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Abstract. Structural network analysis is an intricate problem. In fact, the majority
of techniques that have been developed so far are only applicable to investigate deter-
ministic network models. This gives rise to develop novel graph-theoretical methods
for applying them to more complex graphs and especially to statistically inferred net-
works. In this regard, we review methods for analyzing complex networks structurally
putting the special emphasis on network partitioning and quantifying network com-
plexity. Both areas are of general importance in structural graph theory as well as
useful for exploring biological networks.
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1 Introduction

Prominent areas in which graph-theoretical methods have been intensely used
are, e.g., social network analysis [71,110], biological network analysis [59], chemical
graph theory [103] and investigating technological networks [82]. In terms of de-
veloping methods for exploring complex networks, random graph models have been
frequently investigated [37, 41]. But besides merely exploring random graphs, it
turned out that many real world phenomena can be modeled by using non-random
network topologies and, hence, meaningful methods for their structural analysis are
crucial [30]. From a mathematical point of view, either descriptive or quantitative
methods could be used to explore graphs structurally. To name some well-known ex-
amples, we mention metrical properties of graphs [97], general graph measures [54],
graph polynomials [50], graph decompositions [20], graph colorings [54], graph com-
plexity [72] and the partitioning of graphs [22]. Importantly, we want to remark
that most of the just mentioned approaches are only suitable to analyze determi-
nistic graphs. But the observation that complex networks are often the result of
a dynamical processes led to the insight that their analysis can not be adequately
performed in a deterministic framework [40]. Thus, there is a strong need to design
novel techniques to meet this challenge.

In this paper we provide a review about the structural analysis of complex net-
works. Here, we focus on such techniques which have been preferably used in com-
putational and systems biology. Concretely, we will put the emphasis on approaches
to partition complex networks and to quantify network complexity. Both problems
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are challenging and there is a future need to find novel approaches when considering
networks which were inferred statistically. Altogether, the main goal of this review
paper is to demonstrate the usefulness and potential of Structural Graph Analysis
and to stimulate the interest of other researchers to observe graph theory as a tool
for solving interdisciplinary problems.

2 Graph-Theoretical Applications in Bioinformatics and

Computational Biology

Various examples in the scientific literature have been demonstrated that bio-
logical phenomena and processes can be tackled by applying graph theory, see, e.g.,
[38,80,84].

In this section, we provide a general overview about important areas dealing
with graph-based approaches in computational biology:

• Phylogenetics: During the last thirty years, various graph-based techniques
have been successfully applied for solving problems in phylogenetics, see, e.g.,
[42, 89, 99]. A prominent example, for instance, is phylogenetic tree recon-
struction that has been a major research goal for biologists because it often
serves as indispensable interpretive framework for the analysis of evolutionary
processes by representing the interrelationships among biological entities as
graphs [42, 59]. Further, distance-, character-, and likelihood-based methods
are three important approaches which have been used for phylogenetic tree
analysis [42,99,100]. Besides the problem of inferring phylogenetic trees from
biological data sets, the structural analysis of such graphs has been found as
crucial. In this context, various tree distance measures and metrics [89,92,93]
were used to determine the structural similarity between phylogenetic trees.

• RNA-Structure Analysis: Graphs play an important role when analyzing se-
condary structures inferred from biological sequences [109,111]. For example,
Nussinov [79] did the first attempt to calculate secondary structures for sim-
plified energy models based on base-pairing rules. After the model was elabo-
rated, it turned out that there is a further need for considering loops in the
RNA secondary structure and, consequently, Zuker and Stiegler [116] proposed
a recursive algorithm to take the loop types [116] into account. Moreover, an
important contribution when analyzing secondary structures comparatively
was proposed by McCaskill [70]. In order to compare secondary structures
structurally, it turned out to be useful encoding them as trees and to use exis-
ting tree distance measures [92,101] for determining their similarity. Note that
a recent survey on graph-based techniques to model and process A-structures
has been contributed by Washietl et al. [109].

• Molecular Biology: For instance, regulatory, signal transduction, or metabolic
networks are often represented by networks to analyze molecular biological
processes [57]. For this, special graph classes like bipartite graphs, hypergraphs
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and directed acyclic graphs [58, 59, 67] were particularly used. Apart from
applying existing graph classes [21] to represent networks, graph-theoretical
techniques have been intensely used to analyze molecular biological pathways.
Exemplarily, we here mention a contribution due to Rosselló et al.[90] who
describe development pathways by using graph grammars.

• High-Throughput Analysis: A hype dealing with employing graphs in com-
putational biology started after the development of high-throughput tech-
niques [24, 38] because they allow a large-scale identification of genes, RNAs,
proteins. In this context, a key problem is to identify and study functional
components of a biological system meaningfully, based on their molecular in-
teractions involving, e.g., genes, proteins or metabolites, instead of exploring
these components in isolation. For example, a challenging problem in the
above mentioned area is to investigate complex diseases by investigating un-
derlying network representations [38]. To tackle these problems, methods from
statistical data analysis and machine learning have been used [26,38,39].

• Drug Design and Bio-chemical Graph Analysis: A still challenging and ongo-
ing problem is to predict physico-chemical or toxic properties of bio-chemical
molecules using structural graph descriptors [33, 102]. Particularly entropy-
based measures to perform such studies within QSPR (quantitative structure-
property relationship) and QSAR (quantitative structure-activity relationship)
have been found to be powerful, see, e.g., [8,14,33]. But because a large num-
ber of measures to quantify molecular complexity have been developed so far,
there is a strong need to examine which kind of structural information the
measures do detect. Contributions to shed light on this problem were recently
made in [7,32]. Similarly, Pathway Analysis [88] using graph-based techniques
became a crucial field when analyzing bio-chemical processes and complex di-
seases [38]. In particular, it allows, e.g., the identification of gene networks
and to study how genes are regulated [31].

3 Applied Graph Partitioning

The investigation of general graph partitioning methods for finding community
structures is currently of considerable interest when analyzing complex networks
quantitatively as well as descriptively [49, 78, 115]. In this section, we briefly de-
scribe such methods by using graph partitioning. Before we start outlining concrete
techniques, we sketch some seminal work concerning classical graph partitioning [61].

3.1 Classical Methods

To understand the underlying idea of graph partitioning properly, we firstly state
the following definition that describes the problem intuitively, see, e.g., [60].

Definition 1. Let G = (V,E) be a graph. Then, we define the k-way graph parti-

tioning problem as follows: Partition the vertex set V into k subsets V1, V2, . . . , Vk
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such that Vi

⋂

Vj = ∅, i 6= j, |Vi| = n
k
,
⋃

i Vi = V , and the number of edges of E

whose incident vertices belong to different subsets is minimized.

An important contribution in this area is the algorithm due to Kernighan and
Lin [61]. Apart from this work, other approaches to partition graphs based on
spectral clustering and multilevel partitioning have been explored, see, e.g., [76]. For
instance, spectral methods produce a partition based on the eigendecomposition [51]
of the graph. Also, spectral approximations for a variety of partitioning criteria
have been formulated including the minimum cut [83], ratio cut [25] and normalized
cut [95]. Interestingly, most of the multilevel algorithms are based on the work
we already mentioned above, see [61]. A strong point of this heuristic algorithm is
the fact that its time complexity is O(|V |3) on sparse graphs [61]. Improvements
possessing lower computational complexity can be found in [106]. Let’s now describe
the original method presented in [61] in more detail: Let G = (V,E) be a graph with
weighted edges (costs) and |V | = 2n. Let S be a set of 2n points with an associated
cost matrix, C = (cij), i, j = 1, . . . , 2n. Further, without loss of generality, it is
assumed [61] that C is a symmetric matrix and cii = 0,∀ i. Then, the aim of the
algorithm is to partition S into two sets A and B, |A| = |B| = n, such that the
so-called external costs T =

∑

A×B cab will be minimized.
Note that the work initiated by Kernighan and Lin [61] has already been suc-

cessfully improved, see, e.g., [43, 60, 61]. A well-known example of such a recently
developed multilevel approach is the METIS algorithm [60] that aims to partition
graphs from different application domains efficiently. In addition, we mention an-
other fast multi-level algorithm developed by Dhillon et al. [34] that directly opti-
mizes various weighted graph clustering objectives. In particular, Dhillon et al. [34]
show that a general weighted k-means objective is mathematically equivalent to a
weighted graph clustering objective. The main advantage of this method is that it
approximates graph clustering objectives without requiring an eigendecomposition,
which can be computationally intensive for large graphs [34]. Another advantage of
this algorithm, compared to other multilevel approaches, is that it does not require
the partitions to be of equal sizes [34].

3.2 Community Structure Detection

In this section, we sketch known approaches to detect community structures
within biological networks. Generally, to find community structures in complex
networks, classical and recent graph partitioning methods have often been ap-
plied [48, 59]. Until now, the concept of graph partitioning has been used for de-
tecting community structures in social networks, WWW-graphs, and biological or
biochemical networks [44,48,56,59, 77]. Informally speaking, the community struc-
ture property of a network can be understood by considering a graph in which the
vertices are joined together in tightly-knit groups and there are only looser connec-
tions between them, see [48]. It is important to mention that the traditional method
for detecting community structures in networks is hierarchical clustering [48]. If we
start with a weighted graph G = (V,E), |V | = n, (i) we first have to calculate a
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weight wij for every pair i, j of vertices in the network, (ii) select all vertices in
the network with no edges between them and (iii) add edges between pairs one by
one in the order of their weights, starting with the pair with the strongest weight
and progressing to the weakest, see [48]. If edges are added, the resulting graph
shows a nested set of connected subsets of vertices, which are expected to be the
communities [48]. Note that algorithms of this kind are called agglomerative, see,
e.g., [12].

To overcome existing shortcomings of agglomerative methods, see, e.g., [35], Gir-
van and Newman [48] proposed an alternative approach for detecting communities
that represents a so-called divisive algorithm [48]. The main procedure works as
follows: Start with the entire graph and iteratively cut the edges, thus dividing the
network progressively into smaller and smaller disconnected sub-networks finally
identified as the communities. The crucial point of this algorithm is the selection of
the edges to be cut, which has to be those connecting communities and not those
within them. The main steps of algorithm proposed in [48] can be stated as follows:

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweenness for all edges affected by the removal.

4. Repeat from the step 2 until no edges remain.

Until now, several improvements and extensions using shortest path versions of this
algorithm have already been proposed [48]. For example, Holme et al. [56] modified
this method and then applied this modification, based on global centrality measure
(betweenness), to a number of metabolic networks from different organisms for fin-
ding communities that correspond to functional units within these networks. Also,
Wilkinson and Huberman [113] have applied the approach to a network representing
relationships between genes, as established by the co-occurrence of gene names found
in published research articles. For finding communities in network they used a
nonlocal process exploiting the concept of betweenness centrality.

For finalizing, we state two more contributions in this area. The CONGA
(Cluster-Overlap Newman Girvan Algorithm) [52] is an extension of [48]. It can
be also used with undirected, unweighted graphs and performs hierarchical clus-
tering but it allows overlapping clusters. Finally, the CFinder algorithm [81], that
is a bottom-up approach, provides a method to interpret communities as union of
cliques. For more details refer to [48,81].

4 Topological Complexity Measures for Graphs

The problem of determining the structural complexity of a network can be under-
stood as characterizing the graphs taking structural features into account [11,17,62].
Clearly, this task is not uniquely defined because no complexity index can measure
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all structural features which contribute to the complexity of a graph. Before star-
ting with describing concrete non-information-theoretic and information-theoretic
complexity measures, we outline existing applications in computational biology and
bioinformatics:

• To investigate the evolution of PPI domains and the impact on organismal
complexity and the complexity of protein-protein interaction networks [114].

• General studies to examine how, e.g., biological and technological networks
differ by calculating their structural complexity [108].

• To find interrelations between the structure and complexity of the path-
ways and the phylogeny of species by using non-information-theoretic and
information-theoretic complexity measures [17,69].

• To use entropy-based measures for problems in QSPR (quantitative structure-
property relationship) and QSAR (quantitative structure-activity relation-
ship), see, e.g., [8, 14,33].

• To employ non-information-theoretic and information-theoretic measures in
the field of chemoinformatics [47], e.g., to perform correlation analyses [7] and
develop similarity/diversity measures [107].

4.1 Distance-Based Measures

A large number of complexity measures that have been developed so far are
based on distances in a graph [102]. As a strong point, such distances are simple to
calculate by any shortest path algorithm to be applied to the underlying adjacency
matrix. Often, a weak point of such measures is that they do not capture structural
information uniquely, that means, the measures are highly degenerated [64]. Let
G = (V,E) be a graph. We now start by expressing the well-known Wiener-index
[112],

W (G) :=
1

2

|V |
∑

i=1

|V |
∑

j=1

d(vi, vj). (1)

Originally, it was developed to detect branching of chemical graphs [53]. d(vi, vj)
denotes the shortest distance between vi and vj . Similarly, the Harary-index [4,36],

H(G) :=
1

2

|V |
∑

i=1

|V |
∑

j=1

(d(vi, vj))
−1, i 6= j, (2)

is based on reciprocal distances. A more complex example of such a measure is the
Balaban J-index [2],



TOWARDS STRUCTURAL NETWORK ANALYSIS 9

J(G) :=
|E|

µ + 1

∑

(vi,vj)∈E

[DSiDSj ]
− 1

2 . (3)

Note that DSi denotes the distance sum (row sum) of vi ∈ V and µ := |E|+1−|V | is
the cyclomatic number. Other important distance-based measures are, for instance,
the mean distance deviation [97],

∆µ(G) :=
1

|V |

|V |
∑

i=1

|µ(vi) − µ̄|, (4)

where

µ(vi) :=

|V |
∑

j=1

d(vi, vj) and µ̄ :=
2W

|V |
, (5)

the product of row sums-index [91] given by

log
(

PRS(G)
)

:= log





|V |
∏

i=1

µ(vi)



 , (6)

and, finally, the hyper-distance-path index [102],

DP (G) :=
1

2

|V |
∑

i=1

|V |
∑

j=1

d(vi, vj) +
1

2

|V |
∑

i=1

|V |
∑

j=1

(

d(vi, vj)

2

)

. (7)

For further distance-based measures, refer to [102].

4.2 Other and Related Complexity Indices

Besides distance-based measures, various other complexity indices for networks
based on other graph invariants have been developed. To pursue outlining known
graph complexity measures, we now state some important examples which have been
used to measure molecular complexity [86]. Note that the purpose for deriving such
indices was either to find measures with low computational complexity or with high
discrimination power [64]. For example, the index of total adjacency [17] can be
easily derived from the underlying adjacency matrix,

A(G) :=
1

2

|V |
∑

i=1

|V |
∑

j=1

aij. (8)

aij denotes the entry in the i-th row and j-th column of A. From this, it straight-
forwardly follows the normalized edge complexity [17],

E|V |(G) :=
A

|V |2
. (9)
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Let kvi
be the degree of the vertex vi ∈ V . Interestingly, the vertex degrees seen as

a graph invariant have also been used to define measures to quantify the structural
complexity of graphs. In order to list some well-known examples, we now state the
Zagreb group-indices [36],

Z1(G) :=

|V |
∑

i=1

kvi
or Z2(G) :=

∑

(vi,vj)∈E

kvi
kvj

, (10)

and the Randić connectivity-index [85],

R(G) :=
∑

(vi,vj)∈E

[kvi
kvj

]−
1
2 . (11)

An interesting generalization of such measures was developed by Bonchev [14] who
developed the so-called Overall (OX) indices given by

OX(G) :=

|E|
∑

k=0

kX; {OX(G)} = {0X, 1X, . . . , |E|X}. (12)

OX is called the overall value of a certain graph invariant X by summing up its values
in all subgraphs, and partitioning them into terms of increasing orders (increasing
number of subgraph edges k). For instance, OX = SC is equal to the subgraph
count [14,17].

More recent complexity measures were developed by Kim et al. [62]. To name
an example, we here express the so-called Efficiency complexity Ce of a graph G

that is based on calculating path lengths. Starting from

E′(G) :=
2

|V |(|V | − 1)

∑

i

∑

j>i

1

d(vi, vj)
, (13)

expressing the arithmetic mean of all inverse path lengths. Further, by defining

Epath(G) :=
2

|V |(|V | − 1)

|V |−1
∑

i=1

(|V | − i)

i
, (14)

the Efficiency complexity Ce yields to

Ce(G) :=

(

E′ − Epath

1 − Epath

)(

1 −
E′ − Epath

1 − Epath

)

∈ [0, 1]. (15)

Moreover, a measure that crucially relies on the largest eigenvalue of an undirected
graph G was defined in [62]. If r stands for the largest eigenvalue calculated from
the adjacency matrix of G, then, the graph index Cr is defined as

Cr := 4cr(1 − cr) ∈ [0, 1], (16)
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where

cr :=
r − 2 cos

(

π
N+1

)

|V | − 1 − 2 cos
(

π
|V |+1

) . (17)

Numerical examples to calculate these measures and details regarding their inter-
pretation can be found in [62].

4.3 Information-theoretic Complexity Measures

The key concept for obtaining a further class of important graph complexity
measures relies on Shannons’s information theory [94]. Starting from inferred struc-
tural features of a network, the crucial step for quantifying its structural information
is to infer a probability distribution and, then, to apply Shannons’s entropy formula.
As a result, one obtains topological entropies for characterizing networks [13,32,98].
Prior to start explaining concrete information measures, we emphasize that the main
application domains of general information-theoretic methods to analyze networks
have been biology [27,68,73,87], ecology [55,105], mathematical chemistry [6,8,13],
software technology [1], and operations research [23,45].

4.3.1 Classical Information Measures for Graphs

The development of information measures represented by entropies to character-
ize the underlying topology of a given network was the starting point of applying in-
formation theory to investigate biological and chemical systems structurally [87,104].
These measures are based on the principle that by assuming a graph G = (V,E), a
graph invariant X and an equivalence criterion, distributions of X can be obtained.
Particularly, this process can be understood by considering the following scheme [13]:





1 2 · · · k

|X1| |X2| · · · |Xk|
p1 p2 · · · pk



 . (18)

The first row of this matrix contains the equivalency classes and the second row the
cardinalities of the obtained partitions, respectively. The probability values, calcu-
lated by pi = |Xi|

|X| , for each partition form the third row. Hence, PG = (p1, . . . , pk)
represents a probability distribution. Then, the application of the well known
Shannon-entropy [94]

H(X) := H (p(x1), . . . , p(xk)) = −
k
∑

i

p(xi) log(p(xi)), (19)

of a discrete random variable X = (x1, x2, . . . , xk) leads to the following graph
entropies [13],

It(G) := |X| log(|X|) −
k
∑

i=1

|Xi| log(|Xi|), (20)
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Im(G) := −
k
∑

i=1

pi log(pi) = −
k
∑

i=1

|Xi|

|X|
log

(

|Xi|

|X|

)

. (21)

It(G) is called the total structural information content of G and can be recalculated
by using Im(G). The latter is called the mean structural information content of a
graph.

Now, by using certain graph invariants X, special entropy measures can be ob-
tained which serve as graph complexity measures. The starting point by developing
concrete measures was done by Rashevsky [87] and Trucco [104]. Rashevsky’s infor-
mation measures to characterize G are concretely given by [87]

IV
t (G) := |V | log(|V |) −

k
∑

i=1

Ni log (Ni) , (22)

IV
m(G) := −

k
∑

i=1

|Ni|

|V |
log

(

|Ni|

|V |

)

, (23)

where |Ni| denotes the number of topologically equivalent vertices in the i-th vertex
orbit of G. k stands for the number of different vertex orbits. Trucco’s measure [104]
can be analogously obtained by using the edge automorphism group. After this
seminal work, Mowshowitz [74] also investigated the measure IV

m (see Equation (23))
in depth and additionally explored the chromatic information content of a graph [75]:

Ic(G) := min
V̂

{

−
h
∑

i=1

ni(V̂ )

|V |
log

(

ni(V̂ )

|V |

)}

. (24)

V̂ = {Vi|1 ≤ i ≤ h} is an arbitrary chromatic decomposition of G, |Vi| = ni(V̂ ),
and h = χ(G) is the chromatic number of G. Note that the computation of the
chromatic number is a costly procedure for arbitrary graphs [54].

Apart from defining and calculating information measures for networks, there
is also a strong need to understand the meaning of these measures in depth. This
could be done by establishing their mathematical properties under certain theoretical
assumptions (e.g., bounds and the behavior under certain graph operations etc.).
Such a concrete result has been proven by Mowshowitz [74].

Theorem 1. For graphs G and H

IV
m(G × H) ≤ IV

m(G) + IV
m(H), (25)

and

IV
m(G ◦ H) ≤ IV

m(G) + IV
m(H), (26)

where × and ◦ represent the cartesian product and composition, respectively.
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The assertion of this theorem is that the information measure is semi-additive on
the cartesian product and on the composition of two graphs. Interestingly, we em-
phasize that formal properties like the just shown one or bounds for the entropies (by
using important graph classes) are unknown for the majority of network information
measures.

After the just outlined work, Bonchev [13,18] introduced the so-called magnitude-
based information indices by defining a weighted probability scheme. These indices
can be considered as generalization of the measures due to Rashevsky and Mow-
showitz. It follows easily that such a scheme can be analogously applied to a system
with |N | elements to group these elements into k partitions according to the mag-
nitude. Then, the modified scheme is [13]:













1 2 · · · k

|N1| |N2| · · · |Nk|
p1 p2 · · · pk

w1 w2 · · · wk

pM
1 pM

2 · · · pM
k













. (27)

In addition to the already existing rows of the introduced probability scheme (see
Matrix (18)), the magnitudes representing weights (w1, w2, . . . , wk) and the weighted
probability values (pM

1 , pM
2 , . . . , pM

k ) were introduced [13,18]. Because it holds M =
∑k

i=1 wiNi and pi = wi

M
, the graph entropies represented by Equation (20) and

Equation (21) can be rewritten as

IM
t (G) := M log(M) −

k
∑

i=1

Niwi log(wi), (28)

IM
m (G) := −

k
∑

i=1

Niwi

M
log
(wi

M

)

. (29)

By using this approach, concrete magnitude-based information were defined, for
instance [13],

ID(G) := −
1

N
log

(

1

N

)

−

ρ(G)
∑

i=1

2ki

N2
log

(

2ki

N2

)

, (30)

IW
D (G) := W (G) log(W (G)) −

ρ(G)
∑

i=1

iki log(i). (31)

ki is the occurrence of a distance possessing value i in the distance matrix of G. A
strong point of these measures is their low degeneracy [63] compared to the classical
measures mentioned in the beginning of this section. In general, one calls such a
measure degenerated if for more than one graph the measure possesses the same
value [3]. By using chemical graphs, numerical results are reported in [13,65].
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Again Bonchev [16,17] developed a substructure-based approach to detect mole-
cular complexity. Let G = (V,E) be a graph and X be a graph invariant. Then,
the following entropy-based complexity measure

I(G,OX) := OX log(OX) −

|E|
∑

k=0

kX log
(

kX
)

, (32)

relies on the overall value OX (see Equation (12)) by summing up its values in
all subgraphs [16]. The values will be partitioned into terms of increasing or-
ders (increasing number of subgraph edges k) [16]. As an example, one can set
OX = SC, i.e., OX equals the subgraph count [16]. Starting from this construc-
tion, Bonchev [16, 17] obtained several overall information indices such as overall
connectivity (the sum of total adjacency of all subgraphs) [14], overall Wiener-index
(the sum of total distances of all subgraphs) [15], overall Zagreb-indices [19], and the
overall Hosoya-index [16]. Known earlier and also substructure-based contributions
to detect molecular complexity were developed by, e.g., Bertz et al. [9, 10]. As a
further remark, note that many further information measures for graphs which are
similar to the outlined ones or which are based on the same construction principle
(e.g., simple finite probability scheme, weighted probability scheme, etc.) can be
found in [8, 13,17,33,102].

To finalize this section as well as to show a different paradigm to derive graph
entropies, we state the well-known Körner entropy [66,96] that has been applied in
information theory. The measure is defined by

H(G,P ) := lim
t−→∞

min
U⊆V t,P t(U)>1−ǫ

1

t
log(χ(Gt(U))). (33)

For V ′ ⊆ V (G), the induced subgraph on V ′ is denoted by G(V ′) and χ(G) is the
chromatic number [5] of G, Gt the t-th co-normal power [66] of G and

P t(U) :=
∑

x∈U

P t(x). (34)

Examples and an interpretation of this measure can be found in [66,96].

4.3.2 Parametric Information Measures

To compute the structural information content of arbitrary large networks, one
needs a method whose underlying algorithm is efficient, i.e., its time complexity is
polynomial. From Section (4.3.1), it follows that classical network information mea-
sures are often rely on algebraic principles, e.g., determining automorphism groups
of graphs or chromatic decompositions. However it is known that for arbitrary net-
works, the computational complexity of the corresponding algorithms is often very
high [46].

In order to overcome this problem, we now present parametric entropy measures
whose time complexity has been proven to be polynomial [28]. The key principle to
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construct such information measures is as follows: Let G = (V,E) be an arbitrary
graph and let S be a given set, e.g., a set of vertices or paths etc. The function
f : S −→ R+ is called an abstract information functional of G. Instead of inducing
partitions using an equivalence criterion (see Section (4.1)), we start from an abstract
information functional f and define the quantity [29],

pf (vi) :=
f(vi)

∑|V |
j=1 f(vj)

, ∀ vi ∈ V. (35)

Because the following equation

pf (v1) + pf (v2) + . . . + pf (v|V |) = 1, (36)

holds by definition, these entities can be interpreted as vertex probabilities. Hence,
(pf (v1), . . . , p

f (v|V |)) forms a probability distribution. From this, it is straightfor-
ward to obtain families of graph entropy measures like

If (G) := −

|V |
∑

i=1

f(vi)
∑|V |

j=1 f(vj)
log

(

f(vi)
∑|V |

j=1 f(vj)

)

, (37)

or

Iλ
f (G) := λ



log(|V |) +

|V |
∑

i=1

f(vi)
∑|V |

j=1 f(vj)
log

(

f(vi)
∑|V |

j=1 f(vj)

)



 , (38)

λ > 0. By incorporating special information functionals, one clearly obtains special
entropies. To give an example for a special information functional that is based on
metrical properties, we express [29]

fV1(vi) := αc1|S1(vi,G)|+c2|S2(vi,G)|+···+cρ(G)|Sρ(G)(vi,G)|,

ck > 0, 1 ≤ k ≤ ρ(G), α > 0. (39)

ck are arbitrary real positive coefficients. ρ(G) denotes the diameter of G and

Sj(vi, G) := {v ∈ V | d(vi, v) = j, j ≥ 1}, (40)

the j-sphere of a vertex vi of G, respectively. fV1 is a parametric information
functional that depends on both the parameter α and the vector (c1, c2, . . . , cρ(G)).
The meaning of these parameters has been explained in [29]. Then, the resulting
(parametric) information measure representing the entropy of the underlying graph
topology is

IfVi (G) := −

|V |
∑

i=1

fVi(vi)
∑|V |

j=1 fVi(vj)
log

(

fVi(vi)
∑|V |

j=1 fVi(vj)

)

, i = 1, 2. (41)

Of course, it is also possible to define

fV2(vi) := c1|S1(vi, G)| + c2|S2(vi, G)| + · · · + cρ(G)|Sρ(G)(vi, G)|, (42)
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that does not depend on α. Importantly, the process to design an information
functional and, thus, the resulting information measures strongly depends on the
specific problem when characterizing a graph using an information measure.

5 Summary and Conclusion

In this paper, we reviewed some concepts known in structural graph analysis.
We emphasized that we particularly put the underscore on such methods which have
been used in bioinformatics and systems biology. After outlining graph-theoretical
approaches in these areas, we firstly began to survey graph partitioning methods to
find clusters or communities within complex networks. Due to the steadily increas-
ing complexity of real-world networks, we believe that it will be fruitful to further
develop this field to process statistically inferred networks.

As future work, we want to focus on approaches combining graph-theoretical
and information-theoretic techniques. Secondly, we studied the challenging problem
to determine the structural complexity of graphs and reviewed classical and recent
methods. We want to emphasize that finding a meaningful complexity measure
to quantify structural information of a graph is far from trivial and usually not
unique. These facts give an idea about the complexity of such measures. Also, in
consideration of the fact that a vast number of graph complexity measures have been
developed so far, the problem to examine which kind of structural information the
measures do detect is not solved properly. Therefore, we would like to shed light
on this important aspect in the future by examining correlations and interrelations
between graph complexity measures.
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[85] Randić M. On characterization of molecular branching. J. Amer. Chem. Soc., 1975, 97,
6609–6615.
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1 Introduction

We consider differential system of the form

ẋj = aj
αxα + a

j
αβγδx

αxβxγxδ (j, α, β, γ, δ = 1, 2), (1)

where the coefficient tensor a
j
αβγδ is symmetrical in lower indices in which the com-

plete convolution holds.

In [1-7] the authors presented different methods of the study of the set of centro-
affine invariants and comitants of the system (1), which later find an application for
the qualitative study of these systems.

One of these methods is the method of generating functions and Hilbert series
described in [5-7]. The method goes back to classical works [8-16] for invariants
of binary forms, takes further investigation in works [17-28] for graded algebras
of invariants of indicated forms and also for graded algebras of different abstract
objects.

From [5-6] it is known that in order to construct a minimal polynomial base of
invariants and comitants [3,4] of the system (1) it is enough to construct generators
of algebra of unimodular comitants and invariants of indicated system.

Consider the system (1) with the group of unimodular transformations SL(2, R),
it is supposed this group acts in a natural way in E16(x, a), where x = (x1, x2) is a
vector of phase variables, and a is the set of coefficients of the system (1).

Let R[E16(x, a)] be the algebra of polynomials on E16(x, a). The group SL(2, R)
acts also in R[E16(x, a)].

Let S1,4 be subalgebra of polynomials, depending only on x, a from R[E16(x, a)],
and it is formed from SL(2, R) comitants [5-6] of the system (1).

c© N.Gherstega, M. Popa, V.Pricop, 2010
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Following [5-6], we shall name S1,4 the algebra of comitants, and its subalgebra
SI1,4 of polynomials depending only on x, will be called the algebra of invariants.

Let R[E16(x, a)](d) be the set of polynomials of the type (d) = (δ, d1, d2), homo-
geneous of degree δ in variables x = (x1, x2), of degree d1 in coefficient tensor a

j
α, of

degree d2 in coefficient tensor a
j
αβγδ. Let us assume

S
(d)
1,4 = S1,4

⋂

R[E16(x, a)](d).

The algebra S1,4 is graded through S
(d)
1,4 and

S1,4 =
⊕

(d)

S
(d)
1,4 (d ≥ 0), S

(d)
1,4S

(e)
1,4 ⊆ S

(d+e)
1,4

is considered finitely determined [5-6] for S
(0)
1,4 = R.

It is known [1-6], that R-algebra S1,4 is locally finite, i.e. dimRS
(d)
1,4 < ∞

for all (d).

The arising here sequence is {dimRS
(d)
1,4}, and the corresponding generalized

Hilbert series [5-6] is

H(S1,4, u, b, e) =
∑

(d)

dimRS
(d)
1,4uδbd1ed2 , (2)

where dimRS
(0)
1,4 = 1, and (d) = (δ, d1, d2).

The common Hilbert series is obtained from the generalized one as follows

HS1,4(u) = H(S1,4, u, u, u). (3)

Remark 1. The generalized (common) Hilbert series for the graded algebra of
invariants SI1,4 ⊂ S1,4 of the system (1) is formally obtained from (2) for u = 0
(b = e = z).

Remark 2. Following [19], we remark that the transcendent degree over R

of the field of quotients of algebra S1,4 (SI1,4) is called its dimension of Krull
̺(S1,4) (˜̺(SI1,4)). This dimension is equal to the maximum number of algebraically
independent homogeneous elements in S1,4 (SI1,4), and also to the order of the pole
of common Hilbert series at the unit.

2 Hilbert series and Krull dimensions for algebras S1,4 and SI1,4

We determine the lower bounds for the number and the totality of types of
generators for algebras S1,4 and SI1,4. For that we construct Hilbert series for
algebras S1,4 and SI1,4 for the system (1).
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Following [5-6] we obtain that dimRS
(d)
1,4 is equal to the coefficient of uδbd1ed2 in

the expansion of initial function

ϕ
(0)
1,4(u) =

1 − u−2

(1 − u2b)(1 − b)2(1 − u−2b)
×

×
1

(1 − u5e)(1 − u3e)2(1 − ue)2(1 − u−1e)2(1 − u−3e)2(1 − u−5e)
.

(4)

From [5-6] it is known that the generalized Hilbert series (2) is the solution of
the functional Cayley equation

H(S1,4, u, b, e) − u−2H(S1,4, u
−1, b, e) = ϕ

(0)
1,4(u),

where ϕ
(0)
1,4(u) is from (4).

Taking into consideration the last equality takes place

Theorem 1. The generalized Hilbert series for the graded algebra S1,4 of the system

(1) is a rational function of u, b, e and has the form

H(S1,4, u, b, e) =
N1,4(u, b, e)

D1,4(u, b, e)
, (5)

where

D1,4(u, b, e) = (1 − b)(1 − b2)(1 − bu2)(1 − be2)2(1 − b3e2)2(1 − b5e2)(1 − e4)2×

×(1 − e2)(1 − e6)2(1 − e8)2(1 − eu)2(1 − eu3)2(1 − eu5),
(6)

N1,4(u, b, e) =

13
∑

k=0

Rk(b, e)u
k, (7)
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and

R0(b, e) = 1 − e2 + 4e4 + e6 + 18e8 + 11e10 + 35e12 + 13e14 + 35e16 + 11e18+
+18e20 + e22 + 4e24 − e26 + e28 + b(e2 + 5e4 + 13e6 + 26e8 + 29e10 + 40e12+
+19e14 + 36e16 − 5e18 + 6e20 − 15e22 + e24 − 5e26 + 2e28 − 2e30) + b2(e2+
+8e4 + 16e6 + 26e8 + 27e10 + 20e12 + 12e14 − 11e16 − 29e18 − 31e20 − 22e22−
−11e24 − 4e26 − 2e28 − e30 + e32) + b3(e2 + 10e4 + 10e6 + 24e8 − 5e10 + 7e12−
−64e14 − 49e16 − 107e18 − 55e20 − 58e22 − 10e24 − 10e26 + 3e28 + e30)+
+b4(e2 + 6e4 + 9e6 + 10e8 − 7e10 − 29e12 − 87e14 − 75e16 − 117e18 − 29e20−
−30e22 + 26e24 + 2e26 + 17e28 − 3e30 + 4e32) + b5(5e4 + 3e6 + 10e8 − 21e10−
−38e12 − 82e14 − 76e16 − 72e18 + e20 + 20e22 + 44e24 + 32e26 + 17e28 + 6e30+
+2e32 − 2e34) + b6(2e4 + 3e6 − 2e8 − 29e10 − 36e12 − 84e14 − 41e16 − 48e18+
+48e20 + 41e22 + 84e24 + 36e26 + 29e28 + 2e30 − 3e32 − 2e34) + b7(2e4 − 2e6−
−6e8 − 17e10 − 32e12 − 44e14 − 20e16 − e18 + 72e20 + 76e22 + 82e24 + 38e26+
+21e28 − 10e30 − 3e32 − 5e34) + b8(−4e6 + 3e8 − 17e10 − 2e12 − 26e14 + 30e16+
+29e18 + 117e20 + 75e22 + 87e24 + 29e26 + 7e28 − 10e30 − 9e32 − 6e34 − e36)+
+b9(−e8 − 3e10 + 10e12 + 10e14 + 58e16 + 55e18 + 107e20 + 49e22 + 64e24 − 7e26+
+5e28 − 24e30 − 10e32 − 10e34 − e36) + b10(−e6 + e8 + 2e10 + 4e12 + 11e14+
+22e16 + 31e18 + 29e20 + 11e22 − 12e24 − 20e26 − 27e28 − 26e30 − 16e32 − 8e34−
−e36) + b11(2e8 − 2e10 + 5e12 − e14 + 15e16 − 6e18 + 5e20 − 36e22 − 19e24−
−40e26 − 29e28 − 26e30 − 13e32 − 5e34 − e36) + b12(−e10 + e12 − 4e14 − e16−
−18e18 − 11e20 − 35e22 − 13e24 − 35e26 − 11e28 − 18e30 − e32 − 4e34+
+e36 − e38),

R1(b, e) = −2e + 4e3 + e5 + 15e7 − 8e9 + 21e11 − 18e13 + 26e15 − 27e17 + 6e19−
−19e21 + 7e23 − 6e25 + 2e27 − 2e29 + b(e + 5e3 + 8e5 + 5e7 + e9 + 15e11 − 8e13+
+16e15 − 47e17 + 11e19 − 19e21 + 18e23 − 13e25 + 7e27 − 4e29 + 4e31) + b2(2e+
+6e3 + 2e5 + 6e7 + 9e9 + 7e11 − 7e13 − 34e15 − 24e17 + 2e19 + 11e21 + 6e23+
+5e25 + 5e27 + 4e29 + 2e31 − 2e33) + b3(e + 4e3 + 16e7 − 11e9 + 14e11 − 77e13−
−e15 − 63e17 + 59e19 − 6e21 + 52e23 − 3e25 + 19e27 − 3e29 − e31) + b4(4e3 + 5e5+
+3e7 − 9e9 − 26e11 − 60e13 + 4e15 − 35e17 + 88e19 − 11e21 + 51e23 − 24e25+
+30e27 − 20e29 + 8e31 − 8e33) + b5(4e3 + 7e7 − 23e9 − 19e11 − 49e13 + e15+
+e17 + 73e19 + 12e21 + 30e23 − e25 − 9e27 − 16e29 − 10e31 − 5e33 + 4e35)+
+b6(e3 + e5 − 3e7 − 16e9 − 10e11 − 51e13 + 26e15 − 11e17 + 96e19 − 3e21+
+60e23 − 45e25 − 4e27 − 38e29 − 7e31 + e33 + 3e35) + b7(−3e5 + 2e7 − 6e9−
−21e11 − 23e13 + 18e15 + 26e17 + 73e19 + 7e21 + 11e23 − 39e25 − 15e27 − 39e29+
+7e31 − 4e33 + 6e35) + b8(6e7 − 20e9 − 24e13 + 61e15 + 9e17 + 88e19 − 49e21+
+20e23 − 56e25 − 18e27 − 25e29 − e31 + e33 + 6e35 + 2e37) + b9(−e7 − e9+
+7e11 + 3e13 + 44e15 + 45e19 − 53e21 + 31e23 − 65e25 + 10e27 − 47e29 + 12e31+
+14e35 + e37) + b10(2e7 − 2e9 − e11 + 9e13 + 16e15 + 7e17 − 6e19 − 12e21−
−12e23 − 9e25 − 21e27 − 7e29 + 14e31 + 14e33 + 8e35) + b11(−4e9 + 7e11 + e13+
+14e15 − 23e17 + 11e19 − 35e21 + 18e23 − 34e25 + 7e27 + 5e29 + 21e31 + 8e33+
+3e35 + e37) + b12(2e11 − 4e13 − e15 − 15e17 + 8e19 − 21e21 + 18e23 − 26e25+
+27e27 − 6e29 + 19e31 − 7e33 + 6e35 − 2e37 + 2e39),
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R2(b, e) = 4e2 − 2e4 + 7e6 − 5e8 + 27e10 − 13e12 + 20e14 − 29e16 + 14e18−
−17e20 + 5e22 − 14e24 + 3e26 − e28 + e30 + b(2e2 − 3e4 + 7e6 + e8 + 11e10−
−53e12 − 14e14 − 73e16 + 9e18 − 45e20 + 8e22 − 17e24 + 21e26 − 5e28+
+2e30 − 2e32) + b2(7e6 − 12e8 − 39e10 − 64e12 − 39e14 − 37e16 + 2e18−
−16e20 + 16e22 + 17e24 + 16e26 − 3e28 + e30 − e32 + e34) + b3(2e2 − e4+
+e6 − 42e8 − 30e10 − 85e12 + 8e14 − 44e16 + 67e18 + e20 + 81e22 + 16e24+
+32e26 − 6e28 + e30 − e32) + b4(2e2 − 5e4 − 6e6 − 30e8 − 18e10 − 53e12+
+65e14 − 3e16 + 159e18 + 44e20 + 143e22 + 9e24 + 40e26 − 47e28 + 5e30−
−7e32 + 4e34) + b5(e2 − 5e4 − 28e8 − 11e10 − 14e12 + 84e14 + 57e16+
+172e18 + 51e20 + 89e22 − 23e24 − 25e26 − 43e28 + e30 − 4e32 + 2e34−
−2e36) + b6(−e4 − e6 − 26e8 + e10 − 12e12 + 103e14 + 67e16 + 162e18+
+6e20 + 51e22 − 98e24 − 37e26 − 59e28 − 4e30 − 4e32 + 3e34) + b7(−e6−
−13e8 + 7e10 + 22e12 + 103e14 + 51e16 + 104e18 − 20e20 − 9e22 − 119e24−
−60e26 − 79e28 + 8e30 − 5e32 + 10e34 + e36) + b8(−2e4 + 2e6 − 11e8+
+26e10 + 23e12 + 87e14 + 79e18 − 92e20 − 24e22 − 141e24 − 68e26 − 61e28+
+12e30 + 3e32 + 14e34 + 3e36 − e38) + b9(3e6 − 4e8 + 22e10 + 5e12 + 55e14−
−30e16 + 30e18 − 137e20 − 41e22 − 183e24 − 39e26 − 53e28 + 43e30 + 10e32+
+18e34 − 2e36 + e38) + b10(−e8 + 7e10 − 2e12 − 4e14 − 53e16 − 42e18−
−104e20 − 79e22 − 99e24 − 10e26 + 11e28 + 45e30 + 12e32 + 10e34 + 4e36+
+3e38) + b11(e6 − e8 + 5e10 − 9e12 − 6e14 − 36e16 − 10e18 − 67e20 − 7e22−
−19e24 + 46e26 + 31e28 + 35e30 + 13e32 + 17e34 + 7e36) + b12(−2e8 + 2e10−
−9e12 + 3e14 − 22e16 + 11e18 − 32e20 + 49e22 − e24 + 69e26 + 15e28 + 43e30+
+8e32 + 19e34 − 2e36 + e38 − e40) + b13(e10 − e12 + 4e14 + e16 + 18e18+
+11e20 + 35e22 + 13e24 + 35e26 + 11e28 + 18e30 + e32 + 4e34 − e36 + e38),

R3(b, e) = −e + e3 + e5 − 3e7 − 16e9 − 38e11 − 45e13 − 46e15 − 56e17 − 50e19−
−32e21 − 14e23 − e27 − 2e29 + b(2e − e3 − e5 − 30e7 − 35e9 − 87e11 − 44e13−
−95e15 − 44e17 − 33e19 + 27e21 + 15e23 + 22e25 − 5e27 + 3e29 + 4e31) + b2(e−
−2e3 − 14e5 − 32e7 − 48e9 − 64e11 − 46e13 − 73e15 + 41e17 + 49e19 + 101e21+
+45e23 + 36e25 − e27 + 12e29 − 3e31 − 2e33) + b3(−3e3 − 13e5 − 31e7 − 43e9−
−45e11 − 10e13 + 77e15 + 156e17 + 197e19 + 174e21 + 105e23 + 42e25 + 7e27−
−5e29 − 5e31 + e33) + b4(−2e3 − 6e5 − 31e7 − 23e9 − 46e11 + 110e13 + 113e15+
+271e17 + 189e19 + 148e21 − 16e23 − 19e25 − 61e27 − 10e29 − 6e31 − 7e33)+
+b5(−e3 − 5e5 − 20e7 − 23e9 + 20e11 + 115e13 + 132e15 + 252e17 + 92e19+
+61e21 − 97e23 − 75e25 − 110e27 − 17e29 − 33e31 + 5e33 + 6e35) + b6(−4e5−
−23e7 + 14e9 + 33e11 + 122e13 + 144e15 + 165e17 + 40e19 − 26e21 − 159e23−
−158e25 − 114e27 − 48e29 − 5e31 + 17e33 + 3e35 − e37) + b7(−4e5 + e7 + 14e9+
+19e11 + 109e13 + 69e15 + 126e17 − 49e19 − 116e21 − 252e23 − 138e25 − 122e27+
+4e29 + 13e31 + 16e33 + 8e35) + b8(4e5 − e7 + e9 + 31e11 + 52e13 + 31e15+
+17e17 − 147e19 − 199e21 − 230e23 − 154e25 − 84e27 + 24e29 + 6e31 + 33e33+
+11e35 + e37) + b9(−6e7 + 21e9 + 4e11 + 28e13 − 63e15 − 61e17 − 224e19−
−145e21 − 207e23 − 58e25 − 18e27 + 35e29 + 35e31 + 38e33 + 16e35 + 2e37−
−e39) + b10(2e7 − 8e11 + e13 − 51e15 − 36e17 − 122e19 − 33e21 − 59e23 + 84e25+
+23e27 + 97e29 + 44e31 + 48e33 + 11e35 + e37 − 2e39) + b11(−2e7 + 3e11 − 8e13−
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−24e15 − 26e17 − 21e19 + 20e21 + 58e23 + 56e25 + 84e27 + 82e29 + 50e31 + 28e33+
+2e35 − e37 + e39) + b12(4e9 − 6e11 − 2e13 − 15e15 + 26e17 + 5e19 + 73e21+
+27e23 + 80e25 + 49e27 + 45e29 + 11e31 + 6e33 − 3e35 + 2e39) + b13(−2e11+
+4e13 + e15 + 15e17 − 8e19 + 21e21 − 18e23 + 26e25 − 27e27 + 6e29 − 19e31+
+7e33 − 6e35 + 2e37 − 2e39),

R4(b, e) = 3e2 − 2e4 − 2e6 − 9e8 + 8e10 − 17e12 + 11e14 − 43e16 + 26e18 − e20+
+25e22 − 6e24 + 6e26 − 3e28 + 4e30 + b(−2e2 − e4 − 12e6 + 7e8 − 32e10 − 6e12−
−36e14 + 3e16 + 54e18 + 14e20 + 12e22 − 7e24 + 10e26 − 2e28 + 6e30 − 8e32)+
+b2(−2e2 − 4e4 − 3e6 − 22e8 − 39e10 − 13e12 − 11e14 + 89e16 + 26e18 + 25e20−
−20e22 + 9e24 − 22e26 − 14e30 − 3e32 + 4e34) + b3(−4e4 − 16e6 − 30e8 − 10e10−
−12e12 + 92e14 + 27e16 + 98e18 − 37e20 + 10e22 − 75e24 − 12e26 − 33e28+
+2e32) + b4(e2 − 8e4 − 22e6 − 2e8 − 20e10 + 92e12 + 44e14 + 88e16 + 32e18−
−72e20 − 49e22 − 54e24 − 19e26 − 32e28 + 17e30 − 12e32 + 16e34) + b5(−5e4−
−10e6 − 16e8 + 27e10 + 61e12 + 59e14 + 96e16 − 31e18 − 71e20 − 89e22 − 54e24−
−54e26 + 46e28 + 7e30 + 32e32 + 10e34 − 8e36) + b6(−2e4 − 13e6 + 14e8 + 10e10+
+49e12 + 73e14 + 35e16 − 14e18 − 113e20 − 84e22 − 105e24 + 48e26 + 22e28+
+62e30 + 23e32 − e34 − 4e36) + b7(−2e4 + 2e6 − e8 + 8e10 + 81e12 + 25e14+
+32e16 − 99e18 − 108e20 − 101e22 + 18e24 + 17e26 + 67e28 + 58e30 + 4e32+
+11e34 − 10e36 − 2e38) + b8(−5e6 + 39e10 + 28e12 + 20e14 − 39e16 − 77e18−
−133e20 + 10e22 − 29e24 + 68e26 + 77e28 + 33e30 + 30e32 − 2e34 − 15e36−
−5e38) + b9(17e8 − 8e10 + 13e12 − 34e14 − 13e16 − 90e18 − 33e20 − 22e22+
+2e24 + 88e26 + 38e28 + 78e30 + 4e32 − 10e34 − 28e36 − 2e38) + b10(e6−
−2e8 + 6e12 − 39e14 − 20e16 − 69e18 + 22e20 − 23e22 + 88e24 + 7e26 + 92e28−
−2e30 − 10e32 − 34e34 − 14e36 − 3e38) + b11(2e8 + 2e10 − 14e12 − 13e14−
−14e16 + 5e18 − 14e20 + 55e22 − e24 + 73e26 − 20e30 − 29e32 − 17e34 − 10e36−
−4e38 − e40) + b12(−7e10 + 2e12 − 3e14 + 16e16 − 12e18 + 30e20 + 13e22+
+20e24 + 17e26 − 30e28 − 8e30 − 22e32 − 3e34 − 12e36 + 3e38 − 4e40)+
+b13(4e12 − 2e14 + 7e16 − 5e18 + 27e20 − 13e22 + 20e24 − 29e26 + 14e28−
−17e30 + 5e32 − 14e34 + 3e36 − e38 + e40),

R5(b, e) = −3e3 − 2e5 − 13e9 − 38e11 − 30e13 − 40e15 − 3e17 − 26e19 − 5e21−
−6e23 + 16e25 − e27 + 2e29 − 2e31 + b(e − 3e3 − 8e7 − 35e9 − 20e11 + 8e13+
+26e15 + 64e17 + 26e19 + 53e21 + 36e23 + 19e25 − 18e27 + 2e29 − 4e31 + 4e33)+
+b2(−4e5 − 22e7 − 8e9 + 37e11 + 60e13 + 81e15 + 78e17 + 56e19 + 57e21+
+15e23 − 29e25 − 13e27 − 5e29 − e31 + 2e33 − 2e35) + b3(−3e3 − 8e5 − 3e7+
+19e9 + 49e11 + 103e13 + 101e15 + 118e17 + 36e19 + 31e21 − 60e23 − 29e25−
−47e27 − 5e29 − 3e31 + 3e33) + b4(−5e3 + 4e5 + 4e7 + 8e9 + 63e11 + 76e13+
+54e15 + 29e17 − 109e19 − 120e21 − 169e23 − 115e25 − 64e27 + 35e29 + 13e33−
−6e35) + b5(−e3 + e5 − 6e7 + 26e9 + 59e11 + 38e13 + 3e15 − 82e17 − 204e19−
−143e21 − 159e23 − 68e25 + 28e27 + 28e29 + 16e31 + 11e33 − 3e35 + 3e37)+
+b6(−3e5 + 2e7 + 26e9 + 42e11 + 42e13 − 33e15 − 130e17 − 192e19 − 134e21−
−117e23 + 42e25 + 40e27 + 75e29 + 32e31 + 12e33 − 6e35) + b7(17e9 + 30e11−
−16e13 − 90e15 − 123e17 − 165e19 − 110e21 − 20e23 + 70e25 + 120e27 + 119e29+
+22e31 + 11e33 − 13e35 − 3e37) + b8(2e5 + 15e9 + 2e11 − 49e13 − 78e15−
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−109e17 − 145e19 + 3e21 − 4e23 + 131e25 + 143e27 + 92e29 + 23e31 + e33−
−23e35 − 5e37 + e39) + b9(−2e7 + 5e9 − 7e11 − 33e13 − 67e15 − 94e17−
−43e19 + 62e21 + 92e23 + 222e25 + 140e27 + 88e29 − 14e31 − 22e33 − 25e35+
+4e37 − 4e39) + b10(2e9 − 6e11 − 17e13 − 7e15 + 32e17 + 77e19 + 139e21+
+187e23 + 172e25 + 104e27 + 9e29 − 34e31 − 25e33 − 14e35 − 10e37 − 5e39)+
+b11(−e7 + e9 − 5e11 − 6e13 + 12e15 + 25e17 + 52e19 + 110e21 + 61e23 + 55e25−
−13e27 − 30e29 − 37e31 − 28e33 − 34e35 − 11e37) + b12(2e9 − 2e11 + 2e13+
+10e15 + 19e17 + 40e19 + 30e21 − 16e23 − 7e25 − 60e27 − 49e29 − 59e31 − 36e33−
−26e35 + 2e37 − 3e39 + 2e41) + b13(−e11 + e13 + e15 − 3e17 − 16e19 − 38e21−
−45e23 − 46e25 − 56e27 − 50e29 − 32e31 − 14e33 − e37 − 2e39),

R6(b, e) = 2e2 − 2e4 + e6 − 16e8 + 6e10 + 5e12 + 26e14 + 3e16 + 40e18 + 30e20+
+38e22 + 13e24 + 2e28 + 3e30 + b(−3e2 − 7e6 + 12e10 + 36e12 + 9e14 + 63e16+
+48e18 + 34e20 − e22 − 19e24 − 17e26 + 8e28 − 6e30 − 6e32) + b2(−2e2 − 3e4−
−e6 + 6e8 + 19e10 + 19e12 + 35e14 + 94e16 − 10e18 + 3e20 − 72e22 − 38e24−
−33e26 − 6e28 − 20e30 + 6e32 + 3e34) + b3(−3e4 − 4e8 + 29e10 + 31e12 + 82e14−
−15e16 − 22e18 − 120e20 − 114e22 − 110e24 − 50e26 − 19e28 + 7e30 + 8e32−
−2e34) + b4(−e4 − 11e6 + 4e8 + 39e10 + 70e12 − 13e14 − 12e16 − 152e18 − 154e20−
−122e22 − 36e24 + 10e26 + 50e28 + 5e30 + 9e32 + 12e34) + b5(−3e4 − 7e6 + 12e8+
+50e10 − 5e14 − 48e16 − 179e18 − 67e20 − 114e22 + 17e24 + 46e26 + 91e28 + 20e30+
+52e32 − 8e34 − 8e36) + b6(−3e4 + 22e8 + 8e10 + 7e12 − 19e14 − 93e16 − 93e18−
−96e20 − 65e22 + 58e24 + 120e26 + 98e28 + 69e30 + 8e32 − 20e34 − e36) + b7(2e6−
−e8 + 14e10 + 14e12 − 48e14 − 36e16 − 144e18 − 47e20 + 29e22 + 161e24 + 112e26+
+120e28 − 3e32 − 10e34 − 11e36 − e38) + b8(−6e6 + 7e8 + 24e10 − 32e12 − 2e14−
−73e16 − 65e18 + 33e20 + 85e22 + 136e24 + 159e26 + 78e28 − 3e30 + 13e32 − 40e34−
−11e36 − e38) + b9(e6 + 11e8 − 16e10 − 14e12 − 26e14 − 10e16 + 9e18 + 98e20+
+61e22 + 170e24 + 78e26 + 23e28 + 4e30 − 32e32 − 36e34 − 16e36 − 5e38 + 2e40)+
+b10(−2e8 + e10 − e12 − 13e14 + 17e16 − e18 + 90e20 + 35e22 + 86e24 − 51e26+
+14e28 − 82e30 − 33e32 − 50e34 − 12e36 − e38 + 3e40) + b11(3e8 − e10 − 13e12+
+10e14 + e16 + 29e18 + 20e20 + 10e22 − 16e24 + 11e26 − 66e28 − 68e30 − 49e32−
−29e34 + 6e36 + 3e38 − 2e40) + b12(−6e10 + 4e12 + 9e14 + 8e16 − 2e18 + 5e20−
−30e22 + 10e24 − 59e26 − 56e28 − 31e30 − 11e32 + 4e34 + 7e36 − e38 − 2e40)+
+b13(3e12 − 2e14 − 2e16 − 9e18 + 8e20 − 17e22 + 11e24 − 43e26 + 26e28 − e30+
+25e32 − 6e34 + 6e36 − 3e38 + 4e40),

R13−k(b, e) = −b13e45Rk(b
−1, e−1), (k = 0, 6). (8)

Taking into consideration the equality (3) from Theorem 1 we obtain

Corollary 1. The common Hilbert series for graded algebra of comitants S1,4 of the

system (1) has the form

HS1,4(u) =
n1,4(u)

d1,4(u)
, (9)

where

d1,4(u) = (1 − u2)(1 − u3)(1 − u4)3(1 − u5)2(1 − u6)3(1 − u7)(1 − u8)2,
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n1,4(u) = 1 + u + u2 + 5u3 + 17u4 + 39u5 + 100u6 + 218u7 + 467u8+
+865u9 + 1586u10 + 2685u11 + 4467u12 + 6889u13 + 10423u14 + 14934u15+
+20921u16 + 27849u17 + 36293u18 + 45278u19 + 55254u20 + 64697u21+
+74134u22 + 81782u23 + 88328u24 + 91866u25 + 93539u26 + 91866u27+
+88328u28 + 81782u29 + 74134u30 + 64697u31 + 55254u32 + 45278u33+
+36293u34 + 27849u35 + 20921u36 + 14934u37 + 10423u38 + 6889u39+
+4467u40 + 2685u41 + 1586u42 + 865u43 + 467u44 + 218u45 + 100u46+
+39u47 + 17u48 + 5u49 + u50 + u51 + u52.

(10)

With the help of Remark 2 and Corollary 1 we obtain

Theorem 2. The Krull dimension ̺(S1,4) for graded algebra S1,4 is equal to 13, i.e.

̺(S1,4) = 13.
According to Remark 1 from Theorem 1 follows

Corollary 2. The generalized Hilbert series for graded algebra of invariants SI1,4

of the system (1) is a rational function of b, e and has the form

H(SI1,4, b, e) =
N1,4(b, e)

D1,4(b, e)
, (11)

where

D1,4(b, e) = (1 − b)(1 − b2)(1 − e2)(1 − be2)2(1 − b3e2)2(1 − b5e2)(1 − e4)2×

×(1 − e6)2(1 − e8)2,

N1,4(b, e) = R0(b, e),

(12)

and R0(b, e) is from (8).
With the help of Remark 2 and Corollary 2 we obtain

Corollary 3. The common Hilbert series for graded algebras of invariants SI1,4 for

the system (1) has the form

HSI1,4(z) =
N1,4(z)

D1,4(z)
, (13)

where

D1,4(z) = (1 − z3)(1 − z4)3(1 − z5)2(1 − z6)2(1 − z7)(1 − z8)2,

N1,4(z) = 1 + z + z2 + 3z3 + 8z4 + 15z5 + 32z6 + 67z7 + 129z8 + 217z9+

+355z10 + 546z11 + 812z12 + 1122z13 + 1511z14 + 1948z15 + 2447z16+

+2923z17 + 3410z18 + 3827z19 + 4183z20 + 4375z21 + 4461z22 + 4375z23+

+4183z24 + 3827z25 + 3410z26 + 2923z27 + 2447z28 + 1948z29 + 1511z30+

+1122z31 + 812z32 + 546z33 + 355z34 + 217z35 + 129z36 + 67z37 + 32z38+

+15z39 + 8z40 + 3z41 + z42 + z43 + z44.

(14)
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With the of help Remark 2 and Corollary 3 we obtain

Theorem 3. The Krull dimension ̺(SI1,4) for graded algebra SI1,4 is equal to 11,

i.e. ̺(SI1,4) = 11.

Similarly [28] with the help of representative form of generating function, which
is obtained from Hilbert series (5)-(8) by multiplication of the numerator and the
denominator by expression M1,4(u, b, e) = (1+e2)(1+ue)2(1+u3e)2 and taking into
consideration the characteristics of algebras S4 and SI4 from [5-6] we have

Theorem 4. The lower bound of the number of generators for the algebra S1,4(SI1,4)
is not less than 311(138) irreducible comitants (invariants)[1-4], distributed in

58(20) types as follows:

(0, 1, 0), (0, 2, 0), 6(0, 0, 4), 7(0, 0, 6), 15(0, 0, 8), 14(0, 0, 10), 3(0, 1, 2), 6(0, 1, 4),
15(0, 1, 6), 16(0, 1, 8), (0, 2, 2), 8(0, 2, 4), 15(0, 2, 6), 3(0, 3, 2), 10(0, 3, 4), 7(0, 3, 6),
(0, 4, 2), 5(0, 4, 4), (0, 5, 2), 3(0, 5, 4), 2(1, 0, 3), 11(1, 0, 5), 20(1, 0, 7), 2(1, 0, 9),
(1, 1, 1), 8(1, 1, 3), 20(1, 1, 5), 2(1, 2, 1), 9(1, 2, 3), 4(1, 2, 5), (1, 3, 1), 3(1, 3, 3),
3(1, 4, 3), (2, 1, 0), 3(2, 0, 2), 6(2, 0, 4), 12(2, 0, 6), 4(2, 1, 2), 9(2, 1, 4), 3(2, 2, 2),
2(2, 3, 2), (3, 0, 1), 6(3, 0, 3), 9(3, 0, 5), 2(3, 1, 1), 6(3, 1, 3), (3, 2, 1), (4, 0, 2),
6(4, 0, 4), 3(4, 1, 2), (5, 0, 1), 3(5, 0, 3), (5, 1, 1), 2(6, 0, 2), 2(6, 0, 4), (6, 1, 2),
(7, 0, 3), (9, 0, 3).

The number of comitants and invariants of the given type is indicated before
brackets, the omitted number means that it is equal to one.
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A probabilistic method for solving minimax problems

with general constraints

Anatol Godonoaga, Pavel Balan

Abstract. The method proposed in paper solves a convex minimax problem with
a set of general constraints. It is based on a schema elaborated previously, but with
constraints that can be projected on quite elementary. Such kind of problems are of-
ten encountered in technical, economical applied domains etc. It does not use penalty
functions or Lagrange function – common toolkit for solving above mentioned prob-
lems. Movement directions have a stochastic nature and are built using estimators
corresponding to target function and functions from constraints. At the same time ev-
ery iteration admits some tolerance limits regarding non-compliance with constraints
conditions.

Mathematics subject classification: 49M37, 90C15, 90C25, 90C30, 90C47,
49K35, 49K45.

Keywords and phrases: Minimax problems, stochastic, convex, nondifferentiable,
optimization, subgradient, constraints, probability repartition, estimator, almost cer-
tain, with probability 1, convergence, Borel-Cantelli.

The following problem is considered:















F (x) =max
y∈Yf

f (x, y) → min

Φ (x) = max
y∈Yϕ

ϕ (x, y) ≤ 0

x ∈ X

(1)

where X represents a compact and convex set in Euclidian space Em, the sets Yf , Yϕ

are compact sets in Em1 and Em2correspondingly. Suppose that the set of optimal
solutions X∗ 6= ∅.

Let us define:

V (x, ε) = {z ∈ En : ‖x− z‖ < ε} ,

V (X, ε) =
⋃

x∈X

(x, ε) ,

VX (X∗, ε) = V (X∗, ε)
⋂

X,

WX (x̃, r) = (V (x̃, r)
⋂

X) \V (X∗, ε) , r > 0,

WY (y, r) = V (y, r)
⋂

Y, r > 0.

(2)

The functions f (x, yf ) and ϕ (x, yϕ) are supposed to be convex on V (X, ε∗) for some
ε∗ > 0 and continuous on V (X, ε∗) × Yf and V (X, ε∗) × Yϕ correspondingly.
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Let’s admit that on the sets Yf , Yϕ probability repartitions Pf (·), Pϕ (·) are
defined that satisfy the conditions:

∫

Yf

Pf (dy) = 1,

∫

Yϕ

Pϕ (dy) = 1. (3)

For ∀r > 0 ∃γ > 0:

∫

WY (y,r)

Pf (dz) ≥ γ, if Y = Yf for every y ∈ Yf ,

∫

WY (y,r)

Pϕ (dz) ≥ γ, if Y = Yϕ for every y ∈ Yϕ.
(4)

1 Method description

Starting element x0 ∈ X is arbitrary taken. The sequence
{

xk
}

k≥1
is built.

Let’s admit that the approximate solution of order k – the element xk – is already
obtained. The approximation xk+1 is determined in the following way:

(A1) Two random variables ξ ∈ Yf , ψ ∈ Yϕ are simulated in series mk ≥ 1, lk ≥
1 of independent probes with distribution laws Pf and Pϕ correspondingly.
More specifically, the sets Mk = {ξ1, ξ2, . . . , ξmk

}, Lk = {ψ1, ψ2, . . . , ψlk} are
generated on each iteration k that contain independent realizations of random
vectors ξ (yf ) = yf ∈ Yf , ψ (yϕ) = yϕ ∈ Yϕ.

(A2) The elements yk
f (x) = ξi ∈ Mk, 1 ≤ i ≤ mk, y

k
ϕ (x) = ψj ∈ Lk, 1 ≤ j ≤ lk are

indicated:

f
(

xk, yk
f (x)

)

=max
y∈Mk

f
(

xk, y
)

,

ϕ
(

xk, yk
ϕ (x)

)

= max
y∈Lk

φ
(

xk, y
)

.
(5)

(A3) yk
f ∈

{

yk−1
f , yk

f (x)
}

, yk
ϕ ∈

{

yk−1
ϕ , yk

ϕ (x)
}

aredetermined where:

f
(

xk, yk
f

)

= max
{

f
(

xk, yk−1
f

)

, f
(

xk, yk
f (x)

)}

, where y0
f = y0

f (x),

ϕ
(

xk, yk
ϕ

)

= max
{

ϕ
(

xk, yk−1
ϕ

)

, ϕ
(

xk, yk
ϕ (x)

)}

, where y0
ϕ = y0

ϕ (x).
(6)

Definition 1. f
(

xk, yk
f

)

, ϕ
(

xk, yk
ϕ

)

are called estimators of the functions F (x)

and Φ (x), correspondingly, for x = xk.
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(A4) The new element xk+1 is built using the relation:

xk+1 =
∏

X

(

x̃k+1
)

, x̃k+1 = xk − ρkη
k (7)

where
∏

X (x̃) represents the projection of the element x̃ ∈ Em on the set X, that
is

∏

X (x̃) represents the closest element from X regarding x̃; ρk is the step value
corresponding to iteration k.

(A5) The sequence of vectors
{

ηk
}

is defined in the following way:

ηk =







gk

‖gk‖
, if gk 6= 0̄, k = 0, 1, 2, . . .

0̄, for gk = 0̄.
(8)

(A6) The vector gk is built as follows:

gk = gk
(

xk
)

=

{

∂f
(

x, yk
f

)

for x = xk, if ϕ
(

xk, yk
ϕ

)

≤ τk,

∂ϕ
(

x, yk
ϕ

)

for x = xk, if ϕ
(

xk, yk
ϕ

)

> τk.
(9)

Here ∂f
(

xk, yk
f

)

denotes the subgradient of the function f
(

x, yk
f

)

[2], and,

respectively, ∂ϕ
(

xk, yk
ϕ

)

is the subgradient of the function ϕ
(

x, yk
ϕ

)

for x = xk.
The vector g0 is considered to be an arbitrary, but bounded vector.

At the same time we consider that the numerical sequence {ρk} satisfies clas-
sical requirements that ensure the convergence of the methods with programmable
modification of the step:

ρk > 0, ρk → 0,
∞

∑

k=0

ρk = ∞. (10)

Additionally, for any number τ ∈ (0, 1) we require the existence of a sequence {ε̄k}
with properties:

ε̄k → 0,
ε̄k
ρk

→ ∞ (11)

so that for ∀rk ∈
[ ε̄k

2
, ε̄k

]

occurs the convergence of the series:

∞
∑

kk=0

τL(k,rk) <∞ (12)

where

L (k, rk) =











0, if ρk ≥ rk or k = 0,

sk, if
k
∑

l=k−sk

ρl < rk and
k
∑

l=k−sk−1

ρl ≥ rk.
(13)
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In other words sk is the biggest integer number among all numbers j ≥ 0 that

satisfies the relation
k
∑

l=k−j

ρl < rk.

We will show that such numerical sequences {ρk} and {ε̄k} exist that conforms to
the requirements (10)–(13). Above mentioned are justified by the following lemma:

Lemma 1. The sequences of the form ρk =
c

kα + d
, c > 0, d ≥ 0, α ∈ (0, 1] and

ε̄k =
p

kβ + q
, p > 0, q ≥ 0, β ∈ (0, α) satisfy the (10)–(13) requirements.

Proof. It is obvious that lim
k→∞

L (k, rk) = lim
k→∞

sk = ∞. For consecutive values of

k = 0, 1, 2, . . . the resulting values of L (k, rk) have the form:

0, . . . , 0
︸ ︷︷ ︸

0≤C0 times

, 1, . . . , 1
︸ ︷︷ ︸

0≤C1 times

, . . . , sk, sk, . . . , sk
︸ ︷︷ ︸

0≤Ci times

, (14)

(sk + 1) , . . . , (sk + 1)
︸ ︷︷ ︸

0≤Ci+1 times

, (sk + 2) , . . . , (sk + 2)
︸ ︷︷ ︸

0≤Ci+2 times

, . . . (15)

In other words L (k, rk) takes the value 0 for C0 times, the value 1 for C1 times
etc., the value sk for Ci times, where i = sk. We find out that the sequence {Ci},
i = 0, 1, . . ., is bounded. If we suppose the contrary, it means that exists a value
Cj ∈ {Ci} that can be however big. This implies that starting from some k ≥ k′ all
L (k, rk) = sk′ . As a result, starting from k′ all the values ρl from (13) contradict the
requirement (11). Thus, there exists a number C <∞ so that Ci < C, ∀i = 0, 1, . . .
So, we can conclude that the sequence {sk} can take values however big (sk → ∞).

Further we take an arbitrary, but fixed number τ ∈ (0, 1). The numerical series:



τ0 + . . .+ τ0
︸ ︷︷ ︸

C times



 +



τ1 + . . .+ τ1
︸ ︷︷ ︸

C times



 + . . .

+



τ sk + . . .+ τ sk

︸ ︷︷ ︸

C times



 +



τ sk+1 + . . . + τ sk+1
︸ ︷︷ ︸

C times



 + . . . =

= Cτ0 + Cτ1 + . . .+ Cτ sk + Cτ sk+1 + . . . =

= C
(

τ0 + τ1 + . . .+ τ sk + τ sk+1 + . . .
)

= C
∞
∑

k=0

τk =
C

1 − τ
<∞.

(16)

But, on the other hand:

∞
∑

k=0

τL(k,rk) ≤ C
∞
∑

k=0

τk. (17)

That leads us to the satisfaction of the (12) requirement. Lemma is proved.
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Now let’s get back to the method of computation of the sequence
{

xk
}

. It is
the moment to remark that the iterative process can be modified, namely different
distribution laws are applied for definition and simulation of random variables ξ, ψ
for every new iteration. This can favor the increase of convergence speed in a certain
sense of the sequence

{

xk
}

.

The idea of using the subgradients of target function F (x), in case that
Φ

(

xk
)

≤ 0, and subgradients of the function Φ (x), if Φ
(

xk
)

> 0, for solving a
convex model, is launched for the first time by B.Polyak in paper [1].

The stochastic subgradient method for solving a convex problem is defined in
the following way:

{

F (x) =max
y∈Yf

f (x, y) → min

x ∈ X

is realized and argued in [5]. Paper [4] describes this method that is developed using
the operation of normalization of subgradients and the convergence is established in
the same probabilistic terms. The proof of the convergence is based on two principal
stages. We will use and develop the mathematical mechanism used in [4] for arguing
the method (A1)-(A6) when solving the problem (1). Thus, the following affirmation
takes place:

Theorem 1. Let’s suppose that along with conditions mentioned above following
take place:

τk > 0, τk → 0,
∞

∑

k=0

ρkτk = ∞,
τk
ρk

→ ∞. (18)

Then, for ∀ε > 0 fixed, all elements of the random sequence
{

xk
}

k≥0
, obtained as a

result of application of the described method (A1) -(A6) , are localized almost certain
(with probability 1) in vicinity V (X∗, 2ε), but excepting a finite number of elements.
Formally this can be represented in the following way:

P

{

lim
k→∞

min
x∗∈X∗

∥

∥

∥
xk − x∗

∥

∥

∥
= 0

}

= 1,

where xk = xk
(

θ0, θ1, . . . , θk−1
)

, θk ∈ Θk = (Mk × Lk).

Proof. IfX ⊂ V (X∗, 2ε) then the statement is obvious. Let’s admitX\V (X∗, 2ε) 6=
∅. We mention here that on every iteration k for the initial model (1) is associated
the following problem:















F (x) = max
y∈Yf

f (x, y) → min,

Φ (x) ≤ τk,

x ∈ X

(19)
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or, the group
{

f
(

xk, yk
f

)

, ϕ
(

xk, yk
ϕ

)

, τk,X
}

corresponds to the iteration k, in order

to determine the direction ηk that will lead to obtaining the next element–xk+1.

Two stages for proof development will be accentuated.

Stage 1. Firstly, the existence of a subsequence
{

xkl
}

⊂
{

xk
}

k≥0
that

almost certain is contained in VX (X∗, ε) will be proved, i.e.

P
{

∃
{

xkl
}

⊂
{

xk
}

k≥0
: xkl ∈ VX (X∗, ε)

}

= 1.

Let’s suppose the contrary. In this case for some q ∈ (0, 1) a natural number
Kq <∞ can be indicated such that the following event is produced

A1 =
{

∃Kq : ∀k ≥ Kq,
∥

∥

∥
xk − x∗

∥

∥

∥
≥ ε, or xk /∈ Vx (X∗, ε) ,∀x∗ ∈ X∗

}

(20)

with probability P (A1) ≥ q.

Let’s denote Xε = X\V (X∗, ε).

Since the functions F (x), Φ (x) and their estimators f
(

x, yk
f

)

, ϕ
(

x, yk
ϕ

)

are

convex, the following inequalities are valid [2]:

F (x∗) − F
(

xk
)

≥
(

∂F
(

xk
)

, x∗ − xk
)

, f
(

xk+1, yk
f

)

− f
(

xk, yk
f

)

≥

≥
(

∂f
(

xk, yk
f

)

, xk+1 − xk
)

,

Φ (x∗) − Φ
(

xk
)

≥
(

∂Φ
(

xk
)

, x∗ − xk
)

, ϕ
(

xk+1, yk
ϕ

)

− ϕ
(

xk, yk
ϕ

)

≥

≥
(

∂ϕ
(

xk, yk
ϕ

)

, xk+1 − xk
)

(21)

for ∀x∗ ∈ X∗, ∀xk, xk+1 ∈ X.

Taking into consideration all properties enumerated above, two constants C1 >
0, C2 > 0 may be chosen, such that ‖x′ − x′′‖ ≤ C1, ∀x

′, x′′ ∈ X and ‖∂F (x)‖ ≤ C2,

‖∂Φ (x)‖ ≤ C2,
∥

∥

∥
∂f

(

x, yk
f

)∥

∥

∥
≤ C2,

∥

∥∂ϕ
(

x, yk
ϕ

)∥

∥ ≤ C2, ∀x ∈ X,∀yf ∈ Yf ,∀yϕ ∈ Yϕ.

Let’s consider the case ϕ
(

xk, yk
ϕ

)

≤ τk and xk ∈ Xε. Since the function F (x) is
convex, results that exists the number ∆F = ∆ (ε) > 0 such that

inf
x∈Xε,x∗∈X∗

(F (x) − F (x∗)) = 2∆F (22)

or, on basis of (21):

(

∂F
(

xk
)

, xk − x∗
)

≥ 2∆F , (23)

(

∂F
(

xk
)

, xk − x∗
)

‖∂F (xk)‖ · ‖xk − x∗‖
≥

(

∂F
(

xk
)

, xk − x∗
)

C2 · C1
≥

2∆F

C1 · C2
.

From (22) it follows that for ∀x̃ ∈ Xε:
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f (x̃, yf (x̃)) − F (x∗) ≥ 2∆F (24)

where yf (x̃) is such an element from Yf that f (x̃, yf (x̃)) = F (x̃).

Taking into consideration the last inequality and the continuity of the function
f (x, yf ) regarding (x, yf ) ∈ X×Yf , we conclude that for ∀x̃ ∈ Xε a number r0 (x̃) >
0 corresponds, so that:

f (x, yf ) ≥ F (x∗) +
3

2
∆f (25)

as soon as x ∈WX (x̃, r0 (x̃)) and yf ∈WYf
(yf (x̃) , r0 (x̃)).

The set Xε is compact. Therefore, there exists the number

r0 = min

{

min
x̃∈Xε

r0 (x̃) , ε

}

> 0. (26)

Hence, the inequality (25) is satisfied for all ∀x̃ ∈ Xε, x ∈ WX (x̃, r0), yf ∈
WYf

(yf (x̃) , r0).

Similarly, in case that ϕ
(

xk, yk
ϕ

)

> τk and xk ∈ Xε, it follows

Φ (x) − Φ (x∗) ≥ 2τk (27)

or, on basis of inequality from (21):

(

∂Φ
(

xk
)

, xk − x∗
)

≥ 2τk, (28)

(

∂Φ
(

xk
)

, xk − x∗
)

‖∂Φ (xk)‖ · ‖xk − x∗‖
≥

(

∂Φ
(

xk
)

, xk − x∗
)

C2 · C1
≥

2τk
C1 · C2

.

From (27) it follows that for ∀x̃ ∈ Xε:

ϕ (x̃, yϕ (x̃)) − Φ (x∗) ≥ 2τk (29)

where yϕ (x̃) is such an element from Yϕ that ϕ (x̃, yϕ (x̃)) = Φ (x̃).

Taking into consideration the last inequality and the continuity of the function
ϕ (x, yϕ) regarding (x, yϕ) ∈ X × Yϕ, we conclude that for ∀x̃ ∈ Xε a number
r0 (x̃) > 0 corresponds so that:

ϕ (x, yϕ) ≥ Φ (x∗) +
3

2
τk (30)

as soon as x ∈WX (x̃, r0 (x̃)) and yϕ ∈WYϕ (yϕ (x̃) , r0 (x̃)).

As was specified previously, the set Xε is compact. Therefore, there exists the
number

r0 = min

{

min
x̃∈Xε

r0 (x̃) , ε

}

> 0. (31)
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Hence, the inequality (30) is satisfied for all ∀x̃ ∈ Xε, x ∈ WX (x̃, r0), yϕ ∈
WYϕ (yϕ (x̃) , r0).

Let’s consider some numbers δF , δ
k
Φ from intervals

(

0,
2∆F

C1 · C2

)

,

(

0,
2τk

C1 · C2

)

and label δ̃k = min
{

δF , δ
k
Φ

}

. Particularly, δF , δ
k
Φ can be taken as midpoints of the

intervals

(

0,
2∆F

C1 · C2

)

,

(

0,
2τk

C1 · C2

)

:

δF =
∆F

C1 · C2
, δk

Φ =
τk

C1 · C2
(32)

As a result the following is obtained:

(

∂F
(

xk
)

, xk − x∗
)

≥ 2δ̃k
∥

∥∂F
(

xk
)∥

∥ ·
∥

∥xk − x∗
∥

∥ , if ϕ
(

xk, yk
ϕ

)

≤ τk,

(

∂Φ
(

xk
)

, xk − x∗
)

≥ 2δ̃k
∥

∥∂Φ
(

xk
)∥

∥ ·
∥

∥xk − x∗
∥

∥, if ϕ
(

xk, yk
ϕ

)

> τk.
(33)

The following events are being considered:

1. Ak
1 =

{

(

ηk, xk − x∗
)

≥ δ̃k
∥

∥xk − x∗
∥

∥ ,∀x∗ ∈ X∗
}

. Obviously, the opposite

event with regards to Ak
1 has the following form:

Ak
1 =

{

∃x∗ ∈ X∗ :
(

ηk, xk − x∗
)

< δ̃k
∥

∥xk − x∗
∥

∥

}

;

2. D1 =

{

∞
⋃

k=Kδ

∞
⋂

i=k

Ai
1

}

, or, in other words, occurs all Ak
1 (k ≥ Kq), without,

perhaps, a finite number. It is obvious that D1 =

{

∞
⋂

k=Kδ

∞
⋃

i=k

Ai
1

}

, or, in other

words, an infinite number of events Ak
1 are produced.

Let us evaluate P (A1). In order to do this let’s represent

P (A1) = P
(

A1

⋂

(

D1

⋃

D1

))

= P
(

A1

⋂

D1

)

+ P
(

A1

⋂

D1

)

.

Both terms from the last expression will be estimated.

From the realization of event A1
⋂

D1 follows the existence of such a natural
number Kδ <∞ that for all k ≥ Kδ and ∀x∗ ∈ X∗ the following inequality occurs

(

ηk, xk − x∗k

)

≥ δ̃k

∥

∥

∥
xk − x∗k

∥

∥

∥
. (34)

Taking into consideration (34), for k ≥ Kδ we have the following sequence of
relations:
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∥

∥xk+1 − x∗
∥

∥

2
≤

∥

∥xk − ρkη
k − x∗

∥

∥

2
=

∥

∥xk − x∗
∥

∥

2
− 2ρk

(

xk − x∗, ηk
)

+ ρ2
k

∥

∥ηk
∥

∥

2
≤

≤
∥

∥xk − x∗
∥

∥

2
− 2ρk δ̃k

∥

∥xk − x∗
∥

∥ + ρ2
k ≤

∥

∥xk − x∗
∥

∥

2
− 2ρk δ̃kε+ ρ2

k =

=
∥

∥xk − x∗
∥

∥

2
− ρk

(

2δ̃kε− ρk

)

.

Because ρk →
k→∞

0, for some KΦ: δF > δk
Φ or δ̃k = δk

Φ, as soon as k ≥ KΦ. According

to (18), (32) for some Kε ≥ KΦ: ρk ≤ δ̃kε, as soon as k ≥ Kε. Evidently, for
k ≥ k̂ = max {Kδ,Kε}:

∥

∥xk+1 − x∗
∥

∥

2
≤

∥

∥xk − x∗
∥

∥

2
− ρk δ̃kε,

∥

∥xk − x∗
∥

∥

2
≤

∥

∥xk−1 − x∗
∥

∥

2
− ρk−1δ̃kε ≤

∥

∥xk−2 − x∗
∥

∥

2
−

−ε
(

ρk−2δ̃k−2 + ρk−1δ̃k−1

)

, . . .

∥

∥xk+1 − x∗
∥

∥

2
≤

∥

∥

∥xk̂ − x∗
∥

∥

∥

2
− ε

k
∑

i=k̂

ρiδ̃i,

or
∥

∥xk+1 − x∗
∥

∥

2
≤

∥

∥

∥
xk̂ − x∗

∥

∥

∥

2
− ε

k
∑

i=k̂

ρiδ
i
ϕ.

Due to imposed conditions on τk in (18), based on relation (32), we get:

∥

∥

∥xk+1 − x∗
∥

∥

∥

2
≤

∥

∥

∥x
bk − x∗

∥

∥

∥

2
−

ε

C1 · C2

k
∑

i=k̂

ρiτi → −∞, for k → ∞. (35)

We obtain a contradiction because the norm of any vector, moreover its square value,
cannot be negative. Therefore, the realization of event A1

⋂

D1 implies realization of

an event that is practically unrealizable, F1 =
{

∥

∥xk+1 − x∗
∥

∥

2
< 0, k → ∞

}

. That

is P (A1
⋂

D1) ≤ P (F1) = 0. It means that P (A1) = P
(

A1
⋂

D1

)

.
Let us evaluate P

(

A1
⋂

D1

)

. Let’s take an arbitrary number rk from the interval
[ ε̄k

2
, ε̄k

]

, where ε̄k = min

{

r0,
∆F

2C2
,
τk

2C2

}

. The following events are defined:

1. Bk
f ={at least one time among the iterations of the form j = k − sk, k an

element from the set WYf

(

yf

(

xj
)

, rk
)

is generated, where xj ∈ WX

(

xk, rk
)

,
for sk defined in (13)};

2. Bk
ϕ={at least one time among the iterations of the form j = k − sk, k an

element from the set WYϕ

(

yϕ

(

xj
)

, rk
)

is generated, where xj ∈ WX

(

xk, rk
)

,
for sk defined in (13)};

3. Bk
1 = Bk

f

⋂

Bk
ϕ.
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The simulation of the variables ξ and ψ on iteration k is executed in parallel and
independently. Since the events Bk

f , Bk
ϕ are independent, it follows that P

(

Bk
1

)

=

P
(

Bk
f

)

· P
(

Bk
ϕ

)

.

The realization of the event Bk
f implies: for some iteration jk ∈ k − sk, k the

generated element yjk

f

(

xjk
)

= ξtk ∈ Mjk
, 1 ≤ tk ≤ mjk

has the property yjk

f

(

xjk
)

∈

WYf

(

yf

(

xjk
)

, rk
)

, that is, according to (25):

f
(

xjk , yjk

f

)

≥ f
(

xjk , yjk

f

(

xjk
)

)

≥ F (x∗) +
3

2
∆F . (36)

Let’s admit that jk is an arbitrary element from the set of iterations

{k − sk, . . . , k − 1}. We will show that f
(

xk, yk
f

)

≥ F (x∗) + ∆F . Indeed,

taking into consideration the convexity of the estimator f (x, yf ) for ∀yf ∈ Yf and
the way of computation of the sequence

{

xk
}

, we get:

f
(

xk+1, yf

)

− f
(

xk, yf

)

≥
(

∂f(xk, yf ), xk+1 − xk
)

≥

≥ −
∥

∥∂f(xk, yf )
∥

∥ ·
∥

∥

∏

X

(

xk − ρkη
k
)

− xk
∥

∥ ≥ −C2ρk.
(37)

From (36) and (37) it follows:

f
(

xjk+1, yjk+1
f

)

≥ f
(

xjk+1, yjk

f

)

≥ f
(

xjk , yjk

f

)

− C2ρjk
,

. . .

f
(

xjk+i, yjk+i
f

)

≥ f
(

xjk , yjk

f

)

− C2

i−1
∑

l=0

ρjk+l ≥ F (x∗) +
3

2
∆F − C2rk ≥

≥ F (x∗) +
3

2
∆F − C2

∆F

2C2
= F (x∗) + ∆F

(38)

for all i that
i−1
∑

l=0

ρjk+l ≤ rk.

But,
k−jk
∑

l=0

ρjk+l = ρjk
+ ρjk+1 + . . .+ ρk ≤

k
∑

l=k−sk

ρl ≤ rk. Therefore,

f
(

xk, yk
f

)

≥ F (x∗) + ∆F . (39)

But if jk = k, then the last inequality is satisfied even more. As a consequence to
(39) we have the following chain of inequalities

−∆F ≥ F (x∗) − f
(

xk, yk
f

)

≥ f
(

x∗, yk
f

)

− f
(

xk, yk
f

)

≥
(

∂f
(

xk, yk
f

)

, x∗ − xk
)

or,

(

∂f
(

xk, yk
f

)

, xk − x∗
)

≥ ∆F . (40)

Taking into consideration (40) and the way the number δ̃k is chosen, we get:
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(

∂f
(

xk, yk
f

)

, xk − x∗
)

∥

∥

∥∂f
(

xk, yk
f

)∥

∥

∥ · ‖xk − x∗‖
≥ δ̃k

or, in other words, the event Ak
1 is realized.

The realization of the event Bk
ϕ implies: for some iteration jk ∈ k − sk, k the

generated element yjk
ϕ

(

xjk
)

= ψtk ∈ Ljk
, 1 ≤ tk ≤ ljk

has the property yjk
ϕ

(

xjk
)

∈
WYϕ

(

yϕ

(

xjk
)

, rk
)

, that is, according to (30):

ϕ
(

xjk , yjk
ϕ

)

≥ ϕ
(

xjk , yjk
ϕ

(

xjk
))

≥ Φ (x∗) +
3

2
τk. (41)

Let’s admit that jk is an arbitrary element from the set of iterations
{k − sk, . . . , k − 1}. We will show that ϕ

(

xk, yk
ϕ

)

≥ Φ (x∗) + τk. Indeed, taking
into consideration the convexity of the estimator ϕ (x, yϕ) for ∀yϕ ∈ Yϕ and the way
of computation of the sequence

{

xk
}

, we get:

ϕ
(

xk+1, yϕ

)

− ϕ
(

xk, yϕ

)

≥
(

∂ϕ(xk, yϕ), xk+1 − xk
)

≥

≥ −
∥

∥∂ϕ(xk, yϕ)
∥

∥ ·
∥

∥

∏

X

(

xk − ρkη
k
)

− xk
∥

∥ ≥ −C2ρk.
(42)

From (41) and (42) it follows:

ϕ
(

xjk+1, yjk+1
ϕ

)

≥ ϕ
(

xjk+1, yjk
ϕ

)

≥ ϕ
(

xjk , yjk
ϕ

)

− C2ρjk
,

. . .

ϕ
(

xjk+i, yjk+i
ϕ

)

≥ ϕ
(

xjk , yjk
ϕ

)

− C2

i−1
∑

l=0

ρjk+l ≥ Φ (x∗) +
3

2
τk − C2rk ≥

≥ Φ (x∗) +
3

2
τk − C2

τk
2C2

= Φ (x∗) + τk

(43)

for all i that
i−1
∑

l=0

ρjk+l ≤ rk.

But,
k−jk
∑

l=0

ρjk+l = ρjk
+ ρjk+1 + . . .+ ρk ≤

k
∑

l=k−sk

ρl ≤ rk. Therefore,

ϕ
(

xk, yk
ϕ

)

≥ Φ (x∗) + τk. (44)

But if jk = k, then the last inequality is satisfied even more. As a consequence to
(44) we have the following chain of inequalities

−τk ≥ Φ (x∗) − ϕ
(

xk, yk
ϕ

)

≥ ϕ
(

x∗, yk
ϕ

)

− ϕ
(

xk, yk
ϕ

)

≥
(

∂ϕ
(

xk, yk
ϕ

)

, x∗ − xk
)

or,

(

∂ϕ
(

xk, yk
ϕ

)

, xk − x∗
)

≥ τk. (45)
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Taking into consideration (45) and the way the number δ̃k is chosen, we get:

(

∂ϕ
(

xk, yk
ϕ

)

, xk − x∗
)

∥

∥∂ϕ
(

xk, yk
ϕ

)∥

∥ · ‖xk − x∗‖
≥ δ̃k

or, in other words, the event Ak
1 is realized.

The realization of the events Bk
f and Bk

ϕ implies the realization of the event Bk
1 .

At the same time the following implication takes place: Bk
1 ⊂ Ak

1 . Therefore, we

get P
(

Bk
1

)

≤ P
(

Ak
1

)

, or, P
(

Ak
1

)

≤ P
(

Bk
1

)

. But, accordingly to (4), (13) follows:

P
(

Bk
1

)

≤ αL(k,rk) where α = 1 − γ. We get following set of inequalities:

∞
∑

k=0

P
(

Ak
1

)

≤
∞
∑

k=0

P
(

Bk
1

)

≤
∞
∑

k=0

αL(k,rk) <∞.

We are in the situation that the conditions of the Borel–Cantelli lemma are met [3].
It means that P

(

D1

)

= 0. Therefore,

q ≤ P (A1) = P
(

A1

⋂

D1

)

≤ P
(

D1

)

= 0.

Thus, q = 0.

A contradiction has been obtained, because we have supposed that q > 0. Thus,
there exists a subsequence

{

xkl
}

⊂
{

xk
}

k≥0
that almost certainly is contained in

VX (X∗, ε).

Stage 2. Further will be proved that all elements of the sequence
{

xk
}

, without
just a finite number, belong to the set VX (X∗, 2ε) with probability 1.

The following events are defined:

A2 =
{

∃
{

xkl
}

⊂
{

xk
}

:
{

xkl
}

⊂ VX (X∗, ε)
}

,

B2 =
{

∃
{

zkm
}

⊂
{

xk
}

:
{

zkm
}

6⊂ VX (X∗, 2ε)
}

.
(46)

Next, P (B2) will be appreciated. We will find out that P (B2) = P (B2
⋂

A2).
Indeed, P (B2) = P

(

(B2
⋂

A2)
⋃

(

B2
⋂

A2

))

= P (B2
⋂

A2) + P
(

B2
⋂

A2

)

=
P (B2

⋂

A2), because P
(

B2
⋂

A2

)

≤ P
(

A2

)

= 0.

Further, the following event will be considered: D2 = A2
⋂

B2. Suppose that
P (D2) > 0. Realization of the event D2 means that the transfer from VX (X∗, ε) to
X\VX (X∗, 2ε) and vice versa takes place infinitely.

Let us denote by:

1. K1 – the number of first iteration when the event
{

xK1 ∈ VX (X∗, ε)
}

is produced;

2. K2 – the number of first iteration when the event

{

xK2 ∈ VX

(

X∗,
3

2
ε

)}

is produced;
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3. K3 – the number of first iteration when the inequality ρK3 ≤ 2εδ̃K3 is satisfied;

4. K̄ = max {K1,K2,K3}.

In case for some k ≥ K̄ and xk /∈ VX

(

X∗,
3

2
ε

)

the inequality that de-

fines the event Ak
1 is satisfied, then the following sequence of inequalities occurs:

∥

∥xk+1 − x∗
∥

∥

2
≤

∥

∥xk − x∗
∥

∥

2
− ρk(2εδ̃k − ρk) <

∥

∥xk − x∗
∥

∥

2
, because

∥

∥xk − x∗
∥

∥ > ε.

That is, as soon as k ≥ K̄ and xk /∈ VX

(

X∗,
3

2
ε

)

it follows:

∥

∥

∥
xk+1 − x∗

∥

∥

∥
<

∥

∥

∥
xk − x∗

∥

∥

∥
. (47)

Since ρk →
k→∞

0, a number K∗ ≥ K̄ will appear with the property: xK∗

∈

VX (X∗, 2ε) \VX

(

X∗,
3

2
ε

)

. This will happen certainly. Particularly, for ρk <
ε

2
:

∥

∥

∥xk+1 − xk
∥

∥

∥ ≤
∥

∥

∥xk − ρkη
k − xk

∥

∥

∥ ≤ ρk <
ε

2
.

Therefore, there exists a number k that satisfies xk ∈ VX (X∗, 2ε) \VX

(

X∗,
3

2
ε

)

.

According to (47),
∥

∥xK∗+1 − x∗
∥

∥ <
∥

∥xK∗

− x∗
∥

∥. In case xK∗+1 /∈ VX

(

X∗,
3

2
ε

)

,

then
∥

∥xK∗+2 − x∗
∥

∥ <
∥

∥xK∗+1 − x∗
∥

∥ <
∥

∥xK∗

− x∗
∥

∥, and so forth, for all j ≥ 0 that

satisfy xK∗+j /∈ VX

(

X∗,
3

2
ε

)

, takes place:

min
x∗∈X∗

∥

∥

∥
xK∗+j − x∗

∥

∥

∥
< min

x∗∈X∗

∥

∥

∥
xK∗

− x∗
∥

∥

∥
< 2ε. (48)

Let us denote
{

xkl
}

l≥1
the sequence of all elements

{

xk
}

with the property that

kl ≥ K∗, xkl
∈ VX (X∗, 2ε) \VX

(

X∗,
3

2
ε

)

and xkl−1 ∈ VX

(

X∗,
3

2
ε

)

. Then, for

l ≥ 1, kl < j < kl+1 and xj /∈ VX

(

X∗,
3

2
ε

)

the following inequality occurs:

min
x∗∈X∗

∥

∥xj − x∗
∥

∥ < min
x∗∈X∗

∥

∥

∥xkl

− x∗
∥

∥

∥ < 2ε. (49)

Thus, in other words, admitting that for someK elements of type xk /∈ VX

(

X∗,
3

2
ε

)

,

k < ∞, k ≥ K satisfy the inequality from the event Ak
1 , then the event

B2 cannot occur with positive probability. The supposition that D2 is realized

means that beyond the layer VX

(

X∗,
3

2
ε

)

the penetration of the layer takes

place only when infinitely the event Ak
1 considered previously is produced. But,

P
(

D1

)

= 0. So, the conclusion that can be drawn is that the transfer from the layer
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VX (X∗, 2ε) \VX

(

X∗,
3

2
ε

)

into the layer X\VX (X∗, 2ε) occurs only a finite number

of times. That is, P (D2) = 0, and it implies P (B2) = 0. Theorem is proved.

Remark 1. In case the set of optimal solutions X∗ = ∅, application of the above
described method for solving the problem (1) leads us to the solution of the following
problem:

{

Φ(x) =max
y∈Yϕ

ϕ(x, y) → min

x ∈ X.
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About rings of continuous functions
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Abstract. In the present article the generalized rings C∞(X) of all continuous
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Spaces of continuous maps on the expanded straight line play a leading role in
the theory of topological semifields. In works [1–5] some applications of such maps
have been specified. All spaces are assumed to be Tychonoff. Terminology is as
in [7]. By [A] or [A]X we denote the closure of a set A in a space X, |Y | is the
cardinality of a set Y , βX is the Stone-Čech compactification of the space X, on
N = {0, 1, ...} we consider only the discrete topology.

Let R be the field of real or complex numbers. By R∞ we denote the one-point
compactification of space R and R∞ = R∪{∞}. We consider that ∞+∞ = b+∞ =
∞, 0 · ∞ = 0, ∞ ·∞ = ∞, c · ∞ = ∞ · c = ∞ for all b ∈ R, c ∈ R \ {0}.

Let C∞(X) be the family of all continuous maps of spaceX in R∞ in the topology
of pointwise convergence and such that the set H(f) = f−1(∞) is nowhere dense in
X for all f ∈ C∞(X). We suppose that C(X) = {f ∈ C∞(X) : H(f) = ∅}.

Let f, g ∈ C∞(X). We say that the sum f + g is defined if there exits a function
h ∈ C∞(X) such that h(x) = f(x)+g(x) for all x ∈ X \(H(f)∪H(g)). The product
f · g is defined if there exists a function h ∈ C∞(X) such that h(x) = f(x) · g(x) for
all x ∈ X \ (H(f) ∪H(g)).

For a map ψ : C∞(X) → C∞(Y ) we consider the conditions:
a) if f, g ∈ C∞(X), then the sum f + g exists if and only if the sum ψ(f)+ψ(g)

exists and then ψ(f + g) = ψ(f) + ψ(g);
b) ψ(b · f) = b · y(f) for any b ∈ R, f ∈ C∞(X);
c) if f, g ∈ C∞(X), then the product f · g exists if and only if ψ(f) · ψ(g) exists

and the product ψ(f · g) = ψ(f) · ψ(g).
A one-to-one map ψ : C∞(X) → C∞(Y ) is called
– additive if the condition a) is satisfied;
– linear if the conditions a) and b) are satisfied;
– multiplicative if the condition b) is satisfied;
– an isomorphism if the conditions a), b) and c) are satisfied.

c© D. Ipate R.Lupu, 2010
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Theorem 1. If ψ : C∞(X) → C∞(Y ) is a linear homeomorphism, then

ψ(C(X)) = C(Y ).

Proof. Let f ∈ C∞(X). We put fn = 2−n · f and OX(x) = 0 for all x ∈ X. The
limit lim

n→∞
fn = OX exists in X only if f ∈ C(X). If the limit lim

n→∞
fn = OX exists,

then the limit lim
n→∞

ψ(fn) = 2−n · ψ(f) = OY exists, too. Therefore, if f ∈ C(X),

then ψ(f) ∈ C(Y ) and ψ(C(X)) ⊆ C(Y ). Since ψ−1 is a linear homeomorphism,
we have ψ(C(X)) = C(Y ). �

Theorem 2. If ϕ : C∞C(X) → C∞(Y ) is an additive and multiplicative home-

omorphism and R is the field of real numbers, then ϕ is an isomorphism and

ϕ(C(X)) = C(Y ).

Proof. We have f = 1X only if g · f = g for all g ∈ C∞(X). Therefore ϕ(1X ) = 1Y .

Let λX = λ · 1X for any λ ∈ R. Then ϕ(nX) = nY and ϕ((1/n)X ) = (1/n)Y for all
n ∈ N and n ≥ 1. Hence ϕ(λX) = λY for all rational numbers λ ∈ R . Theorem 1
complete the proof. �

Theorem 1 implies

Corollary 1. If the homeomorphism ϕ : C∞(X) → C∞(Y ) is an isomorphism, then

the spaces X and Y are homeomorphic.

A space X is called χ-sequential if for every nowhere dense closed set F there
exist a point x0 ∈ F and a sequence {xn ∈ X\F : n = 1, 2, ...} for which x0 = lim xn.
Each sequential space is χ-sequential.

The product of any number of metrizable compact spaces is χ-sequential. Let
X =

∏

{Xa : a ∈ A}, where {Xa : a ∈ A} is a set of metrizable compact spaces. We
fix nowhere dense in X set F and a point x = {xa : a ∈ A} ∈ F . Let Y = {y = {ya :
a ∈ A} : |a : xa 6= ya}| ≤ χ0}. Then x ∈ Y ∩ F and Y is dense in X. The space Y
is sequential. Therefore there is a sequence {xn ∈ Y \ F}, converging to x.

Proposition 1. If f ∈ C(X), then f + g exists for g ∈ C∞(X) and the maps

u : R∞ → R∞ and v : C(X) × C∞(X) → C∞(X), where u(x, y) = x + y and

v(f, g) = f + g, are continuous.

Proof. It is enough to prove the continuity of the map u(x, y) = x+ y. If x, y ∈ R,
then the function u is continuous at a point (x, y). Let x0 ∈ R. For ∞ we consider the
neighborhoods U(n,∞) = R∞ \ {x ∈ R : |x| ≤ n}. Let Ox0 = {x ∈ X : |x− x0| < 1
and m > n+ |x0|+ 1}. Since |x+ y| ≥ |x| − |y| we have Ox0 +U(m,∞) ⊂ U(n,∞).
Therefore the map u is continuous. The assertion is proved. �

Proposition 2. Let X be a χ-sequential space. Then for any function f ∈ C∞(X)\
C(X) there exists such a function g ∈ C∞(X) that the sum f + g is not defined.

Proof. We have H(f) 6= ∅. Then there exist a point x0 ∈ H(f) and a se-
quence {xn ∈ X \H(f) : n = 1, 2, ...} such that lim xn = x0, |f(x1)| ≥ 1 and
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|f(xn+1)| > |f(xn)| + 4. Let Un = {x ∈ R : |x− f(xn)| < 1}. Then the sys-
tem

{

f−1Un : n = 1, 2, ...
}

is open and locally finite at x ∈ X \ H(f). For any
n = 1, 2, ... we fix a continuous function gn : X → [0; 1] ⊂ R, where gn(xn) = 1 and
X \f−1Un ⊂ g−1

n (0). Let g = −f+
∑

{(−1)n · gn : n = 1, 2, ...}. Then H(g) = H(f)
and |f(x) + g(x)| ≤ 1 for any x ∈ X \H(f). By construction, f(x2n) + g(x2n) = 1
and f(x2n+1) + g(x2n+1) = −1. Therefore the limit lim(f(xn) + g(xn)) does not
exist, therefore, the sum f + g does not exist. �

Corollary 2. Let X and Y be χ-sequential spaces and ψ : C∞(X) → C∞(Y ) is a

one-to-one additive map. Then ψ/(C(X)) = C(Y ).

Proof. By virtue of Proposition 1, f ∈ C(X) if and only if the sum f + g is defined
for any g ∈ C∞(X). This fact follows from Proposition 2. Therefore the conditions
and ψ(f) ∈ C(Y ) are equivalent. �

Proposition 3. Let X be a χ-sequential space. Then for each function f ∈ C∞(X)\
C(X) there exists such a function g ∈ C∞(X) that the product f · g is not defined.

Proof. We have that H(f) 6= ∅. We choose a point x0 ∈ H(f) and a sequence
{xn ∈ X \H(f) : n = 1, 2, ...} such that lim

n→∞
xn = x0 and |f(xn+1)| > |f(xn)|+4 >

4 + 22n. Let Un = {t ∈ R : |t− f(xn)| < 1}. For any n ∈ N we fix a continuous
function hn : X → [0; 1] such that hn(xn) = 1 and X \ f−1Un ⊂ h−1

n (0). Let
g2n = 2−2n · h2n, and g2n−1 = (f(x2n−1))

−1 · h2n−1 for all n = 1, 2, .... The function
g =

∑

{gn |n = 1, 2, ...} is continuous on X and g ∈ C(X). We will prove that f · g
does not exist. We notice that |f(x2n) · g(x2n)| = 2−2n · |f(x2n)| > 2−2n · 24n = 22n

and |f(x2n−1) · g(x2n−1)| = |f(x2n−1)| · |f(x2n−1)| = 1. Then lim
n→∞

f(x) · g(xn) does

not exist. The assertion is proved. �

Proposition 4. For each space X there is a unique operator of extension

w : C∞(X) → C∞(βX) which is linear, multiplicative and regular, i. e. ‖ω(f)‖ =
‖f‖ for all f ∈ C∞(X).

Proof. The space R∞ is compact. Therefore for each continuous map f : X → R∞

there exists a unique continuous map w(f) : βX → R∞ such that f = w(f)|X. If
the function is bounded, then the function w(f) also is bounded and ‖ω(f)‖ = ‖f‖.
Let f, g ∈ C∞(X). If ϕ = f + g, then w(ϕ) = w(f) + w(g). If ϕ = f · g then
w(ϕ) = w(f) · w(g). Since ω(λf) = λ · ω(f), the proof is complete. �

A set H ⊂ X is functionally closed if f−1(0) = H for some function f ∈ C(X).
The complement to functionally closed sets are called the functionally open sets.

A space X is χ-normal if the set [U ] is functionally closed for any open
in X set U .

A space X is extremely disconnected if the closure [U ] is open for any
open set U .

Proposition 5. Let X be an extremally disconnected space. Then:
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1) there exists a regular, linear and multiplicative extension operator

w : C∞(X) → C∞(βX);
2) for any two functions f, g ∈ C∞(X) the sum f + g and the product f · g are

defined;

3) C∞(X) is a ring and a vector space.

Proof. Let f, g ∈ C∞(X) and Y = X \ (H(f) ∪H(g)). Then the set Y is open in X.
Let U be an open in Y set. Then the set U is open in X and the set [U ]βX is open in
βX. We have βY = βX. Let f1 = f |Y, g1 = g|Y . Then f1, f1 + g1, f1 · g1 ∈ C(Y )
and by virtue of Proposition 4, there exist continuous extensions w(f), w(f + g),
w(f · g) on βX. The proof is complete. �

Lemma 1. Let U and V be open subsets of a space X, U ∩ V 6= ∅, [U ] ∪ [V ] = X

and F = [U ] ∩ [V ] is a non-empty functionally closed set. Then there exist such

functions f, g ∈ C∞(X) and h ∈ C(X) that the sum f + g and the product f · h do

not exist.

Proof. Clearly, [U ] and [V ] are functionally closed sets. Therefore there exist such
continuous functions ϕ1, ϕ2 : X → [0; 1] that ϕ−1

1 (0) = [U ] and ϕ−1
2 (0) = [V ]. We

suppose that ϕ = ϕ1 + ϕ2 and h = ϕ1 − ϕ2. Then ϕ−1(0) = h−1(0) = F , the map
f = 1/ϕ : X → R∞ is continuous and H(f) = F .

The product f ·h does not exist, since (f · g)(x) = 1 if x ∈ V , and (f · g)(x) = −1
if x ∈ U . The map g : X → R∞, where g(x) = 1 − f(x) if x ∈ [U ], and g(x) =
−1−f(x) if x ∈ V , is continuous. The sum f+g does not exist, since (f + g)(x) = 1
if x ∈ U , and (f + g)(x) = −1 if x ∈ V . The proof is complete. �

Proposition 6. For a χ-normal space X the following statements are equivalent:

– the space X is extremally disconnected;

– for any functions f, g ∈ C∞ there exists the sum f + g;

– for any functions f, g ∈ C∞ there exists the product f · g.

Proof. Implications 1 → 2 and 1 → 3 follow from Proposition 5. Suppose that the
space X is not extremally disconnected. Then there exists an open in X set U such
that the set [U ] is not open. We put V = X \ [U ]. We can consider that U = X \ [V ].
Then F = [U ]∩[V ] is a nonempty functionally closed set. Therefore the implications
2 → 1 follow from Lemma 1. The proof is complete. �

Example 1. We consider the discrete sum X = Y ⊕ βN , where Y is an infinite
metrizable compact space. The space X is χ-normal and compact. However, the
space X is not extremally disconnected. Therefore not for all pairs of functions
f, g ∈ C∞(X) the functions f + g or f · g are defined. If f ∈ C∞(X) and on Y ⊂ X

the function f is bounded, then the sum f + g and the product f · g exist for all
g ∈ C∞(X). This fact follows from Proposition 5. If the function is not bounded
on Y , i.e. H(f) ∩ Y 6= ∅, then the sum f + g and product f · ϕ are not defined for
some g, ϕ ∈ C∞(X). Therefore C∞(X) is not a ring.

Lemma 2. Let g ∈ C(X) and the set g−1(0) is open. Then the product g · f exists

for all f ∈ C∞(X).
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Proof. The set U = g−1(0) is open-and-closed in X. Let f ∈ C∞(X). If H(f) = ∅,
then the assertion is obvious. We suppose that the set H(f) is not empty. We put
h(x) = 0 if x ∈ U and h(x) = g(x) · f(x) if x ∈ X \U . The function h is continuous
at all points x ∈ X for which h(x) 6= ∞. Let x0 ∈ X \ U and h(x0) = ∞. Then
|g(x0)| > 1/m for some m ∈ N . We fix n ∈ N . There exists a neighborhood Ox0 of
the point x0 in X such that |g(x)| > 1/m and |f(x)| > nm for all x ∈ Ox0. Then
|h(x)| > n for all x ∈ Ox0. Therefore the function h is continuous at the point x0

and h = f · g ∈ C∞(X). The proof is complete. �

Lemma 3. Let X be a χ-normal χ-sequential space, f ∈ C∞(X) and the set f−1(0)
is not open in X. Then there exists a function g ∈ C∞(X) such that the product

f · g is not defined.

Proof. As the set F = f−1(0) is not open. Then there exist a point x0 ∈ F and a
sequence {xn ∈ X : n = 1, 2, ...} such that limxn = x0 and 0 < |f(xn)| < 2−n for all
n. The set P = F ∩ [X \F ] is nowhere dense, functionally closed and x0 ∈ P . There
exists a continuous function h ∈ C∞(X) such that P = h−1(0), h(x2n) = f(x2n)
and h(x2n+1) = 2−1f(x2n+1). Then g = 1/h ∈ C∞(X), g(x2n) · f(x2n) = 1 and
g(x2n+1) · f(x2n+1) = 2. The lemma is proved. �

Lemma 4. Let f ∈ C∞(X). The function 1/f exists if and only if the set H(f) ∪
f−1(0) is nowhere dense.

Proof. It is obvious. �

Theorem 3. Let ϕ : C∞(X) → C∞(E) be a multiplicative homeomorphism with the

property: if f ∈ C∞(X) and H(f) = f−1(0) = ∅, then H(ϕ(f)) = ∅. Then:

1) if f ∈ C(X) and |f(x)| < 1 for all x ∈ X, then |ϕ(f)(y)| < 1 for all y ∈ Y ;

2) ϕ(C(X)) ⊆ C(E).

Proof. The condition |f(x)| < 1 for all x ∈ X is equivalent to lim fn = 0X . The
statement 1 of Theorem 3 is proved. Let f ∈ C(X). We put h(x) = 2 + |f(x)| and
g = 1/h. Then f1 = f · g ∈ C(X) and |f(x)| < 1 for all x ∈ X. By construction,
f = h · f1 and H(f1) = f−1

1 (0) = ∅. Considering that ϕ(f1), ϕ(h) ∈ C(Y ) we receive
ϕ(f) = ϕ(f1 · h) = ϕ(f1)ϕ(h) ∈ C(Y ). The proof is complete. �

Corollary 3. If ϕ : C∞(X) → C∞(Y ) is a multiplicative homeomorphism and R is

the field of real numbers, then:

1) if f ∈ C(X) and the set f−1(0) is open, then g = ϕ(f) ∈ C(Y ) and the set

g−1(0) is open;

2) if f ∈ C(X) and f−1(0) = ∅, then g = ϕ(f) ∈ C(Y ) and g−1(0) = ∅;
3) if f ∈ C∞(X) and g = 1/f ∈ C∞(X), then ϕ(g) = 1/ϕ(f); ϕ(1X ) = 1Y and

ϕ(0X) = 0Y ;

4) if |f(x)| = 1X , then |ϕ(f)| = 1Y ;

5) if |f(x)| = 1X , then |ϕ(f)| = 1Y ;

6) if f ≥ 0, then ϕ(f) ≥ 0;
7) if |f(x)| < 1 for all x ∈ X, then |ϕ(f)(y)| < 1 for all y ∈ Y ;

8) ϕ(C(X)) = C(Y ).
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Proof. If f · g = f and f · h = h for all f ∈ C∞(X), then g = 1X and h = 0X .
Therefore ϕ(1X) = 1Y and ϕ(0X ) = 0Y . The statement 4 of Corollary 3 is proved.
The condition |f | = 1X is equivalent to the condition f · f = 1X . That proves the
statement 5. The statement 3 is obvious. The condition f ≥ 0 is equivalent to
f = g · g and g = (f)1/2. The statement 6 is proved. �

Let f ∈ C∞(X). There exist such functions gn ∈ C∞(X) for which (gn)n = f ·f .
The limit lim gn exists in the pointwise convergensce topology if and only if H(f) =
H(gn) = ∅ and the set f−1(0) = g−1

n (0) is open. Considering that (ϕ(gn))n = ϕ(f)2

and limϕ(gn) = ϕ(lim gn), we finish the proof of the statement 1. The statement 2
follows from the statements 1 and 3 and Lemma 4. The statements 7 and 8 follow
from Theorem 3.

Proposition 7. For a χ-normal χ-sequential space X the following statements are

equivalent:

1) C(X) = C∞(X);
2) the space X is discrete.

Proof. Implication 2 → 1 is obvious. Assume that the space X is not discrete. Then
there exists a non-isolated point x0 ∈ X and a sequence {xn ∈ X \ {x0} : n ∈ N}
such that lim xn = x0. There exists two open in X sets U and V for which U ∩ V =
∅, {x2n : n ∈ N} ⊂ U and {x2n+1 : n ∈ N} ∈ V . We put F = [U ] and Φ = [X \ F ].
Then x0 ∈ F ∩ Φ = H, the set H is nowhere dense and there exists a continuous
function f : X → [0; 1] such that H = f−1(0). Then g = 1/ϕ ∈ C∞(X) \ C(X).
Implication 1 → 2 is proved. �

Example 2. Let X = Y ∪ {b} be the one-point compactification of the discrete
space Y of uncountable cardinality. The neighborhoods of the point b have the form
Ob = X\F , where F is a finite subset of the set Y . The space X is χ-sequential, since
X is a Frechet-Urysohn space. We will prove that C(X) = C∞(X). Let f ∈ C∞(X).
Then H(f) ⊂ {b}. If H(f) = ∅, then f ∈ C(X). Let H(f) 6= ∅. Then H(f) =
{b} = ∩{f−1((−∞;−n) ∪ (n; +∞)) : n = 1, 2, ...}. This means that H(f) = {b} is
a Gδ-set. Then there exists a sequence of finite sets Fn ⊂ Y : n = 1, 2, ...} such that
X \ Fn ⊂ f−1((−∞;−n) ∪ (n; +∞)), i.e. {b} = ∩{X \ Fn : n = 1, 2, . . .}. Hence,
Y = ∪{Fn : n = 1, 2, ...}, and the set Y is countable, a contradiction. Therefore
H(f) = ∅.

A space X is called a P ∗-space if for any monotone decreasing sequence {Un :
n ∈ N} of open sets either ∩{Un : n ∈ N} = ∅, or there exists a non-empty open set
U such that U ⊂ {Un : n ∈ N}. The space X from Example 2 is a P ∗-space. The
concepts of χ-normal spaces and of P ∗-spaces are opposite. Only discrete spaces are
simultaneously χ-normal and P ∗-spaces.

Lemma 5. If X is a P ∗-space, then C(X) = C∞(X).

Proof. Let’s suppose that there exists a function f ∈ C∞(X). We put Un =
f−1([−∞, n] ∩ [n,+∞]) for all n ∈ N . Then ∩{Un : n ∈ N} = H(f). Let H(f) 6= ∅.
There exists an open nonempty set U such that U ⊂ ∩{Un : n ∈ N} = H(f). Then
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the set H(f) is not anywhere dense. Therefore H(f) = ∅ and f ∈ C(X). The lemma
is proved. �

Lemma 6. Suppose that in a space X there exists a sequence {Un : n ∈ N} of open

in X sets such that H = ∩{Un : n ∈ N} 6= ∅ and for any non-empty open in X set

U we have U \H 6= ∅. Then C∞(X) 6= C(X).

Proof. We fix x0 ∈ H. We build such continuous functions fn : X → [0; 1]
for which fn(x0) = 0 and f−1

n (0) ⊂ Un. By construction, the function f =
∑

(2−n · fn : n ∈ N) is continuous, f(x0) = 0 and f−1(0) ⊂ H. Thus the set
f−1(0) is nowhere dense and it is not closed. We put g = 1/f : X → R∞. Then
H(g) = f−1(0), x0 ∈ H(g) and g ∈ C∞(X) \ C(X). The lemma is proved. �

Corollary 4. For a space X the following statements are equivalent:

1) X is a P ∗-space;

2) C∞(X) = C(X).

Example 3. Let Y be an infinite compact space, being P ∗-space, and Z = βN .
Then X = Y ⊕ Z is a compact space, the space X is not extremally disconnented,
C∞(X) 6= C(X) and C∞(X) is a ring.

The space X is pseudocompact if all continuous real-valued functions are
bounded on X.

Theorem 4. Let X be a P ∗-space. The following statements are equivalent:

1) X is pseudocompact;

2) βX is a P ∗-space;

3) C(βX) = C∞(βX).

Proof. Implications 2 → 3 → 2 are obvious. If the space X is not pseudocompact,
there exists an unbounded function f ∈ C(X). By virtue of the proposition from
[6], there exists such a continuous map g : βX → R∞ for which f = g|X. Clearly,
H(g) 6= ∅. It proves the implication 2 → 1. Let the space X be pseudocompact.
We consider a sequence {Un : n ∈ N} of open in βX sets such that L = ∩{Un : n ∈
N} 6= ∅. We can consider that [Un+1] ⊆ Un. Then the set L is functionally closed.
If L∩X = ∅, then on X there exists some unbounded continuous function and X is
not pseudocompact.

Therefore there exists such an open in βX set W for which ∅ 6= V = W ∩X ⊆ L.
By construction, ∅ 6= W ⊆ L. Implication 1 → 2 is proved. The proof is finished.�

Example 4. Let X be not a pseudocompact P ∗-space. Then the map ϕ :
C∞(βX) → C∞(X) = C(X) satisfies the following conditions:

1) ϕ is a continuous isomorphism;
2) ϕ is not a homeomorphism;
3) ϕ(C(βX)) 6= C(X).

Example 5. Let X = βY , where Y be an infinite discrete space. Then there exists
a function h ∈ C∞(X) \C(X) such that h−1(0) = ∅ and the mapping ϕ : C∞(X) →
C∞(X), where ϕ(f) = f · h, satisfies the following conditions:
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1) is one-to-one;
2) is linear;
3) C(x) ∩ ϕ(C(X)) = ∅.

From Examples 4 and 5 it follows that the condition that ϕ is a homeomorphism
is essential in the conditions of Theorem 1: if ϕ : C∞(X) → C∞(X) is a linear
homeomorphism, then ϕ(C(X)) = C(Y ).
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On preradicals associated to principal
functors of module categories. III

A. I.Kashu

Abstract. The classes of modules and preradicals associated to the functor
HomR(-, U) are studied, continuing the investigations of parts I and II. The pro-
perties of classes of modules and of associated preradicals are shown, as well as the
relations between preradicals. A similarity with the case of functor T = U ⊗S - is
explained.
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Introduction

The preradicals associated to the functors H = HomR(U, -) and T = U⊗S - are
studied in parts I and II of this paper [1, 2], observing some duality between these
cases. Now we will investigate the similar question for the contravariant functor
H ′ = HU = HomR(-, U) : R-Mod→ Ab, where RU ∈ R-Mod. Preradicals of R-Mod
defined by RU and H ′ are revealed, the properties of these preradicals and the rela-
tions between them are specified, the conditions of coincidence of some preradicals
are shown. The correlation between the cases of functors T and H ′ is grounded,
which explains the similarity of situations for these types of functors.

For Morita contexts and adjoint situations some facts are proved in [3]. For
general theory of radicals and torsions the books [4–7] can be used.

1 Preradicals defined by functor H ′

Let RU be an arbitrary left R-module. We consider the contravariant functor

H ′ = HU = HomR(-, U) : R-Mod→ Ab.

Further, we denote by

Cog (RU) = {M ∈ R-Mod | ∃ mono 0→M
i
→ U (A)}

the class of modules of R-Mod, cogenerated by RU . The following statement is
obvious.

c© A. I.Kashu, 2010

55



56 A. I.KASHU

Proposition 1.1. The class of modules Cog (RU) is pretorsionfree (i.e. is closed
under submodules and direct products), therefore it defines a radical rU in R-Mod

such that P(rU)
def
== Cog (RU). For every module M ∈ R-Mod we have:

rU(M) = ∩{Ker f | f : M → U}

(the reject of U in M). �

For the functor H ′ = HomR(-, U) we denote:

Ker H ′ = {M ∈ R-Mod |H ′(M) = 0}.

Using the operator of Hom-orthogonality [1] we have:

Ker H ′ = {RU}
↑

.

Proposition 1.2. KerH is a torsionfree class (i.e. it is closed under homomorphic
images, direct sums and extensions), thus it defines an idempotent radical rU such

that R(r U)
def
== Ker H ′ and the respective torsionfree class is:

P(r U) = (Ker H ′)
↓

= {RU}
↑↓

. �

Since P(r U) = {RU}
↑↓

is the least torsionfree class containing RU (or: containing
Cog (RU) = P(rU)), we obtain

Proposition 1.3. For every module RU we have rU ≥ r U and r U is the greatest
idempotent radical contained in the radical rU . �

To establish when the relation rU = r U is true we need

Definition 1. The module RU will be called weakly injective if the functor
H ′ = HomR(-, U) preserves the short exact sequences of the form:

0→ rU(M)
i
−→
⊆

M
π
−−→
nat

M /rU(M)→ 0, M ∈ R-Mod,

i.e. every morphism f : rU(M) → U can be extended to a morphism g :
M → U (gi = f):

rU(M)

f
""FF

FF
FF

FF
F

i

⊆

// M

g
��~

~
~

~

U

Fig. 1.
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Proposition 1.4. For the module RU the following conditions are equivalent :
1) rU = rU ;
2) radical rU is idempotent ;

3) Cog (RU) = (KerH ′)
↓

(= {RU}
↑↓

);
4) RU is weakly injective.

Proof. 1) ⇐⇒ 2) ⇐⇒ 3) follow from Proposition 1.3.
2) ⇒ 4). If rU is idempotent, then rU

(

rU(M)
)

= rU(M) for every
M ∈ R-Mod, therefore rU(M) ∈ R(rU) = R(rU) = Ker H ′. This means that
HomR

(

rU(M), U
)

= 0, thus RU is weakly projective (f = 0⇒ g = 0).
4) ⇒ 2). Let RU be weakly projective module. For any f : rU(M) → U by

definition there exists such g : M → U that g i = f . Now from the definition of
rU(M) it follows rU(M) ⊆ Ker g, so g i = 0 and f = 0. Thus rU(M) ⊆ Ker f for
every f : rU(M)→ U , i.e. rU(M) ⊆ rU

(

rU(M)
)

and rU is idempotent.

The stronger condition on rU is the requirement that the radical rU is a torsion.
The question when rU is a torsion was studied earlier, see for example [6, 8]. The
necessary and sufficient condition on RU is to be pseudo-injective, which is equivalent
to the relation E(RU) ∈ Cog (RU), where E(RU) is the injective envelope of RU . Now
we will indicate another form of this condition.

Definition 2. Module RU is called upper hereditary if the class of modules {RU}
↑

is hereditary (i.e. from HomR(M,U) = 0 it follows HomR(N,U) = 0 for every
submodule N ⊆M).

From the above statements and definitions follows

Proposition 1.5. For module RU the following conditions are equivalent :
1) radical rU is a torsion;
2) rU = rU and the class Ker H ′ = R(rU) is hereditary ;
3) rU = rU and the class Cog (RU) is stable;
4) RU is weakly injective and upper hereditary. �

If the module RU is injective, then it is obvious that rU is a torsion.

2 Preradicals defined by the ideal I = (0 : RU) and relations
with (rU , rU )

For a fixed module RU we apply the radical rU to RR and obtain the ideal of R:

I = rU(RR) = ∩{Ker f | f : RR→ RU}.

From the isomorphism HomR(M,U) ∼= RU we have that every morphism
f : RR → RU is of the form fu : RR → RU , where u ∈ U and fu(r) = r u for every
r ∈ R. It is obvious that

Ker fu = (0 : u) = {r ∈ R | r u = 0},
therefore
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I =
⋂

{Ker f | f : RR → RU} =
⋂

u∈U

(0 : u) = (0 : RU),

i.e. I is the annihilator of module RU .

As in the previous cases we consider the classes of modules and preradicals
defined in R-Mod by the ideal I ⊳ R. We denote:

IT = {M ∈ R-Mod | IM = M};

IF = {M ∈ R-Mod |m ∈M, Im = 0⇒ m = 0};

A(I) = {M ∈ R-Mod | IM = 0};

rI is the idempotent radical defined by IT : R(rI)
def
== IT;

rI is the torsion defined by IF : P(rI)
def
== IF;

r(I) is the cohereditary radical defined by A(I) : P(r(I))
def
== A(I);

r(I) is the pretorsion defined by A(I) : R(r(I))
def
== A(I).

The relations between these classes (and respective preradicals) are indicated in
part I [1]. In particular, we have:

IT = A(I)
↑

, IF = A(I)
↓

;

rI ≤ r(I) and rI is the greatest idempotent radical contained in r(I);

rI ≥ r(I) and rI is the least idempotent radical containing r(I);

rI = r(I) ⇔ rI = r(I) ⇔ I = I2.

Further we will study the relations between the classes of modules defined by the
ideal I ⊳ R and classes associated to preradicals rU and rU .

Proposition 2.1. Cog (RU) ⊆ A(I) (i.e. P(rU) ⊆ P(r(I)), so rU ≥ r(I)).

Proof. From the definition of I we have U ∈ A(I). Class Cog (RU) is the least class
containing RU and closed under submodules and direct products. Since the class
A(I) also possesses these properties, we have Cog (RU) ⊆ A(I).

Proposition 2.2. {RU}
↑

=
(

Cog (RU)
) ↑

.

Proof. (⊇) From RU ∈ Cog (RU) it follows {RU}
↑

⊇
(

Cog (RU)
) ↑

.

(⊆) Let M ∈ {RU}
↑

, i.e. HomR(M,U) = 0. If N ∈ Cog (RU), then we have a

monomorphism 0→ N
ϕ
→ UA, and every non-zero morphism 0 6= f : M → N leads

to non-zero morphism

M
f
−→ N

ϕ
−→ UA πα−→ Uα = U,

a contradiction. Thus HomR(M,N) = 0 for every N ∈ Cog (RU), i.e.

M ∈
(

Cog (RU)
) ↑

.

Proposition 2.3. IT ⊆ Ker H ′ (i.e. R(rI) ⊆ R(rU), so rI ≤ rU).
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Proof. Since Cog (RU) ⊆ A(I) (Proposition 2.1), we have
(

Cog (RU)
) ↑

⊇ A(I)
↑

and
by Proposition 2.2 we obtain:

IT = A(I)
↑

⊆
(

Cog (RU)
) ↑

= {RU}
↑

= Ker H ′.

Totalizing we can give a review of relations between the studied classes of
modules:

IT ⊆ Ker H ′, where IT = A(I)
↑

= R(rI) and

Ker H ′ = {RU}
↑

=
(

Cog (RU)
) ↑

= R(rU);

Cog (RU) ⊆ A(I), where Cog (RU) = P(rU) and A(I) = R(r(I)) = P(r(I));

Cog (RU) ⊆
(

Cog (RU)
)↑↓

= {RU}
↑↓

= P(rU) ⊆ IT
↓

= A(I)
↑↓

= P(rI);

Cog (RU) ⊆ A(I) ⊆ IT
↓

= A(I)
↑↓

= P(rI);

IF = A(I)
↓

= P(rI);

Cog (RU) ⊆ A(I) ⊆ A(I)
↓↑

= IF
↑

= R(rI).

For the corresponding preradicals in particular we have the following situation:

�
�

�
�

�
�

�
�

���

rI

rU

r(I)

rU

q

q

q

q

?

�
�

�
�

�
�

�
�

���

?

Fig. 2.

where r1 ← r2 means r1 ≤ r2. The conditions when rU = rU or rI = r(I) are
mentioned above. Further we give some remarks on coincidence of other preradicals
of Figure 2.

Definition 3. The module RU will be called Ann-accessible if from
HomR(M,U) = 0 it follows HomR (M,X) = 0 for every RX with IX = 0, where
I = (0 : RU).

If RU is Ann-accessible, then {RU}
↑
⊆ A(I)

↑
, and the inverse inclusion is always

true:
A(I)

↑
= IT ⊆ Ker H ′ = {RU}

↑
.

Thus we have IT = Ker H ′, i.e. R(rI) = R(rU), which means that rI = rU .
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From these considerations follows

Proposition 2.4. The following conditions are equivalent :
1) rI = rU ;

2) Ker H ′ = IT;

3) IT
↓

= {RU}
↑↓

;

4) RU is Ann-accessible. �

The following particular case is worth noting.

Corollary 2.5. Let RU be a faithful module: I = (0 : RU) = 0. The relation rI = rU

is true if and only if RU is a cogenerator of R-Mod.

Proof. If I = 0, then A(I) = R-Mod, so A(I)
↑

= 0 and we have IT = A(I)
↑

=
R(rI) = 0, i.e. rI = 0. Thus rI = rU if and only if rU = 0.

(⇒) If rI = rU , then Ker H ′ = IT = 0, so the relation HomR(M,U) = 0 implies
M = 0. In particular, for every simple module P 6= 0 we have HomR(P,U) 6= 0.
Therefore RU contains isomorphically every simple module, thus RU is a cogenerator
of R-Mod.

(⇐) If Cog (RU) = R-Mod, then Cog (RU) = A(I) and
(

Cog (RU)
) ↑

=

A(I)
↑

= 0, i.e. Ker H ′ = IT = 0 and this means that rI = rU = 0.

The relation r(I) = rU is true if and only if P(r(I)) = P(rU), i.e. A(I) = Cog (RU),
what is reduced to the inclusion A(I) ⊆ Cog (RU).

The coincidence of all preradicals of Figure 2 is a strong condition can be ex-
pressed as follows.

Proposition 2.6. The following conditions are equivalent :
1) rI = rU (i.e. rI = rU = r(I) = rU ;
2) r(I) = rU and I = I2;
3) RU is Ann-accessible and weakly injective. �

The general situation on relations between the classes of modules in the case of
functor H ′ = HomR(-, U) is illustrated in Figure 3.

3 Comparing the situations for functors T and H ′

Analizing the cases of functors T and H ′ one can observe an evident resemblance
of the obtained situations on classes of modules and associated preradicals. Further
we give an explanation of this similarity.

Let US be a fixed right S-module which defines the functor

T = T U = U⊗S - : S-Mod→ Ab

and associated preradicals tU and tU with the respective classes of modules (see
Part II, [2]). We will show that all classes of modules and all preradicals constructed
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Fig. 3.
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by US in category S-Mod can be obtained with the help of an associated module

SU∗ by the contravariant functor

H ′ = HomS(-, U∗) : S-Mod→ Ab

as in this part of work.

We fix an arbitrary cogenerator C of category Ab of abelian groups (in particular,
we can consider that C = Q/Z). We denote

SU∗ = HomZ (ZUS, C)

and consider the contravariant functor

H ′ = HomS (-, U∗) : S-Mod→ Ab.

The purpose of the following statements is to prove that the functors T = U⊗S- and
H ′ = HomS(-, U∗) define the same classes of modules, therefore they have the same
associated preradicals.

For that we need some preliminary considerations. The fixed module US can be
regarded as a bimodule ZUS, so it defines the adjoint functors:

H = HU = HomZ(U, -) : Ab→ S-Mod,

T = T U = U⊗S - : S-Mod→ Ab,

(where T is the left adjoint of H), with associated natural transformations Φ : TH →
1Ab and Ψ : 1S-Mod → HT , which satisfy the relations:

ΦT (M) · T (ΨM) = 1T (M), H(ΦN) ·ΨH(N) = 1H(N) (1)

for every M ∈ S-Mod and N ∈ Ab.

In particular, the morphism ΨM : SM → HomZ(U,U⊗S M) is defined by the
rule:

[ΨM(m)](u)
def
== u⊗S m, m ∈M, u ∈ U.

Therefore, for every M ∈ S-Mod we have:

Ker ΨM = {m ∈M |U⊗S m = 0},

and ΨM is a monomorphism if and only if U⊗S m = 0 implies m = 0. From the
definition of the class F(US) we have

Proposition 3.1. F(US) = {M ∈ S-Mod |ΨM is a monomorphism}. �

This permits us to prove the following essential relation.

Proposition 3.2. F(US) = Cog(SU∗).
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Proof. (⊆) Let M ∈ F(US), i.e. from U⊗S m = 0 in U⊗S M it follows m = 0.
By Proposition 3.1 ΨM is a monomorphism. Since C is a cogenerator of Ab and
U⊗S M ∈ Ab, there exists a monomorphism of the form:

0→ U⊗S M
i
−→

∏

α∈A

Cα, Cα = C.

Applying the functor H = HomZ(U, -), which preserves monomorphisms and direct
products, we obtain the exact sequence:

0→ HT (SM)
H(i)
−−−→ H

(

∏

α∈A

Cα

)

∼=
∏

α∈A

H(Cα) =
∏

α∈A

U∗
α, U∗

α = U∗.

Combining H(i) with the monomorphism ΨM we obtain the monomorphism:

M
ΨM−−→ HT (SM)

H(i)
−−−→ H

(

∏

α∈A

Cα

)

∼=
∏

α∈A

U∗
α,

which shows that M ∈ Cog (SU∗).
(⊇) Let M ∈ Cog (SU∗). Then rU

∗(SM) = ∩{Ker f | f : M → U∗} = 0. For
every morphism f : SM → SU∗ we have the following commutative diagram:

M
f

//

ΨM

��

U∗ def
== H(C)

ΨH(C)

��

HT (M)
HT (f)

// HTH(C)

Fig. 4.

From the relation H(ΦC) · ΨH(C) = 1H(C) (see (1)) it follows that ΨH(C) is
a monomorphism. If m ∈ Ker ΨM then from the diagram it is obvious that
ΨH(C)

(

f(m)
)

= 0 and, since ΨH(C) is a monomorphism, it follows that f(m) = 0 for
all f : M → U∗. Therefore m ∈ ∩{Ker f | f : M → U∗} = 0 and Ker ΨM = 0, i.e.
M ∈ F(US) by Proposition 3.1.

Corollary 3.3. tU = rU
∗ and tU = rU

∗ .

Proof. By definitions F(US) = P(tU) and Cog (SU∗) = P(rU
∗), therefore by Propo-

sition 3.2 we have P(tU) = P(rU
∗), so tU = rU

∗ . But then the “nearest” idempotent
radicals also coincide: tU = rU

∗ .

From the above results it follows that all constructions effected in S-Mod by the
module US and the functor T = U ⊗S - coincide with the respective constructions
by the module SU∗ and the functor H ′ = HomS(-, U∗). For example, the following
classes of S-Mod coincide:

F(US) = Cog (SU∗), Ker T = Ker H ′, A(J) = A(I),
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(Ker T )
↓

= {SU∗}
↑↓

, JT = IT, JF = IF, etc.

These facts completely explain the similarity of the situations for the functors T

and H ′.
From the conditions of coincidence of “near” preradicals (tU = tU , Part II, Propo-

sition 1.6; rU = rU , Part III, Proposition 1.4) now follows

Corollary 3.4. US is a weakly flat module if and only if SU∗ is weakly injective. �
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Invariant transformations of loop transversals. 1.
The case of isomorphism

Eugene Kuznetsov, Serghei Botnari

Abstract. One special class of invariant transformations of loop transversals in
groups is investigated. Transformations from this class correspond to arbitrary iso-
morphisms of transversal operations corresponding to the loop transversals mentioned
above. Isomorphisms of loop transversal operations with the same unit 1 are investi-
gated.

Mathematics subject classification: 20N05.
Keywords and phrases: Quasigroup, loop, transversal, isomorphism, isotopy,
crossed isotopy.

1 Introduction

The notion of a transversal in a group to its own subgroup is well-known and has
been studied during the last 70 years (since R. Baer’s work [1]). Loop transversals
(transversals whose transversal operations are loops) in some fixed groups to their
own subgroups present special interest. Loop transversal may not exist in a given
group G to its subgroup H (for example, if G = S6, H = St12(S6)), but we will
study such questions further. Let a group G and its proper subgroup H be set, and
some loop transversal T0 = {ti}i∈E in G to H is given and fixed. How to describe all
other loop transversals in G to H? In other words, what kind of transformations are
admissible over loop transversal T0 so that the obtained sets were loop transversals
too? And how to describe the set of all such admissible transformations?

Generally speaking, such transformations are known, but not for transversals,
only for operations – they are isomorphisms, isotopies, parastrophies (of a certain
kind), isostrophies (of a certain kind) and crossed isotopies (of a certain kind). But
firstly, they are transformations of operations (transversal operations, in particular)
instead of transversals; and secondly, only isomorphisms, isotopies and isostrophies
are well studied, but such a general transformation as crossed isotopy practically
was not investigated.

These investigations are necessary and very important, since there is a number
of important and known problems reduced to research of the set of all loop transver-
sals in some given group G to its subgroup H. For example, when G = Sn and
H = St1(Sn), we obtain the set of all loops of some fixed order n. The calculation of
their quantity for given natural number n is a well-known open problem (enumera-
tion problem). Other known problem – about G-loops – also can be considered in

c© Eugene Kuznetsov, Serghei Botnari, 2010
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terms of loop transversals transformations. In the present work we will investigate
what transformations of loop transversals correspond to the first well-known trans-
formation of transversal operations – to an isomorphism. We will limit ourselves
only to those transformations which keep property to be loop transversals.

Let us begin with some necessary definitions and preliminary statements.

2 Necessary definitions and statements

2.1 Quasigroups, loops and transversals in groups

Definition 1. A system < E, · > is called a left (right) quasigroup if the equation
(a · x = b) (the equation (y · a = b)) has exactly one solution in the set E for any
fixed a, b ∈ E. If for some element e ∈ E we have

e · x = x · e = x ∀x ∈ E,

then a left (right) quasigroup < E, ·, e > is called a left (right) loop (the element
e ∈ E is called a unit). A left quasigroup < E, · > that is simultaneously a right
quasigroup is called simply a quasigroup. Similarly, left loop which is simultane-
ously a right loop is called a loop.

Definition 2. Let G be a group and H be its subgroup. Let {Hi}i∈E be the
set of all left (right) cosets in G to H, and we assume H1 = H. A set T =
{ti}i∈E of representativities of the left (right) cosets (by one from each coset Hi and
t1 = e ∈ H) is called a left (right) transversal in G to H. If a left transversal T

is simultaneously a right one, it is called a two-side transversal.

On any left transversal T in a group G to its subgroup H it is possible to define
the following operation (transversal operation) :

x
(T )
· y = z

def
⇐⇒ txty = tzh, h ∈ H,

and similarly for a right transversal:

x
(T )
· y = z

def
⇐⇒ txty = htz, h ∈ H.

Further we will do all researches only for the left transversals in G to H; for right
transversals everything is similar.

Definition 3. If a system < E,
(T )
· , 1 > is a loop, then such left transversal

T = {tx}x∈E is called a loop transversal.

The following statements are known (see [1, 6]):

Lemma 1. A system < E,
(T )
· , 1 > is a left loop with the two-sided unit 1.
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Proof. See Lemma 1 in [6].

Lemma 2. The following conditions are equivalent:

1. The set T = {tx}x∈E is a loop transversal in G to H;

2. The set T = {tx}x∈E is a left transversal in G to πHπ−1
⇋ Hπ, ∀π ∈ G;

3. The set πTπ−1
⇋ T π is a left transversal in G to H, ∀π ∈ G.

Proof. See [1].

Use further the following permutation representation ̂G of a group G by the left
cosets of its subgroup H (see [5, 6]):

ĝ(x) = y
def
⇐⇒ gtxH = tyH.

For simplicity we consider

CoreG(H) = ∩
g∈G

gHg−1 = {e};

then this representation is exact (see Lemma 6 in [6]), and we have ̂G ∼= G. Notice
that ̂H = St1( ̂G).

Lemma 3 (see [6]). Let T = {tx}x∈E be a left transversal in G to H. Then the
following statements are true:

1. ̂h(1) = 1 ∀hǫH;

2. ∀x, y ∈ E :

̂tx(y) = x
(T )
· y = ̂Lx(y), ̂t1(x) = ̂tx(1) = x,

̂t−1
x (y) = x

(T )

�y = ̂L−1
x (y), ̂t−1

x (1) = x
(T )

�1, ̂t−1
x (x) = 1,

where ”
(T )

�” - is a left division for the operation < E,
(T )
· , 1 > (i.e. x

(T )

�y = z

⇐⇒ x
(T )
· z = y).

Proof. See Lemma 4 in [6].

Remark 1. The operation ”
(T )

�” is named a left division here – as an inverse opera-

tion to the left multiplication (multiplication at the left) ”
(T )
· ”. Sometimes in the

literature this operation may be named a right division.

Remark 2. As we can see from Lemma 3, item 2), the elements of a left transversal

T in G to H can be represented trought its transversal operation < E,
(T )
· , 1 > as

left translations {Lx}x∈E . The similar holds for a right transversal.
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At last, remind how any two left transversals T and P in a group G to its
subgroup H are connected .

Lemma 4 (see [6]). Let T = {tx}x∈E and P = {px}x∈E- be left transversals in G

to H. Then there is a set of elements {h(x)}x∈E from H such that:

1. px = txh(x) ∀x ∈ E;

2. x
(P )
· y = x

(T )
· ĥ(x)(y).

Proof. See Lemma 7 in [6].

This set {h(x)}x∈E is called (see [8]) a derivation set for transversal T (and for

transversal operation < E,
(T )
· , 1 >).

Remind also the definitions of a left multiplicative group and of a left inner
permutation group of a loop.

Definition 4. Let < E, ·, e > be a loop. Then a group

LM(< E, ·, e >)
def
= < La | a ∈ E >,

generated by all left translations La of loop < E, ·, e >, is called a left multiplica-

tive group of the loop < E, ·, e >. Its subgroup

LI(< E, ·, e >)
def
= < la,b | la,b = L−1

a·bLaLb, : a, b ∈ E >

generated by all permutations la,b, is called a left inner permutation group of
the loop < E, ·, e >.

2.2 Morphisms of quasigroups and loops

Definition 5 (see [2]). A mapping Φ = (α, β, γ) ( α, β, γ are permutations on a
set E) of the operation < E, · > on the operation < E, ◦ > is called an isotopy if

γ(x · y) = α(x) ◦ β(y) ∀x, y ∈ E.

If Φ = (γ, γ, γ), then such an isotopy is called an isomorphism. If Φ = (α, β, id),
then such an isotopy is called a principal isotopy.

Definition 6 (see [3]). A mapping Φ = (α,B, γ), where α, γ are permutations on
E and B = B(x, y) is a right invertible operation on E (B(x, y) = ϕx(y), ϕx is a
permutation on E ∀x ∈ E), is called a right crossed isotopy (RC-isotopy) of
operations < E, · > and < E, ◦ > if

γ(x ◦ y) = α(x) ·B(x, y) ∀x, y ∈ E.
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A left crossed isotopy (LC-isotopy) is defined similarly.

It is obvious that any isotopy is both RC-isotopy and LC-isotopy simultaneously.

Definition 7 (see [2]). The operations A(x, y) and B(x, y) on a set E are called
orthogonal, if a system

{

A(x, y) = a

B(x, y) = b

has an unique solution in a set E × E for any fixed pair (a, b) ∈ E × E.

It is easy to show (see [4]) that the orthogonality of operations A and B is
equivalent to the fact: the following mapping

Θ =

(

(1, 1) ... (x, y) ...

(A(1, 1), B(1, 1)) ... (A(x, y), B(x, y)) ...

)

is a permutation on the set E × E. The following is true.

Lemma 5. Let < E, ·, e > be a left loop. Then RC-isotop < E, ◦, e
′

> of the left
loop < E, ·, e > (by RC-isotopy T = (α,B, γ)) is a loop⇐⇒ the operations (·)(α,id,id)

and B−1 are orthogonal.

Proof. See in [3, 8].

2.3 Communication between transformations of transversals,
morphisms of transversal operations and transformations
of derivation sets

Let G be some fixed group and H be its proper subgroup. Consider fur-
ther the permutation representation ̂G of the group G (note that ̂G ∼= G,
̂H ∼= St1( ̂G)).

According to Lemma 4, any two left transversals T = {tx}x∈E and P = {px}x∈E

in G to H are connected with the help of some RC-isotopy (id,B, id) of their

transversal operations < E,
(T )
· , 1 > and < E,

(P )
· , 1 > (where B(x, y) = ̂h(x)(y)).

It means that if we fix any ”good” left transversal T0 in G to H (for example, a
group transversal if it exists), then we will receive all other left transversals in G

to H from T0 by the help of RC-isotopy. Moreover, any loop transversal P in G

to H may be received from T0 with the help of such RC-isotopy (id,B, id) (where

B(x, y) = ̂h(x)(y)) that the operations < E,
(T0)
· , 1 > and B−1(x, y) = ̂h−1

(x)(y) are

ortogonal (according to Lemma 5).

Remark 3. If we consider the case G = Sn and H = St1(Sn), as it is described
above, it is possible to express all loops of order n as the RC-isotopies (id,B, id)

of some loop (group) < E,
(T0)
· , 1 > of order n, and the operation < E,

(T0)
· , 1 > is

orthogonal to the operation B−1(x, y) = ̂h−1
(x)(y).
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Further we will investigate only such special cases of RC-isotopy of a fixed loop
transversal T0 in G to H, which give as a result a loop transversal in G to H again.
The research will be done by the following scheme:

< E,
(T0)
· , 1 >

Φ
←→< E,

(P )
· , 1 >

l

T0 = {tx}x∈E
Φ∗

−→ P = {px}x∈E

l

px = txh
(Φ)
(x) , {h

(Φ)
(x) }x∈E is a derivation set, corresponding to transformation Φ

l

Θ(Φ) =

(

−−− (x, y) −−−

−−− (x
(T0)
· y, (̂h

(Φ)
(x) )−1(y)) −−−

)

,

where Θ(Φ) - is a permutation on a set E×E, corresponding to orthogonal operations

< E,
(T0)
· , 1 > and B−1(x, y) = ̂h−1

(x)(y).

Let us begin our investigation from an elementary invariant transformation on
a set of loop transversals in G to H - from the transformation corresponding to
isomorphism of transversal operations.

3 The transformations which correspond to isomorphisms
of the transversal operations of loop transversals

Let T = {tx}x∈E and P = {px}x∈E be two loop transversals in a group G to its

subgroup H, and < E,
(T )
· , 1 > and < E,

(P )
· , 1 > are its transversal operations. Fix

one of transversals, for example, T = {tx}x∈E . Consider the following group:

MG(T )
def
= < α | α ∈ St1(SE), LM(< E,

(T )
· , 1 >) ⊆ α ̂Gα−1 >,

it is generated by all permutations α ∈ St1(SE) which satisfy the condition

LM(< E,
(T )
· , 1 >) ⊆ α ̂Gα−1.

Lemma 6. The following propositions are true:

1. NSt1(SE)( ̂G) ⊆MG(T ) ⊆ St1(SE),

2. MG(T ) is maximal among subgroups M ⊆ St1(SE) which satisfy the following
property:

LM(< E,
(T )
· , 1 >) =

⋂

α∈M

(α ̂Gα−1).
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Proof. 1. By definition MG(T ) ⊆ St1(SE). Let α ∈ NSt1(SE)( ̂G), then

{

α ∈ St1(SE)

α ̂Gα−1 = ̂G
.

The following property is always fulfilled for any left transversal T in G to H,

LM(< E,
(T )
· , 1 >) ⊆ ̂G,

so

LM(< E,
(T )
· , 1 >) ⊆ ̂G = α ̂Gα−1.

Since α ∈ St1(SE) then α ∈MG(T ), and

NSt1(SE)( ̂G) ⊆MG(T ).

2. It obviously follows from the definition of the group MG(T ).

Remark 4. Both bounds in the inclusion in item 1 of previous Lemma are reached:

a) Let LM(< E,
(T )
· , 1 >) = ̂G, then

MG(T ) = < α | α ∈ St1(SE), ̂G ⊆ α ̂Gα−1 > = NSt1(SE)( ̂G).

b) Let ̂G = SE, ̂H = St1(SE), then

MG(T ) = < α | α ∈ St1(SE), LM(< E,
(T )
· , 1 >) ⊆ αSEα−1 > =

= < α | α ∈ St1(SE) > = St1(SE).

Lemma 7. Let loops < E,
(T )
· , 1 > and < E,

(P )
· , 1 > be isomorphic, and ϕ : E → E

be this isomorphism (note that ϕ(1) = 1). Then

1. ̂P = h−1
0
̂Th0 for some h0 ∈ H∗ = MG(T );

2. ϕ ≡ h0 and LI(< E,
(T )
· , 1 >) ⊆ h0

̂Hh−1
0 .

Proof. 1. Let conditions of Lemma hold. We have:

ϕ(x
(P )
· y) = ϕ(x)

(T )
· ϕ(y)∀x, y ∈ E.

According to Lemma 3,

̂tx = Lx, where Lx(y) = x
(T )
· y,

p̂x = Lx, where Lx(y) = x
(P )
· y.
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Since ϕ is a permutation on a set E and ϕ(1) = 1, then ϕ ∈ St1(SE). Further we
have

ϕLx(y) = Lϕ(x)ϕ(y)∀x, y ∈ E,

Lx(y) = ϕ−1Lϕ(x)ϕ(y)∀x, y ∈ E,

Lx = ϕ−1Lϕ(x)ϕ∀x ∈ E. (1)

It means that ̂P = ϕ−1
̂Tϕ and ϕ ∈ St1(SE). Therefore we receive ̂P = h−1

0
̂Th0 for

some h0 ∈ St1(SE) and ϕ ≡ h0.
Moreover, since

LM(< E,
(T )
· , 1 >) =< La | a ∈ E >,

then from (1) it follows that

ϕ−1(LM(< E,
(T )
· , 1 >))ϕ = ϕ−1 < La | a ∈ E > ϕ =

= < ϕ−1Laϕ | a ∈ E > = < Lb | b ∈ E > =

= LM(< E,
(P )
· , 1 >) ⊆ ̂G,

and h0 = ϕ ∈MG(T ).
2. Let α ∈MG(T ), then we have

{

α ∈ St1(SE),

La ∈ α ̂Gα−1 ∀a ∈ E.
{

α ∈ St1(SE),

α−1Laα ⇌ ga
′ ∈ ̂G ∀a ∈ E.

a
′

= ga
′ (1) = α−1Laα(1) = α−1(1).

Then ∀a, b ∈ E

α−1l
(T )
a,b α = α−1L−1

a
(T )
· b

LaLbα =

= (α−1L−1

a
(T )
· b

α) · (α−1Laα) · (α−1Lbα) =

= g−1

α−1(a
(T )
· b)

gα−1(a)gα−1(b).

Assuming a = α(u) and b = α(v) (i.e. u = α−1(a) and v = α−1(b)), we obtain

α−1l
(T )
α(u),α(v)α = g−1

α−1(α(u)
(T )
· α(v))

gugv.

Since α is an isomorphism of operations (
(T )
· ) and (

(P )
· ), then

α(u
(P )
· v) = α(u)

(T )
· α(v),
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and therefore

α−1l
(T )
α(u),α(v)α = g−1

u
(P )
· v

gugv = l(P )
u,v ∈ LI(< E,

(P )
· , 1 >) ⊆ ̂H.

It means that

α−1LI( < E,
(P )
· , 1 >)α ⊆ ̂H,

LI( < E,
(T )
· , 1 >) ⊆ α ̂Hα−1.

Lemma 8. Let T = {tx}x∈E be a fixed loop transversal in G to H and h0 ∈
NSt1(SE)(H). Define the set of permutations:

px
′

def
= h−1

0 txh0 ∀x ∈ E.

Then

1. P = {px
′}x′

∈E is a loop transversal in G to H;

2. The transversal operations < E,
(P )
· , 1 > and < E,

(T )
· , 1 > are isomorphic, and

the isomorphism is set up by the mapping ϕ(x) = h0(x).

Proof. 1. Let the conditions of Lemma hold. At first we can see that P = {px
′}x′

∈E

is a left transversal in G to H. It follows from Lemma 2 and the following calculation

x
′

= p̂x
′ (1) = h−1

0
̂txh0(1) = h−1

0 .

Any transversal conjugated with the transversal T will be conjugated with the
transversal P . According to Lemma 2, the transversal P = {px

′}x′
∈E is a loop

transversal in G to H.

2. Consider the transversal operation < E,
(P )
· , 1 > which corresponds to the

transversal P . We have

x
(P )
· y = z ⇐⇒ pxpy = pzh, h ∈ H, ∀x, y ∈ E. (2)

Since
h−1

0 txh0 = px
′ = p

h−1
0 (x),

then after replacing x→ h0(u) we have

pu = h−1
0 th0(u)h0 ∀u ∈ E.

From (2) we obtain

pxpy = pzh, h ∈ H, (where z = x
(P )
· y),
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h−1
0 th0(x)h0 · h

−1
0 th0(y)h0 = h−1

0 t
h0(x

(P )
· y)

h0 · h, h ∈ H,

th0(x)th0(y) = t
h0(x

(P )
· y)
· (h0hh−1

0 ).

Since h0 ∈ NSt1(SE)( ̂H) then (h0hh−1
0 ) = h

′

∈ ̂H. Therefore we obtain

h0(x)
(T )
· h0(y) = h0(x

(P )
· y) ∀x, y ∈ E,

i.e. ϕ = h0 is an isomorphism of the operations < E,
(P )
· , 1 > and < E,

(T )
· , 1 >.

It means that conjugated loop transversals in G to H correspond to isomorphic
loop transversal operations and vice versa.

Further according to the scheme from Section 2, we will find out the form of
derivation sets {h(x)}x∈E which correspond to isomorphic transformations.

Lemma 9. Let T = {tx}x∈E and P = {px}x∈E be two loop transversals in G

to H which correspond to isomorphic transversal operations. Let px = txh(x) and
{h(x)}x∈E be a derivation set. Then

h(x) = t−1
x h−1

0 th0(x)h0, ∀x ∈ E

for some h0 ∈MG(T ).

Proof. Let conditions of Lemma hold. According to Lemma 7 ∀x ∈ E:

px = h−1
0 th0(x)h0,

for some h0 ∈MG(T ). From the other hand

px = txh(x) ∀x ∈ E.

Therefore we have

txh(x) = h−1
0 th0(x)h0 ∀x ∈ E,

h(x) = t−1
x h−1

0 th0(x)h0 ∀x ∈ E,

as it had to be shown.

At last according to the scheme from Section 2 we will express the form of
permutations Θ which correspond to isomorphic transformations of transversals.

Lemma 10. Let T = {tx}x∈E and P = {px}x∈E be loop transversals in G to H,

and its transversal operations < E,
(P )
· , 1 > and < E,

(T )
· , 1 > are isomorphic. A

permutation Θ on E × E corresponds to ortogonal operations ”
(T )
· ” and B−1(x, y)

(see in Section 2 ), can be expressed in the following form (for some h0 ∈MG(T )):
∀x, y ∈ E

Θ =

(

... (x, y) ...

... (x
(T )
· y, h−1

0 (h0(x)
(T )

\ h0(x
(T )
· y))) ...

)

.
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Proof. According to the previous lemma we have: it is true for some h0 ∈MG(T ) :

h(x) = t−1
x h−1

0 th0(x)h0 ∀x ∈ E.

Then
h−1

(x) = h−1
0 t−1

h0(x)h0tx ∀x ∈ E.

According to the definition, the permutation Θ can be expressed in the following
form

Θ =

(

... (x, y) ...

... (x
(T )
· y, h−1

(x)(y)) ...

)

.

We have ∀x ∈ E:

h−1
(x)(y) = h−1

0
̂t−1
h0(x)h0̂tx(y) = h−1

0
̂t−1
h0(x)h0(x

(T )
· y) =

= h−1
0 (h0(x)

(T )

\ h0(x
(T )
· y)),

and finally we obtain

Θ =

(

... (x, y) ...

... (x
(T )
· y, h−1

0 (h0(x)
(T )

\ h0(x
(T )
· y))) ...

)

.

Remark 5. A permutation h0 = id, the derivation set {h(x)} = id ∀x ∈ E and the
permutation

Θ0 =

(

... (x, y) ...

... (x
(T )
· y, y) ...

)

correspond to the trivial isomorphism ϕ = id.

Consider the product (composition) Θ−1
0 Θ as a composition of two permutations

from SE×E. We have

Θ−1
0 Θ =

(

... (x
(T )
· y, y) ...

... (x, y) ...

)

◦

(

... (x, y) ...

... (x
(T )
· y, h−1

(x)(y)) ...

)

=

=





... (x
(T )
· y, y) ...

... (x
(T )
· y, h−1

0 (h0(x)
(T )

\ h0(x
(T )
· y))) ...



 =

x
(T )
· y=z
=

(

... (z, y) ...

... (z, h−1
0 (h0(z

(T )

�y)
(T )

�h0(z))) ...

)

⇌ Θ∗.

As a corollary we received two interesting particular cases:

Θ−1
0 Θ(z, z) = (z, h−1

0 (h0(1)
q

1

(T )

�h0(z))) = (z, h−1
0 (h0(z))) = (z, z) ∀z ∈ E.
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Θ−1
0 Θ(z, 1) = (z, h−1

0 (h0(z)
(T )

�h0(z))) = (z, h−1
0 (1)) = (z, 1) ∀z ∈ E,

i.e. Θ∗ ∈ St(a, a), (a, 1)(SE×E) ∀a ∈ E.
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1 Introduction and Problem Formulation

Consider a stochastic discrete system L with finite set of states

X = {x1, x2, . . . , xn}.

Assume that the dynamics of the system is modeled by a Markov process with given
stochastic matrix of probabilities transitions P = (pij)i,j=1,n where

n
∑

j=1

pi,j = 1, i = 1, n; 0 ≤ pi,j ≤ 1, i, j = 1, n.

The probability Pxi0
(x, t) of system’s passage from the state xi0 to an arbitrary state

x ∈ X by using t transitions is defined and calculated on the basis of the following
recursive formula [2]

Pxi0
(x, τ + 1) =

∑

y∈X

Pxi0
(y, τ)py,x, τ = 0, t − 1, (1)

where Pxi0
(xi0 , 0) = 1 and Pxi0

(x, 0) = 0, ∀x ∈ X \{xi0}. We call these probabilities

state-time probabilities of system L. Formula (1) can be represented in the matrix
form as follow

π(τ + 1) = π(τ)P, τ = 0, t − 1. (2)

Here π(τ) = (π1(τ), π2(τ), . . . , πn(τ)) is the vector, where an arbitrary component
i expresses the probability of the system L to reach the state xi from xi0 at the

c© Dmitrii Lozovanu, Alexandru Lazari, 2010
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moment of time τ , i.e. πi(τ) = Pxi0
(xi, τ). At the starting moment of time τ = 0

the vector π(τ) is given and its components are defined as follows: πi0(0) = 1 and
πi(0) = 0 for arbitrary i 6= i0. It is easy to observe that if for given starting vector
π(0) we apply formula (2) for τ = 0, 1, 2, . . . , t − 1, then we obtain

π(t) = π(0)P t,

where P t = P ×P ×· · ·×P . So, an arbitrary element p
(t)
xi,xj of this matrix expresses

the probability of system L to reach the state xj from xi by using t units of times. It
is easy to see that for given starting representation of the vector π(0) the following
properties holds

n
∑

i=1

πi(τ) = 1, τ = 0, 1, 2, . . . . (3)

The correctness of this property can be easy proved using induction principle with
respect to τ . Indeed, for τ = 0 the equality (3) holds according to the definition.
If we assume that (3) holds for every τ ≤ t then we obtain the correctness of this
formula for τ = t + 1 as follows

n
∑

i=1

πi(t + 1) =

n
∑

i=1

n
∑

j=1

pxj ,xi
πj(t) =

n
∑

j=1

πj(t)

n
∑

i=1

pxj ,xi
=

n
∑

j=1

πj(t) = 1.

So, formula (3) holds. In order to analyze the asymptotic behavior of the state-time
probabilities of the system using formula (3) we will assume that there exists the
limit

lim
t→∞

P t = Q.

If this limit exists then there exists the following limit

π = lim
t→∞

π(t) = π(0) lim
t→∞

P t = π(0)Q,

where an arbitrary component πj of the vector π = (π1, π2, . . . , πn) expresses the
probability that the system L will occupy the state xj after a large number of
transitions when it starts transitions in the state xi0. The vector π will be called
the vector of limiting state probabilities. Based on the mentioned above property
we may conclude that

n
∑

j=1

πj = 1

for an arbitrary given starting vector π(0). This means that the matrix Q = (qx,y)
satisfies the condition

∑

y∈X

qx,y = 1, ∀x ∈ X,

where qx,y ≥ 0, ∀x, y ∈ X, i.e. Q = (qx,y) is a stochastic matrix. An arbitrary
element qx,y of this matrix expresses the probability that the system will occupy the
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state y after a large number of transitions if it starts transitions in the state x. The
matrix Q is called the matrix of limiting states probabilities of the Markov process.

An important class of discrete Markov process represents ergodic Markov chain.
For this class all rows of the matrix of limiting states probabilities Q are the same, i.e.
qx,y = qv,y, ∀x, y, v ∈ X. In this case the limiting state probabilities πj, j = 1, n,

does not depend on the state in which the system starts transitions. The vector π

of limiting state probabilities can be found by solving the system of linear equations






π = πP
n
∑

j=1
πj = 1. (4)

The first condition π = πP in this system is obtained from (2) when τ → ∞ and
the second one reflects the property that after a large number of transitions the
dynamical system will be in one of the states xj ∈ X. It is well known that for
ergodic Markov chains the system (4) has a unique solution [2, 4]. The necessary
and sufficient conditions for the ergodicity of Markov processes are given in [2, 4].
In general system (4) may have a unique solution also when the limit lim

t→∞
P t does

not exist. This case may correspond to periodic Markov process and a component
πj of vector π that satisfies (4) can be treated as the probability of the system L

to occupy the state xj at the random moment of times during a large number of
transitions. In the following we can see that the definition of the matrix of limiting-
state probabilities Q can be extended for an arbitrary Markov process, however in
the case when lim

t→∞
P t does not exist the elements of the matrix Q have another

interpretation.
In this paper we describe an approach for determining the matrix of limiting

state probabilities in Markov processes and propose a polynomial time algorithm
for calculating of this matrix. We show that the running time the algorithm is
O(n4), where n is the number of the states of the discrete system.

2 The main results

The aim of this section is to ground a polynomial time algorithm for determining
the limit matrix Q for an arbitrary discrete Markov process with given stochastic
matrix P . We describe such an algorithm which is based on the idea of z-transform
and classical numerical methods.

2.1 The Main Approach and the General Scheme of the Algorithm

Let C be the complex space and denote by M(C) the set of complex matrices
with n rows and n columns. We consider the function A : C → M(C), where

A(z) = I − zP, z ∈ C.

We denote the elements of the matrix A(z) by ai,j(z), i, j = 1, n, i.e.

ai,j(z) = δi,j − zpij ∈ C[z]
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where

δi,j =

{

1 if i = j

0 if i 6= j
i, j = 1, n.

It is evident that the determinant ∆(z) of the matrix A(z) is a polynomial of
degree less or equal to n, (deg(∆(z)) ≤ n, ∆(z) ∈ C[z]). Therefore if we denote
D = {z ∈ C | ∆P (z) 6= 0} then we obtain that |C\D| ≤ deg(∆(z)) ≤ n and for
an arbitrary z ∈ D there exists the inverse matrix of A(z). So, we can define the
function F : D → M(C) where

F (z) = (A(z))−1.

Then the elements Fi,j(z), i, j = 1, n of F (z) can be found as follows:

Fi,j(z) =
Mj,i(z)

∆(z)
, i, j = 1, n,

where
Mi,j(z) = (−1)i+jAi,j(z)

and Ai,j(z) is the determinant of the matrix obtained from A(z) by deleting the row
i and the column j, i, j = 1, n. Therefore

Mj,i(z) ∈ C[z], deg(Mj,i(z)) ≤ n − 1, i, j = 1, n.

Note that ∆(1) = 0 because for the matrix A(1) holds the property

n
∑

j=1

(δij − pij) =

n
∑

j=1

δij −
n
∑

j=1

pij = δii − 1 = 0, i = 1, n.

This means that 1 ∈ C\D and therefore ∆(z) can be factored by (z − 1). Taking
into account that Fi,j(z) is a rational fraction with the denominator ∆(z) we can
represent Fi,j(z) uniquely in the following form

Fi,j(z) = Bij(z) +
∑

y∈C\DP

m(y)
∑

k=1

αi,j,k(y)

(z − y)k
, i, j = 1, n, (5)

where m(z) is the order of the root z of the polynomial ∆(z), z ∈ C\D, and
αijk(y) ∈ C, ∀y ∈ C\D, k = 1,m(y), i, j = 1, n. In this representation of Fi,j(z)
the degree of the polynomial Bij(z) ∈ C[z] satisfies the condition

deg(Bi,j(z)) = deg(Mj,i(z)) − deg(∆(z)),

where deg(Mj,i(z)) ≥ deg(∆(z)), otherwise Bi,j(z) = 0.
To represent (5) in a more convenient form we shall use some elementary prop-

erties of the function νk(z) =
1

(1 − z)k
, k = 1, 2, . . .. It is well known that in
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the case k = 1 the function ν1(z) admits the series expansion ν1(z) =
∞
∑

t=0
zt.

In general case (for an arbitrary k > 1) the following recursive relation holds

νk+1(z) =
dνk(z)

kdz
, k = 1, 2, . . .. Using these properties and induction principle we

can obtain the series expansion of the function νk(z), ∀k ≥ 1: νk(z) =
∞
∑

t=0
Tk−1(t)z

t,

where Tk−1(t) is a polynomial of degree less or equal to (k − 1).

Based on mentioned above properties we can make the following transformation
in (5) we can make the following transformation:

Fi,j(z) = Bi,j(z) +
∑

y∈C\D

m(y)
∑

k=1

(

−
1

y

)k

αi,j,k(y)

(

1 −
1

y
z

)k
=

= Bi,j(z) +
∑

y∈C\D

m(y)
∑

k=1

(

−
1

y

)k

αi,j,k(y)νk

(

z

y

)

=

= Bi,j(z) +
∑

y∈C\D

m(y)
∑

k=1

(

−
1

y

)k

αi,j,k(y)

∞
∑

t=0

Tk−1(t)

(

z

y

)t

=

= Bi,j(z) +

∞
∑

t=0

(

z

y

)t
∑

y∈C\D

m(y)−1
∑

k=0

(

−
1

y

)k+1

αi,j,k+1(y)Tk(t).

We can observe that in the relation above the expression

m(y)−1
∑

k=0

(

−
1

y

)k+1

αi,j,k+1(y)Tk(t)

represents a polynomial of degree less or equal to m(y) − 1 and we can write it in

the form
m(y)−1
∑

k=0

βi,j,k(y)tk, where βi,j,k represent the corresponding coefficients of this

m(y)−1
∑

k=0

βi,j,k(y)tk for polynomial. Therefore if in the expression above we substitute

m(y)−1
∑

k=0

(

−
1

y

)k+1

αi,j,k+1(y)Tk(t) then we obtain

Fi,j(z) = Bi,j(z) +
∞
∑

t=0

zt
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βi,j,k(y) =
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= Wi,j(z) +

∞
∑

t=1+deg(Bi,j (z))

zt
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βi,j,k(y), i, j = 1, n, (6)

where βi,j,k(y) ∈ C, ∀y ∈ C\D, k = 0,m(y) − 1, i, j = 1, n, and Wij(z) ∈ C[z]
is a polynomial of degree that satisfies the condition deg(Wi,j(z)) = deg(Bi,j(z)),
i, j = 1, n.

Note that for the norm of the matrix P we have ‖P‖ = max
i=1,n

n
∑

j=1
pi,j = 1, and

therefore ‖zP‖ = |z|‖P‖ = |z|. Let |z| < 1. Then for F (z) we have

F (z) = (I − zP )−1 =

∞
∑

t=0

P tzt.

This means that

Fi,j(z) =

∞
∑

t=0

pi,j(t)z
t, i, j = 1, n. (7)

From definition of z-transform and from (6) − (7) we obtain

pi,j(t) =
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βi,j,k(y), ∀t > deg(Bi,j(z)), i, j = 1, n.

Since 0 ≤ pi,j(t) ≤ 1, i, j = 1, n, ∀t ≥ 0, we have

|y| ≥ 1, ∀y ∈ C\D, βi,j,k(1) = 0, ∀k ≥ 1.

This involves αi,j,k(1) = 0, ∀k ≥ 2.

Now let us assume that ∆(z) = (z − 1)m(1)T (z), T (1) 6= 0. Then the relation
(5) is represented as follows:

Fi,j(z) =
αi,j,1(1)

z − 1
+ Bi,j(z) +

∑

y∈(C\D)\{1}

m(y)
∑

k=1

αi,j,k(y)

(z − y)k
=

=
αi,j,1(1)

z − 1
+

Yi,j(z)

T (z)
, i, j = 1, n,

where Yi,j(z) ∈ C[z] and

deg(Yi,j(z)) = deg(Bi,j(z)) + deg(T (z)) = deg(Bi,j(z)) + deg(∆(z)) − m(1) =

= deg(Mj,i(z)) − m(1) ≤ n − 1 − m(1) ≤ n − 2, i, j = 1, n.
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In the following we will denote

Y (z) = (Yi,j(z))i,j=1,n, α1(1) = (αi,j,1(1))i,j=1,n.

Then the matrix F (z) can be represented as follows:

F (z) =
1

z − 1
α1(1) +

1

T (z)
Y (z). (8)

From this formula and from definition of the limiting-state matrix Q we have

Q = −α1(1), (9)

i.e Q in the inverse matrix of (I − zP ) corresponds to the term with the coefficient
1

1 − z
.

From (8) and (9) we obtain formula

Q = lim
z→1

(1 − z)(I − zP )−1.

In the following we show how to determine the polynomial ∆(z) and the function
F (z) in the matrix form.

2.2 Algorithm for Determining the Polynomial ∆(z)

Let us consider the characteristic polynomial

K(z) = |P − zI| =
n
∑

k=0

νkz
k.

In this polynomial the coefficient of the term with maximal degree of variable z is
νn = | − In| = (−1)n 6= 0. This means that deg(K(z)) = n and we can represent
K(z) in the form

K(z) = (−1)n(zn − α1z
n−1 − α2z

n−2 − . . . − αn).

If we denote α0 = −1, then it is easy to see that the coefficients νk can be represented
as follows:

νk = (−1)n+1αn−k, k = 0, n.

In [1, 5] it is shown that the coefficients αk can be calculated basing on Lever-
rier’s method using O(n3) elementary operations. This method can be applied for
determining the coefficients αk in the following way:

1) We determine the matrices

P (k) = (pi,j(k))i,j=1,n, k = 1, n,
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where P (k) = P × P × · · · × P ;

2) Then we determine the traces of these matrices:

sk = trP (k) =
n
∑

j=1

pj,j(k), k = 1, n;

3) Finally we calculate the coefficients

αk =
1

k



sk −
k−1
∑

j=1

αjsk−j



 , k = 1, n.

If the coefficients αk are known then we can determine the coefficients of the

polynomial ∆(z) =
n
∑

k=0

βkz
k. Indeed, if z ∈ C\{0} then

∆(z) = |I − zP | = (−z)n

∣

∣

∣

∣

∣

P −
1

z
I

∣

∣

∣

∣

∣

= (−1)nznK

(

1

z

)

=

= (−1)nzn
n
∑

k=0

νk

1

zk
= (−1)n

n
∑

k=0

νkz
n−k =

n
∑

k=0

(−1)nνn−kz
k =

=

n
∑

k=0

(−1)n(−1)n+1αkz
k =

n
∑

k=0

(−αk)z
k.

For z = 0 we have
∆(0) = |I| = 1 = −α0.

Therefore finally we obtain

∆(z) =

n
∑

k=0

(−αk)z
k, ∀z ∈ C.

This means βk = −αk, k = 0, n. So, the coefficients βk, k = 0, n, can be
calculated using a similar recursive formula

βk = −αk = −
1

k



sk −
k−1
∑

j=1

αjsk−j



 = −
1

k



sk +
k−1
∑

j=1

βjsk−j



 , k = 1, n,

β0 = −α0 = 1,

We can use the following algorithm for determining the coefficients βk.
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Algorithm 1.1: Determining the coefficients of the polynomial ∆(z)

1) Calculate the matrices P (k) = (pi,j(k))i,j=1,n, k = 1, n;

2) Determine the traces of the matrices P (k) :

sk = trP (k) =

n
∑

j=1

pj,j(k), k = 1, n;

3) Find the coefficients

β0 = 1, βk = −
1

k



sk +

k−1
∑

j=1

βjsk−j



 , k = 1, n.

2.3 Polynomial Time Algorithm for Determining the Function F (z)

Consider

T ′(z) = (z − 1)T (z)

and denote N = deg(T ′(z)) = n − (m(1) − 1). We have already shown that the
function F (z) can be represented in the following matrix form:

F (z) =
1

T ′(z)

N−1
∑

k=0

R(k)zk,

where

(z − 1)m(1)−1
N−1
∑

k=0

R
(k)
i,j zk = Mj,i, i, j = 1, n.

We will make some transformation using the identity I = (I − zP )(I − zP )−1. We
have

T ′(z)I = (I − zP )

N−1
∑

k=0

zkR(k) =

N−1
∑

k=0

zkR(k) −
N−1
∑

k=0

zk+1(PR(k)) =

= R(0) +
N−1
∑

k=1

zk(R(k) − PR(k−1)) − zN (PR(N−1)).

Let T ′(z) =
N
∑

k=0

β∗
kzk and substitute this expression in obtained above re-

lation. Then we obtain the following formula for determining the matrices
R(k), k = 0, N − 1:

R(0) = β∗
0I; R(k) = β∗

kI + PR(k−1), k = 1, N − 1. (10)
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So, we have

F (z) =

(

Vij(z)

T ′(z)

)

i,j=1,n

,

where

Vi,j(z) =

N−1
∑

k=0

R
(k)
ij zk, i, j = 1, n.

Based on these formula we can develop algorithm for determining the matrix Q.

2.4 Polynomial Time Algorithm for Determining the Matrix

of Limiting-State Probabilities Q

Consider

T (z) =

N−1
∑

k=0

γkz
k; Y (z) =

N−2
∑

k=0

y(k)zk; y∗ = α1(1).

Then according to relation (8) we obtain

Vi,j(z)

T ′(z)
= Fi,j(z) =

y∗i,j

z − 1
+

N−2
∑

k=0

y
(k)
ij zk

T (z)
, i, j = 1, n.

This involve

N−1
∑

k=0

R
(k)
i,j zk = Vi,j(z) = y∗i,jT (z) + (z − 1)

N−2
∑

k=0

y
(k)
i,j zk = y∗i,j

N−1
∑

k=0

γkz
k+

+

N−2
∑

k=0

y
(k)
i,j zk+1 −

N−2
∑

k=0

y
(k)
i,j zk =

N−1
∑

k=0

γky
∗
i,jz

k +

N−1
∑

k=1

y
(k−1)
i,j zk −

N−2
∑

k=0

y
(k)
i,j zk =

= (γ0y
∗
i,j −y

(0)
i,j )+

N−2
∑

k=1

(γky
∗
i,j +y

(k−1)
i,j −y

(k)
i,j )zk +(γN−1y

∗
i,j +y

(N−2)
i,j )zN−1, i, j = 1, n.

If we equate the corresponding coefficients of the variable z with the same expo-
nents then we obtain the following system of linear equations:



























R
(0)
i,j = γ0y

∗
i,j − y

(0)
i,j ,

R
(k)
i,j = γky

∗
i,j + y

(k−1)
i,j − y

(k)
i,j , k = 1, N − 2,

R
(N−1)
i,j = γN−1y

∗
i,j + y

(N−2)
i,j ,

i, j = 1, n.
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This system is equivalent to the following system:



























y
(0)
i,j = γ0y

∗
i,j − R

(0)
i,j ,

y
(k)
ij = γky

∗
i,j + y

(k−1)
i,j − R

(k)
i,j , k = 1, N − 2,

y
(N−2)
i,j = −γN−1y

∗
i,j + R

(N−1)
i,j .

i, j = 1, n.

Here we can see that there exist the coefficients u
(k)
i,j , v

(k)
i,j ∈ C, k = 0, N − 2, i, j = 1, n,

such that
y

(k)
i,j = u

(k)
i,j y∗i,j + v

(k)
i,j , k = 0, N − 2, i, j = 1, n.

From the first equation we obtain

u
(0)
i,j = γ0, v

(0)
i,j = −R

(0)
i,j , i, j = 1, n.

From the next N − 2 equations we obtain

y
(k)
i,j = γky

∗
i,j + y

(k−1)
i,j − R

(k)
i,j = γky

∗
i,j + u

(k−1)
i,j y∗i,j + v

(k−1)
i,j − R

(k)
i,j =

= (γk + u
(k−1)
i,j )y∗i,j + (v

(k−1)
i,j − R

(k)
ij ), k = 1, N − 2, i, j = 1, n,

which involve the recursive equations

u
(k)
i,j = u

(k−1)
i,j + γk, v

(k)
ij = v

(k−1)
i,j − R

(k)
i,j , k = 1, N − 2, i, j = 1, n.

In a such way we obtain the direct formula for calculation of the coefficients:

u
(k)
i,j =

k
∑

r=0

γr, v
(k)
i,j = −

k
∑

r=0

R
(r)
i,j , k = 0, N − 2, i, j = 1, n.

If we introduce these coefficients in the last equation of the system then we obtain

u
(N−2)
i,j y∗ij + v

(N−2)
i,j = −γN−1y

∗
ij + R

(N−1)
i,j , i, j = 1, n ⇔

⇔ y∗i,j

N−1
∑

r=0

γr =

N−1
∑

r=0

R
(r)
i,j , i, j = 1, n ⇔

⇔ y∗i,j =

N−1
∑

r=0
R

(r)
i,j

N−1
∑

r=0
γr

=
Ri,j

T (1)
, i, j = 1, n,

where Rij =
N−1
∑

r=0
R

(r)
i,j , i, j = 1, n. Finally, if we denote R = (Rij)i,j=1,n then

Q = −
1

T (1)
R. (11)
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Based on result described above we can describe the algorithm for determining the
matrix Q.

Algorithm 1.2: Determining the Limiting-State Matrix Q

1) Find the coefficients of the polynomial ∆(z) =
n
∑

k=0

βkz
k using Algorithm 1.1;

2) Divide m(1) times the polynomial ∆(z) by z − 1, using Horner scheme and
find the polynomial T (z) that satisfies the condition T (1) 6= 0. At the same time
we preserve the coefficients β∗

k , k = 0, N , of the polynomial T ′(z) = (z − 1)T (z)
obtained at the previous step of the Horner’s scheme;

3) Determine T (1) according to the rule described above;

4) Find the matrices R(k), k = 0, N − 1, according to (10);

5) Find the matrix R =
N−1
∑

k=0

R(k);

6) Calculate the matrix Q according to formula (11);

It is easy to check that the running time of Algorithm 1.2 is O(|X|4). Indeed,
step 1) and step 4) of the algorithm use O(|X|4) elementary operations and each
of remainder steps 2) - 3) and 5) - 6) use in the worst case O(|X|3) elementary
operations.

3 Numerical examples

In this section we give some numerical examples which illustrate the main details
of the algorithms from previous section.

Example 1. Consider the discrete Markov process with the stochastic matrix

of probability transactions P =

(

0 1
1 0

)

. We can see that Pn) =

(

1 0
0 1

)

,

P 2n+1 =

(

0 1
1 0

)

, ∀n ≥ 0, i.e. the Markov chain is 2-periodic.

So, in this case the limit lim
n→∞

Pn does not exist, but there exists the matrix Q

which can be found by using algorithm described above. If we apply this algorithm
then we obtain:

1) P =

(

0 1
1 0

)

, P 2 =

(

1 0
0 1

)

; s1 = trP = 0, s2 = trP 2 = 2;

β0 = 1, β1 = −s1 = 0, β2 = −
1

2
(s2 + β1s1) = −1;

2) We divide the polynomial β2z
2 + β1z + β0 by z − 1 using Horner’s scheme

-1 0 1

1 -1 -1 0

1 -1 -2
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and obtain m(1) = 1, N = 2; β∗
0 = 1, β∗

1 = 0, β∗
2 = −1; γ0 = −1, γ1 = −1;

3) T (1) = γ0 + γ1 = −2;

4) R(0) = β∗
0I =

(

1 0
0 1

)

, R(1) = β∗
1I + PR(0) =

(

0 1
1 0

)

;

5) R = R(0) + R(1) =

(

1 0
0 1

)

+

(

0 1
1 0

)

=

(

1 1
1 1

)

;

6) Q = −
1

T (1)
R =

1

2

(

1 1
1 1

)

=

(

0.5 0.5
0.5 0.5

)

.

In such a way we obtain the limit matrix Q =

(

0.5 0.5
0.5 0.5

)

, however the

considered process is not ergodic because the matrix P (n) contains zero elements
∀n ≥ 0. The rows of this matrix are the same and the vector of limiting
probabilities π∗ = (0.5, 0.5) can be found also by solving the system of linear
equation (4).

Example 2. Consider the Markov process with the stochastic matrix

P =

(

0.5 0.5
0.4 0.6

)

. We can see that in this case the Markov process is ergodic.

We can find the matrix Q using our algorithm:

P =

(

0.5 0.5
0.4 0.6

)

, P 2 =

(

0.45 0.55
0.44 0.56

)

;

s1 = trP = 0.5 + 0.6 = 1.1, s2 = trP 2 = 0.45 + 0.56 = 1.01;

β0 = 1, β1 = −s1 = −1.1, β2 = −
1

2
(s2 + β1s1) = −

1

2
(1.01 − 1.1 · 1.1) = 0.1;

0.1 -1.1 1

1 0.1 -1 0

1 0.1 -0.9

β∗
0 = 1, β∗

1 = −1.1, β∗
2 = 0.1; γ0 = −1, γ1 = 0.1; T (1) = γ0 + γ1 = −0.9;

R(0) = β∗
0I =

(

1 0
0 1

)

, R(1) = β∗
1I + PR(0) =

(

−0.6 0.5
0.4 −0.5

)

;

R = R(0) + R(1) =

(

0.4 0.5
0.4 0.5

)

; Q = −
1

T (1)
R =

1

9

(

4 5
4 5

)

.

We have Q =

(

4/9 5/9
4/9 5/9

)

. The rows of this matrix are the same and all

elements of the matrix P (n) are non zero when t → ∞. So, this is ergodoc Markov

process with the vector of limiting probabilities π∗
1 =

4

9
. As we have shown this

vector can be found by solving system (4).
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Example 3. We consider a non ergodic Markov process with the stochastic matrix
of probabilities transactions

P =





1 0 0
0 1 0

1/3 1/3 1/3



 .

In this case the solution of the system of linear equations (4) is not unique. If we
apply the proposed algorithm we can determine the matrix Q. According to this
algorithm we obtain:

P =









1 0 0
0 1 0
1

3

1

3

1

3









, P 2 =









1 0 0
0 1 0
4

9

4

9

1

9









, P 3 =









1 0 0
0 1 0
13

27

13

27

1

27









;

s1 = trP = 7/3, s2 = trP 2 = 19/9, s3 = trP 3 = 55/27; β0 = 1,

β1 = −s1 = −7/3, β2 = −(s2 +β1s1)/2 = 5/3, β3 = −(s3 +β1s2 +β2s1)/3 = −1/3;

-1/3 5/3 -7/3 1

1 -1/3 4/3 -1 0

1 -1/3 1 0

1 -1/3 2/3

β∗
0 = −1, β∗

1 = 4/3, β∗
2 = −1/3; γ0 = 1, γ1 = −1/3; T (1) = γ0 + γ1 = 2/3;

R(0) = β∗
0I =





−1 0 0
0 −1 0
0 0 −1



 , R(1) = β∗
1I + PR(0) =





1/3 0 0
0 1/3 0

−1/3 −1/3 1



 ;

R = R(0) + R(1) =





−2/3 0 0
0 −2/3 0

−1/3 −1/3 0



 ; Q = −
1

T (1)
R =





1 0 0
0 1 0

1/2 1/2 0



 .

So, finally we have

Q =





1 0 0
0 1 0

1/2 1/2 0



 .

In this case all rows of the matrix Q are different. It is easy to observe that for the
considered example there exits lim

n→∞
P (n) = Q.
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Numerical modeling of multidimensional problems

of gravitational gas dynamics

with high resolution schemes
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Abstract. The aim of this paper is to implement and analyze a nonoscillatory high-
resolution scheme for multudimensional hyperbolic conservation laws. Using methods
of Nessyahu and Tadmor for solving three–dimensional equations of gravitational gas
dynamics we provide a central two-step (predictor and corrector) scheme.
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1 Introduction

High resolution numerical schemes are used to solve multidimensional problems
of gravitational gas dynamics. Most of modern cosmological models assume exis-
tence of two matter types in the Universe – baryonic matter and another one known
as a dark matter. The first may be straight examined and includes atoms of any
sort. The second one is undetectable by its emitted radiation, but its presence
can be inferred from gravitational effects on visible matter. Gaseous nebula is con-
sidered to be a formation of gas, dust and other materials that ”clump” together
to form larger masses, which attract further matter, and eventually become big
enough to form stars. The remaining materials are then believed to form planets,
and other planetary system objects [1, 2]. For a sufficiently accurate description
of these problems we need to apply high-resolution difference schemes which use
high-order schemes. A stable calculation in presence of shock waves requires a cer-
tain amount of numerical dissipation, in order to avoid the formation of unphysical
numerical oscillations [3].

A three–dimensional difference scheme of the type TVD and some other related
results are presented in the paper [4].

2 Governing Equations

The equations of a self-gravitational ideal hydrodynamics may be expressed in a
conservative form with a source term:

c© Boris Rybakin, Natalia Shider, 2010
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∂U

∂t
+
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
= 0, (1)

together with Poissons equation

∇2Φ = 4πGρ, (2)

here U is a vector of conservative variables; Fx, Fy and Fz are numerical fluxes.
In equation (2) Φ, G and ρ denote respectively the gravitational potential, the
gravitational constant and the density.

Equation (1) for ideal gas with self-gravity U is expressed in terms of

U = (ρ, ρvx, ρvy, ρvz, ρE)T, (3)

Fx =















ρvx
ρv2x + p+ ρgx
ρvxvy
ρvxvz

ρE + p+ ρg















, (4)

here v = (vx, vy, vz)
T are the speed components, g = (gx, gy, gz)

T = −∇Φ is the

gravity, E = |v|2

2 + p
(γ−1)ρ is the total energy, and p is the pressure. Components

Fy and Fz are obtained similarly [1]. The pressure is presented by barotropic and
isothermal equations of state with γ = 5/3.

3 Discretization

Many modern high-resolution numerical schemes for gasdynamics conservation
laws use the Godunov approach. These methods are also called finite volume me-
thods. They, as a rule, use two-step-by-step methods of type predictor-corrector.
Many of them use a uniform grid: cubic or parallelepiped. These schemes utilize
the sliding average of the solution u(x, y, z, t) in x direction:

u(x, t) ≡
1

|Ix|

∫

Ix
u(s, t)ds, Ix ≡ {s : |s− x| ≤

∆x

2
}

so that the integration of the conservation laws (1) over the rectangle Ix× [t, t+ ∆t]
gives the equivalent formulation:

u(x, t+ ∆t) = u(x, t)−
1

∆x

[

∫ t+∆x

Ix
f(u(x+

∆x

2
, τ))dτ− (5)

−

∫ t+∆x

Ix
f(u(x−

∆x

2
, τ))dτ

]

.
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Central schemes of the type Lax-Wendroff denote a class of difference methods
for solving hyperbolic partial differential equations. The original one involves a
strong viscosity and low resolution. Nessyahu and Tadmor [5] proposed a second
order accurate scheme with a piecewise constant approximation replaced by linear
interpolation. Thus the resolution of Nessyahu and Tadmor scheme is better than
the resolution of upwind schemes, and are much more easier to implement than the
schemes that use Riemann invariants.

The average value wnj may be calculated at a time tn in the mesh cell Ij ≡
{x : xj−1/2 ≤ x ≤ xj+1/2}. It is necessary to form a piecewise linear interpolation
polynomial with respect to mean values wnj at a time tn in order to calculate the
mean value in the cell Ij+ 1

2
≡ {x : xj ≤ x ≤ xj+1} at the time level tn+1 .

A 1-D piece-wise linear approximation may be written as follows

w(x, tn) =
∑

[

wnj + wj
′(x− xj

∆x

)]

χj(x).

Here χp(x) is a characteristic cell function, but wj
′ is a first order limiter built

on mean values of neighbourhood cells {wnj }. If {wnj , t ≥ t
n} is a conservation laws

exact solution wt + f(w)x = 0, then a central difference scheme is obtained versus
Godunov’s upwind scheme. Let wnj+1/2(t) = 1

∆x

∫

Ij+1/2
w(ξ, t)dξ be a mean value

shifted to the cell center. Then the control value (5) integrating gives:

wnj+1/2(tn+1) = wnj+1/2(tn)− (6)

−λ
[ 1

∆t

∫ tn+1

tn
f(wj+1(τ))dτ −

1

∆t

∫ tn+1

tn
f(wj(τ))dτ

]

.

Here λ = ∆t
∆x is a common restriction to the time step

Piece-wise linear mean values constructed at time-step t = tn give wnj+1/2(tn+1) =

1/2(wnj+1 + wnj ) + 1/8(w′j − w
′
j−1). It follows easily that 1

∆t

∫ tn+1

tn f(wj(τ))dτ ∼

f(wj(t
n+1/2)). The values

w
n+ 1

2
j = wnj −

λ

2
(f(wj))

′ (7)

are calculated in the end of the predictor step.
The expression

wn+1
j+ 1

2

=
1

2
(wnj + wnj+1) +

1

8
(w′j + w′j+1)− λ

[

f(w
n+ 1

2
j+1 )− f(w

n+ 1
2

j )
]

(8)

gives a possibility to obtain the values on the corrector step. Here w′j and f(wj)
′ are

the spatial discrete slopes for the corresponding mesh functions described in [4, 9].
Let the piecewise linear scheme (8) be modified in order to avoid the shift by 1/2

wn+1
j =

1

4
(wnj−1 + 2wnj + wnj+1)−

1

16
((wx)j+1 − (wx)j−1)− (9)
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−
λ

2

[

f(w
n+ 1

2
j+1 )− f(w

n+ 1
2

j−1 )
]

−
1

8
((wx)j+ 1

2
− (wx)j− 1

2
).

Consider (9) so that (wx)j and (wx)j+ 1
2

are the discrete time derivatives for the

tn and tn+1 time steps. The value w
n+ 1

2
j is defined on the predictor step by (7). The

Courant-Friedrichs-Levi condition must be fulfilled for the given central difference
scheme.

Consider a two-dimensional case, then a piecewise linear approximation wni,j is
obtained for the mean values corresponding to the cell center Cij :

Cij =

{

(ξ, η) : |ξ − xi| ≤
∆x

2
, |η − yj | ≤

∆y

2

}

For the predictor step we have the following:

w(x, y, tn) =
∑

[

wnij + w′ij(
x− xi

∆x
) + ẁij(

y − yj
∆y

)

]

χij(x, y) (10)

here w′ij and ẁij are the limiters along x and y axes.

4 Numerical Experiments for High Resolution Schemes. Numerical

tests in 2D

Implementing any differrence scheme includes a quite important stage – testing.
Our code was tested using three test problems in a two-dimensional setting thus
the accuracy and robustness could be examined. The first test to implement was a
Sedov-Taylor problem. It is a well known and rather severe spherically symmetric
shock wave propagation problem. We complicated it by considering an interaction
of two spherically symmetric shock waves propagating from two explosion sources
of equal power. Thus the oscillationns beyond shocks and steep gradients common
to this difference scheme may be analyzed.

Figure 1. Sedov-Teylor test for interacting shock waves. On the left figure t=2.2631,
on the right t=4.6978

The second test is a shock wave and gas buble interacting problem. The buble is
considered to be filled in with the gas of low density [6]. And the last test problem,
considered in this paper, was taken from [7].
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Figure 2. 3D figures for Sedov-Teylor test. Time t=4.6978

4.1 Sedov-Taylor test

Consider a rectangular 400 x 400 cell computational domain. Two power sources
are situated on its diagonal and equally distanted from the center. Spacial steps are
dx=0.05 and dy=0.05, specific heat ratio is γ = 1.4. The initial values of density and
pressure are 1.0 in the whole domain, velocity components are equal to 0. Notice that
rectangular grids are noninvariant with respect to rotation. So the difference scheme
”quality” can be estimated by obtaining a spherically symmetric shock waves.

Figure 3. Shock waves interacting
with gas bubble at time t=0.12

Figure 4. Shock waves interacting with
gas bubble at time t=2.335

Figure 5. Shock waves interacting
with gas bubble at time t=6.586

Figure 6. Shock waves interacting with
gas bubble at time t=10.0
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Figure 7. Shock waves in-
teracting with gas bubble at
time t=14.058

Figure 8. Shock waves interacting with
gas bubble at time t=18.988

4.2 Bubble test

We simulate the interaction of a low density gas bubble of radius r = 0.2, centered
at (0.5, 0) with a shock wave. The shock is initially at x = 0.2, and the initial condi-
tions to the right of the shock and outside the bubble are (ρ, u, v, p)T = (1, 0, 0, 1)T ,
inside the bubble the pressure and density are p = 1 and ρ = 0.1, and to the left of
the shock, they are determined by the Rankine-Hugoniot conditions [3].

We consider the 2-D Euler equation of gas dynamics in the strip R:(-0.5, 0.5)
with the solid wall boundary conditions prescribed at y = ±0.5. The initial data
correspond to a vertical left-moving shock, initially located at x = 0.75, and a circular
bubble with radius 0.25, initially located at the origin. Notice that as the problem
was considered for the rectangular grid, then the low density gas domain should
be defined for the corresponding rectangular domain. See on the right-hand side
in figure 3. These results demonstrate the robustness and stability of the proposed
central scheme to evolve the solution of hyperbolic conservation laws. In (3) – (8)
the interaction of gas cloud and shock wave at various times is presented.

Figure 9. 2D shock tube
t=0.4564

Figure 10. 2D shock tube t=0.90947

4.3 Two-dimension shock tube test

Consider (1) 2-D shock tube problem [7, 10]. Computational domain is a
square R:{0:1 x 0:1}, divided into four quadrants by lines x = 1/2, y = 1/2.
Spatial steps are dx=0.0025 and dy=0.0025, specific heat ratio is γ = 1.4. We
denote the quadrants [7]: left lower – 1.1, right lower – 1.2, left top – 2.1,
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right top – 2.2 and set a Riemann problem initial data in these quadrants as
follows: (ρ, u, v, p)T = (2.0, 0.75, 0.5, 1.0)T ; (ρ, u, v, p)T = (1.0, 0.75,−0.5, 1.0)T ;
(ρ, u, v, p)T = (1.0,−0.75, 0.5, 1.0)T ; (ρ, u, v, p)T = (3.0,−0.75,−0.5, 1.0)T .

In Figures (11) – (12) ρ is the density, u and v are the velocity components,

E = ρe+
ρ(u2 + v2)

2

is the total energy per unit volume and e is the internal energy. Ideal gas law
p = ρe(γ − 1) is used to solve the system of equations that is under consideration.

Figure 11. t=1.3686 Figure 12. t=1.9106

Figures 9 - 12 present the disttribution graphs of the density in the different
time steps. Here the number of Courant-Friedrichs-Levi is CFL=0.45. The results
almoust coincide with the data obtained in [7]. One may observe that shock fronts
are enough sharp and there are not any considerable oscillations beyond them.

4.4 Conclusions

We have presented a difference scheme for solving multidimensional gas-dynamics
equations. In particular it has been shown that the scheme and code are able to
model the processes goverened by conservation laws robustly and accurately. The
main purpose of this article was to develop high resolution schemes and to illustrate
their potential. Our numerical experiments suggest that these schemes have a good
resolution and may be applied for solving various astrophysical problems.

This article has been written under the support of the grant RFFI - Moldova
(IKI RAS - IMI ASM) 08.820.06.40 RF.
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polydisk and study the action of classical operator of differentiation on them. We
substantially supplement the list of previously known assertions of this type.
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1 Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk in C, T = {|z| = 1}
be the unit circle, In = (0, 1]n,Tn = T · · ·T, D

n = {z = (z1, z2, · · · , zn) :
|zj | < 1, j = 1, 2, · · · , n} be the unit polydisk, H(D) be the space of all holo-
morphic functions in the unit disk, and let H(Dn) be the space of all holomor-
phic functions in the polydisk. Let T (f, τ) be the Nevanlinna characteristic of
f , f ∈ H(D) [1]. Let below always w be a function from the set of all pos-
itive slowly growing functions, w ∈ L1(0, 1) such that there are two numbers

mw > 0,Mw > 0 and a number qw ∈ (0, 1) such that mw ≤
w(λτ)

w(τ)
< Mw,

τ ∈ (0, 1), λ ∈ [qw, 1] (see [7]). We define several subspaces of H(D) for fixed
function w ∈ L1(0, 1], w > 0.

N1
p,w,β=

{

f ∈ H(D) : sup
0<R≤1

∫ R

0
(T (f, τ))pw(1 − τ)dτ(1 − R)β < +∞

}

,

N2
p,w,α =

{

f ∈ H(D) :

∫ 1

0

[

sup
τ∈(0,R]

(T (f, τ))pw(1 − τ)

]

(1 − R)αdR < +∞

}

,

N3
p,q,w,α =

{

f ∈ H(D) :

∫ 1

0

(
∫ R

0
(T (f, τ))pw(1 − τ)dτ

)
q
p

(1 − R)αdR < +∞

}

,

N4
p,q,w =

{

f ∈ H(D) :

∫ 1

0

(
∫ π

−π

ln+ |f(τξ)|pdξ

)
q
p

w(1 − τ)dτ < +∞

}

,

c© Romi Shamoyan, Haiying Li, 2010
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N5
p,q,w =

{

f ∈ H(D) :

∫ π

−π

(∫ 1

0
ln+ |f(τξ)|pw(1 − τ)dτ

)
q
p

dξ < +∞

}

,

Np =

{

f ∈ H(D) : sup
τ<1

∫ π

−π

(ln+ |f(τξ)|)pdξ < ∞

}

,

where 0 < p, q < ∞, α > −1, β ≥ 0.

Note that these are complete metric spaces which can be checked without
difficulties.

It is obvious that for q = ∞, w = 1 the N4
p,q,w coincides with the well-known Np

spaces of holomorphic functions with bounded characteristic [5].

In recent papers [4, 5] it was noted that the following assertions concerning the
action of differentiation D(f)(z) = f ′(z) and integration I(f)(z) =

∫ z

0 f(t)dt are
valid in mentioned analytic classes. N4

q,q,α is closed under differentiation and inte-
gration operator (if w(|z|) = (1−|z|)α we denote N4

p,q,w by N4
p,q,α), N4

q,q,w and N4
1,q,w

are closed under differentiation operator D(f) if and only if
∫ 1
0 w(t)(ln 1

t
)pdt < +∞.

The study I(f),D(f) in Smirnov N+ class were studied also earlier (see [6] and
references there).

We note that much earlier in [2] Frostman then W. K.Hayman [3] established
that the Np class is not invariant under differentiation operator, but Np, p > 1 are
closed under integration operator, but not N1.

The natural question is to study differentiation operator in N i
p,w,α, i = 1, 2, 3, 4, 5.

The goal of this paper is to provide several new sharp results in this direction.
Finally we would like to indicate that all assertions of this note were obtained by
modification of approaches and arguments provided recently in [4]. All our results in
higher dimension were obtained for n = 1 in [4]. Throughout the paper, we write C

( sometimes with indexes) to denote a positive constant which might be different at
each occurrence (even in a chain of inequalities) but is independent of the functions
or variables being discussed.

2 Main results

Motivated by the mentioned above results in this section we provide new asser-
tions concerning differentiation operator D(f) in new Nevanlinna-Djrbashian type
spaces that were defined above. In the following assertion, we provide several sharp
results on the action of the differentiation operator in Nevanlinna type analytic
spaces in the unit disk complementing previously known propositions of this type
obtained earlier by various authors (see, for example, [2–6] and references there).

Theorem 1. 1) N1
p,w,α is closed under differentiation operator D(f) if and only if

sup
R∈(0,1)

(1 − R)α
∫ R

0

(

ln
1

1 − τ

)p

w(1 − τ)dτ < ∞, 0 < p < ∞, α ≥ 0.
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2) N2
p,w,α is closed under differentiation operator D(f) if and only if

∫ 1

0
sup
R<τ

w(1 − R)

(

ln
1

1 − R

)p

(1 − τ)αdτ < ∞, 0 < p < ∞, α > −1.

3) N3
p,q,w,α is closed under differentiation operator D(f) if and only if

∫ 1

0

(
∫ R

0
w(1 − τ)

(

ln
1

1 − τ

)p

dτ

)
q
p

(1 − R)αdR < ∞, 0 < p, q < ∞, α > −1.

In the following theorem we provide sharp assertions concerning the operator of
Differentiation in N4

p,q, ew and N5
p,q, ew.

Theorem 2. D(f) is acts from N4
p,q, ew and N5

p,q, ew to N1
s,s,w,

w̃(1 − |z|) = w(1 − |z|)
q
s (1 − |z|)

2q
s
− q

p
−1

,
2

s
−

1

p
> 0, s ≥ 1, s ≥ max{q, p}

if and only if
∫ 1

0

(

ln
1

t

)s

w(t)dt < ∞.

Now we formulate some new sharp results in higher dimensions. Let always
below for any function f ∈ H(Dn),

Df(z) =
∂f(z1, z2, . . . , zn)

∂z1, . . . , ∂zn
.

Note that Nevanlinna type classes in higher dimension were studied also earlier see
for example [10] and references there.

Theorem 3. Let 0 < p < ∞,
∫ 1
0 wj(t)dt < +∞, j = 1, 2, . . . , n. Then

∫

In

(∫

Tn

ln+
∣

∣Df(τ1ξ1, . . . , τnξn)|dξ1 . . . dξn

)p

Πn
j=1wj(1 − τi)dτ1 . . . dτn ≤

≤ C

∫

In

(
∫

Tn

ln+ |f(τ1ξ1, . . . , τnξn)|dξ1 . . . dξn

)p

Πn
j=1wj(1 − τi)dτ1 . . . dτn,

−→τ = (τ1, . . . , τn), τi ∈ (0, 1).

if and only if
∫ 1

0
wj(t)

(

ln
1

t

)p

dt < +∞, j = 1, 2, . . . , n.
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Theorem 4. Let s ≥ 1, s ≥ max{q, p}, w = Πn
j=1wj . Let

2

s
−

1

p
> 0, w̃j(1 − |zj |) = wj(1 − |zj |)

q
s (1 − |zj |)

2q
s
− q

p
−1

.

Then Df is acts from N4
p,q, ew(N5

p,q, ew) to N1
s,s,w if and only if

∫ 1

0
wj(1 − τ)

(

ln
1

1 − τ

)s

dτ1 . . . dτn < +∞, j = 1, 2, . . . , n,

where

N4
p,q,w(Dn) =

{

f ∈ H(Dn) :

∫

Tn

(∫

In

ln+ |f(τξ)|pΠn
k=1w(1 − τk)dτ

)
q
p

dξ < +∞

}

,

N5
p,q,w(Dn) =

{

f ∈ H(Dn) :

∫

In

(
∫

Tn

ln+ |f(τξ)|pdξ

)
q
p

×

×Πn
k=1w(1 − τk)dτ1 . . . dτn < +∞

}

.

Let us mention some lemmas that are needed for the proofs.

Lemma 1. The following estimates are true.

1)

∫

Tn

ln+ |Df(τ1ϕ1, . . . , τnϕn)|dϕ1 . . . dϕn ≤

≤ C

(( n
∑

j=1

ln
1

1 − τj

)

+

∫

Tn

ln+ |f(−→τ ξ)|dmn(ξ)

)

, −→τ =

(

1 + τ1

2
, . . . ,

1 + τn

2

)

,

τi ∈ (0, 1), i = 1, . . . , n;

2)

ln+ T

(

1 + τ

2
, f

)

≤ CT

(

1 + τ

2
, f

)

, τ ∈ (0, 1),

T (f,R) =
1

2π

∫ π

−π

ln+ |f(Rξ)|dξ,R ∈ (0, 1).

Lemma 2. Let λk = 2λk , λ > 0, τn = exp

(

−
1

2nλ

)

. Then for ϕ ∈ [0, 2π], there

exist a function f, f ∈ H(D),

ln+ |f ′(τneiϕ)| ≥ C ln
1

1 − τn
, f(z) =

∞
∑

k=0

λα−1
k zλk , 0 < α < 1, λ > 0.
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Lemma 3. 1) Let Rmj
= exp

(

−
1

2λmj

)

∈ (0, 1], t ∈ (0,+∞), λ > 0,

j = 1, 2, . . . , n. Then there exists a function f, f ∈ H(Dn),

(

ln+ |Df(Rm1e
iϕ1 , . . . , Rmneiϕn)|

)t

≥ C

n
∑

j=0

(

ln
1

1 − Rmj

)t

, ϕi ∈ (0, 2π].

2) ∫

Tn

(

ln+ |Df(τ1ξ1, . . . , τnξn)|

)s

dξ1 . . . dξn

is growing as a function of τ1, . . . , τn for every s ≥ 1, f ∈ H(Dn).

Remark 1. The statements of Theorem 2 for q = p = s were established in [4].

Remark 2. As W. Hayman shows in the unit disk there is a function so that

T (τ, I(f)) > C ln
1

1 − τ
, T (τ, f) < C, τ ∈ (0, 1). Let X be any normed class

X ⊂ H(D) so that ‖f‖X(w) ≤ C supτ T (τ, f). If for f ∈ X(w), I(f) ∈ X(w),

then ‖ ln
1

1 − τ
‖X(w) < +∞. As X(w) we can obviously take any space N i

p,q,w, i =

1, 2, 3, 4, 5 under some natural additional assumption on w.

Remark 3. It is not difficult to see that the statements of Theorem 1 and Theorem
2 remain true if we replace D operator by

∧

(f)(z) =
∑n

k=0 fk(z)Dk(f)(z), where fk

are functions from N i
p,q,w, i = 1, 2, 3, 4, 5. The same statement is true for ˜Ik.

Note that with the help of so-called slice functions technique in [4,9], some results
of this paper can be even expanded to the unit ball.
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A class of algebraic systems of signature σ is any set (possibly empty) of systems
of signature σ which contains together with every its system all isomorphic to it
systems. A class K of algebraic systems of signature σ is called a universal class
if there exists such a set Σ of universal formulae (∀-formulae) that K be formed of
all systems of signature σ, with the formulae from Σ holding true within it. If all
formulae from Σ are identities or quasi-identities, then the class K is called a variety
or quasi-variety, respectively.

In [1] W. Taylor defined the product of two varieties of algebras of different
signatures as a variety of non-indexed products of algebras from these varieties.
The non-indexed product of two algebras A and B is defined as an algebra with
the basic set equal to the Cartesian product of the basic sets of these algebras and
with the set of operations consisting of all pairs of terms of the same number of
variables. It is difficult to investigate this product, which we will name hereafter
a Taylor product, due to the fact that the signature of the Taylor product of two
(or more) varieties is complex, and it is difficult to investigate the operations of the
algebras from this variety.

This paper presents a new concept for the product of two or more classes of
algebraic systems of different signatures and shows that the product of universal
classes is a universal class, the product of quasi-varieties is a quasi-variety, and the
product of varieties is a variety.

1 Preliminary notions and results

For any class K of algebraic systems of signature σ we will denote by

S(K) – the class of all subsystems of K-systems,

P (K) – the class of all Cartesian products of K-systems,

F (K) – the class of all filtered products of K-systems,

H(K) – the class of all homomorphic images of K-systems.

c© Vasile I. Ursu, 2010
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If S(K) = K, P (K) = K, or H(K) = K holds for a class K, then one class
K is called hereditary, multiplicatively closed, filteredly closed, or homomorphically
closed, respectively.

Next we will need the following main results from the variety and quasi-variety
theory, obtained by Birkhoff G. and Mal’cev A.I.

Theorem 1 (Birkhoff [2]). A class K of algebraic systems is a variety if and only

if the class K satisfies the following conditions:

(a) is hereditary,

(b) is multiplicatively closed,

(c) is homomoprhically closed.

Theorem 2 (Mal’cev [3]). A class K of algebraic systems is a quasi-variety if and

only if the class K satisfies the following conditions:

(a) is hereditary,

(b) is filteredly closed,

(c) contains the unitary system.

It is worth reminding that a filter over a non-empty set I is a set D of subsets
of I that satisfies the following conditions:

1) A ∈ D & B ∈ D ⇒ A ∩ B ∈ D,
2) A ∈ D & A ⊆ B ⊆ I ⇒ B ∈ D,
3) ∅ /∈ D.

It is obvious that the set of all filters over I is a partially ordered set relative to
the inclusion. A maximal filter over I is called a ultrafilter.

A filtered product of algebraic systems is defined as follows. Let Ai, i ∈ I, be
a set of algebraic systems of the same signature σ and D a filter over I. We define
the basic relation ≡ on the Cartesian product A =

∏

i∈I Ai, putting a ≡ b (a, b ∈ A)
if and only if the set of indices {i ∈ I|a(i) = b(i)} belongs to the filter D. The
binary relation ≡ is an equivalence; moreover, it is stable relative to any operation
of system A, that is, if fA is an n operation of the system A, then

a1 ≡ b1& . . . &an ≡ bn ⇒ f(a1, . . . , an) ≡ f(b1, . . . , bn)

for any elements ai, bi, i = 1, . . . , n, from A. This means that the operations fA/≡,
f ∈ σ, and predicates rA, r ∈ σ, can be naturally defined on the set A/ ≡ of classes
of equivalences a/ ≡, (a ∈ A) in such a way that:

fA/≡(a1/ ≡, . . . , an/ ≡) = fA(a1, . . . , an)/ ≡,

where n is the arity of the functional symbol f ; in A/ ≡ the following relation

rA/≡(a1/ ≡, . . . , am/ ≡),

holds, where m is the arity of predicate r if and only if the set {i ∈ I|Ai |=
rAi(a1(i), . . . , am(i))} belongs to the filter D. The algebraic system, built in such a
way, is denoted by A/D and is called the filtered product of systems Ai, i ∈ I, and
if D is an ultrafilter, it is called an ultraproduct.
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2 Products of universal classes and quasi-varieties

Let Ai, i ∈ I, be a set of algebraic systems of arbitrary signatures σi, i ∈ I. We
complete the signature of every system Ai with the functional symbols pj, j ∈ I,

that correspond to the operations of projections pAi

j , j ∈ I, defined on the Cartesian

power AI
i with values from Ai : pAi

j (a) = aj , j ∈ I, for any element a = ai, i ∈

I) ∈ AI
i . If not all systems from this set are algebraic, then we also complete the

signature of every system Ai with the predicative symbol e that corresponds to the
real identical predicate eAi , defined on the Cartesian power AI

i with real values:
Ai |= eAi(a) (eAi(a) holds in Ai) for any a = (ai, i ∈ I) ∈ AI

i . The system we obtain
in such a way will be called an enriched algebraic system and will be also denoted
by Ai.

The enriched Cartesian product of the enriched algebraic systems Ai, i ∈ I, is
an algebraic system ⊗iAi with the basic set A =

∏

i∈I Ai, which for each family of

basic n-operations (fAi

i , i ∈ I) and each family of basic m-predicates (rAi

i , i ∈ I) of
the enriched systems Ai, i ∈ I, has a basic n-operation fA and a basic m-predicate,
defined by

fA(a1, . . . , am) = (fAi

i (a1(i), . . . , an(i)), i ∈ I),

A |= rA(a1, . . . , am) ⇔ &i∈IAi |= rAi

i (a1(i), . . . , am(i)),

where a1, a2, . . . are elements from A and it doesn’t have any other basic operations
and predicates.

We notice that if Ai, i ∈ I, are algebras, then the system ⊗iAi is an algebra.
Let now Qi, i ∈ I be a set of classes of algebraic systems. The signatures of these

classes may be different. We will define the product of classes Qi, i ∈ I, as the class
of algebraic systems, consisting of all isomorphisms of algebraic systems of the form
⊗iAi, where Ai ∈ Qi, i ∈ I. We will denote the product of classes Qi, i ∈ I, by ⊗iQi

and by Q1 ⊗ . . . ⊗ Qn if I = {1, . . . , n}.

Lemma 1. The product of a finite number of filteredly closed classes is a filteredly

closed class.

Proof. Let Ki, i = 1, . . . , n, be a set of closed classes relative to filtered products and
K = K1 ⊗ . . . ⊗ Kn be their product, Ai = Ai

1 ⊗ . . . Ai
n, i ∈ I, be a set of algebraic

systems with Ai
j ∈ Kj , j = 1, . . . , n, and D be a filter over I. Then

∏

i∈I

Ai
1/D ∈ K1, . . . ,

∏

i∈I

Ai
n/D ∈ Kn.

We will show that the following isomorphism holds
∏

i∈I

Ai/D ∼= (
∏

i∈I

Ai
1/D) ⊗ . . . ⊗ (

∏

i∈I

Ai
n/D)

and then we will get
∏

i∈I

Ai/D ∈ K.
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Let ϕ be a mapping from
∏

i∈I Ai/D in (
∏

i∈I Ai
1/D)⊗. . .⊗(

∏

i∈I Ai
n/D) defined

by the relation

ϕ(a) = ϕ((ai
1, . . . , a

i
n), i ∈ I)D = ((ai

1, i ∈ I)D, . . . , (ai
n, i ∈ I)D)

for any a = ((ai
1, . . . , a

i
n), i ∈ I)D ∈

∏

i∈I Ai/D, where ai
1 ∈ Ai

1, . . . , a
i
n ∈

Ai
n, i ∈ I, is an epimorphism. We denote A =

∏

i∈I Ai/D,A1 =
∏

i∈I Ai
1/D,

. . . , An =
∏

i∈I Ai
n/D.

We consider a basic operation fA of arity k of the algebraic system A. By the
definition, we have

fA(a1, . . . , ak) =

= fA(((ai
11, . . . , a

i
1n), i ∈ I)D, . . . , ((ai

k1, . . . , a
i
kn), i ∈ I)D) =

= ((fAi
1(ai

11, . . . , a
i
k1), i ∈ I), . . . , (fAi

n(ai
1n, . . . , ai

kn), i ∈ I))D

for all a1 = ((ai
11, . . . , a

i
1n), i ∈ I)D, . . . , ak = ((ai

k1, . . . , a
i
kn), i ∈ I)D from A. It

follows from here that

ϕ(fA(a1, . . . , ak)) = ((fAi
1(ai

11, . . . , a
i
k1), i ∈ I)D, . . . , (fAi

n(ai
1n, . . . , ai

kn), i ∈ I)D) =

= (fA1((ai
11, i ∈ I)D, . . . , (ai

k1, i ∈ I)D), . . . , fAn((ai
1n, i ∈ I)D, . . . , (ai

kn, i ∈ I)D)) =

= fA1⊗...⊗An(ϕ(((ai
11, . . . , a

i
k1), i ∈ I)D), . . . , ϕ(((ai

1n, . . . , ai
kn), i ∈ I)D)) =

= fϕ(A)(ϕ(a1), . . . , ϕ(ak)).

Let now rA be a basic m-relation of the algebraic system A and for elements
a1 = ((ai

11, . . . , a
i
1n), i ∈ I)D, . . . , ak = ((ai

k1, . . . , a
i
kn), i ∈ I)D let

A |= rA(((ai
11, . . . , a

i
1n), i ∈ I)D, . . . , ((ai

m1, . . . , a
i
mn), i ∈ I)D).

Then we have

I0 = {i ∈ I|Ai
1 ⊗ . . . ⊗ Ai

n |= rAi
1⊗...⊗Ai

n((ai
11, . . . , a

i
1n), . . . , (ai

m1, . . . , a
i
mn))} ∈ D.

But
Ai

1 ⊗ . . . ⊗ Ai
n |= rAi

1⊗...⊗Ai
n((ai

11, . . . , a
i
1n), . . . , (ai

m1, . . . , a
i
mn))

implies Ai
j |= rAi

j(ai
1j , . . . , a

i
mj), j = 1, . . . , n for any i ∈ I0. Hence

I1 = {i ∈ I|Ai
1 |= rAi

1(ai
1j , . . . , a

i
mj)} ⊇ I0, . . .

. . . , In = {i ∈ I|Ai
n |= rAi

n(ai
1n, . . . , ai

mn)} ⊇ I0,

therefore I1 ∈ D, . . . , In ∈ D, thus

A1 |= rA1((ai
11, i ∈ I)D, . . . , (ai

m1, i ∈ I)D), . . . , An |=

rAn((ai
1n, i ∈ I)D, . . . , (ai

mn, i ∈ I)D).
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It follows from here that

A1 ⊗ . . . ⊗ An |= rA1⊗...⊗An(((ai
11, i ∈ I), . . . , (ai

1n, i ∈ I))D, . . .

. . . , ((ai
mi, i ∈ I), . . . , (ai

mn, i ∈ I))D)

or, as ϕ is obviously a surjective mapping, ϕ(A) |= rϕ(A)(ϕ(a1), . . . , ϕ(am)). Thus,
ϕ is an epimorphism. Let us show that it is an isomorphism.

Let rA be a basic m-relation of the algebraic system A1 ⊗ . . . ⊗ An, and for the
images by ϕ of elements a1, . . . , an ∈ A let ϕ(A) |= rϕ(A)(ϕ(a1), . . . , ϕ(an)), that is

A1 ⊗ . . . ⊗ An |= rA1⊗...⊗An(((ai
11, i ∈ I)D, . . . , (ai

1n, i ∈ I)D), . . .

. . . , ((ai
m1, i ∈ I)D, . . . , (ai

mn, i ∈ I)D)),

therefore
A1 |= rA1((ai

11, i ∈ I)D, . . . , (ai
m1, i ∈ I)D), . . . , An |=

rAn((ai
1n, i ∈ I)D, . . . , (ai

mn, i ∈ I)D).

Hence, we will get

I1 = {i ∈ I|Ai
1 |= rA1(ai

11, . . . , a
i
m1)} ∈ D, . . .

. . . , In = {i ∈ I|Ai
n |= rA1(ai

1n, . . . , ai
mn)} ∈ D.

As I1 ∩ . . . ,∩In ∈ D and

I0 ⊇ I1 ∩ . . . ,∩In = {i ∈ I|Ai
1 ⊗ . . . ⊗ Ai

n |=

rAi
1⊗...⊗Ai

n((ai
11, . . . , a

i
1n), . . . , (ai

m1, . . . , a
i
mn)),

it follows that I0 ∈ D and we get A |= rA(((ai
11, . . . , a

i
1n), i ∈ I)D, . . . , ((ai

m1, . . . , a
i
mn),

i ∈ I)D), that is, A |= rA(a1, . . . , an).

Corollary. The product of a finite number of multiplicatively closed classes is a

multiplicatively closed class.

Indeed, it follows from the proof of Lemma 1 that

∏

i∈I

Ai/D ∼= (
∏

i∈I

Ai
1/D) ⊗ . . . ⊗ (

∏

i∈I

Ai
n/D).

In particular, if filter D over I is a maximal filter, consisting only of the set I, then
we have

∏

i∈I

Ai ∼=
∏

i∈I

Ai/D ∼= (
∏

i∈I

Ai
1/D) ⊗ . . . (

∏

i∈I

Ai
n/D) ∼= (

∏

i∈I

Ai
1) ⊗ . . . ⊗ (

∏

i∈I

Ai
n).

Thus
∏

i∈I(A
i
1 ⊗ . . . ⊗ Ai

n) ∼=
∏

i∈I Ai
1 ⊗ . . . ⊗

∏

i∈I Ai
n and therefore

∏

i∈I(A
i
1 ⊗ . . .

. . . ⊗ Ai
n) ∈ K.
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Lemma 2. The product of a finite number of hereditary classes is a hereditary class.

Proof. Let Ki, i ∈ I be a set of hereditary classes and K = K1 ⊗ . . . ⊗ Kn be their
product, A = A1 ⊗ . . . ⊗ An be an algebraic system from Q with Ai ∈ Ki, i =
1, . . . n, and B be a subsystem of system A. Then B ⊆

∏n
i=1 Ai. Let πi : B →

Ai, i = 1, . . . , n, be the projective mappings from B on its components. We denote
Bi = πi(B), i = 1, . . . , n. Then we have B ⊆

∏n
i=1 Bi. Conversely, let (b1, . . . , bn) ∈

∏n
i=1 Bi, then for any i = 1, . . . , n, there exists such an element b′i = (bi1, . . . , bin) in

B that bii = bi. We consider the projection operations pAi

i , i = 1, . . . , n, defined by
the following relations

pAi

i (a1, . . . , an) = ai, i = 1, . . . , n.

Then the operation pA = (pAi

i , i = 1, . . . , n), defined on the algebraic system A,

corresponds to the family of operations (pAi

i , i = 1, . . . , n). As

pA(b′1, . . . , b
′
n) = (pAi

i (bi1, . . . , bin), i = 1, . . . , n) =

(b11, . . . , bnn) = (b1, . . . , bn) ∈ B,

finally we get B =
∏n

i=1 Bi with Bi ∈ Ki, i ∈ I, and therefore B ∈ K.

By Tarski-Los Theorem (see [4], a class K is a universal class if and only if the
class K satisfies the following conditions:

(1) is hereditary,

(2) is ultrafilteredly closed.

Thus, by Lemmas 1 and 2 we get

Theorem 3. The product of a finite number of universal classes is a universal class.

Theorem 4. If the classes of algebraic systems K1, . . . ,Kn are quasi-varieties, then

their product K1 ⊗ . . . ⊗ Kn is a quasi-variety.

Proof. By Lemma 1

F (K1 ⊗ . . . ⊗ Kn) = (F (K1), . . . , (F (Kn)) = K1 ⊗ . . . ⊗ Kn,

and by Lemma 2

S(K1 ⊗ . . . ⊗ Kn) = (S(K1), . . . , (S(Kn)) = K1 ⊗ . . . ⊗ Kn.

As any quasi-variety Ki contains a unitary algebraic system Ei (i = 1, . . . , n), we
get that the class K1 ⊗ . . . ,⊗Kn contains also the unitary algebraic system E1 ⊗
. . . ,⊗En. Then, by Theorem 2, the product of quasi-varieties K1 ⊗ . . . ,⊗Kn is a
quasi-variety.
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3 Product of varieties

Let A = (A,σ) be an algebraic system of signature σ. It is worth reminding
that the signature σ consists of a set of functional symbols σF , a set of predicative
symbols σP and a function ν : σF Y σP → ω = {0, 1, 2, . . .} that defines the arity of
these symbols.

A subset θ ⊆
∏

r∈σP Aν(r) is called a congruence on the algebraic system A

(see [5]) if it satisfies the following properties:

(i) θ(≈) is congruent on algebra (A,σF );

(ii) A |= r(a1, . . . , aν(r)) ⇒ (a1, . . . , aν(r)) ∈ θ(r);

(iii) (a1, . . . , aν(r)) ∈ θ(r)&(a1, b1) ∈ θ(≈)& . . .

. . . &(aν(r), bν(r)) ∈ θ(≈) ⇒ (b1, . . . , bν(r)) ∈ θ(r),∀r ∈ σP .

The component θ(≈) will be called an algebraic congruence on system A. The
set of all congruences on algebraic system A will be denoted by Con(A), and for a
certain predicative symbol r ∈ σ by Con(A)(r) we will denote the set, consisting
only of the components θ(r), θ ∈ Con(A).

Relative to the inclusion ⊆ the set Con(A) is partially ordered and has the
greatest element ∇ = (∇(r) = Aν(r)|r ∈ σP ). The intersection of any non-empty
set {θi, i ∈ I} of congruences θi of system A is also a congruence of this system.
Therefore, Con(A) is a complete lattice, wherein the congruence △ = (△(r) =
Aν(r)|r ∈ σP ) is the lowest element, where △(r) = {(a1, . . . , aν(r)) ∈ Aν(r)|A |=

rA(a1, . . . , aν(r))}, and for any two elements α and β from Con(A), the operations
∧,∨ are defined as follows:

α ∧ β = (α ∩ β)(r) = (α(r) ∩ β(r)|r ∈ σP ),

α ∨ β = ∩{γ ∈ Con(A)|α ⊆ β, β ⊆ γ}.

We notice that the set θ ⊆
∏

r∈σP Aν(r), with the components defined via the formula

θ(r) = {(a1, . . . , aν(r)) ∈ Aν(r)|(∃b1, . . . , bν(r) ∈ A)((a1, b1) ∈ (a ∨ β)(≈)&

. . . &(aν(r), bν(r)) ∈ (α∨)β)(≈)&(b1, . . . , bν(r)) ∈ α(r) ∪ β(r)

is a congruence on system A. At the same time α ⊆ θ, β ⊆ θ and any other arbitrary
congruence γ of system A, which contains α and β, also contains θ. Thus, θ = α∨β

and therefore for any r ∈ σP , r 6=≈ we have

(α ∨ β)(r) = {(a1, . . . , aν(r)) ∈ Aν(r)|(∃b1, . . . , bν(r) ∈ A)((a1, b1) ∈

(a ∨ β)(≈)&(aν(r), bν(r)) ∈ (α ∨ β)(≈)&(b1, . . . , bν(r)) ∈ α(r) ∪ β(r)}.
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Lemma 3. Let K = K1 ⊗ . . .⊗Kn be a product of classes, A = A1 ⊗ . . .⊗An be an

algebraic system of signature σ from K with Ai ∈ Ki, i = 1, . . . , n. If θi ∈ Con(Ai),
i = 1, . . . , n, and we denote by θ a subset from

∏

r∈σ(A1 ⊗ . . . ⊗ An)ν(r), whose

components are defined as follows θ(r) = {((a11, . . . , a1n), . . . , (am1, . . . , amn)) ∈
(A1 ⊗ . . . ⊗ An)m|(a11, . . . , am1) ∈ θ1(r), . . . , (a1n, . . . , amn) ∈ θn(r)}, where r is

any predicative m-symbol of signature σ of the algebraic system A = A1 ⊗ . . .⊗ An,

then θ is a congruence on system A.

Proof. Indeed, the relation θ(≈) is reflexive, symmetrical and transitive. Let now
((a11, . . . , a1n), (b11, . . . , b1n) ∈ θ(≈), . . . , ((am1, . . . , amn), (bm1, . . . , bmn)) ∈ θ(≈)
and fA = (fAi , i = 1, . . . , n) be an m-operation of the algebraic system A. As
(a1i, b1i) ∈ θ(≈), . . . , (ami, bmi) ∈ θ(≈), i = 1, . . . , n, we get

(fAi(a1i, . . . , ami), f
Ai(b1i, . . . , bmi)) ∈ θ(≈), i = 1, . . . , n.

Then we have

((fA1(a11, . . . , am1), . . . , f
An(a1n, . . . , amn)), (fA1(b11, . . . , bm1), . . .

. . . , fAn(b1n, . . . , bmn))) = (fA((a11, . . . , a1n), . . . , (am1, . . . , amn)),

fA((b11, . . . , b1n), . . . , (bm1, . . . , bmn))) ∈ θ(≈)

and, thus, θ(≈) is closed relative to the operations of the system A. Hence,
property (i) from the definition of congruence holds for θ. Let now the relation
rA((a11, . . . , a1n), . . . , (am1, . . . , amm)) hold in the algebraic system A, then we have

A1 |= rA1(a11, . . . , am1), . . . , An |= rAn(a1n, . . . , amn),

which implies ((a11, . . . , a1n), . . . , (an1, . . . , amm)) ∈ θ(r). It follows from here that
((a11, . . . , a1n), . . . , (an1, . . . , amm)) ∈ θ(r), therefore the property (ii) from the defi-
nition of congruence holds for θ. Finally, let

((a11, . . . , a1n), . . . , (an1, . . . , amm)) ∈ θ(r),

((a11, . . . , a1n), (b11, . . . , b1n)) ∈ θ(≈), . . . , ((an1, . . . , anm), (bn1, . . . , bnm)) ∈ θ(≈).

Then we will have

(a11, . . . , am1) ∈ θ1(r), . . . , (a1n, . . . , amn) ∈ θn(r),

a11 ≡ b11mod(θ1), . . . , a1n ≡ b1nmod(θn), . . .

. . . , an1 ≡ bn1mod(θ1), . . . , anm ≡ bnmmod(θn),

which implies (b11, . . . , bm1) ∈ θ1(r), . . . , (b1n, . . . , bmn) ∈ θn(r). It follows from here
that

((b11, . . . , b1n), . . . , (bn1, . . . , bnm) ∈ θ(r),

hence, property (iii) from the definition of congruence holds for θ.
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Lemma 4. Let K = K1 ⊗ . . .⊗Kn be a product of classes, A = A1 ⊗ . . .⊗An be an

algebraic system from K with Ai ⊆ Ki, i = 1, . . . , n. Then the following isomorphism

holds

Con(A1 ⊗ . . . ⊗ An) ∼= Con(A1) × . . . × Con(An).

Proof. According to Lemma 3, an element θ of the set Con(A) corresponds to every
element (θ1, . . . , θn) of the set Con(A1) × . . . × Con(An) and we will denote it by
θ = θ1 × . . . × θn. Conversely, let θ ∈ Con(A). Then we will show that such
congruences θi ∈ Con(Ai), i = 1, . . . , n, can be found that θ = θ1× . . .×θn, it means
that for any predicative m-symbol r of the signature of system A we will have

((a11, . . . , a1n), . . . , (am1, . . . , amn)) ∈ θ(r) ⇔ &n
i=1(a1i, . . . , ami) ∈ θi(r) ⇔

((a11, . . . , a1n), . . . , (am1, . . . , amn)) ∈ θ1(r) × . . . ,×θn(r).

To prove this we define θ1(r), . . . , θn(r), so that

θ1(r) = {(a11, . . . , am1) ∈ Am
i |(∃b1

12, . . . , b
1
m2 ∈ A2, . . . ,∃b1

1n, . . . , b1
mn ∈ An)

((a11, b
1
12, . . . , b

1
1n), . . . , (am1, b

1
m2, . . . , b

1
mn)) ∈ θ(r)},

θ2(r) = {(a12, . . . , am2) ∈ Am
2 |(∃b2

11, . . . , b
2
m1 ∈ A1,

∃b2
13, . . . , b

2
m3 ∈ A3, . . . ,∃b2

1n, . . . , b2
mn ∈ An)

((b2
11, a12, b

2
13, . . . , b

2
1n), . . . , (b2

m1, am2, b
2
m3, . . . , b

2
mn)) ∈ θ(r)}, . . . ,

θn(r) = {(a1n, . . . , amn) ∈ Am
n |(∃bn

11, . . . ,

bn
m1 ∈ A1, . . . ,∃bn

1n−1, . . . , b
n
mn−1 ∈ An)

((bn
11, . . . , b

n
1n−1, a1n), . . . , (bn

m1, . . . , b
n
mn−1, amn)) ∈ θ(r)}.

First, if r coincides with the binary predicative symbol ≈, we notice that the re-
lation θ1(≈) is reflexive and symmetrical. Let us show that it is also transitive.
Let (a, a′) ∈ θ1(≈) and (a′, a′′) ∈ θ1(≈). Then for any i = 1, . . . , n, in A there
exist such elements b1

i , b
2
i , c

1
i , c

2
i that ((a, b1

2, . . . , b
1
n), (a′, b2

2, . . . , b
2
n)) ∈ θ1(≈) and

((a′, c1
2, . . . , c

1
n), (a′′, c2

2, . . . , c
2
n)) ∈ θ1(≈). As θ1(≈) is stable relative to the operation

p = (p2A
1 , p2A

2 ), where p2A
i = (p2A1

i , . . . , p2An

i ), i = 1, 2, we will have

p(((a, b1
2, . . . , b

1
n), (a′, b2

2, . . . , b
2
n)), (a′, c1

2, . . . , c
1
n), (a′′, c2

2, . . . , c
2
n))) =

= (p2A
1 ((a, b1

2, . . . , b
1
n), (a′, c1

2, . . . , c
1
n)), p2A

2 ((a′, b2
2, . . . , b

2
n), (a′′, c2

2, . . . , c
2
n))) =

= ((p2A1
1 (a, a′), p2A2

1 (b1
2, c

1
2), . . . , p

2An

1 (b1
n, c1

n)), (p2A1
2 (a′, a′′), p2A2

2 (b2
2, c

2
2), . . .

. . . , p2An
2 (b2

n, c2
n))) = ((a, b1

2, . . . , b
1
n), (a′′, c2

2, . . . , c
2
n)) ∈ θ(≈),
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resulting that (a, a′) ∈ θ(≈). If fA1 is a certain m-operation of the system
A1 and (a1, a

′′
1) ∈ θ1(≈), . . . , (am, a′′m) ∈ θ1(≈), then we will take the basic op-

eration fA = (fA1 , pmA2
1 , . . . , pmAn

1 ) of the algebraic system A. As for certain
b1
2, . . . , b

m
2 , b′12 , . . . , b′m2 ∈ A2, . . . , b

1
n, . . . . . . , bm

n , b′1n , . . . , b′mn ∈ An

(a1, b
1
2, . . . , b

1
n) ≡ (a′1, b

′1
2 , . . . , b′1n )modθ(≈), . . .

. . . , (am, bm
2 , . . . , bm

n ) ≡ (a′1, b
′m
2 , . . . , b′mn )modθ(≈),

we will have
fA((a1, b

1
2, . . . , b

1
n), . . . , (am, bm

2 , . . . , bm
n )) ≡

fA((a′1, b
′1
2 , . . . , b′1n ), . . . , (a′m, b′m2 , . . . , b′mn ))modθ(≈),

that is

(fA1(a1, . . . , am), b1
2, . . . , b

1
n) ≡ (fA1(a′1, . . . , a

′
m), b′12 , . . . , b′1n )modθ(≈),

resulting that (fA1(a1, . . . , am), fA1(a′1, . . . , a
′
m) ∈ θ1(≈). Hence θ1(≈) is stable rel-

ative to the operations of system A1, that is, θ1(≈) is a congruence on algebra A.
Let now r be a predicative symbol of arity m of the signature of system A1 and

x11, . . . , xm1 be such elements from A1 that the real relation A1 |= rA1(x11, . . . , xm1)
or (x11, . . . , xm1) ∈ θ1(≈) holds, and (x11, y1) ∈ θ1(≈), . . . , (xm1, ym) ∈ θ1(≈)
holds for certain elements y1, . . . , ym ∈ A1. We consider the basic predicate
rA = (rA1 , rA2, . . . , rAn) of the algebraic system A, where rA2, . . . , rAn are real
basic predicates on the systems A2, . . . , An. Then for any elements x12, . . . , xm2 ∈
A2, . . . , x1n, . . . , xmn ∈ An we have A2 |= rA2(x12, . . . , xm2) ⇒ (x12, . . . , xm2) ∈
θ1(r), . . . , An |= rAn(x1n, . . . , xmn) ⇒ (x1n, . . . , xmn) ∈ θn(r), and if we have A1 |=
rA1(x11, . . . , xm1) then we get A |= rA((x11, . . . , x1n), . . . , (xm1, . . . , xmn)), which
implies that ((x11, . . . , x1n), . . . , (xm1, . . . , xmn)) ∈ θ(≈); if we have (x11, . . . , xm1)
∈ θ1(r) then obviously we will also get ((x11, . . . , x1n), . . . , (xm1, . . . , xmn) ∈ θ(r),
for certain elements x12, . . . , xm2 ∈ A2, . . . , x1n, . . . , xmn ∈ An. As (x11, y1) ∈
θ1(≈), . . . , (xm1, ym) ∈ θ1(≈) we have ((x11, x12 . . . , x1n), (y1, x12 . . . , x1n)) ∈
θ(≈), . . . , ((xm1, xm2, . . . , xmn), (ym, xm2, . . . , xmn)) ∈ θ(≈), then from ((x11, . . .

. . . , x1n), . . . , (xm1, . . . , xmn)) ∈ θ(r), follows ((y1, x12, . . . , x1n), . . . , (ym, xm2, . . .

. . . , xmn)) ∈ θ(r), and from here (y1, . . . , ym) ∈ θ1(r). Therefore, θ1 is a congru-
ence on the algebraic system A1. It can be shown by analogy that θ2, . . . , θn are
congruences on the systems A2, . . . , An, respectively. At the same time we notice
that θ ⊆ θ1 × . . . × θn, that is θ(r) ⊆ θ1(r) × . . . × θn(r) for any predicative symbol
r of the signature of system A.

The inverse inclusion also takes place. We will also show that (θ1 × . . .

. . . × θn)(≈) ⊆ θ(≈). Indeed, let

((a11, . . . , a1n), (a21, . . . , a2n)) ∈ (θ1 × . . . × θn)(≈).

Then (a11, a21) ∈ θ1(≈), . . . , (a1n, a2n) ∈ θn(≈). It follows from here that ac-
cording to the constructions of θ1(≈), . . . , θn(≈), we will have

((a11, b
1
12, . . . , b

1
1n), (a21, b

1
22, . . . , b

1
2n)) ∈ θ(≈),
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((b2
11, a12, b

2
13, . . . , b

2
1n), (b2

m1, a22, b
2
m3, . . . , b

2
mn)) ∈ θ(≈), . . .

. . . , ((bn
11, . . . , b

n
1n−1, a1n), (bn

21, . . . , b
n
2n−1, a2n)) ∈ θ(≈),

for certain elements

b1
12, b

1
22 ∈ A2, . . . , b

1
1n, b1

2n ∈ An, b2
11, b

2
21 ∈ A1, b

2
13, b

2
23 ∈ A3, . . .

. . . , b2
1n, b2

2n ∈ An, . . . , bn
11, b

n
21 ∈ A1, . . . , b

n
1n−1, b

n
2n−1 ∈ An−1.

Applying the projection operation p = pnA
1 , pnA

2 , . . . , pnA
n ) for the last elements from

θ(≈) we get ((a11, a12, . . . , a1n), (a21, . . . , a2n)) ∈ θ(≈). Hence, θ(≈) ⊇ (θ1 × . . .

. . . × θn)(≈) and thus θ(≈) = (θ1 × . . . × θn)(≈) .
Let now r 6=≈ be a predicative m-symbol of the signature of the algebraic system

A and let

((x11, . . . , x1n), . . . , (xm1, . . . , xmn)) ∈ (θ1 × . . . × θn)(r),

thus
(x11, . . . , xm1) ∈ θ1(r), . . . , (x1n, . . . , xmn) ∈ θn(r).

By the constructions of the components θ1(r), . . . , θn(r), there exist such elements
b1
12, . . . , b

1
m2 ∈ A2, . . . , b

1
1n, . . . , b1

m2 ∈ An that

((a11, b
1
12, . . . , b

1
1n), (a11, . . . , a1n)) ∈ θ(≈), . . .

. . . , ((am1, b
1
m2, . . . , b

1
mn), (am1, . . . , amn)) ∈ θ(≈)

and ((a11, b
1
12, . . . , b

1
1n), . . . , (am1, b

1
m2, . . . , b

1
mn)) ∈ θ(r), at the same time. From here,

by the definition of congruence we get ((a11, . . . , a1n), . . . , (am1, . . . , amn)) ∈ θ(r).
Hence, θ1 × . . . × θn ⊆ θ and we get the equality θ1 × . . . × θn = θ.

Now it is easy to see that the bijective correspondence, defined by θ = θ1 × . . .

. . . × θn → (θ1 . . . θn), defines the isomorphism we are looking for, meaning that it
satisfies the following properties:

(θ ∧ θ′)(r) → ((θ1 ∧ θ′1)(r), . . . , (θn ∧ θ′n)(r)),

(θ ∨ θ′)(r) → ((θ1 ∨ θ′1)(r), . . . , (θn ∨ θ′n)(r))

for any congruences θ = θ1 × . . . × θn and θ = θ′1 × . . . × θ′n from Con(A).

Lemma 5. The product of a finite number of homomorphically closed classes is a

homomorphically closed class.

Proof. Let Ki, i = 1, . . . , n, be a family of homomorphically closed classes and K =
K1 ⊗ . . . ⊗ Kn be their product, A = A1 ⊗ . . . ⊗ An – an algebraic system with
A1 ⊆ Ki, i = 1, . . . , n, and C – an algebraic system from Q. We will show that an
epimorphism ϕ : A1 ⊗ . . . ⊗ An → C exists if and only if there exist epimorphisms
ϕi : Ai → Ci, i = 1, . . . , n and the isomorphism C ∼= C1⊗ . . .⊗Cn takes place. From
here we will get that H(K) = H(K1) ⊗ . . . ⊗ H(Kn) and hence H(K) = H.
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Let epimorphism ϕ : A1 ⊗ . . . ⊗ An → C exist and let θ = ker(ϕ) be its kernel.
By Lemma 4

θ = θ1 ⊗ . . . ⊗ θn,

where θi ∈ Con(Ai), i = 1, . . . , n. We consider the canonical isomorphisms ϕi : Ai →
Ai/θi, i = 1, . . . , n. The mapping

ϕ∗(a1, . . . , an) = (ϕ1(a1), . . . , ϕn(an))(ai ∈ Ai, i = 1, . . . , n)

is a homomorphism from A1⊗ . . .⊗An to (A1/θ1)⊗ . . .⊗(An/θn). Let θ∗ = ker(ϕ∗).
We show that θ = θ∗ and then we will get

C ∼= (A1 ⊗ . . . ⊗ An)/θ ∼= (A1 ⊗ . . . ⊗ An)/θ∗ ∼= (A1/θ1) ⊗ . . . ⊗ (An/θn).

If r is an arbitrary predicative m-symbol of the signature of system A and

rϕ∗(A1⊗...⊗An)(ϕ∗(a11, . . . , a1n), . . . , ϕ∗(am1, . . . , amn)) =

= rϕ1(A1)⊗...⊗ϕn(An)((ϕ1(a11), . . . , ϕn(a1n)), . . . , (ϕ1(am1), . . . , ϕn(amn)) ⇒

⇒ rϕ1(A1)(ϕ1(a11), . . . , ϕ1(a1n))& . . . &rϕn(An)(ϕn(a1n), . . . , ϕn(amn)),

then (a11, . . . , a1n) ∈ θ1(r), . . . , (a1n, . . . , amn) ∈ θn(r), resulting that

((a11, . . . , a1n), . . . , (am1, . . . , amn)) ∈ (θ1 × . . . × θn)(r) = θ(r).

Conversely, if

((a11, . . . , a1n), . . . , (am1, . . . , amn)) ∈ θ(r),

then
(a11, . . . , am1) ∈ θ1(r), . . . , (a1n, . . . , amn) ∈ θn(r),

resulting that
ϕ1(A1) |= rϕ1(A1)(ϕ1(a11), . . . , ϕ1(am1)), . . .

. . . , ϕn(An) |= rϕn(An)(ϕn(a1n), . . . , ϕn(amn)),

therefore
ϕ∗(A) |= rϕ∗(A)(ϕ∗(a11, . . . , a1n), . . . , ϕ∗(a1n, . . . , amn)).

It follows from here that θ(r) ⊆ θ∗(r). Hence, θ = θ∗.
Conversely, let us have the r-epimorphisms ϕi : Ai → Ci, i = 1, . . . , n. We show

that the mapping

ϕ(a1, . . . , an) = (ϕ1(a1), . . . , ϕn(an))(a1 ∈ A1, . . . , an ∈ An)

is homomorphism from A1 ⊗ . . . ⊗ An on C1 ⊗ . . . ⊗ Cn.
We consider a basic operation fA of arity k of the algebraic system A = A1 ⊗

. . . ⊗ An. By its definition, we have

fA((a11, . . . , a1n), . . . , (ak1, . . . , akn)) =
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= (fA1(a11, . . . , a1n), . . . , fAn(ak1, . . . , akn))

for all a1i, . . . , aki from Ai (i = 1, . . . , n). It follows from here that

ϕ(fA((a11, . . . , a1n), . . . , (ak1, . . . , akn))) =

= (ϕ1(f
A1(a11, . . . , a1n)), . . . , ϕn(fAn(ak1, . . . , akn))) =

= (fϕ1(A1)(ϕ1(a11), . . . , ϕ1(ak1)), . . . , f
ϕn(An)(ϕn(a1n), . . . , ϕn(akn)) =

= fϕ(A)(ϕ(a11, . . . , an1), . . . , ϕ(ak1, . . . , akn)).

Let now rA = (rA1, . . . , rAn) be a basic m-relation of the algebraic system A and
let

A |= rA((a11, . . . , a1n), . . . , (am1, . . . , amn)).

Then we have

Ai |= rAi(a1i, . . . , ami), i = 1, . . . , n.

Hence, we will get

ϕi(Ai) |= rϕi(Ai)(ϕi(a1i), . . . , ϕi(ami)), i = 1, . . . , n.

Therefore

ϕ(A) |= rϕ(A)(ϕ(a1i, . . . , a1n), . . . , ϕ(am1, . . . , amn)).

Theorem 5. If the classes of algebraic systems K1, . . . ,Kn are varieties, then their

product K1 ⊗ . . . ⊗ Kn is a variety.

Proof. By Gorollary of Lemma 1

P (K1 ⊗ . . . ⊗ Kn) = (P (K1), . . . , P (Kn)) = K1 ⊗ . . . ⊗ Kn.

By Lemma 2

S(K1 ⊗ . . . ⊗ Kn) = (S(K1), . . . , S(Kn)) = K1 ⊗ . . . ⊗ Kn,

and by Lemma 5

H(K1 ⊗ . . . ⊗ Kn) = (H(K1), . . . ,H(Kn)) = K1 ⊗ . . . ⊗ Kn.

Hence, by Theorem 2, the product of varieties K1 ⊗ . . . ⊗ Kn is a variety.
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4 Observations

a) We will say that the algebraic system A with signature σ is isomorphically

embedded in the algebraic system A′ with the signature σ′ if there exists a mapping
ϕ : A → A′ and an injective mapping α : σ → σ′ that makes a single function
n-symbol f ∈ σ and a single predicative m-symbol r ∈ σ to correspond to each

functional n-symbol f ′ ∈ σ′ and each predicative m-symbol r′ ∈ σ′, so that

ϕ(fA(a1, . . . , an)) = f ′A′

(ϕ(a1), . . . , ϕ(an))

and

rA(a1, . . . , am) = r′A
′

(ϕ(a1), . . . , ϕ(am))

for any elements a1, a2, . . . from A.

If K and K ′ are two classes of algebraic systems of signatures σ and σ′ respec-
tively, then we will say that the class K is isomorphically embedded in the class K ′

if any algebraic system from the class K is isomorphically embedded in one of the
systems of class K ′.

It is easy to realize that: any product of classes of algebras is isomorphically

embedded in the Taylor product of the same classes of algebras.

It is also easy to show that: if any class Qi(i ∈ I) of algebraic systems contains

a unitary algebraic system Ei, then any class Qi is isomorphically embedded in the

product of classes Q = ⊗i∈IQi. In particular, if all classes Qi, i ∈ I, are quasi-

varieties (or varieties), then any quasi-variety Qi is isomorphically embedded in the

product of quasi-varieties Q = ⊗i∈IQi.

Indeed, if Ai is an arbitrary algebraic system from class Qi (i ∈ I), then obviously
the system Ai is isomorphically embedded in the algebraic system ⊗j∈JAj ∈ Q,
where Aj = Ej for any j ∈ I\{i}.

b) The product of classes of algebraic systems can be also extended for the case
of an infinite number of classes, obtaining the same results as for the finite number
of classes, which are proved analogously.

c) Let Ki, i ∈ I = {1, 2, . . .} be an infinite totality of such classes of algebras
that each class Ki(i ∈ I) contains an algebra Li that strictly contains a unitary
subalgebra Ei = {ei}. Then the algebra L = ⊗i∈ILi belongs to the class ⊗i∈IKi.
We consider the set M , consisting of such elements a = (a(i), o ∈ I) from algebra L

for which the sets {i ∈ I|a(i) 6= ei} are finite. It is obvious that M is closed relative
to any operation of finite arity of algebra L, hence it is isomorphically embedded
in L. But M is not a subalgebra of algebra L, because any subalgebra from L has
the form M1 ⊗ M2 . . ., where Mi is a subalgebra of Li. Therefore, the product of
an infinite number of classes of algebraic systems cannot be defined as a class of
algebraic systems only with finite operations and predicates.
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