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The intersection and the union

of the asynchronous systems

Serban E. Vlad

Abstract. The asynchronous systems f are the models of the asynchronous circuits
from digital electrical engineering. They are multi-valued functions that associate to
each input u : R → {0, 1}m a set of states x ∈ f(u), where x : R → {0, 1}n. The
intersection of the systems allows adding supplementary conditions in modeling and
the union of the systems allows considering the validity of one of two systems in mode-
ling, for example when testing the asynchronous circuits and the circuit is supposed to
be ’good’ or ’bad’. The purpose of the paper is that of analyzing the intersection and
the union against the initial/final states, initial/final time, initial/final state functions,
subsystems, dual systems, inverse systems, Cartesian product of systems, parallel
connection and serial connection of systems.

Mathematics subject classification: 93C62, 94C10.
Keywords and phrases: Asynchronous system, asynchronous circuit, signal, testing,
modeling.

1 Preliminary definitions

Definition 1. The set B = {0, 1} endowed with the laws: the complement ’ ’, the
union ’∪’, the intersection ’·’, the modulo 2 sum ’⊕’ etc is called the binary Boole
algebra.

Definition 2. We denote by R the set of the real numbers. The initial value x(−∞+
0) ∈ B and the final value x(∞− 0) ∈ B of the function x : R → B are defined by

∃t0 ∈ R,∀t < t0, x(t) = x(−∞ + 0),

∃tf ∈ R,∀t > tf , x(t) = x(∞− 0).

The definition and the notations are similar for the R → Bn functions, n ≥ 1.

Definition 3. The characteristic function χA : R → B of the set A ⊂ R is defined
by

∀t ∈ R, χA(t) =

{

1, if t ∈ A,
0, if t /∈ A.

Definition 4. The set S(n) of the n−signals consists by definition in the functions
x : R → Bn of the form

x(t) = x(−∞ + 0) · χ(−∞,t0)(t) ⊕ x(t0) · χ[t0,t1)(t) ⊕ x(t1) · χ[t1,t2)(t) ⊕ . . .
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where x(−∞ + 0) ∈ Bn, t0 < t1 < t2 < ... is some strictly increasing unbounded
sequence of real numbers and the laws ’·’, ’⊕’ are induced by those from B.

Notation 1. For an arbitrary set H, we use the notation

P ∗(H) = {H ′|H ′ ⊂ H,H ′ 6= ∅}.

Definition 5. The functions f : U → P ∗(S(n)), U ∈ P ∗(S(m)) are called (asyn-
chronous) systems. Any u ∈ U is called (admissible) input of f and the functions
x ∈ f(u) are the (possible) states of f .

Remark 1. In the paper t ∈ R represents time. The n−signals model the tensions
in digital electrical engineering and the asynchronous systems are the models of the
asynchronous circuits. They represent multi-valued associations between a cause u
and a set f(u) of effects because of the uncertainties that occur in modeling.

Definition 5 represents the definition of the systems given under the explicit
form. In previous works (such as [1]) we used equations and inequalities for defining
systems under the implicit form.

Definition 6. We have the systems f : U → P ∗(S(n)), g : V → P ∗(S(n)) with
U, V ∈ P ∗(S(m)). If ∃u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅, the system f ∩ g : W → P ∗(S(n))
defined by

W = {u|u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅}, (1.1)

∀u ∈ W, (f ∩ g)(u) = f(u) ∩ g(u)

is called the intersection of f and g.

Remark 2. The intersection of the systems represents the gain of information (of
precision) in the modeling of a circuit that results by considering the validity of two
(compatible!) models at the same time.

We have the special case when V = S(m) and the system g is constant (such
systems are called autonomous): ∀u ∈ S(m), g(u) = X where X ∈ P ∗(S(n)). Then
f ∩ X : W → P ∗(S(n)) is the system given by

W = {u|u ∈ U, f(u) ∩ X 6= ∅},

∀u ∈ W, (f ∩ X)(u) = f(u) ∩ X.

We interpret f ∩X in the next manner. When f models a circuit, f ∩X represents
a gain of information resulting by the statement of a request that does not depend
on u.

Example 1. We give some possibilities of choosing in the intersection f ∩ g the
constant system g = X :

i) the initial value of the states is null;

ii) the coordinates x1, ..., xn of the states are monotonous relative to the order
0 < 1 (this allows defining the so called hazard-freedom of the systems);
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iii) at each time instant, at least one coordinate of the state should be 1:

X = {x|x ∈ S(n),∀t ∈ R, x1(t) ∪ ... ∪ xn(t) = 1};

iv) the state can switch1 with at most one coordinate at a time (a special case
when the so called technical condition of good running of the systems is satisfied):

X = {x|x ∈ S(n),∀t ∈ R, x(t − 0) 6= x(t) =⇒ ∃!i ∈ {1, ..., n}, xi(t − 0) 6= xi(t)};

v) X represents a ’stuck at 1 fault’:

∃i ∈ {1, ..., n},X = {x|x ∈ S(n),∀t ∈ R, xi(t) = 1},

this last choice of X is interesting in designing systems for testability, respectively
in designing redundant systems;

vi) X consists in all x ∈ S(n) satisfying the next ’absolute inertia’ property:
δr > 0, δf > 0 are given so that ∀i ∈ {1, ..., n},∀t ∈ R,

xi(t − 0) · xi(t) ≤
⋂

ξ∈[t,t+δr ]

xi(ξ);

xi(t − 0) · xi(t) ≤
⋂

ξ∈[t,t+δf ]

xi(ξ).

The interpretation of these inequalities is the following: if xi switches from 0 to 1,
then it remains 1 for more than δr time units and if xi switches from 1 to 0 then it
remains 0 for more than δf time units.

Example 2. We show a possibility of choosing in the intersection f ∩ g, g non-
constant. The Boolean function F : Bm → Bn is given and f is the arbitrary model
of a circuit that computes F . V = S(m) and the parameters δr > 0, δf > 0 exist so
that

∀u ∈ S(m), g(u) = {x|x ∈ S(n),∀i ∈ {1, ..., n},∀t ∈ R,

xi(t − 0) · xi(t) ≤
⋂

ξ∈[t−δr,t)

Fi(u(ξ)),

xi(t − 0) · xi(t) ≤
⋂

ξ∈[t−δf ,t)

Fi(u(ξ))}

meaning that g(u) contains all x with the property that, on all the coordinates i
and at all the time instants t:

– xi switches from 0 to 1 only if Fi(u(·)) was 1 for at least δr time units;
– xi switches from 1 to 0 only if Fi(u(·)) was 0 for at least δf time units.

1The left limit x(t − 0) of x(t) that occurs in some examples is defined like this:

∀t ∈ R,∃ε > 0, ∀ξ ∈ (t − ε, t), x(ξ) = x(t − 0);

x switches if x(t − 0) 6= x(t), i.e. if it has a (left) discontinuity.
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Definition 7. The union of the systems f : U → P ∗(S(n)) and g : V →
P ∗(S(n)), U, V ∈ P ∗(S(m)) is the system f ∪ g : U ∪ V → P ∗(S(n)) that is defined by

∀u ∈ U ∪ V, (f ∪ g)(u) =







f(u), if u ∈ U \ V,
g(u), if u ∈ V \ U,

f(u) ∪ g(u), if u ∈ U ∩ V.

If U ∩ V = ∅, then f ∪ g is called the disjoint union of f and g.

Remark 3. The union of the systems is the dual concept to that of intersection
representing the loss of information (of precision) in modeling that results in general
by considering the validity of one of two models of the same circuit. The disjoint
union means no loss of information however.

Another possibility is that in Definition 7 f, g model two different circuits, see
Example 3.

We have the special case when in the union f ∪ g the system g is constant under
the form V = S(m), g : S(m) → P ∗(S(n)), ∀u ∈ S(m), g(u) = X, with X ⊂ S(n).
Then f ∪ X : S(m) → P ∗(S(n)) is defined by:

∀u ∈ S(m), (f ∪ X)(u) =

{

X, if u ∈ S(m) \ U,
f(u) ∪ X, if u ∈ U.

The interpretation of f ∪X is the next one: when f is the model of an asynchronous
circuit, X represents perturbations that are independent on u.

Example 3. In the union f ∪ g we presume that U ∩ V 6= ∅ and f , g model two
different circuits, the first considered ’good, without errors’ and the second ’bad,
with a certain error’. The testing problem consists in finding an input u ∈ U ∩V so
that f(u) ∩ g(u) = ∅; after its application to f ∪ g and the measurement of a state
x ∈ (f ∪ g)(u), we can say if x ∈ f(u) and the tested circuit is ’good’ or perhaps
x ∈ g(u) and the tested circuit is ’bad’.

2 Initial states and final states

Remark 4. In the next properties of the system f :

∀u ∈ U,∀x ∈ f(u),∃µ ∈ Bn,∃t0 ∈ R,∀t < t0, x(t) = µ, (2.1)

∀u ∈ U,∃µ ∈ Bn,∀x ∈ f(u),∃t0 ∈ R,∀t < t0, x(t) = µ, (2.2)

∃µ ∈ Bn,∀u ∈ U,∀x ∈ f(u),∃t0 ∈ R,∀t < t0, x(t) = µ, (2.3)

∀u ∈ U,∀x ∈ f(u),∃µ ∈ Bn,∃tf ∈ R,∀t ≥ tf , x(t) = µ, (2.4)

∀u ∈ U,∃µ ∈ Bn,∀x ∈ f(u),∃tf ∈ R,∀t ≥ tf , x(t) = µ, (2.5)

∃µ ∈ Bn,∀u ∈ U,∀x ∈ f(u),∃tf ∈ R,∀t ≥ tf , x(t) = µ (2.6)
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we have replaced t > tf from Definition 2 with t ≥ tf and on the other hand (2.1) is
always true due to the way that the n−signals were defined. We remark the truth
of the implications

(2.3) =⇒ (2.2) =⇒ (2.1),

(2.6) =⇒ (2.5) =⇒ (2.4).

Definition 8. Because f satisfies (2.1), we use to say that it has initial states. The
vectors µ are called (the) initial states (of f), or (the) initial values of the states
(of f).

Definition 9. We presume that f satisfies (2.2). We say in this situation that it
has race-free initial states and the initial states µ are called race-free themselves.

Definition 10. When f satisfies (2.3), we use to say that it has a (constant) initial
state µ. We say in this case that f is initialized and that µ is its (constant) initial
state.

Definition 11. If f satisfies (2.4), it is called absolutely stable and we also say that
it has final states. The vectors µ have in this case the name of final states (of f),
or of final values of the states (of f).

Definition 12. If f fulfills the property (2.5), it is called absolutely race-free stable
and we also say that it has race-free final states. The final states µ are called in this
case race-free.

Definition 13. We presume that the system f satisfies (2.6). Then it is called
absolutely constantly stable or equivalently we say that it has a (constant) final state.
The vector µ is called in this situation (constant) final state.

Theorem 1. Let f : U → P ∗(S(n)) and g : V → P ∗(S(n)) be some systems,
U, V ∈ P ∗(S(m)). If ∃u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅ and f has race-free initial states
(constant initial state), then f ∩ g has race-free initial states (constant initial state).

Proof. If one of the previous properties is true for the states in f(u), then it is true
for the states in the subset f(u) ∩ g(u) ⊂ f(u) also, u ∈ U . 2

Theorem 2. If f has final states (race-free final states, constant final state) and
f ∩ g exists, then f ∩ g has final states (race-free final states, constant final state).

Theorem 3. a) If f, g have race-free initial states and ∀u ∈ U ∩V, f(u)∩ g(u) 6= ∅
then f ∪ g has race-free initial states.

b) If f, g have constant initial states and
⋃

u∈U

f(u)∩
⋃

u∈V

g(u) 6= ∅ then f ∪ g has

constant initial states.

Proof. a) The hypothesis states the truth of the next properties

∀u ∈ U,∃µ ∈ Bn,∀x ∈ f(u),∃t0 ∈ R,∀t < t0, x(t) = µ,
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∀u ∈ V,∃µ ∈ Bn,∀x ∈ g(u),∃t0 ∈ R,∀t < t0, x(t) = µ,

∀u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅. (2.7)

If (U \V )∪ (V \U) 6= ∅, then ∀u ∈ (U \V )∪ (V \U) the statement is true because it
states separately for f and g that they have race-free initial states. And if U∩V 6= ∅,
then ∀u ∈ U ∩ V,∀x ∈ f(u) ∪ g(u), the initial value µ = x(−∞ + 0) depends on u
only, not also on the fact that x ∈ f(u) or x ∈ g(u) due to (2.7). We have that

∀u ∈ U ∪ V,∃µ ∈ Bn,∀x ∈ (f ∪ g)(u),∃t0 ∈ R,∀t < t0, x(t) = µ

is true.
b) Because

⋃

u∈U

f(u) ∩
⋃

u∈V

g(u) 6= ∅, in the statements

∃µ ∈ Bn,∀u ∈ U,∀x ∈ f(u),∃t0 ∈ R,∀t < t0, x(t) = µ,

∃µ′ ∈ Bn,∀u ∈ V,∀x ∈ g(u),∃t0 ∈ R,∀t < t0, x(t) = µ′

the two constants µ and µ′, whose existence is unique, coincide. 2

Theorem 4. a) If f, g have final states, then f ∪ g has final states.

b) If f, g have race-free final states and ∀u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅ then f ∪ g
has race-free final states.

c) If f, g have constant final states and
⋃

u∈U

f(u) ∩
⋃

u∈V

g(u) 6= ∅ then f ∪ g has

constant final states.

3 Initial time and final time

Notation 2. The set of the n−signals with final values is denoted by S
(n)
c . It consists

in the functions x : R → Bn of the form

x(t) = x(−∞ + 0) · χ(−∞,t0)(t) ⊕ x(t0) · χ[t0,t1)(t) ⊕ x(t1) · χ[t1,t2)(t) ⊕ . . .

· · · ⊕ x(tk) · χ[tk ,tk+1)(t) ⊕ x(∞− 0) · χ[tk+1,∞)(t)

where x(−∞ + 0), x(∞− 0) ∈ Bn and t0 < t1 < ... < tk < tk+1 is a finite family of
real numbers, k ≥ 0.

Remark 5. We state the next properties on the asynchronous system f : U →
P ∗(S(n)), U ∈ P ∗(S(m)):

∀u ∈ U,∀x ∈ f(u),∃µ ∈ Bn,∃t0 ∈ R,∀t < t0, x(t) = µ, (3.1)

∀u ∈ U,∃t0 ∈ R,∀x ∈ f(u),∃µ ∈ Bn,∀t < t0, x(t) = µ, (3.2)

∃t0 ∈ R,∀u ∈ U,∀x ∈ f(u),∃µ ∈ Bn,∀t < t0, x(t) = µ, (3.3)

∀u ∈ U,∀x ∈ f(u) ∩ S(n)
c ,∃µ ∈ Bn,∃tf ∈ R,∀t ≥ tf , x(t) = µ, (3.4)
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∀u ∈ U,∃tf ∈ R,∀x ∈ f(u) ∩ S(n)
c ,∃µ ∈ Bn,∀t ≥ tf , x(t) = µ, (3.5)

∃tf ∈ R,∀u ∈ U,∀x ∈ f(u) ∩ S(n)
c ,∃µ ∈ Bn,∀t ≥ tf , x(t) = µ. (3.6)

The properties (3.1) and (3.4) are fulfilled by all the systems and the next implica-
tions hold:

(3.3) =⇒ (3.2) =⇒ (3.1),

(3.6) =⇒ (3.5) =⇒ (3.4).

Definition 14. The fact that f satisfies (3.1) is expressed sometimes by saying that
it has unbounded initial time and any t0 satisfying this property is called unbounded
initial time (instant).

Definition 15. Let f be a system that fulfills the property (3.2). We say that it has
bounded initial time and any t0 making this property true is called bounded initial
time (instant).

Definition 16. When f satisfies (3.3), we use to say that it has fixed initial time
and any t0 fulfilling (3.3) is called fixed initial time (instant).

Definition 17. The fact that f satisfies (3.4) is expressed by saying that it has
unbounded final time and any tf satisfying this property is called unbounded final
time (instant).

Definition 18. If f fulfills the property (3.5), we say that it has bounded final time.
Any number tf satisfying (3.5) is called bounded final time (instant).

Definition 19. We presume that the system f satisfies the property (3.6). Then
we say that it has fixed final time and any number tf satisfying (3.6) is called fixed
final time (instant).

Theorem 5. If f has bounded initial time (fixed initial time) and f ∩ g exists, then
f ∩ g has bounded initial time (fixed initial time).

Proof. Like previously, if one of the above properties is true for the states in f(u),
then it is true for the states in f(u) ∩ g(u) ⊂ f(u), u ∈ U . 2

Theorem 6. If f has bounded final time (fixed final time) and f ∩ g exists, then
f ∩ g has bounded final time (fixed final time).

Theorem 7. If f, g have bounded initial time (fixed initial time), then f ∪ g has
bounded initial time (fixed initial time).

Proof. We presume that f, g have bounded initial time. If (U \ V ) ∪ (V \ U) 6= ∅,
then ∀u ∈ (U \V )∪(V \U), (f ∪g)(u) has the desired property, that refers to exactly
one of f, g. We presume that U ∩ V 6= ∅ and let u ∈ U ∩ V be arbitrary. t′0, t

”
0 ∈ R

exist, depending on u, so that

∀x ∈ f(u),∃µ ∈ Bn,∀t < t′0, x(t) = µ,
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∀x ∈ g(u),∃µ ∈ Bn,∀t < t”0, x(t) = µ,

t0 = min{t′0, t
”
0} satisfies

∀x ∈ f(u) ∪ g(u),∃µ ∈ Bn,∀t < t0, x(t) = µ.

2

Theorem 8. If f, g have bounded final time (fixed final time), then f∪g has bounded
final time (fixed final time).

4 Initial state function and set of initial states.

Final state function and set of final states

Definition 20. Let f : U → P ∗(S(n)), U ∈ P ∗(S(m)) be a system. The initial state
function φ0 : U → P ∗(Bn) and the set of the initial states Θ0 ∈ P ∗(Bn) of f are
defined by

∀u ∈ U, φ0(u) = {x(−∞ + 0)|x ∈ f(u)},

Θ0 =
⋃

u∈U

φ0(u).

Definition 21. If f has final states, i.e. if (2.4) is satisfied, the final state function
φf : U → P ∗(Bn) and the set of the final states Θf ∈ P ∗(Bn) of f are

∀u ∈ U, φf (u) = {x(∞− 0)|x ∈ f(u)},

Θf =
⋃

u∈U

φf (u).

Theorem 9. For the systems f, g we have (φ ∩ γ)0 : W → P ∗(Bn),

∀u ∈ W, (φ ∩ γ)0(u) = φ0(u) ∩ γ0(u),

(Θ ∩ Γ)0 =
⋃

u∈W

(φ ∩ γ)0(u).

We have presumed that the domain W of f ∩ g is non-empty and we have denoted
by φ0, γ0, (φ∩γ)0 the initial state functions of f, g, f ∩ g and respectively by (Θ∩Γ)0
the set of initial states of f ∩ g.

Proof. We can write that ∀u ∈ W,

(φ ∩ γ)0(u) = {x(−∞ + 0)|x ∈ (f ∩ g)(u)} = {x(−∞ + 0)|x ∈ f(u) ∩ g(u)} =

= {x(−∞ + 0)|x ∈ f(u)} ∩ {x(−∞ + 0)|x ∈ g(u)} = φ0(u) ∩ γ0(u).

2
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Theorem 10. If f, g have final states, then we have (φ ∩ γ)f : W → P ∗(Bn),

∀u ∈ W, (φ ∩ γ)f (u) = φf (u) ∩ γf (u),

(Θ ∩ Γ)f =
⋃

u∈W

(φ ∩ γ)f (u).

We have presumed that W 6= ∅ and the notations are obvious and similar with those
from the previous theorem.

Theorem 11. For the systems f, g we have (φ ∪ γ)0 : U ∪ V → P ∗(Bn),

∀u ∈ U ∪ V, (φ ∪ γ)0(u) =







φ0(u), u ∈ U \ V,
γ0(u), u ∈ V \ U,

φ0(u) ∪ γ0(u), u ∈ U ∩ V,

(Θ ∪ Γ)0 =
⋃

u∈U∪V

(φ ∪ γ)0(u).

We have denoted by (φ ∪ γ)0 the initial state function of f ∪ g and respectively by
(Θ ∪ Γ)0 the set of initial states of f ∪ g.

Proof. Three possibilities exist for an arbitrary u ∈ U ∪ V : u ∈ U \ V, u ∈ V \ U
and u ∈ U ∩ V. If for example u ∈ U \ V, then:

(φ ∪ γ)0(u) = {x(−∞ + 0)|x ∈ (f ∪ g)(u)} = {x(−∞ + 0)|x ∈ f(u)} = φ0(u).

2

Theorem 12. We presume that f, g have final states. We have (φ∪ γ)f : U ∪ V →
P ∗(Bn),

∀u ∈ U ∪ V, (φ ∪ γ)f (u) =







φf (u), u ∈ U \ V,
γf (u), u ∈ V \ U,

φf (u) ∪ γf (u), u ∈ U ∩ V,

(Θ ∪ Γ)f =
⋃

u∈U∪V

(φ ∪ γ)f (u)

where the notations are obvious and similar with those from the previous theorem.

5 Subsystem

Definition 22. Let f : U → P ∗(S(n)) and g : V → P ∗(S(n)), U, V ∈ P ∗(S(m)) be
two systems. f is called a subsystem of g if

U ⊂ V and ∀u ∈ U, f(u) ⊂ g(u).

Remark 6. The subsystem of a system represents a more precise model of the same
circuit, obtained perhaps after restricting the inputs set.

A special case in the inclusion f ⊂ g is the one when f is uni-valued (it is called
deterministic in this situation). This is considered to be non-realistic in modeling.
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Example 4. Let f be a system and we take some arbitrary µ ∈ Θ0. The subsystem
fµ : Uµ → P ∗(S(n)) defined by

Uµ = {u|u ∈ U,µ ∈ φ0(u)},

∀u ∈ Uµ, fµ(u) = {x|x ∈ f(u), x(−∞ + 0) = µ}

is called the restriction of f at µ. The next property is satisfied: for Θ0 = {µ1, ..., µk},
we have f = fµ1 ∪ ... ∪ fµk (the union is not disjoint).

Theorem 13. Let f : U → P ∗(S(n)), f1 : U1 → P ∗(S(n)), g : V → P ∗(S(n)),
g1 : V1 → P ∗(S(n)) be some systems with U,U1, V, V1 ∈ P ∗(S(m)). If f ⊂ f1, g ⊂ g1

and if f ∩ g exists, then f1 ∩ g1 exists and the inclusion f ∩ g ⊂ f1 ∩ g1 is true.

Proof. We denote by W the set from (1.1) and with W1 the set

W1 = {u|u ∈ U1 ∩ V1, f1(u) ∩ g1(u) 6= ∅}

From the fact that U ⊂ U1, ∀u ∈ U, f(u) ⊂ f1(u), V ⊂ V1, ∀v ∈ V, g(v) ⊂ g1(v) and
W 6= ∅ we infer W ⊂ W1, W1 6= ∅ and furthermore we have ∀u ∈ W, (f ∩ g)(u) =
f(u) ∩ g(u) ⊂ f1(u) ∩ g1(u) = (f1 ∩ g1)(u). 2

Theorem 14. We consider the systems f : U → P ∗(S(n)), f1 : U1 → P ∗(S(n)),
g : V → P ∗(S(n)), g1 : V1 → P ∗(S(n)) with U,U1, V, V1 ∈ P ∗(S(m)). If f ⊂ f1,
g ⊂ g1 then f ∪ g ⊂ f1 ∪ g1.

Proof. From U ⊂ U1, V ⊂ V1 we infer that U ∪ V ⊂ U1 ∪ V1. It is shown that ∀u ∈
U ∪V, (f ∪ g)(u) ⊂ (f1∪ g1)(u) is true in all the three situations u ∈ U \V, u ∈ V \U
and u ∈ U ∩ V. For example if u ∈ U \ V, then two possibilities exist:

– u ∈ U1 \ V1, thus

(f ∪ g)(u) = f(u) ⊂ f1(u) = (f1 ∪ g1)(u),

– u ∈ U1 ∩ V1, when

(f ∪ g)(u) = f(u) ⊂ f1(u) ⊂ f1(u) ∪ g1(u) = (f1 ∪ g1)(u)

is true. We observe that u ∈ V1 \ U1 is impossible, since u /∈ U1 implies u /∈ U,
contradiction. 2

6 Dual system

Notation 3. For u ∈ S(m), we denote by u ∈ S(m) the complement of u satisfying

∀t ∈ R, u(t) = (u1(t), ..., um(t))

Definition 23. The dual system of f is the system f∗ : U∗ → P ∗(S(n)) defined in
the next way

U∗ = {u|u ∈ U},

∀u ∈ U∗, f∗(u) = {x|x ∈ f(u)}.
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Remark 7. For any u ∈ U∗, u ∈ U and Definition 23 is correct.

If f models a circuit, then f∗ models the circuit that is obtained from the pre-
vious one after the replacement of the OR gates with AND gates and viceversa and
respectively of the input and state tensions with their complements (the complement
of the ’HIGH’ tension is by definition the ’LOW’ tension and viceversa).

Theorem 15. If f ∩ g exists, then (f ∩ g)∗, f∗ ∩ g∗ exist and

(f ∩ g)∗ = f∗ ∩ g∗

Proof. We denote by W the domain (1.1) of f ∩ g. The domain of (f ∩ g)∗ is W ∗

and the domain W1 of f∗ ∩ g∗ is:

W1 = {u|u ∈ U∗ ∩ V ∗, f∗(u) ∩ g∗(u) 6= ∅} =

= {u|u ∈ U ∩ V, {x|x ∈ f(u)} ∩ {x|x ∈ g(u)} 6= ∅} =

= {u|u ∈ U ∩ V, {x|x ∈ f(u)} ∩ {x|x ∈ g(u)} 6= ∅} =

= {u|u ∈ U ∩ V, {x|x ∈ f(u)} ∩ {x|x ∈ g(u)} 6= ∅} = W ∗.

Moreover, for any u ∈ W ∗ we infer

(f ∩ g)∗(u) = {x|x ∈ (f ∩ g)(u)} = {x|x ∈ f(u) ∩ g(u)} =

= {x|x ∈ f(u)} ∩ {x|x ∈ g(u)} = f∗(u) ∩ g∗(u) = (f∗ ∩ g∗)(u)

2

Theorem 16. We have

(f ∪ g)∗ = f∗ ∪ g∗.

Proof. We remark that the equal domains of the two systems are (U∪V )∗ = U∗∪V ∗.
Let u ∈ U∗ ∪ V ∗ be an arbitrary input. If u ∈ U∗ \ V ∗, then f∗(u) = (f∗ ∪ g∗)(u)
and the fact that u ∈ U \ V implies (f ∪ g)(u) = f(u), thus

(f ∪ g)∗(u) = {x|x ∈ (f ∪ g)(u)} = {x|x ∈ f(u)} = f∗(u) = (f∗ ∪ g∗)(u).

If u ∈ V ∗\U∗, the situation is similar. We presume in this moment that u ∈ U∗∩V ∗,
implying f∗(u) ∪ g∗(u) = (f∗ ∪ g∗)(u), u ∈ U ∩ V, (f ∪ g)(u) = f(u) ∪ g(u) and we
have:

(f ∪ g)∗(u) = {x|x ∈ (f ∪ g)(u)} = {x|x ∈ f(u) ∪ g(u)} =

= {x|x ∈ f(u)} ∪ {x|x ∈ g(u)} = f∗(u) ∪ g∗(u) = (f∗ ∪ g∗)(u).

In all the three cases the statement of the theorem was proved to be true. 2
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7 Inverse system

Definition 24. The inverse system of f is defined by f−1 : X → P ∗(Sm)),

X =
⋃

u∈U

f(u),

∀x ∈ X, f−1(x) = {u|u ∈ U, x ∈ f(u)}.

Remark 8. The inputs and the states of f become states and inputs of f−1,
meaning that f−1 inverts the causes and the effects in modeling: its aim is to
answer the question ”given an effect x, which are the causes u producing it?”

Theorem 17. Let f : U → P ∗(S(n)), g : V → P ∗(S(n)), U, V ∈ P ∗(S(m)) be some
systems. If ∃u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅, then the systems (f ∩ g)−1, f−1 ∩ g−1 exist
and they have the same domain:

Y =
⋃

u∈W

(f(u) ∩ g(u)).

Furthermore, we have

(f ∩ g)−1 = f−1 ∩ g−1.

Proof. Y is obviously the domain of (f ∩ g)−1. We can write

Y =
⋃

u∈U∩V

(f(u) ∩ g(u)) = {x|∃u ∈ U ∩ V, x ∈ f(u) ∩ g(u)} =

= {x|x ∈
⋃

v∈U

f(v) ∩
⋃

v∈V

g(v),∃u, u ∈ U, x ∈ f(u) and u ∈ V, x ∈ g(u)} =

= {x|x ∈
⋃

v∈U

f(v) ∩
⋃

v∈V

g(v),∃u, u ∈ f−1(x) and u ∈ g−1(x)} =

= {x|x ∈
⋃

v∈U

f(v) ∩
⋃

v∈V

g(v), f−1(x) ∩ g−1(x) 6= ∅}

thus Y is the domain of f−1 ∩ g−1 too. We have ∀x ∈ Y,

(f ∩ g)−1(x) = {u|u ∈ U ∩ V, x ∈ (f ∩ g)(u)} = {u|u ∈ U ∩ V, x ∈ f(u) ∩ g(u)} =

= {u|u ∈ U ∩ V, x ∈ f(u)} ∩ {u|u ∈ U ∩ V, x ∈ g(u)} =

= ({u|u ∈ U \ V, x ∈ f(u)} ∪ {u|u ∈ U ∩ V, x ∈ f(u)})∩

∩({u|u ∈ V \ U, x ∈ g(u)} ∪ {u|u ∈ U ∩ V, x ∈ g(u)}) =

= {u|u ∈ U, x ∈ f(u)} ∩ {u|u ∈ V, x ∈ g(u)} = f−1(x) ∩ g−1(x) = (f−1 ∩ g−1)(x).

2
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Theorem 18. We consider the systems f : U → P ∗(S(n)), g : V → P ∗(S(n)), U, V ∈
P ∗(S(m)). The systems (f ∪ g)−1, f−1 ∪ g−1 have the domain equal with

Y ′ =
⋃

u∈U

f(u) ∪
⋃

u∈V

g(u)

and the next equality is true

(f ∪ g)−1 = f−1 ∪ g−1

Proof. The domain of (f ∪ g)−1 is

⋃

u∈U∪V

(f ∪ g)(u) =
⋃

u∈U\V

(f ∪ g)(u) ∪
⋃

u∈U∩V

(f ∪ g)(u) ∪
⋃

u∈V \U

(f ∪ g)(u) =

=
⋃

u∈U\V

f(u) ∪
⋃

u∈U∩V

(f(u) ∪ g(u)) ∪
⋃

u∈V \U

g(u) =

=
⋃

u∈U\V

f(u) ∪
⋃

u∈U∩V

f(u) ∪
⋃

u∈U∩V

g(u) ∪
⋃

u∈V \U

g(u) =
⋃

u∈U

f(u) ∪
⋃

u∈V

g(u)

and it coincides with Y ′, that is obviously the domain of f−1 ∪ g−1. For any x ∈ Y ′

we have:

(f ∪ g)−1(x) = {u|u ∈ U ∪ V, x ∈ (f ∪ g)(u)} = {u|u ∈ U \ V, x ∈ f(u)}∪

∪{u|u ∈ V \ U, x ∈ g(u)} ∪ {u|u ∈ U ∩ V, x ∈ f(u)} ∪ {u|u ∈ U ∩ V, x ∈ g(u)} =

= {u|u ∈ U, x ∈ f(u)} ∪ {u|u ∈ V, x ∈ g(u)} =

=



















f−1(x), x ∈
⋃

u∈U

f(u) \
⋃

u∈V

g(u)

g−1(x), x ∈
⋃

u∈V

g(u) \
⋃

u∈U

f(u)

f−1(x) ∪ g−1(x), x ∈
⋃

u∈U

f(u) ∩
⋃

u∈V

g(u)

= (f−1 ∪ g−1)(x)

2

8 Cartesian product

Definition 25. Let u ∈ S(m), u′ ∈ S(m′) be two signals. We define the Cartesian
product u × u′ ∈ S(m+m′) of the functions u and u′ by

∀t ∈ R, (u × u′)(t) = (u1(t), ..., um(t), u′
1(t), ..., u

′
m′ (t))

Definition 26. For any sets U ∈ P ∗(S(m)), U ′ ∈ P ∗(S(m′)) we define the Cartesian
product U × U ′ ∈ P ∗(S(m+m′)),

U × U ′ = {u × u′|u ∈ U, u′ ∈ U ′}
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Definition 27. The Cartesian product of the systems f and f ′ : U ′ → P ∗(S(n′)), U ′ ∈
P ∗(S(m′)) is f × f ′ : U × U ′ → P ∗(S(n+n′)),

∀u × u′ ∈ U × U ′, (f × f ′)(u × u′) = f(u) × f ′(u′)

Remark 9. The Cartesian product of the systems models two circuits that are not
interconnected and run under different inputs.

Theorem 19. Let f : U → P ∗(S(n)), g : V → P ∗(S(n)), U, V ∈ P ∗(S(m)) and
f ′ : U ′ → P ∗(S(n′)), U ′ ∈ P ∗(S(m′)) be three systems. If ∃u ∈ U ∩V, f(u)∩ g(u) 6= ∅
then the systems (f ∩ g) × f ′, (f × f ′) ∩ (g × f ′) are defined and W × U ′ is their
common domain, where we have used again the notation

W = {u|u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅}.

The next equality is true

(f ∩ g) × f ′ = (f × f ′) ∩ (g × f ′).

Proof. We show that W ×U ′, that is the domain of (f ∩ g)× f ′, is also the domain
of (f × f ′) ∩ (g × f ′) :

W × U ′ = {u × u′|u ∈ W,u′ ∈ U ′} =

= {u × u′|u ∈ U ∩ V, u′ ∈ U ′, f(u) ∩ g(u) 6= ∅ and f ′(u′) 6= ∅} =

= {u × u′|u × u′ ∈ (U ∩ V ) × U ′, (f(u) × f ′(u′)) ∩ (g(u) × f ′(u′)) 6= ∅} =

= {u × u′|u × u′ ∈ (U × U ′) ∩ (V × U ′), (f × f ′)(u × u′) ∩ (g × f ′)(u × u′) 6= ∅}.

Furthermore for any u × u′ ∈ W × U ′ we have

((f ∩ g) × f ′)(u × u′) = (f ∩ g)(u) × f ′(u′) = (f(u) ∩ g(u)) × f ′(u′) =

= (f(u) × f ′(u′)) ∩ (g(u) × f ′(u′)) = (f × f ′)(u × u′) ∩ (g × f ′)(u × u′) =

= ((f × f ′) ∩ (g × f ′))(u × u′).

2

Theorem 20. Let f : U → P ∗(S(n)), g : V → P ∗(S(n)), U, V ∈ P ∗(S(m)) and
f ′ : U ′ → P ∗(S(n′)), U ′ ∈ P ∗(S(m′)) be some systems. The common domain of
(f ∪ g)× f ′, (f × f ′) ∪ (g × f ′) is (U ∪ V )×U ′ = (U ×U ′) ∪ (V × U ′) and the next
equality holds

(f ∪ g) × f ′ = (f × f ′) ∪ (g × f ′).
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Proof. ∀u × u′ ∈ (U ∪ V ) × U ′ we have one of the next possibilities:

Case u × u′ ∈ (U \ V ) × U ′ = (U × U ′) \ (V × U ′)

((f ∪ g) × f ′)(u × u′) = (f ∪ g)(u) × f ′(u′) = f(u) × f ′(u′) = (f × f ′)(u × u′) =

= ((f × f ′) ∪ (g × f ′))(u × u′);

Case u × u′ ∈ (V \ U) × U ′ is similar;

Case u × u′ ∈ (U ∩ V ) × U ′ = (U × U ′) ∩ (V × U ′)

((f ∪ g) × f ′)(u × u′) = (f ∪ g)(u) × f ′(u′) = (f(u) ∪ g(u)) × f ′(u′) =

= (f(u) × f ′(u′)) ∪ (g(u) × f ′(u′)) = (f × f ′)(u × u′) ∪ (g × f ′)(u × u′) =

= ((f × f ′) ∪ (g × f ′))(u × u′).

2

9 Parallel connection

Definition 28. The parallel connection of f with f ′
1 : U ′

1 → P ∗(S(n′)), U ′
1 ∈

P ∗(S(m)) is (f, f ′
1) : U ∩ U ′

1 → P ∗(S(n+n′)),

∀u ∈ U ∩ U ′
1, (f, f ′

1)(u) = (f × f ′
1)(u × u).

Remark 10. The parallel connection models two circuits that are not intercon-
nected and run under the same input.

Theorem 21. We consider the systems f : U → P ∗(S(n)), g : V → P ∗(S(n)),
f ′
1 : U ′

1 → P ∗(S(n′)), with U, V,U ′
1 ∈ P ∗(S(m)). We presume that ∃u ∈ U ∩ V ∩ U ′

1

so that f(u) ∩ g(u) 6= ∅. Then the set

W ′ = {u|u ∈ U ∩ V ∩ U ′
1, f(u) ∩ g(u) 6= ∅}

is the domain of the systems (f ∩ g, f ′
1), (f, f ′

1) ∩ (g, f ′
1) and the next equality holds

(f ∩ g, f ′
1) = (f, f ′

1) ∩ (g, f ′
1).

Proof. We observe that W ′ is non-empty, it is the domain of (f ∩ g, f ′
1) and we

show that it is also the domain of (f, f ′
1) ∩ (g, f ′

1). We denote by

W” = {u|u ∈ (U ∩ U ′
1) ∩ (V ∩ U ′

1), (f, f ′
1)(u) ∩ (g, f ′

1)(u) 6= ∅}

the domain of (f, f ′
1) ∩ (g, f ′

1) for which we have

W” = {u|u ∈ U ∩ V ∩ U ′
1, (f(u) × f ′

1(u)) ∩ (g(u) × f ′
1(u)) 6= ∅} =

= {u|u ∈ U ∩ V ∩ U ′
1, (f(u) ∩ g(u)) × f ′

1(u) 6= ∅} =
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= {u|u ∈ U ∩ V ∩ U ′
1, f(u) ∩ g(u) 6= ∅}

thus W” = W ′. For any u ∈ W ′ we have:

(f ∩ g, f ′
1)(u) = ((f ∩ g) × f ′

1)(u × u)
Theorem 19

= ((f × f ′
1) ∩ (g × f ′

1))(u × u) =

= (f × f ′
1)(u × u) ∩ (g × f ′

1)(u × u) = (f, f ′
1)(u) ∩ (g, f ′

1)(u) = ((f, f ′
1) ∩ (g, f ′

1))(u).

2

Remark 11. A similar result with the one from Theorem 19 states the truth of the
formula

f × (f ′ ∩ g′) = (f × f ′) ∩ (f × g′)

and then from Theorem 19 we get the next property

(f ∩ g) × (f ′ ∩ g′) = (f × f ′) ∩ (f × g′) ∩ (g × f ′) ∩ (g × g′).

Like in Theorem 21 we can prove that

(f, f ′
1 ∩ g′1) = (f, f ′

1) ∩ (f, g′1)

is true and then from Theorem 21 we obtain

(f ∩ g, f ′
1 ∩ g′1) = (f, f ′

1) ∩ (f, g′1) ∩ (g, f ′
1) ∩ (g, g′1).

Theorem 22. Let f : U → P ∗(S(n)), g : V → P ∗(S(n)), f ′
1 : U ′

1 → P ∗(S(n′)) be
three systems with U, V,U ′

1 ∈ P ∗(S(m)). If U ∩U ′
1 6= ∅, V ∩U ′

1 6= ∅, then the common
domain of the systems (f ∪g, f ′

1), (f, f ′
1)∪(g, f ′

1) is (U∪V )∩U ′
1 = (U∩U ′

1)∪(V ∩U ′
1)

and we have

(f ∪ g, f ′
1) = (f, f ′

1) ∪ (g, f ′
1).

Remark 12. We observe the truth of the formulas

f × (f ′ ∪ g′) = (f × f ′) ∪ (f × g′),

(f ∪ g) × (f ′ ∪ g′) = (f × f ′) ∪ (f × g′) ∪ (g × f ′) ∪ (g × g′)

and respectively of the formulas

(f, f ′
1 ∪ g′1) = (f, f ′

1) ∪ (f, g′1),

(f ∪ g, f ′
1 ∪ g′1) = (f, f ′

1) ∪ (f, g′1) ∪ (g, f ′
1) ∪ (g, g′1).
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10 Serial connection

Definition 29. The serial connection of h : X → P ∗(S(p)),X ∈ P ∗(S(n))
with f : U → P ∗(S(n)), U ∈ P ∗(S(m)) is defined whenever

⋃

u∈U

f(u) ⊂ X by2

h ◦ f : U → P ∗(S(p)),

∀u ∈ U, (h ◦ f)(u) =
⋃

x∈f(u)

h(x).

Remark 13. The serial connection of the systems models two circuits connected in
cascade and it coincides with the usual composition of the multi-valued functions.

Theorem 23. We consider the systems f : U → P ∗(S(n)), g : V → P ∗(S(n)),
U, V ∈ P ∗(S(m)) and h : X → P ∗(S(p)), h1 : X1 → P ∗(S(p)), X,X1 ∈ P ∗(S(n)).

a) If
⋃

u∈U

f(u) ⊂ X,
⋃

u∈V

g(u) ⊂ X and ∃u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅ then the sets

W = {u|u ∈ U ∩ V, f(u) ∩ g(u) 6= ∅},

W1 = {u|u ∈ U ∩ V,
⋃

x∈f(u)

h(x) ∩
⋃

x∈g(u)

h(x) 6= ∅}

are non-empty and represent the domains of the systems h◦ (f ∩ g), (h◦ f)∩ (h◦ g).
We have

h ◦ (f ∩ g) ⊂ (h ◦ f) ∩ (h ◦ g);

b) We ask that
⋃

u∈U

f(u) ⊂ {x|x ∈ X ∩ X1, h(x) ∩ h1(x) 6= ∅}. U is the domain

of the systems (h ∩ h1) ◦ f, (h ◦ f) ∩ (h1 ◦ f) and the next inclusion is true:

(h ∩ h1) ◦ f ⊂ (h ◦ f) ∩ (h1 ◦ f)

Proof. a) From the hypothesis f ∩ g is defined and has the domain W. As

⋃

u∈W

(f ∩ g)(u) ⊂
⋃

u∈W

f(u) ⊂
⋃

u∈U

f(u) ⊂ X

we have obtained that h ◦ (f ∩ g) is defined and has the domain W.

From the same hypothesis h◦f and h◦g are defined and have the domains U, V.
Because ∅ 6= W ⊂ W1, the system (h ◦ f) ∩ (h ◦ g) is defined and has the domain
W1.

2We show a more general definition of the serial connection that was used in previous works: the
request

S

u∈U

f(u) ⊂ X is replaced by ∃u ∈ U, f(u) ∩ X 6= ∅ and h ◦ f : Z → P ∗(S(p)) is defined by

Z = {u|u ∈ U, f(u) ∩ X 6= ∅},

∀u ∈ Z, (h ◦ f)(u) =
[

x∈f(u)∩X

h(x).
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∀u ∈ W we get
⋃

x∈f(u)∩g(u)

h(x) ⊂
⋃

x∈f(u)

h(x),
⋃

x∈f(u)∩g(u)

h(x) ⊂
⋃

x∈g(u)

h(x)

from where
⋃

x∈f(u)∩g(u)

h(x) ⊂
⋃

x∈f(u)

h(x) ∩
⋃

x∈g(u)

h(x)

and we conclude that ∀u ∈ W,

(h ◦ (f ∩ g))(u) =
⋃

x∈f(u)∩g(u)

h(x) ⊂
⋃

x∈f(u)

h(x) ∩
⋃

x∈g(u)

h(x) =

= (h ◦ f)(u) ∩ (h ◦ g)(u) = ((h ◦ f) ∩ (h ◦ g))(u).

b) The hypothesis
⋃

u∈U

f(u) ⊂ {x|x ∈ X ∩ X1, h(x) ∩ h1(x) 6= ∅} states that the

domain {x|x ∈ X ∩X1, h(x)∩h1(x) 6= ∅} of h∩h1 is non-empty and that (h∩h1)◦f
is defined. From the hypothesis we infer that

⋃

u∈U

f(u) ⊂ X,
⋃

u∈U

f(u) ⊂ X1 and

h ◦ f, h1 ◦ f are defined themselves. The domain of (h ∩ h1) ◦ f is U. Moreover
from ∀u ∈ U,∀x ∈ f(u), h(x) ∩ h1(x) 6= ∅ we conclude that the domain {u|u ∈
U,

⋃

x∈f(u)

h(x) ∩
⋃

x∈f(u)

h1(x) 6= ∅} of (h ◦ f) ∩ (h1 ◦ f) is equal with U too.

Let u ∈ U be arbitrary and fixed. From
⋃

x∈f(u)

(h ∩ h1)(x) ⊂
⋃

x∈f(u)

h(x),
⋃

x∈f(u)

(h ∩ h1)(x) ⊂
⋃

x∈f(u)

h1(x)

we get
⋃

x∈f(u)

(h ∩ h1)(x) ⊂
⋃

x∈f(u)

h(x) ∩
⋃

x∈f(u)

h1(x)

and eventually we obtain

((h ∩ h1) ◦ f)(u) =
⋃

x∈f(u)

(h ∩ h1)(x) ⊂

⊂
⋃

x∈f(u)

h(x) ∩
⋃

x∈f(u)

h1(x) = (h ◦ f)(u) ∩ (h1 ◦ f)(u) = ((h ◦ f) ∩ (h1 ◦ f))(u).

2

Theorem 24. We have the systems f : U → P ∗(S(n)), g : V → P ∗(S(n)), U, V ∈
P ∗(S(m)) and h : X → P ∗(S(p)), h1 : X1 → P ∗(S(p)), X,X1 ∈ P ∗(S(n)).

a) We presume that
⋃

u∈U

f(u) ⊂ X,
⋃

u∈V

g(u) ⊂ X; the set U ∪ V is the common

domain of h ◦ (f ∪ g), (h ◦ f) ∪ (h ◦ g) and the next equality is true

h ◦ (f ∪ g) = (h ◦ f) ∪ (h ◦ g).
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b) If
⋃

u∈U

f(u) ⊂ X,
⋃

u∈U

f(u) ⊂ X1 then (h ∪ h1) ◦ f, (h ◦ f) ∪ (h1 ◦ f) have the

domain U and
(h ∪ h1) ◦ f = (h ◦ f) ∪ (h1 ◦ f).

Proof. a) The systems h◦ f and h◦ g are defined from the hypothesis and because
(see the proof of Theorem 18)

⋃

u∈U∪V

(f ∪ g)(u) =
⋃

u∈U

f(u) ∪
⋃

u∈V

g(u) ⊂ X

we infer that h ◦ (f ∪ g) is defined too. The common domain of h ◦ (f ∪ g) and
(h ◦ f) ∪ (h ◦ g) is U ∪ V.

Let u ∈ U ∪ V be arbitrary. We can prove the statement of the theorem in the
three cases: u ∈ (U \ V ), u ∈ (V \U), u ∈ (U ∩ V ). For example in the last case we
have:

(h ◦ (f ∪ g))(u) =
⋃

x∈(f∪g)(u)

h(x) =
⋃

x∈f(u)∪g(u)

h(x) =

=
⋃

x∈f(u)

h(x) ∪
⋃

x∈g(u)

h(x) = (h ◦ f)(u) ∪ (h ◦ g)(u) = ((h ◦ f) ∪ (h ◦ g))(u).

b) The hypothesis implies
⋃

u∈U

f(u) ⊂ X ∪ X1 thus (h ∪ h1) ◦ f is defined and

on the other hand h ◦ f and h1 ◦ f are defined too. The systems (h ∪ h1) ◦ f ,
(h ◦ f) ∪ (h1 ◦ f) have the same domain U = U ∪ U.

For any u ∈ U fixed, we have

f(u) = f(u) ∩ (X ∪ X1) = f(u) ∩ ((X \ X1) ∪ (X1 \ X) ∪ (X ∩ X1)) =

= (f(u) ∩ (X \ X1)) ∪ (f(u) ∩ (X1 \ X)) ∪ (f(u) ∩ (X ∩ X1))

thus
((h ∪ h1) ◦ f)(u) =

⋃

x∈f(u)

(h ∪ h1)(x) =

=
⋃

x∈(f(u)∩(X\X1))∪(f(u)∩(X1\X))∪(f(u)∩(X∩X1))

(h ∪ h1)(x) =

=
⋃

x∈f(u)∩(X\X1)

(h ∪ h1)(x) ∪
⋃

x∈f(u)∩(X1\X)

(h ∪ h1)(x) ∪
⋃

x∈f(u)∩X∩X1

(h ∪ h1)(x) =

=
⋃

x∈f(u)∩(X\X1)

h(x) ∪
⋃

x∈f(u)∩(X1\X)

h1(x) ∪
⋃

x∈f(u)∩X∩X1

h(x) ∪
⋃

x∈f(u)∩X∩X1

h1(x) =

=
⋃

x∈(f(u)∩(X\X1))∪(f(u)∩X∩X1)

h(x) ∪
⋃

x∈(f(u)∩(X1\X))∪(f(u)∩X∩X1)

h1(x) =

=
⋃

x∈f(u)∩X

h(x) ∪
⋃

x∈f(u)∩X1

h1(x) =
⋃

x∈f(u)

h(x) ∪
⋃

x∈f(u)

h1(x) =

= (h ◦ f)(u) ∪ (h1 ◦ f)(u) = ((h ◦ f) ∪ (h1 ◦ f))(u).

2
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11 Final remarks

The intersection and the union of the systems are dual concepts and their prop-
erties, as expressed by the previous theorems, are similar.

On the other hand, let us remark the roots of our interests in the Romanian
mathematical literature represented by the works in schemata with contacts and
relays from the 50’s and the 60’s of Grigore Moisil. Modeling is different there, but
the modelled switching phenomena are exactly the same like ours.
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Abstract. We will present a MATLAB package for nonlinear evolution equations,
based on the Lyapunov-Schmidt (LS) method. The eigenfunctions basis of the linear
part is used to represent the solution at every time level (or for every value of the
parameters in the case of bifurcation analysis). These eigenfunctions are calculated
in a preprocessing stage or are given by the user.
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1 Introduction

Much of the work of an engineer or scientist is that of formulating suitable
mathematical models for a particular physical system. For a dynamical system in
continuous time, the model is often some system of ordinary differential equations
or partial differential equations. When formulating such models, one of the goals
is to maximize qualitative correctness in representing the dynamics of the physical
system. However, in many cases, correctly representing the dynamics is not the sole
objective in formulating mathematical models. In particular, the model needs to
be useful for its intended application. For example, if a model is required in some
kind of real-time feedback control scheme, then a model that is computationally
intensive may be unsuitable for this purpose. We may wish to sacrifice some of
the correctness of the model in order to make the equations easier to solve or to
allow faster computation of the trajectories. In other words, given a model of a
dynamical system that is known to correctly represent the system dynamics, how do
we formulate a model of reduced complexity which retains as much of the original
predictive capability as possible?

Many of the mathematicians of the twentieth century devoted their efforts to
studying boundary value problems for linear differential equations. However, in
many cases problems arising in biology, mechanics, chemistry, may be seen as non-
linear perturbations of linear ones. All these can be represented in the abstract
form Lu = Nu where L : X → Y (linear) and N : Y → Y (nonlinear) are suitable
operators between Banach spaces X,Y where X ⊂ Y compactly.

When L is invertible, Lu = Nu can be rewritten as a fixed point equation
u = [L−1N ]u. In case L−1 : Y → X and N : Y → Y are continuous and carry

c© Titus Petrila, Damian Trif, 2007
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bounded sets into bounded sets, L−1N : Y → Y is completely continuous. Thus,
the Schauder’s Fixed Point Theorem (which extends the well-known Brower’s Fixed
Point Theorem to completely continuous operators on infinite dimensional Banach
spaces) could be used in the treatment of such problems.

Schauder’s Fixed Point Theorem had little impact outside the scope of nonlinear
perturbations of invertible operators. Often we must treat some problems where
the equation is a nonlinear perturbation of a linear operator with nontrivial kernel
(problems at resonance). A useful tool for studying such type of problems is the
Lyapunov-Schmidt reduction method.

The Lyapunov-Schmidt (LS) method, elaborated in the years 1906-1908 and
reformulated in a modern mathematical language by L. Cesari [1] after 1963 applies
to some nonlinear equations of the type Lu = Nu, in the presence of boundary
conditions, considered on the domain of the linear operator L.

As a simple example (following [2]), let us consider the problem

−u′′ − αu′ − λ1(α)u + g(u) = 0, t ∈ [0, π] , (1)

u(0) = u(π) = 0

where α is a given real number, λ1(α) = 1+α2/4 is the first eigenvalue of the linear
problem

−u′′(t) − αu′(t) = λu(t), t ∈ [0, π] ,

u(0) = u(π) = 0

and g is a continuous and T – periodic function with zero mean.

In order to apply the Lyapunov-Schmidt reduction method, we consider the
linear differential operator

L : W 2,1
0 (0, π) → L1(0, π), Lu = −u′′ − αu′ − λ1(α)u

and the Nemytskii operator

N : W 2,1
0 (0, π) → L1(0, π), Nu(t) = −g(u(t)), ∀t ∈ [0, π]

so that (1) is equivalent to the operator equation Lu = Nu.

It is well known that L is a linear Fredholm operator of zero index, kerL = sp(ϕ),
im(L) = ψ⊥, where

ϕ(t) =
e−

α
2 t sin t

√

∫ π

0

(

e−
α
2 s sin s

)2
, ψ(t) =

e
α
2 t sin t

√

∫ π

0

(

e
α
2 s sin s

)2
, t ∈ [0, π].

The splitting W 2,1
0 (0, π) = sp(ϕ) ⊕ ϕ⊥ leads us to rewrite any element u ∈

W 2,1
0 (0, π) as u = ũ+uϕ, where u ∈ IR and ũ ∈ ϕ⊥ and to observe that L : ϕ⊥ → ψ⊥
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is a topological isomorphism. Let us denote K : ψ⊥ → ϕ⊥ the inverse of this
isomorphism and define the projection

Q : L1(0, π) → L1(0, π), h 7→

(
∫ π

0
h(s)ψ(s)ds

)

ψ.

This way, equation Lu = Nu becomes equivalent to the Lyapunov-Schmidt system

ũ = K(I −Q)N(ũ+ uϕ), (2)
∫ π

0
g(ũ(s) + uϕ(s))ψ(s)ds = 0. (3)

From the auxiliary equation (2) we observe that, being N bounded and K com-
pact, the Schauder Fixed Point Theorem implies the existence, for any u ∈ IR, of
the fixed point ũ(u) ∈ ϕ⊥. Consequently, the bifurcation equation (3) becomes an
equation for u ∈ IR,

∫ π

0
g(ũ (u) (s) + uϕ(s))ψ(s)ds = 0.

and the solvability of Lu = Nu comes from the solvability of this one-dimensional
equation.

This method could be easily extended to the case of a nonlinear evolution equa-

tion on a Hilbert space H (usually an L2 space) of the form
du

dt
= F (u) ≡ Lu+Nu

where the domain of F is dense in H. We assume that {ϕi, i = 0, 1, . . . } forms a
complete orthogonal basis for H (for example the eigenfunctions of L).

Fix m ∈ IN and let P ≡ Pm : H → Xm ≡ X be the orthogonal projection from
H onto the finite dimensional subspace spanned by {ϕ1, . . . , ϕm}. Let Q ≡ Qm =
(I − P ) : H → Y ≡ Ym be the complementary orthogonal projection.

Given u ∈ H, let Pu = p and Qu = q. The equation can be rewritten as

dp

dt
= PF (p, q), (4)

dq

dt
= QF (p, q). (5)

The strategy is fairly simple: study the dynamics of the low dimensional Galerkin
projection (4) (where q = q(p) from (5)) to draw conclusions about the dynamics of
the given equation.

Although it has been used for a long time only for the theoretical demonstration
of the existence and branching of the solutions of such problems, the LS method
(or the alternative method, following Cesari) is also very useful for the effective
approximation of these solutions.

We will present LiScNLE, a MATLAB package for dynamical systems, based on
the LS method. The eigenfunctions basis of the linear part L of the system is used to
represent the solution at every time level, or for every value of the parameters in the
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case of bifurcation analysis. These eigenfunctions are calculated in a preprocessing
stage [3] or are given by the user. Also, other functions could be used as basis. The
package extends a preliminary steady version [4].

The advantage of the LS method consists of the important reduction of the di-
mension of the nonlinear system to be solved together with the possibility to oversee
the approximating errors. This advantage can be remarked in some examples, which
prove that the LS method behaves better than other known methods, such as bvp4c
or sbvp.

The first two sections present the basic theory and the implementation of
LiScNLE. The last two sections present examples and conclusions.

2 The LS method

We assume that the linear part L of the equation Lu = Nu is a Sturm-Liouville
operator

Ly ≡
1

w(x)

[

−(p(x)y′)′ + q(x)y
]

, x ∈ [a, b],

y(a) cosα+ (py′)(a) sinα = 0, y(b) cos β + (py′)(b) sin β = 0

where 1/p, q, w are real-valued functions on [a, b], p(x) > 0, w(x) > 0 on [a, b], p ∈
C1[a, b], q, w ∈ C[a, b]. It is well known that the eigenvalues of L form an increasing
sequence λ0 < λ1 < . . . converging to infinity and the corresponding eigenfunctions
ϕn form an orthogonal (orthonormal) basis of the Hilbert space L2

w(a, b). We remark
the asymptotic behaviour of the eigenvalues λn ∈ O(n2).

A theoretical but constructive variant of the LS method could be found in [5, 6].
We are looking for an approximate solution of the equation Lu = Nu of the form
u =

∑N
i=1 ciϕi (eigenfunction expansion) which leads to the following equation for

the unknowns ci
N
∑

i=1

ciLϕi = N

(

N
∑

i=1

ciϕi

)

.

We obtain the equation

m
∑

i=1

ciλiϕi +
N
∑

i=m+1

ciλiϕi = N

(

N
∑

i=1

ciϕi

)

(6)

where m is a positive integer, less than N . By applying the partial inverse Hm of L,

Hmu =

N
∑

i=m+1

ci
λi
ϕi
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to (6), we are led to

N
∑

i=m+1

ciϕi = HmN

(

N
∑

i=1

ciϕi

)

=

N
∑

i=m+1

Ciϕi

so that we have

ci = Ci(c1, . . . , cN ), i = m+ 1, . . . , N.

For a sufficiently great m we may calculate cm+1, . . . , cN as functions of c1 . . . cm,
using Banach Fixed Point Theorem.

By applying the projection Pm to (6) we obtain the determining equation

m
∑

i=1

ciλiϕi = PmN

(

N
∑

i=1

ciϕi

)

which is a small finite dimensional system for c1, . . . , cm.

In fact, in LS methods, the true unknowns are c1, . . . , cm; the other coefficients
cm+1, . . . , cN are calculated as coefficients of the associated fixed point.

The first version of our package applies only to the Sturm-Liouville case for the
linear operator L, in the form

Lu =
1

w(x)

[

d

dx

(

p(x)
du

dx

)

+ g(x)u

]

,

au′(0) + bu(0) = 0, cu′(1) + du(1) = 0.

There exists a Matlab package MATSLISE of V. Ledoux (2004) [7], based on the
works of L. Ixaru which uses the so called CP methods to calculate the eigenfunc-
tions of Sturm-Liouville or Schrodinger operators but this package works slowly. A
more interesting package is MWRtools of R.A. Adomaitis (1998–2001) [8] which uses
spectral methods to calculate the eigenfunctions of the Sturm-Liouville operator in
order to solve some linear boundary value problems.

We remark that in the case of Galerkin’s method, the approximating solutions
are being looked for under the form u∗ =

∑N
k=1 ckϕk, where the coefficients ck, k =

1, . . . , N , are determined from the equations (Lu∗ − Nu∗, ϕk) = 0, k = 1, . . . , N ,
i.e.

(λku
∗ −Nu∗, ϕk) = 0, k = 1, . . . , N.

These equations are got from the determining equations for m = N . If m = 0 the
system of the determining equations disappears. The associate function to a certain
u∗ verifies the equation y = L−1Ny, so the algorithm is reduced, in this case, to the
transformation of the equation Lu = Nu into a fixed point problem. Obviously, this
case arises only when the inverse L−1 exists and L−1N is a contraction.
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3 Implementation

In this section we propose a Chebyshev-tau method to solve the Sturm-Liouville
problem in order to get a good basis ϕi and we present the corresponding Matlab
package.

Let us consider the problem

p2(x)u
′′ + p1(x)u

′ + p0(x)u = g(x) x ∈ (a, b) , (7)

α11u(x11) + α12u
′(x12) = β1,

α21u(x12) + α22u
′(x22) = β2 (8)

and let us suppose for the moment a = −1, b = 1. A powerful methods to solve

(7) is to express u as a Chebyshev series u(x) = c0
T0(x)

2
+ c1T1(x) + . . . where

Ti(x) = cos(i cos−1(x)) is the standard Chebyshev polynomial of order i. For the
practical implementation, we define the vectors c and t by cT = (c0, c1, c2, . . . ),

tT =

(

T0

2
, T1, T2, . . .

)

so that u(x) = cT t = tT c.

There exists a matrix X for which x · u(x) = (Xc)T t, see [9, 10],

X0,1 = 1,Xii = 0,Xi,i−1 = Xi,i+1 =
1

2
.

Then, in general, xmu(x) = (Xmc)T t and f(x)u(x) = (f(X)c)T t for analytical
functions f , i.e.

f(x) =
∞
∑

k=0

fk
xk

k!
.

Moreover,
u(x)

xm
= (X−mc)

T
t if the l.h.s. has no singularity at the origin. Of course,

X is a tri-diagonal matrix, X2 is a penta-diagonal matrix and so on but, generally,
the matrix version funm(X)of the scalar function f(x) or X−m = [inv(X)]m are no
longer sparse matrices.

Similarly, let D be the differentiation matrix giving
dmu

dxm
= (Dmc)T t. D is an

upper triangular matrix with Dii = 0, Dij = 0 for (j − i) even and Dij = 2j
otherwise.

Applying these formulae to equation (7), we get

(p2(X)D2 + p1(X)D + p0(X))c = g

where G are the coefficients of the r.h.s. function g(x).

g(x) = g0
T0(x)

2
+ g1T1(x) + . . . .

The condition (8) can be formulated in a similar manner. We define

tij =

(

T0(xij)

2
, T1(xij), T2(xij), . . .

)T
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so that it can be written in the form hT
i c = βi, i = 1, 2, where

hT
i =

2
∑

j=1

αijt
T
ijD

j−1, i = 1, 2.

Now we define the matrices A =
∑2

i=0 Pi(X)Di and H = (h1, h2)
T . Then the

vector c satisfies
(

H
A

)

c =

(

β
q

)

(9)

of the form Ac = b, where β = (β1, β2)
T .

Of course, in reality we cannot work with infinite matrices but only with finite
portions (N × N) of them. For the initial conditions, we restrict ti to have N
components and use the truncation DN instead of D, so that the computed matrix

will be

(

H∗

A∗

)

. We then take the first N rows and columns of

(

H∗

A∗

)

as the

matrix to use, together with the first N elements of

(

β
q

)

.

If we have another interval [a, b] instead of [−1, 1] for x, we use the change of

coordinates x = αξ + β where α =
b− a

2
and β =

b+ a

2
so that ξ ∈ [−1, 1]. We

must change X to αX + βI and D to D/α.
LiScNLE (Liapunov-Schmidt Non-Linear Evolution) is a Matlab package for the

study of some nonlinear differential evolution equations for the unknown function
u(x, t)

∂u

∂t
+ Lu = Nu, x ∈ (a, b), t > 0

where L is a Sturm-Liouville operator

Lu ≡
1

w(x)

[

−
∂

∂x

(

p(x)
∂u

∂x

)

+ q(x)u

]

and Nu is a nonlinear (differential) operator

Nu ≡ N(x, u,
∂u

∂x
).

We have also boundary value conditions

a11u(a, t) + a12
∂u

∂x
(a, t) = 0,

a12u(b, t) + a22
∂u

∂x
(b, t) = 0

and initial condition u(x, 0) = u0(x).
We perform a time semi-discretization by Crank-Nicolson method (for example)

un+1 − un

∆t
=

1

2

(

−Lun+1 +Nun+1 − Lun +Nun
)
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i.e.

un+1 +
∆t

2
Lun+1 =

∆t

2
Nun+1 + un −

∆t

2
Lun +

∆t

2
Nun

where

un = u(x, n∆t), u0 = u0(x)

and ∆t is the time step. For each n, this problem is of the form

Lun+1 = Nun+1

where

Lu =

(

I +
∆t

2
L

)

u,

Nu =
∆t

2
Nu+ F, F = un −

∆t

2
Lun +

∆t

2
Nun

so that the numerical steady Lyapunov-Schmidt method LiScNLS [4] could be
applied.

Remark 1. If we have a second order in time equation,

∂2u

∂t2
+ Lu = Nu, x ∈ (a, b), t > 0,

with the same boundary conditions and initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x),

the Crank-Nicolson discretization looks like

un+1 − 2un + un−1

∆t2
=

1

2

(

−Lun+1 +Nun+1 − Lun−1 +Nun−1
)

i.e.

un+1 +
∆t2

2
Lun+1 =

∆t2

2
Nun+1 + un−1 −

∆t2

2
Lun−1 +

∆t2

2
Nun−1 + 2(un − un−1).

Remark 2. The backward-Euler method is

un+1 − 2un + un−1

∆t2
= −Lun+1 +Nun+1

i.e.

un+1 + ∆t2Lun+1 = ∆t2Nun+1 + 2un − un−1.

If λk, ϕk, k = 1, 2, . . . , are the eigenvalues and the eigenfunctions of the Sturm-

Liouville operator L, then 1 +
∆t

2
λk, ϕk, k = 1, 2, . . . , are the eigenvalues and the
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eigenfunctions of the operator L. Let us suppose that we know the first n eigenfunc-
tions and eigenvalues of L,

LΦk = λkΦk, k = 1, . . . , n

where
∫ b

a

ΦkΦjwdx = δkj, k, j = 1, . . . , n.

Then, we search for the solution of the nonlinear steady problem

Lu = Nu (10)

of the form (see [5],[6] for the hypotheses on L and N )

u =
n
∑

i=1

ciΦi = Φ · c

The nonlinear part is

N (u) = N

(

n
∑

i=1

ciΦi

)

=

n
∑

i=1

CiΦi

where

Ci =

∫ b

a

N (u) · Φi · wdx, i = 1, . . . , n.

Let us choose an index m and project the equation Lu = Nu on
span {Φm+1, . . . ,Φn}, i.e.

ci =
1

λi
Ci(c1, . . . , cn), i = m+ 1, . . . , n. (11)

For a sufficiently great m, for fixed c1, . . . , cm, the above operator becomes a
contraction so we can iterate until a fixed point

c∗ =
(

c1, . . . , cm, c
∗
m+1, . . . , c

∗
n

)

which is a solution of the equations (11). Of course, c∗i , i = m+ 1, . . . , N , depend
on ci, i = 1, . . . ,m.

Now we project the equation Lu = Nu on span {Φ1, . . . ,Φm}, i.e.

λici = Ci(c1, . . . , cm, c
∗
m+1, . . . , c

∗
n) (12)

which represents a nonlinear algebraic system for c1, . . . , cm. Given c1, . . . , cm, each
evaluation of Ci

(

c1, . . . , cm, c
∗
m+1, . . . , c

∗
n

)

means the fixed point iterations (11). We
solve this system by a Newton method and finally we obtain the solution

c∗ ≡
(

c∗1, . . . , c
∗
m, c

∗
m+1, . . . , c

∗
n

)
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(i.e. u = Φ · c∗) of the problem (10).
This problem has a natural extension for a nonlinear part of the formN(x, u(x), u′(x)),

that is

N(x,

n
∑

i=1

ciΦi,

n
∑

i=1

ciΦ
′
i)

The main function of LiScNLE is the function evol for the first order (in time)
problems:

function [lam,phi,phip,x,C,kod]=...

evol(n,errtol,Lfun,m,Nfun,ICfun,dt,K,scene)

Here n is the dimension of the discretized problem, errtol is the tolerance used
in the stopping criteria, Lfun describes the linear part of the equation (see LiScEig
Tutorial [3]), m is the truncation parameter.

The nonlinear r.h.s. of the problem (10) is coded in Nfun (see LiScNLS

Tutorial [4]),ICfun describes the initial condition u0(x), dt is the time step,
K is the number of time steps to be performed and scene is used for the plot of the
solution.

For the second order (in time) problems the corresponding file is evol2.
The output parameters of evol are:
lam – the eigenvalues of the linear part
phi, phip – the eigenfunctions and their derivatives
x – the grid
C – the coefficients of the numerical solution with respect to the eigenfunctions

phi, column n+ 1 for the n− time level, n = 0, 1, . . . ,K.
kod – indicates the status of the solution.
We remark that, given the coefficients C of the solution with respect to the

eigenfunctions phi, the values of the solutions at the Legendre grid points x are phi∗
C and a plot of the solution could be obtained using the command plot(x,phi*C);

More details about the implementation could be found in the tutorial of LiScNLE
[11].

4 Examples

The tutorial of LiScNLE [11] contains many difficult examples:
– the Burgers equation, which exhibits a near shock,
– a steady solution of a nonlinear reaction-difusion problem,
– the blowing-up behavior for a forced heat equation,
– the Allen-Cohn equation,
– periodical stable and unstable solutions for Kuramoto-Sivashinski equation,
– a moving step solution for Fisher equation,
– an example from electrodynamics (system, also in MATLAB demo),
– the sine-Gordon equation (second order in time).
Let us present here the Fisher equation example,
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ut − uxx = u(1 − u), x ∈ IR, t > 0,

u(t,−∞) = 1, u(t,∞) = 0,

u(0, x) =
1

(

1 + e
x
√

6

)2

with the exact solution

u(t, x) =
1

(

1 + e
− 5t

6
+ x

√
6

)2 .

First, the spatial domain is truncated to [−50, 50]. Next, the boundary values
are homogenized by using the function u0(x) = (50 − x)/100. The basic command
is

[lam,phi,phip,x,C,kod]=evol(256,1.e-5,’LFisher’,...

0,’NFisher’,’ICFisher’,0.01,1000,[-50 50 0 1]);

The absolute error is 2.5x10−3 in the region of the step and about 10−5 in general,
due to truncation of the spatial domain.

5 Conclusions

The comparison between LiScNLE and SBVP 1.0 of Auzinger [12] or bvp4c of
Matlab (see Matlab help) shows an important reduction of the computing time for
LiScNLE.. The Matlab profile reports show that about 75% of the computing time
was spent on computation of the eigenfunctions and only about 6% on the effective
calculations of the numerical solution. We have good reasons to use LS method.

1. We can build a database with known eigenfunctions.

2. In the problems with parameters, where we have (for example) bifurcations,
or in evolution problems, we can use repeatedly the same eigenfunctions.

3. The eigenfunctions carry physical information, so that our LS solution has a
better structure for studies.

4. LS method could be easily extended to 2D or 3D (evolution) problems, with
non-invertible linear part.

5. In all the cases, we finally have to solve a very small nonlinear system, usu-
ally with m = 0, 1, 2, values which also carry information about bifurcation
behaviour.
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1 Introduction

In this paper we consider the Darboux Problem for a third order hyperbolic
inclusion of the form

∂3u (x, y, z)

∂x ∂y ∂z
∈F (x, y, z, u) , (x, y, z)∈D = [0, a]×[0, b]×[0, c] , u∈Ω ⊂ R

n (1.1)

with initial values






u (x, y, 0) = ϕ (x, y) , (x, y) ∈ D1 = [0, a] × [0, b] ,
u (0, y, z) = ψ (y, z) , (y, z) ∈ D2 = [0, b] × [0, c] ,
u (x, 0, z) = χ (x, z) , (x, z) ∈ D3 = [0, a] × [0, c]

(1.2)

where ϕ,ψ, χ are absolutely continuous in Carathéodory’s sense functions
[2, §565 − 570], ϕ ∈ C∗ (D1; R

n), ψ ∈ C∗ (D2; R
n), χ ∈ C∗ (D3; R

n) and they satisfy
the conditions















u (x, 0, 0) = ϕ (x, 0) = χ (x, 0) = v1 (x) , x ∈ [0, a] ,
u (0, y, 0) = ϕ (0, y) = ψ (y, 0) = v2 (y) , y ∈ [0, b] ,
u (0, 0, z) = ψ (0, z) = χ (0, z) = v3 (z) , z ∈ [0, c] ,
u (0, 0, 0) = v1 (0) = v2 (0) = v3 (0) = v0,

(1.3)

where F : D × Ω → 2R
n

is a multifunction with compact, convex and non-empty
values and Ω ⊂ R

n is an open subset.
Under suitable assumptions, we proved in [16] an existence theorem for a local

solution of the Darboux Problem (1.1) + (1.2) and that the set of its solutions is

c© Georgeta Teodoru, 2007
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compact in Banach space C (D0; R
n), D0 =[0, x0]×[0, y0]×[0, z0]⊆D; moreover, as a

function of the initial values this set defines an upper semi-continuous multifunction.
In [17] we proved a theorem of prolongation for the solutions of the considered

problem and also an existence theorem for a saturated solution.
In this paper we prove a characterization of the solutions of Darboux Problem

(1.1) + (1.2) using the Aumann integral defined for multifunctions.
This study has been suggested by [15] and it provides an extension of the results

in that article.

2 Preliminaries

The definitions and Theorems 2.1–2.5 plus Propositions 2.1–2.4 in this section
are taken from [1, 2, 5–14].

Definition 2.1. Let X and Y be two non-empty sets. A multifunction Φ : X → 2Y

is a function from X into the family of all non-empty subsets of Y .
To each x ∈ X, a subset Φ (x) of Y is associated by the multifunction Φ. The

set
⋃

x∈X

Φ (x) is the range of Φ. Φ (X) = {
⋃

Φ (x) | x ∈ X}.

Definition 2.2. Let us consider Φ : X → 2Y .

a) If A ⊂ X, the image of A by Φ is Φ (A) =
⋃

x∈A

Φ (x);

b) If B ⊂ Y , the counterimage of B by Φ is

Φ− (B) = {x ∈ X | Φ (x) ∩B 6= ∅} ;

c) The graph of Φ, denoted graph Φ, is the set

graphΦ = {(x, y) ∈ X × Y | y ∈ Φ (x)} .

Definition 2.3. Let us now take Φ : X → 2Y . An element x ∈ X with the property
x ∈ Φ (x) is called a fixed point of the multifunction Φ.

Definition 2.4. A univalued function ϕ : X → Y is said to be a selection of
Φ : X → 2Y if ϕ (x) ∈ Φ (x) for all x ∈ X.

Definition 2.5. Let X and Y be two topological spaces. The multifunction
Φ : X → 2Y is upper semi-continuous if, for any closed B ⊂ Y , Φ− (B) is closed
in X.

Definition 2.6. If (X,F) is a measurable space and Y is a topological space,
the multifunction Φ : X → 2Y is measurable if Φ− (B) ∈ F for every closed sub-
set B ⊂ Y , F being the σ-algebra of the measurable sets of X, i.e. Φ− (B) is
measurable.

Theorem 2.1 [13]. Let X and Y be two metric spaces, Y compact and Φ : X → 2Y

a multifunction with the property that Φ (x) is a closed subset of Y for any x ∈ X.
The following assertions are equivalent:
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i) the multifunction Φ is upper semi-continuous;

ii) the graph of Φ is a closed subset of X × Y ;

iii) any would be the seguences (xn)n∈N
and (yn)n∈N

, from xn → x, yn ∈ Φ (xn)
and yn → y it follows that y ∈ Φ (x).

Definition 2.7 [2, 7, 8]. The function u : △ → R
n,△ ⊂ R

2, is absolutely con-
tinuous in Carathéodory’s sense [2, §565 − 570] if and only if it is continuous on
△, absolutely continuous in x (for any y), absolutely continuous in y (for any x),
ux (x, y) is (possibly after a suitable definition on a two-dimensional set of zero mea-
sure) absolutely continuous in y (for any x) and uxy is Lebesgue-integrable on △.

Theorem 2.2 [2, 6, 14]. The function u : △ → R
n, △ = [0, a] × [0, b] ⊂ R

2,
is absolutely continuous in Carathéodory’s sense on △ if and only if there exist
f ∈ L1 (△; Rn), g ∈ L1 ([0, a] ; Rn), h ∈ L1 ([0, b] ; Rn) such that

u (x, y) =

∫ x

0

∫ y

0
f (s, t) ds dt +

∫ x

0
g (s) ds+

∫ y

0
h (t) dt + u (0, 0) .

We denote the class of absolutely continuous functions in Carathéodory’s sense
by C∗ (△; Rn) [7, 8]. In [6], this space is denoted by AC (△; Rn).

Theorem 2.3 [6]. The space C∗ (△; Rn) endowed with the norm

‖u (·, ·)‖ =

∫ a

0

∫ b

0
‖uxy (s, t)‖ ds dt+

∫ a

0
‖ux (s, 0)‖ ds+

∫ b

0
‖uy (0, t)‖ dt+‖u (0, 0)‖ ,

△ = [0, a] × [0, b] ⊂ R
2, where ‖·‖ is the Euclidean norm, is a Banach space.

Definition 2.8 [2, 9]. The function u : D → R
n, D ⊂ R

3, is absolutely continuous
in Carathéodory’s sense [2, §565 − 570] if and only if u (x, y, z) is continuous on D,
absolutely continuous in each variable (for any pair of the other two variables) and
similarly for ux (x, y, z), uy (x, y, z), uz (x, y, z), uxy (x, y, z), uyz (x, y, z), uxz (x, y, z),
and uxyz is Lebesgue-integrable on D.

Theorem 2.4 [6]. The function u : D → R
n, D = [0, a] × [0, b] × [0, c] ⊂ R

3,
is absolutely continuous in Carathéodory’s sense on D if and only if there ex-
ist f ∈ L1 (D; Rn), g1 ∈ L1 (D1; R

n), g2 ∈ L1 (D2; R
n), g3 ∈ L1 (D3; R

n),
h1 ∈ L1 ([0, a] ; Rn), h2 ∈ L1 ([0, b] ; Rn), h3 ∈ L1 ([0, c] ; Rn), such that

u (x, y, z) =

∫ x

0

∫ y

0

∫ z

0
f (r, s, t) dr ds dt +

∫ x

0

∫ y

0
g1 (r, s) dr ds+

+

∫ y

0

∫ z

0
g2 (s, t) ds dt+

∫ x

0

∫ z

0
g3 (r, t) dr dt+

+

∫ x

0
h1 (r) dr +

∫ y

0
h2 (s) ds+

∫ z

0
h3 (t) dt+ u (0, 0, 0) .
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We denote the class of absolutely continuous functions in Carathéodory’s sense
on D by C∗ (D; Rn) [9].

Theorem 2.5 [6]. The space C∗ (D; Rn) endowed with the norm

‖u (·, ·, ·)‖ =

∫ a

0

∫ b

0

∫ c

0
‖uxyz (r, s, t)‖ dr ds dt+

∫ a

0

∫ b

0
‖uxy (r, s, 0)‖ dr ds+

+

∫ b

0

∫ c

0
‖uyz (0, s, t)‖ ds dt +

∫ a

0

∫ c

0
‖uxz (r, 0, t)‖ dr dt+

+

∫ a

0
‖ux (r, 0, 0)‖ dr +

∫ b

0
‖uy (0, s, 0)‖ ds+

+

∫ c

0
‖uz (0, 0, t)‖ dt+ ‖u (0, 0, 0)‖ ,

where ‖·‖ is the Euclidean norm, is a Banach space.

We denote by d (x, y) the Euclidean distance from x to y, x, y ∈ R
n, R

n is the
Euclidean space. If A ⊂ R

n, d (x,A) = inf {d (x, y) | y ∈ A}.
B [x, r] is the open ball of radius r > 0 centered at x ∈ R

n, ConvA is the convex
covering of A ⊂ R

n and
|A| = sup {‖ζ‖ | ζ ∈ A} .

C (Rn) is the set of compact and non-empty subsets of R
n. Similarly with [1, 5, 15],

we define the Aumann integral for multifunctions of three variables.

Definition 2.9. Let D = [0, a] × [0, b] × [0, c] ⊂ R
3. For each (x, y, z) ∈ D, let

H (x, y, z) be a non-empty subset of R
n. Let H be the set of functions h : D → R

n

integrable on D and h (x, y, z) ∈ H (x, y, z) for each (x, y, z) ∈ D. Then, by the
integral of the multifunction H : D → 2Rn

we mean the set

∫∫∫

D

H (x, y, z) dx dy dz =







∫∫∫

D

h (x, y, z) dx dy dz | h ∈ H







.

In what follows we list some properties of the integral defined above.

Proposition 2.1. If H : D → 2R
n

is an upper semi-continuous multifunction and
there exists a positive real number C such that

|H (x, y, z)| = sup {‖ζ‖ | ζ ∈ H (x, y, z)} ≤ C

for each (x, y, z) ∈ D, then

∫∫∫

D

H (x, y, z) dx dy dz =

∫∫∫

D

convH (x, y, z) dx dy dz.

Proposition 2.2. If Hk : D → 2Rn
, k ∈ N, are upper semi-continuous multifunc-

tions and there exists a positive real number C such that |Hk (x, y, z)| ≤ C for each
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(x, y, z) ∈ D and k ∈ N, then

∫∫∫

D

limHk (x, y, z) dx dy dz ⊂ lim

∫∫∫

D

Hk (x, y, z) dx dy dz.

Taking into account Definition 2 in [5], we have (x, y, z) ∈ limHk (x, y, z) iff each
neighbourhood of (x, y, z) intersects all the sets Hk (x, y, z) with k large enough.

Proposition 2.3. If A is a compact subset of R
n, independent of (x, y, z), then

∫ x2

x1

∫ y2

y1

∫ z2

z1

Adxdy dz = (x2 − x1) (y2 − y1) (z2 − z1) convA,

where (x1, y1, z1) , (x2, y2, z2) ∈ D.

Moreover, we need the following proposition.

Proposition 2.4. If K is a convex set in a Banach space X, then the set
Kε =

⋃

x∈K

B [x, ε] is convex.

3 Results

In [16] the notion of a local solution for the Darboux Problem (1.1) + (1.2) is
defined and is proved an existence theorem for a local solution of this problem,
together with some properties of the set of its solutions, namely that this set is a
compact subset in Banach space C (D0; R

n) and, as a function of initial values, it
defines an upper semi-continuous multifunction on D0 = [0, x0]× [0, y0]× [0, z0] ⊆ D.

Let the following hypotheses be satisfied:

(H1) F : D×Ω → 2Rn
is a multifunction with compact convex non-empty values in

R
n,D = [0, a] × [0, b] × [0, c] ⊂ R

3, and Ω ⊂ R
n is an open subset.

(H2) For any (x, y, z) ∈ D, the mapping u→ F (x, y, z, u) is upper semi-continuous
on Ω.

(H3) For any u ∈ Ω, the mapping (x, y, z) → F (x, y, z, u) is Lebesgue-measurable
on D.

(H4) There exists a function k : D → R+, k ∈ L1 (D; Rn) such that

‖ζ‖ ≤ k (x, y, z) , (∀) ζ ∈ F (x, y, z, u) , (∀) (x, y, z) ∈ D, (∀)u ∈ Ω.

(H5) The functions ϕ ∈ C∗ (D1; R
n), ψ ∈ C∗ (D2; R

n), χ ∈ C∗ (D3,R
n) are ab-

solutely continuous in Carathéodory’s sense functions and satisfy condition
(1.3).
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Remark 1. The function α : D → R
n defined by

α (x, y, z) = ϕ (x, y) + ψ (y, z) + χ (x, z) − ϕ (x, 0)−

− ϕ (0, y) − ψ (0, z) + ψ (0, 0) =

= ϕ (x, y) + ψ (y, z) + χ (x, z) − v1 (x) − v2 (y) − v3 (z) + v0, (3.1)

is an absolutely continuous in Carathéodory’s sense function on D, α ∈ C∗(D; Rn)
[2, §565 − 570].

Remark 2. Denote by M ⊂ Ω the convex compact set in which the function
α : D → R

n, defined by (3.1), takes its values for all (x, y, z) ∈ D0.

Remark 3. Let (x0, y0, z0) ∈]0, a]×]0, b]×]0, c] be a point such that

∫ x0

0

∫ y0

0

∫ z0

0
k (r, s, t) dr ds dt < d (M,CΩ) ,

where d (M,CΩ) is the distance from M to CΩ = R
n −Ω, an inequality immediately

resulting from the integrability of function k.

Definition 3.1 [16]. The Darboux Problem for the hyperbolic inclusion (1.1) means
to determine a solution of this inclusion which satisfies the initial conditions (1.2).

Definition 3.2 [16]. A local solution of Darboux Problem (1.1)+(1.2) is defined as
a function U : D0 → Ω, U ∈ C∗ (D0; R

n), absolutely continuous in Carathéodory’s
sense [2, §565 − 570], which satisfies (1.1) for a.e (x, y, z) ∈ D0, and also initial
conditions (1.2) for all (x, y) ∈ [0, x0]× [0, y0], all (y, z) ∈ [0, y0]× [0, z0], all (x, z) ∈
[0, x0] × [0, z0].

In [16] we proved the following

Theorem 3.1 [16]. Let the hypotheses (H1) − (H5) be satisfied. Then:

(i) there exists at least a local solution U of Darboux Problem (1.1) + (1.2);

(ii) the set Sα of the local solutions U is compact in Banach space C (D0; R
n);

(iii) the multifunction α → Sα is upper semi-continuous on C∗ (D0; R
n), taking

values in C (D0; R
n).

The solution U is a fixed point of a suitable multifunction which satisfies the
Kakutani-Ky Fan fixed point theorem and it is of the form

U (x, y, z) = α (x, y, z) +

∫ x

0

∫ y

0

∫ z

0
β (r, s, t) dr ds dt, (x, y, z) ∈ D0, (3.2)

where

β (x, y, z) ∈ Γ (x, y, z) ⊂ F (x, y, z, U (x, y, z)) for a.e. (x, y, z) ∈ D0, (3.3)

β is a measurable selection of the multifunction Γ : D0 → C (Rn) [3, 4, 16].
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Definition 3.3 [17]. A local solution for the Darboux Problem (1.1) + (1.2) U :
D0 → Ω is prolongable (or non-saturated) if there exists a solution ˜U : ˜D→ R

n for
the Darboux Problem (1.1) + (1.2) such that

{

D0 ⊆ ˜D, D0 6= ˜D,
˜U (x, y, z) = U (x, y, z) , (x, y, z) ∈ D0,

where ˜D ⊆ D is a union of D0 with a finite number of adjacent parallelepipeds.

In [17] we proved the following theorems:

Theorem 3.2 [17]. Let the hypotheses (H1) − (H5) be satisfied together with the
hypotheses:

(H6) The set Ω is bounded, that is there exists a constant C ∈ R+ such that ‖u‖ ≤
C,, (∀)u ∈ Ω.

(H7) The multifunction F maps bounded sets onto bounded sets, hence a constant
K ∈ R+ exists such that

sup {‖ζ‖ | ζ ∈ F (x, y, z, u)} ≤ K,

for any (x, y, z, u) ∈ D × Ω.

Then the local solution U is prolongable.

Theorem 3.3 [17]. We assume the hypotheses (H1) − (H7) to be satisfied. If
U : D0 → Ω is a local solution of Darboux Problem (1.1) + (1.2) that is non-
saturated, hence prolongable, then there exists a saturated solution U∗ : D∗ → Ω of
the Darboux Problem (1.1) + (1.2) such that

{

D0 ⊆ D∗, D0 6= D∗, D∗ ⊆ D,
U∗ (x, y, z) = U (x, y, z) , (x, y, z) ∈ D0,

hence U∗ is a prolongation of U onto D∗ that has been built by joining D0 with a
union of parallelepipeds adjacent to D0.

Theorem 3.4 [17]. Let the hypotheses (H1) − (H7) be satisfied. If the saturated
solution U∗ is bounded on D∗, then D∗ = D.

Theorem 3.5 [17]. Let the hypotheses (H1) − (H7) be satisfied together with the
hypothesis:

(H8) The multifunction F : D×Ω → 2Rn
is sub-linear, hence two constants k1 > 0

and k2 ∈ R exist with the property

sup {‖ζ‖ | ζ∈F (x, y, z, u)} ≤ k1 ‖u‖ + k2, for a.e. (x, y, z)∈D, u∈Ω. (3.4)
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Then the saturated solution U∗ : D → Ω is bounded on D.

The saturated solution U∗ has the form, by Theorem 3.1 [16],

U∗ (x, y, z) = α (x, y, z) +

∫ x

0

∫ y

0

∫ z

0
β∗ (r, s, t) dr ds dt, (x, y, z) ∈ D, (3.5)

where α (x, y, z) is given by (3.1) and β∗ is a measurable selection of the multivalued
mapping Γ∗ [3, 4, 16], defined on D with compact non-empty values in R

n, i.e.
Γ∗ : D → C (Rn), such that

β∗ (x, y, z) ∈ Γ∗ (x, y, z) ⊆ F (x, y, z, U∗ (x, y, z)) for a.e. (x, y, z) ∈ D. (3.6)

Definition 3.4. A function U : D → R
n is called a solution of the Darboux

Problem (1.1)+(1.2) if it is absolutely continuous in Carathéodory’s sense on D,U ∈
C∗ (D; Rn) [2, §565 − 570] and satisfies (1.1) for a.e. (x, y, z) ∈ D, and also initial
conditions (1.2) for all (x, y) ∈ D1, all (y, z) ∈ D2, all (x, z) ∈ D3.

Similarly with [5, 15] in this paper we prove a theorem of characterization of the
solutions for Darboux Problem (1.1) + (1.2).

Theorem 3.6. Let the hypotheses (H ′
1), (H3), (H4), (H5) of Theorem 3.1 be satis-

fied:

(H ′
1) F : D × Ω → 2R

n

is an upper semi-continuous multifunction with compact
convex non-empty values in R

n, D = [0, a]× [0, b]× [0, c] ⊂ R
3 and Ω ⊂ R

n is
an open bounded set.

The hypothesis (H ′
1) includes the hypothesis (H6).

Then, the continuous function U : D → R
n is a solution of Darboux Problem

(1.1) + (1.2) if and only if for each (x1, y1, z1), (x2, y2, z2) ∈ D the membership
relation

[U (x2, y2, z2) − U (x1, y2, z2) − U (x2, y1, z2) + U (x1, y1, z2)]−

− [U (x2, y2, z1) − U (x1, y2, z1) − U (x2, y1, z1) + U (x1, y1, z1)] ∈

∈

∫ x2

x1

∫ y2

y1

∫ z2

z1

F (x, y, z, U (x, y, z)) dx dy dz, (3.7)

holds, and U satisfies the conditions (1.2).
The difference in (3.7) is an extension of hyperbolic difference for functions in

two variables.

Proof. The necessity of (3.7) is a consequence of the following arguments. Let U
be a solution of (1.1) + (1.2) on D. It exists from Theorem 3.4 and has the form
(3.5). We denote U∗ = U .

U (x, y, z) = α (x, y, z) +

∫ x

0

∫ y

0

∫ z

0
β (r, s, t) dr ds dt, (x, y, z) ∈ D, (3.8)
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β∗ = β is a measurable selection of multivalued mapping Γ∗ = Γ [3, 4, 16] defined
on D with compact non-empty values in R

n,Γ : D → C (Rn),

β (x, y, z) ∈ Γ (x, y, z) ⊆ F (x, y, z, U (x, y, z)) for a.e (x, y, z) ∈ D. (3.9)

We denote δ = [x1, x2] × [y1, y2] × [z1, z2] ⊆ D. By (3.8) it follows that

∂3U (x, y, z)

∂x∂y∂z
= β (x, y, z) ∈ Γ (x, y, z) ⊆ F (x, y, z, U (x, y, z)) (3.10)

for a.e. (x, y, z) ∈ D

and U satisfies the conditions (1.2).

Choosing two points (x1, y1, z1) , (x2, y2, z2) ∈ D and integrating the equation
(3.10) on δ we get

∫ x2

x1

∫ y2

y1

∫ z2

z1

∂3U (x, y, z)

∂x∂y∂z
dx dy dz =

∫ x2

x1

∫ y2

y1

∂2U (x, y, z)

∂x∂y

∣

∣

∣

z=z2

z=z1

dx dy =

=

∫ x2

x1

∫ y2

y1

[

∂2U (x, y, z2)

∂x∂y
−
∂2U (x, y, z1)

∂x∂y

]

dx dy =

=

∫ x2

x1

∫ y2

y1

∂2U (x, y, z2)

∂x∂y
dẋ dy −

∫ x2

x1

∫ y2

y1

∂2U (x, y, z1)

∂x∂y
dx dy =

=

∫ x2

x1

∂U (x, y, z2)

∂x

∣

∣

∣

y=y2

y=y1

dx−

∫ x2

x1

∂U (x, y, z1)

∂x

∣

∣

∣

y=y2

y=y1

dx =

=

∫ x2

x1

[

∂U (x, y2,z2)

∂x
−
∂U (x, y1, z2)

∂x

]

dx−

−

∫ x2

x1

[

∂U (x, y2,z1)

∂x
−
∂U (x, y1, z1)

∂x

]

dx =

=

(

U (x, y2, z2)
∣

∣

∣

x=x2

x=x1

− U (x, y1, z2)
∣

∣

∣

x=x2

x=x1

)

−

−

(

U (x, y, z1)
∣

∣

∣

x=x2

x=x1

− U (x, y1, z1)
∣

∣

∣

x=x2

x=x1

)

=

= [(U (x2, y2, z2) − U (x1, y2, z2)) − (U (x2, y1, z2) − U (x1, y1, z2))]−

−[(U (x2, y2, z1) − U (x1, y2, z1)) − (U (x2, y1, z1) − U (x1, y1, z1))] =

= [U (x2, y2, z2) − U (x1, y2, z2) − U (x2, y1, z2) + U (x1, y1, z2)]−

− [U (x2, y2, z1) − U (x1, y2, z1) − U (x2, y1, z1) + U (x1, y1, z1)] =

=

∫ x2

x1

∫ y2

y1

∫ z2

z1

β (x, y, z) dx dy dz ∈

∫ x2

x1

∫ y2

y1

∫ z2

z1

Γ (x, y, z) dx dy dz ⊆

⊆

∫ x2

x1

∫ y2

y1

∫ z2

z1

F (x, y, z, U (x, y, z)) dx dy dz. (3.11)

According to (3.11), we have (3.7) satisfied it was stated.
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In order to prove the sufficiency of (3.7), we firstly prove that the continu-

ous function U , satisfying (3.7) and (1.2), has the derivative
∂3U (x, y, z)

∂x∂y∂z
for a.e

(x, y, z) ∈ D. For this, we prove that U is absolutely continuous in Carathéodory’s
sense on D. We associate to the continuous function U , the interval function
[2, §453, 565],

Φ (δ) = [U (x2, y2, z2) − U (x1, y2, z2) − U (x2, y1, z2) + U (x1, y1, z2)]−

− [U (x2, y2, z1) − U (x1, y2, z1) − U (x2, y1, z1) + U (x1, y1, z1)] . (3.12)

We prove that Φ (δ) is absolutely continuous, using the Theorem 1 in [2, §453].
From (3.7) and (3.12) we get

Φ (δ) ∈

∫ x2

x1

∫ y2

y1

∫ z2

z1

F (x, y, z, U (x, y, z)) dx dy dz. (3.13)

In view of Definition 2.9 and (3.11), the relation (3.7) holds for (x, y, z) ∈ δ. Then
(3.7), (3.11), (3.13) yield

Φ (δ) =

∫ x2

x1

∫ y2

y1

∫ z2

z1

β (x, y, z) dx dy dz ∈

∈

∫ x2

x1

∫ y2

y1

∫ z2

z1

F (x, y, z, U (x, y, z1)) dx dy dz. (3.14)

According to the hypothesis (H4), we obtain

‖Φ (δ)‖ ≤

∫ x2

x1

∫ y2

y1

∫ z2

z1

‖β (x, y, z)‖ dx dy dz ≤

≤

∫ x2

x1

∫ y2

y1

∫ z2

z1

k (x, y, z) dx dy dz. (3.15)

We set

η (λ) = sup
µ(δ)≤λ

‖Φ (δ)‖ , for any λ ∈ R+. (3.16)

In view of the absolute continuity of the integral, for each ε > 0 there exists a
δ1 (ε) > 0 such that

∫∫∫

δ

k (x, y, z) dx dy dz =

∫ x2

x1

∫ y2

y1

∫ z2

z1

k (x, y, z) dx dy dz < ε, (3.17)

whenever µ (δ) < δ1 (ε).

Let λ < δ1 (ε). According to (3.15), (3.16), (3.17) we obtain

η (λ)≤sup

∫∫∫

δ

k (x, y, z) dx dy dz =

∫ x2

x1

∫ y2

y

∫ z2

z1

k (x, y, z) dx dy dz < ε, (3.18)
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whenever µ (δ) ≤ λ < δ1 (ε), or

lim
λ→0

η (λ) = 0. (3.19)

According to Theorem in [2, §453] the interval function Φ (δ) is absolutely con-
tinuous. Since the continuous function U satisfies the conditions (1.3) the hypoth-
esis (H5) holds too. In view of [2, §567]the function U is absolutely continuous in
Carathéodory’s sense. From Theorems 5, 6 [2, §569 − 570] the function U has the

derivative
∂3U (x, y, z)

∂x ∂y ∂z
for a.e. (x, y, z) ∈ D.

It remains to prove that the function U satisfies the inclusion (1.1).
Taking into account the hypothesis (H1) and the continuity of the function U ,

it follows that the multifunction ˜F : D → 2R
n

, given by

˜F (x, y, z) = F (x, y, z, U (x, y, z)) , (x, y, z) ∈ D, (3.20)

is upper semi-continuous on D. Then by Theorem 9.3.1 [13] and [5], Definition 1,
we deduce

˜F ([B (x, y, z) , δ2]) ⊂ B
[

˜F (x, y, z) , ε
]

, (x, y, z) ∈ D, (3.21)

where B [(x, y, z) , δ2] is the open ball centered at (x, y, z) ∈ D of radius δ2 = δ2 (ε) >
0 and

B
[

˜F (x, y, z) , ε
]

=
{

ω ∈ R
n | d

(

ω, ˜F (x, y, z)
)

< ε
}

. (3.22)

Fix (x, y, z) ∈ D. If (x′, y′, z′) ∈ B [(x, y, z) , δ2], then

˜F
(

x′, y′, z′
)

⊂ B
[

˜F (x, y, z) , ε
]

(3.23)

because by Definition 2.1, and by Definition 9.1.2 [13, p.67) and also [5, 2] we have

˜F (B [(x, y, z) , δ2]) =
{

⋃

˜F
(

x′, y′, z′
)

|
(

x′, y′, z′
)

∈ B [(x, y, z) , δ2]
}

. (3.24)

The condition (3.7) may be rewritten as

[

U
(

x′, y′, z′
)

− U
(

x, y′, z′
)

− U
(

x′, y, z′
)

+ U
(

x, y, z′
)]

−

−
[

U
(

x′, y′, z
)

− U
(

x, y′, z
)

− U
(

x′, y, z
)

+ U (x, y, z)
]

∈

∈

∫ x′

x

∫ y′

y

∫ z′

z

F (r, s, t, U (r, s, t)) dr ds dt, (3.25)

for the domain [x, x′] × [y, y′] × [z, z′] ⊆ D.
According to (3.20), we deduce from (3.25) that

[

U
(

x′, y′, z′
)

− U
(

x, y′, z′
)

− U
(

x′, y, z′
)

+ U
(

x, y, z′
)]

−

−
[

U
(

x′, y′, z
)

− U
(

x, y′, z
)

− U
(

x′, y, z
)

+ U (x, y, z)
]

∈
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∈

∫ x′

x

∫ y′

y

∫ z′

z

˜F (r, s, t, ) dr ds dt. (3.26)

By (x′, y′, z′) ∈ B [(x, y, z) , δ2], we obtain |x− x′| < δ2, |y − y′| < δ2, |z − z′| <
δ2. Moreover |r − x| < δ2, |s− y| < δ2, |t− z| < δ2 for x ≤ r ≤ x′, y ≤ s ≤ y′,
z ≤ t ≤ z′.

By (3.23) we have

˜F (r, s, t) ⊂ B
[

˜F (r, s, t) , ε
]

. (3.27)

Then, by (3.27), the relation (3.26) yields

[

U
(

x′, y′, z′
)

− U
(

x, y′, z′
)

− U
(

x′, y, z
)

+ U
(

x, y, z′
)]

−

−
[

U
(

x′, y′, z
)

− U
(

x, y′, z
)

− U
(

x′, y, z
)

+ U (x, y, z)
]

∈

∈

∫ x′

x

∫ y′

y

∫ z′

z

B
[

˜F (r, s, t, ) , ε
]

dr ds dt. (3.28)

As the multifunction ˜F , given by (3.20), is upper semi-continuous on D, the set

B
[

˜F (x, y, z) , ε
]

is closed in R
n.

In view of (3.22) it follows that B
[

˜F (x, y, z) , ε
]

is also bounded in R
n and

therefore it is a compact set. Then we can use Proposition 2.3, setting A =

B
[

˜F (x, y, z) , ε
]

and [x, x′]× [y, y′]× [z, z′] instead of δ = [x1, x2]× [y1, y2]× [z1, z2],

we obtain

∫ x′

x

∫ y′

y

∫ z′

z

B
[

˜F (x, y, z) , ε
]

dr ds dt =

=
(

x′ − x
) (

y′ − y
) (

z′ − z
)

convB
[

˜F (x, y, z) , ε
]

. (3.29)

According to (3.29), the relation (3.28) yields

[

U
(

x′, y′, z′
)

− U
(

x, y′, z′
)

− U
(

x′, y, z′
)

+ U
(

x, y, z′
)]

−

−
[

U
(

x′, y′, z
)

− U
(

x, y′, z
)

− U
(

x′, y, z
)

+ U (x, y, z)
]

∈

∈
(

x′ − x
) (

y′ − y
) (

z′ − z
)

convB
[

˜F (x, y, z) , ε
]

. (3.30)

By Proposition (2.4), the set B
[

˜F (x, y, z) , ε
]

is convex and therefore

convB
[

˜F (x, y, z) , ε
]

= B
[

˜F (x, y, z) , ε
]

. (3.31)

Using (3.31), the relation (3.30) yields

[

U
(

x′, y′, z′
)

− U
(

x, y′, z′
)

− U
(

x′, y, z′
)

+ U
(

x, y, z′
)]

−

−
[

U
(

x′, y′, z
)

− U
(

x, y′, z
)

− U
(

x′, y, z
)

+ U (x, y, z)
]

∈
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∈
(

x′ − x
) (

y′ − y
) (

z′ − z
)

B
[

˜F (x, y, z) , ε
]

. (3.32)

From (3.32) we get
[

U (x′, y′, z′) − U (x, y′, z′)

x′ − x
−
U (x′, y, z′) − U (x, y, z′)

x′ − x

]

−

−

[

U (x′, y′, z) − U (x, y′, z)

x′ − x
−
U (x′, y, z) − U (x, y, z)

x′ − x

]

∈

∈
(

y′ − y
) (

z′ − z
)

B
[

˜F (x, y, z) , ε
]

. (3.33)

Taking into account that B
[

˜F (x, y, z) , ε
]

is closed, the relation (3.33) yields

lim
x′→x

{[

U (x′, y′, z′) − U (x, y′, z′)

x′ − x
−
U (x′, y, z′) − U (x, y, z′)

x′ − x

]

−

−

[

U (x′, y′, z) − U (x, y′, z)

x′ − x
−
U (x′, y, z) − U (x, y, z)

x′ − x

]}

=

=

{[

∂U

∂x

(

x, y′, z′
)

−
∂U

∂x

(

x, y, z′
)

]

−

[

∂U

∂x

(

x, y′, z
)

−
∂U

∂x
(x, y, z)

]}

∈

∈
(

y′ − y
) (

z′ − z
)

B
[

˜F (x, y, z) , ε
]

(3.34)

and

lim
y′→y







∂U

∂x
(x, y′, z′) −

∂U

∂x
(x, y, z′)

y′ − y
−

∂U

∂x
(x, y′, z) −

∂U

∂x
(x, y, z)

y′ − y






∈

∈
(

z′ − z
)

B
[

˜F (x, y, z) , ε
]

(3.35)

or
∂2U

∂x∂y

(

x, y, z′
)

−
∂2U

∂x∂y
(x, y, z) ∈

(

z′ − z
)

B
[

˜F (x, y, z) , ε
]

. (3.36)

It results

∂2U

∂x∂y
(x, y, z′) −

∂2U

∂x∂y
(x, y, z)

z′ − z
∈ B

[

˜F (x, y, z) , ε
]

(3.37)

and

lim
z′→z

∂2U

∂x∂y
(x, y, z′) −

∂2U

∂x∂y
(x, y, z)

z′ − z
=

∂3U

∂x∂y∂z
(x, y, z)∈B

[

˜F (x, y, z) , ε
]

. (3.38)

Since ˜F (x, y, z) is closed and F is an upper semi-continuous multifunction, the
relation (3.38) yields, for ε→ 0,

∂3U

∂x∂y∂z
(x, y, z)∈ ˜F (x, y, z) = F (x, y, z, U (x, y, z)) for a.e. (x, y, z) ∈ D. (3.39)

Therefore, U satisfies the inclusion (1.1) as stated.
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Rendus Acad. Sci. Paris, 1966, 262, N 7, Série A, p. 409–411.

[5] Cellina A. Multivalued differential equations and ordinary differential equations. SIAM J.
Appl. Math., 1970, 18, N 2, p. 533–538.
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Iaşi 6, România
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Maximization methods of turbo-machines performances

Mircea Dimitrie Cazacu

Abstract. Due to the important role of the turbo-machines efficiency, concerning the
energy economy and environment pollution diminishing [1, 2], we shall present three
original methods to maximize their performances, establishing the optimum blade
profile and its setting angles at different blade radii.
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1 Maximum extracted power by a run-of-river hydraulic

turbine or wind turbine

Projecting the two components of hydrodynamic resultant on the rotational pe-
ripheral direction, we shall obtain the mechanical power expression

P = UFu = U(Fy sin β − Fx cos β) =
ρ

2
V 3bl

[

cy(i)
cos β

sin2 β
− cx(i)

cos2 β

sin2 β

]

, (1)

and cancelling the partial derivative

∂P

∂β
= −cy(i)

1 + cos2 β

sin3 β
+ cx(i)

cos β(2 + cos2 β)

sin4 β
= 0, (2)

introducing the notation sin2 β = x, we must solve the algebraic equation

P (x) =
[

f2(i) + 1
]

x3 −
[

4f2(i) + 7
]

x2 +
[

4f2(i) + 15
]

x − 9 = 0, (3)

from which the sub-unit solution maximizes really the power, for any chosen profile-
shape. Once more, introducing these values i and β in the power expression (1), the
maximal power value will indicate the best profile to use [3]. Applying the relation
V = Utgβ at the outskirts, we obtain the optimal angular velocity, which being the
same for all the blade, determines the rotation velocity at any other radius Rj and
because the relative angle is thus known, the power maximization will be obtained
only by the variation of the incident angle in case of considered profile.

1.1. The best incidence angle of blade profile for other radii

For other flow channel, placed at radius Rj 6= Rp, the peripheral radius, we
obtain the maximization of the extracted power

Pj =
V

tgβj

ρ

2
V 2blj(Rj)

[

cy(i)
1

sin βj
− cx(i)

cos βj

sin2 βj

]

=
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=
ρ

2
V 3bl[A(Rj)cy(i) − B(Rj)cx(i)]. (4)

From the fluid by annulling its partial derivative with respect to the incidence
angle i

∂ ⌊A(R)cy(i) − B(R)cx(i)⌋

∂i
= 0 =

[

A(cy1 − 4i3cy4) − B(cx1 + 2icx2

]

, (5)

in which we considered the usual expressions of variation with the incidence an-
gle of the lift and drag coefficients, supposed of the form: cy(i) = cy0 + icy1 −
−i4cy4 and cx(i) = cx0 + icx1 + i2cx2, finally obtaining the calculation formula of the
best incidence angle for any radius

i3 + i
ωoptcx2

2V cy4
R +

ωoptcx1

4V cy4
R −

cy1

4cy4
= 0, (6)

with the interesting remark that the optimum incidence angle rises at the same time
with the radius decreasing, to obtain a greater velocity around the profile [3].

The good performance of power coefficient Cp = 0, 42 obtained for a three blade
rotor [4] and Cp = 0, 56 for a four blade rotor have put into the evidence the validity
of this maximization method.

2 Maximization of the propulsion force for an aircraft or ship

propeller

The problem of propulsion force increasing for the same consumed mechanical
power at the shaft, is very important not only concerning the operation radius en-
largement of an aircraft or ship, but also by the fossil fuel savings and environmental
protection, being of a greater importance for the ecological boats, which use the solar
energy by means of photovoltaic cells [5, 6].

2.1. The determination of the best peripheral relative angle

Taking into account the expressions of the lift and drag forces, exerted on the
profiled blade, laid at the incidence angle i with respect to the relative angle β,
corresponding to the relative velocity W from the velocity triangle, we can calculate
the axial component of these forces, representing the propulsion force

Fa = Fy cos β − Fx sin β =
ρ

2
V 2bl(R)

[

cy(i)
cos β

sin2 β
− cx(i)

1

sin β

]

(7)

and also the expression of the shaft driving mechanical power

Pm = U(Fy sin β + Fx cos β) or pm =
2Pm

ρV 3bl
= cy(i)

cos β

sin2 β
+ cx(i)

cos2 β

sin3 β
. (8)

By annulling the partial differential of the axial force (7) with respect to the relative
angle β

∂Fa/∂β = 0 = −cy(1 + cos2 β) + cx sinβ cos β, (9)
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one obtains the condition to maximize the propulsion axial force (denoting by x =
sin2 β and the profile fineness f(i) = cy(i)/cx(i) as function of the incidence angle
i) given by the following algebraic relation

(f2 + 1)x2 − (4f2 + 1)x + 4f2 = 0, (10)

having two real solutions and putting into the evidence the relative best and respec-
tively worst angle β as function of the fineness of the aerodynamic or hydrodynamic
profiles, for the positive value under the root expression, necessary to assure the
non-imaginary solutions

x =
4f2 + 1 ±

√

1 − 8f2

2f2 + 2
, for 1 − 8f2 ≥ 0 → f(i) =

cy

cx
≤ 0.3536 . . . (11)

which condition eliminates a lot of profiles too curved and prefers these that have
the lift force near by zero for a certain incidence angle i [7].

2.2. The determination of the optimum profile setting angle

for other radii

For the other radii, because the peripheral relative angle βj is already determined
by the relation V = Ujtgβj , the power maximization will be obtained only by the
election of the optimum incidence angle in case of considered profile, as we shall
see below. We have determined the blade profile angle βb = βj − i annulling the
expression of the axial force with respect to the incidence angle i of the profile [3],
obtaining the relation

Fj =
ρ

2
V 2bl(Rj)

[

(cy0 + icy1
cos βj

sin2 βj

− (cx0 + icx1 + i2cx2)
1

sin βj

]

(12)

the blade spread being b = δR = constant and the blade depth l as function of radius
Rj having no importance, we can annul the axial propulsion force with respect to
the incidence angle to obtain the optimal incidence for each relative radius

∂Fa

∂i
= 0 =

cy1

tgβj
− cx1 − 2icx2 → iopt =

1

2cx2
(

cy1

tgβp

Rj

Rp
− cx1), (13)

considering the variation approximately linear of the lift coefficient of the profile (for
example of the symmetric profile Gö 445 [3, 4]) as function of the incidence angle
Cy(i) ≃ Cy0 + Cy1i = 0.002i and the parabolic approximately variation of the drag
coefficient of the profile

Cx(i) ≃ Cx0 + Cx1i − Cx2i
2 = 0.005 + 0.004, 5i − 0.000, 5i2. (14)

In this manner we can establish the airfoil profile, which realises the best propul-
sion axial force, as also the value of the relative mechanical driving power.

For the smaller relative radius r = Rj/Rp < 1, where we have already the relative
angle βj imposed, to maximize the axial force Fa one calculates the values of the
optimal incidence angle iopt given by the relation (13).
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2.3. Maximization of the ratio between the axial force

and consumed power

In this case [8], by annulling the partial differential with respect to the relative
angle 0 ≤ β ≤ π/2

∂ (fa/pm)

∂β
=

fctg2β − 2ctgβ − f

cos2 β(f2 + 2fctgβ + ctg2β)
= 0 → fctg2β − 2ctgβ − f = 0, (15)

one obtains the maximization condition, that by introducing the notation x = ctgβ,

leads us to the solving of the algebraic equation of 2nd degree

f(i)x2 − 2x − f(i) = 0, (16)

having always two real solutions, one positive and other negative

x1,2 =
1 ±

√

1 + f2

f(i)
, (17)

as one can see for the case of Göttingen 450 profile [3], which are vindicated again
as the best performing, and where we put also the value of the ratio fa/pm for the
confirmation of the maximal value of the axial force, obtained at the approximate
incidence angle i ≈ 1◦.

3 The obtaining of the fluid current maximal velocity

This optimization method presents a special importance in the problem of opti-
mal profiling of the axial rotor blades for a mixer, ventilator or pump. To maximize
the fluid current velocity V , we shall present two possibilities to solve this problem:
using the velocity relation deduced by the axial force expression (7) or from that of
the rotor driving power (8).

3.1. The fluid velocity maximizing using the axial force relation

We shall consider the mathematical problem of linked maximum, corresponding
to the obtaining of maximal velocity of the axial fluid current using the axial force
expression (7).

3.1.1. The optimal profiling of the blade and the optimal peripheral

setting angle

Considering the relation (7), we can write

V 2ρbl

2Fa
=

1

cy
cos β

sin2 β
− cx

1
sin β

→
V

√

2Fa/ρbl
=

(

cy
cos β

sin2 β
− cx

1

sin β

)−1/2

, (18)

from that by annulment of its partial derivation, we shall obtain the value of the
relative angle β, introducing the profile fineness f = cy/cx and denoting sin2 β = x,
the problem reduces to the solving of the same algebraic equation (10).
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3.1.2. The optimal setting angle of the profile to the other blade radii

Because for the other blade radii the relative angle is already determined, we
shall maximize the current velocity by annulment of its derivative with respect to
profile incidence angle, obtaining the new expression of the fluid velocity

V
√

2Fa/ρbl
=

[

(cy0 + icy1 − i2cy2)
cos βj

sin2 βj

− (cx0 + icx1 + i2cx2)
1

sin βj

]−1/2

, (19)

which by annulment of its partial derivation with respect to the incidence angle i,
gives us the necessary relation

iopt =
cy1ctgβj − cx1

cy2ctgβj + cx2
. (20)

3.2. The obtaining of the maximal velocity for the minimum consumed

power

We solved this problem reporting the fluid velocity to the rotor driving mechan-
ical power

V
3
√

2Pm/ρbl
=

[

cy(i)
cos β

sin2 β
+ cx(i)

cos2 β

sin3β

]−1/3

, (21)

in which we shall annul the partial derivative

∂V

∂β
≈

cy sin β(2 − sin2 β) + cx(3 − sin2 β) cos β

3[cy sin β cos β + cx(1 − sin2 β)]4/3
= 0 (22)

and because the denominator can never become infinite, the annulment of the nu-
merator leads us to a same algebraic equation as (3).
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Modelling of explosive magnetorotational phenomena:

from 2D to 3D
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Abstract. In the paper we describe the results of mathematical modelling of mag-
netorotational(MR) supernova explosion in 1D and 2D approach and formulate the
problems and features for the numerical approach to simulations of the MR supernovae
in 3D case.
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1 Introduction

Explosions of supernovae are very spectacular event in the Universe. Explanation
of mechanism of core collapse supernova explosion is one of the most interesting and
complicated problems of modern astrophysics. At the initial stage of core collapse
supernova research the mechanisms of explosion had been connected with neutrino
deposition, and bounce shock propagation. Spherically symmetrical numerical sim-
ulations have shown that the bounce shock appears at the distance 10-30km from
the center, then it moves to the radius of about 100-200 km, and stalls, not giving
an explosion. Farther investigation of this problem was an extension of the same
mechanism to 2D and 3D cases. Numerical simulations of 2D and 3D models have
an additional feature connected with a development of neutrino driven convection
deep inside, and behind the shock. The extensive calculations have shown that this
mechanism does not give supernova explosions either with a sufficient level of confi-
dence. Recently improved models of the core collapse, where the neutrino transport
was simulated by solving the Bolzmann equation, also do not explode [12].

The MR mechanism for core collapse supernova explosion was suggested by
Bisnovatyi-Kogan in 1970 [9], see also [10]. The main idea of the MR mechanism is
to transform part of the rotational energy of presupernova into the radial kinetic en-
ergy (explosion energy). During collapse the star rotates differentially. Differential
rotation leads to the appearing and amplification of the toroidal component of the
magnetic field. Growth of the magnetic field means amplification of the magnetic
pressure with time. A compression wave appears near the region of the extremum of
the magnetic field. This compression wave moves outwards along steeply decreasing
density profile. In a short time it transforms to the fast MHD shock wave. When
the shock reaches the surface of the collapsing star it ejects part of the matter and

c© G.S. Bisnovatyi-Kogan, S.G. Moiseenko, B.P. Rybakin, G.V. Secrieru, 2007
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Figure 1. Model of MR presupernova in 1D case [11]

energy to the infinity. This ejection can be interpreted as explosion of the core
collapse supernova.

The first 2D simulations of the collapse of the rotating magnetized star were pre-
sented in the paper [15], with unrealistically large values of the magnetic field. The
differential rotation and amplification of the magnetic field resulted in the formation
of the axial jet.

2 Results of 1D and 2D MR supernova simulations

The 1D simulations of MR supernova had been made in papers [4, 11]. In 1D
case a star was represented as an infinite cylinder (Fig.1). For the simulations a
set of ideal MHD equations with self gravitation in Lagrangian variables was used.
Initial magnetic field had only r component. Differential rotation led to appearance
and amplification of the toroidal ϕ component of the magnetic field. Numerical
simulations of 1D MR supernova had shown that amplified due to the differential
rotation toroidal field produced MHD shock wave which moved outwards. Part
of the matter was ejected by the shock wave. The amount of the ejected energy
≈ 1051erg is enough for the explanation of the supernova event. 1D simulations
show that time of the evolution of MR supernova texpl depends on the relation of

the initial magnetic Emag and gravitational Egrav energies α =
Emag

Egrav
as texpl ∼

1
√

α
.

It means that for real values of the magnetic field (α ≈ 10−6−8) texpl becomes rather
large. Parameter α characterizes a stiffness of the MHD equations describing MR
supernova. The smallness of the parameter α is one of the main difficulties for
the numerical simulation of MR supernova. From the physical point of view small α
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Figure 2. Triangular Lagrangian grid for 2D simulations of the magnetorotational supernova
explosion

means existence two significantly different time scales. Very small acoustic time scale
and huge time scale proportional to the time of the magnetic field amplification.

More realistic model of magnetorotational supernova was calculated in 2D ap-
proximation. The star was represented by a rotating self-gravitating gaseous body.
The basic set of equations is a set of ideal MHD equations with self gravity in
Lagrangian variables:

dx

dt
= v,

dρ

dt
+ ρ∇ · v = 0,

ρ
dv

dt
= −grad

(

P +
H · H

8π

)

+
∇ · (H ⊗ H)

4π
− ρ∇Φ,

ρ
d

dt

(

H

ρ

)

= H · ∇v, ∆Φ = 4πGρ, (1)

ρ
dε

dt
+ P∇ · v + ρF (ρ, T ) = 0,

P = P (ρ, T ), ε = ε(ρ, T ),

where
d

dt
=

∂

∂t
+ v · ∇ is the total time derivative, x = (r, ϕ, z), v = (vr, vϕ, vz)

is the velocity vector, ρ is the density, P is the pressure, H = (Hr, Hϕ, Hz) is
the magnetic field vector, Φ is the gravitational potential, ε is the internal energy,
G is gravitational constant, H ⊗ H is the tensor of rank 2, and F (ρ, T ) is the rate
of neutrino losses.

Spatial Lagrangian coordinates are r, ϕ and z, i.e. r = r(r0, ϕ0, z0, t),
ϕ = ϕ(r0, ϕ0, z0, t), and z = z(r0, ϕ0, z0, t), where r0, ϕ0, z0 are the initial coor-
dinates of material points of the matter.
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Figure 3. The distribution of the velocity field (left column) and the temperature (right
column) for the time moments t = 0.07, 0.2, 0.3s for the initial quadrupole-like magnetic
field
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Figure 4. The distribution of the velocity field (left column) and the temperature (right
column) for the time moments t = 0.075, 0.1, 0.25s for the initial dipole-like magnetic field
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Taking into account symmetry assumptions (
∂

∂ϕ
= 0), the divergency of the

tensor H ⊗ H can be presented in the following form:

∇·(H ⊗ H) =



















1

r

∂(rHrHr)

∂r
+

∂(HzHr)

∂z
−

1

r
HϕHϕ

1

r

∂(rHrHϕ)

∂r
+

∂(HzHϕ)

∂z
+

1

r
HϕHr

1

r

∂(rHrHz)

∂r
+

∂(HzHz)

∂z



















.

Axial symmetry (
∂

∂ϕ
= 0, r ≥ 0) and symmetry to the equatorial plane

(z ≥ 0) are assumed. The problem is solved in the restricted domain [5]. At t = 0
the domain is restricted by the rotational axis r ≥ 0, equatorial plane z ≥ 0, and
outer boundary of the star where the density of the matter is zero, while poloidal
components of the magnetic field Hr and Hz can be non-zero.

We assume axial and equatorial symmetry (r ≥ 0, z ≥ 0). On the rotational
axis (r = 0) the following boundary conditions are defined: (∇Φ)r = 0, vr = 0.
On the equatorial plane (z = 0) the boundary conditions are: (∇Φ)z = 0, vz = 0.
On the outer boundary (boundary with vacuum) the following condition is defined:
Pouter boundary = 0.

The equation of state, expression for the internal energy and formula for neutrino
losses are the same as in [3].

At the initial moment we start with rigidly rotating sphere of 1.2M⊙ mass with-
out magnetic field [2]. As first stage we calculate a rotating core collapse and for-
mation of the protoneutron star. The ratios between the initial rotational and grav-
itational energies and between the internal and gravitational energies of the star are
the following:

Erot

Egrav
= 0.0057,

Eint

Egrav
= 0.727.

During the collapse the bounce shock appears and moves outwards. The shock
leads to the ejection of ≈ 2.9× 1048erg of energy. The amount of the ejected energy
is too small for the explanation of the supernova explosion.

For the simulations we used completely conservative operator-difference scheme
on triangular Lagrangian grid (Fig.2) of variable structure [6].

Results of the 2D simulations of the magnetorotational supernova are qualita-
tively different from 1D results. In the 2D case the magnetorotational instability
(MRI) appears, leading to the exponential growth of all components of the magnetic
field. MRI significantly reduce the time for the magnetorotational explosion. In the
paper [3] a toy model for the explanation of MRI development in the magnetorota-
tional supernova was suggested.
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Due to MRI the dependence of the explosion time on the strength of the initial
magnetic field can be expressed by the approximate formula: texpl ≈ |log(α)|, where

α =
Emag

Egrav
is a relation between initial magnetic and gravitational energies.

In the 1D case the development of MRI is not possible due to the restricted
number of the freedom degrees.

The results of 2D simulations [3,17] show that the magnetorotational mechanism
allows to produce 0.5−0.6·1051ergs energy of explosion. These values of SN explosion
energy correspond to estimations made from core collapse SN observations.

The shape of the magnetorotational explosion qualitatively depends on the con-
figuration of the initial magnetic field. For the initial quadrupole like configura-
tion [3] the explosion develops mainly near equatorial plane (Fig.3). The dipole
like initial magnetic field [17] leads to the formation and development of mildly
collimated axial jet (Fig.4).

3 Simulation of MR supernovae in 3D case

3D models of the magnetorotational supernova are the more realistic, and have
no constraints connected with the symmetry assumptions.

3D models allow us to simulate the magnetorotational supernova explosion in
the case when rotational axis and axis of dipole magnetic field (if dipole is taken as
initial magnetic field) do not coincide (inclined rotator).

The application of numerical method in Lagrangian variables, similar to the
method used for the 2D case, leads in 3D case to serious difficulties.

In 2D case the matter of the star is slipping in ϕ direction. To produce the
magnetorotational explosion the protoneutron star has to make thousands of rev-
olutions. The rotation of the matter in the outer layers of the protoneutron star
is highly differential. If 3D Lagrangian grid consisting of tetrahedrons would be
applied for the simulations, then in the region of strong differential rotation the grid
would require reconstruction almost at every time step. The reconstruction of the
grid leads to the interpolation of the grid functions to a new grid structure. Frequent
application of the grid reconstruction procedure and interpolation of grid functions
for the same parts of the Lagrangian grid can lead to the significant perturbation of
the solution of initial set of MHD equations with self gravitation.

One of the possible ways to simulate magnetorotational supernova in 3D case is
to apply methods based on the unstructured grids of Dirichlet cells (see for example
[18]). This type of methods can be effectively applied for the simulations of the
different types of gas dynamical flows, but the procedure of the construction of the
grid of Dirichlet cells is rather expensive, especially in 3D case.

Another method widely applied for the simulations of astrophysical problems is
Smooth Particle Hydrodynamics (SPH) [13, 16] method. Codes based on the SPH
approach can be easily developed, but to achieve a high accuracy in simulations SPH



62 G.S. BISNOVATYI-KOGAN, S.G. MOISEENKO, B.P. RYBAKIN, G.V. SECRIERU

requires huge number of particles. The simulation of the problems of gravitational
gas dynamics using SPH leads to the concentration of the particles near the gravita-
tional center, on the periphery of the computational domain the number of particles
is rather small and it leads to the significant loss of the accuracy of the results of
simulations.

One of the most suitable approaches for the simulations of the explosive mag-
netorotational phenomena in 3D case is an application of the numerical methods
in Eulerian variables based on the solution of the decomposition of discontinuity
(Riemann solver) problem. This type of methods was successfully applied for the
solution of the different astrophysical magnetorotational problems. Application of
the Eulerian grid does not require grid reconstruction and interpolation of grid func-
tions. The methods of this type are described in [14]. The methods based on the
approximate MHD Riemann solver in Eulerian variables are the most suitable for
the simulations of the explosive magnetorotational phenomena

For the simulations of astrophysical magnetorotational explosive phenomena it
is important to calculate gravitational potential with sufficient accuracy. The pro-
cedure of the calculation of the gravitational potential is rather expensive ( up to
40% of the computer time for the time step).

For our simulations we plan to apply Adaptive Mesh Refinement (AMR) ap-
proach. The adaptive refinement and rarefaction of the grid can increase the accu-
racy of the calculations significantly with the reasonable number of the grid points.
We expect to apply AMR using two approaches. First one is a construction of the
hierarchical tree which root is our initial 3D grid [1,7]. The second approach consists
in construction of the rectangular (for the 2D case) [8] or parallelepiped (for the 3D
case) patches consisting of specially chosen association of the cells of one level.
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About Quasiconformal Maps in Finsler Spaces

Veronica-Teodora Borcea

Abstract. We consider a constant C which measures the deviation of the Finsler
metric from a Riemannian metric and we prove that the problem of the existence of
quasiconformal mappings between Finsler spaces can be reduced to the same problem
between Riemann spaces.

Mathematics subject classification: 30C65.

Keywords and phrases: Characteristic function, quasiconformal map, Finsler met-
ric, regular atlas.

1 Introduction

The quasiconformal mappings represent a generalization of the conformal trans-
formations. It is known that there exist different equi- valent definitions for the
conformal transformations, most of these using some conformal invariants (modulus
of the ring or a family of arcs, angles, infinitesimal circles,...) or, as the solutions of
a Cauchy-Riemann system.

The conformal transformations were used for the modelling, sometimes with
approximation, of some phenomena. For example, in the hydrodynamic, where were
considered ”ideal fluids” (incompressible and not viscous) and their flow was without
whirlpools.

The definitions of quasiconformal mappings appeared, naturally, from the corre-
sponding definitions of the conformal transformations, for example, by substituting
quasi-invariance for the invariance.

K. Suominen extends the study of the quasiconformality to the finite dimensional
Riemannian manifolds [1], and P. Caraman to the Riemann-Wiener manifolds [2].

The study of quasiconformality was extended by us to the infinit dimensional
Riemannian manifolds and to the Finsler spaces [3, 4].

In 1982 M. Nakai and H. Tanaka proved the existence of quasiconformal map-
pings between finite dimensional Riemannian manifolds [5].

In this paper we associate to a Finsler space a constant C, which measures the
deviation of the Finslerian metric from a riemannian metric. By using this constant
we establish an inequality between the Finslerian and Riemannian characteristic
functions and we prove that the problem of the existence of quasiconformal map-
pings between finite dimensional Finsler spaces can be reduced to the same problem
between finite dimensional Riemann manifolds. The main result is

c© Veronica-Teodora Borcea, 2007
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Theorem A. A homeomorphism f is Finslerian quasiconformal iff f is Riemannian
quasiconformal.

2 Regular atlases

Let us consider M a n-dimensional, connected, paracompact, orientable, C∞-

differentiable manifold and L : TM → R a Finsler metric on M (TM =
⋃

x∈M

TxM

denotes the tangent bundle of M and TxM the tangent space at x ∈ M).

The restriction of L to TxM , L (x, .) : TxM → R, is a norm, generally non-
Hilbertian, denoted by ‖·‖ and

L2 (x,X) = aij (x,X) XiXj ,

for every X = Xi ∂
∂xi ∈ TxM , where

aij (x,X) =
1

2

∂2L2 (x,X)

∂Xi∂Xj

are homogeneous functions of degree zero with respect to X. We have

‖X‖ = L (x,X) =
√

aij (x,X) XiXj .

The manifold M is a metric space with the geodesic metric

d (x, y) = inf {ℓ (γ) / γ ∈ Γ} ,

where Γ is the set of all differentiable arcs joining x with y and ℓ (γ)=

∫ 1

0

∥

∥

∥

∥

dγ

dt

∥

∥

∥

∥

dt.

The geodesics of M are the autoparalleles of nonlinear Cartan connection ∇ and

their equation is ∇ ·
γ(t)

·
γ (t) = 0.

If γX (t) is the geodesic with the initial condition (x,X), then γX (t) =
γαX

(

α−1t
)

for every α ∈ R\ {0} and the map expx : Vx → M , expx X = γX (1)
satisfies ‖Y ‖ = d (x, expx Y ) for every Y ∈ Vx (Vx is the maximum domain where
expx is a diffeomorphism).

Lemma 1. If M is a Finsler space, then for every ε ∈ (0,∞) there exists rx =
r (x, ε) ∈ (0,∞) such that expx is a (1 + ε)-isometry on the ball B (0x, rx) ⊂ TxM ,
that is

(1 + ε)−1 ‖Y − Z‖ ≤ d (expx Y, expx Z) ≤ (1 + ε) ‖Y − Z‖, (1)

for every Y,Z ∈ B (0x, rx) .

Proof. For every ε ∈ (0,∞) let us consider rx ∈ (0,∞) such that the inequality
‖Tx expx ‖ ≤ 1 + ε is satisfied, for every X ∈ B (0x, rx). Let us consider γ : [0, 1] →
TxM , γ (t) = tY + (1 − t) Z and γ1 (t) = (expx ◦γ) (t). We have
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d (expx Y, expx Z) ≤ ℓ (γ1) =

∫ 1

0

∥

∥

∥

∥

dγ1

dt

∥

∥

∥

∥

dt ≤

∫ 1

0

∥

∥

∥

∥

dγ

dt

∥

∥

∥

∥

∥

∥Tγ(t) expx

∥

∥ dt ≤

≤ (1 + ε) ℓ (γ) = (1 + ε) ‖Y − Z‖.

Analogously, results the left-hand side of (1).

Remark 1. If Z = 0x and Y = exp−1
x y, we obtain

d (x, y) = d (expx 0x, expx Y ) = ‖Y ‖

and hence expx (B (0x, rx)) is the geodesic ball B (x, rx), consequently exp−1
x is a

(1 + ε)-isometry, too.

Let us consider the homeomorphism ϕx : B (0, αx) → B (x, rx), αx ∈ (0,∞),
such that ϕx (0) = x (B (0, αx) = Bx is the ball with center 0 and radius αx in R

n).
The pair hx = (Bx, ϕx) is called ϕ-chart at x and the set A = {hx/ x ∈ M} is

called ϕ-atlas on M.
Obviously, for every ε ∈ (0,∞), hε

x = (B (0x, rx) , expx) is an exp-chart and
Aε = {hε

x/ x ∈ M} is an exp-atlas, called the atlas of geodesic balls.
To any ϕ-atlas we can associate the function kA : M → [1,∞]

kA (x) = lim sup
α→0

sup {d (x, y) / y ∈ ϕx (S (0, α))}

inf {d (x, y) / y ∈ ϕx (S (0, α))}
, α ∈ (0, αx) ,

called the parameter of A; kA (x) is called the parameter of the ϕ-chart hx (we shall
sometimes omit the subscript A if the choice of the atlas is clear from context).

If k (x) < ∞ we say that the ϕ-chart hx is k-regular. If all the ϕ-charts of A are
k-regular, we say that the atlas A is k-regular.

If ϕx is a conformal homeomorphism we say that hx is a conformal chart. The
atlas A is said to be conformal if its charts are conformal. In this case we obtain
k (x) = 1 and so, any conformal atlas has the parameter k = 1. Particularly, the
atlas of geodesic balls Aε has the parameter k = 1.

Let f : D → D̃ be a homeomorphism, where D, D̃ are domains in M .

If A is a ϕ-atlas on D, we can consider the ϕ̃-atlas Ã =
{

h̃x̃ / x̃ ∈ M̃
}

, on

D̃, with h̃x̃ = (Bx̃, ϕ̃x̃), Bx̃ = B (0, αx̃), ϕ̃x̃ = f ◦ ϕx, x̃ = f (x) and αx̃ chosen
such that ϕ̃x̃ (Bx̃) ⊂ B (x̃, rx̃), (B (x̃, rx̃) is the geodesic ball in D̃ where exp−1

x̃ is
(1 + ε)-isometry).

Ã and h̃x̃ are called, respectively, ϕ̃-atlas and ϕ̃-chart induced by f .
The parameter of Ã will be

k̃Ã (x̃) = lim sup
α→0

sup
{

d̃ (x̃, ỹ) / ỹ ∈ ϕ̃x̃ (S (0, α))
}

inf
{

d̃ (x̃, ỹ) / ỹ ∈ ϕ̃x̃ (S (0, α))
} , α ∈ (0, αx̃) .

Generally, if A is k-regular, it does not result that Ã is k̃-regular.
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The homeomorphism f is called kk̃−regular if there exists a ϕ−atlas A, k−regu-
lar, on D such that the ϕ̃−atlas, Ã, induced by f is k̃−regular on D̃.

The function

qf : D → [1,∞] , qf (x) = inf
{

k (x) · k̃ (x̃)
}

,

where infimum is taken over all k−regular ϕ−atlases on D, is called the Finslerian
characteristic function of f .

It follows that f is kk̃−regular if qf (x) < ∞, for every x ∈ D.

Let us consider a f−isomorphism of vector bundles T : TD → TD̃. The restric-
tion, Tx, of T to TxD, Tx : TxD → Tx̃D̃, x̃ = f (x), is an isomorphism of linear spaces,
hence the image by Tx of B (0x, αx) is an ellipsoid Ẽ0 (Tx) ⊂ B (0x̃, rx̃) ⊂ Tx̃D̃, where
rx̃ = αx ‖Tx‖. We can consider αx such that expx̃ is (1 + ε)-isometry on B (0x̃, rx̃).

It follows that h̃x̃ = (B (0x, αx) , Tx) is a T -chart at 0x̃ ∈ Tx̃D̃ and so, we can

consider a T̃ -chart on D̃, induced by expx̃, H̃x̃ =
(

B (0x, αx) , T̃x̃

)

, T̃x̃ = expx̃ ◦Tx,

and, in such a way, we obtain a T̃ -atlas Ã =
{

H̃x̃ � x̃ ∈ D̃
}

, called atlas of geodesic

ellipsoids.

The geodesic ellipsoid E0 (Tx) = expx̃

(

Ẽ0 (Tx)
)

has the same extreme semiaxes

as Ẽ0 (Tx) (expx̃ behaves as an isometry for the distances measured from 0x̃).

Let us consider Ẽα (Tx) = Tx (S (0x, α)), α ∈ (0, αx), and

Pα =
{

d̃
(

0x̃, Ỹ
)

� Ỹ ∈ Ẽα (Tx)
}

=
{∥

∥

∥
Ỹ

∥

∥

∥
� ‖Y ‖ = α

}

.

The extreme semiaxes of Ẽα (Tx) are given by

ã0 (α, x̃) = inf Pα = α
∥

∥T−1
x

∥

∥

−1
,

ã1 (α, x̃) = supPα = α ‖Tx‖ .

The function

pT : M̃ → R, pT (x̃) =
ã1 (α, x̃)

ã0 (α, x̃)
= ‖Tx‖

∥

∥T−1
x

∥

∥

is called the principal characteristic parameter of the atlas of geodesic ellipsoids.

Arguing as above for f−1 and T−1, we obtain

pT−1 (x) = ‖Tx‖
∥

∥T−1
x

∥

∥ = pT (x̃) .

The parameter of the atlas of geodesic ellipsoids is

k̃ (x̃) = lim sup
α→0

ã1 (α, x̃)

ã0 (α, x̃)
= pT (x̃) .
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Lemma 2. If f : D → D̃ is a differentiable homeomorphism at x ∈ D with Txf
bijective, then:

a) f is kk̃-regular on D iff for every x ∈ D, Fx = exp−1
x̃ ◦f ◦ expx is kk̃-regular

at 0x ∈ TxD;

b) Fx is kk̃-regular at 0x iff Txf is kk̃-regular at 0x;

c) qf (x) = qTxf (0x) = qFx (0x) .

Proof. a) Let A be a ϕ-atlas k-regular on D, such that the induced ϕ̃-atlas Ã is
k̃-regular on D̃. We consider hx = (Bx, ϕx) ∈ A and h̃x̃ = (Bx̃, ϕ̃x̃) ∈ Ã, where
ϕ̃x̃ = f ◦ ϕx. It follows that Hx = (Bx, φx), φx = exp−1

x ◦ϕx is k-regular and

H̃x̃ =
(

Bx̃, φ̃x̃

)

, φ̃x̃ = exp−1
x̃ ◦ϕ̃x̃ is k̃-regular.

Because

φ̃x̃ = exp−1
x̃ ◦ϕ̃x̃ = exp−1

x̃ ◦f ◦ expx ◦ exp−1
x ◦ϕx = Fx ◦ φx,

it follows that H̃x̃ is the φ̃x̃-chart induced by Fx and so, Fx is kk̃-regular.

For f = expx̃ ◦Fx◦exp−1
x , arguing as above, we obtain the sufficiency. In addition,

we obtain

qf (x) = qFx (0x) . (2)

b) Let us consider the k-regular chart Hx = (Bx, φx) with the parameter

k (x) = lim sup
α→0

supPα

inf Pα
< ∞, Pα = {‖X‖ � X ∈ φx (S (0, α))} (3)

and the chart, H̄x̃ =
(

Bx, φ̄x̃

)

, φ̄x̃ = Txf ◦ φx, induced by Txf , for which

k̄ (x̃) = lim sup
α→0

supP ′
α

inf P ′
α

, P ′
α = {‖(Txf) (X)‖ � X ∈ φx (S (0, α))} . (4)

For the φ̃-chart, H̃x̃ =
(

Bx, φ̃x̃

)

, φ̃x̃ = Fx ◦ φx, induced by Fx, we have

k̃ (x̃) = lim sup
α→0

supP ′′
α

inf P ′′
α

, P ′′
α = {‖Fx (X)‖ � X ∈ φx (S (0, α))} . (5)

Since Txf = DFx (0x), it follows that

Fx (X) = (Txf) (X) + εx (X) ‖X‖ , εx : TxM → TxM, lim
X→0x

‖εx (X)‖ = 0.

We have

lim sup
α→0

(

sup P̄α

)

= 0, P̄α = {‖εx (X)‖ � X ∈ φx (S (0, α))} . (6)

Since Txf is an isomorphism of topological vector spaces, we get
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‖(Txf) (X)‖ ≥
‖X‖

∥

∥

∥
(Txf)−1

∥

∥

∥

.

It follows that

supP ′
α ≥

supPα
∥

∥

∥
(Txf)−1

∥

∥

∥

; inf P ′
α ≥

inf Pα
∥

∥

∥
(Txf)−1

∥

∥

∥

. (7)

We have

‖Txf (X)‖ − ‖εx‖ ‖X‖ ≤ ‖Fx (X)‖ ≤ ‖Txf (X)‖ + ‖εx‖ ‖X‖

and so

supP ′
α − supPα sup P̄α ≤ supP ′′

α ≤ supP ′
α + supPα sup P̄α,

inf P ′
α − supPα sup P̄α ≤ inf P ′′

α ≤ inf P ′
α + supPα sup P̄α.

We obtain











































k̄ (x̃) lim sup
α→0

1 −
∥

∥

∥
(Txf)−1

∥

∥

∥
sup P̄α

1 +
supPα

inf Pα

inf Pα

inf P ′
α

sup P̄α

≤ k̃ (x̃) ,

k̃ (x̃) ≤ k̄ (x̃) lim sup
α→0

1 +
∥

∥

∥
(Txf)−1

∥

∥

∥
sup P̄α

1 −
supPα

inf Pα

inf Pα

inf P ′
α

sup P̄α

.

(8)

From (3), (6), (7) and (8) it follows that k̃ (x̃) = k̄ (x̃), which proves the assertion
b) and we have

qFx (0x) = qTxf (0x) . (9)

c) It results from (2) and (9) .

Lemma 3. If T : V → Ṽ is an isomorphism of n-dimensional normed vector spaces,

then T is kk̃-regular with k (X) = ‖T‖
∥

∥T−1
∥

∥ , k̃
(

X̃
)

= 1 and qT (X) = pT−1 (X),

for every X ∈ V .

Proof. Let us consider the k̃-regular φ̃-chart, H̃X̃ =
(

B
(

0X̃ , 1
)

, φ̃X̃

)

, φ̃X̃ Ỹ =

X̃ + Ỹ , X̃ = TX. It follows that k̃
(

X̃
)

= 1. The map T−1 induces a φ-chart

HX =
(

B
(

0X̃ , 1
)

, φX

)

, φX = T−1 ◦ φ̃X̃ , with k (X) = ‖T‖
∥

∥T−1
∥

∥ < ∞ and so

HX is k-regular. Thus, we obtain that T is kk̃-regular with k (X) = ‖T‖
∥

∥T−1
∥

∥ ,

k̃
(

X̃
)

= 1. We have pT−1 (X) = k (X) k̃
(

X̃
)

= ‖T‖
∥

∥T−1
∥

∥ and so
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qT (X) ≤ pT−1 (X) . (10)

Let us consider a k-regular ϕ-chart, hX = (B (0, 1) , ϕX) and the ϕ̃-chart induced

by T , h̃X̃ =
(

B (0, 1) , ϕ̃X̃

)

, ϕ̃X̃ = T ◦ ϕX , with the parameter k̃
(

X̃
)

. We have two
cases:

1) k (X) ≥ pT−1 (X), which implies that k (X) k̃
(

X̃
)

≥ pT−1 (X). It follows

that qT (X) ≥ pT−1 (X) and from (10) we obtain qT (X) = pT−1 (X) .

2) k (X) < pT−1 (X). We denote by σα = ϕX (S (0, α)) and

r0 = inf {‖Y − X‖ � Y ∈ σα} , r1 = sup {‖Y − X‖ � Y ∈ σα} ;

it follows that σα ⊂ B̄ (X, r1)−B (X, r0). Taking t0 = r0 ‖T‖ and t1 = r1

∥

∥T−1
∥

∥

−1
,

it follows that the ellipsoid Et0

(

T−1
)

= T−1
(

S
(

X̃, t0

))

has the minimum semiaxis

a0 (t0,X) = r0 = t0 ‖T‖−1 and Et1

(

T−1
)

= T−1
(

S
(

X̃, t1

))

has the maximum

semiaxis a1 (t1,X) = r1 = t1
∥

∥T−1
∥

∥. We obtain

k (X) = r1r
−1
0 = t1t

−1
0 ‖T‖

∥

∥T−1
∥

∥ = t1t
−1
0 pT−1 (X)

and since k (X) < pT−1 (X) it follows that t1 < t0. We have

t0 ≤ sup
{
∥

∥

∥
TY − X̃

∥

∥

∥
� Y ∈ σα

}

,

t1 ≥ inf
{

∥

∥

∥
TY − X̃

∥

∥

∥
� Y ∈ σα

}

,

hence k̃
(

X̃
)

≥ t0t
−1
1 = (k (X))−1 pT−1 (X) and then k (X) k̃

(

X̃
)

≥ pT−1 (X),

which implies qT (X) ≥ pT−1 (X). By using (10) we obtain qT (X) = pT−1 (X) .

Remark 2. From Lemmas 2 and 3, it follows that if f : D → D̃ is a differentiable
homeomorphism at x with Jf (x) 6= 0, then f is kk̃-regular at x and qf (x) =

‖Txf‖
∥

∥

∥
(Txf)−1

∥

∥

∥
.

3 The proof of main result

We consider X (M) the Lie algebra of the tangent fields on M and X0 (M) =
{V / V ∈ X (M) , ‖V (x)‖ = 1, ∀x ∈ M} .

The matrix aV = [aij (x, V )] , for a fixed V ∈ X0 (M) , is a Riemannian metric
on M and the map

‖·‖V : TxM → R, ‖X‖V =
√

aij (x, V )XiXj

is an Euclidean norm in TxM.
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Because the norms ‖·‖ and ‖·‖V are equivalent, there exists the map CV : M →
[1,∞) such that

C−1
V (x) ‖X (x)‖V ≤ ‖X (x)‖ ≤ CV (x) ‖X (x)‖V , ∀X ∈ X (M) .

For every V ∈ X0 (M) we consider

P (x, V ) = {CV (x) / C−1
V (x) ‖X (x)‖V ≤ ‖X (x)‖ ≤ CV (x) ‖X (x)‖V ,

∀X ∈ X (M)}

and the map

C : M → [1,∞), C (x) = inf {Px, V )/V ∈ X0 (M)} .

It follows that for every ε > 0, there exists Vε ∈ X0 (M) such that C (x) ≤
CVε (x) < C (x) + ε and so, we can find V0 ∈ X0 (M) which satisfies

C−1 (x) ‖X (x)‖V0
≤ ‖X (x)‖ ≤ C (x) ‖X (x)‖V0

, ∀X ∈ X (M) .

If we consider C = sup {C (x) / x ∈ M} ∈ [1,∞], we have

C−1 ‖X (x)‖V0
≤ ‖X (x)‖ ≤ C ‖X (x)‖V0

, ∀X ∈ X (M) , ∀x ∈ M

hence, if C = 1 then L is a Riemannian metric and if C > 1, it is a Finsler metric,
that is C measures the deviation of the Finsler metric from a riemannian metric.

In the following we suppose that C ∈ (1,∞) and we denote by ‖X (x)‖0 the
norm ‖X (x)‖V0

.

If f : D → D̃ is a non-degenerate differentiable homeomorphism at x ∈ M , then

between the Riemannian characteristic function q0
f (x) = ‖Txf‖0

∥

∥

∥
(Txf)−1

∥

∥

∥

0
and

the Finslerian characteristic function qf (x) we have the relation

C−4q0
f (x) ≤ qf (x) ≤ C4q0

f (x) . (11)

Lemma 4. If f : D → D̃ is a homeomorphism with qf bounded in D, then f is
almost everywhere (a.e.) differentiable (with respect to the Lebesgue measure) and
Jf (x) 6= 0 a.e. in D.

Proof. Let us consider the atlas of geodesic balls Aε on D and Fx = exp−1
x̃ ◦f ◦expx :

B (0x, rx) → Tx̃D̃, x̃ = f (x). It results that qFx (Y ) ≤ (1 + ε)4 qf (y) for every
Y ∈ B (0x, rx), y = expx Y . We obtain that qFx is bounded on B (0x, rx), hence it
is differentiable a.e. with JFx 6= 0 a.e.(see [6]). It follows that f is differentiable
a.e. on B (x, rx) with Jf 6= 0 a.e. Since M is paracompact the assertion of theorem
follows.

Definition. A homeomorphism f : D → D̃ is called K−Finslerian quasiconformal
in D, (K − FQC), 1 ≤ K < ∞, if qf is bounded in D and qf (x) ≤ K a.e. in D.
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If the Finsler metric on M is a Riemannian metric, we say that f is K−Rieman-
nian quasiconformal in D, (K − RQC).

From (11) we obtain:
If f is K − FQC in D, then C−4q0

f (x) ≤ qf (x) ≤ K a.e. in D and hence

q0
f (x) ≤ C4K. We obtain that f is K0 − RQC in D, with K0 = C4K.

Analogously, we obtain that if f is K − RQC in D, then f is K0 − FQC in D,
with K0 = C4K, hence the Theorem A is proved.

Remark 3. From Theorem A it follows that the existence of the quasiconformal
mappings in Finsler spaces can be reduced to the existence of the quasiconformal
mappings in Riemann spaces.
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A REPUBLICII MOLDOVA. MATEMATICA
Number 3(55), 2007, Pages 73–90
ISSN 1024–7696

On mixed LCA groups with commutative rings

of continuous endomorphisms

Valeriu Popa

Abstract. Let L be the class of locally compact abelian (LCA) groups. For X ∈ L,

let E(X) denote the ring of continuous endomorphisms of X. In this paper, we deter-
mine for certain subclasses S of L the groups X ∈ S such that E(X) is commutative.
The main results concern the case of mixed LCA groups.
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1 Introduction

This paper is in continuation to the papers [14, 15] and [16] relating to LCA
groups with commutative rings of continuous endomorphisms. We shall be mainly
concerned with the case of mixed groups. The motivation for our work comes from a
result of T. Szele and J. Szendrei. In [17], they have given among others a complete
description of discrete mixed abelian groups without nonzero elements of infinite
p-height for all relevant primes p, which have commutative endomorphism rings.

The main objective of the paper is to extend this result to the more general
framework of all LCA groups. We also derive information about bounded order-by-
discrete LCA groups with commutative rings of continuous endomorphisms.

2 Notation

In what follows we use the notation and terminology of [14, 15] and [16]. In
addition, if p ∈ P, n ∈ N0, and V is a closed subgroup of a group X ∈ L, we let

p−nV = {x ∈ X|pnx ∈ V }.

For a subset S of P, let

wS(X) =
⋂

p∈S

⋂

n∈N

pnX.

Further, let (Xi)i∈I be a collection of topological groups. For i ∈ I, let Ui be
an open subgroup of Xi. We denote by

∏loc
i∈I(Xi;Ui) the local product of (Xi)i∈I

c© Valeriu Popa, 2007
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with respect to (Ui)i∈I . Recall that, by definition,
∏loc

i∈I(Xi;Ui) is the cartesian
product of the family (Xi)i∈I , topologized by declaring all neighborhoods of zero
in the topological group

∏

i∈I Ui to be a fundamental system of neighborhoods of

zero in
∏loc

i∈I(Xi;Ui) [3, Ch. III, §2, Exercice 26]. Clearly, the local direct product
∏

i∈I(Xi;Ui) is open in
∏loc

i∈I(Xi;Ui). It is also clear that if each Ui is compact, then
∏loc

i∈I(Xi;Ui) is locally compact.

3 Groups with no elements of infinite topological S-height

In [17], T. Szele and J. Szendrei gave among other results a complete description
of discrete, mixed, abelian groups with no elements of actually infinite height, which
have commutative endomorphism rings. Their theorem reads:

Theorem 3.1 ([17], Theorem 2). Let X be a discrete mixed group in L with no
elements of infinite S(X)-height, i. e. such that

⋂

p∈S(X)

⋂

n∈N

pnX = {0}.

Then E(X) is commutative if and only if X is isomorphic to an S(X)-pure
subgroup of

∏loc

p∈S(X)

(

Z(pnp); {0}
)

containing
⊕

p∈S(X)

Z(pnp),

where np ∈ N0 for all p ∈ S(X).

Our aim here is to extend this theorem to more general groups in L. But first
we use it to obtain the solution to our problem in the case of compact groups in L
having nontrivial connected component and dense torsion subgroup.

Corollary 3.2. Let X be a compact group in L with X 6= c(X) 6= {0} and
∑

p∈S(X) tp(X) = X. The endomorphism ring E(X) is commutative if and only
if X is topologically isomorphic to a quotient group of

(

∏loc

p∈S(X)

(

Z(pnp); {0}
)

)∗

by a closed S(X)-pure subgroup contained in

c
((

∏loc

p∈S(X)

(

Z(pnp); {0}
)

)∗)

,

where np ∈ N0 for all p ∈ S(X).
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Proof. Since X is compact with X 6= c(X) 6= {0} and A(X∗; c(X)) = t(X∗) [8,
(24.24)], it follows that X∗ is discrete and mixed. Also, since

∑

p∈S(X) tp(X) = X,
we conclude by [4, Proposition 3.3.3] and [8, (24.22)] that

⋂

p∈S(X)

⋂

n∈N

pnX∗ = A(X∗;
∑

p∈S(X)

∑

n∈N

X[pn])

= A(X∗;
∑

p∈S(X)

tp(X)) = {0},

so that X∗ has no elements of infinite S(X)-height.

Let G =
∏loc

p∈S(X)(Z(pnp); {0}), and let Γ be a closed subgroup of G∗ For p ∈
S(X) and k ∈ N, we have

A(G; pkΓ) = {x ∈ G | pkγ(x) = 0 for all γ ∈ Γ}

= {x ∈ G | γ(pkx) = 0 for all γ ∈ Γ}

= {x ∈ G | pkx ∈ A(G; Γ)} = p−kA(G; Γ).

Since

pkG∗ ∩ Γ = A(G∗;G[pk]) ∩A(G∗;A(G; Γ)) = A(G∗;G[pk] +A(G; Γ)),

it then follows that pkG∗ ∩ Γ = pkΓ if and only if

A(G∗;G[pk] +A(G; Γ)) = A(G∗;A(G; pkΓ)) = A(G∗; p−kA(G; Γ)),

or equivalently if G[pk] + A(G; Γ) = p−kA(G; Γ), which in its turn is equivalent to
pkG∩A(G; Γ) = pkA(G; Γ). Consequently, Γ is S(X)-pure inG∗ if and only ifA(G; Γ)
is S(X)-pure in G. Finally, observing that a closed subgroup of G∗ is contained
in c(G∗) if and only if its annihilator in G contains t(G) =

⊕

p∈S(X) Z(pnp), the
assertion follows from Theorem 3.1 and duality. 2

Definition 3.3. Let S be a nonempty subset of P. A group X ∈ L is said to have
no elements of infinite topological S-height in case wS(X) = {0}.

We can prove the following generalization of Theorem 3.1.

Theorem 3.4. Let X be a mixed group in L with no elements of infinite topological
S-height, where S = S0(X). The following statements are equivalent:

(i) The subgroups pnX with p ∈ S and n ∈ N are open in X, and E(X) is
commutative.

(ii) The cyclic, pure, p-subgroups of X, where p ∈ S, split topologically from X,
and E(X) is commutative.
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(iii) S is infinite and X is topologically isomorphic to an S-pure subgroup of

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

containing
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

where lp, np ∈ N and np 6= 0 for all p ∈ S.

Proof. First observe that since X has no elements of infinite topological S-height,
the subgroups tp(X) are reduced for all p ∈ S, so that X contains nonzero, cyclic,
pure, p-subgroups for all p ∈ S [5, Corollary 27.3].

Assume X satisfies (i), and let A be a cyclic, pure, p-subgroup of X, where
p ∈ S. Then A ∼= Z(pn) for some n ∈ N0. Moreover, A splits algebraically from
X [5, Proposition 27.1], and hence we can write X = A∔G for some subgroup G of
X. It follows that pnX = pnG ⊂ G. As pnX is open in X, we deduce that G is open
in X too, so X = A⊕G by [1, Corollary 6.8]. This proves that (i) implies (ii).

Now assume (ii) holds. Letting p ∈ S, choose an arbitrary nonzero, cyclic, pure,
p-subgroup B(p) of X. Then B(p) ∼= Z(pnp) for some np ∈ N0. By hypothesis, there
exists a closed subgroup C(p) of X such that X = B(p) ⊕ C(p). We first show
that tp(C(p)) = {0} and pC(p) = C(p). To do this, observe that since E(X) is
commutative, we must have by [14, Lemma 3.5]

H(B(p), C(p)) = {0} = H(C(p), B(p)).

Now, if tp(C(p)) were nonzero, it would clearly follow that H(B(p), C(p)) 6= {0},
a contradiction. Thus tp(C(p)) = {0}, and hence tp(X) = B(p). Suppose further

that pC(p) 6= C(p) and pick an arbitrary element a ∈ C(p) \ pC(p). Then π(a)
is a nonzero element of C(p)/pC(p), where π ∈ H

(

C(p), C(p)/pC(p)
)

denotes the

canonical projection. By [13, (3.8)], we can write C(p)/pC(p) = 〈π(a)〉 ⊕ Γ for
some closed subgroup Γ of C(p)/pC(p). Let ϕ denote the canonical projection of
C(p)/pC(p) onto 〈π(a)〉. Since 〈π(a)〉 is a nonzero cyclic p-group, H(〈π(a)〉, B(p)) 6=
{0}. Choosing an arbitrary nonzero h ∈ H(〈π(a)〉, B(p)), it is clear that h◦ϕ◦π is a
nonzero element of H(C(p), B(p)), a contradiction. This shows that pC(p) = C(p),
and hence for all n ∈ N, pnC(p) = C(p). As pnpX = pnpC(p), it follows in particular
that

⋂

n∈N
pnX = C(p). We next proceed to establish the topological isomorphism

whose existence is asserted in (iii). For every p ∈ S, fix an arbitrary isomorphism fp

from B(p) onto Z(pnp), and let gp ∈ H(X,B(p)) denote the canonical projection of
X onto B(p) with kernel C(p). Also pick an arbitrary compact open subgroup U of
X. Clearly, we have fp(gp(U)) = Z(pnp)[plp ] for some lp ∈ N. Define

α : X →
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)
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by setting α(x) = (fpgp(x))p∈S for all x ∈ X. Then α is a group homomorphism and
α(U) ⊂

∏

p∈S Z(pnp)[plp ]. Moreover, α is injective because

ker(α) =
⋂

p∈S

ker(fpgp) =
⋂

p∈S

C(p) =
⋂

p∈S

⋂

n∈N

pnX = {0}.

Further, since every fpgp is continuous, it follows that the homomorphism x →
(fpgp(x))p∈S from U to

∏

p∈S Z(pnp)[plp ] is continuous [2, Ch. I, §4, Proposition 1].
As U is open in X, it then follows that α is continuous as well [3, Ch. III, §2, Propo-
sition 23]. In particular, α(U) is compact and hence closed in

∏

p∈S Z(pnp)[plp ]. Tak-

ing into account that
⊕

p∈S Z(pnp)[plp ] is dense in
∏

p∈S Z(pnp)[plp ] [3, Ch. III, §2,

Proposition 25] and contained in α(U), we conclude that α(U) =
∏

p∈S Z(pnp)[plp ].
This implies that α is open because U is compact in X [2, Ch. I, §9, Théorème
2, Corollaire 2] and

∏

p∈S Z(pnp)[plp ] is open in
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

. Conse-
quently, α establishes a topological isomorphism from X onto α(X). Also, since
⊕

p∈S Z(pnp) ⊂ α(X) and

⊕

p∈S

Z(pnp) =
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

[3, Ch. III, §2, Exercice 26], we have
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

⊂ α(X).

Finally, it is clear that for each p ∈ S the multiplication by p is an open mapping
on

∏loc
p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, and hence on X. To show that α(X) is S-pure in
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, pick any q ∈ S and n ∈ N, and let x ∈ X be such that

α(x) ∈ qn
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

.

Letting α(x) = qn(yp)p∈S with (yp)p∈S ∈
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, we set

y′p =

{

yq, if p = q,

0, if p 6= q,
and y′′p =

{

0, if p = q,

yp, if p 6= q.

Clearly α(x) = qn(y′p)p∈S + qn(y′′p)p∈S . As X = B(q) ⊕ C(q), we can write x =
bq + cq for some bq ∈ B(q) and cq ∈ C(q). Since for p 6= q we have fpgp(bq) = 0
(because H(Z(qnq),Z(pnp)) = {0}), and since fqgq(cq) = 0 (because cq ∈ ker(gq)),
we conclude that α(bq) = qn(y′p)p∈S and α(cq) = qn(y′′p)p∈S . Remembering that
fq : B(q) → Z(qnq) is an isomorphism, choose b′q ∈ B(q) such that fq(b

′
q) = yq. As

bq − qnb′q ∈ ker(α), we have bq = qnb′q. Also, since the multiplication by q is an open

map and C(q) is an open subgroup, we have qCq = qCq = Cq, so that qnCq = Cq.
Hence there exists c′q ∈ Cq such that qnc′q = cq. It follows that

α(x) = α(bq) + α(cq) = qn(α(b′q) + α(c′q)),
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so that

α(X) ∩ qn
loc
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

⊂ qnα(X).

As the converse inclusion clearly holds, we have

α(X) ∩ qn
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

= qnα(X),

so α(X) is S-pure in
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

. Consequently, (ii) implies (iii).

Next assume (iii) holds. We already mentioned that the multiplication by p ∈ S
is open on

∏loc
p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, and hence on X. Let X(d) denote the group
X taken discrete. It then follows from our hypotheses that X(d) is isomorphic
to an S-pure subgroup of

∏loc
p∈S(X)(Z(pnp); {0}) containing

⊕

p∈S(X) Z(pnp), so that
E(X(d)) is commutative by Theorem 3.1. As E(X) ⊂ E(X(d)), this proves that (iii)
implies (i). 2

To state the dual analog of Theorem 3.4, a few definitions are in order. In the first
one, we reconsider the notion of comixed LCA group, introduced in [16, Definition
6.5]. The reason for this modification is that we want an LCA group to be comixed
if and only if its dual is mixed.

Definition 3.5. A group X ∈ L is said to be comixed if either (1)
⋂

n∈N0
nX is a

nontrivial subgroup of X, i. e. {0} 6=
⋂

n∈N0
nX 6= X, or (2)

⋂

n∈N0
nX = {0} and

X has no compact subgroups of the form mX, where m ∈ N0.

Definition 3.6. Let p ∈ P. A closed subgroup G of a group X ∈ L is said to be
p-copure if, for each n ∈ N, one has p−nG = G+X[pn]. Given a nonempty subset
S of P, we say G is S-copure in case it is p-copure for all p ∈ S. G is called copure
if it is P-copure.

As is easy to see, p-purity and p-copurity coincide for discrete and for compact
groups.

Definition 3.7. Let p ∈ P. A subgroup G of an abelian group X is said to be
p-submaximal if X/G is a cyclic p-group.

Our next definition is inspired by one in [1, (4.34)].

Definition 3.8. Let S be a nonempty subset of P. A group X ∈ L is said to be
S-power-proper if for each p ∈ S and n ∈ N the multiplication by pn is a proper
map, i. e. for each open subset U of X, pnU is open in pnX, taken with its topology
induced from X.

We have

Corollary 3.9. Let X be a comixed group in L, and let S = {p ∈ P | pX 6= X}. If
∑

p∈S tp(X) = X, the following statements are equivalent:
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(i) X is an S-power-proper group with commutative ring E(X), and the subgroups
X[pn] are compact for all p ∈ S and n ∈ N.

(ii) The closed, copure, p-submaximal subgroups of X, where p ∈ S, split topologi-
cally from X, and E(X) is commutative.

(iii) S is infinite and X is topologically isomorphic to a quotient group of
(

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)∗

by a closed S-copure subgroup, contained in

c
((

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)∗)

,

where np, lp ∈ N and np 6= 0 for all p ∈ S.

Proof. Since X is a comixed group, X∗ is mixed. It is also easy to see that
S = S0(X

∗), and
∑

p∈S tp(X) = X if and only if X∗ has no elements of infinite
topological S-height.

Assume (i). Since X is S-power-proper, X∗ is S-power-proper too [1, P.23(d)].
It follows that, for any p ∈ S and n ∈ N, the subgroup pnX∗ is closed and hence
open in X∗ (because X[pn] is compact).

Pick any p ∈ S, and let G be a closed, copure, p-submaximal subgroup of X.
Since A(X∗, G) ∼= (X/G)∗, we see that A(X∗, G) is a cyclic, p-subgroup of X∗.
Moreover, since G is p-copure in X, we also have p−nG = G+X[pn]. Passing to
annihilators, we obtain

pnA(X∗, G) = A(X∗, G) ∩ pnX∗,

so that A(X∗, G) is p-pure and thus pure in X∗ [5, p. 114, (g)]. It then follows
from Theorem 3.4 that A(X∗, G) splits topologically from X∗, and hence G splits
topologically from X [1, Corollary 6.10]. Thus (i) implies (ii).

Now assume (ii), and pick any p ∈ S and any cyclic, pure, p-subgroup Γ of X∗.
It is easy to see that A(X,Γ) is a closed, copure, p-submaximal subgroup of X.
By hypothesis, A(X,Γ) splits topologically from X, so that Γ splits topologically
from X∗. Consequently, X∗ satisfies condition (ii) and hence (iii) of Theorem 3.4.
Observing that

k
(

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)

=
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

and passing to duals, we deduce that (ii) implies (iii).

Assume (iii). It follows that X∗ satisfies condition (iii) of Theorem 3.4, so that
p1X∗ is an open mapping on X∗ for all p ∈ S. By using duality, it is then easy to
see that (i) holds. 2

We recall from [7] the following definition.



80 VALERIU POPA

Definition 3.10. Let X be a discrete, torsionfree group in L. An independent subset
M of X is said to be quasi-pure independent if 〈M〉∗ is the internal direct sum of
subgroups 〈x〉∗ with x ∈M, and 〈x〉 = 〈x〉∗ whenever 〈x〉∗ is cyclic and x ∈M.

By Zorn’s lemma, any quasi-pure independent subset of a discrete, torsionfree
group X ∈ L is contained in a maximal quasi-pure independent subset of X
[7, Proposition 123].

We now state and prove the main theorem of this section, which extends
Theorem 3.4.

Theorem 3.11. Let X be a group in L such that t(X/c(X)) 6= {0}, and let
S = S0(X/c(X)). Suppose, in addition, the following conditions hold:

(i) wS(X/c(X)) is densely divisible and contains no compact elements;

(ii) The cyclic, pure, p-subgroups of X, where p ∈ S, and the compact, connected
subgroups of X split topologically from X.

Then E(X) is commutative if and only if for each p ∈ S there exist np, lp ∈ N

with np 6= 0 such that X is topologically isomorphic either to an S-pure subgroup of

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

containing
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

or to a group of the form

D ×
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

where D is topologically isomorphic to either R, Q, or an S-torsionfree quotient of
Q

∗ by a closed subgroup.

Proof. Assume E(X) is commutative. By [16, Theorem 4.6], there are two cases
to consider:

(a) X is residual;

(b) X ∼= D × Y, where D is topologically isomorphic with either R, Q, or Q
∗,

and Y is a topological torsion group with t(Y ) 6= {0}.

Assume (a) holds. If c(X) = {0}, we deduce from (i) that wS(X) is densely di-
visible and contains no compact elements. As d(X) ⊂ k(X), it follows that wS(X) =
{0}. Consequently, if X is mixed, we have by Theorem 3.4 that S is infinite and
X is topologically isomorphic to an S-pure subgroup of

∏loc
p∈S

(

Z(pnp); Z(pnp)[plp ]
)

containing
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, where lp, np ∈ N and np 6= 0 for all p ∈ S.
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In case X is torsion, we deduce from [14, Corollary 5.7] that X ∼=
⊕

p∈S Z(pnp). It

remains to observe that
⊕

p∈S Z(pnp) is S-pure in
∏loc

p∈S

(

Z(pnp); {0}
)

.

Next suppose that C = c(X) is nonzero. Since X is residual, C is compact [8,
(24.24)], and hence, in view of (ii), we can write X = C⊕Z for some closed subgroup
Z of X. In particular, E(C) and E(Z) are commutative [14, Lemma 3.2]. We also
must have C = t(C). For if not, it would follow from [1, Proposition 6.12] that
C ∼= (Q∗)ν × t(C) for some cardinal number ν ≥ 1, contradicting the fact that X is
residual. Thus C = t(C). Next we shall show that C is topologically isomorphic to
a quotient of Q

∗ by a closed, necessarily nonzero subgroup. To see this, it is enough
to show that C∗ is topologically isomorphic to a subgroup of Q. First observe that,
being the character group of a compact and connected group, C∗ is discrete and
torsionfree [8, (23.17) and (24.25)]. Moreover, C∗ is reduced because otherwise it
would contain a direct summand isomorphic to Q, and hence C would contain a
topological direct summand topologically isomorphic to Q

∗, in contradiction with
the fact that C = t(C). Now, if A is a closed, pure subgroup of C, then A is compact
and connected [12, Corollary, p. 369]. Consequently, we can write X = A ⊕ B for
some closed subgroup B of X. It is then clear that C = A⊕ (B ∩C) [1, Proposition
6.5]. Since a subgroup L of the discrete group C∗ is pure in C∗ if and only if A(C,L)
is pure in C [1, Corollary 7.6], we deduce from [1, Corollary 6.10] that every pure
subgroup of C∗ splits from C∗. Now, let M be a maximal quasi-pure independent
subset of C∗, and hence

〈M〉∗ ∼=
⊕

x∈M

〈x〉∗.

Since 〈M〉∗ splits from C∗, we conclude by the maximality of M that C∗ = 〈M〉∗,
so C∗ is completely decomposable. Further, since E(C∗) is commutative, it follows
from [10, Theorem 3] that the groups 〈x〉∗, where x ∈M, have incomparable types.
Assume by way of contradiction that |M | > 1, and pick any distinct elements a, b ∈
M. Then

G = 〈a〉∗ ⊕ 〈b〉∗ (3.1)

is pure in C∗, has rank two, and is completely decomposable. For g ∈ G, let τ(g)
denote the type of g. We have τ(a + b) = inf

(

τ(a), τ(b)
)

[6, §85, C)]. As τ(a) and
τ(b) are incomparable, we also have τ(a + b) < τ(a) and τ(a + b) < τ(b). Further,
since 〈a+ b〉∗ splits from C∗, we clearly have

G = 〈a+ b〉∗ ⊕ Γ (3.2)

for some subgroup of rank one Γ of G [5, §16, Exercise 3(d)]. Since the number
of summands of a given type in some decomposition of a discrete, completely de-
composable group as a direct sum of groups of rank one is an invariant of that
group [6, Proposition 86.1], (3.1) and (3.2) lead to a contradiction. Therefore we
must have |M | = 1, so that C∗ is isomorphic to a subgroup of Q, and hence C is
topologically isomorphic to a quotient of Q

∗ by a closed subgroup. On the other
hand, since X/c(X) ∼= Z, it is clear from (i) that wS(Z) = {0}. Therefore, in case
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Z is mixed, we deduce from Theorem 3.4 that Z is topologically isomorphic to an
S-pure subgroup of

∏loc
p∈S

(

Z(pnp); Z(pnp)[plp ]
)

containing
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

.
As k(Z) = Z by [16, Lemma 4.4] and

k
(

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)

=
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

it then follows that Z ∼=
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

. In the case when Z is torsion,
we have X ∼=

⊕

p∈S Z(pnp) [14, Corollary 5.7]. Finally, if C were not S-torsionfree,
we would clearly have H(Z(pnp), C) 6= {0} for some p ∈ S. Then, combining the
canonical projection of Z onto Zp with an arbitrary isomorphism from Zp onto
Z(pnp) and with any nonzero h ∈ H(Z(pnp), C), we would obtain a nonzero element
of H(Z,C), in contradiction with [14, Lemma 3.5]. Thus C must be S-torsionfree.

Now assume (b) holds. If D is topologically isomorphic with either R or Q
∗, we

must have c(Y ) = {0} since otherwise it would follow from [8, (25.20)] respectively [1,
Corollary 4.10] that H(D,Y ) 6= {0}, which is in contradiction with [14, Lemma 3.5].
As k(Y ) = Y, we then see from (i) that wS(Y ) = {0}. In case D ∼= Q, we deduce by
using as above [14, Lemma 3.5] that d(Y ) = {0}. It follows that wS(X) ∼= D, and
hence again wS(Y ) = {0}. Since E(Y ) is commutative [14, Lemma 3.2], we conclude
as for Z in the case when X ∼= C × Z that

Y ∼=
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

where np, lp ∈ N and np 6= 0 for all p ∈ S.
The converse is clear. 2

By use of duality, we obtain the following

Corollary 3.12. Let X be a group in L such that k(X) is not densely divisible,
and let S = {p ∈ P|p · k(X) 6= k(X)}. Suppose, in addition, the following conditions
hold:

(i) k(X)/
∑

p∈S tp(X) is torsionfree and connected;

(ii) The closed, copure, p-submaximal subgroups of X, where p ∈ S, and the open
subgroups of X relative to which X has torsionfree quotients split topologically
from X.

Then E(X) is commutative if and only if for each p ∈ S there exist np, lp ∈ N

with np 6= 0 such that X is topologically isomorphic either to a quotient of

(

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)∗

by a closed, S-copure subgroup contained in

c
((

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)∗)

,
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or to a group of the form

D ×
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

where D is topologically isomorphic to either R, Q
∗, or an S-divisible subgroup

of Q.

Proof. As is easy to see, k(X) is not densely divisible if and only if t(X∗/c(X∗)) 6=
{0} [1, Theorem 4.15]. It is also clear that S0(X

∗/c(X∗)) = S. Let Γ = X∗/c(X∗).
If W = wS(Γ), then

A(Γ∗;W ) =
∑

p∈S

tp(Γ∗),

so that

W ∗ ∼= Γ∗/A(Γ∗;W ) ∼= k(X)/
∑

p∈S

tp(k(X))

= k(X)/
∑

p∈S

tp(X).

It follows that X satisfies condition (i) if and only if X∗ satisfies condition (i) of
Theorem 3.11. Similarly, X satisfies condition (ii) if and only ifX∗ satisfies condition
(ii) of Theorem 3.11. The assertion follows from Theorem 3.11 and duality. 2

4 Bounded order-by-discrete groups and their duals

In this section we will be dealing with bounded order-by-discrete groups and
compact-by-bounded order groups, which were introduced in [14]. We begin with a
characterization of bounded order-by-discrete groups.

Theorem 4.1. A group X ∈ L is bounded order-by-discrete if and only if c(X) =
{0} and k(X) = t(X).

Proof. Assume X ∈ L is bounded order-by-discrete, and pick an arbitrary closed
subgroup of bounded order B of X such that X/B is discrete. Since B is then
open in X [8, (5.6)] and t(X) ⊃ B, it follows that t(X) is open in X too. In
particular, t(X) is locally compact and c(X) ⊂ t(X). As every torsion group in
L is totally disconnected [1, Theorem 3.5], we must have c(X) = {0}, so that
k(X) is a topological torsion group. Letting x ∈ k(X) be arbitrary, we then have
limn→∞(n!x) = 0, so n!x ∈ t(X) for sufficiently large n ∈ N, and hence x ∈ t(X). It
follows that k(X) = t(X).

For the converse, observe that since c(X) = {0}, k(X) and hence t(X) is open
in X [4, Proposition 3.3.6]. It follows that t(X) is locally compact. Since t(X) =
⋃

n∈N0
X[n], it then follows by Baire Category Theorem [8, (5.28)] that there is an
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n0 ∈ N0 such that X[n0] has nonempty interior, so that X[n0] is open in t(X) and
hence in X. Consequently, X is bounded order-by-discrete. 2

Dualizing Theorem 4.1 gives the following characterization of compact-by-
bounded order groups.

Corollary 4.2. A group X ∈ L is compact-by-bounded order if and only if
c(X) =

⋂

n∈N0
nX and k(X) = X.

Proof. It is easy to see that X is compact-by-bounded order if and only if X∗

is bounded order-by-discrete. The assertion follows then from Theorem 4.1 and
duality. 2

The following lemma considers a special case of bounded order-by-discrete groups
having commutative rings of continuous endomorphisms.

Lemma 4.3. Let X ∈ L be a bounded order-by-discrete, reduced group with primary
components of bounded order. If E(X) is commutative, then the following conditions
hold:

(i) X is discrete;

(ii) t(X) ∼=
⊕

p∈S(X) Z(pnp), where the np’s are positive integers;

(iii) X/t(X) is S(X)-divisible;

(iv)
⋂

p∈S(X) p
npX is S(X)-divisible and torsionfree,

and X/
⋂

p∈S(X) p
npX is isomorphic to an S(X)-pure subgroup of

∏loc
p∈S(X)

(

Z(pnp); {0}
)

containing
⊕

p∈S(X) Z(pnp).

Proof. As we saw in Theorem 4.1, c(X) = {0} and k(X) = t(X), so t(X) is a
topological torsion group. Moreover, t(X) is open in X. Fix any p ∈ S(X) and any
compact open subgroup U of X such that U ⊂ t(X). By [1, Theorem 3.13], we have
t(X) ∼=

∏

q∈S(X)(tq(X); tq(U)), so that

t(X) = tp(X) ⊕ tp(X)#, (4.1)

where tp(X)# =
∑

q∈S(X)\{p} tq(X). Since tp(X) is of bounded order, we also have

X = tp(X) ∔ C(p) (4.2)

for some subgroup C(p) of X [5, Corollary 27.4]. Our first task is to show that the
last direct sum is topological. For q ∈ S(X), let

qnq = max
{

o(x) | x ∈ tq(X)
}

.

It follows from decomposition (4.1) that pnpt(X) ⊂ tp(X)#. In a similar way,

writing U = tp(U) ⊕ tp(U)#, where tp(U)# =
∑

q∈S(X)\{p} tq(U), we obtain
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pnpU = pnpt(U) ⊂ tp(U)#. On the other hand, letting q ∈ S(X) \ {p}, we can
choose a(q), b(q) ∈ Z such that a(q)pnp + b(q)qnq = 1. For x ∈ tq(X), we then have

x = a(q)pnpx+ b(q)qnqx = pnpa(q)x ∈ pnpt(X),

so that tq(X) ⊂ pnpt(X). In a similar way, for x ∈ tq(U) we have x ∈ pnpU, and
hence tq(U) ⊂ pnpU. It follows that

tp(X)# =
∑

q∈S(X)\{p}

tq(X) ⊂ pnpt(X)

and

tp(U)# =
∑

q∈S(X)\{p}

tq(U) ⊂ pnpU = pnpU,

so that tp(X)# = pnpt(X) and tp(U)# = pnpU. As tp(U)# = U ∩ tp(X)#, pnpU is
open in tp(X)#, so pnpt(X) is open in tp(X)# too, and hence tp(X)# = pnpt(X).
Let ϕp ∈ E(t(X)) be the canonical projection of t(X) onto tp(X) given by (4.1),
and ψp : X → X be the canonical projection of X onto tp(X) given by (4.2). Since

tp(X)# = pnpt(X) ⊂ pnpX ⊂ C(p),

it is clear that ψp|t(X) = η ◦ ϕp, where η is the canonical injection of t(X) into X.
Further, since t(X) is open in X, it follows that ψp is continuous on X [3, Ch. III,
§2, Proposition 23], and thus X = tp(X) ⊕C(p) by [3, Ch.III, §6, Proposition 2].

Now, taking account of [14, Lemma 3.2], we conclude that E(tp(X)) is
commutative, and so tp(X) ∼= Z(pnp) by [14, Theorem 5.2]. Since in view of [14,
Lemma 3.5] we must have H(C(p), tp(X)) = {0}, it can be shown as in the proof of

Theorem 3.4 that pC(p) = C(p).

Finally, since p ∈ S(X) was arbitrarily chosen, we conclude that t(X) is count-
able, and hence discrete [11, Ch. I, Theorem 2, Corollary]. But t(X) is open in X,
so X is discrete too. In particular, qC(q) = qC(q) for all q ∈ S(X), and so, for all
q ∈ S(X), X/tq(X) is q-divisible as an isomorphic copy of C(q). Since

X/t(X) ∼= (X/tq(X))/(t(X)/tq(X))

for all q ∈ S(X), it follows that X/t(X) is S(X)-divisible. Thus X satisfies (i), (ii)
and (iii).

To establish the first part of (iv), let X∞ =
⋂

p∈S(X) p
npX, and pick any s ∈ S(X)

and x ∈ X∞. Since snsX is s-divisible, there exists y ∈ snsX such that x = sy.
Letting r ∈ S(X)\{s}, choose a(r), b(r) ∈ Z such that a(r)s+ b(r)rnr = 1. We have

y = a(r)sy + b(r)rnry = a(r)x+ b(r)rnry ∈ X∞ + rnrX ⊂ rnrX,
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so that y ∈ X∞.As x ∈ X∞ and s ∈ S(X) were arbitrary, it follows thatX∞ is S(X)-
divisible. Moreover, since X∞∩ t(X) = {0}, X∞ is also torsionfree. Now we proceed
to establish the second part of (iv). For each p ∈ S(X), let gp ∈ H(X, tp(X)) denote
the canonical projection of X onto tp(X) with kernel C(p), and fp an isomorphism

from tp(X) onto Z(pnp). The mapping α : X →
∏loc

p∈S(X)

(

Z(pnp); {0}
)

, given by
α(x) = (fpgp(x))p∈S(X) for all x ∈ X, is then a group homomorphism with kernel
X∞, so that X/X∞ is isomorphic with α(X). It is also clear that, for all q ∈ S(X),
α maps tq(X) onto the subgroup of

∏loc
p∈S(X)

(

Z(pnp); {0}
)

consisting of all elements
with zero p-components for p 6= q, whence we deduce that

⊕

p∈S(X)

Z(pnp) ⊂ α(X).

Finally, it can be seen, following the same way as in the proof of Theorem 3.4, that
α(X) is S(X)-pure in

∏loc
p∈S(X)

(

Z(pnp); {0}
)

.

The proof is complete. 2

Let us recall from [1] the following definition.

Definition 4.4. Let p ∈ P. A group X ∈ L is called p-thetic in case there exists
h ∈ H(Z(p∞),X) such that h(Z(p∞)) is dense in X.

We are now ready to prove the main theorem of this section.

Theorem 4.5. Let X be a bounded order-by-discrete group in L. If E(X) is com-
mutative, then X is discrete and satisfies exactly one of the following conditions:

(i) X is isomorphic with either

⊕

p∈S1

Z(p∞) ×
⊕

p∈S2

Z(pnp) or Q ×
⊕

p∈S(X)

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and the np’s are positive integers.

(ii) S(X) is finite and X = t(X) ⊕ W, where W is a reduced, S(X)-divisible
subgroup of X, and t(X) ∼=

⊕

p∈S(X) Z(pnp) for some positive integers np.

(iii) X is reduced, S(X) is infinite, X/t(X) is S(X)-divisible, and there exist po-
sitive integers np, one for each p ∈ S(X), such that the following conditions
hold:

1) t(X) ∼=
⊕

p∈S(X) Z(pnp);

2)
⋂

p∈S(X) p
npX is S(X)-divisible and torsionfree;

3) X/
⋂

p∈S(X) p
npX is isomorphic to an S(X)-pure subgroup of

∏loc
p∈S(X)

(

Z(pnp); {0}
)

containing
⊕

p∈S(X) Z(pnp).
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Proof. First assume X contains a subgroup D algebraically isomorphic to Z(p∞)
for some p ∈ S(X). Since D is then p-thetic, it follows from [1, Proposition 5.20
and Proposition 5.21] that either D ∼= Z(p∞) or else D is compact and connected.
But X is totally disconnected by Theorem 4.1, so that the latter cannot occur, and
hence D ∼= Z(p∞). Now, since Z(p∞) is splitting in the class of totally disconnected
LCA groups [1, Proposition 6.21], we can write X = D⊕A for some closed subgroup
A of X. If A were not a torsion group, it would follow by Theorem 4.1 that t(A)
is open in A, so A/t(A) is nonzero, discrete and torsionfree. Hence we would have
H(A/t(A),D) 6= {0}, whence H(A,D) 6= {0}, contradicting by [14, Lemma 3.5]
the commutativity of E(X). Consequently, A must be torsion. In particular, X is
torsion as a direct sum of two torsion groups. It then follows from [14, Corollary
5.7] that

X ∼=
⊕

p∈S1

Z(p∞) ×
⊕

p∈S2

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and the np’s are positive integers.

Next assume d(t(X)) = {0} but still d(X) 6= {0}, and pick a subgroup V of
X algebraically isomorphic to Q. Since t(X) is open in X and V ∩ t(X) = {0}, it
follows that V is discrete and hence closed in X [8, (5.10)]. We can write X = V ⊕B
for some closed subgroup B of X, because Q is splitting in the class of totally
disconnected LCA groups [1, Proposition 6.21]. As above, we make use of [14,
Lemma 3.5] to deduce that H(B,V ) = {0} = H(V,B), which implies B = t(B) and
d(B) = {0}. Since E(B) is clearly commutative, it follows from [14, Corollary 5.7]
that B ∼=

⊕

p∈S(X) Z(pnp), where the np’s are positive integers.

Next assume X is reduced. If t(X) is of bounded order, it follows that t(X) splits
algebraically from X [5, Theorem 27.5], and since by Theorem 4.1 t(X) is open in
X, this splitting is topological [1, Corollary 6.8], i. e. X = t(X) ⊕ W for some
discrete subgroup W of X. As E(t(X)) must be commutative, we conclude from [14,
Corollary 5.7] that t(X) is discrete and isomorphic to

⊕

p∈S(X) Z(pnp), where the
np’s are positive integers. It follows, in particular, that X is discrete. Moreover,
since t(X) is of bounded order, S(X) must be finite. Finally, by [16, Theorem 6.1],
we must also have pW = W for all p ∈ S(X).

It remains to consider the case when t(X) is not of bounded order. We shall
show that then X has primary components of bounded order. Since X is bounded
order-by-discrete, there is n ∈ N0 such that X/X[n] is discrete. Pick any p ∈ S(X),
and write n = pkpn′, where kp ∈ N and p ∤ n′. To see that tp(X) is of bounded order,
it is enough to show that tp(X/X[n]) is of bounded order. Suppose not. Then
either X/X[n] has a direct summand isomorphic to Z(p∞) [5, Theorem 21.2], or
tp(X/X[n]) is reduced and has direct summands of arbitrarily high orders [5, §27,
Exercise 1]. Since tp(X/X[n]) is pure in X/X[n], we deduce from [5, Lemma 26.1
and Theorem 27.5] that in the second case X/X[n] has as direct summands cyclic
p-subgroups of arbitrarily high orders. Hence we can write

X/X[n] = T ⊕G, (4.3)
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where T is isomorphic to either Z(p∞), or Z(plp) with lp > kp. Here we must have
G 6= {0}. This is clear in case T ∼= Z(plp) because otherwise tp(X/X[n]) would
be of bounded order, contrary to our assumption. On the other hand, if we had
G = {0} and T ∼= Z(p∞), then X would be torsion. As E(X) is commutative,
we would conclude from [14, Corollary 5.7] that X is also discrete and, for each
q ∈ S(X), tq(X) is isomorphic to either Z(q∞) or Z(qnq) for some nq ∈ N. In
particular, by [9, Corollary 8.11(ii)] we would have

X/X[n] ∼=
⊕

q∈S(X)

(

tq(X)/tq(X[n])
)

.

Since in the considered case X/X[n] ∼= Z(p∞), this would imply tp(X) ∼= Z(p∞),
contrary to the assumption that X is reduced. Thus G 6= {0}. Now, passing to duals
in (4.3), we deduce that nX∗ = T ′ ⊕ G′, where T ′ ∼= T ∗ and G′ ∼= G∗ [8, (23.18)].
As by [14, Lemma 3.1] E(X∗) is commutative, we must have

H(G′, T ′) = H(G′, T ′)[n] and H(T ′, G′ = H(T ′, G′)[n],

since otherwise an application of [14, Lemma 3.5] with ω = n1X∗ and any h ∈
H(G′, T ′) ∪ H(T ′, G′) satisfying nh 6= 0 would produce a contradiction. Since for
any L,M ∈ L, H(M∗, L∗) ∼= H(L,M) [12, Corollary 2, p. 377], it follows that

H(T,G) = H(T,G)[n] and H(G,T ) = H(G,T )[n].

Now we can show that either of the cases T ∼= Z(p∞) or T ∼= Z(plp) leads to a
contradiction. Suppose first T ∼= Z(p∞).We must have G = t(G). For, if G contained
an element, say a, of infinite order, then, choosing any b ∈ T with o(b) > pkp , we
could define f ∈ H(〈a〉, T ) by the rule f(a) = b. Since T is divisible, there would
exist f0 ∈ H(G,T ) such that f0|〈a〉 = f, and hence nf0 6= 0, a contradiction. Thus
G = t(G), so X/X[n] = t(X/X[n]), and hence X = t(X). Since by the assumption
X is reduced, it follows from [14, Corollary 5.7] that X ∼=

⊕

q∈S(X) Z(qnq), where the
nq’s are positive integers. But then X/X[n] is reduced, contrary to the assumption
that T ∼= Z(p∞). Next suppose T ∼= Z(plp). If there existed c ∈ tp(G) with o(c) > pkp ,
then we could find c′ ∈ tp(G) such that pkp < o(c′) ≤ plp . It would follow that there
exists g ∈ H(Z(plp), G) given by g(1 + plpZ) = c′ such that ng 6= 0. Since this would
imply H(T,G) 6= H(T,G)[n], we arrive at a contradiction. Hence we must have
pkptp(G) = {0}, which implies tp(X/X[n]) is of bounded order, a contradiction.

Consequently, our assumption that tp(X/X[n]) is not of bounded order leads to
a contradiction, so tp(X/X[n]) must be of bounded order, whence we deduce that
tp(X) is of bounded order too. As p ∈ S(X) was arbitrary, it follows that X has
primary components of bounded order. Moreover, since t(X) is not of bounded
order, S(X) has to be infinite. Then, an application of Lemma 4.3 gives us (iii).

The proof is complete. 2

We conclude this section by stating the dual analog of Theorem 4.5.
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Corollary 4.6. Let X be a compact-by-bounded order group in L. If E(X) is com-
mutative, then X is compact and satisfies exactly one of the following conditions:

(i) X is topologically isomorphic with either

∏

p∈S1

Zp ×
∏

p∈S2

Z(pnp) or Q
∗ ×

∏

p∈S(X)

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and the np’s are positive integers.

(ii) S(X) is finite and X = c(X) ⊕ M, where c(X) is S(X)-torsionfree with
m(c(X)) = c(X), and M ∼=

∏

p∈S(X) Z(pnp) for some positive integers np.

(iii) X = m(X), S(X) is infinite, c(X) is S(X)-torsionfree, and there exist positive
integers np, one for each p ∈ S(X), such that the following conditions hold:

1) X/c(X) ∼=
∏

p∈S(X) Z(pnp);

2) X/
∑

p∈S(X)X[pnp ] is densely divisible and S(X)-torsionfree;

3)
∑

p∈S(X)X[pnp ] is topologically isomorphic to a quotient group of
(

∏loc
p∈S

(

Z(pnp); {0}
)

)∗
by a closed, S(X)-pure subgroup contained

in c
((

∏loc
p∈S

(

Z(pnp); {0}
)

)∗)

.

Proof. Since a group X ∈ L is compact-by-bounded order if and only if X∗ is
bounded order-by-compact, the assertion follows from Theorem 4.5 and duality. 2
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and Combinatorial Optimization Problems
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Abstract. A parametrical approach for bilinear programming is proposed and new
algorithms on the basis of such approach for solving linear boolean and resource allo-
cation problems are developed. Computational complexity of the proposed algorithms
is discussed.

Mathematics subject classification: 65K05, 68W25.
Keywords and phrases: Integer programming, computational complexity.

1 Introduction and Problem Formulation

We consider the following bilinear programming problem (BPP) [1,10,11]:

to minimize

z = xCy + c′x + c′′y (1)

on subject

Ax ≤ a, x ≥ 0; (2)

By ≤ b, y ≥ 0, (3)

where C,A,B are matrices of size n × m, q × n, l × m, respectively, and c′, x ∈
Rn; c′′, y ∈ Rm; a ∈ Rq, b ∈ Rl. In order to simplify the notations we will omit
transposition sign for vectors.

This bilinear model generalizes a large class of integer and combinatorial opti-
mization problems [6, 10]. An important particular case of BPP (1)–(3) represents
the linear boolean programming problem:

to minimize

z =
n

∑

i=1

cixi (4)

on subject










n
∑

i=1

ajixi ≤ aj0, j = 1, q;

xi ∈ {0, 1}, i = 1, n.

(5)

In [10] it is shown that this problem can be replaced by the following BPP:

c© Dmitrii Lozovanu, 2007
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to minimize

z =
n

∑

i=1

cixi + M
n

∑

i=1

(xiyi + (1 − xi)(1 − yi)) (6)

on subject










n
∑

i=1

ajixi ≤ aj0, j = 1, q;

0 ≤ xi ≤ 1, i = 1, n,

(7)

0 ≤ yi ≤ 1, i = 1, n, (8)

where M >

n
∑

i=1

|ci|. Another important case of BPP (1)–(3) represents the piecewise

linear concave programming problem:

to minimize

z =

l
∑

i=1

min{cikx + cik
0 , k = 1, ri} (9)

on subject determined by (2), where x ∈ Rn, cik ∈ Rn, cik
0 ∈ Rn. This problem

arises as an auxiliary one when solve a class of resource allocation problems [6,10].
In [10] it is shown that this problem can be replaced by the following BPP:

to minimize

z =

k
∑

i=1

ri
∑

k=1

(cikx + cik
0 )yik (10)

on subject

Ax ≤ a, x ≥ 0; (11)










ri
∑

k=1

yik = 1, i = 1, l,

yik ≥ 0, l = 1, ri, i = 1, l.

(12)

In this paper we propose an approach for solving BPP (1)–(3) which takes into
account the particularity of the mentioned above cases of problems, i.e. when the
matrix B is either identity one or step-diagonal one. The general scheme of the pro-
posed approach is based on parametric linear programming. Using duality principle
for the considered problem we show that it can be reduced in polynomial time to
a problem of determining the consistency of the system of linear inequalities with
right-hand members that depend on parameters, admissible values of which are de-
fined by another system of linear inequalities. Then a specification of the proposed
approach for the mentioned above linear boolean and resource allocation problems
are developed and new algorithms for solving these classes of problems are derived.
Computational complexity aspects of the proposed approach are discussed and a
class of problems for which polynomial-time algorithms exist is described.
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2 Parametrical programming approach for BPP

Let L be the size of BPP (1)–(3) with integer coefficients of the matrices C,A,B
and vectors a, b, c′, c′′, i.e. L is the length of the input dates of BPP (1)–(3) [4, 6].

If BPP (1)–(3) has solution then it can be solved by varying the parameter
h ∈ [−2L, 2L] in the problem of determining the consistency of the system















Ax ≤ a;
xCy + c′x + c′′y ≤ h;
By ≤ b;
x ≥ 0, y ≥ 0.

(13)

In the following we will reduce the consistency problem for system (13) to the
consistency problem for the system of linear inequalities with a right-hand member
depending on parameters.

Theorem 1. Let solution sets X and Y of systems (2) and (3) be nonempty. Then
system (13) has no solution if and only if the following system of linear inequalities







−AT u ≤ Cy + c′;
au < c′′y − h;
u ≥ 0

(14)

is consistent with respect to u for every y satisfying (3).

Proof. ⇒ Let us assume that system (13) has no solution. This means that for
every y ∈ Y the following system of linear inequalities







Ax ≤ a,
x(Cy + c′) ≤ h − c′′y,
x ≥ 0

(15)

has no solution with respect to x. Then according to Theorem 2.14 from [2] the
inconsistency of system (15) involves the solvability with respect to u and t of the
following system of linear inequalities







AT u + (Cy + c′)t ≥ 0;
au + (h − c′′y)t < 0;
u ≥ 0, t ≥ 0,

(16)

for every y ∈ Y . Note that for every fixed y ∈ Y of system (16) for an arbitrary
solution (u∗, t∗) the condition t∗ > 0 holds. Indeed, if t∗ = 0, then it means that the
system

{

AT u ≥ 0;
au < 0, u ≥ 0,

has solution, what, according to Theorem 2.14 from [2], involves the inconsistency
of system (2) that is contrary to the initial assumption. Consequently, t∗ > 0. Since
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t > 0 in (16) for every y ∈ Y , then, dividing each of inequalities of this system by t
and denoting z = (1/t)u, we obtain the following system:







−AT z ≤ Cy + c′;
az < c′′y − h;
z ≥ 0,

which has solution with respect to z for every y ∈ Y .

⇐ Let system (14) have solution with respect to u for every y ∈ Y . Then the
following system of linear inequalities







AT u + (Cy + c′)t ≥ 0;
au + (h − c′′y)t < 0;
u ≥ 0, t > 0,

is consistent with respect to u and t for every y ∈ Y . However this system is
equivalent to system (16) as it was shown that for every solution (u, t) of system
(16) the condition t > 0 holds. Again using Theorem 2.14 from [2], we obtain from
the solvability of system (16) with respect to u and t for every y ∈ Y that system
(15) is inconsistent with respect to x for every y ∈ Y . This means that system (13)
has no solution. 2

Theorem 2. The minimal value of the object function in BPP (1)–(3) is equal to
the maximal value h∗ of the parameter h in the system







−AT u ≤ Cy + c′;
au ≤ c′′y − h;
u ≥ 0

(17)

for which it is consistent with respect to u for every y ∈ Y . An arbitrary point
y∗ ∈ Y , for which system (14) with h = h∗ and y = y∗ has no solution with respect
to u, corresponds to one of the optimal points for BPP (1)–(3).

Proof. Let h∗ be a maximal value of parameter h, for which system (17) with
h = h∗ has solution with respect to u for every y ∈ Y . Then system (14) with
h = h∗ has solution with respect to u not for every y ∈ Y . From this on the basis
of Theorem 1 it results that system (13) with h = h∗ is consistent. Using Theorem
1 we can see that if for every fixed h < h∗ system (14) has solution with respect to
u for every y ∈ Y , then system (13) with h < h∗ has no solution. Consequently, the
maximal value h∗ of parameter h, for which system (17) has solution with respect
to u for every y ∈ Y , is equal to the minimum value of the object function of BPP
(1)–(3).

Now let us prove the second part of the theorem. Let y∗ ∈ Rm be an arbitrary
point for which system (14) with h = h∗ and y = y∗ has no solution with respect to
u. Then on the basis of the duality principle the following system







Ax ≤ a;
x(Cy∗ + c′) ≤ h∗ − c′′y;
x ≥ 0
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has solution with respect to x. So, system (13) with h = h∗ is consistent and point
y∗ ∈ Y together with certain x∗ ∈ X represents the solution of BPP. 2

Corollary 3. Let Y h = {y ∈ Rm |Uh(y) 6= 0}, where Uh(y) is the set of solutions
of system (17) with respect to u for given y ∈ Rm and fixed h. Assume that y0 is an
arbitrary basic solution of system (3) such that

Z0 = min
x∈X

(xCy0 + c′x + c′′y0) > h∗.

Then

i) y0 ∈ int Y h∗, i.e. y0 is an interior point of set Y h∗;

ii) Y ⊂ int Y h if h < h∗.

Note that in an analogous way the same mathematical tool for system (13) can
be applied considering x as a vector of parameters. This allows us to replace the
main problem by the problem of determining the consistency of the system

{

−BT v ≤ CT x + c′′;
bv ≤ c′x − h; v ≥ 0

(18)

with respect to v for every x satisfying (2). This means that for the linear parametric
system the following duality principle holds (see [9]).

Theorem 4. The system of linear inequalities (17) is consistent with respect to
u for every y satisfying (3) if and only if the system of linear inequalities (18) is
consistent with respect to v for every x satisfying (2).

It is easy to observe that if Y is a bounded set then the consistency property in
our auxiliary problem can be verified by checking the consistency of system (17) for
every basic solution of system (3). This fact follows from the geometrical interpre-
tation of the problem. Indeed, let UY ⊆ Rn+k be a solution set of system (17) with
respect to u and y. Then Y h for given h represents the orthogonal projection on Rk

of the set UY ⊆ Rn+k. Therefore Y ⊆ Y h if and only if system (17) is consistent
for every basic solution of (3). Of course such an approach for solving the auxiliary
problem cannot be used for systems with big number of variables. The approach
we propose allows us to avoid exhaustive search. Moreover, we can see that in the
case of problems (4)–(8) and (9)–(12) our approach efficiently solves the auxiliary
problem.

The results described above show that BPP (1)–(3) can be solved efficiently if
there exists an efficient algorithm for solving the following problem: to determine
the maximal value h∗ of parameter h such that a basic solution y∗ of system (3)
belongs to bd Y h∗ .

In the following we show how to verify the condition Y ⊂ intY h and propose an
algorithm for solving BPP (1)–(3) in the case when (3) is determined by (8) or (12).
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3 Some auxiliary results

In order to explain the main results we need some auxiliary results related to
dependent inequalities of linear systems. An inequality

m
∑

j=1

sjyj ≤ s0 (19)

is called dependent [2] on the consistent system of linear inequalities

m
∑

j=1

dijyj ≤ di0, i = 1, p, (20)

if for an arbitrary solution of system (20) condition (19) holds.

The well-known Minkowski-Farkas theorem [2, 3] gives the necessary and suffi-
cient condition of dependency (19) on (20) in the case of consistent system (20). We
will extend this theorem for inconsistent systems and will use it in general form. In
order to formulate this result we need the following definition.

Definition 1. Assume that system (20) is inconsistent. Inequality (19) is called
dependent on system (20) if there exists a consistent subsystem

m
∑

j=1

dikjyj ≤ dik0, i = 1, r, (21)

of system (20) such that inequality (19) is dependent on (21).

Theorem 5. Let be given system (20) with rank r ≤ m (m < p). Inequality (19)
is dependent on system of linear inequalities (20) if and only if there exist numbers
λ0, λ1, λ2, . . . , λp such that







sj =
∑p

i=1 dijλi, j = 1,m;
s0 =

∑p
i=1 di0λi + λ0;

λj ≥ 0, j = 1,m,
(22)

where no more than r components among λ1, λ2, . . . , λp are nonzero.

Proof (Sketch). Necessary condition follows from [2] (Theorem 2.2). Indeed, if
(19) is dependent on (20) then there exists nodal solution (21) such that (19) is
dependent on (21) and necessary condition holds. Sufficient condition in the case of
inconsistent system (21) can be proved in the following way. Assume that system
(22) has solution λ0, λi1 , λi2 , . . . , λir , 0, 0, . . . , 0, where r ≤ m. Then system (21),
corresponding to λik > 0, k = 1, r, has a solution. This means that inequality (19)
is dependent on consistent subsystem of linear inequalities (21). 2
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4 The main results

We consider the problem from Section 2 and describe an algorithm for checking
if Y ⊂ intY h in the case when Y is determined by system (20), which satisfies the
following conditions:

a) system (20) has rank m (m < p) and Y is a bounded set with intY 6= ∅;
b) system (20) does not contain dependent inequalities;
c) if an arbitrary subsystem

m
∑

j=1

dikjyj ≤ dik0, k = 1,m; (23)

of system (20) has rank m then the solution of the system of linear inequalities

m
∑

j=1

dikjyj = dik0, k = 1,m; (24)

is a solution of system (20), i.e. system (20) contains all possible nodal solutions.
It is easy to observe that system (3) when B is an identity matrix and B is

a step-diagonal matrix represents a particular case of system (20) with properties
a)–c). Therefore the results we describe below can be referred to problems (6)–(8)
and (9)–(12).

In order to guarantee intY h 6= ∅ we will fix h ∈ [−2L, N), where N = min[h0, 2L],
h0 is the optimal value of the object function in the linear programming problem:
to maximize h on subject (17), i.e. to maximize h on the set of solutions of the
following system































−

q
∑

j=1

ajiuj −
m

∑

j=1

cijyj ≤ c′i, i = 1, n;

q
∑

j=1

aj0uj −
m

∑

j=1

c′′j yj ≤ −h;

uj ≥ 0, j = 1, q.

(25)

Theorem 6. Let be given set Y determined by system of linear inequalities (20)
satisfying conditions a)–c). In addition assume that h ∈ [−2L, N) and set X of
solutions of system (2) is bounded with intX 6= ∅. Then Y 6⊂ intY h if and only if
the following system of linear inequalities



















































n
∑

i=1

ajiλi ≤ aj0, j = 1, q;

p
∑

i=1

dijµi +

n
∑

i=1

cijλi = −c′′j , j = 1,m;

−

p
∑

i=1

di0µi +

n
∑

i=1

c′iλi ≤ h;

µi ≥ 0, i = 1, p; λi ≥ 0, i = 1, n.

(26)
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has such a solution that
∑p

i=1 dijµi 6= 0 at least for an index j ∈ {1, 2, . . . ,m} and
no more than m components among µ1, µ2, . . . , µp are nonzero.

Proof. ⇒ Assume that system (20) satisfies conditions a)–c) and Y 6⊂ intY h

for given h ∈ [−2L, N). Then intY h 6= ∅ and there exists a nodal solution
y0 = (y0

1 , y
0
2 , . . . , y

0
m) of system (20) for which y0 /∈ intY h, i.e. there exists subsystem

(23) of system (20) such that for y = y0 condition (24) holds and y0 /∈ intY h. Note
that an arbitrary nodal solution y0 of system (20) can be regarded as a common
vertex of two symmetrical cones one of which Y 0 is determined by system (23) and

another one Y
0

is determined by the following symmetric system

m
∑

j=1

dikjyj ≥ dik0, k = 1,m, (27)

which is a subsystem of the following inconsistent system

m
∑

j=1

dijyj ≥ di0, i = 1, p. (28)

Based on properties a)-c) of system (20) we can show that there exists a nodal

solution y0 which determines the cone Y
0

such that Y
0
∩ intY h = ∅.

This means that there exists a separating hyperplane
∑m

j=1 sjyj = s0 [5] such

that
∑n

j=1 sjyj < s0 for (y1, y2, . . . , yn) ∈ intY h and

−
m

∑

j=1

sjyj ≤ −s0 (29)

for (y1, y2, . . . , yn) ∈ Y
0
. So, the inequality

n
∑

j=1

sjyj ≤ s0 (30)

is dependent on system (25) with respect to variables µ1, µ2, . . . , µp, y1, y2, . . . , yp

and inequality (29) is dependent on system (27). If (29) is dependent on (27) then
(29) is dependent on inconsistent system (28). Thus on the basis of Theorem 5, we
obtain that the following systems



















































0 = −
n

∑

i=1

ajiλi + aj0λ0 − λn+j, j = 1, q;

sj = −
n

∑

i=1

cijλi − c′′j λ0, j = 1, q;

s0 =

n
∑

i=1

c′iλi − hλ0 + λn+q+1;

λi ≥ 0, i = 0, n + q + 1;

(31)
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−sj = −

p
∑

i=1

dijµi;

−s0 = −
n

∑

i=1

di0µi + µ0;

µi ≥ 0, i = 0, p;

(32)

have solutions and no more than m components among µ1, µ2, . . . , µp are nonzero.

Taking into account that we are seeking for a basic solution where sj 6= 0 at least
for an index j ∈ {1, 2, . . . ,m} we obtain that λ0 6= 0. Therefore if we consider λ = 1
and introduce (32) in (31) then system (26) has a solution for which

∑p
i=1 dijµi 6= 0

at least for an index j ∈ {1, 2, . . . ,m} and no more than m components among
µ1, µ2, . . . , µp are nonzero.

⇐ Assume that problem (26) has solution with the properties mentioned in
the theorem. This involves that systems (31), (32) have such a solution that
sj 6= 0 at least for an index j ∈ {1, 2, . . . ,m} and there exist inequalities (29),
(30) that (29) is dependent on (28) and (30) is dependent on a consistent subsys-
tem (27) of inconsistent system (28). This means that there exists a nodal solution
y0 = (y0

1 , y
0
2 , . . . , y

0
n) of system (20) for which y0 /∈ intY h. 2

Theorem 7. Let h∗ be the minimal value of parameter h for which system (26)
has solution µ∗

1, µ
∗
2, . . . , µ

∗
p, λ

∗
1, λ

∗
2, . . . , λ

∗
n such that

∑p
i=1 dijµ

∗
i 6= 0 at least for an

index j ∈ {1, 2, . . . ,m} and no more than m components among µ∗
1, µ

∗
2, . . . , µ

∗
p are

nonzero. Then h∗ is equal to the optimal value of the object function in the following
BPP: to minimize (1) on subject (2) and (20) with properties a)-c). An arbitrary
solution y∗ = (y∗1 , y

∗
2, . . . , y

∗
m) of the system of linear inequalities























m
∑

j=1

dijyj ≤ di0; i = 1, p;

m
∑

j=1

s∗jyj = s∗0,

(33)

with s∗j =
∑p

i=1 dijµ
∗
i , j = 0,m, corresponds to a solution of BPP (1), (2), (20).

Proof. Let h∗ be the quantity which satisfies the condition of the theorem. Then for
an arbitrary h < h∗ system (26) has no solution with the properties from Theorem
6. This means that Y ⊂ intY h for every h < h∗. So, h∗ is the maximal value of
parameter h for which system (17) is consistent with respect to u for every y ∈ Y .
According to Theorems 1 and 2, the point y∗ is a point for which system (14) with
h = h∗ has no solution. Therefore y∗ corresponds to a solution of BPP (1), (2), (20).
Taking into account that equation

∑m
j=1 s∗jyj = s∗0 determines a supporting plane

for Y then a solution of system (32) is a solution of BPP (1), (2), (20). 2

Now let us show how to find the solution of system (26) with the properties from
Theorem 6.
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Theorem 8. Let be given system of linear inequalities (26) with fixed h ∈ [−2L, N)
and consider the following 2m linear programming problems:

to maximize fj =

p
∑

i=1

dijµi on subject (26), j = 1,m; (34)

to minimize fj =

p
∑

i=1

dijµi on subject (26), j = 1,m. (35)

Assume that f1, f2, . . . , fm represent the corresponding optimal values of object func-

tions of problems (34) and f1, f2, . . . , fm represent the corresponding optimal values
of object functions of problems (35). Then system (26) has a solution with the
property from Theorem 6 if and only if

1) at least for an index j ∈ {1, 2, . . . ,m} either f j 6= 0 or f j 6= 0;
2) the corresponding basic solution for which 1) holds satisfies the condition that

no more than m components among µ∗
1, µ

∗
2, . . . , µ

∗
p are nonzero.

Proof. The sufficient condition of the theorem is evident. Let us prove the necessary
one. Assume that system (26) has solution µ∗

1,µ
∗
2,. . . ,µ

∗
p,λ

∗
1,λ

∗
2,. . . ,λ

∗
n which satisfies

conditions of Theorem 6. Then it is easy to observe that

f j0
≥

p
∑

i=1

dij0µ
∗
i if

p
∑

i=1

dij0µ
∗
i > 0

and

f j0
≤

p
∑

i=1

dij0µ
∗
i if

p
∑

i=1

dij0µ
∗
i < 0.

2

Corollary 9. For given h ∈ [−2L, N) a solution of system (25) with the properties
from Theorem 6 can be found in polynomial time.

Based on results described above we can propose the following algorithm.

Algorithm for solving BPP (1), (2), (20) with conditions a)–c)

We replace BPP (1), (2), (20) by system (25), where h ∈ [−2L, N). Then
using the method of interval bisection after 2L + 2 steps we find [hk−1, hk] with
ε = hk − hk−1 < 2−2L−2 (see [7, 8]), where for h = hk system (25) has a solution
with the property from Theorem 6 and for h = hk−1 system (25) does not have
such a solution. Based on results from [7, 8] we can find the exact solution h∗ in
polynomial time by using a special approximate procedure. Note that for problem
(6)–(8) it is sufficient to find hk with precision ε ∈ [0, 1/2), because h∗ is integer and
therefore it can be found from hk by simple roundoff procedure.

If h∗ and a solution µ∗
1, µ

∗
2, . . . , µ

∗
p, λ

∗
1, λ

∗
2, . . . , λ

∗
n of system (26) which satisfies

conditions of Theorem 6 are known, then find s∗j =
∑p

i=1 dijµi, j = 0,m. After that
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solve system (33) and find the solution y∗ ∈ Y . Then fix y = y∗ in (1) and solve the
linear programming problem: to minimize z = xCy∗ + c′x + c′′y∗ on subject (2). In
such a way we find (x∗, y∗).

The proposed algorithm can be used for a large class of integer programming
problems and some new results related to computational complexity of the consid-
ered problem can be obtained on the basis of such approach.
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Computation of inertial manifolds in biological models.

FitzHugh-Nagumo model
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Abstract. Inertial manifolds are related to the large time behaviour of dynamical
systems. An algorithm, based on the Lyapunov-Perron method, is implemented here
and used to construct a sequence of approximate inertial manifolds for a biological
model. The hypotheses of the Jolly, Rosa, Temam’s algorithm are verified for the
FitzHugh-Nagumo model in the case of real eigenvalues. This algorithm is used for
the construction of approximate inertial manifolds.
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1 Introduction

The purpose of this paper is to study the approximate inertial manifolds for
FitzHugh-Nagumo model, in the case of real eigenvalues using an algorithm devel-
oped by Jolly, Rosa and Temam in [5,6].

Let us consider the abstract evolution equation

du

dt
+ Au = f(u), (1)

with the initial condition u(0) = u0. Using the associated semigroup {S(t)}t≥0,
where S(t) : u0 → u(t), u(·) is the solution of (1), with u(0) = u0, the definition of
inertial manifolds is given below.

Definition 1. [8]. An inertial manifold M is a finite-dimensional Lipschitz man-
ifold, positively invariant (i.e. S(t)M ⊂ M, t ≥ 0) and which exponentially attracts
all orbits of (1).

Any inertial manifold contains the global attractor; and it is easier to describe
then the attractor.

An approximate inertial manifold (a.i.m.) is a smooth finite dimensional man-
ifold of the phase space which attracts all orbits to a thin neighborhood of it in a
finite time uniformly with respect to the initial conditions from a given bounded
set. This neighborhood contains the global attractor. The a.i.m.s are useful when
an inertial manifold is not known to exist or its exact representation is not known,
or when the dimension of the inertial manifold is too high and we want an approx-
imation by a lower finite dimensional system. The algorithm we use in this paper
keeps constant the dimension of the a.i.m.s.

c© Cristina Nartea, 2007
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2 The algorithm

In [5] and [6] was developed an algorithm for the computation of inertial mani-
folds. The assumptions presented below guarantee the existence of an inertial man-
ifold and also the convergence of the algorithm.

Consider the equation (1), u(0) = u0, where A is a linear operator, u ∈ E and
E is a Banach space.

A1. The nonlinear term f is globally Lipschitz continuous from E into another
Banach space F , E ⊂ F ⊂ E , the injections being continuous, each space dense in
the following one, and E is a Banach space. It follows that

|f(u)|F ≤ M0 + M1|u|E ,

for M0 ≥ 0.

A2. The linear operator −A generates a strongly continuous semigroup
{e−tA}t≥0 of bounded operators on E such that e−tAF ⊂ E for all t > 0.

A3. There exist two sequences of numbers {λn}
n1
n=n0

, {Λn}
n1
n=n0

, n0 ∈ N, n1 ∈
N ∪ ∞ such that 0 < λn ≤ Λn, for all n0 ≤ n ≤ n1, and a sequence of finite-
dimensional projectors {Pn}

n1
n=n0

such that PnE is invariant under e−tA for t ≥ 0,
and {e−tA|PnE}t≥0 can be extended to a strongly continuous semigroup {e−tAPn}t∈R

of bounded operators on PnE with

‖e−tAPn‖L(E) ≤ K1e
−λnt, t ≤ 0,

‖e−tAPn‖L(F,E) ≤ K1λ
α
ne−λnt, t ≤ 0,

QnE is positively invariant under e−tA for t ≥ 0, with

‖e−tAQn‖L(E) ≤ K2e
−Λnt, t ≥ 0,

‖e−tAQn‖L(F,E) ≤ K2(t
−α + Λα

n)e−Λnt, t > 0,

where K1,K2 ≥ 1 and 0 ≤ α < 1.

A4. The equation (1) has a continuous semiflow {S(t)}t≥0 in E.

A5. There exists K3 ≥ 0 independent of n such that ‖APn‖L(E) ≤ K3λn.

A6. A is invertible.

A7. The spectral gap condition

Λn − λn > 3M1K1K2[λ
α
n + (1 + γα)Λα

n],

holds for some n ∈ N, where γα =







∞
∫

0

e−rr−αdr, if 0 < α < 1,

0, if α = 0.
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3 An alternative formulation of the FitzHugh-Nagumo Model

The FitzHugh-Nagumo system [1], modelling the electrical potential in the nodal
system of the heart, reads

{

ẋ = c(x + y − x3/3),
ẏ = −(x − a + by)/c.

(2)

To its solution the initial condition x(0) = x0, y(0) = y0 is imposed, where x, y rep-
resent the electrical potential of the cell membrane and the excitability, respectively,
a, b are real parameters depending on the number of channels of the cell membrane
which are open for the ions of K+ and Ca++ and c > 0 is the relaxation parameter.

In [2, 3] the global bifurcation diagram provides the qualitative responses of the
model for all values of the parameters.

In order to apply to the FitzHugh-Nagumo model the numerical algorithm, this
model must be reformulated in an appropriate way. This is done in the present
section.

With the notation

A =

(

−c −c
1/c b/c

)

, f(x, y) =

(

−cx3/3
a/c

)

. (3)

system (2) can be written as
ẋ + Ax = f(x), (4)

where x = (x, y).
The eigenvalues of A are

λ1 =
b − c2 −

√

(c2 + b)2 − 4c2

2c
, λ2 =

b − c2 +
√

(c2 + b)2 − 4c2

2c

and the corresponding eigenvectors, read v1 = (1,−
c + λ1

c
), v2 = (1,−

c + λ2

c
).

We perform the following change of variables

x = Tu, (5)

where u = (u1, u2) and T contains the eigenvectors of A, i.e.

T =

(

1 1

−
c + λ1

c
−

c + λ2

c

)

. (6)

Then, equation (4) becomes

T u̇ + ATu = f(Tu).

Multiplying the last equation by T−1, we obtain

u̇ + T−1ATu = T−1f(Tu),
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Denoting B = T−1AT and g(u) = T−1f(Tu), we obtain the modified FitzHugh-
Nagumo system, which will be studied further in this paper, namely

u̇ + Bu = g(u), (7)

where B is the diagonal matrix
(

ζ 0
0 η

)

(8)

with

ζ = −
c4 + 2bc2 + c2

√

(c2 + b)2 − 4c2 − 4c2 + b2 − b
√

(c2 + b)2 − 4c2

2c
√

(c2 + b)2 − 4c2
,

η =
c4 + 2bc2 − c2

√

(c2 + b)2 − 4c2 − 4c2 + b2 + b
√

(c2 + b)2 − 4c2

2c
√

(c2 + b)2 − 4c2
,

and

g(u) =















−
(c2 + b +

√

(c2 + b)2 − 4c2)(u1 + u2)
3c

2
√

(c2 + b)2 − 4c2
+

ca
√

(c2 + b)2 − 4c2

(c2 + b −
√

(c2 + b)2 − 4c2)(u1 + u2)
3c

2
√

(c2 + b)2 − 4c2
−

ca
√

(c2 + b)2 − 4c2















. (9)

4 Checking the hypotheses of the algorithm for the modified

FitzHugh-Nagumo model

We deal only with the case of real eigenvalues, i.e. b ∈ (−∞,−c2 − 2c] ∪ [−c2 +
2c,+∞), because for complex eigenvalues we cannot choose λn and Λn to satisfy the
conditions A3 and A7 of the numerical algorithm.

We consider E = F = E = R
2.

Assumption A1. The first assumption is that the nonlinear term g is globally
Lipschitz. In order to have this condition fulfilled, we shall further use the prepared
equation, as in like [6]. First we verify the Lipschitz condition for g restricted to
the disk of radius r and then we construct the prepared equation, inside the ball of
radius ρ the flow of the initial one, being the same with that of the prepared one.

First we compute the Lipschitz constant for each component of g = (g1, g2), and
then for g. Let u = (u1, u2),v = (v1, v2) be in the disk of radius r, i.e. u2

1 + u2
2 ≤ r2

and v2
1 + v2

2 ≤ r2. We use the norm ‖u‖ = max{|u1|, |u2|}.

|g1(u1, u2)−g1(v1, v2)| =

∣

∣

∣

∣

∣

c(c2 + b +
√

(c2 + b)2 − 4c2)[−(u1 + u2)
3 + (v1 + v2)

3]

2
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

=
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= c

∣

∣

∣

∣

∣

c2 + b +
√

(c2 + b)2 − 4c2

2
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

· |v1 + v2 −u1 −u2| · |v
2
1 + v2

2 − v1v2 −u2
1 −u2

2 +u1u2|.

Using |v1 + v2 − u1 − u2| ≤ |v1 − u1| + |v2 − u2| ≤ 2max{|v1 − u1|, |v2 − u2|} =
‖(u1, u2) − (v1, v2)‖ and |u1|, |u2|, |v1|, |v2| ≤ r, we obtain

|g1(u1, u2) − g1(v1, v2)| ≤ c

∣

∣

∣

∣

∣

c2 + b +
√

(c2 + b)2 − 4c2

2
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

· 2‖(u1, u2) − (v1, v2)‖ · 6r
2.

Hence,

|g1(u1, u2) − g1(v1, v2)| ≤ c

∣

∣

∣

∣

∣

c2 + b +
√

(c2 + b)2 − 4c2

√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

· 6r2‖(u1, u2) − (v1, v2)‖

and

|g2(u1, u2) − g2(v1, v2)| ≤ c

∣

∣

∣

∣

∣

c2 + b −
√

(c2 + b)2 − 4c2

√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

· 6r2‖(u1, u2) − (v1, v2)‖.

We conclude that

‖g(u) − g(v)‖ ≤ Mr‖u − v‖, (10)

where

Mr =
6cr2

√

(c2 + b)2 − 4c2
max{|c2 +b+

√

(c2 + b)2 − 4c2|, |c2 +b−
√

(c2 + b)2 − 4c2|}.

(11)
Now we determine M such that ‖g(u)‖ ≤ M , for u inside the disk of radius r.

We have

‖g(u)‖ = max

{
∣

∣

∣

∣

∣

−
(c2 + b +

√

(c2 + b)2 − 4c2)(u1 + u2)
3c

2
√

(c2 + b)2 − 4c2
+

ca
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

(c2 + b −
√

(c2 + b)2 − 4c2)(u1 + u2)
3c

2
√

(c2 + b)2 − 4c2
−

ca
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

}

≤

≤
max{|c2 + b +

√

(c2 + b)2 − 4c2|, |c2 + b −
√

(c2 + b)2 − 4c2|}

2
√

(c2 + b)2 − 4c2
c|u1 + u2|

3+

+
c|a|

√

(c2 + b)2 − 4c2
.

Since |u1|, |u2| ≤ r, we have |u1 + u2| ≤ 2r and |u1 + u2|
3 ≤ 8r3. Thus,

‖g(u)‖ ≤
4cr3 max{|c2 + b +

√

(c2 + b)2 − 4c2|, |c2 + b −
√

(c2 + b)2 − 4c2|} + c|a|
√

(c2 + b)2 − 4c2
.

(12)
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The prepared equation is

du

dt
+ Bu = gρ(u), (13)

where gρ(u) = χρ(r)g(u), χρ(r) = χ

(

r2

ρ2

)

, χ ∈ C1(R+), χ/[0,1] = 1,

χ/[2,∞) = 0, 0 ≤ χ(s) ≤ 1,∀s ∈ [1, 2]. Thus, the nonlinear term, gρ(u) is zero

outside the ball of radius ρ
√

2. For χ(s) = 2(s−1)3−3(s−1)2 +1, s ∈ [1, 2], χ′(s) =

6(s2−3s+2), hence χ′(s) ∈

[

−
3

2
, 0

]

, i.e. χ′(s) ≤
3

2
. For s ∈ R\[1, 2], χ′(s) = 0 ≤

3

2
.

Let us compute the Lipschitz constant for gρ. For u2
1 +u2

2 ≤ r2
1 and v2

1 +v2
2 ≤ r2

2,
we have

‖gρ(u) − gρ(v)‖ = ‖χρ(r1)g(u) − χρ(r2)g(v)‖ = ‖χ

(

r2
1

ρ2

)

g(u) − χ

(

r2
2

ρ2

)

g(v)‖ =

= ‖χ

(

r2
1

ρ2

)

g(u) − χ

(

r2
2

ρ2

)

g(u) + χ

(

r2
2

ρ2

)

g(u) − χ

(

r2
2

ρ2

)

g(v)‖ ≤

≤ |χ

(

r2
1

ρ2

)

− χ

(

r2
2

ρ2

)

| · ‖g(u)‖ + |χ

(

r2
2

ρ2

)

| · ‖g(u) − g(v)‖ ≤

≤ |χ′(ξ)| ·

∣

∣

∣

∣

r2
1 − r2

2

ρ2

∣

∣

∣

∣

· ‖g(u)‖ + ‖g(u) − g(v)‖.

We have used the Lagrange Theorem, with ξ between
r2
1

ρ2
and

r2
2

ρ2
, and

∣

∣

∣

∣

χ

(

r2
2

ρ2

)
∣

∣

∣

∣

≤ 1. Since |χ′(ξ)| ≤
3

2
, using (10) we obtain

‖gρ(u) − gρ(v)‖ ≤
3

2ρ2
|r1 + r2| · |r1 − r2| · ‖g(u)‖ + Mr‖u − v‖,

with Mr defined in (11).

If r2
1,2 > 2ρ2, then ‖gρ(u)−gρ(v)‖ = 0. If r2

1,2 ≤ 2ρ2, then |r1−r2| ≤
√

2‖u−v‖

and thus, ‖gρ(u) − gρ(v)‖ ≤
3

2ρ2
2ρ

√
2 ·

√
2‖u − v‖ · ‖g(u)‖ + Mr‖u − v‖. Using

r2
1,2 ≤ 2ρ2 in (12) and (11), we obtain

‖gρ(u) − gρ(v)‖ ≤ Mρ‖u − v‖ (14)

where

Mρ =
max{|c2 + b +

√

(c2 + b)2 − 4c2|, |c2 + b −
√

(c2 + b)2 − 4c2|}
√

(c2 + b)2 − 4c2
×

×(48
√

2 + 12)cρ2 +
6c|a|

ρ
√

(c2 + b)2 − 4c2
(15)
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Assumption A3. We choose the following projectors

P =

(

1 0
0 0

)

, Q =

(

0 0
0 1

)

.

We have ‖e−tBP‖ = e−λ1t and ‖e−tBQ‖ = e−λ2t. We have to choose 0 < λn ≤ Λn

to satisfy the conditions A3.
I. The case 0 < λ1 ≤ λ2. We have ‖e−tBP‖ = e−λ1t ≤ 1e−λ1t, ∀t ≤ 0,
‖e−tBQ‖ = e−λ2t ≤ 1e−λ2t, ∀t ≥ 0. So, we can choose λn = λ1, Λn = λ2,
K1 = 1, K2 = 1 and α = 0.

II. The case λ1 ≤ 0 < λ2. ‖e−tBP‖ = e−λ1t ≤ e0 < 1e−10−1t, ∀t ≤ 0,
‖e−tBQ‖ = e−λ2t ≤ 1e−λ2t, ∀t ≥ 0. Consequently, for λn = 10−1, Λn = λ2,
K1 = 1, K2 = 1 and α = 0, we have A3 satisfied if λ2 ≥ 10−1.

III. The case λ1 < λ2 ≤ 0. In this case we can not have the conditions A3
satisfied. This would imply that e−λ2t ≤ K2e

−Λnt for all t ≥ 0, i.e. Λn ≤ λ2 < 0,
which is impossible. Thus, in this case, we can not apply this algorithm.

Assumption A5. ‖BP‖ = |λ1|. In the first case, λ1 > 0, hence ‖BP‖ = λ1,
λn = λ1, and K3 = 1. In the second case λ1 < 0 and we must have ‖BP‖ = −λ1 ≤

K3λn, where λn =
1

10
.

In conclusion, there exists K3 ≥ 0 independent of n such that ‖BP‖ ≤ K3λn,
for λn defined as above.

Assumption A7 (Spectral Gap Condition). We must have Λn − λn >
3MρK1K2[λ

α
n + (1 + γα)Λα

n]. For α = 0, we have γα = 0, the condition reads then

Λn − λn > 6Mρ, (16)

with Mρ defined in (15).

5 The approximate inertial manifolds for the prepared equation

Using the Jolly, Rosa, Temam’s algorithm (see [5],[6]), we have implemented a
program, using Scilab software (see [10]), for the construction of approximate inertial
manifolds.

The approximate inertial manifolds are the collections of trajectories given by
Mj = graphΦj, where Φj : PR

2 → QR
2, Φj(p0) = Qϕj(p0)(0).

For the following choice of parameters, we have all conditions satisfied: a =
0.01, b = 5, c = 1; we also choose ρ = 1/20. The eigenvalues are λ1 = 2 − 2

√
2 and

λ2 = 2 + 2
√

2, i.e. the second case. We take λn = 10−1, Λn = λ2 and then, the
spectral gap condition becomes 19

10 + 2
√

2 > 2.68, which is satisfied.
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Fig. 1

Fig. 2

The graphical representations of Qϕj vs time, for different numbers of iterations,
for the initial conditions u0 = 1, v0 = 1 are shown in Fig. 1. For the same choice of
parameters, but for u0 = 5, v0 = 3 we have the graphics in Fig. 2.

For a = 0.01, b = 0.9, c = 0.1, we are situated in the first case, real positive
eigenvalues, λn = λ1 = 0.011,Λn = λ2 = 8.89. Choosing ρ = 1/10, the spectral
gap condition becomes 8.88 > 1.038, which is satisfied. For u0 = 5, v0 = 3 we have
Fig. 3.

Fig. 3
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