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The transvectants and the integrals for Darboux
systems of differential equations
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Abstract. We apply the algebraic theory of invariants of differential equations to
integrate the polynomial differential systems dz/dt = Pi(z,y) + zC(x,y), dy/dt =
Q1(z,y) + yC(z,y), where real homogeneous polynomials P; and @1 have the first
degree and C(z,y) is a real homogeneous polynomial of degree > 1. In generic cases
the invariant algebraic curves and the first integrals for these systems are constructed.
The constructed invariant algebraic curves are expressed by comitants and invariants
of investigated systems.
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1 Introduction

The problem of the integrability via invariant algebraic curves for planar poly-
nomial differential systems has been investigated in many works. An ample survey
on the Darboux integrability theory for planar complex and real polynomial sys-
tems can be found in [1]. In this book the authors mentioned that the detection
of the integrable planar vector fields that are not Hamiltonian, in general, is a very
difficult problem. In several works the problem of the integrability via invariant
algebraic curves for some polynomial differential systems with degenerate infinity
has been solved [2-11]. In works [12,13] the invariant algebraic curve for Darboux
differential systems with cubic nonlinearities has been expressed by invariants and
comitants. In paper [14] the invariant algebraic curves, the integrating factors and
some first integrals for Darboux differential systems with nonlinearities of degrees
m (2 <m <7) has been constructed and expressed by invariants and comitants of
investigated systems. In paper [15] a complete classification in the coefficient space
R'2 of quadratic systems with rational first integral of degree 2 has been obtained
by using Af f(2,R)-invariants and comitants of these systems.

The main goal of this paper is to construct the invariant algebraic curves for inte-
grable planar polynomial differential systems of Darboux type by using the GL(2, R)-
invariants and the GL(2,R)-comitants of these systems [16] and classify the first
integrals in generic cases. The generic cases include the systems with coprime right
parts and exclude the linear systems.

In Section 2 we construct the main invariants and comitants for Darboux poly-
nomial systems of differential equations. The definition of the transvectant of two
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polynomials and its properties are given. The construction part of the invariant
algebraic curves of Darboux systems includes two subcases: the first one - for the
polynomial C(z,y) of odd degree and the second - for the polynomial C(z,y) of
even degree. Each subcase includes the results about forms of the invariant alge-
braic curves and the first integrals for investigated systems.

2 Darboux systems of differential equations

We consider the real systems of differential equations

d
d_f =cz +dy+2C(z,y) = P(z,y),

dy
o = er T fy+yClz,y) = Qz.y), (1)
where ¢,d, e, f are real coefficients and the polynomial C'(x,y) has real coefficients

and degree r € N*. This system can be written [17] in the following form

de _ la_R+%Sx+xc<x,y> = P(z,y),

dt 20y
dy  19R 1 _
== _§%+§Sy+y0(x,y)—Q($7y)a (2)

where the GL(2,R)-invariant S and the GL(2,R)-comitants R(z,y) and C(z,y) of
the system (1) have the form

S=c+f, Rz,y)=—er’+(c—flz+dy*, C(z,y) = Zak <;>x’"_kyk. (3)
k=0

From the classical invariant theory [18] the definition of the transvectant of two
polynomials is well known.

Definition 1. Let f(z,y) and ¢(z,y) be homogeneous polynomials in z and y with
real coefficients of the degrees p € N* and § € N*, respectively, and k € N*. The
polynomial

k

W _ (=R —R) o~ (k)9S e
(£,%) 210! };( U\ 1) aeirayh ooy

is called the transvectant of index k of polynomials f and ¢.

Example 1. Hessian of the comitant R(x,y) has the form
@ _ _1 2 _1py
H = (R,R) :—5[4de+(c—f) ] :—iDlsch(x,y). (4)

Remark 1. If the polynomials f and ¢ are GL(2,R)-comitants of the degrees
p € N* and 6 € N*, respectively, for the system (1), then the transvectant of the
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index k < min(p,#) is a GL(2,R)-comitant of the degree p 4+ 6 — 2k for the system
(1) [19]. If k& > min(p, #), then (f,)*) = 0.

For every homogeneous GL-comitant K (x,y) with degree s € N* of the system
(1) from (2) we obtain the total derivative of K (z,y) with respect to ¢:

%—a_K.d_x_FaK dy a_K 18_R+1S_|_C’

dt ~ 9zr dt 9y dt 0z \2 oy v

OK ((10R 1

— - = s(K, RV + 2K K

+8y < 392 yS+yC’> s(K,R) —1—2 S+ sKC, (5)

where (K, R)M) is a Jacobian (the transvectant of the first index) of GL-comitants
K and R. The representation (5) shows that the derivative with respect to ¢ of
every homogeneous GL(2,R)-comitant with the degree s > 1 of the system (1) is a
GL(2,R)-comitant too.

Remark 2. If the homogeneous polynomials f, g, ¢ and i have the degrees m, n,
wand 0 (' m, n, p € N*), respectively, with respect to  and y and l,q € N, o € R,
then

(af,9)® = (f ag)® = a(f 9™, (e, pHEHD o,
(f+9.0)% =% +(g,9)®, (¥, HP

(f- 9.0 m+nﬁ¢)g+—:—@wWV

Remark 3. If the homogeneous polynomials f and ¢ have the degrees m € N* and
2, respectively, with respect to x and y, then

1) o _m—1 @, 1 2)
((f,9),0) ——Tn(ﬁ@ @ 2ﬂ%w)-

We shall suppose that the polynomials P(x,y) and Q(z,y) are coprime and the
polynomial C'(x,y) has a nonzero degree, i.e.

R(z,y) 20, Clz,y) £0,  degC(z,y) > 1. (6)
Remark 4. From (5) for K = R(x,y) we obtain

dR

— = R(S+20), (7)

which shows that R(z,y) = 0 is an invariant algebraic curve of the system (1).

Let the polynomial C(z,y) have the degree r (r € N* ) with respect to = and y.
We denote by p the integer part of the number g, ie p= [g} . Now we suppose the
following assumptions: if the lower index in the symbol of the sum ) is greater than
upper index then the sum is equal to zero; in repeated using of the transvectants a

set of the parenthesis of the type ((...( will be replaced by a single parenthesis of
the form [.
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2.1 The polynomial C(x,y) has odd degree
Let r=degC(z,y) =2p+ 1, where p € N.

Theorem 1. The system (1) with the conditions (6) has real invariant algebraic
curve F,.(x,y) = 0 of the degree r, where the polynomial F, is expressed by invariants
and comitants of the system (1):

p p

Fo(z,y)=2%+ .pl.RP | Z[C,R)P, ... R)P RV —[C,R)?,... R)?P .5 | +
T

p—1 2i+1 ; /—}% /—}%
27l [ 20r = 20) @ @ p)® @ @
+; T R ——IC.R)® ... R RV —[CRP,.. R)® .5 | x
p 1 r
< T (o-20*R 0@ +25%) | - S [[ (20 -2 @B +125%), )
j=it1 =0

~ ~

Proof. ;fhe polynomial F, is a sum of two polynomials F,.(z,y) = F.(z,y) + F,

where F,(x,y) is a comitant of the degree r with respect to z and y and

- 1 P
F, = ~ 3 T (2(r — 25)*(R, R)® + r25?) is an invariant of the system (1).
j=0
By using the relation (5), Remarks 2 and 3, for the polynomial (8) we obtain:

dF, d(F, + F,)

=r(F.,R)M + gﬁTS +rE.C =

dt dt
p p
—_—— —_———
= 22l Lyl %RP[[C, R)? ... R® R R)D _ %RP[[O, R ... RP RW .54

p p

1 —_——— 1 —_——
+-R'[C, R)® ... R® RW.g5_ SRIC, R)® ... R®.s%| +

i

—_——
R[C,R)?,....R)® R)W R)V —

. |22t [ 2(r — 20)?
5
(o —20)! 2

i=0

. ——— ) PR S
_ (T‘ _T 22) Ri[[c, R)(2)’ .. ,R)(2)’ R)(l) -S4+ @Rlﬂc, ]_%)(2)7 o ]%)(2)7 R)(l) S
1 . —— P ~
- SRICR, R 8 x ](20 =202 (R B +28%) | 4 rFC =
Jj=i+1

p+1

2 r—2p-—

1 ’ \
— .92p+1 p+1 (2) (2 _
r2 r! 2 =) RPTHC,R)'?,...,R)
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p p

1 —_— 1 —_———
——5R'[C, R)® ... .R® . (R R® — SRIC, R)® ... R®.s%| +

i+l
P—Ll 1 52i41 2 ; —_——
2 el | 2(r—20)° r—20—1_,
: RTC,R)P,....R)® —
+T; (r — 2i)! r2 (r — 2i) [C R, B)

(r—2i) D) B) @ _ Lo ) @ . g2

p

< I (200 =28 B)® +125%) | +rF.C =
p
P
_p920 Ly %RP[[C, R)(2), o ,R)(Q) (2(R, R)(2) + TZSZ) +
r
i+1

» i ' ' —_——
22t [ 2(r — 20)(r — 20 — 1)Ri+l[[C’ R® ... R —

(r — 24)! 72

1 . —_—
_ L pire @ @ (9(r _ 92 @) 4,262
S RC. R, R) (2(7“ 2i)%(R, R) —i—rS) X
p ~
< 11 (2(r—2j)2(R,R)(2)+r252) +rEC =
j=it1

p
1 —_——
= —r2 L S RIC R, R (2R R 41257 +

i+1

+1~Z§ 92(i41) | iRiJrl[[O R)® R)® x ﬁ (2(r—2j)2(R R)(2)+r252)
; (r—2G+1)! 2 ’ T 1 )
=0 j=itl
p—1 R
- =R )2 _ (2) | ,.2a2 5o~
T;{rm r2R[[CR) A XH( r—2j)*(R,R) +TS) +rEC =
p - : (2 5 2)
! 2 2 2 2 2
T; (r — 2i)! r_ZR[[CR) o B) XE(2(T—21) (R, R) +r5)
p 2 | ,_/Z_\
=R )2 _ 2) | ,.2a2 5o~
T; (r —2i)! r2R[[CR) A XH( r—2j)*(R,R) +TS) +rEC =
1P

=10~ (2(7’ —2/)%(R,R)® + r252) +7F.C = rCF, + rF,C = rC(F, + F,) = rCF,.
j=0
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So, dF,
dt
and Fy(z,y) = 0 is a real invariant algebraic curve for (1). Theorem 1 is proved.

=rCF, (9)

Example 2. For r € {1,3} we obtain the invariant algebraic curves:
Fi(z,y)=4(C,R)M —20 -5 —2(R,R)® — 52 =0,
F3(z, y) = 32R((C, R)®, R)M) — 48R(C, R)® - S+
+ (416, RV — 20 - 5) (2R, R)® +98%) - (2R, ) +95°) (2(R, B + 57) =0,

The next theorem classifies first integrals of the system (1) in this subcase.

Theorem 2. The system (1) with the conditions (6) has the following real first
integrals:
a) for S#0, H>0:

OR —
F% ‘R‘_l Gi=c, Gy=exp 25 arctan%_ e (10)
r . . 1=C 1= e -~ N
) 8R ?
V2H — +y-V2H
ox
b) for S#0, H<O:
S
2 -1 a_Fi_y'\/_2I{ -
FTT"R‘ -Gy =cy, Ga= g}% ; (11)
8—x+y~\/—2H

c) forS#0, H=0:

F, . : ‘R‘_l -G3 =c3, G3=exp [S[(C — ) +42((dd_—|_:))]€y ml Gl §'8 ; (12)
d) for S=0: 2 _1
Bl (R( = ¢, (13)

where c1,co,c3 and cq4 are real constants.

Proof. If S # 0, then from (7) and (9) and after calculation of the derivatives
with respect to ¢ of the functions: G; for H > 0, Gy for H < 0 and G3 for H = 0,
we obtain

dR - dFr - dGl - dlnGg - ng -

From (14) we easy obtain first integrals (10), (11) and (12).

If S =0, the relations (7) and (9) have the forms
dR dF,
" _9 - — F,. 1
i RC, o rC (15)

The relations (15) determine the first integral (13). Theorem 2 is proved.
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2.2 The polynomial C(x,y) has even degree
Let r=degC(z,y) =2p, where p € N*.

Theorem 3. The system (1) with the conditions (6) has real invariant algebraic
curve Fy.(z,y) = 0 of the degree r, where the polynomial F, is expressed by invariants
and comitants of the system (1):

Fr(z,y) = —2RPI. +rS - ®,(z, y), (16)
where
p
—~
I, =27 . (r = 1)C,R)?,...,R)?, (17)
p—1 p—1
2201 . | N caw A
B (2,y) = —; LRV Z[C,R)P, ... RP R —[C,R)P,... . RP .5 |+
. T
p—2 2i+1 | ) ) ; /—}% /_}%
P e (2022 e @ po _ e @, R .5 |
P (r —2i)! r

X H (2 = 2)%(R, B +1252) TZH( (r= 22 (R, ) +128%) . (18)
j=1+1

Proof. The first step is to calculate the derivative The polynomial

d®,(z,y)

N ~ dt -~

®,(x,y) is a sum of two terms ®,.(z,y) = @, (x,y)+ P,, where ®,(x,y) is a comitant
~ p—1

of the degree r with respect to z and y and ®, = —% T (2(r — 25)*(R, R)® +r25?)
T j=0

is an invariant of the system (1). By using the relation (5), Remarks 2 and 3, we
obtain:

dd  d(D, + D, - - -
_ Ao+ @) ):r(q>r,R)<1>+gq>TS+r<I>rO:

dt dt
p—1 p—1
_ — —
77,2217 Loyl éRp—l[[O RO R R gD _ ERp—l[[C R, ... R RD. 5+
= 72' 3 s goeoy s s r ’ LR ’

p—1 p—1

P —— 1 ——
2 pp1 @) @ py1).g_ Lpp @) @ . g2
+RCR),. RPN S — SRC R, RS |

P=2 | 52541 N2 :
2 b 20r =202 L T o)
N e e U CRURNRNURN RN R
=0 :

A i

(r — 20) (r— )Rz[[c RO, RO RN .-

—_——
—fRi[[O,R)(Q),... R® R .5+
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%

1 . —_——— p—1 N
- 531[[0,3)(2),...,3)(2).52 < | (2(r—2j)2(R,R)(2)+7’282) +7®,C =
j=i+1
p
221 [ 8 r—2p+1 — o
= — RP[C,R)?,...,R)® —

T r2 (r—2p+2) € ’)™,..., R)

p—1 p—1

4 — 1 —
——RPHC,R)?,...,R)P (R, R)® - ZRF[C,R)?,... R)? . &2
2 [C,R)™,....,R)"™ - (R, R) 5 [C,R)™,....,R) +

141
p—2 2i4+1 N2 . —
2 sl | 2(r — 2i) T_zl_1Ri+1[[C,R)(2),...,R)(2) 3

(r — 20)! 2 (r—20)

< 1 (20 = 20)2(R, R +1282) | +18,C =

p

—~
=2% . (r—1)!-RP[C,R)?,...,R)® —

p—1
22r—1 .yl 1 —
Tt g IGR® @) @ 4 22
T oz LG R, R) (8(R,R) +r5)+
2 141
p— 2141 . X P G
92i+1 . | 2(7"—22)(7"—22—1)Ri+1[[C’R)(2)7.“7R)(2) B

—H‘Z (r — 24)! 72

=0

%

1 . —_———
L pite @ @ (9(r — 22 @) 4,262
S RIC. R, R) (2(7’ 21)%(R, R)® + r2$ ) x

p—1
X H (2(r —2§)%(R,R)® + 7‘252) +7r®,.C =
Jj=i+1
p—1
= Rl -1 SRR, R (3R R)® +125%) +
. T

= 22041 . | [ 2 2 2 2 2 a2

i+1

p—2 21 P p—1
2.l 1 R
- T B RICR® @ C 92 (R R + 1282 _
2 ey #RIGRP. . R ] (20 = 2))2(R, )@ +1282) | +78,C =




12 VALERIU BALTAG, IURIE CALIN

%

p—1 2% — e P11
2«0l 1 .
_ po L g @) B) N2 @) 202
RP1, +T1§:1 2 rzR [C,R)*) ... ,R)®) x jlzli (2(7’ 2j)°(R, R)*™ + 178 )

%

=1l 52 —_— -l
24t . pl 1 . ~
= SRICR)P,... . R® x [] (2(7’ — 2))%(R,R)® + 7232) 41,0 =
j=i

AN T

=0

1 P2t ~
_ PP _ e 92 2 4 ,2q2 _
= RI, 10— [] (2(r 2j)2(R, R)® + 125 ) +78,C

=0

= R?I, 4+ rC®, + r®,C = RPI, + rC(®, + ®,) = R’I, + rC®,.
Thus, d;;“ = RPI, 4+ 1C®,. (19)

By using the relation (5) and Remark 2 for polynomial RP we have:
% = r(R?, R)V + LRS + rRPC = LRI(S +20). (20)

By virtue of the relations (19) and (20) for polynomial (16) we obtain:
_9RP P
dir _ d(—2R I;t—l— rS®,) _ —217»% +TSdC<lI;T _

= —rI,RP(S +2C) +rS(RPI, + rC®,) = rC(—2R"I, + rS®,) = rCF,.
So, Fy(x,y) = 0 is an invariant algebraic curve for (1). Theorem 3 is proved.
Example 3. For r € {2,4} we obtain the invariant algebraic curves:
Fy(z, y) = —8R(C,R)® + 28 (4(0, RW —2¢.8 —2(R,R)® — 32) —0,
Fy(z, y) = —192R*(C, R)®, R)® 145 [963((0, R, RV —96R(C,R)? - S +
+ (4(0, RV —2C. 5) (S(R, R)® 1652) - (S(R, R)® 1652) (2(R, R)® 52)} ~0.

The next theorem is similar to Theorem 2 and classifies first integrals of the
system (1) in this subcase for S # 0.

Theorem 4. The system (1) with the conditions (6) and S # 0 has the following
real first integrals:

a) for H>0:
OR —
kG ‘R‘_l G G 25 o, V'V (21)
o -G = cs, 1 =eXp | —=arctan 55— | ;
V/ OR
2H IE Ly Vel
ox
b) for H<O:
S
1 1 8—R—y'v—2H -
Frp"R‘ ‘G2:C6, GQZ gﬁ N (22)
— 4y-v—2H
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¢) for H=0:

S[(e = fz* +2(d + e)zy — (¢ = f)y’]
4d—-e)R

% -1
IR

F

-G3=c7, G3=exp , (23)

where cs,cg and c; are real constants.

The proof of Theorem 4 is similar to the proof of Theorem 2.
Let S = 0. The first result in this subcase for the system (1) with S = 0 is the
following theorem.

Theorem 5. The system (1) with the conditions (6) and S =0, H = (R,R)? =0
has the invariant algebraic curve ¥,(x,y) = 0 of the form

\Ijr(l'ay) = JrVrR+Wrer (24)

p
e e
Vi) = LR 10RO, RO
p—1 i p—i—1
+2 <2 H)[{(LR)@), R [C R R R (25)
=0
) p—i—1
——f
_ " 2) @ @ ) )
<2i+2>[[C’R) oo, R R) IC,R)¥,...,R) ,
p X Pl
W, (z,y) = Z <2,>R. [C,R)?,....R®.[C,R)?,... R)® -

% p—i—1

p-1 e e e e
T
-> <2Z, N 1) [C,R)?, ..., R RV .[C,R)?P,....R)PD RV, (26)
=0

dVi(z,y)
dt

is a sum of two terms V,(z,y) = V,(z,y) + ‘Z(m,y), where ‘Z(m,y) is homogeneous

polynomial of the degree r + 2 with respect to x and y and the comitant V,.(z,y) =
D

Proof. From the first we calculate the derivative . The polynomial V,.(z,y)

r—+1

——f
R-[C, R)(z), . ,R)(z) has the second degree with respect to x and y. By using

the relation (5), Remarks 2 and 3, we obtain:

v, _dVe+ V) _,

T = Ve, B +2V,C + (r +2)(Vo, B)® + (r + 2)V,C =
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= (r+2)V,C —1V,C + (r +2)(Vs, B = (r + 2)V;C — 7V,C+

1 p—i—1
p—1
- —_— o~
Hrr2 ) <2¢+1) r+2[[ PR RO R, R, R)Y
i=0

i p—i—1

r 21+ 2
(2) R® . (2) (1) (1) _
+(2¢+1>r+2HC’R) ..., R .[C.R?, ... R RV R)

p—i—1
! N /—H
r r—
_<2i+2) T+2[[ LR R RV RV [C, R, ... R -
p—i—1

r 21+ 2
_ (2i . 2> 2 DO RO 0. R, RO RO

= (r+2)V,C — rV,C+

4 p—i—1
p—1 —_————— ,_/_\
.
py @ R)® R® RO
+; <2i+1)(r HC,R)P,... R R .[C,R)P,... . R RV 4

+(m:1>@”*”RWCJﬂ@w~rm@*ﬂaR%”VHJaQ—
1+1 p—i—1
T .
- <2Z + 2) (T B 2Z N 1)R ’ [[O’ R)(Q)’ Tt R)(Q) ! [[Ov R)(Q)a e aR)(Q)_

% p—i—1

e N A
T‘ .
‘(%+J“‘”—”WﬁW%~ﬁW%mmmam®wwanmm -

= (r+2)V,C = rV,C+

i

p—i—1
+”z§ (2 + 1) R, R® R [ R, mE, R+
p—1 @ p—i
+> (;) (r—2)R-[C,R)?,...,R)? .[C,R)?,... R)P—
pZ:O i p—i
h p
=(r+2)V,.C - (r+1)RC- ﬂaer
S — ,_zt;,
+z; (21+1> [C,R)?,... . R RV .[C,R)P,.... R R+
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p p
—~ —~
+rR-C-[C,R)?,....R)® —R.[C,R)?,... R .C-
-1 7 p—1i

- Z (;,)R JC,R)® .. R . [C,R)P, ... R)? =
=1

i p—1i

p
=(r+2)V,C =Y (;_)R JC,R® ... RP . [C,R)P, ... RP+
7
i=0

i p—i—1
p_l — D
-
+ E (2i+ 1) [C,R)®,... R RV .[C,R)?,.... R R)D =
i=0
= (r +2)V,.C — W,.

Thus, dv;
dt

=(r+2)V,.C - W,. (27)

aw,
Now we calculate the derivative M, where W,.(z,y) is a homogeneous

comitant of the degree r 4+ 2 with respect to x and y.

dg; = (r+2)(We, )Y + (r +2)W,C = (r + 2W,C+

7 p—1i

p : —_— —_———
—9
+Hr+2)) <2’;> : ‘R-[C,R)P,...,R)P RV .[C,R)?,... R)P+

7 p—1i

P .
r 21
+(r+2)) <2Z> Sh [C,R)?, ... ,R)P . .[C,R)?,...,R)P RV _

i p—i—1

p-1 _ 9 —~~ —_—~
—(r+2) (,r )T 200 R, RO, RO, RN [ R)D,... R, RV—

% p—i—1

—~~
[c, R)(Q), N .,R)(Q),R)(l) -[c, R)(Q), . ,R)(2),R)(1),R)(l) —

7 p—1i
P —

—_——
=(r+2W,C+> (;) (r—2)R-[C,R)? ..., R RWY.[C,R)?P, ... R+

7 p—1i

p P
T .
+Z (21) 2%R-[C,R)?,... . R .[C,R)?, . .. R)® R)M_

i+1 p—i—1
p—1

r .
- (22, N 1> (r—2i—1)R-[C,R)?,.... AP .[C,R)?,... R)P R)D_

7 p—1i
p—1

e e
T‘ .
N (2i + 1) (2i+1)R- [[C, R)(Q), .. ,R)(Q)’ R)(l) . [[C’ R)(Q)7 L R)(Q) _
=0
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(3 p—1
= (r+2)W,C + Z ( ) r—2)R-[C,R)?,.... AP R .[C,R)?, ... RP+
» [3 p—1
+Z< )21R~[[C, R) R .[C,R)?,....R)® RV
1=1
i+1 p—(i+1)
p—1 —~ —
—2(2 ) (i+1)R-[C,R)?,....RP.[C,R)?,... . R)P RV _
=0
1 p—1i
p—1 —~ /—H
—Z( ) (r—2)R-[C,R)?,.... R RV .[C,R)?,... R =
1 p—1i

= (r+2)W, C+Z< >22R [C,R)?,....R)?.[C,R)?,...,R)?P RV _

7 p—1i

p
— Z <2TZ) 2iR-[C,R)? ..., R)? . [C,R)P,... R)D R = (r +2)W,C.
=1
Th
s dzl? — (r+ 2)W,C. (28)

In analogous way for polynomial @Q,(z,y) we have:

p—1

dQ, ——N————
Qr _ 2(Q,, )W +2Q,C =2Q,.C +2[C,R)?,...,R)? RV R)D =

dt

p

—_———
=2Q,C+R-[C,R)?,....R)? =2Q,C + RJ,. (29)
By using (24), (27), (28) and (29), we obtain:

i, v, dR w49 _
G = g Bt Vet QT o

= J, ((r +2)V,C — W,) R+ 2J,V,RC + (r + 2)WTC’QT + W, (2Q,C + RJ,) =
= (r+4)(J,V,R+W,Q,)C = (r + 4)¥,C.

So, dv,
dt

and ¥, (x,y) = 0 is an invariant algebraic curve for (1). Theorem 5 is proved.

Remark 5. If H = (R, R)® =0, then the following identity W, = RP+!.(C, )"

holds. By virtue of this identity the invariant algebraic curve ¥, (z,y) = 0 can be

written in the form R-WU¥(x,y) = 0, where ¥ (z,y) = J. -V, + Q.- RP - (C,C)"). So,

U*(z,y) = 0 is an invariant algebraic curve for the system (1) with S =0, H = 0.
The next theorem classifies in this subcase first integrals of (1) for § = 0.

= (r+4)%,C. (30)



THE TRANSVECTANTS AND THE INTEGRALS ... 17

Theorem 6. The system (1) with the conditions (6) and S = 0 has the following

real first integrals:
a) for H>0, I, #0:

H 1 &,
\ 5 + Gy =cg, G4 = arctan cxt+ 1y, (31)

2 I, Rr '
Y- 5

SH & o _y.v=2H
r Ox
Gs'eXp<— 7 -ﬁ>:cg, Gs = | 9R ;
r Iy 2H
8az+y

b) for H<O0, I, #0:

c) for H=0, I, #0:
U, - R0 = ¢ (33)

d) for I, =0:
Q.- R7P =cn, (34)

where cg, cg, c19 and c11 are real constants.

Proof. For I, # 0 we have

d [ ® 1
(2T = _— . |RP.(RP. _ P, . (p- RP~L. —
= ( Rp) = [R (RP -1, + rC®,) — @, - (p- R 203)]
1
e [IT-R2p+2pC¢>er—2pC<I>TRP ~ I, (35)

d |H
If H >0, then % =\ and we easy obtain first integral (31).

dl
If H <0, then I;tGS =+/—2H and we have first integral (32).

Let H =0, I, # 0. In this case by virtue of (5) and (30) we have

d (¥, /RP+?) _ 1 AUy sy, dRPT2
dt R20+2) \ dt "odt

= ey ((r+ DUCR? = 2(p +2) 0, R7C) = 0.

So, the system (1) has first integral (33).
The first integral (34) for I, = 0 is given by (35). Theorem 6 is proved.
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1 Introduction

We divide this brief presentation of several open problems on the algebraic limit
cycles of the real planar polynomial vector fields into the following sections:

2. Invariant algebraic curves.

3. Algebraic limit cycles.

4. A unique irreducible invariant algebraic curve.
5. Quadratic polynomial vector fields.

6. Cubic polynomial vector fields.

7. Configurations of algebraic limit cycles.

2 Invariant algebraic curves

Since Darboux [12] has found in 1878 connections between algebraic curves and
the existence of first integrals of planar polynomial vector fields, invariant algebraic
curves are a central object in the theory of integrability of these vector fields. Today
after more than one century of investigations the theory of invariant algebraic curves
is still full of open questions.

A real planar polynomial differential system is a differential system of the form

dx dy

7 =1z = P(z,y), i ) = Q(x,y), (1)

© Jaume Llibre, 2008
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where P and () are real polynomials in the variables x and y. The dependent
variables x and y, the independent variable t, and the coefficients of the polynomials
P and @ are all real because in this paper we are interested in the real algebraic limit
cycles of system (1). The degree n of the polynomial system (1) is the maximum of
the degrees of the polynomials P and Q.

Associated to the (real) polynomial differential system (1) there is the (real)
polynomial vector field

0 0

or simply X = (P, Q).

Let f = f(x,y) be a (real) polynomial in the variables x and y. The algebraic
curve f(z,y) = 0 of R? is an invariant algebraic curve of the vector field X if for
some polynomial K € Rz, y| we have

_pof | ,0f
Xf =Py +Qy = K[ 2)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. We

note that since the polynomial system has degree n, then any cofactor has at most
degree n — 1.

Since on the points of the algebraic curve f = 0 the gradient (9f/0x, 0f /0y) of
the curve is orthogonal to the vector field X = (P, Q) (see (2)), the vector field X is
tangent to the curve f = 0. Hence the curve f = 0 is formed by orbits of the vector
field X. This justifies the name of invariant algebraic curve given to the algebraic

curve f = 0 satisfying (2) for some polynomial K, because it is invariant under the
flow defined by X.

The next result tell us that we can restrict our attention to the irreducible
invariant algebraic curves.

Proposition 1. We suppose that f € Rlz,y] and let f = f{"*--- f7 be its fac-
torization in irreducible factors over Rlx,y|. Then for a polynomial vector field
X, f = 0 is an invariant algebraic curve with cofactor Ky if and only if f; = 0
is an invariant algebraic curve for each i = 1,...,r with cofactor Ky,. Moreover
Kf :anfl +...+THKfT.

For a proof of this proposition see for instance [25].

3 Algebraic limit cycles

We recall that a limit cycle of a polynomial vector field X is an isolated periodic
orbit in the set of all periodic orbits of X. An algebraic limit cycle of degree m of
X is an oval of an irreducible invariant algebraic curve f = 0 of degree m which is
a limit cycle of X.
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We must remark that when we are interested in the invariant algebraic curves
for questions different from the algebraic limit cycles (like for instance integrabil-
ity, multiplicity and others) it is important to consider complex invariant algebraic
curves (i.e. f = f(z,y) is a complex polynomial in the variables x and y), because
the natural background for all the Darboux theory of integrability is the ring of
the complex polynomials. But the limit cycles and in particular the algebraic limit
cycles is a real phenomena, so in all this paper we restrict our attention to the real
Darboux theory of integrability. In any case many of the results used here also hold
inside the theory of complex polynomial differential systems.

A first question related with this subject is whether a polynomial vector field has
or does not have invariant algebraic curves. The answer is not easy, see the large
section in Jouanolou’s book [21], or the long paper [31] devoted to show that one
particular polynomial system has no invariant algebraic solutions. Even one of the
more studied limit cycles, the limit cycle of the van der Pol system, until 1995 it
was unknown that it is not algebraic [32].

One of the nice results in the theory of invariant algebraic curves is the following
result.

Theorem 2 (Jouanolou’s Theorem [21]). A polynomial vector field of degree n has
less than [n(n+1)/2] + 2 irreducible invariant algebraic curves, or it has a rational
first integral.

For a shorter proof of this result see [9] or [10].

Jouanolou’s Theorem shows that for a given polynomial vector field X of degree n
the maximum degree of its irreducible invariant algebraic curves is bounded, because
either X' has a finite number of invariant algebraic curves less than [n(n+1)/2] +2,
or X has rational first integral f(z,y)/g(z,y). In this last case all the orbits of X are
contained in the invariant algebraic curves af(z,y) + bg(x,y) = 0 for some a,b € R.

Thus for each polynomial vector field there is a natural number N which bounds
the degree of all its irreducible invariant algebraic curves. A natural question, going
back to Poincaré [33] and which for some people in this area is now known as the
Poincaré problem, is to give an effective procedure to find N. There are only partial
answers to this question, see for instance [2—4,36], ... We must mention here that
the actual Poincaré problem is to determine when a polynomial differential system
over the complex plane has a rational first integral, and that the previous called
Poincaré problem is a main step according with Poincaré for solving the actual
Poincaré problem.

Of course if we know for a polynomial vector field the maximum degree of its
invariant algebraic curves, then it is possible (at least in theory) to compute its
invariant algebraic curves.

We are interested in algebraic limit cycles of polynomial vector fields, and if
a polynomial vector field has a rational first integral it cannot have limit cycles.
Unfortunately for the class of polynomial vector fields with fixed degree n having
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finitely many invariant algebraic curves (i.e. having no rational first integrals), there
does not exist a uniform upper bound N(n) for N as it was shown in [11,30]. This
implies that there are polynomial vector fields with a fixed degree having irreducible
invariant algebraic curve of arbitrary degree. Therefore a priori it is possible the
existence of polynomial vector fields with a fixed degree having algebraic limit cycle
of arbitrary degree. But it may be worse than that.

We shall need the next well known result.

Theorem 3 (Harnack’s Theorem). The mazimum number of ovals of a real algebraic
curve of degree m is [(m — 1)(m —2)/2] + 1.

Summarizing, a polynomial vector field of degree n with finitely many irreducible
invariant algebraic curves has at most [n(n + 1)/2] + 1 of such curves, but we do
not have a bound for the degree of these invariant algebraic curves. Consequently
due to the Harnack’s Theorem we do not have a uniform bound for the number
of algebraic limit cycles that any polynomial vector field of degree n can have. So
the second part of the 16-th Hilbert problem [20] (see also [19,22]) which asks for
finding a uniform bound for the number of limit cycles that any polynomial vector
field of degree n can have, remains also open if we restrict our attention to the limit
cycles which are algebraic.

Open problem 1. Is there a uniform bound for the number of algebraic limit cycles
that a polynomial vector field of degree n could have?

From the previous paragraphs it is clear that a uniform positive answer to the
Poincaré problem inside the class of all polynomial vector fields of degree n, i.e. to
provide a uniform bound N(n) for the degrees of the invariant algebraic curves of
all polynomials vector fields of degree n, will provide also a uniform bound for the
number of algebraic limit cycles of all polynomials vector fields of degree n.

4 A unique irreducible invariant algebraic curve

In this section we shall need the following result.

Theorem 4 (Bautin—Christopher-Dolov-Kuzmin Theorem). Let f = 0 be a non—
singular algebraic curve of degree m, and D a first degree polynomial, chosen so that
the line D = 0 lies outside all bounded components of f = 0. Choose the constants
a and b so that aD, + bD, # 0, then the polynomial differential system

i=af — Dfy, y=0bf+ Df,

of degree m has all the bounded components of f = 0 as hyperbolic limit cycles.
Furthermore the vector field has no other limit cycles.

It seems that the main result in the paper of Bautin [1] is similar to the previous
theorem. However the paper contains a mistake which was corrected in [13] and
generalized in [14]. A proof of the statement of theorem like it is presented here
appeared in [8].
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The next proposition provides the maximum number of algebraic limit cycles
that a polynomial vector field having a unique irreducible invariant algebraic curve
can have in function of the degree of that curve. This proposition is well known in
the area, we write it here for completeness.

Proposition 5. Suppose that f =0 of degree m is the unique irreducible invariant
algebraic curve of a polynomial vector field X. Then X can have at most [(m —
1)(m — 2)/2] + 1 algebraic limit cycles. Moreover choosing that f = 0 has the
mazimal number of ovals for the irreducible algebraic curves of degree m, there exist
vector fields X of degree m having exactly [(m — 1)(m — 2)/2] + 1 algebraic limit
cycles.

Proof. The first part of the proposition follows directly from the Harnack’s Theo-
rem, and the second part again from the Harnack’s theorem and using Christopher’s
Theorem. O

5 Quadratic polynomial vector fields

In 1958 Qin Yuan—Xun [35] proved that quadratic (polynomial) vector fields can
have algebraic limit cycles of degree 2, and when such a limit cycle exists then it is
the unique limit cycle of the system.

Evdokimenco in [15-17] proved that quadratic vector fields do not have algebraic
limit cycles of degree 3, for two different shorter proofs see [6,25].

In 1966 Yablonskii [34] found the first class of algebraic limit cycles of degree 4
inside the quadratic vector fields. The second class was found in 1973 by Filiptsov
[18]. More recently two new classes has been found and in [7] the authors proved
that there are no other algebraic limit cycles of degree 4 for quadratic vector fields.
The uniqueness of these limit cycles has been proved in [5]. Some other results on
the algebraic limit cycles of quadratic vector fields can be found in [27,28].

Doing convenient birational transformation of the plane to quadratic vector fields
having algebraic limit cycles of degree 4 in [7] the authors obtained algebraic limit
cycle of degrees 5 and 6 for quadratic vector fields. Of course in general a birational
transformation does not preserve the degree of the polynomial vector field.

Open problems 2. The following questions related with the algebraic limit cycles
of quadratic polynomial vector fields remain open, see for instance[25].

(i) What is the maximum degree of an algebraic limit cycle of a quadratic polyno-
mial vector field?

(ii) Does there exist a chain of rational transformations of the plane (as in [7])
which gives examples of quadratic systems with algebraic limits cycles of arbi-
trary degree, or at least of degree larger than 67

(iii) Is 1 the maximum number of algebraic limit cycles that a quadratic system can
have?
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6 Cubic polynomial vector fields

It is known that there are cubic polynomial vector fields having algebraic limit
cycles of degrees 2 and 3, see for instance [23,24]. In [29] we provide cubic systems
having algebraic limit cycles of degrees 4, 5 and 6 respectively, and an example of a
cubic system having two algebraic limit cycles.

Open problems 3. The following questions related with the algebraic limit cycles
of cubic polynomial vector fields remain open, see for instance [29].

(i) What is the mazimum degree of an algebraic limit cycle of a cubic polynomial

vector field?
(ii) Does there ezist a chain of rational transformations of the plane (as in [7])

which gives examples of cubic polynomial vector fields with algebraic limits

cycles of arbitrary degree, or at least of degree larger than 6?
(iii) Is 2 the mazimum number of algebraic limit cycles that a cubic polynomial

vector fields can have?

7 Configurations of algebraic limit cycles

In 1900 Hilbert not only proposed in the second part of his 16-th problem
(see [20]) to estimate a uniform upper bound for the number of limit cycles of
all polynomial vector fields of a given degree, but he also asked about the possible
distributions or configurations of the limit cycles in the plane. This last question
has been solved using algebraic limit cycles.

A configuration of limit cycles is a finite set C' = {C1,...,C,} of disjoint simple
closed curves of the plane such that C; N C; = 0 for all 7 # j.

Two configurations of limit cycles C = {C4,...,Cy} and C" = {CY,...,C}.}
are (topologically) equivalent if there is a homeomorphism h : R? — R? such that
h (Ui, C;) = (U2, Cf). Of course for equivalent configurations of limit cycles C and
C’ we have that n = m.

We say that a polynomial vector field X realizes the configuration of limit cycles
C if the set of all limit cycles of X is equivalent to C.

Theorem 6. Let C = {Cy,...,C,} be an arbitrary configuration of limit cycles.
Then the configuration C' is realizable with algebraic limit cycles by a polynomial
vector field.

This theorem is proved in [26]. Looking at the way in which it is proved you can
provide an alternative proof using the Bautin—Christopher—Dolov—-Kuzmin Theorem.
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Abstract. In this article we consider the class QSL, of all real quadratic differential

d d . .
systems d—f =p(z,y), d—?i = ¢(z,y) with ged(p, ¢) = 1, having invariant lines of total

multiplicity four and a finite set of singularities at infinity. We first prove that all
the systems in this class are integrable having integrating factors which are Darboux
functions and we determine their first integrals. We also construct all the phase
portraits for the systems belonging to this class. The group of affine transformations
and homotheties on the time axis acts on this class. Our Main Theorem gives necessary
and sufficient conditions, stated in terms of the twelve coefficients of the systems, for
the realization of each one of the total of 69 topologically distinct phase portraits
found in this class. We prove that these conditions are invariant under the group
action.
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1 Introduction

We consider here real planar differential systems of the form

(S) fl_f :p(fL’,y), % ZQ(xay)7 (1)

where p, ¢ € R[z,y]|, i.e. p, ¢ are polynomials in z, y over R, their associated vector
fields

0 0
D =p(z,y)5- +alz, y)a—y (2)
and differential equations
q(z,y)dz — p(z,y)dy = 0. (3)

We call degree of a system (1) (or of a vector field (2) or of a differential equation (3))
the integer deg(S) = max(degp, degq). In particular we call quadratic a differential
system (1) with deg(S) = 2.
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A system (1.1) is said to be integrable on an open set U of R? if there exists a C'*
function F'(z,y) defined on U which is a first integral of the system, i.e. such that
DF(z,y) = 0 on U and which is nonconstant on any open subset of U. The cases
of integrable systems are rare but as Arnold said in [2, p. 405] ”...these integrable
cases allow us to collect a large amount of information about the motion in more
important systems...”. In particular we indicate below how integrable systems play a
role in the second part of Hilbert’s 16th problem for polynomial differential systems.

There are several hard open problems on the class of all quadratic differential
systems (1). Among them the most famous one is the second part of Hilbert’s 16th
problem which asks for the determination of the so called Hilbert number H(2) for
this class where

H(n) = max{LC(S) | deg(S) = n}

and LC(S) is the number of limit cycles of the system (.5). It is known that for any
polynomial system (5), LC(S) is finite. This is the so called individual finiteness
theorem which was proved independently by Ilyashenko and Ecalle (see [12,15]).

The class of quadratic differential systems possessing a singularity which is a
center is formed by integrable systems on open sets of R? which are complements of
real invariant algebraic curves. These systems do not possess limit cycles but they
turn out to be very important in the determination of H(2) as perturbations of such
systems could produce limit cycles. Furthermore we have evidence indicating that
H (2) could be linked to the number of limit cycles occurring in perturbations of the
most degenerate ones of all quadratic systems with a center (which happen to have
a rational first integral) as we explain below.

In [3] the authors studied the class of all quadratic systems possessing a second
order weak focus. It is known that the maximum number of limit cycles occurring
in systems in this class is two (see [32,33]). In the bifurcation diagram drawn in [3]
for this three parameter family of systems, modulo the action of the affine group
and time rescaling, the maximum number of two limit cycles which one has for this
class, occurs in perturbations of an quadratic system (Sp) with a center, which has
a rational first integral foliating the plane into conic curves. In addition this system
(So) has three invariant affine lines and its line at infinity is filled up with singu-
larities. Although other systems in this class having this maximum number of two
limit cycles could be far away in the parameter space from the particular degen-
erate system (Sp), their phase portraits are topologically equivalent with a small
perturbations of (Sp). This indicates the importance of integrable systems having
invariant algebraic curves (see Definition 3), even with a rational first integral, in the
second part of Hilbert’s 16th problem and adds to the motivation for studying such
systems. However, such a study is interesting for its own sake being at crossroads
of differential equations and algebraic geometry.

The simplest class of integrable quadratic systems due to the presence of invariant
algebraic curves is the class of integrable quadratic systems due to the presence of
invariant lines. The study of this class was initiated in articles [25,27-29]. In
particular it was shown in [29] that the above mentioned system (Sp) possesses
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invariant affine lines of total multiplicity three.

In this article we study the class QSL, of all quadratic differential systems
possessing invariant lines of total multiplicity four (including the line at infinity and
including multiplicities of the lines). The study of QSL, was initiated in [27] where
we proved a theorem of classification for this class. This classification, which is taken
modulo the action of the group of real affine transformations and time rescaling, is
given in terms of algebraic invariants and comitants and also geometrically, using
cycles on the complex projective plane and on the line at infinity. An important
ingredient in this classification is the notion of configuration of invariant lines of a
polynomial differential system.

Definition 1. We call configuration of invariant lines of a system (1) the set of all
its (complex) invariant lines (which may have real coefficients), each endowed with
its own multiplicity [25] and together with all the real singular points of this system
located on these lines, each one endowed with its own multiplicity.

The goal of this article is to complete the study we began in [27]. More precisely
in this work we

e prove that all systems in this class QSL, are integrable. We show this by
using the geometric method of integration of Darboux. We construct explicit
Darboux integrating factors and we give the list of first integrals for each
system in this class;

e construct all topologically distinct phase portraits of the systems in this class;

e give invariant (under the action of the group Aff(2,R) x R*)) necessary and
sufficient conditions, in terms of the twelve coefficients of the systems, for the
realization of each specific phase portrait.

This article is organized as follows:

In Section 2 we give the preliminary definitions and results needed in this article.
These are mainly of a differential-algebraic nature.

In Section 3 we associate to each real quadratic system (1) possessing invariant
lines with corresponding multiplicities, a divisor on the complex projective plane
which encodes this information. We also define several integer-valued affine invari-
ants of such systems using divisors on the line at infinity or zero-cycles on Py(C)
defined in [25] and [27], which encode the multiplicities of the singularities of the sys-
tems. We also state Theorem 5 which was proved in [27] illustrating how these cycles
are useful for classification purposes. This theorem lists all possible configurations
of invariant lines of total multiplicity four of the systems under study.

In Section 4 we prove the integrability of the systems in this class by using their
invariant lines with their multiplicities. The main result in this Section states that
all these systems have either a polynomial inverse integrating factor which splits into
linear factors over C or a Darboux integrating factor which is a product of powers of
the polynomials defining their invariant lines and an exponential factor ¢&(@¥) with
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G a rational function over C. The result is summed up in Table 1 where all these
integrating factors are listed along with the first integrals, some of which but not all
are Darboux functions.

In Section 5 we construct the phase portraits of the systems in this class and
state our Main Theorem which gives necessary and sufficient conditions, invariant
under the group action, for the realization of each one of the total of 69 topologically
distinct phase portraits obtained for this class, in terms of the twelve coefficients of
the systems.

2 Preliminaries

In this Section we give the basic notions and results needed in this paper. We
are concerned here with the integrability in the sense of Darboux [10] of systems
(1) possessing invariant straight lines of total multiplicity four. We work with the
notion of multiplicity of an invariant line introduced by us in [25].

In [10] Darboux gave a geometric method of integration of planar complex differ-
ential equations (3) using invariant algebraic curves of the equations (see Definition
3). Each real differential system (1) generates a complex differential system when
the variables range over C. For this reason the method of Darboux can be applied
also for real systems.

Poincaré was enthusiastic about the work of Darboux [10], which he called ”ad-
mirable” in [19]. This method of integration was applied to give unified proofs of
integrability for several families of systems (1). For example in [24] it was applied
to show in a unified way (unlike previous proofs which used ad hoc methods) the
integrability of planar quadratic systems possessing a center.

A brief and easily accessible exposition of the method of Darboux can be found
in the survey article [23].

The topic of Darboux’ paper [10] is best treated using the language of differential
algebra, subject which started to be developed in the work of Ritt [1893-1951], long
after Darboux wrote his paper [10]. The term ”Differential Algebra” was introduced
by Ellis Kolchin, who as Buium and Cassidy said in [6], ”deepened and modernized
differential algebra and developed differential algebraic geometry and differential
algebraic groups”. According to Ritt, differential algebra began to be developed in
the 1930’s (e.g.[21]) under the influence of Emmy Noether’s work of the 1920’s in
algebra. (In his book [22] Ritt said: ”the form in which the results of differential
algebra are presented has been deeply influenced by her teachings”.)

Whenever a definition below is given for a system (1) or equivalently for a vector
field (2), this definition could also be given for an equation (3) and viceversa. For
brevity we sometimes state only one of the possibilities.

An integrating factor of an equation (3) on an open subset U of R? is usually
defined as a C'! function R(x,%) # 0 such that the 1-form

w = Rq(x,y)dx — Rp(x,y)dy
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is exact, i.e. there exist a C! function F': U — K on U such that
w = dF. (4)
If R is an integrating factor on U of (3) then the function F such that
w = Rgdx — Rpdy = dF is a first integral of the equation w = 0 (or a system

(1)). In this case we necessarily have on U:

d(Rq) J(Rp)

= _ 5
oy ox (5)
and developing the above equality we obtain 8—Rp + 8—Rq = —R<@ + @) or
ox oy Oor Oy
equivalently
DR = —RdivD. (6)

In view of Poincaré’s lemma (see for example [31]), if R(z,y) is a C' function
on a star-shaped open set U of R?, then R(z,y) is an integrating factor of (3) if
and only if (5) (or equivalently (6)) holds on U. So for star shaped open sets U (6)
can be taken as a definition of an integrating factor on U. This is sufficient for our
purpose. We note that this last definition is much simpler than the one usually used
in textbooks as it no longer involves an existential quantifier.

In this work we shall apply to our real quadratic system (1) the method of
integration of Darboux which was developed for complex differential equations (3).
This method uses multiple-valued complex functions of the form:

F= eG(Ly)fl(‘r?y))\l o ’fs(.il',y)AS, Ge (C(a;,y), fl € (C[$7y], Ai € (Ca (7)

G = G1/Gy, G; € Clz,y], f; irreducible over C. It is clear that in general an
expression (7) makes sense only for G5 # 0 and for points (z,y) € C?\ ({Ga(z,y) =
0} U{fi(z,y) =0} U U{fs(z,y) = 0}).

The above expression (7) yields a multiple-valued function on

Z/{:C2\({G2(Z’,y) :O}U{fl(‘ray) :O}U”'U{fs(xay) :O})

0 0
52 9y
obtained by adjoining to C(z,y) a finite number of algebraic and of transcendental
elements over C(z,%). For example f(z,y)"/? is an expression of the form (7), when
f € Clz,y] \ {0}. This function belongs to the algebraic differential field extension

The function F' in (7) belongs to a differential field extension of ((C(m, Y),

((C(a:, y)[u], %, 8%/) of ((C(a:, Y), %, 8%/) obtained by adjoining to C(z,y) a root of

the equation u?— f(x,y) = 0. In general, the expression (7) belongs to a differential
field extension which is not necessarily algebraic. Indeed, for example this occurs if
G(x,y) is not a constant.
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0 0
5 9y
which is finite over C(x,y), is a first integral (integrating factor, respectively inverse
integrating factor) of a complex differential system (1) or a vector field (2) or a
differential equation (3) if DF = 0 (DF = —F div D, respectively DF = F div D).

Definition 2. A function F in a differential field extension K of <(C(x Y),

In 1878 Darboux introduced the notion of invariant algebraic curve for differential
equations on the complex projective plane. This notion can be adapted for equations
(3) on C? or equivalently for systems (1) or vector fields (2).

Definition 3 (Darboux [10]). An affine algebraic curve f(z,y) = 0, f € Clx,y],
deg f > 1 is invariant for an equation (3) or for a system (1) if and only if f |Df in

D
Clz,y], ie. k= Tf € Clz,y]. In this case k is called the cofactor of f.

Definition 4 (Darboux [10]). An algebraic solution of an equation (3) (respectively
(1), (2)) is an invariant algebraic curve f(z,y) =0, f € Clz,y] (deg f > 1) with f
an irreducible polynomial over C.

Darboux showed that if an equation (3) or (1) or (2) possesses a sufficient number
of such invariant algebraic solutions f;(z,y) = 0, f; € Clz,y], i = 1,2,...,s then
the equation has a first integral of the form (7).

Definition 5. An expression of the form F = e“@Y) G (z,y) € C(z,y), i.e. G is a
rational function over C, is an exponential factor! for a system (1) or an equation

DF
(3) if and only if £ = - € Clz,y]. In this case k is called the cofactor of the

exponential factor F'.

Proposition 1 (Chrlstopher 8]). If an equation (3) admits an exponential factor

[
eC@Y) where G(x,y) = (x’z

N 3, G1,G4 € Clz,y| then Go(z,y) = 0 is an invariant

algebraic curve of (3).

Definition 6. We say that a system (1) or an equation (3) has a Darboux first
integral (respectively Darboux integrating factor) if it admits a first integral (respec-
S

tively integrating factor) of the form e%@v) Hfi(a:,y))"', where G(z,y) € C(z,y)
i=1

and f; € Clz,y], deg fi > 1,7 =1,2,...,s, f; irreducible over C and \; € C. A sys-

tem (1) or an equation (3) has a Liouvillian first integral (respectively a Liouvillian

integrating factor) if it admits a first integral (respectively integrating factor) which

is a Liouvillian function, i.e. a function which is built up from rational functions

over C using exponentiation, integration and algebraic functions.

!Under the name degenerate invariant algebraic curve this notion was introduced by Christopher
in [8].
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Proposition 2 (Darboux [10]). If an equation (3) (or (1), or (2)) has an integrating
factor (or first integral) of the form F = [];_; fi)‘i then Vi € {1,...,s}, fi =0 s an
algebraic invariant curve of (3) ((1), (2)).

In [10] Darboux proved the following theorem of integrability using invariant
algebraic solutions of differential equation (3):

Theorem 3 (Darboux [10]). Consider a differential equation (3) with p,q € Clz,y].
Let us assume that m = max(degp, degq) and that the equation admits s algebraic
solutions fi(x,y) =0,i=1,2,...,s (deg f; > 1). Then we have:

L If s = m(m + 1)/2 then there exists A = (A1,...,As) € C*\ {0} such that
R =TI;_, fi(z,y) is an integrating factor of (3).

II. If s > m(m+1)/2+1 then there exists A = (A1,...,As) € C*\ {0} such that
F =TI, filz,y)" is a first integral of (3).

Remark 1. We stated the theorem for the equation (3) but clearly we could have
stated it for the vector field D (2) or for the polynomial differential system (1).
We recall that Darboux’s work was done for differential equations in the complex
projective plane. The above formulation is an adaptation of his theorem for the
complex affine plane.

In [16] Jouanolou proved the following theorem which improves part II of Dar-
boux’s Theorem.

Theorem 4 (Jouanolou [16]). Consider a polynomial differential equation (3) over
C and assume that it has s algebraic solutions f;(x,y) =0,i=1,2,...,s (deg f; >
1). Suppose that s > m(m-+1)/242. Then there exists (ni,...,ns) € Z°\ {0} such
that ' =T17_, fi(z,y)™ is a first integral of (3). In this case F' € C(z,y), i.e. F is
rational function over C.

The above mentioned theorem of Darboux gives us sufficient conditions for inte-
grability via the method of Darboux using algebraic solutions of systems (1). How-
ever these conditions are not necessary as it can be seen from the following example.
The system

de/dt = —y — 2® —y?,  dy/dt =z + xy

has two invariant algebraic curves: the invariant line 14y = 0 and a conic invariant
curve f = 6z2 4 3y% + 2y — 1 = 0. This system is integrable having as first integral
F=(1+y)2f but here s =2 < 3 =m(m+1)/2.

Other sufficient conditions for Darboux integrability were obtained by Christo-
pher and Kooij in [17] and Zoladek in [34]. Their theorems say that if a system has s
invariant algebraic solutions in ”generic position” (with ”generic” as defined in their
papers) such that > 7 ; deg fi = m + 1 then the system has an inverse integrating
factor of the form [[;_, f;. But their theorem does not cover the above case as the
two curves are not in ”generic position”. Indeed, the line 14y = 0 is tangent to the
curve f =0 at (0, —1). For similar reasons the above example is not covered by the
more general result: Theorem 7.1 in [9]. Other sufficient conditions for integrability
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covering the example above were given in [7]. However we do not have necessary
and sufficient conditions for Darboux integrability and the search is on for finding
such conditions.

Problem resulting from the work [10] of Darboux: Give necessary and
sufficient conditions for a polynomial system (1.1) to have: (i) a polynomial in-
verse integrating factor; (i) an integrating factor of the form [[;_, fi(x,y)™; (iii) a
Darboux integrating factor (or a Darboux first integral); (iv) a rational first integral.

The last problem (iv) above, was stated in 1891 in the articles [19] and [20] of
Poincaré where it was called the problem of algebraic integrability of the equations.
In recent years there has been much activity in this area of research.

One of the goals of this work is to provide us with specific data to be used
along with similar material for higher degree curves, for the purpose of dealing
with questions regarding Darboux and algebraic integrability. We collect here in a
systematic way information on quadratic systems having invariant lines of exactly
four total multiplicity.

This material may also be used in studying quadratic systems which are small
perturbations of integrable ones. In fact, as we have already indicated in the intro-
duction, the maximum number of limit cycles of some subclasses of the quadratic
class can be obtained by perturbing integrable systems having a rational first integral
and invariant lines.

This article forms the basis for the study of some moduli spaces of quadratic
systems, under the group action. One such moduli space which we intend to study
in a following article is the moduli space of the closure within the quadratic class of
the class QSLy,.

3 Divisors associated to configurations of invariant lines

Consider real differential systems of the form:

o Do +pi(z,9) + p2(2,y) = p(z,y),
(8) dt (8)
— =t al@y) + @y =q(z,y)

with
po = ago, pi(z,y) =ar+any, p2(z,y) = ag0x? + 2a1 70y + a02y2,
9@ =boo, @1(2,y) =biox +bo1y, q2(z,y) = baoz? + 2b1zy + bo2y”.
Let a = (a0, a10, ao1, @20, @11, @02, boo, b10, bot, b2g, b11, boz) be the 12-tuple of the co-

efficients of system (8) and denote Rla,x,y] = Rlago, a10, @01, @20, @11, @02, boo, b10,
bot, b20, b11, bo2, T, Y.

Notation 1. Whenever we refer to some specific point in R'? rather than a 12-
tuple parameter we shall denote such a point in R'? by a = (ag, a1 ... ,bo2). FEach
particular system (8) yields an ordered 12-tuple a of its coefficients.
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Notation 2. Let

P(X,Y,Z) =po(a)Z* + pi(a, X,Y)Z + pa(a, X,Y) =0,
Q(X,Y, Z) =qo(a) 2 + q1(a, X,Y)Z + g2(a,X,Y) =

We denote  o(P,Q) = {w € Py(C) | P(w) = Q(w) = 0}.

Definition 7. We consider formal expressions D = ) n(w)w where n(w) is an
integer and only a finite number of n(w) in D are nonzero. Such an expression is
called: i) a zero-cycle of Py(C) if all w appearing in D are points of Po(C); ii) a
divisor of Po(C) if all w appearing in D are irreducible algebraic curves of Py(C);
iii) a divisor of an irreducible algebraic curve € in Py(C) if all w in D are points of
the curve €. We call degree of the expression D the integer deg(D) = > n(w). We
call support of D the set Supp (D) of all w appearing in D such that n(w) # 0.

Definition 8. We say that an invariant affine straight line £(z,y) = ux+vy+w =0
(respectively the line at infinity Z = 0) for a quadratic vector field D has multiplicity
m if there exists a sequence of real quadratic vector fields Dy, converging to D, such
that each Dk has m (respectlvely m — 1) distinct invariant affine straight lines
Ej =ulz+vly+w =0, (u],v]) #(0,0), (ul,vf,w ') € C3, converging to £ = 0 as
k — o0 (Wlth the topology of their coefficients), and this does not occur for m + 1
(respectively m).

Notation 3. Let us denote by

_ (S) is a real system (1) such that ged(p(x,y),q(z,y)) =1 |
e K P s }

(S) possesses at least one invariant affine line or
L = ; o o
QS { (5) € QS the line at infinity has multiplicity at least two

In this section we shall assume that systems (8) belong to QS.
We define below the geometrical objects (divisors or zero-cycles) which play an
important role in constructing the invariants of the systems.

Definition 9.

D(P,Q) = > IL(PQu
weo(P,Q)
D(P,Q:Z) = Y IL(PQuw
we{Z=0}
Dy(P.Q.2) = Y (L(C.2), 1(PQ)w if ZIC(XY,2);
we{Z=0}
D,(C,Z) = Y L(CZw if Zt1C(X)Y,Z),

we{Z=0}
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where C(X,Y,Z) =YP(X,Y, Z)-XQ(X,Y, Z), I,(F,G) is the intersection number
(see [11]) of the curves defined by homogeneous polynomials F, G € C[X,Y, Z],
deg(F),deg(G) > 1and {Z =0} = {[X : Y : 0] | (X,Y) € C?\ (0,0)}.

We denote by #A the number of points of a finite set A.

Notation 4.
nz: =#{w € SuppD,(C, Z) | w € P2(R)}.

A complex projective line uX + vY + wZ = 0 is invariant for the system (.5) if
either it coincides with Z = 0 or it is the projective completion of an invariant affine
line ux + vy +w = 0.

Notation 5. Let (S) € QSL. Let us denote

B [ is a line in Po(C) such '
IL(S) _{ ! that 1 is invariant for (S) } ’

M(l) = the multiplicity of the invariant line | of (S).

Remark 2. We note that the line I, : Z = 0 is included in IL(S) for any (S) € QS.

Let l; : fi(z,y) =0,7=1,...,k, be all the distinct invariant affine lines (real
or complex) of a system (S) € QSL, in case they exist. Let I} : F;(X,Y,Z) =0 be
the complex projective completion of ;.

Notation 6. We denote
g : H]—'Z-(X,Y,Z)Z =0; SingG ={w € G| w is a singular point of G} ;
v(w) = Zthe multiplicity of the point w, as a point of G.

Definition 10.

D, (5) = Z M@, (S) € QSL;
1€IL(S)
SuppDIL(S) = {l ‘ le IL(S)}

Notation 7.
M, (S) =deg Dy, (5);
N (S) =#Supp Dy ;
N, (S) =#{l € SuppD, |1 € P2(R)};
n]};’g(S) =#{w € SuppD (P, Q) |w € Q|R2}; )
d, (S)= > L(P.Q);

weg’Rg
(8) =max{v(w) |w € Sing G|, };

(8) =max{v(w) |w € Sing G|, }.
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. . . . R
For brevity we sometimes just write M, , N, ..., m o

In the following sections we shall prove the integrability of the quadratic differ-
ential systems having invariant lines of total multiplicity four, including the line at
infinity and including possible multiplicities of the lines. Their possible configura-
tions as well as invariant conditions with respect to the group action distinguishing
these configurations were given in [27]. All possible such configurations for this class
are found in Diagram 1 of Theorem 4.1 in [27]. This Theorem will be needed in
the following sections so we reproduce it below. It also helps in illustrating how the
concepts introduced in this section are used.

Notation 8. We denote by QSLy, the class of all real quadratic differential systems
(8) with p, q relatively prime ((p,q) = 1), Z t C, and possessing a configuration of
invariant straight lines of total multiplicity M, = 4 including the line at infinity
and including possible multiplicities of the lines.

Theorem 5. (Schlomiuk and Vulpe [27]) The class QSLy splits into 46 distinct
subclasses indicated in Diagram 1 with the corresponding Configurations 4.1-4.46,
where the complex invariant straight lines are indicated by dashed lines. If an in-
variant straight line has multiplicity k > 1, then the number k appears near the
corresponding straight line and this line is in bold face. We indicate next to the real
singular points of the systems, situated on the invariant lines, their multiplicities as
follows: (I,(p,q)) if w is a finite singularity, (1,(C,Z), I,(P,Q)) if w is an infi-
nite singularity with I,(P,Q) # 0 and (1,(C, Z)) if w is an infinite singularity with
L(P,Q) =0.

4 Integrability and phase portraits of the systems in the class
of quadratic systems with total multiplicity four

4.1 Darboux integrating factors and first integrals

Theorem 6. Consider a quadratic system (8) in QSLy. Then this system has either
a polynomial inverse integrating factor which splits into linear factors over C or an
integrating factor which is Darboux generating in the usual way a Liouvillian first
integral. Out of 46 cases, 26 lead to Darbouz integrals which produce, depending on
the values of the parameters, 30 Darboux integrals. In the remaining cases the first
integral involves special functions such as for example Hypergeometric functions, or
Appell or Beta functions, etc. Furthermore the quotient set of QSL, under the
action of the affine group and time rescaling is formed by: (i) a set of 20 orbits;
(ii) a set of twenty-three one-parameter families of orbits and (iii) a set of ten two-
parameter families of orbits. A system of representatives of the quotient space is
given in Table 1. This table also lists the corresponding cofactors of the lines as well
as the inverse integrating factors and first integrals of the systems.

Proof of Theorem 6. In [27] we obtained a total of 46 canonical forms for all
the systems in the class QSL,. They correspond to the 46 possible configurations
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Diagram 1 (continued)

(1)
4 W (1,1) . .
Config. /.16
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Diagram 1 (continued)
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of invariant lines listed in Diagram 1. We take each one of these canonical forms,
check their invariant lines with their respective multiplicities and determine their
cofactors. As Darboux’ work showed, these are instrumental in determining the
integrating factors by showing linear dependence over C of the cofactors (of the
invariant lines or of the exponential factors) together with the divergence of the
vector field. Once the integrating factor is found one proceeds in the usual way
to integrate the resulting differential equation (see Section 2). This integration
can be done using MAPLE or MATHEMATICA. The calculations for the 46 cases
considered yield the results given in Table 1.

Fir=aly(l+a—y) o

ht1—ig h+1+ig
f2:$—2h[(x—h—1)+i(y+g)} [(:U—h—l)—i(erg)] ;
_ h+1

___9h o 1)2 2 ﬁ .
Fo=a[@—h—17+@w+9")]  exp[2gArcTan LI ],

Fy = —aly9(x —y)~ @t (g)‘g(l = %)‘“h [(1 + gz) Beta[%, 9:1—g—h|+

4—(11—1):17Beta[g g+1, 1—g—h] +/ U3 (w)dw,

’
z 0

— h=1, 9. ,\—(9+h) _ g - —g .
where W3(z) =2"""yI(z —y) [y $+x<x) <1 x)

0
s U =0

[gBeta[Q g,l_g_h]+(h_1)Beta[9 g—l—l,l—g—hH 3

) )
T T

)g [g(a: —y) + (%)gHypergeometriCQFl [g, g, g+1, %H (9 #—1);

(y—z)(y—z+1)
y

f4:<az—y

1

} for g = —1;

.7?4 =1xYy ~exp [

Fs=alyo(y — )"0
x

Fe = —x_h/€($,y)H(:E,y)(h_1)/2 [gz + (h+ 1)y|dy —I—/ Ugs(w)dw, where

wo

Ug(x) = E(@,y)H(z,y) "V 2 (go + hy — 1)(y + 1) — 2%+

+ah / E(,y)H(x,y) "2 [gha®+ (h* = Day—g(y + 1) (ga+hy—1)] dy—

0

— ha 1t / E.y)H(e.y) " P for+ (- Dyldy, 50 =0;
E(z,y) = e 9hreTanle/QHv)] - (g ) = 2 + (y + 1)

Fr= fG‘ ;

Fs = a2 (a + iy) " (@ — i) S
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Table 1
Orbit Invariant lines and | Inverse integrating
o their multiplicities factor R;
representative Respective cofactors | First integral F;
T =gTr + gx +(h—1)96y, rm, YW, Ri=zylr—y+1
2 {y——hy+( — D)ay + hy?, Tyl L :
(9.h) €R?, gh(g+h—1) £0, | dterDtu(h=l)
(9= 1)k = 1)(g+h) #0 =lg=1)+hlu—1) d
gz + hy
= g2° + (h+ 1)ay, z ), iy +g9)+ | Ra=z[(y+g)*+
= g+h+1)]+2ghy a? z—h—1() (x—h—1)?]
+(g° +21 — h?)z+gry + hy?, gx + (h+ 1)y,
(9 ) €R%, h(h+1) #0, Ti(x + h+ h2)+ Fo, Fo
g ( 1)2£0 g(x+h)+ hy
_ . 1-h,1
) {:'c:x+g:c2+(h—1)xy, wél)_yy(f)l) Rs(— )gerth
y=y+(g— Dy +hy?, - S
(9. h) € R2, gh(g+h—1)#£0, ga+14y(h-1),
(9= D)(h—1)(g-+h) 0 =g —1)Fhy+d, 73
gr+hy+1
) {”3:$+9w2—wy7 ), T —y),y) | Ry =y d(z—y)!
y=y+(g—Day, =
gr+1l—y, gr+1
geR, glg—1)#0 z(g—1) +1 Fa 7
& = gz + (h— 1)y, _
5) {y:( —Vzy + hy?, zW), T—y®, Y1) | Rs=azy(r—y)
(g,h) € R?, gh(g+h—1)#0, gz+y(h—1), g +hy, -
(9=1)(h=1)(g+h)#0 z(g—1)+hy ’
i = gz + (h + Day, z), To =a£ |Rg=1T"79/24
6) y=—-1+gx+(h—1)y i(y+1) ) 7 (U=htig)/2 ht1
—z*+gry+hy®, (9,h) € R?, o+ 1, -
h(h+1)[g> + (h = 1)?] #0 +iz+ 14 gz + hy o
x (1) Ii —ot | Ro=1. T
7) x = ng +zy, g€ R i(ly+ 1)@ Il(lﬂg)/z x
y=—-1+gx—y—a? —i—gmy gx+y,
+izx +1+gx 77
8) T = gm22+(h+ 1)zy, (g, h)eR?, x (1), x =+ iy 1) Rs = z(2? + 1?)
g =—a?+ gry + hy?,
Wi+ 1 0 gr + (h+ 1)y, ~
(h+1)[g* + (h—1)%] # iz + gz + hy Fs, Fs
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Table 1 (continued)
Orbit Invariant lines and | Inverse integrating
o their multiplicities factor R;
representative Respective cofactors | First integral F;
Ro = (y + h)*x
) i=12-1,(g,h) € R, y+ h (), 7 atI=2m)/2
gy=(+h)y+{1-g)z—n] Ip=zx1@) ;f/(g+1+2h)/2
g9(g = Dl(g £1)* —4h? #0 (1 -
—9)+y—h, = 2
.Z':Fl ‘7:97‘7:97f97f9
R Rig = (x+1)29x
10) {9_6_:” bogek y+gm, s£1@) (15+,E)2($)_1)
y=y+9)(y+297—g), -
9(2g —1)#0 29r+y—g, v F1 F10, F1o
" m (1— 2
_ —1 geR y, Iy ==+ R11=I+( D2
{ — g # 1 +g£1@) 7" (Hg)/zy2
r+y x+gF1 Fi1, Fu
= w—l—h —1, (g,h) € R?, Riz =(x+h+1)x
{yz Qry, 9lg—1) £0, | YO THAELD (x+h—1)y
h _1 h2g 1) (9+1)2]7é0 xr+y, w—i—h:Fl .7:12
: Riz = (y + h)* x
{:13 (g,h) €R Y+ h), 24iq) | (z4i)tet2in/2,
Y= y+h y + (1 g)r— h] (z—)(1+9-2ih)/2
9(g—D[(g+1)* +r*] £0
- Fis, Fis
T Fi
Ris = y? X
Y i=(x4+g9)2%+1, yQ), x+gExi) (x+g+i)(1+’?)/2x
J=ye+y), ger (z+g—i) (17912
rt+y, x+gFi Fia, F1a
P = 2 . Ris5 = yx
15) {&= (@ +h)"+1, W, z+hEi, 1
5) {y =(1-gry, (gh)er | Y [(z +1h)* +1]
9(g —D)[(g +1)* +1*] #0 x, v+hFi Fis, Fis
R T+gm), YO Ras = ey’
16 ‘%":g"’_x? g ek, ’ w+gl_9
){yzy(y—x), g(g—1) #0 9
17 y—x ‘7:16
i=x z (), Y Rir = ze”y?
17) < —
y=yly—z) 1, y—= Fi7
18) {E=9(g+ 1) +gr+y, geR, | YO, T=y+g+1 (ﬁl; ié’f_ 1)
JVi=vly—a), glg+1) #0
y—z, y+yg Fi8
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Table 1 (continued)

Invariant lines and

Inverse integrating

Orbit ] their multiplicities factor R;
representative Respective cofactors | First integral F;
1) [f=g+2 g€, rHgm, ym | Riw=ylz+g)
y=—zy, glg—1)#0 1, - Fig
s [F=algr+y). gER T2, YO Rao = 2%y
= (9—Dry+y* g(g—1) #0 | guty, a(g—1)+y F20

s

Y

z(gz +y), g9 —1) #0,
(y+1)(gz—z+y), geR

Rgl = l’g+1 X

(@), y+1@ e—(gzt+y+1)/z o
(y +1)1-9
gr+y, 2(g—1+y Fa1, Fai

g.%'2, g€R7 g(g_l)#(h
(v

r@), y+1@

(y + 1)26_2/(91’)

{ =+ Dy + (g— 1z —1
. Ras = 22(y + 1)x
i =%+ ay, (), y+1@ wo ey
)=ty +1)? =
r+y, y+1 Fo3
i=(r+1)* geR, z+1@, yO Ros = (x+1)%y
24) {4
y=(1-g)ry, glg—1)#0 r+1, x Fou
25) {{C:Wzﬂﬂ”ﬂy, g(g—1)#0, T2, Yy Ras =y
g=y+(g-Dry+y? g€R  |guty, 2(g—1)+y+1 Fos
. Rog=x(y+1)x
T =2y, z(2), Yy 2 —( S}{)/z )
26) {* e~ (v
y=(y+1)(y—=z)
Yy, y—w Fa6
- . Ror = (z — 1)?
27) =29z +2y, g¢ge€ER, y+gtilx—1)@) 27( $)2)+
j=g"+1-2>—y? =Y
g—y+i(x+1) For, For
— (o 1)1+g/2
28) {g’n:x2—1, QGR, ':L'—i_l(l)? m_l(l) st(l'fl)}z‘g/Q .
y=z+gy, g(g>—4)#0
x—1, z+1 Fas
t=ax2—-1, ¢g€ER, z+11), z—1() Rog =122 —1
29) 4
y=g+z, g#=+1 r—1, z+1 Fag
. Rszo = 1)
30) {x: (x+1)(gx+ 1), g € R, z+1@2), gr+1Q) (Z?T+(f)(5_1))/gx
g =1+(g—1)zy, g(g>—1)#0

gr+1, z+1

F30, F30, F30
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Table 1 (continued)

Orbit

representative

Invariant lines and
their multiplicities

Inverse integrating
factor R;

Respective cofactors

First integral F;

Ra1 = xz(z + 1)2

31 t=z(z+1), geR, r+1@, z@
) y=g—a’+uay, glg+1) #0 r, v+1 F31
. R0 = (SE + i)1+i9/2 X
y=z+gy, g#0 c i Fo
g JE=22+1, g€ER, r i) Rig =2’ +1
){QZQ—FUC TFi F33, F33
34 {j::g’ ge{-1,1}, ym Ry = y? /)
) y:y(y—x) y— Fsq
t=g+vy y@ Rss =y
35) “ :
y=wzy, ge€{-1,1} x Fss
— y (1) R3s =y
36) © 7
y=xy, ge{-1,1} z F36
— gt
37) {jz:@ 9(¢> =1) #0 ) Rar = a9"
y=gy—z* geR 1 Far, Far
r = T (1) Rss ==z
38) T,
y=g-—a", 0#geR 1 Fsg
X (2 R :(L‘ze_l/x
39) if:$27 y:$+y () 39
x F39
x‘i’l 2 R = Q:_'_l 26_1’
40) r=14z, y=1-—zy (2) 40 ( )
1 Fao
41) {jzzgacy, ge{-1,1} x (3) Ry =x2e—9W+9)?/(2?)
S 2 2
y=yo ety Y Fa1
T = qgry, gec {—1, 1} x (3) Rao = .1'3
y=-—a gy Y Fuo
g# % Ryz = %X
1
43) & =gx? g(g> —1)#0 T (3) [1"‘(29~_ 1)359] ’;
y=1+(g—1Dazxy, geR g=7%: Ryz = zde W
x Fu3, Fa3
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Table 1 (continued)

Orbit Invariant lines and |Inverse integrating
! l u their multiplicities factor R;
ropresentative Respective cofactors | First integral F;
_ .3
sy {E=2% ge{-L1 £ Ras =2
j=g-a°+uy x Faa
_ .3
45) {x =gy, ge{-11} T Ris =@
y:w_x2+gy2 Yy f45
9 - R46 =e”
46) =1, y=y—=x
- Fae

Fg =2 (2 +y?) lexp {2g ArcTan Z } ;
T

Fo = (y + h)_l(l’z o 1)(1—9)/2€2hArcTanh[x} _|_/

if h(g+1)#0;

wo

¢ €2h ArcTanh|w] (w2 _ 1)—(g+1)/2dw’

~  (z+ D=1 (1—z)h x+1 g=—1
= B 1,1-h f T
Fo= o) oy eta[ g ML } Or{h;é—l ’
= -2 (z —1) 4.
Fo=(x+1)"“ exp [Hiy—l }, for g=h=—1;
. (@2 —1)01-9/2 g1 — ) (H9)/2 . 1 g+1 3
Fq = ” W12 HypergeometchFl[g, 5 ¥ ],
for h = 0;
]:10 _ (y + g)_1($2 o 1)ge2gArcTanh[:v} +/ e2gArcTanh[w} (w2 o 1)g—ldw’ (g ?é 1);
wo
= (z+1)2 L
Fio = (z —1)° exp [m—l_iy—i—l ], for g = 1;
Fr=y v+ g+ 1) (w4 g —1)7 e ArcTomblrtd [(9 + D@ +g-1)
1 1
+2yHypergeometric2F1[17 g—;— ) 9—53, iizil]]’ (9 # —3);
= (x —4)* +2y
Fi1 = (x—2 - = f = —3;
11 (x )exp [ y([L’ — 2) :|7 or g )
Fio =y V(@ + h+ 1)@+ h— 1)1,
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Fiz = (22 + 1D)92(y + h)Lexp [—2hArcTan z]+

/ (W2 +1)"(+9)/2 exp [—2h ArcTanw]|dw, (h#0);
wo

~ 1 1 3
Fis =y (22 4+ 1)179/2 4 ¢ Hypergeometric2F1 [2 %, 3 —xz}, for h = 0;
Fla=1y" 1[1 +(x+g) ]/2exp[—gArcTan[g+x]]

xT

+ [ 1+ (w+g)?]

wo

Fia =y ' (2 +1)Y? + ArcSinh[z], for g = 0;

Fis =y V(@ + h+ i) (@ + b — i)

Fis = y[(h + )% + 1] (9=1)/2 exp [h(l — g) ArcTan[z + h]];

Fis = —(g + )%y e + e/Gammalg, g + z];

Fir =y te™® 4+ ExplntegralEi[—z];

Fig=e"yI(x —y+g+1)797Y

Fro=€e"y(z+g)77%

Foo = x99 e¥/7;

Fyy = gelootytl)/z <y_+1>g + / Hlorty e VouF9) (g + 1)V dw (g # —1);
wo

—X

12 exp [ — g ArcTan [g + w]] dw, (g # 0);

~ 1 1
For = % ely—a+)/z 4 e_lEprntegralEi[l, —%} for g = —1;

1/g 1 2
JT22 = g(y + 1)_1 (g 1)/962/(92:) + ':U_l/g( - g_x> Gamma[; _g_x]

1
= Do~ LeV@+D) _ Expl Bl ——|.
Fos=(y+ 1z e xplntegra l[y—l—l}’
Fos = (x + 1)9 Ly elo=/(@+D),
Fos = 217949 e(y+1)/1‘;

1
Fog = eWHD/® o 4 ExplntegralE [1 —&} ;
T

For=e" [y+g—ile—1]" y+g+iz—1)]"

For = [(x 12+ (y+ 9)2} exp [m + 2g arctg <i—t?) };

r—1\"9% g2

— T (1= )92 — 1)9/2
Fa=u(257) T+ -0
g9 9
>

{AppellF1[2, 1+ =, 5

3, x, —az] +Appe11F1[2, g, 1- g, 3, x, —x]};
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Fap = e (@ = )71 (@ + 1)1

Fao = y(x+ 1) gz + DV + o——(x + 1) (g2 + )"/

20—1 g—1 3g—-1 -1
HypergeometridFl[ 9=° 9 g g

g g g Tglz+1))

~ _ x4+ 2)%y + 2

Fyo=(z+1)2ex [%}, for g=1/2;

~ 3 12

fgoz(x+1)_4exp[—x—|—(m—g(i)—+yl—;}, for g=1/3;
_ —g+1

Fai==x g(a:+1)1+9 exp [7yazil };

T

w
Fao = e 9 ArcTan[z] / 9 ArcTan|w] dw:
32=Y o w21

Faz = e_2y(33 _ i)l_ig(ilt + Z’)l-l-ig;

~ 1
Faz = (2> +1)Lexp [Z(y +g ArcTan;)];

2
N S DNV S
Fay=vy exp[ 29]+\/@Erf[\/@]7

Fas =y Yexp [22 — 2y];

Fs6 =y exp [—2*/2g];

For=a"92"+(2—g)y] (9+#2);

.7?37 =y exp [y/xz] for ¢g=2;

Fsg =z exp [2° + 2y];

Fzg = e'/% y + ExplIntegralEi E] ;

Fro=e" a4+ 1)y + 1) — ExplntegralEi[1 + z];

f41:$\/_exp[( ] \/—Ef[f/l%l]

Fao = x2/9¢Y 2 a? :

Fag =2 "9[14 (29 — Day]?, (9#1/2);
Fis=a"2e", forg=1/2;

Fuy = x2 el9+22y)/2?

Fus = 22 e(2z+gy?)/2?

)

Fag = e_m[(x—i-l)z—y—kl].

(9 #1/2,1/3);
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5 Phase portraits

In order to construct the phase portraits corresponding to quadratic systems
given by Table 1 we use the configurations of invariant straight lines already estab-
lished in [27] as well as the C'T-comitants constructed in [25] and [27] as follows.

Consider the polynomial ®,53 = oP + Q € Ra,X,Y,Z «o,(] where
P=7"(X/2,Y)Z), Q= 27%¢X/Z,Y)Z), p, q € Rla, z,y] and
max(deg g ) P, deg(z) ) = 2. Then

Dop= cr(a,B)X? + 2c19(a, B)XY + can(a, B)Y 2 + 2e13(er, B)X Z

+ 2623(04, ﬁ)YZ + 633(O£, 6)227
As(a,a, ) = det|leij(c, B)l; jeqr 03y A2(a,a,8) = det |leij (e, B)I; jeqr 2y -

Using the differential operator (f, g)*) = gk (=1)h <k> ' 0 which
) - - k—h 2, ,h h 9, k—h
— h) OxF="oy" Oz"Oy

is called transvectant of index k of (f,9), f, g € Rla,z,y] (cf.[13],[18]) we shall
construct the following needed invariant polynomials:

Ci(a7x7y) - ypi(a7x7y) - in(aaxay)7 1= 07 1727

Di(a,z,y) = aa pi(a,z,y) + (%qi(a,m,y), i=1,2;
D(a, z,y) = 4A3(a, —y, ©);
Bs(a,z,y) = (Co, D)(l) = Jacob (Cq, D),
Ba(a,z,y) = (Bs, B3)® — 6B3(Cy, D)),
Bi(a) = Res . (Cy, D) /y° = —2737% (By, B3)Y
M(a,z,y) = (Cy, C2)? = 2Hess (Cala, z,y));
n(a) = Discriminant (Cs(a,z,y));
K(a,r,y) = (P27Q2)() = Jacob (p2, ¢2);
p(a) = Res »(p2, q2)/y* = Discriminant (K(a,z,y))/16;
H(a,z,y) = 482(a, —y, 2);
N(a,z,y) = K(a,z,y) + H(a,x,y);
¢(a) = Discriminant (N (a,z,y));
Hy(a) = —((Cs, C2)@, Cp)W, D)
Hs(a,z,y) = (C1, 2H — N)Y — 2D, N;
Hs(a,z,y) = (Cy, D)?
Hi(a) = ((C2, D), (Co, D))
Hs(a) = ((Co, C2)®), (D, D)) +8((Co, D)) (D, D2)V)
Hg(a,z,y) = 16N?(Cy, D)? + H2(Cy, Co)?;
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Hz(a) = (N, Cy)@;
Hy(a) = 9((Ca, D)), (D, Dy)D)® + 2[<02’D)(3)r3
Hy(a) = —((<D=D>(2’=Dv>(l)D)(3);

Hio(a) = (N, D), Do)V,

Hii(a,z,y) = 8H[(Ca, D) +8(D, Do) M] + 3H3;

Ni(a,z,y) = C1(Ca, C2)® — 205(Cy, C2)?,

Na(a,z,y) = D1(C1,C2)? — ((02702)(2)700)(1),

Na(a,z,y) = (Ca, C1)'V,

Ny(a,z,y) = 4(Ca, Co)") — 3C1 Dy,

Ns(a,2,y) = [(D2,C1)" + D1D2]2 - 4(02,02)(2) (007D2)(1),

No(a,2,) = 8D + Cy [8(Co, D2) ¥ = 3(C1, 1)@ +2D3)

Remark 3. We note that by Discriminant (Cy) of the cubic form Cy(a,z,y) we
mean the expression given in Maple via the function ”discrim(Cs, z)/y%”.

The CT-comitants indicated below (for detailed definitions of the notions in-
volved see [26]) were constructed in [26] for the purpose of classifying the phase
portraits in the vicinity of infinity of quadratic differential systems.

We consider the differential operator £ = x - Ly — y - Ly acting on Ra, z, y]
constructed in [4], where

0 0 1 0 0 0 1 0
L1 = 2aqg D10 + a1g Dz + 5&016 + 2bgg=——— b1 + big=—— Do + 5()01%,
0 0 1 8 0 0 1 0
Lo =2 2 by —.
2 00 8(101 + o1 8(10 + 2(1106 + bOO 8() + b01 8()02 + 2b10 abn

Then setting po(a) = pu(a) = Res »(p2, q2)/y* we construct the following polynomi-
als:

((1 x y) _‘C(l (MO) i = 17>47

k(a) = ( K)® /
r1(a) = (M cy)®
L(a,x,y) = (a,az,y) +8H(a,z,y) — M(a,x,y);
R(a,z,y) = (a, z,y) + 8K (a,x,y);
Ki(a,z,y) = p1(@,y9)a2(z,y) — p2(z, y)ar(z, y);
Ko(a,z,y) = 4 Jacob(Ja, &) + 3 Jacob(Cy, &) Dy — £(16.J1 + 3.J3 + 3D3);
Ks(a,z,y) = 2C3(2J1 — 3J3) + C2(3Co K — 2C1Jy) + 2K, (3K, — C1D5),
where £ (p L(LD (ug)) and J; = Jacob(Cy, D3), Jo = Jacob(Cy,Cs),

0) =
J3 = Discrim(Cy), Jy = Jacob(Cy,D3), £ = M —2K.
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The local behavior of the trajectories in the neighborhood of a hyperbolic sin-
gular point (i.e. whose eigenvalues have non-zero real parts) is determined by the
linearization of the system at this point (see for instance [14]). The simplest kind of
singularities are: saddles, nodes, foci, centers and saddle—nodes. Their description
can be found in most textbooks (see for example [1, Chapter IV]). We will call
anti—saddle a singular point at which the linearization of the system has a matrix
with positive determinant. In this case the singular point is either a node, or a focus
or a center.

We shall use the following notations for a singular point M;(z;, y;):

;0= p; —4A;

(4,9:)

oo = (P2, y) + q(z,9))
(®i,yi)

The following lemma is very useful for checking, in invariant form, conditions for
existence of a center in terms of the coefficients of the systems (8) with agg = bgg = 0,
presented in the tensorial form:

da?

7 = al x® + afxﬁxaxﬁ, (j,a, B =1,2). (10)
Here the notations ! =z, 22 =y, al = aqo, ..., a3, = bz are used.

Lemma 7. [30] The singular point (0,0) of a quadratic system (10) is a center if
and only if Is < 0, Iy = Is = 0 and one of the following sets of conditions holds:

1) I3 =0; 2) I3 =0; 3) 513 — 214, = 1313 — 1015 = 0,

where
Y _ a,B _aﬁ’qu _aﬁ’qu
I =af, I,= aGaa; I3 = p Gaql . P, I, = ap A, QayePd,
_ B8 v _ B .8 _ B v 8 K
Is = ag‘awqaaﬁqu, Is = agawaaqamapq, I3 = agaqraysaaﬁamqusm.
and the tensor € has the coordinates: €2 = —g21 = 1, el =22 — .

To construct the phase portraits of quadratic systems possessing invariant lines
of total multiplicity four we examine all the families, following step by step the
canonical forms from Table 1. For the canonical systems corresponding to Config.
4.1 we shall use the notation (Sy4;). To obtain the phase portraits we use the behavior
of the vector fields on their invariant lines which can easily be established, as well
as the behavior in the vicinity of infinity given by [26]. In general this information
turns out to be sufficient. Whenever necessary we add extra arguments.

Theorem 8 (Main Theorem). i) The total number of topologically distinct phase
portraits in the class of quadratic differential systems with invariant lines of total
multiplicity four is 69.

i1) In Table 2 we give necessary and sufficient conditions, invariant with respect
to the action of the affine group and time rescaling, for the realization of each one
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of the phase portraits corresponding to the given configuration of invariant lines.
More precisely the first column of Table 2 contains the list of all 46 configurations
of tnwariant lines of total multiplicity four. In the second column we list the neces-
sary and sufficient invariant conditions (obtained in [27]) for the realization of each
configuration. The last column contains the names of the phase portraits. When-
ever for a configuration Config. 4.1 we have several phase portraits, we split the
corresponding place in the last column into smaller boxes containing the names of
these portraits. In the third column are listed the additional conditions needed for
the realization of the corresponding phase portrait in the last column.

Remark 4. Eleven of the 46 configurations from Diagram 1 produce each a unique
phase portrait. Each one of the remaining 35 configurations produces several topo-
logically distinct phase portraits. The total number of phase portraits thus obtained
is 93 (see Tables 3(a)-3(d)). However only 69 of these phase portraits are topolog-
ically distinct. For example in the subclass with two real singularities at infinity
(two pairs of opposite singularities on the Poincaré disk), the 38 cases of possible
configurations of invariant lines lead to only 26 topologically distinct phase portraits.

Remark 5. a) In the subclass with one real and two complex singularities at infinity
(two opposite singularities on the Poincaré disk), the 11 cases of possible configura-
tions of invariant lines lead to 9 topologically distinct phase portraits.

b) In the subclass with only one singularity at infinity (real) (two opposite singular-
ities on the Poincaré disk), the 16 cases of possible configurations of invariant lines
lead to 15 topologically distinct phase portraits.

c¢) Some phase portraits in a) are topologically equivalent to portraits found in the
case b) leading to a total of 18 topologically distinct phase portraits for the union
of the two cases a) and b) (See Confrontation Table).

Proof of the Main Theorem. The first step in the proof is to construct the phase
portrait Picture 4.i (or phase portraits Picture 4.i(j), j € {a,b,c,d,e}), i < 46,
associated to a configuration Config. 4.i. This leads to 93 distinct such possibilities,
with not all phase portraits topologically distinct. At the same time we also give
necessary and sufficient conditions, invariant with respect to the action of the group
for having each one of the 93 situations obtained. Here by situation we mean an
ordered couple formed by a configuration and by one of the possible phase portraits
associated to it. In the second part of the proof (see page 77) we look for topologically
equivalent phase portraits appearing in the 93 cases and form the list of phase
portraits which appear to be topologically distinct. Finally we show that the phase
portraits in this list are indeed distinct.
We now proceed to the first step mentioned above.

i=gr+ge*+ (h—1zy, (9—1)(h—
y=—hy+(g—Dzy+hy?*, gh(g+h—

(g+h)#0,

Config. 4.1: { )1) (S4.1)
Finite singularities: M1(0,0)[Ay = —gh, 6 = (g + h)?]; Ma(0,
1), 6 = (9 — 1)%]; M3(—1,0)[As =g(g+h—1), 5= (h—1

—gh(g+h—1), 64 =4gh(g+h—1).

1)[A2—h(g+h—
J; M.

) a(— hg)[A4_



54

DANA SCHLOMIUK, NICOLAE VULPE

Table 2
Configuration Necessary and sufficient Additional conditions Phase
g conditions for phase portraits portrait
to >0 Portrait 4.1(a)
Config. 4.1 n>0, Bs=0,0#0, Hr #0 o <0, K <0 Portrait 4.1(b)
to <0, K >0 Portrait 4.1(c)
o >0, Gi #0 Portrait 4.2(a)
Config. 4.2 | n<0, Bs—=0, 040, Hr £0 |t >0, 91 =0 |Portrait 4.2(b)
po <0, GL #0 Portrait 4.2(c)
o <0, G =0 Portrait 4.2(d)
o >0 Portrait 4.3(a
n>0, By=0, § #0, . ()
Config. 4.3 Hy =0, Hy £0, 40 o <0, K <0 Portrait 4.3(b)
to <0, K >0 Portrait 4.5(c)
n>0, Bs =0, 0#0, K <0 Portrait 4.4(a)
C . 4.
onfig- 441 =0, Hy £0, po =0 K>0 Portrait 4.4(b)
to >0 Portrait 4.5(a)
C n>0, Bs =0, 0#0, 5
onfig. 4.5 Hr =0, Hy =0 o <0, K <0 Portrait 4.5(b)
’ to <0, K >0 Portrait 4.5(c)
n<0, Bs=0, §#0, fo >0 Portrait 4.6(a)
Config. 4.6
fig- 4 H7 =0, po #0, Hyg #0 o <0 Portrait 4.6(b)
Config. 4.7 < (IZBE ; 0’7007& 0, — Portrait 4.7
7= flo =
Config. 4.8 n<0, B3=0, §+#0, po >0 Portrait 4.8(a)
- H7 =0, po #0, Hy=0 o < 0 Portrait 4.8(b)
G2>0,H,>0,G3<0 | Portrait 4.9(a)
n>0, Bo=0=H;=0, Go < 0
Config. 4.9 poBsHyHy # 0 and either 2 Portrait 4.9(b)
HyoN >0 or N=0, Hy>0 | 92>0,H1<0
Go>0,H4>0,G3>0 | Portrait 4.9(c)
B B_g H;>0,G3>0 Portrait 4.10(a)
MO" ;00’]{7 5 722’: i ;1101_\70>’ 0 Hy <0 Portrait 4.10(b)
Config. 4.10 Hy>0,G35<0
n>0,BsH, #0, - Portrait 4.10(c)
By =N=Hg=0,Hs >0
n=0, MB3#0, Bo=60=0, Hy >0 Portrait 4.11(a)
Config. 4.11
fig- 4 H7 =0, po #0, Hip >0 H; <0 Portrait 4.11(b)
p2 >0, L>0 Portrait 4.12(a)
Confi P n=0 M#0, By=0=0, p2 >0, L <0 Portra%t 4.12(b)
onfig. 4. KHg #0,Hy = g =0, Hy; >0 we <0, K <0 Portrait 4.12(c)
w2 <0,K>0,L>0 |Portrait 4.12(d)
1o <0, K> 0,L<0 |Portrait 4.12(e)
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Table 2(continued)

Additional

Configuration Necessary aﬁd sufficient conditions for Phasg
conditions . portratt
phase portraits
77>O,B37£0,32:9:0, .
<0 Portrait 4.13
Ko # 07 H7 = 07 g2 ot 4 (a)
Config. 4.13 Hy#0,NH1g <0 Go >0
n>0,BsHy # 0, Portrait 4.13(b)
By=N=0,Hg <0 }
n=0, MB3#0, By =0 =0, B ,
Config. 4.14 Hy =0, pig 0, Hyp <0 Portrait /.14
n=0,M+#0,B3=60=0, L>0 Portrait 4.15(a)
Config. 4.15
fig- 4 KHg #0, po=Hr =0, Hip <0 L<0 Portrait 4.15(b)
Config. 4.16 n>0, By A0, B, =60 =0, Ga>0 Portrait 4.16(a)
- po =Hz =0, Hy #0 Gy <0 Portrait 4.16(b)
n>0, By #0, B, =60 =0, B .
Config. 4.17 1o = Hr = Hy = 0, Hyp £ 0 Portrait 4.17
Config. 4.18 n>0, Bs3=6=0, ol >0 Portrait 4.18(a)
- po =0, Hr #0 oL < 0 Portrait 4.18(b)
n=0,M+#0,B3=0=K =0, nsky <0 Portrait 4.19(a)
Config. 4.19
fig- 4 NHeg #0, po=Hr =0, Hi1 #0 usky >0 Portrait 4.19(b)
n=0, M#0, B3=0, 0 #£0, o >0 Portrait 4.20(a)
Config. 4.20
ig. 4 H7 =0, D=0 o < 0 Portrait 4.20(b)
n=0, M#0, B3=0, #0, o >0 Portrait 4.21(a)
Config. 4.21
fig- 4 H7; =0, D#0, po #0 o <0 Portrait 4.21(b)
n >0, B #0, B, =0=0, H; >0 Portrait 4.22(a)
C . 4.22 po #0, N#0, H; = Hio=0 H, <0
onfig. 4 ! Portrait 4.22(b)
77>0,B3H4750732:9:N:H8:0 -
/ n=0, MBs#0, By =0=0, ] o
Config. 4.23 1o £ 0, Hy = Hyp =0 Portrait 4.23
n=0,M+#0,B3=60=0, L>0 Portrait 4.24(a)
Config. 4.2
N9 42 K Hy £.0, o = Hy = Hyy =0 L<0 Portrait 4.24(b)
Config. 4.25 n=0, M#0, B3=0, 6 #0, o >0 Portrait 4.25(a)
o H7 #0 1o < 0 Portrait 4.25(b)
Config. 4.26 n :]3’7 ]:V[O#g’ f% :M(;’Zegé 0, - Portrait .26
n<0, B3=60=0, G #0 Portrait 4.27(a)
Config. 4.27
fig. 4 N 40, Hy 40 Gi—0 Portrait 4.27(b)
77:07 M#Oa B3:9:Ov
Config. 4.28 wo=N=K =0, NyNs #£0, - Portrait 4.28

N5>07D750
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Table 2(continued)

Additional

N3D;i #0, Ng =0

Configuration Necessary cmfl sufficient conditions for Phasg
conditions . portratt
phase portraits
n=0, M#0, B3=0=py=0, ta >0 Portrait 4.29(a)
Config. 4.29
fig- 4 N=K =0, NyN#0, N5>0, D=0 pa <0 Portrait 4.29(b)
n=0, MB3#0, Bo =60 =puy =0, o >0 Portrait 4.30(a)
Config. 4.30
fig- 4 N #0, Hr = He =0, K # 0, Hi1 #0 pa <0 Portrait 4.50(b)
n=M=0, By =60=0, K;>0 Portrait 4.81(a)
Config. 4.31
fig- 4 N #£0, Ng 0, Hyy £0 Ko<0 | Portrait 4.31(b)
77:07M750733:9:M0:01 - .
Config. 4.32 N=K =0, NyNy#£0, N5<0, D £ 0 Portrait 4.32
77207]\/[#0733:9:/'%:05 - .
Config. 4.33 N=K =0, NyNy#£0, N5<0, D =0 Portrait 4.33
Config. 4.3 n>0, B3#0, Bo=60=0, Hy <0 Portrait 4.34(a)
- po = Hr = Hg = Hio =0 Hy; >0 Portrait 4.34(b)
Config. 4.95 n=0, M#0, B3=0=0, sk >0 Portrait 4.85(a)
g+ N #0, po=0, Hr #0 nsKy <0 Portrait 4.35(b)
n=0,M+#0,B;3=0=K =0, kg < 0 Portrait 4.36(a)
Config. 4.36
fig- 4 NHe #0, po=H7 =0, H1 =0 Ko >0 Portrait 4.36(b)
M0 Bee 6= N —0 3Ky >0, K5 >0| Portrait 4.37(a)
Config. /.37 " NaDy £ 0 136; 0.DAO 13K >0, K3<0| Portrait 4.57(b)
uskKy <0 Portrait 4.87(c)
n:M:O’ Bg:&:N:O’ ILL4>O POTtTait4.38(a)
Config. 4.38
fig- 4 N3Dy #0, Ne #0, D=0 pa <0 Portrait 4.38(b)
n=0, M#0, By=0=py=0, ) .
Config. 4.39 N=K =0, N\Ny#£0, N5 =0 Portrait 4.39
= 07 MB 0, B == 9 == = 07 .
Config. 4.40 N N£0 ;{ZA: H62: 0 Kio() — Portrait 4.40
Config. 441 n=M=0, B3 =0, 0 #0, po >0 Portrait 4.41(a)
- H7 =0, D#0 o <0 Portrait 4.41(b)
Config. 442 n=M=0, B3=0, 0 #0, to >0 Portrait 4.42(a)
- H7 =0, D=0 po < 0 Portrait 4.42(b)
0, MBy 0, By—0 0 L<0 Portrait 4.43(a)
n=yu, 3 ) 2 =U =g =V, .
Config. 4.43 N £0 Hy— Hg =0, K #0, Hyy =0 L>0,R>0 | Portrait 4.43(b)
L>0,R<0 | Portrait 4.43(c)
n=M=0, B3=0=0, K3 >0 Portrait 4.44(a)
Config. 4.
fig- 4-44 N #0, Ng #0, Hi1 =0 K3<0 Portrait 4.44(b)
Config. 445 n=M=0, B3 =0, 0 #0, po >0 Portrait 4.45(a)
- Hz #0 to <0 Portrait 4.45(b)
Config. 4.46 n=M=0, B3 =0=N=0, - Portrait 4.46
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Table 3(a)

Three distinct real singular points on the line at infinity (n > 0)

DD D

Picture J.1@ Picture 4.10) Picture 4.1e) Picture 4.5 Picture 4.5 Picture 4.3
Picture 4.4@ Picture 4.4 Picture 4.5 Picture 4.50) Picture 4.5 Picture 4.9
Picture 4.9 Picture 4.90© Picture 4.10@ Picture 4.100 Picture 4.100  Picture J.15@

(2N (TR (TR (2 22
P s e e oY

Picture 4.150 Picture 4.16@ Picture 4.160) Picture /.17 Picture J.18a Picture J.181

(O (TN
QP A

Picture 4.2%0) Picture 4.220) Picture 4.34@ Picture 4.34®

09

Si°

For systems (Sy.1) calculations yield: K = 2[g(g — 1)2* 4+ 2ghay + h(h — 1)y?],
po = gh(g+h—1), sign(A1A2A3Ay) = sign (uo).

According to [5] a quadratic system cannot possess four anti-saddles, and neither
could it possess four saddles. For this reason we obtain two saddles and two anti—
saddles for pp > 0 and either () one saddle and three anti-saddles or () three
saddles and one anti-saddle for pp < 0.

Assume pg > 0. As the singular points M7y, Ms and Ms are located on invariant
lines and for M, we have sign (d4) = sign (ug), we conclude that in this case a
system (S4.1) possesses two saddles and two nodes. Considering the existence of the
invariant lines x = 0, y = 0 and y = = + 1 and the fact that the sum of Poincaré
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Table 3(b)

One real and two imaginary singular points on the line at infinity (n < 0)

PERDDHO

Picture 4.2@ Picture 4.20) Picture 4.2 Picture 4.2d) Picture 4.6 Picture 4.6
Picture 4.7 Picture 48w Picture 4.8 Picture /.27@ Picture 4.271)

indices for finite singularities is zero, and at infinity we have 6 simple singularities (on
the Poincaré disk), these must be: one couple of opposite saddles and two couples
of opposite nodes and we get the phase portrait given by Picture 4.1(a).

For pp < 0 we have gh(g+h—1) < 0 and then d4 < 0, i.e. the singular point My
is either a focus or a center. We claim that it is a center. Indeed, via the translation
of the origin of coordinates to this point we get the family of systems

&= —ghx + h(l —h)y+ gz? + (h—Dzxy, 9=g9(g—Dx+ghy+(9g—1)zy+ hy?.

Applying Lemma 7 to these systems we calculate: Iy = Ig = I3 = 0, I, =
2gh(g + h — 1). Thus, sign (I2) = sign (up) and since py < 0 (i.e. Io < 0) according
to Lemma 7 we obtain that the singular point M} is a center, so our claim is proved.

On the other hand, for pg < 0 the T-comitant K becomes a binary form with
well determined sign as Discrim(K) = 10/16.

Assume K < 0. Then 0 < g < 1, 0 < h < 1 and from py < 0 we obtain
g+ h—1<0. In this case we have A; < 0 for all 7+ € {1,2,3} and hence, besides
a center systems (Sy.1) possess three saddles. Moreover, for these values of the
parameters g and h the singular point My(—h,g) is placed inside of the triangle
A MqyMsMs. So, considering the existence of the invariant lines x = 0, y = 0 and
y = x+ 1 and the fact that the sum of Poincaré indices for finite singularities is —2,
we must have 6 nodes at infinity (3 in the projective plane) and we get the Picture
4.1(b).

Suppose now that K > 0. Then g(g — 1) > 0, h(h — 1) > 0 and we claim that
in this case besides the center My systems (S4.1) possess two nodes and one saddle.
Indeed, supposing the contrary we obtain that all three M; must be saddles, as
A1AsA3 = —(g*h?(g+h —1)2 < 0. Hence, A; < 0 for i = 1,2,3. From Ay < 0 we
get gh > 0 and then the condition py < 0 implies g+ h —1 < 0. Then the condition
Ay < 0 yields h > 0 (and hence g > 0). Due to K < 0 we get the contradiction:
g>1,h>1and g+ h—1 < 0. This proves our claim.

So, systems (S4.1) possess one saddle, two nodes and one center, and the last
point is outside the triangle A My MyMs. Clearly in this case at infinity we have
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Table 3(c)
Two distinct real singular points on the line at infinity (n =0, M #0)
Picture 4.11@ Picture 4.110) Picture 4.12w Picture 4.120)  Picture 4.12© Picture 4.12@
Picture 4.120 Picture /.14 Picture 4.15@  Picture 4.150) Picture 4190  Picture 4.19%
Picture 4.20@ Picture 4.200) Picm‘e 4.21@  Picture 4.210) Picture 4.23 Picture 4.24@
o
Picture 4.240) Picture 4.25@ Pirc 4.2500) Picture 4.26 Picture 4.28 Picture /.29
N
Picture 4.29) Picture 4.30@ Picture 4.30(b) Picture 4.32 Picture 4.3 Picture 4.35@
AN 7 N
o T\
Picture 4.350) Picture 4.36@ Picture 4.36() Picture 4.39 Picture 4.40 Picture 4.43@
@ @
Picture 4.430) Picture 4.43©

two saddles and one node (as the sum of Poincaré indeces for infinite singularities
has to be —1). Considering the existence of the above indicated invariant lines we
arrive at the phase portrait given by Picture 4.1(c).
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Table 3(d)

Only one singular point on the line at infinity, which is real (n =0= M, Cy #0)

QOOOP Y

Picture 4.31@ Picture 4.310) Picture /.37 Picture }.370) Picture }.37© Picture /.58
Picture 4.38v Picture j.41@ Picture 4.410) Picture 4.42@ Picture 4.42 Picture 4.44@
Picture 4.440) Picture 4.45@ Picture 4.450) Picture 4.46

So, systems (S4.1) possess one saddle, two nodes and one center, and the last
point is outside the triangle A M MsMj. Clearly in this case at infinity we have
two saddles and one node (as the sum of Poincaré indeces for infinite singularities
has to be —1). Considering the existence of the above indicated invariant lines we
arrive at the phase portrait given by Picture 4.1(c).

& =gr?+ (h+Day, h(h+1) [92 +(h - 1)2] £0,

(S4.2)
g = hlg®+(h+1)?]+ (9> +1—h*)z+2ghy — x>+ gay+hy*.

Config. 4.2 {

Finite singularities: M(0,0)[A1 = [¢°+(h 4+ 1)?](h+1)? > 0, & = —4(h+1)* <0,
p1 =2g(h+1)]; Ma(=h(h+1),gh)[As = h[g? + (h + 1)?](h + 1), 62 = —4h[g* +
(h+1)?](h+ 1), p2 = 0]. Thus the singular point M is either a focus or a center.
To determine the conditions for M to be a center, we make a translation and move
this point to the origin of coordinates. We get the systems

&= (1+h+a)(gr+y+hy), §=—(h+1)2x+g(h+1)y—2*+ gy + hy,
for which calculations yield: I =2g(h+1), I = g(h+1)3(5+6h— 39> —3h?)/2,
I =2%(h+ 1)* = 2(h + 1), Iy = g(h +1) |g*(9% + 8) + h(3h + 1)2] /4.

Using Lemma 7 we see that M; is a center if and only if ¢ = 0. If g # 0 this
point is a strong focus. To distinguish between a focus and a center we define a new

affine invariant as follows: G; = ((Ca, E)®, D)1 | where E(a,z,y) = [D1(2w1 —
ws) = 3(C1,w1) M) — Dy(3ws +D1D2)]/72 and wi (a,2,y) = (Co, D2)V | wala, z,y) =
(Co,Co)®, wy(a,z,y) = (Cr, Do) V.
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Since for the systems (Sy.2) calculation yields Gy = 2g(h + 1) [¢g* + (3h + 1)?], it
is clear that the condition g = 0 is equivalent to G; = 0.

Let us examine the point M. For systems (Sy2) calculations yield: py =
—h[g* 4+ (h + 1)?]. Hence sign (d2) = sign (o) = —sign (Ag). Therefore the point
Ms is a saddle if pg > 0 and it is either a focus or a center if uy < 0. Translating
this point at the origin of coordinates we get the systems

T = (m—hz—h)[g$+(h+1)y], Y= (h+1)(92+h—|—1):L"+gh(h+1)y—:172+gmy—|—hy2,

for which I = Is = I3 = 0, Io = —2h(h + 1)*[¢* + (h + 1)?]. Consequently, by
Lemma 7 the point M is a center if ug < 0.

We note, that the product of the abscissas of finite singularities equals —h(h+1)2.
This means that both points are on the same side (respectively on different sides)
of the invariant line x = 0 if g > 0 (respectively g < 0).

It remains to observe that at infinity there are only two real simple singular
points. When M, is a saddle, since M; is an anti-saddle (index +1), then the two
infinite points must be nodes. When M> is a center, since M; is an anti-saddle,
the two infinite points are saddles. In the last case the invariant line x = 0 is a
separatrix of the saddle at infinity.

Thus, we obtain: Picture 4.2(a) if ug > 0 and Gy # 0; Picture 4.2(b) if pg > 0
and G1 = 0; Picture 4.2(c) if py < 0 and Gy # 0; Picture 4.2(d) if pop < 0 and G; = 0.

t=i=x+gx>+ (h—Day, gh(g+h—1)#0,

J—y+(g—Day+h?, (g—1h—1)g+h) £o. 13)

Config. 4.3: {

Finite singularities: M;(0,0)[Ay =1, & = 0]; Ms <0, —%) [A2 = —1,6, =
Gt (= 50)[as = —ho = SR (- ) [

— 2]. For systems (S4.3) calculations yield: ug = gh(g + h — 1),

K =2[g(g — 1)a® + 2ghay + h(h — 1)y?];  sign (A1A2A3A4) = sign (o).

Since 0; > 0 for all points M; we conclude that systems (S43) possess two saddles
and two nodes if g > 0 and they possess either (o) one saddle and three nodes or
(B) three saddles and one node if pp < 0.

Assume f9 > 0. Then we have two nodes (one of them being the point M;) and
two saddles. Considering the existence of the invariant lines x =0, y =0 and y = x
and the fact that the sum of Poincaré indices for finite singularities is zero, then at
infinity we have six simple singularities: two saddle and four nodes and we get the
phase portrait given by Picture 4.3(a).

If 19 < 0 the T-comitant K becomes a sign defined binary form as Discrim(K) =
f10/16.

Assume K < 0. Then 0 < g < 1, 0 < h < 1 and from py < 0 we obtain
g+ h—1 < 0. In this case A; < 0 for all i« € {2,3,4} and hence, besides the
star node M; systems (S41) possess three saddles. Moreover, for these values of
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the parameters g and h the singular point M (0,0) is placed inside of the triangle
A MsMsMy. So, considering the existence of the invariant lines z = 0, y = 0 and
y = = and the fact that the sum of Poincaré indices for finite singularities is —2, we
have six nodes at infinity and we get the Picture 4.3(b).

Suppose now K > 0. We claim that in this case besides the star node M7 systems
(S4.3) possess two nodes and one saddle. Indeed, supposing the contrary, we obtain
that all three M; must be saddles, as sign (A2A3Ay) = sign (ug) = —1. Therefore,
from As < 0 and Az < 0 we get h > 0 and g > 0 respectively, and then the condition
to < 0 implies g+ h — 1 < 0. On the other the condition K > 0 yields g(g — 1) >0
and h(h —1) > 0 and we get ¢ > 1 and A > 1. This contradicts g + h — 1 < 0 and
hence proves our claim.

So, systems (S4.3) possess one saddle and three nodes. Clearly in this case
at infinity we have four saddles and two nodes (as the sum of Poincaré indices for
infinite singularities has to be —2). Considering the presence of the above mentioned
invariant lines we obtain the phase portrait given by Picture 4.3(c).

t=x+g2x’—zy, gER,
y=y+(g—Dzy, glg—1)#0.

Finite singularities: M7(0,0) [Al =1, 6 = 0]; Mg( - 5,0) [Ag = —%, 0y =

(92]'—21)2]; Mg(ﬁ, ﬁ) [Ag = g%l, 03 = Egjgz] For systems (Sy.3) calculations
yield: po = 0, K = 2g(g — 1)2?, sign (A2A3) = —sign (K). We observe, that the
family of systems (S44) is a subset of the family (S;3) defined by the condition
h = 0. So, since the singular point Ms (O, —1/h) tends to infinity when h — 0
we conclude that the infinite point N(0,1,0) of systems (S44) is a double point (a
saddle-node).

On the other hand it is easy to determine that besides the star node M, systems
(S4.4) possess two saddles if g(g — 1) < 0 (i.e. K < 0) and they possess one saddle
and one node if g(g — 1) > 0 (i.e. K > 0). Therefore, taking into consideration the
invariant lines z = 0, y = 0 and y = « and the sum of Poincaré indices we get the
Picture 4.4(a) if K <0 and the Picture 4.4(b) when K > 0.

Config. 4.4 : { (S4.4)

. & =gz’ + (h—Day, (9—1)(h—1(g+h)#0,
s 45 {2 da e (51s)

We observe that (Sy5) is a family of homogenous systems, each having only the
origin as finite singular point. These systems possess three invariant lines: x = 0,
y =0 and y = x. Hence n > 0. We also have ug # 0. Hence according to Table 4
in [26] we have the following possibilities for singular points at infinity: i) If pg > 0
we have two saddles and four nodes; ii) If pp < 0 and £ < 0 we have four saddles
and two nodes; If ug < 0 and x > 0 we have six nodes.

For systems (Sy5) calculations yield:

po =gh(g+h—1), k=-16[g(g—1) + h(h —1) + gh],
K =2[g(g — 1)a® + 2ghay + h(h — 1)y?].
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Mapping the sign of pg in the plane h, g
we determine that pg < 0 in the shaded N !
areas of Figure 1. Hence in the shaded N g=1
areas, K has well determined sign as indi-
cated. On the same figure it is also easy

2, -
XN K >0 —
AN

x>0

to observe that for pg < 0 the following . F<0 o
relation holds: sign (k) = —sign (K). T ko oo b
Thus, we obtain: Picture 4.5(a) if po > s Ny
0; Picture 4.5(b) if pp < 0 and K < 0;
Picture 4.5(c) if pp < 0 and K > 0. .
Figure 1

i =g2®+ (h+ Dy,  h(h+1) [92 +(h— 1)2} £0,

(Sa6)
§=—1+gx+(h—1)y—a®+ gy + hy’.

Config. 4.6 : {

Finite singularities: My (0,—1)[Ay = (h+1)?, §; = 0] —anode; M3(0,1/h)[As =
(h+1)%/h, 8y = (h* — 1)?/h?] — anode if h > 0 and a saddle if h < 0. For systems
(Sa6) we calculate po = —h[g> 4+ (h+1)?], i.e. sign (uo) = —sign (h).

It remains to observe that at infinity there exist only one real singular point
which is simple. Since M; is an anti-saddle (index +1), the infinite point is a node
(index +1) when My is a saddle and it is a saddle (index —1) when My is a node. In
the last case the invariant line x = 0 is a separatrix of the saddle at infinite. Hence
we obtain Picture 4.6(a) if po > 0 and Picture 4.6(b) if pg < 0.

Config. 4.7: d=gx’+ay, y=—-14+gx—y—a’+gzy, g€cR. (Sa.7)

Finite singularities: Ml(O,—l)[Al =1, 6 = O] — a node. We observe that the
family of systems (S47) is a subset of the family (Sy¢) defined by the condition
h = 0. So, since the singular point M, (0, —1/h) tends to infinite when A — 0
we conclude that the infinite point N(0,1,0) of systems (S47) is a double point (a
saddle-node). This leads to the Picture 4.7

c g i = gz® + (h+ 1)y, S
onfig. 4.8 y=—22+gry+hy?, h(h+1) [92 + (h — 1)2] # 0. (Sias)
For systems (Sus) we calculate pg = —h[g* + (h +1)%], n = —4 < 0. According
to [26] at infinity there exist two opposite nodes if 19 > 0 and two opposite saddles
if pp < 0.
Thus, taking into consideration the real invariant line z = 0 of systems (S45) we
obtain Picture 4.8(a) if o > 0 and Picture 4.8(b) if o < 0.

t=a"—1, g(g—Dlg+1)>—4h% #0,
y=(y+hy+1-g)z—hl

Finite singularities: My(—1,—h)[A; = 2(2h — g + 1), & = (2h — g — 1)?];
My(1,—h)[Ay = =2(2h + g — 1), 02 = (2h + g + 1)?];

Config. 4.9: { (S1.9)
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M3(=1,h—g+1)[A3 = =2(2h—g+1), 63 = (2h —g+3)*]; My(1,h+g—-1)[As =
2(2h+g—1), 84 = (2h+ g — 3)?]. For systems (S49) calculations yield: g =1 >0,
n= 92 > 0, sign (A1A2A3A4) =1.

Since §; > 0 for all points M; we conclude that systems (Ss9) possess two
saddles and two nodes in the finite part of its phase plane. From the behavior of
trajectories at infinity, according to [26] we have four nodes and two opposite saddles.
More concretely, we have the node N1(0,1,0) and the singular points N»(1,0,0) and
N3(1,9,0) as well as their opposites. It is not hard to find out that the point
N(1,0,0) (respectively, N3(1,g,0)) ia a saddle (respectively, a node) if g < 0 and
it is a node (respectively, a saddle) if g > 0.

We note that the first equation depends only on z. & > 0 for x outside [—1,1]
and # < 0 for z € (—1,1). This yields the orientation of the vector field on the
invariant line x = —h. The phase portrait on the invariant lines x = £1 is easily
obtained by replacing these values in the second equation which becomes ¢y = (y +
h)(y—(h+g—1)) forz=1and y=(y+h)(y —(h—g+1)) for v = —1. Hence
y > 0 for y outside the interval determined by the roots of the polynomials on the
right hand sides and ¢ < 0 for y inside this interval. The sign of ¢ thus depends
on whether or not —h is smaller or greater than h + g — 1 (respectively h — g + 1)
which amounts to checking the sign of 2h 4+ g — 1 (respectively 2h — g + 1). As the
phase portrait around infinity depends on the sign of ¢ the full discussion, which is
elementary, depends on the sign of g(2h — g+ 1)(2h + g — 1).

Case 1) We first assume that g(2h — g+ 1)(2h + g — 1) > 0. This could occur if
either i) all three factors are positive or ii) two of the factors are negative and the
third one is positive.

In the case i) we have that —h < h—g+1 and —h < h+ g — 1 so the points M3
and M, lie above the line y = —h, M3 being a saddle and M, being a node while
M is a node and Ms is a saddle. This yields phase portrait Picture 4.9(b).

In the case ii) we observe that the case when the first two factors are negative
and the third one is positive cannot occur. Indeed, in this case we would necessarily
have —(¢g—1) < 2h < g—1 which yields a contradiction as g > 0. So we only need to
consider the cases when only the first and last factors are negative or when only the
second and last one are negative. In the first situation we have that h+¢g—1 < —h <
h—g+1, so M3 and M, are respectively above and below the invariant line y = —h.
M and My are nodes and Mg and M, are saddles. Considering the behavior at
infinity we have that N5 is a saddle and N3 is a node located on the negative side of
the u-axis and the phase portrait is Picture 4.9(b). If only 2h — g+ 1 and 2h+g—1
are negative and g > 0, the points M3 and M, are both below the line y = —h, Mj
is a node and M, is a saddle while M is a saddle and My is a node. Ny is a node
and V3 is on the positive side of the u-axis and it is a saddle. This yields again the
phase portrait Picture 4.9(b).

Thus we conclude that in the case g(2h—g+1)(2h+g—1) > 0 the phase portrait
of systems (S49) corresponds to Picture 4.9(b).

Case 2) Suppose now that g(2h — g+ 1)(2h 4+ g — 1) < 0. This could occur if all
three factors are negative or if only one is negative and the other two are positive.



INTEGRALS AND PHASE PORTRAITS OF SYSTEMS WITH INVAIRANT LINES 65

In the first case M3 and M, are both below the line y = —h and M; and M3 are
nodes while My and M, are saddles. N> is a saddle and N3 lies on the negative side
of the w-axis and it is a node. This yields picture Picture 4.9(a).

It remains to consider the cases when only one of the three factors is negative.
If ¢ < 0 then M3 and M, are both above the line y = —h and M3 and M, are both
below the line y = —h and M; and M, are nodes while M3 and M5 are saddles. N»
is a saddle and N3 is on the negative side of the u-axis and it is a node. So in this
case we get Picture 4.9(a). If only the second factor is negative, i.e. 2h —g+1<0
we have h—g+1 < —h < h4+¢g—1 and hence M3 and M, are nodes situated on the
opposite sides of the line y = —h and My and M are saddles. In this case Ny is a
node and N3 is a saddle situated in the positive side of u. Hence the phase portrait
is Picture 4.9(c). If only the third factor is negative, i.e. 2h + g — 1 < 0 then M;
and My are nodes and M3 and M, are saddles located on the opposite sides of the
line y = —h. In this case N> is a node and N3 is located on the positive side of u
and it is a saddle. The phase portrait is therefore Picture 4.9(b).

For each phase portrait assembling together the above conditions we get:

e Picture 4.9(b) < either g[4h2—(g—1)2] >0 or g[4h2—(g—1)2] <0and 0<g<1;

e Picture 4.9(a) < g[4h* — (g —1)?] <0 and g < 0;
e Picture 4.9(c) < g[4h? — (9 —1)?] <0 and g > 1.

In order to determine the corresponding invariant conditions we construct the
following affine invariants:

Go =8Hg —9H5, Gz = (o —n)Hy — 6n(Hy + 12Hyg).

Since for the systems (Si9) we have Gy = —293%g[4h?® — (¢ — 1)?], Hy =
48(1 — g) [4h2 —(g+ 1)2], Gs3 = 6gH,, we conclude that these three invariant poly-
nomials distinguish the phase portraits of systems (Sy.g) for this configuration as it
is indicated in the Table 2.

Config. 4.10: i=2>-1, §=(y+9)(y+292—g), 9(29—1)#0. (S110)

Finite singularities: M;(—1,—g) [Al =8¢, 61 = 4(29— 1)2] —anodeif g > 0 and
a saddle if g < 0; Ma(1, —g) [Ag =0, po = 2] — a saddle-node [1]; M3(—1,3g) [Ag =
—8¢g, 93 = 4(29 + 1)2] — a node if ¢ < 0 and a saddle if ¢ > 0. For systems
(S110) calculations yield: g = 1 > 0, n = (29 — 1)2 > 0. Hence according
to [26] at infinity we have six singularities: the node N7(0,1,0) with its opposite
and the singular points Na(1,0,0) and N3(1,1 — 2g,0) with there opposites. It is
not hard to find out that the point N2(1,0,0) (respectively, N3(1,1 — 2g,0)) is a
saddle (respectively, a node) if 1 —2¢g < 0 and it is a node (respectively, a saddle) if
1-2g>0.

a) Assume first g < 0, i.e. M;(—1,—g) is a saddle and M3(—1,3g) is a node.
Since in this case 1 —2g > 0 we obtain that Ny(1,0,0) is a node and N3(1,1—2g,0)
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is a saddle. Taking into consideration the location of these singularities we get the
Picture 4.10(a,).

b) Assume now g > 0. Then M;(—1,—g) is a node and M3(—1,3g) is a saddle.
Since the type of infinite singularities depends on sign (1 — 2g) we shall consider two
subcases: 1 —2¢g >0 and 1 — 2g < 0.

by) If 1 —2g > 0 then as in the previous case N2(1,0,0) is a node and N3(1,1 —
2¢,0) is a saddle. Taking into consideration the relative location of the singularities
of systems (S4.19) for 0 < g < 1/2, we obtain in this case the Picture 4.10(b).

ba) Supposing 1 — 2¢g < 0 we have at infinity the saddle N3(1,0,0) and the
node N3(1,1 — 2g,0). It is easy to observe that in this case we have a separatrix
connection, between finite saddle-node M; and infinite saddle N»(1,0,0). So, in the
same manner above we get the Picture 4.10(c).

It remains to construct the respective affine invariant conditions. For systems
(S1.10) we have Hy = 384g(2g — 1). Therefore, if Hy < 0 (i.e. 0 < g < 1/2) we
obtain Picture 4.10(b), whereas for Hy > 0 we have either Picture 4.10(a) or Picture
4.10(c). We observe that for systems (Sy.10) calculations yield: Gz = —2304g(2g—1)?2
and hence, for Hy > 0 we get Picture 4.10(a) if G3 > 0 and Picture 4.10(c) if G < 0.

Config. 4.11: = (x+9)?*—-1, y=ylx+y), g¢g*—1#0. (S111)

Finite singularities: Mi(—1 — g, 0)[Ay = 2(g + 1), 61 = (9 — 1)?]; M2(1 —
9,0)[A2 = =2(g—1), o = (9+1)?; M3(—1—g,g+1)[A3=-2(g+1), 65 =
(9+3)°); Ma(1—g,9—-1)[As=2(g—1), és= (g —3)*].

Evidently, that we have two nodes and two saddles, and which singularities are
nodes and which ones are saddles depends on sign (g% — 1).

For systems (Sy11) calculations yield: yp = 1 > 0, 7 = 0, M = —8y? # 0,
Cy = —zy%. So, according to [26] at infinity besides the node Ny(0,1,0) systems
(S4.11) possess a double point N1(1,0,0), which is a saddle-node.

We shall examine three cases: ¢ < —1, -1 <g<1and g > 1.

a) Case g < —1. Then the singular points M; and My are saddles, whereas M,
and Ms are nodes. Moreover, M3 and My are on the same part of the invariant line
y = 0. Thus we get the phase portrait given by Picture 4.11(a).

b) Case —1 < g < 1. In this case the singular points M 2 are nodes and M3 4 are
saddles. And clearly M3 and My are on different sides of the invariant line y = 0.
So we obtain Picture 4.11(b).

¢) Case g > 1. Then the singular points M; and M, are nodes, whereas Mo
and Ms are saddles. In this case M3 and M, are on the same part of the invariant
line y = 0. Therefore, we get the phase portrait with is topologically equivalent to
Picture 4.11(a).

It remains to note that for the systems (S;11) we have Hy = 48(¢g?> — 1) and
evidently this invariant polynomial distinguishes Picture 4.11(a) (Hy > 0) from
Picture 4.11(b) (H4 < 0).

i=(x+h)?-1, glg—1)(h*—1)#0,

y=01—g)zy, h*(g—1)*—(g9+1)*#£0. (S4.12)

Config. 4.12: {
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Finite singularities: Mi(—1 — h, 0)[Ay = =2(h 4+ 1)(g — 1), 61 = [h(g — 1) +
(g + 1)]%]; Ma(1 = h, 0)[Ag = 2(h — 1)(g — 1), 62 = [h(g — 1) — (g + 1)]?]. Since
A1Ay = —4(g — 1)%(h? — 1) and Ay + Ay = —4(g — 1) we conclude that systems
(S4.12) possess a saddle and a node if h? —1 > 0. For h? — 1 < 0 these systems
possess two saddles if g > 1 and they possess two nodes if g < 1.

To determine the behavior of the trajectories at the infinity according to [26] for
systems (S4.12) we calculate:

n=0, M=-8¢2>#0, Cy =gy, po=p1 =k =r1 =0, L =8gx?,
po = (g —1)3(h? = 1)2?, K =2(1 — g)2?, Ky =192(2¢°> — g+ 1)2°.

We observe that by [26] the point N7(0,1,0) is of the multiplicity 4 (consisting of
two finite and two infinite points which have coalesced). We also note that Ky > 0
for any value of parameter g.

a) Case gy > 0. Then h? —1 > 0 and systems (S4.12) possess one saddle and one
node. As sign (L) = sign (g), following [26] we shall consider two subcases: L > 0
and L < 0.

ay) Assume L > 0. Since Ky > 0 according to @
[26, Table 4] the behavior of the trajectories in the
vicinity of infinity is given by Figure 19. Taking into
consideration the invariant lines we get Picture 4.12(a). @

as) Suppose L < 0. Then from [26, Table 4] we get ~ Figure 19 Figure 17
Figure 17. So, in the same manner as above we obtain
the phase portrait given by Picture 4.12(b).

b) Case jz < 0. In this case we have h? — 1 < 0 and as it is determined above
systems (S4.12) possess two saddles if ¢ > 1 and they possess two nodes if g < 1.
As for these systems K = 2(1 — g)x? we have sign (K) = —sign (g — 1) and we shall
consider two subcases: K < 0 and K > 0.

b1) Assume first K < 0, i.e. g > 1 and the finite singular points
are both saddles. On the other hand for the infinite points the
relation L = 8gx? > 0 holds and according to [26, Table 4] this
leads to the Figure 10. So, taking into consideration the invariant
lines of systems (S4.12) we obtain the phase portrait given by Picture Figure 10
4.12(c).

by) Assume now K > 0. Then g < 1 and the finite singular points are both
nodes. According to [26, Table 4] the behavior of the trajectories in the vicinity of
infinity in this case depends on the sign of the invariant polynomials L = 8ga2.

If L >0 (i.e. g > 0) we obtain Figure 27, whereas
for L < 0 (then K < 0) we get Figure 29. Therefore,
considering the existence of the invariant lines of sys-
tems (S4.12) we obtain the Picture 4.12(d) if L > 0 and Y

the Picture 4.12(e) if L < 0. Figure 27 Figure 29

i=x>+1, glg—1[(g+1)*+nr* #0,

y=w+hly+1-g)z—h. (S4.13)

Config. 4.13: {
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No finite singularities. These systems have invariant lines y = —h and x = =4i.
Calculations yield 7 = ¢> > 0, pp = 1 > 0 and according to [26] on the line
at infinity there exist two nodes and one saddle. Due to the existence of the real
invariant line y = —h we have to distinguish when the point Ni(1,0,0) is a saddle
(having a saddle connection) and when it is a node. Constructing the respective to
(Sy4.13) family of systems at infinity we get

=gu+h(g—1)z —u?+ h%2% +uz?, =242

Since the singularity (0,0) of these systems corresponds to Ni(1,0,0) we conclude
that the singular point N is a saddle if ¢ < 0 and it is a node if g > 0. To distinguish
these two possibilities we shall use the affine invariant Gy. For systems (S4.13) we
calculate Gy = 13824g[4h? + (g — 1)?]. Thus, G # 0 and sign (G2) = sign (g). Hence
we get Picture 4.13(a) if Go > 0 and Picture 4.13(b) if Go < 0.

Config. 4.14: i=(x+9)*+1, y=ylx+y), geR (S4.14)

No finite singularities. Calculations yield n =0, M = —8y? # 0, Cy = —xy?,
o = 1 > 0. Thus the singular point Ni(1,0,0) is a double point and according
to [26] on the line at infinity at infinity there exist one node and one saddle-node
(double). Hence, taking into account the real invariant line y = 0 we get Picture
4.14 for any value of the parameter g.

i=(x+h)?+1, glg—1)#0,
g=(1~-gzy, (9+1)*+h*#£0.

No finite singularities. Calculations yield

Config. 4.15: { (Sa1.15)

n=0, M=—-8¢%>+#0, Cy =gy, po=p1 =k =r1 =0, L =8gx?,
po = (g — D*h? +1)a?, K =21 — g)z?, Ky = —192(2¢*> — g+ 1)z*.

We observe [26] that the point N1 (0, 1,0) is of the multiplicity 4 (two finite and two
infinite points have coalesced at this point). We also note that pus > 0 and Ky < 0
for any value of parameters (g, h) € R2.

Thus according to [26, Table 4] this leads to the Figure 8 if L > 0
and to the Figure 17 (see above) if L < 0. Taking into consideration
the existence of the real invariant line y = 0 we obtain Picture

4.15(a) if L > 0 and Picture 4.15(b) if L < 0. Figure 8

Config. 4.16: &=g+x, y=yly—=x), glg—1)#0. (S116)

Finite singularities: Mi(—g, 0)[A1 = g, & = (g9 — 1)?]; Ma(—g, —g)[A2 =
—g, 00 = (g+ 1)2]. We observe that systems (S4.16) possess a node and a saddle.
To determine the behavior of the trajectories at the infinity according to [26] for
these systems we calculate:

n=1>0, Co=ay(x—y), po=pm =rk=0, L=38yy—=x), ue =yly—x).
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Hence p2L = 8y2(y — x)? > 0 and according to [26, Table 4]
on the line at infinity there exist three real singular points, two
of which are double and one simple. More precisely, the dou-
ble points N1(1,0,0) and Ny(1,1,0) are saddle-nodes, whereas
the point N5(0,1,0) is a node and the geometric configuration Figure 4

corresponds to Figure 4.
We observe that if the point M;(—g, 0), located on the invariant line y = 0 (as

well as on the line z = —g) is a saddle (i.e. g < 0), then we get a saddle connection
with the saddle-node N;(1,0,0).

On the other hand for systems (S4.16) we have Go = —3456¢. So, taking into
consideration the invariant lines © = —g and y = 0 of systems (S416) we obtain
Picture 4.16(a) if Go > 0 and Picture 4.16(b) if Go < 0.

Config. 4.17: =z, y=yly—x). (S4.17)

We observe that this system can be obtained from the family (S4.16) allowing the
parameter g to vanish. In this case the points M;(—g, 0) and My(—g, —g) coa-
lesced (at the origin of coordinates), yielding a saddle-node. So, as it can easily be
determined, we get Picture 4.17.

Config. 4.18: i=g(g+1)+gr+y, y=yly—=z), g(g+1)#0. (Si)

Finite singularities: Mi(—1 — g, 0)[A1 = g(g + 1), 61 = 1]; Ma(—g, —g)[As =
—g(g+ 1), 62 =4g(g+ 1), p2 = 0]. We observe that systems (S4.18) possess a
saddle and a node if g(g + 1) > 0 and they possess a saddle and either a focus
or a center if g(¢g + 1) < 0. We claim that in the second case the point M is a
center. Indeed, moving this point to the origin of coordinates we get the systems
t=gr+vy, U= (9—vy)(x—y), for which considering Lemma 7 we calculate:
L =14=13=0, I =2g(g + 1). Since g(g + 1) < 0 by Lemma 7 the point M, is a
center and our claim is proved.

For systems (S4.18) calculations yield:

n=1 Co=ay(r—y), po=m =r=0, L =8y(y —x), po =g(g+ yly — x).

Hence psL = 8g(g + 1)y%(y — x)? # 0 and then sign (usL) =
sign (g(g + 1)) According to [26, Table 4] on the line at infin-
ity there exist three real singular points, two of which are dou-
ble and one simple. More precisely, the double points Ni(1,0,0)
and N»(1,1,0) are saddle-nodes, whereas the point Ny(0,1,0) is Figure 3

a node.
However, depending on the location of the saddle sectors of the saddle-nodes, at

infinity there are two distinct configurations. As it was proved in [26] we have the
Figure 4 (see above) if puoL > 0 and the Figure 3 if poL < 0.

a) Case paL > 0. Then g(g + 1) > 0 and systems (S4.13) possess one saddle and
one node. Taking into consideration the existence of the invariant lines y = 0 and
r—y+g+1=0as well as Figure / we get the Picture 4.18(a).
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a) Case puoL < 0. Then g(g + 1) < 0 and systems (Sy.18) possess one saddle
and one center. Moreover, the behavior of the trajectories at infinity corresponds to
Figure 3. In this case we obtain the Picture 4.18(b).

Config. 4.19: d=g+x, §=-zy, glg—1)#0. (S119)

We observe that these systems possess one finite singular point M;(—g,0) which is a
saddle for g < 0 and it is a node if g > 0. We shall examine the infinite singularities.
Considering [26] for systems (Sy.19) we calculate: M = —8x2 # 0, Cy = 2%y, n =
po=p1=p2=rK=r1=L=0, ug=—gaz’y, K3 =—z%y.

According to [26] the point N1(0, 1,0) is of the mul-
tiplicity 4 (consisting from two finite and two infinite
points which have coalesced), while the singular point
N3(1,0,0) is a double point which is a saddle-node (a
finite and an infinite singular point being coalesced)
Moreover, by [26, Table 4] the behavior of the trajec-  Figure 12 Figure 21

tories at infinity corresponds to Figure 12 if usK; <0
and to Figure 21 if usK; > 0.

Since uzKi = gxiy? it follows sign (u3K1) = sign(g). Therefore, taking into
account the existence of the invariant lines y = 0 and x = —g and Figures 12 and
21 we obtain Picture 4.19(a) if psKy, < 0 and Picture 4.19(b) if usK; > 0.

Config. 4.20: i ==x(gr+vy), ¥=(9— Dry+vy? g(g—1)#0. (S4.20)

For systems (Sy.0) calculations yield: n = 0, M = —822%, Cy = 2%y, ug = g #
0. We observe that (Sy20) is a family of homogenous systems, which possess two
invariant lines: = 0 (double) and y = 0. According to [26] on the line at infinity,
besides the saddle-node N1(0, 1,0) (corresponding to the double line), systems (.S4.29)
have a node if ug > 0 (Picture 4.20(a)) and they have a saddle if py < 0 (Picture

4.20(b)).

. =uz(gz+y), 9(g—1)#0,
Conﬁg. 4.21 : { y _ (y + 1)(gx . y) (54.21)

Finite singularities: My(0,0)[Ay = 0, p1 = 1] — a saddle-node [1]; M(0,—1)
[Ay =1, 0 = 0] —anode; Msz(1/g,—1)[A3 = —1/g, 63 = (g + 1)*/¢*] — a node
if g < 0 and a saddle if g > 0. For systems (Sy.21) calculations yield: n = 0, M =
—82%, Cy = 2%y, g = g. Hence according to [26] on the line at infinity we have two
singularities: the saddle-node N1(0,1,0) and the singular point N5(1,0,0), which is
a node if pg > 0 and it is a saddle if pg < 0.

Thus, taking into account the invariant lines x = 0 (double) and y = —1 we get
Picture 4.21(a) if po > 0 and Picture 4.21(b) if po < 0.

Config. 4.22: & =gx*, §=@w+D[y+@—-Dx—1], glg—1)#0. (Si2)

Finite singularities: Mi(0,0) [Al =0, pp = 2], M5(0,—1) [Ag =0, po = —2] -
saddle-nodes [1].
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To determine the behavior of the trajectories at the infinity for systems (S4.22)
we calculate: n =1 >0, Co = zy(x —y), o = g*> > 0. Thus according to [26, Table
4] on the line at infinity there exists three real singular points: Ni(1,0,0), and
N3(1,1,0) and N3(0,1,0). More precisely, there are two nodes and one saddle.
Using the transformation x = 1/z, y = u/z) we get the systems

t=u+(1—-g)z—u®>+2% z=gz (11)

For the singular point (0,0) (respectively (1,0)) of systems (11) corresponding to
the point Ni(1,0,0) (respectively Na(1,1,0)) of systems (Syo2) we have A} = ¢
(respectively Ay = —g). Hence we conclude that besides the node N3(0, 1,0) systems
(S4.22) possess at infinity the node N1(1,0,0) and the saddle N»(1,1,0) if g > 0 and
they possess the saddle Ny(1,0,0) and the node N»(1,1,0) if g < 0.

On the other hand for systems (S4.922) we have H; = 1152g. Hence, taking into
consideration the invariant lines = 0 (double) and y = —1 of systems (Sy.22) we

get Picture 4.22(a) if Hy > 0 and Picture 4.22(b) if Hy < 0.

Config. 4.23: z==x(x+vy), §=(y+1)>2 (S1.23)

Finite singularities: Ml(O,—l)[Al =0, pp = —1], Mg(l,—l)[Ag =0, po = 1] -
saddle-nodes [1]. For these systems calculations yield: 1 =0, M = —8z2, Oy =
22y, po = 1> 0. We observe [26] that the point N1(0,1,0) is a double point and it
is a saddle-node, whereas the second simple point Ni(1,0,0) is a node. Thus, taking
into account the invariant lines x = 0 and y = —1 (double) we get Picture 4.23.

Config. 4.24: t=(x+1)?2 g=(1-g)ry, glg—1)#0. (Sy.04)

Finite singularities: My(—1,0)[Ay = 0, p1 = g — 1] — saddle-node [1]. We
calculate: M = —8g%x2 # 0, Cy = g2y, 1 = po = p1 = k = k1 = Ko = 0,
po = (g — 1)%2%, L =8gz?. Since uy > 0 and K3 = 0 by [26, Table 4] the behavior
of the trajectories at infinity corresponds to Figure 19 if L > 0 and to Figure 17 if
L < 0 (see p. 67). Taking into consideration the existence of the real invariant lines
y =0 and x = —1 (double) we obtain Picture 4.24(a) if L > 0 and Picture 4.24(b)
if L <0.

Config. 4.25: d=gx®+ay, y=y+(g—Day+y® glg—1)#0. (Sizs)

Finite singularities: My(0,0)[A1 = 0, p1 = 1] — a saddle-node [1]; M(0,—1)
[Ag =1, 6 = O] —anode; Ms(1,—g) [Ag = —g, 03 = 49] —a saddle if ¢ > 0 and
either a focus or a center if g < 0.

We claim that the point M3 is a center if g < 0. Indeed, translating this point to
the origin of coordinates we get the systems & = (1+z)(gz+y), v = (9—y)(x—gr—y),
for which considering Lemma 7 we calculate: Iy = I = I3 = 0, Is = 2g. Since g < 0
by Lemma 7 the point Mj is a center and our claim is proved.

On the other hand for systems (Sy.25) calculations yield: 7 = 0, M = —8x2,
Co = 22y, o = g. Hence according to [26] at infinity we have two singularities: the



72 DANA SCHLOMIUK, NICOLAE VULPE

saddle-node N1(0,1,0) and the singular point N»(1,0,0), which is a node if g > 0
and it is a saddle if ug < 0. Hence, taking into account the invariant lines x = 0
(double) and y = —1 we get Picture 4.25(a) if po > 0 and Picture 4.25(b) if py < 0.

Config. 4.26: z=uzy, y=@w+1)(y—=x). (Sa.26)

Finite singularities: M1(0,0)[A; =0, p; = 1] —asaddle-node [1]; M2(0,—1)[Ay =
1, 6o = 0] — a node. For systems (S406) we calculate: M = —8z% # 0, Cy =
a?y, n=p0 =0, p =y, K=2y

According to [26, Table 4] in this case the behavior of the trajecto-
ries at infinity corresponds to Figure 20. So, taking into considera-
tion the invariant lines x = 0 (double) and y = 0 of systems (S4.26)

we obtain Picture 4.26 Figure 20

Config. 4.27: =29z +2y, y=g¢>+1-22—-9% gcR. (S4.27)

Finite singularities: My(—1, g)[A1 = —4(¢* +1)] — a saddle; My(1, —g)[As =
4(g* + 1), 0y = —16]. We observe that the singular point My is a strong focus
if g # 0 and it is a center if ¢ = 0. Indeed, translating this point to the origin of
coordinates we get the systems @ = 2(gx+v), ¥ = —2z+2gy — 2> —y?, for which we
calculate: I} = 4g, Is = —8g, I13 = —2g, I = 8(¢> — 1) So, by Lemma 7 the point
Ms is a center if and only if ¢ = 0. To determine the behavior of the trajectories at
the infinity for systems (Sy.27) calculations yield: n = —4, Cy = x(2? + y?), po =
p1 =k =0, pg = 4(g*> + 1)(z 4+ y?). So, according to [26] the unique real infinite
singular point N1(0,1,0) of (S4.27) is a node. Therefore, since for these systems we
have G; = 16g, we obtain Picture 4.27(a) if G1 # 0 and Picture 4.27(b) if Gy = 0.

Config. 4.28: &=2x2>—1, g=x+gy, glg>—4)#0. (Si.28)

Finite singularities: My (1, —=1/g)[A1 = 2g, 61 = (9 — 2)*]; Ma(—1, 1/g)[As =
—2g, 09 = (g—|—2)2] . We observe that systems (S4.28) possess a node and a saddle. For
these systems we calculate: 7 =0, M = —822, Cy = 2%y, o = p1 = k = k1 = 0,
L = 822, o = g?2%, Ky = 38422, and according to [26, Table 4] the behavior of
the trajectories in the vicinity of infinity corresponds to Figure 19 (see page 67).
Taking into consideration the existence of the real invariant lines x = +1 we obtain
in both cases (i.e. either g > 0 or g < 0) the phase portraits topologically equivalent
to Picture 4.28.

Config. 4.29: i=2>-1, y=g+x, ¢>—1#0. (S4.29)
No finite singularities. For these systems calculations yield: M = —8x2, Cy = 2%y,

N=po=p1=po=p3=rk=ry =0, L =28z uy=(¢°—1Da?t, K;=384z%
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We observe that L > 0, K = 0 and K» > 0 for any
value of parameters £1 # g € R. According to [26,
Table 4] the behavior of the trajectories in the vicinity
of infinity corresponds to Figure 18 if pgy > 0 and to
Figure 24 if puy < 0. Thus, taking into account the
existence of the invariant lines * = £1 we get Picture  Figure 18 Figure 2/
4.29(a) if pg > 0 and Picture 4.29(b) if py < 0.

Config. 4.30: &= (z+1)(gr+1), §=1+(g—Day, g(g>—1)#0. (Si30)

Finite singularities:  M;(—1,1/(g — 1))[A1 = (g — 1)?, & = 0] — a node;
My(—1/g, g/(g — 1))[Ay = —(g — 1)*/g, 62 = (¢° — 1)?/g*] — a node if g < 0 and
a saddle if g > 0. For systems (Sy.30) calculations yield: 1n =0, M = —822, Co =
22y, po =1 =K =r; =0 and

L = 8gx?, pp = g9(g — 1)2m2, Ky = 48(g — 1)2(92 —g+ 2)m2.

Since sign (u2) = sign (L) = sign (¢g) and K > 0, according to [26, Table 4] the
behavior of the trajectories around the infinity corresponds to Figure 19 (see p. 67)
if g > 0 and to Figure 29 (see p. 67) if g < 0. Taking into consideration the real
invariant lines and z+1 = 0 (double) and (gx + 1) = 0 we obtain the phase portrait
Picture 4.30(a) if pg > 0 and Picture 4.30(b) if pa < 0.

Config. 4.81: i==x(x+1), g=g—2>+zy, glg+1)#0. (S4.31)

Finite singularities: My(—1,9 — 1) [Al =1, 4 = O] — a node. We calculate:

n=M=0, Co=2a° pog=p1 =py =0, uyg=—ga®, K =21 Ks=—6ga°
Since usK # 0 by [26, Table 4] the behavior of the tra-
jectories in the neighborhood of infinity corresponds to
Figure 37 if K3 > 0 (i.e. g < 0) and to Figure 39 if
K3 < 0 (i.e. g > 0). Thus, taking into account the
invariant lines x = 0 and * = —1 (double) of systems
(Sy.31) we get Picture 4.31(a) if K3 > 0 and Picture  Figure 37 Figure 39
4.31(b) if K3 < 0.

Config. 4.52: di=2*+1, y=z+gy, g+#0. (S1.32)
No finite singularities. For these systems calculations yield: M = —22, Cy = z2y,
n=po=p =rk=r =K =0L=8z uy=g’c? Ky=—384z".
We note that pus > 0, L > 0 and K5 < 0 for any value of parameter 0 # g € R.

According to [26, Table 4] the behavior of the trajectories at infinity corresponds to
Figure 8 (see p. 68). This leads to Picture 4.32.
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Config. 4.33: =241, g=g+x, geR. (S4.33)

This family of systems does not possess real finite singularities and calculations yield:
M=-8z2 Co=a2y, n=po=p1 =po=p3=r=r, =K =0, L =8z>

and g4 = (g% + 1)a?, Ky = —3842%. We observe that 4 > 0, L > 0 and Ky < 0 for
any value of the parameter g € R. According to [26, Table 4] the behavior of the
trajectories around of infinity corresponds to Figure 8 (see p. 68). Thus we obtain
Picture 4.33.

Config. 4.34: d=g9, y=yly—=z), ge{-11} (S1.34)
No finite singularities. For these systems we calculate:

n=1, Co=ay(z—y), po=p1=p2=p3 =k =K =0, pg = g°y*(x —y)>.
We note that puy # 0 and K7 = 0 for any value of parameter g € {—1,1}. According
to [26, Table 4] one of the triple points is a node and the other one is a saddle.
However we need to distinguish when the point Ny(1,0,0) is a saddle, as in this
case the invariant line y = 0 will be a separatrix and this leads to a different phase
portrait. So, we consider the corresponding systems (obtained via the transformation

x=1/z, y=u/z):

(S) : U= —u+u®—guz®, 2= —gz°
We observe that systems (S) has two invariant lines: z = 0 and u = 0. We consider
the restrictions on (S) on these lines: (S)|,=0 : @ = u(u—1) and (5)[u=o :
2= —¢2%. Onz=0and for 0 < u < 1 we have @ < 0 while for u < 0, we have

1 > 0. Hence on z = 0 the point u = 0 is an attractive singular point.

Now consider the restriction (S)|,—o. We observe, that for z > 0, sign (2) =
—sign (z). Hence on u = 0 the point z = 0 is an attractive singular point if g > 0
and it is a repulsing singular point if g < 0.

Thus we conclude that the triple singular point Ny(1,0,0) of systems (S4.34) is
a node if g > 0 and it is a saddle if ¢ < 0. On the other hand for systems (Ss.34))
we have Hy = —48¢g. So, considering invariant line y = 0 we get Picture 4.34(a) if
Hy < 0 and Picture 4.34(b) if Hy > 0.

Config. 4.35: &=g+y, y==xy, ge{-1,1} (Sa.35)

Finite singularities:  M;(0, —g) [Al =g, 6 = —49]. So, the point M is a
saddle if g < 0 and we claim that it is a center if g > 0. Indeed, translating this
point to the origin of coordinates we get the systems = =vy, ¢y = z(y—g), for
which calculations yield: Iy = I = I3 = 0, Iy = —2g. So, by Lemma 7 the point
M is a center if and only if g > 0 and this proves our claim.



INTEGRALS AND PHASE PORTRAITS OF SYSTEMS WITH INVAIRANT LINES 75

To determine the behavior of the trajectories around the infinity for systems
(Sy.35) we calculate: =0, M = —82%, Cy = 2%y, po = 1 = g = kK = L = 0,
K1 = —32, us = gry?, K1 = zy?.

Since k = L = 0, ky # 0 and u3K; = gz’y* (ie.
sign(g) = sign (u3K1)), according to [26, Table 4] the be- @
havior of the trajectories in the vicinity of infinity corre-
sponds to Figure 16 if g < 0 and to Figure 9 if g > 0. So,
considering invariant line y = 0 and the type of the sin-
gular point M7(0, —g) we get Picture 4.35(a) if uskKy >0  Figure 16 Figure 9
and Picture 4.35(b) if psKy < 0.

Config. 4.36: &=g, y=uwmy,g¢c{-1,1}. (S1.36)

No finite singularities. For these systems we calculate: M = —8x2, Cy = —z?y,

N=po=m=pr=ps=k=r =L=K =0, kg =g, pg = g°z’y>.
We note that py # 0, L = K7 = 0 and sign (g) = sign (k2). According to [26, Table
4] the behavior of the trajectories around infinity corresponds to Figure 8 (see p.
68) if g < 0 and it corresponds to Figure 17 (see p. 67) if g > 0. Therefore, taking
into account the invariant line y = 0 we obtain Picture 4.36(a) if k2 < 0 and Picture
4.36(b) if ko > 0.

Config. 4.37: &=z, y=gy—a?, g(g>—1)#0. (Si.37)

Finite singularities: M(0,0)[A; = g, 6 = (9 — 1)?] — a saddle if g < 0 and
a node if g > 0. For systems (Sy37) calculations yield: n = M = 0, Cy = 23,
po=p1 =p2 =0, u3 = —ga®, K =0, K; = —a3, K3 = 6g(2 — g)a°.

Since K = 0 and pus K3 # 0 by [26, Table 4] if us Ky > 0
and K3 > 0 then the singular point Ny (0, 1,0) is a saddle-
node (with saddle sectors located on the same part of the
line Z = 0). Otherwise the behavior of the trajectories
around infinity corresponds to Figure 38 if usK; > 0 and
K3 < 0 and it corresponds to Figure 33 if uskKy; < 0.

Thus considering the invariant line z = 0 and the type of the singularity M (0,0)
of (Sy.37) we obtain: Picture 4.37(a) when usK; > 0 and K3 > 0; Picture 4.37(b)
when pu3Kq > 0 and K3 < 0; Picture 4.37(c) when psK; < 0.

Config. 4.38: d=x, 9y=g—22, 0#gcR (Sy.38)

Figure 38 Figure 33

No finite singularities. For these systems we calculate:
n=M=0, Co=2° po=jp1=p2=p3=0, g = —gz*, K = K3 = 0.
Since K = K3 = 0 by [26, Table 4] if g4 > 0 then the point
N1(0,1,0) is a node. In the case py < 0 the behavior of the trajec-
tories at infinity corresponds to Figure 35.

Thus taking into account the invariant line x = 0 we obtain
Picture 4.38(a) if pg > 0 and Picture 4.38(b) if pug <0 . Figure 35
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Config. 4.39: i =22 g=x+y. (S4.39)

Finite singularities: M;(0,0)[A; =0, p; = 1] — a saddle-node [1]. Calculations
yield: n =0, M = —8z2, Cy = 2%y, po=p1 =k = k1 = 0, pug = 22, L = 822,
Ky =0.As g > 0, L > 0 and Ky = 0, according to [26, Table 4] the behavior of the
trajectories in the neighborhood of infinity corresponds to Figure 19 (see p. 67).

Thus, taking into account the invariant line x = 0 we obtain Picture 4.39.

Config. 4.40: t=x+1, y=1—uxy. (S4.40)

Finite singularities: My(—1,—1) [Al =1, 6 = 0] —anode. For systems (S4.40)
we calculate: 1 =0, M = 822, Co = 2%y, o = p1 = po = k = ky = L = 0,
pus = —xy, K; = —2%y. We observe that L = 0 and us3K; = z%y?> > 0. So,
according to [26, Table 4] the behavior of the trajectories at infinity corresponds to
Figure 21 (see p. 70). Considering the invariant line 2 = 0 we obtain Picture 4.40.

Config. 4.41: i =gy, y=y—2>+gy?, g€ {-1,1}. (Sya1)

Finite singularities: M;(0,0) [Al =0,p1 = 1]; M5(0, —1/g) [Ag =1, 5 = 0] —a
node. We observe that M is triple, as according to [1, §22] in its vicinity we obtain
o(x) = Aga® + ... = gz® + ..., g € {—1,1}. Moreover, since sign (A3) = sign (g)
by [1, §22] we conclude that the triple singular point Mj(0,0) is a (topological) node
if g > 0, and it is a (topological) saddle if g < 0.

We shall examine the infinite singularities. For systems (Sy.41) calculations yield:
n=0=M,Cy =23 pp = —g> # 0. Hence according to [26, Table 4] the triple
singular point N1(0,1,0) is a node if g > 0 (i.e. ¢ = —1) and it is a saddle if pg < 0
(i.e. g =1). So, in the first case we get Picture 4.41(a), while in the second one we
get Picture 4.41(b).

Config. 4.42: i =gy, y=—-2*+gy*, ge{-1,1}L (Sy142)

We observe that (S4.42) are homogenous systems, which possess the triple invariant
line z = 0. As for these systems n = 0 = M, Cy = 3, g = —g> # 0, then according
to [26] the infinite point N;1(0,1,0) is a node if pg > 0 (Picture 4.42(a)) and it is a
saddle if g < 0 (Picture 4.42(b)).

Config. 4.43: i =gx%, =1+ (9— Dy, g(g>—1)#0. (S4.43)

No finite singularities. For these systems we calculate: 7 = pug = 1 = po =
ps =K =Ky =0, M = —82%,Co = 2%y, uy = g?z*, L = 8g2>, K = 2g(g — 1)x>, R =
8g(2g — 1)z
As pg > 0 according to [26, Table 4] the behavior of the trajectories
around infinity corresponds to Figure 17 (see p. 67) if L < 0. And
since K # 0, in the case L > 0 we have Figure 18 (see p. 73) if
R > 0 and Figure 28 if R < 0. Thus, taking into account the triple
invariant line x = 0 we obtain: Picture 4.43(a) if L < 0; Picture

4.43(b) it L > 0 and R > 0; Picture 4.43(c) if L > 0 and R < 0. Figure 28
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Config. 4.44: d&=2% gyg=g—a*+uzy, ge{-1,1} (S1.44)
3

)

No finite singularities. For these systems we calculate: n =M =0, Cy =z
po =1 = p2 =p3 =0, py=g°z", K =22 Ks=—6gz°.

Hence, by [26] the point N1(0,1,0) is of multiplicity seven (all finite
and infinite singularities have coalesced at this point). As puy > 0
and K # 0, according to [26, Table 4] this point is a node if K3 > 0
(iie. g = —1, we get Picture 4.44(a)) and the behavior of the
trajectories around infinity is as in Figure 36 if K3 <0 (i.e. g =1, ) .

. Figure 36
we get Picture 4.44(b)).

Config. 4.45: t=gry, y=x-—2>+gy?, ge€{-1,1} (S4.45)

Finite singularities: M (0,0) [Al =0,p1 = 0]; M>(1, 0) [Ag = g, 0o = —4g,
pa = 0]. The point M, is a saddle if ¢ < 0 and we claim that it is a center
if g > 0. Indeed, translating this point to the origin of coordinates we get the
systems & = g(x 4+ 1)y, § = —x — 22 + gy?, for which calculations yield: Iy = —2g,
I, = Ig = I3 = 0. By Lemma 7 the point Ms is a center if and only if g > 0 and this
has proved our claim.

Let us examine the multiple point M;(0,0). We observe that M; is a nilpotent
singular point. According to [1, §22] in its vicinity we calculate (x) = agz34... =
—g%23+ ..., o(x) =byx+... = 3gz. Hence we obtain a3 = —g? < 0 and for the
quantity ~ (see [1, §22]) in this case we obtain: vy = b} 4+ 8d3 = ¢*> > 0. Therefore,
the triple point is an “elliptic saddle” (i.e. a non—elementary singular point having
one elliptic and one hyperbolic sectors [1]).

To determine the behavior of the trajectories at the infinity for systems (Sy.45)
we calculate: n = 0 = M, Cy = 23, g = —g> # 0. Hence according to [26, Table 4]
the triple singular point N1(0,1,0) is a node if pg > 0 (Picture 4.45(a)) and it is a
saddle if o < 0 (Picture 4.45(b)).

Config. 4.46: t=1, g=y=vy—z° (S4.46)
No finite singularities. For these systems calculations yield:

n=M=0, Co=2° pjo=p=p2=p3 =0, py=2", K=0, Kg=—62°.
Hence, by [26] the point N1 (0, 1,0) is of multiplicity seven seven
(all finite and infinite singularities have coalesced at this point).
As py >0, K =0 and K3 < 0, according to [26, Table 4] the be-
havior of the trajectories around infinity is as indicated in Figure
32. Thus, we obtain Picture 4.46. Figure 32

It remains to retain out of the 93 phase portraits Picture 4.i(j) in Tables 3(u),
u € {a,b,c,d,e} only portraits which are topologically distinct. This is what we
now do.
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Three real singular points at infinity (n > 0)

Total
Type of Number and type of finite singularities; j;
infinite number of canonical regions and of separatrices phase
singularities port-
0 L 2 3 4 raits
(S,S,S,0):
4.1(b);
(N,N,N) 4.5(b) (S.S.S.N): 3
4.3(b)
f f « 4.3(a)
4.13(a)= 05C5°: 4.10(a); ~ 4.9(b);
4.34(b); 4.22(a); . - oy
(N,N,S) BT 5 () 05¢ 15C, 08¢t | 11
18C: 1SC%: 4.10(b) , 1.9(a):
4.13(b)= 4.22(b) 15C%,05C: ' ' f
0SCS°, 15Cs:
. ;o f
4.34(a) 4.10(c); 1.9(c);
(N,N,N,S):
4.3(c);
(N,S,9) 4.5(c) (N,N,C.9): 3
4.1(c)
(N,S,S-N) 4.4(b) 1
(N,S):
0SC: 4.18(a)
(N,S-N,S-N) 4.17 = 4.16(b); 4
1SCP: 4.16(a);
(S,C): 4.18(b)
(N,N,S-N) 4.4(a) 1
Total number of topologically distinct phase portraits 23
polog y p p

In order to distinguish topologically the phase portraits of the systems we ob-
tained, we use the following invariants:

e The topological types of the infinite singularities. Whenever we have several
sectors on the Poincaré disk we indicate the types of sectors, e.g. PEH means
that we have three sectors (on the Poincaré disk): parabolic, elliptic, hyper-
bolic. In the case n = 0 # M we place two opposite singularities at infinity
at the north and south poles. Then for example in Picture 4.29(b) HHH-PEP
means that the north pole has three hyperbolic sectors and the south pole has
a parabolic sector followed by an elliptic sector and a parabolic one.

e Number and type of distinct finite real singular points.

e The total number SC' (respectively the numbers SC’f, SC¥, SC) of sepa-
ratrix connections, i.e. of phase curves connecting two singularities which are
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local separatrices of the two singular points (respectively of separatrix connec-
tions connecting two infinite singularities, a finite with an infinite singularity,
two finite singularities).

One real and two complex singular points at infinity (1 < 0)

Total number
Type of the infinite Number and type of finite singularities of pha‘se
. . portraits
singularity
1 2
4.2(a)= 4.27(a)(S;F);
(N) 4.8(a) 1.6(a)(S:N) 3
4.2(c)(CF);
(S) 4.8(b) 4.2(d)(C,C); 4
4.6(b)(N;N)
(S-N) 4.7 1
(PHP-PHP) 4.2(b)= 4.27(b)
Total number of topologically distinct phase portraits 9

Only one singular point (real) at infinity (n=0= M, Cy # 0)

Type of infinite Number and type of finite singularities Total number
singularity of phase
0 1 92 portraits
4.41(a)(S,N);
(N) 4.38(b)= 4.44(a) 445;1((6)‘2%2) 4.45(a) 5
aoa (S,HPEP)
4.41(b)(N,N);
() 44200 45 (b)(BILC) 3
(S-N) 4.37(a) 1
Existence of | 4.38(a)(HH-EE); .
an elliptic | 4.44(b)(EH-HE); 443317((1)((2;’ 5
sector 4.46(PEH-P) i
(HPH-P) 4.37(b) 1
Total number of topologically distinct phase portraits 15




80

DANA SCHLOMIUK, NICOLAE VULPE

Two real singular points at infinity (n =0, M # 0)

Total
. .. #
Number and type of finite singularities; of
Type of number of canonical regions and of separatrices h
infinite p aie
. o, pOI‘ -
singularities 0 1 9 3 4 it
(N,N) 4.43(c) 4.11(b) 2
15Cg: 4.14
(N,S-N) = 443(b); | 420() | (léé?N) 44221552)— 411(a) | 6
0SC: 4.29(a) ’ ’
(N,PEP-PEP) 4.12(c) 1
4.15(a)=
4.32
(NH-H) 4.33= !
4.36(a)
4.12(a)=
(N, PH-PH) 4'244%)— 4.30(a)= 2
' 4.28
(N,HHH-HHH) 4.12(d) 1
(N,PEP-H) 4.35(b) 1
(N,HHH-PEP) 4.29(b) 1
4.21(b)
(N7N>S'N)7
(S,S-N) 4.20(b) £.95(b) 3
(N,C,S-N)
(S,EP-EP) 4.24(b) 4.12(b) 2
(S,PE-EP) 4.43(a) 1
4.30(b)«
(S,PHP-PHP) £12(e) 1
(S,E-H) 4.35(a) 1
4.15(b)=
(S,E-E) 4.36(b) :
(S-N,S-N) 4.26 1
4.19(b)=
(S-N,PH-PH) 4.40 1
(S-N,EP-EP) 4.19(a) 1
Total number of topologically distinct phase portraits 27
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Confrontation of phase portraits with n <0
with those with n=0= M, Cy #0

Total
Type of +#
the infinite Number and type of finite singularities of
singularity phase
in the port-
two cases 1 2 raits
4.8(a) (HH) 4.31(a)(N); 4.27(a)(S,F); 4.41(a)(S,N);
(N) 4.42(a)((HH) 4.6(a)(S,N) | 4.45(a)(S,HPEP) 5
4.8(a)= 4.42(a) 4.6(a)= 4.41(a)
4.2(c)(C,F); ]
4.8(b)(EE)| 4.42(b)(EE) | 4.2(d)(C,C); ff;(f))((g}%’) -
(S) 4.6(b)(N,N) ' ’
4.8(b)= 4.42(b) 4.6(b)= 4.41(b)
4.7(N 4.37(a)(N
SN () | 437()(N) )
4.7 = 4.37(a)
Total number of topologically distinct phase portraits for 24 -5
n<0or(n=0=M and Cy #0) =19
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Abstract. The article is devoted to the study of global attractors of quasi-linear
non-autonomous difference equations. We obtain the conditions for the existence of a
compact global attractor. The obtained results are applied to the study of a special
triangular map T : R%r — Ri describing a growth model with logistic population
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1 Introduction

The global attractors play a very important role in the qualitative study of
difference equations (both autonomous and non-autonomous). The present work is
dedicated to the study of global attractors of quasi-linear non-autonomous difference
equations

Unt1 = A(o(n,w))uy + F(up,o(n,w)), (1)

where (2 is a metric space (generally speaking non-compact), (2, Z,0) is a dynam-
ical system with discrete time Zy, A € C(Q,[E]) and the function F' € C(E x Q, F)
satisfies ”"the condition of smallness” (see condition (ii) in Theorem 4). An analo-
gous problem was studied by Cheban D. and Mammana C. [6] when the space ) is
compact and Cheban D., Mammana C. and Michetti E. [8] in general case.

The obtained results are applied while studying a special class of triangular
maps describing a discrete-time growth model of the Solow type where workers and
shareholders have different but constant saving rates and the population growth rate
dynamic is described by the logistic equation (see Brianzoni S., Mammana C. and
Michetti E. [3]). The resulting system is given by T = (1%, T} ), where
(1—=0)u—+ (u+ 1)%(31” + spuc)

1+w

Tr(u,w) =

and
T (w) = w(l —w)

© D. Cheban, C. Mammana, E. Michetti, 2008
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(for all (u,w) € Ry x [0,1]), d € (0,1) is the depreciation rate of capital, s,, € (0, 1)
and s, € (0,1) are the constant saving rates for workers and shareholders respec-
tively, € € (—o0,1),e # 0, is a parameter related to the elasticity of substitution
between labor and capital.

This paper is organized as follows.

In Section 2 we establish the relation between triangular maps and non-
autonomous dynamical systems with discrete time.

Section 3 is devoted to the study of the existence of compact global attractors of
skew-product dynamical systems. The sufficient conditions of existence of compact
global attractors for skew-product dynamical systems with non-compact base are
given (Theorem 2).

In Section 4 we study the linear non-autonomous dynamical systems with dis-
crete time and prove that they admit a unique compact invariant manifold and its
description is given (Theorem 3).

In Section 5 we prove the existence of compact global attractors of quasi-linear
dynamical systems (Theorem 5) and give the description of the structure of these
attractors (Theorem 6).

In Section 6 we give some applications of general results from Sections 2-5 to
the study of special class of the triangular maps T : R%r — R%r describing a trian-
gular growth model with logistic population growth rate as studied in Brianzoni S.,
Mammana C. and Michetti E. [3].

2 Triangular maps and non-autonomous dynamical systems

Let W and € be two complete metric spaces and denote by X = W x Q
their Cartesian product. Recall (see, for example, [16-18]) that a continuous map
F : X — X is called triangular if there are two continuous maps f: W x Q — W
and g : Q@ — Q such that F' = (f,g), i.e. F(z) = F(u,w) = (f(u,w),g(w)) for all
z=: (u,w) € X.

Consider a system of difference equations

{ Uny1 = f(Un,wn)

Wn+l1 = g(wn)a

(2)

for all n € Z,, where Z, is the set of all non-negative integer numbers.
Along with system (2) we consider the family of equations

Upt1 = f(un, g"w) (w € Q), (3)

which is equivalent to system (2). Let ¢(n,u,w) be a solution of equation (3)
passing through the point w € W for n = 0. It is easy to verify that the map
0: Zy x W xQ—W ((n,u,w) — p(n,u,w) ) satisfies the following conditions:

1. ¢(0,u,w) =wu for all u € W and w € §;

2. p(n+m,u,w) = p(n,p(m,u,w),o(m,w)) foralln,m € Z, ,u € Wandw € €,
where o(n,w) := ¢g"w;
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3. the map ¢ : Z; x W x  — W is continuous.

Denote by (2, Z4,0) the semi-group dynamical system generated by positive
powers of the map g : Q — Q, i.e. o(n,w) :=g"w for all n € Z, and w € Q.

Recall [5,19] that a triple (W, ¢, (Q, Z4,0)) (or briefly ¢) is called a cocycle over
the semi-group dynamical system (2, Z,, o) with fiber W.

Let X :=W xQ and (X, Z1,m) be a semi-group dynamical system on X, where
w(n, (u,w)) = (p(n,u,w),o(n,w)) for allu € W and w € Q, then (X, Z,,m) is called
[19] a skew-product dynamical system, generated by the cocycle (W, ¢, (2, Z1,0)).

Remark 1. Thus, the reasoning above shows that every triangular map generates
a cocycle and, obviously, vice versa, i.e. having a cocycle (W, ¢, (Q2, Z4,0)) we can
define a triangular map F' : W x Q — W x Q by the equality

Fu,w) := (f(u,w), g(w)),

where f(u,w) = ¢(1l,u,w) and g(w) := o(l,w) for all u € W and w € Q. The
semi-group dynamical system defined by the positive powers of the map F : X —
X (X :=W x Q) coincides with the skew-product dynamical system, generated by
cocycle (W, p, (Q, Z4,0))

Taking into consideration this remark we can study triangular maps in the frame-
work of cocycles with discrete time.

Let (X, Z,,m) (respectively, (W, p, (Q, Z4,0))) be a semi-group dynamical sys-
tem (respectively, a cocycle).

A map v : Z — X is called an entire trajectory of the semi-group dynamical
system (X, Z, o) passing through the point = € X (respectively, u € W) if v(0) = =
and y(n +m) = w(m,y(n)) for alln € Z and m € Z,.

Denote by ®,,(0) the set of all the entire trajectories of the semi-group dynamical
system (2, Z1, o) passing through the point w € €2 at the initial moment n = 0 and
O(0) :=J{Pu(o) | w e Q}.

A map pu: Z — W is called an entire trajectory of the cocycle (W, ¢, (Q, Z,0))
passing through the point (u,w) € W x Q if u(0) = u and there exists a € D, (o)
such that p(n +m) = p(m, u(n),a(n)) for all n € Z and m € Z,..

Let Y be a complete metric space, (X, Z, ) (respectively, (Y, Z4, o)) be a semi-
group dynamical system on X (respectively, Y), and h : X — Y be a homomorphism
of (X,Z,,m) onto (Y, Z;,0). Then the triple (X, Z;,7), (Y, Z4,0),h) is called a
non-autonomous dynamical system.

Let W and Y be complete metric spaces, (Y, Z+,0) be a semi-group dynamical
system on Y and (W, p, (Y, Z,,0)) be a cocycle over (Y, Z,,0) with the fiber W
(or, for short, ¢), i.e. ¢ is a continuous mapping of Z; x W x Y into W satisfying
the following conditions: ¢(0,w,y) = w and ¢(t + 7, w,y) = @(t, (T, w,y),0(T,7))
forallt,7€ Z,,we WandyeY.

We denote X := W x Y and define on X a skew product dynamical system
(X, Z4,m) by the equality 7 = (¢,0), i.e. w(t,(w,y)) = (p(t,w,y),o(t,y)) for all
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t € Zy and (w,y) € W x Y. Then the triple (X, Z4+,7),((Y,Z+,0),h) is a non-
autonomous dynamical system (generated by cocycle @), where h = pro : X — Y is
the projection on the second component.

3 Global attractors of dynamical systems

Let 901 be a family of subsets from X.

A semi-group dynamical system (X, Z;,m) will be called 9-dissipative if for
every € > 0 and M € 9 there exists L(e, M) > 0 such that m(n, M) C B(K,¢) for
any n > L(e, M), where K is a certain fixed subset from X depending only on 9.
In this case we will call K an attracting set for 9.

For the applications the most important ones are the cases when K is bounded
or compact and M = {{z} | x € X} or M := C(X), or M := {B(x,d,) | €
X, 6 > 0}, or M := B(X) where C(X) (respectively, B(X)) is the family of all
compact (respectively, bounded) subsets from X.

The system (X, Z;,7) is called:

— point dissipative if there exists K C X such that for every z € X

lim p(7w(n,z),K) = 0; (4)

n—-+00

— compactly dissipative if the equality (4) takes place uniformly w.r.t. x on the
compact subsets from X.

Let (X, Z4,m) be a compactly dissipative semi-group dynamical system and K
be an attracting set for C'(X). We denote by

J=9K) =] | m(m K),

n>0m>n

then the set J does not depend of the choice of K and is characterized by the
properties of the semi-group dynamical system (X, Z;, 7). The set J is called a
Levinson center of the semi-group dynamical system (X, Z,, ).

Theorem 1. [5] Let (X,Zy,m) be point dissipative. For (X,Zi,m) to be com-
pactly dissipative it is necessary and sufficient that E;r{ be relatively compact for any
compact K C X.

Let E be a finite-dimensional Banach space and (E, ¢, (2, Z4,0)) be a cocycle
over (2, Z4,0) with the fiber E (or shortly ¢).
A cocycle ¢ is called:

- dissipative if there exists a number r > 0 such that

limsup |¢(n, u,w)| <7 (5)

n—-+o0o

for all w € Q and u € E;
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- uniform dissipative on every compact subset from €2 if there exists a number
r > 0 such that
limsup sup |p(n,u,w)| <r
n—+00 e |ul<R

for all compact subset Q° C Q and R > 0.

Let (X, Z,,m) be a dynamical system and = € X. Denote by w, the w-limit set
of point x.

Theorem 2. The following statements hold:

1. if the semi-group dynamical system (Q, Z4,0) and the cocycle ¢ are point dissi-
pative, then the skew-product dynamical system (X, Z4,m) is point dissipative;

2. if the semi-group dynamical system (0, Zy,0) is compactly dissipative and the
cocycle ¢ is uniform dissipative on every compact subset from ), then the
skew-product system (X, Z4,m) is compactly dissipative.

Proof. Let z := (u,w) € X := E x €, then under the conditions of theorem the
set F = {7(n,x) : n € Z;} is relatively compact and w, C B[0,r] x K, where
B[0,r] :={u € E: |u] <7}, ris a number figuring in the inequality (5) and K is
the compact appearing in (4). Thus the semi-group dynamical system (X, Z;, ) is
point dissipative.

According to first statement of theorem the skew-product dynamical system (X,
Z, m) is point dissipative. Let M be an arbitrary compact subset from X := E x ,
then there are R > 0 and a compact subset ' C Q such that M C B0, R] x Q.
Note that X}, := {r(n,M): n€ Z4} C E;[O,R}xﬂ’ =A{(p(n,u,w),oc(n,w)) : ne

Zy,u € B0,R], w € Q}. We will show that the set Y1, is relatively compact.
In fact, let {zx} C X7, then there are {uz} C B[0,R], {wx} € Q and {ny} C
Z4 such that z, = (o(ng, ug, wk), o(nk, wy)). By compact dissipativity of system
(Q, Z4,0) and uniform dissipativity of the cocycle ¢ the sequences {¢p(ng, ug,wy)}
and o(ng,wy)) are relatively compact and, consequently, the sequence {zy} is so.
Now to finish the proof it is sufficient to refer to Theorem 1. O

4 Linear non-autonomous dynamical systems

Let © be a complete metric space and (2, Z4,0) be a semi-group dynamical
system on {2 with discrete time.

Recall that a subset A C Q is called invariant (respectively, positively invariant,
negatively invariant) if o(n, A) = A (respectively,o(n,A) C A, A C o(n, A)) for all
nez;.

Below in this section we will suppose that the set Q is invariant, i.e. o(n,Q) = Q
for all n € Z4. Let E be a finite-dimensional Banach space with the norm | - |
and W be a complete metric space. Denote by [E] the space of all linear continuous
operators on F and by C(£2, W) the space of all the continuous functions f : Q — W
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endowed with the compact-open topology, i.e. the uniform convergence on compact
subsets in €2. The results of this section will be used in the next sections.
Consider a linear equation

unt1 = A(o(n,w))un (v € Q) (6)
and an inhomogeneous equation
unt1 = Alo(n,w))un + f(o(n,w)), (7)

where A € C(Q,[E]) and f € C(Q, E).

Recall that a linear bounded operator P : E — E is called a projection if P2 = P,
where P? := Po P.

Let U(n,w) be the Cauchy operator of linear equation (6). Following [10] we will
say that equation (6) has an exponential dichotomy on 2 if there exists a continuous
projection valued function P : Q — [E] satisfying:

1. P(o(n,w))U(n,w) =U(n,w)P(w);

2. Ug(n,w) is invertible as an operator from ImQ(w) to ImQ(o(n,w)), where
Q(w) :=1 — P(w) and Ug(n,w) := U(n,w)Q(w);

3. there exist constants 0 < ¢ < 1 and N > 0 such that
|Up(n,w)|| < N¢" and [[Ug(n,w)™"|| < N¢"
for all w € Q and n € Z;, where Up(n,w) := U(n,w)P(w).

Let w € Q and ~, € ®,(0). Consider a difference equation

Un+1 = A(Vw(n))un + f(1w(n)), (8)
and the corresponding homogeneous linear equation
Un+1 =AM (n))un  (w € Q). (9)

Let (X, p) be a metric space with distance p. Denote by C(Z, X) the space of
all the functions f : Z — X equipped with a product topology. This topology can
be metricised. For example, by the equality

=1 dy(fi,da)
d(f1, f2) == 21: P T4 dy(frda)’
where d,(f1,d2) = max{p(fi(k), fo(k)) | k € [-n,n]}, a distance is defined on
C(Z, X) which generates the pointwise topology.

If x € X and A,B C X, then denote by p(z,A) := inf{p(x,a) | a € A} and
B(A, B) :=sup{p(a, B) | a € A} the semi-distance of Hausdorff.

Denote by C(X) (respectively, B(X)) the family of all compact (respectively,
bounded) subsets from X, C'(Q2, E) the space of all the continuous functions f : Q —
E, G E) ={f € CQE): |f| :=sup|f(w)] < +oc} . Note that the space

€n

w
Cy(€2, E) equipped with the norm || - || is a Banach space.
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Theorem 3. Suppose that the linear equation (6) has an exponential dichotomy on
Q. Then for f € Cp(Q, E) the following statements hold:

1. the set I, := {u € E | 3y, € @, such that equation (8) admits a bounded
solution 1), defined on Z with the initial condition 1,,(0) = u} is nonempty
and compact;

2. p(n, ly,w) = Iy for alln € Zy and w € Q, where p(n,u,w) is a so-
lution of equation (7) with the condition ¢(0,u,w) = u and p(n, M,w) =
{p(nyu,w) | ue M};

3. the map w — 1, is upper-semicontinuous, i.e.

lim B(I., L) =0

w—wo
for every wy € Q, where 3 is the semi-distance of Hausdorff;
4. if Q is compact, then the set I .=\ J{I, | w € Q} is also compact.

Proof. Let w € . Since ) is invariant, the set ®,(c) # 0. We fix v, € ®,(0).
Under the conditions of Theorem 3 equation (9) has an exponential dichotomy on
Q) with the same constants N and ¢ that in equation (6). Then equation (8) admits
the unique solution v, : Z — F with the condition

1+aq
1—g¢q

1+gq

[yl <N —
Yw 1100 1_q

1f (v (Nl <N £l (10)
where ||b]| := sup{|f(w)| | w € Q} and ||Vy]|eo := sup{|vu(n)| | n € Z} (see, for
example, [11,15]). Thus, the set I, is not empty. From the continuity of the
function ¢ : Z4 x E' x Q — E and inequality (10) it follows that the set I, is closed,
bounded and 1
jul < N2 )
q

forall u € I, and w € Q.

The second statement of the theorem follows from the equality Sy (P, (o)) =
Qo(nwy(0) (b € Z), where Sy, is an h-translation of the trajectory -, ie.
ShYw(n) :=qu(n+h) for all n € Z.

We will prove now the third statement. Let wg € €, wp — wo, up € I, and
up — u. To prove our statement it is sufficient to show that u € I,,. Since u; € I, ,
there is a trajectory ~,, € P, (o) such that ~,, converges to v,, € ®u,(0) in
C(Z,9Q) and the equation

Unt1 = A, (1)) un + f (0, (7)) (11)

has a solution v,,, with the initial condition v, (0) = uy, and satisfying inequality
(10), i.e.

1+¢q
’V%k (n)| < Nl—_q”f(’/mk)uoo <N

1+¢

1Tq”f” (12)



GLOBAL ATTRACTORS OF QUASI-LINEAR ... 91

forall n € Z and k =1,2,... . We will show that the sequence {v,, (n)} converges
for every n € Z. In fact, by Tihonoff theorem the sequence {v,, } C C(Z,E) is
relatively compact. From equality (11) and inequality (12) it follows that every
limit point of the sequence {1/%%} is a (bounded on Z) solution of the equation

Un+1 = AV (1)) tn + f (Yo (1)) (13)

Taking into account that equation (13) admits a unique solution bounded on Z,
we obtain the convergence of the sequence {v,, } in the space C(Z, E). We put

vy = khI—POO Vy,, - 1t is easy to see that v(0) = u and, consequently, u € I,.

To prove the fourth assertion it is sufficient to remark that for every w € € the
set I, is compact, the map w — [, is upper-semicontinuous and, consequently, the
set [ :=J{L, | w € Q} is compact. The theorem is completely proved. O

5 Global attractors of quasi-linear triangular systems
Consider a difference equation
Un+1 = f(una a(n,w)) (w € Q) (14)
Denote by ¢(n,u,w) a unique solution of equation (14) with the initial condition
©(0,u,w) = u.
Equation (14) is said to be dissipative (respectively, uniform dissipative on every

compact subset from 2) if there exists a positive number r such that

limsup |p(n,u,w)| <r (respectively, limsup sup |p(n,u,w)| < 7)
n—-+o00 n—+00 e |u|<R

for all u € E and w € Q (respectively, for all R > 0 and Q € C(Q)).
Consider a quasi-linear equation

Upt+1 = A(o(n,w))uy, + F(up,o(n,w)), (15)

where A € C(Q,[E]) and the function F' € C(E x Q, E) satisfies "the condition of
smallness” (condition (ii) in Theorem 4).
Denote by U(k,w) the Cauchy matrix for the linear equation

Unt1 = A(o(n,w))uy,.
Theorem 4. Suppose that the following conditions hold:
1. there are positive numbers N and q < 1 such that

[U(n, )l < N¢"  (n € Z4); (16)

2. |[F(u,w)] <C+Dlul (C>0,0<D<(1—q)N7') forallueE andw € Q.
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Then equation (15) is uniform dissipative on every compact subset from €.

Proof. Let ¢(-,u,w) be the solution of equation (14) passing through the point
u € FE for n = 0. According to the formula of the variation of constants (see, for
example,[14] and [15]) we have

n—1
(10(”7 U,OJ) = U(kv w)u + Z U(TL —m— 17 W)F((,D(m, U,OJ), U(mv W)),
m=0
and, consequently,
n—1
o, u,w)| < Ng"ful + ) ¢""™ 1(C + Dlgp(m, u,w)|). (17)
m=0

We set u(n) := ¢ "|¢(n, u,w)| and, taking into account (17), obtain

n—1 n—1
u(n) < Nlu|+ CNq~™" Y " q"™+ DNg ' ) u(m). (18)
m=0 m=0

Denote the right hand side of inequality (18) by v(n). Note that

CN DN DN CN
v(n+1)—v(n)=q¢"— + —un) < —ov(n) + —q ",
q q q q
and, hence,
DN CN
vin+1) < (14+—)v(n)+—q¢ ™.
(1)< (14 =5 Jolm) + =

From this inequality we obtain

DNy\n-1 CN1—qg*!
v(n §<1+—) v(l) + ————.
(n) ) e+ SR
Therefore,
n—1 CN n—1
lp(n,u,w)| < (g+ DN)"""gN|ul + ﬁ(q —-1), (19)
because v(1) = N|u|. From (19) it follows that
. CN
limsup sup |p(n,u,w)| < ——
n—+00 ,eQ’ |ul<R l—q
for all R >0 and Q € C(Q). The theorem is proved. O

Let (E,p,(Q, Zy,0)) be a cocycle over (2, Z,0) with the fiber E.
A family {I, | w € Jq} of nonempty compact subsets I, C E is called a compact
global attractor of the cocycle ¢ if the following conditions are fulfilled:

1. the semi-group dynamical system (€2, Z,0) is compactly dissipative;
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2. the set I := | J{I, | w € Jq} is relatively compact, where Jq is the Levinson
center of (Q, Z1,0);

3. the family I := {I, | w € Jq} is invariant with respect to the cocycle ¢, i.e.
Wp(n,1y,q) | g € (6™) Ho(n,w))} = o(nw) for alln € Z, and w € Jg, where
o" :=o(n,-);

4. the equality

limsup B(p(n, K,w), 1) =0
n—-+0o00 /
weN
takes place for every K € C(E) and Q € C(Q), where C(E) (respectively,
C(€)) is a family of compact subsets from E (respectively, €2).

Lemma 1. The cocycle ¢ is compactly dissipative if and only if the skew-product
system (X, Zy,m) (X := ExQ and 7 := (¢,0)) is so.

Proof. This statement follows directly from the correspondig definitions. O

Theorem 5. Let (2, Z4,0) be a compactly dissipative system and ¢ be a cocycle
generated by equation (15). Under the conditions of Theorem 4 the skew-product
system (X, Zy,7) (X := E X Q and 7 := (¢,0)), generated by cocycle ¢ admits a
compact global attractor.

Proof. This statement follows directly from Theorems 4, 2 and Lemma 1. O

Remark 2. Simple examples show that under the conditions of Theorem 5 the
compact global attractor {I, | w € Q}, generally speaking, is not trivial, i.e. the
component set [, contains more than one point. This statement can be illustrated

1 2
by the following example: w11 = 5“" + 1 f Z%

Theorem 6. Let A € C(Q,[E]) and F € C(E x Q, E) and the following conditions
be fulfilled:

1. the semi-group dynamical system (2, Z1,0) is compactly dissipative and Jgq is
its Levinson center;

2. there exist positive numbers N and q < 1 such that inequality (16) holds;
3. there exists C > 0 such that |F(0,w)| < C for all w €

4. |F(u1,w) — Fug,w)| < Llug —ug| (0 <L < N1 —gq)) for allw € Q and
u,uo € E.

Then

1. the equation (15) (the cocycle ¢ generated by this equation) admits a compact
global attractor;
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2. there are two positive constants N and v < 1 such that
p(n,u1,w) — (1, uz,w)| <NV |ug — ug| (20)
for alluj,us € B, we Q andn € Z.

Proof. First step. We will prove that under the conditions of Theorem 6 equation
(15) admits a compact global attractor I = {I, | w € Jo}. In fact,

|F(u,w)| < [F(0,w)| + Llu| < C + Llu|

for all u € E, where C' := sup{|F(0,w)| | w € Q}. According to Theorems 2 and 4,
equation (15) admits a compact global attractor I = {I, | w € Jq}.

Second step. Let ¢ be the cocycle generated by equation (15). In virtue of the
formula of the variation of constants, we have

p(n,u,w) = U(n,w)u + ;Z_:LU(H —m—1Lw)F(p(m,u,w),o(m,w)).
Consequently, _
p(n, ur,w) — (n, ug,w) = U(n,w)(ur — ug)+
nz—:l Un —m — L A)[F(p(m, u,w),o(m,w)) = F(p(m, uz,w),o(m,w))].
Thus,m:1

lp(n, ur,w) — p(n,uz,w)| < Ng"(Jur — ug]

n—1
+Lg Y g, ur,w) — o(m, ug, w)]). (21)
m=0

Let u(n) := |o(n,u1,w) — @(n,uz,w)|qg~™. From (21) it follows that

n—1

u(n) < N<|u1 —up| + Lg™? Z u(m)) (22)

m=0

Denote by v(n) the right hand side of (22). The following inequality
v(n+1) —v(n) = LNg 'u(n) < LN¢ 'v(n). (23)
holds. From (23) we obtain
v(n) < (1 4+ LNqg )" tu(1)
and, since v(1) = N|uy — usg|, we get

u(n) < (1+LNqg ) Nuj — ua). (24)
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From (24) we have
[p(n,u1,w) = @(n,uz,w)| < (¢+ LN)""'qN|u1 — uy)| (25)

for all uy,us € E and w € Q2.
To finish the proof of Theorem it is sufficient to put v := ¢ + LN and N :=
gN(q+ LN)~!. The theorem is proved. O

Remark 3. It is possible to show that under the conditions of Theorems 3 and 6
the set I, contains a single point (for all w € Jg) if the mapping o(1,:) : @ — Q
is invertible. If the mapping o(1,-) is not invertible, then the set I, may be very
complicated (for example I, may be a Cantor set). Below we give an example which
confirms this statement.

Example 1. Let Y := [-1,1] and (Y, Z;,0) be a cascade generated by positive
powers of the odd function g, defined on [0,1] in the following way:

o
IN
IN

D=

2 -1 ,

y
9(y) =

N~
A
IN
—_

Y

It is easy to check that g(Y) =Y. Let us put X := R xY and denote by (X, Z,, )
a semi-group dynamical system generated by the positive powers of the mapping

P:X—-X
P(3)-(%6) &

where f(u,y) := %u + 1y. Finally, let h = pro : X — Y. From (26), it fol-
lows that h is a homomorphism of (X, Z;, ) onto (Y,Z;,0) and, consequently,
(X, Zy,7m),(Y,Z;,0),h) is a non-autonomous dynamical system. Note that

’(uhy) - (Ug,y)‘ = ’Ul - u2‘ = 10’P(’U/17y) - P(Ug,y)‘ (27)
From (27), it follows that
‘Pn(uluy) - Pn(u27y)‘ < Ne_yn‘(u17y) - (’U,Q,y)’ (28)

for all n € Z,, where N = 1 and v = In10. By Theorem 6 the cocycle
(R, ¢, (Y, Z4,0)) admits a compact global attaror I := {I,: y € Y'} and ¢ is expo-
nentially convergent, i.e. the inequality (20) takes place. According to [18, p.43] I,
is homeomorphic to the Cantor set for all y € [—1,1].

Remark 4. 1. If Q is a compact metric space the close results (Sections 2-5) were
established in [6].

2. The results of Sections 2-5 are true also in the case we replace the finite-
dimensional Banach space E by its closed subset.
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6 Applications

6.1 The model

The model we consider is a particular case of the growth model by Solow; it
has been obtained while considering the standard, neoclassical one-sector growth
model where the two types of agents, workers and shareholders, have different but
constant saving rates as in Bohm V. and Kaas L. [4] and where the production
function F': R, — R, mapping capital per worker k£ into output per worker y, is
of the CES type (as in Brianzoni S., Mammana C. and Michetti E. [1] and [2]), that
is given by

1
€

F(u) = (14 u)=. (29)

However in the present work we add a further assumption, that is the population
growth rate evolves according to the logistic law, as also considered in Brianzoni S.,
Mammana C. and Michetti E. [3].

The resulting system, T' = (', u’), describing capital per worker (u) and popu-
lation growth rate (w) dynamics, is given by:

1—e
u = H% (I=0)u+ (u+1)« (sp+ srue)]
T:= (30)
W= dw(l —w)

where § € (0, 1) is the depreciation rate of capital, s,, € (0,1) and s, € (0,1) are the
constant saving rates for workers and shareholders respectively, € € (—oo, 1),€e # 0 is
a parameter related to the elasticity of substitution between labor and capital (the

1
elasticity of substitution between the two production factors is given by 1—) and,
—€

finally, A € (0, 4] for the dynamics generated by the logistic map not being explosive.

We get a dicrete-time dynamical system described by the iteration of a map of
the plane of triangular type. In fact the second component of the previous system
does not depend on k, therefore the map is characterized by the triangular structure:

u = g(u,w)
T:= . (31)

As a consequence, the dynamics of the map T are influenced by the dynamics of
the one—dimensional map f, that is the well-known logistic map.

6.2 Dynamics of the logistic map fi(xz) = Az (1 — x)

We recall some general results for map fy (see, for example, [20]). For A € (0, 4]
the map f) acts from interval [0, 1] into itself and, consequently, it admits a compact
global attractor I, C [0, 1]. Since I, is connected (see, for example, Theorem 1.33 [5])
and 0 € Iy, then Iy = [0,a)] (ay < 1).
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1. If 0 < A < A\ :=1, then I, = {0}.

2. If A\g < A < Ay := 3, then the map f) has two fixed points: x = 0 is a repelling
fixed point and pg = 1 — 1/ is an attracting fixed point. If x € I \ {0,po},
then o, = 0 and w, = py.

3. If \{ < A < Ay := 1+ /6, then the map f) has one repelling fixed point z = 0
and there is an attracting 2-periodic point p;.

4. There exists a increasing sequence {\;}7°, such that

(a) A\p — Ao as k — o0, where A\, & 3,569....

(b) If Ap < A < Agg1 (K =2,3,...), then the map f) has one repelling fixed
point & = 0 and there is an attracting 2*-periodic point py.

5. For all 0 < A < Ay the structure of the attractor I, is sufficiently simple.
Every trajectory is asymptotically periodic. There exists a unique attracting
2" —periodic point p (the number m depends on \) which attracts all trajectory
from [0, 1], except for a countable set of points. For A > A\, the attractor I
is more complicated, in particularly, it may be a strange attractor (see [20]).

Let (X, Z4,m) be a semi-group dynamical system with discrete time.

A number m is called an e-almost period of the point x if p(w(m-+n,x), 7(n,x)) <
gforallne Z,.

The point x is called almost periodic if for any € > 0 there exists a positive
number [ € Z, such that on every segment (in Z) of length [ there may be found
an e-almost period of the point x.

(vi) Denote by Per(fy) the set of all periodic points of fy. If A = Ay, then
the map fy has the 2’-periodic point p; for all i € Z, (all the points p; are
repelling). The boundary K = 0Per(fy) of set P(fy) is a Cantor set. The set
K is an almost periodic minimal and it does not contain periodic points. The
set K attracts all trajectory from [0, 1], except for a countable set of points
P =UX £y (Per(fy)). If x € [0,1]\ P, then w, = K (see [20]).

6.3 Existence of an attractor for € € (—o0,0)

Lemma 2. Let (R4 x [0,1],T) be a triangular map admitting a compact global
attractor J C Ry x [0,1]. If p € [0,1] is a m-periodic point of the map T : [0,1] —
[0, 1] (T = (TQ,Tl)), then

1. Jp = I, x {p}, where I, = [ap, by] (ap,b, € Ry and a, < by);

2. there exists ¢ € I, = [ap,bp] such that (q,p) is an m-periodic point of the
map T.
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Proof. Let p € [0,1] be an m-periodic point of T3, i.e. T{"(p) = p. Denote by
S = T™ the mapping from X, := R4 x {p} into itself. Then, the semi-group
dynamical system (X, S) is compactly dissipative and its Levinson center coincides
with J, = I, x {p}. By Theorem 1.33 from [5] the compact set I, C Ry is connected
and, consequently, there are ay, b, € Ry such that a, < by, I, = [ap, by] and

U(m, p)lap, bp] = [ap, bp], (32)

where T™(q,p) = (U(m,p)q, T7"(p)) for all (¢,p) € Ry x [0,1]. Since U(m,p) is a
continuous mapping from [a,, b,] onto itself, then there exists at least one ¢ € [ay, by]
such that U(m, p)q = q. 1t is evident that (g, p) is an m-periodic point of the mapping
T = (Tg, Tl) Od

Theorem 7. For all € < 0 the dynamical system (R4 % [0,1],T) admits a compact
global attractor J C R4 x [0,1]. If p € [0,1] is an m-periodic point of the map
Ty:[0,1] = [0,1] (T = (T3, T3)), then

1. Jp = I, x {p}, where I, = [ap, by] (ap,b, € Ry and a, < by);

2. there exists q € I,, = [ay, by such that (q,p) is an m-periodic point of the map
T.

Proof. Assume € € (—00,0) and let A\ = —¢, then A € (0,+00). We write T in
terms of A

1 JEDY
Ti(u,w) = 1 [(1 S u+ (W 1) (s + sru_)‘)] -
A - A
1 1+u A Sy + Spu B
- (1—5)u—|—< - ) (T) _
14+
1 O\ (s 4 sput
1+w (1_6)u+<1+u*> < u N
s — (s 4 5w
— —_ u S Swl -
14w (1 + ’LLA)# r w
1 A
= |- L e (33)
1+w 1+uM)x 1+u
A
Notethat* — 1 as u — +o00, Br T+ Swti” — Sy as u — 400 and,
(1+uM)> 1+ k>
consequently, there exists M > 0 such that
u Sy + Swu’\

<M, (34)

(1+u’\)% 1L+ u?
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for all u € [0, +00).
Since 0 < H% <1 for all w € [0, 1], then from (33) and (34) we obtain

0<T(u,w)<au+M (35)

for all (u,w) € Ry x [0,1], where a:=1—§ > 0.
Since the map T is triangular, to prove the first statement of Theorem it is
sufficient to apply Theorem 5. The second statement follows from Lemma 2. O

Remark 5. 1. It is easy to see that the previous theorem is true also for § = 1
because in this case « = 1 —§ = 0 and from (35) we have T} (u,w) < M, V(u,w) €
R, x [0,1]. Now it is sufficient to refer to Theorem 2.

2. If 6 = 0 the problem is open.

6.4 Existence of an attractor for € € (0,1) and s, < &

The semi-group dynamical system (X, Z,, ) is said to be:

- locally completely continuous if for every point p € X there exist § = §(p) > 0
and [ = [(p) > 0 such that 7' B(p, §) is relatively compact;

- weakly dissipative if there exists a nonempty compact K C X such that for
every ¢ > 0 and € X there is 7 = 7(e,2) > 0 for which n(7,z) € B(K,¢).
In this case we will call K a weak attractor.

Note that every semi-group dynamical system (X, Z,, ) defined on the locally
compact metric space X is locally completely continuous.

Theorem 8. [5] For the locally completely continuous dynamical systems the weak,
point and compact dissipativity are equivalent.

Theorem 9. For all € € (0,1) and s, < ¢ the dynamical system (Ry x [0,1],T)
admits a compact global attractor J C Ry x [0,1]. If p € [0,1] is an m-periodic point
of the map Ty : [0,1] — [0,1] (T = (T5,T1)), then

1. Jp = I, x {p}, where I, = [ap, by] (ap,b, € Ry and a, < by);

2. there exists q € I, = [ay, by such that (q,p) is an m-periodic point of the map
T.

Proof. If e € (0,1) we have

1 —e
Ti(0,w) = 15— [(1 — )t (U + 1) (50 srue)] -
1
1 (u€+1)e N
=110 (1=9%)u+ T ue (sw—ksru)]—

1
=i u [(1=0)u+ spu+ 0(u)u] (36)
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€ 1 €
1)«
where 6(u) — 0 as u — +o0. In fact W+l — 1 asu — +oo while (Swl-:i&eu) —
u
sr as u — 400 and, consequently,
1
(u'+1)e c
1+ ue (8w + s7uc) _ (uf —|—1)% (Sw + Spuc) 1
SpU u sp(u€ + 1)
o (1) .
as u — +00, i.e. f(sw + spuf) = spu + O(u)u. From (36) we have
uE
Ti(,0) = T (1= 6+ s, )u+ 6(u)ed
u,w)=——[(1— Sp)U u)u
1\, 1+w T

for all (u,w) € RZ.
Since s, < 0 then « :=1—9+ s, < 1. Let Ry > 0 be a positive number such

that
1l -«

2 )
for all w > Ryp. Note that for every (ug,wp) € R4 x [0,1], with ug > Ry, the
trajectory {T"(u,w) | n € Z4} starting from point (ug,wp) at the initial moment
n = 0, at least one time intersects the compact Ky := [0, hg] x [0, Rg], (hg > k). In
fact, if we suppose that this statement is false, then there exists a point (ug,wp) €
Ry x [0,1] \ K¢ such that

6(u)] <

(37)

(Up,wp) = T"(ug,wo) € Ry x [0,1] \ Ko (38)

for all n € Z. Taking into consideration that w,, — h (or 0) as n — +o00, we obtain
from (38) that w, > Ry for all n > ng, where ng is a sufficiently large number from
Z4. Without loss of generality, we may suppose that ng = 0 (if ng > 0 then we
start from the initial point (up,,wn,) = T (ug,wp), where T := T o T~ for all
no > 2). Thus we have

un, > Ry (39)

for all n > 0 and

Upy1 = [aw, + 0(up,)up,] (40)

1
14w
From (37) and (40) we obtain
l-a 1+«

Upt1 < Qup + Un = —5—"Un (41)
. 1
since <1 for all w > 0. From (41) we have
w
1 n
un§< —;a) ug — 0 as n — +o0, (42)

but (39) and (42) are contradictory. The obtained contradiction proves the state-
ment. Let now (up,wp) € Ry x [0,1] be an arbitrary point.
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(a) If ug < Ro and u, < Ry for all n € N, then limsupu, < Ry;

n—-+o0o

(b) If there exists ng € N such that u,, > Ry, then there exists mg € N (mg > nog)
such that (U, wm,) € Ko (see the proof above).

Thus we proved that for all (ug,wp) € R%_ there exists mo € N such that (um,, wm,) €
Ky. According to Theorem 8 the semi-group dynamical system (R; x [0,1],7)

admits a compact global attractor.
The second statement follows from Lemma 2. The theorem is proved. O

6.5 Structure of the attractor
Lemma 3. Suppose that the following conditions are fulfilled:

1. (Ry x [0,1],T) is a triangular map admitting a compact global attractor J C
R+ X [07 1]7

2. p €[0,1] is a periodic point of the map Ty : [0,1] — [0,1] (T = (T»,T1));
3. there are two positive numbers N and q < 1 such that
p(T" (u1,w), T" (uz,w)) < Nq"p(u1,u2) (43)

for all (u;,w) € Ry x [0,1] (i=1,2) andn € N.

Then J, = I, x {p}, where I, = [a,,b,] (ap,b, € Ry and a, = by, i.e. I, consists of
a single point.

Proof. To prove this statement we note that from the conditions (43) and (32) we

have

diam(J,) = diam(T™(J,)) < N¢"diam(J,) (44)
for all & € N. From the inequality (44) we obtain diam(J,) = 0. Taking into
consideration the equalities J, = I, x {p} and (32) we obtain a, = b,,. O

Theorem 10. [9] Let X be a compact metric space and (X, Zy,7), (2, Z4,0),h)
be a non-autonomous dynamical system. Suppose that the following conditions are

fulfilled:
1. The point w € Q is almost periodic;

2. lim p(mw(t,x1),m(t,x2)) =0 for all z1,x9 € X such that h(xy) = h(z2).

t——+o00

Then there exists a unique almost periodic point x,, € X, such that

lim p(w(t,x),n(t,zy)) =0

t——+o0

for all x € X,,,.
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Theorem 11. Suppose that € < 0 and one of the following conditions holds:

1. sy < min{d,s,} and 0 < X\ < Ao, where \g is a positive oot of the quadratic
equation (s, — Su)A% + (5, — 20)\ — 6 = 0;

2. 8p < Sy < 0.
Then

1. the semi-group dynamical system (Ry x [0,1],T) admits a compact global at-
tractor J C Ry x [0,1];

2. if p € [0,1] is an m-periodic (respectively, almost periodic) point of the map
Ty : [0,1] — [0,1] (T = (1I»,T1)), then J, = I, x {p}, where I, = [ap,by]
(ap, b, € Ry and a, = by, i.e. I, consists of a single m-periodic (respectively,
almost periodic) point .

Proof. Assume € € (—00,0) and let A\ = —¢, then A € (0,+00). We write T} in
terms of A (see the proof of Theorem 9)

1 A
Ty(u,w) = —— | (1 - 6)u+ — ST
1+w (1—|—u)‘)X 1+u
Denote by
flu) = — Y St
(1+uM)x 1tu
then

Sw + (—8wA + (A + 1), )u?
(1 + w2+ :

f'(u) =

It is easy to verify that under the conditions of theorem f’(u) < s, for all u > 0.
Consider the non-autonomous difference equation

Upt1 = A(o(n,w))u, + Fuy, o0(n,w)) (45)

corresponding to triangular map 7' = (71,75), where A(w) := %—i—l’ Fu,w) =
%Hf(u) and o(n,w) := T3"(w) for all n € Z; and w € [0, 1]. Under the conditions
of theorem we can apply Theorem 6. By this theorem the semi-group dynamical
system (R4 x [0,1],T) is compactly dissipative with Levinson center J and there
are two positive numbers A" and ¢ < 1 such that

p(T" (1, w), T (uz,w)) < Nq"p(u, ug) (46)

for all (u;,w) € Ry x [0,1] (i = 1,2). To finish the proof of theorem it is sufficient
to apply Lemma 3 and Theorem 10. O
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6.6 Conclusion

Under the conditions of Theorem 7 or 9 the mapping T' = (T2,71) (Th = fx)

admits a compact global attractor Jy, C Ry x [0,1]. There exists an increasing
sequence {A,}72, such that

1. A\ — Ao as k — 00, where A =~ 3,569....

2. If A < A< A1 (B =2,3,...), then the map T' = (T5,77) has at least one

fixed point (qg,0) € Jy and there is a 2¥-periodic point (gx,pr) € Ja.

3. For A > A\, the set J), may be a strange attractor. For example, under the

conditions of Theorem 11, for A = Ay the attractor J) contains an almost
periodic (but not periodic) minimal set.
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Determinantal Analysis of the Polynomial Integrability
of Differential Systems
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Abstract. This work deals with the polynomial and formal (formal series) inte-
grability of the polynomial differential systems around a singular point, namely the
conditions which assure the start of the algorithmic process for computing the poly-
nomial or the formal first integrals. When the linear part of the differential system
is nonzero, we have established ([9]) the existence of the so called starting equations
whose (integer) solutions are exactly the partition of the lower degree of the eventual
formal first integrals.

In this work, we study some extensions of the starting equations to the case
when the linear part is zero and, particularly, to the bidimensionnal homogeneous
differential systems. The principal tool used here is the classical invariant theory.

Mathematics subject classification: 34C14.
Keywords and phrases: Nonlinear differential systems, first integrals, classical
invariant theory.

1 Introduction

Many works are devoted to the investigation of local (or global) formal first
integrals of the differential system
dz’

E:Pi(aj), i=1,2,...,n (1)

where P? are polynomials of degree m with coefficients in the field C.

Definition 1. A function F € C'(O) where O is an open set of C", is a first
integral of the differential system (1) if

Ve e O, Ap(F) = %(w)lw(aj) = 0. (2)

J=1

It is well known that around a regular point xg, there are exactly n—1 functionally
independent analytical first integrals. This result is just theoretic.

Around a singular point and for practical and computational reasons, many peo-
ple [1,3,5] have oriented their investigations to special classes of integrals like the
polynomial, rational, algebraic or exponential ones. It occurs that these different

© Driss Boularas, Abdelkader Chouikrat, 2008
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types of first integrals need the knowledge of the polynomial ones and so, the knowl-
edge of the degree of the first terms.

The same problem interested other mathematicians ([6-8]) which studied the
local or analytical integrability. In these works, the question of the resonance of the
eigenvalues of the linear nonzero part plays a fundamental role.

In [9], when the lower degree of P is 1, was given a constructive method to get,
for any dimension n, a so called starting equation satisfied by the lower degree of an
eventual first integral F'.

This work consists in three parts. In the first one (Subsection 2.4), we give an
“extension” of the starting equation ([9]) to the general homogeneous polynomial
differential systems. In the second part (Section 3), we study the bidimensional
homogeneous systems : we explicitly calculated the matrices whose the kernel con-
tain the polynomial first integrals and we have reduced the integrability problem
(existence of a polynomial first integral) to the nullity of some determinant. Fi-
nally, in the third part, we use the classical invariant theory to present significiant
simplifications for computing the above determinant.

2 Notations and matricial writing of the integrability problem

2.1 The total-lexicographic order

Let Sym(n, k) be the linear space of the homogeneous algebraic forms of de-
gree k in n variables and S(n) the infinite dimensional space of the formal series
(expansions) :

S(n) = @ Sym(n, k),
k=1

where ([14, p. 21])

dim(Sym(n, k)) = nln+ Lin + 2])4;1. k) - (7(ln+—k1;!/i!)!'

We identify the set of the multi-degrees of the multivariate polynomials with N".
The total degree of the monomial (') (z2)" ... (2™)" is, by definition, equal to
il = i1 +dg + - + dn.

The n-fold cartesian set N is provided by the total-lexicographical order :
il > 3]
1> ] = or
|i| = |j| and the left-most nonzero entry of i —j is positive,

which induces a total order over the monomials

{@) (@)= - @) il = k).
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Any algebraic form of Sym(n, k), Z Firvimoin (@) (@?)2 - (2) ) can be writ-

li|=k
ten as follows :
—_ (xl k —
(xl)k—l(x2)1
1Nk—1(..3\1
[f5,0,0,...00 fk=1,1,0,...05 fk=1,0,1,...01 - - - » J0,0,0,....k] ()" (%) = F, X", (3)

(")
where Fj, and X* denote the corresponding row and column vectors. Using this

o0
notation, the formal series Z Z firiosin (xl)"1 (:E2)i2 -+ (™)™ and the right side

k=1 |i|=k
of (1) with vanishing linear part become respectively
AX'+BX*+ + B X+, BX'+Pa X4+ P, X, (4)
where, this time, P; (i = [,l + 1,...,m) denotes a matrix with n rows and
(n+i—1)!
————— columns.
(n—1)l!

2.2 The integrability conditions

The formal series F(z) = Fy X' + F, X2 + --- 4+ F, X* + .-+ is a first integral
of the system (1) if, by definition, Ap(F') = 0 i.e.

n

Za(Fle + X2 )
oz

|yl j +1 j —
[Pl]X + Pl X+ Png’”] = 0.
j=1
After collecting the terms w.r.t. the total degree, we obtain an infinite sequence of
conditions :

n 1 )
l: MP{XZ:O,
oz’
j=1
XY i i, OFRX?)
l+1 Z[WBJ+1X+ + TP;X} :Ou
j=1
O [OEXY) i e OBRXP) i OFBXE) o
142 : ;[TPHQX + S Bl X +Wplx]_o,
e [ORXY) o O XP) i O Fmin XY ]
. ;[WPmX e fm X 07 rx| =0
N [OFX?) i OFBXP) i O Fp—42X™2) ]
m—l—l.Z[WPmX + SR X T o Pix'| =0,

<.
Il
-
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Putting p = min(k, m), the equation corresponding to the total degree k in z is :

n 8(Fk+1_pXk+1_p) . 8(Fk+2_pXk+2_p) j 1
> D7 B X" + 9 FpaXit
j=1
INF._ Xk—l-i—l .
o 4 (£ lg;j )PZJXI} = 0. (5)

Since the equation (5) is homogeneous of degree k in the coordinates of z, there are
N = p — 1+ 1 matrices, denoted Mj; ) (i =k —p+1,...,k — 1+ 1), such that the
previous equation can be rewritten in the form :

[Fk—p+1M[k—p+l,k] + Fi—proMg—pyop + -+ Fk—l+1M[k—l+1,k]]Xk =0.  (6)
For the differential systems of lower degree I, k = [, [+ 1,1+ 2,..., we get :
(Fy My =0
Fi Mp, 1) + Fo Mg 1111 =0

Fy My ig) + F2 Mg 4] + F3 Mz i0) =0

\

—1)! kE—1)!
The matrix Mj; ;) has exactely % rows and % columns.
We give some examples of the matrices Mg; 41 when n = 2.

2

1= 2 Po) = T (§ a0, P = 2, (3 e )

1

ao 2&1 a9 ag 2&1 as 0
Mp 9 = [ ] ) Mps=2| by ap+2by 2a1+0by ag |,
bo  2b1 b 0 b W, by
ag 2 al as 0 0
M _ 3 bo 2by+2ap by +4day 2a9 0
[34] 0 2bp  4by+ag 2by+2a1 ay |’
0 0 bo 2b; by
ag 2 [25] as 0 0 0
bo 3ag+2b; by +6ay 3as 0 0
M[4’5] =4 0 3 by 6b1 +3ag 3by+6aq 3as 0
0 0 3 by 6b1 +ag 2a;+3by as
0 0 0 bo 2by by
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3

L= 3P0 = £, (a6 P = 5L, (3)ne e

1

ao 3 a 3 ay a3 ag 3CL1 3&2 as 0
M[173}:|: bo 3 bl 3 b2 b3 :| ,M[274}:2 b(] 3b1 + ap 3b2 + 3&1 b3 + 3(12 as s
0 by 3b; 3bo b3
ag 3 ai 3 as as 0 0
M _ 3 bo 2a9+3by 3by+6a; bg+6ao 2as 0
[3.5] 0 2bg 6b1 +ag 6by+3a; 3ag+2b3 as
0 0 by 3by 3by bs
ag 3 aq 3 a9 as 0 0 0
bo 3ag+3b1 9a1+3by b3+ 9as 3as 0 0
M[4,6} =4 0 3 by 9b1+3ag 9ba+9a; 3b3+9aq 3as 0
0 0 3 bg 9b1 +ag 3a1+9by 3as+3bs as
0 0 0 by 3b; 3bo bs

Proposition 1. If the differential system (1) has a formal first integral of lower

degree d, then :
(d+mn—1)!

rank (Mg 4q4-1) < (n—=1ld!

The existence of the formal first integral of lower degree d implies that the
linear system FyMg;44-1) = 0 admits a non-vanishing solution. If for any d,
(d+mn—1)!

m, the differential system (1) hasn’t a formal first

rank (M[d,l+d—1}) =

integral.

2.3 The case of the lower degree Il =1 ([9])

When [ = 1, the matrices Mg 1q4-1] = M]q,q are square.
Let A = (A;)lgingn be the matrix of the linear part of the differential system (1).

Proposition 2. [9] The matriz L = M|y 4 is defined by :

S
Lty lin =0 ifli—jl > 2,
i1... (g —1)...(ig+1)...4 q
122 ... .
Ly a1, T A
Liyiy. . in = (1Al + A3+ i AD).

Corollary 3. [9] The matriz L = Miq,q) is diagonal (respectively lower triangular,
upper triangular) for any d = 1,2,3,..., if and only if the matriz A is diagonal
(respectively lower triangular, upper triangular).
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Corollary 4. [9] If the eigenvalues of the matrix A are A1, Ao, ..., \n, then the
eigenvalues of the matriz L = Mg g have the form :

1AL + G922 + - +inAn,
where i1,49,... 1, € Nandiy + io + ... + i, = d.
From Corollary 2, it follows
det(Muq)=  [] (ml TIPS VT +mn) 9)

It is clear that the existence of a formal first integral (of lower degree d) of (1) with
A # 0, implies the existence of a non-negative integer d such that Fy Mg 4 = 0
has a nonzero solution Fy, i.e. det(Myyq) = 0.

The factors (il)\l +i9do + - - +in)\n) can be regrouped in orbits O(iy, g, ..., ip)

with respect to the action of the symmetric group over the multidegrees. These orbits
are represented by the partitions of d in not more than n parts:

det(Mjg,q)= I1 I1 (3120 + G+ + Guda )
Z‘l + 1‘2 4+ -+ Zn — d ‘1,j2,...,jn)€(9(i1,ig,...,in)
i >y > >y >0

As a symmetric function, the polynomial

R = H (jl/\l + Jodg + -+ +jn>\n)

(J1,525+-3n)EO (11,32, in)

belongs to the ring Z[oy, o9, ..., 0,] where 0; = Z Ajp e N,
1<ji1<j2<jn<n

The equation R = 0 is called the starting equation of the existence of the formal
first integrals. Its integer solutions give the lower degree of the eventual first integral.

Some generic examples
1. The partition (d,0,...,0) corresponds to the factor det(A).

2. When d = kn, the partition (k,k, ..., k) represents a one element orbit. So,
the factor that corresponds to this partition is k"trace(A).

3. When n = 2, the starting equation is
2
[dldg <trace(A)) + (di — do)?*det(A)| = 0.

In [9], the case of the dimension 3 is also detailed and for other dimensions, a
procedure for obtaining the starting equation is given.
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Remark 1. The above Diophantine equation (9) can be found under various aspects
in many works ([4,7,8]). For example, in [7], when the linear part A is not zero, the
author wrote : “If system (1) has nontrivial integrals analytic in a neighbourhood
of a trivial solution x = 0, then eigenvalues of the matrix A have to satisfy certain
resonant conditions’.

The starting equation gives namely an achieved form of these resonant conditions.

2.4 A consequence (strong condition) for the homogeneous
polynomial systems

Let’s return to the systems (1) which we suppose homogeneous of degree m :

dxt
dt

= P(z), i=1,2,...,n. (10)

Denote by Jac(z) the Jacobian matrix of P and by J(x) and T'(x) respectively the
determinant and the trace of the matrix Jac(x).
A polynomial first integral F;X? satisfies the relation

"O(Fy X = . i iyij— nyi
ZW [P]@«’)]:Z D iifi i (@) @) (@) =0, (1)
j=1 j=1|i|=k

Using the Euler’s formulae
; 1
Pi(g) = —
(@) = -
the relation (11) becomes :
FyLq(z)X? = 0

where the matrix Lg(z) has the same structure as the matrix L when [ = 1 (see
Proposition 2 ). This is due to the substitution Aj := [Jac(z)], which leads to the
matrix Mg g (x) and thus, to the starting equation R(x), depending on .

Proposition 5. Suppose that the starting equation R(x) = 0 admits an integer n-
tuple solution (dy,ds, ..., d,) and suppose that the linear equation Fy-Ly(x) = 0 has
a constant solution F' (not depending on x). Then, the system (10) has a polynomial
first integral of total degree d.

Corollary 6. When n = 2, the strong condition is given by the equation

[dldg <T(x)>2 + (dy — do)? J(a:)] = 0. (12)

There are two particular cases of the above Corollary 6.

First case: n = 2 and T'(z) = 0. Hence, d; = ds.
We see later that in this case, the polynomial z2P!(x) — 2! P%(z) is a first integral.
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This case can be extended to the 2n-dimensional differential systems

da’ i dy’ _ i .
dt - P(.’L’,y), % - Q(‘Tay)7 1_1727"'7n

satisfying the conditions

OP(zy) | 9Q'(z.y)
oxt oyt

=0, (i=12,...n).

n

The polynomial function Z <yiPi(3:,y) — :EZQZ(aj,y)) is a first integral. Among
i=1

these systems we find (of course) the homogeneous Hamiltonian ones

dz’ _ O0H(z,y) % OH (z,y)

dt oyt 7 dt oxt

Remark 2. In general (see Proposition 1.16 from [2]), the condition J(z) = 0
implies the algebraic dependence W (P!, P2 ... P") = 0 where W is a multivariate
polynomial with coefficients in C.

Furthemore, if the polynomials P!, P?,..., P" are homogeneous of the same
degree, the polynomial W is necessary homogeneous.

Second case: n = 2 and J(z) = 0.
From the above remark and the homogeneity of W, we have : W(z) = H(aixl +
Biz%) and so,
W(PY,P*) =0 = 3,6 € C; aP'(z) + BP*(z) = 0.

Thus, the linear form az!' + B2 is a first integral.

3 The bidimensional homogeneous systems

We have seen that the starting equations of (1) depend only on the homogeneous
part of lower degree of (1). Let’s consider the homogeneous differential systems of
(total) degree I.

dx

=0

l

i dy _ ! I—i, i
o =B =% (w03

=0

N\
. o~
N——
8
&N

d

where A(x,y), B(z,y) € Clz, y].
Because of the homogeneity of the polynomials A and B, a formal first integral is
necessarily a polynomial one which satisfies the equation FyMig 4.1 X H=1 — .
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By the proposition 1, a necessairy and sufficient condition for finding a nontrivial
solution Fj is :

rank(M[dJer_l}) < d+1.

In the following section we compute concretely the matrices M4 4 4 1), we establish
the equivalence between the rank condition and the nullity of some determinant and
finally, by using the classical theory, we reduce the computation of this determinant
to that of its leading term.

3.1 Some basic facts about the integrals of homogeneous planar
differential systems
The following results are wellknown.

Lemma 7. Let H(x,y) = Hi(z,y)Hz2(x,y) be a factorisation of the polynomial H
into two coprime polynomials Hy and Ho. The polynomial H is a partial integral of
(13) if and only if Hy and Hy are also partial integrals of (13).

Proof. [4] (Lemma 2.2, p. 8).
Proposition 8. Let K(x,y) be the polynomial yA(z,y) — xB(x,y). Then
K (z,y) K (z,y)
ox oy
where Div(A, B) is the divergence of the vector field (A, B).
Proof. Putting A, = %, Ay = %, B, = %—f, B, = %—jyg and using the Fuler’s
formulae, we get
0K (x,y) 0K (x,y)
ox oy
= (A; + By)K(z,y) + B(zA; + yAy) — A(xB, + yBy) = Div(A,B)K(z,y).
Remark 3. Each factor of K(x,y) is a partial integral.

A(z,y) + B(z,y) = Div(A, B) K(z,v)

A(z,y) + B(z,y) = (yAs — 2B — B)A + (yAy + A — 2By)B

Proposition 9. The line ax + By = 0 is an invariant curve for the system (13)
if and only if K(8,—a) = 0.
Proof. The sufficient condition follows immediately from the fact that

m+1

K(z.y) = [] (i + piy)

i=1
and the previous results.
Let az + By = 0 be the equation of the line. The point (3, —«) belongs to the line
and so, aA(B,—«a) + BB(B,—a) = 0.
Corollary 10. If Div(A, B) =0, then K(x,y) is a first integral,
Proposition 11. If K(xz,y) # 0, then
system (13).
Proof. Directly from the definition of the integrating factor.

1 . . .
Ry s an integrating factor for the
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3.2 Computation of the matrices M[q,;14—1)
Proposition 12. Let M{g;, 41 be the matriz defined in Section 2.2. With the
assumption a_1 = b1 = 0 and <;> = 0 for any j = 0,1,2,...d, r =

0,1,2,...,l+d—1 such that i < k, we have:

! = (45 o (1) (o 00

Proof. The polynomial F(z,y) = E?:o <;l> fjxd_jyj is a first integral if and only
if
OF (z,y)

FyMigpqn X1 = T Al y)+——

=0 7=0 =
l d—1 I+j . ;
ded—1 OZ< ) T Y +dea[Z< ><T_j>ar_jwl+d—r—lyr
r=0 r=j
I+j5—-1 d—1 ! l
- . l+d—r—1_r d—1 l—r r
+ Zl<j_1><r_j+1>br—J+lx y'| +dy fdzo<r>br$ y =0
r=J1— r=

J

The element [M[d,H—d—l}} is the coefficient of f;3" (j = 0,1,2,...d and r =
T

0,1,2,...,l+d—1) in the last expression. More precisely :

r 10

Mg 14a-1) . = d< >ar if0<r <l

_ L .

M[d,l+d—1] ) = d bpif 1<j<d—1,

- 4151 J-

[ 17 d— d—1 !
_M[d,l-l-d—l]_r = d[ j >< ]> ar—j + <j—1><1"—|—1—j>br+l j:|

if1<j<d-—-landj<r<Il+j-—1,

[M[dl-i-d—l]]j — a4t qifl<j<d-1
’ I+ J -7 - !

d I .
[M[d,l+d—1]]r = d , bpifd—-—1<r<l+d-1,

[M[d,l+d—1]} i = 0 elsewhere
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where j =0,1,2,...dandr =0,1,2,...,l4+d—1. These expressions can be rewritten
using the copact form given in the proposition.

Corollary 13. For alld € {1,2,...,}, i € {1,2,...,d}, and j € {1,2,...,1+
d — 1}, we have :

i

A [Marniva], = @D ([Maorsea] + Mania] ).

d+1
d+1
minors. The aim of the following subsection is to reduce the computation of these
minors to that of one and only one determinant of some matrix.

By Proposition 1, the condition on the rank requires the computation of

3.3 Reduction to a square matrix

Proposition 14. The polynomial FdM[CLH_d_HXHd_l € Clz,y] vanishes identically
if and only if the polynomial

-1 l—1 I+d—1
—1-k\O T FgM X
3 <z 1 k> d Ma14d-1] yl1E gk (15)

k I—1—k A,k
— ox oy

vanishes in Clz,y, u,v].
Proof. With the help of the Euler’s formulae,

0Q(z,y) 0Q(z,y)
or " * dy

where Q = FyMjg;1q-1 X H+d=1" e remark that the homogeneous polynomial Q
0Qw.y) _ 0Q(x.y)
ox oy

the polynomial ) vanishes if and only if all its derivatives of order [ — 1 vanish.

vanishes if and only if = 0. By the same way, we claim that

In the following, we denote by Sgj the (d+ 1) x (d + 1)-matrix such that

o1 (Fd Mgi+a-1) Xl+d_1)

FySqp X =
ddk Ol 1=F gy

and by Sig(u, v) the matrix 22;10 <l - z_ k> Sqpul=1 Rk,
Proposition 15. The differential system (13) has a polynomial first integral of
degree d if and only if

detS[d](u,v) =0
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Examples of matrices Sq(u,v).

1= 2:
2a0 2a1 2&1 2&2
Spy(u,v) = v
L 2b0 2b1 2b1 2b2
[ 3(10 4&1 as 2(11 2&2 0

5[2] (u,v) = | 3by 2ap+4by 2a1+by |u+ | ap+2b; 4a; +2b2 3ay | v,

0 2p 2, bo 4y 3by
5[3] (’LL, ’U) =
4ap 6aq 2a9 0 2a1 2ao 0 0
4bg 6b1 4+ 6ag 8aq + 2bs 2a9 2b1 + 2a¢  8aq + 2bs 6as 0
0 6bg 2ag + 8b1  2bsy + 2aq b 2bg 2ag + 8b1  6by + 6a;  4as
0 0 2bg 2by 0 2bg 601 4by
1= 3:
S[l](ujv)[?)ao 3(11 ]u2+[6a1 6&2]uv+[3a2 3&3]1)27
3by 30y 6b; 6b 3by 3b3
S (u,v) =
6CL() 9&1 3a2 9a1 12 as 3a3

V.

6byg 3ag+9b; 3by+3aq u2—|— 3ag+9by 12by+12a7 9ag + 3b3 | uv+

0 3 bo 3b1 3 b 12y 9by
3 a9 3 as 0

+ | 3bs+3a1 9as+3bs 6Gas v2.
3b; 9by 6 b3

3.4 Computation of the matrices Sq
Starting from the polynomial

I+d—1

Fg Miggyq-1 X071 = Z Z fz( [d,1+d— 1]) a1y,
=0 j=0

we get

al—le M[d l+d—1]Xl+d 1

d
al—l’—kxaky zz:

;LM+

(M[d I+d-1 ) id+k— (G — k)

d d .
i Utd—T1—k—p) (k+p) 4
- ZZfi(M[d,l+d—1]>k+ d—p) b p!p zPyP.

. (l +d—1-— j)'j' $d+k—jyj—k
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Proposition 16. The (d+1) x (d+ 1)-matriz Sqi(u, v) (fork €{0,1,2,...,0 —1})
s defined by :

i i (4d=1—k—p) (k+p)
(Sd,k)p = (M[d,l+d—1]>k+p =) o (16)

Proof. The coeflicient of f; yP corresponds to the coefficient (Sd,k);.

Consequently, by Proposition 15, the differential system (13) admits a polynomial
first integral if and only if there exists a positive integer d such that

det(Siq)(u, v))=sdul= DD L ody A=D(d+1) =1, —i—sfll_l)(dﬂ)v(l_l)(dﬂ) =0. (17)
For verifying the condition rank (M[d,l—i—d—l}) < d+ 1, we must compute N; =

<(Cll_—:__i> minors, but for verifying the condition det(S|q(u,v)) = 0, we need the

computation of Ny = (d 4 1)(l — 1) + 1 expressions. The next table shows how the
difference N1 — N increases w.r.t. the degrees [ and d.

1\d| 1 2 3 4 5 6 7 8 9 10
2 0 0 0 0 0 0 0 0 0 0
3 3 6 10 | 15 21 28 36 45 55 66
4 7116 | 30 | 50 7 112 | 156 210 275 352
5 121 31 | 65 | 120 | 203 | 322 | 486 705 990 1353
6 18 | 52 | 121 | 246 | 455 | 784 | 1278 | 1992 | 2992 | 4356
7 25 | 82 | 205 | 456 | 917 | 1708 | 2994 | 4995 | 7997 | 12364
8 33 | 116 | 325 | 786 | 1709 | 3424 | 6424 | 11430 | 19437 | 31812

Remark 4.

1. When [ = 2, the coefficients of the determinant (17) correspond to the mi-
nors of the matrix Mg 41 = [C1,Ca, ..., Cay2], rewritten with the columns
Ci;i=1,2,...,d+2:

s¢ = N det([C1,0%, ..., Car1-k> Cava ko, Cars—, - - Caial)

fork =0,...,d+1and \; € N.
Here, the symbol 7”7 means the removing of the corresponding column.

2. When [ > 2, we have :
Sg = )\0 det([C’l, 02, e ,Cd+1])
Scll = /\1d€7f([01, 02, e ,éd+1, Cd+2])

It is obvious that when the degree d increases, the computation of the determinant
det(S|q (u,v)) becomes more and more complicated. However, by using the classical
invariant theory, we will show that from the knowledge of the leading term sg, we

can deduce that of the other terms s‘li, sg, . ,sgﬂ.
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4 The computation of the determinant det(Siq(u,v)) by using
the classical invariant theory

4.1 Introduction to the classical invariant theory ([10,12,14])

Let (C™)* be the dual of the vector space C™. The linear space of the differential
systems (13) can be looked upon as the tensorial product S(n, m) ® (C™)* denoted
by S},. For example, S} is the linear differential systems. In tensorial language, S;,
is the space of tensors once contravariant and m times covariant which are symmet-
ric with respect to the lower indices.

Let G be the linear group acting rationally on a finite-dimensional vector space
W, GL(W) the group of automorphisms of W and

p :Gr+— GL(W)

the corresponding rational representation. Let C[)V] be the algebra of polynomials
whose indeterminates are the coordinates of a generic vector of W.

Definition 2. A polynomial function K € C[W) is said to be a G-invariant of W
if there exists a character of the group G, denoted X\, such that

Vge G, Kop(g)=Ag)K.

Here, the character of the group G is a rational (commutative) morphism of
group G into C,, where C,, is the multiplicative group of C.
If A(g) =1, the invariant is said absolute. Otherwise, it is relative.

Definition 3. A GL(n,C)-invariant of S}, is a GL(n,C)-invariant of the linear
space
W= S

A GL(n,C)-covariant of S is a GL(n,C)-invariant of the linear space
W= S x (C").

When G is a subgroup of GL(n,C), A(g) = (det g)™" with the so called weight
k € Z.
Remark 5. If G = SL(n,C), all the covariants are absolute.
Remark 6. A polynomial K € C[S}] is a GL(n,C) covariant if and only if it is a
SL(n,C) covariant.

Examples

1. Concerning the GL(n, C)-invariants, take for example the trace and the deter-
minant of the linear part of (1).

2. The divergence and the jacobian determinant of the vector field P are the
simplest GL(n, C)-covariants of the space of the differential systems (1).
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For more details, see [10-12,14, 15].
The following theorem gives a procedure for calculating the generators of the the
GL(n,C)-covariants, step by step increasing the degree.

Theorem 1 (Fundamental Theorem of the classical invariant theory). The expres-
sions obtained with the help of succesive alternations and complete contraction over
the tensorial products

(Sp)P @ (V)

form a system of generators of the algebra of GL(2,C)-covariants of S}, .
Such polynomials are called basic covariants.

From now on, we will be ineterested in the bidimensional case.
A GL(2,C)-covariant K of degree k (with respect to (x,y)) is a polynomial

k _ k i
Coz* + <1>C'1xk by + - + <z>01x’f b Oyt

where the coefficients C; are homogeneous polynomial functions of degree d depend-
ing on coefficients a; and b;. The integers k and d satisfy the relation

dim — 1) — k =2k

where k is the weight of the covariant K.
To apply previous Theorem 1, it is useful to introduce the tensorial writing of
the algebraic forms and the polynomial differential systems.

Putting z = 2!, y = 22 and using Einstein’s notation : ;6 = Z?:l 7;0" the
polynomials F', A and B, once symmetrised ([10]), become :

F($7y) = (10(‘/17) = Piria..ig xilxiQ Ilfid,

A(xay) = A1($) = Oél gjilgin xim’

i1ig..iq
B($7y) = A2(gj) = azzlig...id xi1$i2 $im7
where aly 199 o = @; and  a2] 199 5 = b; (with i “27) and 41,42, ... € {1,2}.
Consequently,
dp(x) 41 dp(x) \ o
DA,BF($7y) = Ozl A ($) + 2 A ($)

= ;g ; id i1 02 e Ld—1 1. J1 ]2 . Jm
= dcpuzz...zdajlhmjmx x x Tt T
is a GL(2,C)-covariant because it is a total contraction (see Theorem 1).

Proposition 17. The polynomial FySig) (u,v) X% is a GL(2,C)-covariant.
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Proof. It is wellknown ([14]) that for any covariant K(z,y), the polynomial
OK(r,y) . OK(5y),
Oz y

is a covariant. This is the polarization process. Repeating this process k times, we
obtain again a covariant :

Zk: k akK(33>y)uk—i,Ui
- i ) Drk-idy :

Consequently, since D4 gF' is a covariant, the polynomial

-1
1—-1\9"DapF ,_; o
FaSja (u,0) X" = Z( i >ﬁ -
=0

is also a covariant.
Corollary 18. The polynomial det(Sig(u,v)) is a GL(2,C)-covariant.

Proof. Let Sym(n,d)* be the dual of the linear space Sym(n, d) and GL(Sym(n,d))
(resp. GL(Sym(n,d))*) the group of the automorphisms of Sym(n,d) (resp.
GL(Sym(n,d))*). We denote the elements of Sym(n,d) by Fy and those of
Sym(n,d)* by X9

The change of coordinates (z,y)” < (Z,7) = [¢~ ' (z,y)]", where (z,y)T is the
transpose vector of (x,y), induces the linear representations :

® : GL(2,C) —» GL(Sym(n,d)) ¥ :GL(2,C) — GL((Sym(n,d))").
Since the polynomial F;X? is an absolute G'L(2, C)-covariant, we have :
Vg € GL(2,C), ®(g)¥(g9) = 1.
Hence, the matrix Sig(u,v) is transformed into Sjqq)(@,7) = ®(g)Siq(u,v)®(g)"".

Consequently,

det(Sa,q (W, 7)) = det(Sig(u,v)).

4.2 Differential operators

Let’s consider the connected component of the identity of the subgroups H;, Hy
and H, of the lower-triangular, upper-triangular, diagonal matrices parametrized by
TeC:

m={(1 ) rechm={(y 1) rectm={(5 % )rech

The family H;, H,, Hg generates the unimodular group SL(2,C). H; (resp Hy, Hy)
is homeomorphic to the additive group (C, 4) . Each element of H; (resp H,, Hy)
can be identified with 7 € C. These groups induce linear actions over the space (S})

O : H — Aut(Sp,), U : H, — Aut(Sp), I : Hy— Aut(Sn)
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defined by ®(t)(a,b)=(a(t),b(t)), ¥(t)(a,b)=(a(t), b(t)) and I(t)(a,b)=(a(t),b(t))

where

a(r) =3 (1) e = (1)

i=k
k
— k —1 7 k —q 18
CLk(T):Z<i>Tk (a; — T b;) bk(T):g?:O(Z_)T'f b; (18)
=0
dk(T) _ er(m—2k—1)ak l;k(T) — eT(m_2k+1)bk.

To each subgroup H;, H,, H;, we associate a differential operator acting over the
algebra of the polynomials Cla, 0]

= ;(m —k+ 1)(ak Dans + by abk—l) - kZ:Oak i (19)
m P 5 m 5
0, = J;(k) <ak—1 Jar + bp—1 a—bk) - kzzobk Ba (20)

and

Qd:i((m—2k—1)aki+(m—2k+l)bk 0 (21)

= Oay, G—Z)k) ’

They are obtained by derivating respectively the expressions ®(7)(a,b), ¥(7)(a,b)
and I'(7)(a, b) with respect to 7 and setting 7 = 0.

These operators play an important role in the description of the algebra of the
GL(2,C)-covariants. Indeed, the next result gives a relation between any covariant

U=AouP+A; <Zl)>up_1v+ oo A <Ii)>u”_"vi+ Ay <pf 1>uvp_1+Ap P (22)

and its leading term Ay.

Definition 4. The weight of the coefficient ay, (resp. by) is the number k (resp.
k—1). The weight of any monomial Aag’ - a,'b}’ - - - b]' is the number Zizo(kik +
(k—1)jx). A polynomial K € Clag,...,a;,bg...b] is isobaric if all its monomials
have the same weight.

Proposition 19. For any GL(2,C)-covariant (22), with coefficients Ay, Ay, ..., Ap,
homogeneous polynomial functions of ag, ay, ... ,am , by, b1, ... , by, we have :

1
<£>Ak - HQ} J(A4)) Vk=0,1,2,....p
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Corollary 20. If the homogeneous polynomial I depending on ag, a1, ... ,a, and
bo, b1, ... by, is a GL(2,C)-invariant , then Q(I) = 0.

Proposition 21. For any GL(2,C)-covariant (22), where coefficients Ag, A1, ..., Ap
are homogeneous polynomial functions, depending on ag, a1, ... ,am , bo, b1, ... ,bm,
we have :

Qu(Ag) =0

Theorem 2 ([15]). An algebraic form
U= Aoup—l—A1<11)>up_1v—|—---+Ap_1<k€1>uvp_1 + Ay P

with an isobaric polynomial Ay € Clag, a1, ... ,a;,bo, b1, ... b, is a GL(2,C)-
covariant if and only if Q,(Ag) =0 and

k=0
Let’s return to the determinant of the matrix Sjg(u, v) which is a covariant (18).

Corollary 22. The covariant (17) is determined by its leading term sg :
d L,
det S[d] U, ?} kz_: k_ d—k ?)k.

4.3 The computation of the leading term sg: an open question

Following the previous subsection, the computation of det(Sig ) can be reduced
to that of its leading term, sg. This is somewhat difficult.

Examples of sg: for any 4,5 € {0,1,2,...,l} such that i < j and k €
{0,1,2,...,1— 1}, we put

l l l l
5i,j = <Z> <j><aibj — ajbi>, Tk — <k>ak + <k+1>bk+1'

Then, with the help of Groebner basis [13], we get :

forl = 2:
56 == 0o1;
8(2) = —bpdo2 + 00,170

88 = 5071 (2 T02 + 5071) — 45050727'0 + 2 1)025172

Sg = 350717'0 (3 T02 + 45071) +9 (—5071a2 + 27’0(51,2 + 7'15072) 502
-3 50,2 (4 50,1 + 97’02) bo

8(5) = 45071 (5071 + 67’02) (9 5071 + 47’02) + 8 (—36 a250717'0 + 9(51,2(50,1 + 36 (50,27'07'1
+36 51,27'02 + 20 50,22)1302 — 96 (—a250,2 + 7’15172) b03 — 16 50727'0(24 T02
+29 5071)1)0.
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forl = 3:
5o == bo1;
8(2) = —50,2130 + 50,17'0;
88 = 2 ((50,3 + 5172)1)02 — 4(50,27'0[)0 + (50,1(2 T02 + (50,1)
S% = —18 5173503 +9 (3 (50,37'0 — 7'2(50,1 + 2 (51,27'() + (50,27'1)[)02 - 3(50,2(4 (50,1
+9 7'02)b0 + 350,17'0(3 T02 + 450’1);
8(5) = 192 52731)04 +96 (2 do,1a3 + T20p 2 — 371003 — T101,2 — 57'05173)1)03

+8 (9 50,151,2 + 72 50737'02 + 36 51727'02 — 36 50’17'27'0 + 36 7'150,27'0 + 9507150,3
+20 50,22)1302 — 167’05072(295071 + 247’02)bo + 45071(50,1 + 67’02)(950,1 + 47’02).

We remark that if by = 0 and for [ = 2,3,

Lty = s(l) = 00,1
Lty = 3(2) = 00,170
Ltz = s§ = 601(80.1 + 270°)
Lty = sé = 37000,1(3 0% + 460.1)
Lts = s§ = 460.1(801 +670%)(960,1 +4702).
It is easy to recognize the type of the factors that are present in these expressions.

Indeed, it coincides with the starting equation , when the linear part is nonzero. In
fact, this result is more general.

Proposition 23. When by = 0, the leading term of the polynomial det(S|q) (u,v) is
defined, up to a numeric constant, by :

Lt; = Cd(To)(d) H [d1d2 7’3 + (di — dp)? 50,1]7 (23)
di+dy = d
dy > do

where cq is a numerical coefficient, (d) = 0 if d is odd and (d) =1 if d is even.

Proof. It is obvious that s§ = det(Si4(1,0)). Since by = 0, from (16) and (14),
the matrix Sig(1,0) = Sg is upper triangular and so, its determinant is equal to
the product of the diagonal elements which are regrouped two by two (the 5% term
with the (d 4+ 1 — j)%* term, for j = 1,...,d + 1) :

1. when d; > do, we get (d1a0 + dalby)(daag + dylby) = (d% + d%)Tg + (dl — d2)2(50,1,
2. when dy = dy = g, the coefficient (Sd,O)Zi = Aag + b)) = A1p.

Remark 7. By analogy, when a,, = 0, the relation

Mty = can)® ] [ddarts + (1 - d)? 81
di+dy=d
d1 > d2

is verified.
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At this step, we arrive at the question: how to deduce the leading coefficient 88

from the above expression (23)? Does there exist some operator which transforms
Ltg to the leading term sg? Up to now, this question is open.
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Abstract. We consider the hyperbolic system

us = aVu + fi(u,v)
ve = aVu + fa(u,v)
u(0, ) = {(x)
v(0,z) = n(z),

and we are looking for necessary and sufficient conditions on the forcing terms f;,
i = 1,2, in order that the semigroup solutions, v and v, starting from orthogonal data
¢,m € L*(R™), remain orthogonal on R.
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1 The main result
Let us consider the hyperbolic system

u = aVou + fi(u,v)
vy = aVu + fa(u,v)
u(0,z) = ()
v(0,2) = n(z),

(1)

where a € R, fi :RxR - R, fo : Rx R — R and &,1 € L2(R"). We are looking
for necessary and sufficient conditions on the forcing terms f;, ¢ = 1,2, in order that
the mild solutions, u and v, of (1), starting from orthogonal data &,1 € L?(R™),
remain orthogonal on Ry, i.e.,

(u(tv ')7U(t7')> =0 (2)

for each t € R, whenever &, € L?(R") satisfy
(€m =0. (3)

The main result of this paper concerning the problem above is
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Theorem 1. Let us assume that f; : R xR — R, ¢ = 1,2, are globally Lipschitz.
Then, a necessary and sufficient condition in order that for each &,n € L*(R"),
satisfying (3), to exist a unique mild solution (u,v) : Ry — L2(R™) x L2(R") of (1),
satisfying (2) for each t € Ry, is

(& f2(&m) + (0, fr(&m)) =0, (4)
for each &, m € L*(R™) satisfying (3).
The proof of Theorem 1 is based on a combination of Cy-semigroup techniques

developed in Vrabie [7] and viability arguments which we recall in the next section.

2 Introduction to mild viability

Let X be a Banach space, let A: D(A) C X — X be the infinitesimal generator
of a Cy-semigroup, {S(t) : X — X; t > 0}, and let f : K — X be a continuous
function. Let us consider the Cauchy problem

{ Z'((t)) i ?U(t) + f(u(?)) (5)

Definition 1. We say that K is mild viable with respect to A+ f if for each £ € K
there exist 7' > 0 and a continuous function w : [0,7] — K satisfying

u(t) = S(t)€ +/0 S(t—s)f(u(s))ds

for each t € [0,T'].

In order to get a necessary and sufficient condition for mild viability, some pre-
liminaries are needed.

Definition 2. We say that n € X is A-tangent to K at £ € K if

T
lu}}llonf EdlSt (S(h)¢+ hn; K) = 0.

In other words, n € X is A-tangent to K at £ € K if for each § > 0 and each
neighborhood V' of 0 there exist h € (0,6) and p € V such that

S(h)¢+h(n+p) € K. (6)

The set of all A-tangent elements to K at £ € K is denoted by ‘J’f}(g). We
notice that if A = 0, then U’I‘%(é’) is the contingent cone at £ € K in the sense of
Bouligand [1] and Severi [6], i.e.

TR (€) = T (£).
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Proposition 1. Ifn € U’I‘%(é’) then, for every function h — np from (0,1) to X
satisfying lﬂlg N =N, we have

NP
hr}rllllonf EdlSt (S(h)€ + hnp; K) = 0. (7)

If there exists a function h — ny, from (0,1) to X satisfying both

li =
ﬁ% R =1
and (7), then n € T4(8).
The next result is a necessary and sufficient condition for mild viability due to
Carja and Motreanu [3]. For a more general theorem extending both Nagumo’s [4]
and Pavel’s [5] main viability results, see Burlica and Rosu [2].

Theorem 2. Let A : D(A) C X — X be the infinitesimal generator of a Cp-
semigroup, K C X a nonempty and locally closed subset in X and let f : K — X
be a locally Lipschitz function. Then, a necessary and sufficient condition in order
that K be mild viable with respect to A + f is the generalized tangency condition

F(&) € T () (8)
for each £ € K.

3 The abstract Banach space setting

Let K be a nonempty subset in X, invariant with respect to A, in the sense that
S(t)K C K for each t € Ry, and let f : K — X be a continuous function. Next,
we prove some appropriate sufficient conditions on f in order that K be mild viable
with respect to A + f.

Lemma 1. Let X be a Banach space, A : D(A) C X — X the infinitesimal
generator of a Cy-semigroup, {S(t) : X — X; t > 0}, and K a nonempty subset
in X. Assume that K is invariant with respect to A, i.e., S(t)K C K for each
t € Ry. Then Tg(€) C ‘Tf}(g) for each £ € K. If, instead of a Cy-semigroup, A
generates a Co-group of isometries, {G(t) : X — X; t € R}, satisfying G(t) K C K
(or, equivalently, G(t)K = K) for each t € R, then T (&) = T3 (€) for each & € K.

Proof. Let n € Tx(§). By Proposition 1, it suffices to check that

T
lu}}llonf EdlSt (S(h)§+ hS(h)n; K) = 0.

Let M > 1 and a € R be such that ||S(¢)|] < Me* for each t > 0. Since S(t)K C K
for each ¢ > 0, we have
dist (S(h)§ +hS(h)n; K) <

< dist (S(h)€ + hS(h)n; S(h)K) < Medist (€ + hn; K).
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Thus

N .1 ..
— . < — @ : = 0.
hl}zll%]nf hdlst (S(h)€+ hS(h)n; K) < hl}zll%]nf hMe dist (§ +hn; K) =0

Since the conclusion in the case of a Cy-group of isometries follows from the preceding
one, this completes the proof. O

Theorem 3. Let X be a Banach space, A : D(A) C X — X the infinitesimal
generator of a Cy-semigroup, {S(t) : X — X; t > 0}, K a nonempty and locally
closed subset in X, and f : K — X a locally Lipschitz function. If S(t)K C K for
each t > 0 and

f(&) € Tk(§) (9)
for each € € K, then K is mild viable with respect to A+ f.

Proof. The conclusion follows from Lemma 1 and Theorem 2. d

Theorem 4. Let X be a Banach space, A : D(A) C X — X the infinitesimal
generator of a Cy-group of isometries, {G(t) : X — X; t € R}, K a nonempty
and locally closed subset in X, and f : K — X a locally Lipschitz function. If
G(t)K C K (or, equivalently, G(t)K = K) for each t € R, then a necessary and
sufficient condition in order that K be mild viable with respect to A+ f is (9).

Proof. The conclusion follows from Lemma 1 and Theorem 2. d

4 Proof of the main result

We can now pass to the proof of the main result which rests heavily on Theorem 4.
Proof. First, let us observe that the problem (1) can be rewritten as an abstract
evolution equation of the form (5), where X = L2(R")x L>(R"), A: D(A) C X — X
is defined by

{ D(A) = {(u,v) € X; (aVv,aVu) € X} (10)
A(u,v) = (aVv,aVu) for all (u,v) € D(A),

and f: X — X is given by
f(u,0)(z) = (fi(u(z), v(@)), f2(u(z), v(2))), (11)

for each (u,v) € X and a.e. for z € R™.
On X we consider the usual Hilbert space norm

[(w, 0)[| = V/(u, u) + (v, 0),

for each (u,v) € X, where (-,-) is the usual inner product on L?(R"™).
It is well-known that the linear operator A, defined by (10), generates a Cy-group
of isometries, {G(t) : X — X; ¢t € R}, given by

1 u(r+ta) +u(z — ta) + v(z + ta) — v(z — ta) 7
(Ge) (v (@) = 2 < uw(z + ta) — u(z — ta) + v(z + ta) + v(z — ta) ) ’
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where BY denotes the transpose of the matrix B. See Vrabie [7]. Second, since f;,
i = 1,2, are globally Lipschitz, the function f : X — X, given by (11), is well-defined
and globally Lipschitz on X.

Next, let us define

K ={(¢,n) € X; & and n satisty (3), i.e., ({,n) =0}

which is nonempty and closed in X. Let us observe that G(t)K C K for each t € R.
Indeed, let (¢,17) € K and let us denote by

G(8)(&n) = (GL(B)(&:n), G2(8)(&;m),

where
GLO(E M) = 5 (6 + 1) + E(- — ta) + n(- + ta) — (- ~ ta))
Calt)(&m) = 5 (E(-+ ta) — € — ta) + (- + ta) + (- — ta))
for each (¢,x) € R x R™.
We have

(G1()(&,m), G2 (1) (&, m)) = EC +ta)ll L2ny — (€( + ta),&(- — ta))+

+(E(C+ta), (- +ta)) + (£(- +ta),n(- —ta)) + (£(- — ta), &(- +ta))—
—lIEC = ta)ll 2y + (€ — ta), n(- + ta)) + (€(- — ta),n(- — ta))+
+( +ta),&(- +ta)) — (n(- +ta), £(- —ta)) + [In(- + ta)l| L2 (rn)+
+( +ta),n(- —ta)) — (- —ta), £(- + ta)) + (n(- — ta),&(- — ta))—
—( +ta),n(- —ta)) — (- — ta)l2wn)-

Since the Lebesgue measure on R” is translation invariant, we deduce that the right
hand side vanishes which proves that G(t)K C K.

Thanks to Theorem 4, K is mild viable with respect to A + f if and only
if f(&,n) € Tk(&,n) for each (&,n) € K. The last condition is equivalent to
the existence of two sequences, (hy), in Ry and ((pn,qn))n in X, with h, | 0,
lim,, (pn, ¢n) = (0,0) and such that

(f»ﬁ) + hn(fl(é.vn% f2(£777)) + hn(pna Qn) €K

for n =1,2,.... Equivalently,

(€4 hnfi(&,m) + hapn,n + hnf2(§,m) + hngn) =0

for n = 1,2,.... A simple calculation using the fact that (¢,n) = 0, h, | 0 and
lim,, p, = lim, ¢, = 0, shows that the last relation is equivalent to (4), and this
shows that K is mild viable with respect to A + f.
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Finally, since f;, i = 1,2, are globally Lipschitz, it follows that f inherits the
very same property and thus it has linear growth. A classical argument involving
Gronwall’s Lemma and the fact that K is closed and mild viable with respect to
A + f, shows that each mild solution of (5) can be continued to a global one and
this completes the proof. O
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Cy1ecTBerHoe pa3purie MaTeMaTuky B XIX crojiernn u, Ipexkie BCero, MaTeMar-
TUYIECKOTO aHAIN3a, aHAJINTHIECKOM, KaUeCTBEHHON 1 UNCIeHHOI Teopuit muddepen-
IMaJbHBIX YpaBHEHMI, pa3padborka MaKcBeIIoM MaTeMaTHIeCKIX OCHOB 9JIEKTPOIN-
HAMUKHU BMECTE C BbIIAIONMMUICS aCTPOHOMUYIECKUMU OTKPBITHIIMU (HAPSILy C BEJIH-
KM OTKPBITHEM ILIaHeThl HenryH, npuBeaeM, Hanpumep, oTKpbiTue OpayHrodpepom
CIIEKTPAJILHOTO aHAJIN3a) HPEJIOIPEIEININ HOABICHIE 3HAMEHUTOIO TPEXTOMHOTO
counnennsi A.Ilyankape "Hosble meronpr nHeGecnoit mexanukn" [1]. Tenwmanbmbrii
TpakTaT OOYCJIOBUJI PAa3BUTHE MHOTMX HAIIpaBJIEHUI MaTeMaTWKH XX CTOJIETHS U,
B YaCTHOCTH, CIIOCOOCTBOBAJI IIOSIBJICHHIO U Pa3BUTHUIO €€ paslesia, KOTOPbIA HbIHE
xopoio u3pecreHn mon HaspanmeM KAM-reopust. K 1967 romy ee cosmareaum A.H.
Kosmoropos, B.M. Apuonbng u FO. Moszep copMyanpoBain u T0Ka3aId OCHOBHBIE
Teopembl, cocrapisione ee dyngament [2-5].  Ceromust "KAM-reopus" (cama
abbpeBuaTypa MOsIBIJIACH I03/HEe) OObeauHsieT IpobaeMbl U (DyHIAMEHTAIbHbIE
pesyabrarel A.H. Kosmoroposa, B.M. Apmonpma, F). Moszepa, a Takxke ux
YYEHUKOB U IIOCJeJoBaTes el 110 aHaJIMTUYeCKOl M KadyeCTBEHHOU Teopuu YCJIOBHO-
[IEPUOAUMYECKUX PEIIeHNI IaMUJILTOHOBBIX CHCTEM, 3a/aBaeMbIX Ha MHOIOMEPHBIX
Topax. MareMaTHIecKass TeOpUsl HEJMHENHBIX KoJieDaHUil, TpakTyeMasi HaMH KakK
TEOpHUsl IEPUOAUYECKUX U IOYTH NEPUOAMIECKUX PEIleHHH HEeJIUHEHHBIX CHCTEM
OOBIKHOBEHHBIX AuddepeHnnaabHblX ypaBHEHUN O0€3yC/JIOBHO OTHOCUTCSI K TOMY
pasmemy, Ajsi Koroporo meroabl KAM-Teopun npejcrasiisitorcs Hanbosree 3hbHeKTrB-
vbiMu. B "Hoebeix Meromax" Ilyankape, chopMympoBa CJIEIYIONLYIO Mpob/eMy.

IIycrs 3amanbl ABe MYHKIUN 27 TEPEMEHHDBIX L1, ..., Lyy Ylye s Yn -

Fl(xlw < T3 Yt - ayn) € C(l)(G2n)7 F2($17 sy TpiYl, - ayn) € C(l)(G2n)7

e Gop, — 0071ACTh 2N-MEPHOTO eBKJIMI0BA MPOCTPAHCTBA, CIIEIUATBLHON CTPYKTYPHI,
TUIUYHOM JIJIsl IPOCTPAHCTB Iepuojndeckux GyHkiuii "¢ muorumu nepuojgamu’ [4].
TloBopsit, uro dyskuun Fy u Fy naxodamcea 6 unsosmouyuu B Gop, €Cim UX CKOOKA
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[Tyaccona [1,3] B Go, paBha nyJto, T.e. ecju

o & 0F, 0Fy, O0F, 0l .
(Fl’FQ):;<axk n ) =" W

PaccvoTpuM aBTOHOMHY IO TaMUJIBTOHOBY cucTeMy JuddepeHnnaabHbIX YpaBHEHU T

dp _ _OH  dg _0H -
dt  9q’ dt  Op’

C raMMJIBTOHNaHOM

H(p,q) = Ho(p) + pH1(p,q), 0<p<l,
Hi(p,q) = Hi(p,q + (27)),

AHAJMTUIECKAM B 2Nn-MepPHOH 0bjacTu

Gap = {p € Gy, |[Tmg| < p<1,[Img| = |[Im qsll} = (4)

s=1

rJe n — MepHoe MHoroobpasue Gy, COCTOUT U3 N-MePHBIX TOpoB, a Pypbe-npecTasie-
HUE TaMUJIBTOHUAHA SIBJISIETCSI N-KPATHBIM CXOJSIIMMCS PSJIOM 10 HEPEMEHHBIM ¢
(namu ucnosb3oBana cumposiuka B.J. Apnoubia [3,4]).

Teopema JInysunus [1,4]|. Ecau usseecmuve n He3a6UCUMBT NEPEHIT UHMEZPAAOE
cucmemvt (2), YyoosAemMBOPANUUT UHBOMOUUOHHOMY pasercmey (1), mozda 2amunv-
monosa cucmema (2) unmezpupyema 6 K6a0dpamypax.

QopMyIUPOBKa TEOPEMBI JIMyBUILIsT HE CONEPXKUT yYTBEPXKIEHUN, CBA3AHHBIX C
npeobpa30BaHUsSIMI TaMUJIBTOHOBOM cucTeMbl (2), mo Ilyamkape cdopmymmposas
IpobJieMy HMHTETPUPYEMOCTH OCHOBHBIX YPABHEHUH KJIACCUYIECKON NUHAMUKH, T.€.
raMIJIbTOHOBBIX CHUCTEM BHJa (2), B TepMHUHAX UX HPEOOPA3OBaHUS K CJIEIYIOIIEMY
BULY:

dP  0H dQ OH

dt  0Q’ dt 0P
I7le HOBBI MaMUJIBTOHHAH 3aBUCUT TOJLKO OT "MejleHHBbIX" mepeMeHHbIX P, HO He
3aBUCUT OT "OBICTPBLIX" IepeMeHHBIX ().

w(P), ()

UnbiMu cstoBamu, TpebyeTcst T0Ka3aTh TEOPEMY CYIIECTBOBAHMUS TAKOTO HEBBIPOK-
JIEHHOI'O KaHOHWYECKOro Inpeobpasosanus (p,q) — (P,Q), KoTopoe mnpeobpasyer
raMmIbTOHOBY cucremy (2) B cucremy (5) u obparHo, cucremy (5) B cucremy
(2). Nmenno ITyankape cdopmysupoBas u (HpakTHIECKH HAMETUI IyTh K PEIIeHUIO
cIeytoniell mpobJIeMBbl:

Pewumv npobaemy cyuecmeosanua u nocmpoums makoe HesuporcoenHoe Kano-
Huveckoe npeobpasosanue [3-5)

p:SD(P,Q), QZT/J(RQ)’ (6)
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Komopoe npeobpazyem cucmemy (2) ¢ 2aMUABMOHUAGHOM, YOOBAETNEOPAIOULUM YCAO-
suam (3) = (4), 6 cucmemy (5), 6 KOMOPOt HOBHIT 2AMUAGIMOHUAH 3ABUCUN TOADKO
om noevixr "medaennwx" nepemernnoir (nosvr "umnysvcoe” P) u ne sasucum om
Hoevxr "Gvicmpoir" nepemennux (Pasoswx yeaos Q) [6].

OTa npobieMa sIBISETCS MeHTPaJbHOoR mpobiaemoit B KAM-teopun u, moMumMo
KOPPEKTHOT'O ITOIX0a, KOTOPHIi IMoApa3yMeBaeT 00si3aTeIbHOE HCCIEIOBAHNE CXOIU-
MOCTH BCTPEYAIOLINXCS Ipeobpa3oBaHmii, oHa ObLla O0BLEKTOM HUCCJICIOBAHHUS U B
unrepuperainn  "acumnrorudeckoit" [1].  3nech dyHIaMeHTAIbHbIE NHOHEPCKHE
paborsr mpunaiexkar H.H. Boromobosy, FO.A. Murpomnonbsckomy, A.M. Camoii-
JeHko [7,8]. Acumnrornveckasi TeOpUsi MHOIOYACTOTHBIX CHCTEM, [IOCTPOEHHAasl Ha
faze CHEIUALHBIX CXEM YCPEIHEHHSs, YINTHLIBAIOMINX HAJMYINE YACTOTHLIX PE30HAH-
COB, KOTOpPBIE SIBJISIFOTCSI OCHOBHBIM IIPEIITCTBHEM IIPH (DAKTUIECKOM IIOCTPOEHUHI
YKa3aHHBIX [IpeobpasoBaHuil, Oblia mpejokena B paborax [9,10|. Famunbronuan (2)
yaoBseTBopsieT TeopeMe upuxiie o cymecroBanuu ero @ypne-pasioxkenus [11] B
obaactu Gaoy, T.€. €ro MOYKHO IIPEJICTABUTh N-KpaTHBIM psioM Pypbe 1o "yrioBbiM"
[EePEMEHHBIM ¢, KOTOPLIA B KOMILIEKCHOI (bopMe nMeeT BHI,

H(p,q)= Y hp(p)e'™,
k110

(Byq) = ks, |kl =D |k, ke =0,£1,42,..., i=+v=1,
s=1 s=1

1
(2m)"

2 2 "
hi(p) = / H(p, q)e_l( Ddgy ... dgy. (8)
0 0
Koaddurmenrsr Dypbe hy(p) pasioxkenust (7) sBIIsIOTCS OBICTPO yOBIBAIOIIME
BEJINYMHAME C POCTOM HOPMBI IIEJIOUUCIEHHOTO BEKTOpa , T.e. ||k||, u yaoBiaerBopsitor

"sxcnonenimaabHoi" onenke B.J.ApHosbia [4]

lhi(p)]| < Me I, 9)

rne M u p — HEKOTOpbIE MOJI0KUTETbHBIE KOHCTAHTHI.
B cuty 3T0ro, mpejcTaBisieTcs 1eJecoo0pasHbIM OUCK 1peobpasoBanus (6) B
BUJIE N-KPATHBIX TPUTOHOMETPUIECKUX PsAIoB [4, 6]

p=¢(P,Q) = Y wr(P)e'™,
k=0
(10)

g=p(P,Q) = Y vp(P)e® ),

[[k[|=0

rie koaddunuentol @i (P), Y (P), B CBOIO OYepelb, IPEJICTABISIIOTCS CTEIIEHHBIMU
palaMu BUAI2
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o0
P = Y aP = Y g PRRP . P
Isll>11%| s1+s2+... 450> k||
11
Py = 3 b,Pe, 1
Isll > 11Kl
s;=0,1,2,..., kj=0,%1,%2..., j=12...n,

C HEU3BECTHBIMU KO3(MDUIUEHTAMU g, g, KOTOPLIE IMOMJIEXKAT OLPEIETICHUIO.

Ecimu npomuddepennuposars Boipakenusi (10) 1o ¢ u 10JCTaBUTh UX B JI€BbIE
9acTU OCHOBHOI TaMUJIBTOHOBOH cucTeMbl (2), a B IIPABbIX YACTIX OCYIIECTBUTH
sameny (10) ¢ koadbdunmentavu u3 (11), To 10CIIE BBIIOJHEHNST COOTBETCTBYIONIHUX
oneparuii (cpenn Hux ajrebpamdeckue onepanuu HaJ kodbdurmenramu Pypbe u
oneparyn iuddepeHIupOBaHnsi) B IPUHIAIIE MOKET ObITh BBITUCAHA OECKOHEUHAA
CUCTNEMA HENUHETHDIE aN2e0PAUMECKUT YPaBHEeHUT C HEM3BECTHLIMU ag, by, BUIA

F,(ag,bo, ..., as,bs) =0, r=1,23... (12)

Pemenne anrebpantdeckoit 3ana4n (12) sxeusasenmno 3agade 0 IOCTPOCHHN 3aMEHbI
nepemenHblx (10) Torma m ToibKo Torma, korma psel (10) mo (11) saBiasorcs
CXOJISAIIIMACST B COOTBETCTBYIOIINX OOJIACTSIX.

DyngamenTaIbHbIN pesyabrar [TyaHkape o pacxoauMocT psijioB HeHGeCHON Mexa-
HUKH |1| IpuMeHnTEIBHO K HOHMCKY npeobpasoBanust (6) COCTOMT B TOM, YTO DsiJIbI
Bu/ta (10) ABIAIOTCS PACXOIAIMMICH U3-3a IPUCYTCTBHS B CTPYKTYpe Koabduien-
10B @ (P) u Y (P) marvir snamenamenets muna (k,w(P)), koropsie upu ||kl — oo
MOTYT OBITH CKOJIb YTOJHO MAJIBIMH, B TOM YHCJIC W HYJEBBIMH BEJIMYHHAMHA, IIPHIEM
"eayuatinocmsy " Takoro mosesienusi Besmuud (k,w(P)) kak dyHkmii BekTOpa K
MOKHO CYHTATh OCHOBHBIM IPEMSTCTBUEM IIPU UCCJICOBAHIA UX CXOJUMOCTH.

Paccmorpum ycstoBne

|(k,w(P))| = a < 1, (13)

KOTOpOe HPUHSTO Ha3bIBaTh a-pesonancom wacmom wi(P),0o(P), ... ,wn(P) [12].
ITpu o = 0 MBI UMeeM TOYHBI pe3oHaHc 9acToT. OUeBUIHO, UTO PE30HAHCHI MOIYT
BOZHUKHYTBL TOJBKO IIPU 7. > 2, T.e. MOI'YT UMETb MECTO B JBYX, TPEX W TaK JaJjee
MHOTOYACTOTHBIX JUHAMUYECKUX CHCTeMax. Hcam nmepeMennbie () B raMUIBTOHOBOM
cucreme (5) TpakToBaTh Kak (a30Bble YIVIBI, TO TOA B (DU3NIECKOM CMBICIIE
Besimantbl w1 (P),we(P),...,0n(P) — 970 yIjIOBble CKOPOCTH, WJIHM, KaK IPUHSITO
X Ha3bIBaTh B TEOpUM KoyebaHmit, wacmomo. VIMEHHO NOsIBJIEHHWE B IPOIECCE
UHTErpUPOBAHUS TaMUJIGTOHOBOH CHCTeMbl (2) 9acTOTHBIX pe3oHaHcoB Buga (13),
Hen30€KHO TPUBOJUT K PACXOJAUMOCTH PSJIOB, YYACTBYIOIIUX B BbINIEYKA3AHHBIX
npeobpa3oBaHUsIX.

1o nobyuo Ilyankape npeiokKuTh TEOPHIO ACUMNIMOMUNECKUT NPEICTaAGAC-
Hul (CHHOHMMOM 3TOTO IIOHSITUSI SIBJISIETCS GCUMNMOMUYeckul, pad), HA OCHOBE
KOTOPOIi Obl1a pazpaboTana Teopust aCHMITOTUIECKOI nHTerpupyeMoct auddepen-
[UAJIBLHBIX yPABHEHUH JTMHAMUKH.
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KomMmMenTapueM K 3THM PacCy>KIEHUAM MOXKET CJIY>KATH OTPBIBOK U3 3HAMEHHUTOTO
counnennsi [lyankape "Homble meronnr HeGecHoii mexanuku" [1]: "Teomerpbr u
ACTPOHOMBI IIO-PA3HOMY IOHUMAIOT CJIOBO CXOANMOCTE. [ €0OMeTpBI, BCEIeso 03abovueH-
HbBIE JOCTUKEHNEM 0e3yKOPU3HEHHON CTPOrOCTH U 3a9aCTyIO0 COBEPIITEHHO Oe3pa3iind-
Hble K IPOJO/KUTEIbHOCTH CJIOXKHBIX BBIYMC/IEHUI, TOBOPSIT, YTO HEKOTOPLIA psii
CXOJIUTCS, €CJIN CYMMA €0 9JIEHOB CTPEMUTCS K KAKOMY-TO OIIPEIEIEHHOMY IIPeIey,
Jaxke B TOM CJIydae, KOrja IIepBble WIEHBI P/ YOLIBAIOT YPE3BLIYAiHO MEIJIEHHO.
B 1mpoTuBoIoI0KHOCTE 3TOMY aCTPOHOMBI OOBIYHO TOBOPSIT, YTO HEKOTOPBIHA psiiI
CXOJIUTCS, €CJIU, HAIIPUMED, MepBble ABAIAThL UIEHOB 3TOrO pPsifia YOLIBAIOT OYEHb
OBICTPO, HE CMOTPsI Ha TO, 9TO IOCJIEAYIONINE €ro YIeHbl HEOIPAHMYECHHO BO3pacCTa-
0T ... . ObGe TOUKM 3peHMsT 3aKOHHBI: II€pBasi — B TEOPETUIECKUX MCCIEIOBAHUSIX,
BTOpasi — B YHMCJIEHHBIX HpmioxkeHusix. (Obe rocmoicTByiorT 6e3pa3iebHO, HO B
Pa3IUYHBIX 00JIACTAX, U IPAHUILI 9TUX 00JIacTeil He0OXOJIMMO YETKO pas3aindarh'.

OTMeTHuM Tak»ke, 9TO MOCJETHIE AECATUICTHS [IOJIyYN/Ia TaKyKe PA3BUTHE TOIO-
JIOrUYecKasi TPAKTOBKa IPO0JIeMbl HHTErPUPYEMOCTU TaMUJIBTOHOBBIX cucreM [13,14],
COCTOSIINAS B IOCTPOEHUN TJIODATBHON KJIACCH(PUKAIIMN TPACKTOPHUI IMHAMIICCKIX
CHCTEM II0 WX PA3JIMIHBIM I[IPU3HAKAM U CBI3aHHOE C TUM pasjesieHue (pa30BOro
[IPOCTPAHCTBa Ha 00JIaCTH, BKJIIOYAIONMINE B cebs TPACKTOPUU PA3JIMIHBLIX KJIACCOB.
Tax mimm nHave, uccienoBanns llyankape mokaszajm, 9TO0 OCHOBHBIM MPENSITCTBAEM K
HHTEIPUPOBAHMIO TAMUJIBTOHOBBIX CHCTEM (2) sIBISIOTCS MaJible 3HAMEHATEJN THUIA
(13), HeuszOe:KHO MOSBJSIIONIMECST B MCKOMBIX psijlaX. UTO Kacaercs MOCTPOEHUsI
OECKOHETHO TI0C/IeI0BATE/IbHOCTH HEBBIPOXKIEHHBIX TPe00pa30BAHIIT

q) = (W, qV) & ?,¢?) & ... = (M, ¢") ... =(P,Q),  (14)

KOTOpasi peobpasyer cucremy (2) B mHTErpupyemyro cucremy (5), Takoe perieHue
MOXKET OBITh JOCTUTHYTO JIUIIL B paMKax KAM-reopuun. ®az0Bble MHOTOOOpa3ust, B
KOTOPBIX CYIIECTBYIOT CXOMLAINECH HEBLIPOXK ICHHbIE KAHOHMIECKUE IIPeobpa30BaHusl,
COCTABJISIIOT OECKOHEYHYIO IIOCIEI0BATEILHOCTD BKJIIOYEHMIT

GmoGYocP s . o6 . =a;,,

IpHUYeM IpejesbHoe MHoroobpasue G, He 10KHO ObiThb mycrsiM (G5, # () u ero
MOZKHO 3aIIFCaTh B BHJIE

Gy, ={P e Gy, [ImQ[ <p" <p<1}.

CxosuMoCcTh  uTeparmoHHoro mpoirecca (14) rapaHTUpyeTcss MeTOIOM YCKOPEHHOM
cxomumMocTH (4], B KoropoM k-st urepariust UMeeT MOPsiZIOK MaJioCTH

(p®, A¢®)) = 0(u*")

re Ag%) — "Bosmymenue", Te. "Maublii 106aBoK" K as0BOil YIVIOBOH TepeMeHHO
k
q\®).
Ecau cTponTh nTepannm KJIacCuIeCKUM METO/IOM, JIJIsT KOTOPOTO TIOPSIIOK MaJIOCTH
k-t ureparuu uMmeer "creneHHYO" OIEHKY

(p™, Aq)) = O(u"),
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TOLJIA JIJIs TAMIJIBTOHOBBIX crcreM (2) pasmeproctu 4, 6,8, ... (n > 2) nurepaloHHbIi
nporecc (14) Oymer pacxoIsMes.

Nwmenno Ha ocHoBe 3Toro (akra [lyarkape c¢iaesnas 3akI0YeHRe, 9TO TTOCIEI0Ba-
TEeJILHOCTD IPOCTHIX "cremnenubix" peobpasoBanmii (p, q) — (P, Q) siBJIsieTcst pacxo/is-
meiicst B obsactu Ga,.  Kpome Toro, dazoBble n-mepuble mHoroodpasus G u
G, = G, \ G sciony miorael B8 Gy, = G UG, U3 9ero ciejyer, 9ro mpobaeMa
exomumoctu "crenennbix" npeobpasosanuii (p, q) — (P, Q) daxruyecku craHOBUTCS
Hepa3pennMOoit.

Bumecre ¢ Tem K. Buress nokasas [15], aro Ha moasom MuOoroobpasuu G "masbie
suamenarenn’ (k,w) yIOBJIETBOPSIIOT HEPABEHCTBY

K(p)
|(k,w(p))| > T[T (15)
OH, . A
riae w(p) = 3—])’ n sieberoBbl Mepbl MHOrOOOpasuit Gy, G, COOTBETCTBEHHO DaBHBI

0<mesGp,=e<1, mesGi=1-¢,

[Jie € — MAJIOE TIOJIOYKUTEIHLHOE YHCIIO.

Nneonorust meronos "yckoperHoi cxomumoctu", paspurbix B KAM-teopun st
"Goprbbl" ¢ MasbIMU 3HAMeHaTessiME Bula (15), okasbiBaercst BecbMa 3(hOEeKTUBHOI
[2,4] u cocrour B TOM, UTO ¢ y4yeroMm ycaoBus (15) MOXKHO IIOCTPOUTH CXOZSIIUECS]
npoueaypbl (14) u, ciemoBaTenbHO, MOXKHO I[IPUBECTH MEPBOHAYAILHYIO CUCTEMY
muddepennuanbHbX ypaBaenuii (2) k cucreme (5). IIpobsiema Masibix 3HaMeHaTe el
MPUCYTCTBYET He TOJIHKO B TAMIJIBTOHOBOM nuHamuke. OHa (DaKTUIECKN MOSTBIISIETCS
BCIOJIy, TJIe WMEIOTCS MHOIO IEePUOJMYECKUe IIPOIECChl (HampuMep, B 3aaade 06
0TOOparkeHUN OKPYKHOCTH Ha cebsi, B 3ajade 00 yCTOWIUBOCTHA OCODOM TOIKHU
tura "nentp" [14-17|, B Teopum JBUIKEHUs IUIAHET U CIYTHUKOB, B KOCMHYECKOI
JIMHAMUKE ).

Ha ocHoBaHUYM M3/I03KEHHOTO MOXKHO C(hOPMYTHPOBATH KAK MUHUMYM JIBe (pyHIa-
MEHTATbHBIE TPOOIEMbI KAYeCTBEHHON W AHAJIUTUYECKOW TEOPUN OOBIKHOBEHHBIX
nuddepeHIaIbHbIX yPaBHEHWI, KOTOPBIE 1 UMEJI YeCTh W yJIOBOJLCTBHE HEOJHO-
KPaTHO OOCYKJATh C BBIJAIOMIMMCS MATEMATUKOM, aKaJeMUKOM KOHCTAHTHHOM
Cepreesuuem Cubupckum. U cerojinst onn BecbMa BayKHBI U JIJIs TEOPUN HEJTMHEHHBIX
KoJebaHuil, W JJIsi KAYeCTBEHHON Teopuu OOBIKHOBEHHBIX TUM(MEPEHITNATBHBIX
yYpaBHEHUI.

®dopmyaupoBKa IepBoOii mpobJieMbl. Brilie Hammcano, 9TO MOCTPOEHNE
HeckoHeUHOI 1enoukn peobpazosanuii (14) Bo3amoxkHO Jiuiib Ha 6aze KAM-reopun
C Y9eTOM TOTIOJIOTHHECKOi CTPYKTYPHI N-MepHBIX MHOroobpasuit G u G, = G, \ G,
[3,4].

IIpobaema cocmoum 6 mom, ITOOBI BBIAEINTH U UCCIEIOBATH AHATUTHIECKNE
CBOMICTBa TAKOrO IOAMHOXKECTBa (DYHKIMA N IepEMEHHBIX U3 MHOXKECTBA
{F(x)} BCCBO3MOXKHBIX 27-IIEPUOJMYECKAX AHAJUTHICCKNX (YHKIUH —BHIA
flz1,29,...,xy) = f(z1 + 27,29 + 27,..., 2, + 27), OIpEJIEJIEHHBIX HA N-MEPHBIX
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topax G, Iy KoToporo ero mepa mes(G, = 0, U COOTBETCTBEHHO OIIPEIEIUThH
BTOPOE TIOJIMHOXKECTBO (DYHKIIHH, /1151 KoToporo Mepa mes Gy, = 1.

[TpuMeHUTEIBHO K TaMUJIBTOHOBBIM CUCTEMaM Bujia (2) 9T0 O3HAUAET, ITO HEOOXO-
MO HAUTH U U3YyYUTh CBOICTBa TAKOrO ITOJIMHOXKECTBA MaMUJIBTOHOBBIX CHCTEM U3
MHOXKeCTBa (2), [ KOTOPOro oreHKu, nocrpoenubie B.U. Apuosbgom [4], copase-
el ipu € = 0, T.e. mes Gy, =0, a mes G = 1.

KoHKpeTHbIe IPUMEPBI TAKIX MAMUIBTOHUAHOB CYIIECTBYIOT (HAIIPUMED, FAMUIIb-
TOHUAHDI, aHAJUTHIECKAs CTPYKTYpPa KOTOPBIX CYTh IBa-IIEPUOANIECKUAE TPUIOHO-
METPUYECKUE MOJIMHOMBI C 33JIAHHBIME [MOCTOSTHHBIMU YacTOTaMu). Perrenue 9Toi
Ipo0JIeMBI MOIVIO ObI CIOCOOCTBOBATL HCCICAOBAHUIO TUHAMUYECKON 3BOJIONUNA Ha
OOJIBIINX, KOCMOIOHUIECKIX MHTEPBAJIaX BPEMeHM, KOHKPETHBIX IIJIAHETHBIX CHCTEM
(kakoBoil, HapuMep, sijsiercst Hamma CoJlHeYHasi cucTeMa), JJisi KOTOPBIX 9aCcTOTHI,
olIpeie/IeHHbIE U3 JJIUTEIbHBIX HAOJIIOMeHNI, MOXKHO CIMTATh 33 aHHBIMU.

@opmynupoBKa BTOpPOIi mpobsemsbl. I3secren npumep B.U. Apnosibma o
HEYCTONYUBOCTHU II0JIOYKEHUsI PABHOBECUS JIJIsi TAMUJIBTOHOBOM CHUCTEMBI C TpeMs
UMITyJTbcaMu U TpeMs ha3oBbiMu yryiamu [16]. DrTor mpumep CcTUMYyJIUpYeT MOUCK
TAKMNX, [O-BUJIUMOMY, JOCTATOYHO YKECTKHUX yCJIOBUIN, KOTOPBIM JIOJ?KHBI yJIOBJIETBO-
PSThb TAMUJIBTOHUAHBI, 3aBUcsIne oT 6-, 8-, 10-Tu u T.J1. KAHOHUYIECKUX IEPEMEHHBIX,
4TOOBI KA4eCTBO yCTOWYMBOCTU IOJIOXKEHUS] PABHOBECUS MMEJIO MECTO HE TOJIBKO B
[IEPBOM TIPUOJINKEHUH.

DTa mpobieMa cTaja BEChbMa aKTYaJbHON B MOCTEAHeEe TECATUICTHE, B CBI3U C
HOBBIMU (DYHIAMEHTAJIBHBIME PE3YJIBTATAMU 0 THHAMUYIECKON IBOJIIONNN PeaIbHOI
(a me rumorermueckoit) COJHEUHO CHCTEMBI, MOJYYCHHBIMH AMEPUKAHCKAME U
poccuiickumu uccienosaressimu [17-20]. CoBpeMeHHbIE CyIEPKOMIBIOTEPHI O3B0~
JIMJIA BBIYUCJIATH BOJIIONUIO JIMHAMUKHU PEAJIbHBIX ILJIAHET HA WHTEPBAJAX BPEMEHU
B MWUIMAP/BL JIET C TapAHTUPOBAHHON (IIPOBEPEHHOI HE3aBUCUMBIMU METOIAMH)
TOYHOCTBIO. BBIBOJBI BBITEKAIOT OfHO3HAUHBbIe: (COJIHEUHAS CHCTEMa UMEET OI'POM-
HBII 3a11aC KOHMUTYPAIIMOHHON TPOYHOCTU B UHTEPBAJIAX BPEMEHH B MUJLJTUAD/IbI JIET
(u "Buepen", u "Hazan'"), ecyu yUUTHIBATE IIPU ITOM TOJBKO BHYTPEHHUE (MHTEPILIA-
HeTapHble ¥ ILUIAHETAPHO-COJIHEYHBbIE) I'DABUTAIMOHHBIE CBsI3U, T.e. TaKUe CBSI3H,
KOTOPBIE TapaHTUPYIOT KOPPEKTHOCTH (hOpMaIn3Ma raMUJIBTOHOBON JIMHAMUKH.

B zaksmoueHne xoqy OTMETUTH, 9TO I MMEJI OIPOMHOE CYaCThe B YKU3HHU ODCYK-
JaTh 9TU U MHOI'HE APYTHe HaydHbIe IIPOOJIEMbI ¢ 3aMedaTe/bHbIM, CKPOMHEHIIIIM
JeJIOBEKOM, BhIIarouMcst yaeHbiM KoucranturaoM Cepreesutuem Cubupckum. Mue
6e3MePHO YKaJIb, YTO CEIOJHsI s JIUIIEH BO3MOXKHOCTH ODIIATHCA C HUM.
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Abstract. A bijective correspondence between the classes of center-affinely equiva-
lent n-homogeneous equations (n > 2) and the classes of isomorphic commutative
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1 Introduction

Let E(]| - ||) be a BANACH space over the field K (here K is R or C). A n-ho-
mogeneous dynamical system comes from a n-homogeneous differential equation

(shortly, nHDE) of the form (S5) % = F(X), where F' : E — FE is a continu-

ous n-monomial vector form. The polar form for F' is a symmetric n-linear vector
form which allows us to define a n-ary algebra on E; this algebra is commutative
and nonassociative (more exactly, it is not necessarily an associative algebra).

The nHDE (S) is said to be center-affinely equivalent (CA-equivalent) with an-
other nHDE (S7) defined on a BANACH space E’ if and only if there exists an
invertible continuous linear mapping h : E — E such that X = h(Y) is a solution
for (S) as long as Y is a solution for (S7). Then, the following result holds: (S) is
CA-equivalent with (S1) if and only if their associated n-ary algebras are continu-
ously isomorphic. According to this result, one gets: there exists a bijection between
the set of all classes of CA-equivalent nHDEs and the set of all classes of isomorphic
commutative n-ary K-algebras. It means that a classification up to an isomorphism
of commutative n-ary K-algebras gives the classification up to a CA-equivalence of
all nHDES.

Actually, the structure of the associated algebra allows us to determine some
features of the analyzed nHDE as well as of its space of solutions. As examples, we
quote the following results:

1. semisimple algebras give a decoupling of the initial equation into equations
occurring in simple algebras,

2. solvable algebras give solutions via a subset of linear differential equations,

3. the n-degree nilpotents N (i.e., with N™ =[N, N, ..., N] = 0) are steady-state
points or equilibria, i.e., they are the constant solutions,

© Ilie Burdujan, 2008
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4. the n-degree idempotents e (i.e., with " = [e,e,...,e] = e) give the ray
solutions,

5. the origin is never asymptotically stable and the existence of an idempotent
implies that the origin is actually an instable steady state.

Recall that the automorphisms of the associated algebra keep invariant all equi-
libria, periodic orbits, and domains of attraction.

Some quantitative results can be obtained, too. Firstly, it must be remarked
that, I’ being an analytic function then the solution of every CAUCHY problem for
(S) is an analytical one. Besides, if the n-ary algebra associated with the nHDE
(S) is power-associative, then there exists a formula giving the solution of every
CAUCHY problem for (5).

Several new results can be obtained in the particular case of the nHDEs de-
fined on finite dimensional spaces. This time, any nHDE becomes really an n-
homogeneous differential system of equations (shortly, nHSDE).

NOTE. We have preferred to work in a BANACH space not only to generalize
some known results but, mainly, because in this frame a good understanding of the
facts is necessary (facts which - in the finite dimensional case - are hidden behind
of some bushy computations).

2 Preliminaries

Polynomial mappings. Throughout this paper the following notations will
be used:

E — a BANACH space,

C,(E) — the space of all continuous n-homogeneous functions from E to E,

L(E™, E) — the BANACH space of all continuous n-multilinear forms from E" to
E (endowed with the norm induced by the one of F),

Ls(E™, FE) C L(E", F) — the BANACH space of all continuous n-multilinear sym-
metric forms from E” to F,

A : E — E™ — the n-diagonal mapping on E (i.e., A(x) = (z,x,...,z), Vx € E).

ntimes

The mapping P : Ly(E™, E) — C,(E) defined by
P(G)=GoA, VGe Ly(E",E)

is the so-called polynomial projection, while P(G) is called the n-homogeneous poly-
nomial associated with G (or a monomial of degreee n, or a n-monomial). Any
(finite) linear combination of monomials on FE is called a polynomial; the degree of
a polynomial is the maximum among the degrees of its monomial components.
Actually, the polynomial projection P is a bijection between Ls(E™, F) and the
space P, (E) of all n-monomials on E. Indeed, for any F' € P, (E), the mapping
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G € Ly(E™, E) defined by

1 n n n
Glar, 3, yn) = F(in)—zF S |+
: =1 =1 i=1
' ’ i#
n n n

+XF [ X w|+ (D) F ()|, Yo,z .2, €E
J<b \iglim
satisfies F' = G o A; G is called the polar form of F.

n-ary Algebras. Let E be a K-vector space (finite dimensional or not).

Definition 1. A n-ary algebra is any K -vector space E& endowed with a n-multilinear
vector mapping |.,...,.] : E™ — E

(X1, T2, ey Ty) — [T1, T2y oy ), V(z1,22,...,2,) € E™.

We denote it by E([.,...,.]).
In this case, the mapping G : E™ — E defined by

G(x1,22, .y Tp) = [21, T2, .oy ), Vx1,29,....2y € FE

is a (1,n)-tensor, i.e., G € E*®" @ E. Actually, the set of all n-ary K-algebras on
E is identifiable with the tensor product E*®" @5 E.

Recall that, for any algebra E([.,...,.]) and any x1,xa, ...,x,—1 € E we can define
the ¢-multiplication M. .. . :E—FE (i€{1,2,..,n}) by

x — M

xlm,...,xwl(x) = [x1, 29, e Tim 1, T, T, vy Tp—1], Vx € E.

Loy g,.wns = My, 4y 2, is called the left multiplication by (1,22, ..., 2n—1), and
Ry gy = My, 4y, , 18 called the right multiplication by (x1, %2, ..., Tp—1).

The algebra E(][.,...,.]) is said to be associative if

[[$17$27-'-7$n]7y27 7yn] = [.Z'l, [‘T27 ~--737n7y2]7y37 7yn] = ... =
= [$1,3§‘2,...,!L‘n_1, [$n7y27 ayn“v \V/ﬂfl,ﬂj‘Q,...,lL‘n,yg,...,yn SN

It results that E([.,...,.]) is associative if and only if the following equations hold

Ly wg,oony © Lyt ooy oy = L[l‘l71‘27---7~’Cn—1,y1]7y27y37---7yn—1 =

z1,[22, T 1,Y1,42],¥3, - Yn—1 — 0t Lxl71'27'”71'71727[5511717?/17y27---7yn71]7
VX1, X2, ey Ty Y1y ooy Y1 € E.

=L

The associativity of a n-ary algebra can be similarly characterized by means of the
right multiplications.
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The n-ary algebra E([.,...,.]) is said to be commutative or symmetric if
(71,22, s Tn] = [To(1), To(2)s -+ Ta(m)], VT1,T2,...,7, € B, Vo € 5y,

(here S;, denotes the symmetric group of n elements).
e € E is said to be an identity element for E(].,...,.]) if

le,e,...e,x] = e, ....,e,x,e] =e,x,e,....e] =[r,e,..,e] =x, Vo€ E.

An identity element for E([.,...,.]), if it exists, is not necessarily unique (in contrast
with the case of binary algebras).
Any n-ary algebra E([.,...,.]) having no identity element can be naturally em-

bedded into a n-ary algebra with identity element, namely £ = E @& K endowed
with n-ary composition

[331 B A, T2 D Aoy vy Ty D )\n] = ([:El,zltg, ,l'n] + Ao Apx1 —1;—1—
+A. A 1Tn, /\1)\2---/\n)7 Vi ® A, 22 B Ag, ..., Tp DAy, € E;

obviously, 0 ® 1 is an identity element for E.
e € E\ 0 is said to be an idempotent element for E([.,...,.]) if e, e, ...,e] = e.
e € E'\ 0 is said to be a nilpotent element for E(].,...,.]) if [e,e,...,e] = 0.
For any fixed € E one considers the left /right powers defined recurrently by:
left powers: =" = [z, x,...,x], a"TFOD) = [grtE=D0=1) & 2].n > 2,
right powers: " = [z, x, ... z], zPTFO-Dl = [z g glHE=DE-D 5> 9
In a commutative algebra, left and right powers of any element are coincident.
E([.,...,.]) is named power-associative or mono-associative if

[xn—l—ml (n—l)y xn—l—mg(n—l), - :L.n—l—mn(n—l)] — xn+(m1+m2+...+mn+n)(n—1)7
Ymy, ma,...,my, € N* Vo € F.
E([.,...,.]) is power-associative if and only if
k _ _ _ _
LZE,ZE, ,l’($) = an+(k72)(n71)71.7”"1.(113) = Lx7xn+(k—2)(n—1)""7Z.($) =..=
—_——

n—1times

= Lx7___7x7xn+(k:—2)(n—1)(f]f), Vee E, k> 2.

In any power-associative n-ary algebra both left and right powers of any element are
coincident.

3 Polynomial equations

Definition 2. a) A n-polynomial differential equation (nPoDE) on E is every
differential equation of the form

dX
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where Py, is a polynomial of degree n and X : U — E, with U an interval of R, is
the unknown vector function.

b) A n-homogeneous differential equation (nHDE) on E is every differential equa-

tion of the form
dX
— =FX 2
- = F(X) 2)

where F' is a n-degree monomial on E.

Every polynomial P, on E can be considered as the restriction on E(= E x 1)
of a n-homogeneous polynomial P defined on E x K by

PT};L(X7 Y)=Y"P,(X/Y)

(here Y has nonzero values, only). Thus, (1) can be always transformed in a n-
homogeneous equation on £ x K namely

dX

— =PMX,Y)

dt — T\l

v ®)
e —

for which the only solutions of interest will be the ones satisfying the condition
Y(tg) = 1. Consequently, the study of any nPoDEs can be reduced to that of
nHDEs, i.e. it is enough to study the nHDEs.

Let us consider the n-homogeneous equation

dY
yi B (Y) (4)

on the BANACH space E'.

Definition 3. It is said that (2) is (center-) affinely equivalent (shortly, CA-
equivalent) with (4) if there exists a continuous invertible linear mapping h : E' — E
such that X = h(Y) is a solution for (2) as long as Y is a solution for (4); h is called
a CA-equivalence. A CA-equivalence of (2) with itself is called an automorphism

for (2).

Theorem 1. The nHDE (2) is CA-equivalent with (4) if and only if there exists a
continuously invertible linear mapping h : E' — E such that

hoFy =Foh. (5)

Proof. Let y, € E' be an arbitrarily chosen (but fixed) element and Y (¢) be the
solution of the CAUCHY problem

CP=RO), Yo = (6
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Since (2) is equivalent to (4) there exists an invertible continuous linear transfor-
mation h : E' — E such that X(t) = h(Y(t)) is the solution of (2) with the initial
condition x, = h(y,). Consequently, the following equations hold:

P — pex() -

dt
dY (1)

”)
= P ) = h (P52 ) = F (v (), vee

ie., (Foh)(ys) = (hoFi)(y,) (here I; C R is the domain of Y (¢)). As y, was
arbitrarily chosen in E it follows that (5) holds. Conversely, if Y (¢) is a solution of
problem (4) and (5) holds, then the equations

Do =1 (F2) = tho PV (0) = (FoRY (@) = FX®), (9

dt

also hold, i.e., X(¢) is a solution of equation (2) with the same domain as Y (t).

As (5) is equivalent to Fy o h™' = h™! o F' (and h™! is continuous), it follows
Corollary 1. If (2) is equivalent to (4), then (4) is also equivalent to (2).

Obviously, E’ can be identified, via h, with E so that it is enough to analyze the
set of all nHDEs given on a fixed Banach space E, only. Thus, any CA-equivalence
is really an equivalence on the set of all nHDEs on a fixed BANACH space (i.e. it is
a reflexive, symmetric and transitive binary relation).

4 The algebra associated with a nHDE

The polar form G : E™ — E for F in (2) is a continuous and symmetric n-linear
vector form on E. The n-ary algebra E([.,...,.]) defined by the n-ary operation

[z1, 22, ...y y] = G(x1, 22, ..., 2y), YX1,Z9,..,2, € E

is a commutative (or, symmetric) n-ary algebra; it is a non-associative algebra, i.e.
it is not necessarily an associative one.

Recall that there exists ||G||1 such that [|G(z1, z2, ..., xn) |1 < [|Gll1llz1l1]|z2])1---|znll1-
Then, the norm || - || on E defined by ||z|| = "+/||G||1 - ||z]]1 has the property

1, 22, o 2al | < Nl - lla ][l

The n-ary algebra E(].,...,.]) endowed with norm || - || is called the B-algebra asso-
ciated with (2).

Theorem 2. The nHDE (2) is CA-equivalent with (4) if and only if the n-ary
algebras associated with them as before are continuously isomorphic.

Proof. If (2) and (4) are equivalent equations then there exists, according to The-
orem 1, an invertible continuous linear mapping h : E/ — E which satisfies (5). By
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passing to the polar forms for F' and F7, it follows that A is an algebra isomorphism
between E'({,-,...,-}) and E([-,,...,-]). Conversely, if h: E'({,....,-}) — E([-,...,"])
is a continuous algebra isomorphism, then (5) holds, i.e. h is an equivalence of the
nHDEs (2) and (4).

Remark 1. Theorem 2 ensures that there exists a bijection between the classes of
affinely equivalent nHDEs on E and the classes of isomorphic commutative n-ary
algebras on E. Consequently, there exists a correspondence between certain quali-
tative properties of a nHDE (2) and the invariant properties under an isomorphism
of its associated m-ary commutative algebra.

5 Solving nHDEs

Let us suppose that the n-ary algebra E([, ..., ]) associated with (2) has no iden-
tity element. Then, E([,...,-]) can be embedded into the n-ary algebra E([,...,"])
whose operation has the n-monomial form

Flz® ) = (F(z)+n\"t2)®\", Yzd e E,

which suggests us to consider the following nHDE on E

DL — =1 4 F(X),

Then, with every CAUCHY problem

PP, X(to) = a0 (10)

we associate the following CAUCHY problem

ax o n—1
TE =X 4 F(X), { X(to) = o, (11)
Ccll_;\ -\ Alto) = 0,

for (9). Consequently, there exists the 1-1 correspondence
X(t) < X(t) ® {0}

between the sets of solutions for (2) and the set of solutions of (9) with A = 0,
respectively. That is why, in what follows, we shall study only nHDEqs for which
the associated (B-)algebra has at least an identity element.

In order to imply the n-ary algebra in the study of nHDE (2), it is suitable to
use the equality F'(x) = 2", and then (2) becomes

dx
— = X" 12
o (12)
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CAUCHY-KOWALEWSKAIA Theorem assures us that there exists a unique analytic
solution for CAUCHY problem (10).
Let X (t) be the saturated solution for (10). Then we get

dX(t
X(to) = X, d(t 0) = Jjg

Further, we get recurrently:

d'X(t .

‘ PO < (-4 Lt el iz,
where ((i—1)(n—1)+1) i.t..,! =1-(1(n—1)+1)-(2(n—1)+1)-...-((i—1)(n—1)+1).
Consequently, the series

|t —to [[dX (to) || , [t —tol* || d*X (t0) |t — tol* || d* X (to)

lzoll + = e Ry ol R ||t

is upper bounded by the numerical series for

[[oll .
"V 1= (n—=1)aoll - [t —to]

Thus, the TAYLOR series for X (), around %, is absolutely and uniformly convergent
for (n — 1)||zo|| - |t — to] < 1.

In the next section we shall use these computations to find a formula for solving
(10) in case when the associated algebra satisfies a ”"weak” associativity axiom (e.g.,
the monoassociativity). Obviously, these computations allow also to prove again the
analyticity of the solution of (10).

6 The case of nHDEs with power-associative algebras

Let us consider the CAUCHY problem (10). Suppose the corresponding n-ary
B-algebra is a power-associative algebra. Then, its solution X (t) satisfies the con-
ditions

dX (t n
d(t 0) =1x5 = Lx07...7x0(‘r0)’
k
R = (k=)= 1)+1) Lt Lh o, k1

(here Ly, ..z, is instead of Ly, ..., ). Consequently, one gets
———

n—1 times

t—t nl Mt —tg)?
X(t) = (I + TOon,...,xo + %Lgo,m,ro + o+
k—1)(n—1)+ 1)1t —t)"
L (k= 1)( 2!> ( (»L%wm+m>@@:

1

(I = (n = 1)(t = to) Lay,....o) " (20)
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n—1times

a direct checking one gets that the analytic mapping

Y(8) = (I = (n = 1)(t = t0) Lug,...00) " "7 (o),

defined for all ¢ such that (n — 1)7!(t — to)~! does not belong to the spectrum of
Ly,,... «0, satisfies the equation

dY(t) _
Ty ()= GO (1), Y (1), - Y ()
Theorem 3. If the B-algebra E([.,...,.]) associated with (2) is power-associative,
then the saturated solution for (10) is
_ 1
X(t) = (I = (n = 1)(t = to) Ly,...z) " (20)- (13)

Remark 2. The computations performed for proving that Y (¢) is the solution of
(10) can be similarly performed in the case when z( has associative powers, only.
Consequently, (13) is the solution for (10) as long as z( has associative powers.

7 Properties of n-ary commutative algebras reflected in those
of nHDE

The correspondence between the classes of CA-equivalent nHDESs and the classes
of continuously isomorphic n-ary algebras induces the existence of a correspondence
between the qualitative properties of nHDEs and those of n-ary algebras.

We shall present below some results on this line.

1) zp € E is a critical point (or, a steady state point) for (2) if and only if
zy = 0, i.e. if and only if it is a nilpotent for E(].,.,.]). If ¢ is a critical point for
(2), then Axzq is also a critical point for (2), for every A € K. 0 € E is always a
critical point for (2); it is an isolated critical point if and only if E([.,.,.]) has no
nilpotent element.

2) If e € F is an idempotent element for E([.,.,.]), then it has associative powers
and )
X(t)=(1—-(n—-1)(t—to)) " T-e (14)
is the unique solution of the CAUCHY problem (10) with zy = e. The idempotent
elements identify unbounded solutions of (2).
Let us consider the Cauchy problem (10) with zy = P, where P" = aP, a € R.
Then P has associative powers and

X(t) =a(l — (n—1)(t —to))” ™1 -P (15)
is the solution of (2)+(X (tg) = P).

Following step by step the proof of Proposition 3.4 [2] and using (15) one gets
the result:
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Proposition 1. If E([.,...,.]) has an idempotent, then the origin 0 € E is an unstable
critical point for (2). Consequently, if the origin is stable for (2) then E([.,...,.]) has
no idempotent and, in particular, no identity element.

As an immediate consequence of the fact that Ny # 0 is a nilpotent element
(N = 0) implies N = ANy is also a nilpotent (for every A € K), we can readily
prove the following proposition.

Proposition 2. If E([.,...,.]) has a (nonzero) nilpotent, then the origin 0 € E is not
asymptotically stable steady state point for (2).

Following the idea of proving Theorem 1 [1] it can be proved

Proposition 3. If E([.,...,.]) is a real commutative finite dimensional n-ary algebra,
with n an even number, it has a (nonzero) idempotent or a (nonzero) nilpotent.

Proof. Suppose £ = R™. Let us consider the mapping F' : R™ — R™ defined
by F(x) = ™. If E([.,...,.]) has an idempotent e, then it is a fixed point for F
which still keeps invariant the axe {Ae |\ € R}. Moreover, if F(x¢) = cxo and c is

_1
n 7\1/6

even number, then e = —

positive, then e = -z is an idempotent (in case when c is negative and n is

1 . . . .
——— - xp is also an idempotent), i.e. F' has necessaril
Y 0 P ) Yy
a fixed point. Supposing that F' has no fixed points and n is an even number, it
results

(1=XN)F(x) # Az, Yx #0, VA €R.

If in addition E([.,...,.]) has no nilpotent, then F'(x) # 0 for all  # 0, and it induces

a function g : S 1 — §™~1 defined by g(z) = Flz) for all z € S™ 1. Let us

()]

define also the uniparametric family of functions G(-, ) : S™~1 — §m~1 by
(1—=h)F(z) + A(—=x)

_ m—1
G(x’)\)_H(l—h)F(m)—i—)\(—x)H’OS)\SL Ve e S

G is an homotopic mapping on S~ ! of g with the antipodal mapping a : ™! —
S™m=1 (defined by a(z) = —z). Consequently, these mappings must have the same
degree, what is not possible because the degree of g is an even number, while the
degree of a is 1.

Corollary 2. The origin 0 € E is not asymptotically stable for (2) if n is an even
number.

Theorem 4. Let (2), given on a finite dimensional real vector space E, be such
that its associated algebra E([.,...,.]) has a symmetric positive definite bilinear form
H:FEx FE—R. If H satisfies

H(X,X")=0, VX €E,

(or H(X,X™) <0) then the origin 0 € E is a stable point.



N-HOMOGENEOUS DYNAMICAL SYSTEMS AND N-ARY ALGEBRAS 149

Proof. The function V' : £ — R defined by V' (z) = H(z, ) is a LIAPUNOV function.
Indeed, V is a positive definite quadratic form and its derivative V(X (t)) vanishes
identically along any trajectory X (¢) of (2).

Consequently, the existence of H implies the nonexistence of an idempotent.

Similar arguments as for Theorem 3.10 [2] allow us to prove the following result.

Theorem 5. Let (2) be a nHDE and E([-, ...,-]) be its associated n-ary algebra.

(1) The trajectory through P € E does not pass through aP for any a <0. If P
lies on a periodic trajectory, the trajectory through P does not pass through aP for
any a #£ 1.

(2) If v C E is a periodic orbit with the least period T, then ay = {aP|P € ~}
is a periodic trajectory with the least period 7/|a| for a # 0. Thus, scalar multiples
of periodic orbits are periodic, and solutions of any period exist, provided that one
periodic orbit exists.

(3) The periodic trajectories lie on cones.

Theorem 6. Let (2) be a nHDE and E([-,...,"]) be its associated n-ary algebra.
Then no periodic orbit is an attractor.

Proof. If v(t), v(ty) = P is a periodic solution and U is an open neighborhood of
it, then there exists a € R such that aP € Y. Then a~(t) is also a periodic solution
contained in Y. Consequently, lim |lay — || # 0 and + is not an attractor.

n—oo

3) Let Ey be a closed ideal of E([-...,-]) and E; — a closed vector subspace which
is its complement in E, i.e. E = Ey@® F;. We denote by p; : E — E; (i = 0,1)
the two projectors associated with the direct sum decomposition of E, X; = p;(X),
i =0,1, then (2) becomes

dX nl/n
Do reo+ S (1) 6o X X X+ (0 F)CX)
IX = i times n—1i times
X1 _ (pro F)(X1).
In the particular case when Ej is also a closed ideal for E(].,.,.]), then
dX
@ = (%)
dX
o =P
Further, if F4 is only a subalgebra of E([, ..., ]), then
dX nl/n
d—to = F(XO) + z < i > G(X07 oy X0, X1, "'aXl)
=1 1 times n—i times
dXy

5 — (pro F)(Xy).
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4) If only a finite number of the powers of z( are linearly independent, then
the subalgebra K (x() spanned by all these powers will be a finite-dimensional one.
Let (xg,x1,...,xs) be the basis of K (z() consisting of the first smallest independent
powers of xg. In this case, the solution of (2) gets the form

X(t) = folt)zo + fr(B)z1 + . + fu(t)ag

where the mappings f;(t), 7 =0, 1, ..., s, satisfy an n-homogeneous differential system
of the form

df; u L .
d_tl = Z Cijljz---jnfjlsz"'fjn7 17]17]27 7]n - 07 17 "'78

J1:925,dn=0

with the initial conditions fo(to) = 1, fi(to) = 0, ..., fs(to) = 0; here, Cjj,j,..j, are
the structure constants of the subalgebra K (xg) in basis (xg, x1, ..., xs) defined by

S
[:Ejuwjm ceey :Ejn] = chjljzjn:EZ? i)jlvj% a]n = 07 17 -y 8-
i=0
This situation is usually met in the case of n-homogeneous differential systems
on finite-dimensional spaces. It warns us of the necessity to pay a special attention
to the algebras with a single generator.

8 nHDEs on real finite dimensional spaces

If E=RP, B=(eg,ea,...,e,) C RP is its natural basis and X = X'e;, then (2)
becomes ,
dx" % 71 v J2 Jn Lo .
el Cl g i XXX 0,1, 52, s Jn = 1, s p (16)
where the EINSTEIN’S convention on summation is used.
The associated n-ary algebra E([-,...,-]) has Cj ; ., as its structure constants
in basis B. It is suitable to denote the left multiplication Lz, ..., zy by G4, for any
——
n—1times
xo € F (e, Gy = Ly, ---,!EO)' Gy, is an endomorphism of E having, in basis B,
——
n—1times
the matrix ' o '
(Gl = [Cjjs...ju1jT0 7020 ]
The solution of the CAUCHY problem (10) is an analytical function; more exactly,
there exists an analytical function f such that its solution has the form:

X(t) = f((t = to) - Guo)(o)-

For example, recall that in the case when E([,...,"]) is a power-associative algebra

we have )

FO) = (1= (- 1A~ 7
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and the solution of the CAUCHY problem for (10) is

[(X(®)]5 = f((t = 10)[GaolB)[z0]5- (17)

For every analytical function h we can obtain h(Gy,) using the JORDAN (e.g.,

upper) form for G,,. Indeed, there exists a basis By in E such that the matrix of
Gy, is
[G;EO]J = diag (Jl, JQ, ceey JS, Rl, Rg, ceey Rq),

where J; are superior Jordan cells corresponding to the real eigenvalues of G, while
R; are the superior Jordan blocs corresponding to the complex eigenvalues of Gy,
(see, [3]). If S denotes the transformation matrix from B to By one gets

h([GSL‘o]B) =5 h([GSL‘o]J) : 5—17

where h([G,]s) = diag (h(J1),h(J2), ..., h(Js), h(R1), h(R2), ..., h(Ry)).

9 Example

Let us consider, in R* with the natural basis (e, e, e3,e4), the cubic homoge-
neous differential system

1
92 (@) — 301 (a2

2
d;t :3(951)23:2—(3:2)3
dz® 1\2,.3 2\2,.3 1,24
W:B[(:ﬂ)x — (2?)%2% — 2212?24
da* 1\2,.4 212, .4 12,3
ﬂ:3[(x)x — (2?)%a* 4 221 a%2?] .

The left multiplication Ly x has the matrix

(x1)? — (22)? —2z'a? 0 0
Lo — 22122 (21)? — (22)? 0 0
XX = 2(xla? — 2224  —2(2lat + 2223) (21)? — (2?)? —2z1 42
4

2(xlzt + 2223)  2(zta® — 2%2t) 2xty? (x1)? — (22)?

The ternary algebra associated with this system is associative. If xo = ae; + beg +
ces + dey, then Ly, 5, has the eigenvalues \j, Ap = a? — b% £ 2iab = (a £ ib)? with
multiplicity 2. Thus, the solution X (t) with X (t9) = zo is

X(t) = (fla+if) A1 + fla—ifB) Az + f'(a +iB) Az + f'(a — i) Ag) (o),

where \y = a+if, f(A) = (1—2(t — to))\)_% and A, Ag, A3, Ay can be defined by
the identities
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Ay + Ay = Iy,

ZZﬁ(Ag — A4) = A2 —20A + (042 + ﬁ2)14,

Zﬂ(Al —As) + (Ag + Ay) = A—aly,

iB(3a® — %) (A1 — Ag) +3(a® — %) (A3 + Ay) + 6iaf(Az — Ay) =
= A% — a(a? - 38%)14,

where A denotes the matrix of the left multiplication Ly z,.
The solution of the CAUCHY problem with X (ty) = x¢ is

(1 p

z' = Re — ;
\V/cos 200 — isin 200 — 2p2(t — tg)
2?2 =9m — £ ,
Vcos 2a — isin 200 — 2p2(t — to)
% = Re rp ,
\V/cos 200 — isin 200 — 2p%(t — tg)
o =3m — :
\Vcos 200 — isin 200 — 2p%(t — tg)

c+id
a+ib’

where a + ib = p(cos a + i sin a), k =
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1 Introduction

We are concerned with the system of affine differential equations
t=Azx+b (xeR™), (1)

where A is a nonsingular matrix.
Suppose that at the moments ¢ = n € N* instantaneous control actions occur,
which change the state of system as follows:

Az|,_ :=z(n+0)—xz(n—0)=Cyxz(n—0)+d;, (neN), (2)

in
where the matrices C;, and vectors d;, belong to given sets (finite or infinite).

Between any two consecutive kicks the motion of the system obeys (1). At the
moment ¢ = n the elements C;, and d;,, which determine the jump by (2), are
chosen, say randomly. For convenience, we will consider that all solutions of system
(1)—(2) are right continuous at the moments ¢ € N.

Let F be the set of all affine maps {F;, : x — C; = + d;, }nen+. For simplicity,
we assume that the set F is finite and contains only r distinct elements, say F =
{F\,F,...,F,}. Denote F,, = E4+F, (1 < n <), where E is the identity operator.

Assume that the spectra of the operators (E + Cp)e? (1 < n < r) are located
strictly inside of the unit circle. Sometimes, if necessary, it is required that all
operators F + C,, (1 <n < r) are invertible.

It is known (see, e.g., [1]) that if the sequence {F;, },en+ is periodic, then the
behavior of the system is quite simple: there exists a globally attracting periodic
cycle, corresponding to a periodic motion. This situation may, however, be changed
essentially in the general case.

© Valeriu Gutu, 2008
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In what follows we show that there exists a global attractor in the extended
phase space and for "typical” sequence {F;, },en+ this invariant set has a non-integer
Hausdorff dimension (see, e.g., [2]) and represents a fractal. Moreover, the motions
on the attractor are chaotic by Li-Yorke (in the meaning that every trajectory on
the attractor is dense) and, as a consequence, every solution of the impulsive system
(1)—(2) tends to a chaotic one.

This paper represents an application of general results from [3,4].

2 Invariant sets

If one denotes by x(n) the state of the system immediately after the n-th kick,
then by a straightforward calculation we end up with a sequence of affine maps
@, :x(n)— z(n+1), n € N*. More precisely,

O cx— (BE+Cy et +(E+Ci ) (e —E)A™ b+ d;, .

in

We call the sequence {®;, },en the Poincaré system associated with the impulsive
system (1)—(2). Under the above assumptions, this Poincaré system is generated by
r affine maps {®1, Py, ..., D, }.

Let Pcp(R™) be the set of all nonempty compact subsets of R™, endowed with
the Hausdorfl-Pompeiu metrics (see, e.g.,[2]). Denote by ® the Nadler-Hutchinson

T

operator [6] on the space P.,(R™), defined by ®(M) := |J ®,[M], M € P, (R™).

n=1
Let 9(-, 7, x¢) stand for the solution of the system (1)—(2) with the initial con-
dition z(7) = zp. Since the system (1)—(2) is affine, there is a unique such solution,
defined on R (see, e.g., [1]).

Lemma 1. For every x € R™ and t1,t2,t3 € R one has

Y(tr, t2, Y(ta, ts3,7)) = Y(t1, t3, ). (3)
Proof. This follows immediately from the uniqueness of the solution of respective
Cauchy problem. O

Lemma 2. Every solution of the system (1)-(2) can be written as follows:

U(t, 7 x) = el ,Zf[] 7], or
¢(t7’x)—e(t [tDAF e([t] 7) , af [tl=[r]+1, or

W(t, T, z) = A H D, E[T]HE(MH_TMx, if [t] > [7]+1, or
j=[7]+2

(t, 1, x) = et [TDAF . =D Ag it =[r] -1, or

]
[t]+2
¢(t,’7’,l‘) _ e(t—[t}—l)AFai[—tllJrl H (I) 1 [T —T)A;L,’ Zf [t] < [T] o 1’
J=[r]

where [-] denotes the integral part.
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Proof. The proof is straightforward. O

Remark 1. In fact, the impulsive system (1)—(2) is nonautonomous and we can
consider only its integral curves. Even in the case of periodic sequence {F;, }ncn+ we
cannot factorize the system to obtain a (autonomous) system on the direct product
S1 x R™. However, since the impulse actions occur at the moments ¢ € N, we can
obtain a foliation on the cylinder S x R™ by factorization on time. This foliation
consists of pieces of integral curves of the system (1)—(2).

Project the system (1)-(2) to the cylinder S' x R™, using the projection 7 :
(t,y) = (t (mod 1),y).

We will say that a set V C S x R™ is positive invariant (invariant) with respect
to the system (1)-(2), if for every point (7,2) € V and every natural k one has

(t (mod 1),¢(t,7+k,x)) €V for t>7+k (for teR). (4)

In other words, V' consists of pieces of integral curves.

By definition, such a set V C S' x R™ covers the whole base S by projection.
Denote by (t,V;) := {(t,z) € S' x R™ | (t,z) € V'} the fiber over the point t € [0, 1).
For convenience, we will identify this fiber with V;. Moreover, in the sequel the
notation V; for ¢ € R will mean V; (04 1)-

Theorem 3. The set V C S! x R™ is positive invariant (invariant) with respect to
the system (1)-(2) if and only if it satisfies the following conditions:

1. et=DAY_ VY, for 0<7<t<1 (e(t_T)AVT =V, for 7,t€l0,1));

r - r ~
2. J Foe=DAV c Vo (U Fre"DAV. =Vy) for 0<7 < 1.
n=1 n=1
Proof. Necessity. Assume that the set V' C S'xR™ is positive invariant (invariant).
If x € V;, then (7,2) € V, and by Lemma 2 one has for 0 <7 <t <1

M Ar —(t, 7, 2) € V. (5)
At the same time, for every natural n there is a natural k, such that
Fne(l_T)A$ = (7] + kn+ 1,7+ kp,x) € V[t]—l—kn—l—l = W.

In the case of invariance the relation (5) holds for 7,¢ € [0,1). Moreover, for
every z € V; there is y = (7, t, z) € V; which verifies et=mAy = 2.

Analogously, for every 0 < 7 < 1, z € Vy and 1 < n < r there is a natural k,
such that Fkn = F, and there is y = V(T 4+ ky — 1, ky,2) € Voyp, —1 = V;, verifying
Fpe =14y = tp(kp, 7 + kn — 1,y) = 2 € V.

Sufficiency. Assume that conditions 1)-2) hold. Let (r,z) € V. To proof (5)
take firstly t > 7+ k, k € N*.

If [t] = [r]+ k or [t] = [7] + k + 1, then (4) is a consequence of the conditions
1)-2) and Lemma 2.
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If t]| = q,[7] + kK =p, ¢ > p+ 1, then by Lemmas 1 and 2 the conditions 1)-2)
imply for every x € V.

q
(t, T+ k,x) = el=DA H <I>Z-j1:}p+1e(p+1_7_k)Ax eV,
Jj=p+2

Y(t, T+ k,x) =t q,v(q,p+ L,pp+ 1,7+ k,x))) € V.

In the case of invariance we consider in addition ¢ < [7] + k. In this case there
is y € V) such that x € V; = V4, may be represented as © = (7 + k, [7] + k,y).
In turn, there is z € Vjy = Vp such that y = ¢([7] + k,[t],2). By Lemma I,
V(t, T+ k,x) =t 7] + k,y) = (¢, [t], z) € Vi. This completes the proof. O

Corollary 4. If V C S' x R™ is positive invariant (invariant), then Vg is positive

invariant (invariant) with respect to the Nadler-Hutchinson operator ®, i.e. ®(Vp) =
T

U1 o[Vl c Vo (@(V0) = Vo)

n=

3 IFS and attractors

Since the eigenvalues of all matrices (E + Cy,)e? (1 < n <) are located strictly
inside the unit circle, all operators ®,, (1 < n < r) are contracting.

We associate to the system (1)-(2) a hyperbolic Iterated Function System (IFS)
{R™; &1, Dy, ..., P, } (see, e.g., [2]), consisting of affine contractions. This IFS de-
termines in R™ a global compact attractor K, which is the unique fixed point of the
corresponding contractive Nadler-Hutchinson operator .

Given the natural k& we say that the sequence {F;, }nen+ is k-universal if it
contains every word of the length k from the alphabet of F = {F}, F,...,F.}. We
say that the sequence {F;_ }nen+ is universal if it is k-universal for every natural k.

By Lemma Borel-Cantelli [5], if the sequence {F; }en+ is chosen randomly with
a uniform distribution, then with probability 1 it is universal.

If the sequence {F;, },en is universal, then the orbit of each point in K is dense
on K (is chaotic by Li-Yorke).

Recall some notions (see, e.g., [2]). A set is called totally disconnected if for
every its point the connected component, containing this point, is the point itself.
A set S is called perfect if it is closed and every point p € S is the limit of points
gn € S\ {p}. A set is called a Cantor set if it is totally disconnected, perfect and
compact.

Theorem 5. If the spectra of the operators (E + Cp)e (1 < n < 1) are located
strictly inside the disk of radius %, then the attractor K is totally disconnected.

Proof. It is known [7] that if an IFS consists of r contractions, each of them with

the contraction coefficient s, and rs < 1, then the attractor K of this IFS is totally

disconnected. It is sufficient to say that in our case s = max [(E+Cp)ed| < % 0
<n<r
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Remark 2. The hypotheses of Theorem 5 are far from being also necessary condi-
tions for the attractor K to be totally disconnected.

Denote the distance from the point x € R™ to the compact M C R™ by
ofz, M) = min{d(z,y) |y € M}.

A bounded subset V' C St x R™ is called an attractor of the system (1)-(2) if it
is positive invariant and for every solution (-, 7, z) one has o(¢(t,7,x),V;) — 0 as
t — +-o0.

Theorem 6. There exists an attractor of the system (1)-(2)
{te x+( )A_lb)|t6[0,1),:17€K}C51><Rm
with the Hausdorff dimension DH(K™), verifying the inequalities:

Inr
l1<DHK"Y<1-——
<DH(KY)<1-, (6)
where s is the smallest radius of a disc centered at the origin of coordinates, which

contains the spectra of the operators (E + Cy)e? (1 <n <r).

Proof. By Theorem 3, the set K* is positive invariant. Since K is compact, every
fiber K; = K + (eA — E)A™'b (0 < t < 1) is compact as well. The compact
K attracts every compact M in the fiber 0 x R™ under the actions of the Nadler-
Hutchinson operator ®. As a result every fiber K; = e*AK + (e* — E)A~'b, where
v =t (mod 1), attracts the image e(*")Adne(d+1=DAN a5 n — 400 uniformly on
teR.

It is known (see, e.g.,[2]) that the Hausdorff dimension of K verifies the inequality

DH(K) < —{LC. This implies that DH(K*) = 1+ DH(K) <1 — for. O
Theorem 7. Let the spectra of the operators (E + Cp)e? (1 < n < 1) be lo-

cated strictly inside the disk of radius % and let the sequence {F; }nen be uni-

versal. Then the attractor K* is homeomorphic to the direct product of a half-
open interval and a Cantor set, its Hausdorff dimension verifying the inequalities:
1< DH(K*)<2

Proof. It is easily seen from Theorem 6 that the attractor K* is homeomorphic to
the direct product [0,1) x K. Under the given hypothesis, the compact K is perfect
and by Theorem 5 is totally disconnected, and, as a consequence, it is a Cantor set.
In this case the inequalities (6) become: 1 < DH(K™) < 2. O

Lemma 8. There exist L > 0,7 > 0 such that for any y € R™ there exists v € K,
satisfying
[4(t,0,y) = ¥(t,0,2)|| < Le™ly — x| (¢ > 0).

Proof. This follows immediately from Lemma 2 and Theorem 6. O

Theorem 9. If the sequence {F;, }nen is universal, then every integral curve of the
system (1)-(2), starting in K*, is chaotic by Li-Yorke, i.e. is dense in K*.
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Proof. If the sequence {F;, },en is universal, then for every solution (-, 7, ) with
(1,x) € K*, the sequence {¢(j, 7, %)} ;j>[)+1 is the orbit of the point ([7]+1,7,2) €
K under the IFS {R™; ®q,...,®,}. Since this orbit is dense on K, the integral curve
of the solution ¢ (-, 7,z) is dense on K*. O

Corollary 10. If the sequence {F;, }nen is universal, then every integral curve of
the system (1)-(2) is chaotic by Li-Yorke or tends to a chaotic one.

Proof. This follows from Lemma 8 and Theorem 9. O

Remark 3. If the impulses occur only in some integer moments, i.e.
Aaz‘t:m:: x(tp, +0) — (1, — 0) =C;, (1, — 0) +d;,, (7, € N), (7)

then the system (1),(7) may be considered as a particular case of the system (1)-(2)
by supplementing the set F with the null operator F' = 0 for other integer moments.

Remark 4. Analogously, if the spectra of all operators (E + Cy)e? (1 < n < 7)

are located strictly outside the unit circle, we can say about the repeller of the
system (1)—(2).

Remark 5. Many classical fractals may be represented as attractors of affine IFS
on R?. Fig. 1 shows some of them as attractors K of impulsive differential equations
on C, for example:

o the Sierpinski triangle in 2 = —z - In2, Az|;—, = iexp 2757” (n € N);

o the pentagasket in 5 = —z - In(3-E;¥2 \/_) Az|j—p = iexp 27%7” (n € N);

o the hexagasket in z = —z - In3, Az|;—, = exp 775” (n € N).

b

Figure 1. Fractals: the Sierpinski triangle, pentagasket and hexagasket as attractors K of
impulsive affine systems



ATTRACTORS IN AFFINE DIFFERENTIAL SYSTEMS WITH IMPULSIVE CONTROI159

4 Linear oscillator

Let us consider, as an example, the linear oscillator with impulsive actions
i4+ct+kxr=0 (c>0k>0), (8)
Ai|,_ =dn+0)—i(n—0)=¢&, (n>1). (9)
Assume that the range of the sequence {&;, },,>1 contains only r distinct elements.
We can reduce the equations (8)—(9) to an affine system of impulsive differential

equations (1)—(2) in the phase space 1 = x,z2 = 4. In this case we obtain some
analogues of the previous theorems.

Theorem 11. /8] There exists an attractor K* C S x R%r,r') of the system (8)-(9)
with the Hausdorff dimension

. 2v21Inr
V2 — /2 — 4k + |2 — ak|

DH(K*) =1

Theorem 12. /8] If
k
2lnr <ec< — +1Inr
Inr
and the sequence {&;, }nen is universal, then the attractor K* is homeomorphic to
the direct product of a half-open interval and a Cantor set, its Hausdorff dimension
verifying the inequalities: 1 < DH(K*) < 2.
Fig. 2 represents the respective attractors K C sz  for distinct values of pa-

5

rameters for two impulsive differential equations (8)—(9): on the left for ¢ = 5/2,
k=2 and r = 3 (K is totally disconnected), on the right for ¢ = 1, k = 5/4 and
r =3 (K is connected).

LY
- PO
- - T

.~ w15 L N e

A -~

1

¢
R B

N
L. LY
i 2 2 -
. w05 ~a " owa L

Figure 2. Attractor K for: ¢=5/2, k=2, r =3 (left) and ¢ =1, k =5/4, r = 3 (right)

Remark 6. If the range of sequence {¢;, }n>1 is infinite but bounded, then the
system (8)—(9) admits an attractor as well.

Fig. 3 represents the attractor K (of an infinite IFS) for an impulsive differential
equation (8)—(9) with ¢ = 2, k = 2, where the values {§;, }n>1 are randomly chosen
from [0, 1].

All calculations and graphic objects have been done using the Computer Algebra
System Mathematica.
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Figure 3. Attractor K for c =2, k=2, £ € [0,1]
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1 Introduction

An investigation of the properties of spatial systems of differential equations
having three degrees of freedom represented by the dynamical variables x, y and z

dx dy dz

7 = Ply,2), = =Qy,2), —=R(y72) (1)
is an important task of modern mathematics.

The Lorenz

dx dy dz

—_— = — _— = — — _— = — 2

C—oly—a), P=re-y-us C=ay-be, 2)
and the Rossler

dx dy dz

are the most famous examples of the systems of equations having regular and chaotic
behavior of trajectories at some values of parameters.

To study the properties of the systems (1) we propose geometrical approach
founded on consideration of the surfaces of the form z = z(z,y), v = z(y,2) or
y = y(z, z) in R3-space which are connected naturally with such type of systems.

In result we get from the system (1) a set of nonlinear of the first order partial
differential equation for every pair of variables.

As example, in the case z = z(x,y) we can write the equation

0z(x,y) 0z(z,y)

TP(:E,y,z(x,y)) + TQ(ZE,ZJ,Z(QZ}ZJ)) - R(ZE,y,Z(ﬂZ‘,y)) =0. (4)

© Valery Dryuma, 2008
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Its solutions the surfaces in the R3-space are locally presented.

A studies of surfaces defined by spatial systems of equations like (1) can be useful

for understanding of their properties.

2 The examples of surfaces corresponding to the Lorenz system

For the system (2) we consider the variable z as a function of variables z and y

ie. z = z(z,y).
As result we get the partial first order differential equation

oy — :E)% + (re —y— :Ez(x,y))% —xy+bz(z,y) =0

determines the surface z = z(z,y, 0,b,7) depending on parameters.
To the integration of this equation we present it in the equivalent form

o (gmx(oa)) + (= Dz = o+ 1)y - st (52(en) -
—yz — 2%+ bz(z,y) =0
which is connected with the previous form by the change of variable
y=Y +uz.

In fact after such a substitution the Lorenz system looks as

dx dy dz 9
7 =Y E—Tx—Y—a:—aY—a:z, E—x +2Y — bz

(7)

and the corresponding equation for the function z = z(x,Y’) takes the form (6),

where we conserve old name of variable Y = y.

2.1 Simplest solutions

1. The substitution
z(z,y) = A(x)

into the equation (6) leads to the conditions

d (c+1)

y@) (o) + Ty - oy s <o

2. The substitution of more general form

2(z,y) = A(2)(1 4+ B(z)y + C(z)y?)
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gives rise to the expression

z(x,y) = A(x) <1 + <2% - 2x_1> y(A(z)) ™t = 0'73/2> , r=20—1,

22 A(x)
b =60 — 2,
where ) )
4 — 4o° —
A() = —1/4 x> +4o 80.
o
In an explicit form we have
2 2 2
oy (c—1)y T (o0 —1)
=— 2 1/4 — — ———. 8
2(z,y) ot +1/ > 5 (8)

Returning to the system (6) we get from the system (7) the Abel equation

iy(x) Yy 2t 4+ (-120% —4+120) 2% + (4o +80?) y(z)z — 402 (y(z))*

dx z(—y(z) + )0

=0

(9)
for the function y = y(z).

3. The next example is the solution of equation (6) in the form

a4+ 4a% —4ra? —4y2
x2+4—4r ’

z(z,y) =1/4
where
c=1, b=4, r 1is arbitrary.

Remark 1. To integrate the partial nonlinear first order differential equation

F(!E,y,Z(ﬂZ‘,y),Zm,Zy) :0 (10)

a following method can be applied.
We use the change of variables

2(x,y) = u(z,t), y—o(x,t), zp— uy— Eut, vy — a (11)
UVt (%7
In result instead of the equation (10) one gets the relation between the new
variables u(z,t) and v(z,t) and their partial derivatives

D (u, v, Uy, ut, Vg, vp) = 0. (12)

In some cases to solve the last equation is more simple problem than to solve the
equation (10).

To illustrate this method let us consider an example.

The equation

9 ) - (a%z(x,y))Q 0 (1)
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is transformed into the following form

D oy - Bue) Zo ) (Gu)’
axu(:n,t) : z
ot

EU(:Ev )

Using the substitution
0
u(z,t) = taw(x,t) —w(z,t), v(x,t)=—w(z,t)
we find the equation for w(x,t)

0

Sow (@) + t2 = 0.
Its integration leads to

w(z,t) = —t2z + Fi(t)

where Fj(t) is an arbitrary function.
Now with the help of w(z,t) we find the functions u(z,t) and v(z,t)

d d
u(z,t) = —t2x + t—Fi (t) — Fi(t), wv(x,t) =2tz + aFl(t)

or

d
u(z,t) =ty + 2z — Fi(t), y=—2tx+ ).

After the choice of arbitrary function Fj(t) and the elimination of the parameter
t from these relations we get the function z(x,y), satisfying the equation (13).

We apply this method for the study of the surfaces connected with the Lorenz
model (7) in the case y = y(z, 2).

The corresponding partial differential equation is

0 0
<a—xy(x, z)> oy(x,z) + <£y(x, z)> (zy(z,2) + % — bz) + (14)
+oy(z,z) —re+y(z,z) +z+22=0.

In new variables it looks as

( 9 (z,1) — (%M%ﬂ) %”(517775)) o u(z,t) + (%u(x,t)) (:Eu(x,t) + 22— bv(x,t)) N

U
o 2(x, 1) Grv(x,t)

i
+ou(x,t) —rx + u(z,t) + x + zv(x,t) = 0.
(15)
After the substitution

0 0
u(z,t) = taw(x,t) —w(z,t), v(x,t)= Ew(az,t)
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we get the equation for the function w(z,t)
0 0 0 50 0
- <£w(:p,t)> Jtaw(x,t)%—(%w(x,t)) ow(x, tHat aw(:n,t}tww(x,t)—tbaw(x,tﬂ—

9, 0 s,
2 - i — - —_— _— =
+tx® + atatw(x, t) —ow(x,t) —re+ tatw(x, t) —w(z,t) +x+ xatw(x, t) =0.

The simplest solution of this equation has the form
w(z,t) = A(t)x,

where

Alt)=1+Vt12+1C;, b=1,0=1,r=C}
With the help of this solution we find the functions u(x,t) and v(x,t)

t
u(z,t) = — j;\/Fl —z, o(z,t)= \/\t/F—xl
+ +

Elimination the parameter ¢ from these relations we find the corresponding so-
lution of the equation (14)

y(z,z) = =/ =22 + 2%r —

with
b=1, o=1, and r is arbitrary.

For the surfaces in the form
z = z(y,2)

we get the equation

<a%w(y, z)) (—oy+rz(y,2) —y —2(y,2) — 2(y,2)2) +

+ <%w(y, Z)) (2, 2))” = bz + 2y, 2)y) — oy =0,

The simplest solution of this equation is
x(y,2) =V2rz—22—y, b=1, r=0, o 1is arbitrary.

Another type of solution is

2
x(y,z):—l/2%—l/2y, b=1, o=1, r=1.

More general solutions in the case z = z(y, z) can be obtained with the help of
transformation like (11).
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On the first step with the help of relations

—x(y,z2) = 57—, —x(y,2) = —uly,t) — ,
5,5 %) 20y t) By (y,2) a9 (y,t) 70y,

z(y,z) = u(y,t), z=o(y,t)
we get the equation

8 (Fu(y.t) Zv(y,t)
(a_yu(yvt) - 9 (y’:)

EU

) (—oy+ru(y,t) —y—uly,t) —uly,t)v(y,t)) +

(Zu(. 1) ((uly. 1)’ = boly.t) + uly.t)y)
EU(Zﬁt)

and then with the help of substitutions

uly,0) = tselyst) — oy 0), oy,t) = Sl )

we find the equation for the function w(y,t)

<a%w(y7t)> oy— (a%w(y,t)> Tt%w(y,t)Jr (%M%ﬂ) rw(y,t)+ (%M%ﬂ) y+

+ (ppeetnt)) tgotont) = gttt + (wlr0)) (%wy,t))Z -
~(etn0)) (gt st + <%w<y,t>)2 ~22 (Gul.0) wlo. 01+

0 0
+t (w(yv t))z - tb&‘“”(@/) t) + ytzaw(yv t) - tyw(yv t) —0Yy= 0.

The separation of variables in this equation leads to the solution

2+4C +2V1+2C +212C))
Cq ’

w(y,t)=1/4y(
where
r=01+20)"", b=1, o=1

Using this solution we get the functions u(y,t) and v(y,t) and then after the
elimination of the parameter ¢ from the relations

z=u(y,t), z=uv(y1)

obtain the family of solutions z(y, z) of equation (16)

—AyC — 2y +2+/2y2C +y2 —2C 22 — 4 22C?
2y, 2) = 1/4—7 Y \/yc Y :
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r=01+20)"", b=1 o=1

The next example.
With the help of substitution

x,t) —w(z,t), ulzrt)= éw(:n,t)

0
v(z,t) =t iy

T

into the relation
o(y—x) EZ(x )+ (re —y —zz(z,y)) 2Z(ﬂ: ) —yx +bz(z,y) =0
Yy o Y Yy Y By Y Yy Y) =

we get the equation

d 0 0
<—a %w(aj, t) +tx + 1> w(z,t) + <—a:a + ataw(a:, t)) %w(x, t)+

(bt — 2 — at? —t) 2w(:n,t) +rz =0.
ot
It has the solution ) )
14+t

by the conditions
c=1/2, b=1, r=0.

From here we get the equation of the corresponding surface

4.2
r -y
z(z,y) =1/2 pOR

3 Spatial homogeneous quadratic first order systems of equations

The system of equations

dr 9 9

d_ = Qa + ax + ay + aj1x + apxy + a2y,
; a7)
= b+ b+ oy + bua® + biawy + baoy?

where a;,a;; and b;, b;; are parameters after the extension on the projective plane
takes the form of Pfaff equation

(w@—ﬁy) dz — dr 2Q + Pdy 2 =0 (18)

where the functions P, Q are homogeneous polinomials.
In the explicit form we get the expression

(zb-0 2% + b_1 2%z + 2b_2yz + b_ {11} 2® + b_{12} 2%y + 2b_{22} y* — ya_0 2°) dz—
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— (ya-1zz — a2 y2z —ya {11} 2% — a_ {12} 2y® — a_{22} y®) dz+
+ (z2 a-2y+za {11} 2* + 2%a_0 + 2%a_1 = + za_{12} zy + za_{22} y*) dy+
+ (=2%b-0 — 2%b_1 © — 2b {12} zy — 2b_{22} y* — 2*b_2y — 2b_{11} 2?) dz = 0.
The spatial first order system of equations

d_x
ds

d dz
= Ple.y,2), 52 =Qa.y.2), =+ = R(e.y,2), (19)

connected with a given Pfaff equation has the following form

dy dz
-5 = :(:_P27 — =P, - T
ds R y =@

dx
% - Qz - Ryy ds

and in our case looks as
d
d—x(s) =4a.02>+“4al2y+ Bal—0.2)x)z+4a {22} >+
s

+(3a_{12} — 2b_{22}) zy + (2a_{11} — b_{12}) 22,

%y(s) =402+ (302 — at)y+Abit @) s+ 20422 012Dt o
4+ (=2a_{11} +3b_{12}) zy + 4b_{11} 22,
disz(s) = (=b.2 —a_1) 2>+ ((—-2b{22} —a{12})y — b {12}z — 2a_{11} z) 2.
For such a system of equations the condition
orP 0Q OR
% + 8—y + E =0

is fulfilled.
The system of equations (20) is equivalent to the first order equation connected
with the system (17) in coordinates x(s) and 7(s)

or
d§  ap + ari€ + asn + an&® + aizén + azn’

dn Do + 1€+ ban + 011 €2 + brakn + bagn?
The equation of the surfaces defined by the system (20) has the form

(5et0.0)) Plaa) + (5 2(00) ) Qv 2) — Rlo) =

Let us consider some examples.
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For the system of equations

%x(t) +4z(t)y(t) —3z(t)lx(t) —4 (y(t)* —3ma(t)y(t) +20 (z(t)*+ (x(t))*n =0,

d

Y1) = 4z(@)a(t) + 2(t)ly(t) — 4 ((t)* =3z (t)y(t)n — 202 (t)y(t) +m (y(¢)* =0,

%z(t) +1(2()* + 2(O)my(t) + z(t)z(t)n — 20 z(t)z(t) = 0,

which is connected with the projective extension of the planar system that cab be
found in the theory of limit cycles

%az(t) —lz+y+1022 —may —y? =0,

d
%y(t) —z—2® —nxy =0,

the equation of surface z = z(x,y) takes the form

0
(4z(z,y)z — 2(z, y)ly + 422+ 3ayn + 20 zy — myz) 8—yz(m, y)+

0
+ (—4yz(z,y) + 3 2(z,y)lz + 4y* + 3may — 202% — 2°n) %z(x, y)+

+2(z, y)my + z(x, y)zn — 20 2(z, y)z + 1 (2(z,y))* = 0.

A simplest solution of this equation can be obtained with the help of wu,wv-
transformation with the conditions

z,t) —w(z,t), wv(x,t)= Qw(m,t). (21)

u(z,t) =t 0 5

T

As result we get the equation

2
((—3 zlt—4w(x,t)—3xm) %w(m,t)—k(élt—él) (%w(az,t)) ) ((%w(a;,t)—l—

+ (3 2lw(z, t)+(n+20) 2?) ({%w(az, tH

+ (—tlw(z, t) + 4xt? — mw(x,t) + 4tzn) %w(:n, t)—

—anw(z,t) — dtzw(z, t) + 1 (w(z, 1) + 20 zw(z, t) +4tz? = 0.

A simplest solution of this equation can be presented in the form
w(z,t) = A(t) + kat

with parameter k.
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After the substitution of this expression we find possible values of parameters

85
/9, m 35 " 5/4, 0

and the expression for the function A(t)
A(t) = t16_C1 (=1 +1¢) 16 .

After the elimination of variable ¢ from the relations (21) we get the expression
for the function z(x,y)

5

r+9y —92(x,y) 10
AATTA56 9y — 9 (23 -
(r+9y —9z(z,y)) < 23z + 207y + 48 z(x, y)

5 4 2(x,y) i
—3234611728125 _C1 25516 (2(x, 1)) BeT 0Ty Bawy)) - 0.

In general case the equation of the surfaces looks as
Zy (4 a0z2+(4 asy + (3a1—b2) x) z+4 as y2—|—(3 a12—2bo2) zy+(2 a1 —b12) l‘2)+
+zy (40 2%+ ((3be—a1) y+4b1 ) 2+(2bsa—a12) Y*+ (-2 a1 +3bi2) zy+4b1y 2%)+

+ (by + a1) (2)® + ((2b22 + a12) y + (2a11 + br2) ) 2 = 0.

After the u, v-transformation (21) with the function w(z,t) = A(t)x we find from
here the equation on the function A(t)

2
(aot?A(t) + agtA(t) — bot® — boot + axn A(t) — t3b) (%A (t)) +

- (—(2a0t +ag) (A(t)? + (a1 — 120y + a1t — biot + by tA+ 2t2b0)A(t)>

—a1 (A(1)? +a A(t)+ag (A#)® +thy A(t) — thyy — thy (A (1))%.

A genus of this equation depends on the values of the parameters and can be
g=1lorg=0.

In the first case to integration of the equation on A(t) may be used parametriza-
tion by elliptic functions an by rational functions in the second case.

Another way of investigation of the properties of this equation follows from its
geometrical interpretation as equation of asymptotical lines on the some surface.
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4 Monge equations in the theory of the first order nonlinear p.d.e.’s
The Monge equations
O(x,y, z,dr,dy,dz) =0 (22)

are equations homogeneous with respect to the differentials dx, dy, dz.
They are naturally connected with equations of the form

F(%Z% Z7 ZZ‘?’Zy) = F(‘TJyJZ?pJ q) = 0 (23)

and can be used for the study of their properties.
To construct the equation (22) for the equation (23) it is necessary to eliminate
the variables p and ¢ from the system of equations

dr dy dz
F(x,y,2,p,q) =0, P-0 pPtqQ
where
p=F@yzpa o _ OF@y.zp.q)
dq dq
Let us consider some example.
For the equation
F(z,y,2,p,q) =p* +qy* — 1 (24)
the system
de  dy dz
P Q pP+qQ’
leads to

dey? —2dyp =0, 2dyp*+ dyqy® — dzy* =0. (25)

After the elimination of the variables p and ¢ from the equations (24-25) we find
the corresponding Monge equation

- (%us))z )+ (5o9) ()R vto) — 4 (%y(s))z =0 (20)

Its general solution has the form
2

2
o(s) = —S%B(S) + 1/232%3(3) +1/2 %B(s) + B(s),

2 -1 2
y(s) = —2 (%B(S)) , x(s) = —%B(s) + S%B(S)

where B(s) is an arbitrary function and it can be obtained with the help of complete
integral of equation (24)
(42— 1)

z(x,y) = Az + ”

+ B,

where A and B are parameters.
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5 From Monge equations to the Riemann geometry
Riemann space with the metric
ds?* = g;jdz'dax’ (27)
has geodesic satisfying the system of equations

A2zt - dxd da®

- Z. - =
ds? Ik ds ds ’
where F;'- i are the Christoffel symbols of the metrics (27).
These equations have the first integral of the form

da? dak
99 s
or .
da? dx* B
& ds ds
by the condition p = 0.
In the three-dimensional case such integral has the form of the Monge equation

dr\ 2 dx dy dy 2 dx dz
g1 (z,y, 2) <%> + 2g12(, v, Z)EE + g22(2, 9, 2) <£> + 2913(33,%2)%%+
dy dz dz\?
+2923(.Z',y, Z)%E +933($,y,2) <£> = 0.
(28)

and can be considered as quadratic first integral of null-geodesic of some three-
dimensional space endowed with the metric

d82 = gll(:Ev Y, Z)d$2 + 2912 (337 Y, z)dwdy + g22 (:Ev Y, z)dyz + 2913(337 Y, z)dxdz—l—

+2923(337 Y, Z)dydz + 933(:177 Y, Z)dZ2.

From this point of view the methods of Riemann geometry can be used for the
investigation of the properties of Monge equations and the corresponding first order
nonlinear p.d.e.

In particular, scalar invariants and the theory of surfaces of such type of spaces
can be used with this aim.

We consider two-dimensional surfaces of the translation y” = [z(u,v), y(u,v),
z(u,v)] in a three-dimensional Riemann space which corresponds to the Monge equa-
tion of the form (26) as it was described above.

The equations for determination of translation surfaces have the form

Y e WO
Audv P ou v
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Let us consider some examples.
For the equation (24) the Monge equation is (26).
The metric of corresponding Riemann space is

ds? = —ytde? — 4 dy? + 442 dy dz. (30)

The geodesic equations of this space are of the form

<(j—;x(s)> y(s)+4 <d%y(s)> %w(é‘) =0,

(vts)) ulo) +2 (%M)Q ~ 0,

d2 3 4 d 2 d 2
(5525) 6O+ 0! (o) +4 () =o.
Taking in consideration the equation (26) we get the solutions of geodesic equa-
tions

_CY
V/3_Cls+3.C2°

x(s) =_C3 + y(s) = V/3_C1s+3_C2,

and
44 .04

z(s) =—1/4
(®) / V3.Cls+3.C2
The equations (29) for the surfaces of translation of the space with metric (30)
looks as

+_C6.

(82;;9”(“7”)) y(u,v) +2 <8%ﬂc(u,v)> %y(u,v) +2 <a%y(u,v)> %;L«(u,v) — 0,

(%z(u,@) (y(u,v))? + (y(u,v))* <%x(u,v)> %ZE(U,UH

+4 <%y(u,v)> %y(u,v) =0.

They can be integrated without problems.
The simplest solution is

r(u,v) =u—ov, y(u,v)=Vu-+o,

_ 9 / 1
2(u,v0) = F2(u) + F1(v) + oo (u+ )3 — T

In particular case _F2(u) = u, _-F1(v) = 0 with the help of relations
u=1/2x+1/2y% v=-1/22+1/2¢*

we get the surface with equation

9 _
2(z,y) = 2—8y7+1/2y3+1/2x—y 1
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6 On the surfaces connected with the Rossler system

Let us consider examples of surfaces corresponding to the Rdssler system of
equations (3)
One of them has the form

<(%x(y, z)> (z(y,2) + ay) + ((%x(y, 2)> b+ (x(y,2) —c)2) +y+2z (31

In the case a =0, b =0, ¢ =0 we find the solution

x(y,2) = \/—y2 -2z +_F1(£).

where _F'1(Z;) is an arbitrary function.
To construct the Monge equation corresponding the equation (31) we present its
in a new notations as

(ovt:0)) () +aw) + (o(w,0)) 6+ (o) = o) 4wt 0 =

After the change of variables

0 _ %w(:n,v) 0 0 (Zw(z,v)) ZA(z,v)
%y(uav) - ma %y(uav) - %W(.’L','U) - %)\(.’L’ 'l)) )

y(u,v) =w(z,v), u=Ax,v)

with conditions

Az, v) = :E%p(x,v) — plx,v)w(z,v) = %p(:ﬂ,v)

one gets the equation equivalent to (31)

<1 +az + 2 + U%p(m, v)> (%p(a:, v) 4+ (—cv +b) %p(az, v) — xzp(z,v)+
+vz — ap(z,v) = 0.
For this p.d.e. the Monge equation is defined by the condition
dz*y? + ((2y2® + 2yax + 2y) dy + (2by — 2cy?) dz) dz+
+ (227 + 2az + 2t + 1+ 2a2® + a2?) dy® + (cy — b)? da®
+ (2aazcy —2b— 2aa:b+4a;y2 + 2x2cy —22% — dxzy —4dazy + 2cy) dx dy =0

and it may be considered as the first integral of geodesic of the corresponding three-
dimensional Riemann space.

Another aproach to the study of the Rossler system gives us the investigation of
the integral manifolds of corresponding Pfaff equation

—(y+ 2)dz + (x4 ay)dy + (b+ (z — ¢)zdz = 0.
It is reduced to the form
—(y + 2)dx + (x + ay)dy + (b+ (x — ¢)zdz = dU + VAW

and so determines one-dimensional integral manifolds.
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Regular maps and quasilinear total differential
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Abstract. The bounded and S-concordant solutions of the quasilinear total dif-
ferential equations with a real parameter by the nonlinearity and with a regular
homogeneous part are investigated.
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1 Introduction

In the paper the quasilinear total differential equations [3] of the form
y'h = a(t)hy + (b(t) + Ag(t,y))h  (h € E) (1)

with a real parameter A by the nonlinearity and with a regular homogeneous part
are investigated. Here: a € C(P,L(E,L(T,T))), b € C(P,L(E,T)), g € C(P x
T,L(E,T)), y € C(P,T)is an unknown map; E is a normed real space; T is a Banach
space (real or complex); P C E is an open set; the prime ’ means the operation of
taking a bounded derivative (derivative Frechet). By C(X,Y) we designate the
space of all continuous maps of the space X in the space Y endowed with the
uniform structure of compact convergence (compact open topology); by L(X,Y")
we designate the space of all linear continuous maps of the normed space X in the
normed space Y with the natural operator norm.

For such equations some sufficient conditions of the existence of bounded, com-
pact, Lagrange stable, concordant and uniformly concordant solutions are estab-
lished. Earlier similar problems for ordinary differential equations (E = P = R)
and multidimensional differential equations, for ¥ = P = R"™ and T = R™, were
considered in [1,4,8]. The Lagrange stability, concordance and uniform concordance
are considertd relative to some semigroup S C P, in contrast to [1,4, 8], where
S = E. The peculiarity of our researches is that dynamical systems (transformation
groups or semigroups) are not used.

We propose also some general approach to the research of quasilinear equa-
tions, based on the concept of a regular, generally speaking, many-valued map. We
consider regular maps in the first section of this paper. In the second section we
indicate some applications of results obtained in the first section to the quasilinear
equations (1).

© Anatolie I. Gherco, 2008
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2 Regular maps

The concept of a regular map naturally arises when abstracting from the concrete
type of the regular equation. Under a regular ordinary differential equation we
understand such an ordinary differential equation y’ = a(t)y that for an arbitrary
bounded function f : R — R" there exists a unique bounded solution ¢ : R — R"
of the equation y' = a(t)y + f(t). It is known [7] (Theorem 51. A) that for the
regular equation y' = a(z)y there is a constant r > 0 such that sup,cp [|¢(t)] <
rsupep || f(t)|l, where ¢ is a bounded solution of the equation y' = a(t)y + f(¢) with
the bounded function f. Close connection between a regular and an exponential
dichotomy is known, too [2,7].

By the research of quasilinear equations y' = a(t)y + b(t) + f(t,y) sometimes
one of crucial is the following property of linear equations: if ; is a solution of
the equation y' = a(t)y + b;(t) (i = 1,2), then ¢1 — 9 is a solution of the equation
y' = a(t)y+ (b1 —b2)(t). Besides with homogeneous equations of the form y' = a(t)y,
generally speaking, a many-valued map naturally associates that to each function b
puts in correspondence the set of solutions of the equation vy’ = a(t)y + b(t). The
last two facts in combination with definition of a regular homogeneous equation will
be taken as a basis in the definition of a regular map.

Definition 1. Let X, Y be normed real spaces, 2¥ be a family of all subsets of Y,
r>0. Amap q: X — 2 is called weakly r-regular if:

1) Ve € X q(z) # 0;
2) Vo,y € X q(z) —q(y) C q(z —y);
3) Ve e X Yy eq(z) |yl <r-[z.

A weakly r-reqular map is called r-reqular if it is a one-valued map.

Let’s give some examples of regular maps.

Example 1. Let X = Y be the space of bounded maps from C(R, R™) with
the norm sup and the map a € C(R, L(R™, R™)) be such that the differential
equation y’ = a(t)y is regular. Then there is a positive number r such that the map
q: X — 2Y defined by the rule

p €q(f) <= ¢'(t) = at)p(t) + f(t) (t€R)
is r-regular.

Example 2. Let E and T be Banach spaces, a € L(F,L(T,T)) be a permutable
operator (i.e. ahak = akah for Vh,k € E) such that (Sp a)e does not intersect with
the imaginary axis of the complex plane for some vector e € E of the unit norm; X
be the space of all continuously differentiable bounded maps f : E — L(E,T) with
the norm sup which satisfy the condition A{ahf(t)k — f'(t)kh} = 0 for Vh,k,t € E;
Y be the space of all continuous bounded maps £ — T with the norm sup. And let
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r = 2¢/a, where ¢ > 0 and a > 0 are constants for which [|G¢(t)|| < ¢ - exp(—alt])
(t € R); Ge be the main Green function of the operator ae [3]. Then, as it follows
from the theorem 12.2 of [3], the map ¢ : X — 2¥defined by the rule

p € q(f) = ¢(t)h = al®)he(t) + f(O)h (¢, h € E)

is r-regular (by the symbol A everywhere in the paper we designate the operation of
taking the skew-symmetric part of bilinear operator: A{Chk} = 1/2(Chk — Ckh)
(C € Lyo(E, F))).

Example 3. Let 1 <p, g < oo, 1/p+1/qg=1; D C R™ be a bounded closed set,

My = (mesD)%; X =Y =L,(D); K:Dx D — R be a measurable function such
that for some number M > 0 and for almost all t € D,

(/D K (t,5)|? ds)% < M

the number A is such that |A\| < 1/(MMy); r = 1/(1 — |[\|M Mj). Then the map
q: X — 2Y defined by the rule

o€ alf) = lt) = F(t) + A /D K(t,s)p(s)ds (t € D)

is r-regular.

Theorem 1. Let Y be a complete space; q : X — 2Y be a weakly r-reqular map;
b€ X and the map B : Y — X satisfies the Lipschitz condition with the constant L.
Then for VYA, |A| < 1/(rL), in'Y there is an element x for which xx € q(b+AB(z)));
in addition ||zx|| <7 - ||b+ AB(zy)||. The element xy is determined uniquely if q is
an r-reqular map. In the last case xx may be found as the limit of the sequence

Y1, Y2, Yns (2)
forYy; € Y and for any n > 1 y, = q(b+ AB(yn-1))-

Proof. Let A be such that |\ < 1/(rL). Let’s designate by Hy : Y — Y the
choice function for the composition fy o ¢ where f) : Y — X is defined by the rule:
fa(x) = b+ AB(z). We shall prove that H) is a contraction map. Let xj,z9 € Y.
Then

H,\(azl) — HA(xQ) S q(b + )\B(xl)) — q(b + )\B(I’Q)) C q()\(B(xl) — B(xg))),
ie. Hy(z1) — Hx(z2) € q(AB(x1) — B(x2)). Then
[Hx(z1) = Hx(z2)|| < r[[A(B(21) — B(@2))|| < r[A|L||z1 — 22|,
ie. |[Hx(z1) — Hx(z2)|| < 7|A|L||z1 — x2||. Since r|A|L < 1, then the map H) is
contracting. By virtue of the completeness of the space Y, according to the Banach
contracting principle, there exists a unique x) such that Hy(z)) = x). Therefore
zx € q(b+ AB(z))). It is clear that x) does not depend on the choice function H),

hence, it is determined uniquely as the limit of the sequence (2) if ¢ is a r-regular
map.
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Theorem 2. Let Y be a complete space; q : X — 2 be a weakly r-reqular map;
be X; xz € qb);d>0; Vf be a closed §-neighbourhood of x and the map B :
Y — X satisfies the Lipschitz condition on V with the constant L. Then for
Y, A\ < Xo = 8/(rLé +7ly), where Iy = ||B(2)|, in VO there is an element xy for
which z) € q(b+ AB(xy)); in addition ||x)|| < r-||b+ AB(x))||. The element x) is
determined uniquely if q is an r-reqular map. In the last case xx may be found as
the limit of the sequence (2) which begins at an arbitrary point y; € V2.

Proof. Let A €] — Xg, Xo[, 2z € V2 and y € q(b+ AB(z)). Since = € ¢(b), then
y—x € ¢(AB(z)). Hence

ly — 2ll < rINIBE)I < rIN(IB() - B@)l + |B@)Il) <
< PIA(Lllz = 2l + 1) < PIAI(LS 4+ 1) < 4,

i.e. |ly—x| <, therefore y € V9. We have proved that for Vz € V., q(b+AB(2)) C
V:f . Therefore the composition fy o g, where f) : Vf — X is defined by the rule:
fr(x) =b+AB(z), is a map V — 22 . Let’s designate by Hy : V2 — V2 the choice
function for the composition fy o ¢. We shall also prove that H) is a contraction
map. Let x1,29 € Vm‘s. Then

Hy(21) — Hx(x2) € q(b+ AB(x1)) — q(b + AB(x2)) C q(A(B(z1) — B(x2))),
ie. Hy(xz1) — Hx(x2) € q(A(B(x1) — B(x2))). Then
[Hx(z1) = Hx(z2)[| < rl[A(B(z1) = B(z2))|| < r[A|Lllz1 — 22,

ie. |[Ha(z1) — Hx(z2)|| < r|A|L|jz1 — x2||. Since r|A|L < 1, then the map H)
is contracting. According to the Banach contracting principle there is a unique
Ty € Vf such that Hy(x)) = x. It is clear that x) is the required element.

Definition 2. Let X C ZP and F : Y x P — W be a map. The map f : PxW — Z
is called F-admissible if forVx € Y, the map f*, where f*(t) = f(t, F(x,t)) (t € P),
belongs to X.

From Theorems 1 and 2 for X € Z¥ and B(y) = f¥ (y € Y) as a corollary we
obtain the following two theorems.

Theorem 3. Let X C Z¥, q : X — 2Y be a weakly r-reqular map, b € X,
f:PxXW — Z be a F-admissible map, L € R and the following conditions be
satisfied:

1) Y is a complete space;
2) Vy,z €Y |[fY = fF < L-ly— 2]

Then for VA, || < 1/(rL), inY there is an element x) such that z) € q(b+Af™>);
in addition ||zx|| < 7 - [|[b 4+ Af*>|. The element xy is determined uniquely if q is
a r-reqular map. In the last case x) may be found as the limit of the sequence
Y1, Y2, s Yn, -+, where y1 is an arbitrary element from Y and for any n > 1,

Yn = q(b+ Af¥n—1)).
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Theorem 4. Let X C Z¥, ¢ : X — 2Y be a weakly r-regular map, b € X,
f:PxW — Z be an F-admissible map, L € R, § > 0 and the following conditions
are satisfied:

1) Y is a complete space;
2) V2 is a closed §-neighbourhood of x € q(b);
3) Vy.z € VP IfY = Al < L-ly — =]

Then for VA, |N| < 6/(r(Lé + 11)), where Iy = || f*||, in VO there is an element
x) for which x) € q(b+ \f*); in addition ||z)]| < r - ||b+ Nf**||. The element xy
is determined uniquely if q is an r-reqular map. In the last case xx may be found
as the limit of the sequence y1,y2, -+ ,Yn, -, where y1 is an arbitrary element from
V3 and for any n > 1, y, = q(b+ Af¥-1)).

Theorem 5. Let Z, W be normed spaces, X C Z¥, q : X — 2Y be a weakly
r-reqular map, f : P x W — Z be an F-admissible map, b € X, x € q(b), Vlfz(m P)
be a closed §-neighbourhood of F(x,P); AS ={y |y €Y and F(y, P) C Vg(x P)}. If
the following conditions are valid:

1) AS is a complete subset of the space Y ;

2) Vg € X |lgll < supep lg@®)]l;

3) f satisfies the Lipschitz condition in the second argument with the constant Lq
on the set VI‘;(LP) and F satisfies the Lipschitz condition in the first argument
with the constant Lo;

4) SUP(t,s)ePx P Hf(t,F(a:,s))H <l €R,

then for YA, |A| < Ao = 6/(rLa(L16 +11)), in the set A there is an element x
for which x) € q(b+ Af*™); in addition ||xx|| < r - ||b 4+ Af*>||. The element xy is
determined uniquely if q is an r-regular map. In the last case x) may be found as
the limit of the sequence yi,Y2, " ,Yn, -, where Y1 is an arbitrary element from
A% and for any n > 1, y, = q(b+ Af¥n-1)).

Proof. Let z € A3, |\| < Ao and y € ¢(b+ Af?). Then y — x € q(\f?). Therefore
lly — z|| < 7|A||f?]|. Since z € A2, for arbitrary ¢t € P there exists p; € P such that
|F'(z,t) — F(x,pt)|| <. Then for Vs € P

|F(y,s) — F(x,s)|| < Lally — || < r[A|Lg|| f7]| < rLa|Al Sup I f(t, F(z1))| <
€
< rLa| Al full_g(Hf(t,F(Z,t)) — [t F(z,p))ll + 1 £t F(x,p))|l) <
S
< rLa|A|(Ls sup [ F'(2,t) — F(x,py)|| + 1) < rLa|A[(L10+11) <6,
te

ie. |F(y,s) — F(x,s)| <6. Hence y € A2. We have proved that g(b+ Af?) C AS
for Vz € A2. Therefore the composition fy o g, where fy : A> — X is defined by
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the rule: fi(z) = b+ Af?, is a map A5 — 242, Let’s designate by Hy : AS — A}
choice function of this map. We shall also prove that H) is a map of contraction.
Let x1,29 € A‘;. Then

Hy(z1) — Hx(x2) € q(b+ Af™) = q(b+ Af*?) C q(A(f** = f72)),
ie. Hy(z1) — Hx(z2) € g(A(f* — f*2)). Therefore
[Hx (1) = Hx(@2)[| < r[A(F™ = 7)) <
< (Al sup 1f(t, F(z1,t)) = f(E, F(x2,1))] <
< AL Sup [1F(z1,t) = F(xg, t]| < r|A|LiLyfz1 — 22,
ie. |[Hx(z1) — Ha(z2)|| < rLiLo|A|||x1 — x2]]. Since rLjLa|A| < 1 then the map

H, is contracting. By virtue of the completeness of the set A% there exists unique
Ty € A‘; for which Hy(z)) = x. It is clear that x) is the required element.

3 Quasilinear equations

Lemma 1. Let the space E be quasicomplete; P be a connected convex set if the
space E is finite-dimensional and P = E if the space E is infinite-dimensional; K be
a compact set from T; X € R; I be a directional set and for Vi € I, p; is a solution
of the total differential equation

y'h = ai(X)hy + (bi(z) + Agi(x,y))h (h € E), 3)

and @;(P) C K and lim;(a;,b;, g;) = (a,b,g) in C(P,L(E, L(T,T))) x C(P,L(E,T))
xC(P xT,L(E,T)). Then:

1) the set {y;|i € I} is compact;

2) the limit ¢ of an arbitrary subnet of the net {¢;} is a solution of the total
differential equation

y'h=a(X)hy + (b(z) + Ag(z,y)h (h € E) (4)

and o(P) C K.

Proof. We shall define for Vi € I the maps f; : PxT — L(E,T) and f: PxT —
L(E,T) by the rules: for ¥(z,y) € P x T, Vh € E, fi(x,y)h = a;(x)hy + (b;j(x) +
Agi(z,y))h and f(x,y)h = a(z)hy + (b(x) + A\g(z,y))h. It is clear that for Vi € I,
the equation (3) is equivalent to the equation

y' = fi(z,y) (5)

and the equation (4) is equivalent to the equation

y = flz,y). (6)
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Let’s prove that lim; f; = f in C(P x T, L(E,T)). Let € be an arbitrary positive
number, @) X M be an arbitrary compact set from P x T, m* = sup,,e |||
e1 = e/(m* 4+ |A| + 1). Since lim;(a;,b;,9;) = (a,b,g) then there exists ig € I such
that for arbitrary ¢ > ig, (t,n) € @ x M and h € E, ||h|| < 1, the following relations
are fulfilled

[(ai(t) — a(t))nll <ex, [[(b:i(t) — b(t))h]| < e1 and [|(gi(t,m) — g(t, m))h]| < e1.
From these relations for i > ig, (t,m) € Q@ x M and h € E, ||h]| < 1, we shall receive

[(fi(t,m) — f(t.m))h|| =

= lla;(t)hm + (bi(t) + Agi(t, m))h — a(t)hm — (b(t) + Ag(t,m))h| <

< |(ai(t) = a(t))hm|| + [|(bi(t) — b(¢)A]| + |Al][(gi(t, m) — g(t,m))h|| <
<em* +e1 +|Aer =,

ie. |[(fi(t,m)— f(t,m))h|| < e. The proof also means that lim; f; = f. At this
point, since the equations (3) is equivalent to the equation (5) and the equation (4)
is equivalent to the equation (6), then our lemma follows from Lemma 2 [5].

Further by S we designate a subsemigroup of the group F, 0 € S C P and
S+ P C P. To each map f from the spaces of maps under consideration and to every
s € S with the help of the shift o in the argument from P we put in correspondence
some map fs which is defined as follows. If f : P — Y then fs(p) = f(s+p) (p € P).
If f: PxT —Y then fs(p,t) = f(s+p,t) (p € P, t€T). By fS we designate the
set {fs|se€ S}

Definition 3. The solution ¢ of the equation (1) is called to compact if the set o(P)
18 compact.

If X is the set of maps on which the operation of a semigroup S is defined with
the help of the shift o, then the map f € X is called Lagrange S-stable if the set S
18 compact.

The following proposition contains some sufficient conditions of Lagrange
S-stable solutions of the equation (1).

Proposition 1. Let the map f be defined by the rule: f(x,y)h = a(x)hy + (b(z) +
Ag(z,y))h ((x,y) € PxT,h € E). A compact solution ¢ of the equation (1) is
Lagrange S-stable if one of the conditions is valid:

1) the map ¢ is uniformly continuous.

2) the set f(P,(P)) is bounded.

3) f is Lagrange S-stable, the space E is quasicomplete, P is a connected convex
set if the space E is finite-dimensional and P = E if the space E is infinite-
dimensional.
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Lemma 2. Let K C T be a compact set, g: P x T — L(E,T). If for Vk € K the
set g(P, k) is compact and the map g satisfies the Lipschitz condition in the second

argument on K, then the set g(P,K) is compact. The set G(P,K) for VG € gS is
compact, too.

Proof. Let L be the Lipschitz constant of g. For the proof of the compactness of
the set g(P, K) it is sufficient to prove that from every sequence {g(t;, k;)}, where
(tiyk;) € P x K, it is possible to single out a subsequence of Cauchy. Let € > 0 be
an arbitrary number, {(¢;,k;)} C P x K. By virtue of the compactness of K there
is a subsequence {k; } C K such that lim; k;, = k € K. Then for number /4L there

is a number [; € N such that for VI > [q,

|ki, — k|| < e/4L. (7)

By virtue of the compactness of the set g(P, k) we consider that 3lim; g(¢;,, k) = go.
Then for the number £/4 there is [y € N such that for VI > [s,

llg(ti, k) — goll < e/4. (8)

Let Iy = max(l1,l2) and [ > lgp > lp. With the account of relations (7) and (8) we
obtain

lg(ti,, ki) — g(ti,, ki)l < gty ki) — g(ta, B)|| +
+lg(ti, k) = goll + lg(ts,, k) — goll + lg(ti,, k) — g(ts,, ki) || <
< L-|ky — k| +e/d+e/4+L- |k, — k| <e,

ie. [lg(ty, ki) — g(ti,, ki,)|| < e for VI,p > ly. The proof means that {g(t;,k;)} is a
Cauchy sequence. So, the set g(P, K) is compact. If G € gS, then G = lim g;, for
some net {t;} C S. Therefore for V(t,k) € P x K, G(t, k) = lim ¢, (t, k) € g(P, K),

hence, the set G(P, K) is compact.

Lemma 3. Let W C T and g|w be the contraction of the map g : P xT — L(E,T)
on the set P x W. If:

1) for Yy € W, the map g is uniformly continuous on P x {y} and the set g(P,y)
18 compact;

2) g satisfies the Lipschitz condition in the second argument on W,
then the map g|lw is Lagrange S-stable.

Proof. By virtue of Ascoli theorem it is sufficient to prove equicontinuity of the
family of maps {g:|w | t € S} on each compact set from P x W. Beforehand we shall
prove that for an arbitrary compact set K C W the map g is uniformly continuous
on the set P x K. Let K C W be a compact set and the map g be non-uniformly
continuous on the set P x K. Then there is an ¢y > 0 such that for an arbitrary
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natural i there are elements (t1,k%) and (5, k%) in P x K for which the following
relations are fulfilled

(85, k1) — (t, kb)|| < 1/ (9)
and
lg(t, k1) — g(t5, k3)|| > eo- (10)

Let L be a Lipschitz constant of g. From the relation (9) the relation ||k¢ — k|| < 1/i
follows. Therefore by virtue of the compactness of K we may consider that lim; k¢ =
lim; k% = k € K. In that case for number g9/(3L) there will be a natural number i,
such that for arbitrary ¢ > ¢; the following relations are fulfilled

Ik = kIl < eo/(3L), |Iky — kll < eo/(3L). (11)
From the relation (9) also follows the relation
It — 3]l < 1/i. (12)

Since the map g is uniformly continuous on P X {k}, then for /3 there is a number
0 > 0 such that for V(t1, k), (t2, k) € P x {k} from the relation ||(¢t1, k) — (t2, k)| <
the following relation follows

lg(t1, k) — g(ta, k)| <eo/3. (13)

Let a natural number is be such that 1/is < 6. Then for an arbitrary i > is, by
virtue of the relations (12) and (13), the following relation is fulfilled

lg(t1, k) — g(t5, k)| < €0/3. (14)

Let ig = max(i1,i2). For i > ig, the relations (11) and (14) are simultaneously
fulfilled. Therefore for ¢ > i

llg( ’i,ﬁi) — g( ’é?ké)H < g i;k’i) —g(t4, k)| + lg( k) —g(th, k)| +
+llg(ty, k) — g(ty, k3)|| < LI|k] — k[l +e0/3 + L[k — k|| <
< L€0/(3L) + 60/3 + LEO/(?)L) = €0,

ie. |lg(ti,kY) — g(th, kb)|| < eo. The obtained relation contradicts the relation (10).
So, the map ¢ is uniformly continuous on the set P x K for an arbitrary compact
set K C W. Let D be an arbitrary compact set from P x W and the compact set
MxK C PxWissuchthat D C M x K. Andlete > 0,t € S, (m,k) € D and 0 be
a number corresponding to the number € by virtue of an uniform continuity of g on
the set P x K. We shall assume that (my, k1) € D and ||(m1, k1) —(m, k)| < J. Then
|(t +mi, k1) — (t +m, k)| < 0. Therefore ||g(m1, k1) — g:(m, k)| < e. The proof
means equicontinuity of the family of maps {g:|w | t € S} at the point (m, k) € D.
In that case the family of maps {¢:|w | t € S} is equicontinuous on D.
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Lemma 4. If the map g: P x T — L(E,T) satisfies the Lipschitz condition on the
second argument in a set W from T with the Lipschitz constant L, then any map
from glw S satisfies the Lipschitz condition in the second argument on W with the
Lipschitz constant L.

Proof. The proof is obvious.

Let’s introduce the concept of concordance of maps and we shall describe shortly
its purpose.

Let X and Y be some spaces of maps on which the operation of the semigroup
S is defined with the help of shift o, U[X] and U[Y] be uniform structures of spaces
X and Y respectively; o € X, f €Y.

Definition 4. We say that ¢ is S-concordant with f if for every index o € U[X]
there is an index v € U[Y] such that s € S and (f, fs) € v implies (p,ps) € a. We
say that ¢ is uniformly S-concordant with f if for every index oo € U[X] there is an
index v € U[Y] such that s,t € S and (fi, fs) € v imply (¢, ps) € .

The essence of the concept of S-concordance is that if ¢ is S-concordant with
f and f has certain property of the recursiveness, then ¢ has this property of the
recursiveness, too. Let’s explain this in more details.

Let [S] be some class of subsets from S, f € X (or f €Y).

The map f is called [S]-recursive if for an arbitrary index a € U[X] there is a
set A € [S] for which (f, fo) € «, for all a € A. The set fS is called [S]-recursive if
for an arbitrary index o € U[X] there is a set A € [S] for which (fs, fs+a) € , for
all s € S and a € A.

And let ¢ € X, f € Y. Then: 1) If ¢ is S-concordant with f and the map f is
[S]-recursive, then the map ¢ is [S]-recursive, too. 2) If ¢ is uniformly S-concordant
with f and the set fS is [S]-recursive, then the set ¢S is [S]-recursive, too.

The last definitions and proposition are well concordant with the facts known
for dynamic systems [1].

As concrete definitions of [S]-recursivenesses various types of Poisson stability of
maps, in particular, Poisson SQ-stability, Poisson SP-stability, SQ-recurrentness in
sense of Birkhoff, S@Q-almost periodicity in sense of Bohr (here @ is a subset from
S, P is some family of subset of S). We shall give corresponding definitions, for
p € C(P,T) (for more details see [1, 6]).

A map ¢ is Poisson SQ-stable if for arbitrary ¢ > 0, a compact set A from P
and arbitrary q € Q there is p € Q for which ||p(a) —p(a+q+p)|| < e, for alla € A.

If a map is Poisson SQ-stable for arbitrary () € P, then it is called as Poisson
SP-stable.

A map ¢ is SQ-recurrent in sense of Birkhoff if for arbitrary € > 0 and a compact
set A from P there is a compact set K C ) such that for Vq € Q 3k € K for which
llp(a) — pla+q+ k)| <e, for all a € A.
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A map ¢ is SQ-almost periodic in sense of Bohr if for arbitrary € > 0 and a
compact set A from P there is a compact set K C () such that for Vg € Q dk € K
for which [|¢(s+a) —p(s+a+q+ k)| <e, forall s € S and a € A.

Thus, if it is established that some solution ¢ of the equations is S-concordant
(uniformly S-concordant) with the right-hand side f of this equation and the map
f is Poisson SQ-stable, or Poisson SP-stable, or SQ-recurrent in sense of Birkhoff
(SQ-almost periodic in sense of Bohr), then the solution ¢ is respectively Poisson
SQ-stable, or Poisson SP-stable, or SQ-recurrent in sense of Birkhoff (SQ-almost
periodic in sense of Bohr), too.

Definition 5. Let a € C(P,L(E,L(T,T))). The total differential equation
yh=a(t)hy (h€E) (15)

is called weakly regular (regular) of type 1 with the constant r > 0 if for an arbitrary
bounded map b € C(P,L(E,T)) the equation

y'h = a(t)hy +b(t)h  (h € E) (16)

has a compact (unique compact) solution x € C(P,T). In addition, for an arbitrary
compact solution x of the equation (16) is valid the estimation

sup [|z(¢)[| < 7 - sup [[b(#)]]- (17)
teP teP

Theorem 6. Let for the equation (1) the following conditions be fulfilled:

1) the equation (15) is weakly reqularly of type 1 with the constant r;

2) the map b is bounded;

3) there is tg € T' for which the set g(P,to) is bounded;

)
)
)
4)

the map g satisfies the Lipschitz condition in the second argument with the
Lipschitz constant L.

Then for an arbitrary A, |A\| < 1/(rL), the equation (1) has a compact solution
x\ € C(P,T) and for it the estimation is valid

sup [lzx(8)|| < 7 -sup[|b(t) + Ag(t, zA(2))]]- (18)
teP teP
If in addition to the conditions 1) —4) of our theorem the following condition is

Fulfilled:

5) the map a is bounded and the set g(P,y) is compact for Yy € T,

then the solution x) is Lagrange S-stable.
If in addition to conditions 1) — 4) of our theorem the following conditions are

fulfilled:
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6) the equation (15) is reqular of type of 1 with the constant r;

7) the space E is quasicomplete, P is a connected convex set if the space E is
finite-dimensional and P = E if the space E is infinite-dimensional,

then the solution xy is S-concordant with (a,b, g).

Proof. Let the conditions 1) — 4) of our theorem be fulfilled. We shall use Theorem
3 for: X is the space of bounded maps from C(P, L(E,T)) with the norm sup, Y is
the space of compact maps from C(P,T) with the norm sup, ¢ is the map that to
every p € X puts in correspondence the set of all solutions of the equation

y'h = a(t)hy + p(t)h (h € E)

contained in Y. As F we shall take the map Y x P — T according to the rule
F(p,t) = ¢(t), and as f we shall take the map g. Since the equation (15) is weakly
regular of type 1 with the constant r, then the map ¢ is weakly r-regular. It is
directly checked that Y is a complete space.

Since for Vo € Y and Vt € P

lg(t, ()] < llg(t, 2(t)) — g(t; to) | + llg(t, to) || <

< L(sup [lz(s)|| + [[ol]) +sup [lg(s, to)|| =1 € R,
seP seP

ie. |lg(t,xz(t))]] < I, then the map ¢g* is bounded. Therefore the map g is F-
admissible.

From the condition 4) of our theorem the condition 2) of Theorem 3 follows.

According to Theorem 3 for an arbitrary A, |A\| < 1/(rL), there is an z) €
q(b+ Ag™). By the definition of the maps ¢ and g®* the map x) is compact and
satisfies the equality @\ (t)h = a(t)hx(t) + (b(t) + Ag(t,zA(t))h for an arbitrary
t € P, h € E. It also means that x) is a compact solution of the equation (1). The
estimation (18) follows from the estimation for x) from Theorem 3.

Let’s assume that the condition 5) of our theorem is also fulfilled, and we shall
prove the Lagrange S-stability of the solution xy. Let’s designate by ¢* the map
PxT — L(E,T) according to the rule: ¢*(t,y)h = a(t)hy + (b(t) + Ag(t,y))h
((t,y) € PxT,h € E). And let K C T be a compact set. By Lemma 2 the set
g(P, K) is compact. Since for V(t,y) € P x K

lg™(t,y)ll = e, lg™ (&, )bl < lla@)[llyll + le@)] + [Alllg(t, w)Il,

then the map ¢* is bounded on the set P x K. In that case the solution x) is
Lagrange S-stable by Proposition 1.

Let’s assume that the conditions 1) — 4) and 6) — 7) of our theorem are fulfilled.
Then z is a unique compact solution of the equation (1). Suppose that ) is not
S-concordant with (a,b,g). Then there is an index « of the uniform structure of
the space C'(P,T) such that for an arbitrary index ~ of the uniform structure of the
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space C(P,L(E,L(T,T))) x C(P,L(E,T)) x C(P xT,L(E,T)) there is an element
s, € S such that
((a, b?vg)’(as'y?bsqﬂgsw)) € (19)
and
(@x, (22)s,) & . (20)

From the relation (19) it follows that lim,(as.,,bs.,9s,) = (a,b,9). By virtue of
Lemma 1 from the net {(z)s,} it is possible to single out a subnet {(z)s,} con-
verging to some compact solution 1 of the equation (1). According to the proved
above 1 = x,, therefore limg(zy)s, = xx. The obtained relation contradicts (20).
The contradiction says that the solution z) is S-concordant with (a, b, g).

Theorem 7. Let E be a Banach space, P = E and for the equation (1) the following
conditions are fulfilled:

1) for Vt € E, a(t) = a is a permutable operator such that (Sp a)e does not
intersect the imaginary axis of the complex plane for some vector e € E of the
unit norm;

2) the map b is bounded, continuously differentiable and N{ahb(t)k —b'(t)kh} =0
forVh,k,t € E;

3) for an arbitrary bounded map y € C(E,T) the map ¢¥ is continuously dif-
ferentiable and N{ahg¥(t)k—(g¥)'(t)kh} = 0 forVh,k,t € E (here and further,
gY is the map according to the rule g¥(t) = g(t,y(t)) for ¥t € E);

4) the map g satisfies the Lipschitz condition in the second argument with the
Lipschitz constant L;

5) there is tg € T for which the set g(F,ty) is bounded.

Then for an arbitrary X\, |\| < 1/(rL), where r is the constant from the Example
2 of reqular maps, the equation (1) has a unique bounded solution xx € C(E,T) and
the estimation also is valid

sup [[x(8)]] < - sup [|b(2) + Ag(t, zx(2))]- (21)
tek tek

If in addition to the conditions 1) —5) of our theorem the set g(E,y) is compact
for Yy € T, then the solution x) is Lagrange E-stable.

If in addition to the conditions 1) —5) of our theorem T'= R™, then the solution
xy is E-concordant with (a,b, g).

Proof. We relate the equation (1) to the r-regular map from the Example 2 of
regular maps, and the proof of the theorem is done by the proof scheme of Theorem
6 taking into account that for T'= R™, the solution x) is compact.
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Theorem 8. Let for the equation (1) the following conditions be fulfilled:
1) the equation (15) is weakly reqular of type 1 with the constant r;
2) the map b is bounded;

3) x is a compact solution of the equation (16) and Vf(P) is a closed §-neighbour-
hood of the set x(P) (6 > 0);

4) the map g satisfies the Lipschitz condition in the second argument on Vf(P)
with the Lipschitz constant L;

5) for some tg € P, sup,cp ||9(t,z(to))|| =1 € R.

Then for an arbitrary X\, |\| < Ao = 0/(r(L(d + 9) +1)), where d is the diameter
of the set x(P), the equation (1) has a compact solution xy : P — ng(P) and for
it the estimation (18) is valid. In addition, if lim; ..o A\; = 0, then lim; oo z), = @
uniformly on P.

If in addition to the conditions 1) — 5) of our theorem the map a is bounded,
then the solution x) is Lagrange S-stable.

If in addition to the conditions 1) —5) of our theorem the following conditions

are fulfilled:
6) the equation (15) is reqular of type 1 with the constant r;

7) the space E is quasicomplete, P is a connected convex set if the space E is
finite-dimensional and P = E if the space E is infinite-dimensional.

Then the solution x) is S-concordant with (a,b, g).

Proof. Let the conditions 1) — 5) of our theorem be fulfilled. We shall use Theorem
5 for: X is the space of bounded maps from C(P, L(E,T)) with the norm sup, Y is
the space of compact maps from C(P,T) with the norm sup, ¢ is the map that to
every p € X puts in correspondence the set of all solutions of the equation

y'h=a(t)hy +p(t)h (heE)

contained in Y. As F we shall take the map Y x P — T according to the rule
F(p,t) = ¢(t) and as f the map g. Since the equation (15) is weakly regular of type
1 with the constant r, then the map ¢ is weakly r-regular. Since for Vy € Y

sup [|g(¢,y(1))|| < sup [lg(t, y(t)) — g(t, x(to))|| + sup [lg(t, z(t0)) || <
teP teP teP

< L(sup ly@)] + [[«(to)l]) + sup [|lg(t, z(to))|| € R,
teP teP

i.s. sup,ep |lg(t,y(t))|| € R, then the map g is bounded. Therefore the map g is
F-admissible.
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Let A ={y |y €Y andy(P)C V:f(P)}. It is clear that the set A° is closed,
hence, it is complete, as closed subset of a complete space Y. Since

sup |lg(t,z(s))| < sup |[lg(t, 2(s)) — g(t, z(to))]| +
(t,s)ePxP (t,s)ePxP

+sup [lg(t, z(to))[| < Lsup [|(t) — x(to)|| +1 < Ld +1,
tepP tepP

i.e. sup;ep [lg(t,z(t))|| < Ld + I, then taking as {; in the condition 4) of Theorem
5 the number Ld + [, we shall receive that our number Ay coincides with \g from
Theorem 5. According to Theorem 5 for an arbitrary A, |[A| < Ao, there exists
zy € q(b+ Ag™) N AS. By the definition of maps ¢, ¢®* and of set A2 the map
x\: P — Vf(P) is compact and satisfies the equality '\ (t)h = a(t)hxx(t) + (b(t) +
Ag(t,xx(t))h for an arbitrary ¢ € P, h € E. It also means that x) : P — Vf(P)
is a compact solution of the equation (1). The estimation (18) follows from the
estimation of x) from Theorem 5.

Let’s prove that if lim; .o A; = 0, then lim; .o ), = « is uniform on P. Let
g > 0 be an arbitrary number. Since lim; .o, A; = 0, then there is a number iy such
that for all ¢ > iy |Ni| < ¢/(r(Ld +1)). Let i > ip. Because x), — = is a compact
solution of the equation

y'h = a(t)hy + Nig(t,zx,(t)h (b€ E)

with a bounded map \;g(t,xy,(t)) (t € P), then using the conditions 1) and 5) of
our theorem, we have

sup [, () — z(t)[| < r|Xifsup [lg(t, zx, @) < r[Xil(Ld +1) <e,
tepP tepP

i.e. supyep ||z, (t) —x(t)|| < e. The proof also means that lim; . ), = « is uniform
on P.

Let’s assume that the map a is bounded and we shall prove that x, is Lagrange
S-stable. Let’s designate by ¢* the map P x T'— L(E,T) by the rule: g*(¢t,y)h =
a(t)hy + (b(t) + Ag(t,y))h ((t,y) € P x T, h € E). Since x)(P) C VI‘S(P) and for

Vy € zA(P)

sup [lg* (¢, y)|| = sup sup |lg*(t, y)n[| < sup(|la(®)[|llyll + [o()]| +
teP teP ||h||=1 teP

+AMg( vl < jg}lg(lla(t)ll\lyll + @) + M(Ld +1) =m € R,

ie. supcp|lg*(t,y)|| < m € R, then the map ¢g* is bounded on the set P x x5 (P).
In that case the solution z is Lagrange S-stable according to Proposition 1.

If the conditions 1) — 7) of our theorem are fulfilled, then the S-concordance of
x) with (a, b, g) is proved as in Theorem 6.

Theorem 9. Let E be a Banach space, P = E and for the equation (1) the following
conditions are fulfilled:
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1) for ¥Vt € E a(t) = a is an operator such that (Sp a)e does not intersect the
imaginary axis of the complex plane for some vector e € E of the unit norm;

2) the map b is bounded, continuously differentiable and N{ahb(t)k —b'(t)kh} =0
for arbitrary h,k,t € E;

3) for an arbitrary bounded map y € C(E,T), the map ¢¥ is continuously dif-
ferentiable and N{ahgV(t)k — (¢¥) (t)kh} = O for arbitrary h,k,t € E;

4) z is a bounded solution of the equation (16) and VI‘S(E) is a closed §-neighbour-
hood of the set x(E) (6 > 0);

5) the map g satisfies the Lipschitz condition in the second argument on Vf(E)
with the Lipschitz constant L;

6) for some ty € E sup,cg ||lg(t, z(to))|| =1 € R;

7) Ao =06/(r(L(d+6)+1)), where r is the constant from the Example 2 of reqular
maps and d is the diameter of the set x(E).

Then for an arbitrary X, |A| < Ao, the equation (1) has a unique bounded solution
Ty E — V;SE . This solution is Lagrange E-stable and for it the estimation (21) is
valid. Besides, if lim; oo A; = 0, then lim; .o x), = = is uniform on E.

If in addition to the conditions 1) —7) of our theorem T = R™, then the solution
xy is E-concordant with (a,b, g).

Proof. We connect with the equation (1) the r-regular map from the Example 2 of
regular maps, and the proof of the theorem is done by the proof scheme of Theorem
8 taking into account that for T'= R™ the solution x) is compact.

Alongside with the equation (1) we also consider the limiting equations
y'h = A(t)hy + (B(t) + A\G(t,y))h (h € E), (22)
where A € aS, B € bS, G € ¢8S.

Definition 6. The equation (15) is called weakly regular (regular) of type 2 with
the constant r > 0 if for an arbitrary A € aS and an arbitrary bounded map
be C(P,L(E,T)) the equation

y'h=A(t)hy +b(t)h (h€E). (23)

has a compact (unique compact ) solution x € C(P,T). In addition, for an arbitrary
compact solution x of the equation (23) the estimation (17) takes place.

Theorem 10. Let for the equation (1) the following conditions be fulfilled:
1) the equation (15) is weakly reqular of type 2 with the constant r;

2) the map b is bounded;
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3) there exists ty € T for which the set g(P,ty) is bounded;

4) the map g satisfies the Lipschitz condition in the second argument with the
Lipschitz constant L.

Then for an arbitrary A, |\ < 1/(rL), and an arbitrary triple (A, B,G) €
(a,b,9)S, the equation (22) has a compact solution xy and for it the estimation is
valid

sup [[zx(8)]] <7 -sup[|B(t) + AG(E, 2 (1)) (24)
teP tepP

If in addition to the conditions 1) —4) of our theorem the following condition is
fulfilled:

5) the map a is bounded and the set g(P,y) is compact for Vy € T,

then the solution x) is Lagrange S-stable.
If in addition to the conditions 1) — 4) of our theorem the following conditions
are fulfilled:

6) the equation (15) is reqular of type 2 with the constant r;

7) the space E is quasicomplete, P is a connected convex set if the space E is
finite-dimensional and P = E if the space E is infinite-dimensional,

then the solution x is S-concordant with (A, B,G).
If in addition to the conditions 1) —4) and 6) —7) of our theorem the following
conditions are fulfilled:

8) the map (a,b) is Lagrange S-stable;

9) forVy € T, the map g is uniformly continuous on the set P x {y} and the set
g(P,y) is compact,

then the solution xy is uniformly S-concordant with (A, B,G).

Proof. Let the conditions 1) — 4) of theorem be fulfilled and (A, B,G) € (a,b,g)S.
Since in the conditions of our theorem the map B is bounded, then the set G(P, )
is bounded and the map G satisfies, according to Lemma 4, the Lipschitz condition
in the second argument with the constant L, then the conclusion of our theorem
follows from Theorem 6. If the conditions 1) — 5) of the theorem are valid, then the
conclusion of our theorem follows from Theorem 6, so in our case A is a bounded
map and the set G(P,y) is compact for an arbitrary y € T'.

If the conditions 1) — 4) and 6) — 7) of our theorem are fulfilled, then the con-
clusion of our theorem follows from Theorem 6.

Let the conditions 1) — 4) and 6) — 9) of our theorem be fulfilled. According
to Lemma 3 the map g is Lagrange S-stable. Therefore the maps (a,b,g) and
(A,B,G) € (a,b,g)S are Lagrange S-stable, too. If the equation (15) is regular
of type 2 with the constant r, then each equation (22) for an arbitrary A, [A\| <
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1/(rL), has a unique compact solution x). Suppose that z) is not uniformly S-
concordant with (A, B,G). Then there exists an index « of the uniform structure
of the space C'(P,T) such that for an arbitrary index /3 the uniform structure of the
space C(P,L(E,L(T,T))) x C(P,L(E,T)) x C(P x T, L(E,T)) there are elements
sg,t3 € S such that

((AtﬁthﬁyGtﬁ)7(ASﬁaBSﬁvGSﬁ)) € ﬁ (25)
and
((@N)tg, (T2)sy) € . (26)
By virtue of the compactness of the set (A4, B,G)S we may consider that

hﬁHl(Atﬁ, Btﬁ, Gtﬁ) = (Ah Bh Gl)

and
liﬁHl(Asﬁ, Bsﬁ, Gsﬁ) = (AQ, Bg, Gg)

In this case from the relation (25) we obtain that (Ay, B1,G1) = (Aa, B, Gs) =
(Ao, Bo, Go). By virtue of Lemma 1 we suppose that limg(zy)i, = 1 and
limg(zy)s; = t2, in addition, 11 and v are solutions of the equation

y'h = Ao(t)hy + (Bo(t) + AGo(t,y))h (h € E).

Since this equation has a unique compact solution then 171 = 1o, that contradicts
(26). The contradiction indicates that the solution x) is uniformly S-concordant
with (4, B, G).

Theorem 11. Let for the equation (1) the following conditions be fulfilled:

1) the equation (15) is weakly regular of type 2 with the constant r;
2) the map b is bounded;
3) x is a compact solution of the equation (16) and VI‘S(P) 1s a closed §-neighbour-
hood of x(P) (6 > 0);
o

4) the map g satisfies the Lipschitz condition in the second argument from Vx( P)
with the Lipschitz constant L;

5) for some ty € P, sup,cp |lg(t, z(to))|| =1 € R.

Then for an arbitrary A, |\ < Ao = §/r(L(d+ 0) + 1), where d is the diameter
of the set x(P), and for ¥(A, B,G) € (a, b,g|V5(P))S, where g|V5(P) is the contraction
of the map g on the set P x Vm‘s(P), the equation (22) has a compact solution x) :
P — V:f(P) and for it the estimation (24) is valid. Besides if lim; oo A; = 0, then
lim; o0 ), = 2 1s uniform on P for some compact solution z of the equation

y'h=A(t)hy + B(t)h (h € E)
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(z exists by virtue of the condition 1) of our theorem).

If in addition to the conditions 1) — 5) of our theorem the map a is bounded,
then the solution x) is Lagrange S-stable.

If in addition to the conditions 1) —5) of our theorem the following conditions

are fulfilled:
6) the equation (15) is regular of type 2 with the constant r;

7) the space E is quasicomplete, P is a connected convex set if the space E is
finite-dimensional and P = E if the space E is infinite-dimensional,

then the solution x) is S-concordant with (A, B, Q).
If in addition to the conditions 1) —7) of our theorem the map (a,b) is Lagrange
S-stable, for an arbitrary y € V:f( P) the map g is uniformly continuous on the set

Px{y} and the set g(P,y) is compact, then the solution xy is uniformly S-concordant
with (A, B,G).

Proof. The proof is similar to the proof of Theorem 10 using Theorem 8 instead of
Theorem 6.

References

[1] BRONSHTEIN 1.U. Extensions of minimal transformation groups. Sijthoff & Noordhoff Inter-
national Publishers, 1979.

[2] DaLETSKL) J.L., KREIN M.G. Stability of Solutions of Differential Equations in Banach
Spaces. Math. Soc., Providence, RI, 1974.

[3] GaisHUN 1.V. Linear total differential equations. Minsk, Nauka i tekhnika, 1989.

[4] GHERCO A.L. Concordant solutions of multidimensional differential equations. Buletinul
Academiei de Stiinte a RM, Matematica, 1995, No. 1(17), 3-11 (in Russian).

[6] GHERCO A.l. Asymptotically recurrent solutions of B-differential equations. Mathematical
notes, 2000, 67, N 6, 707-717.

[6] GHERCO A.l. Poisson stability of mappings with respect to a semigroup. Buletinul Academiei
de Stiinte a RM, Matematica, 1998, No. 1(26), 95-102.

[7] MAasSSErRA J.H., SCHAFFER J.J. Linear differential equations and function spaces. Academic
Press. New York and London, 1966.

[8] SHCHERBAKOV B.A. Poisson stability of motions of dynamical systems and of solutions of
differential equations. Kishinev, Shtiintsa, 1985.

Department of Mathematics and Informatics Received December 11, 2007
State University of Moldova
E-mail: gerko@usm.md



BULETINUL ACADEMIEI DE STIINTE

A REPUBLICII MOLDOVA. MATEMATICA
Number 1(56), 2008, Pages 195-204

ISSN 1024-7696

Singularly perturbed Cauchy problem for abstract
linear differential equations of second order
in Hilbert spaces

Andrei Perjan, Galina Rusu

Abstract. We study the behavior of solutions to the problem
el (1) + Avue () + () + Aoue(t) = F(1), ¢ >0,
{ug(O) =wo, uL(0)=1u1,
in the Hilbert space H as € — 0, where A; and Ag are two linear selfadjoint operators.
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1 Introduction

Let H be a real Hilbert space endowed with scalar product (-,-) and norm | - |.
Let V C H be a real Hilbert space which is endowed with norm || - || such that the
inclusion is dense and continuous. Let V =V, NVy, and A; : D(A;)) =V, — H,
1= 20,1, be two linear selfadjoint operators such that

((Ao + z—:Al)u,u) >A|ul?], weV, ~>0, (1)

for some € < 1 and €A; generates a Cp- semigroup {S(t,¢),t > 0} with the following
two properties:
ApS(t,e)u = S(t,e)Aou,Vu € V. (2)

36 > 0:|S(t, e)ul > olul,u € V. (3)
Consider the following Cauchy problem, which will be called (Px):

{E(ué’(t) + Alua(t)) +ul(t) + Aoue(t) = f(t), t>0,
ue(0) = ug, ul(0) = uq,

where ¢ > 0 is a small parameter, u, f : [0,00) — H. We will investigate the
behavior of solutions u.(t) to the perturbed system (P.) as e — 0. We will establish

a relationship between solutions to the problem (P:) and the corresponding solutions
to the following unperturbed system, which will be called (Fp):

{v’(t) + Agu(t) = f(t), t>0,
v(0) = uyp.
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2 A priori estimates for solutions to the problems (P.) and (F,)
In this section we remind the existence theorems for the solutions to the problems
(P:) and (Pp) and give some a priori estimations for them.

Definition 1. We say a function u € L?(0,T,V), with v’ € L*(0,T, V') is a solution

of (Pv) if
(', v) + (Agu,v) = (f,v)

for each ve V and a.e. time 0 <t <T, and
u(0) = up.

Definition 2. We say a function v € L*(0,T,V), with ' € L?(0,T,H) and u" €
L2(0,T, V') is a solution of (P:) if

E(“’//a U> + E(Aluv ?}) + (Ul, U) + (A0u7 ?}) = (f7 'l))
for each ve V and a.e. time 0 <t <T, and
U(O) = Uuo, ’LL/(O) = Ui,

where (,) express the pairing between H and H'.

Theorem A [1]. Let T > 0. If condition (1) is fulfilled, f € WY1(0,T; H), ug € V,
then there exists a unique solution v € WH>°(0,T; H) of the problem (Py) such that

[o(t)] + [v'(t)] < C(T,uo, f,7), ¢ €[0,7].

Theorem B [1, 2]. Let T > 0. If condition (1) is fulfilled, f € WH1(0,T; H),
ug € V,uy € H, then there exists a unique solution of the problem (P-) such that
us € C(0,T;V), u. € C(0,T; H)N L>®(0,T;V), u? € L*(0,T; H). Moreover, for u
the following estimate

’ue(t)‘ + ’ulg(t)‘ < C(T7 U(),Ul,f, ’Y)? te [07T]7

15 true.

3 Relation between solution to the problems (P.) and (FPp)

Now we are going to establish the relationship between the solution of the prob-
lem (P:) and the corresponding solutions of the problem (Fy). This relationship was
inspired by the work [2]. To this end we defined the kernel of transformation which
realizes this relationship.

For € > 0 denote

1
2/me

K(t7 7, 6) = (Kl (t7 7, 6) + 3K2(t7 T, 6) - 2K3(t7 T, 6)) )
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where 3t— 27y (27
Kl(t,T,E):exp{ " })\( 2\/€_t),
Ky(t,1,e) = exp{gt LGT})\(?\Z_;—),
Ks(t,1,e) = exp{g})\(;\tgt), A(s) = /:O e~ dn.

The properties of kernel K (¢, 7,¢) are collected in the following lemma.
Lemma 1 [2]. The function K(t,T,e) possesses the following properties:
(i) For any fizede >0 K € C({t >0} x {r > 0}) NC®(R+ X Ry);

(i) Ki(t,1,e) =eKr(t,7,6) — K- (t,7,¢), t>0,7>0;

1
(iii) K(0,7,¢) = 2—exp{ — 2L}, T>0; eK,(t,0,e) — K(t,0,e) =0,t>0;
5 £

(iv) For each fized t > 0, s,q € N there exist constants Ci(s,q,t,e) > 0 and
Cy(s,q,t) > 0 such that

|0fOIK (t,7,¢)| < C1(s,q,t,€) exp{—Ca(s,q,t)T/c}, T >0;

(v) Let € be fized, 0 < ¢ < 1 and H is a Hilbert space. For any ¢ : [0,00) — H
continuous on [0,00) such that |p(t)] < M exp{Ct}, t > 0, the relation

lim K(t,1,e)p(r)dr = / e Tp(2eT)dr,
is valid in H;
(vi) [[CK(t,m,e)dr =1, t>0; K(t,7,e)>0, t>0, 72>0;

(vii) Let f € WH°(0,00; H). Then there exists a positive constant C' such that
| - /0 K(t,7,0)f(T)dr|| < OVEQ+VDIF lrsooestny, 205
(viii) There exists C > 0 such that
t 00 ]
/ / K(T,H,e)exp{ — —}d@dﬂ' <Ce t>0, e>0.
0 Jo €

Denote by K(t,7,¢) = K(t,1,€)S(t,¢).

Theorem 1. Suppose that Ay satisfies condition (2). If f € L*(0,00; H) and
us € W2°(0,00; H) N L>(0,00; V), is the solution to the problem (P.), then the
function vo. which is defined as

voe(t) = /OOO K(t,T,e)us(T)dr
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is the solution to the problem:

{ Ué)a(t) + AOUOE(t) = fO(t7€)7 t>0,
UOE(O) = Pes

where

folt,e) = Fot,e) + /O Kt e) f(r)dr,

Fy(t,e) = \/—_[2exp{3t})\< é) —A(% é)]S(t,a)ul,
Ye = /000 e Tue(2eT)dr.

Moreover, vo. € W2(0,00; H) N L>®(0,00; V).

Proof. Integrating by parts,using the properties of Cy- semigroups, (ii), (iii) from
Lemma 1 and (2) we get:

%gw:(Ammmﬂ@%umﬁC:AwKﬁmﬁwm@%umﬂ-
—i—/o K(t,7,e)S (t,e)uc(T)dT =
:/WEKW@JJ)—KﬂLﬂQWGJMAﬂw$

0
+ /OO K(t,1,6)S (t,e)us(1)dr = e K (t,7,€)S(t, €)uc (T)|5°—
0
- /OO eK, (t,7,6)S(t, e)ul(r)dr — K(t,7,¢)S(t, e)uc(T)|5°+
0

+Amen@5@@¢wmﬂ-

+ /000 K(t,71,e)S (t,e)u.(1)dr = [eK,(t,T,e) — K(t,7,8)]S(t, e)uc (7)|5°—
—eK(t,1,6)S(t, e)ul(T)|&° + /OO eK(t,1,6)S(t,e)ul (1)dr+
0
/ K(t,7,e)S(t,e)ul(T)dr + /oo K(t,7,e)S (t,e)u-(r)dr =
0
= [eK(t,0,e) — K(t,0,¢)]S(t,&)uc(0) + eK(t,0,2)S(t, e)u; +

+ /Ooo K(t,7,e)S(t,e)(eu (T) + /' (7))dT + /OOO K(t,1,e)S (t, e)uc(7)dr =

=eK(t,0,e)S(t,e)ui+
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+ /000 K(t,7,e)S(t,e)(f(1) — Aous (1) — eAyus(7))dT+
—i—/o K(t,7,e)S (t,e)uc(T)dr =
=eK(t,0,e)S(t,e)uy + /OO K(t,1,e)S(t,e) f(T)dT — Aguo:(t)+

0
+ /OO K(t,1,¢)[S(t,e)uc(1) — eALS(t, e)uc(7)]dT =
0
=eK(t,0,¢)S(t,e)u; + /oo K(t,7,e)S(t,e) f(T)dT — Agvpe(t) =
0

= F()(t,E) + /OOO K(t,T,E)S(t,E)f(T)dT — A()U()E(t).

Thus v (t) satisfies the equation from Theorem 1.
The initial condition is a simple consequence of property (iii) from Lemma 1.
Theorem 1 is proved.

4 The limit of solutions to the problem (P.) as € — 0

In this section we will study the behavior of solutions to the problem (F:)
as € — 0.

Lemma 2. Let Ay and A; satisfy the conditions (1) and (2).
If ug € V,uy, f € WH*(0,T; H) then the estimate:

IS(t, e)ue(t) — voe(t)] < C(T,up,u1, f,v,m)Ve, tel0,T],
15 true.

Proof. According to the Cp-semigroup theory there exists a constant v; > 0 such
that

1S5(t,€)| < (T,e). (4)

Using the last mentioned property of S(¢,¢), Theorem B and the property(vii) of
Lemma 1 we can easy obtain:

|S(t, e)ucs(t) — /000 K(t,1,e)us(1)dr| < |S(t,e)||ue(t) — /000 K(t,r,e)ucs(r)dr| <

< /71|u€(t)_/ K(t77—7€)u€(7—)d7—| < /5(1_‘_\/%) H f/ HL“’(O,T:H)S O(T7 uOvulvalya’Yl)'
0

Lemma 2 is proved.
To prove the following result we need to remember an important inequality:
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Lemma A [4]. Let ¢ € L'(a,b)(—00 < a < b < 00) with ¢ >0 a. e. on (a,b) and
¢ be a fized real constant. If h € C|a,b] verifies

_h2 —c+/¢ s)ds, ¥t € [a, b,

then .
Bt) < || + / (s)ds, ¢ € [a, ]
also holds.

Lemma 3. Let the operators Ay, A1 satisfy conditions (1)- (3).
If ug, Ayug € V,uy € H, f, A1 f € WH°(0,T; H) then the estimate:

|S(t,e)v(t) — voe(t)| < C(T,up, w1, f,7,m,)vVe, tel0,T]
18 true.
Proof. Let v(t) be the solution to the problem (P). We will denote by w(t) =
S(t,e)v(t). Thus
w'(t) = S'(t,e)v(t) + S(t,e)v (t) = cA1S(t, e)v(t)+
+S(t, ) (t) = eAyw(t) + S(t,e)[f(t) — Apv(t)] =
=cAjw(t) + S(t,e) f(t) — ApS(t,e)v(t) = cAjw(t) + S(t,e) f(t) — Agw(t),

and
w(0) = 5(0,2)v(0) = v(0) = up.
So we obtained the following Cauchy problem for w(t):

{ w'(t) + (Ao — eAn)w(t) = S(t,e) f(),
w(0) = ug.

To estimate |S(t,e)v(t) — vo-(t)| we denote by R.(t)=w(t) — voe(t). Then for R.(t)
we get the following Cauchy problem:

{ RL(t) + AgR(t) = eAyw(t) + S(t,e) f(t) — fo(t), t>0
RE(O) = Ug — Pe

Then taking scalar product of last equation with R.(¢) and integrating on [0,t],
by Lemma A we get:

RO < O o = gl +1/00) [ |erte) +8(r007(r) - fo(r)]ir] <

< o)luo - ool +1y/C) [ learwlar + e [ R lar+
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+1/C(T / ‘S T,e)f / K(1,pu,e)S(r,e)f (,u)du)‘dT], 0<t<T. (5
Now step by step we will estimate all terms in the right of inequality (5).

In what follows we will denote by C all constants depending on T', ug, u1, f, 7y, 1.
In conditions of Theorem B we can estimate the difference

2eT
|U0—905|—‘/ " (ue(2e7) — o d7‘</ / lul(p)|dp < Ce. (6)

Using the property (vii) from Lemma 1 we have
St = [ KEmsra (i <

<Istral|fr) = [ K] <

< NVEL+ VO | 150 (0,00 = CV/E. (7)

In [2] it is also shown that
t ~
/ 7 Fy(r, &)|dr < Celuy| < Ce. (8)
0

To estimate |Ajw(t)| we will consider now the (FPy) problem and will apply to it
the operator A; to obtain:

{ At (t) + ArAou(t) = Aif(t),t > 0 (9)
A1v(0) = Ajup.

In condition (2) we can observe that

S(h, &) Agu(t) — Agu(t) AoS(h, e)o(t) — Agu(t)

“Ardon(®) = im h = h -
= }ILIII%) AOS(}% 6)21;:) — U(t) = EA()Al?J(t)

Thus, denoting by y(t) = Ajv(t) we can write the problem for y

{ y'(t) + Aoy(t) = A1 f(t),t >0
y(0) = Aquo.

If Ayug € V, Arf € WHY0,T, H), then by Theorem B we obtain the estimate

But
[Arw(t)] = [A1S(t,e)v(t)] < nlAw(t)] = nly(t)| < C. (10)
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From estimates (5)-(10) we finally obtain the estimate

‘Ra(t)‘ S \/EC(T7 Uop, U1, f7’Y7’Yl)-

Lemma 3 is proved.

Theorem 2. Let T > 0. If up, Ajug € V,uy € H, f,A1f € Wh(0,T; H) and
Ao, A1 satisfies conditions (1)-(3) then the estimate:

|’LL€(t)—U(t)| SO(UO,Uhfa%Vla(S)\/Ea te [07T]7 0<ex1

18 true.
The proof of this theorem is a simple consequence of Lemmas 1 and 2. Indeed

ue(t) — v(t)| < 515t Yue(t) — S(t,o(t)] <

< <[S( eue(t) — voe (D)) + St €)v(t) = voe ()] < VEC(T, uo, ua, f,7,m,6).

ST

Theorem 3. Let T > 0. If
ug, Ao, Ao, Ay Agug, uy, f(0), A1 f(0) €V, f,Arf € W>®(0,T; H)
and Ag, A1 satisfies conditions (1)-(3), then the estimate
[l (t) =/ (£) + he™ 2| < VEC(uo, ur, f,7.7,6),

is true, where h = f(0) —u; — Aguo.

Proof. Denote by z.(t) = ul(t) + he™¢. Then for ze(t) we get the following Cauchy
problem:

{ 2/ (t) + 2L(t) + (Ao + e A1)z (t) = f'(t) + e < (Ao + AR, t>0 ()
2(0) = f(0) — Agug, 2'(0) = —Ajuy.

As Agug, f(0) €V, f € W?2*(0,T; H), according to Theorem 1 the function

wie(t) = / K(t,7,¢)ze(7)dT
0
is the solution to the problem:

wlls(t) + A0w1€(t) = Fy (t7€)7 t>0,
wi:(0) = [;° e Tz (2e7)dr,
where -
Fi(te) = / K(t,7,2) [ (7)dr + e~ = (Ay + e A1 h]dr—
0
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L {21/ Ay Dl
Denoting by v1(t) = v/(t), (Py), for v1 we have the problem (Puy):

{v’l(t) + Agui(t) = f/(t), t>0,
(%1} (0) = f(O) — Aou().

If wo(t) = S(t,e)vi(t), then (Pv;) becomes

{ wh (t) + [Aog — eAi]wac(t) = S(t, &) f'(t), t>0,
w2e(0) = f(0) — Aguo.

Let Ric(t) = wie(t) —wa-(t). Then, using (12) and (13) we get the following Cauchy
problem for it:

(13)

{ Ri_(t) + AgRic(t) = Fy(t,e) — S(t,e) f'(t) — eAywac(t), t>0, (14)

Ri(0) = [ e [27 2L(0)dfdr.

Taking scalar product of (14) with Ri.(t), integrating on [0,¢] and using Lemma
A we get the estimate

t
Ri)] < e (IR0 + [ e
0

Fy(r,e) — S(r,e)f'(1) — eAywac(7) ‘dT). (15)

As we can see in (11) z.(t) is the solution to a second order Cauchy problem which
is similar to (P:). So, in conditions of this theorem, using Theorem B, the following
estimate is true:

|ze ()] < C(If lw2eo 0,115 [ Aotio|, [Aruo|,v) = C.

Ry (0 \_(/ /%T d0d7‘<CE

From properties (vii), (viii) and (4) it follows:

t
0

Then

Fy(r.2) = S(r,2)]'(r)|dr < /0 ‘o

/Ooo K(r,p,e) f' (u)dp— S(r,e)f ‘dﬂ—

t 0
+ / / K (7, 1,€)e™ | (Ag + £A1)h|dpdr+
0 JO

[ b /2 -y D s e

< O [VEQ + VOIS ooz + & + Vel douol | < CVE.
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To estimate | Ajwa.(t)| we will apply A; to (Pvy) and denote by y;(t) = Ajvy(t)
to get

{ yi(t) + Aoyi(t) = A1 f'(t), t>0
Y1 (0) = Alf(O) + A1 Agug.

As Ay Agug, A1 f(0) € V, A1 f € W2>(0,T; H), Theorem A implies the estimate
()] < C(T', v, A1 Aouo, AL f).
Consequently,
|eAywae ()] = el A1 S (¢, e)v1(t)] < em[Ar1i(t)] = emlya(8)] < eC.
Using the last three inequalities from (15) follows the estimate
|R1-(t)| < Cve, 0<t<T. (16)

From property (vii) from Lemma 1 and (4) it follows:
1S(t,2) 2 (t) — wie (8)] = S(t 2)2 (8) — / K(t, 7, )z (1)dr| <
0

<NCA+ VY || 2 =< VEC. (17)
Finally, using condition (3) and estimates (16), (17) we get

L (8) = v/ (t) = he =] = |zo() — v (1)] < %IS(tje)zs(t) = S(te)un(t)] <

< %“S(t,s)ze(t) —wie(t)] + |wie(t) — S(t,e)vi(t)]| < VeC(uo,ur, f,7,71,0)-

Theorem 3 is proved.
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