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About one explicit-difference scheme for solving the

plane problem for two-component medium

V. Cheban, I. Naval

Abstract. The finite-difference scheme for plane dynamical problem of the theory
of elasticity of two-component medium in displacements is obtained. The stability of
this scheme by means of Niemann conditions is studied. Is found the maximal time
step in dependence on the space step for which the stability is kept.
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The research of wave processes in many components continuous media represents
a great interest for seismology, construction, the research of the dynamic behavior of
the various mixtures of the soils etc. The works [1–6] are dedicated to the construc-
tion of mathematical models of such media. M.A. Biot in his works [1–3] proposed
a rather general approach in the linear mechanics of deformation and distribution
of acoustic waves in porous two-component medium.

The non-numerous works [7–13] devoted to the solution of concrete problems
on the basis of M.A. Biot’s equations refer exclusively to the simplest kinds of two-
components media (mixture of two isotropically solid bodies, isotropically solid body
and liquids, a liquid and a gas), the first stage of the solution of the problem doesn’t
provoke any difficulties being the determination of the speeds of the wave types
appeared.

The purpose of the present article is the estimation of the time step providing
the stability of one explicit finite-difference scheme for the plane dynamical problem
of the theory of elasticity of two-component medium. Non-stationary processes in
every layer are described by equations of the theory of elasticity: the equations of
motion, the Hooke’s law and the Cauchy relations.

The relations between stresses and deformations in conditions of plane deforma-
tion are the following:

σxx = −α2 + (λ1 + 2µ1) εxx + λ1εyy + (λ3 + 2µ3) qxx + λ3qyy;

σyy = −α2 + λ1εxx + (λ1 + 2µ1) εyy + λ3qxx + (λ3 + 2µ3) qyy;

πxx = α2 + (λ2 + 2µ2) qxx + λ2qyy + (λ4 + 2µ3) εxx + λ4εyy;

πyy = α2 + λ2qxx + (λ2 + 2µ2) qyy + λ4εxx + (λ4 + 2µ3) εyy;

σxy = 2 (µ1εxy + µ3qxy) − λ5 (hxy − hyx) ;
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σyx = 2 (µ1εxy + µ3qxy) + λ5 (hxy − hyx) ;

πxy = 2 (µ2qxy + µ3εxy) − λ5 (hxy − hyx) ; (1)

πxy = 2 (µ2qxy + µ3εxy) + λ5 (hxy − hyx) .

The behavior of the elastic system is described by the equations of motion:

∂σx x

∂ x
+

∂σx y

∂ y
− ∂π0

∂ x
= ρ11

∂2u1

∂ t2
+ ρ12

∂2u2

∂ t2
+ b

(

∂u1

∂ t
− ∂u2

∂ t

)

;

∂σy x

∂ x
+

∂σy y

∂ y
− ∂π0

∂ y
= ρ11

∂2v1

∂ t2
+ ρ12

∂2v2

∂ t2
+ b

(

∂v1

∂ t
− ∂v2

∂ t

)

;

∂πx x

∂ x
+

∂πx y

∂ y
+

∂π0

∂ x
= ρ12

∂2u1

∂ t2
+ ρ22

∂2u2

∂ t2
− b

(

∂u1

∂ t
− ∂u2

∂ t

)

; (2)

∂πy x

∂ x
+

∂πy y

∂ y
+

∂π0

∂ y
= ρ12

∂2v1

∂ t2
+ ρ22

∂2v2

∂ t2
− b

(

∂v1

∂ t
− ∂v2

∂ t

)

,

where ui, vi (i = 1, 2) are the components of the displacement vector of firm phases;
σxx, σxy, σyx, σyy, πxx, πxy, πyx, πyy are the components of the stress tensor; εxx, εxy,
hyx, εyy, qxx, qxy, hyx, qyy are the components of deformation; ρ11, ρ22 are the effec-
tive component masses at their relative motion; ρ11 + ρ12 = ρ1, ρ22 + ρ12 = ρ2, ρ12

is the ,,connecting parameter” between the components of the mixture or the ad-
ditional apparent mass; α2 = λ3 − λ4is the constant with the dimension of stress;
λj µj , (j = 1, 5) are the Lame constants; ρ1, ρ2are the densities of phases; b is the
diffusion coefficient

π0 = ρ1/ρα2(qx + qy) + ρ1/ρα2(εx + εy).

The relations between the deformations and displacements are the following

εxx =
∂u1

∂x
, εxy =

∂u1

∂y
+

∂v1

∂x
, εyy =

∂v1

∂y
;

qxx =
∂u2

∂x
, qxy =

∂u2

∂y
+

∂v2

∂x
, qyy =

∂v2

∂y
; (3)

hxy =
∂v1

∂x
+

∂u2

∂y
, hyx =

∂u1

∂y
+

∂v2

∂x
.

Let us consider the formulation of the problem in displacements. To obtain this
formulation we substitute the relations (1) and (3) in the equations of motion. After
some simple transformations the obtained equations can be presented in the form:

A11

∂2u1

∂x2
+A12

∂2u1

∂y2
+(A11−A12)

∂2v1

∂x∂y
+B11

∂2u2

∂x2
+B12

∂2u2

∂y2
+(B11−B12)

∂2v2

∂x∂y
=

= ρ11

∂2u1

∂t2
+ ρ12

∂2u2

∂t2
+ b

(

∂u1

∂t
+

∂u2

∂t

)

;



ABOUT ONE EXPLICIT-DIFFERENCE SCHEME FOR SOLVING . . . 5

A21

∂2u1

∂x2
+A22

∂2u1

∂y2
+(A21−A22)

∂2v1

∂x∂y
+B21

∂2u2

∂x2
+B22

∂2u2

∂y2
+(B21−B22)

∂2v2

∂x∂y
=

= ρ12

∂2u1

∂t2
+ ρ22

∂2u2

∂t2
− b

(

∂u1

∂t
+

∂u2

∂t

)

;

A11

∂2v1

∂x2
+A12

∂2v1

∂y2
+(A11 −A12)

∂2u1

∂x∂y
+B11

∂2v2

∂x2
+B12

∂2v2

∂y2
+(B11 −B12)

∂2u2

∂x∂y
=

= ρ11

∂2v1

∂t2
+ ρ12

∂2v2

∂t2
+ b

(

∂v1

∂t
+

∂v2

∂t

)

; (4)

A21

∂2v1

∂x2
+A22

∂2v1

∂y2
+(A21 −A22)

∂2u1

∂x∂y
+B21

∂2v2

∂x2
+B22

∂2v2

∂y2
+(B21 −B22)

∂2u2

∂x∂y
=

= ρ12

∂2v1

∂t2
+ ρ22

∂2v2

∂t2
− b

(

∂v1

∂t
+

∂v2

∂t

)

,

where A11 = λ1 + 2µ1 − ρ2α2/ρ; A12 = µ1 − λ5; A21 = λ2 + 2µ2 + ρ1α2/ρ;
A22 = µ2−λ5; B11 = λ3+2µ3−ρ1α2/ρ; B12 = µ3+λ5; B21 = λ4+2µ3+ρ2α2/ρ;
B22 = µ3 + λ5.

Further it will be convenient to split this system into two systems. The first
system describes the processes connected with elastic properties of the medium. The
second system describes the dissipative properties of the medium. So the systems
differ only in right-hand parts. The first system contains the second derivatives with
respect to time and the second system contains the first derivatives with respect to
time.

Let us consider the following explicit finite-difference scheme for numerical solv-
ing the first system of equations.

Let us consider the rectangular grid with the steps ∆x with respect to variable
x, ∆y with respect to time variable. We’ll denote by fk

ij = f(i∆x, j∆y, k∆t) the
values of function f in the nodes of the grid and approximate the derivatives with
finite-difference relations

∂2f

∂t2
∼

fk+1
n,m − 2fk

n , m + fk−1
n , m

∆t2
=

(

fk
m, n

)

t̄t ;

∂2f

∂y2
∼ fn , m+1 − 2fn , m + fn, m−1

∆y2
=

(

fk
m, n

)

ȳy ;

∂2f

∂x∂y
∼ fn+1 , m+1 − fn−1 , m+1 − fn+1 , m−1 + fn−1 , m−1

4∆ x ∆ y
=

(

fk
m, n

)

x̄y ,

as a result we obtain the following discrete system of equations:

A11

(

uk
1m,n

)

x̄x
+ A12

(

uk
1m,n

)

ȳy
+ (A11 − A12)

(

vk
1m,n

)

x̄y
+ B11

(

uk
2m,n

)

x̄x
+

+B12

(

uk
2m,n

)

ȳy
+ (B11 − B12)

(

vk
2m,n

)

x̄y
= ρ11

(

uk
1m,n

)

t̄t
+ ρ12

(

uk
2m,n

)

t̄t
;
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A21

(

uk
1m,n

)

x̄x
+ A22

(

uk
1m,n

)

ȳy
+ (A21 − A22)

(

vk
1m,n

)

x̄y
+ B21

(

uk
2m,n

)

x̄x
+

+B22

(

uk
2m,n

)

ȳy
+ (B21 − B22)

(

vk
2m,n

)

x̄y
= ρ12

(

uk
1m,n

)

t̄t
+ ρ22

(

uk
2m,n

)

t̄t
;

A11

(

vk
1m,n

)

x̄x
+ A12

(

vk
1m,n

)

ȳy
+ (A11 − A12)

(

uk
1m,n

)

x̄y
+ B11

(

vk
2m,n

)

x̄x
+

+B12

(

vk
2m,n

)

ȳy
+ (B11 − B12)

(

uk
2m,n

)

x̄y
= ρ11

(

vk
1m,n

)

t̄t
+ ρ12

(

vk
2m,n

)

t̄t
; (5)

A21

(

vk
1m,n

)

x̄x
+ A22

(

vk
1m,n

)

ȳy
+ (A21 − A22)

(

uk
1m,n

)

x̄y
+ B21

(

vk
2m,n

)

x̄x
+

+B22

(

vk
2m,n

)

ȳy
+ (B21 − B22)

(

uk
2m,n

)

x̄y
= ρ12

(

vk
1m,n

)

t̄t
+ ρ22

(

vk
2m,n

)

t̄t
.

We do not consider here the initial and boundary conditions supposing that the
grid is unboundly continuous with respect to xand y.

Let us study the stability of finite-difference scheme (5) by means of Neumann
condition [14]. We find the solution of equations (5) in the form

uk
i , m, n = γkei α mei β nui 0; vk

i , m, n = γkei α mei β nvi 0
(i = 1, 2). (6)

As a result we obtain the characteristic equation. After the following notations

ω = −
γ − 2 + 1

γ

∆ t2
; (7)

ξ = −eiα − 2 + e−iα

∆ x2
=

2 (1 − cos α)

∆ x2
=

4 sin 2 α
2

∆ x2
; ζ = − sinα sin β

∆x∆y
;

η = −eiβ − 2 + e−iβ

∆ y2
=

2 (1 − cos β)

∆ y2
=

4 sin 2 β
2

∆ y2
, (8)

the characteristic equation can be written in the form:
∣

∣

∣

∣

∣

∣

∣

∣

∣

aξη
1

− ρ11ω bξη
1

− ρ12 ω (A11 − A12)ζ (B11 − B12)ζ

aξη
2

− ρ12ω bξη
2

− ρ22ω (A21 − A22)ζ (B21 − B22)ζ

(A11 − A12)ζ (B11 − B12)ζ aηξ
1

− ρ11ω bηξ
1

− ρ12 ω

(A21 − A22)ζ (B21 − B22)ζ aηξ
2

− ρ12ω bηξ
2

− ρ22ω

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

where afg
i = Ai1f + Ai2g; bfg

i = Bi1f + Bi2g.
The necessary Neumann condition of stability is that |γ| ≤ 1 for all eight roots

γ calculated from (7), where ω are the four roots of the last equation. From the last
equation we obtain the equation of the fourth order with respect to ω:

ω4 + a∗ω3 + b∗ω2 + c∗ω + d∗ = 0, (9)

where a∗, b∗, c∗, d∗ ∈ R, a∗ 6= 0.
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This equation can be written in the form:

(ω2 + a∗ω/2)2 = (a∗2/4 − b∗)ω2 − c∗ω − d∗.

Let us add to both parts of the equation the term(ω2 + a∗ω/2)2y + y2, then

(ω2 + a∗ω/2 + y/2)2 = (a∗2/4 − b∗ + y)ω2 + (a∗y/2 − c∗)ω + y2/4 − d∗.

We’ll find y in such a way that the right-hand part of the equation would be a
perfect trinomial square. After the following notations A2

∗
= a∗2/4− b∗ + y, B2

∗
=

y2/4− d∗, 2A∗B∗
= a∗y2/2− c∗, this condition can be written in the form 4A2

∗
B2

∗
=

(2A∗B∗
)2. So we’ve obtained the resolvable equation. If y0 is the root of the last

equation, then the solution of equation (9) reduces to the solution of the following
two equations ω2 + a∗ω/2 + y0/2 = A∗ω + B∗ and ω2 + a∗ω/2 + y0/2 = −A∗ω −B∗.
The examination of the roots of these equations by means of computer showed that
all four roots are real and positive.

Let us consider the equation (7). It can be written in the form

γ2 −
(

2 − ω ∆ t2
)

γ + 1 = 0. (10)

It is easy to realize that in the case of real ω one of the following situations is
possible:

– if the next condition is fulfilled

0 ≤ ω ∆ t2 ≤ 4, (11)

then both roots are complex and their modules are equal to 1;

– if the condition (11) is not fulfilled, then both roots are real one of them is less
than 1, but another is greater than1 (the product of the roots is equal to 1).

Thus, even if one of the values ωi (i = 1, 4) does not satisfy (11), then among the
eight roots γ of the characteristic equation (5) there is necessarily one with module
greater than 1. According to Neumann condition the finite-difference scheme (5)
will be unstable. If the values ωi satisfy the condition (11), then the modules of
all eight roots will be equal to 1. Hence, the finite-difference scheme (5) without
boundary conditions will be stable.

The examination of the roots of the equation (9) makes it possible to say that
the maximum value of the greatest of them is achieved at the corner point of the
rectangle 0 ≤ ξ ≤ 4/∆x2 , 0 ≤ η ≤ 4/∆y2.

If the maximum value of the function ω (ξ, η) is achieved at the corner point
ξ = 4/∆x2 , η = 4/∆y2, then the following estimation is fulfilled:

ω ≤
(

Ω +
√

Ω2 − 4∆∗(AC − BD)
)

/(2∆∗), (12)

where Ω = Aρ22 + Cρ11 − (B + D)ρ12, ∆∗ = ρ11ρ22 − ρ2
12, A = 4(A11/∆x2 +

A12/∆y2), B = 4(B11/∆x2 + B12/∆y2), C = 4(B21/∆x2 + B22/∆y2), D =
4(A21/∆x2 + A22/∆y2).
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It is evident that Ω = ∆∗(a2 + b2), where

a2 =

(

Θ +
√

Θ2 − 4∆∗(A11B21 − B
11

A21)

)/

(2∆∗);

b2 =

(

Σ +
√

Σ2 − 4∆∗(A12B22 − B
12

A22)

)/

(2∆∗);

Θ = A11ρ22 + B21ρ11 − (A21 + B11)ρ12; Σ = A12ρ22 + B22ρ11 − (A22 + B12)ρ12,

as a result we obtain

ω ≤ a2 + b2

2

(

4

∆x2
+

4

∆y2

)

+
a2 − b2

2

∣

∣

∣

∣

4

∆x2
− 4

∆y2

∣

∣

∣

∣

. (13)

According to the condition (11) the stability of the finite-difference scheme with-
out boundary conditions will take place if the step with respect to time variable will
satisfy the following condition:

∆t =
h√

a2 + b2
, if ∆ x = ∆ y = h; (14)

∆t =
∆x∆y

√

a2∆y2 + b2∆x2
, if ∆x ≤ ∆y; (15)

∆t =
∆x∆y

√

a2∆x2 + b2∆y2
, if ∆x ≥ ∆y. (16)

Now we’ll take in consideration the dissipative terms in the system (4). The
right-hand parts of the second system can be approximated by the relation

∂f

∂t
∼

fk+1
n,m − fk

n,m

∆t
= (fk

n,m)t̄, (17)

where f is one of the functions ui, vi, i = 1, 2.
The values of these additional terms (in comparison with elastic model) are

taking into account in the construction of transmission formulas for the next time
moment tk+1 = tk + ∆t.

The finite-difference scheme for system (2) in the operator form can be written
in the following form

Uk+1 = [E + τ(AI + AII)] Uk, (18)

where AI , AII are difference operators with chosen approximation of the right-hand
parts.

Let τI and τII be the time steps that provide the stability of these systems, i.e.
the conditions ‖E + τIAI‖ ≤ 1; ‖E + τIIAII‖ ≤ 1 are fulfilled for some norm of the
difference operator. Then, if the step τ , verifies the inequality

τ

(

1

τI
+

1

τII

)

≤ 1; (19)
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then the condition
‖E + τ (AI + AII)‖ ≤ 1, (20)

is fulfilled, i.e. the stability of the finite-difference scheme for system of equations
(4).

In reality, from the identity E+τ (AI + AII) = rI (E + τIAI)+rII (E + τIIAII)+
(1 − rI − rII) E (here rIτI = τ , rIIτII = τ) and from the convexity of the norm
follows that

‖E + τ (AI + AII)‖ ≤ rI‖E + τIAI‖ + rII‖E + τIIAII‖+

+| 1 − rI − rII | ≤ rI + rII + | 1 − rI − rII | .

Hence, the inequality (20) will be fulfilled, if 1 − rI − rII ≥ 0. As rI = τ/τI ,
rII = τ/τII , then the last condition consider with (19).

As it was mentioned above the stability of the finite-difference scheme for elastic
model is provided by conditions (15) and (16), i.e.

1

τI

=

√

a2∆y2 + b2∆x2

∆x∆y
if ∆x ≤ ∆y;

1

τI

=

√

a2∆x2 + b2∆y2

∆x∆y
if ∆x ≥ ∆y. (21)

Let us obtain the value τII , which provides the stability of the corresponding
scheme.

With the help of auxiliary value (λ − 1)/∆t = −µ, we obtain the characteristic
equation in the following form:

∣

∣

∣

∣

∣

∣

∣

∣

∣

aξη
1

− ρ11µ bξη
1

− ρ12 µ (A11 − A12)ζ (B11 − B12)ζ

aξη
2

− ρ12µ bξη
2

− ρ22µ (A21 − A22)ζ (B21 − B22)ζ

(A11 − A12)ζ (B11 − B12)ζ aηξ
1

− ρ11µ bηξ
1

− ρ12 µ

(A21 − A22)ζ (B21 − B22)ζ aηξ
2

− ρ12µ bηξ
2

− ρ22µ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (22)

From this determinantal equation we obtain

(µ − ξ − η)

[

µ2 − 4

3
(ξ + η)µ +

4

3

(

ξη − ζ2
)

]

= 0.

According to the above notations λ = 1− µ∆ t and, hence, the necessary condi-
tion of stability |λ| ≤ 1 is reduced to the inequality

1 − µ ∗ ∆ t ≥ −1 (23)

where µ∗ is the maximal value of the greatest root and α, β are arbitrary.
The maximal value of the greatest root for arbitrary α, β was studied by means

of computer in rectangle 0 ≤ ξ ≤ 4/∆x2 , 0 ≤ η ≤ 4/∆y2. The maximal value of
the greatest root is achieved at a corner point.
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If the maximal value of the function µ (ξ, η) is achieved at the corner point
ξ = 4/∆x2 , η = 4/∆y2, then the following estimation is fulfilled:

µ∗ ≤ AC − BD

b(A + C + B + D)
. (24)

Hence, from (19) we obtain:

∆t ≤ 2/µ∗; τII =
(AC − BD)

2b(A + B + C + D)
. (25)

So, from the condition of stability (19) for equal grid steps ∆ x = ∆ y = h, we obtain

τ =
τI + τII

τIτII
. (26)

Thus, in comparison with ”pure” elastic model the calculations of the dissipative
problem by means of explicit finite-difference scheme must be effectuated with a
smaller time step.

It is obvious that the application of the explicit difference scheme is expedient
only in rather narrow range of dissipative coefficient, when the ratio b/his small.
We shall notice that in the case of small values of b, the attributing of the dissipa-
tive terms in finite-difference equations loses sense as the coefficients of difference
viscosity of this scheme are values of the order h2.

In the case when b >> 1 it is expedient to consider independently a dissipative
system of equations instead of system (4) The elasticity will play a role of small
correction for the solution.

The carried out research allows to hope that the stability of calculations with
the time step verifying condition (26) will take place. However, as the research
was carried out without taking into account boundary conditions, it requires ex-
perimental examination. Such examination was carried out. As an example the
problem of impact of the rectangular domain on a rigid barrier was considered. The
calculated formulas were received in the boundary nodes of the grid. This explicit
finite-difference scheme was successfully approved under test problems. The accept-
able coordination of the compared results and obtaining the converging solutions by
reducing the grid step testify their reliability and closeness to the exact solution.
The realization of numerical experiments with different grids (when h → 0) has
allowed to estimate the actual speed of convergence of the difference scheme and to
optimize the number of nodes of integration to achieve the acceptable accuracy by
the minimal expenses of computer time and operative memory resources.
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Classification of planar quadratic differential systems with center of
symmetry and multiple infinite singular point

Mircea Lupan
Department of Mathematics, “Gh. Asachi” Technical University of Iasi, Romania

We classify the family of planar quadratic differential systems with a center of
symmetry and two invariant straight lines according to the topology of their phase
portraits. The case of the existence of at most two distinct infinite singular points is
considered. For each of the classes obtained we give necessary and sufficient conditions
in terms of algebraic invariants and comitants. A program was implemented for
computer calculations.
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A REPUBLICII MOLDOVA. MATEMATICA
Number 2(45), 2004, Pages 27–32
ISSN 1024–7696

Cyclic planar random evolution with four directions

Alexander D. Kolesnik

Abstract. A four-direction cyclic random motion with constant finite speed v in
the plane R

2 driven by a homogeneous Poisson process of rate λ > 0 is studied. A
fourth-order hyperbolic equation with constant coefficients governing the transition
law of the motion is obtained. A general solution of the Fourier transform of this
equation is given. A special non-linear automodel substitution is found reducing the
governing partial differential equation to the generalized fourth-order ordinary Bessel
differential equation, and the fundamental system of its solutions is explicitly given.

Mathematics subject classification: Primary 60G99, secondary 60J25, 60K99.

Keywords and phrases: Cyclic random evolution, finite speed, transition law,
higher-order hyperbolic equations, generalized Bessel equation, fundamental system
of solutions.

1 Introduction

Various models of Markovian random evolutions performed by a particle moving
at chance with a constant finite speed are fairly attractive subject, which many
researchers have been dealing with. Such an interest is mostly due to the fact that
a great deal of practically important applied models in statistical physics, biology,
transport processes and engineering (see, for instance, Tolubinsky [15], Ratanov
[14], Papanicolaou [13], Brooks [1], Kolesnik [6] and the bibliography therein) can
be described and studied in terms of random evolutions.

The one-dimensional motions are the most studied models in which one often
managed to obtain the explicit forms of distributions (see Foong [3], Foong and
Kanno [4], Orsingher [10], Ratanov [14], Kolesnik [7]) or the estimates of their normal
approximations (see Brooks [1]). As far as their multidimensional counterparts are
concerned, only a few particular planar random evolutions were studied so far (see
Kolesnik [5], Orsingher and San Martini [12], Kolesnik and Turbin [8], Orsingher
[11], Kolesnik and Orsingher [9], Di Crescenzo [2]). By this, an explicit form of the
distribution was obtained only for the planar random motion with four mutually
orthogonal directions without reflection (see Orsingher [11]).

The planar random evolutions performed by a particle changing the directions of
its motion in a cyclic way are of a special interest because various cyclic processes are

c© Alexander D. Kolesnik, 2004
∗ The results of this paper were obtained while the author was the fellowship holder of the
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rather broadly used for modelling real phenomena. For example, in the well-known
statistical problem of discovering a random signal in a multi-channel system the
optimal strategy is just the cyclic choice of the channels. In biology the behaviour
of tetramers obeys a cyclic scheme too.

The cyclic planar random evolutions have been examined by some authors. In
particular, in Orsingher and San Martini [12] such a motion with three cyclically
changing directions has been studied, and the explicit solutions of some initial-value
problems for the governing equations have been found. The similar three-direction
model have recently been investigated by Di Crescenzo [2] where, by different meth-
ods, the functional relations for the distribution of this motion have been given in
terms of multidimensional convolutions.

In this paper we present a further generalization of the models mentioned above
to the case of four mutually orthogonal directions changing in the cyclic way. We
obtain a fourth-order hyperbolic equation governing the transition law of the motion
and give its general solution in terms of Fourier transforms. It is important to note
that the roots of corresponding characteristic equation are found explicitly. As an
alternative approach, we were able to find a non-linear automodel substitution reduc-
ing governing partial differential equation to the generalized fourth-order ordinary
Bessel differential equation, whose linearly independent solutions (i.e. fundamental
system of solutions) are also given. It is worth to especially emphasize that we were
able to find the fundamental system of solutions in an explicit form. This interesting
fact gives us some hints for further generalizations of such types of models.

2 Description of the Motion and the Governing Equation

A particle moves with some constant finite speed v in the plane R2. At every
time instant t it can have one of the four possible directions of motion D(t) = Ek,
where the direction Ek is orientated like the unit vector (cos (πk/2), sin (πk/2)), k =
0, 1, 2, 3. In other words, the particle can move parallelly to the coordinate axes OX
and OY only. The motion is controlled by a homogeneous Poisson process of rate
λ > 0 changing the directions according to the cyclic scheme

· · · → E0 → E1 → E2 → E3 → E0 → . . .

This means that at each Poisson-paced time moment the particle instantly changes
its direction in accordance with this rule and continues its motion in the chosen
direction with the same speed v until the next Poisson event occurs, then it cyclically
takes on a new direction, and so on.

Denote by Z(t) = (X(t), Y (t)) the particle’s position in the plane R2 at some
time instant t > 0. We are interested in studying the behaviour of the transition law
of the process Z(t). Introduce the joint partial densities fk = fk(x, y, t), (x, y) ∈
R2, t > 0, of the particle’s position and its direction as follows

fk(x, y, t) dxdy = P{x ≤ X(t) < x+ dx, y ≤ Y (t) < y + dy, D(t) = Ek}, (1)
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k = 0, 1, 2, 3.

Since the random events {D(t) = Ek, k = 0, 1, 2, 3, } do not intersect and form
the full group of events, then the function p = p(x, y, t), (x, y) ∈ R2, t > 0, defined
as p = f0 + f1 + f2 + f3, represents the transition density of the motion Z(t).

Our first result concerns the equation governing function p. It is given by the
following theorem.

Theorem 1. The transition density p = p(x, y, t), (x, y) ∈ R2, t > 0, of the
cyclic planar random evolution with four directions satisfies the following fourth-
order hyperbolic equation with constant coefficients

{[

(

∂

∂t
+ λ

)2

− v2 ∂
2

∂x2

][

(

∂

∂t
+ λ

)2

− v2 ∂
2

∂y2

]

− λ4

}

p = 0. (2)

Proof. The Kolmogorov equation written down for the densities (1) leads to the
following hyperbolic system of four first-order PDEs

∂fk

∂t
= −v cos

πk

2
· ∂fk

∂x
− v sin

πk

2
· ∂fk

∂y
− λfk + λfk−1,

k = 0, 1, 2, 3, f−1

def
= f3.

Computing the determinant of this system and according to Kolesnik [7], Theorem
2, we come to the conclusion that each function fk as well as their sum satisfy
hyperbolic PDE (2). �

It is easy to check that the exponential substitution

p(x, y, t) = e−λtw(x, y, t) (3)

reduces equation (2) to the equation

{(

∂2

∂t2
− v2 ∂

2

∂x2

)(

∂2

∂t2
− v2 ∂

2

∂y2

)

− λ4

}

w(x, y, t) = 0. (4)

This equation will become the main subject of our further analysis.
The Fourier transform of the function w = w(x, y, t)

W(α, β, t) =

∫∫

R2

eiαx+iβyw(x, y, t) dxdy

satisfies the ordinary differential equation

d4W
dt4

+ v2(α2 + β2)
d2W
dt2

+ (v4α2β2 − λ4)W = 0. (5)

Our next result concerns the general solution of equation (5). It is given by the
following theorem.
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Theorem 2. The general solution of equation (5) has the form

W(α, β, t) = C0e
r0t + C1e

r1t + C2e
r3t + C3e

r3t, (6)

where C0, C1, C2, C3 are arbitrary constants, and

r0 =

√

−v2(α2 + β2) +
√

v4(α2 − β2)2 + 4λ4

2
,

r1 =

√

−v2(α2 + β2) −
√

v4(α2 − β2)2 + 4λ4

2
,

r2 = −

√

−v2(α2 + β2) +
√

v4(α2 − β2)2 + 4λ4

2
,

r3 = −

√

−v2(α2 + β2) −
√

v4(α2 − β2)2 + 4λ4

2
.

(7)

Proof. The characteristic equation of the ordinary differential equation (5) is the
bi-square equation

r4 + v2(α2 + β2)r2 + (v4α2β2 − λ4) = 0,

whose roots, as is easy to see, are given by (7). �

Remark. The constants C0, C1, C2, C3 (depending on α and β) can be found from
the initial conditions in each particular case.

Corollary. The general solution P(α, β, t) of the Fourier transform of equation (2)
has the form

P(α, β, t) = C0e
(−λ+r0)t + C1e

(−λ+r1)t + C2e
(−λ+r3)t +C3e

(−λ+r3)t,

where r0, r1, r2, r3 are given by (7). This immediately follows from (3).

3 Fundamental System of Solutions

In this section we give an alternative approach leading to the fundamental system
of solutions of equation (2). One should especially emphasize that we obtain such a
system in an explicit form, unlike the solutions in terms of Fourier transforms given
above.

The principal result of this section is given by the following theorem.

Theorem 3. The fundamental system of solutions of equation (2) has the form

gi(x, y, t) = e−λtJ (i)(x, y, t), i = 0, 1, 2, 3, (8)

where J (i) are the generalized Bessel functions
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J (0)(x, y, t) =
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4

)4k

,

and z is given by the equality

z =
[

(v2t2 − x2)(v2t2 − y2)
]1/4

. (10)

Proof. By means of simple but fairly unwieldy computations one can show that
the automodel substitution (10) reduces partial differential equation (4) to the gen-
eralized fourth-order ordinary Bessel differential equation

{

B4
z −

(

2λ

v

)4

z4

}

ψ(z) = 0, (11)

where B4
z is the generalized fourth-order Bessel differential operator

B4
z =

(

z
d

dz

)4

.

According to Turbin and Plotkin [16], p.118, the solutions of equation (11) are given
by the generalized Bessel functions (9). In order to check the linear independence of
these functions one needs to show that their Wronskian is not zero at some arbitrary
point. It is convenient to check that, for instance, at the point z = 1 or z = 4. Then
taking into account (3) we obtain the statement of the theorem. �
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The commutative Moufang loops with minimum

conditions for subloops II

N.I. Sandu

Abstract. It is proved that the following conditions are equivalent for an infinite
nonassociative commutative Moufang loop Q: 1) Q satisfies the minimum condition
for subloops; 2) if the loop Q contains a centrally solvable subloop of class s, then
it satisfies the minimum condition for centrally solvable subloops of class s; 3) if the
loop Q contains a centrally nilpotent subloop of class n, then it satisfies the mini-
mum condition for centrally nilpotent subloops of class n; 4) Q satisfies the minimum
condition for noninvariant associative subloops. The structure of the commutative
Moufang loops, whose infinite nonassociative subloops are normal is examined.

Mathematics subject classification: 20N05.

Keywords and phrases: Commutative Moufang loops, minimum condition for
nilpotent subloops, minimum condition for solvable subloops, minimum condition for
noninvariant associative subloops.

This paper is the continuation of the article [1], where the construction of the
commutative Moufang loops (abbreviated CML) with the minimum condition for
subloops is examined. A normal weakening for this condition is the minimum con-
dition for the centrally solvable (centrally nilpotent) subloops of a given class. A
broader question regarding these conditions is examined in Section 2, and namely,
the existence in a CML of infinite centrally solvable (centrally nilpotent) subloops,
possessing a property, which, by analogy with the group theory [2], will be called
steady central solvability (steady central nilpotence). We will say that an infinite
centrally solvable (centrally nilpotent) of the class of the loop Q is steadily centrally
solvable (steadily centrally nilpotent) if any infinite centrally solvable (centrally nilpo-
tent) subloop of the class n of loop Q contains a proper subloop of central solvability
(central nilpotence) of class n. It turned out that the existence of steadily centrally
solvable (centrally nilpotent) subloop of a certain given class n in CML is equivalent
to the existence of an infinite decreasing series of subloops in CML. In particular it
follows from here that for a CML, possessing a centrally solvable (centrally nilpotent)
subloop of a certain class n, the minimum condition for subloops is equivalent to
the minimum condition for subloops which have the same class of central solvability
(central nilpotence) n.

It is shown in Section 3 that the minimum condition for subloops and for nonin-
variant associative subloops are equivalent in an infinite nonassociative CML. The in-
finite nonassociative CML which do not have proper infinite nonassociative subloops
are described in Section 2. A weakening of the last condition is the condition for

c© N.I. Sandu, 2004
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infinite nonassociative CML, when all infinite subloops are normal in them. The
construction of such CML is given in Section 4.

1 Preliminaries

A multiplicative group M(Q) of a CML Q is a group generated by all translations
L(x), where L(x)y = xy. The subgroup I(Q) of the group M(Q), generated by all
the inner mappings L(x, y) = L(xy)−1L(x)L(y), is called an inner mapping group
of the CML Q. The subloop H of the CML Q is called normal (invariant) in Q if
I(Q)H = H.

Lemma 1.1 [3]. The inner mappings are automorphisms in the commutative Mo-
ufang loops.

Further we will denote by < M > the subloop of the loop Q, generated by the
set M ⊆ Q.

Lemma 1.2 [3]. Let H and K be such loop’s subloops that K is normal in
< H,K >. Then HK = KH =< H,K >.

The associator (a, b, c) of the elements a, b, c of the CML Q is defined by the
equality ab · c = (a · bc)(a, b, c). The identities:

L(x, y)z = z(z, y, x), (1.1)

(x, y, z) = (y−1, x, z) = (y, x, z)−1 = (y, z, x), (1.2)

(xp, yr, zs) = (x, y, z)prs, (1.3)

(x, y, z)3 = 1, (1.4)

(xy, u, v) = (x, u, v)((x, u, v), x, y)(y, u, v)((y, u, v).y, x) (1.5)

hold in a CML [3].

Lemma 1.3 [3]. The periodic commutative Moufang loop is locally finite.

Lemma 1.4 [4]. The periodic commutative Moufang loop Q decomposes into a
direct product of its maximal p-subloops Qp, and besides, Qp belongs to the centre
Z(Q) = {x ∈ Q|(x, y, z) = 1∀y, z ∈ Q} of CML Q for p 6= 3.

We denote by Qi (respect. Q(i)) the subloop of the CML Q, generated by
all associators of the form (x1, x2, . . . , x2i+1) (respect. (x1, . . . , x3i)(i)) where
(x1, . . . , x2i−1, x2i, x2i+1) = ((x1, . . . , x2i−1), x2i, x2i+1) (respect. (x1, . . . , x3i)(i) =
((x1, . . . , x3i−1)(i−1), (x3i−1+1, . . . , x2·3i−1)(i−1), (x2·3i−1+1, . . . , x3i)(i−1))). The series
of normal subloops 1 = Q0 ⊆ Q1 ⊆ . . . ⊆ Qi ⊆ . . . (respect. 1 = Q(o) ⊆ Q(1) ⊆ . . . ⊆
Q(i) ⊆ . . .) is called the lower central series (respect. derived series) of the CML Q.
We will also use for associator loop the designation Q(1) = Q′.
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The CML Q is centrally nilpotent (respect. centrally solvable) of class n if and
only if its lower central series (respect. derived series) has the form 1 ⊂ Q1 ⊂ . . . ⊂
Qn = Q (respect. 1 ⊂ Q(1) ⊂ . . . ⊂ Q(n) = Q).

Lemma 1.5 (Bruck-Slaby Theorem) [3]. Let n be a positive integer, n ≥ 3.
Then every commutative Moufang loop Q which can be generated by n elements is
centrally nilpotent of class at most n − 1.

Let M be a subset, H be a subloop of the CML Q. The subloop

ZH(M) = {x ∈ H|(x, u, v) = 1∀u, v ∈ M}
is called the centralizer of the set M in the subloop H.

Lemma 1.6 [1]. If M is a normal subloop of the subloop H of the commu-
tative Moufang loop Q then for a, b ∈ H aZH(M) = bZH(M) if and only if
L(a, b)(a, u, v) = (b, u, v) for any u, v ∈ M .

The upper central series of the CML Q is the series

1 = Z0 ⊆ Z1 ⊆ Z2 ⊆ . . . ⊆ Zα ⊆ . . .

of the normal subloops of the CML Q, satisfying the conditions: 1) Zα =
∑

β<α Zβ

for the limit ordinal and 2) Zα+1/Zα = Z(Q/Zα) for any α.

Lemma 1.7 [3]. The statements: 1) x3 ∈ Q for any x ∈ Q; 2) the quotient loop
Q/Z(Q) has the index 3 hold for a commutative Moufang loop Q.

A CML Q is called divisible it the equation xn = a has at least one solution in
Q, for any n > 0 and any element a ∈ Q.

Lemma 1.8 [1]. The following conditions are equivalent for a commutative Moufang
loop D: 1) D is a divisible loop; 2) D is a direct factor for any commutative Moufang
loop that contains it.

Lemma 1.9 [1]. The following conditions are equivalent for a commutative Moufang
loop Q: 1) Q satisfies the minimum condition for subloops; 2) Q is a direct product
of a finite number of quasicyclic groups, lying in the centre Z(Q), and a finite loop.

2 Steadily centrally solvable (centrally nilpotent)

commutative Moufang loops

Lemma 2.1. A infinite centrally solvable (centrally nilpotent) commutative Moufang
loop Q of class n contains a proper centrally solvable (centrally nilpotent) subloop of
class n.

Proof. Let us suppose the contrary, i.e., all proper subloops of the centrally solvable
CML Q of class n have a class of central solvability less than n. Let us prove that
in such a case the CML is finite.

As the CML Q is centrally solvable of the class n, there are such elements
a1, . . . , a3n−1 in Q that (a1, . . . , a3n−1)(n−1) 6= 1. Due to the fact that all proper
subloops of the CML Q are centrally solvable of class less than n, the elements
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a1, . . . , a3n−1 generate the CML Q. Without violating the generality, we will suppose
that all the elements a1, . . . , a3n−1 are different. For example, let an element a1 have
an infinite order. Then the subloop < a4

1, . . . , a3n−1 > is proper in Q. Now, by the
identities (1.3), (1.4) we calculate

(a4
1, . . . , a3(n−1))(n−1) = ((a1, . . . , a3(n−1))(n−1))4 =

= (a1, . . . , a3(n−1))(n−1) 6= 1.

We have obtained that the proper subloop H is centrally solvable of the class
n. Contradiction. Consequently, the generators of the CML Q have a finite orders.
Basing on Lemma 1.3, we conclude that the CML Q is finite. Contradiction. The
second case is proved by analogy.

Corollary 2.2. The centrally solvable (centrally nilpotent) commutative Moufang
loop of class n whose proper subloops have a class of central solvability (central
nilpotence) less that n is a finite loop.

Lemma 2.3. If a non-periodic commutative Moufang loop Q contains a finite cen-
trally solvable (centrally nilpotent) subloop H of class n, then it contains a steadily
centrally solvable (centrally nilpotent) subloop of class n.

Proof. If a is an element of an infinite order, then by Lemma 1.6 a3k ∈ Z(Q), where

k = 1, 2, . . . , Z(Q) is the centre of the CML Q. Then the subloop < a3k

,H > is
steadily centrally solvable (centrally nilpotent) of the class n.

Lemma 2.4. Let a commutative Moufang loop Q, which does not satisfy the mini-
mum condition for subloops be centrally solvable (centrally nilpotent) of the class n.
Then Q possesses a proper infinite centrally solvable (centrally nilpotent) subloop of
the class n.

Proof. Let the infinite CML Q be centrally solvable of the class n and all its proper
centrally solvable subloops of the class n, be finite. By Lemma 2.1 there exists
a finite proper centrally solvable subloop K of the class n of the order m in the
CML Q.

If L is an arbitrary normal subloop of a finite index of the CML Q, then by
Lemma 1.2 LK is an infinite centrally solvable subloop of the class n and therefore
LK = Q. By the relation

Q/L = LK/L ∼= K(K ∩ L)

the index of the normal subloop L is not greater than m in the CML Q. Then in
the CML Q there exists a normal subloop H of a finite index. The subloop H does
not possess proper normal subloops of finite index, it means that H/H ′ is infinite.
Therefore H ′K is a finite subloop, and then the associator loop H ′ is also finite. Let
us show that the subloop H is associative. Indeed, by Lemma 1.5 aZ(H) 6= bZ(H)
(a, b ∈ H) if and only if there exist such elements u, v ∈ H that (a, u, v) 6= (b, u, v).
Therefore the centre Z(Q) has a finite index in H. The subloop H is normal in
the CML Q, i.e. it is invariant regarding the inner mapping group which consists of
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automorphisms (Lemma 1.1). Then it is obvious that the subloop Z(H) is normal in
Q. We have obtained that the CML H contains a normal in Q subloop of finite index.
But it contradicts the choice of subloop H. Consequently, Z(H) = H. Further, the
set S of the elements of the group H, having simple orders, is finite. It follows from
the fact that the subloop < S > K (the subloop < S > is normal in Q) is finite as a
proper centrally solvable subloop of the class n of the CML Q. It follows from here
that H is an abelian group with the minimum condition for subgroups. The second
case is proved by analogy.

Corollary 2.5. For an infinite centrally solvable (centrally nilpotent) commuta-
tive Moufang loop to be steadily centrally solvable (steadily centrally nilpotent), it is
enough that it does not contain divisible subloops different from the unitary element.

Corollary 2.6. For an infinite periodic centrally solvable (centrally nilpotent) com-
mutative Moufang loop Q of the class n to be steadily centrally solvable (steadily
centrally nilpotent), it is necessary and sufficient that Q does not contain divisible
subloops different from the unitary element.

Proof. If Q does not contain non-trivial divisible subloops, then the necessity
follows from Corollary 2.5. Conversely, for example, let the CML Q be steadily
centrally solvable and let H be the maximal divisible subloop of the CML Q. By
Lemma 1.7 H ⊆ Z(Q). If L is a finite centrally solvable subloop of the class n, K is
a quasicyclic group from H, then the subloop < L,K > is centrally solvable of the
class n and satisfies the minimum condition for subloops. By the mentioned above
and by Lemma 2.1 it is easy to show that there exists an infinite centrally solvable
subloop of the class n in the < L,K > whose all subloop’s proper centrally solvable
subloops of the class n are finite. But it contradicts the fact that Q is steadily
centrally solvable. The second case is proved by analogy. This completes the proof
of Corollary 2.6.

Let us remark that the request of the periodicity of the CML Q in Corollary 2.6
is essential (example: the additive group of rational numbers).

We will call a minimal CML of central solvability (central nilpotence) class n
any centrally solvable (centrally nilpotent) CML whose all proper subloops have a
class of central solvability (central nilpotence) less than n. It follows from Lemmas
2.1 and 1.4 that these are commutative Moufang 3-loops.

Corollary 2.7. For a commutative Moufang loop Q to be infinite centrally solvable
(centrally nilpotent) of the class n, and all its proper centrally solvable (centrally
nilpotent) subloops of the class n to be finite, it is necessary and sufficient that the
loop Q is a direct product of quasicyclic groups and the minimal CML of the central
solvability (central nilpotence) class n.

Proof. We will examine only the case of central solvability. If an infinite CML Q
is centrally solvable of class n and all its proper centrally solvable class n are finite,
then by Lemma 2.4 Q satisfies the minimum condition for subloops. By Lemma
1.9 Q decomposes into a direct product of finite number of quasicyclic groups and
a finite CML. Obviously, if K is a quasicyclic group and L is a minimal subloop of
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central solvability class n, then Q = K × L. The inverse is obvious.

Lemma 2.8. Let a commutative Moufang loop Q which does not satisfy the mini-
mum condition for subloops be centrally solvable (centrally nilpotent) of the class n.
Then Q possesses a steadily centrally solvable (steadily centrally nilpotent) subloop
of class n.

Proof. Let Q(t) be the last member of derived series (lower central series)

Q = Q(0) ⊃ Q(1) ⊃ . . . ⊃ Q(t) ⊃ . . . ⊃ Q(n) = 1

of the CML Q that does not satisfy the minimum condition for subloops. If there
are no steadily centrally solvable (steadily centrally nilpotent) subloops of class n
in the CML Q, then by Lemma 2.1 there exists a finite centrally solvable (centrally
nilpotent) subloop of the class n in it. We denote it by H.

If Q is a non-periodic CML, then the statement follows from Lemma 2.3.
Let now the subloop Q(t) have no elements of infinite order. By (1.4) the subloop

Q(t+1) has the degree three and by the supposition it satisfies the minimum condition
for subloops. Then by Lemma 1.9 Q(t+1) is finite. We denote by L/Q(t+1) the
subgroup of the abelian group Q(t)/Q(t+1), generated by all elements of prime orders.
It cannot be finite, as the group Q(t)/Q(t+1), and then the CML Q(t) would also
satisfy the minimum condition for subloops. We denote by Z the centralizer of the
normal subloop Q(t+1) in the CML L. By Lemma 1.5, if a, b ∈ L, then aZ 6= bZ if
and only if there exist such elements u, v from Q(t+1) that L(a, b)(a, u, v) 6= (b, u, v).
The subloop Q(t+1) is normal in Q, then (a, u, v) ∈ Q(t+1). As Q(t+1) is finite, L/Z
is finite. So, the subloop Z does not satisfy the minimum condition for subloops.
Now it follows from the relations

Z/(Z ∩ Q(t+1)) ∼= Q(t+1)Z/Q(t+1) ⊆ L/Q(t+1)

that Z/(Z∩Q(t+1)) is an infinite abelian group. The subloop Z∩Q(t+1) is contained
in the centre of the CML Z, then Z is a centrally nilpotent CML of the class 2. It
follows from here that the associator loop Z ′ is an abelian group of the exponent
three. If the associator loop Z ′ is infinite, then Z ′H is an unknown subloop (the
product Z ′H is a subloop by Lemma 1.2, as the normality of Z ′ in Q follows from the
normality of Z in Q). But if the associator loop Z ′ is finite, then the subgroup K/Z ′

of the group Z/Z ′, generated by all elements of prime orders, should be infinite, as
Z does not satisfy the minimum condition for subgroups. The subloop K is normal
in Q as Z is normal in Q and, obviously, K contains no divisible subloops different
from the unitary element. Consequently, by Corollary 2.6 HK is a steadily centrally
solvable (steadily centrally nilpotent) subloop of the class n.

Lemma 2.9. An arbitrary centrally solvable (centrally nilpotent) commutative Mo-
ufang loop Q of class n that does not satisfy the minimum condition for subloops
possesses a steadily centrally solvable (steadily centrally nilpotent) subloops of central
solvability (central nilpotence) class t for any t = 1, 2, . . . , n.

Proof. Let Q be a centrally nilpotent CML of class n and let a1, a2, . . . , a2n+1

be such elements from Q that ((a1, . . . , a2i+1), a2i+2, . . . , a2n−1, a2n, a2n+1) = 1,
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but ((a1, . . . , a2i+1), a2i+2, . . . , a2n−1) 6= 1. Then the subloop < (a1, . . . , a2i+1),
a2i+2, . . . , a2n+1 >= H is centrally nilpotent of class n−1 = t. In the case of central
solvability we will examine the (n−i)-th member of the derived series Q(n−i) instead
of H.

If the subloop H is not steadily centrally solvable (steadily centrally nilpotent)
of class t, then by Lemma 2.1 the subloop H is finite. Let the CML Q not be
periodic. Then by Lemma 2.3 Q contains a steadily centrally solvable (steadily
centrally nilpotent) subloop of class t.

Let us suppose that Q is a periodic CML. Let Q(i) be the last member of the
derived series (of the lower central series)

Q = Q(0) ⊃ Q(1) ⊃ . . . ⊃ Q(i) ⊃ . . . ⊃ Q(n) = 1

of the CML Q that does not satisfy the minimum condition for subloops. The
subloop Q(i+1) satisfies the minimum condition for subloops and by (1.4) it has the
index three. Then by Lemma 1.9 it is finite. We denote by K/Q(i−1) the subgroup
of the abelian group Q(i)/Q(i+1) generated by all elements of prime orders. The
group K/Q(i+1) is infinite, as the CML Q(i) does not satisfy the minimum condition
for subloops. Let us suppose that L = KH,L0 = Q(i+1)H. We remind that in
the case of central solvability Q(t) = H. But if Q(i+1) is a member of the lower
central series, then the subloop L0 is normal in L. Indeed, for that it is enough to
show that if x ∈ L0, y, z ∈ L, then (x, y, z) ∈ L0. Any element from L0 has the
form ah, where a ∈ Q(i+1), h ∈ H, and any element from L has the form uh, where
u ∈ Q(i), h ∈ H. If a ∈ Q(i+1), u, v ∈ Q(i), h1, h2, h3 ∈ H, then by the identity (1.5)
the associator (ah1, uh2, vh3) may be presented as a product of the factors of the
form (a, x, y), (h1, h2, h3), (u, x, y), where x, y ∈ L. As the subloop Q(i+1) is normal
in Q, (a, x, y) ∈ Q(i+1). Further, it is obvious that (h1, h2, h3) ∈ H. If a ∈ Q(i),
then it follows from the relation Q(i)/Q(i+1) ⊆ Z(Q/Q(i+1)) that (u, x, y) ∈ Q(i+1).
Consequently, the subloop L0 is normal in L.

We have already constructed such a series of elements of the CML L

g1, g2, . . . , gr (2.1)

that the normal subloops Li =< L0, g1, . . . , gi > form s strictly ascending series
L0 ⊂ L1 ⊂ . . . ⊂ Lr and for any i = 1, 2, . . . , r the element gi is bound by an
associative law with all elements of the CML Li+1. Let us show that the series (2.1)
can be unlimitedly continued. We denote by Z the centralizer of the subloop Lr in
L. By Lemma 1.9 if a, b ∈ L, then aZ 6= bZ if and only if there exist such elements
u, v from Lr that L(a, b)(a, u, v) 6= (b, u, v). The CML Lr is finite and normal in L,
therefore it is easy to see that L/Z is a finite CML. Then Z/(Z ∩ Lr) is an infinite
CML. Let gr+1 ∈ Z\(Z ∩ Lr). Then Lr 6=< Lr, gr+1 >= Lr+1 and the element
gr+1 is bound by an associative law with all elements of the subloop Lr. So, the
series (2.1) can be unlimitedly continued. The subloop < H, g1, g2, . . . > is centrally
solvable (centrally nilpotent) of class n and does not satisfy the minimum condition
for subloops. Indeed, according to the choice of the element gi, the quotient loop
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L0 < g1, . . . , gi, . . . > /L0 is infinite, and therefore it does not satisfy the minimum
condition for subloops. Consequently, the quotient loop

< g1, . . . , gi, . . . > /(< g1, . . . , gi, . . . > ∩L0)

does not satisfy the minimum condition for subloops as well, and as L0 is a finite
CML, the subloop < H, g1, . . . , gi, . . . > does not satisfy the minimum condition for
subloops. It follows from Lemma 2.8 that on < H, g1, . . . , gi, . . . > there exists an
unknown steadily centrally solvable (steadily centrally nilpotent) subloop of class n.

Corollary 2.10. For all centrally solvable (centrally nilpotent) of class n (n ≥ 2)
subloops of the commutative Moufang loop Q, that has such a subloop to be steadily
centrally solvable (steadily centrally nilpotent) it is enough that all its infinite cen-
trally solvable (centrally nilpotent) of class n − 1 are steadily centrally solvable
(steadily centrally nilpotent).

Proof. Let L be an arbitrary infinite centrally solvable (centrally nilpotent) of class
n subloop of the CML Q. If L is not steadily centrally solvable (steadily centrally
nilpotent), then in the CML L there exists an infinite centrally solvable (centrally
nilpotent) subloop H of class n whose all proper subloops of central solvability
(central nilpotence) class n are finite. By Lemma 2.9 the CML H satisfies the
minimum condition for subloops, and by Lemma 1.9 H = D × K, where D is a
divisible CML, lying in the centre Z(H) and K is a finite CML. The CML K is
centrally solvable (centrally nilpotent) of class n. Then it has a proper subloop T of
central solvability (central nilpotence) class n− 1. The subloop T ×D is an infinite
centrally solvable (centrally nilpotent) subloop of class n−1, satisfying the minimum
condition for subloops. It follows from Lemma 2.9 T × D is not steadily centrally
solvable (steadily centrally nilpotent). Contradiction.

Corollary 2.11. For all infinite centrally solvable (centrally nilpotent) subloops of
the commutative Moufang loop Q to be steadily centrally solvable (steadily centrally
nilpotent) is necessary and sufficient that Q has no quasicyclic groups.

The statement follows from the fact that an infinite abelian group is steadily
centrally solvable if and only if it has no quasicyclic groups, as well as from Corollary
2.10.

Theorem 2.12. If the commutative Moufang loop Q possesses a centrally solvable
(centrally nilpotent) subloop S of class n (maybe finite), then the loop Q either
contains a steadily centrally solvable (steadily centrally nilpotent) subloop of class n,
or satisfies the minimum condition for subloops.

Proof. Let us first suppose that CML Q is a countable p-loop and it is not centrally
solvable (centrally nilpotent). In such a case, Q is the union of the countable series
of finite subloops (by Lemma 1.3 the commutative Moufang p-loop is locally finite)

H1 ⊂ H2 ⊂ . . . ⊂ Hk ⊂ . . . ,

where Hi is a centrally solvable (centrally nilpotent) subloop of class n. We denote by
Lk the lower layer of the centre of the CML Hk. (The lower layer of the p-group G is
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the set {x ∈ Q|xp = 1}). Let us now examine the CML R =< H1, L2, . . . , Lk, . . . >.
The CML R is centrally solvable (centrally nilpotent) of class n. If the CML R is
infinite, then is obvious that R does not satisfy the minimum condition for subloops,
and by Lemma 2.9 the CML R contains a steadily centrally solvable (steadily cen-
trally nilpotent) subloop of class n. But if the CML R is finite, then the CML
< L1, L2, . . . , Lk, . . . > is also finite. Therefore the centre Z(Q) of the CML Q is dif-
ferent from the unitary element. The upper central series Z1 ⊆ Z2,⊆ . . . ⊆ Zβ ⊆ . . .
of the CML Q stabilities on a certain ordinal number γ. If Zγ is a centrally solvable
(centrally nilpotent) CML, then the CML Q contains a steadily centrally solvable
(steadily centrally nilpotent) subloop of class n. Indeed, in this case the quotient
loop Q/Zγ is a countable p-loop, and is not centrally solvable (centrally nilpotent).
Then by the above-mentioned reasoning, and as the Q/Zγ is a CML without a cen-
tre, we obtain that the CML Q/Zγ contains a steadily centrally solvable (steadily
centrally nilpotent) subloop of class n. Let it be the subloop K/Zγ . By the definition
of the derived series (of the lower central series) the subloop K is centrally solvable
(centrally nilpotent) and it does not satisfy the minimum condition for subloops.
Then by Lemma 2.9 the CML K contains a steadily centrally solvable (steadily
centrally nilpotent) subloop of class n.

Let us now that Zγ is not a centrally solvable (centrally nilpotent) subloop and
let SZα be the first member of the series SZ1 ⊂ SZ2 ⊂ . . . ⊂ SZβ . . . which is not
a centrally solvable (centrally nilpotent) subloop. If the CML SZβ does not satisfy
the minimum condition for at least one ordinal number β (β < α), then by Lemma
2.9 the CML SZβ contains an unknown steadily centrally solvable (steadily centrally
nilpotent) subloop. Now suppose that for all β (β < α) the subloops SZβ satisfy the
minimum condition for subloops, and denote by D the maximal divisible subloop
of the CML SZα. By Lemma 1.9 SZα = D × Zα, where Zα is a reduced CML.
The subloops SZβ (β < α) satisfy the minimum condition, then by Lemmas 1.8, 1.7
SZβ = Dβ×Zβ, where Dβ are divisible CML, Zβ are finite normal reduced subloops.
Consequently, Zα is the union of an ascending series of finite normal subloops Zβ

(β < α). The maximal subloop M of the CML Zα that has the central solvability
(central nilpotence) class n cannot be finite. Indeed, it follows from the finiteness of
the subloop M that M ⊂ Zβ for a certain β < α. We denote by Z the centralizer
of the subloop Zβ in the CML Zα. If a, b,∈ Zα, then by Lemma 1.9 aZ 6= bZ if
and only if the exist such elements u, v ∈ Zβ that L(a, b)(a, u, v) 6= (b, u, z). The
subloop Zβ is normal in Q and it is finite, therefore the centralizer Z is infinite.
So, there exists a non-unitary element w ∈ Z\M . The subloop < M,w > has the
central solvability (central nilpotence) class n and is different from the subloop M ,
that contradicts the choice of M . Thus, M is an infinite CML. By the maximality of
the divisible CML D, the CML M is a steadily centrally solvable (steadily centrally
nilpotent) subloop of class n by Corollary 2.6.

Let now Q be an arbitrary CML satisfying the theorem’s conditions. If a is an
element of infinite order, then by Lemma 2.9 in the CML < S, a > there exists a
steadily centrally solvable (steadily centrally nilpotent) subloop of class n.

Let Q be a periodic CML, not centrally solvable (centrally nilpotent). By Lemma
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1.4 Q decomposes into a direct product of its maximal p-subloops Qp, besides, Qp

lies in the centre of the CML Q for p 6= 3. Then the subloop Q3 is not centrally
solvable (centrally nilpotent) and such a countable subloop can be found within it.
By the above-mentioned, the latter contains an unknown steadily centrally solvable
(steadily centrally nilpotent) subloop.

Corollary 2.13. The following conditions are equivalent for a nonassociative com-
mutative Moufang loop:

1) the loop Q satisfies the minimum condition for subloops;

2) if the loop Q contains a centrally solvable subloop of class s, it satisfies the
minimum condition for the centrally solvable subloops of class s;

3) if the loop Q contains a centrally nilpotent subloop of class n, it satisfies the
minimum condition for the centrally nilpotent subloops of class n;

4) the loop Q satisfies the minimum condition for the associative subloops;
5) the loop Q satisfies the minimum condition for nonassociative subloops.

Corollary 2.14. An infinite commutative Moufang loop Q, possessing a centrally
solvable (centrally nilpotent) subloop H of class n, has also an infinite subloop of
such type.

Proof. Let a ∈ Q be an element of infinite order. By Lemma 1.6 a3k ∈ Z(Q),

k = 1, 2, . . ., therefore < H, a3k

> is an unknown subloop. If the periodic CML Q
does not satisfy the minimum condition for centrally solvable (centrally nilpotent)
subloops of class s, then it contains an infinite subloop of this type, as the CML Q
is locally finite (Lemma 1.3). In the opposite case, by Corollary 2.13 and Lemma
1.9 Q = D × K, where D ⊆ Z(Q),K is a finite CML. In this case D,H > is an
unknown subloop.

Corollary 2.15. Any infinite commutative Moufang loop possesses an infinite as-
sociative subloop.

The statement follows from Corollary 2.14 and from the fact the CML is monoas-
sociative.

Corollary 2.16. A commutative Moufang loop with finite centrally solvable (cen-
trally nilpotent) subloops of class n, n = 1, 2, . . ., is finite itself.

The statement is equivalent to Corollary 2.14.

In particular, the equivalence of the conditions 1), 5) of Corollary 2.13 means
that each infinite nonassociative CML has an infinite nonassociative subloop different
from itself with the exception of the case when it satisfies the minimum condition
for subloops. It is clear that not any infinite CML with the minimum condition is
an exception here. It holds true indeed.

Proposition 2.17. The infinite nonassociative commutative Moufang loop Q does
not contain its proper infinite nonassociative subloops if and only if it decomposes
into a direct product of quasicyclic groups, contained in the centre Z(Q) of the loop
Q, and a finite nonassociative loop, generated by three elements.

Proof. By Corollary 2.13 the CML Q satisfies the minimum condition for subloops,
then by Lemma 1.9 Q = D × H, where D is a direct product of a finite number
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of quasicyclic groups, D ⊆ Z(Q), H is a finite CML. By the supposition about the
CML Q, the group D contains only one quasicyclic group.

Obviously H is an nonassociative CML. If H1 is an arbitrary proper subloop
of the CML H, then by Lemma 1.2 the product DH1 is a proper infinite subloop
of the CML Q. But then DH1 and H1 are associative subloops. Consequently, all
proper subloops of the CML Q are associative, and it follows from Lemma 1.5 [3]
that H is generated by tree elements. Let now the CML Q have a decomposition
Q = D×H, possessing these qualities, and L be an arbitrary proper subloop of the
CML Q. Obviously D ⊆ L. Then it follows from the decomposition Q = D×H that
L = D(L ∩ H). As L 6= Q, then L ∩ H 6= H. Then the subloop L ∩ H, as a proper
subloop of the CML H, is associative. Therefore it follows from the decomposition
L = D(L ∩ H) that the subloop H is associative.

3 Infinite nonassociative commutative Moufang loops

with minimum condition for noninvariant associative subloops

Lemma 3.1. If an element a of an infinite order or of order three of a commutative
Moufang loop Q generates a normal subloop, then it belongs to the centre Z(Q) of
loop Q.

Proof. If the element 1 6= a ∈ Q generates a normal subloop, then L(u, v)a = ak

for a certain natural number k and for arbitrary fixed elements u, v ∈ Q. By (1.1)
a(a, v, u) = ak, (a, v, u) = ak−1. If k = 1, then (a, v, u) = 1. Therefore a ∈ Z(Q).
Let us now suppose that k > 1. Let a3 = 1. Then k = 2 and by (1.5) and Lemma
1.5 a = (a, v, u), a = ((a, v, u), v, u) = 1. We have obtained a contradiction, as
a 6= 1. But if a has an infinite order, then by (1.4) (ak−1)3 = (a, v, u)3 = 1. We
have obtained a contradiction again. Therefore the case of k > 1 is impossible. This
completes the proof of Lemma 3.1.

Lemma 3.2. The commutative Moufang loop Q, containing an element of an infi-
nite order, is associative if and only if the subloop, generated by any element of an
infinite order, is normal in Q.

Proof. By Lemma 3.1 any element a of an infinite order of the CML Q belongs to the
centre Z(Q). Let b be an element of a finite order of the CML Q. Obviously the prod-
uct ab has an infinite order. Again by Lemma 3.1 ab ∈ Z(Q). Further, by (1.5) and
(1.4) we have 1 = (ab, u, v) = L(a, b)(a, u, v) ·L(b, a)(b, u, v) = (b, L(b, a)u,L(b, a)v),
for u, v ∈ Q. Consequently, b ∈ Z(Q), but then the CML Q is associative.

Theorem 3.3. If in an infinite commutative Moufang loop Q the infinite associative
subloops are normal in Q, then Q is associative.

Proof. It follows from Lemma 3.2 that it is sufficient to examine the case when the
CML Q is periodic, and by Lemma 1.4 it is sufficient to examine the case when Q
is a 3-loop.

Let us now first examine the case when the CML Q does not satisfy the minimum
condition for subloops. By Corollary 4.5 from [1] none of its maximal elementary
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associative subloops H can be finite. Let

H = H1 × H2 × . . . × Hn × . . .

be the decomposition of the group H into a direct product of cyclic groups of order
three. We denote by ZQ(H) the centralizer of the subloop H in Q. It is obvious
that for any element a from ZQ(H) there is such an infinite subgroup H(a) ⊆ H
that < a > ∩H(a) = 1. Let H(a) = H1(a)×H2(a) be a decomposition of the group
H(a) into a direct product of infinite factors. As the cyclic group < a > is the
intersection of the infinite associative subloops < a > H1(a) and < a > H2(a), then
< a > is normal in Q. As the element a from ZQ(H) is arbitrary, we obtain that
any subloop from ZQ(Q) is normal in Q, i.e. ZQ(H) is a hamiltonian CML. Then
by [4] it is an associative subloop. Obviously, H ⊆ ZQ(H) and, as Hi are cyclic
groups of order three, then by Lemma 3.1 Hi ⊆ Z(Q), where Z(Q) is the centre of
the CML Q. Consequently, Z(H) = Q is an associative CML.

If a CML Q satisfies the minimum condition for subloops, then by Lemma 1.9 its
centre Z(Q) is infinite. If a is an arbitrary element from Q, then the subloop < a >
Z(Q) is infinite and associative. From here and from the theorem’s supposition we
obtain that the subloop < a > is normal in Q. Then by [4] the CML Q is associative.

Lemma 3.4. A non-periodic commutative Moufang loop, satisfying the minimum
condition for the noninvariant cycle groups, is associative.

Proof. By Lemma 3.2 we suppose that the element a of an infinite order of the
CML Q generates a noninvariant subloop. It follows from the condition of lemma
that the series

< a >⊃< at >⊃< at2 >⊃ . . . ⊃< atn >⊃ . . .

should contain a normal subloop < atn > for any natural number t. Let t and p
be two different prime numbers, < atn > and < apk

> be two normal subloops
corresponding to them, of such a type that u, v are such integer numbers that utn +
vpk = 1. Then

a = autn+vpk

= autn · avpk

.

If x and y are arbitrary elements from Q, then by Lemma 1.1 the inner map-
ping L(x, y) is an automorphism. Then, by the normality of the subloops

< atn >,< apk

>, we obtain L(x, y)a = L(x, y)autn · L(x, y)avpk

= (L(x, y)atn)u ·
(L(x, y)apk

)v ∈< a >. Consequently, the subloop < a > is normal in Q. Contradic-
tion. Then the CML Q is associative.

Theorem 3.5. In a nonassociative commutative Moufang loop the minimum condi-
tion for subloops and the minimum condition for noninvariant associative subloops
are equivalent.

Proof. Let us suppose that the CML Q, satisfying the minimum condition for non-
invariant associative subloops, does not satisfy the minimum condition for subloops.
Then by Corollary 2.13 the CML Q does not satisfy the minimum condition for
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associative subloops. Let us show that in this case the CML Q is associative, i.e. we
will obtain a contradiction. By Lemma 3.4 it is sufficient to examine the case when
the CML Q is periodic, and by Lemma 1.4 when Q is a 3-loop.

As the CML Q does not satisfy the minimum condition for associative subloops,
then by Corollary 4.5 from [1] Q contains an infinite direct product

H = H1 × H2 × . . . × Hn × . . .

of cyclic groups of order three. If a is an arbitrary element from the centralizer
ZQ(H) of the subloop H in the CML Q, then there exists such a number n = n(a)
that

< a > ∩(Hn+1 × Hn+2 × . . .) = 1.

As the CML Q satisfies the minimum condition for noninvariant associative subloops,
then the infinitely descending series of associative subloops

Sk(a) ⊃ Sk+1(a) ⊂ . . .

contains a normal subloop Sl(a)(l = l(a)), beginning with any natural k ≥ n,
where Sk(a) =< a > (Hk+1 × Hk+2 × . . .). As the intersection of all such normal
subloops coincides with the subloop < a >, then the latter is normal in Q. But a
is an arbitrary element from the centralizer ZQ(H), and it means that any normal
subloop from ZQ(H) is normal. Then by [4] the CML Z(H) is associative. Further,
the subgroups Hi have the order three. Then it follows from Lemma 3.1 that they
belong to the centre Z(Q) of the CML Q. Then it follows from the definition of the
centralizer ZQ(H) that Z(Q) = Q. Consequently, the CML Q is associative.

4 Infinite nonassociative commutative Moufang loops

in which all infinite nonassociative subloops are normal

Lemma 4.1. Let all infinite nonassociative subloops be normal in an infinite nonas-
sociative commutative Moufang loop Q. If H is an infinite nonassociative subloop,
then the quotient loop Q/H is a group.

Proof. It is obvious that any subloop of the CML Q containing H, is normal in Q.
Then the quotient loop Q/H is hamiltonian, consequently by [4] it is a group.

Proposition 4.2. The commutative Moufang loop, in which all its infinite nonas-
sociative subloops are normal has a finite associator loop Q′.

Proof. Let us suppose the contrary, i.e., that the associator loop Q′ is infinite.
First we examine the case when Q′ is nonassociative. Let H be a proper infinite
nonassociative subloop of the CML Q′. Then by Lemma 4.1 Q/H is a group, i.e.
Q′ ⊆ H. Contradiction. Consequently, the associator loop Q′ does not have its
proper infinite nonassociative subloops. In this case, by Corollary 2.13 the CML Q′

satisfies the minimum condition for subloops. But by (1.4) the associator loop Q′

has degree three, therefore it is finite.
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Let us now examine the case when the infinite associator loop Q′ of the periodic
CML is associative. Let H be a finite nonassociative subloop of the CML Q. We
will examine the subloop Q′H = ∪xiQ

′, xi ∈ H, i = 1, . . . ,m. If the infinite nonas-
sociative subloop Q′H does not contain its proper infinite nonassociative subloops,
then by Corollary 2.13 it satisfies the minimum condition for subloops. Taking into
account (1.4), it is easy to see that the CML Q′H has a finite index. Then it is finite,
therefore the CML Q′ is also finite. It contradicts the fact the CML Q′H does not
contain its proper infinite nonassociative subloops. Let (Q′H)1 be the proper infi-
nite nonassociative subloops of the CML Q′H. By Lemma 4.1 Q′ ⊆ (Q′H)1. Then
(Q′H)1 = ∪xiQ

′, i = 1, . . . , n, n < m. If the infinite nonassociative subloop (Q′H)1
does not contain its proper infinite nonassociative subloops, then (Q′H)1 is finite,
as it is shown above. Contradiction. Therefore let (Q′H)2 be the proper infinite
nonassociative subloop of the CML (Q′H)1. By Lemma 4.1 Q′ ⊆ (Q′H)2, therefore
(Q′H)2 ⊆ ∪xiQ

′, xi ∈ H, i = 1, . . . , r, r < n. Applying the previous reasoning to the
CML (Q′H)2, after a finite number of steps we will come to infinite nonassociative
subloops (Q′H)i without proper infinite nonassociative subloops. But it contradicts
the statement from the previous section. Consequently, the associator loop Q′ of
the CML Q cannot be infinite.

Finally, let us examine the case when the CML Q is non-periodic. Obviously,
the subloop H of the CML Q is nonassociative if and only if the subloop HZ(Q) is
nonassociative, where Z(Q) is the centre of the CML Q. If the infinite nonassociative
subloops of the CML Q are normal, then the infinite nonassociative subloops of the
CML Q/Z(Q) are normal as well. By Lemma 1.9 the CML Q/Z(Q) has index
three, then, according to the previous case, its associator loop (Q/Z(Q))′ is finite.
If a ∈ Z(Q), then (au, v, w) = (u, v,w), for any u, v,w ∈ Q. It is easy to see from
here that the associator loop Q′ is finite.

Corollary 4.3. If in a non-periodic commutative Moufang loop Q all the infinite
nonassociative subloops are normal in Q, then its associator loop is a finite associa-
tive subloop.

Proof. Let us suppose that the finite associator loop Q′ is nonassociative. Let H
be one of its minimal nonassociative subloops, and a be an element of infinite order
from Q. By Lemma 1.9 a3 belongs to the centre of the CML Q. Then by Lemma 1.2,
H < a3 > is an infinite nonassociative subloop. By Lemma 4.1 Q′ ⊆ H < a3 >, and
it is impossible if H 6= Q′. According to the minimality of the nonassociative CML
H, it can be presented in the form of the product of the normal associative subloop
L and the cyclic group < b >. Indeed, by the Moufang theorem [3] the CML H is
generated by three elements u, v, b. By Lemma 1.5 Q′ 6= H. Then L =< Q′, u, v >
is a normal associative subloop and H = L· < b >. Now let us take the CML
B· < a3b >. It is an infinite nonassociative subloop and, obviously, it does not
contain Q′. However, by Lemma 4.1 Q′ ⊆ B. Contradiction. Consequently, the
associator loop Q′ of the CML Q is associative.

Theorem 4.4. If all infinite nonassociative subloops of a commutative Moufang
loop Q are normal in it, then all nonassociative subloops are also normal in it.
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Proof. Let Q be a non-periodic CML and a be an element of an infinite order
from Q. By Lemma 1.9 a3 belongs to the centre of the CML Q. If H is a finite
nonassociative subloop, then by Lemma 1.2 < a3 > H is an infinite nonassociative
subloop from Q and, consequently, it is normal in Q. Therefore, H is normal in Q.

Let now Q be a periodic CML and let us suppose that the finite nonassociative
subloop L is not normal in Q. The associator loop Q′ is a normal subloop in Q.
Therefore, by Lemma 1.9 the centralizer ZQ(H) of the subloop H in Q will be normal
subloop in Q. Let us examine the set

C(H) = {x ∈ ZQ(H)|(x, u, v) = 1∀u ∈ ZQ(H),∀v ∈ H}.

Using the identity (1.5), it is easy to show that C(H) is a subloop. Moreover, it
follows from the normality of the subloops H,ZQ(H), and by Lemma 1.1, that C(H)
is normal in Q. Indeed, if xC(H) = yC(H), then xy−1 ∈ C(H), (xy−1, u, v) = 1 for
all u ∈ ZQ(H), v ∈ H. Now we will use the identities (1.5), (1.1) and (1.3). We
have 1 = (xy−1, u, v) = L(x, y−1)(x, u, v) ·L(y−1, x)(y−1, u, v) = (x,L(x, y−1)u,L(x,
y−1)v)(y−1, L(y−1, x)u,L(y−1, x)v) ≡ (x, u, v)(y−1, u, v) = (x, u, v)(y, u, v)−1,
(x, u, v) = (y, u, v) for all u ∈ ZQ(H), v ∈ H. It can be proved by analogy that
it follows from the equality (x, u, v) = (y, u, v) from all u ∈ ZQ(H), v ∈ H that
xC(H) = yC(H). By Proposition 4.2 the associator loop Q′ is finite. Then the
normal subloop C(H) has a finite index in Q.

Let us show that the CML Q satisfies the minimum condition for subloops. Let
us suppose the contrary. Then the subloop C(H), possessing a finite index in Q,
does not satisfy this condition as well. Therefore, the CML C(H) has an infinite
associative subloop K which decomposes into a direct product of cyclic groups of
prime orders. Otherwise, by Corollary 2.13 and regardless the supposition, the
CML Q would satisfy the minimum condition for subloops. It is obvious that an
infinite subgroup R can be found, that intersects with L on the unitary element.
Let R = R1 × R2 be the decomposition of R into a direct product of two infinite
subgroups R1, R2.

If S is an arbitrary associative subloop of the CML C(H), then the product
SL is a subloop. Indeed, by Lemma 1.2, the subloop S is normal in the CML
< S,L >. The CML < S,L > consists of all ”words”, composed of the elements of
the set S ∪ L. A word of the length 1 is an element of the set S ∪ L. If u, v are
words of length m,n respectively, then uǫ1vǫ2 , where ǫ1, ǫ2 = ±1, is a word of length
≤ m + n. It follows from the definition of the subloop C(H) that if 1) a ∈ S, u ∈ L;
2) a, u ∈ S, v ∈ L, then (a, u, v) = 1. If a ∈ S, u, v ∈< S,L > then, using (1.2), (1.5)
and the associativity of the subloop S, it can be proved by the induction on the sum
of the length of the words u, v that (a, u, v) = 1. Then by (1.1) L(v, u)a = a, i.e.
the subloop S is normal in < S,L >. Therefore < S,L >= SL.

By the above proved fact, the products R1L,R2L are subloops. As they are
infinite and nonassociative, they are normal in the CML Q. Then their intersection
L is also a normal subloop in Q. We have obtained a contradiction despite the
supposition of the noninvariance of the subloop L. In this case, by Lemma 1.8 the
CML Q decomposes into a direct product of the divisible group D, lying in the
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centre Z(Q) of the CML Q, and the finite CML M . If L 6= M , then the product DL
is an infinite nonassociative subloop of the CML Q, therefore the subloop L is also
normal in Q. We have obtained a contradiction to the fact that L is not normal in
Q. This completes the proof of Theorem 4.4.

By Corollary 4.3 a non-periodic CML whose infinite nonassociative subloops are
normal in it has a finite associative associator loop. The following statement holds
true for the general case.

Corollary 4.5. If all (infinite) nonassociative subloops of an (infinite) nonassocia-
tive commutative Moufang loop Q are normal in it, then its associator loop Q′ is
centrally nilpotent, and the loop Q itself is centrally solvable of a class not greater
than three.

Proof. By Proposition 4.2, the associator loop Q′ is finite. Then by Lemma 1.5 Q′

is centrally nilpotent.
Let us suppose that the second associator loop Q(2) of the CML Q is nonassocia-

tive. Then any subloop that contains Q(2) is non-assiciative, and by Theorem 4.4,
it is normal in Q. Obviously, the CML Q/Q(2) is hamiltonian, when it is an abelian
group, by [4]. Therefore, Q′ ⊆ Q(2), i.e. Q′ = Q(2). But the associator loop Q′ is
centrally nilpotent, therefore Q′ 6= Q(2). Contradiction. Consequently, Q(2) is an
associative subloop, and the CML Q is centrally solvable of step not greater than
three.
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Chişinău, MD-2069
Moldova
E-mail: sandumn@yahoo.com

Received June 11, 2004



BULETINUL ACADEMIEI DE ŞTIINŢE
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On orders of elements in quasigroups
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Abstract. We study the connection between the existence in a quasigroup of (m, n)-
elements for some natural numbers m, n and properties of this quasigroup. The special
attention is given for case of (m, n)-linear quasigroups and (m,n)-T-quasigroups.
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1 Introduction

We shall use basic terms and concepts from books [1, 2, 11]. We recall that a
binary groupoid (Q,A) with n-ary operation A such that in the equality A(x1, x2) =
x3 knowledge of any two elements of x1, x2, x3 the uniquely specifies the remaining
one is called a binary quasigroup [3]. It is possible to define a binary quasigroup also
as follows.

Definition 1. A binary groupoid (Q, ◦) is called a quasigroup if for any element
(a, b) of the set Q2 there exist unique solutions x, y ∈ Q to the equations x ◦ a = b
and a ◦ y = b [1].

An element f(b) of a quasigroup (Q, ·) is called a left local identity element of
an element b ∈ Q, if f(b) · b = b.

An element e(b) of a quasigroup (Q, ·) is called a right local identity element of
an element b ∈ Q, if b · e(b) = b.

The fact that an element e is a left (right) identity element of a quasigroup (Q, ·)
means that e = f(x) for all x ∈ Q (respectively, e = e(x) for all x ∈ Q).

The fact that an element e is an identity element of a quasigroup (Q, ·) means
that e(x) = f(x) = e for all x ∈ Q, i.e. all left and right local identity elements in
the quasigroup (Q, ·) coincide [1].

A quasigroup (Q, ·) with an identity element is called a loop. In a loop (Q, ·)
there exists a unique identity element. Indeed, if we suppose, that 1 and e are
identity elements of a loop (Q, ·), then we have 1 · e = 1 = e.

Quasigroups are non-associative algebraic objects that, in general, do not have
an identity element. Therefore there exist many ways to define the order of an
element in a quasigroup.

In works [5, 6] the definition of an (n,m)-identity element of a quasigroup (Q, ·)
and some results on topological medial quasigroups with an (n,m)-identity element

c© Victor Shcherbacov, 2004
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were given. These articles were our starting-point by the study of (m,n)-order of
elements in quasigroups.

As usual La : Lax = a · x is the left translation of quasigroup (Q, ·), Ra :
Rax = x ·a is the right translation of quasigroup (Q, ·), Mlt(Q, ·) denotes the group
generated by the set of translations {Lx, Ry | for all x, y ∈ Q}.

An element d of a quasigroup (Q, ·) with the property d · d = d is called an
idempotent element. By ε we mean the identity permutation.

Definition 2. A quasigroup (Q, ·) defined over an abelian group (Q,+) by x · y =
ϕx + ψy + c, where c is a fixed element of Q, ϕ and ψ are both automorphisms of
the group (Q,+), is called a T-quasigroup [9,10].

A quasigroup (Q, ·) satisfying the identity xy · uv = xu · yv is called a medial

quasigroup. By Toyoda theorem (T-theorem) every medial quasigroup (Q, ·) is a
T-quasigroup with additional condition ϕψ = ψϕ [1, 2].

A loop (Q, ·) with the identity x(y · xz) = (xy · x)z is called a Moufang loop; a
loop with the identity x(y · xz) = (x · yx)z is called a left Bol loop.

A Moufang loop is diassociative, i.e. every pair of its elements generates a
subgroup; a left Bol loop is a power-associative loop, i.e. every its element generates
a subgroup [1,4, 11].

A left Bol loop (Q, ·) with the identity (xy)2 = x · (y2 · x) is called a Bruck loop.
Any Bruck loop has the property I(x ·y) = Ix ·Iy, where x ·Ix = 1 for all x ∈ Q [11].

Definition of the order of an element of a power-associative loop (Q, ·) can be
given as definition of the order of an element in case of groups [7].

Definition 3. The order of an element b of the power-associative loop (Q, ·) is the
order of the cyclic group < b > which it generates.

2 (m,n)-orders of elements

Definition 4. An element a of a quasigroup (Q, ·) has the order (m,n) (or element
a is an (m,n)-element) if there exist natural numbers m,n such that Lma = Rna = ε
and the element a is not the (m1, n1)-element for any integers m1, n1 such that
1 ≤ m1 < m, 1 ≤ n1 < n.

Remark 1. It is obvious thatm is the order of the element La in the groupMlt(Q, ·),
n is the order of the element Ra in this group. Therefore it is possible to name the
(m,n)-order of an element a as well as the (L,R)-order or the left-right-order of an
element a.

Remark 2. In the theory of non-associative rings ([8]) often one uses so-called left
and right order of brackets by multiplying of elements of a ring (R,+, ·), namely
(. . . (((a1 · a2) · a3) · a4) . . . ) is called the left order of brackets and (. . . (a4 · (a3 · (a2 ·
a1))) . . . ) is called the right order of brackets.

So the (m,n)-order of an element a of a quasigroup (Q, ·) is similar to the order
of an element a of a non-associative ring (R,+, ·) with the right and the left orders
of brackets respectively.
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Proposition 1. In a diassociative loop (Q, ·) there exist only (n, n)-elements.

Proof. If we suppose that there exists an element a ∈ Q of diassociative loop of
order (m,n), then in this case we have Lma x = a · (a · . . . (a · x) . . . ) = amx = Lamx.

Therefore Lma = ε if and only if am = 1, where 1 is the identity element of the
loop (Q, ·). Similarly Rna = ε if and only if an = 1.

From the last two equivalences and Definitions 3, 4 (from the minimality of
numbers m,n) it follows that in a diassociative loop m = n, i.e. in diassociative
loop there exist only (n, n)-elements. �

Remark 3. It is clear that Proposition 1 is true for Moufang loops and groups since
these algebraic objects are diassociative.

From Definition 4 it follows that (1, 1)-element is the identity element of a quasi-
group (Q, ·), i.e. in this case the quasigroup (Q, ·) is a loop.

Proposition 2. Any (1, n)-element is a left identity element of a quasigroup (Q, ·).
In any quasigroup such element is unique and in this case the quasigroup (Q, ·) is
so-called a left loop i.e. (Q, ·) is a quasigroup with a left identity element.

Any (m, 1)-element is a right identity element of a quasigroup (Q, ·), the quasi-
group (Q, ·) is a right loop.

Proof. If in a quasigroup (Q, ·) an element a has the order (1, n), then a ·x = L·

ax =
x for all x ∈ Q. If we suppose that in a quasigroup (Q, ·) there exist left identity
elements e and f , then we obtain that equality x · a = a, where a is some fixed
element of the set Q, will have two solutions, namely, e and f are such solutions.
We obtain a contradiction. Therefore in a quasigroup there exists a unique left
identity element. �

Using the language of quasigroup translations it is possible to re-write the defi-
nition of an (n,m)-identity element from [5,6] in the form:

Definition 5. An idempotent element e of a quasigroup (Q, ·) is called an (m,n)-
identity element if and only if there exist natural numbers m,n such that (L·

e)
m =

(R·

e)
n = ε.

Hence any (m,n)-identity element of a quasigroup (Q, ·) can be called as well as
idempotent element of order (m,n) or an idempotent (m,n)-element.

Theorem 1. A quasigroup (Q, ·) has an (m,n)-identity element 0 if and only if
there exist a loop (Q,+) with the identity element 0 and permutations ϕ,ψ of the
set Q such that ϕ0 = ψ0 = 0, ϕn = ψm = ε, x · y = ϕx+ ψy for all x, y ∈ Q.

Proof. Let a quasigroup (Q, ·) have an idempotent element 0 of order (m,n).
Then the isotope (R−1

0
, L−1

0
, ε) of the quasigroup (Q, ·) is a loop (Q,+) with the

identity element 0, i.e. x + y = R−1

0
x · L−1

0
y for all x, y ∈ Q ([1]). From the last

equality we have x · y = R0x + L0y, R00 = L00 = 0. Then ϕ = R0, ψ = L0,
Lm0 = ψm = Rn0 = ϕn = ε.
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Conversely, let x · y = ϕx+ψy, where (Q,+) is a loop with the identity element
0, ϕ0 = ψ0 = 0, ϕm = ψn = ε. Then the element 0 is an idempotent element of
quasigroup (Q, ·) of order (m,n) since L·

0y = ψy, R·

0x = ϕx and (L·

0)
m = ψm = ε,

(R·

0)
n = ϕn = ε. �

3 (m,n)-linear quasigroups

Definition 6. A quasigroup (Q, ·) of the form x · y = ϕx + ψy, where ϕ,ψ are
automorphisms of a loop (Q,+) such that ϕn = ψm = ε, will be called an (m,n)-
linear quasigroup.

Taking into consideration Theorem 1 we see that any (m,n)-linear quasigroup
(Q, ·) is a linear quasigroup over a loop (Q,+) with at least one (m,n)-idempotent
element.

Lemma 1. In an (m,n)-linear quasigroup (Q, ·) of the form x · y = ϕx+ψy, where
(Q,+) is a group, we have

L·

a = L+
ϕaψ, (L·

a)
k = L+

c ψ
k, c = ϕa+ ψϕa + · · · + ψk−1ϕa,

R·

a = R+

ψaϕ, (R·

a)
r = R+

d ϕ
r, d = ψa+ ϕψa+ · · · + ϕr−1ψa.

Proof. It is well known that if ϕ ∈ Aut(Q, ·), i.e. if ϕ(x · y) = ϕx · ϕy for all
x, y ∈ Q, then ϕLxy = Lϕxϕy, ϕRyx = Rϕyϕx. Indeed, we have ϕLax = ϕ(a · x) =
ϕa · ϕx = Lϕaϕx, ϕRbx = ϕ(x · b) = ϕx · ϕb = Rϕbϕx.

Using these last equalities we have

(L·

x)
2 = L+

ϕxψL
+
ϕxψ = L+

ϕx+ψϕxψ
2, (L·

x)
3 = L+

(ϕx+ψϕx)+ψ2ϕx
ψ3,

and so on. �

Proposition 3. An element a of an (m,n)-linear quasigroup (Q, ·) over a group
(Q,+) has the order (k, r), where k, r ∈ N , if and only if ϕa+ψϕa+· · ·+ψk−1ϕa = 0,
ψa+ϕψa+· · ·+ϕr−1ψa = 0, k = m·i, r = n·j, where i, j are some natural numbers.

Proof. It is possible to use Lemma 1. If an element a ∈ Q has an order (k, ), then
the permutation Lka = L+

c ψ
k, where c = ϕa + ψϕa + · · · + ψk−1ϕa is the identity

permutation. This is possible only in two cases: (i) L+
c = ψ−k 6= ε; (ii) L+

c = ε and
ψk = ε.

Case (i) is impossible. Indeed, if we suppose that L+
c = ψ−k, then we have

L+
c 0 = ψ−k0, where 0 is the identity element of the group (Q,+). Further we have

ψ−k0 = 0, L+
c 0 = 0, c = 0, L+

c = ε, ψk = ε. Therefore, if the element a has the
order (k, ), then L+

c = ε and ψk = ε. Further, since ψm = ε, we have that k = m · i
for some natural number i ∈ N .

Converse. If ϕa+ψϕa+ · · ·+ψk−1ϕa = 0, L+
c = ε and ψk = ε for some element

a, then this element has the order (k, ).
Therefore an element a of an (m,n)-linear quasigroup (Q, ·) over a group (Q,+)

will have the order (k, ) if and only if L+
c = ε, i.e. c = 0, where c = ϕa + ψϕa +

· · · + ψk−1ϕa and ψk = ε, i.e. k = m · i for some natural number i ∈ N .
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Similarly any element a of an (m,n)-linear quasigroup (Q, ·) over a group (Q,+)
will have the order ( , r) if and only if R+

d = ε, i.e. d = 0, where d = ψa + ϕψa +
· · · + ϕr−1ψa and ϕr = ε. Further, since ϕr = ε, we have that r = n · j for some
natural number j ∈ N . �

Proposition 4. The number M of elements of order (mi, nj) in an (m,n)-linear
quasigroup (Q, ·) over a group (Q,+) is equal to |K(ϕ)∩K(ψ)| where K(ϕ) = {x ∈
Q |ψx+ϕψx+ · · ·+ϕnj−1ψx = 0}, K(ψ) = {x ∈ Q |ϕx+ψϕx+ · · ·+ψmi−1ϕx = 0}.
Proof. From Proposition 3 it follows that an element a of an (m,n)-linear quasi-
group (Q, ·) over a group (Q,+) has the order (mi, nj) if and only if ϕa + ψϕa +
· · · + ψmi−1ϕa = 0 and ψa+ ϕψa+ · · · + ϕnj−1ψa = 0.

In other words an element a of (m,n)-linear quasigroup (Q, ·) over a group (Q,+)
has the order (mi, nj) if and only if a ∈ K(ϕ) ∩K(ψ).

Therefore M = |K(ϕ) ∩K(ψ)|. �

Theorem 2. Any (2, 2)-linear quasigroup (Q, ·) over a loop (Q,+) such that all
elements of (Q, ·) have the order (2, 2) can be represented in the form x ·y = Ix+Iy,
where x+ Ix = 0 for all x ∈ Q.

Proof. In this case we have (L·

x)
2 = L+

ϕxL
+

ψϕxψ
2 = L+

ϕxL
+

ψϕx = ε for any x ∈ Q.
Then ϕx+ (ψϕx+ 0) = ε0 = 0 for all x ∈ Q. Therefore x+ψx = 0, ψx = −x = Ix.

By analogy we have that ϕx = −x = Ix for all x ∈ Q. Indeed, (R·

x)
2 =

R+

ψxR
+

ϕψxϕ
2 = R+

ψxR
+

ϕψx = ε, ψx+ ϕψx = 0, x+ ϕx = 0, ϕx = Ix. �

Remark 4. From Theorem 2 it follows that any (2, 2)-linear quasigroup (Q, ·) such
that all elements of (Q, ·) have the order (2, 2) exists only over a loop with the
property I(x+ y) = Ix+ Iy for all x, y ∈ Q, where x+ Ix = 0 for all x ∈ Q. A loop
with this property is called an automorphic-inverse property loop (AIP-loop).

We notice, the Bruck loops, the commutative Moufang loops, the abelian groups
are AIP -loops.

4 (m,n)-linear T-quasigroups

Theorem 3. If in an (m,n)-linear T-quasigroup (Q, ·) of the form x · y = ϕx+ ψy
over an abelian group (Q,+) the maps ε − ϕ, ε − ψ are permutations of the set Q,
then all elements of the quasigroup (Q, ·) have order (m,n).

Proof. It is easy to see that if the maps ε−ϕ, ε−ψ are permutations of the set Q,
then m > 1, n > 1. From Proposition 4 it follows that the number M of elements of
the order (m,n) is equal to the number |K(ϕ) ∩K(ψ)|, where

K(ϕ) = {x ∈ Q|(ε+ ϕ+ . . . + ϕn−1)ψx = 0},
K(ψ) = {x ∈ Q|(ε+ ψ + . . . + ψm−1)ϕx = 0}.

Since the map ε− ϕ is a permutation of the set Q, we have: ε+ ϕ+ . . . + ϕn−1 =
(ε+ϕ+ . . . +ϕn−1)(ε−ϕ)(ε−ϕ)−1 = (ε−ϕ+ϕ−ϕ2 +ϕ2 − . . . −ϕn)(ε−ϕ)−1 =
(ε− ϕn)(ε− ϕ)−1. Since ϕn = ε we obtain that K(ϕ) = Q.
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By analogy it is proved that K(ψ) = Q. Therefore K(ϕ) ∩K(ψ) = Q. �

A quasigroup (Q, ·) with the identities x·(y·z) = (x·y)·(x·z), (x·y)·z = (x·z)·(y·z)
is called a distributive quasigroup [1].

Corollary 1. In any medial distributive (m,n)-linear quasigroup all its elements
have order (m,n).

Proof. It is known that any medial distributive quasigroup (Q, ·) can be presented
in the form x · y = ϕx+ψy, where (Q,+) is an abelian group and ϕ+ψ = ε [1,12].
Therefore conditions of Theorem 3 are fulfilled in any medial distributive (m,n)-
linear quasigroup. �
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Flow induced by a constantly accelerating plate in a Maxwell fluid

Corina Fetecau, Constantin Fetecau
Technical University “Gh. Asachi”, Iaşi, Romania

In this note, the analytical solutions corresponding to an unsteady flow induced
by a flat plate, in a Maxwell fluid, are determined. These solutions satisfy both the
associate partial differential equations and all imposed initial and boundary conditions.
The similar solutions corresponding to a Newtonian fluid appear as a limiting case of
our solutions. Finally, some numerical results and interesting conclusions are presented.
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Kojalovich Method and Studying Abel’s Equation

with the one known solution

A.V. Chichurin

Abstract. The problem of constructing a general solution for the Abel’s equation
of the special kind with a known partial solution is considered.
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1 Introduction

It is known that there are some classes of differential equations that are not
integrable in quadratures but become integrable if some its partial solution has been
found. As an example, let us consider the following Abel’s equation of the second
kind [1, 2]

yy′ − y = r(x), (1)

where y = y(x) is an unknown function and r(x) is some known function which
will be determined below. Equation (1) is connected closely with many problems
of physics, mechanics, chemistry, biology, ecology and other [1]. Some differential
equations which are reduced to Abel equation are considered in [1–3].

In order to solve this equation we shall use the following special method which
was developed in the textbook of Kojalovich [4].

2 Kojalovich’s method

Let a function f be an integrating function of equation (1). Then, according to
[4], it satisfies the following equality

∂f

∂x
+
∂f

∂y

y + r

y
+
∂f

∂αi

+
αi + r

αi

= ψ(x, y) ω(x, αi), (2)

where αi (i = 1, n) are partial solutions of equation (1).

Instead of f let us consider new integrating function F (x, y, αi) of the form

F (x, y, αi) = f(x, y, αi) + λ1(x)
∂f

∂αi

+ λ2(x)
∂2f

∂α2
i

, (3)
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where λ1(x), λ2(x) are unknown functions. The function F is obviously a superpo-
sition of functions of x. So its derivative may be written as

dF

dx
=
∂F

∂x
+
∂F

∂y

d y

d x
+
∂F

∂αi

d αi

d x
=

=
∂F

∂x
+
∂F

∂y

y + r(x)

y
+
∂F

∂αi

αi + r(x)

αi

=

=
∂f

∂x
+
∂f

∂y

y + r(x)

y
+
∂f

∂αi

αi + r(x)

αi

+ λ′1(x)
∂f

∂αi

+

+λ′1(x)

(

∂2f

∂x ∂αi
+

∂2f

∂y ∂αi

y + r(x)

y
+
∂2f

∂αi
2

αi + r(x)

αi

)

+

+λ′2(x)
∂2f

∂αi
2

+ λ2(x)

(

∂3f

∂x ∂αi
2

+
∂3f

∂y ∂αi
2

y + r(x)

y
+
∂3f

∂αi
3

αi + r(x)

αi

)

, (4)

because of (1)

y′ =
y + r(x)

y
, α′

i =
αi + r(x)

αi
.

Differentiating equation (2) by αi we write

∂2f

∂x ∂αi

+
∂2f

∂y ∂αi

y + r(x)

y
+
∂2f

∂αi
2

αi + r(x)

αi

= ψ(x, y)
∂ω(x, αi)

∂αi

+
r(x)

αi
2

∂f

∂αi

, (5)

∂3f

∂x ∂αi
2

+
∂3f

∂y ∂αi
2

y + r(x)

y
+
∂3f

∂αi
3

αi + r(x)

αi

=

= ψ(x, y)
∂2ω(x, αi)

∂αi
2

+ 2
r(x)

αi
2

∂2f

∂αi
2
− 2

r(x)

αi
3

∂f

∂αi
. (6)

Using relations (5) and (6) we rewrite (4) in the form

∂F

∂x
+
∂F

∂y

y + r(x)

y
+
∂F

∂αi

αi + r(x)

αi
= ψ(x, y) ω(x, αi) + λ′1(x)

∂f

∂αi
+

+λ1(x)

(

ψ(x, y)
∂ω(x, αi)

∂αi
+
r(x)

αi
2

∂f

∂αi

)

+

+λ′2(x)
∂2f

∂αi
2

+ λ2(x)

(

ψ(x, y)
∂2ω(x, αi)

∂αi
2

+ 2
r(x)

αi
2

∂2f

∂αi
2
− 2

r(x)

αi
3

∂f

∂αi

)

=

= ψ(x, y)

(

ω(x, αi) + λ1(x)
∂ω(x, αi)

∂αi
+ λ2(x)

∂2ω(x, αi)

∂αi
2

)

+

+
∂f

∂αi

(

λ′1(x) + λ1(x)
r(x)

αi
2
− 2λ2(x)

r(x)

αi
3

)

+
∂2f

∂αi
2

(

λ′2(x) + 2λ2(x)
r(x)

αi
2

)

. (7)
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As the function F is an integrating function (it is easy to verify that F satisfies

the criterium (2)) then the coefficients of
∂f

∂αi

and
∂2f

∂αi
2

must be equal to 0. Thus

the functions λ1(x), λ2(x) satisfy the following differential equations

λ′1(x) + λ1(x)
r(x)

αi
2
− 2λ2(x)

r(x)

αi
3

= 0, λ′2(x) + 2λ2(x)
r(x)

αi
2

= 0. (8)

General solution of the second equation of the system (8) may be written in the
form

λ2(x) = C1 exp(2 I1), (9)

where I1 ≡ −
∫

r(x)

αi
2
dx and C1 is an arbitrary constant. Using (9) we rewrite

the first equation of the system (8) in the form

λ′1(x) + λ1(x)
r(x)

αi
2

= 2C1

r(x)

αi
3

exp(2 I1). (10)

Its general solution has the form

λ1(x) =

(

C2 + 2C1

∫

exp(I1)
r(x)

αi
3
dx

)

exp(I1). (11)

Thus, the function F satisfies the equation

dF

dx
=
∂F

∂x
+
∂F

∂y

y + r(x)

y
+
∂F

∂αi

αi + r(x)

αi

= Ψ(x, y) Ω(x, αi),

where

Ψ(x, y) = ψ(x, y),

Ω(x, αi) = ω(x, αi) + λ1(x)
∂ω(x, αi)

∂αi
+ λ2(x)

∂2ω(x, αi)

∂αi
2

.

Hence F is the integrating function for equation (1).

3 Application of the method

Let us know one partial solution α of the equation (1). Kojalovich proved [4]
that there are three types of autonomous integrating functions which may be written
in the form

f =

∫ y−αi exp(h u)

u
du, (12)

f =
1

hy
exp(h(y − αi)) −

∫ y−αi exp(h u)

u
du,

f = − 1

hαi
exp(h(y − αi)) −

∫ y−αi exp(h u)

u
du,
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where h is a constant. We consider here only the integrating function (12).
Substituting (12) into the equation (3) ( the functions λ2(x), λ1(x) are deter-

mined from equations (9), (11)) we obtain

exp(h(y − α) + 2I(x)) C1 (h(y − α) − 1)

(y − α)2
+

∫ x exp(hy)

u
du−

−
exp(h(y − α) + I(x))

(

C2 + 2C1

∫ x

0

exp(I(v1)) r(v1)

α3(v1)
dv1

)

y − α
= 0, (13)

where C1, C2 are arbitrary constants and

I(x) ≡ −
∫ x

0

r(v)

α2(v)
dv.

Differentiating (13) yields

r(x) exp(h(y − α))

α3 y
(α2 − C2α(1 + h α) eI(x) + C1(2 + 2h α+ h2α2) e2I(x)−

−2C1 α(1 + hα) eI(x)

∫ x

0

r(t)

α3(t)
eI(t) dt) = 0.

Thus, the partial solution α must satisfy the following equation

α2 = α(1 + hα) eI(x)

(

C2 + 2C1

∫ x

0

r(t)

α3(t)
eI(t) dt

)

− C1(2 + 2h α+ h2α2) e2I(x).

(14)
Solving equation (14) for C1 = 3/h, C2 = 0 we find

α = − 3 r(x)

1 + h r(x)
. (15)

Substituting (15) into equation (1) we obtain

x(r) = C3 +
3

h(hr + 1)
+

ln(hr − 2) − ln(hr + 1)

h
,

where C3 is an arbitrary constant. Then equation (1) has the form

y(r) y′(r) =
9(r + y(r))

(hr − 2)(hr + 1)2
. (16)

Substituting (15) into equation (3) (functions λ1(x), λ2(x) have the form (9),
(11)) we obtain the general integral of equation (16)
∫ x

0

exp(h Φ)

Φ
dt−exp (h Φ)) (1 + hr)(6r(hr − 1) + 3r + (hr − 2)(hr + 1)y(r))

h(hr − 2)(y(r) + r(3 + hy(r)))2
= C,

(17)
where

Φ ≡ 3r

1 + hr
+ y(r)

and C is an arbitrary constant.
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4 Conclusion

We have shown that using the integrating function (12) it is possible to build a
new integrating function of the form (3), where functions λ1(x), λ2(x) are defined
in (9), (11). Besides, the corresponding Abel’s equation is obtained in the form (16)
and its general integral has the form (17).

It is possible to consider integrating function of the form

F (x, y, αi) = f(x, y, αi) +
n

∑

k=1

λk(x)
∂kf

∂αk
i

,

where λk(x) (k = 1, n) are some functions of x. This functions also may be found
with the help of the upper considered procedure.

This procedure may be used for solving Abel’s equation of the form

y(r) y′(r) =
4n3(r + y(r))

(hr − n)(hr + n)2
, (18)

where n is a natural number, h is a constant and r = r(x). The corresponding
partial solution of equation (18) is

y = − 2nr

n+ hr
.

Note that equation (18) for n = 1 was integrated in [5].
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Discrete optimal control problems on networks

and dynamic games with p players

Dmitrii Lozovanu, Stefan Pickl

Abstract. We consider a special class of discrete optimal control problems on
networks. The dynamics of the system is described by a directed graph of passages.
An additional integral-time cost criterion is given and the starting and final states of
the system are fixed. The game-theoretical models for such a class of problems are
formulated, and some theoretical results connected with the existence of the optimal
solution in the sense of Nash are given. A polynomial-time algorithm for determining
Nash equilibria is proposed. The results are applied to decision making systems and
determining the optimal strategies in positional games on networks.

Mathematics subject classification: 90C47.
Keywords and phrases: Multiobjective discrete control, Optimal strategies in the
sence Nash, dynamic Netwerks, dynamic c-game.

1 Introduction and problems formulations

In this paper we study control processes for time-discrete systems with finite set
of states. The main results are concerned with game-theoretical approach to the
following control problem [1, 2].

Let us consider a discrete dynamical system L with the set of states
X ⊆ R

n. At every time-step t = 0, 1, 2, . . . the state of the system L is
x(t) ∈ X, x(t) = (x1(t), x2(t), . . . , xn(t)). The dynamics of the system L is de-
scribed as follows

x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . , (1)

where x(0) = x0 is the starting point of the dynamical system and u(t) =
(u1(t), u2(t), . . . , um(t)) ∈ R

m represents the vector of control parameters (see ).
For any time-step t the feasible set Ut(x(t)) for the vector of control parameter u(t)
is given, i.e.,

u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . .

Assume that in (1) the vector-functions

gt(x(t), u(t)) = (g1
t (x(t), u(t)), g2

t (x(t), u(t)), . . . , gn
t (x(t), u(t)))

are determined uniquely by x(t) and u(t) at every time-step t = 0, 1, 2, . . . . So,
x(t + 1) is determined uniquely by x(t) and u(t).

c© Dmitrii Lozovanu, Stefan Pickl, 2004
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We consider the following discrete optimal control problem:

Problem 1. Find T and u(0), u(1), . . . , u(T − 1) which satisfy the conditions























x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . , T − 1;

u(t) ∈ Ut(x(t)), t = 0, 1, . . . , T − 1,

x(0) = x0, x(T ) = xf

and minimize the objective function

Fx0xf
(u(t)) =

T−1
∑

t=0

ct(x(t), gt(x(t), u(t))),

where ct(x(t), gt(x(t), u(t))) = ct(x(t), x(t + 1)) represents the cost of the system’s
passage from the state x(t) to the state x(t + 1) at the stage
[t, t + 1]. The vectors v(0), v(1), . . . , v(T − 1) generate the trajectory x0 =
x(0), x(1), x(2), . . . , x(T ) = xf which transfers the system L from the starting state
x0 to the final state xf with minimal integral-time costs (cf. [1, 2]).

This problem can be applied in decision making systems where the dynamics
of the systems are controlled by one person. Here, we formulate the game theo-
retic approach to this problem, i.e., we consider that the dynamics of the system is
controlled by p actors (players) and it is described as follows

x(t + 1) = gt(x(t), u1(t), u2(t), . . . , up(t)), t = 0, 1, 2, . . . , (2)

where x(0) = x0 is the starting state of system L and ui(t) ∈ R
mi represents the

vector of control parameters of player i, i = 1, p, i.e. i ∈ {1, . . . , p}. The state
x(t + 1) of the system L at time-step t + 1 is obtained uniquely if the state x(t) at
time-step t is known and the players 1, 2, . . . , p fix their vectors of control parameters
u1(t), u2(t), . . . , up(t), respectively. For each i = 1, p, the admissible sets U i

t (x(t))
for the vectors of control parameters ui(t) are given, i.e.

ui(t) ∈ U i
t (x(t)), i = 1, p, t = 0, 1, 2, . . . ,

We shall assume that the sets U i
t (x(t)) i = 1, p, t = 0, 1, 2, . . . , are non-empty

and U i
t (x(t)) ∩ U j

t (x(t)) = ∅ for i 6= j, t = 0, 1, 2, . . . .
Let us consider that the players 1, 2, . . . , p fix their vectors of control parameters

u1(t), u2(t), . . . , up(t); t = 0, 1, 2, . . . ,
respectively, and the starting state x0 = x(0) and final state xf of the system L
are known. Then for a given set of vectors u1(t), u2(t), . . . , up(t) either a unique
trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf)) = xf

from x0 to xf exists and T (xf) represents the time step when the state xf is reached
by L, or such a trajectory does not exist.



DISCRETE OPTIMAL CONTROL PROBLEMS ON NETWORKS . . . 69

The game version of our control problem is the following.

Problem 2. We denote by

F i
x0xf

(u1(t), u2(t), . . . , up(t))=

T (xf )−1
∑

t=0

ci
t(x(t), gt(x(t), u1(t), u2(t), . . . , up(t)))

the integral-time cost of system’s passage from x0 to xf for the players i,
i = 1, 2, . . . , p, if the set of vectors u1(t), u2(t), . . . , up(t) generates a trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf)) = xf

from x0 to xf and
ui(t) = U i(x(t)), t = 0, 1, 2, . . . , T (xf).

Otherwise we put

F i
x0xf

(u1(t), u2(t), . . . , up(t)) = ∞.

Here
ci
t(x(t), gt(x(t), u1(t), u2(t), . . . , up(t))) = ci

t(x(t), x(t + 1))
represents the cost of system’s passage from the state x(t) to state x(t + 1) at the
stage [t, t + 1]. We consider the problem of finding vectors of control parameters

u1∗(t), u2∗(t), . . . , ui−1∗(t), ui∗(t), ui+1∗

(t), . . . , up∗(t)
which satisfy the following condition

F i
x0xf

(u1∗(t), u2∗(t), . . . , ui−1∗(t), ui∗(t), ui+1∗(t), . . . , up∗(t)) ≤

≤ F i
x0xf

(u1∗(t), u2∗(t), . . . , ui−1∗(t), ui(t), ui+1∗(t), . . . , up∗(t))

∀ui(t) ∈ R
mi , i = 1, p.

So, we consider the problem of finding the solution in the sense of Nash [3].

In order to determine the existence of Nash equilibria for multiobjective control
in problem 2 we assume that players i and j never actively control the system at
the same state in time, although for different moments of time different players may
control the system at same state. This condition in the game model corresponds to
the case when for any moment of time t and for an arbitrary state x(t) ∈ X the
application in (2) depends only on one of the vectors of control parameters ui(t),
i ∈ {1, 2. . . . .p}. The multiobjective control problem with a such condition allows
us to regard it as a dynamic noncooperative game on a network which consists of p
interacting subnetworks controlled by different players. On this network the problem
is considered to control the given initial vertex (state) toward some prescribed final
state. It is assumed that the costs on edges of the network depend on time, i.e.
depend on order an edge is visited in the directed path from starting state to final
one. We are seeking for a Nash equilibrium in this dynamic game. Polynomial-time
algorithms for determining the optimal strategies of players are proposed.

This problem generalizes the classical control problems with integral-time cost
criterion by a trajectory and arose as auxiliary one when solve dynamic games in
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positional form [4 – 10]. The main tool we shall use for studying and solving our
problem is based on dynamic programming and concept of noncooperative games in
positional form. A such approach for determining the optimal strategies in dynamic
games for the case with constant cost functions on edges of the network has been
used in [8]. Here we extend this approach for the general case of the problem.

2 Discrete optimal control problems

and dynamic games with p players on networks

In this section we consider the discrete optimal control problem on networks.
We formulate the game variant of the problem when the dynamics of the system is
described by a directed graph of passages [4−6]. The graph vertices in this problem
correspond to the states of the system, where the edges identify the possibility of
the system to pass from one state to another. Moreover, the cost functions are
associated to the edges of the graph which depend on time and express the cost of
the system’s passages. The graph of passages, on which edges time-depending cost
functions are defined, and in which two vertices corresponding to the starting and
the final states of the system are chosen, is called a dynamic network [6]. First, we
formulate the discrete optimal control problem on dynamic networks, and then we
shall extend the model according to a game-theoretical approach.

2.1 The discrete optimal control problem on networks

Let L be a dynamical system with a finite set of states X, |X| = N , and at
every discrete moment of time t = 0, 1, 2, . . . the state of the system L is x(t) ∈ X.
Note, that we associate x(t) with an abstract element (in Section 1, x(t) represents
a vector from R

n). Two states x0 and xf are chosen in X, where x0 is a the
starting point of the system L, x0 = x(0), and xf is the final state of the system,
i.e., xf is the state in which the system must be brought. The dynamics of the
system is described by a directed graph of passages G = (X,E), |E| = m, an edge
e = (x, y) which signifies the possibility of passages of the system L from the state
x = x(t) to the state y = x(t + 1) at any moment of time t = 0, 1, 2, . . . . This
means that the edges e = (x, y) ∈ E can be regarded as the possible values of the
control parameter u(t) when the state of the system is x = x(t), t = 0, 1, 2, . . . .
The next state y = x(t + 1) of the system L is determined uniquely by x = x(t) at
the time-step t and an edge e = (x, y) ∈ E(x), where E(x) = {X | (x, y) ∈ E}. So
E(x) = E

(

x(t)
)

corresponds to the admissible set Ut

(

x(t)
)

for the control parameter
u(t) at every time-step t. To each edge e = (x, y) a function ce(t) is assigned, which
reflects the costs of system’s passage from the state x(t) = x ∈ X to the state
x(t + 1) = y ∈ X at any time-step t = 0, 1, 2, . . . We consider the discrete optimal
control problem on networks [1, 2, 7] for which the sequence of system’s passages
(x(0), x(1)), (x(1), x(2)), . . . , (x(T (xf) − 1), x(T (xf))) ∈ E, which transfers the
system L from x0 = x(0) to xf = x(T (xf )) with minimal integral-time cost of
the passages by a trajectory x0 = x(0), x(1), x(2), . . . , x(T (xf)) = xf . Here, we
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distinguish the following variants of the problem:
1) the number of the stages (time T (xf)) is fixed, i.e. T (xf) = T ;
2) for T (xf) is given the restriction T (xf) ∈ [T1, T2], where T1 and T2 are known;
3) the parameter T (xf) is unknown and must be found.

2.2 A dynamic programming approach and computational

complexity

Let us assume that T (xf) is fixed, i.e. T (xf) = T (case 1). Denote by

Fx0xf
(T ) = min

x0=x(0),x(1),...,x(T )=xf

T−1
∑

t=0

c(x(t),x(t+1))(t)

the minimal integral-time cost of system’s passages from x0 to xf . If the state xf

couldn’t be reached by using T stages, then we put Fx0xf
(T ) = ∞. For Fx0x(t)(t)

the following recursive formula can be gained

Fx0x(t)(t) = min
x(t−1)∈X−

G
(x(t))

{

Fx0x(t−1)(t − 1) + c(x(t−1),x(t))(t − 1)
}

,

where X−

G (y) = {x ∈ X | e = (x, y) ∈ E}. It is easy to observe that
using dynamical programming methods we could tabulate the values Fx0x(t)(t),
t = 1, 2, . . . , T (Fx0x(0)(0) = 0). So, if T is fixed, then the problem can be solved
in time O(N2T ) (Here we do not take in consideration the number of operations for
calculations of the value of functions ce(t) for given t.)

In the case when T (xf) ∈ [T1, T2] the problem can be reduced to T2 − T1 +
1 problems with T (xf) = T1, T (xf) = T1 + 1, T (xf) = T1 + 2, . . . , T (xf ) = T2,
respectively; compare the minimal integral-costs of these problem we find the best
one.

Case 3) of the problem can be reduced to case 2) if we find T1 and T2 such that
T (xf) ∈ [T1, T2]. It is obvious that for positive and non-decreasing cost functions
ce(t), e ∈ E, we have T (xf) ∈ [1, N − 1], i.e., T1 = 1, T2 = N − 1. Therefore, the
problem for positive and non-decreasing functions on edges can be solved in time
O(N3).

2.3 A game theoretic approach for the discrete optimal control

problem on networks

Now, we consider the game-theoretical versions of the problem from Section 2.1.
First we formulate the stationary case of the problem and then we extend it to
nonstationary one.

2.3.1 The problem of determining the optimal stationary strategies

of players in dynamic c-game

Let G = (X,E) be a directed graph of system’s passages, where G has the
property that for any vertex x ∈ X \ {xf} there exists a leaving edge e = (x, y) ∈
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E. Assume that the vertex set X is divided into p disjoint subsets X1,X2, . . . ,Xp

(X =

p
⋃

i=1

Xi, Xi ∩ Xj = ∅, i 6= j) and consider vertices x ∈ Xi as the positions of

player i, i = 1, p. Moreover, we consider that to each edge e = (x, y) ∈ E of the
graph of passages p functions c1

e(t), c
2
e(t), . . . , c

p
e(t) are assigned, where ci

e(t) expresses
the cost of system’s passage from the state x = x(t) to the state y = x(t + 1) at the
stage [t, t + 1] for player i. Define the stationary strategies of players 1, 2, . . . , p as
maps s1, s2, . . . , sp on X1,X2, . . . ,Xp, respectively:

s1 : x 7→ y ∈ XG(x) for x ∈ X1 \ {xf};
s2 : x 7→ y ∈ XG(x) for x ∈ X2 \ {xf};
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sp : x 7→ y ∈ XG(x) for x ∈ Xp \ {xf},

where XG(x) is the set of extremals of edges e = (x, y), starting in x, i.e.,
XG(x) = {y ∈ X | e = (x, y) ∈ E}. For a given set of strategies s = (s1, s2, . . . , sp)
denote by Gs = (X,Es) the subgraph generated by the edges e = (x, si(x)) for
x ∈ X \ {xf} and i = 1, p. Then, in Gs for every vertex x ∈ X \ {xf} there ex-
ists a unique directed edge e = (x, y) ∈ Es, originating in x. Obviously, for fixed
s1, s2, . . . , sp either a unique directed path Ps(x0, xf ) from x0 to xf exists in Gs or
such a path does not exist in Gs. In the second case, if we pass through the edges
from x0 we get a unique directed cycle Cs.

For fixed strategies s1, s2, . . . , sp and fixed states x0 and xf define the quantities

F 1
x0xf

(s1, s2, . . . , sp), F 2
x0xf

(s1, s2, . . . , sp), . . . , F p
x0xf

(s1, s2, . . . , sp)

in the following way. We assume that the path Ps(x0, xf) does exist in Gs. Then it
is unique and we can assign to its edges numbers 0, 1, 2, 3, . . . , ks, starting with the
edge that begins in x0. These numbers characterize the time steps te(s1, s2, . . . , sp)
when the system passes from one state to another, if the strategies s1, s2, . . . , sp are
applied. In this case, we put

F i
x0xf

(s1, s2, . . . , sp) =
∑

e∈E(Ps(x0,xf ))

ci
e(te(s1, s2, . . . , sp)), i = 1, p,

where E(Ps(x0, xf)) is the set of edges of the path Ps(x0, xf). The set of vertices x0 =
x(0), x(1), . . . , x(k) = xf in the path Ps(x0, xf) represents the trajectory generated
by the strategies s1, s2, . . . , sp of the players. If there are no directed paths Ps(x0, xf )
from x0 to xf in Hs, then we put

F i
x0xf

(s1, s2, . . . , sp) = +∞, i = 1, p.

Problem formulation – the dynamic c-game. We consider the problem of
finding the maps s∗1, s

∗

2, . . . , s
∗

p for which the following condition is satisfied

F i
x0xf

(s∗1, s
∗

2, . . . , s
∗

i−1
, s∗i , s

∗

i+1
, s∗p) ≤ F ∗

x0xf
(s∗1, s

∗

2, . . . , s
∗

i−1
, si, s

∗

i+1
, s∗p),

∀si, i = 1, p.
(3)
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So, we study the problem of finding the optimal solution in the sense of Nash
[3] on S1 × S2 × · · · × Sp, where Si = {si: x 7→ y ∈ XG(x) for x ∈ Xi},
i = 1, p.

The functions

F 1
x0xf

(s1, s2, . . . , sp), F 2
x0xf

(s1, s2, . . . , sp), . . . , F p
x0xf

(s1, s2, . . . , sp)

on S1 × S2 × · · · × Sp define a game in the normal form with p players [3, 7].
In positional form, this game is defined by the graph G, partitions X1,X2, . . . ,Xp,

vector-functions ci(t) = (ci
e1

(t), ci
e2

(t), . . . , ci
em

(t)), i = 1, p, starting and final posi-
tions x0, xf . We call this game the dynamic c-game with p players on networks
(G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t), x0, xf).

2.3.2 The nonstationary dynamic c-game

We define the nonstationary strategies of players on network as maps

u1: (x, t) → (y, t+1) ∈ XG(x)×{t+1} for x ∈ X1\{xf}, t = 0, 1, 2, . . . , T−1;
u2: (x, t) → (y, t+1) ∈ XG(x)×{t+1} for x ∈ X2\{xf}, t = 0, 1, 2, . . . , T−1;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
up: (x, t) → (y, t+1) ∈ XG(x)×{t+1} for x ∈ Xp\{xf}, t = 0, 1, 2, . . . , T−1,

were T is given. Here (x, t) has the same sense as the notation x(t), i.e. (x, t) = x(t).
For any set of strategies u1, u2, . . . , up we define the quantities

F
1

x0xf
(u1, u2, . . . , up), F

2

x0xf
(u1, u2, . . . , up), . . . , F

p
x0xf

(u1, u2, . . . , up)

in the following way.
Let us consider that u1, u2, . . . , up generate in G a trajectory x0 = x(0), x(1),

x(2), . . . , x(T (xf)) = xf from x0 to xf where T (xf) represents the time-moment
when xf is reached. Then we set

F
i

x0xf
(u1, u2, . . . , up) =

T (xf )−1
∑

t=0

c(x(t),x(t+1))(t), i = 1, p, if T (xf) ≤ T ;

otherwise we put F
i
x0xf

(u1, u2, . . . , up) = ∞, i = 1, p.
We regard the problem of finding the nonstationary strategies u∗

1, u
∗

2, . . . , u
∗

p for
which the following condition is satisfied

F
i
x0xf

(u∗

1, u
∗

2, . . . , u
∗

i−1, u
∗

i , u
∗

i+1, . . . , u
∗

p) ≤

≤ F
i

x0xf
(u∗

1, u
∗

2, . . . , u
∗

i−1, ui, u
∗

i+1, . . . , u
∗

p), ∀ ui, i = 1, p.

So we consider the nonstationary case of determining Nash equilibria in dynamic
c-game.

In the following we show that the nonstationary case of the problem can be
reduced to stationary one.
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3 Preliminaries and some results on determining the optimal

strategies in dynamic c-games

The dynamic c-game was introduced in [9] as auxiliary problem for studying and
solving a special class of positional games on networks – cyclic games [4–7]. The
main results from [9–11] are related to the existence of Nash equilibria for zero-sum
games on networks with constant cost functions on edges. The dynamic c-games
with p players for constant cost functions on edges have been studied in [8], and the
following result is given.

Theorem 1. Let (G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t), x0, xf) be a network
where G has the property that the vertex xf is attainable from x0. If the components
ci
ej

(t) of the vectors ci(t) = (ci
e1

(t), ci
e2

(t), . . . , ci
em

(t)), i = 1, p, are positive constant
functions then there exists the optimal solution in the sense of Nash s∗1, s

∗

2, . . . , s
∗

p for
stationary dynamic c-game on network (G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t),
x0, xf).

On the basis of this theorem we can prove the following result.

Theorem 2. Let (G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t), x0, xf) be a net-
work where G contains at least a directed path with not more than T edges and
the cost functions on edges are positive. Then for dynamic c-game on network
(G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t), x0, xf) there exist the optimal nonsta-
tionary strategies in the sense of Nash u∗

1(t), u
∗

2(t), . . . , u
∗

p(t).

Proof. It is sufficient to show that the nonstationary dynamic c-game on network
(G,X1,X2, . . . ,Xp, c

1(t), c2(t), . . . , cp(t), x0, xf) can be reduced to stationary dy-
namic c-game on an auxiliary network (G,Y1, Y2, . . . , Yp, c

1(t),
c2(t), . . . , cp(t), y0, yf

) with constant cost functions on edges. In this auxiliary net-
work the graph G = (Y,E) is obtained from G as follows. The vertex set Y is
obtained from X when it is doubled T +1 times, i.e. Y = X×{0, 1, 2, . . . , T} = X×
{0}∪X×{1}∪· · ·∪X×{T}. Each two subsets X×{t} and X×{t+1}, t = 0, T − 1,
are connected with directed edges e = ((x, t), (y, t + 1)) ∈ E if e = (x, y) ∈ E. In
addition each subset X × {t}, t = 0, T − 1 is connected with the set X × {T} by
directed edges e = ((x, t), (y, T )) ∈ E if e = (x, y) ∈ E.

The partition Y = Y1 ∪ Y2 ∪ · · · ∪ Yp which determine the position sets
of players and the cost functions ce(t) on edges e = ((x, t), (y, t + 1)) ∈ E,
e = ((x, t), (y, T )) ∈ E are defined as follows:

Yi = {(x, t) ∈ E |x ∈ Xi, t = 0, T }, i = 1, p;

ce(t) = ce(t), if e = (x, t) ∈ E, t = 0, T − 1.

On this network we consider the dynamic c-game with starting position
y0 = (x0, 0) ∈ X × {0} and final position (yf , T ) ∈ X × {T}.

It is easy to observe that for each subset X × {t} the time t is known.
Therefore the cost functions ce(t) on auxiliary acyclic network may be consi-
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dered constant functions. According to Theorem 1 for dynamic c-game on network
(G,X1,X2, . . . .Xp, c

1(t), c2(t), . . . , cp(t), x0, xf) there exists the optimal by Nash so-
lution. This solution represents the optimal by Nash strategies for nonstationary
case of the problem. �

On the basis of constructive proof of Theorem 2 we may propose the follow-
ing algorithm for finding the optimal nonstationary strategies of players on net-
work (G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t), x0, xf). We construct the auxil-
iary network (G,Y1, Y2, . . . .Yp, c

1(t), c2(t), . . . , cp(t), y0, yf
) and solve the problem

of finding the optimal stationary strategies of players with constant cost func-
tions on edges (see algorithms from [8]). The obtained solution on this network
corresponds to optimal nonstationary strategies of players for dynamic c-game on
(G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t), x0, xf).

It is easy to observe also that if Nash equilibria for stationary case of dy-
namic c-game exist then the mentioned above construction with T = N can
be used for determining the optimal stationary strategies of players on network
(G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t), x0, xf) when the cost functions on edges
are nondecreasing. A such approch for determining the optimal stationary strategies
of players is developed in Sections 5 and 6.

For some practical problems may be useful also the following variant of the
dynamic c-game with backward time-step account.

Let Ps(x0, xf) be the directed path from x0 to xf in Hs generated by strategies
s1, s2, . . . , sp of players 1, 2, . . . , p. In 2.3.1 for an edge e ∈ E(Ps(x0, xf)) is defined
the time-step te(s1, s2, . . . , sp) as an order of the edge in the path Ps(x0, xf ) starting
with o from x0. To each edge e ∈ E(Ps(x0, xf)) we may associate also the backward
time-step account t′e(s1, s2, . . . , sp) if we start number the edges with 0 from end
position xf in inverse order, i.e. t′e(s1, s2, . . . , sp) = ks − te(s1, s2, . . . , sp). For fixed
strategies s1, s2, . . . , sp we define the quantities

F
1

x0xf
(s1, s2, . . . , sp), F

2

x0xf
(s1, s2, . . . , sp), . . . , F

p
x0xf

(s1, s2, . . . , sp)
in the following way. We put

F
i

x0xf
(s∗1, s

∗

2, . . . , sp) =
∑

e∈E(Ps(x0,xf ))

t′e(s1, s2, . . . , sp), i = 1, p;

if in Hs there exists a path Ps(x0, xf) from x0 to xf ; otherwise we put

F
i

x0xf
(s1, s2, . . . , sp) = ∞, i = 1, p.

So, we obtain a new game on network. In the case when the costs ci
e(t) are con-

stant this problem coincides with the problem from [8]. This game can be regarded
as dual problem for the dynamic c-game from 2.3.1.
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4 A discrete optimization principle for dynamic networks

and an algorithm for solving the problem in the case p = 1

In this section, we consider the formulated problem on networks in the special
case p = 1. We have introduced the problem in this case for positive and non-
decreasing cost functions ce(t) on edges e ∈ E which coincides with the discrete
optimal control problem on G with starting states x0 and final state xf . Therefore,
the optimal trajectory x0 = x(0), x(1), x(2), . . . , x(T (xf)) = xf corresponds in G
to the directed path P

∗

(x0, xf) from x0 to xf . We call this path the optimal path
for the dynamic network. For the path P

∗

(x0, xf) contains no more then N − 1
edges, the problem can be solved in finite time by using dynamical programming
techniques. We show that a more effective algorithm for solving this problem can
be elaborated if the dynamical network satisfies the following conditions:

Problem formulation. Let us assume that the cost functions ce(t), e ∈ E, in
the dynamic network have the following property. If P ∗(x0, x) is an arbitrary optimal
path from x0 to x which can be represented as P ∗(x0, x) = P ∗

1 (x0, y)∪P ∗

2 (y, x), where
P ∗

1 (x0, y) and P ∗

2 (y, x) have no common edges, then a leading part P ∗

1 (x0, y) of the
path P ∗(x0, x) is also an optimal path of the problem in G with given starting state
x0 and final state y. If such a property holds, then we say that for the dynamic
network the optimization principle is satisfied. In the case, when on network the
cost functions ce(t), e ∈ E, are positive functions and the optimization principle is
satisfied, the following algorithm determines all optimal paths P ∗(x0, x) from x0 to
each x ∈ X, which correspond to the optimal strategies in the problem for p = 1.

Algorithm 1

Preliminary step (Step 0). Set Y = {x0}, E∗ = ∅. Assign to every vertex
x ∈ X two labels t(x) and F (x) as follows:

t(x0) = 0, t(x) = ∞, ∀x ∈ X \ {x0};
F (x0) = 0, F (x) = ∞, ∀x ∈ X \ {x0}.

General step (Step k). Find the set

E′ = {(x′, y′) ∈ E(Y ) |F (x′) + c(x′,y′)(t(x
′)) = min

x∈Y
min

y∈X(x)

{F (x) + c(x,y)(t(x))},

where

E(Y ) = {(x, y) ∈ E |x ∈ Y, y ∈ X \ Y }, X(x) = {y ∈ X \ Y | (x, y) ∈ E(Y )}.

Find the set of vertices X ′ = {y′ ∈ X \ Y | (x′, y′) ∈ E′}. For every y′ ∈ X ′ select

one edge (x′, y′) ∈ E′ and build the union E
′

of such edges. After that change the
labels t(y′) and F (y′) for every vertex y′ ∈ X ′ as follows

t(y′) = t(x′) + 1, F (y′) = F (x′) + c(x′,y′)(t(x
′)), ∀ (x′, y′) ∈ E

′

.
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Replace the set Y by Y ∪ X ′ and E∗ by E∗ ∪ E
′

. Note Xk = Y, Ek = E∗. If
Xk 6= X then fix the tree Hk = (Xk, Ek) and go to the next step k + 1, otherwise
fix the tree H = (X,E∗) and STOP.

Note that the tree H = (X,E∗) contains optimal paths from x0 to each x ∈ X.
After k steps of the algorithm the tree Hk = (Xk, Ek) represents a part of H. If
it is necessary to find the optimal path from x0 to xf , then the algorithm can be
interrupted after k steps as soon as the condition xf ∈ Xk is satisfied, i.e., in this
case the condition Xk 6= X in the algorithm must be replaced by xf ∈ Xk. The
labels F (x), x ∈ X, indicate the costs of optimal paths from x0 to x ∈ X and t(x)
represents the number of edges in these paths.

The correctness of the algorithm is based on the following theorem:

Theorem 3. Let (G, c(t), x0, xf) be a dynamic network, where the vector-function
c(t) = (ce1(t), ce2(t), . . . , cem

(t)) has positive and bounded components for t ∈ [0,
N − 1]. Moreover, let us assume that the optimization principle on the dynamic
network is satisfied. Then the tree Hk = (Xk, Ek) obtained after k steps of the
algorithm gives the optimal paths from x0 to every x ∈ Xk which correspond to
optimal strategies in the problem for p = 1.

Proof. We prove the theorem by using the induction principle on the number of
steps k of the algorithm. In the case when k = 0 the assertion is evident.

Let us assume that the theorem holds for any k ≤ r and let us show that it
is true for k = r + 1. If Hr = (Hr, Er) is the tree obtained after r steps and
Hr+1 = (Xr+1, Er+1) is the tree obtained after r + 1 steps of the algorithm, then
X◦ = Xr+1 \Xr and E◦ = Er+1 \Er represents the vertex set and edge set obtained
by the algorithm at the step r+1. Let us show that if y′ is an arbitrary vertex of X◦,
then in Hr+1 the unique directed path P ∗(x0, y

′) from x0 to y′ is optimal. Indeed, if
this is not the case, then there exists an optimal path Q(x0, y

′) from x0 to x′, which
does not contain the edge e = (z′, y′) ∈ E◦. The path Q(x0, y

′) can be represented
as Q(x0, y

′) = Q1(x0, x
′)∪{(x′, y)}∪Q2(y, y′), where x′ is the last vertex of the path

Q(x0, y
′) belonging to Xr when we pass from x0 to y′. It is easy to observe that if

the conditions of the theorem hold then

cost (Q(x0, y
′)) ≥ cost (P ∗(x0, y

′)),

where

cost (Q(x0, y
′)) =

mQ
∑

t=0

cet
(t),

e0, e1, . . . , emQ
are the corresponding edges of the directed path Q(x0, y

′) when we
pass from x0 to y′ and

cost (P ∗(x0, y
′)) =

mp
∑

t=0

ce′
t
(t),

were e′0, e
′

1, . . . , e
′

mp
are the corresponding edges of the directed path P ∗(x0, y

′) when

we pass from x0 to y′. This means that the tree Hr+1 = (Xr+1, Er+1) contains an
optimal path from x0 to every y′ ∈ Xr+1. 2
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Remark 1. In analoguos way can be proposed the algorithm for solving the prob-
lem with backward time-step account in the case when the optimization principle on
network is satisfied. Here the optimization principle should be defined as follows:
every part P ∗

2 (y, xf) of an arbitrary optimal path P ∗(x, xf ) = P ∗

1 (x, y) ∪ P ∗

2 (y, xf )
(E(P ∗

1 (x, y)) ∩ E(P ∗

2 (x, y)) = ∅) is optimal one.

Algorithm 1 is an extension of Dijkstra’s Algorithm. Furthermore, such an al-
gorithm we develop for the dynamic c-game with p players in the case when the
optimization principle is satisfied with respect to each player. In the next section,
we define the optimization principle on dynamic networks (G,X1,X2, . . . ,Xn, c1(t),
c2(t), . . . , cp(t), x0, xf ) with respect to player i.

5 The optimization principle for dynamic networks with p

players and determining Nash equilibria for stationary case

of the problem

In this section we extend the optimization principle for stationary case of
the problem on dynamic networks with p players. We define the optimiza-
tion principle with respect to player i, i ∈ {1, 2, . . . , p}, on dynamic networks
(G,X1,X2, . . . ,Xp, c

1(t), c2(t), . . . , cp(t), x0, xf).
We denote by Ei the subset of edges from E starting in verteces x ∈ Xi, i.e.,

Ei = {(x, y) ∈ E |x ∈ Xi}, i = 1, p. Hereby, the set Ei represents the admissible
set of system’s passages from the states x ∈ Xi to the state y ∈ X for the player
i. Furthermore, the set Ei indicates the set of edges of player i. By Esi

we denote
the subset of E generated by a fixed strategy si of player i, i ∈ {1, 2, . . . , p}, i.e.,
Esi

= {(x, y) ∈ Ei |x ∈ Xi, y = si(x)}.
Let s1, s2, . . . , si−1, si+1, . . . , sp be the set of strategies of the players 1, 2, . . . ,

i − 1, i + 1, . . . , p and let GS\si
= (X,ES\si

) be the subgraph of G, where

E
S\si

= Es1 ∪ Es2 ∪ · · · ∪ Esi−1 ∪ Ei ∪ Esi+1 ∪ · · · ∪ Esp
.

The graph GS\si
represents the subgraph of G generated by the set of edges of

player i and edges of E when the players 1, 2, . . . , i−1, i+1, . . . , p fix their strategies
s1, s2, . . . , si−1, si+1, . . . , sp, respectively. On GS\si

we consider the single objective
control problem with respect to cost functions ci

e(t) of player i, starting vertex x0

and final vertex x ∈ X.

Definition 1. Let us assume that for any given set of strategies

s1, s2, . . . , si−1, si+1, . . . , sp

the cost functions ci
e(t), e ∈ ES\si

in GS\si
have the property that if an arbitrary op-

timal path P ∗(x0, x) can be represented as P ∗(x0, z) = P ∗

1 (x0, z)∪P ∗

2 (z, x) (P ∗

1 (x0, z)
and P ∗

2 (z, x) have no common edges), then the leading part P ∗

1 (x0, z) of P ∗(x0, x)
is an optimal one. We call this property the optimization principle for dynamic
networks with respect to player i.
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Note that if ci
e(t), i = 1, p, e ∈ E are constant positive functions then the

optimization principle for dynamic c-game is valid. It is easy to observe that in the
case when

ci
e(t) = f i(t), i = 1, p, e ∈ E, (4)

where f1(t), f2(t), . . . , fp(t) are arbitrary positive and non-decreasing functions, the
optimization principle for dynamic c-game is also satisfied with respect to each
player. If the dynamic network has the structure of a graph without directed cycles
then f1(t), f2(t), . . . , fp(t) in (4) may be arbitrary non-decreasing functions. In the
case when G has the structure of a k-partite directed graph without directed cycles,
the optimization principle is satisfied for arbitrary positive cost functions.

Theorem 4. Let (G,X1,X2, . . . ,Xp, c
1(t), c2(t), . . . , cp(t), x0, xf) be the dynamic

network with p players for which the vertex xf in G is attainable from x0 and for
any vertex x ∈ X there exists an edge e = (x, y) ∈ E. Assume that the vector-
functions ci(t) = (ci

e1
(t), ci

e2
(t), . . . , ci

eN
(t)), i = 1, p, have positive and nondecreasing

components. Moreover, let us assume that the optimization principle on the dynamic
network is satisfied with respect to each player. Then, in the dynamic c-game on
networks (G,X1,X2, . . . ,Xp, c1(t), c2(t), . . . , cp(t), x0, xf) for the players 1, 2, . . . , p
there exists an optimal solution in the sense of Nash s∗1, s

∗

2, . . . , s
∗

p.

Proof. Let us regard the auxiliary network (G,Y1, Y2, . . . , Yp, c1(t),
c2(t), . . . , cp(t), y0, yf

) from Section 3 when T = N (see the proof of Theorem 2).
As we have already noted for the dynamic c-game on this network there exist the
optimal by Nash stationary strategies s∗1, s

∗

2, . . . , s
∗

p which generate in G = (Y,E) a
trajectory y0 = (x0, 0), (x1, 1), (x2, 2), . . . , (xT (xf ), T

(

xf)
)

= y
f

from y0 to y
f
. The

construction given below shows that x0, x1, . . . , xT (xf ) = xf correspond to a trajec-
tory generated by an optimal stationary strategies s∗1, s

∗

2, . . . , s
∗

p for dynamic c-game
on network (G,X1,X2, . . . ,Xp, c

1(t), c2(t), . . . , cp(t), x0, xf). The stationary strate-
gies s∗1, s

∗

2, . . . , s
∗

p can be obtained from s∗1, s
∗

2, . . . , s
∗

p as follows.

Algorithm 2

Preliminary step (Step 0). Set W 0 = {(x0, 0), (x1, 1), . . . , (xT (xf ),

T
(

xf)
)

}, and X0 = {x0, x1, . . . , xT (xf )}. For every xt ∈ X, t = 0, T (xf), we put
s∗i (xt) = xt+1 if xt ∈ Xi, i ∈ {1, 2, . . . , p}.

General step (Step k). If Xk−1 = X then STOP; otherwise we find the set

Ws∗(X
k−1) = {(x, t) ∈ (X \ Xk−1) × {1, 2, . . . , N}

∣

∣

∣
s∗(x, t) ∈ W k−1

for (x, t) ∈ Yi, i = 1, p}.
If Ws∗(X

k−1) = ∅ then for every x ∈ X \ Xk−1 we put s∗i (x) = z where
s∗i (x, t) = (z, t + 1) with (x, t) ∈ Yi and minimal t, i ∈ {1, 2, . . . , p}. In the case
Ws∗(X

k−1) 6= ∅ we find a vertex (x′, t′) ∈ Ws∗(X
k−1) with a minimal t′ for given

x′. Then we form the sets W k = W k−1 ∪ {x′, t′}, Xk = Xk−1 ∪ {x′} and go to next
step.
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It is easy to observe that if the condition of the theorem holds then the
verteces x0, x1, . . . , xT (xf ) are different and the stationary strategies s∗1, s

∗

2, . . . , s
∗

p

represent the optimal solution in the sense of Nash for dynamic c-game on
(G,X1,X2, . . . ,Xp, c

1(t), c2(t), . . . , cp(t), x0, xf). 2

So the optimal by Nash solution for stationary case of the problem in the
a case when the conditions of Theorem 4 hold can be find in the following
way. We construct the auxiliary network (G,Y1, Y2, . . . , Yp, c1(t), c2(t), . . . , cp(t), y0,
y

f
) we find the optimal stationary strategies on this network by using the algo-

rithm from [8]. Then we apply algorithm 2 and find optimal stationary strategies
s∗1, s

∗

2, . . . , s
∗

p.

6 Tree of optimal paths in dynamic c-game

In [11] is shown that if the cost functions ci
e, i = 1, p, on edges e ∈ E are

constant and the final position xf in G is attainable from each x ∈ X then there
exist the optimal strategies s∗1, s

∗

2, . . . , s
∗

p such that the graph HS
∗ = (X,ES

∗) gen-
erated by these strategies has the structure of a directed tree with sink vertex xf .
Moreover s∗1, s

∗

2, . . . , s
∗

p represent the solution of the dynamic c-game on network
(G,X1,X2, . . . ,Xp, c

1(t), c2(t), . . . , cp(t), x, xf ) with an arbitrary starting position
x ∈ X and final position xf . This means that optimal strategies of players for
considered case does not depend on starting position x0 ∈ X. In general case for
arbitrary cost function on edges the optimal strategies of players depend on starting
position x0.

Let us consider the dynamic c-game on network (G,X1,X2, . . . ,Xp, c
1(t),

c2(t), . . . , cp(t), x0, xf ) for which the optimization principle is satisfied with respect
to each player and the cost function on edges are non-decreasing functions. We
show that if every vertex x ∈ X in G is attainable from x0 then there exists
a tree H∗ = (X,E∗) with root vertex x0 such that H∗ gives all optimal paths
PH

∗(x0, x) from x0 to x ∈ X. A unique directed path PH
∗(x0, x) from x0 to an ar-

bitraty x ∈ X in H∗ corresponds to a solution s∗1, s
∗

2, . . . , s
∗

p of the game on network
(G,X1,X2, . . . ,Xp, c

1(t), c2(t), . . . , cp(t), x0, xf) with starting position x0 and final
position x. But for different verteces x and y the directed paths P ′

H
∗(x)(x0, x) and

P ′′

H
∗(x0, y) in H∗ correspond to different optimal strategies of players s∗1, s

∗

2, . . . , s
∗

p

and s
∗

1, s
∗

2, . . . , s
∗

p in different dynamic c-games with starting vertex x0 and final
positions x, y, respectively.

Theorem 5. Let (G,X1,X2, . . . ,Xp, c
1, c2, . . . cp, x0, xf ) be the dynamic network

with p players for which in G any vertex x ∈ X is attainable from x0 and vector-
functions ci(t) = (ci

e1
(t), ci

e2
(t), . . . , ci

em
(t)), i = 1, p, have non-negative and non-

decreasing components. Moreover, let us consider that the optimization princi-
ple for the dynamic network is satisfied with respect to each player. Then, in
G there exists a tree H∗ = (X,E∗) for which any vertex x ∈ X is attainable
from x0, and a unique directed path PH

∗(x0, xf ) from x0 to x in H∗ corresponds
to an optimal strategies s∗1, s

∗

2, . . . , s
∗

p of players in dynamic c-games on network
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(G,X1,X2, . . . ,Xp, c
1, c2, . . . , cp, x0, x) with starting position x0 and final position

x. For different verteces x and y the optimal paths P ′

H
∗(x0, x) and P ′′

H
∗(x0, y) cor-

respond to different strategies of players s∗1, s
∗

2, . . . , s
∗

p and s
∗

1, s
∗

2, . . . , s
∗

p in different
games with starting vertex x0 and final positions x, y, respectively.

Proof. According to Theorem 4 in G for any vertex x ∈ X there exists the optimal
path Ps∗(x0, x) from x0 to x which corresponds to the optimal strategies of the
players in the dynamic c-game with starting position x0 and final position x. Let
us select all vertices x ∈ X for which optimal paths in G contain not more than
one edge. Obviously, the graph H1 = (X1, E1) generated by these paths has the
structure of a directed tree with root vertex x0. If X1 = X the assertion is proved. If
X1 6= X, then we select the vertices x ∈ X \X1 for which there exist optimal paths
PH

∗(x0, x) from x0 to x which contain two edges. According to Lemma 1 each of the
paths P 1

H
∗(x0, y), representing the part of the optimal paths PH

∗(x0, x) in G is an
optimal one. Therefore, each of the optimal paths P

H
1(x0, x) can be regarded as the

path which contains one part of the paths P 1
H

∗(x0, y). If we add to H1 the last edges
of the optimal paths PH

∗(x0, x) with vertices x we obtain the tree H2 = (X2, E2)
with root vertex x0. In H2 any directed path P

H
2(x0, x) from x0 to x is an optimal

path. If X2 = X, the theorem is proved. If X2 6= X, then select the vertices x ∈ X
for which there exist optimal paths PH

∗(x0, x) from x0 to x containing three edges.
In an analogous way, we find the tree H3 = (X3, E3) and so on. In a finite number
of steps, we find the tree Hq = (Xq, Eq) for which Xq = X and for any vertex x ∈ X
the unique directed path PH

q(x0, x) from x0 to x in Hq is an optimal one. 2

Note that if for the problem with backward time-step account we define opti-
mization principle in analogous way then the optimal strategies of players in this
game satisfy the same property as the optimal stationary strategies of players in
the problem with constant cost functions on edges. This means that there exist
the optimal stationary strategies s∗1, s

∗

2, . . . , s
∗

p such that the graph Hs∗ = (X,Es∗)
generated by these strategies has the structure of a directed graph with sink ver-
tex xf . So, s∗1, s

∗

2, . . . , s
∗

p represent the solution of dynamic c-game on network
(G,X1,X2, . . . ,Xp, c

1, c2, . . . cp, x, xf) with an arbitrary starting position x and final
position xf .

7 The algorithm for determining the tree of optimal paths

in a dynamic c-game on acyclic networks

Assumption. We regard a dynamic c-game with p players and assume that
in G any vertex x ∈ X is attainable from x0. Moreover, let us assume that the
optimization principle is satisfied with respect to each player and the functions
ci
e(t), e ∈ E, i = 1, p, have positive and non-decreasing components.

We propose an algorithm for determining the tree of optimal paths H∗ = (X,E∗)
when G has no directed cycles, i.e. G is an acyclic graph. We assume that the
positions of the network are numbered with 0, 1, 2, . . . , N − 1 according to partial
order determined by the structure of acyclic graph G. This means that if y > x then
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there is directed path P (y, x) from x to y. The algorithm consists of N steps and
construct a sequence of trees Hk = (Xk, Ek), k = 0, N − 1, such that at the final
step k = N − 1 we obtain HN−1 = H∗.

Algorithm 3

Preliminary step (step 0). Set H◦ = (X◦, E◦), where X◦ = {x0}, E◦ = ∅.
Assign to every vertex x ∈ X a set of labeles F 1(x), F 2(x), . . . , F p(x), t(x) as follows:

F i(x0) = 0, i = 1, p,
F i(x) = ∞, ∀x ∈ X \ {x0}, i = 1, p,
t(x0) = 0,
t(x) = ∞, ∀x ∈ X \ {x0}.

General step (step k). Find in X \ Xk−1 the least vertex xk and the set of
incoming edges E−(xk) = {(xr, xk) ∈ E |xr ∈ Xk−1} for xk. If |E−(xk)| = 1 then
go to a); otherwise go to b):

a) Find a unique vertex y such that e′ = (y, xk) ∈ E−(xk) and calculate

F i(xk) = F i(y) + ci
(y,xk)

(t(y)), i = 1, p;

t(xk) = t(y) + 1.
(5)

After that form the sets Xk = Xk∪{xk}, Ek = Ek−1∪{xk} and put Hk = (Xk, Ek).
If k < N −1 then go to the next step k +1; otherwise fix E∗ = EN−1, H∗ = (X,E∗)
and stop.

b) Select the greatest vertex z ∈ Xk−1 such that in graph Hk =
(

Xk−1 ∪

{xk}, Ek−1 ∪ E−(xk)
)

there exist at least two parallel directed paths P ′(z, xk),

P ′′(z, xk) from z to xk without common edges, i.e. E(P ′(z, xk))∩E(P ′′(z, xk)) = ∅.
Let e′ = (xr, xk) and e′′ = (xs, xk) be the respective edges of these paths with
common end vertex in xk. So, e′, e′′ ∈ E−(xk). For the vertex z we determine iz
such that z ∈ Xiz .

If
F iz(xr) + ciz

(xr ,xk)
(t(xr)) ≤ F iz(xs) + ciz

(xs,xk)
(t(xs))

then we delete the edge e′′ = (xs, xk) from E−(xk) and from G; otherwise we delete
the edge e′ = (xr, xk) from E−(xk) and from G. After that check again the condition
|E−(xk)| = 1? If |E−(xk)| = 1 then go to a) otherwise go to b). 2

Remark 2. The values F i(x), i = 1, p, for x ∈ X in the algorithm 3 express the
respective costs of the players in dynamic c-game with starting position x0 and final
position x.

Note that the version of the problem with backward time-step account can be
solved using algorithm 3. This algorithm finds the optimal strategies of players
and constructs the tree of optimal paths Hs∗ = (X,Es∗) with sink vertex xf if
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the optimization principle is satisfied with respect to each players. We explain the
algorithm for the case of acyclic networks.

Algorithm 4

Preliminary step (step 0). Set H
◦

= (X
◦

, E
◦

), where X
◦

= {xf}, E
◦

= ∅.
Assign to every vertex a set of labels F

1
(x), F

2
(x), . . . , F

p
(x), t′(x) as follows:

F
i
(xf) = 0, i = 1, p,

F
i
(x) = ∞, ∀x ∈ X \ {xf}, i = 1, p,

t′(xf) = 0,
t′(x) = ∞, ∀x ∈ X \ {xf}.

General step (step k). Find a vertex yk ∈ X \Xk which satisfies the condition

X+(yk) ⊆ Xk−1,

where X+(yk) = {x ∈ X | (xk, yk) ∈ E}. Denote E+(yk) = {(yk, x) ∈ E |x ∈
X+(yk)} and select an edge (yk, xk) which satisfies the condition

F
ik(yk) + cik

(yk ,xk)
(t′(xk)) = min

xk
∈X+(yk)

{F ik(yk) + cik
(yk ,x)

(t′(x))} if yk ∈ Xik .

After that we calculate

F
i
(yk) = F

i
(yk) + ci

(yk ,xk)
(t′(xk)), i = 1, p,

t′(yk) = t′(xk) + 1.

Form the sets X
k

= X
k−1 ∪ {yk}, E

k
= E

k−1 ∪ {(yk, xk)} and put
H∗ = (Xk, Ek). If k < N − 1 then go to the next step k + 1; otherwise fix

E∗ = E
n−1

, Hs∗ = (X,Es∗) and stop.

Remark 3. The values F
i
(x), i = 1, p, for x ∈ X in the algorithm 4 express the

respective costs of players in the dynamic c-game with starting position x and final
position xf .

Example

Let us consider the stationary dynamic c-game of two players. The game is
determined by the network given in Fig. 2. This network consists of directed graph
G = (X,E) with partition X = X1 ∪ X2, X1 = {0, 2, 5, 6}, X2 = {1, 3, 4}, starting
position x0 = 0, final position xf = 6 and the cost functions of players 1 and 2 given
in paranthesis in Fig. 1.

It is easy to check that the optimization principle for this dynamic network is
satisfied with respect to each player. Therefore if we use algorithm 2 we obtain:

Step 0: H◦ = ({0}, ∅); X◦ = {0}; E◦ = ∅; F 1(0) = 0; F 2(0) = 0; t(0) = 0;
F i(x) = ∞ for x 6= 0, i = 1, 2; t(x) = ∞ for x 6= 0.
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Step 1: x1 = 1; E−(1) = {(0, 1)}; F 1(0) = 0; F 2(0) = 0; F 1(1) = 1;
F 2(1) = 2; t(0) = 0; t(1) = 1; F i(x) = 0 for x 6= 0, 1 and i = 1, 2; t(x) = ∞
for x 6= 0, 1.

After step 1 we have H1 = ({0, 1}, {(0, 1)}), i.e. X1 = {0, 1}, E1 = {0, 1}.

Step 2: x2 = 2; E−(2) = {(0, 2), (1, 2)}. Since E−(2) 6= 1 we have the case b):
z = 0; P ′(0, 2) = {(0, 2)}, P ′′(0, 2) = {(0, 1), (0, 2)}; e1 = (0, 2); e′′ = (1, 2) and
iz = 1 because 0 ∈ X1. For e′ and e′′ the following condition holds:

F 1(0) + c1
(0,2)(0) ≤ F 1(1) + c1

(1,2)(1), i.e. 1 ≤ 2.

Therefore we delete (1,2) from E−(2) and obtain E−(2) = {(0, 2)} (case a)). We
calculate F 1(2) = F 1(0) + c1

(0,2)
(0) = 1; F 2(2) = F 2(0) + c2

(0,2)
(0) = 1;

t(2) = t(0) + 1 = 1.
After step 2 we obtain H2 = ({0, 1, 2}, {(0, 1), (0, 2)}); F 1(0) = 0; F 2(0) = 0;

F 1(1) = 1; F 2(1) = 2; F 1(2) = 1; F 2(2) = 1; F i(x) = ∞ for x 6= 0, 1, 2,
i = 1, 2;

t(0) = 0; t(1) = 1; t(2) = 1; t(x) = ∞ for x 6= 0, 1, 2.

Step 3: x3 = 3; E−(3) = {(1, 3), (2, 3)}. So, we have E−(3) 6= 1 (case b):
z = 0; P ′(0, 3) = {(0, 1), (1, 3)}; P ′′(0, 3) = {(0, 2), (2, 3)}; e1 = (1, 3); e′′ = (2, 3);
iz = 0. For e′ and e′′ we have

F 1(1) + c1
(1,3)(1) ≤ F 1(2) + c1

(2,3)(1)

Therefore we delete (2,3) from E−(3). So, E−(3) = {(1, 2)} and F 1(3) = F 1(1) +
c1

(1,3)
(1) = 1 + 1 = 2; F 2(3) = F 2(1) + c2

(1,3)
(1) = 2 + 2 = 4; t(3) = t(1) + 1 = 2.

We delete the H3 = ({0, 1, 2, 3}, {(0, 1), (0, 2), (1, 3)}); F 1(0) = 0; F 2(0) = 0;
F 1(1) = 1; F 2(1) = 2; F 1(2) = 1; F 2(2) = 1; F 1(3) = 2; F 2(3) = 4;
F i(x) = ∞ for x ∈ {4, 5, 6}, i = 1, 2;

t(0) = 1; t(1) = 1; t(2) = 1; t(3) = 2; t(4) = t(5) = t(6) = ∞.

Step 4: x4 = 4; E−(3) = {(3, 4)}. Therefore we obtain H4 = ({0, 1, 2, 3, 4},
{(0, 1), (0, 2), (1, 3), (3, 4)}); F 1(0) = 0; F 2(0) = 0; F 1(1) = 1; F 2(1) = 2;
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F 1(2) = 1; F 2(2) = 1; F 1(3) = 2; F 2(3) = 4; F 1(4) = 3; F 2(4) = 8; F 1(5) = ∞;
F 2(5) = ∞; F 1(6) = ∞; F 2(6) = ∞;

t(0) = 0; t(1) = 1; t(2) = 1; t(3) = 2; t(4) = 3; t(5) = t(6) = ∞.

Step 5: x5 = 5; E−(3) = {(1, 5), (3, 5), (4, 5)}. Since E−(3) = 3 we have case
b): z = 3; P ′(3, 5) = {(3, 5)}; P ′′(3, 5) = {(3, 4), (4, 5)}; e′ = (3, 5); e′′ = (4, 5);
iz = 2. For e′ and e′′ we have

F 2(3) + c2

(3,5)(2) ≤ F 2(4) + c2

(4,5)(3).

We delete the edge (4,5) from E−(4) and obtain E−(4) = {(1, 5), (3, 5)}. For the
edges e′ = (1, 5) and e′′ = (3, 5) we find z = 1, iz = 2 and the paths P ′(1, 5),
P ′′((1, 3), (3, 5)). Since the following condition holds:

F 2(1) + c2
(1,5)(1) ≤ F 2(3) + c2

(3,5)(2).

We delete the edge (3,5) from E−(4) and obtain E−(4) = {(1, 5)}. So

F 1(5) = F 1(1) + c1
(1,5)(1) = 2; F 2(5) = F 2(1) + c2

(1,5)(1) = 5; t(5) = t(1) + 1 = 2.

After step 5 we obtain H5 = ({0, 1, 2, 3, 4, 5}, {(0, 1), (0, 2), (1, 3), (3, 4),
(1, 5)}); F 1(0) = 0; F 2(0) = 0; F 1(1) = 1; F 2(1) = 2; F 1(2) = 1; F 2(2) = 1;
F 1(3) = 2; F 2(3) = 4; F 1(4) = 3; F 2(4) = 8; F 1(5) = 2; F 2(5) = 5; F 1(6) = ∞;
F 2(6) = ∞;

t(0) = 0; t(1) = 1; t(2) = 1; t(3) = 2; t(4) = 3; t(5) = 2.

Step 6: x6 = 6; E−(6) = {(4, 6), (5, 6)}; E−(6) 6= 1 we have case b): z = 1;
P ′(1, 6) = {(1, 5), (5, 6)}; P ′′(1, 6) = {(1, 3), (3, 4), (4, 6)}; e′ = (5, 6); e′′ = (4, 6);
i7 = 2. For e′ and e′′ the following condition holds:

F 2(5) + c2
(5,6)(2) ≤ F 2(4) + c2

(4,6)(3).

We delete (4,6) from E−(4). Therefore we obtain

F 1(6) = F 1(5) + c1
(5,6)(2) = 3; F 2(6) = F 2(5) + c2

(5,6)(2) = 7; t(6) = t(5) + 1 = 3.

Finally we obtain H6 = H∗ = ({0, 1, 2, 3, 4, 5, 6}, {(0, 1), (0, 2), (1, 3), (3, 4),
(1, 5), (5, 6)}); F 1(0) = 0; F 2(0) = 0; F 1(1) = 1; F 2(1) = 2; F 1(2) = 1;
F 2(2) = 1; F 1(3) = 2; F 2(3) = 4; F 1(4) = 3; F 2(4) = 8; F 1(5) = 2; F 2(5) = 5;
F 1(6) = 3; F 2(6) = 7;

t(0) = 0; t(1) = 1; t(2) = 1; t(3) = 2; t(4) = 3; t(5) = 2; t(6) = 3.

So, for the dynamic c-game on our network we obtain the tree of optimal paths
given in Fig. 2. For the case of dynamic c-game with backward time-step account
we obtain the tree of optimal paths given in Fig. 3.
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7.1 Computational complexity and correctness

of the algorithm

Note that if for a given e ∈ E, t ∈ {0, 1, 2, . . . , N − 1} and i ∈ {1, 2, . . . , p} the
value ci

e(t) can be calculated in time k then the algorithm determines the tree of
optimal paths H∗ = (X,E∗) in time O(pN3k). Indeed, each general step of the
algorithm requires O(pN2k) operations and the maximal number of the steps is
N − 1. So the computational complexity of the algorithm is O(pN3k).

The correctness of algorithm 2 can be proved in the same way as the correctness
of algorithm 1 if we use the induction principle on number of steps k. In the case
k = 1 the correctness of the algorithm is evident. Assume that algorithm 2 finds
the tree optimal paths for k = r and let us show that it finds the tree of optimal
paths for the case k = r + 1. Denote by Hr = (Xr, Er) the tree obtained after r
steps and by Hr+1 = (Xr+1, Er+1) denote the tree obtained after r + 1 steps. So,
X ′ = Xr+1 \ Xr, E′ = Er+1 \ Er.

Let xr+1 be the vertex from X ′ and consider the stationary dynamic c-game on
network (G, X1, X2, . . . , Xp, c1(t), c2(t), . . . , cp(t), x0, xr+1) with starting position
x0 and final position xr+1.

According to induction principle each path from x0 to y ∈ Xr in Hr is optimal
one. This means that to reach a position y ∈ X with the best costs for the players in
the game each player should pass through the edges of the unique directed path from
x0 to y in Hr. But to reach the vertex xr+1 ∈ X ′ from x0 with the best costs for the
players in the game each player should pass through the edge e′ = (y, xr+1) ∈ E′

as soon vertex y is reached. A such best solution is well-provid by conditions of the
algorithm in the case when the optimization principle on network is satisfied with
respect to each player.
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So, a directed path P
H

r+1(x0, x
r+1) in the Hr+1 = (Xr+1, Er+1) corresponds to

a optimal solutions s∗1, s
∗

2, . . . , s
∗

p in dynamic c-game.

8 Generalizations

For our problem formulated in Section 3 we have assumed that the time of
passages τx,y of the system L from one state x ∈ X to another state y ∈ X for every
(x, y) ∈ E is equal to 1. It is easy to observe that all the results of the paper can
be extended to the problem in general case where different edges (x, y) and (x′, y′)
of the graph of passages G may have different time of passages τxy, τx′y′ and each of
them may be different from 1. Theorems 1–5 for the problem in general case hold,
too, and can be proved analogously. Therefore, if we replace in the algorithm the
relation in (5) by the following relation

t(y′) = t(x′) + τx′y′ ,

then we obtain an algorithm for solving the problem in general form. The computa-
tional complexity of the algorithm in this general case is also O(pN3k) operations,
where k is the running-time for the calculation of the value ci

e(t) for given i, e and t.
A more general mathematical model of a dynamic c-game may be obtained when

the positions of the players are changing in time, i.e. for any moment of time
t = 0, 1, 2, . . . , the partitions X = X1(t)∪X2(t)∪· · ·∪Xp(t) (Xi(t)∩Xj(t) = ∅, i 6= j)
are given. Using the dynamical decomposition of the network from [6, 12] this
problem can be reduced to the problem formulated in Section 2.

All formulated problems in the paper may be studied also in the cases when the
optimality criterion is considered in the sense of Pareto [12]. The results can be seen
in a wider sense as a continuation of [13] regarding game-theoretical approaches on
networks [14, 15] including global structures for such problems [16].

Note that some generalizations of routing and flow problems by using game-
theoretical approach have been used in [17, 18]. But the generalizations from [17,
18] is not related to dynamic games in positional form.
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Chişinău, MD−2028
Moldova
E-mail: lozovanu@math.md

Stefan Pickl

Institute of Mathematics
Center of Applied Computer Science
University of Cologne
E-mail: pickl@zpr.uni-koeln.de

Received August 16, 2004



BULETINUL ACADEMIEI DE ŞTIINŢE
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On I-radicals

O. Horbachuk, Yu. Maturin

Abstract. In this paper I-radicals are studied. Rings are characterized with the
help of I-radicals. For example, each I-radical over a left perfect ring splits if and only
if this ring is a direct sum of finitely many left perfect rings, the Jacobson radicals of
which are maximal ideals of them.
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As usual, all rings are associative with 1 6= 0, all modules are unitary, J(R)
denotes the Jacobson radical of a ring R. The category of all left R-modules (right
R-modules) will be denoted by R − Mod (Mod−R).

A subset I of a ring R is left (right) T -nilpotent whenever for every sequence
a1, a2, . . . in I there is an n such that an . . . a2a1 = 0 (a1a2 . . . an = 0).

A ring R is said to be left (right) perfect if J(R) is right (left) T -nilpotent and
R/J(R) is semisimple.

A preradical r is said to be a hereditary preradical in case r is a left exact
preradical.

A preradical r is said to be a hereditary torsion in case r is a left exact radical.
A hereditary torsion r of R − Mod is an S-torsion if there exists a left ideal

H of R satisfying the following condition {I is a left ideal of R | I + H = R} =
{I is a left ideal of R | r(R/I) = R/I} (see [8]).

It is well known that for each left (right) ideal D of R rD is an idempotent radical
of R − Mod (Mod−R), where

rD(M) =
∑

{N | N is a submodule of M,DN = N}

(rD(M) =
∑

{N | N is a submodule of M,ND = N})

for every left (right) R-module M [6].
A preradical r is said to be an I-radical if r = rD for some left (right) ideal D

of R.
If R is a ring, then the lattice of all I-radicals of R − Mod is denoted by

Ir(l, R) [6].
We shall say that a preradical r of R − Mod splits if for each left R-module M

r(M) is a direct summand of M .
Let R be a ring and let M be a right R-module. For each m ∈ M we define the

following subset of R
Annr(m) = {x ∈ R | mx = 0}.
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Lemma 1. Let I be a two-sided ideal of a ring R. Then the set of right ideals EI =
{T | T +I = R} is a radical filter if and only if the set SI = {a | a ∈ R, aR+I = R}
satisfies the following conditions:

1) SI is multiplicatively closed;

2) if s ∈ SI and a ∈ R then there exist s′ ∈ SI and a′ ∈ R such that sa′ = as′.

Proof. EI has a basis consisting of principal right ideals (for example, {aR | a ∈ SI}
is a basis). Now we consider the conditions S1 – S4 [3, Proposition 15.1]. S2 – S3 are
clear. To verify S1 we take into account that 1 ∈ SI . The property S4 is immediate
from the fact that st ∈ SI implies that s ∈ SI [5]. �

Theorem 1. Let I be a two-sided ideal of R and SI = {a | a ∈ R, aR + I = R}.
Then rI is a hereditary torsion if and only if the following conditions are fulfilled:

1) SI is multiplicatively closed;

2) if s ∈ SI and a ∈ R then there exist s′ ∈ SI and a′ ∈ R such that sa′ = as′;

3) for every sequence {ai}∞i=1
(where ai ∈ I for each i = 1, 2, . . .)

∞
⋃

i=1

Annr(aiai−1 . . . a1) + I = R.

Proof. (⇒) Let I be a two-sided ideal and rI be a hereditary torsion. Then the
radical filter for rI is the set EI = {T | T is a right ideal of R,T + I = R}. In
accordance with Lemma 1 conditions 1 – 2 are fulfilled. Suppose that condition 3
does not hold true. Then there exists a sequence {ai}∞i=1

(where ai ∈ I for each

i = 1, 2, . . .) such that
∞
⋃

i=1

Ann(aiai−1 . . . a1) + I 6= R. Let F be a free module with

free basis {xi}∞i=1
and P be a submodule of F spanned by {xi − xi+1ai}∞i=1

. Then
rI(F/P ) = F/P but the submodule x1R of F/P does not belong to T (rI). This
contradicts the assumption that rI is a hereditary torsion.

(⇐) Let I be a two-sided ideal of R satisfying conditions 1–3 of the Theorem.
Then in accordance with Lemma 1 EI = {T | T is a right ideal of R,T +I = R} is a
radical filter. Let α is a hereditary torsion corresponding to the radical filter EI . If
α 6= rI then there exists a right module N such that rI(N) = N and α(N) 6= N . Put
M = N/α(N). Then M ∈ T (rI) and M ∈ F (α). The last relation means that for
every m ∈ M \{0} Annr(m)+ I 6= R. On the other hand since M ∈ T (rI), for every

element x ∈ M \ {0} there exist x
(1)

i ∈ M and a
(1)

i ∈ I (i = 1, . . . , n1) such that x =
n1
∑

i=1

x
(1)

i a
(1)

i . At least one of the elements x
(1)

i a
(1)

i (i = 1, . . . , n1) is non-zero. Suppose

that x
(1)

1
a

(1)

1
6= 0. Reasoning similarly we have that x

(1)

1
=

n2
∑

i=1

x
(2)

i a
(2)

i 6= 0. Hence

x
(1)

1
a

(1)

1
=

n2
∑

i=1

x
(2)

i a
(2)

i a
(1)

1
6= 0. Therefore there exists i, for example i = 1, such that

x
(2)

1
a

(2)

1
a

(1)

1
6= 0. Going on we obtain the sequence {x(i)

1
a

(i)
1

a
(i−1)

1
. . . a

(1)

1
}∞i=1

of non-

zero elements belonging to M , where a
(i)
1

∈ I for each i = 1, 2, . . .. Property 3 shows
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that for the sequence {a(i)
1
}∞i=1 there exists k such that Annr(a

(k)

1
a

(k−1)

1
. . . a

(1)

1
)+I =

R. Since Annr(x
(k)

1
a

(k)

1
a

(k−1)

1
. . . a

(1)

1
) ⊇ Annr(a

(k)

1
a

(k−1)

1
. . . a

(1)

1
), Annr(y) + I = R,

where y = x
(k)

1
a

(k)

1
a

(k−1)

1
. . . a

(1)

1
6= 0. Thus, 0 6= y ∈ α(M). It means that M /∈ F (α).

But M ∈ F (α). We have a contradiction. �

Theorem 2.Let R be a commutative ring. Then each I-radical is a hereditary
torsion if and only if R/J(R) is a von Neumann regular ring and J(R) is left T -
nilpotent.

Proof. (⇐) Let J(R) be left T -nilpotent and R/J(R) be a von Neumann regular
ring. Since conditions 1–2 of Theorem 1 are satisfied for every commutative ring,
we have to verify condition 3 of Theorem 1 for an arbitrary two-sided ideal I 6= R.

Let {ai}∞i=1
be any sequence such that ai ∈ I for each i = 1, 2, . . . . Suppose

that there exist infinitely many elements ai belonging to J(R). Then taking into
consideration that R is commutative and J(R) is left T -nilpotent, it is obvious that
∞
⋃

i=1

Annr(anan−1 . . . a1) = R. Hence
∞
⋃

n=1

Annr(anan−1 . . . a1) + I = R. Therefore

assume that ai /∈ J(R) for any i ≥ k, where k ∈ N. Since R/J(R) is a von Neumann
regular ring, there exist elements xi ∈ R, gi ∈ J(R) for each i ≥ k such that
ai(xiai −1) = gi. There exists m ∈ N such that gm . . . gk = 0 (m ≥ k) because J(R)
is left T -nilpotent. Hence (gm . . . gk)(xmam − 1) . . . (xkak − 1) = 0. It is clear that
(xmam − 1) . . . (xkak − 1) = a ± 1 for some a ∈ I. Thus Annr(am . . . a1) + I = R.

(⇒) Suppose that every I-radical is a hereditary torsion. Since every idempotent
radical over a commutative ring corresponding torsion theory to which is cogenerated
by a simple module is an I-radical ([4, Proposition 2]), every such an idempotent
radical is a hereditary torsion. Therefore the idempotent radical r corresponding
torsion theory to which is cogenerated by the class of all simple modules is also a
hereditary torsion because it is an intersection of hereditary torsions [1, p.51]. For
each maximal ideal M of R R/M ∈ F (r). Therefore {R} is a radical filter for r.
This means that T (r) = {0}. Hence for each non-zero R-module N there exists
a simple module P such that HomR(N,P ) 6= 0. Therefore N contains a maximal
submodule. Thus every non-zero module N contains a maximal submodule. Now
apply Theorem 1.8 [7]. Therefore J(R) is left T -nilpotent and R/J(R) is a von
Neumann regular ring. �

Theorem 3. Let R be a ring.Then the following statements are equivalent:

(1) Every preradical of Mod−R is an I-radical;

(2) Every hereditary preradical of Mod−R is an I-radical;

(3) soc of Mod−R is an I-radical;

(4) R is semisimple.

Proof. (3) ⇒ (4) Let soc of Mod−R be an I-radical. Then soc = rS for some
two-sided ideal S of R. Then rS(R/M) = soc(R/M) = R/M for any maximal right
ideal M of R. It follows from this that (R/M)S = R/M for any maximal right ideal
M of R. Hence (S + M)/M = R/M , i.e. S + M = R for any maximal right ideal
M of R. Thus S = R. Then RS = RR = R. Therefore soc(R) = R.
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(4) ⇒ (1) Let R be semisimple. Then every right R-module M is projective.
Now apply Proposition 1.4.4 [1] and we have that r(M) = Mr(R) for every right
R-module M , where r is an arbitrary preradical of Mod−R. It follows from this
that every preradical of Mod−R is an I-radical.

(1) ⇒ (2). This is clear.
(2) ⇒ (3). This is clear. �

Theorem 4. Let R be a ring. If every hereditary torsion of Mod−R is an I-radical
then R is left perfect.

Proof. If a hereditary torsion is an I-radical then it is an S-torsion [8]. Now apply
Corollary 3 [8]. �

Theorem 5. Let R be a ring satisfying the following conditions:

R/J(R) ∼= T1 × . . . × Tn for some simple rings

T1, . . . , Tn and J(R) is right T -nilpotent.

Then the following statements are equivalent:
(A) Each I-radical splits;
(B) Each atom of the lattice Ir(l, R) splits;

(C) R = R1

·→ + . . .
·→ +Rn, where Ri/J(Ri) is simple for every i ∈ {1, . . . , n}.

Proof. (A) ⇒ (B) This is clear.
(B) ⇒ (C) Assume that each atom of Ir(l, R) splits. By Theorems 4–5 [6], the

lattice Ir(l, R) has n atoms r1, . . . , rn. Then ri = rIi
for every i ∈ {1, . . . , n}, where

Ii is an idempotent ideal (see Theorem 9 [6]). Let i ∈ {1, . . . , n}. Then

R = ri(R) ⊕ Hi, (1)

where Hi is a left ideal of R. By Proposition 2 [6], ri(R) = IiR = Ii. Taking into
consideration (1), we have that Ii ⊕ Hi = R. This implies

Ii = Rei, (2)

where ei is an idempotent of R.
Therefore {e1, . . . , en} is a set of idempotents of the ring. Let’s show that all

these idempotents are pairwise orthogonal. To prove this we shall show that IiIj = 0
for i 6= j, i, j ∈ {1, . . . , n}. Really, in view of splitingness we have

Ij = ri(Ij) ⊕ Lij, (3)

where Lij is a left ideal of R. By Proposition 2 [6]

ri(Ij) = IiIj . (4)

By (3)–(4),
Ij = IiIj ⊕ Lij . (5)
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It follows from (1), (2), (5) that

R = IiIj ⊕ Lij ⊕ Hj. (6)

By (6),

IiIj = Reij , (7)

where eij is an idempotent of R.
Since ri and rj are atoms, nR = ri ∧ rj , where nR is 0 in Ir(l, R) [6].
Taking into account the proof of Theorem 1 [6],

ri ∧ rj = rIi
∧ rIj

= rIiIj
.

Therefore nR = rIiIj
. By Proposition 1 [6] IiIj is right T -nilpotent. By (7),

eij ∈ IiIj. Since IiIj is right T -nilpotent, es
ij = 0 for some s ∈ N. Since eij is an

idempotent, eij = es
ij . Hence eij = 0. It follows from (7) that IiIj = 0. Since

eiej ∈ IiIj , eiej = 0. We shall show that R = I1 + . . . + In. Since {r1, . . . , rn} is the
set of atoms of Ir(l, R) (see [6]),

rR = uR = r1 ∨ . . . ∨ rn = rI1 ∨ . . . ∨ rIn
= rI1+...+In

(see proof of Theorem 1 [6]).
By Proposition 1 [6], R = I1 + . . . + In, i.e. R = Re1 + . . . + Ren. Thus, since

idempotents e1, . . . , en are pairwise orthogonal, the set {e1, . . . , en} is complete.
Therefore we have the ring decomposition R = I1 ⊕ . . . ⊕ In.

Then

R/J(R) ∼= I1/J(I1) × . . . × In/J(In). (8)

Since R/J(R) ∼= T1 × . . . × Tn for some simple rings T1, . . . , Tn, R/J(R) ∼=
T1 × . . . × Tn is an indecomposable ring decomposition. It follows from (8) that
Ii/J(Ii) is a simple ring for each i ∈ {1, . . . , n} (see Proposition 7.8 [2]). It means
that we have proved (B) ⇒ (C).

(C) ⇒ (A) Assume (C). Let r ∈ Ir(l, R). Then r = rI for some ideal I of R
(see Remark 1 [5]). Let {e1, . . . , en} be the set of idempotents for the decomposition
R = R1 ⊕ . . . ⊕ Rn. Since Ri/J(Ri) is simple, either Iei + J(Ri) = J(Ri) or
Iei + J(Ri) = Ri.

Set A =
{

i ∈ {1, . . . , n} | Iei + J(Ri) = Ri

}

, B = {1, . . . , n} \ A.
By Proposition 1 [6],

rIei+J(Ri)
= nR, if i ∈ B; rIei+J(Ri)

= rRi
, if i ∈ A.

Then

rI = rIe1⊕...⊕Ien
= rIe1 ∨ . . . ∨ rIen

= rIe1+J(R1) ∨ . . . ∨ rIen+J(Rn) =

=
∨

i∈A

rIei+J(Ri)
∨

∨

i∈B

rIei+J(Ri)
=

∨

i∈A

rRi
∨ nR = r L

i∈A

Ri
.
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Since
⊕

i∈A

Ri is an idempotent ideal of R, it follows from Proposition 2 [6] that

for each left R-module M

rI(M) = r L

i∈A

Ri
(M) =

(

⊕i∈ARi

)

M.

Hence M = rI(M) ⊕
(

⊕

i∈B

Ri

)

M . �

Corollary 1. Let R be a left perfect ring. Then each atom of the lattice Ir(l, R)
splits if and only if the ring R is a direct sum of finitely many left perfect rings, the
Jacobson radicals of which are maximal ideals of them.

Corollary 2. Let R be a left perfect ring. Then each I-radical of R − Mod splits if
and only if the ring R is a direct sum of finitely many left perfect rings, the Jacobson
radicals of which are maximal ideals of them.
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On natural classes of R-modules

in the language of ring R
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Abstract. Every natural class of left R-modules is closed, i.e. is completely described
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transfer some results on natural classes to the lattice of left ideals of R.
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Introduction

Various types of classes of modules play an important role in the theory of rad-
icals. For example, every idempotent radical r of R-mod can be described by each
of the classes R(r) and P(r) of r-torsion or r-torsion free modules. The classes of
such types are characterized by closure properties (under submodules, homomor-
phic images, extensions, etc.) [1–3]. In the literature numerous types of classes of
modules with special properties are studied. In particular, very intensively are in-
vestigated the natural classes (≡ saturated classes) of R-modules, which are closed
under submodules, direct sums and injective envelopes [4–8].

In the present note an attempt is made to transfer some results on natural
classes of R-modules in to lattice L(RR) of left ideals of ring R, using some facts
from [9–11] on the relation between classes of left R-modules and sets of left ideals
of ring R. This is possible since every natural class of modules is closed, i.e. can be
characterized by special set of left ideals of R. Some descriptions of such sets are
indicated. The operator of complementation of natural classes is transfered in the
lattice L(RR), some properties and applications are shown. In particular, the lattice
R-Nat of natural sets is boolean.

1 Natural classes and natural sets

Let R be an arbitrary ring with unity and R-mod be the category of unitary left
R-modules. We consider the abstract classes of R-modules (i.e. M ∈ K, M ∼= N
implies N ∈ K).

Definition 1. The abstract class K ⊆ R-Mod is called natural if it is closed with
respect to submodules, direct sums and injective envelopes (or essential extensions).

c© A.I. Kashu, 2004
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The natural (≡ saturated) classes were studied in a series of works, in particular
in [4–8]. We are interested in some aspects related to the description of such classes
in the language of ring R. Firstly we remind the following known fact.

Lemma 1.1. If the class K ⊆ R-Mod is closed under submodules, finite direct sums
and injective envelopes, than K is closed also under extensions (i.e. if in the exact
sequence 0 → A → B → C → 0 modules A,C ∈ K, then B ∈ K).

Proof. Consider injective envelopes X = E(A), Y = E(C) and the diagram:

-

-
? ?

A

X

B

X ⊕ Y-

-0

0
?	

k h t

f
- C

-

l

Y -

- 0

0 ,

g

where k and l are injections. Since X is injective, there exists h: B → X with

hf = k. Define t: B → X ⊕ Y by t(b) =
(

h(b), lg(b)
)

, obtaining the commutative

diagram, where k and l are mono, so t is mono. Now from A,C ∈ K we conclude
that X,Y ∈ K, X ⊕ Y ∈ K and B ∈ K. �

Corollary 1.2. Every natural class of R-modules is closed under extensions.

In particular, the classes of the form P(r) = {RM | r(M) = 0} for a torsion r
can be described as classes closed under submodules, direct product and injective
envelopes, but these conditions that it is closed under extensions [2, 3, 10].

Now we are going to expose some general facts on the relation between classes
of modules K ⊆ R-Mod and some sets E ⊆ L(RR) of left ideals of R [9–11]. As
above we denote by L(RR) the lattice of left ideals of R. We define the following
two operators:

1) if K ⊆ R-Mod we denote

Γ(K) = {(0 : m) |m ∈ M, M ∈ K}, where (0 : m) = {a ∈ R | am = 0};

2) if E ⊆ L(RR) then by definition

∆(E) = {M ∈ R-Mod | (0 : m) ∈ E ∀m ∈ M}.
Definition 2 [9, 10]. The class K ⊆ R-Mod is called closed if K = ∆Γ(K). The
set E ⊆ L(RR) is called closed if E = Γ∆(E).

Lemma 1.3 [9, 10]. The class K ⊆ R-Mod is closed if and only if is satisfies the
condition:

(A1) M ∈ K ⇔ Rm ∈ K ∀m ∈ M ;

(or: (A′

1) M ∈ K ⇒ m ∈ M and (A′′

1) Rm ∈ K ∀m ∈ M ⇒ M ∈ K).
The set E ⊆ L(RR) is closed if and only if is satisfied the condition:

(a1) I ∈ E ⇒ (I : a) ∈ E ∀a ∈ R (where (I : a) = {b ∈ R | ba ∈ I}).
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Lemma 1.4 [9, 10]. The operators Γ and ∆ define a bijection (preserving
inclusions) between closed classes of R-Mod and closed sets of left ideals of L(RR).
If K and E correspond each other then: I ∈ E ⇔ R/I ∈ K.

For the pair (K, E) with K = ∆(E) and E = Γ(K) a series of closure properties
of K can be translated in the language of R as properties of the set E . The most
important examples of such properties of K are the closeness under:

(A2) homomorphic images;
(A3) direct sums;
(A4) direct products;
(A5) extensions;
(A6) essential extensions (≡ stability of K).
In parallels the following conditions of the set E ⊆ L(RR) are considered:
(a2) I ∈ E , J ∈ L(RR), J ⊇ I ⇒ J ∈ E ;
(a3) I, J ∈ E ⇒ I ∩ J ∈ E ;

(a4) Iα ∈ E(α ∈ A) ⇒
⋂

α∈A

Iα ∈ E ;

(a5) I ∈ E , J ∈ L(RR), J ⊆ I, (J : i) ∈ E ∀ i ∈ I ⇒ J ∈ E ;
(a6) J ∈ I, (J : i) ∈ E ∀ i ∈ I, I/J ⊆ ∗

R/J ⇒ J ∈ E
(where ⊆ ∗

is the essential inclusion).

Theorem 1.5 [9, 10]. Let (K, E) be a pair with K = ∆(E) and E = Γ(K). The
class K satisfies the condition (An) if and only if the set E satisfies the condition
(an) for n = 2, 3, 4, 5, 6.

Proof. These statements are proved in [9] and [10]. For convenience we verify the
case n = 6, which presents here a special interest.

(⇒) Let K satisfy (A6) and consider the situation of condition (a6). From
(J : i) ∈ E for every i ∈ I follows I/J ∈ K and now the condition I/J ⊆ ∗

R/J
implies R/J ∈ K, i.e. J ∈ E .

(⇐) Let E satisfy (a6), M ∈ K and M ⊆ ∗

N . For an element n ∈ N \ M we
have 0 6= Rn ⊆ N and M ∩ Rn 6= 0. Denote: I = (M : n), J = (0 : n). Then
In = M ∩ Rn 6= 0 and I ⊇ J . Moreover, for every i ∈ I we obtain in ∈ M , M ∈ K,

therefore (0 : in) =
(

(0 : n) : i
)

= (J : i) ∈ E . It is easy to verify that I/J ⊆ ∗

R/J .

Now we are in the situation of condition (a6) and so J ∈ E , i.e. (0 : n) ∈ E for every
n ∈ N , therefore N ∈ K and K is stable (condition (A6)). �

In continuation we will apply these results for the investigation of natural classes
of modules, taking into account that is true

Proposition 1.6. Every natural class of modules is closed.

Proof. Let K be an arbitrary natural class of R-Mod. Since K is hereditary,
we have (A′

1) and now we verify (A′′

1). Let M ∈ R-Mod and Rm ∈ K for every
m ∈ M . We consider the family P of independent sets of submodules of M . Then
P 6= ∅ and is inductive, therefore by Zorn’s lemma it possesses a maximal element

F = {Mα |α ∈ A}. We denote N = E
(

⊕

α∈A

Mα

)

⋂

M . Since Mα ∈ K for every
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α ∈ A, we obtain N ∈ K. If N ∩ P = 0 for 0 6= P ⊆ M , then from the choice
of M follows the existence of 0 6= M ′ ⊆ P with M ′ ∈ K. But then F ∪ {M ′} is
independent, in contradiction with maximality of F . This shows that N ⊆ ∗

M ,
therefore M ∈ K. �

So every natural class K is completely described by the corresponding set E =
= Γ(K) ⊆ L(RR). We will show some characterizations of such sets of left ideals.

Definition 3. The set E ⊆ L(RR) is called natural if it satisfies the conditions
(a1), (a3) and (a6).

Theorem 1.7. The operators Γ and ∆ define a bijection (preserving inclusions)
between the natural classes of R-Mod and natural sets of L(RR).

Proof. Let K be a natural class and E = Γ(K). Then K is closed (Prop. 1.6),
therefore E is closed (condition (a1)). So we can apply Theorem 1.5: since K satisfies
(A3) and (A6), the set E satisfies (a3) and (a6), i.e. E is a natural set.

Let now E be a natural set and K = ∆(E). Then E is closed, therefore K is
closed (condition (A1)) and by Theorem 1.5 K satisfies (A3) and (A6), i.e. K is a
natural class.

From Lemma 1.4 it is clear that the indicated correspondences define a bijection
which preserves the inclusions. �

Now we show two important examples of natural classes, related to the theory
of radicals in R-Mod.

Example 1. For every torsion (≡ hereditary radical) r the class P(r) = {M ∈ R-
Mod | r(M) = 0} of r-torsion free modules, as we remark above, is characterized by
properties (A1), (A4) and (A6) (which imply (A5)). Since from (A1) and (A4) follows

(A3), the class P(r) is natural. The corresponding set of left ideals E = Γ
(

P(r)
)

is described by the conditions (a1), (a4) and (a6) (which imply (a5)). Such sets
were called cofilters [9, 10] (dual to the filters which describe the class R(r)), or
torsion-free sets [7].

Example 2. For every stable torsion (i.e. R(r) is stable) the class R(r) = {M ∈ R-
Mod | r(M) = M} of r-torsion modules is described by properties (A1), (A2), (A3)
and (A6) (which implies (A5)). Therefore R(r) in this case is a natural class. The

corresponding set E = Γ
(

R(r)
)

is characterized by conditions (a1), (a2), (a3) and

(a6) (which imply (a5)).
We will call such sets stable filters (≡ Gabriel filters with (a6), which translates

the stability of R(r)). Obviouly, Γ and ∆ determine a bijection between stable
torsions and stable filters.

2 Operators of complementation

For investigations of natural classes of R-Mod the operator of complementation
plays an essential role. It is defined as follows:

K⊥ = {M ∈ R-Mod |M is without nonzero submodules from K}.
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The set R-nat of all natural classes of R-Mod is a complete lattice with respect to the
operations

∧

and
∨

, naturally defined ([1, 2], etc.). Moreover, R-nat by operator
( )⊥ becomes a boolean lattice [1].

The double complement of the class K is:

K⊥⊥ = {M ∈ R-Mod | ∀ 0 6= N ⊆ M, ∃ 0 6= P ⊆ N, P ∈ K},

i.e. every nonzero submodule of M contains a nonzero submodule from K.
Let K be a hereditary class of R-modules. Then K⊥ is closed: it is hereditary

and if M ∈ R-Mod, Rm ∈ K⊥ for every m ∈ M , then M ∈ K⊥ (if not, then M
contains a nonzero submodule from K and by hereditarity it contains some cyclic
submodule from K, contradiction). Moreover, K⊥ is in that case a natural class ([8,
Theorem 6]), the class K⊥⊥ is the least natural class containing K, so the relation
K = K⊥⊥ is true if and only if K is natural [1, 8].

In continuation the operator ( )⊥ for classes of R-modules will be translated in
the language of ring R (for sets of left ideals) and some properties of this operator
will be shown.

For the set E ⊆ L(RR) we define:

E⊥ = {I ∈ L(RR) | (I : a) /∈ E ∀ a /∈ I}

(i.e. this set contains the left ideals without nontrivial quotients from E). Now we
verify that the operators of complementation (for classes and for sets) are perfectly
concordant with the mappings Γ and ∆.

Proposition 2.1. Let (K, E) be a pair with E = Γ(K) and K = ∆(E) (in this case
I ∈ E ⇔ R/I ∈ K, Lemma 1.4). Then the following relations are true:

-�

� -

??

EΓ

∆

Γ

∆

K

K⊥ E⊥

Γ(K⊥) = E⊥ (1)

∆(E⊥) = K⊥ (2)

Proof. (1) (⊆) Firstly we verify the inclusion Γ(K⊥) ⊆ E⊥. Let I ∈ Γ(K⊥), i.e.
there exists M ∈ K⊥ and m ∈ M such that (0 : m) = I. We must show that
(I : a) /∈ E for every a /∈ I.

Suppose the contrary: there exists a /∈ I = (0 : m) such that (I : a) ∈ E . Then
am /∈ I and R/(I : a) ∼= Ram ∈ K, in contradiction with M ∈ K⊥. This proves that
I ∈ E⊥.

(⊇) To prove the inverse inclusion of (1), let I ∈ E⊥. We must verify that there
exists M ∈ K⊥ and m ∈ M with I = (0 : m). For that we consider M = R/I and
m = 1 + I, where (0 : m) = I. It remains to show that R/I ∈ K⊥.

If R/I /∈ K⊥, then there exists 0 6= J/I ⊆ R/I with J/I ∈ K. Then for 0 6=
a + I ∈ J/I from J/I ∈ K follows R(a + I) ∼= R/(I : a) ∈ K, i.e. (I : a) ∈ E(a /∈ I),
in contradiction with I ∈ E⊥. So we have R/I ∈ K⊥.
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(2) (⊆) Let M ∈ ∆(E⊥), i.e. (0 : m) ∈ E⊥ for every m ∈ M . Then M is without
nonzero submodules from K: in the contrary we have 0 6= Rm ⊆ M , Rm ∈ K and
from Rm ∼= R/(0 : m) follows R/(0 : m) ∈ K, i.e. (0 : m) ∈ E , m = 0, contradiction.

(⊇) Let M ∈ K⊥. We must verify that M ∈ ∆(E⊥), i.e. for every m ∈ M we have
(0 : m) ∈ E⊥. Suppose the contrary: there exists m ∈ M such that (0 : m) /∈ E⊥.
Then there exists a /∈ (0 : m) (i.e. am 6= 0) such that ((0 : m) : a) = (0 : am) ∈ E .
Therefore R/(0 : am) ∼= Ram ∈ K, contradiction with M ∈ K⊥. So (0 : m) ∈ E⊥

for every m ∈ M , i.e. M ∈ ∆(E⊥). �

This proposition permits us to transfer in L(RR) some results on classes of mod-
ules avoiding the direct proofs.

It is obvious that in conditions of Prop. 2.1 E⊥ and K⊥ are closed. Moreover,
is true

Corollary 2.2. If the set E ⊆ L(RR) is closed then E⊥ is a natural set.

Proof. If E is closed, then the class K = ∆(E) is closed, therefore K⊥ is natural, so
the set Γ(K⊥) = E⊥ is natural (Theorem 1.7). �

Corollary 2.3. If E ⊆ L(RR) is a closed set, then E⊥⊥ is the least natural set
containing E, therefore the relation E = E⊥⊥ is true if and only if E is a natural set.

Proof. Follows from the known fact: K⊥⊥ is the least natural class containing
K = ∆(E). �

We denote by R-Nat the family of natural sets of left ideals of R. It can be
transformed in a complete lattice with order relation ⊆ (inclusion) and with lattice
operations

∧

and
∨

, defined as follows:

∧

α∈A

Eα =
⋂

α∈A

Eα,
∨

α∈A

Eα =
⋂

{

F ∈ R-Nat
∣

∣F ⊇ Eα ∀α ∈ A
}

.

Since the mappings Γ and ∆ define a bijection (preserving order) between R-nat
and R-Nat (Theorem 1.7) we have

Corollary 2.4. The lattices R-nat and R-Nat are isomorphic, therefore R-Nat is a
boolean lattice, where E⊥ is a complement of E ∈ R-Nat.

Using the fact that for the natural class K the relation K = K⊥⊥ is true, in the
article [7] a characterization of natural sets is shown by the following condition:

(a′6) If I /∈ E than there exists J ∈ L(RR), J ' I such that (I : a) /∈ E for every
a ∈ J \ I.

It is formulated in L(RR) \ E and translating them for E we obtain:
(a′′6) If I ∈ L(RR) and for every J ' I there exists a ∈ J \ I with (I : a) ∈ E ,

then I ∈ E .
From the definition of the operator ( )⊥ we have:

E⊥⊥ = {I ∈ L(RR) | ∀ a /∈ I, (I : a) /∈ E⊥} =

= {I ∈ L(RR) | ∀ a /∈ I, ∃b /∈ (I : a),
(

(I : a) : b
)

∈ E}.
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If E is a closed set, then to be natural the inclusion E⊥⊥ ⊆ E which is necessary can
be expressed as follows:

(a′′′6 ) If I ∈ L(RR) and for every a /∈ I there exists b /∈ (I : a) such that
(I : ba) ∈ E , then I ∈ E .

Now we can supplement Proposition 2.2 of [7] by

Proposition 2.5. The following conditions on the set E ⊆ L(RR) are equivalent:
1) E is a natural set;
2) E satisfies the conditions (a1), (a2) and (a′6) [7];
3) E satisfies the conditions (a1), (a2) and (a′′6);
4) E satisfies the conditions (a1), (a2) and (a′′′6 ).

In conclusion we remark that in the definitions of cofilters and of stable filters
(see examples 1 and 2) the condition (a6) can be replaced by each of the conditions
(a′6), (a′′6) or (a′′′6 ).
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development
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Abstract. In this article an attempt to examine sustainable development in the
framework of financial programming model will be considered. In this connection
the financial programming approach will be described on the whole and the place of
sustainability in it will be determined.
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The base of the financial programming model consists in accounting macroeco-
nomic framework, which covers the main sectors of national economy: private, gov-
ernment, monetary and foreign. Economic identities describe budgetary constrains
of each mentioned sectors and formed a basis of accounting framework. In order
to obtain closed system of equations from mentioned identities, behavioural equa-
tions, determining interrelation between principal economic variables are specified.
The behavioural equations determining interrelation between economic variables are
specified so that to add accounting identities up to the closed system of equations.
The variables identified in this framework are subdivided on exogenous, endogenous
and policy. The combination of variables, economic relations and identities forms
economic model, which is called to prove policy decisions. For the realisation of
financial programming model (development a the financial program) it is necessary
to execute the forecast of exogenous variables, to define precisely values of target
variables and to solve model for policy variables which will provide desirable values
for the target variables.

Will be considered generalized approach of financial programming model, which
gathered, monetary and grows approach [1]. The resulting merged approach contains
three fundamental purposes of financial programs: the balance of payments, infla-
tion and growth rate of real gross domestic product inside the consistent framework.
Dynamic aspects of this model will be presented in finite differences. Four investi-
gated sectors are production, government, monetary and foreign. The production
sector will be defined by Cobb-Douglas production function, relationships between
population and environmental degradation like [2], capital and prices. The mone-
tary sector will be determined by demand and supply for money. The government
sector will be defined by budgetary constraint. The foreign sector will be specified by
equations for export, import, net foreign assets and change in international reserves.
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In a sequel the model will be presented. We start with the production sector,
which is assumed to own all factors of production and earn all income.

Production sector

∆y∗t = ∆K1−α
t ∆Lα

t /(Pt−1 + ∆Pt), (1)

∆Ip
t = s(Yt−1 + ∆Yt−1 − Tt) − ∆Md

t − ∆F p
t + ∆Dp

t , (2)

∆Ig
t = (Tt − Cg

t ) − ∆F g
t + ∆Dg

t = 0, (3)

∆Yt = Pt−1 · ∆y∗t + y∗t−1 · ∆Pt, (4)

∆Pt = (1 − θ) · ∆P ∗

dt + θ · ∆êt̄·P z
t , (5)

∆Kt = It − δ · ∆Kt, (6)

∆It = ∆Ip
t + ∆Ig

t , (7)

∆Lt = Pcr · (Lt − Emigrt) − Pdc · Lt, (8)

∆Et = Pdez · Yt + Ps(Lt + Lue) − Curef · Kt − Autocur · Et. (9)

First equation says that the change in real GDP is equal to the well-balanced
change in capital and labor, deflated by price index. Here Kt is the nominal capital in
year t, Lt is the number of employer in year t, Lue is the number of unemployment,
0 ≤ α ≤ 1 is the coefficient of Cobb-Douglas production function with constant
retain to scale; ∆y∗t is the change in real GDP in year t-target variable, Pt, ∆Pt are
the GDP deflator and inflation in year t.

Second equation asserts that the change in private investment ∆Ip
t is equal to

savings (nominal GDP−Yt−1−Tt) mines the change in demand for money ∆Md
t and

the change in foreign assets to private sector ∆F p
t plus the change in domestic credits

to private sector ∆D̂p
t in year t; ∆D̂p

t is the policy variable. Third equation declares
that the change in government investment Ig

t is equal to collected taxes Tt mines the
government consumption Cg

t , mines the change in net foreign assets to government
sector ∆F g

t plus the change in domestic credits to government sector ∆D̂g
t in year

t. Fourth equation states that the change in nominal GDP – ∆Yt is equal to the
change in real GDP in current year ∆y∗t (target variable), multiplied by the price
index in previous year Pt−1 plus the inflation in current year ∆Pt multiplied by the
real GDP in previous year y∗t−1. Fifth equation announces that ∆Pt which is equal
to a linear combination between the domestic price index (1− θ) ·∆P ∗

dt – the target
variable, and the price index for import in local currency ∆êt ·P̄ z

t (0 ≤ θ ≤ 1), ∆êt

is the exchange rate modification – the policy variable. Sixth equation declares that
the change in capital ∆Kt is equal to the investment in current year It discounted by
the corresponding rate of depreciation ∆Kt, ∆êt is the rate of depreciation, θ is the
share of importable in domestic prices. Seventh equation represents the investment
identity, which states that the total investment ∆It is equal to the sum of private
∆Ip

t and government ∆Ig
t investment. Eighth equation asserts that the change in

the employment population ∆Lt is equal to the population growth Pcr(Lt −Emig)
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mines the population decease Pdc ·Lt, Pdc, Pcr, Emig are the population decease,
population growth, and emigration rate, respectively. Ninth equation states that
the change in the environmental degradation ∆Et is equal to the environmental
degradation owing to economic development Pdez ·Yt and environmental degradation
owing to social development Pls · Lt mines the environmental clean up due to the
state protection Curef · It and due to self clean up Autocur · Et.

Monetary sector

∆Md
t = ν · ∆Yt, (10)

the change in money demand ∆Md
t is equal to the change in nominal GDP ∆Yt

multiplied by the constant inverse to the income velocity of money ν.

∆M s
t ≡ ∆R∗

t + ∆D̂p
t + ∆D̂g

t , (11)

the change in money supply ∆M s
t is equal to the change in foreign reserves ∆R∗

t

plus the change in domestic credits to private ∆D̂p
t and government ∆D̂g

t sectors

∆Md
t = ∆Md

t = ∆Mt (12)

and the money flow equilibrium is mentioned continue on the money market.

Foreign sector

From the budgetary constraint of foreign sector the balance of payment is defined:

∆R∗

t ≡ Xt − Zt − (∆F p
t + ∆F g

t ). (13)

The net foreign assets are exogenously expressed in the foreign exchange:

∆F p
t = ∆F̄ p

t · (1 + ∆êt), (14)

∆F g
t = ∆F̄ g

t (1 + ∆êt). (15)

Here ∆F̄ p
t and ∆F̄ g

t are exogenously determined net foreign assets expressed in the
foreign exchange, destined to private and governmental sectors, respectively, ∆êt is
exchange rate modification-policy variable.

Xt = Xt−1 + (Xt−1 + c) · ∆êt − c · ∆P ∗

dt, (16)

Zt = Zt−1 + (Zt−1 − b) · P ∗z
t · ∆êt + b · ∆P ∗

dt + a · ∆y∗t , (17)

Xt is the export volume, Zt is the import volume, P̄ ∗z
t is the exogenously determined

price index for import, ∆P ∗

dt is the change in domestic price index -– the target
variable, a is the marginal propensity to import, b is the coefficient of response of
import to relative prices, c is the coefficient of response of export to relative prices,
Xt−1, Zt−1 are the previous year volume of export and import, respectively.
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Model extension

The ceiling on expansion of total domestic credit is accompanied by a subceiling
on the expansion of credit of the governmental sector. This subceiling assists in
monitoring the overall credit ceiling, and ensures that the availability of credit to the
public sector subseiling is not be diminished by the overall credit ceiling. Formally,
this implies a secondary target such as ∆Dp∗

t which can be achieved, according to
∆D̂g

t = ∆D̂t − ∆Dp∗
t .

The targeted expansion of private credit would be derived from the relationship
such as ∆Dp∗

t = (Dp
t /Yt)n−1 · ∆Yt.

Since, from the government budget constraint, Tt − Cg
t ≡ ∆F̄ g

t − ∆D̂g
t , the

governmental sector must adjust to this programmed deficit by increasing revenue
and/or reducing expenditures.
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It is well known that every Banach space with Shauder basis is separable. Con-
verse proposition, as P.Enflo showed in 1973 [1] is not true. In the present work
the problem of the existence of a Schauder basis in separable symmetrically normed
ideals is considered. It is found that all such ideals have a basis. For particular case,
symmetrically normed Lorentz ideals Υp,q, a basis was built in [2].
The terminology of the article is based on [3].

Theorem. Let {φj}∞j=1 be an orthonormal basis in a Hilbert space H. A sequence
of linear continuous operators {An}∞n=1 of the form

Am2+j =

{

(·, φm+1)φj , 1 ≤ j ≤ m + 1
(·, φ2m+2−j)φm+1, m + 1 < j ≤ 2m + 1

,m = 0, 1, . . .

forms a basis in every symmetrically normed ideal.

Proof. Let Υ be a separable symmetrically normed ideal. Since the ideal Υ is sepa-

rable there is a symmetrically normed function Φ(x) so that Υ = Υ
(0)

Φ
. For every op-

erator A ∈ Υ
(0)

Φ
we can write the Schmidt representation: A =

∑

∞

j=1
sj(A)(·, xj)yj .

For every ǫ > 0 we can choose n0 ∈ N such that ||A − An0|| < ǫ/2, where
An0 =

∑n0
j=1

sj(A)(·, xj)yj . For every 0 < δ < 1 and ∀j ∈ N there are
uj, vj ∈ span{φj}∞j=1 such as ||xj − uj|| < δ, ||yj − vj|| < δ. We have
||(·, xj)yj − (·, uj)vj ||Φ ≤ ||(·, xj − uj)yj ||Φ + ||(·, uj)(vj − yj)||Φ ≤ 3δ.

If we take δ = ǫ
2nos1(A)

and Bn0 =
∑n0

j=1
sj(A)(·, uj)vj ∈ span{An}∞n=1

we get

that ||An0 − Bn0|| ≤ ǫ/2. Thus ||A − Bn0||Φ ≤ ||A − An0 ||Φ + ||An0 − Bn0 ||Φ < ǫ.
Hence, A ∈ span{An}∞n=1

, in other words, the sequence {An}∞n=1 is complete in Υ.
We show that the sequence {An}∞n=1 is minimal. To prove that it is sufficient to
show that this system has a biorthogonal one.

Define Fm2+j = sp(XA∗

m2+j
), where X ∈ Υ

(0)

Φ
, sp(A) =

∑

∞

j=1
(Aφj , φj) and

{φj}∞j=1 is a basis in H.

It is easy to note that Fm2+j is a linear bounded operator on Υ
(0)

Φ
and

Fm2+j = sp(XA∗

m2+j) =

{

1, m = r, j = s
0, m2 + j 6= r2 + s

.
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It follows that {Fm2+j} and {Am2+j} are a biorthogonal system.
We consider the sequence of projectors {Pn}∞n=1 of the form

Pn(A) =
n

∑

j=1

Fj(A)AjPm2(A) =
m

∑

k=1

m
∑

j=1

sp(A(·, φk)φj)(·, φj)φk =

=
m

∑

k=1

m
∑

j=1

(Aφj , φk)(·, φj)φk = PmAPm,

where Pmx =
∑m

j=1
(x, φ)j)φj , x =

∑

∞

j=1
(x, φj)φj and ||Pm|| = 1. We therefore

have ||Pm2(A)|| = ||PmAPm||Φ ≤ ||A||Φ Hence, ||Pm2 || ≤ 1. Let 1 ≤ j ≤ m + 1.
Then we have

Pm2+j(A) = PmAPm +

j
∑

r=1

sp(A(·, φr)φm+1)(·, φm+1)φr = PmAPm+

+

j
∑

r=1

(Aφm+1, φr)(·, φm+1)φr = PmAPm + PjA(Pm+1 − Pm).

So, ||Pm2+j(A)|| ≤ 3||A||Φ, ∀A ∈ Υ
(0)

Φ
. Let m + 2 ≤ j ≤ 2m + 1. Then we have

Pm2+j(A) = Pm+1APm+1 −
2m+1−j

∑

r=1

sp(A(·, φr)φm+1)(·, φm+1)φr =

= Pm+1APm+1 − P2m+1−jA(Pm+1 − Pm).

So, ||Pm2+j(A)|| ≤ 3||A||Φ, ∀A ∈ Υ
(0)

Φ
.

Thus, ||Pn|| ≤ 3 (n = 1, 2...). By criterion of basis in the Banach space [4], we
obtain that {An}∞n=1 is a basis of the Banach space Υ.
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