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Some extensions of the Bühlmann-Straub

credibility formulae

Virginia Atanasiu

Abstract. The paper presents some extensions of the Bühlmann-Straub credibility
model. In the sequel we describe covariance structures leading to credibility formulae
of the updating type, where the new credibility adjusted premium can be computed
as a weighted average of the premium quoted in the previous period and the claims
in this period. The credibility formula of the updating type is introduced for a wider
class of models from the credibility theory, where the risk parameter does not remain
the same ever time, and its properties are studied. Also, the expected values (the
means) and credibility formulae of the updating type are emphasized. Finally we
establish an application which shows that these formulae are attractive from practical
point of view, because easy recursive formulae for the computation of the credibility
weights (factors) from the Bühlmann-Straub model, can be derived.

Mathematics subject classification: 62P05.
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1 Introduction

In most models considered in the credibility theory we assume that the risk pa-
rameter remains the same over time. If this is not the case, one considers recursive
procedures, the formulae of the updating type. These are closely related to the the-
ory of Kalman filtering, where it is assumed that the parameters in a linear model
themselves arise from a linear process. Because in some models, the covariances
between claim sizes are such that credibility formulae arise of the updating type,
expressing the premium as a mixture of the claims and the credibility premium of
the previous observation period, the article presents these formulae and gives an
application which characterizes expected values and covariances leading to credibil-
ity formulae of the updating type. The examples considered show special cases of
credibility formulae of the updating type. Finally, is presented an application which
shows that there are easy recursive formulae for the computation of the credibility
weights from the Bühlmann-Straub model.

2 Theory

One of the Bühlmann-Straub assumptions is that (for this model, each con-
tract j = 1, . . . , k of the portfolio is the average of a group of contracts, where the
weight (size) wj1, . . . , wjt of the group j is now changing in time; we assume that
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all contracts have common expectation of the claim size as a function of the risk
parameter θ; in addition, apart from the weighting factor w, the variance is also the
same function of the risk parameter; these assumptions express the common charac-
teristics of the risk under consideration; so the Bühlmann-Straub assumptions can
be formulated as follows:

(BS1): E[Xjq|θj ] = µ(θj), j = 1, . . . , k, q = 1, . . . , t; V ar[Xjr|θj] = σ2(θj)/wjr,
r = 1, . . . , t, j = 1, . . . , k, where all wjr > 0; Cov[Xjr,Xjq|θj ] = 0, j = 1, . . . , k,
r, q = 1, . . . , t, r 6= q;

(BS2): the contracts j = 1, . . . , k (i.e. the couples (θj ,Xj)) are independent;
the variables θ1, . . . , θk are identically distributed; the observations Xjr have finite
variance), conditionally given the risk parameter θj, claim sizes in different time
periods are uncorrelated, that is: Cov(Xjr,Xjr′ |θj) = 0, ∀r, r′ = 1, t, r < r′. The
obvious advantage of this assumption is that only two parameters:

a
def
= V ar[µ(θj)]

def
= V ar[E(Xjr|θj)] and s2 = E[σ2(θj)]

def
= E[V ar(Xjr|θj)],

(r = 1, t) have to be estimated to determine the whole covariance matrix Cov[Xj],
because:

Cov[Xj]
def
= [Cov(Xjr,Xjr′)] r,r′=1,t

r<r′

=

=

















Cov(Xj1,Xj1) Cov(Xj1,Xj2) . . . Cov(Xj1,Xjt)

Cov(Xj1,Xj2) Cov(Xj2,Xj2) . . . Cov(Xj2,Xjt)

...
...

...
...

Cov(Xj1,Xjt) Cov(Xj2,Xjt) . . . Cov(Xjt,Xjt)

















But

Cov(Xjr,Xjr) = E[Cov(Xjr,Xjr|θj)] + Cov[E(Xjr|θj), E(Xjr|θj)] =

= E[V ar(Xjr|θj)] + Cov[µ(θj), µ(θj)] = s2 + V ar[µ(θj)] = s2 + a, ∀r = 1, t

and

Cov(Xjr,Xjr′) = E[Cov(Xjr,Xjr′ |θj)] + Cov[E(Xjr|θj), E(Xjr′ |θj)] =

= E(0) + Cov[µ(θj), µ(θj)] = 0 + V ar[µ(θj)] = 0 + a = a, ∀r, r′ = 1, t, r < r′,

such that we get

Cov[Xj ] =

















s2 + a a . . . a

a s2 + a . . . a

...
...

...
...

a a . . . s2 + a

















,
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where X ′
j = (Xj1,Xj2, . . . ,Xjt) with j = 1, k. But in practice it is quite conceivable

that these claim sizes are correlated, such that estimates for their covariances have
to be given. For the situation of one contract j to be embedded in a collective of
contracts, the classical credibility results have the intuitively appealing form:

Ma
t+1 = (1 − zj)M0 + zjMj,

expressing the premium for contract j and period (t + 1) as a mixture of collective
and individual experience. In some models the co-variances between the claims
sizes are such that credibility formulae arise of the updating type, expressing the
premium as a mixture of the claims and the credibility premium of the previous
period. These formulae are also attractive because easy recursive formulae for the
credibility factors can be derived.

Definition 1 (Credibility formulae of the updating type). A linear credibility formula
is said to be of the updating type if there is a sequence z1, z2, . . . of real numbers
such that:

Ma
t+1 = (1 − zt)M

a
t + ztXt, t = 1, 2, . . . (1)

with Ma
t the linearized credibility premium for Xt given X1,X2, . . . ,Xt−1.

Remark. A condition equivalent to (1) is that:

Ma
t+1 − Ma

t = zt(Xt − Ma
t ),

which shows that the premium adjustment from year t to year (t+1) is proportional
to the excess, positive or negative, of claims over premiums in year t.

3 Results and discussion

The following application characterizes expected values and covariances leading
to credibility formulae of the updating type.

Application 1 (Means and covariances leading to credibility formulae of the upda-
ting type). Let the numbers ctq, q = 1, t denote the weights of the claim experience
in year q for the (linearized) credibility premium Ma

t in year t, t = 1, 2, . . . , and ct0

the constant term, such that:

Ma
t+1 = ct0 +

t
∑

q=1

ctqXq. (2)

Then the credibility formulae Ma
t are of the updating type, if and only if there

exists a number m and sequences a1, a2, . . . and b1, b2, . . . with bq > 0 such that for
all q, r = 1, 2, . . . ,

E(Xr) = m, (3)

Cov(Xr,Xq) =















ar, r < q (r = 1, q − 1),

br, r = q,

aq, r > q (r = q + 1, t).

(4)
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Proof. Using the system of equations:

E[µ(θ)] − c0 −
t

∑

q=1

cqE[Xq] = 0 (5)

and

Cov[µ(θ),Xr] =

t
∑

q=1

cqCov[Xr,Xq], r = 1, t (6)

from the original credibility model of Bühlmann (see the observation, which we
end Application 1) determining the optimal credibility estimator in the proof of
Bühlmann’s optimal credibility estimator, applied to Xt+1 rather than µ(θ), we see
that the weights ctq and the means / covariances must obey the following relations:

E[Xt+1] = ct0 +

t
∑

q=1

ctqE[Xq] (7)

and

Cov[Xt+1,Xr] =

t
∑

q=1

ctqCov[Xr,Xq], r = 1, t. (8)

We write the condition (7) as

E[Xt+1] = E



ct0 +

t
∑

q=1

ctqXq



 ,

that is (see (2)):
E[Xt+1] = E[Ma

t+1], t = 1, 2, . . .

We have
E[Ma

t+1] = E[Xt+1], t = 1, 2, . . . (9)

Condition (9) expresses that Ma
t+1 is unbiased. For the ’only if’ – part of the

application, suppose that the credibility formulae Ma
t are of the updating type.

Taking expectation in (1) gives:

E[Ma
t+1] = (1− zt)E[Ma

t ] + ztE[Xt] = (1− zt)E[Xt] + ztE[Xt] = E[Xt], t = 1, 2, . . .

So
E[Ma

t+1] = E[Xt], t = 1, 2, . . . (10)

From (9) and (10) it follows that E[Xt+1] = E[Xt] for all t which proves (3).
Replacing the Ma′

t s in (1) with their definition (2), that is:

Ma
t+1

(1)
= (1 − zt)



ct−1,0 +

t−1
∑

q=1

ct−1,qXq



 + ztXt =

= (1 − zt)ct−1,0 +

t−1
∑

q=1

(1 − zt) · ct−1,qXq + ztXt

(11)
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and comparing the coefficients of the X ′
qs (see (11) and (2)) one gets:

ct0 +

t−1
∑

q=1

ctqXq + cttXt = (1 − zt)ct−1,0 +

t−1
∑

q=1

(1 − zt)ct−1,qXq + ztXt.

We have














ct0 = (1 − zt)ct−1,0,

ctq = (1 − zt)ct−1,q, q = 1, t − 1,

ctt = zt.

So
ctq = (1 − zt)ct−1,q, q = 0, t − 1 (12)

and
ctt = zt. (13)

Inserting (12) in (8) and again applying (8) for (t − 1) one obtains:

Cov[Xr,Xt+1]
(8)
=

t
∑

q=1

ctqCov[Xq,Xr] =

t−1
∑

q=1

ctqCov[Xq,Xr] + cttCov[Xt,Xr] =

=
t−1
∑

q=1

(1 − zt)ct−1,qCov[Xq,Xr] + ztCov[Xt,Xr] = ztCov[Xt,Xr] + (1 − zt)×

×
t−1
∑

q=1

ct−1,qCov[Xq,Xr] = zt

t−1
∑

q=1

ct−1,qCov[Xq,Xr] +
t−1
∑

q=1

ct−1,qCov[Xq,Xr]−

−zt

t−1
∑

q=1

ct−1,q · Cov[Xq,Xr] = Cov[Xt,Xr] = Cov[Xr,Xt], for r = 1, t − 1.

Therefore we may write

Cov[Xr,Xt+1] = Cov[Xr,Xt] = ar, r = 1, r − 1,

Cov[Xr,Xt] = br.

For the ’if’- part of the application, assume that (3) and (4) hold. Then to prove
(1), we have to show that (12) and (13) hold again. From (2) we get using (8) for
each r = 1, t − 1:

t−1
∑

q=1

ctqCov[Xq,Xr]
(8)
= Cov[Xr,Xt+1] − cttCov[Xr,Xt] = ar − cttCov[Xr,Xt] =

= Cov[Xr,Xt] − cttCov[Xr,Xt] = (1 − ctt)Cov[Xr,Xt] = (1 − ctt)

t−1
∑

q=1

ct−1,q×

×Cov[Xq,Xr] =

t−1
∑

q=1

(1 − ctt) · ct−1,q · Cov[Xq,Xr].
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So
ctq = (1 − zt)Ct−1,q; q = 1, t − 1, (14)

where zt
(not)
= ctt.

This formula also holds because of (7):

(7) ⇔ m = ct0 +

t−1
∑

q=1

(1 − zt)ct−1,q · m + zt · m ⇔ ct0 =

= (1 − zt) · m − (1 − zt) ·





t−1
∑

q=1

ct−1,q



 · m ⇔ ct0 = (1 − zt) · ct−1,0,

because from (7) applied to (t− 1) we conclude that: m = ct−1,0 +

t−1
∑

q=1

ct−1,qm, that

is: ct−1,0 = m −





t−1
∑

q=1

ct−1,q



, so we conclude that indeed (14) also holds for t = 0.

Therefore we may write:

Ma
t+1 = ct0 +

t−1
∑

q=1

ctqXq + cttXt = (1 − zt)ct−1,0 +

t−1
∑

q=1

(1 − zt)ct−1,qXq + cttXt =

= (1 − zt)



ct−1,0 +

t−1
∑

q=1

ct−1,qXq



 + cttXt = (1 − zt)M
a
t + ztXt.

A covariance matrix such as in (4) can be depicted as follows:

Cov[X ] = (Cov(Xr,Xq))r,q=1,t =



































b1 a1 a1 . . . a1 . . . a1

a1 b2 a2 . . . a2 . . . a2

a1 a2 b3 . . . a3 . . . a3

...
...

...
. . .

...
...

...

a1 a2 a3 . . . bq . . . aq

...
...

...
...

...
. . .

...

a1 a2 a3 . . . aq . . . br



































.

As a special case, when Cov[Xi,Xj ] = a + δijs
2 like in Bühlmann’s models we

obtain zt = at/(at + s2) leading to uniform credibility weights:

ct1 = ct2 = . . . = ctt = at/(at + s2).
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Another special case of credibility formulae of the updating type arises when
zt = z, t = 1, 2, . . . ; then one obtains geometric credibility weights:

ctq = (1 − zt)ct−1,q = (1 − z)ct−1,q = (1 − z)(1 − zt−1)ct−2,q =

= (1 − z)2ct−2,q = . . . = (1 − z)t−qcqq = (1 − z)t−qzq = (1 − z)t−qz

If the means and covariances are as in Application 1 there are easy recursive
formulae for the computation of the credibility weights zt.

Observation 1 (The original credibility model of Bühlmann). In the original credi-
bility model of Bühlmann, we consider one contract with unknown and fixed risk
parameter θ, during a period of t years. The yearly claim amounts are noted by
X1, . . . ,Xt. The risk parameter θ is supposed to be taken from some structure dis-
tribution U(·). It is assumed that, for given θ = θ, the claims are conditionally
independent and identically distributed with known common distribution function
FX|θ(x, θ). For this model we want to estimate the net premium µ(θ) = E[Xr|θ = θ],
r = 1, t as well as Xt+1 for a contract with risk parameter θ.

We present the following result:
Bühlmann’s optimal credibility estimator. Suppose X1, . . . ,Xt are random

variables with finite variation, which are, for given θ = θ, conditionally indepen-
dent and identically distributed with already known common distribution function
FX|θ(x, θ). The structure distribution function is U(θ) = P [θ ≤ θ]. Let D represent
the set of non-homogeneous linear combinations g(·) of the observable random vari-
ables X1, . . . ,Xt: g(X ′) = c0 + c1X1 + . . .+ ctXt. Then the solution of the problem:
Min
g∈D

E{[µ(θ) − g(X1, . . . ,Xt)]
2} is: g(X1, . . . ,Xt) = Ma = zZ + (1 − z)m, where

X ′ = (X1, . . . ,Xt) is the vector of observations, z = at/(s2 + at), is the resulting

credibility factor, X =
1

t

t
∑

i=1

Xi is the individual estimator, and a, s2 and m are the

structural parameters as defined by the following formulae: m = E[Xr] = E[µ(θ)],
r = 1, t, a = V ar{E[Xr|θ]} = V ar[µ(θ)], r = 1, t, σ2(θ) = V ar[Xr|θ], r = 1, t,
s2 = E{V ar[Xr|θ]} = E[σ2(θ)], r = 1, t. If µ(θ) is replaced by Xt+1 in the
above minimization problem, exactly the same solution Ma is obtained, since the
co-variations with X are the same.

Proof. We have to solve the following minimization problem:

Min
c0,...,ct

E







[

µ(θ) − c0 −

t
∑

r=1

crXr

]2






.

Since the above problem is the minimum of a positive definite quadratic form, it
suffices to find a solution with all partial derivatives equal to zero. Taking the partial

derivative with respect to c0 we get the equation: E

[

µ(θ) − c0 −

t
∑

r=1

crXr

]

= 0
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(see (5)). Using m = E[Xr] = E[µ(θ)], we may solve this equation for c0 and insert
the result in the minimization problem. We get:

Min
c1,...,ct

E







[

µ(θ) − m −

t
∑

r=1

cr(Xr − m)

]2






.

Taking the derivative with respect to cq, q = 1, . . . , t leads to the equation:

E

{

−2

[

µ(θ) − m −

t
∑

r=1

cr(Xr − m)

]

· (Xq − m)

}

= 0, q = 1, . . . , t. This is equ-

ivalent to: Cov[µ(θ),Xq] =

t
∑

r=1

crCov(Xq,Xr), q = 1, . . . , t (see (6)) . Since

Cov(Xq,Xr) = a + δrqs
2 and Cov[µ(θ),Xq] = a and since the system of equa-

tions is symmetrical in c1, . . . , ct one finds from: Cov[µ(θ),Xq] =
t

∑

r=1

crCov(Xq,Xr),

q = 1, . . . , t that: c1 = c2 = . . . = ct = a/(s2+at). Now introducing z = at/(s2+at),

from E

[

µ(θ) − c0 −
t

∑

r=1

crXr

]

= 0 we see that c0 = (1 − z) · m, so Ma is optimal.

Application 2 (Expressions for credibility weights). Under the conditions of the
previous application, and writing st = bt − at the credibility weights zt can be
calculated by means of:

{

z1 = a1/(a1 + s1),

zt = (at − at−1 + zt−1st−1)/(at − at−1 + zt−1st−1), t = 2, 3, . . .

Proof. Equation (12) for t = q = 1, together with (8) and (4), gives the expression
for z1:

z1 = c11 =
Cov(X2,X1)

Cov(X1,X1)
=

a1

b1
=

a1

s1 + a1
.

Equation (8) for r = t , together with (12) gives:

Cov[Xt,Xt+1] = cttCov[Xt,Xt] +

t−1
∑

q=1

ctqCov[Xq,Xt] =

= ztV ar[Xt] + (1 − zt) ·

t−1
∑

q=1

ct−1,q · Cov[Xq,Xt].

(15)



SOME EXTENSIONS OF THE BÜHLMANN-STRAUB CREDIBILITY FORMULAE 11

The summation in (15) can be rewritten as:

ct−1,t−1Cov[Xt−1,Xt] +

t−2
∑

q=1

ct−1,qCov[Xq,Xt] = zt−1Cov[Xt−1,Xt]+

+

t−2
∑

q=1

ct−1,qaq = zt−1Cov[Xt−1,Xt] +

t−2
∑

q=1

ct−1,qCov[Xq,Xt−1] =

= zt−1Cov[Xt−1,Xt] − ct−1,t−1 · Cov[Xt−1,Xt−1] +
t−1
∑

q=1

ct−1,qCov[Xq,Xt−1] =

(8)
= zt−1{Cov[Xt−1,Xt] − V ar[Xt−1]} + Cov[Xt,Xt−1], t ≥ 2

(16)
Inserting (16) in (15) and again because of (4) one gets for (15):

at = Cov[Xt,Xt+1] = ztbt + (1 − zt){zt−1(at−1 − bt−1) + at−1} =

= zt(st + at) + (1 − zt)(at−1 − zt−1st−1), t ≥ 2.

We have
at = zt(st + at) + (1 − zt)(at−1 − zt−1st−1),

that is
zt = (at − at−1 + zt−1st−1)/(at − at−1 + zt−1st−1 + st),

4 Conclusions

The paper describes covariance structures leading to credibility formulae of the
updating type, where the new credibility adjusted premium can be computed as
a weighted average of the premium quoted in the previous period and the claims
in this period. So, the credibility formulae of the updating type for the credibility
factors from the Bühlmann-Straub model can be derived. In other models from the
credibility theory, the covariances between the claims sizes are such that credibility
formulae arise of the updating type, expressing the premium as a mixture of the
claims and the credibility premium of the previous observation period.
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Abstract. A multicriteria variant of a well known combinatorial MINMAX location
problem with Pareto and lexicographic optimality principles is considered. Necessary
and sufficient conditions of an optimal solution stability of such problems to the initial
data perturbations are formulated in terms of binary relations. Numerical examples
are given.
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1 Introduction

Many problems of design, planning and management in technical and organi-
zational systems have a pronounced multicriteria character. Multiobjective models
appeared in these cases are reduced to the choice of ”best” (in a certain sense)
values of variable parameters from some discrete aggregate of the given quantities.
Therefore recent interest of mathematicians in multicriteria discrete optimization
problems keeps very high, as confirmed by the intensive publishing activity (see,
e.g., bibliography [1], which contains 234 references).

While solving practical optimization problems, it is necessary to take into account
various kinds of uncertainty such as lack of input data, inadequacy of mathematical
models to real processes, rounding off, calculation errors, etc. Therefore widespread
use of discrete optimization models in the last decades stimulated many experts to
investigate various aspects of incorrect problems theory and, in particular, to the
questions of stability. The most important results in this topic are concerned with
postoptimal and parametric behavior analysis of the solutions of the optimization
problems with respect to variation of their input data. Generally the technique of
such analysis is based on using the properties of multi-valued functions. Such re-
search methods are elaborated in detail and covered in literature about optimization
problems with a continuous set of feasible solutions. Numerous articles are devoted
to the analysis of conditions when problem possesses some property of invariance
under the problem parameters perturbations (see, e. g., [2–5]).

The main difficulty while studying stability of discrete optimization problems
is the essential complexity of discrete models. They behave unpredictable even for

c© Vladimir Emelichev, Eberhard Girlich, Olga Karelkina, 2009
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small changes of initial data. There are a lot of papers (see, e. g., [6–15]) devoted to
the analysis of scalar and vector (multicriteria) discrete optimization problems sen-
sitivity to parameters perturbations. The present work continues our investigations
of different stability types of such problems with various partial criteria and optimal-
ity principles (see, e. g., [16–23]). The here multicriteria variant of the well-known
center location problem (p-center problem) is considered. Some necessary and suf-
ficient conditions of lexicographic and Pareto optima stability under perturbations
of initial data are obtained. Numerical examples are given.

2 Basic definitions and notations

Problems of finding the ”best” location of equipment and facilities abound in
practical situations. Often such problems are formulated as extreme problems in
graphs and networks. In particular, if a graph represents a road network with its
vertices representing communities, one may have the problem of locating optimally
a hospital, fire station or any other emergency service facility. The criterion of
optimality may justifiably be taken to be the minimization of the distance (traveling
time or other costs) from the facility to the most remote vertex of the graph, i. e.
the optimization of the worst-case. In a more general problem, a large number of
such facilities may be required to be located. For instance, in the problems which
involve the location of emergency facilities it is required to minimize the largest
travel distance to any consumer from its nearest facility (center). If there are several
costs criteria which have to be minimized, the vector variant of the center location
problem arises. Let us consider this problem in the following formulation.

Let Nm = {1, 2, . . . ,m} be the set of possible points (centers) of suppliers
(equipment, storehouses, facility, etc.) location, Nn be consumers (clients) loca-
tion, A = (aijk) ∈ R

m×n×s be the cost matrix aijk. The cost is connected with
delivery of required quantity of products from point i ∈ Nm to point j ∈ Nn with
criterion k ∈ Ns.

On the set T of nonempty subsets (trajectories) T ⊂ 2Nm , |T | ≥ 2, let the vector
function

f(t, A) = (f1(t, A), f2(t, A), . . . , fs(t, A))

be defined with ”bottle neck” (MINMAX) criteria:

fk(t, A) = max
j∈Nn

min
i∈t

aijk → min
t∈T

, k ∈ Ns.

We give the traditional definition of the set of Pareto optimal trajectories:

P s(A) = {t ∈ T : ∀t′ ∈ T\{t} (t ≻
A,P

t′)},

where

t ≻
A,P

t′ ⇔ f(t, A) ≥ f(t′, A)&f(t, A) 6= f(t′, A),



POSTOPTIMAL ANALYSIS OF MULTICRITERIA COMBINATORIAL . . . 15

and the sign ≻
A,P

is a negation of the relation ≻
A,P

. The set P s(A) is nonempty for

any matrix A ∈ R
m×n×s as 1 < |T | < ∞.

The set of lexicographically optimal trajectories is denoted by the formula:

Ls(A) = {t ∈ T : ∀t′ ∈ T (t ≻
A,L

t′)},

where

t ≻
A,L

t′ ⇔ ∃ l ∈ Ns (fl(t, A) > fl(t
′, A) & l = min{k ∈ Ns : fk(t, A) 6= fk(t

′, A)}),

and the sign ≻
A,L

is a negation of the relation ≻
A,L

. It is easy to see that Ls(A) ⊆ P s(A)

for any matrix A ∈ R
m×n×s.

Thus, two multicriteria center location problems appear: with Pareto principle
of optimality, i. e. the problem of finding the set P s(A), and with lexicographic
principle of optimality, i. e. the problem of finding the set Ls(A).

In particular in scalar case (s = 1) we get the well-known p-center problem
[24–27], i.e. minimax location problem:

max
j∈Nn

min
i∈t

aij → min

t ∈ T, |t| = p,

where p is an integer number, which satisfies the inequalities 1 ≤ p ≤ m−1. Thereby
in this problem the situation is modeled, when it is required to locate p facilities in
Nm possible points to minimize the largest travel distance to any consumer from its
nearest facility.

It is known (see, e. g., [28]), that the set of lexicographically optimal trajectories
Ls(A) can be defined as the result of solving the sequence of s scalar problems

Ls
k(A) = Argmin{fk(t, A) | t ∈ Ls

k−1(A)}, k ∈ Ns, (1)

where Ls
0(A) = T , Argmin{·} is the set of all optimal trajectories of the correspond-

ing scalar optimization problem. Hence the following inclusions

T ⊇ Ls
1(A) ⊇ Ls

2(A) ⊇ . . . ⊇ Ls
s(A) = Ls(A) (2)

are true.

Perturbations of the vector criterion f(t, A) parameters are modeled by adding
matrix A to the matrices of the set

Ω(ε) = {A′ ∈ R
m×n×s : ||A′|| < ε},

where ε > 0, ||A′|| = max{|a′ijk| : (i, j, k) ∈ Nm × Nn × Ns}, A′ = (a′ijk). The set
Ω(ε) is called the set of perturbing matrices.
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Pareto optimal trajectory t ∈ P s(A) is called stable if

∃ε > 0 ∀A′ ∈ Ω(ε) (t ∈ P s(A + A′)).

Lexicographically optimal trajectory t is called stable if

∃ε > 0 ∀A′ ∈ Ω(ε) (t ∈ Ls(A + A′)).

To prove stability criteria, we consider a number of evident properties and also
formulate and prove 4 lemmas.

3 Properties

Directly from definitions of the binary relations t ≻
A,P

t′ and t ≻
A,L

t′ follows

Property 1. If t ≻
A,P

t′, then t ≻
A,L

t′.

For any indexes k ∈ Ns, j ∈ Nn and trajectory t put

Njk(t, A) = {l ∈ t : fk(t, A) = gjk(t, A) = aljk},

Jk(t, A) = {j ∈ Nn : fk(t, A) = gjk(t, A)},

where

gjk(t, A) = min
i∈t

aijk.

Next properties directly follow from these notions.

Property 2. If q ∈ Jk(t, A), then fk(t, A) = gqk(t, A).

Property 3. If q ∈ Jk(t, A) and p ∈ Nqk(t, A), then fk(t, A) = gqk(t, A) = apqk.

Property 4. Njk(t, A) 6= ∅ if and only if j ∈ Jk(t, A).

Property 5. If Njk(t, A) = ∅, then gjk(t, A) < fk(t, A).

Property 6. If gjk(t, A) > gjk(t
′, A), then there exists an index p ∈ t′\t such that

gjk(t
′, A) = gjk(t

′\t, A) = apjk.

For any index k ∈ Ns we define several binary relations on the set of trajectories T

t ⊢
A,k

t′ ⇔ t |∼
A,k

t′ |≈
A,k

t,

t |∼
A,k

t′ ⇔ ∀j ∈ Jk(t, A) (Njk(t, A) ⊇ Njk(t
′, A)),

t′ |≈
A,k

t ⇔ Jk(t
′, A) ⊇ Jk(t, A).
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Furthermore, we will use binary relations

t ⊢
A

t′ ⇔ ∀k ∈ Ns (t ⊢
A,k

t′),

t ∼
A

t′ ⇔ f(t, A) = f(t′, A).

By virtue of continuity of the function gjk(t, A) in parameters space R
m from

the relations Njk(t, A) ⊇ Njk(t
′, A) 6= ∅ the formula follows

∃ε > 0 ∀A′ ∈ Ω(ε) (gjk(t, A + A′) ≤ gjk(t
′, A + A′)). (3)

Therefore the following property holds

Property 7. If for any index k ∈ Ns the relation t |∼
A,k

t′ holds, then

∃ε > 0 ∀A′ ∈ Ω(ε) ∀k ∈ Ns ∀j ∈ Jk(t, A + A′) (gjk(t, A + A′) ≤ gjk(t
′, A + A′)).

Property 8. If t ⊢
A

t′, then

∃ε > 0 ∀A′ ∈ Ω(ε) ∀k ∈ Ns (fk(t, A + A′) ≤ fk(t
′, A + A′)).

Property 9. If t ⊢
A

t′, then there exists a number ε > 0 such that for any perturbing

matrix A′ ∈ Ω(ε) the following relation holds

t ≻
A+A′,P

t′.

Property 10. If any of the following conclusions holds for trajectories t and t′

(i) f1(t
′, A) > f1(t, A),

(ii) ∃r ∈ Ns−1 (fr+1(t
′, A) > fr+1(t, A) & ∀k ∈ Nr (t ⊢

A,k
t′)),

then the formula

∃ε > 0 ∀A′ ∈ Ω(ε) (t ≻
A+A′,L

t′) (4)

is true

Proof. If f1(t
′, A) > f1(t, A), then in view of continuity of the function fk(t, A) in

parameters space R
m×n we have

∃ε > 0 ∀A′ ∈ Ω(ε) (f1(t
′, A + A′) > f1(t, A + A′)).

Hence (4) holds.
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Now let condition (ii) hold. Then, using t |∼
A,k

t′, k ∈ Nr, in view of (3) we get

∃ε′ > 0 ∀A′ ∈ Ω(ε′) ∀k ∈ Nr ∀j ∈ Jk(t, A + A′) (gjk(t, A + A′) ≤ gjk(t
′, A + A′)).

Therefore

∃ε′ > 0 ∀A′ ∈ Ω(ε′) ∀k ∈ Nr (fk(t, A + A′) ≤ fk(t
′, A + A′)). (5)

In addition, since fr+1(t
′, A) > fr+1(t, A) it follows that

∃ε′′ > 0 ∀A′ ∈ Ω(ε′′) (fr+1(t
′, A + A′) > fr+1(t, A + A′)). (6)

Assuming ε = min{ε′, ε′′}, we derive (4) from (5) and (6).

4 Lemmas

Set
P s(A) = T \ P s(A).

Lemma 1. If t0 ∈ P s(A), t0 ∼
A

t and there exists an index r ∈ Ns such that t |≈
A,r

t0,

then the trajectory t0 is not stable.

Proof. From t |≈
A,r

t0 it follows that there exists an index q ∈ Jr(t
0, A)\Jr(t, A). There-

fore according to property 4 Nqr(t, A) = ∅. Hence using property 5 we have
gqr(t, A) < fr(t, A) and applying property 2 we derive fr(t

0, A) = gqr(t
0, A). Thus,

taking into account t0 ∼
A

t we obtain gqr(t
0, A) > gqr(t, A). Hence in view of property

6 there exists an index p ∈ t\t0, such that

gqr(t, A) = gqr(t\t
0, A) = apqr. (7)

For any number ε > 0 we build elements of the perturbing matrix A0 = (a0
ijk) ∈

Ω(ε) of size m × n × s by the rule

a0
ijk =

{

α, if i ∈ t0, j = q, k = r,
0 otherwise,

where 0 < α < ε. We show that t0 ∈ P s(A+A0). According to the matrix construc-
tion the following equalities hold

gqr(t
0, A + A0) = gqr(t

0, A) + α,

gjr(t
0, A + A0) = gjr(t

0, A) for j 6= q,

gjr(t, A + A0) = gjr(t, A) for j 6= q,

and by (7) it follows that

gqr(t, A + A0) = gqr(t, A).
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Hence we derive

fr(t
0, A+ A0) = max

j∈Nn

gjr(t
0, A+ A0) = max{gqr(t

0, A+ A0), max
j 6=q

gjr(t
0, A+ A0)} =

= max{gqr(t
0, A) + α, max

j 6=q
min
i∈t0

aijq} = fr(t
0, A) + α,

fr(t, A + A0) = max
j∈Nn

gjr(t, A + A0) = max{gqr(t, A), max
j 6=q

min
i∈t

aijr} = fr(t, A).

It follows from these equalities that

fr(t
0, A + A0) > fr(t, A + A0). (8)

Furthermore, taking into account the construction of the perturbing matrix A0 and
the relation t0 ∼

A
t the following equalities are evident

fk(t
0, A + A0) = fk(t, A + A0) for k 6= r. (9)

Therefore

t0 ≻
A+A0,P

t.

Thus we have

∀ε > 0 ∃A0 ∈ Ω(ε) (t0 ∈ P s(A + A0)), (10)

i. e. trajectory t0 is not stable.

Lemma 2. If t0 ∈ P s(A), t0 ∼
A

t and there exists an index r ∈ Ns such that t0 |∼
A,r

t,

then trajectory t0 is not stable.

Proof. We assume that t |≈
A,r

t0. Otherwise t0 is not stable by virtue of Lemma 1.

Since t0 |∼
A,r

t, then in view of t |≈
A,r

t0 there exists an index q ∈ Jr(t, A) ⊇ Jr(t
0, A)

such that p ∈ Nqr(t, A)\Nqr(t
0, A).

For any number ε > 0 we build elements of the perturbing matrix A0 = (a0
ijk) ∈

Ω(ε) of size m × n × s by the rule

a0
ijk =







−α, if i = p, j = q, k = r,
−α, if i ∈ t, j ∈ Nn\{q}, k = r,
0 otherwise,

where 0 < α < ε.

Let us prove that t0 ∈ P s(A + A0). It suffices to prove that relations (8) and (9)
are valid. Taking into account the construction of matrix A0 and the relation t0 ∼

A
t

equalities (9) are evident.
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Further let us prove inequalities (8). Since p ∈ Nqr(t, A), then using properties
2 and 3 we obtain fr(t, A) = gqr(t, A) = apqr. Hence according to the construction
of matrix A0 it follows that

gqr(t, A + A0) = gqr(t, A) − α = fr(t, A) − α,

gjr(t, A + A0) = gjr(t, A) − α for j 6= q.

Therefore we derive

fr(t, A + A0) = max
j 6=Nn

gjr(t, A + A0) = max{gqr(t, A + A0), max
j 6=q

gjr(t, A + A0)} =

= max{fr(t, A) − α, max
j 6=q

(gjr(t, A) − α)} = fr(t, A) − α = fr(t
0, A) − α. (11)

Further let us prove that fr(t
0, A + A0) = fr(t

0, A).
Taking into account the construction of matrix A0 the following inequalities are

evident
gjr(t

0, A + A0) ≤ gjr(t
0, A), j ∈ Nn.

Furthermore, using p 6∈ Nqr(t
0, A) and q ∈ Jr(t

0, A), we have

gqr(t
0, A + A0) = gqr(t

0, A) = fr(t
0, A).

Thus in view of fr(t
0, A) ≥ gjr(t

0, A) ≥ gjr(t
0, A + A0) for j ∈ Nn we derive

fr(t
0, A + A0) = max

j∈Nn

gjr(t
0, A + A0) =

= max{gqr(t
0, A), max

j 6=q
gjr(t

0, A + A0)} = fr(t
0, A).

(12)

Combining (11) and (12), we obtain inequality (8). Thus we derive formula (10).
Consequently the trajectory t0 is not stable.

Set
Ls(A) = T \ Ls(A).

Lemma 3. If t0 ∈ Ls(A) and there exist r ∈ Ns and t ∈ Ls
r(A) such that t |≈

A,r

t0,

then the trajectory t0 is not stable.

Proof. This lemma con be proved in analogous way as Lemma 1. It can be done
by constructing a perturbing matrix A0 the same way as in proof of lemma 1 and
repeating all arguments. Thus the inequality (8) is true.

Moreover, since t0, t ∈ Ls
r(A), then the following inequalities hold for r > 1

fk(t
0, A) = fk(t, A), k ∈ Nr−1.

Therefore, taking into account the construction of matrix A0, we obtain

fk(t
0, A + A0) = fk(t, A + A0), ∈ Nr−1. (13)
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Hence

t0 ≻
A+A0,L

t, (14)

Summarizing we derive the formula

∀ε > 0 ∃A0 ∈ Ω(ε) (t0 ∈ Ls(A + A0)), (15)

i. e. the trajectory t0 ∈ Ls(A) is not stable.

Lemma 4. If t0 ∈ Ls(A) and there exist r ∈ Ns and t ∈ Ls
r(A) such that t0 |∼

A,r

t,

then the trajectory t0 is not stable.

Proof. If we construct a matrix A0 by the same rules as in lemma 2 and carry out
the same reasoning, then we conclude that the inequalities (8) are true. Moreover,
taking into account t0, t ∈ Ls

r(A) we obtain equalities (13). Hence we have (14).

Thus, formula (15) is valid, i. e. the trajectory t0 ∈ Ls(A) is not stable.

5 Theorems

For any trajectory t0 set

Qs(t0, A) = {t ∈ T : t0 ∼
A

t}.

Theorem 1. A trajectory t0 ∈ P s(A) is stable if and only if the formula

∀t ∈ Qs(t0, A) (t0 ⊢
A

t) (16)

is valid.

Proof. Necessity. Let a trajectory t0 ∈ P s(A) be stable. Assume that formula (16)
is not true. Then there exist r ∈ Ns and t ∼

A
t0 such that t0⊢

A
t, i. e. one of the

following relations holds: t0 |∼
A,r

t or t |≈
A,r

t0. Therefore according to lemmas 1 and 2

the trajectory t0 is not stable. Contradiction.
Sufficiency. Let formula (16) hold. Let us show that trajectory t0 ∈ P s(A) is

stable. We consider two possible cases for an arbitrary trajectory t ∈ T .

Case 1. t ∈ Qs(t0, A). Then according to the theorem condition t0 ⊢
A

t. Hence

from property 9 it follows that the formula

∃ε(t) > 0 ∀A′ ∈ Ω(ε(t)) (t0 ≻
A+A′,P

t) (17)

is true.
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Case 2. t ∈ T \ Qs(t0, A). Therefore the relation t0 ∼
A

t does not hold. Then

there exists an index r ∈ Ns such that fr(t
0, A) < fr(t, A). Hence by virtue of

continuity of the function fr(t, A) in R
m×n there exists a number ε(t) such that

formula (17) is valid.
Summarizing both cases, we obtain

∃ε∗ > 0 ∀t ∈ T ∀A′ ∈ Ω(ε∗) (t0 ≻
A+A′,L

t),

where ε∗ = min{ε(t) : t ∈ T}, i. e. trajectory t0 ∈ Ls(A) is stable.

Theorem 2. A trajectory t0 ∈ Ls(A) is stable if and only if the formula

∀k ∈ Ns ∀t ∈ Ls
k(A) (t0 ⊢

A,k
t) (18)

is valid.

Proof. Necessity. Let a trajectory t0 ∈ Ls(A) be stable. Assume that formula (18)
does not hold. Then there exist r ∈ Ns and t ∈ Ls

r(A) such that t0 ⊢
A,r

t. Therefore

one of the following relations holds: t0 |∼
A,r

t or t |≈
A,r

t0. Further using Lemmas 3 and 4

we conclude that trajectory t0 ∈ Ls(A) is not stable. Contradiction.
Sufficiency. Let formula (18) hold. We show that a trajectory t0 ∈ Ls(A) is

stable. We consider two possible cases for an arbitrary trajectory t ∈ T .
Case 1. t ∈ Ls

1(A). First, let t ∈ Ls(A). Then according to the theorem
condition for any index k ∈ Ns the relation t0 ⊢

A,r
t is valid. Therefore from properties

1 and 9 it follows that the following formula holds

∃ε(t) > 0 ∀A′ ∈ Ω(ε(t)) (t0 ≻
A+A′,L

t). (19)

Now, let t ∈ Ls
1(A) \Ls(A). Then there exists an index r = r(t) ∈ Ns \ {1} such

that t 6∈ Ls
r(A) and t ∈ Ls

r(A) for k ∈ Nr−1. Hence we have

fr+1(t, A) > fr+1(t
0, A) & ∀k ∈ Nr−1 (t0 ⊢

A,k
t).

Taking into account these facts and property 10(ii), we conclude that the following
formula holds

∃ε(t) > 0 ∀A′ ∈ Ω(ε(t)) (t ≻
A+A′,L

t0).

Thus we obtain (19).
Case 2. t ∈ T \ Ls

1(A). Therefore the relation

f1(t, A) > f1(t
0, A)

is valid. Hence formula (19) follows from property 10(i).
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Summarizing both cases, we obtain

∃ε∗ > 0 ∀t ∈ T ∀A′ ∈ Ω(ε∗) (t0 ≻
A+A′,L

t),

where ε∗ = min{ε(t) : t ∈ T}, i. e. trajectory t0 ∈ Ls(A) is stable.

6 Corollaries

Next corollaries follow from Theorems 1 and 2.

Corollary 1. The equality Qs(t0, A) = {t0} is the sufficient condition for a trajec-
tory t0 ∈ P s(A) to be stable.

Corollary 2. The formula

∀t ∈ Qs(t0, A) ∀k ∈ Ns (t |≈
A,k

t0)

is the necessary condition for trajectory t0 ∈ P s(A) to be stable.

Corollary 3. A sufficient condition for a trajectory t0 ∈ P s(A) to be stable is that
for any trajectory t ∈ Qs(t0, A) and any index k ∈ Ns the following equalities hold

Jk(t
0, A) = Jk(t, A),

Njk(t
0, A) = Njk(t, A), j ∈ Jk(t0, A).

It is evident that the problem under consideration turns to the vector combi-
natorial problem with partial criteria of the form MINMIN for n = 1 (A ∈ R

m×s).
Hence the following well-known result follows from Theorem 1.

Corollary 4. [29] A trajectory t0 ∈ P s(A) of the problem with partial criteria of
the form MINMIN (n = 1) is stable if and only if the following formula holds

∀t ∈ Qs(t0, A) ∀k ∈ Ns (Nk(t
0, A) ⊇ Nk(t, A)),

where Nk(t, A) =Argmin{aik : i ∈ t}, A = (aik) ∈ R
m×s.

Corollary 5. If |t| = 1 for any trajectory t ∈ T (p = 1), then the equality
Qs(t0, A) = {t0} is the necessary and sufficient condition for trajectory of a vec-
tor 1-center problem t0 ∈ P s(A) to be stable.

Corollary 6. The equality Ls
1(A) = {t0} is the sufficient condition for a trajectory

t0 to be stable.

Corollary 7. If p = 1 (a vector 1-center problem), then the equality Ls
1(A) = {t0}

is the necessary and sufficient condition for trajectory t0 ∈ Ls(A) to be stable.
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Corollary 8. The formula

∀k ∈ Ns ∀t ∈ Ls
k(A) (t |≈

A,k

t0)

is the necessary condition for trajectory t0 ∈ Ls(A) to be stable.

Corollary 9. For a trajectory t0 ∈ Ls(A) to be stable it is sufficient for any index
k ∈ Ns and any trajectory t ∈ Ls

k(A) to have

Jk(t
0, A) = Jk(t, A),

Njk(t
0, A) = Njk(t, A), j ∈ Jk(t0, A).

Corollary 10. [30] A trajectory t0 ∈ Ls(A) of the problem with partial criteria of
the form MINMIN (n = 1) is stable if and only if the following formula holds

∀k ∈ Ns ∀t ∈ Ls
k(A) (Nk(t

0, A) ⊇ Nk(t, A)),

Nk(t, A) =Argmin{aik : i ∈ t}, A = (aik) ∈ R
m×s.

Corollary 11. A trajectory t0 ∈ Ls(A) is not stable if

∃k ∈ Ns ∃t ∈ Ls
k(A) (Jk(t0, A) ∩ Jk(t, A) = ∅).

Corollary 12. A trajectory t0 ∈ Ls(A) is not stable if

∃k ∈ Ns ∃t ∈ Ls
k(A) ∃j ∈ Jk(t

0, A) (Njk(t
0, A) 6⊇ Njk(t, A)).

7 Examples

Let us give several examples which illustrate results stated above. First, consider
the example of the problem, in which each Pareto optimal trajectory is stable.

Example 1. Let m = 2, n = 2, s = 2, T = {t1, t2, t3}, t1 = {1}, t2 = {1, 2},
t3 = {2} and

A1 =

(

−1 0
2 1

)

, A2 =

(

0 1
0 2

)

.

Then f(t1, A) = (0, 1), f(t2, A) = (0, 1), f(t3, A) = (2, 2). Hence P 2(A) = {t1, t2},
t1 ∼

A
t2. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = {2},

J2(t
1, A) = J2(t

2, A) = {2},

N21(t
1, A) = N21(t

2, A) = {2},

N22(t
1, A) = N22(t

2, A) = {2}.
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Therefore we have

∀k ∈ N2 (t2 |∼
A,k

t1 |≈
A,k

t2),

∀k ∈ N2 (t1 |∼
A,k

t2 |≈
A,k

t1),

i. e. t2 ⊢
A

t1 ⊢
A

t2. Hence formula (16) is valid for trajectories t1 and t2. Thus, by

virtue of Theorem 1 trajectories t1 and t2 are stable.

The following example illustrates the situation when both stable and nonstable
trajectories exist among Pareto optimal trajectories.

Example 2. Let m = 3, n = 2, s = 2, T = {t1, t2, t3, t4}, t1 = {1, 2}, t2 =
{1, 3}, t3 = {2, 3}, t4 = {1} and

A1 =





−1 0
2 1
1 2



 , A2 =





2 1
1 0
−2 1



 .

Then f(t1, A) = (0, 1), f(t2, A) = (0, 1), f(t3, A) = (1, 0), f(t4, A) = (0, 2). There-
fore P 2(A) = {t1, t2, t3}, t1 ∼

A
t2, Q2(t3) = {t3}. Taking into account the last

equality and Corollary 1 we derive that trajectory t3 is stable. Further, we found
the sets

J1(t
1, A) = J1(t

2, A) = {2},

J2(t
1, A) = {1}, J2(t

2, A) = {2}.

Hence we conclude that there exists index k = 2 such that J2(t
1, A) 6⊆ J2(t

2, A)
and J2(t

2, A) 6⊆ J2(t
1, A). Hence t1 |≈

A,2
t2 |≈

A,2
t1, i. e. t2⊢

A
t1⊢

A
t2. Thus, by virtue of

Theorem 1 trajectories t1, t2 are not stable.

Further we consider the example of the problem in which each Pareto optimal
trajectory is nonstable.

Example 3. Let m = 3, n = 2, s = 2, T = {t1, t2, t3}, t1 = {1}, t2 = {2, 3},
t3 = {2} and

A1 =





−1 0
2 0
−1 1



 , A2 =





0 1
−2 1
0 2



 .

Then f(t1, A) = (0, 1), f(t2, A) = (0, 1), f(t3, A) = (2, 1). Therefore P 2(A) =
{t1, t2}, t1 ∼

A
t2. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = {2},

J2(t
1, A) = J2(t

2, A) = {2},
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N21(t
1, A) = {1}, N21(t

2, A) = {2}.

Hence N21(t
1, A) 6⊆ N21(t

2, A), N21(t
2, A) 6⊆ N21(t

1, A), i. e. there exist k = 1 and

j = 2 such that t1 |∼
A,1

t2 |∼
A,1

t1. Therefore t1⊢
A
t2⊢

A
t1. Hence formula (16) is not valid for

trajectories t1 and t2. Thus, by virtue of Theorem 1 trajectories t1 and t2 are not
stable.

Now consider the example of the problem in which each lexicographically optimal
trajectory is stable.

Example 4. Let m = 3, n = 3, s = 2, T = {t1, t2, t3}, t1 = {1, 2}, t2 =
{2, 3}, t3 = {1, 2, 3} and

A1 =





−2 −1 0
2 −1 −1
−2 1 2



 , A2 =





−1 2 −2
1 −2 1
0 0 2



 .

Then f(t1, A) = (−1,−1), f(t2, A) = (−1, 1), f(t3, A) = (−1,−1). Therefore
L2

1(A) = {t1, t2, t3} = T , L2(A) = L2
2(A) = {t1, t2}. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = J1(t
3, A) = {2, 3},

J2(t
1, A) = J2(t

3, A) = {1}, J2(t
2, A) = {3},

{1, 2} = N21(t
1, A) = N21(t

3, A) ⊂ N21(t
2, A) = {2},

N31(t
1, A) = N31(t

2, A) = N31(t
3, A) = {2},

N12(t
1, A) = N12(t

3, A) = {1}.

Hence the following relations hold

t1 |∼
A,1

t2 |≈
A,1

t1, t1 |∼
A,1

t3 |≈
A,1

t1, t3 |∼
A,1

t1 |≈
A,1

t3, t3 |∼
A,1

t2 |≈
A,1

t3,

t1 |∼
A,2

t3 |≈
A,2

t1, t3 |∼
A,2

t1 |≈
A,2

t3.

Thus,

∀k ∈ N2 ∀t ∈ L2
k(A) (t1 ⊢

A
t),

∀k ∈ N2 ∀t ∈ L2
k(A) (t3 ⊢

A
t),

i. e. formula (18) is true. Therefore, by virtue of Theorem 2 trajectories t1, t3 are
stable.

Further, we consider the problem in which each lexicographically optimal trajec-
tory is not stable.
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Example 5. Let m = 2, n = 3, s = 2, T = {t1, t2}, t1 = {1}, t2 = {2} and

A1 =

(

0 −1 0
−2 −2 0

)

, A2 =

(

−1 −2 −1
−2 −2 −1

)

.

Then f(t1, A) = (0,−1), f(t2, A) = (0,−1). Therefore L2
1(A) = {t1, t2} = T ,

L2(A) = L2
2(A) = {t1, t2}. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = {3},

{1, 3} = J2(t
1, A) 6⊆ J2(t

2, A) = {3},

N31(t
1, A) = {1}, N31(t

2, A) = {2}.

Hence we have

N31(t
1, A) 6⊆ N31(t

2, A), N31(t
2, A) 6⊆ N31(t

1, A),

i. e. t1 |∼
A,1

t2 |∼
A,1

t1, t2 |≈
A,1

t1. Therefore t1⊢
A
t2⊢

A
t1. Hence formula (18) is not valid for

both lexicographically optimal trajectories t1 and t2. Thus, in view of Theorem 2
they are not stable.

The following example illustrates situation when both stable and nonstable tra-
jectories exist among lexicographically optimal trajectories.

Example 6. Let m = 2, n = 3, s = 2, T = {t1, t2, t3}, t1 = {1}, t2 =
{1, 2}, t3 = {2} and

A1 =

(

−1 −1 −2
0 −1 −1

)

, A2 =

(

1 0 1
2 2 1

)

.

Then f(t1, A) = (−1, 1), f(t2, A) = (−1, 1), f(t3) = (0, 2). Therefore L2
1(A) =

{t1, t2}, L2(A) = L2
2(A) = {t1, t2}. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = {1, 2},

J2(t
1, A) = J2(t

2, A) = {1, 3},

N11(t
1, A) = N11(t

2, A) = {1},

{1} = N21(t
1, A) ⊂ N21(t

2, A) = {1, 2},

N12(t
1, A) = N12(t

2, A) = {1},

{1} = N32(t
1, A) ⊂ N32(t

2, A) = {1, 2}.

Hence we derive
∀k ∈ N2 (t2 ⊢

A
t1).

Therefore formula (18) is valid and by virtue of Theorem 2 trajectory t2 is stable.
But

N21(t
1, A) 6⊇ N21(t

2, A),

i. e. there exist index k = 1 and trajectory t2 ∈ L2
1(A) such that t1 |∼

A,1

t2. Hence

t1⊢
A
t2. Thus, formula (18) does not hold and by virtue of Theorem 2 trajectory t1 is

nonstable.
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Flow of an Unsteady Dusty Visco-Elastic Fluid

Between Two Moving Plates in Frenet-Frame

Field System

B. J.Gireesha, T.Nirmala, C. S.Vishalakshi, C. S. Bagewadi

Abstract. The present investigation deals with the study of an unsteady motion of
a dusty viscoelastic conducting fluid under arbitrary pressure gradient between two
infinite moving parallel plates. The influence of time dependent pressure gradients, i.e.
impulsive, transition and motion for a finite time is considered along with the effect of
the movement of the plates and the presence of uniform magnetic field. Expressions
for the velocities of the fluid and particles are obtained by using the Laplace transform
technique. Results are presented in graphical form. Finally the skin friction at the
boundaries is calculated.

Mathematics subject classification: 76T10, 76T15.

Keywords and phrases: Frenet frame field system; parallel plates, dusty fluid;
velocity of dust phase and fluid phase, conducting dusty fluid, magnetic field.

1 Introduction

The presence of dust particles in fluids has certain influence on the motion of
the fluids, and such situations arise, for instance in the movement of dust-laden air,
in fluidization, in the use of dust in gas cooling systems, and in sedimentation in
tidal waves, powder technology, acoustics, performance of solid fuel rocket nozzles,
rainerosion, guided missiles, paint spraying, etc.

The stability of the laminar flow of a dusty gas in which the dust particles
are uniformly distributed has been discussed by P. G. Saffman [18] and the basic
equations for the flow of dusty fluid were formulated. T.M.Nabil [16] studied the
effect of couple stresses on pulsatile hydromagnetic Poiseuille flow. N. Datta [5]
obtained the solutions for Pulsatile flow of heat transfer of a dusty fluid through an
infinitely long annular pipe. Girish Kumar, R.K. S.Chaudhary and K.K. Singh [9]
have discussed the unsteady flow of conducting dusty visco-elastic liquid through a
channel, and N. C.Ghosh, B. C.Ghosh and L.Debnath [10] obtained the results
for the hydromagnetic flow of a dusty visco-elastic fluid between two infinite parallel
plates.

Some researchers like Kanwal [12], Truesdell [19], Indrasena [11], Purushotham
[17], Bagewadi and Gireesha [1, 2] have applied differential geometry techniques to
investigate the kinematical properties of fluid flows in the field of fluid mechanics.

c© B. J. Gireesha, T.Nirmala, C. S.Vishalakshi, C. S. Bagewadi, 2009
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Further, recently the authors [6–8] have studied dusty fluid flow in Frenet frame field
system under varying time dependent pressure gradients.

The present investigation deals with the study of an electrically conducting dusty
viscoelastic fluid flow between two infinitely extended non-conducting parallel plates
in Frenet frame field system. Initially, the fluid and dust particles are assumed to
be at rest. The motion of fluid is due to the influence of time dependent pressure
gradient along with movement of the plates and applied uniform magnetic field. The
analytical expressions are obtained for velocities of fluid and dust particles in three
cases. For each case the skin friction at boundaries is obtained. The changes in
the velocity profiles for different Hartmann numbers are shown graphically. section-
Frenet Frame Field System

Let −→s ,−→n ,
−→
b be triply orthogonal unit vectors tangent, principal normal, binor-

mal respectively to the spatial curves of congruences formed by fluid phase velocity
and dusty phase velocity lines respectively as shown in Figure 1.

Figure 1. Frenet Frame Field System

Geometrical relations are given by Frenet formulae [3]

i)
∂−→s

∂s
= ks

−→n ,
∂−→n

∂s
= τs

−→
b − ks

−→s ,
∂
−→
b

∂s
= −τs

−→n ;

ii)
∂−→n

∂n
= k′

n
−→s ,

∂
−→
b

∂n
= −σ′

n
−→s ,

∂−→s

∂n
= σ′

n

−→
b − k′

n
−→n ; (1)

iii)
∂
−→
b

∂b
= k′′

b
−→s ,

∂−→n

∂b
= −σ′′

b
−→s ,

∂−→s

∂b
= σ′′

b
−→n − k′′

b

−→
b ;

iv) ∇.−→s = θns + θbs; ∇.−→n = θbn − ks; ∇.
−→
b = θnb,

where ∂/∂s, ∂/∂n and ∂/∂b are the intrinsic differential operators along fluid phase
velocity (or dust phase velocity) lines, principal normal and binormal. The functions
(ks, k

′
n, k′′

b ) and (τs, σ
′
n, σ′′

b ) are the curvatures and torsion of the above curves and
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θns and θbs are normal deformations of these spatial curves along their principal
normal and binormal respectively.

2 Formulation and Solution of the Problem

The present discussion considers a dusty visco-elastic fluid bounded by two infi-
nite flat moving plates separated by a distance h in the absence of body force. Both
the fluid and the dust particle clouds are supposed to be static at the beginning.
The dust particles are assumed to be spherical in shape and uniform in size. The
number density of the dust particles is taken as a constant throughout the flow. It
is assumed that the dust particles are electrically nonconducting and neutral. The
flow is due to the influence of time dependent pressure gradient along with motion of
plates and due to magnetic field of uniform strength B0. Under these assumptions
the flow will be a parallel flow in which the streamlines are along the tangential
direction as shown in Figure 2.

Figure 2. Geometry of the flow

For the above described flow the velocities of fluid and dust are of the form

−→u = us
−→s , −→v = vs,

−→s (2)

i.e., un = ub = 0 and vn = vb = 0, where (us, un, ub) and (vs, vn, vb) denote the
velocity components of fluid and dust respectively.

Since the flow is in between two moving plates, we can assume the velocity of
both fluid and dust particles do not vary along tangential direction. Suppose the
fluid extends to infinity in the principal normal direction, then the velocities of both
may be neglected in this direction.

The modified Saffman’s [18] equations for the dusty visco-elastic fluid with the
help of equation (1) are given by:

∂us

∂t
= −

1

ρ

∂p

∂s
+

(

α + β
∂

∂t

)(

∂2us

∂b2
− Crus

)

+
kN

ρ
(vs − us) −

σB2
0

ρ
us; (3)
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∂vs

∂t
=

k

m
(us − vs). (4)

We have the following nomenclature:
ρ−density of the gas, p−pressure of the fluid, N−number of density of dust

particles, k = 6πaµ− Stoke’s resistance (drag coefficient), a−spherical radius of dust
particle, m−mass of the dust particle, B0−the intensity of the imposed transverse
magnetic field, σ−electrical conductivity of the fluid, m/k−relaxation time of the
dust particles, α & β are the kinematic coefficients of visco-elasticity of the fluid,
t−time, and Cr = (σ′2

b + k′2
n + k′2

b + σ′′2
b ) is called the curvature term [2].

Introducing the nondimensional quantities

x′ = x/h, y′ = y/h, t′ = αt/h2, p′ = ph2/α2ρ, u′
s = ush/α, v′s = vsh/α

in equations (3) and (4) and dropping the primes one can get

∂us

∂t
= −

∂p

∂s
+

(

1 + E
∂

∂t

)(

∂2us

∂b2
− Crus

)

+
l

w
(vs − us) − M2us; (5)

∂vs

∂t
=

1

w
(us − vs) (6)

where E = β/h2 is the elastic parameter, l = mN/ρ, w = mα/kh2, M =
B0h

√

σ/µ (Hartmann number).
Equations (5) and (6) are to be solved subject to the initial and boundary con-

ditions in nondimensional form as:

Initial condition; at t = 0; us = 0, vs = 0

Boundary condition; for t > 0;us = f(t), at b = 0 (7)

and us = g(t) at b = 1

Let P (t) be the time dependent pressure gradient to be impressed on the system for
t > 0. So we can write

−
∂p

∂s
= P (t).

We define Laplace transformations of us and vs as

U =

∞
∫

0

e−xtusdt and V =

∞
∫

0

e−xtvsdt. (8)

Applying the Laplace transform to equations (5) and (6) and to boundary con-
ditions, then by using initial conditions one obtains

xU = P (x) + (1 + xE)

(

∂2U

∂b2
− CrU

)

+
l

w
(V − U) − M2U ; (9)

xV =
1

w
(U − V ); (10)
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U = F (x), at b = 0 and U = G(x) at b = 1, (11)

where F (x), G(x) and P (x) are Laplace transforms of f(t), g(t) and P (t)
respectively.

Eliminating V from (9) and (10) we obtain the following equation

d2U

db2
− Q2U = −

P (x)

1 + xE
, (12)

where Q2 =

(

Cr +
x

1 + xE
+

M2

1 + xE
+

xl

(1 + xE)(1 + xw)

)

.

CASE 1. Impulsive Motion: Consider the case of impulsive motion, in which

f(t) = u0δ(t) at b = 0,

g(t) = u1δ(t) at b = 1,

P (t) = p0δ(t),

where δ(t) is the Dirac delta function and u0, u1 & p0 are constants.
The velocities of fluid and dust particle are obtained by solving the equation (12)

subjected to the boundary conditions (11) as follows:

U =

[

u1 sinh(Qb) − u0 sinh(Q(b − 1))

sinh(Q)

]

+

+
p0

Q2(1 + xE)

[

sinh(Q(b − 1)) − sinh(Qb)

sinh(Q)
+ 1

]

.

Using U in (10) we obtain V as

V =
1

(1 + xw)

[

u1 sinh(Qb) − u0 sinh(Q(b − 1))

sinh(Q)

]

+

+
p0

Q2(1 + xE)(1 + xw)

[

sinh(Q(b − 1)) − sinh(Qb)

sinh(Q)
+ 1

]

.

By taking the inverse Laplace transform to U and V, one can obtain

us = 2π

∞
∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1
+

eα2t(1 + α2E)2(1 + α2w)2

δ2

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb) ×

×

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2

]

+
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+

[

u1 sinh(Xb) − u0 sinh(X(b − 1))

sinh(X)

]

+

+
p0

X2

[

sinh(X(b − 1)) − sinh(Xb)

sinh(X)
+ 1

]

;

vs = 2π

∞
∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)

δ1
+

eα2t(1 + α2E)2(1 + α2w)

δ2

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb) ×

×

[

eα1t(1 + Eα1)(1 + wα1)

δ1
+

eα2t(1 + Eα2)(1 + wα2)

δ2

]

+

+

[

u1 sinh(Xb) − u0 sinh(X(b − 1))

sinh(X)

]

+

+
p0

X2

[

sinh(X(b − 1)) − sinh(Xb)

sinh(X)
+ 1

]

.

Shear stress (Skin friction): The expression for shear stress at the plates
b = 0 and b = 1 are respectively given by:

D0 = 2π2µ
∞
∑

r=0

r2[u0 − u1(−1)r] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1
+

eα2t(1 + α2E)2(1 + α2w)2

δ2

]

+

+ 2p0µ

∞
∑

r=0

[(−1)r − 1]

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2

]

×

× µX

[

u1 − u0 cosh(X)

sinh(X)

]

+
µp0

X

[

cosh(X) − 1

sinh(X)

]

;

D1 = 2π2µ

∞
∑

r=0

r2[u0(−1)r − u1] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1
+

eα2t(1 + α2E)2(1 + α2w)2

δ2

]

+

+ 2p0µ

∞
∑

r=0

[1 − (−1)r]

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2

]

×

× µX

[

u1 cosh(X) − u0

sinh(X)

]

+
µp0

X

[

1 − cosh(X)

sinh(X)

]

.
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CASE 2. Transition Motion: We consider the case of transition motion in
which

f(t) = u0H(t)e−λt at b = 0,

g(t) = u1H(t)e−λt at b = 1,

P (t) = p0H(t)e−λt λ > 0,

where H(t) is the Heaviside unit step function.
Now we obtain the expressions for velocities of both fluid and dust phase as

us = 2π
∞

∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1(α1 + λ)
+

eα2t(1 + α2E)2(1 + α2w)2

δ2(α2 + λ)

]

+

+ e−λt

[

u1 sinh(Y b) − u0 sinh(Y (b − 1))

sinh(Y )

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb) ×

×

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1(α1 + λ)
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2(α2 + λ)

]

+

+
p0e

−λt

(1 − λE)Y 2

[

sinh(Y (b − 1)) − sinh(Y b) + sinh(Y )

sinh(Y )

]

;

vs = 2π
∞

∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)

δ1(α1 + λ)
+

eα2t(1 + α2E)2(1 + α2w)

δ2(α2 + λ)

]

+

+ e−λt

[

u1 sinh(Y b) − u0 sinh(Y (b − 1))

sinh(Y )(1 − λw)

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb) ×

×

[

eα1t(1 + Eα1)(1 + wα1)

δ1(α1 + λ)
+

eα2t(1 + Eα2)(1 + wα2)

δ2(α2 + λ)

]

+

+
p0e

−λt

(1 − λE)Y 2

[

sinh(Y (b − 1)) − sinh(Y b) + sinh(Y )

sinh(y)(1 − λw)

]

.

Shear stress (Skin friction): The shear stress at the plates b = 0 and b = 1
for transition motion are, respectively, given by:

D0 = 2π2µ

∞
∑

r=0

r2[u0 − u1(−1)r] ×
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×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1(α1 + λ)
+

eα2t(1 + α2E)2(1 + α2w)2

δ2(α2 + λ)

]

+

+ µY e−λt

[

u1 − u0 cosh(Y )

sinh(Y )

]

+
p0µe−λt

(1 − λE)Y

[

cosh(Y ) − 1

sinh(Y )

]

+

+ 2µp0

∞
∑

r=0

[(−1)r − 1]

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1(α1 + λ)
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2(α2 + λ)

]

;

D1 = 2π2µ

∞
∑

r=0

r2[u0(−1)r − u1] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1(α1 + λ)
+

eα2t(1 + α2E)2(1 + α2w)2

δ2(α2 + λ)

]

+

+ Y µe−λt

[

u1 cosh(Y ) − u0

sinh(Y )

]

+
p0µe−λt

(1 − λE)Y

[

1 − cosh(Y )

sinh(Y )

]

+

+ 2µp0

∞
∑

r=0

[1 − (−1)r]

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1(α1 + λ)
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2(α2 + λ)

]

.

CASE 3. Motion for a finite time. This case considers the motion of the
plates and the pressure gradient get ceased after a finite time, Hence it can be taken
as

f(t) = u0[H(t) − H(t − T )] at b = 0,

g(t) = u1[H(t) − H(t − T )] at b = 1,

P (t) = p0[H(t) − H(t − T )] λ > 0,

where H(t) is the Heaviside unit step function. For this case the expressions for
velocities of both fluid and dust phase are obtained as

us = 2π
∞
∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)2(1 − e−α1T )

δ1α1
+

+
eα2t(1 + α2E)2(1 + α2w)2(1 − e−α2T )

δ2α2

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb)

[

eα1t(1 + Eα1)(1 + wα1)
2(1 − e−α1T )

δ1α1
+

+
eα2t(1 + Eα2)(1 + wα2)

2(1 − e−α2T )

δ2α2

]

;

vs = 2π

∞
∑

r=0

r([u0 − u1(−1)r] sin(rπb) ×
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×

[

eα1t(1 + α1E)2(1 + α1w)(1 − e−α1T )

δ1α1
+

+
eα2t(1 + α2E)2(1 + α2w)(1 − e−α2T )

δ2α2

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb)

[

eα1t(1 + Eα1)(1 + wα1)(1 − e−α1T )

δ1α1
+

+
eα2t(1 + Eα2)(1 + wα2)(1 − e−α2T )

δ2α2

]

.

Shear stress (Skin friction): The shear stress at the plates b = 0 and b = 1
for this flow are, respectively, given by:

D0 = 2µπ2
∞
∑

r=0

r2[u0 − u1(−1)r] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2(1 − e−α1T )

δ1α1
+

+
eα2t(1 + α2E)2(1 + α2w)2(1 − e−α2T )

δ2α2

]

+

+ 2µp0

∞
∑

r=0

[(−1)r − 1]

[

eα1t(1 + Eα1)(1 + wα1)
2(1 − e−α1T )

δ1α1
+

+
eα2t(1 + Eα2)(1 + wα2)

2(1 − e−α2T )

δ2α2

]

;

D1 = 2µπ2
∞
∑

r=0

r2[u0(−1)r − u1] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2(1 − e−α1T )

δ1α1
+

+
eα2t(1 + α2E)2(1 + α2w)2(1 − e−α2T )

δ2α2

]

+

+ 2µp0

∞
∑

r=0

[1 − (−1)r]

[

eα1t(1 + Eα1)(1 + wα1)
2(1 − e−α1T )

δ1α1
+

+
eα2t(1 + Eα2)(1 + wα2)

2(1 − e−α2T )

δ2α2

]

,

where

a1 =
[

(Cr + r2π2)E + 1
]

w, b1 = Cr(w + E) + 1 + M2w + l + r2π2(w + E);

c1 = Cr + M2 + r2π2, α1 =
−b1 +

√

b2
1 − 4a1c1

2a1
, α2 =

−b1 −
√

b2
1 − 4a1c1

2a1
;

Y =

√

Cr(1 − Eλ)(1 − λw) + (M2 − λ)(1 − λw) − lλ

(1 − Eλ)(1 − λw)
, X = Cr + M2;
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δ1 = (1 − M2E)(1 + α1w)2 + l(1 − α2
1Ew);

δ2 = (1 − M2E)(1 + α2w)2 + l(1 − α2
2Ew).

3 Conclusions

Figures 3 to 5 show the parabolic nature of velocity profiles for the fluid and
dust particles for all three cases.
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Figure 3. Variation of fluid and dust phase velocity with b (for Case 1)
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Figure 4. Variation of fluid and dust phase velocity with b (for Case 2)

According to Frenet approximation of a curve in the osculating plane the path
of the curve near origin is parabolic. Hence the results obtained here are analogous
to [3]. It is concluded that the velocity of fluid particles is parallel to velocity of
dust particles. Also it is evident from the graphs that, as we increase the strength
of the magnetic field, it has an appreciable effect on the velocities of fluid and dust
particles. Further one can observe that if the magnetic field is zero then the results
are in agreement with the plane Couette flow. The velocities for fluid and dust
particles decreases for large values of t. We observe that if the dust is very fine then
the velocities of both fluid and dust particles will be the same.
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Figure 5. Variation of fluid and dust phase velocity with b (for Case 3)
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On preradicals associated to principal

functors of module categories. II

A. I.Kashu

Abstract. Continuing part I (see [1]) the classes of modules and preradicals deter-
mined by the functor U ⊗S - : S-Mod → Ab are studied, the relations between them
are established and the conditions of coincidence of some preradicals are shown.
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module.

Introduction

In the first part of this work [1] the classes of modules and preradicals associated
to the functor H = HomR(U, -) : R-Mod → Ab (RU ∈ R-Mod) are studied. Now
we will use the same methods for the investigation of similar questions for the functor
of tensor product:

T = U ⊗S - : S-Mod → Ab,

where US is a fixed right S-module. The preradicals determined in S-Mod by US and
T are elucidated, their properties and relations between them are shown. Moreover,
some conditions for the coincidence of “near” preradicals are indicated. We remark
that there exists a partial duality between these results and those of part I for the
functor H = HomR(U, -). The main general facts on preradicals and torsions in
modules can be found in the books [3–6].

1 Preradicals defined by the functor T

Let S be a ring with unity and S-Mod is the category of unitary left S-modules.
We fix a right S-module US and consider the functor of tensor product, defined
by US:

T = T U = U ⊗S - : S-Mod → Ab,

where Ab is the category of abelian groups.
In S-Mod we consider the following class of modules:

F(US) = {M ∈ S-Mod |U ⊗S m = 0 in U ⊗S M implies m = 0},

where U ⊗S m = {u⊗S m ∈ U ⊗S M |u ∈ U} for m ∈ M . A direct verification proves

c© A. I.Kashu, 2009
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Proposition 1.1. F(US) is a pretorsionfree class (i.e. is closed under submo-
dules and direct products), therefore it defines a radical tU in S-Mod such that

P(tU)
def
== F(US). For every module SM we have:

tU(M) = {m ∈ M |U ⊗S m = 0 in U ⊗S M}. �

Having the module US and respective functor T = T U , we denote:

KerT = {M ∈ S-Mod |T (M) = 0}.

Proposition 1.2. Ker T is a torsion class (i.e. is closed under homomorphic
images, direct sums and extensions), therefore it defines an idempotent radical tU in

S-Mod such that R(tU)
def
== Ker T . For every module M ∈ S-Mod we have:

tU(M) =
∑

{Nα ⊆ M |Nα ∈ Ker T}.

The corresponding torsionfree class is P(tU) = (Ker T )
↓

.

Proof. From properties of the functor T (which is right exact and preserves direct
sums) follows that Ker T is a torsion class. For example, any short exact sequence
in S-Mod

0 → M ′ ϕ
−→ M

π
−→ M ′′ → 0

with M ′,M ′′ ∈ Ker T implies in Ab the exact sequence

T (M ′)
T (ϕ)
−−−→ T (M)

T (π)
−−−→ T (M ′′) → 0

with T (M ′) = T (M ′′) = 0, therefore T (M) = 0. Thus the class Ker T is closed
under extensions. The rest of statements are also obvious.

Next we clarify the relation between the preradicals tU and tU . For that we study
the connections between the associated classes of modules.

Proposition 1.3. F(US) ⊆ (KerT )
↓

.

Proof. Let N ∈ F(US). If M ∈ Ker T and f ∈ HomS(M,N), then for the morphism
T (f): U ⊗S M → U ⊗S N and for every m ∈ M we have U ⊗S m = 0 in U ⊗S M = 0.
Therefore U ⊗S f(m) = 0 in U ⊗S N , and from the assumption N ∈ F(US) now it
follows f(m) = 0. Thus f = 0 and HomS(M,N) = 0 for every M ∈ KerT , i.e.

M ∈ (Ker T )
↓

.

Proposition 1.4.
(

F(US)
)↑

= KerT .

Proof. (⊆) Let M ∈
(

F(US)
)↑

, i.e. HomS(M,N) = 0 for every N ∈ F(US). Since
tU is a radical, for every M ∈ S-Mod we have:

M/tU(M) ∈ P(tU) = F(US).
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From the assumption it follows HomR

(

M,M/tU(M)
)

= 0, therefore M/tU(M) = 0,
i.e. M = tU(M). This means that U ⊗S m = 0 in U ⊗S M for every m ∈ M , thus
U ⊗S M = 0.

(⊇) By Proposition 1.3 F(US) ⊆ (KerT )
↓

, therefore

(

F(US)
)↑

⊇ (KerT )
↓↑

= KerT,

the last relation beeng true since KerT is a torsion class (Proposition 1.2).

Proposition 1.5. For every module US we have the relation tU ≥ tU and tU is the
greatest idempotent radical contained in the radical tU .

Proof. By Proposition 1.3 F(US) ⊆ (KerT )
↓

, i.e. P(tU) ⊆ P(tU), therefore

tU ≥ tU . Moreover, from Proposition 1.4 it follows
(

F(US)
)↑↓

= (Ker T )
↓

and, since

F(US) = P(tU) and (Ker T )
↓

= P(tU), we obtain
(

P(tU)
)↑↓

= P(tU). Thus P(tU) is
the least torsionfree class, containing P(tU), which is equivalent with the assertion
of proposition.

Further we will show the necessary and sufficient conditions for coincidence of
these two “neighbour” preradicals tU and tU . We will need the following notion.

Definition 1. A module US will be called weakly flat if the functor T = U ⊗S -
preserves the short exact sequences of the form

0 → tU(M)
i
−→
⊆

M
π

−−→
nat

M /tU(M) → 0

for every module M ∈ S-Mod (i.e. T (i) is a monomorphism for every SM).

Proposition 1.6. For module US the following conditions are equivalent :

1) tU = tU ;

2) radical tU is idempotent ;

3) F(US) = (KerT )
↓

;

4) US is weakly flat.

Proof. 1) ⇔ 2) ⇔ 3) follow from Proposition 1.5.

2) ⇒ 4). If tU is idempotent, then tU(M) = tU

(

tU(M)
)

for every module SM ,
therefore

tU(M) ∈ R(tU) = R(rU) = KerT,

thus T
(

tU(M)
)

= 0. So T (i) = 0 and T (i) is mono, where i is the inclusion
tU(M) ⊆ M .

4) ⇒ 2). Let US be a weakly flat module. Let m ∈ tU(M), i.e. U ⊗S m = 0
in U ⊗S M . Since the subset U ⊗S m ⊆ U ⊗S tU(M) pass by T (i) on U ⊗S i(m) =
U ⊗S m = 0 in U ⊗S M , and by assumption T (i) is a monomorphism, we have
U ⊗S m = 0 in U ⊗S tU(M). Therefore m ∈ tU

(

tU(M)
)

and tU(M) ⊆ tU

(

tU(M)
)

, i.e.
tU is idempotent.
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Now we will consider the stronger condition to radical tU : the requirement to be
a torsion (i.e. hereditary radical).

Definition 2. The module US will be called t-hereditary if from U ⊗S M = 0 it
follows U ⊗S N = 0 for every submodule N ⊆ M .

From the previous results and definitions follows

Proposition 1.7. For module US the following conditions are equivalent :

1) radical tU is a torsion;

2) tU = tU and class Ker T is hereditary ;

3) tU = tU and class (Ker T )
↓

is stable;

4) US is weakly flat and t-hereditary. �

Corollary 1.8. If module US is flat then the radical tU is a torsion.

Proof. If US is flat then by definition it is weakly flat. Let U ⊗S M = 0 and N
i
⊆ M .

Then T (i) is monomorphism, so U ⊗S N = 0, i.e. US is t-hereditary.

2 Relations between (tU , tU ) and preradicals defined by ideal

J = (0 : US)

As before we fix a module US which defines the radical tU (Section 1). Acting
by tU to SS we obtain the ideal:

J
def
== tU(SS) = {s ∈ S |U ⊗S s = 0 in U ⊗S S}.

The isomorphism U ⊗S S ∼= U show that the relation U ⊗S s = 0 in U ⊗S S means
that Us = 0, therefore the ideal

J = (0 : US) = {s ∈ S |Us = 0}

is the annihilator of module US. As every ideal of a ring, J determines in S-Mod
the following classes of modules [1, 2, 7]:

JT = {M ∈ S-Mod |JM = M};

JF = {M ∈ S-Mod |m ∈ M,Jm = 0 ⇒ m = 0};

A(J) = {M ∈ S-Mod |JM = 0}.
We remind briefly form some facts on these classes of modules.

Proposition 2.1. 1) JT is a torsion class, therefore it determines an idempotent

radical rJ such that R(rJ)
def
== JT and so P(rJ) = JT

↓

;

2) JF is a torsionfree and stable class, therefore it determines a torsion rJ such

that P(rJ)
def
== JF and so R(rJ) = JF

↑

;

3) A(J) is a pretorsion and hereditary class, therefore it determines a pretorsion
r(J) such that R(r(J)) = A(J);



46 A. I.KASHU

4) A(J) is a pretorsionfree and cohereditary class, therefore it determines a

cohereditary radical r(J) such that P
(

r(J)
) def

== A(J). �

Proposition 2.2. 1) rJ ≤ r(J) and rJ is the greatest idempotent radical contained
in r(J).

2) rJ ≥ r(J) and rJ is the least idempotent radical (torsion) containing r(J). �

Proposition 2.3. The following conditions are equivalent :

1) rJ = r(J);

2) r(J) is idempotent ;

3) A(J) = JT
↓

;

4) rJ = r(J);

5) r(J) is a radical

6) A(J) = JF
↑

;

7) J = J2. �

Next we will study the relations between the preradicals defined by ideal J ⊳ S
and preradicals tU , tU from Section 1. For that purpose it is sufficient to clarify the
connections between the respective classes of modules.

Proposition 2.4. F(US) ⊆ A(J) (i.e. P(tU) ⊆ P
(

r(J)
)

, so tU ≥ r(J).

Proof. Let M ∈ F(US). For every j ∈ J and m ∈ M we have:

U ⊗S (j m) = (Uj) ⊗S m = 0 ⊗S m in U ⊗S M,

thus by assumption it follows j m = 0. Therefore JM = 0, i.e. M ∈ A(J).

Proposition 2.5. JT ⊆ KerT (i.e. R(rJ) ⊆ R(tU), so rJ ≤ tU).

Proof. If M ∈ JT, then JM = M and we have

U ⊗S M = U ⊗S (JM) = UJ ⊗S M = 0 ⊗S M = 0,

thus M ∈ KerT .

From the last statement it follows that

JT
↓

⊇ (KerT )
↓

=
(

F(US)
)↑↓

⊇ F(US),

i.e. P(rJ) ⊇ P(tU) ⊇ P(tU), which means that

rJ ≤ tU ≤ tU .

In this way, we obtain the following scheme, which illustrates the relations between
preradicals studied above:
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Figure 1.

The question of coincidence of all these preradicals is more complicated than in
the case of functor H [1]. We remark, in particular, that the relations tU = r(J) or
tU = rJ are not sufficient for the coincidence of all preradicals of Figure 1.

The relation rJ = tU is equivalent to the inclusion Ker T ⊆ JT; the relation
r(J) = tU is equivalent to the inclusion A(J) ⊆ F(US). Finally, the stronger relation

rJ = tU is equivalent to the inclusion JT
↓

⊆ F(US).

The general situation on classes of modules in this case is shown in Figure 2 (see
next page).

3 Supplement to the case of functor H

In the part I of this work [1] we noted the fact that for the functor H is not
obtained the symmetric statements for the preradicals

(

rI , r(I)

)

. Now we supplement
the results of [1], using the above constructions for the functor T .

We remind that in part I [1] is studied the functor

H = HU = HomR(U, -) : R-Mod → Ab

for a fixed module RU ∈ R-Mod. We have the idempotent preradical rU in R-
Mod with R(rU) = Gen (RU) and the idempotent radical r U with P(r U) = KerH.
Moreover, the trace of RU in R, i.e. the ideal I = rU(RR), determines two pairs of
preradicals of different types:

(

rI , r(I)
)

and
(

rI , r(I)

)

. We obtained the situation

rI ≤ rU ≤ r U , rI ≤ r(I) ≤ r U ,

studying the conditions of coincidence of these preradicals.

Now we will construct two preradicals tV and tV , which are related similarly with
the pair (rI , r(I)). With this purpose for our fixed module RU ∈ R-Mod we denote:

VR = HomR(U,R),
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Figure 2.
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the dual module of RU , which is a right R-module. For this module we consider the
functor

T = T V = V ⊗R - : R-Mod → Ab,

which determines the associated preradicals tV and tV of R-Mod, where:

1) tV is a radical of R-Mod with P(tV )
def
== F(VR) =

= {M ∈ R-Mod |V ⊗R m = 0 in V ⊗R M ⇒ m = 0};

2) tV is an idempotent radical of R-Mod such that R(tV )
def
== Ker T V , therefore

P(tV ) = (KerT V )
↓

.

From Section 1 it follows that F(VR) ⊆ KerT V )
↓

(Proposition 1.3), thus tV ≥

tV . Moreover,
(

F(VR)
)↑

= KerT V , therefore tV is the greatest idempotent radical
contained in tV (Proposition 1.5).

Now we will combine this situation with the corresponding situation defined
in R-Mod by module RU and ideal I [1]. The purpose is to clarify the relations
between preradicals studied in part I [1] and preradicals (tV , tV ). As usual, we study
the connections between the corresponding classes of modules.

Proposition 3.1. KerT V ⊆ A(I).

Proof. Every element u ∈ U determines the morphism ϕu : V ⊗R M → M by

the rule ϕu(f ⊗ m)
def
== [(u)f ] · m, where f ∈ HomR(U,R) and m ∈ M . We have

Im ϕu = [(u)V ] · M and

∑

u∈U

Im ϕu =
∑

u∈U

[(u)V ] · M =
(

∑

f :U→R

Im f
)

· M = I M.

If M ∈ KerT V , then V ⊗RM = 0 and ϕu = 0 for every u ∈ U , therefore
∑

u∈U

Im ϕu =

I M = 0.

Proposition 3.2. IF ⊆ F(VR).

Proof. Let M ∈ IF, i.e. from I · m = 0 (m ∈ M) it follows m = 0. Suppose that
V ⊗R m = 0 in V ⊗R M . Then as in the preceding proof, for every u ∈ U we have
the morphism ϕu : V ⊗R M → M such that

ϕu(V ⊗R m) = [(u)V ] · m = 0.

Therefore
∑

u∈U

ϕu(V ⊗R m) =
∑

u∈U

[(u)V ] · m = I · m = 0

and from the assumption M ∈ IF it follows m = 0. So M ∈ F(VR).

We remark that from Proposition 1.3 we have also the inclusion:

F(VR) ⊆ (KerT V )
↓

.

Corollary 3.3. tV ≤ r(I) and rI ≥ tV .
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Proof. Since Ker T V = R(tV ) and A(I) = R
(

r(I)

)

, from Proposition 3.1 we have
R(tV ) ⊆ R

(

r(I)

)

, thus tV ≤ r(I).
Similarly, since IF = P(rI) and F(VR) = P(tV ), from Proposition 3.2 it follows

P(rI) ⊆ P(tV ), therefore rI ≥ tV .

In this way, for the functor H we have the following relations between the asso-
ciated preradicals:
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Figure 3. Figure 4.

The conditions of coincidence of preradicals from Figure 3 are shown in part I
([1], Proposition 4.4). A similar result is true for preradicals from Figure 4.

Proposition 3.4. The following conditions are equivalent :
1) tV = rI ;
2) tV = rI ;
3) tV = r(I);
4) tV = r(I);
5) V I = V .

Proof. The equivalence of conditions 1)–4) can be verified similarly to the proof of
Proposition 4.4 of part I [1].

1) ⇒ 5). Let tV = rI . Then P(tV ) = P(rI), i.e. F(VR) = IF. Therefore
(

F(VR)
)↑

= IF
↑

where
(

F(VR)
)↑

= KerT V , thus KerT V = IF
↑

. From the relations

KerT V ⊆ A(I) ⊆ IF
↑

we obtain A(I) = KerT V . Since R/I ∈ A(I), we have R/I ∈ KerT V , i.e.
V ⊗R (R/I) ∼= V/V I = 0, thus V = V I.

5) ⇒ 1). Let V I = V . It is sufficient to show that F(VR) = IF, i.e. the inclusion
F(VR) ⊆ IF. If M ∈ F(VR) and I · m = 0 for some m ∈ M , then:

V ⊗R m = V I ⊗R m = V ⊗R (Im) = 0 in V ⊗R M.

From the assumption M ∈ F(VR) now it follows m = 0. So M ∈ IF.
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A REPUBLICII MOLDOVA. MATEMATICA
Number 3(61), 2009, Pages 52–56
ISSN 1024–7696

On commutative Moufang loops

with some restrictions for subloops

and subgroups of its multiplication groups

Natalia Lupashco

Abstract. It is proved that if an infinite commutative Moufang loop L has such an
infinite subloop H that in L every associative subloop which has with H an infinite
intersection is a normal subloop then the loop L is associative. It is also proved that
if the multiplication group M of infinite commutative Moufang loop L has such an
infinite subgroup N that in M every abelian subgroup which has with N an infinite
intersection is a normal subgroup then the loop L is associative.

Mathematics subject classification: 20N05.

Keywords and phrases: Commutative Moufang loop, multiplication group, infinite
associative subloop, infinite abelian subgroup.

When considering different classes of algebras (rings, groups, loops) it is very
important to know whether they have subalgebras (systems of subalgebras) with
prescribed features. For example, in [1] it is proved that every infinite CML L
contains an infinite associative subloop and, if all infinite associative subloops of
L are normal in L, then L is associative [2]. Similarly from the equivalence of
statements 1), 2), 8) of Theorem 3.5 from [1] it follows that every multiplication
group M of infinite CML L contains an infinite abelian subgroup and if all infinite
abelian subgroups of the multiplication group M are normal in M then CML L is
associative [3].

In this work the restriction on infinite associative subloops and infinite abelian
subgroups is reduced. We prove that if an infinite CML L (respect. multiplica-
tion group M of infinite CML L) has such an infinite subloop H (respect. infinite
subgroup N) that in L (respect. M) every associative subloop (respect. abelian sub-
group) which has with H (respect. N) an infinite intersection is a normal subloop
(respect. subgroup) then the CML L is associative.

We remind that the commutative Moufang loop (abbreviated CML) is charac-
terized by the identity x2 · yz = xy · xz.

The multiplication group M(L) of a CML L is the group generated by all the
translations R(x), where R(x)y = yx.

The subgroup I(L) of the group M(L), generated by all the inner mappings
R(x, y) = R−1(xy)R(y)R(x) is called the inner mapping group of the CML L.

c© Natalia Lupashco, 2009
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A subloop H of the CML L is called normal in L if x · yH = xy · H for all
x, y ∈ L. Equivalently, H is normal in L if I(Q)H = H.

The center Z(L) of the CML L is the normal subloop Z(L) = {x ∈ L|xy · z =
x · yz ∀y, z ∈ L} [4].

Further we will denote by < M > the subloop of the loop L, generated by the
set M ⊆ L.

Theorem. For an infinite CML L with multiplication group M the
following statements are equivalent:

1) the CML L is associative;
2) the CML L has such an infinite subloop H that every associative subloop which

hase an infinite intersection with H is a normal subloop in L;
3) the group M is abelian;
4) the group M has such an infinite subloop N that every associative subloop

which hase an infinite intersection with N is a normal subgroup in M.

Proof. The implications 1) ⇒ 2), 3) ⇒ 4), 1) ⇔ 3) are obvious.

2) ⇒ 1). We suppose that H is a non-periodic subloop and let a ∈ H be an
element of infinite order. By [4] the element a3 belongs to the center Z(L) of CML
L. Let b be an arbitrary element in L such that < b > ∩ < a >= 1. The subloop
< a3 > is normal in L. Then by [4] the product < b >< a3 > is a subgroup. As
< a3 >⊆< b >< a3 > ∩H then by statement 2) < b >< a3 > is a normal subloop
in L. Let ϕ be an inner mapping of CML L. In CML the inner mappings are its
automorphisms [4]. Then < b >< a3 >= ϕ(< b >< a3 >) = ϕ(< b >)ϕ(< a3 >) =
ϕ(< b >) < a3 >, ϕ(< b >) < a3 >=< b >< a3 >. We have < b > ∩ < a3 >= 1.
Then and ϕ(< b >)∩ < a3 >= 1.

We denote < a3 >= A, < b >= B. Let θ, η be the restrictions of natural
homomorphism λ : AB → AB/A onto B and ϕB respectively. Obviously, kerθ =
B ∩A, kerη = ϕB ∩A. Then from equalities B ∩A = 1, ϕB ∩A = 1 it follows that
θ, η are monomorphisms.

Let b ∈ B. Then b = ca for some c ∈ ϕB, a ∈ A. Further, λb = λ(ca),
λb = λc ·λa, λb = λc ·λ1, λb = λc. The homomorphism λ acts onto ϕB as η. Hence
λc = ηc. η is a restriction of λ onto ϕB and is a monomorphism of ϕB. Then from
λb = ηc it follows that b ∈ ϕB, B ⊆ ϕB. Analogously, ϕB ⊆ B. Hence ϕB = B.
Consequently, the subloop < b > is normal in L.

We denote < a3 >= A, < b >= B. Let θ, η are respectively the restrictions of
natural homomorphism λ : AB → AB/A onto B and ϕB. Obvious, kerθ = B ∩ A,
kerη = ϕB ∩ A. Then from equalities B ∩ A = 1, ϕB ∩ A = 1 it follows that θ, η
are the monomorphisms.

Let b ∈ B. Then b = ca for some c ∈ ϕB, a ∈ A. Further, λb = λ(ca),
λb = λc · λa, λb = λc · λ1, λb = λc. The homomorphism λ to act onto ϕB as η.
Hence λc = ηc. η is a restriction of λ onto ϕB and is a monomorphism of ϕB. Then
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from λb = ηc it follows that b ∈ ϕB, B ⊆ ϕB. Analogous, ϕB ⊆ B. Hence ϕB = B.
Consequently, the subloop < b > is normal in L.

Next, using the normality of < b > in L by analogy it is proved that the subloop
< a > is normal in L. We get that any element of L generates a normal subloop in
L. This means that CML L is hamiltonian. But any hamiltonian CML is associative
[5]. Hence the implication 2) ⇒ 1 holds.

Now we suppose that the abelian group H is periodic. Then H decomposes into
a direct product of its maximal p-subgroups Hp. Let H = D×H3. By [6] D ⊆ Z(L).
The subgroup D is normal in L. If D is infinite then, as in the previous case, it is
proved that CML L is hamiltonian and, consequently, is associative. If D is finite
then the subgroup H3 is infinite.

We suppose that the infinite abelian group H3 satisfies the minimum condition
for its subgroups. Then H3 = T × K, where K is a finite group and T is an
infinite divisible group. By [1] T ⊂ Z(L) and, as in the previous case the CML L is
associative.

To prove the implication 2 ⇒ 1) we have only to consider the case when the
abelian group H3 does not satisfy the minimum condition for its subgroups. In this
case H3 has an infinite abelian subgroup B which decomposes into a direct product
of cyclic groups of order 3. Let b ∈ B and let R ⊆ B be such a subgroup that
< b > ∩R = 1. Let R = R1×R2 be a certain decomposition of group R into a direct
product of two infinite subgroups. From statement 2) it follows that the subloops
R1, < b > ×R1, R2, < b > ×R2 are normal in CML L. In [2] it is proved that
if in a CML an element of order 3 generates a normal subloop, then this element
belongs to the center of this CML. Then b ∈ Z(L) and, consequently, B ⊆ Z(L).
The subgroup B is infinite, then as in the previous cases, it may be proved that the
CML L is associative. Consequently, the implication 2) ⇒ 1) holds.

4) ⇒ 3). We suppose that N is a non-periodic subgroup and let α ∈ N be
an element of infinite order. Let C(M) denote the center of group M. In [4] it
is proved that the quotient group M/C(M) is a locally finite 3-group. Then the
element αk belongs to the center C(M) for some integer k. Let ε be the unity of
the group M and let β be an arbitrary element in M such that < β > ∩ < α >= ε.
The subgroup < αk > is normal in M. Then the product < β >< αk > is a
subgroup. As < αk >⊆< β >< αk > ∩N then by statement 4) < β >< αk >
is a normal subgroup in M. Let ϕ be an inner automorphism of group M. Then
< β >< αk >= ϕ(< β >< αk >) = ϕ(< β >)ϕ(< αk >) = ϕ(< β >) < αk >,
ϕ(< β >) < αk >=< β >< αk >. We have < β > ∩ < αk >= ε. Then and
ϕ(< β >)∩ < a3 >= ε.

We denote < αk >= A, < β >= B. Let θ, η be the restrictions of natural
homomorphism λ : AB → AB/A onto B and ϕB respectively. Obviously, kerθ =
B∩A, kerη = ϕB∩A. Then from equalities B∩A = ε, ϕB∩A = ε it follows that
θ, η are monomorphisms.

Let β ∈ B. Then β = γα for some γ ∈ ϕB, α ∈ A. Further, λβ = λ(γα),
λβ = λγ · λα, λβ = λγ · λε, λβ = λγ. The homomorphism λ acts onto ϕB as η.



ON COMMUTATIVE MOUFANG LOOPS . . . 55

Hence λγ = ηγ. η is a restriction of λ onto ϕB and is a monomorphism of ϕB.
Then from λβ = ηγ it follows that β ∈ ϕB, B ⊆ ϕB. Analogously, ϕB ⊆ B. Hence
ϕB = B. Consequently, the subgroup < β > is normal in M.

Further, using the normality of < β > in M it is proved by analogy that the
subgroup < α > is normal in M. We get that any element in M generates a normal
subgroup in M. This means that the group M is hamiltonian. But any hamiltonian
multiplication group of CML is abelian [3]. Hence the implication 4)⇒ 3) holds.

Now we suppose that the abelian group N is periodic. Then N decomposes into a
direct product of its maximal p-subgroups Np. Let N = D×N3. By [2] D ⊆ C(M).
The subgroup D is normal in M. If D is infinite then as in the previous case, we
show that the group M is hamiltonian and, consequently, is abelian. If D is finite
then the subgroup N3 is infinite.

Let the infinite abelian group N3 satisfy the minimum condition for its subgroups.
Then N3 = T×K, where K is a finite group and T is an infinite divisible group. By
[1] T ⊂ Z(M) and as in the previous case the CML M is abelian.

To prove the implication 4 ⇒ 3) we have to consider only the case when the
abelian group N3 does not satisfy the minimum condition for its subgroups. In this
case N3 has an infinite abelian subgroup B, which decomposes into a direct product
of cyclic groups of order 3. Let β ∈ B and let R ⊆ B be such a subgroup that
< β > ∩R = ε. Let R = R1 × R2 be a certain decomposition of group R into
a direct product of two infinite subgroups. From statement 2) it follows that the
subloops R1, < β > ×R1, R2, < β > ×R2 are normal in group M. In [3] it is proved
that if in a multiplication group of CML an element of order 3 generates a normal
subgroup, then this element belongs to the center of this multiplication group. Then
β ∈ C(M) and, consequently, B ⊆ C(M). The subgroup B is infinite then as in
the previous cases it may be proved that the group M is abelian. Consequently, the
implication 4) ⇒ 3) holds. This completes the proof of Theorem.

We note that the construction of arbitrary groups that satisfy the equivalence of
statements 3), 4) of Theorem is described in [7]. It is easy to see that the equivalence
of statements 3), 4) and the equivalence of statements 1), 2) of Theorem are proved
by the same schema. But if we use the results of paper [7] to prove the equivalence
of statements 3), 4), then the proof doesn’t get easier but, on the contrary, it gets
more complicated.
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Vector Form of the Finite Fields GF (pm) ∗
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Abstract. Specially defined multiplication operation in the m-dimensional vector
space (VS) over a ground finite field (FF) imparts properties of the extension FF to
the VS. Conditions of the vector FF (VFF) formation are derived theoretically for
cases m = 2 and m = 3. It has been experimentally demonstrated that under the
same conditions VFF are formed for cases m = 4, m = 5, and m = 7. Generalization
of these results leads to the following hypotheses: for each dimension value m the VS
defined over a ground field GF (p), where p is a prime and m|p−1, can be transformed
into a VFF introducing special type of the vector multiplication operations that are
defined using the basis-vector multiplication tables containing structural coefficients.
The VFF are formed in the case when the structural coefficients that could not be
represented as the mth power of some elements of the ground field are used. The VFF
can be also formed in VS defined over extension FF represented by polynomials. The
VFF present interest for cryptographic application.

Mathematics subject classification: 11G20, 11T71.
Keywords and phrases: Vector space, ground finite field, extension finite field,
cryptography, digital signature.

1 Introduction

The finite fields (FF) play a prominent role in the public key cryptography. They
are well studied as primitives of the digital signature (DS) algorithms [1–3]. Finding
discrete logarithm (DL) in a subgroup of the multiplicative group of some FF is
used as the hard computational problem put into the base of DS algorithms. The
security of the DS is determined by the difficulty of the DL problem.

Since all FF of the same order are isomorphic, in many cases it is sufficient to
consider only the polynomial FF GF (pn) and extend the results to any possible type
of the field GF (pn). However in the case of computational problems it is reason-
able to take into account concrete forms of the FF representation. For example,
finding DL has essentially different difficulty in various particular variants of the
field GF (pn) for the same values p and n. To reduce the DL problem defined in
one representation form to the DL problem defined in some other particular form
of the field GF (pn) one should compute the isomorphism between these FF vari-
ants. A prominent example of the analogous situation is presented by elliptic curves
(EC) over finite fields [4]. Finite groups of the EC points are isomorphic to some
subgroups of the multiplicative group of some ring Zp, where the DL problem can
be solved with methods having subexponential complexity, however the best known

c© N.A.Moldovyan, P.A.Moldovyanu, 2009
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methods for solving the DL problem on specially selected EC have exponential com-
plexity [5]. At present the DS algorithms based on the difficulty of the DL problem
on EC are the most computationally efficient among the DSA providing the same
security level. However performing the group operation over the EC points includes
the inversion operation in the field over which the EC are defined [5]. The inversion
operation significantly restricts the rate of the EC-based DS algorithms.

Search of new representation forms of the FF and their use in the DS algorithms
have significant importance for information security practice. In the present paper
we introduce a new form of the FF GF (pm) defined over the m-dimensional finite
vector spaces (VS), the vector coordinates being the elements of some ground FF
GF (p). In such FF, called vector FF (VFF), the multiplication operation is free
of the inversion in the underlying field GF (p). Therefore the use of the VFF can
provide significant improvement of the DS algorithm performance [6]. In Section 2
we derive the VFF formation conditions for cases m = 2 and m = 3. In Section 3 we
experimentally show that the derived conditions work for the cases m = 4, m = 5,
and m = 7. In Section 4 we generalize the VFF formation conditions to arbitrary
dimension values. In the concluding Section 5 it is underlined that the VFF can be
defined over some extended FF.

In the paper the following specific term is used:
The kth-power element in some FF GF (pd), where d ≥ 1, is an element a ∈

GF (pd) for which the equation xk = a has solutions in GF (pd).

2 Two- and three-dimensional vector finite fields

Let us have some m-dimensional vector space over a field GF (p). Suppose e, i,
. . . , j be some m basis vectors and a, b, c ∈ GF (p), where p ≥ 3, are coordinates. So
this space is the set of vectors ae + bi + · · · + cj. A vector can be also represented
as a set of its coordinates (a, b, . . . , c). The terms ǫv, where ǫ ∈ GF (p) and v ∈
{e, i, . . . , j}, are called components of the vector.

The addition of two vectors (a, b, . . . , c) and (x, y, . . . z) is defined as follows:

(a, b, . . . , c) + (x, y, . . . , z) = (a + x, b + y, . . . , c + z),

where ”+” denotes addition operation in the field GF (p). The first representation
of the vectors can be interpreted as the sum of the vector components.

Let the multiplication of the vectors (a, b, . . . , c) and (x, y, . . . z) be defined by
the formula

(ae + bi + · · · + cj) · (xe + yi + · · · + zj) = ae · xe + bi · xe + . . .

· · · + cj · xe + ae · yi + bi · yi + · · · + cj · yi + . . . ae · zj + bi · zj + · · · + cj · zj =

= axe·e+bxi·e+· · ·+cxj·e+aye·i+byi·i+· · ·+cyj·i+. . . aze·j+bzi·j+· · ·+czj·j),

where each product of two basis vectors is replaced by a vector component ǫv (ǫ ∈
GF (p)) in accordance with some given tables called basis-vector multiplication tables
(BVMT). To define formation of the VFF the BVMT should be properly designed.
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Let us consider two- and three-dimensional VS defined over some ground field
GF (p). In the case m = 2 the general representation of the BVMT possessing
commutativity, associativity, and unit (1, 0) can be described as follows:

e · i = i · e = i, e · e = e, i · i = ǫe,

where different values ǫ ∈ GF (p) define different variants of the multiplication op-
eration. Each of these variants defines a finite ring of the two-dimensional vectors.
Let us consider a nonzero vector Z = ae+bi. The element Z−1 = xe+yi is called an
inverse of Z if Z−1Z = e = (1, 0), where 1 and 0 are the identity and zero elements
in GF (p). We have

Z−1Z = (ax + ǫby)e + (bx + ay)i = 1e + 0i.

For given (a, b) there exists a unique pair (x, y) ∈ GF (p)×GF (p) satisfying the last
equation if the system of equations

{

ax + ǫby = 1,
bx + ay = 0 .

has a unique solution in GF (p) × GF (p), i.e. if a2 − ǫb2 6= 0 in GF (p). The last
condition holds for all vectors (a, b), except (0,0), if ǫ is not the second-power element
in the field GF (p). In this case the vector space is a field GF (p2) the multiplicative
group of which has the order

Ω = p2 − 1 = (p − 1)(p + 1).

Thus, in the case m = 2 the characteristic equation

a2 − ǫb2 = 0 (1)

defines formation of the VFF GF (p2). If this equation has no solution for each pair
(a, b), except (0, 0), then for each nonzero vector of the two-dimensional VS defined
over the field GF (p) there exists its unique inverse, i.e. we have the VFF GF (p2).

In the case m = 3 Table 1, where µ ∈ GF (p) and ǫ ∈ GF (p), represents the
BVMT possessing commutativity, associativity, and unit (1, 0, 0) for arbitrary values
µ and ǫ, called structural coefficients. Let us consider a nonzero vector Z = ae +
bi + ck. There exists its unique inverse X = xe + yi + zk if the vector equation

ZX = (ax + ǫµcy + ǫµbz)e + (bx + ay + µcz)i + (cx + ǫby + az)j = 1e + 0i + 0j

has a unique solution relative to the unknown X. From the last equation the fol-
lowing system of equations can be derived







ax + ǫµcy + ǫµbz = 1,
bx + ay + µcz = 0,
cx + ǫby + az = 0.
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Table 1. The BVMT in the general case for m = 3
· −→e −→ı −→

−→e e i j
−→ı i ǫj µǫe
−→ j µǫe µi

From this system the following characteristic equation can be easily derived

a3 − 3ǫµbc · a + ǫ2µb3 + ǫµ2c3 = 0. (2)

If this equation has no solutions relative to the unknown a for each pair (b, c), except
(0, 0), and only one solution a = 0 for (b, c) = (0, 0), then the three-dimensional VS
is an extension FF GF (p3). Denoting B = (ǫ2µb3 + ǫµ2c3)/2 and using the well
known formulas [7] for cubic equation roots we get the expression for the roots a of
equation (2) in the following form

a = A′ + A′′,

where

A′ =
3

√

B +
√

B2 − (ǫµbc)3 = 3
√

−ǫµ2c3,

A′′ =
3

√

B −
√

B2 − (ǫµbc)3 = 3
√

−ǫ2µb3.

Thus, if both of the values ǫµ2 and ǫ2µ are not the third-power elements in the field
GF (p), then the characteristic equation (2) has no solutions relative to the unknown
a for all possible pairs (a, b) 6= (0, 0) and only one solution a = 0 for (a, b) = (0, 0).
It is well known that this situation is possible if 3|p − 1.

Thus, if 3|p − 1 and each of the products ǫ2µ and ǫµ2 is not the third-power
element in the field GF (p), then for each nonzero vector Z there exists its unique
inverse and the VS is the VFF GF (p3). The multiplicative group of the field GF (p3)
has the order

Ω = p3 − 1 = (p − 1)(p2 + p + 1).

Example 1. Suppose p = 1723 (i.e. 3|p − 1). Then for µ = 1 and ǫ = 1666 (ǫ is
not the cubic element in GF (1723)) a vector field GF (p3) is formed in which the
vector (2,3,3) is a generator of the multiplicative group of the order Ω = p3 − 1 =
5115120066.

It is easy to see that characteristic equation (1) has no solutions over FF GF (pd)
for some integer d ≥ 1, if b 6= 0 and ǫ is not the second-power element in GF (pd).
Analogously, characteristic equation (2) has no solutions over FF GF (pd) for some
integer d ≥ 1, if (b, c) 6= (0, 0) and both values ǫµ2 and ǫ2µ are not the third-
power elements in the field GF (pd). Thus, the two-dimensional VFF GF (p2d) and
three-dimensional VFF GF (p3d) can be defined over the extension FF GF (pd).
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Table 2. Basis-vector multiplication table for the case m = 4

· −→e −→ı −→
−→
k

−→e e i j k
−→ı i ǫj ǫk µǫe
−→ j ǫk µǫe µi
−→
k k µǫe µi µj

3 Formation of the vector finite fields in the case m ≥ 4

Analysis of the cases m = 2 and m = 3 shows that vector fields are formed in the
case m|pd − 1, provided some of the structural coefficients are not the mth-power
elements in the field GF (pp) over which the VS is defined. Validity of this VFF
formation condition has been experimentally demonstrated for cases m = 4, m = 5,
and m = 7, while using the BVMT presented in Tables 2, 3, and 4, correspondingly.
Tables 2 and 3 are designed in line with the BVMT type presented by Table 1 that
relates to the case m = 3 (note that in the case of Table 3 the vector (τ−1, 0, 0, 0, 0)
is unit). The analogous design is possible for the case m = 7, however we used a
particular variant for structure of Table 4 to show that in general different types of
the BVMT can be applied to define VFF.

Example 2. For prime p = 2609, the dimension m = 4 (m|p − 1), and coefficients
µ = 1 and ǫ = 2222 (ǫ is not the 4th-power element in GF (2731)) the vector
GΩ = 1e+3i+3j+5k is a generator of the multiplicative group of the VFF GF (p4).
The vector Gq = 392e + 2173i + 2545j + 443k is a generator of the cyclic subgroup
having prime order q = 3403441.

Example 3. For prime p = 151, the dimension m = 5 (5|p − 1), and coefficients
τ = µ = 1 and ǫ = 111 (ǫ is not the 5th-power element in GF (151)) the vector
GΩ = 1e + 3i + 5j + 7k + 11u is a generator of the multiplicative group of the VFF
GF (p5). The vector Gq = 141e + 111i + 50j + 28k + 142u is a generator of the
subgroup having prime order q = 104670301.

Example 4. For prime p = 29, the dimension m = 7 (7|p − 1), and coefficient
ǫ = 3 (ǫ is not the 7th-power element in GF (29)) the vector GΩ = (1, 3, 7, 5, 3, 1, 4)
is a generator of the multiplicative group of the VFF GF (p7). The vector
Gq = (7, 10, 0, 3, 15, 14, 22) is a generator of the subgroup having prime order
q = 88009573.

Theoretic results presented in Section 2 and experiments for the cases m = 4
and m = 5 give us grounds to put forward the following hypothesis.

In some finite m-dimensional VS defined over a FF GF (pd) such that m|pd − 1
and d ≥ 1 it is possible to define vector multiplication with BVMT which imparts to
the VS properties of the FF GF (pdm).
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Table 3. Basis-vector multiplication table for the case m = 5

· −→e −→ı −→
−→
k −→u

−→e τe τ i τ j τk τu
−→ı τ i ǫj ǫk ǫu ǫµτ−1e
−→ τ j ǫk ǫu ǫµτ−1e µi
−→
k τk ǫu ǫµτ−1e µi µj
−→u τu ǫµτ−1e µi µj µk

Table 4. Basis-vector multiplication table for the case m = 7

· −→e −→ı −→
−→
k −→u −→v −→w

−→e e i j k u v w
−→ı i ǫk ǫv ǫj ǫe ǫw ǫu
−→ j ǫv ǫu ǫw k ǫe i
−→
k k ǫj ǫw ǫv i ǫu ǫe
−→u u ǫe k i w j v
−→v v ǫw ǫe ǫu j i k
−→w w ǫu i ǫe v k j

The required BVMT can be constructed analogously to Tables 2 and 3 and using
the unit element of GF (p) as the coefficient µ and a value ǫ that is not the mth-power
element in GF (p). Since m|pd − 1 such values ǫ exist and can be easily found.

4 Conclusion

Defining the vector multiplication operation with BVMT that contain the struc-
tural coefficients having large size and using sufficiently large values m one can define
more difficult DL problem in the VFF. Therefore in such cases VFF with smaller
order size can be used to design the DS algorithms. Besides, the vector multipli-
cation operation can be implemented as parallel performing the multiplications in
the FF over which the VFF is defined. These two facts provide possibility to get
sufficiently high performance of the DS algorithms based on VFF.

The following problems are important for further consideration of the VFF as
cryptographic primitive.

1. Proof of the hypothesis presented in the end of Section 3.
2. Proof of the generalization of the experimental results (if there exist m-

dimensional VFF over GF (pd) for some values d and p such that m|p−1, then there
exist VFF for the same value d and arbitrary values p such that m|p − 1).

3. Development of the BVMT providing minimization of the vector multiplica-
tion complexity.
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4. Detailed investigation of the DL problem difficulty in VFF and its connection
with the dimension value and the size of the structural coefficients in BVMT.

Using special type of BVMT it is possible to define non-commutative rings over
finite VS, which also present interest as cryptographic primitive and is a subject of
independent research.
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A lower bound for a quotient of roots of factorials
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Abstract. With the aid of asymptotic properties of polygamma functions a new
lower bound is established for the quotient φ(r + 1)/φ(r) where φ(r) = (r!)1/r.

Mathematics subject classification: 33B15; 57Q55; 15A15.
Keywords and phrases: Gamma function; polygamma function; factorial function;
complete monotonicity; approximations; permanent; (0, 1)-matrix.

1 Introduction

In 1965, H. Minc and L. Sathre [12] have given one of the first estimations of the
expression

φ (r) = (r!)1/r .

Inequalities involving the function φ (r) are of interest in themselves, but they also
have important applications in the theory of (0, 1)-matrices.

The permanent of an n-by-n matrix A = (aij) is defined as

Per (A) =
∑

a1σ(1)a2σ(2) · . . . · anσ(n),

where the sum goes over every permutation σ of the set {1, 2, . . . , n}. Although it
looks similar to the determinant of matrices, the permanent is much harder to be
computed. The literature on bounds for permanents is quite extensive. It was first
conjectured by H.Minc [10], then proved by L.M. Brégman [4] that for a (0, 1)-matrix
with row sums r1, r2, . . . , rn, the following upper bound holds:

Per (A) ≤

n
∏

i=1

φ (ri) .

This kind of bounds and some others, see [5, 9, 11, 14], motivated many au-

thors [12, 15, 16, 17] to introduce new inequalities involving (r!)1/r , or the ratio
φ (r + 1) /φ (r) .

H.Minc and L. Sathre [13, Cor. 2] proved that for every positive integer r:

1 <
φ (r + 1)

φ (r)
< 1 +

1

r
. (1.1)

c© Cristinel Mortici, 2009
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One of the main results of this paper is the following new inequality, for every x ≥ 1,

Γ (x+ 2)1/(x+1)

Γ (x+ 1)1/x
≥

(4x+ 4)1/(x+1)

(4x)1/x

(

1 +
1

x

)

> 1.

Since Γ(r + 1) = r! for the positive integer r, this improves the estimation from the
left-hand side of (1.1).

2 The Results

In the early 18th century, famous Swiss mathematician Leonhard
Euler (1707 – 1783), introduced the function

Γ (x) =

∫ ∞

0
tx−1e−tdt , x > 0,

now known as the Euler’s gamma function. It is the natural extension of the factorial
function to every positive real number (or more exactly to CrZ−), since Γ (n+ 1) =
n!, for every counting number n. The famous Bohr-Mollerup theorem [2, 3] states
that the gamma function extends uniquely the factorial function, as f = Γ is the
only solution of the functional equation

f (x+ 1) = xf (x) , f (1) = 1

in the class of log-convex functions f : (0, 1) → (0, 1). (Another result of this kind
says, that f = Γ also in the case where there is such a g : (0, 1) → R that the
function g ◦ f is convex in an interval (γ, 1), γ > 0, and g(x) = a lnx + b, x → ∞,
with some a > 0 and b ∈ R, cf. [6]). The psi or digamma function is defined as

ψ (x) =
d

dx
ln Γ (x) =

Γ′ (x)

Γ (x)
,

while the derivatives ψ′, ψ′′, ψ′′′, . . . are called the tri-, tetra-, pentagamma functions,
or simply the polygamma functions. In what follows, we use the following integral
representations [1, 13, 18]

ψ(n) (x) = (−1)n+1
∫ ∞

0

tn

1 − e−t
e−txdt (2.1)

and for every ω > 0,
1

xω
=

1

Γ (ω)

∫ ∞

0
tω−1e−txdt. (2.2)

Recall that a function z is said to be completely monotonic on (0,∞) if it has
derivatives of all orders and for every positive integer k and x ≥ 0, we have

(−1)k z(k) (x) ≥ 0.
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This notion was introduced in 1921 by F. Hausdorff [8], under the name ’total
monoton’. J.Dubourdieu [7] proved that every non-constant, completely monotonic
function satisfies (−1)k z(k) (x) > 0. According with the well-known Hausdorff–
Bernstein–Widder theorem in [18, Theorem 12a, p. 160], a function z on (0,∞) is
completely monotonic if and only if there exists a non-negative measure µ (t) such
that for every x ≥ 0,

z (x) =

∫ ∞

0
e−xtdµ (t) , (2.3)

such that the integral converges for all x > 0. Completely monotonic functions
involving the gamma function are very useful, since they produce sharp bounds
for the polygamma functions. They also play a basic role in probability theory, or
asymptotic and numerical analysis and in physics.

Motivated by the right-hand inequality of (1.1), we introduce the function
h : (0,∞) → R, by the formula

h (x) = x (x+ 1) ln
xΓ (x+ 1)1/(x+1)

(x+ 1) Γ (x)1/x
.

Theorem 2.1. The function h′ is completely monotonic.

Proof. We have

h (x) = x ln Γ (x+ 1) − (x+ 1) ln Γ (x) −
(

x2 + x
)

ln

(

1 +
1

x

)

.

Then

h′ (x) = 2 + lnx− (2x+ 1) ln

(

1 +
1

x

)

− ψ (x) (2.4)

and

h′′ (x) =
2

x
+

1

x+ 1
− 2 ln

(

1 +
1

x

)

− ψ′ (x) (2.5)

and

h′′′ (x) =
2

x
−

2

x+ 1
−

2

x2
−

1

(x+ 1)2
− ψ′′ (x) . (2.6)

Using (2.1)–(2.2), we have

h′′′ (x) =

∫ ∞

0
2e−txdt −

∫ ∞

0
2e−t(x+1)dt−

−

∫ ∞

0
2te−txdt−

∫ ∞

0
te−t(x+1)dt+

∫ ∞

0

t2

1 − e−t
e−txdt,

or

h′′′ (x) =

∫ ∞

0
ϕ (t)

e−t(x+1)

et − 1
dt,

where
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ϕ (t) = t2e2t −
(

et − 1
) (

2 + t− 2et + 2tet
)

=

=
∞
∑

n=3

2n−2
(

n2 − 5n+ 8
)

+ n− 4

n!
tn > 0.

Next we use the fact that

lim
x→∞

(ψ (x) − lnx) = lim
x→∞

ψ′ (x) = lim
x→∞

ψ′′ (x) = 0,

as it results from the asymptotic expansions of the polygamma functions, e.g.,
[1, p. 259 – Rel. 6.3.18; p. 260 – Rel. 6.4.12 and 6.4.13]. Thus, from (2.4)–(2.6),
we have

lim
x→∞

h′ (x) = lim
x→∞

h′′ (x) = lim
x→∞

h′′′ (x) = 0.

Now, from h′′′ > 0, it results that h′′ is strictly increasing. As limx→∞ h′′ (x) = 0,
we have h′′ < 0. Further, h′ is strictly decreasing, with limx→∞ h′ (x) = 0, so h′ > 0.
Finally, from (2.3) it results that h′ is completely monotonic. �

Corollary 2.1. For every x ≥ 1, we have:

Γ (x+ 1)1/(x+1)

Γ (x)1/x
≥ 4

−1
x(x+1)

(

1 +
1

x

)

> 1, (2.7)

where the constant 4 is best possible.

Proof. The function h′ is positive, so h is strictly increasing. In consequence, for
every x ≥ 1, we have h (1) ≤ h (x) . As h (1) = − ln 4, we obtain

− ln 4 ≤ x (x+ 1) ln
xΓ (x+ 1)1/(x+1)

(x+ 1) Γ (x)1/x
.

By exponentiating, we get

4
−1

x(x+1) ≤
x

x+ 1
·
Γ (x+ 1)1/(x+1)

Γ (x)1/x
,

which is the conclusion. �

By using the recurrence Γ (y + 1) = yΓ (y) in (2.7), we can state the following

Corollary 2.2. For every x ≥ 1, we have:

Γ (x+ 2)1/(x+1)

Γ (x+ 1)1/x
≥

(4x+ 4)1/(x+1)

(4x)1/x

(

1 +
1

x

)

> 1,

where the constant 4 is best possible.
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As a consequence, this inequality can be used as a good approximation

Γ (x+ 2)1/(x+1)

Γ (x+ 1)1/x
≈

(4x+ 4)1/(x+1)

(4x)1/x

(

1 +
1

x

)

,

as we can see from numerical computations:

x Γ(x+2)1/(x+1)

Γ(x+1)1/x

(4x+4)1/(x+1)

(4x)1/x

(

1 + 1
x

)

10 1. 084 021 393 1. 072 979 624

50 1. 019 047 171 1. 018 278 181

125 1. 007 818 486 1. 007 666 066

350 1. 002 829 804 1. 002 806 159

500 1. 001 985 892 1. 001 973 593

2500 1. 000 399 307 1. 000 398 686
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Some more results on b-θ-open sets

N.Rajesh, Z. Salleh

Abstract. In this paper, we consider the class of b-θ-open sets in topological spaces
and investigate some of their properties. We also present and study some weak se-
paration axioms by involving the notion of b-θ-open sets. We define the concepts
of b-θ-kernal of sets and slightly b-θ-R0 spaces. We apply them to investigate some
properties of the graph functions.
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1 Introduction

In 1996, Andrijevic [1] initiated the study of so called b-open sets. This notion
has been studied extensively in recent years by many topologists (see [2–5]). In this
paper, we will continue the study of related spaces by using b-θ-open [7] sets.

Throughout this paper, X and Y refer always to topological spaces on which no
separation axioms are assumed unless otherwise mentioned. For a subset A of X,
cl(A) and int(A) denote the closure of A and the interior of A in X, respectively. A
subset A of X is said to be b-open [1] if A ⊆ cl(int(A)) ∪ int(cl(A)). The complement
of b-open set is called b-closed. The intersection of all b-closed sets of X containing
A is called the b-closure [1] of A and is denoted by b cl(A). A set A is b-closed if
and only if b cl(A) = A. The union of all b-open sets of X contained in A is called
the b-interior of A and is denoted by b int(A). A set A is said to be b-regular [7]
if it is b-open and b-closed. The family of all b-open (resp. b-closed, b-regular)
sets of X is denoted by BO(X) (resp. BC(X), BR(X)). We set BO(X,x) =
{V ∈ BO(X)|x ∈ V } for x ∈ X.

2 Preliminaries

A point x of X is called a b-θ-cluster [7] point of S ⊆ X if b cl(U) ∩ S 6= ∅ for
every U ∈ BO(X,x). The set of all b-θ-cluster points of S is called the b-θ-closure
of S and is denoted by b clθ(S). A subset S is said to be b-θ-closed if and only if S
= b clθ(S). The complement of a b-θ-closed set is said to be b-θ-open. The family of
all b-θ-open subsets of X is denoted by BθO(X).

c© N.Rajesh, Z. Salleh, 2009
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Theorem 1 (see [7]). Let A be a subset of a topological space X. Then,

(i) A ∈ BO(X) if and only if b cl(A) ∈ BR(X).

(ii) A ∈ BO(X) if and only if b int(A) ∈ BR(X).

Theorem 2 (see [7]). For a subset A of a topological space X, the following prop-
erties hold:

(i) If A ∈ BO(X), then b cl(A) = b clθ(A),

(ii) A ∈ BR(X) if and only if A is b-θ-open and b-θ-closed.

Definition 1. A topological space X is said to be b-regular [7] if for each F ∈
BC(X) and each x /∈ F , there exist disjoint b-open sets U and V such that x ∈ U
and F ⊆ V .

Theorem 3 (see [7]). For a topological space X, the following properties are equiv-
alent:

(i) X is b-regular;

(ii) For each U ∈ BO(X) and each x ∈ U , there exists V ∈ BO(X) such that
x ∈ V ⊆ b cl(V ) ⊆ U ;

(iii) For each U ∈ BO(X) and each x ∈ U , there exists V ∈ BR(X) such that
x ∈ V ⊆ U .

Definition 2. A function f : X → Y is said to be b-irresolute [6] if f−1(V ) ∈
BO(X) for every V ∈ BO(Y ).

3 b-θ-open sets

Remark 1. It is easy to prove that

(i) the intersection of an arbitrary collection of b-θ-closed sets is b-θ-closed.

(ii) X and ∅ are b-θ-closed sets.

Remark 2. The following example shows that an union of any two b-θ-closed sets of
X is not necessarily b-θ-closed in X.

Example 1. Let X = {a, b, c} with topology τ = {∅, {a, b},X}. Clearly, {a}, {b}
are b-θ-closed sets in X, but their union {a, b} is not b-θ-closed in X.

Lemma 1 (see [7]). Let A be a subset of a topological space (X, τ). The following
hold:

(i) If A ∈ BO(X), then b cl(A) is b-regular and b cl(A) = b clθ(A);
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(ii) A is b-regular if and only if A is b-θ-closed and b-θ-open;

(iii) A is b-regular if and only if A is b int(b cl(A)).

Lemma 2. For any subset A of a topological space (X, τ), b clθ(A) is b-θ-closed.

Definition 3. A subset S of a topological space (X, τ) is said to be θ-completment
b-open (briefly θ-c-b-open) provided there exists a subset A of X for which X − S
= b clθ(A). We call a set θ-complement b-closed if its complement is θ-c-b-open.

Remark 3. It should be mentioned that by Lemma 2, X −S = b clθ(A) is b-θ-closed
and S is b-θ-open. Therefore, the equivalence of θ-c-b-open and b-θ-open is obvious
from the definition.

Theorem 4. If A ⊆ X is b-open, then b int(b clθ(A)) is b-θ-open.

Proof. Since X−b int(b cl(A)) = b cl(X−b cl(A)), then by complements b int(b cl(A))
= (X − b cl(X − b cl(A))). Since X − b cl(A) (=B, say) is b-open, b cl(B) = b clθ(B)
from Lemma 1. Therefore, there exists a subset B = X − b cl(A) for which X −
b int(b cl(A)) = b clθ(B). Hence b int(b cl(A)) is b-θ-open.

Corollary 1. If A ⊆ X is b-regular, then A is b-θ-open.

Proof. Obvious by Lemma 1, since A is b-regular if and only if A = b int(b cl(A)).

Theorem 5. b-θ-open is equivalent to b-regular if and only if b clθ(A) is b-regular
for every set A ⊆ X.

Proof. Let X be a topological space. Assume b-θ-open is equivalent to b-regular and
let A ⊆ X. Then by Lemma 2, X − b clθ(A) is b-θ-open which implies that b clθ(A)
is b-regular. Conversely, assume b clθ(A) is b-regular for every set A. Suppose U is
b-θ-open and let A ⊆ X such that X − U = b clθ(A). That is, U = X − b clθ(A).
Then, b clθ(A) is b-regular and U is b-regular. Therefore, b-θ-open is equivalent to
b-regular.

Theorem 6. If B ⊆ X is b-θ-open, then B is an union of b-regular sets.

Proof. Let B be b-θ-open and x ∈ B. Since B is b-θ-open, then there exists a set A ⊆
X such that B = X − b clθ(A). Because x /∈ b clθ(A), there exists a b-open set W for
which x ∈ W and b cl(W ) ∩A = ∅. Hence x ∈ b int(b cl(W )) ⊆ X − b clθ(A), where
b int(b cl(W )) (=V (say)) ∈ BR(X), that is, B =

⋃

{V : V ⊆ B,V ∈ BR(X)}.

Corollary 2. If B is b-θ-closed, then B is the intersection of b-regular sets.
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4 On b-θ-Di (resp. b-θ-Ti) topological spaces

Now, we study some classes of topological spaces in terms of the concept of b-
θ-open sets. The relations with other notions, directly or indirectly connected with
these classes are investiaged.

Definition 4. A subset A of a topological space (X, τ) is called a b-θ-D-set if there
are two sets U, V ∈ BθO(X) such that U 6= X and A= U − V .

It is true that every b-θ-open set U different from X is a b-θ-D set if A = U and
V = ∅.

Definition 5. A topological space (X, τ) is called b-θ-D0 if for any distinct pair of
points x and y of X, there exists a b-θ-D-set of X containing one of the points but
not the other.

Definition 6. A topological space (X, τ) is called b-θ-D1 if for any distinct pair of
points x and y of X, there exists a b-θ-D-set F of X containing x but not y and a
b-θ-D set G of X containing y but not x.

Definition 7. A topological space (X, τ) is called b-θ-D2 if for any distinct pair of
points x and y of X, there exists disjoint b-θ-D-sets G and E of X containing x and
y respectively.

Definition 8. A topological space (X, τ) is called b-θ-T0 if for any distinct pair of
points in X, there exists a b-θ-open set containing one of the points but not the
other.

Definition 9. A topological space (X, τ) is called b-θ-T1 if for any distinct pair of
points x and y in X, there exists a b-θ-open set U in X containing x but not y and
a b-θ-open set V in X containing y but not x.

Definition 10. A topological space (X, τ) is called b-θ-T2 if for any distinct pair of
points x and y in X, there exist b-θ-open sets U and V in X containing x and y,
respectively, such that U ∩ V = ∅.

Remark 4. From Definitions 4 to 10, we obtain the following diagram:

b–θ–T2 ⇒ b–θ–T1 ⇒ b–θ–T0

⇓ ⇓ ⇓
b–θ–D2 ⇒ b–θ–D1 ⇒ b–θ–D0

Theorem 7. If a topological space (X, τ) is b-θ-T0, then it is b-θ-T2.

Proof. For any points x 6= y, let V be a b-θ-open set such that x ∈ V and y /∈ V .
Then, there exists U ∈ BO(X) such that x ∈ U ⊆ b cl(U) ⊆ V . By Lemma 1,
b cl(U) ∈ BR(X). Then b cl(U) is b-θ-open and also X − b cl(U) is a b-θ-open set
containing y. Therefore, X is b-θ-T2.
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Theorem 8. For a topological space (X, τ), the six properties in the diagram are
equivalent.

Proof. By Theorem 7, we have that b-θ-T0 implies b-θ-T2. Now we prove that b-θ-D0

implies b-θ-T0. Let (X, τ) be b-θ-D0 so that for any distinct pair of points x and y
of X, one of them belongs to a b-θ-D set A. Therefore, we choose x ∈ A and y /∈ A.
Suppose A = U −V for which U 6= X and U, V ∈ BθO(X). This implies that x ∈ U .
For the case that y /∈ A we have (i) y /∈ U , (ii) y ∈ U and y ∈ V . For (i), the space
X is b-θ-T0 since x ∈ U but y /∈ U . For (ii), the space X is also b-θ-T0 since y ∈ V
but x /∈ V .

Let x be a point of X and V a subset of X. The set V is called a b-θ-
neighbourhood of x in X if there exists a b-θ-open set A of X such that x ∈ A ⊆ V .

Definition 11. A point x ∈ X which has only X as the b-θ-neighbourhood is called
a point common to all b-θ-closed sets (briefly b-θ-cc).

Theorem 9. If a topological space (X, τ) is b-θ-D1, then (X, τ) has no b-θ-cc-point.

Proof. Since (X, τ) is b-θ-D1, so each point x of X is contained in a b-θ-D set A
= U − V and thus in U . By definition U 6= X and this implies that x is not a
b-θ-cc-point.

Definition 12. A subset A of a topological space (X, τ) is called a quasi b-θ-closed
(briefly qbt-closed) set if b clθ(A) ⊆ U whenever A ⊆ U and U is b-θ-open in (X, τ).

Lemma 3. [7] Let A be any subset of a topological space X. Then x ∈ b clθ(A) if
and only if V ∩ A = ∅ for every V ∈ BR(X,x).

Theorem 10. For a topological space (X, τ), the following properties hold:

(i) For each pair of points x and y in X, x ∈ b clθ({y}) implies y ∈ b clθ({x});

(ii) For each x ∈ X, the singleton {x} is qbt-closed in (X, τ).

Proof. (i): Let y /∈ b clθ({x}). This implies that there exists V ∈ BO(X, y) such
that b cl(V )∩{x} = ∅ and X−b cl(V ) ∈ BR(X,x) which means that x /∈ b clθ({y}).
(ii): Suppose that U ∈ BθO(X). This implies that there exists V ∈ BO(X) such
that x ∈ V ⊆ b cl(V ) ⊆ U . Now we have b clθ({x}) ⊆ b clθ(V ) = b cl(V ) ⊆ U .

Definition 13. A topological space (X, τ) is said to be b-θ-T1/2 if every qbt-closed
set is b-θ-closed.

Theorem 11. For a topological space (X, τ), the following are equivalent:

(i) (X, τ) is b-θ-T1/2;

(ii) (X, τ) is b-θ-T1.
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Proof. (i)⇒(ii): For distinct points x, y of X, {x} is qbt-closed by Theorem 10. By
hypothesis, X − {x} is b-θ-open and y ∈ X − {x}. By the same token, x ∈ X − {y}
and X − {y} is b-θ-open. Therefore, (X, τ) is b-θ-T1.

(ii)⇒(i): Suppose that A is a qbt-closed set which is not b-θ-closed. There exists
x ∈ b clθ(A) − A. For each a ∈ A, there exists a b-θ-open set Va such that a ∈ Va

and x /∈ Va. Since A ⊆
⋃

a∈Va
Va and

⋃

a∈Va
Va is b-θ-open, we have b clθ(A) ⊆

⋃

a∈Va
Va. Since x ∈ b clθ(A), there exists a0 ∈ A such that x ∈ Va0 . But this is a

condradiction.

Recall that a topological space (X, τ) is called b-T2 [2] if for any distinct pair
of points x and y in X, there exist b-open sets U and V in X containing x and y
respectively such that U ∩ V = ∅.

Theorem 12. For a topological space (X, τ), the following are equivalent:

(i) (X, τ) is b-θ-T2;

(ii) (X, τ) is b-T2.

Proof. (i)⇒(ii): This is obvious since every b-θ-open set is b-open.

(ii)⇒(i): Let x and y be distinct points of X. There exist b-open sets U and V
such that x ∈ U , y ∈ V and b cl(U) ∩ b cl(V ) = ∅. Since b cl(U) and b cl(V ) are
b-regular, then they are b-θ-open and hence (X, τ) is b-θ-T2.

Definition 14. A function f : (X, τ) → (Y, σ) is said to be weak b-irresolute [8] if
for each x ∈ X and each V ∈ BO(Y, f(x)), there exists a U ∈ BO(X,x) such that
f(U) ⊆ b cl(V ).

Remark 5. A function f : (X, τ) → (Y, σ) is weak b-irresolute if and only if f−1(V )
is b-θ-closed (resp. b-θ-open) in (X, τ) for every b-θ-closed (resp. b-θ-open) set V in
(Y, σ).

Theorem 13. If f : (X, τ) → (Y, σ) is a weak b-irresolute surjective function and
E is a b-θ-D set in Y , then the inverse image of E is a b-θ-D set in X.

Proof. Let E be a b-θ-D-set in Y . Then there are b-θ-open sets U and V in Y
such that E = U − V and U 6= Y . By weak b-irresoluteness of f , f−1(U) and
f−1(V ) are b-θ-open in X. Since U 6= Y , we have f−1(U) 6= X. Hence f−1(E) =
f−1(U) − f−1(V ) is a b-θ-D-set in X.

Theorem 14. If (Y, σ) is a b-θ-D1 space and f : (X, τ) → (Y, σ) is a weak b-
irresolute bijection, then (X, τ) is b-θ-D1.

Proof. Suppose that Y is a b-θ-D1 space. Let x and y be any pair of distinct poins
in X. Since f is injective and Y is b-θ-D1, there exists b-θ-D sets U and V of
Y containing f(x) and f(y), respectively such that f(y) /∈ U and f(x) /∈ V . By
Theorem 13, f−1(U) and f−1(V ) are b-θ-D sets in X containing x and y, respectively
such that y /∈ f−1(U) and x /∈ f−1(V ). This implies that X is a b-θ-D1 space.
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Theorem 15. For a topological space (X, τ), the following statements are equivalent:

(i) (X, τ) is b-θ-D1;

(ii) For each pair of distinct points x, y ∈ X, there exists a weak b-irresolute sur-
jective function f : (X, τ) → (Y, σ), where Y is a b-θ-D1 space such that f(x)
and f(y) are distinct.

Proof. (i)⇒(ii): For every pair of distinct points of X, it suffices to take the identity
function f : (X, τ) → (X, τ).

(ii)⇒(i): Let x and y be any pair of distinct points in X. By hypothesis, there
exists a surjective weak b-irresolute function f of the space X into a b-θ-D1 space
Y such that f(x) 6= f(y). Therefore, there exist disjoint b-θ-D sets U and V of Y
containing f(x) and f(y), respectively such that f(y) /∈ U and f(x) /∈ V . Since f
is weak b-irresolute and surjective, by Theorem 13, f−1(U) and f−1(V ) are b-θ-D
sets in X containing x and y, respectively such that y /∈ f−1(U) and x /∈ f−1(V ).
Hence X is a b-θ-D1 space.

5 Further properties

Definition 15. Let A be a subset of a topological space (X, τ). The b-θ-kernel of
A ⊆ X denoted by bkerθ(A), is defined to be the set
⋂

{O : O ∈ BθO(X, τ) and A ⊆ O} = {x : b clθ({x}) ∩ A 6= ∅}.

Definition 16. A topological space (X, τ) is said to be slightly b-θ-R0 if
⋂

{b clθ({x}) :
x ∈ X} = ∅.

Theorem 16. A topological space (X, τ) is slightly b-θ-R0 if and only if bkerθ({x})
6= X for any x ∈ X.

Proof. Necessity. Let the space (X, τ) be slightly b-θ-R0. Assume that there is a
point y in X such that bkerθ({y}) = X. Then y /∈ O which is some proper b-θ-open
subset of X. This implies that y ∈

⋂

{b clθ({x}): x ∈ X}. But this is a contradiction.

Sufficiency. Now assume that bkerθ({x}) 6= X for any x ∈ X. If there exists a
point y in X such that y ∈

⋂

{b clθ({x}): x ∈ X}, then every b-θ-open set containing
y must contain every point of X. This implies that the space X is the unique b-θ-
open set containing y. Hence b clθ({x}) = X which is a contracdiction . Therefore,
(X, τ) is slightly b-θ-R0.

Theorem 17. If the topological space X is slightly b-θ-R0 and Y is any topological
space, then the product X × Y is slightly b-θ-R0.

Proof. By showing that
⋂

{b clθ({x, y}): (x, y) ∈ X ×Y } = ∅ we are done. We have
⋂

{b clθ({x, y}): (x, y) ∈ X × Y } ⊆
⋂

{b clθ({x}) × b clθ({y}): (x, y) ∈ X × Y } =
⋂

{b clθ({x}): x ∈ X} ×
⋂

{b clθ({y}): y ∈ Y } ⊆ ∅ × Y = ∅.
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Definition 17. A function f : (X, τ) → (Y, σ) is R-continuous (resp. θ-R-b-
continuous, R-b-continuous) if for each x ∈ X and each b-open subset V of Y
containing f(x), there exists an open subset U of X containing x such that cl(f(U))
⊆ V (resp. b clθ(f(U)) ⊆ V , b cl(f(U)) ⊆ V ).

Definition 18. A function f : X → Y is said to be b-open [6] if f(U) is b-open in
Y for every open set U of X.

Remark 6. (i): Since A ⊆ b cl(A) ⊆ b clθ(A) for any set A, θ-R-b-continuity implies
R-b-continuity.

(ii): Since the b-closure and b-θ-closure operate agree on b-open sets (Lemma
1) it follows that if f : (X, τ) → (Y, σ) is R-b-continuous and b-open, then f is
θ-R-b-continuous.

Definition 19. The graph G(f) of a function f : (X, τ) → (Y, σ) is said to be
strongly b-θ-closed if for each point (x, y) ∈ (X × Y ) − G(f), there exists subsets
U ∈ BO(X,x) and V ∈ BθO(Y, y) such that (b cl(U) × V ) ∩ G(f) = ∅.

Lemma 4. The graph G(f) of f : (X, τ) → (Y, σ) is strongly b-θ-closed in X × Y
if and only if for each point (x, y) ∈ (X × Y )−G(f), there exist U ∈ BO(X,x) and
V ∈ BθO(Y, y) such that f(b cl(U)) ∩ V = ∅.

Proof. It follows immediately from Definition 19.

Recall that a topological space (X, τ) is called b-T1 [2] if for any distinct pair
of points x and y in X, there is a b-open set U in X containing x but not y and a
b-open set V in X containing y but not x.

Theorem 18. If f : (X, τ) → (Y, σ) is θ-R-b-continuous, weak b-irresolute and Y
is b-T1, then G(f) is strongly b-θ-closed.

Proof. Assume (x, y) ∈ (X×Y )−G(f). Since y 6= f(x) and Y is b-T1, there exists a
b-open set V of Y such that f(x) ∈ V and y /∈ V . The θ-R-b-continuity of f implies
the existence of an open subset U of X containing x such that b clθ(f(U)) ⊆ V .
Therefore, (x, y) ∈ b cl(U)× (Y − b clθ f(U)) which is disjoint from G(f) because if a
∈ b cl(U), then since f is a weak b-irresolute function, f(a) ∈ f(b cl(U)) ⊆ b clθ f(U).
Note that Y − b clθ(f(U)) is b-θ-open.

Theorem 19. Let f : (X, τ) → (Y, σ) be a weak b-irresolute function. Then f is
θ-R-b-continuous if and only if for each x ∈ X and each b-closed subset F of Y with
f(x) /∈ F , there exists an open subset U of X containing x and a b-θ-open subset V
of Y with F ⊆ V such that f(b cl(U)) ∩ V = ∅.

Proof. Necessity. Let x ∈ X and F be a b-closed subset of Y with f(x) ∈ Y − F .
Since F is θ-R-b-continuous, there exists an open subset U of X containing x such
that b clθ(f(U)) ⊆ Y −F . Let V = Y − b clθ(f(U)). Then V is b-θ-open and F ⊆ V .
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Since f is weak b-irresolute, f(b cl(U)) ⊆ b clθ(f(U)). Therefore f(b cl(U)) ∩ V =∅.

Sufficiency. Let x ∈ X and let V be a b-open subset of Y with f(x) ∈ V . Let
F = Y − V . Since f(x) /∈ F there exists an open subset U of X containing x and a
b-θ-open subset W of Y with F ⊆ W such that f(b cl(U))∩W = ∅. Then f(b cl(U))
⊆ Y − W , thus b clθ(f(U)) ⊆ b clθ(Y − W ) = Y − W ⊆ Y − F = V . Therefore, f
is θ-R-b-continuous.

Corollary 3. Let X and Y be topological spaces and f : (X, τ) → (Y, σ) be a weak
b-irresolute function. Then f is θ-R-b-continuous if and only if for each x ∈ X
and each b-open subset V of Y containing f(x), there exists an open subset U of X
containing x such that b clθ(f(b cl(U))) ⊆ V .

Proof. Assume f is θ-R-b-continuous. Let x ∈ X and let V be a b-open subset of
Y with f(x) ∈ V . Then there exists an open subset U of X containing x such that
b clθ(f(U)) ⊆ V . By hypothesis of f , we have b clθ(f(b cl(U))) ⊆ b clθ(b clθ(f(U)))
= b clθ(f(U)) ⊆ V . Thus, b clθ(f(b cl(U))) ⊆ V . The converse implication is imme-
diate.

Definition 20. A topological space (X, τ) is said to be b-R1 if for x, y ∈ X with
b cl({x}) 6= b cl({y}), there exist disjoint b-open sets U and V such that b cl({x}) ⊆ U
and b cl({y}) ⊆ V .

Lemma 5. A topological space X is b-R1 if and only if b clθ({x}) = bcl({x}) for all
x ∈ X.

Proof. Necessity. Generally we have b cl({x}) ⊆ b clθ({x}) for all x ∈ X. Suppose
that y /∈ b cl({x}) for any x ∈ X. Then there exists A ∈ BO(X, y) such that A ∩
{x} = ∅. Since X is b-R1 and b cl({x}) 6= b cl({y}), there exist b-open sets U and
V such that b cl({x}) ⊆ U , b cl({y}) ⊆ V and U ∩ V = ∅. Since U ∈ BO(X,x) and
V ∈ BO(X, y), then b cl(U) ∩ b cl(V ) = ∅. This implies b cl({x}) ∩ b cl(V ) = ∅

and hence {x} ∩ b cl(V ) = ∅. Therefore y /∈ bclθ({x}) and thus b clθ({x}) ⊆ b cl({x}).

Sufficiency. Let x, y ∈ X with b cl({x}) 6= b cl({y}). Then there exists a k ∈
b cl({x}) such that k /∈ b cl({y}). Since k ∈ b cl({x}) = b clθ({x}), then U ∩ {x} 6=
∅ for every U ∈ BR(X, k) and hence b cl({x}) ⊆ U . Since k /∈ b cl({y}) = b clθ({y})
, there exists U ∈ BR(X, k) such that U ∩ {y} = ∅. Since U ∈ BO(X, k), U ∩
b cl({y}) = ∅ and hence bcl({y}) ⊆ X\U . Therefore, there exists disjoint b-open
sets U and X\U such that b cl({x}) ⊆ U and b cl({y}) ⊆ X\U .

Proposition 1. A space X is b-R1 if and only if for each b-open set A and each
x ∈ A, b clθ({x}) ⊆ A.

Proof. Necessity. Assume X is b-R1. Suppose that A is a b-open subset of X and
x ∈ A. Let y be an arbitrary element of X − A. Since X is b-R1, then b clθ({y})
= b cl({y}) ⊆ X − A. Hence we have that x /∈ b clθ({y}) and so y /∈ b clθ({x}). It
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follows that b clθ({x}) ⊆ A.

Sufficiency. Assume now that y ∈ b clθ({x}) − b cl({x}) for some x ∈ X. Then
there exists a b-open set A containing y such that b cl(A) ∩ {x} 6= ∅ but A ∩ {x}
= ∅. Then b clθ({y}) ⊆ A and b clθ({y}) ∩ {x} = ∅. Hence x /∈ b clθ({y}). Thus y
/∈ b clθ({x}). By this contradiction, we obtain b clθ({x}) = b cl({x}) for each x ∈ X.
Thus, X is b-R1.

Theorem 20. If f : (X, τ) → (Y, σ) is a θ-R-b-continuous surjection, then (Y, σ)
is a b-R1 space.

Proof. Let V be a b-open subset of Y and y ∈ V . Let x ∈ X such that y = f(x).
Since f is θ-R-b-continuous, there exists an open subset U of X containing x such
that b clθ(f(U)) ⊆ V . Then b clθ({y}) ⊆ b clθ(f(U)) ⊆ V . Therefore, by Proposition
1, Y is b-R1.

We give some basic properties of θ-R-b-continuous functions concerning compo-
sition and restriction.

Theorem 21. If f : (X, τ) → (Y, σ) is continuous and g : (Y, σ) → (Z, γ) is
θ-R-b-continuous, then g ◦ f : (X, τ) → (Z, γ) is θ-R-b-continuous.

Proof. Let x ∈ X and W be a b-open subset of Z containing g(f(x)). Since g
is θ-R-b-continuous, there exists an open subset V of Y containing f(x) such that
b clθ(g(V )) ⊆ W . Since f is continuous, there exists an open subset U of X containing
x, f(U) ⊆ V ; hence b clθ(g(f(U))) ⊆ W . Therefore g ◦ f is θ-R-continuous.

Theorem 22. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, γ) be functions. If
g ◦ f : (X, τ) → (Z, γ) is θ-R-b-continuous and f is fn open surjection, then g is
θ-R-b-continuous.

Proof. Let y ∈ Y and W be a b-open subset of Z containing g(y). Since f is
surjective, there exists x ∈ X such that y = f(x). Since g ◦ f is θ-R-b-continuous,
there exists an open subset U of X containing x such that b clθ(g(f(U))) ⊆ W . Note
that f(U) is an open set containing y. Therefore g is θ-R-b-continuous.

Theorem 23. If f : (X, τ) → (Y, σ) is θ-R-b-continuous and A ⊆ X, then f |A:
A → Y is θ-R-b-continuous.

Proof. Let x ∈ A and let V be any b-open subset of Y containing f(x) ( = f |A(x)).
Since f is θ-R-b-continuous, there exists an open subset U of X containing x such
that b clθ(f(U)) ⊆ V . Put O = U ∩ A, then O is an open subset of A containing x
such that b clθ(f |A(O)) = b clθ(f(O)) ⊆ b clθ(f(U)) ⊆ V . Therefore f |A : A → Y is
θ-R-b-continuous.
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Singular limits of solutions to the Cauchy problem

for second order linear differential equations

in Hilbert spaces

Galina Rusu

Abstract. We study the behavior of solutions to the problem

(

ε

“

u
′′
ε (t) + A1uε(t)

”

+ u
′
ε(t) + A0uε(t) = f(t), t > 0,

uε(0) = u0, u
′
ε(0) = u1,

in the Hilbert space H as ε → 0, where A1 and A0 are two linear selfadjoint operators.

Mathematics subject classification: 35B25, 35K15, 35L15, 34G10.
Keywords and phrases: Singular perturbations, Cauchy problem, boundary func-
tion.

1 Introduction

Let H be a real Hilbert space endowed with the inner product (·, ·) and the
norm | · |. Let Ai : D(Ai) → H, i = 0, 1, be two linear self-adjoint, positive defined
operators. Consider the following Cauchy problem:

{

ε (u′′
ε(t) + A1uε(t)) + u′

ε(t) + A0uε(t) = fε(t), t ∈ (0, T ),
uε(0) = u0ε, u′

ε(0) = u1ε,
(Pε)

where ε > 0 is a small parameter(ε ≪ 1), uε, fε : [0, T ) → H.
We will investigate the behavior of solutions uε(t) to the perturbed system (Pε)

when ε → 0, u0ε → u0 and fε → f . We will establish a relationship between solutions
to the problem (Pε) and the corresponding solutions to the following unperturbed
system:

{

v′(t) + A0v(t) = f(t), t ∈ (0, T ),
v(0) = u0.

(P0)

In our study we will use the following conditions:
(H1) The operator A0 : D(A0) ⊆ H → H is self-adjoint and positive defined,

i.e. there exists ω0 > 0 such that

(A0u, u) ≥ ω0 |u|
2, ∀u ∈ D(A0);

(H2) The operator A1 : D(A1) ⊆ H → H is self-adjoint, positive defined and
there exists α > 1 such that:

c© Galina Rusu, 2009
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(i) D(Aα
0 ) ⊆ D(A1);

(ii) A1

[

D(A2α−1
0 )

]

⊆ D(Aα−1
0 );

(iii) A1A
α−1
0 u = Aα−1

0 A1u, ∀u ∈ D(A2α−1
0 );

(iv) there exists ω2 > 0 and ω3 > 0 such that

ω2 |u|
2 ≤ (A1u, u) ≤ ω3 (Aα

0 u, u) , ∀u ∈ D(A2α−1
0 ).

The definition and properties of operator Aα can be found in [2].
If, in some topology, uε(t) tends to the corresponding solutions v(t) of the un-

perturbed system (P0) as ε → 0, then the system (P0) is called regularly perturbed.
In the opposite case, the system (P0) is called singularly perturbed. In the last case,
a subset of [0,∞), in which the solution uε(t) has a singular behavior relative to ε,
arises. This subset is called the boundary layer. The function which defines the sin-
gular behavior of the solution uε(t) within the boundary layer is called the boundary
layer function.

Our approach is based on two key points. The first one is the relationship
between the solutions to the problems (Pε) and (P0). The second key point consists
in obtaining a priori estimates for the solutions to the problems (Pε), estimates
which are uniform with respect to the small parameter ε.

In what follows we will need some notations. Let k ∈ N
⋆, 1 ≤ p ≤ +∞, (a, b) ⊂

(−∞,+∞) and let X be a Banach space. We denote by W k,p(a, b;X) the Banach
space of all vectorial distributions u ∈ D′(a, b;X), u(j) ∈ Lp(a, b;X), j = 0, 1, . . . , k,
endowed with the norm

‖u‖W k,p(a,b;X) =





k
∑

j=0

‖u(j)‖p

Lp(a,b;X)





1/p

for p ∈ [1,∞) and
‖u‖W k,∞(a,b;X) = max

0≤j≤k
‖u(j)‖L∞(a,b;X)

for p = ∞.
In the particular case p = 2, we denote W k,2(a, b;X) = Hk(a, b;X). If X is a

Hilbert space, then Hk(a, b;X) is also a Hilbert space with the inner product

(u, v)Hk(a,b;X) =
k
∑

j=0

b
∫

a

(

u(j)(t), v(j)(t)
)

X
dt.

For each fixed s ∈ R, k ∈ N and p ∈ [1,∞], we define the Banach space

W k,p
s (a, b;H) = {f : (a, b) → H; f (l)(·)e−st ∈ Lp(a, b;X), l = 0, . . . , k},

with the norm
‖f‖

W
k,p
s (a,b;X)

= ‖fe−st‖W k,p(a,b;X).
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2 Existence of strong solutions to both (Pε) and (P0)

Theorem 1. [1] Let T > 0 and let us assume that A0 satisfies the condition (H1).
If u0 ∈ D(A0) and f ∈ W 1,1(0, T ;H), then there exists a unique strong solution
v ∈ W 1,∞(0, T ;H) to the problem (P0). Moreover, v satisfies

|v(t)| +

(∫ t

0

∣

∣

∣
A

1/2
0 u(s)

∣

∣

∣
ds

)1/2

≤ |u0| +

∫ t

0
|f(s)| ds, ∀t ∈ [0, T ],

∣

∣v′(t)
∣

∣ ≤ |A0u0 − f(0)| +

∫ t

0

∣

∣f ′(s)
∣

∣ ds, ∀t ∈ [0, T ].

Theorem 2. [1] Let T > 0. Let us assume that A : D(A) ⊂ H → H is linear self-
adjoint and positive defined. If u0 ∈ D(A), u1 ∈ H and f ∈ W 1,1(0, T ;H), then there
exists a unique function u : [0, T ] → H such that : u ∈ W 2,∞(0, T ;H), A1/2u ∈
W 1,∞(0, T ;H), Au ∈ L∞(0, T ;H), A1/2u and u′ are differentiable on the right in
H for every t ∈ [0, T ) and

d+

dt

du

dt
(t) +

du

dt
(t) + Au(t) = f(t), t ∈ [0, T ), (1)

u(0) = u0, u′(0) = u1. (2)

In what follows this function will be called the strong solution to the problem
(1), (2).

3 A priori estimates for solutions to the problem (Pε)

Consider the following problem:

{

ε (u′′
ε(t) + A1uε(t)) + u′

ε(t) + A0uε(t) = f(t), t ∈ (0, T ),
uε(0) = u0, u′

ε(0) = u1.
(3)

Lemma 1. [4] Let T > 0. Suppose that, for each ε ∈ (0, 1), the operator A(ε) =
(εA1 + A0) : D (A(ε)) ⊆ H → H is self-adjoint and satisfies

(A(ε)u, u) ≥ ω |u|2, ∀u ∈ D (A(ε)) , ω > 0, ε ∈ (0, 1]. (4)

If f ∈ W 1,1(0, T ;H), u0 ∈ D (A(ε)), u1 ∈ H, then the unique strong solution, uε, of
the problem (3) satisfies

‖A1/2(ε)uε‖C([0, t]; H) + ‖u′
ε‖L2(0, t; H) ≤ C(ω)M(t), (5)

for each t ∈ [0, T ] and each ε ∈ (0, 1/2]. If, in addition, u1 ∈ D
(

A1/2(ε)
)

, then

‖u′
ε‖C([0, t]; H) + ‖A1/2(ε)u′

ε‖L2(0, t; H) ≤ C(ω)M1(t), (6)
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for each t ∈ [0, T ], and each ε ∈ (0, 1], and

‖A(ε)uε‖L∞(0, t; H) ≤ C(ω)M1(t), ∀t ∈ [0, T ], ∀ε ∈ (0, 1], (7)

where C(ω) is a constant depending on ω,

M(t) = M(t, u0, u1, f) =
∣

∣

∣
A1/2(ε)u0

∣

∣

∣
+ |u1| + ‖f‖W 1,1(0,t; H) + |f(0)|

and

M1(t) = M1(t, u0, u1, f) =
∣

∣

∣
A1/2(ε)u1

∣

∣

∣
+ |A(ε)u0| + ‖f‖W 1,1(0,t; H) + |f(0)|.

Let uε be a strong solution of the problem (3) and let us denote by

zε(t) = u′
ε(t) + αe−t/ε, α = f(0) − u1 − A(ε)u0. (8)

Lemma 2. [4] Let T > 0 and let us assume that, for each ε ∈ (0, 1), the operator
A(ε) = εA1 + A0 is self-adjoint and satisfies (4). If u1, f(0) − A(ε)u0 ∈ D (A(ε))
and f ∈ W 2,1(0, T ;H), then there exists C(ω) > 0, such that the function zε, defined
by (8), satisfies

‖A1/2(ε)zε‖C([0, t]; H) + ‖z′ε‖C([0, t]; H) +
∥

∥

∥
A1/2(ε)z′ε

∥

∥

∥

L2(0, t; H)

≤ C(ω)M2(t), ∀t ∈ [0, T ], ∀ε ∈ (0, 1], (9)

where

M2(t) = |A(ε)f(0) − A2(ε)u0| + ‖f‖W 2,1(0,t;H) + |A(ε)u1| + |f ′(0)|.

4 The relationship between the solution to (Pε) and (P0)

Now we are going to establish the relationship between the solution to the prob-
lem (Pε) and the corresponding solution to the problem (P0). To this end, we begin
by defining the transformation kernel which realizes this relationship.

Namely, for ε > 0, let us denote

K(t, τ, ε) =
1

2 ε
√

π
(K1(t, τ, ε) + 3K2(t, τ, ε) − 2K3(t, τ, ε)) ,

where

K1(t, τ, ε) = exp

{

3t − 2τ

4ε

}

λ

(

2t − τ

2
√

εt

)

,

K2(t, τ, ε) = exp

{

3t + 6τ

4ε

}

λ

(

2t + τ

2
√

εt

)

,

K3(t, τ, ε) = exp
{τ

ε

}

λ

(

t + τ

2
√

εt

)

, λ(s) =

∫ ∞

s

e−η2
dη.
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Lemma 3. [3]. The function K ∈ C([0,∞)× [0,∞)) ∩C2((0,∞) × (0,∞)) has the
following properties:

(i) K(t, τ, ε) > 0, ∀t ≥ 0, ∀τ ≥ 0 ;

(ii) For every continuous ϕ : [0,∞) → H, with |ϕ(t)| ≤ M exp{γ t}, we have :

lim
t→0

∥

∥

∥

∥

∫ ∞

0
K(t, τ, ε)ϕ(τ)dτ −

∫ ∞

0
e−τϕ(2ετ)dτ

∥

∥

∥

∥

H

= 0,

for every ε ∈
(

0, (2 γ)−1
)

;

(iii)
∫ ∞

0
K(t, τ, ε)dτ = 1, ∀t ≥ 0.

(iv) For every q ∈ [0, 1], there exists C > 0 and ε0 > 0, depending on q, such that:
∫ ∞

0
K(t, τ, ε) |t − τ |q dτ ≤ C εq/2

(

1 +
√

t
)q

, ∀t ≥ 0, ∀ε ∈ (0, 1] ;

(v) Let p ∈ (1,∞] and f : [0, ∞) → H, f ∈ W 1,p(0,∞;H). There exist C > 0,
and ε0 depending on p, such that

∥

∥

∥

∥

f(t) −

∫ ∞

0
K(t, τ, ε)f(τ)dτ

∥

∥

∥

∥

H

≤ C ‖f ′‖Lp(0,∞;H)

(

1 +
√

t
)

p−1
p

ε(p−1)/2p, ∀t ≥ 0, ∀ε ∈ (0, 1].

(vi) For every q > 0 and α ≥ 0, there exists C(q, α) > 0 such that
∫ t

0

∫ ∞

0
K(τ, θ, ε) e−q θ/ε |τ − θ|α dθ dτ ≤ C(q, α) ε1+α,

for each t ≥ 0, and each ε > 0.

Theorem 3. [4] Suppose that A(ε) satisfies (H1), let f ∈ L∞
c (0,∞;H) and let uε ∈

W 2,∞
c (0,∞;H) be the strong solution to the problem (3), with Auε ∈ L∞

c (0,∞;H),
for some c ≥ 0. Then the function wε, defined by

wε(t) =

∫ ∞

0
K(t, τ, ε)uε(τ) dτ,

is the strong solution to the problem
{

w′
ε(t) + A(ε)wε(t) = F0(t, ε), t > 0,

wε(0) = ϕε,
(10)

where

ϕε =

∫ ∞

0
e−τuε(2ετ)dτ, F0(t, ε) = f0(t, ε)u1 +

∫ ∞

0
K(t, τ, ε) f(τ) dτ,

f0(t, ε) =
1
√

π

[

2 exp

{

3t

4ε

}

λ

(

√

t

ε

)

− λ

(

1

2

√

t

ε

)]

.
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5 The limit of the solutions to the problem (Pε) as ε → 0

In this section we will study the behavior of the solutions to the problem (Pε)
as ε → 0.

Theorem 4. Let T > 0 and p ∈ (1,∞]. Suppose that the operators A0 and A1

satisfy conditions (H1) and (H2). If

u0 ∈ D(A0), u0 ε ∈ D(A2α−1
0 ), u1 ε ∈ D(Aα−1

0 ), f, Aα−1
0 fε ∈ W 1,p(0, T ;H),

then there exist constants ε0 = ε0(ω0) ∈ (0, 1) and C = C(T, p, ω0, ω2, ω3, α) > 0
such that

||uε − v||C([0,T ];H) ≤ C
(

M3ε εβ +
∣

∣u0 ε − u0

∣

∣+
∣

∣

∣

∣fε − f
∣

∣

∣

∣

Lp(0,T ;H)

)

, (11)

for all ε ∈ (0, ε0], where uε and v are the strong solutions to problems (Pε) and (P0)
respectively,
β = min{1/4, (p − 1)/2p} and

M3ε =
∣

∣A
(3α−2)/2
0 u0 ε

∣

∣+ |Aα−1
0 u1 ε| + ||Aα−1

0 fε||W 1,p(0,T ;H),

If in addition, u1 ε ∈ D
(

A
α/2
0

)

, then

||uε − v||C([0,T ];H) ≤ C
(

M4 ε ε(p−1)/2p +
∣

∣u0 ε − u0

∣

∣+
∣

∣

∣

∣fε − f
∣

∣

∣

∣

Lp(0,T ;H)

)

, (12)

ε ∈ (0, ε0] and

||A
1/2
0 uε − A

1/2
0 v||L2(0, T ; H)

≤ C
(

M4 ε εβ +
∣

∣u0 ε − u0

∣

∣+
∣

∣

∣

∣fε − f
∣

∣

∣

∣

Lp(0,T ;H)

)

, (13)

ε ∈ (0, ε0] where

β = min{1/4, (p − 1)/2p} and

M4 ε =
∣

∣A
(3α−2)/2
0 u0 ε

∣

∣+ |A0u0 ε| + |A1u0 ε| +
∣

∣A
α/2
0 u1 ε

∣

∣

+
∣

∣Aα−1
0 u1 ε

∣

∣+ ||Aα−1
0 fε||W 1,p(0, T ; H).

Proof. During the proof of this theorem, we will agree to denote all constants ε0(ω0)
and C = C(T, p, ω0, ω2, ω3, α) > 0 be ε0 and C respectively.

Using (H1) and the properties of Aα
0 proved in [2], we can state that there exists

a constant C(ω0, α) such that:

(

Aα
0 u, u

)

≥ C(ω0, α) ‖ u ‖2, u ∈ D(Aα
0 ). (14)
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Using (H1), (H2) and (14), since u0ε ∈ D(A2α−1
0 ), u1ε ∈ D(Aα−1

0 )

(A3α−2
0 u0ε, u0ε) = (A2α−2

0 A
α/2
0 u0ε, A

α/2
0 u0ε) ≥ C(ω0, α)(Aα

0 u0ε, u0ε)

= C(ω0, α)(Aα−1
0 A

1/2
0 u0ε, A

1/2
0 u0ε) ≥ C2(ω0, α)(A0u0ε, u0ε);

(Aα−1
0 u1ε, A

α−1
0 u1ε) = (Aα−1

0 A
(α−1)/2
0 u1ε, A

(α−1)/2
0 u1ε)

≥ C(ω0, α)(Aα−1
0 u1ε, u1ε) ≥ C2(ω0, α)(u1ε, u1ε). (15)

Let us also observe that, for α > 1, we have D(A2α−1
0 ) ⊂ D(Aα

0 ). Thus, from
(H2), we get

(λI + Aα−1
0 )A1u = A1(λI + Aα−1

0 )u, u ∈ D(A2α−1
0 ), λ ≥ 0,

which implies

(λI + Aα−1
0 )−1A−1

1 u = A−1
1 (λI + Aα−1

0 )−1u, ∀u ∈ D(A2α−1
0 ), ∀λ ≥ 0.

Since A−1
1 is bounded and commutes with the resolvent of Aα−1

0 , we can state
that

[

Aα−1
0

]1/2
A−1

1 u = A−1
1

[

Aα−1
0

]1/2
u, ∀u ∈ D(Aα−1

0 ).

So, if u ∈ D(Aα−1
0 ), then A−1

1

[

Aα−1
0

]1/2
u ∈ D(A1). Thus

A1

[

A
(α−1)/2
0 A−1

1

]

u = A
(α−1)/2
0 u, ∀u ∈ D(Aα−1

0 ).

Taking u ∈ D(A2α−1
0 ), from (ii) of (H2), we get A1u ∈ D(Aα−1

0 ), which finally
implies

A1A
(α−1)/2
0 u = A

(α−1)/2
0 A1u, ∀u ∈ D(A2α−1

0 ).

Using (iv) of (H2) and the last inequality, we get

|(A1u, v)| = |(A
(α−1)/2
0 A1u,A

−(α−1)/2
0 v)| = |(A1A

(α−1)/2
0 u,A

−(α−1)/2
0 v)|

≤

√

(A1A
(α−1)/2
0 u,A

(α−1)/2
0 u)(A1A

−(α−1)/2
0 v,A

−(α−1)/2
0 v)

≤ ω3

√

(Aα
0 A

(α−1)/2
0 u,A

(α−1)/2
0 u)(Aα

0 A
−(α−1)/2
0 v,A

−(α−1)/2
0 v)

= ω3|A
α−1/2
0 u||A

1/2
0 v|, ∀u, v ∈ D(A2α−1

0 ). (16)

If fε ∈ W l,p(0, T ;H) with p ∈ (1,∞] and l ∈ N
⋆, we have that fε ∈ C([0, T ];H)

and there exists an extension f̃ε ∈ W l,p(0,∞;H) such that
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||f̃ε||C([0,∞);H) + ||f̃ε||W l,p(0,∞;H) ≤ C(T, p, l) ||fε||W l,p(0,T ;H). (17)

Let us denote by ũε the unique strong solution to the problem (Pε) and by ṽ the
unique strong solution to the problem (P0), substituting (0, T ) by (0,∞) and fε by
f̃ε. From Theorem 2, we have

{

ũε ∈ W 2,∞(0, T ;H), A1/2(ε)ũε ∈ W 1,∞(0, T ;H),
A(ε)ũε ∈ L∞(0, T ;H), ∀T ∈ (0,∞).

From Lemma 1 and (15), it follows that

{

ũε ∈ W 2,∞(0,∞;H), A
1/2
0 ũε ∈ W 1,2(0,∞;H),

A(ε)ũε ∈ L∞(0,∞;H).

Moreover, due to this lemma and inequalities (15) and (17), we get

||A
1/2
0 ũε||C([0, t]; H) + ||ũ′

ε||L2(0, t; H) ≤ C M3ε, t ≥ 0, ε ∈ (0, ε0]. (18)

If, in addition, u1 ε ∈ D
(

A
α/2
0

)

, then

||ũ′
ε||C([0, t]; H) + ||A

1/2
0 ũ′

ε||L2(0, t; H) ≤ C M4 ε, t ≥ 0, ε ∈ (0, ε0]. (19)

Proof of (11). According to Theorem 3, the function

wε(t) =

∫ ∞

0
K(t, τ, ε) ũε(τ) dτ, (20)

is the strong solution to the problem

{

w′
ε(t) + A(ε)wε(t) = F (t, ε), t > 0, ı̂n H,

wε(0) = w0,
(21)

for 0 < ε ≤ ε0, where



























F (t, ε) = f0(t, ε)u1 ε +
∫∞
0 K(t, τ, ε) f̃ε(τ) dτ,

f0(t, ε) = 1√
π

[

2 exp
{

3t
4ε

}

λ
(√

t
ε

)

− λ
(

1
2

√

t
ε

)]

,

w0 =
∫∞
0 e−τ ũε(2ετ)dτ.

(22)

Using Holder’s inequality, properties (i)-(v) of Lemma 3 and (18), we obtain

∣

∣

∣

∣ũε(t) − wε(t)
∣

∣

∣

∣

H
=
∣

∣

∣

∣

∣

∣
ũε(t) −

∫ ∞

0
K(t, τ, ε) ũε(τ) dτ

∣

∣

∣

∣

∣

∣

H

≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∣ũε(t) − ũε(τ)
∣

∣

∣

∣

H
dτ ≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∫ τ

t

||ũ′
ε(s)||H ds

∣

∣

∣
dτ
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≤ ‖ũ′
ε‖L2(0,∞;H)

∫ ∞

0
K(t, τ, ε) |t − τ |1/2 dτ ≤ C M3ε ε1/4, t ∈ [0, T ], ε ∈ (0, ε0].

Then it follows

||ũε − wε||C([0, T ]; H) ≤ C M3ε ε1/4, ε ∈ (0, ε0]. (23)

Let us denote by R(t, ε) = ṽ(t)− wε(t), which clearly is the strong solution in H to
the problem

{

R ′(t, ε) + A0R(t, ε) = εA1wε(t) + F(t, ε), t > 0,
R(0, ε) = R0,

(24)

where R0 = u0 − w0 and

F(t, ε) = f̃(t) −

∫ ∞

0
K(t, τ, ε)f̃ε(τ) dτ − f0(t, ε)u1 ε. (25)

Taking the inner product by R in the equation (24) and then integrating, we
obtain

|R(t, ε)|2 + 2

∫ t

0

∣

∣A
1/2
0 R(s, ε)

∣

∣

2
ds

=
∣

∣R0

∣

∣

2
+ 2

∫ t

0

∣

∣F(s, ε)
∣

∣

∣

∣R(s, ε)
∣

∣ ds + 2 ε

∫ t

0

(

A1wε(s), R(s, ε)
)

ds, t ≥ 0.

Using (16), from the last equality, we get

|R(t, ε)|2 +

∫ t

0

∣

∣A
1/2
0 R(s, ε)

∣

∣

2
ds

≤
∣

∣R0

∣

∣

2
+ 2

∫ t

0

∣

∣F(s, ε)
∣

∣

∣

∣R(s, ε)
∣

∣ ds + ε2

∫ t

0

∣

∣A
α−1/2
0 wε(s)

∣

∣

2
ds, t ≥ 0. (26)

From (26), we obtain

|R(t, ε)| +
(

∫ t

0

∣

∣A
1/2
0 R(s, ε)

∣

∣

2
ds
)1/2

≤
∣

∣R0

∣

∣+

∫ t

0

∣

∣F(s, ε)
∣

∣ ds+ ε
(

∫ t

0

∣

∣A
α−1/2
0 wε(s)

∣

∣

2
ds
)1/2

, t ≥ 0, ε ∈ (0, ε0]. (27)

From (18), it follows that

∣

∣R0

∣

∣ ≤

∫ ∞

0
e−s
∣

∣ũε(2εs) − u0 ε

∣

∣ ds + |u0ε − u0|
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≤

∫ ∞

0
e−s

∫ 2εs

0

∣

∣ũ′
ε(τ)

∣

∣ dτ ds + |u0 ε − u0|

≤ C M3ε ε1/2 + |u0 ε − u0|, ε ∈ (0, ε0]. (28)

Using property (v) of Lemma 3, from (17), we have

∣

∣

∣
f̃(t) −

∫ ∞

0
K(t, τ, ε) f̃ε(τ) dτ

∣

∣

∣
≤
∣

∣f̃(t) − f̃ε(t)
∣

∣

+

∫ ∞

0
K(t, τ, ε)

∣

∣f̃ε(t) − f̃ε(τ)
∣

∣ dτ

≤
∣

∣f̃(t) − f̃ε(t)
∣

∣+ C(T, p) ‖f ′
ε ‖Lp(0, T ;H) ε(p−1)/2 p, t ≥ 0, ε ∈ (0, ε0]. (29)

As eτλ(
√

τ) ≤ C, τ ≥ 0, we have

∫ t

0
exp

{3τ

4ε

}

λ
(

√

τ

ε

)

dτ ≤ C ε

∫ t

ε

0
e−τ/4 dτ ≤ C ε

∫ ∞

0
e−τ/4 dτ ≤ Cε, t ≥ 0,

∫ t

0
λ
(1

2

√

τ

ε

)

dτ ≤ ε

∫ ∞

0
λ
(1

2

√
τ
)

dτ ≤ C ε, t ≥ 0.

Hence

∣

∣

∣

∫ t

0
f0(τ, ε) dτ u1 ε

∣

∣

∣
≤ C ε |u1 ε|, t ≥ 0. (30)

Using (29) and (30), we get

∫ t

0

∣

∣F(s, ε)
∣

∣ ds

≤ C
(

M3ε ε(p−1)/2p +
∣

∣

∣

∣fε − f
∣

∣

∣

∣

Lp(0,T ;H)

)

, t ∈ [0, T ], ε ∈ (0, ε0]. (31)

Let us denote by ỹε = Aα−1
0 ũε. Since Aα−1

0 u0 ε ∈ D(Aα
0 ), Aα−1

0 u1 ε ∈
H, Aα−1

0 fε ∈ W 1,p(0, T ;H), from Lemma 1, we can state:

||A
1/2
0 ỹε||C([0, t]; H) + ||ỹ′ε||L2(0, t; H) ≤ C M3ε, t ≥ 0, ε ∈ (0, 1/2]. (32)

As the operator A
α−1/2
0 is closed, then, using (32), we obtain

∣

∣A
α−1/2
0 wε(t)

∣

∣

≤

∫ ∞

0
K(t, τ, ε)

∣

∣A
1/2
0 ỹε(τ)

∣

∣ dτ ≤ C M3ε, t ≥ 0, ε ∈ (0, ε0]. (33)
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Thanks to (28), (31) and (33), from (27) it follows that

||R||C([0, T ]; H) +
∣

∣

∣

∣A
1/2
0 R

∣

∣

∣

∣

L2(0, T ; H)

≤
(

M3ε ε(p−1)/2 p +
∣

∣u0 ε − u0

∣

∣+
∣

∣

∣

∣fε − f
∣

∣

∣

∣

Lp(0,T ;H)

)

, ε ∈ (0, ε0]. (34)

Finally, from (23) and (34), it follows that

||ũε − ṽ||C([0,T ];H) ≤ ||ũε − wε||C([0,T ];H) + ||R||C([0,T ];H)

≤ C
(

M3ε εβ +
∣

∣u0 ε − u0

∣

∣+
∣

∣

∣

∣fε − f
∣

∣

∣

∣

Lp(0,T ;H)

)

, ε ∈ (0, ε0]. (35)

According to Theorems 1 and 2, we have that uε(t) = ũε(t) and ṽ(t) = v(t) for
t ∈ [0, T ]. Therefore, from (35), we deduce (11).

Proof of (12). If u1 ε ∈ D
(

A
α/2
0

)

, from (19), we get

∣

∣

∣

∣ũε(t) − wε(t)
∣

∣

∣

∣

H
=
∣

∣

∣

∣

∣

∣
ũε(t) −

∫ ∞

0
K(t, τ, ε) ũε(τ) dτ

∣

∣

∣

∣

∣

∣

H

≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∣ũε(t) − ũε(τ)
∣

∣

∣

∣

H
dτ ≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∫ τ

t

||ũ′
ε(s)||H ds

∣

∣

∣ dτ

≤ ‖ũ′
ε‖C([0,∞); H)

∫ ∞

0
K(t, τ, ε) |t − τ | dτ ≤ C M4 ε ε1/2, t ∈ [0, T ], ε ∈ (0, ε0].

This yields

||ũε − wε||C([0, T ]; H) ≤ C M4 ε ε1/2, ε ∈ (0, ε0].

As, for p ∈ (1;∞], we have (p − 1)/2p ≤ 1/2 , the proof of (12) follows in the
same way as the proof of (11).

Proof of (13). Using properties (i), (iii) and (iv) of Lemma 3 and (19), we get

∣

∣A
1/2
0

(

ũε(t) − wε(t)
)∣

∣ ≤

∫ ∞

0
K(t, τ, ε)

∣

∣A
1/2
0

(

ũε(t) − ũε(τ)
)∣

∣ dτ

≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∫ t

τ

∣

∣

∣

∣A
1/2
0 ũ′

ε(s)
∣

∣

∣

∣

H
ds
∣

∣

∣ dτ

≤

∫ ∞

0
K(t, τ, ε) |t − τ |1/2

∣

∣

∣

∫ t

τ

∣

∣

∣

∣A
1/2
0 ũ′

ε(s)
∣

∣

∣

∣

2

H
ds
∣

∣

∣

1/2
ds
∣

∣

∣
dτ
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≤ C M4 ε ε1/4, t ≥ 0, ε ∈ (0, ε0].

As uε(t) = ũε(t), t ∈ [0, T ], therefore

∣

∣

∣

∣A
1/2
0

(

uε − wε

)∣

∣

∣

∣

C([0, T ]; H)
≤ C M4 ε ε1/4, ε ∈ (0, ε0]. (36)

From (34), it follows that

∣

∣

∣

∣A
1/2
0 R

∣

∣

∣

∣

L2(0, T ) ;H)

≤
(

M4ε ε(p−1)/2 p +
∣

∣u0 ε − u0

∣

∣+
∣

∣

∣

∣fε − f
∣

∣

∣

∣

Lp(0,T ;H)

)

, ε ∈ (0, ε0]. (37)

Finally, (36) and (37) imply (13) and this completes the proof.

Theorem 5. Let T > 0 and p ∈ (1,∞]. Suppose that the operators A0 and A1

satisfy (H1) and (H2). If u0, A0u0, f(0) ∈ D(A0), u1ε, A0u0ε, A1u0ε, fε(0) ∈
D(A2α−1

0 ), f, Aα−1
0 fε ∈ W 2,p(0, T ;H), then there exist constants ε0 = ε0(ω0) ∈ (0, 1)

and C = C(T, p, ω0, ω2, ω3, α) > 0 such that

∣

∣

∣

∣u′
ε − v′ + hε e−

t

ε

∣

∣

∣

∣

C([0, T ]; H)
≤ C

(

M5 ε ε(p−1)/2p + Dε

)

, (38)

∣

∣

∣

∣A
1/2
0

(

u′
ε − v′ + hε e−

t

ε

)∣

∣

∣

∣

L2(0, T ;H)
≤ C

(

M5 ε εβ + Dε

)

, (39)

where v and uε are the strong solutions to problems (P0) and (Pε) respectively,
β = min{1/4, (p − 1)/2p}, hε = fε(0) − u1 ε − A(ε)u0 ε,

Dε =
∣

∣

∣

∣fε − f
∣

∣

∣

∣

W 1, p(0, T ;H)
+
∣

∣A0(u0ε − u0)
∣

∣,

M5 ε =
∣

∣Aα
0 hε

∣

∣+
∣

∣Aα−1
0 A1hε

∣

∣+
∣

∣Aα
0 u1ε

∣

∣

+
∣

∣Aα−1
0 A1u1ε + |A1u0ε| +

∣

∣

∣

∣Aα−1
0 fε

∣

∣

∣

∣

W 2,p(0, T ;H)
.

Proof. During this proof, for ũε, ṽ, f̃ and f̃ε we will use the same notations as in
the proof of Theorem 4. Let us denote by

z̃ε(t) = ũ′
ε(t) + αεe

− t

ε , αε = fε(0) − u1 ε − A(ε)u0 ε.

If u1 ε + αε ∈ D
(

A2α−1
0 )

)

⊆ D(Aα
0 ) and f ∈ W 2,1(0, T ;H), then, due to (15) and

(17), u1 ε + αε ∈ D
(

A(ε))
)

and f̃ ∈ W 2,1(0,∞;H). According to Theorem 2, z̃ε is
the strong solution in H to the problem

{

εz̃′′ε (t) + z̃′ε(t) + A(ε)z̃ε(t) = F̃(t, ε), t > 0,
z̃ε(0) = fε(0) − A(ε)u0 ε, z̃′ε(0) = 0,

(40)

where
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F̃(t, ε) = f̃ ′
ε (t) + e−t/ε A(ε)αε

and

z̃ε ∈ W 2,∞(0,∞;H), A
1/2
0 z̃ε ∈ W 1,2(0,∞;H), A(ε)z̃ε ∈ L∞(0,∞;H).

From Lemma 2 it follows that

||A
1/2
0 z̃ε||C([0, ∞];H) + ||z̃′ε||C([0, ∞); H)

+
∣

∣

∣

∣A
1/2
0 z̃′ε

∣

∣

∣

∣

L2(0,∞;H)
≤ C M5 ε, ε ∈ (0, ε0]. (41)

According to Theorem 3 the function

w1 ε(t) =

∫ ∞

0
K(t, τ, ε) z̃ε(τ)dτ

is a strong solution to the problem

{

w′
1 ε(t) + A(ε)w1ε(t) = F1(t, ε), t > 0, ε ∈ (0, ε0]

w1 ε(0) =
∫∞
0 e−τ z̃ε(2 ε τ)dτ,

where

F1(t, ε) =

∫ ∞

0
K(t, τ, ε)

(

f̃ ′
ε(τ) dτ + e−

τ

ε A(ε)αε

)

dτ.

Moreover,

∣

∣A
1/2
0 w1 ε(t)

∣

∣ ≤

∫ ∞

0
K(t, τ, ε)

∣

∣A
1/2
0 z̃ε(τ)

∣

∣ dτ ≤ CM5 ε, t ≥ 0. (42)

Using properties (i), (iii)-(v) of Lemma 3 and(41), we get

∣

∣

∣

∣z̃ε(t) − w1 ε(t)
∣

∣

∣

∣

H
=
∣

∣

∣

∣

∣

∣
z̃ε(t) −

∫ ∞

0
K(t, τ, ε) z̃ε(τ) dτ

∣

∣

∣

∣

∣

∣

H

≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∣z̃ε(t) − z̃ε(τ)
∣

∣

∣

∣

H
dτ

≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∫ τ

t

||z̃′ε(s)||H ds
∣

∣

∣
dτ

≤ ‖z̃′ε‖C([0,∞); H)

∫ ∞

0
K(t, τ, ε) |t − τ | dτ ≤ C M5 ε ε1/2, t ∈ [0, T ], ε ∈ (0, ε0]

and

∣

∣

∣

∣A
1/2
0

(

z̃ε(t) − w1 ε(t)
)∣

∣

∣

∣

H
=
∣

∣

∣

∣

∣

∣A
1/2
0 z̃ε(t) −

∫ ∞

0
K(t, τ, ε)A

1/2
0 z̃ε(τ) dτ

∣

∣

∣

∣

∣

∣

H
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≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∣A
1/2
0

(

z̃ε(t) − z̃ε(τ)
)∣

∣

∣

∣

H
dτ

≤

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∫ τ

t

||A
1/2
0 z̃′ε(s)||H ds

∣

∣

∣ dτ

≤ ‖A
1/2
0 z̃′ε‖L2(0,∞;H)

∫ ∞

0
K(t, τ, ε) |t − τ |1/2 dτ

≤ C M5 ε ε1/4, t ∈ [0, T ], ε ∈ (0, ε0],

from which it follows that

||z̃ε − w1 ε||C([0, T ]; H) ≤ C M5 ε ε1/2, ε ∈ (0, ε0], (43)

∣

∣

∣

∣A
1/2
0

(

z̃ε − w1 ε

)∣

∣

∣

∣

L2(0, T ;H)
≤ C M5 ε ε1/4, ε ∈ (0, ε0]. (44)

Let R1(t, ε) = ṽ′(t)−w1ε(t). If f(0)−A0u0 ∈ D(A0) and f ∈ W 2,1(0, T ;H), then,

according to Theorem 1, ṽ ∈ W 2,∞(0,∞;H), A
1/2
0 ṽ ∈ W 1,2(0,∞;H). Therefore

R1 ∈ W 1,∞(0,∞;H) and

{

R′
1(t, ε) + A0R1(t, ε) = f̃ ′(t) −F1(t, ε) + εA1w1 ε(t), t > 0,

R1(0, ε) = f(0) − A0u0 − w1 ε(0).

Similarly to (27), we deduce inequality

∣

∣R1(t, ε)
∣

∣ +
(

∫ t

0

∣

∣A
1/2
0 R1(s, ε)

∣

∣

2
ds
)1/2

≤
∣

∣R1(0, ε)
∣

∣

+

∫ t

0

∣

∣f̃ ′(s) −F1(s, ε)
∣

∣ ds + ε
(

∫ t

0

∣

∣A
α−1/2
0 w1 ε(s)

∣

∣

2
ds
)1/2

, t ≥ 0. (45)

Using (41), for R1(0, ε), we get

∣

∣R1(0, ε)
∣

∣ ≤
∣

∣f(0) − fε(0)
∣

∣ +
∣

∣A0(u0 − u0 ε)
∣

∣

+ε
∣

∣A1u0 ε

∣

∣+

∫ ∞

0
e−s
∣

∣z̃ε(2 ε s) − z̃ε(0)
∣

∣ ds

≤ C Dε + ε
∣

∣A1u0 ε

∣

∣+ M5 ε ε ≤ C Dε + M5 ε ε, ε ∈ (0, ε0]. (46)

As

∣

∣f̃ ′(s) −F1(s, ε)
∣

∣ ≤
∣

∣f̃ ′(s) − f̃ ′
ε(s)

∣

∣+

∫ ∞

0
K(s, τ, ε)

∣

∣f̃ ′
ε(τ) − f̃ ′

ε(s)
∣

∣ dτ

+

∫ ∞

0
K(s, τ, ε) e−

τ

ε dτ
∣

∣A(ε)αε

∣

∣,
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then, due to property (iv) and (vi) of Lemma 3, it follows:

∫ t

0

∣

∣f̃ ′(s) −F1(s, ε)
∣

∣ ds ≤ C
(

Dε + M5 ε ε(p−1)/2p +
∣

∣A(ε)αε

∣

∣ ε
)

≤ C
(

Dε + M5 ε ε(p−1)/2p
)

, t ∈ [0, T ], ε ∈ (0, ε0]. (47)

Let us denote by ỹ1ε = Aα−1
0 z̃ε. Since Aα−1

0 zε(0) ∈ D(Aα
0 ), Aα−1

0 fε ∈
W 1,p(0, T ;H), from Lemma 1, we can state the estimate:

||A
1/2
0 ỹ1ε||C([0, t]; H) + ||ỹ′1ε||L2(0, t; H) ≤ C M5ε, t ≥ 0, ε ∈ (0, 1/2]. (48)

As the operator A
α/2
0 is closed, then, using (48), we obtain

∣

∣A
α−1/2
0 w1ε(t)

∣

∣ ≤

∫ ∞

0
K(t, τ, ε)

∣

∣A
1/2
0 ỹε(τ)

∣

∣ dτ

≤ C M5ε, t ≥ 0, ε ∈ (0, ε0]. (49)

Using (42), (46), (47), from (45), we get

∣

∣

∣

∣R1

∣

∣

∣

∣

C([0, T ]; H)
+
∣

∣

∣

∣A
1/2
0 R1

∣

∣

∣

∣

L2(0, T ;H)
≤ C

(

Dε

+M5 ε ε(p−1)/2p
)

, ε ∈ (0, 1]. (50)

Finally, as (43), (44) and (45) imply (38) and (39), the proof is complete.
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Free Moufang loops and alternative algebras
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Abstract. It is proved that any free Moufang loop can be embedded in to a loop
of invertible elements of some alternative algebra. Using this embedding it is quite
simple to prove the well-known result: if three elements of Moufang loop are bound
by the associative law, then they generate an associative subloop. It is also proved
that the intersection of the terms of the lower central series of a free Moufang loop is
the identity and that a finitely generated free Moufang loop is Hopfian.
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alternative algebra.

This work offers another way of examining Moufang loops, and namely, with the
help of alternative algebras. It is well known that for an alternative algebra A with
unit the set U(A) of all invertible elements of A forms a Moufang loop with respect
to multiplication. It is known also that if L is a Moufang loop, then its loop algebra
FL is not always alternative, i.e. the Moufang laws are not always true in FL [1].
These themes are stated in survey [2] and [3] in details.

However, let L be a free Moufang loop. It is shown that if we factor the loop
algebra FL by some ideal I, then FL/I will be an alternative algebra and the loop
L will be embedded in to the loop of invertible elements of algebra FL/I. This is
a positive answer to the question raised in [4]: is it true that any Moufang loop
can be imbedded into a homomorphic image of a loop of type U(A) for a suitable
unital alternative algebra A? The equivalent version of this question is: whether the
variety generated by the loops of type U(A) is a proper subvariety of the variety of
all Moufang loops?

The findings of this paper also give a partial positive answer to a more general
question (see, for example, [3]): is it true that any Moufang loop can be embedded
into a loop of type U(A) for a suitable unital alternative algebra A? A positive
answer to this question was announced in [5]. Here, in fact, the answer to this
question is negative: in [4] the author constructed a Moufang loop, which is not
embedded into a loop of invertible elements of any alternative algebra.

Using this embedding it is quite simple to prove the well-known Moufang Theo-
rem: if three elements of Moufang loop are bound by the associative law, then they
generate an associative subloop. The Magnus Theorem for groups, stating that the
intersection of the terms of the lower central series of a free group is the identity, is
well known. This paper proves an analogous result for free Moufang loops. It also
proves that a finitely generated free Moufang loop is Hopfian.

c© N. I. Sandu, 2009
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1 Preliminaries

A loop (L, ·) ≡ L is called IP -loop if the laws −1x · xy = yx · x−1 = y are true in
it, where −1xx = xx−1 = 1. In IP - loops −1x = x−1 and (xy)−1 = y−1x−1. A loop
is Moufang if it satisfies the law

x(y · zy) = (xy · z)y. (1)

Every Moufang loop is an IP -loop. A subloop H of a loop L is called normal in L
if

xH = Hx, x · yH = xy · H, H · xy = Hx · y (2)

for every x, y ∈ L.
For elements x, y, z of a loop, the commutator (x, y) and the associator (x, y, z)

are defined by
xy = (yx)(x, y), (xy)z = (x(yz))(x, y, z). (3)

The set of all elements z of a loop L which commute and associate with all
elements of L, so that for all a, b in L, (a, z) = 1, (z, a, b) = 1, (a, z, b) = 1,
(a, b, z) = 1 is a normal subloop Z(L) of L, called its center.

If Z1(L) = Z(L), then the normal subloops Zi+1(L) : Zi+1(L)/Zi(L) =
Z(L/Zi(L)) are inductively determined. A loop L is called centrally nilpotent of class
n if its upper central series has the form {1} ⊂ Z1(L) ⊂ . . . ⊂ Zn−1(L) ⊂ Zn(L) = L.

If H is a normal subloop of a loop L, there is a unique smallest normal subloop
M of L such that H/M is a part of the center of L/M , and we write M = [H,L].
From here it follows that M is the normal subloop of L generated by the set
{(x, z), (z, x, y), (x, z, y), (x, y, z)|∀z ∈ H,∀x, y ∈ L}. The lower central series of
L is defined by L1 = L, Li+1 = [Li, L] (i ≥ 1) [2]. Consequently, Ln+1 is the
normal subloop of L generated by the set {(g, x), (g, x, y), (x, g, y), (x, y, g)|∀g ∈ Ln,
∀x, y ∈ L}.

Let F be a field and L be a loop. Let us examine the loop algebra FL. This is
a free F -module with the basis {q|q ∈ L} and the product of the elements of this
basis is determined as their product in loop L. Let H be a normal subloop of loop
L. We denote the ideal of algebra FL, generated by the elements 1 − h (h ∈ H) by
ωH. If H = L, then ωL is called the augmentation ideal of algebra FL [2].

2 Embedding of free Moufang loops in to alternative algebras

Let us determine the homomorphism of F -algebras ϕ: FL → F (L/H) by the
rule ϕ(

∑

λqq) =
∑

λqHq. Takes place

Lemma 1. Let H,H1,H2 be normal subloops of loop L. Then
1) Kerϕ = ωH;
2) 1 − h ∈ ωH if and only if h ∈ H;
3) if the elements hi generate the subloop H, then the elements 1 − hi generate

the ideal ωH; if H1 6= H2, then ωH1 6= ωH2; if H1 ⊂ H2, then ωH1 ⊂ ωH2; if
H = {H1,H2}, then ωH = ωH1 + ωH2;



98 N. I. SANDU

4) ωL = {
∑

q∈L λqq|
∑

q∈L λq = 0};
5) FL/ωH ∼= F (L/H), ωL/ωH ∼= ω(L/H);
6) the augmentation ideal is generated as F -module by the elements of the form

1 − q (q ∈ L).

Proof. 1) As the mapping ϕ is F -linear, then by (2) for h ∈ H, q ∈ L we have
ϕ((1 − h)q) = Hq − H(hq) = Hq − Hq = 0, i.e. ωH ⊆ Kerϕ. Let now K =
{kj |j ∈ J} be a complete system of representatives of cosets of loop L modulo
the normal subloop H and let ϕ(r) = 0. We present r as r = u1k1 + . . . + rtkt,

where ui =
∑

h∈H λ
(i)
h h, ki ∈ K. Then 0 = ϕ(r) = ϕ(u1)ϕ(k1) + . . . + ϕ(ut)ϕ(kt) =

(
∑

h∈H λ
(1)
h )ϕ(k1)+. . .+(

∑

h∈H λ
(t)
h )ϕ(kt). As ϕ(k1), . . . , ϕ(kt) are pairwise distinct,

then for all i
∑

h∈H λ
(i)
h = 0. Hence −ui =

∑

h∈H λ
(i)
h (1 − h) −

∑

h∈H λ
(i)
h =

∑

h∈H λ
(i)
h (1 − h) is an element from ωH. Consequently, Kerϕ ⊆ ωH, and then

kerϕ = ωH.
2) If q /∈ H, then Hq 6= H. Then ϕ(1 − q) = H − Hq 6= 0, i.e. by 1) 1 − q /∈

Kerϕ = ωH.
3) Let elements {hi} generate subloop H and I be an ideal, generated by the

elements {1 − hi}. Obviously I ⊆ ωH. Conversely, let g ∈ H and g = g1g2,
where g1, g2 are words from hi. We suppose that 1 − g1, 1 − g2 ∈ I. Then 1 − g =
(1 − g1)g2 + 1 − g2 ∈ I, i.e. ωH ⊆ I. Hence I = ωH. Let H1 6= H2 (respect.
H1 ⊂ H2) and g ∈ H1, g /∈ H2. Then by 1) 1 − g ∈ ωH1, but 1 − g /∈ ωH2. Hence
ωH1 6= ωH2 (respect. ωH1 ⊂ ωH2). If H = {H1,H2}, then by the first statement
of 3) ωH = ωH1 + ωH2.

4) We denote R = {
∑

q∈L λqq|
∑

q∈L λq = 0}. Obviously, ωL ⊆ R. Conversely,
if r ∈ R and r =

∑

q∈L λqq, then −r = −
∑

q∈L λqq = (
∑

q∈L λq)1 −
∑

q∈L λqq =
∑

q∈L λq(1 − q) ∈ ωL, i.e. R ⊆ ωQ. Hence ωL = R.
5) Mapping ϕ : FL → F (L/H) is a homomorphism of loop algebras and as by

1) Kerϕ = ωH, then FL/ωH ∼= F (L/H). Now from 4) it follows that ωL/ωH ∼=
ω(L/H).

6) As (1 − q)q′ = (1 − qq′) − (1 − q′), then the augmentation ideal ωL is gen-
erated by elements of the form 1 − q, where q ∈ L. This completes the proof of
Lemma 1.

Lemma 2. Let (L, ·) be an IP -loop and let ϕ be a homomorphism of the algebra
(FL,+, ·). Then the A-homomorphism image at ϕ of the loop (L, ·) will be a loop.

Proof. We denote the A-homomorphism at image ϕ of the loop (L, ·) by (L, ⋆). It
follows from the IP -loop identity x−1 · xy = y that ϕ(x−1) = (ϕx)−1 and (ϕx−1) ⋆
(ϕx⋆ϕy) = ϕy, (ϕx)−1 ⋆(ϕx⋆ϕy) = ϕy, x−1⋆(x⋆y) = y. Let a, b ∈ L. It is obvious
that the equation a⋆x = b is always solvable and as a−1⋆(a⋆x) = a−1⋆b, x = a−1⋆b,
then it is uniquely solvable. It can be shown by analogy that the equation y ⋆ a = b
is also uniquely solvable. Therefore, (L, ⋆) is a loop, as required.

Now, before we pass to the presentation of the basic results, we give the con-
struction of free IP -loop with the set of free generators X = {x1, x2, . . .}, using ideas
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from [2]. To the set X we add the disjoint set {x−1
1 , x−1

2 , . . .}. Let us examine all
groupoid words L(X) from the set {x1, x

−1
1 , x2, x

−1
2 , . . .} relative to the multiplica-

tion (·) and let e denote the empty word. For the words from L(X) we define the
inverse words: 1) for xi ∈ X the inverse will be x−1

i , and for x−1
i the inverse will be

xi, i.e. (x−1
i )

−1
= xi; 2) if u ·v ∈ L(X), then (u ·v)−1 = v−1 ·u−1. Further, we define

two words u, v in F (X) to be Moufang-equivalent, u ≈ v if one can be obtained from
other by a sequence of substitutions, each of which replaces a subword (rs · r)t by
r(s · rt) and vice-versa, where r, s, t are any words in F (X). By a contraction µ
of a word in F (X) we mean the substitution at a subword of the form u−1(vw) or
(wv)u−1, where u ≈ v, by w. The action ν, opposite to contraction µ we call the
expansion.

For words w, w′ in F (X) we define the (µ, ν)-equivalence w ∼= w′ if one word can
be obtained from the other one by a finite sequence of substitutions, each of which
is either a contraction µ or an expansion ν or a single use of the Moufang law (1).
The relation ∼= will be, obviously, a relation of equivalence on L(X). Moreover, it
will be congruence, as if a word (u1u2 . . . un)α is given when α is some parentheses
distributions, obtained from words u1, u2, . . . , un, then the replacement of the word
ui, i = 1, 2, . . . , n, with words or equivalence can be realized applying to the given
word a finite number of transformations of the above described form.

With the multiplication {u} · {v} = {uv} and the inverse {u}−1 = {u−1} of
congruence classes we obtain a loop with the unity {e}, as the quotient loop L(X)/ ∼=
satisfies the laws x−1·xy = y, yx·x−1 = y. Moreover, L(X)/ ∼= will be a free Moufang
loop on {xi}, i = 1, 2, 3, . . ., the set of free generators of X. We identify {xi} with
xi and we denote L(X)/ ∼= by LX(M).

Similarly to F (X), we introduce the Moufang-equivalence, transformations µ,
ν and (µ, ν)-equivalence for words in LX(M). We define a word in L(M) to be a
reduced word if no reductions of type µ of it are possible. If w ∈ L(M), then the
number l(w) of the variables in X, contained in w, will be called the length of the
word w. Now let us show that if w → w1 and w → w2 are any reductions of type
µ of a word w, then there is a word w3 obtained from each of w1, w2 by a sequence
of reductions of type µ. We use induction on the length of w. If l(w) = 1, w is
already a reduced word. If l(w) = n and w = u · v where u, v are subwords of w,
then l(u) < n, l(v) < n. If both reductions w → w1 and w → w2 take place in
the same subword, say u, then induction on length applied to u yields the result.
If the two reductions take place in separate subwords, then applying both gives the
w3 needed. This leaves the last case where at least one of the reductions w → w1

and w → w2 involves both subwords u, v of w. Then w has, for example, the form
w = u−1(uv). Therefore w = v and thus l(w) < n, then by inductive hypothesis the
statement is true.

Using this statement, one may prove by induction on length that any word w
has reduced words regarding the reductions µ and all such reduced words belong to
unique class of Moufang-equivalence. Then, induction on the number of reductions
and expansions connecting a pair of congruent words shows that congruent words
have the same reduced words.



100 N. I. SANDU

Any word in LX(M) has a reduced words. A normal form of a word u in
LX(M) is a reduced word of the least length. Clear by every word in LX(M) has
a normal form. Let u(x1, x2, . . . , xk), u(y1, y2, . . . , yn), where xi, yj ∈ X ∪ X−1, be
two words of normal form of u of length l(u). LX(M) is a free loop. Assume, for
example, y1 /∈ {x1, x2, . . . , xk}, then u(x1, x2, . . . , xk) = u(1, y2, . . . , yn). The length
of u(1, y2, . . . , yn) is strict by less than l(u). But this contradicts the minimum
condition for l(u). Consequently, all words of normal form of the same word in
LX(M) have the same free generators in their structure. This completes the proof
of the following statement.

Lemma 3. Any word in LX(M) has a reduced word that belongs to the unique class
of Moufang - equivalence, two words are (µ, ν)-equivalent if and only if they have
the same reduced words and all words of normal form of the same word in LX(M)
have the same free generators in their structure.

Now we consider a loop algebra FM of free Moufang loop (M, ·) ≡ M over
an arbitrary field F . Let M = {u = 1 − u|u ∈ M} and we define the circle
composition u ◦ v = u + v − u · v. Then (M, ◦) is a loop, denoted sometimes as
M . The identity 1 of M is the zero of FM , 1 = 1 − 1, and the inverse of u
is u−1 = 1 − u−1 as u ◦ 1 = 1 − u + 0 − (1 − u)0 = 1 − u = u, 1 ◦ u = u,
u ◦u−1 = u+ u−1 − uu−1 = 1−u + 1−u−1 − (1−u)(1−u−1) = 0, u−1 ◦u = 0. Let
u, v ∈ M . Then u◦v = u+ v−uv = 1−u+1− v− (1−u)(1− v) = 1−uv = 1−uv.
Hence M is closed under the composition (◦) and

u ◦ v = 1 − uy. (4)

Further, by (4) u−1 ◦ (u ◦ v) = 1− u−1(uv) = 1− v = v and (v ◦ u) ◦ u−1 = v. From
here it follows that (M, ◦) is a loop. We call it the circle loop corresponding to the
loop (M, ·).

We define the one-to-one mapping ϕ : M → M by ϕ(a) = a. For a, b ∈ M
by (4) we have ϕ(ab) = 1 − ab = a ◦ b = ϕ(a) ◦ ϕ(b). Hence ϕ is an isomorphism
of the loop M upon the loop M . Then, by Lemma 2, it follows that ϕ induces
the isomorphism ϕ of the loop algebra FM upon the loop algebra FM by the rule
ϕ(Σu∈Mαuu) = Σu∈Mαu(ϕ(u)) = Σu∈Mαuu.

Clear by if the loop M is generated by free generators x1, x2, . . ., then the loop
M is generated by free generators x1, x2, . . ., the isomorphism ϕ : FM → FM is
defined by mappings xi → xi and a word u in M has a normal form if and only if
the corresponding word u also has a normal form. This completes the proof of the
following lemma.

Lemma 4. Let FM be a loop algebra of a free Moufang loop (M, ·) with free gen-
erators x1, x2, . . . and let M = {u = 1 − u|u ∈ M} be the corresponding loop under
the circle composition u ◦ v = u + v − uv. Then the mappings xi → xi define
an isomorphism ϕ of the loop algebra FM upon the loop algebra FM by the rule
ϕ(Σαuu) = Σαu(ϕ(u)) = Σαuu, αu ∈ F , u ∈ M , and a word in the loop (M, ·) has
a normal form if and only if the word ϕu has a normal form in the loop (M, ◦).
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From now on, according to Lemma 4 for the algebra FM we will consider only
monomials of normal form. Let u ∈ FM and let ϕ be the isomorphism defined in
Lemma 4. We denote ϕ(u) = u. If u = Σαiui, αi ∈ F , ui ∈ M , is a polynomial in
FM then we denote c(u) = Σαi. Clear by c(u) = c(u), where u = Σαiui.

Let (a, b, c) = ab · c − a · bc be the associator in algebra. If the free Moufang
loop M is non-associative, then from the definition of loop algebra it follows that
the equalities

(a, b, c) + (b, a, c) = 0, (a, b, c) + (a, c, b) = 0 ∀a, b, c ∈ L, (5)

do not always hold in algebra FM . Let I(M) denote the ideal of algebra FM ,
generated by all the elements of the left part of equalities (5). It follows from the
definition of loop algebra and di-associativity of Moufang loops that FM/I(M) will
be an alternative algebra. We remind that an algebra A is called alternative if the
identities (x, x, y) = (y, x, x) = 0 hold in it. Hence we proved

Lemma 5. Let FM and FM be the loop algebras of a free Moufang loop (M, ·) and
its corresponding circle loop (M, ◦) and let I(M, ·), I(M, ◦) be the ideals of FM and
FM respectively, defined above. Then I(M) = I(M) and for any u ∈ I(M ) and
c(u) = 0.

Proof. We denote v1 = v1(u11, u12, u13) = (u11, u12, u13) + (u12, u11, u13), v2 =
v2(u21, u22, u23) = (u21, u22, u23)+(u21, u23, u22), where uij ∈ M , i = 1, 2, j = 1, 2, 3.
Then, as an F -module, the ideal I(M) is generated by elements of the form

w(d1, . . . , dk, vi, dk+1, . . . , dm),

where i = 1, 2 and d1, . . . , dm are monomials from FM .
Let w = w(d1, . . . , dk, v1, dk+1, . . . , dm). Then by (4)

w = w(d1, . . . , dk, (u11, u12, u13) + (u12, u11, u13), dk+1, . . . , dm) =

w(d1, . . . , dk, u11u12 · u13, dk+1, . . . , dm)−

w(d1, . . . , dk, u11 · u12u13, dk+1, . . . , dm)+

w(d1, . . . , dk, u12u11 · u13, dk+1, . . . , dm)−

w(d1, . . . , dk, u12 · u11u13, dk+1, . . . , dm) =

−(1 − w(d1, . . . , dk, u11u12 · u13, dk+1, . . . , dm))+

(1 − w(d1, . . . , dk, u11 · u12u13, dk+1, . . . , dm))−

(1 − w(d1, . . . , dk, u12u11 · u13, dk+1, . . . , dm))+

(1 − w(d1, . . . , dk, u12 · u11u13, dk+1, . . . , dm)) =

w(d1, . . . , dk, (u11 ◦ u12) ◦ u13, dk+1, . . . , dm)−

w(d1, . . . , dk, u11 ◦ (u12 ◦ u13), dk+1, . . . , dm)+
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w(d1, . . . , dk, (u12 ◦ u11) ◦ u13, dk+1, . . . , dm)−

w(d1, . . . , dk, u12 ◦ (u11 ◦ u13), dk+1, . . . , dm) =

w(d1, . . . , dk, v2, dk+1, . . . , dm).

Similarly, w(d1, . . . , dk, v2, dk+1, . . . , dm) = w(d1, . . . , dk, v2, dk+1, . . . , dm). Hence
I(M) ⊆ I(M).

Conversely, we consider a polynomial in fM of the form w(d1, . . . , dk, vi, dk+1,
. . . , dm). It is clear that w ∈ I(M) and any element z ∈ I(M) will be represented
as the sum of a finite number of polynomials of such a form. We have c(vi) = 0,
then c(w) = 0 and, consequently, c(z) = 0. Now, let for example vi = v1. By (4) we
get v1 = (u11 ◦ u12) ◦ u13 = u11 ◦ (u12 ◦ u13) = 1− u11u12 · u13 − (1− u11 · u12u13) =
−u11u12 · u13 + u11 · u12u13 = −(u11, u12, u13) = −v1. Further, by the relation
x ◦ y = 1 − xy in an expression w we pass from the operation (◦) to the operation
(·). Then w can be written as the sum of a finite number of monomials, each
of them containing the associators vi in its structure. Then w ∈ I(M), and hence
z ∈ I(M), I(M ) ⊆ I(M). Consequently, I(M ) = I(M). This completes the proof of
Lemma 5.

Theorem 1. Let (M, ·) be a free Moufang loop, let F be an arbitrary field and let
ϕ : FM → FM/I(M) be the natural homomorphism of the algebra FM upon the
alternative algebra FM/I(M). Then the image ϕ(M, ·) = (M,⋆) of the loop (M, ·)
will be an isomorphism of these loops.

Proof. Any Moufang loop is an IP -loop, so by Lemma 2 the image of the loop
(M, ·) under the A-homomorphism ϕ : FM → FM/I(M) will be a loop (M,⋆).
Let H be a normal subloop of loop (M, ·) that corresponds to ϕ. Then 1 − H ⊆
I(M). We suppose that H 6= {1} and let 1 6= u(x1, . . . , xk) ∈ H be a word in free
generators x1, . . . , xk of the normal form. Then the length l(u) > 0. By (4) we write
1− u(x1, . . . , xk) in generators x1, . . . , xk with respect to the circle composition (◦),
1 − u(x1, . . . , xk) = u(x1, . . . , xk). As 1 − u(x1, . . . , xk) ∈ I(M) then by Lemma 5
u(x1, . . . , xk) ∈ I(M) and u(x1, . . . , xk) = u has a normal form. Hence l(u) > 0 and,
consequently, c(u) = 1. But by Lemma 1 c(u) = 0. We get a contradiction with
c(u) = 1. Hence our supposition that H 6= {1} is false. This completes the proof of
Theorem 1.

Remark. The proof of Lemma 3 has a constructive character for free Moufang loops.
But Lemma 3 holds for algebras of Ω-words (see, for example, [6]). Any relatively
free Moufang loop is an algebra of Ω-words. From here it follows that Lemma 3 is
true for any relatively free Moufang loop. Then it is easy to see that the main result
of this paper (Theorem 1) holds for every relatively free Moufang loop.

Further we identify the loop (M,⋆) with (M, ·). Then every element in
FM/I(M) has the form

∑

q∈M λqq, λq ∈ F . Further for the alternative algebra
FM/I(M) we use the notation FM and we call them ”loop algebra” (in quote
marks). Let H be a normal subloop of M . We denote the ideal of ”loop algebra”
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FM , generated by the elements 1 − h (h ∈ H) by ωH. If H = M , then ωM will
be called the ”augmentation ideal” (in quote marks) of ”loop algebra” FM . Let us
determine the homomorphism ϕ of F -algebra FM by the rule ϕ(

∑

λqq) =
∑

λqHq.
Similarly to Lemma 1 we proved

Proposition 1. Let H be a normal subloops of a free Moufang loop M and let FM
and ωM be, respectively, the ”loop algebra” and the ”augmentation ideal” of M .
Then

1) ωH ⊆ Kerϕ;
2) 1 − h ∈ Kerϕ if and only if h ∈ H;
3) ωM = {

∑

q∈M λqq|
∑

q∈M λq = 0};
4) the ”augmentation ideal” ωM is generated as F -module by elements of the

form 1 − q (q ∈ M).

Let ωM denote the augmentation ideal (without quote marks) of FM . Then
from 4) of Lemma 1 and 3) of Proposition 1 it follows that

ωM = ωM/I(M). (6)

Any Moufang loop L has a representation L = L/H, where L is a free Moufang
loop. As we have noted above, in [4] Moufang loops L are constructed that are not
embedded into a loop of invertible elements of any alternative algebras. Then for
such normal subloop H of L Kerϕ = FL and by 2) of Proposition 7 the inclusion
ωH ⊂ Kerϕ is strict.

We mention that Proposition 1 holds also for Moufang loops for which Theorem
1 is true.

3 Some corollaries

Now we consider Moufang loops with the help of alternative algebras, using the
embedding of Moufang loops in alternative algebras from Theorem 6. It is obvious
that from the identities (x, y, z) = −(y, x, z), (x, y, z) = −(x, z, y), which hold in
any alternative algebra, follows

Lemma 6. Let Q be a loop, let FQ be its ”loop algebra” and let a, b, c ∈ Q. Then,
if (a, b, c) = 0, then (a′, b′, c′) = 0, where a′, b′, c′ are obtained from a, b, c with some
substitution or with the change of some loop elements a, b, c for the inverse.

In an arbitrary alternative algebra the identities

(x2, y, z) = x(x, y, z) + (x, y, z)x, (7)

(x, yx, z) = x(x, y, z), (8)

(x, xy, z) = (x, y, z)x [7] (9)

hold true, the linearization of the last leads to the identities

(x, yt, z) + (t, yx, z) = x(t, y, z) + t(x, y, z), (10)

(x, ty, z) + (t, xy, z) = (x, y, z)t + (t, y, z)x. (11)
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Proposition 2. (Moufang Theorem) If three elements a, b, c of Moufang loop Q
are bounded by the associative law ab · c = a · bc, then they generate an associative
subloop.

Proof. Obviously, it is sufficient to show that if there are arbitrary monomials
ui = ui(x1, x2, x3), i = 1, 2, 3, of the ”loop algebra” FLX(M) from the gener-
ators x1, x

−1
1 , x2, x

−1
2 , x3, x

−1
3 of the free Moufang loop LX(M), then the equal-

ity (u1, u2, u3) = 0 holds true for a, b, c ∈ Q in the ”loop algebra” FQ where
ui = ui(a, b, c). We prove the proposition by induction on the number n =
l(u1)+l(u2)+l(u3), where l(ui) is the length of word ui of loop LX(M). If n = 3, then
the statement follows from Lemma 6. Let now n > 3 and the equality (v1, v2, v3) = 0
holds true for the words v1(x1, x2, x3), v2(x1, x2, x3), v3(x1, x2, x3) of loop LX(M)
such that l(v1) + l(v2) + l(v3) < n. Then by the inductive hypothesis the associator
(u1, u2, u3) does not depend on the parentheses places in the words ui. Let us now
consider the two possible cases.

1. The words ui have, for example, the form u1 = xk
1, u2 = xr

2, u3 = xs
3.

Taking into account Lemma 6, we consider that k > 0. If k = 2n, then by (7)
and by the inductive hypothesis (a2n, u2, u3) = an(an, u2, u3) + (an, u2, u3)a

n = 0.
Let now k = 2n + 1. Then by (11), by the inductive hypothesis and the previous
case (ak, u2, u3) = (a2na, u2, u3) = (a2n, u2a, u3) − (u2, a, u3)a

2n − (a2n, a, u3)u2 =
(a2na, u2, u3) = 0.

2. Two words from u1, u2, u3 have in their structure a variable of the form xi or
x−1

i . Taking into account the property of IP -loop (xy)−1 = y−1x−1 and Lemma 6, it
is sufficient to consider the case when these words have the variable xi in their struc-
ture. We suppose, for example, that u1 = v1x1·w1, u2 = v2x1·w2, where v1, w1, v2, w2

can be missing. Then by the identities (8) - (11) and by the inductive hypothesis
we have (u1, u2, u3) = (u3, u1, u2) = (u3, v1a ·w1, v2a ·w2) = −(v1a, u3w1, v2a ·w2)+
(u3, w1, v2a ·w2)(v1a)+(v1a,w1, v2a ·w2)u3 = −(v1a, u3w1, v2a ·w2) = −(u3w1, v2a ·
w2, v1a) = (v2a, u3w1 · w2, v1a) − (u3w1, w2, v1a)(v2a) − (v2a,w2, v1a)(u3w1) =
(v2a, u3w1 · w2, v1a) = (v2a, t, v1a) = (t, v1a, v2a) = −(a, v1t, v2a) + t(a, v1, v2a) +
a(t, v1, v2a) = −(a, v1t, v2a) = (a, v2a, v1t) = a(a, v2, v1t) = 0. This completes the
proof of Proposition 2.

If we apply the Proposition 2 to the equality a · ab = aa · b, which follows from
(1), we get

Corollary. The Moufang loop is di-associative, i.e. any its two elements generate
an associative subloop.

Let LX(M) be a free Moufang loop with the set of free generators X. By Lemma
3 every word in LX(M) can be presented as a reduced word in different ways. As
LX(M) is a free loop, all reduced words of the same element in LX(M) have the same
free generators in their structure. Hence, their number is finite. The reduced words
of element w in LX(M) of the least length will be called normal reduced words of
w. Hence every word in LX(M) has normal reduced words. We will call the normal



FREE MOUFANG LOOPS AND ALTERNATIVE ALGEBRAS 105

reduced words u, v in LX(M) l-homogeneous if u, v have the same length, l(u) = l(v)
with respect to the variables y ∈ X ∪ X−1.

By the definition of the loop algebra FLX(M) any element in FLX(M) has the
form

∑

αgg, g ∈ LX(M), and only a finite number of coefficients αg ∈ F differ from
zero. We have introduced earlier a notion of l-homogeneity for the monomials gj . We
extend it to the polynomials of algebra FLX(M). It can be done, as FLX(M) is a
free F -module with free generators gj . Then the algebra FLX(M) decomposes into
a direct sum of l-homogeneous submodules, consisting of l-homogeneous polynomials.

By 3) of Lemma 1 the augmentation ideal ωLX(M) of the loop algebra
FLX(M) is generated by the set X = {1 − xi|∀xi ∈ X ∪ X−1}. If u(x1, x2, . . .
. . . , xk}, where xi ∈ X ∪ X−1 is a normal reduced word in LX(M), then the mono-
mial u(x1, x2, . . . , xk) in ωLX(M) will be called normal reduced with respect to the
generating set X. We transfer the notions of length and l-homogeneity of monomials
u(x1, x2, . . . , xk} to monomials u(xi, . . . , xk).

Lemma 7. Let FLX(M) be a loop algebra of the free Moufang loop LX(M) with
a set of free generators X and let u(x1, . . . , xk) be a normal reduced word in the
variables x1, . . . , xk ∈ X ∪ X−1 of length l(u). Then

1) the polynomial 1− u(x1, . . . , xk) of the augmentation ideal ωLX(M) is repre-
sented as a sum of normal reduced monomials of ωLX(M) in variables x1, . . . , xk ∈
X whose lengths do not exceed l(u), and in this representation there is only one
monomial of length l(u) which has the form ±u(x1, . . . , xk);

2) ωLX(M) is generated as F -module by the normal reduced monomials from the
set of generators X and decomposes into a direct sum of l-homogeneous submodules
ωLX(M) =

⊕

i∈I(ωLX(M))i.

Proof. 1) We will prove by induction on length l(u). Let x1, x2 ∈ X∪X−1. We have
(1− x1)(1−x2) = 1− x1 − x2 + x1x2 = (1− x1)− (1 + x2)− (1− x1x2), 1− x1x2 =
(1+x1)+(1+x2)−(1−x1)(1−x2), 1−x1x2 = x1 +x2−x1x2. Hence the statement
of lemma for l(u) = 2 holds. Let us now consider the normal reduced loop word
u(x1, . . . , xk) of length l(u) > 2. We expand the expression u(1+x1, . . . , 1+xk) and
get

u(x1, . . . , xk) = 1 +
∑

xj +
∑

v2(xj1 , xj2) + . . .

. . . +
∑

vr(xj1 , . . . , xjr
) + . . . + u(x1, . . . , xk), (12)

where vr(xj1 , . . . , xjr
) is a loop word, containing in its structure r (r ≤ l(u) − 1)

generators xj1, . . . , xjr
∈ {x1, . . . , xk}. We consider that the loop words vr(xj1, . . .

. . . , xjr
) are reduced, as in the opposite case we can bring them to this form. It

is easy to see by induction on k that the right part of the equality (12) contains
even number of monomials. That is why u(x1, . . . , xk) can be presented as a sum of
terms of the form 1− vr(xj1 , . . . , xjr

) or 1−u(x1, . . . , xn). Then it follows from (12)
that 1−u(x1, . . . , xk) =

∑

ǫ(1− vr(xj1 , . . . , xjr
))+u(x1, . . . , xn), where ǫ = ±1, r ≤

l(u) − 1. Using the inductive hypothesis for the monomials 1 − vr(xj1 , . . . , xjr
) we

obtain from here the troth of 1).
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2) We have proved above that the algebra FLX(M) decomposes into a di-
rect sum of l-homogeneous submodules FLX(M) =

⊕

i∈I(FLX(M))i. From 6)
of Lemma 1 and 1) of this lemma it follows that ωLX(M) =

∑

i∈I(ωLX(M))i. Let
u(x1, . . . , xk) ∈ (ωLX(M))i ∩ (ωLX(M))j , where i 6= j. From the definition of
a normal reduced word with respect to the set X it follows that u(x1, . . . , xk) ∈
(ωLX(M))i ∩ (ωLX(M))j . From here it follows that u(x1, . . . , xk) = 0. Then
u(x1, . . . , xk) = 0, as well. Hence ωLX(M) =

⊕

i∈I(ωLX(M))i. This completes
the proof of Lemma 7.

Now, according to Theorem 1 we transfer the notions of length, l-homogeneity
of polynomials and l-homogeneity submodules of augmentation ideal of loop algebra
for polynomials of ”augmentation ideal” of ”loop algebra”.

Lemma 8. Let ωLX(M) be the ”augmentation ideal” of ”loop algebra” of free Mo-
ufang loop LX(M). Then

1) ωLX(M) decomposes into a direct sum of l-homogeneous submodules
ωLX(M) =

⊕

i∈I(ωLX(M))i;
2) the intersection of the l-homogeneous submodules of ωLX(M) is the zero.

Proof. Expanding the expression we obtain that (1 − a, 1 − b, 1 − c) = −(a, b, c).
Then from the definition (5) of ideal I(LX(M)) of loop algebra FLX(M) it follows
that this ideal is generated by elements of the form

v(d1, . . . , dk, wi, dk+1, . . . , dm),

where i = 1, 2 and d1, . . . , dm are normal reduced words from FLX(M). Now, by the
relations yz = z − (1− y)z, zy = z − z(1− y), yz = (1 + y)z − z, zy = z(1 + y)− z,
and by 1) of Lemma 4 it is easy to see that the ideal I(LX(M)) is generated as
F -module by l-homogeneous polynomials of the form

v(b1, . . . , br, wi, br+1, . . . , bs), (13)

where bi are normal reduced monomials from ωLX(M) with respect respect to the
set X.

By 2) of Lemma 7 the augmentation ideal ωLX(M) decomposes into a direct
sum of l-homogeneous submodules ωLX(M) =

⊕

i∈I(ωLX(M))i. Then the ideal
I(LX(M)) decomposes into a direct sum of l-homogeneous submodules I(LX(M)) =
⊕

i∈I(I(LX(M)))i as well. From here it follows that the decomposition of algebra
ωLX(M) into a direct sum of submodules (ωLX(M)) induces a similar decompo-
sition also for the quotient algebra ωLX(M)/I(LX (M)): ωLX(M)/I(LX (M)) =
⊕

i∈I((ωLX(M))i ∩ I(FLX(M))), which by (6) is the ”augmentation ideal” of the
”loop algebra” FLX(M)/FLX(M). This completes the proof of item 1). The item
2) follows from item 1) and item 2) of Lemma 7.

Theorem 2. The intersection of the terms of the lower central series of a free
Moufang loop LX(M) is the identity.
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Proof. We denote LX(M) = Q, ωLX(M) = B. Let Q = Q0 ⊇ Q1 ⊇ . . . ⊇ Qn ⊇ . . .
be the lower central series of free Moufang loop Q. We have to prove that

∩∞
n=0Qn = 1. (14)

Really, let B0 = B,Bn =
∑

i+j=n Bi · Bj. By 2) of Lemma 8 it is easy to see
that ∩∞

n=0B
n = 0. Further, Dn = {g ∈ Q|1 − g ∈ Bn} is a normal subloop of

loop Q, as this is the kernel of homomorphism, induced by natural homomorphism
FLX(M) → FLX(M)/Bn. From the relation ∩∞

n=0B
n = 0 it follows that ∩∞

n=0Dn =
1. Now to prove (14) it is sufficient to show that Qn ⊆ Dn. We will prove this by
induction on n. We have Q0 = Q = D0. Let a, b ∈ Q and we suppose that
the element gn ∈ Qn belongs to Dn. Then un = 1 − gn ∈ Bn, v = 1 − a ∈
B0, w = 1 − b ∈ B0. Any Moufang loop is an IP -loop. Then from (3) we get
1− (gn, a, b) = 1− (gna · b)(gn · ab)−1 = (gn · ab− gna · b)(gn · ab)−1 = ((1− gn)((1−
a)(1 − b)) − (((1 − gn)(1 − a))(1 − b))(gn · ab)−1 = (un · vw − unv · w)(gn · ab)−1 =
(un · vw − unv · w) − (un · vw − unv · w)(1 − (gn · ab)−1) ∈ Bn+1. By analogy we
prove that 1 − (a, bn, b) ∈ Bn+1, 1 − (a, b, gn) ∈ Bn+1, 1 − (gn, a) ∈ Bn+1. Then
(gn, a, b), (a, gn, b), (a, b, gn), (gn, a) ∈ Dn+1. But as shown at the beginning of this
paper elements of the form (gn, a, b), (a, gn, b), (a, b, gn), (gn, a) generate the normal
subloop Qn+1. Then Qn+1 ⊆ Dn+1. Consequently, ∩∞

n=0Qn = 1. This completes
the proof of Theorem 2.

We remind now that a loop Q is called a Hopfian loop and it has a Hopfian
property if it can’t be isomorphic to any of its quotient loop. Obviously, any finite
loop is Hopfian, but no free loop of infinite rank F∞ can be Hopfian. Really, if
x1, x2, . . . , xi, . . . is a free generators for F∞, then the map x1 → 1, xi → xi−1

(x > 1) defines an endomorphism on with non-trivial kernel.

Proposition 3. A finitely generated centrally nilpotent Moufang loop L is Hopfian.

Proof. Let us consider a normal subloop N 6= 1 of the loop L such that L = L/N
is isomorphic to L. We must come to a contradiction. For that we will prove that
no element g 6= 1 of the loop L can be mapped into the unit of the loop L. In [8]
it is proved that the loop L is residually finite. Then let K be a normal subloop
of L of index n, not containing g. We denote by K⋆ the intersection of all normal
subloops of L of index ≤ n.Then the subloop K⋆ also has a finite index n⋆ in L and
also doesn’t contain g. Under a homomorphic mapping of L on L, the subloop K⋆ is
mapped on subloop K⋆⋆ of loop L. As the index of a finite loop is not augmented by
a homomorphic mapping, K⋆⋆ will contain subloop K

⋆
of loop L, which corresponds

to K⋆ ⊆ L under an isomorphic mapping of L on L. In such a way the inverse image
of K

⋆
in L (denoted by P ) should be contained in K⋆. On the other hand, P contains

N and, consequently, g is not mapped on 1 (under a natural homomorphism of L
on L).

Lemma 9. A loop L has a Hopfian property if and only if it has a set of fully
invariant normal subloops, whose quotient loop has a Hopfian property and whose
intersection is trivial.



108 N. I. SANDU

Proof. The necessity is trivial. To prove this, it is enough to denote by ϕ some
endomorphism on loop L and by N we denote the fully invariant normal subloop
of L, whose quotient loop is Hopfian. As ϕN ⊆ N and ϕL = L then ϕ induces an
endomorphism on of L/N . According to the supposion, it is an automorphism of
loop L/N , so that kerϕ ⊆ N . It means that the intersection at any set of such fully
invariant subloops contains kerϕ. If the intersection is trivial, then kerϕ is trivial
and ϕ is an automorphism, as required.

Combining (14), Proposition 3 and Lemma 9 we get

Theorem 3. Any finitely generated free Moufang loop is Hopfian.
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Abstract. A π-quasigroup is a quasigroup satisfying one of the seven minimal
identities from the V.Belousov’s classification given in [1]. Some general results about
π-quasigroups isotopic to groups are obtained by V.Belousov and A.Gwaramija in [1]
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Let Q be a nonempty set and let Σ(Q) be the set of all binary quasigroup
operations defined on Q. V. Belousov (see [1]) found all nontrivial identities w1 = w2

in Q(Σ) having the length |w1|+ |w2| = 5 (|w| is the number of free elements in the
word w), called minimal identities. He proved that, using transformation to inverse
operations, every minimal identity can be transformed into the form:

A(x,B(x,C(x, y))) = y.

Using multiplication of operations, the last identity can be rewritten in abbrevi-
ated form as ABC = E, where E(x, y) = y,∀x, y ∈ Q, is the right selector.

Minimal nontrivial identities imply the orthogonality of participating operations.
It is known that two quasigroup operations A and B, defined on a set Q, are orthogo-
nal if and only if there exists a quasigroup operation C on Q, such that CBA−1 = E
[1]. Hence, if A,B,C ∈ Q(Σ) and ABC = E,we have A⊥B−1, B⊥C−1 and C⊥A−1.

A quasigroup Q(A) is called a π-quasigroup of type [α, β, γ], where α, β, γ ∈ S3,
if it satisfies the identity αAβAγA = E.

V.Belousov considered the following transformations of types on S3
3 : f [α, β, γ] =

[β, γ, α] and h[α, β, γ] = [rγ, rβ, rα], where r = (23). The transformations f and h
generate the group S0 = {ε, f, f2, h, fh, f2h} ∼= S3. Two types T = [α, β, γ] and
T ′ = [α′, β′, γ′] are called parastrophically equivalent if there exist g ∈ S0 and θ ∈ S3

such that T ′ = gTθ. If the types T and T ′ are parastrophically equivalent then we’ll
denote T ∼ T ′. The binary relation ” ∼ ” is an equivalence on S3

3 and S3
3/ ∼ consists

of 7 classes [1]. A system of representatives of the seven equivalence classes is:

T1 = [ε, ε, ε], T2 = [ε, ε, l], T4 = [ε, ε, lr], T6 = [ε, l, lr], T10 = [ε, lr, l],
T8 = [ε, rl, lr], T11 = [ε, lr, rl], where l = (13), r = (23), s = (12).

Two minimal identities

αA(x,β A(x,γ A(x, y))) = y,

c© Parascovia Syrbu, 2009

109



110 PARASCOVIA SYRBU

α′

A(x,β
′

A(x,γ
′

A(x, y))) = y,

where A ∈ Σ(Q), are called parastrophically equivalent if the types T = [α, β, γ]
and T ′ = [α′, β′, γ′] are parastrophically equivalent.

Denoting A = ” · ” the following identities, which correspond to the seven types,
respectively, were obtained by V. Belousov in [1]:

No. Type Identity in Q(·)

1 T1 = [ε, ε, ε] x(x · xy) = y

2 T2 = [ε, ε, l] x(y · yx) = y

3 T4 = [ε, ε, lr] x · xy = yx Stein’s 1st law

4 T6 = [ε, l, lr] xy · x = y · xy Stein’s 2nd law

5 T10 = [ε, lr, l] xy · yx = y Stein’s 3d law

6 T8 = [ε, rl, lr] xy · y = x · xy Schröder’s 1st law

7 T11 = [ε, lr, rl] yx · xy = y Schröder’s 2nd law

The same classification was obtained independently by F.E. Bennett in 1989 (see,
for example, [3] and [4]).

π-Quasigroups isotopic to groups have been investigated by V.Belousov in [1]
and by V. Belousov and A.Gwaramija in [2]. In particular, they proved that the
groups which are isotopic to π-quasigroups of type T4 = [ε, ε, lr] (i.e. to Stein
quasigroups) or to π-quasigroups of type T6 = [ε, l, lr], are metabelian. Also it is
proved in [1] that if a group Q(+) is isotopic to a π-quasigroup of type T8 = [ε, rl, lr]
then Q(+) is abelian of exponent 2. More, every finite group of exponent 2 is isotopic
to a π-quasigroup of type T8. π-Quasigroups of other types, isotopic to groups, are
considered in [1] as well. We’ll consider below π-quasigroups isotopic to abelian
groups.

Let Q(·) be a π-quasigroups of type T1 = [ε, ε, ε], i.e. a quasigroup satisfying the
identity

x(x · xy) = y. (1)

Such quasigroups are also called C3-quasigroups. Suppose that Q(·) is isotopic

to an abelian group, and for a, b ∈ Q consider the LP -isotopes (·)(R
−1
a ,L−1

b
,ε) and

(+) = (·)
(R−1

0 ,L−1
f0

,ε)
where 0 = b · a and f0 · 0 = 0. According to Albert’s theorem,

these two LP -isotopes are abelian groups (as loops which are isotopic to groups), so
Q(+) where x + y = R−1

0 (x) · L−1
f0

(y), for every x, y ∈ Q, is an abelian group with

the neutral element 0 = f0 ·0. Let denote now L−1
f0

by λ. Then x+y = R−1
0 (x) ·λ(y)

and x · y = R0(x) + λ−1(y), for every x, y ∈ Q, so the identity (1) takes the form
R0(x) + λ−1(R0(x) + λ−1(R0(x) + λ−1(y))) = y or, after replacing R0(x) by x:

x + λ−1(x + λ−1(x + λ−1(y))) = y. (2)

Taking x = 0, from (2) it follows λ3 = ε. Also the equality (2) implies x +
λ−1(x + λ−1(y)) = λ(I(x) + y) or, replacing λ−1(y) by y:
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x + λ−1(x + y) = λ(I(x) + λ(y)), (3)

where I : Q → Q, I(x) = −x (in the abelian group Q(+)). Taking y = 0, (3) implies

x + λ−1(x) = λI(x), (4)

for every x ∈ Q, as λ(0) = L−1
f0

(0) = 0.

Let consider now a new operation on Q denoted by ” ◦ ” and defined as follows:

x ◦ y = λ(x) + x + I(y), (5)

∀x, y ∈ Q.

Proposition 1. The grupoid Q(◦) is a quasigroup isotopic to Q(+).

Proof. From (4) it follows λ−1(x) = λI(x) + I(x), ∀x ∈ Q so λ−1I(x) = λ(x) +
x,∀x ∈ Q, and then x ◦ y = λ(x) + x + I(y) = λ−1I(x) + I(y), ∀x, y ∈ Q, i.e.
(◦) = (+)(λ

−1I,I,ε).

Proposition 2. Let Q(·) be a π-quasigroup of type T1, isotopic to an abelian group
and let Q(+) and Q(◦) be its isotopes defined above. The following conditions are
equivalent:

1. λI = Iλ;
2. λ ∈ AutQ(+);

3. λ ∈ AutQ(◦);
4. I ∈ AutQ(◦);
5. Q(+) satisfies the equality λ2(x) + λ(x) + x = 0, ∀x ∈ Q;

6. Q(◦) is a medial quasigroup.

Proof. 1.⇒ 2.: If λI = Iλ then from (3) and (4) it follows x+λ−1(x+y) = λ(I(x)+
λ(y)) = λI(x+Iλ(y)) = λI(x+λI(y)) = λI(x+y+λ−1(y)) = x+y+λ−1y+λ−1(x+
y + λ−1(y)) = x + λI(y) + λ−1(x + λI(y)), so λ−1(x + y) = λI(y) + λ−1(x + λI(y)),
which implies

λ−1(x + y) + λ(y) = λ−1(x + λI(y)).

Denoting x + y by z, from the last equality it follows λ−1(z) + λ(y) = λ−1(z +
I(y) + λI(y)) = λ−1(z + λ−1(y)), so replacing y by λ(y) and using the equality
λ3 = ε, we get: λ−1(z) + λ−1(y) = λ−1(z + y), ∀z, y ∈ Q, i.e. λ ∈ AutQ(+).

2.⇒ 1.: If λ ∈ AutQ(+) then λ(−x) = −x, ∀x ∈ Q, i.e. λI = Iλ.
1.⇒ 3.: Using Proposition 1, we get: λI = Iλ ⇒ λ ∈ AutQ(+), so λ(x ◦ y) =

λ(λ−1I(x) + I(y)) = I(x) + λI(y) = λ−1Iλ(x) + Iλ(y) = λ(x) ◦ λ(y), ∀x, y ∈ Q, so
λ ∈ AutQ(◦).

3.⇒ 1.: λ ∈ AutQ(◦) ⇔ λ(x◦y) = λ(x)◦λ(y), ∀x, y ∈ Q ⇔ λ(λ−1I(x)+ I(y)) =
λ−1Iλ(x)+ Iλ(y), ∀x, y ∈ Q. Taking x = 0, the last equality implies λI(y) = Iλ(y),
∀y ∈ Q, i.e. λI = Iλ.
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1.⇔ 5.: Using (4), we have: λI = Iλ ⇔ x + λ−1(x) = Iλ(x), ∀x ∈ Q, ⇔
λ2(x) + λ(x) + x = 0, ∀x ∈ Q.

1.⇒ 4.: According to Proposition 1, x ◦ y = λ−1I(x) + I(y), ∀x, y ∈ Q. If
λI = Iλ, then I(x◦y) = I(λ−1I(x)+I(y)) = λ−1(x)+y, ∀x, y ∈ Q, and I(x)◦I(y) =
λ−1I(I(x)) + I(I(y)) = λ−1(x) + y, ∀x, y ∈ Q, so I(x ◦ y) = I(x) ◦ I(y), ∀x, y ∈ Q,
i.e. I ∈ AutQ(◦).

4.⇒ 1.: If I ∈ AutQ(◦), then I(x ◦ y) = I(x) ◦ I(y), ∀x, y ∈ Q, ⇒ I(λ−1I(x) +
I(y)) = λ−1 II(x) + I(I(y)) = λ−1(x) + y,⇒ Iλ−1I(x) + y = λ−1(x) + y, ∀x, y ∈ Q,
⇒ Iλ−1I = λ−1,⇒ Iλ = λI.

6.⇒ 1.: Remark that from (5) it follows x◦x = λ(x),∀x ∈ Q. If Q(◦) is a medial
quasigroup, i.e. if Q(◦) satisfies the identity (x ◦ y) ◦ (u ◦ v) = (x ◦ u) ◦ (y ◦ v), then
λ(x ◦ y) = (x ◦ y) ◦ (x ◦ y) = λ(x) ◦ λ(y), ⇒ λ ∈ AutQ(◦) ⇒ λI = Iλ.

1.⇒ 6.: If λI = Iλ, then λ ∈ AutQ(+), so λI, I ∈ AutQ(+) where Q(+) is an
abelian group and (λ−1I)I = λ−1 = I(λ−1I), i.e. Q(◦), where x◦y = λ−1I(x)+I(y),
∀x, y ∈ Q, is a medial quasigroup.

Proposition 3. Let Q(·) be an isotope of an abelian group, 0 ∈ Q, f0 · 0 = 0,

λ = L−1
f0

, (+) = (·)(R
−1
0 ,λ,ε), and let λI = Iλ, where I : Q → Q, I(x) + x = 0.

Then Q(·) is a π-quasigroup of type T1 if and only if Q(+) satisfies the condition
λ2(x) + λ(x) + x = 0, ∀x ∈ Q.

Proof. If Q(·) is a π-quasigroup of type T1, isotopic to an abelian group and λI = Iλ
then, according to Proposition 2, Q(+) satisfies the condition λ2(x) + λ(x) + x = 0,
∀x ∈ Q.

Conversely, if λ2(x)+λ(x)+x = 0, ∀x ∈ Q, then λ ∈ AutQ(+) and λ2+λ+ε = ω,
where ω : Q → Q,ω(x) = 0, ∀x ∈ Q, ⇒ λ3 − ε = (λ − ε)(λ2 + λ + ε) = (λε)ω = ω
(in the ring of endomorphisms of Q(+)), as λ3 = ε. Moreover, λ2(x)+λ(x)+x = 0,
∀x ∈ Q ⇒ λ2(x)+λ(x)+x+y = y, ∀x, y ∈ Q, ⇒ x+λ−1(x+λ−1(x+λ−1(y))) = y,
∀x, y ∈ Q, ⇒ x(x · xy) = y, ∀x, y ∈ Q (see (2)), so Q(·) is a π-quasigroup of type
T1. 2

Corollary. Let Q(·) be an isotope of an abelian group Q(+) ∼= Zk
2 , for some positive

integer k, with the isotopy (R−1
0 , L−1

f0
, ε), where 0 is the neutral element of Q(+) and

f0 · 0 = 0. Then Q(·) is a π-quasigroup of type T1 if and only if Q(+) satisfies the
condition λ2(x) + λ(x) + x = 0, ∀x ∈ Q, where λ = L−1

f0
.

Proof. Indeed, in this case I = ε, so λI = Iλ.

Proposition 4. Let Q(·) be a π-quasigroup of type T1, isotopic to an abelian group

Q(+), (+) = (·)(R
−1
0 ,λ,ε) where 0 ∈ Q, f0 · 0 = 0, λ = L−1

f0
. The following conditions

are equivalent:

1. Q(·) has a left unit;

2. Q(◦), where ” ◦ ” is defined in (5), is idempotent;

3. Q(+) satisfies the equality x + x + x = 0, ∀x ∈ Q.
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Proof. 1.⇔ 2.: According to the definition (5), x ◦ x = λ(x) + x + I(x), ∀x ∈ Q. So
x ◦ x = x,∀x ∈ Q ⇔ λ = ε ⇔ λ−1 = ε ⇔ Lf0(x) = x,∀x ∈ Q ⇔ f0 · x = x,∀x ∈ Q,
i.e. Q(·) has the left unit f0.

2.⇔ 3.: x ◦ x = x,∀x ∈ Q ⇔ λ = ε ⇔ x + x = x + λ−1(x) = λI(x) = I(x),
∀x ∈ Q (see (4)), i.e. x + x + x = 0,∀x ∈ Q.

Denote IdQ(◦) = {x ∈ Q | x ◦ x = x}, i.e. the set of all idempotents of Q(◦).

Proposition 5. If λI = Iλ, then IdQ(◦) is a subquasigroup of Q(◦).

Proof. If λI = Iλ, then λ ∈ AutQ(+), so for every x, y ∈ IdQ(◦) we have:

(x ◦ y) ◦ (x ◦ y) = λ(x ◦ y) = λ(x) ◦ λ(y) = (x ◦ x) ◦ (y ◦ y) = x ◦ y,

i.e. x ◦ y ∈ IdQ(◦). Moreover, if a, b ∈ IdQ(◦) and a ◦ x = b, then (as Q(◦) is a
medial quasigroup) we have:

a ◦ (x ◦ x) = (a ◦ a) ◦ (x ◦ x) = (a ◦ x) ◦ (a ◦ x) = b ◦ b = b,

hence x ◦ x = x, i.e. the solution x of the equation a ◦ x = b is in IdQ(◦), for every
a, b ∈ IdQ(◦). Analogously we get that the solution of the equation x◦a = b belongs
to IdQ(◦), for every a, b ∈ IdQ(◦).

Remark. If λI = Iλ, then IdQ(◦) ⊆ {x ∈ Q | x + x + x = 0}.

Proof. Indeed, if x ∈ IdQ(◦), then x = x ◦ x = λ(x) + x + I(x) = λ(x), ∀x ∈ Q.
On the other hand, from (4) it follows x + x = x + λ−1(x) = λI(x) = I(x), ∀x ∈ Q
⇒ x + x + x = 0, ∀x ∈ Q.

Proposition 6. If |Q| < ∞, then IdQ(◦) = {0} if and only if λI = Iλ.

Proof. If λI = Iλ and x ∈ IdQ(◦)\{0}, then x is an element of order 3 in Q(+) (see
the remark above). But it is known that there exist the following possibilities for
the order |Q| of a finite π-quasigroup of type T1: |Q| = 4, |Q| ≡ 1 or 4(mod12),
or |Q| ≡ 1(mod3), i.e. |Q| is not divisible by 3. Consequently, if λI = Iλ, then
IdQ(◦) = {0}.

Conversely, let IdQ(◦) = {0} and |Q| < ∞. As Ker(λ − ε) = {x ∈ Q|λ(x) = x}
= {x ∈ Q|x◦x = x}, we have: (λ−ε)(x) = (λ−ε)(y) ⇒ λ(x−y) = x−y ⇒ x−y ∈
Ker(λ−ε) ⇒ x−y = 0 ⇒ x = y, hence λ−ε is injective and, as Q is finite, it follows
that λ−ε is a bijection. On the other hand, λ3 = ε ⇒ ω = λ3−ε = (λ−ε)(λ2+λ+ε)
⇒ λ2+λ+ε = (λ−ε)−1ω = ω, where ω : Q → Q,ω(x) = 0,∀x ∈ Q, hence according
to Proposition 2, λI = Iλ.

Example. The quasigroup Q(·), where Q = {0, 1, 2, 3} and
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· 0 1 2 3

0 3 1 0 2
1 0 2 3 1
2 1 3 2 0
3 2 0 1 3

is a π-quasigroup of type T1 and is isotopic to the Klein group K4 = Q(+) (0 is the
neutral element of Q(+)): x · y = R0(x) + λ−1(y), where R0 = (0321), λ = (132).
Remark that the quasigroup Q(◦), where x ◦ y = λ(x) + x + I(y), is defined by the
following table:

◦ 0 1 2 3

0 0 1 2 3
1 2 3 0 1
2 3 2 1 0
3 1 0 3 2

As I = ε we have λI = Iλ, hence λ ∈ AutQ(+) and λ ∈ AutQ(◦). The conditions
|Q| < ∞ and λI = Iλ give IdQ(◦) = {0}.

Proposition 7. If a π-quasigroup Q(·) of type T2 = [ε, ε, l] is isotopic to an abelian
group Q(⊕), then for every b ∈ Q there exists an isomorphic copy Q(+) ∼= Q(⊕)
such that x · y = IL3

b(x) + Lb(y) + b, ∀x, y ∈ Q, where I : Q → Q, I(x) = −x,
∀x ∈ Q.

Proof. Let Q(·) be a π-quasigroup of type T2 = [ε, ε, l], isotopic to an abelian group.
Then, for every a, b ∈ Q, the LP-isotope Q(+), where x + y = R−1

a (x) + L−1
b (y),

∀x, y ∈ Q, is an abelian group as well. Denote its neutral element b · a by 0. The
quasigroup Q(·) satisfies the identity

x(y · yx) = y. (6)

Using the definition of ” + ”, the identity (6) takes the form Ra(x) + Lb(Ra(y) +
Lb(Ra(y)+Lb(x))) = y or, after replacing y → R−1

a (y) and x → L−1
b (x): RaL

−1
b (x)+

Lb(y + Lb(y + x)) = R−1
a (y), which implies:

Lb(y + Lb(y + x)) = R−1
a (y) + IRaL

−1
b (x). (7)

Taking y = 0 in (7) we get L2
b(x) = b + IRaL

−1
b (x) ⇒ L3

b(x) = b + IRa(x),∀x ∈
Q,⇒ Ra(x) = b + IL3

b(x),∀x ∈ Q, x · y = IL3
b(x) + Lb(y) + b, ∀x, y ∈ Q.

Proposition 8. A quasigroup Q(·), isotopic to a group Q(⊕) and having an idem-
potent 0, is a π-quasigroup of type T2 = [ε, ε, l] if and only if there exists an isomor-
phic copy Q(+) ∼= Q(⊕) such that x · y = IL3

0(x) + L0(y) and L0(y + L0(y + x)) =
L2

0(x) + L−3
0 I(y), for every x, y ∈ Q.
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Proof. If Q(·) is a π-quasigroup of type T2 = [ε, ε, l] and 0 is an idempotent of Q(·),

then the LP-isotope (+) = (·)(R
−1
0 ,L−1

0 ,ε) is a group with unit 0. Using the definition
of ” + ” the identity x(y · yx) = y takes the form:

R0(x) + L0(R0(y) + L0(R0(y) + L0(x))) = y,

or, after replacing R0(y) by y and L0(x) by x:

L0(y + L0(y + x)) = IR0L
−1
0 (x) + R−1

0 (y). (8)

For y = 0 the last equality implies L2
0(x) = IR0L

−1
0 (x) for every x ∈ Q, so

R0 = IL3
0 and then (8) implies

L0(y + L0(y + x)) = L2
0(x) + L−3

0 I(y).

At the same time we get that x · y = IL3
0(x) + L0(y).

Conversely, let Q(·) be the quasigroup defined by the last equality, where Q(+)
is a group, 0 is an idempotent of Q(·) and let the equality L0(y + L0(y + x)) =
L2

0(x)+L−3
0 I(y) holds. Then x(y ·yx) = IL3

0(x)+L0(IL3
0(y)+L0(IL3

0(y)+L0(x))) =
IL3

0(x) + L3
0(x) + L−3

0 I2L3
0(y) = y, i.e. Q(·) is a π-quasigroup of type T2.

It was proved in [2] by V.Belousov and A.Gwaramiya that every group G which
is isotopic to a π-quasigroup of type T4 = [ε, ε, lr] (i.e. to a Stein quasigroup) is
metabelian (i.e. [x, y] ∈ Z for every x, y ∈ G). It was also proved by V.Belousov in
[1] that if a group Q(·) is isotopic to a π-quasigroup of type T6 = [ε, l, lr], then Q(·)
is metabelian.

Proposition 9. If a π-quasigroup Q(·) of type T6 = [ε, l, lr] is isotopic to an abelian
group Q(⊕), then there exists an element 0 ∈ Q and an isomorphic copy Q(+) ∼=
Q(⊕) such that x · y = R0(x) + ϕR0(y),∀x, y ∈ Q, where ϕ ∈ AutQ(+).

Proof. Let Q(·) be a π-quasigroup of type T6 = [ε, l, lr], i.e. let Q(·) be a quasigroup
with the identity

x · yx = yx · y. (9)

Then for y = fx, where fxx = x,∀x ∈ Q, we have x2 = x · fx ⇒ fx = x ⇒ x =
fx · x = x · x, i.e. Q(·) is idempotent. Let 0 ∈ Q and consider the LP-isotope

(+) = (·)(R
−1
0 ,L−1

0 ,ε). It is clear that Q(+) is an abelian group with the neutral
element 0 = 0 · 0. Now, using the equality x · y = R0(x) + L0(y), the identity (9)
takes the form

R0(x) + L0(R0(y) + L0(x)) = R0(R0(y) + L0(x)) + L0(y),

∀x, y ∈ Q, hence replacing R0(y) → y and L0(x) → x, we get

R0L
−1
0 (x) + L0(y + x) = R0(y + x) + L0R

−1
0 (y),
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which implies

L0(y + x) + IR0(y + x) = IR0L
−1
0 (x) + L0R

−1
0 (y). (10)

Taking x = 0 in (10) we get:

L0(y) + IR0(y) = L0R
−1
0 (y) (11)

for all y ∈ Q. For y = I(x), the equality (10) implies 0 = IR0L
−1
0 (x) +

L0R
−1
0 I(x),∀x ∈ Q, i.e. R0L

−1
0 = L0R

−1
0 I. Denoting L0R

−1
0 by ϕ, we get ϕI = ϕ−1

and L0 = ϕR0, so x · y = R0(x) + ϕR0(y),∀x, y ∈ Q. On the other hand, using
(11), the equality (10) takes the form L0R

−1
0 (y + x) = IR0L

−1
0 (x) + L0R

−1
0 (y), i.e.

ϕ(x + y) = Iϕ−1(x) + ϕ(y) = IϕI(x) + ϕ(y), ∀x, y ∈ Q.

As ϕ(0) = L0R
−1
0 (0), taking y = 0 in the last equality, we get ϕ = Iϕ−1, so

ϕ(x + y) = ϕ(x) + ϕ(y),∀x, y ∈ Q, i.e. ϕ ∈ AutQ(+).

Proposition 10. Let Q(+) be an abelian group with the neutral element 0, ϕ ∈
AutQ(+) and ϕ2 = I, where I(x) = −x,∀x ∈ Q. If the isotope Q(·), where (+) =

(·)(R
−1
0 ,R−1

0 ϕ−1,ε), is idempotent then Q(·) is a π-quasigroup of type T6.

Proof. Using the definition of ” · ”, we have x · y = R0(x) + ϕR0(y), ∀x, y ∈ Q. If
Q(·) is idempotent then z · z = z,∀z ∈ Q, so R0(z) + ϕR0(z) = z, ⇒ z + IR0(z) =
ϕR0(z),∀z ∈ Q. Taking z = y +ϕ(x) in the last equality, we get y +ϕ(x)+ IR0(y +
ϕ(x)) = ϕR0(y + ϕ(x)) ⇒ ϕ(x) + IR0(y + ϕ(x)) = ϕR0(y + ϕ(x)) + I(y) ⇒ ϕ(x) +
ϕ2R0(y+ϕ(x)) = ϕR0(y+ϕ(x))+ϕ2(y) ⇒ x+ϕR0(y+ϕ(x)) = R0(y+ϕ(x))+ϕ(y),
∀x, y ∈ Q. Now, replacing x → R0(x) and y → R0(y), we get:

R0(x) + ϕR0(R0(y) + ϕR0(x)) = R0(R0(y) + ϕR0(x)) + ϕR0(y),

∀x, y ∈ Q, i.e. x · yx = yx · y,∀x, y ∈ Q. So Q(·) is a π-quasigroup of type T6.

Proposition 11. If Q(·) is a π-quasigroup of type T10 = [ε, lr, l], isotopic to an

abelian group, a ∈ Q and (+) = (·)(R
−1
a ,L−1

a ,ε), then there exists a complete substitu-
tion θ of Q(+) such that x · y = Rax + R−1

a Iθy, for every x, y ∈ Q, where Ix = −x,
∀x ∈ Q.

Proof. The quasigroup Q(·) satisfies the identity xy · yx = y so, using the equality
x · y = Rax + Lay, we get Ra(Rax + Lay) + La(Ray + Lax) = y or, after replacing
Rax by x and Lay by y:

Ra(x + y) + La(RaL
−1
a (y) + LaR

−1
a (x)) = L−1

a (y). (12)

Taking x = a2 (the unit of the group Q(+)), from (12) it follows:

Ra(y) + LaRaL
−1
a (y) = L−1

a (y), (13)

or, replacing y by La(y):
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RaLa(y) + LaRa(y) = y. (14)

Now, taking y = a2 in (12), we have: Rax + L2
aR

−1
a x = a and, replacing x by

Rax in the last equality, we get R2
ax+L2

ax = a. From (14) it follows y+IRaLa(y) =
LaRa(y), ∀y ∈ Q, where I(x) = −x, ∀x ∈ Q, so IRaLa is a complete substitution of
Q(+). Finally, denoting IRaLa by θ, we get La = R−1

a Iθ and x · y = Rax+R−1
a Iθy,

∀x, y ∈ Q.
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Academician Vladimir Arnautov – 70th anniversary

Academician Vladimir Arnautov is a Mol-
davian mathematician and an irrefutable
leader of the Moldavian school of topologi-
cal algebra, which made an important con-
tribution to the topological algebra and
to the education of new generations of
highly-qualified specialists. In the middle
of the summer of 2009 professor Vladimir
Arnautov turned 70. This was an excel-
lent opportunity for us, his colleagues and
friends, to stop on our own mathematical
and personal path and to bring once more

into light his life and activity up to this moment.
Vladimir Arnautov was born July 30, 1939 in Bolgrad (Romania, now Ukraine),

being the second son (of six children) in a Bulgarian family. His father Ivan
Stepanovich Arnautov was a technician at the local communication service. His
mother Vera Simionovna Arnautova (Stadnitskaya) was a housewife and her princi-
pal occupation was the education of children.

Bolgrad (abbreviated from of Bolgarian town, which was called, until 1818,
Tabacu) a little town in the south part of Bassarabia was in the 19th century the
residence of the Bassarabian Bulgarians evacuated from Bulgaria who had been
subjugated by Ottoman Empire until the 19th century.

In 1956 he successfully finished the local secondary (ten-year) school. The ma-
thematical form and formulas, logical deduction charmed him, and without doubt
he decided to continue the mathematical studies. In 1956 he started his university
education at the Faculty of Physics and Mathematics (now Faculty of Mathemat-
ics and Computer Sciences) of Chişinău State University (now State University of
Moldova).

During the student days he was influenced by the talented teachers and
schoolarls as Professors C. Sibirschi, A. Zamorzaev, B. Shcherbacov, I. Parovicenco,
C. Shchukin and other. Soon he became one of the best students. At the same time
he actively contributed to various public organizations. In particular, 1959-1961 he
was the Chairman of the Council of the Student Scientific Society of the University.
In 1961 V. Arnautov successfully graduated from the Chişinău University. His Mas-
ter Thesis ”About some classes of completely regular spaces” was published in the
Scientific Notes of the Chişinău University, Mathematics, vol. 1, 1962, p.13-18. His
scientific and active public involvement made possible the obtaining of the Univer-
sity Academic Council recommendation for continuing his post-graduate advanced
studies in Mathematics at the newly-created Institute of Mathematics and Physics
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(now Institute of Mathematics and Computer Sciences and Institute of Applied
Physics). At the Institute a good fortune has brought him together with the Aca-
demician Vladimir Andrunachievici, one of the founders of the Academy of Sciences
of Moldova, the first director of the Institute of Mathematics and Physics and the
founder of the Moldavian algebraical school. V.Andrunachievici became scientific
supervisor of the young scientist.

Academician V. Andrunachievici was one of the best specialists in the abstract
theory of radicals. The scientific interest of the supervisor and his own topological
knowledge determined the direction of Arnautov’s further mathematical investiga-
tions: the theory of radicals of the topological rings.

The abstract theory of radicals had already been applied in the theory of topo-
logical rings in some works of I.Kaplansky, H. Leptin, D. Zelinsky and other ma-
thematicians. However, they left out of account that these radicals, as a rule, are
not closed in the topological rings.

First of all, V.Arnautov proposed the concept of the topological radical.

Let Φ be an associative and commutative topological ring and K be a class of
topological algebras over the topological ring Φ with the following properties:

– if A is an ideal of some algebra B ∈ K, then A ∈ K;

– if B ∈ K and A is a closed ideal of B, then the factor-algebra B/A ∈ K.

If Φ is the discrete ring of integers Z, then K is a class of topological rings. We
assume that any ideal of the algebra B is a subalgebra of the algebra B.

We say that a radical ρ is defined over the class K if ρ is a correspondence of K
into K for which:

1R. ρ(A) is a closed ideal of the algebra A ∈ K (it is called the ρ-radical of A).

2R. ρ(ρ(A)) = ρ(A) for any A ∈ K.

3R. If A,B ∈ K and ϕ : A → B is a continuous homomorphism, then ϕ(ρ(A)) ⊆
ρ(B).

4R. If A ∈ K, then ρ(A/ρ(A)) = {0}.

Let ρ be a radical over the given class K of topological algebras. If A ∈ K and
ρ(A) = {0}, then the algebra A is called ρ-semisimple. If ρ(A) = A, then A is called
a ρ-radical algebra. Thus the factor-algebra A/ρ(A) is the replica of the algebra
A ∈ K in the class Kρ of all ρ-semisimple algebras from K.

If K is a class of discrete algebras, then each topological radical over the class K
is an abstract radical and vice versa.

Consequently, many facts and notions of the abstract theory are their analogues
for the topological case. However:

– for some abstracts radicals there exist a more than one topological variants;

– in some classes of topological algebras distinct radicals can coincide.

Therefore, the topological theory of radicals is a new fundamental area of ma-
thematics with new concepts and techniques which have important and fruitful
applications in other branches of algebra, topology and mathematics, in general.
V.Arnautov has introduced a number of new notions and gave a number of original
and deep results. The following problem was arisen one of first.

Problem 1. Find the radical properties of distinct classes of topological rings.
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A property P is a radical property in the class K of topological rings if there
exists a radical ρ such that ρ(A) = A if and only if A ∈ K is a topological ring with
the property P.

One of the first remarkable results was: the property of a topological ring to
contain a non-zero topological nilpotent ideal in any non-trivial continuous homo-
morphic image is a radical property. This radical was named the Baer-McCoy or
the Baer radical. That radical was comprehensively studied in the thesis ”On the
theory of topological rings” for a doctor’s degree which was defended in March 1965
at the Institute of Mathematics of the Siberian Branch of the Academy of Sciences
of USSR.

For a long time that property was the only non-trivial radical property in the
class of all topological rings. Then various radical properties were found in the classe
of all topological rings, including:

– the property of a topological ring to be a locally nilpotent ring generates the
Levitzky radical;

– to be a nil ring is a radical property which generates the Koethe radical;

– the property to be a quasi-regular ring is a radical property and generates the
Jacobson radical;

– the property to be a Boolean ring generates the Boolean radical, etc.

The analogues of some topological radicals in the concrete classes of topological
rings were well-known earlier. V.Arnautov has constructed them in the class of all
topological rings.

The coincidence of some topological radicals in special classes of spaces was an
unexpected fact. For example, in the class of compact rings the topological radicals
of Baer-McCoy and Jacobson coincide with the topological quasi-regular radical.
This fact confirms the initial assumption of interdependence of algebraical proper-
ties of topological radicals and topological properties of classes of topological rings.
Moreover, as applications the structural descriptions of some classes of topological
rings were obtained.

The methods of the theory of radicals are important for the study of the alge-
braical properties of the completion R̆ of a topological ring R. V. Andrunachievici
and V. Arnautov established that for any topological ring R the following assertions
are equivalent:

– in the topological ring R any one-sided ideal is trivial and only zero is a
generalized zero divisor;

– R is a ring with unity and any element of R is invertible in R̆.

The next curious fact immediately follows from this result: a locally compact
topological ring without non-trivial one-sided ideals is a topological field.

Some fundamental investigations of V. Arnautov were made jointly with his sci-
entific tutor, Academician V. Andrunachievici, others with his gifted post-graduate
student, Mihail Ursul, who then created new interesting directions of research and
educated new generations of highly-qualified mathematicians. Interesting results
about topological radicals where proved by Mihail Vodinchar and Trinh Dang Khoi,
when they were post-graduate students of Professor V. Arnautov.
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A voluminous outline of the investigations of the topological radicals and of
the radical properties was presented in the review: V. I.Arnautov, The Theory of
Radicals of Topological Rings, Mathematica Japonica 47:3(1998), 439–544.

In 1946 Professor A.A. Markov, in one of his articles, arose the next question: is
it true that on each infinite group there exists a non-discrete Hausdorff topology?

Markov’s question generates in the more general aspect the following problems.

Problem 2. Under which conditions on a given universal algebra A there exist
some (only one, two) topologies with the given property?

Problem 3. Find algebraical properties of a universal algebra A which can be
characterized by the properties of the lattice LT (A) of the topologies on the algebra
A. In particular, under which conditions the lattice LT (A) has coatoms?

Problem 4. Let A be a subalgebra of a universal algebra B and T be a Hausdorff
topology on A. Under which conditions on B there exists a Hausdorff topology T ′

such that A is a topological subalgebra of B?

The Problems 3 and 4 are more difficult if on the space of operations some
topology is fixed and, in particular, for modules or for algebras over some topological
ring Φ.

The history of solution of Markov’s Problem for groups is long and surpris-
ing. First, it was established that the positive answer for commutative groups fol-
lows from the theory of characters (A.Kertesz and T. Szele, 1956). Then, in 1977,
S. Shelah, using forcing method, constructed an uncountable group without non-
discrete topologies. In 1980 A. Oľsanskii observed that the infinite countable group
A(m,n)/Cm, where A(m,n) is the infinite countable group constructed by S.Adian
in 1975, has not non-discrete Hausdorff topologies.

Markov’s Problem for rings was solved by V. Arnautov by 1972. He obtained the
following valuable results:

1. On any infinite countable ring there exist non-discrete Hausdorff topologies.

2. On each infinite commutative associative ring there exists a Hausdorff non-
discrete topology.

3. There exists an infinite ring on which only the anti-discrete topology {0, A}
is non-discrete.

Obviously, the Kertesz-Szele’s Theorem for commutative groups follows from the
Arnautov’s results.

For construction on rings the Hausdorff non-discrete topologies with distinct
proprieties V.Arnautov developed interesting combinatorial methods. These facts
and some structural properties of topological rings constitute the content of his
doctor’s science degree thesis defended in 1972 at the Institute of Mathematics of
the Siberian Branch of the Academy of Sciences of USSR.

The topology constructed by the characters is totally bounded or metrizable and
locally totally bounded, but the topologies proposed by V. Arnautov are metrizable
only for countable rings and, as a rule, not locally totally bounded. This fact arises
the next major problems.

Problem 5. Under which conditions on an algebra there exists some compact
Hausdorff topology?
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Problem 6. Under which conditions on an algebra there exits a topology gener-
ated by a linear ordering?

Problem 7. Let τ be an infinite cardinal. Under which conditions on an algebra
there exists a Hausdorff non-discrete Pτ -topology?

The topology is called a Pτ -topology, where τ is an infinite cardinal, if the
intersection of τ open sets is an open set.

The Problems 5 - 7 relate to the problem.

Problem 8. Find the interdependence of algebraical properties of algebra A and
properties of topologies on the algebra A.

Under the guidance of Professor V.Arnautov remarkable results concerning the
problems 5 - 8 were obtained by Mihail Ursul, Pavel Chircu, Victor Vizitiu, Elena
Marin, Valeriu Popa, Kirill Filippov, Dilfuza Yunusova, Anatolie Topală.

The topological free algebras are important algebraical objects. Interesting re-
sults about the properties of topological free rings in concrete classes of topological
rings were proposed by V.Arnautov and his post-graduate students Ştefan Alexei,
Reli Calistru and Stelian Dumitrashcu (the later was a post-graduate student of
M. Cioban too).

A lasting, active and efficient collaboration has been established between Profes-
sor V.Arnautov and the Moskow mathematicians Professors Alexander V. Mikhalev
and Sergei T. Glavatsky.

In connection with Problem 4 they examined the next two problems.

Problem 9. Under which conditions on the semigroup ring the topology of the
ring and the topology of the semigroup can be simultaneously extended?

Problem 10. Under which condition the topology of the ring admits some ex-
tension over its ring of quotients?

The following monographs constitute the final result of this collaboration:

1. Arnautov V. I, Vodinchar M. I., Mikhalev A. V, Introduction to the Theory
of Topological Rings and Modules, – Ştiinţa: Chişinău, 1981, 175 p. (In Russian).

2. Arnautov V. I, Vodinchar M. I., Glavatsky S.T., Mikhalev A.V, Construc-
tions of the Topological Rings and Modules, – Ştiinţa: Chişinău, 1988, 168 p. (In
Russian).

3. Arnautov V. I, Glavatsky S.T., Mikhalev A.V, Introduction to the Theory
of Topological Rings and Modules, – Marcel Dekker: New York-Basel, 1996, 502 p.

In the mentioned books the results of the authors of books and of their former
students constitute a significent part and the impact of this works on the develop-
ment of Topological Algebra is considerable.

The last scientific researches of Professor V. Arnautov are dedicated to the in-
vestigation of the lattice of topologies of groups and rings. One general method
of construction of neighbour pairs of topologies was found. Two topologies on the
algebra A form a neighbour pair if between them other topologies do not exist.
In particular, any coatom and the maximal topology of the lattice LT (A) form a
neighbour pair. If A is an algebra over a discrete ring or a group, then the maximal
topology of the lattice LT (A) is discrete. Mentioned facts confirm the importance
of this concept and method. Professor V. Arnautov proved that the lattice LT (A),
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where A is a linear space over field of reals, does not contain Hausdorff coatoms. In
this case the maximal element of the lattice LT (A) is not discrete.

Academician V.Arnautov has published more than 160 research papers and
3 monographs. Having a good prestige in the world of mathematics, Professor
Vladimir Arnautov has been invited at more then 40 prestigious international con-
ferences in Algebra and Topology (Russia, Belarus, Ukraine, Poland, Austria, etc).
He passionately and skillfully has organized in collaboration with colleagues sev-
eral (about 20) national and international conferences on Algebra, Topology and
Topological Algebra. For instance, in 1984 and 1986 Professor V. Arnautov in col-
laboration with Professors A. Arhangel’skii, M. Cioban and A. Mikhalev organized
in Tiraspol the well-known workshops ”Topological Algebra” which had a consid-
erable influence on the development of Topological Algebra and General Topology.
In particular, these workshops have established close contacts between many alge-
braical and topological schools of the former USSR (from Moscow, Saint Petersburg,
Novosibirsk, Tomsk, Yekaterinburg, Ukraine, Byelorussia, Moldova, Estonia, etc).

Thus in 1961 Professor V. Arnautov steady and full of energy began the scholarly
activity and didactic carrier. During 1964–1967 and 1967–1970 he was respectively
scientific worker and superior scientific worker at the Institute of Mathematics and
Computer Sciences of the Academy of Sciences of Moldova (IMCS ASM). Between
1970–1978 he was the head of the laboratory of IMCS ASM. In 1978 he becomes the
full Professor. Between 1978–1988 and 1990–1993 he was the deputy director of IMI
ASM for research problems. In 1984 he was elected the corresponding member of the
Academy of Sciences of Moldova. In the period 1990–1993 he was the associate mem-
ber of the Presidium of the Academy of Sciences of Moldova. Between 1993–1999
he was the principal scientific worker and since 1999 he is the head of Department
of Theoretical Mathematics of IMCS of ASM. In 2007 Professor V. Arnautov was
elected the full member of the Academy of Sciences of Moldova, the highest scientific
forum of the Republic of Moldova and the highest recognition which a scholar may
receive in the native country.

The contribution of Professor V. Arnautov to the education of new generations of
highly-qualified mathematicians is enormous. He has trained 13 doctors of sciences
and Ph.D’s. To his colleagues and former students he has an inspiration not only as
a mathematician, but as a human being.

Professor V. Arnautov is an active member of many state communities and com-
missions. He was a member of the Commission of Experts and of the Scientific
Council of the Higher Certifying Committee of USSR for the academic degree and
rank. During 1973–1977 he was a Chairman of the Council of Young Researchers
of the Republic of Moldova. Now he is a Chairman of the Council and a mem-
ber of the Experts Commission of CNAA (National Council for Accreditation and
Attestation).

Professor Vladimir Arnautov was awarded the Prize of the Moldovian Komso-
mol (1972) for the young researchers, the prize ”Academician Constantin Sibirschi”
(2001). He is a ”Honoured scientist of the Republic of Moldova” and is awarded
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with the ”Honour Diploma of the Presidium of the Supreme Soviet of MSSR”, medal
”Distinction in Labour” and order ”Glory of Labour”.

Professor V.Arnautov is a member of the Moldavian Mathematics Society, Amer-
ican Mathematical Society and of the Editorial Board of the Bulletin of the Academy
of Science of Moldova, Mathematics.

At the age of 70, full of vigor and optimism, the academician Vladimir Arnautov
is a prominent personality and continues an active presence in the academic com-
munity of the Republic of Moldova. We wish him a good health, prosperity and
new accomplishments in his prodigious scientific and didactic activities: ”Happy
Birthday to You, Happy returns of the Day”.

Mitrofan Cioban

Academician of ASM, Professor, Doctor of Sciences
President of the Mathematical Society of the Republic of Moldova

Petru Soltan

Academician of ASM, Professor, Doctor of Sciences
Honorific Member of the Romanian Academy

Constantin Gaindric

Corresponding member of ASM, Professor, Doctor of Sciences
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Academician Iurie Reabuhin – 70th anniversary

Iurii Mihailovici Reabuhin was born on Febru-
ary 8, 1939 in Moscow, Russia. Graduate of
high school N 4 (Chisinau, 1956), and of faculty
of physics and mathematics, Moldova State Uni-
versity (Chisinau, 1961), post-graduate student,
Institute of Mathematics with Computer Center
of Moldova Academy of Sciences (1965).

PhD (1965), Habilitat doctor (1971), University
professor (1978), Corresponding Member (1989)
and Academician (1993) of Moldova Academy of
Sciences.

Distinctions: Laureate of Moldova State Prize
in domain of science and technics (1972), Hono-
ured Public Education Worker (1984), Honoured
Science Worker (1988).

Research activity: Institute of Mathematics and Informatics, Moldova Academy
of Sciences – laboratory assistant (1961–1963), research worker, senior research
worker (1963–1970), head of the department Algebra and Mathematical Logic
(1970–1993), principal research worker (since 1993).

Professor Iurii Reabuhin wrote his first scientific article in geometry under the
supervision of the well known geometrician Alexandr Zamorzaev. In 1961 he met
a great specialist in Algebra Vladimir Andrunakievici, and they formed a tandem
which is now famous all over the algebraic world. They say, in the person of Iurii
Reabuhin mathematics lost a good geometrician but gained a great algebraist.

The scientific interests of professor Reabuhin turned up in the theory of rings,
algebras and modules. One circle of works deals with the theory of radicals of rings
and algebras. He was one of the first to prove that the radical, generated by a
hereditary property, is hereditary. Studying lower radicals, professor Reabuhin was
the first to indicate an unbreakable Kurosh chain, and together with academician
Andrunakievici showed that the break of this chain in the case of non-associative
algebras is a rare event.

Professor Reabuhin showed that it is possible to come to subnilpotent and special
radicals from category considerations. He constructed an example of a subnilpotent
radical which is not special and later showed that there is a whole ”heap”, by an
expression of the famous algebraist K. Zhevlakov, of such radicals.
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Another circle of scientific works of professor Reabuhin is connected with al-
gebras without nilpotent elements. He and Andrunakievici proved that every as-
sociative ring without nilpotent elements is decomposed as a subdirect product of
rings without zero divisors. Prof. Reabuhin had solved completely the problem
of description of non-necessary associative algebras (over an arbitrary associative
commutative ring with identity) which are decomposed as a subdirect product of
algebras without zero divisors, and generalized some theorems of Gerchikov and
Weierstrass. He also showed that it is possible to develop the theory of radicals even
in ”bad” categories.

These and a lot of other results are exposed in the monograph of V.Andrunakievici
and I.Reabuhin ”Radicals of algebras and structure theory”.

One more circle of works of Reabuhin is devoted to the search of generalizations
of classical Noether-Laseeker additive ideal theory to the non-commutative case. In
a large series of works professors Reabuhin and Andrunakievici defined axiomati-
cally the notion of primarity and studied different properties of primary ideals and
their intersections: ”existence” (every ideal has of a primary decomposition, that is
every ideal is an intersection of a finite number of primary ideals), ”intersection”
(intersection of a finite number of primary ideals with the same radical is a primary
ideal), ”uniqueness” (two primary decompositions have the same set of radicals). It
turns out that under some very natural conditions the only one ”good” primarity is
”tertiarity”, studied by Lesiur and Croisot.

If the restrictions are slightly modified one gains the ”primality” of Fuchs, which,
however, does not coincide with classical ”primarity” even in commutative case.
The developed theory is valid not only for rings, but also for groups, semigroups,
modules and systems with quotients, the last being introduced by Reabuhin and
Andrunakievici.

We must confess that some ideas of pioneer in traditional researches of algebraists
of the Republic of Moldova belong to academician Iurii Reabuhin. These ideas not
only extended traditional themes of investigations, but also generated new directions
of researches of Chişinau algebraic scool. Here are just some aspects which enrich
algebraic investigations with new results and methods in the theory of rings and al-
gebras non-necessary associative: general constructions of locally nilpotent algebras,
locally finite dimensional algebras, description of some varieties of algebras, analysis
of marked varieties of associative algebras, cardinality of minimal varieties. Some re-
sults and applications lead to solution of some special problems of ring theory. Here
we may remak, for example, that Baer and Levitzky are different, the cardinality
of minimal variety is immense (continuum) and some applications can be extended
to the non-associative case. The methods, described and applied by academician
Iurii Reabuhin leave you thunderstruck not only by originality, but also by their
contents. They contain vast possibilities of new extensions and applications, open
new directions which were successfully capitalized by his disciples.

Beside academician Iurii Reabuhin you always feel a special devotion to algebraic
school, to its prestige at national and international level. These nontraditional direc-
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tions together with obtained results had fortified the image of our algebraic school
and had amplified investigations in rings and algebras with different conditions of
finiteness.

Now, when Academician Iurii Reabuhin is 70 years old, we are proud of his
achievements and wish good health, prosperity and successes in his scientific and
didactic activity.
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