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Pareto approximation of the tail

by local exponential modeling

Ion Grama, Vladimir Spokoiny

Abstract. We give a new adaptive method for selecting the number of upper order
statistics used in the estimation of the tail of a distribution function. Our approach
is based on approximation by an exponential model. The selection procedure consists
in consecutive testing for the hypothesis of homogeneity of the estimated parameter
against the change-point alternative. The selected number of upper order statistics
corresponds to the first detected change-point. Our main results are non-asymptotic.
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1 Introduction

This paper is concerned with the adaptive estimation of the tail of a distribution
function (d.f.) F. A popular estimator for use in the extreme value theory was
proposed by Hill (1975). Given a sample X1, ...,Xn from the d.f. F the Hill estimator
is defined as

α̂n,k =
1

k

k∑

i=1

log
Xn,i

Xn,k+1
,

where Xn,1 ≥ ... ≥ Xn,n are the order statistics pertaining to X1, ...,Xn and k is the
number of upper order statistics used in the estimation. There is a vast literature
on the asymptotic properties of the Hill estimator. Suppose that d.f. F is regu-
larly varying with index of regular variation β [see for example Bingham, Goldie
and Teugels (1987)]. Weak consistency for estimating β was established by Mason
(1982), under the conditions that k → ∞ and k/n → 0 as n → ∞. Asymptotic
normality of the Hill estimator was proved by Hall (1982). A strong consistency
result can be found in Deheuvels, Haeusler and Mason (1988). Further properties
concerning the efficiency have been studied in Drees (2001). For extensions to de-
pendent observations see, for instance, Resnik and Starica (1998) and the references
therein. The asymptotic results mentioned above do not give any recipe about se-
lecting the parameter k in practical applications, while the behavior of the error
estimation depends essentially on it. Different approaches for data driven choices of
k have been proposed in the literature, mainly based on the idea of balancing the
bias and the asymptotic variance of the Hill estimator. We refer to Hall and Welsh
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(1985), Danielson, de Haan, Peng, Vries (2001), Beirlant, Teugels and Vinysaker
(1996), Resnik and Starica (1997), Drees and Kaufman (1998), among many oth-
ers. However the bias of the Hill estimator for estimating the parameter of regular
variation as a rule diminishes very slowly, which makes any choice of the parameter
k not very efficient from the practical point of view. A striking example is the so
called Hill Horror plot (see Figure 1, left).
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Figure 1. Left: 100 realizations of the Hill estimator for Pareto-log d.f. F (x) = 1 −
(x/e)−1/β log x, x ≥ e, where the parameter β = 1 is expected to be estimated. Right: 100

realizations of the Hill estimator for Pareto-log d.f. and the fitted Pareto parameter. Here

the dark lines represent the fitted Pareto index computed from the approximation formulas

(3.5), (3.1) and the light ones are the corresponding Hill plots.

For more insight on the problem the reader is referred to the book by Embrechts,
Klüppelberg and Mikosch (1997), from which we cite on the page 351: ”On various
occasions we hinted at the fact that the determination of the number k of upper
order statistics finally used remains a delicate point in the whole set-up. Various
papers exist which offer a semi-automatic or automatic, so-called ”optimal”, choice
of k. ... We personally prefer a rather pragmatic approach realizing that, whatever
method one chooses, the ”Hill horror plot” ... would fool most, if not all. It also
serves to show how delicate a tail analysis in practice really is.” An interesting
exchange of opinions on this subject may be found in the survey paper by Resnik
(1997) and in the supplied discussion.

The aim of the present paper is to give a natural resolution to the ”Hill horror
plot” paradox and to rehabilitate the Hill estimator, for finite sample sizes, by
looking at the problem from the point of view of selecting an appropriate tail. In
Section 3 we shall see that, for finite sample sizes, the Hill estimator is close to
another quantity which can be interpreted as the parameter of the approximating
Pareto distribution and which we shall call the fitted Pareto index [see (2.4) for the
definition of this quantity]. In Figure 1, right, we give a simulation for the Pareto-
log d.f.; other examples are presented in the Appendix 8. The importance of this
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interpretation, perhaps, is justified by the fact that it allows new approaches for
selecting the number k of retained upper order statistics. For estimating the fitted
Pareto index we propose a method based on successive testing of the hypothesis that
the first k normed log-spacings follow exponential distributions with homogeneous
parameters. The idea goes back to Spokoiny (1998). However our procedure is
different in several aspects. First, our test is based on the likelihood ratio test
statistic for testing homogeneity of the estimated parameters against the change-
point alternative. Second, in our procedure the number k is selected to be the
detected change-point. We also refer the reader to Picard and Tribouley (2002)
where the change point Pareto model (see Pareto-CP d.f. in the Appendix) is used
for estimation in the parametric context.

Our main results are non-asymptotic. We establish an ”oracle” inequality for
the adaptive estimator of the fitted index. The result claims that the risk of the
adaptive estimator is only within some constant factor worse than the risk of the
best possible estimator for the given model.

The paper is organized as follows. In Sections 2 and 3 we formulate the problem
and give the approximation by the exponential model. The adaptive procedure
is presented in Section 4. Section 5 illustrates the numerical performances of the
method on some artificial data sets. The results and the proofs are given in Sections
6 and 7.

2 The model and the problem

Let X1, ...,Xn be i.i.d. observations with common d.f. F (x) supported on
(a,∞), where a > 0 is a fixed real number. Assume that the function F is strictly
increasing and has a continuous density f. Since F (a) = 0, the d.f. F can be
represented as

F (x) = 1 − exp

(
−
∫ x

a
λ (t) dt

)
, x ≥ a, (2.1)

where

λ (x) =
f (x)

1 − F (x)
, x ≥ a

is the hazard rate. Note that if λ (x) = 1
αx , then the d.f. F is Pareto with index

1/α, which is a typical fat tail distribution. To allow more general laws with heavy
tails we shall assume that

λ (x) =
1

α (x)x
, (2.2)

where the function α (x) , x > a, can be approximated by a constant for big values
of x. For instance, this is the case when there exists an β > 0 such that

lim
x→∞

α (x) = β. (2.3)

Many regularly varying at infinity d.f.’s F satisfy the assumptions (2.1), (2.2) and
(2.3), see representation theorems in Seneta (1976) or Bingham, Goldie and Teugels
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(1987). If F is regularly varying at infinity, then the limit in (2.3) is nothing else
but the index of regular variation.

Our problem can be formulated as follows. Let Xn,1 > ... > Xn,n be the order
statistics pertaining to X1, ...,Xn. The goal is to find a natural number k such that
on the set {Xn,1, ...,Xn,k} the function α (x) , x ≥ a, can be well approximated by the
value α (Xn,1) and to estimate this value. The intuitive meaning of this is to find a
Pareto approximation for the tail of the d.f. F on the data set {Xn,1, ...,Xn,k} . Note
that this problem is different from that of estimating the index of regular variation β
defined by the limit (2.3). As it was stressed in the Introduction the main advantage
of the present setting is, perhaps, the fact that it allows new algorithms for the choice
of the nuisance parameter k. The approach adopted in this paper is based on the
approximation by an exponential model which is presented in the next section.

Before to proceed with this, we shall point out the connection of the function
α (·) to the logarithmic mean excess of F :

ν (t) =

∫ ∞

t
log

x

t

F (dx)

1 − F (t)
, t ≥ a. (2.4)

Integration by parts gives, for any t ≥ a,

∫ ∞

t
α (x)

F (dx)

1 − F (t)
= ν (t) . (2.5)

By straightforward calculations it can be seen that the number ν (t) is the minimizer
of the Kullback-Leibler distance between Pareto d.f. Pα (x) = 1− x−1/α, x ≥ 1 and
the excess d.f. F (x|t) = 1− (1 − F (xt)) / (1 − F (t)) , x ≥ 1. Thus the number ν (t)
can be interpreted as the parameter of the best Pareto fit to the tail of the d.f. F
on the interval [t,∞). We shall call the function ν (t) , t ≥ a the fitted Pareto index.

3 Approximation by exponential model

The function α (·) will be estimated from the approximating exponential model.
Our motivation is somewhat similar to that of Hill (1975) [see also Beirlant, Dier-
skx, Goegebeur et Matthys (2000) for another exponential approximation]. The
construction of the approximating exponential model employs the following lemma,
called Renyi representation of order statistics.

Lemma 3.1. Let X1, ...,Xn be i.i.d. r.v.’s with common strictly increasing d.f. F
and Xn,1 > ... > Xn,n be the order statistics pertaining to X1, ...,Xn. Then the r.v.’s

ξi = i log
1 − F (Xn,i+1)

1 − F (Xn,i)
, i = 1, ..., n − 1.

are i.i.d. standard exponential.

Proof. See for instance Reiss (1989) or Example 4.1.5 in Embrechts, Klüppelberg
and Mikosch (1997)]. 2
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Let Yi = i log
Xn,i

Xn,i+1
, i = 1, ..., n − 1. Then Yi = αiξi, i = 1, ..., n − 1, where

αi = − log
Xn,i

Xn,i+1
/ log

1 − F (Xn,i)

1 − F (Xn,i+1)
. (3.1)

It is easy to see that the function α (x) is defined through the d.f. F by the equations

1

α (x)
= xλ (x) =

xf (x)

1 − F (x)
= −

d
dx log (1 − F (x))

d
dx log x

, x ≥ a. (3.2)

By identity (3.2) the value αi can be regarded as an approximation of the value
of the function α (·) at the point Xn,i+1. More precisely, the mean value theorem
implies

αi = α (Xn,i+1 + θn,i+1 (Xn,i − Xn,i+1)) ,

with some θn,i+1 ∈ [0, 1], for i = 1, ..., n − 1. These simple considerations reduce the
original model to the following inhomogeneous exponential model

Yi = αiξi, i = 1, ..., n − 1, (3.3)

where α = (α1, ..., αn−1) is a vector of unknown parameters. We assume local
homogeneity of this model which stipulates that the components αi’s nearly equal
α1 within some interval I = [1, k]. In the sequel finding the Pareto approximation
for the tail of the d.f. F will be viewed as the problem of choosing the interval
I = [1, k] and of estimating the component α1 from the observations (3.3).

Under the assumption that

α1 = ... = αk, (3.4)

the maximum likelihood estimator of α1 is the sample mean

α̂k =
1

k

k∑

i=1

Yi,

which is the well-known Hill estimator. Our main concern is to choose appropriately
the number k of upper order statistics used in the estimation.

If the condition (3.4) is not satisfied, then from the definition of the model (3.3)
it follows that the Hill estimator α̂k approximates without bias the quantity

αk =
1

k

k∑

i=1

αi, (3.5)

which, in turn, is an approximation of the fitted Pareto index (2.4): αk ≈ ν (Xn,k+1) ,
for k big enough. The assumption of local homogeneity implies that the quantities
αk, αk and α1 = α1 are close to each other and thus under this assumption the
Hill estimator also approximates the fitted Pareto parameter ν (t) at the point t =
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Xn,k+1. The simulations show a good concordance between the two latter quantities
(see Figures 1, 4 and 5).

Although the above considerations shed some light on what does the Hill esti-
mator estimate, the main problem, how to choose an appropriate value of k (even
for the fitted Pareto index ν (Xn,k+1) or equally for αk) still remains open. Model
selection based on the penalization terms [see Barron, Birge and Massart (1999)]
could be a reasonable alternative for defining the optimal and adaptive values of
k. In this paper we take another adaptive approach which is presented in the next
section. To avoid difficult interpretations with the choice of the optimal value k for
the parameter αk we shall consider that the Hill estimator estimates the value α1,
which may be regarded as a constant approximation of the values αi, i = 1, ..., k.

4 Adaptive selection of the parameter k

This section presents a method of selecting the parameter k in a data driven way.
Throughout the paper we shall denote by |I| the number of elements of the set I.

4.1 The adaptive procedure

Let I be a family of intervals of the form I = [1, k], where k ∈ {1, ..., n−1}, such
that |I| ≥ 2m0, for a prescribed natural number m0, where m0 is much smaller than
(n − 1) /2. A special case of the family I is given by the set of all the intervals I =
[1, k], satisfying this condition. Another example used later on in the simulations,
is the set I = Iq of intervals I = [1, k], with k approximately lying in the geometric
grid

{
l : l ≤ n, l = [m0 + m0q

j ], j = 1, 2, ...
}

, where q > 1. In the latter case the
numbers m0 and q will be parameters of the procedure.

The family I is naturally ordered by the length |I| of I ∈ I . The idea of our
method is to test successively the hypothesis of no change-point within the interval
I and to select k equal to the first detected change-point. The formal steps of the
procedure for selecting the adaptive interval Î read as follows:

INITIALIZATION Start with the smallest interval I = I0 ∈ I.

STEP 1 Take the next interval I ∈ I.

STEP 2 From observations (3.3) test on homogeneity the vector α within the in-
terval I against the change-point alternative, as described in Section 4.2.

STEP 3 If the change point was detected for the interval I, then define Î as the
interval from one to the detected change-point and stop the procedure, other-
wise repeat the procedure from the Step 1. If there was no change-point for
all I ∈ I, then define Î = [1, n − 1].

The adaptive estimator is defined as α̂ = α̂bI , where

α̂I =
1

|I|
∑

i∈I

Yi, (4.1)
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for any interval I. The essential point in the above procedure is the Step 2 which
stipulates testing the hypothesis of homogeneity for the interval I. It consists in
applying the classical change-point test which is described in the next section.

4.2 Test of homogeneity against the change-point alternative

The test of homogeneity against the change-point alternative is based on the
likelihood ratio test statistic. For any interval I ∈ I denote by JI the set of all
subintervals J ⊂ I, J ∈ I, such that |I| /2 ≤ |J | ≤ |I| − m0. For every interval
J ∈ JI consider the problem of testing the hypothesis of homogeneity αi = θ, i ∈ I
against the change-point alternative αi = θ1, i ∈ J and αi = θ2, i ∈ I \ J with
θ1 6= θ2. The likelihood ratio test statistic is defined by

TI,J = sup
θ1

L (YJ , θ1) + sup
θ2

L
(
YI\J , θ2

)
− sup

θ
L (YI , θ)

= L (YJ , α̂J) + L
(
YI\J , α̂I\J

)
− L (YI , α̂I) ,

where α̂I is the corresponding maximum likelihood estimator defined by (4.1) and

L (YI , θ) =
∑

i∈I

log p (Yi, θ) .

Since in the case under consideration p (y, θ) = exp (−y/θ) /θ, one gets

TI,J = −
∑

i∈J

[
log

α̂J

α̂I
− Yi

(
1

α̂I
− 1

α̂J

)]
+
∑

i∈I\J

[
log

α̂I\J
α̂I

− Yi

(
1

α̂I
− 1

α̂I\J

)]

= |J |G
(

α̂J

α̂I
− 1

)
+ |I \ J |G

(
α̂I\J
α̂I

− 1

)
, (4.2)

where G (x) = x − log (1 + x) , x > −1. The use of Taylor’s expansion gives the
approximating test statistic

T I,J =
|J |
2

(
α̂J

α̂I
− 1

)2

+
|I \ J |

2

(
α̂I\J
α̂I

− 1

)2

.

By simple algebra we can represent the latter statistic in the form

T I,J =
|J | · |I \ J |

2 |I|

(
α̂J − α̂I\J

α̂I

)2

. (4.3)

Now the test of homogeneity of α on the interval I can be based on the maximum of
all such defined statistics TI,J or T I,J over the set JI . The hypothesis of homogeneity
on the interval I will be rejected if

TI = max
J∈JI

TI,J > tγ , or T I = max
J∈JI

T I,J > tγ ,
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where the critical values tγ and tγ are defined to provide the prescribed rejection
probability γ under the hypothesis of homogeneity within the interval I. These
values can be computed by Monte-Carlo simulations from the homogeneous model
with i.i.d. standard exponential observations Yi, i = 1, ..., n. Here we utilize the fact
that under the hypothesis of homogeneity the distributions of the test statistics TI

and T I do not depend on α.

If the hypothesis of the homogeneity of α is rejected on the interval I then the
detected change-point k∗ corresponds to the length of the interval J∗ ∈ JI for which
the statistic TI attains its maximum, i.e.

k∗ = |J∗| , where J∗ = arg max
J∈JI

TI,J .

5 Simulation study

The aim of the present simulation study is to demonstrate the numerical perfor-
mance of the proposed procedure. We focus on the quality of the selected interval
I and of the corresponding adaptive estimator. The next figures present box-plots
of the length of the selected interval Î and of the adaptive estimator α̂ for different
values of the parameter

√
tγ from 500 observations following Pareto and Pareto-log

d.f.’s (see a list in the Appendix). The box-plots are obtained from 500 Monte-Carlo
realizations. The set I is a geometric grid with parameters m0 = 25, q = 1.1 .
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Figure 2. Box-plots of selected intervals and the adaptive estimators for Pareto d.f. from

500 realization.

In Table 1 the mean absolute error (MAE) of the adaptive estimator α̂ w.r.t.
the value α1 = α(Xn,1) is computed for the d.f.’s introduced above.

The results clearly indicate that the increase of the parameter tγ results in a
smaller variability of the estimator but in a larger bias (in case when the model is
not Pareto). A reasonable compromise is attained for

√
tγ about 2.6 leading to a

relatively stable behavior of the procedure in the Pareto case and to a moderate bias
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Figure 3. Box-plots of selected intervals and the adaptive estimators for Pareto-log d.f.

from 500 realization.

Table 1. MAE computed for 500 realizations

tγ=2.2 tγ=2.4 tγ=2.6 tγ=2.8 tγ=3.0 tγ=3.2 tγ=3.4
Pareto 0.0642 0.0583 0.0546 0.0487 0.0459 0.0433 0.0395

Cauchy-plus 0.1036 0.1076 0.1116 0.1166 0.1204 0.1232 0.1275
Pareto-log 0.1838 0.2039 0.2231 0.2388 0.2581 0.2854 0.3106
Pareto-CP 0.0746 0.0704 0.0697 0.0658 0.0642 0.0626 0.0615

in the non-Pareto case. The numerical simulation for the procedure with the param-
eter

√
tγ = 2.6 for different values of the sample size n and different distributions

(see a list in the Appendix 8) are summarized in Table 2. The other parameters
are kept as in the previous case. In this table MAE is computed w.r.t. the value
α1 = α(Xn,1) for 500 simulations.

In the Appendix 8 we present the box-plots of the length (in %) of the selected
interval Î and of the adaptive estimator α̂ for different values of n from 500 simula-
tions following different d.f.’s.

6 Theoretical results

This section discusses some theoretical properties of the procedure presented in
Section 4. Let tγ > 0 and tγ > 0 be the critical values entering the definition of the
change point tests from Section 4.2.

6.1 Properties of the selected interval

We start with results concerning the choice of the interval of homogeneity. We
will ensure that the following two properties hold:
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Table 2. MAE computed for 500 realizations

n=200 n=300 n=400 n=500 n=800 n=1000 2000 n=3000
Pareto 0.0573 0.0507 0.0473 0.0521 0.0456 0.0495 0.0453 0.0415

Cauchy-plus 0.1483 0.1210 0.1133 0.1155 0.0846 0.0943 0.0720 0.0577
Pareto-log 0.2544 0.2309 0.2274 0.2178 0.1895 0.1828 0.1783 0.1713

GPD 0.2563 0.1829 0.1770 0.1564 0.1488 0.1301 0.1171 0.1095
Hall model 0.2498 0.2448 0.2377 0.2439 0.2344 0.2222 0.1961 0.1699
Pareto-CP 0.1001 0.0881 0.0737 0.0669 0.0566 0.0558 0.0432 0.0321

Standard Normal tail 0.2273 0.1718 0.1438 0.1242 0.0983 0.0941 0.0689 0.0654
Standard Exponential 0.2989 0.2370 0.1913 0.1707 0.1432 0.1373 0.1133 0.1007

A. The intervals of homogeneity are accepted with high probabilities.

B. The intervals of non-homogeneity are rejected with high probabilities at least
in some special cases, for instance, for the change-point model.

Consider first the property A. The assumption that the vector α is constant on
some interval I can be quite restrictive for practical applications. Therefore the
desirable property would be that the procedure accepts any interval I ∈ I for which
αi can be well approximated by a constant within the interval I. Let I be an interval
and let αI be the average of the αi’s over the interval I :

αI =
1

|I|
∑

i∈I

αi.

The non-homogeneity of the αi’s within the interval I can be naturally measured by
the value

∆I = max
i∈I

∣∣∣∣
αi

αI
− 1

∣∣∣∣ .

We say that I is a ”good” interval if the value ∆I is small. The next result claims
that a ”good” interval I will be accepted by the procedure with a high probability
provided that the critical value tγ was taken sufficiently large.

For every interval I ∈ I, denote

SI =
1

|I|
∑

i∈I

αi (ξi − 1) and V 2
I =

∑

i∈I

α2
i .

For given intervals I ∈ I and J ∈ JI , denote Jc = I�J and, with a real λ > 0,
define the events

ΩI,J =

{
|SI | ≤

λVI

|I| , |SJ | ≤
λVJ

|J | , |SJc | ≤ λVJc

|Jc|

}

and
ΩI =

⋂

J∈JI

ΩI,J .

The function G (x) is defined for all x > −1. We extend it to the whole real line by
defining G (x) = +∞ for x ≤ −1.
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Theorem 6.1. A. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that

λ ≥ 2
√

log 2|JI |+1
γ and

√
m0 > 3

2λ (1 + ∆I) . Then P (ΩI) ≥ 1 − γ.

B. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that λ ≥
2
√

log 2|JI |+1
γ and

√
m0 > 3λ (1 + ∆I) . If ∆I fulfills

G
(
−3∆I − 3λ (1 + ∆I)m

−1/2
0

)
≤ 4tγ

|I| , (6.1)

then on the set ΩI it holds TI ≤ tγ .
C. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that λ ≥

2
√

log 2|JI |+1
γ and

√
m0 > 3λ (1 + ∆I) . If ∆I fulfills

∆I ≤
2
√

2
3 t

1/2
γ |I|−1/2 − λm

−1/2
0

1 + λm
−1/2
0

,

then on the set ΩI it holds T I ≤ tγ .

Remark 6.2. The condition on ∆I from the part C of the theorem is similar to
the condition (6.1) with the function G(u) replaced by u2/2 . Moreover, the con-

dition (6.1) follows from ∆I ≤ (Ct
−1/2
γ |I|−1/2 − λm

−1/2
0 )/(1 + λm

−1/2
0 ) with some

constant C > 2
√

2/3 provided that 3∆I +3λ (1 + ∆I)m
−1/2
0 < 1/2 , see Lemma 7.3.

An immediate corollary of this result is an upper bound of the probability of
rejecting a ”good” interval I.

Corollary 6.3. Under the conditions of the point B or C of Theorem 6.1 it holds
respectively

P (TI > tγ) < γ or P
(
T I > tγ

)
< γ.

Now let us turn to the property B of the intervals of homogeneity. Consider the
special case when the vector α = (α1, ..., αn) is piecewise constant. In this case an
interval I is ”good” if it does not contain a change point. The best choice of I can be
defined as the interval I∗ = [1, k∗], where k∗ is the first change point. Theorem 6.1
claims that the interval I∗ will be accepted with high probability. The next result
shows that all larger intervals will be rejected with high probability, thus implying
that Î approximately equals I∗.

Theorem 6.4. Let γ ∈ (0, 1) and 2
√

log 3
γ ≤ λ ≤ √

m. Assume that αi = α, for

i ∈ I∗, and αi = β, for i ∈ I \ I∗, where I = [1, k∗ + m] and α 6= β. If m satisfies
m ≤ k∗ and √

m ≥ max
{
d−1

(
3
√

tγ + λ
)
, 4tγ

}
, (6.2)

where d = |α − β| / (2α + |α − β|) , then

P (TI ≤ tγ) ≤ γ and P
(
T I ≤ tγ/2

)
≤ γ.
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6.2 Properties of the adaptive estimator α̂.

Let Î be the interval computed by the adaptive procedure described in Section
4.1 with the test statistic TI,J . The next assertions describe the accuracy of the

adaptive estimator α̂ = α̂bI under the condition that Î ⊃ I∗, where I∗ ∈ I is a
”good” interval.

Theorem 6.5. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that

λ ≥ 2
√

log 2|JI |+1
γ and

√
m0 > max

{√
4tγ , 3

2λ (1 + ∆I)
}

. Let the interval I∗ ∈ I be

such that I∗ ∈ JI . If TI ≤ tγ , then on the set ΩI , it holds
∣∣∣∣
α̂I − α̂I∗

α̂I∗

∣∣∣∣ ≤
ρ

1 − ρ
,

where ρ = 2
√

tγ |I∗|−1.

From Theorem 6.5 it follows that if α̂I∗ provides a ”good” estimate of αI∗ , then
the adaptive estimator also provides a ”good” estimate of αI∗ . A precise statement
is given in the next corollary.

Corollary 6.6. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that

λ ≥ 2
√

log 2|JI |+1
γ and

√
m0 > max

{√
4tγ , 3

2λ (1 + ∆I)
}

. Let the intervals I∗ ∈ I
and I be such that I∗ ∈ JbI(ω)

and Î (ω) ∈ JI , for any ω ∈ ΩI . Then on the set ΩI

the adaptive estimator α̂ fulfills

|α̂ − αI∗ |
αI∗

≤ 1

1 − ρ

λ (1 + ∆I∗)√
|I∗|

+
ρ

1 − ρ
,

where ρ = 2
√

tγ |I∗|−1.

Similar properties can be established for the statistic T I,J .

7 Proofs of the main results

7.1 Auxiliary statements.

Lemma 7.1. Let ξ1, ..., ξm be i.i.d. standard exponential r.v.’s and the numbers
β1, ..., βm satisfy the condition

∣∣∣∣
βi

β
− 1

∣∣∣∣ ≤ ∆, i = 1, ...,m,

where β = (β1 + ... + βm)/m and ∆ ∈ [0, 1]. Then, for every λ ≤ 2
3

√
m/(1 + ∆),

P

(∣∣∣∣∣

m∑

i=1

βi(ξi − 1)

∣∣∣∣∣ > λVm

)

≤ 2e−λ2/4,

where V 2
m = β2

1 + ... + β2
m.
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Proof. By Chebyshev inequality, for any u > 0,

P

(∣∣∣∣∣

m∑

i=1

βiξi

∣∣∣∣∣ > λVm

)

≤ E exp (u
∑m

i=1 βi (ξi − 1))

exp (uλVm)
.

Since ξ1, ..., ξn are independent, for any u < min
{
β−1

i

}
,

E exp

(
u

m∑

i=1

βi (ξi − 1)

)
=

m∏

i=1

E exp (uβi (ξi − 1)) =
m∏

i=1

exp (−uβi)

1 − uβi
.

Therefore

P

(∣∣∣∣∣

m∑

i=1

βiξi

∣∣∣∣∣ > λVm

)

≤ exp

(

−uλVm − u

m∑

i=1

βi −
m∑

i=1

log (1 − uβi)

)

.

This inequality with u = λ
2Vm

and the elementary inequality − log (1 − x) ≤ x + x2,
for x ≤ 1/3 yield

P

(∣∣∣∣∣

m∑

i=1

βiξi

∣∣∣∣∣ > λVm

)

≤ exp
(
−uλVm − u2V 2

m

)
= exp

(
−λ2

4

)
.

It remains to check that λ ≤ 2
√

m
3(1+∆) implies that u = λ

2Vm
< min

{
β−1

i

}
. Indeed

V 2
m =

∑m
i=1 β2

i ≥ mβ
2

and therefore,

βiu =
λβi

2Vm
≤ λβi

2β
√

m
≤ λ (1 + ∆)

2
√

m
≤ 1

3
,

which proves the lemma. �

In the proofs we shall use the following bounds. Recall that G (x) = +∞, for
x ≤ −1.

Lemma 7.2. For any δ ∈ [0, 1] and any real x, the function G (·) fulfills

δ (1 − δ) G (|x|) ≤ δG ((1 − δ)x) + (1 − δ) G (−δx) ≤ δ (1 − δ) G (− |x|) . (7.1)

Proof. The proof of these bounds is based on the simple fact that the function

H (x) = 2G (x) /x2, x > −1, (7.2)

is monotonously decreasing. �

Lemma 7.3. Let G−1
+ (x) , x ≥ 0 be the inverse of the function G (·) on the interval

[0,∞). Then
G−1

+ (x) ≤ 2
√

x, 0 ≤ x ≤ 1/2.

Let G−1
− (x) , x ≥ 0 be the inverse of the function G (·) on the interval (−1, 0]. Then

−G−1
− (x) ≥

√
x, −1/2 ≤ x ≤ 0.
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Proof. For any a > 0 and x ∈ [0, G(a)] it holds G−1
+ (x) ≤

√
2x

H(a) , where H (·) is

defined by (7.2). Taking a = 1.4 one gets the first inequality. If a ∈ (−1, 0] and

x ∈ [−G (a) , 0] it holds −G−1
− (x) ≥

√
2x

H(a) . The second inequality is obtained by

putting a = −0.7. �

We shall also make use of the following bounds of the statistic TI,J .

Lemma 7.4. Let ε = |J | / |I| and RI,J = bαJ−bαJc

bαI
. Then the statistic TI,J satisfies

ε (1 − ε) |I|G (|RI,J |) ≤ TI,J ≤ ε (1 − ε) |I|G (− |RI,J |) . (7.3)

Proof. The trivial equality |I| α̂I = |J | α̂J + |Jc| α̂Jc implies

α̂J

α̂I
− 1 = (1 − ε) RI,J and

α̂Jc

α̂I
− 1 = −εRI,J . (7.4)

Then the statistic TI,J can be written as

TI,J = |I| [εG ((1 − ε)RI,J) + (1 − ε) G (−εRI,J)] . (7.5)

Using (7.1) one gets the required bounds. �

7.2 Proof of Theorem 6.1

Let I ∈ I. For any J ∈ JI denote Jc = I \ J. In the following J ′ denotes one of
the intervals J, Jc or I. The definition of the sets I and JI implies that |J ′| ≥ m0.

Note that the estimator α̂J ′ can be written as α̂J ′ = αJ ′ + SJ ′ . Then, using
Lemma 7.1, for any λ ≤ 2

3

√
m0/(1 + ∆I), one gets

P (ΩI) ≥ 1 −
∑

J∈JI

P
(
Ωc

I,J

)
≥ 1 − (2 |JI | + 1) exp

(
−λ2/4

)
.

With λ ≥ 2
√

log 2|JI |+1
γ , it holds

P (ΩI) ≥ 1 − γ,

thus proving the part A of the theorem.
For the part B we have to show that on the random set ΩI the statistics TI,J

and T I,J obey |TI,J | ≤ tγ and
∣∣T I,J

∣∣ ≤ tγ , for any J ∈ JI .
For the proof we need some inequalities. Note that each αi satisfies αi ≤

αI (1 + ∆I) , for i ∈ I, and by summing α2
i over i ∈ J ′, it follows

V 2
J ′ ≤ (1 + ∆I)

2 α2
I

∣∣J ′∣∣ . (7.6)

The latter inequality implies that, on the set ΩI , it holds

|SJ ′ | ≤ λVJ ′/
∣∣J ′∣∣ ≤ λαI (1 + ∆I)

∣∣J ′∣∣−1/2
. (7.7)
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The decomposition α̂J ′ = αJ ′ + SJ ′ and the inequality (7.7) imply that, on the set
ΩI , ∣∣∣∣

α̂J ′

αJ ′

− 1

∣∣∣∣ ≤ λ (1 + ∆I)
∣∣J ′∣∣−1/2

. (7.8)

Note that
∣∣∣αJ−αJc

αI

∣∣∣ ≤ 2∆I and |J ′| ≥ m0. Then, under the assumption
√

m0 ≥
3λ (1 + ∆I) , the inequality (7.8) implies

|RI,J | ≤
2∆I + λ (1 + ∆I)

(
|J |−1/2 + |Jc|−1/2

)

1 − λ (1 + ∆I) |I|−1/2

≤ 2∆I + 2λ (1 + ∆I) m
−1/2
0

1 − λ (1 + ∆I)m
−1/2
0

≤ 3∆I + 3λ (1 + ∆I) m
−1/2
0 . (7.9)

We consider first the case of statistic TI . The bounds (7.3) and (7.9) yield

TI,J ≤ ε (1 − ε) |I|G (− |RI,J |) ≤
|I|
4

G
(
−3∆I − 3λ (1 + ∆I) m

−1/2
0

)
≤ tγ ,

and the assertion of Theorem 6.1 concerning TI follows.
In the same way we prove the assertion concerning T I . The inequality |J | · |Jc| ≤

|I|2 /4 implies, on the set ΩI ,

T I,J ≤ |I|
4

[
3∆I + 3λ (1 + ∆I) m

−1/2
0

]2

2
≤ t̂γ .

Theorem 6.1 is proved.

7.3 Proof of Theorem 6.4

To keep the same notations as in Theorem 6.1 denote J = I∗, Jc = I \ J =

[k∗ + 1, k∗ + m]. Using Lemma 7.1, for any λ and m0 satisfying 2
√

log 1
3γ ≤ λ ≤

2
3

√
m0/(1 + ∆I), one gets

P (ΩI,J) ≥ 1 − 3e−λ2/4 ≥ 1 − γ.

It suffices to show that the event ΩI,J implies TI,J ≥ tγ . The lower bound in Lemma
7.4 implies

TI,J ≥ ε (1 − ε) |I|G (|RI,J |) ,

with ε = |J | / |I| and RI,J = bαJ−bαJc

bαI
. Since k∗ ≥ m it follows that ε = k∗/(k∗+m) ≥

1/2. This and 1 − ε = m/ |I| imply

TI,J ≥ 1

2
mG (|RI,J |) , (7.10)
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Note that V 2
J = k∗α2, V 2

Jc = mβ2 and VI ≤ VJ + VJc . Then, similarly to the proof
of Theorem 6.1, on the set ΩI,J , it holds

|RI,J | ≥
|αJ − αJc | − λ

(
α/

√
k∗ + β/

√
m
)

αI + λ
(
α/

√
k∗ + β/

√
m
) .

For the change point model αJ = α, αJc = β and αI = αk∗/ (k∗ + m) +
βm/ (k∗ + m) . This yields

|RI,J | ≥
b − λ

(
1/
√

k∗ + (1 + b) /
√

m
)

1 + b m
k∗+m + λ

(
1/
√

k∗ + (1 + b) /
√

m
) ,

where b =
∣∣∣βα − 1

∣∣∣ . It is easy to see that, for a fixed m, the minimum over k∗ ≥ m

of the latter expression is attained for k∗ = m. Therefore

|RI,J | ≥
b − λ (2 + b) /

√
m

1 + b/2 + λ (2 + b) /
√

m
=

d − λ/
√

m

1/2 + λ/
√

m
,

where d = b/ (2 + b) . Together with (7.10) this yields

TI,J ≥ 1

2
mG

(
d − λ/

√
m

1/2 + λ/
√

m

)
.

Now the assertion of the theorem amounts to prove that the right hand side in the
latter inequality is greater than tγ . This is equivalent to

d − λ/
√

m

1/2 + λ/
√

m
≥ G−1

+

(
2tγ
m

)
.

Since G−1
+ (x) ≤ 2

√
x, for all x ∈ [0, 1/2] and m > 4tγ , it suffices to show that

d − λ/
√

m

1/2 + λ/
√

m
≥ 2

√
tγ
m

.

The latter inequality is implied by the conditions (6.2) and λ ≤ √
m of the theorem.

This concludes the proof.

7.4 Proof of Theorem 6.5

To keep the same notations as in the proof of Theorem 6.1 let J = I∗, Jc = I \I∗,
ε = |J | / |I| and RI,J = (α̂J − α̂Jc) /α̂I . It is clear that TI ≤ tγ implies TI,J ≤ tγ .
The bounds (7.1) imply

|I| ε (1 − ε) G (|RI,J |) ≤ TI,J ≤ tγ ,
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from which it follows that

|RI,J | ≤ G−1
+

(
tγ

ε (1 − ε) |I|

)
,

where G−1
+ (x) , x ≥ 0 is the inverse of the function G (·) on the interval [0,∞). Now

by the definition of the set JI one has ε = |J | / |I| ≥ 1/2. Since m0 > 4tγ it holds

tγ
ε (1 − ε) |I| ≤

1
4m0

1
2 |J |

≤ 1

2
.

An applications of the upper bound in Lemma 7.3 yields

|RI,J | ≤ 2

√
tγ

ε (1 − ε) |I| .

From the identities (7.4) it follows that RI,J =
(

bαJ
bαI

− 1
)

/ (1 − ε) , which together

with the previous inequality gives

∣∣∣∣
α̂J

α̂I
− 1

∣∣∣∣ ≤
2
√

(1 − ε) tγ√
ε |I|

≤ 2
√

tγ√
|J |

.

This implies ∣∣∣∣
δ

1 − δ

∣∣∣∣ ≤ 2

√
tγ |J |−1,

where δ = (α̂J − α̂I) /α̂J , which in turn implies |δ| ≤ ρ/ (1 − ρ) , where ρ =

2
√

tγ |J |−1, and the assertion concerning TI follows. The case of the statistic T I

can be handled in the same way.

7.5 Proof of Corollary 6.6

Since ΩI′ ⊂ ΩI , for any I ′ ⊂ I, Theorem 6.5 implies that on the set ΩI ,

|α̂I − α̂I∗ | ≤ α̂I∗
ρ

1 − ρ
.

From this it follows that, on the set ΩI ,

|α̂ − αI∗ | ≤ |α̂ − α̂I∗ | + |α̂I∗ − αI∗ | ≤
ρ

1 − ρ
αI∗ +

1

1 − ρ
|α̂I∗ − αI∗ | .

Since, on the set ΩI ,

|α̂I∗ − αI∗ | = |SI∗| ≤
λVI∗

|I∗| ,

one gets
|α̂ − αI∗ |

αI∗
≤ 1

1 − ρ

λVI∗

αI∗ |I∗|
+

ρ

1 − ρ
.
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The inequality V 2
I∗ ≤ (1 + ∆I∗)

2 α2
I∗ |I∗| (see (7.6)) implies

|α̂ − αI∗ |
αI∗

≤ 1

1 − ρ

λ (1 + ∆I∗)√
|I∗|

+
ρ

1 − ρ
.

8 Appendix

Table 3. The list of distribution functions used in the simulations.

F (x) Parameters

Pareto 1 − x−1/α, x ≥ 1 α = 1

Pareto-log F (x) = 1 − (x/e)−1/α log x, x ≥ e α = 1

Pareto-CP
1 −

“
x
x1

”
−1/α1

, if x1 ≤ x < x2

1 −
“

x2

x1

”
−1/α1

“
x
x2

”
−1/α2

, if x > x2

α1 = 1/2, α2 = 1
x1 = 1, x2 = 5

Cauchy-plus F (x) = 2
π

arctan x, x ≥ 0

GPD 1 − (1 + α x−a
σ

)−1/α, x ≥ a a = 0, σ = 1, α = 1

Hall model 1 − cx−1/α(1 + x−1/β), x ≥ 1 α = 1, β = 1
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Figure 4. 100 realizations of the Hill estimator for Cauchy-plus (left) and Pareto-CP (right)

d.f.’s and the corresponding fitted Pareto parameters. Here the dark lines represent the

fitted Pareto parameter computed from the approximation formula (3.5) and the light ones

are the corresponding Hill plots.
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Figure 5. 100 realizations of the Hill estimator for GPD (left) d.f. and for the Hall model

(right) and the corresponding fitted Pareto parameters. Here the dark lines represent the

fitted Pareto parameter computed from the approximation formula (3.5) and the light ones

are the corresponding Hill plots.
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Figure 6. Box-plots of selected intervals (in %) and the adaptive estimators for Pareto d.f.

from 500 realization for different sample sizes.
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Figure 7. Box-plots of selected intervals (in %) and the adaptive estimators for Cauchy-plus

d.f. from 500 realization for different sample sizes.
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Figure 8. Box-plots of selected intervals (in %) and the adaptive estimators for Pareto-log

d.f. from 500 realization for different sample sizes.
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Figure 9. Box-plots of selected intervals (in %) and the adaptive estimators for Pareto-CP

d.f. from 500 realization for different sample sizes.
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Consider two-dimensional differential system with homogeneities of the 4th order

dxj

dt
= aj

αβγδx
αxβxγxδ (j, α, β, γ, δ = 1, 2), (1)

where the coefficient tensor aj
αβγδ is symmetrical in lower indices in which the comp-

lete convolution holds.
Consider also the group of center-affine transformations GL(2, R) given by the

equalities

x̄1 = αx1 + βx2, x̄2 = γx1 + δx2, ∆ = det

(
α β
γ δ

)
6= 0.

Further will use the notations

a1
1111 = a, a1

1112 = b, a1
1122 = c, a1

1222 = d, a1
2222 = e, a2

1111 = f, a2
1112 = g,

a2
1122 = h, a2

1222 = k, a2
2222 = l, x1 = x, x2 = y. (2)

According to [1] and taking into consideration (2) the representation operators
of the group GL(2, R) in the space of coefficients and variables of the system (1) will
take the form

X1 = x
∂

∂x
− 3a

∂

∂a
− 2b

∂

∂b
− c

∂

∂c
+ e

∂

∂e
− 4f

∂

∂f
− 3g

∂

∂g
− 2h

∂

∂h
− k

∂

∂k
;

X2 = y
∂

∂x
+ f

∂

∂a
+ (g − a)

∂

∂b
+ (h − 2b)

∂

∂c
+ (k − 3c)

∂

∂d
+ (l − 4d)

∂

∂e
−

c© E. Naidenova, M.N. Popa, V. Orlov, 2007
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−f
∂

∂g
− 2g

∂

∂h
− 3h

∂

∂k
− 4k

∂

∂l
;

X3 = x
∂

∂y
− 4b

∂

∂a
− 3c

∂

∂b
− 2d

∂

∂c
− e

∂

∂d
+ (a − 4g)

∂

∂f
+

+(b − 3h)
∂

∂g
+ (c − 2k)

∂

∂h
+ (d − l)

∂

∂k
+ e

∂

∂l
;

X4 = y
∂

∂y
− b

∂

∂b
− 2c

∂

∂c
− 3d

∂

∂d
− 4e

∂

∂e
+ f

∂

∂f
− h

∂

∂h
− 2k

∂

∂k
− 3l

∂

∂l
. (3)

The operators (3) form a four-dimensional reductive Lie algebra [1].

Let ã = (a, b, ..., l) ∈ E10(ã), where E10(ã) is Euclidean space of the coefficients
of the right-hand sides of the system (1). Denote by ã(q) the point from E10(ã)
that corresponds to the system, obtained from the system (1) with coefficients ã by
a transformation q ∈ GL(2, R).

Definition 1. Call the set O(ã) = {ã(q)|q ∈ GL(2, R)} the GL(2, R)-orbit of the
point ã for the system (1).

Definition 2. Call the set M ⊆ E10(ã) the GL(2, R)-invariant if for any point
ã ∈ M its orbit O(ã) ⊆ M .

It is known from [1] that

dimRO(ã) = rankM1, (4)

where M1 is the following matrix

M1 =





3a 2b c 0 −e 4f 3g 2h k 0
−f a − g 2b − h 3c − k 4d − l 0 f 2g 3h 4k
4b 3c 2d e 0 4g − a 3h− b 2k − c l − d −e
0 b 2c 3d 4e −f 0 h 2k 3l



 ,

(5)

constructed on coordinate vectors of operators (3).

Will use the following notations for the matrix M1: denote by ∆ijkl the minor

of the 4th order constructed on columns i, j, k, l, (i, j, k, l = 1, 10); denote by ∆ijk
lmn

the minor of the 3rd order constructed on lines i, j, k, (i, j, k = 1, 4) and columns
l, m, n, (l,m, n = 1, 10); and by ∆ij

kl will be denoted the minor of the 2nd order
constructed on lines i, j, (i, j = 1, 4) and columns k, l, (k, l = 1, 10).

For the system (1) two comitants of the first order with respect to its coefficients
are known from [2]

F3 = (a + g)x3 + 3(b + h)x2y + 3(c + k)xy2 + (d + l)y3,

F5 = −fx5 + (a− 4g)x4y + (4b − 6h)x3y2 + (6c − 4k)x2y3 + (4d− l)xy4 + ey5. (6)

According to [3], write a transvectant of index k for binary forms f and ϕ as
follows
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(f, ϕ)(k) =
(r − k)!(ρ − k)!

r!ρ!

k∑

h=0

(−1)hCh
k

∂kf

∂xk−h∂yh

∂kϕ

∂xh∂yk−h
, (7)

where r and ρ are degrees of these forms with respect to x and y correspondingly.

According to [4], the transvectant (7) on two comitants of the system (1) is a
comitant (invariant) of this system too.

Taking into consideration the above mentioned, the following comitants and
invariants of the system (1) were constructed in [2]:

L1 = (F5, F5)
(2), L2 = (F5, F5)

(4), L3 = (F3, F3)
(2),

L4 = (F3, F5)
(1), L5 = (F3, F5)

(2), L6 = (F3, F5)
(3),

L7 = (L2, F5)
(2), B1 = (L3, L3)

(2), B2 = (L1, L1)
(6),

B3 = (L1, L4)
(6), B4 = (L3, L6)

(2), B5 = (L5, L5)
(4),

B6 = ((L3, L5)
(2), L3)

(2), B7 = ((L7, L7)
(2), L2)

(2),

B8 = ((((F3, L4)
(2), F3)

(2), L5)
(2), L5)

(4),

B9 = (((L7, L7)
(2), L7)

(1), L7)
(3),

C2 = (L1, L1)
(2). (8)

Lemma 1. For F5 ≡ 0 the rang of matrix M1 is equal to four if and only if B1 6= 0,
where B1 is from (8).

Proof. Taking into consideration (6) from F5 ≡ 0 we obtain

e = f = 0, a = 4g, b =
3

2
h, k =

3

2
c, l = 4d. (9)

As conditions (9) hold the matrix M1 takes the form

M
(1)
1 =





12g 3h c 0 0 0 3g 2h 3
2c 0

0 3g 2h 3
2c 0 0 0 2g 3h 6c

6h 3c 2d 0 0 0 3
2h 2c 3d 0

0 3
2h 2c 3d 0 0 0 h 3c 12d



 . (10)

As conditions (9) hold the invariant B1 takes the form

B1 = −625

8
(S2 − 4TR), (11)

where
R = 2cg − h2, S = 4dg − ch, T = 2dh − c2. (12)

We note that all nonzero minors of the 4th order of matrix M
(1)
1 up to an constant

factor coincide with ∆1234 = −108

625
B1.
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Hence, for F5 ≡ 0, B1 6= 0 the rang of the matrix (5) is equal to four. Lemma 1
is proved.

Lemma 2. For F5 ≡ 0 the rang of matrix M1 is equal to three if and only if holds

B1 = 0, L3 6≡ 0, (13)

where B1, L3 are from (8).

Proof. As conditions (9) hold, considering (1) and (2) the comitant L3 takes the
form

L3 =
25

2
(Rx2 + Sxy + Ty2), (14)

where R, S, T are from (12). Calculations yield that any nonzero third order minor
of the matrix (10) up to a constant factor coincides with one of the following minors:

∆123
123 = −36hR + 18gS; ∆123

124 = −27cR; ∆123
134 = −9cS;

∆123
234 = −9

2
cT ; ∆124

123 = 36gR; ∆124
124 = 27gS;

∆124
134 = 36gT ; ∆124

234 = −9

4
(−3hT + 2dR);

∆134
123 = −72gT + 27hS; ∆134

124 = 54dR; ∆134
134 = 18dS;

∆134
234 = 9dT ; ∆234

123 = −18hR; ∆234
124 = −27

2
hS;

∆234
134 = −18hT ; ∆234

234 = −9cT +
9

2
dS. (15)

The necessity of the conditions (13) follows from Lemma 1, (14) and(15). It is
evident that, according to (11) for B1 = 0, S2 = 4TR holds and from L3 6≡ 0 (see
(14)) at least one of R, S and T will be nonzero. This fact with c2 +d2 +g2 +h2 6= 0
ensure that at least one of minors (15) will be nonzero. Lemma 2 is proved.

Lemma 3. For F5 ≡ 0 the rang of matrix M1 is equal to two if and only if

L3 ≡ 0, F3 6≡ 0, (16)

where F3 is from (6) and L3 is from (8).

Proof. According to (9) from (14) for L3 ≡ 0 we obtain T = R = S = 0, where
R, S, T are from (12). This implies B1 = 0 and from Lemma 2 rangM1 < 3. Will
show that in this case rangM1 = 2 if and only if

F3 = 5gx3 +
15

2
hx2y +

15

2
cxy2 + 5dy3 6≡ 0. (17)
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And this is ensured by the existence of the following second order minors of the

matrix M
(1)
1

∆12
12 = 36g2, ∆34

12 = 9h2, ∆12
34 =

3

2
c2, ∆34

34 = 6d2.

Lemma 3 is proved.
The next result is evident.

Lemma 4. For F5 ≡ 0 the rang of matrix M1 is equal to zero if and only if F3 ≡ 0,
where F3 is from (6).

From Lemmas 1–4 and equality (4) follows

Theorem 5. For F5 ≡ 0 the dimension of GL(2, R)-orbit of the system (1) is equal
to

4 for B1 6= 0;

3 for B1 = 0, L3 6≡ 0;

2 for L3 ≡ 0, F3 6≡ 0;

0 for F3 ≡ 0,

where F3 and F5 are from (6), and B1, L3 are from (8).

Lemma 6. For F3 ≡ 0 the rang of matrix M1 is equal to four if and only if

3L1L2 + 105C2 + 26F5L7 6≡ 0, (18)

where F3 and F5 are from (6), and L1, L2, L7, C2 are from (8).

Proof. Taking into consideration (6) from F3 ≡ 0 we obtain

a = −g, b = −h, c = −k, d = −l. (19)

On the other hand, according to [5] such GL(2, R)-transformation exists that the
comitant F5 will take the form F5 = yF̃4, where F̃4 is the polynomial of the forth
order on variables, corresponding to the system (1) after the transformation. Due
to this we obtain that f = 0. As this holds from conditions (19) we obtain that the
matrix M1 takes the form

M
(2)
1 =





−3g −2h −k 0 −e 0 3g 2h k 0
0 −2g −3h −4k −5l 0 0 2g 3h 4k

−4h −3k −2l e 0 5g 4h 3k 2l −e
0 −h −2k −3l 4e 0 0 h 2k 3l



 . (20)

Nonzero 4th order minors of the matrix (20) will coincide up to the numerical factor
with one of the following:

∆1234 = 12eg2k − 9egh2 + 36g2l2 − 129ghkl + 72gk3 + 72h3l − 48h2k2;
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∆1235 = −48eg2l + 156eghk − 108eh3 − 30ghl2 + 90gk2l − 60h2kl;

∆1236 = 60g3k − 45g2h2;

∆1245 = 24e2g2 + 39eghl + 144egk2 − 144eh2k + 135gkl2 − 120h2l2;

∆1246 = 90g3l − 60g2hk; ∆1256 = −120eg3 − 75g2hl;

∆1345 = 36e2gh + 126egkl + 36eh2l − 96ehk2 + 90gl3 − 60hkl2;

∆1346 = 135g2hl − 120g2k2; ∆1356 = −180eg2h − 150g2kl;

∆1456 = −240eg2k − 225g2l2;

∆2345 = −12e2gk + 27e2h2 − 12egl2 + 114ehkl − 72ek3 + 60hl3 − 45k2l2;

∆2346 = −30g2kl + 90gh2l − 60ghk2; ∆2356 = 60eg2k − 135egh2 − 75ghkl;

∆2456 = 30eg2l − 180eghk − 150ghl2; ∆3456 = 45eghl − 120egk2 − 75gkl2. (21)

Also holds the equality

3L1L2 + 105C2 + 26F5L7 = −2∆1236x
8 − 4∆1246x

7y − 2(∆1256 + 3∆1346)x
6y2−

−4(∆1356 + 2∆2346)x
5y3 + 2(−5∆1234 + ∆15610 − 3∆2356)x

4y4−
−4(2∆1235 + ∆2456)x

3y5 − 2(3∆1245 + ∆3456)x
2y6 − 4∆1345xy7 − 2∆2345y

8. (22)

Let prove the necessity of condition (18). Assume the contrary, i.e. for 3L1L2 +
105C2 + 26F5L7 ≡ 0 there exists at least one nonzero 4th order minor of the matrix
M1. Taking into consideration (6), (8), (19) , (21) and (22), from 3L1L2 + 105C2 +
26F5L7 ≡ 0 we obtain the following series of conditions for coefficients of the system
(1):

I. g = h = k = 0; (23)

II. g = h = 0, e = −5l2

8k
, k 6= 0; (24)

III. g = 0, l =
2k2

3h
, e = −10k3

27h2
, h 6= 0; (25)

IV. k =
3h2

9g
, l =

h3

2g2
, e = − 5h4

16g3
, g 6= 0. (26)

With the aid of (21) one can verify that while any of the series of the conditions
(23)–(26) holds, all the 4th order minors of the matrix (20) will be equal to zero.
Thus obtained contradiction proves the necessity of condition (18).

The sufficiency of condition (18) is ensured by equality (22). Lemma 6 is proved.

Lemma 7. For F3 ≡ 0 the rang of matrix M1 is equal to three if and only if

3L1L2 + 105C2 + 26F5L7 ≡ 0, L1 6≡ 0, (27)

where F3 and F5 are from (6), and L1, L2, L7, C2 are from (8).
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Proof. In proof we will use the GL(2, R)-transformation from the proof of Lemma
6, and therefore, the equality f = 0 can be assumed. According to Lemma 6, as
first condition from (27) holds for the coefficients of the system (1) besides (19) we
obtain the values (23)–(26).

Consider the conditions (23). The matrix M1 takes the form

M
(3)
1 =





0 0 0 0 −e 0 0 0 0 0
0 0 0 0 −5l 0 0 0 0 0
0 0 −2l e 0 0 0 0 2l −e
0 0 0 −3l 4e 0 0 0 0 3l



 (28)

and the comitant L1 takes the form

L1 = −2l2y6. (29)

Hence, it is evident that the condition L1 6≡ 0 is sufficient and necessary.

Consider the conditions (24). The matrix M1 takes the form (with e = −5l2

8k
)

M
(4)
1 =





0 0 −k 0 −e 0 0 0 k 0
0 0 0 −4k −5l 0 0 0 0 4k
0 −3k −2l e 0 0 0 3k 2l −e
0 0 −2k −3l 4e 0 0 0 2k 3l



 (30)

and the comitant L1 takes the form L1 = −3
4(4kx+ ly)2y4. Since k 6= 0, considering

(30) and (24) we obtain L1 6≡ 0 and ∆123
234 = −12k3 6= 0, i.e. rangM

(4)
1 = 3.

Consider the conditions (25). The matrix M1 takes the form (with the values of
the parameters l and e from (25))

M
(5)
1 =





0 −2h −k 0 −e 0 0 2h k 0
0 0 −3h −4k −5l 0 0 0 3h 4k

−4h −3k −2l e 0 0 4h 3k 2l −e
0 −h −2k −3l 4e 0 0 h 2k 3l



 (31)

and the comitant L1 takes the form

L1 = − 4

27h2
(3hx + ky)4y2.

So, as h 6= 0 we get L1 6≡ 0 as well as ∆123
123 = −24h3 6= 0.

Consider the conditions (26).

The matrix M1 takes the form M
(2)
1 (with the values of the parameters k, l and

e from (26)), and the comitant L1 takes the form

L1 = − 1

32g4
(2gx + hy)6.

Since g 6= 0 we obtain L1 6≡ 0 and ∆123
126 = 30g3 6= 0, i.e. rangM

(2)
1 = 3.

Lemma 7 is proved.
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Lemma 8. For F3 ≡ 0 the rang of matrix M1 is equal to two if and only if

L1 ≡ 0, F5 6≡ 0, (32)

where F3 and F5 are from (6), and L1 is from (8).

Proof. As C2 = (L1, L1)
(2) (see (8)) it is evident that from L1 ≡ 0 follows C2 ≡ 0.

Moreover, as L1 is the Hessian of the comitant F5 then, for L1 ≡ 0 it follows
F5 = (αx + βy)5, a, b ∈ R (see [3]). Considering (8) it is easy to verify that the
transvectant L7 = (((αx+βy)5, (αx+βy)5)4, (αx+βy)5)2 = 0. Hence, the condition
L1 ≡ 0 implies 3L1L2 + 105C2 + 26F5L7 ≡ 0 and then from Lemma 7 follows the
necessity of the conditions (32).

Let prove the sufficiency. Assume L1 ≡ 0, i.e. F5 must be of the form F5 =
(αx + βy)5 (see above). On the other hand, as it was mentioned in the proof of
Lemma 6, we assume f = 0 due to a GL(2, R)-transformation. Hence α = 0 and
considering (19) and (6) we obtain g = h = k = l = 0, F5 = ey5. In this case the
matrix M1 takes the form

M
(6)
1 =





0 0 0 0 −e 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 e 0 0 0 0 0 −e
0 0 0 0 4e 0 0 0 0 0



 . (33)

It is evident that for F5 ≡ 0 all 2nd order minors of the matrix M
(6)
1 will be equal

to zero, and for F5 6≡ 0 the 2nd order minor ∆13
45 = e2 will be nonzero.

Lemma 8 is proved.
With the aid of Lemmas 4-8 and equality (4) is proved

Theorem 9. For F3 ≡ 0 the dimension of GL(2, R)-orbit of the system (1) is equal
to

4 for 3L1L2 + 105C2 + 26F5L7 6≡ 0;

3 for 3L1L2 + 105C2 + 26F5L7 ≡ 0, L1 6≡ 0;

2 for L1 ≡ 0, F5 6≡ 0;

0 for F5 ≡ 0,

where F3 and F5 are from (6), and L1, L2, L7, C2 are from (8).

Lemma 10. For F3F5 6≡ 0 the rang of matrix M1 is equal to four if and only if

12L2
4 − 3L3F

2
5 + 6L1F

2
3 6≡ 0, (34)

where F3, F5 are from (6) and L1, L3, L4 are from (8).

Proof. The sufficiency of the condition (34) follows from the equality

12L2
4−3L3F

2
5 +6L1F

2
3 = (∆1267+∆1678)x

12+(4∆1268+2∆1367+2∆1679+4∆2678)x
11y+

+(∆1236 +5∆1269 +10∆1278 +9∆1368 +∆1467 +∆16710 +3∆1689 +2∆2367 +8∆2679+
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+6∆3678)x
10y2+(4∆1237+2∆1246+2∆12610+16∆1279+12∆1369+24∆1378+6∆1468+

+2∆16810+4∆1789+12∆2368+4∆26710+12∆2689+12∆3679+4∆4678)x
9y3+(6∆1238+

+8∆1247+∆1256+7∆12710+14∆1289+3∆1346+5∆13610+40∆1379+9∆1469+18∆1478+

+∆1568+∆16910+3∆17810+18∆2369+36∆2378+8∆2468−∆2567+8∆26810+16∆2789−
−2∆3467 + 6∆36710 + 18∆3689 + 8∆4679 + ∆5678)x

8y4 + (4∆1239 + 12∆1248 + 4∆1257+

+8∆12810 + 12∆1347 + 2∆1356 + 18∆13710 + 36∆1389 + 4∆14610 + 32∆1479 + 2∆1569+

+4∆1578 + 2∆17910 + 4∆2346 + 8∆23610 + 64∆2379 + 16∆2469 + 32∆2478 + 4∆26910+

+12∆27810+2∆3567+12∆36810+24∆3789+4∆46710+12∆4689+2∆5679)x
7y5+(∆12310+

+8∆1249 + 6∆1258 + 3∆12910 + 18∆1348 + 8∆1357 + 21∆13810 + ∆1456 + 15∆14710+

+30∆1489 + ∆15610 + 8∆1579 + ∆18910 + 16∆2347 + 3∆2356 + 30∆23710 + 60∆2389+

+8∆24610+64∆2479+3∆2569+6∆2578+8∆27910+6∆3469+12∆3478−3∆3568+6∆36910+

+18∆37810−∆4567 +8∆46810 +16∆4789 +∆56710 +3∆5689)x
6y6 +(2∆12410 +4∆1259+

+12∆1349 + 12∆1358 + 8∆13910 + 4∆1457 + 18∆14810 + 4∆15710 + 8∆1589 + 24∆2348+

+12∆2357 +36∆23810 +2∆2456 +32∆24710 +64∆2489 +2∆25610 +16∆2579 +4∆28910+

+4∆34610+32∆3479+12∆37910−2∆4568+4∆46910+12∆47810+2∆56810+4∆5789)x
5y7+

+(∆12510 + 3∆13410 + 8∆1359 + 6∆1458 + 7∆14910 + 5∆15810 + 16∆2349 + 18∆2358+

+14∆23910 + 8∆2457 + 40∆24810 + 9∆25710 + 18∆2589 + ∆3456 + 18∆34710 + 36∆3489+

+∆35610 + 8∆3579 + 6∆38910 − ∆4569 − 2∆4578 + 8∆47910 + ∆56910 + 3∆57810)x
4y8+

+(2∆13510 +4∆1459 +2∆15910 +4∆23410 +12∆2359 +12∆2459 +16∆24910 +12∆25810+

+4∆3457+24∆34810+6∆35710+12∆3589+4∆48910+2∆57910)x
3y9+(∆14510+3∆23510+

+8∆2459 + 5∆25910 + 6∆3458 + 10∆34910 + 9∆35810 + ∆45710 + 2∆4589+

+∆58910)x
2y10 +(2∆24510 +4∆3459 +4∆35910 +2∆45810)xy11 +(∆34510 +∆45910)y

12,
(35)

where ∆ijkl, (1 ≤< j < k < l ≤ 10) are the minors of the matrix M1.
Let us prove the necessity of the condition (34). Assume the contrary, i.e. sup-

pose that the condition

12L2
4 − 3L3F

2
5 + 6L1F

2
3 ≡ 0 (36)

is satisfied. We claim that in this case all minors ∆ijkl (1 ≤< j < k < l ≤ 10) of the
fourth degree vanish. Indeed, since the comitant F3 6≡ 0 is a cubic binary form in x
and y, via a center-affine transformation [3] it can be brought to one of the following
3 canonical forms (depending on its factorization over C):

(i) Ax(x2 ± y2); (ii) Ax2y; (iii) Ax3,
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where A 6= 0 due to F3 6≡ 0. According to [5], these canonical forms can be used in
order to construct the transformed system (1) via the same center-affine transfor-
mation. We shall consider each case separately.

(i) F3 = Ax(x2 ± y2). Taking into consideration (6) we obtain the following
values for the coefficients of the system (1):

a = A − g, b = −h, c = ±1

3
A − k, d = −l.

Then considering (36) we get the following relations:

b = d = e = f = h = l = 0, a = 4g =
4

5
A, k =

3

2
c = ±1

5
A.

However for these values of the coefficients of system (1) we obtain F5 ≡ 0 and this
contradicts to lemma’s condition F3F5 6≡ 0.

(ii) F3 = Ax2y. Considering (6) in this case we have

a = −g, b =
1

3
A − h, c = −k, d = −l.

Then from the identity (36) we calculate

a = c = d = e = f = g = k = l = 0, b =
1

3
A − h. (37)

In this case the matrix M1 takes the form

M
(7)
1 =





0 2
3(A − 3h) 0 0 0 0 0 2h 0 0

0 0 2
3A − 3h 0 0 0 0 0 3h 0

4
3(A − 3h) 0 0 0 0 0 −1

3A + 4h 0 0 0
0 1

3(A − 3h) 0 0 0 0 0 h 0 0





and F5 = 2
3 (2A − 15h)x3y2. It is easy to observe that all 4th order minors of the

matrix M
(7)
1 are equal to zero.

(iii) F3 = Ax3. In the same manner as above in this case we obtain

a = A − g, b = −h, c = −k, d = −l.

and then from (36) we get

b = c = d = e = h = k = l = 0, a = A − g. (38)

For these values of the coefficients of system (1) the matrix M1 takes the form

M
(8)
1 =





3(A − g) 0 0 0 0 4f 3g 0 0 0
−f A − 2g 0 0 0 0 f 2g 0 0
0 0 0 0 0 −A + 5g 0 0 0 0
0 0 0 0 0 −f 0 0 0 0




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and F5 = −
[
fx + (5g − A)y]x4. And we observe again that all 4th order minors of

the matrix M
(8)
1 are equal to zero. As all possible cases are considered our claim is

proved. This has completed the proof of Lemma 10.

Lemma 11. For F3F5 6≡ 0 the rang of matrix M1 is equal to three if and only if

12L2
4 − 3L3F

2
5 + 6L1F

2
3 ≡ 0, (39)

where F3, F5 are from (6) and L1, L3, L4 are from (8).

Proof. The necessity follows from Lemma 10.

Let prove the sufficiency. Assume 12L2
4 − 3L3F

2
5 + 6L1F

2
3 ≡ 0. Since F3F5 6≡ 0

from the proof of Lemma 10 it follows that we need to consider only two series of
relations among the coefficients: (37) and (38).

If the relations (37) hold then the sufficiency is ensured by the equality

F3F
2
5 = 3(∆123

123 + 4∆123
129 + 9∆123

138 − 6∆123
378)x

8y5.

In the case when (38) holds then the sufficiency is ensured by the equality

3F3F
2
5 = ∆124

167x
13 + 2(∆124

126 + 3∆124
168 + 4∆124

267)x
12y − (∆123

126 + 3∆123
168 + 4∆123

267)x
11y2.

Lemma 11 is proved.

From Theorems 5, 9 and Lemmas 10–11 follows

Theorem 12. The dimension of GL(2, R)-orbit of the system (1) is equal to

4 for F5 ≡ 0, B1 6= 0, or

F3 ≡ 0, 3L1L2 + 105C2 + 26F5L7 6≡ 0, or

F3F5(12L
2
4 − 3L3F

2
5 + 6L1F

2
3 ) 6≡ 0;

3 for F5 + B1 ≡ 0, L3 6≡ 0, or

F3 + 3L1L2 + 105C2 + 26F5L7 ≡ 0, L1 6≡ 0, or

F3F5 6≡ 0, 12L2
4 − 3L3F

2
5 + 6L1F

2
3 ≡ 0;

2 for F5 + L3 ≡ 0, F3 6≡ 0, or

F3 ≡ L1 ≡ 0, F5 6≡ 0;

0 for F3 ≡ F5 ≡ 0,

where F3 and F5 are from (6), and B1, L1, L2, L3, L4, L7, C2 are from (8).

The authors tender thanks to Professor N.I. Vulpe for effective discussion of the
results of the paper.
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Power sets of n-ary quasigroups

G. Belyavskaya

Abstract. In the theory of latin squares and in the binary quasigroup theory the
notion of a latin power set (a quasigroup power set) is known. These sets have a good
property, and namely, they are orthogonal sets. Such sets were studied and methods
of their construction were suggested in different articles (see, for example, [1–5]).
In this article we introduce (k)-powers of a k-invertible n-ary operation (with respect
to the k-multiplication of n-ary operations) and (k)-power sets of n-ary quasigroups,
n ≥ 2, 1 ≤ k ≤ n, prove pairwise orthogonality of such sets and consider distinct
posibilities of their construction with the help of binary groups, in particular, using
n − T -quasigroups and n-ary groups.

Mathematics subject classification: 20N05, 20N15, 05B07.
Keywords and phrases: Binary quasigroup, k-invertible n-ary operation, n-ary
quasigroup, latin square, n-dimensional hypercube, latin power set, quasigroup power
set, pairwise orthogonal set of n-ary quasigroups.

1 Introduction

In the theory of latin squares the notion of a power set of latin squares or a
latin power set is known. In the articles [1–4] some properties and different methods
of constructing such sets , in particular, sets based and not based on groups, were
considered. In [5] an algebraic approach to the study of latin power set was used
and a new method of constructing quasigroup power sets based on cyclic S-systems
(such systems correspond to a particular case of latin power sets [6]) and on pairwise
balanced block designs of index one (BIB(v,b,r,k,1)) [7] was suggested.

Any power set of latin squares (of quasigroups) is an orthogonal set and can be
used in applications, in particular, by the construction of some codes and ciphers.
Such a ciphering device whose algorithm is based on a latin power set has been
patented [8]. In [4] it was noticed, ” It is obvious that latin power sets based on
non-group tables are more preferable to those based on group tables because the
greater irregularity makes the cipher safer”.

In this article we introduce and study the power sets of n-ary quasigroups, in
particular, prove pairwise orthogonality of such sets, consider distinct posibilities of
their construction.

2 Necessary notions and results

We recall some notations, concepts and results which are used in the article. At
first remember the following denations and notes from [9]. By xj

i we will denote

c© G. Belyavskaya, 2007
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the sequence xi, xi+1, . . . , xj , i ≤ j. If j < i, then xj
i is the empty sequence, 1, n =

{1, 2, . . . , n} . Let Q be a finite or an infinite set, n ≥ 2 be a positive integer and let
Qn denote the Cartesian power of the set Q.

An n-ary operation A (briefly, an n-operation) on a set Q is a mapping A : Qn →
Q defined by A(xn

1 ) → xn+1, and in this case we write A(xn
1 ) = xn+1.

A finite n-groupoid (Q,A) of order m is a set Q with one n-ary operation A
defined on Q, where |Q| = m.

An n-ary quasigroup (n-quasigroup) is an n-groupoid such that in the equality

A(xn
1 ) = xn+1

each of n elements from xn+1
1 uniquely defines the (n + 1)-th element. Usually a

quasigroup n-operation A is itself considered as an n-quasigroup.
The n-operation Ei, 1 ≤ i ≤ n, on Q with Ei(x

n
1 ) = xi is called the i-th identity

operation (or the i-th selector) of arity n.
An n-operation A on Q is called i-invertible for some i ∈ 1, n if the equation

A(ai−1
1 , xi, a

n
i+1) = an+1

has a unique solution for each fixed n-tuple (ai−1
1 , an

i+1, an+1) ∈ Qn.

For an i-invertible n-operation there exists the i-inverse n-operation (i)A defined
in the following way:

(i)A(xi−1
1 , xn+1, x

n
i+1) = xi ⇔ A(xn

1 ) = xn+1

for all xn+1
1 ∈ Qn+1.

It is evident that

A(xi−1
1 , (i)A(xn

1 ), xn
i+1) = (i)A(xi−1

1 , A(xn
1 ), xn

i+1) = xi

and (i)[(i)A] = A for i ∈ 1, n.
Let Ωn be the set of all n-ary operations on a finite or infinite set Q. On Ωn

define a binary operation ⊕
i

(the i-multiplication) in the following way:

(A ⊕
i

B)(xn
1 ) = A(xi−1

1 , B(xn
1 ), xn

i+1),

A,B ∈ Ωn, xn
1 ∈ Qn. Shortly this equality can be written as

A ⊕
i

B = A(Ei−1
1 , B,En

i+1)

where Ei is the i-th selector.
In [10] it was proved that (Ωn;⊕

i
) is a semigroup with the identity Ei. If Λi is

the set of all i-invertible n-operations from Ωn for some i ∈ 1, n, then (Λi;⊕
i
) is a

group. In this group Ei is the identity, the inverse element of A is the operation
(i)A ∈ Λi, since A ⊕

i
Ei = Ei ⊕

i
A, A ⊕

i

(i)A = (i)A ⊕
i

A = Ei.
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An n-ary quasigroup (Q,A) (or simply A), is an n-groupoid with an i-invertible
n-operation for each i ∈ 1, n [9].

Let (xn
1 )k denote the (n − 1)-tuple (xk−1

1 , xn
k+1) ∈ Qn−1 and let A be an

n-operation, then the (n − 1)-operation Aa:

Aa(x
n
1 )k = A(xk−1

1 , a, xn
k+1)

is called the (n− 1)-retract of A, defined by position k, k ∈ 1, n, with the element a
in this position (with xk = a) [9].

An n-ary operation A on Q is called complete if there exists a permutation ϕ on
Qn such that A = E1ϕ (that is A(xn

1 ) = E1ϕ(xn
1 )). If a complete n-operation A is

finite and has order m, then the equation A(xn
1 ) = a has exactly mn−1 solutions for

any a ∈ Q [10].

Any i-invertible (for some fixed i, i ∈ 1, n) n-operation A is complete, but there
exist complete n-operations which are not i-invertible for each i ∈ 1, n [10].

For n ≥ 2, an n-dimensional hypercube (briefly, an n-hypercube) of order m is
an m × m × · · · × m︸ ︷︷ ︸

n

array with mn points based upon m distinct symbols [11].

A hypercube is a generalization of a latin square, which in the case of squares
of order m, is an m × m array in which m distinct symbols are arranged so that
each symbol occurs once in each row and column. A latin square is a 2-dimensional
hypercube of a special type.

In [12] the connection between n-hypercubes and (algebraic)
n-ary operations was established. In addition we note that a k-invertible opera-
tion AH corresponds to an n-hypercube H with the following property: whenever
n− 1 of the n coordinates, except the k-th coordinate, are fixed, each of the m sym-
bols appears exactly one time in that subarray (in that k-th column). In this case
the mapping L(a)k

= AH(ak−1
1 , x, an

k+1) is a permutation on Q for each (a)k ∈ Qn−1

where (a)k = (ak−1
1 , an

k+1). In the theory of n-quasigroups this permutation is called
the k-th translation of the n-quasigroup (Q,AH) defined by the (n−1)-tuple (a)k [9].

In the case of n-ary operations for n > 2 it is possible to consider different
versions of orthogonality. The weakest is the notion of the pairwise orthogonality.

Definition 1 [12]. Two n-ary operations (n ≥ 2) A and B given on a set Q of order
m are called orthogonal (shortly, A ⊥ B) if the system {A(xn

1 ) = a,B(xn
1 ) = b} has

exactly mn−2 solutions for any a, b ∈ Q.

This concept corresponds to two orthogonal n-dimensional hypercubes [12]. Two
n-hypercubes H1 and H2 of order m are orthogonal if when superimposed, each of
the m2 ordered pairs appears mn−2 times [15],[11].

Definition 2 [12]. A set Σ = {At
1}, t ≥ 2, of n-operations is called pairwise

orthogonal if any pair of distinct n-operations from Σ is orthogonal.

In [13] the following criterion of orthogonality of two finite k-invertible
n-operations was established.
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Theorem 1 [13]. Let k be a fixed number from 1, n. Two finite k-invertible
n-operations A and B on a set Q are orthogonal if and only if the (n−1)-retract Ca

of the n-operation C = B ⊕
k

(k)A, defined by xk = a, is complete for every a ∈ Q.

Definition 3. We shall say that an n-operation C, given on a set Q, has the
k-property if its (n− 1)-retract Ca, defined by xk = a, is complete for every a ∈ Q.

Note that any n-quasigroup has the k-property for each k ∈ 1, n since any its
(n − 1)-retract is an (n − 1)-quasigroup.

3 Power sets of n-ary quasigroups and pairwise orthogonality

Let L be a latin square of order m, given on a set Q by its rows α1, α2, . . . , αm

(which are permutations of Q). Then power l of L is defined as

Ll = (αl
1, α

l
2, . . . , α

l
m).

If L,L2, . . . , Ls are all latin squares, then the set {L,L2, . . . , Ls} is called a latin
power set of size s.

It is known that a binary quasigroup (Q,A) corresponds to every latin square L
given on a set Q and if {L,L2, . . . , Ls} is a latin power set, then {A,A2, . . . , As} is
the corresponding quasigroup power set where Al= A ·A · ... ·A (l times), 1 ≤ l ≤ s,
(A · A)(x, y) = A2(x, y) = A(x,A(x, y)) [5].

Consider an analog of powers for n-operations. Let k be a fixed number of 1, n,
A be a k-invertible n-operation.

The power Al = A ⊕
k

A ⊕
k

. . . ⊕
k

A (l times) with respect to the k-multiplication

of n-ary operations is called the (k)-power l of A.
Note that if all (k)-powers A,A2, . . . , As are n-quasigroups, then they are dif-

ferent, that is form a set, since the equality At = Ar, t, r ∈ 1, s, t > r, implies
At−r = Ek for t − r < s.

Definition 4. A set Σk = {A,A2, . . . , As}k, s ≥ 2, is called a (k)-power set of
n-quasigroups if all (k)-powers of A from Σk are n-quasigroups.

Note that index k after a set shows additionally that the powers in this set are
taken with respect to the k-multiplication of operations.

Using Theorem 1 it is easy to prove the following statement for any k-invertible
n-operations, in particular, for n-quasigroups.

Theorem 2. Let A be a finite k-invertible n-operation and the (k)-powers
A,A2, . . . , As, s ≥ 2, of A be different. Then the set Σk = {A,A2, . . . , As}k is
a pairwise orthogonal if and only if each of the n-operations A,A2, . . . , As−1 has the
k-property.

Proof. At first we remember that all k-invertible n-operations, given on a set Q,
form a group with the identity Ek with respect to the k-multiplication, (k)A is the
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inverse element of A in this group and ((k)A)l =(k) (Al). Let 1 ≤ i ≤ s−1, i < j ≤ s.
By Theorem 1 Aj ⊥ Ai if and only if the n-operation Aj ⊕

k
((k)A)i = Aj−i has the

k-property for any 1 ≤ j − i ≤ s − 1. �

For a binary operation A on a set Q 2-invertibility means that the equation
A(a, y) = b has a unique solution for any a, b ∈ Q. If A has the 2-property, then the
equation A(x, a) = b has a unique solution for any a, b ∈ Q, that is A is 1-invertible
also. Thus, in Theorem 2 all (2)-powers A,A2, . . . , As−1 of a binary (2)-invertible
operation A must be quasigroups, As can be only (2)-invertible and is true the
following

Corollary 1. Let A be a finite 2-invertible binary operation and the (2)-powers
A,A2, . . . , As, s ≥ 2, of A are different. Then the set Σ2 = {A,A2, . . . , As}2 is
orthogonal if and only if A,A2, . . . , As−1 are quasigroups.

In [1] the following result (Corollary 5a) with respect to latin power sets which
we shall formulate in the language of quasigroups was proved, where A−1 = (2)A is
the right inverse quasigroup for A (A−1(x, y) = z ⇔ A(x, z) = y).

Proposition 1 [1]. If A,A2, . . . , As, s ≥ 2, are finite quasigroups, then any s succes-
sive quasigroups from (A−1)s, (A−1)s−1, . . . , A−1, A,A2, . . . , As form an orthogonal
set of quasigroups.

Now we prove that for n-ary case, n ≥ 2, an analogous situation takes place.

Theorem 3. If a set Σk = {A,A2, . . . , As}k is a (k)-power set of finite quasigroups,
then in the sequence

((k)A)s, ((k)A)s−1, . . . , ((k)A)2, (k)A,A,A2, . . . , As

every s-tuple of successive n-quasigroups is a pairwise orthogonal set.

Proof. Let 1 ≤ i, j ≤ s, i < j, then Aj ⊕
k

((k)A)i = Aj ⊕
k

(k) (Ai)= Aj−i ∈ Σk, so the

n-operation Aj−i is an n-quasigroup, all its (n− 1)-retracts are (n− 1)-quasigroups
too, so they have the k-property and by Theorem 2 we have Ai ⊥ Aj. On the
other hand, by the same restrictions on i, j we obtain (k)(Ai) ⊕

k
Aj = Aj−i ∈ Σk, so

(k)(Ai) ⊥(k) (Aj) by Theorem 2.

Let 1 ≤ i ≤ s − 1, 1 ≤ j ≤ s − i, then Ai ⊕
k

(k) ((k)(Aj)) = Ai ⊕
k

Aj = Ai+j ∈ Σk,

so Ai ⊥(k) (Aj) by Theorem 2 (see the previous case). �

Corollary 2. If in Theorem 3, in addition, s + 1 is the smallest exponent such that
As+1 = Ek, then the sequence from the theorem is A,A2, . . . , As.

Proof. Indeed, by these conditions ((k)A)i = As+1−i for all i ∈ 1, s. �

Theorem 4. Let (Q,A) be a finite n-quasigroup of the form

A(xn
1 ) = α1x1 · ... · αk−1xk−1 · xk · αk+1xk+1 · ... · αnxn
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for some fixed k ∈ 1, n, where αi is a permutation of Q for every i ∈ 1, n, i 6= k, (Q, ·)
is a binary group. Then Σk = {A,A2, . . . , As}k is a (k)-power set of n-quasigroups if
and only if in the group (Q, ·) the mapping x → xl is a permutation for each l ∈ 2, s.

Proof. Let an n-quasigroup (Q,A) have the form of the theorem, then

A2(xn
1 ) = A(xk−1

1 , A(xn
1 ), xn

k+1) = α1x1 · ... · αk−1xk−1·

(α1x1 · ... · αk−1xk−1 · xk · αk+1xk+1 · ... · αnxn) · αk+1xk+1 · ... · αnxn =

(α1x1 · ... · αk−1xk−1)
2 · xk · (αk+1xk+1 · ... · αnxn)2.

Taking into account that Al(xn
1 ) = Al−1(xk−1

1 , A(xn
1 ), xn

k+1) we shall obtain by
the same way

Al(xn
1 ) = (α1x1 · ... · αk−1xk−1)

l · xk · (αk+1xk+1 · ... · αnxn)l (1)

for any l ∈ 1, s.
Let Al be a finite n-quasigroup for some l, 2 ≤ l ≤ s, then it is i-invertible for

each i ∈ 1, n, that is for any (n − 1)-tuple (an
1 )i ∈ Qn−1,

Al(ai−1
1 , x, an

i+1) = Al(ai−1
1 , y, an

i+1) ⇔ x = y. (2)

If i ∈ 1, k − 1, then we have

(α1a1 · ... · αi−1ai−1 · αix · αi+1ai+1 · ... · αk−1ak−1)
l · ak · (αk+1ak+1 · ... · αnan)l =

(α1a1 · ... · αi−1ai−1 · αiy · αi+1ai+1 · ... · αk−1ak−1)
l · ak · (αk+1ak+1 · ... · αnan)l

⇔ x = y. Doing the respective cancelation we obtain

(a · αix · b)l = (a · αiy · b)l ⇔ x = y, (LaRbαix)l = (LaRbαiy)l ⇔ x = y,

where a = α1a1 · ... · αi−1ai−1, b = αi+1ai+1 · ... · αk−1ak−1, Lax = a · x, Rbx = x · b.
Changing x (y) with α−1

i R−1
b L−1

a x (α−1
i R−1

b L−1
a y), we obtained

xl = yl ⇔ α−1
i R−1

b L−1
a x = α−1

i R−1
b L−1

a y ⇔ x = y

by each i ∈ 1, k − 1.
Let i ∈ k + 1, n. Then from (2) it follows

(α1a1 · ... · αk−1ak−1)
l · ak · (αk+1ak+1 · ... · αi−1ai−1 · αix · αi+1ai+1 · ... · αnan)l =

(α1a1 · ... · αk−1ak−1)
l · ak · (αk+1ak+1 · ... · αi−1ai−1 · αiy · αi+1ai+1 · ... · αnan)l

⇔ x = y,
(c · αix · d)l = (c · αiy · d)l ⇔ x = y

where c = αk+1ak+1 · ... · αi−1ai−1, d = αi+1ai+1 · ... · αnan. Then xl = yl ⇔ x = y
for all l ∈ 1, s (see the previous case).
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Thus, if all (k)-powers A,A2, A3, . . . , As are n-quasigroups, then in the group
(Q, ·) the mapping x → xl is a permutation for each l ∈ 1, s.

Conversely, let all mappings x → xl, l ∈ 2, s, be permutations in the group (Q, ·).
Then all k-powers A,A2, A3, . . . , As , defined by (1) are different, that is they form
a set. Indeed, if At(xn

1 ) = Ar(xn
1 ), 1 ≤ r, t ≤ s and t > r, then from (1) we have

xtxky
t = xrxky

r, xt−rxky
t−r = xk

for any x, y ∈ Q. Setting y = e (the identity of the group (Q, ·)) in the last equality
we obtain that xt−rxk = xk and xt−r = e for t − r < s and any x ∈ Q. But by the
conditions all mappings x → xl, l ∈ 1, s, are permutations, so we have contradiction.

It remains to show that all (k)-powers are n-quasigroups. For that we can prove
(2) fixing an arbitrary (n − 1)-tuple (an

1 )i of elements of Q and making the inverse
transformations corresponding to the case i ∈ 1, k − 1 (i ∈ k + 1, n). That is every
(k)-power l of the finite n-quasigroup (Q,A) is i-invertible for any i ∈ 1, n, i 6=
k. But the n-operation Al is always k-invertible as a power with respect to the
k-multiplication. Thus, (Q,Al) is an n-quasigroup for each l ∈ 1, s and the set
Σk = {A,A2, . . . As}k is a (k)-power set of n-ary quasigroups. �

Corollary 3. Let (Q,+) be an abelian group of order m, m = pβ1
1 pβ1

2 . . . pβt
t be

decomposition in prime multipliers, p1 < p2 < ... < pt, p1 ≥ 3, k be a fixed element,
1 ≤ k ≤ n, (Q,A) be an n-quasigroup of the form:

A(xn
1 ) = α1x1 + α2x2 + ... + αk−1xk−1 + xk + αk+1xk+1 + ... + αnxn,

where all αi are permutations. Then Σk = {A,A2, . . . , Ap1−1}k is a (k)-power set of
n-quasigroups.

Proof. In an abelian group of order m with the zero 0 all mappings x → 2x,
x → 3x, . . . , (p1 − 1)x are permutations. Otherwise, lx = ly ⇒ l(x− y) = 0 if x 6= y,
2 ≤ l < p1, it means that in the group (Q,+) there exists an element which has
the order smaller than p1. We have contradiction with Lagrange’s Theorem stating
that the order of any subgroup (and the order of any element) divides the order of
a finite group [14]. Now use Theorem 4. �

For a finite elementary abelian group (that is a group which is a direct power of
a group of a prime order [14]) from Corollary 3 immediately follows

Corollary 4. If in Corollary 3 (Q,+) is an elementary abelian group of order
m = pt, p ≥ 3, then Σk = {A,A2, . . . Ap−1}k is a (k)-power set of n-quasigroups.

Corollary 5. Let in Corollary 3 the order of an abelian group (Q,+) be a prime
number p, p ≥ 3 and an n-quasigroup A have the form

A(xn
1 ) = x1 + x2 + ... + xn,

then Σk = {A,A2, . . . , Ap−1}k is a (k)-power set of n-quasigroups for each k ∈ 1, n.
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Remark. Note that in general Σk 6= Σl if k 6= l, since powers of an n-quasigroup A,
taken with respect to the k-multiplication and with respect to the l-multiplication
of n-operations, can be different.

Corollary 6. Let Σk = {A,A2, . . . , Ap−1}k be a (k)-power set of n-quasigroups of
Corollary 4 or 5, then Σ′

k = {Ek, A,A2, . . . , Ap−1}k is a (cyclic) group with respect
to the k-multiplication of n-operations.

Proof. By Theorem 4 the (k)-powers of an n-quasigroup A in these sets have the
form (1). By l = p where p is a prime number in that case we obtain Ap = Ek, since
ap = e in the group (Q, ·) with the identity e for each a ∈ Q. �

Recall that an n-quasigroup (Q,A) is called an n− T -quasigroup if there exist a
binary abelian group (Q,+), its automorphisms α1, α2, . . . , αn and an element a ∈ Q
such that

A(xn
1 ) = α1x1 + α2x2 + ... + αk−1xk−1 + αkxk + αk+1xk+1 + · · · + αnxn + a (3)

for all xn
1 ∈ Qn [16].

Corollary 7. Let (Q,A) be an n − T -quasigroup of (3) with αk = ǫ (the iden-
tity permutation) for some fixed k, k ∈ 1, n, where (Q,A) is an abelian group

of order m = pβ1
1 pβ1

2 . . . pβt
t , p1 < p2 < · · · < pt, p1 ≥ 3. Then the set

Σk = {A,A2, . . . , Ap1−1}k is a (k)-power set of n-quasigroups.

Proof . Follows from Theorem 4 and Corollary 3, taking into account (with respect
to the element a) that (Q,A) is an abelian group. �

Consider an n-ary group (Q,A) [9]. By Theorem of Gluskin-Hossu this n-group
has the form

A(xn
1 ) = x1 · θx2 · θ2x3 · ... · θn−1xn · a, (4)

where (Q, ·) is a binary group, θ is its automorphism such that θa = a, θn−1x =
axa−1. In this case we say that (Q,A) is an n-group over the binary group (Q, ·).

For an n-group over an abelian group (it is a particular case of n−T -quasigroups)
we have the following

Corollary 8. Let (Q,A) be an n-group of (4) over an abelian group of order m =

pβ1
1 pβ1

2 . . . pβt
t , p1 < p2 < ... < pt, p1 ≥ 3. Then Σ1 = {A,A2, . . . , Ap1−1}1 is a

(1)-power set of n-quasigroups, Σn = {A,A2, . . . , Ap1−1}n is an (n)-power set of
n-quasigroups. Moreover, if the automorphism θ has order k, 2 ≤ k ≤ n − 1, then
Σlk+1 = {A,A2, . . . , Ap1−1}lk+1 is also a (lk + 1)-power set for each l such that
2 ≤ lk ≤ n − 1.

Proof. In this case θn−1xn = xn and θlk = ǫ for each l such that 1 ≤ lk ≤ n − 1
and all statements are true by Corollary 7. �
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Existence and uniqueness results for a class

of nonlinear differential problems

Rodica Luca

Abstract. We investigate the existence and uniqueness of the strong and weak

solutions to a nonlinear differential system with boundary conditions and initial data.
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1 Introduction

Let H be a real Hilbert space with the scalar product < ·, · > and the associated

norm ‖ · ‖. We shall investigate the nonlinear differential system

(S)






dun

dt
(t) +

vn(t) − vn−1(t)

h
+ cnA(un(t)) ∋ fn(t),

dvn

dt
(t) +

un+1(t) − un(t)

h
+ dnB(vn(t)) ∋ gn(t),

n = 1, 2, . . . , 0 < t < T, in H,

with the boundary condition

(BC) v0(t) ∈ −α(u1(t)), 0 < t < T

and the initial data

(IC) un(0) = un0, vn(0) = vn0, n = 1, 2, . . . ,

where cn > 0, dn > 0, ∀n = 1, 2, . . ., h > 0, and A, B, α are multivalued operators

in H which satisfy some assumptions.

c© Rodica Luca, 2007
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This problem is a discrete version with respect to x (with H = IR) of the hyper-

bolic problem

(S)0






∂u

∂t
(t, x) +

∂v

∂x
(t, x) + A(u(t, x)) ∋ f(t, x),

∂v

∂t
(t, x) +

∂u

∂x
(t, x) + B(v(t, x)) ∋ g(t, x),

x > 0, t > 0, in IR

with the boundary condition

(BC)0 v(t, 0) ∈ −α(u(t, 0)), t > 0

and the initial data

(IC)0 u(0, x) = u0(x), v(0, x) = v0(x), x > 0.

The above problem (S)0+(BC)0+(IC)0 has applications in electrotechnics (the

propagation phenomena in electrical networks) and mechanics (the variable flow

of a fluid) [5, 6, 13]. The system (S)0 for x ∈ (0, 1) or x ∈ (0,∞), subject

to various boundary conditions has been studied by many authors: V. Barbu,

V. Iftimie, G. Moroşanu, R. Luca, etc (see the papers [2, 3, 7, 9, 12]). The problem

(S)+(BC)+(IC) is a generalization of the problem studied in [10], where the opera-

tor α : H → H is everywhere defined and single-valued. The methods used in this

paper to prove the maximal monotonicity of the operators A and A+B (see below)

are different than those used in [10]. We also mention the papers [10, 11] where we

investigated the system (S) with n = 1, 2, . . . , N (N ≥ 1) with some boundary con-

ditions and initial data. Although the proposed problem appeared by discretization

of (S)0+(BC)0+(IC)0, our problem also covers some nonlinear differential systems

in Hilbert spaces. For the basic concepts and results in the theory of monotone

operators and nonlinear evolution equations of monotone type in Hilbert spaces we

refer the reader to [1, 4, 8, 13].

We present the assumptions that we shall use in the sequel

(H1) The operators A : D(A) ⊂ H → H, B : D(B) ⊂ H → H are maximal

monotone, possibly multivalued, 0 ∈ A(0), 0 ∈ B(0).

(H2) The operator α : D(α) ⊂ H → H is maximal monotone, possibly multival-

ued, with D(α) 6= ∅.
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(H3) D(A) ∩ D(α) 6= ∅.
(H4) i) The operator α is bounded on bounded sets.

ii) (int D(α)) ∩ D(A) 6= ∅.
(H5) The constant h > 0.

(H6) The constants cn > 0, dn > 0, ∀n ≥ 1.

2 The results

We shall write our problem (S)+(BC)+(IC) as a Cauchy problem in a certain

Hilbert space, and we shall apply the theory of nonlinear evolution equations of

monotone type.

We consider the Hilbert space X = l2h(H) × l2h(H), where l2h(H) = {(un)n ⊂ H,
∞∑

n=1

‖un‖2 < ∞} (= l2(H)), with the scalar product

< ((un)n, (vn)n), ((un)n, (vn)n) >X=< (un)n, (un)n >l2h(H) +

< (vn)n, (vn)n >l2h(H)=

∞∑

n=1

h < un, un > +

∞∑

n=1

h < vn, vn > .

We define the operator A : D(A) ⊂ X → X, with

D(A) = {((un)n, (vn)n) ∈ X, u1 ∈ D(α)},

A((un)n, (vn)n) =

{((
vn − vn−1

h

)

n

,

(
un+1 − un

h

)

n

)
, with v0 ∈ −α(u1)

}
,

and the operator B : D(B) ⊂ X → X, with D(B) =
{
((un)n, (vn)n) ∈ X,

un ∈ D(A), vn ∈ D(B), ∀n ≥ 1, {(cnA(un))n} ⊂ l2(H), {(dnB(vn))n} ⊂ l2(H)
}
,

B((un)n, (vn)n) =
{
((cnγn)n, (dnδn)n), γn ∈ A(un), δn ∈ B(vn), ∀n ≥ 1

}
.

Theorem 1. If the assumptions (H2) and (H5) hold, then the operator A is maximal

monotone in X.

Theorem 2. If the assumptions (H1), (H5) and (H6) hold, then the operator B is

maximal monotone in X.

Theorem 3. If the assumptions (H1), (H2), (H3), [(H4)i) or (H4)ii)], (H5) and

(H6) hold, then the operator A + B is maximal monotone.
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Using the operators A and B our problem (S)+(BC)+(IC) can be equivalently

expressed as the following Cauchy problem in the space X

(P)






dU

dt
(t) + A(U(t)) + B(U(t)) ∋ F (t)

U(0) = U0,

where U = ((un)n, (vn)n), U0 = ((un0)n, (vn0)n), F = ((fn)n, (gn)n).

The main result for our problem (S)+(BC)+(IC)⇔(P) is

Theorem 4. Assume that the assumptions (H1), (H2), (H3), [(H4)i) or (H4)ii)],

(H5) and (H6) hold. If u10 ∈ D(A) ∩ D(α), un0 ∈ D(A), ∀n ≥ 2, vn0 ∈ D(B),

∀n ≥ 1 with (un0)n, (vn0)n ∈ l2(H), {(cnA(un0))n}, {(dnB(vn0))n} ⊂ l2(H), (that

is U0 ∈ D(A)∩D(B)), and (fn)n, (gn)n ∈ W 1,1(0, T ; l2(H)), then there exist unique

functions un, vn, n ≥ 1, (un)n, (vn)n ∈ W 1,∞(0, T ; l2(H)), u1(t) ∈ D(A) ∩ D(α),

un(t) ∈ D(A), ∀n ≥ 2, vn(t) ∈ D(B), ∀n ≥ 1, ∀ t ∈ [0, T ], that verify the system

(S) for all t ∈ [0, T ), the boundary condition (BC) for all t ∈ [0, T ) and the initial

data (IC). Moreover un, vn, n ≥ 1 are everywhere differentiable from right in the

topology of H and

d+un

dt
=

(
fn − cnA(un) − vn − vn−1

h

)0

, n ≥ 1,

d+vn

dt
=

(
gn − dnB(vn) − un+1 − un

h

)0

, n ≥ 1, t ∈ [0, T ),

with v0(t) ∈ −α(u1(t)), ∀ t ∈ [0, T ).

Remark. If U0 ∈ D(A) ∩ D(B) and F ∈ L1(0, T ;X) then by [1, Corollary

2.2, Chapter III] the problem (P)⇔(S)+(BC)+(IC) has a unique weak solution

U ∈ C([0, T ];X), that is there exist (Fk)k ⊂ W 1,1(0, T ; X), Fk → F , as k → ∞,

in L1(0, T ;X) and (Uk)k ⊂ W 1,∞(0, T ;X), Uk(0) = U0, Uk → U as k → ∞ in

C([0, T ];X), strong solutions for the problems

dUk

dt
(t) + (A + B)(Uk(t)) ∋ Fk(t), for a.a. t ∈ (0, T ), k = 1, 2, . . .

3 The proofs

The proof of Theorem 1. The operator A has D(A) 6= ∅ and it is well defined in

X; if ((un)n, (vn)n) ∈ D(A) then A((un)n, (vn)n) ∈ X. The operator A is monotone;
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indeed

< Z − Z,U − U >X=<

(
vn − vn−1

h

)

n

−
(

vn − vn−1

h

)

n

,

(un − un)n >l2h(H) + <

(
un+1 − un

h

)

n

−
(

un+1 − un

h

)

n

,

(vn − vn)n >l2h(H)=

∞∑

n=1

h<
vn − vn−1 − vn + vn−1

h
,

un − un > +

∞∑

n=1

h <
un+1 − un − un+1 + un

h
,

vn − vn >= − < v0 − v0, u1 − u1 >≥ 0, ∀U = ((un)n, (vn)n),

U = ((un)n, (vn)n) ∈ D(A), Z ∈ A(U), Z ∈ A(U),

u1 ∈ D(α), u1 ∈ D(α), v0 ∈ −α(u1), v0 ∈ −α(u1).

To prove that A is maximal monotone, it is sufficient (and necessary) to show

that for any λ (equivalently there exists a λ > 0 such that) R(I + λA) = X

(see [4, Proposition 2.2]). We consider λ = h and we shall prove that for any

Y = ((xn)n, (yn)n) ∈ X, the equation

(I + hA)(U) ∋ Y (1)

has a solution U = ((un)n, (vn)n) ∈ D(A).

The equation (1) is equivalent to

{
un + vn − vn−1 = xn

vn + un+1 − un = yn, n = 1, 2, . . . ,

with v0 ∈ −α(u1).

(2)

We look for a solution for (2) in the form

{
un = u1

n + u2
n

vn = v1
n + v2

n, n = 1, 2, . . . ,

where ((u1
n)n, (v1

n)n) is a solution to

{
u1

n + v1
n − v1

n−1 = xn

v1
n + u1

n+1 − u1
n = yn, n = 1, 2, . . . , in H

with v1
0 = 0,

(3)
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and ((u2
n)n, (v2

n)n) = a((pn)n, (qn)n), where a ∈ H will be determined below and

((pn)n, (qn)n) ∈ (l2(IR))2 is solution of the system






p1 + q1 = p

pn + qn − qn−1 = 0, n = 2, 3, . . .

qn + pn+1 − pn = 0, n = 1, 2, . . . , with p > 0, in IR.

(4)

The problem (3) has a solution. To prove this, we consider the operator A0 :

D(A0) = X → X, A0((un)n, (vn)n) = ((vn − vn−1)n, (un+1 − un)n), v0 = 0. Then

the problem (3) is equivalent to

U + A0(U) = Y. (5)

The above equation (5) has solution, because the operator A0 is maximal monotone

in X. Indeed, A0 is monotone

< A0(U) −A0(U), U − U >X=
∞∑

n=1

h < vn − vn−1 − vn + vn−1, un − un > +

+

∞∑

n=1

h < un+1 − un − un+1 + un, vn − vn >= 0, where v0 = v0 = 0.

In addition, A0 is single-valued, everywhere defined and continuous. By

[4, Proposition 2.4] we deduce that the operator A0 is maximal monotone and so

the equation (5) (⇔ the problem (3)) has a (unique) solution.

Using the same argument used before, we deduce that the problem (4) (here

H = IR) has a unique solution ((pn)n, (qn)n) ∈ l2(IR) × l2(IR). We shall deduce

in what follows the sequences (pn)n, (qn)n by a direct computation (we shall need

p1, q1).

We set p1 = r. Then by (4) we have

p1 = r, q1 = p − r,

pn = ∆n−1r − zn−2p, n ≥ 2,

qn = ∆n−1p − zn−1r, n ≥ 2,

(6)

where ∆0 = 1, ∆1 = 2, ∆2 = 5, ∆3 = 13, ∆4 = 34, ∆5 = 89, . . . ,

z0 = 1, z1 = 3, z2 = 8, z3 = 21, z4 = 55, . . .

The sequences (∆n)n, (zn)n satisfy the recursive relations

∆n = 3∆n−1 − ∆n−2, ∆0 = 1, ∆1 = 2,

zn = 3zn−1 − zn−2, z0 = 1, z1 = 3.



52 RODICA LUCA

Using the characteristic equation λ2 − 3λ + 1 = 0 with the solutions λ1,2 =

3 ±
√

5

2
, we obtain for (∆n)n and (zn)n the formulas

∆n =
1√
5

[(
3 +

√
5

2

)n √
5 + 1

2
+

(
3 −

√
5

2

)n √
5 − 1

2

]

, n = 0, 1, 2, . . .

zn =
1√
5




(

3 +
√

5

2

)n+1

−
(

3 −
√

5

2

)n+1


 , n = 0, 1, 2, . . . (7)

Then by (6) we obtain

pn =
1√
5




(

3 +
√

5

2

)n−1(√
5 + 1

2
r − p

)
+

(
3 −

√
5

2

)n−1(√
5 − 1

2
r + p

)

 ,

qn =
1√
5




(

3 +
√

5

2

)n−1(√
5 + 1

2
p − 3 +

√
5

2
r

)

+

+

(
3 −

√
5

2

)n−1(√
5 − 1

2
p +

3 −
√

5

2
r

)

. (8)

The only bounded sequences (pn)n, (qn)n which satisfy the relations (6) (of the

form (8)) are that in which the coefficient of

(
3 +

√
5

2

)n−1

in (8) is 0. Therefore

we obtain the condition

√
5 + 1

2
r − p = 0 ⇒ r =

√
5 − 1

2
p. Then the condition

√
5 + 1

2
p − 3 +

√
5

2
r = 0 is also satified. In this way we found the sequences (pn)n,

(qn)n ∈ l2(IR), solutions for (4)

pn =

(
3 −

√
5

2

)n−1√
5 − 1

2
p, qn =

(
3 −

√
5

2

)n

p, ∀n ≥ 1.

Evidently un = u1
n + u2

n = u1
n + apn, n ≥ 2 and vn = v1

n + v2
n = v1

n + aqn, n ≥ 2

verify the relations (2)1 for n = 2, 3, . . . and (2)2 for n = 1, 2, . . . We shall determine

a ∈ H such that

u1 + v1 − v0 = x1, v0 ∈ −α(u1) ⇔ u1
1 + u2

1 + v1
1 + v2

1 − v0 = x1, v0 ∈ −α(u1)

⇔ u1
1+ap1+v1

1+aq1−v0 = x1, v0 ∈ −α(u1
1+ap1) ⇔ ap1+aq1 ∈ −α(u1

1+ap) ⇔
√

5 − 1

2
ap +

3 −
√

5

2
ap ∈ −α

(
u1

1 +

√
5 − 1

2
ap

)
⇔ ap + α

(
u1

1 +

√
5 − 1

2
ap

)
∋ 0,

(9)
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where u1
1 is the solution for (3).

We denote z =

√
5 − 1

2
ap; then the equation (9) is equivalent to

√
5 + 1

2
z + α(u1

1 + z) ∋ 0.

We obtain the equation

Λ1(z) + Λ2(z) ∋ 0, (10)

where Λ1 : H → H, Λ1(z) =

√
5 + 1

2
z and Λ2 : D(Λ2) ⊂ H → H, D(Λ2) =

{z ∈ H, u1
1 + z ∈ D(α)}, Λ2(z) = α(u1

1 + z). The operator Λ1 is single-valued,

everywhere defined, strongly monotone and continuous (so maximal monotone) and

the operator Λ2 is maximal monotone. Then by [1, Corollary 1.3, Chapter II] we

deduce that the operator Λ1+Λ2 is strongly maximal monotone in H, so the equation

(10) has a (unique) solution z ∈ D(Λ2). Then a =

√
5 + 1

2p
z verifies the relation (9).

So we proved the existence of solution U = ((un)n, (vn)n) ∈ D(A) of the system (2)

or equation (1). Therefore the operator A is maximal monotone in X. Q.E.D.

The proof of Theorem 2. We suppose without loss of generality (for an easy

writing) that A and B are single-valued. By (H1), D(B) 6= ∅. Because B is defined

by a standard product construction, this operator is evidently monotone. Moreover

B is maximal monotone, that is ∀λ > 0 R(I+λB) = X ⇔ ∀Y = ((xn)n, (yn)n) ∈
X ∃U = ((un)n, (vn)n) ∈ D(B) such that U + λB(U) = Y . The last relation is

equivalent to

((un)n, (vn)n) + λ((cnA(un))n, (dnB(vn))n) = ((xn)n, (yn)n) ⇔

{
(un)n + λ(cnA(un))n = (xn)n

(vn)n + λ(dnB(vn))n = (yn)n
⇒

{
un + λcnA(un) = xn

vn + λdnB(vn) = yn, n ≥ 1
⇒

un = (I + λcnA)−1(xn) = JA
λcn

(xn), vn = (I + λdnB)−1(yn) = JB
λdn

(yn), ∀n ≥ 1.

Because A(0) = 0 we have JA
µ (0) = 0, ∀µ > 0 and

‖JA
µ (x) − JA

µ (0)‖ ≤ ‖x‖ ⇒ ‖JA
µ (x)‖ ≤ ‖x‖, ∀x ∈ H, ∀µ > 0.

Similarly by B(0) = 0 we deduce JB
µ (0) = 0, ∀µ > 0 and ‖JB

µ (x)‖ ≤ ‖x‖, ∀x ∈
H, ∀µ > 0. With this remark we have

∞∑

n=1

‖JA
λcn

(xn)‖2 ≤
∞∑

n=1

‖xn‖2 < ∞,

∞∑

n=1

‖JB
λdn

(yn)‖2 ≤
∞∑

n=1

‖yn‖2 < ∞,
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so U = ((un)n, (vn)n) ∈ D(B). Q.E.D.

The proof of Theorem 3. The operator A + B : D(A) ∩ D(B) ⊂ X → X has

D(A) ∩ D(B) = {((un)n, (vn)n), u1 ∈ D(A) ∩ D(α), un ∈ D(A), ∀n ≥ 2, vn ∈
D(B), ∀n ≥ 1, with {(cnA(un))n}, {(dnB(vn))n} ⊂ l2(H)} 6= ∅, by (H1), (H3).

First, we suppose (H4)i) holds. The operator A + B is monotone (A, B are

monotone). To prove that A + B is maximal monotone, we shall show that for any

F0 = ((f0
n)n, (g0

n)n) ∈ X the equation

U + A(U) + B(U) ∋ F0 (11)

has at least a solution U ∈ D(A) ∩ D(B).

For let F0 ∈ X be given. The equation (11) is equivalent to





un +

vn − vn−1

h
+ cnA(un) ∋ f0

n

vn +
un+1 − un

h
+ dnB(vn) ∋ g0

n, n = 1, 2, . . . ,
(12)

with v0 ∈ −α(u1). (13)

We consider the following approximate problem

{
Uλ + A(Uλ) + Bλ(Uλ) ∋ F0

Uλ ∈ D(A), λ > 0,
(14)

where Bλ((un)n, (vn)n) = ((cnAλ(un))n, (dnBλ(vn))n) with Aλ, Bλ the Yosida ap-

proximations of A, respectively B, (Aλ = 1
λ(I − JA

λ ), Bλ = 1
λ(I − JB

λ )).

Because Aλ, Bλ are everywhere defined (D(Aλ) = D(Bλ) = H), single-valued,

monotone, continuous, we deduce that Bλ is also everywhere defined in X, single-

valued, monotone and continuous, ∀λ > 0. As A is maximal monotone operator

(Theorem 1), then it follows that A+Bλ is maximal monotone, ∀λ > 0. Therefore,

for any λ > 0 the problem (14) has a solution Uλ = ((uλ
n)n, (vλ

n)n) ∈ D(A). The

problem (15) is equivalent to






uλ
n +

vλ
n − vλ

n−1

h
+ cnAλ(uλ

n) ∋ f0
n

vλ
n +

uλ
n+1 − uλ

n

h
+ dnBλ(vλ

n) ∋ g0
n, n = 1, 2, . . . ,

(15)

vλ
0 ∈ −α(uλ

1 ), (uλ
1 ∈ D(α)). (16)
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Let U0 = ((u0
n)n, (v0

n)n) ∈ D(A), u0
1 ∈ D(α). We denote

Fλ = ((fλ
n )n, (gλ

n)n) := U0 + A(U0) + Bλ(U0), λ > 0. (17)

The set {Bλ(U0); λ > 0} is bounded in the space X; indeed

‖Bλ(U0)‖2
X =

∞∑

n=1

h(c2
n‖Aλ(u0

n)‖2 + d2
n‖Bλ(v0

n)‖2) ≤

≤
∞∑

n=1

h(c2
n‖A0(u0

n)‖2 + d2
n‖B0(v0

n)‖2) = ‖B0(U0)‖2
X , ∀λ > 0,

(where A0 is the minimal section of A, that is A0(x) ∈ A(x), ‖A0(x)‖ = inf {‖y‖, y ∈
A(x)}, ∀x ∈ D(A)).

We deduce by the above inequality and (17) that ‖Fλ‖X ≤ const., ∀λ > 0,

(const. is a positive constant independent of λ).

Using (14) and (17) (we substract them and we multiply the obtained relation

by Uλ − U0 in X), we get

‖Uλ−U0‖X ≤ ‖F0−Fλ‖X ⇒ ‖Uλ‖X ≤ ‖U0‖X +‖F0‖X +‖Fλ‖X ≤ const., ∀λ > 0.

We deduce that

∞∑

n=1

h(‖uλ
n‖2+‖vλ

n‖2) ≤ const. Because {uλ
1 ; λ > 0} is bounded

in H, by (H4)i) we deduce that {vλ
0 ; λ > 0} is also bounded in H. So we obtain

that {A(Uλ); λ > 0} is bounded in X. By (14) we get {Bλ(Uλ); λ > 0} is bounded

in X, ‖Bλ(Uλ)‖X ≤ const., ∀λ > 0, so

∞∑

n=1

h(‖cnAλ(uλ
n)‖2 + ‖dnBλ(vλ

n)‖2) ≤ const., ∀λ > 0. (18)

We shall prove in what follows that the sets {(uλ
n)n; λ > 0}, {(vλ

n)n; λ > 0} are

Cauchy sequences (in l2(H)). For this, let Uλ = ((uλ
n)n, (vλ

n)n), Uµ = ((uµ
n)n, (vµ

n)n),

λ, µ > 0, be solutions for (14), uλ
1 ∈ D(α), vλ

0 ∈ −α(uλ
1 ), uµ

1 ∈ D(α), vµ
0 ∈ −α(uµ

1 ).

Then by (14) we have Uλ + Zλ + Bλ(Uλ) = F0, Uµ + Zµ + Bµ(Uµ) = F0, Zλ ∈
A(Uλ), Zµ ∈ A(Uµ) and Uλ − Uµ + Zλ − Zµ + Bλ(Uλ) − Bµ(Uµ) = 0.

We multiply the above relation by Uλ − Uµ in X and after some computations

we obtain

∞∑

n=1

(‖uλ
n −uµ

n‖2 + ‖vλ
n − vµ

n‖2) ≤ −
∞∑

n=1

{cn[< Aλ(uλ
n)−Aµ(uµ

n), JA
λ (uλ

n)−JA
µ (uµ

n) > +

+ < Aλ(uλ
n) − Aµ(uµ

n), λAλ(uλ
n) − µAµ(uµ

n) >] + dn[< Bλ(vλ
n) − Bµ(vµ

n), JB
λ (vλ

n)−
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−JB
µ (vµ

n) > + < Bλ(vλ
n) − Bµ(vµ

n), λBλ(vλ
n) − µBµ(vµ

n) >]}.

Because Aλ(uλ
n) ∈ A(JA

λ (uλ
n)), Bλ(vλ

n) ∈ B(JB
λ (vλ

n)), ∀λ > 0 ,∀n ≥ 1, by the

above inequality we deduce

∞∑

n=1

(‖uλ
n − uµ

n‖2 + ‖vλ
n − vµ

n‖2) ≤
∞∑

n=1

[cn(λ‖Aλ(uλ
n)‖2 +

λ

2
‖Aµ(uµ

n)‖2+

+
λ

2
‖Aλ(uλ

n)‖2 +
µ

2
‖Aλ(uλ

n)‖2 +
µ

2
‖Aµ(uµ

n)‖2 + µ‖Aµ(uµ
n)‖2)+

+dn(λ‖Bλ(vλ
n)‖2 +

λ

2
‖Bµ(vµ

n)‖2 +
λ

2
‖Bλ(vλ

n)‖2 +
µ

2
‖Bλ(vλ

n)‖2 +
µ

2
‖Bµ(vµ

n)‖2+

+µ‖Bµ(vµ
n)‖2)] ≤ const.(λ + µ), ∀λ, µ > 0, (by (18)).

Therefore

∞∑

n=1

(‖uλ
n − uµ

n‖2 + ‖vλ
n − vµ

n‖2) ≤ const.(λ + µ), ∀λ, µ > 0.

We deduce that {(uλ
n)n; λ > 0} and {(vλ

n)n; λ > 0} are Cauchy sequences in l2(H).

Then, there exist lim
λ→0

(uλ
n)n = (un)n, lim

λ→0
(vλ

n)n = (vn)n, in l2(H), (evidently

uλ
n → un, vλ

n → vn as λ → 0, in H, ∀n ≥ 1).

Because uλ
1 → u1, as λ → 0, in H, {vλ

0 ; λ > 0} is bounded in H, so on a

subsequence vλ
0 ⇀ v0, as λ → 0 (v0 ∈ H), vλ

0 ∈ −α(uλ
1 ) and α is demiclosed, we

deduce that u1 ∈ D(α) and v0 ∈ −α(u1), that is (13).

Then, by uλ
n → un and vλ

n → vn as λ → 0, we deduce that JA
λ uλ

n → un,

JB
λ vλ

n → vn, as λ → 0, ∀n ≥ 1. Because {Aλ(uλ
n); λ > 0}, {Bλ(vλ

n); λ > 0}, n ≥ 1

are bounded (by (18), for any n fixed we have ‖cnAλ(uλ
n)‖ ≤ const., ∀λ > 0, so

‖Aλ(uλ
n)‖ ≤ 1

cn
const., ∀λ > 0) and A, B are demiclosed, we deduce that un ∈ D(A)

and Aλ(uλ
n) ⇀ pn, as λ → 0 (pn ∈ H), pn ∈ A(un), vn ∈ D(B) and Bλ(vλ

n) ⇀ qn, as

λ → 0 (qn ∈ H), qn ∈ B(vn), ∀n ≥ 1 (eventually on some sequences). By passing

to λ → 0 in (15), (16) we deduce that U = ((un)n, (vn)n) is a solution for (12) and

(13). By (12) we obtain (cnA(un))n, (dnB(vn))n ∈ l2(H), so U ∈ D(A) ∩D(B) and

A + B is maximal monotone in X.

If (H4)ii) holds, by Theorem 1 and Theorem 2 we have that A and B are maximal

monotone with int D(A) = {((un)n, (vn)n) ∈ X, u1 ∈ intD(α)} and so int D(A) ∩
D(B) 6= ∅. Therefore, by [4, Corollaire 2.7] we deduce that A + B is maximal

monotone. Q.E.D.
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The proof of Theorem 4. By Theorem 3, the operator A + B : D(A) ∩
D(B) ⊂ X → X is maximal monotone in X. Using [1, Theorem 2.2, Corollary

2.1, Chapter III] we deduce that for U0 = ((un0)n, (vn0)n) ∈ D(A) ∩ D(B) and

F = ((fn)n, (gn)n) ∈ W 1,1(0, T ;X), the problem (P)⇔(S)+(BC)+(IC) has a unique

strong solution U = ((un)n, (vn)n) ∈ W 1,∞(0, T ;X), U(t) ∈ D(A) ∩ D(B), ∀ t ∈
[0, T ). By considering the equation (P)1 in the interval [0, T + ε], with ε > 0 (by

extending correspondingly the functions fn, gn, n ≥ 1) we obtain U(T ) ∈ D(A) ∩
D(B). The solution U is everywhere differentiable from right and

d+U

dt
(t) = (F (t)−

A(U(t)) − B(U(t)))0, ∀ t ∈ [0, T ), that is the relations from the conclusion of the

theorem are verified. In addition we have
∥∥∥∥

d+U

dt
(t)

∥∥∥∥
X

≤
∥∥∥(F (0) −A(U0) − B(U0))

0
∥∥∥

X
+

∫ t

0

∥∥∥∥
dF

ds
(s)

∥∥∥∥
X

ds, ∀ t ∈ [0, T ).

If U and V are the solutions of (P) corresponding to (U0, F ), (V0, G) ∈ (D(A) ∩
D(B)) × W 1,1(0, T ;X), then

‖U(t) − V (t)‖X ≤ ‖U0 − V0‖X +

∫ t

0
‖F (s) − G(s)‖Xds, ∀ t ∈ [0, T ].

Q.E.D.
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Biharmonic curves in Cartan-Vranceanu

(2n+1)-dimensional spaces

Dorel Fetcu ∗

Abstract. Biharmonic curves in Cartan-Vranceanu spaces of dimension 2n+1 are
characterized and an example of such curve is given.
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1 Preliminaries

First we should recall some notions and results related to the biharmonic maps
between Riemannian manifolds, as they are presented in [6] and in [7].

Harmonic maps f : (M,g) → (N,h) between a compact Riemannian manifold,
(M,g), and a Riemannian manifold, (N,h), are the critical points of the energy
functional E(f) = 1

2

∫
M |df |2νg and it is proved (in [4]) that the corresponding Euler-

Lagrange equation is τ(f) = trace∇df , where τ(f) is called the tension field of f .
If the manifold M is not compact f is said to be harmonic if τ(f) = 0. The critical
points of the bienergy functional E2(f) = 1

2

∫
M |τ(f)|2νg are called biharmonic maps.

In [6] the Euler-Lagrange equation for E2 is given

τ2(f) = −∆τ(f) − traceRN (df, τ(f))df = 0,

where RN (X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]. The equation τ2(f) = 0 is called the
biharmonic equation. Note that the harmonic maps are also biharmonic. Then the
main interest is to find the non-harmonic biharmonic maps, which are called proper
biharmonic maps.

2 Cartan-Vranceanu spaces

Let us consider the following two-parameter family of Riemannian metrics, called
the Cartan-Vranceanu metrics,

ds2
l,m =

n∑

i=1

dx2
i + dy2

i

[1 + m(x2
i + y2

i )]
2

+
[
dz +

l

2

n∑

i=1

yidxi − xidyi

1 + m(x2
i + y2

i )

]2
(1)

c© Dorel Fetcu, 2007
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defined on (2n+1)-dimensional manifold M , where M = R2n+1 if m ≥ 0, and

M =
{

(x1, y1, x2, y2, ..., xn, yn, z) ∈ R2n+1|x2
i + y2

i � − 1

m
, i = 1, n

}

if m � 0. The biharmonic curves in 3-dimensional Cartan-Vranceanu spaces are
characterized in [2] and, moreover, their explicit parametrizations is given in the
cited paper. For the 3-dimensional case another results are obtained if m = 0, l 6= 0
and if l = 1, m 6= 0. Thus, if m = 0, l 6= 0 then (M,ds2

l,m) is the Heisenberg group,
H3, and the biharmonic curves in this space are studied in [1]. If l = 1, m 6= 0
the biharmonic curves are studied in [3]. In (2n+1)-dimensional case, if m = 0,
l 6= 0 then (M,ds2

l,m) is the generalized Heisenberg group, H2n+1, and a study of
biharmonic curves in this space was given in [5].

In the following let us consider a (2n+1)-dimensional Cartan-Vranceanu space
(M,ds2

l,m), with m 6= 0, and the elements of M are of the form X = (x1, y1, x2, y2, ...
..., xn, yn, z). We can define a global orthonormal frame field on M by

E2i−1 = Fi
∂

∂xi
− lyi

2

∂

∂z
, E2i = Fi

∂

∂yi
+

lxi

2

∂

∂z
, E2n+1 =

∂

∂z
,

for i = 1, n, where Fi = 1 + m(x2
i + y2

i ). The Levi-Civita connection of the metric
ds2

l,m is given by,






∇E2i−1E2j−1 = 2δijmyiE2i,
∇E2iE2j = 2δijmxiE2i−1,

∇E2i−1E2j = δij(−2myiE2i−1 + l
2E2n+1),

∇E2iE2j−1 = δij(−2mxiE2i−1 − l
2E2n+1),

∇E2n+1E2i−1 = ∇E2i−1E2n+1 = − l
2E2i,

∇E2n+1E2i = ∇E2iE2n+1 = l
2E2i−1,

∇E2n+1E2n+1 = 0,

(2)

for i, j = 1, n. Also, one obtains






[E2i−1, E2j−1] = 0, [E2i, E2j ] = 0,
[E2i−1, E2n+1] = 0, [E2i, E2n+1] = 0,
[E2i−1, E2j ] = δij(2mxiE2i − 2myiE2i−1 + lE2n+1),

The curvature tensor field of ∇ is

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

and the Riemann–Christoffel tensor field is

R(X,Y,Z,W ) = g(R(X,Y )W,Z),

where X,Y,Z,W ∈ χ(R2n+1). We will use the notations

Rabc = R(Ea, Eb)Ec, Rabcd = R(Ea, Eb, Ec, Ed),
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where a, b, c, d = 1, 2n + 1. Then the non-zero components of the curvature tensor
field and of the Riemann-Christoffel tensor field are, respectively






R(2i−1)(2j−1)(2k) = − l2

4 δjkE2i + l2

4 δikE2j ,

R(2i−1)(2j)(2j−1) = l2

4 E2i, i 6= j,

R(2i−1)(2i)(2k−1) = δik(
l2

4 − 4m)E2i + l2

2 E2k,

R(2i−1)(2j)(2i) = − l2

4 E2j−1, i 6= j,

R(2i−1)(2i)(2k) = −δik(
l2

4 − 4m)E2i−1 − l2

2 E2k−1,

R(2i−1)(2n+1)(2i−1) = − l2

4 E2n+1,

R(2i−1)(2n+1)(2n+1) = l2

4 E2i−1,

R(2i)(2j)(2k−1) = − l2

4 δjkE2i−1 + l2

4 δikE2j−1,

R(2i)(2n+1)(2i) = − l2

4 E2n+1,

R(2i)(2n+1)(2n+1) = l2

4 E2i,

(3)






R(2i−1)(2j−1)(2i)(2j) = − l2

4 , i 6= j,

R(2i−1)(2j)(2j−1)(2i) = − l2

4 , i 6= j,

R(2i)(2i−1)(2i−1)(2i) = 3l2

4 − 4m,

R(2i)(2i−1)(2j−1)(2j) = l2

2 , i 6= j,

R(2n+1)(2i−1)(2i−1)(2n+1) = − l2

4 ,

R(2n+1)(2i)(2i)(2n+1) = − l2

4 ,

(4)

for i, j, k = 1, n.

3 Biharmonic curves in (2n+1)-dimensional

Cartan–Vranceanu spaces

Let γ : I ⊂ R → (M,ds2
l,m) be a non-inflexionar curve, parametrized by its arc

length. Let {T,N1, ..., N2n} be the Frenet frame in (M,ds2
l,m) defined along γ, where

T = γ′ is the unit tangent vector field of γ, N1 is the unit normal vector field of
γ, with the same direction as ∇T T and the vectors N1, ..., N2n are the unit vectors
obtained from the following Frenet equations for γ.






∇T T = χ1N1

∇T N1 = −χ1T + χ2N2

. . . . . . . . .
∇T N2n−1 = −χ2n−2N2n−2 + χ2n−1N2n

∇T N2n = −χ2n−1N2n−1

(5)

where χ1 = ‖∇T T‖ = ‖τ(γ)‖, and χ2 = χ2(s), ..., χ2n = χ2n(s) are real valued
functions, named the curvatures of γ, where s is the arc length of γ.

In [2] is proved the following result

Proposition 3.1. Let γ : I ⊂ R → (Nn, h), n ≥ 2, be a curve parametrized by arc
length from an open interval of R into a Riemannian manifold (N, g). Then γ is
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biharmonic if and only if






χ1χ
′
1 = 0

χ′′
1 − χ3

1 − χ1χ
2
2 + χ1R(T,N1, T,N1) = 0

2χ′
1χ2 + χ1χ

′
2 + χ1R(T,N1, T,N2) = 0

χ1χ2χ3 + χ1R(T,N1, T,N3) = 0
χ1R(T,N1, T,Nk) = 0, k = 4, n.

(6)

Using Proposition 3.1 and equations (4), after a straightforward computation,
one obtains

Theorem 3.2. Let γ : I ⊂ R → (M,ds2
l,m) be a curve parametrized by its arc

length. Then γ is a proper biharmonic curve if and only if






χ1 ∈ R \ {0},
χ2

1 + χ2
2 = −η1,

χ′
2 = η2,

χ2χ3 = η3,
ηk = 0, k = 4, 2n,

(7)

with ηk, k = 1, 2n, given by

η1 = −R(T,N1, T,N1) = −4m

n∑

i=1

(T2i−1N
2i
1 − T2iN

2i−1
1 )2+ (8)

+
3l2

4

[ n∑

i=1

(T2iN
2i−1
1 − T2i−1N

2i
1 )

]2
− l2

4
(T 2

2n+1 + (N2n+1
1 )2)

and
ηk = −R(T,N1, T,Nk) = (9)

= −4m
n∑

i=1

(T2i−1N
2i
1 − T2iN

2i−1
1 )(T2i−1N

2i
k − T2iN

2i−1
k )+

+
3l2

4

n∑

i=1

(T2iN
2i−1
1 − T2i−1N

2i
1 )

n∑

i=1

(T2iN
2i−1
k − T2i−1N

2i
k ) − l2

4
N2n+1

1 N2n+1
k ,

for k = 2, 2n, where T =
∑2n+1

a=1 TaEa and Nk =
∑2n+1

a=1 Na
k Ea.

From the second equation of (7) follows immediately

Corollary 3.3. If l = 0 and m ≤ 0 then all biharmonic curves of (M,ds2
l,m) are

geodesics.

In order to find a proper biharmonic curve γ : I ⊂ R → (M,ds2
l,m), γ =

(x1(s), y1(s), x2(s), y2(s), ..., xn(s), yn(s), z(s)), let us suppose that the components

of its tangent vector T (s) = γ′(s) are T2i−1(s) = cos βi(s) sin α√
n

, T2i(s) = sin βi(s) sinα√
n

,

T2n+1(s) = cos α, for i = 1, n, where βi are smooth functions, s being the arc



BIHARMONIC CURVES IN CARTAN-VRANCEANU (2N+1)-DIMENSIONAL SPACES 63

length of γ, and α ∈ (0, π) is a constant. Working this way is suggested by the fact
that T is a unitary vector field and by the paper [2], where it is proved that, in
dimension 3, the tangent vector is of this form for all proper biharmonic curves of
Cartan–Vranceanu spaces.

The covariant derivative of the vector field T is given by

∇T T =
n∑

i=1

[(T ′
2i−1 − 2myiT2iT2i−1 + 2mxiT

2
2i + lT2iT2n+1)E2i−1+

+(T ′
2i − 2mxiT2iT2i−1 + 2myiT

2
2i−1 − lT2i−1T2n+1)E2i] + T ′

2n+1E2n+1 =

=

n∑

i=1

sin α√
n

(−Ai sin βiE2i−1 + Ai cos βiE2i),

where

Ai = β′
i − 2mxi

sin βi sin α√
n

+ 2myi
cos βi sin α√

n
− l cos α.

Next, assume that Ai = A, for any i = 1, n (that is the values of Ai’s are the
same for all indices). It follows, from the first Frenet equation, that χ1 is given by

χ1 = ‖∇T T‖ = |A sin α|.

Suppose that A sin α 
 0. Then

χ1 = A sin α (10)

and

N1 =

n∑

i=1

1√
n

(− sin βiE2i−1 + cos βiE2i).

The system T = γ′ is equivalent with





x′
i

1 + m(x2
i + y2

i )
=

cos βi sin α√
n

,

y′i
1 + m(x2

i + y2
i )

=
sin βi sin α√

n
, i = 1, n,

z′ = cos α + l
2

sin α√
n

∑n
1 (xi sinβi − yi cos βi).

(11)

Assume that β′
i 6= 0, for any i = 1, n. By derivation of (10), taking into account

that χ1 must to be constant, one obtains

β′′
i =

2mxix
′
i + 2myiy

′
i

1 + m(x2
i + y2

i )
· β′

i, i = 1, n.

From the last equations we have

biβ
′
i = 1 + m(x2

i + y2
i ), i = 1, n,
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where bi are constants. If we take bi = b to be independent of i, one obtains





xi(s) =
b cos βi sin α√

n
,

yi(s) = −b sin βi sin α√
n

, i = 1, n,

z(s) = (cos α)s +
lb

2n
(sin2 α)s.

(12)

Again using the facts that χ1 is a constant and the terms Ai do not depend on i it
follows that β′

i must be constants which values are the same for all indices. Hence

β′
i = C =

1 + m(x2
i + y2

i )

b
=

n + mb2 sin2 α

bn
, i = 1, n.

Thus

βi(s) =
n + mb2 sin2 α

bn
· s + di, (13)

where di are constants.
From expressions of χ1, T and N1 we have, after a straightforward computation,

∇T N1 + χ1T =
n∑

i=1

B cos α√
n

(cos βiE2i−1 + sinβiE2i)+

+
( l

2
sin α + A sin α cos α

)
E2n+1,

where B = (−1
b + mb

n sin2 α + l cos α) cos α − l
2 = −A cos α − l

2 . From the second

Frenet equation we have χ2
2 = ‖∇T N1+χ1T‖2 = B2 cos2 α+( l

2 sinα+A sin α cos α)2.

It follows that χ2 is a constant. Now, since −η1 = (4m
n − l2) sin2 α + l2

4 and ηk = 0,
k ≥ 2, the curve γ is biharmonic and non-geodesic if and only if the second and
the fourth equations of (7) hold. From the second equation, after a straightforward
computation, one obtains that

A2 + Al cos α − (
4m

n
− l2) sin2 α = 0. (14)

Assume that m 
 0. If l2 + (16m
n − 5l2) sin2 α 
 0 then, solving equation (14),

one obtains

A =
−l cos α ±

√
l2 + (16m

n − 5l2) sin2 α

2
,

and

b =
−

(
nl ±

√
l2 + (16m

n − 5l2) sin2 α
)

4m sin2 α
± (15)

±

√(
nl cos α ±

√
l2 + (16m

n − 5l2) sin2 α
)2

+ 16nm sin2 α

4m sin2 α
.
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Since χ1 6= 0 one obtains A 6= 0. Then 4m
n − l2 6= 0.

For the values founded for b, from the third Frenet equation, it follows that
χ3 = 0, and then the fourth equation of (7) holds.

We obtained

Proposition 3.4 Let (M,ds2
l,m) be a (2n+1)-dimensional Cartan-Vranceanu space

such that m 
 0 and 4m
n − l2 6= 0. Let γ : I ⊂ R → (M,ds2

l,m),

γ = (x1(s), y1(s), x2(s), y2(s), ..., xn(s), yn(s), z(s)),

be a curve parametrized by its arc length, given by





xi(s) =
b cos βi sin α√

n
,

yi(s) = −b sinβi sin α√
n

, i = 1, n,

z(s) = (cos α)s +
lb

2n
(sin α)2s.

where α ∈ (0, π), βi are given by (13), b is given by (15) and l2 +(16m
n −5l2) sin2 α ≥

0. Then γ is a biharmonic curve and it is not a geodesic.
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Abstract. We consider the propositional provability intuitionistic logic I∆, intro-
duced by A.V. Kuznetsov [2]. We prove that there are infinitely many classes of
formulas in the calculus of I∆, which are pre-complete with respect to functional ex-
pressibility in I∆. This result is stronger than an ealier one stated by the author in
[1].
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In the present paper we extend the result established in [1] to a wider class of
logics, which includes the provability-intuitionistic logic I∆ itself. The last one is the
logic of propositional provability-intuitionistic calculus I∆ proposed and formalized
by A.V. Kuznetsov [2, 3]. It is based on formulas built in an usual way from
propositional variables p, q, r, . . . (may be indexed) by means of logical connectives
&,∨,⊃,¬,∆. The axioms of I∆ consist of well-known axioms of the intuitionistic
propositional calculus and three additional ∆-axioms:

(p ⊃ ∆p), (1)

((∆p ⊃ p) ⊃ p), (2)

(((p ⊃ q) ⊃ p) ⊃ (∆q ⊃ p)). (3)

Its rules of inference consist of traditional rules of substitution, and modus ponens
and the rule of necessitation A

∆A . An extension L of the logic I∆ is defined as usual
as any set of formulas which contains the axioms of I∆ and is closed with respect
to the rules of inference of the calculus I∆. In the following let us denote by L any
extension of I∆ if other things are not stated. By equivalence of formulas A and B,
denoted A ∼ B, in the logic L we understand the formula ((A ⊃ B)&(B ⊃ A)).

Let us remind the notion of ∆-pseudo-Boolean algebra [2, 3] as a system of type
A =< E; &,∨,⊃,¬,∆ >, where < E; &,∨,⊃,¬ > is a pseudo-Boolean algebra and
operation ∆ satisfies the relations

x ≤ ∆x, (∆x ⊃ x) = x, ∆x ≤ y ∨ (y ⊃ x).

These algebras serve as algebraic models for logic I∆ [2, 3]. Valid formulas on the
algebra A are defined as usual. It is also known that the set of valid formulas on

c© Andrei Rusu, 2007

66



INFINITELY MANY PRE-COMPLETE CLASSES . . . 67

A constitutes an extension of I∆ [3], it is called the logic of the algebra A, and it is
denoted by LA.

We consider the ∆-pseudo-Boolean algebra C =< E; &,∨,⊃,¬,∆ >, where E
is the chain of elements 0 = τ0 < τ1 < · · · < 1, and for any elements α and β of
C we assume that α&β = min(α, β), α ∨ β = max(α, β), α ⊃ β = 1 when α ≤ β,
α ⊃ β = β when α > β, ¬α = α ⊃ 0, ∆τi = τi+1 for i = 0, 1, . . . , and ∆1 = 1.

By a formula realization [5, 6] of the ∆-pseudo-Boolean algebra A into the proof
(provability) logic L we undestand a mapping f from the algebra A into the set of
formulas such that if we examine the formulas up to equivalent ones, then f is an
isomorphism between the algebra A and some subalgebra of the Lindenbaum algebra
of the logic L. Let us build a formula realization of the algebra C into the logic I∆.
So, we have first of all to map each element of C into the set of formulas. Consider
the mapping f is as follows:

f(0) = 0, f(1) = 1,

f(τi) = ∆i0, i = 1, 2, . . .

Let us prove the following

Lemma 1. For any elements β and γ of the algebra C the next deductions in the
I∆ logic take place

⊢ (f(β&γ) ∼ (f(β)&f(γ))), (4)

⊢ (f(β ∨ γ) ∼ (f(β) ∨ f(γ))), (5)

⊢ (f(β ⊃ γ) ∼ (f(β) ⊃ f(γ))), (6)

⊢ (f(¬β) ∼ ¬f(β)), (7)

⊢ (f(∆β) ∼ ∆f(β)). (8)

Proof. Let us consider arbitrary elements β and γ of the algebra C. Let prove first
the relation (4). If β = 1 or γ = 1 then the statement (4) is obvious. Let β 6= 1 and
γ 6= 1. Since elements β and γ are arbitrary we can consider that β = τi and γ = τj ,
where i < j. Then β&γ = τi&τj = τi. So,

f(β&γ) = f(β) = f(τi) = ∆i0. (9)

The axiom (1) admits the following generalization

⊢ p ⊃ ∆kp, where k = 0, 1, 2, . . . (10)

Taking into consideration the last relation (10) we have the following sequence of
equalities

(f(β)&f(γ)) = (f(τi)&f(τj)) = ∆i0&∆j0 = ∆i0. (11)

So the relation (4) follows from (10) and (11).
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The proof of the statement (5) is analogous to the proof of the deduction (4).
Let us prove the relation (6). We will consider two possible cases for elements β

and γ, when a) β ≤ γ, and b) β > γ.
Let β ≤ γ. Then obviously β ⊃ γ = 1, and f(β ⊃ γ) = f(1) = 1 = (p ⊃ p).

If β 6= 1 and γ 6= 1, then we can consider as above that there exist i and j, where
i, j = 0, 1, 2, . . . and i ≤ j, such that β = ∆i0 and γ = ∆j0. Thus we have that
f(β) = ∆i0, f(γ) = ∆j0, (f(β) ⊃ f(γ)) = ∆i0 ⊃ ∆j0 = 1.

Now let β > γ. Then β ⊃ γ = γ, and f(β ⊃ γ) = f(γ). Obviously, γ 6= 1.
So, there exists an integer positive j such that γ = ∆j0, and thus f(β ⊃ γ) = ∆j0.
Now, let us evaluate f(β) ⊃ f(γ). If β = 1, then, obviously, f(β) ⊃ f(γ) = 1 ⊃
∆j0 = ∆j0. Suppose β 6= 1. Then there exists an i > j such that β = ∆i0, and
f(β) ⊃ f(γ) = ∆i0 ⊃ ∆j0 = ∆j0.

Now let us to prove the relation (7). If β = 1 then f(β) = 1, ¬β = 0, ¬f(β) =
¬1 = 0. Suppose β 6= 1. Then there is an i such that β = ∆i0. Obviously, ¬β = 0,
and ¬f(β) = ¬∆i0 = 0.

Finally, let us look at the last statement (8) of the lemma. If β = 1 then (8)
follows obviously. Suppose β 6= 1. Then there exists an i such that β = ∆i0, and
f(∆β) = f(∆∆i0) = f(∆i+10) = ∆i+10, ∆f(β) = ∆f(∆i0) = ∆∆i0 = ∆i+10.
Comparing the last two sequences of statements we conclude (8). Lemma is proved.

Next lemma is a generalization of the previous lemma.

Lemma 2. For any formula F (p1, . . . , pn) of the provability-intuitionistic logic I∆

and for any elements β1, . . . , βn of the algebra C the following relation is true in I∆

⊢ f(F [p1/β1, . . . , pn/βn]) ∼ F [p1/f(β1), . . . , pn/f(βn)].

The proof can be easily done by induction over the structure of the formula F
and using the relations proved in Lemma 1.

On the basis of Lemma 2 we conclude that examining formulas up to equivalent
ones in the logic I∆ the mapping f is an isomorphism between the algebra C and some
subalgebra of the Lindenbaum’s algebra of the logic I∆. This fact means that f is
a formula realization of the algebra C into the logic I∆. We see from the definition
of this formula realization that it puts into correspondence only unary formulas
to elements of C. So, we get next theorem as a consequence from Lemma 1 and
Lemma 2.

Theorem 1. The mapping f defined above is a formula realization of the algebra C

into the provability-intuitionistic logic I∆.

Next lemma ilustrates a usefull property of the formula realization f defined
above.

Lemma 3. The formula realization f of the algebra C into the logic I∆ puts into
correspondence to any element β of C such unary formula f(β) that the equality
holds

f(β)[γ] = β. (12)
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Proof. Really, let element β be someone from C. Then, obviously, it is either equal
to the unit 1 of the algebra, or there exists an index k such that β = τk. Recalling
that f(τk) = ∆k(p&¬p) we get that the result of substitution ∆k(p&¬p)[γ] does not
depend on the element γ, and, moreover,

∆k(p&¬p)[γ] = τk.

The last relation together with the fact that element β is an arbitrary element of C

ensure us the validness of (12) from the lemma. The lemma is proved.

Definitions regarding expressibility in logics were proposed by A.V. Kuznetsov
[7, 8, 9]. A system of formulas Σ is said to be complete (with respect to functional
expessibility) in the logic L if any formula of the language of logic L can be obtained
from variables and formulas of Σ applying a finite number of times the following two
rules: the weak rule of substitution and the rule of replacement by equivalent formula
in L. The system of formulas Σ is called pre-complete (with respect to functional
expressibility) in the logic L if it is incomplete in L, and for any formula F , which
is not expressible in L via Σ the system Σ ∪ {F} is complete in L. They say the
formula F (p1, . . . , pn) conserves on the algebra A the predicate R(x1, . . . , xm) if for
any elements αij ∈ A (i = 1, . . . ,m; j = 1, . . . , n) the relations

R[α11, . . . , αm1], . . . , R[α1n, . . . , αmn]

imply the truth of the predicate

R[F [α11, . . . , α1n], . . . , F [αm1, . . . , αmn]].

In the following let L be any extension of the provability-intuitionistic logic I∆,
which satisfies the relation I∆ ⊆ L ⊆ LC. Let us denote by Ki the class of all
formulas that preserves on the algebra C the predicate x ≤ τi (i = 0, 1, . . . ).

Lemma 4. The classes K0,K1, . . . are two by two distinct with respect to set
inclusion.

Really, suppose r < s and let us consider classes Kr and Ks. Can be checked
the relation

(∆r+10 ⊃ p) ∈ Kr \ Ks, ∆s0 ∈ Ks \ Kr.

So, the classes K0,K1, . . . are two by two distinct with respect to the set inclusion.

Lemma 5. Let f be the formula realization of the algebra C into the logic I∆ that
was defined ealier. Then for any element β of this algebra and for any j = 0, 1, 2, . . .
the formula f(β) belongs to the class Kj if and only if the folowing relation holds

β ≤ ∆j0. (13)
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Proof. Let element β satisfy the relation (13) from the lemma. We have to show
that the formula f(β) conserves the relation Rj on the algebra C. Let an arbitrary
element γ ∈ C conserve the predicate Rj on C, i.e. Rj(γ) holds. Then, using (13) and
the equality f(β)[γ] = β already proved ealier in Lemma 3, we obtain the relation
f(β)[γ] ≤ ∆j0, i.e. the relation Rj(f(β)[γ]. So, we get that f(β) ∈ Kj .

Conversely, let element β do not satisfy the condition (13). Then, since elements
of C form a chain, we get

β > ∆j0.

After that, using again the above mentioned equality (12) we get the inequality

f(β)[γ] > ∆j0,

which is equivalent to the fact that Rj(f(β)[γ]) is false. Subsequently, the formula
f(β) does not belong to the class Kj . The lemma is proved.

Lemma 6. Let L be any logic such that I∆ ⊆ L ⊆ LC. Then the classes of formulas
K0,K1, . . . are pre-complete with respect to expressibility in the logic L.

Really, according to Lemma 4, no one of these classes is complete with respect
to expressibility in the logic L. Let us prove that for any j = 0, 1, . . . the class Kj

is pre-complete in L. Let B(p1, . . . , pn) be any formula which does not belong to
the class Kj . Then, according to the definition of the class Kj there exist elements
β1, . . . , βn of the algebra C such that for any i = 1, . . . , n we have

βi ≤ ∆j0,

but
B[β1, . . . , βn] ≤ ∆j0

is false. Since all elements of C form a chain we get the strict inequality on the
algebra C

∆j0 < B[β1, . . . , βn],

which implies the relation

∆j+10 ≤ B[β1, . . . , βn].

The last statement implies also

(∆j+10 ⊃ B[β1, . . . , βn]) = 1.

In view of the above defined formula realization f of the algebra C in the logic I∆,
the last formula conducts us to the relation

⊢ f(∆j+10 ⊃ B[β1, . . . , βn]) ∼ f(1).

Applying Lemma 2 to the left part of the above equivalence, we get that

⊢ (f(∆j+10) ⊃ f(B[β1, . . . , βn])) ∼ f(1).



INFINITELY MANY PRE-COMPLETE CLASSES . . . 71

Reminding ourselves that f(∆j+10) is the formula ∆j+10 and f(1) is 1, and applying
once again Lemma 2 to formula B, we get the deduction

⊢ (∆j+10 ⊃ B[f(β1), . . . , f(βn)]) ∼ 1.

The left hand side of the last equivalence can be represented as

⊢ (∆j+10 ⊃ π)[π/B[f(β1), . . . , f(βn)]] ∼ 1.

Let us note that the formula (∆j+10 ⊃ π) belongs to the class Kj . Apart from this,
since elements βi, when i = 1, . . . , n, satisfy the condition βi ≤ ∆j+10, the formulas
f(βi) also belong, according to Lemma 5, to the class Kj . That is why the last
deduction shows that the formula 1 is expressible in the logic I∆ by means of the
formula B and of the formulas of the class Kj . We shall show that any formula F is
expressible in I∆ via system Kj ∪ {1}. Let F do not contain the variable π. Then
it is sufficient to take the formula F&π, which belongs to the class Kj , and to use
the following fact

F ∼ (F&π)[π/1].

Thus it is proved that the system Kj ∪ {B} is complete in I∆, and the more so, it
is also complete in the logic L. So, lemma is proved.

Now we can state the folowing results.

Theorem 2. Let L be any logic such that I∆ ⊆ L ⊆ LC. The classes K0,K1, . . .
constitute a numerable collection of distinct two by two pre-complete in the logic L
classes of formulas.

In 1956 A.V. Kuznetsov [10, 11] have proved that for any finite-valued logic L
there exists an algorithm which permits to recognize whether a system of formulas
is complete with respect to functional expressibility in L. He have shown that there
exists theoretically a finite collection of pre-complete classes of formulas in that
logic. Unfortunately, the proposed algorithm is very computationally inefficient.
Next theorem establishes that even such algorithm is impossible for any logic L that
satisfies the condition I∆ ⊆ L ⊆ LC.

Theorem 3. Let L be any logic such that I∆ ⊆ L ⊆ LC. The traditional formulation
of the theorem of completeness with respect to functional expressibility in terms of a
finite collection of pre-complete classes of formulas in the logic L does not exist.
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Blvd. Mamaia, 124, Constanţa, cod 900527
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Linear convolution of criteria in the vector p-center

problem ∗

Vladimir A. Emelichev, Evgeny E. Gurevsky

Abstract. We investigate a linear convolution of criteria and possibility of its ap-
plication for finding Pareto set in the vector variant of the well-known combinatorial
p-center problem. The polynomial algorithm which transforms any vector p-center
problem to a solvable problem with the same Pareto set is proposed. An example
which illustrates the work of algorithm is performed.
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1 Introduction

Wide and important class of the best choice problems is the vector (multicriteria)
problems in which the quality of decision making is estimated by several criteria at
once. One of the main method of vector optimization is scalaring. Scalaring is
a process of transforming vector problem of finding best alternatives to a scalar
problem with aggregated (generalized) criterion which is a convolution of criteria.
Such convolution of criteria usually depends on parameters. The central concept in
vector optimization is a Pareto principle of optimality. And an important method of
finding Pareto-optimal solutions (efficient alternatives) is based on linear convolution
of criteria. But this approach cannot always guarantees to find the whole Pareto set.
In these cases we say that the vector problem is unsolvable by ALC. Many classes of
the vector problems which are solvable by ALC were found by Koopmans, Karlin,
Geoffrion, Kuhn, Tucker, Saaty and others. The history review of this question was
presented in [1] (see also [2]).

We investigate the possibility of application of ALC to finding all Pareto set in
vector variant of the well-known combinatorial p-center problem, i. e. the problem
of best locating p facilities (see, for example, [3–5]). In this paper it is shown that
there exist (see, theorem 1) vector p-center problems which are unsolvable by ALC.
Analogous results for various kinds of vector discrete optimization problems (sales-
man problem, optimal spanning tree, perfect matching and others) were obtained
earlier in [6–11].

Using the well-known sufficient condition of solvability [12] we build an algorithm,
which transforms any vector p-center problem to an equivalent solvable problem.

c© Vladimir A. Emelichev, Evgeny E. Gurevsky, 2007
∗This work is supported by program of the Ministry of Education of the Republic of Belarus

”Fundamental and application studies” (Grant 492/28).
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Earlier in the works [12–15] similar algorithms were built for the vector trajectory
problems with another kinds of partial criteria.

2 Basic definitions and notations

We consider the vector (s-criteria) variant of the p-center problem. Let us use
the following definitions:

Nm = {1, 2, . . . ,m} is the set of possible locating points of facilities (equipment,
warehouses, providers etc.),

Nn is the set of clients,

Dk = [dk
ij ] ∈ Rm×n is a matrix of costs connected with delivery of product from

point i ∈ Nm to point j ∈ Nn by criterion k ∈ Ns.

The vector D = (D1,D2, . . . ,Ds), composed from matrices of costs, is called a
system of costs.

Let 1 ≤ p ≤ m− 1 and T be some system of nonempty subsets (p-centers) of the
set Nm such that

|t| = p, ∀t ∈ T.

As usual (see, for example, [10–14]), all the elements of set T are called trajectories.

We define the vector function on T :

f(t,D) = (f1(t,D1), f2(t,D2), . . . , fs(t,Ds)),

where

fk(t,Dk) = max
j∈Nn

min
i∈t

dk
ij → min

t∈T
, k ∈ Ns.

The s-criteria (vector) m×n-dimensional p-center problem is understood as the
problem of finding Pareto set (the set of efficient trajectories)

P s(T,D) = {t ∈ T : ∀ t′ ∈ T (t ≻
D

t′)},

where ≻
D

is the negation of binary relation ≻
D

, which specifies the Pareto principle of

optimality:

t ≻
D

t′ ⇔ f(t,D) ≥ f(t′,D) & f(t,D) 6= f(t′,D).

This problem is denoted by Zs
m×n(T,D). Scalar (single-criterion) problem Z1

m×n(T,
D), D ∈ Rm×n, can be interpreted as an extremal problem on graphs or on networks.
It consists in locating p facilities and assigning clients to them in order to minimize
the maximum distance between a client and the facility to which it is assigned. If
we want to optimize the location of p facilities by several criteria then it leads us to
the above multicriteria variant of the p-center problem.

Following [7–9], the problem Zs
m×n(T,D), s ≥ 2, is called solvable by ALC if

P s(T,D) = Ξs(T,D),
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where
Ξs(T,D) =

⋃

λ∈Λs

T (λ),

Λs = {λ = (λ1, λ2, . . . , λs) :

s∑

k=1

λk = 1, λk > 0, k ∈ Ns},

T (λ) = Argmin{〈λ, f(t,D)〉 : t ∈ T}

and 〈λ, f(t,D)〉 =
s∑

k=1

λkfk(t,Dk) is a linear convolution of criteria fk(t,Dk), k ∈ Ns.

Thus, the problem Zs
m×n(T,D) is solvable if for any efficient trajectory t∗ ∈

P s(T,D) there exists a vector λ∗ ∈ Λs such that

〈λ∗, f(t∗,D)〉 = min{〈λ∗, f(t,D)〉 : t ∈ T},

i. e. any trajectory t∗ ∈ P s(T,D) can be found as a solution of a scalar minimiza-
tion problem with function which is a linear convolution of partial criteria with an
appropriate vector λ∗ ∈ Λs.

Otherwise, if there exists a trajectory t∗ ∈ P s(T,D) such that for any vector
λ ∈ Λs the inequality

〈λ, f(t∗,D)〉 > min{〈λ, f(t,D)〉 : t ∈ T}

holds, then the problem Zs
m×n(T,D) is called unsolvable by ALC. It is evident, that

in this case we have
Ξs(T,D) ⊂ P s(T,D).

3 Insolubility

The set of trajectories T is called primitive if the following two conditions hold:
1) there exist three pairwise different trajectories t1, t2 and t3 such that

i ∈ ti \ t0, i = 1, 2, 3,

where
t0 =

⋃

1≤r1<r2≤3

(tr1 ∩ tr2),

2) for any trajectory t ∈ T \ {t1, t2, t3} the equality

t ∩ N3 = ∅

holds.
Thus, in the case, where the set T is primitive, the number of possible locating
points of facilities m ≥ 4.

Theorem 1. For any primitive set of trajectories T there exists a system of costs
D such that the p-center problem Zs

m×n(T,D), p ≥ 1, s ≥ 2, m ≥ 4, n ≥ 1, is
unsolvable by ALC.
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Proof. First we consider the case where s = 2. Let t1, t2, t3 be the three trajectories
of set T described above. Let the matrices Dk = [dk

ij ] ∈ Rm×n, k = 1, 2, have the
following form

D1 =





0 0 . . . 0
a a . . . a
b b . . . b
c c . . . c

. . . . . . . . . . . .
c c . . . c




, D2 =





a a . . . a
0 0 . . . 0
b b . . . b
c c . . . c

. . . . . . . . . . . .
c c . . . c




,

where c > a > b > a/2 > 0.

Then, taking into account the primitivity of set T , we obtain the vector evalua-
tions of trajectories of T :

f(t1,D) = (0, a),

f(t2,D) = (a, 0),

f(t3,D) = (b, b),

f(t,D) = (c, c) ∀ t ∈ T \ {t1, t2, t3}.

Therefore we have P 2(T,D) = {t1, t2, t3} and for any vector λ ∈ Λ2 the following
relations hold

〈λ, f(t3,D)〉 = b > a/2 ≥ min{〈λ, f(ti,D)〉 : i = 1, 2} ≥ min{〈λ, f(t,D)〉 : t ∈ T}.
(1)

It follows that the theorem is valid in the case s = 2.

Finally, the theorem (s > 2) can be proved if the matrices D1 and D2 are the
same as before, and

Dk = D2, k ∈ 3, 4, . . . , s.

As a result we obtain the following vector evaluations of trajectories:

f(t1,D) = (0, a, a, . . . , a) ∈ Rs,

f(t2,D) = (a, 0, 0, . . . , 0) ∈ Rs,

f(t3,D) = (b, b, b, . . . , b) ∈ Rs,

f(t,D) = (c, c, . . . , c) ∈ Rs ∀ t ∈ T \ {t1, t2, t3}.

Therefore we have P s(T,D) = {t1, t2, t3} and any vector λ ∈ Λs satisfies relations
(1).

Theorem 1 has been proved.



LINEAR CONVOLUTION OF CRITERIA IN THE VECTOR P -CENTER PROBLEM 77

4 Algorithm

Each of five stages of algorithm Ψ, which builds a transformed system of costs
D̃ consists of s steps (s ≥ 2).

Stage 1. Step k ∈ Ns. For any number j ∈ Nn we sort all the elements
dk

ij , i ∈ Nm, of j-th column of matrix Dk:

dk
i1j ≥ dk

i2j ≥ . . . ≥ dk
imj.

Stage 2. Step k ∈ Ns. We delete all the elements of the following sequence
from matrix Dk

dk
i1j , dk

i2j , . . . , dk
iqj, j ∈ Nn, (2)

where q = p − 1.

Stage 3. Step k ∈ Ns. We sort the rest of elements of matrix Dk in ascending
order:

bk
1 ≤ bk

2 ≤ . . . ≤ bk
u, (3)

where u = n(m − p + 1). Of course, all the elements stay on the same places in
matrix Dk.

Stage 4. Step k ∈ Ns. We transform the elements of (3) by the following
recurring formula

b̃k
r =






bk
r , if r = 1, 2,

b̃k
r−1, if ∆k(r, r − 1) = 0, r = 3, 4, . . . , u,

bk
r + s(b̃k

r−1 − b̃k
1) + b̃k

1 , if ∆k(r, r − 1) > 0, r = 3, 4, . . . , u,

(4)

where ∆k(v,w) = bk
v − bk

w. As a result we obtain b̃k
1 , b̃k

2, . . . , b̃k
u.

Stage 5. Step k ∈ Ns. Instead of elements of sequence (2), deleted on the step
2, we write the number b̃k

u + 1, i. e. for any j ∈ Nn we set

d̃k
i1j = d̃k

i2j = . . . = d̃k
iqj = b̃k

u + 1.

As a result of the work of the algorithm Ψ the system of costs D is replaced by
D̃ = (D̃1, D̃2, . . . , D̃s), where D̃k = [d̃k

ij ]m×n.

Remark 1. It is easy to see that for any number k ∈ Ns and for any trajectory t,
the inequality fk(t, D̃k) < b̃k

u + 1 holds.

5 Substantiation of algorithm

First we prove that the obtained vector problem Zs
m×n(T, D̃) is solvable by ALC.

To prove this we use the known sufficient condition of solvability for the vector dis-
crete problems [12] and formulate it in the form convenient for us. Let us introduce
a new definition.
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For any natural numbers s ≥ 2 and h ≥ 1 the set composed of h pairwise different
numbers is called (s, h)-regular if after sorting these numbers in ascending order

a1 < a2 < . . . < ah

under h ≥ 3 the inequalities

s · δ(r + 1, 1) ≤ δ(r + 2, 1), r ∈ Nh−2

hold, where δ(u, v) = au − av.

Remark 2. It is evident that for any s ≥ 2 the set composed of one or two different
numbers is (s, 1)- or (s, 2)-regular, respectively.

In these terms for any s-criteria discrete problem Zs

fk(t) → min
t∈T

, k ∈ Ns,

where s ≥ 2, fk(t) ∈ R, |T | < ∞, the following known sufficient condition of
solvability is valid.

Theorem 2. ([12]) If for any number k ∈ Ns the set, composed of h(k) differ-
ent values of k-th partial criterion fk(t) on the set T , is (s, h(k))-regular, then the
problem Zs is solvable by ALC.

It is easy to see that for any number k ∈ Ns the set of h(k) different numbers of
sequence

b̃k
1 , b̃k

2 , . . . , b̃k
u,

obtained as a result of the Stage 4 of algorithm Ψ, is (s, h(k))-regular. Hence, taking
into account Remark 1, we conclude that the set of h′(k) (h′(k) ≤ h(k)) different
values of the k-th criterion fk(t, D̃k) on the set T is (s, h′(k))-regular, and therefore
in view of Theorem 2 the problem Zs

m×n(T, D̃) is solvable by ALC.
Taking into account algorithm Ψ, we conclude that for any two trajectories t

and t′ the following formula
t ≻

D
t′ ⇔ t ≻

eD
t′,

holds, which implies that the vector problems Zs
m×n(T,D) and Zs

m×n(T, D̃) are

equivalent, i. e. the equality P s(T,D) = P s(T, D̃) is valid.
It is easy to see that the complexity of Stages 1 and 2 of algorithm Ψ is

O(snm log2 m). Since the Stage 3 is a multi-way merging of ordered numerical
sequences then the complexity of Stage 3 is O(sn(m − p + 1) log2 n) (see, for exam-
ple [16]). The complexity of Stages 4 and 5 of algorithm Ψ are O(sn(m − p + 1))
and O(sn(p − 1)) respectively.

Summarizing the said above, we conclude that the following theorem holds.

Theorem 3. The algorithm Ψ transforms any vector p-center problem Zs
m×n(T,

D), s ≥ 2, to the equivalent p-center problem Zs
m×n(T, D̃), which is solvable by ALC,

moreover the complexity of algorithm Ψ is O(sn(m log2 m + (m − p + 1) log2 n)).
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In view of Remark 2 Theorem 3 implies

Corollary 4. The problem Zs
m×n(T,D) is solvable by ALC if for any k ∈ Ns the

inequality h(k) ≤ 2 holds.

In the partial case, where p = 1, the complexity of algorithm Ψ is O(smn log2 mn).

6 Example

We consider 2-criteria 2-center problem with 5 × 2-dimension, i. e. s = 2, p =
2, m = 5, n = 2. Let T = {t1, t2, t3, t4}, t1 = {1, 2}, t2 = {2, 3}, t3 = {3, 4}, t4 =
{4, 5}, D = (D1,D2),

D1 =





4 0
0 6
6 4
10 2
8 1




, D2 =





2 6
1 10
0 4
8 0
10 3




.

Then the problem Z2
5×2(T,D) has the following vector evaluations of trajectories

f(t1,D) = (0, 6),

f(t2,D) = (4, 4),

f(t3,D) = (6, 0),

f(t4,D) = (8, 8).

It is easy to see that P 2(T,D) = {t1, t2, t3}, and the problem Z2
5×2(T,D) is

unsolvable, because for any vector λ ∈ Λ2 we have

〈λ, f(t2,D)〉 = 4 > 3 ≥ min{〈λ, f(ti,D)〉 : i ∈ N4},

i. e. t2 /∈ Ξ2(T,D).

Using algorithm Ψ, we transform the system of costs D to D̃ = {D̃1, D̃2}.
Stage 1. Let us sort all the elements of each column for each matrix D1 and

D2 in ascending order

D1 =





42 01

01 65

63 44

105 23

84 12




, D2 =





23 64

12 105

01 43

84 01

105 32




.

Stage 2. Delete from each column of matrices D1 and D2 one (q = p − 1 = 1)
maximal number:
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D1 =





42 01

01

63 44

23

84 12




, D2 =





23 64

12

01 43

84 01

32




.

Stage 3. Sort the rest of elements of each matrices D1 and D2 in ascending
order, and put them in matrices B1 and B2, respectively:

D1 =





42 01

01

63 44

23

84 12




, D2 =





23 64

12

01 43

84 01

32




,

B1 = (b1
1, b

1
2, . . . , b

1
8) = (0, 0, 1, 2, 4, 4, 6, 8),

B2 = (b2
1, b

2
2, . . . , b

2
8) = (0, 0, 1, 2, 3, 4, 6, 8).

Stage 4. Transform the numbers of matrices B1 and B2 according to the formula
(4):

B̃1 = (b̃1
1, b̃

1
2, . . . , b̃

1
8) = (0, 0, 1, 4, 12, 12, 30, 68),

B̃2 = (b̃2
1, b̃

2
2, . . . , b̃

2
8) = (0, 0, 1, 4, 11, 26, 58, 124).

Stage 5. In each column of matrix D1 on the deleted number place (Stage 2)
we put the number

b̃1
u + 1 = b̃1

8 + 1 = 69,

and in each column of matrix D2 we put the number

b̃2
u + 1 = b̃2

8 + 1 = 125.

As a result we obtain the problem Z2
5×2(T, D̃), where

D̃1 =





12 0
0 69
30 12
69 4
68 1




, D̃2 =





4 58
1 125
0 26

124 0
125 11




.

Since

f(t1, D̃) = (0, 58),

f(t2, D̃) = (12, 26),

f(t3, D̃) = (30, 0),

f(t4, D̃) = (68, 124),
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we have P 2(T,D) = P 2(T, D̃), i. e. the problems Z2
5×2(T,D) and Z2

5×2(T, D̃) are
equivalent. Moreover, suppose

λ1 = (0.9, 0.1),

λ2 = (0.6, 0.4),

λ3 = (0.1, 0.9),

we obtain
〈λ1, f(t1, D̃)〉 = min{〈λ1, f(ti, D̃)〉 : i ∈ N4} = 5.8,

〈λ2, f(t2, D̃)〉 = min{〈λ2, f(ti, D̃)〉 : i ∈ N4} = 17.6,

〈λ3, f(t3, D̃)〉 = min{〈λ3, f(ti, D̃)〉 : i ∈ N4} = 3.

Hence, P 2(T, D̃) = Ξ2(T, D̃), i. e. the problem Z2
5×2(T, D̃) is solvable by ALC.
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On LCA groups in which some closed

subgroups have commutative rings

of continuous endomorphisms
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Abstract. We describe here the locally compact abelian (LCA) groups all of whose
closed polythetic, respectively, copolythetic subgroups have commutative rings of con-
tinuous endomorphisms. We also determine the LCA groups all of whose polythetic,
respectively, copolythetic quotients by closed subgroups have commutative rings of
continuous endomorphisms.
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1 Introduction

The problem of characterizing the abelian groups with commutative endo-
morphism ring was first considered by T. Szele and J. Szendrei in [11], where,
among other things, certain important special cases were completly solved. Later
L. C. A. van Leeuwen [7] noted that, if X is an abelian group, then every finitely
generated subgroup of X has a commutative endomorphism ring if and only if X is
isomorphic to a subgroup of Q or of Q/Z.

Inspired by the above mentioned paper of T. Szele and J. Szendrei, we initiated
in [10] the study of LCA groups with commutative ring of continuous endomor-
phisms. In the present paper, we continue in the same direction by extending the
L. C. A. van Leeuwen’s result to this more general setting. Some other results
of this nature will also be established. To be more explicit, we need a couple of
definitions.

Definition 1.1. An LCA group X is said to be

(i) polythetic if it contains a dense finitely generated subgroup.

(ii) copolythetic if there exists a continuous injective homomorphism from X into
a group of the form Tn for some n ∈ N.

Let L be the class of LCA groups. For X ∈ L, we let E(X) denote the ring of
continuous endomorphisms of X.

c© Valeriu Popa, 2007
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Our aim here is to determine the groups X ∈ L such that every closed polythetic,
respectively, copolythetic subgroup G of X has a commutative ring E(G). We also
determine the groups X ∈ L such that every polythetic, respectively, copolythetic
quotient of X by a closed subgroup G, indicated as usual by X/G, has a commutative
ring E(X/G).

2 Notation

Since this paper continues the work of [10], we employ here the notation and
terminology introduced there.

In addition, L0 will denote the subclass of L consisting of those groups which
have a compact open subgroup, and ∔ will stand for the algebraic direct sum.

For any p ∈ P and X ∈ L, we let tp(X) denote the p-primary component of X,
and

S0(X) = {q ∈ P | tq(X) 6= {0}}.

Given a family (Ai)i∈I of subgroups of X,
∑

i∈I Ai will designate the minimal
subgroup of X containing

⋃
i∈I Ai.

If M is a set, |M | will stand for the cardinality of M.

We shall also use the groups of integers, Z, and of rationals, Q, both taken
discrete, and the groups of reals, R, and of reals modulo one, T, both taken with
their usual topologies.

3 Polythetic subgroups

In this section we characterize completly the groups X ∈ L such that every closed
polythetic subgroup G of X has a commutative ring E(G). By use of duality, we
obtain also the characterization of those groups X ∈ L which have the property that
for every closed subgroup G of X such that X/G is copolythetic, the ring E(X/G)
is commutative.

We start with some preparatory lemmas.

Lemma 3.1. Let X ∈ L. For any a, b ∈ X such that a ∈ k(X) and 〈a〉 ∩ 〈b〉 = {0},
we have 〈a, b〉 ∼= 〈a〉 × 〈b〉.

Proof. Since 〈a〉 is compact, 〈a〉 + 〈b〉 is closed in X [6, (4.4)]. It is then easy to
see that 〈a, b〉 = 〈a〉 + 〈b〉, so that 〈a, b〉 = 〈a〉 ∔ 〈b〉, and hence 〈a, b〉 = 〈a〉 ⊕ 〈b〉
by [1, Proposition 6.5]. 2

Lemma 3.2. Any group X ∈ L with {0} 6= k(X) 6= X has a closed polythetic
subgroup G such that E(G) is not commutative.

Proof. Pick any a ∈ k(G) and b ∈ X \ k(G). Since 〈b〉 ∼= Z [6, (9.1)], we have
〈a〉 ∩ 〈b〉 = {0}, so that 〈a, b〉 = 〈a〉 × 〈b〉 by Lemma 3.1. We can take G = 〈a, b〉. 2
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Lemma 3.3. Let X ∈ L and S = {p ∈ P | Xp 6= {0}}. If every closed polythetic
subgroup of X has a commutative ring of continuous endomorphisms, then, for each
p ∈ S, either Xp is torsion and X[p] is isomorphic to Z(p) or Xp is torsionfree and
every its compact subgroup is topologically isomorphic to Zp.

Proof. Fix any p ∈ S. If Xp were mixed, we could find two elements a, b ∈ Xp such

that 1 < o(a) < ∞ and o(b) = ∞, i.e. such that 〈a〉 ∼= Z(pn) for some n ∈ N0 and
〈b〉 ∼= Zp [1, Lemma 2.11]. It would then follow from Lemma 3.1 that

〈a, b〉 ∼= Z(pn) × Zp,

which would contradict the hypothesis because Z(pn) × Zp is polythetic and
E(Z(pn) × Zp) is not commutative. Consequently, Xp must be either torsion or
torsionfree. In the former case, we conclude from [4, Ch. 2, §4, Théorème 2] that

X[p] ∼= Z(p)(α) × Z(p)β

for some cardinal numbers α, β with α + β ≥ 1. But, in view of the hypothesis,
X can contain no copy of Z(p) × Z(p). Therefore we must have α + β = 1, and
so X[p] ∼= Z(p). In the second case, let G be a nonzero compact subgroup of Xp.
Then G ∼= Z

γ
p for some nonzero cardinal number γ [6, (24.25)]. Since our hypothesis

ensures that X contains no copy of Zp × Zp, we must have γ = 1, so G ∼= Zp. 2

We now can dispose of the important case of topological primary groups in L.

Theorem 3.4. Let p ∈ P. For a topological p-primary group X ∈ L, the following
statements are equivalent:

(i) Every closed polythetic subgroup of X has a commutative ring of continuous
endomorphisms.

(ii) X is topologically isomorphic with one of the groups Qp, Zp, Z(p∞) or Z(pn)
for some n ∈ N.

Proof. Assume X is nonzero and satisfies condition (i). By Lemma 3.3, we know
that either X is torsion and X[p] is isomorphic to Z(p) or X is torsionfree and every
its compact subgroup is topologically isomorphic to Zp.

If the former case occurs, we claim that X is isomorphic with either Z(p∞)
or Z(pn) for some n ∈ N. To see this, it will be enough, in view of L.C.A. van
Leeuwen’s result mentioned in the introduction, to show that X is discrete. Pick
a compact open subgroup V of X. By the structure theorem for torsion compact
abelian groups [6, (25.9)], V is topologically isomorphic to a group of the form∏

i∈I Z(pni), where the set {ni | i ∈ I} is finite. As

V [p] ⊂ X[p] ∼= Z(p),

it follows that I cannot contain more than one element, so V is finite, and hense X
is discrete. This establishes the claim.
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In the latter case, fix a compact open subgroup W of X and a topological group
isomorphism f from W onto Zp. Also let η denote the canonical injection of Zp into
Qp. Since Qp is divisible and W is open in X, η ◦ f extends to a continuous open
homomorphism h from X into Qp [6, (A.7)]. Pick any x ∈ ker(h). Since X is a
topological p-primary group, pmx ∈ W for sufficiently large m ∈ N. We then have

pmx ∈ ker(f) = {0},

so x = 0 because X is torsionfree. It follows that h induces a topological isomorphism
of X onto an open subgroup of Qp, and hence X is topologically isomorphic with
either Qp or Zp. This proves that (i) implies (ii).

The converse implication is clear in view of [7] and the fact that every nontrivial
closed subgroup in the groups Zp and Qp is topologically isomorphic with Zp. 2

As a consequence, we obtain the solution to the considered problem in the case
of topological torsion groups in L.

Corollary 3.5. For a topological torsion group X ∈ L, the following statements are
equivalent:

(i) Every closed polythetic subgroup of X has a commutative ring of continuous
endomorphisms.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with one of the groups Qp,
Zp, Z(p∞) or Z(pnp) for some np ∈ N.

Proof. Assume (i). Since X ∈ L is a topological torsion group, we have

X ∼=
∏

p∈S(X)

(Xp;Up),

where, for each p ∈ S(X), Xp is the topological p-primary component of X and Up

is a compact open subgroup of Xp [1, Theorem 3.13]. Pick any s ∈ S(X), and let G
be a closed polythetic subgroup of Xs. Further, letting

ηs : Xs →
∏

p∈S(X)

(Xp;Up)

denote the canonical injection, put G′ = ηs(G). Then G′ is a closed polythetic
subgroup of

∏
p∈S(X)(Xp;Up), so that E(G′) must be commutative. Since E(G) ∼=

E(G′), E(G) is commutative as well. It follows that every closed polythetic subgroup
of Xs has a commutative ring of continuous endomorphisms, so that, by Theorem
3.4, Xs is topologically isomorphic to one of the groups Qs, Zs, Z(s∞) or Z(sns) for
some ns ∈ N.

Assume (ii), and let G be a closed polythetic subgroup of X. Since k(G) = G,
G is compact [1, (5.40)(c)]. It follows that for each p ∈ S(G), Gp is a compact
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subgroup of Xp, so that Gp is topologically isomorphic with either Zp or Z(pnp) for
some np ∈ N. Since, by [10, Lemma 3.4],

E(G) ∼=
∏

p∈S(G)

E(Gp),

we conclude that E(G) is commutative. 2

The next lemma shows that the case of groups in L consisting entirely of compact
elements and having a nonzero connected component reduces to the case of compact
and connected groups.

Lemma 3.6. Let X be a group in L such that c(X) 6= {0} and k(X) = X. If
every closed polythetic subgroup of X has a commutative ring of continuous endo-
morphisms, then X is compact and connected.

Proof. We shall show first that Xp ⊂ c(X) for all p ∈ P. For this purpose, fix
any p ∈ P and let Cp denote the topological p-primary component of c(X). As is
well known, Cp is dense in c(X) [1, Corollary 4.18(a)], so that Cp and hence Xp is
nonzero. In view of Lemma 3.3, we distinguish two cases.

Case (a): Xp is torsion and X[p] is isomorphic to Z(p). Then X[p] has no non-
trivial subgroups, so that

X[p] = Cp[p] ⊂ c(X).

To apply induction, assume X[pk] ⊂ c(X) for some k ∈ N0, and choose any
a ∈ X[pk+1]. Since pa ∈ X[pk] ⊂ c(X) and since c(X) is divisible, there exists
c ∈ c(X) such that pa = pc, and so

b = a − c ∈ X[p] ⊂ c(X),

whence a = b + c ∈ c(X). As a ∈ X[pk+1] was arbitrarily chosen, X[pk+1] ⊂ c(X).
Consequently, X[pi] ⊂ c(X) for all i ∈ N0, and hence

Xp =
⋃

i∈N0

X[pi] ⊂ c(X).

Case (b): Xp is torsionfree and every its nonzero compact subgroup is topo-
logically isomorphic to Zp. Pick an arbitrary nonzero x ∈ Xp. We assert that

〈x〉 ∩ c(X) 6= {0}. For if not, then choosing any nonzero x′ ∈ Cp we would cer-

tainly have 〈x〉 ∩ 〈x′〉 = {0}. By Lemma 3.1, this would imply that

〈x, x′〉 ∼= 〈x〉 × 〈x′〉,

which contradicts the hypothesis because 〈x〉 ∼= Zp
∼= 〈x′〉. Consequently, we must

have 〈x〉 ∩ c(X) 6= {0}, and hence

〈x〉 ∩ c(X) = pm〈x〉
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for some m ∈ N. In particular pmx ∈ c(X), and so pmx = pmz for some z ∈ c(X),
because of the divisibility of c(X). Then x − z ∈ t(Xp) = {0}, and hence x = z ∈
c(X). Since x ∈ Xp was arbitrary, we have Xp ⊂ c(X). Thus either case leads us to
the conclusion that Xp ⊂ c(X).

We now are ready to show that X is compact and connected. Let

V = {V | V is a compact open subgroup of X}.

Since k(X) = X, it is clear that X =
⋃

V ∈V V. We will be done if we show that every
V ∈ V coincides with c(X). To this end, pick an arbitrary V ∈ V and let r0 denote
the torsionfree rank of the discrete group V ∗. We have r0 6= 0, since otherwise it
would follow that V ∗ is torsion, and so V would be totally desconnected [6, (24.26)],
which is however impossible because c(X) ⊂ V. By [5, §16] or [9, §3], there exists an
injective homomorphism f : Z(r0) → V ∗ such that V ∗/ im(f) is torsion. The adjoint
mapping f∗ is then a continuous open homomorphism from V onto Tr0 [6, (24.40)].
Letting K = ker(f∗), it follows that V/K ∼= Tr0 [3, Ch. 3, §2, Proposition 24], and
hence V/K is connected. Also, since

K = A(V, im(f)) ∼= (V ∗/ im(f))∗

[6, (24.38) and (23.25)] and V ∗/ im(f) is torsion, K is totally disconnected
[6, (24.26)]. It follows that K ∼=

∏
p∈S(K) Kp [1, Proposition 3.10], and thus

K =
∑

p∈S(K)

Kp

[6, (6.2)], whence K ⊂ c(X) because by the above every Kp is contained in c(X).
Taking account of [6, (5.34)], we then have

V/c(X) ∼= (V/K)/(c(X)/K),

so that V/c(X) must be connected. Since V/c(X) is certainly totally disconnected
[6, (7.3)], this can occur only when V = c(X), and the proof is complete. 2

We now consider the case of compact and connected groups in L.

Theorem 3.7. Let X ∈ L be compact and connected. The following statements are
equivalent:

(i) Every closed polythetic subgroup of X has a commutative ring of continuous
endomorphisms.

(ii) X is topologically isomorphic to a quotient of Q∗ by a closed subgroup.

Proof. Assume X is nonzero and satisfies (i). If t(X) = {0}, then X ∼= (Q∗)α

for some cardinal number α ≥ 1 [6, (25.8)]. We must have α = 1, since otherwise
X would contain a copy of Q∗ × Q∗, which is a contradiction because Q∗ × Q∗ is
polythetic [1, (5.40)(b)] but E(Q∗ × Q∗) is not commutative.
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Now suppose t(X) 6= {0}, and pick any p ∈ P with tp(X) 6= {0}. We know from
Lemma 3.3 that Xp = tp(X) and X[p] ∼= Z(p). Since Xp is dense in X [1, Corollary

4.18(a)], it follows that X = tp(X). Also, since X is divisible [6, (24.25)], tp(X)
is divisible too, so that tp(X) is algebraically isomorphic to Z(p∞) [9, Lemma, p.
33]. To see that X is topologically isomorphic to a quotient of Q∗ by a closed
subgroup, it will be enough in view of [6, (24.11)] and Pontryagin duality theorem
to show that X∗ is isomorphic to a subgroup of Q, i. e. that X∗ is of rank 1. Pick
any nonzero γ ∈ X∗. Since o(γ) = ∞, we will be done if we show that X∗/〈γ〉 is
torsion [9, Proposizione 1, p. 23]. But

(X∗/〈γ〉)∗ ∼= A(X, 〈γ〉)

[6, (23.25)], so that in order to show that X is topologically isomorphic to a quotient
of Q∗ by a closed subgroup, it will suffice to show that A(X, 〈γ〉) is totally discon-
nected [6, (24.26)]. Assume not, and let C = c(A(X, 〈γ〉)). By [1, Corollary 4.18(a)],
Cp is then a nonzero subgroup of Xp = tp(X), so that Cp = tp(C), and hence Cp is
divisible. As tp(X) is algebraically isomorphic to Z(p∞), we must have Cp = tp(X),
and so

X = tp(X) = Cp = c(A(X, 〈γ〉)),

whence X = A(X, 〈γ〉), which contradicts our assumption that γ 6= 0. Consequently,
X must be topologically isomorphic to a quotient of Q∗ by a closed subgroup.

For the converse, assume (ii). It follows from [6, (24.11)] that X∗ is topologi-
cally isomorphic to a subgroup of Q. Let G be a closed polythetic subgroup of X.
Since G∗ ∼= X∗/A(X∗, G) and since every quotient of Q by a nonzero subgroup is
isomorphic to a divisible subgroup of Q/Z, we conclude that G∗ is isomorphic either
to a subgroup of Q or to a subgroup of Q/Z. By the result of [7] mentioned in the
introduction, it follows that in either case E(G∗) is commutative, so that in view
of [10, Lemma 3.1] E(G) is commutative as well. The proof is complete. 2

We are now ready to prove the main theorem of this section, which describes the
groups X ∈ L such that every closed polythetic subgroup G of X has a commutative
ring E(G).

Theorem 3.8. For a group X ∈ L, the following statements are equivalent:

(i) Every closed polythetic subgroup of X has a commutative ring of continuous
endomorphisms.

(ii) X is topologically isomorphic to one of the groups:
(1) R, (2) a subgroup of Q, (3) a quotient of Q∗ by a closed subgroup,
(4)

∏
p∈S(X)(Xp;Up), where, for each p ∈ S(X), Xp is topologically isomorphic

to either Qp, Zp, Z(p∞), or Z(pnp) for some np ∈ N, and Up is a compact open
subgroup of Xp.

Proof. Assume (i). If X /∈ L0, we can write X = V ⊕ Y, where V, Y are closed
subgroups of X such that V ∼= Rd for some d ∈ N0 and Y ∈ L0 [6, (24.30)]. Since V
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is of course polythetic [1, (5.40)(e)], E(V ) must be commutative, so that we must
have d = 1. Also, since X 6= k(X), we deduce from Lemma 3.2 that k(X) = {0}, so
Y is discrete and V is open in X. If Y were not the zero group, it would follow that,
for every nonzero a ∈ Y, V +〈a〉 is an open and hence closed subgroup of X satisfying
V + 〈a〉 ∼= R × Z. This is a contradiction because R × Z is polythetic [1, (5.40)(f)]
and E(R × Z) is not commutative. Consequently, in this case X ∼= R.

Now let X ∈ L0. In view of Lemma 3.2, we must have either k(X) = {0} or
k(X) = X. If the former case occurs, X is discrete and torsionfree, and hence it is
isomorphic to a subgroup of Q, by the result of [7] mentioned in the introduction.
Assume the latter. If c(X) = {0}, it follows from Corollary 3.5 that

X ∼=
∏

p∈S(X)

(Xp;Up),

where, for each p ∈ S(X), Xp is topologically isomorphic to one of the groups
Qp, Zp, Z(p∞) or Z(pnp) for some np ∈ N, and Up is a compact open subgroup of
Xp. Finally, if c(X) 6= {0}, we conclude from Lemma 3.6 that X is compact and
connected, and hence X is topologically isomorphic to a quotient of Q∗ by a closed
subgroup, according to Theorem 3.7.

The converse is clear. 2

Dualizing the preceding theorem, we obtain the description of groups in L all of
whose copolythetic quotients by closed subgroups have commutative rings of conti-
nuous endomorphisms.

Corollary 3.9. For a group X ∈ L, the following statements are equivalent:

(i) Every copolythetic quotient of X by a closed subgroup has a commutative ring
of continuous endomorphisms.

(ii) X is topologically isomorphic to one of the groups:
(1) R, (2) a subgroup of Q, (3) a quotient of Q∗ by a closed subgroup,
(4)

∏
p∈S(X)(Xp;Up), where, for each p ∈ S(X), Xp is topologically isomorphic

to either Qp, Zp, Z(p∞), or Z(pnp) for some np ∈ N, and Up is a compact open
subgroup of Xp.

4 Copolythetic subgroups

In the present section, we characterize the groups X ∈ L such that every closed
copolythetic subgroup G of X has a commutative ring E(G). By utilizing duality,
we also get the description of those groups X ∈ L which have the property that
for each closed subgroup G of X such that X/G is polythetic, the ring E(X/G) is
commutative.

We will obtain these results as a consequence of a number of lemmas. The
first two of these establish, for certain particular types of groups, some necessary
conditions.
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Lemma 4.1. Let X be a group in L such that every its closed copolythetic subgroup
has a commutative ring of continuous endomorphisms. If X = A ⊕ Y, where A is
topologically isomorphic with either R or T, then Y is torsionfree.

Proof. If t(Y ) were nonzero, it would contain a copy of Z(p) for some p ∈ P. Since
A is topologically isomorphic with either R or T, it would then follow from Lemma
3.1 that X contains a copy of either Z × Z(p) or Z(p) × Z(p), a contradiction. 2

Lemma 4.2. Let X be a group in L with t(X) 6= {0}. If every closed copolythetic
subgroup of X has a commutative ring of continuous endomorphisms, then k(X) =
X and X[p] ∼= Z(p) for all p ∈ S0(X).

Proof. Pick any p ∈ S0(X). By [4, Ch. 2, §4, Théorème 2], we have

X[p] ∼= Z(p)(α) × Z(p)β

for some cardinal numbers α, β with α + β ≥ 1. Since X cannot contain copies
of Z(p) × Z(p), we must have α + β = 1, and so X[p] ∼= Z(p). If there existed
x ∈ X \ k(X), it would then follow from Lemma 3.1 that X contains a copy of
Z × Z(p), contradicting the hypothesis. 2

We continue with two simple lemmas that will be usefull in the sequel.

Lemma 4.3. If G ∈ L0 is copolythetic and contains no copy of T, then G is discrete.

Proof. By the definition of copolythetic groups, there exists for some n ∈ N0 an
injective h ∈ H(G, Tn). Let K be a compact open subgroup of G. Then h(K) is
closed in Tn, and hence h(K) is topologically isomorphic to a group of the form
Tm × F, where m is an integer satisfying 0 ≤ m ≤ n and F is a direct sum of at
most n−m finite cyclic groups [3, Ch. VII, §1, Proposition 11]. Since h is injective,
its restriction to K establishes a topological isomorphism of K onto h(K) [2, Ch. I,
§9, Théorème 2, Corollaire 2], and so

K ∼= Tm × F.

As G does not contain copies of T, we must have m = 0, so that K is finite, and
hence G is discrete. 2

Lemma 4.4. Let K be a closed subgroup of an abelian topological group Y such that
K = A ⊕ B for some subgroups A,B of K. For any closed subset C of A, C + B is
closed in Y.

Proof. Let ϕ denote the canonical projection of K onto A. We have C+B = ϕ−1(C),
so that C + B is closed in K and hence in Y. 2

The following two lemmas establish, for certain particular types of groups, some
sufficient conditions.

Lemma 4.5. If X is a torsionfree group in L all of whose nonzero discrete subgroups
are of rank one, then every closed copolythetic subgroup of X has a commutative ring
of continuous endomorphisms.
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Proof. Let G be a nonzero closed copolythetic subgroup of X. If G /∈ L0, we can
write G = A ⊕ B, where A ∼= Rd for some d ∈ N0 and B ∈ L0. We must have
d = 1, since otherwise G would contain discrete subgroups of rank greater than one.
Further, being torsionfree, X contains no copy of T. As B is clearly copolythetic, it
then follows from Lemma 4.3 that B is discrete, so that either B = {0} or B is of
rank one. But the latter is impossible. To see this, assume the contrary and pick
any nonzero a ∈ A. Since 〈a〉 is closed in A, it follows from Lemma 4.4 that 〈a〉+ B
is closed in X. As 〈a〉 + B is countable, we deduce from [8, Corollary, p. 23] that
〈a〉+B is discrete, a contradiction because 〈a〉+B is, in our case, of rank two. Thus
B = {0}, and hence E(G) is commutative.

In case G ∈ L0, it follows again from Lemma 4.3 that G is discrete, and hence
of rank one, so that E(G) is commutative.

Lemma 4.6. If X = A × Y, where A ∼= T and Y is a torsionfree group in L with
k(Y ) = Y, then every closed copolythetic subgroup of X has a commutative ring of
continuous endomorphisms.

Proof. Since T is compact, it is clear that X = k(X). We also have

X[p] ∼= A[p] × Y [p] ∼= T[p] ∼= Z(p)

for all p ∈ P. It follows in particular that X cannot contain copies of T×T. Indeed,
if there existed a closed subgroup K of X satisfying K ∼= T × T, then, picking any
p ∈ P, we would have

K[p] ∼= T[p] × T[p] ∼= Z(p) × Z(p),

contardicting the fact that X[p] ∼= Z(p).
Now, fix an arbitrary nonzero closed copolythetic subgroup G of X. If G contains

no copy of T, it follows from Lemma 4.3 that G is discrete, so G = k(G) = t(G).
Since

t(X) ∼= t(A) × t(Y ) ∼= t(T),

we conclude that G is isomorphic to a subgroup of Q/Z, and so E(G) is commutative
by [11, Theorem 1].

Suppose next that G contains closed subgroups topologically isomorphic to T.
Since for any cardinal number ν the group Tν is splitting in L [6, (25.31)(b)], we
can write G = B ⊕ C for some closed subgroups B,C of X with C ∼= T. Now, B
must be torsionfree since otherwise X would contain a copy of Z(p)×Z(p) for some
p ∈ P, in contradiction with the fact that X[p] ∼= Z(p). Moreover, since X cannot
contain copies of T × T, B contains no copy of T. As B is clearly copolythetic, it
follows from Lemma 4.3 that B is discrete. Therefore

B = k(B) = t(B) = {0},

so G ∼= T, and hence E(G) is commutative. 2

We now combine the above results to obtain the desired description of groups
in L all of whose copolythetic subgroups have a commutative ring of continuous
endomorphisms.
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Theorem 4.7. For a group X ∈ L, the following statements are equivalent:

(i) Every closed copolythetic subgroup of X has a commutative ring of continuous
endomorphisms.

(ii) X satisfies one of the following three conditions:

(1) X is torsionfree and every its nonzero discrete subgroup is of rank one.

(2) X ∼= T × Y, where Y is a torsionfree group in L with k(Y ) = Y.

(3) X contains no copy of T, k(X) = X, t(X) 6= {0}, and X[p] ∼= Z(p) for
all p ∈ S0(X).

Proof. Assume (i). We consider first the case when X is torsionfree. Pick an
arbitrary nonzero discrete subgroup G of X, and let M be a maximal free subset of
G. Then

〈M〉 ∼=
⊕

x∈M

〈x〉

[9, Proposizione 1, p. 23]. Note also that every subgroup of G, being discrete, is
closed in X [6, (5.10)]. If G were not of rank one, we would have |M | > 1, so that
X would contain a copy of Z × Z, contradicting the hypothesis. Thus G must be of
rank one. As G was chosen arbitrarily among the nonzero discrete subgroups of X,
we conclude that in this case X satisfies (1).

Next suppose that t(X) 6= {0}. It follows from Lemma 4.2 that k(X) = X and
X[p] ∼= Z(p) for all p ∈ S0(X). Therefore, if X contains no copy of T, we are led
to (3). If, on the other hand, X contains a closed subgroup A ∼= T, we can write
X = A ⊕ Y for some closed subgroup Y of X. Then, for each p ∈ S0(X), we have

X[p] ∼= A[p] ⊕ Y [p] and A[p] ∼= T[p] ∼= Z(p),

so that, in view of the above mentioned fact that X[p] is simple, Y [p] = {0}. It
follows that t(Y ) = {0}, and hence X satisfies (2).

Now assume (ii). If X satisfies (1), then Lemma 4.5 shows that (i) holds. In case
X satisfies (2), the validity of (i) follows from Lemma 4.6. Finally, suppose that
X satisfies (3), and let G be a closed copolythetic subgroup of X. It follows from
Lemma 4.3 that G is discrete, so G = k(G) = t(G), and hence

G ∼=
⊕

p∈S0(G)

Gp.

Since, clearly, Gp[p] = X[p] ∼= Z(p) for all p ∈ S0(G), we conclude that G is
isomorphic to a subgroup of

⊕
p∈S0(G) Z(p∞), so that E(G) is commutative by

[11, Theorem 1]. 2

By use of duality, we obtain the description of groups in L all of whose polythetic
quotients by closed subgroups have commutative rings of continuous endomorphisms.
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Corollary 4.8. For a group X ∈ L, the following statements are equivalent:

(i) Every polythetic quotient of X by a closed subgroup has a commutative ring of
continuous endomorphisms.

(ii) X satisfies one of the following three conditions:

(1) X is densely divisible and every its compact quotient by a proper closed
subgroup is of dimension one.

(2) X ∼= Z× Y, where Y is a densely divisible and totally disconnected group
in L.

(3) X is a totally disconnected group with no quotients by closed subgroups
topologically isomorphic to Z,

⋂
p∈P

pX 6= X, and X/pX ∼= Z(p) for all

p ∈ P such that pX 6= X.
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Abstract. In the article the n-dimensional autonomous Darboux type differential
systems with nonlinearities of the 2nd degree are considered. With the aid of theorem
on integrating factor the particular invariant GL(n, R)-integrals are constructed as
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represent the algebraic curves of the 1st degree. The recurrence formula of particular
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Consider the system of differential equations

dxj

dt
= aj

αxα + aj
αβxαxβ ≡ P j(x, a) (j, α, β = 1, n; n ≥ 2), (1)

where coefficient tensor aj
αβ is symmetrical in lower indices, in which the comp-

lete convolution holds. The system (1) is considered with the action of the group
GL(n, R) of center-affine transformations [1], and x = (x1, x2, ..., xn) is a phase
variable vector of the system.

Suppose that system (1) admits (n − 1)-dimensional commutative Lie algebra
with operators

Xα = ξj
α(x)

∂

∂xj
(j = 1, n; α = 1, n − 1) (2)

and

Λ = P j(x, a)
∂

∂xj
(j = 1, n). (3)

Consider the determinant constructed on coordinates of operators (2)-(3) as
follows

∆ =

∣∣∣∣∣∣∣∣∣∣

ξ1
1 ξ2

1 ξ3
1 ... ξn

1

ξ1
2 ξ2

2 ξ3
2 ... ξn

2

... ... ... ... ...
ξ1
n−1 ξ2

n−1 ξ3
n−1 ... ξn

n−1

P 1 P 2 P 3 ... Pn

∣∣∣∣∣∣∣∣∣∣

. (4)

From [2] it follows that holds

c© O.V. Diaconescu, 2007
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Theorem 1. If n-dimensional differential system (1) admits (n − 1)-dimensional
commutative Lie algebra of operators (2), then the function µ = 1

∆ , where ∆ 6= 0
from (4), is the integrating factor for Pfaff equations

∑

i=1

(−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ1
1 ... ξi−1

1 ξi+1
1 ... ξn

1

... ... ... ... ... ...

ξ1
j−1 ... ξi−1

j−1 ξi+1
j−1 ... ξn

j−1

ξ1
j+1 ... ξi−1

j+1 ξi+1
j+1 ... ξn

j+1

... ... ... ... ... ...
P 1 ... P i−1 P i+1 ... Pn

∣∣∣∣∣∣∣∣∣∣∣∣∣

dxi = 0 (i = 1, n; j = 1, n − 1),

(5)
defining a general integral of the system (1).

Following [3], consider system (1) in a ”Darboux” like case, i.e. system (1)
written in the form

dxj

dt
= aj

αxα + 2xjR(x) ≡ P j(x, a) (j, α = 1, n; n ≥ 2), (6)

where R(x) 6= 0 is a homogeneous linear polynomial with constant coefficients in
coordinates of the vector x.

According to [4] will treat invariant GL(n, R)-integrating factors and invariant
GL(n, R)-integrals of the system (6) with n = 2, 3, 4, 5, ...

1. Case n = 2. Will denote the invariants and comitants of the system (1) as
follows

I1,2 = aα1
α1

, I2,2 = aα1
α2

aα2
α1

, K1,2 = aα1
α xαxα2εα1α2 ,

P1,2 = aα1
α1βxβ, P2,2 = aα1

α2
aα2

α1βxβ, K̃1,2 = aα1
βγxβxγxα2εα1α2 ,

(7)

where the first of lower indices for I,K,P and K̃ from (7) shows the degree of
invariant or comitant with respect to coefficients of the system (1), and the second
lower index shows the dimension of the system (n = 2). In [4] it is shown that
invariant condition which differs the system (6) from (1) is the following: K̃1,2 ≡ 0.
In the same paper with the aid of Theorem 1 and expressions (7) is proved

Theorem 2. System (1) with K̃1,2 ≡ 0 and n = 2 has the invariant GL(2, R)-
integrating factor µ of the form µ−1 = K1,2Φ2,2, where K1,2 = 0 and

Φ2,2 ≡ 8I1,2P1,2 − 12P2,2 + 3(I2
1,2 − I2,2) = 0

are invariant particular GL(2, R)-integrals of this system.



MULTI-DIMENSIONAL DARBOUX TYPE . . . 97

2. Case n = 3. Following [3] will denote the invariants, comitants and covariants
of the system (1) as follows

I1,3 = aα1
α1

, I2,3 = aα1
α2

aα2
α1

, I3,3 = aα1
α3

aα2
α1

aα3
α2

,

K3,3 = aβ1
α1a

β2
α2a

α2
α3

xα1xα3xβ3εβ1β2β3 ,

P1,3 = aα1
α1βxβ, P2,3 = aα1

α2
aα2

α1βxβ, P3,3 = aα1
α3

aα2
α1

aα3
α2βxβ,

K̃1,3 = aα1
βγxβxγxα2xα3

1 εα1α2α3 ,

(8)

where the meaning of the lower indices for I,K,P and K̃ is the same, and the vector
x1 = (x1

1, x
2
1, x

3
1) is cogradient [5] to the phase variable vector x = (x1, x2, x3). The

vectors x and x1 are independent. In [3] it is shown that invariant condition which
differs the system (6) from (1) is the following: K̃1,3 ≡ 0. In the same paper with
the aid of Theorem 1 and expressions (8) is proved

Theorem 3. System (1) with K̃1,3 ≡ 0 and n = 3 has the invariant GL(3, R)-
integrating factor µ of the form µ−1 = K3,3Φ3,3, where K3,3 = 0 and

Φ3,3 ≡ 1/3(I2
1,3 − 3I1,3I2,3 + 2I3,3) − 3/2(I2,3 − I2

1,3)P1,3 − 4I1,3P2,3 + 4P3,3 = 0

are invariant particular GL(3, R)-integrals of this system.

3. Case n = 4. Consider the next invariants, comitants and covariants of the
system (1)

I1,4 = aα1
α1

, I2,4 = aα1
α2

aα2
α1

, I3,4 = aα1
α3

aα2
α1

aα3
α2

, I4,4 = aα1
α4

aα2
α1

aα3
α2

aα4
α3

,

K6,4 = aβ1
α1a

β2
α2a

α2
α3

aβ3
α4a

α4
α5

aα5
α6

xα1xα3xα6xβ4εβ1β2β3β4 , P1,4 = aα1
α1βxβ,

P2,4 = aα1
α2

aα2
α1βxβ, P3,4 = aα1

α3
aα2

α1
aα3

α2βxβ, P4,4 = aα1
α4

aα2
α1

aα3
α2

aα4
α3βxβ,

K̃1,4 = aα1
βγxβxγxα2xα3

1 xα4
2 εα1α2α3α4 ,

(9)

where the meaning of the lower indices for I,K,P and K̃ is the same, and the vectors
x1 = (x1

1, x
2
1, x

3
1, x

4
1) and x2 = (x1

2, x
2
2, x

3
2, x

4
2) are cogradient to the phase variable

vector x. One can verify easily that invariant condition which differs the system (6)
from (1) is the following: K̃1,4 ≡ 0. With the aid of Theorem 1 and expressions (9)
it is proved the following

Theorem 4. System (1) with K̃1,4 ≡ 0 and n = 4 has the invariant GL(4, R)-
integrating factor µ of the form µ−1 = K6,4Φ4,4, where K6,4 = 0 and

Φ4,4 ≡ L4,4 − 2(4/5L3,4P1,4 + L2,4P2,4 + L1,4P3,4 + P4,4) = 0 (10)

are invariant particular GL(4, R)-integrals of this system. In (10) we have

L1,4 = −I1,4, L2,4 = 1/2(I2
1,4 − I2,4), L3,4 = 1/6(3I1,4I2,4 − 2I3,4 − I3

1,4),

L4,4 = 1/24(8I1,4I3,4 − 6I4,4 − 6I2
1,4I2,4 + 3I2

2,4 + I4
1,4),

where Ik,4 (k = 1, 4) are from (9).
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4. Case n = 5. Consider the next invariants, comitants and covariants of the
system (1)

I1,5 = aα1
α1

, I2,5 = aα1
α2

aα2
α1

, I3,5 = aα1
α3

aα2
α1

aα3
α2

,

I4,5 = aα1
α4

aα2
α1

aα3
α2

aα4
α3

, I5,5 = aα1
α5

aα2
α1

aα3
α2

aα4
α3

aα5
α4

,

K10,5 = aβ1
α1a

β2
α2a

α2
α3

aβ3
α4a

α4
α5

aα5
α6

aβ4
α7a

α7
α8

aα8
α9

aα9
α10

xα1xα3xα6xα10xβ5εβ1β2β3β4β5,

P1,5 = aα1
α1βxβ, P2,5 = aα1

α2
aα2

α1βxβ, P3,5 = aα1
α3

aα2
α1

aα3
α2βxβ,

P4,5 = aα1
α4

aα2
α1

aα3
α2

aα4
α3βxβ, P5,5 = aα1

α5
aα2

α1
aα3

α2
aα4

α3
aα5

α4βxβ,

K̃1,5 = aα1
βγxβxγxα2xα3

1 xα4
2 xα5

3 εα1α2α3α4α5 ,

(11)

where the meaning of lower indices for I,K,P and K̃ is the same, and the vectors
xi = (x1

i , x
2
i , x

3
i , x

4
i , x

5
i ), (i = 1, 3) are cogradient to the phase variable vector x. As

it is easy to see the invariant condition which differs the system (6) from (1) is the
following: K̃1,5 ≡ 0. With the aid of Theorem 1 and expressions (11) is proved the
following

Theorem 5. System (1) with K̃1,5 ≡ 0 and n = 5 has the invariant GL(5, R)-
integrating factor µ of the form µ−1 = K10,5Φ5,5, where K10,5 = 0 and

Φ5,5 ≡ L5,5 − 2(5/6L4,5P1,5 + L3,5P2,5 + L2,5P3,5 + L1,5P4,5 + P5,5) = 0 (12)

are invariant particular GL(5, R)-integrals of this system. In (12) we have

L1,5 = −I1,5, L2,5 = 1/2(I2
1,5 − I2,5), L3,5 = 1/6(3I1,5I2,5 − 2I3,5 − I3

1,5),

L4,5 = 1/24(8I1,5I3,5 − 6I4,5 − 6I2
1,5I2,5 + 3I2

2,5 + I4
1,5),

L5,5 = −1/120(I5
1,5−10I3

1,5I2,5+20I2
1,5I3,5+15I1,5I

2
2,5−30I1,5I4,5−20I2,5I3,5+24I5,5),

where Ik,5 (k = 1, 5) are from (11).

5. The general case n ≥ 2.
Write the center-affine invariants, comitants and covariants in general case of

system (1) as follows

I1,n = aα1
α1

, I2,n = aα1
α2

aα2
α1

, I3,n = aα1
α3

aα2
α1

aα3
α2

, ..., In,n = aα1
αn

aα2
α1

aα3
α2

...aαn
αn−1

,

Km,n = aβ1
α1a

β2
α2a

α2
α3

aβ3
α4a

α4
α5

aα5
α6

aβ4
α7a

α7
α8

aα8
α9

aα9
α10

...a
αm−1
αm xα1xα3xα6xα10 ...xαmxβnεβ1...βn,

P1,n = aα1
α1βxβ, P2,n = aα1

α2
aα2

α1βxβ, P3,n = aα1
α3

aα2
α1

aα3
α2βxβ, ...,

Pn,n = aα1
αn

aα2
α1

aα3
α2

...aαn
αn−1βxβ,

K̃1,n = aβ1

αβxαxβxβ2xβ3
1 xβ4

2 ...xβn
n−2εβ1β2...βn,

(α,α1, α2, ..., αm, ..., αn, β, β1, β2, ..., βn = 1, n; m = n(n−1)
2 ; n ≥ 2)

(13)
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where εβ1β2β3...βn is a unit n-vector, and the vectors xi = (x1
i , x

2
i , ..., x

n
i ),

(i = 1, n − 2) are independent cogradient vectors [5] to x .

Remark 1. System (1) with K̃1,n ≡ 0 has the form (6), where R(x) = 1
n+1P1,n.

Will call the systems written in the form (6) a Darboux type differential system
(analogically to the case when n = 2 in [4]).

As it is easy to see the center-affine invariant condition differ the system (6) from
(1). Indeed, it is true that for system (6) with K̃1,n ≡ 0, we have P1,n = (n+1)R(x).

One can verify that the next theorem generalizes cases 1-4

Theorem 6. System (1) with K̃1,n ≡ 0 and n = 2, 3, 4, 5 has the invariant GL(n, R)-
integrating factor µ of the form

µ−1 = Km,nΦn,n,

where Km,n = 0 and

Φn,n ≡ Ln,n−2(
n

n + 1
Ln−1,nP1,n+Ln−2,nP2,n+Ln−3,nP3,n+...+L1,nPn−1,n+Pn,n) = 0

(14)
are invariant particular GL(n, R)-integrals of this system, and Li,n (i = 1, n) are
the coefficients of characteristic equation of the system (1) as follows

λn + L1,nλn−1 + L2,nλn−2 + ... + Ln−1,nλ + Ln,n = 0 (15)

and they can be expressed though the invariants from (13) by the recurrence formula

Li,n = −1

i
(Ii,n + Ii−1,nL1,n + Ii−2,nL2,n + ... + I1,nLi−1,n) (i = 1, n). (16)

With the aid of the cases 1-4 it is easy to verify that holds the next

Theorem 7. System (1) with K̃1,n ≡ 0 and n = 2, 3, 4, 5 has the first invariant
GL(n, R)-integral of Darboux type [6] as follows

K−1
m,nΦn

n,n = C (17)

if and only if I1,n = 0, where Km,n, K̃1,n, I1,n are from (13), and Φn,n is from (14).

The proof of Theorem 7 for system (6) follows from the equation

Λ(K−1
m,nΦn

n,n) = −I1K
−1
m,nΦn

n,n,

where Λ is from (3).

Remark 2. There exists the assumption that Theorems 6 and 7 hold for n ≥ 6.

One can verify that holds

Remark 3. Expression Km,n = 0 from (13) is the invariant particular GL(n, R)-

integral for linear system dxj

dt = aj
αxα (α = 1, n).
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GL(2, R)-orbits in a competing species model

Raluca Mihaela Georgescu, Elena Naidenova

Abstract. A particular model with two parameters describing the dynamics of two
competing species is analyzed from algebraic viewpoint involving the GL(2, R)-orbits.

Mathematics subject classification: 34C14.

Keywords and phrases: Differential system, parametric portrait, Lie algebra of the
operators, GL(2, R)-orbit, first integral.

1 Introduction

In this paper we study a particular family of planar vector fields modelling the
dynamics of two competing populations and corresponding to a couple of similar
species of animals which compete with each other for a common food supply.

The competition between two species is modelled by the competitive Lotka-
Volterra system 





ẋ1 = x1(r1 − a11x1 − a12x2),

ẋ2 = x2(r2 − a21x1 − a22x2),
(1)

where x1, x2 represent the number of the populations of the two species, r1, r2,
represent the growth rate of the species, and aij > 0, i, j = 1, 2, represent the
competitive impacts of species j on the growth of species i.

The model we study in this paper is proposed as an application by M. W. Hirsch,
S. Smale and R. L. Devaney in [2] and has the form






ẋ1 = x1(a − x1 − ax2),

ẋ2 = x2(b − bx1 − x2),
(2)

where x1, x2 represent the number of the populations of the two species, and a and
b are positive parameters. The system (2) is a particular case of (1).

In [3] the equilibrium points are found and the phase portrait and the parameter
portraits are determined. Herein we determine the GL(2, R)-orbits of the system (2)
and construct the corresponding Lie algebra. Then we determine the first integrals
of the system (2) for particular values of the parameters a and b.

c© Raluca Mihaela Georgescu, Elena Naidenova, 2007
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2 GL(2, R)-orbits of the system (2)

In the tensorial form the system (2) reads

ẋj = aj
αxα + aj

αβxαxβ, (j, α, β = 1, 2). (3)

The dimensions of the GL(2, R)-orbits of the system (3) are given by

Theorem 1. [1]. The GL(2, R)-orbits of the system (3) has the dimension:

4, if K5(K9 + β) 6= 0,
or K5 6≡ 0, K9 + β ≡ 0, K1 6≡ 0, W1 6≡ 0,
or K5 6≡ 0, K9 + β ≡ 0, K1 ≡ 0, K2 6≡ 0, W2 6≡ 0,
or K5 ≡ 0, K1 6≡ 0, I4 6= 0;

3, if K5 6≡ 0, K9 + β ≡ 0, K1 6≡ 0, W1 ≡ 0,
or K5 6≡ 0, K9 + β ≡ 0, K1 ≡ 0, K2 6≡ 0,W2 = 0,
or K5 6≡ 0, K9 + β ≡ 0, K1 ≡ 0, K2 ≡ 0,K7 6≡ 0,
or K5 ≡ 0, K1 6≡ 0, I4 = 0, K2 6≡ 0;

2, if K5 6≡ 0, K9 + β ≡ 0, K1 ≡ 0, K2 ≡ 0, K7 ≡ 0,
or K5 ≡ 0, K1 6≡ 0, I4 = 0, K2 ≡ 0,
or K5 ≡ 0, K1 ≡ 0, K2 6≡ 0;

0, if K5 ≡ 0, K1 ≡ 0, K2 ≡ 0,
where β = 27I8 − I9 − 18I7, W1 = K1(2K11 − I1K5 − 2K1K2) + K2K6,
W2 = 3K2K7 − 2K3K5, the invariants I1, I4, I7, I8, I9 and the comitants
K1, K2, K5, K6, K7, K9, K11 having the forms [6]:

I1 = aα
α, I4 = aα

p aβ
βqa

γ
αγεpq, I7 = aα

pra
β
αqa

δ
γδε

pqεrs, I8 = aα
pra

β
αqa

γ
δsa

δ
βγεpqεrs,

I9 = aα
pra

β
βqa

γ
γsa

δ
αδε

pqεrs, K1 = aα
αβ , K2 = ap

αxαεpq, K3 = aα
βaβ

αγxγ ,

K5 = ap
αβxαxβxpεpq, K6 = aα

αβaβ
γδx

γxδ, K7 = aα
βγaβ

αδx
γxδ, K9 = aα

αpa
β
γqa

γ
αβxδ,

K11 = ap
αaα

βγxβxγxqεpq.

For system (2) we have a1
1 = a, a1

2 = 0, a2
1 = 0, a2

2 = b, a1
11 = −1, a1

12 = −a/2,
a1

22 = 0, a2
11 = 0, a2

12 = −b/2, a2
22 = −1. Therefore, in our particular case, we obtain

I1 = a + b, I4 =
1

4
(2 + a)(a − b)(2 + b),

I7 = −a2/4 + a/2 − 3a2b/8 + ab/2 + b/2 − a2b2/4 − 3ab2/8 − b2/4,

I8 = −a2/4 + a/2 − a2b/8 + b/2 − a2b2/4 − ab2/8 − b2/4,

I9 = −(a + 2)(b + 2)(a + b + 2ab − 4)/8, K1 = −(1 + b/2)x − (1 + a/2)y,

K2 = (a − b)xy, K3 = −(a + b2/2)x − (b + a2/2)y,

K5 = (b − 1)x2y − (a − 1)xy2, K6 = (1 + b/2)x2 + (a + ab + b)xy + (1 + a/2)y2,
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K7 = (1 + b2/4)x2 + (a + ab/2 + b)xy + (a2/4 + 1)y2,

K9 = (1 − ab/2 − b/2)x − (1 − a/2 − ab/2)y, K11 = (b2 − a)x2y + (b − a2)xy2,

β = −2(b − 1)2(a − 1)2, W1 = x2y2(a + b + 2ab − 4)(a − b)/2,

W2 = (a + 2ab + b3/4 + 3ab2/4 − b2 − 3b)x3y + (5a2b/2 − 5ab2/2 − 2b + 2a)x2y2−
−(3a2b/4 − a2 + b − 3a + a3/4 + 2ab)xy3,

whence, the theorem holds

Theorem 2. GL(2, R)-orbits of the system (2) has the dimension:
4, if a 6= 1 or b 6= 1,
2, if a = b = 1.

3 The parametric portrait and the phase portraits for

the system (2)

The number and the nature of the equilibrium points of the system (2) are
studied in [3]. Namely, from the biological viewpoint (x, y > 0) and for a, b ≥ 0,
in the parametric portrait there are 12 strata (Fig. 1), i.e. there are 12 topological
nonequivalent corresponding phase portraits (Fig. 2).

Fig. 1 The parametric portrait
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Fig. 2. Phase portraits for (2)

Remark 1. The case 11 in Fig.2 corresponds to the orbit of dimension 2, and the
others to the orbit of dimension 4.

4 Lie algebras and some first integrals of the system (2)

To complete our algebraic investigation of the system (2), we attempted to con-
struct Lie algebras for each system from Section 3. We supposed that system (2)
admits the Lie algebra corresponding to the linear group of transformations having
as generator the operator [5]:

X = ξ1
∂

∂x
+ ξ2

∂

∂y
, (4)

where
ξ1 = Ax + By + C, ξ2 = Dx + Ey + F.

It was found that the only system which admits such an algebra correspond to the
orbit of dimension 2. One can verify using CSA Mathematica or Maple that the
system (2) on the orbit with dimension 4 does not admit such algebra. Similarly
we have found that this systems does not admit Lie algebra having as generator the
operator (4) with coefficient vectors as follows:

1. ξ1 = A1x
2 + A2xy + A3y

2 + A4x + A5y + A6,

ξ2 = B1x
2 + B2xy + B3y

2 + B4x + B5y + B6;

2. ξ1 = A1x
3 + A2x

2y + A3xy2 + A4y
3 + A5x + A6y + A7,

ξ2 = B1x
3 + B2x

2y + B3xy2 + B4y
3 + B5x + B6y + B7;

3. ξ1 = A1x
4 + A2x

3y + A3x
2y2 + A4xy3 + A5y

4 + A6x + A7y,
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ξ1 = B1x
4 + B2x

3y + B3x
2y2 + B4xy3 + B5y

4 + B6x + B7y;

4. ξ1 =
A1x + B1y + C1

D1x + E1y + F1
, ξ2 =

A2x + B2y + C2

D2x + E2y + F2
.

Assume that x1 = x, x2 = y. So, following [3] we have considered the cases:

1. The system (2) for a = b = 1 corresponds to the case 11 (Fig.2). As this system
is on the orbits with dimension 2, it admits the one-dimensional Lie algebra with

operator X = −x
∂

∂x
+x

∂

∂y
. By means of this operator the first integral F1 ≡ y

x
= C1

was found.

2. The system (2) for a = b = 0 corresponds to the case 0 (Fig.2). It admits the

first integral F2 ≡ −1

y
+

1

x
+ C2 = 0.

3. The system (2) for a 6= 0, b = 0 corresponds to the case 1 (Fig.2). It admits
the first integral

F3 ≡
(

ya

(
−a

y

)a

Γ

(
−a,−a

y

)
ax − ya

(
−a

y

)a

Γ (−a) ax + e
a
y aya + C3 ax−

−e
a
y yax

)
a−1x−1 = 0.

4. The system (2) for b 6= 0, a = 0 corresponds to the case 7 (Fig. 2). It admits
the first integral

F4 ≡
(

xb

(
− b

x

)b

Γ (−b) by − xb

(
− b

x

)b

Γ

(
−b,− b

x

)
by − be

b
x xb + C4 by+

+e
b
x xby

)
b−1y−1 = 0.

Remark 2. The integrals F1 - F4 can not be expressed by center-affine invari-
ants and comitants of the system (2). Moreover, integrals F3, F4 contain Gamma-
functions.

Remark 3. For the system with ab 6= 0, a 6= 1 and b 6= 1 the authors were not able
to find the first integral.

Throughout the paper the Computer Algebra Systems Maple 9.5 and Mathema-
tica 5 were widely used.
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Minimum Cost Multicommodity Flows

in Dynamic Networks

and Algorithms for their Finding

Maria Fonoberova,∗ Dmitrii Lozovanu †

Abstract. We consider the minimum cost multicommodity flow problem in dynamic
networks with time-varying capacities of arcs and transit times on arcs that depend on
the sort of commodity entering them. We assume that cost functions, defined on arcs,
are nonlinear and depend on time and flow, and the demand function also depends on
time. Moreover, we study the problem in the case when transit time functions depend
on time and flow. The modification of the time-expanded network method and new
algorithms for solving the considered classes of problems are proposed.

Mathematics subject classification: 90B10, 90C35, 90C27.
Keywords and phrases: Network flows, dynamic networks, multicommodity flows,
dynamic minimum cost flow problem.

1 Introduction and Problem Formulation

In this paper we study the dynamic version of the nonlinear minimum cost multi-
commodity network flow problem, which generalizes the classical static flow problem
and extends some dynamic problems considered in [1,3,4]. We consider this problem
on dynamic networks with time-varying capacities of arcs and transit times on arcs
that depend on the sort of commodity entering them, what means that the transit
time functions on the set of arcs for different commodities can be different. We
assume that cost functions, defined on arcs, are nonlinear and depend on time and
flow. Moreover, we assume that the demand function also depends on time. To
solve the considered dynamic problem, we reduce it to the static one on a special
time-expanded network, the structure of which differs from the standard one intro-
duced by Ford and Fulkerson in [3]. We propose algorithms for solving the general
minimum cost multicommodity flow problem and its variants with different forms of
restrictions by parameters of network and time. We also consider dynamic networks
with transit time functions that depend on flow and time and elaborate methods for
solving problems on such networks.

c© Maria Fonoberova, Dmitrii Lozovanu, 2007
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The minimum cost multicommodity dynamic flow problem asks to find the flow
of a set of commodities through a network with given time horizon, satisfying all
supplies and demands with minimum cost such that link capacities are not exceeded.
We consider the discrete time model, in which all times are integral and bounded
by horizon T . The time horizon is the time until which the flow can travel in the
network and defines the makespan T = {0, 1, . . . , T} of time moments we consider.
Time is measured in discrete steps, so that if one unit of flow of commodity k leaves
node u at time t on arc e = (u, v), one unit of flow arrives at node v at time t + τk

e ,
where τk

e is the transit time on arc e for commodity k. Without loosing generality,
we assume that no arcs enter sources or exit sinks. Accordingly the sources are
nodes through which flow enters the network and the sinks are nodes through which
flow leaves the network.

We consider a directed network N = (V,E,K,w, u, τ, d, ϕ) with set of vertices
V , set of arcs E and set of commodities K = {1, 2, . . . , q} that must be routed
through the same network. A dynamic network N consists of capacity function
w: E × K × T → R+, mutual capacity function u: E × T → R+, transit time
function τ : E × K → R+, demand function d: V × K × T → R and cost function
ϕ: E×R+×T → R+. So, τe = (τ1

e , τ2
e , . . . , τ q

e ) is a vector, each component of which
reflects the transit time on arc e for commodity k ∈ K. Such formulation of the
problem extends models studied in [1, 2, 4, 5]. The demand function dk

v(t) satisfies
the following conditions:

a) there exists v ∈ V for every k ∈ K with dk
v(0) < 0;

b) if dk
v(t) < 0 for a node v ∈ V for commodity k ∈ K then dk

v(t) = 0,
t = 1, 2, . . . , T ;

c)
∑

t∈T

∑

v∈V

dk
v(t) = 0,∀k ∈ K.

Nodes v ∈ V with
∑

t∈T dk
v(t) < 0, k ∈ K, are called sources for commodity k,

nodes v ∈ V with
∑

t∈T dk
v(t) > 0, k ∈ K, are called sinks for commodity k and

nodes v ∈ V with
∑

t∈T dk
v(t) = 0, k ∈ K, are called intermediate for commodity k.

A multicommodity dynamic flow in N is a function x: E×T → R+ that satisfies
the following conditions:

∑

e∈E+(v)

t−τk
e ≥0

xk
e(t − τk

e ) −
∑

e∈E−(v)

xk
e(t) = dk

v(t), ∀ t ∈ T , ∀ v ∈ V, ∀k ∈ K; (1)

∑

k∈K

xk
e(t) ≤ ue(t), ∀ t ∈ T , ∀e ∈ E; (2)

0 ≤ xk
e(t) ≤ wk

e (t), ∀ t ∈ T , ∀ e ∈ E, ∀k ∈ K; (3)

xk
e(t) = 0, ∀ e ∈ E, t = T − τk

e + 1, T , ∀k ∈ K, (4)

where E−(v) = {(v, z) | (v, z) ∈ E}, E+(v) = {(z, v) | (z, v) ∈ E}.
Here the function x defines the value xk

e(t) of flow of commodity k entering arc
e at time t. It is easy to observe that the flow of commodity k does not enter arc
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e at time t if it will have to leave the arc after time T ; this is ensured by condition
(4). Capacity constraints (3) mean that at most wk

e (t) units of flow of commodity k
can enter arc e at time t. Mutual capacity constraints (2) mean that at most ue(t)
units of flow can enter arc e at time t. Conditions (1) represent flow conservation
constraints.

To model transit costs, which may change over time, we define the cost function
ϕe(x

1
e(t), x

2
e(t), . . . , x

q
e(t), t) which indicates the cost of shipping flows over arc e

entering arc e at time t. The total cost of the dynamic multicommodity flow x is
defined as follows:

c(x) =
∑

t∈T

∑

e∈E

ϕe(x
1
e(t), x

2
e(t), . . . , x

q
e(t), t).

The object of the minimum cost multicommodity dynamic flow problem is to find a
flow that minimizes this objective function.

It is important to notice that in many practical cases the cost functions are
presented in the following form:

ϕe(x
1
e(t), x

2
e(t), . . . , x

q
e(t), t) =

∑

k∈K

ϕk
e(x

k
e(t), t). (5)

The case when τk
e = 0, ∀ e ∈ E, ∀ k ∈ K and T = 0 can be considered as the

static minimum cost multicommodity flow problem.

2 The Main Results

We show that the minimum cost multicommodity flow problem on network N
can be reduced to a static problem on an auxiliary network NT , which we name
the time-expanded network. The advantage of this approach is that it turns the
problem of determining a minimum cost dynamic flow problem into a classical static
minimum cost flow problem on the time-expanded network, which we regard as a
static representation of the dynamic network.

2.1 Constructing the Time-Expanded Network for the General

Case of the Problem

So, we study the general case of the considered minimum cost flow problem when
transit times on an arc are different for different commodities. We define the time-
expanded network NT = (V T , ET ,K, dT , wT , uT , ϕT ) as follows:

1. V
T
: = {v(t) | v ∈ V, t ∈ T };

2. Ṽ T : = {e(v(t)) | v(t) ∈ V
T
, e ∈ E−(v), t ∈ T \ T};

3. V T : = V
T ∪ Ṽ T ;
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4. ẼT : = {ẽ(t) = (v(t), e(v(t))) | v(t) ∈ V
T

and corresponding e(v(t)) ∈ Ṽ T , t ∈
T \ T};

5. E
T
: = {ek(t) = (e(v(t)), z(t+τk

e )) | e(v(t)) ∈ Ṽ T , z(t+τk
e ) ∈ V

T
, e = (v, z) ∈

E, 0 ≤ t ≤ T − τk
e , k ∈ K};

6. ET : = E
T ∪ ẼT ;

7. dk
v(t)

T
: = dk

v(t) for v(t) ∈ V
T
, k ∈ K;

dk
e(v(t))

T
: = 0 for e(v(t)) ∈ Ṽ T , k ∈ K;

8. wl
ek(t)

T
: =

{
wk

e (t), if l = k for ek(t) ∈ E
T
, k ∈ K;

0, if l 6= k for ek(t) ∈ E
T
, k ∈ K

and wl
ee(t)

T
= ∞ for ẽ(t) ∈ ẼT , l ∈ K;

9. uee(t)
T : = ue(t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT ;

uek(t)
T : = ∞ for ek(t) ∈ E

T
, k ∈ K;

10. ϕT
ee(t)(x

1
ee(t)

T
, x2

ee(t)
T
, . . . , xq

ee(t)
T
): = ϕe(x

1
e(t), x

2
e(t), . . . , x

q
e(t), t) for ẽ(t) =

(v(t), e(v(t))) ∈ ẼT ;

ϕT
ek(t)

(x1
ek(t)

T
, x2

ek(t)

T
, . . . , xq

ek(t)

T
): = 0 for ek(t) ∈ E

T
, k ∈ K.

The correspondence between flows in the dynamic network and the static time-
expanded network is presented by the following lemma.

Lemma 1. Let xT : ET → R+ be a multicommodity flow in the static network
NT . Then the multicommodity flow x: E × T → R+ in the dynamic network N

can be defined in the following way. Let ek(t) = (e(v(t)), z(t + τk
e )) ∈ E

T
, ẽ(t) =

(v(t), e(v(t))) ∈ ẼT . Then the dynamic flow xe(t) on arc e = (v, z) is determined

as follows: xk
e(t) = xk

ek(t)

T
= xk

ee(t)
T
, ∀k ∈ K, ∀t ∈ T .

If x: E×T → R+ is a multicommodity flow in the dynamic network N , then the
multicommodity flow xT : ET → R+ in the static network NT can be determined as
follows. Let xe(t) be a dynamic multicommodity flow on arc e = (v, z) ∈ E. Then the
tuple (xee(t)

T , xe(t)
T ) = xe(t)

T is a corresponding static multicommodity flow, where

xee(t)
T is a static multicommodity flow on additional arc ẽ(t) = (v(t), e(v(t))) ∈

ẼT , at that xk
ee(t)

T
= xk

e(t), ∀k ∈ K; xe(t)
T = (xe1(t)

T , xe2(t)
T , . . . , xeq(t)

T ) is a q

dimension vector of static multicommodity flows on arcs ek(t) = (e(v(t)), z(t+τk
e )) ∈

E
T
, k ∈ K, at that xk

ek(t)

T
= xk

e(t); xl
ek(t)

T
= 0, l 6= k.

Proof. To prove the first part of the lemma we have to show that conditions (1)–(4)
for defined above x in the dynamic network N are true. These conditions evidently
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result from the following definition of multicommodity flows in the static network
NT : ∑

e(t−τk
e )∈E+(v(t))

xk
e(t−τk

e )

T −
∑

e(t)∈E−(v(t))

xk
e(t)

T
= dk

v(t)

T
,

∀ t ∈ T , ∀ v(t) ∈ V T , ∀k ∈ K;

(6)

∑

k∈K

xk
e(t)

T ≤ ue(t)
T , ∀e(t) ∈ ET , ∀ t ∈ T ; (7)

0 ≤ xk
e(t)

T ≤ wk
e(t)

T
, ∀ e(t) ∈ ET , ∀ t ∈ T , ∀k ∈ K; (8)

xk
e(t)

T
= 0, ∀ e(t) ∈ E, t = T − τk

e + 1, T , ∀k ∈ K. (9)

In order to prove the second part of the lemma it is sufficient to show that
conditions (6)–(9) hold. Correctness of these conditions results from the procedure
of constructing the time-expanded network, correspondence between flows in static
and dynamic networks and the satisfied conditions (1)–(4). 2

The following theorem holds.

Theorem 2. If x∗T is a static minimum cost multicommodity flow in the static
network NT , then the corresponding according to Lemma 1 dynamic multicommodity
flow x∗ in the dynamic network N is also a minimum cost one and vice-versa.

Proof. Taking into account the correspondence between static and dynamic multi-
commodity flows on the basis of Lemma 1, we obtain that costs of multicommodity
flow in the time-expanded network NT and multicommodity flow in the dynamic
network N are equal. Indeed, to solve the minimum cost multicommodity flow
problem in the static time-expanded network NT , we have to solve the following
problem:

cT (x) =
∑

t∈T

∑

e(t)∈ET

ϕT
e(t)(x

1
e(t), x

2
e(t), . . . , x

q
e(t)) → min

subject to (6)–(9). 2

2.2 The Case of the Problem with Separable Cost Functions and

without Mutual Capacity of Arcs

The minimum cost flow problem with separable cost functions (5) and without
mutual capacity constraints for arcs allows us to simplify the procedure of con-
structing the time-expanded network. In this case we don’t have to add a new set
of vertexes Ṽ T and a new set of arcs ẼT . In that way the time-expanded network
NT is defined as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T };

2. ET : = {ek(t) = (v(t), z(t + τk
e )) | e = (v, z) ∈ E, 0 ≤ t ≤ T − τk

e , k ∈ K};
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3. dk
v(t)

T
: = dk

v(t) for v(t) ∈ V T , k ∈ K;

4. wl
ek(t)

T
: =

{
wk

e (t), if l = k for ek(t) ∈ ET , k ∈ K;
0, if l 6= k for ek(t) ∈ ET , k ∈ K;

5. ϕl
ek(t)

T
(xl

ek(t)

T
): =

{
ϕk

e(x
k
e(t), t), if l = k for ek(t) ∈ ET , k ∈ K;

0, if l 6= k for ek(t) ∈ ET , k ∈ K.

The correspondence between flows in the dynamic network N and the static
network NT is defined as follows. Let xT : ET → R+ be a multicommodity flow
in the static network NT . Then the following flow x: E × T → R+, where

xk
e(t) = xk

ek(t)

T
, ∀e ∈ E, ∀k ∈ K, ∀t ∈ T , represents the multicommodity flow

in the dynamic network N . If x: E × T → R+ is a multicommodity flow in the

dynamic network N , then the flow xT : ET → R+, where xk
ek(t)

T
= xk

e(t), xl
ek(t)

T
=

0, ∀ek(t) ∈ ET , ∀k ∈ K, l 6= k, represents the multicommodity flow in the static
network NT .

As above, it can be proved that if x∗T is a static minimum cost multicommodity
flow in the static network NT , then the corresponding dynamic multicommodity
flow x∗ in the dynamic network N is also a minimum cost flow and vice-versa.

2.3 The Case of the Problem with Common Transit Times on Arcs

for Commodities

In the case of the minimum cost flow problem with common transit times for
each commodity the time-expanded network also can be constructed in more simple
way without adding a new set of vertexes Ṽ T and a new set of arcs ẼT . Thus the
time-expanded network NT is defined as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T };

2. ET : = {e(t) = (v(t), z(t + τe)) | e = (v, z) ∈ E, 0 ≤ t ≤ T − τe};

3. dk
v(t)

T
: = dk

v(t) for v(t) ∈ V T , k ∈ K;

4. uT
e(t): = ue(t) for e(t) ∈ ET ;

5. wk
e(t)

T
: = wk

e (t) for e(t) ∈ ET , k ∈ K;

6. ϕT
e(t)(x

1
e(t)

T
, x2

e(t)
T
, . . . , xq

e(t)
T
): = ϕe(x

1
e(t), x

2
e(t), . . . , x

q
e(t), t) for e(t) ∈ ET .

In this case the correspondence between flows in the dynamic network N and
the static network NT is defined in the following way. Let xT : ET → R+ be a
multicommodity flow in the static network NT . Then the following flow x: E×T →
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R+, where xk
e(t) = xk

e(t)

T
, ∀e ∈ E, ∀k ∈ K, ∀t ∈ T , represents the multicommodity

flow in the dynamic network N . If x: E ×T → R+ is a multicommodity flow in the

dynamic network N , then the flow xT : ET → R+, where xk
e(t)

T
= xk

e(t), ∀e(t) ∈
ET , ∀k ∈ K, ∀t ∈ T , represents the multicommodity flow in the static network NT .

As above, it can be proved that if x∗T is a static minimum cost multicommodity
flow in the static network NT , then the corresponding dynamic multicommodity
flow x∗ in the dynamic network N is also a minimum cost flow and vice-versa.

3 The Algorithm and Examples

On the basis of results from the previous section we can propose the following
algorithm for solving the minimum cost multicommodity dynamic flow problem. In
such a way, to solve the minimum cost multicommodity flow problem in N we have
to build the time-expanded network NT for the given dynamic network N , after
what to solve the classical minimum cost multicommodity flow problem in the static
network NT and then to reconstruct according to Lemma 1 and Theorem 2 the
solution of the static problem in NT to the dynamic problem in N .

In the following we construct in different cases the time-expanded network NT

for the dynamic network N given on Fig. 1 with two commodities.

 
 

1v  

2v  

3v  

1e  3e  

2e  

Figure 1. The dynamic network

The set of time moments we consider is T = {0, 1, 2, 3}. The transit times on
each arc for each commodity are defined in the following way: τ1

e1
= 2, τ2

e1
= 1,

τ1
e2

= 1, τ2
e2

= 3, τ1
e3

= 1, τ2
e3

= 2. The mutual capacity, individual capacity, demand
and cost functions are considered to be known.

The time-expanded network NT for the dynamic network N in the general case
is represented on Fig. 2. The time-expanded network NT for the dynamic network
N in the case of separable cost functions and without mutual capacity of arcs is
represented on Fig. 3. The time-expanded network NT for the dynamic network
N in the case of common transit times for each commodity with τe1 = 1, τe2 = 1,
τe3 = 2 is represented on Fig. 4.
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( )1 1v  ( )1 2v  ( )1 3v

( )2 1v ( )2 3v

( )3 1v ( )3 2v ( )3 3v

( )2 0v  

( )3 0v

( )1 0v

( )2 2v  

( )( )1 1 0e v

 

( )( )2 1 0e v
 

( )( )1 1 1e v  

( )( )2 1 1e v  

( )( )1 1 2e v
 

( )( )2 1 2e v  

( )( )3 2 0e v  ( )( )3 2 1e v
 

( )( )3 2 2e v
 

0t =  1t =  2t =  3t =  

Figure 2. The time-expanded network

Remark 1. The proposed above approach can be used to solve some more general
cases of the minimum cost dynamic multicommodity flow problem such as the prob-
lem when only a part of the flow is dumped into the considered network at the time
0, when flow storage at nodes is allowed and when the cost functions also depend on
the flow at the nodes. The same reasoning to solve the minimum cost flow problem
in the dynamic networks and its generalization can be held in the case when, in-
stead of the condition (3) in the definition of the multicommodity dynamic flow, the
following condition takes place: w′k

e (t) ≤ xk
e(t) ≤ w′′k

e (t), ∀ t ∈ T , ∀ e ∈ E, ∀ k ∈ K,
where w′k

e (t) and w′′k
e (t) are lower and upper bounds of the capacity of the arc e

respectively.

Remark 2.The maximum multicommodity dynamic flow problem also can be solved
by reduction to a static problem in an auxiliary time-expanded network NT , which
is defined as above but without demand and cost functions.

4 Determining the Minimum Cost Flows in Dynamic Networks

with Transit Time Functions that Depend on Flow and Time

In the problems studied in the previous sections the transit time functions are
assumed to be constant at every moment of time for each arc of the network. A
more general class of dynamic multicommodity flow problems can be obtained if the
transit time functions τk

e , ∀e ∈ E, ∀k ∈ K, depend on flows and on time. From
the practical point of view we can state that the transit time function possesses the
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( )1 1v  ( )1 2v  ( )1 3v

( )2 1v ( )2 3v

( )3 1v ( )3 2v  ( )3 3v

( )2 0v

( )3 0v

( )1 0v

( )2 2v
 

0t =  1t =  2t =  3t =  

Figure 3. The time-expanded network (case of separable cost functions and without
mutual capacity of arcs)

property of being a non-negative and non-decreasing function. So, we will assume
that the transit time function is a non-decreasing non-negative step function. First
we will describe the method for solving the minimum cost single-commodity flow
problem in dynamic networks with transit time functions that depend on flow and
time. Then the dynamic multicommodity flow problem with transit time functions
that depend on flows and time can be solved by using the similar approach extended
to the multicommodity case of the problem. The detailed elaboration of the time-
expanded network method for such class of the problem can be obtained for the
case of separable transit-time functions τk

e (x1
e, x

2
e, . . . , x

q
e, t) =

∑q
p=1 τk

e (xp
e, t), ∀e ∈

E, ∀t ∈ T , ∀k ∈ K, where the functions τk
e (xp

e, t) satisfy the conditions described
below.

4.1 The Minimum Cost Dynamic Flow Problem with Transit Time

Functions that Depend on Flow and Time

Let us formulate the minimum cost single-commodity flow problem in dynamic
networks with transit time functions that depend on flow and time. Let be given
a directed network N = (V,E, u′, u′′, τ, d, ϕ) with set of vertices V and set of arcs
E, lower and upper capacity functions u′, u′′: E × T → R+, transit time function
τ : E × T × R+ → R+, demand function d: V × T → R and cost function ϕ: E ×
R+×T → R+. As above, we consider the discrete time model, in which all times are
integral and bounded by a time horizon T , which defines the set T = {0, 1, . . . , T} of
time moments we consider. We suppose that all flow is dumped into the network at
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( )1 1v  ( )1 2v  ( )1 3v

( )2 1v ( )2 3v

( )3 1v ( )3 2v  ( )3 3v

( )2 0v

( )3 0v

( )1 0v

( )2 2v
 

0t =  1t =  2t =  3t =  

Figure 4. The time-expanded network (case of common transit times for each com-
modity)

time 0 and the supply is equal to the demand, i.e.
∑

t∈T
∑

v∈V dv(t) = 0. Without
losing generality, we assume that no arcs enter sources or exit sinks.

A dynamic flow in N is represented by a function x: E×T → R+, which defines
the value xe(t) of flow entering arc e at time t. Since we require that all arcs must
be empty after time horizon T , the following implication must hold for all e ∈ E
and t ∈ T : if xe(t) > 0, then t + τe(xe(t), t) ≤ T . The dynamic flow x must satisfy
the flow conservation constraints, which mean that at any time moment t ∈ T for
every vertex v ∈ V the difference between the total amount of flow that leaves
node v and the total amount of flow that enters node v, is equal to dv(t). The
dynamic flow x is called feasible if it satisfies the following capacity constraints:
u′

e(t) ≤ xe(t) ≤ u′′
e(t), ∀ t ∈ T , ∀ e ∈ E.

The total cost of the dynamic flow x is defined as follows:

F (x) =
∑

t∈T

∑

e∈E

ϕe(xe(t), t).

The object of the minimum cost dynamic flow problem is to find a feasible flow that
minimizes this objective function.

4.2 The Method for Solving the Problem

We propose an approach for solving the formulated problem, which is based on re-
duction of this problem to a static one on a special auxiliary time-expanded network
NT . We define the network NT = (V T , ET , dT , u′T , u′′T , ϕT ) as follows:
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1. V
T
: = {v(t) | v ∈ V, t ∈ T };

2. Ṽ T : = {e(v(t)) | v(t) ∈ V
T
, e ∈ E−(v), t ∈ T \ T};

3. V T : = V
T ∪ Ṽ T ;

4. ẼT : = {ẽ(t) = (v(t), e(v(t))) | v(t) ∈ V
T

and corresponding e(v(t)) ∈ Ṽ T , t ∈
T \ T};

5. E
T
: = {ep(t) = (e(v(t)), z(t+τp

e )) | e(v(t)) ∈ Ṽ T , z(t+τp
e ) ∈ V

T
, e = (v, z) ∈

E, 0 ≤ t ≤ T − τp
e , p ∈ P};

6. ET : = E
T ∪ ẼT ;

7. dT
v(t): = dv(t) for v(t) ∈ V

T
, k ∈ K;

dT
e(v(t)): = 0 for e(v(t)) ∈ Ṽ T ;

8. u′
ee(t)

T : = u′
e(t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT ;

u′′
ee(t)

T : = u′′
e(t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT ;

u′
ep(t)

T : = xp−1
e (t) for ep(t) ∈ E

T
, p ∈ P, where x0

e(t) = 0;

u′′
ep(t)

T : = xp
e(t) for ep(t) ∈ E

T
, p ∈ P ;

9. ϕT
ee(t)(xee(t)

T ): = ϕe(xe(t), t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT ;

ϕT
ep(t)(xep(t)

T ): = εp for ep(t) ∈ E
T
, p ∈ P, where ε1 < ε2 < · · · <

ε|P | are small numbers.

To make the notations more clear we construct a part of the time-expanded
network for the fixed moment of time t for the given arc e = (v, z) with the transit
time function presented by Fig. 5.

 

1 2x =  2 4x =  3 7x =  
0 

( )( ),e ex t tτ  

( )ex t  

1 3τ =  

2 5τ =  

3 8τ =  

Figure 5. The transit time function
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The constructed part of the time-expanded network is given on Fig. 6, where
lower and upper capacities are written above each arc and the cost is written below
each arc.

 
 
 

 
 
 

v(t) e(v(t)) 
 

z(t+3) 

z(t+5) 
 

z(t+8) 
 

( ) ( ),e eu t u t′ ′′  

( )( ),e ex t tϕ  

0, 2 

2, 4 

4, 7 

�
1 �

2 �
3 

Figure 6. The constructed part of the time-expanded network

The following lemma gives the correspondence between flows in the dynamic
network and the time-expanded network.

Lemma 3. Let xT : ET → R+ be a flow in the static network NT . Then the flow
x: E ×T → R+ in the dynamic network N can be defined in the following way. Let

ep(t) = (e(v(t)), z(t + τp
e )) ∈ E

T
, ẽ(t) = (v(t), e(v(t))) ∈ ẼT . Then the dynamic

flow xe(t) on arc e = (v, z) is determined as follows: xe(t) = xT
ee(t) = xT

ep(t), ∀t ∈ T ,

where p ∈ P is such that xT
ee(t) ∈ (xp−1

e (t), xp
e(t)].

If x: E×T → R+ is a flow in the dynamic network N , then the flow xT : ET →
R+ in the static network NT can be determined as follows. Let xe(t) be a dynamic
flow on arc e = (v, z) ∈ E. Then the tuple (xee(t)

T , xe(t)
T ) = xe(t)

T is a corresponding

static flow, where xee(t)
T is a static flow on additional arc ẽ(t) = (v(t), e(v(t))) ∈ ẼT ,

at that xT
ee(t) = xe(t); xe(t)

T = (xe1(t)
T , xe2(t)

T , . . . , xe|P |(t)
T ) is a |P | dimensional

vector of static flows on arcs ep(t) = (e(v(t)), z(t + τp
e )) ∈ E

T
, p ∈ P , at that

xT
ep(t) = xe(t) if xe(t) ∈ (xp−1

e (t), xp
e(t)] or xT

ep(t) = 0 otherwise.

The proof of this lemma is similar to the proof of Lemma 1.

The following theorem holds.

Theorem 4. If x∗T is a static minimum cost flow in the static network NT , then
the corresponding according to Lemma 3 dynamic flow x∗ in the dynamic network
N is also a minimum cost flow and vice-versa.

In such a way, the minimum cost multicommodity flow problem in the dy-
namic network can be solved by static flow computations in the corresponding time-
expanded network. To solve the minimum cost flow problem in dynamic networks
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with transit time functions that depend on flow and time we construct the time-
expanded network, then solve the static minimum cost flow problem and reconstruct
the solution of the static problem to the dynamic problem.
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