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Properties of one-sided ideals of pseudonormed rings

when taking the quotient rings
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Abstract. Let ϕ : (R, ξ) →
“

bR, bξ
”

be an isomorphism of pseudonormed rings. The

inequalities
ξ (a · b)

ξ (b)
≤ bξ (ϕ (a)) ≤ ξ (a) are fulfilled for any a, b ∈ R\ {0} iff there

exists a pseudonormed ring
“

eR, eξ
”

such that (R, ξ) is a left ideal in
“

eR, eξ
”

and the

isomorphism ϕ can be extended up to an isometric homomorphism eϕ :
“

eR, eξ
”

→
“

bR, bξ
”
.

Mathematics subject classification: 16W60, 13A18.
Keywords and phrases: Pseudonormed rings, quotient rings, one-sided ideals of
rings, an isometric homomorphism, semi-isometric isomorphism, canonical homomor-
phism.

We will think that a pseudonormed ring is a ring R which may be non-associative
and has a pseudonorm, i.e. a real function ξ (r) such that the following conditions
are satisfied: ξ (−r) = ξ (r) ≥ 0; ξ (r) = 0 iff r = 0; ξ (r1 + r2) ≤ ξ (r1) + ξ (r2) and
ξ (r1 · r2) ≤ ξ (r1) · ξ (r2) for any r1, r2 ∈ R.

The following isomorphism theorem is often applied in algebra and, in particular,
in the ring theory:

If A is a subring of a ring R and I is an ideal of the ring R then the quotient
rings A/ (A ∩ I) and (A + I) /I are isomorphic rings. In particular, if A ∩ I = 0
then the ring A is isomorphic to the ring (A + I) /I, i.e. the rings A and (A + I) /I
possess identical algebraic properties.

Since when studying the pseudonormed rings it is necessary to take into account
properties of pseudonorms besides algebraic properties there is a need to consider
isomorphisms which keep pseudonorms instead of ring isomorphism. Such isomor-
phisms are called isometric isomorphisms.

Taking into consideration this fact the above specified isomorphism theorem not
always takes place for pseudonormed rings. As it is shown in Theorem 2.1 from
[1] it is impossible to tell anything more than performance of an inequality in case
A ∩ I = 0.

Therefore it is necessary to impose additional conditions on the ring A. For
example, the cases when A is an ideal or one-sided ideal of the pseudonormed ring
(R, ξ) are considered.
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The case when A is an ideal of pseudonormed ring (R, ξ) was investigated in [1].
The present article is a continuation of the article [1]. The case when A is an

one-side ideal of the pseudonormed ring (R, ξ) is investigated in the present article.

Definition 1. A homomorphism ϕ : (R, ξ) →
(
R̂, ξ̂

)
of pseudonormed rings is

called an isometric homomorphism if ξ̂ (ϕ (r)) = inf { ξ (r + a) | a ∈ kerϕ} for all
r ∈ R.

Remark 1. It is clear that if an isometric homomorphism is an isomorphism then it
is an isometric isomorphism in usual sense.

Remark 2. If I is a closed ideal of a pseudonormed ring (R, ξ) then the canonical
homomorphism1 ε : (R, ξ) → (R, ξ) /I is an isometric homomorphism, and if ϕ :

(R, ξ) →
(
R̂, ξ̂

)
is an isometric homomorphism of pseudonormed rings and I = ker ϕ

then the pseudonormed rings
(
R̂, ξ̂

)
and (R, ξ) /I are isometrically isomorphic.

Definition 2. Let (R, ξ) and
(
R̂, ξ̂

)
be pseudonormed rings. By analogy with the

definition in [1], an isomorphism ϕ : (R, ξ) →
(
R̂, ξ̂

)
is said to be a semi-isometric

isomorphism on the left (on the right) if there exists a pseudonormed ring
(
R̃, ξ̃

)
such

that the pseudonormed ring (R, ξ) is a left (right) ideal of the pseudonormed ring(
R̃, ξ̃

)
and the isomorphism ϕ can be extended up to an isometric homomorphism

ϕ̃ :
(
R̃, ξ̃

)
→

(
R̂, ξ̂

)
.

Theorem 1. Let (R, ξ) and
(
R̂, ξ̂

)
be pseudonormed rings and ϕ : (R, ξ) →

(
R̂, ξ̂

)

be an isomorphism. Then the following statements are equivalent:

1. The isomorphism ϕ is a semi-isometric isomorphism on the left;

2. The inequalities
ξ (b · a)

ξ (a)
≤ ξ̂ (ϕ (b)) ≤ ξ (b) are fulfilled for any a, b ∈ R \ {0};

3. There exists a pseudonormed ring
(
R̃, ξ̃

)
such that the pseudonormed ring

(R, ξ) is a left ideal of the pseudonormed ring
(
R̃, ξ̃

)
and the isomorphism ϕ

can be extended up to an isometric homomorphism ϕ̃ :
(
R̃, ξ̃

)
→

(
R̂, ξ̂

)
, and

(ker ϕ̃)2 = {0}.

Proof. 1 ⇒ 2. Let ϕ : (R, ξ) →
(
R̂, ξ̂

)
be a semi-isometric isomorphism on the

left. Then there exists a pseudonormed ring
(
R̃, ξ̃

)
such that the pseudonormed

1i.e. homomorphism ε : R → R/I such that ε (r) = r + I .
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ring (R, ξ) is a left ideal of the pseudonormed ring
(
R̃, ξ̃

)
and the isomorphism ϕ

can be extended up to an isometric homomorphism ϕ̃ :
(
R̃, ξ̃

)
→

(
R̂, ξ̂

)
.

Let a, b ∈ R and ε > 0. Since ϕ̃ is an extension of the isomorphism ϕ then
R∩ ker ϕ̃ = ker ϕ = {0}, and as R is a left ideal of R̃ and ker ϕ̃ is an ideal of R̃ then
d · a ∈ R ∩ ker ϕ̃ = {0} for any d ∈ ker ϕ̃, i.e. (ker ϕ̃) · a = 0.

Since ϕ̃ :
(
R̃, ξ̃

)
→

(
R̂, ξ̂

)
is an isometric homomorphism then ξ̂ (ϕ̃ (b)) ≤ ξ̃ (b) =

ξ (b) and there exists an element c ∈ ker ϕ̃ such that ξ̃ (b + c) < ξ̂ (ϕ̃ (b)) + ε =
ξ̂ (ϕ (b)) + ε. So as c · a ∈ ker ϕ̃ · a = 0 then

ξ (b · a) = ξ̃ (b · a) = ξ̃ (b · a + c · a) = ξ̃ ((b + c) · a) ≤ ξ̃ (b + c) · ξ̃ (a) =

ξ̃ (b + c) · ξ (a) <
(
ξ̂ (ϕ (b)) + ε

)
· ξ (a) .

Since ε > 0 is any number then ξ (b · a) ≤ ξ̂ (ϕ (b)) · ξ (a). It means that

ξ (b · a)

ξ (a)
≤ ξ̂ (ϕ (b)) ≤ ξ (b) .

Hence 1 ⇒ 2 is proved.

Proof. 2 ⇒ 3. Let (R, ξ) and
(
R̂, ξ̂

)
be pseudonormed rings and ϕ : (R, ξ) →

(
R̂, ξ̂

)
be an isomorphism such that the inequalities

ξ (b · a)

ξ (a)
≤ ξ̂ (ϕ (b)) ≤ ξ (b) are

fulfilled for any a, b ∈ R.
We shall lead the proof to some stages.

I. Construction of the ring R̃ and checking some of its properties.

I.1. Let’s consider a discrete ring R̃ such that its additive group is the direct
sum of the additive groups of the rings R and R̂, and the multiplication is certain
as follows: (r1, r̂1) · (r2, r̂2) = (r1 · r2, ϕ (r1) · r̂2).

I.2. It is easy to notice that R̃ is a ring with respect to these operations of
addition and multiplication, and the set R′ = {(r, 0)| r ∈ R} is a left ideal of R̃.

I.3. Let’s define the mapping α : R → R̃ as follows α (r) = (r, 0) for any r ∈ R.
It is easy to notice that α : R → R′ = {(r, 0)| r ∈ R} is a ring isomorphism. Hence,
if we identify an element r ∈ R with the element (r, 0) ∈ R′ then we can suppose
that R is a left ideal in the ring R̃.

I.4. Let’s define the mapping ϕ̃ : R̃ → R̂ as follows ϕ̃ (r, r̂) = ϕ (r). It’s easy
to notice that ϕ̃ : R̃ → R̂ is a ring homomorphism, and (considering I.3.) ϕ̃ (r) =

ϕ̃ (r, 0) = ϕ (r) for any r ∈ R, i.e. ϕ̃|
R

= ϕ. Since ker ϕ̃ =
{

(0, r̂)| r̂ ∈ R̂
}

then

(ker ϕ̃)2 = 0.

II. Definition of a pseudonorm ξ̃ and checking some of its properties.
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II.1. Let’s define the real function ξ̃ on the ring R̃ as follows: ξ̃ (r, r̂) =
ξ
(
r − ϕ−1 (r̂)

)
+ ξ̂ (r̂).

II.2. Let’s verify that ξ̃ is a pseudonorm.

It is easy to notice that ξ̃ (−r̃) = ξ̃ (r̃) ≥ 0 for any r̃ ∈ R̃ and ξ̃ (r̃) = 0 if and
only if r̃ = 0, i.e. the first and second conditions of the definition of the pseudonorm
are valid. Let r̃1 = (r1, r̂1) , r̃2 = (r2, r̂2) ∈ R̃. Then

ξ̃ (r̃1 + r̃2) = ξ̃ ((r1, r̂1) + (r2, r̂2)) = ξ̃ ((r1 + r2, r̂1 + r̂2)) =

= ξ
(
r1 + r2 − ϕ−1 (r̂1 + r̂2)

)
+ ξ̂ (r̂1 + r̂2) =

= ξ
(
r1 + r2 − ϕ−1 (r̂1) − ϕ−1 (r̂2)

)
+ ξ̂ (r̂1 + r̂2) ≤

≤ ξ
(
r1 − ϕ−1 (r̂1)

)
+ ξ

(
r2 − ϕ−1 (r̂2)

)
+ ξ̂ (r̂1) + ξ̂ (r̂2) = ξ̃ (r̃1) + ξ̃ (r̃2) .

Besides that, because the inequalities ξ (b · a) ≤ ξ̂ (ϕ (b)) · ξ (a) and ξ̂ (ϕ (a)) ≤ ξ (a)
for any a, b ∈ R are true (see the statement 2 of formulation of the theorem) we
have:

ξ̃ (r̃1 · r̃2) = ξ̃ ((r1, r̂1) · (r2, r̂2)) = ξ̃ ((r1 · r2, ϕ (r1) · r̂2)) =

= ξ
(
r1 · r2 − ϕ−1 (ϕ (r1) · r̂2)

)
+ ξ̂ (ϕ (r1) · r̂2) =

= ξ
(
r1 · r2 − r1 · ϕ

−1 (r̂2)
)

+ ξ̂ (ϕ (r1) · r̂2) =

ξ
(
r1 ·

(
r2 − ϕ−1 (r̂2)

))
+ ξ̂ (ϕ (r1) · r̂2) ≤

≤ ξ̂ (ϕ (r1)) · ξ
(
r2 − ϕ−1 (r̂2)

)
+ ξ̂ (ϕ (r1) · r̂2) =

= ξ̂ (ϕ (r1)) · ξ
(
r2 − ϕ−1 (r̂2)

)
+ ξ̂ ((ϕ (r1) − r̂1 + r̂1) · r̂2) ≤

≤ ξ̂ (ϕ (r1)) · ξ
(
r2 − ϕ−1 (r̂2)

)
+ ξ̂ ((ϕ (r1) − r̂1) · r̂2) + ξ̂ (r̂1 · r̂2) ≤

≤ ξ̂ (ϕ (r1)) · ξ
(
r2 − ϕ−1 (r̂2)

)
+ ξ̂ (ϕ (r1) − r̂1) · ξ̂ (r̂2) + ξ̂ (r̂1) · ξ̂ (r̂2) ≤

≤ ξ̂ (ϕ (r1)) · ξ
(
r2 − ϕ−1 (r̂2)

)
+ ξ

(
r1 − ϕ−1 (r̂1)

)
· ξ̂ (r̂2) + ξ̂ (r̂1) · ξ̂ (r̂2) =

= ξ̂ (ϕ (r1) − r̂1 + r̂1) · ξ
(
r2 − ϕ−1 (r̂2)

)
+

ξ
(
r1 − ϕ−1 (r̂1)

)
· ξ̂ (r̂2) + ξ̂ (r̂1) · ξ̂ (r̂2) ≤

≤ ξ̂ (ϕ (r1) − r̂1) · ξ
(
r2 − ϕ−1 (r̂2)

)
+ ξ̂ (r̂1) · ξ

(
r2 − ϕ−1 (r̂2)

)
+

ξ
(
r1 − ϕ−1 (r̂1)

)
· ξ̂ (r̂2) + ξ̂ (r̂1) · ξ̂ (r̂2) ≤

ξ
(
r1 − ϕ−1 (r̂1)

)
· ξ

(
r2 − ϕ−1 (r̂2)

)
+ ξ̂ (r̂1) · ξ

(
r2 − ϕ−1 (r̂2)

)
+

ξ
(
r1 − ϕ−1 (r̂1)

)
· ξ̂ (r̂2) + ξ̂ (r̂1) · ξ̂ (r̂2) =

=
(
ξ
(
r1 − ϕ−1 (r̂1)

)
+ ξ̂ (r̂1)

)
·
(
ξ
(
r2 − ϕ−1 (r̂2)

)
+ ξ̂ (r̂2)

)
= ξ̃ (r̃1) · ξ̃ (r̃2) .
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Hence the function ξ̃ satisfies also the last condition of definition of pseudonorm. It
means that ξ̃ is a pseudonorm on the ring R̃.

II.3. Since ξ̃ (r) = ξ̃ (r, 0) = ξ (r) + ξ̂ (0) = ξ (r) for any r ∈ R then ξ̃
∣∣∣
R

= ξ.

II.4. Let’s verify that ϕ̃ :
(
R̃, ξ̃

)
→

(
R̂, ξ̂

)
is an isometric homomorphism, i.e.

ξ̂ (ϕ̃ (r̃)) = inf
{

ξ̃ (r̃ + ã)
∣∣∣ ã ∈ ker ϕ̃

}
for any r̃ ∈ R̃.

Let r̃ = (r, r̂) ∈ R̃. Then r̃1 = (0, ϕ (r) − r̂) ∈ ker ϕ̃, and

inf
{

ξ̃ (r̃ + ã)
∣∣∣ ã ∈ ker ϕ̃

}
≤ ξ̃ (r̃ + r̃1) = ξ̃ ((r, r̂) + (0, ϕ (r) − r̂)) =

= ξ̃ (r, r̂ + ϕ (r) − r̂) = ξ̃ (r, ϕ (r)) =

ξ
(
r − ϕ−1 (ϕ (r))

)
+ ξ̂ (ϕ (r)) = ξ̂ (ϕ (r)) = ξ̂ (ϕ̃ (r̃)) .

On the other hand, since ξ̂ (ϕ (b)) ≤ ξ (b) for any element b ∈ R, then for any element
ã = (0, â) ∈ ker ϕ̃ we have

ξ̃ (r̃ + ã) = ξ̃ ((r + 0, r̂ + â)) = ξ̃ (r, r̂ + â) = ξ
(
r − ϕ−1 (r̂ + â)

)
+ ξ̂ (r̂ + â) ≥

≥ ξ̂
(
ϕ

(
r − ϕ−1 (r̂ + â)

))
+ ξ̂ (r̂ + â) ≥ ξ̂

(
ϕ

(
r − ϕ−1 (r̂ + â)

)
+ r̂ + â

)
=

= ξ̂ (ϕ (r) − r̂ − â + r̂ + â) = ξ̂ (ϕ (r)) = ξ̂ (ϕ̃ (r̃)) .

It means that inf
{

ξ̃ (r̃ + ã)
∣∣∣ ã ∈ ker ϕ̃

}
≥ ξ̂ (ϕ̃ (r̃)).

Thus, inf
{

ξ̃ (r̃ + ã)
∣∣∣ ã ∈ ker ϕ̃

}
= ξ̂ (ϕ̃ (r̃)), and ϕ̃ :

(
R̃, ξ̃

)
→

(
R̂, ξ̂

)
is an

isometric homomorphism.

Hence 2 ⇒ 3 is proved.

For completion of the proof of the theorem it is necessary to verify that 3 ⇒ 1.

But this is obvious because the pseudonormed ring
(
R̃, ξ̃

)
which is specified in the

statement 3 satisfies all conditions from Definition 2.

Passing to antiisomorphic rings 2 from Theorem 1 easily follows:

Theorem 2. If (R, ξ) and
(
R̂, ξ̂

)
are pseudonormed rings and ϕ : (R, ξ) →

(
R̂, ξ̂

)

is an isomorphism then the following statements are equivalent:

1. The isomorphism ϕ is a semi-isometric isomorphism on the right;

2. The inequalities
ξ (b · a)

ξ (b)
≤ ξ̂ (ϕ (a)) ≤ ξ (a) are fulfilled for any a, b ∈ R \ {0};

2If R and R′ are rings then a mapping ς : R → R′ is called an antiisomorphism when it is an
isomorphism of the additive groups of these rings and ς (a · b) = ς (b) · ς (a) for any a, b ∈ R.
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3. There exists a pseudonormed ring
(
R̃, ξ̃

)
such that the pseudonormed ring

(R, ξ) is a right ideal of the pseudonormed ring
(
R̃, ξ̃

)
and the isomorphism ϕ

can be extended up to an isometric homomorphism ϕ̃ :
(
R̃, ξ̃

)
→

(
R̂, ξ̂

)
, and

(ker ϕ̃)2 = {0}.

From Theorems 1 and 2 of the present article follows

Corollary 1. If (R, ξ) and
(
R̂, ξ̂

)
are pseudonormed rings and an isomorphism

ϕ : (R, ξ) →
(
R̂, ξ̂

)
is a semi-isometric isomorphism on the left and a semi-isometric

isomorphism on the right then it is semi-isometric.

Remark 3. The ring R̃ which is constructed by the proof 2 ⇒ 3 (see the proof
of Theorem 1) is associative when the rings R and R̂ are associative. Therefore
Theorems 1 and 2 also are true for associative rings.
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Exact solutions for a rotational flow of generalized

second grade fluids through a circular cylinder

Amir Mahmood, Saifullah, Qammar Rubab

Abstract. In this note the velocity field and the associated tangential stress corre-
sponding to the rotational flow of a generalized second grade fluid within an infinite
circular cylinder are determined by means of the Laplace and Hankel transforms. At
time t = 0 the fluid is at rest and the motion is produced by the rotation of the cylin-
der, around its axis, with the angular velocity Ωt. The velocity field and the adequate
shear stress are presented under integral and series forms in terms of the generalized
G-functions. Furthermore, they are presented as a sum between the Newtonian so-
lutions and the adequate non-Newtonian contributions. The corresponding solutions
for the ordinary second grade fluid and Newtonian fluid are obtained as particular
cases of our solutions for β = 1, respectively α = 0 and β = 1.

Mathematics subject classification: 76A05, 76U05.

Keywords and phrases: Generalized second grade fluid, velocity field, tangential
stress, cylindrical domains.

1 Introduction

The motion of a fluid in a rotating or sliding cylinder is of interest to both theo-
retical and practical points of view. It is very important to study the mechanism of
viscoelastic fluids flow in many industry fields, such as oil exploitation, chemical and
food industry and bio-engineering [1]. Fetecau et al. [2] have considered the general
case of helical flow of an Oldroyd-B fluid and have determined the velocity fields and
the associated tangential stresses in forms of series in terms of Bessel functions. Re-
cently fractional calculus has encountered much success in the description of complex
dynamics, such as relaxation, oscillation, wave and viscoelastic behaviour. Bagley
[3], He [4], Tan [5] used fractional calculus to handle various problems regarding to
flow of the second grade fluid.

In this note we will study the rotational flow of a generalized second grade fluid
within an infinite circular cylinder of radius R. The motion is due to the cylinder
that at time t = 0+, begins to rotate around its axis with the angular velocity Ωt.
Exact analytic solutions of this problem are obtained by using Hankel and Laplace
transforms and generalized G-functions. Some classical results can be obtained as
special cases of our solutions.

c© Amir Mahmood, Saifullah, Qammar Rubab, 2008
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2 Governing equations

The constitutive equation of an incompressible generalized second grade fluid is
given by [4–6]

T = −pI + µA1 + α1A2 + α2A
2

1
, (1)

where T is the Cauchy stress tensor, −pI denotes the indeterminate spherical stress,
µ is the coefficient of viscosity, α1 and α2 are the normal stress moduli and A1 and
A2 are the kinematic tensors defined through

A1 = gradv + (gradv)T , (2)

A2 = Dβ

t
A1 + A1(gradv) + (gradv)T A1. (3)

In the above relations v is the velocity, the superscript T denotes the transpose
operator, and Dβ

t
is the Riemann-Liouville fractional derivative operator defined

by [7]

Dβ

t
f(t) =

1

Γ(1 − β)

d

dt

∫
t

0

f(τ)

(t − τ)β
dτ ; 0 < β ≤ 1, (4)

where Γ(·) is the Gamma function. For β = 1 the generalized model reduces to
classical model of second grade fluid because D1

t f = df/dt.
Since the fluid is incompressible, it can undergo only isochoric motions and hence

div v = tr A1 = 0. (5)

If this model is required to be compatible with thermodynamics, then the material
moduli must meet the following restrictions [8]

µ ≥ 0 , α1 ≥ 0 and α1 + α2 = 0. (6)

In cylindrical coordinates (r, θ, z), the rotational flow velocity is given by [2, 6]

v = v(r, t) = ω(r, t)eθ, (7)

where eθ is the unit vector in the θ direction. For such flows the constraint of
incompressibility is automatically satisfied.
Introducing (7) into constitutive equation, we find that

τ(r, t) = (µ + α1D
β

t
)(

∂

∂r
−

1

r
)ω(r, t), (8)

where τ(r, t) = Srθ(r, t) is the shear stress which is different of zero. The last
equation together with the equations of motion lead to the governing equation

∂ω(r, t)

∂t
= (ν + αDβ

t
)(

∂2

∂r2
+

1

r

∂

∂r
−

1

r2
)ω(r, t) , r ∈ (0, R) , t > 0, (9)

where ν = µ/ρ is the kinematic viscosity, ρ is the constant density of the fluid and
α = α1/ρ.
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3 On the rotational flow through an infinite circular cylinder

Let us consider an incompressible generalized second grade fluid at rest in an
infinite circular cylinder of radius R. At time zero, the cylinder suddenly begins to
rotate about its axis with the angular velocity Ωt. Owing to the shear, the fluid is
gradually moved, its velocity being of the form (7) and governing equation is (9).
The appropriate initial and boundary conditions are

ω(r, 0) = 0 ; r ∈ [0, R) , ω(R, t) = RΩt ; t ≥ 0. (10)

To solve this problem we shall use as in [6, 9] the Laplace and Hankel transforms.

3.1 Calculation of the velocity field

Applying the Laplace transform to Eqs. (9) and (10) and using the Laplace
transform formula for sequential fractional derivatives [7], we obtain

(ν + αqβ)

(
∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)
ω(r, q) − qω(r, q) = 0, (11)

where the image function ω(r, q) =
∫
∞

0
ω(r, t)e−qtdt of ω(r, t) has to satisfy the

condition

ω(R, q) =
RΩ

q2
, (12)

q being the transform parameter. In the following we denote by

ω
H

(r1n, q) =

∫
R

0

rω(r, q)J1(rr1n)dr, (13)

the Hankel transform of ω(r, q) , where J1(·) is the Bessel function of first kind
of order one and r1n , n = 1, 2, 3, ... are the positive roots of the transcendental
equations J1(Rr) = 0.

Multiplying now both sides of Eq. (11) by rJ1(rr1n), integrating with respect to
r from 0 to R and taking into account the condition (12) and the equality

∫
R

0

r
[∂2ω(r, q)

∂r2
+

1

r

∂ω(r, q)

∂r
−

ω(r, q)

r2

]
J1(rr1n)dr =

= Rr1nJ2(Rr1n)ω(R, q) − r2

1nωH(r1n, q), (14)

we find that

ωH(r1n, q) = ΩR2r1nJ2(Rr1n)
ν + αqβ

q2

[
q + αr2

1n
qβ + νr2

1n

] . (15)

Now, for a more suitable presentation of the final results, we rewrite Eq. (15) in the
following equivalent form

ωH(r1n, q) = ω1H(r1n, q) + ω2H(r1n, q) + ω3H(r1n, q), (16)
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where

ω1H(r1n, q) =
ΩR2

q2r1n

J2(Rr1n), (17)

ω2H(r1n, q) = −
ΩR2J2(Rr1n)

νr3

1n

(
1

q
−

1

q + νr2

1n

)
(18)

and

ω3H(r1n, q) = αΩR2r1nJ2(Rr1n)
1

q + νr2

1n

qβ−1

[
q + αr2

1n
qβ + νr2

1n

] . (19)

Using the formula

∫
R

0

r2J1(rr1n)dr =
R2

r1n

J2(Rr1n), (20)

we get that inverse Hankel transform of the function ω1H(r1n, q) is

ω1(r, q) =
Ωr

q2
. (21)

The inverse Hankel transforms of the functions ωkH(r1n, q) , k = 2, 3, are the func-
tions

ωkH(r, q) =
2

R2

∞∑

n=1

J1(rr1n)

J2

2
(Rr1n)

ωkH(r1n, q). (22)

Introducing Eqs. (21) and (22) into Eq. (16) we find that the Laplace transform
ω(r, q) has the form

ω(r, q) =
Ωr

q2
−

2Ω

ν

∞∑

n=1

J1(rr1n)

r3

1n
J2(Rr1n)

(
1

q
−

1

q + νr2

1n

)
+

+2αΩ
∞∑

n=1

r1nJ1(rr1n)

J2(Rr1n)

1

q + νr2

1n

qβ−1

[
q + αr2

1n
qβ + νr2

1n

] . (23)

To obtain the velocity field ω(r, t) = L−1{ω(r, q)} we will apply the discrete inverse
Laplace transform method [6, 7, 9]. For this we use the expansion

F (q) =
qβ−1

q + αr2

1n
qβ + νr2

1n

=
q−1

(q1−β + αr2

1n
) + νr2

1n
q−β

=

=

∞∑

k=0

(−νr2

1n)k
q−βk−1

(
q1−β + αr2

1n

)k+1
. (24)
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Introducing (24) into (23), applying the discrete inverse Laplace transform and using
the following properties

L−1{F1(q)F2(q)} = (f1 ∗ f2)(t) =

∫
t

0

f1(t − s)f2(s)ds, (25)

where

fk(t) = L−1{Fk(q)} , k = 1, 2 ,

L−1

{ qb

(qa − d)c

}
= Ga,b,c(d, t), Re (ac − b) > 0, (26)

and [10]

Ga,b,c(d, t) =
∞∑

j=0

djΓ(c + j)

Γ(c)Γ(j + 1)

t(c+j)a−b−1

Γ[(c + j)a − b]
, (27)

are the generalized G-functions, we find for ω(r, t) the expression

ω(r, t) = ω
N

(r, t) + 2α Ω

∞∑

n=1

r1nJ1(rr1n)

J2(Rr1n)

∞∑

k=0

(
− ν r2

1n

)k

×

×

∫
t

0

exp[−νr2

1n(t − s)]G1−β,−βk−1, k+1

(
− αr2

1n, s

)
ds, (28)

where [2, Eq. (4.5)]

ω
N

(r, t) = rΩt −
2Ω

ν

∞∑

n=1

J1(rr1n)

r3

1n
J2(Rr1n)

[
1 − exp(−νr2

1nt)
]
, (29)

is the similar solution for Newtonian fluids, performing the same motion.

3.2 Calculation of the shear stress

Applying the Laplace transform to Eq. (8) we find that

τ(r, q) = (µ + α1q
β)(

∂

∂r
−

1

r
)ω(r, q). (30)

The image function ω(r, q) can be obtained using Eqs. (27)-(29) and the formula

L
{ ta

Γ(a + 1)

}
=

1

qa+1
, a > −1. (31)
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Consequently, applying the Laplace transform to Eq. (28), differentiating the result
with respect to r and using the identity

rJ ′

1
(rr1n) − J1(rr1n) = −rr1nJ2(rr1n), (32)

we find that

∂ω

∂r
−

ω

r
=

2Ω

ν

∞∑

n=1

J2(rr1n)

r2

1n
J2(Rr1n)

(
1

q
−

1

q + νr2

1n

)
−

−2αΩ
∞∑

n=1

r2

1n
J2(rr1n)

J2(Rr1n)

∞∑

k,j=0

(
− ν r2

1n

)k(
− αr2

1n

)j

Γ(k + j + 1)

Γ(k + 1)Γ(j + 1)
×

×
1

q + νr2

1n

1

qk+(1−β)(j+1)+1
. (33)

Introducing (33) into (30) we get

τ(r, q) = 2ρΩ

∞∑

n=1

J2(rr1n)

r2

1n
J2(Rr1n)

(
1

q
−

1

q + νr2

1n

)
+ 2α1Ω

∞∑

n=1

J2(rr1n)

J2(Rr1n)

qβ−1

q + νr2

1n

−

−2αΩ

∞∑

n=1

r2

1n
J2(rr1n)

J2(Rr1n)

∞∑

k,j=0

(
− ν r2

1n

)k(
− αr2

1n

)j

Γ(k + j + 1)

Γ(k + 1)Γ(j + 1)
×

×

{
1

q + νr2

1n

[
µ

qk+(1−β)(j+1)+1
−

να1r
2

1n

qk+3+(1−β)j−2β

]
+

α1

qk+3+(1−β)j−2β

}
. (34)

Applying the inverse Laplace transform to Eq. (34), we find that the shear stress
τ(r, t) has the form

τ(r, t) = τ
N

(r, t) + 2α1Ω
∞∑

n=1

J2(rr1n)

J2(Rr1n)
G1,β−1,1(−νr2

1n, t)−

−2αΩ
∞∑

n=1

r2

1n
J2(rr1n)

J2(Rr1n)

∞∑

k,j=0

(
− ν r2

1n

)k(
− αr2

1n

)j

Γ(k + j + 1)

Γ(k + 1)Γ(j + 1)
×

×

∫
t

0

exp[−νr2

1n(t − s)]

{
µsk+(1−β)(j+1)

Γ[k + (1 − β)(j + 1) + 1]
−
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−
να1r

2

1n
sk+2+(1−β)j−2β

Γ[k + 3 + (1 − β)j − 2β]

}
ds − 2αΩ

∞∑

n=1

r2

1n
J2(rr1n)

J2(Rr1n)
×

×
∞∑

k,j=0

(
− ν r2

1n

)k(
− αr2

1n

)j

Γ(k + j + 1)

Γ(k + 1)Γ(j + 1)

α1t
k+2+(1−β)j−2β

Γ[k + 3 + (1 − β)j − 2β]
, (35)

where [2, Eq. (5.3) for α = 0]

τ
N

(r, t) = 2ρΩ

∞∑

n=1

J2(rr1n)

r2

1n
J2(Rr1n)

[
1 − exp(−νr2

1nt)
]
, (36)

is the shear stress corresponding to a Newtonian fluid performing the same motion.

4 Special cases

Making β = 1 into Eq. (28), we obtain the velocity field

ω(r, t) = ω
N

(r, t) + 2αΩ

∞∑

n=1

r1nJ1(rr1n)

J2(Rr1n)

∞∑

k=0

(
− ν r2

1n

)k

×

×

∫
t

0

exp[−νr2

1n(t − s)]G0,−k−1,k+1

(
− αr2

1n, s

)
ds, (37)

corresponding to an ordinary second grade fluid, performing the same motion. Sim-
ilarly, from (35), we obtain the shear stress

τ(r, t) = τ
N

(r, t) + 2α1Ω
∞∑

n=1

J2(rr1n)

J2(Rr1n)
G1, 0,1(−νr2

1n, t)−

−2αΩ
∞∑

n=1

r2

1n
J2(rr1n)

J2(Rr1n)

∞∑

k,j=0

(−ν r2

1n
)k(−αr2

1n
)jΓ(k + j + 1)

Γ(k + 1)Γ(j + 1)
×

×

∫
t

0

exp[−νr2

1n(t − s)](µ + να1r
2

1n)
sk

Γ(k + 1)
ds−

−2αα1Ω

∞∑

n=1

r2

1n
J2(rr1n)

J2(Rr1n)

∞∑

k,j=0

(−ν r2

1n
)k(−αr2

1n
)jΓ(k + j + 1)

Γ(k + 1)Γ(j + 1)

tk

Γ(k + 1)
, (38)
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corresponding to an ordinary second grade fluid, performing the same motion.
The above relations can be simplified if we use the following relations:

G0,−k−1,k+1(−αr2

1n, s) =
sk

Γ(k + 1)

∞∑

j=0

(−αr2

1n
)jΓ(k + j + 1)

Γ(k + 1)Γ(j + 1)
=

=
sk

Γ(k + 1)
(1 + αr2

1n)−(k+1), (39)

∞∑

k=0

(−νr2

1n)kG0,−k−1,k+1(−αr2

1n, s) =
1

1 + αr2

1n

∞∑

k=0

1

k!

(
−

νr2

1n
s

1 + αr2

1n

)k

=

=
1

1 + αr2

1n

exp

(
−

νr2

1n
s

1 + αr2

1n

)
, (40)

and

G1,0,1(−νr2

1n, t) = exp

(
−νr2

1nt

)
. (41)

As a result, we find the velocity field and the adequate shear stress under simplified
forms

ω(r, t) = rΩt −
2Ω

ν

∞∑

n=1

J1(rr1n)

r3

1n
J2(Rr1n)

[
1 − exp

(
−

νr2

1n

1 + αr2

1n

t

)]
(42)

and

τ(r, t) = 2ρΩ
∞∑

n=1

J2(rr1n)

r2

1n
J2(Rr1n)

[
1 −

1

1 + αr2

1n

exp

(
−

νr2

1n

1 + αr2

1n

t

)]
, (43)

which are identical to Eqs. (5.1) and (5.3) from [2].
If in Eqs. (42) and (43), we make α = 0 , then the corresponding solutions of

the Newtonian fluids are recovered.

5 Conclusions

In this note, the velocity field and the adequate shear stress corresponding to
the rotational flow induced by an infinite circular cylinder in an incompressible
generalized second grade fluid, have been determined using Hankel and Laplace
transforms. The motion is produced by the circular cylinder that at the initial
moment begins to rotate around its axis with angular velocity Ωt. The solutions that
have been obtained, written under integral and series forms in terms of generalized
G-function, satisfy all imposed initial and boundary conditions. Furthermore, they
are presented as a sum between the Newtonian solutions and the adequate non-
Newtonian contributions. In the special case when β = 1 , or β = 1 and α = 0 ,
the corresponding solutions for ordinary second grade fluid and Newtonian fluid,
respectively, performing the same motion, are obtained.
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Mathematical models in regression credibility theory

Virginia Atanasiu

Abstract. In this paper we give the matrix theory of some regression credibility
models and we try to demonstrate what kind of data is needed to apply linear alge-
bra in the regression credibility models. Just like in the case of classical credibility
model we will obtain a credibility solution in the form of a linear combination of the
individual estimate (based on the data of a particular state) and the collective esti-
mate (based on aggregate USA data). To illustrate the solution with the properties
mentioned above, we shall need the well-known representation formula of the inverse
for a special class of matrices. To be able to use the better linear credibility results
obtained in this study, we will provide useful estimators for the structure parameters,
using the matrix theory, the scalar product of two vectors, the norm and the concept of
perpendicularity with respect to a positive definite matrix given in advance, an exten-
sion of Pythagoras’ theorem, properties of the trace for a square matrix, complicated
mathematical properties of conditional expectations and of conditional covariances.

Mathematics subject classification: 15A03, 15A12, 15A48, 15A52, 15A60,
62P05, 62J12, 62J05.

Keywords and phrases: Linearized regression credibility premium, the structural
parameters, unbiased estimators.

Introduction

In this paper we give the matrix theory of some regression credibility models.

The article contains a description of the Hachemeister regression model allowing
for effects like inflation.

In Section 1 we give Hachemeister’s original model, which involves only one
isolated contract. In this section we will give the assumptions of the Hachemeister
regression model and the optimal linearized regression credibility premium is derived.
Just like in the case of classical credibility model, we will obtain a credibility solution
in the form of a linear combination of the individual estimate (based on the data
of a particular state) and the collective estimate (based on aggregate USA data).
To illustrate the solution with the properties mentioned above, we shall need the
well-known representation formula of the inverse for a special class of matrices. It
turns out that this procedure does not provide us with a statistic computable from
the observations, since the result involves unknown parameters of the structure
function. To obtain estimates for these structure parameters, for Hachemeister’s
classical model we embed the contract in a collective of contracts, all providing
independent information on the structure distribution.

c© Virginia Anasasiu, 2008
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Section 2 describes the classical Hachemeister model. In the classical Hachemeis-
ter model, a portfolio of contracts is studied. Just as in Section 1, we will derive
the best linearized regression credibility premium for this model and we will provide
some useful estimators for the structure parameters, using a well-known represen-
tation theorem for a special class of matrices, properties of the trace for a square
matrix, the scalar product of two vectors, the norm || · ||2

P
, the concept of perpen-

dicularity ⊥ and an extension of Pythagoras’ theorem, where P is a positive definite
matrix given in advance. So, to be able to use the result from Section 1, one still
has to estimate the portfolio characteristics. Some unbiased estimators are given in
Section 2. From the practical point of view the attractive property of unbiasedness
for these estimators is stated.

1 The original regression credibility model of Hachemeister

In the original regression credibility model of Hachemeister, we consider one
contract with unknown and fixed risk parameter θ, during a period of t (≥ 2)
years. The yearly claim amounts are denoted by X1, . . . ,Xt. Suppose X1, . . . ,Xt are
random variables with finite variance. The contract is a random vector consisting
of a random structure parameter θ and observations X1, . . . ,Xt. Therefore, the
contract is equal to (θ,X ′), where X ′ = (X1, . . . ,Xt). For this model we want
to estimate the net premium: µ(θ) = E(Xj |θ), j = 1, t for a contract with risk
parameter θ.

Remark 1.1. In the credibility models, the pure net risk premium of the contract
with risk parameter θ is defined as:

µ(θ) = E(Xj |θ), ∀j = 1, t. (1.1)

Instead of assuming time independence in the pure net risk premium (1.1) one
could assume that the conditional expectation of the claims on a contract changes
in time, as follows:

µj(θ) = E(Xj |θ) = Y
∼j

′

b
∼

(θ), ∀j = 1, t, (1.2)

where the design vector Y
∼j

is known (Y
∼j

is a column vector of length q, the non-

random (q × 1) vector Y
∼j

is known) and where the b
∼

(θ) are the unknown regression

constants (b
∼

(θ) is a column vector of length q).

Remark 1.2. Because of inflation we are not willing to assume that E(Xj |θ) is
independent of j. Instead we make the regression assumption E(Xj |θ) =

Y
∼j

′

b
∼

(θ).

When estimating the vector β
∼

from the initial regression hypothesis E(Xj) =

Y
∼j

′

β
∼

formulated by actuary, Hachemeister found great differences. He then assumed
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that to each of the states there was related an unknown random risk parameter θ
containing the risk characteristics of that state, and that θ’s from different states
were independent and identically distributed. Again considering one particular state,
we assume that E(Xj |θ) = Y

∼j

′

b
∼

(θ), with E[b
∼

(θ)] = β
∼

.

Consequence of the hypothesis (1.2):

µ
∼

(t,1)
(θ) = E(X

∼

|θ) = Y
∼

b
∼

(θ), (1.3)

where Y
∼

is a (t× q) matrix given in advance, the so-called design matrix of full rank

q (q ≤ t) [the (t×q) design matrix Y
∼

is known and having full rank q ≤ t] and where

b
∼

(θ) is an unknown regression vector [b
∼

(θ) is a column vector of length q].

Observations. By a suitable choice of the Y
∼

(assumed to be known), time effects on

the risk premium can be introduced.

Examples. 1) If the design matrix is for example chosen as follows:

Y
∼

= Y
∼

(t,3)
=




1 1 1
1 2 22

...
...

...
1 t t2


 we obtain a quadratic inflationary trend: µj(θ) =

b1(θ) + jb2(θ) + j2b3(θ), j = 1, t, where b
∼

(θ) = (b1(θ), b2(θ), b3(θ))′. Indeed,

by standard computations we obtain: µ
∼

(t,1)
(θ) = Y

∼

b
∼

(θ) = (1b1(θ) + 1b2(θ) +

12b3(θ), 1b1(θ) + 2b2(θ) + 22b2(θ), . . . , 1b1(θ) + tb2(θ) + t2b3(θ))′ and as µ
∼

(t,1)
(θ) =

(µ1(θ), µ2(θ), . . . , µt(θ))′ results that is established our first assertion.

2) If the design matrix is for example chosen as follows:

Y
∼

= Y
∼

(t,2)
=




1 1
1 2
...

...
1 t


 (the last column of 1 is omitted) a linear inflation results:

µj(θ) = b1(θ) + jb2(θ), j = 1, t, where b
∼

(θ) = (b1(θ), b2(θ))′. The proof is similar.

After these motivating introductory remarks, we state the model assumptions in
more detail.

Let X
∼

= (X1, . . . ,Xt)
′ be an observed random (t × 1) vector and θ an unknown

random risk parameter. We assume that:

E(X
∼

|θ) = Y
∼

b
∼

(θ). (H1)

It is assumed that the matrices:

Λ
∼

= Cov[b
∼

(θ)](Λ
∼

= Λ
∼

(q×q)
) (H2)
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Φ
∼

= E[Cov(X
∼

|θ) (Φ
∼

= Φ
∼

(t×t)
) (H3)

are positive definite. We finally introduce: E[b
∼

(θ)] = β
∼

.

Let µ̃j be the credibility estimator of µj(θ) based on X
∼

.

For the development of an expression for µ̃j , we shall need the following lemma.

Lemma 1.1 (Representation formula of the inverse for a special class of

matrices). Let A
∼

be an (r × s) matrix and B
∼

an (s × r) matrix. Then

(I
∼

+ A
∼

B
∼

)−1 = I
∼

− A
∼

(I
∼

+ B
∼

A
∼

)−1
B
∼

, (1.4)

if the displayed inverses exist.

Proof. We have

I
∼

= I
∼

+ A
∼

B
∼

− A
∼

B
∼

= I
∼

+ A
∼

B
∼

− A
∼

(I
∼

+ B
∼

A
∼

)(I
∼

+ B
∼

A
∼

)−1B
∼

=

= (I
∼

+ A
∼

B
∼

) − (I
∼

A
∼

+ A
∼

B
∼

A
∼

)(I
∼

+ B
∼

A
∼

)−1B
∼

=

= (I
∼

+ A
∼

B
∼

) − (I
∼

+ A
∼

B
∼

)A
∼

(I
∼

+ B
∼

A
∼

)−1B
∼

giving I
∼

= (I
∼

+ A
∼

B
∼

)[I
∼

− A
∼

(I
∼

+ B
∼

A
∼

)−1B
∼

] and multiplying this equation from the

left by (I
∼

+ A
∼

B
∼

)−1 gives (1.4).

Observation. I
∼

denotes the (r × r) identity matrix.

The optimal choice of µ̃j is determined in the following theorem:

Theorem 1.1. The credibility estimator µ̃j is given by:

µ̃j = Y
∼

′

j

[Z
∼

ˆ
b
∼

+ (I
∼

− Z
∼

)β
∼

], (1.5)

with:
ˆ
b
∼

= (Y
∼

′

Φ
∼

−1

Y
∼

)−1
Y
∼

′

Φ
∼

−1

X
∼

, (1.6)

Z
∼

= Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

)−1, (1.7)

where I
∼

denotes the q × q identity matrix (ˆb
∼

= ˆ
b
∼

(q×1)

;Z
∼

= Z
∼

(q×q)
), for some

fixed j.

Proof. The credibility estimator µ̃j of µj(θ) based on X
∼

is a linear estimator of the

form

µ̃j = γ0 + γ
∼

′

X
∼

, (1.8)
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which satisfies the normal equations

{
E(µ̃j) = E[µj(θ)]

Cov(µ̃j,Xj) = Cov[µj(θ),Xj ]
where γ0 is a

scalar constant, and γ
∼

is a constant (t × 1) vector.

The coefficients γ0 and γ
∼

are chosen such that the normal equations are satisfied.

We write the normal equations as

E(µ̃j) = Y
∼j

′

β
∼

, (1.9)

Cov(µ̃j ,X
∼

′

) = Cov[µj(θ),X
∼

′

]. (1.10)

After inserting (1.8) in (1.10), one obtains

γ
∼

′

Cov(X
∼

) = Cov[µj(θ),X
∼

′

], (1.11)

where

Cov(X
∼

) = E[Cov(X
∼

(θ)] + Cov[E(X
∼

(θ)] =

= Φ
∼

+ Cov[Y
∼

b
∼

(θ)] = Φ
∼

+ Cov[Y
∼

b
∼

(θ), (Y
∼

b
∼

(θ))′] =

= Φ
∼

+ Y
∼

Cov[b
∼

(θ), (b
∼

(θ))′Y
∼

′

] = Φ
∼

+ Y
∼

Cov[b
∼

(θ), (b
∼

(θ))′]Y
∼

′

=

= Φ
∼

+ Y
∼

Cov[b
∼

(θ)]Y
∼

′

= Φ
∼

+ Y
∼

Λ
∼

Y
∼

′

and

Cov[µj(θ),X
∼

′

] = Cov[µj(θ), E(X
∼

′

(θ)] = Cov[Y
∼j

′

b
∼

(θ), (Y
∼

b
∼

(θ))′] =

= Y
∼j

′

Cov[b
∼

(θ), (b
∼

(θ))′Y
∼

′

] = Y
∼j

′

Cov[b
∼

(θ), (b
∼

(θ))′]Y
∼

′

=

= Y
∼j

′

Cov[b
∼

(θ)]Y
∼

′

= Y
∼j

′

Λ
∼

Y
∼

′

and thus (1.11) becomes γ
∼

′

(Φ
∼

+ Y
∼

Λ
∼

Y
∼

′

) = Y
∼j

′

Λ
∼

Y
∼

′

, from which

γ
∼

′

= Y
∼j

′

Λ
∼

Y
∼

′

(Φ
∼

+ Y
∼

Λ
∼

Y
∼

′

)−1 = Y
∼j

′

Λ
∼

Y
∼

′

[(I
∼

+ Y
∼

Λ
∼

Y
∼

′

Φ
∼

−1
)Φ
∼

]−1 =

= Y
∼j

′

Λ
∼

Y
∼

′

Φ
∼

−1
(I
∼

+ Y
∼

Λ
∼

Y
∼

′

Φ
∼

−1
)−1.

Lemma 1.1. now gives

γ
∼

′

= Y
∼j

′

Λ
∼

Y
∼

Λ
∼

−1
[I
∼

− Y
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

)−1 · Λ
∼

Y
∼

′

Φ
∼

−1
] =

= Y
∼j

′

[Λ
∼

Y
∼

′

Φ
∼

−1
− Λ

∼

Y
∼

′

Φ
∼

−1

Y
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

)−1Λ
∼

Y
∼

′

Φ
∼

−1
] =

= Y
∼j

′

[I
∼

− Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

(I
∼

+ I
∼

· Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

)−1 · I
∼

]Λ
∼

Y
∼

′

Φ
∼

−1
=

= Y
∼j

′

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

)−1Λ
∼

Y
∼

′

Φ
∼

−1
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and, once more using Lemma 1.1

γ
∼

′

X
∼

= Y
∼j

′

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

)−1Λ
∼

Y
∼

′

Φ
∼

−1

X
∼

=

= Y
∼j

′

I
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

I
∼

)−1Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

ˆ
b
∼

= Y
∼j

′

[I
∼

− (I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

I
∼

)−1]ˆb
∼

with ˆ
b
∼

given by (1.6). According to Lemma 1.1 we obtain

γ
∼

′

X
∼

= Y
∼j

′

{I
∼

− [I
∼

− Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1

Y
∼

)−1]} · ˆ
b
∼

= Y
∼j

′

· Z
∼

· ˆ
b
∼

,

with Z
∼

given by (1.7). Insertion in (1.9) gives

γ0 + Y
∼j

′

Z
∼

E(ˆb
∼

) = Y
∼j

′

β
∼

(1.12)

where

E(ˆb
∼

) = (Y
∼

Φ
∼

−1

Y
∼

)−1Y
∼

Φ
∼

−1
E(X

∼

) = (Y
∼

Φ
∼

−1

Y
∼

)−1Y
∼

Φ
∼

−1
E[E(X

∼

|θ)] =

= (Y
∼

Φ
∼

−1

Y
∼

)−1Y
∼

Φ
∼

−1

Y
∼

E[b
∼

(θ)] = (Y
∼

Φ
∼

−1

Y
∼

)−1(Y
∼

Φ
∼

−1

Y
∼

)β
∼

= β
∼

and thus (1.12) becomes γ0 + Y
∼j

′

Z
∼

β
∼

= Y
∼j

′

β
∼

from which γ0 = Y
∼j

′

(I
∼

− Z
∼

)β
∼

.

This completes the proof of Theorem 1.1.

2 The classical credibility regression model of Hachemeister

In this section we will introduce the classical regression credibility model of
Hachemeister, which consists of a portfolio of k contracts, satisfying the constraints
of the original Hachemeister model.

The contract indexed j is a random vector consisting of a random structure θj

and observations Xj1, . . . ,Xjt. Therefore the contract indexed j is equal to (θj ,X
′

j),

where X ′

j = (Xj1, . . . ,Xjt) and j = 1, k (the variables describing the jth contract are

(θj,X
′

j), j = 1, k). Just as in Section 1, we will derive the best linearized regression
credibility estimators for this model.

Instead of assuming time independence in the net risk premium:

µ(θj) = E(Xjq|θj), j = 1, k, q = 1, t (2.1)

one could assume that the conditional expectation of the claims on a contract
changes in time, as follows:

µq(θj) = E(Xjq|θj) = yjqβ(θj), j = 1, k, q = 1, t, (2.2)

with yjq assumed to be known and β(·) assumed to be unknown.
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Observations: By a suitable choice of the yjq, time effects on the risk premium can
be introduced.

Examples. 1) If for instance the claim figures are subject to a known inflation i,
(2.2) becomes:

µq(θj) = E(Xjq|θj) = (1 + i)q · β(θj), j = 1, k, q = 1, t.

2) If in addition the volume wj changes from contract to contract, one could
introduce the model:

µq(θj) = E(Xjq|θj) = wj(1 + i)q · β(θj), j = 1, k, q = 1, t

where wj and i are given.

Consequence of the hypothesis (2.2):

µ(t,1)(θj) = E(Xj |θj) = x(t,n)β(n,1)(θj), = 1, k, (2.3)

where x(t,n) is a matrix given in advance, the so-called design matrix, and where
the β(θj) are the unknown regression constants. Again one assumes that for each
contract the risk parameters β(θj) are the same functions of different realizations of
the structure parameter.

Observations: By a suitable choice of the x, time effects on the risk premium can
be introduced.

Examples. 1) If the design matrix is for examples chosen as follows:

x(t,3) =




1 1 12

1 2 22

...
...

...
1 t t2


, we obtain a quadratic inflationary trend:

µq(θj) = β1(θj) + qβ2(θj) + q2β3(θj), j = 1, k, q = 1, t, (2.4)

where β(3,1)(θj) = (β1(θj), β2(θj), β3(θj))
′, with j = 1, k.

2) If the design matrix is for example chosen as follows:

x(t,2) =




1 1
1 2
...

...
1 t


 (the last column of 1) is omitted) a linear inflation results:

µq(θj) = β1(θj) + qβ2(θj), j = 1, k, q = 1, t, (2.5)

where β(2,1)(θj) = (β1(θj), β2(θj))
′, with j = 1, k.

For some fixed design matrix x(t,n) of full rank n (n < t), and a fixed weight

matrix v
(t,t)

j
, the hypotheses of the Hachemeister model are:
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(H1) The contracts (θj,X
′

j) are independent, the variables θ1, . . . , θk are inde-
pendent and identically distributed.

(H2) E(X
(t,1)

j
|θj) = x(t,n)β(n,1)(θj), j = 1, k, where β is an unknown regression

vector;

Cov(X
(t,1)

j
|θj) = σ2(θj) · v

(t,t)

j
, where σ2(θj) = Var(Xjr|θj), ∀r = 1, t and vj =

v
(t,t)

j
is a known non-random weight (t × t) matrix, with rgvj = t, j = 1, k.

We introduce the structural parameters, which are natural extensions of those
in the Bühlmann-Straub model. We have:

s2 = E[σ2(θj)] (2.6)

a = a(n,n) = Cov[β(θj)] (2.7)

b = b(n,1) = E[β(θj)], (2.8)

where j = 1, k.
After the credibility result based on these structural parameters is obtained, one

has to construct estimates for these parameters. Write: cj = c
(t,t)

j
= Cov(Xj),

uj = u
(n,n)

j
= (x′v−1

j
x)−1, zj = z

(n,n)

j
= a(a + s2uj)

−1 = [the resulting credibility

factor for contract j], j = 1, k.
Before proving the linearized regression credibility premium, we first give the

classical result for the regression vector, namely the GLS-estimator for β(θj).

Theorem 2.1 (Classical regression result). The vector Bj minimizing the

weighted distance to the observations Xj ,

d(Bj) = (Xj − xBj)
′v−1

j
(Xj − xBj),

reads

Bj = (x′v−1

j
x)−1x′v−1

j
Xj = ujx

′v−1

j
Xj ,

or
Bj = (x′c−1

j
x)−1x′c−1

j
Xj in case cj = s2vj + xax′.

Proof. The first equality results immediately from the minimization procedure for
the quadratic form involved, the second one from Lemma 2.1.

Lemma 2.1. (Representation theorem for a special class of matrices). If

C and V are t × t matrices, A an n × n matrix and Y a t × n matrix, and

C = s2V + Y AY ′,

then

(Y ′C−1Y )−1 = s2(Y ′V −1Y )−1 + A

and

(Y ′C−1Y )−1Y ′C−1 = (Y ′V −1Y )−1Y ′V −1.
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We can now derive the regression credibility results for the estimates of the
parameters in the linear model. Multiplying this vector of estimates by the design
matrix provides us with the credibility estimate for µ(θj), see (2.3).

Theorem 2.2 (Linearized regression credibility premium). The best lin-

earized estimate of E[β(n,1)(θj)|Xj ] is given by:

M j = z
(n,n)

j
B

(n,1)

j
+ (I(n,n) − z

(n,n)

j
)b(n,1) (2.9)

and the best linearized estimate of E[x(t,n)β(n,1)(θj)|Xj ] is given by :

x(t,n)M j = x(t,n)[z
(n,n)

j
B

(n,1)

j
+ (I(n,n) − z

(n,n)

j
)b(n,1)]. (2.10)

Proof. The best linearized estimate M j of E[β(θj)|Xj] is determined by solving the
following problem

Min
ε

d(ε), (2.11)

with
d(ε) = ||β(θj) − (M j + εV )||2p =

= E[(β(θj) − M j − εV )′P (β(θj) − M j − εV )],
(2.12)

where V = V (n,1) is a linear combination of 1 and the components of Xj , P = P (n,n)

is a positive definite matrix given in advance and || · ||2p is a norm defined by: ||X ||2p =

E(X ′PX), with X = X(n,1) an arbitrary vector.
The theorem holds in case d′(0) = 0 for every V . Standard computations lead

to

d(ε) = E[(β(θj))
′Pβ(θj)] − E[(β(θj))

′PM j ]−

− εE[(β(θj))
′PV ] − E[M ′

jPβ(θj)] + E[M ′

jPM j]+

+ εE[M ′

jPV ] − εE[V ′Pβ(θj)] + εE[V ′PM j ] + ε2E[V ′PV ]

(2.13)

The derivative d′(ε) is given by

d′(ε) = −2E[V ′P (β(θj) − M j − εV )] (2.14)

Define reduced variables by

β0(θj) = β(θj) − E[β(θj)] = β(θj) − b (2.15)

B0

j = Bj − E(Bj) = Bj − b, (2.16)

X0

j = Xj − E(Xj) = Xj − xb. (2.17)

Inserting M j from (2.9) in (2.14) for ε = 0, we have to prove that

E[V ′P (β(θj) − ZjBj − bzjb)] = 0, (2.18)



MATHEMATICAL MODELS IN REGRESSION CREDIBILITY THEORY 27

for every V .
Using (2.15) and (2.16), the relation (2.18) can be written as

E[V ′P (β0(θj) − zjB
0

j)] = 0, (2.19)

for every V .
But since V is an arbitrary vector, with as components linear combinations of 1

and the components of Xj, it may be written as

V = α0 + α
(n,t)

1
X0

j . (2.20)

Therefore one has to prove that

E[(α′

0 + X0
′

j α′

1)P (β0(θj) − zjB
0

j)] = 0, (2.21)

for every V .
Standard computations lead to the following expression for the left hand side

(2.22)

α′

0
PE[β0(θj)] + E[X0

′

j α′

1
Pβ0(θj)] − α′

0
PzjE(B0

j ) − E[X0
′

j α′

1
PZjB

0

j ] =

= E[X0
′

j α′

1
P (β0(θj) − zjB

0

j )] = E{Tr[X0
′

j α′

1
P (β0(θj) − zjB

0

j )]} =

= E{Tr[α′

1
P (β0(θj) − zjB

0

j)X
0
′

j ]} = Tr{α′

1
PE[(β0(θj) − zjB

0

j )X
0
′

j ]},

where we used the fact that E[B0(θj)] = 0, E(β0

j
) = 0 and that a scalar random

variable trivially equals its trace, and also that Tr(AB) = Tr(BA).
Expression (2.22) is equal to zero, as can be seen by

E[(β0(θj) − zjB
0

j)X
0
′

j ] = E[β0(θj)X
0
′

j ] − zjE(B0

jX
0
′

j ) =

= Cov [β0(θj),X
0
′

j ] − zjCov(B0

j ,X
0
′

j ) =

= Cov[β(θj),Xj ] − zjCov(Bj ,Xj) =

= ax′ − zj(a + s2uj)x
′ = ax′ − a(a + s2uj)

−1(a + s2uj)x
′ =

= ax′ − ax′ = 0.

(2.23)

This proves (2.9), (2.10) follows by replacing P in (2.12) by x′Px. So repeating
the same reasoning as above we arrive at (2.10).

Remark 2.1. Here and in the following we present the main results leaving the
detailed computations to the reader.

Remark 2.2. From (2.9) we see that the credibility estimates for the parameters of
the linear model are given as the matrix version of a convex mixture of the classical
regression result Bj and the collective result b.

Theorem 2.2 concerns a special contract j. By the assumptions, the structural
parameters a, b and s2 do not depend on j. So if there are more contracts, these
parameters can be estimated.



28 VIRGINIA ATANASIU

Every vector Bj gives an unbiased estimator of b. Consequently, so does every

linear combination of the type ΣαjBj, where the vector of matrices (α
(n,n)

j
)
j=1,k

, is
such that:

k∑

j=1

α
(n,n)

j
= I(n,n). (2.24)

The optimal choice of α
(n,n)

j
is determined in the following theorem:

Theorem 2.3 (Estimation of the parameters b in the regression credibility

model). The optimal solution to the problem

Min
α

d(α), (2.25)

where:

d(α) =

∥∥∥∥∥∥
b −

∑

j

αjBj

∥∥∥∥∥∥

2

p

def E




b −

∑

j

αjBj




′

P


b −

∑

j

αjBj






(the distance from



∑

j

αjBj


 to the parameters b), P = P (n,n) a given positive

definite matrix (P is a non-negative definite matrix), with the vector of matrices

α = (αj)j=1,k
satisfying (2.24), is:

b̂
(n,1)

= Z−1

k∑

j=1

zjBj , (2.26)

where Z =
k∑

j=1

zj and zj is defined as: zj = a(a + s2uj)
−1, j = 1, k.

Proof. Using the norm ||X||2p = E(X ′PX) and the perpendicularity concept ⊥ of

two vectors X(n,1) and Y (n,1) defined by X ⊥ Y iff E(X ′PY ) = 0, we see that it is
sufficient to prove that for all feasible α

(b̂ − b) ⊥



∑

j

αjBj − b̂


 , (2.27)

since then according to an extension of Pythagoras′ theorem

X ⊥ Y ⇔ ||X + Y ||2p = ||X||2p + ||Y ||2p,

we have
||b −

∑

j

αjBj ||
2

p = ||b − b̂ + b̂ −
∑

j

αjBj ||
2

p =

= ||b − b̂||2p + ||b̂ −
∑

j

αjβ
j
||2p

(2.28)
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so for every choice of α one gets

||b − b̂||2p ≤ ||b −
∑

j

αjBj||
2

p. (2.29)

So let us show now that (2.27) holds. It is clear that

b̂ −
∑

j

αjBj = Z−1
∑

j

zjBj −
∑

αjBj =
∑

j

(Z−1Zj − αj)Bj =
∑

j

γjBj (2.30)

with
∑

j

γj =
∑

j

(Z−1zj − αj) = Z−1
∑

j

zj −
∑

j

αj = Z−1Z − I = I − I = 0, (2.31)

where γj = Z−1zj − αj , j = 1, k. To prove (2.27), we have to show that



∑

j

γjBj


 ⊥ (b̂ − b) (2.32)

so that

E





∑

j

γjBj




′

P (b̂ − b)


 = 0. (2.33)

The left hand side of (2.33) can successively be rewritten as follows

E





∑

j

B′

jγ
′

j


P (b̂ − b)


 =

∑

j

E(B′

jγ
′

jP b̂0) =

=
∑

j

[E(B′

jγ
′

jP b̂0) − b′γ′

jPE(b̂0)] =

=
∑

j

[E(B′

jγ
′

jP b̂0)) − E(b′γ′

jP b̂0)] =
∑

j

E[(B′

j − b′)γ′

jP b̂0] =

=
∑

j

E[(B′

j − E(B′

j))γ
′

jP b̂0] =
∑

j

E(B
′
0

j γ′

jP b̂0) =

=
∑

j

E(B
′
0

j γ′

jPZ−1 ·
∑

i

ziB
0

i ) =
∑

j,i

E(B
′
0

j γ′

jPZ−1ziB
0

i ) =

=
∑

j,i

E[Tr(B
′
0

j γ′

jPZ−1ziB
0

i )] =
∑

j,i

E[Tr(γ′

jPZ−1ziB
0

i B
′
0

j )] =

=
∑

j,i

Tr[γ′

jPZ−1ziE(B0

i B
′
0

j )] =
∑

j,i

Tr[γ′

jPZ−1ziCov (B0

i , B
0

j)] =

=
∑

j,i

Tr[γ′

jPZ−1ziCov (BiBj)] =
∑

j,i

Tr[γ′

jPZ−1ziδij(a + s2uj)] =
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=
∑

j

Tr[γ′

jPZ−1zj(a + s2uj)] =

=
∑

j

Tr[γ′

jPZ−1zja(a + s2uj)
−1(a + s2uj)] =

=
∑

j

Tr(γ′

jPZ−1a) = Tr


(
∑

j

γ′

j)PZ−1a


 =

= Tr(0PZ−1a) = Tr(0) = 0,

(2.34)

where b̂0 = b̂−E(b̂) = b̂− b, B
′
0

j = B′

j −E(B′

j) = B′

j − b′ are the reduced variables.

In (2.34) we used the fact that E(b̂0) = 0 and that a scalar random variable trivially
equals its trace, and also that Tr(AB) = Tr(BA). The proof is complete.

Theorem 2.4 (Unbiased estimator for s2 for each contract group). In

case the number of observations tj in the jth contract is larger than the number of

regression constants n, the following is an unbiased estimator of s2:

ŝ2

j =
1

tj − n
(Xj − xjBj)

′(Xj − xjBj). (2.35)

Corollary (Unbiased estimator for s2 in the regression model). Let K
denote the number of contracts j, with tj > n. The E(ŝ2) = s2, if:

ŝ2 =
1

K

∑

j;tj>n

ŝ2

j . (2.36)

For a, we give an unbiased pseudo-estimator, defined in terms of itself, so it can
only be computed iteratively:

Theorem 2.5 (Pseudo-estimator for a). The following random variable has

expected value a:

â =
1

k − 1

∑

j

zj(Bj − b̂)(Bj − b̂)′. (2.37)

Proof. By standard computations we obtain

E(â) =
1

k − 1

∑

j

zj [E(BjB
′

j) − E(Bj b̂
′

) − E(b̂ B′

j) + E(b̂ b̂
′

)]. (2.38)

Since

Cov(Bj) = Cov(Bj, B
′

j) = Cov[ujx
′v−1

j
Xj , (ujx

′v−1

j
Xj)

′] =

= ujx
′v−1

j
Cov(Xj)v

−1

j
xu′

j
= ujx

′v−1

j
(s2vj + xax′)v−1

j
xu′

j
= a + s2uj,

results that

E(Bj B′

j) = Cov(Bj) + E(Bj)E(B ′

j) = a + s2uj + b b′, (2.39)
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where E(Bj) = E[E(Bj|θj)] = E(β(θj)] = b. Since

Cov(Bj, b̂
′

) = Cov(Bj , Z
−1
∑

i

ziBi) =

(
Cov

(
∑

i

Z−1ziBi, Bj

))
′

=

=
∑

i

Cov(Bj , Bi)z
′

i · (Z
′)−1 =

∑

i

δij(a + s2uj)z
′

i(Z
′)−1 = (a + s2uj)z

′

j(Z
′)−1,

results that

E(Bj b̂
′

) = Cov(Bj , b̂
′

) + E(Bj)E(b̂
′

) = (a + s2uj)z
′

j(Z
′)−1 + b b′, (2.40)

where

E(b̂) = E


Z−1

∑

j

zjBj


 = Z−1



∑

j

zj


E(Bj) = Z−1Zb = b.

Since
Cov(b̂, Bj) = (Cov(Bj, b̂))

′ = [(a + s2uj)z
′

j
(Z ′)−1]′ =

= Z−1zj(a + s2uj) = Z−1a(a + s2uj)
−1(a + s2uj) = Z−1a,

results that

E(b̂B′

j) = Cov(b̂, Bj) + E(b̂)E(B′

j) = Z−1a + b b′ (2.41)

Since

Cov(b̂) = Cov(b̂, b̂) = Cov(Z−1
∑

i

ziBi, Z
−1
∑

j

zjBj) =

= Z−1
∑

i

zi



∑

j

Cov (Bj, Bi)z
′

j


 · (Z ′)−1 =

= Z−1
∑

i

zi



∑

j

δij(a + s2uj)z
′

j


 (Z ′)−1 =

= Z−1

(
∑

i

zi(a + s2ui)z
′

i

)
(Z ′)−1 =

= Z−1

(
∑

i

a(a + s2ui)
−1(a + s2ui)z

′

i

)
(Z ′)−1 = Z−1aZ ′(Z ′)−1 = Z−1a

results that

E(b̂ b̂′) = Cov(b̂) + E(b̂)E(b̂′) = Z−1a + b b′ . (2.42)

Now (2.37) follows from (2.38), (2.39), (2.40), (2.41) and (2.42).
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Remark 2.3. Another unbiased estimator for a is the following:

â =
1

(w2. −
∑

w2

j )





1

2

∑

i,j

wiwj(Bi − Bj)(Bi − Bj)
′ − ŝ2

k∑

j=1

wj(w. − wj)uj



 ,

(2.43)
where wj is the volume of the risk for the jth contract, j = 1, k and

w. =
∑

j

wj .

Proof. Complicate and tedious computations lead to

(w2. −
∑

j

w2

j )E(â) =
1

2




∑

i,j

wiwjE[(Bi − Bj) · (Bi − Bj)
′]



− E(ŝ2)·

·
∑

j

wj(w. − wj)uj =
1

2
{
∑

i,j

wiwj[E(Bi B′

i) − E(Bi B′

j)−

−E(Bj B′

i) + E(Bj B′

j)]} − s2



∑

j

wjw.uj −
∑

j

w2

j uj


 =

= 1

2
{
∑

i,j

wiwj[a + s2ui + b b′ − δij(a + s2uj) − b b′ − δij(a + s2uj)−

−b b′ + a + s2uj + b b′]} − s2
∑

j

wjw.uj + s2
∑

j

w2

j uj =

= 1

2
· 2w.w.a + 1

2
s2
∑

i

wiuiw. −
1

2
2
∑

wj ·
∑

i

wiδij(a + s2uj)+

+1

2
s2
∑

j

wjujw. − s2
∑

wjujw. + s2
∑

j

w2

juj =

= w2.a −
∑

j

w2

j a = (w2. −
∑

j

w2

j )a

Thus we have proved our assertion.
Observation. This estimator is a statistic; it is not a pseudo-estimator. Still, the
reason to prefer (2.37) is that this estimator can easily be generalized to multi-
level hierarchical models. In any case, the unbiasedness of the credibility premium
disappears even if one takes (2.43) to estimate a.

3 Conclusions

The article contains a credibility solution in the form of a linear combination of
the individual estimate (based on the data of a particular state) and the collective
estimate (based on aggregate USA data). This idea is worked out in regression
credibility theory.
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In case there is an increase (for instance by inflation) of the results on a portfolio,
the risk premium could be considered to be a linear function in time of the type
β0(θ) + tβ1(θ). Then two parameters β0(θ) and β1(θ) must be estimated from the
observed variables. This kind of problem is named regression credibility. This model
arises in cases where the risk premium depends on time, e.g. by inflation. The one
could assume a linear effect on the risk premium as an approximation to the real
growth, as is also the case in time series analysis.

These regression models can be generalized to get credibility models for gen-
eral regression models, where the risk is characterized by outcomes of other related
variables.

This paper contains a description of the Hachemeister regression model allowing
for effects like inflation. If there is an effect of inflation, it is contained in the claim
figures, so one should use estimates based on these figures instead of external data.
This can be done using Hachemeister’s regression model.

In this article the regression credibility result for the estimates of the parameters
in the linear model is derived. After the credibility result based on the structural
parameters is obtained, one has to construct estimates for these parameters.

The matrix theory provided the means to calculate useful estimators for the
structure parameters. The property of unbiasedness of these estimators is very
appealing and very attractive from the practical point of view.

The fact that it is based on complicated mathematics, involving linear algebra,
needs not bother the user more than it does when he applies statistical tools like
discriminant analysis, scoring models, SAS and GLIM.
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Ore extensions over 2-primal Noetherian rings

V.K.Bhat ∗

Abstract. Let R be a ring and σ an automorphism of R. We prove that if R is a 2-
primal Noetherian ring, then the skew polynomial ring R[x;σ] is 2-primal Noetherian.
Let now δ be a σ-derivation of R. We say that R is a δ-ring if aδ(a) ∈ P (R) implies
a ∈ P (R), where P (R) denotes the prime radical of R. We prove that R[x; σ, δ] is a
2-primal Noetherian ring if R is a Noetherian Q-algebra, σ and δ are such that R is
a δ-ring, σ(δ(a)) = δ(σ(a)), for all a ∈ R and σ(P ) = P , P being any minimal prime
ideal of R. We use this to prove that if R is a Noetherian σ(∗)-ring (i.e. aσ(a) ∈ P (R)
implies a ∈ P (R)), δ a σ-derivation of R such that R is a δ-ring and σ(δ(a)) = δ(σ(a)),
for all a ∈ R, then R[x; σ, δ] is a 2-primal Noetherian ring.

Mathematics subject classification: Primary 16XX; secondary 16S36, 16N40,
16P40, 16W20, 16W25.

Keywords and phrases: 2-primal, minimal prime, prime radical, nil radical, auto-
morphism, derivation.

1 Introduction

A ring R always means an associative ring. Q denotes the field of rational
numbers. Spec(R) denotes the set of prime ideals of R. MinSpec(R) denotes the
set of minimal prime ideals of R. P (R) and N(R) denote the prime radical and the
set of nilpotent elements of R, respectively. Let I and J be any two ideals of a ring
R. Then I ⊂ J means that I is strictly contained in J . Let I be an ideal of a ring
R such that σm(I) = I for some integer m ≥ 1, we denote ∩m

i=1
σi(I) by I0.

This article concerns the study of Ore extensions in terms of 2-primal rings.
2-primal rings have been studied in recent years and the 2-primal property is being
studied for various types of rings. In [18], G.Marks discusses the 2-primal property
of R[x;σ, δ], where R is a local ring, σ is an automorphism of R and δ is a σ-derivation
of R.

Recall that a σ-derivation of R is an additive map δ : R → R such that δ(ab) =
δ(a)σ(b) + aδ(b), for all a, b ∈ R. In case σ is the identity map, δ is called just a
derivation of R. For example for any endomorphism τ of a ring R and for any a ∈ R,
̺ : R → R defined as ̺(r) = ra − aτ(r) is a τ -derivation of R.

Let σ be an endomorphism of a ring R and δ : R → R any map. Let
φ : R → M2(R) be a homomorphism defined by

c© V.K.Bhat, 2008
∗The author would like to express sincere thanks to the referee for his suggestions to give the

manuscript the present shape.
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φ(r) =

(
σ(r) 0
δ(r) r

)
, for all r ∈ R.

Then δ is a σ-derivation of R.

Also let R = K[x], K a field. Then the formal derivative d/dx is a derivation
of R.

Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak
in [15] and Shin in [20]. 2-primal near rings have been discussed by Argac and
Groenewald in [2]. Recall that a ring R is called 2-primal if the set of nilpotent
elements of R coincides with the prime radical of R (G. Marks [18]), or equivalently if
its radical contains every nilpotent element of R, or if P (R) is a completely semiprime
ideal of R. An ideal I of a ring R is called completely semiprime if a2 ∈ I implies
a ∈ I for a ∈ R.

We also note that a reduced ring (i. e. a ring with no nonzero nilpotent elements)
is 2-primal and a commutative ring is also 2-primal. For further details on 2-primal
rings, we refer the reader to [5, 11,14,15,20].

Recall that R[x;σ, δ] is the skew polynomial ring with coefficients in R in which
multiplication is subject to the relation ax = xσ(a) + δ(a) for all a ∈ R. We denote
R[x;σ, δ] by O(R). In case σ is the identity map, we denote the ring of differential
operators R[x; δ] by D(R), if δ is the zero map, we denote the skew polynomial ring
R[x;σ] by S(R).

Recall that in Krempa [16], a ring R is called σ-rigid if there exists an endomor-
phism σ of R with the property that aσ(a) = 0 implies a = 0 for a ∈ R. In [17],
Kwak defines a σ(∗)-ring R to be a ring if aσ(a) ∈ P (R) implies a ∈ P (R) for a ∈ R
and establishes a relation between a 2-primal ring and a σ(∗)-ring. The property is
also extended to the skew-polynomial ring S(R).

Remark 1. If R is a ring and σ an automorphism of R such that R is a σ(∗)-ring,
then R is 2-primal.

Proof. We will show that P (R) is a completely semiprime ideal of R. Let a ∈ R be
such that a2 ∈ P (R). Then aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(P (R)) = P (R).
Therefore aσ(a) ∈ P (R) and hence a ∈ P (R).

In Theorem 12 of [17], Kwak has proved that if R is a σ(∗)-ring such that
σ(P (R)) = P (R), then R[x;σ] is 2-primal if and only if P (R)[x;σ] = P (R[x;σ]).

Hong, Kim and Kwak have proved in Corollary 2.8 of [13] that if R is a 2-primal
ring and every simple singular left R-module is p-injective, then every prime ideal
of R is maximal. In particular, every prime factor ring of R is a simple domain.

It is known (Theorem 1.2 of Bhat [5]) that if R is 2-primal Noetherian Q-algebra
and δ is a derivation of R, then D(R) is 2-primal. We also note that if R is a
Noetherian ring, then even R[x] need not be 2-primal.

Example 1. Let R = M2(Q), the set of 2×2 matrices over Q. Then R[x] is a prime
ring with non-zero nilpotent elements and, so can not be 2-primal.



36 V.K.BHAT

Let now R be a 2-primal ring. Is O(R) also a 2-primal ring? For the time being
we are not able to answer this question, but towards this we have the following.

Let R be a ring, σ be an automorphism of R and δ be a σ-derivation of R. We
say that R is a δ-ring if aδ(a) ∈ P (R) implies a ∈ P (R). We note that a ring with
identity is not a δ-ring. We ultimately prove the following:

1. Let R be a 2-primal Noetherian ring. Then S(R) is 2-primal Noetherian. This
is proved in Theorem 2.

2. Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and δ a
σ-derivation of R such that R is a δ-ring, σ(δ(a)) = δ(σ(a)), for all a ∈ R;
σ(P ) = P for all P ∈ MinSpec(R) and δ(P (R)) ⊆ P (R). Then O(R) is
2-primal Noetherian. This is proved in Theorem 6.

3. Let R be a Noetherian ring, which is also an algebra over Q. Let σ be an
automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation of R
such that σ(δ(a)) = δ(σ(a)), for all a ∈ R and R is a δ-ring. Then R[x;σ, δ] is
2-primal Noetherian.

Before proving (2) and (3) above, we find a relation between the minimal prime
ideals of R and those of the Ore extension O(R), where R is a Noetherian Q-algebra,
σ an automorphism of R and δ a σ-derivation of R. This is proved in Theorem 3.

Ore-extensions including skew-polynomial rings and differential operator rings
have been of interest to many authors. See [1, 3, 4, 6–8,12,16,17].

2 Skew polynomial ring S(R)

Recall that an ideal I of a ring R is called σ-invariant if σ(I) = I. Also I is
called completely prime if ab ∈ I implies a ∈ I or b ∈ I for a, b ∈ R. We also note
that in a right Noetherian ring R, MinSpec(R) is finite (Theorem 2.4 of Goodearl
and Warfield [10]), and for any P ∈ MinSpec(R), σt(P ) ∈ MinSpec(R) for all
integers t ≥ 1. Let MinSpec(R) = {P1, P2, . . . , Pn}. Let σmi(Pi) = Pi, for some
positive integers mi, 1 ≤ i ≤ n, and u = m1.m2...mn. Then σu(Pi) = Pi for all
Pi ∈ MinSpec(R). We use same u henceforth, and as mentioned in introduction
above, we denote ∩u

i=1
σi(P ) by P 0, P being any minimal prime ideal of R.

Proposition 1. Let R be a right Noetherian ring. Let σ be an automorphism of R.

Then σ(N(R)) = N(R).

Proof. Denote N(R) by N . We have σ(N) ⊆ N as R is right Noetherian, therefore,
σ(N) is a nilpotent ideal of R by Theorem 5.18 of Goodearl and Warfield [10]. Now
let n ∈ N . Then σ being an automorphism of R implies that there exists a ∈ R
such that n = σ(a). Now I = σ−1(N) = {a ∈ R such that σ(a) = n ∈ N} is an
ideal of R. Now I is nilpotent, so I ⊆ σ(N), which implies that N ⊆ σ(N). Hence
σ(N) = N .
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Proposition 2. Let R be a Noetherian ring and σ an automorphism of R. Then

S(N(R)) = N(S(R)).

Proof. It is easy to see that S(N(R)) ⊆ N(S(R)). We will show that N(S(R)) ⊆
S(N(R)). Let f =

∑
m

i=0
xiai ∈ N(S(R)). Then f(S(R)) ⊆ N(S(R)), and f(R) ⊆

N(S(R)). Let (f(R))k = 0, k > 0. Then equating leading term to zero, we get
(xmamR)k = 0. This implies on simplification that

xkmσ(k−1)m(amR) · σ(k−2)m(amR) · σ(k−3)m(amR) . . . amR = 0.

Therefore,

σ(k−1)m(amR) · σ(k−2)m(amR) · σ(k−3)m(amR) . . . amR = 0 ⊆ P ,

for all P ∈ MinSpec(R). Now there are two cases:

1. u ≥ m.

2. m ≥ u.

If u ≥ m, then we have

σ(k−1)u(amR) · σ(k−2)u(amR) · σ(k−3)u(amR) . . . amR ⊆ P .

This implies that σ(k−j)u(amR) ⊆ P , for some j, 1 ≤ j ≤ k, i. e. amR ⊆
σ−(k−j)u(P ) = P . So we have amR ⊆ P , for all P ∈ MinSpec(R). There-
fore, am ∈ P (R) = N(R). Now xmam ∈ S(N(R)) ⊆ N(S(R)) implies that∑

m−1

i=0
xiai ∈ N(S(R)), and with the same process, in a finite number of steps,

it can be seen that ai ∈ P (R) = N(R), 0 ≤ i ≤ m − 1. Therefore f ∈ S(N(R)).
Hence N(S(R)) ⊆ S(N(R)) and the result follows. The other case is similar.

Theorem 1. (Theorem 2.4, (2) of Bhat [4]) Let R be a Noetherian ring and

σ an automorphism of R. Then P ∈ MinSpec(S(R)) if and only if there exists

L ∈ MinSpec(R) such that S(P ∩ R) = P and P ∩ R = L0.

Proof. Let L ∈ MinSpec(R). Then σu(L) = L for some integer u ≥ 1. Then by
Lemma 10.6.12 of McConnell and Robson [19] and by Theorem 7.27 of Goodearl
and Warfield [10], S(L0) ∈ MinSpec(S(R)).

Conversely suppose that P ∈ MinSpec(S(R)). Then P ∩ R = U0 for some
U ∈ Spec(R) and U contains a minimal prime ideal U1. Now P ⊇ S(R)U0

1
, which

is a prime ideal of S(R). Hence P = S(R)U0

1
.

We are now in a position to prove the main result of this section in the form of
the following Theorem.

Theorem 2. Let R be a 2-primal Noetherian ring. Then S(R) is 2-primal

Noetherian.
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Proof. R is Noetherian implies S(R) is Noetherian follows from Hilbert Basis Theo-
rem, namely Theorem 1.12 of Goodearl and Warfield [10]. Now R is 2-primal implies
N(R) = P (R) and Proposition 1 implies that σ(N(R)) = N(R). Therefore S(N(R))
and S(P (R)) are ideals of S(R) and S(N(R)) = S(P (R)). Now by Proposition 2
S(N(R)) = N(S(R)).

We now show that S(P (R)) = P (S(R)). It is easy to see that S(P (R)) ⊆
P (S(R)). Now let g =

∑
t

i=0
xibi ∈ P (S(R)). Then g ∈ Pi, for all Pi ∈

MinSpec(S(R)). Now Theorem 1 implies that there exists Ui ∈ MinSpec(R) such
that Pi = S((Ui)

0). Now it can be seen that Pi are distinct implies that Ui are
distinct. Therefore g ∈ S((Ui)

0). This implies that bi ∈ (Ui)
0 ⊆ Ui. Thus we

have bi ∈ Ui, for all Ui ∈ MinSpec(R). Therefore bi ∈ P (R), which implies that
g ∈ S(P (R)). Therefore P (S(R)) ⊆ S(P (R)), and hence S(P (R)) = P (S(R)).

Thus we have P (S(R)) = S(P (R)) = S(N(R)) = N(S(R)). Hence S(R)
is 2-primal.

Question 1. Let R be a 2-primal ring. Is S(R) 2-primal? The main difficulty is

that Proposition 2 and Theorem 1 do not hold.

3 Ore extension O(R)

We begin with the following definition:

Definition 1. Let R be a ring. Let σ be an automorphism of R and δ a σ-derivation
of R. We say that R is a δ-ring if δ(a) ∈ P (R) implies a ∈ P (R).

Recall that an ideal I of a ring R is called δ-invariant if δ(I) ⊆ I. If an ideal I
of R is σ-invariant and δ-invariant, then O(I) is an ideal of O(R) as for any a ∈ I,
σj(a) ∈ I and δj(a) ∈ I for all positive integers j.

Gabriel proved in Lemma 3.4 of [9] that if R is a Noetherian Q-algebra and δ
is a derivation of R, then δ(P ) ⊆ P , for all P ∈ MinSpec(R). We generalize this
for σ-derivation δ of R and give a structure of minimal prime ideals of O(R) in the
following Theorem.

Theorem 3. Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and

δ a σ-derivation of R such that σ(δ(a)) = δ(σ(a)), for a ∈ R. Then:

1. P1 ∈ MinSpec(R) such that σ(P1) = P1 implies O(P1) ∈ MinSpec(O(R)).

2. P ∈ MinSpec(O(R)) such that σ(P∩R) = P∩R implies P∩R ∈ MinSpec(R).

Proof. (1) Let P1 ∈ MinSpec(R) with σ(P1) = P1. Let T = R[[t;σ]], the skew
power series ring. We note that multiplication in R[[t;σ]] is determined by the
computation ax = xσ(a) for all a ∈ R. Now we know that

etδ =
∑

∞

n=0

t
n

n!
δn
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and it can be seen that etδ is an automorphism of T . Now P1T ∈ Spec(T ). Suppose
if possible that P1T /∈ MinSpec(T ) and P2 ⊂ P1T be a minimal prime ideal of
T . Then P2 ∩ R ⊂ P1T ∩ R = P1, which is not possible as P1 ∈ MinSpec(R).
Therefore P1T ∈ MinSpec(T ). We also know that (etδ)k(P1T ) ∈ MinSpec(T ) for
all integers k ≥ 1. Now T is Noetherian by Exercise (1ZA(c)) of Goodearl and
Warfield [10], and therefore, Theorem 2.4 of Goodearl and Warfield [10] implies that
MinSpec(T ) is finite. So there exists an integer n ≥ 1 such that (etδ)n(P1T ) = P1T ,
i. e. (entδ)(P1T ) = P1T . But R is a Q-algebra, therefore, etδ(P1T ) = P1T . Now for
any a ∈ P1, a ∈ P1T also, and so etδ(a) ∈ P1T , i. e.

a + tδ(a) + (t2/2!)δ2(a) + · · · ∈ P1T ,

which implies that δ(a) ∈ P1. Therefore δ(P1) ⊆ P1.
Now on the same lines as in Theorem 2.22 of Goodearl and Warfield [10], it can

be easily seen that O(P1) ∈ Spec(O(R)). Suppose that O(P1) /∈ MinSpec(O(R)),
and P2 ⊂ O(P1) is a minimal prime ideal of O(R). Then we have P2 = O(P2 ∩R) ⊂
O(P1) ∈ MinSpec(O(R)). Therefore P2 ∩ R ⊂ P1, which is a contradiction as
P2 ∩ R ∈ Spec(R). Hence O(P1) ∈ MinSpec(O(R)).

(2) Let P ∈ MinSpec(O(R)) with σ(P ∩R) = P ∩R. Then on the same lines as
in Theorem 2.22 of Goodearl and Warfield [10], it can be seen that P ∩R ∈ Spec(R)
and O(P ∩ R) ∈ Spec(O(R)). Therefore O(P ∩ R) = P . We now show that
P ∩ R ∈ MinSpec(R). Suppose that U ⊂ P ∩ R, and U ∈ MinSpec(R). Then
O(U) ⊂ O(P ∩ R) = P . But O(U) ∈ Spec(O(R)) and, O(U) ⊂ P , which is not
possible. Thus we have P ∩ R ∈ MinSpec(R).

Recall that in Proposition 1.11 of Shin [20], it has been proved that a ring R is
2-primal if and only if each minimal prime ideal of R is a completely prime ideal.

Proposition 3. Let R be a 2-primal ring. Let σ be an automorphism of R and δ
a σ-derivation of R such that δ(P (R)) ⊆ P (R). If P ∈ MinSpec(R) is such that

σ(P ) = P , then δ(P ) ⊆ P .

Proof. Let P ∈ MinSpec(R). Now P is a completely prime ideal, therefore, for any
a ∈ P , there exists b /∈ P such that ab ∈ P (R) by Corollary 1.10 of Shin [20]. Now
δ(P (R)) ⊆ P (R), and therefore δ(ab) ∈ P (R); i. e. δ(a)σ(b) + aδ(b) ∈ P (R) ⊆ P .
Now aδ(b) ∈ P implies that δ(a)σ(b) ∈ P . Now σ(P ) = P implies that σ(b) /∈ P
and since P is completely prime in R, we have δ(a) ∈ P . Hence δ(P ) ⊆ P .

Theorem 4. Let R be a ring. Let σ be an automorphism of R and δ a σ-derivation

of R such that R is a δ-ring and δ(P (R)) ⊆ P (R). Then R is 2-primal.

Proof. Define a map ρ : R/P (R) → R/P (R) by ρ(a + P (R)) = δ(a) + P (R) for
a ∈ R and τ : R/P (R) → R/P (R) a map by τ(a + P (R)) = σ(a) + P (R) for a ∈ R,
then it can be seen that τ is an automorphism of R/P(R) and ρ is a τ -derivation
of R/P(R). Now aδ(a) ∈ P (R) if and only if (a + P (R))ρ(a + P (R)) = P (R) in
R/P(R). Thus as in Proposition 5 of Hong, Kim and Kwak [12], R is a reduced ring
and, therefore as mentioned in introduction, R is 2-primal.



40 V.K.BHAT

Proposition 4. Let R be a ring. Let σ be an automorphism of R and δ a

σ-derivation of R. Then:

1. For any completely prime ideal P of R with σ(P ) = P and δ(P ) ⊆ P , O(P )
is a completely prime ideal of O(R).

2. For any completely prime ideal U of O(R), U ∩ R is a completely prime ideal

of R.

Proof. (1) Let P be a completely prime ideal of R. Now let f(x) =
∑

n

i=0
xiai ∈

O(R) and g(x) =
∑

m

j=0
xjbj ∈ O(R) be such that f(x)g(x) ∈ O(P ). Suppose

f(x) /∈ O(P ). We will show that g(x) ∈ O(P ). We use induction on n and m.
For n = m = 1, the verification is easy. We check for n = 2 and m = 1. Let
f(x) = x2a + xb + c and g(x) = xu + v. Now f(x)g(x) ∈ O(P ) with f(x) /∈ O(P ).
The possibilities are a /∈ P or b /∈ P or c /∈ P or any two out of these three do not
belong to P or all of them do not belong to P . We verify case by case.

Let a /∈ P . Since x3σ(a)u + x2(δ(a)u + σ(b)u + av) + x(δ(b)u + σ(c)u + bv) +
δ(c)u + cv ∈ O(P ), we have σ(a)u ∈ P , and so u ∈ P . Now δ(a)u + σ(b)u + av ∈ P
implies av ∈ P , and so v ∈ P . Therefore g(x) ∈ O(P ).

Let b /∈ P . Now σ(a)u ∈ P . Suppose u /∈ P , then σ(a) ∈ P and therefore a,
δ(a) ∈ P . Now δ(a)u+σ(b)u+av ∈ P implies that σ(b)u ∈ P which in turn implies
that b ∈ P , which is not the case. Therefore we have u ∈ P . Now δ(b)u+σ(c)u+bv ∈
P implies that bv ∈ P and therefore v ∈ P . Thus we have g(x) ∈ O(P ).

Let c /∈ P . Now σ(a)u ∈ P . Suppose u /∈ P , then as above a, δ(a) ∈ P . Now
δ(a)u + σ(b)u + av ∈ P implies that σ(b)u ∈ P . Now u /∈ P implies that σ(b) ∈ P ;
i. e. b, δ(b) ∈ P . Also δ(b)u + σ(c)u + bv ∈ P implies σ(c)u ∈ P and therefore
σ(c) ∈ P which is not the case. Thus we have u ∈ P . Now δ(c)u + cv ∈ P implies
cv ∈ P , and so v ∈ P . Therefore g(x) ∈ O(P ).

Now suppose the result is true for k, n = k > 2 and m = 1. We will prove for
n = k + 1. Let f(x) = xk+1ak+1 + xkak + · · · + xa1 + a0, and g(x) = xb1 + b0 be
such that f(x)g(x) ∈ O(P ), but f(x) /∈ O(P ). We will show that g(x) ∈ O(P ). If
ak+1 /∈ P , then equating coefficients of xk+2, we get σ(ak+1)b1 ∈ P , which implies
that b1 ∈ P . Now equating coefficients of xk+1, we get σ(ak)b1 + ak+1b0 ∈ P , which
implies that ak+1b0 ∈ P , and therefore b0 ∈ P . Hence g(x) ∈ O(P ).

If aj /∈ P , 0 ≤ j ≤ k, then using induction hypothesis, we get that g(x) ∈ O(P ).
Therefore the statement is true for all n. Now using the same process, it can be
easily seen that the statement is true for all m also.

(2) Let U be a completely prime ideal of O(R). Suppose a, b ∈ R are such that
ab ∈ U ∩ R with a /∈ U ∩ R. This means that a /∈ U as a ∈ R. Thus we have
ab ∈ U ∩ R ⊆ U , with a /∈ U . Therefore we have b ∈ U , and thus b ∈ U ∩ R.

Corollary 1. Let R be a ring and σ an automorphism of R. Then:

1. For any completely prime ideal P of R with σ(P ) = P , S(P ) is a completely

prime ideal of S(R).
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2. For any completely prime ideal U of S(R), U ∩ R is a completely prime ideal

of R.

Corollary 2. Let R be a ring, σ an automorphism of R and δ a σ-derivation of R
such that R is moreover a δ-ring and δ(P (R)) ⊆ P (R). Let P ∈ MinSpec(R) be

such that σ(P ) = P . Then O(P ) is a completely prime ideal of O(R).

Proof. R is 2-primal by Theorem 4, and so by Proposition 3 δ(P ) ⊆ P . Further
more as mentioned in Proposition 3 above, P is a completely prime ideal of R. Now
use Proposition 4, and the proof is complete.

We now prove the following Theorem, which is crucial in proving Theorem 6.

Theorem 5. Let R be a ring, σ an automorphism of R and δ a σ-derivation of R
such that R is a δ-ring and δ(P (R)) ⊆ P (R) and σ(P ) = P for all P ∈ MinSpec(R).
Then O(R) is 2-primal if and only if O(P (R)) = P (O(R)).

Proof. Let O(R) be 2-primal. Now by Corollary 2 P (O(R)) ⊆ O(P (R)). Let f(x) =∑
n

j=0
xjaj ∈ O(P (R)). Now R is a 2-primal subring of O(R) by Theorem 4, which

implies that aj is nilpotent and thus aj ∈ N(O(R)) = P (O(R)), and so we have
xjaj ∈ P (O(R)) for each j, 0 ≤ j ≤ n, which implies that f(x) ∈ P (O(R)). Hence
O(P (R)) = P (O(R)).

Conversely suppose O(P (R)) = P (O(R)). We will show that O(R) is 2-primal.
Let g(x) =

∑
n

i=0
xibi ∈ O(R), bn 6= 0, be such that (g(x))2 ∈ P (O(R)) = O(P (R)).

We will show that g(x) ∈ P (O(R)). Now leading coefficient σ2n−1(an)an ∈ P (R) ⊆
P , for all P ∈ MinSpec(R). Now σ(P ) = P and since R is 2-primal by The-
orem 4, therefore, P is completely prime. Therefore we have an ∈ P , for all
P ∈ MinSpec(R); i. e. an ∈ P (R). Now since δ(P (R)) ⊆ P (R) and σ(P ) = P for all
P ∈ MinSpec(R), we get (

∑
n−1

i=0
xibi)

2 ∈ P (O(R)) = O(P (R)) and as above we get
an−1 ∈ P (R). With the same process in a finite number of steps we get ai ∈ P (R) for
all i, 0 ≤ i ≤ n. Thus we have (g(x)) ∈ O(P (R)), i. e. (g(x)) ∈ P (O(R)). Therefore
P (O(R)) is a completely semiprime ideal of O(R). Hence O(R) is 2-primal.

Theorem 6. Let R be a Noetherian Q-algebra, σ an automorphism of R and δ a σ-

derivation of R such that R is a δ-ring, σ(δ(a)) = δ(σ(a)), for all a ∈ R; σ(P ) = P
for all P ∈ MinSpec(R) and δ(P (R)) ⊆ P (R). Then O(R) is 2-primal.

Proof. Let P1 ∈ MinSpec(R). Then it is given that σ(P1) = P1, and therefore Theo-
rem 3 implies that O(P1) ∈ MinSpec(O(R)). Similarly for any P ∈ MinSpec(O(R))
such that σ(P∩R) = P∩R Theorem 3 implies that P∩R ∈ MinSpec(R). Therefore,
O(P (R)) = P (O(R)), and now the result is obvious by using Theorem 5.

Corollary 3. Let R be a Noetherian Q-algebra, σ an automorphism of R and δ a

σ-derivation of R such that R is a δ-ring, σ(δ(a)) = δ(σ(a)), for all a ∈ R and

σ(P ) = P for all P ∈ MinSpec(R). Then O(R) is 2-primal.
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Proof. Let P1 ∈ MinSpec(R) with σ(P1) = P1. Then as in the proof of Theorem 3
δ(P1) ⊆ P1, and therefore δ(P (R)) ⊆ P (R). Now the rest is obvious using Theorem
6.

Theorem 7. Let R be a Noetherian ring, which is also an algebra over Q. Let σ be

an automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation of R such

that σ(δ(a)) = δ(σ(a)), for all a ∈ R and R is a δ-ring. Then R[x;σ, δ] is 2-primal

Noetherian.

Proof. We show that σ(U) = U for all U ∈ MinSpec(R). Suppose U = U1 is a
minimal prime ideal of R such that σ(U) 6= U . Let U2, U3, . . . , Un be the other
minimal primes of R. Now σ(U) is also a minimal prime ideal of R. Renumber so
that σ(U) = Un. Let a ∈ ∩n−1

i=1
Ui. Then σ(a) ∈ Un, and so aσ(a) ∈ ∩n

i=1
Ui = P (R).

Therefore a ∈ P (R), and thus ∩n−1

i=1
Ui ⊆ Un, which implies that Ui ⊆ Un for some

i 6= n, which is impossible. Hence σ(U) = U . Now the rest is obvious.

We now have the following question:

Question 2. If R is a Noetherian Q-algebra (even commutative), σ is an automor-

phism of R and δ is a σ-derivation of R. Is O(R) 2-primal? The main problem is

to get Theorem 5 satisfied.
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A REPUBLICII MOLDOVA. MATEMATICA
Number 3(58), 2008, Pages 44–56
ISSN 1024–7696

The GL(2, R)−orbits of the homogeneous polynomial

differential systems
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Abstract. In this work, we study the generic homogeneous polynomial differential
system ẋ1 = Pk(x1, x2), ẋ2 = Qk(x1, x2) under the action of the center-affine group of
transformations of the phase space, GL(2, R). We show that if the dimension of the
GL(2, R)− orbits of this system is smaller than four, then deg(GCD(Pk, Qk)) ≥ k−1.
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1 Center-affine transformations

We consider the system

ẋ1 = Pk(x1, x2), ẋ2 = Qk(x1, x2), (1)

where Pk, Qk are homogeneous polynomials of degree k:

Pk =
∑

i+j=k

aijx
i

1
xj

2
, Qk =

∑

i+j=k

bijx
i

1
xj

2
.

Denote by E the space of coefficients

e = (a;b) = (ak,0, ak−1,1, ..., a0k ; bk,0, bk−1,1, ..., b0k)

of system (1) and by GL(2, R) the group of center-affine transformations of the phase
space Ox, x = (x1, x2).

Applying in (1) the transformations X = qx, where X = (X1,X2), q ∈ GL(2, R),
i.e.

q =

(
α11 α12

α21 α22

)
; αij ∈ R, det(q) 6= 0, q−1 =

1

det(q)

(
α22 −α12

−α21 α11

)
,

we obtain the system

Ẋ1 = P ∗

k (X1,X2), Ẋ2 = Q∗

k(X1,X2), (2)

c© D.Boularas, A.Matei, A. Şubă, 2008
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where

P ∗

k = α11 · Pk(q
−1x) + α12 · Qk(q

−1x) =

k∑

i=0

a∗k−i,iX
k−i

1
Xi

2,

Q∗

k = α21 · Pk(q
−1x) + α22 · Qk(q

−1x) =

k∑

i=0

b∗k−i,iX
k−i

1
Xi

2.

The coefficients e∗ of the system (2) can be expressed linearly by the coefficients
of the system (1): e∗ = Λ(q)(e), detΛ(q) 6= 0. The set Λ = {Λ(q)|q ∈ GL(2, R)}
forms a 4-parameter linear group with the operation of composition. It is called the
representation of the group GL(2, R) in the space of coefficients E of system (1).

The set O(e) = {Λ(q)(e)| q ∈ GL(2, R} is called the GL(2, R)−orbit of the point
e ∈ E or of the differential system (1) corresponding to this point.

Let

qt

1 =

(
exp(t) 0

0 1

)
, qt

2 =

(
1 t
0 1

)
, qt

3 =

(
1 0
t 1

)
, qt

4 =

(
1 0
0 exp(t)

)

and Gl = {qt

l
| t ∈ R} ⊂ GL(2, R), l = 1, 4. Denote gt

l
= Λ(qt

l
). Il is obvious that Λl =

{gt

l
}, l = 1, 4, are the linear representations in E of the subgroups Gl respectively.

Each of the pairs (E, {gt

l
}), l = 1, 4, corresponds to a flow defined in E by the

following systems of linear equations:

de

dt
=

(
dgt

l
(e)

dt

)
|t=0 = A(l) · e, l = 1, 4. (3)

If we represent the matrix A(l) of dimension (2k + 2) × (2k + 2) as four quadratic

blocks of dimensions (k + 1) × (k + 1) : A(l) =

(
Al Bl

Cl Dl

)
and if denote by O the

matrix null, and by I the unity matrix, both of dimensions (k+1)× (k+1), we get :

A1 = −diag(k − 1, k − 2, . . . , 1, 0,−1), B1 = C1 = O,
D1 = −diag(k, k − 1, . . . , 1, 0);

A2 = −




0 0 0 · · · 0 0
k 0 0 · · · 0 0
0 k − 1 0 · · · 0 0
0 0 k − 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0




,

B2 = I, C2 = O, D2 = A2;
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A3 = −




0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · k
0 0 0 0 · · · 0




,

B3 = O, C3 = I, D3 = A3;

A4 = −diag(0, 1, 2, . . . , k), B4 = C4 = O, D4 = −diag(−1, 0, 1, 2, . . . , k − 1).

Let vl, l = 1, 4, be the vector fields defined in E by the systems (3) and
Lv be the derivative in the direction of the vector v. Setting w = [u,v], where
Lw = LuLv − LvLu, it is easy to verify that the vector fields vl, l = 1, 4, gener-
ate a Lie algebra. Following [1, 2] the dimension of the orbit O(e) is equal to the
dimension of this algebra applying to the element e, i.e. to the rank of a matrix
Mk =

(
vl(e)| l = 1, 4

)
of the dimensions 4 × (2k + 2). The classification of some

polynomial systems according to the dimensions of their GL(2, R)−orbits was done
in [2–11].

Denote vl(e) = (A
(l)

k0
, A

(l)

k−1,1
, . . . , A

(l)

0k
;B

(l)

k0
, B

(l)

k−1,1
, . . . , B

(l)

0k
), l = 1, 4. Taking

into account that vl(e) = A(l) ·e, the coordinates of vectors vl(e) can be represented
by coefficients of the system (1) as follows:

A
(1)

k−i,i
= −(k − i − 1)ak−i,i, B

(1)

k−i,i
= −(k − i)bk−i,i, i = 0, k;

A
(2)

k0
= bk0, A

(2)

k−i,i
= bk−i,i − (k − i + 1)ak−i+1,i−1,

B
(2)

k0
= 0, B

(2)

k−i,i
= −(k − i + 1)bk−i+1,i−1, i = 1, k;

A
(3)

k−i,i
= −(i + 1)ak−i−1,i+1, A

(3)

0k
= 0,

B
(3)

k−i,i
= ak−i,i − (i + 1)bk−i−1,i+1, B

(3)

0k
= a0k, i = 0, k − 1;

A
(4)

k−i,i
= −iak−i,i, B

(4)

k−i,i
= −(i − 1)bk−i,i, i = 0, k.

For k = 0 and k = 1 the matrix Mk becomes

M0 =




a00 0
b00 0
0 a00

0 b00


 , M1 =




0 a01 −b10 0
b10 b01 − a10 0 −b10

−a01 0 a10 − b01 a01

0 −a01 b10 0


 .

By direct calculations, we obtain the following two theorems:

Theorem 1. Let k = 0 and d be the dimension of the GL(2, R)−orbit O(e) of the

system (1). Then,

d = 0, iff P0 = Q0 = 0 and

d = 2 in other cases.
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Theorem 2. Let k = 1 and d be the dimension of the GL(2, R)−orbit O(e) of the

system (1). Then,

d = 0, iff a10 − b01 = a01 = b10 = 0 and

d = 2 in other cases.

Let GCD(P,Q) be the greatest common divisor of the polynomials P and Q.
The main result of this paper is the following theorem.

Theorem 3. If the dimension of the GL(2, R)−orbit of the differential system (1)

is smaller than four, then deg(GCD(P,Q)) ≥ k − 1.

Next, in this work we will suppose that

k ≥ 2 and |Pk(x1, x2)| + |Qk(x1, x2)| 6≡ 0. (4)

2 One lemma

Let τ ∈ {0, 1, 2, ..., k}. Consider the polynomial

f = z1x
k + z2x

k−1 + . . . + zk+1, zi ∈ C, i = 1, k + 1 (5)

and the (k + 1) × (k + 1)-matrix Ã defined by :

ãi,i−1 = (k − i + 2)ξ1ξ2, i = 2, k + 1; ãi,i+1 = −i, i = 1, k;

ãii = (k − τ − i + 1)ξ1 + (τ − i + 1)ξ2, i = 1, k + 1;
ãil = 0, |i − l| > 1,

(6)

where ξ1, ξ2 are constant. It is easy to show that

k ≤ rank(Ã) ≤ k + 1. (7)

Lemma 1. If the vector

Z = (z1, z2, ..., zk+1)
tr (8)

is a solution of the equation

ÃZ = 0, (9)

then (5) has the form

f = c · (x + ξ1)
k−τ (x + ξ2)

τ , (10)

where c is a constant.

Proof. Without loss of generality we can assume that τ ∈ {0, 1, 2, ..., [k/2]}, where
by [k/2] we denoted the integer part of the number k/2.

Let R̃ = ÃZ̃ = (r̃1, . . . , r̃k+1)
tr, where Z̃ = (z̃1, . . . , z̃k+1)

tr and

z̃i =

i−1∑

µ=0

Ci−µ−1

k−τ
Cµ

τ ξi−µ−1

1
ξµ

2
, (11)
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if 1 ≤ i ≤ τ + 1;

z̃i =
τ∑

µ=0

Ci−µ−1

k−τ
Cµ

τ ξi−µ−1

1
ξµ

2
, (12)

if τ + 1 < i ≤ k − τ + 1 and

z̃i =

k−i+1∑

µ=0

Ci−τ+µ−1

k−τ
Cτ−µ

τ ξi−τ+µ−1

1
ξτ−µ

2
, (13)

if k − τ + 1 < i ≤ k + 1.
We will prove that the vector Z̃ with the coordinates (11)−(13) is a solution of

the equation (9).

a) Let 1 ≤ i ≤ τ. Taking into consideration (6) and (11), we obtain:

r̃1 = ã12 · z̃2 + ã11z̃1 = −((k − τ)ξ1 + τξ2) + ((k − τ)ξ1 + τξ2) · 1 = 0;

r̃i = ãi,i+1z̃i+1 + ãi,i−1z̃i−1 + ãi,iz̃i = −iz̃i+1 + (k − i + 2)

i−2∑

µ=0

Ci−µ−2

k−τ
Cµ

τ ξi−µ−1

1
ξµ+1

2
+

+(k − τ − i + 1)

i−1∑

µ=0

Ci−µ−1

k−τ
Cµ

τ ξi−µ

1
ξµ

2
+ (τ − i + 1)

i−1∑

µ=0

Ci−µ−1

k−τ
Cµ

τ ξi−µ−1

1
ξµ+1

2
=

= −iz̃i+1 + (k − i + 2)

i−1∑

µ=1

Ci−µ−1

k−τ
Cµ−1

τ ξi−µ

1
ξµ

2
+

+(k − τ − i + 1)

i−1∑

µ=1

Ci−µ−1

k−τ
Cµ

τ ξi−µ

1
ξµ

2
+ (k − τ − i + 1)Ci−1

k−τ
C0

τ ξi

1ξ
0

2+

+(τ − i + 1)

i−2∑

µ=0

Ci−µ−1

k−τ
Cµ

τ ξi−µ−1

1
ξµ+1

2
+ (τ − i + 1)C0

k−τCi−1

τ ξ0

1ξ
i

2 =

= −iz̃i+1 +
i−1∑

µ=1

[(k − i + 2)Ci−µ−1

k−τ
Cµ−1

τ + (k − τ − i + 1)Ci−µ−1

k−τ
Cµ

τ +

+(τ − i + 1)Ci−µ

k−τ
Cµ−1

τ ]ξi−µ

1
ξµ

2
+ iCk−τ−i

k−τ
C0

τ ξi

1ξ
0

2 + iC0

k−τC
i

τξ
0

1ξi

2 =

= −iz̃i+1 +

i−µ∑

µ=1

Ci−µ

k−τ
Cµ

τ

[
(k − i + 2) ·

µ(i − µ)

(k − τ − i + µ + 1)(τ − µ + 1)
+

+(k − τ − i + 1) ·
i − µ

k − τ − i + µ + 1
+ (τ − i + 1) ·

µ

τ − µ + 1

]
ξi−µ

1
ξµ

2
+
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+iCi

k−τC
0

τ ξi

1ξ
0

2 + iC0

k−τC
i

τξ
0

1ξ
i

2 = −iz̃i+1 + i

(
Ci

k−τC
0

τ ξi

1ξ
0

2 +

i−1∑

µ=1

Ci−µ

k−τ
Cµ

τ ξi−µ

1
ξµ

2
+

+C0

k−τC
i

τξ
0

1ξi

2

)
= −iz̃i+1 + iz̃i+1 = 0.

b) i = τ + 1. From formulae (6), (11) and (12) we get:

r̃τ+1 = ãτ+1,τ z̃τ + ãτ+1,τ+1z̃τ+1 − ãτ+1,τ+2z̃τ+2 = (k − τ + 1)ξ1ξ2z̃τ+

+(k − 2τ)

τ∑

µ=0

Cτ−µ

k−τ
Cµ

τ ξτ−µ+1

1
ξµ

2
− (τ + 1)

τ∑

µ=0

Cτ−µ+1

k−τ
Cµ

τ ξτ−µ+1

1
ξµ

2
=

= (k − τ + 1)ξ1ξ2z̃τ + (k − 2τ)
τ∑

µ=1

Cτ−µ

k−τ
Cµ

τ ξτ−µ+1

1
ξµ

2
−

−(τ + 1)

τ∑

µ=1

Cτ−µ+1

k−τ
Cµ

τ ξτ−µ+1

1
ξµ

2
= (k − τ + 1)ξ1ξ2z̃τ+

+ξ1ξ2

τ−1∑

µ=0

[
(k − 2τ)

τ − µ

µ + 1
− (τ + 1)

k − 2τ + µ + 1

τ − µ
·
τ − µ

µ + 1

]
Cτ−µ−1

k−τ
Cµ

τ ξτ−µ−1

1
ξµ

2
=

= (k − τ + 1)ξ1ξ2z̃τ − (k − τ + 1)ξ1ξ2z̃τ = 0.

c) τ + 2 ≤ i ≤ k − τ. In this case the formulae (6) and (12) give us:

r̃i = −iz̃i+1 + (k − i + 2)ξ1ξ2z̃i−1 + [(k − τ − i + 1)ξ1 + (τ − i + 1)ξ2]z̃i =

= −iz̃i+1 + (k − i + 2)

τ∑

µ=0

Ci−µ−2

k−τ
Cµ

τ ξi−µ−1

1
ξµ+1

2
+

+(τ − i + 1)

τ∑

µ=0

Ci−µ−1

k−τ
Cµ

τ ξi−µ−1

1
ξµ+1

2
+ (k − τ − i + 1)

τ∑

µ=0

Ci−µ−1

k−τ
Cµ

τ ξi−µ

1
ξµ

2
=

= −iz̃i+1+(k−i+2)

τ∑

µ=1

Ci−µ−2

k−τ
Cµ

τ ξi−µ−1

1
ξµ+1

2
+(τ−i+1)

τ−1∑

µ=0

Ci−µ−1

k−τ
Cµ

τ ξi−µ−1

1
ξµ+1

2
+

+(k − τ − i + 1)

τ∑

µ=1

Ci−µ−1

k−τ
Cµ

τ ξi−µ

1
ξµ

2
+ (k − τ − i + 1)Ci−1

k−τ
ξi

1 =

−iz̃i+1 + iCi

k−τξ
i

1 +

τ∑

µ=1

[
(k − i + 2)

(i − µ)µ

(k − τ − i + µ + 1)(τ − µ + 1)
+
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+(τ − i + 1)
µ

τ − µ + 1
+ (k − τ − i + 1)

i − µ

k − τ − i + µ + 1

]
Ci−µ

k−τ
Cµ

τ ξi−µ

1
ξµ

2
=

= −iz̃i+1 + iz̃i+1 = 0.

d) i = k − τ + 1. From (6), (12) and (13) we obtain:

r̃k−τ+1 = (τ + 1)
τ∑

µ=0

Cµ+1

k−τ
Cµ

τ ξk−τ−µ

1
ξµ+1

2
− (k − 2τ)

τ∑

µ=0

Cµ

k−τ
Cµ

τ ξk−τ−µ

1
ξµ+1

2
−

−(k − τ + 1)
τ−1∑

µ=0

Cτ−µ−1

k−τ
Cµ

τ ξk−2τ+µ+1

1
ξτ−µ

2
= (τ + 1)

τ−1∑

µ=0

Cµ+1

k−τ
Cµ

τ ξk−τ−µ

1
ξµ+1

2
−

−(k − 2τ)

τ−1∑

µ=0

Cµ

k−τ
Cµ

τ ξk−τ−µ

1
ξµ+1

2
− (k − τ + 1)

τ−1∑

µ=0

Cµ

k−τ
Cµ+1

τ ξk−τ−µ

1
ξµ+1

2
=

=

τ−1∑

µ=0

Cµ

k−τ
Cµ

τ ξk−τ−µ

1
ξµ+1

2

[
(τ + 1)

k − τ − µ

µ + 1
− (k − 2τ) − (k − τ + 1)

τ − µ

µ + 1

]
= 0.

e) k − τ + 2 ≤ i ≤ k + 1.

r̃i = −iz̃i+1 + (k − i + 2)

k−i+2∑

µ=0

Ci−τ+µ−2

k−τ
Cτ−µ

τ ξi−τ+µ−1

1
ξτ−µ+1

2
+

+(k − τ − i + 1)

k−i+1∑

µ=0

Ci−τ+µ−1

k−τ
Cτ−µ

τ ξi−τ+µ

1
ξτ−µ

2
+

+(τ − i + 1)

k−i+1∑

µ=0

Ci−τ+µ−1

k−τ
Cτ−µ

τ ξi−τ+µ−1

1
ξτ−µ+1

2
=

−iz̃i+1 + (k − i + 2)

k−i+1∑

µ=1

Ci−τ+µ−2

k−τ
Cµ

τ ξi−τ+µ−1

1
ξτ−µ+1

2
+

+(k − τ − i + 1)

k−i∑

µ=0

Ci−τ+µ−1

k−τ
Cµ

τ ξi−τ+µ

1
ξτ−µ

2
+

+(τ − i + 1)

k−i+1∑

µ=1

Ci−τ+µ−1

k−τ
Cµ

τ ξi−τ+µ−1

1
ξτ−µ+1

2
= −iz̃i+1+

+

k−i∑

µ=0

Ci−τ+µ

k−τ
Cµ

τ ξi−τ+µ

1
ξτ−µ

2

[
(k − i + 2)

(i − τ + µ)(τ − µ)

(k − i − µ + 1)(µ + 1)
+
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+(k − τ − i + 1)
i − τ + µ

k − i − µ + 1
+ (τ − i + 1)

τ − µ

µ + 1

]
= −iz̃i+1 + iz̃i+1 = 0.

Hence, taking into account (7), the rank of the matrix Ã is equal to k
and therefore the general solution of the matrix equation (9) has the form
Z = {cZ̃|c ∈ C}.

Corollary 1. If Z = a (Z = b), where

a = (ak0, ak−1,1, ..., a0k) (b = (bk0, bk−1,1, ..., b0k)), (14)

is a solution of the matrix equation (9) then the first (second) equation of (1) has

the form

ẋ = c · (x + ξ1y)k−τ (x + ξ2y)τ , (ẏ = c · (x + ξ1y)k−τ (x + ξ2y)τ ).

3 Proof of Theorem 3

Applying to the system (1) the transposition of coordinates

x1 → x2, x2 → x1 (15)

we obtain
ẋ1 = Qk(x2, x1), ẋ2 = Pk(x2, x1). (16)

Denote by v∗

l
, l = 1, 4, the vector fields associated to the differential

system (16).

Remark 1. The equalities αv1 +βv2 +γv3 +δv4 = 0 and δv∗

1
+γv∗

2
+βv∗

3
+αv∗

4
= 0

are equivalent.

By Remark 1, in order to determine the orbits of dimension two and three it is
sufficient to examine the following two cases:

v1 − δv4 = 0, αv1 + βv2 − v3 + δv4 = 0.

3.1 The case v1 − δv4 = 0.

Let v1(e) − δv4(e) = 0 or

(A(1) − δA(4))e = 0. (17)

Because e 6= 0 (see (4)) the equality (17) is realized for those δ for which det(A(1) −
δA(4)) = 0, i.e.

−(k − 1)2(1 + kδ)(δ + k)

k∏

ν=2

[(ν − 1)δ + ν − k]2 = 0.

By the assumption (4), k ≥ 2. If δ = −1/k (δ = −k), then det(D1 − δD4) 6= 0
(det(A1 − δA4) 6= 0), but the matrix A1 − δA4 (D1 − δD4) has on the principal
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diagonal unique element equal to zero and this element is placed on (k + 1, k + 1)
((1, 1)). In these cases equality (17) leads us to the systems

ẋ1 = a0kx
k

2
, ẋ2 = 0; (18)

ẋ1 = 0, ẋ2 = bk0x
k

1
. (19)

Let δ = (k − ν)/(ν − 1). For this δ both matrixes A1 − δA4 and D1 − δD4

have on the principal diagonal only one element equal to zero: first on the cells
(ν, ν), ν = 2, k, and second on the cells (ν + 1, ν + 1), ν = 2, k. Taking into account
(17), we obtain the systems

ẋ1 = ak−ν+1,ν−1x1 · F, ẋ2 = bk−ν,νx2 · F, F = xk−ν

1
xν−1

2
, ν = 2, k. (20)

Remark 2. Substitutions (15) reduce system (19) to one of the form (18).

3.2 The case v3 = αv1 + βv2 + δv4.

In this subsection we will determine the systems (1), k ≥ 2, for which there exist
numbers α, β and δ such that

v3 = αv1 + βv2 + δv4. (21)

Denote

M = A(3) − αA(1) − βA(2) − δA(4), a = (ak0, . . . , a0k) , b = (bk0, . . . , b0k) .

Then

M =

(
A I

−βI D

)
, A = A3 − αA1 − βA2 − δA4, D = A + (α − δ)I, e = (a,b) .

We have to find α, β and δ such that the matrix equation

Me = 0 or

{
Aa = −b,
[A + (α − δ)I]b = βa

(22)

have nontrivial solutions with respect to e.
From (22) it follows that a and b verify the same matrix equation:

SZ = 0, (23)

where S = A2 + (α − δ)A + βI, dimS = (k + 1) × (k + 1), and Z is the vector (8).
The matrix S has the following elements:

s11 = (k − 1)(kα2 − αδ − β), s12 = −2(k − 1)α, s13 = 2;

s21 = 2k(k − 1)αβ, s22 = (k − 1)
[
(k − 2)α2 + αδ − 3β

]
,

s23 = −4 [(k − 2)α + δ] , s24 = 6;
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si,i−2 = (k − i + 2)(k − i + 3)β2, si,i−1 = 2(k − i + 2)[(k − i + 1)α + (i − 2)δ]β,

si,i = [(k − i)α + (i − 1)δ] · [(k − i + 1)α + (i − 2)δ] − [(2i − 1)k − 2(i − 1)2 − 1]β,

si,i+1 = −2i[(k − i)α + (i − 1)δ], si,i+2 = i(i + 1), i = 2, k − 1;

sk,k−2 = 6β2, sk,k−1 = 4[α + (k − 2)δ] · β, sk,k = (k − 1)[αδ + (k − 2)δ2 − 3β],

sk,k+1 = −2k(k − 1)δ;

sk+1,k−1 = 2β2, sk+1,k = 2(k − 1)δβ, sk+1,k+1 = (k − 1)(kδ2 − αδ − β);

sij = 0, i, j = 1, k + 1, |i − j| > 2.

The rank of S verifies the inequalities k − 1 ≤ rank(S) ≤ k + 1 and the
determinant (∆ = det(S)) is equal to

∆ = (k − 1)4(β + αδ)2[(k + 1)2β − (α − kδ)(kα − δ)]×

m−2∏
j=0

[(2j + 1)2β + ((m + j)α + (m − j − 1)δ)×

((m − j − 1)α + (m + j)δ)]2

(24)

if k = 2m and

∆ = 4m4(α + δ)2(β + αδ)2[(k + 1)2β − (α − kδ)(kα − δ)]×

m−1∏
j=1

[4j2β + ((m + j)α + (m − j)δ)×

((m − j)α + (m + j)δ)]2

(25)

if k = 2m + 1.

Denote

A1,2 = A −
δ − α ±

√
(δ − α)2 − 4β

2
I.

We have that A1A2 = A2A1, k ≤ rankA1,2 ≤ k + 1 and in (23) that S = A2A1.
Hence, every solution of the matrix equation

A1Z = 0 (26)

or
A2Z = 0 (27)

is also a solution of the equation (23).
Next we will analyse each of the cases when the determinant ∆ of the matrix

S is equal to zero and will indicate the systems (1) of which coefficients (14) verify
the matrix equation (23), i.e. each of the vectors a and b verifies at least one of the
equations (26), (27).

3.2.1. β = (α − kδ)(kα − δ)/(k + 1)2. Let

ξ1 = (α − kδ)/(k + 1), ξ2 = (kα − δ)/(k + 1).
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Then β = ξ1ξ2 and
A1 = A + ξ1I, A2 = A + ξ2I. (28)

Setting in (6) τ = k, we obtain that Ã = A1. Therefore, detA1 = 0 and
kerA1 = {cZ1|c = const}, where Z1 has coordinates (11).

If A2 6= A1, i.e. α + δ 6= 0, then from (24), (25) and ∆ = detS = detA1 ·
detA2 it follows that detA2 6= 0. Thus, in this case, in order that the dimension of
the GL(2, R)−orbit of the system (1) be smaller than four it is necessary that its
coefficients (14) (a and b) verify the equation (26). By Lemma 1 f = c(x+ ξ2)

k and
by Corollary 1, we have





ẋ1 = c1 · F (x1, x2), ẋ2 = c2 · F (x1, x2); c1, c2 = const,

F = [(k + 1)x1 + (kα − δ)x2]
k .

(29)

3.2.2. β = −αδ. In this case, we put ξ1 = α, ξ2 = −δ. Then A1 = A+αI, A2 =
A − δI and setting in (6) τ = 0 (τ = 1), we have that A1 = Ã (A2 = Ã) and
f = c1(x + ξ1)

k (f = c2(x + ξ1)
k−1(x + ξ2)). If τ = 0 (τ = 1) the vector Z1 (Z2)

with the coordinates (12) ((12), (13)) is a solution of the equation (26) ((27)). The
solutions Z1 and Z2 are linear independent and therefore c1Z1+c2Z2; c1, c2 = const,
is the general solution of (23). This implies (1) to have the form





ẋ1 = (ax1 + bx2)F (x1, x2), ẋ2 = (cx1 + dx2)F (x1, x2);

a, b, c, d = const, F (x1, x2) = (x1 + αx2)
k−1.

(30)

3.2.3. k = 2m,

β = −((m − j − 1)α + (m + j)δ)((m + j)α + (m − j − 1)δ)/(2j + 1)2, j = 0,m − 2.

Let
ξ1 = −[(m − j − 1)α + (m + j)δ]/(2j + 1),

ξ2 = [(m + j)α + (m − j − 1)δ]/(2j + 1).

Then β = ξ1ξ2 and the equalities (28) hold. Setting in (6) τ = m + j (τ = m +
j + 1), we obtain that Ã = a1 (Ã = a2), and the relations (11)−(13) lead us to the
polynomial

f = c(x + ξ1)
m−j(x + ξ2)

m+j
(
f = c(x + ξ1)

m−j−1(x − ξ2)
m+j+1

)
.

Hence, for τ = m − j (τ = m − j − 1) the vector Z1 (Z2) with the coordinates
(11)−(13) is a solution of the equation (26) ((27)). The vectors Z1 and Z2 are linear
independent which implies the differential system (1) to be written as:





ẋ1 = (ax1 + bx2) · F, ẋ2 = (cx1 + dx2) · F,

F = [(2j + 1)x1 − ((m − j − 1)α + (m + j)δ)x2]
m−j−1 ×

[(2j + 1)x1 + ((m + j)α + (m − j − 1)δ)x2]
m+j , j = 0,m − 2.

(31)
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3.2.4. Let k = 2m + 1 and β = ξ1ξ2, where

ξ1 = − [(m − j)α + (m + j)δ] /(2j),

ξ2 = [(m + j)α + (m − j)δ] /(2j), j = 1,m − 1.

In these conditions equalities (28) hold. If τ = m + j (τ = m + j + 1), then
the vector Z1 (Z2) with the coordinates (11)−(13) is a solution of the equation (26)
((27)) and the polynomial (5) looks as:

f = c(x + ξ1)
m−j+1(x + ξ2)

m+j (f = c(x + ξ1)
m−j(x − ξ2)

m+j+1).

The solutions c1Z2 + c2Z2; c1c2 = const of the equation (23) lead us to the following
system 




ẋ1 = (ax1 + bx2) · F, ẋ2 = (cx1 + dx2) · F,

F = [2jx1 − ((m − j)α + (m + j)δ)x2]
m−j ×

[2jx1 + ((m + j)α + (m − j)δ)x2]
m+j , j = 1,m − 1.

(32)

3.2.5. α + δ = 0. Let

δ = −α, ξ1 = α −
√

α2 − β, ξ2 = α +
√

α2 − β.

Substituting in (11)−(13) τ = m (τ = m + 1), we obtain that the vector Z1 (Z2)
with these coordinates is a solution of the equation (26) ((27)), where A1 and A2

are given in (28). The polynomial f looks as:

f = c(x + ξ1)
m+1(x + ξ2)

m (f = c(x + ξ1)
m(x + ξ2)

m+1).

This case leads us to the following differential system





ẋ1 = (ax1 + bx2) · F, ẋ2 = (cx1 + dx2) · F,

F = (x2

1
+ 2αx1x2 + βx2

2
)m.

(33)

Theorem 3 is proved.

From proving Theorem 3 follows

Theorem 4. In order that the dimension of the GL(2, R)−orbit of the system (1)

be smaller than four it is necessary (up to transformation (15)) that the system (1)

have one of the forms (18),(20),(29)–(33).
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[8] Staruş E.V. Invariant conditions for the dimensions of the GL(2, R)−orbits for one differ-

ential cubic system. Bul. Acad. Sci. Rep. Moldova, Math., 2003, No. 3(43), 58–70.
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Hopf bifurcations analysis of a three-dimensional

nonlinear system

Mircea Craioveanu, Gheorghe Tigan

Abstract. Bifurcations analysis of a 3D nonlinear chaotic system, called the T
system, is treated in this paper, extending the work presented in [5] and [6]. The
system T belongs to a class of cvasi-metriplectic systems having the same Poisson
tensor and the same Casimir.
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1 Introduction

The nonlinear differential systems are studied both from theoretical point of
view and from the point of view of their potential applications in various areas. The
nonlinear systems present many times the property of sensitivity with respect to the
initial conditions (some authors consider this property sufficient for a system to be
chaotic). Applications of such systems have been found lately in secure communi-
cations [1, 4]. Of the pioneering papers which proposed to use the chaotic systems
in communications are the papers of Pecora and Carrol [8, 9]. Consequently, an
appropriate chaotic system can be chosen from a catalogue of chaotic systems to
optimize some desirable factors, idea suggested in [4].

These facts led us to study a new 3D polynomial differential system given by:

ẋ = a(y − x), ẏ = (c − a)x − axz, ż = −bz + xy, (1)

with a, b, c real parameters and a 6= 0. Call it the T system. Some results regarding
the T system are already presented in [5] and [6], where we pointed out two particular
cases. The system T is related to the Lorenz, Chen and Lü system [3] being a small
generalization of the latter one.

The paper is organized as follows. In the first Section we recall some results
regarding the stability of equilibria. In Section 2 we present the pitchfork and Hopf
bifurcations occurring at the equilibrium points in the general case. Also, we show
that the T system belongs to a class of cvasi-metriplectic systems.

2 Equilibrium points of the system

Because the dynamics of the system is characterized by the existence and the
number of the equilibrium points as well as of their type of stability, we recall in the

c© Mircea Craioveanu, Gheorghe Tigan, 2008
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Figure 1. a) The orbit of the Lorenz system for a = 10, b = 8/3, c = 28 and the
initial condition (−0.04, −0.3, 0.52) (left); b) The orbit of the Chen system for
a = 35, b = 3, c = 28 and the initial condition (−0.1, 0.1, 0.4) (right)
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Figure 2. a) The orbit of the Lü system for a = 36, b = 3, c = 19 and the initial
condition (−1, 0.1, 4) (left) ; b) The orbit of the T system for (a, b, c) = (2.1, 0.6, 30)
and the initial condition (0.1,−0.3, 0.2) (right)
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following the equilibrium points of the system T and their stability.

Proposition 1. If
b

a
(c − a) > 0, then the system T possesses three equilibrium

isolated points:

O(0, 0, 0), E1(x0, x0, c/a − 1), E2(−x0,−x0, c/a − 1)

where x0 =

√
b

a
(c − a), and for b 6= 0,

b

a
(c − a) ≤ 0, the system T has only one

isolated equilibrium point, namely O(0, 0, 0),

Theorem 1. For b 6= 0 the following statements are true:

a) If (a > 0, b > 0, c ≤ a), then O(0, 0, 0) is asymptotically stable;

b) If (b < 0) or (a < 0) or (a > 0, c > a), then O (0, 0, 0) is unstable.

For the other two equilibria, E1,2(±x0,±x0, c/a − 1), for b/a(c − a) > 0, using
the Routh-Hurwitz conditions we have:

Theorem 2. ([5]) If the conditions a + b > 0, ab(c− a) > 0, b(2a2 + bc− ac) > 0
hold, the equilibrium points E1,2(±x0,±x0, c/a − 1), are asymptotically stable.

3 Pitchfork and Hopf bifurcations of the system T

Consider the parameter a as bifurcation parameter.

a) Bifurcations at O(0,0,0)

Proposition 2. ([7]) If β = a − c = 0 the equilibrium O(0,0,0) of the system

T undergoes a pitchfork bifurcation that generates the asymptotic stable equilib-

rium point O(0,0,0) if a > c, and for a < c three equilibria: O(0,0,0) (unstable),

E1,2(±x0,±x0, c/a − 1) (locally stable).

Notice that the equilibrium O(0,0,0) can not undergo a Hopf bifurcation because
the roots of the characteristic polynomial of the Jacobian matrix of the system T

at O(0, 0, 0) are λ1 = −b, λ2 =
1

2

(
−a −

√
4ac − 3a2

)
, λ3 =

1

2

(
−a +

√
4ac − 3a2

)

and the last two roots can not be purely imaginary because a 6= 0.

b) Bifurcations of the equilibria E1 and E2.

We observe that the characteristic polynomial in this case is:

f (λ) := λ3 + λ2(a + b) + bcλ + 2ab(c − a) (2)

Because ab(c − a) > 0, the system T does not undergo pitchfork bifurcations at
E1,2, so we study the Hopf bifurcations at these points. The following proposition
characterizes the imaginary roots of (2).
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Proposition 3. Consider
b

a
(c − a) > 0. The polynomial (2) has one real negative

root and two purely imaginary roots if and only if (a, b, c) ∈ Ω, where

Ω = {(a, b, c) ∈ R3 | a > b > 0, 2a2 + bc = ac}.

In this case the roots are: λ1 = −a − b, λ2,3 = ±iω, ω :=
√

bc.

In the following we show that the system T undergoes a Hopf bifurcation at E1

(for E2 is similar). Remember that a is the bifurcation parameter.

From 2a2 + bc = ac one gets a = as :=
c ±

√
c2 − 8bc

4
. Denote λ := α (a)± iω (a)

the complex roots depending on the bifurcation parameter a of (2). If a = as and
(a, b, c) ∈ Ω, from the above Proposition 3, we have λ1 = −a − b and λ2,3 = ±iω
with ω =

√
bc.

From (2) it follows that:

Re

(
dλ (a)

da

∣∣∣
a=as,λ=i

√

bc

)
= Re

(
bc − 4ab

2bc − 2i
√

bc (a + b)

)
=

bc − 4ab

2bc + 2 (a + b)2
6= 0

for c 6= 8b because c − 4a = ±
√

c2 − 8bc, (b, c > 0).
In the following we compute the index number K from the Hopf bifurcation

theorem [2], employing the central manifold theory.
Using the transformation (x, y, z) → (X1, Y1, Z1),

x = X1 + x0, y = Y1 + x0, z = Z1 + c/a − 1, (3)

the system T leads to:

Ẋ1 = a(Y1 − X1), Ẏ1 = −ax0Z1 − aX1Z1, Ż1 = x0(X1 + Y1) − bZ1 + X1Y1 (4)

or, in the normal form:




Ẋ1

Ẏ1

Ż1


 =




−a a 0
0 0 −ax0

x0 x0 −b







X1

Y1

Z1


 +




0
−aX1Z1

X1Y1


 . (5)

The eigenvalues of the Jacobian matrix J ,

J =




−a a 0
0 0 −ax0

x0 x0 −b




are, respectively λ1 = −a − b < 0, λ2,3 = ±iω, ω =
√

bc, b > 0, c > 0, with
corresponding eigenvectors:

v1

(
1,

−c + 2a

c
,−

2

c

√
c − 2a − b

)
, v2

(
−

a

ω
qx0 + iqx0,−

a

ω
x0, i

)
,
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v3

(
−

a

ω
qx0 − iqx0,−

a

ω
x0,−i

)

with q =
a2

ω2 + a2
. Then the vectors v′

2
=

v2 + v3

2
=

(
−

a

ω
qx0,−

a

ω
x0, 0

)
,

v′
3

=
v2 − v3

2i
= (qx0, 0, 1) and v1

(
1,

−c + 2a

c
,−

2

c

√
c − 2a − b

)
lead us to the

transformation: 


X1

Y1

Z1


 = P




X
Y
Z




where

P =




1 −
a

ω
qx0 qx0

−c + 2a

c
−

a

ω
x0 0

−
2

c

√
c − 2a − b 0 1




or, equivalently, 


X
Y
Z


 = P−1




X1

Y1

Z1




where

P−1 =
1

d




c −qc −qx0c

−c + 2a

ax0

ω −
c + 2

√
c − 2a − bqx0

ax0

ω q
c − 2a

a
ω

2
√

c − 2a − b −2q
√

c − 2a − b c + qc − 2qa




with d = c + qc − 2qa + 2
√

c − 2a − bqx0.
Then the system (5) reads:




Ẋ

Ẏ

Ż


 = P−1JP




X
Y
Z


 + P−1




0
−aX1Z1

X1Y1


 , (6)

or, equivalently




Ẋ

Ẏ

Ż


 =




2a
−c + a

c
0 0

0 0 ω
0 −ω 0







X
Y
Z


 +




g1

g2

g3


 , (7)

where




g1

g2

g3


 = P−1




0

−a
(
X −

a

ω
qx0Y + qx0Z

)(
−

2

c

√
c − 2a − bX + Z

)

(
X −

a

ω
qx0Y + qx0Z

)(
−c + 2a

c
X −

a

ω
x0Y

)




, (8)



62 MIRCEA CRAIOVEANU, GHEORGHE TIGAN

or

g1 =
1

d
qca

(
X −

a

ω
qx0Y + qx0Z

)(
−

2

c

√
c − 2a − bX + Z

)
−

−
1

d
qx0c

(
aX −

a

ω
qx0Y + qx0Z

)(
−c + 2a

c
X −

a

ω
x0Y

)
,

g2 =
1

d

c + 2
√

c − 2a − bqx0

x0

ω
(
X −

a

ω
qx0Y + qx0Z

)(
−

2

c

√
c − 2a − bX + Z

)
+

1

d
q
c − 2a

a
ω

(
aX −

a

ω
qx0Y + qx0Z

)(
−c + 2a

c
X −

a

ω
x0Y

)
,

g3 =
2

d
q
√

c − 2a − ba
(
X −

a

ω
qx0Y + qx0Z

)(
−

2

c

√
c − 2a − bX + Z

)
+

+
1

d
(c + qc − 2qa)

(
aX −

a

ω
qx0Y + qx0Z

)(
−c + 2a

c
X −

a

ω
x0Y

)
.

Consider the 2-dimensional central manifold at the origin given by:

X = h (Y,Z) = AY 2 + BY Z + CZ2 + . . . (9)

Then, replacing (9) in (7) and taking into account that Ẋ = 2AY Ẏ + BẎ Z +
BY Ż + 2CZŻ, obtained from (9), one gets:

Ẋ = BZ2ω − BY 2ω − 2CωY Z + 2AωZY + . . . (10)

On the other hand, from (7) we have

Ẋ = α1Y
2 + α2Y Z + α3Z

2 + . . . (11)

where

α1 = −2aA + 2
a2

c
A −

1

d
q2x3

0
c
a2

ω2
,

α2 =
1

d
q2x3

0c
a

ω
−

1

d
q2ca2

1

ω
x0 − 2aB + 2

a2

c
B,

α3 = 2
a2

c
C +

1

d
q2cax0 − 2aC.

Then, equalling the coefficients of the terms Y 2, Z2, Y Z in the above relations
(10) and (11), one gets

Y 2 : −ωB = −2aA + 2
a2

c
A −

1

d
q2x3

0c
a2

ω2
,

Y Z : 2ωA − 2Cω =
1

d
q2x3

0
c
a

ω
−

1

d
q2ca2

1

ω
x0 − 2aB + 2

a2

c
B,

Z2 : Bω = 2
a2

c
C +

1

d
q2cax0 − 2aC.
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Finally we get

A = −
1

4
q2c2x0

−ω2ca3 + ω2c2a2 − ω4c2 + ω2cx2

0
a2 − 4x2

0
a4c + 2x2

0
a3c2 + 2x2

0
a5

(ω2c2 − 2ca3 + c2a2 + a4) dω2 (−a + c)
,

B =
1

2
q2x0c

2
2x2

0
ca + a3 − ca2 + ω2c − x2

0
a2

ωd (ω2c2 − 2ca3 + c2a2 + a4)
a,

C = −
1

4
q2c2x0

2x2

0
c2a + 5ca3 − 3c2a2 − ω2c2 − cx2

0
a2 − 2a4

(ω2c2 − 2ca3 + c2a2 + a4) d (−a + c)
.

Hence, the system (8) restricted to the central manifold is given by:

(
Ẏ

Ż

)
=

(
0 ω
−ω 0

)(
Y
Z

)
+

(
g2 (Y,Z)
g3 (Y,Z)

)
,

where g2 (Y,Z) = g2 (h (Y,Z) , Y, Z) , g3 (Y,Z) = g3 (h (Y,Z) , Y, Z) .

Now K can be computed as follows [2]:

K(Y,Z) =
1

16

[
∂3g2

∂Y 3
+

∂3g2

∂Y ∂Z2
+

∂3g3

∂Y 2∂Z
+

∂3g3

∂Z3

]
+

+
1

16ω

[
∂2g2

∂Y ∂Z

(
∂2g2

∂Y 2
+

∂2g2

∂Z2

)
−

∂2g3

∂Y ∂Z

(
∂2g3

∂Y 2
+

∂2g3

∂Z2

)
−

−
∂2g2

∂Y 2

∂2g3

∂Y 2
+

∂2g2

∂Z2

∂2g3

∂Z2

]
.

Then

K = K(0, 0) = −
1

8d
x0caqC +

1

4d
x0a

2qC −
1

4d
x0cq

2C +
1

d
a
√

c − 2a − bCq+

+
1

d

x0

c
aCq2b −

1

8d
cAqx0 −

1

4dω
a2Bqx0 +

1

8dω
caBq2x0 +

1

4dω
a3Bqx0−

−
1

2dωc
q2a2Bbx0 −

1

2dωc
q2a3Bx0 −

1

8dω
ca2Bx0 −

1

8dω
ca2Bqx0 −

3

8

C

d
cqx0+

+
3

4

C

d
aqx0 −

1

8d2ω4
c2q4x4

0
a3 −

1

2d2ω4
q4a5x4

0
−

1

2d2ω4
q4
√

c − 2a − ba5x3

0
+

+
1

4d2ω4
cq4

√
c − 2a − ba4x3

0
+

1

4d2ω4
cq3

√
c − 2a − ba4x3

0
+

+
1

2d2ω2
cq4a3x2

0 −
1

d2ω2
q4a4x2

0 −
1

2d2ω2
q4a3x2

0b +
1

2d2
x2

0caq4 −
1

d2
x2

0a
2q4−

−
1

2d2
x2

0
aq4b −

1

8d2
x2

0
c2a2

q3

ω2
+

1

4d2
x2

0
ca3

q3

ω2
−

1

8d2
c2aq2 −

1

8d2
x4

0
c2a

q4

ω2
+

+
1

2d2
x4

0ca
2
q4

ω2
−

1

4d2
x3

0cq
4
√

c − 2a − b −
1

8d2
x2

0c
2q3 −

1

2d2
x4

0a
3
q4

ω2
+
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+
1

2d2
x3

0aq4
√

c − 2a − b +
1

4d2
x2

0caq3 +
1

2d2ω4
cq4x4

0a
4+

+
1

4d2ω2
cq3x3

0
a2
√

c − 2a − b +
1

8d2ω4
c2q2x4

0
a3 +

A

d

√
c − 2a − baq +

1

8dx0

cωB+

+
1

d

x0

c
a2q2C −

1

8d
x0

c

a
q2ωB −

A

d

x0

c
q2a2 −

A

d

x0

c
q2ab −

3

8

A

d
x0cqa +

3

4

A

d
x0qa

2+

+
1

4

A

d
x0cq

2 +
1

2d

x0

c
aq2ωB +

1

2d

x0

c
ωBq2b +

1

4d
Aaqx0 +

1

8dω
caBqx0.

Concluding we have the theorem:

Theorem 3. If a = as :=
c ±

√
c2 − 8bc

4
, c 6= 8b, the equation (2) has a negative so-

lution λ1 = −a−b < 0 together with two purely imaginary roots λ2,3 = ±iω, ω =
√

bc

such that R := Re

(
dλ (a)

da

∣∣∣
a=as,λ=iω

)
6= 0. Consequently, if K 6= 0, the equilibrium

E1 of the system T undergoes a Hopf bifurcation. In addition, the periodic orbits

that bifurcate from the equilibrium E1 for a in the neighborhood of as, are stable if

K < 0, and unstable if K > 0. The direction of bifurcation are above (bellow) as if

RK < 0 (RK > 0).

Remark 1. In the particular case a = 2.1, b = 1.806, c = 30 we have
K = −2.815 × 10−3, R = 0.28. So the periodic orbits that bifurcate from the
equilibria E1,2 are stable and the bifurcation is above as.

In the following we show that the system T belongs to a class of cvasi-metriplectic
systems.

Definition 1. Consider X a vector field on R3. The vector field X is called cvasi-
metriplectic, if there exists a Poisson tensor field P , a cvasi-metric tensor field g, a
Hamilton function H and a Casimir function S associated to P, such that:

X = P∇H + g∇S. (12)

Consider the vector field X = (x1, x2, x3) given by:

x1 = −a1x + a1y, x2 = a2x + a3y − a4xz + a6, x3 = −a5z + xy, (13)

with ai, i = 1, 6, real numbers.

Remark 2. 1. If a1 = a, a2 = c, a3 = −1, a4 = 1, a5 = b, a6 = 0, the dynamical
system associated to X is the Lorenz system.

2. If a1 = a, a2 = c − a, a3 = c, a4 = 1, a5 = b, a6 = 0, the dynamical system
associated to X is the Chen (or Chen 1) system.

3. If a1 = a, a2 = 0, a3 = c, a4 = 1, a5 = b, a6 = 0, the dynamical system
associated to X is the Lü system.
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4. If a1 = a, a2 = c − a, a3 = 0, a4 = a, a5 = b, a6 = 0, the dynamical system
associated to X is the T system.

5. If a1 = a, a2 = c − a, a3 = c, a4 = 1, a5 = b, a6 = m, the dynamical system
associated to X is the Chen 2 system.

Proposition 4. The vector field X (13) has the cvasi-metriplectic representation

given by:

X = P∇H + g∇S (14)

where

P =




0 a1 0
−a1 0 −x

0 x 0


 , g =




−a1 0 0

0 ε −
a3y + a6

a1

0 −
a3y + a6

a1

a5z

a1


 (15)

H(x, y, z) =
1

2
(y2 + a4z

2) − a2z, S(x, y, z) =
1

2
x2 − a1z with ε ∈ R.

The proof is immediately.

Observe that the Poisson tensor field P and the Casimir S are the same for
the all above five systems, consequently, the systems belong to the same class of
cvasi-metriplectic systems. In addition, for the system T , the tensor g is in diagonal
form.

4 Conclusions

In this paper we further investigated a nonlinear differential system with three
equilibrium points, origin and another two. In the origin, the system displays a
pitchfork bifurcation and in the other two equilibrium points a Hopf bifurcation.
The system belongs to a class of cvasi-metriplectic systems.
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A numerical approximation of the free-surface heavy

inviscid flow past a body

Luminita Grecu, Titus Petrila

Abstract. The object of this paper is to apply the Complex Variable Boundary
Element Method (CVBEM) for solving the problem of the bidimensional heavy fluid
flow over an immersed obstacle, of smooth boundary, situated near the free surface
in order to obtain the perturbation produced by its presence and the fluid action on
it. Using the complex variable, complex perturbation potential, complex perturbation
velocity and the Cauchy’s formula the problem is reduced to an integro-differential
equation with boundary conditions. For solving the integro-differential equation a
complex variable boundary elements method with linear elements is developed. We
use linear boundary elements for discretize smooth curve, and free surface, in fact
we approximate them with polygonal lines formed by segments, and we choose for
approximating the unknown on each element a linear model that uses the nodal values
of the unknown. Finite difference schemes are used for eliminating the derivatives that
appear. The problem is finally reduced to a system of linear equations in terms of
nodal values of the components of the velocity field. All coefficients in the mentioned
system are analytically calculated. Those arising from singular integrals are evaluated
using generalized Cauchy integrals. After solving the system we obtain the velocity
and further the local pressure coefficient and the fluid action over the obstacle can
be deduced. For evaluating the coefficients and for solving the system to which the
problem is reduced, we can use a computer code.

Mathematics subject classification: 74S15.
Keywords and phrases: Boundary integro-differential equation, linear boundary
element, boundary element method.

1 Introduction

Let us consider a uniform steady potential plane free surface flow of a heavy
inviscid fluid past an arbitrary wing (obstacle) immersed in the immediate proximity
of the free surface. Assuming that the boundary Γof the wing is smooth enough to
avoid the existence of some angular points (and implicitly of a Kutta type condition),
we intend to set up a numerical procedure-backed by a CVBEM, for determining the
perturbation induced by the presence of the obstacle (wing) and the action exerted
by the fluid on this obstacle. The objective is to find the fluid velocity field and
the local pressure coefficient. Using a CVBEM with linear boundary elements the
problem is finally reduced to a system of linear equations. This problem is solved
in [2] using Schwarz principle, without a free-surface discretization, and in paper [1]
by means of linear boundary elements, but for obtaining the system’s coefficients, a
theorem which makes connection between the analytic function ω (z), defined by the

c© Luminita Grecu, Titus Petrila, 2008
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contour integral ω (z) =

∫

Γ

h (ζ)

ζ − z
dζ, and ω′ (z) is used. In the herein paper other

techniques are used for evaluating system’s coefficients. For a better understanding,
a short presentation of the problem is considered necessary, and it is made according
to [2].

By splitting the velocity potential Φ into the unperturbed (uniform) stream po-
tential and the perturbation (due to the obstacle) potential, and using dimensionless
variables we have Φ (x, y) = x+ϕ (x, y), where ϕ (x, y) is the perturbation potential
which satisfies the Laplace equation ∆ϕ (x, y) = 0, x ∈ (−∞,+∞) , y ∈ (−∞, 0).

Assuming, at the beginning that the free surface can be approximated by the real
axis Ox, by linearizing the Bernoulli’s integral, the following boundary condition on
free surface holds:

∂2ϕ

∂x2
+ k0

∂ϕ

∂y
= 0, x ∈ (−∞,+∞) , y = 0, (x, y) /∈ Γ, (1)

where k0 =
1

Fr2
, F r =

U
√
gL

, L and U being the characteristic length and velocity.

On the surface of the immersed wing the slip condition becomes

∂ϕ

∂n
|Γ= −nx (2)

where n (nx, ny) is the outward unit normal drawn on Γ while, on far field,
lim

x→∞

ϕ (x, y) = 0.

By introducing the stream (perturbation) function ψ (x, y), and by using the
complex variable z = x + iy and the complex (perturbation) velocity, w = u − iv,

(u =
∂ϕ

∂x
, v =

∂ϕ

∂y
), the complex (perturbation) potential f (z) = ϕ (x, y)+ iψ (x, y)

satisfies relations:

df

dz
=
∂ϕ

∂x
+ i

∂ψ

∂x
= w, Re

d2f

dz2
=
∂2ϕ

∂x2
, Im

df

dz
= −

∂ϕ

∂y
.

Hence the previous conditions (1) and (2) become

Im

(
i
d2f

dz2
− k0

df

dz

)
= 0, for z = x ∈ R (y = 0) ;

Re

(
df

dz
(nx + iny)

)
= −nx, on Γ (3)

By introducing the holomorphic (in the flow domain) function F , defined by:

F (z) = i
d2f

dz2
− k0

df

dz
= i

dw

dz
− k0w (4)

we get:
ImF (z) = 0, for z = x ∈ R. (5)
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2 The Boundary Integro-Differential Equation

As lim
|z|→∞

F (z) = 0, the use of the Cauchy’s formula for the whole domain (the

lower half plane without the obstacle domain) allows us to write

1

2πi

+∞∫

−∞

F (ς)

ς − z
dς = F (z) −

1

2πi

∫

Γ

F (ς)

ς − z
dς (6)

Replacing the expression of F from (4) in the above relation and using (5) we
can write:

1

2π

+∞∫

−∞

Re (F (ς))

ς − z
dς = −

dw (z)

dz
− ik0w (z) +

1

2πi

∫

Γ

(
k0i

w (ς)

ς − z
+

w (ς)

(ς − z)2

)
dς (7)

3 The Discrete Equation

For solving the integro-differential equation (7) a complex variable boundary

elements method with linear elements will be developed. As regards the term
dw (z)

dz
an appropriate finite difference scheme will be used. Following the same steps as
in [2], the border Γ is discretized by choosing a set of control points of affixes zi,
i = 1, N . Consequently the smooth curve Γ is approximated by a polygonal line
made by segments Lj, j = 1, N , whose edges have the affixes zj , zj+1, j = 1, N,
zN+1 = z1. Using linear boundary elements (Lj) and a linear approximation for
w (z) of the type (see [3])

w̃ (ς) = w (zj)
ς − zj+1

zj − zj+1

+ w (zj+1)
zj − ς

zj − zj+1

, j = 1, N (8)

(precisely all the elements with index N + 1 are seen as having the index 1), by
denoting w (zi) = wi and by introducing the additional denotations

aj (z) =

∫

Lj

ς − zj+1

(zj − zj+1) (ς − z)2
dς; bj+1 (z) =

∫

Lj

zj − ς

(zj − zj+1) (ς − z)2
dς (9)

cj (z) =

∫

Lj

k0i (ς − zj+1)

(zj − zj+1) (ς − z)
dς; dj+1 (z) =

∫

Lj

k0i (zj − ς)

(zj − zj+1) (ς − z)
dς,

mj = aj + cj , nj+1 = bj+1 + dj+1, Aj = mj + nj, j = 1, N (10)

equation (7) gets the form:
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1

2π

+∞∫

−∞

Re (F (ς))

ς − z
dς +

dw (z)

dz
+ ik0w (z) =

1

2πi

N∑

j=1

wjAj (11)

The involved integrals may be analytically evaluated, and so the above unknowns
coefficients. Making the effective calculations and considering that z0 = zN , we get
for j = 1, N the following expression for them:

Aj =

[
1 + ik0 (z − zj+1)

zj − zj+1

]
ln

(
zj+1 − z

zj − z

)
+

[
−1 + ik0 (zj−1 − z)

zj−1 − zj

]
ln

(
zj − z

zj−1 − z

)

(12)
Now if we let z → zi ∈ Γ , i = 1, N , backed on the results of [4], we obtain:

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς +

dw (zi)

dz
+ ik0w (zi) =

1

2πi

N∑

j=1

wjAij (13)

The two indexes point out that the limits of coefficients (11), when z → zi ∈ Γ, are
considered.

Concerning the coefficients from (11), their calculation is performed by imposing
effectively z → zi ∈ Γ in the previous expressions of Aj ,so in (12). Except the
elements originated from the integrals calculated on segments Γi−1and Γi, which
become singular, this implies a simple replacement of z with zi. With regard to the
coefficients coming from the singular integral, we shall use some results obtained in
[5] for the evaluation of a principal value (in the Cauchy sense) of a singular integral

of the type
∫
Γ

f (ξ)

(ξ − z)2
dξ (Γ being a closed segmentary smooth curve) and the

equality lim
z→zi

(z − zi) log (z − zi) = 0 (see [6]). We get the following expressions:

Aij =

[
1 + ik0 (zi − zj+1)

zj − zj+1

]
ln

(
zj+1 − zi
zj − zi

)
+

[
−1 + ik0 (zj−1 − zi)

zj−1 − zj

]
ln

(
zj − zi
zj−1 − zi

)
,

j 6= i− 1, i, i + 1,

Aii = ik0 ln

(
zi+1 − zi
zi−1 − zi

)
+

1 + ln |zi−1 − zi|

zi−1 − zi
+

−1 + ln |zi+1 − zi|

zi − zi+1

,

Aii−1 =

[
−1 + ik0 (zi−2 − zi)

zi−2 − zi−1

]
ln

(
zi−1 − zi
zi−2 − zi

)
+

1 + ln |zi−1 − zi|

zi − zi−1

Aii+1 =

[
1 + ik0 (zi − zi+2)

zi+1 − zi+2

]
ln

(
zi+2 − zi
zi+1 − zi

)
+

1 + ln |zi+1 − zi|

zi+1 − zi
(14)

where i, j = 1, N , while by index N + 1 we should understand 1, by N + 2 we
understand 2, by 0 we understand N , by −1 we understand N − 1.
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The complex velocity derivative at node i is approximated by a backward finite

difference scheme, namely
dw (zi)

dz
=
w (zi) − w (zi−1)

zi − zi−1

, and is replaced in (13). We

obtain the following system of equations:

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς +

wi − wi−1

zi − zi−1

+ ik0wi =
1

2πi

N∑

j=1

wjAij , i = 1, N (15)

or the equivalent form:

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς =

N∑

j=1

wjÃij, i = 1, N (16)

where

Ãij = −
1

2πk0

Aij , j 6= i, j 6= i+ 1; Ãii = −
1

2πk0

(
Aii −

2πi

zi − zi−1

)
− 1;

Ãii−1 = −
1

2πk0

(
Aii−1 +

2πi

zi − zi−1

)
(17)

By denoting with vn, vs the normal and the tangential, respectively, com-
ponents of the perturbation velocity we can write that, on the border, w =
(vn − ivs) (nx + iny) while on Γ, vn = −nx, so that w = (−nx − ivs) (nx + iny).
Equation (16) becomes:

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς. =

N∑

j=1

(
−nj

x − ivj

s

) (
nj

x + inj

y

)
Ãij (18)

As the perturbation vanishes at far field we can accept that

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς =

1

2π

b∫

a

Re (F (ς))

ς − zi
dς (19)

Taking into account that on the free surface the following condition holds:

Re (F (z)) = −
1

k0

∂2u

∂x2
− k0u, z = x, and choosing M + 1 equidistant nodes on

it, x0 = a, xk = a+ k
b− a

M
, k = 1,M, in order to obtain a discretization of the free

surface into M isoparametric linear boundary elements we get:

1

2π

b∫

a

Re (F (ς))

ς − zi
dς =

1

2π

M−1∑

l=0

xl+1∫

xl

Re (F (ς))

ς − zi
dς =

1

2π

M−1∑

l=0

xl+1∫

xl

− 1

k0

∂2u

∂x2 − k0u

x− zi
dx

(20)
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For the isoparametric linear boundary element [xl, xl+1] we have: x = xl +
t (xl+1 − xl) , u = ul + t (ul+1 − ul) t ∈ [0, 1].

Following the calculations we have

xl+1∫

xl

−
1

k0

∂2u

∂x2
− k0u

x− zi
dx = Bliul +Cli (ul+1 − ul) = (Bli − Cli) ul + Cliul+1 (21)

where

Bli = −k0 (xl+1 − xl)

1∫

0

dt

xl + t (xl+1 − xl) − zi

and

Cli = −k0 (xl+1 − xl)

1∫

0

tdt

xl + t (xl+1 − xl) − zi
.

Concerning the integrals

I0 =

1∫

0

dt

xl + t (xl+1 − xl) − zi

and

I1 =

1∫

0

tdt

xl + t (xl+1 − xl) − zi
,

they could be expressed analytically, precisely we have

I0 =
1

xl+1 − xl

ln

(
xl+1 − zi
xl − zi

)
, I1 =

1

xl+1 − xl

−
xl − zi
xl+1 − xl

I0,

where for the complex logarithm the main branch is considered. So, coefficients that
arise in (21) have expressions:

Bli = −k0 ln

(
xl+1 − zi
xl − zi

)
, Cli = −k0 [1 − I0 (xl − zi)] (22)

Finally, denoting by B′

li
=

1

2π
(Bli −Cli) =

k0

2π
[1 − I0 (xl+1 − zi)], C ′

li
=

1

2π
Cli =

−k0

2π
[1 − I0 (xl − zi)], (20) becomes:

1

2π

b∫

a

Re (F (ς))

ς − zi
dς =

M−1∑

l=0

[
B′

liul + C ′

liul+1

]
(23)
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For sake of simplicity we consider vi
s = vi, i = 1, N , and using the above relation,

and (19) we obtain the equivalent form for system (18):

M−1∑

l=0

[
B′

liul + C ′

liul+1

]
=

N∑

j=1

(
−nj

x − ivj

) (
nj

x + inj

y

)
Ãij (24)

As the number of unknowns N +M + 1 is greater than the number of equations for
“closing” the system we should now perform z → xk, k = 0,M in relations (11)
and (12). So we get

1

2π

+∞∫

−∞

Re (F (ς))

ς − zi
dς +

dw (xk)

dx
+ ik0w (xk) =

1

2πi

N∑

j=1

wjÂkj (25)

where Âkj are the nonsingular integrals whose exact expressions are:

Âkj =

[
1 + ik0 (xk − zj+1)

zj − zj+1

]
ln

(
zj+1 − xk

zj − xk

)
+

+

[
−1 + ik0 (zj−1 − xk)

zj−1 − zj

]
ln

(
zj − xk

zj−1 − xk

)
. (26)

Then through (24) and a forward finite difference scheme for the complex velocity
derivative of first M control points on the free surface, we get:

M−1∑

l=0

[
B′

lk
ul + C ′

lk
ul+1

]
+
w (xk) − w (xk+1)

xk − xk+1

+ ik0w (xk) =

=
1

2πi

N∑

j=1

wjÂkj, k = 0,M − 1 (27)

For xk = xM a backward finite difference
dw (xM )

dx
=
w (xM ) − w (xM−1)

xM − xM−1

is to

be envisaged. Hence

M−1∑

l=0

[
B′

lMul + C ′

lMul+1

]
+
w (xM ) − w (xM−1)

xM − xM−1

+ ik0w (xM ) =
1

2πi

N∑

j=1

wjÂMj (28)

where the coefficients B′

lk
and C ′

lk
have analogous expressions with those arising

in (24), the only one difference being that now, for all nonsingular integrals (i.e.,
when xk is not a node of the element on which the integral is calculated), a natural
logarithm of a real number is implied.

Thus,

B′

li =
k0

2π
[1 − I0 (xl+1 − zi)] , C

′

li =
−k0

2π
[1 − I0 (xl − zi)] , (29)
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with I0 =
1

xl+1 − xl

ln

∣∣∣∣
xl+1 − xk

xl − xk

∣∣∣∣, for l 6= k− 1, l 6= k when k = 1,M − 1; l 6= 0

when k = 0; l 6= M − 1 when k = M. For the singular integrals, by using their finite
parts, we finally get:

B′

k−1k = B′

kk = B′

00 = B′

M−1M =
k0

2π
; C ′

k−1k = C ′

kk = C ′

00 = C ′

M−1M =
−k0

2π
(30)

By replacing in (27) and (28) the expression of the complex velocity on the
boundary, as function of the perturbation velocity components, and using the de-
notation s for v evaluated on the free surface (for avoiding any confusion), we can
write for k = 0,M − 1

M−1∑

l=0

[
Blkul + C ′

lkul+1

]
+
uk − isk − uk+1 + isk+1

xk − xk+1

+ ik0 (uk − isk) =

=
1

2πi

N∑

j=1

(
−nj

x − ivj

) (
nj

x + inj

y

)
Âkj, (31)

respectively, for k = M,

M−1∑

l=0

[
BlMul + C ′

lMul+1

]
+
uM − isM − uM−1 + isM−1

xM − xM−1

+ ik0 (uM − isM ) =

=
1

2πi

N∑

j=1

(
−nj

x − ivj

) (
nj

x + inj

y

)
ÂMj. (32)

In this way we have obtained the rest of the M + 1 equations that ensures the
mathematical coherence of our mathematical problem, i.e., the solving of the system
for the components of the perturbation velocity on the free surface and on the border
(boundary) of the obstacle. The final system which should be solved is made by
equations (24), (31) and (32).

For the outward normal components at the control points on the boundary, we

also have expressions depending on points coordinates: nj
x =

Im ag (zj − zj+1)

|zj − zj+1|
;

nj
y =

−Re al (zj − zj+1)

|zj − zj+1|
, and consequently all the coefficients which are present

in the final system can be expressed as functions of the discretization nodes co-
ordinates. Their calculation, system’s solution and evaluation of fluid action over
the body, expressed by the local pressure coefficient, can be performed by a com-
puter, irrespective of the obstacle shape and the discretization mesh used for the
boundaries.

After solving the system the problem is reduced at, it is also possible to find the
shape of the unknown free surface using the velocity field and the Bernoulli relation
(1). But this will be the objective of a further work.
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The sets of the classes M̃p,k and their subsets

Tadeusz Konik

Abstract. In this paper the sets of the classes fMp,k having the Darboux property in
the generalized metric spaces (E, l) are considered. Certain properties for these sets
and their subsets in the generalized metric spaces (E, l) and in the Cartesian space
have been given here.
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1 Introduction

Let (E, l) be a generalized metric space. E denotes here an arbitrary non-empty
set, and l is a non-negative real function defined on the Cartesian product E0 × E0

of the family E0 of all non-empty subsets of the set E.

Let k be any, but fixed positive real number, and let a, b be arbitrary non-negative
real functions defined in a certain right-hand side neighbourhood of 0 such that

a(r)−−−→
r→0+

0 and b(r)−−−→
r→0+

0. (1)

We say that a pair (A,B) of sets of the family E0 is (a, b)-clustered at the point
p of the space (E, l) if 0 is the cluster point of the set of all numbers r > 0 such that
the sets A ∩ Sl(p, r)a(r) and B ∩ Sl(p, r)b(r) are non-empty.

The sets Sl(p, r)a(r) , Sl(p, r)b(r) (see [12]) denote here, respectively, so-called
a(r)-, b(r)-neighbourhoods of the sphere Sl(p, r) with the centre at the point p ∈ E
and the radius r > 0 in the space (E, l).

The tangency relation Tl(a, b, k, p) of sets of the family E0 in the generalized
metric space (E, l) is defined as follows (see [12]):

Tl(a, b, k, p) =
{

(A,B) : A,B ∈ E0, the pair (A,B) is (a, b)-clustered

at the point p of the space (E, l) and

1

rk
l(A ∩ Sl(p, r)a(r), B ∩ Sl(p, r)b(r))−−−→

r→0+
0
}

. (2)

If (A,B) ∈ Tl(a, b, k, p), then we say that the set A ∈ E0 is (a, b)-tangent (or
shortly: is tangent) of order k to the set B ∈ E0 at the point p of the space (E, l).

c© Tadeusz Konik 2008
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Let ρ be an arbitrary metric of the set E. By dρA we shall denote the diameter
of the set A ∈ E0, and by ρ(A,B) the distance of sets A,B ∈ E0 in the metric space
(E, ρ), i.e.

dρA = sup{ρ(x, y) : x, y ∈ A} and ρ(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B} (3)

for A,B ∈ E0.
Let f be any subadditive increasing real function defined in a certain right-hand

side neighbourhood of 0 such that f(0) = 0.
By Ff,ρ we will denote the class of all functions l fulfilling the conditions:

10 l : E0 × E0 −→ 〈0,∞),

20 f(ρ(A,B)) ≤ l(A,B) ≤ f(dρ(A ∪ B)) for A,B ∈ E0.

It is easy to show that every function l ∈ Ff,ρ generates in the set E the metric l0
defined by the formula:

l0(x, y) = l({x}, {y}) = f(ρ(x, y)) for x, y ∈ E. (4)

We say (see [5]) that the set A ∈ E0 has the Darboux property at the point p of
the generalized metric space (E, l), and we shall write this as: A ∈ Dp(E, l) if there
exists a number τ > 0 such that A ∩ Sl(p, r) 6= ∅ for r ∈ (0, τ).

It is easy to notice that, if the set A ∈ E0 has the Darboux property at the point
p of the generalized metric space (E, l), then every set E0 ∋ B ⊃ A has also this
property at the point p of this space, i.e.

(A ∈ Dp(E, l) ∧ A ⊂ B ∈ E0) ⇒ B ∈ Dp(E, l). (5)

In this paper we shall consider some problems concerning the sets of the classes
M̃p,k on the Darboux property at the point p of the generalized metric spaces (E, l)

for the function l ∈ Ff,ρ. Some theorems for the sets of the classes M̃p,k will be given.

2 On the sets of the classes M̃p,k

Let ρ be a metric of the set E, and let A be any set of the family E0 of all
non-empty subsets of the set E. By A′ we shall denote the set of all cluster points
of the set A of the family E0.

Let us put
ρ(x,A) = inf{ρ(x, y) : y ∈ A} for x ∈ E. (6)

The classes of sets M̃p,k , mentioned in the Introduction of this paper, are defined
as follows (see [5]):

M̃p,k =
{

A ∈ E0 : p ∈ A′ and there exists µ > 0 such that

for an arbitrary ε > 0 there exists δ > 0 such that

for every pair of points (x, y) ∈ [A, p;µ, k]

if ρ(p, x) < δ and
ρ(x,A)

ρk(p, x)
< δ, then

ρ(x, y)

ρk(p, x)
< ε
}

, (7)
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where

[A, p;µ, k] = {(x, y) : x ∈ E, y ∈ A and µρ(x,A) < ρk(p, x) = ρk(p, y)}. (8)

Let A, B be arbitrary sets of the family E0.

Lemma 1. If A ⊂ B, then [A, p;µ, k] ⊂ [B, p;µ, k].

Proof. Let us assume that (x, y) ∈ [A, p;µ, k] for x ∈ E and y ∈ A. Hence and
from the definition of the set [A, p;µ, k] it results

µρ(x,A) < ρk(p, x) = ρk(p, y). (9)

Because A ⊂ B, then ρ(x,B) ≤ ρ(x,A) for x ∈ E. From here and from (9) it
follows that

µρ(x,B) < ρk(p, x) = ρk(p, y) for x ∈ E and y ∈ B,

which yields (x, y) ∈ [B, p;µ, k]. Therefore the inclusion [A, p;µ, k] ⊂ [B, p;µ, k] is
satisfied.

Using this lemma we prove the following theorem:

Theorem 1. If A ∈ E0 is an arbitrary subset of the set B ∈ M̃p,k and p ∈ A′, then

A ∈ M̃p,k.

Proof. Let us assume that B ∈ M̃p,k. From here and from the definition of the classes

of sets M̃p,k it follows that for an arbitrary ε > 0 there exists a number δ1 > 0 such
that for every pair of points (x, y) ∈ [B, p;µ, k]

ρ(x, y)

ρk(p, x)
< ε (10)

if only

ρ(p, x) < δ1 and
ρ(x,B)

ρk(p, x)
< δ1. (11)

We shall prove that for an arbitrary ε > 0 there exists δ2 > 0 such that for
every pair of points (x, y) ∈ [A, p;µ, k] the inequality (10) is fulfilled if

ρ(p, x) < δ2 and
ρ(x,A)

ρk(p, x)
< δ2. (12)

If the inequalities (11) are fulfilled, then from here and from Lemma 1 of this
paper it follows that the inequality (10) is satisfied for every pair of points (x, y) ∈
[A, p;µ, k].

Let us put δ2 = min( 1

µ
, δ1). Hence, from the assumption that p ∈ A′ and from

the condition (12) we obtain the inequality (10), what means that A ∈ M̃p,k. This
ends the proof.
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In the paper [10] was proved the following (see Theorem 4.3):

Theorem 2. If l ∈ Ff,ρ , the sets A,B ∈ E0 on the Darboux property at the point p

of the space (E, l) are subsets of a certain set C ∈ M̃p,k and the functions a, b fulfil

the condition
a(r)

rk
−−−→
r→0+

0 and
b(r)

rk
−−−→
r→0+

0, (13)

then (A,B) ∈ Tl(a, b, k, p).

From above theorem, Theorem 1 of this paper, and from symmetry and transi-
tivity of the tangency relation Tl(a, b, k, p) result the following corollaries:

Corollary 1. If l ∈ Ff,ρ , the functions a, b fulfil the condition (13), then

(A,B) ∈ Tl(a, b, k, p) ∧ (B,A) ∈ Tl(a, b, k, p) (14)

for arbitrary sets A,B ∈ E0 such that A ⊂ B, A ∈ Dp(E, l) and B ∈ M̃p,k.

Corollary 2. If l ∈ Ff,ρ , the functions a, b fulfil the condition (13), then for arbitrary

sets A,B,C ∈ E0 such that A ⊂ B, A ∈ Dp(E, l), B ∈ M̃p,k and C ∈ M̃p,k∩Dp(E, l)

(A,C) ∈ Tl(a, b, k, p) ⇔ (B,C) ∈ Tl(a, b, k, p). (15)

Figure 1

Below we shall give the examples of sets of the class M̃p,k which are tangent in
the two-dimensional Cartesian space E = R2.

Example 1. Let E = R2 be the two-dimensional Cartesian space. Let ϕ be an
increasing differentiable function defined in a certain right-hand side neighbourhood
of 0 such that ϕ(0) = 0.

Let A ⊂ E, B ⊂ E be the sets of the form (see Figure 1)

A = {(t, 0) : t ≥ 0}, B = {(t, ϕk+1(t)) : t ≥ 0, k ∈ N}. (16)

The sets A,B defined by the formula (16) are the sets of the class M̃p,k, where
p = (0, 0).
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In the paper [11] I proved (see Example 2.1) that B is the set of the class M̃p,k.

Now we shall prove that the set A defined by (16) also belongs to the class M̃p,k.
In the first place we shall prove that for an arbitrary ε > 0 there exists δ1 > 0 such
that for every pair of points (x, y1) ∈ [A, p;µ, k]

ρ(x, y1)

ρk(p, x)
< ε, (17)

when

r = ρ(p, x) < δ1 and
ρ(x,A)

ρk(p, x)
< δ1. (18)

Let y′
1

be the projection of the point x ∈ E the set A, i.e. such point of the set
A that ρ(x, y′

1
) = ρ(x,A). Because x = (t,±

√
r2 − t2) for 0 ≤ t < r, then

ρ(y′
1
, y1) = r − t =

√
(r − t)2 ≤

√
(r + t)(r − t) =

√
r2 − t2 = ρ(x, y′

1
),

that is to say,
ρ(y′

1
, y1) ≤ ρ(x,A). (19)

Let µ = 2, δ1 = min

(
1

2
,
ε

2

)
. Hence, from (18), (19) and from the triangle inequality

we have
ρ(x, y1)

ρk(p, x)
≤

ρ(x, y′
1
) + ρ(y′

1
, y1)

ρk(p, x)
≤

2ρ(x,A)

ρk(p, x)
< ε,

which yields the inequality (17). From here it follows that the set A ∈ M̃p,k.
Let now ϕ be a increasing function of the class C1 (homogenous function together

with 1st derivative) defined in a certain right-hand side neighbourhood of 0 such that
ϕ(0) = 0. Using the de L′Hospital′s rule and mathematical induction we can easily
prove that

ϕk+1(t)

tk
−−−→
t→0+

0 for k ∈ N. (20)

From this it follows immediately

ϕ2k+2(t)

t2k
−−−→
t→0+

0 for k ∈ N. (21)

Example 2. Similarly as in Example 1, let E = R2 be the two-dimensional Carte-
sian space, and let A,B be sets defined by (16). Let f = id, where id is the iden-
tity function defined in a right-hand side neighbourhood of 0. Let moreover a, b be
functions defined in a right-hand side neighbourhood of 0 and filgilling the
condition (13).

We shall prove that (A,B) ∈ Tl(a, b, k, p) for k ∈ N and p = (0, 0). Let y2 be an
arbitrary point of the set B. Then y2 = (t, ϕk+1(t)) and

r = ρ(p, y2) =
√

t2 + ϕ2k+2(t). (22)
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Hence it follows that y1 = (
√

t2 + ϕ2k+2(t), 0) ∈ A∩Sρ(p, r), where Sρ(p, r) denotes
the sphere with the centre at the point p and the radius r in the metric space (E, ρ).
From the assumptions on the funcion ϕ and from (22) it follows that r → 0+ if and
only if t → 0+. Hence and from (20), (21), (22) for r > 0 we have

1

r2k
ρ2(y1, y2) =

(
√

t2 + ϕ2k+2(t) − t)2 + ϕ2k+2(t)

(t2 + ϕ2k+2(t))k

= 2
t2 + ϕ2k+2(t) − t

√
t2 + ϕ2k+2(t)

(t2 + ϕ2k+2(t))k

= 2
ϕ2k+2(t) + t2 − t

√
t2 + ϕ2k+2(t)

t2k

1

(1 + ϕ2k+2(t)/t2)k
−−−→
t→0+

2

(
ϕ2k+2(t)

t2k
+

t −
√

t2 + ϕ2k+2(t)

t2k−1

)
= 2

(
ϕ2k+2(t)

t2k
−

ϕ2k+2(t)

t2k−1(
√

t2 + ϕ2k+2(t) + t)

)

= 2

(
ϕ2k+2(t)

t2k
−

ϕ2k+2(t)

t2k(
√

1 + ϕ2k+2(t)/t2 + 1)

)

= 2
ϕ2k+2(t)

t2k

(
1 −

1

1 +
√

1 + ϕ2k+2(t)/t2

)
−−−→
t→0+

(
ϕk+1(t)

tk

)2

−−−→
t→0+

0,

that is to say,
1

rk
ρ(y1, y2)−−−→

r→0+
0. (23)

From here, from the inequality

dρ(A ∪ B) ≤ dρA + dρB + ρ(A,B) for A,B ∈ E0, (24)

from the fact that f = id and from Theorem 2.1 of the paper [8] we obtain

1

rk
l(A ∩ Sl(p, r)a(r), B ∩ Sl(p, r)b(r)) ≤

1

rk
dρ((A ∩ Sl(p, r)a(r)) ∪ (B ∩ Sl(p, r)b(r)))

≤
1

rk
dρ(A ∩ Sl(p, r)a(r)) +

1

rk
dρ(B ∩ Sl(p, r)b(r))

+
1

rk
ρ(A ∩ Sl(p, r)a(r), B ∩ Sl(p, r)b(r))

≤
1

rk
dρ(A ∩ Sl(p, r)a(r)) +

1

rk
dρ(B ∩ Sl(p, r)b(r)) +

1

rk
ρ(y1, y2)−−−→

r→0+
0,
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i.e.,
1

rk
l(A ∩ Sl(p, r)a(r), B ∩ Sl(p, r)b(r))−−−→

r→0+
0. (25)

Because the pair of sets (A,B) is (a, b)-clustered at the point p of the metric
space (E, ρ), then from here and from (25) it follows that (A,B) ∈ Tl(a, b, k, p) for
k ∈ N.

References
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Math., 1963, 10, 105–311.

[3] Grochulski J. Some properties of tangency relations. Demonstratio Math., 1995, 28,
361–367.

[4] Grochulski J., Konik T., Tkacz M. On the tangency of sets in metric spaces. Ann. Polon.
Math., 1980, 38, 121–131.

[5] Konik T. On the reflexivity symmetry and transitivity of the tangency relations of sets of the

class fMp,k. J. Geom., 1995, 52, 142–151.

[6] Konik T. The compatibility of the tangency relations of sets in generalized metric spaces. Mat.
Vesnik, 1998, 50, 17–22.

[7] Konik T. On the compatibility and the equivalence of the tangency relations of sets of the

classes A∗

p,k. J. Geom., 1998, 63, 124–133.

[8] Konik T. On some tangency relation of sets. Publ. Math. Debrecen, 1999, 55/3-4, 411–419.

[9] Konik T. On the sets of the classes fMp,k. Demonstratio Math., 2000, 33(2) 407–417.

[10] Konik T. O styczności zbiorów w uogólnionych przestrzeniach metrycznych. Wydawnictwo
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Poland

E-mail: konik@imi.pcz.pl

Received January 4, 2007



BULETINUL ACADEMIEI DE ŞTIINŢE
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Abstract. We study asymptotic average scheme for semi-Markov queuing systems
using compensating operator of the corresponding extended Markov process. The
peculiarity of our queuing system is that the series scheme is considered with phase
merging procedure.
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1 Introduction

The queuing system (QS) of [SM |M |1|∞]N type means that the input flow is
described by a semi-Markov process, the service time is exponentially distributed,
there are N servers connected by a route probability matrix. So the queuing net-
works is considered with a semi-Markov flow. The peculiarity of our queuing system
is that the series scheme is considered with phase merging procedure [1]. The ave-
rage algorithm is established for the queuing process (QP) described the number of
claims at every node. Analogously problem was investigated in work [1].

2 Preliminaries

The regular semi-Markov process kε(t), t ≥ 0 on the standard phase space (E,
E ) in the series scheme, with the small series parameter ε → 0 (ε > 0), given by the
semi-Markov kernel [1, 3, 4].

Qε(κ,B, t) = P ε(κ,B)Gκ(t), κ ∈ E,B ∈ e, t ≥ 0. (1)

The stochastic kernel

P ε(κ,B) = P (κ,B) + εP1(κ,B). (2)

The stochastic kernel P (κ,B) is coordinated with the split phase space

E =

N⋃

k=1

Ek, Ek

⋂
Ek = ⊘, k 6= k′, (3)

c© V.Korolyk, Gh.Mishkoy, A.Mamonova, Iu.Griza, 2008
∗This work is supported partially by Russian Foundation for Basic Research grant

08.820.08.09RF.
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as follows

P (κ,Ek) = δk(κ) :=

{
1, κ ∈ Ek

0, κ /∈ Ek

(4)

The perturbing kernel P1(κ,B) provides the transition probabilities of the embedded
Markov chain kε

n, n ≥ 0, between classes of states Ek, 1 ≤ k ≤ N , which tend to
zero as ε → 0.

The renewal moments τn, n ≥ 0, are defined by the distribution functions

Gκ(t) = P (θn+1 ≤ t|kε

n = κ) =: P (θκ ≤ t), (5)

here θn+1 = τn+1−τn, n ≥ 0, are the sojourn times. For more details of semi-Markov
process see monograph [1, Ch 1].

Introduce the mean values of sojourn time

g(κ) := Eθκ =

∞∫

0

Ḡκ(t)dt, Ḡκ(t) := 1 − Gκ(t), (6)

and the average intensities

q(κ) = 1/g(κ), κ ∈ E. (7)

In what follows the associated Markov process k0(t), t ≥ 0, given by the generator

Qϕ(κ) = q(κ)

∫

E

P (κ, dy)[ϕ(y) − ϕ(κ)], (8)

is uniformly ergodic in every class Ek, k ∈ Ê, Ê = {1, 2, . . . , N} with the stationary
distributions πk(dκ), k ∈ Ê. The corresponding embedded Markov chain k0

n =
k0(τn), n ≥ 0, is uniformly ergodic also with the stationary distributions ρk(dκ),
k ∈ Ê. Note that the following relations are valid:

πk(dκ)q(κ) = qkρk(dκ), qk =

∫

E1

πk(dκ)q(κ). (9)

According to Theorem 4.1 [1, § 4.2.1, p.108] the merged process ν(kε(t/ε)) con-
verges weakly as ε → 0, to the Markov process k̂(t), t ≥ 0, on the merged phase
space Ê = {1, 2, . . . , N}, given by the generative matrix Q̂ = [q̂kr; k, r ∈ Ê].

We assume that the merged Markov process k̂(t), t ≥ 0, is ergodic with the
stationary distribution π̂ = (π̂k, k ∈ Ê).

3 Queuing process in the networks

The evolution of claims in the networks on Ê = {1, 2, . . . , N} is defined by the
route matrix P0 and the intensity vector of exponential service time µ = (µk, k ∈ Ê).
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The queuing process in average scheme is considered in the following normalizing
form:

U ε(t) = ε2ρε(t/ε2), t ≥ 0, ε > 0, (10)

where ρε(t) = (ρε

k
(t), k ∈ Ê) is the vector with the components ρε

k
(t) – number of

claims at node k ∈ Ê at time t.
The queuing process U ε(t) in average scheme is considered under the following

assumptions.

A1: The queuing networks is open, that means the route matrix satisfies the
condition:

p0

k0
:= 1 −

N∑

r=1

p0

kr,max
k∈Ê

p0

k0
> 0. (11)

A2: There exists nonnegative solution of the evolutionary equation

dU0(t)/dt = C(U0(t)), U0(0) = u0, (12)

where the velocity vector
C(u) = (Ck(u), k ∈ Ê), (13)

is defined by its components

Ck(u) = γk(u) + λk, γk(u) =

N∑

r=1

µrur[prk − δrk], λk = π̂kqk.

Theorem 1. Under the assumptions A1-A2 the weak convergence U ε(t) ⇒
U0(t), ε → 0, takes place.

Corollary 1. Let exist an equilibrium point u0 ≥ 0 satisfying

C(u0) = 0. (14)

Then under initial condition U ε(0) ⇒ u0, ε → 0, the weak convergence U ε(t) ⇒
u0, ε → 0, takes place.

Remark 1. The vector π̃ = (π̃k := qπ̂kqk, k ∈ Ê), q−1 =
∑

k∈Ê

π̂kqk describes the

stationary distribution of the Markov process k̃(t), t ≥ 0, defined by the generating
matrix (see [1, Theorem 4.1])

Q̃ = [pkr, k, r ∈ Ê], pkr =

∫

E1

ρk(dκ)P1(κ,Er). (15)

Indeed (see [1,(4.17) and (4.19)],

∑

k

π̂kqkpkr =
∑

k

π̂kqkp̂kp̂kr =
∑

k

π̂kq̂kp̂kr =
∑

k

π̂k q̂kr = 0. (16)
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4 Proof of Theorem. Compensating operator

The extended Markov renewal process

uε

n = uε(τ ε

n), kε

n = kε(τ ε

n), τ ε

n = ε2τn, n ≥ 0, (17)

is characterized by the compensating operator (CO) (see [1,Ch 1, 2])

Lεϕ(u, κ) = ε−2q(κ)E[ϕ(uε

n+1, k
ε

n+1) − ϕ(u, κ)]uε

n = u, kε

n = κ. (18)

The key step in asymptotic analysis of the QS is to construct an asymptotic
expansion of the CO (18).

Lemma 1. The CO (18) can be represented in the following form

Lεϕ(u, κ) = ε−2q(κ)[Gε(κ)P εDε(k) − I, (19)

where

Gε(κ) =

∞∫

0

Gκ(dt)Γε

t . (20)

The semigroup Γε
t is defined by the generator

Γεϕ(u) =
N∑

k,r=1

γkr(u)[ϕ(u + ε2erk) − ϕ(u)], (21)

ekr := er − ek, ek := (δkl, l ∈ Ê).

The operators Dε(k), k ∈ Ê, are defined by

Dε(k)ϕ(u) = φ(u + ε2erk), k ∈ Ê. (22)

The operator

P ε = P + εP1, (23)

where

Pϕ(κ) =

∫

E

P (κ, dy)ϕ(y), P1ϕ(κ) =

∫

E

P1(κ, dy)ϕ(y). (24)

Proof of Lemma 1. The representation (19) is direct conclusion of the equality

uε

n+1 − uε

n = βε(θn+1) + ε2en+1,

where βε(t), t ≥ 0, is the Markov process given by the generator (21).
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Lemma 2. The CO (19) admits the following asymptotic expansion on the test-

function φ(u, κ) ∈ C3(Rd) uniformly in κ ∈ E:

Lε(k)ϕ(u, κ) = [ε−2Q + ε−1Q1 + Q2(κ) + θε

L(κ)]ϕ(u, κ), (25)

where

Qϕ(κ) = q(κ)

∫

E

P (κ, dy)[ϕ(y) − ϕ(κ)], (26)

Q1ϕ(κ) = q(κ)

∫

E

P1(κ, dy)ϕ(y), (27)

λ(κ) = (λk(κ), k ∈ Ê), λk(κ) = q(κ)δk(κ), Q2(κ)ϕ(u) = [γ(u) + λ(κ)]ϕ′(u) (28)

and the negligible term θε

L
(κ)ϕ(u) → 0 as ε → 0, ϕ(u) ∈ C3(RN ).

Proof of Lemma 2. The following identity is used below:

GD − I = G − I + D − I + (G − I)(D − I),

and asymptotic expansion on the test- function ϕ(u) ∈ C3(RN )

ε−2q(κ)[Gε(κ) − I]Pϕ(u) = [q(κ)G(κ)P + θε

g(κ)P ]ϕ(u),

ε−2q(κ)P [Dε(k) − I]ϕ(u) = [q(κ)PD(k) + θε

d(κ)P ]ϕ(u),

ε−2q(κ)εP1[D
ε(k) − I]ϕ(u) = [εq(κ)P1D(k) + εθε

dl(κ)P1]ϕ(u),

ε−2q(κ)[Gε(κ) − I]P ε[Dε(k) − I]ϕ(u) = θε

gd
(κ)P εϕ(u)

is a negligible term.
The limit operator in the theorem is defined by a solution of singular perturbation

problem for the truncated operator

Lε

0
= ε−2Q + ε−1Q1 + Q2(κ). (29)

Lemma 3. The limit operator L in the theorem is defined by formulae (see [1,

Proposition 5.3., p.146]:

L = Π̂ΠQ2(κ)ΠΠ̂, (30)

where the projectors Π and Π̂ act as follows:

Πϕ(κ) =

N∑

k=1

ϕ̂klk(κ), ϕ̂k =

∫

E1

πk(dκ)ϕ(κ), k ∈ Ê,

Π̂ϕ̂(κ) =

N∑

k=1

π̂kϕ̂k.
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Corollary 2. The limit operator L in Theorem is defined as follows

Lϕ(u) = C(u)ϕ′(u) =

N∑

k=1

Ck(u)ϕ′

k(u), ϕ′

k(u) := ∂ϕ(u)/∂uk , (31)

where C(u) = γ(u) + λ,Ck(u) = γk(u) + π̂kqk, λ = (π̂kqk, k ∈ Ê).
The last step of the proof of theorem is realized by using Theorem 6.6

from [1, Ch. 6, p.202].
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