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The q.Zariski topology on the quasi-primary spectrum

of a ring

Mahdi Samiei, Hosein Fazaeli Moghimi

Abstract. Let R be a commutative ring with identity. We topologize q.Spec(R), the
quasi-primary spectrum of R, in a way similar to that of defining the Zariski topology
on the prime spectrum of R, and investigate the properties of this topological space.
Rings whose q.Zariski topology is respectively T0, T1, irreducible or Noetherian are
studied, and several characterizations of such rings are given.
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1 Introduction

Let R denote a commutative ring with identity. The Zariski topology on the
prime spectrum Spec(R), the set of prime ideals of R, play an important role in the
fields of commutative algebra, algebraic geometry and lattice theory. For each ideal I
of R, the set V (I) = {p ∈ Spec(R) | p ⊇ I} satisfies the axioms for the closed sets of
the Zariski topology on Spec(R) (see for example, Atiyah and Macdonald [1]). In the
literature, there are many different topologies of commutative or noncommutative
rings ([2, 5, 6]).

About a quarter of a century later, in [3] the notion of quasi-primary ideals as
a generalization of the notion of primary ideals was introduced. A proper ideal q
of R is called quasi-primary if rs ∈ q, for r, s ∈ R, implies that either r ∈ √

q or
s ∈ √

q. Equivalently, q is quasi-primary if and only if
√

q is prime [3, Definition
2, p. 176]. In this case, q is said to be p-quasi-primary where p =

√
q. In the

sequel, we introduce and study a topology on quasi-primary spectrum q.Spec(R),
the set of all quasi-primary ideals of R, such that the Zariski topology is a subspace
of this topology. We investigate the interplay between the properties of this space
and the algebraic properties of the ring under consideration. In particular, assuming
suitable conditions for each result, we investigated when this space is T0 (Theorem
4(4)), T1 (Theorem 4(5)), Noetherian (Theorem 5) or irreducible (Theorem 6 and
Corollary 1).
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2 Main Results

Throughout, R is a commutative ring with 1R 6= 0R. We denote the set of all
quasi-primary ideals of R by q.Spec(R) and define the variety of an ideal I of R as
follows:

V q(I) = {q ∈ q.Spec(R) | √q ⊇ I}.

The following lemma shows that the set T (R) = {V q(I) | I is an ideal of R} satis-
fies the axioms for closed sets in a topological space on q.Spec(R), called q.Zariski
topology.

The proof of the next result is easy and so it is omitted.

Lemma 1. For any ideals I, J and Iλ (λ ∈ Λ) of a ring R, the following hold.

(1) V q(R) = ∅ and V q(0) = q.Spec(R).

(2) ∩
λ∈Λ

V q(Iλ) = V q(
∑

λ∈Λ

Iλ).

(3) V q(I) ∪ V q(J) = V q(I ∩ J).

Let Y be a subset of q.Spec(R) for a ring R. We will denote the intersection
of all elements in Y by ξ(Y ) and the closure of Y in q.Spec(R) with respect to the
q.Zariski topology by cl(Y ). Also the set of all p-quasi-primary ideals of a ring R is
denoted by q.Specp(R).

Next we offer some descriptions for the two proper ideals I and J of R that will
be useful in the sequel.

Lemma 2. Let I and J be proper ideals of a ring R. Then the following hold.

(1) V q(I) = V q(
√

I).

(2) V q(I) ⊆ V q(J) if and only if
√

J ⊆
√

I, and
if J ⊆ I, then V q(I) ⊆ V q(J).

(3) V q(I) = ∪
I⊆p∈Spec(R)

q.Specp(R).

(4) Let Y be a subset of q.Spec(R). Then Y ⊆ V q(I) if and only if I ⊆
√

ξ(Y ).

Consider the surjective map φ : q.Spec(R) → Spec(R) given by φ(q) =
√

q for
every q ∈ q.Spec(R). In the following result we ghather some properties of this map.

Proposition 1. Let R be a ring.

(1) The map φ is continuous with respect to the q.Zariski topology; more precisely,
φ−1(V (I)) = V q(I) for every ideal I of R.

(2) φ(V q(I)) = V (I) and φ(q.Spec(R) − V q(I)) = Spec(R) − V (I) i.e. φ is both
closed and open.
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(3) φ is injective if and only if it is a homeomorphism.

Proof. (1). Let I be an ideal of R. Then

q ∈ φ−1(V (I)) ⇔ φ(q) ∈ V (I)

⇔ √
q ⊇ I

⇔ q ∈ V q(I).

(2). As we have seen in (1), φ(V q(I)) = φ(φ−1(V (I))) = φ ◦ φ−1(V (I)) = V (I) as φ
is surjective. Similarly,

φ(q.Spec(R) − V q(I)) = φ(φ−1(Spec(R)) − φ−1(V (I)))

= φ(φ−1(Spec(R) − V (I)))

= φ ◦ φ−1(Spec(R) − V (I))

= Spec(R) − V (I).

(3). This follows from (2).

Theorem 1. For any ring R, the following are equivalent:

(1) q.Spec(R) is connected;

(2) Spec(R) is connected;

(3) The ring R contains no idempotent other than 0 and 1.

Proof. (1) ⇒ (2). Suppose q.Spec(R) is a connected space. By Proposition 1, the
map φ is surjective and continuous and so Spec(R) is also a connected space.

(2) ⇒ (1). Suppose, on the contrary, that q.Spec(R) is disconnected. There
exists a non-empty proper subset W of q.Spec(R) that is both closed and open.
By Proposition 1, φ(W ) is a non-empty subset of Spec(R) that is also clopen. To
complete the proof, it suffices to show that φ(W ) is a proper subset of Spec(R),
and so Spec(R) is disconnected, a contradiction. Since W is an open set, we have
W = q.Spec(R) − V q(I) for some ideal I of R and hence Proposition 1 shows that
φ(W ) = Spec(R) − V (I). It follows that φ(W ) is a proper subset of Spec(R).
Otherwise, if φ(W ) = Spec(R), then V (I) = ∅, and so I = R. We conclude from
this fact that W = q.Spec(R) which is impossible.
(2) ⇔ (3) is a well-known fact, for example [1, Exercise 22, p.14].

For any ideal I of R, we define ΛR(I) = q.Spec(R) − V q(I) as an open set of
q.Spec(R). Also for any a ∈ R, we mean ΛR(a) by ΛR(Ra). Clearly, ΛR(0) = ∅ and
ΛR(1) = q.Spec(R). Following result shows that the set B = {ΛR(a) | a ∈ R} is a
base for the q.Zariski topology on q.Spec(R).

Theorem 2. Let R be a ring and B = {ΛR(a) | a ∈ R}. Then the set B forms a
base for the q.Zariski topology on q.Spec(R).
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Proof. We may assume that q.Spec(R) 6= ∅. Let O be an open subset in q.Spec(R).
Thus O = q.Spec(R) − V q(I) for some ideal I of R. Therefore

O = q.Spec(R) − V q(I) = q.Spec(R) − V q(
∑

a∈I

Ra)

= q.Spec(R) − ∩
a∈I

V q(Ra)

= ∪
a∈I

ΛR(a).

It follows that the set B forms a base for the q.Zariski topology on q.Spec(R).

Theorem 3. Let R be a ring and a, b ∈ R.

(1) ΛR(a) = ∅ if and only if a is a nilpotent element of R.

(2) ΛR(a) = q.Spec(R) if and only if a is a unit element of R.

(3) For each pair of ideals I and J of R, ΛR(I) = ΛR(J) if and only if
√

I =
√

J
if and only if V q(I) = V q(J).

(4) ΛR(ab) = ΛR(a) ∩ ΛR(b).

(5) q.Spec(R) is quasi-compact.

(6) For any c ∈ R, ΛR(c) is qusi-compact, that is, every open covering of ΛR(c)
has a finite subcovering.

(7) An open subset of q.Spec(R) is quasi-compact if and only if it is a finite union
of sets ΛR(a).

Proof. (1). Let a ∈ R. Then

∅ = ΛR(a) = q.Spec(R) − V q(Ra)

⇔ V q(Ra) = q.Spec(R)

⇔ √
q ⊇ Ra for every q ∈ q.Spec(R)

⇔ a is in every prime ideal of R

⇔ a is a nilpotent element of R.

(2).

ΛR(a) = q.Spec(R)

⇔ a /∈ √
q for all q ∈ q.Spec(R)

⇒ a /∈ q for all q ∈ Max(R)

⇒ a is unit.

Conversely, it is clear that a unit element a of R is not contained in any quasi-
primary ideal of R. That is, ΛR(a) = q.Spec(R).
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(3) is clear by Lemma 2(2).
(4). Let q ∈ V q(Rab). Then

√
q ⊇

√
Rab =

√
Ra ∩

√
Rb

⇔ √
q ⊇

√
Ra or

√
q ⊇

√
Rb

⇔ q ∈ V q(Ra) or q ∈ V q(Rb)

⇔ q ∈ V q(Ra) ∪ V q(Rb).

It follows that V q(Rab) = V q(Ra) ∪ V q(Rb), as required.
(5). Let q.Spec(R) = ∪

i∈I
ΛR(Ji), where {Ji}i∈I is a family of ideals of R. We clearly

have ΛR(R) = q.Spec(R) = ΛR(
∑

i∈I

Ji). Thus, by the part (3), R =
√

∑

i∈I

Ji and

hence, 1 ∈ ∑

i∈I

Ji. So there exist i1, i2, · · · , in ∈ I such that 1 ∈
n
∑

k=1

Jik , that is

R =
n
∑

k=1

Jik . Consequently, q.Spec(R) = ΛR(R) = ΛR(
n
∑

k=1

Jik) =
n∪

k=1
ΛR(Jik ).

(6). Let c ∈ R. For any open covering of ΛR(c), there is a family {ai | ai ∈ R, i ∈ I}
of elements of R such that ΛR(c) ⊆ ∪

i∈I
ΛR(ai), since B = {ΛR(ai) | ai ∈ R, i ∈ I}

forms a base for the q.Zariski topology on q.Spec(R), by Theorem 2.
It is clear that the map φ : q.Spec(R) → Spec(R) given by φ(q) =

√
q is surjective,

and so there exists a finite subset I ′ of I such that ΛR(c) ⊆ ∪
i∈I′

ΛR(ai), because

φ(ΛR(a)) = Spec(R) − V (a) is quasi-compact by [1, Exercise 1.17 p. 12]
(7). The sufficiency follows by exactly the same argument as (6). For the necessity,
if an open subspace Y of q.Spec(R) is a union of a finite number of sets ΛR(Ra), then
any open cover {ΛR(Rai)}i∈I of Y induces an open cover for each of the ΛR(Ra).
By (6), each of those will have a finite subcover and these subcovers yield a finite
subcover of q.Spec(R).

A topological space (X; τ) is said to be a T0-space if for each pair of distinct points
a, b in X, either there exists an open set containing a and not b, or there exists an
open set containing b and not a. It has been shown that a topological space is T0

if and only if the closures of distinct points are distinct. Also, a topological space
(X; τ) is called a T1-space if every singleton set {x} is closed in (X; τ). Clearly every
T1-space is a T0-space.

Theorem 4. Let R be a ring, Y ⊆ q.Spec(R) and let q ∈ q.Specp(R). Then

(1) V q(ξ(Y )) = cl(Y ). In particular, cl({q}) = V q(q).

(2) If (0) ∈ Y , then Y is dense in q.Spec(R).

(3) The set {q} is closed in q.Spec(R) if and only if

(i) p is a maximal element in {√q′ | q′ ∈ q.Spec(R)}, and
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(ii) q.Specp(R) = {q}.

(4) The following statements are equivalent:

(i) q.Spec(R) is a T0-space;

(ii) the map φ : q.Spec(R) → Spec(R), given by φ(q) =
√

q, is injective;

(iii) q.Spec(R) = Spec(R).

(5) q.Spec(R) is a T1-space if and only if q.Spec(R) is a T0-space and
q.Spec(R) = Spec(R) = Max(R) (where Max(R) is the set of all maximal
ideals of R).

(6) Let (0) ∈ q.Spec(R). Then q.Spec(R) is a T1-space if and only if (0) is the
only quasi-primary ideal of R.

(7) Let R be a domain. If q.Spec(R) is a T1-space, then R is a field.

Proof. (1). Let q ∈ Y . Then ξ(Y ) ⊆ q ⊆ √
q. Therefore q ∈ V q(ξ(Y )) and so

Y ⊆ V q(ξ(Y )). Next, let V q(I) be any closed subset of q.Spec(R) containing Y .
Then

√
q ⊇ I for every q ∈ Y and hence

√

ξ(Y ) ⊇ I.

It follows that
√

q′ ⊇
√

ξ(Y ) ⊇ I for every q′ ∈ V q(ξ(Y )) and so V q(ξ(Y )) ⊆ V q(I).
Thus V q(ξ(Y )) is the smallest closed subset of q.Spec(R) containing Y , hence
V q(ξ(Y )) = cl(Y ).
(2) is trivial by (1).
(3). Suppose that {q} is closed. Then, by (1), {q} = V q(q). Assue that
q′ ∈ q.Spec(R) such that

√
q′ ⊇ p. Hence, q′ ∈ V q(q) = {q}, and so

q.Specp(R) = {q}. Conversely, assume that (i) and (ii) hold. Let q′ ∈ cl({q}).
Then

√
q′ ⊇ q by (1). It follows from (i) that

√
q′ =

√
q = p and hence q′ = q by

(ii). This yields cl({q}) = {q}.
(4). (i)⇒(ii) Suppose q, q′ ∈ q.Spec(R) such that

√
q =

√
q′ and q 6= q′. Since

q.Spec(R) is a T0-space, there is an element a ∈ R such that q ∈ ΛR(a) and
q′ /∈ ΛR(a). Thus

√
q + Ra and

√
q′ + Ra, a contradiction. Thus the map φ

is injective.
(ii)⇒(iii) is clearly true and (iii)⇒(i) will be obtained by [1, Exercise 18(iv) p. 13].
(5) is easy to check from the definition and the parts (3), (4).
(6). Let q.Spec(R) be a T1-space. By the part (5), the ideal (0) is maximal and
hence (0) is the only quasi-primary ideal of R. The converse follows from the defi-
nition and the part (3).
(7) follows from the part (6).

A topological space X is said to be Noetherian if the open subsets of X satisfy the
ascending chain condition. Since closed subsets are complements of open subsets, it
comes to the same thing to say that the closed subsets of X satisfy the descending
chain condition. Also a nonempty subset C of a topological space X is said to be
irreducible if C can not be written as the union of two distinct closed sets.
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Theorem 5. Let R be a ring.

(1) If R is a Noetherian ring, then q.Spec(R) is a Noetherian topological space.

(2) V q(q) is an irreducible closed subset of q.Spec(R) for every quasi-primary ideal
q of R.

(3) If I is an ideal of R such that V q(I) is an irreducible closed set, then there
exists an irreducible ideal J of R such that V q(I) = V q(J).

(4) If I is an ideal of R and q.Spec(R) is a Noetherian topological space, then

V q(I) =
k∪

t=1
V q(It) where V q(It) are irreducible closed sets and Ik are irre-

ducible ideals of R.

(5) If I is an ideal of a Noetherian ring R, then V q(I) can be written as a finite
union of irreducible closed sets V q(It), 1 ≤ t ≤ k such that for each t, It is an
irreducible ideal of R.

Proof. (1). Let V q(I1) ⊇ V q(I2) ⊇ V q(I3) ⊇ · · · be a chain of closed sets of
q.Spec(R), where {It}∞t=1 is a family of ideals of R. We conclude from Lemma 2(2)
that

√
I1 ⊆ √

I2 ⊆ √
I3 ⊆ · · · , and since R is a Noetherian ring, there exists a posi-

tive integer n such that for each positive integer m ≥ n,
√

In =
√

Im. Consequently,
again by using Lemma 2(1), we have V q(In) = V q(

√
In) = V q(

√
Im) = V q(Im),

which completes the proof.
(2). It is clear that a singleton subset and its closure in q.Spec(R) are both irre-
ducible. Now, the proof will be obtained by Theorem 4.
(3). Let A = {L | L is an ideal of R such that V q(I) = V q(L)}. By Zorn’s
lemma, the set A has a maximal element, say J . We claim that J is irreducible.
Assume, on the contrary, that J = J1 ∩ J2 for some ideals J1 and J2 of R. Then
V q(I) = V q(J) = V q(J1 ∩ J2) = V q(J1) ∪ V q(J2) and so V q(I) is equal to V q(J1)
or V q(J2), since V q(I) is irreducible. It is a contradiction, since J is a maximal
element of A and J ⊆ J1 and J ⊆ J2.
(4). According to [4, Exercise 4.11], every closed subset can be written as a union
of finitely many irreducible closed sets in a Noetherian topological space. Now the
part (3) completes the proof.
(5). By the part (1), q.Spec(R) is a Noetherian topological space and hence the
assertion follows from the part (4).

Theorem 6. Let R be a ring and Y ⊆ q.Spec(R). Then ξ(Y ) is a quasi-primary
ideal of R if and only if Y is an irreducible space.

Proof. Suppose ξ(Y ) is a quasi-primary ideal of R. Let Y ⊆ Y1 ∪ Y2 where Y1 and
Y2 are two closed subsets of q.Spec(R). Then there exist two ideals I and J of R
such that Y1 = V q(I) and Y2 = V q(J). Thus, Y ⊆ V q(I) ∪ V q(J) = V q(I ∩ J). It
implies, by Lemma 2(4), that I ∩ J ⊆

√

ξ(Y ). It follows that either I ⊆
√

ξ(Y ) or
J ⊆

√

ξ(Y ), since
√

ξ(Y ) is prime. Again by using Lemma 2(4), we conclude that
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either Y ⊆ V q(I) = Y1 or Y ⊆ V q(J) = Y2. Thus Y is irreducible. Conversely,
assume that Y is an irreducible space. Let ab ∈ ξ(Y ) for some a, b ∈ R. Suppose, on
the contrary, that Ra *

√

ξ(Y ) and Rb *
√

ξ(Y ). By Lemma 2(4), Y * V q(Ra)
and Y * V q(Rb). Let q ∈ Y . Then

√
q ⊇

√

ξ(Y ) ⊇ Rab. This means that either
Ra ⊆ √

q or Rb ⊆ √
q. So, by Lemma 2(1),(2), we have either V q(q) ⊆ V q(Ra)

or V q(q) ⊆ V q(Rb). Therefore, Y ⊆ V q(Ra) ∪ V q(Rb) and hence Y ⊆ V q(Ra) or
Y ⊆ V q(Rb) as Y is irreducible. It is a contradiction.

Corollary 1. Let R be a ring.

(1) Let I be an ideal of R. Then V (I) is irreducible in q.Spec(R) if and only if
I ∈ q.Spec(R).

(2) If R is a domain, then q.Spec(R) is irreducible.

Proof. (1). Since
√

I = ξ(V (I)), Theorem 6 shows that
√

I is quasi-primary if and
only if V (I) is irreducible. On the other hand, it is easy to see that I ∈ q.Spec(R)
if and only if

√
I ∈ q.Spec(R). It completes the proof.

(2). Since (0) is a prime ideal of R, we have ξ(q.Spec(R)) ⊆ (ξ(Spec(R)) = (0).
Thus ξ(q.Spec(R)) is a quasi-primary ideal of R and hence the result follows from
Theorem 6.
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1 Introduction

We letting A denote the class of functions f of the form:

f(z) = z + a2z
2 + a3z

3 + ... (1)

which are analytic in U and S the subclass of A which includes univalent functions
normalized by conditions f(0) = 0 = f′(0)−1. Let T be the subclass of A consisting
of functions whose non zero coefficient of the form second on, given by (see [19])

f(z) = z −
∞
∑

n=2

an zn. (2)

Kanas and Wisniowska [11] introduced the class δ−UCV which includes geomet-
ric aspect in connection with conic domains. The family δ−UCV is of extraordinary
enthusiasm for it contains some notable, just as new, classes of univalent functions.
The class δ − UCV map each circular arc contained in the unit disk U with a cen-
ter ξ, |ξ| ≤ δ (0 ≤ δ < 1), onto a convex arc. The notion of δ-uniformly convex
function is straightforward expansion of classical convexity. In 2011, Murugusun-
daramoorthy and Magesh [13] unified the classes Sp(γ, δ) and UCV (γ, δ) into the
classes Sp(ζ, γ, δ) and UCV (ζ, γ, δ) which is defined as, a function f ∈ A is said
to in the class δ-uniformly starlike functions of order γ, denoted by Sp(ζ, γ, δ) if it
satisfies analytic criterion

Re

{

zf ′(z)

(1 − ζ)f(z) + ζzf ′(z)
− γ

}

> δ

∣

∣

∣

∣

∣

zf ′(z)

(1 − ζ)f(z) + ζzf ′(z)
− 1

∣

∣

∣

∣

∣

, z ∈ U (3)

c© Mallikarjun Shrigan, Sibel Yalcin, Sahsene Altinkaya, 2021
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and the f ∈ A is said to in the class δ-uniformly convex functions of order γ, denoted
by UCV (ζ, γ, δ) if it satisfies analytic criterion

Re

{

f ′(z) + zf ′′(z)

f ′(z) + ζzf ′′(z)
− γ

}

> δ

∣

∣

∣

∣

∣

f ′(z) + zf ′′(z)

f ′(z) + ζzf ′′(z)
− 1

∣

∣

∣

∣

∣

, z ∈ U. (4)

We note that T Sp(ζ, γ, δ) = Sp(ζ, γ, δ) ∩ T and UCT = UCV ∩ T .

Remark 1. From among the many choices of ζ, γ, δ which would provide the follow-
ing known subclasses:
1) T Sp(0, γ, δ) = T Sp(γ, δ) (see [4]),
2) T Sp(0, 0, δ) = T Sp(δ) (see [20]),
3) T Sp(0, γ, 1) = T Sp(γ) (see [4]),
4) T Sp(ζ, γ, 0) = T (ζ, γ) (see [2],[16]),
5) T Sp(0, γ, 0) = T ∗(γ) (see [19]),
6) UCT (0, γ, δ) = UCT (γ, δ) (see [4]),
7) UCT (0, 0, δ) = UCT (δ) (see [21]),
8) UCT (0, γ, 1) = UCT (γ) (see [4]),
9) UCT (ζ, γ, 0) = C(ζ, γ) (see [2]),
10) UCT (0, γ, 0) = C(γ) (see [19]).

2 Preliminary Results

A remarkably large number of special functions (series) have been presented in
geometric function theory. Among those special functions, due mainly to greater
abstruseness of their properties, Bieberbach conjecture have found special atten-
tion in various problems of geometric function theory. Recently, a large number of
special functions involving hypergeometric functions and their various extension (or
generalizations) have been investigated, see also ([3],[5],[6],[8],[9],[15],[18],[22],[23]).

Recently, Porwal [16] introduced a power series as

χ(p, z) = z +
∞
∑

n=2

e−ppn−1

(n − 1)!
zn, z ∈ U, (5)

where p > 0. Further Porwal [16] defined a series

ϕ(p, z) = 2z − χ(p, z) = z −
∞
∑

n=2

e−ppn−1

(n − 1)!
zn, z ∈ U. (6)

The convolution (or Hadamard product) of two series

(f ∗ g)(z) = (g ∗ f)(z) =

∞
∑

n=2

anbnzn.
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Porwal and Kumar [17] introduced the linear operator I(p)f : A → A defined by
using the Hadamard product as

I(p)f = χ(p, z) ∗ f(z) = z +

∞
∑

n=2

e−ppn−1

(n − 1)!
anzn, z ∈ U. (7)

Altinkaya and Yalcin [1] gave obligatory conditions for the Poisson distribution
series belonging to the class T (γ, δ). Murugusundaramoorthy et al.[14] investigated
some characterization for Poisson distribution series. In recent times, the univalent
function theorists have shown good affinity towards Possion distribution series by
relating it with the area of geometric function theory (see also,[10] [12],[16],[17]). To
prove our results, we will need the following results.

Theorem 1. [13] A function f(z) of the form (1) is in T Sp(ζ, γ, δ) if and only if

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
]

|an| ≤ 1 − γ. (8)

Theorem 2. [13] A function f(z) of the form (1) is in UCT (ζ, γ, δ) if and only if

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
]

|an| ≤ 1 − γ. (9)

Inspired by results between various subclasses of analytic univalent functions by
utilizing hypergeometric functions ([9],[15],[22]), Bessel functions ([3],[5],[6],[8]) and
Struve functions ([23]), we established connections between the classes UCT (ζ, γ, δ)
and T Sp(ζ, γ, δ) by applying the above mentioned results (8), (9) and convolution
operator given by (7).

3 Main Results

Theorem 3. The function χ(p, z) is in T Sp(ζ, γ, δ) if

pep[(1 + δ) − ζ(γ + δ)] ≤ 1 − γ (10)

holds for p > 0. Moreover ϕ(p, z) belongs to T Sp(ζ, γ, δ) if and only if (10) holds.

Proof. In view of Theorem 1, it is sufficient to show that

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p ≤ 1 − γ.

Let

Ω1(p, ζ, γ, δ) =

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p
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= e−p

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!

= e−p

[

{(1 + δ) − ζ(γ + δ)}
∞
∑

n=2

pn−1

(n − 2)!
+ (1 − γ)

∞
∑

n=2

pn−1

(n − 1)!

]

= e−p
[

{(1 + δ) − ζ(γ + δ)}pep + (1 − γ)(ep − 1)
]

= [(1 + δ) − ζ(γ + δ)]p + (1 − γ)(1 − e−p).

But the last expression is bounded above by 1 − γ, if (10) holds. Since

ϕ(p, z) = 2z − χ(p, z) = z −
∞
∑

n=2

e−ppn−1

(n − 1)!
zn (11)

the necessary of (10) for 2z − χ(p, z) to be in T Sp(ζ, γ, δ) follows from Theorem
1.

Remark 2. Putting δ = 0 in Theorem 3, we obtain the result investigated by Porwal
[16] Theorem 3.

Corollary 1. The function χ(p, z) is in T Sp(γ, δ) if

pep(1 + δ) ≤ 1 − γ (12)

holds for p > 0.

Corollary 2. The function χ(p, z) is in T Sp(γ) if

pep ≤ 1 − γ (13)

holds for p > 0.

Corollary 3. The function χ(p, z) is in T Sp(ζ, γ, δ) if

ep
[

{(1 + δ) − ζ(γ + δ)}p
]

≤ 1 − γ (14)

holds for p > 0.

Theorem 4. The function χ(p, z) is in UCT (ζ, γ, δ) if

ep
(

{(1 + δ) − ζ(γ + δ)}p2 + {3(1 + δ) − (1 + 2ζ)(γ + δ)}p
)

≤ 1 − γ (15)

holds for p > 0.
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Proof. In view of Theorem 2, it is sufficient to show that

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p ≤ 1 − γ.

Let

Ω2(p, ζ, γ, δ)

=
∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p

= e−p

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!

= e−p

[

{(1 + δ) − ζ(γ + δ)}
(

∞
∑

n=2

pn−1

(n − 3)!
+ 3

∞
∑

n=2

pn−1

(n − 2)!
+

∞
∑

n=2

pn−1

(n − 1)!

)

+ {ζ(γ + δ) − (γ + δ)}
(

∞
∑

n=2

pn−1

(n − 2)!
+

∞
∑

n=2

pn−1

(n − 1)!

)]

= e−p
(

{(1 + δ) − ζ(γ + δ)}p2ep + {3(1 + δ) − (1 + 2ζ)(γ + δ)}pep

+ (1 − γ)(ep − 1)
)

=
(

{(1 + δ) − ζ(γ + δ)}p2 + {3(1 + δ) − (1 + 2ζ)(γ + δ)}p

+ (1 − γ)(1 − e−p)
)

.

But the last expression is bounded above by 1 − γ, if (15) holds.

Remark 3. Putting δ = 0 in Theorem 4, we obtain the result investigated by Porwal
[16] Theorem 4.

Corollary 4. The function χ(p, z) is in UCT (γ, δ) if

pep
[

(1 + δ)p + 2δ − γ + 3
]

≤ 1 − γ (16)

holds for p > 0 .

Corollary 5. The function χ(p, z) is in UCT (γ) if

pep(p − γ + 3) ≤ 1 − γ (17)

holds for p > 0.

Corollary 6. The function χ(p, z) is in UCT (ζ, γ, δ) if

ep
(

{(1 + δ) − ζ(γ + δ)}p2 + {3(1 + δ) − (1 + 2ζ)(γ + δ)}p
)

≤ 1 − γ (18)

holds for p > 0.
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4 Inclusion Properties

A function f ∈ A is said to in the class Rτ
ν(δ), if it satisfies the inequality

∣

∣

∣

∣

∣

(1 − δ)f(z)
z

+ νf ′(z) − 1

2τ(1 − δ) + (1 − ν)f(z)
z

+ νf ′(z) − 1

∣

∣

∣

∣

∣

< 1, (z ∈ U)

where τ ∈ C \ {0}, δ < 1, 0 < ν ≤ 1.

The class was introduced by Swaminathan [18]. for ν = 1 the class is reduces to
familiar class introduced by Dixit and Pal [7]. Making use of following lemma, we
will prove inclusion result on the class UCT (ζ, γ, δ).

Lemma. If f ∈ Rτ
ν(δ) is of the form (1) then

|an| =
2|τ |(1 − δ)

1 + ν(n − 1)
, n ∈ N \ {1}. (19)

The bounds given in (4) is sharp.

Theorem 5. Let p > 0, τ ∈ C \ {0}, δ < 1 and 0 < ν ≤ 1. If f ∈ Rτ
ν(δ), then

I(p, z)f ∈ UCT (ζ, γ, δ) if and only if

[

{(1 + δ) − ζ(γ + δ)}p + (1 − γ)(1 − e−p)
]

≤ ν(1 − γ)

2|τ |(1 − δ)
. (20)

Proof. In view of Lemma 4 it is sufficient to show that

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p|an| ≤ 1 − γ.

Since f ∈ Rτ
ν(δ), then by Lemma 4, we have

|an| =
2|τ |(1 − δ)

1 + ν(n − 1)
.

Let

Ω3(p, ζ, γ, δ)

=

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p|an| ≤ 1 − γ

=
∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p 2|τ |(1 − δ)

1 + ν(n − 1)

Since 1 + ν(n − 1) ≥ νn

Ω3(p, ζ, γ, δ)
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≤ 2|τ |(1 − δ)

ν

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p

≤ 2|τ |(1 − δ)

ν

[

{(1 + δ) − ζ(γ + δ)}p + (1 − γ)(1 − e−p)
]

.

But the last expression is bounded by 1 − γ, if (20) holds.

Corollary 7. Let p > 0, τ ∈ C \ {0}, δ < 1. If f ∈ Rτ
1(δ), then I(p, z)f ∈

UCT (ζ, γ, δ) if and only if

[

{(1 + δ) − ζ(γ + δ)}p + (1 − γ)(1 − e−p)
]

≤ (1 − γ)

2|τ |(1 − δ)
. (21)

Corollary 8. Let p > 0, τ ∈ C\{0}, δ < 1. If f ∈ Rτ
1(δ), then I(p, z)f ∈ UCT (γ, δ)

if and only if
[

(1 + δ)p + (1 − γ)(1 − e−p)
]

≤ (1 − γ)

2|τ |(1 − δ)
. (22)

Theorem 6. Let p > 0, τ ∈ C \ {0}, δ < 1 and 0 < ν ≤ 1. If f ∈ Rτ
ν(δ), then

I(p, z)f ∈ T Sp(ζ, γ, δ) if and only if

[

{(1 + δ) + (1− ζ)(γ + δ)}(1− e−p)− (γ + δ)

p
(1− e−p − pe−p)

]

≤ ν(1 − γ)

2|τ |(1 − δ)
. (23)

Proof. The proof of Theorem 6 is similar to the proof of Theorem 5, therefore we
omit the details involved.

Corollary 9. Let p > 0, τ ∈ C \ {0}, δ < 1. If f ∈ Rτ
1(δ), then I(p, z)f ∈

T Sp(ζ, γ, δ) if and only if

[

{(1 + δ) + (1− ζ)(γ + δ)}(1− e−p)− (γ + δ)

p
(1− e−p − pe−p)

]

≤ (1 − γ)

2|τ |(1 − δ)
. (24)

Corollary 10. Let p > 0, τ ∈ C\{0}, δ < 1. If f ∈ Rτ
1(δ), then I(p, z)f ∈ T Sp(γ, δ)

if and only if

[

{(1 + δ) + (γ + δ)}(1 − e−p) − (γ + δ)

p
(1 − e−p − pe−p)

]

≤ (1 − γ)

2|τ |(1 − δ)
. (25)

5 An Integral Operator

In this section, we define a particular integral operator I(p, z) as follows:

I(p, z) =

∫ z

0

χ(p, s)

s
ds. (26)

Theorem 7. If p > 0, then I(p, z) defined by (26) is in UCT (ζ, γ, δ) if and only if

pep[(1 + δ) + (1 − ζ)(γ + δ)] ≤ 1 − γ. (27)
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Proof. It is easy to see that

I(p, z) = z −
∞
∑

n=2

e−ppn−1

n!
zn, (28)

In view of Theorem 1 it is sufficient to show that

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
]pn−1

n!
e−p ≤ 1 − γ.

Let

Ω4(p, ζ, γ, δ) =
∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p

= e−p

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!

= e−p

[

{(1 + δ) − ζ(γ + δ)}
∞
∑

n=2

pn−1

(n − 2)!
+ (1 − γ)

∞
∑

n=2

pn−1

(n − 1)!

]

= e−p
[

{(1 + δ) − ζ(γ + δ)}pep + (1 − γ)(ep − 1)
]

= [(1 + δ) − ζ(γ + δ)]p + (1 − γ)(1 − e−p).

But the last expression is bounded by 1 − γ, if (27) holds.

Theorem 8. If p > 0, then I(p, z) defined by (26) is in T Sp(ζ, γ, δ) if and only if

[

{(1 + δ) + (1 − ζ)(γ + δ)}(1 − e−p) − (γ + δ)

p
(1 − e−p − pe−p)

]

≤ (1 − γ). (29)

Proof. The proof of Theorem 8 is similar to the proof of Theorem 7, therefore we
omit the details involved.
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Kyǒngnam Math. J., 1988, 4, 41–56.

[3] Baricz A. Geometric properties of generalized Bessel functions. Publ. Math. Debrecen, 2008,
73, 155–178.

[4] Bharati R., Parvatham R., Swaminathan A. On subclasses of uniformly convex functions

and corresponding class of starlike functions. Tamkang J. Math., 1997, 26(1), 17–32.

[5] Cho N. E., Woo S. Y., Owa S. Uniformly convexity properties for hypergeometric functions.
Fract. Calc. Appl. Anal., 2002, 5(3), 303–313.

[6] Deniz E. Convexity of integral operators involving generalized Bessel functions. Integral Trans-
forms Spec. Funct., 2013, 24, 201–216.

[7] Dixit K. K., Pal S. K. On a class of univalent functions related to complex order. Indian J.
Pure Appl. Math., 1995, 26(9), 889–896.

[8] Deniz E., Orhan H., Srivastava H. M. Some sufficient conditions for univalence of certain

families of integral operators involving generalized Bessel functions. Taiwanese J. Math., 2011,
15, 883–917.

[9] Dziok J., Srivastava H. M. Classes of analytic functions associated with the generalized

hypergeometric function. Appl. Math. Comput., 1999, 103, 1–13.

[10] El-Ashwah R. M., Kota W. Y. Some applications of a Poisson distribution series on sub-

classes of univalent function. J. Fract. Calc. Appl., 2018, 9(1), 169–179.

[11] Kanas S. Wisniowska, Conic regions and k-uniform convexity. Comput. Appl. Math., 1999
105, 327–336.

[12] Murugusundaramoorthy G. Subclasses of starlike and convex functions involving Poisson

distribution series. Afr. Mat. 2017, Doi:10.1007/s13370-017-0520-x.

[13] Murugusundaramoorthy G., Magesh N. On certain subclass of analytic functions associ-

ated with hypergeometric functions. Appl. Math. Lett., 2011, 24, 494–500.

[14] Murugusundaramoorthy G., Vijaya K., Porwal S. Some inclusion results of certain

subclass of analytic functions associated with Poisson distribution series. Hacettepe J. Math.
Stat., 2016, 45(4), 1101–1107.

[15] Gangadharan A., Shanmugam T. N., Srivastava H. M. Generalized hypergeometric func-

tions associated with k-uniformly convex functions. Comput. Math. Appl., 2002, 44, 1515–1526.

[16] Porwal S. An application of a Poisson distribution series on certain analytic functions. J.
Complex Anal., 2014, Art. ID. 984135, 3pp.

[17] Porwal S., Kumar M. A unified study on starlike and convex functions associated with Pois-

son distribution series. Afr. Mat., 2016, 27(5), 1021–1027.

[18] Swaminathan A. Certain sufficiency conditions on hypergeometric functions. J. Inequal. Pure
Appl. Math., 2004, 5(4), 1–10.

[19] Silverman H. Univalent functions with negative coefficients. Proc. Amer. Math. Soc., 1975,
51, 109–116.

[20] Subramanian K. G., Sudharsan T.V., Balasubrahmanyam P., Silverman H. Classes of

uniformly starlike functions. Publ. Math. Debrecen, 1998, 53(4), 309–315.



20 MALLIKARJUN SHRIGAN, SIBEL YALCIN, SAHSENE ALTINKAYA

[21] Subramanian K. G., Murugusundaramoorthy G., Balasubrahmanyam P. Silverman

H. Subclasses of uniformly convex and uniformly starlike functions. Math. Japonica, 1995,
43(3), 517–522.

[22] Srivastava H. M., Murugusundaramoorthy G., Sivasubramanian S. Hypergeometric

functions in the parabolic starlike and uniformly convex domains. Integral Transforms Spec.
Funct., 2007, 18, 511–520.

[23] Yagmur N., Orhan H. Hardy space of generalized Struve functions. Complex Var. Elliptic
Equ., 2014, 59(7), 929–936.

Mallikarjun G. Shrigan

Department of Mathematics,
Biwarabai Sawant Information Technology and Research,
Pune 412207, India
E-mail: mgshrigan@gmail.com

Sibel Yalcin, Sahsene Altinkaya

Department of Mathematics, Uludag University,
16059 Bursa, Turkey
Email: syalcin@uludag.edu.tr, sahsene@uludag.edu.tr

Received February 7, 2019



BULETINUL ACADEMIEI DE ŞTIINŢE
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Numerical Implementation of Daftardar-Gejji and

Jafari Method to the Quadratic Riccati Equation

Belal Batiha and Firas Ghanim

Abstract. The solution of quadratic Riccati differential equations can be found by
classical numerical methods like Runge-Kutta method and the forward Euler method.
Batiha et al. [7] applied variational iteration method (VIM) for the solution of Gen-
eral Riccati Equation. In the paper of El-Tawil et al. [19] they used the Adomian
decomposition method (ADM) to solve the nonlinear Riccati equation. In [3] Ab-
basbandy applied Iterated He’s homotopy perturbation method for solving quadratic
Riccati differential equation. In [2] Abbasbandy used the Homotopy perturbation
method to get an analytic solution of the quadratic Riccati differential equation, and
a comparison with Adomian’s decomposition method was presented. In [1] Abbas-
bandy employed VIM to find the solution of the quadratic Riccati equation by using
Adomian’s polynomials. Tan and Abbasbandy [30] employed the Homotopy Analysis
Method (HAM) to find the solution of the quadratic Riccati equation. Batiha [5] used
the multistage variational iteration method (MVIM) to solve the quadratic Riccati
differential equation.

Mathematics subject classification: 65L05.
Keywords and phrases: Daftardar-Gejji and Jafari method, Riccati equation, Vari-
ational iteration method, Adomian decomposition method; Homotopy perturbation
method.

1 Introduction

A strong tool to introduce real-life phenomena is differential equations but, in
most cases, numerical or theoretical solutions are difficult to find, in recent years
many numerical methods have been introduced to solve nonlinear differential equa-
tions,[4, 8, 31].

The solution of quadratic Riccati differential equations can be found by classical
numerical methods like Runge-Kutta method and the forward Euler method. Batiha
et al. [7] applied variational iteration method (VIM) for the solution of General Ric-
cati Equation. In the paper [19] El-Tawil et al. used the Adomian decomposition
method (ADM) to solve the nonlinear Riccati equation. In [3] Abbasbandy applied
Iterated He’s homotopy perturbation method for solving quadratic Riccati differ-
ential equation. In [2] Abbasbandy used the Homotopy perturbation method to
get an analytic solution of the quadratic Riccati differential equation, and a com-
parison with Adomian’s decomposition method was presented. In [1] Abbasbandy
employed VIM to find the solution of the quadratic Riccati equation by using Ado-
mian’s polynomials. Tan and Abbasbandy [30] employed the Homotopy Analysis

c© B. Batiha and F. Ghanim, 2021
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Method (HAM) to find the solution of the quadratic Riccati equation. Batiha [5]
used the multistage variational iteration method (MVIM) to solve the quadratic
Riccati differential equation.

The purpose of this paper is to use the Daftardar-Gejji and Jafari method (DJM)
to get the solution of quadratic Riccati differential equations and to present a com-
parison between VIM, ADM, HPM, and exact solution to prove the power of DJM
to solve nonlinear differential equations.

2 The Daftardar–Gejji and Jafari Method

Daftardar-Gejji and Jafari method (DJM) was first introduced by Daftardar-
Gejji and Jafari [16] in 2006, it has been proved that this method is a better tech-
nique for solving different kinds of nonlinear equations [6, 9–11, 13–15, 20–23, 29].
DJM has been used to create a new predictor-corrector method [17, 18]. Noor et
al. [24–28] used DJM to create numerical methods to handle algebraic equations.

Here the Daftardar-Gejji and Jafari method will be discussed, which was suc-
cessfully used to solve differential equations and nonlinear equations in the form:

y = f + L(y) + N(y), (1)

where L, N are linear and non-linear operators, respectively, and f is a given func-
tion. The solution of Eq. (1) has the form:

y =
∞
∑

i=0

yi. (2)

Suppose we have

H0 = N(y0), (3)

Hm = N

(

m
∑

i=0

yi

)

− N

(

m−1
∑

i=0

yi

)

, (4)

then we get

H0 = N(y0), (5)

H1 = N(y0 + y1) − N(y0), (6)

H2 = N(y0 + y1 + y2) − N(y0 + y1), (7)

H3 = N(y0 + y1 + y2 + y3) − N(y0 + y1 + y2) + · · · . (8)

Thus N(y) is decomposed as:

N

(

∞
∑

i=0

yi

)

= N(y0) + N(y0 + y1) − N(y0) + N(y0 + y1 + y2) − N(y0 + y1)
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+N(y0 + y1 + y2 + y3) − N(y0 + y1 + y2) + · · · . (9)

So, the recurrence relation is of the following form:

y0 = f

y1 = L(y0) + H0 (10)

ym+1 = L(ym) + Hm, m = 1, 2, · · · .

Since L is linear, then:

m
∑

i=0

L(yi) = L

(

m
∑

i=0

yi

)

. (11)

So,

m+1
∑

i=0

yi =

m
∑

i=0

L(yi) + N

(

m
∑

i=0

yi

)

= L

(

m
∑

i=0

yi

)

+ N

(

m
∑

i=0

yi

)

, m = 1, 2, · · · . (12)

Thus,

∞
∑

i=0

yi = f + L

(

∞
∑

i=0

yi

)

+ N

(

∞
∑

i=0

yi

)

. (13)

The k− term solution is given by the following form:

y =
k−1
∑

i=0

yi. (14)

3 Convergence of the DJM

In this section, we will introduce the condition of convergence of DJM.

Lemma 1. [9] If N is C(∞) in a neighborhood of u0 and ||N (n)(u0)|| ≤ L, for any n
and for some real L > 0 and ||ui|| ≤ M < e−1, i = 1, 2, ..., then the series

∑∞
n=0 Hn

is absolutely convergent and

||Hn|| ≤ LMnen−1(e − 1), n = 1, 2, ... .

Lemma 2. [9] If N is C(∞) and ||N (n)(u0)|| ≤ M ≤ e−1,∀n, then the series
∑∞

n=0 Hn is absolutely convergent.



24 BELAL BATIHA AND FIRAS GHANIM

4 Numerical Implementation

4.1 Example 1

In this example, we shall consider the quadratic Riccati equation in the form:

y′(t) = 2y(t) − y2(t) + 1, y(0) = 0. (15)

The exact solution was found to be (see Fig. 1) [19]:

y(t) = 1 +
√

2 tanh

(

√
2t +

1

2
log

(√
2 − 1√
2 + 1

))

. (16)

If you expand Eq. (16) by Taylor expansion about t = 0 we get:

y(t) = t + t2 +
1

3
t3 − 1

3
t4 − 7

15
t5 − 7

45
t6 +

53

315
t7 +

71

315
t8 + · · · . (17)

Bulut and Evans [12] applied the decomposition method to solve Eq. 15 and they
found:

y(t) = t + t2 +
1

3
t3 − 1

3
t4 − 7

15
t5 − 1

5
t6 +

163

315
t7 − 62

315
t8 + · · · . (18)

Abbasbandy [2] used Homotopy perturbation method (HPM) for quadratic Ric-
cati differential equation and got:

y(t) = t + t2 +
1

3
t3 − 1

3
t4 − 7

15
t5 − 7

45
t6 +

53

315
t7 − 221

1260
t8 + · · · . (19)

Abbasbandy [1] applied three iterates variational iteration methods (VIM) for
Eq. (15) and found the result:

y(t) = t + t2 +
1

3
t3 − 1

3
t4 − 7

15
t5 − 7

45
t6 +

53

315
t7 − 673

2520
t8 + · · · . (20)

To solve quadratic Riccati differential equation (15) by DJM, we integrate Eq.
(15) and use initial condition y(0) = 0, to get:

y(t) =

∫ t

0
2y(t) − y(t)2 + 1dt. (21)

By using algorithm (10) we have:

y0 = 0, y1 = t, y2 = −1

3
t2 (t − 3) , y3 = − t3

(

5 t4 − 35 t3 + 21 t2 + 210 t − 210
)

315
,
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Figure 1. The exact solution of Eq.15

y4 = − 1

170270100
t4(2860 t11 − 42900 t10 + 189420 t9 + 90090 t8 − 2388204 t7+

+2234232 t6 + 11171160 t5 − 6891885 t4 − 41081040 t3 + 3783780 t2+

+90810720 t − 56756700),

...

Thus,

4
∑

i=0

yi = t − 1

3
t2 (t − 3) − t3

(

5 t4 − 35 t3 + 21 t2 + 210 t − 210
)

315

− 1

170270100
t4(2860 t11 − 42900 t10 + 189420 t9 + 90090 t8

−2388204 t7 + 2234232 t6 + 11171160 t5 − 6891885 t4

−41081040 t3 + 3783780 t2 + 90810720 t − 56756700). (22)

Using Taylor expansion to expand y6 about t = 0 gives:

y(t) = t + t2 +
1

3
t3 − 1

3
t4 − 7

15
t5 − 7

45
t6 +

7

45
t7 − 83

315
t8 · · · . (23)
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4.2 Example 2

Here, we will check the following Riccati equation:

y′(t) = −y2(t) + 1, y(0) = 0. (24)

The exact solution for the Riccati equation above is [19]:

y(t) =
e2t − 1

e2t + 1
. (25)

When we expand Eq. (25) by Taylor expansion about t = 0 we get:

y(t) = t − 1

3
t3 +

2

15
t5 − 17

315
t7 +

62

2835
t9 − 1382

155925
t11 +

21844

6081075
t13 + · · · . (26)

To solve quadratic Riccati differential equation (24) by DJM, we integrate Eq.
(24) and use initial condition y(0) = 0, to get:

Figure 2. The comparison between the y4 of DJM and the exact solution

y(t) =

∫ t

0
−y(t)2 + 1dt. (27)

By using algorithm (10) we have:

y0 = 0, y1 = t, y2 = −1

3
t3, y3 = − t5

(

5 t2 − 42
)

315
,
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y4 = − t7
(

715 t8 − 13860 t6 + 109746 t4 − 570570 t2 + 1621620
)

42567525

...

Thus,

4
∑

i=0

yi = t − 1/3 t3 − t5
(

5 t2 − 42
)

315

− t7
(

715 t8 − 13860 t6 + 109746 t4 − 570570 t2 + 1621620
)

42567525
. (28)

Using Taylor expansion to expand y4 about t = 0 gives:

y(t) = t − 1

3
t3 +

2

15
t5 − 17

315
t7 +

38

2835
t9 + · · · . (29)

5 Numerical Results and Discussion

In this section, we will show the numerical solutions of quadratic Riccati differ-
ential equation.

Table 1. Numerical comparisons between exact solution and y5 of DJM

t Exact solution y5 of DJM absolute error

0.1 0.1102951967 0.1102951631 3.360E-8
0.2 0.2419767992 0.2419752509 1.548E-6
0.3 0.3951048481 0.3950932308 1.162E-5
0.4 0.5678121656 0.5677733164 3.885E-5
0.5 0.7560143925 0.7559368137 7.758E-5
0.6 0.9535662155 0.9534634383 1.028E-4
0.7 1.1529489660 1.1528561200 9.285E-5
0.8 1.3463636550 1.3463068680 5.679E-5
0.9 1.5269113120 1.5268938270 1.748E-5
1.0 1.6894983900 1.6895510560 5.266E-5

Table 1 shows the comparison between the y5 of DJM and the exact solution for
example 1. Figure 2 shows the comparison between the y4 of DJM and the exact
solution for example 2. We can see the good accuracy of DJM compared to the
exact solution, but we can note that it’s accurate only for small t.
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6 Conclusions

In this paper, we show a new application of the Daftardar-Gejji and Jafari
method (DJM) to get the solution of the quadratic Riccati differential equation.
In this paper, we use the Maple Package to calculate the series obtained from the
DJM. It may be concluded that DJM is a powerful tool for finding analytical and
numerical solutions for the Riccati differential equation.
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On differentially prime subsemimodules
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Abstract. The paper is devoted to the investigation of the notion of a differentially
prime subsemimodule of a differential semimodule over a commutative semiring, which
generalizes the notion of differentially prime ideal of a ring. The characterization of
differentially prime subsemimodules is given. The interrelation between differentially
prime subsemimodules and different types of differential subsemimodules and ideals
is studied.
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1 Introduction

The notion of a derivation for semirings is defined in [3] as an additive map
satisfying the Leibnitz rule. Recently in [2, 13] and [11] the authors investigated
different properties of semiring derivations, differential semirings, i.e. semirings
considered together with a derivation, and differential ideals of such rings. Prime
subsemimodules of semimodules over semirings were introduced and studied in [1].
Differentially prime ideals were introduced in [8] for differential, not necessarily
commutative, rings. Differentially prime submodules of modules over associative
rings were studied in [10].

The rapid development of semiring and semimodule theory in recent years mo-
tivates a further study into properties of differential semirings, differential semi-
modules, semiring ideals and subsemimodules defined by similar conditions. The
objective of this paper is to investigate differentially prime subsemimodules of semi-
modules equipped with derivations over commutative semimodules, and their inter-
relation with other types of subsemimodules.

For the sake of completeness some definitions and properties used in the paper
will be given here. For more information see [3–5,9].

Let R be a nonempty set and let + and · be binary operations on R. An algebraic
system (R,+, ·) is called a semiring if (R,+, 0) is a commutative monoid, (R, ·) is a
semigroup and multiplication distributes over addition from either side. A semiring
(R,+, ·) is said to be commutative if · is commutative on R.

Zero 0R ∈ R is called (multiplicatively) absorbing if a · 0R = 0R · a = 0 for all
a ∈ R. An element 1R ∈ R is called identity if a · 1R = 1R · a = a for all a ∈ R.
Suppose 1R 6= 0R, otherwise R = {0} if zero is absorbing.

c©I. Melnyk, 2021
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Throughout the paper, we assume that all semirings are commutative with iden-
tity, N denotes the set of positive integers and N0 = N

⋃ {0} denotes the set of
non-negative integers.

An ideal of a semiring R is a nonempty set I 6= R which is closed under addition
+ and satisfies the condition ra ∈ I for all a ∈ I, r ∈ R. An ideal I of a semiring R
is called subtractive (or k-ideal) if a ∈ I and a + b ∈ I imply b ∈ I.

Let R be a semiring with 1R 6= 0R. A semimodule over a semiring R (or R-
semimodule) is a nonempty set M together with two operations +: M × M → M
and · : R×M → M such that (M,+) is a commutative monoid with 0M , (M, ·) is a
semigroup, (r+s)m = rm+sm for all r, s ∈ R, m ∈ M , r(m1+m2) = rm1+rm2 for
all r ∈ R, m1,m2 ∈ M , 0R ·m = r · 0M = 0M for all r ∈ R and m ∈ M , 1R ·m = m
for all m ∈ M .

A subset N of an R-semimodule M is called a subsemimodule of M if m+n ∈ N
and rm ∈ N for any m,n ∈ N , and r ∈ R. A subsemimodule N of an R-semimodule
M is called subtractive or k-subsemimodule if m1 ∈ N and m1 + m2 ∈ N imply
m2 ∈ N . So {0M} is a subtractive subsemimodule of M .

Let R be a semiring. A map δ : R → R is called a derivation on R [3] if
δ (a + b) = δ (a) + δ (b) and δ (ab) = δ (a) b + aδ (b) for any a, b ∈ R. A semiring
R equipped with a derivation δ is called a differential semiring with respect to the
derivation δ (or δ-semiring), and is denoted by (R, δ) [2].

For an element r ∈ R denote by r(0) = r, r′ = δ (r), r′′ = δ (r′), r(n) = δ
(

r(n−1)
)

,
for any n ∈ N0. An ideal I of the semiring R is called differential if the set I is
differentially closed under δ, i.e. δ(r) ∈ I for any r ∈ I. The set of all derivations
of an element r ∈ R r(∞) = {r(n)|n = 0, 1, 2, 3 . . .} is differentially closed. The
ideal [r] =

(

r(∞)
)

= (r, r′, r′′, . . .) of R, generated by the set r(∞), is differentially
generated by r ∈ R; it is the smallest differential ideal containing the element
r ∈ R [11].

Let M be a semimodule over the differential semiring (R, δ). A map d : M → M
is called a derivation of the semimodule M , associated with the semiring derivation
δ : R → R (or a δ-derivation), if d (m + n) = d (m) + d (n) and d (rm) = δ (r)m +
rd (m) for any m,n ∈ M , r ∈ R. A R-semimodule M together with a derivation
d : M → M is called a differential semimodule (or d-δ-semimodule) and is denoted
by (M,d).

A subsemimodule N of the R-semimodule M is called differential if d (N) ⊆ N .
Any differential semimodule has two trivial differential subsemimodules: {0M} and
itself.

For an element m ∈ M denote by m(0) = m, m′ = d (m), m′′ = d (m′), m(n) =
d

(

m(n−1)
)

, for any n ∈ N0. Moreover, let m(∞) = {m(n)|n ∈ N0}. It is easy to

see that the set m(∞) is differentially closed. The subsemimodule [m] =
(

m(∞)
)

=
(m,m′,m′′, . . .) is the smallest differential subsemimodule of M containing m ∈ M .

A subsemimodule P of a subsemimodule M is called prime if for any ideal I of R
and any submodule N of M the inclusion IN ⊆ P implies N ⊆ P or I ⊆ (P : M).
Prime subsemimodules are extensively investigated in [1].
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2 Differentially prime subsemimodules

Definition. Let S be a multiplicatively closed subset of R. A non-empty subset X
of the semimodule M is called an S-closed subset of M if sx ∈ X for every s ∈ S
and x ∈ X.

Quasi-prime ideals of differential rings were introduced and studied in [6, 7], its
generalizations to differential modules, semirings and semimodules were studied by
different authors, e.g.[11,12,14,15].

Definition. A differential subsemimodule N of the left differential semimodule M
is called quasi-prime if it is maximal differential subsemimodule of M disjoint from
some S-closed subset of M .

For instance, every prime differential subsemimodule is quasi-prime, because the
complement of the prime subsemimodule is an S-closed subset of M , where the role
of S is played by the set {1}.

In the case of a regular semimodule, we obtain the notion of quasi-prime ideal of
a semiring. For differential semiring ideals it is known that every maximal among
differential ideals not meeting some multiplicatively closed subset of the semiring
is quasi-prime. The analogue of this fact holds for differential semimodules: every
maximal among differential subsemimodules of an arbitrary differential semimodule
is quasi-prime.

Definition. A differential k-subsemimodule P of M is called differentially prime if
for any r ∈ R, m ∈ M , k ∈ N0, rm(k) ∈ P implies r ∈ (P : M) or m ∈ P .

Theorem 1. Every quasi-prime k-subsemimodule N of M is differentially prime.

Proof. Let N be a quasi-prime subsemimodule of M . Suppose that there exist
r ∈ R, m ∈ M such that r ∈ R \ (N : M), m ∈ M \ N and [r] · [m] ⊆ N . Since
N is maximal among the differential submodule not meeting some S-closed subset
X of M , for differential ideal (N : M) + [r] and differential subsemimodule N + [m]
the maximality of N implies ((N : P ) + [r]) ∩ S 6= ∅ and (N + [m]) ∩ X 6= ∅. As a
result, there exist s ∈ S, x ∈ X such that s ∈ (N : M) + [r] and x ∈ N + [m]. Since
X is an S-closed subset of M and s ∈ S, x ∈ X implies that there exists n ∈ N0

such that sx(n) ∈ X. Then sx(n) ∈ ((N : M) + [r]) · (N + [m]) ⊆ N. It follows that
sx(n) ∈ X

⋂

N 6= ∅, which contradicts the original assumption. Therefore, N is
differentially prime.

Definition. Let S 6= ∅ be a subset of R. A subset S is called d-multiplicatively
closed if for any a, b ∈ S there exists n ∈ N0 such that ab(n) ∈ S.

Definition. Let S be a d-multiplicatively closed subset of R. A subset X ⊆ M is
called Sd-multiplicatively closed if for any s ∈ S, x ∈ X there exists n ∈ N0 such
that sx(n) ∈ X.
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Proposition 1. A k-subsemimodule N ⊆ M is differentially prime if and only if
M \ N is Sd-multiplicatively closed.

Proof. Suppose X = M \ N , S = R \ (N : M), N ⊆ M is differentially prime and
there exist s ∈ S and x ∈ M \ N such that for all n ∈ N0, sx(n) /∈ M \ N . Then
s ∈ (N : M) or x ∈ N , which contradicts s ∈ S.

Conversely, suppose X = M \N is Sd-multiplicatively closed, and for all n ∈ N0,
sx(n) /∈ X for some s ∈ S and x ∈ X. Then sx(n) ∈ N , and so s ∈ (N : M), which
is a contradiction.

Theorem 2. For a differential k-subsemimodule P of M , P 6= M the following
conditions are equivalent:

1. P is differentially prime;

2. For any r ∈ R, m ∈ M , k, l ∈ N0, r(l)m(k) ∈ P implies r ∈ (P : M) or m ∈ P ;

3. For any r ∈ R, m ∈ M , [r] · [m] ⊆ P implies r ∈ (P : M) or m ∈ P ;

4. For any differential k-ideal I of R and any differential k-subsemimodule N of
M , IN ⊆ P implies N ⊆ P or I ⊆ (P : M).

Proof. (1 =⇒ 2) Suppose r(l)m(k) ∈ P for any k, l ∈ N0. Denote t = l + k. For
t = 0 we have r(0)m(0) = rm ∈ P . Therefore, d(rm) = (rm)′ ∈ P . For a subtractive
subsemimodule P , we have (rm)′ = r′m + rm′ ∈ P , rm′ ∈ P . Hence, r′m ∈ P .

Consider (rm(k))′ = r′m(k) + rm(k+1) for all k ∈ N0. As before, (rm(k))′ ∈ P ,
rm(k+1) ∈ P imply r′m(k) ∈ P , by subtractiveness of P .

In a similar way, from (r′m(k−1))′ = r′′m(k−1) + r′m(k) ∈ P , r′m(k) ∈ P and
subtractiveness of P we obtain r′′m(k) ∈ P , etc.

(2 =⇒ 1) Obvious when l = 0.
(2 =⇒ 3) Note that [r] =

∑

l∈N0
Rr(l), [m] =

∑

k∈N0
Rm(k), and so [r] · [m] =

∑

k,l∈N0
Rr(l)m(k).

If [r] · [m] ⊆ P then
∑

k,l∈N0
Rr(l)m(k) ⊆ P , in particular r(l)m(k) ∈ P . Hence,

r ∈ (P : M) or m ∈ P .
(3 =⇒ 2) Suppose for any r ∈ R, m ∈ M , [r] · [m] ⊆ P implies r ∈ (P : M)

or m ∈ P . Prove that for any r ∈ R, m ∈ M , k, l ∈ N0, r(l)m(k) ∈ P implies
r ∈ (P : M) or m ∈ P .

If r(l)m(k) ∈ P , then
∑

k,l∈N0
Rr(l)m(k) ⊆ P . Therefore, [r] · [m] ⊆ P , which

follows r ∈ (P : M) or m ∈ P .
(3 =⇒ 4). Suppose for any r ∈ R, m ∈ M , [r] · [m] ⊆ P implies r ∈ (P : M) or

m ∈ P , and let IN ⊆ P , where I is an arbitrary differential ideal of R and N is an
arbitrary differential subsemimodule of M .

Suppose N * P or I * (P : M). There exists x ∈ N , x /∈ P , and r ∈ I,
r /∈ (P : M). Clearly, [r] · [x] ⊆ IN ⊆ P . Therefore, r ∈ (P : M) or m ∈ P , which
is a contradiction.

(4 =⇒ 3) is obvious.
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Theorem 3. Let S be d-multiplicatively closed subset of R, X be Sd-multiplicatively
closed subset of M , and let N be a differential subsemimodule of M , maximal in
M \ N .

If the ideal (N : M) is differentially maximal in R \S, then N is a differentially
prime subsemimodule of M .

Proof. Suppose that there exist r ∈ R, m ∈ M and k ∈ N0 such that rm(k)) ∈ N ,
r /∈ (N : M), and m /∈ N . It is clear that N ⊂ N +[m] and (N : M) ⊂ (N : M)+[r].

Since N is maximal among the differential subsemimodules not meeting some
Sd-closed subset X, (N + [m]) ∩ X 6= ∅. Since (N : M) is maximal among the
differential ideals of R not meeting some d-multiplicatively closed subset S, ((N :
M) + [r]) ∩ S 6= ∅. Therefore there exist a ∈ S, x ∈ X such that a ∈ (N : M) + [r]
and x ∈ N +[m]. On the other hand, since X is a Sd-multiplicatively closed subset,
then a ∈ S, x ∈ X implies the existence of n ∈ N0 such that ax(n) ∈ X. Therefore
x(n) ∈ (N + [m])∩X. Then ax(n) ∈ ((N : M) + [r]) · (N + [m]) = (N : M)N + (N :
M) · [m]+[r] ·N +[r] · [m] ⊆ N. Therefore, ax(n) ∈ N

⋂

X 6= ∅, but it contradicts the
assumption that X

⋂

N = ∅. Hence N is a differentially prime subsemimodule.

Corollary 1. Let P be differentially prime ideal of R, S = R \ P , X be Sd-
multiplicatively closed subset of R, let a differential subsemimodule N be maximal
in M \ X. If N is prime, then (N : M) = P .
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[8] Khadjiev Dj., Çallıalp F. On a differential analog of the prime-radical and properties of the

lattice of the radical differential ideals in associative differential rings. Tr. J. of Math., 4 (20),
1996, 571–582.

[9] Kolchin S. E. Differential Algebra and Algebraic Groups. New York: Academic Press, 1973.

[10] Melnyk I. Sdm-systems, differentially prime and differentially primary modules (Ukrainian).
Nauk. visnyk Uzhgorod. Univ. Ser. Math. and informat., 16, 2008, 110–118.

[11] Melnyk I. On the radical of a differential semiring ideal. Visnyk of the Lviv. Univ. Series
Mech. Math., 82, 2016, 163–173.



ON DIFFERENTIALLY PRIME SUBSEMIMODULES 35

[12] Melnyk I. On quasi-prime differential semiring ideals. Nauk. visnyk Uzhgorod. Univ. Ser.
Math. and informat., 37 (2), 2020, 63–69.

[13] Nirmala Devi S. P., Chandramouleeswaran M. (α, 1) -derivations on semirings. Inter-
national Journal of Pure and Applied Mathematics, 4 (92), 2014, 525–534.

[14] Nowicki A. The primary decomposition of differential modules. Commentationes Mathemat-
icae, 21, 1979, 341–346.

[15] Nowicki A. Some remarks on d − MP -rings. Bulletin of the Polish Academy of Sciences.

Mathematics, 30 (7-8), 311–317.

I. Melnyk

Ivan Franko National University of Lviv,
1, Universytetska St., Lviv, 79000, Ukraine
E-mail: ivanna.melnyk@lnu.edu.ua

Received August 8, 2021



BULETINUL ACADEMIEI DE ŞTIINŢE
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Abstract. A multicriteria investment Boolean problem of minimizing lost profits
with parameterized efficiency and different types of risks is formulated. The lower and
upper bounds on the radius of the strong stability of efficient portfolios are obtained.
Several earlier known results regarding strong stability of Pareto efficient and extreme
portfolios are confirmed.
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1 Introduction

Many problems of making multi-purpose decisions (individual or group) in man-
agement, planning and design can be formulated as multicriteria discrete optimiza-
tion problems. A characteristic feature of such problems is the inaccuracy of the
initial parameters. This inaccuracy is due to the influence of various factors of un-
certainty and randomness: the inadequacy of the mathematical models used real
processes, measurement or rounding errors and other factors. To manage financial
investments, G. Markovitz [1] developed an optimization model that demonstrates
how an investor, choosing a portfolio of assets, can minimize the degree of risk for
a given expected income level. This formulation involves the use of statistical and
expert assessments of risks (financial, environmental, etc.) as input data. It is well
known that complex calculations of such quantities are accompanied by large num-
ber of errors, which leads to a high degree of uncertainty of the initial information.
Under these conditions, the question naturally arises about the plausibility of results
obtained in solving such problems, which makes necessary to conduct a post-optimal
analysis of the stability of solutions to perturbations of parameters.

Modern research on the stability of multicriteria discrete optimization problems
is carried out in two directions: qualitative and quantitative. Within the framework
of the first direction, the authors concentrate their attention on the definition and
study of various types of stability (see monograph [2], and surveys [3,4]), establishing
a connection between different types of stability as well as on the search and descrip-
tion of the region of stability of the problem [5, 6]. The second direction is focused
on obtaining estimates of permissible changes in the initial data of the problem, at

c©Vladimir Emelichev, Yury V. Nikulin, 2021
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which a certain predetermined property of optimal solutions is preserved [7–12], and
on the development of algorithms for calculating these estimates [13–15].

Our current work continues research towards a similar direction, with focus on a
different optimality principle, namely, the so-called parameterized efficient solutions
and their strong stability properties are investigated. The paper is organized as fol-
lows. In Section 2, we introduce basic concepts and formulate the problem. Section
3 contains auxiliary technical statements required for the proof of the main result.
As a result of the parametric analysis, in Section 4 the lower and upper bounds
on strong stability radius are obtained in the case with arbitrary Hölder’s norms
specified in the three spaces of the problem’s initial data. Some previously known
facts are confirmed in Section 5.

2 Problem formulation and basic definitions

Consider a multicriteria discrete variant of the investment optimization problem
with the following parameters specified below: let

Nn={1, 2, . . . , n} be a variety of alternatives (investment assets);

Nm be a set of possible financial market states (market situations, scenarios);

Ns be a set of possible risks;

rijk be a numerical measure of economic risk of type k ∈ Ns if investor chooses
project j ∈ Nn given the market is in state i ∈ Nm;

R= [rijk] ∈ Rm×n×s be a matrix specifying risks;

x= (x1, x2, . . . , xn)T ∈ En be an investment portfolio, where E={0, 1}, and

xj=

{

1 if investor chooses project j,
0 otherwise;

X ⊂ En be a set of all admissible investment portfolios, i.e. those whose real-
ization provides the investor with the expected income and does not exceed his/her
initial capital;

Rm be a financial market state space; Rn be a portfolio space; Rs be a risk
space.

In our model, we assume that the risk measure is addictive, i.e. the total risk of
one portfolio is a sum of risks of the projects included in the portfolio. The risk of
each project can be measured, for instance, by means of the associated implemen-
tation cost.

Efficiency of a chosen portfolio (Boolean vector) x ∈ X, |X| ≥ 2, is evaluated
by a vector objective function

f(x,R) = (f(x,R1),f(x,R2), . . . , f(x,Rs))
T ,

with each partial objective representing minimax Savage’s risk criterion [17]:

f (x,Rk) =max
i∈Nm

rikx = max
i∈Nm

∑

j∈Nn

rijkxj → min
x∈X

, k ∈ Ns,
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rik= (ri1k, ri2k, . . . , rink) ∈ Rn, i ∈ Nm, k ∈ Ns.

In the formula above, Rk ∈ Rm×n represents the k-th cut of the risk matrix
R= [rijk] ∈ Rm×n×s with rows rik.

Certainly, the problem has practical interest due to its multicriteria nature and
the criteria that could be interpreted as maximum risk minimizing attitude of an
investor to market instability and uncertainty.

For arbitrary v ∈ N (dimension of a space), we define the Pareto dominance
[16] between two vectors as the following binary relation in the real vector valued
space Rv: y ≻ y′ ⇐⇒ y ≥ y′ & y 6= y′,where y = (y1, y2, . . . , yv)

T ∈ Rv, and
y′ = (y′1, y

′
2, . . . , y

′
v)

T ∈ Rv.
Let ∅ 6= I ⊆ Ns. Denote RI a submatrix of the risk matrix R= [rijk] ∈ Rm×n×s

consisting of h=|I| cuts with numbers of the set I, i.e.

RI = (Rk1, Rk2 , . . . , Rkh
)T ∈ Rm×n×h,

I = {k1, k2, . . . , kh} , 1 ≤ k1 < k2 < · · · < kh ≤ s.

Thus for a fixed non-empty I and chosen x ∈ X, we have a vector function

f(x,RI) = (f(x,Rk1),f(x,Rk2), . . . , f(x,Rkh
))T ,

with components being type of Savage’s minimax risk criterion [17]:

f (x,Rk)=max
i∈Nm

rikx → min
x∈X

, k ∈ I.

An investor in the conditions of economic instability and uncertainty of the
market state is extremely cautious, optimizing the total risk of the portfolio in the
most unfavorable situation, namely when the risk is maximum. Such caution is
appropriate because any investment is the exchange of a certain current value for a
possibly uncertain future income. Obviously, this approach is dictated by the safest
and most protective rule prescribing to assume the worst.

Let u ∈ Ns and Ns =
⋃

v∈Nu
Iv be a partition of the set Ns in u non-empty

subsets (types of risks), i.e. Iv 6= ∅, v ∈ Nu, and i 6= j =⇒ Ii
⋂

Ij = ∅.
Such partition may naturally arise in the situation when risks can be classified

to the different groups, e.g. financial, industrial, ecological etc. Another situation
with different types of risks may appear if risk measurement scales are different, e.g.
some risks are measured on a monetary scale whereas the others are measured on
various subjective preference scales.

As following definition shows, inside a group of a certain type, Pareto domi-
nance binary relation is used while comparing portfolios. For the given partition,
we introduce a set of (I1, I2, . . . , Iu)-efficient portfolios according to the following
formula:

Gs
m(R, I1, I2, . . . , Iu) = {x ∈ X: ∃v ∈ Nu (X(x,RIv

) =∅)} , (1)

where
X (x,RIv

)=
{

x′ ∈ X: f (x,RIv
)≻f

(

x′, RIv

)}

. (2)
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For brevity, we sometimes refer to the set of (I1, I2, . . . , Iu) – efficient portfolios as
Gsu

m (R) and name them efficient. It is easy to see that the set of efficient portfolios
is non-empty.

In one particular case, if u = 1, i.e. I=Ns, any Ns – efficient portfolio
x ∈ Gs

m(R,Ns) is also Pareto efficient (optimal). Therefore, the set Gs
m (R,Ns)

is identical to the Pareto set [18] defined as follows:

P s
m (R) = {x ∈ X: X(x,R) =∅} ,

where

X (x,R) =
{

x′ ∈ X: f (x,R) ≥ f
(

x′, R
)

& f (x,R) 6= f
(

x′, R
)}

.

In another particular case, if u= s, i.e. Iv = {v} for v ∈ Nu = Ns, the set
Gs

m (R, {1} , {2} , . . . , {s}) is a set of all the so-called extreme portfolios (see e.g.
[19]). The set of extreme portfolios is defined as

Es
m (R)= {x ∈ X: ∃k ∈ Ns (X(x,Rk) =∅} ,

where
X(x,Rk) =

{

x′ ∈ X: f (x,Rk) > f
(

x′, Rk

)}

.

The choice of extreme portfolios can be interpreted as finding best solutions for
each of s criteria, and then combining them into one set. The vector composed of
optimal objective values constitutes the ideal vector that is of great importance in
theory and methodology of multiobjective optimization [19].

The problem of finding the set of efficient portfolios

Gs
m (R, I1, I2, . . . , Iu) = Gsu

m (R)

is referred to as multicriteria investment Boolean problem with Savage’s risk criteria
of different types and denoted by Zs

m (R, I1, I2, . . . , Iu), or shortly, Zsu
m (R).

For the fixed non-empty I ⊆ Ns, we introduce the following sets:

P (RI) = {x ∈ X: X (x,RI)=∅} ,

E (RI) = {x ∈ X: ∃k ∈ I (X(x,Rk) =∅} ,
where

X (x,RI) =
{

x′ ∈ X: f (x,RI)≻f
(

x′, RI

)}

.

In particular, for fixed k ∈ Ns and I = {k} , |I| = 1, the two sets P (Rk) and E (Rk)
are identical. Both sets represent a set of optimal portfolios for the scalar problem
with respect to the k -th risk:

f (x,Rk)=max
i∈Nm

rikx → min
x∈X

.

Due to (1), we have the following equality:

Gs
m (R, I1, I2, . . . , Iu) = {x ∈ X: ∃v ∈ Nu (x ∈ P (RIv

))} . (3)
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Therefore, we have

Gs
m (R, I1, I2, . . . , Iu)=

⋃

v∈Nu

P (RIv
),

⋃

v∈Nu

Iv = Ns.

Obviously, all the sets specified above are non-empty for any risk matrix
R ∈ Rm×n×s.

We will perturb the elements of the three–dimensional risk matrix R ∈ Rm×n×s

by adding elements of the risk perturbing matrix R′ ∈ Rm×n×s. Thus the problem
Zsu

m (R+R′) with perturbed risks has the following form:

f(x,R+R′) → min
x∈X

.

The set of (I1, I2, . . . , Iu) – efficient portfolios in the perturbed problem is denoted
by Gs

m(R+R′, I1, I2, . . . , Iu), or shortly Gsu
m (R+R′).

Recall that Hölder’s norm lp (also known as p-norm) in vector space Rn is the
number

‖a‖p=







(

∑

j∈Nn
|aj |p

)
1
p

if 1 ≤ p<∞,

max {|aj | :j ∈ Nn} if p=∞,

where a= (a1, a2, ..., an)T ∈ Rn.
In the spaces Rn,Rm and Rs we define three Hölder’s norms lp, lq and lt, where

p, q, t ∈ [1,∞]. So, the norm of matrix R ∈ Rm×n×s is the following number:

‖R‖pqt=‖(‖R1‖pq,‖R2‖pq, ...,‖Rs‖pq)‖t,

with cuts
‖Rk‖pq=‖(‖r1k‖p,‖r2k‖p, ...,‖rmk‖p)‖q, k ∈ Ns.

For any numbers p, q, t ∈ [1,∞] the following inequalities are valid:

‖rik‖p ≤ ‖Rk‖pq ≤ ‖R‖pqt, i ∈ Nm, k ∈ Ns. (4)

While solving investment problems, it is necessary to take into account the inac-
curacy of the input information (statistical and expert risks evaluation errors) that
are very common in real life. Under these conditions, it is highly recommended
to get numerical bounds of possible changes to the input data that for any small
perturbation the efficiency of at least one originally extreme portfolio is preserved.

Following [3], the strong stability (in terminology of [4], T1-stability) radius of
Zs

m (R, I1, I2, . . . , Iu) , s,m ∈ N, with Hölder’s norms lp, lq and lt in spaces Rn,Rm

and Rs, respectively, is defined as:

ρ=ρsu
m (p, q, t) =

{

supΞpqt if Ξpqt 6= ∅,
0 if Ξpqt=∅.

where
Ξpqt={ε> 0 : ∀R′ ∈ Ωpqt(ε) (Gsu

m (R+R′)∩Gsu
m (R) 6= ∅)};
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Ωpqt(ε) ={R′ ∈ Rm×n×s : ‖R′‖pqt<ε} is the set of perturbing matrices R′ with

cuts R′
k ∈ Rm×n, k ∈ Ns;

Gsu
m (R + R′) is the set of (I1, I2, . . . , Iu)-solutions of the perturbed problem

Zsu
m (R+R′);

‖R′‖pqt is the norm of matrix R′= [r′ijk].

Thus the strong stability radius of the problem Zsu
m (R) is an extreme level of

independent perturbations of elements of matrix R ∈ Rm×n×s such that the sets
Gsu

m (R) and Gsu
m (R+R′) are never disjoint.

Obviously, if Gsu
m (R) =X, then the strong stability radius is not bounded. For

this reason, the problem with X\Em
s (R) 6= ∅ is called non-trivial.

3 Auxiliary statements and lemmas

Let v be any of the above-numbers p, q, t. For the number v, let v∗ be the
number conjugate to v and defined as:

1/v + 1/v∗= 1, 1 <v<∞.

We also set v∗= 1 if v=∞, and v∗=∞ otherwise. We assume that v and v∗ be taken
from [1,∞], and conjugate. In addition to the above, we assume that 1/v= 0 if v=∞.

Further we will use the well-known Hölder’s inequality

|aT b| ≤ ‖a‖v‖b‖v∗ (5)

that is true for any two vectors a and b of the same dimension.

It is also well-known that Hölder’s inequality becomes an equality for 1 <v<∞
if and only if

a) one of a or b is the zero vector;

b) the two vectors obtained from non-zero vectors a and b by raising their compo-
nents’ absolute values to the powers of v and v∗, respectively, are linearly dependent
(proportional), and sign (aibi) is independent of i.

When v= 1, (3) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|bi|
∑

i∈Nn

|ai|.

The last holds as equality if, for example, b is the zero vector or if aj 6= 0 for some
j such that |bj | =‖b‖∞ 6= 0, and ai= 0 for all i ∈ Nn\{j}.

When v=∞, (3) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|ai|
∑

i∈Nn

|bi|.

The last holds as equality if, for example, b is the zero vector or if ai=σsign(bi) for
all i ∈ Nn and σ ≥ 0.
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It is easy to see that for any a= (a1, a2, ..., an)T ∈ Rn with

|aj| =α, j ∈ Nn,

the following equality holds
‖a‖v=αn

1/v (6)

for any v ∈ [1,∞].
The following two lemmas can easily be proven.

Lemma 1. Given two portfolios x, x0 ∈ X, two market states i, i′ ∈ Nm and a fixed
risk k ∈ Ns, the following statement is true for any p, q ∈ [1,∞]:

rikx− ri′kx
0 ≥ −‖Rk‖pq‖(‖x‖p∗ , ‖x0‖p∗)‖ν ,

where Rk ∈ Rm×n is the k-th cut of matrix R ∈ Rm×n×s with rows r1k, r2k, ..., rmk ,
ν = min{p∗, q∗}.

Proof. Let i 6= i′. Then, using Hölder’s inequality (5), we get

rikx− ri′kx
0 ≥ −(‖rik‖p‖x‖p∗ + ‖ri′k‖p‖x‖p∗) ≥

≥ ‖(‖rik‖p, ‖ri′k‖p)‖q ‖(‖x‖p∗ , ‖x0‖p∗)‖q∗ ≥
≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖q∗ ≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖ν .

For i = i′, using inequalities (4), and Hölder’s inequality (5) we deduce

rikx− ri′kx
0 ≥ −‖rik‖p ‖x− x0‖p∗ ≥ −‖Rk‖pq ‖x− x0‖p∗ ≥

≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖q∗ ≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖ν .

From the definition of Gs
m (R, I1, I2, . . . , Iu), the following claim holds straight-

forward.

Lemma 2. A portfolio x /∈ Gs
m (R, I1, I2, . . . , Iu) if and only if x /∈ P (RIv

) for any
index v ∈ Nu.

4 Main result

For non-trivial problem Zsu
m (R) = Zsu

m (R, I1, I2, . . . , Iu), we introduce the follow-
ing notation

ϕ = ϕsu
m (p, q) = min

x 6∈Gsu
m (R)

min
v∈Nu

max
x′∈P (x,RIv

)
min
k∈Iv

g(x.x′, Rk)

‖(‖x‖p∗ , ‖x′‖p∗)‖γ

,

ψ = ψsu
m (p, q, t) = max

x′∈Gsu
m (R)

max
v∈Nu

min
x 6∈Gsu

m (R)

‖[g(x, x′, RIv
)]+‖t

‖(‖x‖p∗ , ‖x′‖p∗)‖γ

,
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χ = χsu
m (p, q, t) = n1/pm1/qs1/t min

x 6∈Gsu
m (R)

max
v∈Nu

max
x′∈Gsu

m (R)
max
k∈Iv

g(x, x′, Rk)

‖x− x′‖1
,

where
g(x, x′, Rk) = f(x,Rk) − f(x′, Rk), k ∈ Iv,

g(x, x′, RIv
) = f(x,RIv

) − f(x′, RIv
),

P (x,RIv
) = P (RIv

) ∩X(x,RIv
),

γ = min{p∗, q∗}.
Here [y]+ = (y+

1 , y
+
2 , . . . , y

+
h

) is a positive projection of vector
y = (y1, y2, . . . , yh) ∈ Rh, i.e. y+

k
= max{0, yk}, k ∈ Nh. It is easy to see that

ϕ, ψ, χ ≥ 0.

Theorem 1. Given s,m ∈ N, u ∈ Ns and p, q, t ∈ [1,∞], for the strong stability
radius ρ = ρsu

m (p, q, t) of s-criteria non-trivial problem Zsu
m (R), the following bounds

are valid:

0 < max{ϕsu
m (p, q), ψsu

m (p, q, t)} ≤ ρm
s (p, q, t) ≤ min{χsu

m (p, q, t), ‖R‖pqt}.

Proof. Since

∀x′ ∈ Gsu
m (R) ∀x 6∈ Gsu

m (R) ∃v ∈ Nu (f(x,RIv
) ≻ f(x′, RIv

)),

the inequalities ψ,χ > 0 are evident.
Now we show that

ρ = ρsu
m (p, q, t) ≥ ϕsu

m (p, q) = ϕ.

If ϕ = 0, the inequality above is evident, so we assume ϕ > 0.
Let the perturbing matrix R′ = [r′ijk] ∈ Rm×n×s with cuts R′

k, k ∈ Ns, be taken
from the set Ωpqt(ϕ). According to the definition of the number ϕ, and due to
inequality (4), we obtain

∀v ∈ Nu ∀x 6∈ Gsu
m (R) ∃x0 ∈ P (x,RIv

) ∀k ∈ Iv

(

g(x, x0, Rk)

‖(‖x‖p∗ , ‖x0‖p∗)‖γ

≥ ϕ > ‖R′‖pqt ≥ ‖R′
k‖pq

)

.

Thus, due to Lemma 1, for any criterion v ∈ Nu there exists a portfolio x0 6= x
such that

g(x, x0, Rk +R′
k) = f(x,Rk +R′

k) − f(x0, Rk +R′
k) =

= max
i∈Nm

(rik + r′ik)x− max
i∈Nm

(rik + r′ik)x
0 =

= min
i∈Nm

max
i′∈Nm

(rikx+ r′ikx− ri′kx
0 − r′i′kx

0) ≥

≥ f(x,Rk) − f(x0, Rk) − ‖R′
k‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖γ =
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= g(x, x0, Rk) − ‖R′
k‖pq ‖(‖x‖p∗ , ‖x0‖p∗)‖γ > 0, k ∈ Iv,

where r′ik is the i-th row of the k-th cut R′
k of the matrix R′. This implies

x 6∈ P (RIv
+R′

Iv
), v ∈ Nu.

Therefore according to Lemma 2, we obtain that

x 6∈ Gsu
m (R +R′).

Summarizing and taking into account that x 6∈ Gsu
m (R), we conclude that for any

perturbing matrix R′ ∈ Ωpqt(ϕ), any portfolio x ∈ Gsu
m (R+R′) is also an element of

Gsu
m (R), i.e. inequality ρ ≥ ϕ is true.

Further, we prove the lower bound

ρ = ρsu
m (p, q, t) ≥ ψsu

m (p, q, t) = ψ.

We already know that ψ > 0. Therefore in order to prove ρ ≥ ψ, it suffices to show
that there exists a portfolio x∗ belonging to Gsu

m (R)∩Gsu
m (R+R′) for any perturbing

matrix R′ = [r′ijk] ∈ Ωpqt(ψ).
Since the problem Zsu

m (R) is non-trivial, according to the definition of ψ, we have

∃x0 ∈ Gsu
m (R) ∃w ∈ Nu ∀x 6∈ Gsu

m (R)

(

‖[g(x, x0, RIw
)]+‖t ≥ ψ‖(‖x‖p∗, ‖x0‖p∗)‖γ > 0

)

. (7)

Further we show that the formula

∀x 6∈ Gsu
m (R) ∀R′ ∈ Ωpqt(ψ) (x 6∈ X(x0, RIw

+R′
Iw

)) (8)

holds.
We prove this by contradiction. Assume the opposite, i.e. that formula

∃x̃ 6∈ Gsu
m (R) ∃R̃ ∈ Ωpqt(ψ) (x̃ ∈ X(x0, RIw

+ R̃Iw
))

holds. Then we get

f(x̃, RIw
+ R̃Iw

) ≺ f(x0, RIw
+ R̃Iw

).

Using Lemma 1 for any index k ∈ Iw, we obtain

0 ≥ g(x̃, x0, Rk + R̃k) = f(x̃, Rk + R̃k) − f(x0, Rk + R̃k) =

= max
i∈Nm

(rik + r̃ik)x̃− max
i∈Nm

(rik + r̃ik)x
0 =

= min
i∈Nm

max
i′∈Nm

(rikx̃− ri′kx
0 + r̃ikx̃− r̃i′kx

0) ≥

≥ g(x̃, x0, Rk) − ‖R̃k‖pq ‖(‖x̃‖p∗ , ‖x0‖p∗)‖γ .
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Therefore, we get

g(x̃, x0, Rk) ≤ ‖R̃k‖pq ‖(‖x̃‖p∗ , ‖x0‖p∗)‖γ , k ∈ Iw.

Then we continue

[g(x̃, x0, Rk)]
+ ≤ ‖R̃k‖pq ‖(‖x̃‖p∗ , ‖x0‖p∗)‖γ , k ∈ Iw.

As a result we get a formula contradicting (7)

‖[g(x̃, x0, RIw
)]+‖t ≤ ‖R̃Iw

‖pqt ‖(‖x̃‖p∗ , ‖x0‖p∗)‖γ ≤

≤ ‖R̃‖pqt ‖(‖x̃‖p∗ , ‖x0‖p∗)‖γ < ψ‖(‖x̃‖p∗ , ‖x0‖p∗)‖γ .

This confirms the validity of (8).
Further we show a way of selecting a portfolio x∗ ∈ Gsu

m (R)∩Gsu
m (R+R′) where

R′ ∈ Ωpqt(ψ). If x0 ∈ Gsu
m (R +R′), then we get x∗ = x0. If x0 6∈ Gsu

m (R+ R′), then
due to Lemma 2 we obtain x0 6∈ P (RIv

+R′
Iv

) for any v ∈ Nu, and in particular for a
fixed w ∈ Nu we have x0 6∈ P (RJw

+R′
Iw

). Then due to external stability (see [16])
of the Pareto set P (RJw

+R′
Iw

), one can chose a portfolio x∗ ∈ P (RJw
+R′

Iw
) (and

hence x∗ ∈ Gsu
m (R+R′)) such that x∗ ∈ X(x0, RIw

+R′
Iw

). Taking into account (8),
it is easy to see that x∗ ∈ Gsu

m (R). Thus, we just have ρ ≥ ψ proven.
Further, we prove the upper bound

ρ = ρsu
m (p, q, t) ≤ χsu

m (p, q, t) = χ.

According to the definition of χ and due to assumption about problem’s non-
triviality, we have

∃x0 = (x0
1, x

0
2, ..., x

0
n)T 6∈ Gsu

m (R) ∀v ∈ Nu ∀x ∈ Gsu
m (R) ∀k ∈ Iv

(

χ‖x0 − x‖1 ≥ n1/pm1/qs1/tg(x0, x,Rk)
)

. (9)

Let ε > χ, and let the elements of perturbing matrix R0 = [r0ijk] ∈ Rm×n×s be
defined as:

r0ijk =

{

−δ if i ∈ Nm, x0
j = 1, k ∈ Ns,

δ if i ∈ Nm, x0
j = 0, k ∈ Ns,

where δ satisfies
χ < δn1/pm1/qs1/t < ε. (10)

From the above according to (6), we get

‖r0ik‖p = δn1/p, i ∈ Nm, k ∈ Ns,

‖R0
k‖pq = δn1/pm1/q, k ∈ Ns,

‖R0‖pqt = δn1/pm1/qs1/t,

R0 ∈ Ωpqt(ε).
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In addition, all the rows r0ik, i ∈ Nm, of any k-th cut R0
k, k ∈ Ns, are constructed

identically and composed of δ and −δ. So, setting c = r0ik, i ∈ Nm, k ∈ Ns, we
deduce

c(x0 − x) = −δ‖x0 − x‖1 < 0

that is true for any portfolio x 6= x0. Using (9) and (10), we conclude that for any
portfolio x ∈ Gsu

m (R) and any v ∈ Nu, the following statements are true:

g(x0, x,Rk +R0
k) = f(x0, Rk +R0

k) − f(x,Rk +R0
k) =

= max
i∈Nm

(rik + c)x0 − max
i∈Nm

(rik + c)x = max
i∈Nm

rikx
0 − max

i∈Nm

rikx+ c(x0 − x) =

= g(x0, x,Rk) + c(x0 − x) ≤
(

χ(n1/pm1/qs1/t)−1 − δ
)

‖x0 − x‖1 < 0, k ∈ Iv.

This implies x 6∈ P (RIv
+ R′

Iv
) for any v ∈ Nu. Then due to Lemma 2 we have

x 6∈ Gsu
m (R+R0). Thus, for any ε > χ there exists a perturbing matrix R0 ∈ Ωpqt(ε)

such that Gsu
m (R) ∩Gsu

m (R +R0) = ∅, i.e. ρ < ε for any ε > χ. Hence, ρ ≤ χ.
Finally, we show

ρ = ρsu
m (p, q, t) ≤ ‖R‖pqt.

Let x0 = (x0
1, x

0
2, ..., x

0
n)T 6∈ Gsu

m (R) and ε > ‖R‖pqt, and let us fix δ satisfying
condition

0 < δn1/pm1/qs1/t < ε− ‖R‖pqt. (11)

We introduce an auxiliary matrix V = [vijk] ∈ Rm×n×s with cuts Vk, k ∈ Ns,
defined as follows:

vijk =

{

−δ if i ∈ Nm, x0
j = 1, k ∈ Ns,

δ if i ∈ Nm, x0
j = 0, k ∈ Ns.

Using (6), we obtain

‖Vk‖pq = δn1/pm1/q, k ∈ Ns,

‖V ‖pqt = δn1/pm1/qs1/t. (12)

It is easy to see that all rows of Vk, k ∈ Ns, are identical and composed of δ and
−δ. So, we get that for any v ∈ Nu the following formula

f(x0, Vk) − f(x, Vk) = −δ‖x0 − x‖1 < 0, k ∈ Iv, (13)

is true for any x 6= x0, and in particular for x ∈ Gsu
m (R).

Further, let R0 ∈ Rm×n×s be a perturbing matrix with cuts R0
k, k ∈ Ns, defined

as:
R0

k = Vk −Rk, k ∈ Ns, (14)

i.e. R0 = V −R. Using (11) and (12), we deduce

‖R0‖pqt ≤ ‖V ‖pqt + ‖R‖pqt = δn1/pm1/qs1/t + ‖R‖pqt < ε,
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i.e. R0 ∈ Ωpqt(ε).

Additionally, using (13) and (14) for any index v ∈ Nu, we have

g(x0, x,Rk +R0
k) = f(x0, Rk +R0

k) − f(x,Rk +R0
k) =

= f(x0, Vk) − f(x, Vk) = −δ‖x0 − x‖1 < 0, k ∈ Iv,

i.e. x 6∈ P (RIv
+R0

Iv
) for any v ∈ Nu. Therefore, due to Lemma 2 x 6∈ Gsu

m (R+R0).
Summarizing, we get

∀ε > ‖R‖pqt ∃R0 ∈ Ωpqt(ε)
(

Gsu
m (R) ∩Gsu

m (R+R0) = ∅
)

.

The last implies ρ ≤ ‖R‖pqt.

5 Corollaries

From theorem 1 we obtain a series of known results. For the completeness
of description we list most interesting of them below. The first corollary describes
strong stability bounds for an extreme case u = 1 where the set of efficient portfolios
Gs

m(R,Ns) transforms into the set of Pareto efficient portfolios P s
m(R).

Corollary 1. [8] For s,m ∈ N and p, q, t ∈ [1,∞], the strong stability radius
ρs1

m(p, q, t) of s-criteria non-trivial problem Zs
m(R,Ns) of finding the set of Pareto

efficient portfolios P s
m(R) has the following valid lower and upper bounds:

0 < max{ϕs1
m(p, q), ψs1

m (p, q, t)} ≤ ρs1
m(p, q, t) ≤ min{χs1

m(p, q, t), ‖R‖pqt},

where

ϕs1
m(p, q) = min

x 6∈P s
m(R)

max
x′∈P (x,R)

min
k∈Ns

g(x, x′, Rk)

‖(‖x‖p∗ , ‖x′‖p∗)‖γ

,

ψs1
m (p, q, t) = max

x′∈P s
m(R)

min
x 6∈P s

m(R)

‖[g(x, x′, Rk)]
+‖t

‖(‖x‖p∗ , ‖x′‖p∗)‖γ

,

χs1
m(p, q, t) = n1/pm1/qs1/t min

x 6∈P s
m(R)

max
x′∈P s

m(R)
max
k∈Ns

g(x, x′, Rk)

‖x− x′‖1
.

Therefore, in particular case where p = q = t = ∞, we have

0 < max
x′∈P s

m(R)
min

x 6∈P s
m(R)

max
k∈Ns

g(x, x′, Rk)

‖x+ x′‖1
≤ ρs1

m(∞,∞,∞) ≤

≤ min
x 6∈P s

m(R)
max

x′∈P s
m(R)

max
k∈Ns

g(x, x′, Rk)

‖x− x′‖1
.

The second corollary describes strong stability bounds for another extreme case
u = s where the set of efficient portfolios Gs

m(R, {1}, {2}, . . . , {s}) transforms into
the set of extreme portfolios Es

m(R).
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Corollary 2. [20] For s,m ∈ N and p, q, t ∈ [1,∞], the strong stability radius
ρss

m(p, q, t) of s-criteria non-trivial problem Zs
m(R, {1}, {2}, . . . , {s}) of finding the

set of extreme portfolios Es
m(R) has the following valid lower and upper bounds:

0 < max{ϕss
m(p, q), ψss

m (p, q)} ≤ ρss
m(p, q, t) ≤ min{χss

m(p, q, t), ‖R‖pqt},

where

ϕss
m(p, q) = min

x 6∈Es
m(R)

min
k∈Ns

max
x′∈E(Rk)

g(x, x′, Rk)

‖(‖x‖p∗ , ‖x′‖p∗)‖γ

,

ψss
m(p, q) = max

x′∈Es
m(R)

max
k∈Ns

min
x 6∈Es

m(R)

g(x, x′, Rk)

‖(‖x‖p∗ , ‖x′‖p∗)‖γ

,

χss
m(p, q, t) = n1/pm1/qs1/t min

x 6∈Es
m(R)

max
k∈Ns

max
x′∈Es

m(R)

g(x, x′, Rk)

‖x− x′‖1
.

Therefore, in particular case where p = q = t = ∞, we have

0 < min
x 6∈Es

m(R)
min
k∈Ns

max
x′∈E(Rk)

g(x, x′, Rk)

‖x+ x′‖1
≤ ρss

m(∞,∞,∞) ≤

≤ min
x 6∈Es

m(R)
max
k∈Ns

max
x′∈Es

m(R)

g(x, x′, Rk)

‖x− x′‖1
.

6 Conclusion

As a summary, it is worth mentioning that the bounds proven in Theorem 1 and
corollaries, are mostly theoretical due to their analytical and enumerative structures.
Even for a single objective, the difficulty of stability radius exact value calculation is
a long-standing challenge pointed out in [13, 14]. In practical applications, one can
try to get reasonable approximation of the bounds using some meta-heuristics, e.g.
evolutionary algorithms or Monte-Carlo simulation. Another possibility to continue
research in this direction is to specify some particular classes of problems where
computational burden can be drastically reduced due to a unique structure of the
set of efficient portfolios.
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Second order state-dependent sweeping process with

unbounded perturbation

Doria Affane, Nora Fetouci and Mustapha Fateh Yarou

Abstract. We establish, in the setting of an infinite dimensional Hilbert space,
results concerning the existence of solutions of second order ”nonconvex sweeping
process” for a class of uniformly prox-regular sets depending on time and state. The
perturbation considered here is general and takes the form of a sum of a single-valued
Carathéodory mapping and a set-valued unbounded mapping. We deal also with a
delayed perturbation, that is the external forces applied on the system in presence
of a finite delay. We extend a discretization approach known for the time-dependent
case to the time and state-dependent sweeping process.

Mathematics subject classification: 34A60, 49J53 .
Keywords and phrases: Differential inclusion, uniformly prox-regular sets, un-
bounded perturbation, Carathéodory mapping, delay.

1 Introduction

The second order perturbed state-dependent nonconvex sweeping process has
been a particular attraction for many authors during the last years, it takes the
following form: let H be a Hilbert space, T0 and T be two non-negative real numbers
with 0 ≤ T0 < T, and D(t, x) be a nonempty closed subset of H for each t ∈ [T0, T ]
and x ∈ H. Given b ∈ H and a ∈ D(T0, b), we have to find two absolutely continuous
mappings u, v : [T0, T ] satisfying

(PF )















−u̇(t) ∈ ND(t,v(t))(u(t)) + F (t, v(t), u(t)), a.e. t ∈ [T0, T ]

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ],

u(t) ∈ D(t, v(t)), ∀t ∈ [T0, T ],

where ND(t,v(t))(u(t)) denotes the normal cone to D(t, v(t)) at the point u(t),
F : [T0, T ] ×H ×H ⇁ H is a set-valued mapping. Such problem is an extension of
the so-called Moreau’s sweeping process for Lagrangian system to frictionless unilat-
eral constraints. The differential inclusion (PF ) was studied for the first time when
the sets D(t, v(t)) are convex and compact and F ≡ 0 by [9], then by [17] and [21].
The nonconvex case has been considered by [16], the authors proved the existence
of solutions to (PF ) for uniformly prox-regular sets D(t, v(t)) with absolutely con-
tinuous variation in space and Lipschitz variation in time and with a single-valued
perturbation. By means of a generalized version of the Shauder’s theorem, [12]
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provided another approach to prove the existence for uniformly prox regular and
ball-compact sets D(t, v(t)) with absolutely continuous variation in time, without
perturbation and for the perturbed problem (even in presence of a delay). The ex-
istence of solution for such problem is established by proving the convergence of the
Moreau’s catching-up algorithm. For other approaches, we refer to [1–6,11,24,25].

Our main purpose in this paper is to study, in an infinite dimensional Hilbert
space, the second order sweeping process with two perturbations

(P)















−u̇(t) ∈ ND(t,v(t))(u(t)) + F (t, v(t), u(t)) + f(t, v(t), u(t)), a. e. t ∈ [T0, T ];

v(t) = b+

∫ t

T0

u(s)ds; u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ];

u(t) ∈ D(t, v(t)), ∀t ∈ [T0, T ],

where F : [T0, T ] × H × H ⇁ H is an upper semicontinuous set-valued map with
nonempty closed convex values unnecessarily bounded and without any compactness
condition and f : [T0, T ] ×H ×H → H is a Carathéodory mapping satisfying the
linear growth condition. This work is motivated by the recent results obtained for the
same problem by [20] and [22], where reduction approaches have been used. In [20],
only a single-valued ”Lipschitz” perturbation is considered, the authors reduced the
problem for second order time and state-dependent sweeping process to a first order
time-dependent one. They make use of the Shauder’s fixed point argument in the
line of the approach of [16]. Whereas the reduction approach of [22] is valid only
in finite dimensional setting. Our aim in this paper is to generalize all the results
obtained in the two cases, using a different approach, we weaken the hypotheses
on the perturbation by taking a Carathéodory mapping satisfying a linear growth
condition and an unbounded set-valued perturbation for which only the element of
minimum norm satisfies a linear growth condition.

On the other hand, we extend another reduction approach, known for the time-
dependent sweeping process in presence of delay; it consists to reduce a second order
sweeping process with delayed perturbation to a problem without delay. We show
that this approach is still valid in the case of time and state-dependent sweeping
process. The paper is organized as follows. In Section 2, we recall some basic
notations, definitions and useful results which are used throughout the paper. In
Section 3, we provide the existence results for the problem (P). The delayed problem
is studied in the last section.

2 Notation and Preliminaries

We begin with some notations used in the paper. Let H be a real separable
Hilbert space whose inner product is denoted by 〈·, ·〉, and the associated norm
by ‖ · ‖. We denote by BH the unit closed ball of H, L([T0, T ]) the σ-algebra of
Lebesgue measurable subsets of [T0, T ] and by B(H) the Borel tribe on H. We de-
note also by L1

H([T0, T ]) the space of all Lebesgue-Bochner integrable H-valued map-
pings defined on [T0, T ], by CH([T0, T ]) the Banach space of all continuous mappings
u : [T0, T ] → H endowed with the norm of uniform convergence.
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For any nonempty closed subset S, S′ of H, we denote by:
• d(·, S) the usual distance function associated with S;
• δ∗(x′, S) = sup

y∈S

〈x′, y〉 the support function of S at x′ ∈ H. If S is closed convex

subset d(x, S) = sup
x′∈BH

(

〈x′, x〉 − δ∗(x′, S)
)

;

• ProjS(u) the projection of u onto S defined by

ProjS(u) = {y ∈ S : d(u, S) = ‖u− y‖},

is unique whenever S is closed convex;
• H the Hausdorff distance between S and S′, defined by

H(S, S′) = max{sup
u∈S

d(u, S′), sup
v∈S′

d(v, S)};

• co(S) the convex hull of S and co(S) its closed convex hull, characterized by

co(S) = {x ∈ H : ∀x′ ∈ H, 〈x′, x〉 ≤ δ∗(x′, S)}.

Recall that f : [T0, T ] × H → H is called a Carathéodory mapping if f(·, u) is
measurable on [T0, T ] for all u ∈ H and f(t, ·) is continuous onH for every t ∈ [T0, T ].
A set-valued mapping G : H → H is called :
• upper semicontinuous if, for any open subset V ⊂ H, the set {x ∈ H : G(x) ⊂ V}
is open in H;
• scalarly upper semicontinuous on H if for every h ∈ H, δ∗(h,G(·)) is upper
semicontinuous on H.

We need in the sequel to recall some definitions and results that will be used
throughout the paper. Let A be an open subset of H and ϕ : A → (−∞,+∞]
be a lower semicontinuous function, the proximal subdifferential ∂Pϕ(x), of ϕ at x
(see [19]) is the set of all proximal subgradients of ϕ at x, any ξ ∈ H is a proximal
subgradient of ϕ at x if there exist positive numbers η and ς such that

ϕ(y) − ϕ(x) + η‖y − x‖2 ≥ 〈ξ, y − x〉, ∀y ∈ x+ ςBH .

Let x be a point of S ⊂ H, we recall (see [19]) that the proximal normal cone to S
at x is defined by NP

S (x) = ∂P ΨS(x), where ΨS denotes the indicator function of S,
i.e. ΨS(x) = 0 if x ∈ S and +∞ otherwise. Note that the proximal normal cone is
also given by

NP
S (x) = {ξ ∈ H : ∃̺ > 0 s.t. x ∈ ProjS(x+ ̺ξ)}.

When S is a closed set one has ∂P d(x, S) = NP
S (x) ∩ BH .

If ϕ is a real-valued locally-Lipschitz function defined onH, the Clarke subdifferential
∂Cϕ(x) of ϕ at x is the nonempty convex compact subset of H given by

∂Cϕ(x) = {ξ ∈ H : ϕ◦(x; v) ≥ 〈ξ, v〉,∀v ∈ H},
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where

ϕ◦(x; v) = lim
y→x,

sup
t↓0

ϕ(y + tv) − ϕ(y)

t

is the generalized directional derivative of ϕ at x in the direction v (see [19]). The
Clarke normal cone NC

S (x) to S at x ∈ S is defined by polarity with TC
S , that is,

NC
S (x) = {ξ ∈ H : 〈ξ, v〉 ≤ 0, ∀v ∈ TC

S },

where TC
S denotes the clarke tangent cone, and is given by

TC
S = {v ∈ H : d◦(x, S; v) = 0}.

Recall now, that for a given r ∈]0,+∞] the subset S is uniformly r-prox-regular
(see [19]) or equivalently r-proximally smooth ([23]) if and only if for all x ∈ S and
all 0 6= ξ ∈ NP

S (x) one has

〈 ξ

‖ξ‖ , x− x〉 ≤ 1

2r
‖x− x‖2,

for all x ∈ S. We make the convention 1
r

= 0 for r = +∞. Recall that for r = +∞ the
uniform r-prox-regularity of S is equivalent to the convexity of S. It’s well known
that the class of uniformly r-prox-regular sets is sufficiently large to include the
class of convex sets, p-convex sets, C1,1 submanifolds (possibly with boundary) of
a Hilbert space and many other nonconvex sets (see [15, 20]). Furthermore, the
following properties hold for a closed uniformly r-prox-regular set S:
• for any NP

S (x) = NC
S (x) = NS(x);

• the proximal subdifferential of d(., S) coincides with its Clarke subdifferential at
all points x ∈ H satisfying d(x, S) < r;
• for all x ∈ H with d(x, S) < r, ProjS(x) is a singleton of H.

The next proposition provides an upper semicontinuity property of the sup-
port function of the proximal subdifferential of the distance function to uniformly
r-prox-regular sets.

Proposition 1. Let D : [T0, T ]×H ⇁ H be a uniformly r-prox regular closed valued
mapping satisfying

|d(u,D(t, x)) − d(v,D(s, y))| ≤ ||u− v|| + v(t) − v(s) + L||x− y||

for all u, x, v, y in H and for all s ≤ t in [T0, T ], where v : [T0, T ] → R+ is a
nondecreasing absolutely continuous function and L is a positive constant. Then the
convex weakly compact valued mapping (t, x, y) → ∂pd(y,D(t, x)) satisfies the upper
semicontinuity property: let (tn, xn) be a sequence in [T0, T ]×H converging to some
(t, x) ∈ [T0, T ] × H, and (yn) be a sequence in H with yn ∈ D(tn, xn) for all n,
converging to y ∈ D(t, x), then, for any z ∈ H,

lim sup
n→∞

δ∗(z, ∂pd(yn,D(tn, xn))) ≤ δ∗(z, ∂pd(y,D(t, x))).
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3 Main results

The following assumption will be useful.
Assumption 1: Let D : [T0, T ]×H → H be a set-valued mapping with nonempty
closed and uniformly r-prox regular values such that:

(A1) There is a positive constant L and a nondecreasing absolutely continuous func-
tion ζ : [T0, T ] → R+ such that, for all s ≤ t in [T0, T ] and xi, yi ∈ H(i = 1, 2),

|d
(

x1,D(t, y1)
)

− d
(

x2,D(s, y2)
)

| ≤ ‖x1 − x2‖ + ζ(t) − ζ(s) + L‖y1 − y2‖;

(A2) for all (t, x) ∈ [T0, T ] ×H, D(t, x) is contained in a compact set Γ.

Let us start with an existence result for second order state-dependent sweeping
process without perturbations, it will be used in the next theorem. The proof is
a careful adaptation of Theorem 3.2 and 3.4 in [12]. Remark that, here the sets
D(t, u) are with absolutely continuous variation in time while in Theorem 3.2 of [12]
the variation in time is Lipschitz.

Theorem 1. Assume that Assumption 1 holds. Then, for every b ∈ H and for
every a ∈ D(T0, b), there exist two absolutely continuous mappings u : [T0, T ] → H
and v : [T0, T ] → H satisfying















−u̇(t) ∈ ND(t,v(t))(u(t)), a.e. t ∈ [T0, T ];

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ];

u(t) ∈ D(t, v(t)), ∀t ∈ [T0, T ],

with
‖u̇(t)‖ ≤ ζ̇(t)(1 + Lα) a.e. t ∈ [T0, T ].

Proof. By assumption (A2), for some α > 0 we have D(t, x) ⊂ Γ ⊂ αBH . Consider
a partition of [T0, T ] by the points tnk = T0 + ken, en = T−T0

n
, k ∈ {0, 1, 2, ..., n} and

set
σn

k = ζ(tnk+1) − ζ(tnk)

and
σn = max

0≤k≤n−1
σn

k .

As the sequences (σn) and (en) converge to 0, one can fix a positive integer n0 such
that for any n ≥ n0

(σn + en)(1 + Lα) < r.

Construction of approximate solutions: For each t ∈ [tn0 , t
n
1 ], we define

vn(t) = b+ (t− tn0 )a

un(t) = xn
0 +

ζ(t) − ζ(tn0 )

σn
0 + en

(xn
1 − xn

0 ),
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where xn
0 = a ∈ D(T0, b) and xn

1 = ProjD(tn1 ,vn(tn1 ))(x
n
0 ). Despite the absence of the

convexity of the images of D, the last equality is well defined. Indeed, we have

d(xn
0 ,D(tn1 , vn(tn1 ))) = |d(xn

0 ,D(tn0 , vn(tn0 ))) − d(xn
0 ,D(tn1 , vn(tn1 )))|

≤ ζ(tn1 ) − ζ(tn0 ) + L‖vn(tn1 ) − vn(tn0 )‖
≤ σn

0 + Len‖xn
0‖ ≤ (σn + en)(1 + Lα) ≤ r.

Hence vn(tn0 ) = b, un(tn0 ) = a and for t ∈]tn0 , t
n
1 [, we have v̇n(t) = a and

u̇n(t) = ζ̇(t)
xn

1 − xn
0

σn
0 + en

∈ −ND(tn1 ,vn(tn1 ))(x
n
1 ),

with
‖u̇n(t)‖ ≤ ζ̇(t)(1 + Lα).

By induction, suppose that (vn), (un) are well defined on ]tn0 , t
n
k ] with un(tnk) = xn

k

and ‖u̇n(t)‖ ≤ ζ̇(t)(1 + Lα). For each t ∈]tnk , t
n
k+1], we define

vn(t) = vn(tnk) + (t− tnk)un(tnk)

and

un(t) = xn
k +

ζ(t) − ζ(tnk)

σn
k

+ en
(xn

k+1 − xn
k),

where xn
k+1 = ProjD(tn

k+1,vn(tn
k+1))(x

n
k) and d(xn

k ,D(tnk+1, vn(tnk+1))) ≤ r.

Then for t ∈]tnk , t
n
k+1], we have v̇n(t) = un(tnk) and

u̇n(t) = ζ̇(t)
xn

k+1 − xn
k

σk
n + en

∈ −ND(tn
k+1,vn(tn

k+1))(x
n
k+1),

with
‖u̇n(t)‖ ≤ ζ̇(t)(1 + Lα) and ‖v̇n(t)‖ ≤ α.

Defining for each t ∈ [T0, T ] and each n ≥ n0,

pn(t) =

{

tnk if t ∈ [tnk , t
n
k+1[

T if t = T ;

qn(t) =

{

T0 if t = T0

tnk+1 if t ∈]tnk , t
n
k+1],

we get
u̇n(t) ∈ −ND(qn(t),vn(qn(t)))(un(qn(t))) a.e. [T0, T ];

un(qn(t)) ∈ D(qn(t), vn(qn(t)), ∀[T0, T ];

vn(t) = b+

∫ t

T0

un(pn(s))ds, ∀[T0, T ];

lim
n→∞

pn(t) = lim
n→∞

qn(t) = t, ∀[T0, T ];
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‖v̇n(t)‖ = ‖un(pn)(t))‖ = ||xn
k || ≤ α, ∀ k ≤ n, ∀t ∈ [T0, T ]

and
‖u̇n(t)‖ ≤ ζ̇(t)(1 + Lα) = ρ(t). (1)

Thus
lim

n→∞
||un(pn(t)) − un(t)|| = 0. (2)

Convergence of approximate sequences:
We have un(pn(t)) ∈ D(pn(t), vn(pn(t))) ⊂ Γ, so that; un(pn(t)) is relatively compact
for every t ∈ [T0, T ] in H, so is (un(t)) thanks to (2). By (1), (un(·)) is equicontin-
uous. Thus (un) is relatively compact in CH([T0, T ]), consequently (un) converges
in CH([T0, T ]) to the absolutely continuous mapping u. By (1) again, (u̇n) weakly
converges in L1

H [T0, T ] to a function z with ‖z(t) ≤ ρ(t) a.e. in [T0, T ] (see Proposi-
tion 6.2.3 in [10]) and (un) converges pointwise on [T0, T ] with respect to the weak
topology to an absolutely continuous function u and

u(t) = a+

∫ t

T0

u̇(s)ds, ∀[T0, T ]

with u̇ = z. From the convergence of (un) we deduce that of (vn) to an absolutely
continuous function v with

v(t) = b+

∫ t

0
u(s)ds, ∀[T0, T ].

For the rest of the demonstration we can consult the proof of Theorem 2 below.

Now, we give the main result in this section.

Theorem 2. Assume that Assumption 1 holds. Let F : [T0, T ] ×H ×H ⇁ H be a
set-valued map with nonempty closed convex values such that:

(AF1) F is L([T0, T ]) ⊗ B(H) ⊗ B(H)-measurable and for all t ∈ [T0, T ], F (t, ·, ·) is
scalarly upper semicontinuous on H ×H;

(AF2) there exists a real β > 0, such that, for all (t, u, v) ∈ [T0, T ] ×H ×H,

d(0, F (t, u, v)) ≤ β(1 + ‖u‖ + ‖v‖).

And let f : [T0, T ] ×H ×H → H be a Carathéodory mapping satisfies

(Af ) there exists a non-negative function γ ∈ L1
R+([T0, T ]) such that, for all

t ∈ [T0, T ] and for all (u, v) ∈ H ×H,

‖f(t, u, v)‖ ≤ γ(t)(1 + ‖u‖ + ‖v‖).

Then, for any a, b ∈ H with a ∈ D(T0, b), there exist two absolutely continuous
mappings u, v : [T0, T ] → H satisfying (P).
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Proof. Step 1. We begin by a single-valued integrable mapping m ∈ L1
H([T0, T ]).

Put for all t ∈ [T0, T ],

m1(t) =

∫ t

T0

m(s)ds and m2(t) =

∫ t

T0

m1(s)ds

and consider the set-valued map C : [T0, T ] ×H ⇁ H defined by

C(t, z) = D(t, z −m2(t)) +m1(t) ∀ (t, z) ∈ [T0, T ] ×H.

Obviously, C satisfies (A2), let verify (A1). For any w1, w2, z1, z2 in H and any
s ≤ t in [T0, T ], we have

|d(w1, C(t, z1)) − d(w2, C(s, z2))|

= |d(w1 −m1(t),D(t, z1 −m2(t))) − d(w2 −m1(s),D(s, z2 −m2(s)))|
≤ ‖w1 − w2‖ + ‖m1(t) −m1(s)‖ + L‖m2(t) −m2(s)‖ + ζ(t) − ζ(s) + L‖z1 − z2‖

≤ ‖w1 − w2‖ + ζ1(t) − ζ1(s) + L‖z1 − z2‖
where

ζ1(t) =

∫ t

T0

(

ζ̇(ω) + ‖m(ω)‖ + L

∫ ω

T0

‖m(τ)‖dτ
)

dω

is an absolutely continuous nondecreasing mapping. Hence, C satisfies (A1), as
a ∈ C(T0, b) = D(T0, b), from Theorem 1, there exist two absolutely continuous
mappings x : [T0, T ] → H and y : [T0, T ] → H such that















−ẏ(t) ∈ NC(t,x(t))(y(t)), a.e. t ∈ [T0, T ];

x(t) = b+

∫ t

T0

y(s)ds, y(t) = a+

∫ t

T0

ẏ(s)ds, ∀t ∈ [T0, T ];

y(t) ∈ C(t, x(t)), ∀t ∈ [T0, T ].

Let u(t) = y(t) −m1(t) and v(t) = x(t) −m2(t), the mappings u(·) and v(·) satisfy















−u̇(t) ∈ ND(t,v(t))(u(t)) +m(t), a.e. t ∈ [T0, T ];

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ];

u(t) ∈ D(t, v(t)), ∀t ∈ [T0, T ].

with

‖u̇(t)‖ ≤
(

1 + Lα

)

(

ζ̇(t) + 2‖m(t)‖ + L

∫ s

T0

‖m(τ)‖dτ
)

ds.

Step 2. For each (t, u, v) ∈ [T0, T ] × H × H, let P (t, x, y) be the element of
minimal norm of the closed convex set F (t, x, y) of H, that is

P (t, x, y) = ProjF (t,x,y)(0), ∀ (t, u, v) ∈ [T0, T ] ×H ×H.
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Since F is L([T0, T ]) ⊗ B(H) ⊗ B(H)-measurable, so P (·, ·, ·) = d(0, F (·, ·, ·)), is
measurable. In view of (AF2)

‖P (t, x, y)‖ ≤ β(1 + ‖x‖ + ‖y‖). (3)

We put

g(t, x, y) = f(t, x, y) + P (t, x, y)

and

Λ(t) = γ(t) + β,

by (3) and (Af ), we get for all (t, u, v) ∈ [T0, T ] ×H ×H ,

‖g(t, x, y)‖ ≤ Λ(t)(1 + ‖x‖ + ‖y‖). (4)

Construction of sequences: Consider, for every n ∈ N, a partition of [T0, T ] defined
by tni = T0 + iT−T0

n
(0 ≤ i ≤ n). We are going to construct a sequence of maps

(un(·)) and (vn(·)) via Step 1, by considering a perturbation g with fixed second and
third variables in each subinterval [tni , t

n
i+1]. So, for a ∈ D(T0, b), let us consider the

following problem on the interval [T0, t
n
1 ] :

(P0)

{

−u̇(t) ∈ ND(t,v(t))(u(t)) + g(t, b, a) a.e. t ∈ [T0, t
n
1 ]

v(T0) = a, u(T0) = a ∈ D(T0, b)

where g(·, b, a) is a mapping depending only on t and is L1
H([T0, t

n
1 ]). By Step 1, there

are two absolutely continuous mappings that we denote by un
0 (.), vn

0 (.) : [T0, t
n
1 ] → H

solutions of (P0). Now, since un
0 (tn1 ) ∈ D(tn1 , v

n
0 (tn1 )) is well defined in the interval

[tn1 , t
n
2 ] the problem

(P1)

{ −u̇n
1 (t) ∈ ND(t,vn

1 (t))(u
n
1 (t)) + g(t, vn

0 (tn1 ), un
0 (tn1 )) a.e. t ∈ [tn1 , t

n
2 ];

un
0 (tn1 ) ∈ D(tn1 , v

n
0 (tn1 )).

admits an absolutely continuous solution (un
1 (·), vn

1 (·)) with un
1 (tn1 ) = un

0 (tn1 ) and
vn
1 (tn1 ) = vn

0 (tn1 ). By induction, for each n, there exist two finite sequence of abso-
lutely continuous mappings un

i (·), vn
i (·) : [tni , t

n
i+1] → H with un

i (tni ) = un
i−1(t

n
i ) and

vn
i (tni ) = vn

i−1(t
n
i ) such that, for each i ∈ {0, ..., n − 1},

(Pi)

{ −u̇n
i (t) ∈ ND(t,vn

i
(t))(u

n
i (t)) + g(t, vn

i−1(t
n
i ), un

i−1(t
n
i )) a.e. t ∈ [tni , t

n
i+1];

un
i−1(t

n
i ) ∈ D(tni , v

n
i−1(t

n
i )),

where un
−1(T0) = a, vn

−1(T0) = b and

‖u̇(t)‖ ≤
(

1 + Lα

)(

ζ̇(t) + 2‖g(t, vn
i−1(t

n
i ), un

i−1(t
n
i ))‖

+L

∫ t

tn
i

‖g(τ, vn
i−1(t

n
i ), un

i−1(t
n
i )‖dτ

)

,
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a.e. t ∈ [tni , t
n
i+1]. We define the absolutely continuous mappings un, vn : [T0, T ] → H

by un(t) = un
i (t) and vn(t) = vn

i (t) for all t ∈ [tni , t
n
i+1], i ∈ {0, · · ·, n}. One can write















u̇n(t) ∈ −ND(t,vn(t))(un(t)) + g(t, vn(pn(t)), un(pn(t))) a.e. t ∈ [T0, T ];

vn(t) = b+

∫ t

T0

un(s)ds, un(t) = a+

∫ t

T0

u̇n(s)ds, ∀t ∈ [T0, T ];

un(t) ∈ D(t, vn(t)), ∀t ∈ [T0, T ], un(T0) = a, vn(T0) = b,

with a.e. t ∈ [T0, T ]

‖u̇n(t)‖ ≤
(

1 + Lα

)

(

ζ̇(t) + 2‖g(t, vn(pn(t)), un(pn(t)))‖

+L

∫ t

pn(t)
‖g(τ, vn(pn(τ)), un(pn(τ)))‖dτ

)

.

Since for all t ∈ [T0, T ], un(pn(t)) ∈ D(pn(t), vn(pn(t))), then

‖un(pn(t))‖ ≤ α and ‖vn(pn(t))‖ ≤ ‖b‖ + (T − T0)α.

By (4), we get for almost every t ∈ [T0, T ]

‖g(t, vn(pn(t)), un(pn(t)))‖ =

(

1 + ‖b‖ + (T + 1)α

)

Λ(t) = c1(t). (5)

Then

‖u̇n(t)‖ ≤
(

1 +Lα

)

(

ζ̇(t) +
(

2 +L

∫ T

T0

Λ(τ)dτ)(1 + ‖b‖+ (T + 1)α
)

)

= c2(t). (6)

Convergence of sequences: Since for each t, un(t) ∈ D(t, vn(t)) ⊂ Γ, for all n ∈ N

such that (un(t)) is relatively compact in H for every t ∈ [T0, T ]. Using Ascoli-Arzelà
theorem, (un) is relatively compact in CH([T0, T ]). Then there exists a subsequence
again denoted by (un) which converges to a mapping u. According to (6), we may
suppose that (u̇n) weakly converges in L1

H([T0, T ]) to a mapping z with ‖z(t)‖ ≤ c2(t)
a.e. in [T0, T ]. Thus

lim
n→∞

un(t) = a+ lim
n→∞

∫ t

T0

u̇n(s)ds = a+

∫ t

T0

z(s)ds,

then, u(t) = a+

∫ t

T0

z(s)ds. Consequently, u(t) is absolutely continuous with u̇ = z.

Furthermore,

|pn(t) − t| ≤ |tnk+1 − tnk | =
T − T0

n
,

so lim
n→∞

|pn(t) − t| = 0 and

||un(pn(t)) − un(t)|| ≤
∫ t

pn(t)
‖u̇n(s)‖ds ≤

∫ t

pn(t)
c2(s)ds,
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since c2 ∈ L1
R+

([T0, T ]), we get lim
n→∞

||un(pn(t)) − un(t)|| = 0, so that

lim
n→∞

||un(pn(t)) − u(t)|| ≤ lim
n→∞

(

||un(pn(t)) − un(t)|| + ||un(t) − u(t)||
)

= 0.

The convergence of the sequence (un(pn(·)) to (u(·)) is obtained.
From the convergence of (un(·)) we deduce that of (vn(·)) to an absolutely continuous
function v(·) with

v(t) = b+

∫ t

T0

u(s)ds, ∀t ∈ [T0, T ]

and

lim
n→∞

||vn(pn(t)) − vn(t)|| = 0.

Let us set for all t ∈ [T0, T ],

f(t, vn(pn(t)), un(pn(t))) = ln(t)

and

P (t, vn(pn(t)), un(pn(t))) = ηn(·).
By the continuity of the mapping f(t, ·, ·) we get ln(t) converges to
l(t) = f(t, u(t), v(t)) and

‖l(t)‖ ≤
(

1 + ‖b‖ + (T + 1)α

)

γ(t).

On the other hand, for all n ≥ n0 and for all t ∈ [T0, T ], we have

‖ηn(t)‖ ≤ ‖
(

1 + ‖b‖ + (T + 1)α

)

β,

so (ηn(·)) is bounded, taking a subsequence if necessary, we may conclude that (ηn(·))
weakly converges to some mapping η ∈ L1

H([T0, T ]) with

‖η(t)‖ ≤
(

1 + ‖b‖ + (T + 1)α

)

β.

Now, we proceed to prove that

u̇(t) ∈ −ND(t,v(t))(u(t)) + F (t, v(t), u(t)) + f(t, v(t), u(t)) a.e. t ∈ [T0, T ].

First, we check that u(t) ∈ D(t, v(t)). For every t ∈ [T0, T ] and for every n, we have

d(un(t),D(t, v(t))) ≤ ||un(t) − un(pn(t))|| + d(un(pn(t)),D(t, v(t)))

≤ ||un(t) − un(pn(t))|| + H(D(pn(t), vn(pn(t))),D(t, v(t)))

≤ ||un(t) − un(pn(t))|| + |ζ(t) − ζ(pn(t))| + L||vn(pn(t)) − vn(t)||,
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Passing to the limit when n → ∞, in the preceding inequality, we get
u(t) ∈ D(t, v(t)). According to (5) and (6), we obtain

‖ − u̇n(t) + ln(t) + ηn(t)‖ ≤ c1(t) + c2(t) := λ(t),

so

−u̇n(t) + ln(t) + ηn(t) ∈ λ(t)BH

since

−u̇n(t) + ln(t) + ηn(t) ∈ ND(t,vn(t))(un(t)),

we get

−u̇n(t) + ln(t) + ηn(t) ∈ λ(t)∂d(un(t),D(t, vn(t))).

Remark that (−u̇n+ln+ηn, ηn) weakly converges in L1
H×H([T0, T ]) to (−u̇+l+η, η).

An application of the Mazur’s Theorem to (−u̇n + ln + ηn, ηn) provides a sequence
(wn, ζn) with

wn ∈ co{−u̇m + lm + ηm : m ≥ n} and ζn ∈ co{ηm : m ≥ n}

such that (wn, ζn) converges strongly in L1
H×H([0, T ]) to (−u̇ + l + η, η). We can

extract from (wn, ζn) a subsequence which converges a.e. to (−u̇ + l + η, η). Then,
there is a Lebesgue negligible set S ⊂ [0, T ] such that for every t ∈ [0, T ] \ S

−u̇(t) + l(t) + η(t) ∈
⋂

n≥0

{wm(t) : m ≥ n}

⊂
⋂

n≥0

co{−u̇m(t) + lm(t) + ηm(t) : m ≥ n}, (7)

η(t) ∈
⋂

n≥0

{ζm(t) : m ≥ n} ⊂
⋂

n≥0

co{ηm(t) : m ≥ n}. (8)

Fix any t ∈ [0, T ] \ S, n ≥ n0 and µ ∈ H, then the relation (7) gives

〈µ,−u̇(t) + l(t) + η(t)〉 ≤ lim sup
n→∞

δ∗(µ, λ(t)∂d(un(t),D(t, vn(t))))

≤ δ∗(µ, λ(t)∂d(u(t),D(t, v(t)))),

where the first inequality follows from the characterization of convex hull and the
second one follows from Proposition 1. Taking the supremum over µ ∈ H, we deduce
that

δ(−u̇(t) + l(t) + η(t), λ(t)∂d(u(t),D(t, v(t)))) =

δ∗∗(−u̇(t) + l(t) + η(t), λ(t)∂d(u(t),D(t, v(t)))) ≤ 0

which entails

−u̇(t) + l(t) + η(t) ∈ λ(t)∂d(u(t),D(t, v(t))) ⊂ ND(t,v(t))(u(t)).
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Further, the relation (8) gives

〈µ, η(t)〉 ≤ lim sup
n→∞

δ∗(µ,F (t, vn(pn(t)), un(pn(t)))),

since δ∗(µ,F (t, ·, ·)) is upper semicontinuous on H ×H then

〈µ, η(t)〉 ≤ δ∗(µ,F (t, v(t), u(t))),

so, we get d(η(t), F (t, v(t), u(t))) ≤ 0, because F has closed convex values. Conse-
quently η(t) ∈ F (t, v(t), u(t)) a.e t ∈ [T0, T ]. Then

u̇(t) ∈ −ND(t,v(t))(u(t)) + F (t, v(t), u(t)) + f(t, v(t), u(t)).

This completes the proof of the theorem.

Remark 1. As in [22], the result remains valid if we replace the uniformly r-prox
regular sets by a family of equi-uniformly subsmooth sets.

In the next theorem we prove the existence of solution on the whole interval
R+ = [0 + ∞[.

Theorem 3. Let D : R+ ×H → H be a set-valued mapping with nonempty closed
and uniformly r-prox regular values such that:

(i) There is a positive constant L and a nondecreasing absolutely continuous func-
tion ζ : R+ → R+ such that, for all s ≤ t in R+ and xi, yi ∈ H(i = 1, 2),

|d
(

x1,D(t, y1)
)

− d
(

x2,D(s, y2)
)

| ≤ ‖x1 − x2‖ + ζ(t) − ζ(s) + L‖y1 − y2‖;

(ii) for all (t, x) ∈ R+ ×H, D(t, x) is contained in a compact set Γ.

Let F : R+ ×H ×H ⇁ H be a set-valued map with nonempty closed convex values
such that:

(iii) F is L(R+)⊗B(H)⊗B(H)-measurable and for all t ∈ R+, F (t, ·, ·) is scalarly
upper semicontinuous on H ×H;

(vi) there exists a non-negative function β(·) ∈ L∞
loc(R+), such that, for all

(t, u, v) ∈ R+ ×H ×H,

d(0, F (t, u, v)) ≤ β(t)(1 + ‖u‖ + ‖v‖).

Then, for any a, b ∈ H with a ∈ D(T0, b), there exist two absolutely continuous
mappings u, v : R+ → H satisfying

(PR+)















−u̇(t) ∈ ND(t,v(t))(u(t)) + F (t, v(t), u(t)), a.e. t ∈ R+;

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ R+;

u(t) ∈ D(t, v(t)), ∀t ∈ R+.
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Proof. Since R+ =
⋃

k∈N

[k, k+ 1], for all k ∈ N applying Theorem 2 on each interval

[k, k + 1], there exist two absolutely continuous mappings uk, vk : [k, k + 1] → H
satisfying
{ −u̇k(t) ∈ ND(t,vk(t))(u

k(t)) + F (t, vk(t), uk(t)), a.e. t ∈ [k, k + 1];

uk(t) ∈ D(t, vk(t)), ∀t ∈ [k, k + 1], ; uk(k) = uk−1(k) and vk(k) = vk−1(k).

Let u : R+ → H and v : R+ → H be defined by u(t) = uk(t) and v(t) = vk(t) for
t ∈ [k, k + 1], k ∈ N, then it is easy to conclude that u, v are absolutely continuous
solutions of the problem (PR+). This completes the proof of the theorem.

4 Delayed sweeping process

Now, we proceed, in the infinite dimensional setting, to an existence result for sec-
ond order functional differential inclusion governed by the time and state-dependent
nonconvex sweeping process, that is when the perturbation contains a finite de-
lay. This problem was addressed by [22] using the discretization approach based on
the Moreau’s catching-up algorithm. Here, we provide another technique initiated
in [10] for the first order time-dependent case, which consists to subdivide the inter-
val [0, T ] in a sequence of subintervals and to reformulate the problem with delay to
a sequence of problems without delay and apply the results known in this case. For
second order functional problems regarding the time-dependent sweeping process, we
refer to [7,8]. We will extend this approach for the case of time and state-dependent
sweeping process with unbounded delayed perturbation. For a question of clarity
and shortness, we will restrict ourselves to Theorem 2 for uniformly prox-regular
sets and one set-valued perturbation, but it is clear that this remains valid for equi-
uniformly subsmooth sets as well as for the sum of two perturbations.
Let τ > 0 be a positive number and C0 = CH ([−τ, 0]) (resp. CT = CH ([−τ, T ])
the Banach space of H-valued continuous functions defined on [−τ, 0] (resp.
[−τ, T ]) equipped with the norm of uniform convergence. Let u : [−τ, T ] → H,
then for every t ∈ [0, T ] we define the function ut = T (t)u on [−τ, 0] by
(T (t)u) (s) = u (t+ s) , ∀s ∈ [−τ, 0]. Clearly, if u ∈ CT , then ut ∈ C0 and the
mapping u→ ut is continuous.
Consider the following problem

(Pτ )































−u̇(t) ∈ N
D
(

t,v(t)
)(u(t)) +G

(

t,T (t)v,T (t)u

)

a.e. t ∈ [0, T ];

u(t) = ψ(0) +

∫ t

0
v̇(s)ds, v(t) = ϕ(0) +

∫ t

0
u(s)ds, ∀t ∈ [0, T ];

v(t) ∈ D
(

t, u(t)
)

, ∀t ∈ [0, T ];
u ≡ ψ and v ≡ ϕ on [−τ, 0].

Theorem 4. Assume that D : [0, T ] × H ⇁ H satisfies Assumption 1 and let
G : [0, T ] × C0 × C0 ⇁ H be a set-valued mapping with nonempty closed convex
values such that:
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(AG1) G is L([0, T ]) ⊗ B(C0) ⊗ B(C0)-measurable and for all t ∈ R+, G(t, ·, ·) is
scalarly upper semicontinuous on C0 × C0;

(AG2) there exists a real β > 0, such that, for all (t, ϕ, ψ) ∈ [T0, T ] × C0 × C0,

d(0, G(t, ϕ, ψ)) ≤ β(1 + ‖ϕ(0)‖ + ‖ψ(0)‖).

Then for every (ϕ,ψ) ∈ C0 × C0 verifying ψ (0) ∈ D (0, ϕ (0)), there exist two abso-
lutely continuous mappings u : [0, T ] → H and v : [0, T ] → H satisfying (Pτ ).

Proof. Let a = ψ (0) and b = ϕ (0) , then a ∈ D (0, b) . We consider the same
partition of [0, T ] by the points tnk = ken, en = T

n
, (k = 0, 1, ..., n) . For each

(t, u, v) ∈ [−τ, tn1 ]×H ×H, we define fn
0 : [−τ, tn1 ]×H → H, gn

0 : [−τ, tn1 ]×H → H
by

fn
0 (t, v) =

{

ϕ (t) ∀t ∈ [−τ, 0] ,
ϕ (0) + n

T
t (v − ϕ (0)) ∀t ∈ ]0, tn1 ] ,

gn
0 (t, u) =

{

ψ (t) ∀t ∈ [−τ, 0] ,
ψ (0) + n

T
t (u− ψ (0)) ∀t ∈ ]0, tn1 ] .

We have fn
0 (tn1 , v) = v and gn

0 (tn1 , v) = u for all (u, v) ∈ H × H. Observe that

the mapping (u, v) →
(

T (tn1 )fn
0 (·, v) ,T (tn1 )gn

0 (·, u)
)

from H × H to C0 × C0 is

nonexpansive since for all (v1, v2) ∈ H ×H

‖T (tn1 )fn
0 (·, v1) − T (tn1 )fn

0 (·, v2)‖C0
=

sup
s∈[−τ,0]

‖fn
0 (s+ tn1 , v1) − fn

0 (s+ tn1 , v2)‖ =

sup
s∈[−τ+ T

n
, T

n
]
‖fn

0 (s, v1) − fn
0 (s, v2)‖ =

sup
0≤s≤T

n

∥

∥

∥

n

T
s (v1 − ϕ (0)) − n

T
s (v2 − ϕ (0))

∥

∥

∥
=

sup
0≤s≤T

n

∥

∥

∥

n

T
s (v1 − v2)

∥

∥

∥
= ‖v1 − v2‖ .

Similarly, for all (u1, u2) ∈ H ×H we get

‖T (tn1 )gn
0 (·, u1) − T (tn1 )gn

0 (·, u2)‖C0
= ‖u1 − u2‖ .

Hence the mapping (u, v) →
(

T (tn1 )fn
0 (·, v) ,T (tn1 )gn

0 (·, v)
)

from H ×H to C0 ×C0

is nonexpansive, so the set-valued mapping with nonempty closed convex values
Gn

0 : [0, tn1 ] ×H ×H ⇁ H defined by

Gn
0 (t, u, v) = G(t,T (tn1 )fn

0 (·, v) ,T (tn1 )gn
0 (·, u))
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is globally measurable and scalarly upper semicontinuous on H ×H, thanks to by
(AG1) and

d(0, Gn
0 (t, v, u) = d(0, G(t,T (tn1 )fn

0 (·, v) ,T (tn1 )gn
0 (·, u))

≤ β (1 + ‖v‖ + ‖u‖) ,
for all (t, v, u) ∈ [0, tn1 ]×H ×H since, T (tn1 )fn

0 (0, v) = u,T (tn1 )gn
0 (0, u) = v. Hence

Gn
0 verifies conditions of Theorem 2, then there exist two absolutely continuous

mappings un
0 : [0, tn1 ] → H and vn

0 : [0, tn1 ] → H such that























−u̇n
0 (t) ∈ ND(t,vn

0 (t)) (un
0 (t)) +Gn

0 (t, vn
0 , u

n
0 ) a.e on [0, tn1 ] ;

vn
0 (t) = b+

∫ t

0
un

0 (s) ds, un
0 (t) = a+

∫ t

0
u̇n

0 (s) ds ∀t ∈ [0, tn1 ] ;

un
0 (t) ∈ D(t, vn

0 (t)) ∀t ∈ [0, tn1 ] ;
vn
0 (0) = b = ϕ (0) , un

0 (0) = a = ψ (0) ,

with

‖vn
0 (t)‖ ≤ ‖b‖ + Tα, ‖un

0 (t)‖ ≤ α, ‖u̇n
0 (t)‖ ≤ c2.

Set

vn (t) =

{

ϕ (t) ∀t ∈ [−τ, 0] ,
vn
0 (t) ∀t ∈ ]0, tn1 ] ,

un (t) =

{

ψ (t) ∀t ∈ [−τ, 0] ,
un

0 (t) ∀t ∈ ]0, tn1 ] .

Then, un and vn are well defined on [−τ, tn1 ] , with vn = ϕ, un = ψ on [−τ, 0], and







































−u̇n (t) ∈ ND(t,vn(t)) (un(t)) +G0(t, vn(t), un(t)) a.e on [0, tn1 ] ;

vn (t) = b+

∫ t

0
un (s) ds,

un (t) = a+

∫ t

0
u̇n (s) ds, ∀t ∈ [0, tn1 ] ;

un(t) ∈ D(t, vn (t)), ∀t ∈ [0, tn1 ] ;
vn(0) = b = ϕ (0) , un(0) = a = ψ (0) ,

By induction, suppose that un and vn are defined on [−τ, tnk ] (k ≥ 1) with
vn = ϕ, un = ψ on [−τ, 0] and satisfy

vn(t) =











































vn
0 (t) = b+

∫ t

0
un(s)ds ∀t ∈ [0, tn1 ],

vn
1 (t) = vn (tn1 ) +

∫ t

tn1

un (s) ds ∀t ∈ ]tn1 , t
n
2 ] ,

· · ·
vn
k−1 (t) = vn

(

tnk−1

)

+

∫ t

tn
k−1

un (s) ds ∀t ∈
]

tnk−1, t
n
k

]

,
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un(t) =











































un
0 (t) = b+

∫ t

0
u̇n (s) ds ∀t ∈ [0, tn1 ] ;

un
1 (t) = un (tn1 ) +

∫ t

tn1

u̇n (s) ds ∀t ∈ ]tn1 , t
n
2 ] ;

· · ·
un

k−1 (t) = un

(

tnk−1

)

+

∫ t

tn
k−1

u̇n (s) ds ∀t ∈
]

tnk−1, t
n
k

]

,

un and vn are solutions of











































−u̇n(t) ∈ ND(t,vn(t))(un(t)) +G

(

t,T (tnk)fn
k−1(·, vn(t)),T (tnk )gn

k−1(·, un(t))

)

;

vn (t) = vn
k−1 (t) = vn

(

tnk−1

)

+

∫ t

tn
k−1

un (s) ds;

un (t) = un
k−1 (t) = un

(

tnk−1

)

+

∫ t

tn
k−1

u̇n (s) ds;

un(t) ∈ D(t, vn (t))

on
]

tnk−1, t
n
k

]

, where fn
k−1 and gn

k−1 are defined for any (v, u) ∈ H ×H as follows

fn
k−1 (t, v) =

{

vn (t) ∀t ∈
[

−τ, tnk−1

]

,

vn

(

tnk−1

)

+
n

T

(

t− tnk−1

) (

v − vn

(

tnk−1

))

∀t ∈
]

tnk−1, t
n
k

]

,
(9)

gn
k−1 (t, u) =

{

un (t) ∀t ∈
[

−τ, tnk−1

]

,

un

(

tnk−1

)

+
n

T

(

t− tnk−1

) (

u− un

(

tnk−1

))

∀t ∈
]

tnk−1, t
n
k

]

.

(10)
Similarly we can define fn

k , g
n
k :
[

−τ, tnk+1

]

×H → H as

fn
k (t, v) =

{

vn (t) ∀t ∈ [−τ, tnk ] ,

vn (tnk) +
n

T
(t− tnk) (v − vn (tnk)) , ∀t ∈

]

tnk , t
n
k+1

]

,

gn
k (t, u) =

{

un (t) ∀t ∈ [−τ, tnk ] ,

un (tnk) +
n

T
(t− tnk) (u− un (tnk)) ∀t ∈

]

tnk , t
n
k+1

]

,

for any (u, v) ∈ H ×H. Note that for all (u, v) ∈ H ×H,

T (tnk+1)f
n
k (0, v) = fn

k

(

tnk+1, v
)

= v,

T (tnk+1)g
n
k (0, u) = gn

k

(

tnk+1, u
)

= u.

Note also that, for all (u1, v1) , (u2, v2) ∈ H ×H, we have

∥

∥T (tnk+1)f
n
k (·, v1) − T (tnk+1)f

n
k (·, v2)

∥

∥

C0
=

sup
s∈[−τ,0]

∥

∥fn
k

(

s+ tnk+1, v1
)

− fn
k

(

s+ tnk+1, v2
)
∥

∥ =
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sup
s∈
[

−τ+ (k+1)T
n

,
(k+1)T

n

]

‖fn
k (s, u1) − fn

k (s, u2)‖ ,

and
∥

∥T (tnk+1)g
n
k (·, u1) − T (tnk+1)g

n
k (·, u2)

∥

∥

C0
=

sup
s∈[−τ,0]

∥

∥gn
k

(

s+ tnk+1, u1

)

− gn
k

(

s+ tnk+1, u2

)
∥

∥ =

sup
s∈
[

−τ+
(k+1)T

n
,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ .

We distinguish two cases:

(1) if −τ +
(k + 1)T

n
<
kT

n
, we have

sup
s∈
[

−τ+ (k+1)T
n

,
(k+1)T

n

]

‖fn
k (s, v1) − fn

k (s, v2)‖ =

sup
s∈
[

kT

n
,
(k+1)T

n

]

‖fn
k (s, v1) − fn

k (s, v2)‖ =

sup
kT

n
≤s≤

(k+1)T
n

∥

∥

∥

n

T
(s− tnk) (v1 − v2)

∥

∥

∥
= ‖v1 − v2‖

and
sup

s∈
[

−τ+ (k+1)T
n

,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ =

sup
s∈
[

kT

n
,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ =

sup
kT

n
≤s≤

(k+1)T
n

∥

∥

∥

n

T
(s− tnk) (u1 − u2)

∥

∥

∥
= ‖u1 − u2‖ ;

(2) if kT
n

≤ −τ + (k+1)T
n

≤ (k+1)T
n

, we have

sup
s∈
[

−τ+ (k+1)T
n

,
(k+1)T

n

]

‖fn
k (s, v1) − fn

k (s, v2)‖ =

sup
s∈
[

kT

n
,
(k+1)T

n

]

‖fn
k (s, v1) − fn

k (s, v2)‖ =

sup
kT

n
≤s≤

(k+1)T
n

∥

∥

∥

n

T
(s− tnk) (v1 − v2)

∥

∥

∥
= ‖v1 − v2‖

and
sup

s∈
[

−τ+
(k+1)T

n
,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ =
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sup
s∈
[

kT

n
,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ =

sup
kT

n
≤s≤

(k+1)T
n

∥

∥

∥

n

T
(s − tnk) (u1 − u2)

∥

∥

∥
= ‖u1 − u2‖ .

So the mapping (v, u) →
(

T (tnk+1)f
n
k (·, v) ,T (tk+1)g

n
k (·, u)

)

from H×H to C0×C0

is nonexpansive. Hence the set-valued mapping Gn
k :
[

tnk , t
n
k+1

]

×H×H ⇁ H defined
by

Gn
k (t, u, v) = G

(

t,T (tnk+1)f
n
k (., u) ,T (tnk+1)g

n
k (., v)

)

globally measurable and scalarly upper semicontinuous on H × H, with nonempty
closed convex values. As above we can easily check that

d(0, Gn
k (t, v, u) ≤ (1 + ‖u‖ + ‖v‖) , ∀ (t, u, v) ∈

[

tnk , t
n
k+1

]

×H ×H.

Applying Theorem 2, there exist two absolutely continuous mappings
un

k :
[

tnk , t
n
k+1

]

→ H and vn
k :
[

tnk , t
n
k+1

]

→ H such that



































−u̇n
k (t) ∈ ND(t,vn

k
(t)) (un

k(t)) +Gn
k(t, vn

k (t) , un
k (t)) a.e. on

[

tnk , t
n
k+1

]

;

vn
k (t) = vn (tnk) +

∫ t

tn
k

un
k (s) ds, ∀t ∈

[

tnk , t
n
k+1

]

;

un
k (t) = un (tnk) +

∫ t

tn
k

u̇n
k (s) ds, ∀t ∈

[

tnk , t
n
k+1

]

;

un
k(t) ∈ D(t, un

k (t)) ∀t ∈
[

tnk , t
n
k+1

]

,

with

‖un
k (t)‖ ≤ α, ‖vn

k (t)‖ ≤ ‖b‖ + Tα, ‖u̇n
k (t)‖ ≤ c2(t).

Thus, by induction, we can construct two continuous mappings
un, vn : [−τ, T ] → H ×H with

vn (t) =

{

ϕ (t) ∀t ∈ [−τ, 0] ,
vn
k (t) ∀t ∈

]

tnk , t
n
k+1

]

, ∀k = 0, · · ·, n − 1;

un (t) =

{

ψ (t) ∀t ∈ [−τ, 0] ,
un

k (t) ∀t ∈
]

tnk , t
n
k+1

]

, ∀k = 0, · · ·, n− 1,

such that their restriction on each interval
[

tnk , t
n
k+1

]

is a pair solution to















−u̇ (t) ∈ ND(t,v(t)) (u(t)) +G(t,T (tnk+1)f
n
k (., v (t)) ,T (tnk+1)g

n
k (., u (t)));

v (t) = vn (tnk) +

∫ t

tn
k

u (s) ds, u (t) = un (tnk) +

∫ t

tn
k

u̇ (s) ds

u (t) ∈ D(t, v (t)).
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Let hn
k :
[

tnk , t
n
k+1

]

× C0 × C0 be the element of minimal norm of Gn
k , then















hn
k (t, vn

k (t) , un
k (t)) ∈ Gn

k (t, vn
k (t) , un

k (t)) a.e. on
[

tnk , t
n
k+1

]

,

−u̇n
k (t) ∈ ND(t,vn

k
(t)) (un

k(t)) + hn
k (t, vn

k (t) , un
k (t)) a.e. on

[

tnk , t
n
k+1

]

,

vn
k (tnk) = vn (tnk) , un

k (tnk) = un (tnk)
un

k(t) ∈ D(t, vn
k (t)), ∀t ∈

[

tnk , t
n
k+1

]

.

Let set for notational convenience, hn(t, v, u) = hn
k(t, v, u), θn (t) = tnk+1 and

δn (t) = tnk , for all t ∈
]

tnk , t
n
k+1

]

. Then we get for almost every t ∈ [0, T ]















hn(t, vn, un) ∈ G(t,T (θn (t))fn
n

T
δn(t) (., vn (t)) ,T (θn (t))gn

n

T
δn(t) (., un (t)));

−u̇n (t) ∈ ND(t,vn(θn(t))) (un(θn (t))) + hn (t, vn(t), un(t)) ;

vn (0) = b = ϕ (0) , un (0) = a = ψ (0) ∈ D (0, b) ,
un (t) ∈ D (t, vn (θn (t))) ,∀t ∈ [0, T ]

with for all t ∈ [0, T ]

d

(

0, G(t,T (θn (t))fn
n

T
δn(t) (., vn (t)) ,T (θn (t))gn

n

T
δn(t) (., un (t))

)

≤ β (1 + ‖un (t)‖ + ‖vn (t)‖) .
We claim that T (θn (t))fn

n

T
δn(t) (., vn (t)) and T (θn (t))gn

n

T
δn(t) (., un (t)) pointwise con-

verge on [0, T ] to T (t)v and T (t)u respectively in C0. The proof is similar to the one
given in Theorem 2.1 in [14].
Further, as ‖vn (t)‖ ≤ ‖b‖ + Tα, ‖u̇(t)‖ ≤ c2(t) and

‖hn (t, vn(t), un(t)) ‖ ≤ β

(

1 + ‖un(t)‖ + ‖vn(t)‖
)

≤ β
(

1 + ‖b‖ + (1 + T )α
)

.

We can proceed as in Theorem 2 to conclude the convergence of (un) and (vn) to
the solution of (Pτ ).
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Upper Bounds for the Number of Limit Cycles for a

Class of Polynomial Differential Systems Via The

Averaging Method

S. Benadouane, A. Berbache, A. Bendjeddou

Abstract. In this paper, we study the number of limit cycles of polynomial differ-
ential systems of the form







ẋ = y

ẏ = −x − ε(h1 (x) y
2α + g1 (x) y

2α+1 + f1 (x) y
2α+2)

− ε
2(h2 (x) y

2α + g2 (x) y
2α+1 + f2 (x) y

2α+2)

where m, n, k and α are positive integers, hi, gi and fi have degree n, m and k,
respectively for each i = 1, 2, and ε is a small parameter. We use the averaging theory
of first and second order to provide an accurate upper bound of the number of limit
cycles that bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x. We
give an example for which this bound is reached.

Mathematics subject classification: 34C07, 34C23, 37G15.
Keywords and phrases: limit cycles, averaging theory, Liénard differential systems..

1 Introduction and statement of the main results

One of the main problems in the theory of ordinary differential equations is the
study of the existence of limit cycles, their number and stability. A limit cycle of
a differential equation is a periodic orbit in the set of all isolated periodic orbits of
the differential equation. The second part of the 16th Hilbert’s problem (see [8]) is
related to the least upper bound on the number of limit cycles of polynomial vector
fields having a fixed degree.

Many of the results on the limit cycles of polynomial differential systems have
been obtained by considering limit cycles that bifurcate from a single degenerate
singular point (i.e. from a Hopf bifurcation), which are called small amplitude limit
cycles, see Lloyd [14]. There are partial results concerning the maximum number
of small-amplitude limit cycles for Liénard polynomial differential systems. The
number of small-amplitude limit cycles gives a lower bound for the maximum number
of limit cycles that a polynomial differential system can have. There are many
results concerning the existence of small-amplitude limit cycles for the following
generalization of the classical Liénard polynomial differential system

ẋ = y and ẏ = −g(x) − f(x)y (1)

c©S. Benadouane, A. Berbache, A. Bendjeddou, 2021
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where f(x) and g(x) are polynomials in the variable x of degrees n and m, respec-
tively. We denote by H(m,n) and Ĥ(m,n) the maximum number of limit cycles
that system (1) can have and the maximum number of small-amplitude limit cycles
that system(1) can have, respectively. The first number is usually called Hilbert
number for system (1). Since the work of Liénard [10] to the present time several
authors have found particular values of these numbers H and Ĥ, to find a survey
about these values see [13]. The authors of [12] computed the maximum number of
limit cycles Ĥk(m,n) of system(1) that bifurcate from the periodic orbits of the lin-
ear center ẋ = y, ẏ = −x, using the averaging theory of order k. More specifically it
was found that Ĥ1(m,n) = [(n+m−1)/2]. In order to find the maximum number of
limit cycles it is interesting to know what families of system (1) have a center. This
is because we can perturb these centers and control the number of small-amplitude
limit cycles or the number of limit cycles that bifurcate from the periodic orbits of
these centers, (see [5, 6]). We recall that a singular point is a center if there is an
open neighborhood consisting, besides the singularity, of periodic orbits. The center
problem consists in determining what families of a given system have a center. For
more information about the Hilbert’s 16th problem and related topics see [9]. Now
we are citing some results about the limit cycles on Liénard differential systems
(see [12]) In 1928, Liénard proved that if m = 1 and F (x) =

∫ x

0 f(s)ds is a continu-
ous odd function, which has a unique root at x = a and is monotone increasing for
x ≥ a, then equations (1.2) have a unique limit cycle. In 1977 Lins, de Melo and
Pugh [11] stated the conjecture that if f(x) has degree n ≥ 1 and g (x) = x then
system (1) has at most [n/2] limit cycles. They prove this conjecture for n = 1, 2. In
1998 Gasull and Torregrosa [4] obtained upper bounds for Ĥ(7, 6), Ĥ(6, 7), Ĥ(7, 7)
and Ĥ(4, 20). In 2010, Llibre et al, computed the maximum number of limit cycles
Ĥk(m,n) of system (1) that bifurcate from the periodic orbits of the linear centre
ẋ = y, ẏ = −x, using the averaging theory of order k, for k = 1, 2, 3. In 2014 B.
Garca, J. Llibre, and J. S. Pérez del Rio 1001[3] using the averaging theory of first
and second order, they studied the maximum number of medium amplitude limit
cycles bifurcating from the linear center ẋ = y, ẏ = −x of the more generalized
polynomial Liénard differential systems of the form







ẋ = y
ẏ = −x − ε(h1 (x) + p1 (x) y + q1 (x) y2)

− ε2(h2 (x) + p2 (x) + q2 (x) y2)

where h1, h2, p1, q1, p2 and q2 have degree n.
In this work using the averaging theory, we study the maximum number of limit

cycles which can bifurcate from the periodic orbits of a linear center perturbed inside
the class of generalized polynomial Liénard differential equations







ẋ = y
ẏ = −x − ε(h1 (x) y2α + g1 (x) y2α+1 + f1 (x) y2α+2)

− ε2(h2 (x) y2α + g2 (x) y2α+1 + f2 (x) y2α+2)
(2)

where m,n, k and α are positive integers, hi, gi and fi have degree n,m and k,
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respectively for each i = 1, 2, and ε is a small parameter.
Let [·] denote the integer part function. Our main result is the following one.

Theorem 1. For |ε| sufficiently small, the maximum number of limit cycles of the
polynomial differential systems (2) bifurcating from the periodic orbits of the linear
center ẋ = y, ẏ = −x, using the averaging theory
(a) of first order is

λ1 =
[m

2

]

,

(b) of second order is

λ = max

{

[m

2

]

;

[

m − 1

2

]

+
[n

2

]

+ α;

[

m − 1

2

]

+

[

k

2

]

+ 1 + α

}

.

The proof of the above theorem is given in Section 3.

2 The averaging theory of first and second order

In this section we present the basic results from the averaging theory that we
shall need for proving the main results of this paper. The averaging theory up to
second order for studying specifically periodic orbits was developed in [1, 2]. It is
summarized as follows.

Consider the differential system

ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : R × D → R, R : R × D × (−εf , εf ) → R are continuous functions,
T−periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypotheses hold.
(i) F1(t,·) ∈ C2(D), F2(t,·) ∈ C1(D) for all t ∈ R, F1, F2, R are locally Lipschitz with
respect to x, and R is twice differentiable with respect to ε.
We define Fk0 : D → R for k = 1, 2 as

F10(x) =
1

T

T
∫

0

F1(s, x)ds,

F20(x) =
1

T

T
∫

0

(DxF1(s, x)) y1(s, x) + F2(s, x)ds,

where

y1(s, x) =

s
∫

0

F1(t, x)dt.

(ii) For an open and bounded set V ⊂ D and for each ε ∈ (−εf, εf)\{0}, there
exists aε ∈ V such that F10(aε) + εF20(aε) = 0 and dB(F10 + εF20, V, aε) 6= 0.
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Then, for |ε| > 0 sufficiently small there exists a T−periodic solution x(., ε) of
the system such that x(0, ε) → aε as ε → 0.

The expression dB(F10 + εF20, V, aε) 6= 0 means that the Brouwer degree of the
function F10 +εF20 : V → Rn at the fixed point aε is not zero. A sufficient condition
of this inequality holding is that the Jacobian of the function F10 + εF20 at aε is not
zero.

If F10 is not identically zero, then the zeros of F10 + εF20 are mainly the zeros of
F10 for ε sufficiently small. In this case the previous result provides the averaging
theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10 + εF20

are mainly the zeros of F20 for ε sufficiently small. In this case the previous result
provides the averaging theory of second order.

3 Proof of Theorem 1

For the proof we shall use the first order averaging theory as it was stated in
Section 2. We write system (2) in polar coordinates (r, θ) given by x = r cos θ and
y = r sin θ. In this way, system (2) will become written in the standard form for
applying the averaging theory. If we write

h1 (x) =
n
∑

i=0

aix
i, g1 (x) =

m
∑

i=0

cix
i, f1 (x) =

k
∑

i=0

dix
i,

h2 (x) =

n
∑

i=0

Aix
i, g2 (x) =

m
∑

i=0

Cix
i, f2 (x) =

k
∑

i=0

Dix
i

then, system (2) becomes







ṙ = −εE1 (r, θ) − ε2H1 (r, θ) ,

θ̇ = −1 − ε

r
E2 (r, θ) − ε2

r
H2 (r, θ) ,

where

E1 (r, θ) =
n
∑

i=0

aihi,2α+1 (θ) r2α+i +
k
∑

i=0

dihi,2α+3 (θ) r2α+i+2+

+

m
∑

i=0

cihi,2α+2 (θ) r2α+i+1,

H1 (r, θ) =

n
∑

i=0

Aihi,2α+1 (θ) r2α+i +

k
∑

i=0

Dihi,2α+3 (θ) r2α+i+2+

+

m
∑

i=0

Cihi,2α+2 (θ) r2α+i+1,
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E2 (r, θ) =

n
∑

i=0

aihi+1,2α (θ) r2α+i +

k
∑

i=0

dihi+1,2α+2 (θ) r2α+i+2+

+

m
∑

i=0

cihi+1,2α+1 (θ) r2α+i+1,

H2 (r, θ) =

n
∑

i=0

Aihi+1,2α (θ) r2α+i + r2
k
∑

i=0

Dihi+1,2α+2 (θ) r2α+i+2+

+

m
∑

i=0

Cihi+1,2α+1 (θ) r2α+i+1,

where hi,α (θ) = cosi θ sini θ Taking θ as the new independent variable, system (2)
becomes

dr

dθ
= εF1 (r, θ) + ε2F2 (r, θ) + O

(

ε3
)

, (3)

where

F1 (r, θ) = E1 (r, θ) , (4)

F2 (r, θ) = H1 (r, θ) − 1

r
E1 (r, θ) E2 (r, θ) .

First we shall study the limit cycles of the differential equation (3) using the
averaging theory of first order. Therefore, by Section 2 we must study the simple
positive zeros of the function

F10(r) =
1

2π

2π
∫

0

F1 (r, θ) dθ.

For every one of these zeros we will have a limit cycle of the polynomial differential
system (2). If F10(r) is identically zero, applying the theory of averaging of second
order (see again Section 2) every simple positive zero of the function

F20 (r) =
1

2π

2π
∫

0





d

dr
F1 (r, θ)





θ
∫

0

F1(r, s)ds



 + F2 (r, θ)



 dθ,

will provide a limit cycle of the polynomial differential system (2).

3.1 Proof of statement (a) of Theorem 1

Taking into account the expression of (4), in order to obtain F10 is necessary to
evaluate the integrals of the form

π
∫

0

cosi θ sinj θdθ

In the following lemma we compute these integrals.
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Lemma 1. Let hi,j (θ) = cosi θ sinj θ and δi,j(θ) =
θ
∫

0

hi,j (s) ds Then

δi,j(2π) =

{

0 if i is odd or j is odd,
(j−1)(j−3)...1

(j+i)(j+i−2)...(i+2)
1

2i−1

(

i
i

2

)

π if i and j are even,
(5)

where
(

i
i

2

)

=
i!

(

i
2 !
)2

Proof. Using the integrals 12 and 13 given at the appendix with θ = 2π and taking
into account that hi,j(2π) = 0 if j 6= 0 we have that

δi,2j(2π) = (2j−1)(2j−3)...1
(2j+i)(2j+i−2)(i+2)δi,0(2π), δi,2j+1(2π) = 0. (6)

Again, using the integrals 10 and 11 given in the appendix, with θ = 2π, we have that
δ2i,0(2π) = (2i−1)(2i−3)

2ii!
2π and δ2i+1,0(2π) = 0, Substituting δ2i,0(2π) and δ2i+1,0(2π)

given as above into (6) we obtain (5). Using this lemma we shall obtain in the next
proposition the function F10(r):

Proposition 1. We have

F10(r) =
r2α+1

2π

[m

2 ]
∑

i=0

c2i δ2i,2α+2 (2π) r2i. (7a)

Proof. The function F10(r) is given by

F10(r) =
1

2π

2π
∫

0

n
∑

i=0

aihi,2α+1 (θ) r2α+idθ +
1

2π

2π
∫

0

k
∑

i=0

dihi,2α+3 (θ) r2α+i+2dθ

+
1

2π

2π
∫

0

m
∑

i=0

cihi,2α+2 (θ) r2α+i+1dθ.

Using lemma 1, we obtain

2π
∫

0

hi,2α+1 (θ) dθ =

2π
∫

0

hi,2α+3 (θ) dθ = 0, ∀i ∈ N.

Then

F10(r) =
1

2π

2π
∫

0

m
∑

i=0

cihi,2α+2 (θ) r2α+i+1dθ
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=

2π
∫

0

m
∑

i=0
i odd

cihi,2α+2 (θ) r2α+i+1 +

m
∑

i=0
i even

cihi,2α+2 (θ) r2α+i+1dθ

=

[m−1
2 ]
∑

i=0

c2i+1

2π
∫

0

h2i+1,2α+2 (θ) r2α+2i+2 +

[m

2 ]
∑

i=0

c2i

2π
∫

0

h2i,2α+2 (θ) r2α+2i+1dθ.

Again, using lemma 1, we conclude that
2π
∫

0

h2i+1,2α+2 (θ)dθ = 0, then

F10(r) =
r2α+1

2π

[m

2 ]
∑

i=0

c2iδ2i,2α+2 (2π) r2i.

From Proposition 1, the polynomial F10(r) has at most λ1 =
{[

m
2

]}

positive roots,
and we can choose c2i in such a way that F10(r) has exactly λ1 simple positive roots,
hence the statement (a) of Theorem 1 is proved.

3.2 Proof of statement (b) of Theorem 1

Now using the results stated in Section 2 we shall apply the second order aver-
aging theory to the previous differential equation. For this we put F10(r) ≡ 0, which
is equivalent to

ci = 0, for all i even. (8)

We must study the simple positive zeros of the function

F20 (r) =
1

2π

2π
∫

0





d

dr
F1 (r, θ)





θ
∫

0

F1(r, s)ds



 + F2 (r, θ)



 dθ.

We split the computation of the function F20(r) in two pieces, i.e. we define
2πF20(r) = Φ(r) + Ψ(r), where

Φ (r) =

2π
∫

0

d

dr
F1 (r, θ)





θ
∫

0

F1(r, s)ds



 dθ,

Ψ (r) =

2π
∫

0

F2 (r, θ) dθ =

2π
∫

0

(

H1 (r, θ) − 1

r
E1 (r, θ) E2 (r, θ)

)

dθ.

First we compute the integrals
2π
∫

0

δi,j(θ)hp,q(θ)dθ, in the following lemma.
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Lemma 2. Let ηp,q
i,j (2π) =

2π
∫

0

δi,j(θ)hp,q(θ)dθ. Then the following equalities hold:

a) The integral ηp,q
2i+1,0 (2π) is zero if p is odd or q is even, and is equal to

1

2i + 1

(

i−1
∑

l=0

2lj (j − 1) .... (j − l + 1)

(2i − 1) (2i − 3) ... (2i − 2l − 1)
δ2i+p+2l−2;q+1(2π)

)

+
1

2i + 1
δ2i+p;q+1(2π)

if p is even and q is odd.

b) The integral ηp,q
2i+1,2j+1 (2π) is zero if p is odd or q is odd, and is equal

to

− 1

2j + 2i + 2

(

j−1
∑

l=1

(

2lj (j − 1) .... (j − l + 1)
)

δ2i+p+2;2j−2l+q(2π)

(2j + 2i) (2j + 2i − 2) ... (2j + 2i − 2l + 2)

)

− 1

2j + 2i + 2
δ2i+p+2,2j+q(2π)

if p is even and q is even.

c) The integral ηp,q
2i,2j+1 (2π) is zero if p is even or q is odd, and is equal to

− 1

2j + 2i + 1

(

j−1
∑

l=1

(

2lj (j − 1) .... (j − l + 1)
)

δ2i+p+1;2j−2l+q(2π)

(2j + 2i − 1) (2j + 2i − 3) ... (2j + 2i − 2l + 1)

)

− 1

2j + 2i + 1
δ2i+p+1,2j+q(2π)

if p is odd and q is even.

(d) The integral ηp,q
2i+1,2j (2π) is zero if p is odd or q is even, and is equal to

− 1

2j + 2i + 1

(

j−1
∑

l=1

((2j − 1) (2j − 3) .... (2j − 2l + 1)) δ2i+p+2;2j−2l+q−1(2π)

(2j + 2i − 1) (2j + 2i − 3) ... (2j + 2i − 2l + 1)

)

− 1

2j + 2i + 1
δ2i+p+2;2j+q+1(2π)

+
(2j − 1) (2j − 3) ....1

(2j + 2i + 1) (2j + 2i − 1) ... (2i + 3)
ηp,q
2i+1,0 (2π)

if p is even and q is odd.



80 S. BENADOUANE, A. BERBACHE, A. BENDJEDDOU

Proof. Using the integral 12 of the appendix and taking into account
hi,j (θ)hp,q (θ) = hi+p,j+q (θ) , we have

ηp,q
2i+1,0 (2π) =

1

2i + 1

i−1
∑

l=0

2lj (j − 1) .... (j − l + 1)

(2i − 1) (2i − 3) ... (2i − 2l − 1)

2π
∫

0

h2i+p+2l−2;q+1(θ)dθ

+
1

2i + 1

2π
∫

0

h2i+p;q+1(θ)dθ.

By using lemma 2, statement (a) follows. Using the integral 14 of the appendix and
taking into account hi,j (θ)hp,q (θ) = hi+p,j+q (θ) , we have

ηp,q
2i+1,2j+1 (2π) = − 1

2j + 2i + 2

2π
∫

0

h2i+p+2,2j+q(θ)dθ

− 1

2j + 2i + 2









j−1
∑

l=1

2lj(j−1)....(j−l+1)
(2j+2i)(2j+2i−2)...(2j+2i−2l+2)

∗
2π
∫

0

h2i+p+2;2j−2l+q(θ)dθ









and

ηp,q
2i,2j+1 (2π) = − 1

2j + 2i + 1

2π
∫

0

h2i+p+1,2j+q(θ)dθ

− 1

2j + 2i + 1









j−1
∑

l=1

2lj(j−1)....(j−l+1)
(2j+2i−1)(2j+2i−3)...(2j+2i−2l+1)

∗
2π
∫

0

h2i+p+1;2j−2l+q(θ)dθ.









Using again lemma 2, statement (b), (c) follows. Using the integral 12 and 13 of the
appendix and taking into account hi,j (θ)hp,q (θ) = hi+p,j+q (θ) and using lemma 2,
we obtain

ηp,q
2i+1,2j (2π) =

(2j − 1) (2j − 3) ....1

(2j + 2i + 1) (2j + 2i − 1) ... (2i + 3)
ηp,q
2i+1,0 (2π)

− 1

2j + 2i + 1

∗
(

j−1
∑

l=1

((2j − 1) (2j − 3) .... (2j − 2l + 1)) δ2i+p+2;2j−2l+q−1(2π)

(2j + 2i − 1) (2j + 2i − 3) ... (2j + 2i − 2l + 1)

)

− 1

2j + 2i + 1
(δ2i+p+2;2j+q+1(2π)) .

Hence statement (d) of lemma 2 is proved.
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Proposition 2. The integral Φ (r) can be expressed by

Φ (r) = r4α+1P1

(

r2
)

.

where P1

(

r2
)

is a polynomial in the variable r2 of degree

λ2 = max

{

[n

2

]

+

[

m − 1

2

]

;

[

k

2

]

+

[

m − 1

2

]

+ 1

}

.

Proof. First, we have

F1 (r, θ) =
n
∑

i=0
i odd

aihi,2α+1 (θ) r2α+i +
k
∑

i=0
i odd

dihi,2α+3 (θ) r2α+i+2

+
m
∑

i=0
i odd

cihi,2α+2 (θ) r2α+i+1 +
n
∑

i=0
i even

aihi,2α+1 (θ) r2α+i

+

k
∑

i=0
i even

dihi,2α+3 (θ) r2α+i+2 +

m
∑

i=0
i even

cihi,2α+2 (θ) r2α+i+1

=

[n−1
2 ]
∑

i=0

a2i+1h2i+1,2α+1 (θ) r2α+2i+1 +

[n

2 ]
∑

i=0

a2ih2i,2α+1 (θ) r2α+2i

+

[k−1
2 ]
∑

i=0

d2i+1h2i+1,2α+3 (θ) r2α+2i+3 +

[ k

2 ]
∑

i=0

d2ih2i,2α+3 (θ) r2α+2i+2

+

[m−1
2 ]
∑

i=0

c2i+1h2i+1,2α+2 (θ) r2α+2i+2.

Next we calculate the terms of this integral. First we have that

d

dr
F1 (r, θ) =

[n−1
2 ]
∑

i=0

(2α + 2i + 1) a2i+1h2i+1,2α+1 (θ) r2α+2i

+

[k−1
2 ]
∑

i=0

(2α + 2i + 3) d2i+1h2i+1,2α+3 (θ) r2α+2i+2

+

[m−1
2 ]
∑

i=0

(2α + 2i + 2) c2i+1h2i+1,2α+2 (θ) r2α+2i+1

+

[n

2 ]
∑

i=0

(2α + 2i) a2ih2i,2α+1 (θ) r2α+2i−1
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+

[k

2 ]
∑

i=0

(2α + 2i + 2) d2ih2i,2α+3 (θ) r2α+2i+1

Then

θ
∫

0

F1(r, s)ds =

[n−1
2 ]
∑

i=0

a2i+1δ2i+1,2a+1 (θ) r2α+2i+1

+

[ k−1
2 ]
∑

i=0

d2i+1δ2i+1,2α+3 (θ) r2α+2i+3

+

[m−1
2 ]
∑

i=0

c2i+1δ2i+1,2α+2 (θ) r2α+2i+2

+

[n

2 ]
∑

i=0

a2iδ2i,2α+1 (θ) r2α+2i

+

[k

2 ]
∑

i=0

d2iδ2i,2α+3 (θ) r2α+2i+2.

By using lemma 2, from the 25 main products of Φ (r) only the following 4 are not
zero when we integrate them between 0 and 2π. So the terms of Φ (r) which will
contribute to F20(r) are :

Φ (r) =

[n

2 ]
∑

i=0

[m−1
2 ]
∑

p=0

(2α + 2i) a2ic2p+1η
2i,2α+1
2p+1,2α+2 (2π) r4α+2i+2p+1

+

[k

2 ]
∑

i=0

[m−1
2 ]
∑

p=0

(2α + 2i + 2) d2ic2p+1η
2i,2α+3
2p+1,2α+2 (2π) r4α+2i+2p+3

+

[m−1
2 ]
∑

i=0

[n

2 ]
∑

p=0

(2α + 2i + 2) c2i+1a2pη
2i+1,2α+2
2p,2α+1 (2π) r4α+2i+2p+1

+

[m−1
2 ]
∑

i=0

[k

2 ]
∑

p=0

(2α + 2i + 2) c2i+1d2pη
2i+1,2α+2
2p,2α+3 (2π) r4α+2i+2p+3

= r4α+1P1

(

r2
)

where P1 is polynomial in the variable r2 of degree λ2,

λ2 = max

{[

m − 1

2

]

+
[n

2

]

;

[

m − 1

2

]

+

[

k

2

]

+ 1

}

.
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Finally, we obtain Φ (r) is a polynomial in the variable r2 of the form

Φ (r) = r4α+1P1

(

r2
)

.

This completes the proof of the Proposition 2.

In order to complete the computation of F20(r) we must determine the function
Ψ(r).

Proposition 3. The integral Ψ(r) can be expressed by

Ψ(r) = r2α+1
(

P2

(

r2
)

+ r2αP3

(

r2
))

where P2

(

r2
)

is a polynomial in the variable r2 of degree

λ1 =
[m

2

]

,

P3

(

r2
)

is a polynomial in the variable r2 of degree

λ3 = max

{[

m − 1

2

]

+
[n

2

]

;

[

m − 1

2

]

+

[

k

2

]

+ 1

}

.

Proof. Firstly we calculate,

2π
∫

0

H1 (r, θ) dθ =

n
∑

i=0

Air
2α+i

2π
∫

0

hi,2α+1 (θ)dθ +

k
∑

i=0

Dir
2α+i+2

2π
∫

0

hi,2α+3 (θ) dθ

+

m
∑

i=0

Cir
2α+i+1

2π
∫

0

hi,2α+2 (θ) dθ.

Using lemma 2, we conclude that
2π
∫

0

hi,2α+1 (θ) dθ =
2π
∫

0

hi,2α+3 (θ) dθ = 0, and we

have

2π
∫

0

H1 (r, θ) dθ =

m
∑

i=0
i even

Cir
2α+i+1

2π
∫

0

hi,2α+2 (θ) dθ =

[ m

2
]

∑

i=0

Cir
2α+i+1

2π
∫

0

hi,2α+2 (θ) dθ.

Then

2π
∫

0

H1 (r, θ) dθ = π

[ m

2
]

∑

i=0

C2iδ2i,2α+2 (2π) r2α+2i+1

= r2α+1P2

(

r2
)

where P2 is a polynomial in the variable r2 of degree λ1.
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Finally, we shall study the contribution of the second part
2π
∫

0

1
r
E1 (r, θ) E2 (r, θ) dθ

of F2 (r, θ) to F20(r). Using the expressions of E1 (r, θ) and E2 (r, θ) and taking into
account that ci = 0 for all i even, we have :

E1 (r, θ) =
[n−1

2 ]
∑

i=0
a2i+1h2i+1,2α+1 (θ) r2α+2i+1 +

[k−1
2 ]
∑

i=0
d2i+1h2i+1,2α+3 (θ) r2α+2i+3

+
[m−1

2 ]
∑

i=0
c2i+1h2i+1,2α+2 (θ) r2α+2i+2 +

[n

2 ]
∑

i=0
a2ih2i,2α+1 (θ) r2α+2i

+
[k

2 ]
∑

i=0
d2ih2i,2α+3 (θ) r2α+2i+2

and

E2 (r, θ) =
[n−1

2 ]
∑

p=0
a2p+1h2p+2,2α (θ) r2α+2p+1 +

[k−1
2 ]
∑

p=0
d2p+1h2p+2,2α+2 (θ) r2α+2p+3

+
[m−1

2 ]
∑

p=0
c2p+1h2p+2,2α+1 (θ) r2α+2p+2 +

[n

2 ]
∑

p=0
a2ph2p+1,2α (θ) r2α+2p

+
[k

2 ]
∑

p=0
d2ph2p+1,2α+2 (θ) r2α+2p+2.

Using Lemma 2, from the 25 main products of
2π
∫

0

1
r
E1 (r, θ) E2 (r, θ) dθ, only the

following 4 are not zero when we integrate them between 0 and 2π, So the terms
which will contribute to F20 (r) are

2π
∫

0

1
r
E1 (r, θ)E2 (r, θ) dθ =

[n

2 ]
∑

i=0

[m−1
2 ]
∑

p=0
a2ic2p+1δ2i+2p+2,4α+2 (2π) r4α+2i+2p+1

+
[k

2 ]
∑

i=0

[m−1
2 ]
∑

p=0
d2ic2p+1δ2i+2p+2,4α+2 (2π) r4α+2i+2p+3

+
[m−1

2 ]
∑

i=0

[n

2 ]
∑

p=0
c2i+1a2pδ2i+2p+2,4α+2 (2π) r4α+2i+2p+1

+
[m−1

2 ]
∑

i=0

[k

2 ]
∑

p=0
c2i+1d2pδ2i+2p+2,4α+2 (2π) r4α+2i+2p+3

= r4α+1P3

(

r2
)

where P3 is a polynomial in the variable r2 of degree

λ3 = max

{[

m − 1

2

]

+
[n

2

]

;

[

m − 1

2

]

+

[

k

2

]

+ 1

}

.

Then, we obtain Ψ(r) is a polynomial in the variable r2

Ψ(r) = r2α+1
(

P2

(

r2
)

+ r2αP3

(

r2
))
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of degree

λΨ(r) = max {λ1, λ3 + α} .

Finally, we obtain F20(r) is a polynomial in the variable r2 of the form

F20(r) =
r2α+1

2π

(

r2αP1

(

r2
)

+ P2

(

r2
)

+ r2αP3

(

r2
))

.

To find the real positive roots of F20 we must find the zeros of a polynomial in
r2 of degree λ = max{λ1, λ2 + α, λ3 + α}. This yields that F20 has at most λ real
positive roots. Hence, Theorem 1 is proved. Moreover, we can choose the coefficients
ai,ci, di,Ai,Ci,Di in such a way that F20 has exactly λ real positive roots. This
completes the proof of Theorem 1.

4 Example

We consider the differential system 2 with k = n = 1,m = 3, α = 1















ẋ = y,

ẏ = −x − ε(
(

−118
65 + x

)

y2 +
((

− 13
427x + 1

61x3
))

y3 + (1 + x) y4)
−ε2

((

−1 − 1
4x
)

y2 +
(

1
80 + 967

34 160x2 + 1
8x3
)

y3 − xy4
)

(9)

An easy computation shows that F10(r) is identically zero, so to look for the
limit cycles, we must solve the equation F20(r) = 0 which is equivalent to

− 1

1280
r3
(

r6 − 6r4 + 11r2 − 6
)

= 0

This equation has exactly three positive roots r1 = 1, r2 =
√

2, r3 =
√

3. According
with Theorem 1, that system (9) has exactly three limit cycles bifurcating from the
periodic orbits of the linear center ẋ = y, ẏ = −x.

5 Appendix

In this appendix, we recall some formulas used during this article; for more
details see [7]. For i ≥ 0 and j ≥ 0, we have

θ
∫

0

cosi s sinj sds =
cosi−1 θ sinj+1 θ

i + j
+

i − 1

i + α

θ
∫

0

cosi−2 s sinj sds (10)

=
cosi−1 θ sinj+1 θ

i + j
+

α − 1

i + α

θ
∫

0

cosi s sinj−2 sds,
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θ
∫

0

cos2i sds =
sin θ

2i

i−1
∑

l=1

(2i − 1) (2i − 3) .... (2i − 2l + 1)

2l (i − 1) (i − 2) . (i − l)
cos2i−2l−1 θ (11)

+
sin θ

2i
cos2i−1 θ +

(2i − 1) (2i − 3) ....1

2ii!
θ

=
1

22i−1

i−1
∑

l=0

(

2i
l

)

sin 2 (i − l) θ

2 (i − l)
+

1

22i

(

2i
i

)

θ,

θ
∫

0

cos2i+1 sds =
sin θ

2i + 1

i−1
∑

l=1

2l+1i (i − 1) ..... (i − l)

(2i − 1) (2i − 3) .... (2i − 2l − 1)
cos2i−2l−2 θ (12)

+
sin θ

2i + 1
cos2i θ

=
1

22i

i−1
∑

l=0

(

2i + 1
l

)

sin (2i − 2l + 1) θ

(2i − 2l + 1)
,

where

(

2i
p

)

= 2i!
p!(2i−p)!

θ
∫

0

cosi s sin2j sds (13)

= −cosi+1 θ

2j + 1

j−1
∑

l=1

(2j − 1)(2j − 3)...(2j − 2l + 1)

(2j + i − 2)(2j + i − 4)...(2j + i − 2l)
sin2j−2l−1 θ

+
(2j − 1)(2j − 3)...1

(2j + i)(2j + i − 2)...(i + 2)

θ
∫

0

cosi sds,

θ
∫

0

cosi s sin2j+1 sds (14)

= − cosi+1 θ

2j + i + 1

j−1
∑

l=1

2lj (j − 1) ..... (j − l + 1)

(2j + i − 1)(2j + i − 3)...(2j + i − 2l + 1)
sin2j−2l θ

− cosi+1 θ

2j + i + 1
sin2α θ.
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1 Introduction

Any space is considered to be a Hausdorff space. We use the terminology from [3].
For any completely regular space X denote by βX the Stone-Čech compactification
of the space X.

Fix a space X. A space eX is an extension of the space X if X is a dense
subspace of eX. If eX is a compact space, then eX is called a compactification of
the space X. The subspace eX \ X is called a remainder of the extension eX.

Denote by Ext(X) the family of all extensions of the space X. If X is a com-
pletely regular space, then by Extρ(X) we denote the family of all completely regular
extensions of the space X. Obviously, Extρ(X) ⊂ Ext(X). Let Y,Z ∈ Ext(X) be
two extensions of the space X. We consider that Z ≤ Y if there exists a continuous
mapping f : Y −→ Z such that f(x) = x for each x ∈ X. If Z ≤ Y and Y ≤ Z, then
we say that extensions Y and Z are equivalent and there exists a unique homeomor-
phism f : Y −→ Z of Y onto Z such that f(x) = x for each x ∈ X. We identify the
equivalent extensions. In this case Ext(X) and Extρ are partially ordered sets.

Let τ be an infinite cardinal. Denote by O(τ) the set of all ordinal numbers of
cardinality < τ . We consider that τ is the first ordinal number of the cardinality
τ . For any α ∈ O(τ) we put O(α) = {β ∈ O(τ) : β < α}. In this case O(τ) is well
ordered set such that |O(τ)| = τ and |O(α)| < τ for every α ∈ O(τ).

A point x ∈ X is called a P (τ)-point of the space X if for any non-empty family
γ of open subsets of X for which x ∈ ∩γ and |γ| < τ there exists an open subset U
of X such that x ∈ U ⊂ ∩γ. If any point of X is a P (τ)-point, then we say that X
is a P (τ)-space.

Any point is an ℵ0-point. If τ = ℵ1, then the P (τ)-point is called the P -point.

2 Hausdorff extensions of discrete spaces

Let τ be an infinite cardinal. Let E be a discrete space of the cardinality ≥ τ .
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A family η of subsets of E is called τ -centered if the family η is non-empty,
∩η = ∅, ∅ 6∈ η and for any subfamily ζ ⊂ η, with cardinality |ζ| < τ , there exists
l ∈ η such that L ⊂ ∩ζ.

Two families η and ζ of subsets of the space E are almost disjoint if there exist
L ∈ η and Z ∈ ζ such that L ∩ Z = ∅.

Any family of subsets is ordered by the following order: L � H if and only if
H ⊂ L. Relative to this oder some families of sets are well-ordered.

Proposition 1. Let k = |E| ≥ τ and Σ{km : m < τ} = k. Then on E there exists
a set Ω of well-ordered almost disjoint τ -centered families such that |Ω| = kτ and
|η| = τ for each η ∈ Ω.

Proof. We fix an element 0 ∈ E. For every α ∈ O(τ) we put Eα = E and 0α = 0.
Then Eτ = Π{Eα : α ∈ O(τ)}. For each x = (xα : α ∈ O(τ)) ∈ Eτ we put
φ(x) = sup{0, α : xα 6= 0α}. Obviously, 0 ≤ φ(x) ≤ τ . Let D = {x = (xα :
α ∈ O(τ)) ∈ Eτ : φ(x) < τ}. By construction, |D| = Σ{km : m < τ} = k
and |Eτ | = kτ . Since |E| = |D|, we can fix a one-to-one mapping f : E −→ D.
Fix a point x = (xα : α ∈ O(τ)) ∈ Eτ . For any β ∈ O(τ) we put V (x, β) =
{y = (yα : α ∈ O(τ)) ∈ Eτ : yα = xα for every α ≤ β} and ηx = {L(x, β) =
f−1(D ∩ V (x, β) : β ∈ 0(τ)}. Then Ω = {ηx : x ∈ Eτ} is the desired set of
τ -centered families.

Remark 1. Let |E| = k ≥ τ . Since on E there exists k mutually disjoint subsets of
cardinality τ , on E there exists a set Φ of well-ordered almost disjoint τ -centered
families such that |Φ| ≥ k and |η| = τ for each η ∈ Φ.

Fix a set Φ of almost disjoint τ -centered families of subsets of the set E. We put
eΦE = E ∪ Φ. On eΦE we construct two topologies.

Topology T s(Φ). The basis of the topology T s(Φ) is the family Bs(Φ) = {UL =
L ∪ {η ∈ Φ : H ⊂ L for some H ∈ η} : L ⊂ E}.

Topology Tm(Φ). For each x ∈ E we put Bm(x) = {{x}}. For every η ∈ Φ we
put Bm(η) = {V(η,L) = {η} ∪ L : L ∈ η}. The basis of the topology Tm(Φ) is the
family Bm(Φ) = ∪{Bm(x) : x ∈ eΦE}.
Theorem 1. The spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are Hausdorff zero-
dimensional extensions of the discrete space E, and T s(Φ) ⊂ Tm(Φ)). In particular,
(eΦE,T s(Φ)) ≤ (eΦE,Tm(Φ)).

Proof. The inclusion T s(Φ) ⊂ Tm(Φ)) follows from the constructions of the topolo-
gies T s(Φ) and Tm(Φ)). If L ∈ η ∈ Φ, then η ∈ clL. Hence the set E is dense
in the spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)). If the families η, ζ ∈ Φ are distinct,
then there exist L ∈ η and Z ∈ ζ such that L ∩ Z = ∅. Then UL ∩ UZ = ∅. If
L ⊂ E and |L| < τ , then L is an open-and-closed subset of the spaces (eΦE,T s(Φ))
and (eΦE,Tm(Φ)). Hence the topologies T s(Φ) and Tm(Φ) are discrete on E and
the spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are Hausdorff extensions of the dis-
crete space E. Since the sets UL and V(η,L) are open-and-closed in the topolo-
gies T s(Φ) and Tm(Φ)), respectively, the spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are
zero-dimensional.
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Theorem 2. The spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are P (τ)-spaces.

Proof. Fix η ∈ Φ. If ζ ⊂ η and |ζ| < τ , then there exists L(ζ) ∈ η such that
L(ζ) ⊂ ∩ζ. From this fact immediately follows that (eΦE,Tm(Φ)) is a P (τ)-space.
Assume that {Lµ : µ ∈ M} is a family of subsets of E, |M | < τ , η ∈ Φ and
η ∈ ∩{Lµ : µ ∈ M}. Then there exists L ∈ η such that L ⊂ ∩{Lµ : µ ∈ M}. Thus
η ∈ UL ∈ ∩{ULµ

: µ ∈ M}. From this fact immediately follows that (eΦE,T s(Φ)) is
a P (τ)-space.

Corollary 1. If T s(Φ) ⊂ T ⊂ Tm(Φ)), then (eΦE,T ) is a Hausdorff extension of
the discrete space E, and (eΦE,T s(Φ)) ≤ (eΦE,T ) ≤ (eΦE,Tm(Φ)).

Theorem 3. The space (eΩE,T s(Ω)), where Ω is the set of well-ordered almost
disjoint τ -centered families from Proposition 1, is a zero-dimensional paracompact
space with character χ(eΩE,T s(Ω)) = τ and weight Σ{|E|m : m < τ}.

Proof. We consider that E = D. The family B = {{x} : x ∈ D} ∪ {V (x, β) : x ∈
Eτ , β ∈ O(τ)} is a base of the topology T s(Ω). If U, V ∈ B, then either U ⊂ V , or
V ⊂ U , or U ∩ V = ∅. From the A. V. Arhangel’skii Theorem [1] it follows that
(eΩE,T s(Ω)) is a zero-dimensional paracompact space.

3 Construction of Hausdorff extensions

Let τ be an infinite cardinal. Fix a P (τ)-space X. Let γ = {Hµ : µ ∈ M} be
a discrete family of non-empty open subsets of the space X and τ ≤ |M |. For any
µ ∈ M we fix a point eµ ∈ Uµ and a family ξµ = {H(µ,α) : α ∈ O(τ)} of open subsets
of X such that eµ ∈ ∩ξµ and H(µ,β) ⊂ H(µ,α) ⊂ Hµ for all α ∈ O(τ) and β ∈ O(α).
Then E = {eµ : µ ∈ M} is a discrete closed subspace of the space X.

Consider the Hausdorff extension rE of the space E. We put erEX = X∪(rE\E).
In erEX we construct the topology T = T (γ,E, ξµ, τ) as follows:

– we consider X as an open subspace of e(E,Y )X;
– let TX be the topology of X and TrE be the topology of the space rE;
– if V ∈ TrE , then eαV = V ∪ {H(µ,α) : eµ ∈ V };
– B = TX ∪{eαV : V ∈ TrE} is an open base of the topology T = T (γ,E, ξµ, τ).

Theorem 4. The space (e(E,Y )X,T (γ,E, ξµ, τ)) is a Hausdorff extension of the
space X.

Proof. If V,W ∈ TrE, then:
– eαW ⊂ eαV if and only if W ⊂ V ;
– eαW ∩ eαV = ∅ if and only if W ∩ tV = ∅;
– eαV ∩ rE = V .
These facts and Theorem 1 complete the proof.

Theorem 5. If rE is a P (τ)-space, then (e(E,Y )X,T (γ,E, ξµ, τ)) is a P (τ)-space
too. Moreover, χ(e(E,Y )X,T (γ,E, ξµ, τ)) = χ(X) + χ(rE) and

w(e(E,Y )X,T (γ,E, ξµ, τ)) = w(X) + w(rE).
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Proof. Follows immediately from the construction of the sets eαV .

Theorem 6. Assume that the spaces rE and X are zero-dimensional, and the sets
H(µ,α) are open-and-closed in X. Then:

1. (e(E,Y )X,T (γ,E, ξµ, τ)) is a zero-dimensional space.
2. The space (e(E,Y )X,T (γ,E, ξµ, τ)) is paracompact if and only if the spaces rE

and X are paracompact.

Proof. If the set V is open-and-closed in rE and the sets H(µ,α) are open-and-
closed in X, then the sets eαV are open-and-closed in (e(E,Y )X,T (γ,E, ξµ, τ)). If
{Vλ : λ ∈ L} is a discrete cover of rE, and α(λ) ∈ O(τ), then {eα(λ)Vλ : λ ∈ L} is a
discrete family of open-and-closed sets. This fact completes the proof.
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