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The Lyapunov stability in restricted problems of

cosmic dynamics

Gadomski L., Grebenikov E., Jakubiak M., Kozak–Skoworodkin D.

Abstract. Majority of cosmic dynamical problems are described by Hamiltonian
systems. In this case the Lyapunov stability problem is the toughest problem of
qualitative theory, but for two freedom degrees KAM–theory (Kolmogorov–Arnold–
Moser methods) allows for the complete study [1–3]. For application of Arnold–Moser
theorem [4] it is necessary to make finite sequence of Poincaré–Birkhoff canonical
transformations [5] for Hamiltonian normalization. With the help of Symbolic System
”Mathematica” [6] we determine the conditions of Lyapunov stability and instability
of equilibrium points of restricted n–body problems [7].
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1 Introduction

Let have the 2n–dimensional Hamiltonian system

dp

dt
= −∂H

∂q
,

dq

dt
=
∂H

∂p
, (1)

where the Hamiltonian H(p, q) is of the type

H(p, q) ≡ H0(p) + µH1(p, q) , 0 ≤ µ < 1 ,

where its perturbate part H1 fulfils the condition

H1(p, q) ≡ H1(p, q + (2π)).

In addition we assume H(p, q) to be 2π–periodical on q1, q2, ..., qn and analytical
on 2n–dimensional symplectic manifold

G2n = {p ∈ Gn, ‖Imq‖ < ρ < 1, ‖Imq‖ =

n
∑

s=1

| Imqs |} ,

where Gn denotes a n–dimensional torus manifold in euclidean space. The variables
(p, q) usually are referred to as ”action – angle” coordinates [8]. The system of
differential equations (1) describes the models of cosmic dynamics with the potential
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gravitational fields. The general and restricted newtonian n–body problems belong
to this type.

According to H. Poincaré [9], it is necessary to do a full analytical and qualitative
investigation of the system (1).

The problem of integration of the system (1) consists in finding a nondegenerate
canonical mapping G2n → G∗

2n, (p, q) → (P,Q), that reduces the system (1) to the
following one:

dP

dt
= 0,

dQ

dt
=
∂H∗

∂P
.

It follows from this that in manifold G∗

2n one has

H∗(P ) ≡ H(p, q).

On the base of this problem it is necessary to find effective methods of construct-
ing periodical and quasi–periodical solution families of (1), and the investigation of
the asymptotic evolution of trajectories of system (1) when t→ ±∞.

In KAM–theory the transformation (p, q) → (P,Q) is constructed with the help
of an infinite sequence of convergent and nondegenerate canonical substitutions

(p, q) ↔ (p(1), q(1)) ↔ (p(2), q(2)) ↔ . . . ↔ (p(∞), q(∞)) ≡ (P,Q). (2)

Convergence of the iterative process (2) is guaranteed by the method of acceler-

ated convergence [10], in which the k − th iteration has µ2k

–order, i.e.

(p(k),∆q(k)) = O(µ2k

),

where ∆q(k) stands for the perturbation of the phase variable q(k).
In the classical methods, the k − th iteration has µk–order, which means

(p(k),∆q(k)) = O(µk).

The process (2), constructed with the use of classical methods for the Hamiltonian
systems of the dimensions 4, 6, 8, ...(n ≥ 2) , will be divergent. Therefore, H. Poincaré
demonstrated [9] that in classic perturbation theory the sequence (p, q) → (P,Q)
similar to (2) is divergent in G2n.

Manifolds of convergence of canonical transformations (2) represent an infinite
sequence of inclusions

G2n ⊃ G
(1)
2n ⊃ G

(2)
2n ⊃ . . . ⊃ G

(∞)
2n ≡ G∗

2n ,

where G∗

2n 6= ∅ and

G∗

2n = {P ∈ G∗

n, ‖ImQ‖ < ρ∗ ≤ ρ < 1} .
V. Arnold demonstrated [11] that, unfortunately, the phase manifolds G∗

n and
Ḡn = Gn \G∗

n are everywhere dense in Gn = G∗

n ∪ Ḡn. C. Siegel has shown in [12],
that in G∗

n the following inequality is true
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|(k, ω(p))| ≥ K(ω)

‖k‖n+1
,

where ω(p) = ∂H0
∂p

, and the measures of manifolds G∗

n, Ḡn are

mesG∗

n = 1 − ε, mesḠn = ε << 1 .

For study of Lyapunov stability problem it is not necessary to construct the
infinite sequence (2), but it is sufficient to consider 4–8 iterations for and only for
n = 2. This fact is the main conclusion from the Arnold–Moser theorem [4].

In fact, if we represent the Hamiltonian H(p, q) in neighbourhood of the equilib-
rium point (0, 0, 0, 0) in series form, we have

H(p, q) = H2(p, q) +H3(p, q) +H4(p, q) + . . . ,

where Hk(p, q) are homogenous k–degree polynomials in p = (p1, p2), q = (q1, q2).
The Arnold–Moser theorem’s formulation is [4]:
If new (transformed) Hamiltonian has the form

W (ψ1, ψ2, T1, T2) = W2(T1, T2) +W4(T1, T2) + . . . ,

W2(T1, T2) = σ1T1 − σ2T2, W4(T1, T2) = c20T
2
1 + c11T1T2 + c02T

2
2 , (3)

and is such that:
1) eigenvalues of linear system

dT1

dt
= −∂W2

∂ψ1
= 0,

dψ1

dt
=
∂W2

∂T1
= σ1,

dT2

dt
= −∂W2

∂ψ2
= 0,

dψ2

dt
=
∂W2

dT2
= −σ2,

are the numbers ±iσ1,±iσ2;

2) n1σ1 + n2σ2 6= 0, for 0 < |n1| + |n2| ≤ 4 ,

and

3) c20σ
2
2 + c11σ1σ2 + c02σ

2
1 6= 0;

then the equilibrium point

T1 = T2 = ψ1 = ψ2 = 0

of the Hamiltonian system with the Hamiltonian function W (3) is stable in Lya-
punov sense [13].

While analyzing this theorem, we conclude that it is necessary to transform only
expressions H2(p, q),H3(p, q),H4(p, q) to new forms W2,W3 = 0,W4, in order to
study the Lyapunov stability of the equilibrium point

p1 = p2 = q1 = q2 = 0

in the ”nonresonant case”.
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2 Determination of equilibrium points

One application of the Arnold – Moser theorem is the study of stability in Lya-
punov sense of Lagrange triangle in the famous, restricted circular problem of three
bodies [4, 9, 14]. The other one is the study of equilibrium points stability in the
restricted circular N–body problem [7,15].

The differential equations of this dynamical problem in uniformly rotating coor-
dinate system P0xyz have the form [15]:

d2x

dt2
− 2ωn

dy

dt
= −m0x

r3
+
∂R

∂x
,

d2y

dt2
+ 2ωn

dy

dt
= −m0y

r3
+
∂R

∂y
, (4)

d2z

dt2
= −m0z

r3
+
∂R

∂z
,

R(x, y, z) =
ω2

n

2
(x2 + y2) +m

n
∑

k=1

[

1

∆k
− xxk + yyk + zzk

r3k

]

,

∆2
k = (x− xk)

2 + (y − yk)
2 + (z − zk)

2 ,

r2 = x2 + y2 + z2, r2k = x2
k + y2

k + z2
k, k = 1, ..., n ,

xk = a0 cos
2π(k − 1)

n
, yk = a0 sin

2π(k − 1)

n
, zk = 0, k = 1, .., n ,

ωn =

√

√

√

√

1

a3
0

[

m0 +
m

4

n
∑

k=2

(

sin
π(k − 1)

n

)

−1
]

,

n = N − 2 ,

ωn is the angle speed of coordinate system P0xyz relative to the original system,
and also is the angle speed of regular polygon P1P2...Pn in vertexes of which masses
m1 = m2 = ... = mn 6= 0 are situated round central body P0 with mass m0. If
m0 = 0 we have Lagrange–Wintner gravitational restricted models [15]. Of course
it is always possible to write the equations (4) in the Hamiltonian form.

Determination of equilibrium positions of system (4) comes to solutions of the
following nonlinear, functional equation system:

dx

dt
=
dy

dt
=
dz

dt
= 0 ,

−m0x

r3
+
∂R

∂x
= −m0y

r3
+
∂R

∂y
= −m0z

r3
+
∂R

∂z
= 0 ,

or

ω2
nx− m0x

r3
+m

n
∑

k=1

[

xk − x

∆3
k

− 1

a2
0

cos
2π(k − 1)

n

]

= 0 ,
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ω2
ny −

m0y

r3
+m

n
∑

k=1

[

yk − y

∆3
k

− 1

a2
0

sin
2π(k − 1)

n

]

= 0 , (5)

−m0z

r3
+m

n
∑

k=1

z

∆3
k

= 0 .

In the system (5) the quantities x, y, z are unknowns.
Last equation from (5) for z = 0 is always realized. Then all equilibrium points

of system (4) are located in the plane P0xy. It can be shown that for any n ≥ 2 the
system (5) is equivalent to the system [15]:

ω2
nx− m0x

r3
+m

n
∑

k=1

xk − x

∆3
k

= 0 ,

(6)

ω2
ny −

m0y

r3
+m

n
∑

k=1

yk − y

∆3
k

= 0 .

For the famous restricted 3–body problem (n = 1) the equations (5) are of the form

ω2
1x− m0x

r3
+m

(

1 − x

∆3
1

− 1

)

= 0 ,

(7)

ω2
1y −

m0y

r3
− my

∆3
1

= 0 .

For y = 0 the first equation from (7) has three solutions, which have been de-
termined by Euler (collinear solutions). For y 6= 0 the system (7) has two solutions,
which were determined by Lagrange (two equilateral triangles P0P1P ). It is known
that collinear points are unstable in first approximation for arbitrary values of pa-
rameter m.

Research of Lagrange triangle stability has a 200–year history. At first G. Gasche-
au, E. Routh and A. Lyapunov studied the triangle stability in first approximation
[4]. The condition of this stability is

0 ≤ m < m̄ =
9 −

√
69

18
= 0.0385209....

The stability in Lyapunov sense was studied by H. Poincaré, A. Lyapunov, G.
Birkhoff, C. Siegel, V. Arnold, A. Deprit, J. Moser, A. Leontovich, A. Markeev,
A. Sokolski, V. Sebehely and ultimate results were achieved on the base of KAM–
theory [4, 16].

Using CSS ”Mathematica”, we have solved the equations (6) and counted the
coordinates of equilibrium points in restricted 4, 5, 6, 7 – body problems. We
found that all the ”radial” [15] points are unstable in first approximation for all
values m ≥ 0, and the ”bisectorial” [15] points are stable in first approximation for
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0 ≤ m < m∗, where the parameter m∗ for different values of N is represented as
follows:

N 0 ≤ m < m∗

4 0 ≤ m < 0.085...

5 0 ≤ m < 0.023...

6 0 ≤ m < 0.0094...

7 0 ≤ m < 0.0047...

For all the values 0 ≤ m < m∗ all eigenvalues of the matrix of linear Hamiltonian
equations in neighborhood of any bisectorial point Si are the numbers ±βi, i =

√
−1.

3 Research of Lyapunov stability

In order to use the Arnold–Moser theorem, one has to construct the operation
of Birkhoff normalization of Hamiltonians with accuracy up to the fourth degree of
local coordinates.

If we translate the origin of the coordinate system from point P0 to any point Si

with coordinates x∗, y∗ with the help of expressions






















X = x− x∗,

Y = y − y∗,

PX = px − px∗,

PY = py − py∗ ,

and we pass to canonical variables (X,Y, PX , PY ), using classical transformations,
we will receive, for example, the Hamiltonian H(6) of the restricted problem of 6
bodies in the form:

H(6) = −
(

(X + x∗)2 + (Y + y∗)2
)

−1/2 −m

(

(

(X + x∗)2 + (Y + y∗ − 1)2
)

−1/2
+

(

(X + x∗ − 1)2 + (Y + y∗)2
)

−1/2
+

(

(X + x∗ + 1)2 + (Y + y∗)2
)

−1/2
+ (8)

(

(X + x∗)2 + (Y + y∗ + 1)2
)

−1/2
)

+ ω4

(

(Y + y∗)(PX + p∗x) −

(X + x∗)(PY + p∗y)
)

+ 1/2
(

(PX + p∗x)2 + (PY + p∗y)
2
)

.

Obviously Hamiltonian differential equations of restricted 6–body problem in the
phase space (X,Y, PX , PY ) admit the solution

X = Y = PX = PY = 0.

The performance of Birkhoff normalization of equations depends on the coordi-
nates of concrete equilibrium point. In what follows, we will consider the bisectorial
point S1, stable in the first order approximation, with coordinates [17]

x∗ = y∗ = 0.709007,
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calculated for m = 0.009 < m∗.
In small neighborhood of the point S1, the Hamiltonian (8) is representable in

the form of a convergent power series,

H = H2(X,Y, PX , PY ) +H3(X,Y ) +H4(X,Y ) + ...,

where Hk are homogeneous of k–th degree polynomials and

H2 = −0.258702(X2 + Y 2) + 0.5(P 2
X + P 2

Y ) − 1.44885XY + ω4(Y PX −XPY ),

H3 = −0.148050513(X3 + Y 3) + 1.5163341(X2Y +XY 2), (9)

H4 = 0.39066344(X4 + Y 4) − 0.587145981(X3Y +XY 3) − 3.53151X2Y 2.

The expressions (9) indicate that the quadratic form H2(X,Y, PX , PY ) contains the
term ω4(Y PX −XPY ), which is the first obstacle on the way of Lyapunov stability
investigation. Therefore, at first, we perform the nondegenerate canonical transfor-
mation

(X,Y, PX , PY ) → (q1, q2, p1, p2),

[X,Y, PX , PY ]T = A · [q1, q2, p1, p2]
T , (10)

where the matrix A is defined in such a way that the new transformed Hamiltonian
K (H(X,Y, PX , PY ) → K(q1, q2, p1, p2)) has the form

K(q1, q2, p1, p2) = K2(q1, q2, p1, p2) +K3(q1, q2, p1, p2) +K4(q1, q2, p1, p2) + ...,

and its quadratic form K2 does not contain the expressions q1p2, q2p1, q2p2, q1p1,
p1p2, q1q2. The matrix A has the form

A =









−2.74006 2.32275 2.27271 2.9743
0.204828 0.173633 −3.55404 −3.76981
−1.96543 1.6661 1.44773 2.34872

0 0 2.44107 2.87964









.

The matrix A = [aij ] is symplectic [4]. This means that, in the case of two freedom
degrees, it fulfils the symplectic conditions represented by 6 equations:

a11a32 − a12a31 + a21a42 − a22a41 = 0,

a11a33 − a13a31 + a21a43 − a23a41 = 1,

a11a34 − a14a31 + a21a44 − a24a41 = 0,

a12a33 − a13a32 + a22a43 − a23a42 = 0,

a12a34 − a14a32 + a22a44 − a24a42 = 1,

a13a34 − a14a33 + a23a44 − a24a43 = 0.

Finding transformation (10) is equivalent to determining the four–by–four matrix
A with 16 unknown elements. Solution of the system of homogeneous linear algebraic



14 GADOMSKI L., GREBENIKOV E., JAKUBIAK M., KOZAK–SKOWORODKIN D.

equations of 16–th order turned out to be possible in practice only with the use of
system of symbolic calculations.

Realization of the canonical transformation (10) gives the following expressions
for the forms K2,K3 and K4 [17]:

K2 = 0.387142(p2
1 + q21) − 0.309396(p2

2 + q22), (11)

K3 = 20.6018p3
1 + 17.5615p3

2 + 5.202q31 − 0.329434q32

−9.8733657q21q2 + 5.01276q1q
2
2 + p2

1(61.2536p2 + 16.363q1

−21.60582q2) + p2
2(39.3824q1 − 42.7265q2) + p1(58.3744p

2
2 (12)

+54.0272p2q1 − 45.648q21 − 62.9684p2q2 + 81.8039q1q2

−35.9368q22) − p2(51.2223q
2
1 − 90.0176q1q2 + 38.754q22) ,

K4 = −73.253p4
1 − 182.712p4

2 + 23.3975q41 + 9.51254q42

+p3
1(−381.659p2 + 344.902q1 − 291.661q2) + p3

2(−600.158p1

+470.91q1 − 377.686q2) + p2
1(−725.789p2

2 + 1163.51p2q1

−182.557q21 − 967.849p2q2 + 234.407q1q2 − 64.4354q22)

+p2
2(1290.8p1q1 − 138.024q21 − 1055.12p1q2 + 125.044q1q2 (13)

−4.18566q22) + p1(−329.286p2q
2
1 − 82.4767q31 + 375.536p2q1q2

+268.272q21q2 − 75.8361p2q
2
2 − 274.302q1q

2
2 + 89.6987q32)

+p2(−106.674q31 + 332.312q21q2 − 329.253q1q
2
2 + 104.971q32)

+q1q2(−78.8385q21 + 96.5479q1q2 − 50.6582q22).

The new variables (q1, q2, p1, p2) are not variables of ”action – angle” type, since
K2 depends not only on p1, p2, but also on the phase coordinates q1, q2. Therefore,
one must further pass from the canonical variables (q1, q2, p1, p2) to the new canonical
variables (θ1, θ2, τ1, τ2) according to the Birkhoff formulas [5]

q1 =
√

2τ1 sin θ1, q2 =
√

2τ2 sin θ2,

(14)

p1 =
√

2τ1 cos θ1, p2 =
√

2τ2 cos θ2,

The transformation (14) ”eliminates” expressions with the new angle coordinates
θ1, θ2 from the quadratic part of the new Hamiltonian F

K(q1, q2, p1, p2) → F (θ1, θ2, τ1, τ2).

In other words, if one represents the new Hamiltonian F in the form

F (θ1, θ2, τ1, τ2) = F2(τ1, τ2) + F3(θ1, θ2, τ1, τ2) + F4(θ1, θ2, τ1, τ2) + ...,



THE LYAPUNOV STABILITY IN PROBLEMS OF COSMIC DYNAMICS 15

then its quadratic form F2 should not depend on the phase angles θ1, θ2, but must
depend only on the new momenta τ1, τ2. After the substitution (14) in expressions
(11)–(13), we will have the following equalities for the forms F2, F3, and F4:

F2 = 0.774284τ1 − 0.618792τ2,

F3 = (11.425 cos θ1 + 46.8457 cos 3θ1 + 22.6055 sin θ1 + 7.89204 sin 3θ1)τ
3/2
1

+ (21.6884 cos(2θ1 + θ2) + 14.1864 cos θ2 + 137.377 cos(2θ1 − θ2)

+ 29.9068 sin(2θ1 + θ2) − 44.5182 sin θ2 + 46.4992 sin(2θ1 − θ2))τ1τ
1/2
2

+ (31.7316 cos θ1 + 3.03601 cos(θ1 + 2θ2) + 130.34 cos(θ1 − 2θ2)

+ 62.7842 sin θ1 − 20.2224 sin(θ1 + 2θ2) + 68.8283 sin(θ1 − 2θ2))τ
1/2
1 τ2

+ (9.85026 cos θ2 + 39.8211 cos 3θ2 − 30.911 sin θ2 − 29.9792 sin 3θ2)τ
3/2
2 ,

F4 = (−166.062 − 193.301 cos 2θ1 + 66.3508 cos 4θ1 + 262.425 sin 2θ1
+ 213.689 sin 4θ1)τ

2
1 + (−736.077 cos(θ1 + θ2) − 182.809 cos(3θ1 + θ2)

− 738.186 cos(θ1 − θ2) + 130.436 cos(3θ1 − θ2) + 118.39 sin(θ1 + θ2)

+ 355.128 sin(3θ1 + θ2) + 725.101 sin(θ1 − θ2) + 915.061 sin(3θ1 − θ2))τ
3/2
1 τ

1/2
2

+ (−831.7 − 748.749 cos 2θ1 − 401.159 cos(2θ1 + 2θ2) − 895.925 cos 2θ2
− 25.6232 cos(2θ1 − 2θ2) + 1016.5 sin 2θ1 + 132.471 sin(2θ1 + 2θ2)
− 635.537 sin 2θ2 + 1432.63 sin(2θ1 − 2θ2))τ1τ2 + (−350.012 cos(θ1 + 3θ2)
− 924.689 cos(θ1 + θ2) − 951.62 cos(θ1 − θ2) − 174.31 cos(θ1 − 3θ2)
− 172.329 sin(θ1 + 3θ2) + 148.726 sin(θ1 + θ2) + 934.752 sin(θ1 − θ2)

+ 972.492 sin(θ1 − 3θ2))τ
1/2
1 τ

3/2
2 − (261.892 + 384.449 cos 2θ2

+ 84.507 cos 4θ2 + 272.715 sin 2θ2 + 241.328 sin 4θ2)τ
2
2 .

The canonical variables (θ1, θ2, τ1, τ2) are variables of ”action–angle” type, and
the Hamiltonian equations in the neighborhood of the equilibrium point S1 are
expressed by equalities

dτ1
dt

= −∂F3

∂θ1
− ∂F4

∂θ1
+ ...,

dθ1
dt

=
∂F2

∂τ1
+
∂F3

∂τ1
+
∂F4

∂τ1
+ ...,

(15)

dτ2
dt

= −∂F3

∂θ2
− ∂F4

∂θ2
+ ...,

dθ2
dt

=
∂F2

∂τ2
+
∂F3

∂τ2
+
∂F4

∂τ2
+ ...,

Unfortunately the Hamiltonian equations (15) still do not fulfil the conditions
of the Arnold – Moser theorem. It is necessary to construct another canonical
transformation (θ1, θ2, τ1, τ2) → (ψ1, ψ2, T1, T2) that will ”annihilate” the form of
order 3/2, i.e., transform F3(θ1, θ2, τ1, τ2) to W3(ψ1, ψ2, T1, T2) = 0 and the second–
order form F4(θ1, θ2, τ1, τ2) to W4(T1, T2).

We will search for the last canonical transformation (with the required accuracy)
in the form

θ1 = ψ1 + V13(ψ1, ψ2, T1, T2) + V14(ψ1, ψ2, T1, T2),

θ2 = ψ2 + V23(ψ1, ψ2, T1, T2) + V24(ψ1, ψ2, T1, T2),

τ1 = T1 + U13(ψ1, ψ2, T1, T2) + U14(ψ1, ψ2, T1, T2),
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τ2 = T2 + U23(ψ1, ψ2, T1, T2) + U24(ψ1, ψ2, T1, T2),

where U13, U23, U14, U24, V13, V23, V14, V24 are determined from some linear partial
differential equations. For their solution, we apply the method of asymptotic inte-
gration of multifrequency systems of differential equations, developed in [18]. For
example, the equation for the unknown function U13 has the form

∂U13

∂ψ1
σ1 −

∂U13

∂ψ2
σ2 = A13(ψ1, ψ2, T1, T2), (16)

where

A13 = (11.425sinψ1 + 140.537 sin 3ψ1 − 22.6055 cos ψ1 − 23.6761 cos 3ψ1)T
3/2
1

+ (43.3768 sin(2ψ1 + ψ2) + 274.753 sin(2ψ1 − ψ2) − 59.8137 cos(2ψ1 + ψ2)

− 92.9983 cos(2ψ1 − ψ2))T1T
1/2
2 + (31.7316 sin ψ1 + 3.03601 sin(ψ1 + 2ψ2)

+ 130.34 sin(ψ1 − 2ψ2) − 62.7842 cos ψ1 + 20.2224 cos(ψ1 + 2ψ2)

− 68.8283 cos(ψ1 − 2ψ2))T
1/2
1 T2.

From all solutions of equation (16), it is necessary to choose one which ensures
the form (3) of the new Hamiltonian,

W2 = σ1T1 − σ2T2, W4 = c20T
2
1 + c11T1T2 + c02T

2
2 ,

where
σ1 = 0.774284, σ2 = 0.618792,

c20 = 101.693, c11 = 522.084, c02 = 168.211.

Such solution exists and has the form

U13 = −(14.7556 cos ψ1 + 60.5019 cos 3ψ1 + 29.1954 sin ψ1 + 10.1927 sin 3ψ1)T
3/2
1

− (126.769 cos(2ψ1 − ψ2) + 42.9086 sin(2ψ1 − ψ2) + 46.377 cos(2ψ1 + ψ2)

+ 64.3313 sin(2ψ1 + ψ2))T1T
1/2
2 − (40.9819 cos ψ1 + 81.0867 sin ψ1

+ 64.7856 cos(ψ1 − 2ψ2) + 34.2112 sin(ψ1 − 2ψ2) − 6.55302 cos(ψ1 + 2ψ2)

+ 43.6486 sin(ψ1 + 2ψ2))T
1/2
1 T2.

Thus, the expansion of the Hamiltonian of the restricted six–body problem in
the neighborhood of the equilibrium S1 with coordinates

x∗ = y∗ = 0.709007

presented finally in terms of the canonical variables (ψ1, ψ2, T1, T2), fulfils all the
conditions of the Arnold–Moser theorem, consequently, the equilibrium point S1 is
stable in Lyapunov sense.

In the interval 0 ≤ m ≤ 0.0094, there exist two ”resonant” values of the pa-
rameter m [15] (m1 ≈ 0.005,m2 ≈ 0.0035) for which the problem of the Lyapunov
stability remains open.

Similarly, we have studied all equilibrium bisectorial points of restricted gravi-
tational models, indicated in quote board.
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A Lie algebra of a differential generalized

FitzHugh–Nagumo system

Mihail Popa, Adelina Ceorgescu, Carmen Rocşoreanu

Abstract. Some Lie algebra admissible for a generalized FitzHugh-Nagumo (F-N)
system is constructed. Then this algebra is used to classify the dimension of the
Aff3(2, R)-orbits and to derive the four canonical systems corresponding to orbits of
dimension equal to 1 or 2. The phase dynamics generated by these systems is studied
and is found to differ qualitatively from the dynamics generated by the classical F-N
system the Aff3(2, R)-orbits of which are of dimension 3. A dynamic bifurcation
diagram is also presented.
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furcation.

1 The Lie algebra admissible for the generalized

FitzHugh–Nagumo system

We investigate the generalized F-N system [1]

ẋ = a+ cx+ dy + px3 ≡ P (x, y), ẏ = b+ ex+ fy ≡ Q(x, y), (1)

where the coefficients a, b, c, d, e, f, p are real and the phase functions x and y are
real-valued and depend on the real time t; the dot over quantities stands for d/dt.

By [2], the Lie algebra consisting of the operators

X = ξ1(x, y)
∂

∂x
+ ξ2(x, y)

∂

∂y
+D,

D = η1 ∂

∂a
+ η2 ∂

∂b
+ η3 ∂

∂c
+ η4 ∂

∂d
+ η5 ∂

∂e
+ η6 ∂

∂f
+ η7 ∂

∂p
(2)

is admissible for (1) iff the coordinates of these operators satisfy the following system
of partial differential equations

ξ1xP + ξ1yQ = ξ1Px + ξ2Py +DP,

ξ2xP + ξ2yQ = ξ1Qx + ξ2Qy +DQ, (3)

where the coordinates ξ1, ξ2 and ηi(i = 1, 7) are unknown functions of x and y and
of the coefficients a, b, c, d, e, f, p, respectively.

c©2002 M.Popa, A.Ceorgescu, C.Rocşoreanu
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Let us assume that ξ1, ξ2 are affine while ηi are linear functions, i.e.

ξ1 = A+Bx+ Cy, ξ2 = H +Kx+ Ly,

ηi = αi
1a+ αi

2b+ αi
3c+ αi

4d+ αi
5e+ αi

6f + αi
7p (i = 1, 7). (4)

In this way, the determination of the unknown functions is reduced to the solution
of an algebraic system in A,B,C,H,K,L, αi

j(i, j = 1, 7). It is found

X = B

(

x
∂

∂x
+ a

∂

∂a
+ d

∂

∂d
− e

∂

∂e
− 2p

∂

∂p

)

+

+H

(

∂

∂y
− d

∂

∂a
− f

∂

∂b

)

+

+L

(

y
∂

∂y
+ b

∂

∂b
− d

∂

∂d
+ e

∂

∂e

)

. (5)

Since B,H and L are arbitrary, the expression (5) represents a family of op-
erators, among which the operators corresponding to 1)B = 0, H = 0, L = −1;
2)B = 0, H = −1, L = 0; 3)B = −1, H3 = 0, L3 = 0 play a special role. Namely,
we have

Theorem 1. The maximum number of linearly independent Lie operators admissible
for (1) and the coordinates of which are affine and linear functions of the phase
functions and the parameters in (1), respectively, is equal to 3, and a triple of these
operators reads

X1 = −y ∂
∂y

− b
∂

∂b
+ d

∂

∂d
− e

∂

∂e
,

X2 = − ∂

∂y
+ d

∂

∂a
+ f

∂

∂b
,

X3 = −x ∂
∂x

− a
∂

∂a
− d

∂

∂d
+ e

∂

∂e
+ 2p

∂

∂p
. (6)

It can be checked immediately that

Remark 1. The Lie operators (6) form a three-dimensional Lie algebra the com-
mutators of which are given in Table 1.

Table 1

X1 X2 X3

X1 0 X2 0

X2 −X2 0 0

X3 0 0 0

Denote this algebra by L3.

Remark 2. The Lie algebra L3 is resolvable and has the operator X3 as a nonnull
central element.
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2 Functional basis of comitants and invariants

Let Aff3(2, R) be the group defined by the transformations q:

x = αx, y = βy + h, ∆ = αβ 6= 0, (7)

where α, β, h ∈ R.

Lemma 1. Performing in (1) the transformations (7) we get the system

ẋ = a+ cx+ dy + px3, ẏ = b+ ex+ fy,

where

a = αa− αhd

β
, c = c, d =

αd

β
, p =

p

α2
,

b = βb− hf, e =
βe

α
, f = f. (8)

By [2], by solving the Lie equations for the operators (6) we have

Remark 3. The Lie algebra L3 is equivalent to the Aff3(2, R)-group affine rep-
resentation by formulae (7) in the space of coefficients of the system (1) given by
(8).

From Theorem 1 and Remarks 1 and 3 we obtain

Corollary 1. The largest affine group admissible for system (1) is Aff3(2, R) de-
fined by formulae (7).

Definition 1. A polynomial k(x, y, a, b, c, d, e, f, p) of the coefficients of the system
(1) and variables x and y is called a comitant of this system with respect to the
Aff3(2, R)-group if the identity

k(x, y, a, b, c, d, e, f , p) = ∆−gk(x, y, a, b, c, d, e, f, p) (9)

holds for every coefficients and variables of the system (1) and every parameters
α,β,h ∈ R of the Aff3(2, R)-group.

If the comitant k does not depend on the variables x and y then it is referred
to as the invariant of the system (1) with respect to the Aff3(2, R)-group and is
denoted by j. The integer g in (9) is called the k(j) comitant (invariant) weight. If
g 6= 0 then the comitant (invariant) is said to be relative and otherwise it is absolute.

Let us introduce the following operators from (6)

D1 = −b ∂
∂b

+ d
∂

∂d
− e

∂

∂e
, D2 = d

∂

∂a
+ f

∂

∂b
,

D3 = −a ∂
∂a

− d
∂

∂d
+ e

∂

∂e
+ 2p

∂

∂p
. (10)
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Theorem 2. The polynomial k(j) is the comitant (invariant) of the system (1) of
weight g with respect to the Aff3(2, R) -group iff the equalities

X1(k) = X3(k) = gk, X2(k) = 0

(D1(j) = D3(j) = gj, D2(j) = 0) (11)

hold, where X1 −X3 are given by (6) while D1 −D3 by (10).

Proof. Let us examine the operators α
∂

∂α
,
∂

∂h
, β

∂

∂β
.

For them, from (7) we have

α
∂∆

∂α
= ∆,

∂∆

∂h
= 0, β

∂∆

∂β
= ∆. (12)

Applying the operator α ∂
∂α to (9) and taking into account (12) we obtain

α
∂

∂α

[

k(x, y, a, b, c, d, e, f , p)
]

= −g∆−gk(x, y, a, b, c, d, e, f, p).

Differentiating the left-hand side of this equality as a compound function of α,
we get

∂k

∂x

(

α
∂x

∂α

)

+
∂k

∂y

(

α
∂y

∂α

)

+
∂k

∂a

(

α
∂a

∂α

)

+
∂k

∂b

(

α
∂b

∂α

)

+
∂k

∂c

(

α
∂c

∂α

)

+

+
∂k

∂d

(

α
∂d

∂α

)

+
∂k

∂e

(

α
∂e

∂α

)

+
∂k

∂f

(

α
∂f

∂α

)

+
∂k

∂p

(

α
∂p

∂α

)

= −g∆−gk.

Taking into account (7) and (8) this equality implies

∂k

∂x
(αx) +

∂k

∂a

(

αa− αhd

β

)

+
∂k

∂d

(

αd

β

)

+
∂k

∂e

(

−βe
α

)

+

+
∂k

∂p

(

−2p

α2

)

= −g∆−gk. (13)

This identity holds for every transformation (7) of the Aff33(2, R)-group. In
particular, the equality (13) holds also for the identity transformation given by
α = β = 1, h = 0. In this case (13) implies

x
∂k

∂x
+ a

∂k

∂a
+ d

∂k

∂d
− e

∂k

∂e
− 2p

∂k

∂p
= −gk,

whence X3(k) = gk.

The other equations in (11) are proved in a similar way. Since the conclusions
are invertible, Theorem 2 follows.
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Definition 2. A functional basis of the set of comitants of the system (1) with
respect to the Aff3(2, R)-group is the set of functionally independent invariants

j1, j2, ..., jm (14)

and comitants

k1, k2, ..., kn (15)

such that every comitant of the system (1) with respect to the given group can be
expressed as a function of the elements of (14), (15).

The functional basis of the set of invariants for the system (1) with respect to
the Aff3(2, R)-group is defined analogously.The relationships between relative and
absolute comitants can be taken into account to prove, by using (11), the validity
of the following result.

Theorem 3. The number of elements of the functional basis of comitants (invari-
ants) of the system (1) with respect to the elements of the Aff3(2, R)-group is equal
to 7(5).

Theorems 2 and 3 can be used to prove

Theorem 4. The functional basis of the invariants of the system (1) with respect
to the Aff3(2, R)-group consists of the elements

j1 = c (g = 0), j2 = f (g = 0), j3 = dp (g = 1),

j4 = p(af − bd)2 (g = 0), j5 = de (g = 0), (16)

where g are the corresponding weights of the invariants jl (l = 1, 5).

Proof. By Theorem 2 the relations Di(jl) = 0 (i = 1, 2, 3; l = 1, 2, 4, 5) and
D1(j3) = D3(j3) = j3, D2(j3) = 0 hold, which shows that the expressions (16) are
the invariants of the system (1) with respect to the Aff3(2, R)-group. On the other
hand, by Theorem 3, these 5 invariants of (16) could form a functional basis for
the system (1) with respect to this group. In order to prove the last assertion it is
sufficient to show that the general rank of the Jacobi matrix constructed by means
of the invariants of (16) is equal to 5.

Remark that the minor constructed on the last 5 columns of this matrix has the
form

M = det













1 0 0 0 0
0 0 0 1 0
0 p 0 0 d
0 −2bp(af − bd) 0 2ap(af − bd) (af − bd)2

0 e d 0 0













,

whence M = −dp(a2f2 − b2d2) 6≡ 0. The last inequality proves the assertion in
Theorem 4.
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Theorem 5. The functional basis of comitants of the system (1) with respect to the
Aff3(2, R)-group consists of the elements

j1 = c (g = 0), j2 = f (g = 0), j3 = dp (g = 1), j4 = p(af − bd)2 (g = 0),

p1 = px2 (g = 0), p2 = ex2 (g = −1), p3 = bx+ fxy (g = −1), (17)

where g are the corresponding weights of the invariants jl (l = 1, 4) and comitants
pi (i = 1, 3).

The proof of Theorem 5 is analogous to the proof of Theorem 4, where as the
minor of the Jacobi matrix constructed on the functions (17) is taken the minor
situated on its last 7 columns and which is written as M = 2fp2(a2f2−b2d2)x4 6≡ 0.
This shows that the expressions in (17) form the functional basis of the comitants
of the system (11) with respect to the Aff3(2, R)-group. This concludes the proof.

3 Dimension of the Aff3(2, R)-orbits for p1 6≡ 0

If p1 ≡ 0 then p=0 and the system (1) becomes

dx

dt
= a+ cx+ dy,

dy

dt
= b+ ex+ fy

and admits the group Aff6(2, R), which needs a separate investigation.

Let A = (a, b, c, d, e, f, p) ∈ E(A), where E(A) is the Euclidean space of co-
efficients in (1). Denote by A(q) the point of E(A) corresponding to the system
obtained from (1) by means of the transformation q ∈ Aff3(2, R) given by (7).

Definition 3. The set O(A) = {A(q); q ∈ Aff3(2, R)} is referred to as the
Aff3(2, R)-orbit of the point A for the system (1).

Let M1 be the matrix the entries of which are the coordinates of operators (10),
i.e.

M1 =





0 −b 0 d −e 0 0
d f 0 0 0 0 0
−a 0 0 −d e 0 2p



 . (18)

Remark 4. In [3] it is proved that

dimRO(a) = rankM1. (19)

Lemma 2. For p1 6≡ 0 the rankM1 = 3 iff

j2p2 + j3 6≡ 0. (20)
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Proof. Denote by ∆ijk (1 ≤ i, j, k ≤ 7) the third order minors of the matrix
M1 corresponding to the columns i, j, k. In this case the only possible nonnull such
minors are

∆124 = d(af − bd), ∆125 = −e(af − bd), ∆127 = 2bdp,

∆147 = −2d2p, ∆157 = 2dep, ∆247 = −2dfp, ∆257 = 2efp. (21)

Therefore rankM1 = 3 iff d2+e2f2 6= 0. In this case (∆147)
2+(∆257)

2 6= 0, therefore
rankM1 = 3. Taking into account that j2p2 + j3 = efx2 + dp, Lemma 2 follows by
replacing the conditions on d, e, f by those on j2p2 + j3.

Relation (21) shows that

j2p2 + j3 ≡ 0 (22)

iff

d = ef = 0. (23)

Whence we have

Corollary 2. For p1 6≡ 0 rankM1 < 3 iff (23) holds.

Lemma 3. For p1 6≡ 0 rankM1 = 2 iff

j2p2 + j3 ≡ 0, p2 + p3 6≡ 0. (24)

Proof. Let ∆ij
kl (1 ≤ i, j ≤ 3; 1 ≤ k, l ≤ 7) denote the second order minors of

M1 corresponding to the rows i, j and columns k, l. By (23) we must consider only
the following cases: 1) d = e = f = 0, 2) d = e = 0, f 6= 0, 3) d = f = 0, e 6= 0. In
the case 1) the only nonnull minor is ∆13

27 = −2bp, hence rankM1 = 2 iff b 6= 0, or
equivalently, iff p2 + p3 6= 0 because p2 + p3 = bx. In the cases 2) and 3) we have
∆23

27 = 2fp 6= 0 and ∆13
57 = −2ep 6= 0, hence rankM1 = 2. Since in these cases

p2 + p3 6≡ 0, Lemma 3 follows.

It is immediate that the conditions

∆13
12 = −ae, ∆13

25 = −be, ∆13
27 = −2bp,

∆13
57 = −2ep, ∆23

12 = af, ∆23
27 = 2fp (25)

hold iff

p2 + p3 ≡ 0. (26)

Corollary 3. If (26) holds then j2 = 0, p2 ≡ 0 holds, too.

Lemma 4. For p1 6≡ 0 rankM1 = 1 iff

j3 + p2 + p3 ≡ 0. (27)
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Proof. Lemma 3 shows that rankM1 < 2 corresponds to

j2p2 + j3 = 0, p2 + p3 ≡ 0, (28)

or, equivalently,

b = d = e = f = 0. (29)

For (29) M1 becomes

M1 =





0 0 0 0 0 0 0
0 0 0 0 0 0 0
−a 0 0 0 0 0 2p



 .

Since p1 = px2 6≡ 0 it follows that rankM1 = 1, whence Lemma 4 holds.

The Lemmas 2–4 and relation (19) imply

Theorem 6. For p1 6≡ 0 the Aff3(2, R)- orbits of the system (1) have the following
dimensions

3 for j2p2 + j3 6≡ 0;

2 for j2p2 + j3 ≡ 0, p2 + p3 6≡ 0;

1 for j3 + p2 + p3 ≡ 0,

where j2, j3, p2, p3 are given by (17).

Definition 4. The set N ⊆ E(A) is called an Aff3(2, R)-invariant if for every
A ∈ N we have O(A) ⊆ N .

Let us denote by N1 ≡ N1 (j3+p2+p3 ≡ 0) and N2 ≡ N2 (j2p2+j3 ≡ 0, p2+p3 6≡
0) the Aff3(2, R)-invariant sets of Theorem 6 the orbits of which have the dimension
1 and 2, respectively. Let us remark that N2 = N ′

2

⋃

N ′′

2

⋃

N ′′′

2 , where N ′

2 ≡ N ′

2 (j2 =
j3 = 0, p2 ≡ 0), N ′′

2 ≡ N ′′

2 (j2 = j3 = 0, p2 6≡ 0), N ′′′

2 ≡ N ′′′

2 (j2 6= 0, j3 = 0, p2 ≡ 0)
are sets invariant with respect to the Aff3(2, R)-group. They are also mutually
disjoint.

Remark 5. The generalized F-N system (1) on the Aff3(2, R)-invariant sets N1

and N2 have the following canonical forms

ẋ = a+ cx+ px3, ẏ = 0 on N1, where p 6= 0; (30)

ẋ = a+ cx+ px3, ẏ = b on N ′

2, where pb 6= 0; (31)

ẋ = a+ cx+ px3, ẏ = b+ ex on N ′′

2 , where pe 6= 0; (32)

ẋ = a+ cx+ px3, ẏ = b+ fy on N ′′′

2 , where pf 6= 0. (33)
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4 Phase dynamics for systems (30)-(33)

For an easier treatment we reduce the number of the parameters by the time

rescaling t =
τ

p
. Considering the new parameters

r =
a

p
, q =

c

p
, m =

b

p
, n =

e

p
, s =

f

p
, (34)

systems (30)–(33) become

ẋ = r + qx+ x3, ẏ = 0; (35)

ẋ = r + qx+ x3, ẏ = m, m 6= 0; (36)

ẋ = r + qx+ x3, ẏ = m+ nx, n 6= 0; (37)

ẋ = r + qx+ x3, ẏ = m+ sy, s 6= 0, (38)

where the dot stands for the differentiation with respect to the new time τ and
x 6= 0. The equilibrium points of these systems satisfy

ẋ = 0, ẏ = 0. (39)

That is why we consider first the equation

r + qx+ x3 = 0. (40)

Its discriminant is D =
(

q
3

)3
+

(

r
2

)2
.

Equation (40) has a single real solution x0 if D > 0, three distinct real solutions
x1, x2, x3 if D < 0 and two distinct real solutions, one of them being double, if
D = 0. It is convenient to consider the following expressions for these solutions [4]:
a) D > 0

a1) if q = 0, then
x0 = 3

√
−r; (41)

a2) if q > 0, then

x0 = −2

√

q

3
sinh θ, θ =

1

3
sinh−1





r

2
√

(q
3

)3



 ; (42)

a3) if q < 0, then

x0 = −2

√

q

3

1

sin(2φ)
, φ ∈ (−π

4
,
π

4
), (43)

with tg φ =
3
√

tg
ψ
2 , sin ψ = 2

r

√

−
(

q
3

)3
, ψ ∈ (−π2 ,

π
2 );
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b) D < 0 (so q < 0)

x1 = −2

√

−q
3
sin(Φ +

π

3
), (44)

x2 = 2

√

−q
3
sinΦ, (45)

x3 = 2

√

−q
3
sin(

π

3
− Φ), (46)

where Φ = 1
3sin

−1 r

2

√

(

−q
3

)3
∈ (−π6 ,

π
6 ). In addition, x1 < x2 < x3.

c) D = 0 (so q ≤ 0)

x1 = −2

√

−q
3
, x2 = x3 =

√

−q
3

(47)

or

x1 = x2 = −
√

−q
3
, x3 = 2

√

−q
3
. (48)

If q = 0 and D = 0, then r = 0 and x1 = x2 = x3 = 0, but this situation will not
be considered because x 6= 0.

In order to obtain the equilibria of system (35), system (39) must be solved. As
the second equation (39) is always satisfied, system (35) has an infinity of equilibria,
situated on one, three or two straight lines x = xi in the phase plane (x, y), as
D > 0, D < 0 or D = 0, respectively. The matrix of the linearized system around
an equilibrium point (xi, k) is

A1 =

(

q + 3x2
i 0

0 0

)

and the corresponding eigenvalues are λ1 = 0, λ2 = q + 3x2
i . Although all equilibria

are nonhyperbolic, their type can be deduced very easy, because the dynamics takes
place on straight lines y = k. Thus, analyzing the variation of the function F (x) =
r + qx + x3, its sign can be found. It follows that x is increasing on the straight
lines y = k when F > 0 and is decreasing when F < 0. That is why, when D > 0,
the equilibria (x0, k) are repulsors, when D < 0, the equilibria (x1, k) and (x3, k)
are repulsors and the equilibria (x2, k) are attractors, while when D = 0, the simple
equilibrium points are repulsors and the double equilibrium points are degenerated
saddles. The bifurcation diagram of system (35) is given in Figure 1.

System (36) has no equilibrium points because the second equation (39) is never
satisfied. With the transformation y

m = y1, system (36) becomes

ẋ = r + qx+ x3, ẏ = 1

and the equations of the phase trajectories can be found. Thus, if D < 0, then

dx

dy1
= (x− x1)(x− x2)(x− x3),
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Fig. 1 Bifurcation diagram for system (35)

and the trajectory through (x10, y10) has the equation

y1 = y10 + α1 ln

∣

∣

∣

∣

x− x1

x10 − x1

∣

∣

∣

∣

+ α2 ln

∣

∣

∣

∣

x− x2

x10 − x2

∣

∣

∣

∣

+ α3 ln

∣

∣

∣

∣

x− x3

x10 − x3

∣

∣

∣

∣

where

α1 =
1

(x1 − x2)(x1 − x3)
, α2 =

1

(x2 − x1)(x2 − x3)
, α3 =

1

(x3 − x1)(x3 − x2)

and y1 = τ + y10.
Similar formulas for D ≥ 0 can be obtained.
The second equation (39) for system (37) gives x = −mn . Consequently, system

(37) has no equilibrium points if −mn 6= xi, i = 0, 1, 2, 3, where the expressions for xi

are given by (41)–(48) and it has an infinity of equilibria situated on the straightline
x = xi of the phase plane if −mn = xi.

The linearized system around an equilibrium point (xi, k), k ∈ R, has the matrix

A2 =

(

q + 3x2
i 0

n 0

)

and the corresponding eigenvalues are the same as for the matrix A1, namely λ1 =
0, λ2 = q+3x2

i . The equations of the phase trajectories can be obtained considering

dx
dy

= r + qx+ x3

m+ nx .
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Consequently m+ nx
r + qx+ x3 dx = dy and y = y(x) follow in every situation D > 0,

D < 0, D = 0.
Consider now system (38). As from the second equation (39) it follows y =

−ms , system (38) can have one, three or two equilibria if D > 0, D < 0 or
D = 0, respectively. The linearized system around an equilibrium point (xi,−ms ),
i = 0, 1, 2, 3, has the matrix

A3 =

(

q + 3x2
i 0

0 s

)

and the corresponding eigenvalues are λ1 = s 6= 0, λ2 = q + 3x2
i .

In order to find the type of the equilibrium points, the sign of λ2 must be
considered. Thus, if D > 0, λ2 = q + 3x2

0. Replacing the expression of x0 given by
(41), (42) or (43) into the expression of λ2, it follows that λ2 > 0. Consequently, if
s > 0, then the equilibrium point (x0,−ms ) is a repulsor and if s < 0, it is a saddle
point.

If D < 0, using (44) we get λ2 = q + 3x2
1 = q

[

1 − 4sin2
(

Φ + π
3

)]

> 0.

Consequently, the equilibrium point (x1,−ms ) is a repulsor for s > 0 and a sad-
dle for s < 0. Using (45), λ2 = q + 3x2

2 = q(1 − 2sinΦ)(1 + 2sinΦ) < 0 so
(x2,−ms ) is an attractor for s < 0 and a saddle for s > 0. Using (46), we get

λ2 = q + 3x2
3 = q(1 − 2sin

(

π
3 − Φ

)

)(1 + 2sin
(

π
3 − Φ

)

) > 0, so the equilibrium

point (x3,−m
s ) is a repulsor for s > 0 and a saddle for s < 0.

If D = 0, using (47) and (48) it follows that λ2 = 0 for the double equilibrium
point and λ2 > 0 for the simple equilibrium point. Thus, the simple equilibrium is
a repulsor for s > 0 and a saddle for s < 0, while the double equilibrium point is
nonhyperbolic. Its type will be deduced using the center manifold theory [5]. Using
the transformation u = x − xi, v = y + m

s where xi is the abscissa of the double
equilibrium point and taking into account that λ2 = 0, system (38) becomes

u̇ = 3xiu
2 + u3, v̇ = sv. (49)

System (49) has the origin as an equilibrium point with the eigenvalues λ1 =
s, λ2 = 0. The center manifold must be of the form

v = V (u) = γ1u
2 + γ2u

3 + ... (50)

Replacing (50) into the second equation (49), we get

∂V

∂u

.
u= sV (u)

which is equivalent with
(

2γ1u+ 3γ2u
2 + ...

) (

3xiu
2 + u3

)

= s
(

γ1u
2 + γ2u

3 + ...
)

It follows γ1 = γ2 = ... = 0. Consequently, the center manifold is V (u) = 0 and
the flow on the center manifold is given by u̇ = 3xiu

2 + u3. As xi 6= 0, it follows
that the double equilibrium point is a nondegenerate saddle-node.
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5 F-N system

The classical F-N system reads [1]

ẋ = cFN (x+ y − x3/3), ẏ = −(x− aFN + ybFN )/cFN

therefore it corresponds to the coefficients a = 0, b = aF N

cF N
, c = d = cFN , e = − 1

cF N
,

f = − bF N

cF N
, p = −cFN . Since cFN 6= 0 it follows that the corresponding parameters

belong to a set (manifold) of the Aff3(2, R)-group. Let N3 = N3(j2p2 + j3 6= 0).
We have N3 = N ′

3UN
′′

3 , where N ′

3 = N ′

3(j3 6= 0) and N ′′

3 (j2p2 6= 0) are two disjoint
sets. They are invariant with respect to the Aff3(2, R)-group. On N ′

3 and N ′′

3 the
system (1) has the following canonical forms

ẋ = a+ cx+ dy + px3, ẏ = b+ ex+ fy, (51)

where p 6= 0, i.e. the given system (1),

ẋ = a+ cx+ px3, ẏ = b+ ex+ fy, (52)

where pe 6= 0, pf 6= 0. Hence the classical F-N system is of the form (51). Its main
characteristic is that, in general, it cannot be decoupled (i.e. it is not of separate
variables). This is mainly due to the fact that the parameter d, which has a crucial
role in the dynamics generated by (51), is nonzero. Since for the F-N system we
have c = d, it follows that it never takes the forms (30)–(33), (52). This explains
the big differences between the dynamics generated by the classical F-N system and
the dynamics generated by (30)–(33), sketched in the previous section.
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E-mail: popam@math.md

Adelina Georgescu
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Quadratic systems with limit cycles of normal size

Leonid A. Cherkas∗, Joan C. Artés and Jaume Llibre†

Abstract. In the class of planar autonomous quadratic polynomial differential sys-
tems we provide 6 different phase portraits having exactly 3 limit cycles surrounding a
focus, 5 of them have a unique focus. We also provide 2 different phase portraits hav-
ing exactly 3 limit cycles surrounding one focus and 1 limit cycle surrounding another
focus. The existence of the exact given number of limit cycles is proved using the Du-
lac function. All limit cycles of the given systems can be detected through numerical
methods; i.e. the limit cycles have “a normal size” using Perko’s terminology.

Mathematics subject classification: 34C07, 34C08.
Keywords and phrases: quadratic systems, limit cycles.

1 Introduction

A planar autonomous quadratic polynomial differential system (or simply a
quadratic system) in what follows is a system of the form

dx

dt
=

2
∑

i+j=0

aijx
iyj ≡ P (x, y),

dy

dt
=

2
∑

i+j=0

bijx
iyj ≡ Q(x, y), (1)

with aij, bij ∈ R. It is known (see, for instance [17]) that a quadratic system can
have only limit cycles enclosing a unique singular point, which is a focus. As system
(1) has no more than two foci [17], only the following distributions of limit cycles
are allowed: n, (n1, n2), where n ∈ N, and n1, n2 ∈ N ∪ {0} with n1 + n2 > 0.
Here n is the number of limit cycles surrounding a focus provided that system (1)
has only one focus, and n1 and n2 are the number of limit cycles surrounding every
one of the two foci provided that the system has exactly two foci. Recently, Zhang
Pingguang [20, 21] has proved that if ni > 0 for i = 1, 2, then either n1 = 1, or
n2 = 1.

The following distributions of limit cycles for quadratic systems (1) are known:

(a) 1 and (1, 0); (b) 2 and (2, 0); (c) 3 and (3, 0);
(d) (1, 1); (e) (2, 1); (f) (3, 1).

With the help of distinct results on uniqueness of a limit cycle (see [15, 17, 22]),
being the most effective result from Zhang Zhifen (see [14]), it has been proved for
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the quadratic systems (1) that the distributions of limit cycles (a) and (d) exist,
see [5, 6, 14, 16, 18, 19]. The small class of systems with distribution (b) is obtained
by bifurcation of limit cycles either from a focus and from a separatrix cycle, or from
a focus, see [17].

The most complicated distributions of limit cycles are the distributions (c), (e)
and (f). They are obtained also with the help of bifurcations, and by perturbing
quadratic systems (1) having a center [2]. However using these methods it is only
possible to obtain infinitesimal limit cycles which, in general, are very difficult to
detect using numerical methods. Thus, Perko in the work [14] can exhibit quadratic
systems with limit cycles “of normal size” using his terminology, i.e. limit cycles
which can be detected easily by numerical methods. The main method used by him,
consists in considering a set of systems with a rotating parameter, and in studying
the bifurcations of limit cycles under the variation of this parameter. For more
details on rotating families see [13,14,17,22], and Section 2.

Perko in [14] provided examples of quadratic systems with the six distributions
of limit cycles (a)–(f), but he did not consider all the possible phase portraits with
these distributions of limit cycles. The purpose of this paper is: first, to systematize
Perko’s method; and second, to study different phase portraits with the distributions
(c) and (f) of limit cycles.

For proving the existence of the exact given number of limit cycles we shall
use Dulac functions, see [17] for more details on these functions. A key point for
studying the distributions (c) and (f) of limit cycles are the works [1] and [12], where
the qualitative phase portraits of all quadratic systems having a weak focus of third
order are classified, and additionally, it is described the partition of the parameter
space into domains associated to the different topological phase portraits.

By means of an affine transformation of the phase variables and a change of the
time scale, a quadratic system (1) generically can be written as

dx

dt
= 1 + xy,

dy

dt
= a00 + a10x + a20x

2 + a01y + a11xy + ay2,
(2)

where a00 = a01 + a11 − a10 − a20 − a.

In Table 1 we summarize the main results of this paper, i.e. the different con-
figurations of singular points compatible with the distributions (c) and (f) of limit
cycles. The results of that table are for quadratic systems in the normal form (2).
A focus, a node or a saddle is denoted by F , N and S, respectively. If they are at
infinity in the Poincaré Compactification, then they have the subindex ∞. For more
details on the Poincaré compactification of a planar polynomial differential system
see [8].
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N0 Coefficients of system
Singular points

Cycle
a a20 a11 a01 a10 distr.

1 3 -12 -1.398 8.4 15.28 1F + 1N + 2S∞ + 1N∞ 3
2 1.5 -15 0.79993 3.2 9.17 2F + 2S∞ + 1N∞ (3, 0)
3 -2 12 10.999 -14 -26.1 1F + 3S + 3N∞ 3
4 -2 -1 9.49965 -12.5 6.955 1F + 1S + 2N∞ + 1S∞ 3
5 -4 -1 13.9987 -21 12.4 1F +1N+2S+2N∞+1S∞ 3
6 5 -50 -5.49995 16.5 76.45 1F +2N+1S+1N∞+2S∞ 3
7 8/11 -12 2.1502 67/220 -26.5 2F + 1S∞ (3,1)
8 1.04 -120 1.51997 1.56 -79.6 2F + 2S∞ + 1A∞ (3,1)

Table 1. Different configurations of singular points compatible with the
distributions 3 and (3, 0) for the limit cycles of the quadratic systems.

The paper is organized as follows. The results of Table 1 are proved in Section 3,
but previously in Section 2, we present the main definitions and basic results which
we shall use in the proofs of the results of Table 1.

2 Main definitions and preliminary results for Lienard systems

The surface of limit cycles for the system

dx

dt
= f(x, α), x ∈ R

2, α ∈ R, f = (f1, f2)
T , (3)

is the subset SLC = {(x, α) ∈ R
2 × R : x ∈ L(α), α ∈ R}, where L(α) is the

subset of the phase plane R
2 formed by limit cycles of system (3) with parameter α.

We remark that if all the limit cycles of system (3) surrounding the singular
point x = 0 (i.e. f(0, α) = 0), intersect the half–axis x2 = 0, x1 > 0 only in one
point, then instead of working with the surface of limit cycles it is more convenient
to consider the curve of limit cycles, denoted by CLC, and formed by the points
(x1, α), where x1 is the abscissa of the point x belonging to a limit cycle and to the
half–axis x2 = 0, x1 > 0 for system (3) with parameter α.

We say that the parameter α rotates the vector field f(x, α) associated to system
(3), or that α is a rotating parameter, if one of the two inequalities

(f1)
′

αf2 − f1(f2)
′

α ≥ 0 (≤ 0), x ∈ R
2, α ∈ R,

holds, and the inequality never becomes an identity equal to zero on any limit cycle
of L(α). Here, (fi)

′

α denotes the derivative of fi(x, α) with respect to α for i = 1, 2.
We remark that for the quadratic systems (2), a11 is a rotating parameter.

The condition that this inequality never becomes an identity equal to zero on any
limit cycle of L(α) can be easily checked, and means that the limit cycles of system
(3) really change their position under the variation of the parameter α. Moreover,
if α is a rotating parameter, then L(α1) ∩ L(α2) = ∅ if α1 6= α2. For more details,
see [22].
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We assume that we have a system (3) and that α is a rotating parameter. Then,
the surface of limit cycles SLC is an open subset of R

2 × R. By definition the
Andronov–Hopf function F : ∪α∈RL(α) → R associates to the points of L(α) the
value α. Therefore, the surface of limit cycles is determined by the equation α =
F (x) running α in R.

If the limit cycles surrounding the singular point x = 0 (i.e. f(0, α) = 0),
intersect the half–axis x2 = 0, x1 > 0 only in one point, instead of function F (x)
it is more convenient to consider the function α = ϕ(x1) = F (x)|x2=0, x1>0, which
provides a full information about the limit cycles of system (3) surrounding the point
x = 0, and their bifurcations when the parameter α varies. Note that the function
α = ϕ(x1), running α in R, defines a curve of limit cycles for system (3) surrounding
the point x = 0.

For computing the number of limit cycles of quadratic systems (1) we shall use
the following two theorems, see [4, 9]. See also [7].

Theorem 1. Assume that system (1) is structurally stable in a connected region
Ω ⊂ R

2. Then, there exist a function Ψ(x, y) ∈ C1(Ω) and a constant k < 0, such
that the inequality

Φ = k Ψ div f +
∂Ψ

∂x
P +

∂Ψ

∂y
Q > 0, f = (P,Q), (4)

is satisfied in the region Ω. Moreover, the limit cycles of system (1) do not intersect
the set W = {(x, y) ∈ Ω : Ψ(x, y) = 0}, and in every two–dimensional connected
subregion of Ω where either Ψ(x, y) > 0 or Ψ(x, y) < 0, system (1) has at most one
limit cycle γ, and if exists, is hyperbolic and stable (respectively unstable) if kΨ|γ < 0
(respectively > 0).

If the function Ψ(x, y) satisfies the condition (4), the function B(x, y) =
|Ψ(x, y)|1/k is a Dulac function in each subregion Ψ(x, y) > 0 or Ψ(x, y) < 0, and
we have that div(Bf) = Φ|Ψ|1/k−1(sign Ψ)/k.

Theorem 2. Let Ω be a simple connected region where system (1) is defined and
has a unique singular point, the antisaddle A with divf(A) 6= 0. Assume that there
exist a function Ψ and a number k < 0 satisfying the assumptions of Theorem 1.
Suppose that the equation Ψ(x, y) = 0 determines in the region Ω a nest of m of
ovals surrounding the point A. Then, in each of the m − 1 annulus limited by two
adjacent ovals, system (1) has exactly one limit cycle. Moreover, system (1) has in
the region Ω at most m limit cycles.

By Theorem 2 it follows that the ovals are transversal to the vector field associ-
ated to system (1), and that the annulus limited by two adjacent ovals satisfies the
Bendixson principle, see [17] for more details on the Bendixson principle. An addi-
tional m-th limit cycle can exist between the most external oval and the boundary
of the region Ω.
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For the Lienard system

dx

dt
= y − F (x),

dy

dt
= −g(x), (5)

the determination of the function Ψ(x, y), satisfying the assumptions of Theorem 2,
is easy. Thus, if we look for it in the form

Ψ =

n
∑

i=1

Ψi(x)yn−i, (6)

then the appropriate function Φ of Theorem 1 depends only on x if and only if
∂Φ/∂y ≡ 0. Then, ∂Φ/∂y ≡ 0 implies

Ψ1 = C1, Ψ
′

2 = kfC1, Ψ2 = kFC1 + C2, F ′(x) = f(x)
Ψ′

i = kfΨi−1 + (n − i + 2)gΨi−2 + FΨ′

i−1, Ψi =
∫

Ψ′

i(t)dt + Ci, i = 3, . . . , n.
(7)

where the Ci for i = 1, . . . , n are arbitrary constants of integration. Therefore, the
function Φ has the form

Φ = −kfΨn − gΨn−1 − FΨ′

n. (8)

In general, the function Φ is a linear combination

Φ =
n

∑

j=1

CjΦj(x), (9)

of convenient functions Φi(x), obtained from (7) and (8).

Theorem 3. Suppose that the function g(x) of the Lienard system (5) satisfies that
g(0) = 0, and that its two nearest zeros at 0 are x1 and x2 with x1 < 0 < x2. Assume
that there exist the constants k < 0 and Ci for i = 1, . . . , n, such that the function
Φ given in (9) is positive for x ∈ (x1, x2). Then, system (5) has at most n/2 limit
cycles surrounding the singular point (0, 0).

For the existence of the positive function Φ, given by (9), on an interval [α, β]
with x1 < α < 0 < β < x2, it is sufficient that the inequality

max
|C|≤1

min
x∈[α,β]

Φ(x,C) =
1

R
> 0,

holds. This is equivalent to the existence of a solution for the following problem of
optimization:

Φ(x,C) ≤ 1, |C| ≤ R, |C| = max |Ci|, x1 ≤ x ≤ x2, 0 < R → min . (10)

We can obtain an approximate solution of problem (10) on the net points xi

solving the discretized problem

Φ(xi, C) ≤ 1, |C| ≤ R, xi ∈ [x1, x2] i = 1, . . . , N, 0 < R → min . (11)
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If the number N of net points is sufficiently large and problem (11) has a solution,
we can expect that problem (10) has also a solution. Note that numerically it is easy
to find a minimum of the function Φ(x,C∗) on [x1, x2], where C = C∗ is a solution
of the problem (11).

In the study of the limit cycles of system (5), the idea of using a function V (x, y)
such that its derivative dV/dt on the solutions of system (5) depends only on x, has
been used successfully in [10] and also it was mentioned in [4].

3 Perturbed quadratic systems with a weak focus of order three

Since the straight line x = 0 is transversal for the vector field associated to
system (2), its limit cycles do not intersect x = 0. Therefore, in the half–planes
x < 0 and x > 0 its limit cycles can be studied separately. In the half–plane x > 0
the transformation x = 1/ξ, y = (ỹ − F (ξ))ξ−a − ξ writes system (2) into the
Lienard system

dξ

dt
= ỹ − F (ξ),

dỹ

dt
= −g(ξ), (12)

where

f(ξ) = (a11 + a01ξ − (2a + 1)ξ2)ξa−2,

g(ξ) = (a00 + a10ξ + (a00 − a11)ξ
2 − a01ξ

3 + aξ4)qzxξ2a−3,

F (ξ) =

ξ
∫

1

f(t)dt = P̃2(ξ)ξ
a−1 − P̃2(1).

System (2) has a weak focus or a center at the point A = (1,−1), if the conditions

L = 2a − a01 − a10 − 2a20 > 0, V1 = a11 + a01 − 2a − 1 = 0, (13)

hold. The last condition says that the divergence of system (2) at A is zero.
Clearly, for a = 2, 3, . . . system (12) is a Lienard polynomial differential system.

Moreover, for a = −2,−3, . . . system (12), under the transformation ξ = 1/x, ỹ =
−y, goes over to

dx

dt
= y + P̂2(x)x−a−1 − P̂2(1),

dy

dt
= P̂4(x)x−2a−3, (14)

where P̂2(x), P̂4(x) are polynomials. Thus, also system (2) for a = −2,−3, . . . is
reduced to a Lienard polynomial differential system.

Under conditions (13) the multiplicity of the weak focus A of system (2) can be
determined by its focal values (also called Lyapunov constants), see for instance [11].
For a integer and |a| > 1 these focal values can be calculated using the Lienard
polynomial systems (12) or (14), or using [11] for an arbitrary value of a. Thus, for
system (2) these focal values are

V3 = W0 − a10W,
V5 = (4 − 2a − a11)V/W,
V7 = −(a11 + 2a + 1)UV/W,

(15)
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where

W0 = a2
11(a + 1) + a11(2a

2 + a − 1) − a20(a11(2a − 1) + (2a + 1)(2a − 3)),

W = −1 + 2a2 + a(a11 − 1),

V = −a2
11a(a + 1) + a20(a − 1)(2a + 1)2,

U = (8 − 2a2)(a11 + 2a + 1)2 − 35(2a + 1)(a11 + 2a + 1) + 35(2a + 1)2.

In short, under conditions (13) system (2) has at A

(i) a focus of first order if V3 6= 0, it is stable if V3 < 0, otherwise it is unstable;

(ii) a focus of second order if V3 = 0, V5 6= 0, it is stable if V5 < 0, otherwise it is
unstable;

(iii) a focus of third order if V3 = V5 = 0, and V7 6= 0, it is stable if V7 < 0,
otherwise it is unstable;

(iv) a center if and only if V3 = V5 = V7 = 0.

It is well known that perturbing a weak focus of order i inside the class of
quadratic systems, we can obtain i infinitesimal limit cycles surrounding the per-
turbed focus. Therefore, to look for quadratic systems having three limit cycles
surrounding a focus, it is natural to perturb systems (2) having a weak focus of
order three.

We assume that W 6= 0. Then, the value a10 can be determined from V3 = 0,
that is a10 = W0/W . In particular, we obtain that system (2) has a weak focus of
order three at A if

a11 = ã∗11 = 4 − 2a, a 6= 2, a01 = ã∗01 = 2a + 1 − ã∗11,
a10 = ã∗10 = (6(a2 − a − 2) + a20(6a − 7))/(1 − 3a),
(a − 3 − a20)/(1 − 3a) < 0.

(16)

In short, we note that we have a 2–parameter family of quadratic systems (2) with
a weak focus of order three at A, the two parameters are a and a20.

We fix the parameters a and a20 of a system (2) having a weak focus of third
order at A, and change the parameters a11, a01 and a10 in order to obtain a quadratic
system with one small limit cycle surrounding A, being A a weak focus of second
order. We must change the parameters a11, a01 and a10 in such a way that V1 = 0 and
V5V7 < 0. We note that V5 must be different from zero in order to have at A a weak
focus of second order, and that the signs of V5 and V7 must be different, because the
stability of A and of the limit cycle must be opposite. Thus, we can obtain a limit
cycle passing through a point (x,−1) with x > 1 but near 1 choosing adequately the
functions a11 = ã11(x), a01 = ã01(x) = 2a + 1 − ã11(x) and a10 = ã10(x) = W0/W .
Of course, we have that ã11(1) = ã∗11, ã10(1) = ã∗10. The condition for the birth of
such a limit cycle, if a11 = ã∗11 + ∆a11, a01 = ã∗01 + ∆a01 and a10 = ã∗10 + ∆a10 must
satisfy the inequality

(3a − 1)(a − 2)∆a11 > 0. (17)
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in order to have V5V7 < 0. Therefore, ∆a11 > 0 if a < 1/3 or a > 2, and ∆a11 < 0
if 1/3 < a < 2.

Suppose that for x = x0 > 1 and for the values ã11(x0), ã01(x0), ã10(x0) we have
one limit cycle surrounding A and passing through (x0,−1) and that A is a weak
focus of second order. Now we fix a11 and a01, and change the parameter a10 in
order to obtain a quadratic system having two limit cycles surrounding the focus A,
being A a weak focus of first order. Such a system must satisfy V3 6= 0, V3V5 < 0
and V5V7 < 0. We denote by a10 = a10(x) with a10(1) = a10(x0), a11 = ã11(x0)
and a01 = ã01(x0) the parameters of a quadratic system having two limit cycles
around A such that the new second limit cycle passes through the point (x,−1).
The appropriate Andronov–Hopf function a10 will have one extremum. Now, we
denote by a∗10 the value of a10 for which system (2) has two limit cycles surrounding
A and being A a weak focus of first order.

Finally, we change the parameter a11 starting with value ã11(x0) and remaining
fixed the other parameters, so that from the weak focus of first order A bifurcates a
third limit cycle. Such perturbed quadratic system must satisfy V1 6= 0, V1V3 < 0,
V3V5 < 0 and V5V7 < 0. Then, by changing a11 on some interval system (2) will
have three limit cycle, and the appropriate Andronov–Hopf function a11 = AH(x)
will have two extrema.

We have described the general scheme for obtaining quadratic system (2) with
three limit cycles around the focus A, and moving conveniently the parameters a11,
a01 and a10. The limit cycles (which originally bifurcated from A) are not necessarily
small.

In what follows, we shall consider quadratic systems (2) with different configura-
tion of singular points and we shall look for distributions 3 and (3, 1) of limit cycles.
The functions ã11(x), a10(x) and AH(x) will be found with the help of numerical
computations.

Example 1: A quadratic system with 1 focus and 1 node, and 3 limit cycles sur-
rounding the focus, having at infinity 2 saddles and 1 antisaddle. We take a = 3,
a20 = −12, a11 = −1.398, a10 = 15.28 and a01 = 8.4. Then system (2) has the focus
A. Numerical computations show that the system has at least three limit cycles
which pass through points (xi,−1) with x1 = 1.26, x2 = 1.98 and x3 = 3.95. With
the help of Bendixson annuli it is possible to prove these numerical results analyti-
cally, but here we shall not do it. It is much more interesting to provide the upper
bound on the number of limit cycles. We shall show that this upper bound is 3. For
that we shall work with the Lienard polynomial system (12). Doing the translation
ξ = x + 1, we get again another Lienard polynomial system. For this system we
shall search a function Ψ(x,C) of the form (6) with n = 10 and k = −1 satisfy-
ing conditions (7). For the corresponding function Φ̃(x,C) = Φ(x,C)/(1 + 4G2)

with G =
x
∫

0

g(t)dt, where Φ(x,C) is a function satisfying (8) and (9), we shall solve

the problem of optimization (11) on a uniform net in the interval [−0.8, 0.5] with
N = 320 points. This problem has the solution C∗

i equal to −0.0594107, −0.343784,
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−0.828227, −0.879519, 0.301152, 1, 0.0814624, −0.275238, −0.00639951, 0.00721968
for i = 1, . . . , 10. All the real roots of the polynomial Φ(x,C∗) lie in interval x ≤ −1.
Therefore, this function is positive in (−1,+∞). The equation Ψ(x, y,C∗) = 0 de-
termines in the half–plane x > −1 three annuli surrounding the focus O = (0, 0)
of the last Lienard polynomial system and Theorem 3 can be applied. Then, the
considered quadratic system (2) have no more than three limit cycles enclosing the
focus A and at least two limit cycles. Taking into consideration the numerical com-
putations it is possible to check that the system has exactly 3 limit cycles around
the focus A.

Example 2: A quadratic system with 2 foci, and 3 limit cycles surrounding one
focus and 0 limit cycles around the other focus, having at infinity 2 saddles and 1
antisaddle. That is, this system has a distribution (3, 0) for its limit cycles. We take
a = 1.5, a20 = −15, a11 = 0.79993, a10 = 9.17 and a01 = 3.2. The corresponding
system (2) has the foci A and B = (x0,−1/x0) with x0 = −0.73. In addition,
there are at least 3 limit cycles around the focus A which pass through the points
(xi,−1) for x1 = 1.4, x2 = 1.9 and x3 = 3.1. Now, we show that this system has no
more 3 limit cycles around the focus A. We consider a Lienard system (12) and a

function Ψ(ξ, ỹ, C) as in (6) and (7) with n = 11, k = −1 and Ψi =
ξ
∫

1

Ψ
′

i(t)dt + Ci.

For the function Φ̃(ξ, C) = 103Φ(ξ, C)/(1 + 4G3) with G =
ξ
∫

1

g(t)dt, where Φ(ξ, C)

is a function as in (8) and (9), we solve the problem of optimization (11) on a
uniform net in the interval [0.2, 1.7] with N = 200 points. This problem has the
solution C∗

i equal to 6.77203 · 10−6, 0.000127496, 0.00128263, 0.0189312, 0.0367929,
−0.0316707, −0.41092, −0.0777118, 1, 0.0289165, −0.12485 for i = 1, . . . , 11. The
function Φ(ξ, C∗) is positive for ξ > 0, and the equation Ψ(ξ, ỹ, C∗) = 0 determines
in the region ξ > 0 three annuli surrounding the focus Ã = (1, 0) of system (12).
Then, we get the same conclusion than in Example 1. The absence of limit cycles
around the focus A follows from works [18,19].

Example 3: A quadratic system with 1 focus, 3 saddles and 3 limit cycles surround-
ing the focus. We take a = −2, a20 = 12, a11 = 10.999, a10 = −26.1 and a01 = −14.
In this case system (2) has the focus A and the three saddles Si = (ti,−1/ti) with
t1 = −0.67, t2 = 0.15 and t3 = 1.7. In addition, there are at least 3 limit cycles
around the focus A which pass through the points (xi,−1) with x1 = 0.32, x2 = 0.66
and x3 = 0.8. We show that this system has at most 3 limit cycles. For that purpose
we consider the Lienard polynomial system (14) associated to system (2) with

F (x) = −1001

3000
− 3x + 7x2 − 10999

3000
x3, g(x) = 2x − 14x2 − 2.1x3 + 26.1x4 − 12x5.

The function Ψ(x, y,C) is as in (7) with n = 10, k = −1 and Ψi =
x
∫

0

Ψ′

i(t)dt + Ci.

For the function Φ̃(x,C) = 100Φ(x,C)/(1 + 8G3) with G =
x
∫

1

g(t)dt, where Φ(x,C)
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is a function satisfying (8) and (9), we solve the problem of optimization (11) on a
uniform net in the interval [0.2, 1.72] with N = 650 points. The problem has the
solution C∗

i equal to −0.00891837, −0.0884008, −0.322146, −0.448227, 0.240997,
1, 0.119569, −0.547241, −0.0178445, 0.0269709 for i = 1, . . . , 10. The function
Φ(x,C∗) is positive in the interval (0, 1.705). The equation Ψ(x, y,C∗) = 0 deter-
mines for x ∈ I three annuli surrounding the focus Ã = (1, 0) of system (14). The
limit cycles of system (14) are located in the strip t2 < x < t3 of the plane (x, y).
The interval I contains the interval (t2, t3). Now, the conclusion follows in a similar
way to the previous examples.

Example 4: A quadratic system with 1 focus, 1 saddle and 3 limit cycles sur-
rounding the focus. We take a = −2, a20 = −1, a11 = 9.49965, a10 = 6.955 and
a01 = −12.5. In this case system (2) has the focus A and the saddle S = (x0,−1/x0)
with x0 = 0.2. In addition, there are at least three limit cycles around the focus A
which pass through the points (xi,−1) with x1 = 0.56, x2 = 0.75 and x3 = 0.87.
We consider the Lienard polynomial system (14) associated to system (2) with

F (x) = − 782

9375
−3x+

25

4
x2− 118747

375
x3, g(x) = 2x− 25

2
x2+

3291

200
x3+

1391

200
x4+x5.

Moreover, the function Ψ(x, y,C) is as in (7) with n = 12, k = −1 and Ψi =
x
∫

0

Ψ′

i(t)dt +Ci. For the function Φ̃(x,C) = 105Φ(x,C)/(1+4G2) with G =
x
∫

1

g(t)dt,

where Φ(x,C) satisfies (8) and (9), we solve the problem of optimization (11) on
a uniform net in the interval [0.3, 1.4] with N = 750 points. The problem has the
solution C∗

i equal to −0.0257346, −0.141113, −0.371849, −0.602612, −0.602612,
−0.281479, 0.102264, 0.157096, 0.0116869, −0.0191466, −0.00362004, 0.000197399
for i = 1, . . . , 12. The function Φ(x,C∗) is positive on the interval I = (0, 1.8), but
not on interval I = (x0,+∞). The equation Φ(x, y,C∗) = 0 determines for x ∈ I
three ovals. For evaluating the number of limit cycles on the strip x > x0 of the
plane (x, y), we shall use the method of reduction to the global uniqueness of a limit
cycle.

We consider the Andronov–Hopf function AH(x) = a11 with AH(1) = 9.5 as-
sociated to our system (2). We recall that a11 is a rotating parameter for system
(2). We fix all the parameters and we move only the parameter a11. The function
AH(x) is considered on the interval I1 = [x0, xmax] where the endpoints satisfy
x0 < 1 and xmax > 1, and xmax corresponds to the bifurcation of a limit cycle from
a loop of the saddle S. If in a subinterval I0 = [x1, x2] of I1 the number of zeros
of the function AH(x) = a0

11 is 2p, then the number of limit cycles of system (2)
in the strip x1 < x < x2 is p. Now, suppose that the equation AH(x) = a1

11 with
a1

11 < a0
11 provides a unique limit cycle which is localized in the strip x3 < x < x4

with [x3, x4] ⊂ I0 ⊂ I1, then the function AH(x) cannot take the value a0
11 outside

the interval I1. Consequently, for the value a0
11 system (2) has exactly p limit cycles.

This is the method of reduction to the global uniqueness of a limit cycle.
Now we go back to our particular system (2). Approximately AH(x) is equal to

8.89863 + 4.39482x − 13.5991x2 + 22.9703x3 − 22.4248x4 + 11.9886x5 − 2.72941x6,
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on I0 = [0.6, 0.9]. Of course I0 ⊂ I1. If we prove, for some a11 and remaining fixed
the other parameters, that system (14) has a unique limit cycle on a strip x ∈ (x̌, x̂)
of the plane (x, y) with (x̌, x̂) ⊂ I1, then the function AH(x) does not take the value
a11 = 9.49965 outside the interval I1, and AH(x) has its complicated behavior only
on I.

Now, we take a11 = 9.4993. Then, system (14) has a limit cycle, which is located
on the strip x0 < x < 1.8. We prove its uniqueness. For that we find functions
Ψ(x, y,C) and Φ(x,C) as before with n = 5 and k = −2/3. The problem (11)
has the solution C∗

i equal to −0.126609, −0.0834262, −1, −0.253441, 0.207481 for
i = 1, . . . , 5. The function Φ(x,C∗) is positive for x > 0. This means that systems
(14), and the corresponding system (2) have for a11 = 9.4993 a unique limit cycle.
Therefore, by applying the method of reduction to the global uniqueness of a limit
cycle, the proof of the distribution of 3 limit cycles around the focus A for the
considered system (2) follows.

Example 5: A quadratic system with 2 saddles, 1 focus, 1 node and 3 limit cycles
surrounding the focus. We take a = −4, a20 = −1, a11 = 13.9987, a10 = 12.4 and
a01 = −21. In this case system (2) has the focus A and the node N = (t0,−1/t0) with
t0 = 9.69, and two saddles Si = (ti,−1/ti) with t1 = 0.29 and t2 = 1.42. In addition,
there are at least three limit cycles which are located on the strip t1 < x < t2 of the
plane (x, y) around the focus A and pass through the points (xi,−1) with x1 = 0.63,
x2 = 0.8 and x3 = 0.88. For computing the number of limit cycles we consider the
Lienard polynomial system (14) associated to system (2) with

F (x) = − 17539

150000
− 7

3
x3 +

21

4
x4 − 139987

50000
x5,

g(x) = x5

(

4 − 21x +
142

5
x2 − 62

5
x3 + x4

)

,

and we find a function Ψ(x, y,C) as in (7) with n = 11, k = −1 and Ψi =
x
∫

1

Ψ′

i(t)dt+

C. Now, for the function Φ̃(x,C) = 106Φ(x,C)/(1 + 4G2) with G =
x
∫

1

g(t)dt,

where Φ(x,C) satisfies (8) and (9), we solve the problem (11) on a uniform net
on the interval [0.5, 1.33] with N = 750 points. The problem has the solution C∗

i

equal to −0.206646, −0.701459, −1, −0.745283, −0.24893, 0.0331453, 0.0341755,
0.000943157, −0.00105898, −5.55364 · 10−6, 2.065241̇0−6 for i = 1, . . . , 11. The
equation Ψ(x, y,C∗) = 0 defines in the strip 0.25 < x < 1.3 only three ovals. The
function Φ(x,C∗) is positive on (0.25, 1.3), but not on I = (t1, t2) where limit cycles
are located. As in the previous example we can use the method of reduction to
the global uniqueness of a limit cycle. We take a11 = 13.998 and fix the remaining
parameters. The corresponding Lienard polynomial system (14) has a limit cycle
which is located on the strip 0.25 < x < 1.3. Then, we find functions Ψ(x, y,C)
and Φ(x,C) as before with n = 7, k = −2/3 and a11 = 13.998. The problem (11)
has a solution C∗

i equal to −0.884833, −0.874942, −1, −0.158469, −1, −0.107391,
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0.0599698 for i = 1, . . . , 7. The function Φ(x,C∗) is positive for x > 0. This
means that systems (14), and the corresponding system (2) have for a11 = 13.998 a
unique limit cycle. Now, following with the method of reduction we can complete the
proof of the distribution of 3 limit cycles surrounding the focus A of the considered
system (2).

Example 6: A quadratic system with 1 saddle, 1 focus, 2 nodes and 3 limit cycles
surrounding the focus. We take a = 5, a20 = −50, a11 = −5.49995, a10 = 76.45
and a01 = 16.5. Then, system (2) has the focus A, the nodes N1 = (t1,−1/t1),
N2 = (t2,−1/t2) with t1 = −0.46, t1 = 0.34, and the saddle S = (t3,−1/t3) with
t3 = 0.65. Also it has at least three limit cycles around the focus A, which pass
through the points (xi,−1) with x1 = 1.05, x2 = 1.16 and x3 = 1.5. For estimating
the number of limit cycles we consider the Lienard polynomial system (12) with

F (ξ) = − 22003

240000
− 1099999

80000
ξ4 +

33

10
ξ5 − 11

6
ξ6,

g(ξ) = ξ7

(

−50 +
1529

20
ξ − 299

20
ξ2 − 33

2
ξ3 + 5ξ4

)

.

As before we find functions Ψ(ξ, ỹ, C) and Φ(ξ, C) satisfying (7), (8) and (9)

with n = 10, k = −1 and Ψi =
ξ
∫

1

Ψ′

i(t)dt + Ci for i = 1, ..., n. For the func-

tion Φ̃(ξ, C) = 103Φ(ξ, C)/ξ3) we solve the problem (11) on a uniform net in
the interval [0.6, 1.21] with N = 450 points. For the computations it is bet-
ter to do the change of variable ξ → ξ + 1. The problem (11) has the solu-
tion C∗

i equal to −0.0104019, −0.0613161, −0.329415, −1, 0.0849137, 0.770697,
0.0133268, −0.124194, −0.000345956, 0.00107251 for i = 1, . . . , 10. The equation
Ψ(ξ, ỹ, C∗) = 0 defines in the strip ξ ∈ I = (0.1; 1.5) only three ovals. The function
Φ(ξ, C∗) is positive on the interval I. Therefore, we use the reduction to a global
uniqueness of a limit cycle in the half–plane ξ > 0. We take a11 = −5.4997 and
suppose that remaining parameters are fixed. Then, the corresponding system (12)
has a limit cycle which is located on the strip ξ ∈ I. Furthermore, we find functions
Ψ(ξ, ỹ, C) and Φ(ξ, C) as before with n = 5, k = −2/3 and a11 = −5.4997. The
problem (11) has the solution C∗

i equal to −0.029957, −0.00827985, −1, −0.104843,
0.487508 for i = 1, . . . , 5. The function Φ(ξ, C∗) is positive on (0, 1.8), and the
equation Ψ(ξ, ỹ, C∗) = 0 defines for 0 < ξ < 1.8 only one oval. Hence, it follows the
uniqueness of the limit cycle for the considered system (12). Finally, the original
system (2) has exactly three limit cycles in the half–plane x > 0 around the focus A.

Example 7: A quadratic system with 2 foci, 1 saddle at infinity, and the configura-
tion (3, 1) of limit cycles. We take a = 8/11, a20 = −12, a11 = 2.1502, a10 = −26.5
and a01 = 67/220. The corresponding system (2) has the foci A and B = (x0,−1/x0)
with x0 = −3.2, and a saddle at infinity. In addition, there are at least three limit
cycles around A, which pass through the points (xi,−1) with x1 = 1.28, x2 = 1.15
and x3 = 4.43; and there is at least one limit cycle around B. For studying the limit
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cycles surrounding the focus A we consider the associated system (12), which after
the change of variable y = 5ỹ has the functions

F (ξ) =
10130461

5700000
− 118261

75000ξ
3
11

+
67

800
ξ

8
11 − 7

95
ξ

19
11 ,

g(ξ) = − −12

25ξ
17
11

− 53

5ξ
6
11

+
8377

5500
ξ

5
11 − 67

5500
ξ

6
11 +

8

275
ξ

27
11 .

For system (12) we find functions Ψ(ξ, ỹ, C) and Φ(ξ, C) satisfying (7), (8) and (9)

with n = 11, k = −1 and Ψi =
ξ
∫

1

Ψ′

i(t)dt + Ci for i = 1, ..., n. Now, for the function

Φ̃(ξ, C) = Φ(ξ, C)ξ4/(1 + ξ9) we solve the problem (11) on a uniform net in the
interval [0.001, 4] with N = 790 points. The problem has the solution C∗

i equal
to −0.000309912, −0.00513088, −0.372386, −0.154282, −0.328544, 0.150592, 1,
0.0871286, −0.586201, −0.0121769, 0.0273162 for i = 1, . . . , 11. The equation
Ψ(ξ, ỹ, C∗) = 0 defines in the strip 0 < ξ < 4 only three ovals. The function
Φ(ξ, C∗) is positive only on (0, 4). Now we use again the method of reduction to
the global uniqueness of a limit cycle for proving that there exist exactly three
limit cycles surrounding the focus A. We take in system (2) a11 = 2.156 and the
remaining parameters are fixed. Therefore, the corresponding system (12) has a
limit cycle which is located on the strip 0 < ξ < 4 of the phase plane (ξ, ỹ). Now
we find functions Ψ(ξ, ỹ, C) and Φ(ξ, C) as before with n = 3, k = −2/3 and a11 =
2.156. The corresponding problem (11) has the solution C∗

i equal to −0.8033395,
−0.299759, 1 for i = 1, 2, 3. The function Φ(ξ, C∗) is positive for ξ > 0. This means
that systems (2) and (12) with a11 = 2.156 have a unique limit cycle, but they for
a11 = 2.1502 have exactly three limit cycles around the focus A. Now, we shall
prove the uniqueness of the limit cycle around the focus B for the original system
(2) in the half–plane x < 0. In fact this uniqueness follows from the results of Zhang
Pingguang [20,21], but here we provide an independent proof. For doing that first,
we translate the point B to the point A by means of the change of variables x = x0x̂,
y = ŷ/x0. System (2) becomes another quadratic system also in the form (2) and its
parameters are ã00 = x2

0a00, ã10 = x3
0a10, ã20 = x4

0a20, ã01 = x0a01, ã11 = x2
0a11 and

ã = a. The uniqueness of the limit cycle is obtained in the half–plane x̃ > 0. We can
prove this with the help of the functions Ψ(ξ, ỹ, C) and Φ(ξ, C) satisfying (7), (8) and

(9), and the corresponding system (12) with n = 3, k = −1 and Ψi =
ξ
∫

1

Ψ′

i(t)dt + Ci

for i = 1, 2, 3. The problem (11) for the function Φ̃(ξ, C) = 10−2Φ(ξ, C)ξ20/11 has
the solution C∗

i equal to −8.0101 ·10−5 , 7.10538 ·10−4 , 1 for i = 1, 2, 3. The function
Φ(ξ, C∗) is positive for ξ > 0, and the equation Ψ(ξ, ỹ, C∗) = 0 defines for ξ > 0
only one oval. By Theorem 3, the considered system has exactly one limit cycle in
the half–plane ξ > 0, and the original system (2) has exactly one limit cycle around
focus B. So, we have distribution (3, 1) of limit cycles for our system (2).

Example 8: A quadratic system with 2 foci, and 1 saddle and 1 antisaddle at
infinity, and the configuration (3, 1) of limit cycles. In [1] the domain of parameters
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is found in order that a quadratic system has a weak focus of third order and a limit
cycle around the other focus. Using these systems we can find a quadratic system
(2) with the distribution of limit cycles (3, 1). We take a = 1.04, a20 = −120,
a11 = 1.51997, a10 = −79.6 and a01 = 1.56. Then, system (2) has the foci A and
B = (x0,−1/x0) with x0 = −1.79, one saddle and one node at infinity. In addition
there are at least three limit cycles around A, which pass through the points (xi,−1)
with x1 = 1.29, x2 = 2.22 and x3 = 4.63; and there is at least one limit cycle around
B. For studying the limit cycles surrounding the focus A we consider the associated
system (12), which after the change of variable y = 10ỹ has the functions F (ξ), g(ξ):

F (ξ) = −7749847

2040000
+

151997

40000
ξ

1
25 +

3

20
ξ

26
25 − 77

510
ξ

51
25 ,

g(ξ) = − −6

5ξ
23
25

− 119

250
ξ

2
25 +

5003

2500
ξ

27
25 − 39

2500
ξ

52
25 +

13

1250
ξ

77
25 .

As before we find the functions Ψ(ξ, ỹ, C) and Φ(ξ, C) satisfying (7), (8) and (9)

with n = 10, k = −1 and Ψi =
ξ
∫

1

Ψ′

i(t)dt + Ci for i = 1, ..., n. Now, for the function

Φ̃(ξ, C) = 103Φ(ξ, C)/(1 + 4G2) with G =
ξ
∫

1

g(t)dt we solve the problem (11) on

a uniform net in the interval [0.1, 2.2] with N = 400 points. The problem has
the solution C∗

i equal to 9.774 · 10−5, 0.00294242, 0.035928, 0.273929, −0.0477983,
−1, −0.385115, 0.80362, 0.00645912, −0.00449499 for i = 1, . . . , 10. The equation
Ψ(ξ, ỹ, C∗) = 0 defines in the strip 0 < ξ < 5 only three ovals. The function Φ(ξ, C∗)
is positive on the interval I = (0; 5). Again we use the method of reduction to the
global uniqueness of a limit cycle for proving that there exist exactly three limit
cycles surrounding the focus A. We take a11 = 1.5198 and the remaining parameters
are fixed. The corresponding system (12) has a limit cycle which is located in the
strip 0 < ξ < 5 of the phase plane (ξ, ỹ). Now we find functions Ψ(ξ, ỹ, C) and
Φ(ξ, C) as before with n = 7, k = −1 and a11 = 1.5198. The problem (11) has
the solution C∗

i equal to 0.00132064, 0.0450009, 1, −0.00941069, 0.20056, 0.134724,
−1 for i = 1, . . . , 7. The function Φ(ξ, C∗) is positive for ξ > 0, and the equation
Ψ(ξ, ỹ, C∗) = 0 defines for ξ > 0 only one oval. By Theorem 3, the considered
system has exactly one limit cycle in a half–plane ξ > 0, then the original system
(2) has exactly three limit cycles in a half–plane x > 0 around the focus A. The
uniqueness of the limit cycle around B for the original system (2) in the half–plane
x < 0 is proved in the same way as in Example 7 if the function Φ̃(ξ, C∗) is equal
to Φ(ξ, C)ξ24/25/106. The problem (11) has the solution C∗

i equal to 1.24736 · 10−4,
0.00948753, 1 for i = 1, 2, 3. The function Φ(ξ, C∗) is positive for ξ > 0, and the
equation Ψ(ξ, ỹ, C∗) = 0 defines for ξ > 0 only one oval, which allows to show the
uniqueness of the limit cycle of system (2) around the focus B.

Remark 1. Kooij and Zegeling proved in [18,19] that the distribution of limit cycles
(3, 1) is possible only for quadratic system of the type 2A + 1S∞, 2A + 2S∞ + 1S∞

which we have considered.
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Remark 2. For constructing the examples of quadratic system with the maximum
number of limit cycles it is not necessary to use the function ã11(x). It is enough to
know that the function a10(x) has an extremum, then the function AH(x) will have
two extrema and provides the existence of an interval for the function a11 in which
the system has three limit cycles. Also it is possible instead of using the normal form
given by system (2), to use other canonical families of quadratic systems considered
in [9,17].
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Global attractors for V -monotone nonautonomous

dynamical systems∗

David N. Cheban, Peter E. Kloeden, Björn Schmalfuß

Abstract. This article is devoted to the study of the compact global atrractors of V-
momotone nonautonomous dynamical systems.We give a description of the structure
of compact global attractors of this class of systems. Several applications of general
results for different classes of differential equations (ODEs, ODEs with impulse, some
classes of evolutionary partial differential equations) are given.

Mathematics subject classification: primary: 34D20, 34D40, 34D45, 58F10,
58F12, 58F39; secondary: 35B35.
Keywords and phrases: V-monotone system, nonautonomous dynamical system,
skew-product flow, global attractor, almost periodic motions.

1 Introduction

The differential equations with monotone right-hand side are one of the most
studied classes of nonlinear equations (see, for example,[4, 16, 20, 24, 25] and the
literature quoted there).

Many authors studied the problem of the existence of almost periodic solutions
of monotone nonlinear almost periodic equations (see [12, 13, 15, 18, 19, 24, 25] and
others).

Purpose of our article is the study of global attractors of general V -monotone
nonautonomous dynamical systems and their applications to different classes of dif-
ferential equations (ODEs, ODEs with impulse, some classes of evolution partial
differential equations).

For autonomous equations the analogous problem was studied before (see, for
example,[2, 14, 23]), but for nonautonomous dynamical system this problem is con-
sidered in our paper for the first time.

2 Nonautonomous dynamical systems and skew-product flows

Definition 1. Let Θ = {θt}t∈R be a group of mappings of Ω into itself, that is a
continuous time autonomous dynamical system on a metric space Ω, and let B be a

c©2003 D. Cheban, P. Kloeden, B. Schmalfuß
∗This work was partially supported by the Deutscher Akademischer Austauschdienst and the
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Banach space. Consider a continuous mapping ϕ : R
+ × Ω × B → B satisfying the

properties

ϕ(0, ω, ·) = idB, (ϕ(t + τ, ω, x) = ϕ(τ, θtω,ϕ(t, ω, x))

for all s, t ∈ R
+, ω ∈ Ω and x ∈ B. Such a mapping ϕ (or more explicit

〈B, ϕ, (Ω, R,Θ)〉) is called [1],[22] a continuous cocycle or nonautonomous dynamical
system (NDS) on Ω × B.

Example 1. As an example, consider a parameterized differential equation

dx

dt
= F (θtω, x) (ω ∈ Ω)

on a Banach space B with Ω = C(R × B, B). Define θt : Ω → Ω by θtω(·, ·) =
ω(t + ·, ·) for each t ∈ R and interpret ϕ(t, ω, x) as the solution of the initial value
problem

d

dt
x(t) = F (θtω, x(t)), x(0) = x. (1)

Under appropriate assumptions on F : Ω × B → B (or even F : R ×B → B) with
ω(t) instead of θtω in (1 ) to ensure forwards the existence and uniqueness, (Θ, ϕ)
generates a nonautonomous dynamical system on Ω × B.

The usual concept of a global attractor for the autonomous semi-dynamical sys-
tem π on the state space X = Ω × B can be used here.

Definition 2. The nonempty compact subset A of X =Ω × B is called maximal if
it is π-invariant, that is

π(t,A) = A for all t ∈ R
+,

and it attracts all compact subsets of X = Ω × B, that is

lim
t→∞

β (π(t,D),A) = 0 for all D ∈ K(X),

where C(X) is the space of all nonempty compact subsets of X and β is the Hausdorff
semi-metric on C(X).

3 Global attractors of V - monotone NDS.

Let Ω be a compact topological space , (E,h,Ω) be a locally trivial Banach
stratification [3] and | · | be a norm on (E,h,Ω) co-ordinated with the metric ρ on
E (that is ρ(x1, x2) = |x1 − x2| for any x1, x2 ∈ X such that h(x1) = h(x2) ).

Definition 3. Let us remember [8],[5],[6] that the triplet 〈(E, T1, π), (Ω, T2,Θ), h〉
is called a (general) nonautonomous dynamical system if h : E → Ω is a homomor-
phism of the dynamical system (E, T1, π) on (Ω, T2,Θ), where T1 and T2 (T1 ⊆ T2)
are two subsemigroups of the group T.
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Example 2. Let T2 be a subsemigroup of T, (Ω, T2,Θ) be a dynamical system on
Ω and 〈B, ϕ, (Ω, T2,Θ)〉 be a cocycle over (Ω, T2,Θ) with the fiber B, X := Ω × B,
T1 ⊆ T2 be a subsemigroup of T2, (X, T1, π) be a semi-group dynamical system
on X defined by the equality π = (ϕ, θ) (i.e. π(t, (ω, u)) := (ϕ(t, ω, u), θtω) for all
t ∈ T1 and (ω, u) ∈ X), then the triple 〈(X, T1, π), (Ω, T2,Θ), h〉 (h = pr2) will be a
nonautonomous dynamical system, generated by cocycle ϕ.

Definition 4. The cocycle 〈B, ϕ, (Ω, T,Θ)〉 is called compact dissipative if there is
a nonempty compact K ⊆ W such that

lim
t→+∞

sup{β(ϕ(t, ω)M,K) | ω ∈ Ω } = 0 (2)

for any M ∈ C(B), where ϕ(t, ω) := ϕ(t, ω, ·).

If M ⊆ B, then suppose

Ωω(M) =
⋂

t≥0

⋃

τ≥t

ϕ(τ, θ−τω,M)

for every ω ∈ Ω.

Definition 5. We will say that the space X possesses the (S)-property if for any
compact K ⊆ X there is a connected set M ⊆ X such that K ⊆ M .

Theorem 1. [9] Let Ω be a compact metric space, 〈B, ϕ, (Ω, T,Θ)〉 be a compact
dissipative cocycle and K be the nonempty compact appearing in the equality (2),
then :

1. Iω = Ωω(K) 6= ∅, is compact, Iω ⊆ K and limt→+∞ β(ϕ(t, θ−tω)K, Iω) = 0
for every ω ∈ Ω;

2. ϕ(t, ω)Iω = Iθtω for all ω ∈ Ω and t ∈ T
+;

3. limt→+∞ β(ϕ(t, θ−t)M, Iω) = 0 for all M ∈ C(B) and ω ∈ Ω ;

4. limt→+∞ sup{β(ϕ(t, ω−t)M, I) | ω ∈ Ω } = 0 for any M ∈ C(B), where
I = ∪{Iω | ω ∈ Ω };

5. Iω = pr1Iω for all ω ∈ Ω, where J is a Levinson centre of (X, T+, π), and,
hence, I = pr1J ;

6. the set I is compact;

7. the set I is connected if one of the following two conditions is fulfilled :

a. T
+ = R

+ and the spaces B and Ω are connected;

b. T
+ = Z

+ and the space Ω×B possesses the (S)-property or it is connected
and locally connected.

Definition 6. A nonautonomous dynamical system 〈(X, T+, π), (Ω, T,Θ), h〉 is said
to be uniformly stable in the positive direction on compacts of X [7] if, for arbitrary
ε > 0 and K ⊆ X, there is δ = δ(ε,K) > 0 such that the inequality ρ(x1, x2) <
δ (h(x1) = h(x2)) implies that ρ(πtx1, π

tx2) < ε for t ∈ T
+.
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Definition 7. A set M ⊂ X is called minimal with respect to a dynamical system
(X, T+, π) if it is nonempty, closed and invariant and if no proper subset of M has
these properties.

Definition 8. Denote by X×̇X = {(x1, x2) ∈ X × X | h(x1) = h(x2) }. If there
exists the function V : X×̇X → R+ with the following properties:

a. V is continuous.
b. V is positive defined, i.e. V (x1, x2) = 0 if and only if x1 = x2.
c. V (x1t, x2t) ≤ V (x1, x2) for all (x1, x2) ∈ X×̇X and t ∈ T+,

then the nonautonomous dynamical system 〈(X, T+, π), (Ω, T,Θ), h〉 is called (see
[12],[13] and [19],[25]) V - monotone.

Theorem 2. Every V - monotone compact dissipative nonautonomous dynamical
system 〈(X, T+, π), (Ω, T,Θ), h〉 is uniformly stable in the positive direction on com-
pacts from X.

Corollary 1. Let 〈(X, T+, π), (Ω, T,Θ), h〉 be a V - monotone compact dissipative
nonautonomous dynamical system and Ω be minimal, then:

1. J is uniformly orbitally stable in the positive direction, i.e., for ε > 0 there
is δ(ε) > 0 such that the inequality ρ(x, Jh(x)) < δ implies that ρ(πtx, Jh(πtx)) < ε
for t ≥ 0;

2. J is an attractor of compact sets from X, i.e., for ε > 0 and a compact
K ⊆ X, there is L(ε,K) > 0 such that πtKω ⊆ B̃(Jθtω, ε) for ω ∈ Ω and t ≥ L(ε,K);

3. any motion on J can be continued to the left and J is bilaterally distal;
4. Jω = Xω

⋂

J for ω ∈ Ω, is a connected set if Xω is connected, and for
distinct ω1 and ω2 the sets Jω1 and Jω2 are homeomorphic;

5. J is formed of recurrent trajectories, and two arbitrary points x1, x2 ∈
Jω (ω ∈ Ω) are mutually recurrent.

Theorem 3. Let 〈(X, T+, π), (Ω, T,Θ), h〉 be a V - monotone compact dissipative
nonautonomous dynamical system, Ω be minimal and J be its Levinson center, then

V (x1t, x2t) = V (x1, x2) (3)

for all x1, x2 ∈ J such that h(x1) = h(x2).

Corollary 2. Under the conditions of Theorem 3 if the nonautonomous dynamical
system 〈(X, T+, π), (B, T,Θ), h〉 is strictly monotone, i.e. V (x1t, x2t) < V (x1, x2)
for all t > 0 and (x1, x2) ∈ X×̇X (x1 6= x2), then Jω = J

⋂

Xω consists of a single
point for all ω ∈ Ω.

Theorem 4. Let 〈(X, T+, π), (Ω, T,Θ), h〉 be a V −monotone compact dissipative
nonautonomous dynamical system with compact minimal base Ω and J be its Levin-
son center, then for every point x ∈ Xy there exists a unique recurrent point p ∈ Jω

such that
lim

t→+∞

ρ(xt, pt) = 0, (4)

i.e. every trajectory of this system is asymptotically recurrent.
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Corollary 3. Under the conditions of Theorem 4 the following assertions hold:

a. ω−limit set ωx of every point x ∈ X is a compact minimal set.

b. if x1, x2 ∈ Xω ( ω ∈ Ω) then ωx1 = ωx2 or ωx1

⋂

ωx2 = ∅.

4 On the structure of Levinson center of V -monotone NDS with

minimal base

Definition 9. (X, ρ) is called [18] a metric space with segments if for any x1, x2 ∈ X
and α ∈ [0, 1], the intersection of B[x1, αr] (the closed ball centered at x with radius
αr, where r = ρ(x1, x2)) and B[x2, (1 − α)r] has a unique element S(α, x1, x2).

Definition 10. The metric space (X, ρ) is called [18] strict-convex if (X, ρ) is a
metric space with segments, and for any x1, x2, x3 ∈ X, x2 6= x3, and α ∈ (0, 1), the
inequality ρ(x1, S(a, x2, x3)) < max{ρ(x1, x2), ρ(x1, x3)} holds.

Definition 11. Let X be a strict metric-convex space. A subset M of X is said to
be metric-convex if S(α, x1, x2) ∈ M for any α ∈ (0, 1) and x1, x2 ∈ M .

We note that every convex closed subset X of the Hilbert space H equipped with
the metric ρ(x1, x2) = |x1 − x2| is strictly metric-convex.

Let x ∈ X, denote by Φx the family of all entire trajectories of dynamical system
(X, T+, π) passing through the point x for t = 0, i.e. γ ∈ Φx if and only if γ : T → X
is a continuous mapping with the properties: γ(0) = x and πtγ(τ) = γ(t + τ) for all
t ∈ T

+ and τ ∈ T.

Theorem 5. Let 〈(X, T+, π), (Ω, T,Θ), h〉 be a V - monotone compact dissipative
nonautonomous dynamical system, J is its Levinson center and the following con-
ditions hold:

1. V (x1, x2) = V (x2, x1) for all (x1, x2) ∈ X×̇X.

2. V (x1, x2) ≤ V (x1, x3) + V (x3, x2) for all x1, x2, x3 ∈ X with the condition
h(x1) = h(x2) = h(x3).

3. the space (Xω, Vω) is strict metric-convex for all ω ∈ Ω, where Xω =
h−1(ω) = {x ∈ X|h(x) = ω} (ω ∈ Ω) and Vω = V |Xω×Xω

.
If γxi

∈ Φxi
( i = 1, 2) and x1, x2 ∈ Iω (ω ∈ Ω), then the function γ : T → X (γ(t) =

S(α, γx1(t), γx2(t)) for all t ∈ T) defines an entire trajectory of dynamical system
(X, T+, π).

We denote by K = {a ∈ C(T+, R+) | a(0) = 0, a is strictly increasing}.

Theorem 6. Under the conditions of Theorem 5 if in addition the nonautonomous
dynamical system 〈(X, T+, π), (Ω, T,Θ), h〉 is bounded k - dissipative and there exists
a function a ∈ K with the property lim

t→+∞

a(t) = +∞ such that a(ρ(x1, x2)) ≤
V (x1, x2) for all (x1, x2) ∈ X×̇X, then Jω will be metric-convex for all ω ∈ Ω,
where Jω = J

⋂

Xω and J is the Levinson center of (X, T+, π).
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5 Almost periodic solutions of V - monotone almost periodic dis-

sipative systems

Definition 12. Let (X, ρ) be a metric space. A function φ : T → X is called almost
periodic (in the sense of Bohr) if for every ε > 0 there exists a relatively dense subset
Aε of T such that

ρ(φ(t + τ), φ(t)) < ε

for all t ∈ T and τ ∈ Aε.

Definition 13. A point x ∈ X is said to be almost periodic if there is an entire
trajectory γx ∈ Φx such that the function γx : T → X is almost periodic.

Definition 14. The compact invariant set M of nonautonomous dynamical system
〈(X, T+, π), (Ω, T,Θ), h〉 is called [19],[5] distal on the invariant set M in the nega-
tive direction if inf

t∈T−

ρ(γx1(t), γx2(t)) > 0 for all x1, x2 ∈ M(h(x1) = h(x2) and x1 6=
x2) and γxi

∈ Φxi
(i = 1, 2), where Φx is the set of all entire trajectories of (X, T+, π)

passing through the point x ∈ X.

Lemma 1. [19] Let Ω be a compact minimal set and M ⊆ X be a compact invariant
set of (X, T+, π). If the nonautonomous dynamical system 〈(X, T+, π), (Ω, T,Θ), h〉
is distal on M in negative direction, then the mapping ω 7−→ Mω := M

⋂

Xω is
continuous with respect to Hausdorff metric.

Lemma 2. Let M ⊆ X be a compact invariant set of (X, T+, π). If the nonau-
tonomous dynamical system 〈(X, T+, π), (Ω, T,Θ), h〉 is uniformly stable in the pos-
itive direction on compacts from X, then 〈(X, T+, π), (Ω, T,Θ), h〉 is distal on the
invariant set M in the negative direction .

Corollary 4. Under the conditions of Lemma 2 if Ω is a compact minimal set, then
the mapping ω 7−→ Jω is continuous with respect to Hausdorff metric.

Lemma 3. Let (M,ρ) be a compact, strictly metric-convex space and E be a compact
subsemigroup of isometries of semigroup MM (i.e. E ⊆ MM and ρ(ξx1, ξx2) =
ρ(x1, x2) for all x1, x2 ∈ M). Then there exists a common fixed point x̄ ∈ M of E,
i.e. ξ(x̄) = x̄ for all ξ ∈ E.

Theorem 7. Let 〈(X, T+, π), (Ω, T,Θ), h〉 be a V - monotone bounded k - dissipative
NDS, J be its Levinson center and the following conditions hold:

1. V (x1, x2) = V (x2, x1) for all (x1, x2) ∈ X×̇X.
2. V (x1, x2) ≤ V (x1, x3) + V (x3, x2) for all x1, x2, x3 ∈ X with the condition

h(x1) = h(x2) = h(x3).
3. the space (Xω, Vω) is strictly metric-convex for all ω ∈ Ω, where Xω =

h−1(ω) = {x ∈ X | h(x) = ω } (ω ∈ Ω) and Vω = V |Xω×Xω
.

Then the set-valued mapping ω → Jω admits at least one continuous invariant
section, i.e. there exists a continuous mapping ν : Ω → J with the properties:
h(ν(ω)) = ω and ν(θ(t, y)) = π(t, ν(ω)) for all t ∈ T and ω ∈ Ω.
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Corollary 5. Under the conditions of Theorem 7 the Levinson center of dynamical
system (X, T+, π) contains at least one stationary (τ (τ > 0) - periodic, quasiperi-
odic, almost periodic) point, if the minimal set Ω consists a stationary (τ (τ > 0) -
periodic, quasiperiodic, almost periodic) point.

6 Applications

6.1 Finite-dimensional systems

Denote by R
n the real n−dimensional Euclidean space with the scalar product

〈, 〉 and the norm | · |, generated by the scalar product. Let [Rn] be the space of all
the linear mappings A : R

n → R
n, equipped with the operational norm.

Theorem 8. Let Ω be a compact minimal set, F ∈ C(Ω×R
n, Rn), W ∈ C(Ω, [Rn])

and the following conditions hold:
1. The matrix-function W is positively defined, i.e. 〈W (ω)u, u〉 ∈ R for all

ω ∈ Ω, u ∈ R
n and there exists a positive constant a such that 〈W (ω)u, u〉 ≥ a|u|2

for all ω ∈ Ω and u ∈ R
n.

2. The function t → W (θtω) is differentiable for every ω ∈ Ω and Ẇ (ω) ∈
C(Ω, [Rn]), where Ẇ (ω) = d

dtW (θtω)|t=0.

3. 〈Ẇ (ω)(u − v) + W (ω)(F (ω, u) − F (ω, v)), u − v〉 ≤ 0 for all ω ∈ Ω and
u, v ∈ R

n.
4. There exist a positive constant r and the function c : [r,+∞) → (0,+∞)

such that 〈Ẇ (ω)u + W (ω)F (ω, u), u〉 ≤ −c(|u|) for all |u| > r.
Then the equation

u′ = F (θtω, u) (5)

generates a cocycle ϕ on R
n which admits a compact global attractor I = {Iω | ω ∈ Ω}

with the following properties:
a. Iω is a nonvoid, compact and convex subset of R

n for every ω ∈ Ω.
b. I =

⋃{Iω | ω ∈ Ω} is connected.
c. The mapping ω → Iω is continuous with respect to Hausdorff metric.
d. I = {Iω | ω ∈ Ω} is invariant, i.e. ϕ(t, ω, Iω) = Iθtω for all ω ∈ Ω and

t ∈ T+.
e. lim

t→+∞

β(ϕ(t, θtω)M, Iω) = 0 for all M ∈ C(Rn) and ω ∈ Ω ;

f. lim
t→+∞

sup{β(ϕ(t, θtω)M, I) | ω ∈ Ω } = 0 for any M ∈ C(Rn), where

I =
⋃{Iω | ω ∈ Ω }.

g. I = {Iω | ω ∈ Ω } is a uniform forward attractor, i.e.

lim
t→+∞

sup
ω∈Ω

β(ϕ(t, ω)M, Iθtω) = 0

for any M ∈ C(Rn).
h. The equation (5) admits at least one stationary (τ - periodic, quasiperiodic,

almost periodic) solution if the point ω ∈ Ω is stationary (τ - periodic, quasiperiodic,
almost periodic).
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Example 3. As an example which illustrates this theorem we can consider the fol-
lowing equation

u′ = g(u) + f(θtω),

where f ∈ C(Ω, R) and

g(u) =



















(u + 1)2 : u < −1

0 : |u| ≤ 1

−(u − 1)2) : u > 1.

Example 4. We consider the equation

x′′ + p(x)x′ + ax = f(θtω),

where p ∈ C(R, R), f ∈ C(Ω, R) and a is a positive number. Denote by y = x′+F (x),
where F (x) =

∫ x
0 p(s)ds, then we obtain the system







x′ = y − F (x)

y′ = −ax + f(θtω).
(6)

Theorem 9. Suppose the following conditions hold:
1. p(x) ≥ 0 for all x ∈ R.
2. There exist positive numbers r and k such that p(x) ≥ k for all |x| ≥ r.

Then the nonautonomous dynamical system generated by (6) is compact dissipa-
tive and V − monotone.

6.2 Evolution equations with monotone operators

Let H be a real Hilbert space with inner product 〈, 〉, | · | =
√

〈, 〉 and B be a
reflexive Banach space contained in H algebraically and topologically. Furthermore,
let B be dense in H in which case H can be identified with a subspace of the dual
B
′ of B and 〈, 〉 can be extended by continuity to B

′ × B.
We consider the initial value problem

u′(t) + Au(t) = f(θtω) (7)

u(0) = u, (8)

where A : B → B
′ is (generally nonlinear) bounded,

|Au|B′ ≤ C|u|p−1
B

+ K,u ∈ B, p > 1,

coercive,
〈Au, u〉 ≥ a|u|p

B
, u ∈ B, a > 0,

monotone,
〈Au1 − Au2, u1 − u2〉 ≥ 0, u1, u2 ∈ B,
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and hemicontinuous (see [20]).
The nonlinear ”elliptic” operator

Au = −
n

∑

i=1

∂

∂xi
φ(

∂u

∂xi
) in D ⊂ R

n,

u = 0 on ∂D,

where D is a bounded domain in R
n, φ(·) is an increasing function satisfying

φ|[−1,1] = 0, c|ξ|p ≤
n

∑

i=1

ξiφ(ξi) ≤ C|ξ|p ( for all |ξ| ≥ 2 ),

provides an example with H = L2(D), B = W 1,p
0 (D), B

′ = W−1,p′(D), p′ = p
p−1 .

The following result is established in [20] (Ch.2 and Ch.4). If x ∈ H and f ∈
C(Ω, B′), p′ = p

p−1 , then there exists a unique solution ϕ ∈ C(R+,H) of (7) and (8).
We denote by ϕ(·, ω, u) the unique solutions of (7) and (8). According to [21]

ϕ(·, ω, u) is a continuous cocycle on H.

Theorem 10. Suppose that the operator A satisfies the conditions above and the
cocycle ϕ, generated by equation (7), is asymptotically compact, then it admits a
compact global attractor I = {Iω | ω ∈ Ω } possessing the following properties:

a. Iω is a nonvoid, compact and convex subset of H for every ω ∈ Ω.
b. I =

⋃{Iω | ω ∈ Ω } is connected.
c. The mapping ω → Iω is continuous with respect to Hausdorff metric.
d. I = {Iω | ω ∈ Ω } is invariant, i.e. ϕ(t, ω, Iω) = Iσtω for all ω ∈ Ω and

t ∈ T
+.
e. limt→+∞ β(ϕ(t, θ−tω)M, Iω) = 0 for all M ∈ C(H) and ω ∈ Ω ;
f. limt→+∞ sup{β(ϕ(t, θtω)M, I)| ω ∈ Ω } = 0 for any M ∈ C(H), where

I =
⋃{Iω | ω ∈ Ω }.

g. I = {Iω | ω ∈ Ω } is a uniform forward attractor, i.e.

lim
t→+∞

sup
ω∈Ω

β(ϕ(t, ω)M, Iθtω) = 0

for any M ∈ C(H).
h. The equation (7) admits at least one stationary (τ - periodic, quasiperiodic,

almost periodic) solution if the point ω ∈ Ω is stationary (τ - periodic, quasiperiodic,
almost periodic).

Remark 1. If the injection of B into H is compact, then the cocycle ϕ generated
by equation (7), evidently, is asymptotically compact.

Example 5. A typical example of equation of type (7) is the equation

∂

∂t
u =

n
∑

i=1

∂

∂xi
ϕ(

∂u

∂xi
) + f(θtω), u|∂D = 0 (9)
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with ”nonlinear Laplacian” Au =
∑n

i=1
∂

∂xi
φ( ∂u

∂xi
) provides an example of equation

of type (7) with H = L2(D), B = W 1,p
0 (D), B

′ = W−1,p′(D) and p′ = p
p−1 , where

φ(·) is an increasing function satisfying the condition

c|ξ|p ≤
n

∑

i=1

ξiφ(ξi) ≤ C|ξ|p

for all |ξ| ≥ 2 and φ|[−1,1] = 0. It is possible to verify (see, for example,[4, 20]
and [2]) that the ”nonlinear Laplacian” verifies all the conditions of Theorem 10
and, consequently, (9) admits a compact global attractor with the properties a.-h..
We note that the attractor of equation (9) is not trivial, i.e. the set Iω is not a single
point set at least for certain ω ∈ Ω.

Remark 2. If the operator A =
∑n

i=1
∂

∂xi
φ( ∂u

∂xi
) is uniformly elliptic, i.e. c|ξ|p ≤

∑n
i=1 ξiϕ(ξi) ≤ C|ξ|p (for all ξ ∈ R

n), then the set Iω is a single point set for all ω ∈
Ω ( for autonomous system see [23], Ch.III), because in this case the nonautonomous
dynamical system generated by equation (9) is strictly monotone.
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[3] Bourbaki N., Variétés différentielles et analitiques (Fascicule de résultats). Herman, Paris,
1971.

[4] Brezis H., Operateurs maximaux monotones et semigroupes des contractions dans les espaces

de Hilbert. Math. Studies, North Holland, v.5, 1973.

[5] Bronshteyn I.U., Extensions of minimal transformation groups. Noordhoff, Leyden, 1979.

[6] Bronshteyn I.U., Nonautonomous dynamical systems. Kishinev, ”Shtiintsa”, 1984 (in Rus-
sian).

[7] Cheban D.N., C-analytic dissipative dynamical systems. Differential Equations, 1986, v.22,
No.11, pp.1915-1922.

[8] Cheban D.N., Nonautonomous dissipative dynamical systems. Thesis of doctor of science.
Minsk,1991.

[9] Cheban D.N., Global attractors of infinite-dimensional nonautonomous dynamical systems, I.

Bulletin of Academy of Sciences of Republic of Moldova. Mathematics, 1997, N3 (25), p.42-55.

[10] Cheban D.N., Kloeden P.E., Schmalfuss B., Pullback attractors in dissipative nonau-

tonomous differential equations under disscretization. DANSE-Preprint, FU Berlin, 1998.

[11] Cheban D.N., Kloeden P.E., Schmalfuss B., The Relationship between Pullback, Forwards

and Global Attractors of Nonautonomous Dynamical Systems. DANSE-Preprint, FU Berlin,
2000.

[12] Cheresiz V.M. V - monotone systems and almost periodical solutions. Sibirskii matematich-
eskii zhurnal. 1972, v.13, No.4, pp.921–932.

[13] Cheresiz V.M., Uniformly V - monotone systems. Almost periodical solutions. Sibirskii
matematicheskii zhurnal. 1972, v.13, No.5, pp.11107–1123.



GLOBAL ATTRACTORS FOR NONAUTONOMOUS SYSTEMS 57

[14] Carvalho A.N., Cholewa J.W. and Dlotko T., Global attractors for problems with mono-

tone operators. Boll. Unione Mat.Ital.Sez.BArtic.Ric.Mat.(8)2(1999), no.3,pp.693-706.

[15] Haraux A., Attractors of asymptotic compact processes and applications to nonlinear partial

differential equations. Commun. in partial differ. equat. V.13, No.11 1988, pp.1383-1414
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New constructive methods for analysis of resonant

systems
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Abstract. The modern theory of perturbations, based on the Krylov–Bogolyubov
method [1], has two essential advantages: the determination of the iterations does
not require the preliminary solution of the generating equation and the choice of
the initial conditions, which for every approximation minimizes the difference ”exact
solution minus asymptotic solution”. The algorithm of constructing the perturbed
solution may be realized with computer algebra methods.
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1 The classical perturbation theory

Consider an n–dimensional differential equation with small parameter

dz

dt
= Z(z, t, µ), z(0) = z0, (1)

where µ is the small parameter, while the vector function Z(z, t, µ) is the known and
has properties which ensure the existence and uniqueness of solutions of the Cauchy
problem (1) in the (n + 1)–dimensional domain Gn+1 = {(z, t) ∈ Gn × R} of the
Euclidean space.

Our purpose is to construct this solution [2]. Along with (1) we consider the
equivalent equation

dz

dt
= Z(z, t, µ) + Z(z, t, µ) − Z(z, t, µ), z(0) = z0, (2)

where Z(z, t, µ) is an arbitrary function. We write the linear equality

z(t, µ) = z(t, µ) + u(t, µ), (3)

where z and u are some new unknown functions. The solution of Cauchy problem
for (1) can be found by solving the following two Cauchy problems:

dz

dt
= Z(z, t, µ), z(0) = z0 ∈ Gn, (4)

c©2003 Grebenikov E.A.
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du

dt
= Z(z + u, t, µ) − Z(z, t, µ), u(0) = z0 − z0, (5)

where z0 is some new initial point. Equation (4) defines the choice of the initial
approximation z(t, µ) for the exact solution z(t, µ) of the problem (1), while equation
(5) defines the total perturbation u(t, µ). From the problem (5) one can see that the
perturbation u(t, µ) depends on the choice of the function Z(z, t, µ) and on the initial
point z0, and, moreover, its finding is possible only after the solution of equation
(4). Thus, for the Cauchy problem (1) it is possible to construct a set of variants of
the perturbation theory with the parameters Z and z0. It does not mean at all that
the function Z(z, t, µ) and the initial point z0 may be chosen arbitrarily. It seems to
be reasonable that the function Z(z, t, µ) would be chosen to have a possibly simpler
analytic structure. On the other hand, the solutions of equation (5) must be ”small”
under the norm.

In classical works on nonlinear oscillations and cosmic dynamics there were com-
monly used three schemes:







dz
dt

= A(t)z, z(0) = z0,

du
dt

= Z(z + u, t, µ) −A(t)z, u(0) = 0,
(6)







dz
dt

= Z(z, t, 0), z(0) = z0,

du
dt

= Z(z + u, t, µ) − Z(z, t, 0), u(0) = 0,
(7)







dz
dt

= Z(z, t, µ), z(0) = z0,

du
dt

= Z(z + u, t, µ) − Z(z, t, µ), u(0) = 0.
(8)

Equations (6) represent the linearization method, equations (7) characterize the
small parameter method, while equations (8) feature the averaging method, provided
that the generator Z is constructed on the basis of some averaging operator.

The main idea of the classical perturbation theory (that is, the solution of the
problems (4) and (5)) is that the solution of the generating equation (4) is being
constructed by means of a finite number of analytic procedures or by numerical
methods, after solving of the equation for perturbations (5) by means of any iterative
method, symbolically designated by

duk

dt
= Z(z(t, µ) + uk−1(t, µ), t, µ) − Z(z(t, µ), µ), (9)

with uk(0) = z0 − z0 and k = 1, 2, ... .

2 New variants of the perturbation theory

Now we assume that the perturbation u depends on z, t, and µ, that is instead
of (3) we have the equality

z(t, µ) = z(t, µ) + u(z, t, µ). (10)
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This equality represents the transformation from the phase space {z} to the new
phase {z} ({z} → {z}) and the inverse transformation ({z} → {z}) if the Jacobian
matrix ∂u/∂z is nonsingular.

The following differential equation holds

dz

dt
=
dz

dt
+

(

∂u

∂z
,
dz

dt

)

+
∂u

∂t
, (11)

where (∂u/∂z, dz/dt) is the product between the matrix ∂u/∂z and the vector dz/dt.
Therefore, instead of equations (4) and (5) of the classical perturbation theory, we
shall have the equations [2, 3]

dz

dt
= Z(z, t, µ), z(0) = z0, (4)

∂u

∂t
+

(

∂u

∂z
, Z(z, t, µ)

)

= Z(z + u, t, µ) − Z(z, t, µ), u(0) = z0 − z0. (12)

The perturbation theory based on equations (4) and (12) differs from the classical
perturbation theory in an essential point: the determination of the perturbation
u(z, t, µ) from equation (12) – called by us generalized Krylov–Bogolyubov equation
[3,4] – does not require the preliminary solving of the generating equation (4). This
allows us to determine the perturbation and the initial approximation independently
from each other, and therefore the accuracies of their determination are independent,
too. This is impossible within the framework of the classical theory of perturbations.

The equation (12) constitutes the Cauchy problem for a quasilinear n–dimensional
system of partial differential equations of first order with respect to the n–
dimensional perturbation vector u. Its solution can be found by the methods of
characteristics or by Cauchy’s method. This equation was considered for the first
time in a work of Bogolyubov [1] while tackling a question of applicability of the
averaging method to a special class of ordinary differential equations.

The asymptotic theory of equation (12) for problems belonging to celestial me-
chanics was developed in the textbooks of Grebenikov [4] and Grebenikov and
Mitropolsky [5]. We mean those problems of dynamics which are described by
multifrequential systems of differential equations given on tori, and – in particu-
lar – by Hamiltonian systems with variables of the type action–angle and with the
Hamiltonian periodic on the angular variable.

So, let a problem of celestial mechanics be described by a multifrequential system
of the (m+ n)–th order

dx

dt
= µX(x, y), (13.1)

dy

dt
= ω(x) + µY (x, y), (13.2)
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where x and X are m–dimensional vectors, y, Y , and ω are n–dimensional vectors,
ω(x) is the vector of frequencies, and we assume that X(x, y) and Y (x, y) are 2π–
periodic functions with respect to y. Then they are represented by the n–multiple
Fourier series

X(x, y) =
∑

Fk(x, y), (14.1)

Y (x, y) =
∑

Gk(x, y), (14.2)

where Fk(x, y) = Xk(x)e
i(k,y), Gk(x, y) = Yk(x)e

i(k,y), i =
√
−1, (k, y) =

n
∑

s=1
ksys,

∑

abridges
∑

‖k‖∈I

, ‖k‖ =
n
∑

s=1
| ks |, ks = 0,±1, ..., and I = {0, 1, 2, ...}.

Let us apply to system (13) the above stated idea of constructing a modern per-
turbation theory using asymptotic expansions with respect to the small parameter
µ.

We choose for (13) a generating system of the form

dx

dt
= µX(x, y) +

∑

k≥2

µkAk(x, y), (15.1)

dy

dt
= ω(x) + µY (x, y) +

∑

k≥2

µkBk(x, y), (15.2)

where X,Y ,Ak, Bk are arbitrary functions of their arguments.
Let us look for the replacement of the variables (10) as formal series

x = x+
∑

k≥1

µkuk(x, y), (16.1)

y = y +
∑

k≥2

µkvk(x, y), (16.2)

with unknown functions uk(x, y), vk(x, y). After differentiating (16) and taking into
account (13) and (15), to determine the transformation functions uk and vk, we have
an infinite system of linear partial differential equations of first order

(

∂u1

∂y
, ω(x)

)

= X(x, y) −X(x, y), (17.1)

(

∂v1
∂y

, ω(x)

)

=

(

∂ω

∂x
, u1

)

+ Y (x, y) − Y (x, y), (17.2)

(

∂uk

∂y
, ω(x)

)

= Φk(x, y, u1, v1, ..., vk−1, uk−1A2, B2, ..., Ak), (17.3)

(

∂vk

∂y
, ω(x)

)

= Ψk(x, y, u1, v1, ..., vk−1, ukA2, B2, ..., Ak, Bk), (17.4)
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k = 2, 3, ... .

The system (17) has a remarkable property: it is possible to integrate it ana-
lytically [3, 4] for any vector-index k if for the functions X and Y we choose some
averages of the functions X and Y .

Indeed, let the generators X(x, y), Y (x, y) be the partial sums of series (14)

X(x, y) =
∑

1

Fk(x, y), (18.1)

Y (x, y) =
∑

2

Gk(x, y), (18.2)

where
∑

j
abridges

∑

‖k‖∈Ij

, while I1 and I2 are subsets of integer nonnegative numbers

from the set of all nonnegative integers I. In particular, I1 or I2 may consist of only
one number, zero; that means

X(x, y) = (2π)−n

2π
∫

0

X(x, y)dy1, ..., dyn. (19)

Usually subsets I1 and I2 are ”resonant”: for ‖k‖ ∈ Ij

(k, ω(x)) = 0.

If X and Y are chosen according to (18), then

X(x, y) −X(x, y) =
∑

∗

Fk(x, y), (20.1)

Y (x, y) − Y (x, y) =
∑

∗∗

Gk(x, y), (20.2)

where
∑

∗

abridges
∑

‖k‖∈I−I1

, and
∑

∗∗

abridges
∑

‖k‖∈I−I2

.

Using the method of characteristics, it is possible to find the exact solution of
(17.1)–(17.2):

u1(x, y) =
∑

∗

F ∗

k (x, y) + ϕ1(x), (21.1)

v1(x, y) =
∑

∗∗

G∗

k(x, y) +

(

∂ω(x)

∂x
,
∑

∗

F ∗∗

k (x, y)

)

+

((

∂u1

∂x
, ϕ1(x)

)

, y

)

+ ψ1(x),

(21.2)

where
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F ∗

k (x, y) =
Fk(x, y)

fk(x)
, G∗

k(x, y) =
Gk(x, y)

fk(x)
,

F ∗∗

k (x, y) =
Fk(x, y)

(fk(x))2
, fk(x) = i(k, ω(x)),

while ϕ1, ψ1 are arbitrary differentiable functions of their arguments x1, ..., xm.

The integration of equations (17) for k = 2, 3, ... is not very difficult, therefore the
functions u2, v2, ... are also presented by means of known analytic expressions [3,4].
Rather important is the fact that while determining the functions u2 and v2 (those
are perturbations of second order) we can use the functions A2, B2, ϕ1, ψ1.

By (21) one can see that if ϕ1 6= 0 then v1 will be growing similary to the linear
function t, because y ∼ t. Hence for the perturbations u1, v1, u2, v2, ... to have an
”oscillatory” but not a ”rapidly growing” character it is necessary that

ϕk(x) ≡ 0, ψk(x) ≡ 0, k = 1, 2, ... (22)

In their turn, these equalities show that the ”best” perturbation theory is ob-
tained when the generating equations and the perturbation equations are solved
for other initial conditions in comparison with the initial equations. Indeed, if
ϕ1(x0) = 0, ψ1(x0) = 0, it is easy to see, by (21), that u1(x0, y0) 6= 0, v1(x0, y0) 6= 0
and, with an accurate µ, the new initial conditions (x0, y0) are connected with
(x0, y0) by means of the functional equations

x0 = x0 + µu1(x0, y0), (23.1)

y0 = y0 + µv1(x0, y0). (23.2)

Similar equations for new initial conditions (x0, y0) can be derived for the per-
turbation theory of any order k:

x0 = x0 +

k
∑

s=1

µsus(x0, y0), (24.1)

y0 = y0 +

k
∑

s=1

µsvs(x0, y0). (24.2)

This is a second essential difference of the modern perturbation theory from the
classical one, in which it is difficult to dispose by choice of the initial point z0.

If we construct the perturbation theory of second order, that is, we write a system
(17) for k = 2, we shall have

(

∂u2

∂y
, ω(x)

)

= Φ2(x, y, u1, v1, A2), (25.1)
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(

∂v2
∂y

, ω(x)

)

= Ψ2(x, y, u1, v1, u2, A2, B2). (25.2)

These equations include the arbitrary functions A2, B2, and the best way is to
choose them such that

2π
∫

0

. . .

2π
∫

0

Φ2dy1, . . . , dyn = 0, (26.1)

2π
∫

0

. . .

2π
∫

0

Ψ2dy1, . . . , dyn = 0. (26.2)

These conditions guarantee us a choice of solutions u2 and v2, which would also
be of oscillatory character. This statement holds provided that the functions ϕ2 and
ψ2 (by analogy with ϕ1 and ψ1) are chosen identically equal to zero.

The stated analytic algorithm means that we construct successively the replace-
ment of variables

(x, y) → (x1, y1) → (x2, y2) → . . .→ (xs, ys),

where

xs = x+

s
∑

k=1

µkuk(x, y), (27.1)

ys = y +

s
∑

k=1

µkvk(x, y), (27.2)

From the geometric point of view, the chain written above means the successive
transformation of the initial phase space {x, y} into the new phase space, in which the
problem of perturbation determination of any order becomes analytically solvable.

Naturally, for the final construction of the solution of the initial equations (13),
one has to solve the generating equation of the corresponding order s

dxs

dt
= µX(xs, ys) +

s
∑

k=2

µkAk(xs), (28.1)

dys

dt
= ω(xs) + µY (xs, ys) +

s
∑

k=2

µkBk(xs), (28.2)

with the initial conditions xs(0), ys(0) from equalities (24) and then, by means of
(16), one can find an approximation s to

xs(t, µ) = xs(t, µ) +

s
∑

k=1

µkuk(xs, ys), (29.1)
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ys(t, µ) = ys(t, µ) +

s
∑

k=1

µkvk(xs, ys). (29.2)

In conclusion, we want to note once again that in formulae (29) the functions
uk, vk are found by analytic methods and, if the solution of the generating equation
(28) can also be found through analytic methods, this is the best we can have in
the nonlinear analysis. If this is not possible, then the combination of numerical
methods with analytic ones applied to perturbation equations gives sometimes a
large gain of economies of computer resources.

Finally, we will discuss the problems which can be solved by the contemporary
methods of computer algebra.

1) The constructing of the averaging functions X(x, y), Y (x, y).
First we calculate the initial frequencies ω1(x0), ω2(x0), . . . , ωn(x0) and then we

calculate the subsets of the integer numbers I1×I2, marking the proper k inequality
vector

|(k, ω(x0))| < ε1, |(k, ω(x0))| < ε2.

If ε1 = ε2, I1 = I2. The ε1 and ε2 values are given apriori.
2) Afterwards, we calculate the perturbations of the first order u1(x, y) and

v1(x, y) from equalities (21.1), (21.2).
3) The most arduous work is done while constructing Ψ2 and Φ2 functions, thanks

to which we can calculate the functions of the second approximation u2 and v2 from
equations (25.1), (25.2). It consists in multiplying Fourier series and assigning the
resonant parts from the resulting products. Those resonant parts define the unknown
functions A2 and B2.

4) If scientific researcher limits himself to the asymptotic theory of the second
order, which is solving system (1) in the form

x(t, µ) = x(t, µ) + µu1(x(t, µ), y(t, µ)) + µ2u2(x(t, µ), y(t, µ)),

y(t, µ) = y(t, µ) + µv1(x(t, µ), y(t, µ)) + µ2v2(x(t, µ), y(t, µ)), (30)

the initial conditions x(0, µ) and y(0, µ) for the solution of the generator system

dx

dt
= µX(x, y) + µ2A2(x),

dy

dt
= ω(x) + µY (x, y) + µ2B2(x), (31)

have to be calculated from nonlinear functional equations

x(0, µ) = x(0, µ) − µu1(x(0, µ), y(0, µ)) − µ2u2(x(0, µ), y(0, µ)),

y(0, µ) = y(0, µ) − µv1(x(0, µ), y(0, µ)) − µ2v2(x(0, µ), y(0, µ)). (32)

The solutions of the system of equations (32) are to be found by means of iterative
methods.

Finally, we will emphasize two extraordinary moments of the asymptotic theory
based on averaging methods.
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1. According to the super N.N. Bogolyubov’s idea, the transformed equation
(17.3), (17.4) is not given apriori at the beginning, but is constructed at every
step of calculations. This is meant to minimalize the deviation of the asymptotic
solution from the exact solution of the system (1). Such approach is not present in
the classical perturbation theory.

2. The choice of the optimum initial conditions at every step of the constructing
process improves the theory and the application practice of the resonant systems of
differential equations.
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A REPUBLICII MOLDOVA. MATEMATICA
Number 1(41), 2003, Pages 78–82
ISSN 1024–7696

Note on multiple zeta–values∗

Henryk Żo ladek

Abstract. We introduce some generating functions g(t; x) for multiple zeta values.
They satisfy linear differential equations Pg + x

a
g = 0 of the Fuch type. We find

WKB-type expansions for g as x → ∞. M41

1 Certain familiar generating function

D. Zagier had presented in [8] an ‘ultra–simple’ Calabi’s proof of the Euler for-
mula ζ(2) = π2/6. That proof uses the integral

∫ 1
0

∫ 1
0 (1−xy)−1 (equal to 3

4ζ(2)) and
the substitution (x, y) =

(

sin u
cos v , sin v

cos u

)

. Below I present a proof which is even more
simple (in my opinion).

The function f2(x) = sinπx
πx has the Taylor expansion

f2 = 1 − π2

3!
x2 +

π4

5!
x4 − π6

7!
x6 + . . . (1)

and the infinite product representation

f2 =

(

1 − x2

12

)(

1 − x2

22

)(

1 − x2

32

)

. . . . (2)

Comparing the coefficients of x2 we see immediately that
∑ 1

n2 = π2

3! .

We recall that the multiple ζ–values are defined as follows:

ζ(a1, . . . , ak) =
∑

0<n1<...<nk

1

na1
1 . . . nak

k

(3)

for integer ai ≥ 1, ak ≥ 2 (see [8]).
Therefore f2 is the generating function for multiple zeta–values,

f2(x) = 1 − ζ(2)x2 + ζ(2, 2)x4 − ζ(2, 2, 2)x6 + . . . . (4)

Since any ζ(2, . . . , 2) (k arguments) is expressed via ζ(2l)’s for l ≤ k, one finds
that

ζ(2k) = π2k × rational number.

For example, ζ(2, 2) = 1
2

∑

m6=n m−2n−2 = 1
2

(

∑

m,n −
∑

m=n

)

m−2n−2, that

gives ζ(4) = ζ(2)2 − 2ζ(2, 2) = π4/36 − 2π4/120 = π4/90; similarly, one finds
ζ(6) = 3ζ(2, 2, 2) + 3

2ζ(2)ζ(4) − 1
2ζ(2)3 = π6/945, etc.

Note also that instead of sin πx
πx one could use cos πx as a generating function for

some quantities easily expressed via the multiple zeta–values.

c©2003 Henryk Żo ladek
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2 Irrationality of ζ(2)

This result was firstly proved by A. Legendre [5]. The proof we present below is a
modification of the proof of irrationality of π given in the book of A. Shidlovskĭı [7].

One begins with the identities

∫ π/2

−π/2
ϕ(y) cos y = ϕ(y) sin y |π/2

−π/2 −
∫

ϕ′(y) sin y

= [ϕ(
π

2
) + ϕ(−π

2
)] −

∫

ϕ′′(y) cos y (5)

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=
[

ϕ(
π

2
) + ϕ(−π

2
)
]

−
[

ϕ′′(
π

2
) + ϕ′′(−π

2
)
]

+ . . .

Suppose that ζ(2) is rational, i.e. that π2

4 = a
b , a, b ∈ Z. We take ϕ(y) =

bn

n! (
π2

4 − y2)n = (a−by2)n

n! in (5). The left-most (positive) integral in (5) behaves
like Cn/n! for large n and takes values between 0 and 1. Next, for k < n we have
ϕ(k)(±π/2) = 0 and for k = 2l ≥ n and even, the polynomial ϕ(k)(y) is a sum of

terms 1
n!b

m
(

y2m
)(2l) × integer = (2l)!

n!

(2m
2l

)

bmy2(m−l) × integer . Thus the right-most
combination in (5) should represent an integer number (a contradiction).

Note that this proof relies essentially upon the fact that (cos x)′′ = − cos x, which
follows from the ‘functional equation’ cos(π ± y) = − cos y.

The proof of transcendency of ζ(2) was firstly given by F. Lindemann [6]. It is
more complicated, so we do not present it here.

3 Other generating functions

Analogously to (3) one can define the functions

fa1,...,ak
(x) = 1 − ζ(a1, . . . , ak)x

a + ζ(a1, . . . , ak, a1, . . . , ak)x
2a

−ζ(a1, . . . , ak, a1, . . . , ak, a1, . . . , ak)x
3a + . . . ,

a = a1 + . . . + ak.

It turns out that this function can be represented as g(x; t)|t=1, where the func-
tion g = ga1,...,ak

(t;x) satisfies the following linear differential equation

Pg + xag = 0. (6)

Here P = RQa1−1RQa2−1 . . . RQa1−1 is a differential operator defined via Q =
(1− t)∂, R = t∂ and ∂ = ∂/∂t. Moreover g(x; t) is analytic near t = 0 and g(x, t) =
1 + O(t).

To see this, following [8], introduce the functions

I(ε1, . . . , εm; t) =

∫

· · ·
∫

0<t1<...<tm<t

dt1
Aε1(t1)

. . .
dtm

Aεm
(tm)
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(indexed by ε1 = 0, 1, ε2 = 0, 1, . . . , εm = 0, 1) with

A0(t) = t, A1(t) = 1 − t.

Next, define
ζ̃(a1, . . . , ak; t) = I(1, 0, . . . , 0

︸ ︷︷ ︸

a1

, . . . , 1, 0, . . . , 0
︸ ︷︷ ︸

ak

; t);

one finds that ζ(a1, . . . , ak) = ζ̃(a1, . . . , ak; 1) (see [8]).
If 1 denotes the constant function 1(t) ≡ 1, then one has the formula

ζ̃(a1, . . . , ak; ·) =
[

∂−1t−1
]ak−1

∂−1(1 − t)−1 . . .
[

∂−1t−1
]a1−1

∂−1(1 − t)−11

= P−11.

Therefore the function

g = 1 − ζ̃(a1, . . . , ak; t)x
a + ζ̃(a1, . . . , ak, a1, . . . , ak; t)x

2a − . . . (7)

equals
[(I − xaP−1 + x2aP−2 − . . .)1](t) =

[

(I + xaP−1)−11
]

(t).

It implies that g satisfies the equation (I + xaP−1)g ≡ 1 and, in consequence, the
equation (6).

Example 1. In the case k = 1 and a1 = 2 the equation (6) becomes the hyperge-
ometric equation

(1 − t)∂(t∂g) + x2g = 0

(with singular points at t = 0, 1,∞). Its characteristic exponents (i.e. the powers α
in the solutions (t − t0)

α + . . . as t → t0 or tα + . . . as t → ∞) are the following:
λ = λ′ = 0 at t = 0; ρ = 0, ρ′ = 1 at t = 1; τ = x, τ ′ = −x at t = ∞. It follows
(see [1]) that our distinguished solution is the hypergeometric function

g2(x; t) = F (x,−x; 1; t).

In [4] one can find the following interesting identities (proved by Broadhurst):

g1,3(
√

2x; t) ≡ F (x,−x; 1; t)F (ix,−ix; 1; t), f1,3(
√

2x) = f4(x).

Generally, the equation (6) is of the Fuchs type (i.e. with regular growth of
solutions at singular points). Its characteristic equations (for the characteristic ex-
ponents) are the following: αak (α − 1)ak−1 . . . (α − k + 1)a1 at t = 0; α(α − 1)
. . . (α− a+ k) · (α− ak + 1)(α− ak − ak−1 + 2) . . . (α− ak − . . .− a2 + k− 1) at t = 1
and (−1)kαa + xa = 0 at t = ∞.

This implies that the monodromy operators M0 and M1, induced by analytic
prolongation of solutions to (6) along simple loops surrounding t = 0 and t = 1,
are unipotent (with eigenvalues equal to 1). (Maybe this explains the fact that the
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multiple zeta–values generate the ‘ring of periods of the pro-nilpotent completion of
π1(CP 1\{0, 1,∞})’, see [3,8]). The monodromy operator M∞ associated with a loop
around t = ∞ is diagonalizable with different eigenvalues e−2πiα, (−1)kαa + xa = 0.

The series in (7) defines g in the disc |t| < 1, but g(x; ·) can be prolonged to
a multi-valued holomorphic function with ramifications at t = 1 and t = ∞; (the
further branches of g ramify also at t = 0). Near t = 1 one has the representation
g = h0(t − 1) + h1(t − 1) log(t − 1) + . . . + hr(t − 1) logr(t − 1) with analytic hj(z)
near z = 0. Note that ζ(a1, . . . , ak) = h0(0).

We refer the reader to the (very algebraic) paper of A. Goncharov [3] for further
results about multiple zeta–values.

4 Asymptotic as x → ∞

The equation (6) for large parameter x is solved using the WKB method. This
means that one represents a solution as a finite sum of terms of the form

exS(t)[ϕγ(t)xγ + ϕγ−1(t)x
γ−1 + . . .].

The ‘action’ S satisfies the ‘Hamilton–Jacobi equation’

ta−k(1 − t)k
(

S′
)a

+ 1 = 0, (8)

the coefficient ϕγ satisfies the ‘transport equation’ of the form

ϕ′

γ + W (t)ϕγ = 0 (9)

(with some rational function W ) and the other coefficients ϕγ−m satisfy some non-
homogeneous equations (whose homogeneous parts are like in (9) and the rests
depend on S′, S′′, . . . , ϕγ , . . . , ϕγ−m+1).

The Hamilton-Jacobi equation (8) has solutions of the form of Schwarz–
Christoffel integral

S(t) = Sj(t) = ξj ·
∫ t

0
τk/a−1(1 − τ)−k/adτ, (10)

where ξj is a root of (−1) of order a. The transport equation (9) is solved as follows:

ϕγ(t) = ϕγ,j(t) = Cj · tµ(1 − t)ν

for some exponents µ, ν depending on the situation. By the initial condition g(x; 0) =
1 the first exponent γ and the constants Cj must be chosen after expanding exSj(t)

at t = 0 and solving some further transport equations (we shall not do it). For the
same reason the initial limit in the integral (10) is equal to 0.

From this the following expansion formula for the generating function fa1,...,ak

= ga1,...,ak
(x; 1) follows:

fa1,...,ak
∼

a
∑

j=1

eβξjx
[

ϕδ,j(1)x
δ + ϕδ−1,j(1)x

δ−1 + . . .
]

, (11)
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where β = B(k
a , 1− k

a) = π
sin πk/a and the constants ϕη,j(1), η ≤ δ are (theoretically)

calculable. In general, one cannot expect convergence in (11).
It seems that this method would give some insight into the nature of the coeffi-

cients of the generating functions fa1,...,ak
.

Example 2. Consider the function g3(x; t). One finds that ξ1 = −1, ξ2,3 = 1
2±

√

3
2 i,

β = 2π
√

3
and ϕγ,j(t) = Cj · t−1/3(1 − t)2/3. This suggests that the zeta–numbers

ζ(3), ζ(3, 3), ζ(3, 3, 3), ζ(9), ζ(15), . . . have something common with the numbers π, i
and

√
3. Maybe this is the way to show the transcendency of ζ(3). (Recall that the

irrationality of ζ(3) was shown by R. Apéry [2], see also [4]).
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[7] A.B. Shidlovskĭı, Transcendental Numbers. Nauka, Moscow, 1987 (in Russian); English
transl.: de Gruyter Studies in Math. 12, Walter de Gruyter & Co., Berlin, 1989.

[8] D. Zagier, Values of zeta function and their applications. In: “First European Congress of

Mathematicians”, v. 2, Progress in Math. 120, Birkhäuser, Basel, 1994, pp. 497–512.
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CMC–surfaces, ϕ–geodesics and the Carathéodory

conjecture
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Abstract. A short proof of the Caratheodory conjecture about index of an isolated
umbilic on the convex 2–dimensional sphere is suggested.
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1 Introduction

The constant mean curvature (CMC–) surfaces in E3 are known to admit a
continuous family of local, non–trivial, isometric deformations preserving mean cur-
vature of the surface (H–deformations). In the case when surface is compact Ume-
hara [11] showed that the converse is also true.

The maximal and minimal curvature lines of CMC–surface form an orthogonal
net which is called réseau de Bonnet, cf Cartan [3]. The Bonnet Theorem says that if
the CMC–surface is simply connected and umbilic–free, then under H–deformations
the orthogonal net “rotates” through a constant angle which can be taken as a
parameter of deformation.

If the CMC–surface is not simply connected or umbilic–free, Cartan seems to be
the first to ask about possible scenario of evolution of réseau de Bonnet under the
H–deformations.

In the present note we study 1 evolution of the orthogonal nets in the case when
CMC–surface is simply connected with a single umbilic or, equivalently, doubly
connected and umbilic–free. Namely, if we “pinch” the umbilic, the CMC–surface
becomes an annulus whose points undergo H–deformations according to the Bonnet
Theorem. In general, the rotation angle is no longer constant at all the points
because annulus cannot be covered by a single chart.

However, the Bonnet Theorem implies that every curve of the orthogonal net is
a ϕ–geodesic line whatever H–deformations are applied to a CMC–surface. Metric
ϕ is given by the linear element ds = |ϕ||dz|, where ϕdz2 is a holomorphic quadratic
”differential” associated to the CMC–surface. Of course, ϕ(0) = 0 at the umbilical
point.

This observation is crucial, because the ϕ–geodesics near n–th order zero of a
holomorphic quadratic form are well–understood due to the works of Strebel [10].

c©2003 Igor Nikolaev
1For the reasons which will be clear later.
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Roughly speaking, the ϕ–geodesics fill–up the annulus either by “hyperbolas” or
“radii”. Therefore, possible configurations of réseau de Bonnet near the umbilic
looks like a singularity with the finite number of hyperbolic and parabolic sectors.

Despite independent interest, the orthogonal nets are auxiliary for us. We postu-
late different fact here: H–deformations of orthogonal nets give an amazingly simple
proof to the Caratheodory’sche Vermutung (Conjecture):

Theorem 1. Let S2 be a C∞ surface which bounds a convex compact body in the
Euclidean space E3. Then S2 has at least two umbilical points. In other words, the
Euler-Poincaré index of isolated umbilical point is at most +1.

(A short overview of this conjecture can be found in [1]; see also [2],[5],[7].)

2 ϕ–geodesics

Until further indications, M is a simple domain of the complex parameter z.
Let us consider the holomorphic functions ϕ(z) vanishing at the unique point of M
which we identify with 0. An order n ≥ 1 is assigned to 0, if there exists a complex
constant a 6= 0 such that ϕ(z) = azn + O(|z|n+1).

Flat metric ϕ with the cone singularity of angle (n + 2)π is given by the formula

|ds| = |ϕ||dz|,

provided ϕ(z)dz2 is a quadratic form on M . By a ϕ–geodesic line in M one under-
stands the line conisting of the shortest arcs relatively metric ϕ. Any two points in
M (including 0) may be joined by the unique ϕ–geodesic line. Strebel classified the
possible types of ϕ–geodesics in the neighborhood of n–th order zero by proving the
following lemma.

Lemma 2. ([10]) Any two points in a neighborhood M of n–th order zero of holo-
morphic 2–form ϕ(z)dz2 can be joined by a unique ϕ–geodesic. Moreover, each
ϕ–geodesic is either an arc defined by the equation Arg ϕ(z)dz2 = Const, or is
composed of the two radii centered in 0 with the minimal angle ≥ 2π/(n + 2).

The foliation F on M\0 is said to be geodesic if every leaf of F is a ϕ–geodesic
line. Before we state the general lemma on the structure of geodesic foliations, let
us consider an example when all F ’s can be obtained by a ”brute force”.

If 0 is a double zero, then the ϕ–metric is given by the linear element ds2 = (u2 +v2)(du2 +dv2) where u+iv
is a natural parameter. The metric |ds| is Liouville’s and the geodesic lines in this metric are completely
integrable. The general integral is known to be of the form

Z

du
√

u2
− a

±

Z

dv
√

v2 + a
= a′,

where a, a′ are two independent constants. Easy calculations show that no information will be lost if we

suppose a = 0. The integral takes the form ln |u| ± ln |v| = a′. The geodesic foliation is described by two

”families of curves”: v = Cu and v = C/u, where C is an arbitrary constant. Thus, F near a double zero
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is either the ”node” with the geodesics radii tending to 0, or the ”saddle” with four sectors filled–up by the

geodesic ”hyperbolas”.

Let w be a finite ”word” on the alphabet consisting of two symbols h and p. We
introduce the elementary operations on w:

(i) a cyclic permutation of the symbols in w, and

(ii) a contraction of the p–symbol: p2 = p.

Two words are equivalent w1 ∼ w2 if and only if w2 can be obtained from w1 by the
elementary operations. The equivalence class of word w is denoted by [w].

Fix an integer number n ≥ 1. To every symbol h in w we assign a weight
|h| = 2π/(n + 2). To every symbol p we assign the weight |p| = αi, where αi is a
positive real. The weight of w is an additive function equal to the sum of weights of
the symbols entering w. The equivalence class [w] is called normalized if |w| = 2π
for all w ∈ [w]. (Note that the weight of w is one and the same for all w ∈ [w].)

Lemma 3. Let h and p stay for the hyperbolic and the parabolic sectors of the
singularity w, respectively. We encode the singular point w by a sequence of symbols
h and p in the order the h– and the p–sectors occur when turning clockwise around
the singularity. Then:

(i) each ϕ–geodesic foliation F is topologically equivalent to the singularity w of a
normalized equivalence class [w];

(ii) each normalized equivalence class [w] can be realized as a ϕ–geodesic foliation
F with the singularity w ∈ [w] in a neighborhood of n–th order zero of ϕ for some
n ≥ 1.

Proof. Denote by M a neighborhood of the n–th order zero of ϕ. Let us introduce
a partial order for the points x, y ∈ M : x ≤ y if and only if Arg x ≤ Arg y. If
x ∈ M is an arbitrary point, then by Lemma 2 the ϕ–geodesic line through x is
either (i) the hyperbola Arg ϕdz2 = Const or (ii) the radius Ox. Let us consider
the first possibility.

(i) The hyperbola Arg ϕdz2 = Const must tend to the asymptotic rays Oz1, Oz2

with z1 < x < z2, enclosing the angle 2π/(n+2). Clearly, the only possibility to the
geodesic foliation F is to form a hyperbolic sector z1Oz2. Of course, along Oz1 and
Oz2 Arg ϕdz2 is constant.

(ii) Let Ox be the geodesic radius through x, distinct from the boundary radii
of the hyperbolic sector. Then through the nearby points |x − y| < ε one can draw
the geodesic radii Oy’s. Denote by y1Oy2 the maximal connected parabolic sector
filled-up with the geodesic radii. Clearly, y1 < x < y2. The angle enclosed between
two boundary radii, we denote by α. In general, 0 ≤ α ≤ 2π.

If the hyperbolic sector h is followed by another hyperbolic sector h, we write
this as hh. If h is followed by a parabolic sector, we put it as hp. A parabolic sector
p followed by the parabolic sector p, gives a larger parabolic sector p = pp and the
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contraction rule (ii) follows. Of course, the ”weights” of the sectors are equal to the
angles swept by the sectors.

Finally, according to the definition of normalized equivalence class, each singu-
larity consists of sequence of parabolic and hyperbolic sectors; every curve in these
sectors is a geodesic arc.

The part (ii) of Lemma 3 is proved by the similar argument.

3 CMC–surfaces

Every smooth immersion f : M → E3 of an orientable surface M into the
Euclidean space E3 induces a Riemann structure on M ; let z = u + iv be the
corresponding local parameter. With respect to z the first fundamental form can be
written as ds2 = e2λ|dz|2.

If ldu2 + 2mdudv + ndv2 is the second fundamental form, we consider a complex
quadratic form ϕdz2, such that ϕ(z) = 1

2(l − n) − im. The Mainardi–Codazzi
equations imply that ϕ is holomorphic on M if and only if f(M) is a CMC–surface.
Locally, along the lines of minimal and maximal curvature Arg ϕdz2 = 0 and ϕ(0) =
0 at the umbilic points.

A continuous deformation ft of the immersion f = f0 is the isometry of surface
M such that M × [0, 1] → E3 is a continuous mapping. The continuous deformation
ft is called an H–deformation if Ht = H for all t ∈ [0, 1], where H : M → R is the
mean curvature function.

The CMC–surfaces are known to admit a non–trivial H–deformations and in the
case of compact surfaces, they are the only ones with such a property. Of course,
there are known many examples of compact CMC–surfaces of genus g > 0.

What happens with the lines of principal (i.e. minimal or maximal) curvature of
the CMC–surface during an H–deformation? If M is a local CMC–surface without
umbilics, the principal curvature lines of f0(M) and ft(M) form two families of the
parallel lines intersecting each other with the constant angle proportional to the
parameter t (the Bonnet Theorem, see e.g.[4]). Note that if we fix the ϕ–metric
on M corresponding to f0(M), then the principal curvature lines of ft(M) coincide
with the ϕ–geodesic lines of the inclination t. If the umbilical points are allowed,
then a law is given by the following lemma.

Lemma 4. Suppose that M0 = f0(M) is a canonical CMC–surface with the
quadratic function ϕ = zn, n ≥ 1. Let ϕ be a metric on M corresponding to M0. If
Mt = ft(M) is an H–deformation of M0, then one of the two principal curvature
lines of Mt coincide with the ϕ–geodesic lines on M for any t ≥ 0.

Proof. In the polar coordinate system the coefficients of the second fundamental
form of surface Mt are given by the equations:
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l = Heλ + |z|n cos(2t − n Arg z),

m = |z|n sin(2t − n Arg z), (1)

n = Heλ − |z|n cos(2t − n Arg z),

where t is a parameter of the H–deformation, cf [11]. The following two cases are
possible.

(i) An H–deformation, such that t is constant on M . It can be immediately
seen that in new coordinates ũ = cos t u + sin t v, ṽ = − sin t u + cos t v the first
and the second forms of surfaces M0 and Mt are the same. By the fundamental
theorem, surfaces M0 and Mt may differ only by a rigid motion in E3. Thus, the
H–deformation is trivial.

(ii) A non–trivial H–deformation. By item (i), t varies for the points of M . Thus
far, associated to every z ∈ M\0, there is a chart in which the second fundamental
form of surface Mt(z) writes as

l = Heλ + cos 2t, m = sin 2t, n = Heλ − cos 2t,

where t is the deformation parameter, cf [13]. A straightforward calculation shows
that the principal curvature lines of the surface Mt(z) coincide with the ϕ–geodesic
lines of the slope t on M . (This fact follows also from the Bonnet Theorem.) Since
every regular point z ∈ M can be endowed with such a chart, Lemma 4 is proved.

4 Proof of Theorem 1

Take a convex C∞ immersion f0 : S2 → E3 of the 2–sphere into the Euclidean
space E3 which is not totally umbilic (i.e. there are no U ⊆ S2 such that f0(U) is a
part of the round sphere). In other words, umbilics are supposed isolated and their
number is finite. Denote by ds0 a Riemann metric on S2 induced by the immersion
f0 and by H : S2 → R the corresponding mean curvature function.

Definition 1. By a Hopf spheroid in E3 we understand a convex C∞ immersion
f : S2 → E3 such that there exists at least one umbilical point p and a small closed
disc D ∋ p such that H(D) = Const.

Lemma 5. There exist infinitely many Hopf spheroids in E3.

Proof. By the results of Wente and Kapouleas any compact orientable surface
Sg of genus g > 0 admits an immersion into E3 which is a CMC-surface with
H > 0; cf.[6],[12]. Fix g ≥ 2 and consider the lines of principal curvature of any
such immersion. By the index argument, there exists an umbilic p ∈ Sg and a small
closed disc D ∋ p which is a convex local surface in E3. We separate this local
surface from Sg. To obtain a Hopf spheroid, it remains to complete this piece of
CMC-surface to a C∞ immersion S2 → E3. By Urysohn’s lemma this can be done
in an infinite number of ways. �
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Lemma 6. For the Hopf spheroids the Caratheodory conjecture is true.

Proof. Without loss of generality we can assume that the umbilic point p of Hopf
spheroid is unique. (For otherwise, if there are more than one umbilic then we are
done.) Since a Hopf spheroid is locally CMC, we apply Lemma 4 to identify the
curvature lines in the disc D ∋ p with ϕ-geodesic lines in the vicinity of a singularity
w.

Let w ∈ [w] be a word of the minimal length in the normalized equivalence class
[w]. According to Lemma 3, there exists a singularity of order n whose topological
type is encoded by the sequence w of symbols h and p. Let w admit 〈h〉 symbols of
type h and 〈p〉 symbols of type p. By the normalization axiom, 〈h〉 ≤ n + 2.

To estimate the Euler–Poincaré index of singularity w, note that the parabolic
sectors make no contribution to the index value and the number 〈p〉 can be neglected.
To the contrary, if there are no hyperbolic sectors (i.e. w = p) we necessarily have
one parabolic sector. The general formula is true:

Ind w =

{

1 − 〈h〉
2 if w 6= p,

+1 if w = p.

In either case Ind w ≤ 1 and by the index argument the conjecture follows.

Now we are ready to finish the proof of Theorem 1. But first we wish to outline
the main idea. To every convex C∞ immersion f0 : S2 → E3 one can relate a Hopf
spheroid. This spheroid is uniquely defined by f0 and is a ‘modification’ of f0 which
has an interesting ‘mechanical’ interpretation.

Suppose that f0 is a convex steel ball filled-up with a gas under a pressure. Let
p be an isolated umbilic of f0. We drill a small hole in p and glue-up a soap film
D into this hole maintaining a pressure 2 inside the ball. We also ‘deform’ slightly
the ‘edges’ of the cut in order to keep the modified surface f : S2 → E3 in the class
C∞. We claim that f is a Hopf spheroid.

Indeed, f(D) is a local CMC-surface with an umbilic point p ∈ D. Moreover,
the index of umbilic on the Hopf spheroid is equal to the index of p on f0. (This is
because the foliation by principal curvature lines at the ‘steel part’ of ball remains
intact.) In general, if F0 and F are foliations by the principal curvature lines on f0

and f , respectively, then F is obtained from F0 by a homotopy of opening of a leaf;
cf [9].

Let f0 be as above. If p is an isolated umbilic of f0 then we take a closed disc
|D| ≤ r centred at the point p. We are going to define a local CMC-surface f(D).
Let z = u + iv be a local parameter which corresponds to a part of CMC-surface
with an umbilic; see the beginning of this section. By the results of Umehara [11]

2The absolute value of the pressure depends on how ‘flat’ is the surface at the point p. Of course,
by ‘pressure’ we understand difference of pressures inside and outside the steel ball.



CMC–SURFACES, ϕ–GEODESICS AND THE CARATHÉODORY CONJECTURE 89

(see also [3],[4]) there exists a family of isometric H-deformations depending on a
real parameter t:

I = e2λ|dz|2, IIt = ldu2 + 2m dudv + ndv2, (2)

with l,m and n given by equations (1). The Mainardi-Codazzi and Gauss equations
for I, IIt:

∂ϕ

∂z
=

∂H

∂z
, |ϕ|2 = e4λ(H2 − K), (3)

where ϕ = eitzn is a complex quadratic form ϕdz2, are satisfied for any real t.
(Indeed, the first equation is true since H = Const and ϕ is holomorphic; the
second equation follows from |ϕeit| = |ϕ| and the fact that H-deformation is an
isometry.) Therefore, the fundamental forms (2) are realized by a concrete local
CMC-surface for each real number t.

Let ft(D) be a family of local CMC-surfaces described above. Denote by A an
annular region which surrounds disc D:

A = {z = u + iv| r ≤ |z| ≤ r + ε}. (4)

To glue-up ft(D) properly, we fix the metric λ so that λ|∂Ar+ε
= λ|∂Ar

, where the
left part denotes a metric on the exterior boundary of A which is induced by metric
of the surface f0. The boundary condition λ|∂Ar

gives a unique solution ft=t∗(D) to
the Gauss equation, so that a representative in the family ft(D) is fixed.

To obtain a C∞ Hopf spheroid it remains to conjugate ft∗(D) with the rest of
the sphere:

f(S2) =

{

ft∗(D), if z ∈ D ⊂ Int Dr+ε,

f0(S
2), if z ∈ S2\Dr+ε.

(5)

By the Urysohn Lemma, function f in formula (5) can be chosen C∞ for an arbitrary
small ε, see formula (4). Moreover, taking r sufficiently small we can fix number n
(see (1)) equal to the order of quadratic form ϕ at point p of the surface f0. (Such
an order is correctly defined for any ϕ, not necessary holomorphic.)

Thus, the surface f given by equation (5) is a Hopf spheroid. By the Lawson-
Tribuzy theorem f is uniquely defined up to a rigid motion in E3; see [8]. To finish
the proof of Caratheodory conjecture, it remains to notice that passage from f0 to
f gives us a homotopy h(F0) = F between foliations induced by curvature lines. In
particular, Ind p0 = Ind p. By Lemma 6, the Caratheodory conjecture follows. �
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Solution of the center problem for cubic systems with a

bundle of three invariant straight lines∗

Alexandru Şubă

Abstract. For cubic differential system with three invariant straight lines which
pass through the same point it is proved that a singular point with purely imaginary
eigenvalues (weak focus) is a center if and only if the focal values g2j+1, j = 1, 5,

vanish.
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Keywords and phrases: cubic systems of differential equations, center-focus prob-
lem, invariant algebraic curves, integrability.

1 Introduction

A cubic system with a singular point with pure imaginary eigenvalues (λ1 =
λ2 = i, i2 = −1) by a nondegenerate transformation of variable and time rescaling
can be brought to the form

dx
dt = y + ax2 + cxy + fy2 + kx3 + mx2y + pxy2 + ry3 ≡ P (x, y),

dy
dt = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ −Q(x, y).

(1)

The variables x, y and coefficients a, b, . . . , r, s in (1) are assumed to be real. A
singular point (0, 0) is a center or a focus for (1). The problem arises of distinguishing
between a center and a focus, i.e. of finding the coefficient conditions on (1) under
which (0, 0) is, for example, a center. These conditions are called the conditions for
a center existence or the center conditions and the problem - the problem of the
center.

Note that the singular point (0, 0) of the differential system (1) is called also
weak focus (fine focus).

It is well known that the origin is a center for (1) if and only if all focal values
g2j+1, j = 1, ∞, vanish. The focal values are polynomials in coefficients of system
(1). For example, the first of them looks as follows

g3 = ac − bd + 2ag − 2bf + cf − dg − 3k + 3l − p + q. (2)

If all the g2j+1 are zero up to g2τ+1, i.e. g2j+1 = 0, j = 1, τ − 1, and g2τ+1 6= 0, then
τ is called the order of the weak focus (0, 0).
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It is known also that the system of differential equations (1) has a center at
O(0, 0) if and only if it has in some neighbourhood of the origin an independent of t
holomorphic first integral F (x, y) = C (an holomorphic integrating factor µ(x, y)).

The problem of the center was solved for quadratic system (k = l = m = n =
p = q = r = s = 0) by H.Dulac [10], and for symmetric cubic system (a = b = c =
d = f = g = 0) by K.S. Sibirski [16].

If the cubic system (1) contains both quadratic and cubic nonlinearities, the
problem of the center is solved only in some particular cases (see, for example,
[2, 4, 6–9,11–14]).

The quadratic system and symmetric cubic system with a singular point of center
type are Darboux integrable, i.e. these systems have a first integral (integrating
factor) of the form of product of invariant algebraic curves. Hence, the interest
arose to study the center problem for polynomial differential systems with algebraic
invariant curves. The problem of integrability for polynomial systems with invariant
algebraic curves and, in particular, with invariant straight lines was considered in
works [3, 5–8,17,20].

The straight line C + Ax + By = 0 is said to be invariant for (1) if there exists
a polynomial K(x, y) such that the identity holds

A · P (x, y) − B · Q(x, y) ≡ (C + Ax + By)K(x, y). (3)

K(x, y) is called the cofactor of the invariant straight line.

By [6] the cubic system (1) can not have more than four nonhomogeneous in-
variant straight lines, i.e. straight lines of the form

1 + Ax + By = 0 (|A| + |B| 6= 0). (4)

As homogeneous straight lines Ax + By = 0 this system can have only the lines
x ± iy = 0, i2 = −1. Hence, the cubic system (1) can not have more than six
invariant straight lines. This case is realized. To solve the problem of the center
in the case of system (1) with four nonhomogeneous invariant straight lines, it is
enough to require the vanishing of the first focal value (Liapunov quantity) g3 [6].
The vanishing of the first focal value in the case of system (1) with four invariant
straight lines among which are also homogeneous ones is not enough for the existence
of a center. Also the vanishing of the second focal value g5 is necessary.

Thus, the cubic system (1) with four invariant straight lines (real, complex, real
and complex) has at the origin a singular point of a center type if and only if the
first two focal values vanish [7].

If (1) has three invariant straight lines two of which are homogeneous, then
the presence of a center at (0, 0) is guaranteed by vanishing of the focal values
g2j+1 = 0, j = 1, 7 [19].

In this paper we study the center problem assuming that the cubic system (1)
has three invariant straight lines which pass through the same point.
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2 Conditions for the existence of a bundle of tree invariant straight

lines

From (3) it results that (4) is an invariant straight line of (1) if and only if A
and B are the solutions of the system

F1(A,B) = AB2 − fAB + bB2 + rA − lB = 0,

F2(A,B) = A2B + aA2 − gAB − kA + sB = 0,

F3(A,B) = B3 − 2A2B + fA2 + (c − b)AB − dB2 − pA + nB = 0,

F4(A,B) = A3 − 2AB2 − cA2 + (d − a)AB + gB2 + mA − qB = 0.

(5)

The cofactor of (4) is

K(x, y) = −Bx + Ay + (aA − gB + AB)x2+
(cA − dB + B2 − A2)xy + (fA − bB − AB)y2.

(6)

Further, we shall assume that the cubic system (1) has three invariant straight
lines which pass through the same point (x0, y0). By a rotation and rescaling coor-
dinate axes we can make that x0 = 0, y0 = 1. Consequently, the equation of each
invariant straight line of the bundle has the form

1 + Ax − y = 0. (7)

It is evident that the point (0, 1) of the intersection of these straight lines is a
singular point for (1), i.e. P (0, 1) = Q(0, 1) = 0. These equalities give r = −f − 1,
l = −b. Substituting B = −1, r = −f − 1 and l = −b in (5) we find that

F1 ≡ 0, F2 = (a − 1)A2 + (g − k)A − s = 0,

F3 = (f + 2)A2 + (b − c − p)A − d − n − 1 = 0,

F4 = A3 − cA2 + (a − d + m − 2)A + g + q = 0.

From the above equalities we can see that the system (1) can have three distinct
invariant straight lines of the form (7) iff the following conditions holds:

a = 1, f = −2, k = g, l = −b, n = −d − 1, p = b − c, r = 1, s = 0, (8)

4(g + q)c3 + (d − m + 1)2c2 + 18(d − m + 1)(g + q)c + 4d3

−12(m − 1)d2 + 12(m − 1)2d − 27(g + q)2 − 4(m − 1)3 6= 0.
(9)

In the conditions (8),(9) the straight line (7) is invariant for (1) iff A satisfies the
equation

A3 − cA2 + (m − d − 1)A + g + q = 0. (10)

The left-hand side of the inequality (9) coincides with the discriminant of the
equation (10) and (9) gives that the roots A1, A2, A3 of the (10) are not equal:
Ai 6= Aj ∀i 6= j.
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Using (5),(8) and (9) it is easy to show that along with three invariant straight
lines of the form (4) the system (1) has also one more invariant nonhomogeneous
straight line if and only if at least one of the following two series of conditions holds:

a = r = 1, b = l = s = 0, f = −2, k = g,
n = −d − 1, p = −c, q = g(d + 1),

(11)

(d + 1)(d + 2) 6= 0. The straight line 1 + (d + 1)y = 0;

a = r = 1, f = −2, k = g, l = −b, n = −d − 1, p = b − c, s = 0,
(m − gc + g2)(b + g)2 − (dg − q)(b + g) + bg = 0,
2(b + g)3 − (b + c)(b + g)2 − (d + 2)(b + g) + b = 0,

(12)

bg(b + g) 6= 0. The straight line 1 + gx − g(b + g)−1y = 0.

3 Sufficient center conditions

a) Darboux integrability.

Lemma 1. The conditions (11) are sufficient for the origin to be a center for the
system (1).

Proof. Assume that (d + 1)(d + 2) 6= 0 and that the inequality (9) holds.
Denote by A1, A2, A3 the roots of the equation (10). Then

c = A1 + A2 + A3, m = A1A2 + A1A3 + A2A3 + d + 1, g = −A1A2A3/(d + 2).

The straight lines lj ≡ 1 + Ajx − y = 0, j = 1, 2, 3, of the bundle and the straight
line l4 ≡ 1 + (d + 1)y = 0 have, respectively, the cofactors (see (6)):

K1(x, y) = x + A1y − A1A2A3(d + 2)−1x2+
(1 + d + A1A2 + A1A3)xy − A1y

2,

K2(x, y) = x + A2y − A1A2A3(d + 2)−1x2+
(1 + d + A1A2 + A2A3)xy − A2y

2,

K3(x, y) = x + A3y − A1A2A3(d + 2)−1x2+
(1 + d + A1A3 + A2A3)xy − A3y

2,

K4(x, y) = x(d + 1)(y − 1 + A1A2A3(d + 2)−1x).

(13)

The system (1) has the first integral of the form lα1
1 lα2

2 lα3
3 lα4

4 = const, where αj , j =
1, 4,

∑ |αj | 6= 0 are generally complex numbers if and only if the following identity
holds

4
∑

j=1
αjKj(x, y) ≡ 0. (14)

Substituting (13) in (14) we obtain

α1 = (A2 − A3)(A2A3 + d + 2),
α2 = (A3 − A1)(A1A3 + d + 2),
α3 = (A1 − A2)(A1A2 + d + 2),
α4 = (A1 − A2)(A1 − A3)(A2 − A3)/(d + 1).
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Therefore, in conditions (11), (9), (d + 1)(d + 2) 6= 0, the system (1) has in some
neighborhood of the origin a holomorphic first integral of the form F (x, y) = const
and this means that (0, 0) is a center of (1).

Since the center variety is closed in the space of coefficients of the system (1),
then (0, 0) will be a center also in the cases when one or both of the inequalities
(d + 1)(d + 2) 6= 0 and (9) do not hold.

Lemma 2. The conditions

a = r = 1, f = −2, k = g, l = −b, n = −d − 1, p = b − c,
q = g + d(b + g), s = 0, (b + g)4 − (2b + c)(b + g)3

+(b2 + bc + m + 1)(b + g)2 + bd(b + g) − b2 = 0,
2(b + g)3 − (b + c)(b + g)2 − d(b + g) − b − 2g = 0.

(15)

are sufficient for the origin to be a center for system (1).

Proof. In the conditions (8) the equality g3 = 0 (see (2)) looks d(b+g)+g−q = 0,
from where we express q : q = g+d(b+g). Note that the conditions (15) are included
in (12) if in the last we put q = g + d(b + g).

Assume that the inequalities (9) and bg(b+ g)(1+(b+ g)(A2 +A3)−A2A3) 6= 0,
where A2, A3 are the roots of the equations (10), hold. Denote ν = b + g. The last
two equalities from (15) give us

d = 2ν2 − (b + c)ν − 2 + bν−1, m = cν − ν2 − 1 + 2bν−1.

In this case the equation (10) looks

(A − ν)(A2 − (c − ν)A − 2ν2 + (b + c)ν + bν−1 = 0.

We put A1 = ν and let A2, A3 be the roots of the quadratic equation
A2 − (c − ν)A − 2ν2 + (b + c)ν + bν−1 = 0. Then

b = ν(A2 − ν)(A3 − ν)/(ν2 + 1), c = A2 + A3 + ν.

The invariant straight lines

lj = 1 + Ajx − y, j = 1, 3, l4 = 1 + ν2 + (1 + A2ν + A3ν − A2A3)(νx − y)

of the system (1) have, respectively, the cofactors:

K1(x, y) = x + νy +
[

(ν(−A2A3 + A2ν + A3ν + 1))x2

+((A2 + A3)ν
3 + (1 − A2A3)ν

2 − (A2 + A3)ν + A2A3 − 1)xy

+(ν(−νA2 − νA3 + A2A3 − 1))y2
]

/(ν2 + 1),

K2(x, y) = x + A2y +
[

(ν(A2ν + A3ν − A2A3 + 1))x2

+(ν3A2 + ν2 − νA2 − 2νA3 + 2A2A3 − 1)xy

+(ν3 − 2ν2A2 − ν2A3 + νA2A3 − A2)y
2
]

/(ν2 + 1),

K3(x, y) = x + A3y +
[

(ν(A2ν + A3ν − A2A3 + 1))x2
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+(ν3A3 + ν2 − νA3 − 2νA2 + 2A2A3 − 1)xy

+(ν3 − 2ν2A3 − ν2A2 + νA2A3 − A3)y
2
]

/(ν2 + 1),

K4(x, y) = (1 + (A2 + A3)ν − A2A3)(νx − y + 1)(νy + x)/(ν2 + 1).

The system (1) has an integrating factor of the Darboux form µ(x, y) =

lβ1
1 lβ2

2 lβ3
3 lβ4

4 (this means that (0, 0) is a center) if and only if the numbers β1, β2, β3, β4

satisfy the identity
4

∑

j=1

βjKj(x, y) ≡ ∂Q

∂y
− ∂P

∂x
.

Substituting in this identity the expressions of the cofactors and identifying the
coefficients of x, y, x2, xy and y2, we obtain that

β1 = 1,

β2 = (A2A3ν − A2 + 2A3)/(A2 − A3),

β3 = (A2A3ν + 2A2 − A3)/(A3 − A2),

β4 = (A2A3ν
2 − A2A3 + 2νA2 + 2νA3 + 2)/(A2A3 − νA2 − νA3 − 1).

Lemma 3. The conditions

a = −n = r = 1, d = s = 0, f = −2, k = q = g,

l = −b, p = b − c, m = 3 + (b + g)(3c − 3b − 5g)

are sufficient for the origin to be a center for the system (1).

Proof. In the conditions of lemma 3 the equation (10) looks

A3 − (2b + β)A2 + (8bν + 3νβ − 5ν2 + 2)A − 2b + 2ν = 0, (16)

where ν = b + g, β = c − 2b. Suposse that (16) has three diferent roots A1, A2, A3.
The straight line lj ≡ 1 + Ajx − y = 0 of the bundle has the cofactor Kj(x, y) =
x + Ajy + (ν − b)x2 + (1 − A2

j + 2bAj + βAj)xy + (b − Aj)y
2 (j = 1, 2, 3).

The identity
3

∑

j=1

βjKj(x, y) ≡ ∂Q

∂y
− ∂P

∂x

holds if

β1 = (−2A2A3 + βA2 + βA3 − 2bβ + 16bν − β2 +

6βν − 10ν2 + 6)/((A1 − A2)(A1 − A3)),

β2 = (2A1A3 − βA1 − βA3 + 2bβ − 16bν + β2 −
6βν + 10ν2 − 6)/((A1 − A2)(A1 − A3)),

β3 = (−2A1A2 + βA1 + βA2 − 2bβ + 16bν − β2 +

6βν − 10ν2 + 6)/((A1 − A2)(A1 − A3)).
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Therefore, µ(x, y) = lβ1
1 lβ2

2 lβ3
3 is an integrating factor of the system (1) and, conse-

quently, (0, 0) is a center.

By the closedness of the center variety in the space of coefficients of (1) the
singular point (0, 0) will be the center type also in the cases when the equation (16)
has multiple roots.

b) Symmetry.

Let

a = r = 1, c = 6b + 5g, f = −2, k = g, l = −b, p = −5(b + g), s = 0,
d = −5(b + g)(4 + (3b + 2g)(4b + 3g))/(13b + 10g),
m = (5(b + g)(3b + 2g)(5b + 4g) − b − 10g)/(13b + 10g),
n = (5(b + g)(3b + 2g)(4b + 3g) + 7b + 10g)/(13b + 10g),
q = −(5(b + g)2(3b + 2g)(4b + 3g) + 20b2 + 27bg + 10g2)/(13b + 10g).

(17)

The system (1) with (17), after the change of coordinates

X =
x

1 − y
, Z =

y

1 − y
,

defines the following equation of nonlinear oscillations:

P4(X)ZZ ′ = −XP0(X) − 3XP1(X)Z − P2(X)Z2 − P3(X)Z3, (18)

where

P0(X) = 1 + gX,

P1(X) = (19b + 10g − 5(4b + 3g)(3b + 2g)(b + g) − (20b2 + bg−
10g2 + 5(4b + 3g)(3b + 2g)(b + g)2)X)/(3(13b + 10g)),

P2(X) = (13b2 + 10bg + (6b − 5(4b + 3g)(3b + 2g)(b + g))X−
(20b2 + 14bg + 5(4b + 3g)(3b + 2g)(b + g)2)X2)/(13b + 10g),

P3(X) = b,

P4(X) = (13b + 10g + (13b + 10g)(6b + 5g)X+
(6b + 5(9b + 7g)(3b + 2g)(b + g))X2+
(20b2 + 14bg + 5(4b + 3g)(3b + 2g)(b + g)2)X3)/(13b + 10g).

The substitution Z = P0(X)Y
1−P1(X)Y [15] reduces the equation (18) to the form

Q4(X)Y Y ′ = −X − Q2(X)Y 2 − Q3(X)Y 3,

where

Q2(X) ≡ P0(X)P2(X) − 3XP 2
1 (X) + P ′

0(X)P4(X),
Q3(X) ≡ 2XP 3

1 (X) − P0(X)P1(X)P2(X) + P 2
0 (X)P3(X)+

P0(X)P ′

1(X)P4(X) − P ′

0(X)P1(X)P4(X),
Q4(X) ≡ P0(X)P4(X).
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By Theorem 9.4 of [1] in the case Q3(X) = X2j+1
˜P (X), ˜P (0) 6= 0 the origin is

a center for the equation (18) if and only if the system of equations

y4R3(x)Q5
3(y) − x4R3(y)Q5

3(x) = 0,
xQ(x)R2(y) − yQ(y)R2(x) = 0,

(19)

where

R(X) ≡ Q4(X)[Q3(X) − XQ′

3(X)] + 3XQ2(X)Q3(X),

Q(X) ≡ Q4(X)[R′(X)Q3(X) − 3R(X)Q′

3(X)] + 4Q2(X)Q3(X)R(X)

has in some neighborhood of X = 0 a holomorphic solution

Y = φ(X), φ(0) = 0, φ′(0) = −1. (20)

Let us consider the following two series of conditions on the coefficients of system
(1):

a = r = 1, c = g = k = −3b/2, d = −5, f = −2,
l = −b, m = −7, n = 4, p = 5b/2, q = b;

(21)

a = r = 1, c = 6b + 5g, f = −2, k = g, p = −5(b + g),
l = −b, d = −5(b + g)(4 + (3b + 2g)(4b + 3g))/(13b + 10g),
m = (5b(b + g)(3b + 2g) − 21b + 30g)/(13b + 10g),
n = (5b(b + g)(3b + 2g) − 8b + 40g)/(13b + 10g),
q = −4g, r = 1, s = 0, (3b + 2g)(b + g)2 + b − 2g = 0.

(22)

Remark. The conditions (21) (respectively, (22)) can be obtained from conditions
(17) if to the last we add the equality g = −3b/2 (respectively, (3b + 2g)(b + g)2 +
b − 2g = 0).
Lemma 4. Each of conditions (21), (22) are sufficient conditions for the system
(1) to have a center at the origin.

Proof. Assume first that the conditions (21) hold. Then the equalities (19) have
a solution in the form of (20):

Y =
3b2X2 − 20bX + 12 + (bX − 2)

√

3(3b2X2 − 20bX + 12)

2b(2 − 3bX)
.

Now, assume that the conditions (22) hold. From (3b + 2g)(b + g)2 + b− 2g = 0
we find that

b = 2ν(1 − ν2)/(ν2 + 3), g = ν(1 + 3ν2)/(ν2 + 3),

where ν is a parameter. The conditions (22) look:

a = r = 1, b = 2ν(1 − ν2)/(ν2 + 3), c = ν(3ν2 + 17)/(ν2 + 3),
d = −5(3ν2 + 1)/(ν2 + 3), f = −2, g = ν(1 + rν2)/(ν2 + 3),
k = ν(1 + rν2)/(ν2 + 3), l = 2ν(ν2 − 1)/(ν2 + 3),
m = (13ν2 − 1)/(ν2 + 3), n = 2(7ν2 + 1)/(ν2 + 3),
p = −5ν, q = −4ν(3ν2 + 1)/(ν2 + 3), s = 0.
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Finally, it is easy to verify that ecuations (19) have a solution in the form of (20):

Y = −3ν2X2 + 10νX + 3 − (νX + 1)
√

3(3ν2X2 + 10νX + 3)

2(3νX + 1)
.

4 The problem of the center

In this section by ”=⇒” we will understand ”further it is used”.
Theorem. The order of a weak focus for cubic differential systems with a bundle
of three invariant straight lines is at most five.

Proof. Without loss of generality, we shall consider the cubic system (1) with
conditions (8),(9). In the same conditions we shall calculate the first five focal values
using the algorithms described in ([18]). The first one looks: g3 = q − g − d(b + g)
(see (2), (8)). From g3 = 0 we find q:

q = g + d(b + g)

and substitute into the expression for g5. We have g5 = bd(m − (b + g)(3c − 3b −
5g) − 2d − 3). If b = 0 then =⇒ Lemma 1, if d = 0 then =⇒ Lemma 3.

Let
bd 6= 0 (23)

and
m = (b + g)(3c − 3b − 5g) + 2d + 3.

The third focal value being cancelled by non-zero factors is of the form g7 = f1f2,
where

f1 = 2(b + g)3 − (b + c)(b + g)2 − d(b + g) − b − 2g,
f2 = 6b + 5g − c.

If f1 = 0 =⇒ Lemma 2. Further, we shall consider that bdf1 6= 0. Simplify the
focal values g9 and g11 by bdf1.

From f2 = 0 we express c:
c = 6b + 5g

and substitute it in g9, g11. The g9 looks as

g9 = (13b + 10g)d + 5(b + g)(4 + (3b + 2g)(4b + 3g)). (24)

If the coefficient d in g9 is equal to zero, i.e. g = −13b/10, then g9 = −3b(b2 +
100)/50 6= 0 (see (23)). We require that 13b + 10g 6= 0. From g9 = 0 (see (24))
express d :

d = −5(b + g)(4 + (3b + 2g)(4b + 3g))/(13b + 10g) (25)

and substitute it in g11. For g11, after corresponding simplifications, i.e. after elimi-
nation of a denominator and non-zero factors, including numerical one, we have

g11 = (b + g)(3b + 2g)((3b + 2g)(b + g)2 + b − 2g).
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If b+g = 0, then from (25) d = 0. That is in contradiction with assumption (23).
If (3b + 2g)((3b + 2g)(b + g)2 + b− 2g) = 0 =⇒ Lemma 4 (in the case of 3b + 2g = 0
we have the series (21) of conditions on the coefficients of the system (1) and in the
case (3b + 2g)(b + g)2 + b − 2g = 0, respectively, the series (22)).
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[18] Şubă A.S., On the Liapunov quantities of two-dimensional autonomous system of differen-

tial equations with a critical point of centre or focus type. Bulletin of Baia Mare University
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Classification of quadratic systems with a symmetry

center and simple infinite singular points

Mircea Lupan, Nicolae Vulpe∗

Abstract. We classify the family of planar quadratic differential systems with a
center of symmetry and two invariant straight lines according to the topology of their
phase portraits. The case of the existence of simple infinite singular points is only
considered. For each of the obtained distinct topological classes we give necessary and
sufficient conditions in terms of algebraic invariants and comitants. The program was
implemented for computer calculations.
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Keywords and phrases: quadratic differential system, invariant line, phase portrait,
limit cycle.

1 Introduction and the statement of main results

Consider generic quadratic systems of the form:

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dx

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

(1)

with real homogeneous polynomials pi, qi ∈ R[a, x, y] (i = 0, 1, 2) of degree i in x, y.

In paper [10] the notion of a dicritical (not necessarily singular) point of a
quadratic differential system is introduced. As particular cases, it comprises sym-
metry point of the corresponding integral curves, dicritical nodal singular point and
homogeneity point (i.e., such point that system (1) becomes homogeneous after shift-
ing the point to the origin). The class of quadratic system with homogeneity point
was studied in [2, 7, 11–13, 16, 19, 21–23]. In papers [4, 20] the topological classi-
fication of system (1) having a dicritical nodal singular point is obtained. Some
classes of the quadratic systems (1) possessing a symmetry point were examined in
papers [3, 17,18].

The purpose of our article is the study of quadratic system (1) with a symme-
try point and two parallel invariant straight lines which can be: (a) real distinct;
(b) imaginary; (c) coincided in the finite part of the phase plane; (c) coincided at
infinity. For this class of system (1) all possible topological distinct phase portraits
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will be constructed and the respective necessary and sufficient conditions for their
realization will be established.

We introduce the following polynomials:

Ci = ypi(x, y) − xqi(x, y) (i = 0, 1, 2), Di =
∂pi

∂x
+
∂qi
∂y

(i = 1, 2),

which in fact are GL-comitants [5, 16]. To formulate the statement of the Main
Theorem we shall construct T -comitants and CT -comitants (see [15] for detailed
definitions) which distinguish phase portraits of the class of system (1) possessing
a center of symmetry and two parallel invariant straight lines. All of them will
be constructed only by using polynomials Ci and Di via the differential operator
(f, g)(k) called transvectant of the index k [8,14] which acts on R[a, x, y] as follows:

(f, g)(k) =

k
∑

h=0

(−1)h
(

k

h

)

∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

Here f(x, y) and g(x, y) are polynomials in x, y of the degree r and ρ, respectively,
and a ∈ R

12 is 12-tuple of the coefficients of system (1).

First we construct the following comitants of the second degree with respect to
coefficients of initial system (1):

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0,D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1,D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2,D2)
(1) .

By using the initial T-comitants: Ã, B̃, C̃ ≡ C2, D̃, Ẽ, F̃ , G̃ ≡ D2, H̃, K̃
written in tensorial form in paper [5] was constructed a minimal polynomial basis
of T-comitants of system (1) up to degree 12.

We shall use here some of these T-comitants, expressed through Ci and Dj:

Ã(a) =
(

C1, T8 − 2T9 +D2
2

)(2)
/144,

˜D(a, x, y) =
[

2C0(T8 − 8T9 − 2D2
2) + C1(T7 − T6) − (C1, T5)

(1)

+6D1(C1D2 − T5) − 9D2
1C2

]

/36,

˜E(a, x, y) =
[

D1(2T9 − T8) − 3 (C1, T9)
(1) −D2(3T7 +D1D2)

]

/72,

˜F (a, x, y) =
[

6D2
1(D

2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0 (D2, T9)

(1) −D2
2T4 + 288D1

˜E

−24
(

C2, ˜D
)(2)

+ 120
(

D2, ˜D
)(1) − 36C1 (D2, T7)

(1) + 8D1 (D2, T5)
(1) ]

/144,

˜K(a, x, y) = (T8 + 4T9 + 4D2
2)/72,

˜H(a, x, y) = (−T8 + 8T9 + 2D2
2)/72.

Now the needed T -comitants expressed only through the polynomials Ci (i = 0, 1, 2)
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and Dj (j = 1, 2) via differential operator (∗, ∗)(k) can be constructed:

M(a, x, y) = T8/8 ≡ Hessian(C2)/4,

K(a, x, y) = ˜K(a, x, y) ≡
(

p2(x, y), q2(x, y)
)(1)

/4,

N1(a, x, y) = (T8 − 2T9 +D2
2)/36,

N2(a, x, y) =
[

D1(2T9 − T8 − 3D2
2) − 3D2T7 − 3 (C1, T9)

(1) ]

/72,

N5(a, x, y) = (T5 − 3C2D1 + 2C1D2)/6,

V (a, x, y) =
[

4(T2 + C0D2)
2 − 3(T5 − 3C2D1 + 2C1D2)(T1 + C0D1)

]

/36,

W1(a, x, y) = 2
(

C2, ˜D
)(2) − 7

(

D2, N1

)(2)
+ 18 ˜F ,

W2(a, x, y) = 15C2

[

23
(

( ˜D, ˜D)(2),D2

)(1)
+7

(

(C2, ˜D)(2), ˜D
)(2)]−11

[(

C2, ˜D
)(2)]2

+

36 ˜D
[

42
(

C2, ˜F
)(2) − 197

(

˜D, ˜K
)(2)

+ 184
(

˜D, ˜H
)(2)]

+

6D2

[

168
(

˜D, ˜F
)(1) − 19

(

(C2, ˜D)(2), ˜D
)(1)]

+

288 ˜F
[

2
(

C2, ˜D
)(2)

+ 9 ˜F
]

+ 172
(

C2, ˜D
)(3)(

C2, ˜D
)(1)

+

12
(

49 ˜K − 197 ˜H
)(

˜D, ˜D
)(2) − 194

(

C2, ˜D
)(2)(

D2, ˜D
)(1)

,

W3(a, x, y) =
((

C2, ˜D
)(1)

,
(

C2, ˜D
)(1))(2) − 6

(

C2, ˜D
)(1)(

C2, ˜D
)(3)

,

η(a) = (M,M)(2) /6 ≡ Discrim(C2),

µ(a) = − (K,K)(2) /2 ≡ Discrim(K),

κ(a) = −(N1, N1)
(2) /8 ≡ Discrim(N1)/4,

G1(a) =
(

C1, T8 − 2T9 +D2
2

)(1)
/144,

H1(a) = 9
(((

˜D, ˜D
)(2)

,D2

)(1)
,D2

)(1)
+ 270

(

( ˜D, ˜D)(2), (6 ˜K +N1)
)(2)

+

576
(

( ˜D, ˜F )(2),D2

)(1)
+ 396

(

(C2, ˜D)(2), ˜F
)(2) − 86

[(

C2, ˜D
)(3)]2

,

H2(a) =
(

˜H, ˜K
)(2) − 3

(

˜H, ˜H
)(2)

,

H3(a) = −6
(

˜F, ˜K
)(2) − 4

(

( ˜D, ˜H)(2),D2

)(1) −
(

( ˜D, ˜K)(2),D2

)(1)
,

F1(a) = 10
[(

C2, ˜D
)(3)]2 − 99

(((

˜D, ˜D
)(2)

,D2

)(1)
,D2

)(1) − 36
(

(C2, ˜D)(2), ˜F
)(2)

+

54
(

( ˜D, ˜D)(2), (7 ˜H − ˜K)
)(2) − 288

(

( ˜D, ˜F )(2),D2

)(1)
,

F2(a) =
(

˜H, ˜K
)(2)

+
(

˜H, ˜H
)(2)

,

F3(a) =
(

C2, ˜D
)(3)

,

E1(a) = 4
(

( ˜D, ˜F )(2),D2

)(1)
+ 3

(

( ˜D, ˜D)(2), ( ˜K + 3 ˜H)
)(2) − 4

(

(C2, ˜D)(2), ˜F
)(2)

,

E2(a) =
(

( ˜D,N1)
(2),D2

)(1)
,

E3(a) =
(

(( ˜D,D2)
(2),D2)

(1),D2

)(1)
.

In order to formulate the statement of the Main Theorem we note that the
geometrical meaning of the condition κ = 0 is given by Lemma 1.

Main Theorem. For κ = 0 the phase portraits of the non-degenerate quadratic
system (1) with a point of symmetry and such that polynomial C2 = yp2(x, y) −
xq2(x, y) 6= 0 has only simple roots (i.e.,η 6= 0), are determined by the respective
affine invariant conditions given in Table 1. Here by ri (respectively, ci) the real
(respectively, imaginary) singular point of multiplicity i is denoted.



QUADRATIC SYSTEMS WITH A SYMMETRY CENTER 105

Table 1

Infinite
Condi-

Finite
Phase

Additional conditions
singular

tions
singular Conditions

portrait
for determining

points points phase portraits

N1 ≥ 0

W2 > 0,
Figure 1

N1<0
W3 < 0

r1r1r1r1
W1 > 0

W3 ≥ 0, E1 > 0

Figure 2 N1 < 0,W3 = 0, E1 < 0

Figure 3 N1 < 0,W3 > 0, E1 < 0

N1 = 0

c1c1c1c1

W2 < 0 or
Figure 4

N1 6=0
W3 6= 0

W2 > 0 &
W3 =0, N1E1>0

r1r1r1 η > 0

W1 < 0
Figure 5 W3 = 0, N1E1 < 0

Figure 6
N1 = 0

r2 r2
W2 = 0 N1 6= 0, E2 = 0

W1 > 0 Figure 7 E2 6= 0, N1 > 0

Figure 8 E2 6= 0, N1 < 0

c2 c2 W2 =0,W1<0 Figure 4 –

r4 µ 6=0,W1 =0 Figure 9 –

Figure 4
W3 6= 0

– µ = 0, V 6= 0 W3 = 0, E3 < 0

Figure 5 W3 = 0, E3 > 0

r1r1r1r1
µ>0,W2>0

Figure 10 –
W1 > 0

Figure 15 H1 6= 0

r1r1c1c1 µ<0,W2 6=0 Figure 16 H1 = 0, H3 > 0

Figure 17 H1 = 0, H3 < 0

W2 < 0 or

r1c1c1 η < 0 c1c1c1c1 µ>0,W2>0 Figure 11 –

& W1 < 0

r2 r2 W2 =0,W1>0
Figure 12 E2 = 0

Figure 13 E2 6= 0

c2 c2 W2 =0,W1<0 Figure 11 –

r4 µ 6=0,W1 =0
Figure 14 µ > 0

Figure 18 µ < 0
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2 Some preliminary results

Proposition 1. [10] System 1 has a single symmetry point if and only if either
N1(a, x, y) 6= 0 and G1(a) = N2(a, x, y) = 0 or N1(a, x, y) = N3(a, x, y) = 0,
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N4(a, x, y) 6= 0; and it has an infinite number of such points if and only if
N1(a, x, y) = N3(a, x, y) = N4(a, x, y) = N5(a, x, y) = 0.

Proposition 2. [16] The number of distinct roots (real and imaginary) of the poly-
nomial C2 = yp2(x, y) − xq2(x, y) 6≡ 0 is determined by the following conditions:

• 3 real for η > 0;

• 1 real and 2 imaginary for η < 0;

• 2 real (one double and one simple) for η = 0, M 6= 0;

• 1 real (triple) for η = M = 0.

Proposition 3. [9] The number and the types of the finite singular points of the
non-homogeneous system (1) with a point of symmetry are determined in Table 1.
The notations ’sdl’, ’nod’, ’sdl-nod’, ’foc’ and ’cnt’ are used to denote saddle, node,
saddle-node, focus, and center, respectively, and by (A1) we denote the following set
of conditions:

F1 = F3 = 0, F2 ≥ 0. (A1)

The geometrical meaning of the condition κ = 0 is given by the next lemma.

Lemma 1. Assume that for the quadratic system (1) with a point of symmetry and
C2 6= 0 the condition κ = 0 holds. Then this system possesses two parallel invariant
straight lines which can be: (a) real distinct; (b) imaginary; (c) coincided in the finite
part of the phase plane; (c) coincided at infinity.

Proof: We shall consider all the cases given by Proposition 2.

Case η > 0. Applying an affine transformation system (1) with a point of
symmetry can be brought [16] to the canonical form

ẋ = a+ gx2 + (h− 1)xy, ẏ = b+ (g − 1)xy + hy2.

For this system we have κ = (1 − g)(h− 1)(g + h)/8. So, the condition κ = 0 yields
(g − 1)(h − 1)(g + h) = 0 and without loss of generality we may assume h = 1.
Indeed, if g = 1 (respectively, g + h = 0) we can apply the linear transformation
x = y1, y = x1 (respectively, x = −y1, y = x1 − y1). Thus, h = 1 and we obtain the
system

ẋ = a+ gx2, ẏ = b+ (g − 1)xy + y2 (2)

which, evidently, possesses two parallel invariant straight lines: gx2 + a = 0 (g2 +
a2 6=0). Clearly we obtain the case (a) (respectively, (b); (c); (d) ) indicated in the
statement of Lemma 1 when ag < 0 (respectively, ag > 0; a = 0; g = 0).

Case η < 0. According to [16] via an affine transformation system (1) can be
brought to the canonical form

ẋ = a+ gx2 + (h+ 1)xy, ẏ = b− x2 + gxy + hy2. (3)
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Table 1

Singular Affine invariant
Characters

Additional conditions for
points conditions determining characters

sdl, sdl, nod, nod H1 ≥ 0
r1r1r1r1 µ>0,W1>0,W2>0 sdl, sdl, foc, foc H1 < 0, ¬(A1)

sdl, sdl, foc, cnt H1 < 0, (A1)

sdl, sdl K < 0
H1 < 0, H3 > 0

nod, nod K>0
H1 =0,H2<0,H3>0
H1 = 0, H2 ≥ 0
H1 > 0, H2 > 0r1r1c1c1 µ < 0, W2 6= 0

K>0,
H1 < 0, H3 < 0

foc, foc
¬(A1)

H1 =0,H2<0,H3<0
H1 > 0, H2 < 0

K>0,
H1 < 0, H3 < 0

cnt, cnt
(A1)

H1 =0,H2<0,H3<0
H1 > 0, H2 < 0

c1c1c1c1
µ > 0 and W2 < 0

— —
or W2 > 0, W1 ≤ 0

r2r2 µ>0,W1>0,W2 =0
sdl-nod, sdl-nod F2 6= 0

cusp, cusp F2 = 0

c2c2 µ>0,W1<0,W2 =0 — —

r4 µ 6=0,W1 =0,W2 =0 — Homogeneous system ([16])

sdl, sdl K < 0

r1r1 µ = 0, W1 > 0
nod, nod K>0 H1 ≥ 0
foc, foc K>0 H1 < 0, ¬(A1)
cnt, cnt K>0 H1 < 0, (A1)

c1c1 µ = 0, W1 < 0 — —

— µ=0,W1 =0, V 6=0 — There are no singular points

— µ=0,W1 =0, V =0 — System is degenerate

For system (3) we have κ = (h+ 1)
[

(h− 1)2 + g2
]

/8, and the condition κ = 0 yields
two subcases: h+ 1 = 0 and h− 1 = g = 0.

Subcase h = −1. The system (3) becomes ẋ = a+ gx2, ẏ = b− x2 + gxy − y2,
which has the parallel lines a+ gx2 = 0.

Subcase h − 1 = g = 0. We obtain the system ẋ = a + 2xy, ẏ = b− x2 + y2,
which possesses the following two couples of imaginary invariant straight lines:

(x− iy)2 = b+ ia, (x+ iy)2 = b− ia.

Case η = 0, M 6= 0. System (1) by means of an affine transformation can be
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brought [16] to the canonical form

ẋ = a+ gx2 + hxy, ẏ = b+ (g − 1)xy + hy2. (4)

For this system we have κ = h2(1 − g)/8 and, hence, the condition κ = 0 implies
either g = 1 or h = 0.

Subcase g = 1. Evidently, in this case system (4) possesses two parallel invariant
straight lines hy2 + b = 0 types of which are governed by parameters h and b.

Subcase h = 0. The system (4) becomes ẋ = a + gx2, ẏ = b+ (g − 1)xy, and
again possesses the invariant straight lines gx2 + a = 0.

Case M = 0, C2 6= 0. Via an affine transformation system (1) with a point of
symmetry can be brought [16] to the canonical form

ẋ = a+ gx2 + hxy, ẏ = b− x2 + gxy + hy2.

For this system we have κ = h3/8 and the condition κ = 0 yields h = 0. This leads
to the system ẋ = a+gx2, ẏ = b−x2 +gxy, which possesses two parallel invariant
straight lines gx2 + a = 0. Lemma 1 is proved.

3 The proof of the Main Theorem

In what follows we assume that the condition κ = 0 is fulfilled.

3.1 Systems with 3 real roots of C2

According to Proposition 2 the condition η > 0 holds. It was shown in the proof
of Lemma 1 that in this case the quadratic system can be brought to the canonical
form

ẋ = a+ gx2, ẏ = b+ (g − 1)xy + y2 (5)

for which we have:

C2 ≡ yp2(x, y) − xq2(x, y) = xy(x− y), µ = g2.

Then we conclude that the intersection point of the line x = 0 (respectively, y = 0;
y = x) with Poincaré’s circumference is a real infinite singular point of system (5),
which we will denote by ˜N1(0, 1, 0) (respectively, ˜N2(1, 0, 0); ˜N3(1, 1, 0)). Since the
conditions η > 0 and µ 6= 0 are fulfilled in accordance with the paper [15] at infinity
there exist one saddle and two nodes on the Poincaré circumference. In what follows
we need to know where exactly the saddle is placed. So, by using the transformation
x = v/z, y = 1/x, dt = zdτ system (5) will be brought to the system

dv

dτ
= −v + v2 + az2 − bvz2,

dz

dτ
= −z + (1 − g)vz − bz3, (6)

whereas applying the transformation x = 1/z, y = u/z, dt = zdτ we obtain the
system

du

dτ
= −u+ u2 + bz2 − auz2,

dz

dτ
= −gz − az3. (7)
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Clearly, the point ˜N1(0, 1, 0) corresponds to the singular point (0, 0) of system (6)
and the point ˜N2(1, 0, 0) (respectively, ˜N3(1, 1, 0)) corresponds to the singular point
(0, 0) (respectively, (1, 0)) of system (7).

Considering the eigenvalues of the corresponding linear matrix for each of these
singular points we obtain, respectively:

˜N1(0, 1, 0) : λ1λ2 = 1; ˜N2(1, 0, 0) : λ1λ2 = g; ˜N3(0, 1, 0) : λ1λ2 = −g.

Hence, we have the next affirmation:

Remark 1. For system (5) with µ 6= 0 the infinite singular point N1(0, 1, 0) is a
node and the point N2(1, 0, 0) (respectively, N3(1, 1, 0)) is a node (respectively, a
saddle) for g > 0 and a saddle (respectively, a node) for g < 0.

Let us emphasize some useful geometrical proprieties of system (5).

Remark 2. For g2 − 1 = 0 system (5) possesses two couples of parallel invariant
straight lines. Moreover, one couple of parallel lines is directed to the node N1(0, 1, 0)
and the second one is directed to the node N2(1, 0, 0) (respectively, node N3(1, 1, 0))
for g = 1 (respectively, g = −1).

Remark 3. For b = 0 (respectively, b = a) system (5) possesses one invariant
straight line which passes through the infinite singular point N2(1, 0, 0) (respectively,
N3(1, 1, 0)).

For system (5) one can calculate

W1 = −24g
[

a(g − 1)2 + 2bg
]

x2 − 48ag (g − 1) xy − 48 agy2,

W2 = 2733ag2
[

a(g − 1)2 + 4bg
]

[(g − 1)x+ 2 y]2 x2,

H1 = 2534 [a(g − 1)(3g − 1) − 4bg]2 , F2 = −4g2,
Discrim(W1) = −2832ag2

[

a(g − 1)2 + 4bg
]

, µ = g2.

(8)

Case W2 > 0. Then a
[

a(g − 1)2 + 4bg
]

> 0, and we obtain Discrim(W1) < 0.
Hence, the quadratic formW1(x, y) became sign definite. Moreover, by (8) we obtain
sign(W1) = −sign(ag). Since ag 6= 0 by applying the transformation

x = αx1, y = αy1, t = α−1t1, (α =
√

|ag−1|), (9)

system (5) can be brought to the following canonical form (we keep the previous
notations):

ẋ = g
(

x2 + Sign(ag)
)

, ẏ = b+ (g − 1)xy + y2. (10)

Subcase W1 > 0. Then ag < 0 and system (10) becomes

ẋ = g
(

x2 − 1
)

, ẏ = b+ (g − 1)xy + y2. (11)

This system possesses two parallel real invariant straight lines: x = ±1. Since by
(8) we have H1 ≥ 0, according to Proposition 3 for W2 > 0, W1 > 0 and H1 ≥ 0
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system (5) has 4 real singular points placed on the invariant straight lines x = ±1
and namely, two saddles and two nodes: M±

1

(

1, y±1
)

, M±

2

(

−1, y±2
)

, where

y±1 =
1 − g ±

√
∆

2
, y±2 =

g − 1 ±
√

∆

2
, ∆ = (g − 1)2 − 4b.

We note that ∆ > 0 because of W2 > 0. The symmetry of the vector field of system
(11) implies the symmetry of the point M+

1 with M−

2 as well as the symmetry of the
point M−

1 with M+
2 . Thus, it is sufficient to determine only the types of the points

M±

1 . It is not difficult to calculate the corresponding eigenvalues and to find out for
each point:

M+
1 : λ1λ2 = 2g

√
∆; M−

1 : λ1λ2 = −2g
√

∆.

1) g < 0. Then the singular point M+
1 (respectively, M−

1 ) is a saddle (respec-
tively, a node), and y+

1 > y−1 . Taking into account the coordinates of the singular
points we observe that the straight line which connects the saddles M+

1 and M−

2

will be

y = Klx, Kl =
1 − g +

√
∆

2
= y+

1 > 0.

Remark 4. It is known ([24], Lemma 11.4) that if the line passing through two
singular points of quadratic system is not an invariant straight line, then it must be
a line without contact except singular points.

In order to determine the position of the separatrices of the saddle M+
1 with

respect to the line y = y+
1 x, we shall determine the direction of the proper vectors

of the linear matrix corresponding to this singular point. So, besides the evident
direction x = 1 we obtain the direction: y = Ksx, Ks = (1−g)y+

1 /(
√

∆−2g) > 0.
It is not difficult to determine that for g < 0 the following relations hold:

Ks < Kl iff g ≤ −1 or − 1 < g < 0, b < −g ⇔ Figure 1;
Ks = Kl iff −1 < g < 0, b = −g ⇔ Figure 2;
Ks > Kl iff −1 < g < 0, b > −g ⇔ Figure 3.

(12)

We observe that for b = −g we obtain y+
1 = 1 and then the line y = x becomes

invariant straight line of system (11) which connects two saddles M+
1 and M−

2 .
Hence we obtain Figure 2.

Taking into consideration Remark 4 we conclude that inside the domain bounded
by the invariant straight lines x = ±1 the separatrix will connect the saddle M+

1

with the node M+
1 for Ks < Kl (Figure 1) and with the infinite node N1(0, 1, 0) for

Ks > Kl (Figure 3).
2) For g > 0 we obtain that the singular point M+

1 (respectively, M−

1 ) is a node
(respectively, a saddle), and y+

1 > y−1 . In the same manner as above we can examine
the directions of the separatrices for the saddle M−

1 . And it is not too hard to
determine that for (g − 1)2 − 2b > 0 and g > 0 the corresponding phase portraits
for the canonical system (11) will be realized if and only if the following conditions
are fulfilled, respectively:
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Figure 1 iff g ≥ 1 or 0 < g < 1 and b < 0;
Figure 2 iff 0 < g < 1, b = 0;
Figure 3 iff 0 < g < 1, b > 0.

(13)

It remains to find out the corresponding affine invariant conditions. For the
system (11) we have

E1 = 384(2b + g)g2(g2 − 1), N1 = (g2 − 1)x2/4,
W3 = −648b(b+ g)(g2 − 1)2x4.

(14)

Taking into consideration (12), (13) and (14) it is not too difficult to obtain the
following correspondence between Figures 1-3 and respective affine invariant condi-
tions:

Figure 1 iff N1 ≥ 0 or N1 < 0 and either W3 < 0 or W3 ≥ 0 and E1 > 0;
Figure 2 iff N1 < 0, W3 = 0, E1 < 0;
Figure 3 iff N1 < 0, W3 > 0, E1 < 0.

Subcase W1 < 0. Then ag > 0 and system (10) becomes

ẋ = g
(

x2 + 1
)

, ẏ = b+ (g − 1)xy + y2. (15)

This system possesses two parallel imaginary invariant straight lines: x = ±i and it
has no real singular points. For system (15) we have

W3 = 648b(g − b)(g2 − 1)2x4,
E1 = 384(g − 2b)g2(g2 − 1),
N1 = (g2 − 1)x2/4.

(16)

1) We assume that the condition N1 6= 0 holds. By Remark 3 system (15) has
one real invariant line for b(b − g)=0. Moreover, considering Remark 1 we obtain
that this line will be a separatrix of infinite saddle if either g < 0 and b = 0 or g > 0
and b = g. By N1 6= 0 from (16) we obtain Figure 4 if either W3 6= 0 or W3 = 0 and
N1E1 > 0 and we obtain Figure 5 for W3 = 0 and N1E1 < 0.

2) If N1 = 0 then g2 − 1 = 0. Since system (15) has a center of symmetry that a
separatrix connection can be only if this separatrix is an invariant straight line. So,
by Remark 2 we conclude that for N1 = 0 the phase portrait of system (15) is given
by Figure 4.

Case W2 < 0. According to Proposition 3 system (5) has not real singular
points and by (8) the condition a

[

a(g − 1)2 + 4bg
]

< 0 holds. Then system (5) has
2 parallel invariant straight lines a+ gx2 = 0 which connect two infinite nodes. So,
we obtain the phase portrait given by Figure 5 (respectively, Figure 4) if there exists
(respectively, does not exist) a separatrix connection of the infinite saddles. As it
was mentioned above since system (5) has a center of symmetry then a separatrix
connection can be only if this separatrix is an invariant straight line. For this system
we have

W3 = 648b(a − b)(g2 − 1)2x4, N1 = (g2 − 1)x2/4,
E1 = 384ag(a − 2b)(g2 − 1),

(17)
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1) If N1 = 0 then g2 − 1 = 0 and by Remark 2 we obtain that there can not
exist a separatrix connection. Therefore we get Figure 4.

2) We assume that the condition N1 6= 0 holds. According to Remark 1 for
g < 0 (respectively, g > 0) the infinite saddle is located at the point N2(1, 0, 0)
(respectively, N3(1, 1, 0)). Therefore, by Remark 2 we obtain a separatrix connection
if and only if either b = 0 and g < 0 or b = a and g > 0. Taking into account (17)
we conclude that the phase portrait of system (5) is given by Figure 5 for W3 = 0
and N1E1 < 0 and it is given by Figure 5 if either W3 6= 0 or W3 = 0 and N1E1 > 0.

Case W2 = 0. Then a
[

a(g − 1)2 + 4bg
]

= 0, and according to (8) we obtain
Discrim(W1) = 0. Therefore, W1(x, y) became sign definite quadratic form and we
shall consider three subcases: W1 > 0, W1 < 0 and W1 = 0.

Subcase W1 > 0. From (8) we obtain g 6= 0 and then µ > 0 and F2 6= 0. By
Proposition 3 system (5) has 2 double singular points which are saddle-nodes. For
this system we have N1 = (g2 − 1)x2/4, E2 = −8ag(g2 − 1).

1) If N1 = 0 then g2 − 1 = 0 and without loss of generality we can assume
g = 1, otherwise the transformation x1 = −x, y1 = y − x and g → −g which keeps
canonical system (5) can be applied. Then we obtain the system

ẋ = a+ x2, ẏ = b+ y2 (18)

for which W2 = 21133abx2y2, W1 = −48(bx2 + ay2). Therefore, the conditions
W2 = 0 and W1 6= 0 yield ab = 0 and a2 + b2 6= 0. We can assume b = 0 (via
changing x ↔ y) and from W1 > 0 we get a < 0. Thus, system (5) possesses 3
invariant lines x = ±√−a and y = 0 as well as 2 saddle-nodes (±√−a, 0). So, we
get the phase portrait given by Figure 6.

2) We assume now that the condition N1 6= 0 holds. Then g2 − 1 6= 0 and we
shall consider two subcases: E2 = 0 and E2 6= 0.

a) If E2 = 0 then by W1N1 6= 0 we obtain a = 0 (then W2 = 0) and from (8)
the condition W1 > 0 yields b < 0. Then the saddle-nodes (0,±

√
−b) of system (5)

are placed on the double invariant straight line x = 0. So, we get again Figure 6.

b) For E2 6= 0 we have a 6= 0 and the condition W2 = 0 yields a(g−1)2 +4bg = 0.
Since g − 1 6= 0 we can substitute for b a new parameter u by setting b = u(g − 1)2

and then we have a = −4gu. Thus, we obtain the system

ẋ = −4gu+ gx2, ẏ = u(g − 1)2 + (g − 1)xy + y2 (19)

for which we have: W2 = 0, W1 = 48ug2 [(g − 1)x+ 2y]2 . Hence, the condition
W1 > 0 yields u > 0. System (19) has 2 real invariant straight lines x = ±2

√
u and

two singular points which are saddle-nodes: M1,2(±2
√
u, ±(1 − g)

√
u). We shall

examine more detailed the singular point M1. After the transformation

x1 = x+
4g

(g − 1)2
y +

2(g + 1)
√
u

g − 1
, y1 = x− 2

√
u and t1 = 4g

√
u t (20)
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which removes this point to the origin of coordinates, we obtain the standard [1]
canonical system

ẋ1 =
1

16g2
√
u

[(g − 1)x1 + (g + 1)y1]
2, ẏ = y1 +

1

4
√
u
y2
1. (21)

Following [1] we obtain ψ(x) = ∆̃2 x
2 + . . . =

(g − 1)2

16g2
√
u
x2 + . . . , and, hence, the

semi-axis y1 = 0, x1 < 0 is one of the separatrices of the saddle-node M1(0, 0)
and other two separatrices are tangent to the axis x1 = 0 at this point.

On the other hand the second saddle-node M2(x0, y0) of system (21) with co-
ordinates x0 = 4(g + 1)

√
u(g − 1), y0 = −4

√
u is placed on the invariant line

y1 = −4
√
u and x0 > 0 for g2 − 1 > 0 and x0 < 0 for g2 − 1 < 0. We observe that

the transformation (20) removed infinite singular point as following:

˜N1(0, 1, 0) → ̂N1(1, 0, 0); ˜N2(1, 0, 0) → ̂N2(1, 1, 0); ˜N3(1, 1, 0) → ̂N3

(

1,
(g − 1)2

(g + 1)2
, 0

)

.

Thus, taking into consideration Remark 1 and the fact that according to Remark 4
M0M1 is a segment without contact, we obtain Figure 7 for N1 > 0 and Figure 8
for N1 < 0.

Subcase W1 < 0. From (8) we obtain g 6= 0 and then µ > 0. Then by Proposition
3 system (5) has 2 double imaginary singular points. Since system (5) has a center of
symmetry then a separatrix connection can be only if this separatrix is an invariant
straight line. We claim that this system can not possesses an invariant straight line
as a separatrix. Indeed, by Remark 3 the condition b(b − a) = 0 must be satisfied.
By (8) the condition W2 = 0 yields a

[

a(g − 1)2 + 4bg
]

= 0. Then a 6= 0, otherwise
for a = 0 the condition b(b− a) = 0 contradicts W1 = −48bg2x2 < 0. Therefore, we
obtain a(g − 1)2 + 4bg = 0.

If b = 0 we obtain g = 1 and by Remark 3 the invariant straight line y = 0 of
system (5) connect two nodes. For b = a we have (g − 1)2 + 4g = (g + 1)2 = 0, i.e.
g = −1 and we again obtain that the invariant line y = x connects two nodes. The
claim is proved. Consequently, we get Figure 4.

Subcase W1 = 0. From (8) we obtain g
[

a(g − 1)2 + 2bg
]

= ag(g − 1) = ag = 0.
1) Assume µ 6= 0. Then by (8) we have g 6= 0 and, hence, a = b = 0. Con-

sequently, system (5) becomes quadratic homogeneous system, which according to
Remark 1 has at infinity two nodes and one saddle. So, we get Figure 9.

1) For µ = 0 from (8) we obtain g = 0 and system (5) becomes

ẋ = a, ẏ = b− xy + y2 (22)

for which we have:
µ = W1 = W2 = 0, V = a2y2(x− y)2 6= 0,
W3 = 648b(a − b)x4, E3 = 24(2b − a).

(23)

Taking into consideration systems (6) and (7) (for g = 0) we conclude that the
singular point N1(0, 1, 0) is a node, and according to [1] the triple singular point
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N2(1, 0, 0) (respectively, N3(1, 1, 0)) is a node (respectively, a saddle) for a > 0 and
a saddle (respectively, a node) for a < 0.

By Remark 3 we conclude that system (22) has an invariant straight line which
connects two infinite saddles if and only if either b = 0 and a < 0 or b = a and
a > 0. So, considering (23) we obtain Figure 5 if W3 = 0, E3 > 0 and Figure 4 if
either W3 6= 0 or W3 = 0 and E3 < 0.

3.2 Systems with 1 real and 2 imaginary roots of C2

According to Proposition 2 the condition η > 0 holds and according to [16] the
system can be brought to the canonical form

ẋ = a+ gx2 + (h+ 1)xy, ẏ = b− x2 + gxy + hy2. (24)

For this system we have

κ = (h+ 1)
[

(h− 1)2 + g2
]

/8, C2 ≡ yp2(x, y) − xq2(x, y) = x(x2 + y2),

N1 = [(g2 − 2h+ 2)x2 + 2g(h + 1)xy + (h2 − 1)y2]/4,
(25)

and, hence, N1(0, 1, 0) is a real infinite singular point of this system. On the other
hand the condition κ = 0 yields two cases: h + 1 = 0 and h − 1 = g = 0 which are
equivalent to N1 6= 0 and N1 = 0, respectively.

Case N1 6= 0. Then h = −1 and we obtain the system

ẋ = a+ gx2, ẏ = b− x2 + gxy − y2, (26)

for which

W1 = −24g
[

a(g2 − 2) − 2bg
]

x2 + 48ag2xy − 48 agy2,

W2 = 2733ag2
[

a(g2 − 4) − 4bg
]

[g x− 2 y]2 x2,

H1 = 2534
[

3ag2 + 4bg + 4a
]2
, F2 = −4g2,

Discrim(W1) = −2832ag2
[

a(g2 − 4) − 4bg
]

, µ = g2.

(27)

If µ 6= 0 then from (27) it follows µ > 0 and since η < 0 the singular point N1(0, 1, 0)
is a node [15].

Subcase W2 > 0. Then a
[

a(g2 − 4) − 4bg
]

> 0 and by (27) we obtain
Discrim(W1) < 0, and, hence, sign(W1) = −sign(ag). Since ag 6= 0 by applying the
transformation (9) we get the system:

ẋ = g
(

x2 + Sign(ag)
)

, ẏ = b− x2 + gxy − y2. (28)

1) If W1 > 0 then ag < 0 and system (28) becomes

ẋ = g
(

x2 − 1
)

, ẏ = b− x2 + gxy − y2. (29)

This system possesses two parallel real invariant straight lines: x = ±1. Since by
(27) we have H1 ≥ 0 according to Proposition 3 for W2 > 0, W1 > 0 and H1 ≥ 0
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system (26) has 4 real singular points located on the invariant straight lines x = ±1
and namely, two saddles and two nodes: M±

1

(

1, y±1
)

, M±

2

(

−1, y±2
)

, where

y±1 = (g ±
√

∆)/2, y±2 = (−g ±
√

∆)/2, ∆ = g2 + 4b− 4 > 0.

For the singular points M±

1 we have λ1λ2 = ∓2g
√

∆. We can assume g > 0 via
the transformation y ↔ −y and t ↔ −t. In this case M+

1 is a saddle and M−

1 is a
node and y+

1 > y−1 . Taking into account the coordinates of the singular points we
observe that the straight line y = y+

1 x connects the saddles M+
1 and M−

2 .
On the other hand the directions of the separatrices of the saddle M+

1 are x = 1

and y = Ksx, whereKs =
gy+

1 − 2

g + 2y+
1

. Therefore,Ks−y+
1 =−

[ (

y+
1

)2
+2

]

/(g+2y+
1 ) < 0

by g > 0. Thus, the located inside the domain −1 < x < 1 separatrix of the sad-
dle M+

1 by Remark 4 must connect this saddle with the node M−

2 . So, we get
Figure 10.

2) Condition W1 < 0 implies ag > 0 and system (28) has no real singular
points. Taking into account the infinite node we obtain Figure 11.

Subcase W2 < 0. According to Proposition 3 system (28) has no real singular
points and we again get Figure 11.

Subcase W2 = 0. Then a
[

a(g2 − 4) − 4bg
]

= 0 and by (27) we obtain
Discrim(W1) = 0. Therefore, W1(x, y) became sign definite quadratic form and
we shall consider three subcases: W1 > 0, W1 < 0 and W1 = 0.

1) If W1 > 0 then from (27) we obtain g 6= 0 and then µ > 0 and F2 6= 0. By
Proposition 3 system (26) has 2 double singular points which are saddle-nodes. For
this system we have E2 = −8ag(g2 + 4).

a) If E2 = 0 then a = 0 and the saddle-nodes are located on the invariant
straight line x = 0 of system (26). So, we obtain Figure 12.

b) For E2 6= 0 we have ag 6= 0 and the condition W1 > 0 by (27) yields ag < 0.
Then we obtain system (29) for which the condition W2 = 0 yields g2 + 4b− 4 = 0.
Therefore, we get the system

ẋ = g
(

x2 − 1
)

, ẏ = 1 − g2/4 − x2 + gxy − y2 (30)

with two real invariant straight lines x = ±1 and two saddle-nodes M1(1, g/2) and
M2(−1,−g/2). We can assume g > 0, otherwise the substitution y ↔ −y, t ↔ −t
and g ↔ −g can by applied. On the line y = gx/2 which connects singular pointsM1

and M2 we have dy/dx = (g2−4)/(4g) and by g > 0 we obtain (g2−4)/(4g)−g/2 =
−(g2 + 4)/(4g) < 0. Consequently, we get Figure 13.

2) For W1 < 0 according to Proposition 3 system (28) has no real singular
points and we obtain Figure 11.

3) Assume W1 = 0. From (27) we obtain g
[

a(g2 − 2) − 2bg
]

= ag = 0.
a) For µ 6= 0 we have g 6= 0 and, hence, a = b = 0. Consequently, system (26)

becomes a quadratic homogeneous system which has a unique real infinite singular
point (a node). So, we get Figure 14.

b) If µ = 0 then from (27) we obtain g = 0 and system (26) becomes

ẋ = a, ẏ = b− x2 − y2
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which has not finite singular points and has one real simple infinite point (a node).
Therefore we obtain Figure 11.

Case N1 = 0. Then by (25) we have h− 1 = g = 0 and we obtain the system

ẋ = a+ 2xy, ẏ = b− x2 + y2, (31)

for which

W1 = −96(bx2 − 2axy + by2), W2 = 21133
(

a2 + b2
) (

x2 + y2
)2
,

µ = −4, K = x2 + y2, F1 = 21334a2 = H1,
F2 = 16 = −H2, H3 = −29b, F3 = −192a.

(32)

Since µ < 0 and η < 0 the singular point N1(0, 1, 0) is a saddle (see,[15]).

Subcase W2 6= 0. Then according to Proposition 3 system (31) has 2 real and 2
imaginary singular points.

1) If H1 6= 0 by (32) we have H1 > 0 and since K > 0 and H2 < 0 according
to Proposition 3 the real points of system (31) are foci. We claim that this system
can not possess limit cycles. Indeed, condition H1 6= 0 yields a 6= 0 and via the
transformation

x1 = sign(a) |a|−1/2x, y1 = |a|−1/2y, t1 = |a|1/2x, b = c2 − 1

4c2

system (31) becomes

ẋ = 1 + 2xy, ẏ = c2 − 1

4c2
− x2 + y2. (33)

This system possesses the following two couples of parallel imaginary invariant
straight lines:

x− iy = ±2c2 + i

2c
, x+ iy = ±2c2 − i

2c
.

Following [6] we construct the first integral of system (33) in the complex form:

(

x−iy− c− i

2c

)i−2c2(
x−iy+ c+

i

2c

)2c2−i(
x+iy− c+

i

2c

)

−i−2c2(
x+iy+ c− i

2c

)i+2c2
.

Then the corresponding real first integral of system (33) can be constructed:

exp
[

− 2arctg
( 4cx+ 8c3y

1+4c4−4c2(x2+y2)

)]

(

1 + 4c4 + 8c3x− 4cy + 4c2(x2 + y2)

1 + 4c4 − 8c3x+ 4cy + 4c2(x2 + y2)

)2c2

.

Since the curve 1+ 4c4 − 4c2(x2 + y2) = 0 is not a particular solution of system (33)
and the identity

1 + 4c2 − 8c3x+ 4cy + 4c2(x2 + y2) = 4c2
(

x− iy − c− i

2c

)(

x+ iy − c+
i

2c

)

holds, we conclude that our claim is proved.
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Taking into account that the line x = 0 is not an invariant straight line of system
(33) we obtain Figure 15.

2) Assume H1 = 0. Then a = 0 and by Proposition 3 system (31) has two
nodes located on the invariant straight line x = 0 for H3 > 0 (Figure 16) and it has
two centers for H3 < 0 (Figure 17).

Subcase W2 = 0. By (32) we have a = b = 0 and system (31) becomes a
homogeneous system with one real invariant straight line which is a separatrix of
the saddle N1(0, 1, 0). Therefore, we obtain Figure 18.

In order to obtain the respective to the case η < 0 conditions from Table 1 the
following Remark has to be taking into account:

Remark 5. For system (26) with κ = 0 from (27) and (32) we obtain:
- condition µ < 0 is equivalent to N1 = 0;
- conditions W2 = 0, W1 6= 0 implies µ > 0;
- condition W1 = 0 implies W2 = 0.

The Main Theorem is proved.
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