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Optimal control for one complex dynamic system, I

Alla Albu, Vladimir Zubov

Abstract. The optimal control problem of the metal solidification in casting is con-
sidered. The process is modeled by a three-dimensional two-phase initial-boundary
value problem of the Stefan type. A numerical algorithm is presented for solving the
direct problem. The optimal control problem was solved numerically using the gradi-
ent method. The gradient of the cost function was found with the help of conjugate
problem. The discreet conjugate problem was posed with the help of Fast Automatic
Differentiation technique.
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1 Introduction

An important class of heat transfer problems is that describing processes in which
the substance under study undergoes phase transitions accompanied by heat release
or absorption (Stefan problems). A key feature of these problems is that they involve
a moving interface between two phases (liquid and solid). The law of motion of the
interface is unknown in advance and is to be determined. It is on this interface that
heat release or absorption associated with phase transitions occurs. The thermal
properties of the substance on the different sides of the moving interface can be
different. Problems of this class are noticeably more complicated than those not
involving phase transitions.

We consider an interesting problem of this class, namely, the optimal control of
the process of solidification in metal casting. Figure 1 shows the experimental setup
for metal solidification. It consists of upper and lower parts. The upper part consists
of a furnace with a mold moving inside. The lower part is a cooling bath consisting of
a large tank filled with liquid aluminum whose temperature is somewhat higher than
the aluminum melting point. The cooling of liquid metal in the furnace proceeds
as follows. On the one hand, the mold is slowly immersed in the low-temperature
liquid aluminum, which causes the solidification of the metal. On the other hand,
the mold gains heat from the walls of the furnace, which prevents the solidification
process from proceeding too fast. The optimal control problem is to choose a regime
of metal cooling and solidification at which the solidification front has a preset shape
(or is close to it) and moves sufficiently slowly (at a speed close to the preset one).

An important part of the optimal control problem is the direct problem (of
finding the temperature at each point of the metal and determining the solidification
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front). We describe the mathematical formulation of the direct problem, its finite-
difference approximation, and a numerical algorithm for solving the direct problem.
The problem was studied for an object of the simplest shape (a parallelepiped) and
for an actual object of practice interest (Fig. 2). While discussing the numerical
results, we give primary attention to the evolution of the solidification front and to
how it is affected by the parameters of the problem.

The control function was approximated by a piecewise constant function. The
minimum value of a cost function was finding numerically with use of gradient
methods. The gradient of the cost function was found with the help of conjugate
problem. The discreet conjugate problem was posed with the help of Fast Automatic
Differentiation technique.

2 Mathematical formulation of the problem

The following optimal control problem of metal solidification in casting is
considered.

A mold with specified outer and inner boundaries is filled with liquid metal (the
longitudinal projections of an actual mold are presented in Fig. 2). The hatched
area in the Fig. 2 depicts the mold wall, and the internal unhatched area shows the
inside space filled with metal. The mold and the metal inside it are heated up to
prescribed temperatures Tform and Tmet, respectively. Next, the mold filled with
metal (which is hereafter referred to as the object) begins to cool gradually under
varying surrounding conditions. The different parts of the mold’s outer boundary are
under different thermal conditions (the laws of heat transfer with the surroundings
are different in these parts). Moreover, the thermal conditions affecting the parts
vary with time.

The process of cooling the object is described by the equation:

ρC
∂T

∂t
=

∂

∂x

(
K

∂T

∂x

)
+

∂

∂y

(
K

∂T

∂y

)
+

∂

∂z

(
K

∂T

∂z

)
, (x, y, z) ∈ Q. (1)

Here x, y, and z are the Cartesian coordinates of a point; t is time; Q is a domain
with a piecewise smooth boundary Γ; T (x, y, z, t) is the substance temperature at
the point with coordinates (x, y, z) at time t; ρ, C and K are the density, heat
capacity, and thermal conductivity of the substance respectively.

The conditions of heat transfer with the surrounding medium are set on the
boundary Γ of Q. As was mentioned above, these conditions depend on the given
surface point and time. However, all the heat transfer conditions can be written in
the general form:

α̃T + β̃Tn = γ̃. (2)

Here α̃, β̃, and γ̃ are given functions of the coordinates (x, y, z) of a point on Γ and

the temperature T (x, y, z, t), and
∂T

∂n
= Tn is the derivative of T in the direction

n – the external normal to the surface Γ. It should be noted that the coefficients
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ρ, C and K in (1) and (2) are different for the metal and the mold. They have the
form:

K(T ) =
{

K1(T ), (x, y, z) ∈ metal,
K2(T ), (x, y, z) ∈ mold,

K1(T ) =





kS , T < T1,
kL − kS

T2 − T1
T +

kST2 − kLT1

T2 − T1
, T1 ≤ T < T2,

kL, T ≥ T2,

K2(T ) =
{

kΦ1 , T ≤ T3,
kΦ2 , T > T3,

ρ(T ) =
{

ρ1(T ), (x, y, z) ∈ metal,
ρΦ, (x, y, z) ∈ mold,

ρ1(T ) =
{

ρS , T < T1,
ρL, T ≥ T2,

C(T ) =
{

C1(T ), (x, y, z) ∈ metal,
cΦ, (x, y, z) ∈ mold,

C1(T ) =
{

cS , T < T1,
cL, T ≥ T2.

The constants cS , cL, cΦ, ρS , ρL, ρΦ, kS , kL, kΦ1 , kΦ2 , T1, T2, and T3 in these
formulas are assumed to be known.

It should be noted that the thermodynamic coefficients have a jump at the metal-
mold interface. Two conditions are set at this surface, namely, the temperature and
the heat flux must be continuous.

Note also that the metal can be simultaneously in two phases: solid and liquid.
The domain separating the phases is determined by a narrow range of temperatures
[T1, T2], in which ρ, C and K change very rapidly.

Thus, the solution to the direct problem consists in determining a function
T (x, y, z, t) that satisfies Eq. (1) in Q, conditions (2) on the outer boundary Γ
of Q, and the continuity conditions for the temperature and the heat flux at the
metal-mold interface.

The optimal control problem is to choose a regime of metal cooling and solidifi-
cation at which the solidification front has a preset shape or is close to it (namely,
a plane orthogonal to the vertical axis of the object) and moves sufficiently slowly
(at a speed close to the preset one). The evolution of the solidification front is af-
fected by numerous parameters (for example, by the furnace temperature, the liquid
aluminum temperature, the depth to which the object is immersed in the liquid
aluminum, the speed at which the mold moves relative to the furnace, etc.). The
solidification front as a function of the velocity of the object is of special interest in
practice.

The speed ũ(t) of the displacement of foundry mold in the melting furnace was
chosen as the control U(t). The cost function is next:

I(U) =
1

t2 − t1

t2∫

t1

∫∫

S

[Zpl(x, y, t)− z∗(t)]2dxdydt. (3)
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Here t1 is the time, when the crystallization front is conceived; t2 is the time, when
the crystallization of metal completes; (x, y, Zpl(x, y, t)) are the real coordinates of
the interface at the time t; (x, y, Z∗(t)) are the desired coordinates of the interface
at the time t; S is the cross section of the mold which is filled by metal. The
control function may be restricted by some prescribed functions U1(t) and U2(t):
U1(t) ≤ U(t) ≤ U2(t).

3 Numerical algorithm for solving the direct problem

The time’s grid is introduced by relations: {tj}, j = 0, J , with the mesh sizes
τ j = tj − tj−1, j = 1, J .

The object being investigated is approximated by the body, which consists of
a finite number of rectangular parallelepipeds. The approximating body is placed
wholly into a certain large parallelepiped. For convenience in the further consider-
ation let us introduce the coordinate system, connected with the moving foundry
mold (see, Fig. 1). Axis Oz let direct vertically upward, the axis Ox will arrange
in the horizontal plane and will direct from left to right, and the axis Oy let select
so the coordinate system Oxyz would be right. The beginning O of this coordinate
system is compatible with the left, nearest to us vertex of the large parallelepiped,
situated on its bottom. In this large parallelepiped a basic non-uniform rectangular
grid is introduced:

{xn}, n = 0, N ; {yi}, i = 0, I; {zl}, l = 0, L;

with the mesh sizes: hx
n = xn+1 − xn, n = 0, N − 1; hy

i = yi+1 − yi, i = 0, I − 1;
hz

l = zl+1 − zl, l = 0, L− 1. This grid is introduced in such a way that all external
surfaces of the approximating body, and also surfaces which separate metal and form
would coincide with the grid surfaces.

Besides the basic grid, the auxiliary grid is built whose surfaces are parallel to
the surfaces of the basic grid and are displaced relative to it with a half-step in all
directions:

x̃0 = x0; x̃n = xn−1 + hx
n−1/2; n = 1, N ; x̃N+1 = xN ;

ỹ0 = y0; ỹi = yi−1 + hy
i−1/2; i = 1, I; ỹI+1 = yI ;

z̃0 = z0; z̃l = zl−1 + hz
l−1/2; l = 1, L; z̃L+1 = zL.

The planes x = x̃n, y = ỹi, and z = z̃l split the object into elementary volumes, or
elementary cells. An elementary cell is assigned by the indices (n, i, l) if the cell’s
vertex nearest to the coordinates origin O coincides with the nodal point (x̃n, ỹi, z̃l).
The volume of such an elementary cell is denoted by Vnil and its outer surface is
denoted by Snil.

Let us assume that the temperature of the medium within an elementary cell is
independent of the spatial coordinates but depends on time. Denote this tempera-
ture by Tnil(t).
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Any elementary cell is either completely filled with a single medium (metal or
mold) or some part is filled with one medium and the remaining part with the other.
Let V 1

nil denote the part of Vnil filled with the metal and V 2
nil denote the part of Vnil

filled with the mold material. Similarly, S1
nil is the part of Snil that is adjacent to

V 1
nil and S2

nil is the part of Snil that is adjacent to V 2
nil.

The algorithm that solves the direct problem is based on the heat balance law
and on the reformulation from the problem in terms of temperature to terms of
enthalpy.

For any volume V with outer boundary S, we have the heat balance law

∫∫∫

V

[
H

(
T (x, y, z, tj+1)

)−H
(
T (x, y, z, tj)

)]
dV =

tj+1∫

tj

∫∫

S

K(T )Tndsdt. (4)

Here, H (T (x, y, z, t)) is the enthalpy function defined as:

H (T (x, y, z, t)) =
{

H1(T ), (x, y, z) ∈ metal,
H2(T ), (x, y, z) ∈ mold,

H1(T ) =





ρScST, T < T1,

ρScS(T2 − T1) + ρSγ

T2 − T1
T − ρSγT1

T2 − T1
, T1 ≤ T < T2,

ρLcL(T − T2) + ρScST2 + ρSγ, T ≥ T2,

(5)

H2(T ) = ρΦcΦT. (6)

Then relation (4) written for an elementary cell indexed by (n, i, l) becomes:
[
V 1

nilH1

(
T j+1

nil

)
+ V 2

nilH2

(
T j+1

nil

)]
−

[
V 1

nilH1

(
T j

nil

)
+ V 2

nilH2

(
T j

nil

)]
=

=

tj+1∫

tj




∫∫

S1
nil

K1(T̃nil(t))(T̃n(t))nilds +
∫∫

S2
nil

K2(T̃nil(t))(T̃n(t))nilds


 dt. (7)

Here T j
nil = Tnil(tj), K1(T̃nil(t))(T̃n(t))nil, and K2(T̃nil(t))(T̃n(t))nil are the heat flux

densities through the cell surface.
The subsequent transformations of (7) are similar to those proposed in [1–3] and

further developed in [4–7].
Let Mnil = V 1

nil/Vnil be the metal volume fraction in the elementary cell indexed
by (n, i, l) and Φnil = V 2

nil/Vnil be the mold volume fraction in this elementary cell.
Define the aggregate enthalpy density in the cell indexed by (n, i, l) at the time

tj as Ej
nil = MnilH1(T

j
nil) + ΦnilH2(T

j
nil). Taking into account (5) and (6), which

define H1(T ) and H2(T ), we obtain an expression for E(T j
nil):

Ej
nil ≡ E(T j

nil) =





anilT
j
nil, T j

nil < T1,

b1
nilT

j
nil − b2

nil, T1 ≤ T j
nil < T2,

d1
nilT

j
nil + d2

nil, T j
nil ≥ T2,
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where
anil = MnilρScS + ΦnilρΦcΦ,

b1
nil = Mnil(ρScS + ρSγ/(T2 − T1)) + ΦnilρΦcΦ, b2

nil = MnilρSγT1/(T2 − T1),

d1
nil = MnilρLcL + ΦnilρΦcΦ, d2

nil = Mnil(ρSγ + (ρScS − ρLcL)T2).

Now, the temperature is defined as a function of Ej
nil (this function is the inverse of

E(T j
nil)):

T j
nil ≡ β(Ej

nil) = βj
nil =





1
anil

Ej
nil, Ej

nil < anilT1,

1
b1
nil

Ej
nil +

b2
nil

b1
nil

, anilT1 ≤ Ej
nil < d1

nilT2 + d2
nil,

1
d1

nil

Ej
nil −

d2
nil

d1
nil

, Ej
nil ≥ d1

nilT2 + d2
nil.

The functions K1(T
j
nil) and K2(T

j
nil) can be expressed in terms of enthalpy:

K1(T
j
nil)≡Ω1(E

j
nil)=





kS , Ej
nil < ρScST1≡E1,

kL − kS

E2 − E1
Ej

nil+
kSE2 − kLE1

E2 − E1
, E1 ≤ Ej

nil < ρS(cST2 + γ)≡E2,

kL, Ej
nil ≥ E2,

K2(T
j
nil)≡Ω2(E

j
nil)=





kΦ1 , Ej
nil <ρΦcΦ(T3 − δ)≡E3,

kΦ2 − kΦ1

E4 − E3
Ej

nil+
kΦ1E4 − kΦ2E3

E4 −E3
, E3≤Ej

nil <ρΦcΦ(T3 + δ)≡E4,

kΦ2 , Ej
nil≥E4,

where δ << T3.
In (7), we proceed from the variable Tnil(t) to Enil(t) and obtain:

Vnil · (Ej+1
nil − Ej

nil) =

tj+1∫

tj




∫∫

S1
nil

A1(Ẽnil(t))ds +
∫∫

S2
nil

A2(Ẽnil(t))ds


 dt, (8)

where A1(Ẽnil(t)) = Ω1(Ẽnil(t))βn(Ẽnil(t)), A2(Ẽnil(t)) = Ω2(Ẽnil(t))βn(Ẽnil(t)).
We introduce the notation

E
j+1/3
nil = Enil

(
tj +

τ j+1

3

)
, E

j+2/3
nil = Enil

(
tj +

2τ j+1

3

)
.

The time discretization of Eq.(8) is based on the Peaceman-Rachford scheme
(see [8]):

Vnil · (Ej+1
nil −Ej

nil)=
2τ j+1

3




∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 1

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 1

3
nil )ds


+

τ j+1

3
×
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×




∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 2

3
nil )ds +

∫∫

S1y+
nil

S
S1y−

nil

A1(E
j
nil)ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j
nil)ds


+

+
2τ j+1

3




∫∫

S1y+
nil

S
S1y−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j+ 2

3
nil )ds


+ (9)

+
τ j+1

3




∫∫

S1z+
nil

S
S1z−

nil

A1(E
j
nil)ds +

∫∫

S2z+
nil

S
S2z−

nil

A2(E
j
nil)ds +

∫∫

S1z+
nil

S
S1z−

nil

A1(E
j+ 1

3
nil )ds+

+
∫

S2z+
nil

S
S2z−

nil

A2(E
j+ 1

3
nil )ds +

∫

S1z+
nil

S
S1z−

nil

A1(E
j+1
nil )ds +

∫

S2z+
nil

S
S2z−

nil

A2(E
j+1
nil )ds


 .

Here S1x+
nil denotes the part of S1

nil that belongs to the plane x = x̃n+1 and S1x−
nil de-

notes the part of S1
nil that belongs to the plane x = x̃n. S1y+

nil , ..., S1z−
nil , S2x+

nil , ..., S2z−
nil

are defined in a similar fashion.
We simultaneously add and subtract VnilE

j+1/3
nil and VnilE

j+2/3
nil on the left-hand

side of (9) and split this equation into three (with respect to the directions x, y
and z), thus, forming the following three subproblems:

(
j = 0, J − 1, n = 0, N, i = 0, I, l = 0, L

)

x− direction

Vnil · (Ej+ 1
3

nil − Ej
nil) =

τ j+1

3




∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 1

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 1

3
nil )ds +

+
∫∫

S1y+
nil

S
S1y−

nil

A1(E
j
nil)ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j
nil)ds +

∫∫

S1z+
nil

S
S1z−

nil

A1(E
j
nil)ds +

∫∫

S2z+
nil

S
S2z−

nil

A2(E
j
nil)ds


 ;

y − direction

Vnil · (Ej+ 2
3

nil − E
j+ 1

3
nil ) =

τ j+1

3




∫∫

S1y+
nil

S
S1y−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j+ 2

3
nil )ds +

+
∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 1

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 1

3
nil )ds +

∫∫

S1z+
nil

S
S1z−

nil

A1(E
j+ 1

3
nil )ds +

∫∫

S2z+
nil

S
S2z−

nil

A2(E
j+ 1

3
nil )ds


 ;
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z− direction

Vnil · (Ej+1
nil −E

j+ 2
3

nil ) =
τ j+1

3




∫∫

S1z+
nil

S
S1z−

nil

A1(E
j+1
nil )ds +

∫∫

S2z+
nil

S
S2z−

nil

A2(E
j+1
nil )ds +

+
∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 2

3
nil )ds +

∫∫

S1y+
nil

S
S1y−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j+ 2

3
nil )ds


 .

The thermal conductivities Ω1(Ẽ
j
nil) and Ω2(Ẽ

j
nil) on internal surfaces of the

elementary cell are approximated as:

Ω1(Ẽ
j
nil)

∣∣∣
S1x+

nil

=
Ω1(E

j
nil) + Ω1(E

j
n+1,il)

2
≡ Rj

n,

Ω1(Ẽ
j
nil)

∣∣∣
S1x−

nil

=
Ω1(E

j
n−1,il) + Ω1(E

j
nil)

2
≡ Rj

n−1,

Ω1(Ẽ
j
nil)

∣∣∣
S1y+

nil

=
Ω1(E

j
nil) + Ω1(E

j
n,i+1,l)

2
≡ R̂j

i ,

Ω1(Ẽ
j
nil)

∣∣∣
S1y−

nil

=
Ω1(E

j
nil) + Ω1(E

j
n,i−1,l)

2
≡ R̂j

i−1.

The notations R̃j
l and R̃j

l−1 for the surfaces S1z+
nil and S1z−

nil and the notations Bj
n,

Bj
n−1, B̂j

i , B̂j
i−1, B̃j

l , and B̃j
l−1 for Ω2(Ẽ

j
nil) are introduced in a similar manner.

For simplicity, the subsequent presentation of the algorithm is given for the
simplest domain – a rectangular parallelepiped.

The derivative βn(E) in the outward normal direction n on Γ are approximated
by the formula: βn(E) = (∇β,n), where, for example,

βn(Ej
nil)

∣∣∣
S1x+

nil

=
βj

n+1,il − βj
nil

hx
n

,
(
n = 0, N − 1; i = 0, I; l = 0, L

)
,

βn(Ej
nil)

∣∣∣
S1x−

nil

= −
βj

nil − βj
n−1,il

hx
n−1

,
(
n = 1, N ; i = 0, I; l = 0, L

)
.

With the notation introduced, the spatial approximation of the first subproblem
inside the domain under consideration can be written as:

E
j+ 1

3
nil −Ej

nil = ωj+1
nil




(
S1x+

nil R
j+ 1

3
n + S2x+

nil B
j+ 1

3
n

)
β

j+ 1
3

n+1,il − β
j+ 1

3
nil

hx
n

−
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−(S1x−
nil R

j+ 1
3

n−1 + S2x−
nil B

j+ 1
3

n−1 )
β

j+ 1
3

nil − β
j+ 1

3
n−1,il

hx
n−1


 + ξj

nil, (10)

(
n = 1, N − 1; i = 1, I − 1; l = 1, L− 1

)
,

where

ωj+1
nil =

τ j+1

3Vnil
, ξj

nil = ωj+1
nil

[(
S1y+

nil R̂j
i + S2y+

nil B̂j
i

) βj
n,i+1,l − βj

nil

hy
i

−

−
(
S1y−

nil R̂j
i−1 + S2y−

nil B̂j
i−1

) βj
nil − βj

n,i−1,l

hy
i−1

+

+
(
S1z+

nil R̃j
l + S2z+

nil B̃j
l

) βj
ni,l+1 − βj

nil

hz
l

−
(
S1z−

nil R̃j
l−1 + S2z−

nil B̃j
l−1

) βj
nil − βj

ni,l−1

hz
l−1

]
.

The relation (10) is valid for internal cells of the domain Q. If any of the
surfaces S1x+

nil , S1x−
nil , ..., S2z−

nil coincides with the outer boundary of the domain, then
the corresponding term in the heat balance equation is approximated taking into
account the boundary conditions. For this purpose, boundary conditions (2) on the
outer boundary Γ are rewritten in the general form:

K(T )Tn|Γ = (r(T )T + q(t))|Γ .

Since

K(T ) =

{
K1(T ), (x, y, z) ∈ S1

nil,

K2(T ), (x, y, z) ∈ S2
nil,

=

{
Ω1(E), (x, y, z) ∈ S1

nil,

Ω2(E), (x, y, z) ∈ S2
nil,

the last expression splits into two equalities:

Ω1(E)βn(E)|Γ = (r1(β(E))β(E) + q1(t))|Γ , (x, y, z) ∈ S1
nil, (11)

Ω2(E)βn(E)|Γ = (r2(β(E))β(E) + q2(t))|Γ , (x, y, z) ∈ S2
nil. (12)

These relations are used to derive a spatial approximation of the heat fluxes on
the outer boundary of the domain. For example, for n = 0, system (10) must be
supplemented by the equality:

E
j+ 1

3
0il − Ej

0il = ωj+1
0il


(S1x+

0il R
j+ 1

3
0 + S2x+

0il B
j+ 1

3
0 )

β
j+ 1

3
1il − β

j+ 1
3

0il

hx
0


+

+S1x−
0il

(
r1(β

j+ 1
3

0il )β
j+ 1

3
0il +q

j+ 1
3

1

)∣∣∣S1x−
0il

+S2x−
0il

(
r2(β

j+ 1
3

0il )β
j+ 1

3
0il +q

j+ 1
3

2

)∣∣∣S2x−
0il

+ξj
0il. (13)

Let the function β(Ej
nil) be represented in the form:

β(Ej
nil) = uj

nilE
j
nil + vj

nil, (14)
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where uj
nil =





1
anil

, Ej
nil < anilT1,

1
b1
nil

, anilT1 ≤ Ej
nil < d1

nilT2 + d2
nil,

1
d1

nil

, Ej
nil ≥ d1

nilT2 + d2
nil,

vj
nil =





0, Ej
nil < anilT1,

b2
nil

b1
nil

, anilT1 ≤ Ej
nil < d1

nilT2 + d2
nil,

−d2
nil

d1
nil

, Ej
nil ≥ d1

nilT2 + d2
nil.

Then Eq. (10) can be rewritten as:

E
j+ 1

3
nil − Ej

nil = ωj+1
nil

S1x+
nil R

j+ 1
3

n + S2x+
nil B

j+ 1
3

n

hx
n

×

×
(

u
j+ 1

3
n+1,ilE

j+ 1
3

n+1,il + v
j+ 1

3
n+1,il − u

j+ 1
3

nil E
j+ 1

3
nil − v

j+ 1
3

nil

)
−

−ωj+1
nil

S1x−
nil R

j+ 1
3

n−1 +S2x−
nil B

j+ 1
3

n−1

hx
n−1

(
u

j+ 1
3

nil E
j+ 1

3
nil +v

j+ 1
3

nil −u
j+ 1

3
n−1,ilE

j+ 1
3

n−1,il−v
j+ 1

3
n−1,il

)
+ξj

nil.

The resulting system of nonlinear algebraic equations for E
j+ 1

3
nil can be written as:

ÂnE
j+ 1

3
n−1,il−ĈnE

j+ 1
3

nil +B̂nE
j+ 1

3
n+1,il+D̂n = 0,

(
n = 1, N ; i = 0, I; l = 0, L

)
. (15)

Coefficients Ân, B̂n, Ĉn, and D̂n are given in ([9]).
Taking into account (14), Eq. (13) for n = 0 is written as:

E
j+ 1

3
0il = n0E

j+ 1
3

1il + m0, i = 0, I, l = 0, L. (16)

The following relation for n = N is derived by analogy with that for n = 0:

E
j+ 1

3
Nil = n1E

j+ 1
3

N−1,il + m1, i = 0, I, l = 0, L. (17)

Coefficients n0,m0, n1, and m1 are given in [9].
The resulting system of nonlinear algebraic equations (15)–(17) is divided into

(I +1)(L+1) subsystems. Each of them has the form of (15)–(17) with fixed indices
i ∈ 0, I and l ∈ 0, L and is solved irrespective of the other subsystems by applying
iteration and tridiagonal Gaussian elimination [8]. The coefficients Ân, B̂n, Ĉn, D̂n,
n0, m0, n1, and m1 in the subsystems are determined by the calculated values of
Ej+ 1

3 at the current iteration step. The value of Ej+ 1
3 at the next iteration step
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is determined by tridiagonal Gaussian elimination. The iteration halts after the
required accuracy was achieved.

The spatial approximations of the second and third subproblems are performed in
a similar manner with the use of the solution obtained for the previous subproblems.

If the considered domain is more complex and consists of a set of different par-
allelepipeds (see Fig. 2), minor modifications of the algorithm described must be
done. It should only be taken into account that the ranges of n, i, and l depend on
the values of the pairs of numbers (i, l), (n, l), and (n, i) respectively.

4 Approximation of boundary conditions

The mold and the metal are cooled via their interaction with the surroundings.
On the one hand, the object is slowly immersed in a liquid medium (aluminum)
of a low temperature, due to which the metal solidifies. On the other hand, the
body receives heat from the walls of the furnace, which slows down the process of
solidification.

Therefore, the individual parts of the outer boundary of the body are in different
thermal conditions. The basic types of thermal conditions at a point of the outer
boundary of the body can be described as follows.

1) The point is in the liquid aluminum. In this case, the following processes have
to be taken into account:
(i) the heat lost by the body due to its own radiation;
(ii) the heat gained from the surrounding liquid aluminum due to its radiation;
(iii) the heat transfer due to conduction between the liquid aluminum and the body.

2) The point is outside the liquid aluminum. In this case, the following processes
have to be taken into account:
(i) the heat lost by the body due to its own radiation;
(ii) the heat gained from the emitting walls of the furnace;
(iii) the heat gained from the emitting surface of the liquid aluminum.

One of the mechanisms of heat transfer in this problem is thermal radiation. It
can be computed as follows.

Consider two small areas (hereafter called elementary) in space (see Fig. 3).
Let 4s and n denote the size of the first area and its normal vector and 4S and
N denote the same characteristics for the second area. Assume that the first area
emits thermal energy diffusely and its emissivity is ε. According to [10], the radiation
energy flux 4q from the first area of temperature TSou through the second area is
calculated as

4q = I

(
n,

r
|r|

)
4s4ω,

where I =
1
π

εσT 4
Sou is the intensity of the emission (σ is the Stefan-Boltzmann

constant), 4ω is the solid angle at which the second area is seen from the center
of the first area, and r is the position vector beginning from the center of the first
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area and ending at the center of the second area (see Fig. 3). The solid angle 4ω is
determined by the formula

4ω =





1
|r|3 (N, r)4S, (N, r) > 0,

0, (N, r) ≤ 0.

Thus,

4q =
I(n, r)(N, r)

|r|4 4s4S.

If radiation is emitted by an extended body s, the radiation energy flux q from
it through the second elementary area is given by:

q = 4S

∫∫

S

(
1
π

εσT 4
Sou

)
(n(y1, y2), r(y1, y2))

|r(y1, y2)|4 (N, r(y1, y2))dsy, (18)

where y = (y1, y2) are local coordinates introduced on the source surface s.
In the space under study, we introduce a Cartesian coordinate system with its

origin at the center of4S and with the basis {e1, e2, e3}. Then the vector N normal
to the second area can be expressed as N = N1e1 +N2e2 +N3e3. The flux q in (18)
is represented by the sum of three fluxes:

q = [N1q1 + N2q2 + N3q3]4S,

where

qi =
∫∫

S

(
1
π

εσT 4
Sou

)
(n(y1, y2), r(y1, y2))

|r(y1, y2)|4 (ei, r(y1, y2))dsy.

The expressions for qi (i = 1, 2, 3) are derived assuming that the source surface is a
rectangle. The basis vectors of the coordinate system are chosen so that they form
a right-hand triple and e1 is orthogonal to the source plane and is directed toward
it. Assume that the source has the size l × h and ξ is the distance from this source
to the second elementary area.

a) The second elementary area is orthogonal to e1 (see Fig. 4). In this case,
N = (1, 0, 0), n = (−1, 0, 0). Then

q1 = M0

[
h√

ξ2 + h2
arctan

(
l√

ξ2 + h2

)
+

l√
ξ2 + l2

arctan

(
h√

ξ2 + l2

)]
,

where M0 =
1
2π

εσT 4
Sou.

b) The second elementary area is orthogonal to e2 (see Fig. 5). In this case,
N = (0, 1, 0), n = (−1, 0, 0). Then

q2 = M0

[
arctan

(
h

ξ

)
− ξ√

ξ2 + l2
arctan

(
h√

ξ2 + l2

)]
.
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c) The second elementary area is orthogonal to e3 (see Fig. 6). In this case,
N = (0, 0, 1), n = (−1, 0, 0). Then

q3 = M0

[
arctan

(
l

ξ

)
− ξ√

ξ2 + h2
arctan

(
l√

ξ2 + h2

)]
.

Now, let’s take a closer look at the description of the boundary conditions
(11) and (12), i.e. at a more detailed description of the functions r1 (β(E)), q1(t),
r2 (β(E)), and q2(t). For the sake of simplicity, the description of these functions is
given for a rectangular parallelepiped.

Consider the face of the parallelepiped which is parallel to the plane Y OZ and is
located closer to the right wall of the furnace (Fig. 1). As noted above, some areas
of this face can be in different thermal conditions.

For the considered face of the object all the cells are filled with the material of
the form. The considered face consists of this cell’s surfaces that are designated as
S2x+

Nil , (i = 0, I, l = 0, L). For the time t = tj , when the cell is located outside of
the liquid aluminum we have:

Ω2(E
j
Nil)βn(Ej

Nil)
∣∣∣
S2x+

Nil

= −σ ·
(
βj

Nil

)4
+ ϕs + ϕa, (19)

where ϕs is the radiation energy flux density of the whole right wall through the
surface S2x+

Nil (let us note that in this case the radiation from the left wall of the
furnace does not fall on the considered face of object), and ϕa is the radiation
energy flux density from the surface of liquid aluminum through this surface. The
values ϕs and ϕa are calculated by the formulas:

ϕs = qs(Xs,YSou−yi +LSou, ZSou−zl +HSou)− qs(Xs,YSou−yi, ZSou−zl +HSou)+

+qs(Xs, YSou − yi, ZSou − zl)− qs(Xs, YSou − yi + LSou, ZSou − zl), (20)

ϕa = qa(Za, Yal − yi + Lal, Xal −Xb + Hal)− qa(Za, Yal − yi, Xal −Xb + Hal). (21)

Here:
Xs is the distance from the surface S2x+

Nil of the considered cell to the nearest wall
of the furnace,
(XB, yi, zl) are the coordinates of center of the surface of the considered cell,
YSou is the ordinate of the lower vertex of the right wall of the furnace, nearest to
the point of origin O of the selected coordinate system,
ZSou is the z-coordinate of the lower bound of the wall of the furnace at the moment
t = tj ,
Xal, Yal are the abscess and the ordinate of the vertex of the surface of aluminum,
nearest to the point of origin O of the selected coordinate system,
Za = zl − Ual is the distance from the surface S2x+

Nil of the considered cell to the
surface of the liquid aluminum,

Ual =





Zal, object did not reach the surface of aluminum,

Zal +
Xb · Yb · Zal

Lal ·Hal −Xb · Yb
, object reached the surface of aluminum,
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Zal = ZSou −Hair,
Xb is the length of the parallelepiped along the Ox axis,
Yb is the length of the parallelepiped along the Oy axis,
Zb is the height of the parallelepiped along the Oz axis,
LSou is the length of the plate of the furnace along the Oy axis,
HSou is the height of the plate of the furnace along the Oz axis,
Hair is the distance from the furnace to the liquid aluminum,
Lal is the length of the aluminum surface along the Oy axis,
Hal is the length of the aluminum surface along the Ox axis.
Functions qs and qa are determined using the following formulas:

qs(ξ, l, h)=Ms ·
[

h√
ξ2 + h2

arctan

(
l√

ξ2 + h2

)
+

l√
ξ2 + l2

arctan

(
h√

ξ2 + l2

)]
, (22)

qa(ξ, l, h) = Ma ·
[
arctan

(
l

ξ

)
− ξ√

ξ2 + h2
arctan

(
l√

ξ2 + h2

)]
, (23)

where Ms =
1
2π

εsσT 4
Sou, Ma =

1
2π

εaσT 4
al, TSou is the temperature of the plate

of the furnace, Tal is the temperature of the liquid aluminum, εs is emissivity of
the wall of the furnace, εa is emissivity of the liquid aluminum.

When the cell is places outside the liquid aluminum then according to (12) and
(19) we have:

r2

(
β(Ej

Nil)
)∣∣∣

S2x+
Nil

= −σ · (βj
Nil)

3, q2(t)|S2x+
Nil

= ϕs + ϕa.

When the cell is places inside the liquid aluminum we have:

Ω2(E
j
Nil)βn(Ej

Nil)
∣∣∣
S2x+

Nil

= −λ · (βj
Nil − Tal)− σ · (βj

Nil)
4 + σ · (Tal)4,

and accordingly

r2

(
β(Ej

Nil)
)∣∣∣

S2x+
Nil

= −
(
σ · (βj

Nil)
3 + λ

)
, q2(t)|S2x+

Nil
= λ · Tal + σ · (Tal)4.

Here λ is the coefficient of heat exchange between the object and the liquid alu-
minum. Boundary conditions for the remaining five faces of the parallelepiped are
approximated analogously. The upper face of the parallelepiped is differed from the
rest because the outer boundary consists of both the cells containing the material
of the form and the cells containing the material of the metal, i.e. in this case both
conditions (11) and (12) operate.

5 Numerical results of solving the direct problem

First, the direct problem was studied for an object of the simplest shape – a
rectangular parallelepiped. This object was used to test and tune the algorithms
proposed for solving the problem.
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The direct problem was also solved for an actual object. Its longitudinal pro-
jections are displayed in Fig. 2. This object had two planes of symmetry and was
located symmetrically in the furnace. It consisted of five parallelepipeds. The exte-
rior view of its quarter is shown in Fig. 7. The object was immersed in the molten
aluminum up to the fourth parallelepiped. The speed ũ(t) of the displacement of
foundry mold was relied equal to zero, when it reached the maximum permissible
depth.

The numerical results presented below were obtained for this object and for the
following parameter values (given in SI units):

ρS = 8200.0, kS = 23.3, cS = 670.0, ρL = 7200.0,
kL = 15.2, cL = 790.0, ρΦ = 2700.0, kΦ1 = 4.7,
kΦ2 = 3.2, cΦ = 780.0, T1 = 1493.15, T2 = 1633.15,
T3 = 1100.15, δ = 20.0, γ = 234000.0, Tmet = 1973.15,
Tform = 1853.15, Lal = 0.500, Hal = 0.300, Hair = 0.070,
TSou = 1823.15, Tal = 1003.15, LSou = 0.450, HSou = 0.535,
λ = 1.0, εs = 0.8, εa = 0.8, Tpl = 0.5(T1 + T2),

Xb =0.07 (the length of a quarter of the casting along the Ox axis),
Yb =0.1 (the length of a quarter of the casting along the Oy axis),
Zb =0.435 (the length of the casting along the Oz axis).

The number tJ which determines the length of the interval of time [0, tJ ] was
selected so that the time during which the complete solidification of the metal in
the foundry mold occurs would not exceed the value tJ for all considered regimes of
the process of crystallization.

In the computation of the direct problem, primary attention was given to the
evolution of the solidification front. The dependance of this evolution as a function of
the velocity of the object is illustrated in Figures 8–15, which show lines of constant
temperature at different times in two cross sections ((a) and (b)) through the object’s
vertical axis of symmetry parallel to the object faces. Since the object is symmetric
about the vertical axis, the figures present only halves of the cross sections. The
light vertical and horizontal lines inside the object separate the metal and the mold.
The light curves show lines of constant temperature, and the heavy curve depicts
the contour line of T = Tpl. It separates the liquid and solid phases in the metal.
The figures with different numbers correspond to different times. Figures 8–11 (first
experiment) illustrate the process of metal solidification in a mold moving relative
to the furnace at the constant speed ũ(t) = 2 mm/min. In the second experiment
(Figures 12–15), the speed was piecewise constant. More specifically, it remained
constant in three time intervals. Over the first time interval, the first (narrowest)
parallelepiped was immersed in the coolant at the speed 20 mm/min. Over the
second and third time intervals, the second and third parallelepipeds were immersed
in the coolant at the speeds 10 and 5 mm/min respectively. Poor results were
obtained when the object moved at a constant low speed. The solidification of the
metal proceeded from two sides (lower and upper). This led to the formation of
bubbles of liquid metal that collapse inside the casting. It should be noted that
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the solidification front was nearly always far from a horizontal plane. In the second
experiment, the solidification front always intersected the metal transversally only
once and was noticeably more similar to a horizontal plane. No bubbles of liquid
metal were observed inside the casting during the entire process.

Acknowledgments. This work was supported by the Russian Foundation for
Basic Research (project no. 08-01-90100-Mol a) and the program ”Leading Scientific
Schools” (project no. NSh-5073.2008.1).
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Fig. 5 Fig. 6

Fig. 7

Fig. 8 a,b Fig. 9 a,b
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Fig. 10 a,b Fig. 11 a,b

Fig. 12 a,b Fig. 13 a,b
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Fig. 14 a,b Fig. 15 a,b
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Conjugate-orthogonality and the complete
multiplication group of a quasigroup
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Abstract. In this note we establish connections between the orthogonality of con-
jugates of a finite or infinite quasigroup and some strictly transitive subsets of the
complete multiplication group of this quasigroup. These connections are used for the
investigation of orthogonality of distinct pairs of conjugates for quasigroups (loops)
from some classes. For finite quasigroups the quasi-identities corresponding to ortho-
gonality of pairs of conjugates are given.
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1 Introduction

A quasigroup is an ordered pair (Q, ·) (or (Q,A)) where Q is a set and (·) (or
(A)) is a binary operation on Q such that each of the equations ay = b and xa = b
is uniquely solvable for any pair of elements a, b in Q. It is known that the multi-
plication table of a finite quasigroup defines a Latin square and six (not necessarily
distinct) conjugates (or parastrophes) are associated with each quasigroup (Latin
square) [1, 12].

Two quasigroups (Q, A) and (Q,B) defined on a set Q are orthogonal if the
system of equations {A(x, y) = a,B(x, y) = b} is uniquely solvable for all a, b ∈ Q.
The notion of orthogonality plays an important role in the theory of Latin squares,
also in the quasigroup theory and in distinct applications.

There is significant interest in the investigation of quasigroups which are orthog-
onal to some their conjugates or two conjugates of which are orthogonal (so called
conjugate-orthogonal or parastrophic-orthogonal quasigroups).

Many articles were devoted to the investigation of various aspects of conjugate-
orthogonal quasigroups. Recall some of them. In [5, 7–9, 11, 16] the spectrum of
conjugate-orthogonal quasigroups (Latin squares) was studied.

Different identities associated with the conjugate-orthogonality and related com-
binatorial designs were considered in [4, 6, 13]. In particular, F. E. Bennet in [6] in-
vestigated the spectrum of the varieties of quasigroups with every one of eight short
conjugate-orthogonal identities (short two-variable identities).

c© G.Belyavskaya, A.Diordiev, 2009
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F.E. Bennet and H. Zhang [10] considered a problem related to the spectrum
of Latin squares where each conjugate is required to be orthogonal to precisely its
transpose from among the other five conjugates.

In [5,15] some quasi-identities of finite parastrophic-orthogonal quasigroups were
established.

In this paper we study properties of multiplication groups of conjugate-orthogonal
quasigroups. In particular, we prove that some strictly transitive subset of the com-
plete multiplicative group of a quasigroup corresponds to orthogonality of any two
from six conjugates of this quasigroup. We also give some quasi-identities related to
the orthogonality of two conjugates of a finite quasigroup (Q,A). The use of a crite-
rion of conjugate-orthogonality in the strictly transitive subset language allows easily
to obtain a number of useful statements with respect to the conjugate-orthogonality
of quasigroups and loops from some classes.

2 Preliminaries

A quasigroup (Q, ·) is finite of order n if the set Q is finite and |Q| = n.
A quasigroup with the left (right) identity f (e) is a quasigroup (Q, ·) such that

fx = x (xe = x) for every x ∈ Q. A loop is a quasigroup (Q, ·) with the identity
e : xe = ex = x for each x ∈ Q [1].

A loop (Q, ·) is called a Moufang loop if it satisfies the identity (zx ·y)x =
z(x · yx) [1].

A quasigroup is called an IP-quasigroup if there exist maps (permutations) Ir

and Il such that (yx) · Irx = y, Ilx · (xy) = y for any x, y ∈ Q [1].
The permutations La, Ra and Ia defined by Lax = ax, Rax = xa and x · Iax = a

for all x ∈ Q are called the left, right and middle translations of a quasigroup (Q, ·)
respectively [1, 3].

The multiplication group or the group associated with M or M(·) of a quasigroup
(Q, ·) (or the group associated with a quasigroup (Q, ·)) is the group generated by
all left and all right translations of (Q, ·): M =< La, Ra | a ∈ Q > [1].

The complete multiplication group M (or the complete group associated with a
quasigroup (Q, ·) [3]) is the group generated by all left, right and middle translations
of this quasigroup: M =< La, Ra, Ia | a ∈ Q >. It is evident that M ⊆ M .

With any quasigroup (Q, ·) the system Σ of six (not necessarily distinct)
conjugates (parastrophes) is associated:

Σ =
{

(·), (·)−1 = (\),−1(·) = (/),−1
(
(·)−1

)
,
(−1(·))−1

, (∗)
}

,

where x · y = z ⇔ x\z = y ⇔ z/y = x ⇔ y ∗ x = z.
It is known [14] that the number of different conjugates in Σ can be 1,2,3 or 6.
If a quasigroup operation is denoted by A, then a quasigroup (Q,A) (or simply

A) has the following system Σ of conjugates:

Σ =
{

A,rA,lA,lrA,rlA,sA
}

.
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Here we use very suitable designation of conjugates of V. D. Belousov from [4], where

rA = A−1, lA =−1A, lrA =−1(A−1), rlA = (−1A)−1, sA = A∗,

A(x, y) = z ⇔ A−1(x, z) = y ⇔−1A(z, y) = x, A∗(x, y) = A(y, x).

Note that (−1(A−1)
)−1 =rlrA =−1

(
(−1A)−1

)
=lrlA =sA

and rrA =llA = A.
In general M(·) 6= Mσ(·), where σ(·) is some conjugate of (·). But V.D. Belousov

proved that the complete multiplication group M (·) is always invariant with respect
to conjugacy as according to [3]

M r(·) =< L−1
a , Ia, Ra >, M l(·) =< I−1

a , R−1
a , L−1

a >,

M lr(·) =< R−1
a , I−1

a , La >, M rl(·) =< Ia, L
−1
a , R−1

a >,

M s(·) =< Ra, La, I
−1
a > for all a ∈ Q.

A quasigroup operation (·) and its inverse operations (\) and (/) are connected
by the identities:

x(x\y) = y, x\xy = y, (y/x)x = y, yx/x = y.

The quasigroup (Q, ·, \, /) is called the primitive quasigroup corresponding to a quasi-
group (Q, ·) [1].

Let Q be a finite or infinite set, A,B be operations on Q, then the right, left
multiplications A ·B, A ◦B of Mann are defined in the following way [2]:

(A ·B)(x, y) = A(x,B(x, y)), (A ◦B)(x, y) = A(B(x, y), y).

If A and B are quasigroups, then A · B (A ◦ B) is always invertible from the
right (from the left), that is the equation (A · B)(a, y) = b ( (A ◦ B)(x, a) = b ) has
a unique solution.

According to the criterion of Belousov [2] two quasigroups (Q,A) and (Q,B) are
orthogonal (shortly, A ⊥ B) if and only if the operation A·rB (A◦lB) is a quasigroup.

3 Orthogonality of a quasigroup to its conjugates and strictly
transitive subsets of the multiplication group

Recall that the set S of maps on a set Q is called strictly transitive (more
precisely, the set S acts on Q strictly transitively) if for any pair of elements
(a, b) ∈ Q2 there exists a unique map α of S such that αa = b.

Let (Q,A) be a quasigroup and (Q,σA) be its conjugate. It is evident that the sets
{La | a ∈ Q} and {Ra | a ∈ Q}, where La, Ra are translations of A (σA), form strictly
transitive subsets in the multiplication group MA of the respective quasigroup.
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We shall show that some strictly transitive subset of the multiplicative group
MA corresponds to the orthogonality A ⊥σA.

It is easy to see that if A ⊥ B, then sA ⊥sB, so we have the following

Proposition 1. Let (Q,A) be a quasigroup. Then

A ⊥rA ⇔sA ⊥rlA, A ⊥lA ⇔sA ⊥lrA, A ⊥rlA ⇔sA ⊥rA,

A ⊥lrA ⇔sA ⊥lA, rA ⊥lA ⇔rlA ⊥lrA, lA ⊥rlA ⇔lrA ⊥rA.

Define the following collection of elements of the multiplication group MA of a
quasigroup (Q,A):

L2 = {L2
x |x ∈ Q}, R2 = {R2

x |x ∈ Q}, RL = {RxLx |x ∈ Q},

LR = {LxRx |x ∈ Q}, RL−1 = {RxL−1
x |x ∈ Q},

where Lxy = A(x, y), Rxy = A(y, x) and the permutations in the products act from
the right to the left.

Theorem 1. Let (Q,A) be a quasigroup. Then

A ⊥rA (sA ⊥rlA) ⇔ L2 is a strictly transitive subset (s.t.subset) of MA;
A ⊥lA (sA ⊥lrA) ⇔ R2 is a s.t.subset of MA;
A ⊥rlA (sA ⊥rA) ⇔RL is a s.t.subset of MA;
A ⊥lrA (sA ⊥lA) ⇔ LR is a s.t.subset of MA;

A ⊥sA ⇔RL−1 is a s.t.subset of MA.

Proof. By the criterion of Belousov A ⊥rA if and only if the operation B(x, y) =
A(x,A(x, y)) is a quasigroup, that is the equation A(x, A(x, a)) = b or L2

xa = b has
a unique solution x for any pair (a, b) ∈ Q2 as the operation B is always invertible
from the right. It means that L2 is a strictly transitive set.

A ⊥lA if and only if the equation A(A(a, y), y) = b or R2
ya = b has a unique

solution y for any pair (a, b) ∈ Q2.

By Proposition 1, A ⊥rlA (sA ⊥rA) if and only if the equations sA(x,A(x, a)) = b,
A(A(x, a), x) = b , RxLxa = b have a unique solution x for any (a, b) ∈ Q2.

Analogously, A ⊥lr A (sA ⊥l A ) if and only if the equations (sA ◦ A)(a, y) =
b, sA(A(a, y), y) = A(y,A(a, y)) = b, LyRya = b have a unique solution y for any
(a, b) ∈ Q2.

A ⊥sA if and only if the equation A(x,lrA(x, a)) = LxR−1
x a = b has a unique

solution since if lrA(x, a) = t, then rA(t, a) = x, A(t, x) = a, t = R−1
x a.

For the orthogonality sA ⊥rlA, sA ⊥lrA the statements follow from Pro-
position 1. ¤
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Note that an analog of Theorem 1 for finite quasigroups was proved
in [15, Theorem 9].

If (Q, ·) is a finite quasigroup then the conditions of conjugate-orthogonality
from Theorem 1 are equivalent to some quasi-identities in the primitive quasigroup
(Q, ·, \, /).

Corollary 1. Let (Q,A) be a finite quasigroup. Then

(·) ⊥r(·) ⇔ x · xz = y · yz ⇒ x = y;
(·) ⊥l(·) ⇔ zx · x = zy · y ⇒ x = y;

(·) ⊥rl(·) ⇔ xz · x = yz · y ⇒ x = y;
(·) ⊥lr(·) ⇔ x · zx = y · zy ⇒ x = y;

(·) ⊥s(·) ⇔ (x\z)x = (y\z)y ⇒ x = y;
or x(z/x) = y(z/y) ⇒ x = y.

Proof follows from Theorem 1 if we take into account that

L−1
x z = x\z, R−1

x z = z/x (1)

and that the strict transitivity of a set of maps S = {α1, α2, . . . , αn} on a finite set
Q means that αix = αjx ⇒ i = j for any x ∈ Q. ¤

These quasi-identities for the finite case were also established in [15, Theorem 10]
and [5, Theorem 1].

From the conditions of conjugate-orthogonality of Theorem 1 some properties of
quasigroups (loops) of distinct classes easy follow.

At first we remind (see, for example, [1,12]) that a quasigroup (Q, ·) is diagonal if
the map x → xx = x2 is a permutation; the left (right) alternative law is x·xy = xx·y
(yx · x = y · xx); the elastic law is xy · x = x · yx; a diassociative loop is a loop any
two elements of which generate a subgroup.

Proposition 2. 1) If a commutative quasigroup (Q,A) is orthogonal to one of its
conjugates different from sA, then it is orthogonal to the rest ones (except sA). If, in
addition, (Q,A) is a loop then it is diagonal.

2) If a quasigroup (Q, A) has the right (left) identity e (f) and A ⊥rA or A ⊥rlA
(A ⊥lA or A ⊥lrA), then it is diagonal.

3) If a quasigroup (Q,A) satisfies the left (right) alternative law and A ⊥r A
(A ⊥lA) then it is diagonal. Conversely, for any diagonal quasigroup with the left
(right) alternative law A ⊥r A (A ⊥l A). For any diagonal and diassociative loop
A ⊥rA and A ⊥lA.

4) If in a quasigroup (Q,A) the elastic law holds, then A ⊥rlA ⇔ A ⊥lrA. If
(Q,A) is a loop with the elastic low and A ⊥rlA, then A is diagonal.

5) Any diagonal Moufang loop (in particular, a diagonal group) (Q,A) is ortho-
gonal to each of its conjugates, except sA.
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Proof. 1) In a commutative quasigroup the equality Rx = Lx holds for each x ∈ Q,
so all collections L2, R2, RL and LR coincide. In a loop (Q, ·) with the identity e
the equations L2

xe = b, x · xe = b, x2 = b have a unique solution x for any b ∈ Q if
(·) ⊥r(·).

2) If (·) ⊥r(·) ( (·) ⊥rl(·)), then the equation L2
xe = b or x2 = b (RxLxe = b or

x2 = b) has a unique solution for any b ∈ Q. Analogously, if (·) ⊥l(·) or (·) ⊥lr(·).
3) If (·) ⊥r(·) ((·) ⊥l(·)), then L2

xa = x ·xa = x2 ·a = b, x2 = b/a (R2
xa = ax ·x =

a · x2 = b, x2 = a\b). Conversely, if (Q, ·) is diagonal and satisfies the left (right)
alternative law then x2 = b ⇒ x2 · a = x · xa = ba = c (x2 = b ⇒ a · x2 = ax · x =
ab = c), where c is any element of Q. Thus, the equation L2

xa = c (R2
xa = c) has a

unique solution for any a, c ∈ Q. If a loop is diassociative, then it satisfies the left
and right alternative lows, so the last statement is true as well.

4) In a quasigroup with the elastic law RL is a strictly transitive set if and only
if LR is a strictly transitive set, since RxLxa = LxRxa. In a loop with elastic low
RxLxe = b ⇒ x2 = b.

5) Any Moufang loop (Q, A) is diassociative and satisfies the left and the right
alternative laws and the elastic low, so A ⊥r A, A ⊥l A and A ⊥rl A by 3),
and A ⊥lr A by 4). It is known that any loop A can not be selforthogonal
(A 6⊥s A). Indeed, the equation RxL−1

x a = a, a 6= e has two solutions x = a
and x = e. ¤

Note that item 5) of Proposition 2 was proved in [5] for finite Moufang loops.
It is known that a Moufang loop (Q,A), just as a group, of odd order is diagonal, so
by Proposition 2 it is orthogonal to each its conjugate, except A∗ (see also [1, 5]).

4 Orthogonality of conjugates of a quasigroup and strictly
transitive subsets of the complete multiplication group

Now we consider conditions for the orthogonality σA ⊥τA, where σA, τA 6= A.
Denote rA = (\), lA = (/), then

R\
xy = y\x = L−1

y x = Ixy, L/
xy = x/y = R−1

y x = I−1
x y, (2)

and
L−1

x R\
x = L−1

x Ix, L/
xLx = I−1

x Lx, R−1
x R\

x = R−1
x Ix, (3)

where y · Ixy = x for any y ∈ Q.
Consider the following collections of permutations of the complete multiplication

group MA of a quasigroup (Q,A):

I−1L = {L/
xLx |x ∈ Q} = {I−1

x Lx |x ∈ Q},
I2 = {(R\

x)2 |x ∈ Q} = {I2
x |x ∈ Q},

IL = {(L/
x)−1Lx |x ∈ Q} = {IxLx |x ∈ Q},

R−1I = {R−1
x R\

x |x ∈ Q} = {R−1
x Ix |x ∈ Q}.



28 G.BELYAVSKAYA, A.DIORDIEV

Theorem 2. Let (Q,A) be a quasigroup. Then
rA ⊥lA (rlA ⊥lrA) ⇔ I−1L is a s.t.subset of MA,

rA ⊥lrA (lA ⊥rlA) ⇔ I2 is a s.t.subset of MA,
rA ⊥rlA ⇔ IL is a s.t.subset of MA,

lA ⊥lrA ⇔R−1I is a s.t.subset of MA.

Proof. By the Belousov criterion and Proposition 1:
lA ⊥r A (rlA ⊥lr A) if and only if the equations lA(x,A(x, a)) = b, L

/
xLxa =

I−1
x Lxa = b have a unique solution x for any (a, b) ∈ Q2. Thus, I−1L is a s.t.subset

of MA.
rA ⊥lr A (lA ⊥rl A) if and only if the equations lA(x,lA(x, a)) = b, (L/

x)2a =
b, I2

xb = a have a unique solution x for any (a, b) ∈ Q2. Thus, I2 is a s.t.subset of
MA.

rA ⊥rlA if and only if the equations rA(x,lA(x, a)) = b, A(x, b) =lA(x, a), Lxb =
L

/
xa = I−1

x a , IxLxb = a have a unique solution x for any (a, b) ∈ Q2. Hence, IL is
a s.t.subset of MA.

And finally, lA ⊥lrA if and only if the equations lA(x,sA(x, a)) = b, A(b, A(a, x)) =
x, rA(b, x) = A(a, x), R

\
xb = Rxa, R−1

x Ixb = a have a unique solution, that is R−1I
is a s.t.subset of MA.

The rest four cases of possible orthogonality of conjugates were considered in
Theorem 1. ¤
Remark 1. The conditions of Theorem 2 can be also obtained from Theorem 1 if
instead of a quasigroup A one takes the corresponding conjugate.

Remark 2. Note that there are quasigroups all subsets of Theorem 1 and Theorem 2
are strictly transitive. All conjugates of these quasigroups are distinct and pairwise
orthogonal. An example of such quasigroup over the field of rational numbers:
xy = 2x + 3y is given by V.D. Belousov in [4, p. 66].

Corollary 2. If (Q, ·) is a finite quasigroup, then
r(·) ⊥l(·) (rl(·) ⊥lr(·)) ⇔ x/(xz) = y/(yz) ⇒ x = y or x\(z\x) = y\(z\y) ⇒ x = y,

r(·) ⊥lr(·) (l(·) ⊥rl(·)) ⇔ (z\x)\x = (z\y)\y ⇒ x = y or
x/(x/z) = y/(y/z) ⇒ x = y,

r(·) ⊥rl(·) ⇔ xz\x = yz\y ⇒ x = y or x\(x/z) = y\(y/z) ⇒ x = y,
l(·) ⊥lr(·) ⇔ (z\x)/x = (z\y)/y ⇒ x = y or x/(zx) = y/(zy) ⇒ x = y.

Proof. Prove the first quasi-identities in every pair of equivalent ones. The second
quasi-identity can be obtained by change of the corresponding strictly transitive set
by the set with inverse permutations and taking into account (2), (3).

I−1L : L
/
xLxz = L

/
yLyz ⇒ x = y or x/(xz) = y/(yz) ⇒ x = y,

I2 : (R\
x)2z = (R\

y)2z ⇒ x = y or (z\x)\x = (z\y)\y ⇒ x = y,
IL : R

\
xLxz = R

\
yLyz ⇒ x = y or (xz)\x = (yz)\y ⇒ x = y,

R−1I : R−1
x R

\
xz = R−1

y R
\
yz ⇒ x = y or (z\x)/x = (z\y)/y ⇒ x = y. ¤
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The following proposition eliminates the orthogonality of some conjugates (σA 6⊥τ

A) for quasigroups of some classes.

Proposition 3. 1) If (Q,A) is a commutative quasigroup, then rA ⊥l A ⇔
rA ⊥rlA ⇔lA ⊥lrA ⇔rlA ⊥lrA and A 6⊥sA, lA 6⊥rlA, rA 6⊥lrA.

2) If a quasigroup (Q,A) has the right (left) identity e (f), then rA 6⊥rlA (lA 6⊥lrA).

3) If (Q, A) is an IP-quasigroup then rA 6⊥rlA and lA 6⊥lrA.

4) For a loop (Q,A) A 6⊥sA and the orthogonality of conjugates from Theorem 2
is impossible.

Proof. 1) The first statements follows from Proposition 1 and Theorem 2 since
in a commutative quasigroup Ix = I−1

x , Rx = Lx, so I−1L = IL and R−1I is a
s.t.subset of MA. if and only if I−1R = IL is a s.t.subset of MA. In a commutative
quasigroup R−1

a x = L−1
a x, so x/a = a\x, (a\x)a = x, (R\

x)2a = (a\x)\x = a for any
x ∈ Q. Hence, I2 is not strictly transitive and so rA 6⊥lrA, lA 6⊥rlA by Theorem 2.
A 6⊥sA in view of Theorem 1 since in this case R−1L = ε (the identity permutation).

2) By Theorem 2 r(·) ⊥rl(·) if and only if the equations R
\
xLxa = b, (xa)\x = b,

xa · b = x, RbRax = x have a unique solution x for any (a, b) ∈ Q2, l(·) ⊥lr (·) if and
only if the equations R−1

x R
\
xa = b, a\x = bx, L−1

a x = Lbx, LaLbx = x have a unique
solution for any (a, b) ∈ Q2. But by a = b = e (a = b = f) ReRex = x (LfLfx = x)
for any x ∈ Q, so r(·) 6⊥rl(·) and l(·) 6⊥lr(·).

3) Let (Q,A) be an IP -quasigroup, then R−1
a = RIra, L−1

a = LIla and RIraRax =
R−1

a Rax = x, LIlaLax = L−1
a Lax = x for any x ∈ Q, so as above rA 6⊥rlA and lA 6⊥lrA.

4) Let (Q, ·) be a loop with the identity e. Then r(·) 6⊥rl(·) and l(·) 6⊥lr(·) by
item 2).

r(·) 6⊥l(·) (rl(·) 6⊥lr(·)) in view of Theorem 2 as I−1
x Lxe = L

/
xLxe = x/(xe) = e

for any x ∈ Q and
r(·) 6⊥lr(·) (l(·) 6⊥rl(·)) by Theorem 2 since I2

xe = R
\
xR

\
xe = (e\x)\x = e for any

x ∈ Q. ¤
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The graded Jacobson radical of associative rings

B. J. Gardner, A. Plant

Abstract. We introduce a consistent definition for the graded Jacobson radical for
group graded rings without unity. We compare the graded Jacobson radical for rings
with unity and those without. We find that for group graded rings, the descriptions
are equivalent.
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Keywords and phrases: Graded ring, Jacobson radical.

In the book of Năstăsescu and Van Oystaeyen [1] on group graded rings, two
equivalent descriptions of the graded Jacobson radical for rings with unity are given.
Several investigations of the graded Jacobson radical have appeared over the last two
decades (see [2–6] or [7] for example) all for rings with unity. In [9] a comprehensive
account of special radicals of graded rings without unity was presented. Unfortu-
nately the descriptions given in the section for the Jacobson radical came (in the
most part) from [1] on group graded rings with unity. After an extensive literature
search, it seems that no actual definition of the graded Jacobson radical for rings
without unity has appeared. The definition given here is the most natural one – the
intersection of the annihilators of all simple graded modules – and it is meaningful
more generally for semigroup graded rings, though for semigroups in general it may
not be a graded ideal.

As an example of a consequence of this investigation, we show that a 1984 result
of Năstăsescu [3] that nJ (R) ⊆ Jgr(R) (for a finite group G of order n ∈ Z+ where
R is a G-graded ring with unity and Jgr is the G-graded Jacobson radical) can be
extended to group graded rings without unity.

1 Unital Extensions of graded rings

By a unital extension of a ring, we mean an embedding of a ring R without unity
into a ring Ru with unity. We do this in the standard way (see [10] for example). We
reserve the use of Ru to always mean the unital extension of R. Thus Ru is made
up of the additive group R

⊕
Z, where Z is the ring of integers. Elements in R

⊕
Z

are denoted by ordered pairs {(r, n) : r ∈ R, n ∈ Z} with componentwise addition
and multiplication defined by

(r, n)(s,m) = (rs + mr + ns, nm)

where r, s ∈ R with n,m ∈ Z.

c© B. J.Gardner, A. Plant, 2009
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Lemma 1 ([8], p.136). Let R be a ring without identity, and let Ru be the standard
unital extension of R. Then J (R) = J (Ru), where J is the Jacobson radical.

For this investigation we require specifically that R be group graded. This allows
us to place the identity element carefully into our graded ring without causing major
offence to the structure of our ring. So we begin with a ring R graded by a group G
with group identity e. Any element r ∈ R can be written uniquely as r =

∑
g∈G rg,

where rg ∈ Rg for each g ∈ G. We embed our G-graded ring R into Ru as above.
We identify R with its copy in Ru and since (0, 1)Rg ⊆ Rg and Rg(0, 1) ⊆ Rg for all
g ∈ G, we can grade Ru by putting the identity element (0, 1) in the e component,
whence Ru becomes G-graded with

Ru = Ru
e ⊕

⊕

g∈G\{e}
Rg.

For any r ∈ R we have

(r, n) = (re, n) +
∑

g ∈ G
g 6= e

(rg, 0).

(Recalling that Re is a subring of R, we can see that the e component in Ru is just
given by the standard unital extension of Re in R.)

2 Graded ideals and modules

Let G be a group or semigroup and suppose I is an ideal (left, right or two-sided)
of a G-graded ring R. Then I is said to be a G-graded ideal if

I =
⊕

g∈G

(I ∩Rg) =
⊕

g∈G

Ig

(so that I as a ring is G-graded). A G-graded left (right, two-sided) ideal M of R is
a G-graded-maximal left (right, two-sided) ideal if M 6= R and M is not contained
in any other proper G-graded left (right, two-sided) ideals of R.

Let G be a group or semigroup. A left module T over a G-graded ring R is a
G-graded left module if there exist additive subgroups Tg of T with

T =
⊕

g∈G

Tg

and RxTy ⊆ Txy for all x, y ∈ G. We suppress the adjective “left” throughout, but
note that a development based on right modules is also possible.

Let G be a group or semigroup. A G-graded module T over a G-graded ring R
is a graded-simple module if T 6= 0 and 0 and T are its only graded submodules.

The annihilator of any G-graded module T is

A(T ) = {a ∈ R : at = 0 for all t ∈ T}.
Annihilators of modules are ideals.
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3 Jgr(R) for rings with unity

We describe the graded Jacobson radical here for group graded rings with unity.
In Section 4 we give an equivalent description of the graded Jacobson radical for
rings without unity.

Let G be a group with identity element e and R a G-graded ring with unity. In
this case the graded Jacobson radical Jgr(R) of R is defined to be the intersection
of all S-graded-maximal left ideals of R.

In [1] the equivalence of other definitions of the graded Jacobson radical of a
group graded ring is shown. One of these defines the graded Jacobson radical as the
intersection of all left annihilators of all G-graded-simple R-modules.

Recently, Abrams and Menini [7] considered the graded Jacobson radical of
graded rings with unity, extending the definition to include semigroup-graded rings.
In this case the graded Jacobson radical is defined to be the intersection of all left
annihilators of all G-graded-simple R-modules.

4 Jgr(R) for rings without unity

The Jacobson radical of a ring without unity has a handful of equivalent descrip-
tions (see [11] for example) including one as the intersection of modular maximal
left ideals. For rings with unity, all ideals are modular and so the wording of the
definition is altered slightly. In both cases, the equivalent definition of the Jacobson
radical as the intersection of all the left annihilators of simple left modules is the
same. It seems then that the natural choice for defining the graded Jacobson radical
for group graded rings without unity is as the intersection of annihilators of simple
modules, coincident with the definition of the graded Jacobson radical in the case
the ring has unity.

For a ring R graded by a semigroup G, we define the graded Jacobson radical of
R as the intersection of left annihilators of all G-graded-simple R-modules. We use
the gr here to indicate a graded structure. It turns out that as long as G is a group,
Jgr(R) is always a graded ideal. For more general semigroups this need not be so.

Example 1 ([9], Example 6). Consider the set S = {(1, 1), (1, 2), (2, 1), (2, 2)} under

(r, s) · (t, u) = (r, u) (r, s, t, u ∈ {1, 2}) .

Then (S, ·) forms a rectangular band. The semigroup ring A = kS with coefficients
in a field k is S-graded in the usual way, that is

A = kS = k(1, 1)⊕ k(1, 2)⊕ k(2, 1)⊕ k(2, 2).

Then the element (1, 1) − (1, 2) annihilates M, for any simple A-module M . (Note
that S ⊆ A as k is unital.) This puts (1, 1) − (1, 2) in Jgr(A). Now let
N = A(1, 1). Then N is a graded-simple A-module but (1, 1) doesn’t annihilate
N . The consequence is that (1, 1) 6∈ Jgr(A). This means that Jgr(A) is actually an
ungraded ideal of A.
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Theorem 1. Let G be a group and let R be a G-graded ring without unity. Then
Jgr(R) = Jgr(Ru) where Jgr is the G-graded Jacobson radical and Ru is the unital
extension of R.

Proof. Any R-module M becomes a unital Ru-module if we define

(r, n)m = rm + nm

for (r, n) ∈ Ru and m ∈ M .

Let Y be a G-graded R-module with Y = ⊕gYg and RhYg ⊆ RYhg. For (re, n) ∈
Ru

e and any yg ∈ Yg we have (re, n)yg = reyg + nyg ∈ Yg and so Y is a G-graded
unital Ru-module. Any G-graded unital Ru-module is a G-graded R-module

Similarly, if K is an G-graded R-submodule of a G-graded R-module M , then
K is a unital G-graded Ru-submodule of the G-graded unital Ru-module M , and
vice versa.

So any G-graded-simple R-module is also a unital G-graded-simple Ru-module,
and vice versa.

Suppose M is any G-graded-simple R-module with left annihilator A(M). Take
any a ∈ A(M). Then a =

∑
g∈G ag. For any h ∈ G, pick an m ∈ Mh (since M is

graded). Then

0 =


∑

g∈G

ag


m =

∑

g∈G

agm

where agm ∈ Mgh for each g ∈ G. Since the sum runs over distinct gh (here G is
a group), we have agm = 0 for all g ∈ G, and so all the homogeneous components
ag ∈ A(M). Thus the annihilator is a G-graded ideal:

A(M) =
⊕

g∈G

Rg ∩ A(M) =
⊕

g∈G

A(M)g.

In the same way the set

A(M)u = {r ∈ Ru : rm = 0 ∀ m ∈ M}
is a graded ideal of Ru.

For any a ∈ A(M), the element (a, 0) ∈ Ru is in A(M)u since (a, 0)m = am = 0,
so, A(M) ⊆ A(M)u. It is clear to see that the elements (a, 0) ∈ Ru behave exactly
as the elements a ∈ R. So to compare A(M) with its unital extension, we need only
consider the e-component.

Suppose there is an (re, n) ∈ J (Ru)\J (R). Then (re, n) ∈ A(M)u
e = A(M)u∩Ru

e

with n 6= 0. Thus for all graded simple R-modules M we have

(re, n)m = rem + nm = 0, for all m ∈ M.
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This means that multiplication of an element in any simple module by re has the
same effect as multiplying by −n ∈ Z. For every prime p, Zp is a simple R-module
with trivial multiplication. It is graded-simple if we let Zp be the e component, with
all other components being equal to zero. For all x ∈ Zp we now have 0 = (re, n)x =
rex + nx = nx, so n is divisible by p. This being so for every p, we conclude that
n = 0.

This means that no extra killers are admitted by unital extension. Hence, if R
is a ring without unity, then Jgr(R) = Jgr(Ru).

As an example of the potential application of Theorem 1 we extend a theorem of
Năstăsescu for finite group graded rings with unity to include rings without unity.

Theorem 2 ([12], [3], Theorem 5.4). Let G be a finite group of order n ∈ Z+ and
let R be a G-graded ring with unity. Then nJ (R) ⊆ Jgr(R) where J (R) is the
Jacobson radical of R and Jgr is the G-graded Jacobson radical.

Corollary 1. Let G be a finite group of order n ∈ Z+ and let R be a G-graded ring
with or without unity. Then nJ (R) ⊆ Jgr(R) where Jgr is the G-graded Jacobson
radical.

Proof. If R is a ring graded by a finite group with unity, then this is just Theorem 2.
Otherwise, applying Lemma 1 and Theorem 1 yields nJ (R) = nJ (Ru) ⊆ Jgr(Ru) =
Jgr(R) which completes the proof.
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Applications of the integral operator to the class
of meromorphic functions
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Abstract. By using the Sălăgean integral operator Inf(z), z ∈ U , we introduce a
class of holomorphic functions denoted by Σk(α, n) and we obtain an inclusion relation
related to this class and some differential subordinations.
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1 Introduction and preliminaries

We denote the complex plane by C and the open unit disc by U

U = {z ∈ C : |z| < 1}

with
.
U = U − {0} .

Let H(U) denote the class of holomorphic functions in U .
For a ∈ C and n ∈ N∗ we have

H[a, n] = {f ∈ H(U) : f(z) = a + anzn + . . . , z ∈ U} ,

An =
{
f ∈ H(U) : f(z) = z + an+1z

n+1 + . . . , z ∈ U
}

with A1 = A.
For integer k ≥ 0, denote by Σk the class of meromorphic functions, defined in

.
U , which are of the form

f(z) =
1
z

+
∞∑

n=k

anzn.

A function f ∈ H(U) is said to be convex if it is univalent and f(U) is a convex

domain. The function f is convex if and only if f ′(0) 6= 0 and Re
[
zf ′′(z)
f ′(z)

+ 1
]

> 0,

for z ∈ U (see [2]).
We denote

K =
{

f ∈ A, Re
[
zf ′′(z)
f ′(z)

+ 1
]

> 0, z ∈ U

}

the set of convex functions.

c© Camelia Mădălina Bălăeţi, 2009
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Let f and g be two analytic functions in U . The function f is said to be subor-
dinate to g, written f ≺ g or f(z) ≺ g(z), if there exists a function w analytic in U ,
with w(0) = 0 and |w(z)| < 1, and such that f(z) = g(w(z)), z ∈ U .

If g is univalent, then f ≺ g if f(0) = g(0) and f(U) ⊂ g(U).

Definition 1 ([2]). Let ψ : C3×U → C and let h be univalent in U . If p is analytic
in U and satisfies the (second-order) differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U (1)

then p is called a solution of the differential subordination. The univalent function
q is called a dominant of the solutions of the differential subordination, if p ≺ q for
all p satisfying (1). A dominant

∼
q that satisfies

∼
q ≺ p for all dominants q of (1) is

said to be the best dominant of (1).

Note that the best dominant is unique up to a rotation of U .
If we require the more restrictive condition p ∈ H[a, n], then p will be called an

(a, n) solution, q an (a, n) dominant and
∼
q the best (a, n) dominant.

We will need the following lemma, which is due to D. J. Hallenbeck and
St.Ruscheweyh.

Lemma 1 ([1]). Let h be a convex in U , with h(0) = a, γ 6= 0 and Reγ ≥ 0. If
p ∈ H[a, n] and

p(z) +
zp′(z)

γ
≺ h(z), z ∈ U

then
p(z) ≺ q(z) ≺ h(z)

where
q(z) =

γ

nz
γ
n

∫ z

0
h(t)t

γ
n
−1dt.

The function q is convex and it is the best (a, n) dominant.

The following lemma is due to S. S. Miller and P.T. Mocanu.

Lemma 2 ([3]). Let q be a convex function in U and let

h(z) = q(z) + nβzq′(z)

where β > 0 and n is a positive integer. If p ∈ H[q(0), n] and

p(z) + βzp′(z) ≺ h(z),

then
p(z) ≺ q(z)

and this result is sharp.
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Lemma 3 ([2]). Let f ∈ A, γ > 1 and F is given by

F (z) =
1 + γ

z
1
γ

∫ z

0
f(t)t

1
γ
−1

dt.

If

Re
zf ′′(z)
f ′(z)

+ 1 > −1
2
, z ∈ U

then F ∈ K.

Definition 2 ([5]). For f ∈ H(U), f(0) = 0 and n ∈ N we define the operator
Inf by

I0f(z) = f(z),

I1f(z) = If(z) =
∫ z

0
f(t)t−1dt,

Inf(z) = I[In−1f(z)], z ∈ U.

Remark 1. For n = 1, Inf is the Alexander operator.

Remark 2. If we denote l(z) = − log(1− z), then

Inf(z) = [(l ∗ l ∗ · · · ∗ l)︸ ︷︷ ︸
n−times

∗f ](z), f ∈ H(U), f(0) = 0.

By ” ∗ ” we denote the Hadamard product or convolution (i.e. if f(z) =∑∞
j=0 ajz

j , g(z) =
∑∞

j=0 bjz
j , then (f ∗ g)(z) =

∑∞
j=0 ajbjz

j).

Remark 3. Inf(z) =
∫ z
0

∫ tn
0 . . .

∫ t2
0

f(t1)
t1t2...tn

dt1dt2 . . . dtn.

Remark 4. DnInf(z) = InDnf(z) = f(z), f ∈ H(U), f(0) = 0, where Dnf is the
Sălăgean differential operator.

2 Main results

Definition 3. If 0 ≤ α < 1, k positive integer and n ∈ N, let Σk(α, n) denote the
class of functions f ∈ Σk which satisfy the inequality

Re
[
In(z2f(z))

]′
> α, z ∈ U̇ . (2)
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Theorem 1. If 0 ≤ α < 1, k positive integer and n ∈ N, then

Σk(α, n) ⊂ Σk(δ, n + 1), (3)

where

δ = δ(α, n) = 2α− 1 + 2(1− α)
1

k + 1
β

(
1

k + 1

)

and

β(x) =
∫ z

0

tx−1

1 + t
dt.

Proof. Assume that f ∈ Σk(α, n). By using the properties of the operator Inf we
have

In(z2f(z)) = z
[
In+1(z2f(z))

]′
, z ∈ U̇ . (4)

Differentiating this equality, we obtain
[
In(z2f(z))

]′ = [
In+1(z2f(z))

]′ + z
[
In+1(z2f(z))

]′′
. (5)

If we let [
In+1(z2f(z))

]′ = p(z)

with p(z) ∈ H[1, k + 1], z ∈ U̇ , then (5) becomes

[
In+1(z2f(z))

]′ = p(z) + zp′(z), z ∈ U̇ .

Since f ∈ Σk(α, n), from Definition 3 we have

Re[p(z) + zp′(z)] > α, z ∈ U̇

which is equivalent to

p(z) + zp′(z) ≺ 1 + (2α− 1)z
1 + z

≡ h(z), z ∈ U̇ .

Therefore, from Lemma 1 for γ = 1, it results that

p(z) ≺ q(z) ≺ h(z), z ∈ U̇ ,

where

q(z) =
1

(k + 1)z
1

k+1

∫ z

0

1 + (2α− 1)t
1 + t

t
1

k+1
−1dt

= (2α− 1) + 2(1− α)
1

k + 1
β

(
1

k + 1

)
1

z
1

k+1

.

Moreover, the function q is convex and is the best dominant.
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From p(z) ≺ q(z), z ∈ U̇ it results that

Rep(z) > Req(1) = δ = (2α− 1) + 2(1− α)
1

k + 1
β

(
1

k + 1

)
.

But [
In+1(z2f(z))

]′ = p(z)

and
Re

[
In+1(z2f(z))

]′
> δ,

from Definition 3 we have f ∈ Σk(δ, n + 1).

Theorem 2. Let q be a convex function, q(0) = 1 and let h be a function such that

h(z) = q(z) + z(k + 1)q′(z), z ∈ U.

If f ∈ Σk(α, n) and satisfies the differential subordination

[
In(z2f(z))

]′ ≺ h(z), z ∈ U̇ (6)

then [
In+1(z2f(z))

]′ ≺ q(z), z ∈ U̇

and this result is sharp.

Proof. By using the properties of the operator Inf we have

In(z2f(z)) = z
[
In+1(z2f(z))

]′
, z ∈ U̇ . (7)

By differentiating (7), we obtain

[
In(z2f(z))

]′ = [
In+1(z2f(z))

]′ + z
[
In+1(z2f(z))

]′′
. (8)

If we let [
In+1(z2f(z))

]′ = p(z),

with p(z) ∈ H[1, k + 1] then we obtain

p(z) + zp′(z) ≺ h(z) = q(z) + z(k + 1)q′(z), z ∈ U̇ .

By using Lemma 2 for β = 1, we have

p(z) ≺ q(z), z ∈ U̇ ,

or [
In+1(z2f(z))

]′ ≺ q(z), z ∈ U̇

and this result is sharp.
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Theorem 3. Let q be a convex function with q(0) = 1 and

h(z) = q(z) + z(k + 1)q′(z), z ∈ U.

If f ∈ Σk(α, n) and satisfies the differential subordination
[
In(z2f(z))

]′ ≺ h(z), z ∈ U̇ (9)

then
In(z2f(z))

z
≺ q(z), z ∈ U̇

and this result is sharp.

Proof. We let

p(z) =
In(z2f(z))

z
, z ∈ U̇ . (10)

By differentiating this relation, we obtain
[
In(z2f(z))

]′ = p(z) + zp′(z), z ∈ U̇ .

Then (9) becomes

p(z) + zp′(z) ≺ h(z) = q(z) + z(k + 1)q′(z), z ∈ U̇ .

By using Lemma 2 we have

p(z) ≺ q(z), z ∈ U̇

i.e.
In(z2f(z))

z
≺ q(z), z ∈ U̇

and this result is sharp.

Theorem 4. Let h ∈ H(U), with h(0) = 1, and h′(0) 6= 0 which satisfies the
inequality

Re
[
1 +

zh′′(z)
h′(z)

]
> −1

2
, z ∈ U.

If f ∈ Σk(α, n) and satisfies the differential subordination
[
In(z2f(z))

]′ ≺ h(z), z ∈ U̇ (11)

then [
In+1(z2f(z)

]′ ≺ g(z), z ∈ U̇

where
q(z) =

1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U. (12)

The function q is convex and it is the best (1, k + 1) dominant.
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Proof. By applying Lemma 3 for the function given by (12) and function h, for
γ = k + 1, we obtain that the function q is convex.

By using the properties of the operator Inf we let

In(z2f(z)) = z
[
In+1(z2f(z))

]′
, z ∈ U̇ . (13)

If we let [
In+1(z2f(z))

]′ = p(z)

with
p(z) ∈ H[1, k + 1]

and differentiating (13) we obtain

[
In(z2f(z))

]′ = p(z) + zp′(z), z ∈ U̇

and (11) becomes
p(z) + zp′(z) ≺ h(z), z ∈ U̇ .

By using Lemma 1 for γ = 1 and n = k + 1 we have

p(z) ≺ q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U,

i.e. [
In(z2f(z))

]′ ≺ q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U.

Moreover the function q is the best (1, k + 1) dominant.

Theorem 5. Let h ∈ H(U) with h(0) = 1, h′(0) 6= 0, which verifies the inequality

Re
[
1 +

zh′′(z)
h′(z)

]
> −1

2
, z ∈ U.

If f ∈ Σk(α, n) and satisfies the differential subordination

[
In(z2f(z))

]′ ≺ h(z), z ∈ U̇ (14)

then
In(z2f(z))

z
≺ q(z), z ∈ U̇

where

q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U.

The function q is convex and is the best (1, k + 1) dominant.
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Proof. We let

p(z) =
In(z2f(z))

z
, z ∈ U̇ (15)

with p(z) ∈ H[1, k + 1].
By differentiating (15), we obtain

[
In(z2f(z))

]′ = p(z) + zp′(z), z ∈ U̇ , (16)

then (14) becomes
p(z) + zp′(z) ≺ h(z), z ∈ U̇ .

By using Lemma 1, we have

p(z) ≺ q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U,

i.e. [
In(z2f(z))

]′ ≺ q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U.

Moreover the function q is the best (1, k + 1) dominant.
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Abstract. The article is devoted to the study of global attractors of quasi-linear
non-autonomous difference equations. The results obtained are applied to the study of
a triangular economic growth model T : R2

+ → R2
+ recently developed in S. Brianzoni,

C.Mammana and E.Michetti [1].
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1 Introduction

Global attractors play a very important role in the qualitative study of difference
equations (both autonomous and non-autonomous). The present work is dedicated
to the study of global attractors of quasi-linear non-autonomous difference equations

un+1 = A(σnω)uk + F (uk, σ
nω), (1)

where Ω is a metric space (generally speaking non-compact), (Ω,Z+, σ) is a dynami-
cal system with discrete time Z+, A ∈ C(Ω, [E]) and the function F ∈ C(E ×Ω, E)
satisfies ”the condition of smallness”. An analogous problem has been studied in
D.Cheban and C. Mammana [5] when the space Ω is compact.

The results obtained are applied to the study of a class of triangular maps
T = (T1, T2) describing an economic growth model in capital accumulation and
population growth rate as recently proposed by S. Brianzoni, C. Mammana and
E.Michetti [1] 1.

2 Global attractors of dynamical systems

2.1 Triangular maps and non-autonomous dynamical systems

Let W and Ω be two complete metric spaces and denote by X := W × Ω its
Cartesian product. Recall that a continuous map F : X → X is called triangular if

c© D.Cheban, C.Mammana, E.Michetti, 2009
1The authors consider the neoclassical one–sector growth model with differential savings as in

V.Bohm and L.Kaas [3], while assuming CES production function and the labour force dynamic
described by the Beverton–Holt equation (see [2]), that has been largely studied in [7] and [8].

45
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there are two continuous maps f : W ×Ω → W and g : Ω → Ω such that F = (f, g),
i.e. F (x) = F (u, ω) = (f(u, ω), g(ω)) for all x =: (u, ω) ∈ X.

Consider a system of difference equations
{

un+1 = f(un, ωn),
ωn+1 = g(ωn)

(2)

for all n ∈ Z+, where Z+ is the set of all non-negative integer numbers.
Along with system (2) we consider the family of equations

un+1 = f(un, gnω) (ω ∈ Ω), (3)

which is equivalent to system (2). Let ϕ(n, u, ω) be a solution of equation (3)
passing through the point u ∈ W for n = 0. It is easy to verify that the map
ϕ : Z+ ×W × Ω → W ((n, u, ω) 7→ ϕ(n, u, ω) ) satisfies the following conditions:

(i) ϕ(0, u, ω) = u for all u ∈ W and ω ∈ Ω;

(ii) ϕ(n+m,u, ω) = ϕ(n, ϕ(m,u, ω), σ(m,ω)) for all n,m ∈ Z+, u ∈ W and ω ∈ Ω,
where σ(n, ω) := gnω;

(iii) the map ϕ : Z+ ×W × Ω → W is continuous.

Denote by (Ω,Z+, σ) the semi-group dynamical system generated by the positive
powers of map g : Ω → Ω, i.e. σ(n, ω) := gnω for all n ∈ Z+ and ω ∈ Ω.

Recall [4, 9] that a triple 〈W,ϕ, (Ω,Z+, σ)〉 (or briefly ϕ) is called a cocycle over
the dynamical system (Ω,Z+, σ) with fiber W if the mapping ϕ : Z+ ×W ×Ω → Ω
possesses the properties (i)-(iii).

Let X := W and (X,Z+, π) be a dynamical system on X, where π(n, (u, ω)) :=
(ϕ(n, u, ω), σ(n, ω)) for all u ∈ W and ω ∈ Ω, then (X,Z+, π) is called [9] a skew-
product dynamical system, generated by the cocycle 〈W,ϕ, (Ω,Z+, σ)〉.

Taking into consideration this fact, we can study triangular maps in the frame-
work of cocycles with discrete time.

2.2 Global attractors of autonomous dynamical systems

A dynamical system (X,T, π) is called compact dissipative if there exists a
nonempty compact subset K ⊆ X such that

lim
t→+∞ ρ(xt,K) = 0; (4)

for all x ∈ X and the equality (4) takes place uniformly w.r.t. x on the compact
subsets from X.

For compact dissipative dynamical system (X,T, π) we denote by

J := Ω(K) =
⋂

t≥0

⋃

τ≥t

πτK,
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then the set J does not depend on the choice of the attractor K and is characterized
by the properties of the dynamical system (X,T, π) . The set J is called a Levinson
center of the dynamical system (X,T, π).

Let E be a finite-dimensional Banach space and 〈E, ϕ, (Ω,Z+, σ)〉 be a cocycle
over (Ω,Z+, σ) with the fiber E (or shortly ϕ).

A cocycle ϕ is called:

– dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

|ϕ(t, u, ω)| ≤ r (5)

for all ω ∈ Ω and u ∈ E;

– uniform dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

sup
ω∈Ω′ ,|u|≤R

|ϕ(t, u, ω)| ≤ r

for all compact subsets Ω
′ ⊆ Ω and R > 0.

Let (X,T, π) be a dynamical system and x ∈ X. Denote by ωx := ∩t≥0∪τ≥tπ(τ, x)
the ω-limit set of point x.

Theorem 1 ([6]). If the dynamical system (Ω,Z+, σ) is compact dissipative and the
cocycle ϕ is uniform dissipative, then the skew-product dynamical system (X,Z+, π)
is compact dissipative.

2.3 Global attractors of quasi-linear triangular systems

Consider a difference equation

un+1 = f(un, σnω) (ω ∈ Ω). (6)

Denote by ϕ(n, u, ω) a unique solution of equation (6) with the initial condition
ϕ(0, u, ω) = u.

Equation (6) is said to be dissipative (respectively, uniformly dissipative), if a
cocycle ϕ, generated by equation (6), is dissipative (respectively, uniformly dissipa-
tive), i.e. there exists a positive number r such that

lim sup
n→+∞

|ϕ(n, u, ω)| ≤ r (respectively, lim sup
n→+∞

sup
ω∈Ω′ ,|u|≤R

|ϕ(n, u, ω)| ≤ r)

for all u ∈ E and ω ∈ Ω (respectively, for all R > 0 and Ω
′ ∈ C(Ω)).

Consider a quasi-linear equation

un+1 = A(σnω)uk + F (uk, σ
nω), (7)

where A ∈ C(Ω, [E]) and the function F ∈ C(E × Ω, E) satisfies ”the condition of
smallness”.

Denote by U(k, ω) the Cauchy matrix for the linear equation

un+1 = A(σnω)uk.
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Theorem 2. Suppose that the following conditions hold:

1. there are positive numbers N and q < 1 such that

‖U(n, ω)‖ ≤ Nqn (n ∈ Z+); (8)

2. |F (u, ω)| ≤ C + D|u| (C ≥ 0, 0 ≤ D < (1− q)N−1) for all u ∈ E and ω ∈ Ω.

Then equation (7) is uniform dissipative and

|ϕ(n, u, ω)| ≤ (q + DN)n−1qN |u|+ CN

q − 1
(qn−1 − 1). (9)

Proof. This statement can be proved using the same type of arguments as in the
proof of Theorem 5.2 from [5] (see also [6]) and we omit the details.

Theorem 3. Let (Ω,Z+, σ) be a compact dissipative dynamical system and ϕ be
a cocycle generated by equation (7). Under the conditions of Theorem 2 the skew-
product dynamical system (X,Z+, π), generates by cocycle ϕ admits a compact global
attractor.

Proof. This statement follows directly from Theorems 1 and 2.

Theorem 4 ([6]). Let A ∈ C(Ω, [E]) and F ∈ C(E × Ω, E) and the following
conditions be fulfilled:

1. the dynamical system (Ω,Z+, σ) is compact dissipative and JΩ its Levinson
center;

2. positive numbers N and q < 1 exist such that inequality (8) holds;

3. C > 0 exists such that |F (0, ω)| ≤ C for all ω ∈ Ω;

4. |F (u1, ω) − F (u2, ω)| ≤ L|u1 − u2| (0 ≤ L < N−1(1 − q)) for all ω ∈ Ω and
u1, u2 ∈ E.

Then

1. the equation (7) (the cocycle ϕ generated by this equation) admits a compact
global attractor;

2. there are two positive constants N and ν < 1 such that

|ϕ(n, u1, ω)− ϕ(n, u2, ω)| ≤ Nνn|u1 − u2| (10)

for all u1, u2 ∈ E and n ∈ Z+.



GLOBAL ATTRACTORS OF NON-AUTONOMOUS DIFFERENCE EQUATIONS 49

3 Non-Autonomous Dynamical Systems with Convergence

〈(X,T1,π),(Y,T2,σ),h〉 is said to be convergent if the following conditions are
valid:

1. the dynamical systems (X,T1, π) and (Y,T2, σ) are compactly dissipative;

2. the set JX
⋂

Xy contains at most one point for all y ∈ JY , where Xy :=
h−1(y) := {x|x ∈ X,h(x) = y} and JX (respectively, JY ) is the Levinson
center of the dynamical system (X,T1, π) (respectively, (Y,T2, σ)).

Theorem 5 ([4, Ch.II]). Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dyna-
mical system and the following conditions be fulfilled:

1. the dynamical system (Y,T2, σ) is compact dissipative and JY its Levinson
center;

2. there exists a homomorphism γ from (Y,T2, σ) to (X,T1, π) such that
h ◦ γ = IdY ;

3. lim
t→+∞ ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ X (h(x1) = h(x2)).

Then

1. the dynamical system (X,T1, π) is compactly dissipative and γ(JY ) = JX ;

2. Jy consists a single point γ(y) for all y ∈ JY .

Theorem 6. Let A ∈ C(Ω, [E]) and F ∈ C(E ×Ω, E) and the following conditions
be fulfilled:

1. the dynamical system (Ω,Z, σ) is compact dissipative and JΩ its Levinson
center;

2. there exist positive numbers N and q < 1 such that inequality (8) holds;

3. there exists C > 0 such that |F (0, ω)| ≤ C for all ω ∈ Ω;

4. |F (u1, ω) − F (u2, ω)| ≤ L|u1 − u2| (0 ≤ L < N−1(1 − q)) for all ω ∈ Ω and
u1, u2 ∈ E.

Then

1. the equation (7) (the cocycle ϕ generated by this equation) admits a com-
pact global attractor {Iω | ω ∈ JΩ} and Iω consists of a single point uω (i.e.
Iω = {uω}) for all ω ∈ JΩ;

2. the mapping ω 7→ uω is continuous and ϕ(t, uω, ω) = uσ(t,ω) for all ω ∈ JΩ and
t ∈ Z;
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3. there are two positive constants N and ν < 1 such that

|ϕ(n, u1, ω)− ϕ(n, u2, ω)| ≤ Nνn|u1 − u2| (11)

for all u1, u2 ∈ E and n ∈ Z+;

4.
|ϕ(n, u, ω)− uσnω| ≤ Nνn|u− uω| (12)

for all u ∈ E, ω ∈ JΩ and n ∈ Z+.

Proof. Let 〈E, ϕ, (Ω,Z, σ)〉 be the cocycle generated by equation (7) and Cb(Ω, E)
be the space of all continuous and bounded functions µ : Ω 7→ E equipped with the
sup-norm. For every n ∈ Z+ we define the mapping Sn : Cb(Ω, E) 7→ Cb(Ω, E) by
equality (Snµ)(ω) := ϕ(n, µ(σ(−n, ω)), σ(−n, ω)) for all ω ∈ Ω. It easy to verify
that the family of mappings {Sn | n ∈ Z+} forms a commutative semigroup. From
the inequality (9) it follows that Snµ ∈ Cb(Ω, E) for every µ ∈ Cb(Ω, E) and n ∈ Z+.
On the other hand from the inequality (10) we have

‖Snµ1 − Snµ2‖ ≤ Nνn‖µ1 − µ2‖

for all µ1, µ2 ∈ Cb(Ω, E) and n ∈ Z+, where N := qN
q+LN and ν := q+LN. Under the

conditions of Theorem ν = q+LN < q+1−q = 1 and, consequently, the semi-group
{Sn | n ∈ Z+} is contracting. Thus there exists a unique fixed point µ ∈ Cb(Ω, E)
of the semi-group {Sn | n ∈ Z+} and hence

µ(σ(n, ω)) = ϕ(n, µ(ω), ω)

for all n ∈ Z+ and ω ∈ Ω.
Let 〈(X,Z+, π), (Ω,Z, σ), h〉 be the non-autonomous dynamical system associ-

ated by cocycle ϕ (i.e. X := E × Ω, π := (ϕ, σ) and h := pr2 : X 7→ Ω). Under
the conditions of Theorem by Theorem 4 we have ρ(x1t, x2t) ≤ N e−νtρ(x1, x2) for
all x1, x2 ∈ X (h(x1) = h(x2)). Since γ := (µ, IdΩ) is an invariant section of
the non-autonomous dynamical system 〈(X,Z+, π), (Ω,Z, σ), h〉, then according to
Theorem 5 the dynamical system (X,Z+, π) is compactly dissipative, its Levinson
center JX = γ(JΩ) and Jω := J ∩Xω (Xω := h−1(ω)) consists a single point γ(ω),
i.e. Jω = {γ(ω)} for all ω ∈ Ω. Taking into consideration that the skew-product
dynamical system (X,Z+, π) is compact dissipative, Jω = Iω × ω and γ = (µ, IdΩ)
we obtain Iω = µ(ω) for all ω ∈ JΩ.

4 Economic Application

4.1 The model

Dynamic economic growth models have often considered the standard, one-sector
neoclassical Solow model (see S.R. Solow [10]). V. Bohm and L. Kaas [3] considered
the role of differential savings behavior between workers and shareholders and its
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effects with regard to the stability of stationary steady states within the framework
of the discrete-time Solow growth model. More recently, S. Brianzoni, C. Mammana
and E. Michetti [1] have proposed a discrete-time version of the Solow growth model
with differential savings as formalized by V.Bohm and L.Kaas [3] while consider-
ing two different assumptions. Firstly they assume the CES production function.
Secondly they assume the labor force growth rate not being constant, in particular
they consider a model for density dependent population growth described by the
Beverton-Holt equation (see [2]).

The resulting system (T,R2
+) describing capital accumulation k and population

n dynamics of the model studied in S. Brianzoni, C. Mammana and E.Michetti [1],
where T = (T1, T2), is given by

T1(k, n) =
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
1 + n

and

T2(n) =
rhn

h + (r − 1)n

for all (k, n) ∈ R2
+. In the model, δ ∈ (0, 1) is the depreciation rate of capital,

sw ∈ (0, 1) and sr ∈ (0, 1) are the constant saving rates for workers and shareholders
respectively2, ρ ∈ (−∞, 1), ρ 6= 0 is a parameter related to the elasticity of sub-
stitution between the production factors given by 1/(1 − ρ), h > 0 is the carrying
capacity (for example resource availability) and r > 1 is the inherent growth rate
(such a rate is determined by life cycle and demographic properties such as birth
rates etc.). The Beverton-Holt T2 have been studied extensively in J. V. Cushing
and S. V. Henson [7, 8].

4.2 Existence of an attractor for ρ ∈ (−∞, 0)

Theorem 7. If ρ < 0, then the dynamical system (R2
+, T ) admits a compact global

attractor.

Proof. Assume ρ ∈ (−∞, 0) and let λ = −ρ, then λ ∈ (0, +∞). We write T1 in
terms of λ

T1(k, n) =
1

1 + n

[
(1− δ)k + (k−λ + 1)

1+λ
−λ (sw + srk

−λ)
]

=
1

1 + n

[
(1− δ)k +

k

(1 + kλ)
1
λ

sr + swkλ

1 + kλ

]
. (13)

2The authors also assume sw 6= sr since the standard growth model of R.V. Solow [10] is obtained
if the two savings propensities are equal.
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Note that
k

(1 + kλ)
1
λ

−→ 1 as k −→ +∞,
sr + swkλ

1 + kλ
−→ sw as k −→ +∞ and,

consequently, there exists M > 0 such that
∣∣∣∣∣

k

(1 + kλ)
1
λ

sr + swkλ

1 + kλ

∣∣∣∣∣ ≤ M, (14)

for all k ∈ [0, +∞).

Since 0 ≤ 1
1 + n

≤ 1 for all n ∈ R+, then from (13) and (14) we obtain

0 ≤ T1(k, n) ≤ αk + M (15)

for all n, k ∈ R+, where α := 1− δ > 0.
Since the map T is triangular, to prove this theorem it is sufficient to apply

Theorem 3. Theorem is proved.

Remark 1. 1. It is easy to see that the previous theorem is true also for δ = 1
because in this case α = 1− δ = 0 and from (15) we have T1(k, n) ≤ M , ∀k, n ∈ R+.
Now it is sufficient to refer to Theorem 1.

2. If δ = 0 the problem is open.

According to Theorem 7, it is possible to conclude that if the elasticity of substi-
tution between the two production factors (capital and labor) is positive and lesser
than one (that is ρ < 0), capital and population dynamics cannot be explosive so
economic patterns are bounded.

4.3 Existence of an attractor for ρ ∈ (0, 1) and sr < δ

The dynamical system (X,T, π) we will call:

– locally completely continuous if for every point p ∈ X there exist δ = δ(p) > 0
and l = l(p) > 0 such that πlB(p, δ) is relatively compact;

– weakly dissipative if a nonempty compact K ⊆ X exists such that for every
ε > 0 and x ∈ X there is τ = τ(ε, x) > 0 for which xτ ∈ B(K, ε). In this case
we will call K a weak attractor.

Note that every dynamical system (X,T, π) defined on the locally compact metric
space X is locally completely continuous.

Theorem 8 ([4]). For the locally completely continuous dynamical systems the weak
and compact dissipativity are equivalent.

Theorem 9. If ρ ∈ (0, 1) and sr < δ, then the mapping T admits a compact global
attractor.
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Proof. If ρ ∈ (0, 1) and k > 0 we have

T1(k, n) =
1

1 + n

[
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
]

=
1

1 + n
[(1− δ)k + srk + θ(k)k] (16)

where θ(k) :=
(kρ + 1)

1
ρ

k(1 + kρ)
(sw + srk

ρ)− sr → 0 as k → +∞. In fact
(kρ + 1)

1
ρ

k
→ 1

as k → +∞ while
(sw + srk

ρ)
1 + kρ

→ sr as k → +∞ and, consequently,

(kρ + 1)
1
ρ

1 + kρ
(sw + srk

ρ)

srk
=

(kρ + 1)
1
ρ

k

(sw + srk
ρ)

sr(kρ + 1)
→ 1

as k → +∞, i.e.
(kρ + 1)

1
ρ

1 + kρ
(sw + srk

ρ) = srk + θ(k)k. From (16) we have

T1(k, n) =
1

1 + n
[(1− δ + sr)k + θ(k)k]

for all (k, n) ∈ R2
+ with k > 0.

Since sr < δ then α := 1 − δ + sr < 1. Let R0 > 0 be a positive number such
that

|θ(k)| < 1− α

2
, (17)

for all k > R0. Note that for every (k0, n0) ∈ R2
+, with k0 > R0, the trajectory

{T t(k, n) | t ∈ Z+} starting from point (k0, n0) at the initial moment t = 0, at least
one time intersects the compact K0 := [0, h0] × [0, R0], (h0 > h). In fact, if we
suppose that this statement is false, then exists a point (k0, n0) ∈ R2

+ \ K0 exists
such that

(kt, nt) := T t(k0, n0) ∈ R2
+ \K0 (18)

for all t ∈ Z+. Taking into consideration that nt → h (or 0) as t → +∞, we obtain
from (18) that kt > R0 for all t ≥ t0, where t0 is a sufficiently large number from
Z+. Without loss of generality, we may suppose that t0 = 0 (if t0 > 0 then we start
from the initial point (nt0 , kt0) := T t0(n0, k0), where T t0 := T ◦T t0−1 for all t0 ≥ 2).
Thus we have

kt > R0 (19)

for all t ≥ 0 and

kt+1 =
1

1 + n
[αkt + θ(kt)kt] (20)

From (17) and (20) we obtain

kt+1 ≤ αkt +
1− α

2
kt =

1 + α

2
kt (21)
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since
1

1 + n
≤ 1 for all t ≥ 0. From (21) we have

kt ≤
(

1 + α

2

)t

k0 → 0 as t → +∞, (22)

but (19) and (22) are contradictory. The obtained contradiction proves the state-
ment. Let (k0, n0) ∈ R2

+ now be an arbitrary point.

(a) If k0 < R0 and kt ≤ R0 for all t ∈ N, then lim sup
t→+∞

kt ≤ R0;

(b) If there exists t0 ∈ N such that kt0 > R0, then there exists τ0 ∈ N (τ0 > t0)
such that (kτ0 , nτ0) ∈ K0 (see the proof above).

Thus we have proved that for all (k0, n0) ∈ R2
+ there exists τ0 ∈ N such that

(kτ0 , nτ0) ∈ K0. According to Theorem 8 the dynamic system (R2
+, T ) admits a

compact global attractor. The theorem is proved.

4.4 Structure of the attractor

A fixed point p ∈ X of dynamical system (X,T, π) is called

– Lyapunov stable if for arbitrary positive number ε > 0 there exists δ = δ(ε) > 0
such that ρ(x, p) < δ implies ρ(π(t, x), p) < ε for all t ≥ 0;

– attracting if there exists δ0 > 0 such that lim
t→+∞ ρ(π(t, x), p) = 0 for all

x ∈ B(p, δ0) := {x ∈ X | ρ(x, p) < δ0};

– asymptotically stable if it is Lyapunov stable and attracting.

Theorem 10. Suppose that ρ < 0 and one of the following conditions hold:

1. sw < min{δ, sr} and 0 < λ < λ0, where λ0 is a positive root of the quadratic
equation (sr − sw)λ2 + (sr − 2δ)λ− δ = 0;

2. sr < sw < δ.

Then

1. the dynamic system (R2
+, T ) admits a compact global attractor J =

{(0, n) | 0 ≤ n ≤ h};

2. for all point x := (k, n) ∈ R2
+ with n > 0 the ω-limit set ωx of x consists a

single fixed point (0, h) of dynamical system (R2
+, T );

3. the fixed point (0, h) is asymptotically stable.
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Proof. Assume ρ ∈ (−∞, 0) and let λ = −ρ, then λ ∈ (0, +∞). We write T1 in
terms of λ (see the proof of Theorem 9)

T1(k, n) =
1

1 + n

[
(1− δ)k +

k

(1 + kλ)
1
λ

sw + srk
λ

1 + kλ

]
.

Denote by

f(k) :=
k

(1 + kλ)
1
λ

sw + srk
λ

1 + kλ
,

then

f ′(k) =
sw + (−swλ + (λ + 1)sr)kλ

(1 + kλ)2+1/λ
.

It easy to verify that under the conditions of Theorem f ′(k) < sw for all k ≥ 0.
Consider the non-autonomous difference equation

kt+1 = A(σ(t, n))kt + F (kt, σ(t, n)) (23)

corresponding to triangular map T = (T1, T2), where A(n) :=
1

n + 1
, F (k, n) :=

1
n + 1

f(k) and σ(t, n) := T t
2(n) for all t ∈ Z+ and n ∈ R+. Under the conditions

of the Theorem we can apply Theorem 6. By this Theorem the dynamical system
(R2

+, T ) is compact dissipative with Levinson center J and there exists a unique
continuous bounded function µ : R+ 7→ R+ such that J = {(µ(n), n) | n ∈ [0, h]}.
Since F (n, 0) = 0 for all n ∈ R+, then it easy to see that µ(n) = 0 for all n ∈ R+.

Let x = (k, n) ∈ R2
+ and n > 0. Since the dynamical system (R2

+, T ) is compactly
dissipative and its Levinson center J = ∪{Jn | 0 ≤ n ≤ h}, then ωx ⊆ J. Let
x̃ = (k̃, ñ) ∈ ωx, then there exists tm → +∞ (tm ∈ Z+) such that T tm(k, n) → (k̃, ñ).
It is evident that k̃ = 0. Since lim

t→+∞T t
2n = h for all n > 0 we obtain ñ = h, i.e.

x̃ = (0, h).
Now we will prove that the fixed point (0, h) is stable. If we suppose that it is

not true, then there are ε0 > 0, δl → 0, xl := (kl, nl) → (0, h) and tl → +∞ (as
l → +∞) such that ρ(xl, (0, h)) < δl and

ρ(T tlxl, (0, h)) ≥ ε0, (24)

where ρ(·, ·) is the distance in R2
+. Since T tlxl = (ϕ(tl, kl, nl), T

tl
2 nl), where ϕ(t, k, n)

is the solution of equation (23) with initial condition ϕ(0, k, n) = k, and nl → h by
asymptotic stability of fixed point h ∈ R+ of dynamical system (R+, T2) we have
T tl

2 nl → h as l → +∞. On the other hand by Theorem 6 we obtain

|ϕ(tl, kl, nl)− µ(T tl
2 )| ≤ Nνtl |kl − µ(nl)| = Nνtl |kl| → 0 (25)

because 0 < ν < 1, |kl| → 0 and tl → +∞. Taking into account that µ(n) = 0 for
all n ≥ 0 we obtain µ(T tl

2 ) = 0 for all l ∈ N and, consequently, |ϕ(tl, kl, nl)| → 0 as
l → +∞, i.e.

ρ(T tlxl, (0, h)) → 0 (26)
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as l → +∞. The relations (24) and (26) are contradictory. The contradiction
obtained proves our statement.

When considering Theorem 10 it is possible to conclude that if shareholders save
less than workers and the depreciation rate of capital is big enough or, if workers
save less than shareholders and the elasticity of substitution between the two factors
is close to zero, then the economic system will converge to the steady state (0, h)
which is characterized by no capital accumulation.

Let γ be a full trajectory of dynamical system (X,T, π). Denote by
∩t≥0∪τ≥tγ(τ) := ωγ (respectively, ∩t≤0∪τ≤tγ(τ) := αγ).

Theorem 11. Let ρ ∈ (0, 1), sr < δ and J be the Levinson center of dynamical
system (R2

+, T ). Then the following statements hold:

1. J is connected;

2. J = ∪{Jn | 0 ≤ n ≤ h}, where Jn := In×{n} and In := [an, bn] (an, bn ∈ R+);

3. dynamical systems (R+, T0) and (R+, Th) are compactly dissipative, where
T0(k) := T (k, 0) and Th(k) := T (k, h) for all k ∈ R+;

4. J0 = [a0, b0]×{0} (respectively, Jh := [ah, bh]×{h}) is the Levinson center of
dynamical system (R+, T0) (respectively, (R+, Th));

5. there exists at least one fixed point p0 ∈ J0 (respectively, ph ∈ Jh) of the
dynamical system (R+, T0) (respectively, (R+, Th));

6. for all point x0 := (k0, n0) ∈ J (with 0 < n0 < h) and γ ∈ Φx0 we have
ωγ ⊆ Jh and αγ ⊆ J0.

Proof. Let ρ ∈ (0, 1) and sr < δ, then by Theorem 9 the dynamical system (R2
+, T )

is compactly dissipative. Denote by J the Levinson center of (R2
+, T ), then by

Theorem 1.33 [4] the set J is connected. Note that J = ∪{Jn | 0 ≤ n ≤ h}, where
Jn = In×{n} and In is a compact subset of R+. According to Theorem 2.25 [4] the
set In is connected and, consequently, there are an, bn ∈ R+ such that In = [an, bn].

Since the set R+ × {0} (respectively, R+ × {h}) is invariant with respect to dy-
namical system (R2

+, T ), then on the set R+×{0} (respectively, on R+×{h}) is de-
fined as a compactly dissipative dynamical system (R+, T0) (respectively, (R+, Th))
and the set J0 (respectively, Jh) is its Levinson center. Taking into account that
T0 (respectively, Th) is a continuous mapping of J0 = [a0, b0] × {0} (respectively,
Jh = [ah, bh] × {h}) on itself, then there exists at least one fixed point p0 ∈ J0

(respectively, ph ∈ Jh) of dynamical system (R+, T0) (respectively, (R+, Th)).

Let x0 := (k0, n0) ∈ J (with 0 < n0 < h), γ ∈ Φx0 and x = (k, n) ∈ ωγ (re-
spectively, x ∈ αγ). Then there exists a sequence {tm} ⊆ Z such that tm → +∞
(respectively, tm → −∞) such that γ(tm) → x as m → +∞. Since x0 = (k0, n0),
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0 < n0 < h and pr2(γ(tm)) = T tm
2 (n0), then {T tm

1 (n0)} → h (respectively,
{T tm

2 (n0)} → 0) as m → +∞. On the other hand x ∈ J and, consequently,
p2(x) = h (respectively, pr2(x) = 0). Analogously we can prove that ωx0 ⊆ Jh for
all x0 = (k0, n0) ∈ R2

+ with n0 > 0, where ωx0 is the ω-limit set of point x0.
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On free topological groups

Ina Ciobanu

Abstract. In the present article the existence and unicity of almost (U ,V)-free
group over given space, where U ,V are classes of topological groups is studied. If V
is a quasivariety of compact topological groups and V ⊆ U , then these objects exist
for any space. If W is a quasivariety of compact groups, U = V is the class of all
pseudocompact subgroups of groups from W , then the almost (U ,V)-free groups exist
only for some special spaces.

Mathematics subject classification: 22A05, 54B30, 54D33.
Keywords and phrases: Quasivariety, compact group, pseudocompact group,
totally bounded group, free group.

All spaces considered are assumed to be completely regular pointed T1-spaces. If
X is a space, then pX is the base point of X. If G is a group, then the base point pG

is the identity of G. We consider only mappings f : X → Y for which f(pX) = pY .
For every space X we denote by βX the Stone-Čech compactification and by

|X|, w(X), d(X) the cardinality, weight and density of the space X, respectively. If
indX = 0, i.e. X is zero-dimensional, then by β0X we denote the maximal zero-
dimensional compactification of X. If Y is a subspace of a space X, then we consider
that pY = pX . In particular, pbX = pX for any compactification bX of X.

Remark 1. If X is not a pointed space, then we put X̄ = X ∪ {pX}, where pX /∈ X
and X is an open-and-closed subspace of the space X̄. Thus every space may be
completed to a pointed space.

1 A free topological group of a space

Let U and V be two classes of topological groups.

Definition 1. A pair (F (X,U ,V), eX) is said to be an almost (U ,V)-free topolog-
ical group over a space X if F (X,U ,V) ∈ U , eX : X → F (X,U ,V) is a contin-
uous mapping, e = eX(pX) is the identity of the group F (X,U ,V) and for every
continuous mapping f : X → G with G ∈ V there exists a continuous homo-
morphism f̄ : F (X,U ,V) → G such that f = f̄ ◦ eX . If U = V, then we put
F (X,U ,V) = F (X,U) and F (X,U) is called the almost U-free group over X.

If for any continuous mapping f : X → G ∈ V the homomorphism f̄ :
F (X,U ,V) → G is unique, then (F (X,U ,V), eX) is called a (U ,V)-free topologi-
cal group of X.

c© Ina Ciobanu, 2009
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Remark 2. Let U be a multiplicative class of topological groups, G0 ∈ U , |G0| ≥ 2,
X be a space and for X there exists some almost (U ,V)-free topological group.
Then the almost (U ,V)-free topological group over X is not unique. Really, fix
some almost (U ,V)-free topological group (F (X,U ,V), eX) over X. Let τ ≥ 1
be a cardinal number, e be the identity of F (X,U ,V), eτ be the identity of Gτ

0 ,
F ′(X,U ,V) = F (X,U ,V)×Gτ

0 , e′ = (e, eτ ) and ēX(x) = (eX(x), eτ ) for any x ∈ X.
Then (F ′(X,U ,V), ēX) is an almost (U ,V)-free topological group over X.

Remark 3. The concept of an almost (U ,V)-free topological group for non-pointed
spaces was proposed by W.W.Comfort and J.van Mill (see [1], p.110). We consider
that notion for pointed spaces. Moreover, our definition is more general for non-
pointed spaces too. In the definition from [1] it is supposed that eX is an embedding,
i.e. X ⊆ F (X,U ,V).

We say that the topological group G is complete if it is complete relative to the
two-sided uniformity on G (see [6]).

Definition 2. A class U of topological groups is called a quasivariety if the following
properties hold:

– the class U is multiplicative;
– if a topological group A is topologically isomorphic to a closed subgroup of

some group B ∈ U , then A ∈ U .

We consider that any quasivariety U is non-trivial, i.e. there exists G ∈ U for
which |G| ≥ 2.

If G is a topological group and X is a subset of G, then X is contained in the
minimal subgroup a(X,G) = ∩{H : X ⊆ H and H is a subgroup of G} of G. If
a(X,G) = G, then we say that X generated G. If a(X, G) is dense in G, then we
say that X topologically generated G.

Proposition 1. Let U be a quasivariety of topological groups. Then for any pointed
space X there exists a unique U-free topological group (F (X, U), eX) over X. More-
over, the set eX(X) topologically generated the group F (X, U).

Proof. Fix a space X. Let m be an infinite cardinal and |X| ≤ m. Let τ be an
infinite cardinal and τ > 22m

. We identify the isomorphic topological groups. Then
Uτ = {G ∈ U : |G| ≤ τ} is a set. Therefore, the family {fα : X → Gα : α ∈ A} of all
continuous mappings of X into groups from Uτ is a set too. Consider the mapping
eX : X → G =

∏{Gα : α ∈ A}, where eX(x) = (fα(x) : α ∈ A). By F (X,U) we
denote the closed subgroup of G topologically generated by the set eX(X). Then
(F (X,U), eX) is a U-free topological group over X.

The existence is proved.
Let F ∈ U , h : X → F be a continuous mapping and for any continuous mapping

f : X → G ∈ U there exists a unique homomorphism f̂ : F → G such that f = f̂ ◦h.
We mention that h(X) topologically generated F . Suppose that F1 is the closed
subgroup of F generated by h(X) and F1 6= F . Then F1 ∈ U and there exists a
continuous homomorphism h1 : F → F1 such that h(x) = h1(h(x)) for any x ∈ X.
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Then h1(y) = y for any y ∈ F1. Now consider the homomorphism h2(y) = y for
any y ∈ F . Then there exist two distinct homomorphisms h1, h2 : F → F such that
h(x) = h1(h(x)) = h2(h(x)) for any x ∈ X, a contradiction. Thus F = F1.

From definition, there exist two continuous homomorphisms g1 : F (X, U) → F
and g2 : F → F (X, U) such that g1(eX(x)) = h(x) and g2(h(x)) = eX(x) for any
x ∈ X. Therefore g2(g1(y)) = y and g1(g2(z)) = z for all y ∈ eX(X) and z ∈ h(X).
Thus g3 = g1|eX(X) is a homeomorphism of eX(X) onto h(X), g4 = g2|h(X) is a
homeomorphism of h(X) onto eX(X) and g4 = g3

−1. Hence g1, g2 are isomorphisms
and g1 = g2

−1. The proof is complete.

Example 1. Let Uc be the class of all compact groups. Then Uc is a quasivariety
of topological groups. For every space X the mapping eX : X → F (X,Uc) is an
embedding. We can consider that X = eX(X) ⊆ F (X,Uc). Then βX is the closure
of X in F (X,Uc).

Example 2. Let Uac be the class of all commutative compact groups. Then Uac

is a quasivariety of topological groups. For every space X the mapping eX : X →
F (X,Uac) is an embedding. We can consider that X = eX(X) ⊆ F (X,Uac). Then
βX is the closure of X in F (X,Uac).

Example 3. Let U0c be the class of all compact zero-dimensional groups. Then U0c

is a quasivariety. The mapping eX : X → F (X,U0c) is an embedding if and only if
indX = 0. If indX = 0, then β0X is the closure of X = eX(X) in F (X,U0c).

Definition 3. A class U of topological groups is said to be complete if the following
properties hold:

– (A, T ) ∈ U ;
– if T ′ is a topology on A and (A, T ′) is a topological group, then (A, T ′) ∈ U .

Remark 4. Let U be a complete quasivariety of topological groups. If A is a subgroup
of B ∈ U , then A ∈ U . In particular, the set eX(X) algebraically generated F (X,U)
provided eX(X) topologically generated F (X,U) for any space X. In this case eX :
X → F (X,U) is an embedding for any space X.

Remark 5. Let U be a quasivariety, F (X,U) be the almost U-free topological group
over a space X and F0(X,U) be the closed subgroup of F (X,U) generated by the
set eX(X). Then:

1. F0(X,U) is the U-free topological group over X.
2. There exists a continuous homomorphism ϕ : F (X,U) → F0(X,U) such that

ϕ(y) = y for any y ∈ F0(X,U). (It is obvious that ϕ = ēX).
3. If (F ′(X,U), e′X) is another almost U-free topological group over X and

F ′
0(X,U) is the closed subgroup of F ′(X,U) generated by e′X(X), then there ex-

ists a unique isomorphism ψ : F0(X,U) → F ′
0(X,U) such that ψ(eX(x)) = e′X(x) for

any x ∈ X.

Proposition 2. Let U be a quasivariety of topological groups and V be a class of
topological groups. If V ⊆ U and (F (X,U), eX) is an almost U-free topological group
over X, then (F (X,U), eX) is an almost (U ,V)-free topological group over X.
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Proof. Obvious.

If V 6⊆ U , then Proposition 2 is not true. For example, if U = Uac and V is the
class of all commutative groups, then Proposition 2 is not true.

2 On totally bounded groups

A topological group A is totally bounded or precompact if A is a subgroup of
some compact group.

Let Ub be the class of all totally bounded groups. For any space X there exists the
Ub-free group (F (X,Ub), eX) and eX : X → F (X,Ub) is an embedding. Moreover,
F (X,Ub) is the subgroup of F (X,Uc) generated by X. The quasivariety Ub is not
complete.

Example 4. Consider the quasivariety Uc. Let X be the space of reals, G be the
topological group of reals and f(x) = x for any x ∈ X. Let F (X,Uc) be the Uc-free
topological group over X and X topologically generated F (X,Uc). Denote by A
the subgroup of F (X,Uc) generated by X. There exists a unique homomorphism
g : A → G for which f = g|X. The homomorphism g is not continuous: the
group A is totally bounded, the group G is not totally bounded and the continuous
homomorphic image of totally bounded group is totally bounded.

3 On pseudocompact groups

A subset L of a space X is bounded in X if for any real-valued continuous
function f on X the set f(L) is bounded. If the set X is bounded in the space X,
then we say that X is a pseudocompact space.

Any pseudocompact group is totally bounded. For any totally bounded group
G there exists a unique compact group bG such that G is a dense subgroup of bG.
If the group G is pseudocompact, then bG = βG (see [1], p.110).

The following assertion is a generalization of one theorem of M.Ursul (see [7]).

Theorem 1. Let A be a subgroup of a pseudocompact group B and ω1 be the first
uncountable cardinal. Then in Bω1 there exist two subgroups H and G for which:

1. G is a dense pseudocompact subgroup of Bω1.
2. H is a closed subgroup of G.
3. The groups A and H are topologically isomorphic.

Proof. For any ordinal number α < ω1 let Bα = B, Aα = A and eα be the identity
in Bα. It is wellknown that Bω1 =

∏{Bα : α < ω1} is a pseudocompact group
with the identity e = (eα : α < ω1). Let G′ = {x = (xα : α < ω1) ∈ Bω1 : the
set {α < ω1 : xα 6= eα} is countable } and G = {x = (xα : α < ω1) ∈ Bω1 : the
set {α < ω1 : xα /∈ Aα} is countable }. By construction, G′ ⊆ G ⊆ Bω1 and G′
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is a pseudocompact subgroup of Bω1 . Since G′ is dense in Bω1 , the subspace G is
pseudocompact and dense in Bω1 . It is obvious that G′ and G are subgroups of Bω1 .
For any x ∈ B we put x̄ = (x̄α : α < ω1), where xα = x for any α < ω1. Then
B̄ = {x̄ : x ∈ B} is the diagonal of Bω1 . The diagonal B̄ is a subgroup topologically
isomorphic to B. The subspace B̄ is closed in Bω1 . Let H = {x̄ : x ∈ A}. Then
the topological groups A and H are topologically isomorphic. By construction,
H = G ∩ B̄. Thus H is a closed subgroup of the group G.

Corollary 1. (see [7]) Every totally bounded subgroup is a closed subgroup of some
pseudocompact group.

Theorem 2. Let U , V be two classes of pseudocompact groups with properties:
1. V ⊆ U .
2. The classes U and V are multiplicative.
3. If A ∈ U , then A is a subgroup of some compact group B ∈ V.
4. If A ∈ U and B is a pseudocompact subgroup of A, then B ∈ U .
5. If A ∈ V and B is a compact group, then every closed subgroup of B is an

element of V.
Denote by U0 the class of all subgroups of groups from U .
The following assertions are true:
(A). U0 is a quasivariety of topological groups.
(B). If X is a space, F (X,U ,V) is an almost (U ,V)-free group over a space X

and X = eX(X) ⊆ F (X,U ,V), then:
– the subgroup F0(X,U ,V) generated by the space X in F (X,U ,V) is the U0-free

topological group over space X;
– the group F0(X,U ,V) is finite or F0(X,U ,V) is not pseudocompact.

Proof. If F0(X,U ,V) is a compact group, then F0(X,U ,V) ∈ V and F0(X,U ,V) is
a (U ,V)-free group over X.

Suppose that the space F0(X,U ,V) is not compact. Consider the U0-free group
F (X,U0) over X. It is obvious that X ⊆ F (X,U0) and X generated F (X,U0). By
assumptions, F (X,U0) is a dense subgroup of some compact group G ∈ V. Thus
there exists a continuous homomorphism h : F (X,U ,V) → G such that h(x) = x
for any x ∈ X. Therefore h|F0(X,U ,V) is a topological isomorphism of F0(X,U ,V)
onto F (X,U0). We can consider that F0(X,U ,V) = F (X,U0).

Let Y = clGX, Y −1 = {y−1 : y ∈ Y ⊆ G} and Yn = {y1 · y2 · . . . · yn :
y1, y2, . . . , yn ∈ Y ∪ Y −1} for any n ≥ 1. Then H = ∪{Yn : n ∈ N} is a subgroup of
G and every set Yn is compact. The group F (X,U0) is a dense subgroup of H and H
is a dense subgroup of G. Let Xn = Yn ∩ F (X,U0). By construction, Xn is a closed
subset of F (X,U0), X1 = X ∪X−1 and Xn = {x1 · x2 · . . . · xn : x1, x2, . . . , xn ∈ X1}
for n ≥ 2. If F (X,U0) is infinite, then F (X,U0) is not a discrete space.

It is obvious that F (X,U0) = ∪{Xn : n ∈ N}.
Case 1. X is a discrete space.
In this case every Xn is a discrete closed subspace of F (X,U0). Since F (X,U0)

is not discrete, Xn is nowhere dense subset of F (X,U0). Suppose that F (X,U0)
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is pseudocompact. Then Wn = F (X,U0) \Xn is a dense open subset of F (X,U0).
From the Baire category theorem, the set W = ∩{Wn : n ∈ N} is dense in F (X,U0).
By construction, we have W = ∩{Wn : n ∈ N} = F (X,U0) \ ∪{Xn : n ∈ N} = ∅, a
contradiction.

Thus F (X,U0) is not pseudocompact.

Case 2. X is not a discrete space.
Let a be a non-isolated point of the space X. We put a2i−1 = a and a2i = a−1

for any i ≥ 1. Fix n ∈ N, b ∈ Xn and a neighbourhood W of b in G. Fix m > n.
Then b = b ·a1 ·a2 · . . . ·a2m−1 ·a2m ∈ W . There exist open subsets W0,W1, . . . , W2m

of G such that b ∈ W0, a1 ∈ W1, . . . , a2m ∈ W2m and W0 ·W1 · . . . ·W2m ⊆ W . There
exist distinct elements x1, x2, . . . , x2m ∈ X such that y2i−1 = x2i−1 ∈ W2i−1 and
y2i = x−1

2i ∈ W2i. Then b́ = b · y1 · y2 · . . . · ym ∈ W \Xn. Thus Xn is nowhere dense
in F (X,U0). Suppose that F (X,U0) is pseudocompact. Then Wn = F (X,U0) \Xn

is a dense open subset of F (X,U0). From the Baire category theorem, the set
W = ∩{Wn : n ∈ N} is dense in F (X,U0). By construction, we have W = ∩{Wn :
n ∈ N} = F (X,U0) \ ∪{Xn : n ∈ N} = ∅, a contradiction.

Moreover, we prove that F0(X,U ,V) is not pseudocompact provided it is infinite.
Thus F0(X,U ,V) is finite if and only if F0(X,U ,V) is compact.

Theorem 3. Let U , V be two classes of topological groups with the properties:
1. V ⊆ U .
2. The classes U and V are multiplicative.
3. Every group A ∈ V is compact.
4. If A ∈ V and B is a closed subgroup of A, then B ∈ V.
5. If A ∈ U and B is a pseudocompact subgroup of A, then B ∈ U .
6. If A ∈ U , then A is a subgroup of some compact group B ∈ V.
Then for every space X there exists some almost (U , V)-free group (F (X, U ,

V), eX) over X such that F (X, U , V) is pseudocompact and eX(X) is a closed
subspace of F (X,U ,V).

Proof. Denote by U0 the class of subgroups of groups from U . Then U0 is a quasi-
variety of topological groups.

Fix a space X. Then there exists the U0-free group (F (X,U0), eX) over X. The
subspace eX(X) is closed in F (X,U0). The group F (X,U0) is a dense subgroup of
some compact group G ∈ V.

By construction, for every continuous mapping f : X → A ∈ V there exists a
unique continuous homomorphism f̄ : G → A such that f = f̄ ◦ eX . Thus (G, eX)
is a (U ,V)-free group over X.

Consider the projection π : Gω1 → G where π((xα : α < ω1)) = x1 for any
(xα : α < ω1) ∈ Gω1 .

Now we apply the construction from the proof of Theorem 1.
In Gω1 there exists a dense pseudocompact subgroup H and a closed subgroup B

of H such that π(H) ⊇ π(B) = F (X,U0) and π|H : H → F (X,U0) is a topological
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isomorphism. We consider that F (X,U0) = B ⊆ H. Let e′X(x) = eX(x) ∈ B for
any x ∈ X. Then eX(x) = π(e′X(x)) ∈ eX(X) ⊆ F (X,U0).

Fix a continuous mapping f : X → A ∈ V . There exists a continuous homo-
morphism f1 : G → A such that f = f1 ◦ eX . Now we put f̄(y) = f1(π(y)) for any
y ∈ H. Then f = f̄ ◦ e′X . By construction, the mapping f̄ is a unique continuous
homomorphism of H into A for which f = f̄ ◦e′X . Therefore, (H, e′X) is a (U ,V)-free
group over X.

Remark 6. For V = Uac Theorem 3 was proved by Comfort and van Mill ( [1],
Theorem 4.1.9b).

Theorem 4. Let U = V be a class of pseudocompact groups with the properties:
1. The class U is multiplicative.
2. If A ∈ U and B is a pseudocompact subgroup of A, then B ∈ U .
3. If A ∈ U , then A is a subgroup of some compact group B ∈ U .
Denote by U0 the class of all subgroups of groups from U .
If X is a space and there exists an almost (U ,V)-free group over X (F (X,U ,V), eX),

then F (X,U0) is a finite group.

Proof. Let X be a space for which the (U ,V)-free group (F (X,U ,V), eX) be given.
We put Y = eX(X) and G = F (X,U ,V). Then Y ⊆ G, pY is the identity in
G and for any continuous mapping f : Y → A ∈ V there exists a continuous
homomorphism f̄ : G → A for which f = f̄ |Y . In particular, G is the (U ,V)-free
group over Y . Moreover, for any continuous mapping g : X → A ∈ V there exists
a unique continuous mapping f : Y → A such that g = f ◦ eX . Let G be a dense
subgroup of the compact group Ḡ ∈ U . Then there exists a compact subgroup H of
Ḡ such that Y ⊆ H and Y topologically generated H.

We can consider that Y ⊆ F (Y,U0) ⊆ H, i.e. the group F (Y,U0) generated by Y
in H is the U0-free group over Y . If F (Y,U0) is finite, then F (Y,U0) is the (U ,V)-free
group over X and over Y . Suppose that F (Y,U0) is infinite. Then F (Y,U0) is not
pseudocompact.

Let τ = |Ḡ|.
There exist an uncountable cardinal λ > τ , a set Λ and a family {Aα : α ∈ Λ}

of pseudocompact groups such that:
1) any Aα is a subgroup of H and Y ⊆ Aα;
2) if A is a pseudocompact subgroup of H and Y ⊆ A, then |{α ∈ Λ : Aα is

isomorphic to A}| = λ;
3) |Λ| = λ.
Denote by H ′ the subgroup of H generated by the set Y . Then H ′ is a subgroup

of Aα for any α ∈ Λ.
Let Hα = H and H ′

α = H ′ for any α ∈ Λ. We put B =
∏{Hα : α ∈ Λ} and

B′ =
∏{H ′

α : α ∈ Λ}. If x ∈ H, then x̄ = (xα : α ∈ Λ), where xα = x for any α ∈ Λ.
For any L ⊆ H we put L̄ = {x̄ : x ∈ L} ⊆ H. Then H̄ is the diagonal of B = Hλ.
If L is a subgroup of H, then L̄ is a subgroup of B.
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Consider A =
∏{Aα : α ∈ Λ}. Let a ∈ H ′. Then Ea = {x = (xα : α ∈ Λ) ∈ A :

the set {α ∈ Λ : xα 6= a} is countable }. Then Ea is a dense pseudocompact
subspace of the pseudocompact group A. If a is the identity element of the group
H, then Ea is a subgroup of the group A.

Let E = ∪{Ea : a ∈ H ′}. Then E is a dense pseudocompact subgroup of
A. Moreover, A is a dense subgroup of the compact group B. By construction,
Ȳ ⊆ H̄ ′ ⊆ E. The space Y is homeomorphic to Ȳ . We consider that y = ȳ for
any y ∈ Y . Then Y = Ȳ ⊆ E. Since E ∈ U = V, there exists a continuous
homomorphism g : G → E such that g(y) = y = ȳ for any y ∈ Y .

Let β ∈ Λ and πβ : B → Hβ be the projection πβ(xα : α ∈ Λ) = xβ for any (xα :
α ∈ Λ) ∈ B. Then πβ(g(G)) is a pseudocompact subgroup of the pseudocompact
group Aβ for any β ∈ Λ. Since H ′ is not a pseudocompact group, πβ(g(G))\H ′

β 6= ∅
for any β ∈ Λ. Thus, for any β ∈ Λ there exists zβ ∈ G for which πβ(πβ(zβ)) /∈
H ′

β = H ′. By assertion, |G| ≤ |Ḡ| = τ < λ. Thus, there exists b ∈ G such that
|{β ∈ Λ : zβ = b}| = λ. Let Λb = {β ∈ Λ : zβ = b} and c = g(b) ∈ g(G) ⊆ E. There
exists a ∈ H ′ such that c = (cα : α ∈ Λ) ∈ Ea. Thus, the set Λ′c = {α : cα 6= a} is
countable. Then |Λb \Λ′c| = λ and cα = a for any α ∈ Λb \Λ′c, a contradiction. The
theorem is proved.

Corollary 2. Let U = V be a class of pseudocompact groups with the properties:
1. The class U is multiplicative.
2. If A ∈ U and B is a pseudocompact subgroup of A, then B ∈ U .
3. If A ∈ U , then A is a subgroup of some compact group B ∈ U .
4. There exist A ∈ U and a ∈ A such that am 6= an for any distinct m,n ∈ N.
If F (X,U ,V) is an almost (U ,V)-free topological group over pointed space X,

then either |X| = 1 or X is connected and every connected subset of any H ∈ U is
a singleton set.

Example 5. Let A be a finite non-trivial group. Denote by U = V the family of
all pseudocompact subgroups of the groups Aτ , where τ is an arbitrary cardinal
number. The class U is multiplicative and every group A ∈ U is a subgroup of some
compact group B ∈ U . Denote by U0 the class of all subgroups of groups from
U . Then U0 is a quasivariety of topological groups. If the space X is finite, then
F (X,U0) is a finite group. If X1 is a finite space and X2 is a connected space, then
F (X1 ×X2,U0) ≡ F (X1,U0) is a finite group.

Remark 7. Corollary 2 improved the results obtain by M.Tkachenco and R.Fokkink
(see [1], p. 110).
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1 Introduction

In this article we study the (n,m)-homogeneous isotopies of topological groupoids
with multiple identities and relation between paramediality and associativity. In
Section 3 we expand on the notions of multiple identities and homogeneous iso-
topies introduced in [2]. This concept facilitates the study of topological groupoids
with (n, m)-identities and homogeneous quasigroups, which are obtained by using
isotopies of topological groups.

The results established in Section 4 are related to the results of M. Choban and
L.Kiriyak [2] and to the research papers [5−8, 11]. We prove that if (G, +) is a
medial topological groupoid and e is a (k, p)-zero, then every (n,m)-homogeneous
isotope (G, ·) of (G,+) is medial, with (mk, np)-identity e in (G, ·). We present some
interesting properties of a class of (n,m)-homogeneous quasigroups.

K. Sigmon, continuing the work of Professor A. D.Wallace, has shown that when-
ever a medial topological groupoid contains a bijective idempotent, it can be ob-
tained from some commutative topological semigroup [12]. In Section 5, we obtain
these and some other results in the case of paramedial topological groupoids. The
relationship between mediality, paramediality and associativity was also studied in
[9,10]. In Section 6 we extended one well-known statement of the theory of topolog-
ical groups on the class of topological (n,m)-homogeneous primitive groupoids with
divisions.

2 Basic notions

A non-empty set G is said to be a groupoid relative to a binary operation denoted
by {·} if for every ordered pair (a, b) of elements of G there is a unique element
ab ∈ G.

c© Liubomir Chiriac, Liubomir Chiriac Jr, Natalia Bobeica, 2009
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If the groupoid G is a topological space and the multiplication operation (a, b) →
a · b is continuous, then G is called a topological groupoid.

A groupoid G is called a groupoid with division if for every a, b ∈ G the equations
ax = b and ya = b have, not necessarily unique, solutions.

A groupoid G is called reducible or cancellative if for any equality xy = uv the
equality x = u is equivalent to the equality y = v.

A groupoid G is called a primitive groupoid with divisions if there exist two
binary operations l : G × G → G, r : G × G → G, such that l(a, b) · a = b,
a · r(a, b) = b for all a, b ∈ G. Thus a primitive groupoid with divisions is a universal
algebra with three binary operations.

If in a topological groupoid G the primitive divisions l and r are continuous, then
we can say that G is a topological primitive groupoid with continuous divisions.

A primitive groupoid G with divisions is called a quasigroup if both equations
ax = b and ya = b have unique solutions. In the quasigroup G the divisions l, r are
unique.

An element e ∈ G is called an identity if ex = xe = x for every x ∈ X.
A quasigroup with an identity is called a loop.
If a multiplication operation in a quasigroup (G, ·) endowed with a topology is

continuous, then G is called a semitopological quasigroup. If in a semitopological
quasigroup G the divisions l and r are continuous, then G is called a topological
quasigroup.

A groupoid G is called medial if it satisfies the law xy · zt = xz · yt for all
x, y, z, t ∈ G. A groupoid G is called paramedial if it satisfies the law xy · zt = ty · zx
for all x, y, z, t ∈ G.

If a medial (paramedial) quasigroup G contains an element e such that
e · x = x(x · e = x) for all x in G, then e is called a left (right) identity element of
G and G is called a left (right) medial (paramedial) loop.

A groupoid G is said to be hexagonal if it is idempotent, medial and semisym-
metric, i.e. the equalities x · x = x, xy · zt = xz · yt, x · zx = xz · x = z hold for all
of its elements.

Let N = {1, 2, ...} and Z = {...,−2,−1, 0, 1, 2, ...}. Furthermore, we shall use
the terminology from [1−4].

3 Multiple identities and homogeneous isotopies

Consider a groupoid (G,+). For every two elements a, b from (G,+) we denote:

1(a, b, +) = (a, b, +)1 = a + b, and n(a, b, +) = a + (n− 1)(a, b,+),

(a, b, +)n = (a, b, +)(n− 1) + b

for all n ≥ 2.
If a binary operation (+) is given on a set G, then we shall use the symbols

n(a, b) and (a, b)n instead of n(a, b, +) and (a, b,+)n.
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Definition 1. Let (G,+) be a groupoid and let n, m ≥ 1. The element e of the
groupoid (G,+) is called:

– an (n, m)-zero of G if e + e = e and n(e, x) = (x, e)m = x for every x ∈ G;
– an (n,∝)-zero if e + e = e and n(e, x) = x for every x ∈ G;
– an (∝,m)-zero if e + e = e and (x, e)m = x for every x ∈ G.

Clearly, if e ∈ G is both an (n,∝)-zero and an (∝,m)-zero, then it is also an
(n,m)-zero. If (G, ·) is a multiplicative groupoid, then the element e is called an
(n,m)-identity. The notion of (n,m)-identity was introduced in [6].

Example 1. Let (G, ·) be a paramedial groupoid, e ∈ G and xe = x for every
x ∈ G. Then (G, ·) is paramedial groupoid with (2, 1)-identity e in G. Actually, if
x ∈ G, then e · ex = ee · ex = xe · ee = xe · e = xe = x.

Example 2. Let G = {1, 2, 3, 4, 5, 6, 7, 8, 9}. We define the binary operation {·}.

(·) 1 2 3 4 5 6 7 8 9
1 1 8 6 2 9 4 3 7 5
2 4 2 9 5 3 7 6 1 8
3 7 5 3 8 6 1 9 4 2
4 6 1 8 4 2 9 5 3 7
5 9 4 2 7 5 3 8 6 1
6 3 7 5 1 8 6 2 9 4
7 8 6 1 9 4 2 7 5 3
8 2 9 4 3 7 5 1 8 6
9 5 3 7 6 1 8 4 2 9

Then (G, ·) is a non-commutative hexagonal quasigroup and each element from
(G, ·) is a (6, 6)-identity in G.

Definition 2. Let (G, +) be a topological groupoid. A groupoid (G, ·) is called a
homogeneous isotope of the topological groupoid (G,+) if there exist two topological
automorphisms ϕ,ψ : (G, +) → (G,+) such that x ·y = ϕ(x)+ψ(y), for all x, y ∈ G.

For every mapping f : X → X we denote f1(x) = f(x) and fn+1(x) = f(fn(x))
for any n ≥ 1.

Definition 3. Let n, m ≤ ∞. A groupoid (G, ·) is called an (n,m)-homogeneous
isotope of a topological groupoid (G,+) if there exist two topological automorphisms
ϕ,ψ : (G,+) → (G, +) such that:

1. x · y = ϕ(x) + ψ(y) for all x, y ∈ G;

2. ϕψ = ψϕ;

3. If n < ∞, then ϕn(x) = x for all x ∈ G;

4. If m < ∞, then ψm(x) = x for all x ∈ G.
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Definition 4. A groupoid (G, ·) is called an isotope of a topological groupoid (G,+),
if there exist two homeomorphisms ϕ,ψ : (G,+) → (G,+) such that

x · y = ϕ(x) + ψ(y) for all x, y ∈ G.

Under the conditions of Definition 4 we shall say that the isotope (G, ·) is gen-
erated by the homeomorphisms ϕ,ψ of the topological groupoids (G,+) and write
(G, ·) = g(G, +, ϕ, ψ).

Example 3. Let (G,+) be a topological commutative additive group with a zero.
1. If ϕ(x) = x, ψ(x) = −x and x · y = x − y, then (G, ·) = g(G, +, ϕ, ψ) is a

topological medial quasigroup with a (2, 1)-identity 0.
2. If ϕ(x) = −x, ψ(x) = x and x · y = y − x, then (G, ·) = g(G, +, ϕ, ψ) is a

topological medial quasigroup with a (1, 2)-identity 0.

Example 4. Let (R, +) be a topological Abelian group of real numbers.
1. If ϕ(x) = x, ψ(x) = 2x and x · y = x + 2y, then (R, ·) = g(R, +, ϕ, ψ) is a

commutative locally compact medial quasigroup. By virtue of Theorem 7 from [2],
there exists a right invariant Haar measure on (R, ·).

2. If ϕ(x) = x, ψ(x) = x+7 and x · y = x+y +7, then (R, ·) = g(R, +, ϕ, ψ) is a
commutative locally compact medial quasigroup and (R, ·) does not contain (n,m)-
identities. As above, by virtue of Theorem 7 from [2] there exists an invariant Haar
measure on (R, ·).
Example 5. Denote by Zp = Z/pZ = {0, 1, ..., p − 1} the cyclic Abelian group of
order p. Consider the commutative group (G,+) = (Z7, +), ϕ(x) = 3x, ψ(x) = 4x
and x · y = 3x + 4y. Then (G, ·) = g(G,+, ϕ, ψ) is a medial quasigroup with (3, 6)-
identity in (G, ·), which coincides with the zero element in (G,+).

Example 6. Consider the commutative group (G,+) = (Z5, +), ϕ(x) = 2x, ψ(x) =
3x and x · y = 2x + 3y. Then (G, ·) = g(G,+, ϕ, ψ) is a medial quasigroup and the
zero from (G, ·) is a (4, 4)-identity in G.

Example 7. Consider the Abelian group (G,+) = (Z5, +), ϕ(x) = 4x, ψ(x) = 2x
and x · y = 4x + 2y. Then (G, ·) = g(G, +, ϕ, ψ) is a medial quasigroup and each
element from (G, ·) is a (4, 2)-identity in G.

4 Some properties of (n, m)-homogeneous isotopies

Proposition 1. If (G,+) is a medial topological groupoid and e is a (k, p)-zero,
then every (n,m)-homogeneous isotope (G, ·) of the topological groupoid (G,+) is
medial with (mk, np)-identity e in (G, ·) and (x · y) + (u · v) = (x + u) · (y + v) for
all x, y, u, v ∈ G and n, m, p, k ∈ N .
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Proof. The mediality of the (n,m)-homogeneous isotope (G, ·) follows from [12]. We
will prove that e is an (mk, np)-identity in (G, ·) by the method described in [2].

Let (G, ·) be an (n,m)-homogeneous isotope of the groupoid (G,+) and e be
a (k, p)-zero in (G,+). We mention that ϕq(e) = ψq(e) = e for every q ∈ N . If
k < +∞, then in (G, +) we have qk(e, x,+) = x for each x ∈ G and for every q ∈ N .
Let m < +∞ and ψm(x) = x for all x ∈ G. Then 1(e, x, ·) = 1(e, ψ(x), +) and
q(e, x, ·) = q(e, ψq(x), +) for every q ≥ 1. Therefore

mk(e, x, ·) = mk(e, ψmk(x), +) = mk(e, x, +) = x.

Analogously we obtain that

(e, x, ·)np = (e, ϕnp(x), +)np = (e, x,+)np = x.

Hence e is an (mk, np)-identity in (G, ·).
Using the algorithm from [12] we will show that (x ·y)+(u ·v) = (x+u) · (y +v).

Let x · y = ϕ(x) + ψ(y) and u · v = ϕ(u) + ψ(v). Then

(x · y) + (u · v) = [ϕ(x) + ψ(y)] + [ϕ(u) + ψ(v)] =

= [ϕ(x) + ϕ(u)] + [ψ(y) + ψ(v)] = ϕ(x + u) + ψ(y + v) = (x + u) · (y + v).

In this way we have that (x ·y)+(u ·v) = (x+u) · (y+v). The proof is complete.

Corollary 1. If (G,+) is a medial topological groupoid, then every homogeneous
isotope (G, ·) of the topological groupoid (G,+) such that ϕψ = ψϕ is medial and
(x · y) + (u · v) = (x + u) · (y + v).

Definition 5. A topological quasigroup (G, ·) is called:
– homogeneous if (G, ·) is a homogeneous isotope of the topological group (G,+).
– (n, m)-homogeneous if (G, ·) is a (n,m)-homogeneous isotope of the topological

group (G,+).

We denote by:
– T the class of all medial quasigroups.
– Q(n,m) the class of all (n, m)-homogeneous quasigroups.
We consider the class: M(n,m) = T ∩Q(n,m).
The class M(1, 1) coincides with the class of topological abelian groups.

Example 8. Let (G, ·) be a topological medial quasigroup.

1. If e ∈ G, such that ex = x and xx = e for each x ∈ G, then (G, ·) ∈ M(1, 2)
and (G, ·) is a topological medial quasigroup with (1, 2)-identity e in G.

2. If e ∈ G, such that xe = x and xx = e for each x ∈ G, then (G, ·) ∈ M(2, 1)
and (G, ·) is a topological medial quasigroup with (2, 1)-identity e in G.
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Theorem 1. Let Q(n,m) be a class of (n,m)-homogeneous quasigroups. Then:
1. For each G ∈ Q(n,m) there exists an (n, m)-identity e ∈ G with the following

properties:
1.1 e · e = e;
1.2 n(e, x) = x;
1.3 (x, e)m = x;
1.4 ex · e = e · xe;

2. If ϕ(x) = ex and ϕn(x) = n(e, x) = x then ϕ−1(x) = (n− 1)(e, x);
3. If ϕ−1(x) = (n− 1)(e, x) and ϕn(x) = n(e, x) = x then (n− 1)(e, ex) = x;
4. If ψ(x) = xe and ψm(x) = (x, e)m = x then ψ−1(x) = (x, e)(m− 1);
5. If ψ−1(x) = (x, e)(m− 1) and ψm(x) = (x, e)m = x then (xe, e)(m− 1) = x.

Proof. 1. Let (G,+) be a topological group and ϕ,ψ : G −→ G be topological
automorphisms of this group, such that ϕn(x) = ψm(x) = x, ϕ · ψ = ψ · ϕ, for
each x ∈ G and (G, ·) = g(G,+, ϕ, ψ). Let e be a zero in (G, +). According to
Theorem 3 from [2], e is an (n,m)-identity in (G, ·). Hence, e · e = e, n(e, x) = x
and (x, e)m = x. Thus, assertions 1.1, 1.2 and 1.3 are proved.

It is easy to see that ϕ(x) = ex and ψ(x) = xe. From the equality ϕψ = ψϕ
we have ϕψ = ϕ(xe) = e · xe and ψϕ = ψ(ex) = ex · e. Therefore e · xe = ex · e.
Assertion 1 is proved.

2. We will show that if ϕ(x) = ex and ϕn(x) = n(e, x) = x, then

ϕ−1(x) = (n− 1)(e, x).

We have ϕ(x) = ex, hence ϕ(ϕ−1(x)) = e·ϕ−1(x). But ϕ(ϕ−1(x)) = x. Therefore,
e · ϕ−1(x) = x. Since n(e, x) = x, we obtain that

e · (ϕ−1(x)) = n(e, x). (1)

By the definition of multiple identities we have

e · (n− 1)(e, x) = n(e, x). (2)

From (1) and (2) we infer that ϕ−1(x) = (n− 1)(e, x), which proves assertion 2.

3. We will prove that if ϕ−1(x) = (n− 1)(e, x) and ϕn(x) = n(e, x) = x then

(n− 1)(e, ex) = x.

Let be (n− 1)(e, ex) = t. Then

e · (n− 1)(e, ex) = et. (3)

By the definition of multiple identities

e · (n− 1)(e, ex) = n(e, ex) = ex. (4)
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From (3) and (4) it follows ex = et and t = x. Hence (n−1)(e, ex) = x, as desired.

4. By following the same guidelines as in property 2 we obtain that if ψ(x) = xe
and ψm(x) = (x, e)m, then ψ−1(x) = (x, e)(m− 1).

5. Similarly to properties 3 we prove that if ψ−1(x) = (x, e)(m − 1) and
ψm(x) = (x, e)m = x, then (xe, e)(m− 1) = x.
The proof of the theorem is now complete.

Corollary 2. A class Q(n,m) of (n,m)-homogeneous quasigroups forms a variety.

Corollary 3. A class M(n,m) of topological medial quasigroups with (n,m)-
identities forms a variety.

5 Paramedial topological groupoids

We provide an example of a paramedial groupoid which is not medial.

Example 9. Let G = {1, 2, 3, 4}. We define the binary operation {·}.

(·) 1 2 3 4
1 1 2 4 3
2 3 4 2 1
3 2 1 3 4
4 4 3 1 2

Then (G, ·) is a paramedial quasigroup but it is not medial. For example

(2 · 3) · (1 · 4) 6= (2 · 1) · (3 · 4).

An element e is called idempotent if ee = e. If the maps x → xe and x → ex are
homeomorphisms then e is also called bijective.

Theorem 2. Let (G, ·) be a paramedial topological groupoid and let e, e1, e2 be
elements of G for which:

1. ee1 = e1 and e2e = e2;
2. The maps x → e1x and x → xe2 are homeomorphisms of G onto itself;
3. The map x → xe is surjective.

If there exists a binary operation {◦} on G such that (e1x) ◦ (ye2) = yx, then (G, ◦)
is a commutative topological semigroup having e1e2 as identity.

Proof. Since x → e1x and x → xe2 are homeomorphisms it is clear that {◦} is
continuous.
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Using surjectivity and the fact that (e1e2) ◦ (ye2) = ye2 and (e1x) ◦ (e1e2) = e1x
we see that e1e2 is an identity for (G, ◦) . Observe that xe1 ·e2 = xe1 ·e2e = ee1 ·e2x =
e1 · e2x.

One can see that

xe1 · zt = (e1 · zt) ◦ (xe1 · e2) = (ee1 · zt) ◦ (xe1 · e2) =

= (te1 · ze) ◦ (xe1 · e2) = [(e1 · ze) ◦ (te1 · e2)] ◦ (xe1 · e2);

te1 · zx = (e1 · zx) ◦ (te1 · e2) = (ee1 · zx) ◦ (te1 · e2) =

= (xe1 · ze) ◦ (te1 · e2) = [(e1 · ze) ◦ (xe1 · e2)] ◦ (te1 · e2) .

From paramediality we have

[(e1 · ze) ◦ (te1 · e2)] ◦ (xe1 · e2) = [(e1 · ze) ◦ (xe1 · e2)] ◦ (te1 · e2) .

Setting z = e2 then since e2e = e2 and e1e2 is an identity it follows that:

[e1e2 ◦ (te1 · e2)] ◦ (xe1 · e2) = [e1e2 ◦ (xe1 · e2)] ◦ (te1 · e2)

and

(te1 · e2) ◦ (xe1 · e2) = (xe1 · e2) ◦ (te1 · e2) .

Hence, (G, ◦) is a commutative topological groupoid and then the associativity
is immediate. Indeed

[(te1 · e2) ◦ (e1 · ze)] ◦ (xe1 · e2) = (te1 · e2) ◦ [(e1 · ze) ◦ (xe1 · e2)] .

The proof is complete.

Theorem 3. Let (G, ·) be a paramedial topological groupoid satisfying the following
conditions:

1. It contains an idempotent e;
2. The maps x → xe and x → ex are homeomorphisms of G onto itself;
3. There exists a binary operation {◦} on G such that (ex) ◦ (ye) = yx.

Then (G, ◦) is a commutative topological semigroup having e as identity. Moreover,
the maps x → xe and x → ex are antihomomorphisms of (G, ◦) and xe · e = e · ex.

Proof. The first part of Theorem 3 follows from Theorem 2 with e = e1 = e2. Indeed,
we have xe · e = xe · ee = ee · ex = e · ex. Since

(ex ◦ ye) e = yx · e = yx · ee = ex · ey = (e · ey) ◦ (ex · e) = (ye · e) ◦ (ex · e) ,

we see that x → xe is an antihomorphism of (G, ◦). Similarly

e (ex ◦ ye) = e · yx = ee · yx = xe · ye = (e · ye) ◦ (xe · e) = (e · ye) ◦ (e · ex).

Consequently, we obtain that x → ex is an antihomorphism of (G, ◦). The proof is
complete.
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A topological groupoid (G, ◦) is called radical if the map s : G → G, defined by
s (x) = x ◦ x, is a homeomorphism.

If (G, ◦) is paramedial and radical then s, and hence s−1, is an antihomomor-
phism of (G, ◦) .

A topological groupoid (G, ·) where {·} is defined by

x · y = s−1 (x) ◦ s−1 (y) = s−1 (y ◦ x)

is called the radical isotope of (G, ◦).
A radical isotope (G, ·) of (G, ◦) is idempotent since

x · x = s−1 (x ◦ x) = s−1 (s (x)) = x

for each x ∈ G.

Theorem 4. If (G, ◦) is a topological groupoid with unit e, (G, ·) is a commutative,
idempotent topological groupoid and

(x ◦ y) · (z ◦ t) = (ty) ◦ (zx) ,

then (G, ◦) is a commutative radical semigroup.

Proof. If we define t : G → G by t (x) = ex then t is an antihomomorphism of
(G, ◦) . Indeed, for all x, y ∈ G we have,

t (x ◦ y) = e (x ◦ y) = (e ◦ e) (x ◦ y) = (ye) ◦ (xe) = (ey) ◦ (ex) = t(y) ◦ t(x).

In particular, we obtain

t(s(x)) = t(x ◦ x) = t(x) ◦ t(x) = s(t(x));

where s : G → G is defined by s (x) = x ◦ x.

Also, for each x, y ∈ G and each unit e in (G, ◦)
xy = (e ◦ x) · (e ◦ y) = (e ◦ x) · (y ◦ e) = (ex) ◦ (ye) =

= (ex) ◦ (ey) = t (x) ◦ t (y) = t (y ◦ x).

Hence t (s (x)) = t (x ◦ x) = xx = x.
It follows that t is a continuous inverse for s so that (G, ◦) is radical. Since (G, ·)

is commutative and x ◦ y = s (yx) = s (xy) = y ◦ x then {◦} is commutative. Since
xy = t (y ◦ x) and t = s−1 then (G, ·) is the radical isotope of (G, ◦). It only remains
to show that {◦} is associative.

Since t is bijective and

t [(x ◦ y) ◦ z] = z · (x ◦ y) = (e ◦ z) · (x ◦ y) = (yz) ◦ (xe) =

= (yz) ◦ (ex) = t (z ◦ y) ◦ t (x) = t[x ◦ (z ◦ y)] = t[x ◦ (y ◦ z)].

we conclude that (G, ◦) is a commutative radical semigroup. The proof is
complete.
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6 On topological primitive groupoid with divisions

The following fundamental Theorem was proved in [2].

Theorem. Let (G,+) be a topological groupoid, ϕ,ψ : (G,+) −→ (G, +) be homeo-
morphisms and (G, ·) = g(G,+, ϕ, ψ). Then:

1. (G, +) = g(G, ·, ϕ−1, ψ−1);

2. (G, ·) is a topological groupoid;
3. If (G, +) is a reducible groupoid , then (G, ·) is a reducible groupoid too;

4. If (G,+) is a groupoid with divisions, then (G, ·) is a groupoid with
divisions too;

5. If (G,+) is a topological primitive groupoid with divisions, then (G, ·) is a
topological primitive groupoid with divisions too;

6. If (G, +) is a topological quasigroup, then (G, ·) is a topological quasigroup;

7. If n,m, p, k ∈ N and (G, ·) is an (n,m)-homogeneous isotope of the groupoid
(G,+) and e is an (k, p)-zero in (G,+), then e is an (mk, np)-identity in (G, ·).

We consider a topological groupoid (G,+). If α is a binary relation on G, then
α(x) = {y ∈ G : xαy} for every x ∈ G.

An equivalence relation α on G is called a congruence on (G,+) if from (xαu)
and (yαv) it follows (x + y)α (u + v) for all x, y, u, v ∈ G.

If (G,+) is a primitive groupoid with divisions l and r, then we consider that
l(x, y)α l(u, v), and r(x, y)α r(u, v) provided (xαu) and (yαv).

Let (G,+, r, l) be a topological primitive groupoid with divisions r, l and (k, p)-
zero. Let (G, ·) = g(G, +, ϕ, ψ) be an (n,m)-homogeneous isotope. Then, by virtue
of the aforementioned Theorem, e is an (mk, np)-identity of the topological primitive
groupoid with divisions (G, ·).

Definition 6. A primitive subgroupoid with divisions H of the primitive groupoid
with divisions (G, +, r, l) is called a normal primitive subgroupoid with divisions if
e ∈ H and H = G(α), for some congruence α.

Lemma 1. Let α be a congruence of the topological primitive groupoid with divisions
(G,+, r, l). Then there exists a unique normal primitive subgroupoid with divisions
G(α), which is called the primitive subgroupoid with divisions defined by congruence
α such that e ∈ G.

Proof. The set G(α) = α(e) = {y ∈ G : eαy} is the desired primitive subgroupoid
with divisions. The proof is complete.

Definition 7. The primitive subgroupoids with divisions (H1, +, r, l) and (H2, +, r, l)
of the topological primitive groupoid with divisions (G,+, r, l) are called conjugate
if H2 = h(H1) for some topological automorphism h : G → G.
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Theorem 5. Let H be a primitive subgroupoid with divisions of the topological
primitive groupoid with divisions (G,+, r, l) and let e ∈ H. Then there exists such
a primitive subgroupoid with divisions Q of the topological primitive groupoids with
divisions (G,+, r, l) and (G, ·, r1, l1) for which:

1. e ∈ Q ⊆ H.
2. Q is the intersection of a finite number of the primitive subgroupoids with

divisions conjugate to H of the (G,+, r, l).
3. If H is a closed set, then Q is closed too.
4. If H is a Gδ set, then Q is a Gδ set too.
5. If H is an open set, then Q is open too.
6. If H is a normal primitive subgroupoid with divisions, then Q is a normal

primitive subgroupoid with divisions of (G,+, r, l) and (G, ·, r1, l1).

Proof. We put {hp : p ≤ n · m} = {ϕi ◦ ψj : i ≤ n, j ≤ m},Hp = hp(H) and
Q = ∩{Hp : p ≤ n ·m}.

We consider that h1(x) = x for each x ∈ H. Fix i ≤ n and j ≤ n. Let
hp = ϕi ◦ψj . It is clear that hp is an automorphism of (G,+, r, l). Thus Hp = hp(H)
is a primitive subgroupoid with divisions of (G,+, r, l) conjugate to H in (G,+, r, l).
Therefore Q is a primitive subgroupoid with divisions of (G,+, r, l). This establishes
assertions 1–5.

Firstly we prove that Q is a primitive sugroupoid with divisions of (G, ·, r1, l1).
Let x, y, b ∈ Q. Then xy = ϕ(x)+ψ(y) and ϕ(x), ψ(x) ∈ Hi for any i. Thus xy ∈ Q.
If ax = b, then a = l1(x, b) ∈ Hi for every i and a ∈ Q. Similarly, if xa = b, then
a = r1(x, b) ∈ Hi for any i and a ∈ Q. Hence Q is a primitive subgroupoid with
divisions of (G, ·, r1, l1).

Let α be a congruence of (G,+, r, l). Then, by virtue of Lemma 1, there exists
a unique normal primitive subgroupoid with divisions H = G(α) and e ∈ H. Be-
cause hp is a topological automorphism of (G,+, r, l), then Hp = hp(H) is a normal
primitive subgroupoid with divisions of (G,+, r, l) conjugate to the normal primitive
subgroupoid with divisions H. Therefore Q is a normal primitive subgroupoid with
divisions of (G,+, r, l) and Q is a normal primitive subgroupoid of (G, ·, r, l). This
proves assertion 6 and completes the proof of the theorem.
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The distribution of a planar random evolution with
random start point

Alexander D. Kolesnik

Abstract. We consider the symmetric Markovian random evolution X(t) in the Eu-
clidean plane R2 starting from a random point whose coordinates are the independent
standard Gaussian random variables. The integral and series representations of the
transition density of X(t) are obtained.

Mathematics subject classification: 60K35; 60K37; 82B41; 82C70.
Keywords and phrases: Random motion, finite speed, random evolution, random
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The planar random motion at finite speed was dealt with in a series of works
[2–4]. In these works the following planar stochastic motion was studied. A particle
starts from the origin 0 = (0, 0) of the plane R2 at time t = 0 and moves with
constant finite speed c. The initial direction is a two-dimensional random vector
with uniform distribution on the unit circumference

S(0, 1) =
{
x = (x1, x2) ∈ R2 : ‖x‖2 = x2

1 + x2
2 = 1

}
.

The particle changes its direction at random instants that form a homogeneous
Poisson process of rate λ > 0. At these moments it instantaneously takes on the
new direction with uniform distribution on S(0, 1), independently of its previous
motion.

Let X(t) = (X1(t), X2(t)) denote the particle’s position at an arbitrary instant
t > 0. At any time t > 0 the particle, with probability 1, is located in the planar
disc of radius ct

B(0, ct) =
{
x = (x1, x2) ∈ R2 : ‖x‖2 = x2

1 + x2
2 ≤ c2t2

}
.

Let dx be the infinitesimal element of the plane R2 with the Lebesgue measure
µ(dx) = dx1dx2. The distribution Pr {X(t) ∈ dx} , x ∈ B(0, ct), t ≥ 0, consists of
two components. The singular component corresponds to the case when no Poisson
event occurs in the interval (0, t) and is concentrated on the circumference

S(0, ct) = ∂B(0, ct) =
{
x = (x1, x2) ∈ R2 : ‖x‖2 = x2

1 + x2
2 = c2t2

}
.

In this case, in the moment t, the particle is located on the sphere S(0, ct) and the
probability of this event is

Pr {X(t) ∈ S(0, ct)} = e−λt.

c© Alexander D. Kolesnik, 2009
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If at least one Poisson event occurs, the particle is located strictly inside the disc
B(0, ct), and the probability of this event is

Pr {X(t) ∈ int B(0, ct)} = 1− e−λt.

The part of the distribution Pr {X(t) ∈ dx} corresponding to this case is concen-
trated in the interior

int B(0, ct) =
{
x = (x1, x2) ∈ R2 : ‖x‖2 = x2

1 + x2
2 < c2t2

}
,

and forms its absolutely continuous component. Therefore there exists the density
of the absolutely continuous component of the distribution Pr {X(t) ∈ dx}.

The principal known result states that the complete density f(x, t) of the process
X(t) (starting from the origin 0), has the form

f(x, t) =
e−λt

2πct
δ(c2t2 − ‖x‖2) +

λ

2πc

exp
(
−λt + λ

c

√
c2t2 − ‖x‖2

)
√

c2t2 − ‖x‖2
Θ(ct− ‖x‖), (1)

x = (x1, x2) ∈ B(0, ct), ‖x‖ =
√

x2
1 + x2

2, t ≥ 0,

where δ(x) is the Dirac delta-function and Θ(x) is the Heaviside step function.
The first term in (1) represents the density of the singular part of the distribution
concentrated on the sphere S(0, ct), while the second term is the density of the
absolutely continuous part of the distribution concentrated in int B(0, ct).

If the process X(t) starts from some arbitrary fixed point x0 = (x0
1, x

0
2) ∈ R2,

then, given the phase space R2 is isotropic and homogeneous, the density of X(t)
has the form

f(x− x0, t) =
e−λt

2πct
δ(c2t2 − ‖x− x0‖2)+

+
λ

2πc

exp
(
−λt + λ

c

√
c2t2 − ‖x− x0‖2

)
√

c2t2 − ‖x− x0‖2
Θ(ct− ‖x− x0‖), (2)

x = (x1, x2) ∈ B(x0, ct), ‖x− x0‖ =
√

(x1 − x0
1)2 + (x2 − x0

2)2, t ≥ 0.

Suppose that the start point x0 = (x0
1, x

0
2) is a two-dimensional random variable

(random vector) with given density p(x) on the plane R2. If the random vectors
X(t) and x0 are independent for any t > 0, then the density of X(t) is given by the
convolution

ϕ(x, t) = f(x, t) ∗ p(x) =
∫

R2

f(x− ξ, t) p(ξ) µ(dξ). (3)

In this paper we obtain a closed-form expression for density (3) when the initial
point x0 = (x0

1, x
0
2) is a two-dimensional standard Gaussian vector with independent

coordinates. In this case the density p(x) has the form

p(x) = p(x1, x2) =
1
2π

exp
(
−x2

1 + x2
2

2

)
. (4)
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Due to the fairly simple form of function (4) we are able to obtain the density of the
process X(t) starting from a Gaussian random point of the Euclidean plane R2.

First, we will prove two auxiliary lemmas.

Lemma 1. For arbitrary q > 0 and any integer n ≥ 0 the following formula holds
∫ 1

0
xn I0(q

√
1− x2) dx = 2(n−1)/2 Γ

(
n + 1

2

)
I(n+1)/2(q)
q(n+1)/2

, (5)

where Iν(x) is the Bessel function of order ν with imaginary argument given by

Iν(x) =
∞∑

k=0

1
k! Γ(ν + k + 1)

(x

2

)2k+ν
. (6)

Proof. Making the substitution z =
√

1− x2 in the integral on the left-hand side of
(5), we obtain

∫ 1

0
xn I0(q

√
1− x2) dx =

∫ 1

0
z (1− z2)(n−1)/2 I0(qz) dz =

=
1
2

∫ 1

0
(1− ξ)(n−1)/2 I0(q

√
ξ) dξ =

=
1
2

∫ 1

0
(1− ξ)(n−1)/2

∞∑

k=0

1
(k!)2

(
q
√

ξ

2

)2k

dξ =

=
1
2

∞∑

k=0

1
(k!)2

(q

2

)2k
∫ 1

0
ξk (1− ξ)(n−1)/2 dξ =

=
1
2

∞∑

k=0

1
(k!)2

(q

2

)2k
B

(
n + 1

2
, k + 1

)
=

=
1
2

∞∑

k=0

1
(k!)2

(q

2

)2k Γ
(

n+1
2

)
Γ(k + 1)

Γ
(

n+1
2 + k + 1

) =

=
1
2

Γ
(

n + 1
2

) ∞∑

k=0

1
k! Γ

(
n+1

2 + k + 1
)

(q

2

)2k
=

=
1
2

Γ
(

n + 1
2

) (
2
q

)(n+1)/2 ∞∑

k=0

1
k! Γ

(
n+1

2 + k + 1
)

(q

2

)2k+(n+1)/2
=

=
1
2

Γ
(

n + 1
2

) (
2
q

)(n+1)/2

I(n+1)/2(q) =

= 2(n−1)/2 Γ
(

n + 1
2

)
I(n+1)/2(q)
q(n+1)/2

.

The lemma is proved. ¤
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Lemma 2. For arbitrary a > 0, b > 0 and q > 0 the following formula holds

∫ 1

0
eax2+bx I0(q

√
1− x2) dx =

=
∞∑

n=0

n∑

k=0

an−k bk

k! (n− k)!
2(2n−k−1)/2 Γ

(
2n− k + 1

2

)
I(2n−k+1)/2(q)
q(2n−k+1)/2

,

(7)

where Iν(x) is the Bessel function of order ν with imaginary argument given by (6).

Proof. By expanding the exponential and applying formula (5) of Lemma 1, we
obtain

∫ 1

0
eax2+bx I0(q

√
1− x2) dx =

∞∑

n=0

1
n!

∫ 1

0
(ax2 + bx)n I0(q

√
1− x2) dx =

=
∞∑

n=0

1
n!

n∑

k=0

Ck
n an−k bk

∫ 1

0
x2n−k I0(q

√
1− x2) dx =

=
∞∑

n=0

n∑

k=0

an−k bk

k! (n− k)!
2(2n−k−1)/2 Γ

(
2n− k + 1

2

)
I(2n−k+1)/2(q)
q(2n−k+1)/2

,

proving (7). The lemma is proved. ¤

The series on the right-hand side of (7) has a fairly complicated form and seem-
ingly cannot be reduced to a more elegant expression. Nevertheless, it enables us to
obtain a series representation of the transition density of X(t).

Now we are able to establish our main result. It is given by the following theorem.

Theorem 1. The transition density of the planar random evolution X(t) started
from a random point x0 with Gaussian density (4) is given by the formula

ϕ(x, t) =
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖)+

+
λt e−λt

2π
e−(‖x‖2+c2t2)/2

∫ 1

0
e(c2t2/2)ξ2+λtξ I0(ct‖x‖

√
1− ξ2) dξ.

(8)

The density (8) has the following series representation

ϕ(x, t) =
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖) +

λt e−λt

2π
e−‖x‖

2/2×

×
∞∑

n=0

n∑

k=0

(λt)k 2(k+1)/2

k! (n− k)!
(c2t2)n−k Γ

(
2n− k + 1

2

)
I(2n−k+1)/2(ct‖x‖)
(ct‖x‖)(2n−k+1)/2

.

(9)
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Proof. According to (3) and taking into account (2) and (4), we have

ϕ(x, t) = ϕ(x1, x2, t) =

=
e−λt

4π2ct

∫∫

R2

exp
(
−ξ2

1 + ξ2
2

2

)
δ(c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2) dξ1 dξ2+

+
λe−λt

4π2c

∫∫

R2

exp
(

λ
c

√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

)
√

c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2
exp

(
−ξ2

1 + ξ2
2

2

)
×

×Θ
(
ct−

√
(x1 − ξ1)2 + (x2 − ξ2)2

)
dξ1 dξ2 =

=
e−λt

4π2ct

∫∫

R2

exp
(
−(x1 − ξ1)2 + (x2 − ξ2)2

2

)
δ(c2t2 − (ξ2

1 + ξ2
2)) dξ1 dξ2+

+
λe−λt

4π2c

∫∫

R2

exp
(

λ
c

√
c2t2 − (ξ2

1 + ξ2
2)

)
√

c2t2 − (ξ2
1 + ξ2

2)
exp

(
−(x1 − ξ1)2 + (x2 − ξ2)2

2

)
×

×Θ
(

ct−
√

ξ2
1 + ξ2

2

)
dξ1 dξ2.

By changing to the polar coordinates ξ1 = ρ cosα, ξ2 = ρ sinα, in both integrals,
we obtain

ϕ(x, t) =
e−λt

4π2ct

∫ ∞

0
dρ

{
ρ δ(c2t2 − ρ2)×

×
∫ 2π

0
exp

(
−(x1 − ρ cosα)2 + (x2 − ρ sinα)2

2

)
dα

}
+

+
λe−λt

4π2c

∫ ∞

0
dρ

{ρ exp
(

λ
c

√
c2t2 − ρ2

)
√

c2t2 − ρ2
Θ(ct− ρ)×

×
∫ 2π

0
exp

(
−(x1 − ρ cosα)2 + (x2 − ρ sinα)2

2

)
dα

}
.

(10)

Let’s evaluate separately the interior integral in (10):
∫ 2π

0
exp

(
−(x1 − ρ cosα)2 + (x2 − ρ sinα)2

2

)
dα =

=
∫ 2π

0
exp

(
−1

2
[
x2

1 + x2
2 + ρ2 − 2ρ(x1 cosα + x2 sinα)

])
dα =

= e−(x2
1+x2

2+ρ2)/2

∫ 2π

0
eρ(x1 cos α+x2 sin α) dα =

= 2π e−(‖x‖2+ρ2)/2 I0(ρ‖x‖).
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Substituting this into (10) we obtain

ϕ(x, t) =
e−λt

2πct

∫ ∞

0
ρ δ(c2t2 − ρ2) e−(‖x‖2+ρ2)/2 I0(ρ‖x‖)dρ+

+
λe−λt

2πc

∫ ∞

0
ρ
exp

(
λ
c

√
c2t2 − ρ2

)
√

c2t2 − ρ2
Θ(ct− ρ)e−(‖x‖2+ρ2)/2I0(ρ‖x‖)dρ =

=
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖)+

+
λe−λt

2πc
e−‖x‖

2/2

∫ ct

0
ρ

exp
(

λ
c

√
c2t2 − ρ2

)
√

c2t2 − ρ2
e−ρ2/2 I0(ρ‖x‖) dρ

Making the substitution z =
√

c2t2 − ρ2 in the last integral, we obtain

ϕ(x, t) =
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖)+

+
λe−λt

2πc
e−(‖x‖2+c2t2)/2

∫ ct

0
e(λ/c)z ez2/2 I0(‖x‖

√
c2t2 − z2) dz =

=
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖)+

+
λt e−λt

2π
e−(‖x‖2+c2t2)/2

∫ 1

0
e(c2t2/2)ξ2+λtξ I0(ct‖x‖

√
1− ξ2) dξ,

(11)

proving (8).
According to Lemma 2, the last integral in (11) is

∫ 1

0
e(c2t2/2)ξ2+λtξ I0(ct‖x‖

√
1− ξ2) dξ =

=
∞∑

n=0

n∑

k=0

2(2n−k−1)/2

k!(n− k)!

(
c2t2

2

)n−k

(λt)k Γ
(

2n− k + 1
2

)
I(2n−k+1)/2(ct‖x‖)
(ct‖x‖)(2n−k+1)/2

=

=
∞∑

n=0

n∑

k=0

(λt)k 2(k+1)/2

k! (n− k)!
(c2t2)n−k Γ

(
2n− k + 1

2

)
I(2n−k+1)/2(ct‖x‖)
(ct‖x‖)(2n−k+1)/2

.

Substituting this into (11) we obtain (9).
It remains to check that the (non-negative) function ϕ(x, t) given by (8) is really

the density of the process. For this we should show that for any t > 0
∫

R2

ϕ(x, t) µ(dx) = 1. (12)
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We have
∫

R2

e−‖x‖
2/2 I0(ct‖x‖) µ(dx) =

∫∫

R2

e−(x2
1+x2

2)/2 I0(ct
√

x2
1 + x2

2) dx1 dx2 =

=
∫ ∞

0
dr

∫ 2π

0
dθ

{
r e−r2/2 I0(ctr)

}
= 2π

∫ ∞

0
r e−r2/2 I0(ctr) dr =

= π

∫ ∞

0
e−z/2 I0(ct

√
z) dz = (see[1], Formula 6.643(2))

=
2π
√

2
ct

ec2t2/4 M−1/2,0

(
c2t2

2

)
,

where Mξ,η(z) is the Whittaker function. By applying now [1], Formula 9.220(2),
we reduce the Whittaker function on the right-hand side of the last equality to the
degenerated hypergeometric function and obtain

∫

R2

e−‖x‖
2/2 I0(ct‖x‖) µ(dx) = 2πΦ

(
1; 1;

c2t2

2

)
= 2π ec2t2/2. (13)

From (13) it also follows that
∫

R2

e−‖x‖
2/2 I0(ct

√
1− ξ2 ‖x‖) µ(dx) = 2π ec2t2(1−ξ2)/2. (14)

Therefore, by taking into account (13) and (14), we obtain

∫

R2

ϕ(x, t) µ(dx) =
e−λt

2π
e−c2t2/2

∫

R2

e−‖x‖
2/2 I0(ct‖x‖) µ(dx)+

+
λte−λt

2π
e−c2t2/2

∫ 1

0
e(c2t2/2)ξ2+λtξ





∫

R2

e−‖x‖
2/2I0(ct

√
1− ξ2‖x‖) µ(dx)



 dξ =

=
e−λt

2π
e−c2t2/2 2πec2t2/2 +

λte−λt

2π
e−c2t2/2

∫ 1

0
e(c2t2/2)ξ2+λtξ 2πec2t2(1−ξ2)/2dξ =

= e−λt + λt e−λt

∫ 1

0
eλtξ dξ = e−λt + e−λt

(
eλt − 1

)
= 1,

proving (12). The theorem is completely proved. ¤

Remark 1. We have supposed that the start point x0 was a two-dimensional ran-
dom vector whose coordinates are the independent standard random variables with
Gaussian density (4). However, we can consider in the same manner the case when
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the coordinates of the start point x0 are some dependent Gaussian random variables
with given characteristics (a1, σ1) and (a2, σ2), respectively. In this case the density
of x0 has the form

p(x) = p(x1, x2) =
1

2πσ1σ2

√
1− r2

×

× exp
[
− 1

2(1− r2)

{
(x1 − a1)2

σ2
1

− 2r
(x1 − a1)(x2 − a2)

σ1σ2
+

(x2 − a2)2

σ2
2

}]
,

(15)
−1 < r < 1.

The similar analysis can be done to evaluate the convolution (3) of the transition
density (2) with Gaussian density (15), however the computations will be much more
difficult and tedious.
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About the solvability of systems of integral equations
with different degrees of differences in kernels
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Abstract. The work defines the conditions of solvability of one system of integral
convolutional equations with different degrees of differences in kernels. Such the sys-
tem of the integral convolutional equations has not been studied earlier, and it turned
out that all the methods used for the investigation of such a system with the help of
Riemann boundary problem at the real axis can not be applied there. The investi-
gation of such a type of the system of equations is based on the investigation of the
equivalent system of singular integral equations with the Cauchy type kernels at the
real axis. It is determined that the system of the equations is not a Noetherian one.
Besides, we have shown the number of the linear independent solutions of the homo-
geneous system of equations and the number of conditions of solvability for the system
of heterogeneous equations. The general form of these conditions is also shown and
the spaces of solutions of that system of equations are determined. Thus the system of
the convolutional equations that hasn’t been studied earlier is presented in that work
and the theory of its solvability is built here. So some new and interesting theoretical
results are got in the paper.

Mathematics subject classification: 45E05, 45E10.
Keywords and phrases: The system of integral convolutional equations, singular
integral equations, Cauchy type kernel, a Noetherian system of equations, conditions of
solvability, index, the number of the linear independent solutions, spaces of solutions.

The present work is devoted to determining conditions of solvability and some
properties of solutions of the next system of Winer-Hoph’s type integral equations

P1(x)ϕ(x) +
1√
2π

+∞∫

0

k(x− t)P2(t)ϕ(t) dt = h(x), x > 0, (1)

where h(x) ∈ L2 is a known vector-function which is an n-dimensional one, k(x) ∈ L,
is a known matrix-function, which is an n-dimensional one, too. ϕ(x) is an unknown
vector-function and it is an n-dimensional one.

P1(x) =
m∑

k=0

akx
k, P2(x) =

s∑

ν=0

bνx
ν

are the known polynomials with the degrees m, s respectively. We will note that
the belonging of vector-functions and matrix-functions to any space means their
elements’ belonging to it. The norms of vector-functions and matrix-functions are
compatible with each other.

c© V. I. Neaga, A. G. Scherbakova, 2009
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Let D+ = {z ∈ C : Imz > 0} be an upper half plane and D− = {z ∈ C : Imz <
0} be a lower half plane of the complex plane C; R is the real axis. According to
the properties of Fourier transformation [2, p. 16] the investigation of the system
of equations (1) reduces to the investigation of the following matrix differential
boundary problem

m∑

k=0

(−1)kAkΦ+(k)(x) +
s∑

ν=0

(−1)νBνK(x)Φ+(ν)(x) = H(x) + Φ−(x), x ∈ R.

Here K(x), H(x) are the Fourier transformations of the matrix-function k(x) and
the vector-function h(x) accordingly. Φ+(p)(x), Φ−(x) are the boundary values at R
of the unknown vector-functions Φ+(p)(z) and Φ−(z) accordingly, where Φ+(p)(z),
Φ−(z) are unknown vector-functions, which are analytical in the domains D+ and
D− accordingly. Let’s rewrite this differential boundary problem as the following
one
[

m∑

k=0

(−1)kAkΦ+(k)(x) +
s∑

ν=0

(−1)νBνK(x)Φ+(ν)(x)

]
−Φ−(x) = H(x), x ∈ R. (2)

As all the transformations of the system (2) and the system (1) are identical,
then they are equivalent in such a sense that they are solvable or unsolvable at
the same time, and there is one and only one solution Φ±(x) of the system (2) for
every solution ϕ(x) of the system (1) and vice versa. Further the systems with these
properties we will name by the equivalent systems. The solutions of the system of
equations (1) are expressed via solutions of the system (2) according to the formula

ϕ(x) =
1√
2π

∫

R

Φ+(t)e−ixt dt, x > 0. (3)

Later on we will consider that K(x) ∈ H(r)
α , r ≥ 0, 0 < α ≤ 1, where H(r)

α is a space
of functions f(x) ∈ C(r), the derivatives with the order r of which satisfy the next
condition at the real axis R:

∣∣∣f (r)(x + h)− f (r)(x)
∣∣∣ (1 + |x|)α(1 + |x + h|)α ≤ Arh

α, x ∈ R, h > 0,

where Ar is the Holder’s constant of the function f (r)(x) and α is its Holder’s
exponent; H(x) ∈ L(r)

2 , r ≥ 0. As the matrix function k(x) ∈ L, then according to
Riemann-Lebesgue theorem lim

x→∞Kij(x) = 0, i, j = 1, n, thus detK(x) = 0 when

x → ∞, where Kij(x) is the Fourier transformation of the elements kij(x) of the
matrix function k(x).

The theory of the solvability of systems of Winer-Hoph type equations with
different degrees of differences in kernels such as

ϕ(x) +
1√
2π

+∞∫

0

k(x− t)ϕ(t) dt = h(x), x > 0,
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was built in the papers [1, 5, 6] with rather wide assumptions concerning their
kernels and right parts. The investigation of systems of such a type of equations was
based on the investigation of the corresponding Riemann boundary problem at the
real axis, which appears after the Fourier transformation of the every system. But
the methods used in the papers [2, 7, 10] can’t be applied to the investigation of the
system of equations (1), as this system is transformed into the corresponding system
of differential boundary problems at the real axis (2) with the help of the properties of
Fourier transformation. It is necessary to mention that the attempt of studying the
case of an equation as (1) was made in papers [5, 6], where integral representations
for functions and their derivatives analytical in domains D+, D− were applied for the
investigation of the corresponding differential boundary problem. But the kernels of
these integral representations had the additional branch points in these domains and
it led to appearing multivalued unknown functions which were analytical in domains
D+, D−. We must also mention that the integral Winer-Hoph equation (or the
scalar case) was studied in details in the paper [12]. Thus we will study the system
of equations (1) basing on the investigation of the system of differential boundary
problems (2). We will transform the system of differential boundary problems (2)
into the system of singular integral equations with the kernel of Cauchy using integral
representations for the vector functions and derivatives of them which are analytical
in domains D+, D−. Let construct vector functions Φ+(z) and Φ−(z) such that
they are analytical in the domains D+, D− accordingly and disappear at infinity.
Besides, the boundary values at R of vector functions Φ+(p)(z) and Φ−(z) satisfy
the following condition Φ+(p)(x) ∈ L(r)

2 , Φ−(x) ∈ L(r)
2 , r ≥ 0, p ≥ 0. According to

the papers [4, 11] such vector functions as:

Φ±(z) = (2πı)−1
∫

R

P±(x, z)ρ(x) dx, z ∈ D±, (4)

where
P−(x, z) =

1
x− z

, z ∈ D−;

P+(x, z) =
(−1)p(x + ı)−p

(p− 1)!
×

×
[
(x− z)p−1 ln

(
1− x + ı

z + ı

)
−

p−2∑

k=0

dp−k−2(x + ı)k+1(z + ı)p−k−2

]
, z ∈ D+;

dp−k−2 = (−1)k+1
k∑

j=0

Cp−1−j
p−1 (k − j + 1)−1, k = 0, m− 2

satisfy these conditions, and here Cm
n are binomial coefficients; the function

ln
[
1− x + ı

z + ı

]
is the main branch (ln 1 = 0) of the logarithmic function in the

complex plane with the cut connecting such points as z = −ı and z = ∞, following
the negative direction of the axis of ordinate.



90 V. I. NEAGA, A.G. SCHERBAKOVA

It’s easy to verify that defined by (4) vector functions Φ+(z) and Φ−(z) according
to the structure of P±(x, z) and due to the papers [4, 11] are unique analytical
functions in the domains D+, D− accordingly. The next vector function ρ(x) ∈ L2

or the density of the integral representations (4), is defined uniquely by the vector
functions Φ+(z) and Φ−(z) and vice versa, so with the help of the given vector
function ρ(x) ∈ L2 both vector functions Φ+(z) and Φ−(z) can be constructed
uniquely. The following representations take place at the same time:

Φ+(p)(z) = (2πı)−1
∫

R

(z + ı)−p(x− z)−1ρ(x) dx, z ∈ D+,

Φ−(z) = (2πı)−1
∫

R

(x− z)−1ρ(x) dx, z ∈ D−. (5)

We consider the case when m = s. Using the properties of partial derivatives
of function P+(x, z) with respect to z and Sohotski formulas for derivatives from
[7,p. 42], with the help of the representations (4), (5), we will transform the system
of differential boundary problems (2) into the following system of singular integral
equations and later on investigate it. The system of singular integral equations is

A(x)ρ(x) + B(x)(πı)−1
∫

R

(t− x)−1ρ(t) dt + (Tρ)(x) = H(x), x ∈ R, (6)

where
A(x) = 0, 5{(−1)m [Am + BmK(x)] (x + ı)−m + E},
B(x) = 0, 5{(−1)m [Am + BmK(x)] (x + ı)−m −E}, (7)

(Tρ)(x) =
∫

R

K(x, t)ρ(t) dt, (8)

K(x, t) =
1

2πı

m−1∑

k=0

(−1)k [Ak + BkK(x)]
∂kP+(t, x)

∂xk
,

where E is unity matrix and
∂kP+(t, x)

∂xk
is a limiting value at R of the function

∂kP+(t, z)
∂zk

, k = 0,m− 1.

Lemma 1. If the matrix function K(x) ∈ H(r)
α , r ≥ 0, 0 < α ≤ 1, then the

operator
T : L(r)

2 → L(r)
2 ,

r ≥ 0, defined by the formula (8), is a compact one.

The proof of this lemma follows from Frechet-Kolmogorov-Riesz criterion of com-
pactness vector functions’ sets in the spaces Lp, p > 1 and integral operators at the
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real axis in the spaces Lp, p > 1, the properties of function P+(x, z) and the results
of the work [8].

According to the work [10, p. 406], the system of differential boundary problems
(2) and the system of singular integral equations (6) are equivalent in such a sense
that they are solvable or unsolvable at the same time, and for every solution ρ(x) of
the system (6) there exists maybe a nonunique solution Φ±(x) of the system (2) and
vice versa. In order to make this correspondence unique it is necessary to set initial
conditions for the system (2). As its solutions Φ±(x) are found in spaces of functions
that disappear at infinity, then according to the properties of Cauchy type integral
the solutions of the system (2) are such that Φ+(k)(∞) = 0, k = 0, m− 1, it means
that the initial conditions of the system (2) are trivial and set automatically. Thus
it follows that the system of differential boundary problems (2) and the system of
singular integral equations (6) are equivalent in such a sense that they are solvable
or unsolvable at the same time, and there is one and only one solution ρ(x) of the
system (6) for every solution Φ±(x) of the system (2) and vice versa. By the force of
formula (4), the solutions of the system (2) are expressed via solutions of the system
(6) according to the formula

Φ+(x) = (2πı)−1
∫

R

P+(t, x)ρ(t) dt, x ∈ R, (9)

where p = m; P+(t, x) are the boundary values at R of the vector functions P+(t, z),
and the vector function ρ(x) is the solution of the system (6). As the system of the
equations (1) and the system (2) are equivalent, the system (2) and the system of
singular integral equations (6) are equivalent, too, it follows that the system (1) and
the system (6) are equivalent in such a sense that they are solvable or unsolvable
at the same time, and there is one and only one solution ϕ(x) of the system of
equations (1) for every solution ρ(x) of the system of the equations (6) and vice
versa. Thus the solutions of the system (1) are expressed via solutions of the system
(6) according to the formulas (10), (3). That is why we will call the system of the
equations (1) a Noetherian if the system of the equations (6) is a Noetherian one.

Theorem 1. The system (1) is not a Noetherian one.

Proof. According to the papers [2, 3, 10] the system of the singular integral equations
(6) is a Noetherian one if and only if when the following conditions take place:

det[A(x) + B(x)] 6= 0, det[A(x)−B(x)] 6= 0

at R. As A(x) − B(x) = E; A(x) + B(x) = (−1)m(x + ı)−m[Am + BmK(x)],
then det[A(x)+B(x)] has a null at least with order m at infinity. It means that the
system of the equations (6) is not a Noetherian one. Then as the systems (1) and
(6) are equivalent, the system of the equations (1) is not a Noetherian one, too.

The theorem is proved. ¤
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Let’s determine conditions when the system of equations (1) is a Nothe-
rian one and it is a solvable one due to it. First we consider the case when
det[Am + BmK(x)] 6= 0 at the finite points of the real axis R. The following
representation [3, p. 329] for the matrix function A(x) + B(x) takes place:

A(x) + B(x) = M(x) ·D(x) ·R(x). (10)

Here M(x) is a matrix function of size measure n and detM(x) 6= 0 at R;
R(x) is a matrix function with such a determinant which is constant and different

from zero with polynomials of degrees
1

x + ı
as its elements;

D(x) is a diagonal matrix function such as:

D(x) = diag

{
1

(x + ı)ν
(1)
0

, · · · ,
1

(x + ı)ν
(n)
0

}
,

where ν
(1)
0 , . . . , ν

(n)
0 are integer non-negative numbers such that

n∑

j=0

ν
(j)
0 = ν0 = m. (11)

Let denote
r0 = max{ν(1)

0 , . . . , ν
(n)
0 }. (12)

We will investigate the matrix function M(x) ∈ H(r)
α , r ≥ r0, 0 < α ≤ 1, where

the number r0 is defined by the formula (12). According to the paper [9, p. 53] it
allows the following factorisation

M(x) = X+(x) · Λ(x) ·X−(x), (13)

where detX±(x) 6= 0 at R and

Λ(x) = diag

{(
x− ı

x + ı

)χ1

, · · · ,

(
x− ı

x + ı

)χn
}

, (14)

and χj , j = 1, n are the partial indexes of the matrix function M(x).
As there can be positive and negative partial indexes at the same time among

all of them, we will define them by the next equalities:

ω =
∑

χj≥0

χj , q = −
∑

χj<0

χj , (15)

then the summarized index of the matrix function M(x) is defined by the formula

χ = ω − q. (16)

The next theorem takes place.
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Theorem 2. Let the matrix function k(x) ∈ L, vector function h(x) ∈ L2; the
matrix function K(x) ∈ H(r)

α , r ≥ r0, 0 < α ≤ 1, the vector function H(x) ∈ L(r)
2 ,

r ≥ ro, where the number r0 is defined by the formula (12); det[Am + BmK(x)] 6= 0
at the finite points of the real axis R, the numbers ω, q are defined by the formula
(15), the number χ is defined by the formula (16) and the representation (13) takes
place.

If q− 2m ≥ 0, then the homogeneous system (1) has not less than q− 2m linear
independent solutions; the heterogeneous system(1) is a solvable one if not less than
ω conditions of solvability ∫

R

H(x)ψj(x) dt = 0, (17)

are executed. Here in (17) the vector function H(x) is a right part of the system of the
singular integral equations (6) and the vector functions ψj(x) are linear independent
solutions of the system of homogeneous singular integral equations

Ã(x)ψ(x)− (πı)−1
∫

R

(t− x)−1B̃(t)ψ(t) dt +
∫

R

K̃(t, x)ψ(t) dt = 0, (18)

allied to the equation (6), where the matrices Ã(x), B̃(x), K̃(x, t) are transposed with
respect to matrices A(x), B(x), K(x, t) which are the coefficients and the regular
kernel in the system of equations (6) respectively.

If q − 2m < 0 then the heterogeneous system(1) is an unsolvable one. It will
become a solvable one if ω + 2m conditions (17) are executed.

The summarized index of the system (1) is −(χ + 2m).

According to the paper [2, p. 262] let’s denote by L2[−µ; 0] the space of functions
ϕ(x) ∈ L2 which satisfy the condition (x + ı)µϕ(x) ∈ L2.

Theorem 3. Let the matrix function k(x) ∈ L, the vector function h(x) ∈ L2; the
matrix function K(x) ∈ H(r)

α , r ≥ r0, 0 < α ≤ 1, where the number r0 is defined by
the formula (12), the vector function H(x) ∈ L(r)

2 , r ≥ r0; det[Am + BmK(x)] 6= 0
at the finite points of the real axis R and the system (1) is a solvable one. Then its
solutions belong to the space L2[−r −m + r0; 0], r ≥ r0.

Now we will study the singular case.
Let the condition det[Am + BmK(x)] 6= 0 at the finite points of the real axis R

is not executed. Then we suppose that det[Am + BmK(x)] has zeroes at the real
axis R in finite points a1, a2, . . . , au with integer orders ν1, ν2, . . . , νu respectively.
Then in virtue of the work [3, p. 328] the representation (10) for the matrix function
A(x) + B(x) takes place. Here the matrix functions M(x), R(x) are the same as in
the previous case, and D(x) is the following diagonal matrix

D(x) = diag





1

(x + ı)ν
(1)
0

u∏

j=1

(
x− aj

x + ı

)ν
(1)
j

, · · · ,
1

(x + ı)ν
(n)
0

u∏

j=1

(
x− aj

x + ı

)ν
(n)
j



 ,

(19)
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where ν
(1)
0 , . . . , ν

(n)
0 , ν

(1)
1 , . . . , ν

(n)
1 , . . . , ν

(1)
u , . . . , ν

(n)
u are integer nonnegative numbers

such that
n∑

j=1

ν
(j)
0 = ν0 = m,

νk =
n∑

j=1

ν
(j)
k , k = 1, u, ν =

u∑

k=1

νk. (20)

Let
r0 = max{ν(1)

0 , . . . , ν
(n)
0 , ν

(1)
1 , . . . , ν

(n)
1 , . . . , ν(1)

u , . . . , ν(n)
u }. (21)

Analogously as in the previous case the matrix function M(x) ∈ H(r)
α , r ≥ r0,

admits the factorization (13), where the matrix function Λ(x) is defined by the
formula (14) and χj , j = 1, n are the partial indexes of the matrix function M(x)
that are defined by the formula (15). The summarizing index of the system of
singular integral equations (6) is also given by the formula (16).

The next theorem takes place.

Theorem 4. Let the matrix function k(x) ∈ L, vector function h(x) ∈ L2; the
matrix function K(x) ∈ H(r)

α , r ≥ r0, 0 < α ≤ 1, the vector function H(x) ∈ L(r)
2 ,

r ≥ ro, where the number r0 is defined by the formula (21), det[Am + BmK(x)] has
zeroes at the real axis R at such finite points as a1, a2, . . . , au with integer orders
ν1, ν2, . . . , νu respectively and the representation (10) takes place.

Here in that representation the matrix function D(x) is defined by the formula
(19); detM(x) 6= 0 at R; the numbers ω, q are defined by the formula (15), the
number ν is defined by the formula (20) and the number χ is defined by the formula
(16) and the representation (13) takes place.

If q−2m−2ν ≥ 0, then the homogeneous system (1) has not less than q−2m−2ν
linear independent solutions; the heterogeneous system(1) is a solvable one if not less
than ω conditions of solvability (17) are executed.

If q−2m−2ν < 0 then the heterogeneous system(1) is an unsolvable one. It will
become a solvable one if ω + 2m + 2ν conditions (17) are executed.

The summarized index of the system (1) is −(χ + 2m + 2ν).

Theorem 5. Let the matrix function k(x) ∈ L, the vector function h(x) ∈ L2; the
matrix function K(x) ∈ H(r)

α , r ≥ r0, 0 < α ≤ 1, where the number r0 is defined by
the formula (21), the vector function H(x) ∈ L(r)

2 , r ≥ r0; det[Am + BmK(x)] has
zeroes at the real axis R at finite points a1, a2, . . . , au with integer orders ν1, ν2, . . . , νu

respectively, the representation (10) takes place and the system (1) is a solvable one.
Then its solutions belong to the space L2[−r −m + r0; 0], r ≥ r0.
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Nash equilibria in the noncooperative informational
extended games

Ludmila Novac

Abstract. In this article∗we will analyse informational extended games, i.e. games
in which the players choose their actions simultaneously, with assumption that they
have some information about the future strategies which will be chosen by other
players. All informational extended games of this type will assume that players’ payoff
functions are common knowledge. Under these assumptions the last section will define
the informational extended games and analyse Nash equilibrium and conditions of its
existence. The essential result of this article is a theorem of Nash equilibrium existence
in informational extended games with n players. Our treatment is based on a standard
fixed point theorem which will be stated without proof in the first section.

Mathematics subject classification: 91A10, 47H04, 47H10.

Keywords and phrases: Noncooperative game, informational extended games,
strategic form game, Nash equilibrium, payoff function, set of strategies, best response
mapping (correspondence), point-to-set mapping, fixed point theorem.

1 Preliminary facts

1.1 Fixed points and contraction mappings

Consider the function f : X → X. An element x ∈ X is called a fixed point of f
if f (x) = x.

The fixed points of the function f are the intersection points of the graph of f
with the product X ×X.

Properties of fixed points.

1. If there are two functions f and g from X into Y, then the point x∗ ∈ X for
which f (x∗) = g (x∗) , is called [2] point of coincidence for the functions f and g.

2. Sometimes it is convenient to use the cyclic points of the function f together
with the fixed points, especially in the case when fixed points do not exist. Cyclic
points are the points which are images of the iterative function fn, where n is a
natural number. These are cyclic points of the n−th order. Often such points do
not exist and in these cases we can use boundary cycles. Also we can speak about
the invariant sets, i.e. subsets Y ⊂ X, for which f (Y ) = Y. In such cases the
minimal invariant subsets are very important.

∗The research was supported by SCSTD of ASM grant 07411.08 INDF and MRDA/CRDF Grant
CERIM 10006-06.
c© Ludmila Novac, 2009
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Next the notation F : X ⇒ 2Y will denote a point-to-set mapping, were 2Y

denotes the set of all subsets of Y . A fixed point of the point-to-set mapping
F : X ⇒ 2Y is a point x∗ ∈ X such that x∗ ∈ F (x∗) .

The graph for the application F is the set
gr (F ) = {(x, y) ∈ X × Y |x ∈ X, y ∈ F (x)} . This set can contain some points or
can be the empty set.

1.2 The Kakutani fixed point theorem

The existence of the fixed points is considered an important problem. The exis-
tence (and other properties) of the fixed point for the function f : X → X depends
on the properties of f and on the properties of the space X. Often it is considered
that f is a continuous function.

Definition 1.1. The function f of the metric space into itself is called [2] contrac-
tion mapping if there exists a constant K < 1 such that for each two points x and y
the inequality ρ (f (x) , f (y)) ≤ Kρ (x, y) holds, where ρ is the metrics of the space.

There are some important properties for the fixed points.

Proposition 1.1. If f is a contraction mapping, then there exists not more than a
single fixed point [1, 2].

Theorem 1.1. (Principle of the contraction mapping). Consider that f is a con-
traction mapping of the complete metric space X into itself. Then for each point
x ∈ X the sequence x, f (x) , f2 (x) = f (f (x)) , f3 (x) , . . . converges to a fixed point.
So f has a single fixed point [1, 2].

The points x, f (x) , f2 (x) , . . . are called consequent approximations of the fixed
point.

In the case of the contraction mapping we can consider as a start element every
element x and the consecutive approximations converge to the fixed point.

The Kakutani fixed point theorem is a fixed-point theorem for point-to-set map-
ping. It provides sufficient conditions for a point-to-set mapping defined on a con-
vex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is
mapped to a set containing it. The Kakutani fixed point theorem is a generalization
of Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental
result in topology which proves the existence of fixed points for continuous functions
defined on compact, convex subsets of Euclidean spaces. Kakutani theorem extends
this to point-to-set mapping.

The theorem was developed by Shizuo Kakutani in 1941 and was famously used
by John Nash in his description of Nash equilibrium. It has subsequently found
widespread application in game theory and economics. Many problems in economy
appear as problems of maximization and usually the solution of such problems is
many-valued.

Before giving this theorem we need to recall some definitions and theorems.
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Definition 1.2. Consider topological spaces X and Y . A point-to-set mapping
F : X ⇒ 2Y is said to be closed if the graph of F is closed as a subset into the
product of the spaces X × Y.

That is if the sequence of points (xn, yn) from gr (F ) converges to a point
(x, y) ∈ X × Y, then the limit point (x, y) ∈ gr (F ) [2].

Theorem 1.2 (Kakutani, 1941). Let X be a Banach space and K a non-empty,
compact and convex subset of X. Let F : K ⇒ 2K be a point-to-set mapping on K
with a closed graph and the property that the set F (x) is non-empty and convex for
all x ∈ K. Then F has a fixed point.

For proof see [1].
Before giving the applications of the fixed points in the game theory we will

recall some other important theorems.
Let C (K) be the space of all continuous functions defined on the compactum K.

Theorem 1.3 (Arzelà-Ascoli). (Compactness criterion). A set of continuous
functions E ⊆ C (K) is compact if and and only if the set E is uniformly bounded:
(|x (t) | 6 M,∀t ∈ K, for ∀x ∈ E) and the functions from the set E are equicontin-
uous (i.e. for ∀ε,∃δ so that if ρ (t1, t2) < δ then |x (t1)− x (t2) | < ε for ∀x ∈ E).

Theorem 1.4 (Tikhonov). A product of a family of compact topological spaces
X =

∏
α∈A

Xα is compact.

Lemma 1.1. 1) If X and Y are two compacta with the same metric, f : X → Y is

a continuous function, then the set Arg max
x∈X

f (x) =
{

x ∈ X

∣∣∣∣f (x) = max
z∈X

f (z)
}

is

compact too (see [3]).
2) If X and Y are two compacta with the same metric, and K (x, y) is a con-

tinuous function on X × Y, then ϕ (y) = max
x∈X

K (x, y) and ψ (x) = min
y∈Y

K (x, y) are

continuous functions on Y and X respectively [3].

2 Strategic form games and Nash equilibria

In this part we will analyse games in which the players choose their actions
simultaneously (without the knowledge of other player choices). The game will
assume that players’ payoff functions are common knowledge.

Definition 2.1. A strategic form of the game consists of: a finite set of players
I = {1, 2, . . . , n}, action spaces (set of strategies) of players, denoted by Xi, i ∈ I;
and payoff functions of players Hi : X → R, i ∈ I, where X = X1 × · · · ×Xn. We
refer to such a game as the tuple < I, (Xi)i∈I , (Hi)i∈I > denoted by Γ.

An outcome is an action profile (x1, x2, . . . , xn) , and the outcome space is
X = ×i∈IXi. The game is common knowledge among the players.
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One of the most common interpretations of Nash equilibrium (introduced by
John Nash in 1950) is that it is a steady state in the sense that no rational player has
an incentive to unilaterally deviate from it. Let x−i ≡ (x1, x2, . . . , xi−1, xi+1, . . . , xn)
and (x−i, yi) ≡ (x1, x2, . . . , xi−1, yi, xi+1, . . . , xn) .

Definition 2.2. A Nash equilibrium of the game Γ is an action profile x∗ ∈ X such
that for every i ∈ I

Hi (x∗) > Hi

(
x∗−i, xi

)
for all xi ∈ Xi.

Another and sometimes more convenient way of defining Nash equilibrium is via
the best response correspondences Bri : ×

j∈I\{i}
Xj ⇒ Xi

such that

Bri (x−i) =
{
xi ∈ Xi : Hi (x) > Hi

(
x−i, x

′
i

)
for ∀x′i ∈ Xi

}
. (*)

Definition 2.3. A Nash equilibrium is an action profile x∗such that x∗i ∈ Bri

(
x∗−i

)
for all i ∈ I.

If the sets Xi are compacts and the functions Hi are continuous, then the best
response set (*) for the player i can be represented by:

Bri (x−i) = Arg max
xi∈Xi

Hi (x−i, xi) .

Given a strategic form of the game Γ ≡< I, (Xi)i∈I , (Hi)i∈I >, the set of Nash
equilibria is denoted by NE (Γ) .

Using the best response sets of the players we consider the point-to-set mapping
Br : ×

i∈I
Xi ⇒ 2X such that Br = (Br1, Br2, . . . , Brn) .

Then we can easily prove that x∗ ∈ NE (Γ) À x∗ is a fixed point of the set-valued
mapping Br, i.e. x∗ ∈ Br (x∗) .

3 Nash equilibria in the noncooperative informational extended
games with n players

We analyse a static game with n players:

Γ =
〈
I, Xi, i = 1, n, Hi, i = 1, n

〉
(1)

where I = {1, 2, . . . , n} is the set of the players, the set of strategies for the i-th player
is denoted by Xi,

(
i = 1, n

)
, and the payoff functions are defined by: Hi :

∏
i∈I

Xi → R,
(
i = 1, n

)
.

Next we will analyse a static informational extended game with n players. In
this informational extended game we will consider that each player is informed of
the strategies of the other players which will be chosen. In this case the sets of the
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strategies for each player will be a set of functions defined on the product of the sets
of strategies of the rest players from the initial game (1).

The game is realised as follows: the strategies are chosen simultaneously by
players (with assumption that each of them knows which strategies will be chosen
by all other players), after that each of players determines his payoff and the game
is over.

This informational extended game can be described in the normal form by:

nΓ =
〈
I, Xi, i = 1, n, H i, i = 1, n

〉
,

where the sets of the strategies for the players are defined by:

Xi =



ϕi :

∏

j∈I,j 6=i

Xj → Xi



 , i = 1, n,

where
∏

j∈I,j 6=i

Xj = X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn.

The payoff functions are defined on the product of the extended sets of strategies:
H i :

∏
i∈I

Xi → R,
(
i = 1, n

)
.

In this case we analyse the informational extended game in which we consider
that all players know the chosen strategies of all other players and each player i ∈ I
chooses his strategy from the set Xi.

If some players do not know which strategies other players will choose, then
those players j ∈ I will choose their strategies from their initial sets Xj . Thus we
can define some different informational extended games in which the outcome will
consist of strategies xj ∈ Xj , j ∈ J and ϕk ∈ Xk, k ∈ I\J, where J is the set of
players which do not have some information about chosen strategies of other players.

We denote by C

(
∏

j∈I,j 6=i

Xj , Xi

)
,
(
i = 1, n

)
the space of all continuous functions

from
∏

j∈I,j 6=i

Xj into Xi, were
∏

j∈I,j 6=i

Xj and Xi are compacta.

Next we will apply the fixed point theorem to prove the following theorem of the
Nash equilibrium existence for the informational extended game nΓ with n players.

Theorem 3.1. Let us consider that for the game nΓ the next conditions hold:
1) the sets Xi 6= ∅, (i = 1, n

)
are compacta of Banach spaces,

2) the sets of functions Xi ⊂ C

(
∏

j∈I,j 6=i

Xj , Xi

)
,
(
i = 1, n

)
are uniformly

bounded and the functions from the sets Xi are equicontinuous;
3) the payoff functions Hi (·),

(
i = 1, n

)
are continuous on the compactum

∏
i∈I

Xi

and the functions H i (·) ,
(
i = 1, n

)
are concave on Xi for ∀ϕ−i, respectively.

Then NE (nΓ) 6= ∅.
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Proof. Let X =
∏
i∈I

Xi be the outcome space. According to Arzelà-Ascoli theorem

the sets Xi, (i ∈ I) are compact, and according to Tikhonov theorem the outcome
space X is a compactum too.

Let us denote an outcome of the extended game by ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ X =∏
i∈I

Xi, where ϕi = ϕi (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Xi.

Later we will use the next notations: ϕ−i = (ϕ1, ϕ2, . . . , ϕi−1, ϕi+1, . . . , ϕn) ,
X−i =

∏
j∈I
j 6=i

Xj .

Since the payoff functions Hi (·),
(
i = 1, n

)
are continuous on the compact

∏
i∈I

Xi

(from the third condition of the theorem) and because the functions ϕi ∈ Xi are
continuous on the compact

∏
j∈I,j 6=i

Xj , then the functions H i, i = 1, n are continuous

on the compact
∏
i∈I

Xi as compound functions of continuous functions H i (ϕ) =

Hi (ϕ (x)).
We define the point-to-set mapping B : X ⇒ 2X , such that B (ϕ) =

(B1 (ϕ−1) , B2 (ϕ−2) , . . . , Bn (ϕ−n)) , where Bi (ϕ−i) , (i ∈ I) represents the best re-
sponse set for the player i for the chosen strategies of all players j ∈ I\ {i}.

Because the sets Xi, (i ∈ I) are compacts and H i, for i = 1, n are continuous
functions, then according to the Weierstrass theorem we can write:

Bi (ϕ−i) = Arg max
ϕi∈Xi

H i (ϕ1, ϕ2, . . . , ϕn) ,

i. e.:

Bi (ϕ−i) =

{
ϕi ∈ Xi : H i (ϕ1, ϕ2, . . . , ϕn) = max

ϕ′i∈Xi

H i (ϕ1, ϕ2, . . . , ϕn)

}
,
(
i = 1, n

)
.

In order to use the Kakutani theorem we need to prove that:
1) X =

∏
i∈I

Xi 6= ∅ is a non-empty convex compact set;

2) for the point-to-set mapping B : X ⇒ 2X the next conditions hold:
a) for ∀ϕi ∈ Xi,

(
i = 1, n

)
the set B (ϕ) 6= ∅ is a convex subset of X;

b) the point-to-set mapping B is closed.
Firstly we will prove that X is convex and compact.
The set Xi, (i ∈ I) is convex if: for ∀ϕ′i, ϕ′′i ∈ Xi, and λ ∈ [0, 1] the function

λϕ′i + (1− λ) ϕ′′i is bounded by the same constant N (see Arzelà-Ascoli theorem)
and the function λϕ′i + (1− λ) ϕ′′i is equicontinuous.

It is easy to prove that the function λϕ′i + (1− λ) ϕ′′i is bounded by the same
constant N :
|λϕ′i (x−i) + (1− λ) ϕ′′i (x−i) | 6 λ |ϕ′i (x−i)|+ (1− λ) |ϕ′′i (x−i)| 6 λN + (1− λ) N =
N for all ϕ′i, ϕ

′′
i ∈ Xi, and λ ∈ [0, 1].

Evidently the function λϕ′i + (1− λ) ϕ′′i is equicontinuous. So the set Xi, (i ∈ I)
is convex. Then the set X is convex and compact too.
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Next we need to prove that for the point-to-set mapping B : X ⇒ 2X the
conditions a) and b) hold.

Firstly we will prove the condition a). For ∀ϕi ∈ Xi,
(
i = 1, n

)
the set B (ϕ) is

non-empty, this follows from the Weierstrass theorem, because Bi (ϕ−i) , ∀i ∈ I are
non-empty sets.

Next we need to prove that the set B (ϕ) is convex for ∀ϕi ∈ Xi,
(
i = 1, n

)
.

So we will prove that the sets Bi (ϕ−i) ,∀i = 1, n are convex.
The function H i (ϕ1, ϕ2, . . . , ϕn) = H i (ϕi, ϕ−i) is concave on the compact set

Xi ⊂ C

(
∏

j∈I,j 6=i

Xj , Xi

)
, (i ∈ I) , then by definition for ∀λ ∈ [0, 1], and ∀ϕ′i, ϕ′′i ∈

Xi the relation H i (λϕ′i + (1− λ) ϕ′′i , ϕ−i) > λH i (ϕ′i, ϕ−i) + (1− λ) H i (ϕ′′i , ϕ−i)
holds.

For ∀ϕ−i the set Bi (ϕ−i) will be convex since the function H i (·) is continuous
on Xi and H i (·) is concave by ϕi, for ∀i = 1, n.

From what was proved it follows that for ∀ϕi ∈ Xi,
(
i = 1, n

)
we will have a

convex subset B (ϕ) = (B1 (ϕ−1) , B2 (ϕ−2) , . . . , Bn (ϕ−n)) 6= ∅ from X =
∏
i∈I

Xi.

Next we will prove the condition b). We need to prove that the point-to-set
mapping B is closed.

The point-to-set mapping B is closed if its graph is a closed set [4]. Since Bi (ϕ−i)
is a subset from the compactum Xi for all i = 1, n, then grBi (ϕ−i) ,

(
i = 1, n

)
are

compact sets. Here the graph for Bi (ϕ−i) is defined by:

grBi (ϕ−i) =

{
(ϕ1, ϕ2, . . . , ϕn) ∈ X

∣∣∣∣∣ϕi ∈ Arg max
ϕ′i∈Xi

H i

(
ϕ′i, ϕ−i

)
, ϕ−i ∈ X−i

}
=

=
{
(ϕ1, . . . , ϕn) ∈ X

∣∣ϕi ∈ Bi (ϕ−i) , ϕj ∈ Xj , j ∈ I, j 6= i
}

.

We will prove that for the chosen strategies ϕ−i the sets Bi (ϕ−i) , i = 1, n, are
closed.

The set Bi (ϕ−i) can be rewritten as follows:

Bi (ϕ−i) =

{
ϕi ∈ Xi : H i (ϕi, ϕ−i)− max

ϕ′i∈Xi

H i

(
ϕ′i, ϕ−i

)
= 0

}
.

Because the set Xi is compact and the function H i is continuous on X, then the
function H i (ϕi, ϕ−i)− max

ϕ′i∈Xi

H i (ϕ′i, ϕ−i) is continuous on Xi too. So for ∀ϕ−i, the

set Bi (ϕ−i) ⊂ Xi is closed (and compact).
Then according to the Tikhonov theorem, because grBi (ϕ−i) is a closed set for

all i = 1, n, so it follows that

grB =
{
(ϕ1, . . . , ϕn) ∈ X

∣∣ϕi ∈ Bi (ϕ−i) , ∀i = 1, n
}

is a closed set too.
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Thus the point-to-set mapping B is closed.
Therefore we can apply the Kakutani theorem.
Let ϕ∗ = (ϕ∗1, ϕ

∗
2, . . . , ϕ

∗
n) ∈ X =

∏
i∈I

Xi be a fixed point for the point-to-set

mapping B, i.e. (ϕ∗1, ϕ
∗
2, . . . , ϕ

∗
n) ∈ B (ϕ∗1, ϕ

∗
2, . . . , ϕ

∗
n) =

∏
i∈I

Bi (ϕ−i) , so the relation

H i (ϕ∗1, . . . , ϕ
∗
i , . . . , ϕ

∗
n) = max

ϕi∈Xi

H i (ϕ∗1, . . . , ϕi, . . . , ϕ
∗
n)

holds for all i = 1, n, thus by definition of the Nash equilibrium it follows that
(ϕ∗1, . . . , ϕ

∗
i , . . . , ϕ

∗
n) ∈ NE (nΓ) 6= ∅. ¤
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Professor Nicolae Vulpe – 60th anniversary

The mathematical community of the Republic of Moldova congratulates
Nicolae Vulpe, University Professor and Doctor Habilitat, on the occasion of the
60th anniversary of his birthday. This is an opportunity to acknowledge his excep-
tional contributions to the development of the mathematical school of Moldova.

Nicolae Vulpe was born on the 22nd of February 1949 in the village of Brinza
in the area of Vulcanesti. In 1963 he graduated from the primary school in his
village and continued his studies at a secondary school in Cahul. In 1966 he became
a student in the Faculty of Physics and Mathematics of the Pedagogical Institute
in Tiraspol where he later graduated with honours and became Assistant at the
Chair of Mathematical Analysis of the institute. He also ended his military service
about the same time. He was recommended to work in the section of Differential
Equations and Methods of Computations, section headed by Constantin Sibirschi,
the founder of the school in differential equations of the Republic of Moldova and
later on, member of the Academy.

In 1972 Nicolae Vulpe became a assistant of the Institute of Mathematics and
Computer Science of the Academy of Sciences, where he remains to this day. He
married his former class colleague, both in the school and at the university, and
together they raised and educated three children. Constantin Sibirschi initiated
the work on algebraic invariants of polynomial ordinary differential equations and
he published many articles in prestigious mathematical journals on this subject.
He also trained a group of scientists in this direction of research, among them the
young Nicolae Vulpe. These scientists continued the work of Constantin Sibirschi
after his death and obtained many very valuable results which largely extend his
contributions.

The whole mathematical career of Nicolae Vulpe was dedicated to this area of
research to which he made important contributions. His sustained work was ap-
preciated and he was promoted first as Junior Scientific Researcher (1975), then
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Senior Scientific Researcher (1981), then Head of the Section in Differential Equa-
tions (1984) of the Institute, then Principal Scientific Collaborator (1993).

Nicolae Vulpe obtained his Doctorate in Mathematical and Physical Sciences
in 1976, in 1985 he brilliantly defended his Habilitation Thesis and in 1999 he be-
came Full Professor. Professor Nicolae Vulpe is author or coauthor of 120 scientific
works. All these works are devoted to the qualitative study of polynomial differential
systems using the theory of algebraic invariants introduced by Constantin Sibirschi.

The mathematical results of Nicolae Vulpe extend this theory and built appli-
cations of this theory by using algebraic comitants (polynomials depending on the
coefficients of the systems involved which are invariant under the action of various
transformation groups), the method of T -comitants (algebraic invariant polynomials
with coefficients invariant under translations) and the method of differenial opera-
tors (of Hilbert type or transvectant). Although his investigations spread over a
larger area, the focus of his interest was the theory of planar quadratic differen-
tial systems, that is systems of two differential equations defined by polynomials
of maximum degree two. This area offered an excellent testing ground for proving
the power of the method of algebraic invariants for obtaining qualitative results for
these equations. In his first articles he studied topological and geometric structures
of the homogeneous differential systems and obtained invariant partitions expressed
in terms of algebraic invariants.

Afterwards he solved a problem which had a long history of unsuccessful attempts
for obtaining its solution: the problem of finding all phase portraits of quadratic dif-
ferential systems with a singular point which is a center. This is a highly cited paper
by numerous authors. This success reinforced his interest in this area in which he
since obtained alone or with collaborators many other interesting results such as:
the stratification in R12 of the class of quadratic differential systems according to
their global scheme of finite singularities; a formula which relates the degree of free-
dom in the class of all quadratic systems subject to having a given configuration of
finite singularities (real or complex, simple or multiple): the sum of the degree of
freedom and of the number of distinct finite singularities is 4; the determination of
the affine invariant criteria for polynomial integrability within the class of quadratic
systems; the connection between the existence of a polynomial first integral and the
rationality of the solutions of a certain algebraic equation whose coefficients are ab-
solute affine invariants of the systems studied; the determination of affine invariant
conditions of quadratic systems possessing rational first integrals of degree two and
the construction of all phase portraits of this class on the Poincaré disk as well as
of the affine invariant conditions for the determination of each one of these phase
portraits; the proof of Darboux integrability of quadratic systems having invariant
straight lines of total multiplicities 5 and 6; the classification of all possible configu-
rations of quadratic systems possessing invariant straight lines of total multiplicity 4
and the proof of Liouvillian integrability of all such systems; the topological classifi-
cation of all quadratic systems possessing invariant straight lines of total multiplicity
at least 4 and the construction of the moduli space, under the action of the group of
affine transformations and homotheties of time of this whole family; the topological
classification of the class of quadratic systems according to their behavior around
their infinite singularities.



106

The contributions of professor Vulpe to the development of the school in dif-
ferential equations of Chisinau were very much appreciated by the mathematical
community of the Republic of Moldova. Professor Vulpe received many prizes such
as: “Republican Premium” (1978) for young researchers, awarded to him for a series
of articles on the theory of algebraic invariants of differential equations; “Diploma
of Recognition” (1999) of the Academy of Sciences of the Republic of Moldova; the
“C. Sibirschi Prize” for the series of works on the application of invariant polyno-
mials in the qualitative study of differential equations. We believe that Constantin
Sibirschi would have been proud of his former student and disciple, whose work is
now internationally known.

Professor Vulpe is regularly invited to attend international conferences abroad
and he has been invited to lecture in several universities (the Technical University
of Delft, Holland; York University, Great Britain; Université de Montréal, Canada;
Universitat Autonoma de Barcelona, Spain). In November of 2008 he participated
in a Workshop at BIRS (Banff International Research Station for Mathematical
Innovation and Discovery) in Canada where his results were appreciated by some of
the best experts in the world in the qualitative theory of differential equations.

Since 1998 Dr. habilitat Nicolae Vulpe has been Editor-in-Chief of the journal
”Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica”.

We wish Professor Nicolae Vulpe much happiness and joy from his children and
grandchildren and good health and vigor for many years to come as well as much
success in his scientific research.


