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Fuzzy isomorphism and quotient of fuzzy

subpolygroups

Reza Ameri and Hossein Hedayati

Abstract

The aim of this note is the study of fuzzy isomorphism and quotient of fuzzy subpoly-
groups. In this regards �rst we introduce the notion of fuzzy isomorphism of fuzzy sub-
polygroups and then we study the quotient of fuzzy subpolygroups. Finally we obtain
some related basic results.

1. Introduction

Hyperstructure theory was born in 1934 when Marty de�ned hypergroups,
began to analyse their properties and applied them to groups, rational alge-
braic functions. Now they are widely studied from theoretical point of view
and for their applications to many subjects of pure and applied properties
and applied mathematics. In 1981 Ioulidis introduced the notion of poly-
group as a hypergroup containing a scalar identity ([14]). Polygroups are
studied in [5, 6] were connections with color schemes, relational algebras,
�nite permutation groups and Pasch geometry.

Following the introduction of fuzzy set by L. A. Zadeh in 1965 ([20]), the
fuzzy set theory developed by Zadeh himself and others in mathematics and
many applied areas. Rosenfeld in 1971 de�ned and studied the concept of
a fuzzy subgroups [19]. Zahedi and others introduced and study the notion
of fuzzy hyper-algebraic structures ( for example see [1, 2, 3, 8, 11, 13, 21]).
In this note by considering the notion of polygroups, �rst we introduce the
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notions of isomorphism, quotient and composition of fuzzy subpolygroups.
Finally we study the relation of isomorphism and level subpolygroups.

2. Preliminaries

Let H be a nonempty set by P∗(H) we mean the family of all nonempty
subsets of H. A map · : H×H −→ P∗(H) is called a hyperoperation or join
operation. A hypergroup is a structure (H, ·) that satis�es two axioms:

(Associativity) a(bc) = (ab)c for all a, b, c ∈ H,

(Reproduction) aH = H = Ha for all a ∈ H.

Let H be a hypergroup and K a nonempty subset of H. Then K is a
subhypergroup of H if itself is a hypergroup under hyperoperation restricted
to K. Hence it is clear that a subset K of H is a subhypergroup if and only
if aK = Ka = K, under the hyperoperation on H (See [7]).

A hypergroup is called a polygroup if
(1) ∃e ∈ H such that e ◦ x = x = x ◦ e∀x ∈ H,
(2) ∀x ∈ H there exists an unique element, say x′ ∈ H such that

e ∈ x ◦ x′ ∩ x′ ◦ x (we denote x′ by x−1),
(3) ∀x, y, z ∈ H, z ∈ xoy =⇒ x◦y =⇒ x ∈ z◦y−1 =⇒ y ∈ x−1◦z.

A canonical hypergroup is a commutative polygroup. A nonempty subset
A of a polygroup (H, ·) is called a subpolygroup if (A, ·) is itself a polygroup.
In this case we write A <P H. A subpolygroup A is called normal in H if

xNx−1 ⊆ N, ∀x ∈ H.

In this case we write N CP H.

Lemma 2.1 [21]. Let A <P H. Then

(1) ∀a ∈ A Aa = aA = A,
(2) AA = A,

(3) (a−1)−1 = a.

Lemma 2.2 [6]. Let N CP H. Then

(1) Na = aN ∀a ∈ H,
(2) (Na)(Nb) = Nab.

Let A ≤P H, x ∈ H. Then Ax is called a right coset of A and we denote
the set of all right costs of A in H by H/A, that is H/A = {Ax |x ∈ H}.

De�ne on H/A two hyperoperations:

Ax ◦Ay = {Az | z ∈ Ax ·Ay}, Ax⊗Ay = {Az | z ∈ xy}.
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Lemma 2.3. Let H be a polygroup and A a normal subpolygroup of H.

Then (H/A,⊗) and (H/A, ◦) are polygroups, which are coincide together.

Proof. Indeed, for x, y ∈ H, we have xN � yN = {zN | z ∈ xy} = xyN =⋃
z∈xy zN = xyN = xN ⊗ yN .

De�nition 2.4 [16]. Let H1 and H2 be two polygroups. A function
f : H1 −→ H2 is called

(1) a homomorphism if f(xy) ⊆ f(x)f(y),
(2) a good homomorphism if f(xy) = f(x)f(y),
(3) a homomorphism of type 2, if f−1(f(x)f(y)) = f−1f(xy),
(4) a homomorphism of type 3, if f−1(f(x)f(y)) = f−1f(x)f−1f(y),
(5) a homomorphism of type 4, if

f−1(f(x)f(y)) = f−1f(xy) = f−1f(x)f−1f(y),
(6) a good isomorphism if it is an isomorphism and good homomor�

phism.

Proposition 2.5 [16]. Every homomorphism (one-to-one homomorphism)
of any of type 1 through 4 is a homomorphism (isomorphism).

De�nition 2.6. Let (G, ·) be a group, FS(G) the set of all fuzzy subset
of G. Then µ ∈ FS(G) is a fuzzy subgroup of G if ∀a, b ∈ G the following
conditions are satis�ed:

(i) µ(z) > min(µ(x), µ(y)),
(ii) µ(x−1) > µ(x).
We denote the fuzzy subgroup µ by µ <F G.

De�nition 2.7 [21]. Let (H, ·) be a polygroup and µ ∈ FS(H) . Then µ
is a fuzzy subpolygroup of H if

(i) µ(z) > min(µ(x), µ(y)), ∀x, y ∈ H and ∀z ∈ xy,
(ii) µ(x−1) > µ(x).

In this case we write µ <FP H.

De�nition 2.8. A fuzzy subpolygroup µ of H is called fuzzy normal if for
every x, y ∈ H, z ∈ xy, z′ ∈ yx we have µ(z) = µ(z′). We denote this fact
by µ CFP H.

Lemma 2.9 [21]. Let µ <FP H. Then

(i) µ(e) > µ(x) for all x ∈ H,

(ii) µ(x−1) = µ(x) for all x ∈ H.
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Theorem 2.10 [21]. Let µ be a fuzzy subset of H. Then µ <FP H (resp.
µ CFP H ) if and only if µ(e) > µ(x) for all x ∈ H and µt <FP H (resp.
µt CFP H ) for all t ∈ [0, µ(e)].

Let µ CFP H. Then we de�ne fuzzy subset xµ̂ by

xµ̂(g) = sup
z∈x−1g

µ(z),

which is called a fuzzy left coset of µ. Similarly a fuzzy right coset, µ̂x of µ
is de�ned.

Suppose that µ is a fuzzy subset of X. Then for t ∈ [0, 1] the level subset
µt is de�ned by µt = {x ∈ X |µ(x) > t}. The support of µ, is de�ned by

Supp(µ) = {x ∈ H |µ(x) > 0}.
If G is a group and µ is a fuzzy subset of G, then we de�ne µa as follows:

µa = {x ∈ G |µx = µa}.
Also we de�ne aµe and µaµb by

aµe = {ax |x ∈ µe}, µaµb = {xy |x ∈ µa, y ∈ µb}.

Theorem 2.11 [1]. Let G be a group and µ be a fuzzy subset of G. De�ne

oµ : G×G −→ P∗(G) by aoµb = µaµb. Then oµ is a hyperoperation on G.

Moreover, if µ is a fuzzy normal subgroup of G, then (G, oµ) is a polygroup.

Extension Principal: Any function f : X −→ Y induces two functions

f : FS(X) −→ FS(Y ) and f−1 : FS(Y ) −→ FS(X),

which are de�ned by

f(µ)(y) = sup{µ(x) | y = f(x)}
for all µ ∈ FS(X), and

f−1(ν)(x) = ν(f(x))
for all ν ∈ FS(Y ).

3. Main results

In the sequel by H we mean a polygroup.

Theorem 3.1.

(i) If µ <FP H, then Supp(µ) <P H.

(ii) If µ CFP H, then Supp(µ) CP H.
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Proof. It is easy to verify that Supp(µ) =
⋃

t∈Im(µ)\{0} µt. Then, by Theo-
rem 2.11 and the fact that the sets of level subsets of µ constitute a totally
ordered set, Supp(µ) is a subpolygroup of H.

Remark 3.2. The converse of Theorem 3.1 is not true. For example the
set H = {e, a, b} with the hyperoperation

. e a b
e e a b
a a e b
b b b {e, a}

is a polygroup. De�ne a fuzzy subset µ on H by µ(e) = 1, µ(a) = 1/4,
µ(b) = 1/3. Then µ is a fuzzy subpolygroup, but µ1/3 = {e, b} is not a
subhypergroup of H, since b ∈ µ1/3, but b · b = {e, a} 6⊆ µ1/3. Thus, by
Theorem 2.15, µ1/3 is not a subpolygroup of H. So, µ1/3 is not normal in
H, but supp(µ) = H is a normal subpolygroup of H.

Theorem 3.3. Let H be a fuzzy polygroup and µ <FP H. Then the set

Iµ = {xµ̂ |x ∈ H} with the hyperoperation xµ̂ · yµ̂ = {zµ̂ | z ∈ xy} is a

polygroup.

Proof. The associativity immediately follows from the associativity. Ob-
viously eµ̂ is the identity element. The inverse of xµ̂ is (x−1)µ̂. Now, if
xµ̂, yµ̂, zµ̂ ∈ Iµ, then from zµ̂ ∈ xµ̂ · yµ̂ it is concluded that z ∈ xy. Thus
x ∈ zy−1 and hence xµ̂ ∈ (x−1)µ̂ · yµ̂. Therefore Iµ is a polygroup.

De�nition 3.4. Let µ <FP H. Then µ is called Abelian if µt is Abelian
(or a canonical hypergroup) for every t ∈ [0, µ(e)].

Theorem 3.5. Let µ <FP H. Then µ is Abelian if and only if Supp(µ) is

Abelian.

Proof. Suppose that Supp(µ) is Abelian. Then for every t ∈ (0, µ(e)] we
have µt ⊆ Supp(µ). Thus µt is Abelian for every t ∈ [0, µ(e)]. Therefore µ
is Abelian.

Conversely, suppose that for every t ∈ (0, µ(e)], µt is Abelian. Let
a, b ∈ Supp(µ). Thus there are µt1 and µt2 such that a ∈ µt1 and b ∈ µt2 ,
t1, t2 ∈ (0, µ(e)]. Suppose that t1 6 t2, then µt2 6 µt1 , and hence a, b ∈ µt1 .
Thus ab = ba. This complete the proof.

De�nition 3.6. Let H1 and H2 be polygroups. If µ <FP H1 and ν <FP H2,
then a good isomorphism f : Supp(µ) −→ Supp(ν) is called a fuzzy good

isomorphism from µ to ν if there exists a positive real number k such that
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µ(x) = kν(f(x)), ∀x ∈ Supp(µ) \ {e}.
In this case we write µ ' ν and say that µ and ν are isomorphic. It is clear
that ' is an equivalence on the set of all fuzzy subpolygroups of H.

Remark 3.7. Note that if two fuzzy polygroups are isomorphic it dose not
imply that the underling polygroups are being isomorphic. For instance
consider S3 = {e, a, a2, b, ab, a2b} and Z6 = {0, 1, 2, 3, 4, 5}. De�ne the
fuzzy subsets µ and ν on S3 and Z6 respectively as follows:

µ(e) = 1, µ(a) = 1/2 = µ(a2), µ(b) = 0 = µ(ab) = µ(b2),
ν(0) = 1, ν(2) = 1/3 = ν(4), ν(1) = ν(5) = ν(3) = 0.

Then (S3, ◦µ) and (Z6, ◦ν) are polygroups by Theorem 2.14.
Now we de�ne the mapping f : Supp(µ) −→ Supp(ν) by f(e) = 0,

f(a) = 2, f(a2) = 4. It is easy to verify that µ ' ν, µ <FP S3 and
µ <FP Z6. Thus µ ' ν, but (S3, oµ) 6' (Z6, oν).

Theorem 3.8. Let µ <FP H1 and ν <FP H2. If µ ' ν, then µ is Abelian
if and only if ν is Abelian.

Proof. Let µ be Abelian. We show that also ν is Abelian. By Theorem 3.6
it is enough we show that Supp(ν) is Abelian. Let x, y ∈ Supp(ν). Then
there are a, b ∈ Supp(µ) such that x = f(a) and y = f(b). On the other
hand by hypothesis there exists a positive number k such that

µ(a) = kν(f(a)), µ(b) = kν(f(b)).
Since k > 0, then ν(f(a)) > 0, so µ(a) > 0, µ(b) > 0 and, in the

consequence a, b ∈ Supp(µ). Thus ab = ba and f(ab) = f(ba). Then
f(a)f(b) = f(b)f(a). Thus xy = yx. Therefore ν is Abelian.

Conversely, suppose that ν is Abelian. Let a, b ∈ Supp(µ). Then
f(a), f(b) ∈ Supp(ν), henceforth f(a)f(b) = f(b)f(a), that is ab = ba.
Therefore ν is fuzzy Abelian.

Theorem 3.9. Let µ <FP H1 and ν <FP H2. If µ ' ν, then for every

t ∈ (0, µ(e)] there exists an element s ∈ (0, ν(e)] such that µt ' νs.

Proof. Let f : Supp(µ) −→ Supp(ν) be a fuzzy isomorphism such that
µ(x) = kν(f(x)) for all x ∈ Supp(µ)\{e} and for some positive real number
k. Let s = t/k. Consider g : µt −→ νs, as the restriction of f to µt. Let
x ∈ µt, then µ(x) > t, and hence kν(f(x)) > t. Thus f(x) ∈ νs and so g is
well-de�ned. Clearly g is injective and g(ab) = g(a)g(b), ∀a, b ∈ µt. Now
suppose that y ∈ νs. Then ν(y) > s. On the other hand there exists an
element x ∈ Supp(µ) such that y = f(x), thus kν(f(x)) > t, and hence
x ∈ νt. Therefore g is surjective and hence µt ' νs.
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Theorem 3.10. Let µ <FP H1, ν <FP H2, µ ' ν and µ /FP supp(µ).
Then ν /FP supp(ν).

Proof. We must prove that for all x, y ∈ Supp(ν) we have:
ν(z) = ν(z′) ∀z ∈ xy, z′ ∈ yx.

For x, y ∈ Supp(ν) there are a, b ∈ Supp(µ) such that f(a) = x, f(b) = y.
Then xy = f(ab) and yx = f(ba). Now let z ∈ xy = f(ab) and z′ ∈ yx =
f(ba), thus there are t, t′ ∈ Supp(ν) such that z = f(t), z′ = f(t′), hence
t′ ∈ ba and, by hypothesis, µ(t) = µ(t′). But we have µ(t) = kν(z) and
µ(t′) = kν(z′). Thus ν(z) = ν(z′). Therefore µ is fuzzy normal.

De�nition 3.11. Let µ <FP H1, ν <FP H2 and Supp(µ) ⊆ Supp(ν). We
de�ne the quotient of µ/ν as follows:

µ/ν : H/Supp(ν) −→ [0, 1],
(µ/ν)(xSupp(ν)) = Sup{µ(a) | aSupp(ν) = xSupp(ν)}.

Remark 3.12. Note that in general µ1/ν = µ2/ν dose not implies that
µ1 = µ2. For example, consider the polygroup H = {e, a, b} from Remark
3.2 and de�ne the fuzzy subsets µ1 and µ2 on H as follows:

µ1(e) = 1, µ1(a) = 1/2, µ1(b) = 1/4,
and

µ2(e) = 1, µ2(a) = 1/3, µ2(b) = 1/4,
and

ν(e) = 1, ν(a) = 1/4, ν(b) = 0.

Clearly µ1, µ2 <FP H, ν E H and µ1/ν = µ2/ν, but µ1 6= µ2.

Theorem 3.13. If µ <FP H1, then µ/µe ' µ and µ/µ ' µe, where

µe(t) = µ(e), if t = e and 0, otherwise.

Proof. De�ne f : Supp(µ/µe) −→ Supp(µ) putting f(xSupp(µe)) = x.
Since Supp(µe) = {e} and µ/µe(xSupp(µe)) = µ(x), then we conclude that
f is a fuzzy isomorphism. Now de�ne g : Supp(µe) −→ Supp(µ/µ), by
g(e) = Supp(µ). Clearly µ(e) = (µ/µ)(g(e)). Thus µ/µ ' µe.

Proposition 3.14. Let H be a polygroup and N its normal subpolygroup.

Then the map φH : H −→ (H/N, ◦) de�ned by φH(x) = xN is an onto

homomorphism of type 3.

Proof. Clearly φH is onto. In view of De�nition 2.5 we must show that

φ−1
H (φH(x)) ◦ φH(y)) = φ−1

H (φH(x)) ◦ φ−1
H (φH(y)) ∀x, y ∈ H.
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Let t ∈ φ−1
H (φH(x) ◦ φH(y)), then φH(t) ∈ φH(x) ◦ φH(y), yields t ∈ xy

by Lemma 2.4, and hence t ∈ φ−1
H (φH(x)) ◦ φ−1

H (φH(y)).
Conversely, suppose that z ∈ φ−1

H (φH(x))◦φ−1
H (φH(y). Then there exist

u ∈ φ−1
H (φH(x)) and v ∈ φ−1

H (φH(y)) such that z ∈ uv. Thus φH(z) ⊆
φH(uv) ⊆ φH(u) ◦ φH(v) = φH(x) ◦ φH(y). Therefore z ∈ φ−1

H (φH(x)) ◦
φ−1

H (φH(y)). So, φH is a homomorphism of type 3.

The map φH is called a canonical epimorphism and for simplicity will
be denoted by φ.

Let µ be a fuzzy subpolygroup of H and N its normal subpolygroup.
Then we can de�ne on H/N the fuzzy set µ putting

µ(z) = sup
xN=zN

µ(x).

In fact, by the principal extension, we have µ = φ(µ). So, from just proved
results we conclude

Corollary 3.15. Let µ <FP H1, ν <FP H2 and Supp(µ) ⊆ Supp(ν).
Then φ(µ) = µ/ν, where φ : H −→ H/Supp(ν) is the canonical epimor-

phism.

The composition of fuzzy subpolygroups µ and ν of H is de�ned by

µν(x) = sup
x∈uv

min(µ(u), ν(v)).

Lemma 3.16. If µ 6F PH, then µ2 = µ, and hence µn = µ.

Proof. For every x ∈ H we have µ2(x) = sup
x∈uv

min(µ(u), µ(v)) 6 µ(x), since

µ is a fuzzy polygroup. On the other hand, µ2(x) > min(µ(x), µ(e)) =
µ(x). Thus µ2 = µ and, by induction, µn = µ.

Theorem 3.17. Let µ ∈ FS(H). Then µ is a fuzzy subpolygroup of H if

and only if µ2 = µ and µ(x) = µ(x−1) for all x ∈ H.

Proof. If µ is a fuzzy subpolygroup, then by Lemma 3.16 and De�nition 2.8
we have µ(x) = µ(x−1) for all x ∈ H.

Conversely, let x ∈ uv. Then by the hypothesis we have

µ(x) = µ2(x) = sup
x∈uv

min(µ(u), µ(v)) > min(µ(u), µ(v)).

Thus µ is a fuzzy subpolygroup of H.

Corollary 3.18. If µ and ν are fuzzy subpolygroups of H and νt E µt, for

all t ∈ Im(µ), then Supp(µ) E Supp(ν).
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Proposition 3.19. Let µ and ν are fuzzy subpolygroups of H such that

µν = νµ . Then µν is a fuzzy subpolygroup of H.

Proof. First we show that µν(x) = µν(x−1). Indeed,

µν(x) = sup
x∈x1x2

(µ(x1)µ(x2)) = sup
x−1∈x−1

2 x−1
1

min(µ(x1), ν(x2))

= sup
x−1∈x−1

2 x−1
1

min(ν(x1), µ(x2)) = νµ(x−1) = µν(x−1).

On the other hand µν = µ2ν2 = µ[(µν)ν] = µ[(νµ)ν] = (µν)(µν) = (µν)2.
Then, by Theorem 3.17, µν is a fuzzy subpolygroup.

Proposition 3.20. If µ 6FP H and K EH. De�ne ν(x) = µ(x), if x ∈ K
and ν(x) = 0 otherwise. Then νt E µt for all t ∈ (0, 1].

Proof. We must show that xνtx
−1 ⊆ νt, ∀x ∈ µt and ∀t ∈ (0, 1].

Let z ∈ xax−1 ⊆ xνtx
−1. If a 6∈ K, then ν(a) = 0 > t > 0, which is a

contradiction. Thus a ∈ K and hence µ(a) = ν(a) > t.

If a ∈ K, then µ(a) = ν(a) and µ(z) > min(µ(x), µ(a)) > t. Hence
ν(z) > t, i.e. z ∈ νt. Therefore νt E µt.
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On graded weakly primary ideals

Shahabaddin Ebrahimi Atani

Abstract

Let G be an arbitrary monoid with identity e. Weakly prime ideals in a commutative
ring with non-zero identity have been introduced and studied in [1]. Here we study the
graded weakly primary ideals of a G-graded commutative ring. Various properties of
graded weakly primary ideals are considered. For example, we show that an intersection
of a family of graded weakly primary ideals such that their homogeneous components are
not primary is graded weakly primary.

1. Introduction

Weakly prime ideals in a commutative ring with non-zero identity have
been introduced and studied by D. D. Anderson and E. Smith in [1]. Also,
weakly primary ideals in a commutative ring with non-zero identity have
been introduced and studied in [2]. Here we study the graded weakly pri-
mary ideals of a G-graded commutative ring. In this paper we introduce
the concepts of graded weakly primary ideals and the structures of their
homogeneous components. A number of results concerning graded weakly
primary ideals are given. In section 2, we introduce the concepts primary
and weakly primary subgroups (resp. submodules) of homogeneous compo-
nents of a G-graded commutative ring. Also, we �rst show that if P is a
graded weakly primary ideal of a G-graded commutative ring, then for each
g ∈ G, either Pg is a primary subgroup of Rg or P 2

g = 0. Next, we show that
if P and Q are graded weakly primary ideals such that Pg and Qh are not
primary for all g, h ∈ G respectively, then Grad(P ) = Grad(Q) = Grad(0)
and P + Q is a graded weakly primary ideal of G(R). Moreover, we give
two other characterizations of homogeneous components of graded ideals.

2000 Mathematics Subject Classi�cation:Primary: 13A02, 16W50
Keywords:Graded ring, graded weakly primary ideals.
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Before we state some results let us introduce some notation and ter-
minology. Let G be an arbitrary monoid with identity e. By a G-graded

commutative ring we mean a commutative ring R with non-zero identity to-
gether with a direct sum decomposition (as an additive group) R = ⊕

g∈G
Rg

with the property that RgRh ⊆ Rgh for all g, h ∈ G; here RgRh denotes
the additive subgroup of R consisting of all �nite sums of elements rgsh

with rg ∈ Rg and sh ∈ Rh. We consider suppR = {g ∈ G : Rg 6= 0}. The
summands Rg are called homogeneous components and elements of these
summands are called homogeneous elements. If a ∈ R, then a can be writ-
ten uniquely as

∑
g∈G

ag where ag is the component of a in Rg. Also, we write

h(R) = ∪g∈GRg. Moreover, if R = ⊕
g∈G

Rg is a graded ring, then Re is a

subring of R, 1R ∈ Re and Rg is an Re-module for all g ∈ G.
Let I be an ideal of R. For g ∈ G, let Ig = I ∩ Rg. Then I is a

graded ideal of R if I = ⊕
g∈G

Ig. In this case, Ig is called the g-component

of I for g ∈ G. Moreover, R/I becomes a G-graded ring with g-component
(R/I)g = (Rg + I)/I ∼= Rg/Ig for g ∈ G. Clearly, 0 is a graded ideal of
R. A graded ideal I of R is said to be graded prime ideal if I 6= R; and
whenever ab ∈ I, we have a ∈ I or b ∈ I, where a, b ∈ h(R). The graded

radical of a graded ideal I of R, denoted by Grad(I), is the set of all x ∈ R
such that for each g ∈ G there exists ng > 0 with x

ng
g ∈ I. Note that, if

r is a homogeneous element of R, then r ∈ Grad(I) if and only if rn ∈ I
for some positive integer n. We say that a graded ideal I of R is a graded

primary ideal of R if I 6= R; and whenever a, b ∈ h(R) with ab ∈ I then
a ∈ I or b ∈ Grad(I) (see [4]).

2. Weakly primary subgroups

Let I be a graded ideal of R and x ∈ G. The set

{a ∈ Rx : an ∈ I for some positive integern}

is a subgroup of Rx and is called the x-radical of I, denoted by xrad(I).
Clearly, Ix ⊆ xrad(I) and If r ∈ Rx with r ∈ Grad(I), then r ∈ xrad(I).
Our starting point is the following de�nitions:

De�nition 2.1. Let P be a graded ideal of R and g ∈ G.

(i) We say that Pg is a primary subgroup of Rg if Pg 6= Rg; and whenever
a, b ∈ Rg with ab ∈ Pg, then either a ∈ Pg or b ∈ grad(P ).
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(ii) We say that Pg is a weakly primary subgroup of Rg if Pg 6= Rg; and
whenever a, b ∈ Rg with 0 6= ab ∈ Pg, then either a ∈ Pg or b ∈ grad(P ).

(iii) We say that Pg is a primary submodule of the Re-module Rg if
Pg 6= Rg; and whenever a ∈ Rg, b ∈ Re with ab ∈ Pg, then either a ∈ Pg or
bn ∈ (Pg :Re Rg) for some positive integer n (that is, b ∈ erad(Pg :Re Rg)).

(iv) We say that Pg is a weakly primary submodule of the Re-module
Rg if Pg 6= Rg; and whenever a ∈ Rg, b ∈ Re with 0 6= ab ∈ Pg, then
either a ∈ Pg or bn ∈ (Pg :Re Rg) for some positive integer n (that is,
b ∈ erad(Pg :Re Rg)).

(v) We say that P is a graded weakly primary ideal of R if P 6= R; and
whenever a, b ∈ h(R) with 0 6= ab ∈ P , then either a ∈ P or b ∈ Grad(P ).

Clearly, a graded primary ideal of R is a graded weakly primary ideal
of R. However, since 0 is always a graded weakly primary (by de�nition),
a graded weakly primary ideal need not be graded primary.

Lemma 2.2. Let P = ⊕
g∈G

Pg be a graded weakly primary ideal of R. Then

the following hold:

(i) Pg is a weakly primary subgroup of Rg for every g ∈ G.

(ii) Pg is a weakly primary submodule of Rg for every g ∈ G.

Proof. (i) For g ∈ G, assume that 0 6= ab ∈ Pg ⊆ P where a, b ∈ Rg, so
either a ∈ P or bn ∈ P for some positive integer n since P is graded weakly
primary. It follows that either a ∈ Pg or b ∈ Pgn for some n; hence either
a ∈ Pg or b ∈ grad(P ).

(ii) Suppose that P is a graded weakly primary ideal of R. For g ∈ G,
assume that 0 6= ab ∈ Pg ⊆ P where a ∈ Rg and b ∈ Re, so P graded
weakly primary gives either a ∈ P or b ∈ Grad(P ). As b is a homogeneous
element, either a ∈ P or bm ∈ P for some m. If a ∈ P , then a ∈ Pg. If
bm ∈ P , then bmRg ⊆ Pg. So Pg is weakly primary.

Proposition 2.3. Let P be a graded weakly primary ideal of R and g ∈ G.

Then the following hold:

(i) For a ∈ Rg − grad(P ), either erad(Pg :Re a) = erad(P ) or

erad(Pg :Re a) = (0 :Re a).

(ii) For a ∈ h(R)− P , Grad(P :R a) = GradP + (0 :R a).
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Proof. (i) It is well-known that if an ideal (resp. a subgroup) is the union
of two ideals (resp. two subgroups), then it is equal to one of them, so for
a ∈ Rg − grad(P ), it is enough to show that

erad(Pg :Re a) = erad(P ) ∪ (0 :Re a) = H.

If b ∈ erad(P ), then abn ∈ Rg ∩ P = Pg, so bn ∈ (Pg :Re a); hence
b ∈ erad(Pg :Re a). Clearly, (0 :Re a) ⊆ erad(Pg :Re a). Thus, H ⊆
erad(Pg :Re a). For the reverse inclusion, assume that c ∈ erad(Pg :Re a).
Then acm ∈ Pg for some m. If 0 6= acm ∈ Pg ⊆ P , then P graded weakly
primary gives cm ∈ P ; hence c ∈ erad(P ) ⊆ H. If acm = 0, then assume
that k is the smallest integer with ack = 0. If k = 1, then c ∈ (0 :Re a) ⊆ H.
Otherwise, c ∈ erad(P ) ⊆ H, we have equality.

(ii) Clearly, for a ∈ h(R)− P , Grad(P ) + (0 :R a) ⊆ Grad(P :R a). For
the other containment, assume that b ∈ Grad(P :R a) where a ∈ h(R)−P .

Without loss of generality assume b =
n∑

i=1
bgi where bgi 6= 0 for all

i = 1, . . . , n and bg = 0 for all g /∈ {g1, . . . , gn}. As b ∈ Grad(P :R a), for
each i, there exists a positive integer mgi such that b

mgi
gi a ∈ P . If b

mgi
gi a 6=

0, then b
mgi
gi ∈ Grad(P ) since P is graded weakly primary. Therefore,

bgi ∈ Grad(Grad(P )) = Grad(P ) by [4, Proposition 1.2]. So suppose that
b
mgi
gi a = 0 for some i. Then assume that sgi is the smallest integer with

b
sgi
gi a = 0. If sgi = 1, then bgi ∈ (0 :R a). Otherwise, bgi ∈ Grad(P ), so

b ∈ Grad(P ) + (0 :R a), as required.

Proposition 2.4. Let P = ⊕
g∈G

Pg be a graded weakly primary ideal of R.

Then for each g ∈ G, either (Pg :Re Rg)Pg = 0 or Pg is a primary submodule

of Rg.

Proof. By Lemma 2.2, Pg is a weakly primary submodule of Rg for every
g ∈ G. It is enough to show that if (Pg :Re Rg)Pg 6= 0 for some g ∈ G,
then Pg is primary. Let ab ∈ Pg where a ∈ Rg and b ∈ Re. If ab 6= 0, then
either a ∈ Pg or bn ∈ (Pg :Re Rg) for some n since Pg is weakly primary.
So suppose that ab = 0. First suppose that bPg 6= 0, say bc 6= 0 where
c ∈ Pg. Then 0 6= bc = b(c + a) ∈ Pg, so either bm ∈ (Pg :Re Rg) for
some m or (a + c) ∈ Pg. As c ∈ Pg we have either bm ∈ (Pg :Re Rg) or
a ∈ Pg. So we can assume that bPg = 0. Suppose that a(Pg :Re Rg) 6= 0,
say ad 6= 0 where d ∈ (Pg :Re Rg). Then 0 6= ad = a(d + b) ∈ Pg, so either
a ∈ Pg or (d + b)s ∈ (Pg :Re Rg) for some s. It follows that either a ∈ Pg
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or bs + r ∈ (Pg :Re Rg) where r ∈ (Pg :Re Rg). Thus, either a ∈ Pg or
bs ∈ (Pg :Re Rg). So we can assume that a(Pg :Re Rg) = 0.

Since (Pg :Re Rg)Pg 6= 0, there exist u ∈ (Pg :Re Rg) and v ∈ Pg such
that uv 6= 0. Then (b+u)(a+v) = uv ∈ Pg, so either (b+u)n ∈ (Pg :Re Rg)
for some n or a+v ∈ Pg, and hence either bn ∈ (Pg :Re Rg) or a ∈ Pg. Thus
Pg is primary.

We next give two other characterizations of homogeneous components
of graded ideals.

Theorem 2.5. Let P be a graded ideal of R and g ∈ G. Then the following

assertion are equivalent.

(i) Pg is a weakly primary submodule of Rg.

(ii) For a ∈ Rg−grad(P ), erad(Pg :Re a) = erad(Pg :Re Rg)∪(0 :Re a).

(iii) For a ∈ Rg − erad(P ), erad(Pg :Re a) = erad(Pg :Re Rg) or

erad(Pg :Re a) = (0 :Re a).

Proof. (i) ⇒ (ii) Suppose �rst that Pg is a weakly primary submodule of
Rg. Clearly, if a ∈ Rg − grad(P ), then H = erad(Pg :Re Rg) ∪ (0 :Re

a) ⊆ erad(Pg :Re a). Let b ∈ erad(Pg :Re a) where a ∈ Rg − grad(P ). Then
ab ∈ Pg. If ab 6= 0, then bn ∈ (Pg :Re Rg) for some n since a /∈ grad(P ) ⊇ Pg

and Pg is weakly primary, so b ∈ erad(Pg :Re Rg) ⊆ H. If ab = 0, then
b ∈ (0 :Re a) ⊆ H, and hence we have equality.

(ii) ⇒ (iii) Is obvious.
(iii) ⇒ (i) Suppose that 0 6= ab ∈ Pg with b ∈ Re and a ∈ Rg − Pg.

Then b ∈ (Pg :Re a) ⊆ erad(Pg :Re a) and b /∈ (0 :Re a). It follows from (ii)
that b ∈ erad(Pg :Re Rg), as required.

Theorem 2.6. Let P = ⊕
g∈G

Pg be a graded weakly primary ideal of R. Then

for each g ∈ G, either Pg is a primary subgroup of Rg or P 2
g = 0.

Proof. By Lemma 2.2, Pg is a weakly primary subgroup of Rg for every
g ∈ G. It is enough to show that if P 2

g 6= 0 for some g ∈ G, then Pg is
a primary subgroup of Rg. Let ab ∈ Pg where a, b ∈ Rg. If ab 6= 0, then
Pg weakly primary gives either a ∈ Pg or b ∈ grad(P ). So suppose that
ab = 0. If aPg 6= 0, then there is an element c of Pg such that ac 6= 0,
so 0 6= ac = a(c + b) ∈ P ; hence either a ∈ P or (c + b) ∈ Grad(P ).
As c ∈ P ⊆ Grad(P ) (by [4, Proposition 1.2]), we have either a ∈ Pg or
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b ∈ Grad(P ); hence either p ∈ Pg or b ∈ grad(P ). So we can assume that
aPg = 0. Similarly, we can assume that bPg = 0. Since P 2

g 6= 0, there exist
p, q ∈ Pg ⊆ P ⊆ Grad(P ) such that pq 6= 0. Then (a+p)(b+q) = pq ∈ P , so
either a+p ∈ P or b+q ∈ Grad(P ), and hence either a ∈ Pg or b ∈ grad(P ).
Thus Pg is primary.

Proposition 2.7. Let P = ⊕
g∈G

Pg be a graded weakly primary ideal of

R such that Pg is not a primary subgroup of Rg for every g ∈ G. Then

Grad(P ) = Grad(0).

Proof. Clearly, Grad(0) ⊆ Grad(P ). For the other containment, assume
that a ∈ P . By Theorem 2.6, a2

g = 0 ∈ (0) for every g ∈ G, so a ∈ Grad(0);
hence P ⊆ Grad(0). It follows that Grad(P ) ⊆ Grad(0) by [4, Proposition
1.2], as needed.

Theorem 2.8. Let {Pi}i∈I be a family of graded weakly primary ideals of

R such that for each i ∈ I, (Pi)g is not a primary subgroup of Rg for every

g ∈ G. Then P =
⋂
i∈I

Pi is a graded weakly primary ideal of R.

Proof. First, we show that Grad(P ) =
⋂
i∈I

Grad(Pi). Clearly, Grad(P ) ⊆⋂
i∈I

Grad(Pi). For the reverse inclusion, suppose that a ∈
⋂
i∈I

Grad(Pi), so

for each g ∈ G, a
mg
g = 0 for some mg since

⋂
i∈I

Grad(Pi) = Grad(0) by

Proposition 2.7. It follows that for each i ∈ I, a
mg
g ∈ Pi for every g ∈ G,

and hence a ∈ Grad(P ).
As Grad(P ) = Grad(0) 6= R, we have P is a proper ideal of R. Suppose

that a, b ∈ h(R) are such that 0 6= ab ∈ P but b /∈ P . Then there is an
element j ∈ I such that b /∈ Pj and ab ∈ Pj . It follows that a ∈ Grad(Pj) =
Grad(P ) since Pi is graded weakly primary, as needed.

Proposition 2.9. Let I ⊆ P be graded ideals of R with P 6= R. Then the

following hold:

(i) If P is graded weakly primary, then P/I is graded weakly primary.

(ii) If I and P/I are graded weakly primary, then P is graded weakly

primary.

Proof. (i) Let 0 6= (a + I)(b + I) = ab + I ∈ P/I where a, b ∈ h(R), so
ab ∈ P . If ab = 0 ∈ I, then (a + I)(b + I) = 0, a contradiction. If ab 6= 0,
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P graded weakly primary gives either a ∈ P or b ∈ Grad(P ); hence either
a + I ∈ P/I or bn + I = (b + I)n ∈ P/I for some integer n. It follows that
either a + I ∈ P/I or b + I ∈ Grad(P/I), as needed.

(ii) Let 0 6= ab ∈ P where a, b ∈ h(R), so (a+I)(b+I) ∈ P/I. If ab ∈ I,
then I graded weakly primary gives either a ∈ I ⊆ P or b ∈ Grad(I) ⊆
Grad(P ). So we may assume that ab /∈ I. Then either a + I ∈ P/I or
bm + I ∈ P/I for some integer m since P/I is graded weakly primary. It
follows that either a ∈ P or b ∈ Grad(P ), as required.

Theorem 2.10. Let P and Q be graded weakly primary ideals of R such

that Pg and Qh are not primary subgroups of Rg and Rh respectively for all

g, h ∈ G. Then P + Q is a graded weakly primary ideal of R.

Proof. By Proposition 2.7, we have

Grad(P ) + Grad(Q) = Grad(0) 6= R,

so P + Q is a proper ideal of R. Since (P + Q)/Q ∼= Q/(P ∩ Q), we
get (P + Q)/Q is graded weakly primary by Propositin 2.9 (i). Now the
assertion follows from Proposition 2.9 (ii).
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On decomposable hyper BCK-algebras

Rajab Ali Borzooei and Habib Harizavi

Abstract

In this manuscript, we introduce the concept of decomposable hyper BCK-algebras and
we give a condition for a hyper BCK-algebra to be a decomposable hyper BCK-algebra.
Moreover, we state and prove some theorems about (weak, implicative) strong hyper
BCK-ideal of a decomposable hyper BCK-algebra. Finally, we give a characterization
of some decomposable hyper BCK-algebras.

1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki [5] in
1966 as a generalization of the concept of set-theoretic di�erence and propo-
sitional calculus. Since then a great deal of literature has been produced on
the theory of BCK-algebras. The hyperstructure theory(called also mul-
tialgebras) was introduced in 1934 by F. Marty [9] at the 8th congress of
Scandinavian Mathematiciens. In [8], Y.B. Jun et al. applied the hyper-
structures to BCK-algebras, and introduced the notion of a hyper BCK-
algebra which is a generalization of BCK-algebra, and investigated some
related properties. Now we follow [7] and [8] and introduce the concept of
decomposable hyper BCK-algebra and give a condition for a hyper BCK-
algebra to be a decomposable hyper BCK-algebra. Moreover, we state and
prove some theorems about (weak, implicative) strong hyper BCK-ideal a
of decomposable hyper BCK-algebra.

2. Preliminaries

De�nition 2.1. [8] By a hyper BCK-algebra we mean a non-empty set H
endowed with a hyperoperation �◦� and a constant 0 satisfying the following

2000 Mathematics Subject Classi�cation: 06F35, 03G25
Keywords: Decomposable hyper BCK-algebra, (weak) hyper BCK-ideal.
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axioms:
(HK1) (x ◦ z) ◦ (y ◦ z) � x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦H � {x},
(HK4) x � y and y � x imply x = y

for all x, y, z ∈ H, where x � y is de�ned by 0 ∈ x ◦ y and for every
A,B ⊆ H, A � B is de�ned by ∀a ∈ A, ∃b ∈ B such that a � b. In such
case, we call ��� the hyperorder in H.

Theorem 2.2. [8] In any hyper BCK-algebra H, the following hold:

(i) 0 ◦ 0 = {0},
(ii) 0 � x,
(iii) x � x,
(iv) A � A,

(v) A ⊆ B implies A � B,

(vi) 0 ◦ x = {0},
(vii) x ◦ y � x,
(viii) x ◦ 0 = {x},
(ix) y � z implies x ◦ z � x ◦ y

for all x, y, z ∈ H and for all non-empty subsets A and B of H.

De�nition 2.3. Let I be a subset of a hyper BCK-algebra H and 0 ∈ I.
Then I is said to be a week hyper BCK-ideal of H if x ◦ y ⊆ I and y ∈ I
imply x ∈ I for all x, y ∈ H, hyper BCK-ideal of H if x ◦ y � I and y ∈ I
imply x ∈ I for all x, y ∈ H, strong hyper BCK-ideal if (x ◦ y) ∩ I 6= ∅ and
y ∈ I imply x ∈ I for all x, y ∈ H, re�exive hyper BCK-ideal of H if I is a
hyper BCK-ideal of H and x ◦ x ⊆ I for all x ∈ H.

Theorem 2.4. [6, 7, 8] Let H be a hyper BCK-algebra. Then,

(i) any strong hyper BCK-ideal of H is a hyper BCK-ideal of H,

(ii) if I is a hyper BCK-ideal of H and A be a nonempty subset of H,

then A � I implies A ⊆ I,
(iii) H is a BCK-algebra if and only if H = {x ∈ H : x ◦ x = {0}}.

De�nition 2.5. [3] Let H be a hyper BCK-algebra, Θ be an equivalence
relation on H and A,B ⊆ H. Then,

(i) we write AΘB, if there exist a ∈ A and b ∈ B such that aΘb,
(ii) we write AΘ̄B, if for all a ∈ A there exists b ∈ B such that aΘb

and for all b ∈ B there exists a ∈ A such that aΘb,
(iii) Θ is called a congruence relation on H, if xΘy and x

′
Θy

′
, then
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x ◦ x
′
Θ̄y ◦ y

′
, for all x, y ∈ H,

(iv) Θ is called a regular relation on H if x ◦ yΘ{0} and y ◦ xΘ{0},
then xΘy for all x, y ∈ H.

Theorem 2.6. [3] Let Θ and Θ
′
are two regular congruence relations on

H such that [0]Θ = [0]Θ′ . Then Θ = Θ
′
.

Theorem 2.7. [3] Let Θ be a regular congruence relation on H and H/Θ =
{Ix : x ∈ H}, where Ix = [x]Θ, for all x ∈ H. Then H

Θ with hyperoperation

Ix ◦ Iy = {Iz : z ∈ x ◦ y} and hyper order Ix < Iy ⇐⇒ I ∈ Ix ◦ Iy is a hyper

BCK-algebra which is called quotient hyper BCK-algebra.

Theorem 2.8. [3] (Isomorphism Theorem) Let Θ be a regular congruence

relation on hyper BCK-algebra H. If f : H −→ H
′
is a homomorphism of

hyper BCK-algebras such that Kerf = [0]Θ, then H/Θ ∼= f(H).

3. Decomposable hyper BCK-algebras

De�nition 3.1. A hyper BCK-algebra H is called decomposable if there
exists a nontrivial family {Ai}i∈Λ of hyper BCK-ideals of H such that

(i) H 6= Ai 6= {0} for all i ∈ Λ,
(ii) H =

⋃
i∈Λ Ai,

(iii) Ai ∩Aj = {0} for all i 6= j ∈ Λ.

In this case, we say that H =
⋃

i∈Λ Ai is a decomposition of H and we
write H =

⊕
i∈Λ Ai.

Example 3.2. (i) Let H be a hyper BCK-algebra with the following
Cayley table:

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {2} {0, 2}

It is easy to check that A1 = {0, 1} and A2 = {0, 2} are hyper BCK-
ideals of H such that H = A1 ∪ A2 and A1 ∩ A2 = {0}. Therefore, H is
decomposable.

(ii) Let H = N ∪ {0}. Consider the hyperoperation

x ◦ y =
{
{0} if x = 0 or x = y,
{x} otherwise.
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It is easily veri�ed that (H, ◦, 0) is a hyper BCK-algebra and An = {0, n}
is a hyper BCK-ideal of H, for all n ∈ N . Now, since H =

⋃
n∈N An and

An ∩Am = {0}, for each n 6= m ∈ N . Therefore, H is decomposable.

(iii) Let N = {0, 1, 2, 3, ...} and hyper operation “ ◦ ” on N is de�ned as
follow:

x ◦ y =
{
{0, x} if x 6 y,
{x} if x > y

for all x, y ∈ H. Then (N, ◦, 0) is a hyper BCK-algebra but it is not a
decomposable hyper BCK-algebra. Since every hyper BCK-ideal of H is
equal to H or {0, 1, 2, ..., n− 1}, for some n ∈ N .

Note. From now on, we let H be a hyper BCK-algebra.

Theorem 3.3. Let H be decomposable with decomposition H =
⊕

i∈Λ Ai.

Then Ai is a strong hyper BCK-ideal of H for all i ∈ Λ.

Proof. Let H =
⊕

i∈Λ Ai be a decomposition of H and let (x ◦ y) ∩Ai 6= ∅
and y ∈ Ai for x ∈ H and i ∈ Λ. Then there exists t ∈ x ◦ y such that
t ∈ Ai. From x ∈ H =

⋃
i∈Λ Ai we conclude that there exists j ∈ Λ such

that x ∈ Aj . Since x ◦ y � x ∈ Aj , then x ◦ y � Aj and so by Theorem
2.4, x ◦ y ⊆ Aj . Therefore, t ∈ Ai ∩Aj . Now, we consider the following two
cases. If j = i, then Aj = Ai and so x ∈ Ai. If j 6= i, then t ∈ Ai∩Aj = {0}
that t = 0 and so 0 ∈ x ◦ y. This implies that x � y. It follow from y ∈ Ai

and Theorem 2.4 (ii) x ∈ Ai. Therefore, Ai is a strong hyper BCK-ideal of
H.

Theorem 3.4. Let H be decomposable with decomposition H =
⊕

i∈Λ Ai.

Then Ai ∪Aj is a strong hyper BCK-ideal of H for all i, j ∈ Λ.

Proof. Let i, j ∈ Λ and x, y ∈ H be such that (x ◦ y) ∩ (Ai ∪ Aj) 6= ∅
and y ∈ Ai ∪ Aj . Without loss of generality, assume that y ∈ Ai. Since
(x◦y)∩(Ai∪Aj) 6= ∅, then there exists t ∈ H such that t ∈ (x◦y)∩(Ai∪Aj)
and so t ∈ Ai or t ∈ Aj . If t ∈ Ai, since Ai is a strong hyper BCK-ideal of
H and y ∈ Ai, then x ∈ Ai ⊆ Ai ∪Aj . If t ∈ Aj , then by x ∈ H =

⋃
i∈Λ Ai

there exists k ∈ Λ such that x ∈ Ak. It follow from x ◦ y 6 x ∈ Ak and
Theorem 2.4 (i,ii) that x ◦ y � Ak and so x ◦ y ⊆ Ak. Hence we have
t ∈ Aj ∩ Ak. If j = k then Aj = Ak and so x ∈ Aj ⊆ Ai ∪ Aj . If j 6= k,
then t ∈ Aj ∩ Ak = {0} and so t = 0. Then 0 ∈ x ◦ y and so x � y. Now,
since y ∈ Ai and Ai is a hyper BCK-ideal of H then x ∈ Ai ⊆ Ai ∪ Aj .
Therefore, Ai ∪Aj is a strong hyper BCK-ideal of H.
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Theorem 3.5. Let H be decomposable with decomposition H =
⊕

i∈Λ Ai.

Then
⋃

i∈Ω Ai is a strong hyper BCK-ideal of H for all ∅ 6= Ω ⊆ Λ.

Proof. We proceed by induction on |Ω|. For Ω ⊆ Λ with |Ω| = 1 the result
holds by Theorem 3.3. Suppose that for 2 6 m ∈ N and all Ω ⊆ Λ with
|Ω| 6 m the result hold and let Ω ⊆ Λ be such that |Ω| = m + 1. Let i, j
be arbitrary elements of Ω. Taking Aij = Ai ∪ Aj and by using Theorems
3.4 and 2.4(i), we conclude that A0 is a hyper BCK-ideal of H. Taking
Ω

′
= (Ω−{i, j})∪{ij} and by using the hypothesis of induction, we conclude

that
⋃

i∈Ω
′ Ai is a strong hyper BCK-ideal of H. Now, since

⋃
i∈Ω Ai =⋃

i∈Ω
′ Ai then

⋃
i∈Ω Ai is a strong hyper BCK-ideal of H. Therefore for all

∅ 6= Ω ⊆ Λ,
⋃

i∈Ω Ai is a strong hyper BCK-ideal of H.

Corollary 3.6. Let H be decomposable. Then there exist nontrivial strong

hyper BCK-ideals A,B of H such that H = A ∪B and A ∩B = {0}, that
is H = A

⊕
B.

Proof. The proof come immediately from Theorem 3.5.

Theorem 3.7. Let H be a hyper BCK-algebra. Then H is decomposable

if and only if there exists a nontrivial strong hyper BCK-ideal A of H such

that 0 6∈ (A′ ◦B) ◦B, where A′ = A− {0} and B = H −A′.

Proof. (=⇒) Let H be decomposable. Then by Corollary 3.6 there exist
nontrivial strong hyper BCK-ideals A and B of H such that H = A

⊕
B.

Let 0 ∈ (A′ ◦ B) ◦ B, by contrary. Since, (A′ ◦ B) ◦ B =
⋃

b∈B, t∈A′◦B t ◦ b,
then there exist t ∈ A′ ◦B and b ∈ B such that 0 ∈ t ◦ b. Now, since b ∈ B
and B is a strong hyper BCK-ideal of H, then t ∈ B. But, t ∈ A′ ◦ B
implies that there exist a ∈ A′ and b1 ∈ B such that t ∈ a ◦ b1 and so
a ◦ b1 ∩ B 6= ∅ and this implies that a ∈ B. Hence, 0 6= a ∈ A ∩ B = {0},
which is impossible. Therefore, 0 6∈ (A′ ◦B) ◦B.

(⇐=) It is enough to prove that B is a hyper BCK-ideal of H. Let for
a, b ∈ H, a ◦ b � B and b ∈ B but a 6∈ B. Hence, a ∈ A′. Since a ◦ b � B,
then there exist t ∈ a ◦ b and b1 ∈ B such that t � B1 and so 0 ∈ t ◦ B1.
Hence

0 ∈ t ◦ b1 ⊆ (a ◦ b) ◦ b′ ⊆ (A′ ◦B) ◦B

which is impossible.

Theorem 3.8. Let H be decomposable with decomposition H = A
⊕

B.

Then A and B are implicative hyper BCK-ideals of H if and only if for all

x, y ∈ H x ◦ (y ◦ x) = {0} imply x = 0.
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Proof. Let A and B be implicative hyper BCK-ideals of H and x◦(x◦y) =
{0} for x, y ∈ H. Then x ◦ (y ◦ x) � A and x ◦ (y ◦ x) � B and so by
Theorem 2.4 (iii), x ∈ A ∩B = {0}.

Conversely, let for x, y ∈ H, x ◦ (y ◦ x) � A but x 6∈ A, by contrary.
Hence, 0 6= x ∈ B. By Theorem 2.2 (vii), x ◦ (y ◦ x) � x ∈ B and so by
Theorem 2.4 (ii), x ◦ (y ◦ x) ⊆ B. On the other hand, since x ◦ (y ◦ x) � A
then by Theorem 2.4 (ii), x◦(y◦x) ⊆ A. Hence x◦(y◦x) ⊆ A∩B = {0} and
so x ◦ (y ◦ x) = {0}. Now, by hypothesis x = 0, which is a contradiction.
Therefore, x ∈ A and so by Theorem 2.4 (iii) A is a implicative hyper
BCK-ideal of H. The proof of case B is similar.

Proposition 3.9. Let H be decomposable with decomposition H = A
⊕

B.

If A and B are re�exive, then H is a BCK-algebra.

Proof. Let A and B be re�exive. Then we have x ◦ x ⊆ A and x ◦ x ⊆ B
for all x ∈ H. Hence x ◦ x ⊆ A ∩B = {0} and so x ◦ x = 0. It follows from
Theorem 2.4 (iv) that H is a BCK-algebra.

De�nition 3.10. Let ∅ 6= A ⊂ H. Then subset I of H is called a weak

hyper BCK-ideal of H related to A if

(r1) 0 ∈ I,
(r2) x ◦ y ⊆ I and y ∈ I imply x ∈ I for all x ∈ A.

Note that, for all nonempty subset A of H if I is a weak hyper BCK-
ideal of H, then I is a weak hyper BCK-ideal of H related to A. But the
converse is not true in general.

Example 3.11. Consider a hyper BCK-algebra H with the following
Cayley table:

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0} {0} {0}
2 {2} {1} {0} {0}
3 {3} {3} {3} {0, 3}

Then I = {0, 2} is a weak hyper BCK-ideal of H related to A = {0, 2, 3}.
But, I is not a weak hyper BCK-ideal of H. Since 1 ◦ 2 ⊆ I and 2 ∈ I but
1 6∈ I.

Theorem 3.12. Let H be decomposable with decomposition H = A
⊕

B
and I ⊆ A. If I is a weak hyper BCK-ideal of H related to A, then I is a

weak hyper BCK-ideal of H.
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Proof. Let I be a weak hyper BCK-ideal of H related to A and x ◦ y ⊆ I
and y ∈ I, for x, y ∈ H. If x ∈ A, then by hypothesis x ∈ I. Now, let
x ∈ B. Then by Theorem 2.2 (vii), x◦y � B, which implies that x◦y ⊆ B
by Theorem 2.4 (i,ii). Hence x ◦ y ⊆ A ∩ B = {0}, which implies that
x ◦ y = {0} and so x � y. Since y ∈ I ⊆ A, we have x � A and so by
Theorem 2.4, we get x ∈ A. Thus x ∈ A ∩ B = {0}. This implies that
x = 0 and so x ∈ I. Therefore, I is a weak hyper BCK-ideal of H.

De�nition 3.13. Let ∅ 6= A ⊂ H. Then subset I of H is called a hyper

BCK-ideal of H related to A if

(r1) 0 ∈ I,
(r3) x ◦ y � I and y ∈ I imply x ∈ I for all x ∈ A.

Note that, for all nonempty subset A of H if I is a hyper BCK-ideal of
H, then I is a hyper BCK-ideal of H related to A. But the converse is not
true in general.

Example 3.14. Let J = {0, 1} and B = {0, 1, 3} in Example 3.12. It is
easy to show that J is a hyper BCK-ideal of H related to B, but J is not
hyper BCK-ideal of H. Since 2 ◦ 1 � J and 1 ∈ J but 2 6∈ J .

Theorem 3.15. Let H be decomposable with decomposition H = A
⊕

B
and I ⊆ A. If I is a hyper BCK-ideal of H related to A, then I is a hyper

BCK-ideal of H.

Proof. The proof is similar to the proof of Theorem 3.12 by some mod-
i�cation.

4. Quotient structure

Theorem 4.1. Let H be decomposable with decomposition H = A
⊕

B.

Then there exists a regular congruence relation Θ on H and a hyper BCK-

algebra X of order 2 such that H/Θ ∼= X.

Proof. Let relation Θ on H is de�ned as follows:

xΘy ⇐⇒ x, y ∈ A or x, y ∈ B − {0}.

Since H = A
⊕

B is a decomposition of H, then it is easily veri�ed that Θ
is an equivalence relation on H. Now, let x, y ∈ H such that xΘy. Then
x, y ∈ A or x, y ∈ B − {0}. Without loss of generality we can suppose that
x, y ∈ A. It follow from Theorem 2.2 (vii) and Theorem 2.4 we get that
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x ◦ a ⊆ A (y ◦ a ⊆ A), which implies that x ◦ aΘ̄y ◦ a for all a ∈ H. On
the other hand by using Theorem 2.2 (vii) and Theorem 2.4 (i,ii), we get
a ◦ x ⊆ A (a ◦ y ⊆ A) if a ∈ A, and a ◦ x ⊆ B (a ◦ y ⊆ B) if a ∈ B, for all
a ∈ H and so a ◦ xΘa ◦ y. Hence Θ is a congruence relation on H. Now,
let x, y ∈ H such that x ◦ yΘ{0} and y ◦ xΘ{0}. Then there exist s ∈ x ◦ y
and t ∈ y ◦ x such that sΘ0 and tΘ0, which imply that s, t ∈ A. Hence, we
have (x ◦ y)∩A 6= ∅ and (y ◦x)∩A 6= ∅. Now, if x ∈ A since (y ◦x)∩A 6= ∅
and A is a strong hyper BCK-ideal of H then y ∈ A and so xΘy.

Similarly, if y ∈ A, then we get that x ∈ A and so xΘy. Now, remind
only the case x, y ∈ B − {0}. But in this case by de�nition of Θ, we get
that xΘy. Hence, Θ is a regular relation on H. Therefore, Θ is a regular
congruence relation on H and so by Theorem 2.7, H/Θ is a hyper BCK-
algebra. Now, it is easy to prove that H/Θ = {[0]Θ = A, [b]Θ = B}, where
b ∈ B − {0}. Hence |H/Θ| = 2. Now, since we have only to hyper BCK-
algebra X = {0, a} of order 2 which are as follows:

◦1 0 a

0 {0} {0}
a {a} {0}

◦2 0 a

0 {0} {0}
a {a} {0, a}

Now, if b ◦ b = {0} then [b]Θ ◦ [b]Θ = {[0]Θ} and so H/Θ ∼= (X, ◦1) and
if b ◦ b 6= {0} then [b]Θ ◦ [b]Θ = {[0]Θ, [b]Θ} and so H/Θ ∼= (X, ◦2).

Theorem 4.2. Let H be decomposable with decomposition H = A
⊕

B and

let b ◦ x = b ◦ y for all b ∈ B and x, y ∈ A. Then there exists a regular

congruence relation Γ on H such that H/Γ ∼= B.

Proof. De�ne the relation Γ on H as follows:

xΓy ⇐⇒ x, y ∈ A or x = y 6∈ A.

It is easy to prove that Γ is an equivalence relation on H. Let x, y ∈ H be
such that xΓy. Then x, y ∈ A or x = y /∈ A.

Case 1. Let x, y ∈ A. Then by Theorem 2.2 (vii), x◦a � x (y ◦a � y)
and so by Theorem 2.4, we get that x ◦ a ⊆ A (y ◦ a ⊆ A), which implies
that x ◦ aΓ̄y ◦ a for all a ∈ H. Now, we prove that a ◦ xΓ̄a ◦ y, for all
a ∈ H. If a ∈ A, the by the similar way in the above proof, we can show
that a ◦ xΓ̄a ◦ y. If a 6∈ A, then a ∈ B and so by the hypothesis we have
a ◦ x = a ◦ y, which implies that a ◦ xΓ̄a ◦ y.

Case 2. Let x = y /∈ A. Then x ◦ a = y ◦ a and a ◦ x = a ◦ y for
all a ∈ H, which implies that x ◦ aΓ̄y ◦ a and a ◦ xΓ̄a ◦ y for all a ∈ H.
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Therefore, Γ is a congruence relation on H. Now, let x, y ∈ H such that
x ◦ yΓ{0} and y ◦ xΓ{0}. Then, there exist s ∈ x ◦ y and t ∈ y ◦ x such
that sΓ0 and tΓ0 and so s, t ∈ A and this implies that (x ◦ y) ∩A 6= ∅ and
(y ◦ x) ∩ A 6= ∅. Now, if x ∈ A(y ∈ A), then since A is a strong hyper
BCK-ideal of H, then y ∈ A(x ∈ A), which implies that xΓy. If x, y 6∈ A,
then x, y ∈ B − {0}. Hence, by Theorem 2.2 (vii), x ◦ y � x (y ◦ x � y)
and so by Theorem 2.4, x ◦ y ⊆ B (y ◦ x ⊆ B). So, t, s ∈ A ∩B = {0} and
this implies that s = t = 0). Thus x � y and y � x and so x = y, which
implies that xΓy. Therefore, Γ is a regular congruence relation on H. Now,
we de�ne the function f : H −→ H by

f(x) =
{

0 if x ∈ A,
x if x ∈ B.

It follows from A ∩B = {0}, that f is well-de�ned. Now, let x, y ∈ H. We
consider the following four cases:

Case 1. x, y ∈ A.
In this case, by Theorem 2.2 (vii), x◦ y � x and so by Theorem 2.4, we get
x ◦ y ⊆ A. Hence,

f(x ◦ y) = f(
⋃

t∈x◦y
t) =

⋃
t∈x◦y⊆A

{f(t)} = {0} = 0 ◦ 0 = f(x) ◦ f(y)

Case 2. x, y ∈ B.
Similar to the proof of Case 1, we get that x ◦ y ⊆ B. Hence,

f(x ◦ y) = f(
⋃

t∈x◦y
t) =

⋃
t∈x◦y⊆B

{f(t)} =
⋃

t∈x◦y
{t} = x ◦ y = f(x) ◦ f(y)

Case 3. x ∈ A and y ∈ B − {0}.
Similar to the proof of Case 1, we get that x ◦ y ⊆ A and so f(x ◦ y) = {0}.
On the other hand, since f(x) = 0, we have f(x) ◦ f(y) = 0 ◦ y = {0}.
Hence

f(x ◦ y) = f(x) ◦ f(y)

Case 4 x ∈ B − {0} and y ∈ A.
By hypothesis, we have x ◦ y = x ◦ 0 = {x} and so

f(x ◦ y) = {f(x)} = f(x) ◦ 0 = f(x) ◦ f(y)

Therefore, f(x◦y) = f(x)◦f(y) for all x, y ∈ H and so f is a homomorphism.
It is easy to check that Kerf = A = [0]Γ and f(H) = B. Hence by Theorem
2.8, we have H/Γ ∼= B.
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Corollary 4.3. Let H be decomposable with decomposition H = A
⊕

B
and let b ◦ x = b ◦ y for all b ∈ B and x, y ∈ A. Then |B| = 2.

Proof. Let regular congruence relations Θ and Γ on H are as Theorems
4.1 and 4.2, respectively. Since [0]Θ = A = [0]Γ, then by Theorem 2.6 that
Θ = Γ and so H/Θ = H/Γ. Now, by Theorem 4.1, H/Θ ∼= X, where X is
a hyper BCK-algebra of order 2 and by Theorem 4.2, H/Γ ∼= B. Hence,

X ∼= H/Θ = H/Γ ∼= B

and so |B| = |X| = 2.
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Factorization of simple groups

involving the alternating group

Mohammad R. Darafsheh

Abstract

In this paper we will �nd the structure of the �nite simple groups G with two subgroups
A and B such that G = AB, where A is a non-abelian simple group and B is isomorphic
to the alternating group on seven letters.

1. Introduction

Let A and B be subgroups of a group G. If G = AB, then G is called a
factorizable group. We also say G is the product of the two subgroups A and
B, or G is a factorizable group. Since we always have the identity G = AG,
hence in this paper we assume both factors A and B are proper subgroups
of G and we say G = AB a non-trivial factorization of G. If G=̃A × B,
then we call G a factorizable group as well. In [1] page 13 the question of
�nding all the factorizable groups is raised. Of course not all groups are
factorizable, for example by [14] the Conway's simple group Co2 of order
218.36.53.7.11.23 is not a factorizable group. Similarly an in�nite group
whose proper subgroups are �nite does not have a proper factorization.
Therefore we always search for a special kind of factorization.

A factorization G = AB is called maximal if both factors A and B
are maximal subgroups of G. In [14] the authors found all the maximal
factorization of all the �nite simple groups and their automorphism groups.
This special kind of factorization is useful because every factorization of a
�nite group is contained in a maximal factorization. In [2] simple groups G
with factorization G = AB and with the additional condition (|A| , |B|) = 1

2000 Mathematics Subject Classi�cation: 20D40
Keywords: factorization, symmetric group, simple group.
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are determined. In this case we also have A ∩ B = 1 the trivial group.
A factorization G = AB with the condition A ∩ B = 1 is called an exact
factorization. In [19] the authors found all the exact factorizations of the
alternating and the symmetric groups. But later in [17] all the factorizations
of the alternating and the symmetric groups were found where both factors
are simple groups. Recently an interesting application of exact factorization
is given in [9]. The authors show that an exact factorization of a �nite group
leads to the construction of a biperfect Hopf algebra, and then they �nd
such a factorization for the Mathieu group M24. This factorization is of the
form M24 = AB, where A=̃M23 and B=̃24 : A7, both perfect groups.

Here we quote some results concerning the involvement of the alternat-
ing or symmetric groups in a factorization. In [13] all �nite groups G = AB,
A=̃B=̃A5 are classi�ed and in [16] factorizable groups where one factor is a
non-abelian simple group and the other factor is isomorphic to the alternat-
ing group on 5 letters are classi�ed. In [18] factorizations of �nite groups
are classi�ed in the case where one factor of a factorizable group is simple
and the other factor is almost simple. In [5] all �nite groups G = AB, where
A=̃A6 and B is isomorphic to the symmetric group on n > 5 letters are
determined. Also in [6] we determined the structure of a �nite factorizable
group with one factor a simple group and the other factor isomorphic to
the symmetric group on 6 letters. In [7] we determined the structure of
factorizable groups G = AB where A=̃A7 and B=̃Sn. Motivated by this
paper here we will �nd the structure of the �nite simple factorizable groups
G = AB such that A is a non-abelian simple group and B=̃A7, the sym-
metric group on seven letters. Through the paper all groups are assumed
to be �nite. Notations for the simple groups is taken from [4].

2. Preliminary results

In the following we quote two Lemmas from [18] which are useful when
dealing with factorizable groups.

Lemma 1. Let A and B be subgroups of a group G. The following state-

ments are equivalent.

(a) G = AB.
(b) A acts transitively on the coset space Ω(G : B) of right coset of B

in G.
(c) B acts transitively on the coset space Ω(G : A) of right coset of A

in G.
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(d) (πA, πB) = 1, where πA and πB are the permutation characters of

G on Ω(G : A) and Ω(G : B) respectively.

Lemma 2. Let G be a permutation group on a set Ω of size n. Suppose the

action of G on Ω is k-homogeneous, 1 6 k 6 n. If a subgroup H of G acts

on Ω k-homogeneously, then G = G(∆)H, where ∆ is a k-subset of Ω and

G(∆) denotes its global stabilizer.

Now it is easy to determine the indices of subgroups of A7 and S7. If
H 6 A7, then [A7 : H] may be one of the following numbers: 1, 7, 15, 21,
35, 42, 70, 105, 120, 126, 140, 210, 252, 280, 315, 360, 420, 504, 630, 840,
1260 or 2520. And if H 6 S7, then [S7 : H] is one of the following numbers:
1, 2, 7, 14, 21, 30, 35, 42, 70, 84, 105, 120, 126, 140, 210, 240, 252, 280, 315,
360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1280, 2520 or 5040. Therefore
if A7 (or S7) acts transitively on a set of size n, then n = [A7 : H] (or
n = [S7 : H]) is one of the above numbers. The action is faithful if and
only if n 6= 1 in the case of A7 and n 6= 1, 2 in the case of S7. It is well-
known that if S7 has a k-homogeneous (k-transitive) action, k > 1, on a
set Ω, then |Ω| = 7 and 2 6 k 6 7, but for A7 we have the same result
in addition with the 2-transitive action of A7 on 15 points, see [3]. Since
we need factorizations of the alternating groups involving S7 or A7, hence
using [14] we will prove the following results.

Lemma 3. Let Am denote the alternating group of degree m. If Am = AB
is a non-trivial factorization of Am, A a non-abelian simple subgroup of Am

and B=̃A7, then one of the following cases occurs:

(a) Am = Am−1A7, where m = 15, 21, 35, 42, 70, 105, 120, 126, 140,

210, 252, 280, 315, 360, 420, 504, 630, 840, 1260 or 2520.

(b) A15 = A13A7,

(c) A8 = L2(7)A7, A9 = L2(8)A7, A11 = M11A7, A12 = M12A7.

Proof. It is obvious that m is at least 8. By [14] either m = 6, 8, 10 or one
of A or B is k-homogeneous on m letters, 1 6 k 6 5. Factorization of Am if
m = 6, 8 or 10 does not involve A7. Therefore we will consider the following
cases.

Case (i). Am−k E A E Sm−k × Sk for some k with 1 6 k 6 5, and B
k-homogeneous on m letters.

Since A is assumed to be simple we obtain Am−k = 1 or A. If Am−k = 1,
then m− k = 1 or 2, hence k = m− 1 or m− 2. But then from 1 6 k 6 5
we will obtain 2 6 m 6 6 or 3 6 m 6 7, a contradiction because m > 8.
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Therefore A = Am−k and B=̃A7 is k-homogeneous on m letters, 1 6 k 6 5.
If k = 1, then the size of the set Ω on which A7 can act transitively is as
stated in the Lemma and all the factorizations in case (a) occur. If k > 2,
then m = 7 or 15. If m = 15, then A7 has a transitive action on 15 letters
and hence A15 = A14A7 and A15 = A13A7 which is case (b).

Case (ii). Am−k E B 6 Sm−k×Sk, 1 6 k 6 5, and A is k-homogeneous
on m letters.

Since B=̃S7, we obtain m−k = 1 or 7. From 1 6 k 6 5 we get 2 6 m 6 6
or 8 6 m 6 12. Therefore only m = 8, 9, 10, 11 or 12 are possible which
correspond to k = 1, 2, 3, 4, 5 respectively. But now from [3] and [12] for
possible (m, k) we obtain:

(m, k) = (8, 1), A8 = L2(7)A7,

(m, k) = (9, 2), A9 = L2(8)A7,

(m, k) = (11, 4), A11 = M11A7,

(m, k) = (12, 5), A12 = M12A7,

and these are all the possibilities in (c) of the Lemma.

Lemma 4. Let Am = AB be a non-trivial factorization of Am, where A
and B are subgroups of Am with A a non-abelian simple group and B=̃S7.
Then

(a) Am = Am−1S7 where m = 14, 21, 30, 35, 42, 70, 84, 105, 120, 126,

140, 210, 240, 252, 280, 315, 360, 420, 504, 560, 630, 720, 840, 1008,

1260, 2520 or 5040.

(b) A9 = L2(8)S7, A11 = M11S7, A12 = M12S7.

Proof. In this case we have m > 9. Using [14] again we obtain the groups
listed in (a) in case B=̃S7 is a k-homogeneous group on m letters. If the
simple group A is k-homogeneous on m−letters again using [3] and [12]
together with Lemma 2 we will obtain the groups listed in (b) and the
Lemma is proved.

Remark 1. The factorizations Am = AB in cases (a), (b) and (c) of Lemma
3 all occur because actually Am has subgroups isomorphic to A and B. The
same is true for case (b) of Lemma 4. But for case (a) of Lemma 4 the
equality Am = Am−1S7 happens only if Am has a subgroup isomorphic to
S7.
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3. Main result

To �nd the structure of the factorizable simple groups G = AB with A
simple and B=̃A7 we need to know about the primitive groups of certain
degrees which are equal to the indices of subgroups of A7. Simple primitive
groups of degree at most 1000 are given in [8] and the index of most of the
subgroups of A7 are less than 1000 except two indices which are 1260 and
2520. Therefore �rst we deal with these indices.

Lemma 5. Let G be a non-abelian simple group which is not an alternating

group. If G is a primitive group of degree 1260 or 2520, then G does not

have a factorization G = AB with A simple and B=̃A7.

Proof. By the classi�cation Theorem for the �nite simple groups, G is iso-
morphic either to a sporadic simple group or a simple group of Lie type.
By [10] there is no factorization as mentioned in the Lemma for a sporadic
group. Therefore we will assume that G is a simple group of Lie type. If
the rank of G is 1 or 2, then by [11] no desired factorization occurs. Hence
we will assume that the Lie rank of G is at least 3. We will use results on
the minimum index of a subgroup of a simple group of Lie type.

Case (a). G = Ln(q), n > 4. In this case the minimum index of

a proper subgroup of G is (qn−1)
(q−1) . If (qn−1)

(q−1) 6 2520, then calculations re-

veal the following possibilities for G: L4(2), L4(3), L4(4), L4(5), L4(7),
L4(8), L4(9), L4(11), L4(13), L5(2), L5(3), L5(4), L5(5), L5(7), L6(2),
L6(3), L6(4), L7(2), L7(3), L8(2), L9(2), L10(2) or L11(2).

By [15], Proposition 4.8, the groups L4(q) with q ≡/ 1(8) are ruled
out because they cannot have A7 in their factorization. Therefore among
the possibilities of the form L4(q) only L4(9) needs examination. As-
sume L4(9) = AA7 where A is a simple non-abelian group. Therefore
|A| = 27.310.5.13.41 |A ∩ A7| . Since A ∩ A7 is a proper subgroup of A7,
hence |A ∩ A7| is one of the numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20,
21, 24, 36, 60, 72, 120, 168 or 360. But by inspecting the simple groups A
whose orders do not exceed |L4(9)| (at the end of [4] ) with 13, 41| |A| , we
�nd only one possibility for A, namely A = O−8 (3) of order 210.312.5.7.13.41.
But then we must have |A ∩ A7| = 23.32.7 = 504 which is not the case.
Therefore all the possibilities L4(q) are ruled out.

For the groups L5(q), again by [15], Proposition 4.7, if q ≡ 3 (4) there
is no such factorization as mentioned in the Lemma. Hence the groups
L5(3) and L5(7) are ruled out. For the groups L5(2), L5(4) and L5(5)
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similar arguments as used above rule out any factorization of these groups
involving A7 and a simple subgroup. Factorization of the remaining groups
in this case involving A7 are ruled out similarly and we omit the details.

Case (b). G = Un(q), n > 6. In this case a proper subgroup has index

at least (qn−(−1)n)(qn−1−(−1)n−1)
(q2−1)

and if this number is less than or equal to

2520 we obtain only G = U6(2). But by [4] the group U6(2) has no maximal
subgroup of index 1260 or 2520.

Case (c). G = S2m(q), m > 3. In this case if q > 2, then the index of

a proper subgroup of G is at least (q2m−1)
(q−1) and if q = 2 then this number is

2m(2m−1). For these numbers to be less than or equal to 2520 we will obtain
the following groups: S6(2), S6(3), S6(4), S8(2), S10(2) or S12(2). Now using
[4] we see that the groups S6(2), S6(3) and S8(2) do not have maximal
subgroups of index 1260 or 2520. For the groups S6(4), S10(2) and S12(2)
similar arguments as used in case (a) rule out the possibility of factorizing
these groups as product of a simple group and a group isomorphic to A7.

Case (d). G = Oε
2m(q), m > 4, ε = ±. In this case the index of

a proper subgroup is at least (qm−1)(qm−1+1)
(q−1) when ε = +, and is at least

(qm+1)(qm−1−1)
(q−1) when ε = − except in the case (q, ε) = (2,+) where this

index is at least 2m−1(2m − 1). For G = O2m+1(q), m > 3, q odd, q > 3,

the index of a proper subgroup is at least (q2m−1)
(q−1) and if q = 3, this index

is at least (q2m−qm)
(q−1) . Again calculations show that if an index is less than

or equal to 2520, then G = O7(3), O±8 (2), O±8 (3), O±10(2) or O±12(2). Now
again using [4] we ruled out any factorization of these groups involving A7.

Case (e). Finally we may assume that G is an exceptional simple group
of Lie type. In this case by [14] factorizations of G are known and none of
them involves A7. The Lemma is proved now.

Theorem 1. Let G = AB be a non-trivial factorization of a simple group

G with A a simple non-abelian group and B=̃A7. Then one of the following

occurs:

(a) G = Am = Am−1A7, where m = 15, 21, 35, 42, 70, 105, 120,

126, 140, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260 or 2520.

(b) G = A15 = A13A7

(c) G = A8, A9, A11 or A12 with appropriate factorizations:

A8 = L2(7)A7, A9 = L2(8)A7, A11 = M11A7, A12 = M12A7

(d) G = O+
8 (2) = S6(2)A7.
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Proof. Suppose G = AB is a factorization of a simple group G with A a
simple non-abelian group and B=̃A7. We remind that by a factorization
we mean a non-trivial factorization. If M is a maximal subgroup of G
containing A, then G = AB, hence [G : M ] | [B : B ∩M ]. Since d = [B :
B ∩M ] is equal to the index of a subgroup of A7, therefore G is a primitive
permutation group of degree d. We have d = 1, 7, 15, 21, 35, 42, 70, 105,
120, 126, 140, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260 or 2520.
Obviously d 6= 1, 7. By Lemma 5 if d = 1260 or 2520, then G is isomorphic
to an alternating group of these degrees. If G is an alternating group, then
by Lemma 3 we obtain the cases (a), (b) and (c) in the Theorem. We will
prove if G is not an alternating group, then G=̃O+

8 (2).
Since the remaining degrees d are less than 1000, hence we may use [8].

By Table I in [7] which is obtained from [8] we need only consider primitive
simple groups G of degree 21, 105, 120, 126, 280, 315 and 840. Now using
[10] and [11] the only cases that we should consider are S6(2), S8(2) or
O+

8 (2).
If S6(2) = AA7, then |A| = 26.32 |A ∩ A7| . But |A| must be divisible by

at least three distinct primes. Therefore if A∩A7 is a proper subgroup of A7

we must have |A ∩ A7| = 5, 10, 20, 60, 360, 7, 21, 168. Hence |A| = 26.32.5,
27.32.5, 28.32.5, 29.33.5, 29.34.5, 26.32.7, 26.33.7, 29.33.7. But by [4] there is
no simple group of the above orders.

If S8(2) = AA7, then |A| = 213.33.5.17 |A ∩ A7| . By [4] there is no
simple group A such that 213.33.5.17 | |A| | |S8(2)| .

If O+
8 (2) = AA7, then |A| = 29.33.5 |A ∩ A7| . Now 29.33.5 | |A| and

|A| |212.35.52.7 =
∣∣O+

8 (2)
∣∣ . By [4] the only possibility is A=̃S6(2). Again by

[4] and using Lemma 1 we obtain O+
8 (2) = S6(2)A9. The intersection of

the two factors is a group H = L2(8) : 3 = PΓL2(8) and since it acts 2-
transitively on 9 points we have A9 = PΓL2(8).A7, hence O+

8 (2) = S6(2)A7

and the Theorem is proved.

In conclusion we will prove the following Corollary.

Corollary. Suppose that G = AB with A a simple group and B isomorphic

to A7. Then, either G = A ⊇ B, G=̃A×B, or G is as in the Theorem 1.

Proof. By induction, if G is not simple, G is not isomorphic to A×B, and
G is a minimal normal subgroup of G, then G

N is simple. By lemma 1 of [17],
|N | divides the order of A7, |N | = 8 ( which is impossible as C(N) = N
and hence, A7 is isomorphic to a subgroup of Aut(N)) or |N | = p where
p is a prime dividing |A7| for which the Sylow subgroup is non-abelian. It
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follows that p = 2 and N = Z(G). Thus, G is a covering group of the simple
group G

N = (AN
N )(BN

N ) which is as in the Theorem 1. But this is impossible
as theorem 10 of [17] shows that G

N cannot be isomorphic to an alternating
group and a simple order argument shows G

N cannot be isomorphic to O+
8 (2).

The result follows.
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Intuitionistic fuzzy approach to n-ary systems

Wiesªaw A. Dudek

Abstract

We adopt the fundamental concepts of intuitionistic fuzzy subalgebras to n-ary groupoids,
i.e., on algebras containing one n-ary operation. We describe some similarities and dif-
ferences between the n-ary and binary case. In the case of n-ary quasigroups and groups
we suggest the common method of investigations based on some methods used in the
universal algebra.

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh, several re-
searches were conducted on the generalizations of the notion of fuzzy set
and application to many algebraic structures such as: groups, quasigroups,
rings, semirings, BCK-algebras et cetera. All these applications are con-
nected with binary operations.

But in many branches of mathematics (also in applications) one can �nd
so-called n-ary groupoids, i.e., sets with one n-ary operation f : Gn → G,
where n > 2 is �xed. Such groupoid are called also polyadic or n-ary
systems and are investigated by many authors, for example by Post [15] and
Belousov [2]. Some special types of n-ary groupoids are used by Belousov
in the theory of nets [2]. Mullen and Shcherbakov studied codes based
on n-ary quasigroups [13]. Grzymaªa-Busse applied polyadic groupoids to
the theory of automata [10]. Applications in modern physics are described
by Kerner [11]. In such applications some role plays (intuitionistic) fuzzy
subsets.

The main role in the theory of n-ary systems plays n-ary groups and
quasigroups, which are a natural generalization of binary (n = 2) groups

2000 Mathematics Subject Classi�cation: 20N15, 94D05
Keywords: n-ary system, n-ary quasigroup, intuitionistic fuzzy n-ary quasigroup.
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and quasigroups. It is clear that many classical results can be extended to
the n-ary case. But for n > 2 we obtain the large set of theorems which are
not true for n = 2. Moreover, the part of obtained results is true only for
ternary (n = 3) groupoids.

2. Preliminaries

According to the general convention used in the theory of n-ary systems the
sequence of elements xi, . . . , xj will be denoted by xj

i (for j < i it is empty
symbol). This means that f(x1, x2, . . . , xn) will be written as f(xn

1 ).
An n-ary groupoid (G, f) is called unipotent if it contains an element θ

such that f(x, x, . . . , x) = θ for all x ∈ G. Such groupoid is obviously an
n-ary semigroup, i.e., for all i, j ∈ {1, 2, . . . , n} and x2n−1

1 ∈ G it satis�es
the n-ary associativity

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ),

which is a natural generalization on the classical associativity.

An n-ary quasigroup is de�ned as an n-ary groupoid (G, f) in which for
all 1 6 i 6 n and all xn

0 ∈ G there exists a uniquely determined element
zi ∈ G such that

f(xi−1
1 , zi, x

n
i+1) = x0 . (1)

An n-ary quasigroup (G, f) in which the operation f is associative in the
above sense is called an n-ary group. For n = 2 we obtain an arbitrary
group.

It is worthwhile to note that, under the assumption of the associativity
of the operation f, it su�ces only to postulate the existence of a solution
of (1) at the place i = 1 and i = n or at one place i other than 1 and n.
Then one can prove uniqueness of the solution of (1) for all 1 6 i 6 n (cf.
[15], p.21317).

For any �xed n, the class of all n-ary groups is a variety. Very useful
systems of identities de�ning this variety one can �nd in [9] and [7].

3. Intuitionistic fuzzy subgroupoids

Now generalize some classical results obtained for binary algebras such as
BCC-algebras [8] and groups [16] to the case of n-ary groupoids.
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De�nition 3.1. A fuzzy set µ de�ned on G is called a fuzzy subgroupoid of
an n-ary groupoid (G, f) if

µ(f(xn
1 )) > min{µ(x1), . . . , µ(xn)}

for all xn
1 ∈ G.

Lemma 3.2. If µ is a fuzzy subgroupoid of a unipotent groupoid (G, f),
then µ(θ) > µ(x) for all x ∈ G and θ = f(x, x, . . . , x).

Analogously as in a binary case we can prove

Theorem 3.3. A fuzzy set µ of an n-ary groupoid (G, f) is a fuzzy sub-

groupoid if and only if for every t ∈ [0, 1], the level

L(µ, t) = {x ∈ G : µ(x) > t}

is either empty or a subgroupoid of (G, f).

This implies that (similarly as in a binary case) any subgroupoid of
(G, f) can be realized as a level subgroupoid of some fuzzy subgroupoid µ
de�ned on G.

The complement of µ, denoted by µ, is the fuzzy set in G given by
µ(x) = 1− µ(x) for all x ∈ G.

An intuitionistic fuzzy set (IFS for short) of a nonempty set X is de�ned
by Atanassov (cf. [1]) in the following way.

De�nition 3.4. An intuitionistic fuzzy set A of a nonempty set X is an
object having the form

A = {(x, µA(x), γA(x)) : x ∈ X},

where µA : X → [0, 1] and γA : X → [0, 1] denote the degree of membership
(namely µA(x)) and the degree of nonmembership (namely γA(x)) of each
element x ∈ X to the set A, respectively, and 0 6 µA(x) + γA(x) 6 1 for
all x ∈ X.

For the sake of simplicity, we shall use the symbol A = (µA, γA) for the
intuitionistic fuzzy set A = {(x, µA(x), γA(x)) : x ∈ X}.

De�nition 3.5. An IFS A = (µA, γA) of an n-ary groupoid (G, f) is an
intuitionistic fuzzy subgroupoid (IFS subgroupoid for short) if

µA( f(xn
1 ) ) > min{µA(x1), . . . , µA(xn)}

γA( f(xn
1 ) ) 6 max{γA(x1), . . . , γA(xn)}
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hold for all xn
1 ∈ G.

It is not di�cult to see that the following statements are true.

Proposition 3.6. If A = (µA, γA) is an IFS intuitionistic fuzzy sub-

groupoid of (G, f), then so is A = (µA, µA) and ♦A = (γA, γA).

Proposition 3.7. If A = (µA, γA) is an IFS subgroupoid of a unipotent n-
ary groupoid (G, f), then µA(θ) > µA(x) and γA(θ) 6 γA(x) for all x ∈ G
and θ = f(x, . . . , x).

Proposition 3.8. If A = (µA, γA) is an IFS subgroupoid of a unipotent

n-ary groupoid (G, f), then

Gµ = {x ∈ G : µA(x) = µA(θ)} and Gγ = {x ∈ G : γA(x) = γA(θ)}

are subgroupoids of (G, f).

In some n-ary groupoids there exists an element e satisfying the identity

f(e, . . . , e, x, e, . . . , e) = x,

where x is at the place k. Such element (if it exists) is called a k-identity.
There are n-ary groupoids containing two or three such elements. Moreover,
there are groupoids containing only such elements. For example, in any
n-ary group derived from a commutative group (G, +), i.e., in an n-ary
groupoid (G, f) with the operation f(xn

1 ) = x1 + x2 + . . . + xn, all elements
satisfying the identity nx = x are k-identities (for every k). But the set of
all k-identities is not an n-ary subgroupoid in general (cf. [6]).

Proposition 3.9. If A = (µA, γA) is an IFS subgroupoid of an n-ary
groupoid (G, f) with a k-identity e, then µA(e) > µA(x) and γA(e) 6 γA(x)
for all x ∈ G and

Gµ = {x ∈ G : µA(x) = µA(e)}
Gγ = {x ∈ G : γA(x) = γA(e)}

are subgroupoids of (G, f).

Obviously µA(e1) = µA(e2) and γA(e1) = γA(e2) for any k-identity
e1 and t-identity e2. This means that in n-ary groupoids containing only
k-identities all IFS subgroupoids are constant.
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For any α ∈ [0, 1] and fuzzy set µ of G, the set

U(µ;α) = {x ∈ G : µ(x) > α}
L(µ;α) = {x ∈ G : µ(x) 6 α}

is called an upper (respectively lower ) α-level cut of µ.

Theorem 3.10. If A = (µA, γA) is an IFS subgroupoid of an n-ary
groupoid (G, f), then the sets U(µA;α) and L(γA;α) are subgroupoids of

(G, f) for every α ∈ Im(µA) ∩ Im(γA).

Theorem 3.11. If A = (µA, γA) is an IFS in an n-ary groupoid (G, f) such
that the nonempty sets U(µA;α) and L(γA;α) are subgroupoids of (G, f) for
all α ∈ [0, 1]. Then A = (µA, γA) is an IFS subgroupoid of (G, f).

The proof of the above two theorems is analogous to the proof of the
corresponding theorems for binary groupoids (cf. [12]).

Also it is not di�cult to verify that the following two statements are
true.

Theorem 3.12. Let B be a nonempty subset of an n-ary groupoid (G, f)
and let A = (µA, γA) be an intuitionistic fuzzy set on G de�ned by

µA(x) =
{

s0 if x ∈ B,
s1 otherwise,

and

γA(x) =
{

t0 if x ∈ B,
t1 otherwise,

for all x ∈ G and si, ti ∈ [0, 1], where s0 > s1, t0 < t1 and si + ti 6 1 for

i = 0, 1. Then A = (µA, γA) is an IFS subgroupoid of (G, f) if and only if

B is an n-ary subgroupoid of (G, f). Moreover, U(µA; s0) = B = L(γA; t0).

Corollary 3.13. Let χA be the characteristic function of an n-ary sub-

groupoid of an n-ary groupoid (G, f). Then the intuitionistic fuzzy set

A∼ = (χA, χA) is an IFS subgroupoid of (G, f).

A fuzzy set µ de�ned on G is said to be normal if there exists x ∈ G such
that µ(x) = 1. A simple example of normal fuzzy sets are characteristic
functions of subsets of G.

If an n-ary groupoid (G, f) is unipotent, then a fuzzy set µ de�ned on
G is normal if and only if µ(θ) = 1, where θ = f(x, x, . . . , x).
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The set N (G, f) of all normal fuzzy subgroupoids on (G, f) is partially
ordered by the relation

µ v ρ ⇐⇒ µ(x) 6 ρ(x)

for all x ∈ G.

Moreover, similarly as in the binary case, for any fuzzy subgroupoid µ of
(G, f) there exists ρ ∈ N (G, f) such that µ v ρ. If an n-ar groupoid (G, f)
is unipotent, then the maximal element of (N (G, f),v) is either constant
or characteristic function of some subset of G.

4. Fuzzi�cation of quasigroups

A groupoid (G, · ) is called a quasigroup if each of the equations ax = b,
xa = b has a unique solution for any a, b ∈ G.

A fuzzi�cation of quasigroups (binary and n-ary) is more complicated
as a fuzzi�cation of arbitrary groups (cf. for example [16]). The problem
lies in the fact that a subset of a quasigroup (G, ·) closed with respect to
the quasigroup operation in general is not a quasigroup with respect to this
operation.

A fuzzi�cation of quasigroups (cf. [4, 12]) is based on the second equiv-
alent de�nition of a quasigroup. Namely, (cf. [14]) a quasigroup (G, ·) may
be de�ned as an algebra (G, ·, \, /) with the three binary operations · , \, /
satisfying the identities

(xy)/y = x, x\(xy) = y,
(x/y)y = x, x(x\y) = y.

The quasigroup (G, ·, \, /) corresponds to quasigroup (G, ·), where
x\y = z ⇐⇒ xz = y and x/y = z ⇐⇒ zy = x.

A quasigroup is called unipotent if xx = yy for all x, y ∈ G. These
quasigroups are connected with Latin squares which have one �xed element
in the diagonal. Such quasigroups may be de�ned as quasigroups (G, ·)
with the special element θ satisfying the identity xx = θ. In this case also
x\θ = x and θ/x = x for all x ∈ G.

A nonempty subset S of a quasigroup (G, ·, \, /) is called a subquasigroup
if it is closed under these three operations · , \, / , i.e., if x ∗ y ∈ S for all
∗ ∈ {·, \, /} and x, y ∈ S.

Thus a fuzzy set µ on a quasigroup (G, · ) is a fuzzy subquasigroup if
µ(x ∗ y) > min{µ(x), µ(y)} for all ∗ ∈ {·, \, /} and x, y ∈ S (cf. [4]).
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In the case of n-ary quasigroups the situation is more complicated. Ac-
cording to [2] in any n-ary quasigroup (G, f) for every s = 1, 2, . . . , n one
can de�ne the s-th inverse n-ary operation f (s) putting

f (s)(xn
1 ) = y ⇐⇒ f(xs−1

1 , y, xn
s+1) = xs .

Obviously, the operation f (s) is the s-inverse operation for the operation f
if and only if

f (s)(xs−1
1 , f(xn

1 ), xn
s+1) = xs

for all xn
1 ∈ G (cf. [2]). Therefore the class of all n-ary quasigroups may

be treated as the variety of equationally de�nable algebras with n + 1
fundamental operations f, f (1), . . . , f (n).

A nonempty subset S of G is called a subquasigroup of (G, f) if it is an
n-ary quasigroup with respect to f. This means that a nonempty subset S
of an n-ary quasigroup (G, f) is an n-ary subquasigroup if and only if it is
closed with respect to n + 1 operations f, f (1), . . . , f (n), i.e., if and only if
g(xn

1 ) ∈ G for all xn
1 ∈ G and all g ∈ F = {f, f (1), f (2), . . . , f (n)} .

Basing on the De�nition 3.1 we can de�ne a fuzzy subquasigroup of an
n-ary quasigroup in the following way.

De�nition 4.1. A fuzzy set µ de�ned on G is called a fuzzy subquasigroup

of an n-ary quasigroup (G, f) if

µ(g(xn
1 )) > min{µ(x1), . . . , µ(xn)}

for all g ∈ F and xn
1 ∈ G.

For such de�ned fuzzy subquasigroups we can prove results analogous
to the results from the previous part.

De�nition 4.2. An IFS A = (µA, γA) of an n-ary quasigroup (G, f) is an
intuitionistic fuzzy subquasigroup (IFS subquasigroup for short) if

µA( g(xn
1 ) ) > min{µA(x1), . . . , µA(xn)}

γA( g(xn
1 ) ) 6 max{γA(x1), . . . , γA(xn)}

hold for all g ∈ F and xn
1 ∈ G.

It is not di�cult to see that in an n-ary quasigroup an IFS subquasigroup
is an IFS subgroupoid and the results of the previous part will be true for
n-ary quasigroup if we replace "IFS subgroupoid" by "IFS subquasigroup".

Moreover, the following characterization of IFS subquasigroups is valid.
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Lemma 4.3. A = (µA, γA) is an IFS subquasigroup of an n-ary quasigroup

(G, f) if and only if µA and γA are fuzzy subquasigroups of (G, f).

Proof. Straightforward.

Theorem 4.4. If A = (µA, γA) is an IFS in an n-ary quasigroup (G, f)
such that the nonempty sets U(µA;α) and L(γA;α) are subquasigroups of

(G, f) for all α ∈ [0, 1]. Then A = (µA, γA) is an IFS subquasigroup of

(G, f).

Proof. Let α ∈ [0, 1]. Assume that U(µA;α) 6= ∅ and L(γA;α) 6= ∅ are
subquasigroups of an n-ary quasigroup (G, f). We must show that A =
(µA, γA) satis�es the De�nition 4.2.

Let g ∈ F . If the �rst condition of the De�nition 4.2 is false, then there
exist xn

1 ∈ G such that

µA(g(xn
1 )) < min{µA(x1), . . . , µA(xn)}.

Taking

α0 =
1
2
[
µA(g(xn

1 )) + min{µA(x1), . . . , µA(xn)}
]
,

we have

µA(g(xn
1 )) < α0 < min{µA(x1), . . . , µA(xn)}.

It follows that xn
1 are in U(µA;α0) but g(xn

1 ) are not in U(µA;α0), which
is a contradiction.

Assume that the second condition of the De�nition 4.2 does not hold.
Then

γA(g(xn
1 )) > max{γA(x1), . . . , γA(xn)}

for some xn
1 ∈ G. Let

β0 =
1
2
[
γA(g(xn

1 )) + max{γA(x1), . . . , γA(xn)}
]
.

Then

γA(g(xn
1 )) > β0 > max{γA(x1), . . . , γA(xn)}

and so xn
1 ∈ L(γA;β0) but g(xn

1 ) 6∈ L(γA;β0). This contradiction completes
the proof.
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Proposition 4.5. If A = (µA, γA) is an IFS subquasigroup of an n-ary
quasigroup (G, f), then for all i = 1, . . . , n, g ∈ F we have

min{µA(g(xn
1 )),min{

∧
i6=s

µA(xi)}} = min{µA(x1), ..., µA(xn)},

max{γA(g(xn
1 )),min{

∧
i6=s

γA(xi)}} = max{γA(x1), . . . , γA(xn)}.

Proof. Indeed, for g = f we have

min{µA(f(xn
1 )),min{

∧
i6=s

µA(xi)}} >

min{min{µA(x1), ..., µA(xn)},min{
∧
i6=s

µA(xi)}} =

min{µA(x1), ..., µA(xn)} =

min{µA(f (s)(xs−1
1 , f(xn

1 ), xn
s+1)),min{

∧
i6=s

µA(xi)}} >

min{min{µA(f(xn
1 )),min{

∧
i6=s

µA(xi)}},min{
∧
i6=s

µA(xi)}} =

min{µA(f(xn
1 )),min{

∧
i6=s

µA(xi)}},

which completes the proof in this case. The rest is analogous.

Theorem 4.6. If A = (µA, γA) is an IFS subquasigroup of (G, f), then

µA(x) = sup{α ∈ [0, 1] : x ∈ U(µA;α)}

and

γA(x) = inf{α ∈ [0, 1] : x ∈ L(γA;α)}

for all x ∈ G.

Proof. Let δ = sup{α ∈ [0, 1] : x ∈ U(µA;α)} and let ε > 0 be given.
Then δ − ε < α for some α ∈ [0, 1] such that x ∈ U(µA;α). This means
that δ − ε < µA(x) so that δ 6 µA(x) since ε is arbitrary.

We now show that µA(x) 6 δ. If µA(x) = β, then x ∈ U(µA;β) and so

β ∈ {α ∈ [0, 1] : x ∈ U(µA;α)}.

Hence
µA(x) = β 6 sup{α ∈ [0, 1] : x ∈ U(µA;α)} = δ.

Therefore
µA(x) = δ = sup{α ∈ [0, 1] : x ∈ U(µA;α)}.
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Now let η = inf{α ∈ [0, 1] : x ∈ L(γA;α)}. Then

inf{α ∈ [0, 1] : x ∈ L(γA;α)} < η + ε

for any ε > 0, and so α < η + ε for some α ∈ [0, 1] with x ∈ L(γA;α). Since
γA(x) 6 α and ε is arbitrary, it follows that γA(x) 6 η.

To prove γA(x) > η, let γA(x) = ζ. Then x ∈ L(γA; ζ) and thus
ζ ∈ {α ∈ [0, 1] : x ∈ L(γA;α)}. Hence

inf{α ∈ [0, 1] : x ∈ L(γA;α)} 6 ζ,

i.e., η 6 ζ = γA(x). Consequently

γA(x) = η = inf{α ∈ [0, 1] : x ∈ L(γA;α)},

which completes the proof.

Theorem 4.7. Let {Hα : α ∈ Λ}, where Λ is a nonempty subset of [0, 1],
be a family of subquasigroups of (G, f) such that

(a) G =
⋃

α∈Λ

Hα,

(b) α > β ⇐⇒ Hα ⊂ Hβ for all α, β ∈ Λ.
Then an IFS A = (µA, γA) de�ned by

µA(x) = sup{α ∈ Λ : x ∈ Hα} and γA(x) = inf{α ∈ Λ : x ∈ Hα}

is an IFS subguasigroup of (G, f).

Proof. According to Theorem 4.4, it is su�cient to show that the nonempty
sets U(µA;α) and L(γA;β) are subquasigroups of (G, f).

In order to prove that U(µA;α) 6= ∅ is a subquasigroup of G, we con-
sider the following two cases:

(i) α = sup{δ ∈ Λ : δ < α} and (ii) α 6= sup{δ ∈ Λ : δ < α}.
Case (i) implies that

x ∈ U(µA;α) ⇐⇒
(
x ∈ Hδ ∀ δ < α

)
⇐⇒ x ∈

⋂
δ<α

Hδ,

so that U(µA;α) =
⋂

δ<α

Hδ which is a subquasigroup of (G, f).

For the case (ii), we claim that

U(µA;α) =
⋃
δ>α

Hδ.
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If x ∈
⋃

δ>α

Hδ then x ∈ Hδ for some δ > α. It follows that µA(x) > δ > α,

so that x ∈ U(µA;α). This shows that
⋃

δ>α

Hδ ⊆ U(µA;α).

Now assume that x 6∈
⋃

δ>α

Hδ . Then x 6∈ Hδ for all δ > α. Since α 6=

sup{δ ∈ Λ : δ < α}, there exists ε > 0 such that (α− ε, α) ∩ Λ = ∅. Hence
x 6∈ Hδ for all δ > α− ε, which means that if x ∈ Hδ then δ 6 α− ε. Thus
µA(x) 6 α− ε < α, and so x 6∈ U(µA;α). Therefore U(µA;α) ⊆

⋃
δ>α

Hδ ,

and thus U(µA;α) =
⋃

δ>α

Hδ , which is a subquasigroup of G.

Now we prove that L(γA;β) is a subquasigroup of (G, f). We consider
the following two cases:

(iii) β = inf{η ∈ Λ : β < η} and (iv) β 6= inf{η ∈ Λ : β < η}.
For the case (iii) we have

x ∈ L(γA;β) ⇐⇒
(
x ∈ Hη ∀ η > β

)
⇐⇒ x ∈

⋂
η>β

Hη

and hence L(γA;β) =
⋂

η>β

Hη which is a subquasigroup of (G, f).

For the case (iv), there exists ε > 0 such that (β, β+ε)∩Λ = ∅. We will
show that L(γA;β) =

⋃
η6β

Hη. If x ∈
⋃

η6β

Hη then x ∈ Hη for some η 6 β. It

follows that γA(x) 6 η 6 β so that x ∈ L(γA;β). Hence
⋃

η6β

Hη ⊆ L(γA;β).

Conversely, if x /∈
⋃

η6β

Hη then x /∈ Hη for all η 6 β, which implies

that x /∈ Hη for all η < β + ε, i.e., if x ∈ Hη then η > β + ε. Thus
γA(x) > β + ε > β, i.e., x /∈ L(γA;β). Therefore L(γA;β) ⊆

⋃
η6β

Hη and

consequently L(γA;β) =
⋃

η6β

Hη which is a subquasigroup of (G, f). This

completes the proof.

Let IFS(G, f) be the family of all IFS subquasigroups of (G, f) and
α ∈ [0, 1] be a �xed real number. For any A = (µA, γA) and B = (µB, γB)
from IFS(G, f) we de�ne two binary relations Uα and Lα on IFS(G, f)
as follows:

(A,B) ∈ Uα ⇐⇒ U(µA;α) = U(µB;α)

and

(A,B) ∈ Lα ⇐⇒ L(γA;α) = L(γB;α) .
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These two relations Uα and Lα are equivalence relations, give rise to par-
titions of IFS(G, f) into the equivalence classes of Uα and Lα, denoted
by [A]Uα and [A]Lα for any A = (µA, γA) ∈ IFS(G, f), respectively.
And we will denote the quotient sets of IFS(G, f) by Uα and Lα as
IFS(G, f)/Uα and IFS(G, f)/Lα, respectively.

If S(G, f) is the family of all subquasigroups of (G, f) and α ∈ [0, 1],
then we de�ne two maps Uα and Lα from IFS(G, f) to S(G, f)∪{∅} as
follows:

Uα(A) = U(µA;α) and Lα(A) = L(γA;α),

respectively, for each A = (µA, γA) ∈ IFS(G, f). Then the maps Uα and
Lα are well-de�ned.

Theorem 4.8. For any α ∈ (0, 1), the maps Uα and Lα are surjective

from IFS(G, f) onto S(G, f) ∪ {∅}.

Proof. Let α ∈ (0, 1). Note that 0∼ = (0,1) is in IFS(G, f), where 0 and
1 are fuzzy sets in (G, f) de�ned by 0(x) = 0 and 1(x) = 1 for all x ∈ G.
Obviously, Uα(0∼) = Lα(0∼) = ∅. If (H, f) is an n-ary subquasigroup of
(G, f), then for the IFS subquasigroup H = (χH , χH) we have Uα(H) =
U(χH ;α) = H and Lα(H) = L(χH ;α) = H. Hence Uα and Lα are
surjective.

Theorem 4.9. The quotient sets IFS(G, f)/Uα and IFS(G, f)/Lα are

equipotent to S(G, f) ∪ {∅} for any α ∈ (0, 1).

Proof. Let α ∈ (0, 1) be �xed and let

Uα : IFS(G, f)/Uα −→ S(G, f) ∪ {∅}

and

Lα : IFS(G, f)/Lα −→ S(G, f) ∪ {∅}

be the maps de�ned by

Uα([A]Uα) = Uα(A) and Lα([A]Lα) = Lα(A),

respectively, for each A = (µA, γA) ∈ IFS(G, f).
If U(µA;α) = U(µB;α) and L(γA;α) = L(γB;α) for A = (µA, γA)

and B = (µB, γB) from IFS(G, f), then (A,B) ∈ Uα and (A,B) ∈ Lα,
whence [A]Uα = [B]Uα and [A]Lα = [B]Lα . Hence the maps Uα and Lα are
injective.



Intuitionistic fuzzy approach to n-ary systems 225

To show that the maps Uα and Lα are surjective, let (H, f) be a sub-
quasigroup of (G, f). Then for H = (χH , χH) ∈ IFS(G, f) we have
Uα([H]Uα) = U(χH ;α) = H and Lα([H]Lα) = L(χH ;α) = H. Also
0∼ = (0,1) ∈ IFS(G, f). Moreover Uα([0∼]Uα) = U(0;α) = ∅ and
Lα([0∼]Lα) = L(1;α) = ∅. Hence Uα and Lα are surjective.

For any α ∈ [0, 1], we de�ne another relation Rα on IFS(G, f) as
following:

(A,B) ∈ Rα ⇐⇒ U(µA;α) ∩ L(γA;α) = U(µB;α) ∩ L(γB;α)

for any A = (µA, γA) and B = (µB, γB) from IFS(G, f). Then the
relation Rα is also an equivalence relation on IFS(G, f).

Theorem 4.10. For any α ∈ (0, 1) and any IFS subquasigroup A =
(µA, γA) of (G, f) the map Iα : IFS(G, f) −→ S(G, f) ∪ {∅} de�ned by

Iα(A) = Uα(A) ∩ Lα(A)

is suriective.

Proof. Indeed, if α ∈ (0, 1) is �xed, then for 0∼ = (0,1) ∈ IFS(G, f) we
have

Iα(0∼) = Uα(0∼) ∩ Lα(0∼) = U(0;α) ∩ L(1;α) = ∅ ,

and for any H ∈ S(G, f), there exists H = (χH , χH) ∈ IFS(G, f) such
that Iα(H) = U(χH ;α) ∩ L(χH ;α) = H.

Theorem 4.11. For any α ∈ (0, 1), the quotient set IFS(G, f)/Rα is

equipotent to S(G, f) ∪ {∅}.

Proof. Let α ∈ (0, 1) be �xed and let

Iα : IFS(G, f)/Rα −→ S(G, f) ∪ {∅}

be a map de�ned by Iα([A]Rα) = Iα(A) for each [A]Rα ∈ IFS(G, f)/Rα.
If Iα([A]Rα) = Iα([B]Rα) holds for some [A]Rα and [B]Rα from

IFS(G, f)/Rα, then

U(µA;α) ∩ L(γA;α) = U(µB;α) ∩ L(γB;α),

hence (A,B) ∈ Rα and [A]Rα = [B]Rα . It follows that Iα is injective.
For 0∼ = (0,1) ∈ IFS(G, f) we have Iα(0∼) = Iα(0∼) = ∅. If H ∈

S(G, f), then for H = (χH , χH) ∈ IFS(G, f), Iα(H) = Iα(H) = H.
Hence Iα is a bijective map.
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5. Open problems

The above results show that IFS subsets in n-ary quasigroups can be inves-
tigated in a similar way as IFS subsets of universal algebras. The problem
is with IFS subgroups of n-ary groups.

As it is well known (cf. [2] or [15]), a nonempty subset S of an n-ary
group (G, f) is an n-ary subgroup of (G, f) if it is closed with respect to
the operation f and x ∈ S for every x ∈ S, where x denotes the solution
of the equation f(x, . . . , x, x) = x. Since (G, f) is an n-ary group for every
x there exists only one x satisfying this equation. So, the map ϕ(x) = x is
well-de�ned but it is not one-to-one in general. Moreover, there exists n-ary
groups in which is one �xed element a = x such that f(y, . . . , y, a) = y is
valid for all y ∈ G. An element x plays a similar (but not identical) role as
an inverse element in classical groups.

Thus, by the analogy to the binary case, an fuzzy n-ary subgroup can be
de�ned as an fuzzy subgroupoid µ such that µ(x) > µ(x) for all x ∈ G, or
as an fuzzy subgroupoid µ such that µ(x) = µ(x) for all x ∈ G. For n = 3
these two concepts are equivalent Because in this case x = x for every x.

Unfortunately, for n > 3 these two concepts are not equivalent. Indeed,
as it is not di�cult to see, in the unipotent 4-ary group derived from the
additive group Z4 the map µ de�ned by µ(0) = 1 and µ(x) = 0.5 for all
x 6= 0 is an example of fuzzy subgroupoid in which µ(x) > µ(x) for all
x ∈ Z4. Thus µ is a fuzzy subgroup in the �rst sense, but not in the second
because for x = 2 we have µ(x) > µ(x).

These two concepts are equivalent in n-ary groups in which ϕk(x) = x
for some �xed k > 0 and all x.

Problem 1. Describe the conditions (for n-ary groups) under which these

two concepts are equivalent.

Problem 2. Describe the similarities and di�erences between these two

concepts of fuzzy n-ary subgroups (and IFS subgroups).

E. L. Post proved in [15] that any n-ary group can be embedded into
some binary group (called the covering group). On the other hand (cf.
for example [9]), with any n-ary group (G, f) is connected the family of
binary retracts, i.e., the family of binary groups (G, ◦) with the operation
x ◦ y = f(x, a2, . . . , an−1, y), where a2, . . . , an−2 ∈ G are �xed. All such
retracts are isomorphic to retracts of the form x ◦ y = f(x, a, . . . , a, y) and
induce some properties of the corresponding n-ary group.
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Problem 3. Find the connection between fuzzy subgroups of a given n-ary
group and fuzzy subgroups of its binary retracts and its covering group.

Problem 4. Describe IFS subgroups of n-ary groups and the connection

with IFS subgroups of the corresponding binary groups.
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Quasigroups and Related Systems 13 (2005), 229 − 236A�ne regular dodeahedron in GS�quasigroupsZdenka Kolar�Begovi¢ and Vladimir VoleneAbstratThe onept of the a�ne regular dodeahedron is de�ned in any GS�quasigroup bymeans of twelve ARP relation whih are valid for �ve out of twenty points. A number ofstatements about the onnetion of the orresponding verties of the dodeahedron willbe proved. Quaternary relations Par, GST , DGST an be found in these statements.The theorem of the unique determination of the a�ne regular dodeahedron by meansof its four verties whih satisfy ertain onditions will be proved. The geometrialinterpretation of all mentioned onepts and relations will be given in the GS�quasigroup
C( 1

2
(1 +

√

5)).
GS�quasigroups are de�ned in [2℄. In [3℄, [1℄ and [4℄ di�erent geometristrutures in GS�quasigroups are de�ned and investigated. In this papersome new "geometri" onepts in the general GS�quasigroup will be de-�ned.A quasigroup (Q, ·) is said to be GS�quasigroup if it is idempotent andif it satis�es the (mutually equivalent) identities

a(ab · c) · c = b, a · (a · bc)c = b.If C is the set of all points in Eulidean plane and if groupoid (C, ·)is de�ned so that aa = a for any a ∈ C and for any two di�erent points
a, b ∈ C we de�ne ab = c if the point b divides the pair a, c in the ratio ofgolden setion. In [2℄ it is proved that (C, ·) is a GS�quasigroup. We shalldenote that quasigroup by C(1

2
(1 +

√
5)) beause we have c = 1

2
(1 +

√
5) if

a = 0 and b = 1. The �gures in this quasigroup C(1

2
(1 +

√
5)) an be usedfor illustration of �geometrial� relations in any GS�quasigroup.2000 Mathematis Subjet Classi�ation: 20N05Keywords: GS�quasigroup, a�ne regular dodeahedron.



230 Z.Kolar�Begovi¢ and V.VoleneFrom now on let (Q, ·) be any GS�quasigroup. The elements of the set
Q are said to be points. The points a, b, c, d are said to be the verties ofa parallelogram and we write Par(a, b, c, d) if the identity a · b(ca · a) = dholds. In [2℄ numerous properties of the quaternary relation Par on the set
Q are proved. Let us mention just the following lemma whih we shall useafterwards.Lemma 1. From Par(a, b, c, d) and Par(c, d, e, f) follows Par(a, b, f, e).In [3℄ the onept of the GS�trapezoid is de�ned and explored. Thepoints a, b, c, d suessively are said to be the verties of the golden setiontrapezoid and it is denoted by GST(a, b, c, d) if the identity a · ab = d · dcholds. In [3℄ di�erent haraterizations of that relation are investigated, weshall mention the following lemmas.Lemma 2.GST (a1, b1, b2, a2),GST (a2, b2, b3, a3),. . .,GST (an−1, bn−1, bn, an)
⇒ GST (an, bn, b1, a1).Lemma 3. GST (a, b, c, d), GST (a, b, c′, d′) ⇒ GST (d, c, c′, d′).Lemma 4. Any two of the three statements GST (a, b, c, d), GST (a′, b, c, d′),Par(a, a′, d′, d) imply the remaining statement.Lemma 5. Any two of the three statements GST (a, b, c, d), GST (a, b′, c′, d),Par(b, b′, c′, c) imply the remaining statement.In [3℄ it is proved that any two of the �ve statements
GST (a,b,c,d), GST (b,c,d,e), GST (c,d,e,a), GST (d,e,a,b), GST (e,a,b,c) (1)imply the remaining statements.In [4℄ the onept of the a�ne regular pentagon is de�ned. The points
a, b, c, d, e suessively are said to be the verties of the a�ne regular pen-tagon and it is denoted by ARP (a, b, c, d, e) if any two (and then all �ve)of the �ve statements (1) are valid. In [4℄ the next properties of the a�neregular pentagon are proved.Lemma 6. A�ne regular pentagon is uniquely determined by any three ofits verties.Lemma 7. If the statement GST (a, b, c, d) is valid then there is one andonly one point e suh that the statement ARP (a, b, c, d, e) is valid.



A�ne regular dodeahedron in GS�quasigroups 231The onept of the DGS�trapezoid is introdued in [1℄. Points a, b, c, dare said to be the verties of the double golden setion trapezoid or shorterDGS�trapezoid and we write DGST(a, b, c, d) if the equality ab = dc holds.In [1℄ it is proved the next onnetion between GS�trapezoids and DGS�trapezoids in GS�quasigroups.Lemma 8. Any two of the three statements GST (a, e, f, d), GST (e, b, c, f)and DGST (a, b, c, d) imply the remaining statement.1. A�ne regular dodeahedron in GS�quasigroupsDe�nition 1. We shall say that the points a1, a2, a3, a4, a5, b1, b2, b3, b4, b5,

c1, c2, c3, c4, c5, d1, d2, d3, d4, d5 are the verties of an a�ne regular dodea-hedron and we shall write
ARD(a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, c1, c2, c3, c4, c5, d1, d2, d3, d4, d5)if the following twelve statements are valid (Figure 1)

ARP (a1, a2, a3, a4, a5), ARP (d1, d2, d3, d4, d5)

ARP (a3, b3, c1, b4, a4), ARP (d3, c3, b1, c4, d4),

ARP (a4, b4, c2, b5, a5), ARP (d4, c4, b2, c5, d5),

ARP (a5, b5, c3, b1, a1), ARP (d5, c5, b3, c1, d1),

ARP (a1, b1, c4, b2, a2), ARP (d1, c1, b4, c2, d2),

ARP (a2, b2, c5, b3, a3), ARP (d2, c2, b5, c3, d3).
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232 Z.Kolar�Begovi¢ and V.VoleneLet ARD(a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, c1, c2, c3, c4, c5, d1, d2, d3, d4, d5) bevalid further.For eah i ∈ {1, 2, 3, 4, 5} the verties ai and di, respetively bi and ciare alled the opposite verties.Theorem 1. 30 statements of the form Par(a2, a5, c3, c4) are valid
(Figure 2).
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Figure 2.Proof. The given statement follows from GST (a2, a1, b1, c4) andGST(a5, a1, b1, c3) aording to Lemma 4. 2For opposite verties of the ARD the following statement is valid.Theorem 2. If x and x′, respetively y and y′ are opposite verties of theARD then Par(x, y, x′, y′) is valid.Proof. It is su�ient to prove that, along with the standard symbols, forexample the statements Par(a1, b1,d1, c1) (Figure 3) and Par(a1, a3, d1, d3)are valid (Figure 4). As GST(a2, a1, b1, c4) is valid and aording to The-orem 1 Par(a2, b3, d5, c4) too, so by Lemma 4 GST(b3, a1, b1, d5) followswhih together with GST(b3, c1, d1, d5), based on Lemma 5, impliesPar(a1, c1,d1, b1).Aording to Theorem 1 we have Par(a1, a3, c5, c4) and Par(c5, c4, d3, d1)from whih by Lemma 1 Par(a1, a3, d1, d3) follows.



A�ne regular dodeahedron in GS�quasigroups 233

d
2d

2
d

3d
3

d
4d

4

b
5

c
2

d
1d

1

c
2

b
5

b
4

c
3

d
5d

5

c
3

b
4

c
1c

1

a
5

c
4

b
3

b
3

c
4

a
5

a
4

b
1

c
5c

5

b
1

a
4

a
1

a
2

a
3

b
2

b
2

a
3

a
2a

1

Figure 3. Figure 4.Theorem 3. 60 statements of the form GST (b3, a1, b1, d5) are valid (seeFigure 5).
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Figure 5.Proof. The statement is proved in the proof of the previous theorem.Theorem 4. 60 statements of the form GST(b1, a1, a3, b3) are valid (seeFigure 6).
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Figure 6.Proof. The statements follow from GST(b2, a2, a1, b1) and GST(b2, a2, a3, b3)aording to Lemma 3.Theorem 5. 60 statements of the form DGST (a3, a1, b1, d4) are valid (seeFigure 7).
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A�ne regular dodeahedron in GS�quasigroups 235Proof. Aording to Theorem 4 GST(a3, a2, c4, d4) is valid whih togetherwith GST(a2, a1, b1, c4) aording to Lemma 8 results in DGST(a3, a1, b1, d4).It is possible to prove that the a�ne regular dodeahedron is uniquelydetermined by its four independent verties i.e. verties whih are not inthe relation Par, GST or DGST. We shall prove only the following theorem.Theorem 6. For any points a1, a2, a5, b1 the points a3, a4, b2, b3, b4, b5,

c1, c2, c3, c4, c5, d1, d2, d3, d4, d5 are uniquely determined so that
ARD(a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, c1, c2, c3, c4, c5, d1, d2, d3, d4, d5)is valid.Proof. Let a3, a4, b5, c3, b2, c4 be suh points that ARP(a1, a2, a3, a4, a5),ARP(a5, b5, c3, b1, a1) and ARP(a1, b1, c4, b2, a2) and then let the points
b4, c2,b3,c5 be suh points that ARP(a4,b4,c2,b5,a5) and ARP(a2,b2,c5,b3,a3)are valid.From GST(b4, a4, a5, b5), GST(b5, a5, a1, b1), GST(b1, a1, a2, b2) andGST(b2, a2, a3, b3) aording to Lemma 2 GST(b3, a3, a4, b4) follows. A-ording to Lemma 7 there is the point c1 suh that ARP(a3, b3, c1, b4, a4)is valid, and then aording to Lemma 6 there are suh points d3, d4 thatARP(d3, c3, b1, c4, d4) is valid. From GST(c2, b5, a5, a4), GST(a4, a5, a1, a2),GST(a2, a1, b1, c4) and GST(c4, b1, c3, d3) aording to Lemma 2 the state-ment GST(d3, c3, b5, c2) follows. In the same way from GST(c5, b2, a2, a3),GST(a3, a2, a1, a5), GST(a5, a1, b1, c3) and GST(c3, b1, c4, d4) the state-ment GST(d4, c4, b2, c5) follows. Therefore aording to Lemma 7 thereare suh points d2, d5 that ARP(d2, c2, b5, c3, d3) and ARP(d4, c4, b2, c5, d5)are valid. From GST(d5, d4, c4, b2), GST(b2, c4, b1, a1), GST(a1, b1, c3, b5)and GST(b5, c3, d3, d2) aording to Lemma 2 GST(d2, d3, d4, d5) follows soaording to Lemma 7 there is suh a point d1 that ARP(d1, d2, d3, d4, d5)is valid.With the repeated appliation of Lemma 2 from GST(d2, c2, b5, c3),GST(c3, b5, a5, a1), GST(a1, a5, a4, a3), GST(a3, a4, b4, c1) follows GST(c1,

b4, c2, d2), from GST(d1, d2, d3, d4), GST(d4, d3, c3, b1), GST(b1, c3, b5, a5)and GST(a5, b5, c2, b4) follows GST(b4, c2, d2, d1), from GST(d5, c5, b2, c4),GST(c4, b2, a2, a1), GST(a1, a2, a3, a4), GST(a4, a3, b3, c1) follows GST(c1,

b3, c5, d5), and from GST(d1, d5, d4, d3), GST(d3, d4, c4, b1), GST(b1, c4, b2,

a2) and GST(a2, b2, c5, b3) follows GST(b3, c5, d5, d1) so that we have the�nal statements ARP(d1, c1, b4, c2, d2), ARP (d5, c5, b3, c1, d1).
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Maple implementation of the ElGamal public key

encryption scheme working in SMG(pm)

Czesªaw Ko±cielny

Abstract

It has been shown [2, 3, 4] that in ElGamal public key encryption scheme [6, 7, 8]
working over SMG(pm), the need of �nding primitive elements of GF (pm), necessary
if the system works traditionally but unfeasible in the case of huge �elds, is eliminated.
Thus, the discussed system is user-friendly, giving the possibility of very strong encryption
with the key of order 10.000 bits and more. The construction of such cryptosystem is
of great practical importance, therefore, the paper informs the reader in detail how to
resolve this problem using Maple.

1. Introduction

Recall that algorithms describing ElGamal public-key encryption scheme
[3, 4, 5] adapted for working in SMG(pm) are as follows:

Key generation: Each entity creates its public key and the corresponding
private key. So each entity N ought to do the following:

• Choose an arbitrary polynomial f(x) of the degree m over GF (p) and
construct a spurious multiplicative group of GF (pm) that is SMG(pm),
consisting of the set G = {1, . . . , pm−1} and of the operation of mul-
tiplication of elements from this set, which is performed by means of
a function M_(x, y), x, y ∈ G. The function P_(x, k), carrying

2000 Mathematics Subject Classi�cation: 94A60, 20N
Keywords: cryptography, public-key ciphers, spurious multiplicative group of Galois
�eld, Maple.
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out the operation of rising any element x from G to a kth power,
pm − 1 6 k 6 −pm + 1, is also de�ned.

• Select a random invertible element α ∈ SMG(pm), α 6= 1.

• Choose a random integer a ∈ G, 2 6 a 6 pm − 2, and compute the
element β = P_(α, a).

• N 's public key is α and β, together with f(N) and the functionsM_
and P_, if these last three parameters are not common to all the
entities.

• X 's private key is a.

Encryption: Entity B encrypts a message m for A, which A decrypts.
Thus B should make the following steps:

• Obtain A's authentic public key α, β, and f(x) together with the
functions M_ and P_ if these parameters are not common.

• Represent the message m as a number from the set G.

• Choose a random integer k ∈ G.

• Determine numbers c1 =P_(α, k) and c2 =M_(m, P_(β, k)).

• Send the ciphertext c = (c1, c2) to A.

Decryption: To �nd plaintext m from the ciphertext c = (c1, c2), A
should perform the following operations:

• Use the private key a to compute g = P_(c1, a) and then retrieve
the plaintext by computing m = M_(P_(g, −1), c2).

2. Maple routines as elements of an application

for very secure encrypting of electronic mail

using ElGamal algorithm working in SMG(pm)

The application discussed will realize a practical task, so it is assumed that
the public, key, secret key, plain text and cryptogram will be �les. Therefore,
the routines for converting �le into number and number into �le, denoted
as f2n and n2f, correspondingly, are needed �rst. Here they are:
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> f2n := proc(fn::string)

local l2n, f2l;

l2n := proc(l::list)

local t, m;

t := modp1(ConvertIn(l, x), nn^2);

subs(x = 256, t)

end proc;

f2l := proc(fn::string)

local l, f, fs;

f := fopen(fn, READ, BINARY);

fs := filepos(f, infinity);

filepos(f, 0);

l := readbytes(f, fs);

fclose(f);

l

end proc;

l2n(f2l(fn))

end proc:

> n2f := proc(n::nonnegint, fn::string)

local l2f, n2l;

l2f := proc(l::list, fn::string)

local f;

f := fopen(fn, WRITE, BINARY);

writebytes(f, l);

fclose(f)

end proc;

n2l := proc(nn::nonnegint)

if nn = 0 then [0]

else convert(nn, base, 256)

end if

end proc;

l2f(n2l(n), fn)

end proc:

The formal parameter fn of the procedure f2n represents the name of the
�le, which will be converted into a number, and formal parameters of the
routine n2f denote the number n which will be converted into the �le named
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fn. The variable nn appearing in the routine f2n is global, and it is com-
puted by the routine

> INIT_ := proc(pn::posint, fx::polynom)

global ext, n, nn;

nn := pn^degree(fx);

ext := modp1(ConvertIn(modp(fx, pn), x), pn);

n := pn

end proc:

which initializes calculations in SMG(pm) and returns, in addition, global
variables n and ext, necessary for routines M_, P_ and MI_. These three rou-
tines (contained in [5], Appendix C) are also indispensable. They perform
multiplication, raising to a power and �nding the multiplicative inverse in
SMG(pm), respectively.

The fundamental task in the algorithm of key generations ful�lls the
routine

> frel := proc()

local alpha, beta, a, l, res, si, i;

randomize;

res := "*";

while res = "*" do

alpha := rand(rand((nn-1)/2)() .. nn - 1)();

try res := MI_(alpha) catch: res := "*" end try

end do;

a := rand(2 .. nn - 2)();

beta := P_(alpha, a);

alpha, beta, a

end proc:

which returns a random invertible element α and an appropriate element
β from SMG(pm) being the components of a public key, and an integer
a, playing the role of a secret key. It is evident that there exist many
procedures able to do this task.

At last the encryption routine

> ElGEnc := proc(ptfn, c1fn, c2fn::string, alpha, beta)

local c1, c2, k, m;

m := f2n(ptfn);
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k := rand(2 .. nn - 2)();

c1 := P_(alpha, k);

c2 := M_(m, P_(beta, k));

n2f(c1, c1fn);

n2f(c2, c2fn)

end proc:

and the decryption routine

> ElGDec := proc(c1fn, c2fn, rptfn::string, a::posint)

local c1, c2, g, ig, m;

c1 := f2n(c1fn);

c2 := f2n(c2fn);

g := P_(c1, a);

m := M_(P_(g, -1), c2);

n2f(m, rptfn)

end proc:

acting according to the description given in Section 1, will be necessary.
The ElGEnc procedure enciphers the plaintext �le having the �lename ptfn
taking into account the public key components alpha and beta and creates
two cryptogram �les named as c1fn and c2fn. The ElGDec procedure
deciphers cryptogram �les c1fn and c2fn and creates the retrieved plaintext
�le rptfn taking into account the secret key a.

From the above 9 blocks a practiced programmer will easily assemble
a user-friendly application for encrypting the electronic mail in the Maple
environment. As an example, the author, using the above bricks, has built
an application consisting of three procedures:

• KeyGen(plaintextf_file_size, degree_of_fx),

• Encrypting(plaintextf_file, smg_data_file),

• Decrypting(c1_file, c2_file, smg_data_file).

The KeyGen procedure automatically chooses a Mersenne prime p in such a
way that the cryptosystem could process �les of the desired size. Doing this
it must take into account the degree of the polynomial f(x) over GF (p).
Next the routine randomly generates this polynomial, computes the integer
n = pdeg(f(x)) and generates a random cryptographic key. The public and
private keys in the �les pkf and skf are stored, correspondingly, while n
and f(x) to the �le nfx.smg are written.
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The Encrypting procedure takes f(x) and n from the �le nfx.smg and
the public key of the desired correspondent form the �le pkf. These data
are su�cient to encrypt a plaintext �le. It is assumed that the name of
a plaintext �le consists of one character and exactly of three characters
of extension. Assuming that the name of a plaintext �le is "n.eee", the
generated cryptogram is written to the �les c1neee.cry and c2neee.cry.
The contents of the plaintext �le may be arbitrary (text, voice, picture,
etc.), but, evidently, the �le could not contain leading 0 bytes.

The Decrypting procedure takes f(x) and n from the �le nfx.smg,
an appropriate secret key from the �le skf and decrypts the crytogram
�les c1neee.cry and c2neee.cry (assuming that the �le n.eee has been
enciphered). The retrieved plaintext in the �le nr.eee, having the proper
extension, is stored.

If, for example, we want to process plaintext �les of size 1.300 Bytes us-
ing f(x) of degree 5, we ought to execute three statements. Under the above
assumption a typical use and output of this application is the following:

> KeyGen(1300, 5);

KEY GENERATION:

Maximal plaintext file size = 1376 bytes.

Keys computed in 7 s and saved.

Public key file name: "pkf".

Private key file name: "skf".

Required for encryption/decryption data,

i.e. n and f(x) saved in the file "nfx.smg".

> Encrypting("m.txt", "nfx.smg");

ENCRYPTING:

Plaintext file size = 1301 bytes.

Plaintex file name: "m.txt".

Public key file name: "pkf".

Cryptogram files named "c1mtxt.cry"

and "c2mtxt.cry" computed in 14 s and saved.

> Decrypting("c1mtxt.cry", "c2mtxt.cry", "nfx.smg");

DECRYPTING:

Secret key taken from the file "skf".

SMG data taken from the file: "nfx.smg".
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Cryptogram files named: "c1mtxt.cry" and "c2mtxt.cry".

Recovered plaintext file named "mr.txt"

computed in 7 s and saved.

We see that the program informs the user about the stages of processing.
In the case considered the computations are performed on integers having
3316 decimal digits. The secret key is an integer belonging to the set of
order 0.7004904817 · 103316, therefore, the cryptographic key of the system
equals exactly to 10.007 bits.

The three discussed procedures are not listed here, because they occupy
place without making a contribution to the main problem of the paper. But
if the reader wants to see them, the author willingly realizes his wish by
email (joczeko@poczta.onet.pl).

3. Conclusions

In the paper it has been proved that ElGamal public key encryption scheme
working in SMG(pm) may be easily implemented in Maple. It is obvi-
ous that each elementary routine mentioned in Section 2 and needed for
this implementation can be, without di�culty, translated into any com-
piled language. Such translation allows to considerably accelerate encryp-
tion/decryption rate. Thus, the discussed cryptosystem is suitable not only
for encrypting keys for symmetric cipher but also for direct encryption of
messages.

It is worth noticing that ElGamal public key encryption may also work
in the multiplicative system of gff(nm) [5].
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Computing in GF(pm) and in gff(nm) using Maple

Czesªaw Ko±cielny

Abstract

It is mentioned in [1] that the author intends to show how to construct strong ciphers
using SMG(pm)♦ . But in order to implement such cryptosystems, an e�ective tool for
computing in GF (pm) and SMG(pm), in the form of an appropriate hardware or soft-
ware, is needed. The operation of this hardware or software ought to be de�ned by
means of the detailed algorithms. Thus, to get ready the execution of his intention,
the author describes in the paper these algorithms, which are represented as routines,
written in the comprehensive Maple interpreter, intelligible both for mathematicians and
programmers as well. The routines may be used either immediately as elements of en-
crypting/decrypting procedures in the Maple programming environment or can be easily
translated into any compiled programming language (in this case encryption/decryption
can be performed at least 100 times faster than in the Maple environment). Aside from
that on the basis of the mentioned routines any VLSI chip as the encrypting/decrypting
hardware for SMG(pm)− and GF (pm)−based cryptosystems can be produced.

It has also been shown that SMG(pm) can be considered as a multiplicative system
of an algebraic structure with addition and multiplication operations, containing a large
class of systems, including GF (pm). The system is denoted as gff(nm), and multipli-
cation in it is performed modulo an arbitrary polynomial od degree m over the ring Zn.
That way gff(nm) is a generalization of Galois �eld, very well suited for applications in
cryptography. This system is named a generalized �nite �eld.

♦For all prime p, for any positive integer m ≥ 2 and for any polynomial f(x) of
degree m over GF (p) there exists an algebraic system SMG(pm) = 〈Gx, •〉, consisting of
the set Gx of all pm−1 non-zero polynomials of degree d over GF (p), 0 6 d 6 m−1, and
of an operation of multiplication of these polynomials modulo polynomial f(x). Such an
algebraic system is a generalization of the multiplicative group of GF (pm), therefore, it
is called the spurious multiplicative group of GF (pm).

2000 Mathematics Subject Classi�cation: 05B15, 20N05, 94B05
Keywords: Galois �elds, generalized �nite �elds, cryptography, Maple.
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1. Introduction

It is not possible to do serious application research in the area of cryptology
without complete knowledge concerning several algebraic systems. Promi-
nent position on the list of such systems takes the Galois �eld. Thus, now
it will be reminded to the reader about the main properties of this system,
which are the most important for cryptographic practice.

Recall that for all prime p, for any positive integer m ≥ 1 and for any
irreducible polynomial

f(x) = xm +
m∑

i=1

fm−i x
m−i (1)

of degree m over GF (p) there exists an algebraic system called Galois �eld
and denoted as GF (pm)

GF (pm) = 〈F , +, ·〉, (2)

consisting of the set F of all pm polynomials of degree d over GF (p),
0 6 d 6 m − 1, and of operations of addition and multiplication of these
polynomials. Since GF (pm) is a �eld, it must satisfy the following set of
axioms, concerning any �eld:

F1 The system 〈F , +〉, is an abelian group.

F2 The system 〈F∗, ·〉, is an abelian group, F∗ = F \ {0}, 0 is an
additive identity element.

F3 ∀a, b, c ∈ F (a · (b + c) = a · b + a · c) ∧ ((a + b) · c = a · c + b · c).

In the case of GF (pm) the above axioms are ful�lled if addition and multi-
plication are performed according to the way shown beneath.

Let

a(x ) =
m∑

i=1

am−i x
m−i, b(x ) =

m∑
i=1

bm−i xm−i (3)

be two elements of F . Then their sum will be

a(x ) + b(x ) = c(x ) =
m∑

i=1

cm−i xm−i , (4)
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where
ci ≡ ai + bi (mod p), i = 0, . . . , m− 1.

Similarly

a(x )− b(x ) = d(x ) =
m∑

i=1

dm−i xm−i , (5)

where
di ≡ ai − bi (mod p), i = 0, . . . , m− 1.

The multiplication is more complicated. To calculate the product of two
elements belonging to GF (pm) one must �rst compute

g(x) = a(x) · b(x) = g2 m−2 x2 m−2 + g2 m−3 x2 m−3 + · · ·+ g2 x2 + g1 x + g0

where

g0 ≡ a0 b0 (mod p),
g1 ≡ a1 b0 + a0 b1 (mod p),
g2 ≡ a2 b0 + a0 b2 + a1 b1 (mod p),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
g2 m−3 ≡ am−1 bm−2 + am−2 bm−1 (mod p),
g2 m−2 ≡ am−1 bm−1 (mod p).

Next, to obtain �nally the product h(x) of two GF (pm) elements (3), we
must represent g(x) as

g(x) = u(x) · f(x) + h(x) (6)

using addition and multiplication modulo p, wherefrom

a(x) · b(x) = h(x).

The operation of multiplication in GF (pm) may also be shortly written as

h(x) ≡ a(x) · b(x) (mod f(x)).

The multiplicative inverse a−1(x) of the element a(x) can be determined
by means of extended Euclidean algorithm for polynomials, which yields:
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a(x) · a−1(x) + w(x) · f(x) = 1,

that is

a(x) · a−1(x) ≡ 1 (mod f(x)).

So

a(x)/b(x) = a(x) · b−1(x).

We see that we can compute in GF (pm) as in any �eld, performing ad-
dition, subtraction, multiplication, division and the operation of rising to
a power (by repeating the multiplication operation). The presented prin-
ciples of computing in Galois �eld may be suitably optimized or improved
to be well adapted for hardware or software implementation. It's worth
mentioning here that elements of GF (pm) can be represented not only as
polynomials or vectors over GF (p), but also as numbers. The latter case
is the most interesting for cryptography, therefore, we will continue the
problem of computing in Galois �eld, considering mainly the system

GF (pm) = 〈F, +, •〉, (7)

where F= {0, 1, . . . , pm − 1}. The system (7) is obtained from the system
(2) using the isomorphic mapping

σ : F → F, (8)

de�ned by the function

σ(a(x)) = a(p) = A ∈ F, (9)

converting a polynomial a(x) ∈ F to a number from the set F.

The mapping σ is an isomorphism, so the inverse mapping σ−1 exists
and is described by means of the following two-step algorithm:

Step 1:

convert a base 10 number A ∈ F to base p, namely,

A = am−1 · · · a1 a0, ai ∈ {0, 1, . . . , p− 1},
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Step 2:
σ−1(A) = a0 + a1 x + · · ·+ am−1 xm−1 ∈ F .

Thus,

∀ A, B ∈ F (A • B = σ(σ−1(A) · σ−1(B))) ∧
(A + B = σ(σ−1(A) + σ−1(B))). (10)

It is also said that the �eld GF (pm) is the �eld extension GF (p)[x]/(f(x))
where f(x) is an irreducible polynomial of degree m over the integers
modulo p.

According to the above description of operations in a Galois �eld we
may note that to e�ciently implement arithmetic in GF (pm) we need fast
routines doing addition of polynomials over GF (p) and their multiplication
over GF (p) modulo irreducible polynomial with coe�cients from GF (p).
Besides we also need a function which realizes the mappings σ and σ−1,
the function determining the extended Euclidean algorithm for polynomial,
etc. The system Maple provides such set of the routines which use a special
data representation. Knowledge of this representation is not required by the
user who wants to compute in Galois �elds only. In this case a user-friendly
module GF su�ces.

It is mentioned in the Maple manual that if the modulus p is su�ciently
small, operations in GF (pm) are performed directly by the hardware. The
largest prime for which computations are done in this way is the number
46327 (on a 32 bit machine).

2. Computing in GF (pm) using Maple GF package

The Maple library package GF, having the structure of a module, returns
routines and constants performing arithmetic in GF (pm). To begin com-
puting we must �rst create an instance F of a Galois �eld GF (pm) using,
for example, the statements

#arithmetic in GF(125) has been defined

> p := 5: m := 3:

f := 1 + 2*x + x^3:

F := GF(p, m, f):
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The actual parameters p, m and f exactly correspond to the variables
p, m, and the polynomial f(x), used in Section 1. The parameter f is
optional - if it is absent in the invocation statement of the module GF, then
the system Maple selects itself the irreducible polynomial f(T). This case
will not be considered here, because we must control the behavior of the
�eld using the polynomial f.

Addition, subtraction, multiplication, raising to the k−th power, com-
putation of the multiplicative inverse and division in the Galois �eld are
performed by means of the following routines, respectively:

F:-`+`(x1, x2, ..., xn::zppoly) : n−ary addition
F:-`-`(x1, x2::zppoly) : unary or binary subtraction
F:-`*`(x1, x2, ..., xn::zppoly) : n−ary multiplication
F:-`^`(x::zppoly, k::integer) : raising x to the k−th power
F:-inverse(x::zppoly) : unary inversion
F:-`/`(x1, x2::zppoly) : unary or binary division

The operands x1, x2, ..., xn and x of the routines performing oper-
ations in GF (pm) must be of a special type, zppoly, relating to the Maple
modp1 function. The results returned by these routines are of the same type.
But we may need to operate using operands of type polynom, nonnegint
and zppoly and obtain these three type of results. To achieve the aim we
ought to use the following unary conversion routines:

routine name type of result

F:-input(x::integer) zppoly

F:-output(x::zppoly) integer

F:-ConvertIn(x::symbol, +, * or ^) zppoly

F:-ConvertOut(x::zppoly) symbol, +, * or ^

In practice, we usually use operands of type polynom or nonnegint and
we want to have the type of results of computations of the same type as
that of operands.

Example 1. Suppose that the statements in the beginning of the section
and the statements beneath have been executed. We will now compute in
GF (125). After de�ning three elements of GF (125) in the form of poly-
nomials ax, bx and cx, we can observe how to compute the multiplicative
inverse of ax, the additive inverse of bx, the sum of ax, bx and cx and the
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product of these three elements:

> ax := 4*x + 3: bx := 2*x + 1: cx := x^2 + 2:

> F:-ConvertOut(F:-inverse(

F:-ConvertIn(ax)));

4x2 + 2x + 4

> F:-ConvertOut(F:-`-`

F:-ConvertIn(bx)));

3x + 4

> F:-ConvertOut(F:-`+`(

F:-ConvertIn(ax),

F:-ConvertIn(bx),

F:-ConvertIn(cx)));

x2 + x + 1

> F:-ConvertOut(F:-`*`(

F:-ConvertIn(ax),

F:-ConvertIn(bx),

F:-ConvertIn(cx)));

3x2 + 2x + 1

Further let us de�ne three numbers A, B and C which will play the role
of elements form GF (125) by means of the appropriate statement and let's
execute the same operations as previously:

> A := 23: B := 11: C := 27:

> F:-output(F:-inverse(

F:-input(A)));

114

> F:-output(F:-`-`(

F:-input(B)));

19
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> F:-output(F:-`+`(

F:-input(A),

F:-input(B),

F:-input(C)));

31

> F:-output(F:-`*`(

F:-input(A),

F:-input(B),

F:-input(C)));

86

It is also possible to calculate more complicated expressions over
GF (125) using directly the package GF. E.g. the expression

w =
A B + A C + B C

A + B + C

may be calculated as follows:

> w := F:-output(F:-`/`(

F:-`+`(

F:-`*`(F:-input(A), F:-input(B)),

F:-`*`(F:-input(A), F:-input(C)),

F:-`*`(F:-input(B), F:-input(C))),

F:-`+`(F:-input(A), F:-input(B), F:-input(C))));

w := 6

Programming of similar expressions can be considerably simpli�ed by
means of auxiliary procedures having short names. For example, if we use
routines named a_, m_ and d_ for performing addition, multiplication and
division in GF (pm), respectively, then the above expression will have the
form

> w := d_(a_(m_(A, B), m_(A, C), m_(B, C)), a_(A, B, C));

w := 6

which gives the same result but is much more simple. In Appendices A and
B it is shown how to construct such routines.

The module GF also exports the following functions:
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F:-trace(x::zppoly),

F:-norm(x::zppoly),

F:-order(x::zppoly),

F:-random(),

F:-isPrimitiveElement(x::zppoly),

F:-PrimitiveElement(),

F:-zero,

F:-one,

F:-variable,

F:-size,

F:-factors(),

F:-extension,

which allow to do an advanced research on applications of Galois �elds, but
cogitation about them is not within the scope of this paper.

3. A system gff(nm) - a generalized �nite �eld

It is possible to view Galois �eld from another angle. Now let n be an
arbitrary integer ≥ 2, m− an arbitrary integer ≥ 1, f(x)− an arbitrary
polynomial of degree m over the ring Zn. Next let

gff(nm) = 〈F[x], +, ·〉, (11)

be an algebraic system consisting of the set F[x] of all nm polynomials of
degree d , 0 6 d 6 m− 1, 0 included, over the ring Zn and of operations of
addition and multiplication of these polynomials. Operations on elements of
gff(nm) are performed nearly in the same manner as in GF (pm): addition
over the ring Zn, multiplication over the same ring modulo polynomial f(x).

It is easy to observe that gff(nm) ful�lls the following set of axioms:

f1 The system 〈F[x], +〉, is an abelian group.

f2 The system 〈F[x]∗, ·〉 is an abelian quasigroupoidz ,
F[x]∗ = F[x] \ {0}, where 0 is an additive identity element.

z The groupoid is an algebraic structure on a set with a binary operator. The only
restriction on the operator is closure. It is assumed here that for the quasigroupoid
a closure is not required.



254 C. Ko±cielny

f3 ∀a, b, c ∈ F[x] (a · (b + c) = a · b + a · c) ∧ ((a + b) · c = a · c + b · c).

The multiplicative system of gff(nm) is an abelian quasigroupoid
〈F[x]∗, ·〉, which is not closed under multiplication, since if n is not a prime,
then for some a, b ∈ F[x] the case a · b = 0 may occur. Several properties
of this quasigropupoid in [1] are described. For example, the elements of
this quasigroupoid belong to two disjoint sets - a set of invertible elements
and a set of non invertible elements. Any invertible element is a generator
of cyclic group, being a subgroup of the groupoid. Furthermore one should
know that if n is not a prime of if f(x) is not irreducible then the system
gff(nm) is not an integral domain. In this case the extended Euclidean al-
gorithm for polynomials fails and cannot be able to determine all invertible
elements in gff(nm).

After applying the mapping (8) to the system (11), taking into account
that now p = n, we obtain the system

gff(nm) = 〈F, +, •〉, (12)

the elements of which are numbers from the set {0, 1, . . . , nm − 1}. Such
system is the most useful for cryptography.
Example 2. To familiarize the reader with some properties of gff(nm)
having elements in the form of numbers the tables of operations in gff(42)
and in gff(16) have been calculated and shown in Table 1 and Table 2.
We may notice that multiplication on invertible elements is commutative
and associative, so, an appropriate fragment of the multiplication table is a
Latin square.

To the family of systems gff(nm) belongs a big class of algebraic struc-
tures. E.g. if n is a prime and f(x) is not irreducible then the multiplicative
structure of gff(pm) forms SMG(pm), if n is prime and f(x) irreducible,
gff(nm) becomes GF (pm). Thus, gff(nm), as a generalization of �nite
�elds, may be called a generalized �nite �eld. Although all properties
of gff(nm) are not yet known, this algebraic structure will certainly be
broadly applied, mainly in cryptography and coding.

4. A method of computing in gff(nm)

While de�ning Galois �eld using Maple package one invokes theGF module
with or without the third actual parameter, namely, without the irreducible
polynomial. If we use this parameter, the polynomial must be absolutely
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Table 1: Addition and multiplication tables in gff(42) with f(x) = x2+x+3
over Z[4]. The set of invertible elements: {1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15}

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 0 1 2 7 4 5 6 11 8 9 10 15 12 13 14
4 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
5 5 6 7 4 9 10 11 8 13 14 15 12 1 2 3 0
6 6 7 4 5 10 11 8 9 14 15 12 13 2 3 0 1
7 7 4 5 6 11 8 9 10 15 12 13 14 3 0 1 2
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 10 11 8 13 14 15 12 1 2 3 0 5 6 7 4

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 8 9 10 15 12 13 14 3 0 1 2 7 4 5 6
12 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 12 1 2 3 0 5 6 7 4 9 10 11 8
14 14 15 12 13 2 3 0 1 6 7 4 5 10 11 8 9
15 15 12 13 14 3 0 1 2 7 4 5 6 11 8 9 10

• 0 1 3 4 5 6 7 9 11 12 13 14 15 2 8 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 3 4 5 6 7 9 11 12 13 14 15 2 8 10
3 0 3 1 12 15 14 13 11 9 4 7 6 5 2 8 10
4 0 4 12 13 1 5 9 14 6 7 11 15 3 8 10 2
5 0 5 15 1 6 11 12 7 13 3 4 9 14 10 2 8
6 0 6 14 5 11 13 3 12 4 15 1 7 9 8 10 2
7 0 7 13 9 12 3 6 5 15 11 14 1 4 10 2 8
9 0 9 11 14 7 12 5 1 3 6 15 4 13 2 8 10

11 0 11 9 6 13 4 15 3 1 14 5 12 7 2 8 10
12 0 12 4 7 3 15 11 6 14 13 9 5 1 8 10 2
13 0 13 7 11 4 1 14 15 5 9 6 3 12 10 2 8
14 0 14 6 15 9 7 1 4 12 5 3 13 11 8 10 2
15 0 15 5 3 14 9 4 13 7 1 12 11 6 10 2 8
2 0 2 2 8 10 8 10 2 2 8 10 8 10 0 0 0
8 0 8 8 10 2 10 2 8 8 10 2 10 2 0 0 0

10 0 10 10 2 8 2 8 10 10 2 8 2 8 0 0 0
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Table 2: Addition and multiplication tables in gff(16) with f(x) = x over
Z[16]. The set of invertible elements: {1, 3, 5, 7, 9, 11, 13, 15}

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8

10 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

• 0 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14
3 0 3 9 15 5 11 1 7 13 6 12 2 8 14 4 10
5 0 5 15 9 3 13 7 1 11 10 4 14 8 2 12 6
7 0 7 5 3 1 15 13 11 9 14 12 10 8 6 4 2
9 0 9 11 13 15 1 3 5 7 2 4 6 8 10 12 14

11 0 11 1 7 13 3 9 15 5 6 12 2 8 14 4 10
13 0 13 7 1 11 5 15 9 3 10 4 14 8 2 12 6
15 0 15 13 11 9 7 5 3 1 14 12 10 8 6 4 2
2 0 2 6 10 14 2 6 10 14 4 8 12 0 4 8 12
4 0 4 12 4 12 4 12 4 12 8 0 8 0 8 0 8
6 0 6 2 14 10 6 2 14 10 12 8 4 0 12 8 4
8 0 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0

10 0 10 14 2 6 10 14 2 6 4 8 12 0 4 8 12
12 0 12 4 12 4 12 4 12 4 8 0 8 0 8 0 8
14 0 14 10 6 2 14 10 6 2 12 8 4 0 12 8 4
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irreducible, otherwise the module does not work. This means that the GF
module is not suitable for computing in gff(nm), in which multiplication
of its elements is taken over Zn modulo an arbitrary polynomial f(x) with
coe�cients from Zn. In order to overcome this obstacle one should resort to
the source on the basis of which the GF module has been built: the modp1
function.

It may be said, without going into details, that operations in gff(nm)
are performed by means of the function modp1 according to the description
given in Section 1. Using the function modp1, the author worked out the
procedures for computing in gff(nm) and listed them in the Appendix C.
These are the routines: A_, S_, M_, D_, AI_, MI_ and P_, for performing
addition, subtraction, multiplication, division, calculation of additive and
multiplicative inverses and raising to a power in gff(nm), respectively. The
routine MI_ determines multiplicative inverses by means of extended Eu-
clidean algorithm for polynomials (and usually cannot �nd all invertible
elements). The routine MIp_, for computing multiplicative inverses using
the multiplication operation and raising to a power in rather small gff(nm),
is also listed.

To begin calculations one ought to invoke the procedure INIT_ with
determined actual parameters corresponding to formal parameters nn and
fx, representing the modulus n and the polynomial f(x), which de�nes
multiplication. The procedure turns the actual parameter corresponding to
the formal parameter nn into the global variable n and the actual param-
eter which replaces the formal parameter fx into the global variable ext.
These two global variables are indispensable for assuring the operation of
the remaining routines.

Here is an example of usage of these procedures:

Example 3. We will compute the expression

t =
A B + A C + B C

1
A − 1

B + 1
C

in gff(162) with f(x) = x2 +2x+11 for A = 13, B = 254, C = 50, . Then
we calculate the same expression in GF (28) when f(x) = x8+x4+x3+x+1.

> INIT_(16, x^2 + 2*x + 11): A := 13: B := 24: C := 1:

> t := D_(A_(M_(A, B), M_(A, C), M_(B, C)),

A_(A_(MI_(A), AI_(MI_(B))), MI_(C)));
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t := 60

> INIT_(2, x^8 + x^4 + x^3 + x + 1):

> t := D_(A_(M_(A, B), M_(A, C), M_(B, C)),

A_(A_(MI_(A), AI_(MI_(B))), MI_(C)));

t := 184

The result of computations in gff(162) has been achieved since there ex-
ist there multiplicative inverses for A, B and C. The element 27 ∈ gff(162)
is not invertible, then if A = 27 the expression t will not be determined.

5. Conclusions

Apart from the discussion about using the GF Maple library package in
application research, in the paper a new algebraic structure denoted as
gff(nm) and named generalized �nite �eld, has been de�ned. For the
de�ned structure a complete set of routines for performing all possible op-
erations on elements of gff(nm) has been presented. Since gff(nm) is a
generalization of Galois �eld, the routines can be also used for doing arith-
metic in �nite �elds and may stand in for the Maple GF module in the case
of computing in huge �elds, when this module is useless (i.e. when it is not
able to factorize pm − 1). The time of execution of any operation depends
on the number of elements of gff(nm) and on the size of operands. If, for
example, nm ≈ 1030, 10300, 103000 and 1030000, x = dnm/2e, y = x, C(x, y)
denotes an arbitrary binary or n-ary operation on elements x, y ∈ gff(nm),
then the time of execution of one such operation equals approximately to 0.1
milliseconds, 0.3 milliseconds, 5 milliseconds and 250 milliseconds, respec-
tively (Maple 9.5 on PC with the processor Pentium 4). The GF module
gives similar results, but it has problems with computing in many �elds of
order higher than 10100.

The generalized �nite �eld, in comparison with Galois �eld, seems to
be messy and defective. This feature ensures that gff(nm) will be used
mainly for implementing transformations creating di�usion and confusion
during the encryption process, and in random number and cryptographic
key generators.
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Appendix A

In this Appendix the routines ax_, sx_, mx_, dx_, px_, mix_ and aix_,
for doing addition, subtraction, multiplication, division, rising to a power,
computing additive and multiplicative inverses in GF (pm), respectively,
are listed. The procedures will work properly if we create an instance of
pm− element Galois �eld by means of the statement

> F := GF(p, m);

or

> F := GF(p, m, fx);

after previously de�ning actual parameters p, m, and, in the second state-
ment, fx, which denote a prime, a positive integer and an irreducible poly-
nomial of degree m over GF (p). The routine ax_ is n−ary, the routines
aix_ and mix_ are unary and the remaining ones binary. The parameters
of these routines are elements of GF (pm) in the form of polynomials and
the routines return also the results as polynomials.

> ax_ := proc()

local i, s, ss;

s := proc(a, b::polynom)

F:-ConvertOut(

F:-`+`(F:-ConvertIn(b), F:-ConvertIn(a)))

end proc;

ss := 0;

for i to nargs do ss := s(ss, args[i]) end do;

ss
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end proc:

> sx_ := proc(a, b::polynom)

F:-ConvertOut(F:-`-`(F:-ConvertIn(b), F:-ConvertIn(a)))

end proc:

> mx_ := proc(a, b::polynom)

F:-ConvertOut(F:-`*`(F:-ConvertIn(b), F:-ConvertIn(a)))

end proc:

> dx_ := proc(a, b::polynom)

F:-ConvertOut(F:-`/`(F:-ConvertIn(b), F:-ConvertIn(a)))

end proc:

> mix_ := proc(a::polynom)

F:-ConvertOut(F:-inverse(F:-ConvertIn(a)))

end proc:

> aix_ := proc(a::polynom)

F:-ConvertOut(F:-`-`(F:-ConvertIn(a)))

end proc:

> px_ := proc(a::polynom, k::integer)

F:-ConvertOut(F:-`^`(F:-ConvertIn(a), k))

end proc:

Appendix B

Similarly as in Appendix A, the routines a_, s_, m_, p_, d_, ai_ and mi_,
for doing addition, subtraction, multiplication, division, rising to a power,
computing additive and multiplicative inverses in GF (pm), respectively, are
listed here. The procedures will work properly if we create an instance of
pm− element Galois �eld by means of the statement

> F := GF(p, m);

or

> F := GF(p, m, fx);
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after previously de�ning actual parameters p, m, and, in the second state-
ment, fx, which denote a prime, a positive integer and an irreducible poly-
nomial of degree m over GF (p). The routine a_ is n−ary, the routines
ai_ and mi_ unary and the remaining ones binary. The parameters of
these routines are elements of GF (pm) in the form of numbers from the set
{0, 1, . . . , pm − 1} and they return also the results as numbers from this
set.

> a_ := proc()

local i, s, ss;

s := proc(a, b::nonnegint)

F:-output(

F:-`+`(F:-input(a), F:-input(b)))

end proc;

ss := 0;

for i to nargs do ss := s(ss, args[i]) end do;

ss

end proc:

> s_ := proc(a, b::nonnegint)

F:-output(F:-`-`(F:-input(a), F:-input(b)))

end proc:

> m_ := proc(a, b::nonnegint)

F:-output(F:-`*`(F:-input(a), F:-input(b)))

end proc:

> d_ := proc(a, b::nonnegint)

F:-output(F:-`/`(F:-input(a), F:-input(b)))

end proc:

> ai_ := proc(a::nonnegint)

F:-output(F:-`-`(F:-input(a)))

end proc:

> mi_ := proc(a::nonnegint)

F:-output(F:-inverse(F:-input(a)))

end proc:
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> p_ := proc(a::nonnegint, k::integer)

F:-output(F:-`^`(F:-input(a), k))

end proc:

Appendix C

In this Appendix the routines INIT_, A_, S_, M_, P_, D_, AI_, MI_ and MIp_,
for initializing computations and for doing addition, subtraction, multipli-
cation, division, rising to a power, computing additive and multiplicative
inverses in the generalized �nite �eld gff(nm), respectively, are listed. The
procedures doing computations in gff(nm) will work properly if we �rst
execute the statement

> INIT_(nn, fx);

after previously de�ning actual parameters corresponding to the formal pa-
rameters pn, and fx, which denote an arbitrary positive integer and an
arbitrary polynomial of degree m over the ring Zn, respectively. This rou-
tine calculates the global variables n = nn and ext, which represent the
modulus n and the polynomial fx as the polynomial of type zppoly, respec-
tively. These global variables are necessary for all routines doing arithmetic
in gff(nm). The routine A_ is n−ary, the routines AI_, MI_ and MIp_ are
unary and the remaining ones binary. The parameters of these routines are
elements of gff(nm) in the form of numbers from the set {0, 1, . . . , nm−1}
and they also return the results as numbers from this set.

> INIT_ := proc(nn::posint, fx::polynom)

global ext, n;

ext := modp1(ConvertIn(modp(fx, nn), x), nn);

n := nn

end proc:

> A_ := proc()

local a, i, t;

a := [args];

for i to nargs do a[i] :=

modp1(ConvertIn(convert(a[i], base, n), x), n)

end do;

t := modp1(ConvertOut(modp1('Add'(op(a)), n), u), n);

subs(u = n, t)
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end proc:

> S_ := proc(a, b::nonnegint)

local t, u;

t := modp1(ConvertOut(modp1('Subtract'(

modp1(ConvertIn(convert(a, base, n), x), n),

modp1(ConvertIn(convert(b, base, n), x), n)), n)

, u), n);

subs(u = n, t)

end proc:

> M_ := proc(a, b::nonnegint)

local t, u;

t := modp1(ConvertOut(modp1(Rem('Multiply'(

modp1(ConvertIn(convert(a, base, n), x), n),

modp1(ConvertIn(convert(b, base, n), x), n)), ext), n)

, u), n);

subs(u = n, t)

end proc:

> P_ := proc(a::nonnegint, k::integer)

local t, u;

t := modp1(ConvertOut(modp1('Powmod'(

modp1(ConvertIn(convert(a, base, n), x), n), k, ext),

n), u), n);

subs(u = n, t)

end proc:

> D_ := proc(a::nonnegint, b::posint)

M_(a, MI_(b))

end proc:

> AI_ := proc(a::nonnegint)

local t, u;

t := modp1(ConvertOut(modp1(

'Subtract'(modp1(ConvertIn(convert(a, base, n), x),

n)), n), u), n);

subs(u = n, t)



264 C. Ko±cielny

end proc:

> MI_ := proc(a::posint)

local s, t;

modp1('Gcdex'(modp1(ConvertIn(convert(a, base, n), x), n),

ext, 's'), n);

t := modp1(ConvertOut(s, x), n);

subs(x = n, t)

end proc:

> MIp_ := proc(a)

local mi, k, mk, nn;

mi := a;

k := 0;

nn := n^degree(modp1(ConvertOut(ext, x), n));

if a = 1 then return 1 end if;

while mi > 1 do

k := k + 1;

mi := M_(mi, a);

if mi = 0 or k > nn - 1 then

error "inverse does not exist"

end if

end do;

P_(a, k)

end proc:
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AES with the increased con�dentiality

Czesªaw Ko±cielny

Abstract

It has been shown in the paper how to use well known encrypting algorithms
AES -128, AES-192 and AES-256 as algorithms AES-340, AES-404 and AES-468, re-
spectively, having considerably increased key space.

1. Introduction

As it is known, the AES algorithm [1] is a symmetric-key block cipher which
uses cryptographic keys of 128, 192 and 256 bits to encrypt and decrypt data
in blocks of 128 bits. From the mathematical point of view this algorithm
is interesting for any algebraist, as an example of advanced computing in
Galois �elds. In particular, the algorithm apply one �xed element from
GF (256) to compute round constant array, one a�ne transformation over
GF (2) with �xed 8×8 matrix and c vector, a �xed pair of mutually invertible
polynomials of degree 6 3 over GF (256) belonging to the polynomial ring
modulo x4−1, a �xed irreducible polynomial of degree 8 over GF (2) de�ning
multiplication in GF (256), and performs many operations of multiplication,
addition and inversion in this �eld. Furthermore, GF (256) can be perceived
not only as a �eld but simultaneously as two groups, two quasigroups or
two groupoids as well. That is why this paper deserves, in the author's
opinion, to be published in Quasigroups and Related Systems, even though
it concerns highly application oriented problem.

2000 Mathematics Subject Classi�cation: 68P25, 11T
Keywords: cryptography, AES algorithm, Galois �elds.
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2. A method of using the AES algorithm

with considerably enlarged key space

Without going into details we may shortly say, that in order to use the
algorithm AES [1] as a cryptosystem with the increased con�dentiality it
simply su�ces to replace all �xed constants, appearing in cryptographic
transformations and routines of the algorithm, viz.
B the value {02} in Rcon[i][1],
B the elements of a�ne transformation, i.e. the byte value c = {63} and
the matrix

A =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


,

B the non-primitive irreducible polynomial m(x) = x8 + x4 + x3 + x + 1
over GF (2),
B the polynomial a(x) = {03}x3+ {01}x2+ {01}x+ {02} over GF (256)
and its inverse modulo x4 − 1,
B and �nally the number of rounds r that should be taken into account
during the execution of KeyExpansion, Cipher and InvCipher routines,
I by 6 variables, stored in the array

KS = [KRcon,Kc,KA,Km,Ka,Kr], (1)

which will form together with 128, 192 or 256 bit key K a cryptographic
key for the generalized in this way AES:

KIC = K, KS . (2)

It should be explained in this place that the su�cient level of di�usion
and confusion may be attained already after executing from one to three
rounds of encrypting procedure, therefore, the value of actual parameter
replacing the formal parameter Nr in the invocation statement of the rou-
tines Cipher and InvCipher, viz. the element Kr of the array KS may
belong to the interval [3, Nr].
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The presented approach allows the reader either to design a large class
of AES ciphers with various cryptographic transformations and rule of mul-
tiplication in GF (256), or to use the AES algorithms as a quite strong
cipher with 7-element cryptographic key. Considering the second case of
this alternative, one should �rst determine an equivalent increment of the
cryptographic key length of the cryptosystem resulting from the presented
approach. This increment can be computed by means of the equation

∆K = b ln(2562 · (Nr − 2) ·Nip ·Nnsm8×8 (2) ·Nnscm4×4 (256))
ln(2)

c, (3)

where the formulae

Nnsm8×8 (q) =
n−1∏
k=0

(qn − qk), Nnscm4×4 (q) =
(q − 1)4 q12

4
,

determine the number of non-singular matrices 8×8 over GF (q) (see [3, p. 3])
and the number of non-singular circulant matrices 4×4 over GF (q) of char-
acteristic 2 (see [3, pp. 7, 80]) (equal also to the number of invertible modulo
x4 − 1 polynomials of degree 6 3 over GF (256)), respectively,
Nip � denotes the number of irreducible polynomials of degree 8 over GF (2),
Nr � equals to the number of rounds depending on the key length as is rec-
ommended by [1].

Taking into account [1], (3) and the fact that the Nip = 30, we get
∆K = 212, which means that we can use AES-128, AES-192 and AES-256
as AES-128+∆K , AES-192+∆K and AES-256+∆K , that is as AES-340,
AES-404 and AES-468, correspondingly. To implement AES-340, AES-404
and AES-468 we may bring into play almost the same software or hardware
as for AES-128, AES-192 and AES-256. Assuming that the implementa-
tion of described here AES algorithm with the increased level of privacy
will explicitly employ the operations in GF (256), namely, addition, multi-
plication and rising to a positive or negative power, performed by means
of the appropriate routines, arrays or hardware, we may summarize the
encrypting/decrypting procedures as follows:
Encryption: Entity B encrypts a plaintext block M for entity A, which A
decrypts. Thus B should make the following steps:
Step 1: Generate the cryptographic key KIC = K, KS (KIC may be used
for encryption the whole message, consisting of many blocks). The elements
of the array KS should be, of course, suitably computed.
Step 2: Send the key KIC to A using secure channel.
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Step 3: Adapt the system for computing in GF (256) de�ned by the poly-
nomial Km contained in KS , compute S-box and inverse S-box tables and
the the array Rcon taking into account KA, Kc and KRcon, next modify all
these algorithm's transformations and routines given in [1], which depend
on data stored in KS .
Step 4: Generate the key schedule using the the same KeyExpansion rou-
tine as in [1], but apply the value Kr as the actual parameter of the formal
parameter Nr.
Step 5: Compute the ciphertext block C of the plaintext block M using
the same routine Cipher as given in [1], but apply the value Kr as the
actual parameter of the the formal parameter Nr, next send the ciphertext
to A thorough unsecured channel.
Decryption: To �nd plaintext block M from the ciphertext block C, the
entity A should perform the following operations:
Step 1: Receive the cryptographic key KIC = K, KS by means of a secure
channel.
Step 2: Receive the ciphertext block C using the unsecured channel.
Step 3: As Step 3 of Encryption.
Step 4: As Step 4 of Encryption.
Step 5: Retrieve the plaintext block M from the ciphertext block C using
the same routine InvCipher as presented in [1], but apply the value Kr as
the actual parameter of the formal parameter Nr.

3. Conclusion

Although the implementation of the generalized AES algorithm requires
some e�ort, this work is pro�table, because it delivers not only a strong
symmetric-key block cipher, but also a universal tool for exact examination
of properties of algorithms AES-128, AES-192 and AES-256.

References

[1] NIST: Advanced Encryption Standard (AES), FIPS PUB 197, 2001.

[2] C. Ko±cielny: Computing in GF (pm) and in gff(nm) using Maple, Quasi-
groups and Related Systems 13 (2005), 245− 264.

[3] A.J. Menezes, editor: Applications of Finite Fields, Kluwer Academic
Publishers, 1993.

Received July 13, 2005
Academy of Management in Legnica, Reymonta 21, 59-220 Legnica, Poland
e-mail: c.koscielny@wsm.edu.pl



Quasigroups and Related Systems 13 (2005), 269 − 280A lass of quasigroups assoiated with aubi Pisot numberVedran Kr£adina and Vladimir VoleneAbstratIn this paper idempotent medial quasigroups satisfying the identity (ab · a)a = b arestudied. An example are the omplex numbers with multipliation de�ned by a · b =

(1 − q)a + qb, where q is a solution of q3
− 2q2 + q − 1 = 0. The positive root of thisubi equation an be viewed as a generalization of the golden ratio. It turns out thatthe quasigroups under onsideration have many similar properties to the so-alled goldensetion quasigroups. 1. IntrodutionLet q 6= 0, 1 be a omplex number and de�ne a binary operation on C by

a ·b = (1−q)a+qb. It is known that (C, ·) is an IM-quasigroup, i.e. satis�esthe laws of idempoteny and mediality :
a · a = a, (1)

ab · cd = ac · bd. (2)Immediate onsequenes are the identities known as elastiity, left and rightdistributivity :
ab · a = a · ba, (3)
a · bc = ab · ac, (4)
ab · c = ac · bc. (5)This quasigroup will be denoted by C(q). For some speial values of q, thequasigroup satis�es additional identities. If q = 1+

√
5

2
is the golden ratio,2000 Mathematis Subjet Classi�ation: 20N05.Keywords: IM-quasigroup, Pisot number.
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C(q) is a representative example of the golden setion or GS-quasigroups.GS-quasigroups were de�ned in [8℄ as idempotent quasigroups satisfyingthe (equivalent) identities a(ab · c) · c = b, a · (a · bc)c = b; see also [2℄,[3℄, [4℄ and [10℄. An alternative de�nition would be as IM-quasigroups withthe simpler identity a(ab · b) = b. In this paper we study IM-quasigroupssatisfying a similar identity:

(ab · a)a = b. (6)Representative examples are the quasigroups C(q) with q a root of q3 −
2q2+q−1 = 0. Denote by r1,2 =

3

√

25±
√

69

2
. The roots of this ubi equationare q1 = 1

3
(2 + r1 + r2) ≈ 1.755 and q2,3 = 1

6

(

4 − r1 − r2 ± i
√

3 (r1 − r2)
)

≈
0.123 ± 0.745 i. The number q1 is a Pisot number, i.e. an algebrai inte-ger greater than 1 whose algebrai onjugates q2,3 have absolute values lessthan 1. This number was onsidered in [5℄ as a generalization of the goldenratio and was alled the seond upper golden ratio. Therefore, we will referto IM-quasigroups satisfying the identity (6) as G2-quasigroups.In the ontext of [5℄, the seond lower golden ratio was the positive rootof p3 − p − 1 = 0. This is the smallest Pisot number p1 ≈ 1.325; note that
q1 = p2

1
. For more details about Pisot numbers see [1℄.In this paper it is shown that G2-quasigroups have many properties sim-ilar to those of GS-quasigroups. For example, they allow a simple de�nitionof parallelograms using an expliit formula for the fourth vertex. In the lastsetion G2-quasigroups are haraterized in terms of Abelian groups with aertain type of automorphism.2. Basi properties and further identitiesThe following lemma will be used quite often.Lemma 2.1. In an IM-quasigroup, identity (6) is equivalent with either ofthe identities

(a · ba)a = b, (7)
a(ba · a) = b. (8)Proof. By using elastiity we get (ab · a)a

(3)

= (a · ba)a
(3)

= a(ba · a).Note that the equivalene holds even in a groupoid satisfying (1) and (2).Elastiity follows diretly from idempoteny and mediality, without using



G2-quasigroups 271solvability or anellativity. Consequently, the de�nition of G2-quasigroupsan be relaxed to the identities alone.Proposition 2.2. Any groupoid satisfying (1), (2) and (6) is neessarily aquasigroup.Proof. Given a and b de�ne x = ab · a and y = ba · a. From (6) and (8) wesee that xa = b and ay = b, i.e. the groupoid is left and right solvable. Nowassume ax1 = ax2 and y1a = y2a. Then, x1

(6)

= (ax1 ·a)a = (ax2 ·a)a
(6)

= x2and y1

(8)

= a(y1a · a) = a(y2a · a)
(8)

= y2, so the groupoid is left and rightanellative.The next proposition is similar to [8, Theorem 5℄.Proposition 2.3. In a G2-quasigroup, any two of the equalities ab = c,
ca = d and da = b imply the third.Proof. Denote the equalities by (i), (ii) and (iii), respetively. Then wehave:

(i), (ii) ⇒ (iii) : da
(ii)

= ca · a (i)

= (ab · a)a
(6)

= b,

(i), (iii) ⇒ (ii) : ca
(i)

= ab · a (iii)

= (a · da)a
(7)

= d,

(ii), (iii) ⇒ (i) : ab
(iii)

= a · da
(ii)

= a(ca · a)
(8)

= c.

a b

c

Figure 1: Identity (9) in the omplex plane.



272 V. Kr£adina and V. VoleneWe list some more identities valid in G2-quasigroups. They are a-ompanied by pitures illustrating the example of the omplex plane withmultipliation de�ned by a · b = (1 − q1)a + q1b.Proposition 2.4. The following identity holds in any G2-quasigroup:
(a · ab)c · a = ac · b. (9)Proof. (a · ab)c · a (5)

= (a · ab)a · ca (5)

= (a · ab)(ca) · (a · ca)
(3)

= (a · ab)(ca) ·

(ac · a)
(2)

= (ac)(ab · a) · (ac · a)
(4)

= ac · (ab · a)a
(6)

= ac · b.Proposition 2.5. The following identity holds in any G2-quasigroup:
(ab · a)c · b = (ab · c)a. (10)Proof. (ab·a)c·b (5)

= (ab·b)(ab)·cb (3)

= (ab)(b·ab)·cb (2)

= (ab·c)·(b·ab)b
(7)

= (ab·
c)a.

a b

c

Figure 2: Identity (10) in the omplex plane.Proposition 2.6. The following identity holds in any G2-quasigroup:
a · (ba · c)d = b(ac · d). (11)Proof. a · (ba · c)d (5)

= a · (ba ·d)(cd)
(4)

= (a · ba)(ad) · (a · cd)
(2)

= (a · ba)a · (ad ·

cd)
(7)

= b(ad · cd)
(5)

= b(ac · d).
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a b

c

d

Figure 3: Identity (11) in the omplex plane.3. Parallelograms and other geometri oneptsThe points a, b, c, d of a medial quasigroup are said to form a parallelogram,denoted by Par(a, b, c, d), if there are points p, q suh that pa = qb and
pd = qc. In [7℄ it was proved that this relation satis�es the axioms ofparallelogram spae:1. For any three points a, b, c there is a unique point d suh that

Par(a, b, c, d).2. Par(a, b, c, d) implies Par(e, f, g, h), where (e, f, g, h) is any yli per-mutation of (a, b, c, d) or (d, c, b, a).3. Par(a, b, c, d) and Par(c, d, e, f) imply Par(a, b, f, e).In an IM-quasigroup, the unique point d of axiom 1 satis�es the followingequation [9, Theorem 12℄:
ab · dc = ac. (12)This equation an be expliitly solved for d in GS-quasigroups: d = a·b(ca·a)[8, Theorem 6℄. Here we prove a similar result for G2-quasigroups.Proposition 3.1. In a G2-quasigroup, for any a, b, c we have

Par(a, b, c, (ba · cb)b).Proof. By substituting d = (ba · cb)b into the equation (12) we get
ab · [(ba · cb)b · c] = ac.



274 V. Kr£adina and V. VoleneIt su�es to show that this is a valid identity in any G2-quasigroup:
ab · [(ba · cb)b · c] (5)

= ab · [(ba · c)(cb · c) · bc] (2)

= ab · [(ba · c)b · (cb · c)c] =
(6)

= ab · [(ba · c)b · b] (5)

= ab · [(ba · b) · cb]b (5)

= ab · [(ba · b)b · (cb · b)] =
(6)

= ab · a(cb · b) (4)

= a · b(cb · b) (8)

= ac.Now we have a diret de�nition of parallelograms in G2-quasigroups,without using auxiliary points:
Par(a, b, c, d) ⇐⇒ d = (ba · cb)b. (13)Using the parallelogram relation geometri onepts suh as midpoints, ve-tors and translations an be introdued. Of ourse, in the speial ase ofthe quasigroups C(q) the onepts agree with the usual de�nitions of planegeometry. Thus, geometri theorems an be proved by formal alulationsin a quasigroup. We give an example partiular to G2-quasigroups (Theo-rem 3.4).In any medial quasigroup, b is said to be the midpoint of the pair ofpoints a, c if Par(a, b, c, b) holds. This is denoted by M(a, b, c). The follow-ing proposition provides a haraterization in G2-quasigroups.Proposition 3.2. In a G2-quasigroup, M(a, b, c) is equivalent with

c = (ab · ba)a. (14)Proof. By axiom 2 of parallelogram spaes, M(a, b, c) is equivalent with
Par(b, a, b, c), and the laim follows from (13).To failitate notation, we introdue a new binary operation:

a ∗ b = (ba · a)b. (15)Starting from the quasigroup C(q1), this de�nes the binary operation in thequasigroup C(p1), i.e. a ∗ b = (1− p1)a + p1b. If ab = c (resp. a ∗ b = c), wesay that b divides the pair of points a, c in the seond upper (resp. lower)golden ratio. Here are some properties of the new binary operation. It isassumed that the original binary operation has higher priority than `∗', e.g.
a ∗ bc means a ∗ (bc).
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a bba ba.a a*bFigure 4: A new binary operation de�ned by (15).Lemma 3.3. The operation de�ned by (15) in a G2-quasigroup satis�es thefollowing identities:

a ∗ a = a, (16)
ab ∗ cd = (a ∗ c)(b ∗ d), (17)

(a ∗ (a ∗ b)c)c = b. (18)Proof. Idempoteny of the new operation (16) follows diretly from (1).Identity (17) follows by repeated appliation of mediality:
ab ∗ cd

(15)

= (cd · ab)(ab) · cd (2)

= (ca · db)(ab) · cd (2)

= (ca · a)(db · b) · cd =
(2)

= (ca · a)c · (db · b)d (15)

= (a ∗ c)(b ∗ d).Here is the proof of identity (18):
(a ∗ (a ∗ b)c)c

(15)

= {[(ba · a)b · c]a · a}[(ba · a)b · c] · c =
(2)

= {[(ba · a)b · c]a · (ba · a)b}(ac) · c =
(2)

= {[(ba · a)b · c](ba · a) · ab}(ac) · c =
(2)

= {[(ba · a)b · ba](ca) · ab}(ac) · c =
(5)

= {[(ba · b)(ab) · ba](ca) · ab}(ac) · c =
(2)

= {[(ba · b)b · (ab · a)](ca) · ab}(ac) · c =
(6)

= {[a(ab · a) · ca](ab) · ac}c (2)

= {[ac · (ab · a)a](ab) · ac}c =
(6)

= [(ac · b)(ab) · ac]c
(5)

= [(ac · a)b · ac]c
(2)

= [(ac · a)a · bc]c =
(6)

= (c · bc)c (7)

= b.Identity (17) ould be alled mutual mediality of the two binary oper-ations. By identifying two fators various kinds of distributivities follow:
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a ∗ bc = (a ∗ b)(a ∗ c), a(b ∗ c) = ab ∗ ac and their right ounterparts. Iden-tity (18) is an analogue of the de�ning identity for GS-quasigroups [8℄. Itis used in the proof of the following theorem.Theorem 3.4. In a G2-quasigroup, suppose that a ∗ e = c, a ∗ f = b and
cg = f . Then, bg = e. Furthermore, suppose M(a, h, g) and h ∗ g = d.Then, dh = a and M(b, d, c).Proof. The �rst laim follows by substitution:

bg = (a ∗ f)g = (a ∗ cg)g = (a ∗ (a ∗ e)g)g
(18)

= e.If, in addition, M(a, h, g) and h ∗ g = d hold, we get g = (ah · ha)a by (14),and the remaining laims follow by tedious, but straightforward omputa-tions:
dh = (h ∗ g)h = [h ∗ (ah · ha)a]h

(15)

= {[(ah · ha)a · h]h · (ah · ha)a}h =
(2)

= {[(ah · ha)a · h](ah · ha) · ha}h (2)

= {[(ah · ha)a · ah](h · ha) · ha}h =
(5)

= {[(ah · a)(ha · a) · ah](h · ha) · ha}h =
(2)

= {[(ah · a)a · (ha · a)h](h · ha) · ha}h =
(6)

= {[h · (ha · a)h](h · ha) · ha}h (4)

= {h[(ha · a)h · ha] · ha}h =
(5)

= {h[(ha · h)(ah) · ha] · ha}h (2)

= {h[(ha · h)h · (ah · a)] · ha}h =
(6)

= [h · a(ah · a)](ha) · h (4)

= h[a(ah · a) · a] · h (3)

= h[a · (ah · a)a] · h =
(6)

= (h · ah)h
(7)

= a.To prove M(b, d, c), we utilize (14) one more:
(bd · db)b

(4)

= (bd · d)(bd · b) · b (5)

= (bd · d)b · (bd · b)b (6)

= (bd · d)b · d =

= (bd · d)b · (h ∗ g)
(15)

= (bd · d)b · (gh · h)g =
(2)

= (bd · d)(gh · h) · bg (2)

= (bd · gh)(dh) · bg =
(2)

= (bg · dh)(dh) · bg = (ea · a)e
(15)

= a ∗ e = c.In the speial ase of the quasigroup C(q1), Theorem 3.4 proves:



G2-quasigroups 277Corollary 3.5. Let ABC be a triangle and suppose the points E and Fdivide AC and AB in the seond lower golden ratio, respetively. Then theevians BE and CF interset in a point G that divides them in the seondupper golden ratio. Furthermore, the midpoint H of AG divides the thirdevian AD in the seond upper golden ratio.
a

b cd

ef
g

h

Figure 5: Geometri interpretation of Theorem 3.4.The statement of Corollary 3.5 remains true if every instane of the se-ond lower/upper golden ratio is replaed by the orresponding n-th goldenratio (for a de�nition see [5℄). For n = 1, both the lower and the uppergolden ratio are equal to 1+
√

5

2
and we get the geometri interpretationof [8, Theorem 15℄.4. Representation theoremsLet (G, +) be an Abelian group with an automorphism ϕ suh that thefollowing equality holds for every x ∈ G:

ϕ3(x) − 2ϕ2(x) + ϕ(x) − x = 0. (19)De�ne another binary operation on G by the formula
a · b = a + ϕ(b − a). (20)
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(ab · a)a = ab · a + ϕ(a) − ϕ(ab · a)

= ab + ϕ(a) − ϕ(ab) + ϕ(a) − ϕ(ab) − ϕ2(a) + ϕ2(ab)

= 2ϕ(a) − ϕ2(a) + ab − 2ϕ(ab) + ϕ2(ab)

= 2ϕ(a) − ϕ2(a) + (id − 2ϕ + ϕ2)(a + ϕ(b) − ϕ(a))

=
[

a − ϕ(a) + 2ϕ2(a) − ϕ3(a)
]

+
[

ϕ3(b) − 2ϕ2(b) + ϕ(b) − b
]

+ b

(19)

= b.Therefore, (G, ·) is a G2-quasigroup. The purpose of this setion is to showthat any G2-quasigroup an be obtained in this way.Theorem 4.1. Let (G, ·) be a G2-quasigroup. Choose an arbitrary o ∈ Gand de�ne a new binary operation on G by the formula
a + b = (oa · bo)o. (21)Then, (G, +) is an Abelian group with neutral element o.Proof. We �rst prove assoiativity, ommutativity and that o is the neutralelement:

(a + b) + c
(21)

= [o · (oa · bo)o](co) · o (5)

= [o · (oa · bo)o]o · (co · o) =
(7)

= (oa · bo)(co · o) (2)

= (ob · ao)(co · o) (2)

= (ob · co)(ao · o) =
(7)

= [o · (ob · co)o]o · (ao · o) (5)

= [o · (ob · co)o](ao) · o =
(2)

= (oa)[(ob · co)o · o] · o (21)

= a + (b + c),

a + b
(21)

= (oa · bo)o (2)

= (ob · ao)o
(21)

= b + a,

a + o
(21)

= (oa · oo)o (1)

= (oa · o)o (6)

= a.For any a ∈ G de�ne −a = o · (o · oa)a. This is the inverse of a:
a + (−a)

(21)

= {oa · [o · (o · oa)a]o}o (5)

= (oa · o){[o · (o · oa)a]o · o} =
(6)

= (oa · o) · (o · oa)a
(2)

= (oa)(o · oa) · oa (7)

= o.



G2-quasigroups 279Theorem 4.2. The mappings ϕ : x 7→ ox and ψ : x 7→ xo are automor-phisms of the group (G, +) of Theorem 4.1 and satisfy the identity
ψ(a) + ϕ(b) = ab. (22)Proof. The following shows that ϕ is an automorphism:

ϕ(a) + ϕ(b) = oa + ob
(21)

= (o · oa)(ob · o) · o (3)

= (o · oa)(o · bo) · o =
(4)

= o(oa · bo) · o (3)

= o · (oa · bo)o (21)

= o(a + b) = ϕ(a + b).The proof that ψ is an automorphism is similar. Finally,
ψ(a) + ϕ(b) = ao + ob

(21)

= (o · ao)(ob · o) · o (3)

= (o · ao)(o · bo) · o =
(4)

= o(ao · bo) · o (5)

= o(ab · o) · o (7)

= ab.Theorem 4.3. Equations (19) and (20) are satis�ed in the setting of theprevious two theorems.Proof. As a speial ase of (22), we see that ψ(x) + ϕ(x) = xx
(1)

= x, i.e.
ψ(x) = x − ϕ(x). Now equation (20) follows diretly from (22):

ab = ψ(a) + ϕ(b) = a − ϕ(a) + ϕ(b) = a + ϕ(b − a).To prove equation (19), note that
ψ2(x) = ψ(x − ϕ(x)) = x − ϕ(x) − ϕ(x − ϕ(x)) = ϕ2(x) − 2ϕ(x) + x.Therefore, ϕ3(x) − 2ϕ2(x) + ϕ(x) = ϕ(ψ2(x)) = o(xo · o) (8)

= x.This is a diret proof of a G2-version of Toyoda's representation theoremfor medial quasigroups [6℄.Referenes[1℄ M.-J. Bertin, A. Deomps-Guilloux, M. Grandet-Hugot, M. Pathi-aux-Delefosse and J.-P. Shreiber: Pisot and Salem numbers, BirkhäuserVerlag, Basel, 1992.
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On medial-like identities

Mirko Polonijo

Abstract

The description of the quasigroups that satisfy the identities of the form (a · b) · (c · d) =

(π(a) ·π(b)) · (π(c) ·π(d)), where π is a certain permutation on {a, b, c, d}, is given. Those
quasigroups include internally medial (ab ·cd = ac ·bd), externally medial (ab ·cd = db ·ca)
and palindromic (ab · cd = dc · ba) quasigroups. There are six identities that are the
equivalents of commutativity, and fourteen identities are the equivalents of commutative
mediality.

It is well-known that a groupoid (Q, ·) is medial ([1]; entropic in [5]) if
it satis�es

(a · b) · (c · d) = (a · c) · (b · d) (M)

i.e.
ab · cd = ac · bd (M)

for all a, b, c, d ∈ Q. In the identity (M) we interchange the internal pair of
the variables and now we could look for the identity in which the external
pair is interchanged

ab · cd = db · ca (Me)

or the identity in which the both pairs are interchanged

ab · cd = dc · ba . (P )

Therefore, we could call (M) internal mediality and (Me) external medi-

ality (paramediality in [2], [3]). The identity (P ) we shall call palindromity.

Proposition 1. For any groupoid (Q, ·), any two of the three identities

(M), (Me) and (P ) imply the third one.

2000 Mathematics Subject Classi�cation: 20N05
Keywords: Quasigroup, medial quasigroup, paramedial quasigroup.
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Proof. ((M)&(Me) ⇒ (P )) ab · cd = ac · bd = dc · ba.
((P )&(Me) ⇒ (M)) ab · cd = dc · ba = ac · bd.

((P )&(M) ⇒ (Me)) ab · cd = dc · ba = db · ca.

Proposition 2. Let (Q, ·) be a commutative groupoid. Then (Q, ·) is palin-

dromic. Further, the constraints (M) and (Me) are equivalent, i.e. a com-

mutative groupoid (Q, ·) is internally medial if and only if it is externally

medial.

Proof. The �rst statement is obvious, and the second one follows from the
previous proposition.

Proposition 3. Let (Q, ·) be an idempotent groupoid. If it is externally

medial or palindromic, then it is commutative.

Proof. Any externally medial groupoid satis�es xx · yy = yx · yx, and for
palindromic quasigroup xx ·yy = yy ·xx is valid. Therefore, if the groupoid
is idempotent, i.e. xx = x holds for all x ∈ Q, it is commutative.

Remark 1. There are idempotent internally medial groupoids (moreover
quasigroups) which are not commutative. For instance, take Z3 and de�ne
multiplication by x · y = x+ 2y.

Proposition 4. Let (Q, ·) be an internally medial or externally medial or

palindromic quasigroup. Its center is empty or Q.

Proof. The center is the set of all c ∈ Q which commutes with all elements
of Q. Therefore, if the center is not empty and c is in the center, then any
a, b ∈ Q can be written in the form a = cx = xc, b = cy = yc for some
x, y ∈ Q. Then (M) implies ab = cx · yc = cy · xc = ba, (Me) implies
ab = xc · cy = yc · cx = ba, (P ) implies ab = cx · yc = cy · xc = ba, i.e. in
any case (Q, ·) is commutative.

Proposition 5. A loop is internally medial or externally medial if and only

if it is an abelian group.

Proof. (⇒) If (Q, ·) is internally medial or externally medial loop it is
commutative, since a loop has nonempty center. Now, put the unit element
for b and associativity follows. Su�ciency (⇐) is obvious.
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Proposition 6. A loop is palindromic if and only if it is commutative.

Proof. Notice that a loop has nonempty center.

Corollary 1. A group is internally medial or externally medial or palin-

dromic if and only if it is an abelian group.

Remark 2. As we know, every commutative quasigroup (groupoid) is
palindromic, but the converse is not true. If we take an abelian group
(Q,+), then quasigroup (Q,−) satis�es (P ), but is not commutative. Notice
that (Q,−) is internally medial and externally medial.

Proposition 7. A quasigroup (Q, ·) is palindromic if and only if exists its

automorphism α such that

α(x · y) = y · x

holds for all x, y ∈ Q.

Proof. (⇒) For arbitrary a, b ∈ Q put ab = u, ba = v and take permutation
α = L−1

v Ru (where Lv is left translation for v and Ru is right translation
for u i.e. Lv(x) = v · x and Ru(x) = x · u, for any x ∈ Q).

Then we have Lvα(xy) = Ru(xy) = xy · ab = ba · yx = Lv(yx) and
therefore α(xy) = yx. Further, for any x, y ∈ Q taking x = x1x2, y = y1y2

we have α(xy) = yx = y1y2 · x1x2 = x2x1 · y2y1 = α(x1x2) · α(y1y2) =
α(x) · α(y) i.e. α is an automorphism.

(⇐) If α is an automorphism such that α(x · y) = y · x then follows
ab·cd = α(cd·ab) = α(cd)·α(ab) = dc·ba i.e. quasigroup is palindromic.

Proposition 8. If (Q, ·) is internally or externally medial quasigroup, then

it satis�es Thomsen's closure condition, i.e.

x1y2 = x2y1 and x1y3 = x3y1 imply x2y3 = x3y2

for all x1, x2, x3, y1, y2, y3 ∈ Q. Therefore, any internally and any externally

medial quasigroup is an abelian group isotope.

Proof. Let us suppose x1y2 = x2y1 and x1y3 = x3y1 hold and take z ∈ Q.
Now, for internally medial quasigroup we get

x2y3 · y1z = x2y1 · y3z = x1y2 · y3z = x1y3 · y2z = x3y1 · y2z = x3y2 · y1z
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and for externally medial quasigroup we have

x2y3 · zx1 = x1y3 · zx2 = x3y1 · zx2 = x2y1 · zx3 = x1y2 · zx3 = x3y2 · zx1.

Hence, in both cases, x2y3 = x3y2.
Since Thomsen's closure condition is valid in (Q, ·) it follows that (Q, ·)

is isotopic to an abelian group (cf. [1], [5]).

Proposition 9. For a quasigroup (Q, ·) and e, f ∈ Q let us de�ne binary

operation + on Q by

xe + fy = xy

for all x, y ∈ Q. If (Q, ·) is internally or externally medial quasigroup, then

(Q,+) is an abelian group.

Proof. It is well-known (and easy to check) that (Q,+) is a loop (with the
unity 0 = fe). If (Q, ·) is internally or externally medial quasigroup then
it is isotopic to an abelian group and therefore loop (Q,+) is an abelian
group isotope too. Because of Albert's theorem (cf. [1]), (Q,+) is an abelian
group.

Proposition 10. ([6], [4]) Let (Q, ·) be internally or externally medial

quasigroup. Then there is an abelian group (Q,+), an element q ∈ Q and

group automorphisms α, β such that

x · y = α(x) + β(y) + q

for all x, y ∈ Q. For internally medial quasigroup αβ = βα is ful�lled, and

for externally medial quasigroup αα = ββ.

Proof. Let (Q,+) be the abelian group de�ned in the previous proposition
and ϕ(x) = Re(x) = xe, ψ(x) = Lf (x) = fx for all x ∈ Q. For internally
medial quasigroup and externally medial quasigroup we get respectively

ϕ(ϕ(a) + ψ(b)) + ψ(ϕ(c) + ψ(d)) = ϕ(ϕ(a) + ψ(c)) + ψ(ϕ(b) + ψ(d)),

ϕ(ϕ(a) + ψ(b)) + ψ(ϕ(c) + ψ(d)) = ϕ(ϕ(d) + ψ(b)) + ψ(ϕ(c) + ψ(a)).

The �rst equality implies

ϕ(a+ b) + ψ(ϕ(0) + ψ(0)) = ϕ(a+ ψ(0)) + ψ(ϕψ−1(b) + ψ(0)),

ϕ(ϕ(0) + ψ(0)) + ψ(c+ d) = ϕ(ϕ(0) + ψϕ−1(c)) + ψ(ϕ(0) + d),
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and the second one gives

ϕ(a+ b) + ψ(ϕ(0) + ψ(0)) = ϕ(ϕ(0) + b) + ψ(ϕ(0) + ψϕ−1(a)),

ϕ(ϕ(0) + ψ(0)) + ψ(c+ d) = ϕ(ϕψ−1(d) + ψ(0)) + ψ(c+ ψ(0)).

In both cases it follows that there are such permutations ϕ1, ϕ2, ψ1, ψ2

on Q for which

ϕ(a+ b) = ϕ1(a) + ϕ2(b), ψ(c+ d) = ψ1(c) + ψ2(d).

Hence, ϕ and ψ are quasi-automorphisms of the abelian group (Q,+). It
implies that there are automorphisms α, β of (Q,+) and q1, q2 ∈ Q such
that

ϕ(x) = α(x) + q1, ψ(x) = β(x) + q2 .

Therefore, putting q = q1 + q2 we have

x · y = α(x) + β(y) + q .

Now, for internally medial quasigroup we get

α(α(a) + β(b)) + β(α(c) + β(d)) = α(α(a) + β(c)) + β(α(b) + β(d))

and putting a = c = d = 0 we obtain αβ = βα.
For externally medial quasigroup we have

α(α(a) + β(c)) + β(α(b) + β(d)) = α(α(d) + β(c)) + β(α(b) + β(a))

and putting b = c = d = 0 it follows αα = ββ.

Remark 3. It is widely known that K. Toyoda (cf. [6]) proved the pre-
viously mentioned proposition for internally medial quasigroups, which is
commonly named Toyoda's theorem (see also [1], [5]). The proposition was
proved in [4] for externally medial quasigroups (see also [2], [3]). We gave
the above proof to stress that it is the same for both types of quasigroups,
as is expected.

Any of the identities (M), (Me), (P ) is of the form

ab · cd = (π(a) · π(b)) · (π(c) · π(d))

where π is a certain permutation on {a, b, c, d}. Therefore we would like to
look on such identities on the quasigroups for any permutation π. Beside the
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identities (M), (Me), (P ) and trivial identity ab·cd = ab·cd which is ful�lled
in any groupoid, we have the following twenty "medial-like" identities more:

ab · cd = ab · dc (C1), ab · cd = ba · cd (C2),

ab · cd = ba · dc (C3), ab · cd = cd · ab (C4),

ab · cd = cd · ba (C5), ab · cd = dc · ab (C6),

ab · cd = ac · db (CM1), ab · cd = ad · bc (CM2),

ab · cd = ad · cb (CM3), ab · cd = bc · ad (CM4),

ab · cd = bc · da (CM5), ab · cd = bd · ac (CM6),

ab · cd = bd · ca (CM7), ab · cd = ca · bd (CM8),

ab · cd = ca · db (CM9), ab · cd = cb · ad (CM10),

ab · cd = cb · da (CM11), ab · cd = da · bc (CM12),

ab · cd = da · cb (CM13), ab · cd = db · ac (CM14).

Proposition 11. For a quasigroup (Q, ·) and i ∈ {1, 2, . . . , 6}, (Ci) is valid
if and only if the quasigroup is commutative.

Proof. (⇐) is obvious. (⇒) is evident for (C1), (C2), (C4). For (C3) put
c = d; for (C5) put c = b, d = a; for (C6) put c = a, d = b.

Proposition 12. For a quasigroup (Q, ·) and i ∈ {1, 2, . . . , 14}, (CMi)
holds if and only if the quasigroup is both commutative and internally medial.

Proof. ((CM1),⇐) is obvious.

((CM1),⇒) Put c = b and commutativity follows; hence (M).

((CM2),⇐) ab · cd = ba · cd = bc · ad = ad · bc.

((CM2),⇒) Put d = b and commutativity follows; therefore ab · cd =
ba · cd = bd · ac = ac · bd.

((CM3),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM3) follows.

((CM3),⇒) Put c = a and commutativity follows; hence (CM2) and
therefore (M).
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((CM4),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM4) follows.

((CM4),⇒) Put c = a and commutativity follows; hence (CM2) and
therefore (M).

((CM5),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM5) follows.

((CM5),⇒) Because of ab · cd = bc · da = cd · ab commutativity follows;
hence (CM2) and therefore (M).

((CM6),⇐) is obvious.

((CM6),⇒) Put c = b and commutativity follows; hence (M).

((CM7),⇐) is obvious.

((CM7),⇒) Put d = a and commutativity follows; hence (M).

((CM8),⇐) is obvious.

((CM8),⇒) Put c = b and commutativity follows; hence (M).

((CM9),⇐) is obvious.

((CM9),⇒) Put d = a and commutativity follows; hence (M).

((CM10),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM10) follows.

((CM10),⇒) Put d = b and commutativity follows; hence (CM2) and
therefore (M).

((CM11),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM11) follows.

((CM11),⇒) Put c = a and commutativity follows; hence (CM2) and
therefore (M).

((CM12),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM12) follows.

((CM12),⇒) Because of ab · cd = da · bc = cd ·ab commutativity follows;
hence (CM2) and therefore (M).

((CM13),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM13) follows.
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((CM13),⇒) Put d = b and commutativity follows; hence (CM2) and
therefore (M).

((CM14),⇐) is obvious.

((CM14),⇒) Put d = a and commutativity follows; hence (M).

Corollary 2. For a quasigroup (Q, ·) and i ∈ {1, 2, . . . , 14}, (CMi) is valid

if and only if the quasigroup is both commutative and externally medial.

Corollary 3. ([3]) If (CMi) is ful�lled in a quasigroup (Q, ·) for some

i ∈ {1, 2, . . . , 14}, i.e. if (Q, ·) is internally or externally medial quasigroup

which is commutative, then there is an abelian group (Q,+), an element

q ∈ Q and group automorphisms α such that

x · y = α(x+ y) + q

is valid for all x, y ∈ Q.
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