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Serial rings and their generalizations
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Abstract. We give a survey of results on the theory of semiprime semidistributive
rings, in particular, serial rings. Besides this we prove that a serial ring is Artinian
if and only if some power of its Jacobson radical is zero. Also we prove that a serial
ring is Noetherian if and only if the intersection of all powers of Jacobson radical is
zero. These two theorems hold for semiperfect semidistributive rings.
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1 Introduction

Artinian uniserial, or primary decomposable serial rings were first introduced
and studied by G. Köthe in the paper [9], where he proved that any module over
such a ring is a direct sum of cyclic modules (he called such rings “Einreihige Rin-
gen”). This result was generalized for Artinian serial rings by T.Nakayama, who
called these rings “generalized uniserial rings” (see [16] and [17]). In these papers
T.Nakayama proved that any module over such a ring is a direct sum of unise-
rial submodules each of which is a homomorphic image of an ideal generated by
a primitive idempotent. T. Nakayama also showed that, conversely, these are the
only rings whose indecomposable finitely generated modules (both left and right)
are homomorphic images of ideals generated by primitive idempotents.

Artinian principal ideal rings were studied in papers of G. Köthe and K. Asano
(see [1] and [2]), where it was proved that any Artinian principal right ideal ring
is right uniserial. In fact, K. Asano proved that an Artinian ring is uniserial if
and only if each ideal is a principal right ideal and a principal left ideal. The
classical proof of this theorem is given in the book [7]. For such rings K. Asano also
proved an analogue of the Wedderburn-Artin theorem, namely, he proved that any
Artinian uniserial ring can be decomposed into a direct sum of full matrix rings of
the form Mn(A), where A is a local Artinian ring with a cyclic radical. A one-sided
characterization of Artinian principal ideal rings and its connection with primary
decomposable serial rings is given in theorem 2.1 of the paper [4]

L.A. Skornyakov studied serial rings, which he called “semi-chain rings”, in his
paper [18]. There he proved that A is a right and left Artinian serial ring if and only
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if every left A-module is a direct sum of uniserial modules. His result generalizes a
theorem proved by K.R. Fuller (see [5]), to the effect that if each left module over a
ring A is a direct sum of uniserial modules, then A is a serial left Artinian ring.

The first serial non-Artinian rings were studied and described by R. B. Warfield
and V. V.Kirichenko. In particular, they gave a full description of the structure of
serial Noetherian rings. We follow the papers [12] and [10], where the technique of
quivers was used systematically.

It is well known that many important classes of rings are naturally character-
ized by the properties of modules over them. As examples, we mention semisimple
Artinian rings, uniserial rings, semiprime hereditary semiperfect rings and semidis-
tributive rings.

There is the following chain of strict inclusions:

semisimple Artinian rings ⊂ generalized uniserial rings ⊂ serial rings ⊂ semidis-
tributive rings.

In this chain the first three classes of rings are semiperfect. The example of the
ring of integers Z shows that a distributive ring is not necessarily semiperfect.

The reduction theorem for SPSD-rings and decomposition theorem for semiprime
right Noetherian SPSD-rings were proved in the paper [14].

Quivers and prime quivers of SPSD-rings were studied in [13].
A semilocal ring A is called semiperfect if idempotents of the ring A can be

lifted modulo R.
Semiperfect rings were introduced by H. Bass in 1960.
To understand the definition of a semilocal ring we need some additional defini-

tions and propositions.
A nonzero ring A is called local if it has the unique maximal right ideal.
The intersection of all maximal right ideals of a ring A is called the Jacobson

radical of A. The Jacobson radical is denoted R = rad A.
The following theorem contains the list of properties which are equivalent for

any local ring.

Theorem 1.1. The following properties of a ring A with the Jacobson radical R are
equivalent:

1. A is local;
2. R is the unique maximal right ideal in A;
3. all non-invertible elements of A form a proper ideal;
4. R is the set of all non-invertible elements of A;
5. the quotient ring A/R is a division ring.

Proposition 1.2. Let e2 = e ∈ A. Then rad(eAe) = eRe, where R is the radical
of A.

Recall that a module M is called distributive if for any submodules K,L, N

K ∩ (L + N) = K ∩ L + K ∩N.
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Clearly, a submodule and a quotient module of a distributive module are dis-
tributive. A module is called semidistributive if it is a direct sum of distributive
modules. A ring A is called right (left) semidistributive if the right (left) regular
module AA (AA) is semidistributive. A right and left semidistributive ring is called
semidistributive.

Obviously, every uniserial module is a distributive module and every serial mo-
dule is a semidistributive module.

Example 1.1. Let S = {α1, . . . , αn} be a finite poset with ordering relation 6 and
let D be a division ring. Denote by A(S, D) the following subring of Mn(D):

A(S, D) =





∑

αi≤αj

dijeij | dij ∈ D



 .

It is not difficult to check that A(S,D) is a semidistributive Artinian ring.
In particular, the hereditary semidistributive ring

A3 =








d11 d12 d13

0 d22 0
0 0 d33


 | dij ∈ D





is of the form:
A3 = A(P3, D),

where P3 is the poset with the diagram

2• •3

1•

BBBBBBBB

||||||||

It is also clear that A3 is a semidistributive ring which is left serial, but not right
serial.

Proposition 1.3. Let M be an A-module. Then M is a distributive module if and
only if all submodules of M with two generators are distributive modules.

Proof. Suppose that all two-generated submodules of M are distributive modules.
Let K, L, N be submodules of M and k = l + n ∈ K ∩ (L + M); l ∈ L, n ∈ N .
Obviously, kA ⊂ lA + nA and KA = kA ∩ (lA + nA) = KA ∩ lA + kA ∩ nA.
Therefore, k ∈ K ∩ L + K ∩N , i.e. K ∩ (L + N) ⊆ K ∩ L + K ∩N . The inclusion
K ∩ L + K ∩N ⊆ K ∩ (L + N) is always valid.

Lemma 1.4. Let M be a distributive module over a ring A. Then for any m, n ∈ M
there exist a, b ∈ A such that 1 = a + b and maA + nbA ⊂ mA ∩ nA.
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Proof. Write t = m + n and H = mA ∩ nA. Obviously, tA ⊆ mA + nA and
Ta ∩ (mA + nA) = tA = (tA + mA) ∩ (tA + nA). So there exist b, d ∈ A such that
tb ∈ mA, td ∈ nA and t = tb+td. Then nb = tb−mb ∈ H and md = td−nd ∈ H. Let
a = 1−b and g = 1−b−d. He have tg = t−tb−td = 0 and ng = tg−mg = −mg ∈ H.
So ma = md + mg ∈ H and maA + nbA ⊆ mA ∩ nA.

Lemma 1.5. Let M be an A-module. Then M is a distributive module if and only
if for any m,n ∈ M there exist four elements a, b, c, d of A such that 1 = a + b and
ma = nc, nb = md.

Proof. Necessity follows from Lemma 1.4. Conversely, let k ∈ K ∩ (L + N), where
K, L,N are submodules of M . Then k = m + n, where m ∈ L and n ∈ N . By
assumption there exist a, b ∈ A such that 1 = a+b and ma ∈ mA∩nA, nb ∈ mA∩nA.
Consequently, ka = ma + na ∈ kA ∩ nA and kb = mb + nb ∈ kA ∩mA. Therefore,
k = ka + kb ∈ (kA ∩ nA) + (kA ∩ mA) ⊂ K ∩ L + K ∩ N , i.e., K ∩ (L + N) =
K ∩ L + K ∩N .

Let M be an A-module. Given two elements m,n ∈ M we set

(m : n) = {a ∈ A|na ∈ mA}.

Theorem 1.6 (W.Stephenson). A module M is distributive if and only if

(m : n) + (n : m) = A

for all m,n ∈ M .

Proof. This immediately follows from Lemma 1.5.

A module M has the square-free socle if its socle contains at most one copy
of each simple module.

Theorem 1.7 (V.Camillo). Let M be an A-module. Then M is a distributive
module if and only if M/N has the square-free socle for every submodule N .

Proof. Necessity. Every quotient and submodule of a distributive module are dis-
tributive, so that if M/N contains a submodule of the form U ⊕U , then M is not a
distributive module. Simply because U⊕U is not a distributive module. Indeed, for
the diagonal D(U ⊕U) = {(u, u)|n ∈ U} of U ⊕U we have D(U)∩ (U ⊕U) = D(U)
and D(U) ∩ (U ⊕ 0) = 0 and D(U) ∩ (0⊕ U) = 0.

Conversely. Let m,n ∈ M . We show that (m : n) + (n : m) = A. Let K be
a maximal right ideal of A and U = A/K. Consider the quotient module mA +
nA/mK + nK. The socle of mA + nA/mK + nK doesn’t contain U ⊕ U if one of
the following conditions holds:

(1) m ∈ nA + mK + nK = nA + mK;
(2) m ∈ nA + mK + nK = nA + mK;
In the case (1) we have m = na+nK or m(1⊕k) = na. So (1⊕k) ∈ (n : m). Since

(1⊕ k) 6∈ K, we have (n : m) 6⊆ K. In the case (2) analogously (m : n) 6⊆ K.
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Theorem 1.8. A semiprimary right semidistributive ring A is right Artinian.

Proof. It is sufficient to show that each indecomposable projective A-module
P = eA is Artinian (e is a nonzero idempotent of A). Let m be the minimal natural
number with PRm = 0. Since the module P is distributive, by Theorem 1.7, the
quotient module PRi/PRi+1 decomposes into a finite direct sum of simple modules
(i = 1, . . . , m − 1). Thus, the module P possesses a composition series and the
module P is Artinian.

We write SPSDR-ring (SPSDL-ring) for a semiperfect right (left) semidis-
tributive ring and SPSD-ring for a semiperfect semidistributive ring.

Theorem 1.9 (A.Tuganbaev). A semiperfect ring A is right (left) semidistribu-
tive if and only if for any local idempotents e and f of the ring A the set eAf is a
uniserial right fAf-module (uniserial left eAe-module) ([6], Theorem 14.2.1).

2 Q-lemma and Annihilation lemma

Recall the definition of the Gabriel quiver for a finite dimensional algebra A
over a field k. We can restrict ourselves to basic split algebras. (An algebra A
is called basic if A/R is isomorphic to a product of division algebras, where R is
the Jacobson radical of A. An algebra A over a field k is called split if A/R '
Mn1(k) ×Mn2(k) × . . . ×Mns(k).) All algebras over algebraically closed fields are
split.

Let P1, . . . , Ps be all pairwise nonisomorphic principal right A-modules. Write
Ri = PiR (i = 1, . . . , s) and Wi = Ri/RiR. Since Wi is a semisimple module,

Wi =
s⊕

j=1
U

tij
j , where Uj = Pj/Rj are simple modules. It is equivalent to the

isomorphism P (Ri) '
s⊕

j=1
P

tij
j . To each module Pi assign a point i in the plane and

join the point i with the point j by tij arrows. The so constructed graph is called
the quiver of A in the sense of P.Gabriel and denoted by Q(A).

A semiperfect ring A is called reduced if its quotient ring by the Jacobson
radical R is a direct sum of division rings.

Let A be a semiperfect ring such that A/R2 is a right Artinian ring. The quiver
of the ring A/R2 is called the quiver of the ring A and is denoted by Q(A).

Theorem 2.1. Let A be an arbitrary ring with an idempotent e2 = e ∈ A. Set
f = 1− e, eAf = X, fAe = Y , and let

A =
(

eAe X
Y fAf

)

be the corresponding two-sided Peirce decomposition of the ring A. Then the ring
A is right Noetherian (Artinian) if and only if the rings eAe and fAf are right
Noetherian (Artinian), X is a finitely generated fAf -module and Y is a finitely
generated eAe-module.
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For further reasonings we will need the following proposition.

Proposition 2.2. Let A be a ring. For an A-module P the following statements
are equivalent:

1) P is projective;
2) every short exact sequence 0 → N → M → P → 0 splits;
3) P is a direct summand of a free A-module F .

Let AA = Pn1
1 ⊕ . . . ⊕ Pns

s be the decomposition of a semiperfect ring A into a
direct sum of principal right A-modules and let 1 = f1+. . .+fs be the corresponding
decomposition of the identity of A into a sum of pairwise orthogonal idempotents,
i.e., fiA = Pni

i . Then AA = Af1⊕. . .⊕Afs = Qn1
1 ⊕. . .⊕Qns

s is the decomposition of
the semiperfect ring A into a direct sum of principal left A-modules, i.e. Afi = Qni

i ,
where Qi is an indecomposable projective left A-module (i = 1, . . . , s). Now consider
the two-sided Peirce decomposition of the ring A

A =




A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
An1 An2 · · · Ann


 .

Consider also the two-sided Peirce decomposition of the Jacobson radical R of A :
R =

⊕
i,j

fiRfj . Since R is a two-sided ideal, fiRfj ⊂ R for all i, j. By Proposition 1.2

we have Rii = fiRfi = rad(fiAfi) for i = 1, . . . , n. We shall show that fiRfj =
fiAfj for i 6= j. Indeed, multiplying on the left elements from fjA by an element
fiafj we obtain a homomorphism ϕji of the module fjA to fiA. If Im(ϕji) = fiA,
then ϕji is an epimorphism. Since fiA = Pni

i , fjA = P
nj

j are projective modules, by
Proposition 2.2, and Pni

i is isomorphic to a direct summand of the module P
nj

j . But
this is impossible, since the indecomposable modules Pi and Pj are non-isomorphic.
Therefore Im(ϕji) ⊂ fiA. We can write the homomorphism ϕji in the form of a
matrix ϕji = (ϕrs

ji ), where ϕrs
ji : Pj → Pi are homomorphisms of indecomposable

non-isomorphic projective modules Pj and Pi for r = 1, . . . , ni, s = 1, . . . , nj . Since
Im(ϕrs

ji ) 6= Pi, we have Im(ϕrs
ji ) ⊂ PiR. Therefore Im(ϕrs

ji ) ⊆ fiAR = fiR, i.e.,
fiAfj ⊆ fiR. Hence Aij = fiAfj = fiRfj for i 6= j. Thus, we obtain the following
result.

Proposition 2.3. Let A = Pn1 ⊕ . . . ⊕ Pns
s be the decomposition of a semiperfect

ring A into a direct sum of principal right A-modules and let 1 = f1 + . . . + fs be a
corresponding decomposition of the identity of A into a sum of pairwise orthogonal
idempotents, i.e., fiA = Pni

i . Then the Jacobson radical of the ring A has a two-
sided Peirce decomposition of the following form:

R =




R11 R12 · · · R1n

R21 R22 · · · R2n
...

...
. . .

...
Rn1 Rn2 · · · Rnn



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where Rii = rad(fiAfi), Aij = fiAfj for i, j = 1, . . . , n.

Lemma 2.4. (Annihilation lemma) Let 1 = f1 + . . . + fs be a canonical decom-
position of 1 ∈ A. For every simple right A-module Ui and for each fj we have
Uifj = δijUi, i, j = 1, . . . , s. Similarly, for every simple left A-module Vi and for
each fj, fjVi = δijVi, i, j = 1, . . . , s.

Proof. We shall give the proof for the case of right modules. From the previous
proposition we obtain that fiRfj = fiAfj for i 6= j. Hence Pni

i fj ⊂ fiR. But
fiA/fiR ' Uni

i . Therefore Uni
i fj = 0 and so Uifj = 0 for i 6= j.

We are going to show that Uifi = Ui. Let u ∈ Ui. Then u ·1 = u(f1 + . . .+fs) =
ufi since ufj = 0 for i 6= j. The lemma is proved.

Let A be a reduced semiperfect ring, and let 1 = e1 + . . .+es be a decomposition
of 1 ∈ A into a sum of mutually orthogonal local idempotents.

Set Ui = eiA/eiR and Vi = Aei/Rei.

Lemma 2.5. (Q-Lemma) The simple module Uk (resp. Vk) appears in the direct
sum decomposition of the module eiR/eiR

2 (resp. Rei/R2ei) if and only if eiR
2ek

(resp. ekR
2ei) is strictly contained in eiRek (resp. ekRei).

Proof. If Uk is a direct summand of the module Wi = eiR/eiR
2, then by Lemma 2.4,

Wiek 6= 0. Therefore eiRek does not equal eiR
2ek and the inclusion eiRek ⊃ eiR

2ek

is strict.
Conversely, suppose that eiR

2ek is strictly contained in eiRek. Consider a sub-
module Xk contained in eiR,

Xk = eiRei ⊕ . . .⊕ eiRek−1 ⊕ eiR
2ek ⊕ eiRek+1 ⊕ . . .⊕ eiRes

(here the direct sum sign denotes a direct sum of Abelian groups).
From the inclusions eiR ⊃ Xk ⊃ eiR

2 it follows that eiR/Xk is a semisim-
ple module. We have the equalities eiR/Xk = eiRek/eiR

2ek = (eiR/Xk)ek. By
Lemma 2.4 the module eiR/Xk decomposes into a direct sum of some copies of the
module Uk. Since eiR/Xk is isomorphic to a direct summand Wi, the module Uk is
contained in Wi as a direct summand.

For left modules Vk the statement is proved analogously. The lemma is
proved.

Lemma 2.6. Let A be a semiperfect ring, and e, f be nonzero idempotents of the
ring A such that e = f ∈ A. Then there exists an invertible element a ∈ A such that
f = aea−1.

The quiver Q(A) of a ring A is called connected if it cannot be represented in
the form of a union of two nonempty disjoint subsets Q1 and Q2 which are not
connected by any arrows.
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Theorem 2.7. The following conditions are equivalent for a semiperfect Noetherian
ring A:

(a) A is an indecomposable ring;
(b) A/R2 is an indecomposable ring;
(c) the quiver of A is connected.

Proof. Obviously, the conditions of the theorem are preserved by passing to the
Morita equivalent rings. Therefore we can assume that the ring A is reduced.

(a) ⇒ (b). Let A = A/R2 ' A1×A2 and let 1 = P +1+P 2 be the corresponding
decomposition of the identity of the ring A/R2 into a sum of orthogonal idempotents.
Let g1, g2 ∈ A be elements such that g1 + R2 = f1 and g2 + R2 = f2. There are
idempotents f1, f2 ∈ A such that f1 = g1 + r1 and f2 = g2 + r2, where r1, r2 ∈ R2.
Since f1Af2 = 0 and f2Af1 = 0, we have g1ag2 ∈ R2 and g2ag1 ∈ R2 for any a ∈ A.
Clearly, fi = figifi + firifi (i = 1, 2). Then the element f1af2 = f1g1f1af2g2f2 +
f1g1f1af2r2f2 + f1r1f1af2g2f2 + f1r1f1af2r2f2 belongs to R2 for any a ∈ A. This is
immediate from Proposition 2.3. Exactly in the same way f2Af1 ∈ R2. Therefore
f2Af1 = f2R2f1 and f1Af2 = f1R

2f2. By Proposition 2.3, the two-sided Peirce

decomposition of R has the form: R =
(

R1 A12

A21 R2

)
, where Ri = Rad(fiAfi)

(i = 1, 2) and Aij = fiAfj for i 6= j. Calculating R2 we obtain

R2 =
(

R2
1 + A12A21 R1A12 + A12R2

A21R1 + R2A21 A21A12 + R2
2

)
.

From the above we have: A12 = R1A12 + A12R2 and A21 = R2A21 + A21R1. By
Theorem 2.1, taking into account Nakayama’s lemma, we obtain that A12 = 0 and
A21 = 0 and therefore A = A11 ×A22, where Aii = fiAfi (i = 1, 2).

(a) ⇒ (c). Let the quiver of the ring A be disconnected. Then Q(A) = Q1 ∪Q2

and Q1 ∩ Q2 = ∅, and the points of the sets Q1 and Q2 are not connected by any
arrows. Renumbering, if necessary, the principal right A-modules P1, . . . , Ps one
may assume that Q1 = {1, . . . , k} and Q2 = {k +1, . . . , s}. Let A = P1⊕ . . .⊕Ps be
a decomposition of the ring A into a direct sum of principal right A-modules (where
Pi = eiA, e2

i = ei ∈ A, 1 = e1 + . . .+ es) and 1 = f1 + f2, where f1A = P1⊕ . . .⊕Pk

and f2A = Pk+1 ⊕ . . .⊕ Ps. We set Aij = fiAfj , Ri = radAii (i = 1, 2). If A12 6= 0,
then by Theorem 2.1, taking into account Nakayama’s lemma, we obtain that the
inclusion A12 ⊃ R1A12 + A12R2 is strict. But R1A12 + A12R2 = f1R

2f2. Therefore
there are local idempotents ei and ej such that ei is a summand of f1 and ej is a
summand of f2 and eiR

2ej is strictly contained in eiRej . By Lemma 2.5 we obtain
that there is an arrow which connects the point i with the point j. A contradiction.
Analogously it can be proved that A21 = 0.

(c) ⇒ (a). If the ring A is decomposable then A/R2 is also decomposable.
Clearly, in this case Q(A) is disconnected.

(b) ⇒ (a) is trivial.
The theorem is proved.
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Remark. Theorem 2.7 is not true for semiperfect one-sided Noetherian rings. As

an example one can consider the ring A =
(
Z(p) Q
0 Q

)
. The quiver of this ring

consists of two points and one loop near one of them.

As R2 =
(

p2Z(p) Q
0 Q

)
then the ring A/R2 decomposes into a direct product

of rings:
A/R2 ' Z(p)/p2Z(p) ×Q.

However, the ring A itself is indecomposable into a direct product of rings.

Theorem 2.8. Let the ring A be a serial ring such that the intersection of all powers
of its radical ∩∞n=1R

n = 0 is equal to zero. Then A is right and left Noetherian ring.

Proof. Let M ∈ P and ∩∞n=1R
n = 0.

Then the inclusion MR ⊂ M is strong. If M = MR then M ⊂ R and the
equality M = MRn gives that M ⊂ R for all n i.e. M = 0.

Let e be an arbitrary idempotent of the ring A. Then eRe = Rad eAe and
eAe ⊂ R, (eRe)n ⊂ Rn and that is why ∩(eRe)n = 0.

So for any local idempotent e the ring eAe is uniserial and the intersection of
natural powers of the radical R is equal to 0. That is why the ring eAe is discrete
valuated as it is Artinian. Assume that all rings eAe are Artinian. Then A is
also Artinian. Let at least one ring of the form eiAei be discrete valuated. Then
there exists a local idempotent ej such that the ring (ej + ei)A(ej + ai) is of the

form
(

Aj X
Y Oi

)
, where X is an infinitely generated right Oi-module. According

to Lemma 3.28
(

R1X X
Y R2

)
=

(
R2

1 + XY R1X + XR2

Y R1 + R2Y Y X + R2

)
and XR2 = X.

Consider the following module M = (XY, X), which belongs to (A1X). It is obviousl

that (XY, X)
(

R1 X
Y R2

)
= (XY, X). This contradicts to the strong inclusion

MR ⊂ M , whence X is a finitely generated right O2-module, and in the same way
Y is a finitely generated left O1-module.

So according to Theorem 2.1 the ring (ei + ej)A(ei + ej) is right Noetherian.

3 Semiperfect semidistributive rings

Theorem 1.9 has the following corollary.

Corollary 3.1. Let A be a semiperfect ring, and let 1 = e1 + . . .+ en be a decompo-
sition of 1 ∈ A into a sum of mutually orthogonal local idempotents. The ring A is
right (left) semidistributive if and only if for any idempotents ei and ej of the above
decomposition, the set eiAej is a uniserial right ejAej-module (left eiAei-module).
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Corollary 3.2. (Reduction Theorem for SPSD-rings) Let A be a semiperfect
ring, and let 1 = e1 + . . . + en be a decomposition of 1 ∈ A in a sum of mutually
orthogonal local idempotents. The ring A is right (left) semidistributive if and only
if for any idempotents ei and ej (i 6= j) of the above decomposition the ring (ei +
ej)A(ei + ej) is right (left) semidistributive.

Proof. It is sufficient to prove the corollary for a reduced ring A. If A is a right
semidistributive, then eiAej is right uniserial ejAej-module (i 6= j) and the ring
eiAei is right uniserial for i = 1, . . . , n. By Corollary 3.1, the ring (ei + ej)A(ei +
ej) is right semidistributive. Conversely, if the ring (ei + ej)A(ei + ej) is right
semidistributive, then, by Theorem 1.9, the set eiAej is a uniserial right Ajj-module
and, by Corollary 3.1, the ring A is right semidistributive.

Corollary 3.3. Let A be a Noetherian SPSD-ring, and let 1 = e1 + . . . + en be a
decomposition of the identity 1 ∈ A into a sum of mutually orthogonal local idem-
potents, let Aij = eiAej and let Ri be the Jacobson radical of the ring Aii. Then
RiAij = AijRjj for i, j = 1, . . . , n.

Example 3.1. Consider

A =
(
R C
0 C

)

as an R-algebra (R is the field of real numbers, C is the field of complex numbers).
The Peirce decomposition of the Jacobson radical R = R(A) has the form

R =
(

0 C
0 0

)

and the R-algebra A is right serial, i.e., right semidistributive.

The left indecomposable projective Q2 =
(
C
C

)
has the socle

(
C
0

)
, which

is a direct sum of two copies of the left simple module
(
R
0

)
. Consequently, by

Proposition 1.3, the R-algebra A is an SPSDR-ring but it is not an SPSDL-ring.

3.1 Quivers of SPSD-rings

Recall that a quiver without multiple arrows and multiple loops is called a simply
laced quiver. Let A be an SPSD-ring. By Theorem 1.8, the quotient ring A/R2 is
right Artinian and its quiver Q(A) is defined by Q(A) = Q(A/R2).

Theorem 3.4. The quiver Q(A) of an SPSD-ring A is simply laced. Conversely,
for any simply laced quiver Q there exists an SPSD-ring A such that Q(A) = Q.

Proof. We may assume that A is reduced and R2 = 0. Let AA = P1 ⊕ . . . ⊕ Ps,
where P1, . . . , Ps are indecomposable. Then PiR is a semisimple A-module:

PiR =
s⊕

j=1

U
tij
j
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where Uj = Pj/PjR are simple. The A-module PiR is a submodule of a distributive
A-module and, therefore, PiR is distributive. By the definition of Q(A) we have
[Q(A)] = (tij) and, by Theorem 1.7, 0 ≤ tij ≤ 1. So Q(A) is a simply laced quiver.

Conversely, let kQ be the path k-algebra of a simply laced quiver Q and J be its
fundamental ideal, i.e., the ideal generated by all arrows of Q. Write B = kQ/J2

and π : kQ → B for the natural epimorphism. Let π(εi) = ei, where ε1, . . . , εs

are all paths of length zero. Then B = e1B ⊕ . . . ⊕ esB, where e1B, . . . , esB are
indecomposable. Let R be the Jacobson radical of B and AQ = {σij} be the
set of all arrows of Q. The elements π(σmp), where σmp ∈ AQ, form a basis of
emR. Obviously, emR2 = 0 for m = 1, . . . , s. So, emR is a semisimple module and
emR = ⊕pUp for all those p, where σmp ∈ AQ. Therefore Q(B) = Q and emR is a
distributive module, by Theorem 3.27. Thus, B is a right semidistributive ring. The
analogous arguments show that B is a left semidistributive ring.

So B = kQ/J2 is an SPSD-algebra over a field k and Q(B) = Q.

Corollary 3.5. The link graph LG(A) of an SPSD-ring A coincides with Q(A).

Proof. For any SPSD-ring A the following equalities hold: LG(A) = Q(A, R) =
Q(A).

Theorem 3.6. For an Artinian ring A with R2 = 0 the following conditions are
equivalent:

(a) A is semidistributive;
(b) Q(A) is simply laced and the left quiver Q′(A) can be obtained from Q(A) by

reversing all arrows.

Proof. (a) =⇒ (b). By Theorem 3.4 it is sufficient to show that Q′(A) can be
obtained from Q(A) by reversing all arrows. One can assume that A is reduced.
Write AA as a direct sum AA = P1 ⊕ . . . ⊕ Ps, where the Pi are indecomposable
projective and let 1 = e1 + . . . + es be the corresponding decomposition of 1 ∈ A
into a sum of mutually orthogonal local idempotents. If Aij = eiAej 6= 0, then, in
view of Corollary 3.3,

AijRj = RiAij and Aij ⊂ R for i 6= j.

Hence, AijRj = RiAij = 0 for i 6= j and, in view of the Q-Lemma, it follows
that there is a loop at the vertex i both in Q(A) and in Q′(A). Thus the left quiver
Q′(A) can be obtained from Q(A) by reversing all arrows.

(b) =⇒ (a). By the Peirce decomposition for R we have: R =
s⊕

i,j=1
eiRej ,

eiRei = Ri and eiRej = A, i 6= j; i, j = 1, . . . , s.
It follows that

PiR = (Ai1, . . . , Aii−1, Ri, Aii+1, . . . , Ais)

for i = 1, . . . , s. If Aij 6= 0, for i 6= j, then, in view of the Q-Lemma, Aij is a
simple right Ajj-module and a simple left Aii-module. If Ri 6= 0, then Ri is a simple
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Aii-module and a simple left Aii-module. Thus, in view of Theorem 1.9, the ring A
is semidistributive.

Remark. The implication (b) =⇒ (a) isn’t true even in the case of finite dimensional
algebras as is shown by the following example.

Let A = kQ4 be the path k-algebra of the quiver Q4

Q4 =





1 •

AA¤¤¤¤¤¤¤¤¤¤ • 4

•

ÀÀ;
;;

;;
;;

;;
;

2

1 •

ÀÀ;
;;

;;
;;

;;
; • 4

•

AA¤¤¤¤¤¤¤¤¤¤

3





.

The basis of kQ4 is ε1, ε2, ε3, ε4, σ12, σ13, σ24, σ34, σ12σ24, σ13σ34. The indecom-
posable projective A-modules are: P1 = {ε1, σ12, σ13, σ12σ24, σ13σ34}; P2 = {ε2, σ24};
P3 = {ε3, σ34}; P4 = {ε4}. Obviously, socP1 ' P4 ⊕ P4. By Theorem 1.7, P1 is not
distributive, but Q(A) = Q4 and

Q′(A) =





4 •

AA¤¤¤¤¤¤¤¤¤¤ • 1

•

ÀÀ;
;;

;;
;;

;;
;

2

4 •

ÀÀ;
;;

;;
;;

;;
; • 1

•

AA¤¤¤¤¤¤¤¤¤¤

3





,

i.e., A satisfies condition (b) of Theorem 1.5.
Note that if we identify routes σ12σ24 and σ13σ34 then obtain the distributive

algebra, which is isomorphic to the matrix algebra M4(k) of the following form



k k k k
0 k 0 k
0 0 k k
0 0 0 k


 .

A semiperfect ring A such that A/R2 is Artinian will be called Q-symmetric
if the left quiver Q′(A) can be obtained from the right quiver Q(A) by reversing all
arrows.

Corollary 3.7. Every SPSD-ring is Q-symmetric.

Remark. Example 1.9 shows that an SPSDR-ring is not always Q-symmetric.
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Theorem 3.8. The intersection of all natural powers of Jacobson radical of SPSD-
ring is equal to zero.

Proof. Obviously we can consider the ring to be reducible. Denote

Ik =




Rk
1 A12R

k
2 · · · A1sR

k
s

A21R
k
1 Rk

2 · · · A2sR
k
s

· · · · · · · · · · · ·
As1R

k
1 As2R

k
2 · · · Rk

s


 .

Obviously Ik is two-sided ideal of the ring A. It is easy to check that

IkIl = Ik+1 and R2 ⊂ I1.

So, Rsk ⊂ Ik whence
∞⋂

n=0

Rn ⊂
∞⋂

k=0

RnIk.

As all rings Aii are Noetherian chain rings then [12] it follows that they are either
discrete valuation rings or uniserial Artinian rings Kiote rings. The intersection of
all powers of the Jacobson radical of such rings is equal to zero [12]. According
to Theorem 1.9 the ring Aij is a cyclic chain Ajj-module and a cyclic left chain
Aii-module. But in this case

∞⋂

k=0

AijR
k
j = 0, i, j = 1, . . . , s.

This means that the intersection of Ik for all natural k is equal to zero. Whence,
the intersection of all natural powers of Jacobson radical is equal to zero.

3.2 Semiprime semiperfect rings

In this section we shall describe the minors of first and second order of right
Noetherian semiprime SPSD-rings.

The endomorphism ring of an indecomposable projective module over a semiper-
fect ring is called a principal endomorphism ring.

Proposition 3.9. An Artinian principal endomorphism ring of a semiprime semiper-
fect ring is a division ring.

Proof. This ring is an Artinian prime local ring and, consequently, is a division
ring.

Lemma 3.10. Let AA = Pn1
1 ⊕Pn2

2 ⊕ . . .⊕Pns
s be the decomposition of a semiprime

semiperfect ring A into principal modules and let EndA(P1) = D1 be a division ring.
Then A = Mn1(D1)×End(Pn2

2 ⊕ . . .⊕ Pns
s ).
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Proof. Let 1 = f1 + . . . + fs be a canonical decomposition of 1 ∈ A into a sum of
pairwise orthogonal idempotents, i.e., fiA = Pni

i for i = 1, . . . , s. Let f1Af1 = A1,
(1 − f1)A(1 − f1) = A2, X = f1A(1 − f1), Y = (1 − f1)Af1. If either X 6= 0 or

Y 6= 0, then K =
(

0 X
Y Y X

)
is a nilpotent ideal and we have the contradiction.

So X = 0, Y = 0, proving the lemma.

Theorem 3.11. (Decomposition theorem for semiprime semiperfect rings)
A semiprime semiperfect ring is a finite direct product of indecomposable rings. An
indecomposable semiprime semiperfect ring is either a simple Artinian ring or an
indecomposable semiprime semiperfect ring such that all its principal endomorphism
rings are non-Artinian.

A proof immediately follows from Lemma 3.10.
Let 1 = g1 + g2 be a decomposition of the identity of A into a sum of the

mutually orthogonal idempotents, and let A = (Aij) be the corresponding Peirce
decomposition of A, i.e., Aij = giAgj , i, j = 1, 2. Similarly, if M is a two-sided
ideal of A, then M = (Mij) is the Peirce decomposition of M , where Mij = giMgj ,
i, j = 1, 2.

Lemma 3.12. Let M = (Mij) be a two-sided ideal of a semiprime ring A. If
Mij 6= 0 for i 6= j, then Mji 6= 0. Moreover, if Mij 6= 0 for i 6= j, then MijMji 6= 0
and MjiMij 6= 0.

Proof. Let MijMji = 0. Clearly, Z = MijAji + AijMji + Mij + Mji is a two-sided
ideal and Z8 = 0. The remaining cases are treated analogously.

Corollary 3.13. Let 1 = e1 + . . .+en be a decomposition of the identity of A into a
sum of the mutually orthogonal idempotents, Aij = eiAej, i, j = 1, . . . , n, and let M
be a two sided ideal in A, Mij = eiMej, i, j = 1, . . . , n. If Mij 6= 0 for i 6= j, then
Mji 6= 0 and MijMji 6= 0, MjiMij 6= 0. Moreover, from the equality AijAji = 0 it
follows that Aij = 0 and Aji = 0.

Proposition 3.14. Let A be a prime (resp. semiprime) ring, e2 = e ∈ A. Then
the ring eAe is prime (resp. semiprime).

Theorem 3.15. For a semiprime semiperfect ring A the following conditions are
equivalent:

(1) A is a finite direct product of prime rings;
(2) all principal endomorphism rings of A are prime.

Proof. (1) =⇒ (2) follows from Proposition 3.14.
(2) =⇒ (1) Obviously, we can assume that A is indecomposable and reduced.

Let 1 = e1+ . . .+en be a decomposition of 1 ∈ A into the sum of pairwise orthogonal
local idempotents. We shall prove the theorem by induction on n. The case n = 1
is obvious. Suppose that A is not prime. Then there exist two-sided nonzero ideals
M,N such that MN = 0. Let h1 = e1 + . . . + en−1 and h2 = en. We have
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the equality h1Mh1Nh1 = 0. By the induction hypothesis either h1Mh1 = 0 or
h1Nh1 = 0. Let h1Mh1 = 0, then by Corollary 3.13 h1Mh2 = 0 and h2Mh1 = 0.
If h2Mh2 = 0, then the theorem is proved, so h2Mh2 6= 0 and h2Nh2 = 0. We
have again h2Nh1 = 0 and h1Nh2 = 0. One can assume that eiNei 6= 0 for
i = 1, . . . , t and ejNej = 0 for j = t + 1, . . . , n. So NiiAij = 0 for i = 1, . . . , t and
j = t + 1, . . . , n. Consequently, NiiAijAji = 0 for the same i and j. Since the Aii

are prime, it follows that AijAji = 0. By Corollary 3.13, we obtain Aij = 0 and
Aji = 0 for i = 1, . . . , t and j = t + 1, . . . , n. Hence, the ring A is decomposable and
we obtain a contradiction, which proves the theorem.

Let A be a ring, P a finitely generated projective A-module which can be de-
composed into a direct sum of n indecomposable modules. The endomorphism ring
B = EndA(P ) of the module P is called a minor of order n of the ring A.

Proposition 3.16. Every minor of an SPSD-ring is an SPSD-ring.

The proof follows from Theorem 1.9 and Corollary 3.1.

Corollary 3.17. Every minor of a right Noetherian semiprime SPSD-ring is a right
Noetherian semiprime SPSD-ring.

The proof follows from Theorem 2.1 and Proposition 3.14.
From Theorems 1.9 and 2.1 we obtain the following statement.

Corollary 3.18. Every minor of a Noetherian SPSD-ring is a Noetherian SPSD-
ring.

Proposition 3.19. A minor of the first order of a right Noetherian SPSD-ring is
uniserial and it is either a discrete valuation ring or an Artinian uniserial ring.

Let O be right local uniserial Noetherian ring with the unique maximal ideal M.
Consider the following descending chain of two-sided ideals.

O ⊃M ⊃M2 ⊃ . . . ⊃Mn ⊃ . . .

By Nakayama Lemma Mk strictly contains Mk+1 for any k ∈ N. As O is serial
ring then right factor module Mk/Mk+1 is simple if Mk 6= 0.

Assume thatM 6= 0. In this case if π ∈M\M2 then πO+M2 =M and according
to Nakayama Lemma M = πO.

Consider left ideals Oπ and M. The local property of the ring O gives that
M ⊇ Oπ.

The strong inclusion Oπ ⊃ M2 follows from that O is serial. Factor module
M/M2 is semisimple right O-module and is left O-module. As the ring O is serial
then M/M2 is simple from both sides. Whence Oπ = πO =M.

The next proposition immediately follows from this fact.

Proposition 3.20. Let O be a right local Noetherian serial ring with the unique
maximal ideal M 6= 0. Then M = πO = Oπ and the ring O is both sides Artinian if
and only if the element π is nilpotent.
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That is why in future we will assume that the element π is not nilpotent.
Consider the endomorphism π of the right O-module OO which multiplies α ∈ O

with the element π from the left, i.e. π(α) = πα.

Step 1. kerπ ⊂
∞⋂

n=1
Mn.

Proof. Let kerπ = {α ∈ O| πα = 0}. It is obvious that kerπ is two-sided ideal.
Really, if α ∈ kerπ then π(αα1) = (πα)α1 = 0, i.e. αα1 ∈ kerπ.

Let α ∈ kerπ and β ∈ O. Consider π(βα) = (πβ)α = (β1π)α = β1(πα) = 0.
If kerπ = Mn for some n then πMn = πOMn = Mn+1 = 0, whence πn+1 = 0. So,

kerπ ⊂Mn for any natural n, whence kerπ ⊂ Y =
∞⋂

n=1
Mn.

Step 2. kerπ = 0.

Proof. Let X = kerπ 6= 0. Then there exists ascending chain of ideals

kerπ ⊂ kerπ2 ⊂ . . . ⊂ kerπn ⊂ . . . .

Let us show that kerπk 6= kerπk+1 for all k. Let kerπk = kerπk+1 for some k and

x ∈ X, x 6= 0. So, πx = 0 and x ∈
∞⋂

n=1
Mn. This is followed by x = πkαk =

πk+1αk+1. The equality πx = 0 implies πk+1αk+1 = 0 i.e. αk ∈ kerπk+1 and this
means that αk ∈ kerπk and πkαk = 0 = x. That is why there exists strongly
ascending chain of two-sided ideals

kerπ ⊂ kerπ2 ⊂ . . . ⊂ kerπn ⊂ . . . .

and this is a contradiction with the property of the ring O to be right Noetherian.
The proposition is proved.

Step 3.
∞⋂

n=1
Mn = 0.

Proof. Let Y =
∞⋂

n=1
Mn 6= 0. Consider two-sided ideal YM of the ring O which is

the unique maximal submodule of M as the ring O is right Noetherian.
Considering the factor ring O/YM one may assume that the intersection Y =

∞⋂
n=1
Mn is a simple right O-module in the former ring O. The property of Y to be a

two-sided ideal and the equality kerπ = 0 imply that πY = Y .
Let W = {α ∈ O| απ ∈ Y }. Obviously W 6= 0 because y ∈M, y ∈ Y , y 6= 0 and

y = απ.
Let us show that W is a two-sided ideal of the ring O. Obviously α + α1 ∈ W if

α, α1 ∈ W .
Let α ∈ W , i.e. απ ∈ Y . Then (βα)π = βy1 ∈ Y , i.e. βα ∈ W for any

β ∈ O. Moreover, (αβ)π = α(βπ) = α(πβ1) = (απ)β1 ∈ Y . If W 6⊂ Y then
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W = πnO = Oπn and Wπ ∈ Y , i.e. Wπ = Mn+1 ⊂ Y . The obtained contradiction
shows that W ⊂ Y and so W = Y . Let ∈ Y and y 6= 0. Then y = y1π for some
y1 ∈ Y . But Y π = 0, whence y = 0. The obtained contradiction proves that O is
a discrete valuation ring with the unique maximal ideal M = πO = Oπ. For more
details see Warfield [1975].

Corollary 3.21. A minor of the first order of a right Noetherian semiprime SPSD-
ring is either a discrete valuation ring or a division ring.

A ring A is called semimaximal if it is a semiperfect semiprime right Noetherian
ring such that for each local idempotent e ∈ A the ring eAe is a discrete valuation
ring (not necessarily commutative), i.e., all principal endomorphism rings of A are
discrete valuation rings.

Proposition 3.22. A semimaximal ring is a finite direct product of prime semi-
maximal rings.

A proof follows from Theorem 3.15.
So, a semimaximal ring A is indecomposable if and only if A is prime.

Proposition 3.23. A semiperfect reduced indecomposable ring B is a second order
minor of a right Noetherian semiprime SPSD-ring if and only if B is semimaximal.

Proof. Let 1 = e1 + e2 be a decomposition of 1 ∈ B into a sum of local idem-

potents, let B =
2⊕

i,j=1
eiBej be the corresponding two-sided Peirce decomposition,

and let Bij = eiBej (i, j = 1, 2). The Jacobson radical R of B has the form:

R =
(

R1 B12

B21 R2

)
, where Ri is the Jacobson radical of Bii (i = 1, 2). Obviously,

R2 =
(

R2
1 + B12B21 R1B12 + B12R2

R2B21 + B21R1 R2
2 + B21B12

)

By Corollary 3.19, Bii is either a discrete valuation ring or a division ring. If B11 = D

is a division ring, then R =
(

0 B12

B21 R2

)
. Obviously, J =

(
0 B12

B21 B21B12

)
is a

nonzero ideal in B and J2 = 0. So B is semimaximal.
Let’s now show that a semimaximal ring B is semidistributive. We can assume

that B is prime. Let Ri = πiBii = Biiπi (i = 1, 2). Now b12b2 6= 0 for any
b12 6= 0 and b2 6= 0 (b12 ∈ B12, b2 ∈ B22). Indeed, we can suppose that b2 =

πm
2 . Then

(
0 b12

0 0

)(
B11 B12

B21 B22

)(
0 0
0 b2

)
6= 0 and, consequently, b12B22p

m
2 =

b12p
m
2 B22 6= 0. So, b12p

m
2 6= 0. Analogously, bijbj 6= 0 and bibij 6= 0 for i, j = 1, 2.

Further bijbji 6= 0 for i 6= j and both factors are nonzero. We shall prove that

b21b12 6= 0 for b12 6= 0 and b21 6= 0. Indeed,
(

0 b12

0 0

)(
B11 B12

B21 B22

) (
0 0

b21 0

)
6=
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0. So, b12B22b21 6= 0 and thus there exists b2 ∈ B22 such that b12b22b21 6= 0. If
b21b12 = 0, then b21b12b22b21 = 0 and we obtain a contradiction.

Next B12 is a uniserial right B22-module and a uniserial left B11-module. By
Theorem 2.1, B12 is a finitely generated B22-module. Consequently, if B12 isn’t
uniserial, then B12 = B

(1)
12 ⊕B

(2)
12 , where B

(1)
12 and B

(2)
12 are nonzero B22-submodules

of B12. Let b21 6= 0. Then b21B12 = b21B
(1)
12 ⊕ b21B

(2)
12 , where b21B

(1)
12 and b21B

(1)
12 are

nonzero right ideals in O2. This is a contradiction. Consequently, B12 is a uniserial
right B22-module.

Finally B12 is a uniserial left B11-module. If this isn’t true, then there exists
a left B11-submodule N12 with two noncyclic generators in B12. Consequently,
N12 = N

(1)
12 ⊕ N

(2)
12 is a direct sum of two nonzero left B11-submodules and so

N12b21 = N
(1)
12 b21 ⊕ N

(2)
12 b21 is a direct sum of two nonzero left ideals in B11 for

any nonzero b21. This is a contradiction and so B12 is a uniserial left B11-module.
Analogously, B21 is a uniserial right B11-module and a uniserial left B22-module.
Thus, by Theorem 1.9 B is semidistributive. The proposition is proved.

Corollary 3.24. An intersection of a finite number of nonzero submodules of an
indecomposable projective module over a Noetherian prime SPSD- ring is nonzero.

Lemma 3.25. A local idempotent of a Noetherian prime SPSD-ring A is a local
idempotent of its classical ring of fractions.

Note that an example of semimaximal rings is non-Artinian both sides Noethe-
rian semiprime hereditary rings. They are exactly semimaximal hereditary rings.
The article [19] contains a condition for the prime semimaximal ring Λ to be of
finite type. This condition is as follows. As an arbitrary prime semimaximal ring
Λ can be included into the prime ring of fractions Q, let M(Λ) be the partially
ordered set (in the sense of inclusion) of all projective Λ-modules which belong to
some prime Q-module. So, the equivalent condition for the prime semimaximal ring
to be of finite type is the nonexistence of critical subsets in the set M(Λ). Here a
subset of a partially ordered set is called critical if it is one of the following sets:
(1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5), R = {a1 < a2 > b1 < b2; c1 < c2 < c3 < c4}.
Here we denote by (l1, . . . , lm) the cardinal sum of m linearly ordered sets which
contain l1, . . . , lm elements correspondingly.

For proving Lemma 3.25 we need the following proposition [6, Prop. 9.3.10].

Proposition 3.26. Let Q be a semisimple ring and A be a right order in Q. Then
Q is a simple ring if and only if A is prime.

Proof of Lemma 3.25. By Proposition 3.26 A is a right order in the simple Artinian
ring Q = Mn(D). One can assume that the local idempotent e ∈ A is a sum of matrix
idempotents e = ei1i1 + . . . + eikik . Let k ≥ 2. Then there exist q1, . . . , qk ∈ Q such
that ei1i1q1, . . . , eikikqk ∈ A and, consequently, ei1i1q1A, . . . , eikikqkA are nonzero
right submodules of the right indecomposable projective module eA and eimimqmA∩
eipipqpA = 0 for m 6= p. We obtain a contradiction with Corollary 3.24.
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3.3 Right Noetherian semiprime SPSD-rings

The following is a decomposition theorem for semiprime right Noetherian
SPSD-rings.

Theorem 3.27. The following conditions for a semiperfect semiprime right Noethe-
rian ring A are equivalent:

(a) the ring A is semidistributive;
(b) the ring A is a direct product of a semisimple Artinian ring and a semimax-

imal ring.

Proof. (a) =⇒ (b). From Theorem 3.11 it follows that A is a finite direct product
of indecomposable semiprime rings. Every indecomposable ring is either a simple
Artinian ring or a semiprime semiperfect ring such that all its principal endomor-
phism rings are non-Artinian. In the second case, by Corollary 3.21, such a ring is
semimaximal.

(b) =⇒ (a). Obviously, a semiprime Artinian ring is a semiprime SPSD-ring. A
semimaximal ring is an SPSD-ring, by Proposition 3.11 and the reduction theorem
for SPSD-rings.

Lemma 3.28. The right uniserial modules over the ring Hm(O) are exhausted by
the Dm, all principal Hm(O)-modules and quotient modules of these modules.

Theorem 3.29. Each semimaximal ring is isomorphic to a finite direct product of
prime rings of the following form:

A =




O πα12O · · · πα1nO
πα21O O · · · πα2nO
· · · · · · · · · · · ·

παn1O παn2O · · · O


 (1)

where n ≥ 1, O is a discrete valuation ring with a prime element π, and the αij are
integers such that αij + αjk ≥ αik for all i, j, k (αii = 0 for any i).

Proof. By Proposition 3.10 a semimaximal ring is a finite direct product of prime
semimaximal rings. We shall show that a prime semimaximal ring is isomorphic to
a ring of the form (1).

Let 1 = e1 + . . . + em be a decomposition of 1 ∈ A into a sum of pairwise
orthogonal local idempotents, Aij = eiAej for i, j = 1, . . . , m. Denote by Bij (i 6= j)

the following second order minor: Bij =
(

Aii Aij

Aji Ajj

)
. If Bij isn’t reduced, then

Bij ' M2(Aii) and Bij is left Noetherian. If Bij is reduced, then Aijaji ⊂ Aij , ϕji :
Aij → Aii being the monomorphism of left Aii-modules (for any nonzero aji) such
that ϕji(aij) = aijaji. If Aij isn’t finitely generated, then Aii contains a non-finitely
generated left Aii-submodule Aijaji, where aji 6= 0. This gives a contradiction. So,
by Lemma 3.28, Aij ' Aii and Bij is left Noetherian, by Theorem 2.1. Applying
induction on m and Theorem 2.1, we see that A is left Noetherian. Consequently, A
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is a prime Noetherian SPSD-ring. By Proposition 3.26, A is a right order in a simple
Artinian ring Q = Mn(D). Suppose that every local idempotent ei from the above
decomposition 1 = e1 + . . . + em is local in Mn(D). Hence, the two decompositions:
1 = e1 + . . . + em and 1 = e11 + . . . + enn are conjugate. Consequently, m = n and
we can assume that the matrix idempotents are the local idempotents of A.

Denote Aii by Ai. We have Q =
n∑

i,j=1
eijD (D is a division ring, the eij , are matrix

units commuting with the elements from D) and A =
n∑

i,j=1
eijAij , where Aij ⊂ D.

All Ai are discrete valuations rings, AijAjk ⊂ Aik and Aij 6= 0 for i, j = 1, . . . , n (A
is prime and eiiAejj = Aij 6= 0).

We shall prove that Aij = dijAj = Aidij , where dij ∈ Aij ⊂ D. Indeed, let
Ri be the Jacobson radical of Ai and let πiAi = Aiπi = Ri. By corollary 3.3,
RiAij = AijRj . Take an element 0 6= dij ∈ Aij so that Aidij + RiAij = Aij . By
Nakayama’s Lemma Aij = dijAj = Aidij . Let T = diag(d−1

12 , d1
23, . . . , d

−1
n−1n, 1).

Consider TAT−1. One can assume that the following equalities d12 = . . . = dn−1n

hold in A, hence A1 = A2 = . . . = An. Write A1 = O, where O is a discrete
valuation ring (non-necessarily commutative). Consequently, Aij ⊃ O for i ≤ j.
From AijAji ⊂ O we have AijAji ⊃ Aji and Aji ⊂ O for j ≤ i. So, one can assume
that dji = παij , where M = πO = Oπ is the unique maximal ideal of O, αji ≥ 0
for j ≥ i. Obviously, dij = παij , where αij ≥ −αji. Hence, we obtain a ring of
the form 3.27. The converse assertion follows from the definition of a semimaximal
ring.

A ring A is called a tiled order if it is a prime Noetherian SPSD-ring with
nonzero Jacobson radical.

Remark. Let O be a discrete valuation ring. Then from Theorem 3.29 it follows
that each tiled order is of the form (1).

The ring O is embedded into a classical ring of fractions D, which is a division
ring. Therefore (14.5.1) denotes the set of all matrices (aij) ∈ Mn(D) such that
aij ∈ παijO = eiiAejj , where the e11, . . . , enn are the matrix units of Mn(D). It is
clear that Mn(D) is the classical ring of fractions of A.

According to the terminology of V. A. Jategaonkar and R. B. Tarsy, a ring
A ⊂ Mn(K), where K is the quotient field of a commutative discrete valuation
ring O, is called a tiled order over O if Mn(K) is the classical ring of fractions of A,
eii ∈ A and eiiAeii = O for i = 1, . . . , n, where the e11, . . . , enn are the matrix units
of Mn(K) (see [8]).

Denote by Mn(Z) the ring of all square n× n-matrices over the ring of integers
Z. Let E ∈ Mn(Z). We shall call a matrix E = (αij) an exponent matrix if
αij +αjk ≥ αik for i, j, k = 1, . . . , n and αii = 0 for i = 1, . . . , n. A matrix E is called
a reduced exponent matrix if αij + αji > 0 for i, j = 1, . . . , n.

We shall use the following notation: A = {O, E(A)}, where E(A) = (αij) is the
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exponent matrix of a ring A, i.e., A =
n∑

i,j=1
eijπ

αijO, where the eij are the matrix

units. If a tiled order is reduced, then αij + αji > 0 for i, j = 1, . . . , n, i 6= j, i.e.,
E(A) is reduced.

Let O be a discrete valuation ring. A right (resp. left) A-module M (resp. N)
is called a right (resp. left) A-lattice if M (resp. N) is a finitely generated free
O-module.

For example, all finitely generated projective A-modules are A-lattices.
Given a tiled order A we denote by Latr(A) (resp. Latl(A)) the category of right

(resp. left) A-lattices. We denote by Sr(A) (resp. Sl(A)) the partially ordered set
(by inclusion), formed by all A-lattices contained in a fixed simple Mn(D)-module
U (resp. in a left simple Mn(D)-module V ). Such A-lattices are called irreducible.

Note that every simple right Mn(D)-module is isomorphic to a simple Mn(D)-
module U with D-basis e1, . . . , en such that eiejk = δijek, where ejk ∈ Mn(D) are
the matrix units. Respectively, every simple left Mn(D)-module is isomorphic to a
left simple Mn(D)-module V with D-basis e1, . . . , en such that eijek = δjkei.

Let A = {O, E(A)} be a tiled order, and let U (resp. V ) be a simple right (resp.
left) Mn(D)-module as above.

Then any right (resp. left) irreducible A-lattice M (resp. N) lying in U (resp.
in V ) is an A-module with O-basis (πα

1 e1, . . . , π
αnen), while

{
αi + αij ≥ αj , for the right case;
αij + αj ≥ αi, for the left case.

(2)

Thus, irreducible A-lattices M can be identified with an integer-valued vec-
tor (α1, . . . , αn) satisfying (3.29). We shall write [M ] = (α1, . . . , αn) or M =
(α1, . . . , αn).

The order relation on the set of such vectors and the operations on them corre-
sponding to sum and intersection of irreducible lattices are obvious.

Remark. Obviously, two irreducible A-lattices M1 = (α1, . . . , αn) and M2 =
(β1, . . . , βn) are isomorphic if and only if αi = βi + z for i = 1, . . . , n and (a
fixed) z ∈ Z. We shall denote by (α1, . . . , αn)T the column vector with coordinates
α1, . . . , αn.

Note that the posets Sr(A) and Sl(A) do not depend on the choice of simple
Mn(D)-modules U and V .

Proposition 3.30. The posets Sr(A) and Sl(A) are anti-isomorphic distributive
lattices.

Proof. Since A is a semidistributive ring, Sr(A) (resp. Sl(A)) is a distributive lattice
with respect to the sum and intersection of submodules.

Let M = (α1, . . . , αn) ∈ Sr(A). We put M∗ = (−α1, . . . ,−αn)T ∈ Sl(A). If
N = (β1, . . . , βn)T ∈ Sl(A), then N∗ = (−β1, . . . ,−βn) ∈ Sr(A).
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Obviously, the operation * satisfies the following conditions:
1. M∗∗ = M ; 2. (M1 +M2)∗ = M∗

1 ∩M∗
2 ; 3. (M1∩M2)∗ = M∗

1 +M∗
2 in the right

case and there are analogous rules in the left case. Thus, the map ∗ : Sr(A) → Sl(A)
is the anti-isomorphism.

Remark. The map * defines a duality for irreducible A-lattices.
If M1 ⊂ M2, (M1,M2 ∈ Sr(A)), then M∗

2 ⊂ M∗
1 . In this case, the A-lattice M2

is called an overmodule of the A-lattice M1 (resp. M∗
1 is an overmodule of M∗

2 ).

3.4 Quivers of tiled orders

Recall that a quiver is called strongly connected if there is a path between any
two vertices. By convention, a one-point graph without arrows will be considered a
strongly connected quiver. A quiver Q without multiple arrows and multiple loops
is called simply laced, i.e., Q is a simply laced quiver if and only if its adjacency
matrix [Q] is a (0, 1)-matrix.

Theorem 3.31. Let A be a semiperfect two-sided Noetherian ring with the quiver
Q(A). Suppose the matrix [Q] is block upper triangular with permutationally irre-
ducible matrices B1, . . . , Bt on the main diagonal of the Peirce quiver of A. Then
there exists a decomposition of 1 ∈ A into a sum of mutually orthogonal idempotents:
1 = g1 + . . . gt such that

A =
t⊕

i,j=1

giAgj

is the two-sided Peirce decomposition with giAgj = 0 for j < i, moreover, the
adjacency matrices of the quivers Q(Ai) of the rings Ai = giAgi coincide with Bi,
i = 1, . . . , t.

Theorem 3.32. The quiver Q(A) of a right and left Noetherian indecomposable
semiprime semiperfect ring A is strongly connected.

A proof follows from Theorem 3.31 and Proposition 3.14. We use notations from
Theorem 3.31. If Q(A) isn’t strongly connected, then the ring (g1 + g2)A(g1 + g2)

isn’t semiprime. Indeed, for the nonzero ideal J =
(

0 g1Ag2

0 0

)
we have J2 = 0.

Let I be a two-sided ideal of a tiled order A. Obviously,

U =
n∑

i,j=1

eijπ
µijO,

where the eij are matrix units. Denote by E(I) = (µij) the exponent matrix of the
ideal I. Suppose that I and J are two-sided ideals of the ring A, E(I) = (µij), and
E(J) = (νij). It follows easily that E(IJ) = (δij), where δij = mink{µik + νkj}.
Theorem 3.33. The quiver Q(A) of a tiled order A over a discrete valuation ring O
is strongly connected and simply laced. If A is reduced, then Q(A) = E(R2)− E(R).
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Proof. Taking into account that A is a prime Noetherian semiperfect ring, it follows
from Theorem 3.32 that Q(A) is a strongly connected quiver. Let A be a reduced
order. Then [Q(A)] is a reduced matrix. We shall use the following notation:
E(A) = (αij); E(R) = (βij), where βii = 1 for i = 1, . . . , n and βij = αij for
i 6= j (i, j = 1, . . . , n); E(R2) = (γij), where γij = min16k6n{αik + βkj} for i, j =
1, . . . , n. Since, E(A) is reduced, we have αij + αji > 1 for i, j = 1, . . . , n, i.e.,
γii = min16k6n; k 6=i,j{αik + αki} = min16k6n, k 6==i{αik + αki}. Hence γii is equal to
1 or 2. If i 6= j, then βij = αij and γij = min{min16k6n,k 6=i,j{αik + αkj}, αij + 1},
i.e., γij equals αij or αij + 1.

To any irreducible A-lattice M with O-basis (πα1e1, . . . , π
αnen) associate the

n-tuple [M ] = (α1, . . . , αn). Let us consider

[Pi] = (αi1, . . . , 0, . . . , αin),

[PiR] = (αi1, . . . , 1, . . . , αin) = (βi1, . . . , βin).

Set [PiR
2] = (γi1, . . . , γin). Then −→q i = [PiR

2] − [PiR] is a (0, 1)-vector. Suppose
that the positions of the units of −→q j are j1, . . . , jm. In view of the annihilation
lemma, this means that PiR/PiR

2 = Uj1 ⊕ . . .⊕ Ujm . By the definition of Q(A) we
have exactly one arrow from the vertex i to each of j1, . . . , jm. Thus, the adjacency
matrix [Q(A)] is:

[Q(A)] = E(R2)− E(R).

The theorem is proved.

A tiled order A = {O, E(A)} is called a (0, 1)-order if E(A) is a (0, 1)-matrix.
Henceforth a (0, 1)-order will always mean a tiled (0, 1)-order over a discrete

valuation ring O.
With a reduced (0, 1)-order A we associate the partially ordered set

PA = {1, . . . , n}

with the relation 6 defined by i 6 j ⇔ αij = 0.
Obviously, (P, 6) is a partially ordered set (poset).
Conversely, to any finite poset P = {1, . . . , n} assign a reduced (0, 1)-matrix

Ep = (Aij) in the following way: Aij = 0 ⇔ i 6 j, otherwise Aij = 1. Then
A(P ) = {O, EP } is a reduced (0, 1)-order.

We give a construction which for a given finite partially ordered set P =
{p1, . . . , pn} yields a strongly connected quiver without multiple arrows and mul-
tiple loops.

Denote by Pmax (respectively Pmin) the set of the maximal (respectively mini-
mal) elements of P and by Pmax × Pmin their Cartesian product.

The quiver Q̃(P ) obtained from the diagram Q(P ) by adding the arrows σij :
i → j for all (pi, pj) ∈ Pmax ⊗ Pmin is called the quiver associated with the
partially ordered set P .

Obviously, Q̃(P ) is a strongly connected simply laced quiver.
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Theorem 3.34. The quiver Q(A(P )) coincides with the quiver Q̃(P ).

Proof. Recall that [Q(A(P ))] = E(R2) − E(R). Suppose that in Q(P ) there is
an arrow from s to t. This means that αst = 0 and there is no positive integer
k (k 6= s, t) such that αsk = 0 and αkt = 0. The elements βss and βtt of the
exponent matrix E(R) = (βij) are equal to 1. We have that E(R2) = (γij), where
γij = min16k6n(βsk +βkt) = 1. Thus, in [Q(A(P ))] at the (s, t)-th position we have
γst − βst = 1− αst = 1− 0 = 1. Consequently, Q(A(P )) has an arrow from s to t.

Suppose that p ∈ Pmax. This means that αpk = 1 for k 6= p. Therefore the entries
of the p-th row of E(R) are all 1, i.e., (βp1, . . . , βpp, . . . , βpn) = (1, . . . , 1, . . . , 1).

Similarly, if q ∈ Pmin, then the q-th column (β1q, . . . , βqq, . . . , βnq)T of E(R) is
(1, . . . , 1, . . . , 1)T . Hence, γpq = 2, βpq = 1, and Q(A(P )) has an arrow from p to q.
Consequently, we proved that Q̃(P ) is a subquiver of Q(A(P )).

We show now the converse inclusion. Suppose that γpq = 2. Then obviously

(βp1, . . . , βpp, . . . , βpq) = (1, . . . , 1, . . . , 1)

and
(β1q, . . . , βqq, . . . , βnq)T = (1, . . . , 1, . . . , 1)T .

Therefore p ∈ Pmax, q ∈ Pmin and there is an arrow, which goes from p to q.
Suppose γpq = 1 and βpq = 0. Consequently, p 6= q, βpq = αpq = 0 and p < q.

Since γpq = min16k6n(βpk + βkp), then βpk + βkq > 1 for k = 1, . . . , n. Thus, for
k 6= p, q we have βpk + βkq > 1, whence we obtain αpk + αkp > 1. Therefore, there
is no positive integer k (k 6= p, q) such that αpk = αkq = 0. This means that there
is an arrow from p to q in Q̃(P ), and this proves the opposite inclusion.
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Reconstruction of centrally symmetric convex
bodies in Rn

R.H.Aramyan

Abstract. The article considers the problem of existence and uniqueness of a cen-
trally symmetric convex body in Rn for which the projection curvature radius function
coincides with given function. A necessary and sufficient condition is found that en-
sures a positive answer. Also we find a representation for the support function of a
centrally symmetric convex body.
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1 Introduction

Let F be a function defined on 2-dimensional unit sphere S2. The existence and
uniqueness of convex body B ⊂ R3 for which the mean curvature radius at the point
on ∂B with outer normal direction ω coincides with F (ω) was posed by Christoffel
(see [4]). The corresponding problem for Gauss curvature was posed and solved by
Minkowski. A. D. Aleksandrov and A. V.Pogorelov generalized these problems for
a class of symmetric functions G(R1(ω), R2(ω)) of principal radii of curvatures [4].

Let B ⊂ Rn be a convex body with sufficiently smooth boundary and let
R1(ω), . . . , Rn−1(ω) signify the principal radii of curvature of the boundary of B at
the point with outer normal direction ω ∈ Sn−1. In n-dimensional case a Christoffel–
Minkowski problem was posed and solved by Firay (see [6]) and Berg (see [8]): what
are necessary and sufficient conditions for a function F , defined on Sn−1 to be the
function

∑
Ri1(ω) · · ·Rip(ω) for a convex body, where 1 ≤ p ≤ n − 1 and the sum

is extended over all increasing sequences i1, · · · , ip of indices chosen from the set
i = 1, . . . , n− 1.

In this paper we consider a similar problem posed for the 2-dimensional pro-
jection curvature radii of centrally symmetric convex bodies in Rn. We use the
following notation. By Bo we denote the class of convex bodies B ⊂ Rn that have a
center of symmetry at the origin O ∈ Rn. For two different directions ω, ξ ∈ Sn−1,
ω 6= ξ we denote by B(ω, ξ) the projection of B ∈ Bo onto the 2-dimensional plane
e(ω, ξ) containing the origin and the directions ω and ξ.

We define R(ω, ξ) = curvature radius of ∂B(ω, ξ) at the point whose outer normal
direction is ω, and call it 2-dimensional projection curvature radius of the body.
Since R(ω, ξ1) = R(ω, ξ2), where ω, ξ1, ξ2 ∈ Sn−1, are linearly dependent vectors, we
assume where necessary that ξ is orthogonal to ω.

c© R.H.Aramyan, 2011
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Let F be a function defined on the space of ”flags” an ordered pairs of orthogonal
unit vectors {(ω, ψ) : ω ∈ Sn−1, ψ ∈ Sω}. By Sω we denote the great (n − 2)-
subsphere of Sn−1 with pole ω ∈ Sn−1. In integral geometry the concept of a flag
was first systematically employed by R. V. Ambartzumian in [1]. In this paper we
study:

Problem 1: what are necessary and sufficient conditions for a function F to
be the 2-dimensional projection curvature radius function of a centrally symmetric
convex body and

Problem 2: reconstruction of that centrally symmetric convex body.
In this paper we find a necessary and sufficient condition on F (ω, ψ) that ensures

a positive answer. Note that the uniqueness (up to parallel shifts) follows from the
classical uniqueness result on Christoffel problem.

Also we find a simple representation for the support function of a 2-smooth cen-
trally symmetrical convex body in Rn in terms of 2-dimensional projection curvature
radius function.

Now we describe the main result. Let F be a nonnegative function defined on
the ordered pairs of orthogonal unit vectors F = {(ω, ψ) : ω ∈ Sn−1, ψ ∈ Sω}.

Theorem 1. A nonnegative n times continuously differentiable function F defined
on F is the 2-dimensional projection curvature radius function of a centrally sym-
metric convex body if and only if there is an even continuous function f defined on
Sn−1 such that

F (ω, ψ) = 2
∫

Sω

| < ψ, u > |2 f(u) λn−2(du), (1)

for all ω ∈ Sn−1 and all ψ ∈ Sω, here λn−2 is the Lebesgue measure on Sn−2, < ·, · >
denotes the Euclidean scalar product.

Note that in [3] the same problem was considered in R3 and a different necessary
and sufficient condition was found.

Radon transform provide a technique for studying the Christoffel problem for
centrally symmetric convex bodies. The solution of that problem is of different
nature for even and odd values of n (see [8]).

To reconstruct the convex body we find (by means of another method) a simple
representation for the support function of a centrally symmetric convex body in
terms of 2-dimensional projection curvature radius function.

Theorem 2. The support function of 2-smooth centrally symmetric convex body
B ⊂ Rn has the following representation

H(ξ) =
1

2σn−2

∫

Sn−1

R(ω, ξ)

sinn−3(ω̂, ξ)
λn−1(dω), ξ ∈ Sn−1. (2)

Here ω̂, ξ is the angle between ω and ξ, σn−2 = λn−2(Sn−2).

We need the following results from the convexity theory.
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2 Preliminaries

It is well known (see [7]) that the support function of every sufficiently smooth
convex body B ∈ Bo has the unique representation

H(ξ) =
∫

Sn−1

|< ξ,Ω >| h(Ω)λn−1(dΩ), ξ ∈ Sn−1 (3)

with some unique even continuous function h(Ω) defined on Sn−1, not necessarily
nonnegative, called the generating density of the body.

R. Schneider (see [8]) has showed that the smoothness of order n yields the
representation with a continuous generating density.

Below we use the following result of N. F. Lindquist (see [8]).
An even continuous function h defined on Sn−1 is the generating density of a convex
body B ∈ Bo if and only if

∫

Sω

|< ψ, u >|2 h(u) λn−2(du) ≥ 0, (4)

for all ω ∈ Sn−1 and all ψ ∈ Sω.
The author of the present paper gave a clear geometrical interpretation for inte-

gral (4). In [2] has proved the following theorem (here we present a short version of
the proof for completeness).

Theorem 3. For any sufficiently smooth convex body B ∈ Bo

R(ω, ξ) = 2
∫

Sω

|< ξ, u >|2 h(u) λn−2(du), (5)

where ξ, ω ∈ Sn−1, ξ ⊥ ω, h(u) is the generating density of B.

Proof. We need some special representation for the element of Lebesgue measure on
Sn−1. Given an orthonormal system of unit vectors z1, z2, x1, x2, ..., xn−2 in Rn, we
represent ω ∈ Sn−1 as ω = (ν, ϕ, u), where ν is the angle between ω and e(z1, z2),
ϕ is the angle between z1 and the projection of ω onto e(z1, z2), while u is the
direction of the projection of ω onto the (n − 2)-dimensional subspace containing
x1, x2, ..., xn−2. The corresponding Jacobian for n ≥ 4 is (see [6])

λn−1(dω) = sinn−3 ν cos ν dν dϕλn−3(du). (6)

The support function of B(ω, ξ) is the restriction of H(ξ) (the support function
of the body) onto the circle Sn−1 ∩ e(ω, ξ). We consider some orthonormal system
of unit vectors z1, z2, x1, ..., xn−2, where z1 = ω, z2 = ξ. Let φ be the angle between
direction ω(φ) in e(ω, ξ) and ω. We have ω(φ) = (cosφ, sinφ, 0, ..., 0). According
to the formula for curvature radius in 2-dimensional case (see [5]) we have

R(ω, ξ) = H(0) + H ′′(φ) |φ=0, (7)
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where H(φ) = H(ω(φ)). Using (3) we get

H(φ) =
∫

Sn−1

|< ω(φ), Ω >| h(Ω) dΩ = 2
∫

{Ω (ω,Ω)≥0}
(Ω1 cosφ + Ω2 sinφ) h(Ω) dΩ,

(8)
where Ω = (Ω1, Ω2, ...,Ωn). Now we represent Ω as Ω = (ν, ϕ, δ), where δ ∈ Sn−3, ν
is the angle between Ω and e(ω, ξ), and ϕ is a direction in e(ϕ, ξ). Using (6) for the
second derivative we get

H ′′(φ) = 2
∫

{Ω (ω,Ω)≥0}
(−Ω1 cosφ− Ω2 sinφ) h(Ω) dΩ + (9)

+2
∫

Sω(φ)

(−Ω1 sinφ + Ω2 cosφ) h(ν, φ +
π

2
, δ) sinn−3 ν cos ν dνλn−3(dδ).

Substituting (9) into (7) and taking into account that sinn−3 ν dν λn−3(dδ) =
λn−2(du) where u = (ν, δ), u ∈ Sω and Ω2 = cos ν = cos(u, ξ) we get (5).

3 Proofs of Theorems 1 and 2

Proof of Theorem 1. Necessity: let R(ω, ψ) be the projection curvature radius of
a convex body B ∈ Bo. We have to prove that there is an even function f defined
on Sn−1 such that condition (1) satisfies for R(ω, ψ). It follows from (3) that for a
sufficiently smooth convex body the generating density exists. As a function f , we
take the generating density of centrally symmetric convex body B. It follows from
Theorem 3 that equation (1) is satisfied.

Sufficiency: let F be a nonnegative function defined on F for which there is an
even continuous function f defined on Sn−1 such that

F (ω, ψ) = 2
∫

Sω

| < ψ, u > |2 f(u) λn−2(du), (10)

for all ω ∈ Sn−1 and all ψ ∈ Sω. Since F is nonnegative the right hand side of (10)
is nonnegative. Hence according to Theorem 3 there exists a centrally symmetric
convex body B for which even function f is the generating density of B. It follows
from Theorem 3 that the right hand side of (10) is the 2-dimensional projection
curvature radius function of B. Hence F is the 2-dimensional projection curvature
radius of B. ¤

Proof of Theorem 2. Let u ∈ Sξ be a direction perpendicular to ξ ∈ Sn−1. We
approximate B(u, ξ) ⊂ e(ω, ξ) from inside by polygons that have their vertices on
∂B(u, ξ). We denote by ai sides of the approximation polygon, by νi (νi is the angle
between the normal direction and ξ) the direction normal to ai within e(u, ξ). Let
HB(u,ξ) be the support function of B(u, ξ). We have

4H(ξ) = 4HB(u,ξ)(ξ) = lim
∑

i

|ai| sin(ξ̂, νi) = (11)
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= lim
∑

i

Ru(νi)|νi+1 − νi| sin(ξ̂, νi) = 2
∫ π

0
Ru(ν) sin ν dν,

Ru(ν) is the radius of curvature of ∂B(u, ξ) at the point with normal ν. Integrating
both sides of (11) in λn−2(du) over Sξ, and using standard formula λn−1(dω) =
sinn−2 ν dν λn−2(du), where ω = (ν, u) we obtain

2σn−2H(ξ) =
∫

Sξ

∫ π

0
Ru(ν) sin ν dν λn−2(du) =

=
∫

Sξ

∫ π

0

Ru(ν)
sinn−3 ν

sinn−2 ν dν λn−2(du) =
∫

Sn−1

R(ω, ξ)

sinn−3(ω̂, ξ)
λn−1(dω). ¤

Note that replacing 2H(·) by the width function W (·) in (2) we get a formula
for the width function for all convex bodies (not only centrally symmetric).
I would like to express my gratitude to Professor R. V. Ambartzumian for helpful
discussions.
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On the structure of maximal non-finitely generated

ideals of ring and Cohen’s theorem
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Abstract. In this paper we consider analogues of Cohen’s theorem. We introduce
new notions of almost prime left (right) submodule and dr-prime left (right) ideal, this
allows us to extend Cohen’s theorem for modular and non-commutative analogues. We
prove that if every almost prime submodule of a finitely generated module is a finitely
generated submodule, then any submodule of this module is finitely generated.
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1 Introduction

The aim of this paper is to generalize Cohen’s theorem for wider class of rings.
In 1950 studying the structure of a commutative ring I. Cohen showed that if an
arbitrary prime ideal in a commutative ring with 1 6= 0 is finitely generated (prin-
cipal), then any ideal in R is finitely generated (principal) [1]. This theorem has a
rich history. In particular, R.Chandran proved it for duo-ring [2]. G.Mihler showed
that if an arbitrary left (right) prime ideal is finitely generated in an associative
ring, then an arbitrary left (right) ideal in a ring is finitely generated [3]. Another
non-commutative analogue of Cohen’s theorem was proved by B. Zabavsky [6] using
a weakly prime left (right) ideal. Also in [4−5] some attempts were made to extend
this theorem for module, but with some restrictions on this module.

In this paper we prove analogues of Cohen’s theorem for module over arbitrary
associative ring with 1 6= 0, for this we introduce a new notion of almost prime
left (right) submodule. So if every almost prime submodule of a finitely generated
module is a finitely generated, then any submodule of the module is finitely gener-
ated. Notice that in a commutative ring and duo-ring the notions of almost prime
submodule and prime submodule coincide.

In the next section we consider the commutative ring with 1 6= 0 which is not
a noetherian ring, the notion of a maximal non-finitely generated ideal and a finite
element are investigated here. Also some important corollaries are considered in this
section.

The last section deals with non-commutative analogue of Cohen’s theorem. A
new notion of dr-prime left (right) ideal is introduced. Thus if any dr-prime left
(right) ideal of a ring R is principal, then any left (right) ideal in R is principal.

c© S. I. Bilavska, B.V. Zabavsky, 2011
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2 Preliminaries

Let M be a finitely generated left module considered over an associative ring
R with 1 6= 0. Suppose that there is at least one submodule which is not finitely
generated, we call it a non-finitely generated submodule. We denote by S the set of
all non-finitely generated submodules and by {Ni}i∈Λ any chain of submodules of a
module M which belong to the set S, moreover N =

⋃
i∈Λ

Ni.

We show that N ∈ S. Suppose that N /∈ S, then there exist elements
n1, n2, . . . nk ∈ N such that

N = Rn1 + Rn2 + . . . + Rnk.

Since N =
⋃

i∈Λ

Ni for every nj, j = 1, 2, . . . , k, there exists s such that nj ∈ Nis .

Since {Ni}i∈Λ is a chain of submodules, there exists t such that n1, n2, . . . , nk ∈ Nt.
Then Rn1 + Rn2 + . . . + Rnk ⊂ Nt. Since

Nt ⊂ N =
⋃

i∈Λ

Ni = Rn1 + Rn2 + . . . + Rnk,

this is a contradiction to Nt ∈ S. This contradiction shows that N ∈ S, therefore
the set S is inductive with respect to the order of submodules inclusion as a set.

According to Zorn’s lemma there exists at least one maximal element in the set
S. Therefore we have a submodule which is contained in the maximal element of S,
we call it the maximal non-finitely generated submodule of the module M .

Definition 1. An element a of a ring R is called a duo-element if aR = Ra.

Definition 2. A left ideal P of a ring R is called an almost prime left ideal if from
the condition ab ∈ P , where a is a duo-element of the ring R it follows that either
a ∈ P or b ∈ P .

Definition 3. A submodule N of a module M is called an almost prime left sub-
module if

(N : M) = {r|r ∈ R, rM ⊂ N}

is an almost prime left ideal of a ring R.

Proposition 1. Any maximal left ideal of a ring R is an almost prime left ideal.

Proof. Let M be an arbitrary maximal ideal of a ring R and let M be not almost
prime. Then there exist elements a ∈ R\M , b ∈ R\M , where a is a duo-element
such that ab ∈ M . If M is maximal then we have M + bR = R and hence there
exist elements m ∈ M , r ∈ R such that m + br = 1. Hence am + abr = a ∈ M . But
this is a contradiction with the choice of the element a.

Remark that any maximal submodule of a module is an almost prime submodule
[5]. We consider just a finitely generated submodule, so it is obvious that maximal
submodules exist in it. It is easy to see that in module under consideration there
always exist almost prime submodules.
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3 Analogue of Cohen’s theorem for modules

Suppose that for a module M there exists at least one non-finitely generated
submodule. Then according to what was proved above there exists a maximal non-
finitely generated submodule. If there exists a maximal non-finitely generated sub-
module, then there exists an almost prime submodule.

Theorem 1. Every maximal non-finitely generated submodule of a finitely generated
module over a ring is an almost prime submodule.

Proof. Let M be a finitely generated module, N be a maximal non-finitely generated
submodule, N ⊂ M . According to restrictions on a ring R, N could not be an almost
prime ideal, that is there exist elements a, b ∈ R, where a is a duo-element such that

abN ⊂ M , but a /∈ N and b /∈ N . Then we assume that N + aM =
α∑

i=1

Rxi is a

finitely generated submodule of the module M . Notice that N + bM ⊆ (N : a),
where (N : a) = {m|am ∈ N}. Thus (N : a) is a finitely generated submodule of

a module M , and let (N : a) =
β∑

j=1

Ryj. Since N ⊂ N + aM =
α∑

i=1

Rxi, for any

n ∈ N there exist elements ri ∈ R, i = 1, 2, . . . α, such that n = r1x1 + . . . + rαxα.

As N + aM =
α∑

i=1

Rxi, there exist n0
i ∈ N and si ∈ M , where i = 1, 2, . . . α, such

that xi = n0
i + asi. We show that

n = r1n
0
1 + . . . + rαn0

α + r1as1 + . . . + rαasα.

As a is a duo-element, for every ri ∈ R, i = 1, 2, . . . α, there exists r′i ∈ R, i =
1, 2, . . . α, such that ria = ar′i. Hence

n = r1n
0
1 + . . . + rαn0

α + a(r′1s1 + . . . + r′αs1 + . . . + r′αsα).

Thus
n − r1n

0
1 − . . . − rαn0

α = a(r′1s1 + . . . + r′αsα) ∈ N.

If (N : a) =
β∑

j=1

Ryj, we obtain r′1s1 + . . . + r′αsα = t1y1 + . . . + tβyβ, for some

t1, . . . tβ ∈ R such that at1 = t′1a,. . . atβ = t′βa, and then

n = r1n
0
1 + . . . + rαn0

α + t1ay1 + . . . + tβayβ.

Since n is an arbitrary element, we proved that

N ⊆ Rn0
1 + . . . + Rn0

α + Ray1 + . . . + Rayβ.

If yi ∈ (N : a), i = 1, 2, . . . , β, then ay1 ∈ N, . . . , ayβ ∈ N , and if n0
1, . . . , n

0
α ∈ N ,

then Rn0
1 + . . . + Rn0

α + Ray1 + . . . + Rayβ ⊂ N . Thus

N = Rn0
1 + . . . + Rn0

α + Ray1 + . . . + Rayβ

is a finitely generated submodule N , but this is a contradiction with N ∈ S. Thus
N is an almost prime submodule.
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Remind that if R is a commutative ring or duo-ring, then the notion of almost
prime submodule coincides with the notion of a prime submodule [4-5].

Also from Theorem 1, as a consequence, we obtain the modular analogue of
Cohen’s theorem. This theorem is the main result of the section.

Theorem 2 (Modular analogue of Cohen’s theorem). If every almost prime
submodule of a finitely generated module is a finitely generated submodule, then any
submodule of this module is finitely generated.

Proof. Let M be a finitely generated module, and all almost prime submodules of
the module M are finitely generated. If M does not contain non-finitely generated
submodules, then everything is clear. In another case, for the module M there exists
at least one non-finitely generated submodule. Then, according to what was proved
above for M there exists at least one maximal non-finitely generated submodule.
According to Theorem 1, N is an almost prime submodule. But all almost prime
submodules of the module M are finitely generated, that is N is finitely generated
as an almost prime submodule and N is not finitely generated as a maximal non-
finitely generated submodule at the same time. But this is not possible, therefore
M does not contain non-finitely generated submodules.

4 Maximal non-finitely generated ideals of commutative ring

Let R be a commutative ring with 1 6= 0. Assume that R is not a noetherian
ring, that is there exist non-finitely generated ideals in R. Consider a ring R as a
module over itself, that is RR.

Definition 4. An ideal I in R which is maximal in a set of non-finitely generated
ideals is called maximal non-finitely generated ideal in R.

We can say that there exists at least one maximal non-finitely generated ideal
in R. Moreover, using the theorem for the module RR we obtain that all maximal
non-finitely generated ideals are prime ideals. Thus, the following theorem takes
place.

Theorem 3 (see [3]). Let R be a commutative ring which is not noetherian, then
any maximal non-finitely generated ideal of the ring R is a prime ideal.

Hence, as an obvious corollary we obtain the known Cohen’s theorem.

Theorem 4 (see [1]). If all prime ideals of a commutative ring R are finitely
generated, then R is a noetherian ring.

Consider the case when R is a commutative ring but is not a noetherian ring.
According to above there exists at least one maximal non-finitely generated ideal in
R. Denote by N(R) the intersection of all maximal non-finitely generated ideals of
the ring R.
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Definition 5. We say that a nonzero element a of a ring R is a finite element if any
chain of ideals which contain the element a is finite. That is for any chain of ideals
I1 ⊂ I2 ⊂ ... such that a ∈ I1, there exists a number n for which In = In+1 = ...

All invertible elements and all factorial elements are examples of the finite ele-
ment a [6]. Thus we obtain the following corollary.

Corollary 1. Let R be a commutative ring and a be an arbitrary element of the
ring R. Then the following statements are equivalent:

1) a is a finite element ;

2) any ideal which contains the element a is finitely generated;

Proof. 1) =⇒ 2). Let I be any ideal of a ring R which contains the element a.
If aR = I, everything is clear, but otherwise there exists an element i1 ∈ I such
that i1 /∈ aR. Consider the ideal aR + i1R, it is obvious that aR ⊂ aR + i1R. If
aR+ i1R 6= I, then there exists an element i2 ∈ I such that i2 /∈ aR+ i1R. Consider
the ideal aR + i1R+ i2R, it is obvious, that aR ⊂ aR + i1R ⊂ aR+ i1R + i2R. This
inclusion can be continued, but taking into account the definition of the element a,
this chain can not be infinite. This means that there exist elements i1, i2, . . . , in ∈ I
such that

aR + i1R + . . . + inR = I,

that is I is a finitely generated ideal.

2) =⇒ 1). Conversely, show that if any ideal which contains the element a is
finitely generated, then a is a finite element of the ring R.

Let {Iα}α∈Λ be any chain of ideals, and all ideals of such type of this chain
contain the element a. Show that this chain is finite. Let I =

⋃
α∈Λ

Iα. Obviously,

a ∈ I. As we assumed, I is a finitely generated ideal, that is there exist elements
i1, . . . , ik ∈ I such that I = i1R + . . . + ikR. Since I =

⋃
α∈Λ

Iα, there exist numbers

α1, . . . , αk such that i1 ∈ Iα1 , . . . , ik ∈ Iαk
. If {Iα}α∈Λ is a chain of ideals, there

exists a number t such that i1, . . . , ik ∈ Iαt
, that is i1R + . . . + ikR ⊂ Iαt

. As⋃
α∈Λ

Iα = i1R + . . . + ikR, then i1R + . . . + ikR = Iαt
, that is the chain {Iα}α∈Λ is

finite.

Corollary 2. Suppose that an element a does not belong to any maximal non-finitely
generated ideal of a ring R. Then a is a finite element in R.

Proof. Use Corollary 1 and the fact that the element a is not contained in any non-
finitely generated ideal. Thus, as it is proved above, the element a is contained in
at least one maximal non-finitely generated ideal.

Corollary 3. Let n be an arbitrary element from N(R). Then for any finite element
a ∈ R and any element x ∈ R, the element a + nx is finite.
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Proof. We will prove it by contradiction. Let the element a + nx be not finite, then
it belongs to some maximal non-finitely generated ideal N of the ring R. Since n
is an element from N(R), we see that n ∈ N and x is an arbitrary element of the
ring R, then nx ∈ N . From the definition of ideal we obtain (a + nx) − nx ∈ N ,
whence a ∈ N . However, the element a is finite and as proved above, the element a
belongs to a maximal non-finitely generated ideal, which is impossible, according to
Corollary 1. We obtain a contradiction.

Corollary 4. Let R be a commutative ring with only one maximal non-finitely
generated ideal N = N(R). Then the following statements hold:

a) all non-finite elements from R form an ideal which coincides with N ;
b) an arbitrary divisor of a finite element is a finite element of the ring R;
c) for an arbitrary non-finite element n and any finite element a, we obtain that

a + n is a finite element.

Proof. a) From Corollary 1 it is known that any finite element does not belong to N
and every element which does not belong to N is finite. Then all non-finite elements
form the ideal which coincides with N .

b) Let a be a finite element of the ring R such that a = bc, b /∈ U(R) and
c /∈ U(R), where U(R) is the group of units of the ring R. If b is not finite, then
b ∈ N . Hence we see that bc = a ∈ N , but this is impossible, because the element a
is finite. Corollary 1 completes the proof.

c) If n ∈ N and a is a finite element, then obviously a + n is not contained in N
(because there are only finite elements in N). Thus, a + n is a finite element.

5 Analogue of Cohen’s theorem for principal ideals of

noncommutative ring

In this section, we denote by R an associative ring with 1 6= 0.

Definition 6. A left (right) ideal in R which is maximal in the set of non-finitely
generated left(fight) ideals is called maximal non-finitely generated left (right) ideal
in the ring R.

Definition 7. A left (right) ideal in R which is maximal in the set of non-principal
left (right) ideals is called maximal non-principal left (right) ideal in the ring R.

Corollary 5. Any left (right) non-finitely generated ideal of ring R is contained in
at least one maximal non-finitely generated left (right) ideal.

Proof. Let I be an arbitrary non-finitely generated left ideal of a ring R. Denote
by S the set of all non-finitely generated left ideals of the ring R which contain the
ideal I. We show that the set S is inductive with respect to the order of ideals
inclusion. If {Iα}α∈Λ is any chain of left ideals from the set S, denote J =

⋃
α∈Λ

Iα.

It is obvious that J is an ideal of the ring R. Moreover, J ∈ S. Indeed, according to
the definition of a left ideal, I ∈ S. If J /∈ S, then there exist elements j1, . . . , jk ∈ J
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such that J = Rj1 + . . . + Rjk, and there exist elements α1, . . . , αk ∈ Λ such that
j1 ∈ Iα1 , . . . , jk ∈ Iαk

. Since {Iα}α∈Λ is a chain, there exists t such that j1, . . . , jk ∈
Iαt

. As Iαt
⊂

⋃
α∈Λ

Iα, then Iαt
= Rj1 + . . . + Rjk, but this is impossible, because

Iαt
∈ S. Zorn’s lemma completes the proof of the corollary.

In the same way we can consider the case of a right non-finitely generated ideal.
In the case of a principal left (right) ideals the following corollary takes place.

Corollary 6. Every left (right) non-principal ideal of a ring R is contained in at
least one maximal non-principal left (right) ideal.

Proof. Using the previous proof of Corollary 5 for any left (right) non-finitely gener-
ated ideal, we can prove in the same way for any left (right) non-principal ideal.

Definition 8. Remind that an ideal P of a ring R is called prime left (right) ideal
if the condition aRb ⊆ P implies that either a ∈ P or b ∈ P .

According to a result of [3] we have the following theorem.

Theorem 5. Any maximal non-finitely generated left (right) ideal of a ring is a
prime left (right) ideal.

In [6] a noncommutative analogue of Cohen’s theorem was proved, using weakly
prime ideals.

Definition 9. We say that left (right) ideal P of a rind R is a weakly prime left
(right) ideal, if from the condition (a + P )R(b + P ) ⊆ P if follows that either a ∈ P
or b ∈ P .

Using a result of the paper [7], the folowing theorem holds.

Theorem 6. Any maximal non-principal left (right) ideal of a ring R is a weakly
prime left (right) ideal.

Definition 10. Remind that an element of a ring R is called an atom if it is non-
inverse and non-zero and cannot be presented as the product of two noninvertible
elements [8].

Theorem 7. Let N be an arbitrary maximal non-principal left ideal for which there
exists a duo-element c such that N ⊂ Rc. Then for any n ∈ N , from n = cx it
always follows x ∈ N .

Proof. Consider the set J = {x|cx ∈ N}. Since c is a duo-element, J is a left ideal.
Obviously N ⊂ J . If there exists an element y such that cy ∈ N , but y /∈ N , this
means that N ⊂ J , but N 6= J . Using the definition of left ideal N we see that
J = Rd. We show that N = Rcd. Indeed, since N ⊂ Rc = cR, for any n ∈ R there
exists t ∈ R such that n = ct. Since t ∈ J , we have t = sd. Hence n = csd. As c
is a duo-element, then there exists s′ ∈ R such that cs = s′c. Thus n = s′cd, that
is N ⊂ Rcd. Since 1 ∈ R and d ∈ J , we obtain cd ∈ N . Hence dcR ⊂ N . Thus
N = dcR. We obtain a contradiction to the choice of the left ideal.
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Definition 11. A left (right) ideal P of an associative ring R with 1 6= 0 is a dr-
prime left (right) ideal if P ⊂ Rc(P ⊂ cR), where c is a duo-element, and for any
p ∈ P , the condition p = yc = cx(p = cx = yc) implies x ∈ P (y ∈ P ).

Proposition 2. Any maximal left (right) ideal M of a ring R is a dr-prime left
(right) ideal.

Proof. Let M be a maximal left ideal. Since there is only one two-sided ideal in R
which contains M , for arbitrary m ∈ M it always follows m = 1m.

A similar proof could be made for a maximal right ideal.

Theorem 8 (Non-commutative analogue of Cohen’s theorem). If any dr-
prime left (right) ideal of a ring R is principal, then any left (right) ideal from R is
principal.

Proof. Let R be a ring in which any dr-prime left ideal is principal, but R is not a
principal left ideal I. By Corollary 6, I is contained in a maximal non-principal left
ideal N . According to Theorem 9, N is a dr-prime left ideal, since any dr-prime left
ideal is principal. But this is a contradiction.

Definition 12. A two-sided ideal P is called a completely prime ideal if the condi-
tion ab ∈ P , where a, b ∈ R, implies either a ∈ P or b ∈ P [8].

Notice that in the case of a commutative ring the notion of completely prime
ideal coincides with the notion of prime ideal.

Theorem 9. If a maximal non-finitely generated left (right) ideal of a ring R is
two-sided, then it is a completely prime ideal.

Proof. Let N be a maximal non-finitely generated left ideal of a ring R which is
two-sided. If R/N is not a ring without zero divisors, then there exist elements
a /∈ N and b /∈ N such that ab ∈ N in R. Thus, the left ideal J = {x|x ∈ R,xb ∈ N}
contains the ideal N and the element a. Hence, the inclusion N ⊂ J is strict,
and according to the restriction on N , the left ideal J is finitely generated. Let
J = Rc1 + . . . + Rcn. Since b /∈ N , according to the definition of the maximal
non-finitely generated left ideal N , we obtain

N + Rb = Rd1 + . . . + Rdk

for some elements d1, . . . , dk ∈ R. Hence di = ni + rib, where ni ∈ N , ri ∈ R,
i = 1, 2, . . . , k. As N ⊂ Rd1+ . . .+Rdk, then any element m ∈ N can be represented
in the following form

m = s1d1 + . . . + skdk,

where s1, . . . , sk ∈ R.
Using what is written above, we obtain

m = s1d1 + . . . + skdk = s1(n1 + r1b) + . . . + sk(nk + rkb) =
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= s1n1 + . . . + sknk + s1r1b + . . . + skrkb.

Since m ∈ N and n1, . . . , nk ∈ N , we have

m − s1n1 − . . . − sknk = (s1r1 + . . . + skrk)b ∈ N,

then according to the definition of left ideal J we have s1r1 + . . . + skrk ∈ J , that
is there exist elements t1, . . . , tn ∈ R such that s1r1 + . . . + skrk = t1c1 + . . . + tncn,
because J = Rc1 + . . . + Rcn. Hence

m = s1n1 + . . . + sknk + t1c1b + . . . + tncnb.

Using the fact that element m is arbitrary, we obtain

N ⊂ Rn1 + . . . + Rnk + Rc1b + . . . + Rcnb.

However, n1, . . . , nk ∈ N and c1, . . . , ck ∈ J , so this means that c1b ∈ N1, . . . ckb ∈ N ,
that is Rn1 + . . . + Rnk + Rc1b + . . . + Rcnb ⊂ N . Thus

N = Rn1 + . . . + Rnk + Rc1b + . . . + Rcnb,

but this is a contradiction to the choice of N .
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On 2-primal Ore extensions over Noetherian σ(∗)-rings

Vijay Kumar Bhat

Abstract. In this article, we discuss the prime radical of skew polynomial rings over
Noetherian rings. We recall σ(∗) property on a ring R (i. e. aσ(a) ∈ P (R) implies
a ∈ P (R) for a ∈ R, where P (R) is the prime radical of R, and σ an automorphism of
R). Let now δ be a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then
we show that for a Noetherian σ(∗)-ring, which is also an algebra over Q, the Ore
extension R[x; σ, δ] is 2-primal Noetherian (i. e. the nil radical and the prime radical
of R[x; σ, δ] coincide).

Mathematics subject classification: 16S36, 16N40, 16P40, 16S32, 16W20, 16W25.
Keywords and phrases: Minimal prime, 2-primal, prime radical, automorphism,
derivation.

1 Introduction

A ring R always means an associative ring with identity 1 6= 0. The fields of
complex numbers, real numbers, rational numbers, the ring of integers and the set
of natural numbers are denoted by C, R, Q, Z and N respectively unless otherwise
stated. The set of prime ideals of R is denoted by Spec(R). The set of minimal
prime ideals of R is denoted by Min.Spec(R). The prime radical and the nil radical
of R are denoted by P (R) and N(R) respectively. Let R be a ring and σ an auto-
morphism of R. Let I be an ideal of R such that σm(I) = I for some m ∈ N. We
denote ∩m

i=1σ
i(I) by I0. For any two ideals I, J of R, I ⊂ J means that I is strictly

contained in J .

This article concerns the study of skew polynomial rings (Ore extensions) in
terms of 2-primal rings. Recall that the skew polynomial ring R[x; σ, δ] is the set of
polynomials

{∑n
i=0 xiai, ai ∈ R, n ∈ N}

with usual addition of polynomials and multiplication subject to the relation
ax = xσ(a) + δ(a) for all a ∈ R. We take any f(x) ∈ R[x; σ, δ] to be of the form
f(x) =

∑n
i=0 xiai, ai ∈ R as in McConnell and Robson [15]. We denote R[x; σ, δ]

by O(R). In case δ is the zero map, we denote R[x;σ] by S and in case σ is the
identity map, we denote R[x; δ] by D. The study of Ore-extension O(R) = R[x;σ, δ]
and its special cases S and D have been of interest to many authors. For exam-
ple [6–8,10,13,14,16].

c© Vijay Kumar Bhat, 2011
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2-primal rings have been studied in recent years and are being treated by authors
for different structures. In [14], Greg Marks discusses the 2-primal property of
R[x; σ, δ], where R is a local ring, σ an automorphism of R and δ a σ-derivation of
R. In Greg Marks [14], it has been shown that for a local ring R with a nilpotent
maximal ideal, the Ore extension R[x; σ, δ] will or will not be 2-primal depending on
the δ-stability of the maximal ideal of R. In the case where R[x; σ, δ] is 2-primal, it
will satisfy an even stronger condition; in the case where R[x; σ, δ] is not 2-primal,
it will fail to satisfy an even weaker condition.

Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak
in [11]. 2-primal near rings have been discussed by Argac and Groenewald in [1].
Recall that a ring R is 2-primal if and only if N(R) = P (R), i.e. if the prime
radical is a completely semiprime ideal. An ideal I of a ring R is called completely
semiprime if a2 ∈ I implies a ∈ I for a ∈ R. We also note that a reduced ring is
2-primal and a commutative ring is also 2-primal. For further details on 2-primal
rings, we refer the reader to [1–3,11,14].

Before proving the main result, we find a relation between the minimal prime ide-
als of R and those of the Ore extension R[x; σ, δ], where R is a Noetherian Q-algebra,
σ an automorphism of R and δ a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for
all a ∈ R. This is proved in Theorem 3.

σ(∗)-rings: Let R be a ring and σ an endomorphism of R. Then σ is said to be
a rigid endomorphism if aσ(a) = 0 implies that a = 0, for a ∈ R, and R is said to
be a σ-rigid ring (Krempa [12]).

For example let R = C, and σ : C→ C be the map defined by σ(a+ ib) = a− ib,
a, b ∈ R. Then it can be seen that σ is a rigid endomorphism of R.

In Theorem 3.3 of [12], Krempa has proved the following:
Let R be a ring, let σ be an endomorphism and δ a σ-derivation of R. If σ is a
monomorphism, then the skew polynomial ring R[x; σ, δ] is reduced if and only if R
is reduced and σ is rigid. Under this conditions any minimal prime ideal (annihilator)
of R[x; σ; δ] is of the form P [x; σ; δ] where P is a minimal prime ideal (annihilator)
in R.

In [13], Kwak defines a σ(∗)-ring R to be a ring in which aσ(a) ∈ P (R) implies
a ∈ P (R) for a ∈ R.

Example 1. Let R =
(

F F
0 F

)
, where F is a field. Then P (R) =

(
0 F
0 0

)
Let

σ : R → R be defined by σ
((

a b
0 c

) )
=

(
a 0
0 c

)
. Then it can be seen that σ is

an endomorphism of R and R is a σ(∗)-ring.

We note that the above ring is not σ-rigid. For let 0 6= a ∈ F . Then(
0 a
0 0

)
σ

(
0 a
0 0

)
=

(
0 0
0 0

)
, but

(
0 a
0 0

)
6=

(
0 0
0 0

)
.
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Kwak in [13] also establishes a relation between a 2-primal ring and a σ(∗)-ring.
The property is also extended to the skew-polynomial ring R[x; σ]. It has been
proved in Theorem 5 of [13] that if R is a 2-primal ring and σ is an automorphism
of R, then R is a σ(∗)-ring if and only if σ(P ) = P for all P ∈ Min.Spec(R). In
Theorem 12 of [13] it has been proved that if R is a σ(∗)-ring with σ(P (R)) = P (R),
then R[x; σ] is 2-primal if and only if P (R)[x; σ] = P (R[x; σ]).

It is known that if R is a 2-primal Noetherian Q-algebra, and δ is a derivation
of R, then R[x; δ] is 2-primal Noetherian. (Theorem 2.4 of Bhat [3]).

Let now R be a ring, σ an automorphism of R and δ a σ-derivation of R. Recall
from Bhat [2] that R is said to be a δ-ring if aδ(a) ∈ P (R) implies a ∈ P (R) for
a ∈ R. It is known that if R is a δ-Noetherian Q-algebra, σ an automorphism of R
and δ a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R, σ(P ) = P for
all P ∈ Min.Spec(R) and δ(P (R)) ⊆ P (R), then R[x;σ, δ] is 2-primal Noetherian
(Theorem 2.4 of Bhat [2]).

In a sense we generalize the above results of Bhat [2, 3] when σ is an automor-
phism of R and ultimately investigate the 2-primal property of R[x;σ, δ] when R is
a σ(∗)-Noetherian Q-algebra and prove the following, even without the hypothesis
of R being a δ-ring:

Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q. Further
P ∈ Min.Spec(O(R)) imply that P ∩R ∈ Min.Spec(R). Then R[x; σ, δ] is 2-primal
Noetherian, where δ(σ(a)) = σ(δ(a)) for all a ∈ R.

This result is proved in Theorem 5. We note that for a Noetherian σ(∗)-ring,
σ(P ) = P for all P ∈ Min.Spec(R) (Theorem 2), and this is crucial in proving
Theorem 4 and, therefore, the main result (Theorem 5).

We generalize Theorem 7 of [5] which states the following:
Theorem 7 of [5]. Let R be a Noetherian ring, which is also an algebra over Q.

Let σ be an automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation
of R such that R is a δ-ring and δ(σ(a)) = σ(δ(a)) for all a ∈ R. Further let
P ∈ Min.Spec(O(R)) imply that P ∩R ∈ Min.Spec(R). Then R[x; σ, δ] is 2-primal
Noetherian.

2 Ore extensions

Recall that an ideal I of a ring R is called σ-invariant if σ(I) = I. Also I is
called completely prime if ab ∈ I implies a ∈ I or b ∈ I for a, b ∈ R. ([13])

In commutative case completely prime and prime have the same meaning. We
also note that every completely prime ideal of a ring R is a prime ideal, but the
converse need not be true.

The following example shows that a prime ideal need not be a completely prime
ideal.
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Example 2. Let R =
(
Z Z
Z Z

)
= M2(Z). If p is a prime number, then the

ideal P = M2(pZ) is a prime ideal of R, but is not completely prime, since for

a =
(

1 0
0 0

)
and b =

(
0 0
0 1

)
, we have ab ∈ P , even though a /∈ P and b /∈ P .

We also recall that an ideal J of a ring is called a σ-prime ideal of R if J is
σ-invariant and for any σ-invariant ideals K and L with KL ⊆ J , we have K ⊆ J
or L ⊆ J .

We also note that if R is a Noetherian ring, then Min.Spec(R) is finite (Theorem
2.4 of Goodearl and Warfield [10]) and for any automorphism σ of R and for any
U ∈ Min.Spec(R), we have σi(U) ∈ Min.Spec(R) for all i ∈ N, therefore, it follows
that there exists some m ∈ N such that σm(U) = U for all U ∈ Min.Spec(R). As
mentioned earlier we denote ∩m

i=0σ
i(U) by U0.

We now prove the following Theorem. This Theorem has not been used to prove
the main Theorem, but gives an idea to find a relation between Min.Spec(R) and
Min.Spec(O(R)) (namely Theorem 3) which is crucial in proving the main result
(Theorem 5):

Theorem 1. Let R be a Noetherian ring and σ an automorphism of R. Let S =
R[x; σ] be as usual. Then:

1. If P ∈ Min.Spec(S), then P = (P ∩ R)S and there exists U ∈ Min.Spec(R)
such that P ∩R = U0.

2. If U ∈ Min.Spec(R), then U0S ∈ Min.Spec(S).

Proof. See Theorem 2.4 of Bhat [6].

Proposition 1. Let R be a ring and σ an automorphism of R. Then R is a σ(∗)-ring
implies R is 2-primal.

Proof. Let a ∈ R be such that a2 ∈ P (R). Then aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈
σ(P (R)) = P (R). Therefore aσ(a) ∈ P (R) and hence a ∈ P (R).

A necessary and sufficient condition for a Noetherian ring to be a σ(∗)-ring is
given by Bhat in Theorem 2.4 of [4]:

Theorem 2. Let R be a Noetherian ring. Then R is a σ(∗)-ring if and only if for
each minimal prime U of R, σ(U) = U and U is completely prime ideal of R.

Proof. Theorem 2.4 of [4].

We now give a relation between the minimal prime ideals of R and those of
R[x; σ, δ], where R is a Noetherian Q-algebra, σ an automorphism of R and δ a
σ-derivation of R. This is proved in Theorem 3. Towards this we have the following:
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Proposition 2. Let R be a Noetherian Q-algebra, σ an automorphism and δ a
σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then etδ is an auto-
morphism of T = R[[t, σ]], the skew power series ring.

Proof. The proof is on the same lines as in Seidenberg [16] and in the non-
commutative case on the same lines as provided by Blair and Small in [8].

Henceforth we denote R[[t, σ]] by T . Let I be an ideal of R such that σ(I) = I.
Then it is easy to see that TI ⊆ IT and IT ⊆ TI. Hence TI = IT is an ideal of T .

Lemma 1. Let R be a Noetherian Q-algebra, σ an automorphism and δ a σ-
derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Let I be an ideal of
R such that σ(I) = I. Then I is δ-invariant if and only if IT is etδ-invariant.

Proof. Let IT be etδ-invariant. Let a ∈ I. Then a ∈ IT . So etδ(a) ∈ IT ; i.e.
a + tδ(a) + (t2δ2/2!)(a) + ... ∈ IT . Therefore δ(a) ∈ I.

Conversely suppose that δ(I) ⊆ I and let f =
∑

tiai ∈ IT . Then etδ(f) =
f + tδ(f) + (t2δ2/2!)(f) + ... ∈ IT , as δ(ai) ∈ I. Therefore etδ(IT ) ⊆ IT . Replacing
etδ by e−tδ, we get that etδ(IT ) = IT .

Assumption A: Henceforth we assume that R is a ring and T as usual such
that for any U ∈ Min.Spec(R) with σ(U) = U , UT ∈ Min.Spec(T ).

Proposition 3. Let R be a Noetherian Q-algebra. Let σ be an automorphism of
R and δ be a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then
P ∈ Min.Spec(R) with σ(P ) = P implies δ(P ) ⊆ P .

Proof. Let T be as usual. Now by Proposition (2) etδ is an automorphism of T .
Let P ∈ Min.Spec(R)). Then by assumption PT ∈ Min.Spec(T ). Therefore there
exists an integer n ≥ 1 such that (etδ)n(PT ) = PT , i.e. entδ(PT ) = PT . But R is
a Q-algebra, therefore, etδ(PT ) = PT and now Lemma 1 implies δ(P ) ⊆ P .

Proposition 4. Let R be a σ(∗)-ring, which is also an algebra over Q and U ∈
Min.Spec(R). Then U(O(R)) = U [x; σ, δ] is a completely prime ideal of O(R) =
R[x; σ, δ], where δ is a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R.

Proof. Let U ∈ Min.Spec(R). Then σ(U) = U by Theorem 2, and δ(U) ⊆ U by
Proposition 3). Now R is 2-primal by Proposition 1 and furthermore U is completely
prime by Theorem 2. Now we note that σ can be extended to an automorphism σ of
R/U and δ can be extended to a σ-derivation δ of R/U . Now it is well known that
O(R)/U(O(R)) ' (R/U)[x; σ, δ] and hence U(O(R)) is a completely prime ideal of
O(R).

Theorem 3. Let R be a Noetherian Q-algebra. Consider O(R) as usual such that
R is a σ(∗)-ring and δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then P1 ∈ Min.Spec(R) with
σ(P1) = P1 implies that O(P1) ∈ Min.Spec(O(R).
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Proof. Let P1 ∈ Min.Spec(R). Now by Theorem 2 σ(P1) = P1, and by Proposition 3
δ(P1) ⊆ P1. Now Proposition (3.3) of [9] implies that O(P1) ∈ Spec(O(R)). Suppose
O(P1) /∈ Min.Spec(O(R)) and P2 ⊂ O(P1) be a minimal prime ideal of O(R). Then
P2 = O(P2 ∩ R) ⊂ O(P1) ⊆ Min.Spec(O(R)). Therefore (P2 ∩ R) ⊂ P1 which is a
contradiction, as (P2 ∩R) ∈ Spec(R). Hence O(P1) ∈ Min.Spec(O(R)).

We now prove the following Theorem, which is crucial in proving Theorem 5.

Theorem 4. Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q, σ
an automorphism of R and δ a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for
all a ∈ R. Then R[x; σ, δ] is 2-primal if and only if P (R)[x; σ, δ] = P (R[x; σ, δ]).

Proof. Let R[x; σ, δ] be 2-primal. Now by Proposition 4 P (R[x;σ, δ]) ⊆ P (R)[x;σ, δ].
Let

f(x) =
∑n

j=0 xjaj ∈ P (R)[x;σ, δ].

Now R is a 2-primal subring of R[x; σ, δ] by Proposition 1, which implies that aj is
nilpotent and thus

aj ∈ N(R[x; σ, δ]) = P (R[x; σ, δ]).

So we have xjaj ∈ P (R[x; σ, δ]) for each j, 0 ≤ j ≤ n, which implies that
f(x) ∈ P (R[x; σ, δ]). Hence P (R)[x; σ, δ] = P (R[x;σ, δ]).

Conversely suppose that P (R)[x;σ, δ] = P (R[x; σ, δ]). We will show that
R[x; σ, δ] is 2-primal. Let

g(x) =
∑n

i=0 xibi ∈ R[x; σ, δ], bn 6= 0

be such that

(g(x))2 ∈ P (R[x; σ, δ]) = P (R)[x; σ, δ].

We will show that g(x) ∈ P (R[x; σ, δ]). Now leading coefficient σ2n−1(bn)bn ∈
P (R) ⊆ P , for all P ∈ Min.Spec(R). Also σ(P ) = P and P is completely prime by
Theorem 2. Therefore we have bn ∈ P , for all P ∈ Min.Spec(R), i.e. bn ∈ P (R).
Now δ(P ) ⊆ P for all P ∈ Min.Spec(R) by Proposition 3, we get

(
∑n−1

i=0 xibi)2 ∈ P (R[x; σ, δ]) = P (R)[x; σ, δ]

and as above we get bn−1 ∈ P (R). With the same process in a finite number of
steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we have g(x) ∈ P (R)[x;σ, δ],
i.e. g(x) ∈ P (R[x; σ, δ]). Therefore, P (R[x; σ, δ]) is completely semiprime. Hence
R[x; σ, δ] is 2-primal.

Theorem 5. Let R be a Noetherian, which is also an algebra over Q. Let σ be
an automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation of R such
that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Further let P ∈ Min.Spec(O(R)) imply that
P ∩R ∈ Min.Spec(R). Then O(R) = R[x; σ, δ] is 2-primal Noetherian.
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Proof. R[x; σ, δ] is Noetherian by Hilbert Basis Theorem (Theorem 1.12 of Goodearl
and Warfield [10]). We now use Theorem 3 to get that P (R)[x;σ, δ] = P (R[x; σ, δ]),
and the result now follows from Theorem 4.

We note that the hypothesis that R is a σ(∗)-ring can not be deleted as can be
seen below:

Example 3. Let R = K ⊕K, where K is a field. Then the Ore extension O(R) =
R[x; σ, 0], where σ is an automorphism of R defined by σ((a; b)) = (b; a), is a prime
ring. Thus P = 0 is a minimal prime of O(R). But P ∩ R = 0 is not a prime ideal
of R.

The following example shows that if R is a Noetherian ring, then R[x;σ, δ] need
not be 2-primal.

Example 4. Let R = Q ⊕ Q with σ(a, b) = (b, a). Then the only σ-invariant
ideals of R are {0} and R, and so R is σ-prime. Let δ : R → R be defined by
δ(r) = ra−aσ(r), where a = (0, α) ∈ R. Then δ is a σ-derivation of R and R[x;σ, δ]
is prime and P (R[x;σ, δ]) = 0. But (x(1, 0))2 = 0 as δ(1, 0) = −(0, α). Therefore
R[x; σ, δ] is not 2-primal. If δ is taken to be the zero map, then even R[x;σ] is not
2-primal.

The following example shows that if R is a Noetherian ring , then even R[x] need
not be 2-primal.

Example 5. Let R = M2(Q), the set of 2×2 matrices over Q. Then R[x] is a prime
ring with non-zero nilpotent elements, and so can not be 2-primal.

From these examples we conclude that if R is a Noetherian ring, then even R[x]
need not be 2-primal. But it is known that if R is a 2-primal Noetherian Q-algebra
and δ is a derivation of R, then R[x; δ] is 2-primal Noetherian (Theorem 2.4 of
Bhat [3]), and therefore, we have the following question:

Question: If R is a 2-primal ring, is R[x; σ, δ] 2-primal (even if R is commutative
or the special case when R is Noetherian)?
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Abstract. We prove that for a complete quasivariety K of topological E-algebras
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1 Introduction

In this paper we study the construction of a free topological universal algebra and
show that this construction preserves the class of submetrizable ANR(kω)-spaces.

To give a precise formulation of our main result, we need to recall some definitions
related to topological universal algebras. For more detailed information, see [5–7].

Definition 1. Let (En)n∈ω be a sequence of pairwise disjoint topological spaces.
The topological sum E =

⊕
n∈ω En is called a continuous signature. The signature

is called discrete (countable) if so is the space E.
A topological universal algebra of signature E or briefly, a topological E-algebra is

a topological space X endowed with a family of continuous maps en,X : En×Xn →
X, n ∈ ω.

A topological E-algebra (X, {en,X}n∈ω) is called Tychonoff if the underlying
topological space X is Tychonoff.

Homomorphisms between E-algebras are defined as follows.

Definition 2. A function h : X → Y between two topological E-algebras
(X, {en,X}n∈ω) and (Y, {en,Y }n∈ω) is called an E-homomorphism if

en,Y (z, h(x1), . . . , h(xn)) = h(en,X(z, x1, . . . , xn))

for any n ∈ ω, z ∈ En, and x1, . . . , xn ∈ X.
Such a function h is called an algebraic isomorphism (topological isomorphism)

if h is bijective and both functions h and h−1 are (continuous) E-homomorphisms
of the E-algebras.

c© Taras Banakh, Olena Hryniv, 2011
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Next, we define some operations over E-algebras.

Definition 3. For topological E-algebras Xα, α ∈ A, the Tychonoff product
X =

∏
α∈A Xα is a topological E-algebra endowed with the structure mappings

en,X(z, x1, . . . , xn) =
(
en,Xα(z, prα(x1), . . . , prα(xn))

)
α∈A

where n ∈ ω, z ∈ En, x1, . . . , xn ∈ X, and prα :
∏

α∈A Xα → Xα is the α-coordinate
projection.

Definition 4. A subset A ⊂ X of a topological E-algebra (X, {en}n∈ω) is called a
subalgebra if en(En ×An) ⊂ A for all n ∈ ω.

Since for any subalgebras Ai ⊂ X, i ∈ I, of a topological E-algebra X the
intersection A =

⋂
i∈I Ai is a subalgebra of X, for each subset Z ⊂ X there is a

minimal subalgebra 〈Z〉 of X that contains Z. This is the subalgebra generated by
the set Z. The structure of this subalgebra 〈Z〉 can be described as follows.

Given a subset L ⊂ E and a subset Z of a topological E-algebra (X, {en}n∈ω),
let

〈Z〉L0 = Z,

〈Z〉Ln+1 = 〈Z〉Ln ∪
⋃

k∈ω

ek,X

(
(Ek ∩ L)× (〈Z〉Ln)k

)
for n ∈ ω, and

〈Z〉Lω =
⋃
n∈ω

〈Z〉Ln .

By induction, one can check that for compact subspaces L ⊂ E and Z ⊂ X the
subset 〈Z〉Ln of X is compact for every n ∈ ω. Consequently, 〈Z〉Lω is a σ-compact
subset of X.

Writing the signature E and the space Z as the unions E =
⋃

n∈ω Ln and
Z =

⋃
n∈ω Zn of non-decreasing sequences of subsets, we see that

〈Z〉 =
⋃
n∈ω

〈Zn〉Ln
n

is the subalgebra of X, generated by Z. If the spaces Zn and Ln, n ∈ ω, are
compact (finite), then each subset 〈Zn〉Ln

n , n ∈ ω, of X is compact (finite) and hence
the algebraic hull 〈Z〉 of Z in X is σ-compact (at most countable).

Definition 5. A class K of topological E-algebras is called a complete quasivariety
if

1) for each topological E-algebra X ∈ K, each E-subalgebra of X belongs to the
class K;

2) for any topological E-algebras Xα ∈ K, α ∈ A, their Tychonoff product∏
α∈A Xα belongs to the class K;

3) a Tychonoff E-algebra belongs to K if it is algebraically isomorphic to a topo-
logical E-algebra Y ∈ K.
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A complete quasivariety K is non-trivial if it contains a topological E-algebra X
that contains more than one point.

Finally, we recall the notion of a free topological E-algebra.

Definition 6. Let K be a complete quasivariety of topological E-algebras. A free
topological E-algebra in K over a topological space X is a pair (FK(X), η) consisting
of a topological E-algebra FK(X) ∈ K and a continuous map η : X → FK(X) such
that for any continuous map f : X → Y to a topological E-algebra Y ∈ K there is
a unique continuous E-homomorphism h : FK(X) → Y such that f = h ◦ η.

The construction FK(X) of a free topological E-algebra has been intensively
studied by M. M.Choban [6,7]. In particular, he proved that for each complete qua-
sivariety K of topological E-algebras and any topological space X a free topological
E-algebra (FK(X), η) exists and is unique up to a topological isomorphism. Also he
proved the following important result, see [6, 2.4]:

Theorem 1 (Choban). If K is a non-trivial complete quasivariety of topological
E-algebras, then for each Tychonoff space X the canonical map η : X → FK(X) is
a topological embedding and FK(X) coincides with the subalgebra 〈η(X)〉 generated
by the image η(X) of X in F (X,K).

Since η : X → FK(X) is a topological embedding, we can identify a Tychonoff
space X with its image η(X) in FK(X) and say that the free E-algebra FK(X) is
algebraically generated by X.

In fact, the construction of a free topological E-algebra FK(X) determines a
functor FK : Top → K from the category Top of topological spaces and their
continuous maps to the category whose objects are topological E-algebras from the
class K and morphisms are continuous E-homomorphisms.

In [5–7] a lot of attention was paid to the problem of preservation of various topo-
logical properties by the functor FK. In particular, it was shown that the functor FK
preserves (submetrizable) kω-spaces provided the signature E is a (submetrizable)
kω-space, see [7, 4.1.2].

A Hausdorff topological space X is called a kω-space if X = lim−→Xn is the direct
limit of a non-decreasing sequence of compact subsets (Xn)n∈ω of X in the sense
that X =

⋃
n∈ω Xn and a subset U ⊂ X is open if and only if U ∩Xn is open in Xn

for each n ∈ ω. Such a sequence (Xn)n∈ω is called a kω-sequence for X.
An sω-space is a direct limit lim−→Xn of a kω-sequence (Xn)n∈ω consisting of second

countable compact subspaces of X. It is easy to see that a kω-space X is an sω-space
if and only if it is submetrizable in the sense that X admits a continuous metric.

Theorem 2 (Choban). Let K be a complete quasivariety of topological E-algebras
whose signature E is a (submetrizable) kω-space. Then for each (submetrizable) kω-
space X the free topological E-algebra FK(X) is a (submetrizable) kω-space. More-
over, if E = lim−→Ln and X = lim−→Xn for some kω-sequences (Ln)n∈ω and (Xn)n∈ω,
then (〈η(Xn)〉Ln

n )n∈ω is a kω-sequence for FKX and thus FKX = lim−→〈η(Xn)〉Ln
n .
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The principal result of this paper asserts that the functor FK preserves ANR(kω)-
spaces.

Definition 7. A kω-space X is called an absolute neighborhood retract in the class
of kω-spaces (briefly, an ANR(kω)) if X is a neighborhood retract in each kω-space
that contains X as a closed subspace.

In Theorem 10 we shall show that a submetrizable kω-space X is an ANR(kω)-
space if and only if each map f : B → X defined on a closed subspace of a (metriz-
able) compact space A extends to a continuous map f̄ : N(B) → X defined on a
neighborhood N(B) of B in A.

A topological space X is called compactly finite-dimensional if each compact
subset of X is finite-dimensional.

The following theorem is the main result of this paper.

Theorem 3. If K is a complete quasivariety of topological E-algebras of count-
able discrete signature E, then for each submetrizable (compactly finite-dimensional)
ANR(kω)-space X so is its free topological E-algebra FKX in the quasivariety K.

2 ANR(kω)-spaces

In this section we collect some information about ANR(kω)-spaces. Such spaces
are tightly connected with ANE-spaces.

Following [11] we define a topological space X to be an absolute neighborhood
extensor for a class C of topological spaces (briefly, an ANE(C)-space) if each map
f : B → X defined on a closed subspace B of a topological space C ∈ C has a
continuous extension f̄ : N(B) → X defined on some neighborhood N(B) of B in
C. If any such f can be extended to the whole space C, then X is called an absolute
extensor for the class C.

By the Dugundji-Borsuk Theorem [8],[4] each convex subset of a locally convex
linear topological space, is an absolute extensor for the class of metrizable spaces.
This theorem was generalized by Borges [3] who proved that a convex subset of a
locally convex space is an absolute extensor for the class of stratifiable spaces. This
class contains all metrizable spaces and all submetrizable kω-spaces, and is closed
with respect to many countable topological operations, see [3],[10].

An important example of an ANR(kω)-space is the space

Q∞ = {(xi)i∈ω ∈ R∞ : sup
i∈ω

|xi| < ∞}

of bounded sequences, endowed with the direct limit topology lim−→[−n, n]ω generated
by the kω-sequence ([−n, n]ω)n∈N consisting of the Hilbert cubes. Being a locally
convex linear topological space, Q∞ is an absolute extensor for the class of stratifiable
spaces.

A topological space X is called a Q∞-manifold if X is Lindelöf and each point
x ∈ X has a neighborhood homeomorphic to an open subset of Q∞. The theory
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of Q∞-manifolds was developed by K.Sakai [12],[13] who established the following
fundamental results:

Theorem 4 (Characterization). A topological space X is homeomorphic to (a man-
ifold modeled on) the space Q∞ if and only if X is a submetrizable kω-space such
that each embedding f : B → X of a closed subset B of a compact metrizable space
A can be extended to a topological embedding of (an open neighborhood of B in) the
space A into X.

Theorem 5 (Open Embedding). Each Q∞-manifold is homeomorphic to an open
subset of Q∞.

Theorem 6 (Closed Embedding). Each submetrizable kω-space is homeomorphic
to a closed subspace of Q∞.

Theorem 7 (Classification). Two Q∞-manifolds are homeomorphic if and only if
they are homotopically equivalent.

Theorem 8 (Triangulation). Each Q∞-manifold X is homeomorphic to K × Q∞

for some countable locally finite simplicial complex K.

Theorem 9 (ANR-Theorem). For each submetrizable ANR(kω)-space X the product
X ×Q∞ is a Q∞-manifold.

We shall use these theorems in the proof of the following (probably known as a
folklore) characterization of submetrizable ANR(kω)-spaces.

Theorem 10. For a submetrizable kω-space X the following conditions are equiva-
lent:

1) X is an ANR(kω)-space;

2) X is an ANE for the class of kω-spaces;

3) X is an ANE for the class of compact metrizable spaces;

4) X is an ANE for the class of stratifiable spaces;

5) X is a retract of a Q∞-manifold.

The equivalent conditions (1)–(5) hold if X = lim−→Xn is the direct limit of a kω-
sequence consisting of compact ANR’s.

Proof. (1) ⇒ (5) Assume that X is an ANR(kω)-space. By the Closed Embedding
Theorem 6, we can identify the submetrizable kω-space X with a closed subspace
of Q∞. Being an ANR(kω), X is a retract of an open neighborhood N(X) ⊂ Q∞.
Since N(X) is a Q∞-manifold, X is a retract of a Q∞-manifold.

(5) ⇒ (4) Assume that X is a retract of a Q∞-manifold M . By the Open
Embedding Theorem 5, M can be identified with an open subspace of Q∞. By the
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Borges’ Theorem [3], the locally convex space Q∞ is an absolute extensor for the
class of stratifiable spaces. Then the open subspace M of Q∞ is an ANE for this
class and so is its retract X.

The implication (4) ⇒ (3) is trivial since each metrizable space is stratifiable.

(3) ⇒ (2) Assume that X is an ANE for the class of compact metrizable spaces.
First we prove that X is an ANE for the class of compact Hausdorff spaces. Let
f : B → X be a continuous map defined on a closed subspace B of a compact
Hausdorff space A. Embed the compact space A into a Tychonoff cube Iκ. The
image f(B), being a compact subspace of the submetrizable space X, is metrizable.
By [9, 2.7.12], the function f depends on countably many coordinates, which means
that there is a countable subset C ⊂ κ such that f = fC ◦ prC where prC : Iκ → IC

is the projection onto the face IC of the cube Iκ and fC : prC(B) → f(B) ⊂ X is
a suitable continuous map. Since X is an ANE for compact metrizable spaces, the
map fC has a continuous extension f̃C : U → X defined on an open neighborhood U
of prC(B) in the cube IC . It follows that V = pr−1

C (U)∩A is an open neighborhood
of B in A and f̃ = f̃C ◦ prC |V : V → X is a continuous extension of the map f ,
witnessing that X is an ANE for the class of compact Hausdorff spaces.

Next, we show that X is an ANE for the class of kω-spaces. Let f : B → X be
a continuous map defined on a closed subset B of a kω-space A. Then A = lim−→An

for some kω-sequence (An)n∈ω of compact subsets of A. Let A−1 = ∅. By induction,
for each n ∈ ω we can construct a continuous map fn : Nn(An ∩B) → X defined on
a closed neighborhood N(B ∩An) of B ∩An in An and such that

• Nn(B ∩An) ⊃ Nn−1(B ∩An−1),

• fn|B ∩An = f |B ∩An and

• fn|Nn−1(B ∩An) = fn−1.

The inductive step can be done because X is an ANE for the class of compact
Hausdorff spaces. After completing the inductive construction, consider the set
N(B) =

⋃
n∈ω Nn(B ∩ An) and the map f̃ =

⋃
n∈ω fn : N(B) → X, which is a

desired continuous extension of f onto the open neighborhood N(B) of B in A.

The implication (2) ⇒ (1) trivially follows from the definitions of ANR(kω) and
ANE(kω)-spaces.

Now assume that X = lim−→Xn is the direct limit of a kω-sequence (Xn)n∈ω

consisting of compact ANR’s. We claim that X is an ANE for the class of compact
metrizable spaces. Let f : B → X be a continuous map defined on a closed subspace
B of a compact metrizable space A. Since X carries the direct limit topology lim−→Xn,
the compact subset f(B) lies in some set Xn, n ∈ ω. Since Xn is an ANR, the
map f : B → Xn has a continuous extension f̃ : N(B) → Xn ⊂ X defined on a
neighborhood N(B) of B in A.
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3 Some subfunctors of the functor FK

In the proof of Theorem 3 we shall apply a deep Basmanov’s result on the
preservation of compact ANR’s by monomorphic functors of finite degree in the
category Comp of compact Hausdorff spaces and their continuous maps. Let C be
a full subcategory of the category Top, containing all finite discrete spaces.

We say that a functor F : C → Top

• is monomorphic if F preserves monomorphisms (which coincide with injective
continuous maps in the category Top and its full subcategory C);

• has finite supports (degree deg F ≤ n) if for each object X of the category C
and each element a ∈ FX there is a map f : A → X of a finite discrete space
A (of cardinality |A| ≤ n) such that a ∈ Ff(FA);

The smallest number n ∈ ω such that deg F ≤ n is called the degree of F and is
denoted by deg F . If no such number n ∈ ω exists, then we put deg F = ∞.

The following improvement of the classical Basmanov’s theorem [2] was recently
proved in [1].

Theorem 11. Let F : Comp → Comp be a monomorphic functor of finite degree
n = deg F such that the space Fn is finite. Then the functor F preserves the class
of compact finite-dimensional ANR-spaces.

We shall apply this theorem to the subfunctors 〈·〉Ln of the functor FK. We recall
that K is a non-trivial complete quasivariety of topological E-algebras of countable
discrete signature E. By Theorem 2, FK can be thought as a functor FK : Kω → Kω

in the category Kω of kω-spaces and their continuous maps. By Theorem 2.4 of [6],
for each Tychonoff space X the free topological E-algebra FK(X) is algebraically
free in the sense that any bijective map i : Xd → X from a discrete topological space
Xd induces an algebraic isomorphism FKi : FKXd → FKX. This fact implies:

Lemma 1. The functor FK : Tych → Top is monomorphic.

Proof. Let f : X → Y be an injective continuous map between Tychonoff spaces
and fd : Xd → Yd be the same map between these spaces endowed with the discrete
topologies. Let iX : Xd → X and iY : Yd → Y be the identity maps. Let r : Yd → Xd

be any (automatically continuous) map such that r ◦ fd = idXd
. Thus we obtain the

commutative diagram:

X
f // Y

Xd

iX

OO

fd //
Y

r
oo

iY

OO
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Applying the functor FK to this diagram we get the diagram

FKX
FKf // FKY

FKXd

FKiX

OO

FKfd // FKY
FKr

oo

FKiY

OO

The “vertical” maps FKiX : FKXd → FKX and FKiY : FKYd → FKY in this diagram
are bijective because the algebras FKX and FKY are algebraically free. Taking into
account that FKr◦FKfd = FK(r◦fd) = FKidXd

= idFKXd
, we conclude that the map

FKfd is injective and so is the map FKf : FKX → FKY because of the bijectivity of
the maps FKiX and FKiY .

Now for every compact subset L ⊂ E and every n ∈ ω consider the functor 〈·〉Ln :
Comp → Comp which assigns to each compact Hausdorff space X the subspace
〈X〉Ln of FKX. The functor 〈·〉Ln assigns to each continuous map f : X → Y between
compact Hausdorff spaces the restriction 〈f〉Ln = FKf |〈X〉Ln of the homomorphism
FKf : FKX → FKY .

Lemma 2. For every n ∈ N, 〈·〉Ln : Comp → Comp is a well-defined monomorphic
functor of finite degree in the category Comp.

Proof. First we check that for each continuous map f : X → Y between compact
Hausdorff spaces, the morphism 〈f〉Ln = FKf |〈X〉Ln is well-defined, which means that
FKf(〈X〉Ln) ⊂ 〈Y 〉Ln . This will be done by induction on n ∈ ω.

For n = 0 the inclusion FK(〈X〉L0 ) = FK(X) = f(X) ⊂ Y = 〈Y 〉L0 follows from
the fact that the homomorphism FK extends the map f (here we identify X and Y
with the subspaces η(X) and η(Y ) in FK(X) and FK(Y ), respectively).

Assume that the inclusion FKf(〈X〉Ln) ⊂ 〈Y 〉Ln has been proved for some n ∈ ω.
By definition,

〈X〉Ln+1 = 〈X〉Ln ∪
⋃

k∈ω

ek,X((Ek ∩ L)× (〈X〉Ln)k).

Fix any element x ∈ 〈X〉Ln+1. If x ∈ 〈X〉Ln , then

FK(x) ∈ FK(〈X〉Ln) ⊂ 〈Y 〉Ln ⊂ 〈Y 〉Ln+1

by the inductive assumption.
If x ∈ 〈X〉Ln+1 \ 〈X〉Ln , then x = ek,X(z, x1, . . . , xk) for some k ∈ ω, z ∈ Ek ∩ L,

and points x1, . . . , xk ∈ 〈X〉Ln . Since FKf is an E-homomorphism, we get

FKf(x) = FKf(ek,X(z, x1, . . . , xk)) = ek,Y (z, FKf(x1), . . . , FKf(xk)) ∈
∈ ek,Y ((Ek ∩ L)× (〈Y 〉Ln)k) ⊂ 〈Y 〉Ln+1.

Thus for every n ∈ ω the functor 〈·〉Ln is well-defined. It is monomorphic as a
subfunctor of the monomorphic functor FK.
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Next, we show that the functor 〈·〉 has finite degree. This will be done by
induction on n ∈ ω. Since 〈X〉L0 = X, deg〈·〉L0 = 1.

Assume that for some n ∈ ω the functor 〈·〉Ln has finite degree d. Since L is a
compact subset of E, there is m ∈ ω such that L ∩ Ek = ∅ for all k ≥ m. We
claim that deg〈·〉Ln+1 ≤ m · d. Take any element x ∈ 〈X〉Ln+1. If x ∈ 〈X〉Ln , then by
the inductive assumption there is a subset A ⊂ X of cardinality |A| ≤ d such that
x ∈ 〈A〉Ln and we are done. If x ∈ 〈X〉Ln+1 \ 〈X〉Ln , then x = ek,X(z, x1, . . . , xk) for
some k ∈ ω, z ∈ Ek ∩ L, and points x1, . . . , xk ∈ 〈X〉Ln . Since L ∩ Ek 3 z is not
empty, k ≤ m. By the inductive assumption, for every i ≤ k there is a finite subset
Ai ⊂ X of cardinality |Ai| ≤ d such that xi ∈ 〈Ai〉Ln . Then the union A =

⋃k
i=1 Ai

has cardinality |A| ≤ k · d ≤ m · d and

x = ek,X(z, x1, . . . , xk) ∈ ek,X((L ∩ Ek)× (〈A〉Ln)k) ⊂ 〈A〉Ln+1

witnessing that the functor 〈·〉Ln+1 has finite degree deg〈·〉Ln+1 ≤ m · d.

Lemma 3. If L ⊂ E is finite, then for each n ∈ ω the functor 〈·〉Ln preserves finite
spaces.

Proof. Let X be a finite space. By induction on n ∈ ω we shall show that the space
〈X〉Ln is finite. This is clear for n = 0. Assume that for some n ∈ ω the space 〈X〉Ln
is finite. Since L ⊂ E is finite there is m ∈ ω such that L ∩ En = ∅ for all k > m.
Then

〈X〉Ln+1 = 〈X〉Ln ∪
⋃

k≤m

ek,X((Ek ∩ L)× (〈X〉Ln)k)

is finite as the finite union of finite sets.

Combining Lemmas 2, 3 with Theorem 11, we get

Corollary 1. For any finite subset L ⊂ E and every n ∈ ω the functor 〈·〉Ln preserves
(finite-dimensional) compact ANR’s.

4 Proof of Theorem 3

Without loss of generality, the quasivariety K is non-trivial (otherwise, FK(X)
is a singleton and hence is an ANR(kω)-space for each non-empty space X).

Let X be a submetrizable ANR(kω)-space. By the ANR-Theorem 9, the product
X × Q∞ is a Q∞-manifold. By the Triangulation Theorem 8, X × Q∞ is homeo-
morphic to T ×Q∞ for a countable locally finite simplicial complex T . This implies
that X ×Q∞ can be written as the direct limit X ×Q∞ = lim−→Xn of a kω-sequence
(Xn)n∈ω of compact ANR’s.

Write the countable discrete space E as the direct limit E = lim−→Ln of a kω-
sequence (Ln)n∈ω of finite subsets of E. By Choban’s Theorem 2, the space FK(X×
Q∞) is the direct limit lim−→〈Xn〉Ln

n of the kω-sequence 〈Xn〉Ln
n . By Corollary 1, each

space 〈Xn〉Ln
n , n ∈ ω, is a compact metrizable ANR. Consequently, FK(X ×Q∞) =
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lim−→〈Xn〉Ln
n is a submetrizable ANR(kω)-space by Theorem 10. Since X is a retract

of X × Q∞, the space FKX is a retract of FK(X × Q∞) and hence FKX is a
submetrizable ANR(kω)-space.

Now assume that X is a compactly finite-dimensional sω-space. Then X =
lim−→Xn is the direct limit of finite-dimensional compact metrizable spaces. By the
Choban’s Theorem 2, the space FK(X×Q∞) is the direct limit lim−→〈Xn〉Ln

n of the kω-
sequence 〈Xn〉Ln

n . Corollary 1 implies that each compact space 〈Xn〉Ln
n is metrizable

and finite-dimensional. Then the space FKX = lim−→〈Xn〉Ln
n is compactly finite-

dimensional, being the direct limit of finite-dimensional compact spaces.
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On the instability of solutions of seventh order
nonlinear delay differential equations
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Abstract. A kind of seventh order nonlinear delay differential equations is con-
sidered. By using the Lyapunov-Krasovskii functional approach [5], some sufficient
conditions are established which guarantee that the zero solution of the equation con-
sidered is unstable. Our conditions are new and supplement previously known results.
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1 Introduction

Since 1992 till now, by using the Lyapunov’s direct method, the qualitative be-
haviors of solutions of the seventh order nonlinear differential equations without a
deviating argument have been studied and are still being investigated in the litera-
ture. See, for example, the papers of Bereketoğlu [2], Sadek [6], Tejumola [7], Tunç
[8, 9], Tunç and Tunç [10]. In the mentioned papers, [6–10], the Lyapunov’s direct
method was used to show the instability of the solutions of some seventh order non-
linear differential equations without a deviating argument. However, to the best of
our knowledge, we did not find any paper relative to the instability of the solutions
of the seventh order linear and nonlinear differential equations with a deviating ar-
gument in the literature. The basic reason related to the absence of any paper on
this topic may be the difficulty of the construction or definition of appropriate Lya-
punov functions or functionals for the instability problems relative to the seventh
order linear and nonlinear differential equations with a deviating argument.

As regards our problem here, in 2000, Tejumola [7] studied the instability of the
zero solution of the seventh order nonlinear differential equation without a deviating
argument

x(7) + a1x
(6) + a2x

(5) + a3x
(4) + ψ4(x, x′, ..., x(6))x′′′ + ψ5(x′)x′′+

+ψ6(x, x′, ..., x(6)) + ψ7(x) = 0. (1)

In this paper, instead of Eq. (1), we take into consideration the seventh order
nonlinear differential equation with a constant deviating argument r:

c© Cemil Tunç, 2011
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x(7) + a1x
(6) + a2x

(5) + a3x
(4) + ψ4(x, x(t− r), x′, x′(t− r), ..., x(6)(t− r))x′′′+

+ψ5(x′)x′′ + ψ6(x, x(t− r), x′, x′(t− r), ..., x(6)(t− r)) + ψ7(x(t− r)) = 0. (2)

We write Eq. (2) in system form as

x′1 = x2, x′2 = x3, x′3 = x4, x′4 = x5, x′5 = x6, x′6 = x7,

x′7 = −a1x7 − a2x6 − a3x5 − ψ4(x1, x1(t− r), ..., x7(t− r))x4 − ψ5(x2)x3−

−ψ6(x1, x1(t− r), ..., x7(t− r))− ψ7(x1) +

t∫

t−r

ψ′7(x1(s))x2(s)ds, (3)

which is obtained as usual by setting x = x1, x′ = x2, x′′ = x3, x′′′ = x4, x(4) =
x5, x(5) = x6 and x(6) = x7 in (2), where r is a positive constant, a1, a2 and a3 are
some constants, the primes in Eq. (2) denote differentiation with respect to t, t ∈ <+,
<+ = [0,∞); the functions ψ4, ψ5, ψ6 and ψ7 are continuous on <14, <, <14 and
< with ψ6(x1, x1(t−r), 0, ..., x4(t−r)) = ψ7(0) = 0, and satisfy a Lipschitz condition
in their respective arguments. Hence, the existence and uniqueness of the solutions
of Eq. (2) are guaranteed (see Eĺsgoĺts [1, p. 14, 15]). We assume in what follows
that the function ψ7 is differentiable, and x1(t), x2(t), x3(t), x4(t), x5(t), x6(t) and
x7(t) are abbreviated as x1, x2, x3, x4, x5, x6 and x7, respectively.

Here, by defining an appropriate Lyapunov functional, we prove an instability
theorem for Eq. (2). By this work, we improve an instability result obtained in the
literature [7, Theorem 6] relative to a seventh order nonlinear differential equation
without a deviating argument to the instability of the zero solution of a certain
seventh order nonlinear differential equation with a deviating argument, Eq. (2).
Our motivation comes from the papers contained in the references of this paper.

Let r > 0 be given, and let C = C([−r, 0],<n) with

‖φ‖ = max
−r6s60

|φ(s)| , φ ∈ C.

For H > 0 define CH ⊂ C by

CH = {φ ∈ C : ‖φ‖ < H}.

If x : [−r, a] → <n is continuous, 0 < A 6 ∞, then, for each t in [0, A), xt in C
is defined by

xt(s) = x(t + s),−r 6 s 6 0, t > 0.

Let G be an open subset of C and consider the general autonomous delay diffe-
rential system

ẋ = F (xt), xt = x(t + θ), −r 6 θ 6 0, t > 0,
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where F : G → <n is continuous and maps closed and bounded sets into bounded
sets. It follows from the conditions on Fthat each initial value problem

ẋ = F (xt), x0 = φ ∈ G

has a unique solution defined on some interval [0, A), 0 < A 6 ∞. This solution will
be denoted by x(φ)(.) so that x0(φ) = φ.

Definition 1. The zero solution, x = 0, of ẋ = F (xt) is stable if for each ε > 0
there exists δ = δ(ε) > 0 such that ‖φ‖ < δ implies that |x(φ)(t)| < ε for all t > 0.
The zero solution is said to be unstable if it is not stable.

Theorem 1. Suppose there exists a Lyapunov function V : G → <+ such that
V (0) = 0 and V (x) > 0 if x 6= 0. If either

(i) V̇ (φ) > 0 for all φ in G for which

V [φ(0)] = max
−s6t60

V [φ(s)] > 0

or
(ii) V̇ (φ) > 0 for all φ in G for which

V [φ(0)] = min
−s6t60

V [φ(s)] > 0,

then the solution x = 0 of ẋ = F (xt) is unstable (see Haddock and Ko [3]).

2 Main result

The following theorem is our main result.

Theorem 2. Together with all the assumptions imposed on the functions ψ4, ψ5, ψ6

and ψ7 in Eq. (2), we assume that there exist constants a2 < 0, a7 > 0, δ0 > 0 and
δ > 0 such that the following conditions hold:

ψ7(x1) 6= 0, (x1 6= 0),
ψ7(x1)

x1
> δ0, (x1 6= 0), 0 < ψ′7(x1) 6 a7,

ψ6(x1, ..., x4(t− r)) 6= 0, (x2 6= 0),
1

4a2
ψ2

4(.)−
ψ6(.)
x2

> δ, (x2 6= 0).

Then, the zero solution, x = 0, of Eq. (2) is unstable provided that r <
δ

a7
.

Remark 1. For the proof of the theorem, under the conditions sated in the theorem, it
suffices to find that there exists a continuous Lyapunov functional V = V (x1t, ..., x7t)
which has the following three properties, Krasovskii properties [4], say (K1), (K2)
and (K3):

(K1) In every neighborhood of (0, 0, 0, 0, 0, 0, 0) there exists a point (ξ1, ..., ξ7)
such that V (ξ1, ..., ξ7) > 0,
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(K2) the time derivative V̇ =
d

dt
V (x1t, ..., x7t) along solution paths of (3) is

positive semi-definite,
(K3) the only solution (x1, ..., x7) = (x1(t), ..., x7(t)) of (3) which satisfies

d

dt
V (x1t, ..., x7t) = 0 (t > 0), is the trivial solution (0, 0, 0, 0, 0, 0, 0).

Proof. Consider the Lyapunov functional V = V (x1t, ..., x7t) defined by

V = x2x7 + a1x2x6 + a2x2x5 + a3x2x4 − x3x6 − a1x3x5 − a2x3x4 + x4x5−

−1
2
a3x

2
3 +

1
2
a1x

2
4 +

x1∫

0

ψ7(s)ds +

x2∫

0

ψ5(s)sds− λ

0∫

−r

t∫

t+s

x2
2(θ)dθds, (4)

where s is a real variable such that the integral
0∫
−r

t∫
t+s

x2
2(θ)dθds is non-negative and

λ is a positive constant which will be determined later in the proof.
From (4) it follows that

V (0, 0, 0, 0, 0, 0, 0) = 0

and

V = x2x7 + a1x2x6 + a2x2x5 + a3x2x4 − x3x6 − a1x3x5 − a2x3x4 + x4x5−

−1
2
a3x

2
3 +

1
2
a1x

2
4 +

x1∫

0

ψ7(s)
s

sds +

x2∫

0

ψ5(s)sds− λ

0∫

−r

t∫

t+s

x2
2(θ)dθds >

> x2x7 + a1x2x6 + a2x2x5 + a3x2x4 − x3x6 − a1x3x5 − a2x3x4 + x4x5−

−1
2
a3x

2
3 +

1
2
a1x

2
4 +

1
2
δ0x

2
1 +

x2∫

0

ψ5(s)sds− λ

0∫

−r

t∫

t+s

x2
2(θ)dθds.

Hence, we get

V (ε, 0, 0, 0, 0, 0, 0) =
1
2
δ0ε

2 > 0

for all sufficiently small ε, ε ∈ <, so that every neighborhood of the origin in the
(x1, ..., x7)−space contains points (ξ1, ..., ξ7) such that V (ξ1, ..., ξ7) > 0.

Let
(x1, ..., x7) = (x1(t), ..., x7(t))

be an arbitrary solution of (3).
Differentiating the Lyapunov functional V in (4) along this solution, we get

V̇ = x2
5 − a2x

2
4 − ψ4(x1, ..., x7(t− r))x2x4 − ψ6(x1, ..., x7(t− r))x2+
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+x2

t∫

t−r

ψ′7(x1(s))x2(s)ds− λrx2
2 + λ

t∫

t−r

x2
2(s)ds.

The assumption 0 < ψ′7(x1) 6 a7 of the theorem and the estimate 2 |mn| 6
m2 + n2 imply that

x2

t∫

t−r

ψ′7(x1(s))x2(s)ds > − |x2|
t∫

t−r

ψ′7(x1(s)) |x2(s)| ds >

> −1
2
a7rx

2
2 −

1
2
a7

t∫

t−r

x2
2(s)ds.

Hence

V̇ > x2
5 − a2

[
x4 +

1
2a2

ψ4(x2, ..., x4(t− r))x2

]2

+

+
1

4a2
ψ2

4(x1, ..., x7(t− r))x2
2 − ψ6(x1, ..., x7(t− r))x2−

−{(λ +
1
2
a7)r}x2

2 +
(

λ− 1
2
a7

) t∫

t−r

x2
2(s)ds.

Let λ = 1
2a7. Then, we get

V̇ > x2
5 − a2

[
x4 +

1
2a2

ψ4(x1, ..., x7(t− r))x2

]2

+

+
[

1
4a2

ψ2
4(x1, ..., x7(t− r))− ψ6(x1, ..., x7(t− r))

x2
− a7r

]
x2

2 >

> (δ − a7r)x2
2 > 0

provided that r <
δ

a7
. Thus if the assumptions of the theorem hold then V̇ is positive

semi-definite.
Now observe that V̇ = 0 for all t > 0 necessarily implies that x2 = 0 and therefore

also that
x2 = x′ = 0, x3 = x′′ = 0, x4 = x′′′ = 0,

x5 = x(4) = 0, x6 = x(5) = 0, x7 = x(6) = 0

for all t > 0. Hence

x2 = x3 = x4 = x5 = x6 = x7 = 0 (t > 0).

Moreover, in view of V̇ = 0 and the system (4), one can also easily obtain
x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0, which verifies the property (K3) of
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Krasovskii [4]. It now follows that the Lyapunov functional V thus has all the
requisite Krasovskii properties, (K1), (K2) and (K3), subject to the conditions in
the theorem. By the above discussion, we conclude that the zero solution of Eq. (2)
is unstable. The proof of the theorem is completed.
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Abstract. New calculation procedures for finding the probabilities of state transi-
tions of the system in Markov chains based on dynamic programming are developed
and polynomial time algorithms for determining the limit state matrix in such pro-
cesses are proposed. Computational complexity aspects and possible applications of
the proposed algorithms for the stochastic optimization problems are characterized.
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1 Introduction and Preliminary Results

In this paper we develop a dynamic programming approach for finite Markov
processes and propose polynomial time algorithms for determining the limit state
matrix in Markov chains. A characterization of a simple Markov process and the
basic definitions related to determining the probabilities of state transitions of the
system in such processes can be found in [3–5, 9, 10]. Here, for the finite Markov
processes, we consider the problem of determining the probability of system’s tran-
sition from a starting state to a final one when the final state is reached at the
time-moment which belongs to a given interval of time. For such a specific case, we
develop dynamic programming algorithms. Furthermore, the asymptotic behavior
of the proposed algorithms are analyzed. Such a characterization of the problem
allows us to apply a new approach for studying Markov chains and to elaborate
polynomial time algorithms for determining the limit state probabilities of the dy-
namical system in such processes. We show that for non-ergodic Markov chains the
limit probability matrix can be found in polynomial time. Therefore, we propose two
polynomial time algorithms. The computational complexity of the first algorithm is
O(n4) and of the second one is O(n3). Note that the well-known algorithm from [9]
(see also [4, 5, 10]) in the worst case uses O(n4) elementary operations. Comparing
this algorithm with proposed ones we can conclude that the approach described
below allows us to ground new efficient algorithms for determining the limit state
matrix in Markov chains. Additionally, we develop dynamic programming proce-
dures for the calculation of the state probability transitions in the non-stationary
discrete Markov processes. The proposed calculation procedures and algorithms can

c© Dmitrii Lozovanu, Stefan Pickl, 2011
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be used for studying and solving the stochastic version of classical discrete optimal
control problems [2–9].

In this paper we consider discrete Markov processes with a finite set of states
[3, 5, 7]. We denote the set of states of the dynamical system in such processes
by X = {x1, x2, . . . , xn}. At the moment of time t = 0 the state of the system
is xi0 . For an arbitrary state x ∈ X the probabilities px,y of system’s transitions
from x to another states y ∈ X such that

∑
y∈X

px,y = 1 are given. So, we assume

that the Markov process is determined by the stochastic matrix of probabilities
P = (px,y) and the starting state xi0 of the dynamical system. The probability
Pxi0

(x, t) of system’s transitions from the state xi0 to an arbitrary state x ∈ X by
using t transitions is defined and calculated on the basis of the following recursive
formula [3]

Pxi0
(x, τ + 1) =

∑

y∈X

Pxi0
(y, τ)py,x, τ = 0, 1, 2, . . . , t− 1,

where Pxi0
(xi0 , 0) = 1 and Pxi0

,0(x, 0) = 0 for x ∈ X \ {xi0}. This formula can be
represented in the matrix form by

π(τ + 1) = π(τ)P, τ = 0, 1, 2, . . . , t− 1. (1)

Here π(τ) = (π1(τ), π2(τ), . . . , πn(τ)) is the vector, where the component i expresses
the probability of the system L to reach from xxi0

the state xi at the moment of time
τ , i.e. πi(τ) = Pxi0

(xi, τ). At the starting moment of time τ = 0 the vector π(τ)
is given and its components are defined by πi0(0) = 1 and πi(0) = 0 for arbitrary
i 6= i0. If for given starting vector π(0) we apply our formula for t = 0, 1, 2, . . . , t−1,
then we obtain

π(t) = π(0)P (t)

where P (t) = P ×P ×· · ·×P . So, an arbitrary element p
(t)
x,y of this matrix expresses

the probability of system L to reach the state y from x by using t units of times.
Formula (1) can be applied for the calculation of the state probabilities of the

system in finite Markov processes. In the case τ → ∞ this formula leads to the

relation π = πP which together with the condition
n∑

i=1
πi = 1 allows us to determine

the limit state probabilities in ergodic Markov chains.

2 The Main Results

To solve our main problem we need to develop special calculation procedures for
determining the probability of system’s transitions from a starting state to a final
one when the final state is reached at the time-moment from given interval of time.
We describe such calculation procedures which will allow us to ground polynomial
time algorithms for finding the limit state matrix in aperiodic Markov chains.
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2.1 Calculation of the Probabilities of States Transition of the
System with a Given Restriction on the Number of Stages

In this subsection we show how to calculate the probability of system’s transitions
from the state xi0 to the state x when x is reached at the time moment T (x) such
that T1 ≤ T (x) ≤ T2 where T1 and T2 are given. So, we consider the problem of
determining the probability of the system L to reach the state x at least at one of
the moments of time T1, T1 + 1, . . . , T2. We denote this probability by Pxi0

(x, T1 ≤
T (x) ≤ T2). Some reflections on this definition allow us to write the following
formula

Pxi0
(x, T1 ≤ T (x) ≤ T2) =

= Pxi0
(x, 0 ≤ T (x) ≤ T2)− Pxi0

(x, 0 ≤ T (x) ≤ T1 − 1).

Further we describe some results which allow to calculate the probability
Px(y, 0 ≤ T (y) ≤ t) for x, y ∈ X and t = 1, 2, . . . . For this reason we shall give
the graphical interpretation of the Markov processes using the graph of state tran-
sitions GR = (X, ER) [1, 3, 7, 10]. In this graph each vertex x ∈ X corresponds to
a state of the dynamical system and a possible system passage from one state x to
another state y with positive probability px,y is represented by the directed edge
e = (x, y) ∈ ER from x to y; to directed edges (x, y) ∈ ER in GR the corresponding
probabilities px,y are associated. It is evident that in the graph GR each vertex
x contains at least one leaving edge (x, y) and

∑
y∈X

px,y = 1. As an example the

graph of state transitions GR = (X, ER) for the Markov process with the stochastic
matrix of probabilities

P =




0.3 0.3 0.4 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.3 0.5 0.2




is represented in Fig. 1.
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In general we will consider also the stochastic process which may stop if one of
the states from a given subset of states of dynamical system is reached. This means
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that the graph of such a process may contain the so-called deadlock vertices. So,
we consider the stochastic process for which the graph of transition probabilities
may contain the deadlock vertices y ∈ X and

∑
z∈X

px,z = 1 for the vertices x ∈ X

which contain at least one leaving directed edge. As an example in Fig. 2 a graph
GR = (X, ER) which contains a deadlock vertex is represented.
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This graph corresponds to the stochastic process with the following matrix of state
transitions

P =




0.3 0.3 0.4 0
0.5 0 0.3 0.2
0 0.6 0 0.4
0 0 0 0


.

Such graphs do not correspond to a Markov process and the matrix of probability
P contains a row with zero components. Nevertheless the probabilities Px0(x, t) in
this case can be calculated on the basis of the recursive formula given above. Note
that the matrix P can be easily transformed into a stochastic matrix changing the
probabilities py,y = 0 for deadlock states y ∈ X by the probabilities py,y = 1.
This transformation leads to a new graph which corresponds to a Markov process
because the obtained graph contains a new directed edge e = (y, y) with pe = 1
for y ∈ X. We call the vertices y ∈ X in this graph the absorbing vertices and
the corresponding states of the dynamical system in Markov process the absorbing
states. So, the stochastic process which may stop in a given set of states can be
represented either by a graph with deadlock vertices or by a graph with absorbing
vertices. In Fig. 3 represents the graph with absorbing vertex y = 4 for the Markov
process defined by the matrix P given below.

P =




0.3 0.3 0.4 0
0.5 0 0.3 0.2
0 0.6 0 0.4
0 0 0 1.0


.

It is easy to see that the stochastic matrix P in this example is obtained from
the previous one by changing p4,4 = 0 with p4,4 = 1. The corresponding graph with
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the absorbing vertex y = 4 in this case is obtained from the graph on Fig. 2 by
adding the directed edge e = (4, 4) with p4,4 = 1.

We shall calculate the probabilities Px(y, 0 ≤ T (y) ≤ t) by using the graph with
absorbing vertices.

Lemma 1. Let a Markov process be given for which the graph GR = (X, ER)
contains an absorbing vertex y ∈ X. Then for an arbitrary state x ∈ X the following
recursive formula holds:

Px(y, 0 ≤ T (y) ≤ τ + 1) =
∑

z∈X

px,zPz(y, 0 ≤ T (z) ≤ τ), τ = 0, 1, 2, . . . ,

where Px(y,0 ≤ T (y) ≤ 0) = 0 if x 6= y and Py(y, 0 ≤ T (y) ≤ 0) = 1.

Proof. It is easy to observe that for τ = 0 the theorem holds. Moreover, we can
see that here the condition that y is an absorbing state is essential; otherwise for
x = y the recursive formula from lemma fails to hold. For τ ≥ 1 the correctness
of this formula follows from the definition of the probabilities Px(y, 0 ≤ T (y) ≤
τ + 1), Pz(y, 0 ≤ T (z) ≤ τ) and from the induction principle on τ .

The recursive formula from this lemma can be written in matrix form by

π′(τ + 1) = Pπ′(τ), τ = 0, 1, 2, . . . .

Here P is the stochastic matrix of the Markov process with the absorbing state
y ∈ X and

π′(τ) =




π′1(τ)
π′2(τ)

...
π′n(τ)


 , τ = 0, 1, 2, . . .

are the column vectors, where an arbitrary component π′i(τ) expresses the probabil-
ity of the dynamical system to reach the state y from xi by using not more than τ
unites of times, i.e. π′i(τ) = Pxi(y, 0 ≤ T (y) ≤ τ). At the starting moment of time
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τ = 0 the vector π′(0) is given: All components are equal to zero except for the
component corresponding to the absorbing vertex which is equal to one, i.e.

π′i(0) =
{

0, if xi 6= y;
1, if xi = y.

If we apply this formula for τ = 0, 1, 2, . . . , t− 1, then we obtain

π′(t) = P (t)π′(0), t = 1, 2, . . . .

So, if we denote by jy the column of the matrix P (t) which corresponds to the absorb-
ing state y then an arbitrary element p

(t)
i,jy

of this column expresses the probability
of the system L to reach the state y from xi by using not more than t units of time,
i.e. p

(t)
i,jy

= Pxi(y, 0 ≤ T (x) ≤ t). This allows us to formulate the following lemma:

Lemma 2. Let a finite Markov process with the absorbing state y ∈ X be given.
Then:

a) Pxi(y, τ) = Pxi(y, 0 ≤ T (y) ≤ τ), for xi ∈ X \ {y}, τ = 1, 2, . . . ;

b) Pxi(y, T1 ≤ T (y) ≤ T2) = p
(T2)
i,jy

− p
(T1−1)
i,jy

.

Proof. The condition a) in this lemma holds because

Pxi(y, τ) = p
(τ)
i,jy

= Pxi(y, 0 ≤ T (y) ≤ τ).

The condition b) we obtain from Lemma 1 and the following properties

Pxi(y, 0 ≤ T (y) ≤ T2) = p
(T2)
i,jy

, Pxi(y, 0 ≤ T (y) ≤ T1 − 1) = p
(T1−1)
i,jy

.

So, to calculate Pxi(y, T1 ≤ T (y) ≤ T2) it is sufficient to find the matrices
P (T1−1), P (T2) and then to apply the formula from Lemma 2.

The procedure of the calculation of the probabilities Px(y, 0 ≤ T (y) ≤ t) in the
case of the Markov process without absorbing states can be easily reduced to the
procedure of the calculation of the probabilities in the Markov process with the
absorbing state y by using the following transformation of the stochastic matrix P .
We put piy ,j = 0 if j 6= iy and piy ,iy = 1. It is easy to see that such a transformation
of the matrix P does not change the probabilities Px(y, 0 ≤ T (y) ≤ t). After
such a transformation we obtain a new stochastic matrix for which the recursive
formula from the Lemma 21 can be applied. In general for the Markov processes
with absorbing state these probabilities can be calculated by using the algorithm
which works with the original matrix P without changing its elements. Below such
an algorithm is described.
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Algorithm 1: Determining the state probabilities of the system with
a restriction on number of transitions (stationary case)

Preliminary step (Step 0): Put Px(y, 0 ≤ T (y) ≤ 0) = 0 for every x ∈ X \ {y}
and Py(y, 0 ≤ T (x) ≤ 0) = 1.

General step (Step τ + 1, τ ≥ 0): For every x ∈ X \ {y} calculate

Px(y, 0 ≤ T (x) ≤ τ + 1) =
∑

z∈X

px,zPz(y, 0 ≤ T (y) ≤ τ) (2)

and then put
Py(y, 0 ≤ T (y) ≤ τ + 1) = 1. (3)

If τ < t− 1 then go to next step; otherwise STOP.

Theorem 1. Algorithm 1 correctly finds the probabilities Px(y, 0 ≤ T (x) ≤ τ) for
x ∈ X, τ = 0, 1, 2, . . . , t− 1.

Proof. It is easy to see that the probabilities Px(y, 0 ≤ T (x) ≤ τ + 1) at the general
step of the algorithm are calculated on the basis of formula (2) which takes into
account condition (3). This calculation procedure is equivalent with the calculation
of the probabilities Px(y, 0 ≤ T (x) ≤ τ + 1) with the condition that the state y is
an absorbing state. So, the algorithm is correct.

If in Algorithm 1 we use the notation π′i(τ) = Pxi(y, 0 ≤ T (y) ≤ τ), πiy(τ) =
Py(y, 0 ≤ T (y) ≤ τ) then we obtain the following description of the algorithm in a
matrix form:

Algorithm 2: Calculation of the state probabilities of the system in
the matrix form (stationary case)

Preliminary step (Step 0): Fix the vector π′(0) = (π′1(0), π′2(0), . . . , π′n(0)), where
π′i(0) = 0 for i 6= iy and π′iy(0) = 1.

General step (Step τ + 1, τ ≥ 0): For given τ calculate

π′(τ + 1) = Pπ′(τ)

and then put
π′iy(τ + 1) = 1.

If τ < t− 1 then go to next step; otherwise STOP.

Note that the condition π′iy(τ +1) = 1 in the algorithm allows us to preserve the
value π′iy(t) = 1 at every moment of time t in the calculation process. This condition
reflects the property that the system remains in the state y at every time-step t if
the state y is reached. We can modify this algorithm for determining the probability
Px(y, 0 ≤ T (y) ≤ 0) in a more general case if we assume that the system will remain
at every time step t in the state y with the probability π′iy(t) = q(y), where q(y)
may differ from 1, i.e, q(y) ≤ 1. In the following we can see that this modification
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is very important for determining the matrix of limit probabilities in finite Markov
processes. So, q(y) ≤ 1, and we can use the following algorithm:

Algorithm 3: Calculation of the state probabilities of the system with
a given probability of its remaining in the final state (stationary case)

Preliminary step (Step 0): Fix the vector π′(0) = (π′1(0), π′2(0), . . . , π′n(0)),
where π′i(0) = 0 for i 6= iy and π′iy(0) = q(y).

Genrral step (Step τ + 1, τ ≥ 0): For given τ calculate

π′(τ + 1) = Pπ′(τ)

and then put
π′iy(τ + 1) = q(y).

If τ < t− 1 then go to next step; otherwise STOP.

Remark 1. All results and algorithms described above are also valid for the stochastic
processes in the case when

∑
z∈X

px,z = r(x) ≤ 1 for x ∈ X.

2.2 Polynomial time algorithms for determining the limit state
matrix in Markov chains

Denote by S = (si,j) the limit matrix of probabilities for the Markov chain
induced by stochastic matrix P = (px,y). We denote the vector columns of the
matrix S by

Sj =




s1,j

s2,j
...

sn,j


 , j = 0, 1, 2, . . . , n,

and the row vectors of the matrix S we denote by Si = (si,1, si,2, . . . , si,n), i =
1, 2, . . . , n. To describe the algorithms for finding the limit matrix S for non-ergodic
Markov process we need to analyze the structure of the graph of transition proba-
bilities and to study the behavior of the algorithms from the previous subsection in
the case t → ∞. First of all we note that for the ergodic Markov chain the graph
GR is strongly connected and all vector rows Si, i = 1, 2, . . . , n, are the same. In
this case the limit state probabilities can be found by solving the system of linear
equations

π = πP,
n∑

J=1

πj = 1,

i.e. Si = π, i = 1, 2, . . . , n. In general, such an approach can be used for an
arbitrary ergodic Markov process if the limit state probabilities exist.

In the multichain Markov processes the graph GR = (X, ER) consists of several
strongly connected components G1 = (X1, E1), G2 = (X2, E2), . . . , Gk = (Xk, Ek)

where
k⋃

i=1
Xi = X. Additionally, among these components, there are such strongly
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connected components Gip = (Xip , Eip), p = 1, 2, . . . , q, which do not contain a
leaving directed edge e = (x, y) where x ∈ Xip and y ∈ X \ Xip . We call such
components Gip deadlock components in GR. A characterization of the ergodic
classes (recurrence classes) in the Markov process can be made in terms of a graph
of transition probabilities using the deadlock components.

Lemma 3. If Gip = (Xip , Eip) is a strongly connected deadlock component in GR
then Xip is an ergodic class (recurrence chain) of the Markov process; if x ∈ X \

q⋃
p=1

Xip then x is a transient state of the system in the Markov process.

Lemma [3] reflects the well known properties of the Markov chains from [3–5,10]
in the terms of graphs of transition probabilities. The proof of the lemma follows
from [3–5,10].

Below we give some auxiliary results which can be obtained from the algorithmic
procedure from the previous subsection in the case t → ∞. Let a Markov process
with a finite set of states X be given. For an arbitrary state xj ∈ X we denote by
Xj the subset of states xk ∈ X for which in GR there exists at least a directed path
from xk to xj . Additionally, we denote N = {1, 2, . . . , n}, I(Xj) = {k|xk ∈ Xj}.
Lemma 4. Let a Markov process with a finite set of states X be given and assume
that xj is an absorbing state. Let πj be a solution of the following system of linear
equations

πj = Pπj ; πj,j = 1; πi,j = 0 for i ∈ N \ I(Xj), (4)

where

πj =




π1,j

π2,j
...

πn,j


 .

Then πj = Sj, i.e. πi,j = si,j , i = 1, 2, . . . , n. If xj is a unique absorbing state of
the Markov process and if xj in GR is attainable from every xi ∈ X (i.e. I(Xj) =
N) then πi,j = si,j = 1, i = 1, 2, . . . , n.

Proof. We apply Algorithm 2 with respect to a given absorbing state xj (yj = xj)
when t → ∞. Then π(t)′ → πj and therefore we obtain πj = Pπj where πj,j = 1
and πi,j = 0 for i ∈ N \ I(Y +

j ). The correctness of the second part of the lemma
corresponds to the case when I(Xj) = N and therefore we obtain that the vector
πj with the components πi,j = 1, i = 1, 2, . . . , n is the solution of the system
πj = Pπj , πj,j = 1. So, Lemma 4 holds.

Remark 2. If xj is not an absorbing state then Lemma 4 may fail to hold.

Remark 3. Lemma 4 can be extended for the case when
∑

y∈X

pxi,y = r(xi) ≤ 1 for

some states xi ∈ X. The solution of the system (4) in this case also coincides
with the vector of limit probabilities Sj if such a vector of limit probabilities exists.



ALGORITHMS FOR DETERMINING THE STATE-TIME PROBABILITIES . . . 75

However, if N = I(Xj) then some components πi,j of the solution πij may be less
than 1.

Let us show that the result formulated above allows us to find the vector of limit
probabilities Sj of the matrix S if the diagonal element sj,j of S is known. We
consider the subset of the states Y + = {xj |sj,j ≥ 0}. It is easy to observe that

Y + =
q⋃

p=1
Xip ; we denote the corresponding set of indexes of this set by I(Y +). For

each j ∈ I(Y +) we define the set Xj in the same way as we introduced it above.

Lemma 5. If a non-zero diagonal element sj,j of the limit matrix S in the non-
ergodic Markov process is known, i.e. sj,j = q(xj), then the corresponding vector Sj

of the matrix S can be found by solving the following systems of linear equations:

Sj = PSj ; sj,j = q(xj); si,j = 0 for i ∈ N \ I(Xj)

Proof. We apply Algorithm 3 with respect to the fixed final state yj = xj ∈ X with
q(yj) = sj,j when t →∞. Then for a given yj = x we have π(t)′ → Sj and therefore
we obtain Sj = PSj where q(yj) = sj,j and si,j = 0 for i ∈ N \ I(Xj). So, Lemma
5 holds.

Basing on this lemma and Algorithm 3 we can prove the following result.

Theorem 2. The limit state matrix S for aperiodic Markov chains can be found by
using the following algorithm:

1) For each ergodic class Xip solve the system of linear equations

πip = πipP ip ,
∑

j∈I(Xip)

π
ip
j = 1,

where πip is the row vector with components π
ip
j for j ∈ I(Xip) and P ip is the

submatrix of P induced by the class Xip. Then for every j ∈ I(Xip) put sj,j = π
ip
j ;

for each j ∈ I(X \
q⋃

p=1
Xip) set sj,j = 0;

2) For every j ∈ I(Y +), Y + =
q⋃

p=1
Xip solve the system of linear equations

Sj = PSj ; sj,j = πj,j ; si,j = 0 for i ∈ N \ I(Xj)

and determine the vector Sj. For every j ∈ I(X \ Y +) set Sj = 0, where 0 is the
vector row with zero components.

The algorithm finds the matrix S using O(n4) elementary operations.

Proof. Let us show that the algorithm finds correctly the limit matrix S. Item 1) of
the algorithm finds the limit probabilities sj,j . This item is based on Lemma 3 and
on the conditions which each ergodic class Xip and each transient state x∈X \ Y +
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should satisfy. So, item 1) correctly finds the limit probabilities si,j for j ∈ N .
Item 2) of the algorithm is based on Lemma 5 and therefore determines correctly
the vectors Sj of the matrix S when the diagonal elements sj,j are known. So, the
algorithm finds correctly the limit matrix S of the non-ergodic Markov processes
if such a limit matrix exists. The computational complexity of the algorithm is
determined by the computational complexity of solving q ≤ n equations for each
ergodic class Xip(item 1) and the computational complexity of solving not more
than n systems of linear equations for determining the vectors Sj (item 2). So, the
running time of the algorithm is O(n4).

Basing on this theorem we can find the limit matrix S using algorithm from
Theorem 2. In the worst case the running time of the algorithm is O(n4) however
intuitively it is clear that the upper bound of this estimation couldn’t be reached.
Practically this algorithm efficiently finds the limit matrix S. In the following we
show that for determining the limit matrix in aperiodoc Markov chains there exists
an algorithm with computational complexity O(n3).

2.3 An algorithm for the calculation of the limit matrix in aperiodic
Markov chains with running time O(n3)

We describe another algorithm for finding the limit matrix for aperiodic Marcov
chains which in the most part takes into account the structure properties of the
random graph of the Markov process. We can see that such an approach allows us
to ground an algorithm with computational complexity O(n3).

Algorithm 4: Determining the limit state matrix for non-ergodic
Markov processes

The algorithm consists of two parts: The first part determines the limit proba-

bilities sx,y for x ∈
q⋃

p=1
Xip and y ∈ X. The second procedure calculates the limit

probabilities sx,y for x ∈ X \
q⋃

p=1
Xip and y ∈ X.

Procedure 1:

1. For each ergodic class Xip we solve the system of linear equations:

πip = πipP ip ,
∑

y∈Xip

π
ip
y = 1,

where P ip is the matrix of probability transitions corresponding to the ergodic
class Xip , i.e. P ip is a submatrix of P , and πip is a row vector with the com-
ponents π

ip
y for y ∈ Xip . If π

ip
y are known then sx,y for x ∈ Xip and y ∈ X can

be calculated as follows:

Set sx,y = π
ip
y if x, y ∈ Xip and sx,y = 0 if x ∈ Xip , y ∈ X \Xip .
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Procedure 2:

1. We construct an auxiliary acyclic directed graph GA = (XA,EA) which is ob-
tained from the graph GR = (X,ER) by using the following transformations:

We contract each set of vertices Xip into one vertex zip where Xip is a set
of vertices of a strongly connected deadlock component Gip = (Xip , Eip) in
GR. If the obtained graph contains parallel directed edges e1 = (x, z), e2 =
(x, z), . . . , er = (x, z) with the corresponding probabilities p1

x,z, p2
x,z, . . . , pr

x,z

then we change them by one directed edge e = (x, z) with the probability

px,z =
r∑

i=1
pi

x,z; after this transformation of each vertex zi
p we put equivalently

a directed edge of the form e = (zp, zp) with the probability p′zp,zp = 1.

2. We fix the directed graph GA = (XA, EA) obtained by the construction prin-

ciple from step 1 where XA =
(
X \ (

q⋃
p=1

Xip)
)
∪ Zp, Zp = (z1, z2, . . . , zq).

Additionally, we fix the new probability matrix P ′ = (p′x,y) which corresponds
to this random graph GA.

3. For each x ∈ XA and every zi ∈ Zp we find the probability π′x(zi) of the
system transaction from the state x to the state zp. The probabilities π′x(zi)
can be found by solving the following p systems of linear equations:

P ′π′(z1) = π′(z1), π′z1(z1) = 1, π′z2(z1) = 0, . . . , π′zq(z1) = 0;

P ′π′(z2) = π′(z2), π′z1(z2) = 0, π′z2(z2) = 1, . . . , π′zq(z2) = 0;

.........................................................................................................

P ′π′(zq) = π′(zq), π′z1(zq) = 0, π′z2(zq) = 0, . . . , π′zq(zq) = 1,

where π′(zi), i = 1, 2 . . . , p are the column vectors with components π′x(zi)
for x ∈ XA. So, each vector π′x(zi) defines probabilities of system transitions
from states x ∈ XA to the ergodic class Xi.

4. We put sx,y = 0 for every x, y ∈ X \
q⋃

p=1
Xip and sx,y = π′x(zp)πip

y for every

x ∈ X \
q⋃

p=1
Xip and y ∈ Xip , Xip ⊂ X. If x ∈ Xip and y ∈ X \Xip then we

fix sx,y = 0.

Theorem 3. The algorithm correctly finds the limit state matrix S and the running
time of the algorithm is O(|X|3).
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Proof. The correctness of Procedure 1 of the algorithm follows from the definition of
the ergodic Markov class (recurrence chain). So, Procedure 1 finds the probabilities

sx,y for x ∈
q⋃

p=1
Xip and y ∈ X. Let us show that Procedure 2 correctly finds

the rest elements sx,y of the matrix S. Indeed, each vertex x ∈ X \
q⋃

p=1
Xip in

GA corresponds to a transient state of the Markov chain and therefore we have

sx,y = 0 for every x, y ∈ X \
q⋃

p=1
Xip . If x ∈ Xip then the system couldn’t reach

a state y ∈ X \ Xip and therefore for arbitrary two states x, y we have sx,y = 0.
Finally, we show that the algorithm correctly determines the limit probability sx,y

if x ∈ X \
q⋃

p=1
Xip and y ∈ Xip . In this case the limit probability sx,y is equal to

the limit probability of the system to reach the ergodic class Xip multiplied by the
limit probability of the system to remain in the state y ∈ Xip , i.e. sx,y = π′x(zp)πip

y .
Here π

ip
y is the probability of the system to remain in the state y ∈ Xip and πx(zip)

is the limit probability of the system to reach the absorbing state zip in GA. The
value πx(zip) according to the construction of auxiliary graph GA coincides with
the limit probability of the system to reach the ergodic class Xip . The correctness
of this fact can easily be obtained from Lemma 3 and Theorem 2. According to

Lemma 3 the probabilities πx(zp) for x ∈ X \
q⋃

p=1
Xip can be found by solving the

following system of linear equations

P ′π′(zp) = π′(zp), π′z1(zp) = 0, π′z2(zp) = 0, . . . , π′zp(zp) = 1,

which determined them correctly. So, the algorithm correctly finds the limit state
matrix S.

Now let us show that the running time of the algorithm is O(n3). We obtain this
estimation in the item 4 solving q ≤ n systems of linear equations. Each of these
systems contains no more than n variables. All these systems have the same left part
and therefore they can be solved simultaneously applying Gaussian method. The
simultaneous solution of these q systems with the same left part by using Gaussian
method uses O(n3) elementary operations.

3 Determining the State Probabilities of the Dynamical System
in Non-Stationary Markov Processes

In the case when the probabilities of system’s transitions from one state to an-
other depend on time we have a non-stationary process defined by a dynamic matrix
P (t) = (px,y(t)) which describes this process. If this matrix is stochastic for every
moment of time t = 1, 2, . . . , then the state probabilities Pxi0

(x, t) can be defined
and calculated by using a similar formula obtained from Section 1 changing px,y by
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px,y(τ), i.e.

Pxi0
(x, τ + 1) =

∑

y∈X

Pxi0
(y, τ)py,x(τ), τ = 0, 1, 2, . . . , t− 1

where Pxi0
(xi0 , 0) = 1 and Pxi0

(x, 0) = 0 for x ∈ X \ {xi0}. In the matrix form this

formula can be represented as follows

π(τ + 1) = π(τ)P, τ = 0, 1, 2, . . . , t− 1

where π(τ) = (π1(τ), π(τ), . . . , πn(τ)) is the vector with the components πi(τ) =
Pxi0

(xi, τ). At the starting moment of time τ = 0 the vector π(τ) is given in the
same way as for the stationary process, i.e. πi0(0) = 1 and πi(0) = 0 for arbitrary
i 6= i0. If for a given starting vector π(0) and τ = 0, 1, 2, . . . , t − 1 we apply this
formula then we obtain

π(t) = π(0)P (0)P (1)P (2) . . . P (t− 1).

So, an arbitrary element qxi,xj (t) of the matrix

Q(t) = P (0)P (1)P (2) . . . P (t− 1)

expresses the probability of system L to reach the state xj from xi by using t units
of times.

Now let us show how to calculate the probability Pxi0
(y, T1 ≤ T (y) ≤ T2) in

the case of non-stationary Markov processes. In the same way as for the stationary
case we consider the non-stationary Markov process with given absorbing state y ∈
X. So, we assume that the dynamic matrix P (t) is given which is stochastic for
every t = 0, 1, 2, . . . and py,y(t) = 1 for arbitrary t is given. Then the probabilities
Px(y, 0 ≤ T (y) ≤ t) for x ∈ X can be determined if we tabulate the values Px(y, t−
τ ≤ T (y) ≤ t), τ = 0, 1, 2 . . . , t, using the following recursive formula:

Px(y, t− τ − 1 ≤ T (y) ≤ t) = px,z(t− τ − 1)Pz(y, t− τ ≤ T (y) ≤ t)

where for τ = 0 we fix

Px(y, t ≤ T (y) ≤ t) = 0 if x 6= y and Py(y, t ≤ T (y) ≤ t) = 1.

This recursive formula can be represented in the following matrix form

π′′(t− τ − 1) = P (t− τ − 1)π′′(τ), t = 0, 1, 2, . . . t− 1.

At the starting moment of time t = 0 the vector π′′(0) is given: All components are
equal to zero except the component corresponding to the absorbing vertex which is
equal to one, i.e.

π′′i (0) =
{

0, if xi 6= y;
1, if xi = y.
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If we apply this formula for τ = 0, 1, 2, . . . , t− 1 then we obtain

π′′(t) = P (0)P (1)P (2) · · ·P (t− 1)π′′(0), t = 1, 2, . . . .

So, if we consider the matrix Q = P (0)P (1)P (2) . . . P (t − 1) then an arbitrary
element qi,jy of the column jy in the matrix Q expresses the probability of the
system L to reach the state y from xi by using not more than t units of time, i.e.
qi,jy = Pxi(y, 0 ≤ T (x) ≤ t).

Here the matrix P (t) is stochastic matrix for t = 0, 1, 2, . . . where py,y(t) = 1 for
every t and

π′′(τ) =




π′′1(τ)
π′′2(τ)

...
π′′n(τ)


 , τ = 0, 1, 2, . . .

is the column vector, where an arbitrary component π′′i (τ) expresses the probability
of the dynamical system to reach the state y from xi by using not more than τ unites
of times when the system start transitions in the sate x at the moment of time t−τ ,
i.e. π′′i (τ) = Pxi(y, t − τ ≤ T (y) ≤ t). This means that in the case when y is an
absorbing state the probability Px(y, T1 ≤ T (y) ≤ T2) can be found in the following
way:

a) find the matrices

Q1 = P (0)P (1)P (2) · · ·P (T1 − 1) and Q2 = P (0)P (1)P (2) · · ·P (T2 − 1);

b) calculate
Px(y, T1 ≤ T (y) ≤ T2) =

= Px(y, 0 ≤ T (y) ≤ T2)− Px(y, 0 ≤ T (y) ≤ T1 − 1) = q2
ixjy

− q2
ixjy

.

The results described above allows to develop algorithms for calculation the
probabilities Px(y, 0 ≤ T (y) ≤ t) for an arbitrary non-stationary Markov process.
Such algorithms can be obtained if in the general steps of the algorithms we change
the matrix P by the matrix P (t− τ − 1) and π′(τ) by π′′(τ).

Below we describe these algorithms which can be grounded in an analogues way
as the algorithms in Section 2.

Calculation of the state probabilities of the system in the matrix form
(non-stationary case)

Preliminary step (Step 0): Fix the vector π′′(0) = (π′′1(0), π′′2(0), . . . , π′′n(0)),
where π′′i (0) = 0 for i 6= iy and π′′iy(0) = 1.

General step (Step τ + 1, τ ≥ 0): For given τ calculate

π′′(τ + 1) = P (t− τ − 1)π′′(τ)
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and then put
π′′iy(τ + 1) = 1.

If τ < t− 1 then go to next step; otherwise STOP.

Calculation of the state probabilities of the system with given proba-
bility of its remaining in the final state (non-stationary case)

Preliminary step (Step 0): Fix the vector π′′(0) = (π′′1(0), π′′2(0), . . . , π′′n(0)),
where π′′i (0) = 0 for i 6= iy and π′′iy(0) = 1.

General step (Step τ + 1, τ ≥ 0): For given τ calculate

π′′(τ + 1) = P (t− τ − 1)π′′(τ)

and then put
π′′iy(τ + 1) = q(y).

If τ < t− 1 then go to next step; otherwise STOP.

Note that the algorithm finds the probabilities Px(y, 0 ≤ T (y) ≤ t) when the
value q(y) is given. We treat this value as the probability of the system to remain
in the state y; for the case q(y) = 1 this algorithm coincides with previous one.

4 Conclusion

A new approach for studying finite Marcov processes and determining the limit
matrix of probability transitions in Markov chains is proposed. The proposed ap-
proach allows us to develop new algorithms for determining the states probability
in the considered Markov processes. Polynomial time algorithms for finding the
limit matrix of probability transitions of the system in Markov chains are elabo-
rated. These algorithms can be used for determining the average cost per trans-
action of dynamical system in decision Markov processes (Markov processes with
rewards) [3, 5, 9] and and stochastic discrete optimal control problems [2, 6–8].
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Abstract. Basing on Markowitz’s classical theory we formulate a multicriteria
Boolean portfolio optimization problem with Savage’s minimax (bottleneck) risk crite-
ria. We obtain lower and upper attainable bounds for stability radius of the problem
of finding the Pareto set, consisting of efficient portfolios in the case of Chebyshev
metric l∞ in the risk and state spaces, and linear metric l1 in the portfolios space.
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1 Introduction

In paper [1] we obtained lower and upper attainable bounds for the stability
radius of a Pareto optimal portfolio of the multicriteria Boolean investment problem
with Savage’s minimax (bottleneck) risk criteria in the case of Chebyshev metric l∞
in every operation factors space of the problem. In present paper we obtain results of
similar nature for stability radius of the Markowitz’s investment problem of finding
Pareto set in the case of linear metric l1 in the portfolios space, and Chebyshev
metric l∞ in the risk and market state spaces.

2 Problem statement and basic definitions

Basing on the Markowitz’s portfolio theory [2] we consider the vector variant of
the financial managing problem. To this end, we introduce the following notations:

Nn = {1, 2, ..., n} be a set of assets (stocks, bonds, real estate, etc.);
Nm be a set of market states;
Ns be a set of risks (financial, environmental, industrial etc.);
R be a three-dimensional m×n×s risk matrix (a matrix of missed opportunities)

with elements rijk ∈ R,
rijk be a risk quantity of assets j ∈ Nn chosen by the investor under criterion

(type of risk) k ∈ Ns in the situation when the market was in state i ∈ Nm;

c© Vladimir Emelichev, Vladimir Korotkov, 2011
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x = (x1, x2, . . . , xn)T ∈ X ⊆ En be an investment portfolio, where E = {0, 1},

xj =





1 if the investor chooses asset j,

0 otherwise.

Along with the three-dimensional matrix R = [rijk] ∈ Rm×n×s we use its two-
dimensional cuts Rk ∈ Rm×n, k ∈ Ns.

Let the following vector objective function

f(x,R) = (f1(x, R1), f2(x,R2), ..., fs(x,Rs))

estimate efficiency of the choosing portfolio (boolean vector) x ∈ X, |X| ≥ 2 with
Savage’s minimax risk (extreme pessimism) criteria [3]

fk(x, Rk) = max
i∈Nm

∑

j∈Nn

rijkxj → min
x∈X

, k ∈ Ns.

Thus, Savage’s bottleneck criteria under uncertainty of the market state recom-
mends choosing the portfolio in which the total risk value takes the smallest value
in the most unfavorable situation, namely, when the risk is the greatest.

Note that minimax (maximin) problems are quite typical for optimization theory.
For example, monographs [4–6] are devoted to similar types of optimization prob-
lems. These problems include also the problem on the best uniform approximation
of functions originally posed by Chebyshev.

A problem of finding the Pareto set P s(R) which contains all efficient (Pareto
optimal) portfolios will be viewed as a multicriteria investment portfolio problem
Zs(R):

P s(R) = {x ∈ X : P s(x,R) = ∅},
where

P s(x,R) = {x′ ∈ X : x Â x′}.
Here the symbol Â is a binary relation over the set X which is defined as follows:

x Â x′ ⇔ g(x, x′, R) ≥ 0 & g(x, x′, R) 6= 0,

where
0 = (0, 0, ..., 0) ∈ Rs,

g(x, x′, R) = (g1(x, x′, R1), g2(x, x′, R2), ..., gs(x, x′, Rs)),

gk(x, x′, Rk) = fk(x,Rk)− fk(x′, Rk) = max
i∈Nm

Rikx− max
i∈Nm

Rikx
′ =

= min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
′), k ∈ Ns,

and Rik = (ri1k, ri2k, ..., rink) is i-th row of cut Rk ∈ Rm×n.
It is obvious that P s(R) 6= ∅ for any matrix R ∈ Rm×n×s.
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We define linear metric l1 in the portfolios space Rn. We also define metric
l∞ (Chebyshev metric) in the state space Rm and risk (criteria) space Rs, i.e. we
assume that

‖Rik‖1 =
∑

j∈Nn

|rijk|, i ∈ Nm, k ∈ Ns,

‖Rk‖ = max
i∈Nm

‖Rik‖1 = max
i∈Nm

∑

j∈Nn

|rijk|, k ∈ Ns,

‖R‖ = max
k∈Ns

‖Rk‖ = max
k∈Ns

max
i∈Nm

‖Rik‖1 = max
k∈Ns

max
i∈Nm

∑

j∈Nn

|rijk|.

In this notation for any indexes i ∈ Nm and k ∈ Ns the following inequalities
are obvious:

‖Rik‖1 ≤ ‖Rk‖ ≤ ‖R‖.
Moreover for any cut Rk ∈ Rm×n and any vectors x, x′ ∈ X the following

inequalities are true:

Rikx−Ri′kx
′ ≥ −‖Rik‖1 − ‖Ri′k‖1 ≥ −2‖Rk‖, i, i′ ∈ Nm, k ∈ Ns. (1)

Similar to [9–13], the stability radius of problem Zs(R), s ≥ 1, the perturbing
parameters of the vector criteria, i.e. the perturbing elements of the risk matrix R
is defined as:

ρ = ρ(n, m, s) =
{

sup Ξ if Ξ 6= ∅,
0 if Ξ = ∅,

where
Ξ = {ε > 0 : ∀R′ ∈ Ω(ε) (P s(R + R′) ⊆ P s(R))},

Ω(ε) = {R′ ∈ Rm×n×s : ‖R′‖ < ε}.
Thus, the problem stability radius is the supremum level of risk matrix pertur-

bations such that new efficient portfolios do not appear. In other words, ρ(n,m, s)
is the radius of such type of stability, which is a discrete analogue of the upper
Hausdorff semicontinuity of point-set mapping [14] which puts in correspondence
the set of efficient portfolios to each point of the space of problem parameters.

Here Ω(ε) is the set of perturbing matrixes, and Zs(R + R′) is the perturbed
problem.

Obviously, the stability radius ρ = ρ(n,m, s) is infinite as the equality P s(R) =
X holds. Further we exclude this case from our consideration. And if the set
X \ P s(R) is non-empty we say that the problem Zs(R) is non-trivial.

3 Problem stability radius bounds

Let

ϕ = ϕ(n, m, s) = min
x 6∈P s(R)

max
x′∈P s(x,R)

min
k∈Ns

min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
′).



86 VLADIMIR EMELICHEV, VLADIMIR KOROTKOV

Considering that for any portfolio x 6∈ P s(R) the set P s(x,R) is non-empty, then
the following formula is true:

∀x 6∈ P s(R) ∀x′ ∈ P s(x,R) (x Â x′).

Hence, this results in ϕ ≥ 0.

Theorem 1. For the stability radius ρ(n,m, s), s ≥ 1, of a multicriteria non-trivial
problem Zs(R) the following bounds are true:

ϕ(n,m, s)/2 ≤ ρ(n,m, s) ≤ nϕ(n,m, s).

Proof. To prove Theorem 1 it is necessary first to prove that ρ ≥ ϕ/2. It is evident
if ϕ = 0. Let ϕ > 0. According to the definition of ϕ for any portfolio x 6∈ P s(R) (if
problem Zs(R) is non-trivial then there exist such portfolios) there exists portfolio
x0 ∈ P s(x,R) such that

min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0) ≥ ϕ, k ∈ Ns. (2)

Further, taking into account (1) and (2), for any matrix R′ ∈ Rm×n×s and any
index k ∈ Ns we have:

gk(x, x0, Rk + R′
k) = max

i∈Nm

(Rik + R′
ik)x− max

i′∈Nm

(Ri′k + R′
i′k)x

0 =

= min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0+R′

ikx−R′
i′kx

0) ≥ min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0)−2‖R′

k‖ ≥

≥ ϕ− 2‖R′
k‖.

Hence, in view of R′ ∈ Ω(ϕ/2), i.e. ‖R′
k‖ < ϕ/2, k ∈ Ns, we obtain

gk(x, x0, Rk + R′
k) > 0, k ∈ Ns.

Thus x is not efficient portfolio of the perturbed problem Zs(R + R′).
Summarizing and considering x 6∈ P s(R) we conclude that

∀R′ ∈ Ω(ϕ/2) (P s(R + R′) ⊆ P s(R)).

Hence, we have the inequality ρ ≥ ϕ/2.
Further, we prove the inequality ρ ≤ nϕ. Accordance to the definition of ϕ there

exists x0 6∈ P s(R) such that for any x ∈ P s(x0, R) there exists q = q(x) ∈ Ns such
that

min
i∈Nm

max
i0∈Nm

(Ri0qx
0 −Riqx) ≤ ϕ. (3)

Now, setting ε > nϕ, we consider a perturbing matrix R0 = [r0
ijk] ∈ Rm×n×s

whose elements are defined as follows:
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r0
ijk =




−δ if i ∈ Nm, x0

j = 1, k ∈ Ns,

δ otherwise,

where ϕ < δ < ε/n. Then

‖R0‖ = ‖R0
k‖ = ‖R0

ik‖1 = nδ, i ∈ Nm, k ∈ Ns.

Therefore R0 ∈ Ω(ε). In addition, all rows R0
ik, i ∈ Nm, of cut R0

k are equal and
consist of components δ and −δ for any index k ∈ Ns. Thus, denoting this row as
B (it only depends on x0), we have

‖B‖1 = nδ,

B(x0 − x) = −δ‖x0 − x‖1 ≤ −δ < −ϕ ≤ 0. (4)

Hence, in view of (3) and the structure of perturbing matrix R0, we deduce that for
any portfolio x ∈ P s(x0, R) the relations

gq(x0, x, Rq + R0
q) = max

i∈Nm

(Riq + B)x0 − max
i∈Nm

(Riq + B)x =

= min
i0∈Nm

max
i∈Nm

(Riqx
0 −Ri0qx) + B(x0 − x) < 0

hold.
As a result we obtain that

∀x ∈ P s(x0, R) (x 6∈ P s(x0, R + R0)). (5)

Let portfolio x 6∈ P s(x0, R), i.e. the binary relation

x0 Â x

is not satisfied. Let us show, that x 6∈ P s(x0, R + R0). To do it we consider two
possible case:

Case 1. g(x0, x, R) = 0. Then for any index k ∈ Ns equalities (4) imply

gk(x0, x, Rk + R0
k) = max

i∈Nm

(Rik + B)x0 − max
i∈Nm

(Rik + B)x =

= gk(x0, x, Rk) + B(x0 − x) < 0.

Case 2. There exists index l ∈ Ns such that gl(x0, x, Rl) < 0. Then, using (4)
again, we have gl(x0, x,Rl + R0

l ) < 0.
Thus, if x 6∈ P s(x0, R) then x 6∈ P s(x0, R +R0). Hence, in view of (5) we obtain

P s(x0, R + R0) = ∅. This means that x0 is the efficient portfolio of the perturbed
problem Zs(R + R0). Then, taking into account x0 6∈ P s(R), we conclude that

∀ε > nϕ ∃R0 ∈ Ω(ε) (P s(R + R0) 6⊆ P s(R)).

Therefore the inequality ρ ≤ nϕ is true.
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The next statement directly follows from Theorem 1.

Corollary 1. The stability radius ρ(n,m, s) of problem Zs(R) is zero if and only if
ϕ(n,m, s) = 0.

For m = 1 our problem Zs(R) is transformed into a multicriteria Boolean pro-
gramming problem with linear criteria

Rkx → min
x∈X

, k ∈ Ns, (6)

where Rk is k-th row of the matrix R ∈ Rs×n, X ⊆ En, while metric l1 in the
solutions space Rn and metric l∞ in the criteria space Rs.

In this case for m = 1 the known theorem on the stability radius of an efficient
solution of the vector integer problem, where the Pareto set has a unique efficient
solution, holds.

Theorem 2 [13]. If X ⊂ Zn, |X| < ∞, x0 is a unique efficient solution of problem
(6), then for stability radius the following formula is true:

ρ(n, 1, s) = ϕ(n, 1, s) = min
x∈X\{x0}

min
k∈Ns

Rk(x− x0).

4 Attainability of the lower bound

Let us show that lower bound for the problem stability radius, indicated in
Theorem 1, is attainable.

Theorem 3. For m ≥ 2 and for n ≥ 2 there exists a class of problems Zs(R), s ≥ 1,
such that for stability radius of every problem of this class the following formula is
true:

ρ(n,m, s) = ϕ(n,m, s)/2. (7)

Proof. To prove the equality ρ = ϕ/2 in accordance with Theorem 1, it is sufficient
to identify the class of non-trivial problems for which the inequality ρ ≤ ϕ/2 is true.
In what follows, we scrutinize this.

We consider the class of problems Zs(R) such that the following terms are right

X = {x0, x̂}, P s(x0, R) = {x̂}, (8)

(Ri(x0)q −Ri(x̂)q)x
0 > ϕ/2, (9)

where
i(x̂) = argmax{Riqx̂ : i ∈ Nm},

i(x0) = argmax{Riqx
0 : i ∈ Nm}.
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Then the definition of ϕ entails that

0 ≤ gq(x0, x̂, Rq) = ϕ, (10)

and from inequality (9) we obtain i(x0) 6= i(x̂). Further we suppose that there exist
two indexes p 6= l over the set Nn such that x0

p > x̂p, x0
l < x̂l, i.e. the inequalities

x0
p = x̂l = 1, x0

l = x̂p = 0 (11)

hold.
For any number ε > ϕ/2 we define the elements of the perturbing matrix R0 =

[r0
ijk] ∈ Rm×n×s by the rule

r0
ijk =





δ if i = i(x̂), j = l, k = q,

−δ if i ∈ Nm \ {i(x̂)}, j = p, k = q,

0 otherwise,

(12)

where
ϕ/2 < δ < min

{
ε, (Ri(x0)q −Ri(x̂)q)x

0
}

. (13)

It is worth to note that the last inequalities are correct because of (9).
Due to the structure of the perturbing matrix R0 the next equalities are obvious:

R0
i(x̂)qx̂ = δ, (14)

R0
iqx̂ = 0, i ∈ Nm \ {i(x̂)}, (15)

R0
iqx

0 = −δ, i ∈ Nm \ {i(x̂)}, (16)

R0
i(x̂)qx

0 = 0, (17)

‖R0
iq‖1 = ‖R0

q‖ = ‖R0‖ = δ, i ∈ Nm, R0 ∈ Ω(ε).

The remainder of the proof will be dedicated to proving that portfolio x0 ∈
P s(R + R0). To this end, in view of (8) it suffices to show that x̂ 6∈ P s(x0, R + R0).
In line with (14) and (15), we have

fq(x̂, Rq + R0
q) = max

{
(Ri(x̂)q + R0

i(x̂)q)x̂, max
i6=i(x̂)

(Riq + R0
iq)x̂

}
=

= max
{

fq(x̂, Rq) + δ, max
i6=i(x̂)

Riqx̂
}

= fq(x̂, Rq) + δ. (18)

It is easy to see the equality is hold:

fq(x0, Rq + R0
q) = fq(x0, Rq)− δ. (19)
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Indeed from (16) the following relations are true:

fq(x0, Rq + R0
q) = max

{
(Ri(x0)q + R0

i(x0)q)x
0, max

i6=i(x0)
(Riq + R0

iq)x
0
}

=

= max
{

fq(x0, Rq)− δ, max
i6=i(x0)

(Riq + R0
iq)x

0
}

.

Thus, taking into account obvious due to (16) relations

fq(x0, Rq)− δ ≥ (Riq + R0
iq)x

0, i ∈ Nm \ {i(x̂)},

it remains to prove that

fq(x0, Rq)− δ = max
i∈Nm

Riqx
0 − δ ≥ (Ri(x̂)q + R0

i(x̂)q)x
0.

Using (13) and (17), we have

fq(x0, Rq)− δ − (Ri(x̂)q + R0
i(x̂)q)x

0 = (Ri(x0)q −Ri(x̂)q)x
0 − δ > 0.

So, the equality (19) is true.
Finally, consistently applying (18), (19), (10) and (13), we obtain

gq(x0, x̂, Rq + R0
q) = gq(x0, x̂, Rq)− 2δ = ϕ− 2δ < 0.

Therefore x̂ 6∈ P s(x0, R + R0). It proves that x0 is efficient portfolio of the
perturbed problem Zs(R + R0). Hence, because of x0 6∈ P s(R) we derive

∀ε > ϕ/2 ∃R0 ∈ Ω(ε) (P s(R + R0) 6⊆ P s(R)).

Thus ρ ≤ ϕ/2. In summary, we have just proven that (7) is valid.

We give a numeric example proving existence of scalar problem Z1(R), R ∈
Rm×n, which stability radius ρ(n,m, 1) is ϕ(n,m, 1)/2.

Example. Let m = 3, n = 3, s = 1; X = {x̂, x0}, x̂ = (1, 1, 0)T , x0 = (0, 1, 1)T ;

R =




1 −1 2
−4 0 4
1 −1 2




is risk matrix with rows Ri, i ∈ Nm. Then

i(x̂) = 1, i(x0) = 2,

f(x̂, R) = 0, f(x0, R) = 4.

Hence, x̂ ∈ P 1(R), x0 6∈ P 1(R), ϕ = 4 and inequality (9) implies

(R2 −R1)x0 = 3 > 2 = ϕ/2.
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The perturbing matrix

R0 =




δ 0 0
0 0 −δ
0 0 −δ


 , 2 < δ < 3,

with rows Ri, i ∈ Nm, is constructed according (12).
Thus, taking into account the equality

R + R0 =




1 + δ −1 2
−4 0 4− δ
1 −1 2− δ


 ,

we have
f(x̂, R + R0) = max

i∈N3

(Ri + R0
i )x̂ = δ,

f(x0, R + R0) = max
i∈N3

(Ri + R0
i )x

0 = 4− δ.

Hence, in view of the inequality 2 < δ < 3, we conclude that

f(x̂, R + R0) > f(x0, R + R0).

Thus, x0 ∈ P 1(R + R0). From this inclusion and relations

‖R0‖ = δ > ϕ/2 = 2,

x0 6∈ P 1(R),

we have that ρ ≤ ϕ/2 = 2.
Therefore, by Theorem 1 we have ρ = 2.

5 Attainability of upper bound

Let us show the upper bound nϕ(n,m, s) for the stability radius of problem
Zs(R) is attainable for m = s = 1.

Theorem 4. If m = s = 1 there exists a class of problems Z1(R) such that for
stability radius of every problem of this class the following formula is true:

ρ(n, 1, 1) = nϕ(n, 1, 1).

Proof. According to Theorem 1 to prove the equality ρ = nϕ it is sufficient to
identify the class of non-trivial problems, for which the inequality ρ ≥ nϕ, where
ϕ > 0 is true.

Let us show that there exists such class, when X = {x0, x1, x2, . . . , xn} ⊂ En,
n ≥ 2, where x0 = 0, xj = ej , j ∈ Nn. Here ej is a unit column vector of Rn, i.e.
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ej is j-th column of the unit matrix E ∈ Rn×n. It is obvious the following equations
are true:

x0 − x = −ej , j ∈ Nn. (20)

Further, in view of m = s = 1, let R = (−r,−r, . . . ,−r) ∈ Rn, where r > 0.
Hence, we have

f1(x0) = 0,

f1(xj) = −r, j ∈ Nn,

i.e. x0 6∈ P 1(R), xj ∈ P 1(R) = P 1(x0, R), j ∈ Nn. From here, according to the
definition of ϕ, the equality

ϕ = r (21)

is true.
Now, in view of m = s = 1, let R′ = (r′1, r

′
2, . . . , r

′
n) be any perturbing row of

Ω(nϕ). Then we have

R + R′ = (−r + r′1,−r + r′2, . . . ,−r + r′n). (22)

Since ‖R′‖ < nϕ, then by contradiction it is easy to prove that there exists a unique
index p such that |r′p| < ϕ. Hence, in view of (20), (21) and (22), we obtain

g1(x0, xp, R + R′) = (R + R′)(x0 − xp) = r − r′p = ϕ− r′p > 0.

Therefore we conclude that for any perturbing row vector R′ ∈ Ω(nϕ) portfolio
x0 6∈ P 1(R + R′). And we get ρ ≥ nϕ.

Thus, ρ = nϕ.

6 Stability problem terms

The multicriteria investment portfolio problem Zs(R), s ≥ 1, is called stable if
its stability radius ρ is greater than zero. We consider the Slater set [15] consisting
of weakly efficient (Slater optimality) portfolio

Sls(R) = {x ∈ X : Sls(x,R) = ∅},

where Sls(x,R) = {x′ ∈ X : ∀k ∈ Ns (gk(x, x′, Rk) > 0)}.
Obviously P s(R) ⊆ Sls(R) for any matrix R ∈ Rm×n×s.

Theorem 5. For the multicriteria non-trivial problem Zs(R), s ≥ 1, the following
statements are equivalent:

(i) problem Zs(R) is stable,
(ii) P s(R) = Sls(R),
(iii) ϕ(n,m, s) > 0.
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Proof. (i) ⇒ (ii). We suppose that problem Zs(R) is stable, but P s(R) 6= Sls(R).
Then there exists weakly efficient portfolio x0 ∈ Sls(R) \ P s(R). Therefore
Sls(x0, R) = ∅ and P s(x0, R) 6= ∅. It means that

∃x0 6∈ P s(R) ∀x ∈ P s(x0, R) ∃q ∈ Ns (gq(x0, x, Rq) = 0).

Hence, ϕ = 0 and by Theorem 1 value ρ = 0. It contradicts the fact that problem
Zs(R) is stable.

(ii) ⇒ (iii). If P s(R) = Sls(R), then form any portfolio x 6∈ P s(R) set
Sls(x, R) 6= ∅. Hence, there exists x0 ∈ X such that the inequalities

gk(x, x0, Rk) > 0, k ∈ Ns,

are true, i.e. x0 ∈ P s(x,R). Thus, the following formula is true:

∀x 6∈ P s(R) ∃x0 ∈ P s(x,R) ∀k ∈ Ns (gk(x, x0, Rk) > 0).

Hence, ϕ > 0.
(iii) ⇒ (i). By Theorem 1 this implication is obvious.

Since P 1(R) = Sl1(R), then from Theorem 5 the following corollary impliesa.

Corollary 2. Scalar problem Z1(R) is stable for any matrix R ∈ Rm×n.

Finally, we note that by the equivalence of any two norms in finite linear space
(see, for example, [16, 17]) the result of Theorem 5 is correct for any norm in
Rm×n×s.
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