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Optimal control for one complex dynamic system, II

Alla Albu, Vladimir Zubov

Abstract. The optimal control problem of the metal solidification in casting is
considered. The process is modeled by a three-dimensional two-phase initial-boundary
value problem of the Stefan type. A numerical algorithm for solving the direct problem
was presented in the first part of this article, published in [1]. The optimal control
problem was solved numerically using the gradient method. The gradient of the
cost function was found with the help of conjugate problem. The discreet conjugate
problem was posed with the help of Fast Automatic Differentiation technique.

Mathematics subject classification: 49J20, 93C20.
Keywords and phrases: Heat conduction, Stefan problem, finite-difference scheme,
optimal control, gradient method, Fast Automatic Differentiation technique.

6 Calculation of the gradient in the optimal control problem

6.1 The canonical form of the discrete version of the direct problem

The variational problem formulated in Section 2 (part I) was solved numerically
by gradient methods. To calculate the gradient of the function the Fast Automatic
Differentiation (FAD) methodology [2] was used.

In accordance with the FAD-methodology, all equations, that approximate the
direct problem, have to be presented in a special, so-called, canonical form that we
will give below.

For this canonical form to be more compact, let us introduce the following des-
ignations.
For all i = 0, I, l = 0, L let us designate as (Xm) and (Xf ) these (N + 2)-
dimentional vectors:

(Xm)j0il = −
(
r1(β

j
0il)β

j
0il + qj

1

)∣∣∣
S1x−

0il

, (Xf )j0il = −
(
r2(β

j
0il)β

j
0il + qj

2

)∣∣∣
S2x−

0il

,

(Xm)j
nil = Rj

n−1

βj
nil − βj

n−1,il

hx
n−1

, (Xf )jnil = Bj
n−1

βj
nil − βj

n−1,il

hx
n−1

, (n = 1, N ),

(Xm)j
N+1,il =

(
r1(β

j
Nil)β

j
Nil + qj

1

)∣∣∣
S1x+

Nil

, (Xf )jN+1,il =
(
r2(β

j
Nil)β

j
Nil + qj

2

)∣∣∣
S2x+

Nil

.

For all n = 0, N, l = 0, L let us designate as (Ym) and (Yf ) these (I+2)-dimentional
vectors:

(Ym)jn0l = −
(
r1(β

j
n0l)β

j
n0l + qj

1

)∣∣∣
S1y−

n0l

, (Yf )j
n0l = −

(
r2(β

j
n0l)β

j
n0l + qj

2

)∣∣∣
S2y−

n0l

,
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(Ym)j
nil = R̂j

i−1

βj
nil − βj

n,i−1,l

hy
i−1

, (Yf )j
nil = B̂j

i−1

βj
nil − βj

n,i−1,l

hy
i−1

, i = 1, I,

(Ym)jn,I+1,l =
(
r1(β

j
nIl)β

j
nIl + qj

1

)∣∣∣
S1y+

nIl

, (Yf )jn,I+1,l =
(
r2(β

j
nIl)β

j
nIl + qj

2

)∣∣∣
S2y+

nIl

.

For all n = 0, N, i = 0, I let us designate as (Zm) and (Zf ) these (L + 2)-
dimentional vectors:

(Zm)jni0 = −
(
r1(β

j
ni0)β

j
ni0 + qj

1

)∣∣∣
S1z−

ni0

, (Zf )jni0 = −
(
r2(β

j
ni0)β

j
ni0 + qj

2

)∣∣∣
S2z−

ni0

,

(Zm)jnil = R̃j
l−1

βj
nil − βj

ni,l−1

hz
l−1

, (Zf )j
nil = B̃j

l−1

βj
nil − βj

ni,l−1

hz
l−1

, l = 1, L,

(Zm)jni,L+1 =
(
r1(β

j
niL)βj

niL + qj
1

)∣∣∣
S1z+

niL

, (Zf )jni,L+1 =
(
r2(β

j
niL)βj

niL + qj
2

)∣∣∣
S2z+

niL

.

Here and further the subscripts m and f indicate the belonging of the variable to
the metal or to the form respectively.

Taking into account the introduced designations the three subproblems that
approximate the direct problem can be written for all j = 0, J − 1 in the following
form:

x− direction

E
j+ 1

3
nil = Ej

nil + ωj+1
nil

[
S1x+

nil (Xm)
j+ 1

3
n+1,il − S1x−

nil (Xm)
j+ 1

3
nil + S2x+

nil (Xf )
j+ 1

3
n+1,il −

−S2x−
nil (Xf )

j+ 1
3

nil +S1y+
nil (Ym)jn,i+1,l−S1y−

nil (Ym)j
nil+S2y+

nil (Yf )j
n,i+1,l−S2y−

nil (Yf )jnil+

+ S1z+
nil (Zm)jni,l+1 − S1z−

nil (Zm)jnil + S2z+
nil (Zf )j

ni,l+1 − S2z−
nil (Zf )j

nil

]
,

y − direction

E
j+ 2

3
nil = E

j+ 1
3

nil + ωj+1
nil

[
S1y+

nil (Ym)
j+ 2

3
n,i+1,l − S1y−

nil (Ym)
j+ 2

3
nil + S2y+

nil (Yf )
j+ 2

3
n,i+1,l −

−S2y−
nil (Yf )

j+ 2
3

nil +S1x+
nil (Xm)

j+1
3

n+1,il − S1x−
nil (Xm)

j+ 1
3

nil +S2x+
nil (Xf )

j+ 1
3

n+1,il−S2x−
nil (Xf )

j+ 1
3

nil +

+S1z+
nil (Zm)

j+ 1
3

ni,l+1 − S1z−
nil (Zm)

j+ 1
3

nil + S2z+
nil (Zf )

j+ 1
3

ni,l+1 − S2z−
nil (Zf )

j+ 1
3

nil

]
,

z − direction

Ej+1
nil = E

j+ 2
3

nil + ωj+1
nil

[
S1z+

nil (Zm)j+1
ni,l+1 − S1z−

nil (Zm)j+1
nil + S2z+

nil (Zf )j+1
ni,l+1 −

−S2z−
nil (Zf )j+1

nil +S1x+
nil (Xm)

j+ 2
3

n+1,il−S1x−
nil (Xm)

j+ 2
3

nil +S2x+
nil (Xf )

j+ 2
3

n+1,il−S2x−
nil (Xf )

j+ 2
3

nil +

+ S1z+
nil (Zm)

j+ 2
3

ni,l+1 − S1z−
nil (Zm)

j+ 2
3

nil + S2z+
nil (Zf )

j+ 2
3

ni,l+1 − S2z−
nil (Zf )

j+ 2
3

nil

]
,

n = 0, N ; i = 0, I ; l = 0, L.
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Let us introduce the following two-dimensional vectors:

Sx+
nil =

[
S1x+

nil

S
2x+

nil

]
, Sx−

nil =

[
S1x−

nil

S
2x−

nil

]
, Sy+

nil =

[
S1y+

nil

S
2y+

nil

]
,

Sy−
nil =

[
S1y−

nil

S
2y−

nil

]
, Sz+

nil =

[
S1z+

nil

S
2z+

nil

]
, Sz−

nil =

[
S1z−

nil

S
2z−

nil

]
,

n = 0, N ; i = 0, I ; l = 0, L;

(Xmf )jnil =

[
(Xm)j

nil

(Xf )jnil

]
n = 0, N + 1; i = 0, I ; l = 0, L;

(Ymf )jnil =

[
(Ym)jnil

(Yf )jnil

]
n = 0, N ; i = 0, I + 1; l = 0, L;

(Zmf )jnil =

[
(Zm)jnil

(Zf )jnil

]
n = 0, N ; i = 0, I ; l = 0, L + 1.

Note that Sx+
nil = Sx−

n+1,il, n = 0, N − 1;

Sy+
nil = Sy−

n,i+1,l, i = 0, I − 1; Sz+
nil = Sz−

ni,l+1, l = 0, L − 1.

Let us introduce also designations for the following scalar products:

X̃j
nil =

(
Sx−

nil , (Xmf )j
nil

)
, X̃j

N+1,il =
(
Sx+

Nil, (Xmf )jN+1,il

)
,

Ỹ j
nil =

(
Sy−

nil , (Ymf )j
nil

)
, Ỹ j

n,I+1,l =
(
Sy+

nIl, (Ymf )jn,I+1,l

)
,

Z̃j
nil =

(
Sz−

nil , (Zmf )jnil

)
, Z̃j

ni,L+1 =
(
Sz+

niL, (Zmf )jni,L+1

)
,

n = 0, N ; i = 0, I ; l = 0, L.

Note that X̃j
nil for all n = 1, N is a function of two variables: Ej

nil and Ej
n−1,il; X̃j

0il

is a function of one variable Ej
0il, and X̃j

N+1,il is also a function of one variable Ej
Nil.

Similar statements are valid for Ỹ j
nil and Z̃j

nil.
With the aid of introduced designations the last three subproblems can be for

j = 0, J − 1 written in this compact form:

x− direction

E
j+ 1

3
nil = Ej

nil + ωj+1
nil

(
X̃

j+ 1
3

n+1,il − X̃
j+ 1

3
nil + Ỹ j

n,i+1,l − Ỹ j
nil + Z̃j

ni,l+1 − Z̃j
nil

)
, (24)

y − direction

E
j+ 2

3
nil =E

j+ 1
3

nil +ωj+1
nil

(
Ỹ

j+ 2
3

n,i+1,l−Ỹ
j+ 2

3
nil +X̃

j+ 1
3

n+1,il−X̃
j+ 1

3
nil +Z̃

j+ 1
3

ni,l+1−Z̃
j+ 1

3
nil

)
, (25)
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z − direction

Ej+1
nil =E

j+ 2
3

nil +ωj+1
nil

(
Z̃j+1

ni,l+1−Z̃j+1
nil +X̃

j+ 2
3

n+1,il−X̃
j+ 2

3
nil +Ỹ

j+ 2
3

n,i+1,l−Ỹ
j+ 2

3
nil

)
, (26)

n = 0, N i = 0, I l = 0, L.

The cost functional I(U) is approximated by the function F (U) with the aid of
the trapezoids method:

I(U) ∼= F (U) =
1

2(t2 − t1)


τ j1+1f j1 +

j2−1∑

j=j1+1

(τ j + τ j+1)f j + τ j2f j2


 .

Here j1 is the ordinal number of the mesh point of the temporal grid which corre-
sponds to the moment t1, j2 is the ordinal number of the mesh point of the temporal
grid which corresponds to the moment t2,

f j =

n2∑

n=n1

i2∑

i=i1

(
Zj

ni − zj
∗

)2
hx

nhy
i ,

n1, n2 and i1, i2 are the ordinal numbers of the mesh points of the three-dimensional
spacial grid along the Ox and Oy axes respectively which define the boundaries of
the section S (i.e. mesS = (xn2 − xn1) × (yi2 − yi1)), Zj

ni = Zpl(xn, yi, t
j),

zj
∗ = z∗(t

j).
Matrix elements Zj

ni

(
n = n1, n2, i = i1, i2

)
for each temporal layer j are defined

by linear interpolation of the temperature field, obtained as a result of solving the
direct problem. Let xn, yi, zl be the coordinates of the mesh point of the spacial grid.
For each mesh point (xn, yi) ∈ S, (n = n1, n2, i = i1, i2) we find such index l∗ for

which one of the following conditions is valid: either β
(
Ej

ni,l∗+1

)
≤ Tpl ≤ β

(
Ej

nil∗

)
,

or β
(
Ej

ni,l∗

)
≤ Tpl ≤ β

(
Ej

ni,l∗+1

)
.

Then

Zj
ni =

(zl∗+1 − zl∗)Tpl + (zl∗β
j
ni,l∗+1 − zl∗+1β

j
nil∗

)

βj
ni,l∗+1 − βj

nil∗

.

Each equation of the selected discrete version of the direct problem (24)–(26) is
presented in the canonical form (27) in accordance with the FAD-methodology:

Ej
nil = Ψ

(
(n, i, l, j),Λ(n,i,l,j), U(n,i,l,j)

)
. (27)

Here Λ(n,i,l,j) is the set of all Eν
αβγ with such indices α, β, γ and ν that correspond-

ing elements occur in the right side of the equality (27); U(n,i,l,j) is the set of all
components of the control vector Uν (Uν = U(tν)) that occur in the right side of
the equality (27). In spite of the fact that the control depends only on temporal
index j the set U(n,i,l,j) is marked also by the spacial indices n, i, and l in order to
emphasize the fact that the influence of this control is different at different spacial
points.
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To calculate the components of the gradient of the function F (U) along the com-
ponents of the vector U j we will use the following relation, which is the generalization
of a similar relation in [?]:

dF

dU j
=

∂F

∂U j
+

∑

(α,β,γ,ν)∈K(n,i,l,j)

ΨT
uj

(
(α, β, γ, ν),Λ(α,β,γ,ν), U(α,β,γ,ν)

)
pν

αβγ , j =1, J , (28)

where pν
αβγ are the conjugate variables (impulses), determined from solving the

following system of linear algebraic equations

pj
nil =

dF

dEj
nil

+
∑

(α,β,γ,ν)∈Q(n,i,l,j)

ΨT
Ej

nil

(
(α, β, γ, ν),Λ(α,β,γ,ν), U(α,β,γ,ν)

)
pν

αβγ , (29)

n = 0, N, i = 0, I, l = 0, L, j = 1, J .

Index sets Q(n,i,l,j) and K(n,i,l,j) are determined by the following relations:

Q(n,i,l,j)=
{
(α, β, γ, ν) :Ej

nil ∈ Λ(α,β,γ,ν)

}
,K(n,i,l,j)=

{
(α, β, γ, ν) :uj ∈ U(α,β,γ,ν)

}
.

The system of linear algebraic equations (29) for determining the impulses pj
nil is

usually called the conjugate problem.
Let us introduce the following designations for a number of derivatives that will

be used to write our conjugate problem in a compact form:

∀i = 0, I and ∀l = 0, L

(Dx+)jnil =
∂X̃j

nil

∂Ej
nil

, (Dx−)j
nil =

∂X̃j
nil

∂Ej
n−1,il

, (n = 1, N ), (Dx+)j0il =
∂X̃j

0il

∂Ej
0il

,

(Dx−)j0il = 0, (Dx+)jN+1,il = 0, (Dx−)j
N+1,il =

∂X̃j
N+1,il

∂Ej
Nil

;

∀n = 0, N and ∀l = 0, L

(Dy+)j
nil =

∂Ỹ j
nil

∂Ej
nil

, (Dy−)jnil =
∂Ỹ j

nil

∂Ej
n,i−1,l

, (i = 1, I), (Dy+)jn0l =
∂Ỹ j

n0l

∂Ej
n0l

,

(Dy−)jn0l = 0, (Dy+)j
n,I+1,l = 0, (Dy−)jn,I+1,l =

∂Ỹ j
n,I+1,l

∂Ej
nIl

;

∀n = 0, N and ∀i = 0, I

(Dz+)jnil =
∂Z̃j

nil

∂Ej
nil

, (Dz−)jnil =
∂Z̃j

nil

∂Ej
ni,l−1

, (l = 1, L), (Dz+)jni0 =
∂Z̃j

ni0

∂Ej
ni0

,

(Dz−)jni0 = 0, (Dz+)j
ni,L+1 = 0, (Dz−)jni,L+1 =

∂Z̃j
ni,L+1

∂Ej
niL

.
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For the differentiation to be valid, the functions β(Ej
nil), Ω1(E

j
nil) and Ω2(E

j
nil) were

smoothed out in the neighborhood of their salient points.
Usage of the FAD-methodology leads us to the following systems of equations

for determining the impulses.

6.2 The conjugate problem

6.2.1 Initial conditions for the impulses

In order to obtain the adjoint variables on the last temporal layer j = J , it is
necessary for all n = 0, N and i = 0, I to solve the following system of (L+1) linear
algebraic equations for the variables pj

nil (l = 0, L):

pJ
ni0 = ωJ

ni0

(
(Dz−)Jni1 − (Dz+)Jni0

)
pJ

ni0 − ωJ
ni1(Dz−)Jni1p

J
ni1 +

∂F

∂EJ
ni0

,

pJ
nil = ωJ

ni,l−1(Dz+)Jnilp
J
ni,l−1 + ωJ

nil

(
(Dz−)Jni,l+1 − (Dz+)Jnil

)
pJ

nil−

−ωJ
ni,l+1(Dz−)Jni,l+1p

J
ni,l+1 +

∂F

∂EJ
nil

, (l = 1, L − 1),

pJ
niL = ωJ

ni,L−1(Dz+)JniLpJ
ni,L−1 + ωJ

niL

(
(Dz−)Jni,L+1 − (Dz+)JniL

)
pJ

niL +
∂F

∂EJ
niL

.

It is possible to give to this system a more compact form if for all n = 0, N and
i = 0, I to assume that

ωJ
ni,−1 = ωJ

ni,L+1 = 0 and pJ
ni,−1 = pJ

ni,L+1 = 0.

As a result we will obtain:

pJ
nil = ωJ

ni,l−1(Dz+)Jnilp
J
ni,l−1 + ωJ

nil

(
(Dz−)Jni,l+1 − (Dz+)Jnil

)
pJ

nil−

−ωJ
ni,l+1(Dz−)Jni,l+1p

J
ni,l+1 +

∂F

∂EJ
nil

, l = 0, L. (30)

6.2.2 First subproblem for the impulses (y-direction)

In order to calculate the impulses p
j+ 2

3
nil on the temporal sublayer (j + 2/3)

(j = J − 1, 0) it is necessary to solve a linear algebraic system of (I + 1) equations
for all n = 0, N and l = 0, L. This system can be written down more compactly if
we make the following assumption:

ωj+1
n,−1,l = ωj+1

n,I+1,l = ωj+1
−1,il = ωj+1

N+1,il = 0,

p
j+ 2

3
n,−1,l = p

j+ 2
3

n,I+1,l = pj+1
n,−1,l = pj+1

n,I+1,l = pj+1
−1,il = pj+1

N+1,il = 0,

n = 0, N, i = 0, I, l = 0, L, j = J − 1, 0.
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As a result we will have:

p
j+ 2

3
nil = ωj+1

n,i−1,l(Dy+)
j+ 2

3
nil p

j+ 2
3

n,i−1,l + ωj+1
nil

(
(Dy−)

j+ 2
3

n,i+1,l − (Dy+)
j+ 2

3
nil

)
p

j+ 2
3

nil −

−ωj+1
n,i+1,l(Dy−)

j+ 2
3

n,i+1,lp
j+ 2

3
n,i+1,l + ξ

j+ 2
3

nil , (31)

where

ξ
j+ 2

3
nil = pj+1

nil + ωj+1
n−1,il(Dx+)

j+ 2
3

nil pj+1
n−1,il + ωj+1

nil

(
(Dx−)

j+ 2
3

n+1,il − (Dx+)
j+ 2

3
nil

)
pj+1

nil −

−ωj+1
n+1,il(Dx−)

j+ 2
3

n+1,ilp
j+1
n+1,il + ωj+1

n,i−1,l(Dy+)
j+ 2

3
nil pj+1

n,i−1,l + ωj+1
nil

(
(Dy−)

j+ 2
3

n,i+1,l−

− (Dy+)
j+ 2

3
nil

)
pj+1

nil − ωj+1
n,i+1,l(Dy−)

j+ 2
3

n,i+1,lp
j+1
n,i+1,l +

∂F

∂E
j+ 2

3
nil

, i = 0, I.

The formulation of other two subproblems for calculating the impulses will be
provided only in the final compact form. If we assume that

ωj
n,−1,l = ωj

n,I+1,l = ωj
−1,il = ωj

N+1,il = ωj
ni,−1 = ωj

ni,L+1 = 0,

p
j+ 1

3
−1,il = p

j+ 1
3

N+1,il = p
j+ 2

3
−1,il = p

j+ 2
3

N+1,il = p
j+ 2

3
ni,−1 = p

j+ 2
3

ni,L+1 = 0,

pj
ni,−1 = pj

ni,L+1 = p
j+ 1

3
ni,−1 = p

j+ 1
3

ni,L+1 = p
j+ 1

3
n,−1,l = p

j+ 1
3

n,I+1,l = 0,

n = 0, N, i = 0, I, l = 0, L, j = 0, J ,

it is similar to how this was done for the first subproblem.

6.2.3 Second subproblem for the impulses (x-direction)

In order to calculate the adjoint variables p
j+ 1

3
nil on the temporal sublayer

j + 1/3 (j = J − 1, 0) it is necessary to solve the following linear algebraic system
of (N + 1) equations for all i = 0, I and l = 0, L:

p
j+ 1

3
nil = ωj+1

n−1,il(Dx+)
j+ 1

3
nil p

j+ 1
3

n−1,il + ωj+1
nil

(
(Dx−)

j+ 1
3

n+1,il − (Dx+)
j+ 1

3
nil

)
p

j+ 1
3

nil −

−ωj+1
n+1,il(Dx−)

j+ 1
3

n+1,ilp
j+ 1

3
n+1,il + ξ

j+ 1
3

nil , (32)

where

ξ
j+ 1

3
nil = p

j+ 2
3

nil + ωj+1
n−1,il(Dx+)

j+ 1
3

nil p
j+ 2

3
n−1,il + ωj+1

nil

(
(Dx−)

j+ 1
3

n+1,il − (Dx+)
j+ 1

3
nil

)
p

j+ 2
3

nil −

−ωj+1
n+1,il(Dx−)

j+ 1
3

n+1,ilp
j+ 2

3
n+1,il + ωj+1

ni,l−1(Dz+)
j+ 1

3
nil p

j+ 2
3

ni,l−1 + ωj+1
nil

(
(Dz−)

j+ 1
3

ni,l+1−

− (Dz+)
j+ 1

3
nil

)
p

j+ 2
3

nil − ωj+1
ni,l+1(Dz−)

j+ 1
3

ni,l+1p
j+ 2

3
ni,l+1 +

∂F

∂E
j+ 1

3
nil

, n = 0, N.
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6.2.4 Third subproblem for the impulses (z-direction)

In order to calculate the adjoint variables pj
nil on temporal layer j (j = J − 1, 1)

it is necessary to solve the following linear algebraic system of (L + 1) equations for
all n = 0, N and i = 0, I :

pj
nil = ωj

ni,l−1(Dz+)jnilp
j
ni,l−1 + ωj

nil

(
(Dz−)jni,l+1 − (Dz+)jnil

)
pj

nil−

−ωj
ni,l+1(Dz−)jni,l+1p

j
ni,l+1 + ξj

nil, (33)

where

ξj
nil = p

j+ 1
3

nil + ωj+1
n,i−1,l(Dy+)jnilp

j+ 1
3

n,i−1,l + ωj+1
nil

(
(Dy−)jn,i+1,l − (Dy+)jnil

)
p

j+ 1
3

nil −

−ωj+1
n,i+1,l(Dy−)jn,i+1,lp

j+ 1
3

n,i+1,l + ωj+1
ni,l−1(Dz+)jnilp

j+ 1
3

ni,l−1 + ωj+1
nil

(
(Dz−)jni,l+1−

− (Dz+)jnil

)
p

j+ 1
3

nil − ωj+1
ni,l+1(Dz−)jni,l+1p

j+ 1
3

ni,l+1 +
∂F

∂Ej
nil

, l = 0, L.

Systems (30)–(33) approximate the initial-boundary value problem for the re-
verse thermal conductivity equation.

Each of systems (30)–(33) is solved with the aid of tridiagonal Gaussian elim-
ination. Solving these three subproblems successively for all j = J, 0 allows us to

obtain the values of the adjoint variables in the following order: pJ
nil, p

(J−1)+2/3
nil ,

p
(J−1)+1/3
nil , p

(J−1)
nil ,...,p

1+1/3
nil , p1

nil, p
0+2/3
nil , p

0+1/3
nil , (n = 0, N, i = 0, I, l = 0, L).

In the first two subproblems (i.e. in the systems of equations (31)–(32)) all
derivatives ∂F

∂E
j+2/3
nil

and ∂F

∂E
j+1/3
nil

(j = J − 1, 0, n = 0, N, i = 0, I, l = 0, L) are equal

to zero. In the last subproblem (33) only derivatives ∂F

∂Ej
nil∗

and ∂F

∂Ej
ni,l∗+1

are not

equal to zero. They are calculated using the following formulas:

∂F

∂Ej
nil∗

=
µj

t2 − t1

(
Zj

ni − zj
∗

) ∂β(Ej
nil∗

)

∂Ej
nil∗

·
(zl∗+1 − zl∗)(Tpl − β(Ej

ni,l∗+1))(
β(Ej

ni,l∗+1) − β(Ej
nil∗

)
)2 hx

nhy
i ,

∂F

∂Ej
ni,l∗+1

=
µj

t2 − t1

(
Zj

ni − zj
∗

) ∂β(Ej
ni,l∗+1)

∂Ej
ni,l∗+1

·
(zl∗ − zl∗+1)(Tpl − β(Ej

nil∗
))

(
β(Ej

ni,l∗+1) − β(Ej
nil∗

)
)2 hx

nhy
i ,

where µj1 = τ j1+1, µj = τ j + τ j+1(j = j1 + 1, j2 − 1), µj2 = τ j2.

6.3 Gradient of the objective function of the discrete optimal con-

trol problem

Let us examine the first case, when the control function U(t) is selected as the
dependence on time of the displacement of the foundry mold in the melting furnace,
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namely, the z-coordinate of the lower bound of the wall of the furnace ZSou(t). This
parameter enters into the expressions that determine the functions q1(t) and q2(t)
when the considered cell is located outside of the liquid aluminum. The control
function U(t) is approximated by a piecewise constant function that has constant
values in each time interval [tj, tj+1]. Namely, we assume that on this time interval

control equals to U(t) = ZSou(tj+1) = Zj+1
Sou . Consequently, q

j+1/3
1 = q

j+2/3
1 = qj+1

1

and q
j+1/3
2 = q

j+2/3
2 = qj+1

2 .

According to the FAD-methodology, the components of the gradient of the ob-
jective function are calculated from the following formula:

dF

dU j
=

∂F

∂U j
+

N∑

n=0

I∑

i=0

(
ωj

niL

∂Z̃j
ni,L+1

∂U j
pj

niL − ωj
ni0

∂Z̃j
ni0

∂U j
pj

ni0

)
+

+

N∑

n=0

L∑

l=0


ωj

nIl

∂Ỹ
j− 1

3
n,I+1,l

∂U j
pj

nIl − ωj
n0l

∂Ỹ
j− 1

3
n0l

∂U j
pj

n0l


+

+

I∑

i=0

L∑

l=0


ωj

Nil

∂X̃
j− 1

3
N+1,il

∂U j
pj

Nil − ωj
0il

∂X̃
j− 1

3
0il

∂U j
pj
0il


+

+

N∑

n=0

L∑

l=0


ωj

nIl

∂Ỹ
j− 1

3
n,I+1,l

∂U j
p

j− 1
3

nIl − ωj
n0l

∂Ỹ
j− 1

3
n0l

∂U j
p

j− 1
3

n0l


+

+

I∑

i=0

L∑

l=0


ωj

Nil

∂X̃
j− 2

3
N+1,il

∂U j
p

j− 1
3

Nil − ωj
0il

∂X̃
j− 2

3
0il

∂U j
p

j− 1
3

0il


+ (34)

+
N∑

n=0

I∑

i=0


ωj

niL

∂Z̃
j− 2

3
ni,L+1

∂U j
p

j− 1
3

niL − ωj
ni0

∂Z̃
j− 2

3
ni0

∂U j
p

j− 1
3

ni0


+

+
I∑

i=0

L∑

l=0


ωj

Nil

∂X̃
j− 2

3
N+1,il

∂U j
p

j− 2
3

Nil − ωj
0il

∂X̃
j− 2

3
0il

∂U j
p

j− 2
3

0il


+

+
N∑

n=0

L∑

l=0

(
ωj

nIl

∂Ỹ j−1
n,I+1,l

∂U j
p

j− 2
3

nIl − ωj
n0l

∂Ỹ j−1
n0l

∂U j
p

j− 2
3

n0l

)
+

+

N∑

n=0

I∑

i=0

(
ωj

niL

∂Z̃j−1
ni,L+1

∂U j
p

j− 2
3

niL − ωj
ni0

∂Z̃j−1
ni0

∂U j
p

j− 2
3

ni0

)
, j = 1, J .

Since the functional F (U) does not depend explicitly on the control vector {U j}, all
components ∂F

∂Uj = 0.
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Let us give an example of calculation of one of the derivatives that occur in
formula (34):

∂X̃
j− 2

3
N+1,il

∂U j
= S2x+

Nil

∂

(
(Xf )

j− 2
3

N+1,il

)

∂U j
= S2x+

Nil

∂

((
qj
2

)∣∣∣
S2x+

Nil

)

∂U j
.

It’s taken into account here that cells with the indices (N, i, l), (i = 0, I, l = 0, L)

don’t contain metal. Therefore (Xm)
j− 2

3
N+1,il = 0. If at the moment t = tj

cell with number (N, i, l) is located in the liquid aluminum, then
∂

„
(qj

2)|S2x+
Nil

«

∂Uj =

∂

„
(qj

2)|S2x+
Nil

«

∂Zj
Sou

= 0 and, therefore
∂ eX(j−1)+1/3

N+1,il

∂Uj = 0. But if at the moment t = tj this

cell is located outside of the liquid aluminum, then (according to (20) and (21))

∂

((
qj
2

)∣∣∣
S2x+

Nil

)

∂Zj
Sou

=
∂ (ϕs + ϕa)

∂Zj
Sou

=

=
∂(qs(Xs,YSou−yi+LSou,ZSou−zl+HSou)−qs(Xs,YSou−yi,ZSou−zl+HSou))

∂Zj
Sou

+

+
∂ (qs (Xs, YSou − yi, ZSou − zl) − qs (Xs, YSou − yi + LSou, ZSou − zl))

∂Zj
Sou

+

+
∂(qa(Za, Yal − yi + Lal,Xal − Xb + Hal)−qa(Za, Yal − yi,Xal − Xb + Hal))

∂Zj
Sou

.

The third argument of the function qs and the first argument of the function qa

depend on the value Zj
Sou. According to formulas (22) and (23) (see part I) we have:

q̃s(ξ, l, h) ≡
∂qs(ξ, l, h)

∂h
= MS

[
ξ2

η3
arctan

(
l

h

)
+

lξ2

η2(η2 + l2)

]
,

q̃a(ξ, l, h)≡
∂qa(ξ, l, h)

∂ξ
=−Ma ·

l

ξ2 + l2
−

Ma

η2

[(
η−

ξ2

η

)
arctan

(
l

η

)
−

lξ2

η2 + l2

]
,

where η =
√

ξ2 + h2. Thus,

∂

((
qj
2

)∣∣∣
S2x+

Nil

)

∂Zj
Sou

= q̃s (Xs, YSou − yi + LSou, ZSou − zl + HSou)−

−q̃s (Xs, YSou − yi, ZSou − zl + HSou) +

+q̃s (Xs, YSou − yi, ZSou − zl) − q̃s (Xs, YSou − yi + LSou, ZSou − zl) +
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+

[
q̃a(Za, Yal−yi + Lal,Xal−Xb + Hal)−q̃a(Za, Yal−yi,Xal−Xb + Hal)

]
·

∂Za

∂Zj
Sou

,

∂Za

∂Zj
Sou

=




−1, object did not reach the surface of aluminum,

−1 −
Xb · Yb

Lal · Hal − Xb · Yb
, object reached the surface of aluminum.

There is a special practical interest in the dependence of the solidification front
on the speed ũ(t) of the displacement of the object. In this case the speed of the
displacement of the foundry mold in the melting furnace is selected as the control
function. Z-coordinate of the lower bound of the wall of the furnace ZSou(t) is
determined with the aid of the speed ũ(t) as follows:

ZSou(tj) = ZSou(tj−1) − τ jũ(tj), or ZSou(tj) = z̃ −

j∑

k=1

τkũ(tk),

where z̃ is the z-coordinate of the lower bound of the wall of the furnace at the initial
time. In this case the component of the gradient of the function F (ũ) along the
components of vector {ũj},

(
ũj = ũ(tj)

)
, are calculated using the following formula:

dF

dũj
=

∂F

∂ũj
− τ j

J∑

k=j

(
dF

dUk
−

∂F

∂Uk

)
, j = 1, J , (35)

where dF
dUk (k = 1, J) are calculated using the formula (34). Due to the specific

character of the functional in the considered problem, ∂F
∂euj = ∂F

∂Uj = 0, (j = 1, J).
Let us give the formula for calculating the gradient of the functional in the case,

when the speed function ũ(t) in the temporal section [0, tJ ] was approximated by
piecewise constant function with an arbitrary number of segments.

The time interval [0, tJ ] is divided in Θ ”large” subintervals. The function ũ(t)
has a constant value on each subinterval. Each of these subintervals contains β
elementary intervals [tj−1, tj ]. Thus, ũ(s−1)β+α = ṽs, (α = 1, β), where ṽs (s = 1,Θ)
is given. Then the component of the gradient of the objective function F (U) along
the components of vector {ṽs}, (s = 1,Θ), are calculated using the following formula:

dF

dṽs
=

β∑

α=1

dF

dũ(s−1)β+α
, s = 1,Θ, (36)

where derivatives dF
deuj are determined with the aid of relation (35).

Let us point out also that the systems of equations (30)–(33) don’t depend on
the choice of the control function.

Let us especially note that the value of the gradient of the objective function,
calculated according to formulas (34)–(36), is precise for the selected approximation
of the optimal control problem.

The calculation of the approximate value of the gradient of the objective func-
tion with the aid of the finite-difference method in this optimal control problem is
connected with enormous difficulties [3].
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The machine time needed for calculation of the gradient components using the
approach presented here (based on the FAD-methodology) is not more than half of
machine time needed for solving the direct problem.

Therefore, in spite of the difficulties connected with obtaining the discrete version
of the conjugate problem and the gradient, it seems unavoidable finding the precise
value of the gradient of the objective function using the FAD-methodology while
solving complex problems of optimal control.

7 Numerical results of solving the optimal control problem

The speed ũ(t) of the displacement of foundry mold in the melting furnace was
chosen as the control U(t). The formulated optimal control problem was solved
numerically using the gradient method. During the solution of the optimal control
problem the time interval [0, tJ ] was divided into N parts (subintervals). The control
function U(t) was approximated by piecewise constant function, so that for each
of subintervals it was constant. The components of the gradient of the objective
function are calculated using the formula (36).

The optimal control problem was studied for a rectangular parallelepiped. The
previous parameters of the problem, indicated in the fifth section (part I), were used,
with the exception of some given below:

TSou = 1900.15, Tal = 1033.15, LSou = 0.350, HSou = 0.380,

Xb = 0.040, Yb = 0.060, Zb = 0.180.

The parallelepiped was immersed into the liquid aluminum to 5/6 of its height.
The number tJ , which determines the length of the time interval [0, tJ ], was equal to
3299 s. Z-coordinate z∗(t) of the desired solidification front changed with a constant
velocity U∗(t) = 0.1mm/s. Calculations were performed for different numbers N of
subintervals, on which the control function U(t) was constant.

In Fig. 16a the dependence of the optimal cost functional J(U) upon the number
N of subintervals is represented. It is obtained as the result of the solution of
optimization problem. Here N has the following values: 1, 2, 4, 12, 24, 600. As
shown in Fig. 16a, the optimal value of the functional decreases noticeably for the
small values of N , and for the great values of N(N > 30) it weakly diminishes
and comes out to a certain constant asymptotical value. Fig. 16b is a fragment of
Fig. 16a in which there is no point corresponding to the value N =600. This makes
it possible to examine more precisely the dependence of the optimal value of the
cost functional upon the number of subintervals for low values of N .

In Figures 17 the optimal trajectories of the foundry mold are shown. These
are those trajectories with which optimum values of functional examined above
are obtained (see Fig. 16), namely, for N = 1, 2, 4, 12, 24, 600. Numbers near the
curves indicate the number N of subintervals used. The convergence of the optimal
trajectories to a certain limit function when the number N increase is visible in
Figures 17. Let us note that the qualitatively correct structure of optimal trajectory
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is already obtained for N = 12. Further increase of the number N only smoothes
the optimal trajectory.

Figure 18 shows the behavior of the standard deviation of the real solidifica-
tion front from the desired one for several control functions. Standard deviation is
determined by the formula

D(t) =

√√√√ 1

|S|

∫∫

S

[Zpl(x, y, t) − z∗(t)]
2 dxdy, (37)

where |S| is the area of the cross section S. Curve 1 in Fig. 18 corresponds to
the regime when the foundry mold is moved with a small constant velocity ũ(t) =
0.083mm/s relative to the furnace. Curve 2, just as curve 1, corresponds to the
regime with a constant velocity of the displacement of the foundry mold, but ũ(t) =
0.150mm/s. Curve 3 corresponds to such displacement of foundry mold when the
functional (3) reaches the minimum value. All these calculations were performed for
N = 24.

The advantages of the optimal process of metal crystallization are vividly shown
by the figures given below. Figures 19-21 illustrate isotherms for different times
in two cross sections through the object’s vertical axis of symmetry parallel to the
parallelepiped faces. Since the object is symmetric about the vertical axis, the figures
present only halves of the cross sections. Figures 19a, 20a, 21a (first experiment)
illustrate the process of metal solidification in a mold moving relative to the furnace
with the constant speed ũ(t) = 0.417mm/min. Figures 19b, 20b, 21b (second
experiment) correspond to a mold moving with the optimal speed, corresponding
N = 4.

Figures 19–21 show that the isotherms are concentrated within the mold. More-
over, the results of the second experiment are superior to those of the first one.
First, the phase boundary in the second experiment is closer to a horizontal plane.
Second, bubbles of liquid metal form and collapse inside the casting in the first ex-
periment (Fig. 21a), which results in a casting of poor quality, whereas no bubbles
are observed in the second experiment. Third, the process of solidification in the
first experiment proceeds too quickly (for about 962 s.), which also degrades the
casting. In the second experiment, the solidification process lasts roughly twice as
long as in the first (1930 s.).

Acknowledgments. This work was supported by the Russian Foundation for
Basic Research (project no. 08-01-90100-Mol a) and the program ”Leading Scientific
Schools” (project no. NSh-5073.2008.1).
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Fig. 16a Fig. 16b

Fig. 17a Fig. 17b

Fig. 17c Fig. 18
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Fig. 19a Fig. 19b

Fig. 20a Fig. 20b
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Fig. 21a Fig. 21b
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About group topologies of the primary Abelian group

of finite period which coincide on a subgroup

and on the factor group ∗

V. I.Arnautov

Abstract. Let G be any Abelian group of the period pn and G1 = {g ∈ G|pg = 0},
G2 = {g ∈ G|pn−1g = 0}. If τ and τ ′ are a metrizable, linear group topologies
such that G2 is a closed subgroup in each of topological groups (G, τ ) and (G, τ ′),
then τ |G2

= τ ′|G2
and (G, τ )/G1 = (G, τ ′)/G1 if and only if there exists a group

isomorphism ϕ : G → G such that the following conditions are true:
1. ϕ(G2) = G2;
2. g − ϕ(g) ∈ G1 for any g ∈ G;
3. ϕ : (G, τ ) → (G, τ ′) is a topological isomorphism.

Mathematics subject classification: 22A05.
Keywords and phrases: Topological group, natural homomorphism, topological
isomorphism, subgroup of topological group, factor group of topological group, basis
of neighborhoods of zero..

Wyen studying properties of lattices of all group topologies1 on Abelians groups
or their sublattices there is a need to establish the interconnections between group
topologies which coincide on some subgroups and on some factor groups.

A partial answer to this question is given in the present article.

The main result of this article is Theorem 9.

1. Notations. During all this work, if it is not stipulated opposite, we shall
adhere to the following notations;

1.1. p is some fixed prime number;

1.2. n is some fixed natural number;

1.3. N is the set of all natural numbers;

1.4. G is an Abelian group of the period pn;

1.5. G′ is a subgroup of the group G;

1.6. ω : G → G/G′ is the natural homomorphism (i.e. ω(g) = g + G′ for any
g ∈ G);

1.7. If A ⊆ G then we denote by < A > the subgroup in G, generated by the
subset A. In particular we denote by < g > the subgroup in G generated by the
element g;

1.8. If {Aγ |γ ∈ Γ} is some set of groups, then we denote by
⊕
γ∈Γ

Aγ the direct

sum of these groups;

c© V. I.Arnautov, 2009
∗The author was partially supported by the grant 08.820.08.12 RF.
1The considered topologies are not necessarily Hausdorff
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1.9. If τ is a group topology on G, then we denote by τ |G′ the induced topology
on G′, i.e. τ |G′ = {U

⋂
G′|U ∈ τ};

1.10. If (G, τ) is a topological group, then we denote by (G, τ)/G′ the topological
group (G/G′, τ̄), where τ̄ = {ω(U)|U ∈ τ}.

2. Proposition. If τ and τ ′ are group topologies on G then the following
statements are true:

2.1. If τ |G′ = τ ′|G′ then topological groups (G, τ) and (G, τ ′) possess such
bases {Wγ |γ ∈ Γ} and {W ′

γ |γ ∈ Γ} of the neighborhoods of zero respectively, that
Wγ

⋂
G′ = Wγ

⋂
G′ for any γ ∈ Γ. Moreover if topologies τ and τ ′ are linear, then

both Wγ and W ′

γ are subgroups of the group G;

2.2. If (G, τ)/G′ = (G, τ ′)/G′, then topological groups (G, τ) and (G, τ ′) possess
such bases {Wγ |γ ∈ Γ} and {W ′

γ |γ ∈ Γ} of the neighborhoods of zero, respectively,
that ω(Wγ) = ω(W ′

γ) for any γ ∈ Γ. Moreover if topologies τ and τ ′ are linear, then
both Wγ and W ′

γ are subgroups of the group G;

2.3. Let G1 and G2 be such subgroups of group G that G1 ⊆ G2 or G2 ⊆ G1

and τ |G1 = τ ′|G1 . If (G, τ)/G2 = (G, τ ′)/G2, then topological groups (G, τ) and
(G, τ ′) possess such bases {Uγ |γ ∈ Γ} and {U ′

γ |γ ∈ Γ} of the neighborhoods of zero,
respectively, that Uγ

⋂
G1 = U ′

γ

⋂
G1 and G2 + Uγ = G2 + U ′

γ for any γ ∈ Γ.
Moreover if topologies τ and τ ′ are linear, then Uγ and U ′

γ are subgroups of the
group G.

Proof. Let {Vα|α ∈ Ω} and {V ′

β|β ∈ ∆} be some bases of the neighborhoods of
zero in topological groups (G, τ) and (G, τ ′), respectively, moreover, if topological
groups (G, τ) and (G, τ ′) are linear, then Vα and V ′

β are subgroups of the group G.

Proof of the statement 2.1. For any α ∈ Ω and β ∈ ∆ we shall consider
sets Wα,β = Vα + (V ′

β

⋂
G′) and W ′

α,β = V ′

β + (Vα
⋂
G′) and we shall show that

sets {Wα,β|α ∈ Ω, β ∈ ∆} and {W ′

α,β |α ∈ Ω, β ∈ ∆} are required bases of the
neighborhoods of zero in topological groups (G, τ) and (G, τ ′), respectively.

As G′ is a subgroup and V ′

β

⋂
G′ ⊆ G′ and Vα

⋂
G′ ⊆ G′, then

Wα,β

⋂
G′ =

(
Vα + (V ′

β

⋂
G′)

) ⋂
G′ = (Vα

⋂
G′) + (V ′

β

⋂
G′) =

(
V ′

β + (Vα

⋂
G′)

) ⋂
G′ = W ′

α,β

⋂
G′.

Let’s check up now that the sets {Wα,β|α ∈ Ω, β ∈ ∆} and {W ′

α,β|α ∈ Ω, β ∈ ∆}
are bases of the neighborhoods of zero in topological groups (G, τ) and (G, τ ′),
accordingly.

As Vα = Vα + 0 ⊆ Vα + (V ′

β

⋂
G′) = Wα,β, then the set Wα,β is a neighborhood

of zero in the topological group (G, τ).

If U is an arbitrary neighborhood of zero in (G, τ), then Vα0 ⊆ U for some α0 ∈ Ω.
As (G, τ) is a topological group, then there exists such α1 ∈ Ω that Vα1 +Vα1 ⊆ Vα0 ,
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and as τ |G′ = τ ′|G′ there exists such β1 ∈ ∆ that V ′

β1

⋂
G′ ⊆ Vα1

⋂
G′. Then

Wα1,β1 = Vα1 + (V ′

β1

⋂
G′) ⊆ Vα1 + Vα1 ⊆ Vα0 ⊆ U.

Hence {Wα,β|α ∈ Ω, β ∈ ∆} is a basis of the neighborhoods of zero in the topological
group (G, τ).

It is similarly checked that the set {W ′

α,β|α ∈ Ω, β ∈ ∆} is a basis of the
neighborhoods of zero in the topological group (G, τ ′).

It is easy to see that if Vα and V ′

β are subgroups of the group G, then Wα,β and
W ′

α,β will be subgroups in the group G.
The statement 2.1 is completely proved.

Proof of the statement 2.2. For any α ∈ Ω and β ∈ ∆ we shall consider
sets Wα,β = Vα

⋂
(ω)−1(ω(V ′

β)) and W ′

α,β = V ′

β

⋂
ω−1(ω(Vα)). Also we shall show

that sets {Wα,β|α ∈ Ω, β ∈ ∆} and {W ′

α,β |α ∈ Ω, β ∈ ∆} are required bases of the
neighborhoods of zero in topological groups (G, τ) and (G, τ ′), accordingly.

Let’s check up in the beginning that ω(Wα,β) = ω(W ′

α,β).

If g ∈ ω(Wα,β), then g = ω(g) for some g ∈ Wα,β = Vα
⋂
ω−1(ω(V ′

β)) and hence

there exists such g′ ∈ V ′

β that g − g′ ∈ G′. Then g′ ∈ Vα + G′ = ω−1(ω(Vα)) and

hence g′ ∈ ω−1(ω(Vα))
⋂
V ′

β = W ′

α,β, and g = ω(g) = ω(g′) ∈ ω(W ′

α,β).
From the arbitrarity of the element g it follows that ω(Wα,β) ⊆ ω(W ′

α,β).

It is similarly proved that ω(W ′

α,β) ⊆ ω(Wα,β), and hence ω(Wα,β) = ω(W ′

α,β).
Let’s check up now that the sets {Wα,β|α ∈ Ω, β ∈ ∆} and {W ′

α,β|α ∈ Ω,
β ∈ ∆} are bases of the neighborhoods of zero in topological groups (G, τ) and
(G, τ ′), accordingly.

Let α ∈ Ω and β ∈ ∆. As ω : (G, τ ′) → (G, τ ′)/G′ = (G, τ)/G′ is an open
homomorphism, then for any β ∈ ∆ the set ω(Vβ) is a neighborhood of zero in the
topological group (G, τ)/G′, and hence ω−1(ω(Vβ)) will be a neighborhood of zero
in topological group (G, τ). Then the set Wα,β = Vα

⋂
ω−1(ω(V ′

β)) will also be a
neighborhood of zero in the topological group (G, τ).

Besides, if U is a neighborhood of zero in the topological group (G, τ), then
Vα ⊆ U for some α ∈ Ω, and hence Wα,β = Vα

⋂
ω−1(ω(V ′

β) ⊆ Vα ⊆ U .
Hence the set {Wα,β |α ∈ Ω, β ∈ ∆} is a basis of a neighborhoods of zero in

topological group (G, τ).
It is similarly checked that the set {W ′

α,β|α ∈ Ω, β ∈ ∆} is a basis of the
neighborhoods of zero in topological group (G, τ ′).

It is easy to see that if Vα and V ′

β are subgroups of the group G, then Wα,β and
W ′

α,β will be subgroups in the group G.
The statement 2.2 is completely proved.

Proof of the statement 2.3. Let ψ : G → G/G2 be the natural homo-
morphism.

If G2 ⊆ G1, then with accordance to the statement 2.1 topological groups (G, τ)
and (G, τ ′) possess such bases {Wγ |γ ∈ Γ} and {W ′

γ |γ ∈ Γ} of the neighborhoods of
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zero, respectively, that G1
⋂
Wγ = G1

⋂
W ′

γ for any γ ∈ Γ, moreover if topologies τ
and τ ′ are linear, then Wγ and W ′

γ | will be subgroups of the group G.
For every γ ∈ Γ we shall consider sets Uγ = Wγ

⋂
(W ′

γ+G2) and U ′

γ = W ′

γ

⋂
(Wγ+

G2)). In the proof of the statement 2.2 it is demonstrated that sets {Uγ |γ ∈ Γ} and
{U ′

γ |γ ∈ Γ} are bases of the neighborhoods of zero in topological groups (G, τ) and
(G, τ ′), respectively, and ψ(Uγ) = ψ(U ′

γ) for any γ ∈ Γ. Moreover if topological
groups (G, τ) and (G, τ ′) are linear, then Uγ and U ′

γ will be subgroups of group G.
As G2 ⊆ G1, then (W ′

γ + G2)
⋂
G1 = (W ′

γ

⋂
G1) + G2 = (Wγ

⋂
G1) + G2 =

(Wγ +G2)
⋂
G1. Then Uγ

⋂
G1 = Wγ

⋂
(W ′

γ +G2)
⋂
G1 =

Wγ

⋂
G1

⋂
(W ′

γ +G2) = W ′

γ

⋂
G1

⋂
(Wγ +G2) = U ′

γ

⋂
G1.

The statement 2.3 in this case is proved.
Let now G1 ⊆ G2. Then in accordance with the statement 2.2 topological

groups (G, τ) and (G, τ ′) possess such bases {Wγ |γ ∈ Γ} and {W ′

γ |γ ∈ Γ} of the
neighborhoods of zero, respectively, that ψ(Wγ) = ψ(W ′

γ) for any γ ∈ Γ, more-
over if topologies τ and τ ′ are linear, then Wγ and W ′

γ | will be subgroups of the
group G.

For every γ ∈ Γ we shall consider sets Uγ = Wγ + (W ′

γ

⋂
G1) and U ′

γ = Wγ +
(Wγ

⋂
G1).

In the proof of the statement 2.2 it is demonstrated that sets {Uγ |γ ∈ Γ} and
{U ′

γ |γ ∈ Γ} are bases of the neighborhoods of zero in topological groups (G, τ) and
(G, τ ′), respectively, and Uγ

⋂
G1 = Uγ

⋂
G1.

As G1 ⊆ G2 and ψ(G2) = {0}, then

ψ(Uγ) = ψ(Wγ + (W ′

γ

⋂
G1)) = ψ(Wγ) = ψ(W ′

γ) =

ψ(W ′

γ + (Wγ

⋂
G1)) = ψ(U ′

γ),

moreover if topological groups (G, τ) and (G, τ ′) are linear then Uγ and U ′

γ will be
subgroups of the group G for any γ ∈ Γ..

So, the proposition is completely proved.

3. Definition. As usual, we shall name a subgroup A of the Abelian groups G
a serving subgroup in G if for any natural number k and any element a ∈ A from
the resolvability of the equation kx = a in the group G its resolvability in A follows.

4. Remark. From the definition of the serving subgroup the following state-
ments follow:

4.1. If g ∈ G is such an element of group G that pn−1 · g 6= 0 then the subgroup
< g >= {kg|k ∈ N} is a serving subgroup in the group G;

4.2. The direct sum of any number of serving subgroups of the group G is a
serving subgroup in the group G.

5. Theorem (Priufer–Kulikov, see [2, p. 154]). Every serving subgroup A of a
group G is a direct summand in the group G.
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6. Proposition. Let C be a serving subgroup of the group G. If C is the direct
sum of cyclic subgroups of the period pn and B is such subgroup of the group G that
C

⋂
B = {0}, then there exists such subgroup A of the group G that B ⊆ A and G

is the direct sum of subgroups C and A.

Proof. We shall consider the set ∆ of all such subgroups D of the group G
that B ⊆ D and D

⋂
C = {0}. As the sum of ascendent chain of subgroups from

∆ belongs to ∆, then ∆ contains maximal elements. If A is some of these maximal
element, then B ⊆ A and A

⋂
C = {0}.

For finishing the proof of the proposition it is necessary to check up that
G = C +A.

We assume the contrary, i.e. that G 6= C +A, and let g /∈ C +A. As the period
of the group G is equal to pn, then there exists such natural number 1 ≤ s ≤ n that
ps · g ∈ C +A and ps−1 · g /∈ C +A. Let ps · g = c+ a, where c ∈ C and a ∈ A. As
A

⋂
C = {0} and

0 = pn · g = pn−s · (ps · g) = pn−s · c+ pn−s · a,

then pn−s ·c = 0 and as C is the direct sum of cyclic subgroups of the period pn, then
c = p·c1 for some element c1 ∈ C. Then a1 = ps−1 ·g−c1 ∈ G. As ps−1 ·g = a1+c1 /∈
A+C, then a1 /∈ A, and p ·a1 = p · (ps−1 · g− c1) = ps · g− p · c1 = ps · g− c = a ∈ A.
Then A1 = {0, a1, 2 · a1, . . . , (p − 1) · a1} + A is a subgroup of the group G, and
B ( A ( A1.

From the definition of the subgroup A it follows that A1
⋂
C 6= {0}, and hence

0 6= k · g + a1 ∈ C for some natural number k ≤ p− 1 and some element a2 ∈ A.
As numbers k and pn are coprime numbers, then there exist such integers l

and m that l · k + m · pn = 1. Then g = (l · k + m · pn) · g = l · k · g + pn · g =
l · k · g ∈ l · (a2 + C) ⊆ A + C. We arrived at the contradiction with the choice of
the element g.

So the proposition is completely proved.

7. Proposition. Let {gγ |γ ∈ Γ} be a set of elements of the group G of order
pn and G′ = {g ∈ G|pn−1 · g = 0}. If the set {ω(gγ)|γ ∈ Γ} is linear independent in
the linear space G/G′, then A =< {gγ |γ ∈ Γ} is a serving subgroup in the group G
and A =

⊕
γ∈Γ

< gγ >.

Proof. From the Remark 4 it follows that for the proof of the proposition it is
enough to prove that A =

⊕
γ∈Γ

< gγ >.

We assume the contrary, i.e. that A 6=
⊕
γ∈Γ

< gγ >. As
∑
γ∈Γ

< gγ >= A,

then there exist such subsets {gγ1 , . . . , gγk
} ⊆ {gγ |γ ∈ Γ} and {t1, . . . , tk} ⊆ N that

k∑
i=1

ti · gγi = 0 and ti · gγi 6= 0 for i = 1, . . . , k.

Let ti = si · p
ji , where 0 < si and si are not divisible by p for i = 1, . . . , k.
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If j = min{j1, . . . , jk} and S = {i|ji = j}, then pn−1−j · ti are divisible by pn for
i /∈ S. Then

0 = pn−1−j · 0 = pn−1−j · (

k∑

i=1

ti · gγi) =

k∑

i=1

(si · p
ji−j) · pn−1gγi =

k∑

i=1

(si · p
ji−j) · ω(gγi) =

∑

i∈S

si · ω(gγi).

We arrived at the contradiction with the fact that the set {ω(gγ)|γ ∈ Γ} is linear
independent in the linear space G/G′.

8. Proposition. Let G′ = {g ∈ G|pn−1 · g = 0} and {gγ |γ ∈ Γ} and {g′γ |γ ∈ Γ}
be such sets of elements of the group G of the order pn that ω(gγ) = ω(g′γ) for any
γ ∈ Γ and the set {ω(gγ)|γ ∈ Γ} is linear independent in the linear space G/G′. If
A =

⊕
γ|γ∈Γ

< gγ > and A′ =
⊕

γ|γ∈Γ

< g′γ >, then for any subgroup B of the group G′

are true the following statements:

8.1. If A
⋂
B = {0}, then A′

⋂
B = {0};

8.2. If G = A
⊕
B, then G = A′

⊕
B.

Proof 8.1. Assume the contrary, and let 0 6= b ∈ A′
⋂
B, i.e. b =

k∑
i=1

ri · g
′

γi
. As

ω(gγ) = ω(g′γ) for any γ ∈ Γ, then hγi = gγi − g′γi
∈ G′.

If ri = psi · qi, where qi are not divisible by p and s = min{s1, . . . , sk}, then
pn−1−s · ri · gγi 6= 0 for some number 1 ≤ i ≤ k. As A =

⊕
γ|γ∈Γ

< gγ >, then

k∑
i=1

pn−1−s · ri · gγi 6= 0.

Subsequently

pn−1−s · b = pn−1−s · (

k∑

i=1

ri · γ
′

i) = pn−1−s · (

k∑

i=1

ri · gγi − hγi) =

k∑

i=1

pn−1−s · ri · gγi −

k∑

i=1

pn−1−s · ri · hγi =

k∑

i=1

pn−1−s · ri · gγi 6= 0.

But this contradicts the equality A
⋂
B = {0}.

The statement 8.1 is proved.

Proof 8.2. As G = A
⊕
B, then A

⋂
B = {0}. Then, according to the

statement 8.1, A′
⋂
B = {0} and according to Proposition 6, there exists such

subgroup B′ that B ⊆ B′ and G = A′
⊕
B′. And according to the statement 8.1,

A
⋂
B′ = {0}.
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So, we have obtained that B ⊆ B′ and A
⋂
B′ = {0}. As G = A

⊕
B, then

B = B′.

The statement 8.2 is proved.

9. Theorem Let G be any Abelian group of the period pn and G2 = {g ∈
G|p · g = 0}. If τ and τ ′ are such metrizable, linear, group topologies that the
subgroup G1 = {g ∈ G|pn−1 · g = 0} is a closed subgroup in each of topological
groups (G, τ) and (G, τ ′), then τ |G1 = τ ′|G1 and (G, τ)/G2 = (G, τ ′)/G2 if and only
if there exist such group isomorphism ϕ : G → G that the following conditions are
satisfied:

1. ϕ(G1) = G1;

2. g − ϕ(g) ∈ G2 for any g ∈ G;

3. ϕ : (G, τ) → (G, τ ′) is a topological isomorphism (i.e. open and continuous
isomorphism).

Proof. Sufficiency. Let ϕ : G → G be a group isomorphism such that
conditions 1 - 3 are executed.

If V ∈ τ |G1 , then there exists such U ∈ τ that U
⋂
G1 = V . As ϕ : (G, τ) →

(G, τ ′) is a topological isomorphism, then U ′ = ϕ(U) ∈ τ ′. Because ϕ : G → G is a
bijection mapping and ϕ(G1) = G1, it follows

ϕ(V ) = ϕ(U
⋂
G1) = ϕ(U)

⋂
ϕ(G1) = U ′

⋂
G1 ∈ τ ′|G1 .

From the arbitrarity of the set V it follows that τ |G1 ⊆ τ ′|G1 .

It is similarly proved that τ ′|G1 ⊆ τ |G1 , and hence τ |G1 = τ ′|G1 .

Now we consider the following commutative diagram:

(G, τ)
ϕ

−−−−→ (G, τ ′)

ω

y ω

y

(G, τ)/G2
ϕ̄

−−−−→ (G, τ ′)/G2

ω̄

y ω̄

y

(G, τ)/G1
eϕ

−−−−→ (G, τ ′)/G1

,

here ω and ω̄ are natural homomorphisms, and ϕ̄ and ϕ̃ are such isomorphisms that
ϕ̄(g +G2) = ϕ(g) +G2 and ϕ̃(g +G1) = ϕ̃(g) +G1.

As g−ϕ(g) ∈ G2, then g+G2 = ϕ(g)+G2. Hence ϕ̄(g+G2) = ϕ(g)+G2 = g+G2

and ϕ̃(g + G1) = ϕ̃(g) + G1, i.e. ϕ̄ : G/G2) = G/G2 and ϕ̃ : G/G1) = G/G1 are
identical mappings.

From the fact that ω : (G, τ) → (G, τ)/G2 and ω : (G, τ ′) → (G, τ ′)/G2 are open
and continuous homomorphisms it follows that ϕ̄ : (G, τ)/G2 → (G, τ ′)/G2 is an
open and continuous isomorphism, i.e. (G, τ)/G2 = (G, τ ′)/G2).

Sufficiency is completely proved.
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Necessity. Let τ and τ ′ be such metrizable, linear, group topologies that τ |G1 =
τ ′|G1 and (G, τ)/G2 = (G, τ ′)/G2. If ω : G → G/G2 and ω̄ : G/G2 → G/G1 =
(G/G2)/(G1/G2) are natural homomorphisms, then according to the statement 2.3,
there exist sets {Vi|i ∈ N

⋃
{0}} and {V ′

i |i ∈ N
⋃
{0}} of subgroups which are bases

of the neighborhoods of zero in topological groups (G, τ) and (G, τ ′), respectively,
and Vi

⋂
G1 = V ′

i

⋂
G1 and ω(Vi) = ω(V ′

i ) for any i ∈ N
⋃
{0}. Without loss of

generality, we can consider that V0 = V ′

0 = G.

For every i ∈ N let V̄i = ω(Vi) = ω(V ′

i ) and Ṽi = ω̄(V̄i).

As Ḡ = G/G1 is a linear space over the field Fp = Z/p ·Z and Ṽi is a subspace of

the linear space Ḡ, then for every i ∈ N
⋃
{0} there exists a set {Ũi|i ∈ N

⋃
{0}} of

subspaces of the linear space Ḡ such that Ṽi = Ũi
⊕
Ṽi+1 for any i ∈ N

⋃
{0}. Then

Ṽk = (
n⊕

i=k

Ũi)
⊕

(Ṽn+1) for any k ≤ n ∈ N
⋃
{0}. As G1 is a closed subgroup in the

topological groups (G, τ) and (G, τ ′), then (se [1], theorem 1.3.2)
⋂

k∈N

Ṽk = {0} and

hence Ṽk =
∞⊕

i=k

Ũi.

For every k ∈ N
⋃
{0} we shall consider a basis {x̃k,γ |γ ∈ Γk} of the linear space

Ũk.

As Ũi ⊆ Ṽi = ω̄(ω(Vi))) for any i ∈ N
⋃
{0}, then for any k ∈ N

⋃
{0} and any

γ ∈ Γk there exists an element xk,γ ∈ Vk such that ω̄(ω(xk,γ)) = x̃k,γ.

As ω(Vi) = ω(V ′

i ) for any i ∈ N
⋃
{0}, then for any i ∈ N

⋃
{0} and any γ ∈ Γ

there exists an element x′i,γ ∈ V ′

i such that ω(xi,γ) = ω(x′i,γ).

According to Proposition 7, the subgroups A =< {xk,γ |k ∈ N
⋃
{0}, γ ∈ Γ} >

and A′ =< {x′k,γ |k ∈ N
⋃
{0}, γ ∈ Γ} > are serving subgroups of the group G and

they are direct sums of cyclic groups of the order pn.

According to the Prufer-Kulikov theorem (see Theorem 5) there exists a subgroup
B of the group G such that G = B

⊕
A. Then, according to the statement 8.2,

G = B
⊕
A′. As ω̄(ω(A)) = ω̄(ω(V0)) = G/G1, then B ⊆ G1.

If f : {xk,γ |k ∈ N
⋃
{0}, γ ∈ Γ} → {x′k,γ |k ∈ N

⋃
{0}, γ ∈ Γ} is a mapping such

that f(xk,γ) = x′k,γ for any k ∈ N
⋃
{0} and γ ∈ Γ then it can be extended to a

group isomorphism f̂ : A→ A′.

We suppose ϕ(a + b) = f̂(a) + b for any a ∈ A and any b ∈ B. Then ϕ : G→ G
is a group isomorphism.

As ω(xk,γ) = ω(x′k,γ) = x̄k,γ for any k ∈ N
⋃
{0} and any γ ∈ Γ, then hk,γ =

xk,γ − x′k,γ ∈ G2.

Let now g ∈ G1. Then g =
k∑

i=1

s∑
j=1

ti,γj · xi,γj + b, where b ∈ B ⊆ G1. As

0 = ω̄(ω(g)) =

k∑

i=1

s∑

j=1

ti,γj · ω̄(ω(xi,γj )) + ω̄(ω(b)) =

k∑

i=1

s∑

j=1

ti,γj · x̄i,γj ,
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then all ti,γj are divisible by p, and hence

ϕ(g) =

k∑

i=1

s∑

j=1

ti,γj · x
′

i,γj
+ ϕ(b) =

k∑

i=1

s∑

j=1

ti,γj · (xi,γj − hi,γj ) + ϕ(b) =

k∑

i=1

s∑

j=1

ti,γj · xi,γj −

k∑

i=1

s∑

j=1

ti,γj · hi,γj + b =

k∑

i=1

s∑

j=1

ti,γj · xi,γj + b = g.

So we have proved that ϕ(g) = g for any g ∈ G1. Then ϕ(G1) = G1, i.e. the
first statement of the theorems is true.

Let now g ∈ G. Then g =
k∑

i=1

s∑
j=1

ti,γj · xi,γj + b, where b ∈ B ⊆ G1, and hence

g − ϕ(g) =

k∑

i=0

s∑

j=1

ti,γj · xi,γj + b− (

k∑

i=0

s∑

j=1

ti,γj · x
′

i,γj
+ b) =

k∑

i=0

s∑

j=1

ti,γj · (xi,γj − x′i,γj
) =

k∑

i=0

s∑

j=1

ti,γj · hi,γj ∈ G2,

i.e. the second statement of the theorem is also true.

For finishing the proof of the theorem it remained to check up that the isomor-
phism ϕ : (G.τ) → (G.τ ′) is a topological isomorphism. For this purpose it is enough
to verify that ϕ(Vk,γ) = V ′

k,γ for any k ∈ N and any γ ∈ Γ.

So, let g ∈ Vk,γ . Then g =
m∑

i=0

s∑
j=1

ti,γj · xi,γj + b, where b ∈ B ⊆ G1.

As (see definition of elements xi,γ)
m∑

i=k

s∑
j=1

ti,γj · xi,γj ∈ Vk, then

k−1∑

i=0

s∑

j=1

ti,γj · xi,γj + b = g −

m∑

i=k

s∑

j=1

ti,γj · xi,γj ∈ Vk.

Besides that as
m∑

i=0

s∑

j=1

ti,γj · x̄i,γj = ω(
m∑

i=0

s∑

j=1

ti,γj · xi,γj + b) =

ω(g) ∈ ω(Vk) = V̄k =
∞⊕

i=k

Ūi, then for any i < k all numbers ti,γj are divided by p,

and hence
k−1∑
i=0

s∑
j=1

ti,γj · xi,γj ∈ G1. Then
k−1∑
i=0

s∑
j=1

ti,γj · xi,γj + b ∈ G1
⋂
Vk = G1

⋂
V ′

k,

and hence, ϕ(
k−1∑
i=0

s∑
j=1

ti,γj · xi,γj + b) =
k−1∑
i=0

s∑
j=1

ti,γj · xi,γj + b ∈ V ′

k. Then
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ϕ(g) = ϕ(
k−1∑

i=0

s∑

j=1

ti,γj · xi,γj + b) + ϕ(
m∑

i=k

s∑

j=1

ti,γj · xi,γj ) ∈

V ′

k +
m∑

i=k

s∑

j=1

ti,γj · x
′

i,γj
⊆ V ′

k + V ′

k = V ′

k.

From the arbitrarity of the element g it follows that ϕ(Vk) ⊆ V ′

k.
In a similar way it can be proved that ϕ−1(V ′

k) ⊆ Vk, and hence ϕ(Vk) = V ′

k.
The theorem is completely proved.
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Abstract. In this article we consider the action of the group Aff (2, R) of affine
transformations and time rescaling on real planar quadratic differential systems. Via
affine invariant conditions we give a complete stratification of this family of systems
according to the dimension D of affine orbits proving that 3 ≤ D ≤ 6. Moreover we
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dimension D ≤ 5 constructing the affine invariant criteria for the realization of each
of 49 possible topologically distinct phase portraits.
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We consider here real planar differential systems of the form

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

(1)

with

p0 = a, p1(x, y) = cx + dy, p2(x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(x, y) = ex + fy, q2(x, y) = lx2 + 2mxy + ny2.

We say that these systems are quadratic if |p2(x, y)| + |q2(x, y)| 6= 0.

Consider also the group Aff (2, R) of affine transformations given by the equali-
ties:

x̄ = αx + βy + ν, ȳ = γx + δy + κ, det

(
α β
γ δ

)
6= 0, α, β, γ, δ, ν, κ ∈ R.

According to [1] the operators of the linear representation of the group Aff (2, R)

c© N.Vulpe, N.Gherstega, V.Orlov, 2009
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in the space of the coefficients and variables of systems (1) will take the form

X1 = x
∂

∂x
+ a

∂

∂a
+ d

∂

∂d
− e

∂

∂e
− g

∂

∂g
+ k

∂

∂k
− 2l

∂

∂l
− m

∂

∂m
,

X2 = y
∂

∂x
+ b

∂

∂a
+ e

∂

∂c
+ (f − c)

∂

∂d
− e

∂

∂f
+ l

∂

∂g
+

+(m − g)
∂

∂h
+ (n − 2h)

∂

∂k
− l

∂

∂m
− 2m

∂

∂n
,

X3 = x
∂

∂y
+ a

∂

∂b
− d

∂

∂c
+ (c − f)

∂

∂e
+ d

∂

∂f
− 2h

∂

∂g
− k

∂

∂h
+

+(g − 2m)
∂

∂l
+ (h − n)

∂

∂m
+ k

∂

∂n
,

X4 = y
∂

∂y
+ b

∂

∂b
− d

∂

∂d
+ e

∂

∂e
− h

∂

∂h
− 2k

∂

∂k
+ l

∂

∂l
− n

∂

∂n
,

X5 =
∂

∂x
− c

∂

∂a
− e

∂

∂b
− 2g

∂

∂c
− 2h

∂

∂d
− 2l

∂

∂e
− 2m

∂

∂f
,

X6 =
∂

∂y
− d

∂

∂a
− f

∂

∂b
− 2h

∂

∂c
− 2k

∂

∂d
− 2m

∂

∂e
− 2n

∂

∂f
.

(2)

These operators form a six-dimensional Lie algebra [1].

Let ã = (a, b, c, d, e, f, g, h, k, l,m, n) be the 12-tuple of the coefficients of systems
(1), i.e. each particular system (1) yields a point in E12(ã), where E12(ã) is the
Euclidean space of the coefficients of the right-hand sides of systems (1). We denote
by ã(q) ∈ E12(ã) the point which corresponds to the system, obtained from a system
(1) with coefficients ã via a transformation q ∈ Aff (2, R).

Definition 1. Consider a system (1) and its corresponding point ã ∈ E12(ã). We
call the set O(ã) = {ã(q)|q ∈ Aff (2, R)} the Aff (2, R) - orbit of this system.

It is known from [1] that

D
def
= dimR O(ã) = rankM,

where M is the matrix constructed on the coordinate vectors of operators (2):

M=




a 0 0 d −e 0 −g 0 k −2l −m 0
b 0 e −c+f 0 −e l −g + m −2h + n 0 −l −2m
0 a −d 0 c−f d −2h −k 0 g − 2m h − n k
0 b 0 −d e 0 0 −h −2k l 0 −n
−c −e −2g −2h −2l −2m 0 0 0 0 0 0
−d −f −2h −2k −2m −2n 0 0 0 0 0 0




.

We denote by ∆i,j,k,l,m,n the minor of the 6th order of the matrix M1, constructed on

the columns i,j,k,l,m,n (1≤ i<j <k<l<m<n≤12) and by ∆i1,i2,...,is
j1,j2,...,js

the minor of
the order s (s = 5, 4, 3) constructed on the lines i1, i2, . . . , is (1≤ i1 <i2 <. . .<is≤6})
and on the columns j1, j2, . . . , js (1≤j1 <j2 <. . .<js≤12}).
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In [2] a minimal polynomial basis of GL(2, R)-invariant polynomials (which are
also named center-affine comitants and invariants) is constructed. We shall use here
the following elements of this basis, defined in tensorial form (we keep the notations
from [2]):

I1 = aα
α, I2 = aα

βaβ
α, I3 = aα

p aβ
αqa

γ
βγεpq, I5 = aα

p aβ
γqa

γ
αβεpq,

I7 = aα
pra

β
αqa

γ
βsa

δ
γδε

pqεrs, I8 = aα
pra

β
αqa

γ
δsa

δ
βγεpqεrs, I9 = aα

pra
β
βqa

γ
γsa

δ
αδε

pqεrs,

I18 = aαaqap
αεpq, I21 = aαaβaqap

αβεpq, K1 = aα
αβxβ, K2 = ap

αxαxqεpq,

K3 = aα
βaβ

αγxγ , K4 = aα
γaβ

αβxγ , K5 = ap
αβxαxβxqεpq, K6 = aα

αβaβ
γδx

γxδ,

K7 = aα
βγaβ

αδx
γxδ, K11 = ap

αaα
βγxβxγxqεpq, K13 = aα

γ aβ
αβaγ

δµxδxµ,

K21 = apxqεpq, K23 = apaq
αβxαxβεpq.

(3)

Here the following notations are used:

a1 = a, a2 = b, a1
1 = c, a1

2 = d, a2
1 = e, a2

2 = f, a1
11 = g, a1

12 = h,

a1
22 = k, a2

11 = l, a2
12 = m, a2

22 = n, x1 = x, x2 = y,

and the unit bi-vectors εpq and εpq have the coordinates: ε11 = ε22 = ε11 = ε22 = 0,
ε12 = −ε21 = ε12 = −ε21 = 1,

We consider the polynomials

Ci(ã, x, y) = ypi(ã, x, y) − xqi(ã, x, y) ∈ R[ã, x, y], i = 0, 1, 2,

Di(ã, x, y) =
∂

∂x
pi(ã, x, y) +

∂

∂y
qi(ã, x, y) ∈ R[ã, x, y], i = 1, 2,

(4)

which are the only GL-comitants of degree one with respect to the coefficients of
systems (1) that could exist for these systems. Comparing (3) with (4) we have the
following identities: C0 ≡ K21, C1 ≡ K2, C2 ≡ K5, D1 ≡ I1, D2 ≡ 2K1.

Using the so-called transvectant of index k (see [3]) of two real polynomials f
and g:

(f, g)(k) =
k∑

h=0

(−1)h
(

k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h

we shall construct the following GL–comitants of the second degree with respect to
the coefficients of initial systems:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0,D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1,D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2,D2)
(1) .

According to [4] the transvectant (f, g)(k) of two GL–comitants (respectively
T–comitants) of systems (1) is a GL–comitant (respectively T–comitant) of these
systems too.
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In what follows we shall construct the following T–comitants (and CT–comitants,
see [5] for detailed definitions), which are responsible for the dimensions of the affine
orbits for systems (1):

β(ã) = 27I8 − I9 − 18I7 = −2Discrim
(
C2(ã, x, y)

)
,

M(ã, x, y) = 2Hess
(
C2(x, y)

)
, Ĥ(ã, x, y) = (−T8 + 8T9 + 2D2

2)/72,

D(ã, x, y) =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6) − (C1, T5)
(1)+

+6D1(C1D2 − T5) − 9D2
1C2

]
/36, U1(ã, x, y) = (C2,D)(1),

U2(ã, x, y) = I1K
2
1 (2K2

1K2 − 2K2K6 − K1K11) − 2K3
1 (K2K4 + 2K7K21)+

+4K1K
2
6K21 + K2

1 [2K4K11 + K2K13 + 2K23(K6 + K7)] − 4K2
6K23,

U3 = K2
2 − 4K5K21.

However we also need several affine comitants which we shall construct here
following [6]. Denote by ã(τ) the point from the space E12(ã) that corresponds
to the system, obtained from a system (1) with coefficients ã via a translation
τ : x = x̄ + x0, y = ȳ + y0. It is evident that ã(τ) = ã(x0, y0). According to [6] if
I(ã) is a center-affine invariant of systems (1), then the polynomial

K̄(ã, x, y) = I(ã(x0, y0))|{x0=x,y0=y}

is an affine comitant of these systems. So, considering (3) we obtain the following
affine comitants of systems (1):

Afi(ã, x, y) = Ii(ã(x0, y0))|{x0=x,y0=y}, (i = 1, 2, 5, 18, 21).

We shall use the notations

W1 = Af2
1 − Af2, W2 = Af1Af18 − Af21,

V1 = Af2
1 − 2Af2, V2 = Af1Af18 − 4Af21,

V1 = Ĥ2 + Af2
21, U = Af2

5 + U2
1 + U2

2 ,
V2 = D2 + U2

3 .

(5)

In what follows by Ū(ã, x, y) = 0 (where Ū(ã, x, y) is an arbitrary comitant) we
shall understand Ū(ã, x, y) = 0 in R[x, y] (i.e. this comitant identically vanishes as
a polynomial in x and y).

Taking into consideration Remark 1 (see below) according to [7] we have the
next result.

Proposition 1. A system (1) is located on the affine orbit of the dimension six if
and only if one of the following three sets of conditions holds:

(i) β 6= 0; (ii) β = 0, K5U 6= 0; (iii) β = 0, K5 = 0, Af5 6= 0.

Remark 1. In Proposition 1 we use the set of conditions β = 0, K5 = 0, Af5 6= 0
which is equivalent to the set of conditions β = 0, K5 = 0, Af4(Af4 − Af3) 6= 0
from [7, Theorem, page 126]. We note also that U here denotes the expression
Af2

5 + T 2
16 + Kom2 from [7].
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Considering Proposition 1 it remains to construct the affine invariant criteria for
a system (1) to be located on the orbit of a given dimension s ≤ 5.

Lemma 1. The rank of the matrix M is equal to five if and only if β = 0, U = 0
and one of the following four sets of conditions holds:

(i) MV1 6= 0; (ii) M = 0, K5W1V2 6= 0;
(iii) M = W1 = 0, K5W2 6= 0; (iv) K5 = 0, W2 6= 0.

Proof. By Proposition 1 a system (1) is located on the affine orbit of the dimension
less than six (i.e. the rank of the matrix M is ≤ 5) if and only if β = 0 and either

(α1) K5 6= 0 and U = 0, or (α2) K5 = Af5 = 0. (6)

1) Assume first K5 6= 0. As β = 0 following [2] we could use a center-affine
transformation which brought the binary form K5(x, y) to the canonical form:
K5(x, y) = x2(x + δy) with δ ∈ {0, 1}. Moreover, the same transformation will
bring systems (1) in this case to the form (excluding also the linear term x in the
second equation via an additional translation):

ẋ = a + cx + dy + (2m + δ)x2 + 2hxy,

ẏ = b + fy − x2 + 2mxy + 2hy2, δ ∈ {0, 1}.
(7)

For these systems we calculate M = −8x2δ2 and we shall consider two subcases:
M 6= 0 and M = 0.

a) If M 6= 0 then δ = 1. Since according to (5) the condition U = 0 implies
Af5 = U1 = U2 = 0 we have: Coefficient[Af5, y] = −2h2 = 0. So we obtain h = 0
and then Af5 = −d(5m2 + 4m + 1) = 0 and this evidently yields d = 0. Therefore
we obtain the systems

ẋ = a + cx + (2m + 1)x2, ẏ = b + fy − x2 + 2mxy, (8)

for which calculations yield:

U1 = 6m(cf − f2 − 2am − 2bm)x4,

U2 = (1 + 3m)3(cf − f2 − 2am − 2bm)x6.
(9)

We note that the GL-invariant U2 keeps the value, indicated in (9), after any trans-
lation (x, y) 7→ (x̃+x0, ỹ+y0) with arbitrary (x0, y0) ∈ R2 applied to systems (8). In
other words for any system located in the orbit under the translation group action
of a system (8), i.e. for systems of the form

ẋ = a + x0(c + x0 + 2mx0) + (c + 2x0 + 4mx0)x + (2m + 1)x2,

ẏ = b − x0(x0 − 2my0) + fy0 − 2x(x0 − my0) + (f + 2mx0)y − x2 + 2mxy,

we have U2 = (1 + 3m)3(cf − f2 − 2am − 2bm)x6. This means that the polynomial
U2 is a CT -comitant [5] for the family of systems (8) and hence the condition U2 = 0
is affine invariant.
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Clearly the conditions U1 = U2 = 0 (i.e. U = 0) imply (cf − f2 − 2am −
2bm) = 0 and then we can convince ourself that all the minors of order 6 of the
matrix M1 vanish. We claim that the existence of at least one nonzero minor of
order 5 is equivalent to the condition V1 6= 0, i.e. considering (5) to the condition
Ĥ2 + Af2

21 6= 0.

Indeed, for systems (8) we calculate Ĥ = m2x2. On the other hand we obtain
∆1,2,4,5,6

5,6,10,11,12 = −8m4, i.e. if Ĥ 6= 0 then rank(M1) = 5.

Assume Ĥ = 0, i.e. m = 0. Then for systems (8) we have Af21 = [a + b + cx +
fy](a+cx+x2)2. At the same time we calculate ∆1,2,4,5,6

2,5,7,8,10 = 2f , ∆1,2,3,4,5
3,5,7,8,10 = 2(f−c)

and ∆1,2,3,4,5
2,3,7,10,11 = 2(a + b). As Af21 6= 0 is equivalent to (a + b)2 + c2 + f2 6= 0 we

conclude that in this case there exist non-zero minors of order 5. It remains to
observe that in the case Af21 = 0 (i.e. f = c = a + b = 0) all the minors of order 5
vanish. Thus, our claim is proved.

b) Assume now M = 0, i.e. for systems (7) we have δ = 0. In order to examine
the condition U = 0 (i.e. Af2

5 + U2
1 + U2

2 = 0, see (5)) for these systems we
calculate: Coefficient[Af5, x] = −6h2 = 0 and this yields h = 0. Therefore we have
Af5 = −5dm2 = 0, i.e. dm = 0 and then we obtain Coefficient[U1, x

3y] = −6d2. So
the condition U1 = 0 yields d = 0 and this leads to the systems

ẋ = a + cx + 2mx2, ẏ = b + fy − x2 + 2mxy, (10)

for which calculations yield:

U1 = 6m(cf − f2 − 2am)x4, U2 = 27m3(cf − f2 − 2am)x6. (11)

We note that the GL-invariant U2 keeps the value, indicated above, after any trans-
lation (x, y) 7→ (x̃ + x0, ỹ + y0) with arbitrary (x0, y0) ∈ R2 applied to systems (10).
This means that the polynomial U2 is a CT -comitant [5] for the family of systems
(10) and hence the condition U2 = 0 is invariant under the affine transformation.

Evidently the conditions U1 = U2 = 0 (i.e. U = 0) imply m(cf − f2 − 2am) = 0
and then all the minors of order 6 for the matrix M1 vanish. We shall consider two
subcases: m 6= 0 and m = 0.

b1) If m 6= 0 then without loss of generality for systems (10) we may assume

f = 0 due to the translation (x, y) 7→
(
x− f

2m , y− f
2m2

)
. Therefore considering (11)

in this case the conditions U1 = U2 = 0 yield a = 0. So we get the systems

ẋ = cx + 2mx2, ẏ = b − x2 + 2mxy, (12)

for which W1 = 4mx(c + 4mx). We note that all the minors of order 6 for the
matrix M1 corresponding to these systems vanish. On the other hand we have
∆1,2,4,5,6

5,6,8,10,11 = −4m4 6= 0, i.e. rank(M1) = 5. It remains to observe that for systems

(12) Coefficient[V2, x
6] = −8m3. Therefore the condition m 6= 0 implies V2 6= 0 and

hence the conditions (ii) of Lemma 1 are valid.
b2) Assuming m = 0 and considering (10) we get the family of systems

ẋ = a + cx, ẏ = b + fy − x2, (13)
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for which we calculate

W1 = 2cf, Coefficient[V2, xy] = cf(c2 − f2). (14)

We shall examine two cases: W1 6= 0 and W1 = 0.
γ1) Admit first W1 6= 0, i.e. cf 6= 0. If c2 − f2 6= 0 (this implies V2 6= 0) by (14)

we obtain cf(c−f) 6= 0. Therefore rank(M1) = 5 as we have ∆2,3,4,5,6
1,2,5,10,11 = cf(c−f).

Assume c2 − f2 = 0. If f = c (respectively f = −c) for systems (13) we
calculate V2 = −4a(a+ cx)2 (respectively V2 = −4(a+ cx)3). On the other hand we
have ∆1,2,3,4,5

1,2,5,10,11 = 2a2 (respectively ∆2,3,4,5,6
1,2,4,5,10 = 4c4) and evidently if V2 6= 0 then

rank(M1) = 5 (we note that in the second case the condition W1 6= 0 yields c 6= 0
and this implies V2 6= 0). Moreover straightforward calculations show us that the
condition V2 = 0 (and this happens only in the first case) implies a = 0 and all the
minors of order 5 vanish. So, the conditions (ii) of Lemma 1 are true.

γ2) Suppose now W1 = 0, i.e. cf = 0. In this case for systems (13) we obtain:

(β1) W2 = −a(a2 + bf2 − 2afx − f2x2 + f3y) if c = 0;
(β2) W2 = (bc2 − a2)(a + cx) if f = 0.

(15)

On the other hand in the case (β1) (respectively (β2)) we have that ∆1,2,3,4,5
1,2,5,10,11 equals

2a2 (respectively 2(a2 − bc2). So if W2 6= 0 then rank(M1) = 5, and it can be easily
verified that in the case (β1) as well as in the case (β2) the condition W2 = 0 implies
the vanishing of all the minors of order 5. This completes the proof of the conditions
(iii) of Lemma 1.

Remark 2. It follows from the reasons above that in the case m 6= 0 for systems
(10) we have V2 6= 0. Hence we decide that in the case U = V2 = 0 and W1 6= 0 for
systems (10) the relations m = 0, f = c 6= 0 and a = 0 hold.

2) Assume finally K5 = 0 (see condition (α2) from (6)). As systems (1) are
quadratic (i.e. there exists at least one quadratic term) then via an affine transfor-
mation systems (1) can be brought to the systems (see for example, [10])

ẋ = a + cx + dy + x2, ẏ = b + xy. (16)

Straightforward calculations show us that for these systems U1 = U2 = 0. Moreover,
the GL-invariant U2 vanishes after any translation (x, y) 7→ (x̃ + x0, ỹ + y0) with
arbitrary (x0, y0) ∈ R2 applied to systems (16). So according to (5) the condition
U = 0 is equivalent to Af5 = 0. Since for systems (16) we have Af5 = −5d/4 then
we obtain d = 0 and for these systems we calculate:

W2 = (c + 3x)(a + cx + x2)(bc + bx − ay). (17)

On the other hand for the matrix M1 corresponding to systems (16) with d = 0
we have ∆1,2,4,5,6

2,3,5,7,12 = −2b and ∆1,2,3,5,6
2,5,6,7,12 = a. It is clear that if W2 6= 0 then

rank(M1) = 5. Moreover straightforward calculations show that for a = b = 0 (i.e.
when W2 = 0) all the minors of order 5 vanish and hence the conditions (iv) of the
lemma are proved. This completes the proof of Lemma 1.
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Lemma 2. The rank of the matrix M is equal to four if and only if β = 0, U = 0
and one of the following four sets of conditions holds:

(i) M 6= 0, V1 = 0; (ii) M = V2 = 0, K5W1 6= 0;
(iii) M = W1 = W2 = 0, K5V2 6= 0; (iv) K5 = W2 = 0.

Proof. According to the hypothesis of the lemma we assume β = 0, U = 0 and we
shall consider step by step the sets of conditions (i)- (iv).

Conditions (i). As it was proved earlier (see the proof of Lemma 1, page 33) when
β = 0, M 6= 0 and U = 0 systems (1) will be brought via an affine transformation
to systems (8) for which the conditions (9) hold. Moreover, it was proved that the
condition V1 = 0 (i.e. Ĥ = Af21 = 0) yields for systems (8) m = f = c = a + b = 0
(see page 34). So we get the family of systems:

ẋ = a + x2, ẏ = −a − x2,

for which without loss of generality we may assume a ∈ {0,−1, 1} due to the trans-
formation (x, y, t) 7→

(
|a|−1/2x, |a|−1/2y, |a|1/2t

)
if a 6= 0.

It remains to observe that for the matrix M1 corresponding to these systems all
the minors of order 6 and 5 vanish and ∆1,2,3,5

5,7,8,10 = −2. Thus the systems of this
family could be located only on the orbit of dimension 4.

Conditions (ii). In this case the condition V2 = 0 holds. Therefore according to
Remark 2 when M = 0, U = 0 and K5W1 6= 0 systems (1) could be brought via
an affine transformation to systems (13), for which f = c 6= 0 and a = 0. In other
words when the conditions (ii) of Lemma 2 are satisfied, then we get the family of
systems

ẋ = cx, ẏ = b + cy − x2. (18)

As c 6= 0 (since W1 6= 0) we may assume b = 0 and c = 1 due to the transformation

(x, y, t) 7→
(
x,

1

c
(y − b),

t

c

)
. It remains to note that all the minors of order 6 and

5 for the matrix M1 corresponding to these systems vanish. On the other hand
∆2,4,5,6

1,2,7,10 = 1, i.e. system (18) (with b = 0 and c = 1) is located on the orbit of
dimension 4.

Conditions (iii). In this case the condition W2 = 0. As M = W1 = 0 and K5 6= 0
it was proved earlier (see the proof of Lemma 1, page 34) that in this case systems
(1) will be brought via an affine transformation to systems (13) with cf = 0 (i.e.
W1 = 0, see (14)). We shall examine two subcases: c = 0 and c 6= 0.

a) Assume first c = 0. Then considering (15) the condition W2 = 0 yields a = 0
and we get the systems

ẋ = 0, ẏ = b + fy − x2, (19)

for which D = −f2x3, U3 = x2(4bx2 + f2y2). Moreover, for a system located in
the orbit under the translation group action of a system (19), i.e. for systems of the
form

ẋ = 0, ẏ = b − x2
0 + fy0 − 2xx0 + fy − x2, (20)
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for the GL-comitant U3 we have U3 = x2(4bx2 + f2y2)+4fx3(xy0 − yx0). We recall
that by (5) the condition V2 6= 0 is equivalent to D2 + U2

3 6= 0.
We note that all the minors of order 5 for the matrix M1 corresponding to these

systems vanish. On the other hand ∆1,2,3,6
2,5,7,10 = −2f2. Hence, if D 6= 0 (i.e. f 6= 0)

we obtain rank(M1) = 4.
Assume D = 0. Then f = 0 and then for any point (x0, y0) for system (20) we

have U3 = 4bx4, i.e. for these systems the GL-comitant U3 is a CT -comitant.
On the other hand we calculate ∆1,2,4,5

2,5,7,10 = 4b. It is clear that if U3 6= 0 (this
implies V2 6= 0) then rank(M1) = 4. Moreover straightforward calculations show
that for f = b = 0 (i.e. when V2 = 0) all the minors of order 4 vanish and hence the
conditions (iii) of Lemma 2 are proved in this case.

It remains to note that without loss of generality we may assume either f = 1
and b = 0 if f 6= 0 (due to the change (x, y, t) 7→ (x, (y − b)/f, t/f) ) or f = 0 and
b ∈ {0,±1} (due to the change (x, y, t) 7→ (|b|1/2x, |b|y, t) ).

b) Supposing c 6= 0 the condition W1 = 0 yields f = 0. Moreover we may assume
c = 1 due to the change (x, y, t) 7→ (x, y/c, t/c). Then the condition W2 = 0 (see
case (β2) from (15)) gives b − a2 = 0, i.e. b = a2. Therefore we get the family of
systems

ẋ = a + x, ẏ = a2 − x2, (21)

for the respective matrix M1 of which we have ∆2,3,4,5
1,5,7,10 = −1, i.e. rank(M1) = 4.

It remains to note that we may assume a = 0 due to the affine transformation
x̄ = x + a, ȳ = −2ax + y. We also observe that for the obtained system as well
as for any system located on its orbit under the translation group action we have
U3 = x2y2 6= 0.

Conditions (iv). As it was shown in the proof of Lemma 1 (see page 35) when
K5 = U = 0 systems (1) will be brought via an affine transformation to systems
(16) with d = 0. Moreover, if W2 = 0 according to (17) we obtain a = b = 0. So we
arrive at the systems

ẋ = cx + x2, ẏ = xy,

for which all the minors of order 5 of the corresponding matrix M1 vanish. But for
this matrix we have ∆1,2,5,6

3,5,7,8 = 1. Thus the systems of this family could be located
only on the orbit of dimension 4. It remains to note that we may assume c ∈ {0, 1}
due to the change (x, y, t) 7→ (cx, y, t/c) if c 6= 0.

Lemma 3. The rank of the matrix M is equal to three if and only if the following
conditions hold: M = W2 = V2 = 0, K5 6= 0.

Proof. Necessity. Assume that a system (1) is located on the orbit of dimension 3.
As it follows from the proof of Lemma 2 this system could be located on the orbit
of dimension less than or equal to 3 if and only if U = 0 and the conditions (iii) of
Lemma 2 with V2 = 0 instead of V2 6= 0 are fulfilled. Moreover in this case via an
affine transformation we arrive at a system of the form (19) with b = f = 0. So we
get the system

ẋ = 0, ẏ = −x2, (22)
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for which the conditions provided by Lemma 3 are verified.

Sufficiency. Assume that the hypothesis of Lemma 3 is fulfilled. As M = 0 and
K5 6= 0 then there exists an affine transformation which will brought systems (1) to
the form (7) with δ = 0, i.e. to the systems:

ẋ = a + cx + dy + 2mx2 + 2hxy,

ẏ = b + fy − x2 + 2mxy + 2hy2,
(23)

for which β = 0. We claim that for these systems the condition W2 = 0 implies
W1 = U = 0. Indeed, for systems (23) calculations yield:

Coefficient[W2, x
3y3] = 16h3, Coefficient[W2

∣∣
{h=0}

, x6] = 16m3,

Coefficient[W2
∣∣
{h=m=0}

, y3] = −d3, Coefficient[W2
∣∣
{h=m=d=0}

, x3] = cf(2c + f).

We remark that if h = m = d = 0 then for systems above we obtain

Af5 = U1 = U2 = 0, W1 = 2cf

and considering (5) this leads to the identity U = 0. We also observe, that W2 = 0
yields cf(2c + f) = 0. If cf = 0 then evidently W1 = 0. In the case f = −2c
(considering also the conditions h = m = d = 0) we calculate Coefficient[W2, xy] =
6c4. Thus we get c = 0 and again we obtain W1 = 0. Our claim is proved.

So the hypothesis of Lemma 2 corresponding to the conditions (iii) is verified
except the condition V2 6= 0. According to Lemma 2 in this case we have rank(M1) ≤
4 and we obtain the equality if and only if V2 6= 0.

Suppose now V2 = 0. As it was proved above the condition W2 = 0 implies
h = m = d = cf = 0 and we get two possibilities: c = 0 and c 6= 0. As it was shown
in the proof of Lemma 2 (see page 36) in the case c 6= 0 the CT -comitant U3 (and
hence, V2) could not vanish. So the condition c = 0 has to be fulfilled and then we
arrive at the systems (19) for which the condition V2 = 0 yields b = f = 0. Thus
we get the system (22) for the corresponding matrix M of which we have found
rank(M) = 3 (see above). This completes the proof of Lemma 3.

In order to formulate and prove the Main Theorem we need some more invariant
polynomials constructed in [11] as follows (we keep the respective notations).

We consider the differential operator L = x · L2 − y · L1 acting on R[a, x, y]
constructed in [13], where

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1

2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1

2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1

2
b10

∂

∂b11
.
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Then setting µ0(a) = Res x(p2, q2)/y
4 we construct the following polynomials:

µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4; κ(a) = (M,K)(2)/4; κ1(a) = (M,C1)

(2);

L(a, x, y) = 4K(a, x, y) + 8H(a, x, y) − M(a, x, y);

R(a, x, y) = L(a, x, y) + 8K(a, x, y);

K1(a, x, y) = p1(x, y)q2(x, y) − p2(x, y)q1(x, y);

K2(a, x, y) = 4Jacob(J2, ξ) + 3Jacob(C1, ξ)D1 − ξ(16J1 + 3J3 + 3D2
1);

K3(a, x, y) = 2C2
2 (2J1 − 3J3) + C2(3C0K − 2C1J4) + 2K1(3K1 − C1D2),

where L(i)(µ0) = L(L(i−1)(µ0)) and

J1 = Jacob(C0,D2), J2 = Jacob(C0, C2), J3 = Discrim(C1),

J4 = Jacob(C1,D2), ξ = M − 2K.

To distinguish topologically different phase portraits we also need the following
invariant polynomials (constructed also in [11]):

B3(ã, x, y) = (C2,D)(1) = Jacob (C2,D) ,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2,D)(3),

B1(ã) = Res x (C2,D) /y9 = −2−93−8 (B2, B3)
(4) ,

H(ã, x, y) = (T8 − 8T9 − 2D2
2)/18 (= −4Ĥ(ã, x, y));

N(ã, x, y) = K(ã, x, y) + H(ã, x, y);

θ(ã) = Discrim
(
N(ã, x, y)

)
;

H1(ã) = −
(
(C2, C2)

(2), C2)
(1),D

)(3)
;

H2(ã, x, y) = (C1, 2H − N)(1) − 2D1N ;

H3(ã, x, y) = (C2,D)(2);

H4(ã) =
(
(C2,D)(2), (C2,D2)

(1)
)(2)

;

H5(ã) =
(
(C2, C2)

(2), (D,D)(2)
)(2)

+ 8
(
(C2,D)(2), (D,D2)

(1)
)(2)

;

H6(ã, x, y) = 16N2(C2,D)(2) + H2
2 (C2, C2)

(2);

H7(ã) = (N,C1)
(2);

H8(ã) = 9
(
(C2,D)(2), (D,D2)

(1)
)(2)

+ 2
[
(C2,D)(3)

]2
;

H9(ã) = −
((

(D,D)(2),D
)(1)

D
)(3)

;

H10(ã) =
(
(N,D)(2), D2

)(1)
;

H11(ã, x, y) = 8H
[
(C2,D)(2) + 8(D,D2)

(1)
]
+ 3H2

2 ;
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N1(ã, x, y) = C1(C2, C2)
(2) − 2C2(C1, C2)

(2),

N2(ã, x, y) = D1(C1, C2)
(2) −

(
(C2, C2)

(2), C0

)(1)
,

N3(ã, x, y) = (C2, C1)
(1) ,

N4(ã, x, y) = 4 (C2, C0)
(1) − 3C1D1,

N5(ã, x, y) =
[
(D2, C1)

(1) + D1D2

]2
− 4

(
C2, C2

)(2)(
C0,D2

)(1)
,

N6(ã, x, y) = 8D + C2

[
8(C0,D2)

(1) − 3(C1, C1)
(2) + 2D2

1

]
.

Some important geometric propriety of the constructed above polynomials
µi(ã, x, y) (i = 0, 1, . . . , 4 is revealed by the next lemma proved in [13].

Lemma 4 ([13]). A system (1) is degenerate (i.e. gcd(P,Q) 6= 1) if and only if
µi = 0 for all i = 0, 1, .., 4.

Main Theorem (i) A system (1) is located on an affine orbit of the given above
dimension if and only if one of the respective sets of the conditions holds:

6 ⇔ β 6= 0 or β = 0 and U 6= 0;

5 ⇔ β = 0, U = 0 and either





MV1 6= 0, or
M = 0, K5W1V2 6= 0, or
M = W1 = 0, K5W2 6= 0, or
K5 = 0, W2 6= 0;

4 ⇔ β = 0, U = 0 and either





M 6= 0, V1 = 0, or
M = V2 = 0, K5W1 6= 0, or
M = W1 = W2 = 0, K5V2 6= 0, or
K5 = W2 = 0;

3 ⇔ M = W2 = V2 = 0, K5 6= 0.

(ii) Assume that a quadratic system is located on the affine orbit of the dimension
less than or equal to 5. Then the phase portrait of this system is topologically equiva-
lent to one of the 49 topologically distinct phase portraits given in Fig. 1. Moreover
in Table 1 we give necessary and sufficient conditions, invariant with respect to the
action of the affine group and time rescaling, for the realization of each one of the
phase portraits corresponding to a system located on an orbit of the given dimension
(≤ 5). The first column of Table 1 contains dimension of the orbit. In the second
column we list the necessary and sufficient affine invariant conditions for a system
to be located on the orbit of the respective dimension. In the third column the ad-
ditional conditions needed for the realization of the corresponding phase portrait in
the last column are listed.

Proof. The proof of the statement (i) of Main Theorem follows immediately from
Proposition 1 and Lemmas 1 – 3. So we shall concentrate our attention on the proof
of the statement (ii).
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Table 1

D

Necessary and
sufficient
conditions

Additional conditions
for phase portraits

Phase
portrait

5
β = 0, U = 0,

MV1 6= 0
H 6= 0

H6 6= 0

K 6= 0

H11 > 0, µ2 > 0, L > 0 P1

H11 > 0, µ2 > 0, L < 0 P2

H11 > 0, µ2 < 0,K < 0 P3

H11 > 0, µ2 < 0,
K > 0, L > 0

P4

H11 > 0, µ2 < 0,
K > 0, L < 0

P5

H11 > 0, µ2 = 0,K < 0 P6

H11 > 0, µ2 = 0,
K > 0, L < 0

P7

H11 > 0, µ2 = 0,
K > 0, L > 0

P8

H11 < 0, L > 0 P9

H11 < 0, L < 0 P10

H11 = 0, L > 0 P11

H11 = 0, L < 0 P12

K = 0

H11 6= 0, K1µ3 < 0 P13

H11 6= 0, K1µ3 > 0 P14

H11 6= 0, µ3 = 0 P15

H11 = 0, κ2 < 0 P9

H11 = 0, κ2 > 0 P10

H6 = 0

N 6= 0

H11 6= 0, L > 0 P1

H11 6= 0, L < 0 P5

H11 6= 0, L = 0 P14

H11 = 0, L < 0 P16

H11 = 0, L > 0,K < 0 P17

H11 = 0, L > 0,K > 0 P18

H11 = 0, L = 0 P19

N = 0
H3 > 0 P5

H3 < 0 P10

H3 = 0 P16
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Table 1 (continued)

D

Necessary and
sufficient
conditions

Additional conditions
for phase portraits

Phase
portrait

5

β = 0, U = 0,
MV1 6= 0

H = 0

D 6= 0
N5 > 0 P1

N5 < 0 P9

N5 = 0 P11

D = 0

N5 < 0 P9

N5 > 0, µ4 > 0 P20

N5 > 0, µ4 < 0 P21

N5 > 0, µ4 = 0, N1 6= 0 P22

N5 > 0, µ4 = 0, N1 = 0 P23

N5 = 0, µ4 6= 0 P24

N5 = 0, µ4 = 0 P25

M = U = 0,
K5W1V2 6= 0

H 6= 0

H11 6= 0
K3 > 0 P26

K3 < 0 P27

K3 = 0 P28

H11 = 0
K3 > 0 P29

K3 < 0 P30

K3 = 0 P31

H = 0
µ3K1 > 0, K3 ≥ 0 P32

µ3K1 > 0, K3 < 0 P33

µ3K1 < 0 P34

M = U = 0,
W1 = 0,K5W2 6= 0

D 6= 0 P35

D = 0
µ4 < 0 P36

µ4 > 0 P29

K5 = 0, W2 6= 0

H11 < 0 P37

H11 > 0
µ2 > 0 P38

µ2 < 0 P39

µ2 = 0 P40

H11 = 0
µ2 6= 0 P41

µ2 = 0 P42
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Table 1 (continued)

D

Necessary and
sufficient
conditions

Additional conditions
for phase portraits

Phase
portrait

4

β = 0, U = 0,
M 6= 0,V1 = 0

N5 > 0 P23

N5 < 0 P9

N5 = 0 P43

M = U = V2 = 0,K5W1 6= 0 − P32

M = U = W1 = 0,
W2 = 0,K5V2 6= 0

D 6= 0 P44

D = 0
N6 6= 0 P45

N6 = 0, U3 < 0 P29

N6 = 0, U3 > 0 P46

K5 = 0, W2 = 0
H11 6= 0 P47

H11 = 0 P48

3 M = W2 = V2 = 0,K5 6= 0 − P49

In other words we assume that a quadratic system is located on an affine orbit
of dimension ≤ 5 and we shall determine the phase portrait of this system as well
as the respective affine invariant conditions for its realization.

According to Lemmas 1 – 3 for a system located on an orbit of the dimension
≤ 5 the conditions β = 0 and U = 0 have to be fulfilled and in what follows we
assume that these conditions hold.

1) The case M 6= 0. In this case via an affine transformation a quadratic
system (1) could be brought to the form (8) (see page 33), i.e.

ẋ = a + cx + (2m + 1)x2, ẏ = b + fy − x2 + 2mxy, (24)

for which the condition cf − f2 − 2am − 2bm = 0 holds. For these systems we have
H = −4m2x2.

a) The subcase H 6= 0. Then m 6= 0 and we may assume f = 0 due to the

translation (x, y) 7→
(
x− f

2m , y− f
2m2

)
. Then for these systems the condition above

yields m(a + b) = 0 and as m 6= 0 we get b = −a. Thus we obtain the systems

ẋ = a + cx + (2m + 1)x2, ẏ = −a − x2 + 2mxy, (25)

for which we calculate the needed invariant polynomials applied in [11] (keeping the
respective notations):

B3 = θ = η = µ0 = H7 = 0, H6 = −2048m4(−4a + c2 − 8am − 4am2)x6,

H11 = 768m4(−4a + c2 − 8am)x4, H = −4m2x2, K = 4m(1 + 2m)x2,

L = 8(1 + 2m)x2, µ2 = 4am2(1 + 2m)x2, N = 4m(1 + m)x2.

(26)
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Table 1. Topologically distinct phase portraits
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As H = −4Ĥ by (5) the condition H 6= 0 implies V1 6= 0, i.e. for m 6= 0 a system
(25) is located on the orbit of dimension 5.

On the other hand as β = 0 (which is equivalent to η = 0 from [11]), M 6= 0
and B3 = θ = µ0 = H7 = 0, according to [8] and [9] the family of non-degenerate
systems (25) possesses invariant lines (considered with multiplicity and including
the line at infinity) of total multiplicity four if H6 6= 0 and at least five if H6 = 0.

a1) The possibility H6 6= 0. According to [11] for the non-degenerate systems (25)
we get the following phase portraits (we keep the respective notations from [11]):

Picture 4.12(a) [P1] if K 6= 0, H11 > 0, µ2 > 0, L > 0;

Picture 4.12(b) [P2] if K 6= 0, H11 > 0, µ2 > 0, L < 0;

Picture 4.12(c) [P3] if K 6= 0, H11 > 0, µ2 < 0, K < 0;

Picture 4.12(d) [P4] if K 6= 0, H11 > 0, µ2 < 0, K > 0, L > 0;

Picture 4.12(e) [P5] if K 6= 0, H11 > 0, µ2 < 0, K > 0, L < 0;

Picture 4.15(a) [P9] if K 6= 0, H11 < 0, L > 0;

Picture 4.15(b) [P10] if K 6= 0, H11 < 0, L < 0;

Picture 4.24(a) [P11] if K 6= 0, H11 = 0, L > 0;

Picture 4.24(b) [P12] if K 6= 0, H11 = 0, L < 0;

Picture 4.19(a) [P13] if K = 0, N 6= 0, H11 6= 0, K1µ3 < 0;

Picture 4.19(b) [P14] if K = 0, N 6= 0, H11 6= 0, K1µ3 > 0;

Picture 4.36(a) [P9] if K = 0, N 6= 0, H11 = 0, κ2 < 0;

Picture 4.36(b) [P10] if K = 0, N 6= 0, H11 = 0, κ2 > 0.
Here in square brackets the respective phase portraits from Figure 1 which are

topologically equivalent to those from [11], respectively are indicated. As by (26)
the conditions H 6= 0 and K = 0 imply N 6= 0 we arrive at the respective conditions
from Table 1.

It remains to look for degenerate systems which could belong to the family (25)
when the conditions H 6= 0 (i.e. m 6= 0) and H6 6= 0 (i.e. c2 − 4a(1+ m)2 6= 0) hold.
According to Lemma 4 we calculate the polynomials µi for this family:

µ0 = µ1 = 0, µ2 = 4am2(1 + 2m)x2, µ3 = 4acmx2(x + mx − my),

µ4 = ax2[(c2 + 4am2)x2 − 2m(c2 − 4am)xy + 4am2y2].

Evidently the conditions µi = 0 (i = 0, 1, .., 4) (see Lemma 4) are equivalent to
a = 0.

Assume first K 6= 0. Considering (26) we have m(1 + 2m) 6= 0 and hence the
condition a = 0 is equivalent to µ2 = 0. So we get the family of degenerate systems

ẋ = x[c + (2m + 1)x], ẏ = x(−x + 2my), (27)

for which H6 = −2048c2m4x6 6= 0. For the respective family of linear systems

ẋ = c + (2m + 1)x, ẏ = −x + 2my

we have λ1 = 2m + 1, λ2 = 2m and therefore sign (λ1λ2) = sign (K). Moreover by
(26) we have sign (λ1) = sign (L).
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We observe that due to H6 6= 0 (i.e. c 6= 0) the invariant line c + (2m + 1)x = 0
does not coincide with line x = 0 (filled with singularities).

Thus after some standard investigations we decide that the phase portrait of a
degenerate system (27) corresponds to picture P6 if K < 0; P7 if K > 0 and L < 0
and to picture P8 if K > 0 and L > 0.

Suppose now K = 0. As H 6= 0 (i.e. m 6= 0) considering (26) we have m = −1/2
and then systems (25) become

ẋ = a + cx, ẏ = −a − x2 − xy, (28)

for which we calculate:

µ2 = 0, µ3 = −acx2(x + y), H11 = 48c2x4, H6 = 128(a − c2)x6.

We observe that the systems above could be degenerate (i.e. a = 0) only if H11 6= 0
as H11 = 0 gives c = 0 and then H6 = 128ax6 6= 0. On the other hand if H11 6= 0
then the condition a = 0 is equivalent to µ3 = 0.

So, setting a = 0 in systems (28) we may assume c = 1 (due to the rescaling
(x, y, t) 7→ (cx, cy, t/c)) and we easily get the phase portrait P15.

a2) The possibility H6 = 0. Then we obtain c2 − 4a(1 + m)2 = 0 and we need to
distinguish 2 cases: N 6= 0 and N = 0.

If N 6= 0 then by (26) we have m+1 6= 0 and therefore we get a = c2/(4(1+m)2).
We observe that due to H 6= 0 by (26) the condition K = 0 is equivalent to L = 0.
So, according to [12] the phase portrait of such a system corresponds to Picture
5.14(a) [P1] if L > 0; Picture 5.14(b) [P5] if L < 0 and to Picture 5.18 [P14] if
L = 0.

On the other hand for systems (25) we have

µ3 = c3mx2[(1 + m)x − my]/(1 + m)2, H11 = 768c2m6x4/(1 + m)2.

Therefore according to Lemma 4 the necessary condition µ3 = 0 for a system to be
degenerate yields c = 0 and this condition is given by H11 = 0. In this case evidently
systems (25) (with c = a = 0) become degenerate systems

ẋ = (2m + 1)x2, ẏ = x(−x + 2my),

which are a subfamily of systems (27) (corresponding to c = 0). So in the case
2m+1 6= 0 (i.e. L 6= 0) the singular invariant line x = 0 coincides with the invariant
line of the respective linear systems and hence we get the phase portrait P16 if L < 0;
P17 if L > 0 and K < 0 and P18 if L > 0 and K > 0. If L = 0 we have m = −1/2
and we get two singular lines. This evidently leads to picture P19.

Assume N = 0. As H 6= 0 and H6 = 0 by (26) we get m + 1 = c = 0. In this
case for systems (25) we have

H6 = H2 = 0, H3 = 32ax2

and according to [8] systems (25) possess invariant line of total multiplicity 6.
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On the other hand in the case H3 6= 0 (i.e. a 6= 0 and systems are non-degenerate)
according to [12] the phase portrait corresponds to Picture 6.8 [P5] if H3 > 0 and
to Picture 6.9 [P10] if H3 < 0.

Assuming H3 = 0 (i.e. a = 0) we get the degenerate system

ẋ = −x2, ẏ = −x(x + 2y),

the phase portrait of which corresponds to [P16].

b) The subcase H = 0. Then m = 0 and considering (24) we get the family of
systems

ẋ = a + cx + x2, ẏ = b + fy − x2, (29)

for which the condition (c − f)f = 0 must hold. For these systems we calculate:

B3 = θ = µ0 = N = K = H = 0, D = −f2x2(x + y),

N1 = 8(c − f)x4, N2 = 4(4a − c2 + f2)x, N5 = −16(4a − c2)x2,

Af21 = (a + cx + x2)2(a + b + cx + fy).

So according to [9] and [8] these systems possess invariant line of total multiplicity
at least 4.

As H = 0 the condition V1 = 0 is equivalent to Af21 = 0, i.e. a system (29) is
located on the orbit of dimension four if and only if a + b = c = f = 0. In this case
we obtain the degenerate system

ẋ = a + x2, ẏ = −(a + x2),

where a ∈ {−1, 0, 1} due to the rescaling (x, y, t) 7→ (|a|−1/2x, |a|−1/2y, |a|1/2t) if
a 6= 0. For these systems N5 = −64ax2 and we obviously obtain the phase portrait
P23 (respectively P9; P43) if N5 > 0 (respectively N5 < 0; N5 = 0).

Assuming V1 6= 0 we shall consider two possibilities: D 6= 0 and D = 0.

b1) The possibility D 6= 0. In this case f 6= 0 and then for systems (29) we
obtain f = c 6= 0. Then we may consider b = 0 and c = 1 due to the transformation
(x, y, t) 7→ (cx, (c2y − b)/c, t/c). So we arrive at the family of systems

ẋ = a + x + x2, ẏ = y − x2,

for which we calculate: N1 = 0, N2 = 16ax, N5 = 16(1 − 4a)x2. So according
to [8] these systems possess invariant line of total multiplicity at least 5. Moreover
following [12] for non-degenerate systems we get the phase portraits

• Picture 5.13 [P1] if N2 6= 0, N5 > 0;

• Picture 5.15 [P9] if N2 6= 0, N5 < 0;

• Picture 5.17 [P11] if N2 6= 0, N5 = 0;

• Picture 6.7 [P1] if N2 = 0.
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We observe that the condition N2 = 0 implies N5 > 0 and that the systems
above could not be degenerate due to µ2 = x2 6= 0 (see Lemma 4).

b2) The possibility D = 0 In this case f = 0 and we arrive at the family of
systems

ẋ = a + cx + x2, ẏ = b − x2, (30)

for which we calculate:

N1 = 8cx4, N2 = 4(4a − c2)x, N5 = 16(c2 − 4a)x2, µ0 = µ1 = µ2 = µ3 = 0,

µ4 = [(a + b)2 − bc2]x4, Af21 = (a + b + cx)(a + cx + x2)2.
(31)

So according to [9] and [8] these systems possess invariant line of total multiplicity
at least 4. On the other hand by [11] and [12] for non-degenerate systems we get
the following phase portraits:

• Picture 4.29(a) [P20] if N1 6= 0, N2 6= 0, N5 > 0, µ4 > 0;

• Picture 4.29(b) [P21] if N1 6= 0, N2 6= 0, N5 > 0, µ4 < 0;

• Picture 4.33 [P9] if N1 6= 0, N2 6= 0, N5 < 0;

• Picture 5.28 [P24] if N1 6= 0, N2 = 0;

• Picture 5.20 [P20] if N1 = 0, N2 6= 0, N5 > 0;

• Picture 5.24 [P9] if N1 = 0, N2 6= 0, N5 < 0;

• Picture 6.10 [P24] if N1 = 0, N2 = 0.

It remains to determine the phase portraits for degenerate systems (30), i.e. by
Lemma 4 the condition (a+b)2−bc2 = 0 must hold. On the other hand the condition
Af21 6= 0 gives (a + b)2 + c2 6= 0 and this implies b ≥ 0.

If b > 0 then we may assume b = 1 due to the rescaling (x, y, t) 7→
(b−1/2x, b−1/2y, b1/2t). Therefore we get c = ±(a + 1) and it is sufficient to con-
sider only the case c = a + 1 due to the change (x, y, t, c) 7→ (−x,−y,−t,−c) which
keeps systems (30). Thus we obtain the family of degenerate systems

ẋ = (1 + x)(a + x), ẏ = 1 − x2. (32)

Taking into consideration the two invariant lines x = −1 (singular) and x = a which
could coincide if a = 1 as well as the critical value a = −1 (when the respective
linear system is also degenerate) we arrive at phase portrait P22 if a2 − 1 6= 0; P25

if a = 1 and P23 if a = −1.

It remains to note that for systems (32) we have µ4 = 0, N1 = 8(1 + a)x4,
N2 = −4(a − 1)2x and N5 = 16(a − 1)2x2.

If b = 0 then the condition µ4 = 0 gives a = 0 and then Af21 = cx3(c + x)2 6= 0.
Hence we can assume c = 1 due to the rescaling (x, y, t) 7→ (cx, cy, t/c). So we get
the degenerate system

ẋ = x(1 + x), ẏ = −x2,
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for which N1 = 8x4, N2 = −4x and N5 = 16x2.

Considering (31) and the case µ4 = 0 examined above we observe that the
condition N5 < 0 implies µ4 6= 0 and N5 = 0 if and only if N2 = 0. Moreover the
condition N1 = 0 implies µ4 ≥ 0.

Considering this observation we could unite the conditions for the realization of
topologically distinct phase portraits in the considered case (including the degenerate
systems) as follows:

• P9 if N5 < 0;

• P20 if N5 > 0, µ4 > 0;

• P21 if N5 > 0, µ4 < 0;

• P22 if N5 > 0, µ4 = 0, N1 6= 0;

• P23 if N5 > 0, µ4 = 0, N1 = 0;

• P24 if N5 = 0, µ4 6= 0;

• P25 if N5 = 0, µ4 = 0.

Thus we arrive at the respective conditions from Table 1.

2) The case M = 0 and K5 6= 0. As it was shown in the proof of Lemma 1
(see page 34) in this case via an affine transformation a quadratic system (1) could
be brought to the form (10), for which the condition m(cf − f2 − 2am) = 0 holds.
For these systems we have H = −4m2x2.

a) The subcase H 6= 0. Then m 6= 0 and we may assume f = 0 due to the

translation (x, y) 7→
(
x− f

2m , y− f
2m2

)
. Then for these systems the condition above

gives am = 0 and as m 6= 0 we get a = 0. Then we arrive at the family of systems

ẋ = cx + 2mx2, ẏ = b − x2 + 2mxy, (33)

for which calculations yield:

B3 = θ = 0, N = 4m2x2, K5 = x3 6= 0, H11 = 768c2m4x4,

K3 = −24bm2x6, D = 4bm2x3, N6 = 8(c2 + 4bm2)x3,

Coefficient[V2, x
6] = −8m3, W1 = 4mx(c + 4mx).

(34)

So according to [8] and [9] the family of non-degenerate systems (33) possesses
invariant lines of total multiplicity at least four.

The condition H 6= 0 implies V2W1 6= 0, i.e. for m 6= 0 a system (33) is located
on the orbit of dimension 5. As for these systems we have

µ0 = µ1 = µ2 = 0, µ3 = −4bcm2x3, µ4 = bx3[(4bm2 − c2)x + 2c2my]

according to Lemma 4 a system (33) becomes degenerate if and only if b = 0 and
this is equivalent to K3 = 0.
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As M = 0, B3 = θ = 0 and N 6= 0, according to [11] and [12] for a non-degenerate
system (33) we obtain the following phase portraits:

Picture 4.31(a) [P26] ⇔ H11 6= 0, N6 6= 0, K3 > 0;

Picture 4.31(b) [P27] ⇔ H11 6= 0, N6 6= 0, K3 < 0;

Picture 5.23 [P26] ⇔ H11 6= 0, N6 = 0;

Picture 4.44(a) [P29] ⇔ H11 = 0, K3 > 0;

Picture 4.44(b) [P30] ⇔ H11 = 0, K3 < 0;

Assume now that systems (33) are degenerate, i.e. K3 = 0 (that implies b = 0).
As x = 0 is an invariant line filled with singularities and the condition c = 0 is
equivalent to H11 = 0, we obviously obtain the phase portrait P28 if H11 6= 0 and
P31 if H11 = 0. Taking into account that the conditions H6 = 0 and H11 6= 0 by
(34) imply K3 > 0 an that the condition K3 < 0 implies H6 6= 0 we obviously arrive
at the respective conditions from Table 1.

b) The subcase H = 0. Then m = 0 and systems (10) become

ẋ = a + cx, ẏ = b + fy − x2. (35)

For these systems we calculate

M = B3 = N = 0, K5 = x3 6= 0, N3 = 3(c − f)x3,

N6 = 8c(c − f)x3, K1 = −cx3, K3 = 6(2c − f)fx6,

D1 = c + f, D = −f2x3, µ3 = −c2fx3, W1 = 2cf, V2 = (a + cx)×
[
b(c2 − f2) − 4a2 − 2a(3c − f)x − (c − f)(3c + f)x2 + f(c2 − f2)y

]
(36)

So according to [9] and [8] non-degenerate systems (35) possess invariant straight
lines of total multiplicity at least four.

b1) Assume first W1 6= 0, i.e. cf 6= 0. Then µ3 6= 0 and according to Lemma 4
the family of systems (35) does not contain degenerate systems.

If V2 6= 0 then by statement (i) of Main Theorem any system (35) is located on
an orbit of dimension 5. Moreover from (36) it follows that the condition W1N6 6= 0
implies K1DN3 6= 0 and N6 = 0 gives N3 = 0 (due to W1 6= 0). So as M = 0 and
B3 = N = 0, according to [11] and [12] a non-degenerate system could have one of
the following phase portraits:

Picture 4.37(a) [P32] ⇔ N6 6= 0, µ3K1 > 0, K3 ≥ 0;

Picture 4.37(b) [P33] ⇔ N6 6= 0, µ3K1 > 0, K3 < 0;

Picture 4.37(c) [P34] ⇔ N6 6= 0, µ3K1 < 0;

Picture 5.27 [P32] ⇔ N6 = 0.

We remark that when N6 = 0 (i.e. f = c) we have N4 = 12ax2 6= 0 due to
V2 6= 0. We observe also that Picture 5.27 is topologically equivalent to Picture
4.37(a) and the condition N6 = 0 implies µ3K1 > 0 and K3 > 0. So we get the
respective conditions given in Table 1.

Suppose V2 = 0. By (36) due to cf 6= 0 we obtain

b(c2 − f2) − 4a2 = a(3c − f) = (c − f)(3c + f) = (c2 − f2) = 0.
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This implies c = f (otherwise c+ f = 3c+ f = 0 gives c = f = 0). So if W1 6= 0 and
V2 = 0 we obtain a = c − f = 0 and cf 6= 0 and then W2 = −3c3x3 6= 0. Then by
statement (i) of Main Theorem any system (35) in this case is located on an orbit
of dimension 4.

Thus for W1 6= 0 and V2 = 0 we arrive at systems

ẋ = cx, ẏ = b + cy − x2,

for which we have

M = B3 = N = N3 = N4 = 0, µ3 = −c3x3, W1 = 2c2 6= 0.

According to [8] these systems possess invariant straight lines of total multiplicity six
and by [12] we get the phase portrait Picture 6.11 which is topologically equivalent
to P32.

b2) Assume now W1 = 0, i.e. cf = 0. If D 6= 0 by (36) we have f 6= 0 and
this implies c = 0. Moreover we may assume f = 1 and b = 0 due to the change
(x, y, t) 7→ (x, (y − b)/f, t/f). So we get the family of systems

ẋ = a, ẏ = y − x2, (37)

for which we calculate:

W2 = −a(a2 − 2ax − x2 + y), M = B3 = N = N6 = 0, N3 = −3x3, D = −x3.

If W2 6= 0 then a 6= 0 and we may assume a = 1 due to the rescaling (x, y, t) 7→
(ax, a2y). By statement (i) of Main Theorem this system is located on an orbit of
dimension 5. According to [11] it possesses invariant lines of total multiplicity 4
(more exactly the infinite line is of multiplicity 4) and its phase portrait corresponds
to Picture 4.46 which is topologically equivalent to P35.

Assume W2 = 0. Then a = 0 and system (37) is degenerate having the parabola
y = x2 filled with singularities. Obviously we get the phase portrait P44. On the
other hand as D 6= 0 we have V2 6= 0 and by statement (i) of Main Theorem this
system is located on an orbit of dimension 4.

Suppose now D = 0, i.e. f = 0. Then systems (35) become

ẋ = a + cx, ẏ = b − x2, (38)

for which calculations yield

M = 0, K5 = x3, W1 = D = 0, U3 = x2(4bx2 − 4axy + c2y2),

W2 = −(a2 − bc2)(a + cx).

As D = 0 the condition V2 = 0 is equivalent to U3 = 0. So by statement (i) of Main
Theorem a system of this family is located on an orbit of dimension 5 (respectively
4; 3) if W2 6= 0 (respectively W2 = 0, U3 6= 0; W2 = U3 = 0).
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On the other hand for systems (38) we have

M = B3 = N = D = 0, N3 = 3cx3, N6 = 8c2x3,

D1 = c, µ0 = µ1 = µ2 = µ3 = 0, µ4 = (a2 − bc2)x4

and according to [9] and [8] non-degenerate systems (38) possess invariant straight
lines of total multiplicity at least four.

α) Assume first W2 6= 0. Then µ4 6= 0 and by Lemma 4 systems (38) are non-
degenerate. According to [11, Table 2] in the case N3 6= 0 (then D1 6= 0 ) we get
the phase portrait Picture 4.38(a) if µ4 > 0 and Picture 4.38(b) if µ4 < 0. However
there is a missprint in [11, Table 2].

Remark 3. Assume that a quadratic systems has a configuration of invariant lines
given by Config. 4.38. Then its phase portrait corresponds to Picture 4.38(a) [P36]
if µ4 < 0 and Picture 4.38(b) [P29] if µ4 > 0.

If N6 = 0 (i.e. c = 0) we have N3 = D1 = 0 and N4 = 12ax2 6= 0 due to W2 6= 0.
According to [12] in this case the phase portrait corresponds to Picture 5.30 which
is topologically equivalent to P29 . As the condition c = 0 implies µ4 = a2x4 > 0 we
could unite the cases N 6= 0 and N = 0 as it is given in Table 1.

β) Suppose now W2 = 0, i.e. bc2 − a2 = 0. Then µ4 = 0 and by Lemma 4
systems (38) become degenerate.

If N6 6= 0 then c 6= 0 (this implies U3 6= 0) and we may assume c = 1 due to
the rescaling (x, y, t) 7→ (cx, cy, t/c). So we obtain b = a2 and this leads to the
degenerate systems

ẋ = a + x, ẏ = (a + x)(a − x),

with a ∈ {0, 1} due to the rescaling (x, y) 7→ (ax, a2y) in the case a 6= 0. Obviously
in both cases we obtain the same phase portrait P45.

If N6 = 0 then c = 0 and the condition W2 = 0 gives a = 0. So we get the
systems

ẋ = 0, ẏ = b − x2,

where b ∈ {0,±1} due to the rescaling (x, y) 7→ (|b|−1/2x, |b|−1y), in the case b 6= 0.
Evidently we obtain the phase portrait P29 if b < 0, P46 if b > 0 and P49 if b = 0. We
observe that for the systems above we have U3 = 4bx4 and hence sign (b) = sign (U3)
(if U3 6= 0). We recall also that for U3 = 0 (i.e. b = 0) the respective system is
located on the orbit of dimension 3.

It remains to note that for systems (10) we have Coefficient[W1, x
2] = 16m2 and

hence the condition W1 = 0 implies H = 0.

3) The case K5 = 0. It was shown earlier in the proof of Lemma 1 (see page
35) that in this case a system can be brought via an affine transformation to form
(16), for which the condition U = 0 gives d = 0. So we get the family

ẋ = a + cx + x2, ẏ = b + xy, (39)
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for which we calculate:

W2 = (c + 3x)(a + cx + x2)(bc + bx − ay), H10 = 0, H12 = −8a2x2,

H11 = 48(c2 − 4a)x4, µ2 = ax2.

By statement (i) of Main Theorem a system of this family is located on an orbit of
dimension 5 if W2 6= 0 and of dimension 4 if W2 = 0. We observe that the condition
W2 = 0 is equivalent to a = b = 0 and then systems (39) become degenerate.

Assume W2 6= 0. According to [10] a non-degenerate system (39) could possess
one of the following phase portraits:

Picture C2.5(a) [P39] ⇔ H12 6= 0, H11 > 0, µ2 < 0;

Picture C2.5(b) [P38] ⇔ H12 6= 0, H11 > 0, µ2 > 0;

Picture C2.6 [P37] ⇔ H12 6= 0, H11 < 0;

Picture C2.7 [P41] ⇔ H12 6= 0, H11 = 0;

Picture C2.8 [P40] ⇔ H12 = 0, H11 6= 0;

Picture C2.9 [P42] ⇔ H12 = 0, H11 = 0;

We observe that the condition µ2 6= 0 implies H12 6= 0. Moreover if H11 < 0
then µ2 > 0. So we arrive at the respective conditions given in Table 1.

Suppose now W2 = 0, i.e. a = b = 0. In this case we get the family of degenerate
systems

ẋ = cx + x2, ẏ = xy.

Obviously we obtain the phase portrait given by picture P47 if c 6= 0 and P48 if
c = 0. It remains to observe that for a = b = 0 we have H11 = 48c2x4 and this
polynomial gives the condition c = 0.

References

[1] Popa M.N. Algebraic methods for differential systems. Editura the Flower Power, Universi-
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Abstract. A vector combinatorial linear problem with a parametric optimality
principle that allows us to relate the well-known choice functions of jointly-extremal
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1 Problem statement

Let us consider a typical vector (n-criteria) combinatorial problem. Assume
that, on the system of subsets (trajectories) T ⊆ 2Nm , |T | ≥ 2, Nm = {1, 2, . . . ,m},
m ≥ 2, a vector criterion

f(t, A) = (f1(t, A), f2(t, A), . . . , fn(t, A)) → min
t∈T

is defined. Here

fi(t, A) =
∑

j∈t

aij, i ∈ Nn, n ≥ 1

are the linear partial criteria, where A = [aij ]n×m ∈ Rn×m, n,m ∈ N. Assume that
fi(∅, A) = 0.

Now we introduce the binary relation ≻, in the space Rd of any dimension d ∈ N,
which generates the Pareto optimality principle [1], assuming that, for any different
vectors y = (y1, y2, . . . , yd) and y′ = (y′1, y

′

2, . . . , y
′

d) of the space the formula

y ≻ y′ ⇔ y ≥ y′ & y 6= y′

holds.

Let s ∈ Nn, Nn =
⋃

r∈Ns
Jr be the partitioning of the set Nn into s nonempty

nonintersecting groups, i. e. Jr 6= ∅, r ∈ Ns; p 6= q ⇒ Jp ∩ Jq = ∅. For this

c© Vladimir A.Emelichev, Evgeny E.Gurevsky, Andrey A.Platonov, 2009
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partitioning define the set T n(A, J1, J2, . . . , Js) of generalized efficient, or, in other
words of (J1, J2, . . . , Js)-efficient trajectories according to the formula

T n(A, J1, J2, . . . , Js) = {t ∈ T : ∃k ∈ Ns ∀t′ ∈ T (fJk
(t, A)≻fJk

(t′, A))},

where ≻ denotes the negation of relation ≻, fJk
(t, A) is the projection of the vector

f(t, A) onto the coordinate axes of the space Rn with the numbers of group Jk.

It is evident that Nn-efficient trajectory t ∈ T n(A,Nn) (s = 1) is a Pareto
optimal trajectory on the set of trajectories T . Therefore, it is easy to see that the
set of Nn-efficient trajectories T n(A,Nn) is Pareto set

Pn(A) = {t ∈ T : ∀t′ ∈ T (f(t, A)≻f(t′, A))}.

Clearly, in another extreme case, where s = n, the set of trajectories T n(A, {1},
{2}, . . . , {n}) is the set of jointly-extremal trajectories

Cn(A) = {t ∈ T : ∃k ∈ Nn ∀t′ ∈ T (fk(t, A) ≤ fk(t
′, A))}

(see, for example, [2, 3]).

In this context, by the parametrization of the principle of optimality we mean
introducing a characteristic of binary relation of preference that allows us to relate
the well-known choice functions of jointly-extremal and Pareto solution.

Denote the vector problem of finding T n(A, J1, J2, . . . , Js) by Zn(A, J1, J2, . . . , Js).
It is evident that T 1(A,N1) is the set of optimal trajectories of the scalar (single
criterion) linear combinatorial problem Z1(A,N1), where A ∈ Rm, in scheme of
which many extremal graph, boolean programming and scheduling theory problems
are put in.

2 Stability radius

Following [4–10], the stability radius of Zn(A, J1, J2, . . . , Js) is the number

ρn
1 (A, J1, J2, . . . , Js) =

{
supΞ1 if Ξ1 6= ∅,

0 in other cases,

where Ξ1 = {ε > 0 : ∀B ∈ Ω(ε) (T n(A+B, J1, J2, . . . , Js) ⊆ T n(A, J1, J2, . . . , Js))},
Ω(ε) = {B ∈ Rn×m : ||B|| < ε}, ||B|| = max{|bij | : (i, j) ∈ Nn × Nm},
B = [bij ]n×m.

In other words, the stability radius of Zn(A, J1, J2, . . . , Js) determines the limit-
ing level of perturbations of elements of A of payoff function in the
l∞-metric, for which new (J1, J2, . . . , Js)-efficient trajectories do not appear. Obvi-
ously, Zn(A, J1, J2, . . . , Js) is stable and the stability radius is infinite if the equality
T n(A, J1, J2, . . . , Js) = T holds. If the set

T n(A, J1, J2, . . . , Js) := T \ T n(C, J1, J2, . . . , Js)
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is nonempty, then we say that Zn(A, J1, J2, . . . , Js) is non-trivial.

For any nonempty set J ⊆ Nn we introduce the notation

P (A, J) = {t ∈ T : ∀t′ ∈ T (fJ(t, A)≻fJ(t′, A))}.

Then we have

P (A,Nn) = Pn(A),

T n(A, J1, J2, . . . , Js) = {t ∈ T : ∃k ∈ Ns (t ∈ P (A, Jk))}. (1)

Suppose

∆(t, t′) = |(t ∪ t′) \ (t ∩ t′)|,

gi(t, t
′, A) = fi(t, A) − fi(t

′, A).

Henceforth we will use the following evident inequality

gi(t, t
′, A) ≤ ||A||∆(t, t′). (2)

Theorem 1. For the stability radius ρn
1 (A, J1, J2, . . . , Js) of the nontrivial problem

Zn(A, J1, J2, . . . , Js), n ≥ 1, s ≥ 1, the following formula is valid

ρn
1 (A, J1, J2, . . . , Js) = min

k∈Ns

min
t∈T n(A,J1,J2,...,Js)

max
t′∈T n(A,J1,J2,...,Js)

min
i∈Jk

gi(t, t
′, A)

∆(t, t′)
. (3)

Proof. Note that due to the nontriviality of Zn(A, J1, J2, . . . , Js) the set
T n(A, J1, J2, . . . , Js) is nonempty.

Let us introduce the notations: ρ1 and ϕ are accordingly the left-hand and the
right-hand sides of equality (3).

It is easy to see that ϕ ≥ 0. At first we prove the inequality ρ1 ≥ ϕ. If ϕ = 0,
then this inequality is obvious. Let ϕ > 0, B ∈ Ω(ϕ), t ∈ T n(A, J1, J2, . . . , Js). Let
us show that t ∈ T n(A + B, J1, J2, . . . , Js).

It follows directly from the definition of ϕ that for any k ∈ Ns and
t ∈ T n(A, J1, J2, . . . , Js) there exists trajectory t∗ ∈ T n(A, J1, J2, . . . , Js) such that
for any indices i ∈ Jk the inequality gi(t, t

∗, A) ≥ ϕ∆(t, t∗) holds.

Hence, taking into account (2), we derive

gi(t, t
∗, A + B) = gi(t, t

∗, A) + gi(t, t
∗, B) ≥ ϕ∆(t, t∗) − ||B||∆(t, t∗) > 0, i ∈ Jk.

Therefore we have fJk
(t, A + B) ≻ fJk

(t∗, A + B), k ∈ Ns, i. e.
t ∈ T n(A + B, J1, J2, . . . , Js).

Thus, the formula

∀B ∈ Ω(ϕ) (T n(A + B, J1, J2, . . . , Js) ⊆ T n(A, J1, J2, . . . , Js))

holds, and as consequence, ρ1 ≥ ϕ.
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Now let us show that ρ1 ≤ ϕ. According to the definition of ϕ there exist k ∈ Ns

and t0 ∈ T n(A, J1, J2, . . . , Js) such that for any trajectory t′ ∈ T n(A, J1, J2, . . . , Js)
there exists an index p = p(t′) ∈ Jk such that

gp(t
0, t′, A) ≤ ϕ∆(t0, t′).

Then, assuming ε > ϕ, B0 = [b0
ij ]n×m ∈ Ω(ε), where

b0
ij =





α if i ∈ Jk, j /∈ t0,

−α if i ∈ Jk, j ∈ t0,

0 in other cases,

ϕ < α < ε,

and using (2), we derive

gp(t
0, t′, A + B0) = gp(t

0, t′, A) + gp(t
0, t′, B0) ≤ ϕ∆(t0, t′) − α∆(t0, t′) < 0,

i. e. we have

∀ε > ϕ ∃B0 ∈ Ω(ε) ∀t′ ∈ T n(A, J1, J2, . . . , Js) (fJk
(t0, A + B0)≻fJk

(t′, A + B0)).
(4)

Consider two possible cases.

Case 1. t0 ∈ T n(A + B0, J1, J2, . . . , Js). Then, using the inclusion t0 ∈
T n(A, J1, J2, . . . , Js), we derive

∀ε > ϕ ∃B0 ∈ Ω(ε) (T n(A + B0, J1, J2, . . . , Js) 6⊆ T n(A, J1, J2, . . . , Js)). (5)

Case 2. t0 ∈ T n(A + B0, J1, J2, . . . , Js). Then t0 /∈ P (A + B0, Jk) and due
to the external stability [11] of Pareto set P (A + B0, Jk) there exists a trajectory
t∗ ∈ P (A + B0, Jk), such that fJk

(t0, A + B0) ≻ fJk
(t∗, A + B0). Hence, according

to (4) we have t∗ ∈ T n(A, J1, J2, . . . , Js) and taking into account (1) we obtain
t∗ ∈ T n(A + B0, J1, J2, . . . , Js). Therefore formula (5) holds.

Summarizing these two cases, we conclude that for any ε > ϕ we have ρ1 < ε.
Consequently, ρ1 ≤ ϕ.

Theorem 1 implies the following results known earlier.

Corollary 1 [5]. For the stability radius of the nontrivial problem Zn(A,Nn) with
Pareto optimality principle the following formula

ρn
1 (A,Nn) = min

t∈P n(A)
max

t′∈P n(A)
min
i∈Nn

gi(t, t
′, A)

∆(t, t′)
(6)

holds, where Pn(A) = T \ Pn(A).
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Corollary 2 [12]. For the stability radius of the nontrivial problem Zn(A, {1},
{2}, . . . , {n}) with jointly-extremal optimality principle the following formula

ρn
1 (A, {1}, {2}, . . . , {n}) = min

i∈Nn

min
t∈Cn(A)

max
t′∈Cn(A)

gi(t, t
′, A)

∆(t, t′)
(7)

holds, where Cn(A) = T \ Cn(A).

The partial case of the formulas (6) and (7) is the well-known formula of the
stability radius of the scalar (n = 1) linear trajectory problem [4,6].

3 Quasi-stability radius

As usual (see [5, 7, 13, 14]), the quasi-stability radius of Zn(A, J1, J2, . . . , Js) is
defined as

ρn
2 (A, J1, J2, . . . , Js) =

{
supΞ2 if Ξ2 6= ∅,

0 in other cases,

where

Ξ2 = {ε > 0 : ∀B ∈ Ω(ε) (T n(A, J1, J2, . . . , Js) ⊆ T n(A + B, J1, J2, . . . , Js))}.

Thus, the quasi-stability radius of Zn(A, J1, J2, . . . , Js) is the limit level of inde-
pendent perturbations of elements of A, for which the generalized efficient trajecto-
ries of initial problem do not disappear.

Theorem 2. For the quasi-stability radius ρn
2 (A, J1, J2, . . . , Js) of the problem

Zn(A, J1, J2, . . . , Js), n ≥ 1, s ≥ 1, the following formula is valid

ρn
2 (A, J1, J2, . . . , Js) = min

t′∈T n(A,J1,J2,...,Js)
max
k∈Ns

min
t∈T\{t′}

max
i∈Jk

gi(t, t
′, A)

∆(t, t′)
. (8)

Proof. Let us introduce the notations: ρ2 and ξ are accordingly the left-hand and
the right-hand sides of equality (8).

It is easy to see that ξ ≥ 0. At first we prove the inequality ρ2 ≥ ξ. If ξ = 0,
then this inequality is obvious. Let ξ > 0, B ∈ Ω(ξ).

It follows from the definition of ξ that for any trajectory t′ ∈ T n(A, J1, J2, . . . , Js)
there exists k ∈ Ns such that for any trajectory t ∈ T \{t′} there exists p = p(t) ∈ Jk

such that
gp(t, t

′, A) ≥ ξ∆(t, t′).

Hence, taking into account (2), we derive

gp(t, t
′, A + B) = gp(t, t

′, A) + gp(t, t
′, B) ≥ ξ∆(t, t′) − ||B||∆(t, t′) > 0.

Therefore, we have fJk
(t′, A + B)≻fJk

(t, A + B). Thus, we have proved the
formula

∀B ∈ Ω(ξ) ∀t′ ∈ T n(A, J1, J2, . . . , Js) ∃k ∈ Ns ∀t ∈ T (fJk
(t′, A+B)≻fJk

(t, A+B)),
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which implies

∀B ∈ Ω(ξ) (T n(A, J1, J2, . . . , Js) ⊆ T n(A + B, J1, J2, . . . , Js)),

and therefore the inequality ρ2 ≥ ξ holds.

Now we show that ρ2 ≤ ξ. According to the definition of ξ there exists a
trajectory t0 ∈ T n(A, J1, J2, . . . , Js) such that for any k ∈ Ns there exists a trajectory
t∗ ∈ T \ {t0} such that

∀i ∈ Jk (gi(t
∗, t0, A) ≤ ξ∆(t∗, t0)).

Then, assuming ε > ξ, B̂ = [̂bij ]n×m ∈ Ω(ε), where

b̂ij =

{
α if i ∈ Nn, j ∈ t0,

−α if i ∈ Nn, j /∈ t0,

ξ < α < ε,

and taking into account (2), we derive

gi(t
∗, t0, A + B̂) = gi(t

∗, t0, A) + gi(t
∗, t0, B̂) ≤ ξ∆(t∗, t0) − α∆(t∗, t0) < 0, i ∈ Jk,

i. e. fJk
(t0, A + B̂) ≻ fJk

(t∗, A + B̂). Thus, we have proved the following formula

∀ε > ξ ∃B̂ ∈ Ω(ε) ∀k ∈ Ns ∃t∗ ∈ T (fJk
(t0, A + B̂) ≻ fJk

(t∗, A + B̂)),

which implies

T n(A, J1, J2, . . . , Js) 6⊆ T n(A + B̂, J1, J2, . . . , Js).

It follows that the quasi-stability radius ρ2 does not exceed ξ.

Corollary 3 [13]. For the quasi-stability radius of the problem Zn(A,Nn) with
Pareto optimality principle the following formula is valid

ρn
2 (A,Nn) = min

t′∈P n(A)
min

t∈T\{t′}
max
i∈Nn

gi(t, t
′, A)

∆(t, t′)
.

Corollary 4. For the quasi-stability radius of the problem Zn(A, {1}, {2}, . . . , {n})
with jointly-extremal optimality principle the following formula is valid

ρn
2 (A, {1}, {2}, . . . , {n}) = min

t′∈Cn(A)
max
i∈Nn

min
t∈T\{t′}

gi(t, t
′, A)

∆(t, t′)
.

In conclusion we note that the analogous quantitative characteristics of differ-
ent stability types of discrete and game theory problems with another kinds of
parametrization of optimality principles were considered in the works [8–10,14–16].
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Introduction

The radicals and torsions associated to adjoint situations and Morita contexts
were studied in a series of papers, which were totalized in the book [1]. The aim of
this article is the generalization, supplement and specification of some results of [1]
concerning the preradicals in module categories which are determined by principal
functors of module categories:

H = HU = HomR(U, -) : R-Mod→ Ab (RU ∈ R-Mod),

T = T U = U ⊗S - : S-Mod→ Ab (US ∈Mod-S),

H ′ = HU = HomR(-, U) : R-Mod→ Ab (RU ∈ R-Mod),
where Ab is the category of abelian groups. In particular, it will be shown that
some results which were proved for adjoint situations and Morita contexts are valid
in general case (without supplementary restrictions). The preradicals associated to
each of functors H,T and H ′ will be elucidated, the properties of these preradicals,
as well as the relations between them and the conditions of coincidence of some
preradicals will be shown.

The part I of this work is dedicated to the study of indicated above questions for
the functor H = HomR(U, -) for an arbitrary module RU ∈ R-Mod. In the following
parts the functors T and H ′ will be investigated from the same aspect.

1 Preliminary notions and results

The basic notions and results of radical theory in modules can be found in the
books [2–5]. For specification of terminology and notations we will remind some of
them.

c© A. I.Kashu, 2009
∗The author was partially supported by the grant 08.820.08.12 RF.
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Let R be a ring with unity and R-Mod is the category of unitary left R-modules.
A preradical r of R-Mod is a subfunctor of identic functor of R-Mod, i.e. r associates
to every module M ∈ R-Mod a submodule r(M) ⊆ M such that f(r(M)) ⊆ r(M ′)
for every R-morphism f : M →M ′.

Now we remind the principal types of preradicals [2, 4].

A preradical r of R-Mod is called:

– idempotent preradical if r(r(M)) = r(M) for every M ∈ R-Mod;

– radical if r(M/r(M)) = 0 for every M ∈ R-Mod;

– idempotent radical if both previous conditions are fulfilled;

– pretorsion if r(N) = N ∩ r(M) for every N ⊆M ;

– torsion if r is radical and pretorsion;

– cohereditary preradical if r(M/N) = (r(M) + N)/N for every N ⊆M ;

– cotorsion if r is idempotent and cohereditary.

Every preradical r of R-Mod defines two classes of modules:
1) the class of r-torsion modules

R(r) = {M ∈ R-Mod | r(M) = M};
2) the class of r-torsionfree modules

P(r) = {M ∈ R-Mod | r(M) = 0}.

The special types of preradicals indicated above can be described by associated
classes of modules. More exactly:

– every idempotent preradical r is described by the class R(r), which is closed
under homomorphic images and direct sums; such classes are called pretorsion
classes;

– every radical r is described by the class P(r), which is closed under submodules
and direct products; the classes with such properties are called pretorsionfree
classes;

– every idempotent radical r can be restored both by the class R(r) and P(r); the
class R(r) is pretorsion and closed under extensions – such classes are called
torsion classes; the class P(r) is pretorsionfree and closed under extensions –
such classes are called torsionfree classes.

If r is a torsion then R(r) is a hereditary torsion class and P(r) is a stable
torsionfree class. If r is a cotorsion, then P(r) is simultaneously a torsion class and
a torsionfree class; such classes are called TTF-classes.

If r is an idempotent preradical of R-Mod, then it can be restored by the class
R(r) in the following way:

r(M) =
∑
{N ⊆M |N ∈ R(r)}.

Dually, if r is a radical of R-Mod, then it can be expressed by the class P(r) as
follows:

r(M) = ∩{N ⊆M |M/N ∈ P(r)}.

In the theory of radicals in modules an essential role is played by the following
two operators of Hom-orthogonality. For an arbitrary class of modules K ⊆ R-Mod
we define:

K
↑

= {M ∈ R-Mod |HomR(M,N) = 0 for every N ∈ K},
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K
↓

= {N ∈ R-Mod |HomR(M,N) = 0 for every M ∈ K}.

The following facts are well known. For every class K ⊆ R-Mod we have:
– K

↑

is a torsion class;
– K

↓

is a torsionfree class;
– K

↓↑

is the least torsion class containing K;
– K

↑↓

is the least torsionfree class containing K.
If r is an idempotent radical then:

R(r) = P(r)
↑

, P(r) = R(r)
↓

.

In the family of all preradicals of the category R-Mod the relation of partial order
can be defined as follows:

r1 ≤ r2
def
⇐⇒ r1(M) ⊆ r2(M) for every M ∈ R-Mod.

For the preradicals of special types this relation can be expressed by associated
classes of modules. In particular:

– for idempotent preradicals
r1 ≤ r2 ⇐⇒ R(r1) ⊆ R(r2);

– for radicals
r1 ≤ r2 ⇐⇒ P(r1) ⊇ P(r2);

– for idempotent radicals
r1 ≤ r2 ⇐⇒ R(r1) ⊆ R(r2)⇐⇒ P(r1) ⊇ P(r2).

2 Preradicals associated to functor H

Let U ∈ R-Mod be an arbitrary left R-module and consider the functor
H = HomR(U, -) : R-Mod → Ab, where Ab is the category of abelian groups.
We denote:

Gen (RU) = {M ∈ R-Mod | there exists an epi U (A) →M → 0},

i.e. Gen (RU) is the class of modules generated by the fixed module RU . It is clear
that the class Gen (RU) is closed under homomorphic images and direct sums, so it
is a pretorsion class. We define by RU the function rU as follows:

rU(M) =
∑

f :U→M

Im f, M ∈ R-Mod,

i.e. rU(M) is the trace of RU in RM for every M ∈ R-Mod. The following fact is
obvious.

Proposition 2.1. For every module U∈R-Mod the function rU is an idempotent ra-
dical of R-Mod, determined by the class of rU-torsion modules: R(rU)=Gen (RU). �

For the functor H we denote:

KerH = {M ∈ R-Mod |H(M) = 0}.
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From the definition of operator ( )
↓

it follows for the class K = {RU} that Ker H =

{RU}
↓

. From the properties of the functor H we have

Proposition 2.2. KerH is a torsionfree class, i.e. it is closed under submodules,
direct products and extensions. �

Therefore the class Ker H defines an idempotent radical rU such that

P(rU)
def
== KerH (= {RU}

↓

). The respective torsion class for rU is:

R(rU) = (KerH)
↑

= {RU}
↓↑

= (Gen (RU))
↓↑

.

Since R(rU) = Gen (RU), it follows that R(rU) is the least torsion class containing
R(rU). In the language of preradicals this means the following.

Proposition 2.3. For every module U ∈ R-Mod we have rU ≤ rU and rU is the least
idempotent radical, containing rU . �

Now we will investigate the question when these preradicals coincide: rU = rU .
For that we introduce the following notion.

Definition 1. A module RU will be called weakly projective if the functor
H = HomR(U, -) : R-Mod → A b preserves the exactness of the short exact se-
quences of the form:

0→ rU(M)
i
−→
⊆

M
π
−−→
nat

M /rU(M)→ 0

for every module M ∈ R-Mod, where i is the inclusion and π is the natural epimor-
phism.

In other words, RU is weakly projective if for every M ∈ R-Mod and every R-
morphism f : U → M /rU(M) there exists an R-morphism g : U → M such that
πg = f (π is natural morphism):

RU
g

}}{
{

{
{

{
f

%%KKKKKKKKKK

M
π

// M
/
ru(M)

Fig. 1

Proposition 2.4. For the module RU the following conditions are equivalent:
1) rU = rU ;
2) rU is an (idempotent) radical ;

3) Gen(RU) = (KerH)
↑

(= {RU}
↓↑

);
4) RU is a weakly projective module.

Proof. 1) ⇐⇒ 2) ⇐⇒ 3) follows from Proposition 2.3.
2) ⇒ 4). If rU is a radical, then for every M ∈ R-Mod we have:

M /rU(M) ∈ P(rU) = P(rU) = KerH,
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therefore HomR(U,M) / rU (M) = 0 and that implies immediately that RU is weakly
projective (f = 0⇒ g = 0).
4) ⇒ 2). Let RU be weakly projective and we verify that rU(M /rU(M)) = 0 for
every M ∈ R-Mod. Consider an arbitrary R-morphism f : U → M /rU(M). From
condition 4) it follows that there exists a morphism g : U → M such that π g = f .
Since Im g ⊆ rU(M) by definition of rU(M), we have π g = 0 and f = 0. So
HomR(U,M / rU(M)) = 0, i.e. rU(M /rU(M)) = 0 and rU is a radical.

Examples. 1) If RU is a projective module, then it is weakly projective, therefore
rU = rU .
2) If RU is a generator of R-Mod, then Gen (RU) = R-Mod, so rU = rU = 1, where
1 is the greatest trivial preradical of R-Mod (1(M) = M for every M ∈ R-Mod).

More strong than the conditions of Proposition 2.4 is the request that the idem-
potent preradical rU must be a cotorsion. To indicate when such situation takes
place we need the

Definition 2 [1]. A module RU will be called cohereditary below if the class {RU}
↓

is cohereditary (i.e. a TTF-class).

This means that if HomR(U,M) = 0 for a module M ∈ R-Mod, then
HomR(U,M/N) = 0 for every submodule N ⊆M .

From Proposition 2.4 and definitions follows

Proposition 2.5. For a module RU the following conditions are equivalent:

1) rU is a cotorsion;

2) rU = rU and the class P(rU) = KerH is cohereditary ;

3) RU is weakly projective and cohereditary below. �

It is obvious that if the module RU is projective, then rU is a cotorsion.

3 Preradicals defined by trace-ideal I = TraceU (RR)

For a fixed module U ∈ R-Mod we consider its trace in RR:

I = rU(RR) =
∑

f :U→R

Im f,

which is a two-sided ideal of R. It defines the following three classes of modules
(see [6]):

IT = {M ∈ R-Mod | IM = M},

IF = {M ∈ R-Mod |m ∈M, Im = 0⇒ m = 0},

A(I) = {M ∈ R-Mod | IM = 0},
i.e. IT is the class of I-accessible modules, IF is the class of modules without nonzero
elements annihilated by I, and A(I) consists of the modules annihilated by I.

It is easy to verify the following properties of these classes.
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Proposition 3.1. 1) IT is a torsion class;
2) IF is a torsion free and stable class;
3) A(I) is closed under submodules, homomorphic images and direct products (hence
also under direct sums). So the class A(I) is simultaneously a pretorsion and a
pretorsionfree class. �

Therefore the class IT defines an idempotent radical rI such that:

R(rI)
def
== IT,

while the class IF determines a torsion rI such that:

P(rI)
def
== IF,

which is the ideal torsion, defined by I (see [4]).

The class A(I) as pretorsion (and hereditary) class determines a pretorsion r(I)

by the rule:

R(r(I))
def
== A(I).

For every M ∈ R-mod we have:

r(I)(M) = {m ∈M | I ·m = 0}.

From the other hand, A(I) as pretorsionfree (and cohereditary) class defines the
cohereditary radical r(I) such that:

P(r(I))
def
== A(I),

which acts by the rule:

r(I)(M) = IM, M ∈ R-Mod (see [2, 4, 6]).

Thus by definitions the idempotent radical rI has the associated classes:

(
I
T = R(rI), IT

↓

= P(rI)
)
,

while the torsion rI is defined by the classes:

(
I
F

↑

= R(rI), IF = P(rI)
)
.

In continuation we will indicate a series of relations between the classes of mod-
ules mentioned above. They imply the respective connexions between the preradicals
defined by these classes.
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Proposition 3.2. 1) A(I)
↑

= IT; 2) A(I)
↓

= IF.

Proof. 1) (⊆). Let M ∈ A(I)
↑

. Since M/IM ∈ A(I), we have HomR(M,M/IM) =
0, hence M/IM = 0 and M = IM .

(⊇). Let M ∈ IT. Then for every N ∈ A(I) and f : M → N we have
f(M) = f(IM) = I · f(M) ⊆ I ·N = 0, so f = 0. Thus HomR(M,N) = 0 for every

N ∈ A(I), i.e. M ∈ A(I)
↑

.

2) (⊆). Let M ∈ A(I)
↓

. If m ∈ M and I ·m = 0, then since Rm ∈ A(I) we
have HomR(Rm,M) = 0, therefore Rm = 0 and m = 0. This means that M ∈ IF.

(⊇). Let M ∈ IF. We consider an arbitrary module N ∈ A(I) and an R-
morphism f : N →M . For every element n ∈ N we have:

I · f(n) = f(I · n) ⊆ f(IN) = f(0) = 0,

and from the assumption M ∈ IF now follows f(n) = 0, thus f = 0. In that way

HomR(M,N) = 0 for every N ∈ A(I) and so M ∈ A(I)
↓

.

From the relations of Proposition 3.2 the corresponding connexions between
the preradicals defined by ideal I follow. Namely, from IT = A(I)

↑

we obtain

IT
↓

= A(I)
↑↓

, therefore the class IT
↓
( def

== P(rI)
)

is the least torsionfree class con-

taining A(I)
( def

== P(r(I))
)
.

Similarly, from IF = A(I)
↓

we have IF
↑

= A(I)
↓↑

, therefore IF
↑

( def
== R(rI)

)
is

the least torsion class containing A(I)
( def

== R(r(I))
)
. Translating this facts in the

language of preradicals, associated to these classes, we obtain the following results.

Proposition 3.3. 1) rI ≤ r(I) and rI is the greatest idempotent radical contained
in r(I).
2) rI ≥ r(I) and rI is the least idempotent radical containing r(I). �

Thus we have two pairs of ”near” preradicals: rI ≤ r(I) and rI ≥ r(I). It is
natural to search the conditions of its coincidence.

Proposition 3.4. The following conditions are equivalent:
1) rI = r(I);
2) r(I) is idempotent ;

3) A(I) = IT
↓

;
4) rI = r(I);
5) r(I) is a radical ;

6) A(I) = IF
↑

;
7) I = I2.

Proof. Consists in the direct verification (see, for example,[4], p. 22).

If the equivalent conditions of Proposition 3.4 are fulfilled, then A(I) is TTF-
class, rI is a cotorsion defined by the classes

(
I
T,A(I)

)
and rI is a jansian torsion

with the associated classes (A(I), IF).
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4 Relations between preradicals defined by H and preradicals

defined by I

In this section we will show that there exists some remarkable connexions between
the preradicals rU , rU of Section 2 and preradicals defined by ideal I (Section 3). For
that we clarify firstly the relations between the respective classes of modules. We
start by the following remark.

Lemma 4.1. For every module M ∈ R-Mod we have IM ⊆ rU(M) (where RU is a
fixed module and I = rU(RR)).

Proof. We must verify that
( ∑

f :U→R

Im f
)
M ⊆

∑
f :U→M

Im g. For every f : U → R

and m ∈M we have the R-morphism

g(f,m) : U →M, g(f,m)(u)
def
== f(u) ·m, u ∈ U.

Since Im g(f,m) = (Im f) · m ⊆
∑

f :U→M

Im g = rU(M) for every f : U → M and

m ∈M , we obtain IM ⊆ rU(M).

Lemma 4.2. Ker H ⊆ A(I)
(
i.e. P(rU) ⊆ P

(
r(I)

)
, hence rU ≥ r(I)

)
.

Proof. Let M ∈ KerH, i.e. HomR(U,M) = 0. Then rU(M) =
∑

f :U→M

Im g = 0 and

by Lemma 4.1 we have IM ⊆ rU(M) = 0, so M ∈ A(I).

Lemma 4.3. IT ⊆ Gen(RU)
(
i.e. R(rI) ⊆ R(rU), hence rI ≤ rU

)
.

Proof. Let M ∈ IT, i.e. IM = M . From Lemma 4.1 we have M = IM ⊆ rU(M),
thus M = rU(M). Therefore, M ∈ R(rU) = Gen(RU).

In a schematic form the relations between the preradicals indicated above can
be presented as follows:

?

?

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

rI

rU

r(I)

rU

q

q

pq

q

Fig.2

where the arrow r1 ← r2 means r1 ≤ r2.
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In the Propositions 2.4 and 3.4 the criterions of coincidences
rU = rU and rI = rI are indicated. Now we will consider the case when all four
preradicals of Fig. 2 coincide.

Proposition 4.4. The following conditions are equivalent:
1) rU = rI (i.e. Gen (RU) = IT);

2) rU = rI (i.e. Ker H)
↑

= IT);

3) rU = r(I) (i.e. Ker H = A(I));

4) rU = r(I);

5) I U = U .

Proof. We will prove that every condition 1)–4) implies the coincidence of all four
preradicals.

1) If rU = rI , then since rI is a radical we have that rU is a radical, so rU = rU

(Proposition 2.4). Therefore rI = rU and rI = r(I) = rU .

2) If rU = rI then is obvious that all preradicals coincide.

3) If rU = r(I), then since rU is idempotent, follows that r(I) is idempotent,
hence rI = r(I) (Proposition 3.4) and then rU = rI .

4) If rU = r(I), then rU is a radical and r(I) is idempotent, therefore rU = rU

and rI = r(I).
From the previous arguments follows that the conditions 1)–4) are equivalent.
1) ⇒ 5). If rU = rI , then R(rU) = R(rI), i.e. Gen (RU) = IT. Since

RU ∈ Gen (RU), we have RU ∈ IT, i.e. I U = U .

5) ⇒ 1). Let I U = U , i.e. RU ∈ IT. Then Gen (RU) ⊆ IT (because IT is a
torsion class). From Lemma 4.3 we obtain Gen (RU) = IT, thus rU = rI.

Corollary 4.5. If I U = U , then module RU is weakly projective and I = I2.

Proof. The conditions of Proposition 4.4 implies in particular rU = rU and r(I) = rI ,
therefore RU is weakly projective (Proposition 2.4) and I = I2 (Proposition 3.4).

Remark. In the previous study do not participate the pair of preradicals (rI , r(I)). In
general case the relation between preradicals rU and rI can be expressed by inclusion
P(rU) ⊆ R(rI) (i.e. Ker H ⊆ A(I)

↓↑

). In the case when I U = U (Proposition 4.4)

we have P(rU) = R(rI), since then Ker H = A(I) = A(I)
↓↑

.

In conclusion we totalize by the following scheme the relations between all classes
of modules studied above (Fig. 3).
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Fig. 3.
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This general situation will be completed after the study of preradicals, associated
to the functor of tensor product T , adding two preradicals tV and t

V
(dual to rU

and rU), connected with rI and r(I) similar as the pairs (rU , rU) and (rI , r(I)) are
connected (see Fig. 2).
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Abstract. The stochastic versions of classical discrete optimal control problems are
formulated and studied. Approaches for solving the stochastic versions of optimal
control problems based on concept of Markov processes and dynamic programming
are suggested. Algorithms for solving the problems on stochastic networks using such
approaches and time-expended network method are proposed.
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1 Introduction

The paper is concerned with studying and solving the stochastic versions of the
classical discrete optimal control problems from [1,2,5]. In the deterministic control
problems from [1,2] the choosing of the vector of control parameters from the corre-
sponding feasible set at every moment of time for an arbitrary state is assumed to be
at our disposition, i.e each dynamical state of the system is assumed to be control-
lable. In this paper we consider the control problems for which the discrete system
in the control process may meet dynamical states where the vector of control param-
eters is changing in a random way according to given distribution functions of the
probabilities on given feasible dynamical stats. We call such states of dynamical sys-
tem uncontrollable dynamical states. So, we consider the control problems for which
the dynamics may contain controllable states as well uncontrollable ones. We show
that in general form these versions of the problems can be formulated on stochastic
networks and new approaches for their solving based on concept of Markov processes
and dynamic programming from [3,4] can be suggested. Algorithms for solving the
considered stochastic versions of the problems using the mentioned concept and the
time-expended network method from [5,6] are proposed and grounded.

2 Problems Formulations and the Main Concept

We consider a time-discrete system L with a finite set of states X ⊂ Rn. At
every time-step t = 0, 1, 2, . . . , the state of the system L is x(t) ∈ X. Two states
x0 and xf are given in X, where x0 = x(0) represents the starting state of system

c© Dmitrii Lozovanu, Stefan Pickl, 2009
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L and xf is the state in which the system L must be brought, i.e. xf is the final
state of L. We assume that the system L should reach the final state xf at the
time-moment T (xf ) such that T1 ≤ T (xf ) ≤ T2, where T1 and T2 are given. The
dynamics of the system L is described as follows

x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . , (1)

where
x(0) = x0 (2)

and u(t) = (u1(t), u2(t), . . . , um(t)) ∈ Rm represents the vector of control param-
eters. For any time-step t and an arbitrary state x(t) ∈ X a feasible finite set

Ut(x(t)) = {u1
x(t), u

2
x(t), . . . , u

k(x(t))
x(t) }, for the vector of control parameters u(t) is

given, i.e.
u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . . (3)

We assume that in (1) the vector functions gt(x(t), u(t)) are determined uniquely
by x(t) and u(t), i.e. the state x(t + 1) is determined uniquely by x(t) and u(t) at
every time-step t = 0, 1, 2, . . . . In addition we assume that at each moment of time
t the cost ct

(
x(t), x(t+1)

)
= ct

(
x(t), gt(x(t), u(t))

)
of system’s transaction from the

state x(t) to the state x(t + 1) is known.
Let x0 = x(0), x(1), x(2), . . . , x(t), . . . be a trajectory generated by given vectors

of control parameters u(0), u(1), . . . , u(t−1), . . . . Then either this trajectory passes
through the state xf at the time-moment T (xf ) or it does not pass through xf .We
denote

Fx0xf
(u(t)) =

T (xf )−1∑

t=0

ct

(
x(t), gt(x(t), u(t))

)
(4)

the integral-time cost of system’s transactions from x0 to xf if T1 ≤ T (xf ) ≤
T2; otherwise we put Fx0xf

(u(t)) = ∞. In [1, 2, 5] have been formulated and
studied the following problem: to determine the vectors of control parameters
u(0), u(1), . . . , u(t), . . . which satisfy conditions (1)-(3) and minimize functional (4).
This problem can be regarded as a control model with controllable states of dynam-
ical system because for an arbitrary state x(t) at every moment of time the choosing
of vector of control parameter u(t) ∈ Ut(x(t)) is assumed to be at our disposition.
In the following we consider the stochastic versions of the control model formulated
above. We assume that the dynamical system L may contain uncontrollable states,
i.e. for the system L there exist dynamical states in which we are not able to control
the dynamics of the system and the vector of control parameters u(t) ∈ Ut(x(t)) for
such states is changing in the random way according to given distribution function

p : Ut(x(t)) → [0, 1],

k(x(t))∑

i=1

p(ui
x(t)) = 1 (5)

on the corresponding dynamical feasible sets Ut(x(t)). If we regard arbitrary dy-
namic state x(t) of system L at given moment of time t as position (x, t) then the
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set of positions
Z = {(x, t) |x ∈ X, t = 0, 1, 2, . . . , T2}

of dynamical system can be divided into two disjoint subsets

Z = ZC ∪ ZN (ZC ∩ ZN = ∅),

where ZC represents the set of controllable positions of L and ZN represents the
set of positions (x, t) = x(t) for which the distribution function (5) of the vectors of
control parameters u(t) ∈ Ut(x(t)) are given. This mean that the dynamical system
L works as follows. If the starting point belongs to controllable positions then the
decision maker fixes a vector of control parameter and we obtain the state x(1).
If the starting state belongs to the set of uncontrollable positions then the system
passes to the next state in a random way. After that if at the time-moment t = 1
the state x(1) belong to the set of controllable positions then the decision maker
fixes the vector of control parameter u(t) ∈ Ut(x(t)) and we obtain the state x(2).
If x(1) belongs to the set of uncontrollable positions then the system passes to the
next state in a random way and so on. In this dynamic process the final state may
be reached at given moment of time with a probability which depend on the control
of the system in the deterministic states as well as the expectation of integral time
cost by trajectory depends on control of the system in these states. The main results
of this paper are concerned with studying and solving the following problems.

1. For given vectors of control parameters u(t) ∈ Ut(x(t)), x(t) ∈ ZC , to deter-
mine the probability that the dynamical system L with given starting state x0 = x(0)
will reach the final state xf at the moment of time T (x2) such that T1 ≤ T (xf ) ≤ T2.
We denote this probability Px0

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
; if T1 = T2 = T then we

use the the notation Px0(u(t), xf , T ).

2. To find the vectors of control parameters u∗(t) ∈ Ut(x(t)), x(t) ∈ ZC for
which the probability in problem 1 is maximal. We denote this probability we
denote Px0

(
u∗(t), xf , T1 ≤ T (xf ) ≤ T2

)
; in the case T1 = T2 = T we shall use the

notation Px0(u
∗(t), xf , T ).

3. For given vectors of control parameters u(t) ∈ Ut(x(t)), x(t) ∈ ZC and
given number of stages T to determine the expectation of integral-time of system’s
transactions within T stages for system L with staring state x0 = x(0). We denote
this expectation Cx0(u(t), T ).

4. To determine the vectors of control parameters u∗(t) ∈ Ut(x(t)), x(t) ∈ ZC

for which the expectation of integral-time cost for dynamical system in problem 3
is minimal. We denote this expectation Cx0(u

∗(t), xf , T ).

5. For given vectors of control parameters u(t) ∈ Ut(x(t)), x(t) ∈ ZC , to de-
termine the expectation of integral-time cost of system’s transactions from starting
state x0 to final state xf when the final state is reached at the time-moment T (xf )
such that T1 ≤ T (xf ) ≤ T2. We denote this expectation Cx0

(
u(t), xf , T1 ≤ T (xf ) ≤

T2

)
; if T1 = T2 = T then we denote Cx0(u(t), xf , T ).
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6. To determine the vectors of control parameters u∗(t) ∈ Ut(x(t)), x(t) ∈ ZC

for which the expectation of integral-time cost of system’s transactions in problem 5
is minimal. We denote this expectation Cx0

(
u∗(t), xf , T1 ≤ T (xf ) ≤ T2

)
; in the case

T1 = T2 = T we shall use the notation Cx0(u
∗(t), xf , T ).

It is easy to observe that problems 1-6 extend and generalize a large class of
deterministic and stochastic dynamic problems including problems from [1,2,4]. The
problems from [4] related to finite Markov processes became problems 1–3 in the
case when ZC = ∅ and the probabilities p(ui

x(t)) do not depend on time but depend

only on states; the discrete optimal control problems from [1, 2] became problems
4-6 in the case ZN = ∅. In the following we propose algorithms for solving the
problem formulated above based on results from [1,2,4] and time-expended method
from [5,6].

3 Some Auxiliary Results and Definitions of the Basic Notions

In this section we describe some auxiliary results concerned with calculation of
the state probabilities in a simple finite Markov processes and make more precise
some basic definitions for our control problems. We shall use these results and the
specification of the basic notion we shall use in next sections for a strict argumen-
tation of the algorithms for solving problems 1-6.

3.1 Determining the State Probabilities of the Dynamical System

in Finite Markov Processes

We consider a dynamical system with the set of states X where for every state
x ∈ X are given the probabilities px,y of system’s passage from x to another states
y ∈ X such that

∑
y∈X

px,y = 1. Here the probabilities px,y do not depend on time, i.e.

we have a simple Markov process determined by the stochastic matrix of probabilities
P = (px,y) and the starting state x0 of dynamical system. The probability Px0(x, t)
of system’s passage from the state x0 to an arbitrary state x ∈ X by using given
t unite of time is defined and calculated on the basis of the following recursive
formula [4]

Px0(x, τ + 1) =
∑

y∈X

Px0(y, τ)py,x, τ = 0, 1, 2, . . . , t

where Px0(x0, 0) = 1 and Px0(x, 0) = 0 for x ∈ X \ {x0}. In the case when the
probabilities of system’s passage from one state to another depend on time we have
a non-stationary process defined by a dynamic matrix P (t) = (px,y(t)) which describe
this process. If this matrix is stochastic for every moment of time t = 0, 1, 2, . . . , then
the state probabilities Px0(x, t) can be defined and calculated by using a formula
obtained similarly from written one changing px,y by px,y(τ).

Now let us show how to calculate the probability of systems passage from the
state x0 to the state x when x is reached at the time moment T (x) such that
T1 ≤ T (x) ≤ T2 where T1 and T2 are given. So, we are seeking for the probability
that the system L will reach the state x at least at one of the moments of time
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T1, T1 + 1, . . . , T2. We denote this probability Px0(x, T1 ≤ T (x) ≤ T2). For this
reason we shall give the graphical interpretation of the simple Markov processes by
using the random graph of state transitions GR = (X,ER). In this graph each vertex
x ∈ X corresponds to a state of dynamical system and a possible system passage
from one state x to another state y with positive probability px,y is represented by
the directed edge e = (x, y) ∈ ER from x to y; to directed edges (x, y) ∈ ER in G the
corresponding probabilities px,y are associated. It is evident that in the graph GR
each vertex x contains at least one leaving edge (x, y) and

∑
y∈X

px,y = 1. In general

we will consider also the stochastic process which may stop if one of the states
from given subset of states of dynamical system is reached. This means that the
random graph of such process may contain the deadlock vertices. So, we consider the
stochastic process for which the random graph may contains the deadlock vertices
and

∑
y∈X

px,y = 1 for the vertices x ∈ X which contain at least one leaving directed

edge. Such random graphs do not correspond to Markov processes and the matrix
of probability P contains rows with zero components. Nevertheless the probabilities
Px0(x, t) in the both cases of the considered processes can be calculated on the basis
of recursive formula given above. In the next sections we can see that the state
probabilities of the system can be also calculated starting from final state by using
the backward dynamic procedure.In the following the random graph with given
probability function p : ER → R on edge set ER and given distinguished vertices
which correspond to starting and final states of dynamical system we be called the
stochastic network. Further we shall use the stochastic networks for calculation of
the probabilities Px0(x, T1 ≤ T (x) ≤ T2).

Lemma 1. Let be given a Markov process determined by stochastic matrix of prob-
abilities P = (px,y) and the starting state x0. Then the following formula holds:

Px0(x, T1 ≤ T (x) ≤ T2) = Px0(x, T1) + P T1
x0

(x, T1 + 1)+

+P T1,T1+1
x0

(x, T1 + 1) + · · · + P T1,T1+1,...,T2−1
x0

(x, T2) (6)

where P T1,T1+1,...,T1+i−1
x0 (x, T1 + i), i = 1, 2, . . . , T2 − T1, is the probability that the

system L will reach the state x from x0 by using T1 + i transactions and it does not
pass through x at the moments of times T1, T1 + 1, T1 + 2, . . . , T1 + i − 1.

Proof. Taking into account that Px0(x, T1 ≤ T (x) ≤ T1 + i expresses the probability
of the system L to reach from x0 the state x at least at one of the moments of time
T1, T1 + 1, . . . , T1 + i we can write the following recursive formula

Px0(x, T1 ≤ T (x) ≤ T1 + i) = Px0(x, T1 ≤ T (x) ≤ T1 + i − 1)+

+P T1,T1+1,...,T1+i−1
x0

(x, T1 + i). (7)

Applying T2 − T1 times this formula for i = 1, 2, . . . , T2 − T1 we obtain the
equality (6).
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Note that formula 6 and 7 couldn’t be used directly for calculation of the prob-
ability Px0(x, T1 ≤ T (x) ≤ T2). Nevertheless we can see that such representation
of the probability Px0(x, T1 ≤ T (x) ≤ T2) in the time expended network method
will allow to ground a suitable algorithms for calculation of this probability and to
develop new algorithms for solving problems from Section 2.

Corollary 1. If the state x of dynamical system L in random graph GR = (X,ER)
corresponds to a deadlock vertex then

Px0

(
x, T1 ≤ T (x) ≤ T2

)
=

T2∑

t=T1

Px0(x, t). (8)

Let Xf be a subset of X and assume that at the moment of time t = 0 the
system L is in the state x0. Denote by Px0

(
Xf , T1 ≤ T (Xf ) ≤ T2

)
the probability

that at least one of the states x ∈ Xf will be reached at the time moment T (x) such
that T1 ≤ T (x) ≤ T2. Then the following corollary holds.

Corollary 2. If the subset of states Xf ⊂ X of dynamical system L in the random
graph GR = (X,ER) corresponds to the subset of deadlock vertices then for the
probability Px0

(
Xf , T1 ≤ T (Xf ) ≤ T2

)
the following formula holds

Px0

(
Xf , T1 ≤ T (Xf ) ≤ T2

)
=

∑

x∈Xf

T2∑

t=T1

Px0(x, t). (9)

3.2 Determining the Expectation of Integral-time cost of system’s

transactions in Finite Markov Processes

In order to define strictly the expectation of integral-time cost for dynamical sys-
tem in problems 3-6 we need to introduce the notion of expectation of integral-time
cost for finite Matkov processes with cost function on the set of state’s transaction
of dynamical system. We introduce this notion we introduce in the same way as the
total expected earning in the Markov processes with rewards introduced in [4]. We
consider a simple Marcov process determined by the stochastic matrix p = (px,y)
and starting state x0 of system L. Assume that for arbitrary two states x, y ∈ X of
the dynamical system is given the value cx,y which we treat as the cost of system L
to pass from the state x to the state y. The matrix C = (cx,y) is called the matrix
of the costs of system’s transactions for the dynamical system. Note that in [4]
the values cx,y for given x are treated as the ”earning” of the system’s transaction
from the state x to the states y ∈ X and the corresponding Markov process with
associated matrix C is called Markov process with reward. The Markov process
with associated cost matrix C generates a sequence of costs when the system makes
transactions from one state to another. Thus the cost is a random variable with a
probability distribution induced by the probability relations of the Markov process.
This means that for the system L the integral-time cost during T transactions is a
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random variable for which the expectation can be defined. We denote the expec-
tation of integral-time cost in such process by Cx0(T ). So, Cx0(T ) expresses the
expected integral-time cost of the system in the next T transactions if the system
at the starting moment of time is in the state x0 = x(0). For an arbitrary x ∈ X
the values Cx(τ) are defined strictly and calculated on the basis of the following
recursive formula

Cx(τ) =
∑

y∈Y

px,y(cx,y + Cy(τ − 1)), τ = 1, 2, . . . , t

where Cx(0) = 0 for every x ∈ X. This formula can be treated in the similar way as
formula for calculation the total earning in the Markov processes with rewards [4].
The expression cx,y + Cy(τ − 1) means that if the system makes transaction from
the state x to the state y then it spends the amount cx,y plus the amount it expects
to spend during the next τ − 1 transactions when the system start transactions
in the state y at the moment of time τ = 1. Taking into account that in the
state x the system makes transactions in the random way with the probability
distribution px,y we obtain that the values cx,y + Cy(τ − 1) should be weighted
by the probabilites of transactions px,y. In the case of the non-stationary process,
i.e. when the probabilities and the costs are changing in time, the expectation of
integral-time cost of dynamical system is defined and calculated in similar way; in
formula written above we should change px,y by px,y(τ) and cx,y by cx,y(t).

3.3 Definition of the State Probability and The Expectation

of Integral time cost in Control Problems 1–6

Using the definitions from previous subsections we can now specify the notions of
state probabilities Px(0)(u(t), x, T ), Px(0)

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
and the ex-

pectations of integral-time cost Cx(0)(u(t), T ), Cx(0)

(
u(t), xf , T

)
, Cx(0)

(
u(t), xf , T1 ≤

T (xf ) ≤ T2

)
in problems 1-6. First of all we stress our attention to the definition

of probability Px0(u(t), x, T ). For given starting state x0, given time-moment T
and fixed control u(t) we define this probability in the following way. We consider
that each system passage from an controllable state x = x(t) to the next state
y = x(t + 1) generated by the control u(t) is made with probability px,y = 1 and
the rest of probabilities of system’s passages from x at the moment of time t to the
next states are equal to zero. Thus we obtain a finite Markov process for which
the probability of system passage from starting state xo to final state x by using T
unites of time can be defined. We denote this probability Px0(u(t), x, T ). We de-
fine the probability Px0

(
u(t), x, T1 ≤ T (x) ≤ T2

)
for given T1 and T2 as probability

of the dynamical system L to reach the state x at least at one of the moments of
time T1, T1 + 1, . . . , T2. In order to define strictly the expectation of integral-time
cost of dynamical system in problems 3-6 we shall use the notion of expectation
of integral-time cost for Markov processes with costs defined on system’s transac-
tions. The expectation of integral-time cost Cx0(u(t), T ) of system L in problem 3
for fixed control u(t) is defined as the expectation of the integral-time cost during
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T transitions of dynamical system in the Markov process generated by the control
u(t) and the corresponding costs of state’s transactions of dynamical system. The
expectation Cx0

(
u(t), x, T1 ≤ T (x) ≤ T2

)
in the problems 5 and 6 will made more

precise in more detail form in Section 5.

4 The Main Approach and Algorithms for Determining the State

Probabilities in the Control Problems on Stochastic Networks

In order to provide a better understanding of the main approach and to ground
the algorithms for solving the problems formulated in Section 2 we shall use the net-
work representation of the dynamics of the system and will formulate these problems
on stochastic network. Note that in our control problems the probabilities and the
costs of system’s passage from one state to another depend on time. Therefore here
we develop time-expended network method from [5,6] for the stochastic versions of
control problems and reduce them to the static cases of the problems. At first we
show how to construct the stochastic network and how to solve the problems with
fixed number of stages, i.e. we consider the case T1 = T2 = T .

4.1 Construction of Stochastic Network and Algorithms for Solving

the Problems in the Case T1 = T2 = T

If the dynamics of discrete system L and the information related to the feasible
sets Ut(x(t)) and the cost functions ct(x(t), gt(x(t), u(t))) in the problems with T1 =
T2 = T are known then our stochastic network can be obtained in the following
way. We identify each position (x, t) which correspond to a dynamic state x(t) with
a vertex z = (x, t) of the network. So, the set of vertices Z of the network can
be represented as follows Z = Z1 ∪ Z2 ∪ · · · ∪ ZT where Zt = {(x, t) |x ∈ X} , t =
0, 1, 2, . . . , T. To each vector of control parameters u(t) ∈ Ut(x(t)), t = 1, 2, . . . , T −1
which provide a system passage from the state x(t) = (x, t) to the state x(t + 1) =
(y, t + 1) we associate in our network a directed edge e(z,w) =

(
(x, t), (y, t + 1)

)

from the vertex z = (x, t) to the vertex w = (y, t + 1), i.e., the set of edges E of
the network is determined by the feasible sets Ut(x(t)). After that to each directed
edge e = (z,w) =

(
(x, t), (y, t + 1)

)
originating in uncontrollable positions (x, t) we

put in correspondence the probability p(e) = p (u(t)) , where u(t) is the vector of
control parameter which provide the passage of the system from the state x = x(t)
to the state x(t + 1) = (y, t + 1). Thus if we distinguish in E the subset of edges
EN =

{
e = (z,w) ∈ E|z ∈ ZN

}
originating in uncontrollable positions ZN then on

EN we obtain the probability function p : E → R which satisfies the condition

∑

e∈E+(z)

p(e) = 1, z ∈ ZN \ ZT

where E+(z) is the set of edges originating in z. In addition in the network we add
to the edges e = (z,w) =

(
(x, t), (y, t + 1)

)
the costs c(z,w) = c

(
(x, t), (y, t + 1)

)
=

ct

(
x(t), x(t + 1)

)
which correspond to the costs of system’s passage from states x(t)

to the states x(t + 1). The subset of edges of the graph G originating in vertices
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z ∈ ZC is denoted EC , i.e. EC = E \ EN . So, our network is determined by the
tuple (G,ZC , ZN , z0, zf , c, p, T ), where G = (Z,E) is the graph which describes the
dynamics of the system; the vertices z0 = (x, 0) and zf = (xf , 0) correspond to the
starting and the final states of the dynamical system, respectively; c represents the
cost function defined on the set of edges E and p is the probability function defined
on the set of edges EN which satisfy condition (5). Note that Z = ZC ∪ ZN , where
ZC is a subset of vertices of G which correspond to the set of controllable positions
of dynamical system and ZN is a subset of vertices of G which correspond to the set
of uncontrollable positions of system L. In addition we shall use the notation ZC

t

and ZN
t , where ZC

t =
{
(x, t) ∈ Zt|(x, t) ∈ ZC

}
and ZN

t =
{
(x, t) ∈ Zt|(x, t) ∈ ZC

}
.

It is easy to observe that after the construction described above the problem
1 in the case T1 = T2 = T can be formulated and solved on stochastic network
(G,ZC , ZN , z0, zf , p, T ). A control u(t) of system L in this network means a fixed
passage from each controllable position z = (x, t) to the next position z = (x, t)
through a leaving edge e = (z,w) =

(
(x, t), (y, t + 1)

)
generated by u(t); this is

equivalent with the prescription to these leaving edges the probability p(e) = 1 of
the system’s passage from the state (x, t) to the state (y, t + 1) considering p(e) = 0
for the rest of leaving edges. In other words a control on stochastic network means
an extension of the probability function p from EN to E by adding to the edges
e ∈ E \EN the probabilities p(e) according to the mentioned above rule. We denote
this probability function on E by pu and will keep in mind that pu(e) = p(e) for
e ∈ E \ EN and on EC this function satisfies the following property

pu : EC → {0, 1} ,
∑

e∈E+
C (z)

pu(e) = 1 for z ∈ ZC

induced by the control u(t) in the problems 1–6. If for the problems from section 2
the control u(t) is given then we denote the stochastic network (G,ZC , ZN , z0, zf , c,
pu, T ); If the control u(t) is not fixed then for the stochastic network we shall use
the notation (G,ZC , ZN , zo, zf , c, p, T ). For the state probabilities of the system L
on this stochastic network we shall use similar notations Pz0(u(t), z, T ), Pz0

(
u(t), z,

T1 ≤ T (z) ≤ T2

)
and each time we will specify on which network they are calcu-

lated, i.e. will take into account that these probabilities are calculated by using the
probability function on edges pu which already do not depend on time.

Algorithm 1: Determining the state probabilities of the system in Problem 1

Preliminary step (Step 0): Put Pz0(u(t), z0, 0) = 1 for the position z0 ∈ Z and
Pz0(up, z, t) = 0 for the positions z ∈ Z \ {z0}.

General step (Step τ, τ ≥ 1): For every z ∈ Zτ calculate

Pz0(u(t), z, τ) =
∑

(w,z)∈E−(z)

Pz0(u(t), w, τ − 1)pu(w, z)

where E−(z) = {(w, z) ∈ E |w ∈ Zτ−1}. If τ = T then stop; otherwise go to the
next step.

The correctness of the algorithm follows from definition and network inter-
pretation of the dynamics of system L. In the following we will consider that
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for the control problems from Section 2 the condition Ut(x(t)) 6= ∅ for every
x(t) ∈ X, t = 0, 1, 2, . . . , T2 − 1 holds.

Algorithm 2: Determining the state probability of the system based on backward
dynamic programming procedure

Preliminary step (Step 0): Put Pzf
(u(t), zf , T ) = 1 for the position zf = (xf , T )

and Pz(u(t), z, T ) = 0 for the the positions z ∈ ZT \ {(xf , T )}.
General step (Step τ, τ ≥ 1): For every z ∈ ZT−τ calculate

Pz(u(t), zf , T ) =
∑

(z,w)∈E+(z)

Pw(u(t), zf , T )pu(z,w)

where E+(z) = {(z,w) ∈ E |w ∈ Zτ+1}. If τ = T then stop; otherwise go to next
step.

Theorem 1. For given control u(t) Algorithm 2 correctly finds the state probabilities
P(x,T−τ)(u(t), xf , T ) for every x ∈ X and τ = 0, 1, 2, . . . , T . The running time of
the algorithm is O(|X|2T ).

Proof. The preliminary step of the algorithm is evident. The correctness of the
general step of the algorithm follow from recursive formula at this general step
which reflects dynamic programming principle for the state probabilities in simple
stochastic process. In order to estimate the running time of the algorithm it is
sufficient to estimate the number of elementary operations of general step of the
algorithm. It is easy to see that the number of elementary operations for tabulation
of state probabilities at the general step is O(|X|2). Taking into account that the
number of steps of the algorithms is T we obtain that the running time of the
algorithm is O(|X|2L).

Algorithm 3: Determining the optimal control for Problem 1 with T1 = T2 = T
We describe the algorithm for finding the optimal control u∗(t) and the probabil-

ities Px(T−τ)(u
∗(t), xf , T ) of system’s passage from the states x ∈ X at the moment

of time T −τ to the state xf by using τ units of time for τ = 0, 1, 2, . . . , T . The algo-
rithm consists of the preliminary, general and final steps. The preliminary and gen-
eral steps of the algorithm find the values π(xf ,T−τ)(zf , T ) of positions (x, T −τ) ∈ Z
which correspond to probabilities Px(T−τ)(u

∗(t), zf , T ) of system passages from the
state x(T − τ) ∈ X at the moment of time T − τ to the state xf (T ) ∈ X at the
moment of time T when the optimal control u∗(t) is applied. At the end of the last
iteration of general step of the algorithm 2 gives the subset of edges EC(u∗) of EC

which determines the optimal controls. The final step of the algorithm constructs
an optimal control u∗(t) of the problem.

Preliminary step (Step 0): Put πzf
(xf , T ) = 1 for the position zf = (xf , T ) and

πz(zf , T ) = 0 for the positions z ∈ ZT \ {(xf , T )}; in addition put EC(u∗) = ∅.
General step (Step τ ≥ 1, τ ≥ 1): For given τ do items a) and b):
a) For each uncontrollable position z ∈ ZN

τ calculate

πz(zf , T ) =
∑

(z,w)∈E+(z)

πw(xf , T )p(z,w);
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b) For each controllable position z ∈ ZC
τ calculate

πz(zf , T ) = max
(z,w)∈E+(x,T−τ)

πw(zf , T )

and include in E∗

C edges (z,w) which satisfy the condition πz(zf , T ) = πw(zf , T ). If
τ = T then go to Final step; otherwise go to step τ + 1.

Final Step: Form the graph G∗ =
(
Z,E∗

C ∪ (E \ EC)
)

and fix in G∗ a map

u∗ : (x, t) → (y, t + 1) ∈ XG∗(x, t) for (x, t) ∈ ZC

where XG∗ =
{
(y, t + 1) ∈ Z|

(
(x, t), (y, t + 1)

)
∈ E∗

C

}
.

Theorem 2. Algorithm 3 correctly finds the optimal control u∗(t) and the state
probability Px(0)(u

∗(t), xf , T ) for an arbitrary starting position x(0) ∈ X in problem
1 with T = T1 = T2. The running time of the algorithm is O(|X|2T ).

Proof. The general step of the algorithm reflects the principle of optimality of dy-
namic programming for the problem of determining the control with maximal prob-
abilities Px(T−τ)(u

∗(t), xf , T ) = π(x,T−τ)(xf , T ) of system’s passages from the states
x ∈ X at the moment of time T − τ to the final state at the moment of time T . For
each controllable position (x, T − τ) ∈ Z the values π(x,T−τ)(zf , T ) are calculated
on stochastic network in consideration that for given moment of time T − τ and
given state x ∈ X the optimal control u∗(T − τ) ∈ Ut(x(T − τ)) is applied. The
computational complexity of the algorithm can be estimated in the same way as in
Algorithm 2. Algorithm makes T steps and at each step uses O(|X|2) elementary
operations. Therefore the running time of the algorithm is O(|X|2T )

4.2 Algorithm for determining the state probabilities in the case

T1 6= T2

We construct our network using the network (G,ZC , ZN , z0, zf , c, p, T ) with
T = T2 obtained according to the construction from Subsection 3.1. In this network
we delete all edges originating in vertices (x, t) for t = T1, T1+1, . . . , T2−1 preserving
edges originating in vertices (x, t) for t = 0, 1, 2, . . . , T1−1. We denote the stochastic
network in this case (G0, ZC , ZN , z0, Y, c, p, T1, T2), where Y =

{
(xf , T1), (xf , T1 +

1), . . . , (xf , T2)
}

and G0 = (Z,E0) is the graph obtained from G dy deleting all
edges which originate in vertices from Y , i.e E0 = E \ {(z,w) ∈ E|z ∈ Y }. Let
Pz0

(
u(t), Y, T1 ≤ T (Y ) ≤ T2

)
be the probability of dynamical system to reach at

least one of the states (xf , T1), (xf , T1 + 1), . . . , (xf , T2) at the moment of time t
such that T1 ≤ t ≤ T2 if the dynamical system at the moment of time τ = 0 has the
state x0.

Theorem 3. For an arbitrary feasible control u(t) and given staring state x0 of
dynamical system L the following formula holds

Px0(u(t), xf , T1 ≤ T (xf ) ≤ T2) = Pz0(u(t), Y, T1 ≤ T (Y ) ≤ T2). (10)
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Proof. We prove the theorem by using induction principle on the number
k = T2 − T1. Let us prove formula (10) for k = 1. In this case our network
(G0, ZC , ZN , z0, Y, c, pu, T1, T2) is obtained from (G,ZC , ZN , z0, zf , c, p, T2) by dele-
ting the edges ((xf , T1), (xf , T1 + 1)) originating in (xf , T1). For this network we
have T2 = T2 + 1 and Y = (xf , T1), (xf , T1 + 1). Basing on formula (6) we can write
the following equality

Px0(u(t), xf , T1 ≤ T (xf ) ≤ T2) = Px0u(t), xf , T1) + P T1,T1+1
x0

(u(t), xf , T1 + 1),

where P T1,T1+1
x0 (u(t), xf , T1 + 1) for given control u(t) represents the probability of

the system L to reach the state xf from x0 such that it does not pass at the moment
of time T1 through xf . Taking into account that in our network all edges originating
in (xf , T1) are deleted we obtain

P T1,T1+1
x0

(u(t), xf , T1 + 1 = Pz0(u(t), (xf , T1 + 1), T1 + 1).

This means that
Px0(u(t), xf , T1 ≤ T (xf ) ≤ T2) =

= Pz0(u(t), (xf , T1), T1) + Pz0(u(t), (xf , T1 + 1), T1 + 1).

If we use the property from Corollary 2 then we obtain formula (10) for k = 1.
Now assume that formula (10) holds for an arbitrary k ≥ 1 an let us prove that

it is true for k + 1.
We apply formula (7) for Px0(u(t), xf , T1 ≤ T (x) ≤ T2) . Then we obtain

Pxo(u(t), xf , T1 ≤ T (xf ) ≤ T1 + k + 1) =

= Px0(u(t), xf , T1 ≤ T (xf ) ≤ T1 + k) + P T1,T1+1,...,T1+k
xo

(u(t), xf , T1 + k + 1)

whereP T1,T1+1,...,T1+k
xo (u(t), xf , T1 + k +1) expresses the probability for the system L

to reach the state xf and it does not passes at the moment of time T1, T1+1, . . . , T1+k
through the state xf . According to the assumption of induction principle we can
write

Pxo(u(t), xf , T1 ≤ T (xf ) ≤ T1 + k + 1) =

= Pz0(u(t), Y \ (xf , T1 + k + 1), T1 ≤ T (Y \ (x, T1 + k + 1) ≤ T1 + k)+

+P T1,T1+1,...,T1+k
xo

(u(t), xf , T1 + k + 1).

Here in a similar way as in the case k = 1 holds

P T1,T1+1,...,T1+k
xo

(u(t), xf , T1 + k + 1) = Pzo(u(t), (xf , T1 + k + 1), T1 + k + 1)

because the stochastic network (G0, ZC , ZN , z0, Y, c, pu, T1, T2) is obtained from
(G,ZC , ZN , z0, zf , c, p, T2) by deleting all edges originating in the vertices (x, T1),
(xf , T1 + 1), . . . , (xf , T1 + k). So, the following formula holds

Pxo(u(t), xf , T1 ≤ T (xf ) ≤ T1 + k + 1) =
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= Pz0(u(t), Y \ (xf , T1 + k + 1), T1 ≤ T (Y \ (xf , T1 + k + 1) ≤ T1 + k)+

+Pzo(u(t), (xf , T1 + k + 1), T1 + k + 1).

Now if we use the property from Corollary 2 of Lemma 1 then we obtain
formula (10).

Corollary 3. For an arbitrary feasible control u(t) and given staring state x0 of
dynamical system L the following formula holds

Px0

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
=

T2−T1∑

k=0

Pz0

(
u(t), (xf , T1 + k), T1 + k

)
. (11)

Basing on this result we can calculate Px0

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
in the

following way. We apply Algorithm 1 on network
(
Gf , ZC , ZN , z0, Y, c, pu, T1, T2

)

and determine the state probabilities Pz0(u(t), (x, τ), τ) for every (x, τ) ∈ Z and
τ = 0, 1, 2, . . . , T2. Then on the basis of formula (11) we find the probabil-
ity Pxo

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
. We can use this fact for an another al-

gorithm for finding the probability Px

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
. The algo-

rithm finds the probabilities Pz

(
u(t), Zf , T1 ≤ T (Y ) ≤ T2

)
on stochastic network(

Gf , ZC , ZN , z0, Y, c, pu, T1, T2

)
for every z = (x, T − τ) ∈ Z. Then for τ = T we

obtain Px(T−τ)

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
= P(x,T2−τ)

(
u(t), Y, T1 ≤ T (Y ) ≤ T2

)

for every τ = 0, 1, 2, . . . , T2; if we fix τ = T2 then we find the probabilities
Px

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
.

Algorithm 4: Determining the solution of Problem 1 in the case T1 6= T2

Preliminary step (Step 0): Put Pz

(
u(t), Y, T1 ≤ T (Y ) ≤ T2

)
= 1 for every

position z ∈ Y and Pz

(
u(t), Y, T1 ≤ T (y) ≤ T2

)
= 0 for the positions z ∈ ZT2 \

{(xf , T2)}.
General step (Step τ, τ ≥ 1): Calculate

Pz

(
u(t), Y, T1 ≤ T (Y ) ≤ T2

)
=

∑

(z,w)∈E0(z)

Pw

(
u(t), Y, T1 ≤ T (Y ) ≤ T2

)
pu(z,w)

for every z ∈ ZT2−τ \ Y where E0(z) =
{
(z,w) ∈ E0 |w ∈ Zτ+1

}
. If τ = T then go

to final step; otherwise go to step τ + 1.

Theorem 4. Algorithm 4 correctly finds the state probability Px(0)(u
∗(t), xf , T ) for

an arbitrary starting position x(0) ∈ X in problem 1 with T1 ≤ T2. The running
time of the algorithm is O(|X|2T2).

Proof. In algorithm 4 the value Px0

(
u(t), xf , T1 ≤ T (xf ) ≤ T2

)
is calculated on the

basis of formula (11) applying Algorithm 2 for finding P(x0,0)

(
u(t), (xf , T1 + k), k

)

for k = 0, 1, 2, . . . , T2 − T1. The application of Algorithm 2 on network with respect
to each final position is equivalent with the specification of the preliminary step as
it is described in Algorithm 4. So, the algorithm correctly finds the probability for
the problem 1 with T1 6= T2. The general step of the algorithm is made T2 times.
Therefore the running time of the algorithm is O(|X|2T2).
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Now let us show that the network (G0, ZC , ZN , z0, Y, c, pu, T1, T2) can be modified
such that Algorithm 4 becomes Algorithm 2 on an auxiliary stochastic network. We
make the following non-essential transformations of the structure of the network. In
G0 = (Z,E0) we add directed edges

(
(xf , T1), (xf , T1 + 1)

)
,
(
(xf , T1 + 1), (xf , T1 + 2)

)
, . . . ,

(
(xf , T2 − 1), (xf , T2)

)
.

To each directed edge ei =
(
(xf , T1 + i), (xf , T1 + i + 1)

)
, i = 0, 1, 2, . . . , T2 − T1 − 1

we define the values p(ei) = 1 and c(ei) = 0 which express respectively the prob-
abilities and the costs of system’s passage from the positions (xf , T1 + i) to the
position (xf , T1 + i + 1). We denote the network obtained after this construction by
(G∗, ZC , ZN , z0, zf , c∗, p∗u, T1, T2), where G∗ = (Z,E∗) is the graph obtained from G0

by using the construction described above, i.e. E∗ = E ∪
{(

(xf , T1 + i), (xf , T1 + i+
1)

)
, i = 0, 1, 2, . . . , T2−T1−1

}
; the probability and the cost functions p∗u, c∗are ob-

tained from pu and c, respectively, according to given above additional construction.
It is easy to see that if on this network we apply Algorithm 2 considering T = T2

and (xf , T ) = (xf , T2) then we find the state probabilities Pxf ,T2−τ

(
u(t), (xf , T2), T2

)

which coincide with the state probabilities Pxf ,T2−τ

(
u(t), Y, T1 ≤ T (Y ) ≤ T2

)
.

Algorithm 5: Determining the optimal control for Problem 2 with T1 6= T1

The algorithm consists of the preliminary, general and final steps. The pre-
liminary and general steps find the values π(x,T2−τ)

(
Y, T1 ≤ T (Y ) ≤ T2

)
which

correspond to probabilities P(x,T−τ)

(
u∗(t), Y, T1 ≤ T (Y )

)
≤ T2 when the op-

timal control is taken into account. So, these values represent the probabili-
ties Px(T−τ)

(
u∗(t), xf , T1 ≤ T (xf ) ≤ T2

)
of system transactions from the states

x(T − τ) ∈ X to the state xf when the optimal control u∗(t) is applied. At the end
of the last iteration of general step the subset EC(u∗) from EC is constructed. This
subset determines the set of optimal controls for Problem 2. The final step of the
algorithm fixes an optimal control u∗(t).

Preliminary step (Step 0): Put π(z,T )(Y, T1 ≤ T (Y ) ≤ T2) = 1 for every position
z ∈ Y and πz(Y, T1 ≤ T (Y ) ≤ T2) = 0 for every positions z ∈ ZT2 \ {(xf , T2)}; in
addition put EC(u∗) = ∅.

General step (Step τ, τ ≥ 1): For given τ do the following items a) and b) :

a) For each position z ∈ ZN
τ calculate

πz

(
Y, T1 ≤ T (Y ) ≤ T2

)
=

∑

(z,w)∈E+(z)

πw

(
Y, T1 ≤ T (Y ) ≤ T2

)
p(z,w);

b) For each position z ∈ ZC
τ calculate

πz

(
Y, T1 ≤ T (y) ≤ T2

)
= max

(z,w)∈E+(z)
πw

(
Y, T1 ≤ T (y) ≤ T2

)

and include in the set E∗

C each edge e∗ = (z,w)∗ which satisfy the condition

πz

(
Y, T1 ≤ T (Y ) ≤ T2

)
= πw

(
Y, T1 ≤ T (Y ) ≤ T2

)
.
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If τ = T then go to Final step; otherwise go to step τ + 1.
Final Step: Form the graph G∗ =

(
Z,E∗

C ∪ (E \ EC)
)

and fix in G∗ a map
u∗ : (x, t) → (y, t + 1) ∈ XG∗(x, t) for (x, t) ∈ ZC

where XG∗ = {(y, t + 1) ∈ Z|((x, t), (y, t + 1)) ∈ E∗

C}.

Theorem 5. Algorithm 5 correctly finds the optimal control u∗(t) and the state
probability Px(0)(u

∗(t), xf , T ) for an arbitrary starting position x(0) ∈ X in problem
1 with fixed final state xf ∈ X and given T = T1 = T2. The running time of the
algorithm is O(|X|2T ).

Proof. The proof of this theorem is similar to the prove of Theorem 2. The gen-
eral step of the algorithm reflects the principle of optimality of dynamic program-
ming for the problem of finding the probabilities Px(T−τ)

(
u∗(t), xf , T1 ≤ T (xf ) ≤

T2

)
. These probabilities in stochastic networks correspond to the probabilities

P(x,T2−τ)

(
u∗(t), Y, T1 ≤ T (Y ) ≤ T2

)
= π(x,T2−τ)(Y, T1 ≤ T (Y ) ≤ T2). For

each controllable position (x, T − τ) the values π(x,T2−τ)

(
Y, T1 ≤ T (Y ) ≤ T2

)

are calculated in consideration that for given moment of time T − τ and given
state x the optimal control u∗(T2 − τ) ∈ Ut(x(T2 − τ)) is applied. Therefore
π(x,T2−τ)(Y, T1 ≤ T (Y ) ≤ T2) = Px(T2−τ)

(
u∗(t), xf , T1 ≤ T (Y ) ≤ T2

)
for every

x ∈ X and τ = 0, 1, 2, . . . , T2. Taking into account that at each step the di-
rected edges e∗ correspond to the optimal control for the corresponding positions on
stochastic network, we obtain at the final step the set of edges E∗ which give the
optimal control for arbitrary state x and arbitrary moment of time t. In the same
way as in previous algorithms we can show that the running time of the algorithm
is O(|X|2T2).

5 Algorithms for Determining the Expectation of Integral-Time

Cost in Problems 3–6

In this section we describe algorithms for calculation of the expected integral-
time costs of state transactions of dynamical system in problems 3-6.

5.1 Calculation of the Expectation of Integral-Time cost in

Problem 3

The expectation of integral-time cost for dynamical system L on stochastic net-
work (G,ZC , ZN , zo, c, pu, T ) in problem 3 is defined in analogues way as in Subsec-
tion 3.2 using the following recursive formula:

Cz(u(t), T ) =
∑

(z,w)∈E+(z)

pu(z,w)
(
c(z,w) + Cw(u(t), T )

)
,

z ∈ ZT−τ , τ = 1, 2, . . . , T,

where E+(z) = {(z,w) ∈ E|w ∈ ZT−τ+1}. This formula can be treated in the fol-
lowing way. Assume that we should estimate the expected integral-time cost of
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system’s transactions during τ units of time when the system starts transactions
in position z = (x, T − τ) at the moment of time T − τ . If the system makes a
transition from the position z = (x, T − τ) to the position w = (y, T − τ + 1) it will
spend the amount c(z,w) plus the amount it expects to spend if the system starts
the remained τ − 1 transactions in the position w = (y, T − τ + 1). Therefore if the
system L at the moment of time T −τ is in position z = (x, T −τ) then the expected
integral-cost of system’s transitions from z must be weighted by he probabilities of
such transactions pu(z,w) to obtain the total expected integral-time costs.

Algorithm 6: Determining the expectation of integral-time cost in Problem 3

Preliminary Step (Step 0): Put Cz(u(t), T ) = 0 for every z ∈ ZT .

General Step (Step τ ,τ ≥ 1): For each z ∈ ZT−τ calculate

Cz(u(t), T ) =
∑

(z,w)∈E+(z)

pu(z,w)
(
c(z,w) + Cw(u(t), T )

)
.

If τ = T then stop; otherwise go to step τ + 1.

Algorithm 6 uses the backward dynamic procedure and finds Cz(u(t), T ) for
every position z ∈ Z. For a fixed position z = (x, T − τ) ∈ Z the value Cz(u(t), T )
corresponds to the expected integral-time cost Cx(T−τ)(u(t), T ) of the system in the
next τ transactions when it starts in the state x = x(T − τ) at the moment of time
T − τ , i.e. C(x,T−τ)(u(t), T ) = Cx(o)(u(t), T ).

Algorithm 7: Determining the optimal control for problem 4

The algorithm consists of the preliminary, general and final steps. At the pre-
liminary and general steps the algorithm finds the optimal values of the expectation
of integral-time costs Cz(u(t), T ) which in algorithm are denoted by Expz(T ). For
a position z = (x, T − τ) the value Expz(T ) expresses the expected integral-time
cost during τ transactions of the system when it starts transactions in the state
x = x(T − τ) at the moment of time T − τ .This value is calculated in the consid-
eration that the optimal control u(t) is applied. In addition at the general step of
the algorithm the possible directed edges e∗ =

(
(x, T − τ), (y, T − τ + 1)

)
∗

which
correspond to optimal control in the state x = x(T − τ) at the moment of time
T − τ are cumulated in the set EC(u∗). The set of optimal controls is determined
by EC(u∗); at the final step an optimal control is fixed.

Preliminary step (Step 0): Put Expz(T ) = 0 for z ∈ ZT and EC(u) = ∅.

General step (Step τ , τ ≥ 1): For given τ do the following items a) and b):

a) For each uncontrollable position z ∈ ZN
T−τ calculate

Expz(T ) =
∑

(z,w)∈E+(z)

p(z,w)
(
c(z,w) + Expw(T )

)
;

b) For each controllable position z ∈ ZC
T−τ calculate

Expz(T ) = max
(z,w)∈E+(z)

(
c(z,w) + Expw(T )

)



DYNAMIC PROGRAMMING ALGORITHMS FOR SOLVING . . . 89

and include in the set E∗

C each edge e∗ = (z,w)∗ which satisfies the condition

c((z,w)∗) + Expw∗(T ) = max
(z,w)∈E+(z)

(
c(z,w) + Expw(T )

)
.

If τ = T then go to Final step; otherwise go to step τ + 1.
Final Step: Form the graph G∗ = (Z,E∗

C ∪ (E \ EC)) and fix in G∗ a map
u∗ : (x, t) → (y, t + 1) ∈ XG∗(x, t) for (x, t) ∈ ZC .

Theorem 6. Algorithm 7 correctly finds the optimal control u∗(t) and the expected
integral-time costs Cx(0)(T ) of the system’s transactions during T units of time from
an arbitrary starting position x = x(0) ∈ X in problem 4. The running time of the
algorithm is O(|X|2T ).

This theorem can be proved in analogues way as Theorem 2.

5.2 Determining the Expectations of Integral-Time cost in

Problems 5 and 6

For problems 5 and 6 we need to precise what is meant by the expectation of
integral-time cost for dynamical system when the state xf is reached at the moment
of time T (x) such that T1 ≤ T (x) ≤ T2. At first let us analyze the case T1 = T2 = T .
We consider this problem on stochastic network (G,ZC , ZN , z0, zf , c, pu, T ). If we
assume that the final position zf = (xf , T ) is reached at the moment of time T then
we should consider that the probability of system transaction from an arbitrary
starting position z = (x, 0) to the position zf is equal to 1. This means that
the probabilities pu(e) on edges e ∈ E should be redefined or transformed in such
way that the mentioned above condition on stochastic network holds.We denote
these redefined values by p′u(e) and call them conditional probabilities. It is evident
that if the system never can meet a directed edge e ∈ E during transition from a
position (x, 0) to the position zf then the conditional probability p′u(e) of this edge
is equal to zero. So, the first step we should do in the transformation is to delete
all such edges from the graph G. After such transformation we obtain a new graph

G′ = (Z,E′) in which for some positions z ∈ Z the condition
∑

(z,w)∈E′(z)

p(z,w) = 1

is not satisfied (here E′(z) represents the subset of edges from E′ which in vertex
z, i.e. E′(z) = {(z,w)|(z,w) ∈ E′}). Then we find for each position z ∈ Z the

value π(z) =
∑

(z,w)∈E′(z)

pu(z,w) and after that for an arbitrary position z ∈ Z with

π(z) 6= 0 we make the transformation

p′u(z,w) =
1

π(z)
pu(z,w)

for every (z,w) ∈ E′(z). After these transformations we can apply Algorithm 6
on stochastic network (G,ZC , ZN , z0, c, p

′

u, T ) with conditional probabilities p′u(e)
of edges e ∈ E; here p′u(e) = 0 for e ∈ E \ E′. If for this network we find Cz0(T )
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then fix Cz0(T ) = Cx0(u(t), xf , T ) = Cz0(T ), i. e. this value represents the expected
integral-time cost of dynamical system L in problem 5. In the case T1 6= T2 the
expected integral-time cost Cxo(u(t), xf , T1 ≤ T (x) ≤ T2) can be found in analogues
way if we consider problem 5 on stochastic network (G∗, ZC , ZN , z0, zf , c∗, p∗, T1, T2)
and will make a similar transformation. It is evident that the control problem 6 can
be reduced to control problem 4 using the approach described above. This allows us
to find the optimal control u∗(t) which provides a maximal expected integral-time
cost Cx0(u

∗(t), xf , T1 ≤ T (xf ) ≤ T2) of system transactions from starting state x0

to final state xf such that T1 ≤ T (xf ) ≤ T2.
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1 Introduction

Let 1
p + 1

q = 1 (p > 1), f, g ≥ 0. Suppose 0 <
∫
∞

0 fp(x)dx < ∞ and 0 <∫
∞

0 gq(x)dx < ∞. The well known Hardy-Hilbert’s integral inequality (see [1]) is
given by

∫
∞

0

∫
∞

0

f(x)g(y)

x + y
dxdy <

π

sin(π/p)

(∫
∞

0
fp(x)dx

) 1
p
(∫

∞

0
gq(x)dx

) 1
q

, (1)

and an equivalent form is given by
∫

∞

0

(∫
∞

0

f(x)

x + y
dx

)p

dy <

[
π

sin(π/p)

]p ∫ ∞

0
fp(x)dx, (2)

where the constant factor π/sin(π/p) and [π/sin(π/p)]p are the best possible. Re-
cently many generalizations and refinements of these inequalities were also obtained.
Some of them are given in [4]–[27]. One of the generalizations given by Yang [18] is
the following:

Theorem 1. If p > 1, 1
p + 1

q = 1, φr > 0 (r = p, q), φp + φq = λ, u(x) is a
differentiable strictly increasing function in (a, b) (−∞ ≤ a < b ≤ ∞) such that

u(a+) = 0 and u(b−) = ∞, f, g ≥ 0 satisfy 0 <
∫ b
a

(u(x))p(1−φq )−1

(u′(x))p−1 fp(x)dx < ∞ and

0 <
∫ b
a

(u(x))q(1−φp)−1

(u′(x))q−1 gq(x)dx < ∞ then

∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λ
dxdy < B(φp, φq)

(∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp(x)dx

) 1
p

×

×

(∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1
gq(x)dx

) 1
q

;

(3)
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where the constant factor B(φp, φq) is the best possible. If p < 1(p 6= 0), {λ : φr >
0, (r = p, q), φp + φq = λ} 6= Φ, with the above assumption, the reverse of (3) holds
and the constant factor is still the best possible.

In this paper, we have generalized the inequality (3), where we have weakened
the normalized condition φp + φq = λ and considered two different functions u(x)
and v(x), which is more generalized inequality and from which most of the recent
results are obtained by specialising the parameters and the functions u(x) and v(x).
We have also given the generalization of Hardy–Littlewood inequality.

2 Some Lemmas

We first set the following notations: Suppose p 6∈ {0, 1}, 1
p + 1

q = 1, 0 <
φr < λ (r = p, q), u(x) and v(x) are differentiable strictly increasing function in
(a, b) (−∞ ≤ a < b ≤ ∞) and (c, d) (−∞ ≤ c < d ≤ ∞) respectively such that
u(a+) = v(c+) = 0 and u(b−) = v(d−) = ∞.

We need the formula of the β−function as (cf. Wang et al. [3]):

B(p, q) =

∫
∞

0

1

(1 + t)p+q
tp−1dt = B(q, p) (4)

Lemma 1. (cf. Kuang [2]). If p > 1, 1
p + 1

q = 1, ω(t) > 0, f, g ≥ 0, f ∈ Lp
ω(E)

and g ∈ Lq
ω(E), then one has the Hölder’s inequality with weight as:

∫

E
ω(t)f(t)g(t)dt ≤

{∫

E
ω(t)fp(t)dt

} 1
p
{∫

E
ω(t)gq(t)dt

} 1
q

. (5)

If p < 1(p 6= 0), with the above assumption, the reverse of (5) holds, where the
equality in the above two cases holds if and only if there exists non-negative real
numbers c1 and c2 such that they are not all zero and

c1f
p(t) = c2g

q(t), a. e. in E.

Lemma 2. Define ωλ(u, v, p, x) and ωλ(v, u, q, y) as

ωλ(u, v, p, x) =

∫ d

c

(v(y))φp−1v′(y)

(u(x) + v(y))λ
dy, x ∈ (a, b), (6)

ωλ(v, u, q, y) =

∫ b

a

(u(x))φq−1u′(x)

(u(x) + v(y))λ
dx, y ∈ (c, d). (7)

Then

ωλ(u, v, p, x) = B(φp, λ − φp)(u(x))φp−λ, x ∈ (a, b), (8)

ωλ(v, u, q, y) = B(φq, λ − φq)(v(y))φq−λ, y ∈ (c, d). (9)
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Proof. Setting t = v(y)
u(x) in (6), we have

ωλ(u, v, p, x) =

∫
∞

0

(tu(x))φp−1u(x)

(u(x) + tu(x))λ
dt =

= (u(x))φp−λ

∫
∞

0

1

(1 + t)λ
tφp−1dt.

By (4), we get (8). Similarly, (9) can be proved. The lemma is proved.

Lemma 3. Suppose φp + φq = λ. Take a1 = u−1(1), c1 = v−1(1).

(i) If p > 1, 1
p + 1

q = 1 and 0 < ε < qφp, then

I : =

∫ b

a1

∫ d

c1

(u(x))φq−
ε
p
−1u′(x)(v(y))φp−

ε
q
−1v′(y)

(u(x) + v(y))λ
dxdy >

>
1

ε
B

(
φp −

ε

q
, φq +

ε

q

)
−©(1).

(10)

(ii) If 0 < p < 1 (or p < 0) and 0 < ε < −qφq (or 0 < ε < qφp), then

I <
1

ε
B

(
φp −

ε

q
, φq +

ε

q

)
. (11)

Proof. For fixed x ∈ (a1, b), setting t = v(y)
u(x) in (10), we have

I : =

∫ b

a1

(u(x))−1−εu′(x)

(∫
∞

1
u(x)

1

(1 + t)λ
tφp−

ε
q
−1dt

)
dx =

=

∫ b

a1

u′(x)

(u(x))1+ε
dx

∫
∞

0

1

(1 + t)λ
tφp−

ε
q
−1dt−

−

∫ b

a1

u′(x)

(u(x))1+ε

(∫ 1
u(x)

0

1

(1 + t)λ
tφp−

ε
q
−1dt

)
dx >

>
1

ε

∫
∞

0

1

(1 + t)λ
tφp−

ε
q
−1dt −

∫ b

a1

u′(x)

u(x)

(∫ 1
u(x)

0
tφp−

ε
q
−1dt

)
dx =

=
1

ε

∫
∞

0

1

(1 + t)λ
tφp−

ε
q
−1dt −

(
φp −

ε

q

)
−2

.

(12)

By (4), inequality (10) is valid. If 0 < p < 1 (or p < 0), by (12) we get

I <

∫ b

a1

u′(x)

(u(x))1+ε
dx

∫
∞

0

1

(1 + t)λ
t
φp−

ε
q
−1

dt

and then by (4), inequality (11) is valid. The lemma is proved.
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3 Main Results

Theorem 2. If p > 1, 1
p + 1

q = 1, 0 < φr < λ (r = p, q) and f, g ≥ 0 satisfy

0 <
∫ b
a

(u(x))φp−λ+(p−1)(1−φq)

(u′(x))p−1 fp(x)dx < ∞ and 0 <
∫ d
c

(v(x))φq−λ+(q−1)(1−φp)

(v′(x))q−1 gq(x)dx <

∞ then

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy < Hλ(φp, φq)

(∫ b

a

(u(x))φp−λ+(p−1)(1−φq)

(u′(x))p−1
fp(x)dx

) 1
p

×

×

(∫ d

c

(v(x))φq−λ+(q−1)(1−φp)

(v′(x))q−1
gq(x)dx

) 1
q

(13)

where Hλ(φp, φq) = B
1
p (φp, λ − φp)B

1
q (φq, λ − φq).

If p < 1(p 6= 0), {λ : 0 < φr < λ, r = p, q} 6= Φ, with the above assumption, the
reverse of (13) holds.

Proof. By (5), we have

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy =

=

∫ b

a

∫ d

c

1

(u(x) + v(y))λ

[
(v(y))(φp−1)/p(v′(y))1/p

(u(x))(φq−1)/q(u′(x))1/q
f(x)

]
×

×

[
(u(x))(φq−1)/q(u′(x))1/q

(v(y))(φp−1)/p(v′(y))1/p
g(y)

]
dxdy ≤

≤

{∫ b

a

[∫ d

c

(v(y))φp−1v′(y)

(u(x) + v(y))λ
dy

]
(u(x))(p−1)(1−φq )

(u′(x))p−1
fp(x)dx

} 1
p

×

×

{∫ d

c

[∫ b

a

(u(x))φq−1u′(x)

(u(x) + v(y))λ
dx

]
(v(y))(q−1)(1−φp)

(v′(y))q−1
gq(y)dy

} 1
q

.

(14)

If (14) takes the form of equality, then by (5) there exist non negative numbers c1

and c2 such that they are not all zero and

c1
(v(y))φp−1v′(y)(u(x))(p−1)(1−φq )

(u′(x))p−1
fp(x) =

= c2
(u(x))φq−1u′(x)(v(y))(q−1)(1−φp)

(v′(y))q−1
gq(y), a. e. in (a, b) × (c, d).

It follows that

c1
(u(x))p(1−φq)

(u′(x))p−1
fp(x) = c2

(v(y))q(1−φp)

(v′(y))q−1
gq(y) = c3, a. e. in (a, b) × (c, d)
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where c3 is a constant. Without loss of generality, suppose that c1 6= 0. Then
we have

∫ b

a

(u(x))φp−λ+(p−1)(1−φq)

(u′(x))p−1
fp(x)dx =

c3

c1

∫ b

a
(u(x))φp+φq−λ−1u′(x)dx =

=
c3

c1

{∫ 1

0
tφp+φq−λ−1dt +

∫
∞

1
tφp+φq−λ−1dt

}
= ∞

which contradicts to

0 <

∫ b

a

(u(x))φp−λ+(p−1)(1−φq)

(u′(x))p−1
fp(x)dx < ∞.

Then by (6) and (7), we have

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy <

{∫ b

a
ωλ(u, v, p, x)

(u(x))(p−1)(1−φq )

(u′(x))p−1
fp(x)dx

} 1
p

×

×

{∫ d

c
ωλ(v, u, q, y)

(v(y))(q−1)(1−φp )

(v′(y))q−1
gq(y)dy

} 1
q

(15)

and in view of (8) and (9), it follows that (13) is valid.
For 0 < p < 1 (or p < 0), by the reverse of (5) and using the same procedure,

we can obtain the reverse of (13). The theorem is proved.

Theorem 3. Let the assumptions of Theorem 2 hold.
(i) If p > 1, 1/p+1/q = 1, we obtain the equivalent inequality of (13) as follows:

∫ d

c

v′(y)

(v(y))1−φp+(p−1)(φq−λ)

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy <

< [Hλ(φp, φq)]
p

∫ b

a

(u(x))φp−λ+(p−1)(1−φq)

(u′(x))p−1
fp(x)dx;

(16)

(ii) If 0 < p < 1, we obtain the reverse of (16) equivalent to the reverse of (13);
(iii) If p < 0, we obtain inequality (16) equivalent to the reverse of (13).

Proof. Set g(y) = v′(y)

(v(y))1−φp+(p−1)(φq−λ)

[∫ b
a

f(x)
(u(x)+v(y))λ dx

]p−1
. By (13), we have

0 <

∫ d

c

(v(y))φq−λ+(q−1)(1−φp)

(v′(y))q−1
gq(y)dy =

=

∫ d

c

v′(y)

(v(y))1−φp+(p−1)(φq−λ)

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy =

=

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy ≤
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≤ Hλ(φp, φq)

(∫ b

a

(u(x))φp−λ+(p−1)(1−φq)

(u′(x))p−1
fp(x)dx

) 1
p

×

×

(∫ d

c

(v(x))φq−λ+(q−1)(1−φp)

(v′(x))q−1
gq(x)dx

) 1
q

,

(17)

then

0 <

{∫ d

c

(v(y))φq−λ+(q−1)(1−φp)

(v′(y))q−1
gq(y)dy

} 1
p

=

=

{∫ d

c

v′(y)

(v(y))1−φp+(p−1)(φq−λ)

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy

} 1
p

≤

≤ Hλ(φp, φq)

{∫ b

a

(u(x))φp−λ+(p−1)(1−φq)

(u′(x))p−1
fp(x)dx

} 1
p

< ∞.

(18)

It follows that (17) takes the form of strict inequality by using (13); so, does (18).
Hence we can get (16).

On the other hand, if (16) holds, then by (5), we have

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy =

=

∫ d

c

[
(v′(y))1/p

(v(y))(1−φp+(p−1)(φq−λ))/p

∫ b

a

f(x)

(u(x) + v(y))λ
dx

]
×

×

[
(v(y))(1−φp+(p−1)(φq−λ))/p

(v′(y))1/p
g(y)

]
dy ≤

≤

{∫ d

c

v′(y

(v(y))1−φp+(p−1)(φq−λ)

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy

} 1
p

×

×

{∫ d

c

(v(y))φq−λ+(q−1)(1−φp)

(v′(y))q−1
gq(y)dy

} 1
q

.

Hence by (16), (13) yields. Thus it follows that (13) and (16) are equivalent. The
theorem is proved.
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Theorem 4. If p > 1, 1/p + 1/q = 1, φr > 0(r = p, q), φp + φq = λ and f, g ≥ 0

satisfy 0 <
∫ b
a

(u(x))p(1−φq )−1

(u′(x))p−1 fp(x)dx < ∞ and 0 <
∫ d
c

(v(x))q(1−φp)−1

(v′(x))q−1 gq(x)dx < ∞

then

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy < B(φp, φq)

(∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp(x)dx

) 1
p

×

×

(∫ d

c

(v(x))q(1−φp)−1

(v′(x))q−1
gq(x)dx

) 1
q

(19)

where the constant factor B(φp, φq) is the best possible.
If p < 1(p 6= 0), {λ : φr > 0, (r = p, q), φp + φq = λ} 6= Φ, with the above

assumption, the reverse of (19) holds and the constant is still the best possible.

Proof. Since φp + φq = λ, then by Theorem 2, (19) and its inverse are valid.
For 0 < ε < qφp, setting

fε(x) =

{
0 if x ∈ (a, a1) (a1 = u−1(1)),

(u(x))
φq−

ε
p
−1

u′(x) if x ∈ [a1, b),

gε(x) =

{
0 if x ∈ (c, c1) (c1 = v−1(1)),

(v(x))
φp−

ε
q
−1

v′(x) if x ∈ [c1, d),

we have

(∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp

ε (x)dx

) 1
p
(∫ d

c

(v(x))q(1−φp)−1

(v′(x))q−1
gq
ε(x)dx

) 1
q

=
1

ε
(20)

If the constant factor B(φp, φq) in (19) is not the best possible, then there exists a
positive constant K < B(φp, φq) such that (19) is still valid if we replace B(φp, φq)
by K. In particular, by (10) and (20), we have

B

(
φp −

ε

q
, φq +

ε

q

)
− ε © (1) <

< ε

∫ b

a

∫ d

c

fε(x)gε(y)

(u(x) + v(y))λ
dxdy <

< εK

(∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp

ε (x)dx

) 1
p
(∫ d

c

(v(x))q(1−φp)−1

(v′(x))q−1
gq
ε(x)dx

) 1
q

= K,

and then B(φp, φq) ≤ K (ε → 0+). This contradiction leads to the conclusion that
the constant factor in (19) is the best possible.

For the best constant factor in the reverse of (19), for 0 < p < 1 (p < 0), we set
fε(x) and gε(x), for 0 < ε < −qφq (or 0 < ε < qφp), as the above; we still have (20).



98 NAMITA DAS, SRINIBAS SAHOO

If the constant factor B(φp, φq) in the reverse of (19) is not the best possible, then
there exists a positive constant K > B(φp, φq) such that the reverse of (19) is still
valid if we replace B(φp, φq) by K. In particular, by (11) and (20), we have

B

(
φp −

ε

q
, φq +

ε

q

)
>

> ε

∫ b

a

∫ d

c

fε(x)gε(y)

(u(x) + v(y))λ
dxdy >

> εK

(∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp

ε (x)dx

) 1
p
(∫ d

c

(v(x))q(1−φp)−1

(v′(x))q−1
gq
ε(x)dx

) 1
q

= K,

and then B(φp, φq) ≥ K (ε → 0+). This contradiction leads to the conclusion
that the constant factor in the reverse of (19) is the best possible. The theorem is
proved.

Corollary 1. For f = g, u = v, λ = 1, φr = 1
r (r = p, q), if 0 <∫ b

a (u′(x))1−rf r(x)dx < ∞ (r = p, q) then

∫ b

a

∫ b

a

f(x)f(y)

u(x) + u(y)
dxdy <

<
π

sin π
p

(∫ b

a
(u′(x))1−pfp(x)dx

) 1
p
(∫ b

a
(u′(x))1−qf q(x)dx

) 1
q

,

(21)

where the constant factor π
sin(π/p) is the best possible.

Corollary 2. For f = g, u = v, λ = 1, φr = 1
2 (r = p, q), if 0 <

∫ b
a

(u(x))
r
2−1

(u′(x))r−1 f r(x)dx < ∞ (r = p, q) then

∫ b

a

∫ b

a

f(x)f(y)

u(x) + u(y)
dxdy <

< π

(∫ b

a

(u(x))
p
2
−1

(u′(x))p−1
fp(x)dx

) 1
p
(∫ b

a

(u(x))
q
2
−1

(u′(x))q−1
f q(x)dx

) 1
q

,

(22)

where the constant factor π is the best possible.

Theorem 5. Let the assumptions of Theorem 4 hold.
(i) If p > 1, 1/p+1/q = 1, we obtain the equivalent inequality of (19) as follows:

∫ d

c

v′(y)

(v(y))1−pφp

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy <

< [B(φp, φq)]
p

∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp(x)dx;

(23)
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(ii) If 0 < p < 1, we obtain the reverse of (23) equivalent to the reverse of (19);
(iii) If p < 0, we obtain inequality (23) equivalent to the reverse of (19), where

the constants in the above inequalities are all the best possible.

Proof. Since φp + φq = λ, then by Theorem 3, we get inequality (23) and its inverse
which are equivalent to (19) and its inverse accordingly. By Theorem-4, the constants
in (19) and its inverse are best possible, hence the constants in (23) and it’s inverse
are best possible. The theorem is proved.

4 Some Particular Inequalities

Theorem 6. If p > 1, 1
p + 1

q = 1, λ > max{1
p , 1

q}, 0 <
∫ b
a

(u(x))1−λ

(u′(x))p−1 fp(x)dx < ∞ and

0 <
∫ d
c

(v(x))1−λ

(v′(x))q−1 gq(x)dx < ∞, then we have the following two equivalent inequalities:

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy <

< H̃λ

(
1

p
,
1

q

)(∫ b

a

(u(x))1−λ

(u′(x))p−1
fp(x)dx

) 1
p
(∫ d

c

(v(x))1−λ

(v′(x))q−1
gq(x)dx

) 1
q

,

(24)

∫ d

c

v′(y)

(v(y))(p−1)(1−λ)

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy <

<

[
H̃λ

(
1

p
,
1

q

)]p ∫ b

a

(u(x))1−λ

(u′(x))p−1
fp(x)dx,

(25)

where H̃λ

(
1
p , 1

q

)
= B

1
p

(
1
p , λ − 1

p

)
B

1
q

(
1
q , λ − 1

q

)
.

Proof. Setting φr = 1
r (r = p, q), in Theorem 2 and Theorem 3, we get the inequali-

ties (24) and (25) respectively.

We discuss a number of special cases of inequality (24). Similar examples apply
also to inequality (25).

Example 1. Set u(x) = Ax + C (A > 0), x ∈ (−C/A,∞) and v(x) = Bx + C
(B > 0), x ∈ (−C/B,∞) in Theorem 6. Then (24) becomes

∫
∞

−
C
A

∫
∞

−
C
B

f(x)g(y)

(Ax + By + 2C)λ
dxdy <

<
1

A1/qB1/p
H̃λ

(
1

p
,
1

q

)(∫
∞

−
C
A

(Ax + C)1−λfp(x)dx

) 1
p

×

×

(∫
∞

−
C
B

(Bx + C)1−λgq(x)dx

) 1
q

.

(26)



100 NAMITA DAS, SRINIBAS SAHOO

For A = B = 1, C = −α, we recover the result of Yang [7].

Example 2. Set u(x) = xα (α > 0), x ∈ (0,∞) and v(x) = xβ (β > 0), x ∈ (0,∞)
in Theorem 6. Then (24) becomes

∫
∞

0

∫
∞

0

f(x)g(y)

(xα + yβ)λ
dxdy <

<
1

α
1
q β

1
p

H̃λ

(
1

p
,
1

q

)(∫
∞

0
xα(2−λ−p)+p−1fp(x)dx

) 1
p

×

×

(∫
∞

0
xβ(2−λ−q)+q−1gq(x)dx

) 1
q

.

(27)

Taking λ = 1 and α = β, we get the result of Yang [12].

Example 3. Set u(x) = v(x) = lnx, x ∈ (1,∞) in Theorem 6. Then (24) becomes

∫
∞

1

∫
∞

1

f(x)g(y)

(ln x + ln y)λ
dxdy < H̃λ

(
1

p
,
1

q

)(∫
∞

1
(ln x)1−λxp−1fp(x)dx

) 1
p

×

×

(∫
∞

1
(ln x)1−λxq−1gq(x)dx

) 1
q

.

(28)

Theorem 7. Suppose f, g ≥ 0 satisfy 0 <
∫ b
a

(u(x))1−λ

(u′(x))p−1 fp(x)dx < ∞ and

0 <
∫ d
c

(v(x))1−λ

(v′(x))q−1 gq(x)dx < ∞.

(i) If p > 1, 1
p + 1

q = 1, λ > 2−min{p, q}, then we have the following two equivalent
inequalities:

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy <

< kλ(p)

(∫ b

a

(u(x))1−λ

(u′(x))p−1
fp(x)dx

) 1
p
(∫ d

c

(v(x))1−λ

(v′(x))q−1
gq(x)dx

) 1
q

,

(29)

∫ d

c

v′(y)

(v(y))(p−1)(1−λ)

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy <

< [kλ(p)]p
∫ b

a

(u(x))1−λ

(u′(x))p−1
fp(x)dx ,

(30)

where kλ(p) = B
(

p+λ−2
p , q+λ−2

q

)
.

(ii) If 0 < p < 1 and 2 − p < λ < 2 − q, we have two equivalent reverses of (29)
and (30).

(iii) If p < 0 and 2 − q < λ < 2 − p, we have reverse of (29) and the inequality
(30), which are equivalent; where the constants in the above inequalities are all the
best possible.
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Proof. Setting φr = 1 + (1 − 1
r )(λ − 2) (r = p, q), in Theorem 4 and Theorem 5, we

get the inequalities (29) and (30) respectively.

Example 4. Set u(x) = Ax + C (A > 0), x ∈ (−C/A,∞) and v(x) = Bx + C
(B > 0), x ∈ (−C/B,∞) in Theorem 7. Then (29) becomes

∫
∞

−
C
A

∫
∞

−
C
B

f(x)g(y)

(Ax + By + 2C)λ
dxdy <

<
kλ(p)

A1/qB1/p

(∫
∞

−
C
A

(Ax + C)1−λfp(x)dx

) 1
p
(∫

∞

−
C
B

(Bx + C)1−λgq(x)dx

) 1
q

.

(31)

For C = 0 and p = q = 2 this is the result of Yang [11] and for C = 0 we get the
result of Yang and Debnath [15]. Setting A = B = 1, C = −α, we recover the result
of Yang [9].Taking A = B = 1, C = 0, we get the result of Yang [10].

Example 5. Set u(x) = xα (α > 0), x ∈ (0,∞) and v(x) = xβ (β > 0), x ∈ (0,∞),
in Theorem 7. Then (29) becomes

∫
∞

0

∫
∞

0

f(x)g(y)

(xα + yβ)λ
dxdy <

kλ(p)

α
1
q β

1
p

(∫
∞

0
xα(2−λ−p)+p−1fp(x)dx

) 1
p

×

×

(∫
∞

0
xβ(2−λ−q)+q−1gq(x)dx

) 1
q

.

(32)

For α = β = 1, this is the result of Yang [10]. Taking λ = 1 and α = β, we get the
result of Yang [12, Theorem 3].

Example 6. Set u(x) = v(x) = lnx, x ∈ (1,∞) in Theorem 7. Then (29) becomes

∫
∞

1

∫
∞

1

f(x)g(y)

(ln x + ln y)λ
dxdy < kλ(p)

(∫
∞

1
(ln x)1−λxp−1fp(x)dx

) 1
p

×

×

(∫
∞

1
(ln x)1−λxq−1gq(x)dx

) 1
q

.

(33)

For λ = 1 this is the result of Yang [16, Theorem 3.1].

Theorem 8. Suppose f, g ≥ 0 satisfy 0 <
∫ b
a

(u(x))p(1−λ)/2

(u′(x))p−1 fp(x)dx < ∞ and

0 <
∫ d
c

(v(x))q(1−λ)/2

(v′(x))q−1 gq(x)dx < ∞.
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(i) If p > 1, 1
p + 1

q = 1, λ > 1 − 2min{1
p , 1

q}, then we have the following two
equivalent inequalities:

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy < k̃λ(p)

(∫ b

a

(u(x))p(1−λ)/2

(u′(x))p−1
fp(x)dx

) 1
p

×

×

(∫ d

c

(v(x))q(1−λ)/2

(v′(x))q−1
gq(x)dx

) 1
q

,

(34)

∫ d

c

v′(y)

(v(y))p(1−λ)/2

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy <

<
[
k̃λ(p)

]p ∫ b

a

(u(x))p(1−λ)/2

(u′(x))p−1
fp(x)dx ,

(35)

where k̃λ(p) = B
(

λ−1
2 + 1

p , λ−1
2 + 1

q

)
.

(ii) If 0 < p < 1 and 1− 2
p < λ < 1− 2

q , we have two equivalent reverses of (34)
and (35).

(iii) If p < 0 and 1 − 2
q < λ < 1 − 2

p , we have reverse of (34) and the inequality
(35), which are equivalent; where the constants in the above inequalities are all the
best possible.

Proof. Setting φr = λ−1
2 + 1

r (r = p, q), in Theorem 4 and Theorem 5, we get the
inequalities (34) and (35) respectively.

Example 7. Set u(x) = Ax + C (A > 0), x ∈ (−C/A,∞) and v(x) = Bx + C
(B > 0), x ∈ (−C/B,∞) in Theorem 8. Then (34) becomes

∫
∞

−
C
A

∫
∞

−
C
B

f(x)g(y)

(Ax + By + 2C)λ
dxdy <

<
k̃λ(p)

A1/qB1/p

(∫
∞

−
C
A

(Ax + C)p(1−λ)/2fp(x)dx

) 1
p

×

×

(∫
∞

−
C
B

(Bx + C)q(1−λ)/2gq(x)dx

) 1
q

.

(36)

For C = 0 and p = q = 2 this is the result of Yang [11].

Example 8. Set u(x) = xα (α > 0), x ∈ (0,∞) and v(x) = xβ (β > 0), x ∈ (0,∞)
in Theorem 8. Then (34) becomes

∫
∞

0

∫
∞

0

f(x)g(y)

(xα + yβ)λ
dxdy <

k̃λ(p)

α
1
q β

1
p

(∫
∞

0
xp−1+α(2−pλ−p)/2fp(x)dx

) 1
p

×

×

(∫
∞

0
xq−1+β(2−qλ−q)/2gq(x)dx

) 1
q

.

(37)
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Taking λ = 1 and α = β, we get the result of Yang [12, Theorem 3].

Example 9. Set u(x) = v(x) = lnx, x ∈ (1,∞) in Theorem 8. Then (34) becomes

∫
∞

1

∫
∞

1

f(x)g(y)

(ln x + ln y)λ
dxdy < k̃λ(p)

(∫
∞

1
(ln x)p(1−λ)/2xp−1fp(x)dx

) 1
p

×

×

(∫
∞

1
(ln x)q(1−λ)/2xq−1gq(x)dx

) 1
q

.

(38)

For λ = 1 this is the result of Yang [16, Theorem 3.1].

Theorem 9. If p > 1, 1
p+1

q = 1, λ > 0, f, g ≥ 0 satisfy 0 <
∫ b
a

(u(x))(p−1)(1−λ)

(u′(x))p−1 fp(x)dx

< ∞ and 0 <
∫ d
c

(v(x))(q−1)(1−λ)

(v′(x))q−1 gq(x)dx < ∞, then we have the following two

equivalent inequalities :

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy < B

(
λ

p
,
λ

q

)(∫ b

a

(u(x))(p−1)(1−λ)

(u′(x))p−1
fp(x)dx

) 1
p

×

×

(∫ d

c

(v(x))(q−1)(1−λ)

(v′(x))q−1
gq(x)dx

) 1
q

,

(39)

∫ d

c

v′(y)

(v(y))1−λ

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy <

<

[
B

(
λ

p
,
λ

q

)]p ∫ b

a

(u(x))(p−1)(1−λ)

(u′(x))p−1
fp(x)dx,

(40)

where the constants in the above inequalities are all the best possible.

Proof. Setting φr = λ
r (r = p, q), in Theorem 4 and Theorem 5, we get the inequa-

lities (39) and (40) respectively.

Example 10. Set u(x) = Ax+C (A > 0), x ∈ (−C/A,∞) and v(x) = Bx+C
(B > 0), x ∈ (−C/B,∞) in Theorem 9. Then (39) becomes

∫
∞

−
C
A

∫
∞

−
C
B

f(x)g(y)

(Ax + By + 2C)λ
dxdy <

<
1

A1/qB1/p
B

(
λ

p
,
λ

q

)(∫
∞

−
C
A

(Ax + C)(p−1)(1−λ)fp(x)dx

) 1
p

×

×

(∫
∞

−
C
B

(Bx + C)(q−1)(1−λ)gq(x)dx

) 1
q

.

(41)

For C = 0 and p = q = 2 this is the result of Yang [11].
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Example 11. Set u(x) = xα (α > 0), x ∈ (0,∞) and v(x) = xβ (β > 0), x ∈ (0,∞)
in Theorem 9. Then (39) becomes

∫
∞

0

∫
∞

0

f(x)g(y)

(xα + yβ)λ
dxdy <

1

α
1
q β

1
p

B

(
λ

p
,
λ

q

)(∫
∞

0
x(p−1)(1−αλ)fp(x)dx

) 1
p

×

×

(∫
∞

0
x(q−1)(1−βλ)gq(x)dx

) 1
q

.

(42)

For α = β = 1, this is the result of Yang [17]; for α = β, λ = 1 this gives the result
of Yang [14]; for α = β = 2, λ = 1

2 this gives the result of Hong [5].

Example 12. Set u(x) = ax1+x, v(x) = bx1+x, x ∈ (0,∞) and λ = 1 in Theorem 9.
Then (39) becomes

∫
∞

0

∫
∞

0

f(x)g(y)

ax1+x + by1+y
dxdy <

<
1

a
1
q b

1
p

B

(
1

p
,
1

q

)(∫
∞

0
(xx(1 + x + xlnx))1−pfp(x)dx

) 1
p

×

×

(∫
∞

0
(xx(1 + x + xlnx))1−qgq(x)dx

) 1
q

.

(43)

This is the result of Jia and Gao [19].

Example 13. Set u(x) = v(x) = lnx, x ∈ (1,∞) in Theorem 9. Then (39) becomes

∫
∞

1

∫
∞

1

f(x)g(y)

(ln x + ln y)λ
dxdy < B

(
λ

p
,
λ

q

)(∫
∞

1
(ln x)(p−1)(1−λ)xp−1fp(x)dx

) 1
p

×

×

(∫
∞

1
(ln x)(q−1)(1−λ)xq−1gq(x)dx

) 1
q

.

(44)

For λ = 1 this is the result of Yang [16, Theorem 3.1].

Theorem 10. If p > 1, 1
p + 1

q = 1, λ > 0, f, g ≥ 0 satisfy 0 <

∫ b
a

(u(x))p−λ−1

(u′(x))p−1 fp(x)dx < ∞ and 0 <
∫ d
c

(v(x))q−λ−1

(v′(x))q−1 gq(x)dx < ∞, then we have the

following two equivalent inequalities:

∫ b

a

∫ d

c

f(x)g(y)

(u(x) + v(y))λ
dxdy < B

(
λ

p
,
λ

q

)(∫ b

a

(u(x))p−λ−1

(u′(x))p−1
fp(x)dx

) 1
p

×

×

(∫ d

c

(v(x))q−λ−1

(v′(x))q−1
gq(x)dx

) 1
q

,

(45)
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∫ d

c

v′(y)

(v(y))1−λ(p−1)

[∫ b

a

f(x)

(u(x) + v(y))λ
dx

]p

dy <

<

[
B

(
λ

p
,
λ

q

)]p ∫ b

a

(u(x))p−λ−1

(u′(x))p−1
fp(x)dx,

(46)

where the constants in the above inequalities are all the best possible.

Proof. Setting φr = λ
(
1 − 1

r

)
(r = p, q), in Theorem 4 and Theorem 5, we get the

inequalities (45) and (46) respectively.

Example 14. Set u(x) = Ax + C (A > 0), x ∈ (−C/A,∞) and v(x) = Bx + C
(B > 0), x ∈ (−C/B,∞) in Theorem-10. Then (45) becomes

∫
∞

−
C
A

∫
∞

−
C
B

f(x)g(y)

(Ax + By + 2C)λ
dxdy <

<
1

A1/qB1/p
B

(
λ

p
,
λ

q

)(∫
∞

−
C
A

(Ax + C)p−λ−1fp(x)dx

) 1
p

×

×

(∫
∞

−
C
B

(Bx + C)q−λ−1gq(x)dx

) 1
q

.

(47)

For C = 0 and p = q = 2 this is the result of Yang [11].

Example 15. Set u(x) = xα (α > 0), x ∈ (0,∞) and v(x) = xβ (β > 0), x ∈ (0,∞)
in Theorem 10. Then (45) becomes

∫
∞

0

∫
∞

0

f(x)g(y)

(xα + yβ)λ
dxdy <

1

α
1
q β

1
p

B

(
λ

p
,
λ

q

)
×

×

(∫
∞

0
xp−αλ−1fp(x)dx

) 1
p
(∫

∞

0
xq−βλ−1gq(x)dx

) 1
q

.

(48)

This is the result of Azar [23, Theorem 1], with the constant factor 1
α1/qβ1/p B

(
λ
p , λ

q

)

is the best possible for α = β, but we proved that the constant factor is the best
possible for all α and β . For α = β = 1, we get the result of Yang [17].

Example 16. Set u(x) = v(x) = lnx, x ∈ (1,∞) in Theorem 10. Then (45)
becomes

∫
∞

1

∫
∞

1

f(x)g(y)

(ln x + ln y)λ
dxdy < B

(
λ

p
,
λ

q

)(∫
∞

1
(ln x)p−λ−1xp−1fp(x)dx

) 1
p

×

×

(∫
∞

1
(ln x)q−λ−1xq−1gq(x)dx

) 1
q

.

(49)
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Remark 1. For λ = 1, u(x) = v(x) = xα, φr = 1
αr (r = p, q), Theorem 2 gives

∫
∞

0

∫
∞

0

f(x)g(y)

xα + yα
dxdy <

π

α sin
1
p (π/αp) sin

1
q (π/αq)

×

×

(∫
∞

0
x1−αfp(x)dx

) 1
p
(∫

∞

0
x1−αgq(x)dx

) 1
q

,

(50)

which is the result of Kuang[4].

Remark 2. For λ = b + c + 1, u(x) = v(x) = x, φp = c + 1 − 1
p , φq = b + 1 − 1

q ,
Theorem 2 gives

∫
∞

0

∫
∞

0

f(x)g(y)

(x + y)b+c+1
dxdy < B

(
b +

1

p
, c +

1

q

)
×

×

(∫
∞

0
xp(1−b)−2fp(x)dx

) 1
p
(∫

∞

0
xq(1−c)−2gq(x)dx

) 1
q

,

(51)

which is given by Peachey [24].

Remark 3. For u(x) = v(x) = xα, φp = 1−mp
α , φq = 1−nq

α , Theorem 2 gives the
following results:

If p > 1, 1/p + 1/q = 1, α > 0, λ > 0,m, n ∈ R such that 0 < 1 − mp < αλ,
0 < 1 − nq < αλ and f ≥ 0, g ≥ 0 satisfy 0 <

∫
∞

0 x(1−αλ)+p(n−m)fp(x)dx < ∞ and

0 <
∫
∞

0 y(1−αλ)+q(m−n)gq(x)dx < ∞ then

∫
∞

0

∫
∞

0

f(x)g(y)

(xα + yα)λ
dxdy < Hλ,α(m,n, p, q)

(∫
∞

0
x(1−αλ)+p(n−m)fp(x)dx

) 1
p

×

×

(∫
∞

0
y(1−αλ)+q(m−n)gq(y)dy

) 1
q

,

(52)

where Hλ,α(m,n, p, q) = 1
αB

1
p (1−mp

α , λ − 1−mp
α )B

1
q (1−nq

α , λ − 1−nq
α ).

Further if mp + nq = 2 − αλ, then Theorem 4 gives

∫
∞

0

∫
∞

0

f(x)g(y)

(xα + yα)λ
dxdy <

1

α
B

(
1−mp

α
,
1−nq

α

)(∫
∞

0
xn(p+q)−1fp(x)dx

) 1
p

×

×

(∫
∞

0
ym(p+q)−1gq(y)dy

) 1
q

,

(53)

where the constant factor 1
αB(1−mp

α , 1−nq
α ) is the best possible. These two inequa-

lities are given by Hong [6].
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Remark 4. Replacing u(x) by xu(x) and v(x) by xv(x) and taking φp = 1 − A2p,
φq = 1 − A1q in Theorem 2, we get the following result given by
Mario Krnic et. al [27]:

If p > 1, 1/p + 1/q = 1, λ > 0, A1 ∈
(

1−λ
q , 1

q

)
and A2 ∈

(
1−λ

p , 1
p

)
then

∫
∞

0

∫
∞

0

f(x)g(y)

(xu(x) + yv(y))λ
dxdy <

< L

(∫
∞

0
(xu(x))1−λ+p(A1−A2)(u(x) + xu′(x))1−pfp(x)dx

)1/p

×

×

(∫
∞

0
(xv(x))1−λ+q(A2−A1)(v(x) + xv′(x))1−qgq(x)dx

)1/q

,

(54)

where L = (B (1 − A2p, λ − 1 + A2p))
1
p (B (1 − A1q, λ − 1 + A1q))

1
q .

Remark 5. For u(x) = Aax, v(x) = Bbx, φr = 1+(1− 1
r )(λ−2)(r = p, q), Theorem 4

gives the following inequality:
If p > 1, 1

p + 1
q = 1, λ > 2 − min{p, q}, A > 0, B > 0, a > 1, b > 1 and f, g ≥ 0

satisfy 0 <
∫
∞

−∞
a(2−λ−p)xfp(x)dx < ∞ and 0 <

∫
∞

−∞
b(2−λ−q)xgq(x)dx < ∞, then

∫
∞

−∞

∫
∞

−∞

f(x)g(y)

(Aax + Bby)λ
dxdy <

< C

(∫
∞

−∞

a(2−λ−p)xfp(x)dx

) 1
p
(∫

∞

−∞

b(2−λ−q)xgq(x)dx

) 1
q

,

(55)

where the constant factor C =
(

A1−λ

B ln b

) 1
p
(

B1−λ

A lna

) 1
q
B
(

p+λ−2
p , q+λ−2

q

)
is the best

possible. This inequality is an extension of the result of Zhou et.al[22], where they
consider the parameter p ≥ q > 1, 1 − q

p < λ ≤ 2.

Remark 6. For u(x) = v(x), Theorem 4 gives (52).

For other appropriate values of λ, φp, φq, u(x) and v(x) taken in Theorem 2–5,
many new inequalities can be obtained.

5 Applications

In this section, we will give the generalizations of Hardy-Littlewood’s inequality.
Let f ∈ L2(0, 1) and f(x) 6= 0. If

an =

∫ 1

0
xnf(x)dx, n = 0, 1, 2, 3, . . .

then we have the Hardy-Littlewood’s inequality (see [1]) of the form

∞∑

n=0

a2
n < π

∫ 1

0
f2(x)dx (56)
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where the constant factor π is the best possible.
In [20, 21], Gao gave the integral version of Hardy-Littlewood’s inequality as

follows :
Let h ∈ L2(0, 1) and h 6= 0. If

f(x) =

∫ 1

0
tx|h(t)|dt, x ∈ [0,∞),

then ∫
∞

0
f2(x)dx < π

∫ 1

0
h2(t)dt (57)

and ∫
∞

0
f2(x)dx < π

∫ 1

0
th2(t)dt. (58)

Theorem 11. Let p > 1, 1
p + 1

q = 1, h ∈ L2(0, 1) and h(t) 6= 0. Define a function
f(x) by

f(x) = (u′(x))
1
p

∫ 1

0
tu(x)|h(t)|dt, x ∈ (a, b).

If 0 <
∫ b
a (u′(x))2−pfp(p−1)(x)dx < ∞ , then

(∫ b

a
fp(x)dx

)1+ 1
p

<
π

sin π
p

(∫ b

a
(u′(x))2−pfp(p−1)(x)dx

) 1
p
∫ 1

0
th2(t)dt. (59)

Proof. We can write

fp(x) = fp−1(x)u′(x)
1
p

∫ 1

0
tu(x)|h(t)|dt.

Now applying, Schwartz inequality and Corollary-1, we have
(∫ b

a
fp(x)dx

)2

=

=

{∫ 1

0

(∫ b

a
fp−1(x)u′(x)

1
p tu(x)− 1

2 dx

)
t

1
2 |h(t)|dt

}2

≤

≤

∫ 1

0

(∫ b

a
fp−1(x)u′(x)

1
p tu(x)− 1

2 dx

)2

dt ×

∫ 1

0
th2(t)dt =

=

(∫ b

a

∫ b

a

fp−1(x)u′(x)
1
p fp−1(y)u′(y)

1
p

u(x) + u(y)
dxdy

)
×

∫ 1

0
th2(t)dt ≤

≤
π

sin π
p

(∫ b

a
(u′(x))1−pfp(p−1)(x)u′(x)dx

) 1
p

×

×

(∫ b

a
(u′(x))1−qf q(p−1)(x)(u′(x))

q
p dx

) 1
q

×

∫ 1

0
th2(t)dt =

=
π

sin π
p

(∫ b

a
(u′(x))2−pfp(p−1)(x)dx

) 1
p
(∫ b

a
fp(x)dx

) 1
q

×

∫ 1

0
th2(t)dt.

(60)
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Since h(t) 6= 0, so, f(x) 6= 0. Hence it is impossible for equality in (60) and then we
get the inequality (59). This completes the theorem.

Theorem 12. Let p > 1, 1
p + 1

q = 1, h ∈ L2(0, 1) and h(t) 6= 0. Define a function
f(x) by

f(x) = (u(x))
1
2
−

1
p (u′(x))

1
p

∫ 1

0
tu(x)|h(t)|dt, x ∈ (a, b).

If 0 <
∫ b
a

(
u′(x)
u(x)

)2−p
fp(p−1)(x)dx < ∞ , then

(∫ b

a
fp(x)dx

)1+ 1
p

< π

(∫ b

a

(
u′(x)

u(x)

)2−p

fp(p−1)(x)dx

) 1
p ∫ 1

0
th2(t)dt. (61)

Proof. Proceeding as in Theorem refhlthm1 and using Corollary 2, we complete the
theorem.

Remark 7. Taking p = 2 in Theorem 11 and Theorem 12, we get

∫
∞

0
f2(x)dx < π

∫ 1

0
th2(t)dt (62)

which is a generalization of Hardy-Littlewood inequality (58).
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The cubic differential system with six real invariant

straight lines along three directions
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Abstract. We classify all cubic systems possessing exactly six real invariant straight
lines along three directions taking into account their degree of invariance. We prove
that there are 6 affine different classes of such systems. For every class we carried out
the qualitative investigation in the Poincaré disc.
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1 Introduction

We consider the real polynomial system of differential equations

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

and the vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y

associated to system (1).

Denote n = max{deg(P ), deg(Q)}. If n = 2 (n = 3) then system (1) is called
quadratic (cubic).

An algebraic curve f(x, y) = 0, f ∈ C[x, y] (a function f = exp(g/h); g, h ∈
C[x, y]) is called invariant algebraic curve (invariant exponential function) of the
system (1) if there exists a polynomial Kf ∈ C[x, y], deg(Kf ) ≤ n− 1 such that the
identity holds

X(f) ≡ f(x, y)Kf (x, y). (2)

It should be observed that if in (2) for invariant algebraic curve f(x, y) = 0 we
have Kf (x, y) ≡ fm(x, y)K(x, y) for any natural number m ∈ N and polynomial
K(x, y), then exp(1/f), ..., exp(1/fm) are invariant exponential functions. If, in ad-
dition, the polynomial f(x, y) does not divide K(x, y), then we say that the invariant
algebraic curve f(x, y) = 0 has the degree of invariance equal to m + 1.

Let f ∈ C[x, y] and f = fn1
1 · · · fns

s be its factorization in irreducible factors over
C[x, y]. Then f(x, y) = 0 is an invariant algebraic curve for (1) if and only if each
of the algebraic curves fj(x, y) = 0, j = 1, s, has this property.

c© V.Puţuntică, A. Şubă, 2009
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It is easy to see that there is no correlation between the degree of invariance of
the invariant algebraic curve f(x, y) = 0 and the degree of invariance of its factors
fj(x, y) = 0, j = 1, s, in general case. For example, for a system ẋ = x3, ẏ =
y(2x2 + y2), we have that x2 + y2 = 0 is an algebraic curve with the degree of
invariance equal to two, while for each of its factors x± iy = 0, i2 = −1, the degree
of invariance is equal to one. For the system [5]: ẋ = 2x3, ẏ = y(3x2 + y2), each of
the invariant straight lines x± iy = 0 has the degree of invariance equal to two, and
their product x2 + y2 = 0 has the degree of invariance equal to one.

Let f1(x, y) = 0, ..., fk(x, y) = 0 be some irreducibles invariant algebraic curves;
fk+1(x, y) = exp(gk+1/hk+1), ..., fs(x, y) = exp(gs/hs) be some invariant exponential
functions of the system (1) and let λ1, ..., λs be some real or complex numbers. We
compose the function

F = fλ1
1 · · · fλs

s . (3)

If F 6≡ const and X(F ) ≡ 0 (X(F ) ≡ −F (∂P
∂x + ∂Q

∂y )), i.e. F (x, y) = const is a
first integral (F is an integrating factor) for (1), then we say that the system (1) is
Darboux integrable. In order that (3) be a first integral (an integrating factor) for
(1), it is necessary and sufficient that cofactors Kf1 , ...,Kfs and numbers λ1, ..., λs

verify the identity
λ1Kf1(x, y) + · · · + λsKfs(x, y) ≡ 0

(
λ1Kf1(x, y) + · · · + λsKfs(x, y) ≡ −

∂P

∂x
−

∂Q

∂y

)
.

Later on, we will be interested in invariant algebraic curve of degree one, that is
invariant straight lines αx + βy + γ = 0.

A set of invariant straight lines can be infinite, finite or empty. Systems with
infinite number of invariant straight lines will not be considered.

At present a great number of works are dedicated to the investigation of poly-
nomial differential systems with invariant straight lines. Here we indicate some
problems and works concerning the polynomial differential system with invariant
straight lines.The problem of estimation for the number of invariant straight lines
which can have a polynomial differential system was considered in [2]; the problem
of coexistence of the invariant straight lines and limit cycles in {[9]: n = 2}; {[4]:
n = 3}; [10]; the problem of coexistence of the invariant straight lines and the sin-
gular points of a center type for the cubic system in [3, 11] An interesting relation
between the number of invariant straight lines and the possible number of directions
for them is established in [1].

The classification of all cubic systems possessing the maximum number of in-
variant straight lines taking into account their multiplicities is given in [5].

The cubic system with exactly eight and exactly seven invariant straight lines
has been studied in [5-7] and with six invariant straight lines along two directions
in [8].

In this paper a qualitative investigation of cubic systems with exactly six real
invariant straight lines along three direction is given.

The main obtained results are shown in the following theorem:
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Theorem. Any cubic system having real invariant straight lines along three direc-
tions with total degree of invariance six via affine transformation and time rescaling
can be written as one of the following six systems. The bifurcation diagrams in the
space of parameters and the phase portraits in the Poincaré disc are presented in the
figures for each system.





ẋ = x(x + 1)(x − a), a > 0,
ẏ = y(y + 1)(−a + dx + (1 − d)y), F ig.1
d(d − 1)(a + d − 1)(a − d + 2) 6= 0; (Fig.4.1;Tab.4.1, 4.2)

(4)





ẋ = x(x + 1)(x − a), a > 0,
ẏ = y(y + 1)(a(a − d + 1) + dx + (a + 1)(a − d + 1)y), F ig.2
d(a − d + 1)(a − d + 2)(2a − d + 1) 6= 0; (Fig.4.2;Tab.4.3, 4.4)

(5)

{
ẋ = x2(x + 1), d(d − 1) 6= 0,
ẏ = y(y + 1)(dx + (1 − d)y); Fig.3 (Tab.4.5)

(6)

{
ẋ = x2(x + 1), d(d − 1) 6= 0,
ẏ = y2(1 + dx + (1 − d)y); Fig.4 (Tab.4.6)

(7)

{
ẋ = x3,
ẏ = y2(2x − y); Fig.5

(8)





ẋ = x(x + 1)(a − ax + y),
ẏ = y(y + 1)(a + (2 − 3a)x + (2a − 1)y), F ig.6
a(3a − 1)(2a − 1)(2 − 3a)(a − 1) 6= 0. (Tab.4.7, 4.8)

(9)

1) 2) 3)

4) 5) 6)
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7) 8) 9)

10) 11) 12)
Fig. 1.

1) 2) 3)

4) 5) 6)
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7) 8) 9)
Fig. 2.

1) 2) 3)

4) 5)
Fig. 3.

1) 2) 3)
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4)
Fig. 4 Fig. 5.

1) ⇄ 2) 3)
Fig. 6.

2 Preliminaries

We consider the real cubic differential system




dx

dt
=

∑3
r=0 Pr(x, y) ≡ P (x, y),

dy

dt
=

∑3
r=0 Qr(x, y) ≡ Q(x, y), GCD(P,Q) = 1,

(10)

where Pr(x, y) =
∑

j+l=r

ajlx
jyl, Qr(x, y) =

∑
j+l=r

bjlx
jyl. It is assumed that the

right-hand sides of the system (10) have not a non-constant common factor.
We will mention some properties of the system (10):
2.1) in the finite part of the phase plane the system (10) has at most nine singular

points;
2.2) at infinity the system (10) has at most four singular points if yP3(x, y)

−xQ3(x, y) 6≡ 0. In the case yP3(x, y)− xQ3(x, y) ≡ 0 the infinity is degenerate, i.e.
consists only of singular points;

2.3) in the finite part of the phase plane the system (10) can not have more than
three colinear singular points;

2.4) in the finite part of the phase plane the system (10) has no more than eight
invariant straight lines [5, 6];
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2.5) the infinity for (10) represents an invariant straight line;
2.6) the system (10) has invariant straight lines along at most six different

directions [1, 12];
2.7) the system (10) can not have more than three invariant straight lines parallel

among themselves.
Let ajx + bjy + cj = 0, j = 1, 2, a1b2 − a2b1 6= 0 be two real invariant straight

lines of the system (10). The transformation X = a1x+ b1y + c1, Y = a2x+ b2y + c2

reduces (10) to a system of the Lotka-Volterra form

{
ẋ = x(a10 + a20x + a11y + a30x

2 + a21xy + a12y
2),

ẏ = y(b01 + b11x + b02y + b21x
2 + b12xy + b03y

2)
(11)

(we preserved the old notations).
The property 2.7) says that every cubic system with at least four real invariant

straight lines can be written in the form (11).
For system (11) a straight line y = Ax + B, A 6= 0 is invariant if and only if A

and B are the solutions of the system:

B(b01 + b02B + b03B
2) = 0,

b11B + b12B
2 + [b01 − a10 + (2b02 − a11)B + (3b03 − a12)B

2] · A = 0,
b21B + [b11 − a20 + (2b12 − a21)B] · A + [b02 − a11 + (3b03 − 2a12)B] · A2 = 0,
b21 − a30 + (b12 − a21) · A + (b03 − a12) · A

2 = 0.

(12)

Its cofactor is

K(x, y) = c00 + c10x + c01y + c20x
2 + c11xy + c02y

2,

where
c00 = b01 + b02B + b03B

2, c01 = b02 + b03B,

c10 = b11 + b12B + (b02 − a11)A + (2b03 − a12)AB,

c20 = b21 + (b12 − a21)A + (b03 − a12)A
2, c11 = b12 + (b03 − a12)A, c02 = b03.

The invariant straight line Ax − y + B = 0, A 6= 0, of (11) has the degree
of invariance not less than two if and only if A and B verify the following seven
relations:

B(b02 + 2b03B) = 0, b01 + 2b02B + 3b03B
2 = 0,

a10A + 2b02AB + (b12 + 6b03A − a12A)B2 = 0,
a20 + b02A + 2(b12 + 3b03A − a12A)B = 0,
b11 − a20 + (b02 − a11)A = 0, a30 + b12A + (2b03 − a12)A

2 = 0,
b21 + (2b12 − a21)A + (3b03 − 2a12)A

2 = 0.

(13)

In this case, the cofactor of invariant straight line is K(x, y) = c00 + c10x + c01y,
where

c00 = −b02 − 2b03B, c10 = −b12 + (a12 − 2b03)A, c01 = −b03.
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Proposition 1. Let the cubic system have two real not parallel invariant straight
lines l1 and l2, of which l1 has the degree of invariance equal to m, 1 ≤ m ≤ 3. Then
the number of singular points lying on l2 \ l1 is at most 3 − m.

Proof. In hypothesis of Proposition 1 via affine transformation, system (10) can be
written in the form:

ẋ = xmP̃3−m(x, y), ẏ = yQ̃2(x, y), (14)

where P̃i, Q̃i are polynomials of degree at most i and P̃3−m(x, 0) 6≡ 0, P̃3−m(0, y) 6≡ 0.
The system (14) has the invariant straight lines l1 : x = 0 and l2 : y = 0 of which l1
has the degree of invariance equal to m. The assertion of Proposition 1 follows from
the fact that the equation P̃3−m(x, 0) = 0 can not have more than 3 − m roots.

We say that the straight lines l1, l2 and l3 are of generic position (”triangle”
position) if li ∩ lj 6= ∅ and l1 ∩ l2 ∩ l3 = ∅.

Proposition 2. If cubic system (10) has three real invariant straight lines of generic
position, then the sum of their degrees of invariance is at most four.

Proof. We mention that any invariant straight line of the cubic system (10) can not
have the degree of invariance more than three.

As the point of intersection of two invariant straight lines is a singular point for
(10), Proposition 1 does not allow that any of these three straight lines l1, l2 and l3
to have the degree of invariance equal to three.

Let each of the invariant straight lines l1 and l2 has the degree of invariance
equal to two. By affine transformation and time rescaling the system (10) can be
written in the form:

{
ẋ = x2(a + bx + y) ≡ P (x, y),
ẏ = y2(c + dx + ey) ≡ Q(x, y), GCD(P,Q) = 1,

(15)

for which l1 = x and l2 = y, and equalities (12) have the form

B2(c + eB) = 0, 2cA + dB + 3eAB = 0,
a + (1 − 2d)B − cA − 3eAB = 0, eA2 + (d − 1)A − b = 0.

(16)

Let l3 = y−Ax−B, AB 6= 0. The points (0, B) = l1∩ l3 and (−B/A, 0) = l2∩ l3
are singular points for (15). Therefore, P (−B/A, 0) = Q(0, B) = 0, yielding A =
−c/a and B = −c/b. Substituting these values of A and B in the first three equalities
of (16), we get that c = ab, d = b2 and e = b. In this case, GCD(P,Q) = a + bx + y.
So, the assumption that system (15) can have invariant straight lines not passing
through the origin of coordinates is false.
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3 Canonical forms and Darboux integrability

There are the following possible configurations of six invariant straight lines along
three directions:

1) (3, 2, 1); 2) (3(2), 2, 1); 3) (3(3), 2, 1); 4) (3, 2(2), 1);

5) (3(2), 2(2), 1); 6) (3(3), 2(2), 1); 7) (2, 2, 2); 8) (2(2), 2, 2);

9) (2(2), 2(2), 2); 10) (2(2), 2(2), 2(2)).

Notation (3, 2, 1) means that along one direction there are three distinct straight
lines, along the second direction there are two distinct invariant straight lines and
along the third direction there is one invariant straight line; (3(2), 2, 1) means that
along one direction the differential system has two distinct straight lines from which
one is double (i.e. has the degree of invariance equal to two), along the second
direction there are two distinct invariant straight lines and along the third direction
there is one invariant straight line and so on.

3.1) Configuration (3, 2, 1). We note that the point of intersection of two real
invariant straight lines of the system (10) is a singular point for this system.

Assume that the cubic system (10) has six distinct invariant straight lines, in-
cluding one couple Then, taking into account the property 2.3) from Section 2, the
given straight lines can have (up to some affine transformation) one of the following
2 geometric positions given in Fig. 3.1.

5

4

2

l6

b)a)

l3

l

l

l6

ll1

Fig. 3.1

The cubic system which includes both configurations, via affine transformation
and time rescaling can be written in the form

{
ẋ = x(x + 1)(x − a), a > 0,
ẏ = y(y + 1)(c + dx + ey), d(|e| + |c(c − d)(c + ad)|) 6= 0.

(17)

The system (17) has the invariant straight lines

l1 ≡ x = 0, l2 ≡ y = 0, l3 ≡ x + 1 = 0, l4 ≡ y + 1 = 0, l5 ≡ x − a = 0.

We have to determine the conditions on parameters c, d and e such that (17)
has only one invariant straight line of the form l6 ≡ y − Ax − B = 0, A 6= 0.

For (17) the equalities (12) look as:
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B(B + 1)(eB + c) = 0, dB + dB2 + [a + c + 2(c + e)B + 3eB2] · A = 0,
A · [a + d − 1 + (c + e)A + 2dB + 3eAB] = 0, eA2 + dA − 1 = 0.

(18)

Otherwise, we observe that the fourth equation of (18) doesn’t allow for cubic
system of ẋ = x(x + 1)(x − a), ẏ = cy(y + 1), a|c| > 0 the configuration (3, 2, 1) to
be realized.

In the cases a) the straight line l6 has the equation y = x. Putting in (18) A = 1
and B = 0, we obtain

c = −a, e = 1 − d. (19)

In conditions (19) the equalities (18) show that the straight line y = −x/a
(y = (x − a)/(a + 1)) is invariant for (17) if a + d − 1 = 0 (a − d + 2 = 0).

Equalities (19) and inequality (a + d − 1)(a − d + 2) 6= 0 show that for (17) the
case a) is realized, excluding, at the same time, the cases when (17) can has more
than 6 invariant straight lines. In these conditions, (17) can be written in the form
(4).

In the cases b) the straight line l6 : y = (x − a)/(a + 1) is invariant for (17) if

c = a(1 + a − d), e = (a + 1)(1 + a − d). (20)

If a−d+2 = 0 (2a−d+1 = 0) then (17) has the invariant straight line l7 = x−y
(l7 = x − ay − a).

The conditions (20) and (a − d + 2)(2a − d + 1) 6= 0 reduce (17) to the system
(5).

The systems (4) and (5) are Darboux integrable and have respectively the inte-
grating factors:

µ(x, y) = xa/δ(x + 1)−(a+1)/δ(x − a)−2y(d−a−2)/δ(y + 1)(d+a−1)/δ(y − x)d/δ,

µ(x, y) = x−2(x + 1)−σ(x − a)−aσy−(1+σ)(y + 1)−(1+aσ)

(
y −

x − a

a + 1

)dσ

,

where δ = 1 − d, σ = 1/(a − d + 1).

3.2) Configuration (3(2), 2, 1). The cubic system (10), with invariant straight
lines of configuration (3(2), 2), via affine transformation and time rescaling, can be
written in the form

{
ẋ = x2(x + 1),
ẏ = y(y + 1)(c + dx + ey), d(|e| + |c(c − d)|) 6= 0.

(21)

For this system the conditions (12) for the existence of invariant straight lines
are of the form (18) with a = 0.

For (21), the invariant straight line x = 0 has the degree of invariance equal to
two. Taking into account the propriety 2.3) and Proposition 1, the system (21) can
have invariant straight lines along three directions only of one of the following two
geometric positions indicated in Fig. 3.2.
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b)a)

l
6

l6

2 2

b)a)

l
6

l6

2

2

2

2

Fig. 3.2 Fig. 3.3

It is obvious that geometrical position of the straight lines in a) and b) are affine
equivalent. We will examine only the case a). In order the straight line which passes
through singular points (−1,−1) and (0, 0), i.e. the straight line y = x, to be
invariant for (21), it is necessary that c = 0 and e = 1− d. In this conditions, (21) is
reduced to the form (6). This system is Darboux integrable and has an integrating
factor

µ(x, y) = x−2(x + 1)−1/δy−1−1/δ(y + 1)−1(y − x)d/δ,

where δ = 1 − d.

3.3) Configuration (3(3), 2, 1) and (3.2(2), 1). The property 2.3) and Propo-
sition 1 do not allow the realization of these configurations.

3.4) Configuration (3(2), 2(2), 1). Considering the configuration (3(2), 2(2)) of
invariant straight lines we obtain the system

{
ẋ = x2(x + 1),
ẏ = y2(c + dx + ey), d(|e| + |c(c − d)|) 6= 0,

(22)

which has the invariant straight lines l1 = x, l2 = x + 1, l3 = y and the invariant
exponential functions l4 = exp(1/x), l5 = exp(1/y). The straight lines l1 and l3 have
the degree of invariance equal to two.

Proposition 2 allows only the positions from Fig.3.3 of the straight lines l1, l2, l3
and l6 = y − Ax − B, A 6= 0.

For (22) the equations (12) with condition A 6= 0 can be written as:

B2(c + eB) = 0, (dB + (2c + 3eB)A)B = 0,
cA + (2d + 3eA)B − 1 = 0, eA2 + dA − 1 = 0.

(23)

On the straight line l3 = x+ 1 the system (22) can have only the singular points
(−1, 0) and (−1, (d − c)/e). The straight line which passes through the points (0, 0)
and (−1, (d − c)/e) is described by the equation y = (c − d)x/e. Putting in (23)
A = (c − d)/e and B = 0, we obtain that e = cd(c − d). This leads to the system

ẋ = x2(x + 1), ẏ = y2(c + dx + c(c − d)y), c(c − d) 6= 0,

which by substitutions d → cd, x → x, y → y/c can be reduced to a system (7).
The system (7) is Darboux integrable and has an integrating factor

µ(x, y) = x−1/δ exp(δ/x)(x + 1)−2y(2d−3)/δ exp(−δ/y)(y − x)d/δ ,
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where δ = 1 − d.

3.5) Configuration (3(3), 2(2), 1). For first step we consider the system

ẋ = x3, ẏ = y2(c + dx + ey), d(|c| + |e|) 6= 0. (24)

For (24) the equalities (12) look as:

B2(c + eB) = 0, (dB + (2c + 3eB)A)B = 0,
cA + (2d + 3eA)B = 0, eA2 + dA − 1 = 0.

(25)

Proposition 1 allows for differential system (24) to have besides the straight lines
l1,2,3 = x, l4,5 = y also the invariant straight lines of the form y = Ax, A 6= 0.
Putting in (25) B = 0, we obtain that c = 0 and A1,2 = (−d ±

√
d2 + 4e)/(2e). If

d2 + 4e > 0 (d2 + 4e < 0), the system (24) has seven (five) real straight lines, and
if d2 + 4e = 0, i.e. e = −d2/4, after a transformation y → 2y/d we come to the
system (8) with invariant straight line l6 = x − y. This system has an integrating
factor µ(x, y) = 1/(xy(x − y)2).

3.6) Configuration (2, 2, 2). Taking into account the propriety 2.3), the system
(10) with such configuration has at least two singular points through which three
invariant straight lines of different directions pass. By a translation one of these
points can be brought at the origin. The system (10) realizing this configuration via
an affine transformation and time rescaling can be brought to the form

{
ẋ = x(x + 1)(a + bx + y) ≡ P (x, y),
ẏ = y(y + 1)(c + dx + ey) ≡ Q(x, y), GCD(P,Q) = 1.

(26)

For (26) the equalities (12) look as:





B(B + 1)(c + eB) = 0,
(c − a)A + dB + dB2 + (2c + 2e − 1 + 3eB)AB = 0,
d − a − b + (c + e − 1)A + (2d − 1)B + 3eAB = 0,
eA2 + (d − 1)A − b = 0.

(27)

Besides the invariant straight lines l1 = x, l2 = x + 1, l3 = y, l4 = y + 1, we
will seek the conditions on parameters of (27) such that it has exactly two more
invariant straight lines of the form y = Ax, y = Ax + B, AB 6= 0. For this, we put
B = 0 in (27). The second equation of (27) gives c = a, and the third one becomes

d − a − b + (a + e − 1)A = 0. (28)

In assumption that AB 6= 0 and c = a, the system of equations ((27), (28)) has
the following solutions:

1) b = −a, c = a, d = 2 − 3a, e = 2a − 1, A = 1, B = −1.
System (26) with the conditions above has the invariant straight lines l5 = y −

x, l6 = y−x+1. The condition GCD(P,Q) = 1 implies the inequality a(2a−1)(a−
1) 6= 0, and the inequality 2− 3a 6= 0 excludes the existence of a triplet of invariant
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straight lines parallel to axis Ox. If 3a− 1 = 0, then the given system has two more
invariant straight lines of the form: l7 = y + x + 1 and l8 = y − x − 1.

2) b = (a − 1)/2, c = a, d = (3a + 1)/2, e = −a, A = B = 1

(l5 = y − x, l6 = y − x − 1, a(9a2 − 1)(a2 − 1) 6= 0);

3) b = 1 − a, c = a, d = 3a − 1, e = 2a − 1, A = B = −1

(l5 = y + x, l6 = y + x + 1, a(a − 1)(2a − 1)(3a − 1)(3a − 2) 6= 0);

4) b = 2a− 1, c = a, d = 3a− 1, e = 1− a, A = (1− 2a)/(1 − a), B = a/(a− 1)

(l5 = y + (1 − 2a)x/(a − 1), l6 = y + ((1 − 2a)x − a)/(a − 1), l7 = y − x).

If conditions 4) hold, then (26) has seven invariant straight lines and, will be
not considered. Moreover, it is sufficient to consider only the case 1), as the case 2)
(3)) can be reduced to the case 1) via the change

a →
a

2 − 3a
, x → y, y → x, t → (2 − 3a)t

(a → 1 − a, x → x, y → −y − 1, t → −t).

Inclusion of system (9) in the statement of Theorem in Section I is motivated.
This system has the integrating factor

µ(x, y) =
[
y(x + 1)(y − x + 1)

√
x(y + 1)(y − x)

]
−1

.

3.7) Configuration (2(2), 2, 2). Let cubic system (10) have distinct invariant
straight lines lj, j = 1, 5, of which l1||l2, l3||l4 and l5 has the degree of invariance
equal to two. According to Proposition 1, the straight line l5 must go through the
points of intersection of straight lines l1 and l3, l2 and l4 (or l1 and l4, l2 and l3. This
case is reduced to the previous one by changing the enumeration of straight lines).
In our assumptions, via affine transformation and time rescaling the system (10) can
be written in the form of (26). For (26) the straight lines l1 = x, l2 = x + 1, l3 = y
and l4 = y + 1 are invariant, and the equalities (13) look as:

B(c + e + 2eB) = 0, c + 2(c + e)B + 3eB2 = 0,
aA + 2(c + e)AB + 6eAB2 = 0,
a + b + (c + e)A + 2dB + 6eAB = 0,
d − a − b + (c + e − 1)A = 0,
b + dA + 2eA2 = 0, A(2d − 1 + 3eA) = 0.

(29)

The straight line l5 is given by the formula x − y = 0. This line is invariant for
(26) if A = 1 together with B = 0 are the solution of (29). Substituting in (29)
these values of A and B, we obtain that a = c = b + 1 = d + 1 = e − 1 = 0, which
implies GCD(P,Q) = y − x.

3.8) Configuration (2(2), 2(2), 2). Proposition 2 does not allow the realization
of this configuration.

3.9) Configuration (2(2), 2(2), 2(2)). Taking into account Proposition 2, the
invariant straight lines of this configuration should have a common point.
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We consider the cubic system (15), where the straight lines l1 = x and l2 = y are
invariant and have the degree of invariance equal to two. In this case the equalities
(13) look as:

B(c + 2eB) = 0, B(2c + 3eB) = 0, B(2cA + dB + 6eAB) = 0,
a + cA + 2dB + 6eAB = 0, a − cA = 0,

b + dA + 2eA2 = 0, A(2d − 1 + 3eA) = 0.
(30)

To determine the third invariant straight line l3 = Ax − y, A 6= 0, with the
same degree of invariance, we put in the equalities (30) B = 0 and resolve them
for A 6= 0. The fourth and fifth equalities of ((30), B = 0) give a = c = 0. The
condition GCD(P,Q) = 1 implies e 6= 0. From six and seven equalities of (30) we
obtain e = (2 − d)(2d − 1)/(9b) and A = 3b/(d − 2). Thus, we come to the system

{
ẋ = x2(bx + y), d(d + 1)(2d − 1)(d − 2) 6= 0,
ẏ = y2(dx + (2 − d)(2d − 1)y/(9b)),

which besides the invariant straight lines x = 0, y = 0, 3bx + (2 − d)y = 0 with the
degree of invariance equal to two, also has the invariant straight line 3bx+(1−2d)y =
0.

4 The phase portraits

We mention that the cubic system with at least four real invariant straight lines
has no limit cycles [10]. Hence, the behaviour of trajectories in this system and, in
particular, of system with six real invariant straight lines, is imposed by the type of
singular points.

We denote by SP singular points; λ1 and λ2 the eigenvalues of SP ; S − saddle
(λ1λ2 < 0); N s − stable node (λ1, λ2 < 0), Nu − unstable node (λ1, λ2 > 0);
S − N s(u) − saddle-node with stable (unstable) parabolic sector; P s(u) − stable
(unstable) parabolic sector; H − hyperbolic sector.

4.1. System (4). The coordinates of singular points of system (4) in the
finite and infinite parts of the phase plane Oxy, also the eigenvalues λ1, λ2 of the
characteristic equation, corresponding to each of these points, are shown in Tab.4.1.
In this table the following notations: α = 1 + a, δ = 1 − d were used.

Tab. 4.1
SP O1(0, 0) O2(−1,−1) O3(a, 0) O4(0,−1) O5(0, a/δ)

λ1;λ2 −a; −a α; α aα; −aδ −a; a + δ −a; a(a + δ)/δ

SP O6(−1, 0) O7(−1, (a + d)/δ) O8(a,−1) O9(a, a) I1(1, 0, 0)

λ1;λ2 α; −a − d α; α(a + d)/δ aα; αδ aα; aαδ −1; −1

SP I2(0, 1, 0) I3(1, 1, 0) I4(1,−1/δ, 0)
λ1;λ2 −δ; −δ −1; 2 − d −1; 1 + 1/δ

The singular point I1 is a stable node. Taking into account that a > 0, at
the point O1 (O2) the system (4) has a stable (unstable) node. Whatever are the
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parameters a, a > 0 and d, the types of points O8 and O9 coincide. In the case
a + δ = 0, i.e. 1 + a − d = 0, (a + d = 0; d = 2) the singular points O4 and O5

(respectively O6 and O7; I3 and I4) coincide.

By means of the straight lines d = 0, d = 1, d = 2, a = 0, 2+a−d = 0, 1+a−d =
0, a+d−1 = 0, a+d = 0 we divide the half-plane a > 0 of parameters space a and d
in sectors (Fig. 4.1). In Fig. 4.1 by V we denote the semi-line 1+a− d = 0, d > 2);
by V I − the segment of straight line (1 + a − d = 0, 1 < d < 2); by V II − the
semi-line (d = 2, a > 1); by V III − the segment (d = 2, 0 < a < 1); by IX
− the point (2, 1); by XII − the semi-line (a + d = 0, d < 0); by I − the open
domain bounded by straight lines a = 0, d = 2, 1 + a − d = 0 without the semi-line
(a − d + 2 = 0, 2 < d < +∞) and so on.

IV

V

VIII

XI

VII

I

I

XI

X

X

X III

VI

II

d

X

XII

210

a d=1

a-
d+1=0

a-
d+2=0

a+
d-1=

0

a+
d=

0

d=2

Fig. 4.1

For system (4) the results of qualitative investigation of singular points O3 −
O8, I2 − I4 in each of the sectors I − XII are given in Tab. 4.2.

Tab. 4.2
SP I/II III/IV V/V I V II/V III IX X/XI XII

O3 Nu Nu Nu Nu Nu S S

O4 N s S S−N s S/N s S−N s S S

O5 S N s − N s/S − S S

O6 S S S S S S/Nu S−Nu

O7 S S S S S Nu/S −

O8 S S S S S Nu Nu

I2 Nu Nu Nu Nu Nu N s N s

I3 N s/S S/N s N s/S S−N s S−N s S S

I4 S/N s N s/S S/N s − − S S

Fig. 1 : 1)/2) 3)/4) 5)/6) 7)/8) 9) 10)/11) 12)

4.2. System (5). For (5) the singular points and and the eigenvalues of the
characteristic equation are shown in Tab. 4.3, where α = 1 + a.
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Tab. 4.3
SP O1(−1,−1) O2(a, 0) O3(0,−1) O4(0, 0)

λ1; λ2 α; α aα; aα −a; α − d −a; a(α − d)

SP O5(0,−a/α) O6(−1, 0) O7(−1, d−a
α+d) O8(a,−1)

λ1; −a; α; α; aα;
λ2 a(d − α)/α α(a − d) α(d − a)/(α − d) α(1 − d)

SP O9(a, a/(d − α)) I1(1, 0, 0) I2(0, 1, 0) I3(1, 1/α, 0)

λ1; aα; −1; α(d − α); −1;
λ2 aα(d − 1)/(α − d)) −1 α(d − α) 2 − d/α

SP I4(1, 1/(d − α), 0)
λ1; λ2 −1; 1 + α/(d − α)

For the system (5) the singular points O1 and O2 are unstable nodes, but point
I1 is a stable node. At every point of the half-plane a > 0 the points O3 and O4 are
of the same type. If a − d = 0 (d = 1; 2a − d + 2 = 0), then the points O6 and O7

(respectively: O8 and O9; I3 and I4) coincide.

IV

V

VIII

IX

VII
I

II

X

III

VI

XII

d

XI

210

a d=1

a-
d+1=0

a-
d+2=0

2a-d+2=0VI II

a-
d=0

II

II

2a-d+=0

Fig. 4.2

The partition of the half-pane a > 0 in sectors and the qualitative study of
singular points O4 − O9, I2 − I4 are given in Fig. 4.2 and Tab. 4.4 respectively.

Tab. 4.4
SP I/II III IV/V V I/V II V III/IX X/XI XII

O4 N s N s S S S S S

O5 S S N s N s N s N s N s

O6 S S S/Nu Nu/S S−Nu Nu/S S−Nu

O7 S S Nu/S S − S/Nu −

O8 S S S Nu Nu/S S−Nu S−Nu

O9 S S Nu S/Nu S/Nu − −

I2 Nu Nu N s N s N s N s N s

I3 N s/S S−N s S S S S S

I4 S/Nu − S S S S S

Fig. 2 : 1)/2) 3) 4)/5) 6)/5) 7)/8) 8)/7) 9)
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4.3. System (6). This system has five singular points in the finite part of
the phase plane: O1(0, 0), O2(−1, 0), O3(−1,−1), O4(0,−1), O5(−1, d/(1 − d));
and four singular points at the infinity: I1(1, 0, 0), I2(0, 1, 0), I3(1, 1, 0), I4(1, 1/(d−
1), 0). Among these singular points only O1(0, 0) has the both eigenvalues of the
characteristic equation equal to zero (see Tab. 4.5). To determine the behavior
of trajectories in the neighborhood of this point, we write the system (6) in polar
coordinates x = ρ cos θ, y = ρ sin θ :





dρ

dτ
= ρ[cos3 θ(1 + ρ cos θ) + sin2 θ(1 + ρ sin θ)(d cos θ + δ sin θ)],

dθ

dτ
= sin θ cos θ(sin θ − cos θ)(ρ cos θ + δ(1 + ρ sin θ)),

(31)

where τ = ρt, δ = 1−d. The singular points of system (31) with the first coordinate
ρ = 0 and the second θ ∈ [0, 2π), and their eigenvalues are {M1(0, 0),M2(0, π) :
λ1 = 1, λ2 = d− 1}; {M3(0, π/2), M4(0, 3π/2) : λ1 · λ2 = −(1− d)2}; {M5(0, π/4) :
λ1 = 1/

√
2, λ2 = (1 − d)/

√
2}; {M6(0, 5π/4) : λ1 = −1/

√
2, λ2 = −(1 − d)/

√
2}.

The types of these points can differ only if d passes through value 1. If d < 1, we
have Fig. 4.3, and if d > 1, we have Fig. 4.4.

H

H
P

s

P
u

y

x

DN
s

DN
u

S

S

S S

Fig. 4.3 (d < 1).

Fig. 4.4 (d > 1).

In the case of system (6) we have Tab. 4.5.
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Tab. 4.5
SP λ1; λ2 d < 0 0 < d < 1 1 < d < 2 d = 2 d > 2

O1 0; 0 P uHP sH P uHP sH P uHP sH P uHP sH P uHP sH

O2 1; −d Nu S S S S

O3 1; 1 Nu Nu Nu Nu Nu

O4 0; 1 − d S − Nu S − Nu S − N s S − N s S − N s

O5 1; d
1−d S Nu S S S

I1 −1; −1 N s N s N s N s N s

I2 d − 1; d − 1 N s N s Nu Nu Nu

I3 −1; 2 − d S S S S − N s N s

I4 −1; 2−d
1−d S S N s − S

Fig. 3 : 1) 2) 3) 4) 5)

4.4. System (7). This system has the singular points: O1(0, 0), O2(−1, 0),
O3(−1,−1), O4(0,

1
d−1 ), I1(1, 0, 0), I2(0, 1, 0), I3(1, 1, 0), I4(1,

1
d−1 , 0), whose char-

acterizations are given in Tab. 4.6.

Tab. 4.6
SP λ1; λ2 d < 1, d 6= 0 1 < d < 2 d = 2 d > 2

O1 0; 0 P uHP sH P uHP sH P uHP sH P uHP sH

O2 0; 1 S − Nu S − Nu S − Nu S − Nu

O3 1; 1 − d Nu S S S

O4 0; 1/(1 − d) S − Nu S − N s S − N s S − N s

I1 −1; −1 N s N s N s N s

I2 d − 1; d − 1 N s Nu Nu Nu

I3 −1; 2 − d S S S − N s N s

I4 −1; 2−d
1−d S N s − S

Fig. 4 : 1) 2) 3) 4)

As in the case of system (6), the behavior of the trajectories in the neighborhood
of singular point O1(0, 0) was established by using the blow-up method for (7) in
polar coordinates:





dρ

dτ
= ρ[cos3 θ(1 + ρ cos θ) + sin3 θ(1 + dρ cos θ + (1 − d)ρ sin θ)],

dθ

dτ
= sin θ cos θ(sin θ − cos θ)(1 + ρ cos θ + (1 − d)ρ sin θ)),

(32)

where τ = ρt. The singular points of (32) with ρ = 0 and θ ∈ [0, 2π) and their
eigenvalues: {M1(0, 0),M2(0, π),M3(0, π/2),M4(0, 3π/2) : λ1 = −1, λ2 = 1};
{M5(0, π/4) : λ1 = λ2 = 1/

√
2}; {M6(0, 5π/4) : λ1 = λ2 = −1/

√
2}, lead us

to Fig. 4.3.

4.5. System (8). This system has in finite parts of the phase plane a singular
point O(0, 0) with λ1 = λ2 = 0 and at infinity singular points I1(1, 0, 0); I2(0, 1, 0);
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I3(1, 1, 0) with λ1 = λ2 = −1; λ1 = λ2 = 1; λ1 = −1, λ2 = 0. We have that I1 is N s;
I2 − Nu; I3 − S−N s and O − P uHHP uHH (see Fig. 5).

4.6. System (9). For (9) the singular points and the eigenvalues of the char-
acteristic equation are shown in Tab. 4.7. In this table we used the notations:
β = a − 1, γ = 2a − 1.

Tab. 4.7
SP O1(0, 0) O2(−1, 0) O3(−1,−1) O4(1, 0)

λ1;λ2 a; a −2a; 2γ −γ;−γ −2β;−2a

SP O5(−1,−2) O6(0,−1) O7(β/a,−1) O8(a/β, a/β)

λ1;λ2 −2β; 2γ β;β −βγ/a; 2βγ/a −aγ/β; 2aγ/β

SP O9(0, a/γ) I1(1, 0, 0) I2(0, 1, 0) I3(1, 1/β, 0)

λ1;λ2 −aβ/γ; 2aβ/γ a; a γ; γ β;β

SP I4(1, a/γ, 0)
λ1; λ2 −aβ/γ; 2aβ/γ

We divide the real axis in intervals J1 = (−∞, 0), J2 = (0, 1/3), J3 = (1/3, 1/2),
J4 = (1/2, 2/3), J5 = (2/3, 1), J6 = (1,+∞); J = J1 ∪ J2 ∪ · · · ∪ J6.

The eigenvalues λ1 and λ2 of the characteristic equation corresponding to each
singular point, in intervals J1 and J6 differ only by sign. Therefore, from the qual-
itative point of view the phase portraits of system (9) in intervals J1 and J6, differ
only by directions on trajectories.

Singular points O7, O8, O9 and I4 are saddles for every a ∈ J. The types of other
singular points (i.e. O1 − O6, I1, I2, I3) are shown in Tab. 4.8.

Tab. 4.8
SP J1 (J6) J2, J3 J4, J5

O1 N s(u) Nu Nu

O2 S N s S

O3 Nu(s) Nu N s

O4 Nu(s) S S

O5 S S Nu

O6 N s(u) N s N s

I1 N s(u) Nu Nu

I2 Nu(s) Nu N s

I3 N s(u) N s N s

Fig. 6 : 1 ⇄) 2) 3)
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Abstract. By means of the Sălăgean differential operator we define a new class
BS(m,µ, α) involving functions f ∈ An. Parallel results for some related classes
including the class of starlike and convex functions respectively are also obtained.
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1 Introduction and definitions

Let An denote the class of functions of the form

f(z) = z +

∞∑

j=n+1

ajz
j (1)

which are analytic in the open unit disc U = {z : |z| < 1} and H(U) be the space of
holomorphic functions in U , n ∈ N = {1, 2, ...}.

Let S denote the subclass of functions that are univalent in U .
By S∗ (α) we denote a subclass of An consisting of starlike univalent functions

of order α, 0 ≤ α < 1, which satisfy

Re

(
zf ′(z)

f(z)

)
> α, z ∈ U. (2)

Further, a function f belonging to S is said to be convex of order α in U , if and
only if

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> α, z ∈ U (3)

for some α (0 ≤ α < 1) . We denote by K(α) the class of functions in S which are
convex of order α in U and denote by R(α) the class of functions in An which satisfy

Ref ′(z) > α, z ∈ U. (4)

It is well known that K(α) ⊂ S∗(α) ⊂ S.

c© Alina Alb Lupaş, Adriana Cătaş, 2009
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If f and g are analytic functions in U , we say that f is subordinate to g, written
f ≺ g, if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U
such that f(z) = g(w(z)) for all z ∈ U . If g is univalent, then f ≺ g if and only if
f(0) = g(0) and f(U) ⊆ g(U).

Let Dm be the Sălăgean differential operator [3], Dm : An → An, n ∈ N,
m ∈ N ∪ {0}, defined as

D0f (z) = f (z) ,

D1f (z) = Df(z) = zf ′(z),

Dmf(z) = D(Dm−1f(z)), z ∈ U.

We note that if f ∈ An, then

Dmf (z) = z +

∞∑

j=n+1

jmajz
j , z ∈ U.

To prove our main theorem we shall need the following lemma.

Lemma 1 (see [2]). Let p be analytic in U with p(0) = 1 and suppose that

Re

(
1 +

zp′(z)

p(z)

)
>

3α − 1

2α
, z ∈ U. (5)

Then Rep(z) > α for z ∈ U and 1/2 ≤ α < 1.

2 Main results

Definition 1. We say that a function f ∈ An is in the class BS(m,µ, α), n ∈ N,
m ∈ N ∪ {0}, µ ≥ 0, α ∈ [0, 1) if

∣∣∣∣∣
Dm+1f (z)

z

(
z

Dmf(z)

)µ

− 1

∣∣∣∣∣ < 1 − α, z ∈ U. (6)

Remark 1. The family BS(m,µ, α) is a new comprehensive class of analytic functions
which includes various new classes of analytic univalent functions as well as some
very well-known ones. For example, BS(0, 1, α)≡S∗ (α) , BS(1, 1, α)≡K (α) and
BS(0, 0, α)≡R (α). Another interesting subclass is the special case BS(0, 2, α)≡B (α)
which has been introduced by Frasin and Darus [1] and also the class BS(0, µ, α) ≡
B(µ, α) which has been introduced by Frasin and Jahangiri [2].

In this note we provide a sufficient condition for functions to be in the class
BS(m,µ, α). Consequently, as a special case, we show that convex functions of
order 1/2 are also members of the above defined family.

Theorem 1. For the function f ∈ An, n ∈ N, m ∈ N∪ {0}, µ ≥ 0, 1/2 ≤ α < 1 if

Dm+2f (z)

Dm+1f (z)
− µ

Dm+1f (z)

Dmf (z)
+ µ ≺ 1 + βz, z ∈ U, (7)
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where

β =
3α − 1

2α
,

then f ∈ BS(m,µ, α).

Proof. If we consider

p(z) =
Dm+1f (z)

z

(
z

Dmf(z)

)µ

(8)

then p(z) is analytic in U with p(0) = 1. A simple differentiation yields

zp′(z)

p(z)
=

Dm+2f (z)

Dm+1f (z)
− µ

Dm+1f (z)

Dmf (z)
+ µ − 1. (9)

Using (7) we get

Re

(
1 +

zp′(z)

p(z)

)
>

3α − 1

2α
.

Thus, from Lemma 1 we deduce that

Re

{
Dm+1f (z)

z

(
z

Dmf(z)

)µ
}

> α.

Therefore, f ∈ BS(m,µ, α), by Definition 1.

As a consequence of the above theorem we have the following interesting
corollaries.

Corollary 1. If f ∈ An and

Re

{
2zf ′′(z) + z2f ′′′(z)

f ′(z) + zf ′′(z)
−

zf ′′(z)

f ′(z)

}
> −

1

2
, z ∈ U, (10)

then

Re

{
1 +

zf ′′(z)

f ′(z)

}
>

1

2
, z ∈ U. (11)

That is, f is convex of order 1
2 .

Corollary 2. If f ∈ An and

Re

{
2z2f ′′(z) + z3f ′′′(z)

zf ′(z) + z2f ′′(z)

}
> −

1

2
, z ∈ U, (12)

then

Re
{
f ′(z) + zf ′′(z)

}
>

1

2
, z ∈ U. (13)
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Corollary 3. If f ∈ An and

Re

{
1 +

zf ′′(z)

f ′(z)

}
>

1

2
, z ∈ U, (14)

then

Ref ′(z) >
1

2
, z ∈ U. (15)

In another words, if the function f is convex of order 1
2 then f ∈ BS(0, 0, 1

2 ) ≡ R
(

1
2

)
.

Corollary 4. If f ∈ An and

Re

{
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)

}
> −

3

2
, z ∈ U, (16)

then f is starlike of order 1
2 .
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