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Exponential inflationary economic growth

Elvira Naval

Abstract. Some scenario of economic growth centered on the structural reforms
of the Republic of Moldova is presented. Mathematical model elaborated in [1] was
adopted to proposed scenario in order to obtain indicators of exponential inflation-
ary growth taking into account production possibilities. Economy description was
presented by the principal economic sectors restrictions and production function de-
pending of capital; the labor was not considered. The effectiveness of growth programs
is estimated by parameters of growth and inflation in concordance with exponential
inflationary growth. This solution is a particular one admissible by the model.

Mathematics subject classification: 91B62.
Keywords and phrases: Mathematical modeling, scenario simulation, production
function, differential equations in finite differences.

The small open economy is considered. It is supposed that the economy produces
one aggregate product which is utilized domestically and exported. Four economic
sectors are examined. The state sectors which collects taxes; pays off salaries, pen-
sions, allowances, and stipends, and effects some social programs. The production
sector that owns all production factors and, as a consequence, earns all real income.
Households that receive salaries and take part in goods exchange buying it in the
good market. The monetary sector, represented by the National Bank, which in-
tervenes in the foreign currency market selling and buying international exchange.
And the external sector, which buys back its liabilities from domestic state and pro-
duction sectors and earns international reserves from National Bank. It is supposed
that the goods and monetary markets are in the equilibrium for all time the of model
action. This time period of the model action is sufficiently long for the economic
agents’ accommodation to structural reforms, but insufficiently long for the some
cardinal changes in production efficiency to be done.

The balanced exponential inflationary growth characterizes such equilibrium and
it is determined by constant coefficients which define production technology, con-
sumer preferences and circulation of goods, resources and money. Since the equi-
librated growth is mentioned,the production and consumption grows (decreases)
by constant rate. The price indexes proportions are maintained and also can be
increased (or decreased) with a constant inflation (deflation) rate. Therefore a
macroeconomic model which described main production proportion can be utilized.
In such a model a balanced growth rate is determined through the constant tech-
nology parameters average for entire economy, behavior parameters and circulation
mechanism parameters. The economic state in discrete moments of time on the
fixed time interval [0,7] is examined by the model. The time interval [t,t + 1] is
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considered about one year. The economics growth scenario for Republic of Moldova
is proposed for further examination:

1. The government functions will be reduced to the redistribution of the limited
budget sources in the favor of vulnerable parts of population and will ensure
the equal and fair competition between local and foreign economic agents.

2. The creation of formal and justice conditions for equal and fair competition
will contribute to increasing the investment flows in the production and to the
rational distribution of resources.

3. The fiscal reform will favor economic agents to reserve oneself profit and income
by economic active population.

4. The internal and foreign credits will be mobilized in order to ensure economic
growth.

5. Budget deficit will be reduced to zero and from the budget surplus the external
debt will be paid off.

6. The monetary system will be based on the international currency reserves and
on the internal credits.

The exposed scenario reflects main programs’ characteristics of the internal re-
sources mobilization and involves external resources in order to maintain the eco-
nomic growth. Model [1] adapted to this scenario will be used for the economic
effectiveness evaluation. If the economic growth will be examined for medium pe-
riod, then it will be necessary to evaluate constant parameters which characterize
economic efficiency in concordance with statistic data reflecting current state of na-
tional economy. The prudence in launching assumptions about future tendencies
will be necessary.

The labor can be excluded from the principal production factor examination
because sufficient reserves of unemployment exist. One of the most restricted pro-
duction factors is raw materials . The fixed means of production which determine
the production capacity are not restrictive production factor. Anyway, the potential
economic growth is evaluated so that the fixed funds are considered as marginal and
production is worked utilizing all the production capacity. But introducing new pro-
duction capacities necessitates some additional investment in the production sector.
So in the model output does not depend on the labor force but expenditure for it
paying off will be considered.

Production sector
The output in year t is:

t—Tr

Vi= > L-ptT ot=01,..., (1)
T=t—Tr-T),
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and the current production expenditure V; is equal:

t—Tr

Vi=a > I, t=0,1,..., (2)
T=t—Tr-T,

here I; = X/ /b, b is the coefficient of the fund utilization for the one unity production
capacity creation; a is the raw material consumption index; I; is the production
capacity in year t.

Price index is calculated in the following manner:

P =PR(1+4)5 t=0,1,... (3)

Changes in money demand are presented as:
ME, = ME + PY, — BV — (n1 + n2)(PY; — BV;), t=0,1,... (4)

ME = 0p(ny +n2)(PY; — PV;), t=0,1,... (5)

Household revenue and expenditure balance:
Mt{{i-l :MtH+(n1 +gl)(1 _77‘3)(Pt}/;t _Pt‘/t)7 t:0717 (6)
M =6yPC,, t=0,1,..., (7)

State budget is represented as

The state taxes are collected in the volume of (ny+ns(ny+g1)) (P Y — P V;), the
external borrowing F}” are evaluated at the current exchange rate p;, and National
Bank profit BZ, occurred at the reevaluation of currency reserves:

BP = (py1—)Rfy, t=0,1,... (8)

The main expenditure components are: the payment to population, the state
program financing, the external debt payment, evaluated at the current exchange
rate and the money reserves growth ”freezed” in budget payment accounting. The
overflow of expenditure over the revenue forms the budget deficit and this deficit
increases internal debt. Therefore, the change in internal debt takes form:

Liv1— L = (g1 + g2 — n2 — n3(n1 + q1)) Pe(Ys — Vi) + pe i —

—peFtP — (peyr = p) Ry + MGy — M + ADf, t=0,1,... (9)

here ADY is the internal volume of credits, granted to the state sector, p, F}”, p, F}f!
are the currency entered the country and leave the country:

ME = 0c(g1 + go) Pi(Y; — Vi). (10)
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External currency reserves, export and import volumes

Let Ef be the volume of export; ZF be the volume of import; F” be the
currency entered the country; F/f be the currency leave the country; pthCH — peRt¢
be the change in international currency reserves. Taking into account that the
exports and imports price indexes ¢, qz change slowly than domestic price index
P,.it will be considered that these price indexes are constant. In concordance with
the proposed scenario, National Bank, protecting local producers, rules the currency
rate in domestic market in such a way that the import operations give minimal earns.
This is expressed by the following equalities

P.—pgz=0, t=0,1,... (11)

The export volume is expressed as a share of the output. Importers secure
currency on the base of import sailing on the domestic goods market. So the currency
reserves of the National Bank change on the following equation base:

pRE — pRtC = PUE] = Z) + p(FP = FF), t=0,1,....  (12)

National account:
Vi+Zy=Ci+Vi+ bl + (Vs = Vi) + EF, t=0,1,..., (13)

here Cy is the populations’ consumption, g2(Y; — V}) is the state investment. On the
other hand, from the monetary approach, change in currency reserves (balance of
payments) is expressed as: pt+1RtC+1 — ptRt® = AM — AD, here AM = (Mgrl —
ME) + (M, — M) + (M, — M)

State debt servicing

Suppose that ps(FP — FR) = g3P(Y; = V;), t=0,1,..., and ADE + ADF =
ADy = g4 Py x (Yy — Vi). After some transformation on the base of given formulas it
will be obtained:

(pr1 — p)RE1 = (g1 + g2 + g3 — n2 — ng(n1 + g1)) X
xPy(Yy — Vi) + (MG, — MT), t=0,1,... (14)
From equation (9) the Central Bank reserves reevaluation are expressed:
PE{ — BZ{ = piRiy — pi R + g3P(Yi = Vi), t=0,1,... (15)

Using equations (4),(6), (14) and (15) from the material balance equation (13)
the variables values bl;, Ct, pthrl and EtP — ZtP are excluded and the expression
for reserves changes in national currency is obtained:
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priRi — peRY = (M, — MP) + (M1, — M)+
+(MG, — M)~ AD;, t=0,1,... (16)

Model examination

Equations (1)—(16) represent a complete description of the growth economic
model which reflects all conditions of the proposed scenario. Now some transfor-
mations are necessary in order to bring model to a form convenient for numerical
analysis.

First, using the liquidity restriction (5) variables’ values Mg_l and MF are ex-
cluded from the financial balance equation (4). In result the real production invest-
ments are obtained:

bl = (1 — (1= 0g)(n1 +n2)(Yy) — Vi)—

P,
—0p(n1 +na) gl (Y1) = Vigr), t=0,1,..., (17)

which are admitted by the production financial restrictions.

Second, from the material balance equation (13) C; is excluded using equation
(7), but EF — ZF is excluded using equation (15) and another expression for real
production investments is obtained:

bl = (1 — (1= (n1g1)(1 —n3) — g2 — g3)(V2) — Vi) +
1 1

+F(Mt{—il-l) _MtH) __(ngl _th)7 t:07177 (18)
t qr

which are admitted by the material balance and by monetary policy scenario.
The possibilities of economic growth will be evaluated through the balanced
inflationary growth indicators. Let’s:

Y, =Yo(14+7), Vi=Wl+9), L=I1+7)" Ci=Co(1+~) (19

where 7 is the constant growth rate in real terms of the Yy, Vg, Iy, Cy. Then from
(3), (10), (12) and (14) it is obtained:

pr=po(l+1i)', Rf =R{1+7), (20)

where pg and R§ are positive constants.
From equation (14) using expressions (10), (19) and (20)it is found:

(91 +g2+g3—na—n3(n1 +g1)
R = ( i(1+7)
O((L+v)(A +4) —1)(g1 + g2

+ i )qI(Yt)—Vt), t=0,1,... (21)

_l’_
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The difference RY, | — RY is excluded from (18) using (21), the difference M/, —
MH is excluded from (18) using (7)—(8), and the expression for real investments by
the production side is found:

(1+)(1+i) -1
i(1+7)

b[t:<1—n1—n2—(fE—dE)—

X(g1+ g2 + fa —dg —na2 —n3(n1 + g1)) — ( i O x

i(1+7)
Op(1+7)A+)—1)
O ((14+~)(1+1i)—1)+1)

x(n1+gl)(1—n3)(Yt—Vt>, t=0,1,..., (22)

X(L+7) A +4) = D(g1 + g2) +

Substituting (19) in (17) transforms it to:
blyy = (1 — (n1 +n2 — (fg —dg))x

x(Op((1+)A+9)—1)—1) x (Y, =V,), t=0,1,..., (23)

Equating expressions (22) and (23) for the real production investments growth
and inflation rate it will be obtained:
g1+ g2+ g3 —na—n3(ni +g1)

Oe(ni +ne) — (fe —dg)) = i(14+7) i

Walgr +92)  Or(ni+g1)(1 —n3)
i(1+7) On(y+i(1+7)+1°

Finally, inserting expressions (1), (2) and (19) in (23), the sums are calculated
and the second relation between the growth rate and the inflation rate is obtained:

_1-Up—fr) = (m+n)0p((1+i))(1+7)—1)+1)

(24)

: (1+77 )
1-(1+ fy)—Tu—l(l + M)—T#—l 1—(1+ ,Y)—Tu—l
(i T+ 0tp L 11ty ) (25)

The growth rate v and the inflation rate ¢ are determined by solving equations
(24) and (25) in dependence on the model’s parameters: a, b, p, ny characterizing
the economic effectiveness of production; g1, g2, fo characterizing the state budget
expenditures; no, ng characterizing the state budget revenue and the taxes pressure
on production and households; d = dg 4+ dg which determine domestic credits rate
in GDP; g3 = fg + fE is the total net foreign assets.

If the growth and inflation rates are determined then the external reserves in
respect to GDP will be defined from (22) taking in account relation (25):
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Pt th

m =0p(n1+n2) — (fE — de)+

Or(n1+ g1)(1 —n3)
O(y +i(1+7)) +1°

+0c(g1 + g2) +

(26)

and the net export in respect to GDP is defined from (15) using (20), (21), (1) and

(2) P P
Ef —Z
ﬁ = (fe — fe) +’Y(9E(n1 + n2)+
Or(n1+g1)(1 —n3)
0
Hoalg+92) + 0y +i(l+7) + 1)’
here
_ 1—(14q) vt -1+ ' 1+p!
a=a .
L= (L)~ Tet (14 p) =T 1—(1+9)!

is the mean consumption index of materials V;/Y;.

(27)

(28)

On the base of historical data necessary constant coefficients were determined

and the corresponding growth rate and inflationary rate were calculated.
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The optimal flow in dynamic networks
with nonlinear cost functions on edges

M. Fonoberova, D. Lozovanu

Abstract. In this paper we study the dynamic version of the nonlinear minimum-
cost flow problem on networks. We consider the problem on dynamic networks with
nonlinear cost functions on edges that depend on time and flow. Moreover, we assume
that the demand function and capacities of edges also depend on time. To solve the
problem we propose an algorithm, which is based on reducing the dynamic problem
to the classical minimum-cost problem on a time-expanded network. We also study
some generalization of the proposed problem.

Mathematics subject classification: 90B10, 90C35, 90C27.
Keywords and phrases: Dynamic networks, network flow, dynamic flows, flows
over time, minimum cost flows.

1 Introduction

In this paper we study the dynamic version of the nonlinear minimum-cost flow
problem on networks, in which flows from supply nodes should be sent, in minimum
cost, to demand nodes such that the flows on used links do not exceed their capaci-
ties. This problem generalizes the well-known classical minimum-cost flow problem
on static networks [1] and extends some dynamic models from [2-5].

Classical static network flow models have been well known as valuable tools for
many applications. However, they fail to capture the property of many real-life
problems. The static flow can not properly consider the evolution of the system
in time. The time is an essential component, either because the flows of some
commodity take time to pass from one location to another, or because the structure
of network changes over time. To tackle this problem, we use dynamic network flow
models instead of the static ones.

The minimum cost flow problem is the problem of sending flows in a network from
supply nodes to demand nodes with minimum total cost such that link capacities
are not exceeded. This problem has been studied extensively in the context of static
networks. In this paper, we study the minimum cost flow problem in dynamic
networks.

We consider the problem on dynamic networks with nonlinear cost functions on
edges that depend on time and on flow. Moreover, we assume that the demand
function and capacities of edges also depend on time. We propose an algorithm
for solving the problem, which extends the algorithms from [2, 3] and is based on
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reducing the dynamic problem to the classical minimum-cost problem on a time-
expanded network.

2 Problem formulation

A dynamic network N = (V,E,u,7,d,¢) consists of directed graph G =
= (V,E) with the set of vertices V and the set of edges E, capacity function
u: E x T — R, transit time function 7.: F — R, demand function d: V x T — R
and cost function ¢: E x Ry x T — Ry, where T = {0,1,2,...,7T}. The demand
function d,(t) satisfies the following conditions:

a) there exists v € V with d,(0) < 0;
b) if d,(t) < 0 for a node v € V then d,(t) =0,t=1,2,...,T;

) > dy(t) =0.

teT veV
Nodes v € V with Z dy(t) < 0 are called sources, nodes v € V with Z dy(t) >0
teT teT
are called sinks and nodes v € V' with Z dy(t) = 0 are called intermediate.
teT

A feasible dynamic flow on N is a function z: E x T — Ry that satisfies the
following conditions:

> omelt—T)— > we(t) =dy(t), VEET, Vo V; (1)

T e
0 <ze(t) <ue(t), VteT, Ve e E; (2)
ze(t) =0, Vee E, t=T — 1.+ 1, T} (3)

where ET(v) = {(u,v) | (u,v) € E}, E~(v) ={(v,u)]|(v,u) € E}.

Here the function z defines the value x.(t) of flow entering edge e at time ¢. It is
easy to observe that the flow does not enter edge e at time t if it will have to leave
the edge after time T'; this is ensured by condition (3).

To model transit costs, which may change over time, we define the cost function
e(we(t),t) with the meaning that flow of value £ = x.(t) entering edge e at time ¢
will incur a transit cost of ¢, (&,t). We consider the discrete time model, in which all
times are integral and bounded by horizon T'. The time horizon (finite or infinite)
is the time until which the flow can travel in the network and defines the makespan
T ={0,1,...,T} of time moments we consider.

The integral cost F'(x) of dynamic flow on N is defined as follows:

F(z) = Z Z‘:De(xe(t)7t)’ (4)

eck teT
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Our dynamic minimum-cost flow problem is to find a flow that minimizes the ob-
jective function (4).

It is easy to observe that if 7. = 0, Ve € F and T = 0 then the formulated
problem becomes the classical minimum-cost flow problem on a static network.

3 Main results

We have obtained a necessary and sufficient condition for the existence of admis-
sible flow in dynamic network N, i.e. the condition when the set of solutions of the
system (1)—(3) is not empty. In this paper we propose a new approach for solving
the formulated problem, which is based on its reduction to a static minimum-cost
flow problem. We show that our problem on network N = (V, E,u,T,d,¢) can be
reduced to a static problem on auxiliary static network N7 = (VT ET T d", oT);
we name it the time-expanded network. We define this network as follows:

LVT: ={w@#)|veV, teT}
2. ET: ={(v(®t),w(t+7))|e=(v,w) €E, 0<t<T -1}
3. ug(t): = ue(t) and @Z(t) (we(t): = @e(ze(t),t) for e(t) € ET;

4. dZ(t): =d,(t) for v(t) € VT.

If we define a flow correspondence to be xeT n: = Te(t), the minimum-cost flow
problem on dynamic networks can be solved by using the solution of the static
minimum cost flow problem on the expanded network.

The essence of the time-expanded network is that it contains a copy of the
vertices of the dynamic network for each time ¢t € T, and the transit times and flows
are implicit in the edges linking those copies.

Now let us define a correspondence between feasible dynamic flows on the dy-

namic network N and feasible static flows on the time-expanded network N7. A
feasible static flow on N7 is a function xg(t) that satisfies the following conditions:

D T DL Tep = gy Yot €V
e(t)EET(v(t)) e(t)eE~ (v(t))
0< xg(t) < ug(t), Ve(t) € ET;

;ﬁﬂzmvdweEﬁtzT—n+LT

Let e(t) = (v(t),w(t +7.)) € ET and let x.(t) be a flow on the dynamic network

N. The corresponding function :EZ(t) on the time-expanded network N7 is defined
as follows:

xeT(t) = z(v(t),w(t + 7)) = z(t), Ye(t) € ET. (5)
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Lemma 1. The correspondence (5) is a bijection from the set of feasible flows
on the dynamic network N onto the set of feasible flows on the time-expanded
network NT.

Proof. It is obvious that the correspondence above is a bijection from the set of
T-horizon functions on the dynamic network N onto the set of functions on the
time-expanded network N7. It is also easy to observe that a feasible flow on the
dynamic network N is a feasible flow on the time-expanded network N7 and vice-
versa. Indeed,

0<aly =w(t) <de(t) =dfy), Vec B, 0<t<T.

Therefore it is enough to show that each dynamic flow on the dynamic network N
is put into the correspondence with a static flow on the time-expanded network N7
and vice-versa.

Let z.(t) be a dynamic flow on N and let a:g(t) be a corresponding function on

NT. Let’s prove that azg » satisfies the conservation constraints on its static network.
Let v € V be an arbitrary node in NV and ¢: 0 <t < T an arbitrary moment of time:

02 Y at-n)— 3 w(t) =

ecEt (v) e€EE~(v)
t—71e>0

_ T T ()
= Z To(t—r(e)) — Z Loy = dygpy- (6)
e(t—re)eET (v(t)) e(t)eE~ (v(t))

Note that according to the definition of the time-expanded network the set of
edges {e(t — 7¢)|e(t — ) € ET(v(t))} consists of all edges that enter v(t), while
the set of edges {e(t)|e(t) € E~(v(t))} consists of all edges that originate from v(t).
Therefore, all necessary conditions are satisfied for each node v(t) € V7. Hence,
xeT(t) is a flow on the time-expanded network N7.

Let xeT(t) be a static flow on the time-expanded network N7 and let z.(t) be a

corresponding function on the dynamic network N. Let v(t) € VT be an arbitrary
node in N7. The conservation constraints for this node in the static network are
expressed by equality (ii) from (6), which holds for all v(t) € V7 at all times ¢: 0 <
t < T. Therefore, equality (i) holds for all v € V" at all times t: 0 <t < T and z.(t)
is a flow on the dynamic network V. O

The total cost of the static flow in the time-expanded network N7 is denoted as

follows:
Flz)= > Y @l (ze(t),

e(t)eE teT
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Lemma 2. Ifx.(t) is a flow on the dynamic network N and :Ez(t) s a corresponding

flow on the time-expanded network NT, then
F(zc(t)) = FT(z.(t)).

Proof. The proof is straightforward:

Flze(t) =YY elze(t)t) = D > ol (@e(t)) = FT (ze(1)). .

e€FE teT e(t)eE teT

The above lemmas imply the validity of the following theorem:

Theorem 1. For each minimum-cost flow in the dynamic network there is a corre-
sponding minimum-cost flow in the static network.

Therefore, we can solve the dynamic minimum-cost flow problem by reducing it
to the minimum-cost flow problem on static networks.

4 Algorithm

Let a dynamic network N be given. The minimum-cost flow problem is to be
solved on N. Proceedings are following:

1. Building the time-expanded network N7 for the given dynamic network N.
2. Solving the classical minimum-cost flow problem on the static network N7 .

3. Reconstructing the solution of the static problem on N7 to the dynamic
problem on N. O

5 Generalization

Now let us study some general cases of the dynamic networks. First of all, we
assume that only a part of the flow is dumped into the considered network at the
time 0, i.e. the condition b) in the definition of the demand function d,(t) doesn’t
hold. Using the following, this case can be reduced to the one considered above.

Let us consider an arbitrary dynamic network N defined above and let the flow
be dumped into the network from the node v € V' at an arbitrary moment of time t,
different from the ordinary moment. We can reduce this problem to the problem in
which all of the flow is dumped into the network at the initial time by introducing
loops in all nodes from V', except the node v from which the flow is dumped into the
network at the time t. For such loops we attribute capacities u.(t) and transit times
which are equal to the time t. The cost functions are equal to 0 on these loops. So,
we can consider that all the flow is dumped in the network at the time t, which we
define as the initial time.
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The argumentation is the same when the flow is dumped in the network from
different nodes at different moments of time. Let t be the maximum of those mo-
ments. In this case we take t as the initial time and attribute capacities ue(t) and
transit times to loops constructed from all the nodes, except those that dump the
flow in the network at time t. The transit times are equal to the difference between
time t and the time when the flow from those nodes that generate loops is dumped
in the network. We consider the cost functions that are zero on such loops. So, we
reduce this problem to the one considered above where the whole flow is dumped
into the network at the initial moment of time.

Further we consider the variation of the dynamic network when the condition c)
in the definition of the demand function d,(t) doesn’t hold. We assume that after
time ¢t =T there still is flow in the network, i.e. the following condition is true:

> ) du(t) > 0.

teT veV
We also can reduce this case to the initial one, using the following argumentation.

Let us consider an arbitrary dynamic network N defined above and let the flow
exist in the network after time ¢t = T. We can reduce this problem to the problem
without flow in the network after an upper bound of time by the introduction of
an additional node v ¢ V and additional edges which are not contained in F. The
rest of the flow in the network is sent to the node v through the arcs which we just
introduced. We consider that these arcs have capacities u.(t) and specified limited
transit times and that the cost functions on these loops are zero. In such a way we
obtain the initial model of the dynamic network.

The next model of the dynamic network is the one when we allow flow storage
at the nodes. In this case we can reduce this dynamic network to the initial one by
introducing the loops in those nodes in which there is flow storage. For these loops
we attribute capacities u.(t), specified limited transit times, and zero cost functions.
The flow which was stored at the nodes passes through these loops. Accordingly, we
reduce this problem to the initial one.

The other variation of the dynamic network is the one when the cost functions
also depend on the flow at the nodes. In this case we can reduce this model of the
dynamic network to the initial one by introducing new arcs and attributing the cost
functions, which were defined in the nodes, capacities u.(t), and fixed transit times
to these arcs. Consequently, we obtain the initial model of the dynamic network.

The same reasoning to solve the minimum-cost flow network problem on the
dynamic networks and its generalization can be held in the case when, instead of the
condition (2) in the definition of the feasible dynamic flow, the following condition
takes place:

ul(t) < ze(t) <ui(t), YteT, Vec€ E,
1

where u!(t) and u2(t) are lower and upper boundaries of the capacity of the edge e,
respectively.
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On check character systems over groups

G. Belyavskaya, A. Diordiev

Abstract. In this note we study check character systems (with one control symbol)
over groups (over abelian groups) and the check formula a1 - das 0az--- 0"an41 = e,
where e is the identity of a group, d is an automorphism (a permutation) of a group.
For a group we consider strongly regular automorphisms (anti-automorphisms), their
connection with good automorphisms and establish necessary and sufficient conditions
in order that a system to be able to detect all single errors, transpositions, jump
transpositions, twin errors and jump twin errors simultaneously.

Mathematics subject classification: 20D45, 94B60.
Keywords and phrases: Group, abelian group, automorphism, complete mapping,
orthomorphism, code, check character system.

1 Introduction

A check character (or digit) system with one check digit is an error detecting
code over alphabet () which arises by appending a check digit a,41 to every word
aias...ap € Q™

ajaz...an — a1 ...0n0n4+1

by some rule.

The aim of using such a system is to discover transmission errors of certain
patterns. The examples used in praxis among others are the following:

the Universal Product Code (UPC),

the European Article Number (EAN) Code,

the International Book Number (ISBN) Code,

the system of the serial numbers of German banknotes.

Among the first publications with respect to these systems are articles of
W. Friedman and C. J. Mendelsohn [5], based on code-tables, and by R. Schauf-
fler [10] using algebraic structures. In his book [14] J. Verhoeff presented basic
results which were in use up to 1970. Later the article of A. Ecker and G. Poch [4]
was published where the group-theoretical background of the known methods was
explained and new codes were presented that stem from the theory of quasigroups.

© G. Belyavskaya, A. Diordiev, 2004
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Empirical investigations of J. Verhoeff [14] and Beckley [2] show that single errors
(...a-++— ...b...), i.e. errors in only one component of a code word, (adjacent)
transpositions (...ab--- — ...ba...), jump transpositions (...ach--- — ...bca...),
twin errors (...aa--- — ...bb...) and jump twin errors (...aca--- — ...bch...) are
the most important errors made by human operators (see Table 8 in [8] of frequency
of these error types).

The control digit a,41 in a check character system can be calculated by different
check formulas (check equations) in some algebraic structure (a group, a loop, a
quasigroup). In the case of a group the most general check formula is the following

a -01ag - 62az - -+ - Onlni1 = e, (1)

where e is the identity of a group G, 61,99, ...,d, are some fixed permutations of
(. Such a system is called a system over a group and always detects any single
error. A survey of the known results concerning check character systems based on
quasigroups (loops, groups) one can find in [1].

Often, one chooses a fixed permutation § of G and puts 6; = §* fori = 1,2,...,n.
Equation (1) then becomes

a1 - dag - 52(13 ----- Map =e. (2)

There are many publications on check character systems over groups with check
equation (2), detecting some error types or all of the pointed above error types.

We study check character systems over a finite group which detect all single
errors, transpositions, jump transpositions, twin errors and jump twin errors si-
multaneously using such concepts as a complete mapping, an orthomorphism, a
regular automorphism and a new concept of a strongly regular automorphism (anti-
automorphism) of a group. For any group we consider the case when ¢ from (2) is
an automorphism ( 6 € AutG) and reduce conditions for a good automorphism [3].
For an abelian group 6 may be a permutation.

2 Good automorphisms and check character systems
over groups

Denote by S(G,d) a check character system over a group G with check for-
mula (2), n > 4, where J is a permutation on G.

According to the known results (see, for example, [11], Table 2) a system S(G, 9)
detects all single errors and all

a) transpositions if and only if z - dy # y - 0x for all z,y € G, x # y;

b) jump transpositions if and only if 2y - 622 # zy - 8%z for all z,y,2 € G, & # z;
¢) twin errors if and only if x - dx # y - oy for all z,y € G, x # y;
)

d) jump twin errors if and only if 2y - 8%z # 2y - 6%z for all z,y,2 € G, = # 2.
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In Table of [3] sufficient (and necessary for n > 4) conditions on an automorphism
0 of a group G with the identity e for error detection are given. These conditions
we give in Table 1.

Table 1. Error detection for automorphism §

Error types Conditions on ¢ (for all z,y € G, = # )
single errors none
transpositions dx #y oy
jump transpositions £y tay
twin errors dx #£y ety
jump twin errors Px £y oy

If G is an abelian group, these conditions are, respectively, the following: dx # x,
8z #x, 0w # Ix, 6%x # Ix,if x # e, where [t =27 ' o - [x =Iz-x =e.

A permutation § satisfying the inequality x - dy # y - dx for all x,y € G, x # y
is called anti-symmetric mapping of a group G.

Groups with anti-symmetric mappings (check character systems over them detect
all single errors and all transpositions according to condition a)) were studied in
many articles (see, for example, [6-8] and [11-13]).

In [3] check character systems S(G, ) over a finite group G with an automor-
phism J, which detect all considered above error types simultaneously, were studied
and the following concept of a good automorphism was introduced.

Definition 1 [3]. Let G be a finite group. An automorphism & of G is called good if
dx is not conjugate to x or =1 and 8%z is not conjugate to x or =t for all x € G,

T # e.

In [3] it was also shown that there are many groups possessing a good automor-
phism. In particular, the following results were noted.

If G is abelian, then a good automorphism ¢ satisfies the conditions for detecting
transpositions, jump transpositions and twin errors if §2 is regular (that is fixed point
free on G, the same dx # z, if x # e) and ¢ is good if 6* is regular.

For any group G and an automorphism § of odd order the condition dz # y~ 'y
(for all z,y € G, x # e) implies that ¢ is good.

The following statement is also useful.

Lemma 1 [3]. Let G be a p-group and 6 € Aut G. Suppose ged(o(d),p(p — 1)) =1
(0(9) is the order of §). Then ¢ is good if and only if it is fixed point free.

The conditions of Table 1 (the same the conditions of a good automorphism)
are sufficient and necessary for detection of all single errors, transpositions, jump
transpositions, twin errors and jump twin errors if n > 4 [3].

Thus, we have the following statement.

Proposition 1. A system S(G,d) over a group G where 6 € AutG, detects all
single errors, transpositions, jump transpositions, twin errors and jump twin errors
if and only if the automorphism ¢ is good.
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3 Strongly regular automorphisms and check character
systems over groups

Now we introduce the following useful concept.

Definition 2. An automorphism ( an anti-automorphism) § of a group G is called
strongly reqular if

6(zy) # yx
forallx,y € G, y # Ix.

It is easy to see that a strongly regular automorphism (anti-automorphism) ¢ is
regular and §~! is also strongly regular.

In abelian groups the concepts of a regular automorphism and a strongly regular
automorphism coincide.

Recall that a complete mapping of a group G is a bijective mapping x — 6z of
G onto G such that the mapping © — nz defined by nx = = - x is again a bijective
mapping of G onto G.

A permutation « of G is called an orthomorphism of a group G, if the mapping
B: fr=x-Iaris also a permutation of G [9].

According to [9] an automorphism « is an orthomorphism if and only if the
automorphism « is regular.

It is evident that if « is an orthomorphism, then I« is a complete mapping and
conversely.

An automorphism is called complete if it is a complete mapping.

Proposition 2. Let G be a group, 6 € Aut G. Then the following statements are
equivalent:

(i) dx # y oy for all z,y € G, x # e;
(ii) § is strongly regular;
(iii) & is anti-symmetric;

(iv) & satisfies the inequality xy - 0z # zy - dx for all x,y,z € G, © # z.

Proof. (i) (ii): let x # e, then dx # y~lzy = S(yr) # y~Yyx)y = zy, if
y # lx.

(il)<(iii): let © # z, then -0z # z - 0w <= Iz -x # dx - [0z = dx - §lz =L
zx # §(xz), if © # 1z, since 1§ = 1.

(iii)<(iv): let x # z, then x - §z # z - 0x T xy - 0(zy) # zy - 0(zy) =
xy -0z # zy - ox, if x # z , since 0 € AutG. O
Proposition 3. Let G be a finite group, 6 € Aut G. Then the following statements
are equivalent:

(i) dx #yta~ly for all 2,y € G, x # ¢;
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(ii) the anti-automorphism 1§ is strongly reqular;
(iii) & is a complete mapping;

(iv) & satisfies the inequality xy - dx # zy - 0z for all x,y,z € G, x # z.

x2ys !
Proof. (i)=(ii): let z # e, then 0z # ylaly “E5 d(ya~t) £ y ey )y =
=g .
y~lo = I(z7ly) &= 0(yx) # I(zy) <= I5(yx) # zy, if y # Iz

z=lx

(il)e(iii): let = # Ty, [§(yz) # xy < 0(yx) # I(zy) =L oy-0lx # Iy -x <
y -0y # x-dx, if x # y, since 6 = I§. Thus, J is a complete automorphism, since
G is a finite group.

(iii)<(iv): let x # z, then x - dz # z - dz T xy - d(zy) # 2y - 0(zy) <=
xy - dx # zy - 0z, since x # z and § € AutG. g

Proposition 4. An automorphism ¢ (anti-automorphism 1) of a finite group G is
strongly regular if and only if 6 (I5) is reqular on the conjugacy classes of G (that
is it does not fix any conjugacy class of G\{e}).

Proof. By Proposition 2 an automorphism ¢ is strongly regular if and only if § is
anti-symmetric. But by Proposition 4.3 of [11] § is anti-symmetric if and only if it
does not fix any conjugacy class H # {e} of G.

According to Proposition 3 the anti-automorphism 19 is strongly regular if and
only if dz # y~tz~ly or Iéx # y~lzy if x # e for all z,y € G. It means that
I6H # H for any conjugacy class H of G if H # {e} (that is the anti-automorphism
16 is regular on the conjugacy classes, since it maps a class in a class). O

Proposition 5. Let § € Aut G and 6% be a strongly reqular automorphism of a finite
group G. Then the automorphism § and the anti-automorphism 1§ are also strongly
reqular.

Proof. Let an automorphism §2 be strongly regular, then by Proposition 4 6°H # H
for any conjugacy class of G if H # {e}. From this it follows that dH # H and
8H # IH (otherwise, 6°H = §(0H) = 6(IH) = I§H = I*?H = H, contradiction) if
H # {e}.

Thus, according to Proposition 4 § and 19 are strongly regular. O

Note that this proposition means that from anti-symmetry of 62 anti-symmetry
and completeness of § follows (see Proposition 2 and Proposition 3).

Theorem 1. An automorphism § of a finite group G is good if and only if the
automorphism 6% and the anti-automorphism 16° are strongly reqular.

Proof. The conditions of Definition 1 mean that an automorphism § is good if
and only if 6z # y~tay, 0z # y a7y, 622 # y ey and 6%z # y~lz~ly for all
r,y€G,x#eor H # H,H # IH, 6°H # H and 6°H # IH respectively for
any conjugacy class H of G, H # {e}.
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Taking into account Proposition 4 for the automorphisms & and §2 (for the anti-
automorphisms 1§ and I§?) we obtain that an automorphism & of G is good if and
only if 6, I5, 6% and I§? are strongly regular. Now use Proposition 5. O

Thus, the first two from four conditions of Definition 1 of a good automorphism
are unnecessary.
From Proposition 1 and Theorem 1 it follows

Corollary 1. A check character system S(G,6) over a finite group G with § € Aut G
detects all single errors, transpositions, jump transpositions, twin errors and jump
twin errors if and only if the automorphism 6% and the anti-automorphism I18% are
strongly reqular.

By Proposition 2 (Proposition 3) §? (I§2) is a strongly regular automorphism
(anti-automorphism) if and only if §? is anti-symmetric (62 is complete). So we
obtain the following

Corollary 2. A system S(G,0) over a finite group G with 6 € Aut G detects all
five error types considered above if and only if 6% is an anti-symmetric and complete
mapping.

Corollary 3. A system S(G,6) over a finite abelian group with § € Aut G detects
all five error types considered above if and only if 6% is an orthomorphism and a
complete mapping.

Indeed, in this case the automorphism 62 is anti-symmetric if and only if it is
regular (by Proposition 2 for §2), that is 62 is an orthomorphism.

As it was remarked after Definition 1 an automorphism § of an abelian group
admits to detect single errors, transpositions, jump transpositions and twin errors
if 62 is fixed point free (that is regular).

Now consider check character systems S(G, §) over a finite abelian group G where
d is a permutation on G (§ € Sg).

Theorem 2. A check character system S(G,d) over a finite abelian group G with
6 € Sg detects all single errors, transpositions, jump transpositions, twin errors
and jump twin errors if and only if the permutations § and 6% are orthomorphisms
and complete mappings (that is all permutations 6, 6%, 16 and 15> are complete

mappings).

Proof. In an abelian group G we have from conditions a) — b) in the beginning of
section 2:

x-0y#y -dr<x-1dx#y-Idy

for all x # y, that is § is an orthomorphism;
zy-02z# 2y - r= -0’24 2 0r = x-16%°c # 216z

for all  # z, that is 62 is an orthomorphism.
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Condition ¢) means that § is a complete mapping; for codition d) we have
zy - 02w # 2ydlz = x - 8%x £ 2 6%2

for all  # z, that is 62 is a complete mapping. O

According to Theorem 2.3 of [11] a finite abelian group G admits a complete
mapping if and only if G has odd order or contains more than one involution (that
is an element a € G, a # e such that a> = e), so we have from Theorem 2 the
following

Corollary 4. A check character system S(G,9) over an abelian group (with one
involution) and 0 € S is not able to detect all transpositions (jump transpositions,
twin errors or jump twin errors).

Example. Consider the abelian group Z3 = Zyx Z3 x Zs of order 8. Its Cayley Table
is given in Table 2. In this group the permutation I is the identity permutation, so
each complete mapping is an orthomorphism and conversely. According to [9] in Z3
there are 48 regular automorphisms (that is orthomorphisms) which enter in eight
subgroups of order 7. As computer research has shown one of such subgroups is the
following:
e=(01234567), 6o = (02653741), 52 = (06475132),
08 =(04317256), 63 = (03521674), 63 = (05762413), 65 =(07146325).
We do not write the first row of permutations in the natural order.

Table 2. ZS = Z2 X Z2 X Zg.

N O U W N~ OO
SN WN U RO =
G W g~ O O k= NN
=N =0 0 OtWwlw
W Ut O O N
N = O O = = W Ut ot
= O kOt W oo
SO N Wk OO 3

N O UL W N~ O

By Corollary 3 (or Theorem 2) each of six systems S(Z3,6), where ¢ is one of
these automorphisms, § # ¢, detects all single errors, transpositions, jump transpo-
sitions, twin errors and jump twin errors.
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of differential equations
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Abstract. In this work we study the orbits of the polynomial systems & = P(x1, x2),
Z = Q(z1,z2) by the action of the group of linear transformations GL(2, R). It is
shown that there are not polynomial systems with the dimension of G L-orbits equal
to one and there exist GL-orbits of the dimension zero only for linear systems. On
the basis of the dimension of G L-orbits the classification of polynomial systems with a
singular point O(0,0) with real and distinct eigenvalues is obtained. It is proved that
on G L-orbits of the dimension less than four these systems are Darboux integrable.

Mathematics subject classification: 34C05, 58F14.
Keywords and phrases: Polynomial differential system, GL(2, R)-orbit, resonance,
integrability.

1 Center-affine transformations

Consider the polynomial system

#1= P(r1,32), d2=» Qulw1,22), (1)
k=0

where Py, Q) are homogeneous polynomial of degree k:
_ i _ i
P, = E a;jriTy, Q) = Z bijx] 5. (2)
i+j=k it+j=k
Denote by E the space of coefficients
a = (ago, a10, 401, 420, A11, @02, 430, -+ @on; boo; b10, bot, b2o, b11, Doz, b30; -+, bon)

of system (1) and by GL(2,R) the group of center-affine transformations of the
phase space Oz, © = (x1,x2). Applying in (1) the transformation X = gz, where
X = (Xl,XQ), qc GL(2,R), i.e.
_ (> B, _ a_LY (o =B
o= (25 )iasnseradm ot =5 (0 )

we obtain the system

n n
X1 =) Pi(X1,Xa), Xo=) Qn(X1,Xa), (4)
k=0 k=0

© A. Pascanu, A. Suba, 2004
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where o
Pf=a-Py(q'z)+ 8- Qrlg ) = Zkaijfng
itj=
L 5
Qr =7 Pulg'e) +0-Qulqg'z) = ZkbijfXg' ®
itj=

Remark 1. [t is easy to see from (5) that every transformation ¢ € GL(2, R) acts
separately on the homogeneities of the same order from (1).

The coefficients a* of system (4) can be expressed linearly by the coefficients of
system (1): a* = L(g)(a), detLy # 0. The set L = {L,)lq € GL(2,R)} forms a
4-parameter group with the operation of composition. L is called the representation
of the group GL(2, R) of center-affine transformations of the phase space Oz in the
space of coefficients E of system (1).

Let a € E. A set L(a) = {L(y(a)lg € GL(2,R)} is called the GL-orbit of the
point a or of the differential system (1) corresponding to this point.

2 Monoparametric transformations

Consider the function g : Rx E — E such that for every 7 € R the transformation
9" + E — E, where ¢"(a) = ¢g(1,a), a € E, is a diffeomorphism. We say that
(E,{g"}) is a differentiable flow if:

1) ¢° = id;

2) g™t =4g"g° V71,5 € R;

3)(¢7) =g VreR;

4) g : R x E — FE is a differentiable function.

By [1], [6] the 4-parameter transformation ¢ (see(3)) can be represented as a
product of four monoparametric transformations:

o o] 0O oy 1 as as 1 0 o 1 0
q1_<0 1>’q _<0 1 )9 ey 1 )7 "o ot )

where af, a € R\{0}; aa, a3 € R. Denote

e 0 1 0
qa1:< 0 1>’qa4:<0 ea4>,041,0é4€R;

J— — —o * J— * J—
Ll — L(qal), l - 1,47 Ll — L(qai‘>, L4 — L(qaz>'
To every group of monoparametric transformations ¢®, [ = 1,4; ¢®1 , ¢ of the
phase space Ox corresponds a system of the form (4) with a;;, bj;, respectively.
It is easy to verify that (E, {Le}),l = 1,4, are differential flows. They define
in E the following systems of linear equations

da _ (dLl(a)> =T, (6)

d—al dal

a;=0
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or in coordinates

da;; daj 4l
da; = da; = Aij(a)7
al:0
q* q dby (0 _ g _ (7)
dai o (da;) - Bij(a)’ b=14
al—O
1+ 7 =0,n;

In the cases | = 1 and | = 4 the matrix of coefficients of the system (7) is
diagonal. Indeed, in these cases we have

Aji(a) = (1 —i)ai;,  Bi(a) = —iby,

. ‘ (8)
Ajj(a) = —jaij,  Bjj(a) = (1—j)bi.
Note that (E, {L(an)}) and (E, {L(qafi)}) are not flows.
Consider the systems
« da dLj(a)
1 = =1,4.

Remark 2. The system ((9),1 = 1) (((9),l = 4)) coincides with the system
((6),1 =1) (((6),1 =4)).
The vector fields

- 0 0

— E L (a)—— L —
V}—' ‘ A”(a)aai-—i_Bm(a)(‘)bi-’ l=1,4,
i+7=0 J J

generate a Lie algebra. By [5], [7], [6] the dimension of orbit O(a) is equal with
the dimension of this algebra, i.e. with the rank of a matrix M composed from the
coordinates of vectors Vi, [ = 1,4.

3 The orbits of dimension zero

Consider the homogeneous system

@1 = Py(z1,22), @2 = Qr(z1,22), (10)
where 0 < k < n and Py, Q) are given in (2). For (10) we have the vector fields

0 0
— L i
Wi= > Aia)g- T
i+j=k J J

+ Blj(a) 1=1,4. (11)

Denote by M}, the matrix of dimension 4 x (2k + 2) composed from the coordinates
of vectors (11). For example,

app 0 0 ap1 —b1o 0
boo 0 bio  bo1 — a1 0 —b1o
My = M, = 12
0 0 apo ! —ao1 0 aip —bo1  ao1 (12)

0 boo 0 —ap] bio 0
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We have M = (Mg, My, ..., M,) and therefore

rankM > rankMy, k= 0,n. (13)

Hence, the dimension of orbits of system (10) does not exceed the dimension of
orbits of the corresponding system (1).

In the work [6], in each of the cases kK = 0,1,2,3 the systems (10) are classified
in dependence of the dimension of orbits O(a). So, it is shown that if £ =0, 2 or 3,
then dimO(a) = 0 if and only if P, = 0, Q = 0 and in the case k = 1 the dimension
of O(a) orbit is equal to zero if and only if the following conditions are satisfied

alg — bOl = agl = blO = O. (14)

Lemma 1. In the case k # 1 the dimension of O(a) orbit of the system (10) is
equal to zero if and only if P, =0, Qr = 0.

Proof. Assume k # 1. The orbit O(a) of system (10) has the dimension zero if
and only if a is at the same time a singular point for systems (7), | = 1,4, i.e.
Ali(a) = Blj(a) =0, Vi+j =k, | =14 From here, j = k —i and (8) we have
that

T

(1= i)aipi =ibiyi =0, i =0,k (15)

(k‘ — i)ai7k—i = (k‘ — 17— 1)bi,k—i = O,i = 0, k. (16)

From (15) and k # 1 it follows that a;,—; =0, Vi # 1 and b;,—; = 0, Vi # 0, but
from (16) we also obtain that aj y_; = bo, = 0. Therefore, P, =0, Q1 = 0. O

According to (13), Lemma 1 and (14) we have

Theorem 1. The polynomial system (1) has the dimension of GL-orbit equal to
zero if and only if it is of the form &1 = bxy, &9 = bxe, b= const.

4 The absence of orbits of the dimension one

We consider system (10). In [6], it is shown that in the cases k = 0,1,2,3,
the orbits of system (10) have the dimensions not equal to one. We bring here our
proof of this fact establishing simultaneously that every two-dimensional polynomial
system possesses this property. By Theorem 1, we shall assume that P, # 0 or
Qr # 0 and if & = 1, then ajg # bo1 or |ap1| + |b1g| # 0. From these conditions
immediately follows that rankMy = 2 and rankM; > 2 (see(12)).

Next we consider £ > 2 and P, # 0. Let, for example, a, r—, # 0, where v is
equal to one of the numbers 0,1,2,...,k. We will show that the matrix M has
at least one non—zero minor of the second order. Let us assume the contrary, i.e.
all the second order minors of M} are equal to zero. For the beginning, we will
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examine the following minors constructed from the coordinates of vectors Wp and
Wy (see(11),(8)):

T | A=v)ayg— (I —dajp—i | _
v | (v=k)ayg—y (G —Ek)aig—i |
= (k=1 —1iayr—0;k—i, @ # v;
(17)
A2 - (1 - V)au,k—u _ibi,k—i o
Vst (V — k)ay7k_y (1 —k+ i)bi,k—i

= (k — 1)(1/ — 17— 1)al/’k_ybi’k_i7 1= 0, k.

From All,’i = 0 it follows that a;,—; = 0, Vi # v and from A?,’Z- = 0 we have that
bix—i =0, Viif v =0, and that b; ;_; =0, Vi # v —1if v > 1. Hence, the system
(10) can have one of the forms

i1 = agral, d2=0, agy #0; (18)

. v k—v . v—1_k—v+1
T1 = Ouf—pT Ty , T2 = by—l,k—u—i—lxl Ty y  Ouk—v 7& 0. (19)

For (18) we have W, = ao,k% and determine W3. To this end we apply in (18)
the transformation of coordinates q*: X1 =21, Xo = agx1 + 29 :

' , k k k k-1
X1 = a1 = agpry = agr(Xo — a3X1)"” = appXs — kazagr X1X5 4 o(as),

Xo = a3d1 + 2 = azag Ty = azao k(X2 — a3 X1)” = azagrXs + o(as).

a07k 0
0 ao’k
inequality contradicts the assumption that all the second order minors of the matrix
M. are null.
We consider in (19) v = 1. We have Wy = (1 —k) (alvk—laalak,l +bo ab(z k) Let

us calculate Wiy:

# 0. The last

Hence, W3 = —kag i, 8a18k,1 + ag ab?) - and the minor ‘

X1 =41 =aypm12s P =aip1 X1 (Xe — a3 X)P T = a1 X X5
+(1— k)agal,k_lX%Xg_z + o(as),
Xo = agdy + @2 = azarp_12105 1+ bo s = azar k1 X1 (Xo — agXy)F
+bo k(X2 — a3 X1)® = bo p X5 + as(ay p—1 — kbo ) X1 X5 + o(a3).
Hence, W5 = (1 — k)al,k—lﬁak,z + (a1 k-1 — kbO,R)WL and

(1—Fk)ay 1 0

0. We obtain contradiction.
0 (1 — k)al,k—l 7&

Let us investigate now the case when in (19) v > 2. We have

0 0
W=k = Dbyt priri . (20)
aby—l,k—u—l—l

Wi =(1— [
1 ( V)az/,k V(‘)al,,k_,,
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Taking in (19) the transformation ¢®2: X7 = z1 + asz2, X9 = x2 we obtain:

Y s v, k—v v—1_k—v+1 _
X1 =21+ Qly = ay 01Ty =~ + a2by_1 p_pi17] X5 =

= (X1 — X)) " ' X5 [ay k0 X1 + aa(by—1 p—vi1 — Gy p—y) Xa] =
= v XT X5 + o (by—1h—vt1 — Vau ) X7 X5 + 0(0),
Xo =9 = by 1 p12? tah T = b, 11 (X — anXo) XV =
= by 1 1 XV XS (1 = 0)by 1 k1 XY T2XETV T2 4 o(ag).
From here it follows that

0 0
+ (1 - V)bu—l,k—u—l-l b

W2 = (bu—l,k—u—l—l - Vau,k—u) -
v—2,k—v+2

aau—l,k—u—l—l

Taking into account that v > 2 and that a,;—, # 0, the following two minors
consisting of the coordinates of the vectors (20) and Wa:

(1—=v)ay i 0
0 (1 - V)bu—l,k—u—i-l

‘ (1—-v)ay i 0
0 bu—l,k—u-‘,—l —Vayg—v

can not be equal to zero simultaneously.

Hence, we proved that when Py # 0 the dimension of every orbit of the system
(10) can not be equal to one. The case Q # 0 can be reduced to the case Py # 0 if
we change in (10) the variables x; and x2.

From Theorem 1, the inequality (13) and from what has been said above in this
section, the following conclusion may be drawn

Theorem 2. The dimension of GL-orbit of every polynomial system (1) is not equal
to one.

It is easy to check that the matrix M; from (12) can have the rank at most two.
This fact, Theorems 1 and 2 lead to

Theorem 3. The dimension of the GL-orbit of the linear system &1 = a10x1+ag1x2,
To = biox1 + borxo is equal to zero if and only if a19 — bo1 = ag1 = big = 0 and is
two in other cases.

Let us consider the system
. 2 2 o — b 2 b b 2
T1 = agpx] + a1121T2 + apaxs, X2 = 02077 + 0112172 + 002X

Its matrix consists of the coordinates of vectors Xj, 1,4, and is of the form

—an 0 ao2 —2byg —b11 0
bao  bi1 —2a20 bo2 — a1 0 —2bgo —b11
My = . 21
2 —an —2ap2 0 a2 —bi1 a1 —2bg2  ap2 (21)

0 —ai —2ap2 b2 0 —bo2
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It is easy to see that for the system &1 = 0, o = z1z9 the rank of the matrix
Ms> is equal to three, and for the system #7 = a:%, To = a:% + x129 we have that
rankMsy = 4.

From here, Theorems 1, 2, 3 and the inequality (13), follows

Lemma 2. If the right-hand sides of system (1) have at least one nonlinear term,
then the dimension of the GL-orbit is equal to two, three or four.

Next, this work is dedicated to the classification of systems (1) with a singular
point (0,0) with real and distinct eigenvalues A; and Ao, i.e.

Ala AQ € R7 >\1 ?é >\27 (22)

in dependence of the dimension of G L-orbits.
In this case Py = 0, Qo = 0 and according to [2] by transformation of coordinates
q € GL(2,R), the system (1) can be brought to the form

n n
B1 =Mz + Y Pelwn, @), d2= dowa + Y Qulw1, x2). (23)
k=2 k=2

In (23) the notations (2) of the homogeneities Py, Qk, k = 2,n, were preserved.
From (12) we have that for (23): rankM; = 2. From here and (13) it follows that
the dimension of every G L-orbits of system (23) with conditions (22) can be equal
to two, three or four.

5 The GL-orbits of system (23) of the dimension two
We consider the system
&1 =M@y + Py(w1,22), 42 = Aowz + Qp(21, 22), (24)
where Ai, Ao verify (22) and 2 < k < n. In (24) the polynomials P, Q) coincide

with the polynomials Py and Qy, respectively, from (23). Evidently holds

Remark 3. The dimension of every GL-orbit of system (23) is not smaller than
the corresponding dimension of GL-orbit of system (24).

From (12) and (8) we have that for (24) the matrix M = (M, M}) consisting of
coordinates of vectors Vj, | = 1,4, after some elementary transformations takes the
form

00 0O (1—]{7)(1]670 (Z_k)ak—l,l
01 0O 0 0
M~tg 001 0 0 0
0 00O 0 —ak_l,l
—b1 k-1 0
0 0
0 0 (25)

(2—=Fk)by g1 (1—Fk)bog
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Consider the minors of the third order of the matrix (25):

00 (L—d)ay | |0 0 —ib 10 0 10 0
10 0 10 o [,]o1 o [,]01 0 ,
01 0 01 0 0 0 —jag | |0 0 (1—4)by

i+ j = k, we observe that they are simultaneously equal to zero if and only if
a;; = b;j =0, Vi+j=k. From here, Remark 3 and Theorem 3, follows

Lemma 3. The dimension of the GL-orbit of system (23) with conditions (22) is
equal to two if and only if P, =0, Qi =0, Vk > 2.

Next, taking into account this lemma and Remark 1, we obtain

Theorem 4. Let the origin O(0,0) be a singular point of (1) with real and distinct
eigenvalues. Then the GL-orbit of system (1) has the dimension equal to two if and
only if Pb,=0, Qr=0, Vk>2.

6 The GL-orbits of system (23) of the dimension three

In this section we shall distinguish those systems of the form (23), (22) which
have the dimension of the GL-orbit equal to three. Reasoning as above, we shall
consider system (24). From (25) we have that rankM = 2 + rankMj,, where

~ (1 — k‘)ak 0 (2 — k)ak_l 1 .- —b1 k—1 0 >
My = ’ ’ : . 26
b ( 0 —ag-11 o (2=k)brg-1 (1 —Fk)bok (26)

The minors of the second order from (17) of the matrix M, are Al Aai and

v,
3 _ _Vbu,k—l/ _ibi,k—i

Bug '(Hv—k)by,k_y (Ui kb | = BT D= Dhiesbigs i v

(see (8)). If agr # 0 (box # 0), then from Aj, =0, i =1,k (A}, =0,i=0,k—1)
it follows that a;y—; = 0 (b x—; = 0), and from A(2),i =0 (Afk =0),i=0,k, we

have that (b; y—; = 0) (a;,—; = 0). In these cases the system (24) looks as

Sn(k : 1) . il = )\1%1 + a07kx§, Lig = )\2%2, CLOJC 75 0 (k 2 2); (27)

Sn(l : k‘) D1 = Mz, T2 = AoTg + bk70l‘]f, bk70 75 0 (k‘ > 2). (28)

We suppose now that a, ;—, # 0 (by—1 k—p+1 # 0) for a certain v € {1,2,..., k}.
From Aiﬂ- =0 (Al?jz =0), i # v, and Aii =0 (Aiu =0), i # v — 1, it results that
ajk—; =0, Vi#v,and b;;,_; =0, Vi # v — 1. These cases lead us to the systems

. v—1_k—v
T1 =21 A1+ app—px] Ty )7

To = wo( Ao + bu—l,k—u+1x’f_lxl2€_y>v v=1k. (29)
‘au,k—u‘ + ’bu—l,k—u—l—l’ 7é O;
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Hence, is proved

Lemma 4. The GL-orbit of system (24) has the dimension equal to three if and
only if it has one of the forms (27)-(29).

In passing, we will examine the system (23). As usual, by M we will denote the
matrix consisting of coordinates of the vectors Vj, j = 1,4, corresponding to system
(23), and by M the matrix (Mg, Ms, . .. ,Mn), where My, k = 2, n, are given in (26).
Evidently,

rankM = 2 + rankM > 2 4+ rankMj, k =2, n. (30)

If 7:ank:M = 3, then from (30) it follows that there exist k : 2 < k < n such that
rankM; = 1. Hence

| Pr(z1, 22)| + |Qk (71, 72)| Z 0. (31)

In the case if P} =0, Q; =0, Vj#k, 2<j <n,apply Lemma 4. Suppose
that together with homogeneities of order k, the right-hand sides of system (23)
contain also and homogeneities of other order, for example, of order [, where [ # k,
2 <[ < n. Hence

[P (w1, 22)| + |Qu(21, 22)| # 0. (32)

The condition rankM;, = rankM, = 1 implies that both P, Qi and P;, Q; have
the form like the right-hand sides of one of systems (27)—(29). In the case P, @; in
(27)—(29) we substitute [ for k.

Let P, = a07km§, apr 7 0 and @ = 0. The following minors of the matrix M:

‘ ao,k (1 —m)aui—py
—kaor (1 —1aui—p

=[1 =1+ 1= p)(k—1)]aoraui—pu

‘ ap.k — by i—p =[1—14 plk = 1)]aorbyi—u,

—k‘an (1+p— l)bu,l—u

< p < I, are simultaneously equal to zero if and only if a,;—, = b,;—, = 0,
= 0,[, that is when P, =0, Q; =0, contradicting to (32).
Similarly, through examination of the minors

0
7

‘ —kbro (1 —p)aui—p
bro  (m—1Daui—p

‘ —kby0 — by —p
bro (T+p—Dbui—p |’

it is shown that the case P, = 0, Q) = bhoxlf, bro # 0 is not realized in the
condition (32).

Taking into account Lemmas 3, 4 and the conditions (31), (32), it remains to
investigate the case when
-1 xl;—l/-i-l

v, k—v v 1—
Pk =0y k—vT1Ty Qk = bu—l,k—y—l—lxl ) Pl = a,u,l—,uxlfo Mj

Qu=by—1 gz b 1<y <k 1<p<l.
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We consider the minors:

= Wo,ulu k—vQpl—p;

L=v)ayg— (1= p)bu-11-pt1
02 = ( vk—v =1 l=p+ R N ,
Y ' (1/— k‘)a,,,k_,, (:u_l)b,u—l,l—u+1 vplyk—vYu—1,01—p+1
1—v)b,_1 4 1—p)b,_1,—
Qliu — ‘ ( ) v—1,k—v+1 ( :u) p—1ll-p+1 | _ wu,ubu—l,k—u—i-lbu—l,l—u—i-la

(v =FE)by—1p—vt1 (= Dbu11—pt1

where wy,, = (v —1)(I =1) = (p—1)(k—1),1 <v <k, and 1 < p < [. Evidently,
w11 = wgy = 0.

If v =1 (v = k), then from (31) and (32) it follows that the equalities Q%,u =
Qiu = Qiu = 0 hold if and only if p = 1 (1 = ). Hence, the dimension of the
G L-orbit of each of the systems

i1 =z (M + D050 al,ﬂ%)
Sn(A1:0) 1§ @y =ap( Ao+ Zj:l 507j+1332>= (33)
S0 laa gl + [boga] # 0;

T, =T )\1 + Z?_ll Qj41, iji),
Sn(O : )\2) : To = X9 )\2 + Zn ! bg,1$1), (34)
. Zj:l |aj+1,0| + |bj1] # 0,

is equal to three. ‘

Next, suppose that 2 <v <k—1,2<p <l—1. From (31), (3 ) and Q,, =0,
j = 1,3, it follows that w,,, = 0, Therefore, we have that % = 2= > 1. Hence,
there exist integer positive numbers p, q, %, j such that

pg)=1Lk=p+qi+l,v=qi+1,l=p+qji+1l,p=qj+1

Hence, for any natural reciprocal prim numbers p and ¢, the system

n A
S q.,.p
1 = 11 [Al + 2 Ggit1pi <$1$2) ] ;

i=1

Sulp:=a): | @y =1 [/\2 + 2 bgipit (xtf%)) Z} ; (35)
i=1

,n*
Zl |agit1,pil + |bgipiv1] #0,  (p,q) =1,
1=

where n* = {;‘T_;], has the dimension of the G L-orbit equal to three.
Hence, is proved
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Theorem 5. The dimension of the GL-orbit of system (23) with the conditions
(22) is equal to three if and only if it has one of the following forms (27), (28), (33),

(34) or (35).

Corollary 1. The cubic system (n = 3) of the form (22), (23) has the dimension
of the GL-orbit equal to three if and only if it has one of the forms S5(2: 1), S3(3:
1), 53(1 : 2), 53(1 : 3), 53()\1 : 0), 53(0 : )\2), 53(1 : —1), that is

i1 = M@y + apeal, @2 = dowa, apz # 0; (36)
i1 = Mi21 + aoszh, E2 = owa, ag3 # 0; (37)
i1 =M@y, @2 = Aawy + byori, bag # O; (38)
i1 =M1, dy = Aowy + boa}, bso # 0; (39)

. 2
T1 =x1( A1 +anwe + a12x2>,

. (40)
Ty = x| A2 + bogw2 + b03$§>7 |an1| + |a12] + [boz| + [bos| # 0;
.’,i'l =X )\1 + a20T1 + a30x%>7 (41)
To = x2( A2 + b1 + b21$%>, |ago| + |aso| + [br1] + [ba1| # O;

T1 =T <)\1 + a21$1:172>,i72 = T2 <>\2 + 512!1711172), |a21| + |bl2| # 0. (42)

The assertion of Corollary 1 can be obtained and by direct method, that is if
we equate to zero all the minors of the order four of the matrix M = (M, My, Ms3)
with condition that at least one of the minors of the order three is not equal to
zero. Here, M; coincides with the matrix M from (12) if in the last matrix we put
apr = big = 0, a190 = A1, bp1 = Ag; the matrix My is given in (21) and

—2azo —a91 0 ap3
M = bso  ba1 —3azo bi2 —2a21 bz — aio
—an —2a12 —3a03 0
0 —an1 —2(112 —3&03
0 —3b3o —2ba1 —b12

azp — ba1 a1 —2b12 a1z —3boz  ao3
b3o 0 —b12 —2bo3
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7 The resonance

By ¢(x1,z2) and ¥(x1,x2) we shall denote, respectively, the nonlinearities from
the right-hand side of each equation of system (23), i.e.

pe1,m9) =Y Prlr, @), d(w1,20) = Y Qrlwr,22), (43)
k=2

where the polynomials P, and Qy, k = 2,n, are shown in (2).
Let Ay and Ay be two real and distinct numbers. If there exist integer nonnegative
numbers my, ma; my +mg > 2 (n1,n92; N1 + ne > 2) such that

A1 = MiA1L + maodg (44)

or
A2 = n1A1 + N2, (45)

then the couple of numbers (A1, A2) is called resonant.

Taking into account (44) ((45)), we say that am, m,x] 252 (bn, o1 xh?) is @
resonant term of the polynomial ¢(x1,z2) (¢(x1,x2)) corresponding to the resonant
couple (A1, A2).

A couple of polynomials (¢, 1) is call resonant if they contain only resonant terms
corresponding to the same resonant couple of the numbers (A1, A2), considering ) = 0
(p=0) if Ay and Ag verify (44) ((45)) and do not verify (45) ((44)) for any integer
numbers ni,ng > 0, ny +ng > 2 (m1,me > 0,m1 +mgy > 2).

In passing, in this section, we will describe a couple of resonant polynomials.
Suppose that (A1, A2) is a resonant couple. We will distinguish the following four
possible cases: 1) A1 - Ay >0, A\ £ A5 2) Ay #0, Aa=0; 3) \y =0, Ay #0 and
4) A1 A9 < 0.

1) A1-A2 >0, Ay # A2. In this case the equalities (44) and (45) do not hold
simultaneously. If we consider the equality (44), then it looks as:

AM=0-X+Ek- A, (46)

where k is one of the numbers 2,3,... . To the couple (A1, A2) which verifies (46)
the resonant couple of polynomials

p(z1,22) = ag e, P(z1,22) =0

corresponds.
Similarly, if we have the equality (45), then it looks as: Ao = k- A1 + 0 A2 and
leads to the resonant couple of polynomials

p(r1,22) =0,  P(x1, ) = by 07}
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2) A1 # 0, Ay = 0. In these condition the relation (44) holds for m; = 1 and
any mg € {1,2,3,...} and the relation (45) holds for ny = 0 and ng € {2,3,...}. To
the resonant couple (A1, A2) the couple of resonant polynomials

n—1 n—1
p(r1,20) =21 Y _arad,  Y(r1,22) =29 Y boji12)
= =1

corresponds.

3) A1 =0, A2 # 0. The equality (44) holds for m; € {2,3,...} and mg = 0,
and (45) for ny € {1,2,3,...} and ny = 1. Hence, we come to the resonant couple
of polynomials

n—1 ) n—1 )
p(z1,72) =21 Y aj4107], Plx1,32) =22 Y bj1a].
Jj=1 J=1

4) A1 - A2 < 0. Every of the relations (44) and (45) can hold only in the case
when Aj/)g is a rational number. Let A1 : Ao = p: (—q), where p and ¢ are integer
positive reciprocal prime numbers, i.e. (p,q) = 1. Denote by n* the integer part of
the number (n — 1)/(p + ¢q). In this case, the equality (44) holds for m; = ¢i + 1,
mo = pi, and (45) for ny = qi, ng = pi + 1, i = 1,n*. The resonant couple of
polynomials (i, 1)) corresponding to (A1, A2) is

n* n*

p(r1,72) = 71 Z agit1pi (x]2h)",  (z1,22) = 22 Z bgipit1 (x]2h)".
i=1 i=1

From what have been said above and Theorem 5, follows

Theorem 6. The dimension of GL-orbit of system (23) with conditions (22) is equal
to three if and only if the polynomials @ and v from (43) are not simultaneously equal
to zero and the pair (p,1) is resonant.

Taking into account Theorems 1, 2, 4 and 6, we obtain the following characteristic
of systems (23) with the dimension of orbit equal to four:

Theorem 7.The dimension of GL-orbit of system (23) with the conditions (22) is
equal to four if and only if |p(x1,x2)| + [¥(x1,22)| Z 0 and the pair of polynomials
(p,7) is not resonant.

8 The integrability on the G L-orbits of the dimension three
of system (23)

We consider the polynomial system
il = P(ml,xg), Lig = Q(ml,xg). (47)

Let n = max{degP,degQ} and D = P9/0xy + Q0/0xs. A curve f(x1,x2) = 0,
f € C[x1,x2], (an expression f = exp[h(z1,22)/g(x1,x2)], where h, g € Clx1,x29]), is
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called an algebraic invariant curve (an exponential invariant curve) for (47) if there
exists a polynomial K € C[z1,x2] of the order at most n — 1 such that the following
identity D(f) = f - K holds. The polynomial K (x1,x2) is called the cofactor of the
invariant curve f. By [4], if f = exp(h/g) is an exponential invariant curve for a
system (47), then g(x1,x2) = 0 is an algebraic invariant curve for the same system.

Let f1,...,fs be a collection of algebraic invariant curves and exponential in-
variant curves of system (47) and, respectively, Kj,..., K, their cofactors. If
there exist such numbers f1,02,...,8, € C that F = f{'f5%... B = const
(p = U572 f5°) is a first integral (an integrating factor) for (47), that is
D(F) =0 (D(p) + p(P), + Q,,) = 0), then we say that the system of differential
equations (47) is Darboux integrable in the generalized sense. If among fi,..., fs
there are not an exponential invariant curve, then we shall speak on Darboux inte-
grability of (47).

It easy to show that F' (u) is a first integral (an integrating factor) of the Darboux
type for (47) if and only if the following identity

> BiKi(x1,w2) = 0 (Z BiKi(z1,2) = —(Py, + Q;J)
i=1 =1

is verified.

Next, we will examine on integrability the systems of the form (23), (22) which
have the dimension of GL-orbit equal to three, i.e. systems (27), (28), (33)—(35).
Because the system (28) ((34)) can be reduced to the system (27) ((33)) by a sub-
stitution x1 — 9, x2 — x1, we shall consider only the problem of integrability of
systems (27), (33) and (35).

By [3], the systems of normal form are integrable in quadratures. The aim of this
section is to show that the given systems are Darboux integrable in the generalized
sense.

The system (27). a) Let \; # kAo. It is easy to check that the curves f; = x5
and fo = (A — kXg)z1 + ag xah are algebraic invariant curves for (27) and have the
cofactors Ki(x1,x9) = Ay and Ky (x1,x2) = A1, respectively. Evidently, the identity
01 K1+ (2 Ko =0 holds for 81 = A1, B2 = —A2 and therefore F' = ff‘1f2_>‘2 is a
first integral of system (27).

b) A1 = kXg2. In this case besides the invariant curve f; = xo with K1 = Ay, we
have also an exponential invariant curve fo = exp(x1/ xé) with K9 = ag . The first
integral is F' = ffo'kfz_)‘z.

The system (33). Let

n—1 n—1
= J T J
©=A+ E a1,;Ty, Y =x2 | A+ § bo,j+173
= =1

If =0 (¢ =0), then F = x; (F = ) is a first integral of (33) and if ¢ # 0, this
integral looks

F = zjexp[— /(@/zﬁ)dajg]
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Let 3 £ 0,9 £ 0, r = degi), s = max{0, degih—degp+1}, ¢ = bor(xa—b1)™ ... (x2—
by,)"™, where by = 0, b; € C'\ {0}, j =2,m, r1 +... + 1, = r. For system (33)
fo=x1=0, f; =x9 — b; =0, i = 1, m, are invariant lines, and

/ ! / X
=erp——y..., i =erp———...,
m—+1 px2 — bl m—+r;—1 p(:Ez — bl)rl_l
1 S
fr= emp(:l?g by )L fre1 = exp(z2),. .., fris = exp(3)
m

are exponential invariant curves. Because

/%diﬂz:— [ﬁlln|$2—b1|+-..+ﬁmln|$2—bm|+M+

i
R Y S W
(x2 — bm)rm_l r+112 cee r+sLo| 5
r+s ]
the integral F' of (33) can be written in the Darboux form: F' = [] fiﬁl.
i=0

In the investigated case it is more easy to find an integrating factor which looks
i=1/(@10).

The system (35). Because p and ¢ are reciprocal prime numbers, for them such
integer positive numbers u and v can be found that pu—qgv = 1. The transformation
21 = 2ay, 2o = xiah [3] reduces (35) to a system similar with (33):

21221

n*
uA1 + v + Z(u‘lqi—i—l,pi + qui,m‘ﬂ)*%] )
i=1

22222

n*
g\ +pha+ > (qagivipi + pbqi,pi+1)'z§] :
i=1

Thus, we shall integrate directly system (35). If

A A2 = Qgit1pi t bgipiv1 = —P:1q, ©=1,n*, (48)

n* )

then the right—hand sides of (35) have a common factor A+ Y agit1,pi(z2h)". After
i=1

their cancelation by this factor, we obtain the system &1 = z1, &9 = i—?l‘g which has

a general integral xi‘z Ty M

an integrating factor

= const. In the case when (48) is not satisfied we have

*

-1

n

p= [$1w2 <q>\1 +pho+ Y (qagitip +pbqi,pi+1)($[f$§)l>] :
=1

From what has been said above, follows
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Theorem 8. On GL-orbits of dimension three the system (23) with the conditions
(22) has a generalized Darbouz first integral (a Darbouzx integrating factor).

In the case of cubic systems (36) and (37) we have the first integrals

. 2
)" [()\1 —jA2)z1 + ao,jiﬂé] if A # G,

and ‘
a:;o’jemp(—)\gazl/x%) if M =j), j=23.

The system (40) has a first integral xo = ¢ if Ag = by = bp3 = 0 and an integrating
factor = [xla:g()\g + booxo + boga:%)] i [A2| + [bo2| + |bos| # 0. At the same time,
the system (42) has a first integral xi‘zxg)‘l = const if A\ + Ay = as1 + b1z = 0 and
an integrating factor pu = [x122(A\1 + A2 + (a21 + blg)xlazg)]_l in other cases. The
cubic systems (38), (39) and (41) can be reduced to the systems investigated above
by substitution z1 — x9, T2 — 7.
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Abstract. The article is devoted to the study of absolute asymptotic stability of
discrete linear inclusions (both autonomous and non-autonomous) in Banach space.
We establish the relation between absolute asymptotic stability, uniform asymptotic
stability and uniform exponential stability. It is proved that for compact (completely
continuous) discrete linear inclusions these notions of stability are equivalent. We
study this problem in the framework of non-autonomous dynamical systems (cocyles).
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1 Introduction

The aim of this paper is studying the problem of absolute asymptotic stability
of the discrete linear inclusion (see, for example,[2, 18] and the references therein)

Tiyr1 € F(l’t), (1)

where F(z) = {41z, Asx, ..., Az} for all x € E (E is a Banach space) and A;
(1 <i<m) is a linear bounded operator acting on E.

The problem of asymptotic stability for the discrete linear inclusion arises in
a number of different areas of mathematics: control theory — Molchanov [23]; li-
near algebra — Artzrouni [1], Beyn and Elsner [3], Bru, Elsner and Neumann [5],
Daubechies and Lagarias [12], Elsner and Friedland [13], Elsner, Koltracht and Neu-
mann [14], Gurvits [18], Vladimirov, Elsner and Beyn [31], Wirth [33, 34]; Markov
Chains — Gurvits [15], Gurvits and Zaharin [16, 17]; iteration process — Bru, Elsner
and Neumann [5], Opoitsev [24] and see also the bibliography therein.

Along with inclusion (1) we consider also the more general inclusions (non-
autonomous case)

Tiy1 € F(t, :Et), (2)

with F(t,z) := {A1(t)z, As(t)x, ..., Ay (t)z} and the operator-functions A; : Z, —
[E] ([E] is the space of all linear bounded operators A : E — E).

We establish the relation between absolute asymptotic stability, uniform asymp-
totic stability and uniform exponential stability. It is proved that for compact (com-
pletely continuous) discrete linear inclusions these notions of stability are equivalent.

© D. Cheban, C. Mammana, 2004
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We study this problem in the framework of non-autonomous dynamical systems (co-
cyles). We show that the problem of absolute asymptotic stability for the discrete
linear inclusions is related with the compact global attractors of non-autonomous
dynamical systems (both ordinary dynamical systems (with uniqueness) and set-
valued dynamical systems). We plan to continue the studying of discrete inclusions
(both linear and nonlinear) in the framework of non-autonomous dynamical systems.
In our future publications we will give the proofs of the followings results:

(i) finite-dimensional discrete linear inclusion, defined by matrices {A;, 4o, ...,
A}, is absolutely asymptotically stable if it does not admit nontrivial bounded
full trajectories and at least one of the matrices {A1, Ag, ..., A} is asymptotically
stable;

(ii) discrete inclusion, defined by nonlinear (in particular, affine) contractive
mappings {41, As, ..., Ay, } admits a compact global chaotic attractor,

amongst others. We consider that this method of studying discrete inclusions (both
linear and nonlinear) is fruitful and it permits to obtain the new and nontrivial
results.

This paper is organized as follows.

In Section 2 we give a new approach to the study of discrete linear inclusions
(DLI) which is based on the non-autonomous dynamical systems (cocycles). The
main result of this section is Theorem 2.6 which gives conditions for the asymptotic
stability for finite-dimensional DLI.

In Section 3 we introduce the shift dynamical system on the space of continuous
set-valued functions, set-valued cocycles and set-valued non-autonomous dynamical
systems. They play a very important role in the study of of discrete linear inclusions.
We show that every discrete linear inclusion generates a cocycle (Example 3.2).

Section 4 is dedicated to the study of non-autonomous discrete linear inclusions
(Example 4.1). The main result of this section is Theorem 4.12 which establishes the
equivalence between absolute asymptotic stability and uniform exponential stabilty
for the compact (completely continuous) non-autonomous discrete linear inclusions
on the arbitrary Banach space.

2 Autonomous discrete linear inclusions and cocycles

Let E be a real or complex Banach space, S be a group of real (R) or integer
(Z) numbers, T (Sy C T) be a semigroup of additive group S. Consider a finite set
of operators : = {A; | 1 <i < m}, where A; € [E].

Definition 2.1. The discrete linear (autonomous) inclusion DLI(M) is called (see,
for example,[18]) the set of all sequences {{x;} | j > 0} of vectors in E such that

zj = Ai;Tj-1 (3)

for some A;; € M, i.e. xj = A;; Ay, .. Ao all Ay € M.

ijfl'
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We may consider this as a discrete control problem, where at each time j we may
apply a control from the set M, and DLI(M) is the set of possible trajectories of
the system. A basic issue for any control system concerns its stability. One of the
more important type of stability is so called absolute asymptotic stability (AAS).

Definition 2.2. DLI(M) is called absolute asymptotic stable if for any of its tra-
jectories {x;} we have jlin;o xzj = 0.

Let (X,p) be a complete metric space with metric p. Denote by K(X) the
family of all compact subsets of X. Consider the set-valued function F': £ — K (FE)
defined by F(z) := {A;x, Asx, ..., Ay}, then the discrete linear inclusion DLI(M)
is equivalent to difference inclusion

T € F(xj_l). (4)

Denote by ®,, the set of all trajectories of discrete inclusion (4) (or DLI(M))
issuing from the point xg € E and ® := | J{®,, | 2o € E?} the set of all trajectories
of (4).

Below we will give a new approach to the study of discrete linear inclusions
DLI(M) (or difference inclusion (4)). Denote by C(T, X) the space of all continuous
mappings f : T — X equipped with the compact-open topology. This topology may
be metrizied, for example, by the equality

1 £2y . . 1 dn(fl7f2)
d(f ,f).—;mwn(fl,ﬂ),
where d,,(f1, f2) := max{|f}(t)— f2(t)| | |t| < n, t € T}, a complete metric is defined
on C(T, X) which generates compact-open topology. Denote by (C(T,X),T,0) a
dynamical system of translations (shifts dynamical system or dynamical system
of Bebutov [29,30]) on C(T,X), ie. o(t,f) := fr and f; is a t € T shift of f
(fe(s) == f(t+s) for all s € T).

Denote by Q :={f € C(Z4,[E]) | f(Z+) C M}. Tt is clear that € is an invariant
(with respect to shifts) and closed subset of C(Z4,[E]) and, consequently, on the
space  a dynamical system of shifts (©2,Z;,0) (induced by dynamical system of
Bebutov (C(Zy, [E]),Z+,0)) is defined.

Notice that by Tihonoff’s theorem (see, for example,[21]) the space 2 is compact
in C(Z4,[E)]).

We may now rewrite the equation (3) in the following way

zjp1 = w(f)zj, (we) (5)

where w € Q is an operator-function defined by the equality w(j) := A for all
JEZLy.
Denote by ¢(n,zp,w) a solution of equation (5) issuing from the point

xo € E at the initial moment n = 0. Notice that ®,, = {¢(-,z0,w) | w € 2} and

ij+1
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& = {p(,zo,w) | 0 € E,w € Q}, i.e. the DLI(M) (or inclusion (4)) is equivalent
to the family of linear non-autonomous equations (5) (w € Q).

From the general properties of linear difference equations it follows that the
mapping ¢ : Z+ X E x ) — FE satisfies the following conditions:

(i) (0,z0,w) = xq for all (zg,w) € E x §;

(i)  n + 1ze,w) = @, e(r,z0,w),o(r,w)) for all n,7 € Z, and
(o, w) € E x €

(iii) the mapping ¢ is continuous;

(iv) o(n,Az1 + pre,w) = Ap(n,z1,w) + pe(n, za,w) for all \,u € R (or C),
r1,29 € F and w € Q.

Let W, Q be two complete metric spaces and (2,Z,,0) be a discrete semi-group
dynamical system on 2.

Definition 2.3. Recall [29] that the triplet (W, ¢, (2, Z4,0)) (or shortly ) is called
a cocycle over (Q,Z4,0) with fiber W if ¢ is a mapping from Zy x W x Q to W
satisfying the following conditions:

1) ¢(0,z,w) =z for all (x,w) € W x Q;

2) p(n+1,2,w) = pn,o(r,z,w),o(r,w)) foralln,™ € Zy and (x,w) € W xQ;

3) the mapping ¢ is continuous.
If W is a real or complex Banach space and

4) pn, \z1 + pre,w) = Ao(n,z1,w) + pe(n, zo,w) for all \,u € R (or C),
x1,x9 € W and w € Q, then the cocycle ¢ is called linear.

Definition 2.4. Let (W, p, (Y, T,0)) be a cocycle (respectively, linear cocycle) over
(Y,T,0) with the fiber W (or shortly ¢). If X = W x Y,m = (p,0), i.e.
w((u,y),t) = (p(t,x,y),0(t,y)) for all (u,y) € W xY and t € T, then the
dynamical system (X,T,7) is called [29] a skew product over (Y,S,o) with the
fiber W.

Let (X, T,7) be a dynamical system. Denote by w, := (| U{7(s,z) : s>t}
>0

and ay := () U{n(s,2) : s<t}if T=S.
t<0

Let T = S, (W, 0, (Y, T,0)) be a linear cocycle (respectively, linear cocycle)
over (Y, T, o) with the fiber W and (X, T, n) be a skew-product dynamical system,
generated by cocycle ¢. Denote by X*® := {z € X : tligl |m(t,z)| =0}, X% :={x €

X : . lim |7 (¢,z)| =0}, X := X*N X, and X}/ := X" () X,, where X, := W x {y}.
——00

From the above it follows that every DLI(M) (respectively, inclusion (4)) gen-
erates in the natural way a linear cocycle (E, ¢, (Q,Z4,0)), where Q = C(Z4, M),
(Q,Z4,0) is a dynamical system of shifts on Q and ¢(n,z,w) is a solution of the
equation (5) issuing from the point z € E at the initial moment n = 0. Thus we
may study the inclusion (4) (respectively, DLI(M)) in the framework of the theory
of linear cocycles with discrete time.

Definition 2.5. A linear operator A € [E| is called asymptotically stable if o(A) C
D, where o(A) is the spectrum of A and D := {z]|inC : |z| < 1} is a unit disk in C.
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Theorem 2.6. Let E be a finite-dimensional Banach space, Dim(E) = n,
A; € [E] (i = 1,2,...,m) and M := {4y, Ag, ..., Ay, }. Assume that the following
conditions are fulfilled:
1) every operator A; € M is invertible;
2) there exists j € {1,2,...,m} such that the operator A; is asymptotically stable;
3) the discrete linear inclusion DLI(M) has no nontrivial bounded on Z
solutions.
Then the discrete linear inclusion DLI(M) is absolutely asymptotically stable.

Proof. Let Q := M|JM™ ( where M~1:={A"! 1 Ae M}, Y =Q:=C(Z,Q)
and (Y,Z,0) be a group dynamical system of shifts on Y (see Section 2). It is easy
to see that Y = C(Z, Q) is topologically isomorphic to ¥, := {0,1,...,m — 1}% and
(Y,Z,0) is dynamically isomorphic to the shift dynamical system on %,, (see, for
example,[25,32]) and, consequently, it possesses the following properties:

(i) Y is compact;

(ii) Y = Per(o), where Per(o) is the set of all periodic points of the dynamical
system (Y, Z,0);

(iii) there exists a Poisson stable point y € YV (i.e. y € w, = ) such that
Y =H(y) ={o(t,y) : t€Z}.

Let (E,p,(Y,Z,0)) be a cocycle generated by DLI(M) (i.e. p(n,u,w) := U(n,
w)u, where U(n,w) = [[i_;w(k) (w € Q)), (X,Z,7) be a skew-product system
associated with the cocycle ¢ (i.e. X := ExY and 7 := (¢,0)) and ((X,Z, ),
(Y,Z,0), h) (h := pro : X — Y) be a linear non-autonomous dynamical system
generated by the cocycle . According to Theorem D from [28] (see also [4,27])
X?* and X" are two fiber sub-bundles of fiber bundle (X, h,Y"). In particular there
exists a number k € Z; (0 < k < dim(E) = n, where dim(E) is the dimension of
the space E) such that dim(X;) = k for all y € Y. Denote by wg : Z — M the
mapping defined by the quality wp(i) = A; for all ¢ € Z, where A; = Ajo Aé-_l
(i € Z). Since the operator A; is asymptotically stable, then the fiber X, (wg € Y)
is asymptotically stable, i.e. X, = X . Now to finish the proof of the theorem it
is sufficient to note that k = dim(X;) = dim(X; ) = dim(X,,) =nforally € Y. O

Remark 2.7. This statement is true also without assumption 1), but the proof in
this case is much more complicated. We will present it in a future publication.

3 Dynamical system of translations, set-valued cocycles
and non-autonomous dynamical systems

Let &€ be a real or complex Banach space with norm |- | and p be a distance on
& generated by norm | - |. We denote by K(F) the family of all compacts of E, by
pla, B) := inf{p(a,b) |b € B} (a € E and B € K(FE)) and by « the Hausdorff’s
distance distance on K(F), i.e. a(A, B) := max{f(A, B),3(B,A)} and (A4, B) :=
sup p(a, B). Let C(Z4 x E, K(E)) be the set of all continuous in Hausdorft’s metric
acA
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and bounded on every bounded set from Z; x E mappings F' : R x E — K(FE)
equipped with the distance

e}

1 Fl,Fg)
F F _ 7 6
1 ) Z AT AL (©)

where d(F1, Fy) = sup{a(Fi(t,x), Fa(t,z)) :0<t <k, |z| <k, (t,x) € Zy x E}.
The distance (6) defines on the space C'(Z4+ x E, K(FE)) the topology of convergence
uniform on every bounded subset of Z; x E.

Denote by (C(Z4 x E,K(E)),Z+,0) a dynamical system of translations on
C(Z+x E,K(FE)) (see, for example,[29,30]), where o(n, F') is an n-shift of function F’
with respect to variable t € Zy, i.e o(n, F)(t,z) := F(t+n,z) for all (¢,x) € Z4 X E.

Definition 3.1. The triplet (W, o, (Y,Z4,0)) is said to be a set-valued cocycle over
(Y,Z4,0) with the fiber W, where ¢ is a mapping of Zy x W x Y onto K(W) and
possesses the properties:

(1) ©0,u,y) =u foralluecW andy €Y

(ii) ot + 1,u,y) = @(t,o(T,u,y),yt) for all t,7 € Z4 and (u,y) € W x Y,
where yt == o(t,y) and p(t,A,y) = U {e(t,u,y) : ue A};

(ii1) o ul_iglo yqyoﬁ(@(tjuvy), ¢(to, uo,Y0)) = 0 for all (to, uo,yo) € Z4 x W XY.

Let X := W xY. We denote by (X, Z,, ) the set-valued dynamical system on X
defined by the equality 7 := (¢, 0), i.e. 7'z :={(v,q) : v € p(t,u,y), q € o(t,y)} for
every t € Zy and xz = (u,y) € X = WxY. Then the triplet ((X,Z4,7),(Y,Z1,0),h)
is a set-valued non-autonomous dynamical system (a skew-product system), where
h=prog: X —Y.

Thus, if we have a set-valued cocycle (W, ¢, (Y,Z4,0)) over the dynamical sys-
tem (Y,Z4,0) with the fiber W, then it generates a set-valued non-autonomous
dynamical system ((X,Z4,7), (Y,Z4,0),h) (X = W x Y), which is called a
non-autonomous dynamical system generated by the cocycle (W, ¢, (Y,Z4,0)) over
(K Z-‘m J)'

Example 3.2. ( Difference inclusions ). Denote by K (E) the family of all compact
subsets of E. Let us consider the difference inclusion

u(t+1) € F(t,u(t)), (7)

where F' € C(Z4+ x E,K(F)). Along with difference inclusion (7) we will consider
the family of difference inclusions

v(t+1) € G(t,v(t)), (8)

where G € H(F) = {F; : 7 € Z4+},F;(t,u) = F(t + 7,u) and by bar the closure in
C(Z x E,C(E)) is denoted.

We denote by ¢, ¢)(n) a solution of inclusion (8) passing through the point v
for t = 0 and defined for all t > 0. We set p(t,v,G) = {9u.6) (1) : Pw.a) € Lwe) )
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where @, i) is the set of all solutions of inclusion (8) , passing through the point
v for t = 0. From the general properties of difference inclusions it follows that the
mapping ¢ : Zy X E x H(F) — K(F) possesses the next properties :

1) ¢(0,v,G)=vforallve E,G e H(F);

2) o(t+1,v,G) =, p(r,v,G),G;) for all v € E,G € H(F) and t, T € Z;

3) the mapping ¢ : Z, x E x H(F) — K(F) is -continuous.

Assume Y = H(F) and denote by (Y,Z,,0) the disperse dynamical system of
translations on Y. Then the triplet (E,p, (Y,Zy,0)) is a set-valued cocycle over
(Y,Z4,0) with the fiber E. Thus, non-autonomous difference inclusion (7) in a

natural way generates a non-autonomous set-valued dynamical system ((X,Z,, ),
(Y,Z4y,0), h), where X = ExY,m = (¢,0) and h=pry: X — Y.

4 Non-stationary discrete linear inclusions

Example 4.1. Let M C [E] be a compact set and F : Zy x E — K(E) be the
set-valued mapping defined by the equality F'(¢,z) := {A(t)x : A € C(Z4+, M)} for
all t € Zy and z € E. It is easy to verify that the function F': Z4 x E — K(E) is
continuous, i.e. F € C(Zy4 x E,K(E)). Consider the difference inclusion

o(t+1) € F(t,z(t)). 9)

Note that the solution of inclusion (9) is a sequence {{x(t)} | t € Z4} of vectors
in E such that z(t + 1) = A;,(t)z(t) for some A;, (t) € M, i.e.

w(t) = Ai () Ai,_, (t = 1)... A5, (1)2(0) (A4 (t) € M).

Along with inclusion (9) we consider its H-class (see Example 3.2 ), i.e. the
family of inclusions
z(t+1) € G(t,z(t)), (10)

where G € H(F) := {F; | s € Z1} and Fs(t,x) := F(t+s,z) for all (t,x) € Z4 x E.

Let Y be a compact metric space and (X, h,Y’) be a locally trivial fiber bundle
[20] with the fiber E, (X, p) be a complete metric space.

Definition 4.2. ((X,Z,7),(Y,Zy,0),h) is said to be homogeneous if for any x € X
and any v, € @, the function 7 : D(v,) — X (D(vz) := [ry, +00) is the domain
of the definition of ., where v, € Z) defined by F(t) := Ay,(t) is the motion of
(X, Zy,7) issuing from the point Az € X, i.e. 7 € ®y,.

Remark 4.3. 1. Note that non-autonomous dynamical system from Ezample 3.2 is
homogeneous if the set-valued mapping F which figures in this example is homoge-
neous, i.e. F(t, \x) = \F(t,z) for all (t,z) € Z4 x E.

2. The non-autonomous dynamical system generated by discrete linear inclusion
(9) is homogeneous, because the function F(t,z) := {A(t)x : A€ C(Zy, M)} (for
all (t,x) € Zy x E) is homogeneous with respect to x € E.
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If » € X, then we put |z := p(z,0y(,)), where 8, (y € Y) is the null (triv-
ial) element of the linear space X, and © := {6, | y € Y} is the null (trivial)
section of the vectorial bundle (X,h,Y). Let A € K(X), then we denote by
|A| := max{|a| : a € A}. Denote by X* a stable manifold of ((X,Z,7),(Y,Z4+,0)),
ie. X°:={z |z € X, tEEloo |7 (t,x)| = 0}.

Definition 4.4. Let W be a Banach space. The cocycle (W, p,(Y,Zy,0),h) is
said to be homogeneous if the skew-product set-valued dynamical system (X, Z,m)
(X =W xY, 7 := (p,0)) also is homogeneous.

Theorem 4.5. [8] Let Y be a compact metric space and ((X,Zy,7), (Y,Z4+,0),h)
be a homogeneous set-valued non-autonomous dynamical system. Then the following
assertions are equivalent:

(i) the trivial section © of fibering (X, h,Y") is uniformly asymptotically stable,
i.e. tllglOHﬂtH = 0, where 7t = 7(t,) : X — K(X), ||7| = sup{|ntz| : =z €
X, |x| <1} and |A| :=sup{|a|] :a € A};

(ii) the trivial section © of fibering (X, h,Y") is uniformly exponentially stable,
i.e. there are two positive constants N and v such that |n(t,z)] < Ne "t for all
reX andtecZsy.

Definition 4.6. A set-valued dynamical system (X,Z4, ) is called compact (com-
pletely continuous) if for any bounded set A C X there exists a positive number
l € Z such that the set ' A is relatively compact. A non-autonomous dynamical
system ((X,Z, ,7), (Y,Z4,0),h) is called compact if the system (X, Ty, ) is so.

Denote by K(X) (B(X)) the family of all compact (bounded) subsets of X and
B(M,0) :={z € X |p(z, M) < ¢}.

Definition 4.7. A system (X,Zy,7) is called [6]:
— pointwise dissipative if there exists Ko € C(X) such that for all x € X

tlim B(xt, Ky) = 0; (11)

— compactly dissipative if equality (11) holds uniformly w.r.t. x on compacts
from X;

— locally dissipative if for any point p € X there exists 6, > 0 such that equality
(11) holds uniformly w.r.t. x € B(p,dp).

Theorem 4.8. [6] Let (X,Z, ) be a pointwise dissipative compact dynamical sys-
tem, then it is locally dissipative.

Theorem 4.9. Let Y be a compact metric space and ((X,Z4,7), (Y,Z4,0),h) be
a compact, homogeneous set-valued mon-autonomous dynamical system. Then the
following assertions are equivalent:
1) the non-autonomous dynamical system (X,Z4,7), (Y,Zy,0),h) is conver-
gent, i.e.
lim |7(t,z)| =0, (12)

t—o0
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forall x € X;
2) the trivial section © of fibering (X, h,Y) is uniformly exponentially stable.

Proof. To prove this affirmation obviously it is sufficient to show that 1) implies
2), because the implication 2) — 1) is trivial. Since the space Y is compact and
the fibering (X, h,Y) is locally trivial, then the trivial section © of (X,h,Y) is
compact. Taking into account this fact and the equality (12) we obtain the pointwise
dissipativity of dynamical system (X,Z,, 7). Now to finish the proof it is sufficient
to apply Theorem 4.8. d

Definition 4.10. Following [18] the inclusion (9) is said to be absolute asymptotic
stable (AAS) if for any trajectory {x(t)| t € Z+} of any inclusion (10) . ligl x(t) = 0.

Theorem 4.11. [6] Let (X,Z4,m) be a completely continuous (compact) and tra-
jectory dissipative set-valued dynamical system, then it is locally dissipative.

Theorem 4.12. Let M C [E] be compact and every operator A € M be compact
too. Then the following two statements are equivalent:

1) the inclusion (9) is absolute asymptotic stable;

2) the inclusion (9) is uniformly exponentially stable, i.e. there are positive
numbers N and v such that |x(t)| < Ne "*|z(0)| for allt € Z, where {x(t) |t € Z+}
is an arbitrary solution (trajectory) of arbitrary inclusion (10).

Proof. Denote by €2 := H(F') the closure (in the space C(Z1 x E,C(FE))) of family
of translations {Fs | s € Zy} of function F(t,x) := {At)x : A € C(Z+, M)},
(Q,7Z4,0) the dynamical system of translations on Q, (E, ¢, (2,Z4,0)) the cocycle
generated by non-stationary discrete linear inclusion (10). Finally, by (X, Z4,7),
(Q,Z4, 0),h) we denote the non-autonomous dynamical system system, generated
by cocycle ¢ (X := Ex Q, m := (p,0) and h := pro : X — Q). Note that this
dynamical system possesses the following properties:

1) the set Q = H(A) is compact, according to theorem of Tihonoff;

2) the non-autonomous dynamical system ((X,Z,7),(Q,Z,0),h) is homoge-
neous;

3) the non-autonomous dynamical system ((X,Z4,7), (2, Z+,0), h) is compact.
In fact, let A C E be a bounded subset of E |, ¢ := sup{la|] :a € A} and [ € N.
We will show that the set ¢(l, A, ) is relatively compact. Consider a sequence
{yr} C @(l, A,Q), then there are {z;} C A, {wr} = {Gx} € Q (G, € H(F)) and
BF € H(A;) (H(A;) is a closure of the set of translations {A;(t +s) | s € Z,}
in the space C(Z4,[E]) of all continuous mappings f : Z; — [E] equipped with
compact-open topology) such that

yi = BE(1)B!

-1

(I —1)..BE (D).

Under the conditions of Theorem the operators {BZ (s)} 1 <s<land k €N)
are compact. Without loss of generality we may suppose that the sequences
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{st} C C(Zy,[E]) are convergent as k — oo (in the space C(Z4,[E])). Let
B, (t) = klim BF (t) (for any ¢t € Z.), then this operator will be compact and,

consequently, the operator B(t) := B, (t)B;,_,(t)...B;, (t) will be so too. Since
the sequence {1} C A is bounded, then the sequence {B(l)xy} is relatively com-
pact. For simplicity we may suppose that this sequence converges and denote by
Y= klinolo B(l)xy, then we have

lye —yl < [BE()BE_ (1—1)...Bf (1)ay, — B, (1)Bi,_, (I = 1)...B;, (1)ay,| +

|B;,(1)B;, (1 — 1)...éi1(1)xk —y| <|IBEW)BE_ (1—1)..BE(1) - (13)

By (1) By, (1= 1)..Biy (V] - ¢ + | By, (1) Biy, (1 = 1)-..Biy (Darg — |

for all £ € N. Passing to limit in the relation (13) we obtain y = lim y; and the
n—oo

required statement is proved.
4) the dynamical system ((X,Zy,7),(Y,T4,0),h) is convergent.

In fact, from condition 1. it follows that the skew-product set-valued dynamical
system (X,Zy,7) (X := E" XY and 7 := (p,0)) is trajectory dissipative and by
Theorem 4.8 the skew-product dynamical system (X,Z,, ) is locally dissipative

and, in particular, we have lim sup |7(¢,z)| = 0.
AR !

Note that the non-autonomous dynamical system ((X,Z,,7), (Q,Z4,0),h), gen-
erated by cocycle ¢ is homogeneous and compact. Now to finish the proof of Theo-
rem it is sufficient to apply Theorem 4.9. O

Remark 4.13. 1. Note that a similar result has been proved for reflexive Banach
spaces in [33,34] for arbitrary bounded sets of bounded operators.

2. Theorem 4.12 is true also for non-autonomous nonlinear homogeneous inclu-
sions, i.e. if the operators A € M are continuous and homogeneous, but in general
not linear.
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Stability and fold bifurcation in a system
of two coupled demand-supply models
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Abstract. A model of two coupled demand-supply systems, depending on 4 param-
eters is considered. We found that the dynamical system associated with this model
may have at most two symmetric and at most two nonsymmetric equilibria as the
parameters vary.

The topological type of equilibria is established and the locus in the parameter
space of the values corresponding to nonhyperbolic equilibria is determined.

We found that the nonhyperbolic singularities can be of fold, Hopf, double-zero
(Bogdanov-Takens) or fold-Hopf type.

In addition, the fold bifurcation is studied using the normal form method and the
center manifold theory.

Mathematics subject classification: 37G10, 37L10.
Keywords and phrases: Coupled dynamical systems, normal form, fold bifurcation,
center manifold.

1 The mathematical model

The demand-supply model describes the way in which the price p and the quan-
tity ¢ reacts one to another. This model was proposed by Beckmann and Ryder [1]
(1969) and Collel (1986). It is based on the economic principles of Walras and Mar-
shall [2]. According to their hypothesis, the variation of the price is function of
the difference between the demanded quantity of the product D(p) and the offered
quantity S(p) at the price p, while the variation of the quantity is function of the
difference between the price py(q) demanded for the quantity ¢ and the price ps(q)
offered for this quantity. In addition, these two functions keep constant the sign of
their argument. Thus, the mathematical model has the form [4]:

{ p:f(D(p)—S(p)), (1)
q=g(pa(q) —rs(q))-

with £(0) = g(0) = 0, f/(0) >0, ¢/(0) > 0.
If f(z) = 2,9(x) = z, S(p) = ¢, pala) = p, D(p) = ap + B, ps(a) = c¢® + 4,
system (1) becomes:
p=ap+pB—q
{ézp—cq2—5- @)
In economy, the laws of demand and offer are available. According to them [3], as the
price of the product increases, the demanded quantity decreases, so the function D(p)
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is decreasing and we must have a < 0. Similarly, the function ps(q) is increasing, so
we have ¢ > 0.

The economic interest is to reach an equilibrium between the price and the
quantity.

With the transformation u = p—¢§ and denoting b = ad+ 3, system (2) is written
as:
uw=au—q+Db,
Ay 3

A study of dynamics and bifurcation of this system is developed in [5]. The
coordinates of equilibria of system (3) satisfy

{ au—q+b=0,

u—cq® =0.
Denote A = 1—4abc. Since ac # 0 there are two equilibria (ca2, a) , with a = 1%;/01’
as A > 0, a single equilibrium (ﬁ, ﬁ) as A = 0 and no equilibria as A < 0.

The equilibrium (ﬁ, ﬁ) is always nonhyperbolic, namely of saddle-node type
2

as a # —1 and of double zero type as a = —1. The equilibrium (ca ,a), with
o= 12VA g nonhyperbolic of Hopf type iff VA =1—a2, a € (—=1,0) . Otherwise,

2ac

it is a repulsor as a? —1++vA >0 and an attractor as a® — 1 + VA < 0. In [5] it is

shown that crossing the parameter stratum vA =1 —a?, a € (—1,0), a subcritical

Hopf bifurcation takes place. Finally, the equilibrium (ca2, a) , with a = 1;3/}7

always hyperbolic of saddle type.
In our study, a model of two identical demand-supply dynamical systems (3),
symmetrically coupled via the quantity flow is considered. It reads

is

T1 =ax1 — 29+ b,
iy =21 —cx3 +d(z2 — 74),
T3 =axg — x4+ 0b,
iy =123 —cx?+d (x4 — x2).

(4)

This system models the interaction between two identical demand-supply models.
Thus we shall focus on parameter values such that the system (4) display either
a steady stable state or periodic behavior. Systems coupled in the form (5) are
often used in the literature. As a result of the couplage, some characteristics of the
behavior around the equilibria are preserved, but new kind of dynamics arise [6-9].

A consequence of this form of coupling and of the assumption that the models
are identical is the invariance of (4) under the transformation (x1,z9,xs3,24) —
(x3,24,%1,22). The same symmetry leads to the existence of an invariant subspace

I={(21,22,23,24) € R* 21 = 23,30 = 24} .

A solution of (4) lying in I will be referred to as symmetric solution, while one
which does not lie in I as nonsymmetric solution. By economic reasons, we shall
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investigate only the case a < 0, ¢ > 0. We also assume d > 0. Thus we consider the
set of parameters of interest from application point of view as

D= {(a,b,c,d) €R4,a<0,c>0,d>0}.

2 Equilibria and nonhyperbolic singularities

System (4) possesses at most two symmetric equilibria of the form
es = (ca2,a,ca2, a) , (5)
where a € R satisfies the equation
aca® —a+b=0, (6)

whose discriminant is A already introduced. As ac # 0, for A = 0, there exists a

unique equilibrium eg,, with o = 51-; and for A > 0, system (4) has two symmetric

2ac”’
equilibria eqg, egs, corresponding to a; = 1221/5 lgﬁ,

for A < 0 there are no symmetric equilibria.
As ac # 0, system (4) may also possess at most two nonsymmetric equilibrium
points, of the form

<a’—b , 14+2ad o +b 1+ 2ad ,>
eq = a - —-ad ),

and ag = respectively; while

(7)

) ) 2 9
a a“c a ac

where o’ satisfies the equation

9 1+42ad d + 2ad? + be
a ac

ca 0. (8)

Denote by A’ = 1 — 4abc — 4a?d? the discriminant of (8). Note that if A’ = 0, we
have o = % and the corresponding equilibrium e, coincides with es. Thus we
obtain the following result:

Lemma 1. Assume a <0, ¢ > 0.
(i) If A <0, system (4) has no equilibria;
(ii) of A = 0, system (4) has a unique equilibrium point egs, given by (5) with
1

(ili) f A >0 and A" <0 system (4) has two equilibria ey, €as;
(iv) if A" > 0, system (4) has four equilibrium points e1s, €2s, €14, €24-

As a consequence, the static bifurcation diagram of the dynamical system (4) in
D is the set

S ={(a,b,c,d) € D,(1 — 4abc) (1 — 4abc — 4a2d2) =0}.

Sections in the static bifurcation set .S with a plane b = by, ¢ = ¢q, are plotted in Fig.
1, for different values of by, ¢y, and the number of equilibrium points corresponding
to each stratum is shown.
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e

a2 18 16 14 12 1 08 06 04 -02 O 2 a A5 i

(i) (ii)

Figure 1. Section with a plane b = by, ¢ = cg in the static bifurcation diagram:
i)b=-0.5, ¢=0.25; ii)b=0.5, ¢ =0.25. The number of equilibria corresponding
to each stratum is shown

3 The topological type of equilibria

In this section we determine the topological type of the four equilibrium points
of system (4), analyzing the variation of the eigenvalues of the Jacobi matrix of the
linearized system associated with (4) around each of the four equilibria.

Let e = (e1,e2,e3,e4) € R* be an equilibrium point of system (4). The Jacobi
matrix of (4) around e reads

a -1 0 0

1 d—2cey O —d
T =1 0 i a -1

0 —d 1 d—2cey

Denote by T%, T*, T the stable, unstable and critical eigenspaces of J (e), re-
spectively, and by s,u, ¢ the dimension of these subspaces of R%.
As the characteristic equation for the equilibrium ey is

21 1
)\<)\—a >[A2—A<a+2d——>+2ad]=o,
a a

we obtain the following result:

Lemma 2. If A = 0, for parameters in D, the unique equilibrium point of system
(4) is nonhyperbolic, with one zero eigenvalue as a # —1 or two zero eigenvalues as
a=—1.

If A > 0, the characteristic equation for the symmetric equilibria eis, egs reads
[11]:

8]

a a

22— <a+2d—1i*/z>A+2adq:\/Z =0.
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Denote by A1, A2 the roots of the first bracket in (9) and by A3, A4 the roots of the
second one.

As for e15 we have M\ = —VA < 0, A3Aq = 2ad — VA < 0, we may conclude:

Lemma 3. If A > 0, for parameters in D, the symmetric equilibrium eys of system
(4) is hyperbolic, namely it is a saddle of type (s,u) = (2,2).

In order to establish the topological type of e, let us introduce the following
notations:

SN, =
SNy =

(a,b,c,d) € D, A =0},

{
{(abcd yeD, A>0, 2ad+\/Z:o},
H, = {(abcd yeD, A>0, a2—1+x/Z:0},
Hy = {(abcd €D, A>02ad+ VA >0, a2—1+2ad+\/Z=0}.

Lemma 4. For A > 0 and (a,b,c,d) € D — (SNy U Hy U Hy) the symmetric equi-
librium eos of system (4) is hyperbolic, namely:

(i) if 2ad + VA < 0 and a® — 14+ VA < 0, then ey, is a saddle of type (3,1);

if 2ad + VA < 0 and a® — 14+ VA > 0, then ess is a saddle of type (1,3);

)

)
i) if 2ad + VA > 0 and a®> — 1 + /A > 0, then ess is a repulsor;

) if 2ad + VA >0, a> — 14+ VA <0 and a®> — 1+ 2ad + VA > 0, then e, is a
saddle of type (2,2);

(v) if2ad + A >0, a> =1+ VA <0 and a®> — 1+ 2ad + VA < 0, then ey, is an
attractor.

In addition, if (a,b,c,d) € SNy U Hy U Hy, then eas is a nonhyperbolic equilibrium,
namely of Hopf type as (a,b,c,d) € (H1 U Hy) — SNa, of fold type as (a,b,c,d) €
SNy — (Hy U Hs), of double zero type as (a,b,c,d) € SNy Hy or of fold-Hopf type
as (a,b,c,d) € SNy N Hy.

In Fig. 2 is represented a section with a plane b = by, ¢ = ¢g in the bifurcation
diagram of system (4) around the equilibrium eg,. Inside each region (s, u) is given.

As A’ > 0, for the nonsymmetric equilibria e, esq, the corresponding charac-
teristic equation is written as

A — Al)\g + Ag)\2 —A3A+ A4 =0, (10)

where:

1 14 2ad — A/
Al = 2<a—d——>; A2:L+a2—4ad—2;
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Figure 2. Section with a plane b = by, ¢ = cg in the local parameter portrait around
egs: 1) b= —0.5, ¢=0.25; ii)b=—0.5, ¢=0.5; 1iii)b=0.5 ¢=0.5

/
A = Z[d—aZd—é}; Ay =—A.
a

Since Ay < 0, it follows X\; # 0, i = 1,4. Therefore, the equilibrium e; 5, may be
nonhyperbolic only if (10) has a pair of purely imaginary solutions. This situation
arises if the following conditions are fulfilled [8]

A A A
3>0—3+A4—1:A2 (11)

AI#O,A_I ,Al A3

or
A1 =0,A3=0,A4 <0. (12)

Consequently, we obtained:

Lemma 5. If A’ > 0, then the nonsymmetric equilibria eq 2q of system (4) are

(i) hyperbolic saddles, of type (1,3) or (3,1), as the conditions (11), (12) do not
hold:

(ii) nonhyperbolic of Hopf type, as (11) or (12) holds.

In Fig. 3 is represented a section with a plane b = by, ¢ = ¢g in the bifurcation
diagram of system (4) around the equilibria e 2. The parameter strata for which
(11) or (12) holds are denoted by H.

4 Fold bifurcation

Let e = (e1, €9, €3, e4) be an equilibrium of system (4). Performing the translation
y = x — e, system (4) reads

g=J(e)y+F(y), yeR (13)
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Figure 3. Section with a plane b = by, ¢ = cg in the local parameter portrait around
e12q: 1) b=-05, ¢=0.25; ii)b=-0.5, ¢=0.5

with F(y) = (0, —cy3,0, —cyz)t, and the corresponding equilibrium is the origin
0 € R

Using the normal form and the center manifold theory [10], we establish the
topological type of the nonhyperbolic equilibria of saddle-node type determined in
Section 3 and the local bifurcation generated by them.

Case 1. For parameters situated in the set SN; we have A = 0 and
the Jacobi matrix associated with the unique equilibrium point of (4) eps =
(4—(112—0,%,4—;2—0,%), has the eigenvalues \; = 0, Ao = a — é, A3Ag = 2ad < 0.
Assume a? — 1 # 0. Thus J (egs) has a simple zero eigenvalue and the correspond-
ing critical eigenspace is spanned by the eigenvector ¢ = (1,a,1,a) € R*. Let
p= ﬁ (1,—a,1,—a) € R* be the normalized adjoint vector, i.e. J (egs)' p = 0
and (p,q) = 1. We discompose any vector y € R* as y = uq + z, where uq € T¢,
z € T*". Here T°" is the 3-dimensional eigenspace of J (egps) corresponding to all
eigenvalues, other than 0. The explicit expressions for u and z are:

{u:@w% (14)

z=y—(p,y)q

The scalar v and the vector z can be considered as new coordinates on R*. By
the Fredholm alternative [10], the components of z always satisfy the orthogonality
condition (p,z) = 0.

In these new coordinates, system (13) with e = eps can be written as [10]

u:<p7F(UQ+2)>,
{ Z = J(eos)Z+F(uq—|—z)— <p7F(Uq+Z)>q, (15)
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that is
i = 250 L u (20 + 21) + 1%y (23 + 23),
0
—c(au + z,)° ac 2,2 2., .2
2z =J(egs) z + 0 b gy (2a%u? + 2au (22 + z4) + (23 + 23)) ¢.
—c(au + z4)?
(16)
The center manifold has the representation
1 2 3
z:V(u)zawgu + 0 (u’), (17)
where wy € T*", that is (p,ws) = 0. The vector wq also satisfies the equation
J (eps) wa + A = 0, where A = —% (a,1,a,1) € R* From the above conditions
we obtain ,
a’c 9 9
Wy = ———— (a,2—a",a,2 —a”).
(1 - CL2)2 ( )

Substituting in (16) and (17) the expression of ws we obtain:
Proposition 1. The restriction of (16) to the center manifold has the form

CL36

U= 1_a2u2—|—0(u3).

In addition, since 1“_352 # 0, the equilibrium egs is a nondegenerated saddle-node and

around it a nondegenerated fold bifurcation takes place.
Returning to the y coordinates, we get the following result.

Proposition 2. For A =0, a®> — 1 # 0, the center manifold corresponding to egs
can be written as

CL4C

(1 —ay2) + ———— (y1 —ay)* = 0. (18)

1= Y3, 2 = Y4, 11— 7 o
V=Y B=Un Y17 20—

Case 2. For parameters situated in the set SNy we have A > 0 and 2ad++vVA =
0. The Jacobi matrix J (egs) of the equilibrium point egs = (ca2,a,ca2,a) of (4),
with a = %, has the eigenvalues A3 = 0, \y = a — %, Ao = —2ad > 0,
AM+XN=a— 1%36”#

Consider that a®> —1 # 0 and a? — 1 — 2ad # 0. This means that Ay # 0,
and the parameters are not situated in H; or Hy. Thus J (egs) has a simple zero
eigenvalue and the corresponding critical eigenspace 1T is spanned by the eigenvector
qg = (1,a,—1,—a) € R* Let p = m—iag—)(l,—a,—l,a) € R* be the normalized
adjoint vector.
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Performing the change (14), system (13) with e = ey, reads

U= 1(12;2“ (22 + 24) + 5702y (23 — =),
0
2
—c(au+ z (19)
z=J(ess) z + ( 0 2) —ﬁ(2au(zg+z4)+z§—z2)q.
—c(au + z4)?

As for the previous case, we obtain the following result.

Proposition 3. If A > 0, a®> — 1 # 0, a®> — 1 — 2ad # 0, the center manifold
corresponding to eos can be written as

ac

1 (y1 —y3)* =0. (20)

Y2 = ay1, Y4=ay2, Y1+ys+

Taking into account (20), from (19) we obtain.
Proposition 4. The restriction of (19) to the center manifold (20) is

4,2
a“c 3

mu . (21)

0=
In addition, since in D we have % # 0, the equilibrium eas is a degenerated
saddle-node of order two. On the center manifold a degenerated fold bifurcation takes
place around eo.

Remark also that as a € (—1,0) the coefficient of u? is positive, therefore the
solution u = 0 of (21) is weakly repulsive and so is egs on the center manifold.
Similarly, as a < —1, egs is weakly attractive on the center manifold.

The bifurcation corresponding to the other nonhyperbolic singularities, namely
of Hopf, double-zero of fold-Hopf type, will be treated elsewhere.
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In article [1] the authors construct and classify all the hyperbolic space-forms H,, /T’
where T is a torsion-free subgroup of minimal index in the congruence two subgroup I'2
for n = 3,4. In the present paper some hyperbolic 3- and 4-manifolds are constructed
that are absent in [1].
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Abstract. In the present work for the system & = y(1+ Dz + Px?), § = —x + Az® +
3Bzy+Cy?+ Kx3+3Lz’y+ Mxzy?+ Ny 25 cases are given when the point 0(0,0) is a
center. We also consider a system of the form & = yPy(x), § = —x+ Pa(z)y* + Ps(x)y?,
for which 35 cases of a center are shown. We prove the existence of systems of the
form & = y(1+ Dz + Px?), y = —x 4+ Ay + Az? + Cy® + Kz® + 3La’y + May® + Ny?
with eight limit cycles in the neighborhood of the origin of coordinates.
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1. We will consider the system of differential equations
i =y(14+Dx+Pz?), § = —x+ Az*+3Bry+Cy*+ K2® +3Lz*y+ Mzy?+ N>, (1)

where A, B, C, D, K, L, M, N, P are real constants. The origin of coordinates of
system (1) is a critical point of the center or focus type. The center-focus problem
for (1) in the case of D = P = 0 was first investigated by I.S. Kukles in [1]. In [2,
3] for the system (1) for D = P = 0 necessary and sufficient center conditions of
algebraic nature were given. For B = D = P = 0 the solution of the center-focus
problem for (1) is in [4-7]. In the case of N = 0 the center-focus problem for (1)
was solved in [8]. In [9] all the cases of the center for system (1) for D = P =0
were found, although their necessity was not established completely. Using Cherkas
method [10; 11, p.70] the center-focus problem for D = P = 0 was solved in [12];
on the basis of investigation of focal values the solution of this problem was reduced
in [13]. In [13] the existence of cubic systems of nonlinear oscillations with seven
limit cycles was also proved. In [14] it was shown that in the case of the existence
of invariant straight line the necessary and sufficient center condition is the equality
to zero of the first five focal values. The case of reversible system of the type (1)
from the class CR1? was shown in [15].
Together with the system (1) we consider a system of the form

i =yPy(z), § = —x + Pa(z)y® + P3(z)y, (2)

4
where Py(z)=1+ 3" cpa®, Po(2)= Y apa®, Py(z)= 3" bya*, a;, bj, ¢, € C,i=0,3,
k=1 k=0 k=0
j =0,4, k =1,4. System (1) by change y = (1 — Az — K2?)Y/[1 + (B + Lz)Y] and

3 4

© Y.L. Bondar, A.P. Sadovskii, 2004

71



72 Y.L. BONDAR, A.P. SADOVSKII

change of time [3] is transformed to the system (2), where

ap=A+C, a; =3B+ AD-C)+2K + M,
as = K(2D — C)+6BL + AP — M),  a3=3L*+ K(2P — M),
c1=D— A, co=P—-—K—-AD, c3=—-DK — AP,
cs=—-KP, by=B(A+C)+ L+ N,
by = B[2B* + A(D — C) + 2K + M] + L(C + D) — 2AN, (3)
by = B[K(2D — C) + 6BL + A(P — M)] 4+ L(K + P — AC) + N(A? - 2K),
by = B[6L* + K(2P — M)] + L[K(D — C) — AM] + 2AKN,
by = L[2L? + K(P — M)] + K°N.

There exists a formal series for system (1)

o0
U=2a2>+9>+ Z i jz'y, (4)
i+j=3

for which on account of (1)

7= Zfi($2 1 y2)it,

i=1
where f;, i = 1,2,... , are the focal values of system (1). If in (4) go2; = O,
1=2,3,..., then the function U and focal values f;, i = 1,2,..., are defined in a

unique way.

Let us form the ideal [16, p. 46] J = (f1,..., fo,...), where f;, i =1,2,...,
are the focal values of system (1). Together with the ideal J we will use the ideals
Ji = (f1,-.., fi), i = 1,2,... . The first focal value of system (1) has the form:
fi = B(A+ C)+ L+ N, the second focal value fo has 38 summands, the third —
192, the 4th — 702, the 5th — 2093, the 6th — 5406, the 7th — 12538, the 8th
- 26726, the 9th — 53212. To compute the focal values we use computer package
MATHEMATICA 5.0. The program for the computing of the focal values is in the
paper [13].

The focal values f;, i = 1,2,... , are the polynomials from the ring C[q], where
g =(A, B,C,D,K, L, M, N, P), that’s why J, J; C Clg],i = 1,2,... . The
variety of ideal J is the set [16, p. 108] V(J)={qe C? : V¥ feJ f(q)=0}, which we
name a variety of the center of system (1). For all 7,7 = 1,2,..., V(J;) D V(J).
It is obvious that the critical point O(0,0) of system (1) is a center if and only if
q € V(J). Thus a solution of the center-focus problem for system (1) is reduced to
finding the variety V(J).

The next result takes place [8]:
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11
Theorem 1. The next equality is true: V(N)(\V(J) = U V(Ji), where

k=1

J1=(B,L,N), J,=(A,C,D,L,N), J3=(A+C, A— D, N,2K — M, K +
P L), Jy = (A+C, N,2K(A +2D) — AM, M — 2P, L), J; = (A + 2C, 3A +
2D, N, A2 — 2P, AB + 2L), Js = (2A +3C, N, 2A?(A+ D) + (TA+6D)K, 2(A +
D)(A+2D)+ M, (A+ D)(A+2D)+ P, AB+3L), J; = (4A+5C + D, N, 2(A +
CYA+20)—K,2(A+C)(BA+4C) — M, (A+C)(3A+4C) — P, B(A+C) + L),
Js = (5A+6C + D, N, A(A+ C)(2A + 3C) + (5A+8C)K, (A + C)(2A + 3C) +
M, 3(A+C)(24+3C) =P, B(A+C)+ L), Jo=(TA+9C +2D, N, (A+C)(A +
30)2—(2A+50)K, (A+C)(2A+3C)—2M, 3(A+C)(2A+3C)—2P, B(A+C)+L),
Jio=(N,C(A+C) - K,C(A+C)(C - D)+ (A+2C)M — CP, B(A+C) + L),
Jii = (N, A(A+ C)(24A 4+ C + D) + (5A +4C + 2D)K, (A+ C)(2A + C + D) —
M, (A+C)A+C+ D)+ P, B(A+C) + L).

. o0 .
For system (2) we can construct the series (4), for which U = Y~ g;(z% + y?)"+1,

i=1

where ¢;, © = 1,2,... , are the focal values of system (2). The first focal value
of system (2) has the form g; = by, the second - g = 3agb; + by, the third - g3 =
3by+b3(13ag+2c1) —3b1(15a8 —2apa1 —a2+5a(2)cl +apc2), g4 contains 32 summands,
gs - 98, g - 241, g7 - 540, gs - 1