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Abstract 

 

Our review paper is dedicated to studies of two-dimensional (2D) Wannier–Mott excitons 

in transition metal dichalcogenides and 2D magnetoexcitons in GaAs-type quantum wells 

subjected to the action of a strong perpendicular magnetic field, which both revealed the Dirac 

cone dispersion laws. It is shown that necessary conditions for the implementation of this 

property to be carried out are the taking into account of the electron–hole (e–h) exchange 

Coulomb interaction and the interdependence between the center-of-mass and relative e–h 

motions in the frame of the excitons. A short review describing the effect of these two factors on 

the Dirac cone dispersion law formation is presented. 

 

1. Introduction 

 

 To date, two types of the 2D excitons with Dirac cone dispersion laws have been 

elucidated. One of them concerns the Wannier–Mott excitons in transition metal dichalcogenides 

(TMDCs), such as molybdenum and wolfram monolayers MoX2 and WX2 with X=S, Se [1]. The 

other type of excitons can be formed in GaAs quantum wells (QWs) subjected to the action of a 

strong perpendicular magnetic field [2]. Below, a short review of these two variants is presented. 

In both cases, the arising of the Dirac cone dispersion laws takes place under the influence of the 

electron–hole (e–h) exchange Coulomb interaction under conditions, where the interdependence 

between the center-of-mass and the relative e–h motions does appear. The linear dispersion law 

of the 2D Bose gas is a rare case. It can change the thermodynamic properties of the system 

opening a possibility of achieving its Bose–Einstein condensation (BEC) at finite temperatures 

even at its infinite extent [3]. 

 According to Hohenberg [4], in a homogeneous 2D Bose gas with parabolic dispersion 

laws, the quantum fluctuations arising on the surface with an infinite extent are able to destroy 

the establishing of the coherent macroscopic states. The BEC of 2D excitons at nonzero 

temperatures becomes impossible. To avoid this restriction, it was necessary to confine the 

surface of the gas. For example, in the case of 2D cavity exciton polaritons with parabolic 

dispersion law, their BEC at low yet finite temperatures was achieved via confining the excitons 

on the surface of the light spot created by a laser beam on the QW embedded into the microcavity 

[5, 6]. 

 

2. Band Structures of Two Exciton Systems 

 

The band structure of dichalcogenide monolayers was described in [1]. This type of 

monolayers happens to be direct band gap semiconductors with minimal direct band gaps at the 

mailto:exciton@phys.asm.md
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corner points K
r

 and K
r

 of the hexagonal Brillouin zone, as shown in Fig. 1. There are two 

valleys K
r

 and K
r

, where the valence electrons effectuate direct optical quantum transitions in 

the conduction bands, while maintaining their spin projections. Due to the symmetry of the 

Hamiltonian as regards the time inversion in the structures without a center of inversion, the 

Kramers theorem establishes that the energy of electron with spin up in valley K
r

 equals to the 

energy of the electron with spin down in valley K
r

. This property is shown in Fig. 1. Direct 

optical quantum transitions take place with the participation of photons with different circular 

polarizations. The bare Wannier–Mott excitons appearing in K
r

 and K
r

 valleys due to the direct 

Coulomb e–h interactions have the same energies of their binding and creation. Two degenerate 

valley exciton states can be characterized by valley pseudospin projections. 

 

 

 

 

 

 

 

 

 
Fig. 1. Valley-orbit coupled exciton X0. Valley 

pseudospin up and down configurations of X0. The 

figure is reproduced from the paper of Yu. H. et al., 
Nat. Commun. 5, 3876 (2014). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Band structure of the GaAs crystal. 
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The band structure of GaAs QWs in the absence of an external perpendicular magnetic 

field is shown in Fig. 2. The conduction electrons have spin projections 1 2e

zs   , and the heavy 

holes have the full angular momentum projections 3 2.h

zj    Its origin is associated with the 

locking of the valence electron spin projection up (down) with the p-type orbit magnetic moment 

projection 1( 1)M    giving rise to the resultant projections 3 2 ( 3 2) , as shown in Fig. 3. The 

total angular momentum projection of the e–h pair e h

z zF s j   is a quantum number 

characterizing the states of the e–h pairs and of the excitons. It has four possible values 

1, 2.F     Two exciton states with 1F    are shown in Fig. 2. They can emit photons with 

different circular polarizations. As in the case of the TMDCs, in the case of GaAs QWs, there are 

two bare exciton degenerate states interacting with photons of different circular polarizations. A 

strong perpendicular magnetic field leads to the Landau quantization of the orbital motions and 

the formation of discrete energy levels of electrons and holes separately, as is shown in Fig. 4. 

Under the action of the Lorentz force, the magnetoexciton with in-plane wave vector 
||k

r
 looks as 

an electric dipole, as is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Conduction and valence electron wave functions. 

 

 
 

Fig. 4. Scheme of two magnetoexciton energy bands (reproduced from [7]). 
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Fig. 5. Electric-dipole model of a 2D magnetoexciton with wave vector k
r

 and with the arm of the electric 

dipole moment d
r

 [8]. 

 

The binding energy and the ionization potential are determined by the direct Coulomb e–h 

interaction. The arm of the dipole is proportional to the center-of-mass wave vector yet 

perpendicular to it. Despite the change of the orbital structure of the magnetoexciton compared with 

the Wannier–Mott exciton with hydrogen atom-type structure, the spin structure of the 

magnetoexciton remains the same as in the absence of a magnetic field until the Rashba spin–orbit 

coupling (RSOC) is not taken into account. A new property of the 2D magnetoexciton is the 

interdependence between the center-of-mass and the relative e–h motions induced by the action of 

the Lorentz force. This interdependence happens to play an important role promoting to the 

formation of the Dirac cone dispersion law under the influence of the exchange e–h Coulomb 

interaction. 

 

3. Electron–Hole Exchange Coulomb Interaction 

 

 The diagrams representing the direct, exchange, and mixed e–h Coulomb interactions are 

shown in Fig. 6. During the direct Coulomb scattering, the particles are moving separately 

without changing their origins. In the exchange scattering process, the e–h pairs are created and 

annihilated. In the case of the valley excitons in the TMDCs, these processes can take place with 

the electron from one valley and with the hole from another valley, which can lead to the 

interdependence between the center-of-mass and the relative e–h motions even in the absence of 

an external perpendicular magnetic field. In both cases, the exchange e–h Coulomb interaction 

removes the degeneracy of the bare exciton states and leads to the formation of their coherent 

superposition states with well-defined coefficients of linear combinations. These superposition 

states in the case of two valley exciton states were shown in [1]. One of them has a Dirac cone 

dispersion law, whereas the other state has a Kirgiz hat-type dispersion law with minimum 

energy on the circle formed by the in-plane wave vectors, as shown in Fig. 7. 
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Fig. 6. Electron–hole Coulomb scattering processes: (a) in two-band representation and (b) in electron-

hole description. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Dispersion of valley-orbit coupled X0, which in the light cone implements a massless Dirac cone 

with chirality index l=2. Figure is reproduced from the paper of Yu. H. et al., Nat. Commun. 5, 3876 

(2014). 
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The bare magnetoexciton states are determined by the quantum numbers 1F    in the 

way 1 ||( 1; ) ;ex k   
r

2 ||(1; )ex k  
r

 and the superposition states are denoted as 0 . It 

is evident from Fig. 8 that the symmetric superposition state 0

  acquires a linear dispersion 

law in the range of in-plane wave vectors 
|| 0 1,k l 

r
 where 

0l  is the magnetic length. The 

asymmetric superposition state 0

  remains with the same dispersion law as the bare 

magnetoexciton states. 

 

 
 

 

Fig. 8. Branches of 2D bright magnetoexciton in two superposition states with and without Dirac cone 

dispersion law. 

 

The selection rules of the quantum transitions from the ground state of the crystal to the 

superposition states are discussed in the following section. 

 

4. Selection Rules of the Optical Quantum Transitions 

 

It is evident from Fig. 9 that the photons are propagating in any arbitrary direction of the 

3D space, being characterized by circular polarizations .
k

 
r

r
 The 2D magnetoexcitons are located 

on the 2D plane of the layer. They are characterized by the quantum numbers 1F   , what is 

equivalent to the circular polarization 1 2(1 2)( )M a ia  
r r r

 with 1.F M    Here, 
1a

r
 and 

2a
r

 are the in-plane unit vectors. The selection rules of the quantum transitions from the ground 

state of the crystal to the superposition states depend essentially on quantum numbers 
en  and 

hn  

of the electron and hole Landau quantization levels. In the lowest Landau levels (LLLs) 

approximation, where only the lowest numbers 0e hn n   are taken into account, the geometric 

selection rules depend on the scalar products 
*( )Mk

  r
r r

 in their different combinations. It was 

shown [2] that both superposition states are dipole active in the both circular polarizations. 

However, in the case of a symmetric state, the probability of the quantum transition depends on 

the direction of light propagation as regards the semiconductor layer. It has the dependence 

proportional to 2 2/ | | ,zk k
r

 where 
3 ||,zk a k k 

r r
 and 

3a  is the unit vector oriented perpendicular to 

the layer surface. It is maximal in the Faraday geometry with light wave vector k
r

 perpendicular 

to the surface of the layer and vanishes in the Voigt geometry with the light propagation along 

the layer surface. This dependence on light wave vector projection zk  does not mean the 

appearance of a quadrupole quantum transition. It would be characterized by the quadratic 

dependence on the magnetoexciton in-plane wave vector 
||k

r
 and would be looking as 2 2

|| 0| | .k l
r

 In 

the case of an asymmetric superposition state, the probability of the quantum transition does not 
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depend on the direction of light propagation at all. These results are shown in Fig. 10. 

 

 

 
 

 

Fig. 9. Circular polarizations of the photons and the 2D excitons. The geometric selection rules are 

determined by factors 
2

*( ) .Mk
  r
r r

 The figure is reproduced from [7]. 

 

 

 
 

Fig. 10. Selection rules of the quantum transitions in both circular polarizations from the ground state of 

the crystal to the superposition magnetoexciton states  0 .k 

P

r
 

 

We will now discuss the case of light with linear polarizations 
k

s r
r

 and 
k

t r
r

shown in  

Fig. 11. 

 
 

Fig. 11. Selection rules of the quantum transitions in two linear polarizations. 
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The probability of quantum transitions depends on the projections of the linear 

polarization vector 
k

s r
r

 and 
k

t r
r

 on the plane of the layer, especially on the fact whether they are 

longitudinal or transverse as regards the exciton in-plane wave vector 
||k

r
. The symmetric 

superposition state is dipole active in the linear polarization 
k

s r
r

 with a longitudinal projection and 

forbidden in the linear light polarization 
k

t r
r

 with a transverse projection. As in the case of circular 

polarizations, the probability of quantum transitions is proportional to 2 2/ | | .zk k
r

 The asymmetric 

superposition state is dipole active in the linear polarization 
k

t r
r

 with a transverse projection and 

forbidden in the 
k

s r
r

 polarization, and it does not depend on the light orientation. The probabilities 

of quantum transitions in the exciton states of the TMDC monolayers under the action of the 

linearly polarized light also depend on the projections of the polarization vectors on the surface of 

the monolayers, as in the case of the 2D magnetoexcitons. More so, this marvelous property has 

been first discussed and underlined by the authors of theoretical and experimental studies 

published in [1]. 

 

5. Conclusions 

 

 The influence of the e–h exchange Coulomb interaction on the superposition states 

formed by two 2D magnetoexciton with quantum numbers 1F   , as well as by two valley 

Wannier–Mott excitons created in the TMDC monolayers, leads to the arising of new 

superposition exciton states with Dirac cone dispersion laws. A necessary condition for the 

implementation of this property is the interdependence between the center-of-mass and the 

relative e–h motions. In the case of magnetoexcitons, this interdependence is induced by the 

Lorentz force, whereas in the case of TMDCs, it is attributed to the existence and superposition 

of the exciton states in two equivalent valleys K
r

 and K
r

 of the hexagonal Brillouin zone. 

 

References 

 

[1] Y. Hongyi, L. Gui-Bin, G. Pu, X. Xiaodong and Y. Wang, Nat. Commun. 5, 3876 

(2014).doi: 10.1038/ncomms4876 

[2] S. Moskalenko, I. Podlesny, I. Zubac and B. Novikov, Solid State Commun. 302, 113714 (2019). 

[3] S.A. Moskalenko and D.W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons 

and Coherent Nonlinear Optics with Excitons, Cambridge University Press, New York, 2000, 

p. 189. 

[4] P.C. Hohenberg. Phys. Rev. 158, 383(1967). https://doi.org/10.1103/PhysRev.158.383 

[5] H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010). 

https://doi.org/10.1103/RevModPhys.82.1489 

[6] S.A. Moskalenko and I.M. Tiginyanu, Low Temperature Physics/Fizika Nizkikh Temperatur, 

42, 5, 426-437 (2016). https://doi.org/10.1063/1.4948615 

[7] S.A. Moskalenko et al., Phys. Rev. B 79, 125425 (2009).https://doi.org/10.1103/PhysRevB.79.125425 

[8] S.A. Moskalenko et al., Solid State Commun. 283, 14(2018).https://doi.org/10.1016/j.ssc.2018.08.005. 



ELECTRONIC DENSITY OF STATES IN STRONGLY ANISOTROPIC SYSTEMS IN 

THE PHASE OF COEXISTENCE OF MAGNETISM AND SUPERCONDUCTIVITY IN 

AN EXTERNAL MAGNETIC FIELD 

 

M. E. Palistrant, I. D. Cebotari, and S. A. Palistrant 

 

Institute of Applied Physics, Academiei str. 5, Chisinau, MD-2028 Republic of Moldova 

E-mail: chebotar.irina@gmail.com 

 

(Received April 17, 2019) 

 

Abstract 

 

A method for calculating the electronic density of states in the "mixed phase"—

superconductivity (SC) and the magnetic state of the spin-density wave (SDW)—is proposed.  

The main mechanism for the appearance of this phase is considered to be the doping of the 

system and allowance for the lattice structure (umklapp processes). The effect of an external 

magnetic field and the possibility of increasing the superconducting transition temperature Tc are 

analyzed. 

 

1. Introduction 

 

 Numerous experimental studies of the properties of modern high-temperature materials 

demonstrate a surprising property: magnetism accompanies superconductivity; superconductivity 

(SC) arises either against the background of a state of a spin density wave (SDW) or after the 

suppression of magnetism because of doping. Modern high-temperature materials contain a 

number of features in the electronic energy spectrum, namely:  it is a multiband system (several 

energy bands are present on the Fermi surface). Herewith, each compound is characterized by a 

certain number of these bands, which can only be electronic, only of the hole-type, or alternate 

between the two in different ratios. This situation requires a separate approach, when considering 

compounds from the class of ferropnictides and ferrochalcogenides; different ideas about the 

mechanism of the appearance of SC in these systems are emerging (reviews of the works in  

[1–3]). At present, an agreement has been reached that, in systems with electron bands on the 

Fermi surface (FeAs plane is responsible for SC), the main mechanism of interaction in the 

appearance of superconductivity is the spin fluctuations. In other compounds with a basic 

superconducting plane FeSe, this mechanism cannot be implemented because of the lack of 

"nesting" in the electronic energy spectrum and the absence of a magnetic exchange interaction. 

In this case [3], the cause of high-temperature superconductivity is the numerous interband 

electron–electron interactions in a rarefied BCS type system [4]. It is of interest that, in modern 

high-temperature superconductors, phase transitions are observed, for example, the 

commensurate–incommensurate state of a spin density wave. As a result, a displacement of the 

dielectric gap relative to the Fermi level and the transition to a gapless magnetic system occur in 

these materials.   

Another approach related to the role of the Fermi surface is given in [5, 6], which is based 

on the accounting of the changes of parameters (when doping) such as the change in the 

difference in the areas of the cavities of the Fermi surface of the bands under consideration and of 

the deviations from ellipticity.  

mailto:chebotar.irina@gmail.com
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As in our above-mentioned works and in [5, 6], the appearance of superconductivity near 

the temperature of the magnetic transition is essential for the appearance of a "mixed" phase 

(SC+ SDW). As noted above, the thermodynamic properties of this state are studied in both 

quasi-1D and -2D cases. Of undoubted interest are the kinetic properties of these systems. In the 

study of kinetic characteristics, an important step is to determine the electronic density of states 

in the mixed phase of two long-range orderings: superconductivity and the spin-density wave 

state. This paper is focused on this problem. 

 

2. Hamiltonian of the System and Main Definitions 

 

In the mean-field approximation, the Hamiltonian of the system under consideration has 

the form 

                                                        

 
00   ,    BCS SDW HH H H H H   (1) 

where 
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  (2)   

Expression (1) contains terms responsible for superconductivity, magnetism, and the interaction 

of electrons with an external magnetic field. We chose representation in which we have a parallel 

magnetic field ( 0 ||H M
r r

) for i = z and a perpendicular magnetic field ( 0H M
r r

) for   i x , Q is 

the wave vector of SDW;   is the Pauli matrix: 

 
0 1 1 0

  ;    .
1 0 0 1

 
   

    
    

x z    (3) 

In expression (2), 
†  
k

a


r and 
k

a


r are the creation and annihilation operators of electrons with 

momentum  k
r

  and projection of spin     ,    is the deviation from the middle filling of the 

energy band and ( )k
r

is the energy of electron. The Δ and M quantities are the superconducting 

and magnetic order parameters: 
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Here, V and I are the BCS and exchange interaction constants, respectively; 
kk

F 


r r  and 

,k Q k
G


r rr  are 

the Fourier representations of the temperature Green's functions (anomalous and normal, 

respectively), 
n  the Matsubara frequency, and T is the temperature.  

We consider a quasi-1D system with the dispersion law:  

 (k) cos ,  W kd   (5) 

where W is the half-width of the energy band and d is the lattice constant. With the middle filling 

of the energy band  = 0 and the external magnetic field H0 = 0, the nesting condition is satisfied: 

    0        k k Q   (6) 

Herewith, the quasi-1D system is in the magnetic state of the SDW with the wave vector  

Q0 = /d. The deviation from the middle filling of the energy band   0, as well as the inclusion 

of an external magnetic field 0H
r

, violate the nesting condition; as a result, there are phase 

transitions of the commensurable–incommensurable state of the SDW; an order parameter that 

determines this incommensurability arises. Herewith, the dielectric gap shifts with respect to the 

Fermi surface, and the magnetic system transits into a gapless state: free carriers appear on the 

Fermi surface; as a result, the coexistence of superconductivity and magnetism is possible. 

This mechanism for the appearance of superconductivity against the background of 

magnetism has been studied, for example, in our works [3, 7, 8]. In these papers, the 

thermodynamic properties of doped systems of reduced dimensionality are mostly analyzed. A 

further stage of the research consists in a more detailed study of the effect of an external magnetic 

field on the thermodynamic properties of the systems under consideration and the study of the 

effect of the lattice structure (umklapp process) on the kinetic characteristics of the mixed state 

(SC + SDW). The first step to solve this problem is to calculate the density of electronic states. 

We start from the mean-field approximation. This approach is possible, if we consider a three-

dimensional system in which the motion of electrons is one-dimensional. The three-

dimensionality of the system cancels the existing fluctuations, which makes it possible to apply 

the mean-field theory (justification see in our above works). In Hamiltonian (1), the parameters 

of the magnetic M and superconducting Δ long-range orders are determined by equations (4). 

Applying the method of temperature Green’s functions [9] based on Hamiltonian (1), we obtain 

for the introduced Green's functions in the case of a parallel magnetic field 0 ||H M
uuur r

 the following 

expressions: 
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Here 
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Substituting necessary Green's functions (7) into expressions (4), we obtain a system of 

equations for order parameters Δ and M. One can solve this system numerically for given values 

of parameters   and H0. First, we should choose  1D or 2D cosine law of dispersion and convert 

from summation over     to integration with respect to energy, taking into account the transition of 

the system to the incommensurate state of the SDW (see, e.g., [3, 7, 8]). Below, we present a 

method for taking into account the umklapp processes associated with a change in the wave 

vector of a spin density wave Q  2kF of a quasi-1D system. 

 

3. Calculation of the Density of Electronic States 

 

The relation determines the density of electronic states with allowance for umklapp 

processes and in the presence of an external magnetic field ( 0 ||H M
r r

):  

 ( ) ( )  ( ,   )         uNN N N   (9) 

where ( )NN 
  is determined by the normal processes and   ( )uN 

  by the umklapp processes in 

the magnetic field H0 chosen in the direction M
r

. 

 We first consider normal processes: 
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The domain of sum in formula 10 is determined by the conditions 0| k | Q   and 0| k Q | Q  , 

where 0 Q Q q ( = Fq k ). 

In accordance with (7), we have 
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where 
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To perform the integration in (10), we use the cosine law (5), representing 1 and 2 as follows:  
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We will consider small deviations of the wave vector of the spin density wave from  

2kf ( / 2 1Fq k  ); therefore, we will assume sin( ) ; cos( ) 1
2 2 2

qd qd qd
  .  

We substitute (11) into (10) and reduce ( )NN 
  to the form:  
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The account of umklapp processes reduces to additional summation over the domain –Q0 < k < q, 

that is 
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The domain of integration in this expression is conveniently divided into three sections:
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 In the first and last terms, we proceed to integration with respect to
/2  k q 

; in the second term of 

this expression, we replace k by –k and then proceed to integration over
/2  k q 

. As a result, 

expression (15) has the form: 

 

 
 
 

 
 
 

 

1 0

0

1

1 /2 0

/2 /22

/2 0

1 /2 0

/2 /22

/2 0
 

/2 1/22

  ,    ,   1
 ( )    Im     

2 ,    , 

  ,    ,  1
  Im           
2 ,    ,   

1
 Im           

2

 

 

 
  

  

 
 

  

 


 

 

  
 



 

 
 



 



















W
k q

u k q k q

W H k q
z i

W
k q +

k q k q

W H k q +
z i

W

k q k

W

D H
N d N

D H

D H
N d

D H

D
N d

 
 

0

1 /2 0

/2 0
 

  ,    ,  
 

,    ,  
 

 

 

 

 
 

k q

H k q
z i

H

D H

  (16) 



Moldavian Journal of the Physical Sciences, Vol. 18, 1-4, 2019 
 

 18 

Based on (13) and (16) for total electronic density of states taking into accounts both normal and 

umklapp processes, we obtain the following expression:  
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In expression (17), we perform integration in the complex domain closing the integration contour 

in the upper half-flatness. As a result, we obtain: 
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Let us write the square roots in the above expressions in accordance with their definition: 
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We proceed to the representation z=ω-iδ, using the definition of the square roots (20). As a 

result, we reduce the total electronic density of states to the form: 
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where 
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Expressions (18)–(22) determine the electronic density of states in the mixed phase  

(SC + SDW) for a given value of the external magnetic field H0 and the deviation from the 

middle filling of the energy band  in the phase of coexistence of superconductivity and the 

incommensurate state of SDW due to an external magnetic field H0 and the deviation of vector of 

a spin density wave from 2kF. In detail, one can obtain further calculations in general only by 

numerical methods. The problem becomes simpler, if we consider the nucleation of weak 

superconductivity against the background of the SDW. In this case, we pass to the limiting 

transition  << M. 

As a result, we obtain 
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  (23) 

It follows that N   0, if 0 | M |   H  and 0 | |   +H M . For temperature higher 

then critical temperature of SC transition Tc , we have the state of the SDW.  

    Let us consider some limiting cases: 

1. H0=0,       ,   0       . The system is in a dielectric state (in the commensurate state of the 

SDW), the nesting condition (6) is satisfied. 

2. H0 =0,       ,   0±       

For  = с the system goes to the phase of the incommensurate state of the spin density wave with 

incommensurability parameter η. In the domain  > c, an ambiguous correspondence arises 

between the temperature of the magnetic transition TM and μ; that is, the state of the SDW 

becomes unstable. The phase transition to the incommensurate state of the SDW, taking into 

account the umklapp processes, contributes to the stabilization of the state by transition to a semi 
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metallic state (Q ≠ 2kF, η ≠ 0). There is a possibility of the appearance of superconductivity. 

 The inclusion of an external magnetic field makes a definite contribution to the η value; 

consequently, in a definite range of magnetic field values, it accelerates the transition to the 

above-mentioned metallic state and, accordingly, leads to an increase in the superconducting 

transition temperature. The same situation occurs when the charge density wave and 

superconductivity arise in the system (see, e.g., [10]). Consequently, in strongly anisotropic 

systems in the phase of coexistence of superconductivity and spin density wave, as well as 

superconductivity and charge density wave, the temperature of the superconducting transition can 

increase with increasing external magnetic field. 

 

4. Conclusions 

Using the Green's function method, we have determined the electronic density of states of 

a quasi-1D system in the mixed phase of the coexistence of superconductivity and the 

incommensurable state of the spin density wave in the presence of an external magnetic field.  

Herewith, we have taken into account the effect of the umklapp processes (lattice structure). 

Under the assumption of the generation of weak superconductivity against the background of the 

SDW, we have analyzed various limiting cases. As a result, we have discussed the possibility of 

implementing the mixed phase of the incommensurate state of SDW with superconductivity. We 

have shown that the inclusion of an external magnetic field of a certain range contributes to an 

increase in the temperature of the superconducting transition. This is an unusual and surprising 

picture illustrating the favorable effect of an external magnetic field on superconductivity. 
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Abstract 

 

The metal–insulator transition of the Peierls type is studied in organic crystals of 

tetrathiotetracene iodide with the lowest carrier concentration value in a 2D approximation. The 

two most important electron–phonon interaction mechanisms—of the deformation potential type 

and the polaron type—are considered. The dynamical interaction of carriers with defects is also 

taken into account. The renormalized phonon spectrum is calculated; it is shown that the 

transition is of the Peierls type.  

 

1. Introduction

 

In the last years, quasi-one-dimensional (Q1D) organic crystals have attracted increasing 

attention in the scientific world due to more diverse and, in many cases, unusual properties 

exhibited by them. Organic nanomaterials have large potential applications in electronic, sensing, 

energy-harnessing, and quantum-scale systems [1]. It was also shown that highly conducting 

Q1D organic crystals can have extremely promising thermoelectric applications. Since not all 

parameters of these materials are well known, it is very important to apply different methods—

both theoretical and experimental—to determine some of them. In this paper, we study the Peierls 

structural transition for this purpose.  

This phenomenon was theoretically predicted by Rudolf Peierls. According to Peierls, at 

some lowered temperatures, a one-dimensional metallic crystal with a half filled conduction band 

has to pass in a dielectric state with a dimerized crystal lattice. This temperature is referred to as 

the Peierls critical temperature. The Peierls transition was studied by many authors [2–5]. To the 

best of our knowledge, the Peierls transition in tetrathiotetraceneiodide (TTT2I3) crystals has not 

been studied either theoretically, or experimentally. This material was synthesized independently 

and nearly simultaneously by the authors of [6–9] with the aim to find superconductivity in a 

low-dimensional conductor. At the same time, these crystals with the lowering temperature show 

a metal-dielectric transition. Earlier [10] we have shown for a crystal with a highest carrier 

concentration and the TTT2I3.1 composition that the transition is of the Peierls type.  

For these crystals, the dimensionless Fermi momentum kF= 0.517/2. In this case, it was 

found that the Peierls transition begins at T ~ 35 K in TTT chains and considerably reduces the 

electrical conductivity. Due to interchain interaction, the transition is completed at T ~ 19 K.  

The authors of [12] studied a 3D physical crystal model for the same curve. It was found 

that the transition begins at T ~ 35 K in TTT chains and is completed at T ~ 9.8 K, as observed 
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experimentally.  

 

In this paper, we will study the 

behavior of the Peierls transition in TTT2I3 

crystals with the lowest carrier 

concentration value. For simplicity, we will 

apply the 2D approximation. We will 

analyze the Peierls structural transition for 

the curve shown in Fig. 1. The 

dimensionless Fermi momentum in this 

case is kF=0.502/2. In addition, the Peierls 

critical temperature Tp is determined.  

 

 

  

 

 

 

 

2. Physical Model of Crystals 

 

The physical model of crystals was described in more detail in [11]. The Hamiltonian of 

the 2D crystal model in the tight binding and nearest neighbor approximations has the form 

 
    




q qk
qqqkkqqq

k
kk qkk

,

)(),()( bbaaAbbaaH  
 

Here, the first term is the energy operator of free holes in the periodic field of the lattice. The hole 

energy is measured from the band top; it is presented in the following form: 

 

)cos1(2)cos1(2)( 21 akwbkw yx k
           

 (2) 

where w1 and w2 are the transfer energies of a hole from one molecule to another along the chain 

(x direction) and perpendicular to it (y direction). 

In Eq. (1) ak
+
, ak are the creation and annihilation operators of the hole with a 2D quasi-

wave vector k and projections (kx, ky); bq
+
, bq are creation and annihilation operators of an 

acoustic phonon with 2D wave vector q and frequency ωq. 

The second term in the Eq. (1) is the energy operator of longitudinal acoustic phonons 

 

)2/(sin)2/(sin 22
2

22
1

2 aqbq yx  q          
(3) 

 

where ω1 and ω2 are the limit frequencies in the x and y directions. 

The third term represents the electron–phonon interactions. The two most important 

electron–phonon interaction mechanisms—of the deformation potential type and the polaron 

type—are considered. The coupling constants of the first interaction are proportional to 

derivatives 1w  and 2w  of w1 and w2, with respect to the intermolecular distances. The coupling 

constant of second interaction is proportional to the average polarizability of the molecule 0 . 

Fig. 1. Temperature dependence of electrical 

conductivity of the TTT2I3+δ crystal, δ = 0.01.          

Max – 90 K, σ → 0 at 20 K [10]. 

(1) 
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This interaction is important for crystals composed of large molecules, such as TTT, so that 0 is 

roughly proportional to the molecule volume. The ratio of amplitudes of the polaron-type 

interaction to the deformation potential one in the x and y directions is described by parameters γ1 

and γ2: 

 

1
5

0
2

1 /2 wbe   , 2
5

0
2

2 /2 wae                                (4) 

 

The square module of matrix element A(k,q) from Eq. (1) can be written in the form 
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
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

 qqk 
                 (5) 

Here, M  is the mass of the molecule, N  is the number of molecules in the basic region of the 

crystal, d1 = w2/ w1 = 
2

w /
1

w . 

To explain the behavior of the electrical conductivity from Fig.1, it is necessary to take 

into account the dynamical interaction of carriers with defects. The static interaction will give 

contribution to the renormalization of the hole spectrum. Defects in TTT2I3 crystals are formed 

due to different coefficients of dilatation of TTT and iodine chains.  

The Hamiltonian of this interaction Hdef is presented as follows: 

)()exp()(
1








  qqqkk
qk,

bbaaxiqqBH nx

dN

n
xdef .    (6) 

Here, )( xqB is the matrix element of a hole interaction with a defect; it is represented in the form 

)()2/()( xqx qINMqB   ,      (7) 

 

where )( xqI is the Fourier transformation of the derivative with respect to  intermolecular distance 

from the energy of interaction of a carrier with a defect and nx  numbers the defects that are 

considered linear along the x-direction of TTT chains and distributed randomly: 

 
2))(sin()( xx bqDqI  ,                                                         (8) 

 

Where D is a parameter that determines the intensity of hole interaction with a defect. It has the 

same meaning as 1w  in (5) and is measured in eV∙Å
−1

. 

The renormalized phonon spectrum Ω(q) is determined by the pole of the Green function 

and obtained from the transcendent dispersion equation 

 
2/1)],(1[)(  qq q ,                                               (9) 

where the principal value of the dimensionless polarization operator takes the form: 
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Here, kn is the Fermi distribution function. Equation (9) can be solved only numerically. 
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3. Results and Discussion 

 

Numerical simulations for the 2D physical model of the crystal are performed for the 

following parameters [13]: M = 6.5 × 10
5
me (me is the mass of the free electron), w1 = 0.16 eV,  

1w= 0.26 eV∙Å
−1

, d1 = 0.015, γ1 = 1.7, γ2 is determined from the relationship: 1
55

12 / dab  ,  

kF= 0.502/2. The sound velocity along TTT chains was estimated by comparison of the 

calculated results for the electrical conductivity of TTT2I3 crystals [13] with the reported ones [8],

1sv  = 1.5 × 10
5
 cm/s. For 2sv  in transversal direction (in a direction) we have taken  

1.35 × 10
5
 cm/s. 

 

 

 

Figures 2 and 3 show the dependences of renormalized phonon frequencies Ω(qx) as a 

function of qx for different temperatures and different qy values. In the same graphs, the 

dependences for initial phonon frequency ω(qx) are shown. It is evident that the Ω(qx) values are 

diminished in comparison with those of ω(qx) in the absence of an electron–phonon interaction. 

This means that the electron–phonon interaction and structural defects diminish the values of 

lattice elastic constants. In addition, one can observe that, with a decrease in temperature T, the 

curves change their form, and a minimum appears in the Ω(qx) dependences. This minimum 

becomes more pronounced at lower temperatures. 

Figure 2 shows the case where qy = 0 and dimensionless Fermi momentum kF= 0.502π/2 

and D = 1.074eV∙Å
−1

.  Parameter D is a constant that determines the intensity of hole interaction 

with a defect. In this case, the interaction between TTT chains is neglected. The Peierls transition 

begins at T = 90 K. At this temperature, the electrical conductivity achieves a maximum. With 

the lowering temperature, the electrical conductivity decreases. Figure 3 shows the case where 

the interaction between TTT chains is taken into account (qy = π), D = 1.014 eV∙Å
−1 

and  

kF= 0.502π/2. In this case, the transition is completed at T = 20 K. It was observed that parameter 

D decreases or the hole interaction with a defect is smaller in this case. It is evident from Fig. 1 

that the electrical conductivity significantly decreases and achieves zero at T ~ 20 K. 

Fig. 2.Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.7 and different 
temperatures. The dashed line is for the 

spectrum of free phonons. kF=0.502 π/2, 

D = 1.074 eV∙Å
−1

. 
 

Fig. 3.Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.7 and different 
temperatures. The dashed line is for the 

spectrum of free phonons. kF=0.502π/2, 

D = 1.014 eV∙Å−1. 
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4. Conclusions 

 

The Peierls structural transition has been studied in existing organic crystals of TTT2I3 

with the lowest hole concentration value. The 2D physical model has been considered. The two 

most important electron–phonon interaction mechanisms—of the deformation potential type and 

the polaron type—have been considered. The interaction of carriers with defects has been 

analyzed. The renormalized phonon spectrum has been calculated in the random phase 

approximation. The method of retarded temperature dependent Green function has been applied. 

It has been shown that the Peierls transition temperature strongly depends on iodine 

concentration. It has been found that, if kF = 0.502/2 and the hole concentration achieves the 

lowest value, the Peierls transition begins at T ~90 K in TTT chains and considerably reduces the 

electrical conductivity. Due to interchain interaction, the transition is completed at T ~ 20 K.  
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Abstract 

 

Photoluminescence (PL) spectra of ZnSe:0.1at%Sb single crystals are studied between  

90 and 300 K. The samples are grown by the chemical vapor transport (CVT) method with iodine 

as a transport agent and doped with Sb impurity during the growth. A yellow PL band with a 

maximum at 2.16 eV (575 nm) at room temperature is observed for the first time. A model of a 

(SbSeISe) acceptor center with the energy level located at 0.52 eV above the valence band edge is 

proposed, and the mechanism of the formation of this yellow PL band under direct and indirect 

excitation is discussed. 
 

1. Introduction 

 

Radiative properties of ZnSe:Sb samples are studied in a series of papers [1–4]. The 

conclusions made in the papers about the effect of Sb impurity on the sample properties 

essentially differ, probably, due to the fact that the studied samples were grown by different 

methods and measured in different spectral ranges at different temperatures. For example, the 

authors of [1] argue that annealing of ZnSe samples in an Sb melt does not lead to the formation 

of Sb-based luminescence centers responsible for edge luminescence; however, it contributes to 

the “purification” of the samples from background impurities. At the same time, according to  

[2, 3], Sb impurity is considered to be responsible for the edge photoluminescence (PL) bands 

localized at 444, 450.5, 456.7, 461, and 463 nm. The PL bands localized at longer wavelengths at 

550, 640, 760, and 820 nm are attributed to Sb impurity in [4]. Since the as-grown undoped ZnSe 

samples contain uncontrollable donor impurities of Group III elements in the unbound state 

(DZn), the authors consider (ASeDZn)¯ associative defects with various distances between the 

components to be responsible for the PL bands observed for ZnSe:Sb samples. At the same time, 

there are no bands in the PL spectra that can be attributed to (ASeDSe)¯ centers [4]. Thus, it may 

be of interest to introduce DSe donors to form (ASeDSe)¯ luminescence centers and study their 

effect on PL spectra of the ZnSe:Sb samples. 
 

2. Experimental 

 

ZnSe and ZnSe:Sb samples were grown by the chemical vapor transport (CVT) method 

with iodine as a transport agent. An Sb acceptor impurity (0.01 at %) and Zn and Se components 

were loaded into quartz tubes, which were placed in a furnace so that the nutrient zone 
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temperature was 1180–1190 K and the crystallization zone temperature was 1165–1175 K. The 
purity of the chemical substances was as follows: 99.999% for Zn, Se, and Sb and 99.99% for I. 

PL spectra were measured at 300 and 90 K in the wavelength range between 400 and  

800 nm under excitation with laser radiation of 337 and 473 nm. The spectra were registered 

using a standard synchronous detection system with an MDR-23 monochromator and a FEU-100 

photomultiplier and corrected for the spectral sensitivity of the detection system. 

 

3. Experimental Results and Discussion 

 

Figure 1 shows room-temperature PL spectra of ZnSe and ZnSe:Sb crystals excited with 

ultraviolet laser radiation (exc = 337 nm). The PL spectrum of the undoped sample consists of 

three bands: the edge band localized at 2.68 eV (462 nm) with a full width at half maximum 

(FWHM) of 98 meV and two long-wavelength bands with maxima at 2.06 eV (600 nm) and  

1.94 eV (640 nm) (Fig. 1, curve 1). A wide FWHM for the edge PL band suggests that it has a 

complex structure. According to [5], free excitons, as well as free-bound transitions involving 

shallow donor and acceptor impurities, can be responsible for this PL band. The introduction of 

Sb impurity into the samples decreases the edge PL intensity (Fig. 1, curve 2), apparently owing 

to a redistribution of the recombination channels in the doped sample, and does not change the 
shape and position of the edge PL spectrum. 

 

 
Fig. 1. (a) Long-wavelength and (b) edge PL spectra of (1) the undoped  

and (2) Sb-doped ZnSe samples. exc = 337 nm (hexcit = 3.68 eV). T = 300 K. 

 

As temperature decreases to 90 K, the edge PL band is shifted towards high energies  

(2.77 eV, 447 nm) and narrows to 55 meV for both the undoped and Sb-doped samples (Fig. 2). 

According to [6], the 
4
T1–

6
A1 and 

4
T2–

6
A1 intracenter transitions within the Mn

2+
 ion are 

considered to be the main contribution to the formation of the long-wavelength PL band for the 

undoped sample at both 300 K (Fig. 1) and 90 K (Fig. 2). A short-wavelength wing of the band is 
probably caused by [ISe–(VZnISe)] transitions or a Cu impurity [7]. 
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The introduction of Sb impurity into the ZnSe samples changes the shape of the long-

wavelength PL band, and the dominant maximum is now localized at 2.16 eV (575 nm) at 300 K 

(Fig. 1). Similarly to the undoped ZnSe sample, VZn and ISe defects, as well as Cu and Mn ions, 

contribute to this PL band. However, the change in the shape of this PL band and the appearance 

of an additional maximum give reasons to suppose that a new recombination channel, “Sb-yellow 

radiation”, makes a major contribution to the band. It would appear reasonable that this radiation 

should be attributed to the Sb-based luminescence center in ZnSe. We suppose that the (SbSeISe) 

associative center, which forms the acceptor level located at ~0.52 eV above the valence band 

edge, can be this Sb-based luminescence center. The process of formation of this new PL band 

can be illustrated by two modes of excitation of the luminescence center: indirect (Fig. 3a) and 
direct excitation (Fig. 3b) depending on excitation energy. 

 

 
Fig. 2. (a) Long-wavelength and (b) edge PL spectra of (1) the undoped  

and (2) Sb-doped ZnSe samples. exc = 337 nm (hexcit = 3.68 eV). T = 90 K. 

 

 

 
Fig. 3. Electron transitions under (a) indirect and (b) direct excitation 

of the (SbSeISe) luminescence center in the ZnSe:Sb single crystal. 

exc: (a) 337 nm (hexcit = 3.68 eV) and (b) 473 nm (hexcit = 2.62 eV). Eg(300 K) = 2.68 eV. 
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Under indirect excitation (Fig. 3a), after generation of nonequilibrium electron–hole pairs, 

the Sb-based acceptor center captures a valence hole. After that, a recombination of a 

nonequilibrium electron thermalized in the conduction band with this valence hole takes place. 

As a result, a respective photon is radiated. Under direct excitation of the luminescence center 

(Fig. 3b) with a photon energy below the band gap energy, a transition of the electron from the 

(SbSeISe) acceptor center deeply to the conduction band occurs. In this case, a recombination of 

the electron thermalized in the conduction band with a nonequilibrium hole localized at the 
(SbSeISe) associative center takes place. As a result, a respective photon is radiated. 

For direct excitation of the (SbSeISe) luminescence center according to the scheme shown 

in Fig. 3b, the ZnSe:Sb samples were excited with laser radiation of 473 nm, which corresponded 

to an excitation energy of hexcit = 2.62 eV, the value below the ZnSe band gap energy of 2.68 eV 

at room temperature. The PL spectra of the ZnSe and ZnSe:Sb samples at 300 and 90 K are 

shown in Fig. 4. It is evident that the yellow PL band is localized at the same wavelengths as 
those for indirect excitation of the luminescence center (Figs. 1, 2). 

 

 

 

Fig. 4. Long-wavelength PL spectra of (1) the undoped and (2) Sb-doped ZnSe samples. 

exc = 473 nm (hexcit = 2.62 eV). T = (a) 300 and (b) 90 K. 

 

The temperature evolution of the PL spectra of the ZnSe:Sb samples under indirect 

excitation is shown in Fig. 5. As the temperature decreases, the PL band increases in intensity 

and is shifted to 2.10 eV (590 nm). Since the band has a complex structure and consists of a 

series of elementary PL bands, this behavior can be attributed to the fact that, with decreasing 

temperature, the intensity of the long-wavelength components increases faster than that of the 

short-wavelengths components. As a result, the yellow PL band is shifted towards long 

wavelengths. 
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Fig. 5. Temperature evolution of the long-wavelength PL spectrum of the ZnSe:Sb sample. 

T = (1) 90, (2) 130, (3) 180, (4) 220, (5) 250, and (6) 300 K. exc = 337 nm (hexcit = 3.68 eV). 

 

4. Conclusions 

 

A new PL band with a maximum localized at 2.16 eV (575 nm) at room temperature has 

been first found in the PL spectra of the ZnSe single crystals doped with Sb impurity during the 

growth by the CVT method with iodine as a transport agent. It has been assumed that this PL 

band is attributed to a (SbSeISe) associative center with the energy level located at ~0.52 eV above 

the valence band edge in the ZnSe:Sb samples. A mechanism of the formation of this PL band 

under direct and indirect excitation of the luminescence center has been proposed to interpret the 

band behavior with temperature variation. 
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Abstract 
 

Lead–tin telluride single crystals have been prepared by gas-phase synthesis. Shubnikov–

de Haas effects in magnetic fields up to 12 T at low temperatures of 2.1 and 4.2 K have been 

studied. Parameters of the charge carrier energy spectrum have been determined. It has been 

found that an increase in the charge carrier concentration leads to an increase in the cyclotron 

effective mass, Fermi surface cross section, and relaxation time. 
 

1. Introduction 
 

Intense interest in studying the properties of narrow-gap semiconductors, particularly, lead–

tin telluride single crystals is attributed to the wide possibilities of practical use of these materials 

as detectors and sources of radiation in the infrared spectral region, thermoelectric cells, strain 

gauges, etc. The scientific interest in these materials is primarily associated with their unusual 

galvanomagnetic, thermomagnetic, and magnetooptic properties [1]. 

The Shubnikov–de Haas (SdH) effect is a universal and powerful tool for studying the 

energy spectrum of degenerate electronic systems in metals, semimetals, alloys, and doped 

semiconductors. It was found that particularly suitable objects for the observation of this effect 

are А
III
В

V
 and А

II
В

IV
 group semiconductors and narrow-gap semiconductors. 

The high content of information on the electronic system parameters is responsible for the 

widespread use of the SdH effect [2]. 

To obtain reliable experimental results, severe requirements are imposed on the quality of 

the samples under study: the volume distribution of the components should be uniform, while the 

amount of mechanical defects should be minimal. The most effective method for synthesizing 

homogeneous Pb1–xSnxTe single crystals is the gas-phase growth technique. To provide the 

growth of single crystals from the gas phase, we have developed a special technology using high-

purity Pb, Sn, and Te of the OSCh-0000 grade as starting materials (Te was purified by multiple 

zone recrystallization). Microstructural and spectral studies and the Hall coefficient 

measurements confirmed the high quality of the synthesized Pb1–xSnxTe (x = 0.18) single crystals. 

 

2. Results and Discussion 

 

Determination of crystal parameters from experimental data on the SdH effect 

 

In a quantizing magnetic field, taking into account the spin splitting of the levels for the 

Kane's dispersion law, the charge carrier spectrum (at H || z) has the form [3] 
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where n = 0,1,2... is the Landau level number, Eg is the band gap, 02m

e


, Pz is the projection of 

the quasi-momentum vector onto the direction of magnetic field H, and  is the charge carrier 

energy. This dispersion law is valid in the case of mc >> m0, which holds true in the case under 

consideration. 

In experimental terms, the study of magnetoresistance oscillations provides the 

determination of a number of parameters of the energy spectrum of charge carriers. Quantum 

levels were determined from the ratio 

knn

kn
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H
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where Hi is the magnetic field magnitude at the i maximum of magnetoresistance. Oscillation 

period was calculated by the following formula:  

]
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The experimental n(1/H) dependence was used to calculate the slope and determine the SdH 

oscillation frequency.  
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In the Kane's approximation, the frequency of magnetoresistance oscillations is as follows: 
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where F is the oscillation frequency in the case of the parabolic dispersion law. Oscillation period 

is determined by the area of the extreme sections of the Fermi surface: 

F
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Cyclotron masses were determined from the temperature dependence of the SdH oscillation 

amplitudes, in accordance with the formula 
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В(Т,Н) is the oscillation amplitude where at temperature T and in field H. (T2 = 2T1) Fermi 

energy can be calculated from the following relationship: 
c

n
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anisotropic Fermi surface, the charge carrier concentration can be calculated by the following 

formula: 

  4/3

4/1

2/3

2
)
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ΘsinΘkcos

H

e
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p 22 
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,                       (6) 

 

 

where М is the number of equivalent extrema in the Brillouin zone, p is the charge carrier 

concentration, 



m

m
k

|| , and Θ is the angle between the major axis of the ellipsoid and the 

direction of the magnetic field. 

Dingle showed that the broadening of the Landau levels due to electron scattering is 

equivalent to an increase in temperature by the value of ТD = 
 0k


, where  is the relaxation 

time. 

The Dingle temperature, which characterizes the smearing of the Landau levels and 

determines the amplitude of quantum oscillations, can be calculated by the formula 




tg
mk

e
T

c

D

0

22


 ,                                                    (7) 

where  is the slope of the dependence of the SdH oscillation amplitude on the reciprocal 

magnetic field. 

 

With an increase in the magnetic field, additional maxima associated with the spin 

splitting of the Landau levels appear on the oscillating resistance curve; therefore, the g-factor 

can be calculated: 
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Figure 1 shows the field dependence of the transverse magnetoresistance of Pb0.82Sn0.18Te 

in magnetic fields up to 12 T at a temperature of 2.1 K. 
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Fig. 1. Field dependence of the transverse magnetoresistance of Pb0.82Sn0.18Te (sample 2) 
The observed SdH oscillations are periodic in a reciprocal magnetic field 1/H (Fig. 2). 

 

 

Fig. 2. Dependence of the quantum number of the SdH oscillations  
on reciprocal magnetic field 1/H. 
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Table 1.  Parameters calculated from the field dependence of the transverse magnetoresistance of 

two Pb0.82Sn0.18Te samples in magnetic fields up to 12 T at two temperatures of 4.2 and 2.1 K 

Sample 
p, 

10
17 

cm
–3 

0

c

m

m
 

S, 
10

–13 

cm
–2 

TD, K g 
F, 
eV 

, 10
–12 

s 
F, 

10
5 
G 4.2 

K 

2.1 

K 

4.2 

K 

2.1 

K 

4.2 

K 
2.1 K 

1 9.6 0.07 1.12 6.4 6.0  9.1 0.057 0.38 0.405 0.304 

2 4.8 0.031 0.29 11.4 10.1 5.5 12.2 0.03 0.21 0.24 1.17  

 

3. Conclusions 

 

Based on the effect of Shubnikov de Haas were calculated the electronic system 

parameters of two Pb0.82Sn0.18Te samples in magnetic fields up to 12 T at two temperatures of 4.2 

and 2.1 K. 

The derived data show that an increase in the charge carrier concentration leads to an 

increase in the cyclotron effective mass magnitude, the Fermi surface cross section, and the 

relaxation time. 
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Abstract 

 

Results of a study of the magnetothermoelectric properties and the Shubnikov–de Haas 

effect in single-crystal wires of various diameters and films based on Bi1–xSbx semimetal alloys 

have been described. According to the Shubnikov–de Haas oscillations, it has been calculated 

that the overlap of the L and T bands in the Bi–3at%Sb semimetal wires decreases more than 

twofold owing to an increase in the antimony concentration. Thermoelectric gap E, the 

dependence of the gap on wire diameter d, and the temperature dependence of power factor 


2
(T) as a function of diameter and magnetic field have been calculated. It has been found that a 

decrease in wire diameter d leads to a semimetal–semiconductor transition at d < 1.2 m, which 

is more than an order of magnitude higher than in pure Bi wires and 1.5 times higher than in 

wires of Bi–2at%Sb alloys. It has been shown that thermal gap E increases with decreasing wire 

diameter d in accordance with a law close to 1/d, which is consistent with theoretical calculations 

based on the occurrence of the quantum size effect in semimetals. A switching effect in the 

magnetothermopower has been found; the dependence of this effect on wire diameter d and 

temperature has been determined. It has been shown that, in a weak magnetic field, the 

magnetothermopower anisotropy in Bi–3at%Sb wires and films increases with decreasing 

temperature; this feature can be used in anisotropic thermoelectric energy converters. 

 

1. Introduction 

 

Bismuth and antimony form a continuous series of substitutional solid solutions; that is, 

during the alloying with bismuth, a Sb atom occupies the place of a Bi atom in the 

crystallographic structure. In this case, the symmetry of the unit cell is preserved, and the unit cell 

parameters vary only slightly; therefore, the addition of antimony provides a gradual 

rearrangement of the band spectrum of bismuth. 

In Bi1–xSbx alloys, a smooth transition from the semimetallic state to the gapless state and 

then to the semiconductor state is observed at x > 6 at % Sb [1, 2]. 

In a concentration range of 0 < x < 4 at % Sb, Bi1–xSbx alloys are semimetals in which the 

band overlap decreases with increasing antimony concentration; the process is accompanied by a 

decrease in the electron and hole Fermi surfaces. 

The undying interest in Bi1–xSbx alloys is attributed to the fact that this alloy is, on the one 

hand, a promising low-temperature (T < 200 K) thermo- and magnetothermoelectric material  

[3, 4] and, on the other hand, a model material in solid state physics owing to the high sensitivity 
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of this alloy to composition, sizes, and the effect of external factors, such as temperature, 

deformation, and magnetic field [5, 6]. 

In recent years, interest in low-dimensional structures based on Bi1–xSbx has abruptly 

increased owing to the prediction of Prof. M. Dresselhaus that thermoelectric figure of merit  

 

   
   

     
  

 

( is the electric efficiency,  is the thermoelectric power, e and L are the points of lattice and 

electronic heat conductivity) in Bi1–xSbx semimetal alloys increases owing to the occurrence and 

implementation of a quantum size effect (QSE) [7–10]. Typically, the QSE is implemented at low 

temperatures. 

Single-crystal samples are required for the occurrence of the QSE. A decrease in the 

overlap of the L and T bands in Bi1–xSbx semimetal alloys (x < 5 at %) can lead to an increase in 

the temperature or the thickness at which the QSE is implemented. 

The aim of this study was to develop a technology for the preparation of single-crystal 

films and glass-insulated wires based on Bi–3.5at%Sb and Bi–3at%Sb semimetal alloys and 

determine their anisotropy and magnetothermoelectric properties as a function of diameter, 

temperature, and magnetic field in a temperature range of 80–300 K. 

 

2. Experimental 

 

Samples of Bi1–xSbx film single crystals were grown by zone melting under a protective 

layer [11, 12]. A finely dispersed film of the respective composition was deposited on mica by 

thermal evaporation in a vacuum. 

After that, in a vacuum, the material of the coating (KBr) was deposited onto the resulting 

polycrystalline film of a bismuth–antimony solid solution to eliminate the contraction of the 

molten film into droplets during the subsequent zone recrystallization. The melting point of the 

material of the coating should be higher than the melting point of the original film. 

The zone recrystallization of the film was implemented on a special setup at a zone 

passage velocity of 1 mm/h. The zone recrystallization process was run in an argon atmosphere. 

After zone recrystallization, the sample was placed in a solvent. In the case of using KBr 

as the protective coating, distilled water was used to remove it. 

Using the proposed method, single-crystal films of a bismuth–antimony solid solution 

with a uniform distribution of components throughout the volume on a mica substrate were 

prepared. The uniform distribution of components throughout the volume and the 

monocrystallinity of the structure were confirmed by experimental studies of the prepared thin 

films by X-ray diffraction analysis according to the width of the 5th order peak. 

Thus, homogeneous single-crystal films of Вi–3.5at%Sb alloys with a thickness of  

0.2–3 m and the orientation of C3 perpendicular to the film plane on a mica substrate were 

prepared. 

Single-crystal Bi–3at%Sb wires of various diameters were prepared by liquid-phase 

casting by the Ulitovsky method [13–15]. Diameters were controlled under a BIOLAM-12 

optical microscope and by test measurements on a scanning electron microscope. The 

monocrystallinity of the samples was determined by X-ray diffraction studies and confirmed by 
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transverse magnetoresistance rotation diagrams (TMRDs) and Shubnikov–de Haas (SdH) 

oscillations. The studied Bi–3at%Sb wires, as pure Bi wires (prepared by liquid-phase casting), 

have almost the same crystallographic orientation in the entire thickness range: the wire axis lies 

in the bisector–trigonal plane and forms an angle of 20 with the C1 bisector axis (orientation 

1011). 

The resistance and magnetoresistance of the films were measured by the four-probe 

method (Fig. 1a); the thermopower was determined by the two-probe method. Studies of the 

wires were conducted by the two-probe method using an InGa eutectics to form ohmic contacts 

[14, 15]. 

 

 
 

Fig. 1. Sample of the Bi–3.5at%Sb film single crystal on mica with four sprayed silver contacts. 

 

Shubnikov–de Haas oscillations were measured at the International Laboratory of Strong 

Magnetic Fields and Low Temperatures (Wroclaw, Poland) in a superconducting solenoid at a 

temperature of 4.2 K in magnetic fields of up to 14 T. 

 

3. Results and Discussion 

3.1. Shubnikov–de Haas effect 

Using Bi–3at%Sb wires (d = 1 m), the SdH effect on longitudinal magnetoresistance 

R(H) (H || I) was studied. Figure 2 shows the dependences of reduced longitudinal 

magnetoresistance R/R(H) (H || I) of the Bi–3at%Sb wire and the pure Bi wire with d = 1 m at 

4.2 K. As in pure Bi wires, a maximum is formed in the initial portion of the R(H) curves; the 

position of the maximum and the R/R value significantly depend on wire diameter d [13, 16]. In 

the Bi–3at%Sb wires, the increase in R/R at the maximum and the position of Hmax at 4.2 K are 

4 times higher than the respective parameters in the pure Bi wires of the same diameter. 

The initial increase in resistance in a weak magnetic field R(H) is attributed to both the 

anisotropy of the material and the occurrence of a galvanomagnetic size effect (GMSE). In a 

weak magnetic field, the curvature of the electron trajectory by the magnetic field leads to a 

decrease in the charge carrier mobility owing to an increase in the contribution of surface 

scattering. 

Since the anisotropy of the Bi–3at%Sb wires is higher than that of pure bismuth and the 

charge carrier mobility increases while approaching a gapless state, an increase in R/R at the 

maximum point and a shift of Hmax to the region of stronger magnetic fields in the Bi–3at%Sb 

alloy wires compared with the pure Bi wires of the same diameter are obvious. 
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Fig. 2. Shubnikov–de Haas effect on longitudinal magnetoresistance R/R(H) (H || I)  at 4.2 K: (curve 1) 

the Bi–3at%Sb wire with d = 1 m and (curve 2) the pure Bi wire with d = 1 m. 

 

In the region where Larmor radius rL is equal to wire diameter d (r = d), the role of the 

surface is excluded, and the resistance decreases tending to saturation in the region of strong 

magnetic fields (H >> 1) for both the pure Bi and Bi–3at%Sb wires (Fig. 2). 

The frequency of ShdH oscillations in a strong magnetic field from a T-hole ellipsoid 

(1/Н) decreases 1.5-fold compared with that for pure bismuth; this fact indicates a significant 

decrease in the cross section of the Fermi surface of T-holes and, together with a decrease in the 

volume of electron ellipsoids, proves a more than twofold decrease in the overlap of the L and  

T bands in the Bi–3at%Sb alloy wires, as in bulk samples of the respective composition. 

 

3.2 Magnetothermoelectric properties 

 

Figure 3a shows temperature dependences of relative resistance R/R(T) of the  

Bi–3at%Sb wires with different diameters (curves 1–5) and the Bi–3at%Sb single-crystal film 

with t = 1 m (curve 6). 

It is evident from Fig. 3a that the R(T) dependence exhibits a metallic behavior only in the 

wires with d > 1.2 m. 

The R(T) dependences for the wires with d < 1.2 m and films with t < 1.2 m can be 

approximated by the expression 

         
  

   
 .      (1) 

 

The (10
3
/T) dependences were used to determine thermal gap E formed owing to the 

occurrence of the QSE and the dependence of the gap on wire diameter d. It was found that the 

gap increases from E = 6 meV for the wires with d = 1.2 m to E = 24 meV for the wires with 

d = 0.3 m. For the Bi–3.5at%Sb single-crystal films with t = 1 m, the gap was 4.5 meV. 
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Fig. 3. (a) Temperature dependences of reduced resistance R/R(T) of Bi0.97Sb0.03 thin wires and (b) 
RT/R300 dependences on the reciprocal of temperature 10

3
/T: d = (1) 3.3, (2) 1.2, (3) 0.6,  

(4) 0.5, and (5) 0.3 m; (6) the Bi0.965Sb0.035 film single crystal with t = 1 m.. 

 

 

Note that the maximum gap value of E = 15 and 20 meV in the pure Bi wires is achieved 

for diameters of 75 and 50 nm, respectively [14, 17]; in the Bi–3at%Sb wires, E = 6 and  

24 meV takes place for d = 300 nm; this fact suggests that the addition of antimony to bismuth 

leads to a decrease in the overlap of the L and T bands Eo; therefore, the QSE can be observed for 

thicknesses of 1 m. Figure 3a (inset) shows the dependence of the thermal gap on the 

reciprocal of wire diameter E(1/d). It is evident from the figure that the dependence is close to 

linear; this finding is consistent with the theoretical predictions of [7, 16] and indicates the 

formation of a gap of L carriers in the Bi–3at%Sb semimetal wires during the implementation of 

the QSE. 

The magnetothermoelectric properties of the wires and single-crystal films were studied in 

a temperature range of 300–77 K in a magnetic field of 0.4 T (H  I). 

To provide the orientation of the magnetic field (Н  I,  T) in respective crystallographic 

directions, TMRDs R/R() and thermopower () were recorded, while rotating the magnetic 

field in the trigonal–bisector plane. 

Figure 4 shows TMRDs R/R() of the Bi–3.5at%Sb film with t = 1 m at temperatures of 

300 and 77 K and the Bi–3at%Sb wires with d = 6 and 0.3 m (Fig. 8b, insert) in a magnetic field 

of 0.4 T. 

It is evident from Fig. 4 that, at 300 K, the TMRDs R/R() are symmetric with respect to 

the rotation axis for both the films and the wires and correspond to analogous dependences of the 

bulk samples at the orientation of the principal axis of the crystal along the C1 bisector axis and in 

the case of magnetic field rotation in the trigonal–bisector plane. 
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Fig. 4. TMRDs R/R() (НT = 0.4 Т, H  T) of (a) the Bi0.965Sb0.035 film single crystal with t= 1 m 

and (b) Bi–3at%Sb wire with  d = 6 m: (1) 300 and (2) 77 K. 

 

 

With a decrease in temperature to 77 K, a decrease in anisotropy and a complication of the 

TMRDs R/R() are observed. The slight asymmetry is associated with the deviation of the C2 

axis from the wire axis by 20 (according to X-ray diffraction studies of the single-crystal wires) 

[13–15]. 

Figure 5 shows the transverse thermopower rotation diagrams of (a) the Bi0.965Sb0.035 film 

and (b) the Bi–3at%Sb wire at temperatures of 300 and 80 K. 
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Fig. 5. Transverse magnetothermopower rotation diagrams () ((Н = 0.4 T) of (a) the Bi0.965Sb0.035 

film single crystal with t = 1 m and (b) the Bi–3at%Sb wire with d = 6 m:  
(1) 300 and (2) 77 K. 

 

 

Noteworthy is the fact that the magnetoresistance anisotropy is extremely low both at 300 

and 77 K for wires with the different diameters (d = 6 and 0.3 m), whereas the thermopower 

anisotropy significantly increases with a decrease in temperature to 80 K for both the wires with 
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d = 3.4 m and the Bi–3.5at%Sb film with t = 1 m. 

Thermomagnetic effects are more sensitive to the features of the band structure, the charge 

carrier mobility, and the scattering process than galvanomagnetic effects; this factor leads to the 

occurrence of the switching effect [18–20]. The switching effect, i.e. the manifestation of the 

dependence of thermoelectric coefficient () on a change in the magnetic field direction (–) 

and (+) is associated with the presence of electrons and holes with different symmetries of 

energy extreme localization points and the slope of the isoenergetic surface relative to the 

crystallographic axes [18]. 

This effect was particularly pronounced in bulk Bi samples when the temperature gradient 

did not coincide with the principal axes of the crystal [21]. A decrease in the temperature and an 

increase in the magnetic field (>1 T) lead to a significant enhancement of the switching effect. 

It is known that, in Bi and Bi1–xSbx wires, the wire axis is deflected from the bisector axis 

by approximately 20 in the bisector–trigonal plane and temperature gradient T does not 

coincide with the C2 bisector axis. Therefore, the occurrence of the switching effect in the  

Bi–3at%Sb wires with d = 6 m and the Bi–3.5at%Sb films with t = 1 m is obvious. 

The occurrence of anisotropy of 60 V/K at 77 K in the Bi–3at%Sb wires and films can be 

used in anisotropic thermoelectric converters at low temperatures. 
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Fig. 6. Temperature dependences of (a) the reduced resistance of the film single crystal and (b) the 

thermopower of the Bi0.965Sb0.035 sample at Н = (1) 0 and (2) 0.4 Т (Н  I, H || C3); the sample 

thickness is t = 1 m. Inset: calculated values of the power factor as a function of temperature 

P.f.(T). 

 

 

Figures 6 and 7 show the temperature dependences of the magnetoresistance  

R/R(Т) (Н  I) and magnetothermopower (Т) (Н  T, H = 0.4 T) of the single-crystal film 

(Figs. 7, 8) with a thickness of t = 1 m and the wires with diameters of 3.3 and 0.3 m (Fig. 7). 

The magnetic field of 0.4 T (H  T) was directed along the C3 axis (point 0 in the TMRDs) and 

along the C2 axis ( = 90). 

In wires with d > 1 m and films with t > 1 m, a magnetic field of 0.4 T (Н  T) leads to 

an increase in the absolute value of thermopower with a decrease in temperature to 80 K; in the 

wires with d = 6 m, the thermopower increases to –180 V/K (Fig. 7b, curve 2). 
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In thin Bi–3at%Sb wires (d = 0.3 m), the absolute value of thermopower decreases  

at 80 K (Fig. 7b, 8b, curve 1). A significant decrease in the absolute value of thermopower with a 

decrease in wire diameter d up to the sign reversal from (–) to (+) was observed in thin Bi wires 

[22] and theoretically substantiated in studies where a theoretical calculation of the thermopower 

in quantum bismuth wires was conducted taking into account the scattering of electrons and holes 

by long-wave acoustic vibrations and a rough surface (in the form of a delta-like surface 

fluctuation). 
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Fig. 7. Temperature dependences of (a) reduced resistance R/R(Т) of Bi–3at%Sb wire with  

d = 6 m and (b) thermopower (Т) at Н = (1) 0 and (2) 0.4 Т. Inset: calculated values of the power 
factor as a function of temperature P.f.(T). 
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Fig. 8. Temperature dependences of (a) reduced resistance R/R(Т) of Bi–3at%Sb wire with  

d = 0.3 m at Н = (1) 0 and (2) 0.4 Т and (b) thermopower (Т). Insets: (a) calculated values of the 
power factor as a function of temperature P.f.(T) and (b) TMRDs at T = (1) 300 and (2) 80 K. 

 

The authors of [23–25] also indicated the possibility of occurrence of this mechanism. 

The weakening of the effect in Bi–3at%Sb wires is attributed to a decrease in the Fermi 
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momentum of electrons. For large wire diameters, it is necessary to take into account a larger 

number of dimensionally quantized levels, which leads to a weakening of the effect. 

According to the experimental results, power factor 
2
 was calculated for wires and 

films at H = 0 and H = 0.4 T (Figs. 6a, 7a, 8a (insets)) and the temperature dependence of the 

power factor 
2
 (T) in a temperature range of 77–300 K was recorded. 

It was found that power factor 
2
 achieves a maximum value of 3.5  10

–4
 W/(cm K

2
) at 

80 K in a magnetic field of 0.4 T (Н  T); it is 3 times higher than the value obtained for the 

single-crystal film. A decrease in wire diameter d leads to a more than an order of magnitude 

decrease in the power factor in the Bi–3at%Sb alloys; this finding is primarily attributed to the 

fact that a decrease in wire diameter d (as in the pure Bi wires) leads to the thermopower sign 

reversal; that is, in the given ranges of temperatures and diameters, this factor leads to a decrease 

in the absolute value of thermopower, which in turn leads to a decrease in power factor 
2
 in 

thinner wires at low temperatures. 

 

4. Conclusions 

 

A technology for preparing single-crystal wires and films has been developed. Single-

crystal wires and films based on Bi–3at%Sb semimetal alloys have been prepared. 

The recorded dependences and SdH oscillations have revealed that, in the Bi–3at%Sb 

wires, the overlap of the L and T bands decreases more than twofold compared with that in pure 

Bi. 

It has been found that, in Bi–3at%Sb wires, the QSE-induced semimetal–semiconductor 

transition occurs at diameters of d < 1 m, which is more than an order of magnitude higher than 

in the pure Bi wires and 1.5 times higher than in Bi–2at%Sb. 

It has been shown that, with a decrease in wire diameter d, the energy gap increases in 

accordance with a law close to 1/d, which is consistent with theoretical calculations taking into 

account the quantum nature of conductivity. 

It has been found that the maximum thermopower anisotropy is achieved at a temperature 

of 100 K; it is 60 V in the single-crystal films with t = 1 m and the Bi–3at%Sb wires with d = 

6 m, which is an important factor for designing anisotropic thermoelectric energy converters 

operating in a temperature range of 100–80 K. 
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Abstract 

 

        Results of a study for the medical applications of micro- and nanowires are described. The 

magnetic characteristics of glass-coated Fe-based cast amorphous microwires (with a positive 

magnetostriction constant) are proposed. The residual stress distributions in this type of 

microwires determine the domain structures and the switching field behavior. These wires are 

characterized by a rectangular hysteresis loop and can be used in measuring and identification 

engineering. A model that describes the process of the reversal magnetization of an amorphous 

microwire with the help of a large Barkhausen jump is proposed. The model is estimated with 

regard to the optimization of the signal-to-noise ratio. The results obtained do not contradict the 

existing physical concepts concerning a domain wall motion and are more general and realistic 

than the previous models. 

 

1. Introduction 

 

The importance of the medical application is associated with the fact that internal organs 

requiring radiation therapy are prone to moving within the body over time. Therefore, the 

location of a tumor determined by X-ray computed tomography scanning or magnetic resonance 

imaging prior to the onset of the radiation treatment becomes inaccurate once organs readjust 

their position due to eating, walking, or other bodily motions. As a result, radiation extending 

periodically over days or weeks can miss the intended target with a collateral damage to the 

neighboring tissue.  Magnetic sensing of the position of a small implanted tag makes it possible 

to pinpoint the tumor’s location just prior to or during treatment. 

It is known that a cast amorphous microwire (CAM) with positive magnetostriction exhibits a 

rectangular hysteresis loop and the magnetization of it is reversed by a large Barkhausen jump 

(LBJ), the coercive force of which can be regulated by both residual and external mechanical 

stresses (see, e.g., [1–12]). 

mailto:baranov@phys.asm.md
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Fig. 1. (a) Differential and (b) integral hysteresis loop by an LBJ. 

 

Various wires (including micro- and nanowires) have feature properties of magnetization 

reversal with the use of an LBJ; their magnetic structure can differ from the magnetic structure of 

a CAM. In this case, the possibility of their long-term existence in certain (one of two) 

magnetized states and a stepwise transition from one magnetized state to another is referred to as 

the magnetic bistability effect (by analogy with similar effects in other branches of physics). 

Typically, the bistable ferromagnet (BF) technology consist in the formation of a BF in a material 

with a strongly pronounced gradient of the magnetic potential profile (e.g., in CAMs) in the 

presence of quasi-mono-axial magnetic anisotropy. In this case, both bistable states can be 

abstractedly represented as energy levels of a system spaced by an energy barrier. Bistable 

ferromagnets were previously obtained by thermal and mechanical treatments. Thus, in 

particular, the well-known Wiegand Vicalloy wire was prepared [1]. Unlike the Wiegand wire, 

since the production moment, a CAM with a positive magnetostriction is a BF. In addition to the 

CAM manufacturing technology, there exists the Unitika technology (Unitika Ltd.). Wires 

manufactured by the Unitika technology, which is also referred to as in-rotating water quenching, 

have a magnetic structure and magnetic characteristics that differ from those of CAMs, although 

they are also attributed to a BF. 

 

2. Theoretical Remarks 

 

Figure 2 shows a magnetic dipole wire and pickup coils. 

 

 
Fig. 2. Experimental arrangement of a dipole wire. 
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Hertz vector m


 for dipole is represented as follows [4–7]: 
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where f 2  (ω/c = 2π/λ, and λ is the radiation wavelength),  f is the frequency , c is the 

velocity of light, (
7

0 104   H/m, 1i ), m0 is the dipole moment ( VBm S


0 , 

SB


 is the saturation induction of the CAM, V is the dipole volume), and r is the distance from a 

point of supervision of a field  (see Fig. 2). 

 

The function of change of the magnetic moment (0 t ) has the form 
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where   is the dipole switching speed.  

The transformation of vector function  rtm ,


 is as follows: 
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Vector  m


 is written as follows (in Cartesian coordinates): 

     zm  ,0,0


 

The components of function  m


 are written as follows (see Fig. 2, in spherical 

coordinates): 
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. (4) 

The magnetic field intensity is obtained as follows: 

 

    mrotrotH 


. 

The components of the magnetic intensity are written as follows: 
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[Md] is the absolute value of the magnetic moment, which will be applied in the further 

estimations. 

 

Let us consider an extreme case, where r/λ < 1. This case corresponds to low frequencies 

by which the LBJ is characterized, and the contribution of the member that is proportional to 
31 r is important for them: 
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Equations (6) completely correspond to similar formulas for the magnetostatic case [4] and make 

it possible to theoretically estimate the BJ recording range low frequencies. Note the special 

features of recording the magnetic pulse data:  

(i) The signal of scheme X (see Fig. 2), which is twice larger than the signal of scheme  Z, 

makes this scheme preferable, and it is used in the experiment (see below). There is no radio 

signal in this configuration; however, it exists in measurements in accordance with operation 

scheme Z. 

(ii) For the CAM dipole with a saturation induction value of BS ≈ 1 T (for an Fe-based 

microwire) and a microwire volume of V ≤10–11 m3 (for a microwire with a core diameter of 

~40 m and a length of ~10
–2

 m), the equipment for recording the dipole radiation field should be 

sensitive to magnetic fields of 10
–7

 A/m near the dipole (r < 1 m). The small value of this 

quantity (below the magnetic noise level) is determined by the small value of the dipole volume.  

 

3. Experimental Results 
 

The possibility of recording the LBJ in the near-field zone of the signal by an induction 
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measuring coil was verified in [11, 12]. The signal of the magnetic flow variation owing to 

component Hr was recorded.  The pickup cool was directed perpendicular to the dipole’s center. 

The external magnetic field, which initiated the magnetization reversal of the dipole, did 

not generate an induction EMF in the measuring coil. Therefore, in this scheme, a compensating 

coil is not required. In this case, the far-field component is absent, and the measuring coil 

receives the near field of the microwire dipole (with a length of 3 cm and a core diameter  

of ~50 m [3]).  

 

 
 

Fig. 3. Dependence of the EMF at the measuring coil plotted in the Y-direction (in mV) on the distance 
between the center of the dipole and the end wall of the measuring coil in the X-direction (in cm) [12]. 

Vector r (distance from the dipole to the coil) is perpendicular to the center of the dipole and the end wall 

of the measuring pickup coil. Inset: schematic circuit. 

 

 

4. Conclusions  

 

The critical length of the CAM sections at which the BF effect with the LBJ is preserved 

is about 1 mm, being as least ten times smaller than bistable tapes and wires prepared by other 

methods. The magnetization reversal rate of the CAM is higher than that of the counterparts. It is 

reasonable to expect that these parameters will be better for nanowires that can be prepared from 

CAMs by constriction with thinning. 
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Fig. 4.  Schematic possible application of a microwire in medicine. 

 

It is commonly accepted that the widespread practical application of the BF with the LBJ 

started in 1975 owing to American researcher John Richard Wiegand, who designed the simplest 

Wiegand transducer based on a Vicalloy wire.  

At present, bistable micro- and nanowires can be used for applications in code labels for 

goods, car parts, valuables, documents, securities, and money; the creation of informational files; 

for the remote control of actuating mechanisms; and the design of sensitive elements (sensors) in 

measuring equipment. They also find application in medicine for distinguishing affected organs 

or observations of transport process of medicinal preparations (with magnetic labels) in 

organisms. Note that this transport process can be controlled by an external magnetic field. 

The obtained experimental and theoretical results testify that labels made of magnetic 

micro- and nanowires can be used only at small distances from the recording units (at distances 

of about 0.1–1 m) depending on the micro- and nanowire diameter. In this aspect, they are not 

competitive for the known radio-frequency identification systems. 

 In addition to the Barkhausen effect, CAM labels are characterized by a natural 

ferromagnetic resonance, which can be also used as an additional property for identification.  
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Abstract 

 

The microstructure and mechanical (elastic and plastic) properties of phosphate glasses 

(PhGs) doped with rare-earth elements (REEs), namely, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, and Yb, 

have been studied in this paper. The strength parameters of the PhGs and their dependence on the 

load value modification have been estimated by the depth-sensing indentation method. Three 

specific stages have been revealed in the deformation process, including nano-, submicro, and 

microdeformation. It has been assumed that the elastic and plastic properties of PhGs can be 

associated with the specificity of the internal structure of the glasses.  

 

1. Introduction  

 

Intensive research into the various types of glassy materials is being conducted due to their 

widespread application in many areas of modern engineering. However, despite the progress 

made in understanding the internal structure of glassy materials on the nanometer scale, the 

problem of the structure of long-range order on the nano/micro/macro scale remains very 

hypothetical. Laser phosphate glasses (PhGs) have been intensively studied over the past decade, 

since (together with silicate glasses) they comprise an important group of compounds used in 

quantum electronics as active media of lasers, optical amplifiers, photosensitive elements, 

sensors, etc. [1–3]. Phosphate glasses are superior to their silicate counterparts in terms of optical 

properties. Knowledge of mechanical and microstructural characteristics is essential for detailed 

understanding of phenomena that occur during the manufacturing and processing of PhGs and 

strongly affect their operating parameters. Particularly, a correlation between structure and 

mechanical properties is determinative both in the reliability optimization of PhGs related to their 

use in optomechanical devices and in the design of other vitreous materials. The microstructure 

and mechanical properties of PhGs doped with ions of the rare-earth elements ((REEs), Pr, Nd, 

Sm, Eu, Gd, Dy, Ho, Er, Yb) were earlier analyzed in [4, 5]. In this paper, it is shown that other 

characteristics, such as "plasticity index" and "resistance index," are used to assess the 

mechanical properties of the materials and their resistance to plastic deformation, in addition to 

the well-known parameters E and H. 

    

2. Experimental 

 

The purpose of this paper is to study the mechanical properties of bulk PhGs belonging to 

the Li2OBaOAl2O3La2O3P2O5R2O3 and SiO2∙P2O5∙R2O3 systems doped with REEs. The 

studied samples of PhGs were prepared by an unconventional ‘wet’ method [6]. Supervision of 
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microstructure evolution during the synthesis, processing, and operation of these materials will 

improve the nano- and micromechanical properties of these vitreous structures.  

The microstructure of the sample surface was studied by optical, light (LM), and atomic 

force microscopy (AFM) methods. Mechanical parameters were studied by depth-sensing nano- 

and microidentation using a Nanotester PMT3-NI-02 device. The hardness and Young modulus 

calculations were carried out using the Oliver–Pharr method [7]. All of them were carried out 

automatically using the dedicated software.  

 

3. Results and Discussion 

 

Analysis of the surface microstructure of the samples using the LM method confirmed the 

data of [5], according to which all samples had a smooth surface without any cracks, pores, or 

defects. This finding indicates a high quality of the fine structure of the materials under study. 

Small globule-shaped entities of different colors were only observed on the polished surface of 

the samples (according to preliminary estimations, Dgl ~ 200–300 nm).  

 

  

 

 

 

 

 

 

 

           

 

                                               a                                                   b 
Fig. 1. Surface morphology observed via LM for the PhGs samples doped with (a) Nd and (b) Pr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. LM images of the surface of the PhGs–Yb sample in (a) the normal and (b) interference mode. 
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This is confirmed by Fig. 1, which shows the regions of the surface of the PhGs doped 

with Nd and Pr. Figure 2 shows the surface relief in the interference regime for the sample 

containing an Yb impurity. A slight undulation of the interference lines caused by the presence of 

globules with a height of approximately 100 nm is observed on the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                       

                                 a                                                                           b 

 
Fig. 3. (a) AFM data on the surface morphology of the sample doped with gadolinium (PhGs–Gd) and  

(b) a region of the surface of the PhGs–Gd sample recorded in the 3D mode. 

 

Figure 3a shows the surface of the sample doped with gadolinium (PhGs–Gd). The pattern 

of globule distribution over the surface can be traced using this figure. It should be noted that the 

globules form unique tangles of different colors and dimension, since presumably they were 

formed from particles of various compositions. The same regularity can be seen for the other 

samples (Fig. 1). The undulated surface is more distinctly seen in the 3D mode of AFM (Fig. 3b).  

Figure 4 shows results of the depth-sensing indentation tests. It should be noted that all 

the nano- and microindentation curves (P(h)) obtained for the samples under study were 

generally characterized by a smooth pattern of changes in the indentation depth at both the 

loading and unloading stages. In certain cases, at Pmax = 500 and 900 mN, extremely slight 

inhomogeneity of the curves and weak undulation during the loading stage (PhGs–Yb, PhGs–Dy) 

were observed [5]. It is known from literature [8, 9] that breaking of atomic bonds leads to a 

decrease in the internal stresses in the indentation zone and thus causes an increase in the rate of 

penetration of the indenter into the material, due to which a nonuniform curve can be formed. 

Therefore, the shape of the obtained curves P(h) provides data pertaining to the dynamics of the 

deformation process in the tested sample. Thereby, the smooth shape of the P(h) curves in Fig. 4 

indicates an uniform development of the process of the indenter deepening with increasing load, 

which can be the result of the sum of two processes, namely, the elastic compression of the 

crystal cell and the plastic deformation by the structure densification in the zone of load 

application [10, 11].  

 The Young's modulus (E) (Fig. 5a) and hardness (H) (Fig. 5b) exhibited a random 

dependence as a function of rare-earth ion atomic mass. Instead, it was found that the load value 

(Pmax) affects H and E: a decrease in the peak load applied to the indenter  

(Pmax = 900, 500, 100, 10 mN) was accompanied by an increase in the H and E values. The most 
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visible impact was observed in a range between 100 and 10 mN due to the indentation size effect 

(ISE) [12]. 
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Fig. 4. Loading–unloading curves (P(h)) recorded at different maximum loads. Inserts: the curve for  

Pmax = 10 mN on a larger scale; (a) PhG–Eu, (b) PhG–Nd, and (c) PhG–Pr. 
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 The authors of [13] showed that the resistance of materials to plastic deformation can be 

determined using, in addition to well-known E and H parameters, other characteristics, such as 

“plasticity index” and “resistance index.” These parameters describe the resistance of materials to 

deformation and destruction under an external concentrated load and are computed as the ratio of 

material hardness and Young's modulus, respectively, H/E and H
3
/E

2 
shown in Fig. 6. It is 

evident from Fig. 6 that both indexes, H/E and H
3
/E

2
, in common with the E and H dependences, 

mainly decrease with an increase in Pmax for many studied materials. It means that the resistance 

to indenter penetration into the doped PhGs decreases with an increase in the load. 

 

 

                                               

 

 

                                                                                

 

 

 

 

 

 

a                                                                        b 
Fig. 5.  (a) Young modulus (E) and (b) hardness (H)  as a function of REE  atomic mass (Mat). The curves 

correspond to different peak values of applied load under depth-sensing indentation,  

Pmax = (1) 10, (2) 100, (3) 500, and (4) 900 mN. 

 

 

 

 

 

 

 

 

 

 

                                       

a                                                                        b 
Fig. 6. Variation in (a) plasticity index (H/E) and (b) resistance index (H

3
/E

2
) as a function of rare-

earth ions atomic mass. The curves correspond to different peak values of applied load under 

depth-sensing indentation, Pmax = (1) 10, (2) 100, (3) 500, and (4) 900 mN. 

 

Comparison of the relationship between Young’s modulus, hardness, plasticity indexm and 

resistance index with the size of ionic radii and the atomic mass of the doping REEs has not 

revealed a clear dependence between these parameters. Based on this fact, an assumption has 

been made that the elastic and plastic properties of PhGs–R are mainly determined by the internal 

structures of the glasses, which can contain rigid frameworks of icosahedral three-dimensional 

figures by analogy with the structure of the hardened gel revealed by the authors of [14].  

 



Moldavian Journal of the Physical Sciences, Vol. 18, 1-4, 2019 
 

 58 

4. Conclusions 

 

The microstructure and mechanical properties of PhGs doped with REEs (PhGs–R, here  

R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb) have been studied in this work. It has been shown that 

the fine structure of the surface consists of globules, which form unique tangles of different 

colors, presumably due to the fact that they are formed of particles with different compositions 

with diameters of ~200–300 nm and heights of <100 nm. The particles are appreciably densely—

yet not uniformly—distributed over the surface and form a certain type of a framework structure. 

The mechanical parameters, Young’s modulus E, hardness H, plasticity index H/E, and 

resistance index H
3
/E

2
 exhibit a nonmonotonous dependence on the size of ionic radii and atomic 

mass of the doping REEs and on the load value under the depth-sensing indentation; in general, 

they exhibit a tendency toward decreasing with increasing load. An assumption has been made 

that the elastic and plastic properties of PhGs–R are mostly stipulated by the specificity of the 

internal structure of the glasses. 
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Abstract 

 

A new [Mn6O2(O2CCMe3)10(HO2CCMe3)(EtOH)3]∙EtOH hexanuclear mixed-valent coordination 

compound with a {Mn6O2} core has been synthesized and characterized by single-crystal X-ray 

diffraction analysis. The central mixed-valence [Mn
II

4Mn
III

2(4-O2)]
10+

 core consists of six Mn 

centers, two Mn
III

 and four Mn
II
 ions, arranged as two edge-sharing flattened Mn4 tetrahedra, 

with a 4-O
2

 ion in the center of each tetrahedron. Peripheral ligation is provided by pivalate and 

ethanol groups.  

 

1. Introduction 

 

Hexanuclear [Mn6O2(O2CR)10L4] clusters (where L = neutral monodentate ligand and  

R = Me, Et, CHMe2, CMe3) with a central {Mn
III

2Mn
II

4(4-O)2} core is the most fascinating Mn 

oxo-carboxylate clusters used as building blocks in construction of coordination networks [1]. 

First, the topology of the cluster skeleton remains unchangeable, RCO2
–
 carboxylate and capping 

ligands can be modified. Second, four capping ligands L in these clusters can be completely or 

partially replaced; thus, [Mn6O2(O2CR)10] clusters can be considered as building blocks with 

connectivity up to four. A detailed analysis of hexanuclear [Mn6O2(O2CR)10L4] compounds 

extracted from the Cambridge Structural Database (ConQuest Version 1.19, CSD version 5.38) 

shows that there are more than 229 examples of these hexanuclear Mn-containing compounds 

with a {Mn
III

2Mn
II

4(4-O)2} core in which R = Me, Et, CHMe2, CMe3. 

Note that the first 1D coordination polymers based on the {Mn6O2} carboxylate building 

blocks—[Mn6O2(O2CCMe3)10(HO2CCMe3)2(4,4′-bpy)]n—were obtained by Yamashita et al. in 

2002 [2]. Later on, {[Mn6O2(O2CEt)10(H2O)4]·2(EtCO2H)}n [3] and 

{[Mn6O2(O2CMe)10(H2O)4]·2.5(H2O)}n [4], in which {Mn6} building clusters are connected into 

1D networks by shorter linkers, were prepared. In 2010, three new 1D coordination polymers 

{[Mn6O2(O2CCMe3)10(Me3CCO2H)(EtOH)(na)]·EtOH·H2O}n, {[Mn6O2(O2CCHMe2)10(pyz)3] 

·H2O}n and {[Mn6O2(O2CCHMe2)10(Me2CHCO2H)(EtOH)(bpe)]·Me2CHCO2H}n (where 

pyrazine (pyz), nicotinamide (na), and 1,2-bis(4-pyridyl)ethane (bpe)) were reported [5].  

The formation of 2D layers based on a hexanuclear {Mn6O2} carboxylate motif was first 

reported by Ovcharenko et al. in 2013. Two new coordination polymers—

{[Mn6O2(O2CCMe3)10(ina)2]·3(Me2CO)}n and {[Mn6O2(O2CCMe3)10(ina)2]·2(EtOAc)}n—were 

prepared using N,O-donor bridging ligands, such as isonicotinamide (ina) [6]. Employing ina and 

N,N′-donor aldrithiol (adt-4) spacer ligands in the reaction, new 2D coordination polymers 

[Mn6O2(O2CCMe3)10(ina)2]n, {[Mn6O2(O2CCMe3)10(adt-4)2]·2(thf)}n and 

{[Mn6O2(O2CCHMe2)10(adt-4)2]·(thf)·3(EtOH)}n were also synthesized [7]. 
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Recently, a new series of hexanuclear mixed-valent {Mn6O2}-containing pivalate and 

isobutyrate clusters [Mn6O2(O2CCMe3)10(Me3CCO2H)3(EtOH)]·(Me3CCO2H), 

[Mn6O2(O2CCMe3)10(Me3CCO2H)2(EtOH)2]·2(EtOH), and 

[Mn6O2(O2CCMe3)10(Me3CCO2H)2(MeOH)2]·2(MeOH)·H2O and coordination polymers that 

incorporate these clusters, namely, [Mn6O2(O2CCHMe2)10(pyz)(MeOH)2]n, 

{[Mn6O2(O2CCHMe2)10(pyz)1.5(H2O)]·0.5(H2O)}n,, and [Mn6O2(O2CCMe3)10(HO2CCMe3)2(en)]n 

have been synthesized (where pyz = pyrazine, en = ethyl nicotinate) [8]. As an extension of the 

previous study on the synthesis of oxo-bridged polynuclear hexanuclear Mn(III, II) containing 

clusters, herein the synthesis and X-ray characterization of a new hexanuclear 

[Mn6O2(O2CCMe3)10(HO2CCMe3)(EtOH)3]∙EtOH (1) pivalate cluster compound are reported.  

 

2. Experimental  

 

2.1. Materials, methods, and X-ray crystallography 

 

All reactions were run under aerobic conditions using chemical and solvents as received 

without further purification. The Mn(Me3CCO2)2 precursor compound was prepared as described 

in [9]. A Bandelin Sonorex RK-100H ultrasonic bath operating at 45 kHz with a maximum power 

output of 160 W was used for the ultrasonic irradiation.  

X-ray data were collected at room temperature on an Oxford Diffraction Xcalibur 

diffractometer equipped with a CCD area detector and a graphite monochromator utilizing MoKa 

radiation (λ = 0.71073 Å). Final unit cell dimensions were determined and refined on an entire 

dataset. All calculations to solve the structures and refine the proposed models were carried out 

with the SHELX suite of programs [10]. The C-bounded H-atoms were placed in calculated 

positions and treated using a riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl 

group and 1.2Ueq(C) for other hydrogen atoms, while the oxygen-bounded H-atoms were found 

from differential Fourier maps and isotopically refined with isotropic displacement parameter 

Uiso(H) = 1.5Ueq(O). The X-ray data and the details of the refinement for 1 are summarized in 

Table 1; the selected geometric parameters are given in Tables 2 and 3. The figures were drawn 

using the Mercury program. Crystallographic data of the new compound reported herein was 

deposited with the Cambridge Crystallographic Data Centre and allocated the deposition number 

CCDC 1972569. 

 

2.2. Synthesis 

 

Synthesis of [Mn6O2(O2CCMe3)10(HO2CCMe3)(EtOH)3]∙EtOH (1). Mn(Me3CCO2)2 

(0.10 g, 0.38 mmol) and N-phenyldiethanolamine (0.018 g, 0.09 mmol) were dissolved in an 

EtOH/CH2Cl2 mixture (4 mL/4 mL). The resulting brown solution was treated in an ultrasonic 

bath for 30 min. The solution was filtered off and allowed to evaporate slowly at room 

temperature. Brown crystals of 1 suitable for X-ray measurements were obtained within 1 week, 

washed with EtOH, and dried in air. Yield (based on Mn): 0.064 g, 60 %.  

 

3. Results and Discussion 

 

The reaction of manganese(II) pivalate with N-phenyldiethanolamine in an  EtOH/CH2Cl2 

mixture results in a new hexanuclear compounds with a stable [Mn6O2(O2CCMe3)10] unit, while 

comprising a coordinated neutral monodentate ligand: one pivalic and three ethanol molecules in 
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[Mn6O2(O2CCMe3)10(HO2CCMe3)(EtOH)3]∙EtOH (1).  

X-ray analysis showed that the cluster contains a {Mn
II

4Mn
III

2O2}
10+

 core of two edge 

sharing Mn4 tetrahedra with a μ4-O
2

 ion in the center of each tetrahedron. Peripheral ligation is 

provided by ten bridging pivalate monoanionic ligands (Fig. 1a). Four of them coordinate in a μ3-

mode and bridge three Mn centers, whereas each of the other six bridges two Mn centers in a μ2-

mode.  

The shortest intracluster Mn
III

1–Mn
III

2 distance, being 2.8108(11) Å, is formed by two 

Mn
III

 ions that occupied the common edge of the Mn4 tetrahedra, with a µ4- O2 –ion in the center 

of each tetrahedron. All other Mn
III

–Mn
II
 and Mn

II
–Mn

II
 bond distances in Mn4 tetrahedra are 

longer (3.145(2)–3.169(1) and 3.720(2)–4.837(1) Å, respectively). In 1, two peripheral Mn atoms 

(Mn5 and Mn6) in Mn4 tetrahedra are additionally capped by ethanol molecules. Two peripheral 

Mn atoms in the second Mn4 tetrahedra (Mn3 and Mn4) are capped by ethanol and pivalic acid 

molecules. All Mn
II
 atoms have a near-octahedral surrounding. The Mn

III
 ions (Mn1 and Mn2) 

have an elongated octahedral MnO6 environment. The axial and equatorial Mn
III

–O bond 

distances are in the range of 2.211(2)–2.275(5) and 1.883(4)–1.978(2) Å, respectively. Selected 

bond distances are summarized in Table 2. Four terminal Mn atoms are in the lower oxidation 

state +2 and have longer MnOcarb bond distances ranging from 2.333(5) to 2.370(6) Å. 

Analysis of the mode of packing of the components revealed a system of inter- and intra-

molecular OH…O hydrogen bonds in 1 (Fig. 1b, Table 3). The coordinated pivalic acid forms a 

short intramolecular hydrogen bond O(24)H(24)...O(22) of 2.559(8) Å with the bridging 

pivalate. The solvent EtOH molecule forms intermolecular O–H
…

O hydrogen bonds (2.59(3), 

2.65(4), and 2.73(2) Å) with the coordinated EtOH and pivalate molecules from {Mn6} cluster. 

 

 

 

Table 1. Crystal data and structure refinement for 1 

 

Empirical formula C67H126Mn6O30 V, Å
3
 2265.4(3) 

Formula weight 1741.31 Dcalc (g /cm
 –3

)
 

1.276 

T (K) 293(2) μ(mm
-1

)
 

0.880 

Crystal system Triclinic F(000) 918 

Space group P-1 Crystal size (mm) 0.50  0.50  0.40 

Z 1 Reflections 

collected/unique 

3.112 / 25.048 

a, Å 13.5932(7) Reflections with I > 2σ(I) 15038 

b, Å 14.0742(7) Data/restraints/parameters 10367 / 252 / 917 

с, Å 15.2032(9) Goodness-of-fit on F
2
 1.001 

 (º) 114.592(5) R1, wR2 [I > 2σ(I)] 0.0438, 0.1151 

 (º) 90.231(5) R1, wR2 (all data) 0.0543, 0.1240 

γ (º) 117.874(5) Δmax, Δmin, (eÅ
-3

) 0.586 and 0.298 
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(a) 

 

 
(b) 

 

Fig. 1. Molecular structure (a) and fragment of crystal packing (b) in 1. Color code: Mn is 

denoted by purple spheres; O, red balls; C, grey sticks; and H, grey lines. 
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Table 2. Selected bond distances (Å) for 1 

 

Mn(1)-O(1)  1.888(4) 

Mn(1)-O(2)  1.880(4) 

Mn(1)-O(8)  2.250(5) 

Mn(1)-O(16)  1.951(4) 

Mn(1)-O(18)  2.229(4) 

Mn(1)-O(21)  1.967(4) 

Mn(2)-O(1)  1.901(4) 

Mn(2)-O(2)  1.896(4) 

Mn(2)-O(6)  1.949(4) 

Mn(2)-O(9)  2.246(5) 

Mn(2)-O(11)  1.952(5) 

Mn(2)-O(19)  2.240(5) 

Mn(3)-O(1)  2.160(4) 

Mn(3)-O(3)  2.101(5) 

Mn(3)-O(18)  2.325(5) 

Mn(3)-O(20)  2.090(5) 

Mn(3)-O(22)  2.218(4) 

Mn(3)-O(23)  2.256(5) 

Mn(4)-O(1)  2.176(4) 

Mn(4)-O(4)  2.137(5) 

Mn(4)-O(5)  2.128(5) 

Mn(4)-O(7)  2.140(5) 

Mn(4)-O(9)  2.334(5) 

Mn(4)-O(25)  2.257(6) 

Mn(5)-O(2)  2.180(4) 

Mn(5)-O(8)  2.322(5) 

Mn(5)-O(10)  2.152(5) 

Mn(5)-O(13)  2.122(6) 

Mn(5)-O(15)  2.154(4) 

Mn(5)-O(26)  2.251(5) 

Mn(6)-O(2)  2.177(4) 

Mn(6)-O(12)  2.126(5) 

Mn(6)-O(14)  2.143(6) 

Mn(6)-O(17)  2.129(5) 

Mn(6)-O(19)                         2.371(5) 

Mn(6)-O(27)  2.259(6) 

Mn(1)-Mn(2)  2.811(1) 

Mn(1)-Mn(3)  3.155(1) 

Mn(1)-Mn(5)                        3.145(1) 

Mn(2)-Mn(4)  3.169(1) 

Mn(2)-Mn(6)  3.165(1) 
 

 

 

 

Table 3. Selected hydrogen bonds (Å) for 1 

 

D-H...A                              d(D-H) d(H...A) d(D...A) (DHA)  Symmetry  

transformation for A 

______________________________________________________________________________  

 O(24)-H(24)...O(22)          0.82 1.75 2.559(8) 169 x, y, z 

 O(25)-H(25D)...O(28A)   0.85 2.04 2.65(4) 129 x, y, z 

 O(26)-H(26A)...O(30)      0.85 2.21 2.73(2) 120 x+1, y, z 

 O(27)-H(27A)...O(29A)   0.85 1.98 2.59(3) 128 x, y+1, z 

 

 

4. Conclusions 

 

A new [Mn6O2(O2CCMe3)10(HO2CCMe3)(EtOH)3]∙EtOH hexanuclear mixed-valent 

coordination compound with a {Mn
III

2Mn
II

4(4-O)2} core has been synthesized and characterized 

by single-crystal X-ray diffraction analysis. The synthesized mixed–valent hexanuclear 

carboxylate manganese coordination cluster can be used as a supramolecular building block and 

offers additional possibilities for crystal engineering of new interesting materials with high 

porosity and magnetic properties and new avenues to be explored.  
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 Abstract 

 

The kinetics of a strongly nonequilibrium state of electrons and holes excited in quantum 

dots by a long laser pulse in the p-states are studied using time-resolved photoluminescence. 

Three bands of the transient photoluminescence spectra are identified, and the ignition and decay 

of each of them is studied. The complex picture of the time evolution of the bands is attributed to 

the fast processes of cascade intraband relaxation and the Pauli Exclusion Principle. The 

durations of the formation and decay for each of the photoluminescence bands are determined. 

1. Introduction  

Multiexciton states in semiconductor quantum dots (QDs) with two or more excited 

electron–hole (e–h) pairs play an important applied role in some devices, such as lasers, 

photodetectors, solar cells, light-emitting diodes, and photon pair sources [1–6]. Owing to the 

enhanced interaction of charge carriers under conditions of quantum confinement, multiexcitons 

in QDs are scattered mainly through a nonradiative Auger process; effective photoluminescence 

(PL) can be implemented only by single excitons [1, 7]. In the simplest two-exciton case, the 

biexciton in an ordinary CdSe QD can emit a photon during its subnanosecond Auger lifetime 

[8], which is much shorter than the radiation lifetime of tens of nanoseconds for the remaining 

single exciton. This transient presence of biexcitons is not pronounced in time-integrated (or cw) 

PL spectra and necessitates the use of ultrafast spectroscopic techniques and high-sensitivity 

experiments to detect their fundamental optoelectronic properties, such as PL lifetimes, spectral 

positions, and binding energies [9–15]. 

The relaxation kinetics of two, three, and four e–h pairs in CdSe QDs were studied in [1] 

using femtosecond transient absorption spectroscopy. It was shown that the relaxation cascades 

are mediated by Auger processes. The studies of ultrafast PL of colloidal CdSe/ZnS QDs were 

carried out in [10]. A new transient emission band red-shifted by about 10–30 meV relative to the 

band-gap luminescence was extracted. The authors attributed it to the neutral biexciton with 

extremely short measured lifetimes (100 ps for a QD radius of 3.5 nm) in agreement with 

transient absorption studies of the two e–h pairs in [1]. The bands associated with the radiative 

decay of the single exciton, biexciton, and triexciton in the transient spectra of time-resolved PL 

were clearly observed in [11] for CdSe QD in hexane. The detailed study of the multiexcitonic 

effects in CdSe QDs, based on the energetics, the lifetimes, and the pump-power dependence of 

the various emission bands was presented in [12, 13]. All measurements in [10–13] were 

performed at room temperature. We also draw attention to works [14–17] on this issue. It was 

shown in [10, 11, 13] that the positions of the exciton and biexciton bands do not depend on the 
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pump power; this fact suggests that each of them is due to the emission from QDs in the well-

defined one- and two-particle states. 

To interpret the time evolution of the system, the following scenario was expected. 

Initially, the sample is excited by an ultrashort laser pulse, so that a certain number of e–h pairs 

with the energy much higher than the QD energy gap are generated in a selected QD. For 

example, in [11] a pulse of 300 fs at 400 nm was used. After that, the system was left to itself 

(without any external influence). At the next stage, the electrons and holes relax to the lowest 

states on a picosecond time scale [18–22] due to the fast intraband Auger-like and phonon 

emission processes. Next, at the third stage, a relatively slow process of recombination of e–h 

pairs occurs within a time interval of a few tens of picoseconds to a few tens of nanoseconds. 

This final stage of the time evolution of the system can be described by a simple set of coupled 

rate equations [11] and reflects in the time-resolved kinetics of PL studied in [10–13]. 

After rapid intraband relaxation, a quasi-equilibrium state is established in the sample. In 

different QDs, one (exciton) to several (multiexciton) e–h pairs can be excited depending on the 

excitation intensity. Their number in the selected QD is described by the Poisson statistics [18]. 

The Poisson distribution is valid, if the probability of generating the e–h pair in a QD is 

independent of the number of e–h pairs already existing in it [23]. Therefore, it is applicable for 

the case of ultrashort pulse excitation well above the PL band edge and makes it possible to 

supplement the set of rate equations by the initial conditions [11]. 

The population of the QD states can change quite rapidly; a high time resolution is 

required to study the dynamics. Therefore, in experiments of [10–13], ultrashort laser pulses and 

high-resolution measuring equipment were used. In this paper, we report that PL from biexciton 

states in QD can be observed by more modest measuring means and with a laser pulse whose 

duration is comparable to the lifetime of biexcitons and far exceeds the intraband relaxation time. 

2. Main Results 

The time-resolved PL triggered by a ~30-ps-long exciting pulse centered at the time of 

154 ps was studied. The use of long pulses makes it possible not only to trace the decay of multi-

exciton complexes, but also to study the process of their formation and, thus, give a more 

complete picture of the physical processes occurring in the system. In addition, in contrast to 

[10–13], to achieve a fast relaxation to the lowest state, we excite e–h pairs by a laser directly 

near the p-states. 

From the spectrogram with ~50 ps resolution, the temporal trace of PL in the main (low-

energy) spectral range was obtained. The entire process of the PL decay can be conventionally 

divided into three consecutive stages (I, II, and III) characterized by the different rates of 

intensity decrease. We will assume that this difference is associated with sequential processes; in 

each of them, the decay of a spectral component is accompanied by the excitation of the other, 

lower-lying energy state. However, unlike these works, we will not assume a single- or multi-

exponential character of the decay, expecting that, while some states are depleted, the filling of 

others can increase, and their decay will begin later. Therefore, the total radiation from these 

states will not have a simple form of decreasing exponents in the entire studied  PL region. 

The fitting function for the time-integrated PL spectrum can be decomposed into two 

Gaussian functions and a constant part that takes into account the noise background. The first of 

these functions, which is associated with the radiation from the s-states of electrons and holes, 

has a maximum at 1.98 eV and a full width at half maximum of the peak of ~100 meV. The 

second function, which is associated with radiation from the p-states, significantly overlaps the 
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first one and has a maximum at 2.1 eV and a width of ~340 meV. A strong overlap of the spectral 

bands occurs due to the inhomogeneous broadening associated with the size dispersion of the 

QDs. Since the radiation of biexcitons is a fast transient process, the time-integrated PL spectrum 

does not contain any information about their presence. However, they can be detected by 

studying transient spectra at different points in time. This would make it possible to determine 

some parameters of biexcitons, such as binding energy, excitation, and decay times. 

We obtained a series of transient PL spectra extracted at different delays relative to the 

center of the exciting laser pulse using a 50 ps integration window. The asymmetric fitting 

function can be presented as a sum of three Gaussian components   2 2
exp /

i i i
F      centered 

at 
i

   ( , ,i x xx xxx ) and some background constant F . We associate the broad peak in each 

transient PL spectrum described by the Gaussian function with a maximum at 2.1
xxx
  eV with 

the radiative recombination of e–h pairs in p-states. It rapidly disappears; however, since it has a 

large width, it also appears in the time-integrated spectrum. The high peak at 1.98
x
  eV makes 

a major contribution to the time-integrated spectrum. We associate it with the decay of single 

excitons. Finally, we interpret the peak at 1.92
xx
  eV, which first arises and then disappears, as 

the decay of biexcitons [11]. This peak is relatively low and strongly overlapped by the other 

peaks; therefore, we can say that biexcitons hide behind excitons. The binding energy 2
x xx
   of 

two excitons in the biexciton is 60 meV. 

Comparison of the spectral dependences shows that the parameters of the fitting function 

change with time. To find out how this occurs, let us study the time dependences of the 

amplitudes of Gaussian functions and their widths. The results are shown in Figs. 1 and 2. 

 

 
Fig. 1. Time dependence of the height of the maximum of the fitting function at 

x
   (circles),  

xx
   (squares), and 

xxx
   (triangles). 
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It is evident from Figs. 1 and 2, the laser pulse excites radiation mainly from the p-states 

of electrons and holes that occurs in a wide energy range and reaches a maximum value at 200 ps. 

Simultaneously, radiation appears from the s-states. It has an almost unchanged spectral range 

and reaches a maximum at 250 ps. The emission of biexcitons appears with even greater delay 

and much slower. It ceases to grow at 350 ps when two previous PL bands are already 

significantly reduced. The spectral range where this radiation occurs hardly changes either. 

Starting from 350 ps, the decay of triexcitons is accompanied by the decay of biexcitons within 

~140 ps. The decrease in radiation from single excitons slows down within this time interval. 

After 700 ps, only an extremely slowly decreasing emission of single excitons occurs; it can be 

described by a simple exponential curve. Using the exponential function for fitting only at times 

longer than 700 ps, we obtain a value of ~10 ns for the decay time of a single exciton. 

We assume that all microscopic processes occurring in the system can be divided into fast 

and slow ones. The accuracy of the measurements does not allow us to follow the fast processes; 

however, we can take into account the results of their actions. These processes involve an Auger-

like scattering of the electron by the hole and subsequent intraband relaxation of the scattered 

hole with emission of phonons. This sequence of processes leads to the fact that e–h pairs excited 

by a laser pulse near the 1Pe–1P3/2 state are converted into e–h pairs in the lowest 1Se– 1S3/2 state. 

Moreover, due to the described mechanism of intraband relaxation, the formation of pairs in the 

s-states may continues even after the end of the action of the laser pulse, if this is allowed by the 

filling of the 1Se–1S3/2 states of the e–h pairs in accordance with the Pauli Exclusion Principle. 

The number of pairs in p-states at this time decreases. This explains the behavior of the curves in 

Fig. 1 within the time interval of 100–200 ps. 

 

 

 

 

Fig. 2. Time dependence of the width of the maximum of the fitting function at 
x

   (circles),  

xx
   (squares), and 

xxx
   (triangles). 
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If there is only one e–h pair in the s-states, then, taking into account the Coulomb 

interaction, we can speak about the formation of an exciton. If the number of e–h pairs in this 

state reaches a maximum value equal to two, we can speak about the formation of a biexciton. In 

this terminology, the appearance of the second pair in the state where one pair is already present 

automatically means the disappearance of both pairs (or two excitons) and the formation of a 

biexciton. The second pair, like the first one, can rapidly transit to the s-state from the p-state as a 

result of fast intraband relaxation. In this case, the appearance of a biexciton means the 

disappearance of one pair from the s-state and one pair from the p-state. The corresponding 

behavior of the curves in Fig. 1 manifests itself within the time interval of 200–350 ps, where the 

ignition of the biexciton band of PL is accompanied by a rapid decrease in both the radiation 

from the single excitons and the emission from the e–h pairs in the p-states. 

By the time of 350 ps, the generation of biexcitons seems to reach saturation, and their 

decay begins. We can consider the annihilation of any constituent e–h pair of the biexciton as a 

decay of the biexciton resulting in the creation of an exciton and a photon. The remaining pair 

can also annihilate; this means a radiative decay of the exciton. Another channel for the 

biexciton’s decay is associated with an Auger-like interband process where the annihilating e–h 

pair transfers its energy to an electron or hole of the second e–h pair. It is evident that the 

biexciton and exciton decay processes are slower than those indicated for the formation of 

excitons and biexcitons. Note that the decay of the biexciton PL band in the interval of  

350–700 ps is accompanied by almost the same decay of other bands. In our opinion, this fact 

also indicates the saturation of biexciton states. Electrons and holes in the p-states do not hasten 

to radiatively recombine; instead, they wait for an opportunity to stay in a lower energy state. 

Thus, stage I of the PL decay corresponding to the peak is the shortest and fastest; it has 

the widest spectrum and associated with the recombination of electrons and holes from the  

p-states. Stage II located at the foot of the peak is characterized by complex processes associated 

with both the formation and decay of biexcitons and the slowing down of the decay of triexcitons 

and single excitons. Finally, the slowest stage III located in the tail of the dependence is 

associated with the radiative decay of single excitons. 

3. Conclusions 

We excited electrons and holes near the energy of the p-states expecting to get their fast 

relaxation in one step. However, the obtained results are extremely different from those 

previously described in [10–13], where the excitation was high in the energy zone. We managed 

to trace not only the disintegration of the main PL bands, but also their ignition. 

This finding gives evidence that the allowance for the Pauli Exclusion Principle plays a 

significant role in the description of the temporal evolution of the system. An external pulse can 

excite only six e–h pairs in the p-state, while the s-states are ready to accept only two. Therefore, 

the pair conversion from p- to s-state does not occur until the s-state is at least partially vacant. 

The results show that, in our case, the Poisson distribution cannot be used as an initial condition 

for the rate equations at any fixed point in time. The rate equations themselves cannot be linear, 

since one should take into account the saturation of the state of Fermi particles. 
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Abstract 

 

In this study, the effect of multiple convective conditions on a viscous unsteady 

incompressible electrically conductive nanofluid is analyzed. In addition, the fluid is squeezed 

between two parallel plates in the presence of an applied magnetic field. Nonlinear partial 

differential equations are remodelled into ordinary ones by introducing similarity 

transformations, which are solved numerically using the shooting iteration technique together 

with the Runge–Kutta sixth-order integration scheme; after that, the impact of affined parameters 

on the temperature and velocity distribution is shown by means of tables and graphs. Our studies 

suggest that the fluid temperature and the heat transfer rate decrease with the squeeze parameter. 

 

1. Introduction 

 

       Studies of heat and mass transfer of a viscous liquid in squeezing drift are important not 

only for chemical/mechanical engineering (polymer processing, compressing, chemical material 

loading, and chocolate filtering) but also for our every day life’s relevancy. The first study in this 

context was conducted by Stefan [1]. Mahmood et al. [2] numerically depicted the squeezed 

Newtonian flow over a porous surface. An axisymmetric and 2D squeezing drift was exhibited by 

Rashid et al. [3]. Siddiqui et al. [4] addressed the squeezing flow of a magnetic hydrodynamic 

fluid between infinite parallel plates. Domairry and Aziz [5] analytically extracted a solution for 

the squeezing flow of a viscous fluid between two parallel disks with blowing. Later, the above 

work was extended by Hayat et al. [6] to analyze second-grade fluids. Mustafa [7] revealed the 

squeezing flow of an unsteady viscous liquid. In the presence of Brownian motion, 

Sheikholeslami et al. [8] analytically (DTM) studied the flow characteristics of a nanofluid drift 

between two parallel plates. The literature that spotlighted these achievements can be traversed in 

[9–12].  

      In the boundary layer drift scenario, two types of conditions—specified surface 

temperature and specified surface heat flux—are commonly used. It takes place when a linear 

correlation exists between the surface temperature and the surface heat transfer. Usually, under 

conditions of Newtonian heating, which is well known as a conjugate convection flow, heat is 

issued to the convective fluid via the boundary layer with a finite heat capacity. This 

phenomenon in heat transport rate depends on the local difference in the temperature with the 

ambient situations. This transcendent aspect of Newtonian heating occurs in many vital 

engineering devices, such as heat exchanger devices. Relevant studies regarding convective 

boundary conditions were conducted in [13–16]. Aziz and Khan [17], Das et al. [18], Uddin et al. 

[19] discussed the convective boundary layer flow of a nanofluid over a convectively heated 

mailto:amitformath@gmail.com
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surface. 

The convective heat transfer phenomenon for nanofluid flows over a shrinking sheet was 

studied by Das et al. [20]. Diversely, in many engineering and technological fields, the solutal 

boundary condition does a momentous job in the mass transport problems. Tanveer et al. [21] 

studied the peristaltic flow of a Jeffery nanofluid drift through a curved channel with multiple 

convective boundary conditions. In that study, they used the mechanism for both heat and mass 

transfer convective conditions and solved the problem numerically. Recently, multiple convective 

conditions for non-Newtonian nanofluids have been authorized by Uddin et al. [22]. Later on, 

Uddin et al. [23] used multiple convective boundary conditions in their study on the free 

convective dilatant nanofluid flow through a Darcian porous medium. The domination of the 

second-order slip on nanofluid flow through a permeable sheet was scrutinized by Acharya et al. 

[24]. 

      In this paper, the foremost objective is to study the aftermath of multiple convective boundary 

conditions on a squeezing nanofluid flow between two parallel plates. The similarity solutions are 

derived and used to predict the heat and mass transfer characteristics of the flow.  The 

coordination of the piece is given as follows. Section 2 deals with the mathematical formulation 

of the flow model. The numerical method and validation of the code are given in Section 3. 

Results and discussion are presented in Section 4. Conclusions are summarized in Section 5. 

 

2. Mathematical Formulation of the Problem 

 

 Consider an unsteady symmetric squeezing nanofluid flow between two parallel plates, as 

shown in Fig. 1. The fluid is assumed to be incompressible and electrically conducting. In 

addition, the distance between these plates is h(t) = H(1 - αt)
1/2

, where the plates are squeezed and 

separated to each other for  > 0 and  < 0, respectively. Let us consider an unsteady symmetric 

flow of an incompressible electrically conducting viscous nanofluid between two parallel plates 

separated by a variable distance h(t) = H(1 - αt)
1/2

, where α is a characteristic parameter having 

dimensions of time inverse. The upper plate at y = h(t) is approaching the lower stationary plate 

at y = 0 at velocity v(t)= dh/dt until they touch each other, as shown in Fig. 1. A uniform 

magnetic field of strength 1/2

0 (1 α )( ) tB t B   (Fig. 1) is adopted perpendicular to the plates where 

0B  is the initial intensity of the magnetic field. Here, the electric field is taken as zero. The 

magnetic Reynolds number is presumed to be small so that the induced magnetic field can be 

ignored. In the mathematical formulation of the problem, it is supposed that there is no chemical 

reaction and radiative heat transfer. All body forces are presumed to be ignored. The entire 

nanofluid structure is in local thermodynamic equilibrium. 

Under the stated assumptions, the governing conservation equations in an unsteady state 

can be expressed as follows [11, 12]: 

0,x yu v                                                                                                                                   (1) 

    2B (t)v ,x y x xx yyt uu uu u p u u                                                                                    (2) 

   v v vv v v ,x y y xx yyt u p                                                                                              (3) 

     2 2v ,T
x y xx yy x x y y x yt B

p m

Dk
T uT T T T D C T C T T T

C T




 
 
  

                                                  (4) 

   v T
x y xx yy xx yyt B

m

D
C uC C D C C T T

T
                                                                                 (5) 
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where ( , )u v  signifies the velocity components along the x- and y-axis, respectively; σ 

characterizes the electrical conductivity;   is the density of the nanofluid;   is the dynamic 

viscosity; 
BD  is the Brownian motion coefficient; 

TD  is the thermophoretic diffusion coefficient; 

C is the nanoparticle concentration;    /p pp f
c c   , where  p p

c  describes the effective 

heat capacity of the nanoparticles; T is the temperature of the fluid; Tm  is the mean fluid 

temperature, and  is the effective heat capacity. 

 

 
Fig. 1. Geometry of the problem. 

 

     

     The essential boundary conditions for the current study are as follows [11, 12, 24]: 

   

, 0,v , at ( )

0, v 0, ,   at 0

 hh

m mf h h

C C
dh

u T T y h t
dt

T C
u h T T D h C C y

y y









   

 
        

 

                                               (6) 

where 
h

T  and hC  are the temperature and the nanoparticle concentration at the upper plate, 

respectively. It is assumed that the lower plate is getting hot by means of a hot fluid having 

temperature 
HT  and offers the heat transmission coefficient as fh ; mD  stands for the molecular 

diffusivity of the species concentration; and mh  is the wall mass transfer coefficient. 

    Using boundary layer approximation and the following similarity transformations: 

 

 
 

( ), v ( ), ,  ,  
1 1 1

h h

f h f h

T T C Cbx b b
u f f y

t t T T C C t


    

   

 
     

    
    

 (7) 

equations (1)–(5)  reduce to 

 

  23 0,fMf ff f f f f                                                                                   (8) 
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2Pr( ) ( ) 0f Nb Nt                                                                                          (9) 

0Nb Nb NtLe f    
 
 

                                                                                        (10) 

 

with the boundary conditions 

 

   1 2

(1) 1, (1) 0, (1) 1, (1) 0

(0) (0) 0, (0) 1 (0) , (0) 1 (0)

f f

f f

 

    






   

             (11) 

Here, 
0M HB




  is the symbol for Hartmann parameter, 

2

2

H



  is the squeeze number, 

1

fh

b





  is  the thermal Biot number, 

2
m

m

h

D b


  corresponds to the concentration Biot 

number, 
 w h

m

T T T
Nt

T

D



 
  represents the thermophoresis parameter, 

 B w hD C C
Nb






  denotes 

the Brownian motion parameter, Pr



  is the Prandtl number,  

B

Le
D


  describes the Lewis 

number. 

 

   The most important characteristics of heat and mass transfer are reduced Nusselt number Nur  

and reduced Sherwood number Shr , which are defined as follows:  

               where (0)  1Nur Nur tNu                                                                          (12) 

and     

   where  (0)  1Shr Shr tSh                                                                     (13) 

 

 

 

3. Solution Method  

 

 The set of equations (8)–(10) under boundary conditions (11) was solved numerically 

using a shooting iteration technique together with the Runge–Kutta sixth-order integration 

scheme. The unspecified primary conditions were assumed and then integrated numerically as an 

initial valued problem to a given terminal point. Enhancement was made on the values of 

assumed missing initial conditions by iteratively comparing the calculated value of the dependent 

variable at the terminal point with its value given there. The computations were performed using 

a written program based on the symbolic and computational computer language MAPLE.  

      To ascertain the accuracy of our numerical results, the present study (in absence of thermal 

radiation) was compared with the study of Muhammad et al. [12]. The values of Nur  and Shr  

were calculated for various Nt values. Excellent agreement was found between these two sets of 

results, as shown in Table 1. Thus, the use of the present numerical code for the current model 

was justified. 
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Table 1. Comparison of Nur and Shr values for different Nt values  

 

tN  

Present work Muhammad et al. [12] 

Nur  Shr  Nur  Shr  

0.5 

1.0 

1.5 

2.0 

2.599805 

1.747822 

1.108564 

1.011226 

 

0.988231 

0.900912 

0.858981 

- 

 

2.5923 

1.7456 

1.1196 

1.0072 

 

0.9901 

0.9020 

0.8615 

- 

 

 

 

 

4. Results and Discussion 

 

 To get an insight into the effects of different parameters of practical importance on the 

flow characteristics, the numerical results are presented graphically in Figs. 2–11 for several sets 

of values of the pertinent parameters.  In the simulation, the following default values of the 

parameters are considered: Nb  = 0.4, Nt  = 0.5, 
1  = 0.2, 

2 = 0.15,   = –0.5, Le  = 1.0,  

M = 0.5, and Pr = 0.7, unless otherwise specified. Figure 2 shows the effect of squeeze number  

on fluid temperature. With an increase in squeeze number  (absolute value),  decreases near the 

boundary layer region. The upshot is perceptible only in a region close to the lower plate, because 

the curves tend to merge at large distances from the lower plate.  It is worth noting that an 

increase in  can be associated with a decrease in the kinematic viscosity, an increase in the 

distance between the plates, and an increase in the velocity at which the plates move. It is 

observed from Table 2 that an increase in  (absolute value) results in a decrease in Nur . Thus, 

the squeeze number  has a significant effect on heat transfer due to an increased temperature 

gradient on the lower plate wall. It is evident from Fig. 3 that  increases with increasing thermal 

Biot number 
1  in the boundary layer region and it is maximal near the wall region of the lower 

plate. A stronger convection leads to a higher heat transfer rate and provokes the thermal effect to 

penetrate deeper into the quiescent fluid, as shown in Table 2. It is also observed that the heat 

transfer rate at the lower plate increases with increasing 1  values. It is evident that the thermal 

Biot number has a strong impact on the heat transfer and enhances it by almost 116% with a 

change in the thermal Biot number from 0.1 to 0.3. The effects of the parameters controlling the 

Brownian motion and thermophoresis on temperature distribution are well presented in Figs. 4 

and 5 in the presence of surface convection.  It is evident from the figures that  increases in both 

the Nb  and Nt  values and the effect is high up to the lower plate region. As both Nb  and Nt  

increase, the thickness of the thermal boundary layer increases, while the curves become less 

steep near the upper plate region; this fact indicates a decrease in Nur , as evident from Table 2. 
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           Fig. 2. Concentration profiles for           Fig. 3. Concentration profiles for 

                       various  values.                       various 
1  values.   

 

 

 

 

 
            Fig. 4. Concentration profiles for            Fig. 5. Concentration profiles for 

                        various Nb values.                         various Nt  values.   
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Table 2. Effects of physical parameters on reduced Nusselt number 

 

Nb  Nt  
1  


 

Nur  

0.1 0.5 0.2 –0.5 0.15827411 

0.4 – – – 0.15629526 

0.7 – – – 0.15420971 

0.4 0.5 – – 0.16107681 

– 1.0 – – 0.15957895 

– 1.5 – – 0.15798790 

– 0.5 0.1 – 0.08497693 

– – 0.2 – 0.14385373 

– – 0.3 – 0.18389034 

– – 0.2 –1.0 0.16309775 

– – – –1.5         0.16197683 

– – – –2.0 0.15886899 

 

 

 

 

         Fig. 6. Concentration profiles for    Fig. 7. Concentration profiles for 

                    various  values.                           various 2 values.   

 

 

 

 

With an increase in  (absolute value), the nanoparticle concentration distribution 

decreases near the lower plate region, i.e., for η < 0.4 (not precisely determined); after that, it 

starts decreasing with an increase in η near the upper plate region, as shown in Fig. 6. It is evident 

from Table 3 that Shr  decreases with an increase in   (absolute value) on the lower plate wall in 
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the presence of surface convection. Figure 7 depicts the variation in the concentration distribution 

across the boundary layer for different values of concentration Biot number 
2 . It is evident that, 

with an increase in 
2 ,  significantly increases across the boundary layer near the lower plate. 

The cause of this trend is that the nanoparticle concentration near the boundary layer becomes 

wide for larger values of 
2 . Further, it follows from Table 3 that Shr  increases due to surface 

convection parameter 
2 . Figure 8 reveals that  uniformly increases with increasing Nb  values 

at the squeeze number of   < 0. The figure shows that the effect of Nb  on the nanoparticle 

concentration is noticeable only in a region close to the lower plate, as the curves tend to merge at 

larger distances from the lower plate and, consequently, the concentration boundary layer 

thickness decreases with increasing Nb . Table 3 shows the effect of Nb  on the reduced 

Sherwood number. It is evident that Shr  decreases due to the Brownian motion parameter of 

nanoparticles. The impact of Nt  on  is presented in Fig. 9.  It is seen that an increase in the 

values of the thermophoresis  parameter Nt   leads to a rapid decrease in the concentration 

distribution near the lower plate wall region, whereas the concentration decreases gradually from 

the lower plate region to the upper plate region. It is evident from Table 3 that the thermophoretic 

effect exerts a strong domination on the mass transfer and enhances it by almost 15.9% with a 

change in Nt  from 0.5 to 1.5.   

 

 

 

 

 

 

 

Table 3. Effect of physical parameters on reduced Sherwood number 

 

Nb  Nt  
2  


 

Shr  

0.1 0.5 0.15 –0.5 0.67302245 

0.4 – – – 0.43010935 

0.7 – – –             0.39602982 

0.4 0.5 – – 0.33621418 

0.4 1.0 – – 0.35867916 

– 1.5 – – 0.38970853 

– 0.5 0.15 – 0.13297462 

- – 0.25 – 0.20313607 

- – 0.35 – 0.26250404 

- – 0.15 –1.0 0.34039567 

- – – –1.5 0.33621418 

- – – –2.0 0.33207471 
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          Fig. 8. Concentration profiles for     Fig. 9. Concentration profile for various  

                     various Nb  values.               Nt values.   

 

 

5. Conclusions 

 In this study, the unsteady squeezing flow in a viscous incompressible electrically 

conducting nanofluid between two parallel plates is analyzed using a numerical technique. The 

shooting iteration technique together with the Runge–Kutta sixth-order integration scheme is 

used to obtain the numerical solution of the nonlinear flow problem. Numerical out-turns are 

presented through graphs to decorate the details of the heat and mass characteristics and their 

dependence on material parameters. The use of multiple convective boundary conditions makes 

the study more general and novel.  The results presented here are potentially important for 

controlling the heat transfer rate and the mass transfer rate.  According to the study, some key 

features are presented as follows: 

 (i) The Sherwood number at the lower plate decreases with an increase in Brownian 

motion parameter Nb , squeeze number  , and Lewis number Le .  

 (ii) The mass transfer rate vigorously increases due to the occurrence of thermophoresis 

and surface convection. 

 (iii) An increase in thermal Biot number 1  and squeeze number   leads to an increase in 

the heat transfer rate at the lower plate.  

 (iv) It is also observed that, as the Brownian motion intensifies, it affects a larger extent of 

the fluid and leads to an increase in the thickness of the thermal boundary layer, which in turn 

decreases the reduced Nusselt number.  
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Abstract 
 

The two-resonator device and the pillar-array version thereof described in a previous 

manuscript are the subject of a more precise study. The physical interpretation of the device 

operation is changed for a more appropriate one. The hypothesis on which the pillar-array version 

is based is revisited and clearly formulated. The pillar-array device is considered under the aspect 

of an electric generator. This study leads to a new design for this generator. Another resonator is 

added in order to increase vibrations. The feasibility of an experimental device is addressed. 

Instructions for the fabrication of a prototype are given. 

 

1.  Introduction 
 

In 2017 in [1], we were mostly focused on thermodynamic considerations; here, we 

envisage the devices described in Figs. 4 and 7a in [1] only in terms of energy production. The 

first device is made up of a nanopillar subjected to Brownian motion and coupled with a much 

bigger pillar, the Resonator (Fig. 1). In the second device, an array of nanopillars is used instead 

of a single nanopillar, and the Resonator has no longer the shape of a pillar; it is a piezoelectric 

thin film with two electrodes (Fig. 2). This last device is referred to as “the Brownian alternator” 

because, from the Brownian motions of nanopillars, it produces a permanent alternating voltage, 

like an alternating-current generator. 

 

2.  Single-Nanopillar Device 

 

In this paper, the nanopillar and the Resonator of the device are described as coupled 

oscillators, either in a free-standing system (Fig. 3) or on a support (Fig. 4). The free-standing 

system is first studied in terms of the theory of coupled oscillators, which can be found in 

textbooks [2–5] on mechanics and radioelectricity (coupled oscillating circuits), under an 

assumption that there is no dissipation in the two oscillators. The nanopillar is characterized by 

displacement x1, mass m, and spring constant k1. The Resonator is characterized by displacement 

x2, mass M, and spring constant k2. The spring constant of the coupled oscillators is k. It can be 

found that k = k1k2/k1+k2; however, this value can be ignored in the calculations. 

The nanopillar is subjected to Brownian motion, the time history of which looks like a 

sine wave of varying amplitude and phase yet constant frequency [6–9], with a mean amplitude 

a1 given by: 

 

mailto:jsrtncn@free.fr
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2

1

1

1 









k

Tk
a B ,                                                             (1) 

where kB is the Boltzmann’s constant and T is the absolute temperature.  

 

    
                 

 Fig. 1. Single-nanopillar device.                                         Fig. 2. Brownian alternator. 
 

     
            

 Fig. 3. Free-standing coupled oscillators.                         Fig. 4. Coupled oscillators on a support. 
 

If the Resonator is at rest with x2=0, the equation of motion of the nanopillar will be as follows  

(t is the time): 

012

1

2

 kx
dt

xd
m , with the nanopillar resonant frequency ω1 given by 

m

k
2

1 ,   (2; 3) 

If the nanopillar is at rest with x1=0, the equation of motion of the Resonator will be as follows: 

022

2

2

 kx
dt

xd
M , with the Resonator's resonant frequency ω2 given by  

M

k
2

2 , (4; 5) 

The two equations of motion of the system of coupled oscillators are as follows: 

for the nanopillar: 

212

1

2

kxkx
dt

xd
m  , or using Eq. (3): 

212

1

2

2

1

1
xx

dt

xd



,                       (6; 7) 

for the Resonator: 

122

2

2

kxkx
dt

xd
M  , or using Eq. (5): 

122

2

2

2

2

1
xx

dt

xd



,                      (8; 9) 

For the nanopillar Brownian motion, the model of a sinusoidal oscillation of amplitude a1 is taken 

as follows: 

tax cos11  , and therefore: ta
dt

xd
 cos2

12

1

2

 ,                        (10; 11) 

 

where ω is the angular frequency. Inserting the values of Eqs. (10) and (11) into Eq. (7), we 

obtain: 
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tax 



cos1 12

1

2

2 







 , and therefore: ta

dt

xd





cos1 2

12

1

2

2

2

2









 .        (12; 13) 

Thus, the Resonator vibrates in phase or in phase opposition (depending on ω
2
/ ω1

2
) with respect 

to the nanopillar with an amplitude a2 given by: 

12

1

2

2 1 aa 











,                                                        (14) 

Inserting the values of Eqs. (12) and (13) into Eq. (9), we obtain: 

 

0cos111 12

1

2

2

2

2

2

1

2



























 ta 












,                                    (15) 

This equation implies that: 

  02

2

2

1

24   ,                                                    (16) 

which has two solutions ω’ and ω’’: 

0'2  , and: 2

2

2

1

2''   ,                                        (17; 18) 

 

The nanopillar and the Resonator oscillate in phase opposition at frequency ω’’. If both 

oscillators have the same resonant angular frequency (ω2= ω1), that of the system is given by: 

2'' 1  ,                                                           (19) 

From Eqs. (3) and (5), the Resonator vibration amplitude a2 is as follows: 

112

1

2

2

2

1
2 1 a

M

m
aa 






 





,                                           (20) 

For the second system (coupled oscillators, both of resonant angular frequency ω1’, on a support), 

the equations of motion are as follows: 

for the nanopillar: 

21112

1

2

xkxk
dt

xd
m  ,                                                     (21) 

for the Resonator: 

  112212

2

2

xkxkk
dt

xd
M  .                                              (22) 

 

Similar to the free-standing system, the calculations show that the Resonator vibration amplitude 

is exactly like that given by Eq. (20) with two solutions for the frequency of the coupled system: 



 '2 1'
2 1

m

M









, (in-phase oscillations)                  (23) 



 ' '2 1'
2 1

m

M









, (phase-opposition oscillations)   (24) 

with ω1’ given by: 



1'
2 
k1

m

k1  k2

M
,                                                      (25) 
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In the conclusion of Section 2, it is shown that, in terms of the model of coupled oscillators, the 

amplitude of the Resonator vibration is considerably smaller than that of the nanopillar. The 

vibration energy of the Resonator is also extremely low; therefore, it should be noted that there is 

no decrease in entropy in the single-pillar device studied in [1], contrary to what was written in 

that paper. 

However, Eq. (20) allows us to catch sight of what should be done in order to get energy 

from Brownian motion. This is the subject of the next section. 

 

3. Brownian Alternator 

 

3.1. Design of the Brownian alternator 
 

As noted in the Introduction, the “Brownian alternator” refers to a nanopillar-array device. 

The result of Eq. (20) indicates that the solution, to provide a large amplitude a2 and then extract 

useful work from Brownian motion, is that the second oscillator should have the same mass as 

the first one. 

For the Brownian alternator, this means that each nanopillar of the array should act on an 

extremely small part of the Resonator. This part should have the same mass as that of the 

nanopillar, so the shape of the Resonator has to be modified. Instead of a large pillar (see Fig. 6 

in [1]), it takes the form of a thin film, the thickness of which is equal to the length of the 

nanopillars. 

If this thin film were (in imagination) “cut” in small parts of the size of a nanopillar, this 

latter being only involved in the part facing itself, by gathering and “sticking” all these parts 

together, the uncut Resonator would vibrate as a whole at the nanopillar amplitude, with the 

essential condition being that the nanopillars vibrate in phase. This is the main condition for the 

device operation. 

In the array, the nanopillars should be tightly packed by designing, for instance, 

hexagonal sections for the nanopillars with a narrow spacing between them. 

In addition to the single-array design, the solution (Eqs. (21)–(25)) for the second system 

(coupled oscillators on a support) suggests another design (Fig. 5), where two devices are joined, 

each one acting as a support for the other one. 

 

 
 

Fig. 5. Double-array Brownian alternator. 
 

3.2. Operation principle 
 

The following operation principle of the Brownian alternator is proposed: the Resonator 

has a much more regular vibration than that of the nanopillars subjected to the disorder, in 

amplitude and phase, of thermal agitation. However, the basis of coupling between oscillators is 
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that they act on each other: each nanopillar of the array keeps the Resonator vibration going, and 

the Resonator acts on each nanopillar: if there is any out-of-phase nanopillar in the array, the 

coupling with the Resonator makes it come back to the in-phase state: the Resonator, because of 

vibrating as a whole, maintains the nanopillars of the array in phase (for starting the pillar in-

phase motion see [1]). 

To date, calculations and deductions have been made under the theoretical assumption of 

no dissipation in the Resonator. Now, in the actual case of dissipation, the Resonator amplitude 

can be smaller than that of the nanopillars; however, if dissipation is not too high, the two 

amplitudes are close to each other. The condition that the Brownian alternator also operates with 

low dissipation in the Resonator is still part of the previous proposition. This proposition explains 

how the condition of in-phase nanopillars of Section 3.1 could be fulfilled, and is nothing but a 

supposition. Therefore, the following hypothesis should be formulated. 

 

3.3. Fundamental hypothesis 

 

The working of the Brownian alternator relies on the following. 

In the steady state of the system of coupled oscillators comprising an array of nanopillars 

subjected to Brownian motion and the underdamped Resonator, with the amplitude of the 

Resonator close to that of the nanopillars, we make the fundamental hypothesis that the 

Resonator maintains one single phase in the nanopillar Brownian motions. 

These in-phase Brownian motions were referred to as “coherent Brownian motion” 

elsewhere [10]. 

3.4. Increased voltage with a resonant circuit 
 

There are not many electric charges which appear at the electrodes of the piezoelectric 

film, because the vibration amplitude of the Resonator does not exceed that of the nanopillars. In 

order to get an increased amplitude, another resonator should be added to the Brownian 

alternator. This resonator is a resonant circuit connected to the electrodes, and the increased 

amplitude is that of a voltage, rather than of a mechanical vibration. The voltage inside the 

resonant circuit is considerably enhanced compared with that of the electrodes. The enhanced 

voltage makes the produced energy easier to use. Because of the size of the nanopillars, both the 

vibration of the piezoelectric film and the oscillation of the electric charges belong to the 

hyperfrequency range, and the resonant circuit would be rather a resonant cavity. 

 

4. Experimental Device 

 

The main part of the device is a piezoelectric film, which should have low losses and 

withstand hyperfrequency use in the 10 to 100 GHz range, depending on the nanopillar length. 

An array of nanopillars could be etched either in a thin film of any suitable material or directly on 

one of the two electrodes of the piezoelectric film [11–13]. Nanopillars with a hexagonal section, 

aspect ratio (length/diameter) of about 10, and a narrow spacing can be prepared by any 

technique providing smooth surfaces and accurate dimensions, for instance, by RIE or ICP [14]. 

The different thin layers constituting the device are as follows: the bottom electrode, the 

piezoelectric film, the top electrode, the nanopillar array. They could be deposited on a sacrificial 

layer, which can be easily removed to make the device free-standing, linked by electric 

connections to a support. The thickness of the layers should be determined by taking into account 

the wavelength of the frequency under consideration for each layer. The feasibility of the device 
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does not present any insurmountable difficulty; it is within the reach of the present technology. 

Another issue is the hyperfrequency part of the device. It is a case for hyperfrequency physicists 

to carefully design the circuit to be connected to the electrodes of the Brownian alternator. 

 

5. Discussion and Conclusion 

 

Nanopillars driven by thermal agitation can be taken as sustained oscillators coupled with 

an underdamped oscillator, the Resonator. In this particular case, each nanopillar can be seen as 

having a negative mechanical resistance r1, which cancels a small part of the positive mechanical 

resistance r2 of the Resonator. If there are n nanopillars in the array, the effect of n negative r1 is 

to cancel a large part or even the totality of r2 [15]. In this last case, the Resonator amplitude |a2| 

equals the nanopillar amplitude |a1|. It is evident that, in this system, the amplitude of the 

underdamped oscillator is dependent not only on r2, but also on n and r1. 

The question is now arising, whether the n negative r1 are able to cancel r2, that is, which 

resistance of the Resonator the Brownian motions of the nanopillar array can cancel. This 

question is possibly related to the following one: how much time does it take, starting from 

amplitude zero, for thermal agitation to “refuel” nanopillar Brownian motion, that is, to reach the 

mean amplitude of Brownian motion? We suppose that this time is extremely short, possibly on 

the order of one period. These two questions could be the subject of a future paper. 

In conclusion, we would like to underline that this paper on the Brownian alternator is far 

from being complete. It should be regarded as a contribution to the study of systems where 

nanosize elements (pillars) are in interaction with a macroscopic size component (Resonator). 

Within the framework of coupled oscillators we have shown that, although the single-pillar 

device does not supply any energy, useful work could be produced by the Brownian alternator, 

provided that the fundamental hypothesis is met. This hypothesis is worth testing with an 

experimental device. Current technology is able to produce high-quality piezoelectric thin films 

and high-aspect-ratio nanopillars, so that it would not be too difficult to build prototypes of the 

Brownian alternator. 
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Abstract 

Uninterruptible power systems (UPSs) have been commonly used for powering computers 

and for continuous technological processes in various branches of industry and medicine [1]. The 

lives of people and the safety of large streams of information depend on the reliability of 

operation of  UPSs. Regardless of the topology of implementation of  UPSs, they contain 

batteries that should be recharged. In most cases, separate assembly units are used; they increase 

the cost of the devices and decrease their reliability. This paper describes a method for charging 

the battery without changing the circuit in cases where a bridge circuit is used in the inverter part. 

1. Introduction 

The developed device can be used in the field of powered electrical engineering, namely, 

single-phase bridge transistor inverters used in various uninterruptible power systems (UPSs). 

The technical problem that can be solved by means of this device is the simplification of the 

battery charging circuit owing to a variation in the control pulses as indicated in Fig. 1. The two 

included lower power switches, together with the secondary winding of the power transformer, 

accumulate the energy received from the network in the form of a magnetic field, which 

subsequently, during the locked state of these power switches, is released in the form of a current 

flowing alternately through their free-wheeling diodes. This current charges the battery during 

both half-periods of the mains voltage. 

The use of microprocessors made it possible to develop a simple and still efficient control 

circuit for all four power switches. 

The novelty is that the original circuit of the bridge inverter is not changed, and the 

technical result is achieved owing to the introduction of an additional algorithm of operation of 

the power switch control circuit, while the UPS containing a bridge inverter combined with a 

battery charging unit is connected to the industrial network. Figure 1 shows a well-known single-

ended flyback step-up inverter. 

It is evident from Fig. 1 that, with the closed switch K, energy accumulates in inductor L1 

by loop current I1, which, after closing switch K, continues as loop current I2, which charges 

battery Acc via diode VD. 
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Fig. 1. Circuit and current flow in a single-ended flyback step-up inverter. 

 

If we assume that, in Figs. 3 and 4, the two lower power switches of the bridge inverter 

Q3 and Q4 form switch K and the secondary winding W2 of the power transformer forms 

inductor L1 and if we replace current source E1 with the induced voltage in the secondary 

winding of the power transformer cut into mains, then, by changing the control signals as shown 

in Fig. 2, it is possible to form a circuit of a single-ended flyback step-up inverter from the bridge 

circuit of a two-stroke inverter. The control pulses applied to the input of the power switches are 

represented by the oscillograms shown in Fig. 2. 

 

                                                  

 

Fig. 2. Oscillograms of signals supplied to the input of the power switches. 
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Fig. 3. Passage of the charging current during the positive half-wave of the mains voltage. 

 

                                                  

 

Fig. 4. Passage of the charging current during the negative half-wave of the mains voltage. 

 

The passage of the charging currents during the positive and negative half-waves of the 

mains voltage is shown in Figs. 3 and 4, respectively. Currents I1 and I2 correspond to time 

periods t1 and t2 in Fig. 2. 

An UPS containing a bridge inverter combined with a battery charging unit is shown in 

Fig. 5. 
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Fig. 5. UPS containing a bridge inverter combined with a battery charging unit. 

Here, 1 and 2 are drivers; Q1, Q2, Q3, and Q4 are power switches; Tr is a power 

transformer; W1 is the primary winding of the power transformer; W2 is the secondary winding 

of the power transformer; Acc is a battery; Ri is a current sensor; A1 is a direct current amplifier; 

Osc is an oscillograph; S1, S2, S3, and S4 are signals at the input of the power switches; MD is a 

control unit; K1 is a relay; SARCINA is load; and RETEUA is network. 

The UPS containing a bridge inverter combined with a battery charging unit, which is 

shown in Fig. 5, operates as follows: if the mains voltage is below or above the set values, control 

unit MD analyzes it and preserves the position of relay K1 as indicated in the circuit; in addition, 

it generates control signals S1, S2, S3, and S4 at regular intervals of 10 ms; the signals activate 

power switches Q1, Q2, Q3, and Q4 and generate heteropolar current pulses on secondary 

winding W2 of power transformer Tr; the pulses are induced in primary winding W1 of power 

transformer Tr connected to load SARCINA. If the mains voltage lies within the specified limits, 

control unit MD analyzes it and switches the relay to the upper position according to the circuit 

and simultaneously changes control signals S1, S2, S3, and S4 as shown in Fig. 2; the mains 

voltage is simultaneously supplied to load SARCINA and primary winding W1 of power 

transformer Tr; as a result, a heteropolar current is induced on secondary winding W2 of power 

transformer Tr at regular intervals of 10 ms; every 50 s, the current is closed for a short time by 

power switches Q4 and Q3, and the power transformer accumulates energy in the form of a 

magnetic field. After switching off power switches Q4 and Q3, this energy is released in the form 

of current pulses, which flow through the free-wheeling diodes of locked power switches Q1 or 

Q2 and charge the battery with a current whose strength depends on the duration of the opening 

pulses and is set by control unit MD according to the voltage across current sensor Ri. 
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2. Experimental 

A 500-W prototype model of this UPS was assembled. An ATMEGA 8 microprocessor 

was used in control unit MD; a special program was developed for this microprocessor. Power 

transformer Tr was wound on an S-shaped transformer iron frame of the EI133 type; IRF2804 

field-effect transistors were used as the power switches; IR2011 drivers and a GP12200 battery 

(CSB, China) were used. The maximum (ultimate) charging current was selected to be  

Imax = 3A; to increase the efficiency of the device, the ohmic resistance of the current sensor was 

low (Ri = 0.001 ); a low-noise direct current amplifier A1 (Kam = 1000) was introduced. At 

variations in the mains voltage from 180 to 250 V, the charging current oscillation was no more 

than ΔI = ±0.15A. 

The shape of the charging current observed on oscillograph Osc (see Fig. 5) connected in 

parallel to current sensor Ri is shown in Fig. 6. 

 

                                       

Fig. 6. Charging current oscillogram. 

 

 The physical form of the prototype model is shown in Fig. 7. 

 

                         

 

Fig. 7. Physical form of the prototype model of an UPS containing a bridge inverter combined with a 

battery charging unit. 

According to the results of the work, an application for an invention was submitted [2]. 
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3. Conclusions 

This design has been tested in real time and proved to be very reliable. The long-term 

tests have shown that the simplicity of the design does not interfere with the reliable operation of 

the inverter circuit and charging the battery. The level of interference generated in the network 

during the battery charging is easily suppressed by a simple filter and does not exceed the 

maximum allowed. 

The temperature of all the power elements and the power transformer during the tests was 

10–15C above the ambient temperature. This finding suggests that the system will reliably 

operate in the future. 
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Abstract 

 

A common problem in equipping cars, buses, and other vehicles is the incompatibility of 

household appliances (coffee makers, converters, radio-receiving sets, audio amplifiers, etc.) that 

are powered by a constant current with a nominal voltage of 12 or 24 V, which differs from the 

vehicle's onboard voltage. This problem can be solved by using inverters that provide a twofold 

decrease or a twofold increase in the output voltage with minimal losses [1]. In this paper, a 

circuit of this highly efficient inverter is proposed. 

 

1. Introduction 

 

The impetus for designing the proposed inverter was the task of developing a powerful 

and still cost-effective adapter for powering the equipment with an input supply voltage  

of +/–24 V, while the vehicle in which this equipment was used had an onboard voltage of  

+/–12 V. Preliminary prototyping with circuits containing a double-wound transformer and 

circuits with high-frequency boost did not give the desired results because of high heat losses. 

The primary winding of the transformer connected to the diagonal of a power bridge composed of 

four field-effect transistors was initially designed for an AC voltage of 12 V, while all the field-

effect transistors were excited by means of two standard drivers.  

 

2. Experimental 

 

The solution of the problem, as shown in Fig. 1, consisted in the replacement of one 

primary winding designed for a voltage of 12 V by two series-connected center-tapped windings, 

while the secondary winding of the power transformer was eliminated; in other respects, the 

circuit remained unchanged. The terminals to which a source voltage of +/–12 V was applied 

were replaced by the center tap of the primary winding and the sources of the lower power 

switches, rather than by the drains and sources of the power transistors, as was the case with the 

secondary circuit. The synchronous operation of the power switches located diagonally in the 

bridge made it possible to construct a push–pull inverter from two windings of the power 

transformer and two lower power switches of the bridge; in this case, the two upper power 

switches of the power bridge act as a synchronous rectifier, in which the drain voltage is two 

times higher than the input voltage. Taking into account the low ohmic resistance of the field 

effect transistors (0.002  for IRF2804), the heat losses were extremely small. Figure 1 shows 

the circuit of this inverter. 
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Fig. 1. Circuit of a highly efficient inverter with doubled output voltage. 

 

Here, 2 is a pulse generator based on the KA3525 microcircuit (F = 400 Hz); 3 is a driver 

based on the IR2011 microcircuit; 4 is a driver based on the IR2011 microcircuit; С1 is an input 

capacitor 3  22000 µF/16V; С2 is an output capacitor 2  10000 µF/35V; Q1, Q2, Q3, and Q4 

are field-effect transistors of the bridge IR2804 (Z = 0.002 E); Tr is a power transformer; W1 and 

W2 are the windings of the power transformer S = 20 mm²; COM is a common bus; U is the input 

voltage bus of 12 V; and 2U is the output voltage bus of 24 V. 

 

3. Results and Discussion 

 

To determine the parameters and efficiency of the inverter, respective measurements were 

conducted. The results are as follows:  

— voltage across terminal «U» is 12.77 V; 

— voltage across terminal «2U» is 24.01 V; 

— «I1» current is 61.2 A; 

— «I2» current is 34.5 A. 

The calculated efficiency is as follows: 

 

µ1 = (12.77 V  61.2 А)/(24.01 V  34.5 А) = 0.943 (94.3%). 

 

At a laboratory temperature of +21°C, measurements of the temperatures of the different 

parts of the inverter gave the following results: the temperature of the field-effect transistor heat 

sink (60  40  2 mm) is 43.6°С, the temperature of the power transformer core is 39.2°С, and 

the temperature of the power winding is 54.6°С. The ideas embedded in this design were 

described in the application for an invention [2]. 

Figure 2 shows the physical form of the inverter. It is mounted in a rectangular metal 

casing, without using forced ventilation methods.  
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Fig. 2. Physical form of the inverter. 

 

4. Conclusions 

 

The results obtained during the tests suggest a high efficiency of the inverter. The 

operating temperature of the transformer and power elements makes it possible to predict the 

high reliability of the inverter over time. 
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Abstract 

 

  Energy characteristics as the load power and efficiency via the load resistance are the 

well-known two-valued cubic curves. The consideration of these quadratic fractional expressions 

as geometric projective transformations makes it possible to introduce the cross ratio of four 

points in limited single-valued working areas. The cross ratio is accepted as the regime parameter 

in a relative form, which is invariant to a type of the actual regime parameters and circuit 

sections. The form of expressions for the actual parameter changes depends on the actual regime 

type. Changes in regime parameters are proved; direct formulas of recalculation are proposed. 

 

                    

1. Introduction 

 

Expressions for different branches of a circuit have a typical homographic or fractionally 

linear view for currents and resistances [1, 2], which gives solid grounds for consideration of 

these fractionally linear expressions as a projective transformation of projective geometry and a 

common use of this method [3–6].   

The projective transformations preserve a cross ratio (double proportion) of four samples 

(values) of the variable resistance and respective currents and voltages. It is convenient to use 

typical regime values, which can be easily determined at a qualitative level, as the three 

respective samples; that is, a short circuit, an open circuit, and so on. In turn, the running regime 

value is the fourth sample.  Therefore, the cross ratio is accepted as the regime parameter in a 

relative form, which is invariant to a type of the actual regime parameters and circuit sections, for 

example, the input–output of two-port. Hence, obvious changes in regime parameters in the form 

of increments are formal and do not represent the substantial aspect of the mutual influences: 

resistance → current.  

Next, the invariant properties of two-ports allow transmitting measuring signals, using 

even the joint or combined wire line for communication and power supply. The cross ratio value 

does not depend on two-port (wire line) parameters, accuracy of measuring devices, because 

measuring errors of the currents mutually are reduced. In addition, the cross ratio method allows 

increasing the accuracy of measuring instruments with a linear-fractional scale [7, 8].  

In addition to the above fractionally linear expressions, there are quadratic fractional expressions 

for some parameters of a circuit.  For example, regulated voltage converters with limited voltage 

source power have two-valued regulation or stabilization characteristics as cubic curves. It was 
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found that the cross ratio takes place in a limited unambiguous or single-valued working area of 

these characteristics.  

In addition, some important energy characteristics of two-ports, such as the load power 

and efficiency via the load resistance, are similar cubic curves. In this paper, the above-

mentioned results are developed for determining these energy characteristics. 

 

2.   Typical Points on Plots of Power Load Characteristics: 

Choice of a Single-Valued Limited Working Area 

 

Let us consider a two-port with a variable load shown in Fig. 1.   

 
 

Fig. 1. Two-port with a variable load. 

 

 

It is known [1, 2], that the system of equation of this two-port is as follows:  
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Y

L

L
IN




 .                                                           (2)     

 

The determinant of a matrix  122122211  aaaaA . 

This feature of a parameters allows introducing the hyperbolic functions 
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11002 ,
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Y

YY
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A. Penin and A. Sidorenko  
 

99 

where  is an attenuation coefficient.  

Then, equation (1) can be written as 
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Y

I

V

1

1

0
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,                                                   (4)                                                                                                                                                                                                                                                                                                 

where characteristic admittance at the input and output are 

 

Y

CR
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Y

Y
Y 

11

00  , Y
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L
Y

Y
Y 

00

11 .                                                        (5)                                                                                                                                                                                                 

In addition, we introduce the normalized value 

     
CR

L

L
L

Y

Y
Y  .                                                                      (6)                                                                                                                                                                                                                          

Let us use the Thévenin equivalent generator. Then, we get the open circuit OC voltage  OCV1  and 

internal conductivity iY  as follows: 

0

11

10
1 V

Y

Y
V OC  , 11YYi  .                                              (7)                                                                                                                                                                                                                                                                                        

Next, we obtain the following voltage transfer ratio 

OC

G

iL

GOCG VKV
YY

K
V

V
K 11

1

1 ,
/1

1
, 


 .                                                   (8)                                                                                                                                              

In addition, we use an effectiveness parameter as 

20 ch
P

P
A

GMAX

MAX  ,                                  (9)                                                                                                                                                                                                             

where maximum powers of the voltage source and Thévenin equivalent generator at the load sort 

circuit are as follows: 
2

0000 VYP MAX  ,  2

1 )( OC

iGMAX VYP  .                                (10)                                                                                                                                                                                

 

First, we consider a simple case of the load power via the voltage transfer ratio. Using (1), (7), 

and (8), we obtain 

 

2

1
1 )(

~)(
GGG

GMAX

G KKKP
P

KP
 .                                                           (11)     

 

 

This dependence determines a two-valued parabola with the characteristic points in Fig. 2.            

We must prove the limited single-valued working area of this characteristic. To do this, 

we consider this parabola, as a closed curve, in the projective coordinates. Then, point S is the 

pole and straight line 
MM is the polar. Therefore, we get some symmetry or mapping of a 

“right-hand” working part onto “left” part. Hence, point 1GK  of the OC  regime corresponds to 
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point 0GK . In turn, points  MM , are fixed or base points. This implies the correspondence 

of the typical and running values of GKP ,
~

1 .   

                                                                                                                                                                                                                          

               
 
                      a)                                                                                 c) 

 

 
 

b) 

 
Fig. 2.  Load power via the voltage transfer ratio: (a) Cartesian coordinates, (b) projective coordinates, and 

(c) correspondence of the typical and running values. 

   

 

A more complicated case corresponds to load power 1P  via load conductivity. Using (8) 

and (11), this power is as follows: 
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This dependence determines a cubic curve in Fig. 4.   

 

 
a) 

                      
                     

                      b)                                                                              c) 

 

 
Fig. 4.   (a) Load power and (b) this inverse load power via the load conductivity, and (c) correspondence 

of the typical and running values. 

 

The limited single-valued working area 1
~

1  LY  , which encloses OC  regime, is 

illustrated by dash lines. For explanation of this area, we consider the inverse load power 1

~
/1 P  

via load conductivity. This dependence determines the hyperbola and the correspondence of the 

typical and running values 1

~
,

~
PYL  in the single-valued working area.   

The most complex case corresponds to efficiency PK via load conductivity. Using (4)–(6), we 

obtain 



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

L
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Y
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1

1
)(

22 

 .                                             (13)                                                                        

This dependence determines a compound cubic curve in Fig. 5.  Points  MM , are fixed 

base points. In turn, PK corresponds to the two load conductivities 



Moldavian Journal of the Physical Sciences, Vol. 18, 1-4, 2019 
 

 102 
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i
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Y

Y

th
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

1
, 

i

L
Y

Y
1

 . 

 

                    
                           

                            a)                                                                         b) 

 

                                     
 

                                                                 c)                                                                            
 
Fig. 5.  (a) Efficiency and (b) this inverse efficiency via the load conductivity, and (c) correspondence of 

the typical and running values, 

 

The limited single-valued working area 11  LY   also encloses the OC  regime. For 

explanation of this area, we consider inverse efficiency PK/1  via load conductivity. This 

dependence determines the hyperbola, similar to Fig. 4b. 

 

 

3. Invariant Characteristics of Load Power 

 

We consider the load power via the load conductivity and voltage transfer ratio.  For 

clarity, the correspondence of the typical and running values of these parameters is shown in Fig. 

6.    
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Fig. 6.  Correspondence of the typical and running regime values. 

     

 

The cross ratio for initial values are 
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The following equality takes place 
21211

1 )~()~(~
KGYLP mmm  .                                            (15)                                                                                                                                                                                                               

 

Next, we consider a regime change due to a load change 21 ~~
LL YY  . Taking into account (14.1), 

the cross ratio for this regime changes: 
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Then, there is strong reason to introduce a conductivity load change value as follows:           
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Therefore, we obtain the typical expression for the regime change: 
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Then, the subsequent value is as follows:  
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Next, taking into account (14.2), we write the cross ratio or regime change for the voltage transfer 

ratio change 21

GG KK  : 
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We introduce a voltage transfer ratio change value 21~
GK . Then, similarly to (18), the regime 

changes: 
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Using (20),  
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Then, the subsequent value follows: 
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We obtain also the group hyperbolic projective transformation with the base fixed points. 

For example, if the initial value is 5.01 GK , the subsequent value is 5.02 GK for various 21~
GK  

values.   

In addition, similar to (15), the following equality exists: 
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Then, according to (21), the voltage transfer ratio change value follows: 
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It is obvious that (23) has the form 
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The obtained relationship carries out the direct recalculation of the voltage transfer ratio at 

a respective conductivity load change value. The main thing for practice, this group projective 

transformation has the base fixed points. For example, if the initial value is 5.01 GK , then the  

subsequent value is 5.02 GK for various 21~
LY  values.    

In addition, taking into account (14.3), we obtain the cross ratio or regime change for the 
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We introduce a power change value 21
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P . Then, similarly to (18), the regime changes: 
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Then, the subsequent value follows 
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Similar to (15), the following equality takes place: 
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From here, the known typical expression follows:    
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It is obvious that (29) has the form 
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The obtained relationship performs the direct recalculation of the load power at a 

respective conductivity load change value. In addition, this group projective transformation has 

the base fixed points. For example, if the initial value is 25.0
~1

1 P , then the subsequent value is 

25.0
~ 2

1 P for various 21~
LY  values. The considered cases show that it is not correct to introduce 

changes of regime parameters in the form of formal increments, divisions, etc. in advance.   

We now consider the efficiency via the load conductivity and voltage transfer ratio.  For 

clarity, the correspondence of the typical and running values of these parameters is shown in  

Fig. 7.    

 
 

Fig. 7.  Correspondence of the typical and running regime values. 
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The known equality  
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We consider a regime change due to a load change 21
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Therefore, we obtain the following request expressions at once. 

The conductivity load change value 
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The regime change  
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The subsequent value corresponds to hyperbolic projective transformation (19): 
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Next, we write the cross ratio for the voltage transfer ratio change 21
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Similarly, we introduce a voltage transfer ratio change value 21

GK . Then, similar to (21), the 
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Using (38), the voltage transfer ratio change value 
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The known equality  
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Then, according to (39), the voltage transfer ratio change value follows: 
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It is obvious that (41) gets the form 
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The obtained relationship carries out the direct recalculation of the voltage transfer ratio at 

a respective conductivity load change value. In addition, this group projective transformation has 

the base fixed points. For example, if the initial value is )1(1  AAAKG , then the subsequent 

value is )1(2  AAAKG for various values 21
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As the last step, we get the cross ratio for the efficiency change 21

PP KK  : 

 

21

21

22

22
1221

]1[

]1[

]1[

]1[
)(









 

AAK

AAK

AAK

AAK
KKKKm

G

P

G

P
PPPPKP .            (44)                                     

 

We introduce an efficiency change value 21

PK . Then, the regime change 
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Using (44), the efficiency change value 
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The known equality  
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From here, the known typical expression follows:    
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The obtained relationship performs the direct recalculation of the efficiency at a 

respective conductivity load change value. Also, this group projective transformation has the base 

fixed points. For example, if the initial value is 21 )1(  AAKP , then the subsequent value 

is 22 )1(  AAKP for various values 21

LY .    

Thus, this well-founded introduction of regime parameter changes shows that the form of 

expressions for the subsequent values depends on the type of the regime. Therefore, it will be not 

correct to introduce formal increments, divisions, etc. 

 

4. Conclusions 

 

(i) The cross ratio for quadratic fractional expressions is carried out in a limited single-valued 

working area. 

(ii) The cross ratio is accepted as the regime parameter in a relative form, which is invariant to 

the type of the actual regime parameters and circuit sections and depends on the type of the actual 

regime.  

(iii) Changes in regime parameters are proved; direct formulas of recalculation are proposed. 

(iv) The application of this approach to the alternating current circuits is a promising direction of 

researches. 

(v) The represented invariant properties of energy characteristics give the base for the 

determination of single-valued areas of various cubic expressions. 
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