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On certain subclasses of analytic functions associated

with generalized struve functions
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Abstract. The goal of the present paper is to investigate some characterization for
generalized Struve functions of first kind to be in the new subclasses of β uniformly
starlike and β uniformly convex functions of order α. Further we point out some
consequences of our main results.
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1 Introduction

Denote by A the class of analytic functions in the unit disc U = {z : |z| < 1} of
the form

f(z) = z +
∞
∑

n=2

anzn, z ∈ U. (1)

Also denote by S the subclass of A consisting of functions which are normalized
by f(0) = 0 = f ′(0) − 1 and also univalent in the unit disc U = {z : |z| < 1}.
A function f ∈ A is said to be starlike of order α (0 ≤ α < 1) if and only if

ℜ
(

zf ′(z)
f(z)

)

> α (z ∈ U). This function class is denoted by S∗(α). We also write

S∗(0) = S∗, where S∗ denotes the class of functions f ∈ A such that f(U) is
starlike with respect to the origin. A function f ∈ A is said to be convex of order

α (0 ≤ α < 1) if and only if ℜ
(

1 + zf ′′(z)
f ′(z)

)

> α (z ∈ U). This class is denoted by

K(α). Further, K = K(0), the well-known standard class of convex functions. We
remark that, according to the Alexander duality theorem [1] the function f : U → C

is convex of order α, where 0 = α < 1, if and only if z → zf ′(z) is starlike of
order α. We note that every starlike (and hence convex) function of the form (1)
is in fact close-to-convex, and every close-to-convex function is univalent. However,
if a function is starlike then it is not necessary that it will be close-to-convex with
respect to a particular convex function.

The class β − UCV was introduced by Kanas et al. [14], where its geometric
definition and connections with the conic domains were considered. The class β −
UCV was defined purely by geometrically as a subclass of univalent functions that
map each circular arc contained in the unit disk U with a center ξ, |ξ| ≤ β (0 ≤
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β < 1), onto a convex arc. The notion of β− uniformly convex function is a natural
extension of the classical convexity. Observe that, if β = 0 then the center ξ is the
origin and the class β − UCV reduces to the class of convex univalent functions K.
Moreover for β = 1, the class β − UCV corresponds to the class UCV introduced
by Goodman [12,13] and studied extensively by Rønning [21,22]. The class β − SP

is related to the class β − UCV by means of the well-known Alexander equivalence
between the usual classes of convex K and starlike S∗ functions. Further the analytic
criteria for functions in these classes are given below.

For −1 < α ≤ 1 and β ≥ 0, a function f ∈ A is said to be in the class
(i) β− uniformly starlike functions of order α, denoted by SP (α, β), if it satisfies
the condition

ℜ
(

zf ′(z)

f(z)
− α

)

> β

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

, z ∈ U (2)

and
(ii) β− uniformly convex functions of order α, denoted by UCV(α, β), if it satisfies
the condition

ℜ
(

1 +
zf ′′(z)

f ′(z)
− α

)

> β

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

, z ∈ U. (3)

Indeed it follows from (2) and (3) that

f ∈ UCV(α, β) ⇔ zf ′ ∈ SP (α, β). (4)

Remark 1. It is of interest to state that UCV(α, 0) = K(α) and SP (α, 0) = S∗(α).

Motivated by the above definitions we define the following subclasses of A due
to Murugusundaramoorthy and Magesh [18].

For 0 ≤ λ < 1, 0 ≤ α < 1 and β ≥ 0, we let SP (λ, α, β) be the subclass of A
consisting of functions of the form (1) and satisfying the analytic criterion

ℜ
(

zf ′(z)

(1 − λ)f(z) + λzf ′(z)
− α

)

> β

∣

∣

∣

∣

zf ′(z)

(1 − λ)f(z) + λzf ′(z)
− 1

∣

∣

∣

∣

, z ∈ U, (5)

and also, let UCV(λ, α, β) be the subclass of A consisting of functions of the form
(1) and satisfying the analytic criterion

ℜ
(

f ′(z) + zf ′′(z)

f ′(z) + λzf ′′(z)
− α

)

> β

∣

∣

∣

∣

f ′(z) + zf ′′(z)

f ′(z) + λzf ′′(z)
− 1

∣

∣

∣

∣

, z ∈ U. (6)

We further let T SP (λ, α, β) = SP (λ, α, β)∩T and UCT (λ, α, β) = UCV(λ, α, β)∩
T where T denotes the subclass of A consisting of functions whose nonzero coeffi-
cients from second on, is given by

f(z) = z −
∞

∑

n=2

anzn. (7)

SP (0, α, 0) ≡ T ∗(α) and UCT (0, α, 0) ≡ C(α) are the class of starlike and convex
functions of order α (0 ≤ α < 1), introduced and studied by Silverman [23]. Suitably
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specializing the parameters one can define various subclasses defined in [2, 7, 23,27,
28]. Now we recall the following necessary and sufficient conditions for functions f to
be in the function classes SP (λ, α, β), T SP (λ, α, β), UCV(λ, α, β) and UCT (λ, α, β)
due to Murugusundaramoorthy and Magesh [18].

Theorem 1 ( see [18]). A function f(z) of the form (1) is in SP (λ, α, β) if

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)] |an| ≤ 1 − α. (8)

Theorem 2 (see [18]). A function f(z) of the form (1) is in UCV(λ, α, β) if

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)] |an| ≤ 1 − α. (9)

Theorem 3 (see [18]). A function f(z) of the form (7) is in T SP (λ, α, β) if and
only if

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)] |an| ≤ 1 − α. (10)

Theorem 4 (see [18]). A function f(z) of the form (7) is in UCT (λ, α, β) if and
only if

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)] |an| ≤ 1 − α. (11)

It is well known that the special functions (series) play an important role in
geometric function theory, especially in the solution by de Branges [10] of the fa-
mous Bieberbach conjecture.The surprising use of special functions (hypergeometric
functions) has prompted renewed interest in function theory in the last few decades.
There is an extensive literature dealing with geometric properties of different types
of special functions, especially for the generalized, Gaussian hypergeometric func-
tions [9, 15,17,24,29] and the Bessel functions [3–6,16].

We recall here the Struve function of order p (see [19, 30]), denoted by Hp, is
given by

Hp(z) =
∞
∑

n=0

(−1)n

Γ(n + 3
2) Γ(p + n + 3

2)

(z

2

)2n+p+1
,∀z ∈ C (12)

which is the particular solution of the second order non-homogeneous differential
equation

z2ω′′(z) + zω′(z) + (z2 − p2)ω(z) =
4(z/2)p+1

√
πΓ(p + 1

2)
(13)

where p is unrestricted real (or complex) number. The solution of the non-
homogeneous differential equation

z2ω′′(z) + zω′(z) − (z2 + p2)ω(z) =
4(z/2)p+1

√
πΓ(p + 1

2)
(14)
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is called the modified Struve function of order p and is defined by the formula

Lp(z) = −ie−ipπ/2Hp(iz) =
∞
∑

n=0

1

Γ(n + 3
2) Γ(p + n + 3

2)

(z

2

)2n+p+1
,∀z ∈ C.

Let the second order non-homogeneous linear differential equation [30] (also see [19]
and references cited therein),

z2ω′′(z) + bzω′(z) + [cz2 − p2 + (1 − b)p]ω(z) =
4(z/2)p+1

√
πΓ(p + b

2)
(15)

where b, p, c ∈ C, which is natural generalization of Struve equation. It is of in-
terest to note that when b = c = 1, then we get the Struve function (12) and for
c = −1, b = 1 the modified Struve function (14). This permits us to study the
Struve and modified Struve functions. Now, denote by wp,b,c(z) the generalized
Struve function of order p given by

wp,b,c(z) =

∞
∑

n=0

(−1)n(c)n

Γ(n + 3
2) Γ(p + n + b+2

2 )

(z

2

)2n+p+1
,∀z ∈ C,

which is the particular solution of the differential equation (15). Although the series
defined above is convergent everywhere, the function ωp,b,c is generally not univalent
in U. Now, consider the function up,b,c defined by the transformation

up,b,c(z) = 2p√πΓ

(

p +
b + 2

2

)

z
−p−1

2 ωp,b,c (
√

z),
√

1 = 1.

By using well known Pochhammer symbol (or the shifted factorial) defined, in terms
of the familiar Gamma function, by

(a)n =
Γ(a + n)

Γ(a)
=







1 (n = 0),

a(a + 1)(a + 2) · · · (a + n − 1) (n ∈ N = {1, 2, 3, . . .})

we can express up,b,c(z) as

up,b,c(z) =

∞
∑

n=0

(−c/4)n

(m)n (3/2)n
zn

= b0 + b1z + b2z
2 + ... + bnzn + ...,

where m =
(

p + b+2
2

)

6= 0,−1,−2, . . . . This function is analytic on C and satisfies
the second-order inhomogeneous linear differential equation

4z2u′′(z) + 2(2p + b + 3)zu′(z) + (cz + 2p + b)u(z) = 2p + b.

For convenience throughout in the sequel, we use the following notations

wp,b,c(z) = wp(z) up,b,c(z) = up(z), m = p +
b + 2

2
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and for if c < 0,m > 0 (m 6= 0,−1,−2, . . . ) let

zup(z) = z +
∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1
zn = z +

∞
∑

n=2

bn−1z
n (16)

and

Ψ(z) = z(2 − up(z)) = z −
∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1
zn (17)

Mapping properties of various subclasses of analytic and univalent functions are
potentially useful in a number of widespread areas of the mathematical, physical
and engineering sciences. In particular, in order to solve such applied problems that
are expressible in terms of functions of a complex variable, but that exhibit incon-
venient geometrical shapes, we can appropriately choose one or the other of such
mappings and thereby transform the inconvenient geometrical shape into a much
more convenient and easy-to-handle geometrical shape. Several mapping properties
of the function classes β−UST and β−UCV involving hypergeometric functions were
studied by Srivastava et al [26] (also see [9,15,17,24,29]) and references cited therein.
Recently Yagmur and Orhan [30] (see [19]) have determined various sufficient condi-
tions for the parameters p, b and c such that the functions up,b,c(z) or z → zup,b,c(z)
to be univalent, starlike, convex and close to convex in the open unit disk. Moti-
vated essentially by the aforementioned works and by work of Baricz [3–6], in our
present investigation, we determined sufficient conditions for the family of Struve
functions (zup(z)) in order to belong to the classes T SP (λ, α, β) and UCT (λ, α, β)
in the open unit disk U. We also proved that those sufficient conditions are necessary
for functions of the form (17). Further we deduce several interesting corollaries and
consequences by suitably applying our main results.

2 Main results and their consequences

Lemma 1 (see [19]). If b, p, c ∈ C and m 6= 0,−1,−2, ..., then the function up

satisfies the recursive relation

2zu′

p(z) + up(z) +
cz

2m
up+1(z) = 1

for all z ∈ C.

Theorem 5. If c < 0,m > 0 (m 6= 0,−1,−2, ...), then the sufficient condition for
zup(z) ∈ T SP (λ, α, β) is

[1 + β − λ(α + β)]u′

p(1) + (1 − α)up(1) ≤ 2(1 − α). (18)

Moreover (18) is necessary and sufficient for Ψ(z), given by (17) to be in T SP (λ, α, β).
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Proof. According to Theorem 3, we must show that

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1
≤ (1 − α). (19)

Now,

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

=

∞
∑

n=2

[(n − 1){1 + β − λ(α + β)} + (1 − α)]
(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)]
∞
∑

n=2

(n − 1)((−c/4))n−1

(m)n−1 (3/2)n−1
+ (1 − α)

∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)]u′

p(1) + (1 − α)[up(1) − 1].

But the last expression is bounded from above by 1 − α if and only if (18) holds.
Since

z(2 − up(z)) = z −
∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1
zn (20)

the necessity of (18) for z(2− up(z)) to be in T SP (λ, α, β) follows from Theorem 3.

Theorem 6. If c < 0,m > 0 (m 6= 0,−1,−2, ..., then the sufficient condition for
zup(z) ∈ UCT (λ, α, β) is

[1+β−λ(α+β)]u′′

p(1)+[3+2β−α−2λ(α+β)]u′

p(1)+(1−α)up(1) ≤ 2(1−α). (21)

Moreover (21) is necessary and sufficient for Ψ(z), given by (17) to be in UCT (λ, α, β).

Proof. In view of Theorem 4, we need to show that

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1
≤ (1 − α).

If we let g(z) = zup(z), then we have g′(1) = u′

p(1)+up(1) and g′′(1) = u′′

p(1)+2u′

p(1).
Further we notice that

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)]

∞
∑

n=2

n2 (−c/4)n−1

(m)n−1 (3/2)n−1
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−(α + β)(1 − λ)

∞
∑

n=2

n
(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)]

{

∞
∑

n=2

n(n − 1)
(−c/4)n−1

(m)n−1 (3/2)n−1

}

+[1 + β − λ(α + β) − (α + β)(1 − λ)]

{

∞
∑

n=2

n
(−c/4)n−1

(m)n−1 (3/2)n−1

}

= [1 + β − λ(α + β)]g′′(z) + (1 − α)[g′(z) − 1],

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)](u′′

p(1) + u′

p(1)) + (1 − α)(u′

p(1) + up(1) − 1)

= [1 + β − λ(α + β)]u′′

p(1) + [3 + 2β − 2λ(α + β) − α]u′

p(1) + (1 − α)[up(1) − 1].

The last expression is bounded from above by (1 − α) if and only if (21) holds.
By Theorem 4, the condition (21) is also necessary for z(2 − up(z)) = Ψ(z) ∈
UCT (λ, α, β).

Remark 2. In particular when λ = 0 and β = 0 the conditions given in (18) and
(21) yield the results obtained in [30].

By taking λ = 0 and α = 0, we state the following results for the function classes
T SP (0, 0, β) ≡ T SP (β) and UCT (0, 0, β) ≡ UCT (β) defined in [27].

Corollary 1. If c < 0,m > 0 (m 6= 0,−1,−2, ..., then
(i) the sufficient condition for zup(z) ∈ T SP (β) is

(1 + β)u′

p(1) + up(1) ≤ 2,

moreover it is necessary and sufficient for functions Ψ(z) = z(2 − up(z)) to be in
T SP (β)
(ii) the sufficient condition for zup(z) ∈ UCT (β) is

(1 + β)u′′

p(1) + (3 + 2β)u′

p(1) + up(1) ≤ 2,

moreover it is necessary and sufficient for functions Ψ(z) = z(2 − up(z)) to be in
UCT (β).

By taking λ = 0, we deduce results for the function class defined in [7].

Corollary 2. If c < 0,m > 0 (m 6= 0,−1,−2, ..., then
(i) the sufficient condition for zup(z) ∈ T SP (α, β) is

(1 + β)u′

p(1) + (1 − α)up(1) ≤ 2(1 − α),
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(ii) the sufficient condition for zup(z) ∈ UCT (α, β) is

(1 + β)u′′

p(1) + (3 + 2β − α)u′

p(1) + (1 − α)up(1) ≤ 2(1 − α).

Further the above conditions are necessary and sufficient for functions of the
form (17).

3 Inclusion Properties

For functions f ∈ A given by (1) and g ∈ A given by g(z) = z +
∑

∞

n=2 bnzn, we
define the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = z +

∞
∑

n=2

anbnzn, z ∈ U . (22)

Now, we considered the linear operator

I(c,m) : A → A

defined by

I(c,m)f(z) = zup,b,c(z) ∗ f(z) = z +

∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1
an zn (23)

where m = p + (b+2)
2 6= 0. A function f ∈ A is said to be in the class Rτ (A,B)

(τ ∈ C\{0}, −1 ≤ B < A ≤ 1) if it satisfies the inequality
∣

∣

∣

∣

f ′(z) − 1

(A − B)τ − B[f ′(z) − 1]

∣

∣

∣

∣

< 1 (z ∈ U).

The class Rτ (A,B) was introduced earlier by Dixit and Pal [11]. If we put

τ = 1, A = β and B = −β (0 < β ≤ 1),

we obtain the class of functions f ∈ A satisfying the inequality
∣

∣

∣

∣

f ′(z) − 1

f ′(z) + 1

∣

∣

∣

∣

< β (z ∈ U; 0 < β ≤ 1),

which was studied by (among others) Padmanabhan [20] and Caplinger and Causey
[8]. Making use of the following lemma, we will study the action of the Struve
function on the class UCT (λ, α, β).

Lemma 2 (see [11]). If f ∈ Rτ (A,B) is of form (1), then

|an| ≤ (A − B)
|τ |
n

, n ∈ N \ {1}. (24)

The bound given in (24) is sharp.
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Theorem 7. Let c < 0,m > 0 (m 6= 0,−1,−2, ...). If f ∈ Rτ (A,B) and if the
inequality

(A − B)|τ |
{

[1 + β − λ(α + β)]u′

p(1) + (1 − α)[up(1) − 1]
}

≤ 1 − α (25)

is satisfied, then I(c,m)(f) ∈ UCT (λ, α, β).

Proof. Let f of the form (1) belong to the class Rτ (A,B). By virtue of Theorem 4,
it suffices to show that

L(α, β, λ) =
∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1
|an| ≤ 1 − α.

Since f ∈ Rτ (A,B) then by Lemma 2 we have,

|an| ≤ (A − B)
|τ |
n

.

Hence

L(α, β, λ) =

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1
|an|

≤ (A − B)|τ |
[

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

]

. (26)

Further, proceeding as in Theorem 5, we get

L(α, β, λ) ≤ (A − B)|τ |
{

[1 + β − λ(α + β)]u′

p(1) + (1 − α)[up(1) − 1]
}

.

But this last expression is bounded above by 1 − α if and only if (25) holds.

Theorem 8. Let c < 0,m > 0 (m 6= 0,−1,−2, ...) then

L(m, c, z) =

∫ z

0
(2 − up(t))dt

is in UCT (λ, α, β) if and only if

[1 + β − λ(α + β)]u′

p(1) + (1 − α)up(1) ≤ 2(1 − α). (27)

Proof. Since

L(m, c, z) = z −
∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1

zn

n
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then by Theorem 4 we need only to show that

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

n(m)n−1 (3/2)n−1
≤ 1 − α.

That is, let

P(m, c, z) =
∞

∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

Now by proceeding as in Theorem 5, we get

P(m, c, z) = [1 + β − λ(α + β)]u′

p(1) + (1 − α)[up(1) − 1].

which is bounded from above by 1 − α if and only if (27) holds.

Remarks. If we put c = −1 and b = 1 in above theorems we obtain results ana-
logous to ones discussed in this paper. Further by taking β = 0 and specializing the
parameter λ we can state various interesting results (as proved in above theorems)
for the subclasses studied in the literature [2, 7, 23,27,28].
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rational bases of GL(2, R)-invariants were constructed. It was established that any
minimal rational basis of GL(2, R)-comitants contains 13 comitants and each minimal
rational basis of GL(2, R)-invariants contains 11 invariants.
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1 Definitions and notations

Let us consider the system of differential equations with nonlinearities of the
fourth degree

dx

dt
= P1(x, y) + P4(x, y),

dy

dt
= Q1(x, y) +Q4(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in x and y with
real coefficients.

The goal of this paper is to construct minimal rational bases of GL-comitants
as well as GL-invariants for the above system. It is known (see for instance [1, 2])
that invariant polynomials with respect to the group GL(2,R) could be used to
characterize some geometric proprieties of system (1). And clearly the knowledge
of the elements of minimal rational bases essentially limits the number of invariant
polynomials which could be used in the study of this system.

System (1) can be written in the following coefficient form:

dx

dt
= cx+ dy + gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4. (2)

We denote by A the 14-dimensional coefficient space of system (1), by a ∈ A the
vector of coefficients a = (c, d, e, f, g, h, k, l,m, n, p, q, r, s), by q ∈ Q ⊆ Aff(2,R)

c© Stanislav Ciubotaru, 2015
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a nondegenerate linear transformation of the phase plane of system (1), by q the
transformation matrix and by rq (a) a linear representation of coefficients of the
transformed system in the space A.

Definition 1 (see [1, 2]). A polynomial K(a,x) in coefficients of system (1) and

coordinates of the vector x =

(

x
y

)

∈ R
2 is called a comitant of system (1) with

respect to the group Q if there exists a function λ : Q → R such that

K(rq(a),qx) ≡ λ(q)K(a,x)

for every q ∈ Q, a ∈ A and x ∈ R
2.

If Q is the group GL(2,R) of nondegenerate linear transformations

u = qx, ∆q = detq 6= 0 (3)

of the phase plane of system (1), where u =

(

u
v

)

is a vector of new phase

variables and q =

(

q11 q12
q21 q22

)

is the transformation matrix, then the comitant is

called GL(2,R)-comitant or center-affine comitant. In what follows only GL(2,R)-
comitants are considered. If a comitant does not depend on coordinates of the vector
x, then it is called invariant.

The function λ(q ) is called a multiplicator. It is known [1] that the function
λ(q) has the form λ(q) = ∆−χ

q , where χ is an integer, which is called the weight of
the comitant K(a,x). If χ = 0, then the comitant is called absolute, otherwise it is
called relative.

According to [1] if a GL-comitant K(a,x) is a non-homogeneous polynomial with
respect to x and a, then each its homogeneity is also a GL-comitant. So in what
follows we shall consider only homogeneous invariant polynomials.

We say that a comitant K(a,x) has the character (ρ; χ; δ) if it has the weight χ,
the degree δ with respect to coefficients of system (1) and the degree ρ with respect
to coordinates of the vector x.

Every comitant K(a,x) of system (1) of the character (ρ; χ; δ) can be represented
in the form

K(a,x) = T0(a)xρ + T1(a)xρ−1y + . . . + Tρ−1(a)xyρ−1 + Tρ(a)yρ,

where Ti(a) are polynomials in coefficients of the system. The polynomial T0(a) is
called the semi-invariant of the comitant K(a,x) and is denoted by SK(a). Thus,

SK(a) =
1

ρ!
· ∂

ρK(a,x)

∂xρ
.

Definition 2. A set S of comitants (invariants) is called a rational basis on M ⊆ A
of comitants (invariants) for system (1) with respect to the group Q if any comitant
(invariant) of system (1) with respect to the group Q can be expressed as a rational
function of elements of the set S.
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Definition 3. A rational basis on M ⊆ A of comitants (invariants) for system
(1) with respect to the group Q is called minimal if by the removal from it of any
comitant (invariant) it ceases to be a rational basis.

We say that GL(2,R)-comitants (invariants) of a set S are polynomial indepen-
dent if there is no identity between them of the form P(Ki) ≡ 0, where P(Ki) is a
polynomial in elements of the set S.

Definition 4 (see [3]). Let ϕ and ψ be homogeneous polynomials in coordinates of

the vector x =

(

x
y

)

∈ R
2 of the degrees ρ1 and ρ2, respectively. The polynomial

(ϕ,ψ)(j) =
(ρ1 − j)!(ρ2 − j)!

ρ1!ρ2!

j
∑

i=0

(−1)i
(

j

i

)

∂jϕ

∂xj−i∂yi
∂jψ

∂xi∂yj−i

is called the transvectant of index j of polynomials ϕ and ψ.

Property 1 (see [4]). If polynomials ϕ and ψ are GL(2,R)-comitants of system (1)
with the characters (ρϕ; χϕ; δϕ) and (ρψ; χψ; δψ), respectively, then the transvectant
of index j ≤ min{ρϕ, ρψ} is a GL(2,R)-comitant of system (1) with the character
(ρϕ + ρψ − 2j; χϕ + χψ + j; δϕ + dψ). If j > min{ρϕ, ρψ}, then (ϕ,ψ)(j) = 0.

GL(2,R)-comitants of the first degree with respect to coefficients of system (1)
have the form

Ri = Pi(x, y)y −Qi(x, y)x, Si =
1

i

(

∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)

, i = 1, 4.

By using the comitants Ri and Si (i = 1, 4), and the notion of transvectant the
following GL(2,R)-comitants and invariants of system (1) were constructed (in the
list below, the bracket ”[[” is used in order to avoid placing the otherwise necessary
parenthesis ”(” (up to six)):

K1 = R4, K2 = S4, K3 = (R4, R4)
(4), K4 = (R4, R4)

(2),

K5 = (R4, S4)
(3), K6 = (R4, S4)

(2), K7 = (R4, S4)
(1),

K8 = (S4, S4)
(2), K10 = [[R4, R4)

(4), R4)
(1),

K13 = [[R4, R4)
(2), R4)

(1), K17 = [[R4, S4)
(3), S4)

(2),

K18 = [[R4, S4)
(3), S4)

(1), K21 = [[S4, S4)
(2), S4)

(1), Q1 = R1,

Q2 = S1, Q3 = (R4, R1)
(2), Q4 = (R4, R1)

(1), Q5 = (S4, R1)
(2),

Q6 = (S4, R1)
(1), Q7 = (R1, R1)

(2), Q19 = [[R4, R1)
(2), R1)

(2),

Q20 = [[R4, R1)
(2), R1)

(1), Q21 = [[S4, R1)
(2), R1)

(1),

Q43 = [[R4, R1)
(2), R1)

(2), R1)
(1),

I1 = S1, I2 = (R1, R1)
(2), I3 = [[R1, Q5)

(1), Q5)
(1),
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I4 = [[Q19, R1)
(1), Q19)

(1),

J1 = [[R4, Q5)
(1), Q5)

(1), Q5)
(1), Q5)

(1), Q5)
(1),

J2 = [[S4, Q5)
(1), Q5)

(1), Q5)
(1),

J3 = [[R4, R1)
(2), Q5)

(1), Q5)
(1), Q5)

(1),

J4 = [[R4, R1)
(1), Q5)

(1), Q5)
(1), Q5)

(1), Q5)
(1), Q5)

(1),

J6 = [[S4, R1)
(1), Q5)

(1), Q5)
(1), Q5)

(1),

J19 = [[R4, R1)
(2), R1)

(2), Q5)
(1),

J20 = [[R4, R1)
(2), R1)

(1), Q5)
(1), Q5)

(1), Q5)
(1),

J43 = [[R4, R1)
(2), R1)

(2), R1)
(1), Q5)

(1),

˜J1 = [[R4, Q19)
(1), Q19)

(1), Q19)
(1), Q19)

(1), Q19)
(1),

˜J2 = [[S4, Q19)
(1), Q19)

(1), Q19)
(1),

˜J3 = [[R4, R1)
(2), Q19)

(1), Q19)
(1), Q19)

(1),

˜J4 = [[R4, R1)
(1), Q19)

(1), Q19)
(1), Q19)

(1), Q19)
(1), Q19)

(1),

˜J5 = [[S4, R1)
(2), Q19)

(1),

˜J6 = [[S4, R1)
(1), Q19)

(1), Q19)
(1), Q19)

(1),

˜J20 = [[R4, R1)
(2), R1)

(1), Q19)
(1), Q19)

(1), Q19)
(1),

˜J21 = [[S4, R1)
(2), R1)

(1), Q19)
(1).

2 Rational bases of GL(2, R)-comitants

2.1 The case K1 6≡ 0 (R4 6≡ 0)

Theorem 1. The set of GL(2,R)-comitants

{K1, K2, K3, K4, K5, K6, K7, K10, K13, Q1, Q2, Q3, Q4} (4)

is a minimal rational basis of GL(2,R)-comitants for system (1) of differential equa-
tions with nonlinearities of the fourth degree on M = {a ∈ A | K1 6≡ 0} .

Proof. Firstly we will show that the set of comitants {K1, K2, K3, K4, K5, K6, K7,
K10, K13, Q1, Q2, Q3, Q4} is a rational basis of GL(2,R)-comitants when K1 6≡ 0.
Let the GL(2,R)-comitant K1 6≡ 0. By using the transformation:

u =
1

5K1(a,w)
· ∂K1(a,w)

∂w1
· x+

1

5K1(a,w)
· ∂K1(a,w)

∂w2
· y,

v = −w2x+ w1y,

(5)
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where w =

(

w1

w2

)

∈ R
2, system (1) can be brought to the system:

du

dt
=
K1Q2 + 2Q4

2K1
u+

−K4Q1 + 2K1Q3

2K2
1

v +
4

5
K2u

4 +

+
12K7 + 10K4

5K1
u3v +

−6K2K4 + 12K1K6 − 30K13

5K2
1

u2v2 +

+
10K2

1K3 − 15K2
4 + 4K2

1K5 − 6K4K7 − 4K2K13

5K3
1

uv3 +

+
−K2

1K10 +K4K
2
13

K4
1

v4, (6)

dv

dt
= −Q1u+

K1Q2 − 2Q4

2K1
v −K1u

4 +
4

5
K2u

3v +

+
12K7 − 15K4

5K1
u2v2 +

−6K2K4 + 12K1K6 + 20K13

5K2
1

uv3 +

+
−10K2

1K3+15K2
4 +16K2

1K5−24K4K7−16K2K13

20K3
1

v4.

According to [5, Lemma 4] any GL(2,R)-comitant K(a,x) of system (1) coincides
with the semi-invariant SK of any comitant K calculated for system (6) in which
coordinates of the vector w are replaced, respectively, with coordinates of the vector
x. In other words

K(a,x) =
1

ρ!
· ∂

ρK (b (w1, w2) ,u)

∂uρ

∣

∣

∣

∣ w1 = x
w2 = y

, (7)

where u =

(

u
v

)

= q · x, q is the matrix of transformation (5) and b is the vector

of coefficients of system (6). So any GL(2,R)-comitant K(a,x) can be represented
as a rational function of comitants (4) where denominator is a nonnegative integer
power of the comitant K1. Thus, the set of comitatns (4) is a rational basis of
GL(2,R)-comitants for system (1) on M = {a ∈ A | K1 6≡ 0} .

Next we will show that this basis is minimal. Indeed, suppose the contrary that
the rational basis (4) is not a minimal one. This means that among the comitants
Ki and Qj there exists a polynomial identity P(Ki, Qj) ≡ 0 in R[x, y]. On the
other hand, since each Ki or Qj is well determined by its semi-invariant SKi or
SQj, respectively, we conclude that the identity P(SK i, SQj) ≡ 0 must also hold.
To calculate the expressions for these semi-invariants, for simplicity we apply the

following substitution: c =
D + F

2
, d = E, e = −C,f =

F −D

2
, g =

4P +H

5
,

h =
K + 2Q

10
, k =

3L+ 4R

30
, l =

M + S

5
, m = N ,n = −G, p =

P −H

5
, r =

2R − L

10
,

s =
4S −M

5
, q =

4Q− 3K

30
.
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By using these substitutions system (2) is written in the form:

dx

dt
=
D + F

2
x+ Ey +

4P +H

5
x4 +

4Q+ 2K

5
x3y +

4R+ 3L

5
x2y2 +

4S + 4M

5
xy3 +Ny4,

dy

dt
= −Cx+

F −D

2
y −Gx4 +

4P − 4H

5
x3y + (8)

4Q− 3K

5
x2y2 +

4R − 2L

5
xy3 +

4S −M

5
y4.

For system (8) the comitants R1, S1, R4 and S4 have the following form

R1 = Cx2 +Dxy + Ey2, S1 = F

R4 = Gx5 +Hx4y +Kx3y2 + Lx2y3 +Mxy4 +Ny5, (9)

S4 = Px3 +Qx2y +Rxy2 + Sy3,

For system (8) semi-invariants of comitants listed in the theorem have the form:

SK1 = G,

SK2 = P,

SK3 =
1

50
(3K2 − 8HL+ 20GM),

SK4 = − 1

25
(2H2 − 5GK),

SK5 = − 1

10
(LP −KQ+ 2HR− 10GS),

SK6 =
1

30
(3KP − 4HQ+ 10GR),

SK7 = − 1

15
(3HP − 5GQ), (10)

SK10 = − 1

250
(−3HK2 + 8H2L+ 5GKL− 50GHM + 250G2N),

SK13 = − 1

250
(4H3 − 15GHK + 25G2L),

SQ1 = C,

SQ2 = F,

SQ3 =
1

10
(10EG − 2DH + CK),

SQ4 =
1

10
(5DG− 2CH).

Next in order to prove the impossibility of the polynomial identity P(SK i, SQj) ≡
0 we use Table 1 in which the sign ” + ” indicates that the respective parameter is
contained in the expression of the semi-invariant SKi or SQj, and the sign ” − ”
indicates that the respective parameter is missing from the expression of the semi-
invariant SKi or SQj .
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Table 1

Parameters of system (8)
Semi-invariant C D E F G H K L M N P Q R S

SK1 − − − − + − − − − − − − − −
SK2 − − − − − − − − − − + − − −
SK3 − − − − + + + + + − − − − −
SK4 − − − − + + + − − − − − − −
SK5 − − − − + + + + − − + + + +

SK6 − − − − + + + − − − + + + −
SK7 − − − − + + − − − − + + − −
SK10 − − − − + + + + + + − − − −
SK13 − − − − + + + + − − − − − −
SQ1 + − − − − − − − − − − − − −
SQ2 − − − + − − − − − − − − − −
SQ3 + + + − + + + − − − − − − −
SQ4 + + − − + + − − − − − − − −

We observe that the parameter S is contained only in semi-invariant SK5 and
hence the identity P(SK i, SQj) ≡ 0 must be homogeneous in SK5. This means
that this semi-invariant could be removed from the list due to the parameter S
and we denote this couple by 〈SK5, S〉. Examining the remaining table after the
removal of the line corresponding to the semi-invariant SK5 and of the column
corresponding to the parameter S, by the same reason we get the couple 〈SK6, R〉
which allows us to remove the line corresponding to the semi-invariant SK6 and the
column corresponding to the parameter R. In the same way, we obtain the couples
〈SK7, Q〉, 〈SK2, P 〉, 〈SK10, N〉, 〈SQ3, E〉, 〈SQ4,D〉, 〈SQ2, F 〉, 〈SQ1, C〉, 〈SK3,M〉,
〈SK13, L〉, 〈SK4,K〉, 〈SK1, G〉. It follows that the set of comitants listed in Theorem
1 are polynomial independent. So if by the removal from it of any comitant it ceases
to be a rational basis. This proves that the set of comitants listed in Theorem 1 is
a minimal rational basis of GL(2,R)-comitants for system (1).

2.2 The case K2 6≡ 0 (S4 6≡ 0)

Theorem 2. The set of GL(2,R)-comitants

{K1, K2, K5, K6, K7, K8, K17, K18, K21, Q1, Q2, Q5, Q6} (11)

is a minimal rational basis of GL(2,R)-comitants for system (1) of differential equa-
tions with nonlinearities of the fourth degree on M = {a ∈ A | K2 6≡ 0} .

Proof. Firstly we will show that the set of comitants {K1, K2, K5, K6, K7, K8, K17,
K18, K21, Q1, Q2, Q5, Q6} is a rational basis of GL(2,R)-comitants when K2 6≡ 0.

The proof of this theorem is completely the same as the proof of previous theo-
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rem. Let the GL(2,R)-comitant K2 6≡ 0. By using the transformation:

u =
1

3K2(a,w)
· ∂K2(a,w)

∂w1
· x+

1

3K2(a,w)
· ∂K2(a,w)

∂w2
· y,

v = −w2x+ w1y,

(12)

system (1) can be brought to the system:

du

dt
=
K2Q2 + 2Q6

2K2
u+

−K8Q1 + 2K2Q5

2K2
2

v +
4K2

2 − 5K7

5K2
u4 +

+
4K2K6 − 2K1K8

K2
2

u3v +
−30K2

2K5 + 6K2
2K8 + 45K7K8 − 30K1K21

5K3
2

u2v2 +

+
−30K2K6K8 + 15K1K

2
8 + 20K2

2K18 − 4K2
2K21 + 20K7K21

5K4
2

uv3 +

+
8K2

2K5K8 − 9K7K
2
8 − 4K3

2K17 − 4K2K6K21 + 8K1K8K21

4K5
2

v4, (13)

dv

dt
= −Q1u+

K2Q2 − 2Q6

2K2
v −K1u

4 +
4K2

2 + 20K7

5K2
u3v +

+
−6K2K6 + 3K1K8

K2
2

u2v2 +
20K2

2K5 + 6K2
2K8 − 30K7K8 + 20K1K21

5K3
2

uv3 +

+
30K2K6K8 − 15K1K

2
8 − 20K2

2K18 − 16K2
2K21 − 20K7K21

20K4
2

v4.

According to [5, Lemma 4] it follows that the set of comitants (11) forms a rational
basis of GL(2,R)-comitants for system (1). The minimality results from the expres-
sions of semi-invariants of comitants (11), calculated for system (8), which are the
following:

SK1 = G,

SK2 = P,

SK5 = −1/10(LP −KQ+ 2HR− 10GS),

SK6 = 1/30(3KP − 4HQ+ 10GR),

SK7 = −1/15(3HP − 5GQ),

SK8 = −2/9(Q2 − 3PR),

SK17 = −1/30(30NP 2 − 10MPQ+ 2LQ2 + 4LPR− 3KQR+ 2HR2−
− 3KPS + 4HQS − 10GRS), (14)

SK18 = 1/30(6MP 2 − 4LPQ+KQ2 + 3KPR − 2HQR−
− 6HPS + 10GQS),

SK21 = −1/27(2Q3 − 9PQR + 27P 2S),

SQ1 = C,
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SQ2 = F,

SQ5 = 1/3(3EP −DQ+CR),

SQ6 = 1/6(3DP − 2CQ).

Next in order to prove the impossibility of the polynomial identity P(SK i, SQj) ≡
0 we use Table 2 in which the sign ” + ” indicates that the respective parameter is
contained in the expression of the semi-invariant SKi or SQj, and the sign ” − ”
indicates that the respective parameter is missing from the expression of the semi-
invariant SKi or SQj .

Table 2

Parameters of system (8)
Semi-invariant C D E F G H K L M N P Q R S

SK1 − − − − + − − − − − − − − −
SK2 − − − − − − − − − − + − − −
SK5 − − − − + + + + − − + + + +

SK6 − − − − + + + − − − + + + −
SK7 − − − − + + − − − − + + − −
SK8 − − − − − − − − − − + + + −
SK17 − − − − + + + + + + + + + +

SK18 − − − − + + + + + − + + + +

SK21 − − − − − − − − − − + + + +

SQ1 + − − − − − − − − − − − − −
SQ2 − − − + − − − − − − − − − −
SQ5 + + + − − − − − − − + + + −
SQ6 + + − − − − − − − − + + − −

In the same way as in the proof of Theorem 1 we obtain the couples 〈SK17, N〉,
〈SK18,M〉, 〈SK5, L〉, 〈SK6,K〉, 〈SK7,H〉, 〈SK1, G〉, 〈SQ2, F 〉, 〈SQ5, E〉, 〈SQ6,D〉,
〈SQ1, C〉, 〈SK8, R〉, 〈SK2, P 〉,〈SK21, S〉.

From Table 2 it follows that the comitants (11) are polynomial independent.

2.3 The case Q1 6≡ 0 (R1 6≡ 0)

Theorem 3. The set of GL(2,R)-comitants

{K1, K2, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q19, Q20, Q21, Q43} (15)

is a minimal rational basis of GL(2,R)-comitants for system (1) of differential equa-
tions with nonlinearities of the fourth degree on M = {a ∈ A | Q1 6≡ 0} .

Proof. Firstly we will show that the set of comitants {K1, K2, Q1, Q2, Q3, Q4, Q5,
Q6, Q7, Q19, Q20, Q21, Q43} is a rational basis of GL(2,R)-comitants when Q1 6≡ 0.
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The proof of this theorem is completely the same as the proof of Theorem 1. Let
the GL(2,R)-comitant Q1 6≡ 0. By using the transformation:

u =
1

2Q1(a,w)
· ∂Q1(a,w)

∂w1
· x+

1

2Q1(a,w)
· ∂Q1(a,w)

∂w2
· y,

v = −w2x+ w1y,

(16)

system (1) can be brought to the system:

du

dt
=
Q2

2
u+

Q7

2Q1
v +

+
4K2Q1 − 5Q4

5Q1
u4 +

20Q1Q3 − 12Q1Q6 − 10K1Q7

5Q2
1

u3v +

+
12Q2

1Q5 − 6K2Q1Q7 + 15Q4Q7 − 30Q1Q20

5Q3
1

u2v2 +

+
−20Q1Q3Q7 + 2Q1Q6Q7 + 5K1Q

2
7 + 20Q2

1Q19 − 4Q2
1Q21

5Q4
1

uv3 +

+
4Q1Q7Q20 −Q4Q

2
7 − 4Q2

1Q43

4Q5
1

v4, (17)

dv

dt
= −Q1u+

Q2

2
v −K1u

4 +

+
4K2Q1 + 20Q4

5Q1
u3v +

15K1Q7 − 30Q1Q3 − 12Q1Q6

5Q2
1

u2v2 +

+
12Q2

1Q5 − 6K2Q1Q7 − 10Q4Q7 + 20Q1Q20

5Q3
1

uv3 +

+
20Q1Q3Q7 + 8Q1Q6Q7 − 5K1Q

2
7 − 20Q2

1Q19 − 16Q2
1Q21

20Q4
1

v4.

According to [5, Lemma 4] it follows that the set of comitants (15) forms a rational
basis of GL(2,R)-comitants for system (1).

The minimality results from expressions of semi-invariants of comitants (15),
which are the following:

SK1 = G,

SK2 = P,

SQ1 = C,

SQ2 = F,

SQ3 = 1/10(10EG − 2DH + CK),

SQ4 = 1/10(5DG − 2CH),

SQ5 = 1/3(3EP −DQ+CR), (18)

SQ6 = 1/6(3DP − 2CQ),
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SQ7 = −1/2(D2 − 4CE),

SQ19 = 1/10(10E2G− 4DEH +D2K + 2CEK − 2CDL+ 2C2M),

SQ20 = −1/20(−10DEG + 2D2H + 4CEH − 3CDK + 2C2L),

SQ21 = −1/6(−3DEP +D2Q+ 2CEQ− 3CDR+ 6C2S),

SQ43 = 1/20(10DE2G− 4D2EH − 4CE2H +D3K + 6CDEK − 4CD2L−
− 4C2EL+ 10C2DM − 20C3N).

Next in order to prove the impossibility of the polynomial identity P(SK i, SQj) ≡
0 we use Table 3 in which the sign ” + ” indicates that the respective parameter is
contained in the expression of the semi-invariant SKi or SQj, and the sign ” − ”
indicates that the respective parameter is missing from the expression of the semi-
invariant SKi or SQj .

Table 3

Parameters of system (8)
Semi-invariant C D E F G H K L M N P Q R S

SK1 − − − − + − − − − − − − − −
SK2 − − − − − − − − − − + − − −
SQ1 + − − − − − − − − − − − − −
SQ2 − − − + − − − − − − − − − −
SQ3 + + + − + + + − − − − − − −
SQ4 + + − − + + − − − − − − − −
SQ5 + + + − − − − − − − + + + −
SQ6 + + − − − − − − − − + + − −
SQ7 + + + − − − − − − − − − − −
SQ19 + + + − + + + + + − − − − −
SQ20 + + + − + + + + − − − − − −
SQ21 + + + − − − − − − − + + + +

SQ43 + + + − + + + + + + − − − −
In the same way as in the proof of previous theorems we obtain the cou-

ples 〈SQ2, F 〉, 〈SQ21, S〉, 〈SQ5, R〉, 〈SQ6, Q〉, 〈SK2, P 〉, 〈SQ43, N〉, 〈SQ19,M〉,
〈SQ20, L〉, 〈SQ3,K〉, 〈SQ4,H〉, 〈SK1, G〉, 〈SQ7, E〉,〈SQ1, C〉.

From Table 3 it follows that the comitants (15) are polynomial independent.

3 Rational bases of GL(2, R)-invariants

3.1 The case I3 6= 0

Theorem 4. The set of GL(2,R)-invariants

{I1, I2, I3, J1, J2, J3, J4, J6, J19, J20, J43} (19)

is a minimal rational basis of GL(2,R)-invariants for system (1) of differential equa-
tions with nonlinearities of the fourth degree on M = {a ∈ A | I3 6= 0} .
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Proof. Firstly we will show that the set of invariants {I1, I2, I3, J1, J2, J3, J4, J6,
J19, J20, J43} is a rational basis of GL(2,R)-invariants when I3 6= 0.

By using the transformation:

u =
1

I3(a,w)
· ∂Q21(a,w)

∂w1
· x+

1

I3(a,w)
· ∂Q21(a,w)

∂w2
· y,

v =
∂Q5(a,w)

∂w1
· x+

∂Q5(a,w)

∂w2
· y,

(20)

system (1) can be brought to the system:

du

dt
=
I1
2
u− I2

2I3
v +

4I3J2 + 5J4

5I3
u4 +

−10I2J1 − 20I3J3 + 12I3J6

5I2
3

u3v +
−6I2I3J2 − 15I2J4 − 30I3J20

5I3
3

u2v2 +

−4I3
3 + 5I2

2J1 + 20I2I3J3 − 2I2I3J6 + 20I2
3J19

5I4
3

uv3 +

+
I2
2J4 + 4I2I3J20 + 4I2

3J43

4I5
3

v4, (21)

dv

dt
= I3u+

I1
2
v − J1u

4 +
4I3J2 − 20J4

5I3
u3v +

+
15I2J1 + 30I3J3 + 12I3J6

5I2
3

u2v2 +
−6I2I3J2 + 10I2J4 + 20I3J20

5I3
3

uv3 +

−16I3
3 − 5I2

2J1 − 20I2I3J3 − 8I2I3J6 − 20I2
3J19

20I4
3

v4.

From system (21), it follows that any GL(2,R)-invariant of system (1) with
I3 6= 0 can be represented as a rational function of invariants (19). So the set of
GL(2,R)-invariants (19) forms a rational basis for system (1) with I3 6= 0.

To prove the minimality we write the expressions of invariants (19). By using the
notation U = 1

3(EQ−DR+ 3CS) and V = 1
3(3EP −DQ+CR) for the invariants

(19) we have:

I1 = F,

I2 =
1

2
(−D2 + 4CE),

I3 = − CU2 +DUV − EV 2,

J1 = GU5 −HU4V +KU3V 2 − LU2V 3 +MUV 4 −NV 5,

J2 = PU3 −QU2V +RUV 2 − SV 3,

J3 =
1

10
[(10EG − 2DH + CK)U3 + (−6EH + 3DK − 3CL)U2V+

+ (3EK − 3DL+ 6CM)UV 2 + (−EL+ 2DM − 10CN)V 3],
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J4 =
1

10
[(5DG − 2CH)U5 + (−10EG − 3DH + 4CK)U4V+

+ (8EH +DK − 6CL)U3V 2 + (−6EK +DL+ 8CM)U2V 3+

+ (4EL − 3DM − 10CN)UV 4 + (−2EM + 5DN)V 5],

J6 =
1

6
[(3DP − 2CQ)U3 + (−6EP −DQ+ 4CR)U2V+

+ (4EQ −DR− 6CS)UV 2 + (−2ER + 3DS)V 3], (22)

J19 =
1

10
[(10E2G− 4DEH +D2K + 2CEK − 2CDL+ 2C2M)U+

+ (−2E2H + 2DEK −D2L− 2CEL+ 4CDM − 10C2N)V ],

J20 =
1

20
[(10DEG − 2D2H − 4CEH + 3CDK − 2C2L)U3+

+ (−20E2G+ 2DEH +D2K + 2CEK − 5CDL+ 8C2M)U2V+

+ (8E2H − 5DEK +D2L+ 2CEL+ 2CDM − 20C2N)UV 2+

+ (−2E2K + 3DEL− 2D2M − 4CEM + 10CDN)V 3],

J43 =
1

20
[(10DE2G− 4D2EH − 4CE2H +D3K + 6CDEK − 4CD2L− 4C2EL+

+ 10C2DM − 20C3N)U + (−20E3G+ 10DE2H − 4D2EK − 4CE2K+

+D3L+ 6CDEL− 4CD2M − 4C2EM + 10C2DN)V ].

Next, we write the expressions of the highest power of S in the invariants (22),
denoted by EIi and EJi

EI1 = F,

EI2 =
1

2
(−D2 + 4CE),

EI3 = −C3,

EJ1 = C5G,

EJ2 = C3P,

EJ3 =
1

10
C3(10EG − 2DH + CK),

EJ4 = − 1

10
C5(−5DG+ 2CH), (23)

EJ6 = −1

6
C3(−3DP + 2CQ),

EJ19 =
1

10
C(10E2G− 4DEH +D2K + 2CEK − 2CDL+ 2C2M),

EJ20 = − 1

20
C3(−10DEG + 2D2H + 4CEH − 3CDK + 2C2L),

EJ43 = − 1

20
C(−10DE2G+ 4D2EH + 4CE2H −D3K − 6CDEK + 4CD2L+

+ 4C2EL− 10C2DM + 20C3N).
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In the following table the sign ” + ” indicates that the respective parameter is
contained in the expression of the highest power of S in the invariants (22) and the
sign ” − ” indicates that the respective parameter is missing from the expression of
the highest power of S.

Table 4

Parameters of system (8)
Invariant C D E F G H K L M N P Q R

I1 − − − + − − − − − − − − −
I2 + + + − − − − − − − − − −
I3 + − − − − − − − − − − − −
J1 + − − − + − − − − − − − −
J2 + − − − − − − − − − + − −
J3 + + + − + + + − − − − − −
J4 + + − − + + − − − − − − −
J6 + + − − − − − − − − + + −
J19 + + + − + + + + + − − − −
J20 + + + − + + + + − − − − −
J43 + + + − + + + + + + − − −

According to Table 4 we obtain the couples 〈J6, Q〉, 〈J2, P 〉, 〈J43, N〉, 〈J19,M〉,
〈J20, L〉, 〈J3,K〉, 〈J4,H〉, 〈J1, G〉, 〈I1, F 〉, 〈I2, E〉, 〈J2, C〉.

From Table 4 it follows that the invariants (19) are polynomial independent.

3.2 The case I4 6= 0

Theorem 5. The set of GL(2,R)-invariants

{

I1, I2, I4, ˜J1, ˜J2, ˜J3, ˜J4, ˜J5, ˜J6, ˜J20, ˜J21

}

(24)

is a minimal rational basis of GL(2,R)-invariants for system (1) of differential equa-
tions with nonlinearities of the fourth degree on M = {a ∈ A | I4 6= 0} .

Proof. Firstly we will show that the set of invariants {I1, I2, I4, ˜J1, ˜J2, ˜J3, ˜J4, ˜J5,
˜J6, ˜J20, ˜J21} is a rational basis of GL(2,R)-invariants when I4 6= 0.

By using the transformation:

u =
1

I4(a,w)
· ∂Q43(a,w)

∂w1
· x+

1

I4(a,w)
· ∂Q43(a,w)

∂w2
· y,

v =
∂Q19(a,w)

∂w1
· x+

∂Q19(a,w)

∂w2
· y,

(25)

system (1) can be brought to the system:

du

dt
=
I1
2
u− I2

2I4
v +

4I4 ˜J2 + 5 ˜J4

5I4
u4 +

−10I2 ˜J1 − 20I4 ˜J3 + 12I4 ˜J6

5I2
4

u3v +
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+
6I2I4 ˜J2 + 15I2 ˜J4 + 12I2

4
˜J5 + 30I4 ˜J20

5I3
4

u2v2 +

+
5I2

2
˜J1 + 20I2I4 ˜J3 − 2I2I4 ˜J6 − 4I2

4
˜J21

5I4
4

uv3 +
4I3

4 + I2
2

˜J4 + 4I2I4 ˜J20

4I5
4

v4, (26)

dv

dt
= I4u+

I1
2
v − ˜J1u

4 +
4I4 ˜J2 − 20 ˜J4

5I4
u3v +

15I2 ˜J1 + 30I4 ˜J3 + 12I4 ˜J6

5I2
4

u2v2 +

+
−6I2I4 ˜J2 + 10I2 ˜J4 − 12I2

4
˜J5 + 20I4 ˜J20

5I3
4

uv3 +

+
−5I2

2
˜J1 + 20I2I4 ˜J3 + 8I2I4 ˜J6 + 16I2

4
˜J21

20I4
4

v4.

From system (26), it follows that any GL(2,R)-invariant of system (1) with
I4 6= 0 can be represented as a rational function of invariants (24). So the set of
GL(2,R)-invariants (24) forms a rational basis for system (1) with I4 6= 0.

To prove the minimality we write the expressions of invariants (24). By using

the notation U =
1

10
(2E2H − 2DEK + D2L + 2CEL − 4CDM + 10C2N) and

V =
1

10
(10E2G− 4DEH +D2K+ 2CEK− 2CDL+ 2C2M) for the invariants (24)

we have:

I1 = F,

I2 =
1

2
(−D2 + 4CE),

I4 = − CU2 +DUV − EV 2,

˜J1 = GU5 −HU4V +KU3V 2 − LU2V 3 +MUV 4 −NV 5,

˜J2 = PU3 −QU2V +RUV 2 − SV 3,

˜J3 =
1

10
[(10EG − 2DH + CK)U3 + (−6EH + 3DK − 3CL)U2V+

+ (3EK − 3DL+ 6CM)UV 2 + (−EL+ 2DM − 10CN)V 3],

˜J4 =
1

10
[(5DG − 2CH)U5 + (−10EG − 3DH + 4CK)U4V+

+ (8EH +DK − 6CL)U3V 2 + (−6EK +DL+ 8CM)U2V 3+

+ (4EL − 3DM − 10CN)UV 4 + (−2EM + 5DN)V 5], (27)

˜J5 =
1

3
[(3EP −DQ+ CR)U + (−EQ+DR− 3CS)V ],

˜J6 =
1

6
[(3DP − 2CQ)U3 + (−6EP −DQ+ 4CR)U2V+

+ (4EQ −DR− 6CS)UV 2 + (−2ER + 3DS)V 3],

˜J20 =
1

20
[(10DEG − 2D2H − 4CEH + 3CDK − 2C2L)U3+

+ (−20E2G+ 2DEH +D2K + 2CEK − 5CDL+ 8C2M)U2V+
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+ (8E2H − 5DEK +D2L+ 2CEL+ 2CDM − 20C2N)UV 2+

+ (−2E2K + 3DEL− 2D2M − 4CEM + 10CDN)V 3],

˜J21 =
1

6
[(3DEP −D2Q− 2CEQ+ 3CDR− 6C2S)U+

+ (−6E2P + 3DEQ−D2R− 2CER + 3CDS)V ].

Table 5

Parameters of system (8)
Invariant C D E F G H K L M P Q R S

I1 − − − + − − − − − − − − −
I2 + + + − − − − − − − − − −
I4 + − − − − − − − − − − − −
˜J1 + − − − + − − − − − − − −
˜J2 + − − − − − − − − + − − −
˜J3 + + + − + + + − − − − − −
˜J4 + + − − + + − − − − − − −
˜J5 + + + − − − − − − + + + −
˜J6 + + − − − − − − − + + − −
˜J20 + + + − + + + + − − − − −
˜J21 + + + − − − − − − + + + +

Next, we write the expressions of the highest power of N in the invariants (24),
denoted by EIi and E ˜Ji

EI1 = F,

EI2 =
1

2
(−D2 + 4CE),

EI4 = C5,

E ˜J1 = C10G,

E ˜J2 = C6P,

E ˜J3 =
1

10
C6(10EG − 2DH + CK),

E ˜J4 = − 1

10
C10(−5DG+ 2CH), (28)

E ˜J5 =
1

3
C2(3EP −DQ+ CR),

E ˜J6 = −1

6
C6(−3DP + 2CQ),

E ˜J20 = − 1

20
C6(−10DEG + 2D2H + 4CEH − 3CDK + 2C2L),

E ˜J21 = −1

6
C2(−3DEP +D2Q+ 2CEQ− 3CDR+ 6C2S).
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In Table 5 the sign ” + ” indicates that the respective parameter is contained in
the expression of the highest power of N in the invariants (27) and the sign ” − ”
indicates that the respective parameter is missing from the expression of the highest
power of N .

According to Table 5 we obtain the couples
〈

˜J21, S
〉

,
〈

˜J5, R
〉

,
〈

˜J6, Q
〉

,
〈

˜J2, P
〉

,
〈

˜J20, L
〉

,
〈

˜J3,K
〉

,
〈

˜J4,H
〉

,
〈

˜J1, G
〉

, 〈I1, F 〉, 〈I2, E〉,
〈

˜J2, C
〉

.

From Table 5 it follows that the invariants (24) are polynomial independent.

The aim of constructing systems of the form (6), (13), (17), (21), (26) the minimal
rational basis of GL(2,R)-comitants (4), (11), (15) and the minimal rational basis of
GL(2,R)-invariants (19), (24), is to use them in the qualitative study of systems (1),
for example in establishing the invariant center conditions (center-focus problem) [6].
For the center-focus problem, when system (1) satisfies the conditions I1 = 0, I2 > 0,
by a linear transformation and time scaling system (1) can be brought to the form

dx

dt
= y + gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

dy

dt
= − x+ nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4. (29)

For this system the first two Lyapunov quantities have the form:

G8 =
1

16
(−7gh − 18hk − 3gl − 18kl − 3hm− 7lm+ 7gn + 3kn + 8hp+ 7np+

+ 3gq − 3mq + 18pq − 8lr + 3nr + 18qr − 3ks− 7ms+ 3ps+ 7rs), (30)

G14 =
1

23040
(121121g3h+ 92952gh3 + 579516g2hk + 234576h3k + 866556ghk2+

+ 436752hk3 + 55419g3l + 199032gh2l + 414072g2kl + 635472h2kl+

+ 720900gk2l + 393984k3l + 132776ghl2 + 572976hkl2 + 18888gl3+

+ 165168kl3 + 109545g2hm+ 39096h3m+ 340704ghkm + 272052hk2m+

+ 134135g2lm+ 158040h2lm+ 390264gklm + 299772k2lm+ 182280hl2m+

+ 64232l3m+ 33831ghm2 + 58644hkm2 + 38277glm2 + 60048klm2+

+ 3807hm3 + 1161lm3 − 121121g3n− 7470gh2n− 351561g2kn+

+ 139428h2kn− 321066gk2n− 72792k3n− 48588ghln + 254376hkln−
− 32318gl2n+ 125508kl2n− 65376g2mn+ 29970h2mn− 123066gkmn−
− 36774k2mn+ 94068hlmn + 60354l2mn− 14175gm2n− 5589km2n−
− 35181ghn2 + 648hkn2 − 23859gln2 + 15660kln2 + 5589hmn2+

+ 14175lmn2 − 1161gn3 − 3807kn3 + 23034g2hp− 97344h3p+

+ 313896ghkp + 347400hk2p+ 40242g2lp− 162048h2lp+ 428040gklp+

+ 487080k2lp− 80320hl2p− 11520l3p+ 46452ghmp + 113256hkmp+
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+ 149092glmp + 279240klmp + 2970hm2p+ 27666lm2p− 324699g2np−
− 118440h2np− 662136gknp − 330300k2np− 146544hlnp − 54728l2np−
− 125730gmnp − 123552kmnp − 14175m2np− 31050hn2p− 27666ln2p−
− 1161n3p− 144360ghp2 − 107184hkp2 + 5928glp2 + 149616klp2−
− 40008hmp2 + 54728lmp2 − 267810gnp2 − 292836knp2 − 60354mnp2−
− 73408hp3 + 11520lp3 − 64232np3 − 30849g3q + 252324gh2q−
− 49158g2kq + 703080h2kq + 73008gk2q + 128304k3q + 310056ghlq+

+ 1324944hklq + 102468gl2q + 684072kl2q + 25665g2mq + 155844h2mq+

+ 100188gkmq + 121392k2mq + 438120hlmq + 292836l2mq + 15201gm2q+

+ 35802km2q + 3807m3q − 200160ghnq + 75384hknq − 185496glnq+

+ 143784klnq + 66744hmnq + 123552lmnq − 64179gn2q − 35802kn2q+

+ 5589mn2q − 431796g2pq − 454320h2pq − 923256gkpq − 530064k2pq−
− 550560hlpq − 149616l2pq − 122928gmpq − 143784kmpq − 15660m2pq−
− 351144hnpq − 279240lnpq − 60048n2pq − 538980gp2q − 684072kp2q−
− 125508mp2q − 165168p3q + 7740ghq2 + 401760hkq2 − 15084glq2+

+ 530064klq2 + 189540hmq2 + 330300lmq2 − 259758gnq2 − 121392knq2+

+ 36774mnq2 − 713160hpq2 − 487080lpq2 − 299772npq2 − 189432gq3−
− 128304kq3 + 72792mq3 − 393984pq3 + 168018g2hr + 666504ghkr+

+ 614952hk2r + 191146g2lr + 104256h2lr + 749928gklr + 713160k2lr+

+ 173568hl2r + 73408l3r + 126756ghmr + 251208hkmr + 184020glmr+

+ 351144klmr + 22194hm2r + 31050lm2r − 219297g2nr − 36504h2nr−
− 443952gknr − 189540k2nr + 20016hlnr + 40008l2nr − 93582gmnr−
− 66744kmnr − 5589m2nr − 22194hn2r − 2970ln2r − 3807n3r−
− 49776ghpr + 99936hkpr + 193328glpr + 550560klpr − 20016hmpr+

+ 146544lmpr − 419316gnpr − 438120knpr − 94068mnpr − 173568hp2r+

+ 80320lp2r − 182280np2r − 364176g2qr − 239760h2qr − 755784gkqr−
− 401760k2qr − 99936hlqr + 107184l2qr − 91080gmqr − 75384kmqr−
− 648m2qr − 251208hnqr − 113256lnqr − 58644n2qr − 1012968gpqr−
− 1324944kpqr − 254376mpqr − 572976p2qr − 614952hq2r − 347400lq2r−
− 272052nq2r − 436752q3r + 93816ghr2 + 239760hkr2 + 197256glr2+

+ 454320klr2 + 36504hmr2 + 118440lmr2 − 173106gnr2 − 155844knr2−
− 29970mnr2 − 104256hpr2 + 162048lpr2 − 158040npr2 − 518724gqr2−
− 703080kqr2 − 139428mqr2 − 635472pqr2 + 97344lr3 − 39096nr3−
− 234576qr3 + 11250g3s+ 200274gh2s+ 96999g2ks+ 518724h2ks+
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+ 236754gk2s+ 189432k3s+ 282868ghls + 1012968hkls + 104322gl2s+

+ 538980kl2s+ 114479g2ms+ 173106h2ms+ 308670gkms + 259758k2ms+

+ 419316hlms + 267810l2ms+ 34470gm2s+ 64179km2s+ 1161m3s−
− 98214ghns + 91080hkns − 107026glns + 122928klns + 93582hmns+

+ 125730lmns − 34470gn2s− 15201kn2s+ 14175mn2s− 83769g2ps−
− 197256h2ps− 98592gkps + 15084k2ps− 193328hlps − 5928l2ps+

+ 107026gmps + 185496kmps + 23859m2ps− 184020hnps − 149092lnps−
− 38277n2ps− 104322gp2s− 102468kp2s+ 32318mp2s− 18888p3s+

+ 159288ghqs + 755784hkqs + 98592glqs + 923256klqs + 443952hmqs+

+ 662136lmqs − 308670gnqs − 100188knqs + 123066mnqs − 749928hpqs−
− 428040lpqs − 390264npqs − 236754gq2s− 73008kq2s+ 321066mq2s−
− 720900pq2s− 114479g2rs− 93816h2rs− 159288gkrs − 7740k2rs+

+ 49776hlrs + 144360l2rs+ 98214gmrs + 200160kmrs + 35181m2rs−
− 126756hnrs − 46452lnrs − 33831n2rs− 282868gprs − 310056kprs+

+ 48588mprs − 132776p2rs− 666504hqrs − 313896lqrs − 340704nqrs−
− 866556q2rs− 200274gr2s− 252324kr2s+ 7470mr2s− 199032pr2s−
− 92952r3s+ 114479ghs2 + 364176hks2 + 83769gls2 + 431796kls2+

+ 219297hms2 + 324699lms2 − 114479gns2 − 25665kns2 + 65376mns2−
− 191146hps2 − 40242lps2 − 134135nps2 − 96999gqs2 + 49158kqs2+

+ 351561mqs2 − 414072pqs2 − 168018hrs2 − 23034lrs2 − 109545nrs2−
− 579516qrs2 − 11250gs3 + 30849ks3 + 121121ms3 − 55419ps3−
− 121121rs3). (31)

By using system (21) with I3 6= 0, I2 6= 0 and I1 = 0, the first two Lyapunov
quantities have the form:

G8 =
3I2

2I3J2J19 + 2I2I
2
3J20 + 2I3

2J2J3 + 7I3
3J43 + 4I2

2J6J20 + 2I2I3J6J43

I4
2I

3
3

, (32)

G14 =
1

900I9
2 I

6
3

(12096I5
2 I

3
3J1J2 + 456288I3

2 I
5
3J2J19 + 1872I5

2 I
2
3J1J2J19+

+ 225360I3
2 I

4
3J2J

2
19 − 12960I5

2 I3J1J2J
2
19 + 43875I3

2 I
3
3J2J

3
19+

+ 11424I6
2 I3J

3
2J19 + 379648I2

2 I
6
3J20 − 39312I4

2 I
3
3J1J20+

+ 335880I2
2 I

5
3J19J20 − 84240I4

2 I
2
3J1J19J20 + 113400I2

2 I
4
3J

2
19J20+

+ 12800I5
2 I

2
3J

2
2J20 − 46224I5

2 I3J
2
2J19J20 − 68256I4

2 I
2
3J2J

2
20+

+ 9720I4
2 I3J2J19J

2
20 − 25920I3

2 I
2
3J

3
20 + 319168I4

2 I
4
3J2J3−
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− 11232I6
2 I3J1J2J3 + 155880I4

2 I
3
3J2J3J19 − 12960I6

2J1J2J3J19+

+ 60750I4
2 I

2
3J2J3J

2
19 + 7616I7

2J
3
2J3 − 22032I3

2 I
4
3J3J20−

− 38880I5
2 I3J1J3J20 − 84240I3

2 I
3
3J3J19J20 − 34560I6

2J
2
2J3J20+

+ 32400I5
2J2J3J

2
20 − 10800I5

2 I
2
3J2J

2
3 + 40500I5

2 I3J2J
2
3J19−

− 51840I4
2 I

2
3J

2
3J20 + 16200I6

2J2J
3
3 + 13824I23I5

3J4+

+ 79560I3
2 I

4
3J4J19 + 89100I3

2 I
3
3J4J

2
19 + 3456I6

2 I3J
2
2J4+

+ 3744I6
2J

2
2J4J19 − 22464I5

2 I3J2J4J20 − 25920I5
2J19J2J4J20−

− 38880I4
2 I3J4J

2
20 + 39312I4

2 I
3
3J3J4 + 84240I4

2 I
2
3J3J4J19+

+ 19440I5
2 I3J

2
3J4 + 1126592I2I

7
3J43 − 43992I3

2 I
4
3J1J43+

+ 459540I2I
6
3J19J43 − 132840I3

2 I
3
3J1J19J43 − 182250I2I

5
3J

2
19J43+

+ 25792I4
2 I

3
3J

2
2J43 + 3744I6

2J1J
2
2J43 − 20304I4

2 I
2
3J

2
2J19J43−

− 54000I3
2 I

3
3J2J20J43 − 25920I5

2J1J2J20J43 + 87480I3
2 I

2
3J2J19J20J43−

− 174960I2
2 I

3
3J

2
20J43 − 180072I2

2 I
5
3J3J43 − 71280I4

2 I
2
3J1J3J43−

− 473040I2
2 I

4
3J3J19J43 − 7920I5

2 I3J
2
2J3J43 + 6480I4

2 I3J2J3J20J43−
− 165240I3

2 I
3
3J

2
3J43 + 41184I4

2 I
2
3J2J4J43 + 51840I4

2 I3J2J4J19J43−
− 142560I3

2 I
2
3J20J4J43 + 25920I5

2J2J3J4J43 − 64224I2
2 I

4
3J2J

2
43−

− 25920I4
2 I3J1J2J

2
43 − 39690I2

2 I
3
3J2J19J

2
43 − 220320I2I

4
3J20J

2
43−

− 50220I3
2 I

2
3J2J3J

2
43 − 74520I2

2 I
3
3J4J

2
43 + 23220I5

3J
3
43 − 6912I6

2 I3J1J2J6+

+ 14208I4
2 I

3
3J2J6J19 − 7488I6

2J1J2J6J19 + 68400I4
2 I

2
3J2J6J

2
19+

+ 629376I3
2 I

4
3J6J20 + 22464I5

2 I3J1J6J20 + 364176I3
2 I

3
3J6J19J20+

+ 25920I5
2J1J6J19J20 + 66420I3

2 I
2
3J6J

2
19J20 + 15232I6

2J
2
2J6J20−

− 69120I5
2J2J6J

2
20 + 64800I4

2J6J
3
20 − 2048I5

2 I
2
3J2J3J6+

+ 84960I5
2 I3J19J2J3J6 + 91584I4

2 I
2
3J3J6J20 + 123120I4

2 I3J3J6J19J20+

+ 34560I6
2J2J

2
3J6 + 32400I5

2J
2
3J6J20 + 24192I4

2 I
3
3J4J6+

+ 3744I4
2 I

2
3J4J6J19 − 25920I4

2 I3J4J6J
2
19 − 22464I5

2 I3J3J4J6−
− 25920I5

2J19J3J4J6 + 360384I2
2 I

5
3J6J43 − 41184I4

2 I
2
3J1J6J43+

+ 284256I2
2 I

4
3J6J19J43 − 51840I4

2 I3J1J6J19J43 − 2430I2
2 I

3
3J6J

2
19J43+

+ 7616I5
2 I3J

2
2J6J43 − 46656I4

2 I3J2J6J20J43 + 19440I3
2 I3J6J

2
20J43+

+ 1584I3
2 I

3
3J3J6J43 − 25920I5

2J1J3J6J43 − 119880I3
2 I

2
3J19J3J6J43−

− 48600I4
2 I3J

2
3J6J43 + 14976I5

2J2J4J6J43 − 51840I4
2J20J4J6J43−

− 13536I3
2 I

2
3J2J6J

2
43 − 42120I2

2 I
2
3J6J20J

2
43 − 51840I3

2 I3J4J6J
2
43−

− 26460I2I
3
3J6J

3
43 + 22848I5

2 I3J2J
2
6J19 + 35328I4

2 I
2
3J

2
6J20+

+ 92448I4
2 I3J

2
6J19J20 + 15232I6

2J2J3J
2
6 + 69120I5

2J3J
2
6J20−

− 6912I5
2 I3J4J

2
6 − 7488I5

2J4J
2
6J19 + 63360I3

2 I
3
3J

2
6J43−
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− 7488I5
2J1J

2
6J43 + 40608I3

2 I
2
3J

2
6J19J43 + 15840I4

2 I3J3J
2
6J43+

+ 30464I5
2J

3
6J20 + 15232I4

2 I3J
3
6J43). (33)

We conclude that the number of terms in expressions (32) (6 terms) and (33)
(126 terms) is less than the number of terms in expressions (30) (20 terms) and
(31) (346 terms), respectively. Moreover, the expressions (32) and (33) given via
invariants, can be used for any system of the form (1) with I3 6= 0, I2 6= 0 and
I1 = 0, while the expressions of the form (30) and (31) can be used only for system
of the form (29).
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Certain classes of p-valent analytic functions

with negative coefficients and (λ, p)-starlike

with respect to certain points

Adnan Ghazy Alamoush, Maslina Darus

Abstract. In this article, we consider classes S∗

s,λ
(p, α, β), S∗

c,λ
(p, α, β), and

S∗

sc,λ(p,α, β) of p-valent analytic functions with negative coefficients in the unit disk.
They are, respectively, (λ, p)-starlike with respect to symmetric points, (λ, p)-starlike
with respect to conjugate points, and (λ, p)-starlike with respect to symmetric conju-
gate points. Necessary and sufficient coefficient conditions for functions f belonging to
these classes are obtained. Several properties such as the coefficient estimates, growth
and distortion theorems, extreme points, radii of starlikeness, convexity, and integral
operator are studied.

Mathematics subject classification: 30C45.
Keywords and phrases: p-valent functions, univalent functions, Salagean operator,
starlike with respect to symmetric points.

1 Introduction

Let A denote the class of functions f(z) of the form

f(z) = z +
∞
∑

k=2

akz
k, (1)

which are analytic in the punctured unit disk U = {z : |z| < 1}. For f which belong
to A, Salagean [1] introduced the following operator:

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z),

and
Dnf(z) = D

(

Dn−1f(z)
)

(n ∈ N = {1, 2, 3, ...}). (2)

Note that

Dnf(z) = D
(

Dn−1f(z)
)

= z +
∞
∑

k=2

knakz
k (n ∈ N0 = {0} ∪ N). (3)

Let Tp (p a fixed integer greater than 0) denote the class of functions of the form

f(z) = zp +
∞
∑

k=1

ak+pz
k+p (4)

c© Adnan Ghazy Alamoush, Maslina Darus, 2015
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that are holomorphic and p-valent in the unit disk |z| < 1.
Also let Tp denote the subclass of Sp consisting of functions that can be expressed

in the form

f(z) = zp −
∞
∑

k=1

|ak+p|zk+p (5)

where ak+p ≥ 0, p ∈ N = {1, 2, 3, ...} , n ∈ N, which are analytic in the unit disc U.

We can write the following equalities for the functions f(z) which belong to the
class Tp (see [2]):

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z)

= z

(

pzp −
∞
∑

k=1

(k + p)ak+pz
k+p−1

)

= pzp −
∞
∑

k=1

(k + p)ak+pz
k+p,

D2f(z) = D(Df(z)) = p2zp −
∞
∑

k=1

(k + p)2ak+pz
k+p,

...

Dλf(z) = D
(

Dλ−1f(z)
)

= pλzp −
∞
∑

k=1

(k + p)λak+pz
k+p. (6)

Let S be the subclass of A consisting of functions that are regular and univalent in
U. Let S∗ be the subclass of S consisting of functions starlike in U. It is known that

f ∈ S∗ if and only if ℜ
{

zf ′(z)
f(z)

}

> 0, (z ∈ U).

In [3], Sakaguchi defined the class of starlike functions with respect to symmetric
points as follows:

Let f ∈ S. Then f is said to be starlike with respect to symmetric points in U

if and only if

ℜ
{

zf ′(z)

f(z) − f(−z)

}

> 0, (z ∈ U), (7)

and we denote this class by S∗

s . Obviously, it forms a subclass of close-to-convex
functions and hence univalent. Moreover, this class includes the class of convex
functions and odd starlike functions with respect to the origin, see Sakaguchi [3],
Robertson [5], Stankiewicz [6], Wu [7] and Owa et al. [8]. El-Ashwah and Thomas
in [9] introduced two other classes, namely the class S∗

c consisting of functions star-
like with respect to conjugate points and S∗

sc consisting of functions starlike with
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respect to symmetric conjugate points. The class S∗

sc is also studied by Chen et al.
[10] (see also [11]).

In [4], Sudharsan et al. introduced the class S∗

s (α, β) of functions f(z) ∈ S and
satisfying the following condition (see also [12]):

∣

∣

∣

∣

zf ′(z)

f(z) − f(−z)
− 1

∣

∣

∣

∣

< β

∣

∣

∣

∣

α
zf ′(z)

f(z) − f(−z)
+ 1

∣

∣

∣

∣

(8)

for some 0 ≤ α ≤ 1, 0 < β ≤ 1, z ∈ U.

Recently, Aouf el at.[13] introduced the class S∗

s,nT (α, β) of functions f(z) being
defined by (5). Then f(z) is said to be n-starlike with respect to symmetric points
if it satisfies the following condition:

∣

∣

∣

∣

Dn+1f(z)

Dnf(z) − Dnf(−z)
− 1

∣

∣

∣

∣

< β

∣

∣

∣

∣

α
Dn+1f(z)

Dnf(z) − Dnf(−z)
+ 1

∣

∣

∣

∣

, (9)

where n ∈ N0 = {0} ∪ N, 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ 2(1−β)
1+αβ , and z ∈ U.

However, in this paper we consider the subclass T defined by (5).

Definition 1. Let a function f(z) be defined by (5). Then f(z) is said to be (λ, p)-
starlike with respect to symmetric points if it satisfies the following condition:

∣

∣

∣

∣

Dλ+1f(z)

Dλf(z) − Dλf(−z)
− p

∣

∣

∣

∣

< β

∣

∣

∣

∣

α
Dλ+1f(z)

Dλf(z) − Dλf(−z)
+ p

∣

∣

∣

∣

, (10)

where λ ∈ N0 = {0} ∪ N, p ∈ N, 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ 2p(1−β)
1+αβ , and z ∈ U.

We denote the class of functions (λ, p)-starlike with respect to symmetric points by
S∗

s,λ(p, α, β).

Definition 2. Let a function f(z) be defined by (5). Then f(z) is said to be (λ, p)-
starlike with respect to conjugate points if it satisfies the following condition:

∣

∣

∣

∣

∣

Dλ+1f(z)

Dλf(z) + Dλf(z)
− p

∣

∣

∣

∣

∣

< β

∣

∣

∣

∣

∣

α
Dλ+1f(z)

Dλf(z) + Dλf(z)
+ p

∣

∣

∣

∣

∣

, (11)

where λ ∈ N0 = {0} ∪ N, p ∈ N, 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ 2p(1−β)
1+αβ , and z ∈ U.

We denote the class of functions (λ, p)-starlike with respect to conjugate points by
S∗

c,λ(p, α, β).

Definition 3. Let a function f(z) be defined by (5). Then f(z) is said to be
(λ, p)-starlike with respect to symmetric conjugate points if it satisfies the following
condition:

∣

∣

∣

∣

∣

Dλ+1f(z)

Dλf(z) − Dλf(−z)
− p

∣

∣

∣

∣

∣

< β

∣

∣

∣

∣

∣

α
Dλ+1f(z)

Dλf(z) − Dλf(−z)
+ p

∣

∣

∣

∣

∣

, (12)
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where λ ∈ N0 = {0} ∪ N, p ∈ N, 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ 2p(1−β)
1+αβ , and z ∈ U.

We denote the class of functions (λ, p)-starlike with respect to symmetric conjugate
points by S∗

sc,λ(p, α, β).

Notice that the above conditions imposed on α, β and p in the introduction are
necessary to ensure that these classes form a subclass of S. For more classes (see in
details Halim et al. [14,15].

2 Coefficient estimates

To prove the following theorems, we will adopt the technique used by Dziok [16],

and assume that λ ∈ N0 = {0} ∪ N, p ∈ N, 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ 2p(1−β)
1+αβ , and

z ∈ U.

Theorem 1. Let the function f(z) be defined by (5) and Dλf(z) − Dλf(−z) 6= 0
for z 6= 0. Then f(z) ∈ S∗

s,λ(p, α, β) if and only if

∞
∑

k=1

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1|ak+p|

≤ pλ+1 [(−1)p + β(α + 1 − (−1)p)] . (13)

Proof. Use (5), (6) and (10), that is

∣

∣

∣

∣

Dλ+1f(z)

Dλf(z) − Dλf(−z)
− p

∣

∣

∣

∣

< β

∣

∣

∣

∣

α
Dλ+1f(z)

Dλf(z) − Dλf(−z)
+ p

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(−1)ppλ+1zp −
∞
∑

k=1

[

k + p(−1)p+k
]

(k + p)λ|ak+p|zk+p

∣

∣

∣

∣

∣

< β

∣

∣

∣

∣

∣

(α + 1 − (−1)p)pλ+1zp −
∞
∑

k=1

[αk + p(α + 1 − (−1)p+k)]|ak+p|zk+p

∣

∣

∣

∣

∣

and

−pλ+1 [(−1)p + β(α + 1 − (−1)p)] |z|p

+

∞
∑

k=1

[

k + p(−1)p+k + β{αk + p(α + 1 − (−1)p+k)}
]

(k + p)λ|ak+p||z|k+p ≤ 0.

Letting |z| = 1, we have

∞
∑

k=1

[

k + p(−1)p+k + β{αk + p(α + 1 − (−1)p+k)}
]

(k + p)λ|ak+p| ≤ 0.

−pλ+1 [(−1)p + β(α + 1 − (−1)p)] ≤ 0.
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Therefore, by the maximum modulus theorem, we have f(z) ∈ S∗

s,λ(p, α, β).

For the converse, let us suppose that
∣

∣

∣

Dλ+1f(z)
Dλf(z)−Dλf(−z)

− p
∣

∣

∣

∣

∣

∣
α Dλ+1f(z)

Dλf(z)−Dλf(−z)
+ p
∣

∣

∣

< β.

This implies that
∣

∣

∣

∣

∣

−
[

−(−1)ppλ+1zp +
∑

∞

k=1

[

k + p(−1)p+k
]

(k + p)λ|ak+p|zk+p
]

(α + 1 − (−1)p)pλ+1zp −
∑

∞

k=1[αk + p(α + 1 − (−1)p+k)]|ak+p|zk+p

∣

∣

∣

∣

∣

< β.

Since |ℜ(z)| ≤ |z| for all z, we have

ℜ
{

−(−1)ppλ+1zp +
∑

∞

k=1

[

k + p(−1)p+k
]

(k + p)λ|ak+p||z|k+p

(α + 1 − (−1)p)pλ+1zp −
∑

∞

k=1[αk + p(α + 1 − (−1)p+k)]|ak+p||z|k+p

}

< β.

(14)

If we choose values of z on the real axis, then Dλ+1f(z)
Dλf(z)−Dλf(−z)

is real and Dλf(z) −
Dλf(−z) 6= 0 for z 6= 0. Upon clearing the denominator in (14) and letting z → 1−

through real values, we obtain

∞
∑

k=1

[

k + p(−1)p+k
]

(k + p)λ|ak+p| +
∞
∑

k=1

β[αk + p(α + 1 − (−1)p+k)](k + p)λ|ak+p|

≤ β(α + 1 − (−1)p)pλ+1 + (−1)ppλ+1.

This gives the required condition.

Corollary 1. Let the function f(z) defined by (5) be in the class S∗

s,λ(p, α, β). Then
we have

|ak+p| ≤
pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p ((−1)p+k + β(α + 1 − (−1)p+k))] (k + p)λ+1
(k ≥ 1), (15)

where p ∈ N, λ ∈ N0 and z ∈ U.

The equality in (15) is attained for the function f(z) given by

fk(z) = zp− pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p ((−1)p+k + β(α + 1 − (−1)p+k))] (k + p)λ+1
zk+p (k ≥ 1),

(16)
where p ∈ N, λ ∈ N0 and z ∈ U.

Theorem 2. Let the function f(z) be defined by (5) and Dλf(z) − Dλf(−z) 6= 0
for z 6= 0. Then f(z) ∈ S∗

c,λ(p, α, β) if and only if

∞
∑

k=1

[k(1 + αβ) + p (β(α + 2) − 1)] (k + p)λ+1|ak+p|

≤ pλ+1 [(β(α + 2) − 1)] . (17)
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Corollary 2. Let the function f(z) defined by (5) be in the class S∗

c,λ(p, α, β). Then
we have

|ak+p| ≤
pλ+1 [(β(α + 2) − 1)]

[k(1 + αβ) + (β(α + 2) − 1)] (k + p)λ+1
(k ≥ 1), (18)

where p ∈ N, λ ∈ N0 and z ∈ U.

The equality in (18) is attained for the function f(z) given by

fk(z) = zp − pλ+1 [(β(α + 2) − 1)]

[k(1 + αβ) + (β(α + 2) − 1)] (k + p)λ+1
zk+p (k ≥ 1), (19)

where p ∈ N, λ ∈ N0 and z ∈ U.

Theorem 3. Let the function f(z) be defined by (5) and Dλf(z) − Dλf(−z) 6= 0
for z 6= 0. Then f(z) ∈ S∗

sc,λ(p, α, β) if and only if

∞
∑

k=1

[

k(1 + αβ) + p
(

β(1 + α) + (1 − β)(−1)p+k
)]

(k + p)λ+1|ak+p|

≤ pλ+1 [(−1)p + β(α + 1 − (−1)p)] . (20)

Corollary 3. Let the function f(z) defined by (5) be in the class S∗

sc,λ(p, α, β). Then
we have

|ak+p| ≤
pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p (β(1 + α) + (1 − β)(−1)p+k)] (k + p)λ+1
(k ≥ 1), (21)

where p ∈ N, λ ∈ N0 and z ∈ U.

The equality in (21) is attained for the function f(z) given by

fk(z) = zp − pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p (β(1 + α) + (1 − β)(−1)p+k)] (k + p)λ+1
zk+p (k ≥ 1),

(22)
where p ∈ N, λ ∈ N0 and z ∈ U.

3 Growth and Distortion theorems

Theorem 4. Let the function f(z) defined by (5) be in the class f(z) ∈ S∗

s,λ(p, α, β).
Then we have

pi|z|p − pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ−i
|z|p+1

≤
∣

∣Dif(z)
∣

∣

≤ pi|z|p +
pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ−i
|z|p+1

(23)

for z ∈ U, where 0 ≤ i ≤ n. The result is sharp.
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Proof. Note that f(z) ∈ S∗

s,λ(p, α, β) if and only if Dif(z) ∈ S∗

s,λ−i(p, α, β), and
that

Dif(z) = pizp −
∞
∑

k=1

(k + p)i|ak+p|zk+p. (24)

Using Theorem 1, we know that

∞
∑

k=1

(k + p)i|ak+p| ≤
pλ+1 [(−1)p + β(α + 1 − (−1)p)] (p + 1)i

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ
. (25)

That is

∞
∑

k=1

(k+p)i|ak+p| ≤
pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ−i
. (26)

It follows from (24) and (26) that

∣

∣Dif(z)
∣

∣ ≥ pi|z|p − |z|p+1
∞
∑

k=1

(k + p)i|ak+p|

≥ pi|z|p − pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+2))] (p + 1)λ−i
|z|p+1.

(27)

Also
∣

∣Dif(z)
∣

∣ ≤ pi|z|p + |z|p+1
∞
∑

k=1

(k + p)i|ak+p|zk+p

≤ pi|z|p +
pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ−i
|z|p+1.

(28)

Finally, we note that the equality in (23) is attained by the function

Dif(z) = pizp − pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ−i
zp+1

(29)
or by

f(z) = zp − pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ
zp+1 (30)

and this completes the proof of Theorem 4.
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Corollary 4. Let the function f(z) defined by (5) be in the class f(z) ∈ S∗

s,λ(p, α, β).
Then we have

|z|p − pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ
|z|p+1

≤ |f(z)|

≤ |z|p +
pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p ((−1)p+1 + β(α + 1 − (−1)p+1))] (p + 1)λ
|z|p+1

(31)

for z ∈ U. The result is sharp for the function f(z) given by (30).

Proof. For i = 0 in Theorem 4, we can easily show (30).

Similarly, we can prove the following result.

Theorem 5. Let the function f(z) defined by (5) be in the class f(z) ∈ S∗

c,λ(p, α, β).
Then we have

pi|z|p − pλ+1 [(β(α + 2) − 1)]

[(1 + αβ) + p (β(α + 2) − 1)] (p + 1)λ−i
|z|p+1

≤
∣

∣Dif(z)
∣

∣

≤ pi|z|p +
pλ+1 [(β(α + 2) − 1)]

[(1 + αβ) + p (β(α + 1) − 1)] (p + 1)λ−i
|z|p+1

(32)

for z ∈ U, where 0 ≤ i ≤ n. The result is sharp, for the function f(z) given by

Dif(z) = pizp − pλ+1 [(β(α + 2) − 1)]

[(1 + αβ) + p (β(α + 2) − 1)] (p + 1)λ−i
zp+1 (33)

or by

f(z) = zp − pλ+1 [(β(α + 2) − 1)]

[(1 + αβ) + p (β(α + 2) − 1)] (p + 1)λ
zp+1. (34)

Corollary 5. Let the function f(z) defined by (5) be in the class f(z) ∈ S∗

c,λ(p, α, β).
Then we have

|z|p − pλ+1 [(β(α + 2) − 1)]

[(1 + αβ) + p (β(α + 2) − 1)] (p + 1)λ
|z|p+1

≤ |f(z)|

≤ |z|p +
pλ+1 [(β(α + 2) − 1)]

[(1 + αβ) + p (β(α + 2) − 1)] (p + 1)λ
|z|p+1

(35)

for z ∈ U. The result is sharp, for the function f(z) given by (34).
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Theorem 6. Let the function f(z) defined by (5) be in the class f(z) ∈ S∗

sc,λ(p, α, β).
Then we have

pi|z|p − pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p (β(1 + α) + (1 − β)(−1)p+1)] (p + 1)λ−i
|z|p+1

≤
∣

∣Dif(z)
∣

∣

≤ pi|z|p +
pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[(1 + αβ) + p (β(1 + α) + (1 − β)(−1)p+1)] (p + 1)λ−i
|z|p+1

(36)

for z ∈ U, where 0 ≤ i ≤ n. The result is sharp.

4 Extreme points

Theorem 7. Let fp(z) = zp and

fk+p(z) = zp − pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p ((−1)p+k + β(α + 1 − (−1)p+k))] (k + p)λ+1
zk+p,

(37)
where k ≥ 1. Then f(z) ∈ S∗

s,λ(p, α, β) if and only if it can be expressed in the form

f(z) =
∞
∑

k=0

σk+pfk+p(z), (38)

where σk+p ≥ 0 (k ≥ 1) and
∑

∞

k=0 σk+p = 1.

Proof. Suppose

f(z) =

∞
∑

k=0

σk+pfk+p(z)

= zp −
∞
∑

k=1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p ((−1)p+k + β(α + 1 − (−1)p+k))] (k + p)λ+1
σk+pz

k+p.

(39)
Then we get

∞
∑

k=1

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]

• pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p ((−1)p+k + β(α + 1 − (−1)p+k))] (k + p)λ+1
σk+p

=

∞
∑

k=1

σk+p = 1 − σp ≤ 1. (40)
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It follows from Theorem 1 that the function f(z) ∈ S∗

s,λ(p, α, β).

Conversely, suppose that f(z) ∈ S∗

s,λ(p, α, β). Again, by using Theorem 1, we
can show that

|ap+k| ≤
pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p ((−1)p+k + β(α + 1 − (−1)p+k))] (k + p)λ+1
k ≥ 1, (41)

where k ≥ 1, λ ∈ N0 = {0} ∪ N, p ∈ N, 0 ≤ α ≤ 1, 0 < β ≤ 1 and z ∈ U.

Setting

σp+k ≤
[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]
(k ≥ 1) (42)

and

σp = 1 −
∞
∑

k=1

σk+p, (43)

we can see that f(z) can be expressed in the form (38). This completes the proof of
Theorem 7.

Corollary 6. The extreme points of the class S∗

s,λ(p, α, β) are functions fk+p(z)
(k ≥ 1, p ∈ N) given by Theorem 7.

Similar to Theorem 7, we can easily prove the following theorems for S∗

c,λ(p, α, β)
and S∗

sc,λ(p, α, β) classes.

Theorem 8. Let fp(z) = zp and

fk+p(z) = zp − pλ+1 [(β(α + 2) − 1)]

[k(1 + αβ) + (β(α + 2) − 1)] (k + p)λ+1
zk+p (k ≥ 1), (44)

where p ∈ N, λ ∈ N0 and z ∈ U. Then f(z) ∈ S∗

c,λ(p, α, β) if and only if it can
be expressed in the form f(z) =

∑

∞

k=1 σk+pfk+p(z), where σk+p ≥ 0 (k ≥ 1) and
∑

∞

k=1 σk+p = 1.

Corollary 7. The extreme points of the class S∗

c,λ(p, α, β) are functions fk+p(z) (k ≥
1, p ∈ N) given by Theorem 8.

Theorem 9. Let fp(z) = zp and

fk+p(z) = zp− pλ+1 [(−1)p + β(α + 1 − (−1)p)]

[k(1 + αβ) + p (β(1 + α) + (1 − β)(−1)p+k)] (k + p)λ+1
zk+p (k ≥ 1),

(45)
where p ∈ N, λ ∈ N0 and z ∈ U. Then f(z) ∈ S∗

sc,λ(p, α, β) if and only if it can
be expressed in the form f(z) =

∑

∞

k=1 σk+pfk+p(z), where σk+p ≥ 0 (k ≥ 1) and
∑

∞

k=1 σk+p = 1.
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Corollary 8. The extreme points of the class S∗

sc,λ(p, α, β) are functions fk+p(z)
(k ≥ 1, p ∈ N) given by Theorem 9.

Theorem 10. The class S∗

s,λ(p, α, β) is closed under convex linear combination.

Proof. Let us suppose that the functions f1(z) and f2(z) defined by

fj(z) = zp −
∞
∑

k=1

|ap+k,j|zp+k (ap+k,j ≥ 0, j = 1, 2, z ∈ U) (46)

are in the class S∗

s,λ(p, α, β). Set

h(z) = µf1(z) + (1 − µf2(z)), (0 ≤ µ ≤ 1). (47)

Then from (46), we can write

f(z) = zp−
∞
∑

k=2

[µ|ap+k,1| + (1 − µ)|ap+k,1|] zp+k (ap+k,j ≥ 0, j = 1, 2, z ∈ U). (48)

Thus, in view of Theorem 1, we can have that

∞
∑

k=2

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1|ak+p| [µ|ap+k,1| ]

+(1 − µ)|ap+k,1| ≤ pλ+1 [(−1)p + β(α + 1 − (−1)p)] ,

which implies that h(z) ∈ S∗

s,λ(p, α, β) and this completes the proof of Theorem 10.

5 Radii of starlikeness and Convexity

Theorem 11. Let the function f(z) of the form (5) be in the class S∗

s,λ(p, α, β),
then f(z) is starlike in the disk |z| = r1 < 1, where

r1 = inf
k≥1

(

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]

(

p

p + k

)

)
1
k

.

(49)

Proof. It is ample to show that

∣

∣

∣

zf ′(z)
f(z) − p

∣

∣

∣
≤ p, for |z| < 1

or equivalently,
∣

∣

∣

∣

∑

∞

k=1 k |ak+p|zk

1 −∑∞

k=1 |ak+p|zk

∣

∣

∣

∣

≤ p
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which is equivalent to show that

∑

∞

k=1(k + 1)|ak+p||z|k
p

≤ 1. (50)

As f(z) ∈ S∗

s,λ(p, α, β) we have from Theorem 1

∞
∑

k=1

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]
|ak+p| ≤ 1.

Hence, (50) is proven true if

(

(p + k)|z|
p

)

≤
[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]
.

That is,

r1 = inf
k≥1

(

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]

(

p

p + k

)

)
1
k

and this ends the proof of Theorem 11.

On similar lines of Theorem 11, we can easily prove the following Theorems for
S∗

c,λ(p, α, β) and S∗

sc,λ(p, α, β) classes.

Theorem 12. Let the function f(z) of the form (5) be in the class S∗

c,λ(p, α, β),
then f(z) is starlike in the disk |z| = r1 < 1, where

r1 = inf
k≥1

(

[k(1 + αβ) + p (β(α + 2) − 1)] (k + p)λ+1

pλ+1 [(β(α + 2) − 1)]

(

p

p + k

))

1
k

. (51)

Theorem 13. Let the function f(z) of the form (5) be in the class S∗

sc,λ(p, α, β),
then f(z) is starlike in the disk |z| = r1 < 1, where

r1 = inf
k≥1

(

[

k(1 + αβ) + p
(

β(1 + α) + (1 − β)(−1)p+k
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]

(

p

p + k

)

)
1
k

.

(52)

Similarly we can proved the following Results.

Theorem 14. Let the function f(z) of the form (5) be in the class S∗

s,λ(p, α, β),
then f(z) is convex in the disk |z| = r2 < 1, where

r1 = inf
k≥1

(

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]

(

p

p + k

)2
)

1
k

.

(53)
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Theorem 15. Let the function f(z) of the form (5) be in the class S∗

c,λ(p, α, β),
then f(z) is convex in the disk |z| = r2 < 1, where

r1 = inf
k≥1

(

[k(1 + αβ) + p (β(α + 2) − 1)] (k + p)λ+1

pλ+1 [(β(α + 2) − 1)]

(

p

p + k

)2
)

1
k

. (54)

Theorem 16. Let the function f(z) of the form (5) be in the class S∗

sc,λ(p, α, β),
then f(z) is convex in the disk |z| = r2 < 1, where

r1 = inf
k≥1

(

[

k(1 + αβ) + p
(

β(1 + α) + (1 − β)(−1)p+k
)]

(k + p)λ+1

pλ+1 [(−1)p + β(α + 1 − (−1)p)]

(

p

p + k

)2
)

1
k

.

(55)

In order to establish the required results in Theorems 14, 15 and 16, it is sufficies
to show that

∣

∣

∣
1 + zf ′′(z)

f ′(z) − p
∣

∣

∣
≤ p, for |z| < 1.

6 Integral Operator

Definition 4. Let f ∈ Tp, an integral operator Rc(f) with c > −p is defined by

Rc(f) =
c + p

zc

∫ z

0
tc−1f(t)dt, (z ∈ U). (56)

Theorem 17. Let the function f(z) of the form (5) be in the class S∗

s,λ(p, α, β),
then Rc(f) defined by (56) be also in the class S∗

s,λ(p, α, β).

Proof. From (56), we get

Rc(f) = zp −
∞
∑

k=1

c + p

c + p + k
|ak+p|zk+p. (57)

Therefore by hypothesis

∞
∑

k=1

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1

(

c + p

c + p + k

)

|ak+p|

≤
∞
∑

k=1

[

k(1 + αβ) + p
(

(−1)p+k + β(α + 1 − (−1)p+k)
)]

(k + p)λ+1|ak+p|

≤ pλ+1 [(−1)p + β(α + 1 − (−1)p)]

since f(z) ∈ S∗

s,λ(p, α, β). Hence, by Theorem 1, Rc(f) ∈ S∗

s,λ(p, α, β).

Similar to Theorem 17, we can easily prove the following theorems for S∗

c,λ(p, α, β)
and S∗

sc,λ(p, α, β).
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Theorem 18. Let the function f(z) of the form (5) be in the class S∗

c,λ(p, α, β),
then Rc(f) defined by (56) be also in the class S∗

c,λ(p, α, β).

Theorem 19. Let the function f(z) of the form (5) be in the class S∗

sc,λ(p, α, β),
then Rc(f) defined by (56) be also in the class S∗

sc,λ(p, α, β).
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Third Hankel determinant for the inverse of reciprocal

of bounded turning functions
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Abstract. In this paper we obtain the best possible upper bound to the third Hankel
determinants for the functions belonging to the class of reciprocal of bounded turning
functions using Toeplitz determinants.
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1 Introduction

Let A denote the class of all functions f(z) of the form

f(z) = z +

∞
∑

n=2

anzn (1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions. For a univalent function in the class A, it is well known that the
nth coefficient is bounded by n. The bounds for the coefficients of univalent func-
tions give information about their geometric properties. In particular, the growth
and distortion properties of a normalized univalent function are determined by the
bound of its second coefficient. The Hankel determinant of f for q ≥ 1 and n ≥ 1
was defined by Pommerenke [12] as

Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2q−2

.

This determinant has been considered by many authors in the literature. For exam-
ple, Noor [10] determined the rate of growth of Hq(n) as n → ∞ for the functions
in S with bounded boundary. Ehrenborg [4] studied the Hankel determinant of
exponential polynomials. The Hankel transform of an integer sequence and some
of its properties were discussed by Layman in [7]. One can easily observe that the
Fekete-Szego functional is H2(1). Fekete-Szego then further generalized the estimate

c© B.Venkateswarlu, D.Vamshee Krishna, N.Rani, 2015
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|a3 −µa2
2| with µ real and f ∈ S. R. M. Ali [1] found sharp bounds for the first four

coefficients and sharp estimate for the Fekete-Szego functional |γ3 − tγ2
2 |, where t is

real, for the inverse function of f defined as

f−1(w) = w +

∞
∑

n=2

γnwn,

when it belongs to the class of strongly starlike functions of order α (0 < α ≤ 1)

denoted by ˜ST (α). In the recent years several authors have investigated bounds for
the Hankel determinant of functions belonging to various subclasses of univalent and
multivalent analytic functions. In particular for q = 2, n = 1, a1 = 1 and q = 2,
n = 2, a1 = 1, the Hankel determinant simplifies respectively to

H2(1) =
a1 a2

a2 a3
= a3 − a2

2 and H2(2) =
a2 a3

a3 a4
= a2a4 − a2

3.

For our discussion in this paper, we consider the Hankel determinant in the case of
q = 3 and n = 1, denoted by H3(1), given by

H3(1) =
a1 a2 a3

a2 a3 a4

a3 a4 a5

. (2)

For f ∈ A, a1 = 1, so we have

H3(1) = a3(a2a4 − a2
3) − a4(a4 − a2a3) + a5(a3 − a2

2)

and by applying triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a2
3| + |a4||a2a3 − a4| + |a5||a3 − a2

2|. (3)

The sharp upper bound to the second Hankel functional H2(2) for the subclass RT
of S, consisting of functions whose derivative has a positive real part, studied by
Mac Gregor [9] was obtained by Janteng [6]. It was known that if f ∈ RT then
|ak| ≤ 2

k , for k ∈ {2, 3, ....}. Also the sharp upper bound for the functional |a3 − a2
2|

was 2
3 , stated in [2], for the class RT. Further, the best possible sharp upper bound for

the functional |a2a3−a4| was obtained by Babalola [2] and hence the sharp inequality
for |H3(1)|, for the class RT. The sharp upper bound to |H3(1)| for the class of inverse
of a function whose derivative has a real part was obtained by D. Vamshee Krishna
et al. [14].

Motivated by the above mentioned results obtained by different authors in this
direction and the results by Babalola [2], in the present paper, we seek an upper
bound to the second Hankel determinant, |t2t3−t4| and an upper bound to the third
Hankel determinant, for certain subclass of analytic functions defined as follows.
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Definition 1. A function f(z) ∈ A is said to be function whose reciprocal deriva-
tive has a positive real part (also called reciprocal of bounded turning function),

denoted by f ∈˜RT, if and only if

Re
( 1

f ′(z)

)

> 0, ∀z ∈ E. (4)

Some preliminary Lemmas required for proving our results are as follows.

2 Preliminary Results

Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +
∞
∑

n=1

cnzn, (5)

which are regular in the open unit disc E and satisfy Re
(

p(z)
)

> 0 for any z ∈ E.

Here p(z) is called the Caratheòdory function [3].

Lemma 1 (see [11, 13]). If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the
inequality is sharp for the function 1+z

1−z .

Lemma 2 (see [5]). The power series for p(z) given in (5) converges in the open
unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn

c−1 2 c1 · · · cn−1

c−2 c−1 2 · · · cn−2
...

...
...

...
...

c−n c−n+1 c−n+2 · · · 2

, for n = 1, 2, 3....

and c−k = ck, are all non-negative. They are strictly positive except for

p(z) =

m
∑

k=1

ρkp0(e
itkz),

ρk > 0, tk real and tk 6= tj, for k 6= j, where p0(z) = 1+z
1−z ; in this case

Dn > 0 for n < (m − 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in [5] is due to Caratheòdory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2,
for n = 2, we have

D2 =
2 c1 c2

c1 2 c1

c2 c1 2
= [8 + 2Re{c2

1c2} − 2 | c2 |2 − 4|c1|2] ≥ 0,
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which is equivalent to

2c2 = c2
1 + x(4 − c2

1), for some x, |x| ≤ 1. (6)

For n = 3,

D3 =

2 c1 c2 c3

c1 2 c1 c2

c2 c1 2 c1

c3 c2 c1 2

≥ 0

and is equivalent to

|(4c3 − 4c1c2 + c3
1)(4 − c2

1) + c1(2c2 − c2
1)

2| ≤ 2(4 − c2
1)

2 − 2|(2c2 − c2
1)|2. (7)

Simplifying the relations (6) and (7), we get

4c3 = c3
1 + 2c1(4 − c2

1)x − c1(4 − c2
1)x

2 + 2(4 − c2
1)(1 − |x|2)z

for some z, with |z| ≤ 1. (8)

To obtain our results, we refer to the classical method initiated by Libera and
Zlotkiewicz [8] and used by several authors in the literature.

3 Main Result

Theorem 1. If f(z) ∈˜RT and f−1(w) = w +
∞
∑

n=2
tnwn near w=0 is the in-

verse function of f then | t2t4 − t23| ≤ 137
288 .

Proof. For f(z) = z +
∞
∑

n=2
anzn ∈ ˜RT, there exists an analytic function p ∈ P

in the open unit disc E with p(0) = 1 and Re
(

p(z)
)

> 0 such that

1

f ′(z)
= p(z) ⇔ 1 = f ′(z)p(z). (9)

Replacing f ′(z) and p(z) with their equivalent series expressions in (9), we have

1 =
(

1 +

∞
∑

n=2

nanzn−1
)(

1 +

∞
∑

n=1

cnzn
)

.

Upon simplification, we obtain

1 = 1 + (c1 + 2a2)z + (c2 + 2a2c1 + 3a3)z
2

+ (c3 + 2a2c2 + 3a3c1 + 4a4)z
3

+ (c4 + 2a2c3 + 3a3c2 + 4a4c1 + 5a5)z
4 · · · . (10)
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Equating the coefficients of like powers of z, z2, z3 and z4 respectively on both sides
of (10), after simplifying, we get

a2 = −c1

2
; a3 =

1

3
(c2

1 − c2); a4 = −1

4
(c3 − 2c1c2 + c3

1);

a5 = −1

5
(c4 − 2c1c3 + 3c2

1c2 − c2
2 − c4

1). (11)

Since f(z) = z +
∞
∑

n=2
anzn ∈ ˜RT, from the definition of inverse function

of f, we have

w = f(f−1(w)) = f−1(w) +

∞
∑

n=2

an

(

f−1(w)
)n ⇔ w

= w +

∞
∑

n=2

tnwn +

∞
∑

n=2

an

(

w +

∞
∑

n=2

tnwn

)n

.

After simplifying, we get

(t2 + a2)w
2 + (t3 + 2a2t2 + a3)w

3 + (t4 + 2a2t3 + a2t
2
2 + 3a3t2 + a4)w

4

+(t5 + 2a2t4 + 2a2t2t3 + 3a3t3 + 3a3t
2
2 + 4a4t2 + a5)w

5 + · · · = 0. (12)

Equating the coefficients of like powers of w2, w3, w4 and w5 on both sides of (12),
respectively, further simplification gives

t2 = −a2; t3 = −a3 + 2a2
2; t4 = −a4 + 5a2a3 − 5a3

2;

t5 = −a5 + 6a2a4 − 21a2
2a3 + 3a2

3 + 14a4
2. (13)

Using the values of a2, a3, a4 and a5 in (11) along with (13), upon simplification, we
obtain

t2 =
c1

2
; t3 =

1

6
[2c2 + c2

1]; t4 =
1

24
[6c3 + 8c1c2 + c3

1];

t5 =
1

120
[24c4 + 42c1c3 + 22c2

1c2 + 16c2
2 + c4

1]. (14)

Substituting the values of t2, t3 and t4 from (14) in the functional | t2t4 − t23| for the

function f ∈˜RT upon simplification, we obtain

| t2t4 − t23| =
1

144

∣

∣

∣
18c1c3 + 8c2

1c2 − 16c2
2 − c4

1

∣

∣

∣

which is equivalent to

| t2t4 − t23| =
1

144

∣

∣

∣
d1c1c3 + d2c

2
1c2 + d3c

2
2 + d4c

4
1

∣

∣

∣
(15)

where d1 = 18; d2 = 8; d3 = −16; d4 = −1. (16)

Substituting the values of c2 and c3 given in (6) and (8) respectively from Lemma 2
on the right-hand side of (15) and using the fact |z| < 1, we have
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4| d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

∣

∣

∣
(d1 + 2d2 + d3 + 4d4)c

4
1

+ {2d1c1 + 2(d1 + d2 + d3)c
2
1|x| − [(d1 + d3)c

2
1 + 2d1c1 − 4d3]|x|2}(4 − c2

1)
∣

∣

∣
. (17)

From (16) and (17), we can now write

(d1 + 2d2 + d3 + 4d4) = 14; 2d1 = 36; 2(d1 + d2 + d3) = 20;

(d1 + d3)c
2
1 + 2d1c1 − 4d3 = 2(c2

1 + 18c1 + 32). (18)

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0
in (18), we can have

−{(d1 + d3)c
2
1 + 2d1c1 − 4d3} ≤ −2(c2

1 − 18c1 + 32). (19)

Substituting the calculated values from (18) and (19) on the right-hand side of (17),
we have

4| d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

∣

∣

∣
14c4

1 + {36c1 + 20c2
1|x|

− 2(c2
1 − 18c1 + 32)|x|2}(4 − c2

1)
∣

∣

∣
.

Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by µ on the
right-hand side of the above inequality

2| d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

∣

∣

∣
7c4 + {18c + 10c2µ + (c2 − 18c + 32)µ2}(4 − c2)

∣

∣

∣

= F (c, µ) , 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2.
(20)

We next maximize the function F (c, µ) on the closed region [0, 2] × [0, 1]. Diffe-
rentiating F (c, µ) given in (20) partially with respect to µ, we obtain

∂F

∂µ
= [20c + 2(c − 2)(c − 16)µ](4 − c2) > 0. (21)

For 0 < µ < 1 and for fixed c with 0 < c < 2, from (21), we observe that ∂F
∂µ > 0.

Therefore, F (c, µ) becomes an increasing function of µ and hence it cannot have
a maximum value at any point in the interior of the closed region [0, 2] × [0, 1].
Moreover, for a fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

Therefore, replacing µ by 1 in F (c, µ), upon simplification, we obtain

G(c) = −4c4 + 12c2 + 128 (22)
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G′(c) = −16c3 + 24c (23)

G′′(c) = −48c2 + 24. (24)

For optimum value of G(c), consider G′(c) = 0. From (23), we get

c2 =
3

2
.

Using the obtained value of c2 in (24), which simplifies to give

G′′(c) = −48 < 0.

Therefore, by the second derivative test, G(c) has maximum value at c =
√

3
2 ∈ [0, 2]. Substituting the value of c in the expression (22), upon simplification,

we obtain the maximum value of G(c) at c as

Gmax = 137. (25)

Simplifying the expressions (20) and (25)

| d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

137

2
. (26)

From the relations (15) and (26), we obtain

| t2t4 − t23| ≤ 137

288
. (27)

This completes the proof of our Theorem.

Remark 1. It is observed that the upper bound to the second Hankel determinant
of inverse of a function whose derivative has a positive real part [14] and the inverse
of a function whose reciprocal derivative has a positive real part is the same.

Theorem 2. If f(z) ∈ ˜RT and f−1(w) = w +
∞
∑

n=2
tnwn near w = 0 is

the inverse function of f then | t2t3 − t4| =
(

13
6

)
3
2
.

Proof. Substituting the values of t2, t3 and t4 from (14) in | t2t3 − t4| for the

function f ∈˜RT, after simplifying, we get

| t2t3 − t4| =
1

24
| − 6c3 − 4c1c2 + c3

1|. (28)

Substituting the values of c2 and c3 from (6) and (8) respectively, from Lemma 2
on the right-hand side of (28) and using the fact | z |< 1, after simplifying, we get

2| − 6c3 − 4c1c2 + c3
1| ≤

∣

∣

∣
− 5c3

1 − 6(4 − c2
1) − 10c1(4 − c2

1)|x|
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+ 3(c1 + 2)(4 − c2
1)|x|2

∣

∣

∣
. (29)

Since c1 = c ∈ [0, 2], using the result (c1 +a) ≥ (c1 −a), where a ≥ 0, applying
triangle inequality and replacing |x| by µ on the right-hand side of the above
inequality, we have

2| − 6c3 − 4c1c2 + c3
1| ≤ | 5c3 + 6(4 − c2) + 10c(4 − c2)µ + 3(c − 2)(4 − c2)µ2|

= F (c, µ) , 0 ≤ µ =| x |≤ 1 and 0 ≤ c ≤ 2. (30)

Next, we maximize the function F (c, µ) on the closed square [0, 2] × [0, 1]. Dif-
ferentiating F (c, µ) partially with respect to µ, we get

∂F

∂µ
= (4 − c2)[10c + 6(c − 2)µ] > 0.

As described in Theorem 3, further, we obtain

G(c) = −8c3 + 52c (31)

G′(c) = −24c2 + 52 (32)

G′′(c) = −48c. (33)

For optimum value of G(c), consider G′(c) = 0. From (32), we get

c2 =
13

6
.

Using the obtained value of c =
√

13
6 ∈ [0, 2] in (33), then

G′′(c) = −8
√

78 < 0.

Therefore, by the second derivative test, G(c) has maximum value at c =
√

13
6 .

Substituting the value of c in the expression (31), upon simplification, we obtain
the maximum value of G(c) at c as

Gmax =
104

3

√

13

6
. (34)

From the expressions (30) and (34), after simplifying, we get

| − 6c3 − 4c1c2 + c3
1| ≤ 52

3

√

13

6
. (35)

Simplifying the relations (28) and (35), we obtain

| t2t3 − t4| ≤ 1

3

(

13

6

)
3
2

.

This completes the proof of our Theorem.
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Remark 2. It is observed that the upper bound to the |t2t3 − t4| of a function whose
derivative has a positive real part [14] and a function whose reciprocal derivative
has a positive real part is the same.

The following theorem is a straight forward verification on applying the same
procedure as described in Theorems 3 and 4 and the result is sharp for the values
c1 = 0, c2 = 2 and x = 1.

Theorem 3. If f(z) ∈ ˜RT and f−1(w) = w +
∞
∑

n=2
tnwn near w = 0 is

the inverse function of f then | t3 − t22| ≤ 2
3 .

Using the fact that |cn| ≤ 2, n ∈ N = {1, 2, 3, · · · }, with the help of c2 and
c3 values given in (6) and (8) respectively together with the values in (14), we at
once obtain all the below inequalities.

Theorem 4. If f(z) ∈ ˜RT and f−1(w) = w +
∞
∑

n=2
tnwn near w = 0 is

the inverse function of f then we have the following inequalities:
(i) |t2| ≤ 1 (ii) |t3| ≤ 4

3 (iii) |t4| ≤ 13
6 (iv) |t5| ≤ 59

15 .

Using the results of Theorems 3, 4, 5 and 6 in (3), we obtain the following
corollary.

Corollary 1. If f(z) ∈ ˜RT and f−1(w) = w +
∞
∑

n=2
tnwn near w = 0 is

the inverse function of f then |H3(1)| ≤ 1
3

[

3157
360 +

(

13
6

)
5
2

]

.

Remark 3. It is observed that the upper bound to the third Hankel determinant
of a function whose derivative has a positive real part [14] and a function whose
reciprocal derivative has a positive real part is the same.
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Abstract. The paper introduces a new method for public encryption in which the
enciphering process is performed as generating coefficients of some cubic equation over
finite ring and the deciphering process is solving the equation. Security of the method
is based on difficulty of factoring problem, namely, difficulty of factoring a composite
number n that serves as public key. The private key is the pair of primes p and q

such that n = pq. The deciphering process is performed as solving cubic congruence
modulo n. Finding roots of cubic equations in the fields GF (p) and GF (q) is the
first step of the decryption. We have described a method for solving cubic equations
defined over ground finite fields. The proposed public encryption algorithm has been
applied to design bi-deniable encryption protocol.

Mathematics subject classification: 11T71, 11S05, 94A60.
Keywords and phrases: Cryptography, ciphering, public encryption, deniable
encryption, public key, cubic equation, Galois field, factoring problem.

Dedicated to the light memory of our
colleague and outstanding mathematician
Galina Borisovna Belyavskaya

1 Introduction

The public-key encryption algorithm proposed by Rabin [1] uses the public key
represented as the pair of integers n and b < n, where n is a composite number
difficult for factoring; b is an arbitrary integer. To generate an appropriate number
n one has to select a pair of strong [2] primes p and q and then compute the value
n = pq.

Some secret message M < n can be send to the owner of the public key (n, b)
in form of the ciphertext C computed as C = M · (M + b) (mod n). Decryption of
the ciphertext consists in finding roots of the quadratic congruence x2 + bx−C ≡ 0
(mod n). The last can be easily performed using the private key (p, q).

The Rabin cryptosystem is a provably secure public-key cryptosystem, i. e. one
can formally prove that decryption of the ciphertext C without knowing the devisors
of n is as difficult as factoring the value n. Paper [3] extends the class of provably
secure public key cryptosystems based on the difficulty of factoring problem intro-
ducing the encryption formula C = Mk (mod n), where k (k ≥ 2) divides at least
one of numbers p − 1 and q − 1.

c© N.A.Moldovyan, A.A.Moldovyan, V.A. Shcherbacov, 2015

60



GENERATING CUBIC EQUATIONS AS A METHOD FOR PUBLIC ENCRYPTION 61

Provable security is an important merit of the mentioned public-key cryptosys-
tems. However for all of those cryptosystems the output of the decryption procedure
is ambiguous, namely, deciphering process outputs several decrypted texts and only
one of them is equal to the encrypted text. The minimum number of the decrypted
texts is equal to three and relates to the case k = 3 [3].

Recently solving the quadratic congruences like x2 − Ax + B ≡ 0 (mod n) was
used in [4] to design the public-key algorithm for encrypting simultaneously two
messages into the ciphertext (A,B). That algorithm was put into the base of the
sender-deniable encryption protocol. In [4] the authors mentioned potential possibil-
ity to construct algorithms for simultaneous encryption of three and four messages
into the cryptogram representing the set of coefficients of the cubic and fourth-power
congruences, respectively. Naturally, decryption in the last two cases consists in solv-
ing congruences like x3−Ax2+Bx−D ≡ 0 (mod n) and x4−Ax3+Bx2−Dx+E ≡ 0
(mod n).

The case of using cubic equations represents special interest since it provides
potential possibility to design public encryption algorithms that are free from ambi-
guity of the decryption process, whereas the quadratic and fourth-power equations
cannot be used for such purpose.

In this paper we consider the design of the public-encryption algorithms based
on using the cubic equation. We consider details of solving cubic equations in the
ground field GF (p) in the case when the equations have solutions (this is defined
by the design of the encryption algorithm). The described method for solving cubic
equations in GF (p) actually determines the decryption algorithm. It is shown that
for a particular design the encryption algorithm processes one input message and
the decryption procedure outputs one decrypted text, i.e. only the input message.

2 A new method for public encryption

Using the public key n one can encrypt simultaneously three different messages
M < n, T < n, and U < n as generating three coefficients A, B, and D of the cubic
equation such that the messages M , T , and U represent three roots of the equation.
Since the last values are to be roots, then the encryption is defined by the condition
(x − M)(x − T )(x − U) = x3 − (M + T + U)x2 + (MT + MU + TU)x − MTU = 0
(mod n).

Thus, such idea of constructing the public encryption scheme leads to the en-
ciphering procedure that consists in computing the following three coefficients that
compose the ciphertext C = (A,B,D):

A = (M + T + U) mod n,
B = (MT + MU + TU) mod n,

D = MTU mod n.

Respectively, deciphering of the cryptogram C is to be performed as solving the
cubic equation

x3 − Ax2 + Bx − D = 0 (mod n). (1)
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Solving equation (1) can be performed by the owner of public key n using his
private key (p, q) that represents two divisors of the modulus n. For this purpose he
is to solve the cubic equation

x3 − Ax2 + Bx − D = 0 (mod p) (2)

and the cubic equation

x3 − Ax2 + Bx − D = 0 (mod q). (3)

Let x1p, x2p, and x3p be roots of equation (2) and x1q, x2q, and x3q be roots of
equation (3). Then nine roots of the equation (1) can be computed solving nine
systems of the congruences of the following form

{

Xij ≡ xip (mod p)
Xij ≡ xjq (mod q),

where i, j ∈ {1, 2, 3}. Three of the computed roots are equal to the sensible messages
M , T and U that have been encrypted. Other six roots represent some random values
and are to be ignored. Thus, solving cubic equations in the ground finite fields is
the central part of the considered public-key encryption scheme.

3 Solving cubic equations in the ground finite field

To find roots of the cubic equation (2) over the ground field GF (p) we propose
to solve the equation (relative to the unknown X ∈ GF (p2))

(1, 0)X3 − (A, 0)X2 + (B, 0)X − (D, 0) = (0, 0) (4)

over the extension field GF (p2) that is defined evidently in the vector form [5] with
the unity element (1, 0) and zero element (0, 0).

Addition and multiplication of two elements (a, b), (c, d) ∈ GF (p2) are defined
with the formulas

(a, b) + (c, d) = ((a + c) mod p, (b + d) mod p) (5)

and
(a, b)(c, d) = ((ac + kbd) mod p, (bc + ad) mod p) , (6)

where k ∈ GF (p) is some specified constant that is equal to a quadratic non-residue,
respectively.

Substitution of the unknown x in (2) by the variable z = x − 3−1A mod p gives
the following equation (like in [6]) that is identical to (2):

z3 + Pz + Q = 0 mod p, (7)

where P = B − A2

3 mod p and Q = AB
3 − 2A3

27 − D mod p.
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Respectively, with analogous variable substitution X = Z+ (3−1 mod p, 0)(A, 0)
one can reduce equation (4) to

Z3 + PZ + Q = (0, 0), (8)

where
P = (P, 0) = (B, 0) − (A,0)2

3 and

Q = (Q, 0) = (A,0)(B,0)
3 − 2(A,0)3

27 − (D, 0).

Since for the given coefficients (A, 0), (B, 0), and (D, 0) the equation (4) has at
least one solution, for example, X = (M mod p, 0), then the equation (8) also has
solution and using the method for solving cubic equations which is described in [6]
one can derive the following formula for roots of equation (8)

Z = (z, 0) = α + β (9)

and the following formula for roots of equation (4)

X = (x, 0) =
(A, 0)

3
+ α + β, (10)

where

α =
3

√

−Q

2
+

√

Q2

4
+

P3

27
; β =

3

√

−Q

2
−

√

Q2

4
+

P3

27
. (11)

For the case under consideration (p > 3) there exist three different cubic roots
α and three different cubic roots β. In formulas (9) and (10) one should select only
pairs of the values α and β which satisfy the condition

αβ = −P

3
. (12)

4 About number of roots of the cubic equation in GF (p)

To consider type and number of roots of the equations (7) and (8) it is useful to
formulate the following preliminary statements.

Lemma 1. Suppose a prime p > 3 and A is a cubic residue in GF (p2). Then there
exist exactly three different cubic roots from A.

Proof. An arbitrary prime p > 3 can be represented as p = 6t ± 1. Respectively
p2 − 1 = 36t2 ± 12t ⇒ 3|p2 − 1, where p2 − 1 is the order of the multiplicative
group of GF (p2). The last group is a finite cyclic one, therefore it contains exactly
two elements ε and ε2 having order 3 that are non-trivial cubic roots from (1, 0) ∈
GF (p2).

If B is a cubic root from A, then εB and ε2B are also cubic roots from A.
Assumption about existence of the fourth cubic root B′ = 3

√
A leads to contradiction

about existence of the third element ε′ = B/B′ 6= (1, 0) having order 3, such that
ε′ 6= ε and ε′ 6= ε2.
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Lemma 2. If the value −Q

2 ±
√

Q2

4 + P3

27 is a cubic residue in GF (p2), then the

value −Q

2 ∓
√

Q2

4 + P3

27 is also a cubic residue.

Proof. We have

(

−Q

2 ±
√

Q2

4 + P3

27

)
p
2
−1
3

(

−Q

2 ∓
√

Q2

4 + P3

27

)
p
2
−1
3

=

(

−P3

27

)
p
2
−1
3

=
(

−P
3

)p2
−1

= (1, 0).

For cubic residue

(

−Q

2 ±
√

Q2

4 + P3

27

)

we have

(

−Q

2 ±
√

Q2

4 + P3

27

)
p
2
−1
3

=

(1, 0). Therefore

(

−Q

2 ∓
√

Q2

4 + P3

27

)
p
2
−1
3

= (1, 0), i. e. the value
(

−Q

2 ∓
√

Q2

4 + P3

27

)

is a cubic residue in GF (p2).

For some vector V = (v, u) ∈ GF (p2) one can define V = (v,−u) ∈ GF (p2).

Lemma 3. Suppose V = (v, u) ∈ GF (p2) is a cubic residue and R is one of the
cubic roots from V. Then R is one of cubic roots from V.

Proof. Using formula (6) for some element (a, b) ∈ GF (p2) it is easy to get
(

(a, b)
)3

= (a, b)3. For R we have R
3

= R3 = V.

For other two cubic roots from V, i.e. for εR and ε2R, we have
(

εR
)3

= V and
(

ε2R
)3

= V, therefore one can write
3
√

V = 3
√

V.

Lemma 4. Suppose number 3 does not divide p − 1 and ε, ε2 ∈ GF (p2) are two
non-trivial cubic roots from the unity element (1, 0). Then ε = ε2 and ε2 = ε.

Proof. Taking into account Lemma 3 we have ε3 = ε3 = (1, 0) = (1, 0) hence ε is
one of two non-trivial roots from (1, 0) that differs from ε. Therefore ε = ε2 and
ε2 = ε2 = ε.

Lemma 5. Suppose a ∈ GF (p) is a quadratic non-residue. Then for (a, 0) ∈ GF (p2)

we have
√

(a, 0) =
(

0,±
√

k−1a
)

, where k is the quadratic non-residue used to define

the multiplication operation in GF (p2) with formula (6).

Proof. Using formula (6) we get
(

0,±
√

k−1a
)2

= (a, 0).
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In general case computation in (11) should be performed in the field GF (p2),

since the value Q2

4 + P3

27 can be equal to a quadratic non-residue in the field GF (p).
In the case under consideration p > 3, therefore number 3 divides the value

p2 − 1 and there exist three different cubic roots in GF (p2) from each of the values
(

−Q

2 +
√

Q2

4 + P3

27

)

and

(

−Q

2 −
√

Q2

4 + P3

27

)

. Three values α and three values β

define all roots of (8). Types of the lasts depend on the value ∆ = Q2

4 + P3

27 mod p.

4.1 ∆ is a quadratic non-residue in GF (p)

If ∆ is equal to a quadratic non-residue in GF (p), then in formulas (9) and
(10) elements α and β are two-dimension vectors the second coordinate of which
is not equal to zero. Suppose α = K and β = K are cubic roots from α3 =

−Q/2 +
(

0,
√

k−1∆
)

and β3 = −Q/2 −
(

0,
√

k−1∆
)

, respectively. Then α′ = εK

and α′′ = ε2K (β′ = α′ = εK = ε2K and β′′ = α′′ = ε2K = εK) are also cubic roots
from α3 (β3).

There are possible the following two cases.
Case 1. 3 ∤ (p−1). In this case KK = −P/3. Indeed, KK ∈ GF (p), ε ∈ GF (p2),

and P = (P, 0) ∈ GF (p), therefore KK 6= −εP/3. Each of the following three pairs
of the values:

1. α = K and β = K;

2. α′ = εK and β′ = ε2K;

3. α′′ = ε2K and β′′ = εK;

defines one root of each of the equations (7) and (8), since αβ = α′β′ = α′′β′′ =
−P/3. These three roots of (7), i.e. the values α+β, α′+β′ and α′′+β′′, are contained
in GF (p). Indeed, for example, α′ + β′ = εK + ε2K = εK + εK. Correspondingly,
three roots of (8) are also contained in GF (p).

Case 2. 3|(p − 1). In this case ε ∈ GF (p).
Suppose KK = −εP/3. Then each of the following three pairs of the values:

1. α = K and β = ε2K;

2. α′ = ε2K and β′ = K;

3. α′′ = εK and β′′ = εK;

defines one root of the equations (7) and (8), since αβ = α′β′ = α′′β′′ = −P/3. The
first and second roots, i.e. the values α + β = K + ε2K and α′ + β′ = ε2K + K, are
contained in GF (p2). The third root, i.e. the value α′′ +β′′ = εK+εK = ε(K+K),
is contained in GF (p).

Suppose KK = −P/3. Then each of the following three pairs of the values:

1. α = K and β = K.
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2. α′ = εK and β′ = ε2K;

3. α′′ = ε2K and β′′ = εK;

defines one root of the equations (7) and (8), since αβ = α′β′ = α′′β′′ = −P/3.
The first root is equal to α + β = K + K, i.e. it is contained in GF (p). The
second and third roots, i.e. the values α′ + β′ = εK + ε2K = ε

(

K + εK
)

and
α′′ + β′′ = ε2K + εK = ε

(

εK + K
)

, correspondingly, are contained in GF (p2).
Thus, in Case 2 we have one root in GF (p) and two roots in GF (p2).
It should be noted that in this paper there are considered cubic equations over

GF (p) which have solutions, therefore we do not consider the case when the value

−Q/2 +
(

0,
√

k−1∆
)

is a cubic non-residue in GF (p2).

4.2 ∆ is a quadratic residue in GF (p)

If ∆ is equal to a quadratic residue in GF (p), then in formula (11) the values
(

−Q

2 +
√

Q2

4 + P3

27

)

and

(

−Q

2 −
√

Q2

4 + P3

27

)

are elements of GF (p). We consider

the following two subcases.

Case 1. 3|(p − 1). If the number
(

−Q

2 +
√

∆
)

is a cubic residue in GF (p), then

we have three cubic roots from this number and three cubic roots from
(

−Q

2 −
√

∆
)

that are elements of GF (p), hence all three roots of equation (7) and all three roots of

equation (8) are elements of the field GF (p). If
(

−Q

2 −
√

∆
)

is a cubic non-residue

in GF (p), then the vector (
(

−Q

2 +
√

∆
)

, 0) is a cubic non-residue in GF (p2), since

((

−Q

2 +
√

∆
)

, 0
)

p
2
−1
3

=

(

(

−Q

2 +
√

∆
)

p−1
3

(p+1)
, 0

)

=

(εp+1, 0) 6= (1, 0),

where ε is one of two non-trivial cubic roots from 1 in GF (p), and equations (7) and
(8) have no solutions. However the last situation is out of the consideration of the
cubic equations having a solution.

Case 2. 3 ∤ (p − 1). In GF (p) there exists one cubic root from
(

−Q

2 +
√

∆
)

and one cubic root from
(

−Q

2 −
√

∆
)

. Let K =
3

√

−Q
2 +

√

Q2

4 + P 3

27 and K̃ =

3

√

−Q
2 −

√

Q2

4 + P 3

27 . In GF (p2) there exists two additional cubic roots from each of

the values

(

−Q

2 +
√

Q2

4 + P3

27

)

(the roots Kε and Kε2, where ε, ε2 ∈ GF (p2) are

non-trivial cubic roots from the unity element (1, 0)) and

(

−Q

2 −
√

Q2

4 + P3

27

)

(the

roots K̃ε and K̃ε2). We have KK̃ = −P/3 mod p = P/3 and one root of (7) is
equal to K + K̃ mod p ∈ GF (p).
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We have also KεK̃ε2 = −P/3 and Kε2K̃ε = −P/3 that gives two roots of (7)
Kε + K̃ε2 and Kε2 + K̃ε that are elements of GF (p2) with the second coordinate
different from zero.

4.3 ∆ = 0

We consider the following two cases.

Case 1. 3|(p − 1). If −Q/2 is a cubic residue in GF (p), then in GF (p) there
exists three cubic roots from −Q/2. Suppose these three roots are the values K,
K ′ = eK, and K ′′ = e2K, where e, e2 ∈ GF (p) and are non-trivial cubic roots from
1. Then, taking into account that K2 = −P/3, we have the following three roots
of (7): 2K, K ′ + K ′′, and K ′′ + K ′ that are elements of GF (p), the last two roots
being equal.

If −Q/2 is a cubic non-residue in GF (p), then the vector (−Q/2, 0) is a cubic
non-residue in GF (p2), since

(−Q/2, 0)
p
2
−1
3 =

(

(−Q/2)
p−1
3

(p+1) , 0
)

=
(

ep+1, 0
)

6= (1, 0),

where e ∈ GF (p) is a cubic root from 1, and there are no solutions for (7) and (8),
therefore the last situation is out of the consideration of the cubic equations over
GF (p) which have solutions.

Case 2. 3 ∤ (p − 1). In GF (p) there exists one cubic root from −Q/2. Let
K = 3

√

−Q/2 mod p. In GF (p2) there exists two additional cubic roots from −Q/2,
namely, the roots K ′ = Kε and K ′′ = Kε2, where ε, ε2 ∈ GF (p2) are non-trivial
cubic roots from the unity element (1, 0). Taking into account that K2 = −P/3, we
have the following three roots of equation (7): 2K ∈ GF (p), (K ′+K ′′), (K ′′ +K ′) ∈
GF (p2), the last two being equal.

Table 1. Number and type of roots of cubic equation (7) with condition that this
equation has a solution.

∆ is a quadratic ∆ is a quadratic ∆ = 0
non-residue in GF (p) residue in GF(p) Q2/4 = −P 3/27 mod p

3 ∤ (p − 1) 3|(p − 1) 3|(p − 1) 3 ∤ (p − 1) 3|(p − 1) 3 ∤ (p − 1)

Three One root Three One root Three One root in
different in GF (p) different in GF (p) roots GF (p) and

roots and two roots and two contained two equal
contained different contained different in GF (p) roots
in GF (p) roots in GF (p) roots two of them in GF (p2)

in GF (p2) in GF (p2) being equal
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5 Public encryption cryptoscheme free from the decryption

ambiguity

To avoid the decryption ambiguity one can put the cubic equation that relates to
the Case 2 from Subsections 4.1 and 4.2 into the base of public encryption algorithm.
To encrypt the message M one is to generate random numbers T and U such that the
value T 2/4−U is quadratic non-residue modulo p and modulo q and then compute
the cryptogram in form of the coefficients of the following cubic equation

(x − M)(x2 + Tx + U) = x3 − (M + T )x2 + (U − TM)x − MU = 0 mod n.

Thus, the enciphering procedure that consists in computing the following three co-
efficients that compose the ciphertext C = (A,B,D):

A = M + T mod n,

B = U − TM mod n,

D = MU mod n.

(13)

The first step of the public encryption, i.e. finding a value that is equal to a non-
residue modn, cannot be surely performed without knowing prime divisors of n.
Therefore a non-residue N is to be generated by owner of the public key, i.e. he
generates his public key as the pair of numbers n and N . Using such public key the
encryption of the message M is to be performed as follows:

1. Generate a random number T and compute the value U = T 2/4 − N mod n.
2. Compute the cryptogram C = (A,B,D) using formulas (13).
Decryption of the cryptogram C consists in finding the roots of the equation (1)

which are contained in Zn. Each of the equations (2) and (3) has a unique solution
in GF (p) and GF (q), respectively. Therefore there exists only one root of equation
(1) that can be computed solving the following system of two congruences

{

M ≡ Mp mod p

M ≡ Mq mod q,
(14)

where Mp ∈ GF (p) and Mq ∈ GF (q) are roots of equations (2) and (3), respectively.
In correspondence with the Chinese remainder theorem the solution of the system
(14) is

M =
[

Mpq
(

q−1 mod p
)

+ Mqp
(

p−1 mod q
)]

mod pq.

One of steps of the decryption procedure is finding cubic roots in the field of the
two-dimension vectors defined over the ground finite field. Next section considers
this case.

6 Finding cubic roots in GF (p2)

Since 3|p2 − 1, there exist three cubic roots from a cubic residue Y in GF (p2).
In the case p2 = 7 mod 9 it is rather simple to compute one cubic root J = Y1/3
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using the following formula

J = Y
p
2+2
3 .

Proof that this formula works is as follows

J3 = (Y)
p
2+2
3 = Y (Y)

p
2
−1
3 = Y.

Thus, to find a cubic root (if it exists) in the case 3|(p2−1) it is sufficient to perform
one exponentiation operation. Two other roots can be computed multiplying the
last by the non-trivial roots from the unity element (1, 0). For some arbitrary prime
p finding cubic roots in GF (p2) can be performed with method like that described
in [7] for finding cubic roots in GF (p), where 3|(p − 1).

7 Bi-deniable hybrid-encryption protocol secure against active

coercer

The public encryption algorithm proposed in Section 5 can be used for designing
bi-deniable encryption protocol as follows. The idea is to include in the protocol
the entity authentication stage that provides protection against active attackers, in-
cluding the case of active coercer, and possibility to implement the hidden exchange
of single-use public keys [9, 10]. The single-use public keys are used to agree the
single-use shared key with which the secret message is derived from the ciphertext
directed from sender to receiver. While using the private keys of the sender and
receiver and all values sent via communication channel, after the secret communi-
cation terminates the coercive attacker is able only to disclose a fake message from
the ciphertext.

Suppose yA = gxA mod p′ and yB = gxB mod p′, where p′ is a sufficiently large
prime and g is a primitive element modulo p′, are public keys of the sender and
receiver, correspondingly, that are to be used in frame of the ElGamal’s signature
scheme [11]. The values xA and xB are their private keys. Additionally the receiver
has other public key (n,N) that is to be used in frame of the public encryption
scheme described in Section 5.

The following protocol, where Alice is the sender of secret message S < n and
Bob is receiver, presents the bi-deniable hybrid encryption scheme.

1. Alice generates a uniformly random value kA < p ′−1 and computes the value
RA = gkA mod p ′ and her signature SignA(RA) to RA. Then she sends the values
SignA(RA) and RA to Bob.

2. Bob verifies the signature SignA(RA). If the signature is invalid he terminates
the communication session. Otherwise he generates a uniformly random value kB <
p ′ − 1 and computes the value RB = gkB mod p ′, his signatures SignB(RB) to RB

and his signature SignB(RA) to RA. Then he sends the values RB , SignB(RB), and
SignB(RA) to Alice.

3. Alice verifies the signatures SignB(RB) and SignB(RA). If at least one of
the signatures is invalid she terminates the communication session. Otherwise she
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generates a fake message M < n and encrypts simultaneously two messages S and
M as follows:

3.1. Compute the common key related to the public keys yA and yB : ZAB =
yxA

B mod p ′.

3.2. Compute the common single-use key related to the single-use public keys
RA and RB : WAB = RkA

B mod p ′.

3.3. Compute the values T = WABS mod n and U = T 2/4−N mod n. Then, us-
ing the public-encryption algorithm described in Section 5, compute the cryptogram
C = (A,B,D) and send C to Bob.

Bob discloses the secret message using the following algorithm.

Decryption algorithm.

1. Using his private key (p, q) Bob finds the root M of equation (1) with coeffi-
cients A, B, and D taken from the cryptogram C.

2. Then Bob computes the secret message S as follows:

2.1. Compute the common single-use key related to the single-use public keys
RA and RB : WAB = RkB

A mod p ′.

2.2. Compute the value T = (A − M) mod n.

2.3. Compute the secret message S = TWAB
−1 mod n.

Dishonest decryption algorithm:

Using Bob’s private key (p, q) the coercer computes the root M from the equation
(1) with coefficients taken from the cryptogram.

The coercer is able to compute the value T = A − M mod n, however he is not
able to distinguish the values RA, RB , and T from uniformly random values and to
disclose the secret message S (until he solves the discrete logarithm problem modulo
p ′), even if he is provided with private keys xA and xB .

8 Conclusion

We considered a method for computing the roots of cubic equation over the
ground finite field GF (p) in the case when the equation definitely has solutions.
This case takes place in the public encryption scheme characterized in simultaneous
encryption of three messages [8]. This scheme includes the decryption procedure
that is ambiguous. Using the obtained results related to analysis of number and
type of the roots of the cubic equations we have proposed a new method for public
encryption based on solving the cubic equations, which is free from ambiguity of
the decryption procedure. The proposed method has been used to design a new
bi-deniable encryption protocol that is sufficiently practical.
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Determining the Distribution of the Duration

of Stationary Games for Zero-Order Markov Processes

with Final Sequence of States

Alexandru Lazari

Abstract. A zero-order Markov process with final sequence of states represents
a stochastic system with independent transitions that stops its evolution as soon as
given final sequence of states is reached. The transition time of the system is unitary
and the transition probability depends only on the destination state. We consider
the following game. Initially, each player defines his distribution of the states. The
initial distribution of the states is established according to the distribution given by
the first player. After that, the stochastic system passes consecutively to the next
state according to the distribution given by the next player. After the last player, the
first player acts on the system evolution and the game continues in this way until the
given final sequence of states is achieved. Our goal is to study the duration of this
game, knowing the distribution established by each player and the final sequence of
states of the stochastic system. It is proved that the distribution of the duration of
the game is a homogeneous linear recurrent sequence and it is developed a polynomial
algorithm to determine the initial state and the generating vector of this recurrence.
Using the generating function, the main probabilistic characteristics are determined.

Mathematics subject classification: 65C40, 60J22, 90C39, 90C40.
Keywords and phrases: Zero-Order Markov Process, Final Sequence of States,
Duration, Game, Homogeneous Linear Recurrence, Generating Function.

1 Introduction and Problem Formulation

Let L be a discrete stochastic system with finite set of states V , |V | = ω. At
every discrete moment of time t ∈ N the state of the system is v(t) ∈ V . The system
L starts its evolution from the state v with the probability p∗(v), for all v ∈ V ,
where

∑

v∈V

p∗(v) = 1.

Also, the transition from one state u to another state v is performed accor-
ding to the same probability p∗(v) that depends only on the destination state v,
for every u ∈ V and v ∈ V . Additionally we assume that a sequence of states
X = (x1, x2, . . . , xm) ∈ V m is given and the stochastic system stops transitions as
soon as the states x1, x2, . . . , xm are reached consecutively in given order. The time
T when the system stops is called evolution time of the stochastic system L with
given final sequence of states X.

The stochastic system L described above represents a zero-order Markov pro-
cess with final sequence of states X. Several interpretations of these Markov pro-
cesses were analyzed in 1981 by Leo J.Guibas and Andrew M.Odlyzko in [8] and

c© Alexandru Lazari, 2015
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G. Zbaganu in 1992 in [7]. Various problems related to such systems have been studi-
ed in [1]–[5]. Also, in these papers, polynomial algorithms for determining the main
probabilistic characteristics (expectation, variance, mean square deviation, n-order
moments) of evolution time of the given stochastic system L were proposed.

Next, in this paper, a generalization of this problem is studied. The following
game is considered. Initially, each player Pℓ defines his distribution of the states
(p∗(ℓ)(v))v∈V , ℓ = 0, r − 1. The initial distribution of the states is established ac-
cording to the distribution (p∗(0)(v))v∈V given by the first player P0. After that, the
stochastic system passes consecutively to the next state according to the distribution
given by the next player. After the last player Pr−1, the first player P0 acts on the
system evolution and the game continues in this way until the given final sequence
of states X is achieved. The player PTmod r, who acts the last on the system, is
considered the winner of the game.

Our goal is to study the duration T of this game, knowing the distribution
p∗(ℓ) = (p∗(ℓ)(v))v∈V established by each player Pℓ, ℓ = 0, r − 1, and the final se-
quence of states X of the stochastic system L. We will prove that the distribution
of the game duration T is a homogeneous linear recurrent sequence ([1],[6]) and a
polynomial algorithm to determine the initial state and the generating vector of
this recurrence will be developed. Having the generating vector and the initial state
of the recurrence, we can use the related algorithm from [1], which was mentioned
above, for determining the main probabilistic characteristics of the game duration.

2 The Main Results

2.1 Determining The Distribution of the Game Duration

In this section we will determine the distribution law of the game duration T .
Initially, we consider the notations

Xk = {xk}, Xk = V \{xk}, π
(ℓ)
k = p∗(ℓ)(xk), w

(ℓ)
k =

k
∏

j=2

π
(ℓ ⊕(−1)⊕j)
j ,

for each k = 1,m and ℓ = 0, r − 1, where c ⊕ d = (c + d) mod r, ∀c, d ∈ Z.

Let a = (an)∞n=0 be the distribution of the game duration T , i.e. an = P(T = n),
n = 0,∞. Since T ≥ m − 1, we have an = 0, n = 0,m − 2. If T = m − 1, then
v(j) = xj+1, j = 0,m − 1, that implies

am−1 = P(T = m − 1) = π
(0)
1 π

(1)
2 . . . π(m⊕(−1))

m = π
(0)
1 w(0)

m .

We consider ∀n ∈ Z. Let be S(V ) = {A | A ⊆ V }. Denote by P
(ℓ)
Φ (n) the

probability that T = n, v(j) ∈ Φj, j = 0, t − 1 and the player Pℓ acts first, for all
Φ = (Φj)

t−1
j=0 ∈ (S(V ))t, t ∈ N and ℓ = 0, r − 1. We introduce the following functions
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on Z, k = 0,m, ℓ = 0, r − 1:

α
(ℓ)
k (n) = P

(ℓ)

(X1,X2,...,Xk−1,Xk)
(n),

β
(ℓ)
k (n) = P

(ℓ)
(X1,X2,...,Xk)(n),

γ
(ℓ)
k (n) = P

(ℓ)
(X2,X3,...,Xk)(n).

(1)

We have

β
(ℓ)
k (n) = P

(ℓ)
(X1,X2,...,Xk)(n) = a(ℓ)

n −
k
∑

j=1

α
(ℓ)
j (n), k = 0,m, ℓ = 0, r − 1, (2)

where a
(ℓ)
n = P

(ℓ)
( ) (n), ℓ = 0, r − 1.

We consider the sets

Ts = {s + 1} ∪ {t ∈ {2, 3, . . . , s} | xt−1+j = xj , j = 1, s + 1 − t}, s = 1,m.

The minimal elements from these sets are

ts = min
k∈Ts

k, s = 1,m. (3)

The value ts represents the auto superposition level of the sequence (x1, x2, . . . , xs),
i. e. ts is the position in the sequence (x1, x2, . . . , xs) starting with which, if we
overlap the same sequence, the superposed elements are equal.

Using the formula (2) for s = 1,m and ℓ = 0, r − 1, we obtain

γ(ℓ)
s (n) = P

(ℓ)
(X2,X3,...,Xs)

(n) =

= π
(ℓ)
2 π

(ℓ ⊕1)
3 . . . π

(ℓ ⊕(ts−3))
ts−1 P

(ℓ ⊕(ts−2))
(Xts

,Xts+1,...,Xs)
(n − ts + 2) =

= w
(ℓ ⊕(−1))
ts−1 β

(ℓ ⊕(ts−2))
s+1−ts

(n − ts + 2) =

= w
(ℓ ⊕(−1))
ts−1



a
(ℓ ⊕(ts−2))
n−ts+2 −

s+1−ts
∑

j=1

α
(ℓ ⊕(ts−2))
j (n − ts + 2)



 . (4)

Particularly, we obtain the relation

γ
(ℓ)
1 (n) = a(ℓ)

n , ℓ = 0, r − 1, n = 0,∞. (5)

The values α
(ℓ)
k (n), k = 1,m, ℓ = 0, r − 1 are determined in the following way:

αℓ
1(n) = P

(ℓ)

(X1)
(n) = (1 − π

(ℓ)
1 )a

(ℓ ⊕1)
n−1 , (6)

α
(ℓ)
k (n) = P

(ℓ)

(X1,X2,...,Xk−1,Xk)
(n) = π

(ℓ)
1 P

(ℓ ⊕1)

(X2,X3,...,Xk−1,Xk)
(n − 1) =
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= π
(ℓ)
1

(

P
(ℓ ⊕1)
(X2,X3,...,Xk−1)(n − 1) − P

(ℓ ⊕1)
(X2,X3,...,Xk)(n − 1)

)

=

= π
(ℓ)
1

(

γ
(ℓ ⊕1)
k−1 (n − 1) − γ

(ℓ ⊕1)
k (n − 1)

)

, k = 2,m. (7)

Next, we obtain the recurrent formula:

a(ℓ)
n =

m
∑

j=1

α
(ℓ)
j (n) = (1 − π

(ℓ)
1 )a

(ℓ ⊕1)
n−1 +

m
∑

j=2

π
(ℓ)
1

(

γ
(ℓ ⊕1)
j−1 (n − 1) − γ

(ℓ ⊕1)
j (n − 1)

)

=

= (1 − π
(ℓ)
1 )a

(ℓ ⊕1)
n−1 + π

(ℓ)
1

(

a
(ℓ ⊕1)
n−1 − γ(ℓ ⊕1)

m (n − 1)
)

=

= a
(ℓ ⊕1)
n−1 − π

(ℓ)
1 γ(ℓ ⊕1)

m (n − 1), ∀n ≥ m, ℓ = 0, r − 1. (8)

According to the relations (4) − (7), using the mathematical induction, we can

prove that there exist the real coefficients u
(i)
jkℓ and v

(i)
jkℓ, j = 1,m, k = 0, j − 1,

ℓ = 0, r − 1, i = 0, r − 1 such that

α
(ℓ)
j (n) =

r−1
∑

i=0

j−1
∑

k=0

u
(i)
jkℓ a

(i)
n−1−k, γ

(ℓ)
j (n − 1) =

r−1
∑

i=0

j−1
∑

k=0

v
(i)
jkℓ a

(i)
n−1−k, ∀n ∈ Z. (9)

From the relations (5) and (6), for i = 0, r − 1 and ℓ = 0, r − 1, we obtain

u
(i)
1,0,ℓ =

{

1 − π
(ℓ)
1 , if i = ℓ ⊕ 1

0, if i 6= ℓ ⊕ 1
(10)

and

v
(i)
1,0,ℓ =

{

1, if i = ℓ
0, if i 6= ℓ

. (11)

Using the representation (9), the formula (4) obtains the form

γ(ℓ)
s (n − 1) = w

(ℓ ⊕(−1))
ts−1



a
(ℓ ⊕(ts−2))
(n−1)−ts+2 −

s+1−ts
∑

j=1

r−1
∑

i=0

j−1
∑

k=0

u
(i)
j,k,ℓ ⊕(ts−2)a

(i)
n−ts−k



 =

= w
(ℓ ⊕(−1))
ts−1



a
(ℓ ⊕(ts−2))
(n−1)−(ts−2) −

r−1
∑

i=0

s−1
∑

k=ts−1

a
(i)
n−1−k

s+1−ts
∑

j=k−ts+2

u
(i)
j, k−ts+1, ℓ ⊕(ts−2)



 =

=

r−1
∑

i=0

s−1
∑

k=0

v
(i)
skℓ a

(i)
n−1−k, s = 1,m, ℓ = 0, r − 1,

where

v
(i)
s,k,ℓ =











































0, if k ≤ ts − 3

0, if

{

k = ts − 2,
i 6= ℓ ⊕ (ts − 2)

w
(ℓ ⊕(−1))
ts−1 , if

{

k = ts − 2,
i = ℓ ⊕ (ts − 2)

−w
(ℓ ⊕(−1))
ts−1

s+1−ts
∑

j=k−ts+2

u
(i)
j, k−ts+1, ℓ ⊕(ts−2), if k ≥ ts − 1

(12)



76 ALEXANDRU LAZARI

s = 1,m, k = 0, s − 1, ℓ = 0, r − 1, i = 0, r − 1, and the formula (7) becomes

α(ℓ)
s (n) = π

(ℓ)
1

(

γ
(ℓ ⊕1)
s−1 (n − 1) − γ(ℓ ⊕1)

s (n − 1)
)

=

= π
(ℓ)
1

(

r−1
∑

i=0

s−2
∑

k=0

v
(i)
s−1, k, ℓ ⊕1a

(i)
n−1−k −

r−1
∑

i=0

s−1
∑

k=0

v
(i)
s, k, ℓ ⊕1a

(i)
n−1−k

)

=

=

r−1
∑

i=0

s−1
∑

k=0

u
(i)
skℓ a

(i)
n−1−k, s = 2,m, ℓ = 0, r − 1,

where

u
(i)
s,k,ℓ =







π
(ℓ)
1

(

v
(i)
s−1, k, ℓ ⊕1 − v

(i)
s, k, ℓ ⊕1

)

, if k ≤ s − 2

−π
(ℓ)
1 v

(i)
s, k, ℓ ⊕1, if k = s − 1

, (13)

s = 2,m, k = 0, s − 1, ℓ = 0, r − 1, i = 0, r − 1. The formula (8) obtains the form

a(ℓ)
n = a

(ℓ ⊕1)
n−1 − π

(ℓ)
1 γ(ℓ ⊕1)

m (n − 1) = a
(ℓ ⊕1)
n−1 − π

(ℓ)
1

r−1
∑

i=0

m−1
∑

k=0

v
(i)
m, k, ℓ ⊕1a

(i)
n−1−k =

=

r−1
∑

i=0

m−1
∑

k=0

q
(ℓ)
ik a

(i)
n−1−k, ∀n ≥ m, ℓ = 0, r − 1, (14)

where

q
(ℓ)
ik =

{

1 − π
(ℓ)
1 v

(ℓ ⊕1)
m, 0, ℓ ⊕1, if i = ℓ ⊕ 1 and k = 0

−π
(ℓ)
1 v

(i)
m, k, ℓ ⊕1, otherwise

. (15)

Next, we consider the column vectors An = ((a
(ℓ)
n )r−1

ℓ=0)T , n = 0,∞. Also, we

define the matrices Q(k) = (q
(ℓ)
ik )ℓ, i=0, r−1, k = 0,m − 1 and we consider the se-

quence Q = (Q(k))m−1
k=0 . From the relation (14), we have the homogeneous linear

recurrence An =
m−1
∑

k=0

Q(k)An−1−k, ∀n ≥ m, i.e. A = (An)∞n=0 ∈ Rol∗[Mr(R)][m]

with generating vector Q ∈ G∗[Mr(R)][m](A). So, the vectorial sequence A is
homogeneous linear recurrent on the matrix field Mr(R) with generating vec-
tor Q. Applying the results obtained in [1], we have A ∈ Rol∗[R][mr] with

characteristic polynomial H(z) = |Ir − zG
[Q]
m (z)| ∈ H∗[R][mr](A), which implies

that a(ℓ) = (a
(ℓ)
n )∞n=0 ∈ Rol∗[R][mr] and H(z) = |Ir − zG

[Q]
m (z)| ∈ H∗[R][mr](a(ℓ)),

ℓ = 0, r − 1. Because the game is started by player P(0), then the distribution a
of the game duration T coincides with a(0), i. e. a = (an)∞n=0 ∈ Rol∗[R][mr] with

characteristic polynomial H(z) = |Ir − zG
[Q]
m (z)| ∈ H∗[R][mr](a).

Next, we will use only the relation a ∈ Rol∗[C][mr], the minimal generating
vector being determined by use of the minimization method based on the matrix
rank, described in [1], that is available also for degenerated homogeneous linear
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recurrences. So, according to this method, we have that the minimal generat-
ing vector q = (q0, q1, . . . , qR−1) ∈ G∗[C][R](a) is obtained from the unique solution
x = (qR−1, qR−2, . . . , q0) of the system

A
[a]
R xT = (f

[a]
R )T , (16)

where

f
[a]
R = (aR, aR+1, . . . , a2R−1), A[a]

n = (ai+j)i,j=0,n−1, ∀n ∈ N
∗ (17)

and R is the rank of the matrix A
[a]
mr.

For this, we need to have only the values ak, k = 0, 2mr − 1. These values are
determined the formula

ak = a
(0)
k , k = 0, 2mr − 1, (18)

using the relations (4) − (8) and the initial conditions

an = a(ℓ)
n = P (ℓ)(n) = 0, ℓ = 0, r − 1, n = 0,m − 2,

α
(ℓ)
k (n) = 0, k = 1,m, n = 0,m − 1, ℓ = 0, r − 1,

a
(ℓ)
m−1 = π

(ℓ)
1 w(ℓ)

m , ℓ = 0, r − 1. (19)

2.2 Describing the developed algorithm

In the previous subsection we theoretically grounded the following algorithm for
determining the main probabilistic characteristics (the distribution (P(T = n))∞n=0,
the expectation E(T ), the variance V(T ), the mean square deviation σ(T ) and the
k-order moments νk(T ), k = 1, 2, . . .) of the game duration T .

Algorithm 1.

Input: X = (x1, x2, . . . , xm) ∈ V m, π
(ℓ)
k , k = 1,m, ℓ = 0, r − 1;

Output: E(T ), V(T ), σ(T ), νk(T ), k = 1, t, t ≥ 2.

1. Determine the values ak, k = 0, 2mr − 1, using the formula (18), the relations
(4) − (8) and the initial conditions (19);

2. Find the minimal generating vector q = (q0, q1, . . . , qR−1) ∈ G∗[R][R](a) by
solving the system (16), taking into account the relation (17);

3. Consider the distribution a = (an)∞n=0 = (P(T = n))∞n=0 of the game duration

T as a homogeneous linear recurrence with the initial state I
[a]
R = (an)R−1

n=0 and
the minimal generating vector q = (qk)

R−1
k=0 , determined at the steps 1 and 2;

4. Determine the expectation E(T ), the variance V(T ), the mean square deviation
σ(T ) and the k-order moments νk(T ), k = 1, t, of the game duration T by using
the corresponding algorithm from [1].
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3 Conclusions

In this paper the stationary games defined on zero-order Markov processes with
final sequence of states were studied and the duration of these games was analyzed.
It was proved that the game duration is a discrete random variable with homoge-
neous linear recurrent distribution. Based on this fact, the generating function is
applied for determining the main probabilistic characteristics of the game duration.
The developed algorithm has polynomial time complexity. Also, the algorithm is
applicable for the case when the set of the states is infinite.
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Cubic differential systems with two affine real

non-parallel invariant straight lines of maximal

multiplicity

Olga Vacaraş

Abstract. In this article we classify all differential real cubic systems possessing
two affine real non-parallel invariant straight lines of maximal multiplicity. We show
that the maximal multiplicity of each of these lines is at most three. The maximal
sequences of multiplicities: m(3, 3; 1), m(3, 2; 2), m(3, 1; 3), m(2, 2; 3), m∞(2, 1; 3),
m∞(1, 1; 3) are determined. The normal forms and the corresponding perturbations
of the cubic systems which realize these cases are given.

Mathematics subject classification: 34C05.
Keywords and phrases: Cubic differential system, invariant straight line, algebraic
multiplicity, geometric multiplicity.

1 Introduction and the statement of main results

We consider the real polynomial system of differential equations

dx

dt
= P (x, y) ,

dy

dt
= Q (x, y) , gcd(P,Q) = 1 (1)

and the vector field

X = P (x, y)
∂

∂x
+ Q (x, y)

∂

∂y

associated to system (1).
Denote n = max {deg (P ) ,deg (Q)}. If n = 3 then system (1) is called cubic.
A curve f(x, y) = 0, f ∈ C[x, y] is said to be an invariant algebraic curve of (1)

if there exists a polynomial Kf ∈ C[x, y], deg(Kf ) ≤ n − 1 such that the identity
X(f) ≡ f(x, y)Kf (x, y) holds. We will be interested in invariant algebraic curves of
degree one, that is invariant straight lines αx + βy + γ = 0, (α, β) 6= (0, 0).

Definition 1 (see [5]). An invariant algebraic curve f of degree d for the vector
field X has algebraic multiplicity m when m is the greatest positive integer such that
the m-th power of f divides Ed(X), where

Ed(X) = det









υ1 υ2 ... υl

X(υ1) X(υ2) ... X(υl)
... ... ... ...

X
l−1(υ1) X

l−1(υ2) ... X
l−1(υl)









, (2)

c© Olga Vacaraş, 2015
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and υ1, υ2, ..., υl is a basis of Cd[x, y].

We note that this definition of multiplicity can be applied to the infinite line
Z = 0 in the case when this line is not full of singular points.

Definition 2 (see [5]). An invariant algebraic curve f = 0 of degree d of the vector
field X has geometric multiplicity m if m is the largest integer for which there exists
a sequence of vector fields (Xi)i>0 of bounded degree, converging to hX, for some
polynomial h, not divisible by f , such that each Xr has m distinct invariant algebraic
curves, fr,1 = 0, ..., fr,m = 0, of degree at most d, which converge to f = 0 as r goes
to infinity. If we set h = 1 in the definition above, then we say that the curve has
strong geometric multiplicity m.

In [5] it is proved that the notions of algebraic and geometric multiplicity are
equivalent.

By present a great number of works have been dedicated to the investigation of
polynomial differential systems with invariant straight lines.

The problem of estimating the number of invariant straight lines which a poly-
nomial differential system can have was considered in [1]; the problem of coexistence
of the invariant straight lines and limit cycles was examined in {[16] : n = 2}, {[9],
n = 3}, [8]; the problem of coexistence of the invariant straight lines in cubic systems
and singular points of center type was studied in [6], [7], [17].

The classification of all cubic systems with the maximum number of invariant
straight lines, including the line at infinity, and taking into account their multiplic-
ities, is given in [10].

In [1] it was proved that the cubic system (1) can have at most eight affine
invariant straight lines. The cubic systems with exactly eight and exactly seven
distinct affine invariant straight lines have been studied in [10], [11], with invariant
straight lines of total geometric (parallel) multiplicity eight (seven) - in [2], [3], [4]
([18]), and with six real invariant straight lines along two (three) directions - in [13],
[14]. The cubic systems with degenerate infinity and invariant straight lines of total
parallel multiplicity six were investigated in [15]. In [19] it was shown that in the
class of cubic differential systems the maximal multiplicity of an affine real straight
line (of the line at infinity) is seven.

In this paper the cubic systems with two affine real non-parallel invariant straight
lines of maximal multiplicity are classified.

Denote by CSL
∗

k (CSL
×

2(r)) the class of cubic systems with exactly k distinct

(with exactly 2 real non-parallel) affine invariant straight lines.

Definition 3. We say that (µ1, µ2, ..., µk;µ∞), where µj ∈ N
∗, j = 1, . . . , k,∞,

µj ≥ µj+1, j = 1, . . . , k − 1, is a sequence of multiplicities of invariant straight lines
in the class CSL

∗

k if in CSL
∗

k there exists a system with invariant affine straight
lines l1, ..., lk which have respectively the multiplicities µ1, µ2, ..., µk and the line at
infinity has the multiplicity µ∞.

Definition 4. The sequence of multiplicities (µ1, µ2, ..., µk;µ∞) is called maximal
with respect to the component j, j ∈ {1, 2, ..., k,∞} if (µ1, µ2, ..., µj + 1, ..., µk ;µ∞)
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is not a sequence of multiplicities of invariant straight lines in the class CSL
∗

k.
We will denote this sequence by mj(µ1, µ2, ..., µk;µ∞). The sequence of the type
mj(µ1, µ2, ..., µk;µ∞) is called partially maximal. If the sequence (µ1, µ2, ..., µk;µ∞)
is maximal with respect to all components, then it is called maximal (or totally
maximal) and is denoted by m(µ1, µ2, ..., µk;µ∞).

Our main results are the following:

Main Theorem Any cubic system having two affine non-parallel real invariant
straight lines of the (partially) maximal multiplicity m(µ1, µ2;µ∞) (m∞(µ1, µ2;µ∞))
via an affine transformation and time rescaling can be written as one of the following
forms:

m(3, 3; 1) 1) ẋ = x3, ẏ = y(x2 + ay + by2), b 6= 0;

m(3, 2; 2) 2.1) ẋ = ax3, ẏ = y2, a 6= 0;
2.2) ẋ = x(ax2 + y), ẏ = y2, a 6= 0;

m(3, 1; 3) 3.1) ẋ = x2(ax + by), ẏ = y, a 6= 0;
3.2) ẋ = x(ay + b), ẏ = y(x2 + ay + b), b 6= 0;

m(2, 2; 3) 4) ẋ = x, ẏ = y(1 + bxy), b 6= 0;

m∞(2, 1; 3) 5.1) ẋ = x2(a + bx + cy), ẏ = y, c(a2 + b2) 6= 0;
5.2) ẋ = x, ẏ = y(1 + ax + bx2 + cxy), a(b2 + c2) 6= 0;
5.3) ẋ = x(1 + ax + bx2 + cxy), ẏ = y, c(a2 + b2) 6= 0;
5.4) ẋ = x(1 + ay), ẏ = y(1 + bx + ay + cx2), abc 6= 0;

m∞(1, 1; 3) 6.1) ẋ = x, ẏ = y(a + bx + cy + dx2 + exy + fy2),
(a2 + c2 + f2)(d2 + e2 + f2)(a2 + b2 + d2)((a− 1)2 + c2 + f2)·
((a − 1)2 + b2 + d2)((a − 1)2 + (c2d − bce + b2f)2) 6= 0;

6.2) ẋ = x(a + by), ẏ = y(c + dx + ey + x2), a(c2 + e2)((a −
c)2 + (b − e)2) 6= 0;

6.3) ẋ = x(a + by + cxy + y2), ẏ = −y(d + ex + c2x2 + cxy),
ad(c2 + e2 + (a + d)2)((a + d)2 + (bc − e)2) 6= 0;

6.4) ẋ = x(a + by + cxy + dy2), ẏ = αy(1 + bx + cx2 + dxy),
αa(c2 + d2)(α − a) 6= 0.

2 The proof of the Main Theorem

2.1 The maximal algebraic multiplicity of the affine invariant

straight lines

The goal of this section is to determine the maximal algebraic multiplicity of
the invariant straight lines for the cubic systems with two affine real non-parallel
invariant straight lines.

We consider the cubic differential system

{

ẋ = P0 + P1(x, y) + P2(x, y) + P3(x, y) ≡ P (x, y),
ẏ = Q0 + Q1(x, y) + Q2(x, y) + Q3(x, y) ≡ Q(x, y),

(3)

where Pk =
∑

i+j=k

aijx
iyj and Qk =

∑

i+j=k

bijx
iyj, aij , bij ∈ R, k = 0, 3.
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Suppose that

yP3(x, y) − xQ3(x, y) 6≡ 0, gcd(P,Q) = 1, (4)

i.e. at infinity the system (3) has at most four distinct singular points and the
right-hand sides of (3) do not have common divisors of degree greater than 0.

Let the system (3) have two real non-parallel invariant straight lines l1, l2. By
an affine transformation we can make them to be described by equations x = 0 and
y = 0, respectively. Then, the system (3) looks as

{

ẋ = x(a10 + a20x + a11y + a30x
2 + a21xy + a12y

2),
ẏ = y(b01 + b11x + b02y + b21x

2 + b12xy + b03y
2).

(5)

We denote by µ1 the multiplicity of the line x = 0, by µ2 the multiplicity of the
line y = 0 and by µ∞ the multiplicity of the line at infinity.

Applying Definition 1, first we determine the maximal algebraic multiplicity of
the line x = 0, secondly the maximal algebraic multiplicity of the line y = 0 and the
third step consists in the determination of the maximal algebraic multiplicity of the
line at infinity Z = 0.

2.1.1 The maximal algebraic multiplicity of the line x = 0

In this subsection, we compute the maximal algebraic multiplicity of the invariant
straight line x = 0 of the system (5). For this purpose, we calculate the determinant
E1(X) from Definition 1. For (5) the determinant E1(X) is a polynomial in x and y
of degree 8. To determine the maximal algebraic multiplicity of the line x = 0, we
write it in the form:

E1(X) = x(A1(y) + A2(y)x + A3(y)x2 + A4(y)x3 + A5(y)x4

+A6(y)x5 + A7(y)x6 + A8(y)x7).
(6)

Thus for system (5) we have A1(y) = −yA11(y)A12(y), where A11(y) = b01 +
b02y + b03y

2 and A12(y) = a2
10 − a10b01 + 2a10a11y − 2a10b02y + a2

11y
2 + 2a10a12y

2 +
a12b01y

2 − a11b02y
2 − 3a10b03y

2 + 2a11a12y
3 − 2a11b03y

3 + a2
12y

4 − a12b03y
4.

The algebraic multiplicity µ1 of the invariant straight line x = 0 is at least two
if the identity A1(y) ≡ 0 holds. From conditions (4) the polynomial A11(y) is not
identically zero, i.e. |b01| + |b02| + |b03| 6= 0, therefore it is necessary that A12(y) be
identically zero. The identity A12(y) ≡ 0 holds if one of the following six sets of
conditions is satisfied:

a10 = a11 = a12 = 0; (7)

a11 = a12 = b02 = b03 = 0, b01 = a10, a10 6= 0; (8)

a10 = a12 = b03 = 0, b02 = a11, a11 6= 0; (9)

a12 = b03 = 0, b01 = a10, b02 = a11, a10a11 6= 0; (10)

a10 = 0, b01 = a11(b02 − a11)/a12, b03 = a12, a12 6= 0; (11)

b01 = a10, b02 = a11, b03 = a12, a10a12 6= 0. (12)
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Lemma 1. For cubic differential system {(5), (4)} the algebraic multiplicity µ1 of
the invariant straight line x = 0 is at least two if and only if one of the following six
sets of conditions (7), (8), (9), (10), (11), (12) is satisfied.

We will examine each of the cases (7), (8), (9), (10), (11) and (12) separately.

1) Conditions (7).

The algebraic multiplicity is at least three (µ1 ≥ 3) if the identity A2(y) ≡ 0
holds. Here we have A2(y) = yA11(a20b01 + 2a20b02y + a21b02y

2 + 3a20b03y
2 +

2a21b03y
3). The identity A2(y) ≡ 0 holds if one of the following two series of condi-

tions is satisfied:

a20 = a21 = 0; (13)

a20 = b02 = b03 = 0, a21 6= 0. (14)

Under the conditions {(4), (7), (13)}, the cubic system (5) looks as

ẋ = a30x
3, ẏ = y(b01 + b11x + b02y + b21x

2 + b12xy + b03y
2),

a30(|b01| + |b02| + |b03|) 6= 0.
(15)

For this system A3(y) = a30yA11(y)(b01 + 2b02y + 3b03y
2) 6≡ 0, so in this case the

multiplicity of the invariant straight line x = 0 is three.

If the conditions {(4), (7), (14)} occur, then the system (5) looks as:

ẋ = x2(a30x + a21y), ẏ = y(b01 + b11x + b21x
2 + b12xy), a21a30b01 6= 0. (16)

The algebraic multiplicity of the line x = 0 can not be greater than three, because
A3(y) = b01y(a30b01 − a21(2a21 − b12)y

2) 6≡ 0.

2) Conditions (8):

A2(y) = −a2
10y(2(a20 − b11) + 3(a21 − b12)y) ≡ 0 ⇒

b11 = a20, b12 = a21 (17)

⇒ A3(y) = −3a2
10(a30 − b21)y 6≡ 0, therefore µ1 can not be greater than three.

In the conditions {(4), (8), (17)} the system (5) takes the form

ẋ = x(a10 + a20x + a30x
2 + a21xy),

ẏ = y(a10 + a20x + b21x
2 + a21xy), a10(b21 − a30) 6= 0.

(18)

3) Conditions (9).

The identity A2(y) = y(a20b
2
01 − a11(a11a20 + 2a21b01 − a11b11 − b01b12)y

2 −
2a2

11(a21−b12)y
3) ≡ 0 holds if one of the following two series of conditions is satisfied:

a20 = 0, b11 = a21b01/a11, b12 = a21; (19)

b01 = 0, b11 = a20, b12 = a21, a20 6= 0. (20)



84 OLGA VACARAŞ

Under the conditions {(9), (19)} we write the system (5) as

ẋ = x(a11y + a30x
2 + a21xy),

ẏ = y(a11b01 + a21b01x + a2
11y + a11b21x

2 + a11a21xy)/a11, b21 − a30 6= 0.
(21)

Here A3(y) = y(a30b
2
01−a11a30b01y−2a2

11(a30−b21)y
2) 6≡ 0, therefore the multiplicity

µ1 can not be greater than three.
If the conditions {(9), (20)} are satisfied then the cubic system (5) obtains the

following form

ẋ = x(a20x + a11y + a30x
2 + a21xy),

ẏ = y(a20x + a11y + b21x
2 + a11y + a21xy), a11a20(b21 − a30) 6= 0.

(22)

The algebraic multiplicity of the line x = 0, for the system (22), can not be greater
than three, because A3(y) = 2a2

11(b21 − a30)y
3 6≡ 0.

4) Conditions (10):
A2(y) = −y(a10 +a11y)(2a10(a20− b11)+(a11a20 +3a10a21−a11b11−3a10b12)y +

2a11(a21 − b12)y
2) ≡ 0 ⇒ {b11 = a20, b12 = a21} ⇒ A3(y) = y(b21 − a30)(a10 +

a11y)(3a10 + 2a11y) 6≡ 0, so µ1 = 3. The cubic system (5) looks as

ẋ = x(a10 + a20x + a11y + a30x
2 + a21xy),

ẏ = y(a10 + a20x + a11y + b21x
2 + a21xy), a10a11(b21 − a30) 6= 0.

(23)

5) Conditions (11).
The identity A2(y) = y(a11 + a12y)(a11a20(a11 − b02)

2 + 2a12a20(a11 − b02)
2y +

a12(3a
2
11a21−3a11a12a20 +2a12a20b02−4a11a21b02 +a21b

2
02 +2a11a12b11−a12b02b11−

a2
11b12 + a11b02b12)y

2 − 2a11a
2
12(a21 − b12)y

3 − a3
12(a21 − b12)y

4)/a2
12 ≡ 0 holds if one

of the following four series of conditions is satisfied:

a20 = 0, b02 = 2a11, b12 = a21; (24)

a20 = 0, b11 = a21(b02 − a11)/a12, b12 = a21, b02 6= 2a11; (25)

a11 = 0, a20 6= 0, b02 = 0, b12 = a21; (26)

a11 6= 0, a20 6= 0, b02 = a11, b11 = a20, b12 = a21. (27)

a) The conditions {(11), (24)} lead us to the system

ẋ = x(a11y + a30x
2 + a21xy + a12y

2), ẏ = y(a2
11 + 2a11a12y

+a12b21x
2 + a12a21xy + a2

12y
2)/a12, b21 − a30 6= 0,

(28)

for which A3(y) = y(a4
11a30 + 2a3

11a12a30y + a12(a
2
11a12b21 − a2

11a
2
21 + 2a11a12a21b11 −

a2
12b

2
11)y

2 − 2a11a
3
12(a30 − b21)y

3 − a4
12(a30 − b21)y

4)/a2
12 6≡ 0, so µ1 = 3.

b) Under the conditions (25) we have A3(y) = y(a11 +a12y)(a11a30(a11 − b02)
2 +

a12a30(3a11−2b02)(a11−b02)y−a2
12(3a11−b02)(a30−b21)y

2−a3
12(a30−b21)y

3)/a2
12 6≡ 0,

therefore in this case µ1 = 3. The cubic system (5) has the form

ẋ = x(a11y + a30x
2 + a21xy + a12y

2), ẏ = y(a11(b02 − a11)+
a21(b02 − a11)x + a12b02y + a12b21x

2 + a12a21xy + a2
12y

2)/a12,
(b21 − a30)(b02 − 2a11) 6= 0.

(29)
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c) When conditions {(11), (26)} hold we have A3(y) = −a12y
3(2a2

20 − 3a20b11 +
b2
11 + a12a30y

2 − a12b21y
2) 6≡ 0 and one obtains the following system

ẋ = x(a20x + a30x
2 + a21xy + a12y

2),
ẏ = y(b11x + b21x

2 + a21xy + a12y
2), a20a12(b21 − a30) 6= 0.

(30)

The multiplicity µ1 is equal to three.

d) The conditions {(11), (27)} lead us to the system

ẋ = x(a20x + a11y + a30x
2 + a21xy + a12y

2),
ẏ = y(a20x + a11y + b21x

2 + a21xy + a12y
2), a11a12a20(b21 − a30) 6= 0.

(31)

For system (31) we have A3(y) = (b21 − a30)(a11 + a12y)(2a11 + a12y)y3 6≡ 0 and
therefore µ1 = 3.

6) Conditions (12):
A2(y) = −y(a10+a11y+a12y

2)(2a10a20−2a10b11+a11a20y+3a10a21y−a11b11y−
3a10b12y+2a11a21y

2−2a11b12y
2 +a12a21y

3−a12b12y
3) ≡ 0 ⇒ {b11 = a20, b12 = a21}

⇒ A3(y) = y(b21 − a30)(a10 + a11y + a12y
2)(3a10 + 2a11y + a12y

2) 6≡ 0. Therefore
µ1 = 3. In this case the cubic system (5) looks as

ẋ = x(a10 + a20x + a11y + a30x
2 + a21xy + a12y

2),
ẏ = y(a10 + a20x + a11y + b21x

2 + a21xy + a12y
2), a10a12(b21 − a30) 6= 0.

(32)

In this way we have proved the following two lemmas.

Lemma 2. Let the cubic system {(3), (4)} have two affine real non-parallel invariant
straight lines. Then the maximal algebraic multiplicity of one of these lines is at most
three.

Lemma 3. For cubic differential system {(5), (4)} the algebraic multiplicity of the
invariant straight line x = 0 is three if and only if it has one of the following forms:
(15), (16), (18), (21), (22), (23), (28), (29), (30), (31), (32).

2.1.2 The maximal algebraic multiplicity of the line y = 0

In this subsection for the systems, enumerated in Lemma 3, we determine the
maximal algebraic multiplicity of the line y = 0. For this purpose, we write the
determinant E1(X) from Definition 1 in the form:

E1(X) = y(B1(x) + B2(x)y + B3(x)y2 + B4(x)y3 + B5(x)y4

+B6(x)y5 + B7(x)y6 + B8(x)y7).
(33)

The algebraic multiplicity µ2 of the invariant straight line y = 0 is at least two
if the identity B1(x) ≡ 0 holds.

Taking into account the condition (4), for each of the systems (16), (18), (22),
(23), (31), (32), the polynomial B1(x) is not identically zero, therefore µ2 = 1.



86 OLGA VACARAŞ

In the case of system (15) the identity B1(x) ≡ 0, where B1(x) = a30x
3(b2

01 +
2b01b11x− 3a30b01x

2 + b2
11x

2 + 2b01b21x
2 − 2a30b11x

3 + 2b11b21x
3 − a30b21x

4 + b2
21x

4)
holds if one of the following two series of conditions is satisfied

b01 = b11 = b21 = 0; (34)

b01 = b11 = 0, b21 = a30. (35)

The conditions (34) imply B2(x) = −a2
30x

5(3b02 + 2b12x) ≡ 0 ⇒

b02 = b12 = 0. (36)

Under the conditions (34) and (36) the multiplicity is µ2 = 3. The cubic system (15)
has the form ẋ = a30x

3, ẏ = b03y
3, a30b03 6= 0. This system is an element of the

class CSL
∗

4 and for it we have m(3, 3, 1, 1; 1) (see [10]).

The conditions (35) ⇒ B2(x) = a2
30b12x

6 ≡ 0 ⇒ b12 = 0 ⇒ B3(x) = a30x
3(2b2

02 +
a30b03x

2) 6≡ 0, therefore the multiplicity is µ2 = 3 and the system (15) takes the
form

ẋ = a30x
3, ẏ = y(b02y + a30x

2 + b03y
2), a30b03 6= 0. (37)

For the system (21) we have B1(x) = a30x
3(a2

11b
2
01 + 2a11a21b

2
01x− b01(3a

2
11a30 −

a2
21b01 − 2a2

11b21)x
2 − 2a11a21b01(a30 − b21)x

3 − a2
11b21(a30 − b21))/a

2
11 and {B1(x) ≡

0, (4)} ⇒
b01 = b21 = 0, a11a21a30 6= 0 (38)

⇒ B2(x) = −a2
30x

5(3a11 + 2a21x) 6≡ 0, µ2 = 2.

In the case of system (28) we have B1(x) = a30x
3(a4

11+2a2
11a12b11x−a12(3a

2
11a30−

a12b
2
11 − 2a2

11b21)x
2 − 2a2

12b11(a30 − b21)x
3 − a2

12b21(a30 − b21)x
4)/a2

12 ≡ 0 ⇒

a11 = b11 = b21 = 0, (39)

⇒ B2(x) = −2a21a
2
30x

6 ≡ 0 ⇒ a21 = 0 ⇒ B3(x) = −3a12a
2
30x

5 6≡ 0, µ2 = 3. The
system (28) looks as:

ẋ = x(a30x
2 + a12y

2), ẏ = a12y
3, a30a12 6= 0. (40)

For the system (29) we get B1(x) = a30x
3(a2

11(a11−b02)
2+2a11a21(a11−b02)

2x+
(a11 − b02)(a11a

2
21 + 3a11a12a30 − a2

21b02 − 2a11a12b21)x
2 + 2a12a21(a11 − b02)(a30 −

b21)x
3 − a2

12b21(a30 − b21)x
4)/a2

12. The identity B1(x) ≡ 0 holds if at least one of the
following two sets of conditions is satisfied:

a11 = a21 = b21 = 0, (41)

b02 = a11, b21 = 0, a11 6= 0. (42)

When conditions (41) ((42)) hold the polynomial B2(x) = −3a2
30b02x

5 (B2(x) =
−a2

30x
5(3a11 + 2a21x)) is not identically zero, therefore µ2 = 2.
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Consider now the system (30). We have: B1(x) = −x4(a20 +a30x)(a20b11−b2
11 +

2a30b11x − 2b11b21x + a30b21x
2 − b2

21x
2) ≡ 0 ⇒

b11 = 0, b21 = 0 (43)

⇒ B2(x) = −a21x
4(a20+a30x)(a20+2a30x) ≡ 0 ⇒ a21 = 0 ⇒ B3(x) = −a12x

3(a20+
a30x)(2a20 + 3a30x) 6≡ 0, µ2 = 3. The cubic system (30) looks as:

ẋ = x(a20x + a30x
2 + a12y

2), ẏ = a12y
3, a12a20a30 6= 0. (44)

The transformation X = y, Y = x reduces (40) and (44) to a system of the form
(37).

Lemma 4. For cubic differential system {(5), (4)} the algebraic multiplicity of the
invariant straight lines x = 0 and y = 0 are respectively µ1 = 3 and µ2 ≥ 2 if and
only if it has one of the forms: 1) {(15), (34)}, 2) {(15), (35)}, 3) {(21), (38)},
4) {(28), (39)}, 5) {(29), (41)}, 6) {(29), (42)}, 7) {(30), (43)}.

Lemma 5. In the class of cubic systems {(5), (4)} ∈ CSL
×

2(r) the algebraic multi-
plicity of the invariant straight lines x = 0 and y = 0 is three if and only if it has
the form (37).

2.2 Classification of cubic differential systems with two affine real

non-parallel invariant straight lines and the line at infinity of

maximal algebraic multiplicity

In this section for cubic system {(5), (4)}∈ CSL
×

2(r) we establish the partially

maximal sequences of multiplicities of the type m∞(µ1, µ2;µ∞).
We fix µ1 ∈ {1, 2, 3} and µ2 ∈ {1, 2, 3}, µ1 ≥ µ2 and we will determine the

maximal multiplicity of the line at infinity such that the sequence (µ1, µ2;µ∞) should
be maximal in the third component. We will investigate the cases:

1. m(3, 3;µ∞), 2. m∞(3, 2;µ∞), 3. m∞(3, 1;µ∞), 4. m∞(2, 2;µ∞),
5. m∞(2, 1;µ∞), 6. m∞(1, 1;µ∞).

We consider the cubic system {(5), (4)}∈ CSL
×

2(r) and its associated homoge-
neous system

{

ẋ = x(a10Z
2 + a20xZ + a11yZ + a30x

2 + a21xy + a12y
2),

ẏ = y(b01Z
2 + b11xZ + b02yZ + b21x

2 + b12xy + b03y
2).

(45)

For (45) we write E1(X) in the form

E1(X) = C0(x, y) + C1(x, y)Z + C2(x, y)Z2 + C3(x, y)Z3 + C4(x, y)Z4

+C5(x, y)Z5 + C6(x, y)Z6 + C7(x, y)Z7 + C8(x, y)Z8,
(46)

where Cj(x, y), j = 0, 8 are polynomials in x and y.
The algebraic multiplicity of the line at infinity is µ∞ ∈ N

∗ if µ∞ is the maximal
number such that Z(µ∞−1) divides E1(X).
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2.2.1 Case m(3, 3; µ∞)

To investigate the maximal algebraic multiplicity of the line at infinity for the
system (37) (see Lemma 5), we consider the homogenized system

ẋ = a30x
3, ẏ = y(b02yZ + a30x

2 + b03y
2), a30b03 6= 0. (47)

For (47) we have C0(x, y) = a30b03x
3y3(a30x

2 + 3b03y
2) 6≡ 0, therefore the alge-

braic multiplicity of the line at infinity is one and in the class CSL
×

2(r) we have the

maximal sequence m(3, 3; 1).

Lemma 6. Via an affine transformation and time rescaling any cubic system having
two non-parallel real invariant straight lines of the maximal multiplicity m(3, 3; 1),
can be brought to the form

ẋ = x3, ẏ = y(ay + x2 + by2), b 6= 0. (48)

2.2.2 Case m∞(3, 2; µ∞)

According to Lemma 4, the cubic system {(5), (4)} admits the invariant straight
lines x = 0 and y = 0 of the multiplicities three and two respectively if the cubic
system has one of the following seven forms:

1) {(15), (34)}, 2) {(15), (35)}, 3) {(21), (38)}, 4) {(28), (39)},
5) {(29), (41)}, 6) {(29), (42)}, 7) {(30), (43)}.

Case 1) {(15), (34)}. Under the condition (34) the cubic system (15) looks as

ẋ = a30x
3, ẏ = y2(b02 + b12x + b03y), a30(|b02| + |b03|) 6= 0. (49)

For homogeneous system associated to the system (49) we have C0(x, y) =
−a30x

3y2(2b12x + 3b03y)(a30x
2 − b12xy − b03y

2) ≡ 0 ⇒ b03 = b12 = 0 ⇒ C1(x, y) =
−3a2

30b02x
5y2 6≡ 0, therefore the multiplicity of the line at infinity is two. The system

(49) takes the form ẋ = a30x
3, ẏ = b02y

2, b02a30 6= 0, and after the time rescaling
we can write it as

ẋ = ax3, ẏ = y2, a 6= 0 (50)

(see system 2.1) of the Main Theorem).
From the above it follows for system (50) that m∞(3, 2; 2) = m(3, 2; 2).
In the Cases 2), 4), 5), 6), 7) we have respectively

ẋ = a30x
3, ẏ = y(a30x

2 + b02y + b12xy + b03y
2), a30(b

2
02 + b2

03 + b2
12) 6= 0,

C0(x, y) = a30x
3y2(b12x + b03y)(a30x

2 + 2b12xy + 3b03y
2) 6≡ 0, µ∞ = 1;

ẋ = x(a30x
2 + a21xy + a12y

2), ẏ = y2(a21x + a12y), a12a30 6= 0,
C0(x, y) = −a30x

3y2(2a21a30x
3 + a2

21x
2y + 3a12a30x

2y + 2a12a21xy2

+a2
12y

3) 6≡ 0, µ∞ = 1;

ẋ = x(a30x
2 + a12y

2), ẏ = y2(a12y + b02), a12a30 6= 0,
C0(x, y) = −a12a30x

3y3(3a30x
2 + a12y

2) 6≡ 0, µ∞ = 1;
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ẋ = x(a30x
2 + a11y + a21xy + a12y

2), ẏ = y2(a11 + a21x + a12y),
a12a30 6= 0, C0(x, y) = −a30x

3y2(2a21a30x
3 + a2

21x
2y + 3a12a30x

2y
+2a12a21xy2 + a2

12y
3) 6≡ 0, µ∞ = 1;

ẋ = x(a20x + a30x
2 + a21xy + a12y

2), ẏ = y2(a21x + a12y),
a12a20a30 6= 0, C0(x, y) = −a30x

3y2(2a21a30x
3 + a2

21x
2y+

3a12a30x
2y + 2a12a21xy2 + a2

12y
3) 6≡ 0, µ∞ = 1.

Case 3) {(21), (38)}. In this case C0(x, y) = −a21a30x
5y2(2a30x + a21y) ≡ 0 ⇒

a21 = 0 ⇒ C1(x, y) = −3a11a
2
30x

5y2 6≡ 0, µ∞ = 2. The system {(21), (38)} obtains
the form ẋ = x(a11y + a30x

2), ẏ = a11y
2, a11a30 6= 0, and after time rescaling we

can write it as

ẋ = x(y + ax2), ẏ = y2, a 6= 0 (51)

(see system 2.2) of the Main Theorem).

For system (51) we have m∞(3, 2; 2) = m(3, 2; 2).

Lemma 7. Any cubic system of the class CSL
×

2(r) with invariant straight lines of

the maximal multiplicity m(3, 2; 2) via an affine transformation and time rescaling
can be written in form (50) or (51).

2.2.3 Case m∞(3, 1; µ∞)

The following cubic systems: (15), (16), (18), (21), (22), (23), (28), (29), (30),
(31), (32) possess the invariant straight lines x = 0 and y = 0 of the multiplicity
µ1 = 3 and µ2 = 1, respectively (see Lemma 3). Proceeding as in the previous case
and taking into account the condition (4), we will examine each system separately.

System (15). For this system we have C0(x, y) = −a30x
3yC01(x, y)C02(x, y),

where C01(x, y) = a30x
2 − b21x

2 − b12xy − b03y
2, C02 = (b21x

2 + 2b12xy + 3b03y
2).

If C01(x, y) ≡ 0, then the infinity is degenerate for (15). Let C01(x, y) 6≡ 0, i.e.
|a30 − b21| + |b12| + |b03| 6= 0, and C02(x, y) ≡ 0. Then, b03 = b12 = b21 = 0 ⇒
C1(x, y) = −a2

30x
5y(2b11x+3b02y) ≡ 0 ⇒ b02 = b11 = 0 ⇒ C2(x, y) = −3a2

30b01x
5y 6≡

0, µ∞ = 3. Under the above conditions the system (15) takes the form

ẋ = a30x
3, ẏ = b01y, a30b01 6= 0. (52)

System (16). In this case: {(4), C0(x, y) = −x4y((a30 − b21)x + (a21 −
b12)y)(a30b21x

2 + 2a30b12xy + a21b12y
2) ≡ 0} ⇒ {|a30 − b21| + |a21 − b12| 6= 0, b21 =

b12 = 0} ⇒ C1(x, y) = −b11x
4y(a30x + a21y)(2a30x + a21y) ≡ 0 ⇒ b11 = 0 ⇒

C2(x, y) = −b01x
3y(a30x + a21y)(3a30x + 2a21y) 6≡ 0, µ∞ = 3. The system (16) has

the form

ẋ = x2(a30x + a21y), ẏ = b01y, a30b01 6= 0. (53)

Note that the system (52) is a particular case of the system (53), and after time
rescaling the last system can be written in the form

ẋ = x2(ax + by), ẏ = y, a 6= 0 (54)
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(see system 3.1) of Main Theorem). The system (54) has not the third affine invariant
straight line because E1(X) = −x3y(−a + 3a2x2 + 5abxy + 2b2y2). The conic f ≡
−a + 3a2x2 + 5abxy + 2b2y2 = 0 is reducible in C[x, y] only if b = 0, i.e. f =
a(−1 + 3ax2), but f = 0 is not invariant for {(54), b = 0}. For system (54) we get
m∞(3, 1; 3) = m(3, 1; 3).

Remark 1. For the homogeneous systems associated to (18) (respectively, (21), (22),
(23)) the polynomial C0(x, y) has the form C0(x, y) = (b21 − a30)x

5y(a30b21x
2 +

2a21a30xy + a2
21y

2) and for these systems identity C0(x, y) ≡ 0 holds if one of the
following two series of conditions is satisfied:

A) a21 = b21 = 0 and B) a21 = a30 = 0.

System (18). In conditions A) (B)) we have C1(x, y) = −2a20a
2
30x

6y ≡ 0
(C1(x, y) = a20b

2
21x

6y ≡ 0) ⇒ a20 = 0 ⇒ C2(x, y) = −3a10a
2
30x

5y 6≡ 0 (C2(x, y) =
a10b

2
21x

5y 6≡ 0), µ∞ = 3. We obtain the following two systems:

ẋ = x(a30x
2 + a10), ẏ = a10y, a10a30 6= 0; (55)

ẋ = a10x, ẏ = y(b21x
2 + a10), a10b21 6= 0. (56)

The system (55) has four affine invariant straight lines: l1 = x, l2 = y, l3,4 = x±
√

−a10/a30 which, together with the line at infinity, form a sequence of multiplicities
(3, 1, 1, 1; 3).

System (21). Assume the conditions B) hold, then the system (21) is degen-
erate, i.e. deg(gcd(P, Q)) > 0 (see (4)). Let a30 6= 0. Then, A) ⇒ C1(x, y) =
−3a11a

2
30x

5y2 6≡ 0, µ∞ = 2.
System (22). When the set of conditions A) (B)) is satisfied, then C1(x, y) =

a20b
2
21x

6y 6≡ 0 (C1(x, y) = −a2
30x

5y(2a20x + 3a11y) 6≡ 0), µ∞ = 2.
System (23). Under the conditions A) we have C1(x, y) = −a2

30x
5y(2a20x +

3a11y) 6≡ 0, so µ∞ = 2. In the case of conditions B): C1(x, y) = a20b
2
21x

6y ≡ 0 ⇒
a20 = 0, C2(x, y) = b21x

3y(a10b21x
2 + 2a2

11y
2) 6≡ 0, µ∞ = 3. The system (23) takes

the form

ẋ = x(a11y + a10), ẏ = y(b21x
2 + a11y + a10), a10a11b21 6= 0. (57)

It is easy to show that for the systems (28), (29), (30), (31), (32) the algebraic
multiplicity of the line at infinity is one.

Note that systems (56) and (57) may be combined in one system which after an
affine transformation and time rescaling can be writing in the form

ẋ = x(ay + b), ẏ = y(x2 + ay + b), b 6= 0 (58)

(see system 3.2) of the Main Theorem). For system (58) only the lines x = 0 and
y = 0 are affine invariant straight lines as E1(X) = x3y(3b2 + 5aby + bx2 + 2a2y2)
and the algebraic curve 3b2 + 5aby + bx2 + 2a2y2 = 0 is not invariant for (58). For
system (58) we have m∞(3, 1; 3) = m(3, 1; 3).

Lemma 8. Any cubic system of the class CSL
×

2(r) with invariant straight lines of

the maximal multiplicity m(3, 1; 3) via an affine transformation and time rescaling
can be written in the form (54) or (58).
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2.2.4 Case m∞(2, 2; µ∞)

In Section 2.2.2 we have obtained the canonical forms of the systems (see Lemma
7) which have the maximal sequence m(3, 2; 2). For each of these systems the affine
invariant straight line x = 0 (y = 0) has the algebraic multiplicity three (two)
and the line at infinity l∞ has multiplicity two. The Poincaré transformation z =
1/x, u = y/x sends: the line x = 0 into the line at infinity of the phase plane Ozu,
the line at infinity of the phase plane Oxy into the line z = 0, the line y = 0 into
the line u = 0, and preserves the multiplicities. This transformation reduces the
systems (50) and (51) to the cubic systems, respectively

ż = −az, u̇ = −u(a − zu); (59)

ż = −z(a + zu), u̇ = −au. (60)

Putting in (59) ((60)) z = x, u = y, t = −τ/a, a = −1/b (z = y, u = x, t =
−τ/a, a = 1/b) we obtain the system

ẋ = x, ẏ = y(1 + bxy), b 6= 0. (61)

Lemma 9. Any cubic system of the class CSL
×

2(r) with straight lines of the maximal

multiplicity m(2, 2; 3) via an affine transformation and time rescaling can be written
in the form (61).

2.2.5 Case m∞(2, 1; µ∞)

We will examine the sets of conditions (7)–(12) under which the cubic system
(5) admits the invariant straight lines x = 0 and y = 0 of multiplicities µ1 = 2 and
µ2 = 1, respectively.

1) Conditions (7).
When for cubic system (5) the conditions (7) hold we have C0(x, y) = −x2yC01(x, y)·

C02(x, y), where C01(x, y) = ((a30 − b21)x
2 + (a21 − b12)xy − b03y

2), C02(x, y) =
(a30b21x

3 + 2a30b12x
2y + (3a30b03 + a21b12)xy2 + 2a21b03y

3).
Taking into account conditions (4) the polynomial C01(x, y) can not be identi-

cally zero, so we will require for C02(x, y) to be identically zero. In this case the
multiplicity is µ∞ ≥ 2 if one of the following three series of conditions is satisfied

a30 = a21 = 0; (62)

a30 = b12 = b03 = 0, a21 6= 0; (63)

b21 = b12 = b03 = 0, a30 6= 0. (64)

The conditions {(62), (4)} give us C1(x, y) = a20x
2y(b21x

2 + b12xy + b03y
2)(b21x

2 +
2b12xy + 3b03y

2) 6≡ 0, µ∞ = 2.
For conditions {(63), (4)} we get C1(x, y) = x3y(a20b

2
21x

3 + (a21b02b21 −
a2

21b11)xy2 − 2a2
21b02y

3) ≡ 0 ⇒ b02 = b11 = b21 = 0 ⇒ C2(x, y) = −2a2
21b01x

3y3 6≡ 0,
µ∞ = 3. The system {(5), (4)} has the form

ẋ = x2(a20 + a21y), ẏ = b01y, a20a21b01 6= 0. (65)
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In the case of conditions {(64), (4)} we have: C1(x, y) = −x3y(a30x + a21y) ·
(2a30b11x

2 + 3a30b02xy + a21b11xy + 2a21b02y
2) ≡ 0 ⇒ b11 = b02 = 0 ⇒ C2(x, y) =

−b01x
3y(a30x + a21y)(3a30x + 2a21y) 6= 0, µ∞ = 3. We obtain the following cubic

system
ẋ = x2(a30x + a21y + a20), ẏ = b01y, a30a21b01 6= 0. (66)

After time rescaling t = τ/b01 the systems (65) and (66) can be combined into
the system

ẋ = x2(a + bx + cy), ẏ = y, c(a2 + b2) 6= 0. (67)

(see the system 5.1) of Main Theorem).
2) Conditions (8).
Taking into account (4) the polynomial C0(x, y) = −x4y((a30 − b21)x + (a21 −

b12)y)(a30b21x
2+2a30b12xy+a21b12y

2) is identically zero if one of the following three
series of conditions is fulfilled: a30 = a21 = 0, i.e. (62), and

a30 = b12 = 0, a21 6= 0; (68)

b21 = b12 = 0, a30 6= 0. (69)

Under the conditions (62) we have: {(4); C1(x, y) = a20x
4y(b21x + b12y)(b21x +

2b12y) ≡ 0} ⇒ {(4); a20 = 0} ⇒ C2(x, y) = a10x
3y(b21x + b12y)(b21x + 2b12y) 6≡ 0,

µ∞ = 3. The cubic system looks as

ẋ = a10x, ẏ = y(a10 + b11x + b21x
2 + b12xy), a10(b

2
21 + b2

12) 6= 0. (70)

The conditions (68) give us C1(x, y) = x4y(a20b
2
21x

2−a2
21b11y

2). The multiplicity
is µ1 = 2, µ2 = 1 and µ∞ ≥ 3, if b11 = a20 = 0, b21 6= 0 or b11 = b21 = 0, a20 6= 0.
Thus, we have the following two systems, respectively

ẋ = x(a10 + a21xy), ẏ = y(a10 + b21x
2), a10b21a21 6= 0; (71)

ẋ = x(a10 + a20x + a21xy), ẏ = a10y, a10a20a21 6= 0. (72)

For {(71), (4)} ({(72), (4)}) the polynomial C2(x, y) ≡ a10x
3y(b21x − a21y)(b21x +

2a21y) (C2(x, y) ≡ −2a10a
2
21x

3y3) is not identically zero, therefore µ∞ = 3.
For conditions (69): C1(x, y) = −b11x

4y(a30x + a21y)(2a30x + a21y) ≡ 0 ⇒
b11 = 0; {b11 = 0, (4)} ⇒ C2(x, y) ≡ −a10x

3y(a30x + a21y)(3a30x + 2a21y) 6= 0,
µ∞ = 3 ⇒

ẋ = x(a10 + a20x + a30x
2 + a21xy), ẏ = a10y, a10a21a30 6= 0. (73)

The system {(70), b11 = 0, b21b12 6= 0} (respectively, (71) and {(73), a20 =
0, a30a21 6= 0}) has the affine straight lines l1 = x, l2 = y, l3 = b21x + b12y (re-
spectively, l3 = b21x − a21y and l3 = a30x + a21y) and it realizes the sequence of
multiplicities (2, 1, 1; 3). If for differential system (70): b11 = b21 = 0 (b11 = b12 = 0),
then µ1 = 3 > 2 (µ2 = 2 > 1). Let a10b11(b

2
21+b2

12) 6= 0, then, after the time rescaling
and change of notation of the coefficients, we can write (70) in the form

ẋ = x, ẏ = y(1 + ax + bx2 + cxy), a(b2 + c2) 6= 0 (74)
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(see the system 5.2) of Main Theorem).

After time rescaling and change of notation of the coefficients, the systems (72)
and (73) can be combined into the system

ẋ = x(1 + ax + bx2 + cxy), ẏ = y, c(a2 + b2) 6= 0. (75)

(see the system 5.3) of Main Theorem).

3) Conditions (9).

Taking into account (4) the polynomial C0(x, y) = −x4y((a30 − b21)x + (a21 −
b12)y)(a30b21x

2 + 2a30b12xy + a21b12y
2) is identically zero if one of the conditions

(62), (68), (69) is satisfied.

When the conditions {(62), (4)} ({(68), (4)} and {(69), (4)}) hold we ob-
tain C1(x, y) = x3y(b21x + b12y)(a20b21x

2 + 2a20b12xy + a11b12y
2) 6≡ 0 (respec-

tively, C1(x, y) = x3y(a20b
2
21x

3 − a2
21b11xy2 + 2a11a21b21xy2 − 2a11a

2
21y

3) 6≡ 0 and
C1(x, y) = −x3y(a30x + a21y)(2a30b11x

2 + 3a11a30xy + a21b11xy + 2a11a21y
2) 6≡ 0),

µ∞ = 2.

4) Conditions (10).

In this case we get C0(x, y) = −x4y((a30 − b21)x + (a21 − b12)y)(a30b21x
2 +

2a30b12xy +a21b12y
2) and C0(x, y) is identically zero if at least one of the conditions

(62), (68), (69) is satisfied.

For conditions (62) we find {(4), C1(x, y) = x3y(b21x + b12y)(a20b21x
2 +

2a20b12xy + a11b12y
2) ≡ 0} ⇒ {(4), a20 = b12 = 0} ⇒ C2(x, y) = b21x

3y(a10b21x
2 +

2a2
11y

2) 6≡ 0, µ∞ = 3. The cubic system looks as

ẋ = x(a11y + a10), ẏ = y(b21x
2 + b11x + a11y + a10), a10a11b21 6= 0. (76)

If b11 = 0, then the invariant straight line x = 0 of (76) has multiplicity µ1 = 3. Let
b11 6= 0. Via rescaling the time and change of notation of coefficients, the system
(76) can be reduced to the system

ẋ = x(1 + ay), ẏ = y(1 + bx + ay + cx2), abc 6= 0 (77)

(see the system 5.4) of Main Theorem).

In the cases (68) and (69) we have respectively C1(x, y) ≡ x3y(a20b
2
21x

3 −
a2

21b11xy2 + 2a11a21b21xy2 − 2a11a
2
21y

3) 6= 0 and C1(x, y) = −x3y(a30x + a21y) ·
(2a30b11x

2 +(3a11a30 +a21b11)xy +2a11a21y
2) 6≡ 0, thus µ∞ can not be greater than

two.

5) Conditions (11) and Conditions (12). Taking into account (4), in each of
this conditions, we have C0(x, y) = −x2y((a30 − b21)x + (a21 − b12)y)(a30b21x

4 +
2a30b12x

3y + (3a12a30 + a21b12 − a12b21)x
2y2 + 2a12a21xy3 + a2

12y
4) 6≡ 0, µ∞ = 1.

Lemma 10. Any cubic system of the class CSL
×

2(r) with straight lines of the partially

maximal multiplicity m∞(2, 1; 3) via an affine transformation and time rescaling can
be written in one of the following four forms (67), (70), (75) and (77).
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2.2.6 Case m∞(1, 1; µ∞)

We consider the homogenized system associated to the system (5)

{

ẋ = x(a10Z
2 + a20xZ + a11yZ + a30x

2 + a21xy + a12y
2),

ẏ = y(b01Z
2 + b11xZ + b02yZ + b21x

2 + b12xy + b03y
2).

(78)

For (78) we have C0(x, y) = −xyC01(x, y)C02(x, y), where C01(x, y) = (a30−b21)x
2+

(a21 − b12)xy + (a12 − b03)y
2 and C02(x, y) = (a30b21x

4 + 2a30b12x
3y + (3a30b03 +

a21b12 − a12b21)x
2y2 + 2a21b03xy3 + a12b03y

4). If C01 ≡ 0, then the system (78) has
degenerate infinity. Let C01 6≡ 0. The identity C02(x, y) ≡ 0 holds if at least one of
the following four series of conditions is fulfilled

a30 = a21 = a12 = 0; (79)

a30 = a21 = b21 = b03 = 0, a12 6= 0; (80)

a30 = b03 = 0, b12 = a12b21/a21; (81)

b21 = b12 = b03 = 0, a30 6= 0. (82)

1) Conditions {(79), (4)}: C1(x, y) = −xyC01(x, y)(a20b21x
3 + 2a20b12x

2y +
3a20b03xy2 + a11b12xy2 + 2a11b03y

3) ≡ 0 ⇒

a20 = a11 = 0 (83)

or
a20 = b12 = b03 = 0, a11 6= 0. (84)

For conditions {(83), (4)} we have the system

ẋ = a10x, ẏ = y(b01 + b11x + b02y + b21x
2 + b12xy + b03y

2),
a10(b

2
21 + b2

12 + b2
03)(b

2
01 + b2

02 + b2
03) 6= 0

(85)

for which C2(x, y) = −a10xyC01(x, y)(b21x
2 + 2b12xy + 3b03y

2) 6≡ 0, µ∞ = 3, and
for conditions {(84), (4)} the cubic system looks as

ẋ = x(a10 +a11y), ẏ = y(b01 +b11x+b02y+b21x
2), a10a11b21(b

2
01 +b2

02) 6= 0. (86)

For (86) we find C2(x, y) = b21x
3y(a10b21x

2 + a2
11y

2 + a11b02y
2) 6≡ 0, µ∞ = 3. Via

rescaling the time an change of notation of coefficients, (85) can be reduced to the
system

ẋ = x, ẏ = y(a + bx + cy + dx2 + exy + fy2), (a2 + c2 + f2)(d2 + e2 + f2) 6= 0 (87)

(see the system 6.1) of Main Theorem).
In 6.1) the condition (a2 + b2 + d2)((a− 1)2 + (c2d− bce+ b2f)2) 6= 0 means that

the system (87) has only the following two affine invariant straight lines x = 0, y = 0
and the condition ((a − 1)2 + c2 + f2)((a − 1)2 + b2 + d2) 6= 0 means that each of
these affine straight lines has the algebraic multiplicity one.
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2) Conditions {(80), (4)}. The polynomial C1(x, y) = xy3(2a20b
2
12x

3−b12(a12a20

+ a12b11 − a11b12)x
2y − a2

12b02y
3) is identically zero if one of the following two series

of conditions is satisfied
b02 = b12 = 0; (88)

a20 = b02 = 0, b11 = a11b12/a12, b12 6= 0. (89)

The conditions {(88), (4)} and {(89), (4)} lead us, respectively, to the following
two systems

ẋ = x(a12y
2 + a20x + a11y + a10), ẏ = y(b11x + b01), a12b01(a

2
10 + a2

20) 6= 0, (90)

C2(x, y) = −a12xy3(b11(a20 + b11)x
2 + a12b01y

2) 6≡ 0, µ∞ = 3;

ẋ = x(a12y
2+a11y+a10), ẏ = y(a12b12xy+a11b12x+a12b01)/a12, a10b12b01 6= 0, (91)

C2(x, y) = −xy3(−2a10b
2
12x

2 + a12b01b12xy + a2
12b01y

2) 6≡ 0, µ∞ = 3.
Via an affine transformation of coordinates and time rescaling (90) can be re-

duced to the system

ẋ = x(a + by), ẏ = y(c + dx + ey + x2), a(c2 + e2) 6= 0 (92)

(see system 6.2) of the Main Theorem). In 6.2) the inequality (a− c)2 +(b− e)2 6= 0
means that µ1 = 1.

Note that (86) modulo time rescaling is a particular case of the system (92).

3) Conditions {(81), (4)}. In this case the polynomial C1(x, y) = −xy(a21x +
a12y)(−a20a21b

2
21x

4−2a12a20b
2
21x

3y+(a3
21b11 +a12a20a21b21−a11a

2
21b21−a2

21b02b21 +
a12a21b11b21 − a11a12b

2
21)x

2y2 + 2a3
21b02xy3 + a12a

2
21b02y

4)/a2
21 is identically zero if

one of the following three series of conditions is satisfied:

b11 = b02 = b21 = 0, a20 6= 0; (93)

a20 = b02 = 0, a12 = −a2
21/b21; (94)

a20 = b02 = 0, b11 = a11b21/a21. (95)

The conditions (93), (94), (95) give us, respectively, the systems:

ẋ = x(a10+a20x+a11y+a21xy+a12y
2), ẏ = b01y, b01(a

2
10+a2

20)(a
2
21+a2

12) 6= 0 (96)

with C2(x, y) ≡ −b01xy3(a21x + a12y)(2a21x + a12y) 6= 0;

ẋ = x(a10b21 + a11b21y + a21b21xy − a2
21y

2)/b21,
ẏ = y(b01 + b11x + b21x

2 − a21xy), a10b01 6= 0
(97)

with C2(x, y) ≡ xy(a10b
4
21x

4 − 2a10a21b
3
21x

3y + a2
21b

2
11b21x

2y2 + a10a
2
21b

2
21x

2y2 −
a2

21b01b
2
21x

2y2 − 2a11a21b11b
2
21x

2y2 + a2
11b

3
21x

2y2 + 2a3
21b01b21xy3 − a4

21b01y
4)/b2

21 6= 0;

ẋ = x(a10 + a11y + a21xy + a12y
2),

ẏ = y(a21b01 + a11b21x + a21b21x
2 + a12b21xy)/a21

(98)
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with C2(x, y) ≡ −xy(a21x + a12y)(−a10a21b
2
21x

3 − a10a
2
21b21x

2y − 2a10a12b
2
21x

2y +
2a3

21b01xy2 +a12a21b01b21xy2 +a12a
2
21b01y

3)/a2
21 6= 0. Thus, in the case of conditions

{(81), (4)} the multiplicity µ∞ is three.

Via an affine transformation of coordinates and time rescaling (96) can be re-
duced to the system (85). If a21 = 0, then the system (97) is modulo time rescaling
a particular case of the system (92). Let a21 6= 0. Then, after the time rescaling
t → −b21t/a

2
21, the system (97) has the form

ẋ = x(a + by + cxy + y2), ẏ = −y(d + ex + c2x2 + cxy), ad 6= 0, (99)

where a = −a10b21/a
2
21, b = −a11b21/a

2
21, c = −b21/a21, d = b01b21/a

2
21); e =

b11b21/a
2
21) (see the system 6.3) of the Main Theorem). In 6.3) the condition

c2 + e2 + (a + d)2 6= 0 ((a + d)2 + (bc − e)2 6= 0) means that µ2 = 1 (only x = 0 and
y = 0 are affine invariant straight lines for 6.3)).

If b21 = 0, then the system (98) modulo affine transformation and time rescal-
ing is a particular case of the system (87). Let b21 6= 0. The time rescaling
t → b21t/(a21b01) reduces (98) to the following system

ẋ = x(a + by + cxy + dy2), ẏ = αy(1 + bx + cx2 + dxy), αa(c2 + d2) 6= 0, (100)

where a = a10b21/(a21b01), b = a11b21/(a21b01), c = b21/b01, d = a12b21/(a21b01), α =
b21/a21 (see the system 6.4) of the Main Theorem). In 6.4) the inequality α− a 6= 0
means that the differential system has only the affine invariant straight lines x = 0
and y = 0.

4) Conditions {(82), (4)}:
C1(x, y) = −xy(a30x

2 + a21xy + a12y
2)(2a30b11x

3 + (3a30b02 + a21b11)x
2y +

2a21b02xy2 + a12b02y
3) ≡ 0 ⇒ b11 = b02 = 0 ⇒ C2(x, y) = −b01xy(a30x

2 + a21xy +
a12y

2)(3a30x
2 + 2a21xy + a12y

2) 6≡ 0 ⇒ µ∞ = 3. The cubic system looks as:

ẋ = x(a10 + a20x + a11y + a30x
2 + a21xy + a12y

2), ẏ = b01y,
a30b01(a

2
10 + a2

20 + a2
30) 6= 0.

(101)

Modulo affine transformation the system (101) is a particular case of the system
(85).

Lemma 11. Any cubic system of the class CSL
×

2(r) with straight lines of the partially

maximal multiplicity m∞(1, 1; 3) via an affine transformation and time rescaling can
be written in one of the following four forms (87), (92), (99) and (100).

The proof of the Main Theorem follows from Lemmas 8–11.

2.3 Geometric multiplicity

In this section for the normal forms given in Main Theorem we construct the
corresponding perturbed cubic systems which show that for invariant straight lines
(x = 0, y = 0 and Z = 0) the algebraic and geometric multiplicities coincide.
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1) m(3, 3; 1): ẋ = x3, ẏ = y(x2 + ay + by2), b 6= 0.
The perturbed cubic system is
ẋ = x(x − aǫ + 2bxǫ2)(x + aǫ + 2bxǫ2), ẏ = y(x2 + ay + by2 + a2ǫ2 + 3bx2ǫ2 +

4abyǫ2 + +4b2y2ǫ2 + a2bǫ4 + 4ab2yǫ4 + 4b3y2ǫ4 − 4b3x2ǫ6), b 6= 0.
The invariant straight lines are l1 = x, l2 = y, l3 = x − aǫ + 2bxǫ2, l4 =

x+ aǫ+ 2bxǫ2, l5 = y−xǫ + aǫ2 + 2byǫ2 − 2bxǫ3, l6 = y + xǫ + aǫ2 + 2byǫ2 + 2bxǫ3.
If ǫ → 0, then the invariant straight lines l1, l3, l4 → l1 and l2, l5, l6 → l2.

2.1) m(3, 2; 2): ẋ = ax3, ẏ = y2, a 6= 0.
The perturbed cubic system is ẋ = ax(x− ǫ)(x+ ǫ), ẏ = y(y− ǫ)(ǫy +1), a 6= 0.
The invariant straight lines are l1 = x, l2 = y, l3 = x − ǫ, l4 = x + ǫ, l5 = y − ǫ,

l6 = ǫy + 1.
If ǫ → 0, then the invariant straight lines l1, l3, l4 → l1; l2, l5 → l2 and l6 → l∞.

2.2) m(3, 2; 2): ẋ = x(ax2 + y), ẏ = y2, a 6= 0.
The perturbed cubic system is ẋ = x(ax2 +y + ǫ−aǫ4), ẏ = y(y + ǫ)(1+ayǫ2 −

aǫ3), a 6= 0.
The invariant straight lines are l1 = x, l2 = y, l3 = x−yǫ, l4 = x+yǫ, l5 = y− ǫ,

l6 = ayǫ2 − aǫ3 + 1.

If ǫ → 0, then the invariant straight lines l1, l3, l4 → l1; l2, l5 → l2 and l6 → l∞.

3.1) m(3, 1; 3): ẋ = x2(ax + by), ẏ = y, a 6= 0.
The perturbed cubic system is
ẋ = x(ax2+bxy−aǫ2+4a2x2ǫ2+4abxyǫ2+2b2y2ǫ2−4a2ǫ4+4a3x2ǫ4+4a2bxyǫ4+

ab2y2ǫ4 − 4a3ǫ6), ẏ = y(−1 + byǫ − 2aǫ2)(1 + byǫ + 2aǫ2), a 6= 0.
The invariant straight lines are l1 = x, l2 = y, l3 = x − ǫ + 2axǫ2 + byǫ2 −

2aǫ3, l4 = x + ǫ + 2axǫ2 + byǫ2 + 2aǫ3, l5 = byǫ − 2aǫ2 − 1, l6 = byǫ + 2aǫ2 + 1.
If ǫ → 0, then invariant straight lines l1, l3, l4 → l1 and l5, l6 → l∞.

3.2) m(3, 1; 3): ẋ = x(ay + b), ẏ = y(x2 + ay + b), b 6= 0.
The perturbed cubic system is
ẋ = −x(−b−ay− 4b2ǫ2 + bx2ǫ2 − 4abyǫ2 − 2a2y2ǫ2 − 4b3ǫ4 +4b2x2ǫ4 − 4ab2yǫ4 −

a2by2ǫ4 + 4b3x2ǫ6), ẏ = y(b + x2 + ay + 4b2ǫ2 + 3bx2ǫ2 + 4abyǫ2 + a2y2ǫ2 + 4b3ǫ4 +
4ab2yǫ4 + a2by2ǫ4 − 4b3x2ǫ6), b 6= 0.

The invariant straight lines are l1 = x, l2 = y, l3 = x − ayǫ + 2bxǫ2, l4 =
x+ ayǫ + 2bxǫ2, l5 = xǫ− 2bǫ2 − ayǫ2 + 2bxǫ3 − 1, l6 = xǫ+ 2bǫ2 + ayǫ2 + 2bxǫ3 + 1.

If ǫ → 0, then invariant straight lines l1, l3, l4 → l1 and l5, l6 → l∞.

4) m(2, 2; 3): ẋ = x, ẏ = y(1 + bxy), b 6= 0.
The perturbed cubic system is ẋ = −x(xǫ − 1)(xǫ + 1), ẏ = y(1 + bxy + by2ǫ −

y2ǫ4), b 6= 0.
The invariant straight lines are l1 = x, l2 = y, l3 = x + ǫy, l4 = by + xǫ2 −

yǫ3, l5 = xǫ + 1, l6 = xǫ − 1.
If ǫ → 0, then l1, l3 → l1; l2, l4 → l2 and l5, l6 → l∞.



98 OLGA VACARAŞ

5.1) m∞(2, 1; 3): ẋ = x2(a + bx + cy), ẏ = y, c(a2 + b2) 6= 0.

The perturbed cubic system is ẋ = x(a + bx + cy)(x + ǫ), ẏ = −y(−1 + ǫy)(1 +
ǫy), c(a2 + b2) 6= 0.

The invariant straight lines are l1 = x, l2 = y, l3 = x+ ǫ, l4 = ǫy−1, l5 = ǫy+1.

If ǫ → 0, then l1, l3 → l1 and l4, l5 → l∞.

5.2) m∞(2, 1; 3): ẋ = x, ẏ = y(1 + ax + bx2 + cxy), a(b2 + c2) 6= 0.

The perturbed cubic system is
ẋ = −x(−1 + xǫ)(1 + xǫ), ẏ = y(1 + ax + bx2 + cxy + ayǫ + bxyǫ + cy2ǫ −

x2ǫ2), a(b2 + c2) 6= 0.

The invariant straight lines are l1 = x, l2 = y, l3 = x + ǫy, l4 = ǫx + 1,
l5 = ǫx − 1.

If ǫ → 0, then l1, l3 → l1 and l4, l5 → l∞.

5.3) m∞(2, 1; 3): ẋ = x(1 + ax + bx2 + cxy), ẏ = y, c(a2 + b2) 6= 0;

The perturbed cubic system is

ẋ = x(1 + ax + bx2 + cxy + ayǫ + bxyǫ + cy2ǫ − y2ǫ2), ẏ = −y(−1 + yǫ)(1 +
yǫ), c(a2 + b2) 6= 0.

The invariant straight lines are l1 = x, l2 = y, l3 = x + ǫy, l4 = ǫy + 1,
l5 = ǫy − 1.

If ǫ → 0, then l1, l3 → l1 and l4, l5 → l∞.

5.4) m∞(2, 1; 3): ẋ = x(1 + ay), ẏ = y(1 + bx + ay + cx2), abc 6= 0.

The perturbed cubic system is

ẋ = x(1 + xǫ)(1 + ay − xǫ), ẏ = y(c2 + bc2x + c3x2 + ac2y + 2bcǫ + 2b2cxǫ +
2bc2x2ǫ+abcyǫ−2ac2xyǫ+b2ǫ2+4cǫ2 +b3xǫ2+4bcxǫ2 +b2cx2ǫ2 +3c2x2ǫ2 +4acyǫ2−
abcxyǫ2 + 2a2cy2ǫ2 + 4bǫ3 + 4b2xǫ3 + 2bcx2ǫ3 + 2abyǫ3 + ab2xyǫ3 − 2acxyǫ3 + 4ǫ4 +
4bxǫ4 − b2x2ǫ4 + 4ayǫ4 + 4abxyǫ4 − 4bx2ǫ5 + 4axyǫ5 − 4x2ǫ6)/(c + bǫ+ 2ǫ2)2, c 6= 0.

The invariant straight lines are l1 = x, l2 = y, l3 = −cx − bxǫ + ayǫ − 2xǫ2,
l4 = xǫ + 1, l5 = c + bǫ − cxǫ + 2ǫ2 − bxǫ2 + 2ayǫ2 − 2xǫ3.

If ǫ → 0, then l1, l3 → l1 and l4, l5 → l∞.

6.1) m∞(1, 1; 3): ẋ = x, ẏ = y(a+bx+cy+dx2+exy+fy2), (a2+c2+f2)(d2+
e2+f2)(a2+b2+d2)((a−1)2+c2+f2)((a−1)2+b2+d2)((a−1)2+(c2d−bce+b2f)2) 6= 0;

The perturbed cubic system is ẋ = x(ǫx+1)(ǫx− 1), ẏ = y(a+ bx+ cy + dx2 +
exy + fy2).

The invariant straight lines are l1 = x, l2 = y, l3 = ǫx + 1, l4 = ǫx − 1.
If ǫ → 0, then l3, l4 → l∞.

6.2) m∞(1, 1; 3): ẋ = x(a + by), ẏ = y(c + dx + ey + x2), a(c2 + e2)((a− c)2 +
(b − e)2) 6= 0.

The perturbed cubic system is
ẋ = −x(1+xǫ)(−a−by +xǫ), ẏ = y(a5c+a5dx+a5x2 +a5ey +2a4cdǫ−a5xǫ+

a6xǫ+2a4d2xǫ+2a4dx2ǫ+2a4deyǫ−a4bxyǫ−a4exyǫ+2a5cǫ2 +2a3c2ǫ2 +a3cd2ǫ2−
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2a4dxǫ2 + 4a5dxǫ2 + 2a3cdxǫ2 + a3d3xǫ2 + a5x2ǫ2 + 2a3cx2ǫ2 + a3d2x2ǫ2 + 2a5eyǫ2 +
2a3ceyǫ2 + a3d2eyǫ2 − a3bdxyǫ2 + a4bdxyǫ2 − 2a3dexyǫ2 + a3bey2ǫ2 + a4bey2ǫ2 +
2a4cdǫ3 + 2a2c2dǫ3 − 2a5xǫ3 + 2a6xǫ3 − 2a3cxǫ3 + 2a4cxǫ3 − a3d2xǫ3 + 3a4d2xǫ3 +
2a2cd2xǫ3 + 2a2cdx2ǫ3 + 2a4deyǫ3 + 2a2cdeyǫ3 − a4bxyǫ3 + a5bxyǫ3 + 2a3bcxyǫ3 +
a3bd2xyǫ3 − 2a4exyǫ3 − 2a2cexyǫ3 − a2d2exyǫ3 + a2bdey2ǫ3 + a3bdey2ǫ3 + a5cǫ4 +
2a3c2ǫ4 + ac3ǫ4 − 2a4dxǫ4 + 3a5dxǫ4 − 2a2cdxǫ4 + 4a3cdxǫ4 + ac2dxǫ4 − a5x2ǫ4 +
ac2x2ǫ4−a3d2x2ǫ4+a5eyǫ4+2a3ceyǫ4+ac2eyǫ4+2a4bdxyǫ4+abcdxyǫ4+3a2bcdxyǫ4−
2a3dexyǫ4 − 2acdexyǫ4 − ab2cy2ǫ4 − 2a2b2cy2ǫ4 − a3b2cy2ǫ4 + a3bey2ǫ4 + a4bey2ǫ4 +
abcey2ǫ4 + a2bcey2ǫ4 − a5xǫ5 + a6xǫ5 − 2a3cxǫ5 + 2a4cxǫ5 − ac2xǫ5 + a2c2xǫ5 −
2a4dx2ǫ5 − 2a2cdx2ǫ5 + a5bxyǫ5 + a2bcxyǫ5 + 3a3bcxyǫ5 + bc2xyǫ5 + 2abc2xyǫ5 −
a4exyǫ5−2a2cexyǫ5−c2exyǫ5−a5x2ǫ6−2a3cx2ǫ6−ac2x2ǫ6)/(a(a2+adǫ+a2ǫ2+cǫ2)2).

The invariant straight lines are l1 = x, l2 = y, l3 = xǫ + 1, l4 = a3 + a2dǫ −
a2xǫ + a3ǫ2 + acǫ2 − adxǫ2 + abyǫ2 + a2byǫ2 − a2xǫ3 − cxǫ3.

If ǫ → 0, then l3, l4 → l∞.

6.3) m∞(1, 1; 3): ẋ = x(a + by + cxy + y2), ẏ = −y(d + ex + c2x2 + cxy),
ad(c2 + e2 + (a + d)2)((a + d)2 + (bc − e)2) 6= 0.

The perturbed cubic system is
ẋ = x(a + by + cxy + y2 − bcxyǫ + exyǫ − a2ǫ2 − ab2ǫ2 + 2abcxǫ2 − 2aexǫ2 −

ac2x2ǫ2 − abyǫ2 − b3yǫ2 − acxyǫ2 − 2bexyǫ2 − ay2ǫ2 − b2y2ǫ2 − a2bǫ3 − 2a2cxǫ3 +
2abexǫ3 + 2abc2x2ǫ3 − 2acex2ǫ3 − ab2yǫ3 − 2aexyǫ3 + b2exyǫ3 − aby2ǫ3 − 2a2bcxǫ4 +
2a2exǫ4 − a2c2x2ǫ4 + ab2c2x2ǫ4 + 2abcex2ǫ4 + 2abexyǫ4 − a2bc2x2ǫ5 + 2a2cex2ǫ5 +
a2exyǫ5), ẏ = y(−d − ex − c2x2 − cxy − acxǫ + b2cxǫ + 2bc2x2ǫ − 2cex2ǫ +
bcxyǫ − exyǫ + adǫ2 + b2dǫ2 + b3cxǫ2 − 2bcdxǫ2 + b2exǫ2 + 2dexǫ2 − 2ac2x2ǫ2 +
b2c2x2ǫ2+c2dx2ǫ2+2bcex2ǫ2−acxyǫ2+2b2cxyǫ2+2cdxyǫ2+dy2ǫ2+abdǫ3−a2cxǫ3+
2acdxǫ3 +2abexǫ3−2bdexǫ3+abc2x2ǫ3−2bc2dx2ǫ3+2cdex2ǫ3−2bcdxyǫ3+b2exyǫ3+
2dexyǫ3−a2bcxǫ4 +2abcdxǫ4 +a2exǫ4−2adexǫ4−a2c2x2ǫ4 +ab2c2x2ǫ4 +ac2dx2ǫ4−
b2c2dx2ǫ4 + 2abcex2ǫ4 − 2bcdex2ǫ4 − 2b2cdxyǫ4 + 2abexyǫ4 − 2bdexyǫ4 − ady2ǫ4 −
b2dy2ǫ4 − a2bc2x2ǫ5 + abc2dx2ǫ5 + 2a2cex2ǫ5 − 2acdex2ǫ5 + a2exyǫ5 − 2adexyǫ5 −
abdy2ǫ5).

The invariant straight lines are l1 = x, l2 = y, l3 = 1 + cxǫ + yǫ, l4 =
−1+ cxǫ+ yǫ+aǫ2 + b2ǫ2 − 2bcxǫ2 +2exǫ2 +abǫ3 +acxǫ3 − b2cxǫ3 − 2bexǫ3 −ayǫ3 −
b2yǫ3 + abcxǫ4 − 2aexǫ4 − abyǫ4.

If ǫ → 0, then l3, l4 → l∞.

6.4) m∞(1, 1; 3): ẋ = x(a+ by + cxy +dy2), ẏ = αy(1+ bx+ cx2 +dxy), αa(c2 +
d2)(α − a) 6= 0.

The perturbed cubic system is
ẋ = −x(−a − by − cxy − dy2 − axyαǫ2 + ax2α2ǫ2 − 2xyα2ǫ2), ẏ = −yα(−1 −

bx − cx2 − dxy − axyǫ2 + y2ǫ2 + ax2αǫ2 − 2xyαǫ2 − x2α2ǫ2).
The invariant straight lines are l1 = x, l2 = y, l3 = 1 − yǫ + xαǫ, l4 =

−1 − yǫ + xαǫ.
If ǫ → 0, then the lines l3, l4 → ∞.
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Abstract. In this paper, we consider the Online Uniform Machine Scheduling prob-
lem in the case when speed si = 1 for i = n − k + 1, . . . , n and Si = s, 1 ≤ s ≤ 2
for i = 1, . . . , k, where k is a constant, and we propose a parametric scheme with an
asymptotic worst-case behavior (when m tends to infinity).
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1 Introduction

In this paper, we study the classic problem of scheduling jobs online on m uni-
form machines (M1,M2, . . . Mm) with speeds (s1, s2, . . . , sm) without preemption:
jobs arrive one at a time, according to a linear ordering (a list) σ, with known pro-
cessing times and must immediately be scheduled on one of the machines, without
knowledge of what jobs will come afterwards, or how many jobs are still to come;
all machines can perform the same tasks, according to distinct speeds. However,
the way jobs are ordered inside the list σ has no correlation with the starting times
which are assigned to them in the schedule: some future (in the list σ) job may come
to start earlier than the current one, because what we do here is only distributing
the jobs among the machines.

We denote by Jj the j th job in the list s, and say that job Jj arrives at step j
according to s. We denote by pj the processing time of job Jj . If job pj is assigned
to machine Mi, then pj/si time units are required to process this job.

The quality of an online algorithm A is measured by its competitive ratio, defined
as the smallest number c such that, for every list of jobs σ which describes jobs
together with their arrival order, we have F (A,σ) ≤ c · Opt(σ), where F (A,σ)
denotes the makespan of the schedule which derives from application of algorithm A
to the list σ, and Opt(σ) denotes the makespan of some optimal schedule of the jobs
of σ, computed while considering σ as a set of jobs, and not as an ordering. We may
also say that Opt(σ) is the optimal value of the offline scheduling problem induced
by the jobs contained in the list σ. The algorithm A is said to be c-competitive.

The online Multi-machine Scheduling problem for identical machines (they are
all provided with the same speed) was first investigated by Graham, who showed

c© Alexandre Dolgui, Vladimir Kotov, Alain Quilliot, 2015
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that the List algorithm (LS) which always puts the next job on the least loaded
machine is exactly (2 − 1/m)-competitive [2].

In the case of uniform machines Cho and Sahni [1] proved that the LS algorithm
has a worst-case bound of (3m−1)/(m+1) for m ≥ 3. When si = 1, i = 1, . . . ,m−1
and sm > 1, Cho and Sahni also showed that the LS algorithm has a worst-case
bound c of 1 + (m − 1) · (min (2, s)/(m + s − 1)) ≤ 3 − 4/(m + 1), and the bound
3 − 4/(m + 1) is achieved when s = 2. Li and Shi [3] proved that the LS algorithm
is the best possible one for m ≤ 3, and proposed an algorithm that is significantly
better than the LS algorithm when si = 1, i = 1, . . . ,m − 1 and sm = 2,m ≥ 4.
The algorithm has a worst-case bound of 2.8795 for a big m. For the same problem
Cheng, Ng and Kotov [4] proposed a 2.45-competitive algorithm for any m ≥ 4 and
any sm, 1 ≤ sm = s ≤ 2. Also, some results in the case of fixed number of machines
can be found in [5–7]. It should be mentioned that the worst-case behavior of all
previous algorithms occurs when m tends to infinity.

In this paper we use ideas of reserved classes and a dynamic lower bound of the
optimal solution from [8, 9].

2 A Parametric Scheme for the OnLine Uniform Machine

Scheduling Problem

Before presenting the main results, we introduce some notations.

1. m denotes the total number of machines;

2. k denotes the number of machines with a speed 1 < s ≤ 2, k is a constant.

We are going to describe here a strategy (an algorithm) which will allow us to
assign for any index j the job Jj with processing time pj which arrives at step j (j =
1, . . . , Length(s)) according to the list ordering σ to some machine Mi, i = 1, . . . ,m.
We shall do in such a way that Jj will then be scheduled immediately after the end
of the latest job which was assigned to Mi. As a matter of fact, since no precedence
relation is imposed to the jobs, jobs assigned to a same machine will be consecutively
run, without any idle time. So, any time we have to deal with a current job Jj of
the input list σ, we denote by:

1. Li,j the current load of machine i before assigning job Jj ;

2. L∗

i,j the current load of machine i after assigning job Jj ;

3. Vj the theoretical optimal makespan for the offline scheduling problem induced
by the job set J(j) = {J1, . . . , Jj} made of the jobs which arrived no later than
step j.

It is easy to check that, if we denote by q1, .., , qj the processing time of the jobs
of J(j), sorted by decreasing order, which means that we have: q1 ≥ q2 ≥ · · · ≥ qj,
then we may state:
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Lemma 1. The following inequalities hold:

1. Vj ≥ (q1 + q2 + · · · + qj)/(m − k + s · k);

2. Vj ≥ q1/s;

3. Vj ≥ min{(qk + qk+1)/s, qk+1}.

Proof. Left to the reader. It is important to notice that the last inequality Vj ≥
min{(qk + qk+1)/s, qk+1} derives from the hypothesis 1 ≤ s ≤ 2. As a matter of fact,
it will be the only place, inside our reasoning process, where the hypothesis plays a
role.

So, for any step value j, we set:

LBj = max{(q1 + q2 + · · ·+ qj)/(m− k + s · k), q1/s,min{(qk + qk+1)/s, qk+1}}. (1)

Clearly, LBj is a lower bound for the optimal offline makespan related to step j and
we have: LBj−1 ≤ LBj (LBj is monotonic).

2.1 The Assignment Process Assign

We suppose now that some positive number α is given together with three integral
numbers R,m1 and m2 in such a way that:

(1 + α) · s · k + (1 + α/2) · m1 ≥ s · k + m1 + m2, (2)

k + m1 + m2 = m, (3)

m2 = R · k, (4)

R ≥ log1+α/2((1 + α/2)/(2 + α − s)). (5)

It is easy to see that, if we fix k, s and α, and if we require R and m1 to take the
smallest possible values, then R,m,m1 and m2 are completely determined by k, s
and α.

This assumption about the way the machine number m may be decomposed,
allows us to split the machine set machines into three classes:

1. machines with speed s are called Fast ;

2. we pick up m1 machines among the m − k machines with speed 1 and call
them Normal ;

3. the m2 remaining machines with speed 1 are called Reserved and the m2 = R·k
Reserved machines are split into R groups G0, . . . , GR−1, each group containing
exactly k machines.

By the same way, we say that job Jj , which arrives at step j is:
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1. Small if its processing time pj is at most equal to (1 + α/2) · LBj ;

2. Large else.

Finally, we say that this job Jj fits machine Mi, i = 1 . . . m, if Li,j + pj/si ≤
(2 + α) · LBj .

We easily see that:

Lemma 2. If Large job Jj does not fit machine i from class Fast then Li,j >
(1 + α) · LBj .

Proof. It comes in a straightforward way from the fact that pj/si = pj/s ≤ LBj.

Doing this allows us to describe our online algorithm Assign, which will work on
any instance of the Online Uniform Machine Scheduling Problem such that m,k, s
may be written according to the relations (2)-(5). The main idea here is that at
any step j, we are going to be able to assign job Jj to some machine i(j) in such a
way that we keep the following inequality: maxi L

∗

i,j ≤ (2 + α) · LBj . While doing
this will happen to be easy in the case when j is a Small job, the trick will be to
show that, if j is a Large job, we may, by conveniently switching machines inside the
Normal and Reserved classes, do in such a way that if j does not fit any of machine
of classes Fast and Normal, then it fits at least some machine in current group G0,
whose machines are, at any time during the process, provided with current labels
in {1, ..., k}. It is important to understand here that the status Normal or Reserved
of a given machine with speed 1 is not going to be fixed, and will be evolving all
throughout the process.

Algorithm Assign

Initialization: Set n = 1; (*n denotes the index of the current target Reserved
machine in group G0; machines in every group GR are indexed from 0 to k − 1*);
Set j = 0; LBj = 0;

Read(σ);

While σ is non empty do

j := j + 1;

Read the current job Jj and perform Step j as follows:

Update LBj according to formula (1).

If job Jj fits some machine i in classes Fast and Normal

then (I1)

assign j to this machine i

Else

If n < k then (I2)

Assign job Jj on the machine (with label) n in G0;

Let i0 be the machine from class Normal with minimal

current load. Switch machines n and i0 between groups Normal

and G0 in such a way that machine i0 comes in G0 with label n,



106 ALEXANDRE DOLGUI, VLADIMIR KOTOV, ALAIN QUILLIOT

and machine n is put into class Normal. Set n = n + 1;

If n = k then (I3)

Update the labeling of groups G0, . . . , GR−1 in such a way

that group r, 1 ≤ r ≤ R − 1, becomes group r − 1,

and group 0 becomes group R − 1. Set n = 1.

2.2 Worst Case Performance of Assign

The Assign algorithm works on an instance (M1,M2, . . . ,Mm; s1, s2, . . . , sm) of
the Online Uniform Machine Scheduling Problem which is such that:

1. si = s ∈ [1, 2] for i = 1, ..., k; si = 1 for i = k + 1, ...,m;

2. m may be decomposed as a sum m = k + m1 + m2 = k + m1 + k · R with
m1,m2, R as in (2)-(5).

We are now going to show that, if k, α is fixed and if m is large enough, then the
competitive ratio of Assign is no more than (2+α).More specifically, we are going to
prove that, if a job list s is some input for Assign, then the makespan F (Assign, σ)
of the schedule which is computed by Assign does not exceed (2+a) ·LB(σ), where
LB(σ) denotes the lower bound for Opt(σ) which may be derived from the list s
according to Lemma 1.

Lemma 3. At every step j during the execution of the Assign algorithm there exists
either a machine i in class Fast such that Li,j ≤ (1 + α) · LBj or a machine i from
class Normal such that Li,j ≤ (1 + α/2) · LBj .

Proof. Let us suppose the converse, which means that, at some step j, we have,
for any Fast machine i: Li,j > (1 + α) · LBj, and for any Normal machine i :
Li,j > (1 + α/2) · LBj. It means that p1 + p2 + · · · + pj = s · ∑

i∈Fast Li,j +
∑

i∈Normal ∪Reserved Li,j > k · s · (1 + α) · LBj + m1 · (1 + α/2) · LBj. But Lemma 1
tells us that p1 + p2 + · · · + pjs ≤ s · k + m1 + m2) · LBj , while relation 2 tells us
that k · s · (1 + α) + m1 · (1 + α/2) ≥ (s · k + m1 + m2) . We deduce a contradiction
and conclude.

We deduce:

Lemma 4. If current job Jj is a Small job then there is a machine from class Fast
or Normal such that job Jj fits with it.

Proof. Let us apply above Lemma 2 and consider a machine i as in the statement
of Lemma 2. If i is Fast, then Li,j ≤ (1 + α) · LBj . We deduce from the fact that
pj/si = pj/s ≤ LBj that Li,j + pj/si ≤ (2 + α) · LBj and the result. If i is Normal,
then Li,j ≤ (1 + α/2) · LBj, and Li,j + pj/si = Li,j + pj ≤ (2 + α) · LBj. We
conclude.
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Given some input job list σ: let us denote by j(1), ..., j(Q) the steps when process
Assign performs instructions (I2) or (I3) while running σ. Clearly, those instructions
are performed according to some kind of cyclic scheme, and every index q = 1, ..., Q
may be written as q = h + t · k + T · k · R, where h ∈ {0, ..., k − 1} and t ∈
{0, ..., R − 1}, T ≥ 0, with the following meaning: when performing (I2) or (I3),
Assign deals with the job group which was originally group Gt, and, inside this
group, deals with machine with label h.

For every q = 1, ..., Q, we denote by i(q) the related target machine, which is, at
this time, a Reserved machine located in current group G0, with index h.

We may notice that:
– instruction (I3) occurs every time t is incremented: t → t + 1;
– original group G0 takes again label 0 every time T is incremented: T → T + 1.

We claim:

Lemma 5. For q = 1, ..., Q, we have Li(q),j(q) ≤ (2 + α − s) · LBj(q). (*)

Proof. Let us consider q = h + t · k + T · k · R, and try to prove above inequality
(*). Obviously, (*) is true in case T = 0, since all machines from class Reserved are
empty. So we may suppose T ≥ 1. After assigning a Large current job Jj(q−k·R) to
the machine j(q−k ·R) = h in current group G0, we switch machine j(q−k ·R) with
some Normal machine i0 according to instruction (I2). Since we could not assign
job Jj(q−k·R) neither to a Fast nor to a Normal machine, Lemma 3 tells us that
there is a machine i in class Normal such that: Li,j(q−k·R) ≤ (1 + α/2) · LBj(q−k·R).
So, this inequality also holds for the machine i0 which becomes machine h in group
G0. We deduce that the load, after instruction (I2) has been performed, of machine
h in group G0 is bounded by (1 + α/2) · LBj(q−k·R). This machine is going to keep
with the same load until we arrive to step q = h + t · k + T · k · R and at this time
this machine corresponds to machine i(q). So we may state:

Li(q),j(q) ≤ (1 + α/2) · LBj(q−k·R). (6)

On the one hand, we see that, for any value q ≥ k + 1, we have been provided
with Large (at the time when they arrived) k + 1 jobs Jj(q), ..., Jj(q−k), all with
processing times respectively larger than (1 + α/2) · LBj(q), ..., (1 + α/2) · LBj(q−k),
which means, because of the monotonicity of LBj, all with processing times larger
than (1+α/2)·LBj(q−k). It comes from the relation LBj ≥ min{(qk+qk+1)/s, qk+1}}
of Lemma 1, that (1 + α/2) · LBj(q−k) < LBj(q). We may propagate this relation
and get:

(1 + α/2)R · LBj(q−R·k) ≤ LBj(q). (7)

Combining (6) and (7) yields: Li(q),j(q) ≤ (1 + α/2)1−R · LBj(q−R·k). We deduce

(*) if (1 + α/2)1−R ≤ 2 + α− s , that means if R ≥ log1+α/2((1 + α/2)/(2 + α− s)).
We conclude since this last inequality is part of our hypothesis (equation (5)).

Theorem 1. Let us suppose that σ is given and that our Online Uniform Machine
Scheduling instance is such that m,k, s may be written according to the relations
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(2)-(5). Then, for any input job list s, the Assign algorithm works in such a way
that: F (Assign, σ) ≤ (2 + α) · Opt(σ). That means that its competitive ratio does
not exceed (2 + σ) in the case of such instance.

Proof. Lemma 4 tells us that, if, at any step j, current job Jj is Small, then it is
possible to assign it to some machine in Normal ∪ Fast in such a way that the
resulting makespan does not exceed (2 + α) · LBj. By the same way, if Jj is Large
and fits with some Fast machine, then it is possible, according to the mere definition
of fitness, to assign it to this machine in such a way that the resulting makespan
does not exceed (2+α)·LBj . Finally, Lemma 2 and 5 tell us that if if Jj is Large and
cannot be assigned to some Fast machine, then Reserved machine i with label n in
group G0 is such that Li,j ≤ (2+α−s) ·LBj . Since Algorithm Assign assigns job Jj

to machine i, we see that the resulting load L∗

i,j does not exceed (2+α−s) ·LBj +pj .
Since Lemma 1 tells us that pj ≤ s ·LBj , we deduce that the makespan which results
from assigning job Jj to machine i does not exceed (2 + α) · LBj . In any case, we
see that we are able to bound, at the end of every iteration of Assign, the current
makespan by (2 + α) · LBj. Since LBj is a lower bound of the optimal makespan
related to the offline Uniform Machine Scheduling problem induced by the job set
J(j) = {J1, ..., Jj}, we conclude.

Theorem 2. Given the speed s value, 1 < s ≤ 2, and the number k of machines
with speed s. Then, for any value α > 0, there exists m0 such that if an Online
Uniform Machine Scheduling instance, defined with k machines with speed s and
m − k machines with speed 1, is such that m ≥ m0, then the Assign algorithm may
be applied to this instance in such a way that, for any input job list σ: F (Assign, σ) ≤
(2 + α) · Opt(σ).

Proof. It comes in a straightforward way from the fact that, if m is large enough,
then it is possible to compute R,m1,m2 in such a way that relations (2)-(5) hold.

Remark. It should be mentioned that it is possible to reverse the way we have
been using inequalities (2)-(5 ) in order to get a lower bound for the worst-case
performance of the Assign algorithm. First, we may notice that we may generate
input job lists σ, such that (*) inequality is going to hold as an equality, which will
means that the worst case performance of Assign is going to converge to (2 + α) ·
LB(σ) when the size of s is going to increase. On the other side, we may, while
starting from m2, k and s, derive α,R and m1 according to (2.5), and with minimal
values. Indeed, when m2 (and R) is fixed, the smallest value of α which ensures
(*), is the value α1 such that (1 + α1/2)

1−R ≤ (2 + α1 − s). We may consider an
example, related to s = 2, k = 1,m2 = 7. In such a case, we derive from (2)-(5):
R = m2 = 7,m1 = 31 and m = 39, α ≈ 0.41. Therefore for any m ≥ 39 the
proposed algorithm provides W.C.P. of at least 2.41 · LB(σ).
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On the absence of finite approximation relative

to model completeness in propositional provability logic
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Abstract. In the present paper we consider the expressibility of formulas in the
provability logic GL and related to it questions of the model completeness of sys-
tem of formulas. We prove the absence of a finite approximation relative to model
completeness in GL.
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1 Introduction

Artificial Intelligence (AI) systems simulating human behavior are often called
intelligent agents. These intelligent agents exhibit somehow human-like intelligence.
Intelligent agents typically represent human cognitive states using underlying beliefs
and knowledge modeled in a knowledge representation language, specifically in the
context of decision making [1]. In the present paper we investigate some functional
properties of the underlying knowledge representation language of intelligent agents
which are based on the provability logic GL [2].

The notion of model completeness of systems of formulas was proposed in [6,7].
In the present paper we prove the propositional provability logic of Gödel-Löb (GL)
is not finitely approximable relative to model completeness.

2 Definitions and notations

Provability logic. We consider the propositional provability logic GL whose
formulas are based on propositional variables p, q, r, . . . and logical connectives
&,∨,⊃,¬,∆, its axioms are the classical ones together with the following
∆-formulas:

∆(p ⊃ q) ⊃ (∆p ⊃ ∆q), ∆(∆p ⊃ p) ⊃ ∆p, ∆p ⊃ ∆∆p,

and the rules of inference are the rules of: 1) substitution; 2) the modus ponens, and
3) the necessity, which allows to get formula ∆A if we already get formula A. The
normal extensions of the propositional provability logic GL are defined as usual [2].

c© Olga Izbash, Andrei Rusu, 2015
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Diagonalizable algebras. A diagonalizable algebra [4] is a universal algebra
of the form A =<M ; &,∨,⊃,¬,∆>, where <M ; &,∨,⊃,¬> is a boolean algebra,
and the unary operation ∆ satisfies the relations

∆(∆x ⊃ x) = ∆x, ∆(x&y) = (∆x&∆y), ∆1A = 1A,

where 1A is the unit of A, which is denoted also by 1 in case the confusion is avoided.
Diagonalizable algebras are known to be algebraic models for provability logic

and its extensions [5]. Obviously we can interpret any formula of the calculus of GL
on any diagonalizable algebra A. As usual a formula F is said to be valid on A if
for any evaluation of variables of F with elements of A the value of the formula on
A is 1A. The set of all valid formulas on A, denoted by LA and referred to as the
logic of the algebra A, forms an extension LA of the provability logic GL [5].

An extension L of GL is called tabular if there is a finite diagonalizable algebra
A such that L = LA.

Expressibility and model completeness. The formula F (p1, . . . , pn) is a
model for the Boolean function f(x1, . . . , xn) if for any ordered set (α1, . . . , αn),
αi ∈ {0, 1}, i = 1, . . . , n, we have F (α1, . . . , αn) = f(α1, . . . , αn), where logical
connectors from F are interpreted in a natural way on the two-valued Boolean
algebra [6, 7].

They say the formula F is expressible in the logic L via a system of formulas Σ
if F can be obtained from variables and Σ applying finitely many times 2 kinds of
rules: a) the rule of weak substitution, b) the rule of passing to equivalent formula
in L [3].

The system of formulas Σ is called model complete in the logic L if at least a
model for every Boolean function is expressible via Σ in the logic L. System Σ is
model pre-complete in L if Σ is not model complete in L, but for any formula F
which is not expressible in L via Σ the system Σ ∪ {F} is already model complete
in L [8].

The logic L is finitely approximable with respect to model completeness if for any
system of formulas Σ which is not model complete in L there is a tabular extension
of L in which Σ is also model incomplete.

3 Preliminary results

First let mention an obvious fact:

Proposition. If a system of formulas Σ is complete with respect to expressibility of
formulas in the logic GL then it is also model complete in GL.

Let us consider the following system of formulas:

{p&¬q,∆p}. (1)

Lemma 1. The system of formulas (1) is model complete in any tabular extension
of the propositional provability logic GL.
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Proof. Note that for any finite diagonalizable algebra A there exists a positive integer
k such that the following equivalence is valid in the logic LA

∆k(p&¬p) ∼ (p ⊃ p),

which shows the tautology p ⊃ p is expressible in the logic LA via system of formulas
(1). It remains to observe the system

{(p ⊃ p)} ∪ {∆p, p&¬q}

is complete in the logic LA, so by Proposition it is also model complete in LA.

Let M
∗ the diagonalizable algebra of sequences of the form α = (µ1, µ2, . . .),

where µi ∈ {0, 1} (i = 1, 2, . . .) and the operations &,∨,⊃,¬ made term by term
as Boolean functions on the set of {0, 1}, and ∆α is a sequence (ν1, ν2, . . .), where
νi = (µ1& · · ·&µi) (i = 1, 2, . . .). The logic LM

∗ coincides with the extension of
provability logic generated by the formula

∆(2p ⊃ q) ∨ ∆(2q ⊃ p),

where 2p means p&∆p.

Lemma 2. Let L be any intermediate logic between GL and LM
∗. The system of

formulas (1) is not model complete in the propositional provability logic L.

Proof. Realy, the system of formulas (1) is not model complete in LM
∗ since for-

mulas of the system (1) conserves the relation x 6= 1 on the algebra M
∗, and the

formula (p ⊃ p) does not.

4 Main result

Now we are able to formulate the main result of the present work.

Theorem. Let L be any intermediate logic between GL and LM
∗. The propositional

provability logic L is not finitely approximable with respect to model completeness.

Proof. The proof results from the above Lemmas 1 and 2.

Taking into account our previous result [9] together with these new findings
we can conclude that traditional algorithm for determining model completeness of
systems of formulas in GL is impossible to find out.
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Alexei Caşu (Kashu)

On his 75th Anniversary

On August 20, 2015, an outstanding algebraist, one of the oldest members of
the Editorial Board of our journal, Professor Alexei Caşu turns 75. The influence of
Caşu’s results on the development of algebra in Moldova is significant.

Alexei Caşu was born on 20 August, 1940, in Sadaclia village, Basarabeasca
district, Republic of Moldova. Starting his studies in 1947, he graduated from
the secondary school in his native village in 1957. During the years 1958–1963 he
studied at the Faculty of Physics and Mathematics of the Moldova State University
(Chişinău). After graduating from the university he served for two years in the army
(1963–1965). Alexei Caşu joined the staff of the Institute of Physics and Mathemat-
ics of the Academy of Science of Moldova in 1965 and continues his association with
this institution till the present.

His first appointment at the institute was as a laboratory assistant (1965–1967),
then promoted to a Junior Researcher (1967–1971), Senior Researcher (1971–1991),
and Leading Researcher (1991–1992). He served as Deputy Director of the Institute
of Mathematics and Computer Science from 1992 to 1998. Since 1998 Alexei Caşu
has been a Principal Researcher.

His main research field has been algebra, specializing in the theory of rings,
modules and categories. The problems he has studied are mainly related to radicals
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and torsions in module categories. He obtained in this domain a large number of
results, among which the following should be mentioned.

A relationship was established between (pre) radicals and classes of R-modules,
on the one hand, and special sets of left ideals of the ring R, on the other hand,
thereby generalizing the classical results of well-known algebraists such as P.Gabriel,
S. E.Dickson, J.-M. Maranda, etc. It is remarkable that much later the methods of
Alexei Caşu were used in order to describe important new classes (natural, prenat-
ural, etc.) of modules, introduced and investigated by J. Dauns.

Another cycle of works is devoted to the study of radicals and torsions in some
special constructions, such as Morita contexts and adjoint situations. Here the main
role is played by methods of category theory: the behavior of torsions and local-
izations on the transition from one category to another is analyzed using principal
functors of a category of modules. Thus he continued and essentially improved some
results, ideas and methods of K. Morita and J. Lambek that lead to the remarkable
equivalences of some special subcategories of categories of modules.

A problem was solved concerning the (anti-) isomorphism of lattices of submod-
ules on action of principal functors, showing necessary and sufficient conditions to
obtain such a situation. Some quotient rings were described which were constructed
by torsions using bicommutators of modules that determine these torsions. In the
case of Morita contexts an elegant relationship was obtained which refers to lat-
tices of torsions, namely it was proved that special sublattices of these lattices are
isomorphic.

The latest results refer to (pre) radicals accompanying principal functors of a
category of modules: properties, relationships, criteria of coincidence. The technique
of (pre) radicals in R-Mod allows one to define four new operations in a lattice of
characteristic submodules, that opens up new research perspectives in this area.

Based on the obtained results Alexei Caşu defended his Ph. D thesis in 1969 at
the Moldova State University (Chişinău), and then Doctor of Science (habilitation
thesis) in 1991 at the State University of St. Petersburg. He was awarded the title
of Senior Researcher in 1978, Full Professor in 2000. In 1986 he attended LOMI
(Leningrad Department of Steklov Institute of Mathematics of the USSR Academy
of Sciences) for one year in St. Petersburg (former Leningrad). He had been an
invited professor for cycles of lectures for 1–2 months: Tashkent, 1978; Iaşi, 1991;
Lviv, 1987 and 2005.

Professor Alexei Caşu is the author of more than 130 publications, including
articles, preprints, synthesis papers, surveys and four books (2 monographs and 2
textbooks for universities). Some of his published results were included in several
basic monographs written by J. Golan, B. Stenstrom, L.Bican, T. Kepka, P.Nemec,
L.A. Skornyakov. Numerous references to his results can be found in works published
by scientists from Austria, Hungary, Ukraine, Germany, Romania, Czech Republic,
Sweden, Russia, etc.

Professor Alexei Caşu is undeniably one of the leading specialists in the field of
rings, modules and categories. He took part with invited lectures and communica-
tions in international conferences in various countries: Austria, Germany, Hungary,
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Poland, Bulgaria, Romania, Russian Federation, Ukraine. As the organizer, moder-
ator and person with responsibility for programs and sections he participated in all
conferences organized by the Mathematical Society of the Republic of Moldova and
numerous international specialized conferences in Ukraine, Romania and Moldova,
among which are the international conference on radicals (Chişinău, 2003), national
algebra conferences in Romania and international conferences on algebra in Ukraine.
Also as organizer he took part in some national conferences dedicated to the memory
of V. Andrunachievici and C. Sibirschi (Chişinău, 2007). He gave plenary lectures
during some major international algebraic conferences: St. Petersburg (1997, in
memory of D.K. Faddeev), Moscow (1998, in memory of A. G. Kurosh). He was
an invitated speaker at the workshop held in Warsaw, Stefan Banach International
Mathematical Center, 2009.

Alexei Caşu contributed much through his scientific work, the organization and
development of research in mathematics, and in the preparation of highly qualified
staff. Over more than 47 years Alexei Caşu taught general, special and optional
courses for students in their forth and fifth years or master students at the Faculty
of Mathematics and Computer Science of the Moldova State University. Since 2009
he has collaborated with the University of Academy of Sciences of Moldova. Two
handbooks for students, master and PhD students were published.

Professor Caşu was a scientific advisor of two PhD students, who defended their
theses (and one of them later defended a habilitation thesis).

Professor Alexei Caşu held several positions related to research work: vice-
president of the Mathematical Society of Moldova (2000–2009); Chief of scientific
seminar ”Algebra and mathematical logic” (2000–2008); member of the NCAA (Na-
tional Council for Accreditation and Attestation) experts in mathematics; member
of the Executive Board of the journal ”Bul. Acad. Ştiinţe Repub. Mold. Mat.”;
member of the Editorial Board of the journal ”Algebra and Discrete Mathematics”
(Ukraine); reviewer of zbMATH, Berlin (1980–2015); member of the Editorial Board
(and also one of the authors) of the book ”Academician Vladimir Andrunachievici”
(ASM, Chişinău, 2009).

Scientific results obtained by Alexei Caşu are highly appreciated by experts from
our country, as well as abroad, he was official reviewer of over 30 PhD theses and
3 habilitation theses. For valuable results in research and the training of highly
qualified scientific staff Professor Alexei Caşu was awarded the Prize ”Academician
Constantin Sibirschi” (2006), the medal ”Dimitrie Cantemir” and the Order ”Labour
Glory” (2010).

Professor Alexei Caşu is totally devoted to mathematics and the propagation
of its ideas, beauty and importance, which have brought him the deep respect and
gratitude of the mathematical scientific community.
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