
g ∈ N(A). We show that g−1 ∈ N(A). For all y ∈ X, CA(gy) = CA(yg) and so
CA((gy)

−1) = CA((yg)
−1). Thus for all y ∈ X, CA(y

−1g−1) = CA(g
−1y−1) and

so CA(yg
−1) = CA(g

−1y) since CA(y) = CA(y
−1). Thus, g−1 ∈ N(A). Hence,

N(A) is a subgroup of X.

(ii). Let A be a normal submultigroup of B and g ∈ X. Then for all x ∈ X,
we have

CAg (x) = CA(g
−1xg) = CA((g

−1x)g) = CA(g(g
−1x)) = CA(x).

Thus, CAg (x) = CA(x) and so g ∈ N(A). Therefore, N(A) = X.
Conversely, suppose N(A) = X. Let x, y ∈ X. To prove that A is normal, it

is su�cient we show that CA(xy) = CA(yx). Now

CA(xy) = CA(xyxx
−1) = CA(x(yx)x

−1) = CAx−1 (yx) = CA(yx),

where the last equality follows since N(A) = X and so x−1 ∈ N(A). Consequently,
CAx−1 (y) = CA(y). Thus, A is a normal submultigroup of B.

Remark 3.14. Let A be a submultigroup of B ∈MG(X). Then S = N(A) = T ,
if

S = {x ∈ X | CA(xy(yx)
−1) = CA(e) ∀y ∈ X}

and
T = {x ∈ X | CA(xyx

−1) = CA(y) ∀y ∈ X}.

Theorem 3.15. Let A,B and C be multigroups of an abelian group X such that
A ⊆ B ⊆ C. Then

N(A) ∩N(B) ⊆ N(A ∩B).

Proof. Let y ∈ N(A) ∩ N(B). Then for any x, y ∈ X, we get CA∩B(xy) =
CA∩B(yx). thus, CA∩B(xyx

−1) = CA∩B(y). Now

CA∩B(xyx
−1) = CA(xyx

−1) ∧ CB(xyx
−1) = CA(yxx

−1) ∧ CB(yxx
−1)

= CA(y) ∧ CB(y) = CA∩B(y).

Thus, y ∈ N(A ∩B). Hence, N(A) ∩N(B) ⊆ N(A ∩B).

Corollary 3.16. Let A,B,C ∈ MG(X) such that A ⊆ B ⊆ C and CA(e) =
CB(e). Then

N(A) ∩N(B) = N(A ∩B).
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Proof. Recall that

N(A) = {x ∈ X | CA(xy) = CA(yx) ∀y ∈ X}
= {x ∈ X | CA(xyx

−1y−1) = CA(e) ∀y ∈ X}.

Let y ∈ N(A ∩B). Then from the de�nition of N(A), for all x ∈ X we get

CA∩B(xyx
−1y−1) = CA(xyx

−1y−1) ∧ CB(xyx
−1y−1) = CA(e) ∧ CB(e),

implies y ∈ N(A) ∩ N(B). Since CA(xyx
−1y−1) = CA(e) we obtain CA(xy) =

CA(yx). Similarly in the case of B because CA(e) = CB(e). Hence N(A)∩N(B) =
N(A ∩B).

Corollary 3.17. Let A,B,C ∈MG(X) such that A ⊆ B ⊆ C. Then

N(A) ∩N(B) ⊆ N(A ◦B).

Proof. Let y ∈ N(A)∩N(B), that is y ∈ N(A) and y ∈ N(B). Then for all x ∈ X,

CA◦B(y) =
∨

y=ab

{CA(a) ∧ CB(b) | ∀a, b ∈ X}

=
∨

y=ab

{CA(x
−1ax) ∧ CB(x

−1bx) | ∀a, b ∈ X}

6
∨

x−1yx=cd

{CA(c) ∧ CB(d) | ∀c, d ∈ X}

= CA◦B(x
−1yx),

which gives CA◦B(y) 6 CA◦B(x
−1yx). The inequality holds since y = ab ⇒

x−1abx = cd ⇒ ab = xcdx−1 = (xcx−1)(xdx−1) and since a = xcx−1 and b =
xdx−1 imply x−1ax = c and x−1bx = d. Again,

CA◦B(x
−1yx) 6 CA◦B(x(x

−1yx)x−1) = CA◦B(y).

So, CA◦B(y) > CA◦B(x
−1yx). Thus, CA◦B(y) = CA◦B(x

−1yx), which proves,
y ∈ N(A ◦B). Therefore, N(A) ∩N(B) ⊆ N(A ◦B).

Remark 3.18. If A,B,C ∈MG(X) such that A ⊆ B ⊆ C. Then N(A) ⊆ N(B).

4. Homomorphism of normal submultigroups

In this section, we present some results on the homomorphic properties of normal
submultigroups.

Theorem 4.1. Let f be a homomorphism of an abelian group X onto an abelian
group Y . Let A and B be multigroups of X such that A ⊆ B. Then

f(N(A)) ⊆ N(f(A)).
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Proof. Let x ∈ f(N(A)). Then f(u) = x for some u ∈ N(A). So, for all y, z ∈ Y ,

Cf(A)(xyx
−1) = CA(f

−1(xyx−1)) = CA(f
−1(x)f−1(y)f−1(x−1))

= CA(f
−1(x)f−1(y)f−1(x)−1) = CA(f

−1(x)f−1(y)(f−1(x))−1)

= CA(f
−1(f(u))f−1(f(v))(f−1(f(u)))−1) = CA(uvu

−1)

= CA(vuu
−1) = CA(v) = CA(f

−1(y)) = Cf(A)(y),

where v ∈ X such that f(v) = y. Thus, x ∈ N(f(A)), and consequently
f(N(A)) ⊆ N(f(A)).

Theorem 4.2. Let f : X → Y be homomorphism of abelian groups X and Y . Let
A and B be multigroups of Y such that B ⊆ A. Then

f−1(N(B)) = N(f−1(B)).

Proof. Let x ∈ f−1(N(B)). Then for all y ∈ X,

Cf−1(B)(xyx
−1) = CB(f(xyx

−1)) = CB(f(x)f(y)f(x
−1)) = CB(f(x)f(y)(f(x))

−1)

= CB(f(y)f(x)(f(x))
−1) = CB(f(y)) = Cf−1(B)(y).

Thus x ∈ N(f−1(B)). So, f−1(N(B)) ⊆ N(f−1(B)).
Again, let x ∈ N(f−1(B)) and f(x) = u. Then for all v ∈ Y ,

CB(uvu
−1) = CB(f(x)f(y)(f(x))

−1) = CB(f(y)f(x)(f(x))
−1)

= CB(f(y)) = CB(v),

where y ∈ X such that f(y) = v. Clearly, u ∈ N(B), that is, x ∈ f−1(N(B)).
Thus, N(f−1(B)) ⊆ f−1(N(B)). Hence, f−1(N(B)) = N(f−1(B)).

Theorem 4.3. Let f : X → Y be an isomorphism of groups and let A be a
normal submultigroup of B ∈ MG(X). Then f(A) is a normal submultigroup of
f(B) ∈MG(Y ).

Proof. By Theorem 2.11, f(A), f(B) ∈ MG(Y ) and so, f(A) ⊆ f(B). We show
that f(A) is a normal submultigroup of f(B). Let x, y ∈ Y . Since f is an
isomorphism, then for some a ∈ X we have f(a) = x. Thus,

Cf(A)(xyx
−1) =

∨
b∈X

{CA(b) | f(b) = xyx−1} =
∨
b∈X

{CA(a
−1ba) | f(a−1ba) = y}

>
∨

a−1ba∈X

{CA(b) | f(b) = y} =
∨
b∈X

{CA(f
−1(y)) | f(b) = y} = Cf(A)(y).

Hence, f(A) is a normal submultigroup of f(B).

Theorem 4.4. Let Y be a group and A ∈ MG(Y ). If f is an isomorphism
of X onto Y and B is a normal submultigroup of A, then f−1(B) is a normal
submultigroup of f−1(A).
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Proof. By Theorem 2.11, f−1(A), f−1(B) ∈MG(X). Since B is a submultigroup
of A, so f−1(B) ⊆ f−1(A). Let a, b ∈ X, then we have

Cf−1(B)(aba
−1) = CB(f(aba

−1)) = CB(f(a)f(b)(f(a))
−1)

= CB(f(a)(f(a))
−1f(b))

> CB(e) ∧ CB(f(b)) = Cf−1(B)(b),

which completes the proof.

5. Comultisets of a multigroup

In this section, we assume that if G is a multigroup of a group X, then G∗ = X.
That is, every element of X is in G with its multiplicity or count.

De�nition 5.1. Let X be a group. For any submultigroup A of a multigroup G
of X, the submultiset yA of G for y ∈ X de�ned by

CyA(x) = CA(y
−1x)∀x ∈ A∗

is called the left comultiset of A. Similarly, the submultiset Ay of G for y ∈ X
de�ned by

CAy(x) = CA(xy
−1)∀x ∈ A∗

is called the right comultiset of A.

Example 5.2. Let X = {ρ0, ρ1, ρ2, ρ3, ρ4, ρ5} be a permutation group of {1, 2, 3}
such that ρ0 = (1), ρ1 = (123), ρ2 = (132), ρ3 = (23), ρ4 = (13), ρ5 = (12) and
G = [ρ70, ρ

5
1, ρ

5
2, ρ

3
3, ρ

3
4, ρ

3
5] be a multigroup of X. Then H = [ρ60, ρ

3
1, ρ

3
2, ρ

2
3, ρ

2
4, ρ

2
5] is

a submultigroup of G.

Now, we �nd the left comultisets of H by pre-multiplying each element of G
by H.

ρ0H = [ρ60, ρ
3
1, ρ

3
2, ρ

2
3, ρ

2
4, ρ

2
5] ρ1H = [ρ32, ρ

6
0, ρ

3
1, ρ

2
5, ρ

2
3, ρ

2
4]

ρ2H = [ρ31, ρ
3
2, ρ

6
0, ρ

2
4, ρ

2
5, ρ

2
3] ρ3H = [ρ23, ρ

2
5, ρ

2
4, ρ

6
0, ρ

3
2, ρ

3
1]

ρ4H = [ρ24, ρ
2
3, ρ

2
5, ρ

3
1, ρ

6
0, ρ

3
2] ρ5H = [ρ25, ρ

2
4, ρ

2
3, ρ

3
2, ρ

3
1, ρ

6
0]

Similarly, the right comultisets of H are

Hρ0 = [ρ60, ρ
3
1, ρ

3
2, ρ

2
3, ρ

2
4, ρ

2
5] Hρ1 = [ρ32, ρ

6
0, ρ

3
1, ρ

2
4, ρ

2
5, ρ

2
3]

Hρ2 = [ρ31, ρ
3
2, ρ

6
0, ρ

2
5, ρ

2
3, ρ

2
4] Hρ3 = [ρ23, ρ

2
4, ρ

2
5, ρ

6
0, ρ

3
1, ρ

3
2]

Hρ4 = [ρ24, ρ
2
5, ρ

2
3, ρ

3
2, ρ

6
0, ρ

3
1] Hρ5 = [ρ25, ρ

2
3, ρ

2
4, ρ

3
1, ρ

3
2, ρ

6
0]

From Example 5.2, we notice that H = yH for all y ∈ X because a multigroup is
an unordered collection. Consequently, xH = yH for all x, y ∈ X.
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Proposition 5.3. Let X be a group. If A is a submultigroup of a multigroup G
of X, then yA = Ay for all y ∈ X.

Proof. Assume A is a submultigroup of G. Then ∀x ∈ A∗ we have

CyA(x) = CA(y
−1x) > CA(y) ∧ CA(x) = CA(x) ∧ CA(y) = CA(x) ∧ CA(y

−1).

Suppose by hypothesis, CA(x)∧CA(y) = CA(xy). Then CyA(x) > CAy(x). Again,

CAy(x) = CA(xy
−1) > CA(x) ∧ CA(y) = CA(y) ∧ CA(x) = CA(y

−1) ∧ CA(x).

By the same hypothesis, we get CAy(x) > CyA(x). Hence, CyA(x) = CAy(x), that
is, yA = Ay.

Remark 5.4. If A is a submultigroup of a multigroup G of a group X, then each
yA (and Ay) are submultigroups of G.

Proposition 5.5. If H is a submultigroup of A ∈ MG(X), then the number of
comultisets of H equals the cardinality of H∗.

Proof. Recall that H∗ = {x ∈ X | CH(x) > 0}, that is, H∗ is a set. Since
comultisets of H is formed by pre-multiplying each element of X (since A∗ = X)
by H and CyH(x) = CH(y−1x)∀y ∈ X must exist, hence the result follows.

Proposition 5.6. Let H be a submultigroup of A ∈ MG(X). The union and
intersection of the comultisets of H are comparable to H.

Proof. H = yH for all y ∈ X. Hence, the union and intersection of yH for all
y ∈ X are equal to H.

Proposition 5.7. Let X be a group. Any submultigroup A of a multigroup G and
for any z ∈ X, the submultiset zAz−1, where CzAz−1(x) = CA(z

−1xz) for each
x ∈ X is a submultigroup of G.

Proof. Let x, y ∈ X, then we have CzAz−1(e) = CA(e) and

CzAz−1(xy−1) = CA(z
−1xy−1z) = CA(z

−1xzz−1y−1z)

> CA(z
−1xz) ∧ CA(z

−1y−1z) = CzAz−1(x) ∧ CzAz−1(y−1)

= CzAz−1(x) ∧ CzAz−1(y)

for all z ∈ X. Hence zAz−1 is a submultigroup of G.

Corollary 5.8. Let {Ai}i∈I ∈MG(X), then

(i)
⋂

i∈I zAiz
−1 ∈MG(X) for all z ∈ X,

(ii)
⋃

i∈I zAiz
−1 ∈MG(X) for all z ∈ X provided {Ai}i∈I have sup/inf assum-

ing chain.
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Proposition 5.9. Let A ∈ MG(X) and for all g, h ∈ X, then the following
statements hold:

(i) Ag ◦Ag = Ag,

(ii) Ag ◦Ah = Ah ◦Ag,

(iii) (Ag ◦Ah)−1 = (Ah)−1 ◦ (Ag)−1,

(iv) (Ag ◦Ah)−1 = Ag ◦Ah.

Proof. Let g, h ∈ X.
(i). From De�nition 2.7, we have

CAg◦Ag(x) =
∨
{CAg(y) ∧ CAg(z) | x = yz,∀y, z ∈ X}

=
∨
y∈X
{CAg(xy

−1) ∧ CAg(y) | x ∈ X} = CAg(x).

Hence, Ag ◦Ag = Ag.

(ii). CAg◦Ah(x) =
∨
{CAg(y) ∧ CAh(z) | x = yz,∀y, z ∈ X}

=
∨
{CAh(z) ∧ CAg(y) | x = yz, y, z ∈ X} = CAh◦Ag(x).

Hence, Ag ◦Ah = Ah ◦Ag.
(iii). We show that, the left and right hand sides are equal. By De�nition 2.4

C(Ag◦Ah)−1(x) = CAg◦Ah(x
−1) = CAg◦Ah(x).

Again, from the right hand side we get

C(Ah)−1◦(Ag)−1(x) =
∨
y∈X
{C(Ah)−1(y−1) ∧ C(Ag)−1(yx) | x ∈ X}

=
∨
y∈X
{CAh(y

−1) ∧ CAg(yx) | x ∈ X}

= CAh◦Ag(x) = CAg◦Ah(x).

Hence, (Ag ◦Ah)−1 = (Ah)−1 ◦ (Ag)−1.

(iv). Straightforward from (iii).

Proposition 5.10. Let A be a commutative multigroup of a group X. Then

(i) Ay ◦Az = Ayz for all y, z ∈ X,

(ii) yA ◦ zA = yzA for all y, z ∈ X.



Normal submultigroups and comultisets 243

Proof. (i). Let A ∈MG(X) and x ∈ X, then we have

CAy◦Az(x) =
∨

x=zy

{CAy(z) ∧ CAz(y) | ∀y, z ∈ X}

=
∨

x=zy

{CA(zy
−1) ∧ CA(yz

−1) | ∀y, z ∈ X}

= {CA∩A((zy
−1)(yz−1)) | ∀y, z ∈ X}

= {CA(xz
−1y−1) | x = yz,∀y, z ∈ X} = {CAyz(x) | x = yz,∀y, z ∈ X}.

Hence, Ay ◦Az = Ayz.

(ii). Similar to (i).

Corollary 5.11. Let A be a multigroup of a group X and y, z ∈ X. The following
statements are equivalent.

(i) (Ay ◦Az)−1 = Ay ◦Az,

(ii) Ay ◦Az = Ayz.

Proof. Combining Proposition 5.9 and Proposition 5.10, the result follows.

Theorem 5.12. Let A be a commutative multigroup of a group X and g, h ∈ X,
then Ag ◦Ah = Agh if and only if gA ◦ hA = ghA. Consequently, Agh = ghA.

Proof. Let A ∈MG(X) and g, h ∈ X. Suppose Ag ◦Ah = Agh. Then

CAgh(x) = CAg◦Ah(x) =
∨
y∈X

(CAg(y)∧CAh(y
−1x)) =

∨
y∈X

(CA(yg
−1)∧CA(y

−1xh−1))

=
∨
y∈X

(CA(g
−1y)∧CA(h

−1y−1x)) =
∨
y∈X

(CgA(y)∧ChA(y
−1x))

= CgA◦hA(x) = CghA(x).

So, gA ◦ hA = ghA.
Conversely, let gA ◦ hA = ghA. Then

CghA(x) = CgA◦hA(x) =
∨
y∈X

(CgA(y)∧ChA(y
−1x)) =

∨
y∈X

(CA(g
−1y)∧CA(h

−1y−1x))

=
∨
y∈X

(CA(yg
−1)∧CA(y

−1xh−1)) =
∨
y∈X

(CAg(y)∧CAh(y
−1x))

= CAg◦Ah(x) = CAgh(x).

Thus, Ag ◦ Ah = Agh. Hence, Ag ◦ Ah = Agh⇔ gA ◦ hA = ghA. It follows that
Agh = ghA.

Proposition 5.13. Let A be a normal submultigroup of B ∈ MG(X). Then
CxA(xz) = CxA(zx) = CA(z) for all x, z ∈ X.
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Proof. Let x, z ∈ X. Suppose A is a normal submultigroup of B, then by Propo-
sition 3.4 and the fact that CA(xz) = CA(zx), we get CxA(xz) = CxA(zx) =
CA(x

−1zx) = CA(z). Hence, CxA(xz) = CxA(zx) = CA(z) for all z ∈ X.

Theorem 5.14. Let A,B ∈ MG(X) such that A ⊆ B. Then A is a normal
submultigroup of B if and only if for all x ∈ X, Ax = xA.

Proof. Suppose A is a normal submultigroup of B. Then for all x ∈ X, we have
CAx(y) = CA(yx

−1) = CA(x
−1y) = CxA(y) for all y ∈ X. Thus, Ax = xA.

Conversely, let Ax = xA for all x ∈ X. Then, CA(xy) = Cx−1A(y) =
CAx−1(y) = CA(yx) for all y ∈ X. Hence A is a normal submultigroup of B
by Proposition 3.4.

References

[1] J.A. Awolola and P.A. Ejegwa, On some algebraic properties of order of an

element of a multigroup, Quasigroups and Related Systems 25 (2017), 21− 26.

[2] J.A. Awolola and A.M. Ibrahim, Some results on multigroups, Quasigroups and
Related Systems 24 (2016), 169− 177.

[3] M. Dresher and O. Oré, Theory of multigroups, American J. Math. 60 (1938),
705− 733.

[4] A.M. Ibrahim and P.A. Ejegwa, A survey on the concept of multigroup theory,
J. Nigerian Asso. Mathl. Physics 38 (2016), 75− 89.

[5] L. Mao, Topological multigroups and multi�elds, Int. J. Math. Combinatorics 1
(2009), 8− 17.

[6] Sk. Nazmul, P. Majumdar and S.K. Samanta, On multisets and multigroups,
Annals Fuzzy Math. Inform. 6 (2013), 643− 656.

[7] W. Prenowitz, Projective geometries as multigroups, American J. Math. 65 (1943),
235− 256.

[8] A. Rosenfeld, Fuzzy subgroups, J. Math. Anal. Appl. 35 (1971), 512− 517.

[9] B.M. Schein, Multigroups, J. Algebra 111 (1987), 114− 132.

[10] Y. Tella and S. Daniel, A study of group theory in the context of multiset theory,
Int. J. Sci. Tech. 2 (2013), 609− 615.

[11] Y. Tella and S. Daniel, Symmetric groups under multiset perspective, IOSR J.
Math. 7 (2013), no. 5, 47− 52.

Received March 14, 2017
P.A. Ejegwa
Department of Mathematics/Statistics/Computer Science, University of Agriculture P.M.B. 2373,
Makurdi-Nigeria
E-mail: ejegwa.augustine@uam.edu.ng

A.M. Ibrahim
Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria
E-mail: amibrahim@abu.edu.ng



Quasigroups and Related Systems 25 (2017), 245 − 250

Note on the cyclic subgroup

intersection graph of a �nite group

Elaheh Haghi and Ali R. Ashra�

Abstract. The cyclic subgroup intersection graph of a �nite group G, ΓCSI(G), is a simple

graph with non-trivial cyclic subgroups as vertex set. Two cyclic subgroups are adjacent if and

only if they have a non-trivial intersection. It is easy to see that ΓCSI(G) is a subgraph of the

intersection graph was introduced by Csákány and Pollák many years ago. In this paper the

main properties of this new graph is studied. The graph structure of the cyclic groups, dihedral

groups, generalized quaternion groups and the group Zpα ×Zpβ are completely determined.

1. Introduction

Throughout this paper all groups are assumed to be �nite and graphs will be
�nite and simple. For notations not de�ned here, we refer the reader to [4, 7, 8].
The greatest common divisor and least common multiple of integers a and b are
denoted by (a, b) and [a, b], respectively. The number of positive divisors of an
integer n is denoted by d(n). Our calculations are done with the aid of GAP [2].

The intersection graph of a �nite group G was introduced many years ago by
Csákány any and Pollák [1]. The vertex set of this graph is all proper non-trivial
subgroups of G and two vertices H and K are adjacent if and only if H ∩K 6= 1,
where 1 denotes the trivial subgroup of G. In the mentioned paper, the authors
proved that if G is abelian and there are two subgroups H and K in G such that
there is no chain of subgroups which unites them, then G is the direct product
of two simple cyclic groups. As a consequence, they proved that the diameter of
this graph is at most 2, when G is an abelian group. The diameter of non-abelian,
non-simple groups is at most 4. Some interesting open questions are also included
in [1]. Zelinka [10], continued the study of this graph and conjectured that two
�nite Abelian groups with isomorphic intersection graphs are isomorphic.

Tamizh Chelvam and Sattanathan [9] continued the seminal paper of Csákány
any and Pollák to introduce the subgroup intersection graph of a �nite group G
denoted by ΓSI(G). The vertex set of this graph is G\{e}, and there is an edge

2010 Mathematics Subject Classi�cation: 20D99
Keywords: Cyclic subgroup intersection graph, subgroup intersection graph,
generalized quaternion group.
The research of the authors are partially supported by the University of Kashan under grant
no 364988/121.
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between two distinct vertices x and y if and only if 〈x〉∩〈y〉 6= 1. As a consequence
of a result in this paper, the subgroup intersection graph of a �nite group G is
complete if and only if G is a cyclic p−group or a generalized quaternion 2−group.
Moreover, the subgroup intersection graph of a �nite abelian p−group is a union
of complete graphs.

The cyclic subgroup intersection graph of G, ΓCSI(G), is another simple graph
with proper non-trivial cyclic subgroups as vertex set. Two cyclic subgroups are
adjacent if and only if they have a non-trivial intersection. It is easy to see that
ΓCSI(G) is a subgraph of ΓSI(G).

Suppose ∆ is a simple graph. Following Sabidussi [6], the ∆−join of a family
F = {Tx | x ∈ V (∆)} of simple graphs is another simple graph Γ with the following
vertex and edge sets:

V (Γ) = {(x, y) | x ∈ V (∆) & y ∈ V (Tx)},
E(Γ) = {(x, y)(a, b) | xa ∈ E(∆) or x = a & yb ∈ E(Tx)}.

If V (∆) = {x1, . . . , xn} and F = {T1, . . . , Tn} then the ∆−join of the family F is
denoted by ∆[T1, . . . , Tn].

An independent set of a simple graph Γ is a subset of its vertices, no two of
which are adjacent. The cardinality of an independent set in Γ of largest possible
size is called the independence number of Γ. This number is denoted by α(Γ). We
refer to the famous book of Harary [4] for our graph theory notations.

The aim of this paper is to investigate the main properties of the cyclic sub-
group intersection graph. It is proved, among other things, that if G = Zpα ×Zpβ ,
where p is prime and α, β are two positive integers such that α 6 β then ΓCSI(G)
is a union of the complete graphs K(β−α)pα+ pα−1

p−1
together with p copies of K pα−1

p−1
,

and ΓSI(G) is a union of the complete graphs K
pα+β− p2α+1+1

p+1

together with p

copies of K p2α−1
p+1

.

2. Main results

Suppose G is a non-cyclic group and A = ΓCSI(G). For each 〈a〉 ∈ V (A), we
de�ne T〈a〉 = Kφ(|a|), where φ denotes the Euler totient function. Then one can
easily see that ΓSI(G) is an A−join of {T〈x〉 | 〈x〉 ∈ V (A)}.

Lemma 2.1. Let G be a group of order n. Then |V (ΓCSI(G))| > d(n) − 2 with

equality if and only if G is cyclic.

Proof. By [5], the number of cyclic subgroups of a group G of order n is at least
d(n) with equality if and only if G ∼= Zn, as desired.

By Lemma 2.1, the cyclic subgroup intersection graph of a cyclic group of order
pm+1 has exactly m vertices. This proves that for each positive integer m, there
exists at least a group with an m−vertex cyclic subgroup intersection graph.
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Example 2.2. Suppose SmallGroup(n, i) denotes the i−th group of order n in the
small group library of GAP [2]. De�ne G = SmallGroup(168, 46) = (Z7×A4) : Z2,
H = SmallGroup(168, 38) = (Z42 × Z2) : Z2 and K = SmallGroup(168, 42)
=PSL(3, 2). Then ΓCSI(G)∼= ΓCSI(H)∼= ΓCSI(K), butG,H andK are mutually
non-isomorphic.

The previous example shows that if ΓCSI(G) and ΓCSI(H) are isomorphic then
we cannot deduce that G and H are isomorphic, even in the case that one of these
groups is simple.

Example 2.3. In this example the cyclic subgroup intersection graph of a dihedral
group of order 2n will be computed. The dihedral group of order 2n can be
presented as D2n = 〈xn = y2 = e, y−1xy = x−1〉. Suppose k1, . . . , kd(n) are all
divisors of n. Then

V (ΓCSI(D2n)) = {〈ak1〉, . . . , 〈akd(n)−1〉, 〈b〉, 〈ab〉, . . . , 〈an−1b〉}.

It is easy to see that 〈b〉, 〈ab〉, . . . , 〈an−1b〉 are pendant vertices of ΓCSI(D2n).
Moreover, 〈aki〉 and 〈akj 〉 are adjacent if and only if [ki, kj ] < n.

Theorem 2.4. The cyclic subgroup intersection graph of a �nite group G is com-

plete if and only if G is cyclic or a generalized quaternion 2−group.

Proof. It is well-known that a p−group G has a unique subgroup of order p if and
only if G is cyclic or a generalized quaternion 2−group. By this theorem, if G
is cyclic or a generalized quaternion 2−group then the intersection of non-trivial
subgroups H and K contains the unique subgroup of G and so H ∩K 6= 1. This
proves that ΓCSI(G) is complete. Conversely, if ΓCSI(G) is complete and p, q are
two prime divisors of |G| then there are elements a and b of orders p and q in G,
respectively. Since 〈a〉 ∩ 〈b〉 = 1,we lead to a contradiction. So, G is a p−group.
Since ΓCSI(G) is complete, there is a unique subgroup of order p and by mentioned
well-known result G is cyclic or a generalized quaternion 2−group.

Lemma 2.5. Let G be a �nite group. Then α(ΓCSI(G)) is the number of cyclic

subgroups of a prime order.

Proof. Suppose α = α(ΓCSI(G)), {〈a1〉, . . . , 〈ak〉} is the set of all cyclic subgroups
of G of a prime order and B = {〈b1〉, . . . , 〈bα〉} is a given independent set of largest
possible size for G. Since A is an independent set for ΓCSI(G), k 6 α. Choose
i, 1 6 i 6 α, and element ci of a prime order such that 〈ci〉 ⊆ 〈bi〉. Since B is
an independent set, ci 6= cj , when i 6= j. This shows that α 6 k, proving the
lemma.

Suppose m and n are positive integers. De�ne:

Im,n = {(a, b, t) ∈ N2 ×N0 | a|m, b|n, 0 6 t 6 (a,
n

b
)− 1},

Ha,b,t = {(ia+
jta

(a, nb )
, jb) | 0 6 i 6

m

a
− 1, 0 6 j 6

n

b
− 1}, (a, b, t) ∈ Im,n.
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For the sake of completeness, we mention here a result in [3] which is crucial
in our next result. If ns = 0 then we de�ne (mb, na, ns) = (mb, na).

Theorem 2.6. [3, Theorem 2] Suppose s = ta
(a,nb )

. Then,

1. H 6 Zm×Zn if and only if there exists (a, b, t) ∈ Im,n such that H = Ha,b,t.

2. Ha,b,t is cyclic if and only if ab = (mb, na, ns).

3. The number of cyclic subgroups in Zm × Zn is
∑

a|m,b|n,(ma ,
n
b )=1

(a, b).

Theorem 2.7. Suppose G = Zpα × Zpβ , where p is prime and α, β are two

positive integers such that α 6 β. Then ΓCSI(G) is a union of the complete

graphs K(β−α)pα+ pα−1
p−1

and p copies of K pα−1
p−1

.

Proof. By de�nition of Ha,b,t and Theorem 2.6, it can easily see that for each d,
1 6 d 6 p− 1, the subgroups

Hpα,pβ−1,d;

Hpα,pβ−k,t, 2 6 k 6 α, t = d, p+ d, . . . , (p− 1)p+ d;

Hpα,pβ−k′ ,t, 3 6 k′ 6 α, t = p2 + d, p2 + p+ d, . . . , p2 + (pk
′−1 + p− 1)p+ d,

are cyclic subgroups containing (dpα−1, pβ−1) which gives p−1 cliques isomorphic
to K pα−1

p−1
. These complete subgraphs are denoted by Γ1, . . . ,Γp−1. On the other

hand, the cyclic subgroupsHpk,pβ ,0, 0 6 k 6 α−1 andHpα−l,pβ−k′ ,t, 1 6 k′ 6 α−1,

1 6 l ≤ α − k′, 1 6 t 6 pk
′ − 1, t 6≡ 0(mod p) have a common element (pα−1, 0)

and so we will have another clique of size pα−1
p−1 . Note that for each k′, there are

(α−k′)(pk′−pk′−1) cyclic subgroups Hpα−l,pβ−k′ ,t that gives a clique of size
pα−1
p−1 .

The complete subgraph induced by this clique is denoted by Γp. We now consider
the cyclic subgroups Hpα,pk,t, 0 6 k 6 β − α − 1, 0 6 t 6 pα − 1 and the cyclic
subgroups Hpα,pβ−k,t, 1 6 k 6 α, 0 6 t 6 pk − 1 and t ≡ 0 (mod p). These are

(β − α)pα + pα−1
p−1 cyclic subgroups containing element (0, pβ−1) which gives us a

clique of order (β−α)pα+ pα−1
p−1 . De�ne Γp+1 to be the complete subgraph induced

by the las clique. By Theorem 2.6(3), these are all cyclic subgroups of Zpα × Zpβ
and we have to show that ΓCSI(Zpα × Zpβ ) is the union of Γ1 ∪ Γ2 ∪ . . . ∪ Γp+1.

To complete the proof, we will shows that there is no edge in ΓCSI(Zpα ×Zpβ )
connecting a vertex in Γi to a vertex in Γj , i 6= j. Suppose vertices v1 = 〈a1〉 ∈
V (Γi) and v2 = 〈a2〉 ∈ V (Γj) that are not adjacent in ΓCSI(G). We prove that
there is no vertex u1 = 〈b1〉 in Γi to be adjacent with a vertex u2 = 〈b2〉 in Γj . If
u1 and u2 are adjacent in ΓCSI(G) then b1 and b2 will be adjacent in ΓSI(G) and
since ΓSI(G) is a union of complete graphs, a1 and a)2 will be adjacent in ΓSI(G)
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and so v1 and v2 are adjacent in ΓCSI(G) which is impossible. To complete our
argument, we consider the following cyclic subgroups:

Hpα,pβ−1,d = {(jdpα−1, jpβ−1) | 0 6 j 6 p− 1}; (1 6 d 6 p− 1),

Hpk,pβ ,0 = {(ipk, 0) | 0 6 i 6 pα−k − i},
Hpα,pβ−1,0 = {(0, jpβ−1) | 0 6 j 6 pβ − 1}.

We now prove that these vertices are not adjacent. Suppose (jdpα−1, jpβ−1) ∈
Hpk,pβ ,0 ∩ Hpα,pβ−1,d. Then jpβ−1 = 0, 0 6 j 6 p − 1, and so j = 0. This
shows that (jdpα−1, jpβ−1) = (0, 0). It is also clear that Hpk,pβ ,0 ∩Hpα,pβ−1,0 =
{(0, 0)}. If (jdpα−1, jpβ−1) ∈ Hpα,pβ−1,0, 1 6 j, d 6 p − 1, then j = 0 and so
Hpα,pβ−1,0 ∩Hpα,pβ−1,d = {(0, 0)}.

We now assume that d′ 6= d. Choose a common element in two cyclic subgroups
of the �rst type, say (jdpα−1, jpβ−1) = (j′d′pα−1, j′pβ−1). Then jβp−1 ≡ j′βp−1,
where 0 6 j, j′ 6 p − 1. Thus j = j′ and since jdpα−1 ≡ jd′pα−1 (mod pα).
Therefore, d = d′ which completes our proof.

Theorem 2.8. Suppose G = Zpα × Zpβ , where p is prime and α, β are two

positive integers such that α 6 β. Then ΓSI(G) is a union of the complete graphs

K
pα+β− p2α+1+1

p+1

and p copies of K p2α−1
p+1

.

Proof. By Theorem 2.7, the graph ΓCSI(Zpα × Zpβ ) is a union of p+ 1 complete
graph and by de�nition of ΓSI and ΓCSI , a given component of ΓSI is constructed
from a component of ΓCSI by adding some vertices corresponding to generators of
vertices in ΓCSI . So the components of ΓSI will also be a complete graph. Suppose
1 6 d 6 p − 1. By the proof of Theorem 2.7, the vertices of p − 1 components of
ΓCSI are as follows:

Hpα,pβ−1,d = {(jtpα−1, jpβ−1); 0 6 j 6 p− 1},
Hpα,pβ−k,t = {(jtpα−k, jpβ−t), 0 6 j 6 pk − 1},

Hpα,pβ−k′ ,t′ = {(jt′pα−k
′
, jpβ−k

′
), 0 6 j 6 pk

′
− 1},

where t ∈ A = {d, p+ d, . . . , (p− 1)p+ d}, 2 6 k 6 α and

t′ ∈ B = {p2 + d, . . . , p2 + (pk
′−1 − p− 1)p+ d}, 3 6 k′ 6 α.

On the other hand, |Hpα,pβ−1,d| = p, |Hpα,pβ−k,t| = pk, |A| = p, |Hpα,pβ−k′ ,t′ | =
pk
′
, |B| = pk

′ − p and by considering the number of generators, we will have p− 1
complete graph K p2α−1

p+1

.

By the proof of Theorem 2.7, the cyclic subgroups

Hpk,pβ ,0 = {(ipk, 0), 0 6 i 6 pα−k − 1}, 0 6 k 6 α− 1,

Hpα−l,pβ−k,t = {(ipα−l + jtpα−l−k, jpβ−k), 0 6 i 6 pl − 1, 0 6 j 6 pk − 1}
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constitutes a pα−1
p−1 −vertex component of ΓCSI(Zpα×Zpβ ). By an easy calculation,

one can see that the number of generators of vertices are equal to p2α−1
p+1 . We now

consider the component K(β−α)pα+ pα−1
p−1

of ΓCSI(G) with the following vertices:

Hpα,pk,t = {(jt, jpβ−(α+1)) | 0 6 j 6 pβ−k − 1}

Hpα,pβ−k′ ,t′ = {(jt′pα−k
′
, jpβ−k

′
), 0 6 j 6 pk

′
− 1},

where 0 6 k 6 β − α + 1, 0 6 t 6 pα − 1, 1 6 k′ 6 α, 0 6 t′ 6 pk
′ − 1 and

t′ ≡ 0 (mod p). By counting the number of generators, a component isomorphic
to K

pα+β− p2α+1+1
p+1

is obtained, as desired.
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Representation of monoids

in the category of monoid acts

Abolghasem Karimi Feizabadi, Hamid Rasouli and Mahdieh Haddadi

To Bernhard Banaschewski on his 90th Birthday

Abstract. The study of monoids in the category of monoid acts leads to the notion of power

action. In this paper, for a monoid T , we investigate the relationship between the category T -Act

of all T -acts and the category T -Pwr of all T -power acts. For a T -power actM on a commutative

monoid T , we introduce the covariant functor MM− from T -Act to T -Pwr and show that the

family of assignments (ηA : A→MMA
)A∈T -Act constitutes a natural transformation. Moreover,

the Hom-functor (M−)− and the tensor functor M−⊗− from T -Act × T -Act to T -Pwr are

naturally equivalent.

1. Introduction and preliminaries

Representation of mathematical structures is a way for better seeing of them to
study. Analyzing the internalized concepts in a topos captured the interest of
some mathematicians. The general notion of a mathematical object in a topos (or
a category with some properties) introduces a lot of conceptions and structures
obtained from its classical versions in Set, the category of sets ([4]). For instance,
�Algebras in a Category� are some of these structures such as groups and group
actions in a topos (see [2, 8]).

For a monoid T , let T -Act denote the category of all T -acts and act homo-
morphisms between them. Considering the monoid T as a category T with one
object, T -Act is isomorphic to the functor category SetT (or [T ,Set] in another
notation), hence it is a (presheaf) topos (see [3]). Here we study the structure of
monoids in the category T -Act, so-called T -power acts, or actions over monoids

in the sense of [5] which were used to construct the hypergroups. First we verify
some basic properties of the power acts. In particular, the free objects in the
category T -Pwr of all T -power acts are constructed. For a T -power act M and a
T -act A over a commutative monoid T , it is shown that the set MA of all T -act
homomorphisms from A to M is a T -power act which gives the two functors M−

(contravariant) and MM− (covariant) from T -Act to T -Pwr. Also the family of

assignments (ηA : A → MMA

)A∈T -Act constitutes a natural transformation from

2010 Mathematics Subject Classi�cation: 08B30, 20M30, 20M32, 20M50, 20M99

Keywords: Act over a monoid, monoid in the category of acts, power act, tensor product
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the identity functor to UMM− , where U is the forgetful functor. Finally, we prove
that (MA)B and MA⊗B are naturally isomorphic in T -Pwr for every T -acts A
and B.

Now let us brie�y recall some needed notions in the sequel.

Let T be a monoid and A be a (non-empty) set. A right T -act on A is a map
A × T → A, (a, t)  at, such that for every a ∈ A and t, s ∈ T , (at)s = a(ts)
and a1 = a. The notion of left T -act is de�ned similarly. Here by a T -act we
mean a right T -act unless otherwise stated. An element θ in a T -act A is said
to be a �xed element if θt = θ for each t ∈ T . Let A,B be two T -acts. A
map f : A → B is called a T -act homomorphism or simply act homomorphism if
f(at) = f(a)t, for every a ∈ A and t ∈ T . The class of all T -acts together with
the T -act homomorphisms between them forms a category which is denoted by
T -Act. For a monoid M , H(M) denotes the monoid of all endomorphisms of M
with the composition of mappings as its operation. To denote the image of x ∈M
under σ ∈ H(M) we will use the post�x notation. An equivalence relation θ on a
T -act A is called a T -act congruence if xθy implies that xtθyt, for every x, y ∈ A
and t ∈ T . The free T -act on a non-empty set X is the set X × T with the action
(x, t)s = (x, ts), for every x ∈ X and t, s ∈ T . Let A be a right T -act and B be a
left T -act. The tensor product of A and B is the set A⊗B := (A×B)/θ, where θ
is the equivalence relation on the set A×B generated by the pairs ((at, b), (a, tb))
for a ∈ A, b ∈ B, t ∈ T . We denote (a, b)/θ ∈ A⊗B by a⊗ b. In the case that T is
a commutative monoid, every T -act can be considered as a T -biact so that there
is naturally a T -act structure on the tensor product A⊗ B for any two T -acts A
and B (see [6, Proposition II.5.12]). For more information on the theory of acts
over monoids, see [6]. Also for some required categorical ingredients we refer to
[7]. Throughout the paper T stands for a monoid unless otherwise stated.

2. Monoids in the category of acts: Power action

Algebra in a category is a subject for mathematicians to study algebraic structures
categorically. In this theory, a base category C is replaced to the category Set and
all algebraic operations are the morphisms of C, and homomorphisms are those
morphisms in C such that preserve the operations in the sense of commutative
diagrams in C. Note that equations in algebras are explained as commutative
diagrams. For more information we refer to [2, 4, 8].

Here we study the notion of monoid in the base category T -Act, where T is
a monoid. Let us �rst recall the notion of a monoid in an arbitrary category.
Let C be a category with �nite products. A monoid 〈M, ·, 1M 〉 in C is an object
of C together with two morphisms · : M × M → M called multiplication and
1M : > →M called identity, in which > is the terminal object of C such that the
following diagrams commute:

• Association law ((x · y) · z = x · (y · z)):
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M ×M ×M ·×idM //

idM×·
��

M ×M

·
��

M ×M ·
// M

• Identity law (x · 1M = x = 1M · x):

>×M1M×idM//

π2

%%

M ×M

·
��

M ×>idM×1Moo

π1

yy
M

Now let M , N be two monoids in a category C. A homomorphism from M to
N is a morphism f : M → N in C such that the following diagrams commute:
• Preserving the multiplication:

M ×M · //

f×f
��

M

f

��
N ×N ·

// N

• Preserving the identity:

>

1N   

1M // M

f

��
N

All monoids in a category C with homomorphisms between them make a cate-
gory denoted by Mon(C).

Here we are going to explain objects of the categoryMon(T -Act) for a monoid
T with identity 1. Let M be an object in this category. Then there is a T -action
M × T → M, (m, t) mt, with a T -act homomorphism · : M ×M → M . So for
every t, s ∈ T andm,n ∈M we have (mt)s = m(ts),m1 = m and (m·n)t = mt·nt.
Since 1M : > → M is a T -act homomorphism where > is considered as the one-
element T -act, 1M t = 1M . Finally, by the diagrams of associativity and identity,
M is a monoid. Because of the kind of these equations, we use the notation mt

for mt and give the following de�nition. If no confusion arises, the identities of M
and T are denoted by the same symbol 1.

De�nition 1. Let T be a monoid. By a (right) T -power act, we mean a monoidM
equipped with a map M × T →M , (m, t) mt, in such a way that the following
conditions hold for all t, s ∈ T and m,n ∈M :

(mn)t = mtnt, (mt)s = mts, m1 = m, 1t = 1.
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If T contains a zero, then m0 is clearly a �xed element ofM whereM is considered
as a T -act.

Note that the notion of power act is also appeared in [5] under the name of
�action over monoids�.

Now we describe the morphisms of the category Mon(T -Act). Let M and
N be two objects of Mon(T -Act). It is easy to see that a map f : M → N is
a morphism in Mon(T -Act), so-called a T -power act homomorphism or simply
power act homomorphism if and only if f(mn) = f(m)f(n), f(1) = 1 and f(mt) =
f(m)t, for all m,n ∈M and t ∈ T . The category of all T -power acts with T -power
act homomorphisms between them is denoted by T -Pwr which is isomorphic to
the category Mon(T -Act).

In the following, we give some examples of power acts.

Example 1. 1. Consider the monoid (N, ·). Then every commutative monoid
M with mk to be mm · · ·m, k-times, for every m ∈ M and k ∈ N, is an
N-power act.

2. Given a monoid M , let T be a submonoid of H(M). Then we de�ne mσ to
be mσ, for all m ∈M and σ ∈ T . Then M is a T -power act which is called
the natural power action.

3. Given two monoids M and T with 0 ∈ T , let φ : T → H(M) be a monoid
homomorphism and u ∈ M . For every m ∈ M and t 6= 0 in T , de�ne
mt = mφ(t), and m0 = u. Then M is a T -power act if and only if uφ(t) = u
for all t ∈ T and u2 = u. This is called the (φ, u)-power action. In particular,
the (id, 1)-power action is said to be an identity power action where id : T →
H(M) is the constant homomorphism mapping every t ∈ T to idM .

Proposition 1. Let M and T be two monoids and 0 ∈ T . Then each T -power
act M is of the form (φ, u)-power act (in the sense of Example 1(3)) for a unique

monoid homomorphism φ : T → H(M) and some u ∈M .

Proof. Let M be a T -power act and t ∈ T . De�ne σt : M → M by mσt = mt for
every m ∈M . We show that the map σt is a monoid homomorphism. Indeed, we
have (mn)σt = (mn)t = mtnt = mσtnσt, and 1σt = 1t = 1 for every m,n ∈ M .
Now, de�ne φ : T → H(M) by φ(t) = σt, t ∈ T . The map φ is a monoid
homomorphism. To see this, for any t, s ∈ T and m ∈M , mσts = mts = (mt)s =
mσtσs. Thus φ(ts) = σts = σtσs = φ(t)φ(s). Also φ(1) = σ1 = id. Now take
u := φ(0). It is clear that u2 = u and uφ(t) = u for all t ∈ T . Then M is
a (φ, u)-power act (see Example 1(3)). For the uniqueness of φ, suppose that
ψ : T → H(M) is a monoid homomorphism with mt = mψ(t), for all m ∈M and
t ∈ T . This implies that mψ(t) = mφ(t) for all m ∈ M and t ∈ T which means
ψ = φ.

Here we de�ne the notion of a bipower act.
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De�nition 2. Let T and S be monoids. By a (T, S)-bipower act M we mean a
monoidM which is both (right) T and S-power acts simultaneously, in such a way
that (mt)s = (ms)t, for every m ∈M , t ∈ T and s ∈ S.

Remark 1. Every (T, S)-bipower act M for two monoids T and S can be consid-
ered as a T × S-power act. To this end, we de�ne the power action m(t,s) to be
(mt)s for every m ∈M , t ∈ T and s ∈ S. Then we have:

1. m(1,1) = (m1)1 = m,

2. 1(t,s) = (1t)s = 1,

3. m(t,s)n(t,s) = (mt)s(nt)s = (mtnt)s = ((mn)t)s = (mn)(t,s),

4. (m(t1,s1))(t2,s2) = (((mt1)s1)t2)s2 = (((mt1)t2)s1)s2 = (mt1t2)s1s2 =
m(t1,s1)(t2,s2).

By a power act congruence on a T -power actM we mean a monoid congruence
as well as a T -act congruence on M .

Suppose that M is a T and S-power act for monoids T and S. We construct
a quotient of M which is a (T, S)-bipower act. To do this, let θ be the power act
congruence on M generated by the set θ = {((mt)s, (ms)t) : m ∈M, t ∈ T, s ∈ S}.
De�ne (m/θ)(m′/θ) = (mm′)/θ, (m/θ)t = mt/θ and (m/θ)s = ms/θ for m,m′ ∈
M, t ∈ T, s ∈ S. It is easily seen that M/θ is a (T, S)-bipower act. Hence, it
follows from Remark 1 that M/θ is a T × S-power act.

Lastly, we show that the power act is a universal algebraic structure and verify
the existence of the free power acts. The reader is referred to [1] for some required
details on universal algebra.

Let M be a T -power act. Then M can be considered as an algebra of the type
〈·, (λt)t∈T , 1〉, where · is the binary operation, λt is the unary operation given by
λt(m) = mt, for every t ∈ T,m ∈ M , and 1 is the nullary operation on M such
that the following equations hold for every t, s ∈ T and x, y ∈M :

λt(x · y) = λt(x) · λt(y), λs(λt(x)) = λts(x), λ1(x) = x, λt(1) = 1.

Therefore, the category T -Pwr is an equational class and then the free objects
over T -acts exist in this category. We explain the construction of free T -power
acts in the following.

Let A be a T -act. Consider the free monoid Fm(A) = {x1x2 · · ·xn : xi ∈
A,n ∈ N}∪{1} on the set A. Now we de�ne a T -action on Fm(A) by (x1 · · ·xn)t =
xt1 · · ·xtn, 1t = 1 for all t ∈ T and xi ∈ A, then one can easily see that Fm(A) is a T -
power act, and the inclusion map i : A→ Fm(A) is a T -act homomorphism. If M
is a T -power act and f : A→M is a T -act homomorphism, we de�ne f : Fm(A)→
M to be f(x1 · · ·xn) = f(x1) · · · f(xn). Clearly, f is a T -power act homomorphism
with fi = f . Also if g : Fm(A)→M is a T -power act homomorphism with gi = f ,
then we have g(x1 · · ·xn) = g(x1) · · · g(xn) = f(x1) · · · f(xn) = f(x1 · · ·xn), for
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every x1, x2, . . . , xn ∈ A, that is, f is unique. Hence, Fm(A) is a free monoid in
the category T -Act on a T -act A. Then the assignment A Fm(A) de�nes the
free functor Fm : T -Act → T -Pwr. It is worth noting that the composition of
Fm to the free functor F : Set → T -Act, given by X  X × T , gives the free
functor Fpwr : Set → T -Pwr, X  Fm(X × T ). Consequently, Fm(X × T ) is
the free T -power act on a set X.

3. Power acts over commutative monoids

This section is devoted to study T -power acts for which T is a commutative monoid.
This kind of power acts displays a close relationship between Hom-functors and
tensor functors.

For a T -power act M and a T -act A, let us denote MA := HomT -Act(A,M),
the set of all T -act homomorphisms from A to M where M is considered as a T -
act. It is easily seen that the set MA is a monoid under the operation (f · g)(a) :=
f(a)g(a), for every f, g ∈ MA, a ∈ A. Note that the identity element of MA is
1 : A→M mapping every a ∈ A to 1 ∈M . Now we get the following:

Lemma 1. Let M be a T -power act and A be a T -act, where T is a commutative

monoid. Then the monoid MA is a T -power act together with the action f t(a) :=
(f(a))t, for every f ∈MA, t ∈ T, a ∈ A.

Proof. Take any f ∈ MA and t ∈ T . First note that f t ∈ MA. Indeed, for every
t, s ∈ T, a ∈ A, the commutativity of T implies that

f t(as) = (f(as))t = ((f(a))s)t = (f(a))st = (f(a))ts = ((f(a))t)s = (f t(a))s.

Moreover, for every f, g ∈MA, t, s ∈ T and a ∈ A, we have:

1. (f · g)t(a) = ((f · g)(a))t = (f(a)g(a))t = (f(a))t(g(a))t = f t(a)gt(a) =

(f t · gt)(a).

2. (f t)s(a) = (f t(a))s = ((f(a))t)s = f(a)ts = f ts(a).

3. f1(a) = (f(a))1 = f(a).

4. 1t(a) = (1(a))t = 1t = 1.

This means that MA is a T -power act.

We carry on this section with studying of the connections between the cate-
gories T -Act and T -Pwr for which T is a commutative monoid.

Proposition 2. Let M be a T -power act on a commutative monoid T . The

following assertions hold:

(i) There is a contravariant Hom-functor M− = HomT -Act(−,M) : T -Act →
T -Pwr assigning each T -act A to MA, and each T -act homomorphism h : A→ B
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to Mh : MB → MA mapping each f ∈ MB to f ◦ h. Moreover, this yields

a covariant Hom-functor MM− = HomT -Pwr(M
−,M) : T -Act → T -Pwr in a

natural way.

(ii) The family of assignments (ηA : A→MMA

)A∈T -Act each of them assigning

a 7→ â : MA → M , â(f) = f(a) for every a ∈ A, f ∈ MA, constitutes a natural

transformation from the identity functor IdT -Act to the functor UMM− where U :
T -Act → T -Pwr is the forgetful functor.

Proof. (i) For every T -act A, MA ∈ T -Pwr by Lemma 1. Considering a T -
act homomorphism h : A → B, we claim that Mh is a T -power act homomor-
phism. Clearly, Mh is a monoid homomorphism. Let t ∈ T and f ∈ MB . Then
Mh(f t)(a) = (f t ◦ h)(a) = f t(h(a)) = f(h(a)t) = f(h(at)) = (Mh(f))(at) =
(Mh(f))t(a), for every a ∈ A. So Mh(f t) = (Mh(f))t, as desired. Assume that
h : A→ B and k : B → C are homomorphisms in T -Act and f ∈MC . It follows
that Mk◦h(f) = f ◦ (k ◦ h) = (f ◦ k) ◦ h = Mh(Mk(f)) = (Mh ◦Mk)(f). That is,
Mk◦h = Mh ◦Mk. Also clearly M idA = idMA . Therefore, M− is a contravariant
functor. For the second part, it su�ces to note that MM− = M− ◦U ◦M− where
U : T -Pwr → T -Act is the forgetful functor.

(ii) First we show that the map â : MA → M is a morphism in T -Pwr, for
each a in a T -act A. Let f, g ∈ MA and t ∈ T . Then â(f · g) = (f · g)(a) =
f(a)g(a) = â(f)â(g), and â(f t) = f t(a) = (f(a))t = (â(f))t. Moreover, each ηA
is a morphism in T -Act because ât(f) = f(at) = f t(a) = â(f t) = (â)t(f) for
all a ∈ A, t ∈ T, f ∈ MA. Hence, ηA(at) = (ηA(a))t. It remains to prove the
commutativity of the following diagram:

A
ηA //

f

��

MMA

MMf

��
B

ηB
// MMB

Let a ∈ A, β ∈ MB . We have MMf ◦ ηA(a)(β) = (â ◦Mf )(β) = â(β ◦ f) =

(β ◦ f)(a) = β(f(a)) = f̂(a)(β) = ηB ◦ f(a)(β), as required.

Remark 2. (i) Let Γ be a subclass of morphisms in T -Act and M be a T -power
act for a commutative monoid T . Then one can easily check thatM is a Γ-injective
object in T -Act, i.e. injective with respect to all Γ-morphisms, if and only if the
contravariant functor M− maps every Γ-morphism to an onto morphism in T -
Pwr.

(ii) Let C be the category of all contravariant functors from T -Act to T -Pwr
for a commutative monoid T , and natural transformations between them. Then
the assignment M  M− gives a covariant functor T -Pwr → C. More explicitly,
for every morphism α : M → N in T -Pwr, one can de�ne a natural transformation
α̂ = (α̂A)A∈T -Act : M− → N− to be α̂A(f) = α ◦ f , for all f ∈ MA. That is, for
every T -act homomorphism h : A→ B, the following diagram commutes:
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MA α̂A // NA

MB

α̂B

//

Mh

OO

NB

Nh

OO

Indeed, Nh◦α̂B(f) = Nh(α◦f) = (α◦f)◦h = α◦(f ◦h) = α̂A(f ◦h) = α̂A◦Mh(f),
for every f ∈MB .

At the end, we give the following theorem which shows the relationship between
Hom-functors and tensor functors.

Theorem 1. For a T -power act M on a commutative monoid T , the Hom-functor

(M−)− : T -Act × T -Act → T -Pwr is naturally equivalent to the tensor functor

M−⊗− : T -Act × T -Act → T -Pwr.

Proof. For every T -acts A and B, we de�ne φ = φA,B : MA⊗B → (MA)B mapping
each T -power act homomorphism f : A⊗B → M to φ(f) : B → MA, where
φ(f)(b) : A → M , for every b ∈ B, maps every a ∈ A to f(a ⊗ b). It follows
from [6, Corollary II.5.20] that φ is a T -act isomorphism. Moreover, it is clear
that φ is a monoid homomorphism. Hence, φ is an isomorphism in T -Pwr. It
remains to prove the naturality of (φA,B)A,B : M−⊗− → (M−)−. Consider any
T -act homomorphisms f : A → A′ and g : B → B′. We show that the following
diagram commutes:

MA⊗B φA,B // (MA)B

MA′⊗B′ φA′,B′ //

Mf⊗g

OO

(MA′)B
′

(Mf )g

OO

Indeed, for every a ∈ A and b ∈ B, we have

((φA,B ◦Mf⊗g)(α))(b)(a) = φA,B(Mf⊗g(α))(b)(a) = Mf⊗g(α)(a⊗ b)
= (α ◦ (f ⊗ g))(a⊗ b)
= α(f(a)⊗ g(b)).

On the other hand,

(((Mf )g ◦ φA′,B′)(α))(b)(a) = (Mf )g(φA′,B′(α))(b)(a)
= (Mf ◦ φA′,B′(α) ◦ g)(b)(a)
= Mf (φA′,B′(α)(g(b)))(a)
= (φA′,B′(α)(g(b)) ◦ f)(a)
= φA′,B′(α)(g(b))(f(a))
= α(f(a)⊗ g(b)).

Hence, φA,B ◦Mf⊗g = (Mf )g ◦ φA′,B′ .
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On left strongly simple ordered hypersemigroups

Niovi Kehayopulu

Abstract. We present a structure theorem referring to the decomposition of ordered hypersemi-

groups into left strongly simple components, that is, into subhypersemigroups which are both

simple and left quasi-regular. We prove that an ordered hypersemigroup is a semilattice of left

strongly simple hypersemigroups if and only if it is a complete semilattice of left strongly simple

hypersemigroups and we characterize this type of hypersemigroups in terms of intra-regular and

semisimple hypersemigroups. We also characterize the chains of left strongly simple ordered

hypersemigroups.

1. Introduction and prerequisites

The concept of the hypergroup introduced by the French Mathematician F. Marty
at the 8th Congress of Scandinavian Mathematicians in 1933 is as follows: An
hypergroup is a nonempty set H endowed with a multiplication xy such that (i)
xy ⊆ H; (ii) x(yz) = (xy)z; (iii) xH = Hx = H for every x, y, z in H (cf.
[9]). Hundreds of papers appeared on hyperstructures since Marty introduced
this concept, and in the recent years, many groups in the world investigate the
hypersemigroups in research programs using the de�nition given by Marty. Being
impossible to give a complete information regarding the bibliography, we will refer
only some recent books and articles such as the [1�7, 9�11].

The present paper deals with the decomposition of ordered hypersemigroups
into their hypersemigroups which are left strongly simple, that is, both simple and
left quasi-regular. In this respect, we characterize the ordered hypersemigroups
which are semilattices of left strongly simple hypersemigroups. We prove that for
ordered hypersemigroups, the concepts of semilattices of left strongly simple hyper-
semigroups and complete semilattices of left strongly simple hypersemigroups are
the same. Moreover, we prove that an ordered hypersemigroup S is a semilattice
of left strongly simple hypersemigroups if and only if it is a union of left strongly
simple hypersubsemigroups. We show that an ordered hypersemigroup S is a semi-
lattice of left strongly simple hypersemigroups if and only if every left hyperideal
of S is an intra-regular hypersubsemigroup or a semisimple hypersubsemigroup
of S. This type of ordered hypersemigroups are the ordered hypersemigroups in
which a ∈ (S ◦a2 ◦S ◦a] for every a ∈ S. Finally, we prove that the chains and the
complete chains of left strongly simple ordered hypersemigroups coincide and they

2010 Mathematics Subject Classi�cation: 20N20, 06F05
Keywords: Ordered hypersemigroup, simple, quasi left (right) regular, left strongly
simple, intra-regular, semisimple.
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are characterized as the ordered hypersemigroups in which, for every a, b ∈ S, we
have a ∈ (S ◦ a ◦ b ◦ S ◦ a] or b ∈ (S ◦ a ◦ b ◦ S ◦ b]. The corresponding results for
hypersemigroups (without order) can be also obtained as application of the results
of this paper, and this is because every hypersemigroup endowed with the equality
relation is an ordered hypersemigroup. Left strongly simple semigroups (without
order) have been considered in [8].

Let (S, ◦,≤) be an ordered hypersemigroup. For a hypersubsemigroup T of S
and a subset H of T , we denote by (H]T the subset of T de�ned by

(H]T := {t ∈ T | t ≤ h for some h ∈ H}.

In particular, for T = S, we write (H] instead of (H]S . So, for H ⊆ S, we have

(H] := {t ∈ S | t ≤ h for some h ∈ H}.

A nonempty subset A of S is called a left (resp. right) hyperideal of S if (1)
S ◦ A ⊆ A (resp. A ◦ S ⊆ A) and (2) if a ∈ A and b ∈ S, b ≤ a, then b ∈ A. A is
called a hyperideal of S if it is both a left and a right hyperideal of S. We denote
by L(a) (resp. R(a)) the left (resp. right) hyperideal of S generated by a, and
by I(a) the hyperideal of S generated by a (a ∈ S). We have L(a) = (a ∪ S ◦ a],
R(a) = (a ∪ a ◦ S] and I(a) = (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S] for every a ∈ S.
A left (resp. right) hyperideal A of S is clearly a hypersubsemigroup of S i.e.
A ◦ A ⊆ A. S is called simple if for every hyperideal T of S, we have T = S.
A hypersubsemigroup L of S is called intra-regular if for each a ∈ L there exist
x, y ∈ L such that a ≤ x ◦ a2 ◦ y, equivalently if a ∈ (L ◦ a2 ◦ L]L for every a ∈ L
or A ⊆ (L ◦A2 ◦L]L for every nonempty subset A of L. An equivalence relation σ
on S is called congruence if (a, b) ∈ σ implies (a ◦ c, b ◦ c) ∈ σ and (c ◦ a, c ◦ b) ∈ σ
for every c ∈ S, in the sense that for every x ∈ a ◦ c and every y ∈ b ◦ c we have
(x, y) ∈ σ and for every x ∈ c ◦ a and every y ∈ c ◦ b, we have (x, y) ∈ σ. A
congruence σ on S is called semilattice congruence if, for every a, b ∈ S, we have
(a2, a) ∈ σ meaning that x ∈ a ◦ a implies (x, a) ∈ σ and (a ◦ b, b ◦ a) ∈ σ in the
sense that if x ∈ a◦b and y ∈ b◦a, then (x, y) ∈ σ. If σ is a semilattice congruence
on S, then the σ-class (x)σ of S containing x is a hypersubsemigroup of S for
every x ∈ S. A semilattice congruence σ on S is called complete if a ≤ b implies
(a, a ◦ b) ∈ σ, that is, if x ∈ a ◦ b, then (a, x) ∈ σ. Recall that if σ is a complete
semilattice congruence on S then, the relation a ≤ a implies (a2, a) ∈ σ, so the
complete semilattice congruences on S can be also de�ned as the congruences on
S such that (a ◦ b, b ◦ a) ∈ σ and a ≤ b implies (a, a ◦ b) ∈ σ for every a, b ∈ S.
A hypersubsemigroup F of S is called a hyper�lter of S if (1) for any a, b ∈ S,
(a ◦ b) ∩ A 6= ∅ implies a, b ∈ F and (2) a ∈ F and S 3 b ≥ a implies b ∈ A. We
denote by N the relation on S de�ned by N := {(x, y) | N(x) = N(y)} where
N(a) denotes the hyper�lter of S generated by a (a ∈ S). The relation N is
the least complete semilattice congruence on S. We say that S is a semilattice

of left strongly simple hypersemigroups (resp. complete semilattice of left strongly

simple hypersemigroups) if there exists a semilattice congruence (resp. complete
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semilattice congruence) σ on S such that the σ-class (x)σ of S containing x is
a left strongly simple hypersubsemigroup of S for every x ∈ S. An equivalent
de�nition is the following: The ordered hypersemigroup S is a semilattice of left
strongly simple hypersemigroups if there exists a semilattice Y and a nonempty
family {Sα | α ∈ Y } of left strongly simple hypersubsemigroups of S such that

(1) Sα ∩ Sβ = ∅ for every α, β ∈ Y , α 6= β
(2) S =

⋃
α∈Y

Sα

(3) Sα ◦ Sβ ⊆ Sαβ for every α, β ∈ Y .
In ordered hypersemigroups, the semilattice congruences are de�ned exactly as in
hypersemigroups (without order) so the two de�nitions are equivalent. An ordered
hypersemigroup S is a complete semilattice of left simple hypersemigroups if and
only if in addition to (1), (2) and (3) above, we have the following:

(4) Sβ ∩ (Sα] 6= ∅ implies β = αβ.
We say that S is a chain (resp. complete chain) of left strongly simple hy-

persemigroups if there exists a semilattice congruence (resp. complete semilattice
congruence) σ on S such that the σ-class (x)σ of S containing x is a left strongly
simple hypersubsemigroup of S for every x ∈ S, and the set S/σ of (all) (x)σ-
classes of S endowed with the relation (x)σ � (y)σ ⇐⇒ (x)σ = (x ◦ y)σ is a
chain.

2. Main results

De�nition 2.1. A hypersubsemigroup L of an ordered hypersemigroup S is called
left (resp. right) quasi-regular if a ∈ (L ◦ a ◦ L ◦ a]L (resp. a ∈ (a ◦ L ◦ a ◦ L]L) for
every a ∈ L.

De�nition 2.2. An ordered hypersemigroup S is called left (resp. right) strongly
simple if it is simple and left (resp. right) quasi-regular.

De�nition 2.3. A hypersubsemigroup L of an ordered hypersemigroup S is called
semisimple if a ∈ (L ◦ a ◦ L ◦ a ◦ L]L for every a ∈ L.

It might be noted that an ordered hypersemigroup S is semisimple if and only
if the hyperideals of S are idempotent, that is, for every hyperideal A of S, we
have (A ◦A] = A.

Lemma 2.4. An ordered hypersemigroup S is simple if and only if (S ◦a◦S] = S
for every a ∈ S.

Proof. (⇒). For an element a of S, the set (S ◦a◦S] is an hyperideal of S. Indeed,
the set (S ◦ a ◦ S] is a nonempty subset of S, S ◦ (S ◦ a ◦ S] = (S] ◦ (S ◦ a ◦ S] ⊆
(S2 ◦ a ◦ S] ⊆ (S ◦ a ◦ S], (S ◦ a ◦ S]S ⊆ (S ◦ a ◦ S], and ((S ◦ a ◦ S]] = (S ◦ a ◦ S].
Since S is simple, we have (S ◦ a ◦ S] = S.
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(⇐). Let T be an hyperideal of S. We get an arbitrary element b of T (such
an element exists since T is nonempty). Then S ◦ b ◦ S ⊆ S ◦ T ◦ S ⊆ T , so
(S ◦ b ◦ S] ⊆ (T ] = T . On the other hand, by hypothesis, we have (S ◦ b ◦ S] = S.
Thus we have S ⊆ T , and T = S.

Lemma 2.5. An ordered hypersemigroup S is left strongly simple if and only if

a ∈ (S ◦ b ◦ S ◦ a] for every a, b ∈ S.

Proof. (⇒). Let a, b ∈ S. Since S is simple, by Lemma 2.4, we have (S ◦b◦S] = S,
then a ∈ (S ◦ b ◦ S]. On the other hand, since S is left quasi-regular, we have
a ∈ (S ◦ a ◦ S ◦ a]. Thus we get

a ∈ (S ◦ a ◦ S ◦ a] ⊆ (S ◦ (S ◦ b ◦ S] ◦ S ◦ a]
= (S ◦ (S ◦ b ◦ S) ◦ S ◦ a]
⊆ (S ◦ b ◦ S ◦ a].

(⇐). If a ∈ S, by hypothesis, we have a ∈ (S◦a◦S◦a], so S is left quasi-regular.
If a, b ∈ S, by hypothesis, we have

a ∈ (S ◦ b ◦ S ◦ a] ⊆ (S ◦ b ◦ S ◦ (S ◦ b ◦ S ◦ a]]
= (S ◦ b ◦ S ◦ (S ◦ b ◦ S ◦ a)]
⊆ (S ◦ b ◦ S],

thus we have S ⊆ (S ◦ b ◦ S] and (S ◦ b ◦ S] = S, and so S is simple.

Lemma 2.6. If S is an intra-regular ordered hypersemigroup, then for the com-

plete semilattice congruence N on S, the class (x)N is a simple hypersubsemigroup

of S for every x ∈ S.

Which means that the intra-regular ordered hypersemigroups are complete
semilattices of simple hypersemigroups.

Theorem 2.7. Let (S, ◦,≤) be an ordered hypersemigroup and σ a complete semi-

lattice congruence on S. Then S is left quasi-regular if and only if (a)σ is a left

quasi-regular hypersubsemigroup of S for every a ∈ S.

Proof. (⇒). Let b ∈ (a)σ. Then there exist elements u, v ∈ (a)σ such that b ≤
u ◦ b ◦ v ◦ b. In fact: Since b ∈ S and S is left quasi-regular, b ≤ s ◦ b ◦ t ◦ b for some
s, t ∈ S. Then we have

b ≤ s ◦ b ◦ t ◦ (s ◦ b ◦ t ◦ b) ≤ s ◦ b ◦ t ◦ s ◦ b ◦ t ◦ (s ◦ b ◦ t ◦ b)
= (s ◦ b ◦ t ◦ s) ◦ b ◦ (t ◦ s ◦ b ◦ t) ◦ b.

Moreover we have s ◦ b ◦ t ◦ s, t ◦ s ◦ b ◦ t ∈ (a)σ. In fact, since b ≤ s ◦ b ◦ t ◦ b and
σ is a complete semilattice congruence on S, we have (b, b ◦ s ◦ b ◦ t ◦ b) ∈ σ, then
(b, s◦b◦t◦b) ∈ σ. Since (a, b) ∈ σ, we have (a, s◦b◦t◦b) ∈ σ. Since (t◦b, b◦t) ∈ σ,
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we have (s ◦ b ◦ t ◦ b, s ◦ b2 ◦ t) ∈ σ, then (a, s ◦ b ◦ t) ∈ σ, (a, s ◦ b ◦ t ◦ s) ∈ σ, and
s ◦ b ◦ t ◦ s ∈ (a)σ. Moreover, since (a, s ◦ b ◦ t) ∈ σ, we have (a, s ◦ b ◦ t2) ∈ σ,
(a, t ◦ s ◦ b ◦ t) ∈ σ, and t ◦ s ◦ b ◦ t ∈ (a)σ.

(⇐). Let a ∈ S. Since (a)σ is left quasi-regular, we have

a ∈ ((a)σ ◦ a ◦ (a)σ ◦ a](a)σ ⊆ (S ◦ a ◦ S ◦ a],

so S is left quasi-regular.

Theorem 2.8. Let (S, ◦,≤) be an ordered hypersemigroup. The following are

equivalent:

(1) S is a complete semilattice of left strongly simple hypersemigroups.

(2) S is a semilattice of left strongly simple hypersemigroups.

(3) S is a union of left strongly simple hypersubsemigroups of S.

(4) a ∈ (S ◦ a2 ◦ S ◦ a] for every a ∈ S.
(5)Every left hyperideal of S is an intra-regular hypersubsemigroup of S.

(6)Every left hyperideal of S is a semisimple hypersubsemigroup of S.

Proof. The implications (1)⇒ (2) and (2)⇒ (3) are obvious.

(3) ⇒ (4). Let S be the union of the left strongly simple hypersubsemigroups
Sα, α ∈ Y , and let a ∈ S. Suppose a ∈ Sα for some α ∈ Y . Since Sα is a left
strongly simple hypersemigroup and a, a2 ∈ Sα, by Lemma 2.5, we have

a ∈ (Sα ◦ a2 ◦ Sα ◦ a]Sα
⊆ (S ◦ a2 ◦ S ◦ a].

(4) ⇒ (5). Let L be a left hyperideal of S and a ∈ L. Since a, a2 ∈ S, by (4),
we have

a ∈ (S ◦ a2 ◦ S ◦ a] ⊆ (S ◦ (S ◦ a4 ◦ S ◦ a2] ◦ S ◦ a]
= (S ◦ (S ◦ a4 ◦ S ◦ a2) ◦ S ◦ a]
⊆ ((S ◦ a2) ◦ a2 ◦ (S ◦ a2 ◦ S ◦ a)].

Since a2 ∈ L, we have S ◦ a2 ⊆ SL ⊆ L and S ◦ a2 ◦ S ◦ a ⊆ S ◦ L ⊆ L. Thus we
have a ∈ (L ◦ a2 ◦ L] = (L ◦ a2 ◦ L]L, and L is intra-regular.

(5)⇒ (6). Let L be a left hyperideal of S and a ∈ L. Since L is intra-regular,
we have

a ∈ (L ◦ a2 ◦ L]L ⊆ (L ◦ a ◦ (L ◦ a2 ◦ L]L ◦ L]L
= (L ◦ a ◦ (L ◦ a2 ◦ L) ◦ L]L
⊆ (L ◦ a ◦ L ◦ a ◦ (S ◦ L)]L
⊆ (L ◦ a ◦ L ◦ a ◦ L]L,

and L is semisimple.
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(6)⇒ (1). Let a ∈ S. By (6), L(a) is a semisimple hypersubsemigroup of S i.e.
x ∈ (L(a) ◦ x ◦L(a) ◦ x ◦L(a)]L(a) = (L(a) ◦ x ◦L(a) ◦ x ◦L(a)] for every x ∈ L(a).
Thus we have

a ∈ (L(a) ◦ a ◦ L(a) ◦ a ◦ L(a)]
= ((a ∪ S ◦ a] ◦ a ◦ (a ∪ S ◦ a] ◦ a ◦ (a ∪ S ◦ a]]
= ((a ∪ S ◦ a) ◦ a ◦ (a ∪ S ◦ a) ◦ a ◦ (a ∪ S ◦ a)]
= (a2 ◦ S ◦ a3 ∪ S ◦ a2 ◦ S ◦ a].

Then

a2 ∈ (a2 ◦ S ◦ a3 ∪ S ◦ a2 ◦ S ◦ a] ◦ (a] ⊆ (a2 ◦ S ◦ a4 ∪ S ◦ a2 ◦ S ◦ a2],

and

a2 ◦ S ◦ a3 ⊆ (a2 ◦ S ◦ a4 ∪ S ◦ a2 ◦ S ◦ a2] ◦ (S ◦ a3]
⊆ ((a2 ◦ S ◦ a4 ∪ S ◦ a2 ◦ S ◦ a2) ◦ (S ◦ a3)]
= (a2 ◦ S ◦ a4 ◦ S ◦ a3 ∪ S ◦ a2 ◦ S ◦ a2 ◦ S ◦ a3]
⊆ (S ◦ a2 ◦ S ◦ a].

Thus we have a ∈ ((S ◦a2 ◦S ◦a]∪S ◦a2 ◦S ◦a] = ((S ◦a2 ◦S ◦a]] = (S ◦a2 ◦S ◦a].
Since a ∈ (S ◦a2 ◦S ◦a] ⊆ (S ◦a2 ◦S], (S ◦a◦S ◦a] for every a ∈ S, S is both intra-
regular and left quasi-regular. Since S is intra-regular, by Lemma 2.6, (x)N is a
simple hypersubsemigroup of S for every x ∈ S. Since S is left quasi-regular and
N a complete semilattice congruence of S, by Theorem 2.7, (x)N is a left quasi-
regular hypersubsemigroup of S for every x ∈ S. Since N is a complete semilattice
congruence on S and (x)N a left strongly simple hypersubsemigroup of S for every
x ∈ S, S is a complete semilattice of left strongly simple hypersemigroups.

Theorem 2.9. An ordered hypersemigroup S is a chain of left strongly simple

hypersemigroups if and only if, for every a, b ∈ S, we have

a ∈ (S ◦ a ◦ b ◦ S ◦ a] or b ∈ (S ◦ a ◦ b ◦ S ◦ b].

Proof. (⇒). Suppose σ is a semilattice congruence on S such that (x)σ is a left
strongly simple hypersubsemigroup of S for every x ∈ S and the set S/σ endowed
with the relation

(x)σ � (y)σ ⇐⇒ (x)σ = (x ◦ y)σ

is a chain. Let now a, b ∈ S. Since (S/σ,�) is a chain, we have (a)σ � (b)σ
or (b)σ � (a)σ. Let (a)σ � (b)σ. Then (a)σ = (a ◦ b)σ and {a}, a ◦ b ⊆ (a)σ.
Since (a)σ is a left strongly simple hypersemigroup, by Lemma 2.5, we have a ∈
((a)σ ◦ a ◦ b ◦ (a)σ ◦ a](a)σ ⊆ (S ◦ a ◦ b ◦ S ◦ a]. If (b)σ � (a)σ, similarly we obtain
b ∈ (S ◦ a ◦ b ◦ S ◦ b].
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(⇐). Let a ∈ S. By hypothesis, we have a ∈ (S ◦a2 ◦S ◦a]. For the semilattice
congruence N , the N -class (x)N is a left strongly simple hypersubsemigroup of S
for every x ∈ S (cf. the proof of (6)⇒ (1) in Theorem 2.8). Let now (x)N , (y)N ∈
S/N . By hypothesis, we have x ∈ (S ◦ x ◦ y ◦ S ◦ x] or y ∈ (S ◦ x ◦ y ◦ S ◦ y]. Let
x ∈ (S ◦ x ◦ y ◦ S ◦ x]. Since x ∈ N(x) and x ≤ t ◦ x ◦ y ◦ h ◦ x for some t, h ∈ S,
we have x ◦ y ⊆ N(x), then N(x ◦ y) ⊆ N(x). Let y ∈ (S ◦ x ◦ y ◦ S ◦ y]. Since
y ∈ N(y) and y ≤ z ◦ x ◦ y ◦ k ◦ y for some z, k ∈ S, we have x ◦ y ⊆ N(y), so
N(x ◦ y) ⊆ N(y). On the other hand, x ◦ y ⊆ N(x ◦ y) implies x, y ∈ N(x ◦ y),
then N(x) ⊆ N(x ◦ y) and N(y) ⊆ N(x ◦ y). Hence we have N(x ◦ y) = N(x) or
N(x ◦ y) = N(y). Thus (x)N = (x ◦ y)N or (y)N = (x ◦ y)N = (y ◦ x)N , that is,
(x)N � (y)N or (y)N � (x)N .

Remark. An ordered hypersemigroup is a chain of left strongly simple hypersemi-
groups if and only if it is a complete chain of left strongly simple hypersemigroups.

Let us �nish with the following examples which correspond to the de�nitions
2.1�2.3.

Example 2.10. We consider the ordered hypersemigroup S = {a, b, c, d, f} de-
�ned by the hyperoperation given in the table and the order below.

◦ a b c d f
a {a, f} {b, f} {c, d, f} {d} {f}
b {b, f} {a, f} {c, d, f} {d} {f}
c {c, d, f} {c, d, f} {c, d, f} {c, d, f} {c, d, f}
d {c, d, f} {c, d, f} {c, d, f} {c, d, f} {c, d, f}
f {f} {f} {c, d, f} {d} {f}

≤:= {(a, a), (b, b), (c, c), (d, c), (d, d), (f, a), (f, b), (f, c), (f, f)}.
The covering relation of S is the following:

≺= {(d, c), (f, a), (f, b), (f, c)}.

This is a left quasi-regular ordered hypersemigroup. As the left quasi-regular
ordered hypersemigroups are also semisimple, this is an example of an ordered
semisimple hypersemigroups as well. It is not simple as (S ◦ c ◦ S] 6= S.

Example 2.11. The ordered hypersemigroup de�ned by the hyperoperation and
the covering relation below is left quasi-regular (also right quasi-regular) and sim-
ple.

◦ a b c d e
a {a} {a} {a, b, c} {a} {a, b, c}
b {a} {a} {a, b, c} {a} {a, b, c}
c {a} {a} {a, b, c} {a} {a, b, c}
d {a, b, d} {a, b, d} S {a, b, d} S
e {a, b, d} {a, b, d} S {a, b, d} S
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≺= {(a, b), (b, c), (b, d), (c, e), (d, e)}.

We wrote this paper in the usual way, and we will come back to this paper in
a forthcoming paper.
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A note on semisymmetry

Aleksandar Krapeº and Zoran Petri¢

Abstract. J.D.H. Smith showed how to replace homotopies between quasigroups by homo-
morphism between semisymmetric quasigroups. This is a semisymmetrization and it replaces
a quasigroup by a semisymmetric structure de�ned on its Cartesian cube. The reason for a
semisymmetrization is that homomorphisms behave more regularly than homotopies.

A thorough survey of properties of Smith's semisymmetrization is given in this paper. Also,

new semisymmetrizations, which replace a quasigroup by semisymmetric structures de�ned on

its Cartesian square are suggested.

1. Introduction

For a plausible category of quasigroups, it seems that homotopies between quasi-
groups, taken as morphisms, are better choice than homomorphisms (see [3] and
[9]). However, homomorphisms are sometimes easier to work with. For example,
isotopies (bijective homotopies) do not preserve units � every quasigroup is iso-
topic to a loop (quasigroup with a unit) but is not necessarily a loop itself. This
note is about turning homotopies into homomorphisms.

Smith, [6], proved that there is an adjunction from the category of semisymmet-
ric quasigroups with homomorphisms to the category of quasigroups with homo-
topies. Also, he proved in [6] that the latter category is isomorphic to a subcategory
of the former category, and in [7], that every T algebra, for T being the monad
de�ned by the above adjunction, is isomorphic to the image of a semisymmetric
quasigroup under the comparison functor.

These results, especially the embedding of the category of quasigroups with
homotopies into the category of semisymmetric quasigroups with homomorphisms,
could be of interest to a working universal algebraist. Our intention is to make
them more accessible to such a reader and to indicate a possible misusing. Also,
we give a proof that the comparison functor is full, which completes the proof of
monadicity of the adjunction.

At the end of the paper, we show that there is a more economical way to embed
the category of quasigroups with homotopies into the category of semisymmetric
quasigroups with homomorphisms. One could get an impression, due to [6], that
for such an embedding it is necessary to have a semisymmetrization functor that

2010 Mathematics Subject Classi�cation: 20N05, 18A40, 18A22
Keywords: quasigroup, semisymmetrization, homotopy, variety, category, functor, adjunction,
embedding, monadic adjunction.
Work on this paper was supported by the Ministry of Education and Science of Serbia
through grants ON174008 (�rst author) and ON174026 (both authors).
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is a right adjoint in an adjunction. If one is interested just in this embedding and
not in re�ectivity (see the end of Section 4), then this new semisymmetrization
suits as any other.

We assume that the reader is familiar with the notions of category, functor
and natural transformation. If not, we suggest to consult [5] for these notions.
All other relevant notions from Category theory are introduced at the appropriate
places in the text.

2. Quasigroups

We start by recapitulating a few basic facts about quasigroups.
One way to de�ne a quasigroup is that it is a grupoid (Q; ·) satisfying:

∀ab∃1x (x · a = b) and ∀ab∃1x (a · x = b)

Uniqueness of the solution of the equation x ·a = b (a ·x = b) enables one to de�ne
right (left) division operation x = b/a (x = a\b) which is also a quasigroup (short
for: (Q; /) is a quasigroup). We can de�ne three more operations:

x ∗ y = y · x x//y = y/x x\\y = y\x

dual to ·, /, \ respectively. They are also quasigroups. The six operations ·, /, \, ∗, //
and \\ are parastrophes of · (and of each other).

A function f : Q→ R between the base sets of quasigroups (Q; ·) and (R, ·) is
a homomorphism i�:

f(x) · f(y) = f(x · y)

and isomorphism if f is a bijection as well.
A triple f̄ = (f1, f2, f3) of functions (fi : Q→ R) is a homotopy i�:

f1(x) · f2(y) = f3(x · y)

which implies (and is implied by any of):

f3(x)/f2(y) = f1(x/y) f2(x)//f3(y) = f1(x//y)

f1(x)\f3(y) = f2(x\y) f3(x)\\f1(y) = f2(x\\y)

If all three components of f̄ are bijections, then f̄ is an isotopy.

***

We can also de�ne a quasigroup as an algebra (Q; ·, /, \) with three binary op-
erations: multiplication (·), right and left division. The axioms that a quasigroup
satis�es are (xy is short for (x · y)):

xy/y = x x\xy = y

(x/y)y = x x(x\y) = y
(Q)
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For obvious reasons, such quasigroups are called equational, primitive or equasi-

groups.
Thus, we have the variety of all quasigroups. Another important variety is

the variety of semisymmetric quasigroups, de�ned by one of the following �ve
equivalent axioms (in addition to (Q)):

x · yx = y (2.1)

xy · x = y (2.2)

x/y = yx

x\y = yx

x\y = x/y

Smith, [6], de�ned a semisymmetrization of a quasigroup Q = (Q; ·, /, \) as a
one�operation quasigroup Q∆ = (Q3; ◦) where the binary operation ◦ is de�ned
by:

(x1, x2, x3) ◦ (y1, y2, y3) = (y3/x2, y1\x3, x1y2) (2.3)

and proved that, for any quasigroup Q, the semisymmetrization Q∆ of Q is a
semisymmetric quasigroup.

3. Twisted quasigroups

For our purpose, there is a better way to de�ne a quasigroup. In this de�nition the
twisted quasigroup is an algebra (Q; //, \\, ·) satisfying appropriate paraphrasing of
the above quasigroup axioms (Q):

y//xy = x xy\\x = y

(y//x)y = x x(y\\x) = y

We have the following symmetry result, lacking for quasigroups de�ned as
(Q; ·, /, \).

Proposition 3.1. An algebra (Q; //, \\, ·) is a twisted quasigroup i� (Q; \\, ·, //) is

a twisted quasigroup i� (Q; ·, //, \\) is a twisted quasigroup.

Analogously, we have the paraphrasing of axioms for semisymmetric twisted

semisymmetric quasigroups: (2.1),(2.2) and

x//y = xy

x\\y = xy

x\\y = x//y

The last three identities we shorten to symbolic identities: // = ·, \\ = ·, \\ = //.
There is also a result corresponding to Proposition 3.1:
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Proposition 3.2. An algebra (Q; //, \\, ·) is a semisymmetric twisted quasigroup
i� (Q; \\, ·, //) is a semisymmetric twisted quasigroup i� (Q; ·, //, \\) is a semisym-
metric twisted quasigroup.

***

Using twisted quasigroups we can see how a (twisted) semisymmetrization
(de�ned below), which we call ∇, 'works'.

Let us start with three single�operation quasigroups (Q; ·), (Q; //) and (Q; \\),
where // and \\ are duals of appropriate division operations of ·. We can de�ne
direct (Cartesian) product (Q; //)× (Q; \\)× (Q; ·) and an operation ⊗ on Q3 such
that

(x1, x2, x3)⊗ (y1, y2, y3) = (x1//y1, x2\\y2, x3y3) (3.4)

de�nes multiplication in the direct product. Therefore (Q3;⊗) is a quasigroup.
De�ne also a permutation ′ : Q3 → Q3 by (x1, x2, x3)′ = (x2, x3, x1). It follows

that (x1, x2, x3)′′ = (x3, x1, x2) and (x1, x2, x3)′′′ = (x1, x2, x3). De�ne another
operation ∇3 : Q3 × Q3 → Q3 by x̄∇3ȳ = x̄′ ⊗ ȳ′′, where ū = (u1, u2, u3). The
groupoid (Q3;∇3) is also a quasigroup, so there are appropriate division operations
of ∇3 and their duals ∇1 and ∇2:

x̄∇3ȳ = z̄ i� ȳ∇1z̄ = x̄ i� z̄∇2x̄ = ȳ.

Therefore (Q3;∇1,∇2,∇3) is a twisted quasigroup.
Let us calculate ∇1.

z̄ = (z1, z2, z3) = x̄∇3ȳ = (x1, x2, x3)′ ⊗ (y1, y2, y3)′′

= (x2, x3, x1)⊗ (y3, y1, y2) = (x2//y3, x3\\y1, x1y2).

Therefore

x̄ = (y2//z3, y3\\z1, y1z2) = (y2, y3, y1)⊗ (z3, z1, z2) = ȳ′ ⊗ z̄′′ = ȳ∇3z̄

i.e. ∇1 = ∇3 (and consequently ∇2 = ∇3) hence (Q3;∇1,∇2,∇3) is semisymmet-
ric twisted quasigroup. So we recognize ∇3 as a twisted analogue of Smith's ◦ (see
identity (2.3)). Let us call Q∇ = (Q3;∇1,∇2,∇3) a twisted semisymmetrization

of Q.
For (f1, f2, f3) being a homotopy from Q to R, we also have:

(f1 × f2 × f3) (x̄∇3ȳ) = (f1 × f2 × f3) (x̄′ ⊗ ȳ′′)
= (f1(x2//y3), f2(x3\\y1), f3(x1 · y2))

= (f2x2//f3y3, f3x3\\f1y1, f1x1 · f2y2)

= (f2x2, f3x3, f1x1)⊗ (f3y3, f1y1, f2y2)

= (f1x1, f2x2, f3x3)′ ⊗ (f1x1, f2x2, f3x3)′′

= (f1 × f2 × f3) (x̄)∇3(f1 × f2 × f3) (ȳ),

so f1 × f2 × f3 is a homomorphism.
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4. The categories Qtp and P

This section follows the lines of [6] with some adjustments. The main novelty is
a proof of [6, Corollary 5.3]. We try to keep to the notation introduced in [6].
However, we write functions and functors to the left of their arguments.

For a �xed, large enough universe U , a quasigroup Q = (Q; ·, /, \) is small

when Q belongs to U (see [5, I.2]). Let Qtp be the category with objects all small
quasigroups Q = (Q; ·, /, \) and arrows all homotopies. The identity homotopy
on Q is the triple (1Q,1Q,1Q), where 1Q is the identity function on Q, and the
composition of homotopies (f1, f2, f3) : P → Q and (g1, g2, g3) : Q → R is the
homotopy (g1 ◦ f1, g2 ◦ f2, g3 ◦ f3) : P→ R.

Let P be the category with objects all small semisymmetric quasigroups and
arrows all quasigroup homomorphisms. For every arrow f : Q→ R of P, the triple
(f, f, f) is a homotopy between Q and R.

Let Σ be a functor from P to Qtp, which is identity on objects. Moreover, let
Σf , for a homomorphism f , be the homotopy (f, f, f).

The category P is a full subcategory of the category Q with objects all small
quasigroups and arrows all quasigroup homomorphisms. The functor Σ is just a
restriction of a functor from Q to Qtp, which is de�ned in the same manner.

An adjunction is given by two functors, F : C → D and G : D → C, and two
natural transformations, the unit η : 1C

.→ GF and the counit ε : FG
.→ 1D, such

that for every object C of C and every object D of D

GεD ◦ ηGD = 1GD, and εFC ◦ FηC = 1FC .

These two equalities are called triangular identities. The functor F is a left adjoint

for the functor G, while G is a right adjoint for the functor F .
That Σ : P → Qtp has a right adjoint is shown as follows. Let // and \\ be

de�ned as at the beginning of Section 3. For Q a quasigroup, let∇3 : Q3×Q3 → Q3

be de�ned as in Section 3, i.e., for every x̄ = (x1, x2, x3) and ȳ = (y1, y2, y3)

x̄∇3ȳ = (x2//y3, x3\\y1, x1 · y2).

That (Q3;∇3) is a semisymmetric quasigroup follows from the fact that the struc-
ture (Q3;∇1,∇2,∇3) is a semisymmetric twisted quasigroup, which is shown in
Section 3. The semisymmetric quasigroup (Q3;∇3) is the semisymmetrization Q∆

of Q de�ned at the end of Section 2 (see (2.3)).
Let ∆: Qtp→ P be a functor, which maps a quasigroup Q to the semisymmet-

ric quasigroup (Q3;∇3). A homotopy (f1, f2, f3) is mapped by ∆ to the product
f1 × f2 × f3, which is a homomorphism as it is shown at the end of Section 3. By
the functoriality of product, we have that ∆ preserves identities and composition,
and it is indeed a functor. A proof of the following proposition is given in [6,
Theorem 5.2].

Proposition 4.1. The functor ∆ is a right adjoint for Σ.



274 A. Krapeº and Z. Petri¢

Moreover, every component of the counit of this adjunction is epi (i.e. right
cancellable) and the semisymmetrization is one-one. This is su�cent for Qtp to
be isomorphic to a subcategory of P. This is one way how to establish this fact
using the previous proposition. However, if the goal was just to establish that Qtp
is isomorphic to a subcategory of P, this adjunction is not necessary at all, which
is shown below.

A functor F : C → D is faithful when for every pair f, g : A → B of arrows of
C, Ff = Fg implies f = g. An arrow f : A → B of C is epi when for every pair
g, h : B → C of arrows of C, the equality g ◦f = h◦f implies g = h. The following
lemmas will help us to prove that Qtp is isomorphic to a subcategory of P.

Lemma 4.2. The functor ∆ is faithful.

Proof. For homotopies (f1, f2, f3) and (g1, g2, g3) from Q to R, if f1 × f2 × f3 and
g1 × g2 × g3 are equal as homomorphisms from ∆Q to ∆R in P, then for every
i ∈ {1, 2, 3}, fi = gi. Hence, these homotopies are equal in Qtp.

Alternatively, by [5, IV.3, Theorem 1, Part (i)] (see also [2, Section 4, Proposi-
tion 4.1] for an elegant proof of a related result) one may establish that ∆ is faithful
by relying on Proposition 4.1. It su�ces to prove that for every object Q of Qtp,
the component εQ of the counit of the adjunction established in Proposition 4.1 is
epi. The arrow εQ is de�ned as the triple (π1, π2, π3), where πi : Q3 → Q is the ith
projection. Let g, h : Q→ R be a pair of arrows of Qtp such that g ◦ εQ = h ◦ εQ.
This means that for every i ∈ {1, 2, 3} we have that gi ◦ πi = hi ◦ πi. Hence, the
function gi is equal to the function hi, since the function πi is right cancellable.
(However, the homotopy εQ need not have a right inverse in Qtp.)

Lemma 4.3. If (Q; ·, /, \) and (Q; ·′, /′, \′) are two di�erent quasigroups, then

there are x, y ∈ Q such that

x · y 6= x ·′ y.

Proof. Suppose that for every x, y ∈ Q, x ·y = x ·′ y holds. Then for every z, t ∈ Q
we have

z/t = ((z/t) ·′ t)/′t = ((z/t) · t)/′t) = z/′t.

Analogously, we prove that for every u, v ∈ Q, u\v = u\′v. Hence, (Q; ·, /, \) and
(Q; ·′, /′, \′) are the same, which contradicts the assumption.

Lemma 4.4. The functor ∆ is one-one on objects.

Proof. Suppose that (Q; ·, /, \) and (Q′; ·′, /′, \′) are two di�erent quasigroups. If
Q and Q′ are di�erent sets, then ∆Q and ∆Q′ are di�erent. If Q = Q′, then,
by Lemma 4.3, there are x and y in this set such that x · y 6= x ·′ y. Hence, the
operations ∇3 for ∆Q and ∆Q′ di�er when applied to (x, x, x) and (y, y, y).

As a corollary of these two lemmas we have the following result.
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Proposition 4.5. The category Qtp is isomorphic to a subcategory of P; namely,

to its image under the functor ∆.

As we have shown by the proof of Lemma 4.2, Proposition 4.5 is independent
of Proposition 4.1. The adjunction, together with this embedding of Qtp in P,
says that the category P re�ects in Qtp in the following sense. A subcategory A
of B is re�ective in B, when the inclusion functor from A to B has a left adjoint
called a re�ector (see [5, IV.3]). The adjunction is called a re�ection of B in A.

Propositions 4.1 and 4.5 say that Qtp may be considered as a re�ective sub-
category of P. The functor Σ is a re�ector and the adjunction between Σ and ∆
is a re�ection of P in Qtp. However, this does not mean that the ∆-image of
Qtp is an iso-full subcategory of P, i.e. that two quasigroups are isotopic in Qtp
if and only if their semisymmetrizations are isomorphic in P. Im, Ko and Smith,
[4, �rst paragraph in the introduction], refer to [6] for this iso-fullness. However,
this is not considered at all in [6] and the question of fullness or iso-fullness of the
image of Qtp in P remains open. The reader should be aware of this potential
missusing of these results.

5. Monadicity of ∆

For F : C → D a left adjoint for G : D → C, and η and ε, the unit and counit
of this adjunction, a GF -algebra is a pair (C, h), where C is an object of C and
h : GFC → C is an arrow of C such that the following equalities hold.

h ◦GFh = h ◦GεFC , h ◦ ηC = 1C .

A morphism of GF -algebras (C, h) and (C ′, h′) is given by an arrow f : C → C ′

of C such that f ◦ h = h′ ◦GFf .
The category CGF has GF -algebras as objects and morphisms of GF -algebras

as arrows. The comparison functor K : D→ CGF is given by

KD = (GD,GεD), Kf = Gf.

In many cases the comparison functor is an isomorphism or an equivalence (i.e.
there is a functor fromCGF toD such that both compositions withK are naturally
isomorphic to the identity functors). The right adjoint of an adjunction or an
adjunction are called monadic when the comparison functor is an isomorphism
(see [5, VI.3], also [8, Section 4.2]). Some other authors (see [1, Section 3.3]) call
an adjunction monadic (tripleable) when K is just an equivalence.

In the case of adjoint situation involving Σ and ∆, the comparison functor
K : Qtp → P∆Σ is just an equivalence. To prove this, by [5, IV.4, Theorem 1]
it su�ces to prove that K is full and faithful, and that every GF -algebra is iso-
morphic to KQ for some quasigroup Q. The faithfulness of K follows from 4.2
since the arrow function K coincides with the arrow function ∆. That every GF -
algebra is isomorphic to KQ for some quasigroup Q is proven in [7, Section 10,
Theorem 33].
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A functor F : C→ D is full when for every pair of objects C1 and C2 of C and
every arrow g : FC1 → FC2 of D there is an arrow f : C1 → C2 of C such that
g = Ff . It remains to prove that K is full. For this we use the following lemma.

Lemma 5.1. Every arrow of P∆Σ from KQ to KR is of the form f1 × f2 × f3,

for (f1, f2, f3) a homotopy from Q to R.

Proof. For quasigroups Q and R we have that KQ = (∆Q, π1 × π2 × π3) and
KR = (∆R, π1 × π2 × π3). So, let

f : (∆Q, π1 × π2 × π3)→ (∆R, π1 × π2 × π3)

be an arrow of P∆Σ. Since f is a morphism of ∆Σ-algebras, we have that

f ◦ (π1 × π2 × π3) = (π1 × π2 × π3) ◦ (f × f × f)

as functions from (Q3)3 to R3.
For i ∈ {1, 2, 3} and u ∈ Q, let fi(u) = πi(f(u, u, u)). Moreover, let (x, y, z)

be an arbitrary element of Q3. Apply the both sides of the above equality to
((x, x, x), (y, y, y), (z, z, z)) ∈ (Q3)3 in order to obtain

f(x, y, z) = (π1(f(x, x, x)), π2(f(y, y, y)), π3(f(z, z, z))) = (f1(x), f2(y), f3(z)).

Hence, f = f1× f2× f3 and since it is a homomorphism from ∆Q to ∆R, we have
for every x̄, ȳ ∈ Q3

(f1 × f2 × f3)(x̄) ∇3 (f1 × f2 × f3)(ȳ) = (f1 × f2 × f3)(x̄ ∇3 ȳ).

By restricting this equality to the third component, we obtain f1(x1) · f2(y2) =
f3(x1 · y2), and hence (f1, f2, f3) is a homotopy from Q to R.

6. A new semisymmetrization

De�nition 6.1. An algebra (Q; //, \\) is a biquasigroup i� //(\\) is the dual of the
right (left) division operation of a quasigroup operation · on Q.

A biquasigroup is semisymmetric i� \\ = //.

Proposition 6.2. An algebra (Q; //, \\) is a biquasigroup i� (Q; \\, ·) is a biquasi-

group i� (Q; ·, \\) is a biquasigroup.

Proposition 6.3. An algebra (Q; //, \\) is a semisymmetric biquasigroup i� (Q; \\, ·)
is a semisymmetric biquasigroup i� (Q; ·, \\) is a semisymmetric biquasigroup.

Let us start with three single�operation quasigroups (Q; ·), (Q; //) and (Q; \\),
where // and \\ are duals of appropriate division operations of ·. We can de�ne
direct (Cartesian) product (Q; //)× (Q; \\) and an operation ⊗ on Q2 such that

(x1, x2)⊗ (y1, y2) = (x1//y1, x2\\y2)
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de�nes multiplication in the direct product. Therefore (Q2;⊗) is a quasigroup.
De�ne also a permutation ′ : Q2 → Q2 by (x1, x2)′ = (x2, x1). De�ne an-

other operation ∇ : Q2×Q2 → Q2 by x̂∇ŷ = Rŷ(x̂′)⊗Lx̂(ŷ′), where û is (u1, u2),
Lx̂(ŷ) = (x1 ·y1, y2) and Rŷ(x̂) = (x1, x2 ·y2). The groupoid (Q2;∇) is also a quasi-
group, moreover a semisymmetric one. Therefore (Q2;∇,∇) is a semisymmetric
biquasigroup.

Let us de�ne:

x©1 y = x//y x©2 y = x\\y x©3 y = x · y

Then the de�nition of ∇12, which we abbreviate just by ∇, is:

(x1, x2)∇12(y1, y2) = (x2©1 (x1©3 y2), (x1©3 y2)©2 y1).

There are two more alternative semisymmetrizations with corresponding de�ni-
tions in (Q2; \\, ·) (respectively (Q2; ·, //)):

(x1, x2)∇23(y1, y2) = (x2©2 (x1©1 y2), (x1©1 y2)©3 y1)

(x1, x2)∇31(y1, y2) = (x2©3 (x1©2 y2), (x1©2 y2)©1 y2).

The indexing of operations is used to emphasize the symmetry.
In this section we introduce a new semisymmetrization functor from Qtp to

P. This leads to another subcategory of P isomorphic to Qtp. We start with an
auxiliary result.

Lemma 6.4. The third component f3 of a homotopy is determined by the �rst

two components f1 and f2.

Proof. Let Q be a quasigroup. For every element x ∈ Q there are y, z ∈ Q such
that x = y · z (e.g. x = y · (y\x)). Hence, f3(x) = f1(y) · f2(z).

Let Γ: Qtp→ P be a functor de�ned on objects so that ΓQ is a semisymmetric
quasigroup (Q2;∇) whose elements are pairs (x1, x2), abbreviated by x̂, and ∇ is
de�ned so that

(x1, x2)∇(y1, y2) = (x2//(x1 · y2), (x1 · y2)\\y1).

(It is straightforward to check that (ŷ∇x̂)∇ŷ = ŷ∇(x̂∇ŷ) = x̂, hence ΓQ is a
semisymmetric quasigroup.)

A homotopy (f1, f2, f3) is mapped by Γ to the product f1 × f2, which is a
homomorphism:

(f1 × f2)(x̂) ∇ (f1 × f2)(ŷ) = (f2(x2)//(f1(x1) · f2(y2)), (f1(x1) · f2(y2))\\f1(y1))

= (f1(x2//(x1 · y2)), f2((x1 · y2)\\y1))

= (f1 × f2)(x̂∇ŷ).

By the functoriality of product, we have that Γ preserves identities and composi-
tion, and it is indeed a functor.
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The functor Γ is not a right adjoint for Σ since a right adjoint is unique up to
isomorphism and ΓQ is not isomorphic to ∆Q for every object Q of Qtp. However,
this adjunction is not necessary for the faithfulness of Γ.

Lemma 6.5. The functor Γ is faithful.

Proof. We proceed as in the second proof of Lemma 4.2. If (f1, f2, f3) and
(g1, g2, g3) are two homotopies from Q to R, then Γ(f1, f2, f3) = Γ(g1, g2, g3) means
that f1×f2 = g1×g2. Hence, f1 = g1 and f2 = g2, and by Lemma 6.4, f3 = g3.

The functor Γ, as de�ned, is not one-one on objects. For example,

({0, 1},+,+,+) and ({0, 1},⊕,⊕,⊕),

where + is addition mod 2 and x⊕ y = x + y + 1, are mapped by Γ to the same
object of P. To remedy this matter, one may rede�ne Γ so that

ΓQ = (Q2 × {Q},∇),

where Q, as the third component of every element, guarantees that Γ is one-one on
objects. The operation ∇ is de�ned as above, just neglecting the third component.
Hence, Qtp may be considered as another subcategory of P.

Acknowledgements. We are grateful to J.D.H. Smith for his comments on the
previous version of this note.
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The congruence Y ∗

on completely regular semirings

Sunil Kumar Maity

Abstract. We investigate the congruence generated by Y on completely regular semirings and

get that Y ∗ ∈ [ε, ν] on completely regular semirings.

1. Introduction

The study of the structure of semigroups and semirings are essentially in�uenced
by the study of the congruences de�ned on them. We know that the set of all
congruences de�ned on a semiring or a semigroup is a partially ordered set with
respect to inclusion and relative to this partial order it forms a lattice, the lattice
of congruences C (S) on S. In 1999, Petrich and Reilly [8] de�ned a relation Y on
a completely regular semigroup S by: for a, b ∈ S;

aY b if and only if V (a) = V (b).

Under certain special conditions of semigroups, Y was proved to be the least
Cli�ord congruence on S. It was proposed by them as an open problem that, what
can be said about Y ∗, the congruence generated by Y on a completely regular
semigroup. Recently, in 2011, C. Guo, G. Liu and Y. Guo solved this open problem
in their paper [1]. They proved that Y ∗ ∈ [ε, ν] on completely regular semigroups.
Furthermore, they gave a description of Y ∗ on completely simple semigroups and
normal cryptogroups, respectively. The main aim of this paper is to further extend
these ideas on completely regular semirings.

The preliminaries and prerequisites we need for this paper are discussed in
Section 2. In Section 3 we study some properties of orthodox completely regular
semirings and �nally in Section 4 we characterize the relation Y ∗ on completely
regular semirings.

2. Preliminaries

A semiring (S,+, ·) is a type (2, 2)-algebra such that the semigroup reducts (S,+)
and (S, ·) are connected by distributive laws, i.e., a(b+ c) = ab+ac and (b+ c)a =

2010 Mathematics Subject Classi�cation: 16A78, 20M10, 20M07, 16Y60.

Keywords: Completely regular semiring, completely simple semiring, Rees matrix semiring,

skew-ideal, b-lattice of skew-rings.
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ba+ ca for all a, b, c ∈ S. Here the additive reduct (S,+) of the semiring (S,+, ·)
is not necessarily commutative. An element a in a semiring (S,+, ·) is said to be
additively regular if there exists an element x ∈ S such that a+ x+ a = a.

Following [5], we say that an element a of a semiring (S,+, ·) is completely
regular if there exists x ∈ S such that a = a+x+a, a+x = x+a and a(a+x) = a+x.
A semiring S is said to be completely regular if every element of S is completely
regular.

Let τ be a relation on a semiring S. De�ne the relation τe on S by: for a, b ∈ S;
aτeb if and only if a = x+ c+ y, b = x+ d+ y for some x, y ∈ S0 and cτd.

Also, we de�ne τ \ by τ \ =
(

(τ ∪τ−1∪ ε)e
)t
, where ε is the equality congruence

and ηt denotes the transitive closure of η.
Following [5], a semiring (S,+, ·) is called a skew-ring if its additive reduct

(S,+) is a group, not necessarily an abelian group. A semiring (S,+, ·) is said to be
a b-lattice [5] if (S, ·) is a band and (S,+) is a semilattice. If (S,+, ·) is a semiring,
we denote Green's relations on the semigroup (S,+) by L +, R+, J +, D+ and
H +. In fact, the relations L +, R+, J +, D+ and H + are all congruences on the
multiplicative reduct (S, ·). Thus, if any one of these happens to be a congruence
on the additive reduct (S,+), it will be a congruence on the semiring (S,+, ·). A
completely regular semiring S is said to be completely simple [5] if J + = S×S. A
congruence ξ on a semiring S is called a b-lattice congruence (idempotent semiring
congruence) if S/ξ is a b-lattice (respectively, an idempotent semiring). A semiring
S is said to be a b-lattice (idempotent semiring) Y of semirings Sα(α ∈ Y ) if S
admits a b-lattice congruence (respectively, an idempotent semiring congruence)
ξ on S such that Y = S/ξ and each Sα is a ξ-class. We write S = (Y ;Sα).

First we prove the following result.

Theorem 2.1. The following conditions on a semiring are equivalent:
(i) S is completely regular;

(ii) every H +-class is a skew-ring;
(iii) S is union (disjoint) of skew-rings;
(iv) S is a b-lattice of completely simple semirings;
(v) S is an idempotent semiring of skew-rings.

Proof. From [5, Theorem 3.6], it follows that �rst four conditions are equivalent.
(i)⇒ (v): Let S be a completely regular semiring. Then by [5, Theorem 3.6],

it follows that each H +-class is a skew-ring. Let x0 be the zero of the skew-ring
Hx, where Hx is the H +-class containing the element x ∈ S. To complete the
prove it su�ces to show that H + is an idempotent semiring congruence on S.
For this let aH + b and c ∈ S. Then a0 = b0. Now (a + c)0 = (a + c)(a + c)0 =
a(a+c)0 +c(a+c)0 = a0(a+c)0 +c(a+c)0 = (a0 +c)(a+c)0 = (a0 +c)0(a+c)0 =
(a0 + c)0(a + c) = (a0 + c)0a + (a0 + c)0c = (a0 + c)0a0 + (a0 + c)0c = (a0 +
c)0(a0 + c) = (a0 + c)0. Similarly, we can show that (b + c)0 = (b0 + c)0. Thus,
(a + c)0 = (a0 + c)0 = (b0 + c)0 = (b + c)0. This implies a + cH + b + c. Dually,
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c+ aH + c+ b. Hence H + is a congruence on (S,+). Since H + is a congruence
on (S, ·), it follows that H + is a congruence on the semiring S. Clearly, 2aH + a
and a2 H + a. Hence S/H + is an idempotent semiring. Consequently, S is an
idempotent semiring of skew-rings.

(v)⇒ (i): This is obvious.

Throughout this paper, we always let E+(S) be the set of all additive idempo-
tents of the semiring S. Observe that the distributive laws imply that whenever
the set E+(S) is non-empty, it forms an ideal of the multiplicative reduct (S, ·) of
S. If a ∈ S is additively regular, we denote the set of all inverse elements of a in
the semigroup (S,+) by V +(a). Also we denote the least skew-ring congruence by
σ and the least b-lattice of skew-ring congruence by ν on a semiring S. We always
let S = (Y ;Sα) be a completely regular semiring, where Y is a b-lattice and Sα
(α ∈ Y ) is a completely simple semiring. For other notation and terminology not
given in this paper, the reader is referred to the texts of Howie [3], Golan [4], and
Petrich and Reilly [8].

Next we introduce some results which can be proved in a similar way as com-
pletely regular semigroup (see for example Theorem II.4.5 in [8]).

Theorem 2.2. Let S = (Y ;Sα) be completely regular semiring. Then J + = D+.

Lemma 2.3. For any completely regular semiring S,

ν = {(f, g) | f, g ∈ E+(S) and f D+ g}\.

Proof. Let η = {(f, g) | f, g ∈ E+(S), f D+ g}\.
Clearly, η ⊆ D+ and each D+- class of S/η contains a unique additive idempo-

tent. Hence S/η is a b-lattice of skew-rings and ν ⊆ η. On the other hand, S/ν is
a b-lattice of skew-rings so that {(f, g) | f, g ∈ E+(S), f D+ g} ⊆ ν, which implies
{(f, g) | f, g ∈ E+(S), f D+ g}e⊆ν. Thus, ν={(f, g) | f, g ∈ E+(S), f D+ g}\.

Lemma 2.4. Let S = (Y ;Sα) be a completely regular semiring and a ∈ Sα,
b ∈ Sβ, where β 6 α. Then,

(i) aL + (b+ a), aR+ (a+ b),
(ii) a = a+ (b+ a)0 = (a+ b)0 + a.

Proof. Follows similarly from [8, Corollary II.4.3.].

3. The relation Y

We call a semiring (S,+, ·) an orthodox semiring if the additive reduct (S,+) is
orthodox, i.e., E+(S) forms an ideal of S. We show that the relation Y and ν are
equivalent on an orthodox completely regular semiring.

Let S be a completely regular semiring. De�ne a relation Y on S by: for
a, b ∈ S;

aY b if and only if V +(a) = V +(b).
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We need the following result.

Lemma 3.1. Let S = (Y ;Sα) be an orthodox completely regular semiring, where Y

is a b-lattice and Sα(α ∈ Y ) is a completely simple semiring. Then
(
E+(Sα),+

)
is

a rectangular band for all α ∈ Y and for any two elements a, b ∈ Sα, e ∈ E+(Sβ),
a+ b = a+ e+ b, where α, β ∈ Y such that β 6 α.

Proof. Follows similarly from [8, Lemma II.5.2].

Theorem 3.2. Let S = (Y ;Sα) be an orthodox completely regular semiring and
a, b ∈ S. Then the following conditions are equivalent:

(i) aY b.
(ii) There exists e, f, g, h ∈ E+(S) with a = e+ b+ f and b = g + a+ h.
(iii) a = a0 + b+ a0 and b = b0 + a+ b0.

Proof. (i) ⇒ (ii): At �rst we suppose that aY b for a, b ∈ S. Then V +(a) =
V +(b). Let x ∈ V +(a). Then x ∈ V +(b), i.e., a = a + x + a, x + a + x = x and
b = b+ x+ b, x+ b+ x = x.

Thus, a = (a+x)+b+(x+a) = e+b+f , where e = a+x, f = x+a ∈ E+(S).
Similarly, b = g + a+ h, for some g, h ∈ E+(S).

(ii)⇒ (iii): We have a0+e+b+f+a0 = a0+a+a0 = a for some e, f ∈ E+(S).
Then aD+ b. Let a, b ∈ Sα, e ∈ Sβ and f ∈ Sγ . Then β, γ 6 α. Now, by Lemma
3.1, a0 + e+ b = a0 + b. Similarly, b+ f + a0 = b+ a0. Hence, we have, a0 + b+ a0

= a. Similarly, b0 + a+ b0 = b.
(iii)⇒ (i): Let, x ∈ V +(a). Then, using Lemma 3.1, we have

b = b0 + a+ b0 = b0 + a+ x+ a+ b0

= (b0 + a+ b0) + x+ (b0 + a+ b0) = b+ x+ b.

Similarly, x+ b+ x = x. Hence, x ∈ V +(b) and thus, V +(a) ⊆ V +(b).
By symmetry, it follows that V +(b) ⊆ V +(a). Thus, aY b.

Theorem 3.3. Let S = (Y ;Sα) be a completely regular semiring. Then Y is the
least b-lattice of skew-rings congruence on S if and only if S is orthodox.

Proof. By [1, Theorem 1.6], we have Y is the least semilattice of groups congruence
on the semigroup reduct (S,+) if and only if (S,+) is orthodox. To complete the
proof it remains to show that Y is a congruence on (S, ·). For this let aY b and
c ∈ S. Then a = a0 +b+a0 and b = b0 +a+b0. This implies ca = ca0 +cb+ca0 =
(ca)0 + cb+ (ca)0 and cb = cb0 + ca+ cb0 = (cb)0 + ca+ (cb)0 and hence caY cb.
Similarly, we can show that acY bc. Consequently, Y is a congruence on S. Since
S is completely regular, it follows that S/Y is also completely regular. Moreover,
since (S/Y ,+) is semilattice of groups, one can easily prove that S/Y is a b-lattice
of skew-rings, i.e., Y is the least b-lattice of skew-ring congruence on S.

Theorem 3.4. Let S = (Y ;Sα) be an orthodox completely regular semiring. Then
D+ = H + Y .
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Proof. Let aD+ b for a, b ∈ S. Now, we have, by Lemma 3.1, b = b0 + b + b0 =
b0+(a0+b+a0)+b0. Again, (a0+b+a0)0+b+(a0+b+a0)0 = a0+b+a0. Hence,
(a0 + b + a0) Y b. Again, since a0 = (a0 + b + a0)0 we have aH + (a0 + b + a0).
Thus we have, a (H + Y ) b and hence D+ ⊆ H + Y . The reverse inclusion is
obvious. This completes the proof.

We highlight a very interesting result based on the congruences that we have
discussed so far.

Theorem 3.5. Let S = (Y ;Sα) be a completely regular semiring, where Y is
a b-lattice and Sα (α ∈ Y ) is a completely simple semiring. Then the following
conditions are equivalent:

(i) S is orthodox,
(ii) S is a spined product of an idempotent semiring and a b-lattice of skew-

rings,
(iii) S satis�es the identity a0 + b0 = (a+ b)0.

Proof. (i) ⇒ (ii): Let π1 (respectively, π2) be the natural projection of S/H +

(respectively, S/Y ) onto Y . Let A be the spined product of S/H + and S/Y .
Then, for any a ∈ Sα, π1(aH +) = π2(aY ) = α.

We de�ne a mapping, φ : S → A by φ(a) = (aH +, aY ) for all a ∈ S. Clearly,
φ is a semiring homomorphism.

Let a, b ∈ S such that φ(a) = φ(b). This implies (aH +, aY ) = (bH +, bY ),
i.e., aH + b and aY b, i.e., a0 = b0 and a = a0 + b+a0, b = b0 +a+ b0. Therefore,
a = a0 + b+ a0 = b0 + b+ b0 = b and hence φ is injective.

To show φ is surjective, let b, c ∈ S such that (bH +, cY ) ∈ A. Then, π1(bH +)
= π2(cY ) = α, say, so that b, c ∈ Sα. Hence, bD+ c. Now, by Theorem 3.4,
b (H + Y ) c. This implies bH + aY c for some a ∈ S, i.e., bH + = aH + and
aY = cY .

Hence, φ(a) = (aH +, aY ) = (bH +, cY ), which implies that φ is surjective.
Consequently, φ is an isomorphism.

(ii) ⇒ (iii): Let S be a spined product of an idempotent semiring I and a
b-lattice of skew-rings T . Since every idempotent semiring and every b-lattice of
skew-rings satis�es the identity x0 + y0 = (x+ y)0 and therefore so does S.

(iii) ⇒ (i): If S satis�es the identity a0 + b0 = (a + b)0, then for any two
elements e, f ∈ E+(S), we have e0 + f0 = (e+ f)0, i.e., e+ f = (e+ f)0 ∈ E+(S).
Hence S is orthodox.

Corollary 3.6. Let S be an orthodox completely regular semiring. Then H + ∩
Y = ε, where ε is the equality relation on S.

4. The interval which Y ∗ belongs to

So far we have discussed the nature and properties of the relation Y on a special
kind of completely regular semirings. In the following section, we try to describe
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Y ∗ on completely regular semirings without any other special conditions.
Following [6, Theorem 3.1] we describe the structure of completely simple

semiring.

Let R be a skew-ring, (I, ·) and (Λ, ·) are bands such that I ∩ Λ = {o} and
P = (pλ,i) be a matrix over R, i ∈ I, λ ∈ Λ under the assumptions

(i) pλ,o = po,i = 0,
(ii) pλµ,kj = pλµ,ij − pνµ,ij + pνµ,kj ,

(iii) pµλ,jk = pµλ,ji − pµν,ji + pµν,jk,
(iv) apλ,i = pλ,ia = 0,
(v) ab+ poµ,io = poµ,io + ab,

(vi) ab+ pλo,oj = pλo,oj + ab, for all i, j, k ∈ I, λ, µ, ν ∈ Λ and a, b ∈ R.

On S = I ×R× Λ, we de�ne ‘+' and ‘·' by
(i, a, λ) + (j, b, µ) = (i, a+ pλ,j + b, µ)

and
(i, a, λ) · (j, b, µ) = (ij,−pλµ,ij + ab, λµ).

Then (S,+, ·) is a semiring which is called a Rees matrix semiring and is
denoted by M (I,R,Λ;P ). The authors in [6] proved (Theorem 3.1) that a semiring
S is a completely simple semiring if and only if S is isomorphic to a Rees matrix
semiring.

Next, we give a description of least skew-ring congruence to determine the
interval of Y ∗ on completely regular semirings.

Lemma 4.1. Let S = (Y ;Sα) be a completely regular semiring, where Y is a
b-lattice and Sα (α ∈ Y ) is a completely simple semiring and a, b ∈ Sα. Then the
following statements are equivalent.

(i) aY b,
(ii) a = e+b+f and b = g+a+h for any e, f, g, h ∈ E+(S) with eR+ aL +f

and gR+ bL + h,
(iii) a = (a+x)0 + b+ (x+ a)0 and b = (b+x)0 + a+ (x+ b)0 for any x ∈ Sα.

Proof. (i) ⇒ (ii): Let a = (i, s, λ), b = (j, t, µ) ∈ Sα and aY b. For any e =
(i,−pδ,i, δ), f = (k,−pλ,k, λ) ∈ E+(Sα), we have eR+ aL + f .

Let c = (k,−pλ,k − s− pδ,i, δ) ∈ Sα. Then

a+ c+ a = (i, s, λ) + (k,−pλ,k − s− pδ,i, δ) + (i, s, λ)
= (i, s+ pλ,k − pλ,k − s− pδ,i + pδ,i + s, λ)
= (i, s, λ) = a.

Since, Sα is a completely simple semiring, we have c+ a+ c = c. This implies,
c ∈ V +(a).

Since aY b, we have c ∈ V +(b). Hence b+ c+ b = b, i.e., (j, t, µ) + (k,−pλ,k −
s− pδ,i, δ) + (j, t, µ) = (j, t+ pµ,k − pλ,k − s− pδ,i + pδ,j + t, µ) = (j, t, µ).

So we get, t = −pδ,j + pδ,i + s+ pλ,k − pµ,k. Then
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e+ b+ f = (i,−pδ,i, δ) + (j,−pδ,j + pδ,i + s+ pλ,k − pµ,k, µ) + (k,−pλ,k, λ)
= (i,−pδ,i + pδ,j − pδ,j + pδ,i + s+ pλ,k − pµ,k + pµ,k − pλ,k, λ)
= (i, s, λ) = a.

Similarly, we can prove for any g, h ∈ E+(Sα) with gR+ bL + h, b = g+a+h.
(ii)⇒ (iii): For x, a, b ∈ Sα, by Lemma 2.4(i), we have (a+x) R+ aL + (x+

a) and (b + x) R+ bL + (x + b). This implies (a + x)0 R+ aL + (x + a)0 and
(b + x)0 R+ bL + (x + b)0. Hence by (ii), a = (a + x)0 + b + (x + a)0 and b =
(b+ x)0 + a+ (x+ b)0.

(iii)⇒ (i): Let c ∈ V +(a) for a, b ∈ Sα. Then, c ∈ Sα, (a+c), (c+a) ∈ E+(Sα).
By (iii),

b = (b+ c)0 + a+ (c+ b)0

= (b+ c)0 + a+ c+ a+ (c+ b)0

= (b+ c)0 + (a+ c)0 + b+ (c+ a)0 + c+ (a+ c)0 + b+ (c+ a)0 + (c+ b)0

= (b+ c)0 + (a+ c)0 + b+ (c+ a) + c+ (a+ c) + b+ (c+ a)0 + (c+ b)0

= (b+ c)0 + (a+ c)0 + b+ c+ b+ (c+ a)0 + (c+ b)0

= (b+ c)0 + b+ c+ b+ (c+ b)0 [by Lemma 2.4 and Lemma 3.1]
= b+ c+ b.

This implies c ∈ V +(b) and hence V +(a) ⊆ V +(b). By symmetry, we get V +(a) =
V +(b). This completes the proof.

Following [6, De�nition 5.1] a normal subgroup N of (R,+) (where R is a
skew-ring) is said to be a skew-ideal of R if a ∈ N implies ca, ac ∈ N for all c ∈ R.

Notation 4.2. Let S = M (I,R,Λ;P ) be a Rees matrix semiring over a skew-ring
R. Let 〈P 〉 denote the smallest skew-ideal of R generated by the elements of P.

Lemma 4.3. Let S = M (I,R,Λ;P ) be a completely simple semiring. De�ne a
relation σ on S as: for all a, b ∈ S;

a σ b if and only if (g − h) ∈ 〈P 〉,

where a=(i, g, λ), b=(j, h, µ) ∈ S. Then σ is the least skew-ring congruence on S.

Proof. The relation σ is obviously re�exive and symmetric.
Let a σ b and b σ c where a, b, c ∈ S. Also, let a = (i, g, λ), b = (j, h, µ) and

c = (k, t, δ) ∈ S. Then (g−h) ∈ 〈P 〉 and (h− t) ∈ 〈P 〉. This implies (g− t) ∈ 〈P 〉.
Hence a σ c. Thus, σ is transitive and hence σ is an equivalence relation on S.

Next we prove that σ is compatible with respect to the operations in S. Let
a, b ∈ S such that a σ b. Then we have, (g − h) ∈ 〈P 〉, where a = (i, g, λ),
b = (j, h, µ) ∈ S. Let c = (k, t, δ) ∈ S be arbitrary. Therefore, a + c = (i, g, λ) +
(k, t, δ) = (i, g+pλ,k+t, δ). Similarly, b+c = (j, h, µ)+(k, t, δ) = (j, h+pµ,k+t, δ).

Now, (g + pλ,k + t) − (h + pµ,k + t) = g + pλ,k − pµ,k − h. Again, (g − h) ∈
〈P 〉 implies −h + g ∈ 〈P 〉, i.e., pλ,k − pµ,k − h + g + pµ,k − pλ,k ∈ 〈P 〉, i.e.,
g + pλ,k − pµ,k − h + g + pµ,k − pλ,k − g ∈ 〈P 〉. Also, g + pµ,k − pλ,k − g ∈ 〈P 〉.
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Thus, g+pλ,k−pµ,k−h ∈ 〈P 〉. Hence, (a+ c)σ (b+ c). Similarly, it can be shown
that (c+ a)σ (c+ b).

Again, ac = (i, g, λ)(k, t, δ) = (ik,−pλδ,ik + gt, λδ) and bc = (jk,−pµδ,jk +
ht, µδ). Now, (g−h) ∈ 〈P 〉 implies (gt−ht) ∈ 〈P 〉, i.e., −pλδ,ik+gt−ht+pλδ,ik ∈
〈P 〉, i.e., −pλδ,ik+gt−ht+pµδ,jk−pµδ,jk+pλδ,ik ∈ 〈P 〉. Since, −pµδ,jk+pλδ,ik ∈ 〈P 〉
it follows that −pλδ,ik + gt − ht + pµδ,jk ∈ 〈P 〉. Therefore, (ac)σ (bc). Similarly,
(ca)σ (cb). Consequently, σ is a congruence on (S,+, ·).

Next we show that σ is a skew-ring congruence on S. If we can show that there
is a unique additive idempotent in S/σ, then we are done. For this it is enough to
prove that all additive idempotents of S are σ related.

Let e, f ∈ E+(S). Then e = (i,−pλ,i, λ) and f = (j,−pµ,j , µ). Now, −pλ,i +
pµ,j ∈ 〈P 〉 implies that e σ f . This proves that σ is a skew-ring congruence on S.

At last, we prove that σ is the least skew-ring congruence on S. For this let
ξ be any skew-ring congruence on S. Then both σ and ξ are group congruences
on (S,+). Moreover, by [1, Lemma 2.3], it follows that σ is the least group
congruence on (S,+). Thus, we must have σ ⊆ ξ. Consequently, σ is the least
skew-ring congruence on S. This completes the proof.

Lemma 4.4. Let S = (Y ;Sα) be a completely regular semiring where Y is a b-
lattice and Sα (α ∈ Y ) is a completely simple semiring. If ν is the least b-lattice
of skew-rings congruence on S, then Y ∗ ⊆ ν.

Proof. Let a, b ∈ S and aY b. Then there exists some α ∈ Y such that a, b ∈ Sα.
Let a = (i, g, λ), b = (j, h, µ). By Lemma 4.1, we get

(i, g, λ) = (i,−pδ,i, δ) + (j, h, µ) + (k,−pλ.k, λ),

since (i,−pδ,i, δ)R+ (i, g, λ)L+ (k,−pλ,k, λ).
It follows that g = −pδ,i + pδ,j + h+ pµ,k − pλ,k whence g + pλ,k − pµ,k − h−

pδ,j + pδ,i = 0, where 0 is the zero of R. Taking k = δ = o, we have (g − h) = 0 ∈
〈P 〉. Then by Lemma 4.3, it follows that a σα b, where σα is the least skew-ring
congruence on Sα. Hence Y |Sα ⊆ σα for all α ∈ Y .

Let ν|Sα
= να . Then ν =

⋃
α∈Y

να . Since Sα/να is a skew-ring, it follows that

σ
α
⊆ ν

α
for all α ∈ Y . Therefore, Y |Sα

⊆ σα ⊆ ν
α
for all α ∈ Y and hence

Y ∗ ⊆ ν.

De�nition 4.5. A congruence ξ on a semiring S is said to be an additive idem-
potent pure congruence if a ξ e with a ∈ S and e ∈ E+(S) implies that a ∈ E+(S).

Theorem 4.6. Let S = M (I,R,Λ;P ) be a completely simple semiring. Then Y
is the greatest additive idempotent pure congruence on S.

Proof. Clearly, Y is an equivalence relation. Let a, b ∈ S and aY b. By Lemma
4.1, for any x, c ∈ S, a = (a+ x+ c)0 + b+ (x+ c+ a)0 and b = (b+ x+ c)0 + a+
(x+ c+ b)0.
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Hence, c+a = c+(a+x+c)0+b+(x+c+a)0 = (c+a+x)0+c+b+(x+c+a)0,
by Lemma 2.4 (ii). Similarly, c+ b = (c+ b+ x)0 + (c+ a) + (x+ c+ b))0. This
implies (c+ a) Y (c+ b). Dually, it follows that (a+ c) Y (b+ c).

We now show that (ac) Y (bc). Let a, b, c ∈ S and aY b. Then there exists
some α ∈ Y such that a, b ∈ Sα. Let a = (i, x, λ), b = (j, y, µ) and c = (k, z, ν).

By Lemma 4.1, a = e1 + b+f1 for all e1, f1 ∈ E+(S) with e1 R+ aL + f1, i.e.,
(i, x, λ) = (i,−pt,i, t) + (j, y, µ) + (s,−pλ,s, λ), for all t ∈ Λ and for all s ∈ I, i.e.,
(i, x, λ) = (i,−pt,i + pt,j + y + pµ,s − pλ,s, λ), for all t ∈ Λ and for all s ∈ I, i.e.,
x = −pt,i + pt,j + y + pµ,s − pλ,s for all t ∈ Λ and for all s ∈ I. ...(1)

We also note that xz = yz for any z ∈ S. ...(2)
Again, (i, x, λ)(k, z, ν) = (i,−pt,i, t)(k, z, ν)+(j, y, µ)(k, z, ν)+(s,−pλ,s, λ)(k, z, ν),
i.e., (ik,−pλν,ik+xz, λν)=(ik,−ptν,ik, tν)+(jk,−pµν,jk+yz, µν)+(sk,−pλν,sk, λν),
i.e., (ik,−pλν,ik +xz, λν) = (ik,−ptν,ik + ptν,jk− pµν,jk + yz+ pµν,sk− pλν,sk, λν),
i.e., −pλν,ik + xz = −ptν,ik + ptν,jk − pµν,jk + yz + pµν,sk − pλν,sk,
i.e., −pλν,ik + xz = −ptν,ik + ptν,jk − pµν,jk + pµν,sk − pλν,sk + yz. ...(3)
Now, let e = (ik,−pδ,ik, δ), f = (l,−pλν,l, λν) ∈ E+(S). Then eR+ (ac) L + f .
Now,

e+ bc+ f = (ik,−pδ,ik, δ) + (jk,−pµν,jk + yz, µν) + (l,−pλν,l, λν)
= ik,−pδ,ik + pδ,jk − pµν,jk + yz + pµν,l − pλν,l, λν)
= (ik,−pδν,ik + pδν,i − pδ,i + pδ,j − pδν,j + pδν,jk − pµν,jk+

yz + pµν,lk − pµ,lk + pµ,l − pλ,l + pλ,lk − pλν,lk, λν)

i.e., e+ bc+ f = (ik,−pδν,ik + pδν,jk − pµν,jk + yz + pµν,lk − pλν,lk, λν), ...(4)
[By putting once t = δ and t = δν and equating in (1) and again by putting

s = l and s = lk and equating in (1) we obatin (4)]
Now, by substituting t = δ and s = l in (3) we can obtain

−pλν,ik + xz = −pδν,ik + pδν,jk − pµν,jk + pµν,lk − pλν,lk + yz
= −pδν,ik + pδν,jk − pµν,jk + yz + pµν,lk − pλν,lk.

Therefore,

e+ bc+ f = (ik,−pδν,ik + pδν,jk − pµν,jk + yz + pµν,lk − pλν,lk, λν)
= (ik,−pλν,ik + xz, λν)
= ac.

Thus, we see that ac = e+ bc+f for any e, f ∈ E+(S) with eR+ (ac) L + f . Sim-
ilarly, we can show that bc = g+ac+h for any g, h ∈ E+(S) with gR+ (bc) L + h.
Consequently, Y is a congruence on the semiring S.

Next we show that Y is an additive idempotent pure congruence on S. Let
a ∈ S with a = (i, g, λ) ∈ S, e = (k,−pλ,k, λ) ∈ E+(S) and aY e. Then V +(a) =
V +(e). By Lemma 4.1, for f = (i,−pλ,i, λ), h = (k,−pλ,k, λ) ∈ E+(S) with
f R+ aL+ h, we have a = f + e+ h = (i,−pλ,i, λ) + (k,−pλ,k, λ) + (k,−pλ,k, λ) =
(i,−pλ,i, λ) ∈ E+(S). Thus Y is an additive idempotent pure congruence on S.

Let η be any additive idempotent pure congruence on S. Let a, b ∈ S such
that a η b. Then by [1, Theorem 2.5], it follows that aY b. Hence, η ⊆ Y , which
proves that Y is the greatest additive idempotent pure congruence on S.
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Theorem 4.7. Let S = (Y ;Sα) be a completely regular semiring, where Y is a
b-lattice and Sα (α ∈ Y ) is a completely simple semiring. Then Y ∗ = ε on S if
and only if for each α ∈ Y , εα is the unique additive idempotent pure congruence
on Sα, where ε is the trivial congruence.

Proof. First suppose that for each α ∈ Y , εα is the unique additive idempotent
pure congruence on Sα. Since Y is the greatest additive idempotent pure congru-
ence on S, it follows that Y |Sα

= εα on Sα. Hence Y ∗ = ε.
Conversely, let Y ∗ = ε. Now since Y ⊆ Y ∗ = ε and Y is re�exive on S, it

follows that Y = ε on S. This implies Y |Sα = εα and hence by Theorem 4.6, it
follows that εα is the unique additive idempotent pure congruence on Sα for each
α ∈ Y .

Combining Theorem 3.4, Lemma 4.4 and Theorem 4.7 we get the following
result.

Theorem 4.8. Let S be a completely regular semiring. Then Y ∗ ∈ [ε, ν], where
ε is the equality congruence and ν is the least b-lattice of skew-ring congruence on
S.
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this paper.
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Behrends-Humble simple maps are regular

Lon Mitchell

Abstract. We consider simple binary operations in the sense of Behrends and Humble. We prove

that a groupoid (magma) with such a map is regular. As a consequence, a division groupoid

with simple binary operation is a quasigroup.

Let G be a groupoid (magma) with binary operation ϕ. The map ϕ induces
maps ϕn : Gn+1 → Gn by

ϕn(s0, s1, . . . , sn) =
(
ϕ(s0, s1), ϕ(s1, s2), . . . , ϕ(sn−1, sn)

)
.

Let Φn be the composition ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn. For an integer k > 2, we say that ϕ
is k-simple if Φk(s0, . . . , sk) = ϕ(s0, sk) for all s0, . . . , sk ∈ G and that ϕ is simple

if it is k-simple for some k.
Simple maps were �rst studied by Ehrhard Behrends and Steve Humble [1].

Michael Jones, Brittany Shelton, and the author recently proved that any groupoid
with simple binary operation is medial [4]. In this note, we establish that any
groupoid with simple binary operation is regular and show that any division
groupoid with simple binary operation is a quasigroup. We also o�er remarks
on cancellation groupoids and 2-simple maps.

Theorem 1. If G is a groupoid with simple binary operation ϕ, then G is regular.

Proof. Suppose that ϕ is n-simple for some integer n, a, b ∈ G and ϕ(a, x) = ϕ(b, x)
for some x ∈ G. Given any other y ∈ G, we �nd that

ϕ(a, y) = Φn(a, x, . . . , x, y) = Φn−1

(
ϕ(a, x), ϕ(x, x), . . . , ϕ(x, x), ϕ(x, y)

)
= Φn−1

(
ϕ(b, x), ϕ(x, x), . . . , ϕ(x, x), ϕ(x, y)

)
= Φn(b, x, . . . , x, y) = ϕ(b, y).

Similarly, ϕ(x, a) = ϕ(x, b) implies ϕ(y, a) = ϕ(y, b) for all y ∈ G.

Theorem 2. A division groupoid with simple binary operation is a quasigroup.

Proof. If (G, ·) is a division groupoid with simple binary operation, it is medial [4]
and regular. Thus there exists a binary operation + on G such that (G,+) is an
Abelian group and there exist commuting surjective endomorphisms f and g of
(G,+) and an element c ∈ G such that xy = f(x) + g(y) + c for all x, y ∈ G [2].

2010 Mathematics Subject Classi�cation: 20N02
Keywords: Simple binary operation, groupoid
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Let 0 be the identity element of (G,+). For q0, . . . , qn ∈ Q, by simplicity,

f(q0) + g(qn) + c =

fn(q0) +

(
n

1

)
fn−1g(q1) + · · ·+

(
n

n− 1

)
fgn−1(qn−1) + gn(qn)

+
(
(f + g) + (f + g)2 + · · ·+ (f + g)n−1

)
(c) + c.

If we let the qi all be 0, we �nd
(
(f +g)+(f +g)2 + · · ·+(f +g)n−1

)
(c) = 0. Next,

letting all of the qi except q0 or qn be 0, we �nd g = gn and f = fn. Since f and g
are also surjective, they must be automorphsims. By the Bruck-Murdoch-Toyoda
Theorem [3], (G,ϕ) is a quasigroup.

Theorem 3. If (G,ϕ) is a groupoid and ϕ is 2-simple, then (G,ϕ) is a semigroup.

Proof. If ϕ is 2-simple, (G,ϕ) is medial [4]. Then, for any a, b, c ∈ G,

ϕ
(
a, ϕ(b, c)

)
= Φ2

(
a, ϕ(b, b), ϕ(b, c)

)
= ϕ

(
ϕ(a, ϕ(b, b)), ϕ(b, c)

)
= ϕ

(
ϕ(a, b), ϕ(ϕ(b, b), c)

)
= Φ2

(
ϕ(a, b), ϕ(b, b), c

)
= ϕ

(
ϕ(a, b), c

)
,

so that ϕ is associative.

If G is a cancellation groupoid with simple binary operation, then G is me-
dial [4]. As a result, there exists a medial quasigroup (Q, ·) such that G is a dense
subgroupoid of Q; moreover, G and Q satisfy the same identities [5, 2]. In particu-
lar, Q has simple binary operation. Let n be a positive integer such that the opera-
tion of (Q, ·) is n-simple. De�ne Φn as above using ϕ(x, y) = xy. If x, y ∈ G, q ∈ Q,
and xq ∈ G, then yq ∈ G, since yq = Φn(y, x, . . . , x, q) = Φn−1(yx, xx, . . . , xx, xq)
and yx, xx, xq ∈ G. Can G 6= Q?
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Regularity of ternary semihypergroups

Krisanthi Naka and Kostaq Hila

Abstract. We study some properties of regular ternary semihypergroups, completely regular

ternary semihypergroups, intra-regular ternary semihypergroups and characterize them by using

various hyperideals of ternary semihypergroups.

1. Introduction and preliminaries

In 1965, Sioson [14] studied ideal theory in ternary semigroups. In [4, 5] Dudek et.
al. studied the ideals in n-ary semigroups. In 1995, Dixit and Dewan [3] introduced
and studied some properties of ideals and quasi-(bi-)ideals in ternary semigroups.
Other important results on ternary semigroups are obtained in [12, 13, 16, 15].

Hyperstructure theory was introduced in 1934, when F. Marty [11] de�ned hy-
pergroups based on the notion of hyperoperation, began to analyze their properties
and applied them to groups. In the following decades and nowadays, a number
of di�erent hyperstructures are widely studied from the theoretical point of view
and for their applications to many subjects of pure and applied mathematics by
many mathematicians. In a classical algebraic structure, the composition of two
elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. Davvaz et al. in [2] considered a class of algebraic hypersys-
tems which represent a generalization of semigroups, hypersemigroups and n-ary
semigroups.

In this paper we extend the notion of regularity in ternary semihypergroups and
we study some properties of regular ternary semihypergroups, completely regular
ternary semihypergroups, intra-regular ternary semihypergroups and characterize
them by using various hyperideals of ternary semihypergroups extending those for
ternary semigroups.

Recall �rst the basic terms and de�nitions from the ternary semihypergroups
theory.

De�nition 1.1. A map f : H ×H ×H → P∗(H) is called ternary hyperoperation
on the set H, where H is a nonempty set and P∗(H) denotes the collection of all
nonempty subsets of H.

A ternary hypergroupoid is called the pair (H, f) where f is a ternary hyper-
operation on the set H.
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If A,B,C are nonempty subsets of H, then we de�ne

f(A,B,C) =
⋃

a∈A,b∈B,c∈C
f(a, b, c).

A ternary hypergroupoid (H, f) is called a ternary semihypergroup if for all
a1, a2, . . . , a5 ∈ H, we have

f(f(a1, a2, a3), a4, a5) = f(a1, f(a2, a3, a4), a5) = f(a1, a2, f(a3, a4, a5)).

A nonempty subset T of H is called a ternary subsemihypergroup of H if and
only if f(T, T, T ) ⊆ T .

De�nition 1.2. Let (H, f) be a ternary semihypergroup. Then H is called a
ternary hypergroup if for all a, b, c ∈ H, there exist x, y, z ∈ H such that:

c ∈ f(x, a, b) ∩ f(a, y, b) ∩ f(a, b, z).

De�nition 1.3. Let (H, f) be a ternary hypergroupoid. Then

1. (H, f) is (1, 3)-commutative if for all a1, a2, a3 ∈ H, f(a1, a2, a3) = f(a3, a2, a1);

2. (H, f) is (2, 3)-commutative if for all a1, a2, a3 ∈ H, f(a1, a2, a3) = f(a1, a3, a2);

3. (H, f) is (1, 2)-commutative if for all a1, a2, a3 ∈ H, f(a1, a2, a3) = f(a2, a1, a3);

4. (H, f) is commutative if for all a1, a2, a3 ∈ H and for all σ ∈ S3, f(a1, a2, a3) =
f(aσ(1), aσ(2), aσ(3).

De�nition 1.4. A ternary semihypergroup (H, f) is said to have a zero element
if there exists an element 0 ∈ H such that for all a, b ∈ H, f(0, a, b) = f(a, 0, b) =
f(a, b, 0) = {0}. An element e ∈ H is called left (right) identity element of H if
for all a ∈ H, f(a, e, e) = {a}(f(e, e, a) = {a}). An element e ∈ H is called an
identity element of H if for all a ∈ H, f(a, e, e) = f(e, e, a) = f(e, a, e) = {a}.

De�nition 1.5. Let (H, f) be a ternary semihypergroup. A nonempty subset I
of a ternary semihypergroup H is called a left (right, lateral) hyperideal of H if

f(H,H, I) ⊆ I(f(I,H,H) ⊆ I, f(H, I,H) ⊆ I).

A nonempty subset I of H is called a hyperideal of H if it is a left, right and
lateral hyperideal of H. A nonemtpy subset I of H is called two-sided hyperideal
of H if it is a left and right hyperideal of H. A lateral hyperideal I of H is called
a proper lateral hyperideal of H if I 6= H. A left hyperideal I of H is called
idempotent if f(I, I, I) = I.
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Example 1.6. LetH = {a, b, c, d, e, g} and f(x, y, z) = (x∗y)∗z for all x, y, z ∈ H,
where ∗ is de�ned by the table:

∗ a b c d e g
a a {a, b} c {c, d} e {e, g}
b b b d d g g
c c {c, d} c {c, d} c {c, d}
d d d d d d d
e e {e, g} c {c, d} e {e, g}
g g g d d g g

Then (H, f) is a ternary semihypergroup. Clearly, I1 = {c, d}, I2 = {c, d, e, g} and
H are lateral hyperideals of H.

Let (H, f) be a ternary semihypergroup. It is clear that the intersection of all
lateral hyperideals of a ternary subsemihypergroup T of H containing a nonempty
subset A of T is the lateral hyperideal of H generated by A.

For every element a ∈ H, the left, right, lateral, two-sided and hyperideal
generated by a are respectively given by

〈a〉l = {a} ∪ f(H,H, a),
〈a〉r = {a} ∪ f(a,H,H),

〈a〉m = {a} ∪ f(H, a,H) ∪ f(H,H, a,H,H),

〈a〉t = {a} ∪ f(H,H, a) ∪ f(a,H,H) ∪ f(H,H, a,H,H),

〈a〉 = {a} ∪ f(H,H, a) ∪ f(a,H,H) ∪ f(H, a,H) ∪ f(H,H, a,H,H).

De�nition 1.7. Let (H, f) be a ternary semihypergroup. A proper hyperideal P
of H is called prime hyperideal of H if f(A,B,C) ⊆ P implies A ⊆ P or B ⊆ P
or C ⊆ P for any three hyperideals A,B,C of H.

A proper hyperideal P of H is said to be strongly irreducible, if for hyperideals
T and K of H, T ∩K ⊆ P implies that T ⊆ P or K ⊆ P

A proper hyperideal A of a ternary semihypergroup H is called a semiprime
hyperideal of H if f(I, I, I) ⊆ A implies I ⊆ A for any hyperideal I of H.

A proper hyperideal A of a ternary semihypergroup H is called completely
semiprime hyperideal of H if f(x, x, x) ⊆ A implies that x ∈ A for any element
x ∈ A.

De�nition 1.8. A ternary subsemihypergroup B of a ternary semihypergroup H
is called a bi-hyperideal of H if f(B,H,B,H,B) ⊆ B.

2. Regular ternary semihypergroups

De�nition 2.1. A ternary semihypergroup H is said to be regular if for each
a ∈ H, there exists an element x ∈ H such that a ∈ f(a, x, a).
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A ternary semihypergroup H is called regular if all of its elements are regular.
It is clear that every ternary hypergroup is a regular ternary semihypergroup.
The ternary semihypergroup of the Example 1.6 is regular ternary semihyper-

group.
We note that every left and right hyperideal of a regular ternary semihyper-

group may not be a regular ternary semihypergroup; however, for a lateral hyper-
ideal of a regular ternary semihypergroup, we have the following lemma:

Lemma 2.2. Every lateral hyperideal of a regular ternary semihypergroup H is a
regular ternary semihypergroup.

Proof. Let L be a lateral hyperideal of a regular ternary semihypergroup H. Then
for every a ∈ L, there exists x ∈ H such that a ∈ f(a, x, a). Now a ∈ f(a, x, a) ⊆
f(a, x, f(a, x, a)) ⊆ f(a, f(x, a, x), a) ⊆ f(a, L, a). So there exists b ∈ L such that
a ∈ f(a, b, a). This implies that L is a regular ternary semihypergroup.

Obviously, every hyperideal of a regular ternary semihypergroup H is a regular
ternary semihypergroup.

Theorem 2.3. Let (H, f) be a ternary semihypergroup. Then the following state-
ments are equivalent:

(1) H is regular.

(2) For any right hyperideal R, lateral hyperideal M and left hyperideal L of H,
f(R,M,L) = R ∩M ∩ L.

(3) For a, b, c ∈ H, f(〈a〉r , 〈b〉m , 〈c〉l) = 〈a〉r ∩ 〈b〉m ∩ 〈c〉l.

(4) For a ∈ H, f(〈a〉r , 〈a〉m , 〈a〉l) = 〈a〉r ∩ 〈a〉m ∩ 〈a〉l.

Proof. (1) ⇒ (2). Let H be a regular ternary semihypergroup. Let R,M and L
be a right hyperideal, a lateral hyperideal and a left hyperideal of H respectively.
Then clearly, f(R,M,L) ⊆ R∩M∩L. Now for a ∈ R∩M∩L, we have a ∈ f(a, x, a)
for some x ∈ H. This implies that a ∈ f(a, x, a) ⊆ f(f(a, x, a), x, f(a, x, a)) ⊆
f(R,M,L). Thus we have R∩M ∩L ⊆ f(R,M,L). So we �nd that f(R,M,L) =
R ∩M ∩ L.

Clearly, (2)⇒ (3) and (3)⇒ (4).
It remains to show that (4)⇒ (1).
Let a ∈ H. Clearly, a ∈ 〈a〉r∩〈a〉m∩〈a〉l = f(〈a〉r , 〈a〉m , 〈a〉l). Then we have,

a ∈ f(f(a,H,H) ∪ {a}, f(H, a,H) ∪ f(H,H, a,H,H) ∪ {a}, f(H,H, a) ∪ {a}) ⊆
f(a,H, a). So we �nd that a ∈ f(a,H, a) and hence there exists an element x ∈ H
such that a ∈ f(a, x, a). This implies that a is regular and hence H is regular.

Corollary 2.4. Let (H, f) be a ternary semihypergroup. Then the following state-
ments are equivalent:

(1) H is regular.
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(2) For any right hyperideal R and left hyperideal L of H, f(R,H,L) = R ∩ L.

(3) For a, b ∈ H, f(〈a〉r , H, 〈b〉l) = 〈a〉r ∩ 〈b〉l.

(4) For a ∈ H, f(〈a〉r , H, 〈a〉l) = 〈a〉r ∩ 〈a〉l.

Theorem 2.5. A ternary semihypergroup H is regular if and only if every hyper-
ideal of H is idempotent.

Proof. Let H be a regular ternary semihypergroup and I be any hyperideal of H.
Then f(I, I, I) ⊆ f(H,H, I) ⊆ I. Let a ∈ I. Then there exists x ∈ H such that
a ∈ f(a, x, a) ⊆ f(a, x, f(a, x, a)). Since I is a hyperideal and a ∈ I, f(x, a, x) ⊆ I.
Thus a ∈ f(a, x, a) ⊆ f(a, x, f(a, x, a)) ⊆ f(I, I, I). Consequently, I ⊆ f(I, I, I)
and hence f(I, I, I) = I, that is I is idempotent.

Conversely, suppose that every hyperideal of H is idempotent. Let A,B and
C be three hyperideals of H. Then f(A,B,C) ⊆ f(A,H,H) ⊆ A, f(A,B,C) ⊆
f(H,B,H) ⊆ B and f(A,B,C) ⊆ f(H,H,C) ⊆ C. This implies that f(A,B,C) ⊆
A ∩B ∩ C. Also, f(A ∩B ∩ C,A ∩B ∩ C,A ∩B ∩ C) ⊆ f(A,B,C). Again, since
A∩B ∩C is a hyperideal of H, f(A∩B ∩C,A∩B ∩C,A∩B ∩C) = A∩B ∩C.
Thus A ∩ B ∩ C ⊆ f(A,B,C) and hence A ∩ B ∩ C = f(A,B,C). Therefore, by
Theorem 2.3, H is a regular ternary semihypergroup.

Theorem 2.6. A commutative ternary semihypergroup H is regular if and only
if every hyperideal of H is semiprime.

Proof. Let H be a commutative regular ternary semihypergroup and I be any
hyperideal of H such that f(A,A,A) ⊆ I for any hyperideal A of H. From
Theorem 2.3, it follows that f(A,A,A) = A. Consequently, A ⊆ I and hence I is
a semiprime hyperideal of H.

Conversely, suppose that every hyperideal of a commutative ternary semihy-
pergroup H is semiprime. Let a ∈ H. Then f(a,H, a) is a hyperideal of H. Now
by hypothesis, f(a,H, a) is a semiprime hyperideal of H. If f(a,H, a) = H, then
we are done. Now suppose that f(a,H, a) 6= H. Then

f(〈a〉 , 〈a〉 , 〈a〉) = f(f(H,H, a) ∪ f(a,H,H) ∪ f(H, a,H) ∪
∪f(H,H, a,H,H) ∪ {a}, f(H,H, a) ∪ f(a,H,H) ∪
∪f(H, a,H) ∪ f(H,H, a,H,H) ∪ {a}, f(H,H, a) ∪
∪f(a,H,H) ∪ f(H, a,H) ∪ f(H,H, a,H,H) ∪ {a})

⊆ f(a,H, a)

that is, f(〈a〉 , 〈a〉 , 〈a〉) ⊆ f(a,H, a). This implies that 〈a〉 ⊆ f(a,H, a), since
f(a,H, a) is a semiprime hyperideal of H. Consequently, a ∈ f(a, x, a) for some
x ∈ H and hence H is a regular ternary semihypergroup.

Let N be the nuclear hyperideal of a ternary semihypergroup (H, f), that is
the intersection of all hyperideals in H, Nr the intersection of all right hyperideals
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in H, Nm the intersection of all lateral hyperideals of H, and Nl the intersection
of all left hyperideals of H.

Theorem 2.7. Let (H, f) be a ternary semihypergroup and let N = Nr = Nm =
Nl 6= ∅. Then H is regular if and only if N is regular ternary semihypergroup.

Proof. If H is regular, then clearly N is also regular as a hyperideal.

Conversely, suppose that N is a regular hyperideal of H, so that for any right
hyperideal R, lateral hyperideal M , and left hyperideal L of H,

N ∪ f(R,M,L) = R ∩M ∩ L.

Since f(N,N,N) is both a right and left hyperideal, then

f(R,M,L) ⊆ f(N,N,N) ⊆ N .

Whence f(R,M,L) = R ∩M ∩ L.

Corollary 2.8. Let (H, f) be a ternary semihypergroup and let N = Nr = Nm =
Nl 6= ∅. Then H is regular if and only if every hyperideal of H is regular.

Proof. If H is regular, then N is a regular hyperideal. Hence any hyperideal I
which necessary contains N is also a regular hyperideal.

Conversely, if every hyperideal of H is regular, then N is regular. Thus by the
previous Theorem 2.7, H is regular ternary semihypergroup.

Theorem 2.9. Let (H, f) be a ternary semihypergroup and I a hyperideal of H.
The following statements are equivalent:

(1) I is a regular hyperideal of H;

(2) For every a ∈ H, I ∪ f(〈a〉r , 〈a〉m , 〈a〉l) = I ∪ (〈a〉r ∩ 〈a〉m ∩ 〈a〉l);

(3) For every a ∈ H\I, either a ∈ f(a, a1, a, a2, a) or a ∈ f(a, b1, b2, a, b3, b4, a),
for some a1, a2, b1, b2, b3, b4 ∈ H.

Proof. (1)⇒ (2). Suppose that I is a regular hyperideal. Then for each a ∈ H,

I ∪ (〈a〉r ∩ 〈a〉m ∩ 〈a〉l) ⊆ 〈I ∪ 〈a〉r〉r , 〈I ∪ 〈a〉m〉m , 〈I ∪ 〈a〉l〉l.

Moreover, since each of the three sets on the right side contains I, then we have

I ∪ (〈a〉r ∩ 〈a〉m ∩ 〈a〉l) ⊆ 〈I ∪ 〈a〉r〉r ∩ 〈I ∪ 〈a〉m〉m ∩ 〈I ∪ 〈a〉l〉l
= I ∪ f(I ∪ 〈a〉r, I ∪ 〈a〉m, I ∪ 〈a〉l)
= I∪f(I,I∪〈a〉m, I∪〈a〉l)∪f(〈a〉r, I, I∪〈a〉l)∪f(〈a〉r,〈a〉m, I)∪f(〈a〉r, 〈a〉m,〈a〉l)
= I ∪ f(〈a〉r, 〈a〉m, 〈a〉l) ⊆ I ∪ (〈a〉r ∩ 〈a〉m ∩ 〈a〉l).
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(2)⇒ (3). We note that

〈I ∪ 〈a〉r〉r = 〈I ∪ 〈a〉r〉r ∩H ∩H = I ∪ f(〈I ∪ 〈a〉r〉r , H,H)

= I ∪ f(I,H,H) ∪ f(〈a〉r , H,H) ∪ f(I,H,H,H,H) ∪
∪f(〈a〉r , H,H,H,H)

= I ∪ f(I,H,H) ∪ f(a,H,H,H) ∪ f(a,H,H,H,H) ∪
∪f(I,H,H,H,H) ∪
∪f(a,H,H,H,H) ∪ f(a,H,H,H,H,H,H)

= I ∪ f(I,H,H) ∪ f(a,H,H) ∪ f(a,H,H,H,H)

= 〈I ∪ f(a,H,H)〉r = I ∪ f(a,H,H).

In the same manner, we obtain

〈I ∪ 〈a〉m〉m = 〈I ∪ f(H, a,H)〉m = I ∪ f(H, a,H) ∪ f(H,H, a,H,H),

〈I ∪ 〈a〉l〉l = 〈I ∪ f(H,H, a)〉l = I ∪ f(H,H, a).

Then

〈I ∪ f(a,H,H)〉r ∩ 〈I ∪ f(H, a,H)〉m ∩ 〈I ∪ f(H,H, a)〉l
= I ∪ f(〈I ∪ f(a,H,H)〉m , 〈I ∪ f(H, a,H)〉m , 〈I ∪ f(H,H, a)〉l)
= I ∪ f(a,H,H,H, a,H,H,H, a) ∪ f(a,H,H,H,H, a,H,H,H,H, a)
= I ∪ f(a,H, a,H, a) ∪ f(a,H,H, a,H,H, a).

The result now follows.
(3) ⇒ (1). Let R be an arbitrary right hyperideal, M an arbitrary lateral

hyperideal, L an arbitrary left hyperideal of H all containing I. Let us assume
that I satis�es the condition (3). It is clear that,

I ∪ f(R,M,L) ⊆ R ∩M ∩ L.

Let a ∈ R ∩ M ∩ L. By (3), then a ∈ I or a ∈ f(f(a, a1, a, a2, a) or a ∈
f(a, b1, b2, a, b3, b4, a) for some a1, a2, b1, b2, b3, b4 ∈ H. We note also that in the
second and third cases we have:

a ∈ f(a, a1, a, a1, a, a2, a, a2, a) = f(f(a, a1, a2), f(a1, a, a2), f(a, a2, a)),

a ∈ f(a, b1, b2, a, b1, b2, a, b3, b4, a, b3, b4, a) =
= f(f(a, b1, b2), f(a, b1, b2), a, f(b3, b4, a), f(b3, b4, a)).

Hence in the last two cases we have

a ∈ f(f(a, x2, x3), f(y1, a, y3), f(z1, z2, a)),

for some x2, x3, y1, y2, z1, z2 ∈ H. Whence, in any case we have:

a ∈ I ∪ f(R,M,L)
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and therefore I ∪ f(R,M,L) = R ∩M ∩ L.

Theorem 2.10. Let (H, f) be a ternary semihypergroup and I a regular hyperideal
of a H. Then, for any right hyperideal R, lateral hyperideal M , and left hyperideal
L of H, if f(R,M,L) ⊆ I, then R ∩M ∩ L ⊆ I.

Proof. Suppose f(R,M,L) ⊆ I and I is a regular hyperideal. Then

R ∩M ∩ L ⊆ 〈I ∪R〉r ∩ 〈I ∪M〉m ∩ 〈I ∪ L〉l
I ∪ f(〈I ∪R〉r , 〈I ∪M〉m , 〈I ∪ L〉l) = I ∪ f(I, 〈I ∪M〉m , 〈I ∪ L〉l)
= f(R, I, 〈I ∪ L〉l) ∪ f(R,M, I) ∪ f(R,M,L) ⊆ I.

Corollary 2.11. A regular and strongly irreducible hyperideal is always prime.

Corollary 2.12. Every regular hyperideal is prime.

De�nition 2.13. Let (H, f) be a ternary semihypergroup and Q a nonempty
subset of H. Then Q is called a quasi-hyperideal of H if and only if

f(Q,H,H) ∩ f(H,Q,H) ∩ f(H,H,Q) ⊆ Q and
f(Q,H,H) ∩ f(H,H,Q,H,H) ∩ f(H,H,Q) ⊆ Q.

Theorem 2.14. Let (H, f) be a regular ternary semihypergroup and Q be a
nonempty subset of H. Then Q is a quasi-hyperideal if and only if

f(Q,H,Q,H,Q) ∩ f(Q,H,H,Q,H,H,Q) ⊆ Q.

Proof. Let H be a regular ternary semihypergroup and Q be a quasi-hyperideal of
H. Then

f(Q,H,Q,H,Q) ∩ f(Q,H,H,Q,H,H,Q) ⊆ f(H,H,Q), f(Q,H,H), and
f(H,Q,H) ∪ f(H,H,Q,H,H)

and hence

f(Q,H,Q,H,Q) ∩ f(Q,H,H,Q,H,H,Q) ⊆
⊆ f(H,H,Q) ∩ (f(H,Q,H) ∪ f(H,H,Q,H,H)) ∩ f(Q,H,H) ⊆ Q.

Conversely, suppose that H is regular and

f(Q,H,Q,H,Q) ∩ f(Q,H,H,Q,H,H,Q) ⊆ Q.

Then

f(Q,H,H) ∩ (f(H,Q,H) ∪ f(H,H,Q,H,H)) ∩ f(H,H,Q)

= f(f(Q,H,H), f(H,Q,H) ∪ f(H,H,Q,H,H), f(H,H,Q))

= f(f(Q,H,H), f(H,Q,H), f(H,H,Q)) ∪ f(f(Q,H,H), f(H,H,Q,H,H),

f(H,H,Q)) ⊆ f(Q,H,Q,H,Q) ∪ f(Q,H,H,Q,H,H,Q) ⊆ Q.
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Theorem 2.15. Let (H, f) be a regular ternary semihypergroup and Q1, Q2, Q3

be three quasi-hyperideals of H. Then f(Q1, Q2, Q3) is a quasi-hyperideal.

Proof.

f(f(Q1, Q2, Q3), H, f(Q1, Q2, Q3), H, f(Q1, Q2, Q3)) ∪ f(f(Q1, Q2, Q3), H,H,

f(Q1, Q2, Q3), H,H, f(Q1, Q2, Q3))

= f(f(Q1, f(Q2, Q3, H), Q1, f(Q2, Q3, H), Q1), Q2, Q3) ∪
∪f(f(Q1, f(Q2, Q3, H), H,Q1, f(Q2, Q3, H), H,Q1), Q2, Q3) ⊆
⊆ f(Q1, Q2, Q3).

Corollary 2.16. The family of all quasi-hyperideals of a regular ternary semihy-
pergroup is a ternary semihypergroup.

Theorem 2.17. Let (H, f) be a ternary semihypergroup. If for every quasi-
hyperideal Q of H, f(Q,Q,Q) = Q, then H is a regular ternary semihypergroup.

Proof. Let R be a right hyperideal of H, L be a left hyperideal of H and M be a
lateral hyperideal of H. By Theorem 2.2 [9], R ∩M ∩ L is a quasi-hyperideal of
H. Then by hypothesis, we have

R ∩M ∩ L = f(R ∩M ∩ L,R ∩M ∩ L,R ∩M ∩ L) ⊆ f(R,M,L).

On the other hand, f(R,M,L) ⊆ R ∩M ∩ L. Therefore we have f(R,M,L) =
R ∩M ∩ L. By Theorem 2.3(2), H is a regular ternary semihypergroup.

Theorem 2.18. Let (H, f) be a ternary semihypergroup. The following statements
are equivalent:

(1) H is regular;

(2) For every bi-hyperideal B of H, f(B,H,B,H,B) = B;

(3) For every quasi-hyperideal Q of H, f(Q,H,Q,H,Q) = Q.

Proof. (1) ⇒ (2). Let us assume that H is regular and B be a bi-hyperideal
of H. Let b ∈ B. From regularity of H, there exists x ∈ H, such that b ∈
f(b, x, b). Thus, B ⊆ f(B,H,B). We have b ∈ f(b, x, b) ⊆ f(b, x, f(b, x, b)) ⊆
f(B,H, f(B,H,B)) = f(B,H,B,H,B). Therefore, B ⊆ f(B,H,B,H,B). On
the other hand, since B is a bi-hyperideal of H, we have f(B,H,B,H,B) ⊆ B.
Thus, f(B,H,B,H,B) = B.

(2) ⇒ (3). It is clear by Lemma 4.2 [9] since every quasi-hyperideal is a bi-
hyperideal.

(3) ⇒ (1). Let R be a right hyperideal of H, L be a left hyperideal of H and
M be a lateral hyperideal of H. By Theorem 2.2 [9], Q = R ∩M ∩ L is a quasi-
hyperideal of H. By (3) we have f(Q,H,Q,H,Q) = Q. Thus R ∩M ∩ L = Q =
f(Q,H,Q,H,Q) =⊆ f(R,H,M,H,L) ⊆ f(R,M,L). But f(R,M,L) ⊆ R∩M∩L.
Therefore, since f(R,M,L) = R∩M∩L, by Theorem 2.3(2), H is a regular ternary
semihypergroup.
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Corollary 2.19. Let (H, f) be a ternary semihypergroup. The following state-
ments are equivalent:

(1) H is regular;

(2) For every bi-hyperideal B of H, f(B,H,B) = B;

(3) For every quasi-hyperideal Q of H, f(Q,H,Q) = Q.

Theorem 2.20. Let (H, f) be a ternary semihypergroup. If for every bi-hyperideal
B of H, f(B,B,B) = B, then H is a regular ternary semihypergroup.

Proof. The proof is a corollary of Theorem 2.17.

Theorem 2.21. Let (H, f) be a regular ternary semihypergroup. Then a ternary
subsemihypergroup B of H is bi-hyperideal if and only if B is a quasi-hyperideal
of H.

Proof. Let H be a regular ternary semihypergroup and B a bi-hyperideal of H.
By Theorem 2.3, we have f(R ∩M ∩ L) = f(R,M,L) for every right hyperideal
R, lateral hyperideal M and left hyperideal L. Thus

f(B,H,H) ∩ (f(H,B,H) ∪ f(H,H,B,H,H)) ∩ f(H,H,B)

= f(f(B,H,H), f((f(H,B,H) ∪ f(H,H,B,H,H)), f(H,H,B,H,H))

= f(B, f(H,H,H), B, f(H,H,H), B) ∪ f(B, f(H,H,H), H,B, f(H,H,H), H,B)

⊆ f(B,H,B,H,B) ∪ f(B,H,H,B,H,H,B)

⊆ B ∪ f(B,H,B) = B ∪B = B.

Therefore, B is a quasi-hyperideal of H.
Conversely, let B be a quasi-hyperideal of H. Then, by Lemma 4.2 [9], B is a

bi-hyperideal of H.

Corollary 2.22. Let (H, f) be a regular ternary semihypergroup. A ternary sub-
semihypergroup B of H is bi-hyperideal of H if and only if B is the intersection
of a right hyperideal, a lateral hyperideal and a left hyperideal of H.

Theorem 2.23. Let (H, f) be a ternary semihypergroup. The following statements
are equivalent:

(1) H is regular;

(2) M∩B = f(B,M,B) for every lateral hyperidealM and for every bi-hyperideal
B of H;

(3) M∩Q = f(Q,M,Q) for every lateral hyperidealM and for every bi-hyperideal
Q of H.
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Proof. (1) ⇒ (2). Let M be a lateral hyperideal of H and B a bi-hyperideal
of H. We have f(B,M,B) ⊆ f(H,M,H) ⊆ M . By Corollary 2.19, we have
f(B,M,B) ⊆ f(B,H,B) = B. Therefore, f(B,M,B) ⊆M ∩B. Let a ∈M ∩B.
Since H is regular, there exists h ∈ H such that a ∈ f(a, h, a). We have a ∈
f(a, h, a) ⊆ f(f(a, h, a), h, a) = f(a, f(h, a, h), a) ⊆ f(B,M,B). It follows that
M ∩B ⊆ f(B,M,B). Therefore f(B,M,B) =M ∩B.

(2)⇒ (3). It is clear since every quasi-hyperideal is a bi-hyperideal.
(3) ⇒ (1). Let Q be a quasi-hyperideal of H. By (3) it follows that Q =

H ∩ Q = f(Q,H,Q). By Corollary 2.19, it follows that H is a regular ternary
semihypergroup.

In the sequel, the following results hold. The proof of them is straightforward,
so we omit it.

Theorem 2.24. Let (H, f) be a ternary semihypergroup. The following statements
are equivalent:

(1) H is regular;

(2) B ∩ L ⊆ f(B,H,L) for every bi-hyperideal B of H and for every left hyper-
ideal L;

(3) Q ∩ L ⊆ f(Q,H,L) for every quasi-hyperideal Q of H and for every left
hyperideal L;

(4) B ∩ R ⊆ f(R,H,B) for every bi-hyperideal B of H and for every right
hyperideal R;

(5) Q ∩ R ⊆ f(R,H,Q) for every quasi-hyperideal Q of H and for every right
hyperideal R.

Theorem 2.25. Let (H, f) be a ternary semihypergroup. The following statements
are equivalent:

(1) H is regular;

(2) B1 ∩B2 ⊆ f(B1, H,B2)∩ f(B2, H,B1) for every bi-hyperideals B1, B2 of H;

(3) B ∩ Q ⊆ f(B,H,Q) ∩ f(Q,H,B) for every bi-hyperideal B and for every
quasi-hyperideal Q of H;

(4) B∩L ⊆ f(B,H,L)∩f(L,H,B) for every bi-hyperideal B of H and for every
left hyperideal L;

(5) Q ∩ L ⊆ f(Q,H,L) ∩ f(L,H,Q) for every quasi-hyperideal Q of H and for
every left hyperideal L;

(6) R ∩ L ⊆ f(R,H,L) ∩ f(L,H,R) for every right hyperideal R of H and for
every left hyperideal L;
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(7) B ∩ R ⊆ f(R,H,B) ∩ f(B,H,R) for every bi-hyperideal B of H and for
every right hyperideal R;

(8) Q ∩R ⊆ f(R,H,Q) ∩ f(Q,H,R) for every quasi-hyperideal Q of H and for
every right hyperideal R.

3. Completely regular and intra-regular

ternary semihypergroups

De�nition 3.1. Let (H, f) be a ternary semihypergroup. An element a ∈ H is
said to be left (resp. right) regular if there exists an element x ∈ H such that
a ∈ f(x, a, a) (resp. a ∈ f(a, a, x)). An element a ∈ H is said to be completely
regular if it is left regular, right regular and regular.

If all the elements of a ternary semihypergroup H are left (resp. right, com-
pletely) regular, then H is called left (resp. right, completely) regular.

The ternary semihypergroup of the Example 1.6 is a completely regular ternary
semihypergroup.

Theorem 3.2. A ternary semihypergroup (H, f) is left (resp. right) regular if and
only if every left (resp. right) hyperideal of H is completely semiprime.

Proof. LetH be a left regular ternary semihypergroup and L be any left hyperideal
ofH. Suppose that f(a, a, a) ⊆ L for a ∈ H. SinceH is left regular, there exists an
element x ∈ H such that a ∈ f(x, a, a) ⊆ f(x, f(x, a, a), a) ⊆ f(x, x, f(a, a, a)) ⊆
f(H,H,L) ⊆ L. Thus L is completely semiprime.

Conversely, suppose that every left hyperideal of H is completely semiprime.
Now for any a ∈ H, f(H, a, a) is a left hyperideal of H. Then by hypothesis,
f(H, a, a) is a completely semiprime hyperideal of H. Now f(a, a, a) ⊆ f(H, a, a).
Since f(H, a, a) is completely semiprime, it follows that a ∈ f(H, a, a). So there
exists an element x ∈ H such that a ∈ f(x, a, a). Consequently, a is left regular.
Since a is arbitrary, it follows that H is left regular.

Similarly, it can be proved the theorem for the right regularity.

Proposition 3.3. A ternary semihypergroup (H, f) is completely regular if and
only if a ∈ f(a, a,H, a, a) for all a ∈ H.

Proof. Suppose that H is a completely regular ternary semihypergroup. Let a ∈
H. Then, by the de�nition, we have that a ∈ f(a, a,H) and a ∈ f(H, a, a), that is
a ∈ f(a, a,H) ∩ f(H, a, a). Since H is completely regular, there exists an element
x ∈ H such that a ∈ f(a, x, a). So we have

a ∈ f(a, x, a) ⊆ f(f(a, a,H), x, f(H, a, a)) ⊆
⊆ f(a, a, f(H,x,H), a, a) ⊆ f(a, a,H, a, a).
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Conversely, suppose that for any a ∈ H, a ∈ f(a, a,H, a, a). Then
1. a ∈ f(a, a,H, a, a) ⊆ f(a, f(a,H, a), a) ⊆ f(a,H, a), that is H is regular.
2. a ∈ f(a, a,H, a, a) ⊆ f(f(a, a,H), a, a) ⊆ f(H, a, a), that isH is left regular.
3. a ∈ f(a, a,H, a, a) ⊆ f(a, a, f(H, a, a)) ⊆ f(a, a,H), that is H is right

regular. Therefore H is completely regular.

Theorem 3.4. A ternary semihypergroup (H, f) is completely regular if and only
if every bi-hyperideal of H is completely semiprime.

Proof. Suppose that H is completely regular ternary semihypergroup. Let B be
any bi-hyperideal of H. Let f(b, b, b) ⊆ B for b ∈ B. Since H is completely
regular, from Proposition 3.3, it follows that b ∈ f(b, b,H, b, b). This implies that
there exists x ∈ H such that

b ∈ f(b, b, x, b, b) ⊆ f(b, f(b, b, x, b, b), x, f(b, b, x, b, b), b) =
= f(b, b, b, f(x, b, b, x), b, f(b, b, x, b, b), x, b, b, b)

= f(b, b, b, f(x, b, b, x), b, b, b, f(x, b, b, x), b, b, b) ⊆ f(B,H,B,H,B) ⊆ B.

This shows that B is completely semiprime.
Conversely, suppose that every bi-hyperideal of H is completely semiprime.

Since every left and right hyperideal of a ternary semihypergroup H is a bi-
hyperideal of H, it follows that every left and right hyperideal of H is completely
semiprime. Consequently, we have from Theorem 3.2 that H is both left and right
regular.

Let a ∈ H. We consider f(a,H, a). Let x, y, z ∈ f(a,H, a) and h1, h2 ∈ H.
Then for some h0, h

′

0, h
′′

0 ∈ H we have:

f(x, h1, y, h2, z) ⊆ f(f(a, h0, a), h1, f(a, h
′

0, a), h2, f(a, h
′′

0 , a))

⊆ f(a, f(h0, a, h1, a, h
′

0, a, h2, a, h
′′

0 ), a)

⊆ f(a,H, a).

This implies that f(f(a,H, a), H, f(a,H, a), H, f(a,H, a)) ⊆ f(a,H, a). That is,
f(a,H, a) is a bi-hyperideal of H. Since f(a, a, a) ⊆ f(a,H, a) and f(a,H, a) is
completely semiprime, it follows that a ∈ f(a,H, a), for all a ∈ H. That is H is
regular. This completes the proof.

Theorem 3.5. If (H, f) is a completely regular ternary semihypergroup, then
every bi-hyperideal of H is idempotent.

Proof. Let H be a completely regular ternary semihypergroup and B be a bi-
hyperideal of H. Since H is a completely regular ternary semihypergroup, it is
also a regular ternary semihypergroup. Let b ∈ B. Then there exists x ∈ H such
that b ∈ f(b, x, b). This implies that b ∈ f(B,H,B) and hence B ⊆ f(B,H,B).
Also f(B,H,B) ⊆ f(B,H,B,H,B) ⊆ B. Thus we �nd that B = f(B,H,B).
Again, we have from Proposition 3.3 that b ∈ f(b, b,H, b, b) ⊆ f(B,B,H,B,B).
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This implies that B ⊆ f(B,B,H,B,B) = f(B, f(B,H,B), B) = f(B,B,B) ⊆ B.
Consequently, f(B,B,B) = B.

De�nition 3.6. A ternary semihypergroup (H, f) is called intra-regular if for
each element a ∈ H, there exist elements x, y ∈ H such that a ∈ f(x, a, a, a, y).

Theorem 3.7. [9, Theorem 6.4] Let (H, f) be a ternary semihypergroup. Then
the following statements are equivalent:

(1) H is intra-regular;

(2) For every left hyperideal L, lateral hyperideal M and right hyperideal R of
H, L ∩M ∩R ⊆ f(L,M,R).

Proposition 3.8. Let (H, f) be an intra-regular ternary semihypergroup. Then a
non-empty subset I of H is a hyperideal of H if and only if I is a lateral hyperideal
of H.

Proof. Clearly, if I is a hyperideal of H, then I is a lateral hyperideal of H.
Conversely, let I be a lateral hyperideal of an intra-regular ternary semihy-

pergroup. Let a ∈ I and s, t ∈ H. Then a ∈ H and hence there exist elements
x, y ∈ H such that a ∈ f(x, a, a, a, y). Now f(s, t, a) ⊆ f(s, t, f(x, a, a, a, y)) ⊆
f(H, I,H) ⊆ I and f(a, s, t) ⊆ f(f(x, a, a, a, y), s, t) ⊆ f(H, I,H) ⊆ I. This im-
plies that I is both a left hyperideal and a right hyperideal of H. Consequently, I
is an hyperideal of H.

Lemma 3.9. Every lateral hyperideal of an intra-regular ternary semihypergroup
(H, f) is an intra-regular ternary semihypergroup.

Proof. Let L be a lateral hyperideal of an intra-regular ternary semihypergroup
H. Then for each a ∈ L, there exist x, y ∈ H such that a ∈ f(x, a, a, a, y). Now
a ∈ f(x, a, a, a, y) ⊆ f(x, f(x, a, a, a, y), f(x, a, a, a, y), f(x, a, a, a, y), y)
⊆ f(f(x, x, a, a, a, y, y), f(a, a, a), f(y, x, a, a, a, y, y)) ⊆ f(L, f(a, a, a), L). This
implies that there exist u, v ∈ L such that a ∈ f(u, f(a, a, a), v). Consequently, L
is an intra-regular ternary semihypergroup.

From the Proposition 3.8 we have the following corollary:

Corollary 3.10. Every hyperideal of an intra-regular ternary semihypergroup H
is an intra-regular ternary semihypergroup.

Theorem 3.11. Let I be a hyperideal of an intra-regular ternary semihypergroup
H and J be a hyperideal of I. Then J is a hyperideal of the entire ternary semi-
hypergroup H.

Proof. It is su�cient to show that J is a lateral hyperideal of H. Let a ∈ J ⊆ I
and s, t ∈ H. Then f(s, a, t) ⊆ I. We have to show that f(s, a, t) ⊆ J . From
Corollary 3.10, it follows that I is an intra-regular ternary semihypergroup. Thus
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there exist u, v ∈ I such that f(s, a, t) ⊆ f(u, f(s, a, t), f(s, a, t), f(s, a, t), v) ⊆
f(f(u, s, a, t, s), a, f(t, s, a, t, v)) ⊆ f(I, J, I) ⊆ J . Consequently, J is a lateral
hyperideal of H.

Theorem 3.12. A ternary semihypergroup (H, f) is intra-regular if and only if
every hyperideal of H is completely semiprime.

Proof. Let H be an intra-regular ternary semihypergroup and I be a hyperideal
of H. Let f(a, a, a) ⊆ I for a ∈ H. Since H is intra-regular, there exist x, y ∈ H
such that a ∈ f(x, f(a, a, a), y) ⊆ I. Consequently, I is completely semiprime.

Conversely, suppose that every hyperideal of H is completely semiprime. Let
a ∈ H. Then f(a, a, a) ⊆ 〈f(a, a, a)〉. This implies that a ∈ 〈f(a, a, a)〉, since
〈f(a, a, a)〉 is completely semiprime.

Now 〈f(a, a, a)〉 = f(H,H, f(a, a, a))∪f(f(a, a, a), H,H)∪f(H, f(a, a, a), H)∪
f(H,H, f(a, a, a), H,H) ∪ f(a, a, a). So we have the following cases:

If a ∈ f(H,H, f(a, a, a)), then f(a, a, a) ⊆ f(H,H, f(a, a, a), a, a). Hence a ∈
f(H,H,H,H, f(a, a, a), a, a) ⊆ f(H,H,H, a, a, a,H) ⊆ f(H, f(a, a, a), H).

If a ∈ f(f(a, a, a), H,H), then f(a, a, a) ⊆ f(a, a, f(a, a, a), H,H). Hence a ∈
f(a, a, f(a, a, a), H,H,H,H) ⊆ f(H, a, a, a,H,H,H) ⊆ f(H, f(a, a, a), H).

If a ∈ f(H, f(a, a, a), H), then we are done.
If a ∈ f(H,H, f(a, a, a), H,H), then f(a, a, a) ⊆ f(a,H,H, f(a, a, a), H,H, a).
Hence

a ∈ f(H,H, a,H,H, f(a, a, a), H,H, a,H,H)

⊆ f(H,H,H, f(a, a, a), H,H,H) ⊆ f(H, f(a, a, a), H).

If a ∈ f(a, a, a), then

a ∈ f(a, a, a) ⊆ f(f(a, a, a), f(a, a, a), f(a, a, a)) ⊆ f(H, f(a, a, a), H).

So we �nd that in any case, H is intra-regular.
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On state equality algebras

Masoomeh Zarean, Rajab Ali Borzooei and Omid Zahiri

Abstract. We show that every state-morphism operator on an equality algebra is an internal

state operator on it and prove that the converse is correct for the linearly ordered equality algebras

under a special condition. Then we show that there is a one-to-one correspondening between

congruence relations on a state-morphism (linearly ordered state) equality algebra and state-

morphism (state) deductive systems on it. Moreover, we de�ne the notion of homomorphism on

equality algebras and we investigate the relation between state operators and state-morphism

operators with equality-homomorphism. Finally, we characterize the simple and semisimple

classes of state-morphism equality algebras.

1. Introduction

Equality algebras were introduced in [8] by Jenei, that the motivation cames from
EQ-algebra [13]. State MV-algebras were introduced by Flaminio and Montagna
as MV-algebras with internal states [6]. Di Nola and Dvure£enskij introduced
the notion of state-morphism MV-algebra which is a stronger variation of a state
MV-algebra [4]. State BCK-algebras and state-morphism BCK-algebras have been
de�ned and studied by Borzooei, Dvure£enskij and Zahiri [2]. Recently, the state
equality algebras and state-morphism equality algebras have been introduced in
[3]. Now we prove that every state-morphism operator on an equality algebra is
an internal state operator on it, and we prove the converse is true for a linearly
ordered equality algebra under a special condition. Also, we remove the condition
of [3, Th. 6.8] and [3, prop. 5.7(3)] and state them in general case. We introduce
a deductive system on state (state-morphism) equality algebra and we investigate
some related results. Then we show that for any linearly ordered sate (state-
morphism) equality algebra (A, σ), there is a one-to-one correspondence between
Con(A, σ) and IDS(Aσ) (SDS(Aσ)). We show that every internal state operator
on an equality algebra is a state-morphism if it is equality-homomorphism. Finally,
we study some classes of state-morphism equality algebras such as simple and
semisimple state-morphism equality algebras.

2010 Mathematics Subject Classi�cation: 06F35, 08A72, 03G25, 06F05
Keywords: Equality algebra, state operator, state-morphism operator, state deductive system,
equality-homomorphism.
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2. Preliminaries

In this section, we recall basic de�nitions and results relevant to equality algebra
which will be used in the next sections.

De�nition 2.1. (cf. [8]) An equality algebra is an algebra (A,∧,∼, 1) of type
(2, 2, 0) such that the following axioms are ful�lled for all a, b, c ∈ A:

(E1) (A;∧, 1) is a meet-semilattice with top element 1,
(E2) a ∼ b = b ∼ a,
(E3) a ∼ a = 1,
(E4) a ∼ 1 = a,
(E5) a 6 b 6 c implies a ∼ c 6 b ∼ c and a ∼ c 6 a ∼ b,
(E6) a ∼ b 6 (a ∧ c) ∼ (b ∧ c),
(E7) a ∼ b 6 (a ∼ c) ∼ (b ∼ c),

where a 6 b i� a ∧ b = b.

Let (A,∧,∼, 1) be an equality algebra. A subset D ⊆ A is called a deductive
system of A if for all a, b ∈ A, (DS1): 1 ∈ D, (DS2): a ∈ D and a 6 b implies
b ∈ D, (DS3): a, a ∼ b ∈ D implies b ∈ D.

A deductive system D of an equality algebra A is proper if D 6= A. The
set of all deductive systems of A is denoted by DS(A). An equality algebra A is
called simple if DS(A) = {{1}, A}. A non-empty subset S of an equality algebra
(A,∧,∼, 1) which is closed under ∼ is called a subalgebra of A and the set of all
subalgebras of A is denoted by Sub(A). We know that ∼ is higher priority than
the operation ∧ (it means that �rst we calculate the operation ∧ then apply the
operation ∼). For simplify, some times we write a ∼ (a ∧ b) = a ∼ a ∧ b. The
operations → (called implication) and ↔ (called equivalence) on equality algebra
A are de�ned as follows:

a→ b = a ∼ (a ∧ b) , a↔ b = (a→ b) ∧ (b→ a).

If there exists zero element 0 ∈ A such that 0 6 a (i.e, 0 → a = 1), for all a ∈ A,
then A is called a bounded equality algebra and it is denoted by (A,∧,∼, 0, 1).

Proposition 2.2. (cf. [3, 8]) Let (A,∧,∼, 1) be an equality algebra. Then the
following hold for all a, b, c ∈ A:

(E8) a ∼ b 6 a→ b 6 a↔ b,
(E9) a 6 (a ∼ b) ∼ b,
(E10) a ∼ b = 1 i� a = b,
(E11) a→ b = 1 i� a 6 b,
(E12) a→ b = 1 and b→ a = 1 implies a = b,
(E13) a 6 b→ a,
(E14) a 6 (a→ b)→ b,
(E15) a→ b 6 (b→ c)→ (a→ c),
(E16) a 6 b→ c i� b 6 a→ c,
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(E17) a→ (b→ c) = b→ (a→ c),
(E18) x 6 y implies y → z 6 x→ z,
(E19) x 6 y implies z → x 6 z → y,
(E20) b 6 a ∼ a ∧ b , a ∼ b 6 a ∼ a ∧ b,
(E21) a 6 (a ∼ a ∧ b) ∼ b , b 6 (a ∼ a ∧ b) ∼ b,
(E22) ((a→ b)→ b)→ b = a→ b.

Proposition 2.3. (cf. [3, 5]) Let (A,∧,∼, 1) be an equality algebra and D ∈
DS(A). Then the following hold for all a, b ∈ A:

(i) if a, a→ b ∈ D, then b ∈ D,
(ii) if a, b ∈ D, then a ∼ b ∈ D and a ∧ b ∈ D,
(iii) if A is linearly ordered, then a ∼ b ∈ D i� a↔ b ∈ D i� b→ a, a→ b ∈ D.

Proposition 2.4. (cf. [3]) Every deductive system of an equality algebra A is a
subalgebra of A.

Proposition 2.5. (cf. [3, 9]) Let A be an equality algebra and Con(A) be the set
of all congruence relations on A. Then the following hold:

(i) For any D ∈ DS(A), the relation θD on A which is de�ned by
(a, b) ∈ θD ⇔ a ∼ b ∈ D, is a congruence relation on A.

(ii) If θ ∈ Con(A), then [1]θ = {a ∈ A : (a, 1) ∈ θ} is a deductive system of A.

For D ∈ DS(A) and θD ∈ Con(A), we denote the set of all equivalence classes
of θD by A/D = {a/D : a ∈ A}.

Theorem 2.6. (cf. [3, 9]) Let (A,∧,∼, 1) be an equality algebra. Then there is a
one-to-one correspondence between DS(A) and Con(A).

Theorem 2.7. (cf. [3, 5]) Let (A,∧,∼, 1) be an equality algebra and D ∈ DS(A).
Then (A/D,∧D,∼D, 1D) is an equality algebra with the following operations:

a/D ∧D b/D = (a ∧ b)/D , a/D ∼D b/D = (a ∼ b)/D.

In the following we recall de�nitions of internal state and state-morphism op-
erators and their properties. For more details, see [3].

De�nition 2.8. (cf. [3]) Let (A,∧,∼, 1) be an equality algebra. Then (A, σ) is
called an internal state equality algebra if σ : A→ A is a unary operator on A such
that for all a, b ∈ A the following conditions are satis�ed:

(S1) σ(a) 6 σ(b), whenever a 6 b,
(S2) σ(a ∼ a ∧ b) = σ((a ∼ a ∧ b) ∼ b) ∼ σ(b),
(S3) σ(σ(a) ∼ σ(b)) = σ(a) ∼ σ(b),
(S4) σ(σ(a) ∧ σ(b)) = σ(a) ∧ σ(b).

In the following, we replace internal state equality algebra by state equality
algebra.

For any state equality algebra (A, σ), theKer(σ) is de�ned as {a∈A|σ(a) = 1}.
The state σ is called faithful, if Ker(σ) = {1}. The set of all internal states on an
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equality algebra A denote by S(A). Clearly S(A) 6= ∅. In fact, the identity map
1A is a faithful state on A. If A is linearly ordered, then IdA ∈ S(A).

Proposition 2.9. (cf. [3]) Let (A,∧,∼, 1) be an state equality algebra. Then for
all a, b ∈ A the following hold:

(1) σ(1) = 1,
(2) σ(σ(a)) = σ(a),
(3) σ(A) = {a ∈ A : a = σ(a)},
(4) σ(A) is a subalgebra of A,
(5) Ker(σ) ∈ DS(A),
(6) Ker(σ) is a subalgebra of A,
(7) Ker(σ) ∩ σ(A) = {1}.

De�nition 2.10. (cf. [3])Let (A,∧,∼, 1) be an equality algebra. Then (A, σ) is
called a state-morphism equality algebra if σ : A → A is a unary operator on A
such that for all a, b ∈ A the following conditions are satis�ed:

(SM1) σ(a ∼ b) = σ(a) ∼ σ(b),
(SM2) σ(a ∧ b) = σ(a) ∧ σ(b),
(SM3) σ(σ(a)) = σ(a).

The set of all state-morphisms on an equality algebra A is denoted by SM(A).
Clearly SM(A) 6= ∅. Indeed, if A is an equality algebra, then the constant map
1A(a) = 1 and the identity map IdA(a) = a are state-morphism operators on A.

Proposition 2.11. (cf. [3]) Let (A, σ) be a state-morphism equality algebra. Then
the following hold:

(1) Ker(σ) ∈ DS(A),
(2) Ker(σ) = {σ(a) ∼ a : a ∈ A},
(3) If Ker(σ) = {1}, then σ = IdA,
(4) If A is a simple equality algebra, then SM(A) = {1A, IdA}.

3. (State) deductive systems in equality algebras

In this section, by considering the notion of deductive system, we de�ne the concept
of state deductive system on state (state morphism) equality algebras then prove
that the quotient algebra constructed with a state deductive system of a state-
morphism (and linearly ordered state) equality algebra (A, σ) is a state-morphism
(and state) equality algebra. Finally, we show that a deductive system on a state-
morphism (and linearly ordered state) equality algebra de�ne a congruence relation
on (A, σ) and there is a one-to-one correspondence between SDS(Aσ) (IDS(Aσ))
and Con(A, σ).

Theorem 3.1. Let X be a subset of an equality algebra A.
(i) The deductive system generated by X which is denoted by 〈X〉 is

〈X〉={a ∈ A | ∃n ∈ N and x1, . . . , xn ∈ X st. x1 → (x2 → ...(xn → a)...) = 1}
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(ii) If D is a deductive system of A and S ⊆ A, then

〈D∪S〉={a∈A | ∃n ∈ N and s1, . . . , sn ∈ S st. s1 → (s2 → (...(sn → a)...)) ∈ D}

Proof. It follows from [5, Prop. 4.3] and [11, Prop. 2.2.7].

For each x belonging to an equality algebra A, the deductive system generated
by {x} is called principal deductive system. Clearly,

〈x〉={a∈A |xn → a = 1, for some n ∈ N},

where x0 → b = b, xn → b = x→ (xn−1 → b).

De�nition 3.2. A proper deductive system D of an equality algebra A is called
• prime if a ∼ a ∧ b ∈ D or b ∼ b ∧ a ∈ D, for all a, b ∈ A,
• maximal if there is not any proper deductive system strictly containing D.

An equality algebra A is called semisimple if Rad(A) =
⋂

D∈Max(A)

D = {1}. The

set of all prime (maximal) deductive systems of an equality algebra A is denoted
by Pr(A)(Max(A)).

Proposition 3.3. Any proper deductive system of a bounded equality algebra A
is contained in a maximal deductive system of A.

Proof. It is an immediate consequence of Zorn,s Lemma.

Example 3.4. (i). Let A = {0, a, b, 1} be a poset with 0 < a, b < 1. Then
(A,∧,∼, 1) is an equality algebra with the operation ∼ on A, given as follows:

∼ 0 a b 1
0 1 b a 0
a b 1 0 a
b a 0 1 b
1 0 a b 1

Then DS(A) = {{1}, {a, 1}, {b, 1}, A}, Pr(A) = {{a, 1}, {b, 1}} and Max(A) =
{{a, 1}, {b, 1}}. Also by Theorem 3.1, 〈0〉 = A, 〈a〉 = {a, 1}, 〈b〉 = {b, 1} and
〈1〉 = {1}.

(ii). Let B = {0, b, 1} be a chain such that 0 < b < 1. Then (B,∧,∼, 1) is an
equality algebra with the operation ∼ on B, given as follows:

∼ 0 b 1
0 1 b 0
b b 1 b
1 0 b 1
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Then DS(B) = {{1}, B}, Pr(B) = {1} and Max(B) = {1}. By Theorem 3.1,
〈0〉 = 〈b〉 = B, 〈1〉 = {1}.

(iii). Let C = {0, a, b, 1} be a poset with 0 < a < b < 1. Then (C,∧,∼, 1) is
an equality algebra with the operation ∼ on C, given as follows:

∼ 0 a b 1
0 1 a 0 0
a a 1 a a
b 0 a 1 b
1 0 a b 1

Then DS(C) = {{1}, {b, 1}, A}, Pr(C) = {{1}, {b, 1}} and Max(C) = {{b, 1}}.
Also 〈0〉 = 〈a〉 = C, 〈b〉 = {b, 1}, 〈1〉 = {1}.

Proposition 3.5. Let D be a proper deductive system of an equality algebra A.
Then the following are equivalent:

(i) D is maximal.
(ii) For all x ∈ A \D, 〈D ∪ {x}〉 = A.
(iii) For all x ∈ A \D, xn → a ∈ D for any a ∈ A.

Proof. (i)⇒ (ii). If x ∈ A \D, then D ⊂ 〈D ∪ {x}〉. Since D is maximal, we get
〈D ∪ {x}〉 = A.

(ii)⇒ (i). Assume that F is a proper deductive system of A such that D ⊂ F .
Hence there is x ∈ F \D, and so by (ii), 〈D ∪ {x}〉 = A. Then F = A, that is a
contradiction.

(ii)⇔ (iii). It is clearly by Theorem 3.1(ii).

Proposition 3.6. Let A be an equality algebra. The subalgebra S of A is a
deductive system of A, if a ∈ S and b ∈ A\S implies a∧b ∈ A\S and a ∼ b ∈ A\S.

Proof. Let S be a subalgebra of A. Since 1 = a ∼ a ∈ S, thus (DS1) satis�ed.
If a ∈ S and a 6 b, then a ∧ b = a ∈ S. Assume that b /∈ S. Since a ∈ S and
b ∈ A \ S then a ∧ b ∈ A\S, which is a contradiction. Hence b ∈ S. Thus (DS2)
satis�ed. Now, let a, a ∼ b ∈ S, but b /∈ S. Hence by assumption a ∼ b ∈ A \ S,
which is a contradiction. Thus b ∈ S. So (DS3) is satis�ed.

Example 3.7. Let A be the equality algebra in Example 3.4(i). Then

Sub(A) = {{1}, {0, 1}, {a, 1}, {b, 1}, A}.

Clear that any member of Sub(A) is a deductive system, except {0, 1}. It follows
that Proposition 3.6 is not satis�ed for subalgebra {0, 1}.

Proposition 3.8. Let A be an equality algebra. Then the following hold.
(i) If A is linearly ordered and a ∈ A, then A(a) = {x ∈ A | a 6 x} is a

subalgebra of A.
(ii) If A is bounded, then A0 = {a ∈ A | a ∼ 0 = 0} is a proper deductive

system and subalgebra of A.
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Proof. (i). Let a ∈ A. Clearly, A(a) is closed under ∧. Put x, y ∈ A(a). Since A
is linearly ordered, we assume x 6 y. Now by (E13) and (E2) we get a 6 x 6 y →
x = y ∼ (y ∧ x) = y ∼ x = x ∼ y. Hence x ∼ y ∈ A(a). For y 6 x, with a similar
way, the result satis�es.

(ii). Since 1 ∼ 0 = 0, we get 1 ∈ A0. Let a ∈ A0 and a 6 b. Then by (E5),
b ∼ 0 6 a ∼ 0 = 0 and so b ∼ 0 = 0. Thus b ∈ A0. Now let a, a ∼ b ∈ A0. By
(E7), b ∼ 0 6 (a ∼ b) ∼ (a ∼ 0) = (a ∼ b) ∼ 0 = 0. Hence b ∼ 0 = 0 and so
b ∈ A0. Therefore, A0 is a proper deductive system. Also, by Proposition 2.4, A0

is a subalgebra of A.

Proposition 3.9. Let D be a proper deductive system of an equality algebra A.
Then the following hold:

(i) D is prime i� A/D is a linearly ordered equality algebra,
(ii) if D is prime, then {F ∈ DS(A) | D ⊆ F} is linearly ordered by inclusion.

Proof. (i). For any a, b ∈ A, a ∼ a ∧ b ∈ D i� (a ∼ a ∧ b)/D = 1/D i�
a/D ∼D a/D ∧D b/D = 1/D i� a/D = a/D ∧D b/D i� a/D 6 b/D. By the
similar way b ∼ b ∧ a ∈ D i� b/D 6 a/D. Hence D is prime i� A/D is a linearly
ordered equality algebra.

(ii). Let F,G ∈ {F ∈ DS(A) | D ⊆ F}. If F and G are incomparable, then
there exist a ∈ F \ G and b ∈ G \ F . Since D is prime, by (i), A/D is linearly
ordered. Then we can assume a/D 6 b/D, and so a ∼ a ∧ b ∈ D ⊆ F . Since
a ∈ F , by (DS2), a ∧ b ∈ F and since a ∧ b 6 b, by (DS1) we get b ∈ F , which is
a contradiction. Hence F ⊆ G or G ⊆ F .

Proposition 3.10. Let A be an equality algebra. Then A is a linearly ordered i�
each proper deductive systems of A are prime.

Proof. Let A be a linearly ordered equality algebra. Then we have a 6 b or
b 6 a, for all a, b ∈ A. Thus for any proper D ∈ DS(A), a ∼ a ∧ b = 1 ∈ D or
b ∼ b∧ a = 1 ∈ D and so D is prime. Conversely, by the assumption, {1} is prime
and so by Proposition 3.9, A/{1} = A is a linearly ordered equality algebra.

Corollary 3.11. An equality algebra A is linearly ordered i� the set DS(A) is
linearly ordered by inclusion.

Proof. It follows from Propositions 3.10 and 3.9(ii).

Proposition 3.12. Let A be an equality algebra. Then D ∈ Max(A) i� A/D is
simple.

Proof. Let D ∈ Max(A). If A/D is not simple, then there is a ∈ A such that
〈a/D〉 6= 1/D. So a /∈ D and D ⊂ 〈D ∪ {a}〉, which is a contradiction with the
maximality of D. Hence A/D is simple. The converse is obvious.

In the follows, we de�ne the notion of state deductive system on state equality
algebras.
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De�nition 3.13. Let (A, σ) be an state equality algebra. A deductive system
D of A is called a state deductive system of A if σ(D) ⊆ D ( i.e., a ∈ D implies
σ(a) ∈ D). The set of all state deductive systems on state equality algebra (A, σ)
is denoted by IDS(Aσ). A proper state deductive system of (A, σ) is called a
maximal state deductive system if there is no proper deductive system strictly
containing it. The set of all maximal state deductive systems of (A, σ) is denoted
by IMax(Aσ). The intersection of all the maximal state deductive system of (A, σ)
is denoted by Rad(A, σ). Clearly, Ker(σ) is a state deductive system of any state
equality algebra.

Example 3.14. (i). Let A be the equality algebra in Example 3.4(i). Then
σ1 : A → A which is de�ned by σ1(0) = 0, σ1(a) = 1, σ1(b) = 0, σ1(1) = 1 is an
state on A. We can check {b, 1} ∈ DS(A), but {b, 1} /∈ IDS(Aσ1

). Since b ∈ {b, 1}
but σ1(b) = 0 /∈ {b, 1}. Then Rad(A) = {1} and Rad(A, σ) = {a, 1}.

(ii). Let C be the equality algebra of Example 3.4(iii). Then σ1 : C → C
which is de�ned by σ1(0) = 0, σ1(a) = a, σ1(b) = a, σ1(1) = 1 is an state on
C. We can check {b, 1} ∈ DS(C), but {b, 1} /∈ IDS(Cσ1

). Since b ∈ {b, 1} but
σ1(b) = a /∈ {b, 1}. Therefore Rad(A) = {b, 1} and Rad(A, σ1) = {1}.

Example 3.15. (i). {1} and A are state deductive systems of any state equality
algebra (A, σ).

(ii). In any linearly ordered state equality algebra (A, IdA), every D ∈ DS(A)
is a state deductive system of (A, σ). Then Rad(A) = Rad(A, σ).

(iii). If C is the equality algebra in Example 3.4(iii). Then σ : C → C which
is de�ned by σ(0) = 0, σ(a) = a, σ(b) = 1, σ(1) = 1 is an state on C. Then we
can see that D ∈ DS(C) i� D ∈ IDS(Cσ), Since x ∈ D follows σ(x) ∈ D. Then
Rad(A) = Rad(A, σ).

(iv). If A is the equality algebra of Example 3.4(i), then σ : A → A which
is de�ned by σ(0) = a, σ(a) = a, σ(b) = 1, σ(1) = 1 is an state on A. Then we
can see that D ∈ DS(A) i� D ∈ IDS(Aσ). Since x ∈ D follows σ(x) ∈ D. Then
Rad(A) = Rad(A, σ).

Example 3.16. Let (A,∧A,∼A, 1A) and (B,∧B ,∼B , 1B) be two equality alge-
bras. Then C = A×B = {(a, b) ∈ A×B | a ∈ A, b ∈ B} with operations ∧, ∼, 1
as follows : (a, b)∧ (a′

, b
′
) = (a∧A a

′
, b∧B b

′
), (a, b) ∼ (a

′
, b

′
) = (a ∼A a

′
, b ∼B b

′
),

1 = (1A, 1B), for all (a, b), (a
′
, b

′
) ∈ C, is an equality algebra.

Let σ1 : A → A and σ2 : B → B are states on A and B, respectively. Then
σ : C → C which is de�ned by σ(a, b) = (σ1(a), σ2(b)) is an state on C, for all
(a, b) ∈ C. Let D1 ∈ DS(A) and D2 ∈ DS(B). Then D1×D2 ∈ DS(C) is a state
deductive system of (C, σ) if for all (a, b) ∈ D1 × D2 we get σ(a, b) ∈ D1 × D2.
Hence D1 ×D2 ∈ IDS(Cσ) i� D1 ∈ IDS(Aσ1) and D2 ∈ IDS(Bσ2).

Proposition 3.17. Let (A, σ) be an state equality algebra. Then
(i) σ(a→ b) 6 σ(a)→ σ(b), for any a, b ∈ A,
(ii) if A is linearly ordered, then σ(a∼b)6σ(a)∼σ(b) and σ(a∧b) = σ(a)∧σ(b).
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Proof. (i). By (E21) we have a 6 (a ∼ a∧b) ∼ b, so by (S1), we get σ(a) 6 σ((a ∼
a∧ b) ∼ b). Now (E18) follows σ((a ∼ a∧ b) ∼ b)→ σ(b) 6 σ(a)→ σ(b). Thus by
(S2), σ(a ∼ a ∧ b) = σ((a ∼ a ∧ b) ∼ b) ∼ σ(b) 6 σ((a ∼ a ∧ b) ∼ b) → σ(b). So
σ(a→ b) 6 σ(a)→ σ(b).

(ii). Since A is linearly ordered, assume that a 6 b. Then by a ∼ b 6 b→ a and
(i), we get σ(a ∼ b) = σ(b→ a) 6 σ(b)→ σ(a) = σ(a) ∼ σ(b). Moreover, if a 6 b
(b 6 a) then by (S1), σ(a) 6 σ(b) (σ(b) 6 σ(a)). So σ(a ∧ b) = σ(a) ∧ σ(b).

Proposition 3.18. Let (A, σ) be an state equality algebra and S ⊆ A. Then

Fix(S) = {a ∈ A | σ(a)→ s = s, for all s ∈ S}

is a state deductive system of (A, σ).

Proof. Obviously, 1 ∈ Fix(S). Let a ∈ Fix(S) and a 6 b. Then σ(a) → s = s.
Hence by De�nition 2.8(S1) and (E18), σ(a) 6 σ(b) and so σ(b) → s 6 σ(a) →
s = s, which implies that σ(b)→ s = s. Thus b ∈ Fix(S). Let a, a ∼ b ∈ Fix(S).
Then σ(a) → s = s and σ(a ∼ b) → s = s. Since a ∼ b 6 a → b, by De�nition
2.8 and (E18) we get s 6 σ(a → b) → s 6 σ(a ∼ b) → s = s. Hence σ(a →
b) → s = s. Now by Proposition 3.17, we get σ(a → b) 6 σ(a) → σ(b) and so
(σ(a) → σ(b)) → s = s. Since (σ(a) → σ(b)) → (σ(a) → s) = s thus we have
s 6 σ(b) → s 6 (σ(a) → σ(b)) → (σ(a) → s) = s, that follows b ∈ Fix(S).
Finally, let a ∈ Fix(S). So σ(a) → s = s. By s 6 σ(σ(a)) → s = σ(a) → s = s,
we get σ(a) ∈ Fix(S). Hence Fix(S) ∈ IDS(Aσ).

De�nition 3.19. Let (A, σ) be an state equality algebra. If S ⊆ A, then 〈〈S〉〉 is
the state deductive system generated by S.

Proposition 3.20. Let (A, σ) be an state equality algebra. If D ∈ DS(A),

〈〈D〉〉 = {a ∈ A | ∃n ∈ N,∃x1, . . . , xn ∈ D st. σ(x1)→ (...(σ(xn)→ a)...) ∈ D}.

Proof. Let
S={a ∈ A | ∃n ∈ N,∃x1, . . . , xn ∈ D st. σ(x1)→(σ(x2)→(...(σ(xn)→a)...))∈D}.

First, we show that D ⊆ S. For any d ∈ D, since 1 ∈ D and σ(1) = 1 ∈ D
we get σ(1) → d = 1 → d = d ∈ D and so d ∈ S. Now we prove that S is a
state deductive system of (A, σ). Since for all x ∈ D,σ(x) → 1 = 1 ∈ D, by
de�nition of S, 1 ∈ S. Now, let a ∈ S and a 6 b. Then there are n ∈ N and
x1, x2, ..., xn ∈ D such that σ(x1) → (σ(x2) → (...(σ(xn) → a)...)) ∈ D. Since
a 6 b and D ∈ DS(A), from (E19),

σ(x1)→ (σ(x2)→ (...(σ(xn)→ a)...)) 6 σ(x1)→ (σ(x2)→ (...(σ(xn)→ b)...))

it follows that σ(x1) → (σ(x2) → (...(σ(xn) → b)...)) ∈ D. So b ∈ S. Finally, let
a, a ∼ b ∈ S. Then there are m,n ∈ N, x1, x2, ..., xm ∈ D and y1, y2, ..., yn ∈ D
such that

σ(x1)→ (σ(x2)→ (...(σ(xm)→ a)...)) ∈ D
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and σ(y1) → (σ(y2) → (...(σ(yn) → (a ∼ b))...)) ∈ D. Since a ∼ b 6 a → b,
we get σ(y1) → (σ(y2) → (...(σ(yn) → (a → b))...)) = Z ∈ D. Now from (E19)
and (E17), we have σ(x1) → (σ(x2) → (...(σ(xm) → a)...)) 6 σ(x1) → (σ(x2) →
(...(σ(xm)→ (σ(y1)→ (σ(y2)→ (...(σ(yn)→ (Z → b)))...)). So

Z → σ(x1)→ (σ(x2)→ (...(σ(xm)→ (σ(y1)→ (σ(y2)→ (...(σ(yn)→ b))...)) ∈ D

and Z ∈ D. Hence by de�nition of S, b ∈ S. Thus S is a deductive system of
A. Now, we prove that S is a state deductive system of A. For any a ∈ S, there
are x1, x2, ..., xn ∈ D such that σ(x1) → (σ(x2) → (...(σ(xn) → a)...)) = Y ∈ D.
Hence Y → (σ(x1) → (σ(x2) → (...(σ(xn) → a)...))) = 1 ∈ D and σ(Y →
(σ(x1) → (σ(x2) → (...(σ(xn) → a)...)))) = σ(1) = 1 ∈ D. By using Propositions
3.17 and 2.9 (2), σ(Y ) → (σ(x1) → (σ(x2) → (...(σ(xn) → σ(a))...))) = 1 ∈ D.
From Y ∈ D, by de�nition of S, σ(a) ∈ S. Finally we show that S is the smallest
state deductive system of A containing D. Let F ∈ IDS(Aσ) such that D ⊆ F .
Assume a ∈ S, if a = 1, then S ⊆ F . Otherwise there are x1, x2, ..., xn ∈ D ⊆ F
such that σ(x1) → (σ(x2) → (...(σ(xn) → a)...)) ∈ D ⊆ F . Since F is a state
deductive system of A, thus σ(x1), σ(x2), ..., σ(xn) ∈ F , so a ∈ F . Hence S is the
smallest state deductive system of A containing D, that is 〈〈D〉〉 = S.

Proposition 3.21. Let D be a state deductive system of an state equality algebra
(A, σ) and x ∈ A. Then

〈〈D ∪ {x}〉〉 = {a ∈ A | σm(x)→ (xn → a) ∈ D, ∃m,n ∈ N}.

A state deductive system M of a bounded state equality algebra is maximal i� for
any x /∈M , there are m,n ∈ N such that σm(x)→ (xn → 0) ∈M .

Proof. Set S = {a ∈ A | σm(x) → (xn → a) ∈ D, ∃m,n ∈ N}. First, we show
that {D ∪ {x}} ⊆ S. Let y ∈ {D ∪ {x}}, if y = x then y ∈ S. Otherwise y ∈ D,
from y 6 x → y follows x → y ∈ D. So y ∈ S. Now we prove that S is a state
deductive system of (A, σ). Obviously, 1 ∈ S. Let a ∈ S and a 6 b. Then there are
m,n ∈ N such that σm(x) → (xn → a) ∈ D. By (E19), σ

m(x) → (xn → b) ∈ D.
So b ∈ S. Now, let a and a ∼ b ∈ S. Then there are m,n, s, t ∈ N such that
σm(x) → (xn → a) ∈ D and σs(x) → (xt → (a ∼ b)) ∈ D. Since a ∼ b 6 a → b,
thus σm(x) → (xn → (a → b)) = Y ∈ D. By routine proof we get σm(x) →
(xn → a) 6 σm(x) → (xn → (σs(x) → (xt → (Y → b))). Thus σm+s(x) →
(xn+t → (Y → b))) ∈ D. On the other hand we have Y ∈ D and so b ∈ S. Hence
S is a deductive system of A. Moreover, for any a ∈ S there are m,n ∈ N such
that σm(x) → (xn → a) = Y ∈ D. Then Y → (σm(x) → (xn → a)) = 1 ∈ D.
By Propositions 2.9(1) and 3.17, we have 1 = σ(1) = σ(Y → (σm(x) → (xn →
a)) 6 σ(Y ) → (σσm(x) → (σσn(x) → σ(a))). Since Y ∈ D and D is state, we
get σ(Y ) ∈ D and so by de�nition of S, σ(a) ∈ S. Hence S is a state deductive
system of A, that is S = 〈〈D ∪ {x}〉〉. For proof of the second part, we assume
that M is maximal and x /∈ M . Then by maximality of M , 〈〈M ∪ {x}〉〉 = A.
Since A is bounded, we get 0 ∈ 〈〈M ∪ {x}〉〉. Thus there are m,n ∈ N such that
σm(x)→ (xn → 0) ∈M . The converse is evident.
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Remark 3.22. Obviously, Propositions 3.20 and 3.21 hold for any state-morphism
equality algebra, too.

De�nition 3.23. Let (A, σ) be an state equality algebra and θ be a congruence
relation on A. Then θ is called a congruence relation on (A, σ) if (a, b) ∈ θ implies
(σ(a), σ(b)) ∈ θ. The set of all congruence on (A, σ) denote by Con(A, σ).

In the following, we show that if (A, σ) is a linearly ordered state equality
algebra, there is a bijection between IDS(Aσ) and Con(A, σ).

Proposition 3.24. Let (A, σ) be a linearly ordered state equality algebra. Then
the following hold:

(i) if D ∈ IDS(Aσ), then θD = {(a, b) ∈ A×A | a ∼ b ∈ D} is a congruence
relation on (A, σ),

(ii) if θ ∈ Con(A, σ), then [1]θ = {a ∈ A | (a, 1) ∈ θ} is a state deductive
system of (A, σ) (that is [1]θ ∈ IDS(Aσ )).

Proof. (i). Let D ∈ IDS(Aσ). By Proposition 2.5(i), θD is a congruence relation
of A. Let (a, b) ∈ θD. Then a ∼ b ∈ D, by De�nition 3.13, we get σ(a ∼ b) ∈ D.
Now since A is linearly ordered, so by Proposition 3.17, σ(a) ∼ σ(b) ∈ D. Thus
(σ(a), σ(b)) ∈ θD. Hence θD is a congruence relation on (A, σ).

(ii) Let θ be a congruence relation on (A, σ). By Proposition 2.5(ii), [1]θ is a
deductive system of A. Let a ∈ [1]θ. Then (a, 1) ∈ θ. Since θ ∈ Con(A, σ), thus
(σ(a), σ(1)) ∈ θ. From σ(1) = 1 follows (σ(a), 1) ∈ θ and so σ(a) ∈ [1]θ. Thus [1]θ
is a state deductive system of (A, σ).

Theorem 3.25. Let (A, σ) be a linearly ordered state equality algebra. Then there
is a one-to-one correspondence between IDS(Aσ) and Con(A, σ).

Proof. De�ne f : Con(A, σ) → IDS(Aσ) by f(θ) = [1]θ. By Theorem 2.6
and Proposition 3.24, f is an one-to-one correspondence between IDS(Aσ) and
Con(A, σ). Then the proof is complete.

Theorem 3.26. Let (A, σ) be a linearly ordered state equality algebra. If D ∈
IDS(Aσ), then σ

′
: A/D → A/D is an state on A/D with σ

′
(a/D) = σ(a)/D.

Proof. First, we show that σ
′
is well de�ned. Let a/D = b/D. Then a ∼ b ∈ D and

so σ(a ∼ b) ∈ D. By Proposition 3.17, σ(a) ∼ σ(b) ∈ D and so σ(a)/D = σ(b)/D.
Hence σ

′
(a/D) = σ

′
(b/D). Now we prove σ

′
is an state. For the proof of (S1),

let a/D 6 b/D. Then a/D ∼ (a/D ∧ b/D) = 1/D and so a ∼ (a ∧ b) ∈ D. By
De�nition 3.13, we get σ(a ∼ (a ∧ b)) ∈ D. Also, by Proposition 3.17, σ(a) ∼
σ(b) ∧ σ(b) ∈ D. Thus σ(a)/D 6 σ(b)/D and so σ

′
(a/D) 6 σ

′
(b/D). For the

proof of (S2),

σ
′
(a/D ∼ a/D ∧ b/D) = σ

′
((a ∼ a ∧ b)/D) = σ(a ∼ a ∧ b)/D

= (σ((a ∼ a ∧ b) ∼ b) ∼ σ(b))/D
= σ((a ∼ a ∧ b) ∼ b)/D ∼ σ(b)/D
= σ

′
((a/D ∼ a/D ∧ b/D) ∼ b/D) ∼ σ

′
(b/D).
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For the proof of (S3),

σ
′
(σ

′
(a/D) ∼ σ

′
(b/D)) = σ

′
(σ(a)/D ∼ σ(b)/D) = σ

′
((σ(a) ∼ σ(b))/D)

= (σ(σ(a) ∼ σ(b)))/D = (σ(a) ∼ σ(b))/D
= σ(a)/D ∼ σ(b)/D = σ

′
(a/D) ∼ σ

′
(b/D).

Also (S4) satis�es since

σ
′
(σ

′
(a/D) ∧ σ

′
(b/D)) = σ

′
(σ(a)/D ∧ σ(b)/D) = σ

′
((σ(a) ∧ σ(b))/D)

= σ(σ(a) ∧ σ(b))/D = (σ(a) ∧ σ(b))/D
= σ(a)/D ∧ σ(b)/D = σ

′
(a/D) ∧ σ

′
(b/D).

Finally (S5) satis�es since

σ
′
(σ

′
(a/D)) = σ

′
(σ(a)/D) = σ(σ(a))/D = σ(a)/D = σ

′
(a/D).

Note that in Proposition 3.26, σ
′
is faithful if Ker(σ

′
) = {x/D | σ′

(x/D) =
1/D} = {1/D} i.e., Ker(σ′

) = {x/D | σ(x) ∈ D}.

Corollary 3.27. Let (A, σ) be a linearly ordered state equality algebra. Then
σ

′
: A/K → A/K is an state on A/K such that K = Ker(σ).

Proof. Since Ker(σ) is a state deductive system of (A, σ), so the result follows
from Theorem 3.26.

De�nition 3.28. Let (A, σ) be a state-morphism equality algebra. A deductive
system D of A is called the state-morphism deductive system of A if σ(D) ⊆ D,
i.e., if a ∈ D implies σ(a) ∈ D.

The set of all state-morphism deductive systems on a state-morphism equality
algebra (A, σ) denote by SDS(Aσ) and the set of all maximal state-morphism
deductive systems of (A, σ) denote by SMax(Aσ).

Remark 3.29. Clearly, by Theorem 4.6(i) and De�nition 2.10, the above results
proved for linearly ordered state equality algebra hold for state-morphism equality
algebra.

Proposition 3.30. Let (A, σ) be a state-morphism equality algebra and D be a
deductive system of A. Then D is a prime state deductive system of (A, σ) i�
(A/D, σ

′
) is a linearly ordered state-morphism equality algebra.

Proof. It follows by Proposition 3.9, Remark 3.29 and Theorem 3.26.

De�nition 3.31. Let (A, σ) be a state-morphism (an state) equality algebra. A
subalgebra S of A is called state subalgebra if a ∈ S implies σ(a) ∈ S.
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Example 3.32. (i). If A is the equality algebra in Example 3.4(i), then σ1 and
σ2 : A → A de�ned by σ1(0) = 0, σ1(a) = 1, σ1(b) = 0, σ1(1) = 1 and σ2(0) = a,
σ2(a) = a, σ2(b) = 1, σ2(1) = 1 are state-morphisms on A. Also, {0, 1} is a state
subalgebra of (A, σ1), which is not a state subalgebra of (A, σ2), since σ2(0) = a /∈
{0, 1}.

(ii). Let C be an equality algebra. We know that (C, 1C) is a state-morphism
equality algebra. Then every subalgebra of C is a state subalgebra of (C, 1C).

Remark 3.33. Let (A, σ) be a bounded state-morphism equality algebra. If A
is linearly ordered, a ∈ A and a 6 σ(a), then by Proposition 3.8(i), A(a) is a
state subalgebra. Moreover, if σ(0) = 0, then by Proposition 3.8(ii), A0 is a
state deductive system. Since for any a ∈ A0, a ∼ 0 = 0. By De�nition 2.10,
σ(a ∼ 0) = σ(a) ∼ σ(0) = σ(0), then we get σ(a) ∼ 0 = 0. Thus σ(a) ∈ A0.

Proposition 3.34. Every state deductive system of an state equality algebra (A, σ)
is a state subalgebra of (A, σ).

Proof. By Proposition 2.4 and De�nition 3.31, the proof is clear.

4. Some properties of state equality algebra and
state-morphism equality algebras

In the following, we state some properties of state equality algebra and state-
morphism equality algebra. We proved every state-morphism operator on an
equality algebra is a state operator on it and the converse is true for a linearly
ordered equality algebra under a condition.

Proposition 4.1. Let (A, σ) be a linearly ordered state equality algebra. The map
σ

′
: A/Ker(σ) → A/Ker(σ) de�ned by σ

′
(a/Ker(σ)) = σ(a)/Ker(σ), is a state

on A/Ker(σ), for any a ∈ A.

Proof. First, we show that σ
′
is well de�ned. For this, let K = Ker(σ) and

a/K = b/K. Then a ∼ b ∈ K and so σ(a ∼ b) = 1. Since A is linearly ordered,
by Proposition 3.17, σ(a) ∼ σ(b) = 1 and this conclude that σ(a) = σ(b). Hence
σ

′
(a/K) = σ

′
(b/K). Now by Theorem 2.7, De�nition 2.8 and Proposition 3.17,

the proof is complete.

Proposition 4.2. Let (A, σ) be a state equality algebra and Ker(σ) be prime.
Then σ(A) is linearly ordered.

Proof. For all a, b ∈ A, a ∼ a ∧ b ∈ Ker(σ) or b ∼ b ∧ a ∈ Ker(σ). So σ(a ∼
a ∧ b) = 1 or σ(b ∼ b ∧ a) = 1. From a ∧ b 6 a, b and Proposition 3.17, we get
σ(a) ∼ σ(a ∧ b) = 1 or σ(b) ∼ σ(b ∧ a) = 1. Hence σ(a) 6 σ(b) or σ(b) 6 σ(a).
Thus σ(A) is linearly ordered.
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Example 4.3. Let A be the equality algebra in Example 3.4(i) and σ = IdA.
Then (A, σ) is a state equality algebra. But Ker(σ) = {1} is not prime. Since by
Proposition 4.2, σ(A) is not linearly ordered (σ(a) � σ(b)).

Proposition 4.4. Let (A, σ) be a linearly ordered state equality algebra. Then the
following statements are equivalent:

(i) σ(a→ b) = σ(a)→ σ(b),
(ii) σ(a ∼ b) = σ(a) ∼ σ(b).

Proof. (i) ⇒ (ii). Since A is linearly ordered, we can assume a 6 b. By (S1), we
get σ(a) 6 σ(b) and so

σ(b ∼ a) = σ(b ∼ b ∧ a) = σ(b→ a) = σ(b)→ σ(a)

= σ(b) ∼ σ(b) ∧ σ(a) = σ(b) ∼ σ(a).

For b 6 a the proof is similarly.
(ii)⇒ (i). By Proposition 3.17,

σ(a→ b) = σ(a ∼ a ∧ b) = σ(a) ∼ σ(a ∧ b) = σ(a) ∼ (σ(a) ∧ σ(b)) = σ(a)→ σ(b).

Proposition 4.5. Let (A, σ) be a state equality algebra, σ be faithful and for any
a, b ∈ A, σ((a ∼ a ∧ b) ∼ b) = σ((b ∼ b ∧ a) ∼ a). Then

(i) a < b implies σ(a) < σ(b),
(ii) if A is linearly ordered, then σ(a) = a, for all a ∈ A.

Proof. (i). Let a < b. By (S1) we have σ(a) 6 σ(b). Assume σ(a) = σ(b). Then
by (S2) and assumption,

σ(a ∼ b) = σ(b ∼ b ∧ a) = σ((b ∼ b ∧ a) ∼ a) ∼ σ(a)
= σ((a ∼ a ∧ b) ∼ b) ∼ σ(a) = σ(b) ∼ σ(a) = 1.

So a ∼ b ∈ Ker(σ) = {1} and it follows a = b, which is a contradiction with a < b.
Then σ(a) < σ(b).

(ii). Let for all a ∈ A, σ(a) 6= a. Since A is linearly ordered, σ(a) < a or
a < σ(a). By (i) we get σ(σ(a)) < σ(a) or σ(a) < σ(σ(a)), which is a contradiction
with (S3). Hence σ(a) = a.

Proposition 4.5, is not true for any state equality algebra. In Example 3.4(iii),
with σ1 : C → C de�ned by σ1(0) = 0, σ1(a) = a, σ1(b) = a, σ1(1) = 1, (C, σ1) is
a linearly ordered state equality algebra with Ker(σ) = {1}. But σ(b) = a 6= b,
since σ((a ∼ a ∧ b) ∼ b) 6= σ((b ∼ b ∧ a) ∼ a).

Theorem 4.6. Let A be an equality algebra. Then
(i) any state-morphism on A is a state on A,
(ii) if (A, σ) is a linearly ordered state equality algebra in which for all a, b ∈ A

σ((a ∼ a∧ b) ∼ b) = σ((b ∼ b∧ a) ∼ a), then σ is a state-morphism on A.
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Proof. (i) Let σ be a state-morphism operator on A. Clearly, (S1) satis�es. Since
b 6 (a→ b)→ b), by (SM1),

σ(a ∼ a ∧ b) = σ(a→ b) = σ(((a→ b)→ b)→ b)

= σ(((a ∼ a ∧ b) ∼ b) ∼ b) = σ((a ∼ a ∧ b) ∼ b) ∼ σ(b).

Thus (S2) satis�es. Also (S3) and (S4) follow from (SM1)− (SM3).
(ii). Let σ be a state operator on A and a 6 b. By (S1) we have σ(a) 6 σ(b).

Then by (S2),

σ(a ∼ b) = σ(b ∼ b ∧ a) = σ((b ∼ b ∧ a) ∼ a) ∼ σ(a)
= σ((a ∼ a ∧ b) ∼ b) ∼ σ(a) = σ(b) ∼ σ(a) = σ(a) ∼ σ(b).

For b 6 a, with the similar proof, σ is a state-morphism operator on A. Finally,
(SM2) and (SM3) follow from Propositions 3.17 and 2.9(2).

De�nition 4.7. (cf. [3]) Let A be an equality algebra and a ∈ A. Then
(i) A is called (∼a)-involutive, if for all b ∈ A, ((b ∼ a) ∼ a) = b,
(ii) x ∈ A is called a-regular if (x ∼ a) ∼ a = x,
(iii) A is called involutive if A = Rega(A), for all a ∈ A, where Rega(A) is the

set of all a-regular elements of A.

Example 4.8. (1). Any equality algebra A is (∼1)-involutive and A = Reg1(A)
(for all b ∈ A, ((b ∼ 1) ∼ 1) = b).
(2). Let A be the equality algebra in Example 3.4(i). Then A is (∼a)-involutive,
for all a ∈ A and A = Rega(A).
(3). Let B be the equality algebra in Example 3.4(ii). Then B is (∼0)-involutive
since ((0 ∼ 0) ∼ 0) = 0, ((b ∼ 0) ∼ 0) = b, ((1 ∼ 0) ∼ 0) = 1. But B is not
(∼b)-involutive, since ((0 ∼ b) ∼ b) = 1 6= 0.

Corollary 4.9. Let A be a linearly ordered involutive equality algebra. Then σ is
a state on A i� σ is a state-morphism on A.

Proof. Since A is involutive, we get (a ∼ b) ∼ b = a, for all a, b ∈ A. Then by
Theorem 4.6, the proof is complete.

Example 4.10. Let C be the linearly ordered equality algebra of Example 3.4(iii).
Then σ1, σ2 : C → C de�ned by σ1(0) = 1, σ1(a) = 1, σ1(b) = 1, σ1(1) = 1 and
σ2(0) = 0, σ2(a) = a, σ2(b) = 1, σ2(1) = 1 are two state-morphisms on C. By
Theorem 4.6, σ1 and σ2 are states on C. Moreover, σ3 : C → C which is de�ned
by σ3(0) = 0, σ3(a) = a, σ3(b) = a, σ3(1) = 1 is a state on C but it is not a state-
morphism on C. Since σ3(a ∼ b) 6= σ3(a) ∼ σ3(b). Also, Theorem 4.6(ii) is not
satis�ed, since σ3((b ∼ b ∧ a) ∼ a) = σ3(1) = 1 6= a = σ3((a ∼ a ∧ b) ∼ b).

Proposition 4.11. Let (A, σ) be a state-morphism equality algebra and a ∈ A. If
x ∈ Rega(A), then σ(x) ∈ Regσ(a)(A).
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Proof. It is clearly by De�nitions 4.7(ii) and 2.10.

Proposition 4.12. Let (A, σ) be a state-morphism equality algebra. Then Ker(σ)
is prime i� σ(A) is linearly ordered.

Proof. If Ker(σ) is prime, then the proof is similar to the proof of Proposition
4.2. Conversely, assume that for all a, b ∈ A, σ(a) 6 σ(b) or σ(b) 6 σ(a). Let
a ∼ a ∧ b /∈ Ker(σ). Then σ(a ∼ a ∧ b) 6= 1 and so by (SM1) and (SM2),
σ(a) ∼ σ(a∧ b) 6= 1. Thus σ(a) � σ(b) and so by assumption, σ(b) 6 σ(a). Hence
σ(b ∼ b ∧ a) = 1 and b ∼ b ∧ a ∈ Ker(σ).

Proposition 4.13. Let (A, σ) be a state-morphism equality algebra and K =
Ker(σ). Then

(i) a/K 6 b/K i� σ(a) 6 σ(b),
(ii) a/K = b/K i� σ(a) = σ(b).

Proof. Applying Theorem 2.7 and De�nition 2.10, we get
(i). a/K 6 b/K i� a/K = (a∧b)/K i� (a ∼ (a∧b))/K = 1/K i� a ∼ (a∧b) ∈

K i� σ(a ∼ (a ∧ b)) = 1 i� σ(a) ∼ (σ(a) ∧ σ(b)) = 1 i� σ(a) 6 σ(b).
(ii). a/K = b/K i� (a ∼ b)/K = 1/K i� a ∼ b ∈ K i� σ(a ∼ b) = 1 i�

σ(a) ∼ σ(b) = 1 i� σ(a) = σ(b).

Proposition 4.14. Let σ and µ be two state-morphisms on equality algebra A
such that Ker(σ) = Kerµ and Imσ = Imµ. Then σ = µ.

Proof. By Proposition 2.11, for all a ∈ A, σ(a) ∼ a ∈ Ker(σ) = Kerµ. Then
µ(σ(a) ∼ a) = 1 and so we have µ(σ(a)) ∼ µ(a) = 1. From σ(a) ∈ Imσ = Imµ
follows µ(σ(a)) = σ(a). Hence σ(a) ∼ µ(a) = 1, that means σ(a) = µ(a).

Theorem 4.15. If (A, σ) is a state-morphism equality algebra, then

A = 〈Ker(σ) ∪ Imσ〉.

Proof. Obviously, 〈Ker(σ) ∪ Imσ〉 ⊆ A. Since Ker(σ) ∈ Ds(A) and Imσ ⊆
A, thus by Theorem 3.1(ii), 〈Ker(σ) ∪ Imσ〉 = {a ∈ A | σ(a1) → (σ(a2) →
(...(σ(an) → a)...)) ∈ Ker(σ), for some a1, ...an ∈ A}. Let a be an arbitrary
element ofA, by Proposition 2.11, σ(a) ∼ a ∈ Ker(σ). Since σ(a) ∼ a 6 σ(a)→ a,
then σ(a)→ a ∈ Ker(σ) such that σ(a) ∈ Imσ and so a ∈ 〈Ker(σ)∪Imσ〉. Hence
A = 〈Ker(σ) ∪ Imσ〉.

5. Equality-homomorphisms and their relation with
the state-morphism operator

In this section, we de�ne a homomorphism between two equality algebras and we
state some related results. Then we prove that an state on an equality algebra, is
a state-morphism if it is an equality-homomorphism.
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De�nition 5.1. Let (A,∧,∼, 1) and (A
′
,∧′

,∼′
, 1

′
) be two equality algebras. The

map f : A→ A
′
is called an equality-homomorphism, if the following hold, for all

a, b ∈ A:
(H1) f(a ∼ b) = f(a) ∼′

f(b),
(H2) f(a ∧ b) = f(a) ∧′

f(b).

If f : A → A
′
is a homomorphism of equality algebras, then f is called an

equality-endomorphism. The set Kerf={a∈ A | f(a)=1
′} is called a kernel of f .

It is clear that every equality-homomorphism, is a BCK ∧-semilattice homo-
morphism.

Proposition 5.2. Let f : A → A
′
be a bounded equality-homomorphism and

f(0) = 0
′
. Then:

(i) f(1) = 1
′
,

(ii) f is monotone,
(iii) f(x ∼ 0) = f(x) ∼′

0
′
,

(iv) Kerf is a proper deductive system of A,
(v) Imf is a subalgebra of A

′
,

(vi) f is injective i� Kerf = {1},
(vii) if D

′ ∈ DS(A′
), then f−1(D

′
) ∈ DS(A),

(viii) if f is surjective and Kerf ⊆ D ∈ DS(A), then f(D) ∈ DS(A′
).

Proof. The proofs of (i)− (vi) are straightforward.
(vii). Assume that D

′ ∈ DS(A′
). Since f(1) = 1

′ ∈ D′
, thus 1 ∈ f−1(D′

).
Let a ∈ f−1(D′

) and a 6 b. Then f(a) ∈ D′
and f(a) 6

′
f(b). Thus f(b) ∈ D′

.
Let a, a ∼ b ∈ f−1(D′

). Then f(a ∼ b) ∈ D′
, by equality-homomorphism f , we

get f(a) ∼′
f(b) ∈ D′

. So f(a) ∈ D′
follows that f(b) ∈ D′

, thus b ∈ f−1(D′
).

Thus f−1(D
′
) is a deductive system of A.

(viii). Since 1 ∈ D, by (i), 1
′ ∈ f(D). Let a

′
, b

′ ∈ A′
. If a

′ ∈ f(D) and a
′
6 b

′
.

Then there exists a ∈ D such that f(a) = a
′
. Since f is surjective, there exists

b ∈ A such that b
′
= f(b). So f(a) 6

′
f(b) follows that f(a) →′

f(b) = 1 and
so f(a → b) = 1, thus a → b ∈ Kerf ⊆ D. Then b ∈ D, so b

′
= f(b) ∈ f(D).

Let a
′
, a

′ ∼′
b
′ ∈ f(D). Then there are a, z ∈ D such that f(a) = a

′
and

f(z) = a
′ ∼′

b
′
. Since f is surjective, so there is b ∈ A, such that f(b) = b

′
.

So f(z) = a
′ ∼′

b
′
= f(a) ∼′

f(b) = f(a ∼ b). Thus 1 = f(z) ∼′
f(a ∼ b) =

f(z ∼ (a ∼ b)). Then z ∼ (a ∼ b) ∈ Kerf ⊆ D follows that b ∈ D and so
b
′
= f(b) ∈ f(D). Then f(D) is a deductive system of A

′
.

Theorem 5.3. If f : A → A
′
is a surjective equality-homomorphism, then there

is a bijective correspondence between {D | D ∈ DS(A),Kerf ⊆ D} and DS(A′
).

Proof. By Proposition 5.2(vii) and (viii), f : {D | D ∈ DS(A),Kerf ⊆ D} →
DS(A

′
) such that D 7−→ f(D) and f−1 : Ds(A

′
) → {D | D ∈ DS(A),Kerf ⊆

D} such that D
′ 7−→ f−1(D

′
) are well de�ned functions. Now we will show

f(f−1(D
′
)) = D

′
and f−1(f(D)) = D. Since f is surjective, then f(f−1(D

′
)) =

D
′
. It is clear that D ⊆ f−1(f(D)). Assume that a ∈ f−1(f(D)) then f(a) ∈
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f(D), so there is x ∈ D such that f(a) = f(x) then f(a) ∼ f(x) = 1. By
De�nition 5.1, f(a ∼ x) = 1 so a ∼ x ∈ Kerf ⊆ D. since x ∈ D we get a ∈ D,
thus f−1(f(D)) ⊆ D. So f−1(f(D)) = D.

Theorem 5.4. Let A be an equality algebra. Then f : A→ A is a state-morphism
operator i� f is an equality-endomorphism with f(a) ∼ a ∈ Kerf , for all a ∈ A.

Proof. Let f be a state-morphism operator. Then by De�nition 2.10, (H1) and
(H2) satis�es. Also by (SM3), we get, 1 = f(f(a)) ∼ f(a) = f(f(a) ∼ a). It
follows f(a) ∼ a ∈ Kerf .

Conversely, let f be an equality-endomorphism. By De�nition 5.1, (SM1) and
(SM2) satis�es. By the assumption, for all a ∈ A, f(a) ∼ a ∈ Kerf . Thus
f(f(a) ∼ a) = 1. From (H1), we get 1 = f(f(a) ∼ a) = f(f(a)) ∼ f(a) that it
follows f(f(a)) = f(a). So (SM3) satis�es.

Corollary 5.5. If A is a simple equality algebra, then every equality-endomorphism
f : A→ A is a state-morphism operator, if f = 1A or f = IdA.

Proof. Assume f is an equality-endomorphism. Then By Theorem 5.4, f is a
state-morphism operator if f(a) ∼ a ∈ Kerσ for any a ∈ A. Since A is simple so
Ker(σ) = {1} or Ker(σ) = A. Then f = IdA or f = 1A.

Example 5.6. Let A be the equality algebra as Example 3.4(i). Then f : A→ A
is an equality-endomorphism by de�ne f(0) = 0, f(a) = b, f(b) = a, f(1) = 1. But
f is not a state-morphism operator on A.

Lemma 5.7. Let f : A → A be an endomorphism on equality algebra A and for
all a ∈ A, f(a) ∼ a ∈ Kerf . Then f is a state operator on A.

Proof. By Theorems 5.4 and 4.6(i), f is an state on A.

The converse of proposition 5.7 is not true. In Example 3.4(iii), σ : C → C
which is de�ned by σ(0) = 0, σ(a) = a, σ(b) = 1, σ(1) = 1 is an state on the
linearly ordered equality algebra C, but σ is not equality-endomorphism (σ2(a ∼ b)
6= σ2(a) ∼ σ2(b)).

Lemma 5.8. Let σ be an state operator on a linearly ordered equality algebra A
such that for all a, b ∈ A, σ((a ∼ a ∧ b) ∼ b) = σ((b ∼ b ∧ a) ∼ a). Then σ is an
equality-endomorphism with σ2 = σ.

Proof. By Theorems 4.6(ii) and 5.4, the proof is complete.

Theorem 5.9. Let f : A→ A be an equality-endomorphism on an equality algebra
A. Then the following are equivalent.

(i) f is a state operator on A.
(ii) f is a state-morphism operator on A.

Proof. By Lemmas 5.7 and 5.8 and Theorem 5.4, the proof is clear.



On state equality algebras 325

Theorem 5.10. Let (A, σ) be a state-morphism equality algebra. Then,
(i) σ(A) is a simple subalgebra of A i� Ker(σ) ∈ SMax(Aσ),
(ii) (A, σ) is a simple state-morphism equality algebra i� A is a simple equality

algebra,
(iii) if σ(A) is a semisimple subalgebra of A, then the intersection of all maxi-

mal state-morphism deductive systems of (A, σ) is a subset of Ker(σ).

Proof. (i). Let (A, σ) be a state-morphism equality algebra. Then by Theorem
5.4, σ is an equality-endomorphism, which implies that A/Ker(σ) ∼= σ(A). Thus
Ker(σ) ∈ SMax(Aσ) i� A/Ker(σ) is simple i� σ(A) is simple.

(ii). Let (A, σ) be a simple state-morphism. Then Ker(σ) ∈ SDS(Aσ) and
so Ker(σ) = {1} or Ker(σ) = A. Hence σ = IdA or σ = 1A. In this case every
deductive system of A is state. Thus {1} and A are only deductive systems of A.
Therefore, A is simple. Conversely, let A be a simple equality algebra. Then A
has only two deductive systems, {1} and A which they are state. Hence (A, σ) is
a simple state-morphism equality algebra.

(iii). Let σ(A) be a semisimple subalgebra of A. Then by De�nition 3.2,⋂
I∈SMax(σ(A))

I = {1}.

Since A/Ker(σ) ∼= σ(A), then A/Ker(σ) is a semisimple equality algebra. So
∩{D : Ker(σ) ⊆ D ∈ SMax(A)} = 1/Kerσ. Now we show that D is state.
Let D ∈ SMax(Aσ) and Kerσ ⊆ D. Then by Proposition 2.11, for all a ∈ D,
σ(a) ∼ a ∈ Kerσ ⊆ D. Therefore, σ(a) ∈ D.
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