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Generalized hypergeometric systems

and the fifth and sixth Painlevé equations

Galina Filipuk

Abstract. This paper concerns (generalized) hypergeometric systems associated
with the fifth and sixth Painlevé equations, which are the second order nonlinear
ordinary differential equations. The Painlevé equations govern monodromy preserving
deformations of certain second order linear scalar equations. We reduce these scalar
equations to generalized hypergeometric systems.
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1 Introduction

In some problems of the general theory of ordinary differential equations (ODEs)
it is very efficient to study systems of ODEs rather than single scalar equations.
The benefit is that the problem can be studied by using the matrix calculus and
most likely can easily be generalized. Thus, the methods of reduction of a linear
differential equation with a finite number of regular and irregular singularities to
a system of linear differential equations of some canonical form are needed. In
general, the reduction problems are difficult and only partial results are available in
this direction, see for instance [1, 9].

The current paper concerns the study of the second order linear differential
equation

d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0, (1)

where p1(x) and p2(x) are certain rational functions (exact formulas are given in
the sections below). The isomonodromy deformations of equation (1) with such
choice of coefficients lead to the famous fifth and sixth Painlevé equations [12].
The solutions of these equations, the Painlevé transcendents, are nonlinear special
functions which appear in many areas of modern mathematics and mathematical
physics (random matrix theory, algebraic geometry, integrable systems, topological
field theories and many others). The Painlevé equations are second order nonlinear
differential equations of the form

d2λ

dt2
= R

(
t, λ,

dλ

dt

)
,
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where R is a rational function, having the Painlevé property, which is that their
general solutions possess no movable critical points (see, for instance, [7] for defini-
tions). Moreover, the Painlevé transcendents are not expressible in terms of classical
linear special functions. Nowadays, the interest in the Painlevé equations is growing
due to numerous applications.

There are many systems one can associate with the scalar differential equation
(1). In this paper we are interested in the systems of the form

(x − B)
dY

dx
= AY, (2)

where the matrix A does not depend on x and the diagonal elements of the ma-
trix B include all singularities of equation (1). We call such systems generalized
hypergeometric systems. If the matrix B is diagonal, then we call the system a
hypergeometric system following [9]. We remark that the systems we consider can
also be viewed as generalized Okubo systems, but we want to distinguish apparent
singularities (there is a holomorphic basis of solutions at such points) and include
them as elements of the matrix B. Apparent singularities, as will be discussed later
on, play a special role in monodromy preserving deformations of equation (1), and
hence we are interested in studying the problem of reduction (1) to generalized hy-
pergeometric systems. Systems of the type (2) recently appeared in the study of the
Heun equation [3].

In this paper, we first consider equation (1) with 4 regular singularities x =
0, 1,∞, t and one apparent singularity λ. The scalar equation (1) is Fuchsian in
this case, and the algorithm of reduction is known [9]. We explicitly compute the
hypergeometric system (2), where the 4× 4 matrix B is diagonal (0, 1, t, λ) and the
constant matrix A is the sum of a lower triangular matrix and a nilpotent matrix
having elements i, i + 1 equal to 1 and all others equal to zero. If the parameter t
moves in the complex plane, the isomonodromy deformations of (1) (deformations
which preserve the monodromy group of the equation) lead to the sixth Painlevé
equation (PV I) for the function λ(t). From the works of Okamoto, Noumi and others
it is known that the parameter space of the sixth Painlevé equation admits the
action of the extended affine Weyl group. The corresponding action of the group on
solutions of (PV I) is known as the action of the group of Bäcklund transformations.
One of such Bäcklund transformations was recently rederived in [4] from the integral
transformation of 2× 2 system. Thus, we are interested to understand the action of
this transformation on the hypergeometric system. This gives a new insight into the
nature of the Painlevé equations and their Bäcklund transformations. In particular,
the action of the Bäcklund transformation gives a new hypergeometric system with
a new apparent singularity and different eigenvalues and diagonal elements.

It is also possible [5] to consider other 4 × 4 systems, called Okubo systems,
equivalent to equation (1), but the apparent singularity is not singled out there in
the diagonal matrix B as in the hypergeometric system we consider. Other types of
systems of differential equations associated with the sixth Painlevé equation and the
action of the Bäcklund transformations on them are considered in [10, 11]. Other
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Painlevé equations are also studied from this perspective, see for instance the pa-
per [2] concerning the fourth Painlevé equation. We also remark that equation (1)
gives the Heun equation as the result of the confluence process when the apparent
singularity tends to one of 4 other regular singularities of (1) and the 3× 3 hyperge-
ometric system associated with the Heun equation was useful in finding the integral
transformations between its solutions [3].

As the result of the confluence process when one of regular singularities of (1)
associated with (PV I) coalesces with another regular singularity, we get a linear
equation the isomonodromy deformations of which give the fifth Painlevé equation
(PV ). In this case, equation (1) has two regular singularities x = 0,∞, one irregular
singularity x = 1 and one apparent singularity λ (which becomes the solution of (PV )
viewed as a function of the deformation parameter t). We introduce a generalized
hypergeometric system and compute it explicitly for the linear system associated
with the fifth Painlevé equation. The system we present encodes the information of
the generalized Riemann scheme (information about the singularities of the scalar
equation) in elements of the matrix B, which is not diagonal in this case, and diag-
onal elements and the eigenvalues of the matrix A. We remark that the generalized
Okubo type systems have been recently studied in [8], but as remarked above, the
apparent singularity does not appear in the diagonal elements of the matrix B.

The paper is organized as follows. In the following two sections we consider
the problems outlined above in detail. The main results and open problems are
summarized in the last section.

2 A hypergeometric system associated with the sixth Painlevé

equation

Equation (1) with

p1(x) =
1 − θ0

x
+

1 − θ1

x − 1
+

1 − θ2

x − t
−

1

x − λ
, (3)

p2(x) =
k1(k2 + 1)

x(x − 1)
+

λ(λ − 1)µ

x(x − 1)(x − λ)
−

t(t − 1)HV I

x(x − 1)(x − t)
, (4)

t(t − 1)HV I = k1(k2 + 1)(λ − t) + λ(λ − 1)(λ − t)µ2 − (5)

−(θ0(λ − 1)(λ − t) + θ1λ(λ − t) + (θ2 − 1)λ(λ − 1))µ

and
k1 + k2 + θ0 + θ1 + θ2 = 0 (6)

is a Fuchsian equation with 4 regular singularities x = 0, 1,∞, t and one apparent
singularity λ.

The sixth Painlevé equation is the following nonlinear ordinary differential equa-
tion of second order for the unknown function λ(t):

λ′′ =
1

2

(
1

λ
+

1

λ − 1
+

1

λ − t

)
(λ′)2 −

(
1

t
+

1

t − 1
+

1

λ − t

)
λ′ +



6 G. FILIPUK

λ(λ − 1)(λ − t)

t2(t − 1)2

(
α + β

t

λ2
+ γ

t − 1

(λ − 1)2
+ δ

t(t − 1)

(λ − t)2

)
,

where ′ stands for the derivation with respect to the independent variable t and
α, β, γ, δ are complex parameters.

One of standard ways to derive the sixth Painlevé equation is to study mon-
odromy preserving deformations of a second order Fuchsian differential equation on
P

1 with four regular singular points and one apparent singularity [12], i.e., to con-
sider deformations of equation (1) with (3)–(6). This leads to a system of partial
differential equations, and the compatibility condition gives a Hamiltonian system

dλ

dt
=

∂HV I

∂µ
,

dµ

dt
= −

∂HV I

∂λ
(7)

and, hence, (PV I) for the function λ(t) with

α =
(2k1 + θ0 + θ1 + θ2 − 1)2

2
, β = −

θ2
0

2
, γ =

θ2
1

2
, δ =

1 − θ2
2

2
.

The reader is referred to [7, 12] for further details.
Each element of the hypergeometric system (2) is written as

(x − λj)y
′

j =

4∑

k=1

αj,kyk, j ∈ {1, . . . , 4},

where λ1 = 0, λ2 = 1, λ3 = t, λ4 = λ. The matrix B in (2) is diagonal with
finite singularities of (1) on the diagonal. The matrix A in (2) is independent of
x and we impose condition that it is the sum of a lower triangular matrix and a
nilpotent matrix having elements i, i + 1 equal to 1 and all others equal to zero.
Hence, αi,j = 0, j > i+1, and αi,i+1 = 1. Because of the special form of the system,
we can find successively

y2 = xy′1 + f0(x)y1,

y3 = x(x − 1)y′′1 + g1(x)y′1 + g0(x)y1,

y4 = x(x − 1)(x − t)y′′′1 + h2(x)y′′1 + h1(x)y′1 + h0(x)y1

with some functions f, g, h of x depending on the coefficients of the matrix A and,
thus, we can easily find the fourth order differential equation for the first component
y1 of the vector Y . Next, we can find conditions on the coefficients when it is
reduced to equation (1) with (3), (4). The elements below the diagonal are extremely
cumbersome and we do not write them here1. However, by direct computations and
using the algorithm of [1] it can be verified that the following statement holds true.

Proposition 1. The diagonal elements of the hypergeometric system associated with
equation (1) with (3)–(6) are θ0, θ1 − 1, θ2 − 2, −1 and the eigenvalues are given
by −2, −1, −k1, k1 + θ0 + θ1 + θ2 − 1.

1The pdf file with the matrix of the hypergeometric system is available at
www.mimuw.edu.pl/∼filipuk/files/ForPaper.pdf
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This proposition shows that each diagonal element of the matrix A is equal to
the characteristic exponent at the respective regular singular point modulo integers.
Also we have that two of the eigenvalues of the matrix A are equal to the character-
istic exponents at infinity of equation (1). This, in turn, implies that the local and
global behaviour of solutions of the scalar equation and the system does not change.

It is well known that the parameter space of (PV I) admits the action of the

extended affine Weyl group of type D
(1)
4 (see [11] and references therein). It is gen-

erated by several basic transformations. By a Bäcklund transformation we mean
a transformation of dependent variables and parameters that leaves system (7) in-
variant. The following transformation is one of generators of the group of Bäcklund
transformations. Let us define new variables λ̃, µ̃ as follows:

λ̃ = λ +
k1

µ
, µ̃ = µ, k̃1 = −k1, θ̃0 = k1 + θ0, θ̃1 = k1 + θ1, θ̃2 = k1 + θ2. (8)

Then one can verify directly that, if the pair (λ, µ) satisfies the Hamiltonian sys-
tem (7), then the pair (λ̃, µ̃) again satisfies the same system with new parameters
θ̃0, θ̃1, θ̃2, k̃1.

As shown in [4], this transformation appears in the result of the integral trans-
formation of the 2 × 2 linear Fuchsian system. Other generators of the group of
Bäcklund transformations appear in the result of simple gauge transformations [6].

Next we study the action of transformation (8) on the hypergeometric system.

Theorem 1. The Bäcklund transformation (8) induces a new hypergeometric system
associated with (PV I) with B = diag(0, 1, t, λ+k1/µ) and a new matrix A which has
elements θ0 + k1, θ1 + k1 − 1, θ2 + k1 − 2, −1 on the diagonal and eigenvalues equal
to −2, −1, k1, 2k1 + θ0 + θ1 + θ2 − 1.

3 A generalized hypergeometric system associated with the fifth

Painlevé equation

We consider equation (1) with

p1(x) =
1 − k0

x
+

η1t

(x − 1)2
+

1 − θ1

x − 1
−

1

x − λ
, (9)

p2(x) =
k

x(x − 1)
−

tHV

x(x − 1)2
+

λ(λ − 1)µ

x(x − 1)(x − λ)
, (10)

tHV = λ(λ − 1)2µ2 − (k0(λ − 1)2 + θ1λ(λ − 1) − η1tλ)µ + k(λ − 1) (11)

and

4k = (k0 + θ1)
2 − k2

∞
. (12)
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The generalized Riemann scheme giving local exponents at regular and irregular
singularities of equation (1) with (9)–(12) is given in [12]. The monodromy preserv-
ing deformations lead to the Hamiltonian system (7) for the Hamiltonian HV and,
hence, to the fifth Painlevé equation given by

λ′′ =

(
1

2λ
+

1

λ − 1

)
(λ′)2 −

1

t
λ′ +

(λ − 1)2

t2

(
αλ + β

1

λ

)
+

γ

t
λ + δ

λ(λ + 1)

λ − 1

with

α =
k2
∞

2
, β = −

k2
0

2
, γ = η1(1 + θ1), δ = −

η2
1

2
.

for the function λ(t).
Since equation (1) is not Fuchsian as in (PV I) case above, the algorithm of [1]

is not applicable and we need to find a new type of system to reduce the equation.
We introduce the following generalized hypergeometric system.

Theorem 2. The generalized hypergeometric system of equation (1) with (9)–(12)
is given by





x 0 0 0
0 x − 1 0 0
0 η1t x − 1 0
0 0 0 x − λ









y′1
y′2
y′3
y′4



 =





k0 1 0 0
α2,1 θ1 1 0
α3,1 α3,2 −2 1
α4,1 α4,2 α4,3 −1









y1

y2

y3

y4





with

α2,1 = λµ − µ + k0(θ1 + η1t + 1/λ − 1) − k − tHV ,

λ(λ − 1)α4,3 = k0(λ − 1)2 − λ(1 − θ1 + η1t − λ − θ1λ + (λ − 1)2µ) =: q1,

λ2(λ − 1)α4,2 = q1(k0(λ − 1) + λ(1 + θ1 + µ − λµ)),

α4,1 =
q1

λ2(λ − 1)

{
k2
0(λ − 1) + k0λ

[
θ1 + η1t + (λ − 2)(λ − 1)µ

]
−

−λ2
[
k + µ

(
θ1 + η1t − θ1λ + (λ − 1)2µ

)]}
,

(λ − 1)α3,2 = 1 + θ1 + (1 + k0)η1t + k(λ − 1)2 − λ − q2λ−

−q3(λ − 1)µ + λ(λ − 1)3µ2,

q2 = θ1 + k0η1t, q3 = k0 − (2k0 + θ1 + η1t)λ + (k0 + θ1)λ
2,

λ2α3,1 = λ2(2k(λ − 1) − q4µ + (λ − 1)2(2λ − 1)µ2)−

−k2
0(1 + q5λ) + k0λ(q6 + η1t(1 + η1(1 + λ(λµ − 2)) + q7(λ − 1))),

q4 = θ1 + η1t + λ − 3θ1λ − 2η1tλ + 2θ1λ
2 − 1,

q5 = η1tλ + λ(λ − 1)2µ − 1, q6 = θ1(1 − λ)(1 + λ2µ),

q7 = 1 − 2µ + λ(k + µ(3 − 2λ + λ(λ − 1)µ)).
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Substituting y1 = y into the system we require that y solves equation (1) with
(9)–(12). A routine calculation shows that the matrix A in the system has eigenval-
ues −2, −1, (k0 + θ1 − k∞)/2, (k0 + θ1 + k∞)/2 which encode the information of
the generalized Riemann scheme in [12]. We note that the action of the Bäcklund
transformations of (PV ) on the sytem can also be studied similarly to (PV I) case.

4 Conclusions

We have computed the hypergeometric system associated with the sixth Painlevé
equation via (1) and studied the action of a particular Bäcklund transformation on
it. We introduced a new type of systems, the generalized hypergeometric system,
and reduced equation (1) associated with the fifth Painlevé equation to it. The
generalized hypergeometric systems give a new type of reduction problems and are
worth of further study. The generalized hypergeometric systems for other Painlevé
equations and the confluence process are currently under investigation and will be
published elsewhere. We expect that the hypergeometric systems could be applied
to other problems concerning the Painlevé equations. It is an open (and compu-
tationally difficult) problem to study the (generalized) hypergeometric systems for
the (degenerate) Garnier systems and examine their symmetries. There is some ev-
idence [10] that new symmetries of the Garnier systems may not exist and, so, the
hypergeometric systems could shed some more light on this problem.
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tre for Mathematical and Computational Modelling (ICM), Warsaw University, wi-
thin grant nr G34-18. Research is partially supported by Polish MNiSzW Grant No
N N201 397937. The author is grateful to Prof. Y. Haraoka for useful discussions
and to Dr. H.Kawakami for sending his thesis [8]. I am grateful to the referee for
helpful remarks.
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Painlevé equation, J. Phys. A: Math. Gen., 2005, 38, 9751–9764.

[3] Filipuk G. A hypergeometric system of the Heun equation and middle convolution, J. Phys.
A: Math. Theor., 2009, 42, 175208, 11 p.

[4] Filipuk G. On the middle convolution and birational symmetries of the sixth Painlevé equa-
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Vague BF -algebras
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Abstract. In this paper, by using the concept of vague sets and BF -algebra we
introduce the notions of vague BF -algebra. After that we state and prove some
theorems in vague BF -algebras, α-cut and vague-cut. The relationship between these
notions and crisp subalgebras are studied.
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Keywords and phrases: (anti) fuzzy BF -algebras, vague sets, vague BF -algebra,
vague-cut, (artinian, noetherian) BF -algebras.

1 Introduction

It is known that mathematical logic is a discipline used in sciences and humanities
with different point of view. Non-classical logic takes the advantage of the classical
logic (two-valued logic) to handle information with various facts of uncertainty. The
non-classical logic has become a formal and useful tool for computer science to deal
with fuzzy information and uncertain information.

Y. Imai and K. Iseki [7] introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras. It is known that the class of BCK-algebras is a
proper subclass of the class of BCI-algebras. Recently, Andrzej Walendziak defined
a BF -algebra [12].

The notion of vague set theory was introduced by W. L.Gau and D. J.Buehrer
[3], as a generalizations of Zadeh’s fuzzy set theory [13]. In [1], R. Biswas applied
the notion to group theory and introduced vague groups.

Now, in this note we use the notion of vague set to establish the notions of vague
BF -algebras; then we obtain some related results which have been mentioned in the
abstract.

2 Preliminaries

In this section, we present now some preliminaries on the theory of vague sets
(VS). In his pioneer work [13], Zadeh proposed the theory of fuzzy sets. Since then
it has been applied in wide varieties of fields like Computer Science, Management
Science, Medical Sciences, Engineering problems, etc. to list a few only.

Let U = {u1, u2, ..., un} be the universe of discourse. The membership function
for fuzzy sets can take any value from the closed interval [0; 1]. An fuzzy set A is
defined as the set of ordered pairs A = {(u;µA(u)) | u ∈ U} where µA(u) is the

c© A.R.Hadipour, A.Borumand Saeid, 2010
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grade of membership of element u in set A. The greater µA(u), the greater is the
truth of the statement that ’the element u belongs to the set A’. But Gau and
Buehrer [3] pointed out that this single value combines the ’evidence for u’ and the
’evidence against u’. It does not indicate the ’evidence for u’ and the ’evidence
against u’, and it does not also indicate how much there is of each. Consequently,
there is a genuine necessity of a different kind of fuzzy sets which could be treated
as a generalization of Zadeh’s fuzzy sets [13].

Definition 1. A vague set A in the universe of discourse U is characterized by two
membership functions given by:

1. A truth membership function tA : U → [0, 1],

2. A false membership function fA : U → [0, 1],

where tA(u) is a lower bound of the grade of membership of u derived from the
’evidence for u’, and fA(u) is a lower bound of the negation of u derived from the
’evidence against u’ and tA(u) + fA(u) ≤ 1. Thus the grade of membership of u in
the vague set A is bounded by a subinterval [tA(u), 1−fA(u)] of [0, 1]. This indicates
that if the actual grade of membership is µ(u), then

tA(u) ≤ µ(u) ≤ 1 − fA(u).

The vague set A is written as

A = {(u, [tA(u), fA(u)]) | u ∈ U},

where the interval [tA(u), 1 − fA(u)] is called the ’vague value’ of u in A and is
denoted by VA(u).

It is worth to mention here that interval-valued fuzzy sets (i-v fuzzy sets) [14] are
not vague sets. In i-v fuzzy sets, an interval-valued membership value is assigned to
each element of the universe considering the ’evidence for u’ only, without consi-
dering ’evidence against u’. In vague sets both are independently proposed by the
decision maker. This makes a major difference in the judgment about the grade of
membership.

Definition 2. (see [1]). A vague set A of a set U is called

1) the zero vague set of U if tA(u) = 0 and fA(u) = 1 for all u ∈ U ,

2) the unit vague set of U if tA(u) = 1 and fA(u) = 0 for all u ∈ U ,

3) the α-vague set of U if tA(u) = α and fA(u) = 1 − α for all u ∈ U ,
where α ∈ (0, 1).

Let D[0, 1] denote the family of all closed subintervals of [0, 1]. Now we define
refined minimum (briefly, rmin) and order ” ≤ ” on elements D1 = [a1, b1] and
D2 = [a2, b2] of D[0, 1] as:

rmin(D1,D2) = [min{a1, a2},min{b1, b2}],
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D1 ≤ D2 ⇐⇒ a1 ≤ a2 ∧ b1 ≤ b2.

Similarly we can define ≥, = and rmax. Then the concept of rmin and rmax
could be extended to define rinf and rsup of infinite number of elements of D[0, 1].

It is that L = {D[0, 1], rinf, rsup,≤} is a lattice with universal bounds [0, 0]
and [1, 1].

For α, β ∈ [0, 1] we now define (α, β)-cut and α-cut of a vague set.

Definition 3. (see [1]). Let A be a vague set of a universe X with the true-
membership function tA and false-membership function fA. The (α, β)-cut of the
vague set A is a crisp subset A(α,β) of the set X given by

A(α,β) = {x ∈ X | VA(x) ≥ [α, β]},

where α ≤ β.

Clearly A(0, 0) = X. The (α, β)-cuts are also called vague-cuts of the vague
set A.

Definition 4. (see [1]). The α-cut of the vague set A is a crisp subset Aα of the set
X given by Aα = A(α,α).

Note that A0 = X and if α ≥ β then Aβ ⊆ Aα and A(β,α) = Aα. Equivalently,
we can define the α-cut as

Aα = {x ∈ X | tA(x) ≥ α}.

Definition 5. Let f be a mapping from the set X to the set Y and let B be a vague
set of Y . The inverse image of B, denoted by f−1(B), is a vague set of X which is
defined by Vf−1(B)(x) = VB(f(x)) for all x ∈ X.

Conversely, let A be a vague set of X. Then the image of A, denoted by f(A),
is a vague set of Y such that:

Vf(A)(y) =

{
rsupz∈f−1(y)VA(z) if f−1(y) = {x : f(x) = y} 6= ∅,

[0,0] otherwise.

Definition 6. A vague set A of BF -algebra X is said to have the sup property if
for any subset T ⊆ X there exists x0 ∈ T such that

VA(x0) = rsupt∈TVA(t).

Definition 7. (see [12]). A BF -algebra is a non-empty set X with a consonant 0
and a binary operation ∗ satisfying the following axioms:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,
(III) 0 ∗ (x ∗ y) = (y ∗ x),

for all x, y ∈ X.
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Example 1. (see [12]). (a) Let R be the set of real numbers and let A = (R; ∗, 0)
be the algebra with the operation ∗ defined by

x ∗ y =






x if y = 0,
y if x = 0,
0 otherwise.

Then A is a BF -algebra.
(b) Let A = [0;∞). Define the binary operation ∗ on A as follows: x∗y = |x−y|,

for all x, y ∈ A. Then (A; ∗, 0) is a BF -algebra.

Proposition 1. (see [12]). Let X be a BF -algebra. Then for any x and y in X,
the following hold:

(a) 0 ∗ (0 ∗ x) = x for all x ∈ A;
(b) if 0 ∗ x = 0 ∗ y, then x = y for any x, y ∈ A;
(c) if x ∗ y = 0, then y ∗ x = 0 for any x, y ∈ A.

Definition 8. (see [13]). A non-empty subset S of a BF -algebra X is called a
subalgebra of X if x ∗ y ∈ S for any x, y ∈ S.

A mapping f : X −→ Y of BF -algebras is called a BF -homomorphism if
f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X.

Definition 9. (see [2]). Let µ be a fuzzy set in a BF -algebra X. Then µ is called
a fuzzy BF -subalgebra of X if µ(x ∗ y) ≥ min{µ(x), µ(y)} for all x, y ∈ X.

3 Vague BF -algebras

From now on (X, ∗, 0) is a BF -algebra, unless otherwise is stated.

Definition 10. A vague set A of X is called a vague BF -algebra of X if it satisfies
the following condition:

VA(x ∗ y) ≥ rmin{VA(x), VA(y)}

for all x, y ∈ X, that is

tA(x ∗ y) ≥ min{tA(x), tA(y)},

1 − fA(x ∗ y) ≥ min{1 − fA(x), 1 − fA(y)}.

Example 2. Let X = {0, 1, 2} be a set with the following table:

∗ 0 1 2

0 0 1 2
1 1 0 0
2 2 0 0
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Then (X, ∗, 0) is a BF -algebra, but is not a BCH/BCI/BCK-algebra.

Define

tA(x) =

{
0.7 if x = 0,
0.3 if x 6= 0

and

fA(x) =

{
0.2 if x = 0,
0.4 if x 6= 0.

It is routine to verify that A = {(x, [tA(x), fA(x)]) | x ∈ X} is a vague BF -algebra
of X.

Lemma 1. If A is a vague BF -algebra of X, then VA(0) ≥ VA(x), for all x ∈ X.

Proof. For all x ∈ X, we have x ∗ x = 0, hence

VA(0) = VA(x ∗ x) ≥ rmin{VA(x), VA(x)} = VA(x). �

Proposition 2. Let A be a vague BF -algebra of X and let n ∈ N . Then:

(i) VA(

n∏
x ∗ x) ≥ VA(x), for any odd number n,

(ii) VA(

n∏
x ∗ x) = VA(x), for any even number n,

where
n∏

x ∗ x =

n−times︷ ︸︸ ︷
x ∗ x ∗ ... ∗ x .

Proof. Let x ∈ X and assume that n is odd. Then n = 2k − 1 for some positive
integer k. We prove by induction, definition and above lemma imply that VA(x∗x) =

VA(0) ≥ VA(x). Now suppose that VA(

2k−1∏
x ∗ x) ≥ VA(x). Then by assumption

VA(

2(k+1)−1∏
x ∗ x) = VA(

2k+1∏
x ∗ x) =

= VA(
2k−1∏

x ∗ (x ∗ (x ∗ x))) =

= VA(
2k−1∏

x ∗ x) ≥ VA(x).

Which proves (i). Similarly we can prove (ii).

Theorem 1. Let A be a vague BF -algebra of X. If there exists a sequence {xn} in
X such that

lim
n→∞

VA(xn) = [1, 1],

then VA(0) = [1, 1].
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Proof. By Lemma 1, we have VA(0) ≥ VA(x), for all x ∈ X, thus VA(0) ≥ VA(xn),
for every positive integer n. Since tA(0) ≤ 1 and 1 − fA(0) ≤ 1, then we have
VA(0) = [tA(0), 1 − fA(0)] ≤ [1, 1]. Consider

VA(0) ≥ lim
n→∞

VA(xn) = [1, 1].

Hence VA(0) = [1, 1].

µ is called an antifuzzy BF -subalgebra of X if µ(x ∗ y) ≤ max{µ(x), µ(y)} for
all x, y ∈ X.

In the next proposition we state the relationship between vague BF -algebra and
fuzzy BF -algebras.

Proposition 3. A vague set A = {(u, [tA(u), fA(u)]) | u ∈ X} of X is a vague
BF -algebra of X if and only if tA be a fuzzy BF -subalgebra of X and fA be an
antifuzzy BF -subalgebra of X.

Proof. The proof is straightforward.

Theorem 2. The family of vague BF -algebras forms a complete distributive lattice
under the ordering of vague set.

Proof. Let {Vi | i ∈ I} be a family of vague BF -algebra of X. Since [0, 1] is
a completely distributive lattice with respect to the usual ordering in [0, 1], it is
sufficient to show that

⋂
Vi = [

∧
ti,

∨
fi] is a vague BF -algebra. Let x, y ∈ X.

Then

(
∧

ti)(x ∗ y) = inf{ti(x ∗ y) | i ∈ I} ≥

≥ inf{min{ti(x), ti(y)} | i ∈ I} =

= min(inf{ti(x) | i ∈ I}, inf{ti(y) | i ∈ I}) =

= min(
∧

ti(x),
∧

ti(y)),

also we have

(
∨

fi)(x ∗ y) = sup{fi(x ∗ y) | i ∈ I} ≤

≤ sup{max{fi(x), fi(y)} | i ∈ I} =

= max(sup{fi(x) | i ∈ I}, sup{fi(y) | i ∈ I}) =

= max(
∨

fi(x),
∨

fi(y)).

Hence
⋂

Vi = [
∧

ti,
∨

fi] is a vague BF -algebra. which proves the theorem.

Proposition 4. Zero vague set, unit vague set and α-vague set of X are trivial
vague BF -algebras of X.
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Proof. Let A be a α-vague set of X. For x, y ∈ X we have

tA(x ∗ y) = α = min{α,α} = min{tA(x), tA(y)},

1 − fA(x ∗ y) = α = min{α,α} = min{1 − fA(x), 1 − fA(y)}.

By above proposition it is clear that A is a vague BF -algebra of X. The proof of
other cases is similar.

Theorem 3. Let A be a vague BF -algebra of X. Then for α ∈ [0, 1], the α-cut Aα

is a crisp subalgebra of X.

Proof. Let x, y ∈ Aα. Then tA(x), tA(y) ≥ α, and so tA(x∗y) ≥ min{tA(x), tA(y)} ≥
α. Thus x ∗ y ∈ Aα.

Theorem 4. Let A be a vague BF -algebra of X. Then for all α, β ∈ [0, 1], the
vague-cut A(α,β) is a (crisp) subalgebra of X.

Proof. Let x, y ∈ A(α,β). Then VA(x), VA(y) ≥ [α, β], and so tA(x), tA(y) ≥ α
and 1 − fA(x), 1 − fA(y) ≥ β. Then tA(x ∗ y) ≥ min{tA(x), tA(y)} ≥ α, and
1 − fA(x ∗ y) ≥ min{1 − fA(x), 1 − fA(y)} ≥ β. Thus x ∗ y ∈ A(α,β).

The subalgebra A(α,β) is called vague-cut subalgebra of X.

Proposition 5. Let A be a vague BF -algebra of X. Two vague-cut subalgebras
A(α,β) and A(δ,ǫ) with [α, β] < [δ, ǫ] are equal if and only if there is no x ∈ X such
that [α, β] ≤ VA(x) ≤ [δ, ǫ].

Proof. In contrary, let A(α,β) = A(δ,ǫ) where [α, β] < [δ, ǫ] and there exists x ∈ X
such that [α, β] ≤ VA(x) ≤ [δ, ǫ]. Then A(δ,ǫ) is a proper subset of A(α,β), which is a
contradiction.

Conversely, suppose that there is no x ∈ X such that [α, β] ≤ VA(x) ≤ [δ, ǫ].
Since [α, β] < [δ, ǫ], then A(δ,ǫ) ⊆ A(α,β). If x ∈ A(α,β), then VA(x) ≥ [α, β] by
hypothesis we get that VA(x) ≥ [δ, ǫ]. Therefore x ∈ A(δ,ǫ), then A(α,β) ⊆ A(δ,ǫ).
Hence A(δ,ǫ) = A(α,β).

Theorem 5. Let | X |< ∞ and A be a vague BF -algebra of X. Consider the set
V (A) given by

V (A) := {VA(x) | x ∈ X}.

Then A(α,β) are the only vague-cut subalgebras of X, where (α, β) ∈ V (A).

Proof. Let [a1, a2] 6∈ V (A), where [a1, a2] ∈ D[0, 1]. If [α, β] < [a1, a2] < [δ, ǫ], where
[α, β], [δ, ǫ] ∈ V (A), then A(α,β) = A(a1,a2) = A(δ,ǫ). If [a1, a2] < [a1, b] where

[a1, b] = rmin{(x, y) | (x, y) ∈ V (A)},

then A(a1,a2) = X = A(a1,b). Hence for any [a1, a2] ∈ D[0, 1], the vague-cut subalge-
bra A(a1,b) is one of the A(α,β) for (α, β) ∈ V (A).
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Theorem 6. Any subalgebra S of X is a vague-cut subalgebra of some vague
BF -algebra of X.

Proof. Define

tA(x) =

{
α if x ∈ S,
0 otherwise

and

fA(x) =

{
1 − α if x ∈ S,
1 otherwise.

It is clear that

VA(x) =

{
[α,α] if x ∈ S,
[0, 0] otherwise,

where α ∈ (0, 1). It is clear that S = A(α,α). Let x, y ∈ X. We consider the following
cases:

1) If x, y ∈ S, then x ∗ y ∈ S therefore

VA(x ∗ y) = [α,α] = rmin{VA(x), VA(y)}.

2) If x, y 6∈ S, then VA(x) = [0, 0] = VA(y) and so

VA(x ∗ y) ≥ [0, 0] = rmin{VA(x), VA(y)}.

3) If x ∈ S and y 6∈ S, then VA(x) = [α,α] and VA(y) = [0, 0]. Thus

VA(x ∗ y) ≥ [0, 0] = rmin{[α,α], [0, 0]} = rmin{VA(x), VA(y)}.

Therefore A is a vague BF -algebra of X.

Theorem 7. Let S be a subset of X and A be a vague set of X which is given in
the proof of above theorem. If A is a vague BF -algebra of X, then S is a (crisp)
subalgebra of X.

Proof. Let A be a vague BF -algebra of X and x, y ∈ S. Then VA(x) = [α,α] =
VA(y), thus

VA(x ∗ y) ≥ rmin{VA(x), VA(y)} = rmin{[α,α], [α,α]} = [α,α].

which implies that x ∗ y ∈ S.

Theorem 8. Let A be a vague BF -algebra of X. Then the set

XVA
:= {x ∈ X | VA(x) = VA(0)}

is a (crisp) subalgebra of X.

Proof. Let a, b ∈ XVA
. Then VA(a) = VA(b) = VA(0), and so

V (a ∗ b) ≥ rmin{VA(a), VA(b)} = VA(0).

Then XVA
is a subalgebra of X.



VAGUE BF -ALGEBRAS 19

Theorem 9. Let N be the vague set of X which is defined by:

VN (x) =

{
[α,α] if x ∈ N,
[β, β] otherwise,

for α, β ∈ [0, 1] with α ≥ β. Then N is a vague BF -algebra of X if and only if N
is a (crisp) subalgebra of X. Moreover, in this case XVN

= N .

Proof. Let N be a vague BF -algebra of X. Let x, y ∈ X be such that x, y ∈ N .
Then

VN (x ∗ y) ≥ rmin{VN (x), VN (y)} = rmin{[α,α], [α,α]} = [α,α]

and so x ∗ y ∈ N .
Conversely, suppose that N is a (crisp) subalgebra of X, let x, y ∈ X.
(i) If x, y ∈ N then x ∗ y ∈ N , thus

VN (x ∗ y) = [α,α] = rmin{VN (x), VN (y)}.

(ii) If x 6∈ N or y 6∈ N , then

VN (x ∗ y) ≥ [β, β] = rmin{VN (x), VN (y)}.

This shows that N is a vague BF -algebra of X.
Moreover, we have

XVN
:= {x ∈ X | VN (x) = VN (0)} = {x ∈ X | VN (x) = [α,α]} = N. �

Proposition 6. Let X and Y be BF -algebras and f be a BF -homomorphism from
X into Y and G be a vague BF -algebra of Y . Then the inverse image f−1(G) of G
is a vague BF -algebra of X.

Proof. Let x, y ∈ X. Then

Vf−1(G)(x ∗ y) = VG(f(x ∗ y)) =

= VG(f(x) ∗ f(y)) ≥

≥ rmin{VG(f(x)), VG(f(y))} =

= rmin{Vf−1(G)(x), Vf−1(G)(y)}. �

Proposition 7. Let X and Y be BF -algebras and f be a BF -homomorphism from
X onto Y and D be a vague BF -algebra of X with the sup property. Then the image
f(D) of D is a vague BF -algebra of Y .

Proof. Let a, b ∈ Y , let x0 ∈ f−1(a), y0 ∈ f−1(b) such that

VD(x0) = rsupt∈f−1(a)VD(t), VD(y0) = rsupt∈f−1(b)VD(t).

Then by the definition of Vf(D), we have

Vf(D)(x ∗ y) = rsupt∈f−1(a∗b)VD(t) ≥

≥ VD(x0 ∗ y0) ≥

≥ rmin{VD(x0), VD(y0) =

= rmin{rsupt∈f−1(a)VD(t), rsupt∈f−1(b)VD(t)} =

= rmin{Vf(D)(a), Vf(D)(b)}. �
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4 Artinian and Noetherian BF -algebras

Definition 11. A BF -algebra X is said to be Artinian if it satisfies the descending
chain condition on subalgebras of X (simply written as DCC), that is, for every
chain I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · of subalgebras of X, there is a natural number i such
that Ii = Ii+1 = · · · .

Theorem 10. Let X be a BF -algebra. Then each vague BF -algebra of X has finite
values if and only if X is Artinian.

Proof. Suppose that each vague BF -algebra of X has finite values. If X is not
Artinian, then there is a strictly descending chain

G = I1⊃ I2⊃ · · · ⊃ In ⊃ · · ·

of subalgebras of X, where Ii ⊃ Ij expresses Ii ⊇ Ij but Ii 6= Ij . We now construct
the vague set B = [tA, fA] of X by

tA(x) :=






n

n + 1
if x ∈ In \ In+1, n = 1, 2, · · · ,

1 if x ∈
∞⋂

n=1
In,

fA(x) := 1 − tA(x).

We first prove that B is a vague BF -algebra of X. For this purpose, we need to
verify that tA is a fuzzy subalgebra of X. We assume that x, y ∈ X. Now, we
consider the following cases:

Case 1: x, y ∈ In \ In+1. In this case, x, y ∈ In, and x ∗ y ∈ In. Thus

tA(x ∗ y) ≥
n

n + 1
= min{tA(x), tA(y)}.

Case 2: x ∈ In \ In+1 and y ∈ Im \ Im+1(n < m). In this case, x, y ∈ In, and
x ∗ y ∈ In. Thus

tA(x ∗ y) ≥
n

n + 1
= min{tA(x), tA(y)}.

Case 3: x ∈ In \ In+1 and y ∈ Im \ Im+1(n > m). In this case, x, y ∈ Im, and
x ∗ y ∈ Im. Thus

tA(x ∗ y) ≥
m

m + 1
= min{tA(x), tA(y)}.

Therefore tA is a fuzzy subalgebra of X. This shows that B is a vague BF -algebra
of X, but the values of B are infinite, which is a contradiction. Thus X is Artinian.

Conversely, suppose that X is Artinian. If there is a vague BF -algebra
B = [tA, fA] of X with |Im(B)| = +∞, then |Im(tA)| = +∞ or |Im(fA)| = +∞.
Without loss of generality, we may assume that Im(tA) = +∞. Select si ∈ Im(tA)
(i = 1, 2 · · · ) and s1 < s2 < · · · . Then U(tA; si)(i = 1, 2, · · · ) are subalgebras of
X and U(tA; s1) ⊇ U(tA; s2) ⊇ · · · with U(tA; si) 6= U(tA; si+1) (i = 1, 2, · · · ), a
contradiction. Similar for Im(fA). The proof is completed.
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Definition 12. A BF -algebra X is said to be Noetherian if every subalgebra of
X is finitely generated. X is said to satisfy the ascending chain condition (briefly,
ACC) if for every ascending sequence I1 ⊆ I2 ⊆ · · · of subalgebras of X there is a
natural number n such that Ii = In, for all i ≥ n.

Theorem 11. X is Noetherian if and only if for any vague BF -algebra A, the
set Im(B) is a well ordered subset, that is, (Im(tA), ≤) and (Im(fA), ≥) are well
ordered subsets of [0, 1], respectively.

Proof. (⇒) Suppose that X is Noetherian. For any chain t1 > t2 > · · · of Im(tA),
let t0 = inf{ti| i = 1, 2, · · · }. Then I := {x ∈ X| tA(x) > t0} is a subalgebra of X,
and so I is finitely generated. Let I = (a1, · · · , ak]. Then tA(a1) ∧ · · · ∧ tA(ak) is
the least element of the chain t1 > t2 > · · · . Thus (Im(tA), ≤) is a well ordered
subset of [0, 1]. By using the same argument as above, we can easily show that
(Im(fA), ≥) is a well ordered subset of [0, 1]. Therefore, Im(B) is a well ordered
subset.

(⇐) Let Im(B) be a well ordered subset. If X is not Noetherian, then there
is a strictly ascending sequence of subalgebras of X such that I1 ⊂ I2 ⊂ · · · . We
construct the bipolar fuzzy set B = [tA, fA] of X by

tA(x) :=






1

n
if x ∈ In − In−1, n = 1, 2, · · · ,

0 if x 6∈
∞⋃

n=1
In,

fA(x) := 1 − tA(x)

where I0 = Ø. By using similar method as the necessity part of Theorem 18, we
can prove that B is a vague BF -algebra of X. Because Im(B) is not well ordered,
which is a contradiction. This completes the proof.

5 Conclusions

In the present paper, we have introduced the concept of vague BF -algebras and
investigated some of their useful properties.

In our opinion, these definitions and main results can be similarly extended to
some other algebraic systems such as groups, semigroups, rings, nearrings, semirings
(hemirings), lattices and Lie algebras. Our obtained results can be perhaps applied
in engineering, soft computing or even in medical diagnosis [11].

In future work the vague ideals and quotient of BF -algebras by using these vague
ideals will be presented.
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A heuristic algorithm for the two-dimensional single

large bin packing problem

V.M.Kotov∗, Dayong Cao

Abstract. In this paper, we propose a heuristic algorithm based on concave corner
(BCC) for the two-dimensional rectangular single large packing problem (2D-SLBPP),
and compare it against some heuristic and metaheuristic algorithms from the lite-
rature. The experiments show that our algorithm is highly competitive and could
be considered as a viable alternative, for 2D-SLBPP. Especially for large test prob-
lems, the algorithm could get satisfied results more quickly than other approaches in
literature.

Mathematics subject classification: 34C05.
Keywords and phrases: Rectangular packing, heuristic, best-fit, concave corner,
fitness value.

1 Introduction

Packing problem involves many industrial applications. For example, wood or
class industries, ship building, textile and leather industry etc. All of these appli-
cations can be formalized as packing problem [1], for more extensive and detailed
descriptions of packing problems, please refer to [1–4].

In this paper, we discuss the two-dimensional single large bin packing problem
(2D-SLBPP). The problem could be described as follows:

Given a rectangular board with fixed size and a set of rectangular pieces. The
research of 2D-SLBPP is how to pack rectangular pieces orthogonally on the board,
in the meantime, try to decrease the worst of the board with no two pieces overlap.

2 A new heuristic packing algorithm for single bin packing

2.1 Placement strategy based on Concave Corner (BCC)

Before the description of our algorithm, suppose the width and height of rectan-
gular board are W and H. Without loss of generality, all parameters are regarded
as integer. The pieces should be packed with edges parallel to the edges of the board
and couldn’t be rotated by 90o.

For constructing our heuristic algorithm, we propose some definitions and rules.

c© V.M.Kotov, Dayong Cao, 2010
∗This author is corresponding author
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Some definitions

1. Let Ci denote the ”Concave corner” (CC), see Figure 1, the CC is composed
by two edges, and the size of the angle is 90o, at the same time, the CC does not
belong to any piecei.

Figure 1. The example of Concave corner

2. Define the U , which is stated as formula (1):

U = {U1, U2, . . . , Uk}; Ui ∩ Uj = ∅, i 6= j, (1)

where the Ui is a set of the CC, and k is the number of non-connected domains in
the board, for example, see Figure 2, before the P5 is packed onto the board, we have
U = U1 , U1 = {C1, C2, C3, C4, C5, C6, C7, C8}, after packing the P5, the U1 should
be divided into two areas, then we have: U = {U

′

1, U
′

2}, U
′

1 = {C1, C7, C8, C9, C12},
U

′

2 = {C2, C3, C4, C10, C11}. Obviously, before packing any piece onto the board,
there exists 4 CC and k = 1.

Figure 2. Dividing U1 into U
′

1 and U
′

2

3. Define the edge of the Ui: Before any piece is packed onto the board, let
l U1 denote the left edge of the U1, and r U1 = W denote the right edge of the U1.
Similarly, we could define the t U1 and b U1 to denote the top edge and bottom edge
of the U1. So if Ui was divided into U

′

e and U
′

f , we should update these parameters
using the formulae (2-5):

l U
′

e = Min{x
′

j}, 1 ≦ j ≦ s, C
′

j ⊂ U
′

e, x
′

j is x − coordinate of the C
′

j; (2)
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r U
′

e = Max{x
′

j}, 1 ≦ j ≦ s, C
′

j ⊂ U
′

e, x
′

j is x − coordinate of the C
′

j ; (3)

b U
′

e = Min{x
′

j}, 1 ≦ j ≦ s, C
′

j ⊂ U
′

e, y
′

j is y − coordinate of the C
′

j; (4)

t U
′

e = Max{x
′

j}, 1 ≦ j ≦ s, C
′

j ⊂ U
′

e, y
′

j is y − coordinate of the C
′

j; (5)

where s is the number of CC in U
′

e.

Note. After a new piece is packed onto the board, if no Ui was divided, the
edges of Ui should not be changed.

4. When a new piece piecei is packed onto the board, let s denote the number
of edges which is touched with some packed pieceh for the position of one Ck, if the
piecei could be packed, then we compute the parameter pF it Ck using formula (6):

pF it Ck =
s∑

j=1

pj, (6)

if the piecei is packed onto Ck with corner of the piece (query every Um), the piecei

touches one edge of the Um (pj = 2) and the piecei touches one edge of the other
packed piece (pj = 1), see Figure 3.

Figure 3. Computation of pF it Ci in every Uk

5. Define the edge distance of Ck:

ed Ck = Min{the distance between vertex of Ck with the edge of Ue} (7)

if Ck ⊂ Ue.

Packing rules. When piecei is packed onto the board, compute the pF it Ck

of every Ck, and select the packing position with maximal pF it Ck, if pF it Ck are
equal to each other, then select the position with ed Ck is the shortest, then if the
ed Ck is the same, select the position randomly.

After completing the definitions and packing rules, we construct the heuristic
algorithm based on the concave corner (BCC) as algorithm 1:
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Algorithm 1 heuristic Packing (packing sequence)

s ⇐ 0;
i ⇐ 0;
while packing sequence is not null do

get piecei from the packing sequence;
using the packing rules mentioned above to get good position for piecei;
if good position exists then

pack the piecei into the board at the good position;
remove the piecei from packing sequence;
s ⇐ s + area of piceci;
continue;

end if

i ⇐ i + 1;
end while

return s;

2.2 Random search

Since the result of the heuristic packing (BCC) depends on the order of the
packing sequence, so we import a random search to enhance the quality of the
solution, which is described as follows:

Algorithm 2 middle Heuristic (origin data of all pieces, maxcall)

produce a packing sequence according to the area of all pieces from big to small;
best ⇐ 0;
area ⇐ 0;
swapLimit ⇐ pieces number × 1 / 3;
for i = 0 to maxcall do

area = heuristicPacking(packing sequence);
if area equals to the total area of all pieces then

break;
end if

if area > best then

best ⇐ area;
end if

for j = 0 to swapLimit do

swap the pieces order of packing sequence randomly;
end for

end for
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3 Experiments

We implemented our algorithm by C++ programming language, and the 21 rec-
tangular packing instances coming from [5] are used. For evaluating the algorithm
more reasonably, we set the maxcall is 1000 and run the program 100 times. our
experiments are run on a IBM T400 notebook PC with 2.26 GHZ CPU, GRASP
is introduced in [6] and tabu search algorithm is presented in [7] (TABU), both
GRASP and TABU were run on a Pentium III at 800 MHz, which is almost thrice
as slow as ours. The test results are listed in Table 1.

Table 1. Comparisons of the average filling rate (FR) and the average running
time (T)

Instance Area Number of items
GRASP TABU BCC

FR(%) T(s) FR(%) T(s) FR(%) T(s)
1 400 16 100 0.94 100 0.42 100 0.13
2 400 17 96.5 9.28 100 4.23 96.5 1.10
3 400 16 100 0.06 100 0.95 100 0.24
4 600 25 98.33 19.44 100 0.44 96.83 2.47
5 600 25 99.5 17.36 100 4.16 99 2.27
6 600 25 100 0.71 100 0.0 99.33 1.97
7 1800 28 98.06 26.80 100 4.91 96.72 3.21
8 1800 29 97.5 37.35 100 10.11 95.56 3.33
9 1800 28 98.56 30.92 100 5.52 97.33 2.58
10 3600 49 98 102.05 99.44 45.27 96.83 9.43
11 3600 49 97.89 110.79 99 67.59 98.19 9.18
12 3600 49 98.44 94.41 99.44 51.11 98.47 8.72
13 5400 73 98.3 212.07 98.93 135.97 97.63 26.22
14 5400 73 98.39 231.56 99.28 96.80 97.39 28.38
15 5400 73 98.37 231.24 99.54 82.06 97.39 26.50
16 9600 97 98.65 480.44 99.46 240.39 98.06 53.76
17 9600 97 98.47 465.49 98.42 399.86 98.21 57.33
18 9600 97 98.44 478.02 99.64 206.78 98.02 52.89
19 38400 196 98.08 3760.14 99.03 3054.38 98.35 311.56
20 38400 197 98.8 2841.96 99.34 1990.70 98.80 360.42
21 38400 196 98.29 3700.99 98.61 5615.75 98.39 324.49

4 Conclusion

In this paper, a heuristic algorithm BCC based on the random search method for
the two-dimensional single large bin packing problem is proposed, the experiments
show that our algorithm is highly competitive and could be considered as a viable
alternative for 2D-SLBPP. Especially for large test problems, the algorithm could get
satisfied results more quickly than other approaches in the literature. Furthermore,
if BCC could combine with some appropriate intelligent optimization methods, we
think that it could get better optimal solutions in acceptable time.
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Abstract. This paper contains new results on conditions of an isotopy of two
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group of a quasigroup is defined. The results of this paper complement investigations
of V.D.Belousov in [1,2] and continue studies from [3].

Mathematics subject classification: 20N05.
Keywords and phrases: Quasigroup, isotopy, parastrophy, orthogonality.

To the 85 Anniversary of V.D.Belousov (1925–1988)

1 Main results

1. Every quasigroup (Q, ·) defines three permutations on the set Q. These are
left La(y) = ay and right Ra(y) = ya translations for all a, y ∈ Q. A middle one Ja
and its inversion J−1

a are defined by xJa(x) = a, J−1
a (x)x = a, x, a ∈ Q respectively.

A quasigroup (Q, ∗) is conjugate to a quasigroup (Q, ·) if x ∗ y = yx is true for
all x, y ∈ Q. It is evident that L∗

a(y) = Ra(y) for all a, y ∈ Q, so L∗

a = Ra and
La = L∗∗

a = R∗

a.

Theorem 1 (see [3]). Let (Q, ·) and (Q, ◦) be quasigroups and (ϕ,ψ, χ) be an
ordered triple of permutations on the set Q.

(i) The formula χ(xy) = ϕ(x)◦ψ(y), for all x, y ∈ Q, defines an isotopy of (Q, ·)
and (Q, ◦) if and only if

ψJaϕ
−1(ϕ(x)) = J◦

χ(a)(ϕ(x))

for all x, y ∈ Q, xy = a.

The equalities ϕ = ψ = χ define an isomorphism of these quasigroups:

χJaχ
−1(χ(x)) = J◦

χ(a)(χ(x))

for all x, y ∈ Q, xy = a.

(ii) the formula χ(xy) = ψ(y) ◦ ϕ(x), for all x, y ∈ Q, defines an anti-isotopy of
(Q, ·) and (Q, ◦) if and only if

ψJaϕ
−1(ϕ(x)) = (J◦

χ(a))
−1(ϕ(x))

c© K.K. Shchukin, 2010
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for all x, y ∈ Q, xy = a.

The equalities ϕ = ψ = χ define an anti-isomorphism of (Q, ·) and (Q, ◦) if and
only if

χJaχ
−1(χ(x)) = (J◦

χ(a))
−1(χ(x))

for all x, y ∈ Q, xy = a.

(iii) There are equivalences of an isotopy (ϕ,ψ, χ) of the quasigroups (Q, ·) and
(Q, ◦) for all x, y ∈ Q: χ(xy) = ϕ(x) ◦ ψ(y) ⇐⇒ χLxψ

−1(y) = L◦

ϕ(x)(y) ⇐⇒

χRyϕ
−1(x) = R◦

ψ(y)(x).

Proof. The statement (i) is established by the following chain of equivalences:
χ(xy) = ϕ(x) ◦ ψ(y) ⇔ χ(a) = ϕ(x) ◦ J◦

χ(a)ϕ(x) ⇔ J◦

χ(a)ϕ(x) = ψ(y) =

ψJaϕ
−1(ϕ(x)) ⇔ J◦

χ(a)ϕ(x) = ψJaϕ
−1(ϕx) for all x, y ∈ Q, putting xy = a,

where a depends on x, y. The case ϕ = ψ = χ reduces to three equivalent con-
ditions of isomorphism of (Q, ·) and (Q, ◦).

The statement (ii) is verified like (i): χ(xy) = ψ(y) ◦ ϕ(x) ⇔ χ(a) = ψ(y) ◦
J◦

χ(a)(ψ(y)) ⇔ J◦

χ(a)ψ(y) = ϕ(x) = ϕJ−1
a ψ−1(y) ⇔ (J◦

χ(a))
−1ϕ(x) = ψJaϕ

−1(ϕ(x))
for all x, y ∈ Q,xy = a. Three equivalent conditions of anti-isomorphism of the
quasigroups (Q, ·) and (Q, ◦) follow by ϕ = ψ = χ.

We consider the signature (Q, ·) of a finite quasigroup (Q, ·) of order n as an
ordered triple of signs:

signature (Q, ·) = (sign QL, sign QR, sign QJ),

where QL = L1 . . . Ln, QR = R1 . . . Rn, QJ = J1 . . . Jn are the products of transla-
tions of (Q, ·).

As it is known, a complete associated group of a quasigroup is generated by all
left, right and middle translations of this quasigroup [1].

From Theorem 1 we easy obtain

Corollary 1. a) Isomorphic or anti-isomorphic quasigroups have isomorphic or
anti-isomorphic complete associated groups, respectively.

b) Let (Q, ◦) be an isotope or an anti-isotope of a finite quasigroup (Q, ·) of order
n. There are the following formulas (cf.(iii)):

Signature (Q, ◦) = (sign(χψ)nsignQL, sign(χϕ)nsignQR, sign(ϕψ)nsignQJ)
by an isotopy χ(x, y) = ϕ(x) ◦ ψ(y)

To get the formula of signature (Q, ◦) of an anti-isotope it is sufficient only to
exchange the first and the second components of the formula for isotopy (i).

There is the equality signature (Q, ◦) = signature (Q, ·) in both cases (i) and
(ii) for n = 2m or ϕ = ψ = χ.

2. We preserve here the notation of the paper [3] (see also [4, p. 13–14]). If
α = (⊙) is a quasigroup operation, then α, β = ∗ = α∗, γ = α−1, δ = −1α,
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ε = −1(α−1) = γ∗, η = (−1α)
−1

= δ∗ will denote the inverse operations of the
quasigroup (Q,⊙) = Q(α) and

∏
= {α, β, γ, δ, ε, η}.

Let the composition θ
′′

◦ θ
′

mean the application of θ
′′

to the inverse operation
defined θ′, then θ

′′

◦ θ
′

= θ ∈
∏

for all θ
′

, θ
′′

∈
∏

(cf. [4, p. 14]).
In general a non-commutative quasigroup can have six pairwise different inverse

operations. It is easy to check in general case α ◦ θ = θ = θ ◦ α for all θ ∈
∏

and
α = α ◦ α = β ◦ β = γ ◦ γ = δ ◦ δ, ε ◦ ε = η, η ◦ η = ε, ε ◦ (ε ◦ ε) = α = (ε ◦ ε) ◦ ε,
ε−1 = η, δ ◦ ε = β = γ ◦ η, etc [4].

We can now construct the multiplication table of (
∏
, ◦), using the received for-

mulas and an algorithm of [4]. This is Table 1 for a non-commutative quasigroup
with six pairwise distinct parastrophes, and otherwise (

∏
, ◦) is isomorphic to a

subgroup of the symmetric group S3.
Each θ ∈

∏
defines the parastrophe (Q, θ) = Q(θ) of a quasigroup (Q,⊙) = Q(α)

and the parastrophy (Q,⊙) = Q(α)
θ

−→ Q(θ) as a mapping. An (ordered) sixtuple∏
(Q(α)) = (Q(α), Q(β), Q(γ), Q(δ), Q(ε), Q(η)) is called a parastrophe system of

the quasigroup (Q,⊙) = Q(α). The diagram

(Q,⊙) = Q(α) Q(θ
′

)

Q(θ
′′

◦ θ
′

)

-
θ
′

H
H

H
Hj

θ �
�

�
���

θ
′′

of the action of parastrophies on the system
∏

(Q(α)) is commutative andQ(θ
′′

◦θ
′

) =
Q(θ). So all parastrophs of the quasigroup (Q,⊙) = Q(α) form a group (

∏
, ·)

relative to the action on the system
∏

(Q(α)). It is isomorphic to the group (
∏
, ◦).

Theorem 2. The group (
∏
, ·) of parastrophies acting on

∏
(Q(α)) is isomorphic

to the group (
∏
, ◦) relative to the composition of taking of inverse operations of the

quasigroup (Q,⊙) = Q(α). Both these group are isomorphic to some subgroup of
the symmetric group S3. Table 1 serves as the multiplication table for a quasigroup
with pairwise distinct parastrophes.

· α β γ δ ε η

α α β γ δ ε η
β β α ε η γ δ
γ γ η α ε δ β
δ δ ε η α β γ
ε ε δ β γ η α
η η γ δ β α ε

Table 1

Remark 1. We will denote the conjugation as βθ instead of θ∗ using the second row
βθ = θ∗, θ ∈ Π, of the multiplication table.
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In the paper [3] it is proved:
The action of an isotopy (ϕ,ψ, λ) on a quasigroup (Q, ·) = Q(α) induces identi-

cally an isotopy θ(ϕ,ψ, λ) on each Q(θ) ∈ Π(Q(α)).

The results of this action are presented by the following table:

Q(α) Q(β) Q(γ) Q(δ) Q(ε) Q(η)

(ϕ,ψ, χ) (ψ,ϕ, χ) (ϕ,χ, ψ) (χ,ψ, ϕ) (χ,ϕ, ψ) (ψ,χ, ϕ)

Table 2

We use the second table and also the natural commutative diagram for θ ∈ Π:

Q(α)
θ

−−−−→ Q(θ)

(ϕ,ψ,χ)

y
y(λ,µ,ν)

Q(α(◦))
θ

−−−−→ Q(θ(◦))

(where (Q, ·) = Q(α) and λ, µ, ν depend on θ) to derive six conditions of the per-
mutability of the isotopy and parastrophy:

α(ϕ,ψ, χ) = (ϕ,ψ, χ)α δ(ϕ,ψ, χ) = (χ,ψ, ϕ)δ
β(ϕ,ψ, χ) = (ψ,ϕ, χ)β ε(ϕ,ψ, χ) = (χ,ϕ, ψ)ε
γ(ϕ,ψ, χ) = (ϕ,χ, ψ)γ η(ϕ,ψ, χ) = (ψ,χ, ϕ)η

Table 3

The full multiplication table of the parastrophies and the isotopies of a quasi-
group is the following:

· (ϕ, ψ, χ) (ψ, ϕ, χ) (ϕ, χ, ψ) (χ, ψ, ϕ) (χ, ϕ, ψ) (ψ, χ, ϕ)
α (ϕ, ψ, χ)α (ψ, ϕ, χ)α (ϕ, χ, ψ)α (χ, ψ, ϕ)α (χ, ϕ, ψ)α (ψ, χ, ϕ)α
β (ψ, ϕ, χ)β (ϕ, ψ, χ)α (χ, ϕ, ψ)ε (ψ, χ, ϕ)η (ϕ, χ, ψ)γ (χ, ψ, ϕ)δ
γ (ϕ, χ, ψ)γ (ψ, χ, ϕ)η (ϕ, ψ, χ)α (χ, ϕ, ψ)ε (χ, ψ, ϕ)δ (ψ, ϕ, χ)β
δ (χ, ψ, ϕ)δ (χ, ϕ, ψ)ε (ψ, χ, ϕ)η (ϕ, ψ, χ)α (ψ, ϕ, χ)β (ϕ, χ, ψ)γ
ε (χ, ϕ, ψ)ε (χ, ψ, ϕ)δ (ψ, ϕ, χ)β (ϕ, χ, ψ)γ (ψ, χ, ϕ)η (ϕ, ψ, χ)α
η (ψ, χ, ϕ)η (ϕ, χ, ψ)γ (χ, ψ, ϕ)δ (ψ, ϕ, χ)β (ϕ, ψ, χ)α (χ, ϕ, ψ)ε

Table 4

Recall that each of the products of a parastrophy with an isotopy and of an
isotopy with a parastrophy is called an isostrophy (see [2, p. 28]).

Corollary 2. of the mappings. This group G is semi-direct SP by SΠ i.e. G is
isomorphic to the holomorph HolS3 = S3 · AutS3. Each quasigroup (Q,⊙) = Q(α)
has no more than 36 pairwise different isostrophies. The number of these isostrophies
depends on order of the group (Π, ·).

It follows from Theorem 2 and Table 4.

3. According to [2] two quasigroups (Q, ·) and (Q, ◦) are mutually orthogonal
if and only if the system of the equations xy = a, x ◦ y = b is identically resolved for
all a, b ∈ Q. In this case it is denoted (Q, ·) ⊥ (Q, ◦) or (Q, ◦) ⊥ (Q, ·).
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In [2] V.D. Belousov investigated he question on orthogonality of a quasigroup to
its parastrophes. In order to continue this idea we use another equivalent definition
of orthogonality of quasigroups.

Proposition 1. (Q, ·) ⊥ (Q, ◦) is true if and only if at least one of two equations

L◦

xL
−1
x (a) = b, (L)

R◦

yR
−1
y (a) = b (R)

is identically resolved for all a, b ∈ Q.

Theorem 3. Let Π(Q(α)) = (Q(α), Q(β), Q(γ), Q(δ), Q(ε), Q(η)) be the parastrophe
system of a quasigroup (Q, ·) = Q(α). The following statements are valid:

(i) Q(α) ⊥ Q(γ) ⇔ Q(β) ⊥ Q(ε) ⇔ the equation L2
x(b) = a is identically resolved

for all a, b ∈ Q,

(ii) Q(α) ⊥ Q(δ) ⇔ Q(β) ⊥ Q(η) ⇔ the equation R2
y(b) = a is identically

resolved for all a, b ∈ Q,

(iii) Q(α) ⊥ Q(β) ⇔ the equation LxR
−1
x (b) = a is identically resolved for all

a, b ∈ Q.

Proof. We use Proposition 1 and representation of parastrophes of a quasigroup
(Q, ·) = Q(α) (see [1]).

(i) The equation (L) is fulfilled by L◦

x = Lγx = L−1
x . It is also evident that Q(α) ⊥

Q(γ) ⇔ Q(β) ⊥ Q(ε) since the the equalities Q(βα) = Q(β) and Q(βγ) = Q(ε) are
true (see Table 1).

(ii) The equation (R) will be realized by R◦

y = Rδy = R−1
y . It is also evident that

Q(α) ⊥ Q(δ) ⇔ Q(β) ⊥ Q(η) since the equalities Q(βα) = Q(β) and Q(βδ) = Q(η)
are true (see Table 1).

(iii) The equation (L) will be fulfilled by L0
x = Lβx = Rx.

Corollary 3. Let (Q, ·) be a finite quasigroup. At least one from the conditions
(i), (ii), (iii) of Theorem 3 is broken if some permutation from L2

x, R
2
y, LxR

−1
x con-

tains a transposition (a, b), a, b ∈ Q.

Example 1. The left translations L1 = (1), L2 = (12)(345), L3 = (13524),
L4 = (14325), L5 = (15423) define a loop (Q, ·) of order five. (Q, ·) = Q(α) is
non-orthogonal to Q(γ), Q(δ) and Q(β) since L2 = R2 = (12)(345).

There are some addifional conditions for a quasigroup by which it is orthogo-
nal to some its parastrophes. Such identities are investigated in [2] where seven
minimal identities are determined. We use below some of these identities to prove
Theorem 3:
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Conditions Supplimentary Reorganized conditions
of Theorem 3 identities of Theorem 3

(i) L2
x(b) = a (x · xy)x = y R−1

x (b) = a

x(x · xy) = y L−1
x (b) = a

(ii) R2
y(b) = a (xy · y)y = x R−1

y (b) = a

y(xy · y) = x L−1
y (b) = a

(iii) LxR
−1
x (b) = a x · xy = yx L−1

x (b) = a

Table 5
It should be noted that there exist quasigroups which are orthogonal to some

their parastrophes and non-parastrophes.

Example 2. A finite cyclic group (Q, ·) = Q(α) has only two parastrophes Q(γ)
and Q(δ). By Theorem 3 Q(α) ⊥ Q(γ) and Q(α) ⊥ Q(δ) if CardQ > 2 is an odd
number.

Moreover a quasigroup may exist a non-parastrophe (Q, ◦) of which is orthogonal
to the group Q(α). This situation is demonstrated by the following 3 × 3-Latin
squares:

[α] =




1 2 3
2 3 1
3 1 2



, [γ] =




1 2 3
3 1 2
2 3 1



, [δ] =




1 3 2
2 1 3
3 2 1



,

[◦] =




2 3 1
1 2 3
3 1 2



, [α, ◦] =




12 23 31
21 32 13
33 11 22



,

Table 6
where [α] ⊥ [γ], [α] ⊥ [δ] and [α] ⊥ [◦].
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A REPUBLICII MOLDOVA. MATEMATICA
Number 3(64), 2010, Pages 35–44
ISSN 1024–7696

On stability of Pareto-optimal solution

of portfolio optimization problem

with Savage’s minimax risk criteria

Vladimir Emelichev, Vladimir Korotkov, Kirill Kuzmin

Abstract. A multicriteria Boolean optimization problem consisting in an efficient
choice of a Pareto-optimal portfolio of investor’s assets that uses the Savage’s minimax
risk criteria is considered. Upper and lower attainable bounds of the stability radius
of such portfolio with regard to independent changes of elements of a risk matrix are
obtained.
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1 Introduction

In recent years, interest towards multi-objective decision-making processes under
uncertainty and risk has grown dramatically. It can be explained by numerous appli-
cations of such problems in game theory, mathematical economics, optimal control,
investment analysis, banking, insurance business, etc. Widespread occurrence of dis-
crete optimization models has conditioned the interest of many experts to the study
of various types of stability aspects, parametric and post-optimal analysis problems
of both scalar (one-criterion) and vector (multicriteria) discrete optimization (see,
for example, monographs [1–3], reviews [4–6], and annotated bibliographies [7, 8]).

One of the well-known approaches to investigation of the stability of discrete op-
timization problems is aimed at obtaining the so-called quantitative stability charac-
teristics. This approach consists in finding the limit level of perturbations of initial
problem data which do not change the studied original solution. As a rule, the
perturbed parameters are the vector criterion coefficients. The majority of results
in this research area are related to stability radius formula for Pareto-optimal (effi-
cient) solutions of vector linear optimization problems [9,10], in particular, Boolean
problems [11], game theory problems [12, 13], and also for the stability radius of a
lexicographic optimum of certain Boolean problems with linear criteria [14,15].

This paper deals with obtaining upper and lower attainable bounds of the sta-
bility radius of a Pareto-optimal solution of portfolio optimization problem with
Savage’s minimax risk criteria.
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2 Basic definitions and auxiliary statements

Let us consider the vector variant of the portfolio optimization problem, i.e.
the problem of financial investments management, based on Markovitz’s ”portfolio
theory” [16, 17] (see also the bibliography in [18]). To this end, we introduce the
following notations:

Nn = {1, 2, ..., n} – assets (shares, companies’ bonds, real estate etc.),
Nm – economic strategies of an investor,
R – three-dimensional risk matrix (missed opportunities) of m× n× s size with

elements rijk from R,
rijk – risk quantity of an investor choosing strategy i ∈ Nm and asset j ∈ Nn

with criterion k ∈ Ns,
x = (x1, x2, ..., xn)T ∈ X ⊂ {0, 1}n – investor’s portfolio of assets.

xj =






1, if the investor chooses an asset j,

0 otherwise.

Presumably, each investor’s portfolio x from a given portfolio set X assures expected
total profit p and does not exceed the total amount of available capital c, i. e. for
each portfolio x = (x1, x2, ..., xn)T ∈ X the conditions

∑

j∈Nn

pj xj ≥ p,
∑

j∈Nn

cjxj ≤ c,

hold, where pj is the expected profit of asset j, cj is the cost of asset j.
Along with three-dimensional matrix R = [rijk] ∈ Rm×n×s we use its two-

dimensional sections Rk ∈ Rm×n, k ∈ Ns.
Let the following vector function

f(x, R) = (f1(x, R1), f2(x, R2), ..., fs(x, Rs))

be defined over the set X with Savage’s minimax risk (extreme pessimism) criteria
[19, 20], (see also [21–23])

fk(x, Rk) = max
i∈Nm

∑

j∈Nn

rijkxj → min
x∈X

, k ∈ Ns.

We consider the problem of finding Pareto set P s(R), where a Pareto-optimal (effi-
cient) portfolios (solutions) is regarded as portfolio optimization problem Zs(R):

P s(R) = {x ∈ X : P s(x, R) = ∅},

where P s(x, R) = {x′ ∈ X : x ≻
R
x′}, whereas symbol ≻

R
is a binary relation defined

over the set X as follows:

x ≻
R
x′ ⇔ g(x, x′, R) ≥ 0 & g(x, x′, R) 6= 0,
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where 0 = (0, 0, . . . , 0) ∈ Rs, g(x, x′, R) = (g1(x, x
′, R1), g2(x, x

′, R2), . . . ,
gs(x, x′, Rs)), gk(x, x′, Rk) = fk(x, Rk) − fk(x

′, Rk) = max
i∈Nm

Rikx −

max
i∈Nm

Rikx
′, k ∈ Ns, and Rik = (ri1k, ri2k, . . . , rink) is row i of matrix Rk ∈ Rm×n.

In space Rd of an arbitrary dimension d ∈ N we set the l∞-metric, i.e. as the
norm of vector z = (z1, z2, ..., zd) ∈ Rd we understand the number

‖z‖ = max{|zj | : j ∈ Nd},

and as the norm of matrix we understand the norm of a vector composed of all
matrix elements. Thus the inequalities ‖R‖ ≥ ‖Rk‖ ≥ ‖Rik‖ holds for any i ∈ Nm

and k ∈ Ns.

As usual (see, for example,[6, 9–12]), stability radius of portfolio x0 ∈ P s(R) is
defined as follows:

ρs(x0, R) =

{
sup Ξ, if Ξ 6= ∅,
0, if Ξ = ∅,

where

Ξ = {ε > 0 : ∀R′ ∈ Ω(ε) (x0 ∈ P s(R+R′))},

Ω(ε) = {R′ ∈ Rm×n×s : ‖R′‖ < ε}.

Here Ω(ε) is the set of perturbing matrices, and Zs(R + R′) is the perturbed
problem.

The following lemma is evident.

Lemma. Let x0 ∈ P s(R), ϕ > 0. If for any perturbing matrix R′ ∈ Ω(ϕ) and any
solution x ∈ X \ {x0} index q ∈ Ns exists, such that the inequality gq(x, x

0, Rq +
R′

q) > 0 holds, then x0 ∈ P s(R+R′) for any R′ ∈ Ω(ϕ).

It is also quite evident that for any matrix Rk ∈ Rm×n and any solutions x0, x ∈
X the following inequalities are true:

Rikx−Ri0kx
0 ≥ −‖Rk‖ ‖x+ x0‖∗, i, i0 ∈ Nm, k ∈ Ns, (1)

where ‖z‖∗ =
∑

j∈Nn

|zj |, z = (z1, z2, ..., zn)T .

3 Stability radius bounds

For portfolio x0 ∈ P s(R) we introduce the following notations:

ϕ = min
x∈X\{x0

}

max
k∈Ns

min
i0∈Nm

max
i∈Nm

Rikx−Ri0kx
0

‖x+ x0‖∗
,

ψ = min
x∈X\{x0

}

max
k∈Ns

min
i0∈Nm

max
i∈Nm

Rikx−Ri0kx
0

‖x− x0‖∗
.
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Theorem. For stability radius ρs(x0, R), s ≥ 1, of a Pareto-optimal portfolio x0

of problem Zs(R) the following bounds are true:

ϕ ≤ ρs(x0, R) ≤ ψ.

Proof. Let x0 ∈ P s(R). The formula

∀x ∈ X \ {x0} (x0 6∈ P s(x0, R))

obviously holds. Hence with account of inequality ‖x + x0‖∗ ≥ ‖x − x0‖∗ > 0, this
results in ψ ≥ ϕ ≥ 0.

To prove Theorem, firstly it is necessary to prove that ρs(x0, R) ≥ ϕ, which
is evident if ϕ = 0. Let ϕ > 0. According to the definition of ϕ for any portfolio
x ∈ X \ {x0}, there is such index q ∈ Ns that

min
i0∈Nm

max
i∈Nm

(Riqx−Ri0qx
0) ≥ ϕ ‖x+ x0‖∗. (2)

Further, taking into account (1), for any perturbing matrix R′ ∈ Ω(ϕ) and any
k ∈ Ns, we have:

gk(x, x
0, Rk +R′

k) = max
i∈Nm

(Rik +R′

ik)x− max
i∈Nm

(Rik +R′

ik)x
0 =

= min
i0∈Nm

max
i∈Nm

(Rikx−Ri0kx
0 +R′

ikx−R′

i0kx
0) ≥

≥ min
i0∈Nm

max
i∈Nm

(Rikx−Ri0kx
0) − ‖R′

k‖‖x+ x0‖∗.

Hence, in view of ϕ > ‖R′‖ ≥ ‖R′

q‖ inequality (2) implies

gq(x, x
0, Rq +R′

q) > 0.

Therefore, due to Lemma we have x0 ∈ P s(R + R′) for any perturbing matrix
R′ ∈ Ω(ϕ), i.e. the inequality ρs(x0, R) ≥ ϕ is true.

Further, we prove the inequality ρs(x0, R) ≤ ψ. In accordance with the definition
of ψ there is such portfolio x ∈ X \ {x0} that the following inequalities are true:

ψ‖x− x0‖∗ ≥ min
i0∈Nm

max
i∈Nm

(Rikx−Ri0kx
0), k ∈ Ns. (3)

Now, setting ε > ψ, we consider the perturbing matrix R0 = [r0ijk] ∈ Rm×n×s whose
elements are defined as follows:

r0ijk =






δ, if i ∈ Nm, x
0
j ≥ xj, k ∈ Ns,

−δ, if i ∈ Nm, x
0
j < xj, k ∈ Ns,
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where ψ < δ < ε. Then ‖R0‖ = ‖R0
k‖ = ‖R0

ik‖ = δ where i ∈ Nm, k ∈ Ns. In
addition, all rows R0

ik, i ∈ Nm, of matrix R0
k are equal and consist of components

δ and −δ for any index k ∈ Ns. Therefore, denoting this row by B (it only depends
on x and x0), we have

B(x− x0) = −δ‖x− x0‖∗, ‖B‖ = δ.

Hence, in view of (3), for any index k ∈ Ns , we obtain

gk(x, x
0, Rk +R0

k) = max
i∈Nm

(Rik +B)x− max
i∈Nm

(Rik +B)x0 =

= max
i∈Nm

Rikx− max
i∈Nm

Rikx
0 +B(x− x0) = min

i0∈Nm

max
i∈Nm

(Rikx−Ri0kx
0) +B(x− x0) ≤

≤ (ψ − δ) ‖x− x0‖∗ < 0.

Thus, the binary relation x0 ≻
R+R0

x holds. Therefore, for any ε > ψ there

is such perturbing matrix R0 ∈ Ω(ε) that Pareto-optimal portfolio x0 of problem
Zs(R) looses its Pareto-optimality in the perturbed problem Zs(R+ R0), i.e. x0 6∈
P s(R+R0). Therefore ρs(x0, R) ≤ ψ.

The upper bound ψ of the stability radius ρs(x0, R) indicated in Theorem is
attainable, since for m = 1 our problem Zs(R) is transformed into a vector (s-
criteria) Boolean programming problem with linear criteria:

Rkx→ min
x∈X

, k ∈ Ns, (4)

whereas the upper bound turns into the form

ρs(x0, R) ≤ ψ = min
x∈X\{x0

}

max
k∈Ns

Rk(x− x0)

‖x− x0‖∗
,

where Rk is k-th row of matrix R ∈ Rs×n. It is known [6, 10] that the right-hand
side of this ratio is the expression of the stability radius of x0 ∈ P s(R) of problem
(4). Therefore, if m = 1, we have ρs(x0, R) = ψ, that assures the attainability of
this upper bound.

It is also quite evident that the lower bound ϕ is also attainable. Indeed, let the
equality ‖x+x0‖∗ = ‖x−x0‖∗ be true for any x ∈ X \{x0}, then ρs(x0, R) = ϕ = ψ.

So we have the following corollary of Theorem, which shows that the radius of
stability of Pareto-optimal portfolio x0 ∈ P s(R) can be equal to the lower positive
bound ϕ and may not coincide with the upper bound ψ.

Corollary 1. There exists a class of problems Zs(R) such that for the solution
x0 ∈ P s(R) the following correlations are true:

0 < ρs(x0, R) = ϕ < ψ. (5)
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Proof. Let ϕ > 0. The inequality ϕ < ψ is true if ‖x + x0‖∗ > ‖x − x0‖∗ holds for
any vector x ∈ X \ {x0}. To prove the equality ρs(x0, R) = ϕ in accordance with
Theorem, it is sufficient to identify the class of problems for which the inequality
ρs(x0, R) ≤ ϕ is true. Further exposition is devoted to this.

The definition of ϕ > 0 entails such vector x̂ ∈ X \ {x0} that

ϕ‖x̂+ x0‖∗ ≥ gk(x̂, x
0, Rk), k ∈ Ns. (6)

Further exposition will be for any index k ∈ Ns.
We introduce the following notations:

i(x0) = arg max{Rikx
0 : i ∈ Nm},

i(x̂) = arg max{Rikx̂ : i ∈ Nm},

∆ = ‖x̂+ x0‖∗ − ‖x̂− x0‖∗ > 0.

Further, we assume that the inequality holds:

(Ri(x̂)k −Ri(x0)k)x̂ > ϕ∆, (7)

which entails the inequality i(x0) 6= i(x̂), since ϕ∆ > 0 holds.

For any number ε > ϕ we define the elements of the section R0
k of the perturbing

matrix R0 by the rule

r0ijk =






δ, if i = i(x0), x0
j = 1,

−δ, if i = i(x0), x0
j = 0,

−δ, if i ∈ Nm \ {i(x0)}, x̂j = 1,

0 otherwise,

where

min

{
ε,

1

∆
(Ri(x̂)k −Ri(x0)k)x̂

}
> δ > ϕ. (8)

Noteworthy, the last inequalities are correct because of (7).

Due to the structure of the section R0
k we have

R0
ikx̂ = −δ‖x̂‖∗, i ∈ Nm \ {i(x0)}, (9)

R0
i(x0)kx

0 = δ‖x0‖∗, (10)

‖R0
k‖ = ‖R0‖ = δ, R0 ∈ Ω(ε).

Moreover, the equality holds:

R0
i(x0)kx̂ = δ(∆ − ‖x̂‖∗). (11)
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Indeed, let us denote the sets:

Q1 = {j ∈ Nn : x̂j = x0
j = 1},

Q2 = {j ∈ Nn : x̂j = 1, x0
j = 0}.

Then the following equalities are obvious:

|Q1| = ∆/2,

|Q2| = ‖x̂‖∗ − ∆/2,

R0
i(x0)kx̂ = δ|Q1| − δ|Q2|,

from which the inequality (11) ensues.
Further, we will prove that gk(x̂, x

0, Rk +R0
k) < 0. In line with (10) we have

fk(x
0, Rk +R0

k) = max
i∈Nm

(Rik +R0
ik)x

0 = fk(x
0, Rk) + δ‖x0‖∗. (12)

We will prove that the equality is true:

fk(x̂, Rk +R0
k) = fk(x̂, Rk) − δ‖x̂‖∗. (13)

Using (9), we have

fk(x̂, Rk +R0
k) = max

{
(Ri(x̂)k +R0

i(x̂)k)x̂, max
i6=i(x̂)

(Rik +R0
ik)x̂

}
=

= max
{
(fk(x̂, Rk) − δ‖x̂‖∗), max

i6=i(x̂)
(Rik +R0

ik)x̂
}
.

Thus, taking into account the obvious inequalities

fk(x̂, Rk) − δ‖x̂‖∗ ≥ (Rik +R0
ik)x̂, i ∈ Nm \ {i(x0), i(x̂)},

to prove (13) we must prove that

fk(x̂, Rk) − δ‖x̂‖∗ ≥ (Ri(x0)k +R0
i(x0)k)x̂.

To this end, using (8) and (11), we have

fk(x̂, Rk) − δ‖x̂‖∗ − (Ri(x0)k +R0
i(x0)k)x̂ = (Ri(x̂)k −Ri(x0)k)x̂− δ‖x̂‖∗−

−R0
i(x0)kx̂ > δ(∆ − ‖x̂‖∗) −R0

i(x0)kx̂ = 0.

At last, consistently applying (12), (13), (6) and (8), we obtain

gk(x̂, x
0, Rk +R0

k) = gk(x̂, x
0, Rk) − δ‖x̂ + x0‖∗ ≤ (ϕ− δ)‖x̂ + x0‖∗ < 0.

Because of that such inequality is true for any k ∈ Ns, that x0 ≻
R+R0

x̂.

Therefore, the formula

∀ε > ϕ ∃R0 ∈ Ω(ε) (x0 6∈ P s(R+R0))

holds, which because of the vector x0 ∈ P s(R) results in the inequality ρs(x0, R) ≤
ϕ. In summary, we get proof that correlation (5) is valid.
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We give a numeric example proving Corollary 1.

Example. Let m = 2, n = 3, k = 1; X = {x0, x1}, x0 = (1, 1, 0)T , x̂ = (0, 1, 1)T ;

R =

(
−5 2 2
1 −1 0

)
.

Then f(x0, R) = 0, f(x̂, R) = 4, i. e. x0 is the optimal portfolio of the problem
Z1(R); ‖x̂ + x0‖∗ = 4, ‖x̂ − x0‖∗ = 2, i(x0) = 2, i(x̂) = 1. So ϕ = 1, ψ = 2,
(Ri(x̂)k −Ri(x0)k)x̂ = 5 > 2 = ϕ(‖x̂ + x0‖∗ − ‖x̂− x0‖∗).

By Theorem ρ1(x0, R) ≥ 1. On the other hand, if

R0 =

(
0 −δ −δ
δ δ −δ

)
,

where 1 < δ < 2.5, then ‖R0‖ = δ and f(x0, R+R0) = 2δ > 4−2δ = f(x̂, R+R0).
As a result we have that x0 6∈ P 1(R + R0). Hence ρ1(x0, R) ≤ 1. Thus, by

Theorem we have ρ1(x0, R) = ϕ = 1 < ψ = 2.

Pareto-optimal portfolio x0 ∈ P s(R) is called stable, if ρs(x0, R) > 0. In addi-
tion, let us introduce the traditional Smale set Sms(R) [24], i.e. the set of strongly
efficient portfolios:

Sms(R) = {x ∈ X : ∀x′ ∈ X \ {x} ∃q ∈ Ns (fq(x
′, Rq) > fq(x, Rq))}.

Apparently, Sms(R) ⊆ P s(R) for any matrix R ∈ Rm×n×s and Sms(R) can be
empty.

Corollary 2. Pareto-optimal portfolio x0 ∈ P s(R) is stable iff x0 ∈ Sms(R).

Proof. Sufficiency. Let Pareto-optimal portfolio x0 of problem Zs(R) be strongly
efficient. Then for any x ∈ X \ {x0} we have

ξ(x) = max
k∈Ns

min
i0∈Nm

max
i∈Nm

Rikx−Ri0kx
0

‖x+ x0‖∗
= max

k∈Ns

fk(x, Rk) − fk(x
0, Rk)

‖x+ x0‖∗
> 0.

Therefore, by Theorem, we have ρs(x0, R) ≥ ϕ = min
x∈X\{x0

}

ξ(x) > 0, i.e. port-

folio x0 ∈ P s(R) is stable.
Necessity. Let portfolio x0 ∈ P s(R) be stable. Then, according to Theorem, we

obtain ψ ≥ ρs(x0, R) > 0. Therefore, for any portfolio x ∈ X \ {x0} we have

max
k∈Ns

fk(x, Rk) − fk(x
0, Rk)

‖x− x0‖∗
> 0.

It means that for any x ∈ X \ {x0} there is such index q ∈ Ns, that fq(x, Rq) >
fq(x

0, Rq), i.e. x0 ∈ Sms(R).

Since from the equality ϕ = 0 the equality ψ = 0 ensues, then the following
corollary results from Theorem:

Corollary 3. If x0 ∈ P s(R), then ρs(x0, R) = 0 if ϕ = 0.
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One of the classical directions of investigation of algebraic systems in their general
theory is the quasivariety theory of algebraic systems, founded by A.I. Malcev [1–3].

This paper studies the problem of existence of an independent basis of quasi-
identities for certain loops. It is proved that if L is a loop which contains an infinite
cyclic group and does not contain an infinite number of prime periodic elements,
then the quasiidentities of L have an independent and infinite basis of quasiidenti-
ties. In particular, every torsion-free nilpotent loop has an infinite and independent
basis of quasiidentities and the quasivariety generated by it has infinity of coverages.

1 Main notions and denotations

A quasigroup is an algebra with the basic set Q and with three basic binary
operations ·, /, \ defined on it which satisfy the identities

x · (x\y) = x\(x · y) = (y/x) · x = (y · x)/x = y.

If a quasigroup Q has such an element e that e · x = x · e = x for all x ∈ Q, then
Q is called a loop and e is called its unity (see [4] or [5]). Therefore, we consider a
loop Q as an algebra with three basic operations of the quasigroup Q and one null
basic operation e.

Let a be a non-unity element of a loop L. If some product of m factors, each
equal to the element a, is equal to the unity element e ∈ L , then a is called relative
m-periodic. In particular, if m is a prime number then the relative m-periodic
element a is called relative prime periodic. If the loop L does not contain a periodic
element, then they say that it is torsion free.

c© Alexandru Covalschi, 2010
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A quasiidentity (quasigroupoid quasiidentity ) of variables x1, . . . , xn is a uni-
versal formula which has the form

(∀x1 . . . xn)&i∈Iui(x1, . . . , xn) = u′i(x1, . . . , xn) ⇒

u(x1, . . . , xn) = u′(x1, . . . , xn),

where I is a finite set of indices, ui, u
′

i, u, u
′ are quasigrupoid words of variables

x1, . . . , xn. When writing quasiidenties, the symbols ∀x1 . . . xn are usually omitted.
As the equality of two words u = v in the loop class is equivalent to u/v = e, the
quasiidentities written in the loop signature are studied as &i∈Iui = e⇒ u = e .

A quasigroup class formed only of quasigroups in which the quasiidentities of a
given system of quasiidentities are true is called a quasivariety.

A system Σ of quasiidentities is called independent if no quasiidentity of Σ results
from all the rest. A basis of the system Σ is such a subsystem Σ′ ⊆ Σ that any
quasiidentity from Σ results from the overall of the quasiidentities from Σ′.

A quasivariety N is called a coverage of quasivariety M if M ⊂ N and for any
quasivariety K the inclusions M ⊆ K ⊂ N imply M = K.

As usual, prime numbers are denoted by pi, i ∈ Σ = {0, 1, 2, . . .}, the infinite
cyclic group - by Z, the cyclic group of order pi - by Zpi

, the quasivariety generated
by a quasigroup Q - by qQ. The set of all natural numbers will be denoted by N .

2 The basic results

We shall say that the quasiidentity Φ(x1, . . . , xn) = &m
i=1ui(x1, . . . , xn) =

u′i(x1, . . . , xn) ⇒ u(x1, . . . , xn) = u′(x1, . . . , xn)) is compatible in the quasigroup
Q if the formula ϕ(x1, . . . , xn) = (&m

i=1ui = u′i&u = u′) is compatible in Q, that is,
there are such values x1 = a1, . . . , xn = an of the variables in Q that the following
equalities are true:

u1(a1, . . . , an) = u′1(a1, . . . , an), . . . , um(a1, . . . , an) = u′m(a1, . . . , an),

u(a1, . . . , an) = u′(a1, . . . , an).

Lemma 1. The conjunction of a finite number of quasiidentities compatible in any
quasigroup is equivalent to one quasiidentity.

Proof. It is sufficient to prove the lemma for the conjunction of two quasiidentities
ϕ1 and ϕ2. Let the following equalities be:

ϕ1 = (&m
i=1ui(x1, ..., xk) = u′i(x1, . . . , xk) ⇒ u(x1, . . . , xk) = u′(x1, . . . , xk));

ϕ2 = (&m
i=1vi(y1, . . . , ys) = v′i(y1, . . . , ys) ⇒ v(y1, . . . , ys) = v′(y1, . . . , ys)).

We shall show that the formula ϕ1 & ϕ2 is equivalent to the quasiidentity
ϕ = (&m

i=1ui(x1, . . . , xk) = u′i(x1, . . . , xk) & &m
j=1vj(y1, . . . , ys) = v′j(y1, . . . , ys) ⇒

u(x1, . . . , xk)v(y1, . . . , ys) = u′(x1, . . . , xk)v
′(y1, . . . , ys)).
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Indeed, let the formula ϕ1 & ϕ2 be true in the quasigroup Q. We assume that the
left side of the quasiidentity ϕ is true inQ for the substitutions xi → ai (i = 1, . . . , k),
yj → bj (j = 1, . . . , s), where a1, . . . , ak, b1, . . . , bs ∈ Q . As the quasiidentities ϕ1

and ϕ2 are true in Q, we have (u(a1, . . . , ak) = u′(a1, . . . , ak)) and (v(b1, . . . , bs) =
v′(b1, . . . , bs)). Therefore u(a1, . . . , ak)v(b1, . . . , bs) = u′(a1, . . . , ak)v

′(b1, . . . , bs).
Thus, the quasiidentity ϕ is a consequence of the formula ϕ1 & ϕ2.

Conversely, let the quasiidentity ϕ be true in the quasigroup Q. We show that
the quasiidentity ϕ1 is true in the quasigroup Q. We assume that the left side of
the quasiidentity ϕ1 is true in Q for the substitutions xi → ai (i = 1, . . . , k), where
a1, . . . , ak ∈ Q. As the quasiidentity ϕ2 is compatible in any quasigroup, and thus
in the quasigroup Q, then for certain substitutions yj → bj (j = 1, . . . , s), where
b1, . . . , bs ∈ Q, we have the equalities: vj(b1, . . . , bs) = v′j(b1, . . . , bs) (j = 1, . . . , s),
v(b1, . . . , bs) = v′(b1, . . . , bs).

As a result, the left side of the quasiidentity ϕ is true in the quasigroup Q
for the substitutions xi → ai (i = 1, . . . , k), yj → bj (j = 1, . . . , s). As the
quasiidentity ϕ is true in the quasigroup Q, then from u(a1, . . . , ak)v(b1, . . . , bs) =
u′(a1, . . . , ak)v

′(b1, . . . , bs) it follows that u(a1, . . . , ak) = u′(a1, . . . , ak). Similarly,
we can show that ϕ2 is true in the quasigroup Q. Thus, the formula ϕ1 & ϕ2 is a
consequence of the formula ϕ. This completes the proof of Lemma 1.

As any quasiidentity is compatible in any loop then from Lemma 1 follows.

Corollary 1. In the class of loops the conjunction of a finite number of quasiiden-
tities is equivalent to one quasiidentity.

Lemma 2. Let quasiidentity ϕ be true in a quasigroup Q and let the quasivariety
qQ, generated by the quasigroup Q, contain an infinite cyclic group Z. Then the set
of all prime cyclic groups Zpi

in which ϕ is not true is finite.

Proof. Let’s assume that the statement of the lemma is not true, and thus, the set

I = {i ∈ Σ|Zpi
⊢qϕ}

is infinite. Let

ϕ = (&m
i=1ui(x1, . . . , xk) = u′i(x1, . . . , xk) ⇒ u(x1, . . . , xk) = u′(x1, . . . , xk)).

We study the finite representative quasigroup

L = lp(x1, . . . , xn‖ui(x1, . . . , xn) = u′i(x1, . . . , xn), i = 1, . . . ,m

from qQ generated by elements x1, . . . , xn with the defining relations
ui(x1, . . . , xn) = u′i(x1, . . . , xn), i = 1, . . . ,m.

As for i ∈ I the quasiidentity ϕ is false in the cyclic group Zpi
, then there are such

elements a1, . . . , an ∈ Zpi
that ui(a1, . . . , ak) = u

′

i(a1, . . . , ak) (i = 1, . . . ,m), but
u(a1, . . . , an) 6= u′(a1, . . . , an), that is u(a1, . . . , an)−1u′(a1, . . . , an) 6= e or written
simpler still u−1u′ 6= e. According to Dik’s Theorem [3], there is a homomorphism
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θi : L → Zpi
for which θi(u

−1u′) 6= e, (i ∈ I). By Theorem 1 [1, p.73] there is
such a homomorphism θi : L →

∏
i∈I Zpi

that θ(a)(i) = θi(a), for any a ∈ L and
any i ∈ I. The set I is infinite. Then θi(u

−1u′) is an element of infinite order of
group θ(L). As θ(L) is a finitely generated abelian group, θ(L) can be decomposed
in the direct product of cyclic groups. As the element θ(u−1(u′) has a finite order,
we conclude that there is a homomorphism Ψ : θ(L) → Z so e 6= ψθ(u−1u′) =
u(ψθ(x1), . . . , ψθ(xn))−1u

′

(ψθ(x1, . . . , ψθ(xn)), that is u(ψϕ(a1), . . . , ψϕ(an))−1 6=
u′(ψϕ(a1, . . . , ψ(xa)).

Therefore, for values of variables x1 = ψϕ(a1), . . . , xn = ψϕ(an) we obtained
that the quasiidentity ϕ is false in the infinite cyclic group Z.Contradiction. This
completes the proof of Lemma 2.

Let Σ be an independent system of quasiidentities. Then for any formula ϕ ∈ Σ
there is a quasigroup Qϕ, so Qϕ| =qϕ, but Qϕ| = ψ for any formula ψ ∈ Σ\{ϕ} by
the definition of independent system of quasiidentities. We call the set {Qϕ|ϕ ∈ Σ}
the system corresponding to the independent system Σ.

Lemma 3. Suppose there is a quasivariety N of quasigroups definted by an infi-
nite and independent system of compatible quasiidentities {ϕi|i ∈ I ⊆ Σ} with the
corresponding system of quasigroups {Qi|i ∈ I}. If a subquasivariety M ⊆ N can
be defined in the quasivariety N such that for some bijective application α : I → Σ
we have Qi ⊢ ψα(j) for all j ∈ I\{i}. Then the quasivariety M has an infinite and
independent basis of quasiidentities in the class of all quasigroups.

Proof. Let α be a bijective application from I on Σ. Let’s denote Σ = {ϕi&ψα(i)|i ∈
I}. Obviously, any quasiidentity from Σ is true in any quasigroup from M . Con-
versely, if in the quasigroup Q all formulas from Σ are true, then Q ∈M . Therefore,
the set Σ defines the quasivariety M in the class of all quasigroups. As all formulas
from Σ\{ϕi&ψα(i)} are true in Q and the formula ϕi&ψα(i) is false in the quasigroup
Qi, then Σ is an independent system of quasiidentities. By Lemma 1 each formula
from Σ is equivalent to a quasiidentity. Hence the system Σ is equivalent to a sys-
tem Σ′ of quasiidentities. As Σ is independent and infinite, it results that Σ′ is also
independent and infinite. This completes the proof of Lemma 3.

Theorem. If the loop L contains an infinite cyclic group and does not contain an
infinity of pi-periodic elements, then the quasiidentity qL generated by the loop L
has an infinite and independent basis of quasiidentities.

Proof. Denote by I the set of all indices i ∈ Σ of prime numbers for which the loop
L does not contain relative pi-periodic elements. According to the hypothesis, the
set I is infinite and for any i ∈ I the quasiidentity xpi = e ⇒ x = e is true in the
loop L, where by upi we understand the pi fold product of the element u written as
(. . . (uu · u) . . . u)u. Let Σ = {ψi|i ∈ Σ} be a set of quasiidentities (some of them
may coincide) which defines the quasivariety qL and N - the quasivariety of loops
defined by the independent system {xpi = e ⇒ x = e|i ∈ I} of quasiidentities. As
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every quasiidentity of this system is true in the loop L, then there is the inclusion
qL ⊆ N . Let ψi (i ∈ Σ) be an arbitrary quasiidentity from Σ:

ψi = (&m
i=1ui(x1, . . . , xk) = e⇒ u(x1, . . . , xk) = e);

we shall denote Mi = {Zpk
| =qψi ∈ I|Zpk

| =qψi}. By Lemma 2 the set Mi is finite.
We construct the quasiidentity ψ′

i, corresponding to the quasiidentity ψi, as follows:
if Mi = ∅ then we consider ψ′

i = ψi and if Mi 6= ∅ then we consider

ψ′

i = (&m
i=1ui(x1, . . . , xk) = e⇒ (. . . (u(x1, . . . , xk))

p1 ) . . .)pm = e,

where Mi = {pi1 , . . . , pim}.
We show that the quasiidentities ψ′

i and ψi are equivalent in the class N . Ob-
viously, ψ′

i is a consequence of the quasiidentity ψi. In particular, this results in
the quasiidentity ψ′

i be true in each of the cyclic groups Zpj
, j ∈ I\{i1, . . . , im}.

Obviously, if j ∈ Σ\{i1, . . . , im} then the quasiidentity ψ′

i is true in the cyclic group
Zpj

. Hence for every j ∈ Σ the quasiidentity ψ′

i is true in the cyclic group Zpj
.

Let there be the loop Q ∈ N and assume that the quasiidentity ψ′

i is true in the
loop Q. Let the left side of the quasiidentity ψi be true in Q for the substitutions
xi → ai, i = 1, . . . , n. As ψ′

i is true in Q, we have (. . . (u(a1, . . . , an)pi) . . .)pim = e.
Now, applying the quasiidentities xpik = e ⇒ x = e, k = i1, . . . , im, which

are true in every loop from the quasivariety N , from the last equality we obtain
u(a1, . . . , an) = e. Therefore, the quasiidentity ψi is true in the loop Q. Hence in
the class N the quasiidentities ψi and ψ′

i are equivalent and ψ′

i is true in the cyclic
group Zpj

for any j ∈ I. The set {Zpj
|j ∈ I} is the system corresponding to the

independent system of quasiidentities {xpi = e⇒ x = e)|i ∈ I}.
From here by Lemma 3 it results that the quasivariety qL has an infinite and

independent basis of quasiidentities. This completes the proof of Theorem.

Corollary 2. Every torsion-free nilpotent loop has an infinite and independent basis
of quasiidentities.

3 Applications

1. From local Malcev Theorem’s the following coverage criterion of quasivarieties
results: If the quasivariety M has an independent and infinite basis of quasiidentities,
then M has an infinity of coverages. The detailed proof of this statement can be
found, for instance, in [6].

According to Corollary 2 and the coverage criterion of quasivarieties, we obtain
the following statement.

If L is a torsion free nilpotent loop of any rank, then the quasivariety qL has
infinity of coverages in the latices of loop quasivarieties.

2. Let M2×2(K) be the vector space of square matrices with elements from
associative ring K. We define multiplication and division in M2×2(K) by formulas:

(
a b
c d

)
·

(
x y
z t

)
=

(
a+ x b+ y
c+ z d+ t+ (x− a)(yc− bz)

)
,



50 ALEXANDRU COVALSCHI

(
a b
c d

)
/

(
x y
z t

)
=

(
a− x b− y
c− z d− t+ (a− 2x)(yc − bz)

)
.

It is easy to see that the set M2×2(K) forms a commutative loop with re-

spect to multiplication and division. The unity is

(
0 0
0 0

)
and

(
a b
c d

)
−1

=

(
−a −b
−c −d

)
. Denote that loop by L. As the ring K satisfies the identity

0 · x = x then from formulas which defined the operations it follows that elements

of the form

(
0 0
0 d

)
belong to the centre of loop L. Let A =

(
a b
c d

)
, B =

(
m n
p q

)
, C =

(
x y
z t

)
be arbitrary elements of L. We compute its associator

(A,B,C) = (AB ·C)/(A ·BC) =

(
0 0
0 (anz − ayp+ 2mbz − 2myc+ xbp− xnc)

)
.

Hence the associator (A,B,C) belongs to the centre of L. Consequently, the loop
L is nilpotent of class 2. As K is a ring of characteristic zero then it is easy to see
that L is a torsion free loop. Then any subloop of cartesian product of loop L is
torsion free. From here it follows by Corollary 2 that any free loop of quasivariety
generated by L has an infinite and independent basis of quasiidentities.

Finally, I would like to thank the university teacher V. I.Ursu for his input to
the final editing, as well as for the precious remarks in the construction of loops with
infinite independent bases of quasiidentities.
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1 Introduction

In this paper we consider the cubic system of differential equations

ẋ = y + ax2 + cxy + fy2 + kx3 + mx2y + pxy2 + ry3 ≡ P (x, y),

ẏ = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ Q(x, y),
(1)

in which all variables and coefficients are assumed to be real. The origin O(0, 0) is
a singular point of a center or a focus type for (1), i.e. a weak focus. The purpose
of this paper is to find verifiable conditions for O(0, 0) to be a center.

It is known that the origin is a center for system (1) if and only if it has in some
neighborhood of O(0, 0) a holomorphic integrating factor of the form

µ = 1 +
∑

µj(x, y).

There exists a formal power series F (x, y) =
∑

Fj(x, y) such that the rate of
change of F (x, y) along trajectories of (1) is a linear combination of polynomials
{(x2 + y2)j}∞j=2 :

dF
dt

=
∞∑

j=2
Lj−1(x

2 + y2)j .

The quantities Lj, j = 1,∞, are polynomials in the coefficients of system (1) called
Liapunov quantities. The order of the weak focus O(0, 0) is r if L1 = L2 = . . . =
Lr−1 = 0 but Lr 6= 0.

The origin is a center for (1) if and only if Lj = 0, j = 1,∞. By the
Hilbert’s basis theorem there exists a natural number N such that the infinite system
Lj = 0, j = 1,∞, is equivalent with a finite system Lj = 0, j = 1, N. The number
N is known only for quadratic systems N = 3 [11] and for cubic systems with only

c© Dumitru Cozma, 2010
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homogeneous cubic nonlinearities N = 5 [16, 20]. If the cubic system (1) contains
both quadratic and cubic nonlinearities, the problem of the center was solved only
in some particular cases (see for instance [1, 2, 4, 6–10,13,14,17,18]).

In this paper we solve the problem of the center for cubic differential system (1)
assuming that (1) has two invariant straight lines and one invariant conic passing
through one singular point, i.e. forming a bundle. The paper is organized as follows.
Results concerning the relation between integrability, invariant algebraic curves and
Liapunov quantities are presented in Section 2. In Section 3 we find eight sufficient
series of conditions for the existence of a bundle of two invariant straight lines and
one invariant conic. In Section 4 we obtain sufficient conditions for the existence of
a center and finally we give the proof of the main result: a weak focus O(0, 0) is a
center for a class of cubic systems (1) with a bundle of two invariant straight lines
and one invariant conic if and only if the first four Liapunov quantities vanish.

2 Invariant algebraic curves, Liapunov quantities, center

An algebraic curve Φ(x, y) = 0 (real or complex) is said to be an invariant curve
of system (1) if there exists a polynomial K(x, y) such that

P
∂Φ

∂x
+ Q

∂Φ

∂y
= ΦK.

The polynomial K is called the cofactor of the invariant algebraic curve Φ = 0. We
shall consider only algebraic curves Φ = 0 with Φ irreducible.

If the cubic system (1) has sufficiently many invariant algebraic curves
Φj(x, y) = 0, j = 1, . . . , q, then in most cases an integrating factor can be con-
structed in the Darboux form

µ = Φα1
1 Φα2

2 · · ·Φ
αq

q . (2)

A function (2), with αj ∈ C not all zero, is an integrating factor for (1) if and
only if

q∑

j=1

αjKj ≡ −
∂P

∂x
−

∂Q

∂y
.

System (1) is called Darboux integrable if the system has a first integral or an
integrating factor of the form (2).

The method of Darboux turns out to be very useful and elegant one to prove
integrability for some classes of systems depending on parameters. These last years,
interesting results which relate algebraic solutions, Liapunov quantities and Darboux
integrability have been published (see, for example, [3, 5, 6, 9, 10, 15, 19]). The cubic
systems (1) which are Darboux integrable have a center at O(0, 0).

Definition 1. We shall say that (Φj , j = 1,M ; L = N) is ILC (I – invariant
algebraic curves, L – Liapunov quantities, C – center) for (1), if the existence of M
algebraic curves Φj(x, y) = 0 and the vanishing of the focal values Lν , ν = 1, N,
implies the origin O(0, 0) to be a center for (1).
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The works [6–9,17,18] are dedicated to investigation of the problem of the center
for cubic differential systems with invariant straight lines. In these papers, the
problem of the center was completely solved for cubic systems with at least three
invariant straight lines. The principal results of these works are gathered in the
following two theorems:

Theorem 1. (Φj(x, y), Φj(0, 0) 6= 0, j = 1, 4; L = 1) is ILC for system (1).

Theorem 2. (ajx+ bjy + cj , j = 1, 4; L = 2) and (ajx+ bjy + cj , j = 1, 3; L = 7)
are ILC for cubic system (1).

The problem of the center was solved for cubic systems (1) with two homogeneous
invariant straight lines and one invariant conic; for cubic systems (1) with two
parallel invariant straight lines and one invariant conic [10]:

Theorem 3. (x± iy, Φ; L = 2) and (lj = 1+ajx+bjy, j = 1, 2, l1||l2, Φ; L = 3),
where Φ = 0 is an irreducible invariant conic, are ILC for system (1).

3 Conditions for the existence of a bundle of two invariant straight

lines and one invariant conic

Let the cubic system (1) have two invariant straight lines l1, l2 intersecting at
a point (x0, y0). The intersection point (x0, y0) is a singular point for (1) and has
real coordinates. By rotating the system of coordinates (x → x cos ϕ − y sin ϕ,
y → x sin ϕ + y cos ϕ) and rescaling the axes of coordinates (x → αx, y → αy), we
obtain l1 ∩ l2 = (0, 1). In this case the invariant straight lines can be written as

lj = 1 + ajx − y, aj ∈ C, j = 1, 2; ∆12 = a2 − a1 6= 0. (3)

The straight lines (3) are invariant for (1) if and only if the following coefficient
conditions are satisfied:

k = (a − 1)(a1 + a2) + g, l = −b, s = (1 − a)a1a2,
m = −a2

1 − a1a2 − a2
2 + c(a1 + a2) − a + d + 2, r = −f − 1,

n = a1a2(−f − 2) − (d + 1), p = (f + 2)(a1 + a2) + b − c,
q = (a1 + a2 − c)a1a2 − g, (a − 1)2 + (f + 2)2 6= 0.

(4)

If the conditions (4) are satisfied then the cubic system (1) looks:

ẋ = y + ax2 + cxy + [d + 2 − a − a2
1 − (a1 + a2)(a2 − c)]x2y − (f + 1)y3+

fy2 + [(a − 1)(a1 + a2) + g]x3 + [(f + 2)(a1 + a2) + b − c]xy2 ≡ P (x, y),

ẏ = −x − gx2 − dxy − by2 + (a − 1)a1a2x
3 + [g + a1a2(c − a1 − a2)]x

2y+
[(f + 2)a1a2 + d + 1]xy2 + by3 ≡ Q(x, y).

(5)

Next for cubic system (5) we find conditions for the existence of one invariant
conic passing through the same singular point (0, 1), i.e. forming a bundle. Let the
conic curve be given by the equation

Φ(x, y) ≡ a20x
2 + a11xy + a02y

2 + a10x + a01y + 1 = 0 (6)
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with (a20, a11, a02) 6= 0 and a20, a11, a02, a10, a01 ∈ R.

For every conic curve (6) the following quantities [12]:

I1 = a02 + a20, I2 = (4a02a20 − a2
11)/4,

I3 = (4a02a20 − a2
01a20 + a01a10a11 − a02a

2
10 − a2

11)/4

are invariants with respect to the translation and rotation of axes. These invariants
will be taken into account classifying conics. A conic (6) is reducible into two straight
lines if and only if I3 = 0. If I2 > 0, then (6) is an ellipse, if I2 < 0 – a hyperbola
and if I2 = 0 – a parabola.

In order the conic (6) pass through a singular point (0, 1) and form a bundle
with the invariant straight lines (3), we shall assume a01 = −a02 − 1. In this case

Φ(x, y) ≡ a20x
2 + a11xy + a10x + (a02y − 1)(y − 1) = 0. (7)

The conic (7) is an invariant conic for (5) if and only if there exist numbers
c20, c11, c02, c10, c01 ∈ R, where c10 = −a01, c01 = a10, such that

P (x, y)
∂Φ

∂x
+ Q(x, y)

∂Φ

∂y
≡ Φ(x, y)(c20x

2 + c11xy + c02y
2 + (a02 + 1)x + a10y). (8)

Identifying the coefficients of xiyj in (8), we reduce this identity to three systems
of equations {Fij = 0} for the unknowns a20, a11, a02, a10, c20, c11, c02 :

F40 ≡ (a − 1)(a1a2a11 + 2a1a20 + 2a2a20) + a20(2g − c20) = 0,
F31 ≡ (a − 1)(2a1a2a02 + a1a11 + a2a11) − (a2a11 + 2a20)a

2
1−

− (a1a11 + 2a20)a
2
2 + (ca11 − 2a20)a1a2 + (2ca1 + 2ca2 − 2a−

− c11 + 2d + 4)a20 + (2g − c20)a11 = 0,
F22 ≡ 2(c − a1 − a2)a1a2a02 + (2g − c20)a02 + [c(a1 + a2) − a2

1−
− a2

2 + (f + 1)a1a2 − a − c11 + 2d + 3]a11+
+ [2(f + 2)(a1 + a2) + 2b − 2c − c02]a20 = 0,

F13 ≡ (f + 2)[2a1a2a02 + (a1 + a2)a11] + (2 + 2d − c11)a02+
+ (2b − c − c02)a11 − 2(f + 1)a20 = 0,

F04 ≡ (2b − c02)a02 − (f + 1)a11 = 0,

(9)

F30 ≡ (a − 1)[(a1 + a2)a10 − a1a2(a02 + 1)] − ga11+
+ (2a − 1 − a02)a20 + (g − c20)a10 = 0,

F21 ≡ [g − c20 + ca1a2 − (a1 + a2)a1a2](−a02 − 1)+
+ [c(a1 + a2) − a2

1 − a1a2 − a2
2 − a + d + 2 − c11]a10+

+ (2c − a10)a20 + (a − d + 1 + a02)a11 − 2ga02 = 0,
F12 ≡ (f + 2)[(a1 + a2)a10 − a1a2(a02 + 1)] − (d + 1 − c11)(a02 + 1)−

− (a02 + 2d + 1)a02 + (b − c − c02)a10 + (c − b − a10)a11 + 2fa20 = 0,
F03 ≡ (b − c02)(a02 + 1) + (a10 + 2b)a02 + (f + 1)a10 − fa11 = 0,

(10)

F20 ≡ (a − a02 − 1)a10 + g(a02 + 1) − a11 − c20 = 0,
F11 ≡ (a02 + d + 1)a01 + (a10 − c)a10 + 2a02 − 2a20 + c11 = 0,
F02 ≡ c02 − (a10 + b)(a02 + 1) − fa10 − a11 = 0.

(11)
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Let us denote
j1 = (a1 + a2 − c)a02 + (f + 1)a11, j2 = a02a

2
1 + a11a1 + a20,

j3 = a02a
2
2 + a11a2 + a20, j4 = 4a02a20 − a2

11.

We shall study the compatibility of the system of equations {(9), (10), (11)} when
f + 2 6= 0, I3 6= 0 and split the investigation into five subcases: {j1 = 0},
{j1 6= 0, j2 = 0}, {j1j2 6= 0, j3 = 0}, {j1j2j3 6= 0, j4 = 0}, {j1j2j3j4 6= 0}.

Remark 1. If a02 = 1, then the system {(9), (10), (11)} is not compatible.

Indeed, we express c02 from F04 = 0 of (9) and substituting in (11) we obtain
F02 ≡ (a10 + a11)(f + 2) = 0.

If a11 + a10 = 0, then I3 = 0. Next we shall assume that a02 − 1 6= 0.

3.1 Case j1 = 0

3.1.1. a02 = a11 = 0. In this case F04 = 0 and the equation F13 = 0 yields f = −1.
We express c02, c11 and c20 from (9), a20 from F11 = 0, g from F20 = 0 and replace
in (10). Reduce the equations of (10) by b from F02 = 0, then we get

F12 ≡ (a1 − a10)(a2 − a10) = 0.
If a10 = a1 or a10 = a2, then we obtain the following series of conditions

1) a = 1/2, f = −1, g = (4c − 3b)/6, a1 = (2c)/3, a2 = (2c − 3b)/6

for the existence of an invariant parabola for system (5):
(9b2 − 6bc − 4c2 − 18d − 36)x2 − 24cx + 36(y − 1) = 0.

3.1.2. a02 = 0, a11 6= 0. In this case the equation j1 = 0 yields f = −1 and F04 ≡ 0.
We express c02, c11, c20 from (9) and obtain F40 ≡ f1f2f3 = 0, where

f1 = a1a11 + a20, f2 = a2a11 + a20, f3 = (a1 + a2 − c)a20 + (a − 1)a11.
Let f1 = 0 and reduce the equations of (10) and (11) by b from F02 = 0, d from

F11 = 0 and g from F20 = 0, then we get F12 ≡ (a11 + a10 − a2)I3 = 0.
If a11 = a2 − a10, then we obtain the following series of conditions

2) a = 0, d = (g2 − 2cg − 2bg − 8)/4, f = −1, a1 = g/2, a2 = b + g

for the existence of an invariant conic for (5):
g(4b − 2c + 3g)x2 + 2(2c − 4b − 3g)xy + 2(2b − 2c + g)x + 4y − 4 = 0.

The case f2 = 0 can be reduced to f1 = 0 if we replace a1 with a2.
Assume now f1f2 6= 0 and f3 = 0. We express a11 = a1 + a2 + b − c from

F02 ≡ F03 = 0 and reduce the equations of (10) by d from F11 = 0 and g from
F20 = 0, then we get

F12 ≡ (a10 + a1 + b − c)(a10 + a2 + b − c) = 0.
If a10 = c − b − a1 or a10 = c − b − a2, then we obtain

3)

c = (2b2 − 6a − 3bp + p2 + 3)/(b − p), g = (ab2 − 2abp + ap2 − 4a + 2)/(b − p),
d = (6ab2 − 8a2 − 10abp + 4ap2 + 8a − 5b2 + 8bp − 3p2 − 2)/(b − p)2,
f = −1, a1 = (c − 2b + p)/3, a2 = (2c − b + 2p)/3.

The invariant conic is
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(a − 1)px2 + (2 − 4a + (b − p)2)x + (b − p)(1 − y + pxy) = 0.

3.1.3. a02 6= 0. In this case we express c from j1 = 0, c02 from F04 = 0, c11 from
F13 = 0, c20 from F22 = 0 and b, d, g from (11). Then we get F12 ≡ e1e2(f + 2),
where e1 = a1a02 − a1 + a10 + a11, e2 = a2a02 − a2 + a10 + a11.

3.1.3.1. If e1 = 0, then a1 = (a10 + a11)/(1 − a02) and (9) becomes:
F40 ≡ h1[a20(2a

2
02a2 − 2a02a10 − a02a11 − 2a02a2 − a11) − a02a11a2(a10 + a11)] = 0,

F31 ≡ h1[2a20a02(a02 − 1) + 2a2
02a10a2 + a2

02a11a2 + a02a10a11 + a02a11a2 + a2
11] = 0,

where h1 = (a − 1)a02 − (f + 1)a20.

Let h1 = 0 and reduce the equations of (10) by a from h1 = 0. Express a20

from F30 = 0, a11 from F21 = 0, a02 from h1 = 0 and obtain the following series of
conditions

4)
b = [(v + 1 + h)(2a2 − a10)(v + 1)]/(hv),
c = [(hv − h − v − 1)a10 + (2 − 2hv2 + hv + 2h + 2v)a2)/(hv),
d = [(h + 2v2 + 3v + 1)a10a2 − 2(hv + h + 2v2 + 3v + 1)a2

2−
−h(hv + h + 3v + 1)]/(hv), h = 2a + a10a2 − 2fa2

2 − 4a2
2 − 2,

g = [a2
10a2 − 2(v + 2)a10a

2
2 + ha10 + 4(v + 1)a3

2 + 2ha2]/(2h),
a1 = [2hva2 + (h + v + 1)(2a2 − a10)]/(hv), v = f + 1

for the existence of an invariant conic (h + 1)[2vy2 + (2a2
2 + 2va2

2 − a2a10 + h)x2 +
2(a10 − 2va2 − 2a2)xy] + 2v[a10x − (h + 2)y + 1] = 0.

Assume now h1 6= 0, then from F31 = 0 we find a20, and the equation F40 = 0
becomes F40 ≡ (2a02a2 + a11)I3 = 0.

If a11 = −2a02a2, then F31 ≡ (a02 − 1)2a2
02 6= 0.

3.1.3.2. The case e2 = 0 can be reduced to e1 = 0, if we replace a1 with a2.

3.2 Case j1 6= 0, j2 = 0

In this case a20 = −a1(a11 + a1a02), I2 < 0 and the conic is a hyperbola. If
a02 = 0, then F04 ≡ j1 6= 0. Next assuming a02 6= 0 we express c02, c11, c20 from the
equations {F04 = 0, F13 = 0, F22 = 0} of (9) and b, d, g from the equations of (11).
Then we get F12 ≡ e1e2(f + 2), where

e1 = a1a02 − a1 + a10 + a11, e2 = a2a02 − a2 + a10 + a11.

3.2.1. Let e1 = 0, then I3 = 0 and the conic is reducible.

3.2.2. Assume e1 6= 0 and e2 = 0. In this case we express a2 from e2 = 0 and a10

from F21 = 0. If a11 = −2a02a1, then F30 = I3 6= 0.

Let 2a02a1 + a11 6= 0, then express c from F30 = 0 and
F40 ≡ F31 = 2aa02a1 + aa11 − a2

02a1 − a02a1 − a02a11 = 0.

If a02 = a, then F40 = 0 yields a1 = 0 and we obtain

5)
d = −a − f − 3, b = [(f + 2)(f + a + 1)a11]/[a(1 − a)],

g = 0, c = [(af − 2f − 2)a2
11 + a2(a − 1)2]/[(a2 − a)a11],

a1 = 0, a2 = [(a + f + 1)a11]/(a − a2).
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The invariant hyperbola is (1 + f + ay)a11x + a(ay − 1)(y − 1) = 0.
If a02 6= a, then express a11 from F40 = 0 and obtain the following series of

conditions for the existence of a hyperbola
6)

b = −[(f + 1 + a02)(f + 2)a1]/h, a2 = [a1(h − a − f − 1)]/h,
c = [(af − 2f + 2a02 − 2a − 2)a2

1 + h2]/(ha1), g = (f + 3)a1,
d = [(2a + f2 + 5f + 4)a2

1 − (a02 + f + 3)h]/h, h = a02 − a.

The invariant hyperbola is a02a
2
1(a − 1)x2 + a02a1(h − a + 1)xy + a1(2a − fa02 −

3a02 + f + 1)x − h(a02y − 1)(y − 1) = 0.

3.3 Case j1 · j2 6= 0, j3 = 0

In this case we also obtain the series of conditions 5) and 6).

3.4 Case j1 · j2 · j3 6= 0, j4 = 0

If a02 = 0, then j4 = 0 yields a11 = 0 and j1 = 0. Next assume a02 6= 0 and from
j4 = 0 we find a20 = a2

11/(4a02). In this case I2 = 0 and the conic is a parabola.
We express c02, c11, c20 from the equations {F04 = 0, F13 = 0, F22 = 0} of (9) and
b, d, g from the equations of (11), then we obtain F12 ≡ e1e2(f + 2) = 0, where

e1 = a02a1 − a1 + a10 + a11, e2 = a02a2 − a2 + a10 + a11.

3.4.1. Assume e1 = 0, i. e. a10 = a1 − a02a1 − a11. Reduce the equations
{F31 = 0, F30 = 0} by f from F21 = 0, the equation F30 = 0 by a from F31 = 0 and
express c from F30 = 0, then we obtain

F21 ≡ a1a02(a02 − 1) + a11(a02 + f + 1) + 2(f + 2)a2a02 = 0,

F31 ≡ a11(2a − a02 − 1) + 4(a − 1)a2a02 = 0.
(12)

If f = −2a, then a 6= 1. Solving (12) for a1 and a2 we get
7)

b = [a11(a02 − 2h − 1)]/a02, g = [a11(1 − 2a02 + 2h)]/(2a02),
d = [(4ha02 + a02 − 4h2 − 4h − 1)a2

11 − 4ha2
02(a02 − 2h + 1)]/(4ha2

02),
f = −2a, c = [a2

11(a02 − 4h2 − 4h − 1) + 8a2
02h

2]/(4ha11a02),
a1 = 0, a2 = [a11(a02 − 2h − 1)]/(4ha02), h = a − 1.

The invariant parabola is a2
11x

2 + 4a02(y − 1)(a11x + a02y − 1) = 0.
If f + 2a 6= 0, then express a11 from F31 + F21 = 0 and a2 from F21 = 0. We

obtain
8)

b = [a1(f + 2)(a02 + f + 1)]/v, a2 = [a1(2a − a02 − 1)]/(2v),
g = [a1(2aa02 − 2a2 + av + 3a − a02v − 2a02 − 1)]/v, v = 2a + f,
c = [a2

1(4a
2 − 2av − 4a − a02 + 4v + 1) − 2v2]/(2va1),

d = [a2
1(8(a − 1)2(a02 + v − a) + (a − 1)(2a02 − 8va02 − 2v2 + 6v − 2)+

+ (2v − 1)(a02 − 1)v) + 2v2(2a − v − a02 − 3)]/(2v2).

The invariant parabola is (a− 1)a1a02[(a− 1)a1x− 2vy]x + v(2aa02 − va02 − 2a02 +
v)a1x + v2(a02y − 1)(y − 1) = 0.

3.4.2. The case e2 = 0 can be reduced to e1 = 0, if we replace a1 with a2.
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3.5 Case j1 · j2 · j3 · j4 6= 0

We express c02 from F04 = 0, c11 from F13 = 0, c20 from F22 = 0 and substitute
into the equations {F40 = 0, F31 = 0} of (9). Calculating the resultant of the
equations {F40 = 0, F31 = 0} by a we obtain

Res(F40, F31, a) = j1j2j3j4.
In this case Res(F40, F31, a) 6= 0 and therefore the system of algebraic equations
{(9), (10), (11)} is not compatible.

Remark 2. For cubic differential system (1) we obtained 8 series of conditions for
the existence of two invariant straight lines and one invariant conic passing through
the same singular point (0, 1).

4 Sufficient conditions for the existence of a center

Lemma 1. The following ten series of conditions are sufficient conditions for the
origin to be a center for system (5):

i) a = 1/2, f = −1, d = (−5)/2, g = (4c − 3b)/6, a1 = (2c)/3,
3b2c − 2bc2 + 9b + 12c = 0, a2 = (2c − 3b)/6;

ii)

a = d = 0, b = −g − 2/g, c = (3g2 − 4)/(2g), f = −1, a1 = g/2, a2 = −2/g;

iii)

a = (f2 + f + 1)/(1 − f), b = (f + 2)a1, g = −fa1, c = (1 − 2f)a1,
d = (2f2 + 3f + 4)/(f − 1), f(f − 1)a2

1 + f2 + 3f + 2 = 0, a2 = 0;

iv)

b = [(f3 + (a + 5)f2 + (7a + 5)f + 4a2 + 2a + 2)(f + 2)u]/[(f + 1)v2a2],
c = [((3 − 2a)f3 − 2(a2 + a − 5)f2 − (a2 + a − 14)f − a2 + 4a + 5)u]/

[(f + 1)v2a2], d = −2[f3 + (a + 5)f2 + 6(a + 1)f + 3a2 + a + 4]/v,
g = [(f3 + (a + 2)f2 − 5a + 1)(a − 1)u]/[(f + 1)v2a2],
a1 = [(2a + f)u]/[(f + 1)va2], (f + 1)v2a2

2 − (a − 1)u2 = 0,
u = f2 + (a + 1)f + 1 − a, v = f2 + (f + 1)(a + 3);

v)

a = (−h)/(f + 3), d = −a − f − 3, b = [(f + 2)(f + a + 1)a11]/[a(1 − a)],

g = 0, c = [2(3f2 + 2f + 3)(f + 2)h]/[(f + 3)2(f + 1)a11], h = 2f2 + 3f − 3,

(f + 1)(f + 3)3a2
11 + 4f(f + 2)h2 = 0, a1 = 0, a2 = [(a + f + 1)a11]/(a − a2);

vi)

a = −(f2 + 6f + 3)/3, c = −(f4 + 14f3 + 60f2 + 87f + 48)/[3(f + 5)a1],
b = −[(2f3 + 15f2 + 27f + 6)(f + 2)a1]/[(f

2 + 6f + 6)(f + 1)],
d = (3f3 + 23f2 + 42f + 6)/[3(f + 5)], 3(f + 5)a2

1 + (f + 1)(f2 + 6f + 6) = 0,
g = (f + 3)a1, a2 = −[(f2 + 3f − 6)a1]/[(f + 1)(f2 + 6f + 6)];
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vii)

b = −[(a + αt2 + f + 1)(f + 2)β]/(αt), a2 = [(αt2 − a − f − 1)β]/(αt),
c = [α2t2 + 2αβ2t2 + β2(af − 2f − 2)]/(αβt), g = (f + 3)βt,
d = [(2a + f2 + 5f + 4)β2 − α2t2 − (a + f + 3)α]/α,
[(f + 4)(f + 1) + 2a](f + 3)(f + 2)β4 + (af2 + 10af + 15a + 3f3+

+18f2 + 28f + 9)αβ2 + (af + 3a + 2f2 + 3f − 3)α2 = 0,
t2 = [(1 − a − 2f − f2)αβ2 − (3af + 5a + f3 + 7f2 + 13f + 7)β4]/

[α3 + (f + 2)α2β2 − (f + 3)αβ4];

viii)

a = (18t − t2 − 24)/[2t(t + 2)], b = [a11(3t
2 − 14t + 24)]/[t(3t − 10)],

c = (9t6 + 144t5 − 2416t4 + 12912t3 − 33872t2 + 44352t − 23040)/
[8a11t(5t

3 + 14t2 − 4t − 24)], g = [3a11(4t − t2 − 4)]/[t(3t − 10)],
d = (9t3 − 74t2 + 168t − 192)/[4t(t + 2)], f = (t2 − 18t + 24)/[t(t + 2)],
4(5t − 6)(t + 2)2a2

11 + (3t2 − 14t + 24)(3t − 10)2(t − 2) = 0,
a1 = 0, a2 = [a11(t + 2)]/[2(10 − 3t)];

ix)

a = (t3 − 3t − 1)/[(t2 − 1)t], b = [(t2 + t + 3)(2t + 1)a1]/[(t
2 + 3t − 1)(1 − t2)],

c = [−(t3 + 6t2 + 4t − 4)(2t + 1)(t + 2)]/[(t2 + 3t − 1)(t + 1)a1t],
f = (2t2 + 2t − 1)/(1 − t2), g = [(t3 − t2 + 5t + 4)a1]/[(t

2 + 3t − 1)(t2 − 1)],
d = (5t4 + 23t3 + 21t2 + 16t + 7)/[(t2 + 3t − 1)(t2 − 1)t],
ta2

1 + (2t + 1)(t + 2) = 0, a2 = [a1(t − 2)]/(t2 + 3t − 1);

x)

b = [a1(f + 2)(a02 + f + 1)]/v, a2 = [a1(2a − a02 − 1)]/(2v),
g = [a1(2aa02 − 2a2 + av + 3a − a02v − 2a02 − 1)]/v,
c = [a2

1(4a
2 − 2av − 4a − a02 + 4v + 1) − 2v2]/(2va1),

d = [a2
1(8(a − 1)2(a02 + v − a) + (a − 1)(2a02 − 8va02 − 2v2 + 6v − 2)

+ (2v − 1)(a02 − 1)v) + 2v2(2a − v − a02 − 3)]/(2v2),
(2a − f2 − 2f − 2)(a − 1)(f + 2)(f + 1)a6

1 − v(2a2f2 − 6a2 − 2af3−
− 28af2 − 66af − 40a − f4 − 12f3 − 30f2 − 22f − 2)a4

1+
+ v3(3af + 3a − 5f − 7)a2

1 − v5 = 0, v = 2a + f,
a02 = [(8a3f + 16a3 + 2a2f3 + 22a2f2 + 42a2f + 10a2 + 2af4 + 16af3+

+ 30af2 + 10af − 3f3 − 10f2 − 8f − 2)a4
1 + (2a2f + 2a2 + 2a − 2f3−

− 6f2 − 5f − 2)v2a2
1 − 2v4(a + f + 1)]/[a2

1((2a
2f + 2a2 + 2af3+

+ 14af2 + 26af + 16a + 2f4 + 13f3 + 28f2 + 24f + 6)a2
1+

+ (2af + 2a + 2f2 + 3f)v2)].

Proof. In each of the cases i)–x) the system (5) has two invariant straight lines
of the form (3) and one invariant conic Φ = 0. The system (5) has a Darboux
integrating factor of the form

µ = lα1
1 lα2

2 Φα3 .
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In the case i): Φ = (27b3 −24bc2−27b−16c3 −36c)x2 −12(2cx−3y +3)(3b+4c)
and α1 = (3b+4c)2/[2(8c2 −9b2 +3bc)], α2 = −4, α3 = (18b2 +21bc+8c2)/[2(9b2 −
3bc − 8c2)].

In the case ii): Φ = (g2 + 1)(gx − 2y)x − g(y − 1 − 2gx) and α1 = 3, α2 =
(2 − g2)/[2(g2 + 1)], α3 = (−5g2 − 8)/[2(g2 + 1)].

In the case iii): Φ = (2f + 1)[f(f + 2)x2 + 2f(f − 1)a1xy − (f2 − 1)y2]− 2f(f −
1)2a1x + 2(f3 − 1)y + (f − 1)2 and α1 = [3(f + 1)]/(2f + 1), α2 = −2, α3 =
−(8f + 7)/[2(2f + 1)].

In the case iv): Φ = (a−1)[vwa2x
2−2uwxy−2(v+2a−2)ux]+(f +1)[vwa2y

2−
2(2a2 +3af +a+f2+f +1)va2y+v2a2] and α1 = [(2a−2+v)(2a+2f +1)]/w, α2 =
−2, α3 = −(4a2f + 16a2 + 8af2 + 31af + 11a + 4f3 + 15f2 + 9f + 1)/(2w), where
w = 4a2 + 5af + a + f2 − f − 1.

In the case v): Φ = (f + 3)ha11xy − (f + 3)2(f + 1)a11x − h2y2 + 2(f2 + f −
3)hy + h(f + 3) and α1 = 3, α2 = −(f + 3)2/h, α3 = (18 − 3f − 5f2)/h.

In the case vi): Φ = (f2 + 6f + 6)(f + 1)hx2 + 12ha1xy − 18(f + 5)(f + 4)(f +
1)a1x+3(f +1)hy2−6(f3+9f2+21f +3)(f +1)y−9(f +5)(f +1) and α1 = 3, α2 =
−(f + 3)3/h, α3 = −(5f3 + 45f2 + 108f + 36)/h, where h = 2f3 + 18f2 + 45f + 21.

In the case vii): Φ = (ay +αt2y−1)(1−y)αt−x[(a−αt2−1)y− (a−1)βtx](a+
αt2)β + β(1− af − a−αft2 − 3αt2 + f)x and α1 = 3, α2 = [(f + 3)α3 − (a− 1)(f +
3)α2β2 − ((f + 4)(f + 1) + 2a)(f + 3)(f + 1)β6 − ((f + 3)a + 2(f + 2)(f + 1))(f +
3)αβ4]/[aα3 + (af + a − f2 − 2f + 1)α2β2 − (4af + 8a + f3 + 7f2 + 13f + 7)αβ4],
α3 = [(8af + 18a + 2f3 + 15f2 + fα2 + 36f + 3α2 + 33)αβ4 − (3a + f + α2 + 6)α3 +
(f2− 3af − 3a− fα2− f − 2α2 − 9)α2β2 − (2af +6a+ f3 +8f2 +19f +12)β6]/[(a+
1)α3 + (af + a − f2 − f + 3)α2β2 − (4af + 8a + f3 + 7f2 + 14f + 10)αβ4].

In the case viii): Φ = (3t2 − 14t + 24)(3t− 10)x2 + (5t− 6)[8(t + 2)a11xy − 8(t +
2)a11x−4(3t−10)(t−2)y2 +4(3t2−18t+16)y+8(t+2)] and α1 = [6(t−2)2]/[t(3t−
10)], α2 = −4, α3 = (38t − 9t2 − 48)/[2t(3t − 10)].

In the case ix): Φ = (t2 − t − 3)(t + 1)[(2t + 1)x2 + 2ta1xy − t(t + 2)y2] −
2t2(t2 + 2)a1x + 2t(t4 + 2t3 − 4t2 − 5t − 3)y − t2(t2 + 3t − 1)(t − 1) and α1 =
(t + 2)2/(3 + t − t2), α2 = −4, α3 = (3t2 + 7t + 5)/[2(t2 − t − 3)].

In the case x): Φ = (a− 1)2a02a
2
1x

2 − 2v(a− 1)a02a1xy + (v − (f + 2)a02)va1x +
v2(a02y − 1)(y − 1) and α1 = [a2

1(2a02f
2 − 4a2 − 2af2 − 10af − 4a + 7fa02 + 6a02 +

3f + 2) − 2(v + a02α3 + a02 + α3 − 1)v2]/(2v2), α2 = −4, α3 = [a4
1(2f

2a02 − 4a2 −
2af2 − 10af − 4a + 7fa02 + 6a02 + 3f + 2)− a2

1(8a
2 + 4aa02 + 10af + 6fa02 + 5a02 +

6f2 + 6f + 3)v − 2v3]/[4v(a + f + 1)a02a
2
1].

Lemma 2. The following nine series of conditions are sufficient conditions for the
origin to be a center for system (5):

i)
a = 1/2, a1 = c = 0, d = (−3)/2, f = −1, a2 = g = (−b)/2;

ii)

a = 0, b = −g − 2g−1, a1 = c = g/2, d = (g2 − 2)/2, f = −1, a2 = −2g−1;
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iii)

a = (2b2 − 3bp + p2 + 2)/4, d = [((b − p)2 − 2)(2b − p)]/[2(b − p)],
c = (p − 2b)/2, g = (2b3 − 5b2p + 4bp2 − 6b − p3 + 2p)/4,
f = −1, a1 = −b + p/2, a2 = p − b;

iv)
a = 1/2, c = 3b, d = (−3)/2, f = −1, g = b, a1 = 0, a2 = b;

v)

b = (a − 1)a1, c = (2a2 + a − 1)/a1, d = 4a − 2a2 − 3, f = −1,
g = (5a − 2a2 − 2)/a1, a2

1 − 2a + 1 = 0, a2 = a(2a2 + a − 1);

vi)

b = [(3 − 4a)a2]/[4(a − 1)], c = [(2a − 3)a2]/[2(a − 1)], d = 2a − 3,
f = (−3)/2, g = (3a2)/2, a1 = a2/(2 − 2a);

vii)

a = −[(4f2 + 10f + h2 + 6)a2 + (2f + 1)h]/(2h), h = a10 − 2(f + 2)a2,
b = −[(4fa2 + 6a2 + h)(f + 2)]/(2f + 3), c = a2 + 2h(f + 1)/(2f + 3),
d = [(4f2 + 14f − h2 + 12)a2 + 2h(f + 1)]/h, a1 = −h/(2f + 3),
g = [(4f2 + 18f − h2 + 18)a2 + h(2f + 3)]/[2(2f + 3)];

viii)

a = ((f + 2)a2
2 − f)/2, b = [(f + 2)(1 − a2

2)(fa2
2 − a2

2 + f + 1)]/(2za2),
c = [(2 − 3f − 3f2)a4

2 + 2(1 − 3f − f2)a2
2 + f2 + 5f + 4]/(2za2),

d = [(f2 − 3)a4
2 + 2(1 − 2f − f2)a2

2 − 3(f2 + 4f + 5)]/(2z),
g = [(2f2 + 5f + 1)a4

2 + 2(f2 + 5f + 7)a2
2 + f + 1]/(2za2),

a1 = (3fa4
2 + 5a4

2 + 4fa2
2 + 10a2

2 + f + 1)/(2za2), z = (f + 1)a2
2 + f + 3;

ix)

a = ((f + 2)a2
1 − f)/2, b = [((f + 2)a2

1 + f + 1)(1 − a2
1)(f + 2)]/(wa1),

c = [(−3f2 − 9f − 4)a4
1 − (2f2 + 3f + 1)a2

1 + (f + 1)2]/(wa1),
d = [(2f2 + 6f + 3)a4

1 − 2(2f2 + 13f + 19)a2
1 − 3(2f2 + 8f + 7)]/(2w),

g = [(4f2 + 19f + 23)a4
1 + 2(2f2 + 7f + 5)a2

1 − f − 1]/(2a1w),
a2 = [(2a2

1 − 1)(f + 1) + (3f + 7)a4
1]/(2a1w), w = (2f + 5)a2

1 + 2f + 3.

Proof. In each of the cases i)–ix) the first Liapunov quantity vanishes L1 = 0. The
system (5) along with invariant straight lines (3) has also one more invariant straight
line l3 = 0 and one invariant conic Φ = 0.

In the case i): l3 = bx − 2, Φ = (b2 − 1)x2 + 4y − 4.
In the case ii): l3 = (g2 + 2)(2x + gy) + 2g, Φ = (g2 + 4)(gx2 − 2xy) + 2(g2 +

2)x − 2g(y − 1).
In the case iii): l3 = (b − p)(bx − 1) + by, Φ = p(2b2 − 3bp + p2 − 2)x2 + 4(b −

p)[(px − 1)y − bx + 1].
In the case iv): l3 = 1 + bx, Φ = x2 − 4bxy + 8bx − 4y + 4.
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In the case v): l3 = (1−a)a1x+(2a−1)y +1, Φ = a(a−1)a1x
2− (2a−1)(ay +

1)x + a1(y − 1).

In the case vi): l3 = a2x+2(a−1)y+1, Φ = (2a−1)[2(a−1)x2−y2]−a2x+2ay−1.

In the case vii): l3 = [(2f +3)y+hx]a10 +h, Φ = [(4f2a2 +10fa2 +h2a2 +6a2 +
2fh+ 3h)x2 − 2h2xy− 2h(f + 1)y2](a10 − a2)+ h2a10x+ h(2fa10 + a10 + 2a2)y + h2.

In the case viii): l3 = ((f +3)a2
2+f +1)(a2

2x−2a2y−x)−2za2, Φ = (f +2)(a4
2−

1)a2x
2−((3f+5)a2

2−f−1)(a2
2+1)xy−2x((f+3)a2

2+f+1)+2[(z−2)y2−(z−4)y−2]a2.

In the case ix): l3 = ((f + 3)a2
1 + f + 1)[(a2

1 − 1)x − 2a1y] + 2a1w, Φ = (a −
1)a1a02[(a − 1)a1x − 2vy]x + v(2aa02 − va02 − 2a02 + v)a1x + v2(a02y − 1)(y − 1),
where a02 = −[(f + 2)2a4

1 + (2f2 + 6f + 3)a2
1 + (f + 1)2]/w, v = 2a + f .

By Theorem 1 in each of these cases the origin is a center.

Lemma 3. The following two series of conditions are sufficient conditions for the
origin to be a center for system (5):

i)

a = (−2f)/3, b = (f + 2)a2, c = [3(−22f − 41)]/[a2(13f + 24)], g = 0,
d = (−f − 9)/3, (9f2 + 12f − 9)a2

2 + (f + 3)2 = 0, f2 − 3f − 9 = 0, a1 = 0;

ii)

a = [−f(f2 + 7f + 9)]/v, b = [−f(f + 3)(f + 2)a1]/u,
c = [(2f3 + 13f2 + 48f + 54)u]/[(f + 3)2a1v], g = (f + 3)a1,
d = [−(2f2 + 17f + 24)f2]/[v(f + 3)], v(f + 3)2a2

1 + u2 = 0,
a2 = [(f2 − 9f − 18)a1]/u, u = f2 − 3f − 9, v = f2 + 12f + 18.

Proof. In each of the cases i) and ii) the first Liapunov quantity vanishes L1 = 0.
The system (5) along with invariant straight lines (3) has also two more invariant
straight lines l3 = 0, l4 = 0 and one invariant conic Φ = 0.

In the case i): l3,4 = a2bj(55f + 102)x + (bjy + 1)(87 + 47f − (8f + 15)bj), where
bj, j = 3, 4 are the solutions of the equation 3(48f + 89)b2

j − 3(185f + 343)bj +
521f + 966 = 0 and Φ = a2(10fy − 18f + 18y − 33)x + (6fy + 2f + 12y + 3)(y − 1).

In the case ii): l3 = 3(f +3)2(f +2)a1x−u(3fy +f +3y +3), l4 = (f +3)2(2f +
3)a1x − u(2fy + f + 3y + 3) and Φ = 2(2f + 3)2u2x2 + a1v[2f(2f + 3)3y − (f +
3)(7f + 12)v]x − uv(y − 1)(8f2y + 24fy + 18y + v).

By Theorem 1 in each of these cases the origin is a center.

Theorem 4. (lj = 1 + ajx − y, j = 1, 2, Φ; L = 4), where f + 2 6= 0 and Φ = 0 is
an invariant conic of the form (7), is ILC for system (1), i.e. the order of a weak
focus is at most four.

Proof. To prove the theorem, we compute the first four Liapunov quantities Lj ,
j = 1, 4 in each series of conditions 1)–8) using the algorithm described in [19]. In
the expressions for Lj we will neglect denominators and non-zero factors.

In the case 1) the first Liapunov quantity is L1 = 6(3b + 4c)d − (6b2c − 4bc2 −
27b − 36c). From L1 = 0 we find d and replacing into the expression for L2, we
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obtain L2 = f1f2, where f1 = c, f2 = 3b2c − 2bc2 + 9b + 12c. If f1 = 0, then we are
in the conditions of Lemma 2, i), if f2 = 0, then Lemma 1, i).

In the case 2) the vanishing of the first Liapunov quantity gives b = −g − 2/g.
Then L2 = f1f2, where f1 = 2c − g, f2 = 2cg − 3g2 + 4. If f1 = 0, then we are in
the conditions of Lemma 2, ii), if f2 = 0, then Lemma 1, ii).

In the case 3) the first Liapunov quantity is L1 = g1g2, where g1 = 4a − 2b2 +
3bp − p2 − 2, g2 = a2(b2 − 2bp + p2 − 4) + a(b2 − bp + 4) − b2 + bp − 1.

If g1 = 0, then Lemma 2, iii). Assume g1 6= 0 and calculate L2. The resultant of
the polynomials g2 and L2 by b is

Res(g2, L2, b) = 144a6(2a − 1)15(2a3 − a2 − p2).

If a = 0, then g2 = 0 yields p = (b2 + 1)/b and I3 = 0. If a = 1/2, then g2 = 0
yields p = −b and we are in the conditions of Lemma 2, iv). If p2 = a2(2a − 1) and
g2 = 0, then Lemma 2, v).

In the case 4) the first Liapunov quantity is L1 = g1g2, where g1 = 4(f +2)2a3
2−

4(f + 2)a10a
2
2 − (4af + 8a − 2 − a2

10)a2 + (2a + 2f + 1)a10, g2 = a2
2(−af2 − 2af +

a − f3 − 4f2 − 6f − 5) + a2a10(af + f2 + 2f + 2) + (af − a + f2 + f + 1)(a − 1).

Assume g1 = 0. If a10 = 2(f + 2)a2 and f = (−3)/2, then Lemma 2, vi). If
g1 = 0 and a10 6= 2(f + 2)a2, then Lemma 2, vii).

Let g1 6= 0 and g2 = 0. If a2 = 0, then g2 = 0 yields a = (f2 + f + 1)/(1 − f)
and L2 = (f − 1)a2

10 + 4f(f + 1)(f + 2). If L2 = 0, then Lemma 1, iii).

If a2 6= 0 and a = (−f2 − 2f − 2)/f , then g2 = 0 yields f = (−2)/(a2
2 + 1). In

this case L2 = f1f2, where f1 = (a2
2 + 1)a10 − 6a3

2 + 2a2, f2 = 2a10a2 − 3a2
2 + 1. If

f1 = 0, then Lemma 1, iv) and if f2 = 0, then Lemma 2, viii) (f = (−2)/(a2
2 + 1)).

Assume a2 6= 0 and a 6= (−f2 − 2f − 2)/f . From g2 = 0 we find a10 and replace
into the expression for L2. We obtain L2 = h1h2, where h1 = 2a + f − (f + 2)a2

2,
h2 = (f + 1)[f2 + (f + 1)(a + 3)]2a2

2 − (a − 1)[f2 + (a + 1)f + 1 − a]2.

If h1 = 0, then Lemma 2, viii) and if h2 = 0, then Lemma 1, iv).

In the case 5) the vanishing of the first Liapunov quantity gives a11 = [a2(a −
1)2]/(1−2f−f2−a). In this case L2 = f1f2, where f1 = (f +3)a+2f2+3f−3, f2 =
3a + 2f . If f1 = 0, then Lemma 1, v). Let f1 6= 0 and f2 = 0, then a = (−2f)/3.
We calculate L3 = h1h2, where h1 = 5f + 6, h2 = f2 − 3f − 9. If h1 = 0, then
L4 6= 0 and if h2 = 0, then Lemma 3, i).

In the case 6) we denote a1 = βt, a02 = αt2 + a and calculate L1.

Let α = β2, then L1 = 0 yields a = (−f2 − 6f − 3)/3. The second Liapunov
quantity is L2 = f1f2, where f1 = 3(f + 5)β2t2 + (f2 + 6f + 6)(f + 1), f2 =
3(f + 1)β2t2 − (3f3 + 19f2 + 33f + 15).

If f1 = 0, then Lemma 1, vi). Assume f1 6= 0 and let f2 = 0, then we find
t2 and replacing into the expression for L3, we obtain L3 = h1h2, where h1 =
f3 + 9f2 + 18f + 9, h2 = 5f3 + 30f2 + 54f + 24. If h1 = 0, then Lemma 3, ii), if
h2 = 0, then L4 6= 0 and therefore the origin is a focus.

Let now α 6= β2 and α = −(f+3)β2, then L1 = 0 yields a = (−f2−4f−5)/(f+1)
and L2 = 3(f +3)(f +1)β2t2 +3f2 +20f +27. We find t2 from L2 = 0 and replacing
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into the expression for L3, we obtain L3 = u1u2, where u1 = 8f + 15, u2 = 7f + 12.
If u1 = 0, then Lemma 3, ii); if u2 = 0, then L4 6= 0 and therefore O(0, 0) is a focus.

Assume now (α + (f + 3)β2)(α − β2) 6= 0. Then from L1 = 0 we find t2 and
replacing into the expression for L2, we obtain L2 = f1f2, where f1 = [(f + 4)(f +
1)+2a](f+3)(f+2)β4+(af2+10af+15a+3f3+18f2+28f+9)αβ2+(af+3a+2f2+
3f−3)α2, f2 = (f2+6f +3+6a)(f +2)β4−αβ2(3af +6a+f2+4f +3)−(3a+2f)α2.

If f1 = 0, then Lemma 1, vii). Assume f1 6= 0, f2 = 0 and calculate L3. The
resultant of f2 and L3 by β is

Res(f2, L2, β) = v1v2v3v4v5v6,

where v1 = f + 1, v2 = 3a + f2 + 6f + 3, v3 = 6a + f2 + 6f + 3, v4 = (f + 1)a +
f2 + 4f + 5, v5 = af2 + 12af + 18a + f3 + 7f2 + 9f, v6 = 75(f + 2)a2 + 150af2 +
390af + 180a + 75f3 + 240f2 + 209f + 54.

Let v1 = 0, then L2 = 0 yields α = [2(1− 3a)β2]/(3a− 2) and L3 = w1w2, where
w1 = 7a − 3, w2 = 15a2 − 12a + 2. If w1 = 0, then L1 ≡ 28β2t2 + 25 6= 0 and if
w2 = 0, then L4 6= 0. Therefore the origin is a focus.

Assume v1 6= 0, v2 = 0, i.e. a = (−f2 − 6f − 3)/3. Then L2 = 0 yields
α = −[(f2 + 6f + 3)(f + 2)β2]/[(f + 3)(f + 1)] and L3 = w1w2, where w1 =
f +6, w2 = 5f2 +10f +3. If w1 = 0, then Lemma 3, ii) and if w2 = 0, then L4 6= 0.

Let v1v2 6= 0, v3 = 0, then a = (−f2 − 6f − 3)/6. The vanishing of the second
Liapunov quantity gives α = −[f(f2 + 6f + 7)β2]/(f2 + 2f + 3) and L3 = w1w2,
where w1 = f2 + 6f + 6, w2 = 5f3 − 9f + 6. If w1 = 0, then Lemma 3, ii) and if
w2 = 0, then L4 6= 0.

Assume v1v2v3 6= 0, v4 = 0, then a = (−f2 − 4f − 5)/(f + 1). In this case from
L2 = 0, we find α = −[(f2+13f +18)β2]/(f2+10f +15) and L3 = 31f2+122f +121
has not real roots.

Let v1v2v3v4 6= 0, v5 = 0, then a = [f(−f2−7f−9)]/(f2+12f+18). We calculate
L2 = z1z2, where z1 = (f2−3f−9)α+β2(f3+8f2+21f +18), z2 = (f2+6f +6)β2+
fα. If z1 = 0, then Lemma 3, ii); if z2 = 0, then L3 = 107f3 + 426f2 + 540f + 216.
Let L3 = 0, then L4 6= 0.

Assume v1v2v3v4v5 6= 0, v6 = 0 and calculate L3 and L4. Solve the system of
equations {L3 = 0, L4 = 0} by α and a, then v6 = 0 has not real solutions.

In the case 7) we calculate the first two Liapunov quantities and the resultant
of them by a11, then we get

Res(L1, L2, a11) = f1f2f3f4,

where f1 = 2a − 1, f2 = 2aa02 + 2a − 3a02 − 1, f3 = 4a2 − 4aa02 − 4a + 3a02 + 1,
f4 = 4a2a02 + 20a2 + 2aa2

02 − 26aa02 − 24a + a2
02 + 16a02 + 7.

If f1 = 0, then a = 1/2 and a02 = a2
11. In this case L1 = L2 = 0 and L3 6= 0.

If f2 = 0, then a02 = (1 − 2a)/(2a − 3) and L1 = a(2a − 3)a2
11 + 2a2 − 3a + 1.

Let L1 = 0, then a2
11 = (2a2 − 3a + 1)/[a(3− 2a)]. In this case L2 6= 0 and therefore

the origin is a focus.

If f3 = 0, then a02 = (2a − 1)2/(4a − 3). The first Liapunov quantity is L1 =
32a4 − 80a3 + 32a2a2

11 + 72a2 − 36aa2
11 − 28a+ 9a2

11 + 4. Let L1 = 0 and express a2
11,

then L2 6= 0.
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Assume f4 = 0. This equation admits the parametrization a = (18t − 24 −
t2)/[2t(t + 2)], a02 = (16t − 20 − 3t2)/[2(t + 2)]. In this case L1 looks L1 = g1g2,
where g1 = 4(5t−6)(t+2)2a2

11 +(3t2 −14t+24)(3t−10)2(t−2), g2 = 2(t+2)2(t−
4)(t − 6)a2

11 − (3t2 − 14t + 24)(3t − 10)2(t − 2). If g1 = 0, then Lemma 1, viii). Let
g1 6= 0 and g2 = 0, then express a2

11 from g2 = 0 and calculate L2. We obtain that
L2 6= 0.

In the case 8) we calculate the first Liapunov quantity and denote w ≡ (2a2f +
2a2 +2af3 +14af2 +26af +16a+2f4 +13f3 +28f2 +24f +6)a2

1 +(2af +2a+2f2+
3f)(2a + f)2. If w = 0, then L1 = f1f2, where f1 = f + 1, f2 = (f + 1)a2 − 4af −
6a − f3 − 6f2 − 9f − 3. If f1 = 0, then L2 = 0 yields a02 = (2a2 − 3a + 1)/(1 − 3a)
and Lemma 2, ix).

Assume f1 6= 0 and f2 = 0. The equation f2 = 0 admits the parametrization
a = (t3 − 3t − 1)/[t(t2 − 1)], f = (1 − 2t − 2t2)/(t2 − 1). We calculate the second
Liapunov quantity L2 = [(t2 + 3t − 1)(t − 1)t]a02 − (t2 − t − 3)(t + 2)(t + 1) and if
L2 = 0, then Lemma 1, ix).

Let w 6= 0, then from L1 = 0 we find a02 and substituting in L2 we get L2 =
g1g2g3, where g1 = 2a+ f − (f +2)a2

1, g2 = 2a+2f +1, g3 = (2a− f2− 2f − 2)(a−
1)(f +2)(f +1)a6

1 − v(2a2f2−6a2−2af3−28af2−66af −40a−f4−12f3−30f2−
22f − 2)a4

1 + v3(3af + 3a − 5f − 7)a2
1 − v5.

If g1 = 0, then Lemma 2, ix). If g1 6= 0, g2 = 0, then a = (−2f − 1)/2 and
L3 6= 0. Assume g1g2 6= 0 and g3 = 0, then Lemma 1, x).
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[6] Cozma D., Şubă A. Partial integrals and the first focal value in the problem of center.
Nonlinear Differential Equations and Applications, 1995, 2, No. 1, 21–34.
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[20] Żo la̧dek H. On certain generalization of the Bautin’s theorem. Nonlinearity, 1994, 7,
273–279.

Dumitru Cozma

Department of Mathematics
Tiraspol State University
5 Gh. Iablocichin str.
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Method for constructing one-point expansions

of a topology∗ on a finite set

and its applications

V. I.Arnautov, A.V.Kochina

Abstract. The article consists of two parts. In the first part we present an algorithm
which allows to receive, for any topology τ which is given on a set X from n elements,
all topologies on the set X

⋃
{y} each of which induces the topology τ on the set X.

In the second part (as an example) this algorithm is applied for calculation of the
number of topologies on the set Y each of which induces the discrete topology on the
set X.

Mathematics subject classification: 54A10.
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Introduction

The history of researches of the problem about the number of topologies on finite
sets and some results received by different authors are given in [1].

The works [1] and [2] contain an extended list of articles, which are devoted to
this problem.

At present the number of all topologies on sets having no more than 18 elements
is known. These numbers are given in the following table, which can be find in [1]
and [2].

c© V. I.Arnautov, A.V.Kochina, 2010
∗If Y = X

⋃
{y} then a topology τ̃ on the set Y is called one-point expansion of the topology

τ = τ̃ |X .
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The number of elements
of the set X

The number of topologies on the set X

0 1

1 1

2 4

3 29

4 355

5 6942

6 209527

7 9535241

8 642779354

9 63260289423

10 8977053873043

11 1816846038736192

12 519355571065774021

13 207881393656668953041

14 115617051977054267807460

15 88736269118586244492485121

16 93411113411710039565210494095

17 134137950093337880672321868725846

18 261492535743634374805066126901117203

This article adjoins the works in which this problem is studied. However, this
question is investigated from other point of view.

Namely, we consider a topology on a set from n + 1 elements as one-point ex-
pansion of a topology given on a set from n elements.

1 Justification of the algorithm

1.1. Theorem. Let τ be a topology on a finite set X and let τ̃ be such a topology
on Y = X

⋃
{y} that τ̃ |X = τ . Then there exist such V0 ∈ τ and U0 ∈ τ that the

following statements are valid:

1. U0 ⊆
⋂

V *V0,V ∈τ

V ,

2. τ̃ = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

Proof. We take V0 =
⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ and U0 =
⋂

Ṽ ∈τ̃ ,y∈Ṽ

(Ṽ \{y}).

As y /∈ V0 =
⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ ∈ τ̃ , then V0 = V0 ∩X ∈ τ̃ |X = τ .

Besides

U0 =
⋂

Ṽ ∈τ̃ ,y∈Ṽ

(Ṽ \{y}) = (
⋂

Ṽ ∈τ̃ ,y∈Ṽ

Ṽ )\{y} = (
⋂

Ṽ ∈τ̃ ,y∈Ṽ

Ṽ ) ∩X ∈ τ̃ |X = τ.
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Prove the first statement.
Let V ′ ∈ τ and V ′

* V0. Then there exists Ũ ′ ∈ τ̃ such that V ′ = X
⋂
Ũ ′. As

V ′
* V0 =

⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ , then y ∈ Ũ ′, and hence,

U0 =
⋂

Ṽ ∈τ̃ ,y∈Ṽ

(Ṽ \{y}) ⊆ Ũ ′ \ {y} = Ũ ′

⋂
X = V ′.

From arbitrariness of the set V ′ it follows that U0 ⊆
⋂

V *V0,V ∈τ

V .

The first the statement is proved.
Now prove the second statement, i.e.

τ̃ = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

Let W̃ ∈ τ̃ . If y /∈ W̃ , then from the definition of V0 it follows that
W̃ ⊆ V0 =

⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ , and as W̃ = W̃ ∩X ∈ τ̃ |X = τ , then

W̃ ∈ {V ∈ τ |V ⊆ V0} ⊆ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

If y ∈ W̃ , then W̃\{y} = W̃ ∩ X ∈ τ̃ |X = τ . Besides,
W̃\{y} ⊇

⋂

Ṽ ∈τ̃ ,y∈Ṽ

(Ṽ \{y}) = U0. Then

W̃ = (W̃\{y}) ∪ {y} ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0} ⊆

{V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

So, we have shown that τ̃ ⊆ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.
Now let

W ∈ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

If W ∈ {V ∈ τ |V ⊆ V0}, then there exists W̃ ∈ τ̃ such that W = W̃ ∩X.
As y /∈ V0, then V0 ⊆ X, and hence W = W̃ ∩X ⊇ W̃ ∩V0. As W ⊆ W̃ and

W ⊆ V0, then W ⊆ W̃ ∩ V0, and hence W = W̃ ∩ V0. Besides,
V0 =

⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ ∈ τ̃ , and hence, W = W̃ ∩ V0 ∈ τ̃ .

If W ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0} then there exists such U ′ ∈ τ that U ′ ⊇ U0

and U ′∪{y} = W . As U ′ ∈ τ = τ̃ |X then there exists W̃ ′ ∈ τ̃ such that U ′ = W ′∩X.
As U0 =

⋂

Ṽ ∈τ̃ y∈Ṽ

(Ṽ \{y}), then from finiteness of the set τ̃ it follows that

U0 ∪ {y} =
⋂

Ṽ ∈τ̃ ,y∈Ṽ

Ṽ ∈ τ̃ . Then y ∈ W̃ ′ ∪ U0 ∪ {y}, and

W = U ′ ∪ {y} = U ′ ∪ U0 ∪ {y} =

((W̃ ′ ∩X) ∪ (U0 ∪ {y}) ∩X) ∪ ((W̃ ′ ∪ (U0 ∪ {y})) ∩ {y}) =
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(W̃ ′ ∪ (U0 ∪ {y})) ∩ (X ∪ {y}) = W̃ ′ ∪ (U0{y}) ∈ τ̃ .

Therefore, τ̃ ⊇ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}, and hence,
τ̃ = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

The theorem is completely proved.

1.2. Theorem. Let τ be a topology on a set X and V0 ∈ τ . Consider a set U0 ∈ τ
such that U0 ⊆

⋂

V ∈τ,V *V0

V (we assume that
⋂

V ∈∅

V = X). Then

τ̃(V0, U0) = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}

is a topology on the set Y = X
⋃
{y}, and τ̃(V0, U0)|X = τ .

Proof. Prove first that τ̃(V0, U0) is a topology on the set Y .
As ∅ ⊆ V0, then ∅ ∈ {V ∈ τ |V ⊆ V0} ⊆ τ̃ . Besides, as X ∈ τ and U0 ⊆ X, then

X ∈ {U |U ∈ τ, U ⊇ U0}, and hence, Y = X ∪ {y} ∈ τ̃ .
Now let A,B ∈ τ̃ , then:
– If A,B ∈ {V ∈ τ |V ⊆ V0}, then A ∩ B ∈ τ and A ∩ B ⊆ V0, and hence,

A ∩B ∈ τ̃ .
– If A ∈ {V ∈ τ |V ⊆ V0} and B ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}, then A ∈ τ and

B\{y} ∈ τ , and as A ⊆ V0 and B\{y} ⊇ U0, then A ∩ (B\{y}) ∈ τ . As y /∈ A, then
A ∩B = A ∩ (B\{y}) ⊆ V0, and hence, A ∩B ∈ τ̃ .

It is similarly proved that A ∩B ∈ τ̃ if B ∈ {V ∈ τ |V ⊆ V0} and

A ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

– If A,B ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}, then A\{y} ∈ τ , B\{y} ∈ τ and A\{y} ⊇
U0, B\{y} ⊇ U0. As τ is a topology on the set X, then (A\{y}) ∩ (B\{y}) ∈ τ .
Besides, as (A\{y}) ∩ (B\{y}) ⊇ U0, then A ∩ B ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0} ⊆ τ̃ ,
and hence A ∩B ∈ τ̃ .

So, we have checked that A ∩B ∈ τ̃ , for any A,B ∈ τ̃ .
Now let {Aγ | γ ∈ Γ} ⊆ τ̃ . If Aγ ∈ {V ∈ τ |V ⊆ V0} for any γ ∈ Γ, then⋃

γ∈Γ
Aγ ∈ τ and

⋃
γ∈Γ

Aγ ⊆ V0, and hence
⋃

γ∈Γ
Aγ ∈ τ̃ .

If there exists γ0 ∈ Γ such that Aγ0 /∈ {V ∈ τ |V ⊆ V0}, then Aγ0 ∈
{U ∪ {y}|U ∈ τ, U ⊇ U0}, and hence, Aγ0 = Uγ0 ∪ {y}, where Uγ0 ∈ τ . Then⋃
γ∈Γ

Aγ ⊇ Aγ0 ⊇ U0 and (
⋃

γ∈Γ
Aγ)\{y} =

⋃
γ∈Γ

(Aγ\{y}).

Let γ ∈ Γ. If Aγ ∈ {V ∈ τ |V ⊆ V0} ⊆ τ , then Aγ\{y} = Aγ ∈ τ and if Aγ /∈
{V ∈ τ |V ⊆ V0}, then there exists Vγ ∈ τ such that Vγ ⊇ U0 and Aγ = Vγ ∪ {y}.
But then Aγ\{y} = Vγ ∈ τ .

So, we have proved that Aγ\{y} ∈ τ for any γ ∈ Γ. Having put Vγ = Aγ\{y}
for those γ ∈ Γ, receive

⋃

γ∈Γ

Aγ = Aγ0 ∪ (
⋃

γ /∈Γ,γ 6=γ0

Aγ) = (Vγ0 ∪ {y}) ∪ (
⋃

γ /∈Γγ 6=γ0

Aγ\{y}) =



METHOD FOR CONSTRUCTNG ONE-POINT EXPANSIONS ... 71

Vγ0 ∪ (
⋃

γ∈Γγ 6=γ0

Vγ)) ∪ {y} = (
⋃

γ∈Γ

Vγ) ∪ {y}.

As
⋃

γ∈Γ
Vγ ∈ τ and

⋃
γ∈Γ

Vγ ⊇ U0, then,
⋃

γ∈Γ
Aγ ∈ τ̃ .

So, we have proved that τ̃(V0, U0) is a topology on the set Y .

Now prove that τ̃(V0, U0)|X = τ .

Let U ∈ τ̃(V0, U0)|X . Then there exists Ũ ∈ τ̃(V0, U0) such that U = Ũ ∩X. If
Ũ ∈ {V ∈ τ |V ⊆ V0}, then Ũ ∈ τ and y /∈ Ũ . Then U = Ũ ∩X = Ũ ∈ τ .

Now let Ũ ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}. Then Ũ\{y} ∈ τ , and hence,
U = Ũ ∩ X = Ũ\{y} ∈ τ . From arbitrariness of U it follows that we have the
inclusion τ̃(V0, U0)|X ⊆ τ . Now show the inverse inclusion.

Let V ′ ∈ τ . Two cases are possible:
1) V ′ ⊆ V0;

2) V ′
* V0.

If V ′ ⊆ V0, then V ′ ∈ {V ∈ τ |V ⊆ V0} ⊆ τ̃(V0, U0), and y /∈ V ′. Then
V ′ = V ′ ∩X ∈ τ̃(V0, U0)|X .

If V ′
* V0, then V ′ /∈ {V ∈ τ |V ⊆ V0}, and according to the condition of the

theorem we have that V ′ ⊇
⋂

V ∈τ,V *V0

V ⊇ U0. Then, from the definition of the

topology τ̃(V0, U0) it follows that V ′ ∪ {y} ∈ τ̃(V0, U0).

Besides, as V ′ ⊆ X, then V ′ = (V ′ ∪ {y}) ∩X ∈ τ̃(V0, U0)|X . From arbitrariness
of V ′ it follows that τ̃(V0, U0)|X ⊇ τ , and hence, τ̃(V0, U0)|X = τ .

The theorem is completely proved.

1.3. Theorem. Let X be a finite set, τ̃ and τ̃ ′ be such topologies on the set
Y = X

⋃
{y} that τ̃ |X = τ̃ ′|X = τ . If V0, U0, V

′

0 , U
′

0 ∈ τ , τ̃ = {V ∈ τ |V ⊆ V0} ∪
{U ∪ {y}|U ∈ τ, U ⊇ U0} and τ̃ ′ = {V ∈ τ |V ⊆ V ′

0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U ′

0},
then τ̃ 6= τ̃ ′ if and only if (V0, U0) 6= (V ′

0 , U
′

0).

Proof. Necessity. We assume the contrary, i.e. τ̃ 6= τ̃ ′, but (V0, U0) = (V ′

0 , U
′

0).
Then V0 = V ′

0 and U0 = U ′

0, hence,

τ̃ = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0} =

= {V ∈ τ |V ⊆ V ′

0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U ′

0} = τ̃ ′.

Receive a contradiction with the assumption that τ̃ 6= τ̃ ′.

Hence (V0, U0) 6= (V ′

0 , U
′

0).
Sufficiency. We assume the contrary, i.e. τ̃ = τ̃ ′ and (V0, U0) 6= (V ′

0 , U
′

0).

If V0 6= V ′

0 , then V0 * V ′

0 , or V ′

0 * V0.

We assume, for definiteness, that V0 * V ′

0 . Then V0 ∈ {V ∈ τ |V ⊆ V0} ⊆ τ̃ and
V0 /∈ {V ∈ τ |V ⊆ V ′

0}.

As any set from {U ∪ {y}|U ⊇ U ′

0} contains y and y /∈ V0, then

V0 /∈ {V ∈ τ |V ⊆ V ′

0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0} = τ̃ ′,
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and hence, in this case τ̃ 6= τ̃ ′.
If U0 6= U ′

0, then U0 * U ′

0, or U ′

0 ⊆ U0.
We assume, for definiteness, that U0 * U ′

0. Then U ′

0 ∪ {y} ∈ {U ∪ {y}|U ∈
τ, U ⊇ U ′

0} ⊆ τ̃ ′, and U ′

0 ∪ {y} /∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}. As any set from
{V ∈ τ |V ⊆ V0} does not contain y and y ∈ U ′

0 ∪ {y}, then

U ′

0 ∪ {y} /∈ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0} = τ̃ ,

and hence, τ̃ 6= τ̃ ′ in this case, too.
Therefore τ̃ 6= τ̃ ′.
The theorem is completely proved.

1.4. Remark. We notice that if τ̃ and τ̃ ′ are such topologies on the set Y = X
⋃
{y}

that τ̃ |X 6= τ̃ ′|X , then τ̃ 6= τ̃ ′. Therefore any extensions on the set Y of various
topologies set on the set X will be various.

So, from Theorems 1.2 and 1.3 the following algorithm for the construction of
all topologies on the set Y = X

⋃
{y} follows, knowing all topologies on the finite

set X.

1.5. Algorithm.

1. We choose any topology τ0 set on the set X;

2. We choose arbitrarily a subset V0 ∈ τ0;

3. We choose arbitrarily such subset U0 ∈ τ0 that U0 ⊆
⋂

V ∈τ0,V *V0

V (consider

that
⋂

V ∈∅

V = X);

4. We determine the topology

τ̃(V0, U0) = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

2 Application of the algorithm for calculation of the number

of some topologies

2.1. Definition. As it is usual, a partially ordered set (X,≤) is called a lattice if
for any elements a, b ∈ X there exists inf{a, b} and sup{a, b}.

2.2. Definition. Lattices (X,≤) and (Y,≤) are called:
– isomorphic if there exists such a bijection f : X → Y that f(inf{a, b}) =

inf{f(a), f(b)} and f(sup{a, b}) = sup{f(a), f(b)}, for any elements a, b ∈ X;
– antiisomorphic if there exists such a bijection f : X → Y that f(inf{a, b}) =

sup{f(a), f(b)} and f(sup{a, b}) = inf{f(a), f(b)}, for any elements a, b ∈ X.

2.3. Definition. If (X, τ1) and (Y, τ2) are topological spaces then the topologies τ1
and τ2 are called:
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– lattice isomorphic if the lattices (τ1,⊆) and (τ2,⊆) are isomorphic;
– lattice antiisomorphic if the lattices (τ1,⊆) and (τ2,⊆) are antiisomorphic.

2.4. Remark. If X is a finite set, (X, τ) is a topological space and τ ′ =
{X \ V

∣∣V ∈ τ}, it is easy to notice that τ ′ is a topology on the set X which is
lattice antiisomorphic with the topology τ .

2.5. Proposition. Let X be a finite set and Y = X
⋃
{y}. If τ is a topology on

the set X and τ ′ = {X \ V
∣∣V ∈ τ}, then τ ′ is a topology on the set X and τ and τ ′

have the same number of expansions on the set Y .

Proof. Let Ω and Ω′ be sets of all expansions of topologies τ and τ ′ on the set Y ,
accordingly. Define the following mapping ψ : Ω → Ω′:

map each topology τ̂ ∈ Ω onto the topology ψ(τ̂ ) = τ̂ ′ = {Y \ V̂
∣∣V̂ ∈ τ̂}. As

ψ(τ̂ )
∣∣
X

= {(Y \ V̂ )
⋂
X

∣∣V̂ ∈ τ̂} = {X \ (V̂
⋂
X)

∣∣V̂ ∈ τ̂} = {X \ V )
∣∣V ∈ τ} = τ ′,

then ψ(τ̂ ) ∈ Ω′.
If τ̂ ′ ∈ Ω′, then τ̂ = {Y \ V

∣∣V ∈ τ̂ ′} ∈ Ω and ψ(τ̂ ) = τ̂ ′, and hence, ψ : Ω → Ω′

is a surjective mapping.
Besides if τ̂1 6= τ̂2, then

ψ(τ̂1) = {Y \ V
∣∣V ∈ τ̂1} 6= {Y \ U

∣∣U ∈ τ̂1} = ψ(τ̂2),

and hence, ψ : Ω → Ω′ is injective mapping, i.e. ψ : Ω → Ω′ is an bijective mapping.
The proposition is completely proved.

2.6. Theorem. Let τ ′ and τ ′′ be such topologies on finite sets X and Z, accordingly,
that they are lattice isomorphic or lattice antiisomorphic. If X̃ = X

⋃
{y} and

Z̃ = Z
⋃
{y}, then the topologies τ ′ and τ ′′ have the same number of expansions on

the sets X̃ and Z̃, accordingly.

Proof. First we consider the case when the topologies τ ′ and τ ′′ are lattice isomor-
phic. Let f : (τ ′,⊆) → (τ ′′,⊆) be a corresponding lattice isomorphism.

If Ω1 = {(V ′, U ′)
∣∣V ′ ∈ τ ′, U ′ ∈ τ ′, and U ′ ⊆

⋂

V ∈τ ′, V *V ′

V } and Ω2 =

{(V ′′, U ′′)
∣∣V ′′ ∈ τ ′′, U ′′ ∈ τ ′′, and U ′′ ⊆

⋂

W∈τ ′′, W*V ′′

W}, then we define the map-

ping Ψ : Ω1 → Ω2 as follows: Ψ((V ′, U ′)) = (f(V ′), f(U ′)).
As f : (τ ′,⊆) → (τ ′′,⊆) is a lattice isomorphism, then U ⊆ V if and only if

f(U) ⊆ f(V ) for any U, V ∈ τ1.
If (V ′, U ′) ∈ Ω1, then U ′ ⊆

⋂

V ∈τ ′, V *V ′

V , and hence,

f(U ′) ⊆
⋂

V ∈τ ′, V *V ′

f(V ) =
⋂

W∈τ ′′, W*f(V ′)

W,

i.e. Ψ((V ′, U ′)) = (f(V ′), f(U ′)) ∈ Ω2.
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The injectivity of the mapping Ψ : Ω1 → Ω2 follows from the injectivity of the
mapping f : τ ′ → τ ′′.

If (V ′′, U ′′) ∈ Ω2, then U ′′ ⊆
⋂

W∈τ ′, W*V ′′

W . Then

f−1(U ′′) ⊆
⋂

W∈τ ′′, W*V ′′

f−1(W ) =
⋂

V ∈τ ′, V *f−1(V ′)

V,

and hence, (f−1(V ′′), f−1(U ′′)) ∈ Ω1, and

Ψ((f−1(V ′′), f−1(U ′′))) = (f(f−1(V ′′)), f(f−1(U ′′))) = (V ′′, U ′′).

Therefore, Ψ : Ω1 → Ω2 is a bijection.
So, we have proved that the sets Ω1 and Ω2 have the same number of elements.
From Theorems 1.1, 1.2 and 1.3 it follows that the number of expansions of the

topology τ ′ on the set X̃ is equal to the number of elements of the set Ω1, and the
number of expansions of the topology τ ′′ on the set Z̃ is equal to the number of
elements of the set Ω2. Hence the number of expansions of the topology τ ′ on the
set X̃ is equal to the number of expansions of the topology τ ′′ on the set Z̃.

The theorem is proved for the case when topologies τ ′ and τ ′′ are lattice isomor-
phic.

If the topologies τ ′ and τ ′′ are lattice antiisomorphic, then it is easy to notice
that the topology τ ′1 = {X \ V

∣∣V ∈ τ ′} will be lattice isomorphic to topology τ ′′.
Then, according to proved above, the topologies τ ′1 and τ ′′ have the same number

of expansions on the sets X̃ and Z̃, accordingly. According to Proposition 2.5, the
topologies τ ′1 and τ ′ have the same number of expansions on the sets X̃, and hence,

the topologies τ ′1 and τ ′′ have the same number of expansions on the sets X̃ and Z̃,
accordingly.

The theorem is completely proved.

2.7. Theorem. 1 If X is a set from n elements and Y = X
⋃
{y}, then on the set

Y precisely 2n+1 + n − 1 topologies are present, each of which induces the discrete
topology on the set X.

Proof. If τ is the discrete topology on the set X, then τ = {V
∣∣V ⊆ X}. For

any subset V0 ∈ τ we consider the sets Ũ(V0) = {U ∈ τ
∣∣U ⊆

⋂

V ∈τ,V *V0

V } and

Ω(V0) = {(V0, U)
∣∣U ∈ Ũ(V0)}.

The following 3 cases are possible:

1. V0 = X;

2. V0 ∈ {X \ {x}
∣∣x ∈ X};

1The proof of this theorem given below shows the way of using the mentioned above algorithm
for calculation of one-point expansions for some topologies. Though, other and probably shorter
proofs of this theorem can be. The referee kindly informed authors of this work about one of such
proofs.
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3. V0 ∈ τ \ ({X}
⋃
{X \ {x}

∣∣x ∈ X}).

Consider each of these cases separately.

1. Let V0 = X. As {V ∈ τ
∣∣V * V0 = X} = ∅, then the set

Ũ(X) = {U ∈ τ
∣∣U ⊆

⋂

V ∈∅

V } = {U ∈ τ
∣∣U ⊆ X} = τ,

contains precisely 2n subsets of the set X. Then the set Ω(X) = {(X,U)
∣∣U ∈ Ũ(X)}

contains precisely 2n elements.

2. Let V0 ∈ {X \ {x}
∣∣x ∈ X}. As {V ∈ τ

∣∣V * X \ {x}} = {A ⊆ X
∣∣x ∈ A},

then the set

Ũ(X \ {x}) = {U ∈ τ
∣∣U ⊆

⋂

V ∈{A⊆X

∣∣x∈A}

V } = {U ∈ τ
∣∣U ⊆ {x}} = {∅, {x}}

contains precisely 2 subsets of the set X. Then the set

Ω(X \ {x}) = {(X \ {x}, U)
∣∣U ∈ Ũ(X \ {x})

contains precisely 2 elements for any x ∈ X, and hence the set
⋃

x∈X

Ω(X \ {x})

contains precisely 2 · n elements.

3. Now let V0 ∈ τ \ ({X}
⋃
{X \ {x}

∣∣x ∈ X}). Then {x1} * V0 and {x2} * V0

for the some elements x1, x2 ∈ X, and hence,

Ũ(V0) = {U ∈ τ
∣∣U ⊆

⋂

V *V0

V } ⊆ {x1}
⋂

{x2} = {∅}

contains only ∅. Therefore the set Ω(V0) = {(V0, ∅)} contains precisely 1 element for
any V0 ∈ τ \ ({X}

⋃
{X \ {x}

∣∣x ∈ X}). Then the set
⋃

V0∈τ\({X}

⋃
{X\{x}

∣∣x∈X})

Ω(V0)

contains precisely 2n − 1 − n elements.
From Theorems 1.1, 1.2 and 1.3 it follows that the number of topologies on the

set Y = X
⋃
{y} each of which induces the topology τ on the set X is equal to the

number of elements of the set

{(V,U)
∣∣V,U ∈ τ, U ⊆

⋂

W∈τ,W*V

W} =

Ω(X)
⋃

Ω(X \ {x})
⋃( ⋃

V0∈τ\({X}

⋃
{X\{x}

∣∣x∈X})

Ω(V0)
)
,

i.e. it is equal to 2n + 2 · n+ 2n − 1 − n = 2n+1 + n− 1.
The theorem is completely proved.

Acknowledgement. The authors are grateful to the referee for comments and
corrections.
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Topological rings

with at most two nontrivial closed ideals

Valeriu Popa

Abstract. In this paper, we describe the Hausdorff topological rings with identity
in which every nontrivial closed ideal is topologically maximal, respectively, strongly
topologically maximal, and the Hausdorff topological rings with identity which have
no more than two nontrivial closed ideals.
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Introduction

In [4], F. Perticani determined the structure of (discrete) commutative rings
with identity in which every nontrivial ideal (i. e., distinct from the zero ideal and
the whole ring) is maximal. He proved that such a ring, E, has at most two distinct
nontrivial ideals, and if E is not simple, then either it is isomorphic to a product of
two fields or it is obtained as extension of a one-dimensional vector space over some
field, considered as ring with zero multiplication, by the same field in such a way
that the mentioned vector space structure coincides with the structure determined
by the exact sequence defining the corresponding extension.

We consider here analogous questions in the more general context of topological
rings. To be precise, we describe the (not necessarily commutative) topological
rings with identity in which every nontrivial closed ideal is topologically maximal,
respectively, strongly topologically maximal. We also determine the topological rings
with identity which have no more than two nontrivial closed ideals.

Throughout the paper, all topological rings considered are assumed to be Haus-
dorff. If E is a topological ring and A is an ideal of E, we denote by A the closure of
A in E, by annE(A) the annihilator of A in E, and by annlE(A) and annrE(A) the
left annihilator and the right annihilator of A in E, respectively. If B is a closed ideal
of E satisfying A ⊂ B, we denote by annE(B/A) the annihilator of the quotient
E-bimodule B/A in E. Also, the symbol ∼= stands for topological isomorphism.

c© Valeriu Popa, 2010
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1 Topological rings in which every nontrivial closed ideal

is topologically maximal

As mentioned in Introduction, F. Perticani described in his paper [4] the commu-
tative rings with identity in which every nontrivial ideal is maximal. The purpose
of the present paper is to extend the results obtained in [4] to topological rings. We
begin by introducing, for topological rings, the analogue of the notion of maximal
ideal.

Definition 1. Let E be a topological ring. A closed ideal M of E is said to be
topologically maximal if M is proper (i. e., M 6= E) and for every closed ideal C of
E such that M ⊂ C, either C = M or C = E.

Definition 2. A topological ring E is said to be topologically simple in case E is
nonzero and has no nontrivial closed (two-sided) ideals.

We will need the following analogue of the well known characterization of maxi-
mal ideals.

Lemma 1. Let E be a topological ring. A closed ideal M of E is topologically
maximal if and only if E/M is topologically simple.

Proof. Let M be a closed ideal of E, and let π denote the canonical projection of E
onto E/M.

If M is topologically maximal and if C ′ is a closed ideal of E/M, then π−1(C ′)
is a closed ideal of E and M ⊂ π−1(C ′), so that π−1(C ′) coincides with either M or
E. As C ′ = π(π−1(C ′)), it follows that C ′ coincides with either the zero ideal or the
whole ring E/M.

For the converse, let C be a closed ideal of E such that M ⊂ C. Then (E/M) \
π(C) = π(E \C). Since π is open, it follows that π(C) is closed in E/M, and hence
π(C) coincides with either the zero ideal or E/M. As C = π−1(π(C)), we conclude
that either C = M or C = E.

We proceed now to study the structure of topological rings in which every non-
trivial closed ideal is topologically maximal.

Lemma 2. Let E be a topological ring in which every nontrivial closed ideal is
topologically maximal. If A and B are different nontrivial closed ideals of E, then
A+B = E and A ∩B = {0}.

Proof. Since A and B are contained in A+B, the relation A+B 6= E would imply
A = A+B = B, because A and B have to be topologically maximal. Similarly,
since A ∩ B is contained in A and in B, the relation A ∩ B 6= {0} would imply
A = A ∩B = B, because A ∩B has to be topologically maximal.

Lemma 3. Let E be a topological ring with identity, and let A and B be nontrivial
closed ideals of E such that A+B = E and A ∩B = {0}. Then annE(A) = B and
annE(B) = A.
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Proof. Since AB and BA are contained in A ∩ B, we have A ⊂ annE(B) and B ⊂
annE(A). To show the inverse inclusions, pick any u ∈ annE(B) and v ∈ annE(A).
Since A+B = E, we can write 1 = limλ∈L(aλ + bλ), where (aλ)λ∈L is a net in A
and (bλ)λ∈L is a net in B [2, Proposition 1.6.3.]. It follows that

u = u lim
λ∈L

(aλ + bλ) = lim
λ∈L

uaλ ∈ A

and

v = v lim
λ∈L

(aλ + bλ) = lim
λ∈L

vbλ ∈ B.

Consequently, annE(A) = B and annE(B) = A.

With these preparations, we have

Theorem 1. A topological ring with identity in which every nontrivial closed ideal
is topologically maximal cannot have more than two different nontrivial closed ideals.

Proof. Let E be a topological ring with identity in which every nontrivial closed ideal
is topologically maximal, and assume A,B and C are different nontrivial closed ideals
of E. By Lemma 2, we have A+B = E, so that 1 = limλ∈L(aλ+ bλ), where (aλ)λ∈L
is a net in A and (bλ)λ∈L is a net in B. Pick any nonzero c ∈ C. The multiplication
by c being continuous, it follows that

c = c · lim
λ∈L

(aλ + bλ) = lim
λ∈L

c · (aλ + bλ) ∈ C ·A+ C ·B.

But C ·A ⊂ C ∩A and C ·B ⊂ C ∩B. Since C ∩A = {0} = C ∩B by Lemma 2 and
since E is Hausdorff, this proves that CA+ CB = {0}, so c = 0, a contradiction.
Consequently, E cannot have more than two different nontrivial closed ideals.

Next we consider the case of topological rings with two nontrivial closed ideals.

Theorem 2. Let E be a topological ring with identity having two different nontrivial
closed ideals. The following statements are equivalent:

(i) E has exactly two different nontrivial closed ideals, and these ideals are not
comparable with respect to inclusion.

(ii) Every nontrivial closed ideal of E is topologically maximal.

(iii) There exist two different nontrivial closed ideals A,B of E such that the fol-
lowing conditions hold:

(1) A+B = E and A ∩B = {0};

(2) A and B are topologically simple rings.
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Proof. Clearly, (i) implies (ii). Assume (ii), and let A and B be different nontrivial
closed ideals of E. The fact that condition (1) of (iii) is satisfied follows from Lemma
2. In particular, we can write 1 = limλ∈L(aλ + bλ), where (aλ)λ∈L is a net in A
and (bλ)λ∈L is a net in B. It also follows from Lemma 3 that annE(A) = B and
annE(B) = A. To see that A is a topologically simple ring, let I be an arbitrary
nonzero closed ideal of A. For any x ∈ E and y ∈ I, we have

xy = x[lim
λ∈L

(aλ + bλ)]y = x(lim
λ∈L

aλy) = lim
λ∈L

(xaλ)y ∈ I

and

yx = y[lim
λ∈L

(aλ + bλ)]x = (lim
λ∈L

yaλ)x = lim
λ∈L

y(aλx) ∈ I,

so I is an ideal of E. In view of (ii), we must have I = A. The proof that B is a
topologically simple ring is similar, so condition (2) of (iii) also holds.

Assume (iii). The ideals A and B, whose existence is claimed in (iii), cannot
be comparable with respect to inclusion because A ∩ B = {0}. It also follows from
Lemma 3 that annE(A) = B and annE(B) = A. To see that A and B are the
unique different nontrivial closed ideals of E, pick an arbitrary closed ideal C of E.
Then A ∩ C is a closed ideal of A and B ∩ C is a closed ideal of B. Since A and
B are topologically simple rings, it follows that A ∩ C coincides with either {0} or
A and B ∩ C coincides with either {0} or B. We distinguish cases. If A ∩ C = A
and B ∩ C = B, we have A ⊂ C and B ⊂ C, so that E = A+B ⊂ C, and
hence in this case C = E. Next assume A ∩ C = {0} and B ∩ C = {0}. Since
AC, CA ⊂ A ∩ C, we have AC = {0} = CA, so that C ⊂ annE(A) = B. In
a similar way, C ⊂ annE(B) = A. As A ∩ B = {0}, it follows that in this case
C = {0}. Now assume A ∩ C = {0} and B ∩ C = B. As we have seen, the relation
A∩C = {0} gives C ⊂ B. Since the relation B∩C = B gives B ⊂ C, it follows that
in this case C = B. Finally, if A ∩C = A and B ∩C = {0}, we get in a similar way
C = A. Consequently, E admits only two different nontrivial closed ideals, namely
A and B.

In view of Theorem 2, it would be interesting to know when a topological ring
with exactly two nontrivial closed ideals is topologically isomorphic to the direct
product of those ideals. To answer this question, we need a new

Definition 3. Let E be a topological ring and M a closed ideal of E. We say M is
strongly topologically maximal if M is topologically maximal and if for any closed
ideal C of E, M + C is closed in E.

Lemma 4. Let E be a topological ring. A proper closed ideal M of E is strongly
topologically maximal if and only if for each closed ideal C of E such that C 6⊂ M
one has M + C = E.

Proof. AssumeM is strongly topologically maximal, and let C be an arbitrary closed
ideal of E such that C 6⊂M. Since M + C is closed in E and properly contains M,
we must have M + C = E.
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Assume the converse. Given an arbitrary closed ideal C of E, we then have
M +C = M if C ⊂M and M +C = E if C 6⊂M, so that M +C is closed in E. It
is also clear that M is topologically maximal.

We have the following

Theorem 3. Let E be a topological ring with identity having two different nontrivial
closed ideals A and B. Every nontrivial closed ideal of E is strongly topologically
maximal if and only if A and B are topologically simple rings, and E ∼= A×B.

Proof. If every nontrivial closed ideal of E is strongly topologically maximal, it
follows from Theorem 2 that A ∩ B = {0}, A+B = E, and A,B are topologically
simple rings. Further, A+B = A+B by Lemma 4, and hence E ∼= A×B by [1, Ch.
III, §6, Exer. 6].

Now assume that A and B are topologically simple rings, and that there is an
isomorphism of topological rings h : E → A × B. Set A′ = h−1(A × {0}) and
B′ = h−1({0} × B). It follows that A′ + B′ = E and A′ ∩ B′ = {0}, so that,
by Theorem 2, A′ and B′ are the only nontrivial closed ideals of E. In particular
{A′, B′} = {A,B}. If C is an arbitrary closed ideal of E such that C 6⊂ A, then C
coincides with either B or E, so that A+C = E, and hence A is strongly topologically
maximal by Lemma 4. Clearly, the same holds also for B.

2 Topological bimodule structures induced by ideal extensions

Let A
ϕ
−→ E

ψ
−→ B be an exact sequence of abstract rings and homomorphisms

of rings, that is such that ker(ϕ) = {0}, im(ϕ) = ker(ψ), and im(ψ) = B. As is well
known (see [3] or [4]), if A2 = {0}, then A can be given a bimodule structure over
B.

We establish here a topological version of this fact.

Definition 4. Let A and B be arbitrary topological rings. A topological ring E is
said to be an ideal extension of A by B if there exist continuous ring homomorphisms
ϕ : A→ E and ψ : E → B such that the following conditions hold:

(i) ϕ is injective and open onto its image;

(ii) ψ is surjective and open;

(iii) im(ϕ) = ker(ψ).

If, in addition, E has an identity, then it is called a unital ideal extension of A
by B.

Clearly, if A
ϕ
−→ E

ψ
−→ B is a unital ideal extension of A by B, then B has an

identity too and ψ is unital.
As usual, when we want to emphasize explicitly the homomorphisms ϕ : A→ E

and ψ : E → B making E an ideal extension of A by B, we identify E with the

sequence A
ϕ
−→ E

ψ
−→ B.
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Lemma 5. Let A
ϕ
−→ E

ψ
−→ B be an ideal extension of A by B. Then annA(A) can

be turned into a topological bimodule over B.

Proof. The multiplication of E determines a B-bimodule structure on annA(A) in
the following way. Let a ∈ annA(A) and b ∈ B be arbitrary. Since ψ is surjective,
there is c ∈ E such that b = ψ(c). Then ϕ(a)c and cϕ(a) belong to ϕ(A) because
ϕ(A) is an ideal of E. Given any x ∈ A, we have (ϕ(a)c)ϕ(x) = ϕ(a)(cϕ(x)) = 0
and ϕ(x)(ϕ(a)c) = ϕ(xa)c = ϕ(0)c = 0, so that in fact ϕ(a)c ∈ annϕ(A)

(
ϕ(A)

)
.

Similarly, cϕ(a) ∈ annϕ(A)

(
ϕ(A)

)
. Set ab = ϕ−1

(
ϕ(a)c

)
and ba = ϕ−1

(
cϕ(a)

)
. To

see that the products ab and ba are well defined, let c′ be another element in E such
that ψ(c′) = b. Then c − c′ ∈ ker(ψ) = im(ϕ), and since a ∈ annA(A) and hence
ϕ(a) ∈ annϕ(A)

(
ϕ(A)

)
, we have ϕ(a)(c − c′) = 0 = (c − c′)ϕ(a). Consequently, ab

and ba are well defined. It is now easy to see that annA(A) is a bimodule over B,
with respect to its addition induced from A and scalar multiplications defined above.
Moreover, the addition is, clearly, continuous.

Let us show that the left scalar multiplication is continuous. The case of the
right scalar multiplication is similar. Fix any elements a ∈ annA(A) and b ∈ B, and
any neighbourhood V of zero in A. Also choose c ∈ E such that ψ(c) = b. Since ϕ
is open onto its image, ϕ(V ) is a neighbourhood of zero in ϕ(A). Now, since ϕ(A)
is a topological left E-module, there exist a neighbourhood U of zero in E and a
neighbourhood W of zero in ϕ(A) such that

UW ⊂ ϕ(V ), Uϕ(a) ⊂ ϕ(V ) and cW ⊂ ϕ(V ).

As ϕ is continuous and ψ is open, ϕ−1(W ) is a neighbourhood of zero in A and ψ(U)
is a neighbourhood of zero in B. By the definition of the left scalar multiplication,
we then have

ψ(U)
(
ϕ−1(W ) ∩ annA(A)

)
⊂ V ∩ annA(A), ψ(U)a ⊂ V ∩ annA(A)

and

b
(
ϕ−1(W ) ∩ annA(A)

)
⊂ V ∩ annA(A),

so the left scalar multiplication (β, α) → βα from B × annA(A) to annA(A) is
continuous at (0, 0), and the mappings β → βa from B to annA(A) and α → bα
from annA(A) to annA(A) are continuous at 0. Since a and b were arbitrary, it
follows from [5, (2.16)] that the left scalar multiplication is continuous.

Definition 5. The topological B-bimodule structure of annA(A) described above
will be referred to as the topological B-bimodule structure determined by the se-

quence A
ϕ
−→ E

ψ
−→ B.

Corollary 1. Let A and B be topological rings, and let A
ϕ
−→ E

ψ
−→ B be an ideal

extension of A by B.
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(i) If A contains a closed ideal K such that (A/K)2 = {0}, then A/K can be
turned into a topological bimodule over B.

(ii) If B0 is a closed ideal of B such that ψ−1(B0)
2 = {0}, then ψ−1(B0) can be

turned into a topological bimodule over B/B0.

Proof. (i) Let λ : A → A/K and ̺ : E → E/K be the canonical projections. As
is well known, there exist continuous ring homomorphisms ϕ̂ : A/K → E/K and
ψ̂ : E/K → B such that ̺ ◦ ϕ = ϕ̂ ◦ λ and ψ = ψ̂ ◦ ̺. Moreover, ϕ̂ and ψ̂ are open
onto their images,

ker(ϕ̂) = ker(̺ ◦ ϕ)/K = {0}, im(ψ̂) = im(ψ)

and

ker(ψ̂) = ker(ψ)/K = ϕ(A)/K = im(ϕ̂).

Consequently, the homomorphisms ϕ̂ : A/K → E/K and ψ̂ : E/K → B make E/K
an ideal extension of A/K by B. Since (A/K)2 = {0}, it follows from Lemma 5 that
A/K can be given a topological bimodule structure over B.

(ii) Let η : ψ−1(B0) → E be the canonical injection of ψ−1(B0) into E and
π : B → B/B0 the canonical projection of B onto B/B0. Then η and π ◦ψ are open
onto their images, η is injective, π◦ψ is surjective, and im(η) = ψ−1(B0) = ker(π◦ψ),
so that η and π ◦ ψ transform E into an ideal extension of ψ−1(B0) by B/B0. By
Lemma 5, ψ−1(B0) can be given a topological bimodule structure over B/B0.

Definition 6. The topological B-bimodule structure of A/K described above is
referred to as the topological B-bimodule structure determined on A/K by the

sequence A
ϕ
−→ E

ψ
−→ B.

Similarly, the topological B/B0-bimodule structure of ψ−1(B0) described above
is referred to as the topological B/B0-bimodule structure determined on ψ−1(B0)

by the sequence A
ϕ
−→ E

ψ
−→ B.

Lemma 6. Let A
ϕ
−→ E

ψ
−→ B be an ideal extension of A by B. Then annlA(A) can

be turned into a topological right B-module. Similarly, annrA(A) can be turned into
a topological left B-module.

Proof. The multiplication by scalars in annlA(A) (respectively, annrA(A)) is given
by ab = ϕ−1(ϕ(a)c) (respectively, ba = ϕ−1(cϕ(a))) for a ∈ annlA(A) (respectively,
a ∈ annrA(A)), b ∈ B, and c ∈ E with b = ψ(c).

Definition 7. The topological B-module structure of annlA(A) (respectively,
annrA(A)) described above is referred to as the topological B-module structure de-

termined on annlA(A) (respectively, annrA(A)) by the sequence A
ϕ
−→ E

ψ
−→ B.
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3 Topological rings with only one nontrivial closed ideal

In this section, we relate the study of topological rings with only one nontrivial
closed ideal to an extension problem, although the cohomology theory for topological
rings is not constructed yet.

We use the following simple

Lemma 7. Let E be a ring and A a nonzero ideal of E. If

annlE(A) = {0} = annrE(A),

then for any nonzero x ∈ A, AxA is nonzero.

Proof. Pick any nonzero x ∈ A. Since x /∈ annrE(A), there exists a ∈ A such that
ax 6= 0. Similarly, since ax /∈ annlE(A), there exists a′ ∈ A such that axa′ 6= 0.
Hence AxA 6= {0}.

Definition 8. Let E be a topological ring. A topological module (respectively,
bimodule) A over E is said to be topologically simple in case A is nonzero and has
no nontrivial closed submodules (respectively, subbimodules).

Theorem 4. Let E be a topological ring with identity having only one nontrivial
closed ideal A. Then E/A is a unital topologically simple ring, and E can be viewed

as an ideal extension A
η
−→ E

π
−→ E/A of A by E/A, where η is the canonical injection

and π is the canonical projection, such that exactly one of the following conditions
hold:

(i) annE(A) = {0} and A is a topologically simple ring;

(ii) annE(A) = A and A, with the structure given by the sequence A
η
−→ E

π
−→ E/A,

is a unital topologically simple E/A-bimodule.

Proof. Consider the natural exact sequence A
η
−→ E

π
−→ E/A, where η is the canonical

injection and π is the canonical projection. As is well known, η and π are continuous
and open onto their images. Now, since A is the only nontrivial closed ideal of E, it
is clear that E/A is a unital topologically simple ring. Further, since E has an iden-
tity, we cannot have annE(A) = E, so that either annE(A) = {0} or annE(A) = A.
Assume the former, and consider the one-sided annihilators annlE(A) and annrE(A).
Clearly, annlE(A) and annrE(A) are closed ideals of E. As in the case of annE(A),
we have annlE(A) 6= E and annrE(A) 6= E. On the other hand, either of equalities
annlE(A) = A or annrE(A) = A implies annE(A) = A, in contradiction with our as-
sumption that annE(A) = {0}. Therefore we must have annlE(A) = {0} = annrE(A).
To see that A is a topologically simple ring, pick an arbitrary nonzero closed ideal B
of A and any nonzero element b ∈ B. By Lemma 7, AbA is a nonzero closed ideal of
A satisfying AbA ⊂ B. Since A is an ideal of E, it then follows that AbA is a nonzero
closed ideal of E, whence AbA = A, so B = A. Consequently, A is a topologically
simple ring, and hence in this case we are led to (i).
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Now consider the latter case when annE(A) = A. By using the sequence A
η
−→

E
π
−→ E/A, it follows from Lemma 5 that A can be turned into a topological bimodule

over E/A. Moreover, if a ∈ A, then a · π(1) = a · 1 = a and π(1) · a = 1 · a = a,
so this bimodule is unital. Pick an arbitrary nonzero closed E/A-subbimodule C of
A. Taking into account the definition of scalar multiplications, we see that for any
x ∈ E,

xC = π(x)C ⊂ C and Cx = Cπ(x) ⊂ C,

so C is a nonzero closed ideal of E contained in A, whence C = A. Since the E/A-
subbimodule C was picked arbitrarily, it follows that A is a topologically simple
E/A-bimodule, and hence in this case we have (ii).

We next show that the converse is also true.

Theorem 5. Let A and B be topologically simple rings, and let A
ϕ
−→ E

ψ
−→ B be

an ideal extension of A by B. If annE(ϕ(A)) = {0}, then E has only one nontrivial
closed ideal, namely ϕ(A).

Proof. Clearly, ϕ(A) is a nontrivial closed ideal of E. Moreover, if K is a closed ideal
of E such that ϕ(A) ⊂ K, then B \ ψ(K) = ψ(E \K) is open in B, so that ψ(K)
is closed in B. Since B is topologically simple, it follows that either ψ(K) = {0}
or ψ(K) = B, and hence either K = A or K = E. Consequently, the ideal ϕ(A) is
topologically maximal.

Now, let C be an arbitrary closed ideal of E. Then ϕ(A) ∩ C is a closed ideal
of ϕ(A). If ϕ(A) ∩ C 6= {0}, we must have ϕ(A) ∩ C = ϕ(A) because ϕ(A) is a
topologically simple ring. It follows that ϕ(A) ⊂ C, and hence C coincides with
either ϕ(A) or E because ϕ(A) is topologically maximal in E. Suppose ϕ(A) ∩C =
{0}. Since ϕ(A)C and Cϕ(A) are contained in ϕ(A) ∩ C, it follows that ϕ(A)C =
{0} = Cϕ(A), so C ⊂ annE

(
ϕ(A)

)
, and hence C = {0}. Thus E has only one

nontrivial closed ideal.

Theorem 6. Let A be a topological ring with annA(A) = A, let B be a topologically

simple ring with identity, and let A
ϕ
−→ E

ψ
−→ B be a unital ideal extension of A

by B. If A is a topologically simple B-bimodule relative to the bimodule structure

determined by the sequence A
ϕ
−→ E

ψ
−→ B, then E has only one nontrivial closed

ideal, namely ϕ(A).

Proof. Clearly, ϕ(A) is a nonzero closed ideal of E. Moreover, since E/ϕ(A) is
topologically isomorphic to B, ϕ(A) is topologically maximal by Lemma 1. Let
C be a nonzero closed ideal of E. It is easy to see that ϕ(A) ∩ C is then a B-
subbimodule of ϕ(A). We cannot have ϕ(A)∩C = {0}. For, otherwise it would follow
that ϕ(A) +C = E, since ϕ(A) + C would then properly contain ϕ(A). Hence there
would exist a net (aλ)λ∈L of elements in A and a net (cλ)λ∈L of elements in C with
limλ∈L

(
(ϕ(aλ) + cλ

)
= 1. For any λ, λ′ ∈ L, we would have

(
ϕ(aλ) + cλ

)(
ϕ(aλ′) + cλ′

)
= ϕ(aλ)cλ′ + cλϕ(aλ′) + cλcλ′ ∈ C
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since ϕ(A) has zero multiplication. Taking the limit first relative to λ and then
relative to λ′, we would obtain that 1 ∈ C, so C = E, in contradiction with our
assumption that ϕ(A)∩C = {0}. Thus ϕ(A)∩C 6= {0}, and hence ϕ(A)∩C = ϕ(A)
because ϕ(A) is a topologically simple B-bimodule. It follows that ϕ(A) ⊂ C, so
that C must coincide with either ϕ(A) or E, because ϕ(A) is topologically maximal
in E. Consequently, E has only one nontrivial closed ideal.

4 Topological rings with only two different nontrivial closed ideals

In this section, we turn our attention to topological rings with exactly two non-
trivial closed ideals. First we consider the case when the corresponding ideals are
incomparable with respect to inclusion or, equivalently, disjoint.

Theorem 7. Let E be a topological ring with identity having only two different
nontrivial closed ideals. Assume that these ideals are not comparable with respect
to inclusion, and let A denote one of them. Then A is a topologically simple ring,
annE(A) 6= {0}, E/A is a topologically simple ring with identity, and E can be

viewed as a unital ideal extension A
η
−→ E

π
−→ E/A of A by E/A, where η is the

canonical injection and π is the canonical projection.

Proof. The assertion follows from Theorem 2 and Lemma 3.

Theorem 8. Let A be a topologically simple ring, let B be a topologically simple

ring with identity, and let A
ϕ
−→ E

ψ
−→ B be a unital ideal extension of A by B such

that annE
(
ϕ(A)

)
6= {0}. Then E has exactly two nontrivial closed ideals, namely

ϕ(A) and annE
(
ϕ(A)

)
.

Proof. Clearly, ϕ(A) is a nontrivial closed ideal of E. Moreover, since E/ϕ(A) ∼=
B, ϕ(A) is topologically maximal in E. Further, since E is unital, we must have
annE

(
ϕ(A)

)
6= E, so annE

(
ϕ(A)

)
is a nontrivial closed ideal of E as well.

Let C be an arbitrary nonzero closed ideal of E. Then ϕ(A)∩C is a closed ideal
of ϕ(A). Since ϕ(A) is topologically simple, it follows that either ϕ(A)∩C = {0} or
ϕ(A)∩C = ϕ(A). Assume the former holds. Since ϕ(A)C and Cϕ(A) are contained
in ϕ(A)∩C, we conclude that C ⊂ annE

(
ϕ(A)

)
. But, since C is nonzero, ϕ(A) + C

properly contains ϕ(A), so ϕ(A) +C = E. It follows that

annE
(
ϕ(A)

)
= E · annE

(
ϕ(A)

)
= (ϕ(A) + C) · annE

(
ϕ(A)

)

= C · annE
(
ϕ(A)

)
⊂ C,

and hence C = annE
(
ϕ(A)

)
.

In the latter case when ϕ(A) ∩ C = ϕ(A), we have ϕ(A) ⊂ C. Since ϕ(A) is
topologically maximal in E, it follows that C coincides with either ϕ(A) or E.

In the following, we consider the case of topological rings with exactly two non-
trivial closed ideals and such that the corresponding ideals are comparable with
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respect to inclusion. We first determine under what conditions the topological rings
of this type can be realized as ideal extensions of a topologically simple ring by a
topological ring with only one nontrivial closed ideal.

Theorem 9. Let E be a topological ring with identity having only two different
nontrivial closed ideals A and B. If A ⊂ B, then E/A is a topological ring with
identity containing only one nontrivial closed ideal, and E can be viewed as an ideal
extension A

η
−→ E

π
−→ E/A of A by E/A, where η is the canonical injection and π is

the canonical projection, such that exactly one of the following conditions hold:

(i) annE(A) = {0} and A is a topologically simple ring;

(ii) annE(A) = A and A, with the structure given by the sequence A
η
−→ E

π
−→ E/A,

is a topologically simple (E/A)-bimodule;

(iii) annE(A) = B, B2 coincides with either A or B, and A, with the structure given

by the sequence A
η
−→ E

π
−→ E/A, is a topologically simple (E/A)-bimodule;

(iv) B2 = {0} and the topological E/B-bimodule B, determined by the sequence

A
η
−→ E

π
−→ E/A, has only one nontrivial closed subbimodule.

Proof. Since A and B are the only nontrivial closed ideals of the unital ring E,
it follows that annE(A) coincides with one of the ideals {0}, A, or B. Now, if
annE(A) = {0}, we must have annlE(A) = {0} = annrE(A). For, if one of the ideals
annlE(A) or annrE(A) coincided with either A or B, it would follow that annE(A) 6=
{0}. Pick an arbitrary nonzero closed ideal C of A, and let c ∈ C be a nonzero
element. It follows from Lemma 7 that AcA is a nonzero closed ideal of A and hence
of E, so AcA = A, whence C = A. Consequently, A is a topologically simple ring,
and hence in this case we are led to (i). Next, if annE(A) = A, it follows from Lemma
5 that A can be turned into a topological bimodule over E/A. Since every closed
subbimodule of A is a closed ideal of E, we deduce that A is a topologically simple
E/A-bimodule. Thus in this case we have (ii). Further, assume annE(A) = B. If
B2 6= {0}, it follows from our hypothesis that B2 coincides with either A or B. Since,
as above, A can be turned into a topologically simple E/A-bimodule, in this case
we must have (iii). Finally, if B2 = {0}, it follows from Corollary 1 that B can be
turned into a topological bimodule over (E/A)/(B/A) ∼= E/B. Let C be a closed
subbimodule of B. We see that for any x ∈ E,

xC =
(
(x+A) +B/A

)
C ⊂ C and Cx = C

(
(x+A) +B/A

)
⊂ C.

It follows that C is a closed ideal of E contained in B, so C must coincides with one
of the ideals {0}, A, or B. Consequently, the topological E/A-bimodule B has only
one nontrivial closed subbimodule, and hence in this case we are led to (iv).

Theorem 10. Let A be a nonzero topological ring, let B be a topological ring with

identity having only one nontrivial closed ideal B0, and let A
ϕ
−→ E

ψ
−→ B be a unital

ideal extension of A by B satisfying one of the following conditions:
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(i) annE
(
ϕ(A)

)
= {0} and A is a topologically simple ring;

(ii) annE
(
ϕ(A)

)
= ϕ(A) and A is a topologically simple B-bimodule relative to the

structure given by the sequence A
ϕ
−→ E

ψ
−→ B;

(iii) annE
(
ϕ(A)

)
= ψ−1(B0), ψ−1(B0)2 coincides with either ϕ(A) or ψ−1(B0),

and A is a topologically simple B-bimodule relative to the structure given by

the sequence A
ϕ
−→ E

ψ
−→ B;

(iv) ψ−1(B0)
2 = {0} and the topological (B/B0)-bimodule ψ−1(B0), determined by

the sequence A
ϕ
−→ E

ψ
−→ B, has only one nontrivial closed subbimodule.

Then E has exactly two nontrivial closed ideals, namely ϕ(A) and ψ−1(B0).

Proof. It is clear that ϕ(A) 6= {0} and that ψ−1(B0) is the only closed ideal of E
satisfying ϕ(A) ( ψ−1(B0) ( E. Pick an arbitrary closed ideal C of E. If C∩ϕ(A) =
ϕ(A), then ϕ(A) ⊂ C, so that C coincides with one of the ideals ϕ(A), ψ−1(B0), or
E. Assume C ∩ ϕ(A) 6= ϕ(A). We shall show that, in any of cases (i)-(iv), C = {0}.
First observe that we must have C ∩ ϕ(A) = {0}. Indeed, this is clear in case (i)
holds, since then C ∩ ϕ(A) is a closed ideal of the topologically simple ring ϕ(A).
Further, in either of cases (ii) or (iii) C ∩ ϕ(A) is a closed B-subbimodule of the
topologically simple B-bimodule ϕ(A), and so C ∩ ϕ(A) = {0}. Finally, in case
(iv) holds, it is clear that C ∩ ϕ(A) is a closed (B/B0)-subbimodule of ψ−1(B0),
so C ∩ ϕ(A) = {0} because ψ−1(B0) has only one nontrivial closed subbimodule,
namely ϕ(A). This proves that in any of cases (i)-(iv), C ∩ ϕ(A) = {0}. Now, since
C ·ϕ(A) and ϕ(A) ·C are contained in C∩ϕ(A), it follows that C ⊂ annE

(
ϕ(A)

)
. In

particular, C = {0} if (i) holds. In case (ii) holds, C becomes a closed subbimodule
of the topologically simple B-bimodule ϕ(A), so again C = {0}. Further, in case
(iv) holds, we clearly have annE

(
ϕ(A)

)
= ψ−1(B0), so C = {0} by our hypothesis

that ϕ(A) is the only nontrivial closed (B/B0)-subbimodule of ψ−1(B0) and the
fact that C ∩ ϕ(A) = {0}. Assume (iii). If we had C 6= {0}, it would follow that
C + ϕ(A) = ψ−1(B0), which would imply

C2 = (C + ϕ(A))(C + ϕ(A)) = ψ−1(B0)2.

But then, in case ψ−1(B0)2 = ϕ(A), we would have ϕ(A) = C2 ⊂ C∩ϕ(A). Similarly,
in case ψ−1(B0)2 = ψ−1(B0), we would have C = ψ−1(B0). In both cases the derived
conclusion is in contradiction with the fact that C ∩ ϕ(A) = {0}.

Next we complete the picture by determining under what conditions topological
rings with exactly two nontrivial closed ideals can be realized as extensions of a
topological ring with only one nontrivial closed ideal by a topologically simple ring.

Definition 9. Let E be a topological ring. A closed ideal M of E is said to be a
topologically minimal ideal of E if M 6= {0} and for every closed ideal C of E such
that C ⊂M, either C = {0} or C = M.
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Theorem 11. Let E be a topological ring with identity having only two different
nontrivial closed ideals A and B. If A ⊂ B, then E/B is a topologically simple ring

with identity, and E can be viewed as an ideal extension B
η
−→ E

π
−→ E/B of B by

E/B, where η is the canonical injection and π is the canonical projection, such that
exactly one of the following conditions hold:

(i) The ideals AB, BA and annE(B/A) coincide with A, and B has only one
nontrivial closed ideal;

(ii) AB = A = BA, annE(B/A) = B, A is a topologically minimal ideal of B, and

the topological E/B-bimodule B/A, determined by the sequence B
η
−→ E

π
−→

E/B, is topologically simple;

(iii) AB = A = annrE(B), B2 = B, and A is a topologically maximal ideal of B and
a unital topologically simple left E/B-module relative to the structure given by

the sequence B
η
−→ E

π
−→ E/B;

(iv) BA = A = annlE(B), B2 = B, and A is a topologically maximal ideal of B and
a unital topologically simple right E/B-module relative to the structure given

by the sequence B
η
−→ E

π
−→ E/B;

(v) annE(B) = A, annE(B/A) = A, B2 = B, and A is a topologically maxi-
mal ideal of B and a unital topologically simple E/B-bimodule relative to the

structure given by the sequence B
η
−→ E

π
−→ E/B;

(vi) annE(B) = A, annE(B/A) = B, and A and B/A are unital topologically

simple E/B-bimodules relative to the structures given by the sequence B
η
−→

E
π
−→ E/B;

(vii) annE(B) = B, and the topological E/B-bimodule B, determined by the se-

quence B
η
−→ E

π
−→ E/B, has only one nontrivial closed subbimodule.

Proof. Since A and B are the only nontrivial closed ideals of E and since A ⊂ B,
it is clear that E/B is a topologically simple ring. It is also clear that annE(B)
coincides with one of the ideals {0}, A, or B.

We first consider the case when annE(B) = {0}. Then, clearly, at least one of
the ideals AB and BA is nonzero. Suppose first that AB and BA are both nonzero.
Since AB and BA are contained in A, it follows that AB = A = BA. In particular,
since A is the smallest nonzero closed ideal of E, we conclude that annlE(B) =
{0} = annrE(B). Further, since A ⊂ annE(B/A), we have either annE(B/A) = A or
annE(B/A) = B. Assume the former holds. Then we must have annlE(B/A) = A
and annrE(B/A) = A. For, if we had either annlE(B/A) = B or annrE(B/A) = B,
it would follow that annE(B/A) = B, a contradiction. Thus annlE(B/A) = A =
annrE(B/A). Pick an arbitrary nonzero closed ideal C of B.Given any nonzero c ∈ C,
it follows from Lemma 7 that BcB is a nonzero ideal of B and hence of E, whence
BcB coincides with either A or B. Consequently, if C ⊂ A, we must have C = A.
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Suppose C 6⊂ A, and pick any c ∈ C \ A. Since annlE(B/A) = A, there exists b ∈ B
such that cb /∈ A. Similarly, since annrE(B/A) = A, there exists b′ ∈ B such that
b′cb /∈ A. It follows that BcB = B, so C = B, and hence in this case we are led to
(i). Now assume the latter case when annE(B/A) = B holds. Then (B/A)2 = {0},
so that, by Corollary 1, B/A can be turned into a topological bimodule over E/B
by setting

(b+A)(x+B) = (b+A)(x+A) = bx+A

and

(x+B)(b+A) = (x+A)(b+A) = xb+A

for all b ∈ B and x ∈ E. To see that this bimodule is topologically simple, pick
an arbitrary closed E/B-subbimodule C ′ of B/A. Letting ϕ : B → B/A be the
canonical projection, set C = ϕ−1(C ′). Since, for any c ∈ C and x ∈ E, we have
cx + A = (c + A)(x + B) ∈ C ′ and xc + A = (x + B)(c + A) ∈ C ′, it follows that
C is a proper closed ideal of E containing A, so C coincides with either A or B,
which proves that C ′ is trivial in B/A. Further, given any nonzero a ∈ A, we deduce
by Lemma 7 and the fact that B2 ⊂ A, that BaB is a nonzero closed ideal of B
and hence of E, which is contained in A, whence BaB = A. It follows that A is a
topologically minimal ideal of B, so in this case we have (ii).

Now let us suppose that AB 6= {0} and BA = {0}. Then, clearly, AB = A and

B2 6= {0}. If we had B2 = A, it would follow that AB = B2B = BB2 = BA = {0},
a contradiction. Thus B2 = B, and hence annrE(B) = A. By using the sequence

B
η
−→ E

π
−→ E/B, we see from Lemma 6 that A can be turned into a topological left

E/B-module. If C is a closed submodule of A, then C is clearly a closed ideal of E
contained in A, so either C = {0} or C = A. This proves that A is a topologically
simple E/B-module. Now let C be a closed ideal of B properly containing A, and
pick any c ∈ C \ A. Since B2 = B, there is b ∈ B such that bc 6∈ A. Analogously,
there is b′ ∈ B such that bcb′ 6∈ A. It follows that BcB is a closed ideal of B, and
hence of E, which properly contains A, so BcB = B, whence C = B. Consequently,
A is topologically maximal in B, and thus in this case we have (iii).

Similarly, in the remaining case when AB = {0} and BA 6= {0}, we have (iv).
Next we consider the case when annE(B) = A. It follows from Lemma 5 that

A can be turned into a topological bimodule over E/B by setting a(x + B) = ax
and (x + B)a = xa for all a ∈ A and x ∈ E. Letting C be a nonzero closed E/B-
subbimodule of A, pick any c ∈ C and x ∈ E. Since cx = c(x + B) ∈ C and
xc = (x+B)c ∈ C, we see that C is an ideal of E, which gives C = A. Hence A is a
topologically simple E/B-bimodule. Further, let us consider annE(B/A). We must
have either annE(B/A) = A or annE(B/A) = B. If the former holds, then B2 6⊂ A,
so that B2 = B. We also deduce as above that annlE(B/A) = A = annrE(B/A).
Let C be an arbitrary closed ideal of B properly containing A, and pick any c ∈
C \ A. Since annlE(B/A) = A, there exists b ∈ B such that cb /∈ A. Similarly, since
annrE(B/A) = A, there exists b′ ∈ B such that b′cb /∈ A. It follows that BcB is a
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closed ideal of E which is not contained in A, so BcB = B, whence C = B, proving
that A is topologically maximal in B. Hence in this case we are led to (v). Now
assume the latter case when annE(B/A) = B holds. Then (B/A)2 = {0}, so B/A
can be turned into a topological bimodule over E/B. As above, we can see that if
C ′ is arbitrary nonzero closed E/B-subbimodule of B/A and ϕ : B → B/A is the
canonical projection, then ϕ−1(C ′) coincides with either A or B. Consequently, in
this case we are led to (vi).

Now we consider the case when annE(B) = B. By Lemma 5, B can be turned
into a topological bimodule over E/B. If C is a nontrivial closed E/B-subbimodule
of B, it is easy to see that C is an ideal of E, and so we must have C = A. Thus in
this case we are led to (vii).

Theorem 12. Let A be a topological ring having a nontrivial closed ideal A0, let B

be a topologically simple ring with identity, and let A
ϕ
−→ E

ψ
−→ B be a unital ideal

extension of A by B satisfying one of the following conditions:

(i) A0A = A0 = AA0, annE
(
ϕ(A)/ϕ(A0)

)
= ϕ(A0), and A has only one nontriv-

ial closed ideal;

(ii) A0A = A0 = AA0, annE
(
ϕ(A)/ϕ(A0)

)
= ϕ(A), A0 is a topologically minimal

ideal of A, and the topological B-bimodule A/A0, determined by the sequence

A
ϕ
−→ E

ψ
−→ B, is topologically simple;

(iii) ϕ(A0A) = ϕ(A0) = annrE
(
ϕ(A)

)
, A2 = A, and A0 is a topologically maxi-

mal ideal of A and a unital topologically simple left B-module relative to the

structure given by the sequence A
ϕ
−→ E

ψ
−→ B;

(iv) ϕ(AA0) = ϕ(A0) = annlE
(
ϕ(A)

)
, A2 = A, and A0 is a topologically maxi-

mal ideal of A and a unital topologically simple right B-module relative to the

structure given by the sequence A
ϕ
−→ E

ψ
−→ B;

(v) annE
(
ϕ(A)

)
= ϕ(A0), annE

(
ϕ(A)/ϕ(A0)

)
= ϕ(A0), A2 = A, and A0 is a

topologically maximal ideal of A and a unital topologically simple B-bimodule

relative to the structure given by the sequence A
ϕ
−→ E

ψ
−→ B;

(vi) annE
(
ϕ(A)

)
= ϕ(A0), annE

(
ϕ(A)/ϕ(A0)

)
= ϕ(A), and A0 and A/A0 are

unital topologically simple B-bimodules relative to the structures given by the

sequence A
ϕ
−→ E

ψ
−→ B;

(vii) annE
(
ϕ(A)

)
= ϕ(A), and the topological B-bimodule A, determined by the

sequence A
ϕ
−→ E

ψ
−→ B, has only one nontrivial closed subbimodule.

Then E has exactly two nontrivial closed ideals, namely ϕ(A0) and ϕ(A).
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Proof. Clearly, ϕ(A0) and ϕ(A) are distinct nontrivial closed ideals of E satisfying
ϕ(A0) ⊂ ϕ(A). Moreover, ϕ(A) is topologically maximal in E because E/ϕ(A) ∼= B.
Let C be an arbitrary closed ideal of E. If C ∩ϕ(A) = ϕ(A), then ϕ(A) ⊂ C, so that
C coincides with one of the ideals ϕ(A) or E since ϕ(A) is topologically maximal.

Assume C ∩ϕ(A) 6= ϕ(A). We first show that in any of cases (i) - (vii), C ∩ϕ(A)
coincides with either {0} or ϕ(A0). Indeed, this is clear in case (i) holds because
C ∩ ϕ(A) is a closed ideal of ϕ(A).

Assume (ii) holds, and suppose C ∩ ϕ(A) 6= {0}. Since annE
(
ϕ(A)

)
= {0},

we cannot have
(
C ∩ ϕ(A)

)
ϕ(A) = {0} = ϕ(A)

(
C ∩ ϕ(A)

)
. On the other hand,(

C ∩ ϕ(A)
)
ϕ(A) and ϕ(A)

(
C ∩ ϕ(A)

)
are contained in ϕ(A0) by our hypothesis

that annE
(
ϕ(A)/ϕ(A0)

)
= ϕ(A). Since ϕ(A0) is topologically minimal in ϕ(A),

it follows that either
(
C ∩ ϕ(A)

)
ϕ(A) or ϕ(A)

(
C ∩ ϕ(A)

)
coincides with ϕ(A0),

whence ϕ(A0) ⊂ C ∩ ϕ(A). As the B-bimodule ϕ(A)/ϕ(A0) is topologically simple,
we deduce that C ∩ ϕ(A) coincides with ϕ(A0).

In the following, we consider (iii), (iv), (v) and (vi) simultaneously. By hypothe-
ses, in every of cases (iii), (iv) and (v) we have ϕ(A)2 = ϕ(A). We first show that
if (vi) holds, then ϕ(A)2 = ϕ(A0). Indeed, since annE

(
ϕ(A)/ϕ(A0)

)
= ϕ(A), we

have ϕ(A)2 ⊂ ϕ(A0), so that ϕ(A)2 is a closed B-subbimodule of ϕ(A0). Moreover,
ϕ(A)2 6= {0} because annE

(
ϕ(A)

)
= ϕ(A0). Since ϕ(A0) is a topologically simple

B-bimodule, we get ϕ(A)2 = ϕ(A0).

Now, in every of cases (iii), (iv) and (v), if C ∩ ϕ(A) ⊂ ϕ(A0), we must have
either C ∩ ϕ(A) = {0} or C ∩ ϕ(A) = ϕ(A0) because C ∩ ϕ(A) is a B-submodule
(respectively, B-subbimodule) of ϕ(A0) and ϕ(A0) is topologically simple. We next
show that C ∩ ϕ(A) 6⊂ ϕ(A0) leads to a contradiction. Indeed, suppose C ∩ ϕ(A) 6⊂
ϕ(A0), so that (C ∩ ϕ(A)) + ϕ(A0) properly contains ϕ(A0). Consequently, in every
of cases (iii), (iv) and (v), we have (C ∩ ϕ(A)) + ϕ(A0) = ϕ(A) because ϕ(A0)
is topologically maximal in ϕ(A). Further, in case (vi) holds, it is easy to see that
(C ∩ ϕ(A)) + ϕ(A0)/ϕ(A0) is a nonzero closed B-subbimodule of ϕ(A)/ϕ(A0). Since
ϕ(A)/ϕ(A0) is topologically simple, it follows that (C ∩ ϕ(A)) + ϕ(A0)/ϕ(A0) =
ϕ(A)/ϕ(A0), so again (C ∩ ϕ(A)) + ϕ(A0) = ϕ(A). We then have

ϕ(A)2 = ((C ∩ ϕ(A)) + ϕ(A0))ϕ(A) = (C ∩ ϕ(A))ϕ(A) ⊂ C ∩ ϕ(A).

Therefore either of equalities ϕ(A)2 = ϕ(A) or ϕ(A)2 = ϕ(A0) together with the
fact that (C ∩ ϕ(A)) + ϕ(A0) = ϕ(A) gives C ∩ ϕ(A) = ϕ(A), a contradiction.

Finally, if (vii) holds, then clearly C ∩ ϕ(A) is a B-subbimodule of ϕ(A), and
hence C ∩ ϕ(A) must coincide with either {0} or ϕ(A0).

Thus, in any of cases (i)-(vii), C∩ϕ(A) coincides with either {0} or ϕ(A0). Now,
since Cϕ(A) and ϕ(A)C are contained in C ∩ ϕ(A), we have C ⊂ annE

(
ϕ(A)

)
if

C ∩ϕ(A) = {0} and C ⊂ annE
(
ϕ(A)/ϕ(A0)

)
if C ∩ϕ(A) = ϕ(A0). It follows that if

C∩ϕ(A) = {0}, then C = {0} in any of cases (i)-(vii). Similarly, if C∩ϕ(A) = ϕ(A0),
then C = ϕ(A0) in any of cases (i)-(vii).
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Abstract. We introduce and describe convex quadrics in R
n and characterize them

as convex hypersurfaces with quadric sections by a continuous family of hyperplanes.
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1 Introduction and main results

Characterizations of ellipses and ellipsoids among convex bodies in the plane
or in space became an established topic of convex geometry on the turn of 20th
century. Comprehensive surveys on various characteristic properties of ellipsoids
in the Euclidean space R

n are presented in [9] and [13] (see also [10]). Similar
characterizations of unbounded convex quadrics, like paraboloids, sheets of elliptic
hyperboloids or elliptic cones, are given by a short list of sporadic results (see, e. g.,
[1, 2, 15, 16]). Furthermore, even a classification of convex quadrics in R

n for n ≥ 4
is not established (although it is used in [15, 16] without proof). Our goal here is
to introduce and to describe convex quadrics in R

n and to provide a characteristic
property of these hypersurfaces in terms of hyperplane sections.

In what follows, by a convex solid we mean an n-dimensional closed convex set
in R

n, distinct from the entire space (convex bodies are compact convex solids). As
usual, bdK and int K denote, respectively, the boundary and interior of a convex
solid K. A convex hypersurface (a surface if n = 3 or a curve if n = 2) is the
boundary of a convex solid. This definition includes a hyperplane or a pair of paral-
lel hyperplanes.

In a standard way, a quadric hypersurface (or a second degree hypersurface) in
R

n, n ≥ 2, is the locus of points x = (ξ1, . . . , ξn) that satisfy a quadratic equation

n∑

i,k=1

aikξiξk + 2

n∑

i=1

biξi + c = 0, (1)

where not all aik are zero. We say that a convex hypersurface S ⊂ R
n is a convex

quadric provided there is a real quadric hypersurface Q ⊂ R
n and a convex com-

ponent U of R
n \ Q such that S is the boundary of U . This definition allows us

to include into considerations convex hypersurfaces like sheets of elliptic cones and
sheets of elliptic hyperbolids, and not only ellipsoids and elliptic paraboloids.

The following theorem plays a key role in the description of convex quadrics.

c© Valeriu Soltan, 2010
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Theorem 1. The complement of a real quadric hypersurface Q ⊂ R
n, n ≥ 2, is the

disjoint union of four or fewer open sets; at least one of these components is convex
if and only if the canonical form of Q is given by one of the equations

a1ξ
2
1 + · · · + akξ

2
k = 1, 1 ≤ k ≤ n,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 1, 2 ≤ k ≤ n,

a1ξ
2
1 = 0,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 0, 2 ≤ k ≤ n,

a1ξ
2
1 + · · · + ak−1ξ

2
k−1 = ξk, 2 ≤ k ≤ n,

where all scalars ai involved are positive.

Corollary 1. A convex hypersurface S ⊂ R
n, n ≥ 2, is a convex quadric if and

only if S can be described in suitable Cartesian coordinates ξ1, . . . , ξn by one of the
conditions

a1ξ
2
1 + · · · + akξ

2
k = 1, 1 ≤ k ≤ n,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 1, ξ1 ≥ 0, 2 ≤ k ≤ n,

a1ξ
2
1 = 0,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 0, ξ1 ≥ 0, 2 ≤ k ≤ n,

a1ξ
2
1 + · · · + ak−1ξ

2
k−1 = ξk, 2 ≤ k ≤ n,

where all scalars ai involved are positive.

In what follows, a plane of dimension m in R
n is a translate of an m-dimensional

subspace. We say that a plane L properly intersects a convex solid K provided L
intersects both sets bdK and int K.

A well-known result of convex geometry states that the boundary of a convex
body K ⊂ R

n is an ellipsoid if and only if there is a point p ∈ int K such that all
sections of bdK by 2-dimensional planes through p are ellipses (see [3,12] for n = 3
and [7, pp. 91–92] for n ≥ 3). This result is generalized in [15] by showing that the
boundary of a convex solid K ⊂ R

n is a convex quadric if and only if there is a
point p ∈ intK such that all sections of bdK by 2-dimensional planes through p
are convex quadric curves. In this regard, we pose the following problem (solved
in [6, 11] for the case of convex bodies).

Problem 1. Given a convex solid K ⊂ R
n, n ≥ 3, and a point p ∈ R

n, is it true
that either bdK is a convex quadric or K is a convex cone with apex p provided
all proper sections of bdK by 2-dimensional planes through p are convex quadric
curves?

Kubota [12] proved that, given a pair of bounded convex surfaces in R
3, one

being enclosed by the other, if all planar sections of the bigger surface by planes
tangent to the second surface are ellipses, then the containing surface is an ellip-
soid. Independently, Bianchi and Gruber [4] established the following far-reaching
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assertion: If K is a convex body in R
n, n ≥ 3, and δ(u) is a continuous real-valued

function on the unit sphere Sn−1 ⊂ R
n such that for each vector u ∈ Sn−1 the

hyperplane H(u) = {x | x·u = δ(u)} intersects bdK along an (n − 1)-dimensional
ellipsoid, then bdK is an ellipsoid. Our second theorem extends this assertion to
the case of convex solids.

Theorem 2. Let K be a convex solid in R
n, n ≥ 3, and δ(u) be a continuous real-

valued function on the unit sphere Sn−1 ⊂ R
n such that for each vector u ∈ Sn−1

the hyperplane H(u) = {x | x ·u = δ(u)} either lies in K or intersects bdK along
an (n − 1)-dimensional convex quadric. Then bdK is a convex quadric.

2 Proof of Theorem 1

Let Q ⊂ R
n be a real quadric hypersurface. Choosing a suitable orthogonal

basis, we may suppose that Q has one of the following canonical forms:

Ak : ξ2
1 + · · · + ξ2

k = 1, 1 ≤ k ≤ n,

Bk,r : ξ2
1 + · · · + ξ2

k − ξ2
k+1 − · · · − ξ2

r = 1, 1 ≤ k < r ≤ n,

Ck : ξ2
1 + · · · + ξ2

k = 0, 1 ≤ k ≤ n,

Dk,r : ξ2
1 + · · · + ξ2

k − ξ2
k+1 − · · · − ξ2

r = 0, 1 ≤ k < r ≤ n,

Ek,r : ξ2
1 + · · · + ξ2

k − ξ2
k+1 − · · · − ξ2

r−1 = ξr, 1 ≤ k < r ≤ n.

First, we exclude the trivial cases Q = A1 (when Q is a pair of parallel hyperplanes)
and Q = Ck (when Q is an (n − k)-dimensional subspace). Furthermore, the proof
can be reduced to the case when Q has one of the forms An, Bk,n,Dk,n, Ek,n, since
otherwise Q is a cylinder generated by a lower-dimensional quadric of the same type.

We are going to express each of the hypersurfaces An, Bk,n, Dk,n, Ek,n as the set
of revolution of a respective lower-dimensional surface. To describe these revolutions,
choose any subspaces L1, L2, and L3 of R

n such that L1 ⊂ L2 ⊂ L3 and

dimL1 = m − 1, dim L2 = m, dim L3 = m + 1, 2 ≤ m ≤ n − 1.

Let M be the 2-dimensional subspace of L3 orthogonal to L1. Given a point y ∈ L2,
put My = y + M and denote by z the point of intersection of L1 and My (z is the
orthogonal projection of y on L1). Let Cy be the circumference in My with center z
and radius ‖y−z‖. We say that a set X ⊂ L3 is the set of revolution of a set Y ⊂ L2

about L1 within L3 provided X = ∪y∈Y Cy. A set Z ⊂ R
n is called symmetric about

a subspace N ⊂ R
n if for any point x ∈ Z and its orthogonal projection u on N , the

point 2u − x lies in Z.
In these terms, we formulate three lemmas (the first one being obvious). In what

follows, 〈e1, . . . , ek〉 means the span of vectors e1, . . . , ek.

Lemma 1. If Y is a subset of L2 and X is the set of revolution of Y about L1

within L3, then X is symmetric about L2 and any component of X is the set of
revolution of a suitable component of Y about L1 within L3.
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Lemma 2. If a set Y ⊂ L2 is symmetric about L1 and X is the set of revolution of
Y about L1 within L3, then X is a convex set if and only if Y is a convex set.

Proof. Without loss of generality, we may put L3 = R
n. Choose an orthonormal

basis e1, . . . , en for R
n such that

L1 = 〈e1, . . . , en−2〉 and L2 = 〈e1, . . . , en−1〉.

Clearly, x = (ξ1, . . . , ξn) belongs to X if and only if there is a point

y = (ξ1, . . . , ξn−2, ξ
′

n−1, 0) ∈ Y where ξ′n−1 =
√

ξ2
n−1 + ξ2

n.

If X is convex, then Y is convex due to Y = X∩L2. Conversely, let Y be convex.
Choose any points a = (α1, . . . , αn) and b = (β1, . . . , βn) in X and a scalar λ ∈ [0, 1].
We intend to show that c = (1 − λ)a + λb ∈ X. Let

a′ = (α1, . . . , αn−2, α
′

n−1, 0), b′ = (β1, . . . , βn−2, β
′

n−1, 0),

and

c′ = ((1 − λ)α1 + λβ1, . . . , (1 − λ)αn−2 + λβn−2, (1 − λ)α′

n−1 + λβ′

n−1, 0)

be points in Y , where

α′

n−1 =
√

α2
n−1 + α2

n, and β′

n−1 =
√

β2
n−1 + β2

n.

Then a′, b′ ∈ Y and c′ = (1 − λ)a′ + λb′ ∈ Y due to convexity of Y . Because Y is
symmetric about L1, we have

((1 − λ)α1 + λβ1, . . . , (1 − λ)αn−2 + λβn−2, µ, 0) ∈ Y

for any scalar µ with |µ| ≤ (1 − λ)α′

n−1 + λβ′

n−1. Let

y = ((1 − λ)α1 + λβ1, . . . , (1 − λ)αn−2 + λβn−2, ρ, 0),

where

ρ =

√(
(1 − λ)αn−1 + λβn−1

)2
+

(
(1 − λ)αn + λβn

)2
.

From αn−1βn−1 + αnβn ≤ α′

n−1β
′

n−1, we obtain ρ ≤ (1 − λ)α′

n−1 + λβ′

n−1, which
gives y ∈ Y . Clearly, the point

z = ((1 − λ)α1 + λβ1, . . . , (1 − λ)αn−2 + λβn−2, 0, 0)

is the orthogonal projection of y on L1. The equalities ‖c− z‖ = ‖y − z‖ = ρ imply
that c ∈ Cy ⊂ X. Hence X is convex.

Lemma 3. Within R
n, n ≥ 3, we have

1) An is the set of revolution of An−1 ⊂ 〈e1, . . . , en−1〉 about 〈e1, . . . , en−2〉,
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2) Bk,n is the set of revolution of Bk,n−1 ⊂ 〈e1, . . . , en−1〉 about 〈e1, . . . , en−2〉,
1 ≤ k ≤ n − 2,

3) Dk,n is the set of revolution of Dk,n−1 ⊂ 〈e1, . . . , en−1〉 about 〈e1, . . . , en−2〉,
1 ≤ k ≤ n − 2,

4) Bk,n is the set of revolution of Bk−1,n−1 ⊂ 〈e2, . . . , en〉 about 〈e3, . . . , en〉, 2 ≤
k ≤ n − 1,

5) Dk,n is the set of revolution of Dk−1,n−1 ⊂ 〈e2, . . . , en〉 about 〈e3, . . . , en〉,
2 ≤ k ≤ n − 1.

Proof. 1) Given a point x = (ξ1, . . . , ξn) ∈ An, put

y = (ξ1, . . . , ξn−2,
√

ξ2
n−1 + ξ2

n, 0), z = (ξ1, . . . , ξn−2, 0, 0). (2)

Then y ∈ An−1 ⊂ 〈e1, . . . , en−1〉 and z is the orthogonal projection of y on
〈e1, . . . , en−2〉. From

‖x − z‖ = ‖y − z‖ =
√

ξ2
n−1 + ξ2

n

we see that x ∈ Cy. So, An lies in the revolution of An−1 about 〈e1, . . . , en−2〉.
Conversely, if y = (η1, . . . , ηn−1, 0) is a point in An−1 ⊂ 〈e1, . . . , en−1〉 and z =
(η1, . . . , ηn−2, 0, 0) is the orthogonal projection of y on 〈e1, . . . , en−2〉, then any point
u from the circle Cy ⊂ y + 〈en−1, en〉 can be written as

u = (η1, . . . , ηn−2, γn−1, γn), where γ2
n−1 + γ2

n = η2
n−1.

Clearly, u ∈ An, which shows that An contains the set of revolution of An−1 about
〈e1, . . . , en−2〉.

Cases 2)–5) are considered similarly, where the points y and z are defined, re-
spectively, by (2) in cases 2) and 3), and by

y = (0,
√

ξ2
1 + ξ2

2 , ξ3, . . . , ξn), z = (0, 0, ξ3, . . . , ξn)

in cases 4) and 5).

Proof of Theorem 1. Our further consideration is organized by induction on n. The
cases n = 2 and n = 3 follow immediately from the well-known properties of quadric
curves and surfaces. Suppose that n ≥ 4. Assuming that the conclusion of Theo-
rem 1 holds for all m < n, let the quadric hypersurface Q ⊂ R

n have one of the
forms An, Bk,n,Dk,n, Ek,n. We consider these forms separately.

Case 1. Let Q = An. By Lemma 3, An can be obtained from

A2 = {(ξ1, ξ2) | ξ2
1 + ξ2

2 = 1} ⊂ 〈e1, e2〉

by consecutive revolutions of Ai ⊂ 〈e1, . . . , ei〉 about 〈e1, . . . , ei−1〉 within the sub-
space 〈e1, . . . , ei+1〉, i = 2, . . . , n − 1. Since both components of 〈e1, e2〉 \ A2 are
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symmetric about the line 〈e1〉, Lemmas 1 and 2 imply that R
n \ An consists of two

components; one of them, given by ξ2
1 + · · · + ξ2

n < 1, is convex.

Case 2. Let Q = Bk,n, 1 ≤ k ≤ n− 1. If k = 1, then Lemma 3 implies that B1,n

can be obtained from

B1,2 = {(ξ1, ξ2) | ξ2
1 − ξ2

2 = 1} ⊂ 〈e1, e2〉

by consecutive revolutions of B1,i ⊂ 〈e1, . . . , ei〉 about 〈e1, . . . , ei−1〉 within the sub-
space 〈e1, . . . , ei+1〉, i = 2, . . . , n − 1. Since all three components of 〈e1, e2〉 \ B1,2

are symmetric about the line 〈e1〉, Lemmas 1 and 2 imply that R
n \B1,n consists of

three components; two of them, given, respectively, by

ξ1 >
√

ξ2
2 + · · · + ξ2

n + 1 and ξ1 < −
√

ξ2
2 + · · · + ξ2

n + 1,

are convex. If k ≥ 2, then Bk,n can be obtained from

B1,2 = {(ξk, ξk+1) | ξ2
k − ξ2

k+1 = 1} ⊂ 〈ek, ek+1〉

in two steps. First, we obtain Bk,k+1 ⊂ R
k+1 = 〈e1, . . . , ek+1〉 by consecutive revo-

lutions of Bi,i+1 ⊂ 〈ek+1−i, ek+2−i, . . . , ek+1〉 about 〈ek+2−i, . . . , ek+1〉 within 〈ek−i,
ek+1−i, . . . , ek+1〉, i = 1, 2, . . . , k − 1. The complement of

B2,3 = {(ξk−1, ξk, ξk+1) | ξ2
k−1 + ξ2

k − ξ2
k+1 = 1}

in 〈ek−1, ek, ek+1〉, consists of two components, both symmetric about 〈ek, ek+1〉.
Since none of these components is convex, Lemmas 1 and 2 imply that R

k+1\Bk,k+1

consists of two components, both symmetric about any k-dimensional coordinate
subspace of R

k+1, but none of them convex.

Second, we obtain Bk,n from Bk,k+1 by consecutive revolutions of Bk,j ⊂
〈e1, . . . , ej〉 about 〈e1, . . . , ej−1〉 within 〈e1, . . . , ej+1〉, j = k+1, . . . , n−1. As above,
R

n \ Bk,n consists of two components, none of them convex.

Case 3. Let Q = Dk,n, 1 ≤ k ≤ n − 1. If k = 1, then D1,n can be obtained from

D1,2 = {(ξ1, ξ2) | ξ2
1 − ξ2

2 = 0} ⊂ 〈e1, e2〉

by consecutive revolutions of D1,i ⊂ 〈e1, . . . , ei〉 about 〈e1, . . . , ei−1〉 within the sub-
space 〈e1, . . . , ei+1〉, i = 2, . . . , n − 1. The complement of

D1,3 = {(ξ1, ξ2, ξ3) | ξ2
1 − ξ2

2 + ξ2
3 = 0}

in 〈e1, e2, e3〉 consists of tree components, all symmetric about 〈e1, e2〉. Since two
of these components are convex, Lemmas 1 and 2 imply that R

n \ D1,n consists of
three components; two of them, given, respectively, by

ξ1 >
√

ξ2
2 + · · · + ξ2

n and ξ1 < −
√

ξ2
2 + · · · + ξ2

n,
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are convex.

Since the case k = n−1 is reducible to that of k = 1 (by reordering e1, e2, . . . , en

as en, en−1, . . . , e1), we may assume that 2 ≤ k ≤ n− 2. Then Dk,n can be obtained
from

D2,3 = {(ξk−1, ξk, ξk+1) | ξ2
k−1 + ξ2

k − ξ2
k+1 = 0} ⊂ 〈ek−1, ek, ek+1〉

in two steps. First, we obtain D2,n−k+2 ⊂ 〈ek−1, ek, . . . , en〉 by consecutive revolu-
tions of D2,i ⊂ 〈ek−1, ek, . . . , ei〉 about 〈ek−1, ek, . . . , ei−1〉 within 〈ek−1, ek, . . . , ei+1〉,
i = k+1, . . . , n−1. Clearly, 〈ek−1, ek, ek+1〉\D2,3 consists of three components; two
of them,

ξk+1 >
√

ξ2
k−1 + ξ2

k and − ξk+1 <
√

ξ2
k−1 + ξ2

k,

are convex and symmetric to each other about 〈ek−1, ek〉. Hence 〈ek−1, ek, ek+1,
ek+2〉 \ D3,4 consists of two components, none of them convex. Lemmas 1 and 2
imply that R

n−k+2 \ D2,n−k+2 consists of two components, none of them convex.

Next, we obtain Dk,n from D2,n−k+2 by consecutive revolutions of the sur-
face Di,n−k+i ⊂ 〈ek−i+1, . . . , en〉 about 〈ek−i+2, . . . , en〉 within 〈ek−i, . . . , en〉, i =
2, . . . , k − 1. As above, R

n \Dk,n consists of two components, none of them convex.

Case 4. Let Q = Ek,n, 1 ≤ k ≤ n− 1. Clearly, Ek,n is the graph of a real-valued
function ϕ on R

n−1 = 〈e1, . . . , en−1〉, given by

ξn = ϕ(ξ1, . . . , ξn−1) = ξ2
1 + · · · + ξ2

k − ξ2
k+1 − · · · − ξ2

n−1.

Hence R
n \ Ek,n has two components. The Hessian

(
∂2ϕ

∂ξi∂ξj

)
is a diagonal n × n-

matrix, with 2’s on its first k diagonal entries and −2’s on the other n − k − 1
diagonal entries. Therefore, ϕ is not concave, being convex if and only if k = n− 1.
So, R

n \ Ek,n has a convex component if and only if k = n − 1; this component is
given by ξ2

1 + · · · + ξ2
n−1 < ξn.

3 Proof of Theorem 2

In what follows, the origin of R
n is denoted by o. We say that a plane L supports

a convex solid K provided L intersects K such that L ∩ int K = ∅. The recession
cone of K is defined by

rec K = {e ∈ R
n | x + αe ∈ K for all x ∈ K and α ≥ 0}.

It is well-known that recK 6= {o} if and only if K is unbounded; K is called line-free
if it contains no line. Finally, rintM and rbdM denote the relative interior and the
relative boundary of a convex set M ⊂ R

n.

Under the assumptions of Theorem 2, we divide the proof into a sequence of
lemmas.

Lemma 4. If K contains a line, then bdK is a convex quadric cylinder.
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Proof. If l is a line in K, then K is the direct sum 〈u0〉 ⊕ (K ∩ H(u0)), where
〈u0〉 is the 1-dimensional subspace spanned by a unit vector u0 parallel to l. By
the assumption, bdK ∩ H(u0) is an (n − 1)-dimensional convex quadric. Hence
bdK = 〈u0〉 ⊕ (bdK ∩ H(u0)) is a convex quadric cylinder.

Due to Lemma 4, we may further assume that K is line-free. Then no hyperplane
lies in K; so, every hyperplane H(u), u ∈ Sn−1, properly intersects K.

Lemma 5. For any (n−2)-dimensional plane L supporting K, there is a hyperplane
H(u), u ∈ Sn−1, that contains L.

Proof. Let P be the 2-dimensional subspace orthogonal to L and π be the orthogonal
projection of R

n on P . Clearly, the intersection L ∩ P is a singleton, say {v}. The
set M = π(K) is convex, rint M = π(int K), and v ∈ rbdM . Choose an orientation
in P and denote by l a line in P that supports M at v. Let u0 be the unit vector in
P orthogonal to l such that u0 is an outward unit normal to M at v. Let m denote
the line through v orthogonal to l, and T be the open halfplane of P bounded by l
and disjoint from M .

Assume, for contradiction, that no line l(u) = P∩H(u), u ∈ P∩Sn−1, contains v.
In particular, the line l(u0) is distinct from l. Continuously rotating the unit vector
u from the initial position u0 in a positive direction along P ∩ Sn−1, we obtain a
continuous family of lines each of them missing v. This is possible only if the parallel
lines l(u0) and l(−u0) intersect m at points that belong to the opposite open halflines
with common apex v. Hence one of the lines l(u0), l(−u0) entirely lies in T , thus
missing M , which is impossible due to K ∩ H(u0) 6= ∅ and K ∩ H(−u0) 6= ∅.

We recall that a convex solid K ⊂ R
n is called strictly convex if bdK contains

no line segments. Furthermore, K is called regular provided any point x ∈ bdK
belongs to a unique hyperplane supporting K.

Lemma 6. If K is neither strictly convex nor regular, then bdK is a sheet of an
elliptic cone.

Proof. First, we are going to show that if K is not regular, then K is not strictly
convex. Indeed, suppose that K is not regular and choose a singular point x ∈ bdK.
Then there are distinct hyperplanes G1 and G2 both supporting K at x. Choose
a hyperplane G through G1 ∩ G2 supporting K and different from each of G1 and
G2. Let L ⊂ G be an (n − 2)-dimensional plane through x which is distinct from
G1 ∩ G2. By Lemma 5, there is a hyperplane H(u) containing L. Because H(u)
meets intK, the point x is singular for the (n − 1)-dimensional convex quadric
E(u) = bdK ∩H(u). According to Corollary 1, E(u) must be a sheet of an (n− 1)-
dimensional elliptic cone. Choosing a line segment in E(u), we conclude that K is
not strictly convex.

Now, assume that K is not strictly convex and choose a line segment [x, z] ⊂
bdK. By Lemma 5, there is a hyperplane H(u0) containing the line through x and z.
Since the (n− 1)-dimensional convex quadric E(u0) = bdK ∩H(u0) is line-free and
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contains a line segment, it should be a sheet of an (n− 1)-dimensional elliptic cone.
Let v be the apex of E(u0). Denote by h1 the halfline [v, x) and choose another
halfline h2 = [v,w) ⊂ E(u0) such that the 2-dimensional plane through h1 ∪ h2

intersects int K (this is possible since H(u0) meets intK). Let P2 be a hyperplane
supporting K with the property h2 ⊂ P2. By the above, h1 6⊂ P2.

Choose a halfline h with apex v tangent to K and so close to h1 that h 6⊂ P2. Let
P be a hyperplane through h which supports K. By Lemma 5, there is a hyperplane
H(u) that meets int K and contains h. Since the section E(u) = bdK ∩ H(u) is
bounded by both P and P2, the point v is singular for E(u). As above, E(u) is a
sheet of an (n − 1)-dimensional elliptic cone. Hence h ⊂ bdK. Varying h and h2,
we obtain by the argument above that every tangent halfline of K at v lies in bdK.
This shows that K is a convex cone with apex v. Finally, choose a hyperplane H(u1)
that properly intersects K along a bounded set (this is possible since K is line-free).
By the assumption, bdK ∩H(u1) is an (n− 1)-dimensional ellipsoid. So, bdK is a
sheet of an elliptic cone with apex v generated by bdK ∩ H(u1).

Lemma 7. Let K be strictly convex and regular. There are hyperplanes H(u1) and
H(u2), u1, u2 ∈ Sn−1, such that both sections bdK ∩ H(u1) and bdK ∩ H(u2) are
(n−1)-dimensional ellipsoids whose intersection is an (n−2)-dimensional ellipsoid.

Proof. Since K is line-free, there is a 2-dimensional subspace P such that the or-
thogonal projection, M , of K on P is a line-free closed convex set (see, e.g., [14]).
Choose any orientation in P . Denote by F the family of lines l(u) = P ∩ H(u),
u ∈ P ∩ Sn−1, such that M ∩ l(u) is bounded. Let l(u0) be one of these lines.
Put [v,w] = M ∩ l(u0). The line l(u0) cuts M into 2-dimensional closed convex
subsets, M ′ and M ′′, at least one of them, say M ′, being compact. If there is a
line l(u) ∈ F0 = F \ {l(u0)} which intersects the open line segment ]v,w[, then the
respective hyperplanes H(u) and H(u0) have the desired property.

Assume that no line l(u) ∈ F0 intersects ]v,w[. We state that no line l(u) ∈ F0

intersects rintM ′. Indeed, if a line l(u1) ∈ F0 intersected rintM ′, then, rotating u
about P ∩ Sn−1 from the initial position u1, we would find a line l(u2) supporting
M at v or at w (which is impossible since int K ∩H(u2) 6= ∅). In a similar way, no
line l(u) ∈ F0 intersects rintM ′′ if M ′′ is bounded.

This argument shows that M ′′ should be unbounded, since otherwise no line
l(u) ∈ F0 intersects rintM = rint M ′ ∪ rintM ′′∪ ]v,w[, which is impossible due to
int K∩H(u2) 6= ∅. Rotating u about P ∩Sn−1 in a positive direction from the initial
position u0, we observe that the lines l(u) ∈ F0 cover the whole unbounded branch of
rbdM ′′ with endpoint v. Rotating u about P ∩Sn−1 in a negative direction from the
initial position u0, we see that the lines l(u) ∈ F0 cover the second unbounded branch
of rbdM ′′, with endpoint w. This implies the existence of lines l(u3), l(u4) ∈ F0

such that the line segments M ∩ l(u3) and M ∩ l(u4) have a common interior point.
The respective (n−1)-dimensional ellipsoids bdK∩H(u3) and bdK∩H(u4) satisfy
the conclusion of the lemma.
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Lemma 8. Let K be strictly convex and regular. If bdK contains an open piece of
a real quadric hypersurface, then bdK is a convex quadric.

Proof. Let A be an open piece of a real quadric hypersurface Q ⊂ R
n which lies

in bdK. We state that bdK ⊂ Q. Assume, for contradiction, that bdK 6⊂ Q,
and choose a maximal (under inclusion) open piece B of bdK ∩ Q that contains
A. Let Ur(x) ⊂ R

n be an open ball with center x ∈ B and radius r > 0 such that
bdK ∩Ur(x) ⊂ B. Continuously moving x towards bdK \B, we find points x0 ∈ B
and z0 ∈ bdK \ B with the property bdK ∩ Ur(x0) ⊂ B and ‖x0 − z0‖ = r.

Let G be the hyperplane through z0 which supports K (G is unique since K is
regular). Denote by G the family of (n − 2)-dimensional planes L ⊂ G that contain
z0 and are distinct from the (n−2)-dimensional plane L0 ⊂ G tangent to Ur(x0)∩G
at z0. Due to Lemma 5, any plane L ∈ G lies in a respective hyperplane HL(u).
By continuity, there is a scalar t > 0 so small that the union of (n − 1)-dimensional
convex quadrics EL(u) = bdK ∩ HL(u), L ∈ G, is dense in the hypersurface t-
neighborhood bdK ∩ Ut(z0) of z0. Each EL(u) has a nontrivial strictly convex
intersection with B. Since EL(u) is a unique convex quadric containing EL(u) ∩ B,
we conclude that EL(u) ⊂ Q. By continuity,

bdK ∩ Ut(z0) ⊂ cl
(

∪
L∈G

EL(u)
)
⊂ Q.

Hence bdK ∩Ut(z0) ⊂ B, contrary to the choice of z0 ∈ bdK \B. Thus bdK ⊂ Q.
Because int K is a convex component of R

n \ Q, the hypersurface bdK is a convex
quadric.

Lemma 9. Let E1 and E2 be (n − 1)-dimensional ellipsoids in R
n, n ≥ 3, which

lie, respectively, in hyperplanes H1 and H2 of R
n such that E = E1 ∩ E2 is an

(n − 2)-dimensional ellipsoid. For any point v ∈ R
n \ (H1 ∪ H2), there is a quadric

hypersurface Q that contains {v} ∪ E1 ∪ E2.

Proof. Choose an orthonormal basis for R
n such that

E = {(0, 0, ξ3, . . . , ξn) | ξ2
3 + · · · + ξ2

n = 1},

E1 = {(ξ1, 0, ξ3, . . . , ξn) | (ξ1 − ρ1)
2 + ξ2

3 + · · · + ξ2
n = ρ2

1 + 1},

E2 = {(0, ξ2, ξ3, . . . , ξn) | (ξ2 − ρ2)
2 + ξ2

3 + · · · + ξ2
n = ρ2

2 + 1},

where ρ1 > 0 and ρ2 > 0. Then H1 and H2 are described by the equations ξ2 = 0
and ξ1 = 0, respectively. Consider the family of quadric hypersurfaces Q(µ) ⊂ R

n

given by

ξ2
1 + · · · + ξ2

n + 2µξ1ξ2 − 2ρ1ξ1 − 2ρ2ξ2 − 1 = 0,

where µ ∈ R. We have Ei = Hi ∩Q(µ), i = 1, 2. The point v = (ν1, . . . , νn) belongs
to R

n \ (H1 ∪ H2) if and only if ν1ν2 6= 0. Then v ∈ Q(µ0) provided

µ0 = (1 + 2ρ1ν1 + 2ρ2ν2 − ν2
1 − · · · − ν2

n)/(2ν1ν2).
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Lemma 10. If K is strictly convex and regular, then bdK contains an open piece
of a quadric hypersurface.

Proof. We proceed by induction on n (≥ 3). Let n = 3. By Lemma 7, there are
planes H(u1) and H(u2) such that both sections E1 = bdK ∩ H(u1) and E2 =
bdK ∩ H(u2) are ellipses, with precisely two points, say v and w, in common. The
set bdK\(E1∪E2) consists of four open pieces, at least three of them being bounded
because K is line-free. We choose any of these pieces if K is bounded, and choose
the piece opposite to the unbounded one if K is unbounded. Denote by Γ the chosen
piece. Let L be a plane through [v,w] that misses Γ and is distinct from both H(u1)
and H(u2). There is a neighborhood Ω ⊂ bdK of v such that for any point z ∈ Γ∩Ω,
the plane Lz through z parallel to L intersects each of the ellipses E1 and E2 at two
distinct points.

Choose a point z ∈ Γ ∩ Ω and denote by Pz the plane through z that supports
K (Pz is unique since K is regular), and by lz the line through z parallel to [v,w].
Let Fα, α > 0, be the family of planes through lz forming with Lz an angle of size
α or less. By continuity, the neighborhood Ω and the scalar α can be chosen so
small that for any given plane M ∈ Fα, every plane H(u) through the line M ∩ Pz

intersects each of the ellipses E1 and E2 at two distinct points. Furthermore, we
can find a scalar r > 0 such that for any plane H(u) trough z, the convex quadric
curve bdK ∩ H(u) intersects the closed curve bdK ∩ Sr(z) at two points, where
Sr(z) ⊂ R

3 is the sphere of radius r centered at z.

Due to Lemma 9, there is a quadric surface Q containing {z} ∪E1 ∪E2. By the
above, given a plane M ∈ Fα, every plane H(u) through the line M ∩ Pz intersects
bdK along an ellipse, which has five points in Q (namely, z and two on each ellipse
Ei, i = 1, 2). Since an ellipse is uniquely defined by five points in general position,
the ellipse E(u) = bdK ∩ H(u) lies in Q for any choice of a plane H(u) through
the line M ∩ Pz, where M ∈ Fα. This argument shows the existence of two open
“triangular” regions in bdK ∩ Q ∩ Ur(z) which have a common vertex z and are
bounded by a pair of planes M1,M2 ∈ Fα (see the shaded sectors of bdK ∩ Ur(z)
in the figure below). Hence the case n = 3 is proved.
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Suppose that the inductive statement holds for all m ≤ n − 1, n ≥ 4, and let
K ⊂ R

n be a line-free, strictly convex and regular solid that satisfies the hypothesis
of Theorem 2. Since the case when K is compact is proved in [4], we may assume
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that K is unbounded. Then the recession cone rec K contains halflines and is line-
free. Choose a halfline h ⊂ recK with endpoint o such that the (n− 1)-dimensional
subspace L ⊂ R

n orthogonal to h satisfies the condition L∩ recK = {o}. Then any
proper section of K by a hyperplane parallel to L is bounded (see, e.g., [14]).

Because the set ∆ = {δ(u)u | u ∈ L ∩ Sn−1} is compact, we can choose a
hyperplane L0 parallel to L and properly intersecting K so far from ∆ that every
hyperplane H(u), u ∈ L ∩ Sn−1, intersects rint (K ∩ L0). Since any section

bdK ∩ H(u) ∩ L0, u ∈ L ∩ Sn−1,

is an (n−2)-dimensional convex quadric, K∩L0 satisfies the hypothesis of Theorem 2
(with L0 instead of R

n). By the inductive assumption, rbd (K ∩ L0) contains a
relatively open piece of an (n − 1)-dimensional quadric, and Lemma 8 implies that
bdK ∩L0 is an (n− 1)-dimensional ellipsoid. Let G ⊂ L0 be an (n− 2)-dimensional
plane through the center of K ∩ L0. By continuity and the argument above, there
is an ε > 0 such that the hyperplanes L1 and L2 through G forming with L0 an
angle of size ε also intersect bdK along (n − 1)-dimensional ellipsoids E1 and E2,
respectively. Denote by N the hyperplane through G parallel to h, and choose a
point v ∈ (bdK ∩ N) \ (L1 ∪ L2) so close to L0 that the hyperplane L′

0 through v
parallel to L0 satisfies the following conditions (see the figure below):

a) bdK ∩ L′

0 is an (n − 1)-dimensional ellipsoid,

b) L′

0 intersects the relative interior of each of the (n− 1)-dimensional solid ellip-
soids K ∩ L1 and K ∩ L2.

qq
v

L0

L′

0

K

���������������

XXXXXXXXXXXXXXX

E1 E2N

By Lemma 9, there is a real quadric hypersurface Q that contains {v}∪E1 ∪E2.
Since the (n − 1)-dimensional ellipsoid E′

0 = bdK ∩ L′

0 is uniquely determined by
the set {v} ∪ (E1 ∩ L′

0) ∪ (E2 ∩ L′

0), we have E′

0 ⊂ bdK ∩ Q. By continuity, there
is a β > 0 such that any hyperplane L′ through G that forms with L′

0 an angle of
size β or less satisfies conditions a) and b) above; whence bdK ∩ L′ is an (n − 1)-
dimensional ellipsoid that lies in bdK ∩ Q. The union of such ellipsoids bdK ∩ L′

covers an open piece of Q that lies in bdK.

Summing up the statements of Lemmas 4–10, we conclude that bdK is a convex
quadric.
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1 6D-metrics and the NS-equations

With the Navier-Stokes equations

∂

∂t
~V +

(
~V · ~∇

)
~V = µ∆~V + ~∇f, ~∇ · ~V = 0, (1)

where ~V = (U(~x, t), V (~x, t),W (~x, t)) is the fluid velocity, P (~x, t) is the pressure and
µ is the viscosity, ~x = (x, y, z) presented as the conditions of compatibility

Hy(~x, t) − Ex(~x, t) = 0, Hz(~x, t) − Bx(~x, t) = 0, Ez(~x, t) − By(~x, t) = 0, (2)

where the functions H(~x, t), E(~x, t), B(~x) have the form

H(~x, t) = fx(~x, t), E(~x, t)= fy(~x, t), B(~x, t)= fz(~x, t),

we can associate 6D-metrics

ds2 = −2B(~x, t)dt dv + 2E(~x, t)dt dw + 2H(~x, t)dv dw−

−2

( ∫
∂

∂y
H(~x, t)dz

)
dw 2 + dt dx + dv dy + dw dz (3)

having fifteen components.

Nine of them are equal to zero if the functions H(~x, t), E(~x, t), B(~x, t) satisfy
the conditions (2). The remaining six components Rvv , Rvw, Rww, Rtt, Rtv , Rtw

are expressed in terms of the functions H(~x, t), E(~x, t), B(~x, t) and their derivatives.

Properties of the 6-dimensional space with the metrics (3) can be used for the
study of properties of the N-S-equations.

c© Valery Dryuma, 2010
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Example. The metrics (3) is Ricci-flat Rik = 0 if the velocity components of fluid
have the form

U(~x, t) = −1/2x
∂

∂z
F (z, t), V (~x, t) = −1/2

(
∂

∂z
F (z, t)

)
y, W (~x, t) = F (z, t),

and the function F (z, t) satisfies the equation (see [1])

−Fzzt(z, t) − F (z, t)Fzzz(z, t) + µ Fzzzz(z, t) = 0. (4)

In this case the functions H(~x, t), E(~x, t) and B(~x, t) have the form

B(~x, t) = Ft(z, t) + F (z, t)Fz(z, t) − µ Fzz(z, t),

H(~x, t) = −1/2xFzt(z, t) + 1/4xFz(z, t)2 − 1/2xF (z, t)Fzz(z, t) + 1/2µ xFzzz(z, t),

E(~x, t)= −1/2 yFzt(z, t)+1/4 yFz(z, t)2−1/2 yF (z, t)Fzz(z, t)+ 1/2µ yFzzz(z, t).

2 12D-metrics and the Euler equations

The Euler system of equations, which is the limit case µ = 0 of the NS-equations,
is considered as a part of conditions Rik = 0 on the Ricci tensor of the Riemann
metrics of the 12D space in local coordinates (x, y, z, t, u, v, w, p, ξ, η, χ, ρ) :

ds2 = dv dρ + c(~x, t)dρ2 + du dχ + a(~x, t)dχ2+

+
(
(V (~x, t))2 − f(~x, t)

)
dp2 + dz dξ + dy dp + dy dχ + dt dη + 2β(~x)dη dρ+

+2V (~x, t)dp dρ + 2W (~x, t)V (~x, t)dp dξ + 2U(~x, t)W (~x, t)dw dξ+

+2U(~x, t)V (~x, t)dw dp + 2U(~x, t)dw dη + 2V (~x, t)dp dχ + 2U(~x, t)dw dρ+

+2 ǫ(~x)dη dχ + 2W (~x, t)dξ dχ +
(
(U(~x, t))2 − f(~x, t)

)
dw2 + 2 b(~x, t)dχ dρ+

+2U(~x, t)dw dχ + 2V (~x, t)dp dη + 2W (~x, t)dξ dρ + 2W (~x, t)dξ dη + α(~x)dη2+

+dx dw +
(
(W (~x, t))2 − f(~x, t)

)
dξ2 + dx dρ,

where f(~x, t) is the pressure of fluid.
Such a metric has 45 components of the Ricci tensor. 21 components from 45

are equal to zero on solutions of the Euler equations.
Let us consider some examples of solutions of the Euler equations defined by the

condition T = Rik · Rik = 0 on scalar invariant of the metric.

Proposition. On the solutions of the Euler equations
1. (Shanko [2])

U(x, y, z, t) =
y − x + tx

t2
, V (x, y, z, t) =

ty + y − 2x

t2
,



ON SPACES RELATED TO THE NS-EQUATIONS 109

W (x, y, z, t) = −2
z

t
, f(x, y, z, t) = −P0 − 1/2

x2 + y2

t4
+ 3

z2

t2
;

2.

U(x, y, z, t) = − cos(x) cos(z), V (x, y, z, t) = −2 cos(x) sin(z),

W (x, y, z, t) = − sin(x) sin(z), f(x, y, z, t) = 1/4 cos(2x) − 1/4 cos(2 z) + P0 (t);

3. (Aristov, Polyanin [1])

U(x, y, z, t) =
sin(kx)

A (cos(kx) cos(ky) − 1)
, V (x, y, z, t) =

sin(ky)

A (cos(kx) cos(ky) − 1)
,

f(x, y, z, t) = −
1

A2 (cos(kx) cos(ky) − 1)
, W (x, y, z, t) = 0

the invariant T = 0.

3 14D-metrics and the NS-equations

Proposition. With the full system of the NS-equations we can associate the 14D
space in local coordinates

x
a = [x, y, z, t, u, v, w, p, ξ, η, χ, ρ, q, δ]

equipped with the Riemann metrics of the form

ds2 = −

∫
Vt(~x, t)dydξ2 −

∫
Wt(~x, t)dzdη2 + dv dq + s(~x, t)dq2+

+2κ(~x, t)dδ2 + c(~x, t)dρ2 + 2
(
(U(~x, t))2 − µ Ux(~x, t) − f(~x, t)

)
dp dρ+

+2U(~x, t)dp dχ −

∫
Ut(~x, t)dxdp2 + 2 ǫ(~x, t)dq dδ + 2h(~x, t)dρ dδ+

+2 τ(~x, t)dρ dq+ 2W (~x, t)dχ dδ + 2V (~x, t)dχ dq + 2U(~x, t)dχ dρ+

+2
(
W (~x, t)2−µ Wz(~x, t)−f(~x, t)

)
dη dδ+2 (V (~x, t)W (~x, t) − µ Vz(~x, t)) dη dq+

+2 (U(~x, t)W (~x, t) − µ Uz(~x, t)) dη dρ + 2 (V (~x, t)W (~x, t) − µ Wy(~x, t)) dξ dδ+

+2
(
V (~x, t)2 − µ Vy(~x, t) − f(~x, t)

)
dξ dq + 2 (U(~x, t)V (~x, t) − µ Uy(~x, t)) dξ dρ+

+2 (U(~x, t)W (~x, t) − µ Wx(~x, t)) dp dδ + 2 (U(~x, t)V (~x, t) − µ Vx(~x, t)) dp dq+

+2W (~x, t)dη dχ + dy dξ + 2V (~x, t)dξ dχ + dt dχ + dw dδ+

+dx dp + dz dη + du dρ. (5)

It has 56 components of the Ricci tensor. 28 from them are equal to zero on
solutions of the NS-equations.
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Proposition. Due to the condition (2) the simplest scalar invariant of the metric
(5) T = Rij · R

ij = 0, but the invariant S = Rijkl · R
ijkl of the metrics (5) is not

equal to zero and has the form

S = 5Uxt(~x, t)2−4Uxx(~x, t)Utt(~x, t)+2

∫
Vxxt(~x, t)dy

∫
Uyyt(~x, t)dx−

−4Vxx(~x, t)

∫
Utt(~x, t)dx−4

∫
Vxtt(~x, t)dyUyy(~x, t)+8Vxt(~x, t)Uyt(~x, t)+

+2

∫
Wxxt(~x, t)dz

∫
Uzzt(~x, t)dx−4Wxx(~x, t)

∫
Uztt(~x, t)dx−

−4

∫
Wxtt(~x, t)dzUzz(~x, t)+8Wx(~x, t)Uz(~x, t)+5Vyt(~x, t)2−4Vyy(~x, t)Vtt(~x, t)+

+2

∫
Wyyt(~x, t)dz

∫
Vzzt(~x, t)dy−4Wyy(~x, t)

∫
Vztt(~x, t)dy−

−4

∫
Wytt(~x, t)dzVzz(~x, t) + 8Wyt(~x, t)Vzt(~x, t) + 5Wzt(~x, t)2 − 4Wzz(~x, t)Wtt(~x, t).

On solution of the NS-equations

U(x, y, z, t) =
y − x + tx − K(z, t)t sin(t−1)

t2
,

V (x, y, z, t) =
y + ty − 2x − K(z, t)t sin(t−1) − cos(t−1)K(z, t)t

t2
,

W (x, y, z, t) = −2
z

t
, f(x, y, z, t) = −P0 − 1/2

x2 + y2

t4
+ 3

z2

t2
,

where the function K(z, t) satisfies the equation

∂

∂t
K(z, t) = 2

z ∂
∂z

K(z, t)

t
+ µ

∂2

∂z2
K(z, t) + J(t)

with arbitrary J(t), the invariant S takes the form S = 96
5t2 − 4

t6
and the space

with the metrics (5) is not Ricci-flat, but its scalar curvature R = 0 and invariant
T = 0.
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