
BULETINUL ACADEMIEI DE ŞTIINŢE
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On Strong Stability of Linear Poisson Actions
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Abstract. Linear Poisson actions of the group R
m are considered. Conditions on the

joint spectrum of the generators and on the centralizers assuring stability and strong
stability of the action are given. We give also some examples of Poisson actions using
CAS ”Mathematica”.
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1 Introduction

The problem of stability and strong stability of the Hamiltonian systems is an
old one and begins with the Poincare’s and Lyapunov’s classical results. Even the
linear autonomous case represents an interesting problem and a series of papers has
been devoted to these systems [1–7]. Some generalizations for dynamical systems
with manydimensional time have been given in [8–10].

In the last decade some bihamiltonian systems as models of phisical problems
appeared. In [11] a Poincare type classification of the fixed points of a bihamiltonian
system in the dimension four has been purposed. In this connection the problem
of stability and strong stability of fixed points, and more generally, of periodical
orbits of these systems, arises. This problem is the main subject of the paper. More
precisely, the linear parts of the Hamiltonian vector fields near fixed points give us
a tuple of pairwise commuting linear Hamiltonian matrices, or, in other words, a
linear Poisson action of the abelian group Rm in the vector space with a symplectic
structure. We define stability and strong stability for such actions.

It is known that the linear differential equation

ẋ = Ax, (1)

where x ∈ R2n and A ∈ sp(2n,R), i.e. A = JH, HT = H, J2 = −I, is stable if and
only if all the eigenvalues are purely imaginary and A is diagonalizable. Moreover,
if the spectrum of A is simple and purely imaginary, then (1) is strongly stable [6,7].
M.G.Krein [5] has shown that strong stability holds even in the case when multiple
eigenvalues occur, provided these eigenvalues are ”positive definite”.

Other criteria of strong stability has been stated (and proved using normal forms)
by R.Cushman and R.Kelly ([2]). A geometrical proof of this result has been given
by M.Levi ([3]).
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Theorem 1. [2, 3] An infinitesimally stable symplectic matrix A is strongly stable
if and only if its centralizer C(A) (in sp(2n,R)) consists of stable matrices.

Another criterion in the language of first integrals has been stated by M.Wójtkow-
ski ([4]). More precisely, remark that hk(x) = 1/2(JAkx, x) is a quadratic first in-
tegral (if k is even, then h = 0); here h(x) = 1/2(JAx, x) denotes the Hamiltonian
of the system (1) ((·, ·) is the standard scalar product in R2n).

Theorem 2. [4] A linear Hamiltonian system is strongly stable if and only if some
linear combination of the quadratic first integrals hk, k = 1, . . . , n, is a nondegenerate
definite quadratic form.

In what follows we generalize the above mentioned criteria to linear Poisson
actions of the abelian group Rm. New problems arise in this context. Firstly, we
have no kind of normal form of commuting m-tuples of linear operators, similar to the
Jordan normal form of a matrix, or a normal form of Hamiltonian first integrals as
those of Williamson [6]. We make use of results of L. Lerman and Ya. Umanskiy [11],
who give normal forms of bihamiltonian systems in dimension four.

Another problem, an algebraic geometric one, is the question about the structure
of the variety of commuting m-tuples of matrices in the direct product of Lie algebras
gl(n,C) or sl(2n,R). For some related results see [12].

2 Basic notions

Let V be a real 2n-dimensional vector space and let ω be a nondegenerate skew
symmetric bilinear form on V . We call the pair (V, ω) a real symplectic vector space.
The standard example of the symplectic inner product ω is ω(x, y) = [x, y] = xT Jy,
where the matrix J has the form:

J2n =

(

0 In

−In 0

)

,

with In for the identity matrix. A symplectic basis for V is a basis v1, . . . , v2n such
that ω(vi, vj) = Jij , the i, jth entry of J .

A linear map T : V → V is called symplectic if [Tx, Ty] = [x, y] for all x, y ∈ V .
The group of all real symplectic operators on (V, ω) is denoted by Sp(2n,R).

A linear operator L : V → V is called Hamiltonian if the condition

[Lx, y] + [x,Ly] = 0

holds for all x, y ∈ V . A matrix A is called Hamiltonian or infinitesimally sym-
plectic if AT J + JA = 0. The Lie algebra of all Hamiltonian matrices is denoted
by sp(2n,R).

Let T = {T1, . . . , Tm} be an m-tuple of bounded linear operators in a Hilbert
space H. One says [13] that a point Λ = {λ1, . . . , λm} ∈ Cm∗

belongs to the left
joint spectrum σl(T ) (respectively, to the right joint spectrum σr(T )) if an m-tuple
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R = {R1, . . . , Rm} of linear bounded operators in H such that
m
∑

k=1

Rk(Tk −λkI) = I

(respectively, such that
m
∑

k=1

(Tk − λkI)Rk = I) does not exist. The joint spectrum of

a polyoperator T is defined as a sum of its left and right joint spectra. It is denoted
by σ(T ).

In the case of n = 1 the above mentioned definition is equivalent to the common
definition of the operator’s spectrum. (In the case of finite dimension, the notions
of the left and the right joint spectra coincide.)

Another way to define the joint spectrum in the finite-dimensional case is based
on the known fact from linear algebra that any family of commuting complex
linear operators possesses a joint eigenvector, i.e. for any A = {A1, . . . , Am},
Ai ◦ Aj = Aj ◦ Ai, there exists a vector h 6= 0 such that Ajh = λjh for any
j = 1, . . . ,m and some {λ1, . . . , λm} ∈ Cm∗

. Then Λ = {λ1, . . . , λm} is called the
eigenfunctional corresponding to the joint eigenvector h. The set of all eigenfunc-
tionals creates the joint spectrum σ(A). Some details concerning the properties of
joint spectra can be found in [8, 13].

We mention that for m-tuples of commuting hamiltonian matrices the joint spec-
trum has symmetry properties similar to those of a single hamiltonian matrix.

Let Φ : Rm × V → V be a continuous action of the group Rm on V such that
for any fixed t ∈ Rm the transformation Φt = Φ(t, ·) is a linear symplectic trans-
formation of the space V . An action of this type is called [11] a linear Poisson action.

Consider a Hamiltonian polyoperator A = {A1, . . . , Am}. Remark that for the
linear completely integrable system

∂x

∂tj
= Ajx (x ∈ R2n, tj ∈ R, j = 1, . . . ,m) (2)

the fundamental matrix is exp(A, t) := exp(A1t1 + · · · + Amtm). The system (2) is
called stable if ∃M > 0 such that ‖exp(A, t)‖ < M for all t ∈ Rm. It is called strongly
stable if there exists ε > 0 such that for any polyoperator B = {B1, . . . , Bm} ∈
(sp(2n,R))m, Bi ◦ Bj = Bj ◦ Bi, ‖Bi − Ai‖ < ε (i, j = 1, . . . ,m), the inequality
‖exp(B, t)‖ < M holds for some M > 0 and all t ∈ Rm.

3 Results. Stability and strong stability of linear Poisson actions

Let A = {A1, . . . , Am} be a Hamiltonian polyoperator, i.e. the matrices Aj are
Hamiltonian and pairwise commuting.

Theorem 3. A linear constant completely integrable Hamiltonian system

∂x

∂tj
= Ajx (x ∈ R2n, tj ∈ R ∀j ∈ {1, . . . ,m}) (3)
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is stable if and only if for any j = 1, 2, . . . ,m the Hamiltonian system

dx

ds
= Ajx (x ∈ R2n, s ∈ R) (4)

is stable.

Proof. Assume that the systems (4) are stable for j = 1, . . . ,m. Hence, for each
fixed j there exists Mj > 0 such that ‖exp(Ajtj)‖ < Mj (tj ∈ R). Then, there is
M = M1 · · · · · Mm > 0 such that for all (t1, . . . , tm) ∈ Rm:

‖exp(A1t1 + · · · + Amtm)‖ = ‖exp(A1t1) · · · · · exp(Amtm)‖ ≤ M.

Let (3) be stable. So, there exists M > 0, for which ‖exp(A1t1 + · · · + Amtm)‖ < M
((t1, . . . , tm) ∈ Rm). In particular, the inequality holds for all (t1, 0, . . . , 0),
(0, t2, 0, . . . , 0) and so on. So, one has ‖exp(Ajtj)‖ < M for j = 1, . . . ,m. Hence all
systems (4) are stable.

The following result shows that this is not the case for strong stability.

Theorem 4. Let (2) be stable and assume that there exists a strongly stable element
exp(A, t0) for some t0 ∈ Rm. Then the system (2) is strongly stable.

Proof. Choose ε > 0 such that for each B ∈ sp(2n,R) satisfying ‖B − (A, t0)‖ <
ε, one has ‖exp Bτ‖ < ∞ (τ ∈ R). Let B = {B1, B2, . . . , Bm} be a Hamiltonian
polyoperator ε - close to A, i.e. ‖Bi − Ai‖ < ε and Bi ◦ Bj = Bj ◦ Bi (i, j =
1, 2, . . . ,m). Then ‖(B, t0) − (A, t0)‖ = ‖(B −A, t0)‖ ≤ ‖B −A‖ · ‖t0‖ < ε and
(B, t0) is strongly stable if ‖B‖ = ε

‖t0‖
. On the other hand, Bj ∈ C((B, t0)), so, by

Theorem 1 ẋ = Bjx are stable (for every j = 1, 2, . . . ), which implies that B is also
stable.

Remark 1. It is worth noting that at least formally, strong stability of the poly-
operator is weaker than the condition of existence of a strongly stable element: a
neighbourhood of a point in sl(2n,R) is larger than a neighbourhood of a polyope-
rator in the subvariety of commuting m-tuples from sl(2n,R)m. It is a problem
whether this subvariety is irreducible or not.

The following result reduces the problem of strong stability of a polyoperator on
the whole phase space to the problem of such stability on the invariant symplectic
subspaces. The main idea of the proof uses the fact that the centralizer of a block-
diagonal matrix with spectrally separated blocks coincides with the direct sum of
centralizers of the blocks.

Theorem 5. Let A = {A1, . . . , Am} be a Hamiltonian polyoperator with multiple
eigenfunctionals

Λ = {iλ
, . . . , iλ


m},−Λ, . . . , Λk = {iλk

 , . . . , iλ
k
m},−Λk,

m1, . . . ,mk denoting corresponding multiplicities and Vr - the subspace of (R2n)m

corresponding to the eigenfunctionals Λr and −Λr with multiplicity mr. Besides, let
A/Vr stand for the polyoperator A restricted to this subspace. Then, A is strongly
stable if and only if A/Vr is strongly stable for all r.
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Proof. Assume that A is strongly stable, i.e. there is ε > 0 such that for any
polyoperator B = {B1, . . . , Bm} such that ‖Bj − Aj‖ < ε the inequality:

‖exp(B1t1 + · · · + Bmtm)‖ < M

holds for some M > 0 and for all (t1, . . . , tm) ∈ Rm. We shall show that A/Vr are
strongly stable for r = 1, . . . , k.

Recall that a subspace U of a symplectic space (V, ω) is called [1] symplectic if ω
restricted to this subspace is nondegenerate. (Obviously, such U is of even dimension,
hence (U,ω) is a symplectic space.) Choose a polyoperator Br = {Br

1 , . . . , B
r
m} on

the symplectic subspace Vr such that ‖A/Vr −Br‖ ≤ ε and consider a polyoperator
B = ⊕s 6=rA/Vs ⊕ Br on R2n (here ⊕ stands for the direct sum of operators). Then
‖B − A‖ = ‖Br −A/Vr‖ ≤ ε, since B/Vs = A/Vs for s 6= r.
Hence one has: exp(B, t) = ⊕s 6=r exp(A/Vs, t) ⊕ exp(Br, t) and

M ≥ ‖exp(B, t)‖ =
∏

s 6=r

‖exp(A/Vs, t)‖ ‖exp(Br, t)‖ . (5)

Using the Banach-Steinhaus Theorem one can easily prove that

p = inf
t∈Rm

∏

s 6=r

‖exp(A/Vs, t)‖ > 0.

From (5) we obtain

‖exp(Br, t)‖ ≤ M

p
.

So, A/Vr is strongly stable.
Assume now that A/Vs are strongly stable for s = 1, . . . , k and suppose that A

is not strongly stable. That means that there exists a sequence {Bk}∞k=1 → B of
nonstable polyoperators. Due to the upper semicontinuity of the joint spectrum,

{Bk} have a spectral decomposition close to Vr and
∥

∥

∥Br/U
(k)
r −A/Vr

∥

∥

∥ → 0 as

k → ∞. The latest implies that there is r such that A/Vr is not strongly stable.
This contradiction proves the theorem.

Following [5, 7], we call an eigenfunctional Λ ∈ Cm∗ definite if there exists an
element t0 ∈ Rm such that exp(Λ, t0) is a positive definite eigenvalue for the sym-
plectic operator exp(A, t0).

Remark 2. Mention that a simple purely imaginary eigenfunctional is definite and
that, in this case, the system (2) is strongly stable.

Theorem 6. If the joint spectrum of the polyoperator A is purely imaginary and
definite, then the differential system (2) is strongly stable.

Proof. Due to Theorem 5, it is enough to consider the case when the polyoperator
A has a single-point joint spectrum

Λ = {iω1, iω2, . . . , iωn,−iω1,−iω2, . . . ,−iωn}
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of some multiplicity s.
Let Λ be definite and let t0 ∈ Rm be such that exp(Λ, t0) is definite. Then the

element (A, t0) ∈ sp(2n,R) is strongly stable because it has a positive definite first
integral. From Theorem 4 it follows that the system (2) is strongly stable.

In what follows we give some generalizations of the strong stability criteria of
Cushman-Kelly [2], M. Levi [3] and M. Wójtkowski [4].

Recall that for a given A ∈ sp(2n,R), C(A) denotes the center of A in sp(2n,R),
i.e. C(A) = {X ∈ sp(2n,R) : AX = XA}.

Theorem 7. If
⋃m

j=1 C(Aj) consists of stable linear Hamiltonian operators, then
(2) is strongly stable.

Proof. Let C(A) contain only stable operators and let {B1, . . . , Bm} be close
enough to A = {A1, . . . , Am}. By [3], each Bj can be written under the form
Bj = exp(−Tj)◦(Aj +Dj)◦exp(Tj) for some Dj ∈ C(Aj) and Tj ∈ sp(2n,R). Since
Aj are stable and Dj ∈ C(Aj), then Dj are stable, as well as Aj + Dj, and hence
∃M > 0 such that ‖exp(Bτ)‖ ≤ M for all τ ∈ R.

If, in addition, Bi ◦Bj = Bj ◦Bi, then ‖exp(B1t1 + B2t2 + · · · + Bmtm)‖ < Mm

for all (t1, t2, . . . , tm) ∈ Rm.

Theorem 8. If the system (2) is strongly stable, then
⋂m

j=1 C(Aj) consists of stable
operators.

Proof. Let A = {A1, A2, . . . , Am} be strongly stable and let B1 ∈ ⋂m
j=1 C(Aj).

For B := {B1, 0, . . . , 0} ∈ sp(2n,R)m take ε > 0 small enough to assure stabil-
ity of A + εB. So we have: ‖exp(A + εB, t)‖ < M , ‖exp(−A, t)‖ < M for some
M > 0 and for all t ∈ Rm. Since B1 ∈ ⋂m

j=1 C(Aj), one has: ‖exp(εB1t1)‖ =

‖exp(−A, t) exp(A + εB, t)‖ ≤ M2 (t ∈ Rm).

Remark 3. So, if
⋃m

j=1 C(Aj) consists of stable linear Hamiltonian operators, then
⋂m

j=1 C(Aj) consists also of stable operators. A natural question if the inverse im-
plication is true arises. In what follows we give a counterexample to this hypothesis.

Proposition 1. There exist polyoperators A such that
⋂m

j=1 C(Aj) consists of stable
operators, but

⋃m
j=1 C(Aj) cointains unstable operators.

Proof. The authors of [11] give (see Appendix A) the list of normal forms of all
possible quadratic Hamilton functions in the case of two degrees of freedom and also
of the quadratic functions that are additional integrals of the corresponding linear
Hamiltonian system. There are 15 different possible cases. We use this classification
to give the counterexample we need.

Consider the case 3 which is given through the following conditions:
the eigenvalues are (±iω1,±iω2), ω1 6= ω2, ω1, ω2 ∈ R, ω1, ω2 6= 0,

H =
ω1

2
(p2

1 + q2
1) +

ω2

2
(p2

2 + q2
2),

K =
ν1

2
(p2

1 + q2
1) +

ν2

2
(p2

2 + q2
2).
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The condition for the algebra to be two-dimensional is ω1ν2 −ω2ν1 6= 0. In this case
for fixed ν1 and ν2 the centralizer C coincides with the algebra generated by the
pair H, K. Put ω1 = 2, ω2 = 2, ν1 = 2, ν2 = 0. Then we obtain the particular case
where H = p2

1 + p2
2 + q2

1 + q2
2, K = p2

1 + q2
1 and the condition ω1ν2 − ω2ν1 6= 0

is satisfied. It is obvious that for α1 = 1 and α2 = 1 the linear combination
α1H + α2K = 2p2

1 + p2
2 + 2q2

1 + q2
2 is a positively definite quadratic form. So,

the polyoperator {A1, A2} is strongly stable (see [14]). In this case the matrices
corresponding to the integrals H and K have the form:

A1 =









0 0 −2 0
0 0 0 −2
2 0 0 0
0 2 0 0









, A2 =









0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0









.

The following computations have been done with the help of CAS ”Mathematica”.
The centralizers of the matrices A1 and A2 are:

C(A1) = {C1 =









0 −k3 −n1 −n2

k3 0 −n2 −n3

n1 n2 0 −k3

n2 n3 k3 0









: k3, n1, n2, n3 ∈ R},

C(A2) = {C2 =









0 0 −t1 0
0 r4 0 s3

t1 0 0 0
0 t3 0 −r4









: r4, s3, t1, t3 ∈ R}.

So,

C(A1) ∩ C(A2) = {C3 =









0 0 −t1 0
0 0 0 s3

t1 0 0 0
0 −s3 0 0









: r4, s3, t1, t3 ∈ R},

JordanForm(C3) =









−is3 0 0 0
0 is3 0 0
0 0 −it1 0
0 0 0 it1









.

Hence, C(A1) ∩ C(A2) consists of stable operators. Remark that some matrices in
C(A2) possess real eigenvalues. Let, for example, t1 = 3, r4 = 2

√
2, s3 = 4 and

t3 = 2. Then we get C2 ∈ C(A2) with the eigenvalues ±4, ±3i. So, C(A1) ∪ C(A2)
cointains at least one unstable operator.

Remark 4. The main results have been announced in [15].
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[4] Wójtkowski, M. P., A remark on strong stability of linear Hamiltonian systems. J. Diff. Eq.,
81(2), 1989, 313–316.

[5] Крейн, М. Г., Обобщение некоторых исследований А.М. Ляпунова о линейных

дифференциальных уравнениях с периодическими коэффициентами. ДАН СССР, 73, №3,

1950, 445–448.

[6] Арнольд, В. И., Математические методы классической механики. "Наука М., 1974.

[7] Arnold, V. I., Avez, A., Les problemes ergodiques de la mechanique classique. Paris, 1967.

[8] Гайшун, И. В., Вполне разрешимые многомерные дифференциальные уравнения. Минск,

1983.

[9] Shcherbacov, B. A., The principle of composition of multidimensional dynamical systems. Bul.
AS RM, no 1(14), 1994, 55–59.

[10] Shcherbacov, B. A., Multidimensional dynamical systems. Diff. Eq. 30, no.5, 1994, 679–686.

[11] Lerman, L. M., Umanskiy, Ya. L., Four-dimensional integrable Hamiltonian systems with sim-
ple singular points (Topological aspects). Translations of Mathematical Monographs, Vol.176,
American Mathematical Society, Providence, 1998.

[12] Guralnick, R. M., Sethuraman, B. A., Commuting pairs and triples of matrices and related
varieties. Linear Algebra Appl., 310 (2000), 139–148.
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[15] Glavan, V., Rzeszótko, Z., On strongly stable linear Poisson actions. Третьи научные чтения

по обыкновенным дифференциальным уравнениям, Минск, Беларүсь, 2001.

V.Glavan
Faculty of Mathematics and Informatics,
State University of Moldova,
MD–2009 Chişinău, Moldova
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Algebraic equations with invariant coefficients in

qualitative study of the polynomial homogeneous

differential systems∗

Valeriu Baltag

Abstract. For planar polynomial homogeneous real vector field X = (P, Q) with
deg(P ) = deg(Q) = n some algebraic equations of degree n+1 with GL(2, R)-invariant
coefficients are constructed. A recurrent method for the construction of these coeffi-
cients is given. In the generic case each real or imaginary solution si (i = 1, 2, . . . , n+1)
of the main equation is a value of the derivative of the slope function, calculated for
the corresponding invariant line. Other constructed equations have, respectively, the
solutions 1/si, 1− si, si/(si − 1), (si − 1)/si, 1/(1 − si). The equation with the solu-
tions (n + 1)si − 1 is called residual equation. If X has real invariant lines, the values
and signs of solutions of constructed equations determine the behavior of the orbits
in a neighbourhood at infinity. If X has not real invariant lines, it is shown that the
necessary and sufficient conditions for the center existence can be expressed through
the coefficients of residual equation.

Mathematics subject classification: 34C05, 58F14.
Keywords and phrases: algebraic equation, invariant, differential homogeneous
system, qualitative study, center problem.

1 The homogeneous differential system

Let n ≥ 1 be a positive integer, x, y : R → R be some unknown functions of
real variable t such that x = x(t), y = y(t), (∀) t ∈ R, ai,j, bi,j be real numbers
for all positive integers i and j with i + j = n, Ckn =

(

n
k

)

be the binomial
coefficients for every positive integer k, 0 ≤ k ≤ n.

Let us consider the polynomial homogeneous differential system

dx

dt
=

n
∑

k=0

Cknan−k,kx
n−kyk = Pn(x, y),

dy

dt
=

n
∑

k=0

Cknbn−k,kx
n−kyk = Qn(x, y). (1)

Let GL(2,R) be the group of non-degenerate linear homogeneous transforma-
tions. It is known that the homogeneous polynomials Pn(x, y) and Qn(x, y) are
relatively prime iff the resultant µn of these polynomials is not equal to zero.

c©2003 V.Baltag
∗This work has been supported by the Grant no. 01.005C (6.03.2001) of the Supreme Council

on Science and Technological Development of the Republic of Moldova
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Remark 1. The resultant µn is a GL-invariant of the degree 2n with respect to the
system (1) coefficients and with the weight equal to n2 − n.

Remark 2. The homogeneous polynomial Fn+1(x, y) = yPn(x, y) − xQn(x, y) is a
GL-comitant of the degree n+1 with respect to variables x and y, of the degree 1 with
respect to the system (1) coefficients and with the weight equal to −1. The nontrivial
solutions of the equation Fn+1(x, y) = 0 determine the system (1) invariant straight
lines (real or imaginary).

We suppose that

µn = Res (Pn, Qn) 6= 0, Fn+1(x, y) = yPn(x, y) − xQn(x, y) 6≡ 0 (2)

and denote the following polynomials and functions:

Gn+1(x, y) = xPn(x, y) + yQn(x, y), Tn−1(x, y) =
∂Pn(x, y)

∂x
+
∂Qn(x, y)

∂y
,

ϕ : C \Eϕ → C, ϕ(1, k) =
Qn(1, k)

Pn(1, k)
, ψ : C \ Eψ → C, ψ(s, 1) =

Pn(s, 1)

Qn(s, 1)
, (3)

where Eϕ = {k | k ∈ C, Pn(1, k) = 0} and Eψ = {s | s ∈ C, Qn(s, 1) = 0}. The
functions ϕ and ψ are called the slope functions for the system (1).

Remark 3. The homogeneous polynomial Tn−1(x, y) is a GL-comitant of the degree
n− 1 with respect to variables x and y, of the degree 1 with respect to the system (1)
coefficients and with the weight equal to 0.

Because the GL-comitant Fn+1(x, y) is not equal to zero identically, then there
exist constants ui ∈ C and vi ∈ C such that Fn+1(x, y) has the factorization

Fn+1(x, y) =
n+1
∏

i=1

(uix+ viy), u2
i + v2

i 6= 0, (∀) i = 1, 2, . . . , n, n+ 1. (4)

For vi 6= 0 (ui 6= 0) we denote by ki = −ui/vi (si = −vi/ui) the roots of the
equation Fn+1(1, k) = 0 (Fn+1(s, 1) = 0).

The discriminant Dn+1 of the homogeneous equation Fn+1(x, y) = 0 has the
form

Dn+1 =
∏

1≤i<j≤n+1

d2
i,j, di,j = uivj − ujvi. (5)

For j 6= k (k = 1, 2, . . . , n, n+ 1) we denote

fk = (−1)n
n+1
∏

j=1

dk,j. (6)

From relations (5) and (6) follows



ALGEBRAIC EQUATIONS WITH INVARIANT COEFFICIENTS 15

Proposition 1. The discriminant Dn+1 has the factorization

n+1
∏

k=1

fk = (−1)
n(n+1)

2 Dn+1. (7)

Remark 4. Each ui and vi have the same degree 1/(n + 1) and the weight equal,
respectively, to −1/(n+ 1) and n/(n+ 1). Each dij has the degree 2/(n+ 1) and the
weight equal to (n − 1)/(n + 1), each fi has the degree 2n/(n + 1) and the weight
equal to n(n− 1)/(n+ 1). The discriminant Dn+1 is a GL-invariant of the degree
2n with respect to the system (1) coefficients and with the weight equal to n2 − n.

Let Xi = uix+ viy be the factor i (i = 1, 2, . . . , n+ 1) in the factorization (4)
and Xi = 0 be the equation of the corresponding invariant line.

Let p = (p1, p2, . . . , pn, pn+1) and q = (q1, q2, . . . , qn, qn+1) be two symbolic
(n+ 1) - tuples of letters. Let us consider the symbolic differential operator

Ω1
pq = p1

∂

∂q1
+ p2

∂

∂q2
+ . . .+ pn

∂

∂qn
+ pn+1

∂

∂qn+1
, (8)

its powers Ωm = Ωm−1(Ω1) for every positive integer m ≥ 2 and (n+ 1)- tuples

u = (u1, u2, . . . , un, un+1), v = (v1, v2, . . . , vn, vn+1),

f = (f1, f2, . . . , fn, fn+1), g = (g1, g2, . . . , gn, gn+1). (9)

By using the differential operator (8) for (n+ 1)- tuples u and v from (9) by condi-
tions (2) and (4) we obtain the following expressions for the system (1) coefficients:

bn,0 = −u1u2 . . . unun+1, a0,n = v1v2 . . . vnvn+1,

Ckn an−k,k = Ck+1
n bn−k−1,k+1 +

1

(k + 1)!
Ωk+1
vu (−bn,0), 0 ≤ k ≤ n− 1. (10)

Takes place

Lemma 1. For every i = 1, 2, . . . , n, n + 1 the relations

Fn+1(vi,−ui) = 0, Qn(vi,−ui) = −uigi, Pn(vi,−ui) = vigi,

∂Fn+1

∂y
(vi,−ui) = vifi,

∂Fn+1

∂x
(vi,−ui) = uifi,

Gn+1(vi,−ui) = (u2
i + v2

i )gi, Tn−1(vi,−ui) = (n+ 1)gi − fi,

µn = g1g2 · . . . · gngn+1, 1 − ϕ′(1, ki) = 1 − ψ′(si, 1) =
fi
gi
,

1

n!
Ωn
fg(g1g2 · . . . · gngn+1) = f1f2 · . . . · fnfn+1 (11)

hold, where

gi =

n
∑

k=1

(−1)k+1Ckn bn−k,kv
n−k
i uk−1

i +
∂(−bn,0)
∂ui

vni . (12)
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Proof. The first two equalities from (11) are evident. From the identity

Fn+1(vi,−ui) = −uiPn(vi,−ui) − viQn(vi,−ui) = 0

we obtain Pn(vi,−ui) = vigi. From the relations

∂Fn+1(x, y)

∂x
=

n+1
∑

i=1

ui
∂Fn+1

∂Xi

,
∂Fn+1(x, y)

∂y
=

n+1
∑

i+1

vi
∂Fn+1

∂Xi

and (6) we obtain the identities

∂Fn+1

∂y
(vi,−ui) = vifi,

∂Fn+1

∂x
(vi,−ui) = uifi.

The relation for polynomial Gn+1(x, y) results from the second and third equalities
from (11). For polynomial Tn−1(x, y) the following representation

(x2 + y2)Tn−1(x, y) = (n+ 1)Gn+1 − x
∂Fn+1

∂y
+ y

∂Fn+1

∂x

holds. From the last identity for x = vi, y = −ui we obtain the required relation
Tn−1(vi,−ui) = (n+ 1)gi − fi.

From Remark 1, the obtained relations (11) and u2
i + v2

i 6= 0 it follows that each
equality gi = 0 implies the relation µn = 0. From Remark 4, conditions (10) and
(12) it results that each addendum from gi has the weight and the degree equal,
respectively, to n(n− 1)/(n+ 1) and 2n/(n+ 1). So, the product g1g2 · . . . · gngn+1

has also the degree 2n with respect to the coefficients of the polynomials Pn and
Qn and the weight equal to n2 − n. Thus, µn = g1g2 · . . . · gngn+1.

Let Dn+1 6= 0. Because deg(Fn+1) = deg(Tn−1) + 2, then for vi 6= 0 or ui 6= 0 we
obtain, respectively, the equalities:

n+1
∑

i=1

Tn−1(1, ki)

(Fn+1)′k(1, ki)
= 0,

n+1
∑

i=1

Tn−1(si, 1)

(Fn+1)′s(si, 1)
= 0.

We have

Tn−1(1, ki)

(Fn+1)
′
k(1, ki)

=
Tn−1(1, ki)

vi(Fn+1)
′
Xi

(1, ki)
=

Tn−1(1,−ui/vi)
vi(Fn+1)

′
Xi

(1,−ui/vi)
=

Tn−1(vi,−ui)
fi

=
(n+ 1)gi − fi

fi
. (13)

Finally we obtain

n+1
∑

i=1

(n+ 1)gi − fi
fi

= 0 ⇔
n+1
∑

i=1

gi
fi

= 1.

The last equality gives us the last relation from (11). If Dn+1 = 0, then for some i
and j (i 6= j) we have fi = fj = 0 and the required equality is trivial.
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From the obtained relations it follows that if µn 6= 0, then

P 2
n(vi,−ui) +Q2

n(vi,−ui) = (u2
i + v2

i )g
2
i 6= 0.

For derivatives of the defined slope functions we obtain:
If vi 6= 0, then Fn+1(1, ki) = 0 and Pn(1, ki) 6= 0. We calculate the derivative

of the function k − ϕ(1, k) and determine the value of this derivative for k = ki :

1 − ϕ′(1, k) =

[

k − Qn(1, k)

Pn(1, k)

]′

=

[

kPn(1, k) −Qn(1, k)

Pn(1, k)

]′

=

[

Fn+1(1, k)

Pn(1, k)

]′

=
F ′
n+1(1, k)Pn(1, k) − Fn+1(1, k)P

′
n(1, k)

P 2
n(1, k)

,

1 − ϕ′(1, ki) =
F ′
n+1(1, ki)

Pn(1, ki)
=

(

∂Fn+1

∂y
(vi,−ui)/Pn(vi,−ui)

)

=
vifi
vigi

=
fi
gi
.

If ui 6= 0, then Fn+1(si, 1) = 0 and Qn(si, 1) 6= 0. We calculate the derivative of
the function s− ψ(s, 1) and determine the value of this derivative for s = si :

1 − ψ′(s, 1) =

[

s− Pn(s, 1)

Qn(s, 1)

]′

=

[

sQn(s, 1) − Pn(s, 1)

Qn(s, 1)

]′

=

−
[

Fn+1(s, 1)

Qn(s, 1)

]′

= −F
′
n+1(s, 1)Qn(s, 1) − Fn+1(s, 1)Q

′
n(s, 1)

Q2
n(s, 1)

,

1 − ψ′(si, 1) = −F
′
n+1(si, 1)

Qn(si, 1)
= −

(

∂Fn+1

∂x
(vi,−ui)/Qn(vi,−ui)

)

=
uifi
uigi

=
fi
gi
.

So, it follows that the values of derivatives of the functions k−ϕ(1, k) and s−ψ(s, 1)
for the invariant line Xi = 0 are the same. Lemma 1 is proved.

Remark 5. Each fi and gi have the same weight and the degree equal, respectively,
to n(n− 1)/(n + 1) and 2n/(n+ 1).

From Lemma 1 and (10) we obtain the equality

∂Fn+1

∂x
(vi,−ui) = −(n+ 1)bn,0v

n
i +

n
∑

k=1

(−1)k

k!
(n + 1 − k)Ωk

vu(−bn,0)vn−ki uk. (14)

2 Construction of algebraic equations with invariant coefficients

Methods of studying the behavior of the integral curves of the system (1) have
been developed by many authors (see [1, 2, 5–9, 11, 14, 21, 23–26, 30, 31, 36]). Using
Forster’s method (in polar coordinates), Shilov’s geometrical method or local charts
method (traditional method) the systems (1) with n = 1, 2, 3 were investigated
(see [10,12,19,22,26,35,40,41,44,45]). A classification of the system (1) with n = 2
by means of non-associative algebras was given in [16]. The algebraic and topological



18 VALERIU BALTAG

classifications of the system (1) with n = 2 by means of quadratic transformations
and invariants were established in [32] and [37]. The Poincaré index method for
topological classification of system (1) was applied (see [17,18]).

The GL-comitants of the system (1) with n = 1, 2, 3 and the polynomial
basis of these comitants have been used for algebraic, topological and geometrical
classifications (see [20,28,29,33,34,38, 39, 43, 46]).

The problem under consideration is an important step in the qualitative inves-
tigation of behavior of integral curves: at infinity for planar polynomial differential
systems with maximal degree equal to n; near critical point (0, 0) for planar poly-
nomial differential systems with minimal degree equal to n. Because of this, much
of the research in this area is dedicated to the investigation of the problem, usually
in local charts. The simplest (but nontrivial) way of investigation is to find the
algebraic classification of binary form Fn+1(x, y) in coefficients terms (or invariant
terms) and to use the results for classification of the system (1) (see [38],[44]).

Our first goal is to show that it is possible to express the conditions which delimit
classes with different distributions of infinite singular points through affine invariants
and comitants without knowing the basis of the affine invariants and comitants of
the system (1). The second goal is to construct such invariants and comitants and
to determine the geometrical significance of these objects.

In this work we develope the method of construction and show that the neces-
sary and sufficient conditions for the center existence can be expressed through the
coefficients of the residual equation. The contribution idea is due to P.Curtz paper’s
(see [42]) and Hilbert’s symbolic operators (see [47]).

We verify our results by using Shilov’s, Forster’s and local charts methods for
the system (1) with n = 1, 2, 3. The constructed invariants determine the values
and the signs of the solutions and solve the problems of algebraical, topological and
geometrical classifications of given systems.

For every i = 1, 2, . . . , n+ 1 we denote

ξi =
fi
gi

= 1 − ϕ′(1, ki) = 1 − ψ′(si, 1) (15)

such that every ξi is a root of the algebraic equation

(g1ξ − f1)(g2ξ − f2) · . . . · (gn+1ξ − fn+1) = 0.

By using the differential operator (8) for (n + 1)-tuples f and g from (9) the last
equation can be written in the form

t0 ξ
n+1 − t1 ξ

n + t2 ξ
n−1 − . . .+ (−1)n tn ξ + (−1)n+1 tn = 0, (16)

where

t0 = µn = g1g2 · . . . · gn+1, ti =
1

i!
Ωi
fg (µn) for (∀) i = 1, 2, . . . , n,

tn = tn+1 = (−1)n(n+1)/2 Dn+1 = f1f2 · . . . · fn+1. (17)

The equation (16) will be called the main equation of the system (1).
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Remark 6. For given solution ξi of the main equation the equations with solutions

1

ξi
, 1 − ξi,

ξi
ξi − 1

,
ξi − 1

ξi
,

1

1 − ξi
(18)

can be constructed.

For example, if we put in (16) ξ = 1−η, then obtain the equation with solutions
ηi = ϕ′(1, ki) = ψ′(si, 1) :

m0 η
n+1 −m1 η

n +m2 η
n−1 − . . .+ (−1)n mn η + (−1)n+1 mn+1 = 0 (19)

such that for every i = 1, 2, . . . , n we have

m0 = t0 = µn, mi =

i
∑

r=0

(−1)r Cn+1−i
n+1−r tr, mn+1 =

n−1
∑

r=0

(−1)r tr. (20)

Let us consider the following differential operator

Θ1 = Ω1
uu + Ω1

vv, (21)

where u and v are from (9). It is very easy to verify that Θ1(Fn+1) = (n+1)Fn+1.
So, the differential operator (21) does not change the invariant straight lines of the
system (1).

From condition (2) and Euler’s formulae we have two representations for the
comitant Fn+1(x, y) :

Fn+1(x, y) = yPn(x, y) − xQn(x, y),

(n+ 1)Fn+1(x, y) = y
∂Fn+1(x, y)

∂y
+ x

∂Fn+1(x, y)

∂x
. (22)

It results from (22) that the differential operator (21) satisfies the relations

Θ1(Pn(x, y)) =
∂Fn+1(x, y)

∂y
, Θ1(Qn(x, y)) = −∂Fn+1(x, y)

∂x
.

From the last equalities we obtain the following coefficients relations:

Θ1(Cknan−k,k) = (k + 1)(Cknan−k,k − Ck+1
n bn−k−1,k+1),

k = 0, 1, 2, . . . , n− 2, n − 1, Θ1(a0,n) = (n+ 1)a0,n,

Θ1(Cknbn−k,k) = (n+ 1 − k)(Cknbn−k,k − Ck−1
n an+1−k,k−1),

k = 1, 2, . . . , n− 1, n, Θ1(bn,0) = (n+ 1)bn+1.

The equalities (k + 1)Ck+1
n = (n − k)Ckn and (n + 1 − k)Ck−1

n = kCkn imply the
following rules of derivation for system’s (1) coefficients:

Θ1(an−k,k) = (k + 1)an−k,k − (n− k)bn−k−1,k+1,
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k = 0, 1, 2, . . . , n− 2, n − 1, Θ1(a0,n) = (n+ 1)a0,n,

Θ1(bn−k,k) = (n+ 1 − k)bn−k,k − kan+1−k,k−1,

k = 1, 2, . . . , n− 1, n, Θ1(bn,0) = (n+ 1)bn+1.

Finally we obtain the expression of the differential operator (21) in system’s (1)
coefficients:

Θ1 =
n−1
∑

k=0

[(k + 1)an−k,k − (n− k)bn−k−1,k+1]
∂

∂an−k,k
+ (n+ 1)a0,n

∂

∂a0,n
+

(n+ 1)bn,0
∂

∂bn,0
+

n
∑

k=1

[(n+ 1 − k)bn−k,k − kan+1−k,k−1]
∂

∂bn−k,k
. (23)

Takes place

Theorem 1. The coefficients tk (k = 0, 1, 2, . . . , n) of the equation (16) are GL-
invariants of the degree 2n with respect to the system (1) coefficients and with the
weight equal to n2 − n such that

t0 = µn, ktk = Θ1(tk−1) − (n+ 1)(n + k − 2)tk−1. (24)

Proof. From Remark 5 and (17) it follows that each coefficient tk, k =
0, 1, 2, . . . , n, is a homogeneous and isobaric polynomial of variables fi and gi
(which are called irrational invariants). According to the results of invariant theory
(see [3],[4]) every isobaric and homogeneous polynomial of the invariants fi and
gi will be an invariant of the binary form Fn+1(x, y). Because Fn+1(x, y) is a
comitant of the system (1) it results that each coefficient tk is a GL-invariant of the
system (1).

We express the operator (21) in the terms of fi and gi. Because Θ1(ui) = ui
and Θ1(vi) = vi we easily obtain that Θ1(di,j) = 2di,j and Θ1(fi) = 2nfi. Now
we shall prove that Θ1(gi) = (n− 1)gi + fi.

Let ui 6= 0. From conditions (10), (12) and (14) we obtain

Θ(gi) =

n
∑

k=1

(−1)k+1Θ(Ckn bn−k,kv
n−k
i uk−1

i ) + Θ(u1 . . . ui−1ui+1 . . . un+1v
n
i ) =

n
∑

k=1

(−1)k+1[(n + 1 − k)(Cknbn−k,k − Ck−1
n an+1−k,k−1)v

n−k
i uk−1

i +

+(n− 1)

n
∑

k=1

(−1)k+1Ckn bn−k,kv
n−k
i uk−1

i + 2nu1 . . . ui−1ui+1 . . . un+1v
n
i =

(n−1)gi+(n+1)u1 . . . ui−1ui+1 . . . un+1v
n
i +

n
∑

k=1

(−1)k

k!
(n+1−k)Ωk

vu(bn,0)v
n−k
i uk =
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(n− 1)gi +
1

ui
· ∂Fn+1

∂x
(vi,−ui) = (n − 1)gi + fi.

If ui = 0, then vi 6= 0 and from (12) gi = nbn−1,1v
n−1
i + u1 . . . ui−1ui+1 . . . un+1v

n
i .

From (6) it results that di,j = −viuj , fi = u1 . . . ui−1ui+1 . . . un+1v
n
i and

Ω1
vu(u1u2 . . . un+1) = u1 . . . ui−1ui+1 . . . un+1vi. So, for Θ1(gi) we obtain

Θ1(gi) = n(C1
nbn−1,1−an,0)vn−1

i +(n−1)C1
nbn−1,1v

n−1
i +2nu1 . . . ui−1ui+1 . . . un+1v

n
i =

(n−1)gi−nu1 . . . ui−1ui+1 . . . un+1v
n
i +(n+1)u1 . . . ui−1ui+1 . . . un+1v

n
i = (n−1)gi+fi.

So, the formula for Θ1(gi) is proved. Thus, the operator (21) can be written

Θ1 =

n+1
∑

i=1

{

[(n − 1)gi + fi]
∂

∂gi
+ 2nfi

∂

∂fi

}

. (25)

We show the recurrence (24) by induction. Let t0 = µn = g1g2 · . . . · gngn+1. By
using the operator (25) we have

Θ1(t0) = [(n−1)g1 +f1]g2 · . . . ·gk · . . . ·gn+1 +g1[(n−1)g2 +f2]g3 · . . . ·gk · . . . ·gn+1+

. . . + g1g2 · . . . · gk−1[(n− 1)gk + fk]gk+1 · . . . · gn+1+

g1g2 · . . . · gk · . . . · gn[(n− 1)gn+1 + fn+1] = (n− 1)(n + 1)t0 + t1.

So, t1 = Θ1(t0)−(n−1)(n+1)t0 and the recurrence (24) is true for k = 1. Now we
suppose that the recurrence (24) is true for every positive integer k = 1, 2, . . . ,m.
We shall prove the relation

(m+ 1)tm+1 = Θ1(tm) − (n+ 1)(n +m− 1)tm. (26)

Every term of tm is the product of m different factors from f and n+ 1 −m
different factors from g such that the indexes of all factors of this term form a
permutation of {1, 2, . . . , n+1}, for example P = f1f2 · . . . ·fmgm+1gm+2 · . . . ·gn+1.
The action of the operator Θ1 on the selected term generates 2nm+ (n − 1)(n +
1−m) = (n+ 1)(n+m− 1) terms equal with P and n−m different terms from
tm+1. So, among all the generated terms of tm there exist exactly m+ 1 equal
terms from tm+1. We obtain the equality (26). By the mathematical induction the
recurrence (24) is true for all k = 1, 2, 3, . . . , n. Theorem 1 is proved.

Proposition 2. If Dn+1 6= 0, then the values θi = gi/fi are the roots of the
equation

tnθ
n+1 − tn θ

n + tn−1 θ
n−1 − . . .+ (−1)n t1 θ + (−1)n+1 t0 = 0. (27)

From Viette relations for the equation (27) and Lemma 1 results

Proposition 3. If Dn+1 6= 0, then the roots θi of the equation (27) satisfy the
equality

n+1
∑

k=1

θk = 1. (28)
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Lemma 2. If Dn+1 6= 0, then the system (1) has the first integral of the form

(u1x+ v1y)
θ1(u2x+ v2y)

θ2 · . . . · (unx+ vny)
θn(un+1x+ vn+1y)

θn+1 = c, (29)

where θi (i = 1, 2, . . . , n+ 1) are the roots of the equation (27).

Proof. Let Dn+1 6= 0. After substitution y = xz the corresponding to the
system (1) differential equation has the form

−dx
x

=
Pn(1, z)dz

Fn+1(1, z)
.

For polynomial Pn(x, y) Lagrange’s interpolation formulae is applicable :

Pn(x, y) = Pn(v1,−u1)
(u2x+ v2y)(u3x+ v3y) . . . (un+1x+ vn+1y)

(−d12)(−d13) . . . (−d1,n+1)

+Pn(v2,−u2)
(u1x+ v1y)(u3x+ v3y) . . . (un+1x+ vn+1y)

(+d12)(−d23) . . . (−d2,n+1)
+

. . .+ Pn(vn,−un)
(u1x+ v1y) . . . (un−1x+ vn−1y)(un+1x+ vn+1y)

(d1,n)(d2,n) . . . (dn−1,n)(−dn,n+1)

+Pn(vn+1,−un+1)
(u1x+ v1y) . . . (un−1x+ vn−1y)(unx+ vny)

(d1,n+1)(d2,n+1) . . . (dn−1,n+1)(dn,n+1)
.

From the last relation the polynomial Pn(1, z) has the following representation

Pn(1, z) =
g1
f1

∂Fn+1

∂X1
+
g2
f2

∂Fn+1

∂X2
+ . . . +

gn
fn

∂Fn+1

∂Xn

+
gn+1

fn+1

∂Fn+1

∂Xn+1
.

Using the equality ∂Xi(1, z)/∂z = vi and the factorization (4) of the polynomial
Fn+1(1, z) we obtain the following differential equation

−dx
x

=
[g1
f1

v1
u1 + v1z

+
g2
f2

v2
u2 + v2z

+ . . .+
gn
fn

vn
un + vnz

+
gn+1

fn+1

vn+1

un+1 + vn+1z

]

dz.

After integration by using Proposition 3 we obtain the first integral (29). Lemma 2
is proved.

3 The center problem for the system (1)

Let n = 2m+ 1, m ∈ N and suppose that ui ∈ C \R or vi ∈ C \R for every
i = 1, 2, . . . , 2m+ 1, 2m+ 2. From [6] the singular point (0, 0) of the system (1) is
a center if and only if the following condition

∫ 2π

0

G2m+2(cosα, sinα)

F2m+2(cosα, sinα)
dα = 0 ⇐⇒

∫ 2π

0

T2m(cosα, sinα)

F2m+2(cosα, sinα)
dα = 0 (30)
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holds. For each invariant line Xi = 0 determined by the equation F2m+2(x, y) = 0
we denote by ri the residue of the rational function T2m(x, y)/F2m+2(x, y) :

ri = resXi=0
T2m(x, y)

F2m+2(x, y)
.

The following lemma holds:

Lemma 3. If the homogeneous equation F2m+2(x, y) = 0 has no nontrivial real
solutions and the discriminant D2m+2 6= 0, then for every i = 1, 2, . . . , 2m+ 2 the
relation

ri =
(2m+ 2)gi

fi
− 1 = (2m+ 2)θi − 1 (31)

holds.

Proof. We will obtain the value of the residue ri, corresponding to the invariant
line Xi = 0, by using Lemma 1. Let us consider the following 2 cases:

1. Let vi 6= 0. The substitution z = tanα in the last integral from (30) implies
the relation

∫ +∞

−∞

T2m(1, k)

F2m+2(1, k)
dk = 0.

For each root ki = −ui/vi of the equation F2m+2(1, k) = 0 the residue of the
rational function T2m(1, k)/F2m+2(1, k) is equal to

ri =
T2m(1, ki)

(F2m+2)
′
k(1, ki)

=
T2m(1, ki)

vi(F2m+2)
′
Xi

(1, ki)
=

T2m(1,−ui/vi)
vi(F2m+2)

′
Xi

(1,−ui/vi)
=

T2m(vi,−ui)
fi

=
(2m+ 2)gi − fi

fi
= (2m+ 2)θi − 1.

2. Let ui 6= 0. The substitution z = cotα in the last integral from (30) implies
the relation

∫ +∞

−∞

T2m(s, 1)

F2m+2(s, 1)
ds = 0.

For each root si = −vi/ui of the equation F2m+2(s, 1) = 0 the residue of the
rational function T2m(s, 1)/F2m+2(s, 1) is equal to

ri =
T2m(si, 1)

(F2m+2)′s(si, 1)
=

T2m(si, 1)

ui(F2m+2)′Xi

(si, 1)
=

T2m(−vi/ui, 1)
ui(F2m+2)′Xi

(−vi/ui, 1)
=

T2m(vi,−ui)
fi

=
(2m+ 2)gi − fi

fi
= (2m+ 2)θi − 1.

Lemma 3 is proved.

If we put θ = (r + 1)/(n + 1) in equation (27) then we obtain an equation of
degree n+ 1, called the residual equation.
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Proposition 4. If Dn+1 6= 0, then the values ri = (n+ 1)θi − 1 are the roots of
the equation

X(r) = c0 r
n+1 + c2 r

n−1 + . . .+ cn r + cn+1 = 0, (32)

where

ck =
k

∑

m=0

(−1)m (n+ 1)m Ck−mn+1−m tn+1−m, (∀) k = 0, 1, . . . , n, n + 1. (33)

Remark 7. The equalities tn+1 = tn = (−1)n(n+1)/2Dn+1 imply the equality c1 = 0.

The discriminant of the equation (32) has the form

Rn+1 = Res (X(r),X ′(r)) = D2n
n+1∆

2,

where
∆2 =

∏

1≤i<j≤n+1

(rj − ri)
2

is a GL-invariant of the system (1).
Let us consider that the equation (32) has no real solutions and let ri1 , ri2 , . . . , rim+1

be the solutions with positive coefficients of the imaginary part. In this case it is
known that

∫ +∞

−∞

T2m(1, k)

F2m+2(1, k)
dk = 2 π i (ri1 + ri2 + . . .+ rim+1).

We construct the polynomial of minimal degree W (r1, r2, . . . , r2m+2) such that it is
simmetric with respect to variables ri and has the form

W (r1, r2, . . . , r2m+2) =
∏

(ri1 + ri2 + . . .+ rim+1).

According to the theorem of the symmetric polynomials there exists some polynomial
Φ such that the polynomial W can be expressed through the elementary symmetric
polynomials of the variables ri:

W (r1, r2, . . . , r2m+2) = Φ(
c2
c0
,
c3
c0
, . . . ,

cn
c0
,
cn+1

c0
).

So, there exists positive integer l such that V = cl0Φ( c2
c0
, c3
c0
, . . . , cn

c0
, cn+1

c0
) is a poly-

nomial of the variables c0, c2, c3, . . . , cn+1.
Takes place

Proposition 5. The system (1) with imaginary invariant straight lines has a center
iff V = 0 and the residual equation (32) has no real solutions.

Example 1. For n = 3 the system (1) with imaginary invariant straight lines has
a center iff at least one of the following two series of conditions is fulfilled:

(i) V = c3 = 0 and the inequalities c0c2 < 0, c22 − 4c0c4 > 0

are not fulfilled simultaneously;

(ii) V = c3 = 0, c22 − 4c0c4 = 0, c0c2 > 0.
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Example 2. For n = 5 the system (1) with imaginary invariant straight lines has
a center iff V = −c0c25 + 4c0c4c6 − c23c4 + c2c3c5 = 0 and the residual equation (32)
has no real solutions.
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Studying stability of the equilibrium solutions in the

restricted Newton’s problem of four bodies

E.A.Grebenikov, A.N.Prokopenya

Abstract. Newton’s restricted problem of four bodies is investigated. It has been
shown that there are six equilibrium solutions of the equations of motion. Stability
of these solutions is analyzed in linear approximation with computer algebra system
Mathematica. It has been proved that four radial solutions are unstable while two
bisector solutions are stable if the mass of the central body P0 is large enough. There
is also a domain of instability of the bisector solutions near the resonant point in the
space of parameters and its boundaries are found in linear approximation.

Mathematics subject classification: 34A30, 37J25.
Keywords and phrases: Restricted problem of four bodies, equilibrium solutions,
stability, characteristic exponents.

1 Introduction

The main problem of the dynamics is to investigate all possible motions of a
system. In the case of the system of point particles moving under their mutual grav-
itational force this problem has been solved only for two particles. Although there
are ten integrals for such systems, the general solution of the differential equations
of motion in the case of three or more interacting particles can not be obtained.
So further progress in this field seems to be connected with seeking and studying
particular solutions of the equations of motion. In the case of three particles five
particular solutions were found by L.Euler (1767) and J.L.Lagrange (1772) [1]. To
study the stability of these solutions it turned out to be necessary to elaborate new
qualitative, analytical and numerical methods for studying nonlinear Hamiltonian
systems [2]. Nevertheless, the elaboration of the stability theory of Hamiltonian
systems has not been completed yet and the investigations in this field are very
topical.

In [3–5] it was proved that there is a new class of the exact particular solutions
of the planar Newton’s many-body problem. On this basis two new dynamical
models were proposed that are known as Newton’s restricted problems of (n + 2)
bodies [6, 7]. Now it is necessary to find all equilibrium solutions in these problems
and to investigate their stability. As in general case this problem is very complicated
let us start with the case of four bodies. But even in this case the calculations are
very complicated and can not be done without computer. So we have used here
computer algebra system Mathematica that is a very powerful tool for doing both
analytical and numerical calculations [8].

c©2003 E.A.Grebenikov, A.N.Prokopenya
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2 Equilibrium solutions of the equations of motion

Let two point particles P1 and P2 of equal masses m move in elliptical orbits
about their common center of mass where the third particle P0 of mass m0 is resting.
The particles attract each other according to Newton’s law of gravitation. At any
instant of time the particles P1 and P2 are symmetrical with respect to the particle
P0 and their orbits are situated in the xOy plane of the barycentric inertial frame of
reference. Using cylindrical coordinates we can write a solution of the corresponding
three-body problem in the form [5]

ρj(ν) =
p

1 + e cos ν
, ϕj(t) = ν(t) + πj, zj(t) = 0 (j = 1, 2), (1)

where p and e are parameter and eccentricity of the elliptic orbit of the particles.
The functions ρj(t) and ν(t) are connected by the relation

ρ2
j

dν

dt
=

√

fp(m0 + m/4) ≡ c, (2)

where f is the constant of gravitation.
Let us consider the motion of the fourth particle P3 of negligible mass m1 in the

gravitational field generated by the particles P0, P1 and P2. Denoting its cylindrical
coordinates as ρ, ϕ, z we can write Lagrangian of the system in the form

L =
m1

2
(ρ̇2 + ρ2ϕ̇2 + ż2) + fm1(

m0

r
+

m

r1
+

m

r2
), (3)

where

r =
√

ρ2 + z2, rj =
√

ρ2 + ρ2
j − 2ρρj cos(ϕ − ϕj) + z2 (j = 1, 2)

are the distances between the particle P3 and particles P0, P1, P2, respectively, and
the dot denotes the derivative d

dt
. With Lagrangian (3) the equations of motion of

the particle P3 may be written as

ρ̈ − ρϕ̇2 + fm0
ρ

r3
+ fm

ρ − ρ1 cos(ϕ − ϕ1)

r3
1

+ fm
ρ − ρ2 cos(ϕ − ϕ2)

r3
2

= 0,

ρϕ̈ + 2ρ̇ϕ̇ + fm
ρ1 sin(ϕ − ϕ1)

r3
1

+ fm
ρ2 sin(ϕ − ϕ2)

r3
2

= 0, (4)

z̈ + fm0
z

r3
+ fm

z

r3
1

+ fm
z

r3
2

= 0.

Taking into account (1) let us make a substitution in (4) according to the rule

ρj(t) →
p

1 + e cos ν
, ρ(t) → p

1 + e cos ν
ρ(ν),

z(t) → p

1 + e cos ν
z(ν), ϕ(t) → ν + ϕ(ν).



30 E.A.GREBENIKOV, A.N.PROKOPENYA

It means that we’ll consider the motion of the particle in the frame of reference
rotating about Oz axis where all distances are pulsating so that the particles P1

and P2 are resting on the Ox axis at the points x = ∓1, respectively. Such frame
is known as Nechvil’s configurational space [1]. Besides, we use the polar angle ν
determining the position of the particles P1 and P2 on the xOy plane of inertial frame
of reference as a new independent variable. Then derivatives of the coordinates ρ
and ϕ are transformed as

dρ

dt
→ c

p
((1 + e cos ν)

dρ

dν
+ e sin ν ρ),

dϕ

dt
→ c

p2
(1 + e cos ν)2(1 +

dϕ

dν
),

d2ρ

dt2
→ c2

p3
(1 + e cos ν)2((1 + e cos ν)

d2ρ

dν2
+ e cos ν ρ),

d2ϕ

dt2
→ c2

p4
(1 + e cos ν)3((1 + e cos ν)

d2ϕ

dν2
− 2e sin ν

dϕ

dν
− 2e sin ν).

Derivatives of the coordinate z are obtained from the corresponding derivatives of ρ
with the substitution ρ → z. Then equations of motion (4) become

d2ρ

dν2
− ρ

(

dϕ

dν
+ 1

)2

+
e cos ν

1 + e cos ν
ρ =

= − 4

(1 + 4µ)(1 + e cos ν)

(

µ ρ

(ρ2 + z2)3/2
+

ρ + cos ϕ

r3
1

+
ρ − cos ϕ

r3
2

)

,

ρ
d2ϕ

dν2
+ 2

dρ

dν

(

dϕ

dν
+ 1

)

=
4 sin ϕ

(1 + 4µ)(1 + e cos ν)

(

1

r3
1

− 1

r3
2

)

, (5)

d2z

dν2
+

e cos ν

1 + e cos ν
z = − 4z

(1 + 4µ)(1 + e cos ν)

(

µ

(ρ2 + z2)3/2
+

1

r3
1

+
1

r3
2

)

,

where

r1 =
√

ρ2 + 1 + 2ρ cos ϕ + z2, r2 =
√

ρ2 + 1 − 2ρ cos ϕ + z2

and µ = m0
m

.

The equilibrium solutions of the system (5) are determined from the condition
that all derivatives are equal to zero. The only such solution satisfying the third
equation of (5) is z = 0. In this case the second equation of (5) may be written as

sin ϕ

(

1

r3
1

− 1

r3
2

)

= 0.

It has four solutions

ϕ = 0,
π

2
, π,

3π

2
.
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For ϕ = 0, π the equilibrium positions of the particle P3 are on the straight line
P1P2. In terms of [7] such solutions are called the radial equilibrium solutions. For
ϕ = π

2 , 3π
2 the equilibrium positions are on the straight line being perpendicular

to the line P1P2 and are called the bisector equilibrium solutions. Substituting
solutions ϕ = 0, π, z = 0 and ρ = R = const into the first equation of (5) we obtain
an equation determining the radial equilibrium positions

µ

(

R − 1

R2

)

+
R

4
−

(

R − 1

|R − 1|3 +
R + 1

|R + 1|3
)

= 0. (6)

The corresponding equation determining bisector equilibrium positions is

µ

(

R − 1

R2

)

+
R

4
− 2R

(R2 + 1)3/2
= 0. (7)

If m0 = 0 then equations (6), (7) coincide with the corresponding equations
determining positions of the points of libration in the restricted problem of three
bodies [1,2]. In this case equation (6) has two solutions. One solution is R = 0 and
another one is such a root of the equation

R =
8(R2 + 1)

(R2 − 1)2

that satisfies the condition R > 1. Equation (7) has also two solutions: R = 0 and
R =

√
3. The second solution determines two equilibrium positions of the particle

P3 being symmetrical with respect to the origin that correspond to the famous
Lagrange’s triangular solutions. It is known that all solutions above are unstable in
the sense of Liapunov [2]. So further on we’ll consider the case m0 6= 0. Analyzing
equation (6) one can conclude that in the domain 0 ≤ R < 1 it can be rewritten as

µ

(

R − 1

R2

)

+
R

4
+

4R

(1 − R2)2
= 0 (8)

and has only one root. For R > 1 equation (6) has the form

µ

(

R − 1

R2

)

+
R

4
− 2(R2 + 1)

(R2 − 1)2
= 0. (9)

This equation also has one root. It should be noticed that the roots of equations
(8), (9) tend to a limit R = 1 as µ → ∞. Equation (7) has only one root and its
value decreases from R =

√
3 to R = 1 as parameter µ tends to infinity. Thus, in

the case m0 6= 0 there are six equilibrium solutions of the restricted problem of four
bodies in Nechvil’s configurational space. Four of them are the radial equilibrium
solutions ϕ = 0, π, z = 0 and the corresponding values of R are given as roots of
equations (8), (9). The last two solutions form a couple of the bisector equilibrium
solutions ϕ = π

2 , 3π
2 , z = 0 and R is given as a root of equation (7).
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3 Studying stability of the equilibrium solutions

The stability problem of the equilibrium solutions found above is connected
with the investigation of nonlinear differential equations of the disturbed motion.
Usually, the first step in solving this problem is an analysis of the corresponding
linearized system. In order to investigate equations of motion (5) in the vicinity of
the equilibrium solutions let us make in (5) the substitution

ρ(ν) → R + u(ν), ϕ(ν) → β + γ(ν).

Considering the functions u(ν), γ(ν), z(ν) as small perturbations of the equilibrium
solutions we can expand equations (5) in Taylor series in powers of u, γ and z
and neglect all terms of the second and higher orders. Then we obtain equations
linearized in the vicinity of the radial equilibrium solutions in the form

d2u

dν2
− 2R

dγ

dν
=

3 + 2aj

1 + e cos ν
u,

d2γ

dν2
+

2

R

du

dν
= − aj

1 + e cos ν
γ, (10)

d2z

dν2
+

1 + aj + e cos ν

1 + e cos ν
z = 0,

where

a1 =
8(R2 + 3)

(1 + 4µ)(1 − R2)3
, a2 =

8(3R2 + 1)

(1 + 4µ)(R2 − 1)3
.

The corresponding system of equations linearized in the vicinity of the bisector
equilibrium solutions is

d2u

dν2
− 2R

dγ

dν
=

3 − b

1 + e cos ν
u,

d2γ

dν2
+

2

R

du

dν
=

b

1 + e cos ν
γ, (11)

d2z

dν2
+ z = 0,

where

b =
24

(1 + 4µ)(1 + R2)5/2
.

Let us note that parameters R and µ are connected by the relations (7)-(9). So the
constants a1, a2 and b depend only on the parameter µ.

Thus, we have obtained two systems of three linear differential equations of the
second order with periodic coefficients. It is evident that coefficients of equations
(10),(11) are analytic functions of parameter e in the domain |e| < 1. Consequently,
the behavior of the solutions of these systems is determined by their characteristic
exponents calculated for e = 0. If the system has at least one characteristic exponent
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with positive real part for e = 0, then it is unstable for sufficiently small e 6=
0. If all characteristic exponents of the system are complex numbers with unit
magnitude but some of them are multiple, then the system is unstable, too. But if
all characteristic exponents of the system are different and pure imaginary numbers,
then the instabilities can arise only when the characteristic exponents λk satisfy the
resonance conditions

λk ± λl = iN (k, l = 1, 2, 3, 4; N = 0, ±1, ±2, ... ). (12)

So we should calculate the characteristic exponents of systems (10), (11) for e = 0.
The third equation in systems (10), (11) is independent of the first two. It

means that in the linear approximation the disturbed motion of the particle P3 in
xOy plane does not depend on its motion along the 0z axis. So we may analyze
these motions separately. The third equation of the system (10) is just a Hill’s
equation. For e = 0 it has two pure imaginary characteristic exponents ±i

√

1 + aj

because aj > 0 for any µ. It was investigated in detail in [9] where it was shown
that there are the domains of instability of this equation in the vicinity of the points

aj = (2k−1)2

4 − 1 (k = 1, 2, ...). Using those results and relationships (8), (9) it is
easy to construct the corresponding domains of instability of the third equation of
(10) in the µOe plane. Characteristic exponents of the first two equations of system
(10) for e = 0 are calculated very easy and may be written in the form

λk = ± 1√
2

(

−1 + aj ±
√

1 + 10aj + 9a2
j

)1/2

(k = 1, 2, 3, 4). (13)

Numerical calculations show that one of the characteristic exponents (13) is a pos-
itive real number for any µ from the interval 0 ≤ µ < ∞ and for both coefficients
a1 and a2. So, according to Liapunov’s theorem on linearized stability [2], we can
conclude that radial equilibrium solutions of the restricted problem of four bodies
are unstable.

The third equation of system (11) has two pure imaginary characteristic expo-
nents ±i and is stable for any e. Characteristic exponents of the first two equations
of system (11) for e = 0 can be written as

λk = ± 1√
2

(

−1 ±
√

1 − 12b + 4b2
)1/2

(k = 1, 2, 3, 4). (14)

If the condition
0 < 1 − 12b + 4b2 < 1 (15)

is fulfilled, then characteristic exponents (14) are different and pure imaginary num-
bers λk = ±iσ1,2 where

σ1,2 =
1√
2

(

1 ±
√

1 − 12b + 4b2
)1/2

.

Numerical analysis shows that 1 − 12b + 4b2 < 1 for any µ. For µ = 11.7203
the expression 1 − 12b + 4b2 becomes zero and the system (11) has two multiple
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characteristic exponents ± i√
2
. In this case the system is unstable for e = 0 because

its solution has linearly growing terms of the form ν cos ν√
2
, ν sin ν√

2
. The inequality

(15) is true if 11.7203 < µ < ∞. In this case

1√
2

< σ1 < 1, 0 < σ2 <
1√
2
.

So the resonance condition (12) can be fulfilled only for λk = i/2, λl = −i/2, N = 1
when σ2 = 1/2 and µ = µR = 15.9691. For e > 0 in the vicinity of the resonant
value µR of parameter µ a domain of instability can exist. To find the boundaries of
this domain it is necessary to calculate the fundamental matrix of the system (11).
And to do this we’ll use Liapunov-Poincare method of a small parameter.

The first two equations of system (11) can be written in the form

dx

dν
= P (ν, e)x, (16)

where x is a vector with four components and P (ν, e) is an 4 × 4 matrix function
that can be represented in the form

P (ν, e) = P0 +

∞
∑

k=1

Pk(ν)ek, (17)

and

P0 =









0 0 1 0
−2/R 0 0 1/R2

−(1 + b) 0 0 2/R2

0 bR2 0 0









, Pk(ν) = (− cos ν)k









0 0 0 0
0 0 0 0

3 − b 0 0 0
0 bR2 0 0









.

The series (17) converges for any ν in the domain |e| < 1 and Pk(ν) are continuous
finite functions. According to Liapunov theorem [10, 11], the fundamental matrix
X(ν, e) for the system (16) normalized by the condition X(0, e) = E4, where E4 is
an 4 × 4 identity matrix, may be represented in the form

X(ν, e) = exp(P0ν)Z(ν, e) exp(νW (e)), (18)

where Z(ν, e) = Z(ν + 2π, e) is a periodic analytic matrix function and W (e) is a
constant matrix. The matrices Z(ν, e) and W (e) may be also represented in the
form of series in powers of e

Z(ν, e) =

∞
∑

k=0

Zk(ν)ek, Z0(0) = E4, Zk(0) = 0 (k ≥ 1), (19)

W (e) =

∞
∑

k=1

Wk ek. (20)



STABILITY OF SOLUTIONS IN THE NEWTON’S PROBLEM OF FOUR BODIES 35

The series (19), (20) converge in the domain |e| < 1 for any ν and Zk(ν) are contin-
uous matrices satisfying the next recurrence relation

dZk

dν
=

k
∑

l=1

(exp(−P0ν)Pl(ν) exp(P0ν)Zk−l − Zk−lWl) . (21)

Matrices Wk can be found from the condition that Zk(ν) are periodic matrices.
Actually, in the first order equation (21) has the form

dZ1

dν
= exp(−P0ν)P1(ν) exp(P0ν) − W1. (22)

Taking into account initial conditions (19) we can write a solution of equation (22)
as

Z1(ν) = −W1ν +

∫ ν

0
exp(−P0τ)P1(τ) exp(P0τ)dτ.

Using periodicity of the matrix Z1(ν) we obtain

W1 =
1

2π

∫ 2π

0
exp(−P0τ)P1(τ) exp(P0τ)dτ.

Calculations in the higher orders are done in a similar way. But with the k growth
they become more and more cumbersome and can not be done without computer.
Here we have calculated the fundamental matrix X(ν, e) in the vicinity of the reso-
nant point µR = 15.9691 with the accuracy o(e2). Then we can write the character-
istic equation for the system (16) as

ρ4 + ρ3(2 − 2 cos(
√

3π) − 8√
3

eπs1 sin(
√

3π)+

+ρ2(2 − 4 cos(
√

3π) − 16√
3

eπs1 sin(
√

3π) +
e2

48
(π2(−99 + 1024s2

1)−

−6 cos2(
√

3π/2)(297 + 215 cos(
√

3π))))+

+ρ(2 − 2 cos(
√

3π) − 8√
3
eπs1 sin(

√
3π) +

e2

24
(π2(99 cos(

√
3π)−

−256s2
1(−1 + 3cos(

√
3π))) − 123 sin2(

√
3π)))+

+1 +
e2

96
(2181 + 2π2(−99 + 1024s2

1) + 3072 cos(
√

3π) + 891 cos(2
√

3π)) = 0, (23)

where s1 is a small parameter determining deviation of σ2 from its resonant value
according to the relation σ2 = 1

2 + s1e. Analysis of equation (23) shows that in the
vicinity of the resonant value of parameter σ2 = 1

2 there is a domain in the σ2e plane
where the stability condition |ρ| ≤ 1 is not fulfilled. This domain is bounded by the

straight lines σ2 = 1
2 ±

√
33

16 e. The corresponding domain of instability in the µe
plane is bounded by the straight lines

µ = 15.9691 ± 16.2652 e. (24)

Thus, we can formulate the next theorems.
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Theorem 1. The radial equilibrium solutions of the restricted problem of four bodies
are unstable for sufficiently small e and any values of parameter µ.

Theorem 2. The bisector equilibrium solutions of the restricted problem of four
bodies are stable in linear approximation for e = 0 if parameter µ satisfies the next
inequality: 11.7203 < µ < ∞. For sufficiently small values of e there is a domain of
instability in the µe plane between the straight lines defined in (24).
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The centre-focus problem for analytical systems of

Lienard form in degenerate case

Le Van Linh, A.P. Sadovskii

Abstract. For analytical systems of Lienard form in the case of zero eigenvalues
of its linear part is obtained the algebraic criterion of the centre existence, which is
analogous to the Cherkas’s criterion for systems with imaginary eigenvalues of linear
part. We give the solution of centre-focus problem for one class of cubic systems.
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tions, cubic systems, integrating factor, limit cycles.

1 Introduction

For analytical systems of Lienard form in the case of pure imaginary eigenvalues
of linear part L.A.Cherkas gives effective necessary and sufficient conditions of alge-
braic character for the centre existence [1–3]. For example, for the Lienard system

ẋ = y, ẏ = −xf(x) + xg(x)y, (1)

where f, g are analytical in the neighborhood of x = 0 functions, f(0) = 1, he
received the following result

Theorem 1. [1] The origin of coordinate system (1) is a centre if and only if the
system of equations

F (x) = F (y), G(x) = G(y),

where F (x) =
∫ x

0 t f(t)dt, G(x) =
∫ x

0 t g(t)dt, has an analytical in the neighborhood
of x = 0 solution y = ϕ(x), ϕ(0) = 0, ϕ′(0) = −1.

For the systems of type (1), where f(x) = x2nf1(x), f1(0) = 1, the theorem
analogous to Theorem 1 was proved in [4, 5].

In the present article we consider the system of differential equations

dx/dt = y, dy/dt =
3

∑

i=0

pi(x)yi, (2)

where pi(x) are analytical in the neighborhood of x = 0 functions of the form

p0(x) = −x2n−1 +

∞
∑

k=2n

akx
k, p1(x) = Axn−1 +

∞
∑

k=n

bkx
k,

c©2003 Le Van Linh, A.P. Sadovskii
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pj(x) =

∞
∑

k=0

αk,jx
k, j = 2, 3. (3)

If 4n − A2 > 0, then the critical point O(0, 0) of system (2) is either a centre or
a focus [4, 6]. We know [4,7] that there exists a formal transformation

x = u +

∞
∑

i+j=2

αi,ju
ivj , y = v +

∞
∑

i+j=2

βi,ju
ivj , (4)

dt = (1 +

∞
∑

i+j=1

γi,ju
ivj)dτ

which transforms (1) to a formal system

du/dτ = v +
∑

k=n

Aku
k, dv/dτ = −u2n−1, (5)

where An = A/n.

Theorem 2. [7] The critical point O(0, 0) of system (2) is a centre if and only if
A2i+1 = 0, i = [n/2], [n/2] + 1, . . . , in (5).

Definition 1. The critical point O(0, 0) of system (2), where pi are analytical func-
tions of (3) type with complex coefficients, is called a centre if there is a formal
transformation (4) which transforms (2) to system (5), where A2i+1 = 0, i =
[n/2], [n/2] + 1, . . .

In the present paper we will show the algebraic criterion of the existence of the
centre of the system (2) and will give the solution of centre-focus problem for the
system

ẋ = y(1 + Dx + Px2), ẏ = −x3 + Axy + By2 + Kx2y + Lxy2 + My3, (6)

where A,B,C,D,K,L,M are complex constants.

The solution of centre-focus problem for the system (6) where D = P = 0 is
contained in [4, 8]. There are many works in which the centre-focus problem is
solved for various classes of cubic systems in the case of imaginary eigenvalues of
linear part (e.g.[9]-[23]).

2 The algebraic criterion for the existence of a centre

Theorem 3. The critical point O(0, 0) of system (2) is a centre if and only if the
system of equations

F1(x) = F1(y), F2(x) = F2(y) (7)

or the system

F1(x) = F1(y), F3(x) = F3(y), (8)
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where F1 = Q3
2/Q

5
1, F2 = Q3

3/Q
7
1, F3 = Q4/Q

3
1,

Q1 = 2p3
1 − 9p0p1p2 + 27p2

0p3 + 9p1p
′
0 − 9p0p

′
1,

Q2 = Q1R − p0Q
′
1, Q3 = 5Q2R − 3p0Q

′
2,

Q4 = 7Q3R − 3p0Q
′
3, R = p2

1 − 3p0p2 + 3p′0,

has a solution y = ϕ(x), where ϕ(x) is an analytical in the neighborhood of x = 0
function such that ϕ(0) = 0, ϕ′(0) = −1 (we do not exclude the case when one or
both equations of systems (7), (8) turn to the identity).

Proof. Necessity. Suppose that the critical point O(0, 0) is a centre for system
(2). The change

y = z/[v(x)(1 + z)], (9)

where v(x) is the solution of the differential equation

v′ = −p3(x) − p2(x)v − p1(x)v2 − p0(x)v3 (10)

with the initial condition v(0) = 1, and the elimination of the time transform the
system (2) to the equation

v(x)zz′ = p0(x)v3(x) + [p1(x)v2(x) + 3p0(x)v3(x)]z+

+[p1(x)v2(x) + 2p0(x)v3(x) − p3(x)]z2. (11)

Then, the change z = α(x)w, where α(x) is the solution of the differential equation

α′v(x) = α[p1(x)v2(x) + 2p0(x)v3(x) − p3(x)], (12)

with α′(0) = 1, transforms (11) into the equation

ww′ = f(x) + g(x)w, (13)

where f(x) = p0(x)[v(x)/α(x)]2 , g(x) = [p1(x) + 3p0(x)v(x)]v(x)/α(x). From the
theorem 19.7 from [4] we conclude that O(0, 0) of the equation (13) is a centre if
and only if the system of equations

F (x) = F (y), G(x) = G(y),

where F (x) =
∫ x

0 f(t)dt, G(x) =
∫ x

0 g(t)dt, has an analytical in the neighbourhood
of x = 0 solution y = ϕ(x), ϕ(0) = 0, ϕ′(0) = −1. Thus, in the examined case we
have

F (x) = F [ϕ(x)], G(x) = G[ϕ(x)]. (14)

From (14) it follows that

f(x) = f [ϕ(x)]ϕ′(x), g(x) = g[ϕ(x)]ϕ′(x). (15)

From (15) we get that ω0(x) = ω0[ϕ(x)], where

ω0(x) = f(x)/g(x) = p0(x)v(x)/[α(x)(p1(x) + 3p0(x)v(x))].
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The differentiation of ω0(x) taking into account (10), (12) gives

ω′
0(x)/g(x) + 2/9 = Q1(x)/[9(p1(x) + 3p0(x)v(x))3]. (16)

From (16) we have ω1(x) = ω1[φ(x)], where

ω1(x) = Q1(x)/[p1(x) + 3p0(x)v(x)]3. (17)

The derivation of (17) gives us

ω′
1(x)ω0(x)/g(x) − ω2

1(x)/3 − ω1(x)/3 = −Q2(x)/[p1(x) + 3p0(x)v(x)]5.

Consequently, ω2(x) = ω2[ϕ(x)], where

ω2(x) = Q2(x)/[p1(x) + 3p0(x)v(x)]5. (18)

Then (18) gives

ω′
2(x)ω0(x)/g(x) − 5ω1(x)ω2(x)/9 − 5ω2(x)/9 = −Q3(x)/[3(p1(x) + 3p0(x)v(x))7].

Thus, ω3(x) = ω3[ϕ(x)], where

ω3(x) = Q3(x)/[p1(x) + 3p0(x)v(x)]7. (19)

The derivation of (19) gives

ω′
3(x)ω0(x)/g(x) − 7ω1(x)ω3(x)/9 − 7ω3(x)/9 = −Q4(x)/[3(p1(x) + 3p0(x)v(x))9].

Hence, ω4(x) = ω4[ϕ(x)], where

ω4(x) = Q4(x)/[p1(x) + 3p0(x)v(x)]9. (20)

From (17), (18) we have F1(x) = F1[ϕ(x)], from (17), (19) we have F2(x) = F2[ϕ(x)],
and from (17), (20) we have F3(x) = F3[ϕ(x)]. The necessity is proved. The suffi-
ciency is proved in the same way [2].

For system (2), where p3(x) = 0, we have the following result.

Theorem 4. The critical point O(0, 0) of system (2) in the case of p3(x) = 0 is a
centre if and only if the system of equations

W1(x) = W1(y), W2(x) = W2(y), (21)

where W1 = (p0p1p2 − p1p
′
0 + p0p

′
1)/p

3
1, W2 = W ′

1p0/p
2
1, has a solution y = ϕ(x),

where ϕ(x) is an analytical in the neighbourhood of x = 0 function, ϕ(0) = 0,
ϕ′(0) = −1 (we do not exclude the case when one or both equations of system (21)
turn into the identities).
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3 The solution of centre-focus problem for system (6)

Together with system (6) we will examine the equation

yy′ =
3

∑

i=0

pi(x)yi, (22)

where

p0(x) = −x3/(1 + Dx + Px2), p1(x) = (Ax + Kx2)/(1 + Dx + Px2),
p2(x) = (B + Lx)/(1 + Dx + Px2), p3(x) = M/(1 + Dx + Px2).

By the method [4,7] we find a formal change for system (6)

x = u +

∞
∑

i+j=2

αi,ju
ivj , y = v +

∞
∑

i+j=2

βi,ju
ivj , (23)

which transforms (6) to the system

du/dt = v +

∞
∑

i=2

diu
i, dv/dt = −u3 +

∞
∑

i=4

hiu
i. (24)

If in (23) α0,j = β0,j = 0, j = 2, 3, . . . , then all di, hi in (24) are defined uniquely.
In this case in (22)

d2 = A/2, d3 = A(B + D)/6 + K/3,
d4 = A(B + D)(2B + D)/24 + K(B + D)/4 + A(L + 2P )/24,
d5 = A(B + D)(2B + D)(3B + D)/120 + K(B + D)(11B + 7D)/60+

AL(7B + 5D)/120 − M(A2 − 18)/30 + AP (3B + 2D)/30 + K(L + 2P )/15;
h4 = −(B + 3D)/2, h5 = −(B + D)(B + 5D)/4 − P,
h6 = −(B + D)(B2 + 9BD + 6D2)/8 + L(B − 5D)/24 − AM/6 − P (3B + 4D)/2;

di, i = 6, 15, are polynomials of A,B,D,K,L,M,P, which consist accordingly of
27, 47, 75, 117, 172, 251, 350, 485, 651, 869 addends; hi, i = 7, 16, are polynomials,
which consist accordingly of 17, 27, 45, 67, 102, 145, 208, 284, 391, 518 addends.

The change of u1 = ϕ(u) = u(1 − ∑∞
k=4 hku

k−3)1/4, dτ = (1 − ∑∞
k=4 hku

k−3)dt
reduces system (24) to the form

du1/dτ = v +
∞

∑

k=2

dk[ϕ
−1(u1)]

k = v +
∞
∑

k=2

Aku
k
1 , dv/dτ = −u3

1. (25)

The values fi = A2i+1, i = 1, 2, . . . , where A2i+1 is from (25) will be called the
focus values of system (6). Focus values fk, k = 1, 2, . . . , are the polynomials from
the ring C[K,M,L,P,D,B,A]; fi, i = 1, 7, contain accordingly 3, 15, 47, 117, 251,
485, 869 addends.

Let’s generate the ideal [24] I = 〈f1, f2, ..., fk, ...〉 ⊂ C[K,M,L,P,D,B,A]. Let
us denote by V(I) the variety of ideal I [24], i.e. V(I) = {a = (K,M,L,P,D,B,A) ∈
C

7 : for anyf ∈ I, f(a) = 0}.



42 LE VAN LINH, A.P. SADOVSKII

Definition 2. The set W = V(I) is called the variety of the centre of system (6).

It is obvious that O(0, 0) of system (6) is a centre if and only if a ∈ W.
The focus values fk, k = 1, 7, can be found with the help of computer system

Mathematica 4.1. Instead of focus values fk, k = 1, 7, we will examine

g1 = 15f1 = A(B − 2D) + 5K, gk = fk(mod〈g1, ..., gk−1〉), k = 2, 7.

The values gk can be found with the help of the division algorithm [24]. We have

g2 = A(B − 2D)(B2 − 9BD + 4D2) + 10AL(3B − D) − 25M(2A2 − 21)−
5AP (13B − 6D),

g3 = A(B − 2D)2(2B + D)(19B2 + 389BD − 204D2) − 1250AL2(3B − D)−
125AL(B − 2D)(17B2 − 3BD − 2D2) + 5625M(−7B2 − 2BD + 12D2+
20L − 45P ) + 125AP (B − 2D)(53B2 + 16BD − 24D2)+
625AP [P (29B − 18D) − L(B − 2D)].

Let us note that gk, k = 4, 7, contains accordingly 51, 90, 143, 211 addends. In
so doing I = 〈f1, ..., fk, ...〉 = 〈g1, ..., gk , ...〉. We put Ik = 〈f1, ..., fk〉. Then Ik =
〈g1, ..., gk〉.

Theorem 5. The variety of the centre of system (6) can be represented in the form
W = V(J1)

⋃

V(J2)
⋃

...
⋃

V(J14), where

J1 = 〈A, M, K〉, J2 = 〈B, D, M, K〉 , J3 = 〈B − 2D, L − 2P, M, K〉,
J4 = 〈3B − D, P − 2B2, M, AB − K〉,
J5 = 〈(B − 2D)(B + 3D) + 25P, (B − 2D)(3B − D) + 25L, M, A(B − 2D) + 5K〉,
J6 = 〈2B − D, 9B2 − 25P, 3B2 + 25L,M, 3AB − 5K〉,
J7 = 〈17B − 4D, 9B2 − 2P, 3B2 − 2L, M, 3AB − 2K〉,
J8 = 〈7B − 4D, B2 + 2P, B2 + L, M, AB − 2K〉,
J9 = 〈A2 − 6, 3(B − 2D)(3B + 4D) + 100P, A(17B − 4D)(B − 2D)2 + 4500M,

B(B − 2D) + 5L, A(B − 2D) + 5K〉,
J10 = 〈A2 − 6, 3(B − 2D)(3B − D) + 25P, (17B − 9D)(B − 2D) + 25L,

2A(B − 2D)2(2B − D) + 225M, A(B − 2D) + 5K〉,
J11 = 〈A2 − 6, (3B − D)(3B + 4D) + 25P, 11B2 + BD + 4D2 + 25L,

2A(7B − 4D)(2B + D)2 + 1125M, A(B − 2D) + 5K〉,
J12 = 〈A2 − 6, 3B − D, 3(2B2 + L) − 4P,AB(2B2 − P ) − 9M, AB − K〉,
J13 = 〈A − 3, (B − 7D)(B − 2D) + 25(L − 2P ), 3(B − 2D) + 5K,

− (B − 2D)2(B + 3D) − 25P (B − 2D) + 125M〉,
J14 = 〈A + 3, (B − 7D)(B − 2D) + 25(L − 2P ), −3(B − 2D) + 5K,

(B − 2D)2(B + 3D) + 25P (B − 2D) + 125M〉
and V(Ji), i = 1, 14, are irreducible.

Proposition 1. If 2A2 − 7 = 0, 3B − D = 0, 3B2 − P = 0, 2B2 − L = 0, AB3 +
14M = 0, AB − K = 0, B 6= 0, then O(0, 0) of system (6) is a focus of 8th order.

Proof. In the examined case the system (6) looks as

ẋ = y(1+3Bx+3B2x2), ẏ = −x3+Axy+By2+By(Ax2+2Bxy−AB2y2/14), (26)
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where A2 = 7/2, B 6= 0. There exists a change (4) which reduces (26) to the system

du

dτ
=v + A(u2/2−55B6u8/25088−5445B12u14/314703872−55B15u17/161308784

−28655B18u20/281974669312 − 3267B21u23/374283822640 + ...),
dv

dτ
= −u3.

Hence, the focus values fk = 0, k = 1, 7, but f8 6= 0, i.e. O(0, 0) is a focus of 8th

order of system (26).

Lemma 1. Consider M = 0. Then the variety of the centre of the system (6) is
shown as V1 = V(J1)

⋃

V(J2)
⋃

...
⋃

V(J8).

Proof. Let us make the ideal J0 = I7 + 〈M〉. We compute the Groebner basis of
J0 with lex-ordering with the order K > M > L > P > D > B > A and get

J0 = 〈A(7B−4D)(17B−4D)(B − 2D)(2B − D)(3B − D)2[(B − 2D)(B + 3D)+
25P ], −A(B − 2D)[(B − 2D)(B + 3D)+25P ](4427B4−5798B3D + 2805B2D2−
608BD3 + 48D4 + 125B2P ), A(B − 2D) [ (B − 2D)(B + 3D) + 25P ] [2(157B3−
157B2D + 69BD2 − 16D3) − 25P (4B − 3D)], A[(B − 2D)(B2 − 9BD + 4D2)+
10L(3B − D) − 5P (13B − 6D)], A [2 (B − 2D)(156B4 − 1823B3D + 569B2D2−
142BD3 + 96D4) + 6250BL (2B2 − P ) − 125P (239B3 − 101B2D + 56BD2−
20D3) + 625P 2(23B − 6D)], M, A(B − 2D) + 5K〉.

Hence, V(J0) = V(J1)
⋃

V(J2)
⋃

...
⋃

V(J8). Let us show then that on the set V(J0)
the equation (22) and so the system (6) have a centre in O(0, 0). Indeed, on the sets
V(J1), V(J2) we find the cases of symmetry and therefore the equation (22) has a
centre in O(0, 0). To prove the existence of the centre on the sets V(Jk), k = 3, 8,
we will use Theorem 4. On the set V(J4) for equation (22) the functions W1, W2

from (21) look like

W1(x) = 2/A2 − Lu(x)/A2, W2(x) = −2B2Lu2(x)/A4 + 2Lu(x)/A4,

where u(x) = x2/(1 + Bx)2. Consequently, the equation (22) in this case has a
centre in O(0.0). On the sets V(J3), V(J5) the existence of the centre follows from
the fact that W1 = 2/A2. On the set V(J6)

W1(x) = 2/A2 − 18B2u(x)/A2, W2(x) = 36B2u(x)/A4 − 972B4u2(x)/A4,

where u(x) = x2(5 + Bx)/(5 + 3Bx)3; O(0, 0) of the equation (22) is a centre. On
the set V(J7) the equation (22) has a centre in O(0, 0) because

W1(x) = 2/A2 − 9B2u(x)/A2, W2(x) = 18B2u(x)/A4 − 243B4u2(x)/A4,

where u(x) = x2(1 + 2Bx)/(2 + 3Bx)3. On the variety V(J8)

W1(x) = 2/A2 − 9B2u(x)/A2, W2(x) = 18B2u(x)/A4 − 243B4u2(x)/A4,

where u(x) = x2/(2 + Bx)3; O(0, 0) of the equation (22) is a centre.
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Lemma 2. Consider A2 − 6 = 0. Then the variety of the centre of system (6) can
be shown in the following way:

V2 = V(J2 + 〈A2 − 6〉)⋃

V(J3 + 〈A2 − 6〉)⋃

V(J4 + 〈A2 − 6〉)⋃

V(J5 + 〈A2 − 6〉)⋃

V(J9)
⋃

V(J10)
⋃

V(J11)
⋃

V(J12).

Proof. When we compute the Groebner basis of the ideal S = I7 + 〈A2 − 6〉 we
have S = 〈h1, ..., h27〉, where

h1 = A2 − 6, . . . , h4 = (B − 2D)(3B − D)4[(B − 2D)(B + 3D) + 25P ][(3B − D)×
(3B+4D)+25P ][3(B−2D)(3B−D) + 25P ][3(B − 2D)(3B + 4D)+100P ], . . . ,

h7 =−B5(B−2D)(3B−D)[(B−2D)(3B−D)(1701B6−78732B5D+538335B4D2−
584060B3D3 − 7860B2D4 + 285408BD5 − 69696D6) − 5000BDL(9B − 8D)×
(4B−3D)(3B−D)(9B+2D)+625P (3B−D)(135B5 +4617B4D − 6230B3D2−
2508B2D3 + 7848BD4 − 2016D5) + 625P 2(B − 2D) (6489B3 + 22071B2D−
14852BD2 + 8D3) + 390625P 3(63B2 − 6BD − 56D2 + 108P )], . . . ,

h24 =−(B−2D)(213B4−804B3D−1663B2D2+2734BD3−792D4)−125L(21B3+
79B2D − 168BD2 + 52D3) + 6250L2(3B − D) + 125P (29B3 + 173B2D−
310BD2 + 96D3) − 3125LP (21B − 8D) + 2500P 2(22B − 9D), . . . ,

h26 = A(B − 2D)(B2 − 9BD + 4D2) + 10AL(3B − D) + 225M − 5AP (13B−6D),
h27 = A(B − 2D) + 5K.

Hence, V(S) = V2. From Lemma 1 it follows that on the set V(Jk + 〈A2 − 6〉),
k = 2, 5, O(0, 0) of the equation (22) is a centre. On the sets V(Jk), k = 9, 12, the
presence in O(0, 0) of the centre of the equation (22) follows from the fact that here
F2 = 0, where F2 is from (7).

Remark 1. On the set V(J9) the system (6) has the integrating factor of Darboux
form R1(x, y) = [1− 3(B − 2D)x/10]1/3[1+ (3B +4D)x/10]−1/[x4 −Ax2y +2y2 +
(B − 2D)(Ax2 − 4y)xy/5 + 2A(B − 2D)3xy3/1125 − (B − 2D)2(Ay − 12x2)y2/150],

since
∂

∂x

[

y(1 + Dx + Px2)R1(x, y)
]

+
∂

∂y

[

(−x3 + Axy + By2 + Kx2y+

Lxy2 + My3)R1(x, y)
]

= 0. On the sets V(J10), V(J11), V(J12) the integrating
factors of the system (6) are, accordingly, the functions R2(x, y), R3(x, y), R4(x, y),
where

R2(x, y) = [1−3(B−2D)x/5]−1/3 [1 + (3B−D)x/5]−1/[x4−Ax2y + 2y2 + (B−2D)×
(Ax2 − 4y)xy/5 + 2A(B − 2D)3xy3/1125 − 2(B − 2D)2(Ay − 3x2)y2/75],

R3(x, y) = [1−(3B−D)x/5]1/3[1+(3B+4D)x/5]−1/3/[x4−Ax2y+2y2 + (B − 2D)×
(Ax2 − 4y)xy/5 + 2(B − 2D)2x2y2/25 − 2A(2B + D)2y3/75 + 2A(7B − 4D)×
(2B + D)2xy3/1125],

R4(x, y) = [1 + 3Bx + 3(2B2 + L)x2/4]−1/3/[x4 − Ax2y + 2y2 − Bxy (Ax2 − 4y)+
A(3L − 4B3x)y3/18 − B2(Ay − 6x2)y2/3].

Remark 2. On the sets V(Jk), k = 9, 12, the change (9), where v(x) (v(x) 6= 0) is,
accordingly, the function of the type
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v(x) = A[1 − (B − 2D)x/5 − (1 − 3(B − 2D)x/10)2/3 ]/(3x2),

v(x) = A[1 − (B − 2D)x/5 − (1 − 3(B − 2D)x/5)1/3]/(3x2),

v(x) = A[1 − (B − 2D)x/5 − (1 − (3B − D)x/5)2/3(1 + (3B + 4D)x/5)1/3]/(3x2),

v(x) = A[1 + Bx − (1 + 3x(4B + (2B2 + L)x)/4)1/3]/(3x2),

transforms the equation (22) to equation (11).

Lemma 3. Consider A2 − 9 = 0. Then the variety of the centre of system (6) is
shown as V3 = V(J13)

⋃

V(J14).

Proof. The ideal S0 = I7 + 〈A− 3〉 is represented through Groebner basis in the
following way: S0 = 〈q1, ..., q25〉, where

q1 = A − 3, q2 = −B7(7B − 4D)(17B − 4D)(2B − D)(3B − D)3[(B − 7D)×
(B − 2D) + 25(L − 2P )], . . . ,

q22 = [(B − 7D)(B − 2D) + 25(L − 2P )][563B3 + 87B2D − 1154BD2 + 456D3−
650L(3B − D) + 25P (161B − 72D)],

q23 = [(B − 7D)(B − 2D) + 25(L − 2P )][2(14661862B5 − 23476145B4D+
12603805B3D2−2621310B2D3−155240BD4+154016D5)−1543750BL(2B2−P )+
125P (160257B3−135683B2D+65508BD2−17240D3)−625P 2(8969B−3948D)],

q24 = A(B − 2D)(B2 − 9BD + 4D2) + 10L(3B − D) + 25M − 5P (13B − 6D),
q25 = 3(B − 2D) + 5K.

In this case V(S0) = V(J13). On the set V(J13) the equation (22) has a centre in
O(0, 0) because here Q1 = 0, and therefore, systems (7), (8) turn into the identities.
The case V(J14) is examined in the same way.

Remark 3. On the set V(J13) the system (6) has the integrating factor of Darboux
form R5(x, y) = fS2

2 fS3
3 /f3

1 , where

f1 = x2 − [1 − (B − 2D)x/5]y, f2 = 1 + (D + g)x/2,
f3 = 1 + (D − g)x/2, g2 = D2 − 4P,
S2 = (2B + D)[(2D − B)(D − g) − Pg(3D − 4B)/(D2 − 4P )]/(25DP ),
S3 = (2B + D)[(2D − B)(D + g) + Pg(3D − 4B)/(D2 − 4P )]/(25DP ).

On the set V(J14) the system (6) has the integrating factor R6(x, y) = fS2
2 fS3

3 /f3
0 ,

where f0 = x2 + [1 − (B − 2D)x/5]y.

Lemma 4. If

M(A2 − 6)(A2 − 9) 6= 0, (27)

then O(0, 0) of system (6) is a focus.

Proof. Finding Groebner basis of the ideal I7+〈A〉 we have I7+〈A〉 = 〈A,M,K〉,
i.e. when (27) holds in the case A = 0, O(0, 0) of system (6) is a focus. The ideal
I7 + 〈B〉 via Groebner basis looks as

I7 + 〈B〉 = 〈B,−A(A2 − 6)(A2 − 9)D11(6D2 − 25P ), . . . , 5K − 2AD〉.

After that we have
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I7 + 〈B,D(6D2 − 25P )〉 = 〈B,D(6D2 − 25P ),−AD7(A2 − 6)(2D2 + 25L),

64AD7(2D2 + 25L) − 474609375M3 , . . . , 2AD + 5K〉.

Consequently, when B = 0 and (27) holds, system (6) has a focus in O(0, 0). We
find the ideal I7 + 〈3B − D〉 in the form

I7 + 〈3B −D〉 = 〈3B −D,AB13(A2 − 6)(A2 − 9)(2A2 − 7)(P − 2B2), . . . , AB −K〉.
Moreover,

I7 + 〈3B − D,B(2B2 − P )〉 = 〈3B − D,B(2B2 − P ),M3, . . . , AB − K〉

and

I7 + 〈3B − D, 2A2 − 7〉 = 〈2A2 − 7, 3B − D,B7(2B2 − P )(3B2 − P ), AB − K,

−B(2B2 − P )(3B2 − P )2,−B(2B2 − P )(B2 − 2L + P ), AB(2B2 − P ) − 14M〉.

Hence, taking into account Proposition 1, we conclude that when 3B − D = 0 and
(27), O(0, 0) of system (6) is a focus. Since

I7 + 〈B − 2D〉 = 〈B − 2D,−AB9(A2 − 6)(L − 2P ), . . . ,K〉,
I7+〈B−2D,B(L−2P )〉 = 〈B−2D,B(L−2P ), B8M,M(13B6−800M2), . . . ,K〉,

then when B − 2D = 0 together with the condition (27) the system (6) also has a
focus in O(0, 0). For the ideal I7 + 〈4B − 3D〉 the Groebner basis gives

I7 + 〈4B − 3D〉 = 〈4B − 3D,A(A2 − 6)(A2 − 9)B11(3P − B2), . . . , AB − 3K〉.
In this case

I7 + 〈4B − 3D,B(B2 − 3P )〉 = 〈4B − 3D,B(B2 − 3P ),

−A(A2 − 6)B7(B2 − 9L), 64AB7(B2 − 9L) − 4782969M3 , . . . , AB − 3K〉,

i.e. when 4B − 3D = 0 and (27) holds, O(0, 0) of system (6) is a focus. While
examining the ideal I7 + 〈2B + D〉, we have

I7 + 〈2B + D〉 = 〈2B + D,AB9(A2 − 6)(A2 − 9)(B2 − P )2, . . . ,K + AB〉.
Here

I7 + 〈2B + D,B(B2 − P )〉 = 〈2B + D,B(B2 − P ),M3, . . . , AB + K〉.
Consequently, when 2B + D = 0, O(0, 0) of system (6) is a focus. For the ideal
I7 + 〈2B − D〉 we find a representation in the form

I7 +〈2B−D〉 = 〈2B−D,AB9(A2−6)(A2−9)(9B2−25P )(21B2−25P ), ..., 3AB−5K〉.
In this case I7 + 〈2B − D,B(9B2 − 25P )(21B2 − 25P )〉 = 〈2B − D,B(9B2 −
25P )(21B2 − 25P ),−AB7(A2 − 9)(3B2 + 10L − 5P ),−432AB7(3B2 + 10L − 5P )−
390625M3, . . . , 3AB − 5K〉. So, in the case when relations (27) and 2B −D = 0 are
fulfilled, O(0, 0) of system (6) is a focus. So, when (27) holds and
AB(3B −D)(B − 2D)(4B − 3D)(2B + D)(2B −D) = 0, O(0, 0) is a focus. We will
assume that the condition

AB(3B − D)(B − 2D)(4B − 3D)(2B + D)(2B − D) 6= 0
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holds. Applying the change x = x1/B, y = y1/B
2, dt = Bdτ we will transform

system (6) to the form
dx1/dτ = y1(1 + Dx1/B + Px2

1/B
2),

dy1/dτ = −x3
1 + Ax1y1 + y2

1 + Kx2
1y1/B + Lx1y

2
1/B

2 + My3
1/B

3. (28)

System (28) shows that it is enough to study the system (6) when B = 1, and
then to change D,P,K,L,M for D/B,P/B2,K/B,L/B2,M/B3. Let us show that
when B = 1 A(A2 − 6)(A2 − 9)(D − 3)(2D − 1)(3D − 4)(D + 2)(D − 2) 6= 0, O(0, 0)
of system (6) is a focus.

Suppose the contrary, that O(0, 0) of system (6) is a centre. From g1 = 0 we
find K = A(2D − 1)/5. Taking into account A(D − 3) 6= 0 we get from g2 = 0
L = [−A(2D − 1)(4D2 − 9D + 1)− 25M(2A2 − 21) + 5AP (6D − 13)]/[10A(D − 3)].
Considering L we have gi = αihi/[A(D − 3)]i−2, i = 3, 7, where αi 6= 0,

h3 = 4A2(2D−1)2(3D + 1)(16D3−69D2 + 157D−157) + 625AM [10A2(2D − 1)×
(2D2 − 3D − 3) − 3(164D3 − 316D2 + 33D − 33)] + 15625M2(2A2 − 21)×
(2A2 − 57) − 250A2P (2D − 1)(10D3 − 33D2 + 63D − 62) − 3125AMP×
(28A2D − 54A2 − 348D + 549) + 1250A2P 2(2D − 1)(3D − 4),

hi, i = 4, 7, are polynomials in A,D,P,M . Taking into account h3 = 0, hi, i = 4, 7,
we show that hi = βivi/[(2D − 1)(3D − 4)]i−3, where pi 6= 0, vi, i = 4, 7, are
polynomials in A,D,P,M of the first degree with respect to P . We shall denote by
Rx(u, v) the resultant of polynomials u, v with respect to x. We have

Rp(v4, h3) = γ4A
2(A2 − 9)(D − 3)2(2D − 1)(3D − 4)Mr4,

Rp(v4, vi) = γiA
2(A2 − 9)(D − 3)2(2D − 1)(3D − 4)Mri, i = 5, 7,

where γi 6= 0, ri, i = 4, 7, are polynomials in A,D,M with integer coefficients. As
far as A(A2 − 9)(D − 2)(2D − 1)(3D − 4)M 6= 0, then ri = 0, i = 4, 7. In the same
way Rp(h3, vi) = δiA

2(A2 − 9)(D − 3)[(D − 3)(2D − 1)(3D − 4)]i−3Msi, i = 5, 7,
where δi 6= 0, si, i = 5, 7, are polynomials in A,D,M with integer coefficients. Here
is si = 0, i = 5, 7, too. Let us notice that r4, r5 are polynomials of 5th degree relative
to M , s5, r7 of 7th degree, r6, s6, s7 are of 6th, 9th, 11th degree, respectively. While
computing the resultant of polynomials r4, Sr5 + r6 relative to M we get

RM (r4, Sr5 + r6) = αA25(A2−6)3(2A2−21)4(D−3)13(D−2)(D + 2)4(2D − 1)19×
(3D − 4)4(4D − 17)(4D − 7)H2

0 [4405854208A5(D − 3)6(2D − 1)5(3D − 4)4T0+
196689920A4(D − 3)5(2D − 1)4(3D − 4)3]T1S − 26342400A3(D−3)3(2D − 1)3×
(3D − 4)2T2s

2 + 3528000A2(D− 3)2(2D − 1)2(3D − 4)T3s
3 − 472500A(D − 3)×

(2D − 1)T4s
4 − 253125H1T5s

5],

where α 6= 0, H1 = (A2 − 6)[28A4(2D − 1)(3D − 4) − 6A2(2596D2 − 9316D +
9459) + 9(13298D2 − 62623D + 80687)] − 81(D − 3)(622D − 1481), H0, Ti, i = 0, 5,
are polynomials in A,D with integer coefficients. If 2A2 − 21 = 0, then from
r4 = 0, s5 = 0, s6 = 0 we have

A2(D − 3)14(D − 2)(D + 2)4(2D − 1)18(3D + 1)2(4D − 17)(4D − 7) = 0.

Hence, (3D + 1)(4D − 17)(4D − 7 = 0). Since
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I7+〈2A2−21, B+3D〉 = 〈2A2−21, B+3D,B11P,P (104763912686092943360AB9−
131554676229558899887953MP 3), 186824475M(413P 3 +13056M2), ..., AB+3K〉,

I7 + 〈2A2 − 21, 17B − 4D〉 = 〈2A2 − 21, 17B − 4D,B7(33B2 − 8P )(9B2 − 2P ),
−71876935680M3 − 7AB(33B2 − 8P )(9B2 − 2P )(102952372707B4−
47325572912B2P + 5362662080P 2), . . . , 3AB − 2K〉,

I7 + 〈2A2 − 21, 7B − 4D〉 = 〈2A2 − 21, 7B − 4D,B7(5B2 − 8P )(B2 + 2P ),
AB(5B2 − 8P )(B2 + 2P )(56056383B4 − 124509840B2P + 66718400P 2)−
98014003200M3 , . . . , AB − 2K〉,

then when 2A2 − 21 = 0 and (27) holds, O(0, 0) of system (6) is a focus. If AB 6=
0, (17B − 4D)(7B − 4D) = 0, then the study of the system of equations gi = 0,
i = 1, 7, shows that if (27) is fulfilled, O(0, 0) of system (6) can be a centre only in
the case 2A2 − 21 = 0. So, when (17B − 4D)(7B − 4D) = 0 we have the case of
focus.

Let us examine now the case H0 = 0. To do this we find

RM (h3, vi) = µiA
30(A2 − 6)3(2D − 1)17(D − 3)10(D − 2)(D + 2)4(4D − 17)×

(4D − 7)[(2A2 − 21)2(D − 3)4(2D − 1)3]i−4Bi, i = 5, 6,

where µi 6= 0, B5 = T5C1, B6 = T0C2, C1 and C2 are polynomials in A,D, which
consist of 1273 and 2088 factors, respectively. Then we find

RA(H0, Bi) = λi(D − 3)14(2D − 1)59(3D−4)6(3D+1)2(4D−7)2(4D2 + 36D−
69)2(14D2 − 19D − 24)4(16D2 − 21D − 6)2(632D3 − 3408D2 + 6159D − 3994)×
(1456D3−11244D2+28752D−25247)(88D4−410D3+993D2−1792D+1256)×
(2184D5 − 7700D4 − 19135D3 + 102085D2 − 98789D − 3402)Ei, i = 5, 6,

where λi 6= 0, Ei, i = 5, 6, are coprime polynomials in D. Since (D−3)(2D−1)(3D−
4)(3D + 1)(4D − 7) 6= 0 only in the case (2A2 − 21)(A2 − 6) = 0, RA(H0, Bi) =
0, i = 5, 6, we can conclude that also when H0 = 0, O(0, 0) of system (6) cannot be
a centre. In the case when H1 = 0 the study of system H1 = 0, Ti = 0, i = 0, 4,
shows that O(0, 0) of system (6) is a focus. So, in the case when B = 1 and (27)
holds, O(0, 0) of system (6) can be a centre only when

Ti = 0, i = 0, 5. (29)

Let us find the real solutions of system (29), where A2 < 8. We have

Rz(Ts, Ti) = γi,0(D − 3)24(D + 2)3(2D − 1)22(3D − 4)2Θ0Bi,0, i = 0, 4,
where z = A2, γi,0 6= 0, Θ0 are polynomials in D of 66th degree whose coefficients
are coprime integer numbers of the order from 1077 to 10114, Bi,0, i = 0, 4, are
coprime polynomials in D of degree 690, 668, 657, 635, 613, respectively. Notice
that the polynomial Θ0 has 20 real roots.

On the other hand,

RD(T5, Ti) = γi,1(A
2 − 9)3(A2 − 6)2(7A2 − 30)12Θ3Bi,1, i= 0, 4,

where γi,1 6= 0, Bi,1, i = 0, 4, are coprime polynomials in A, Θ is a polynomial in
A of 44th degree which consists of terms in even degrees and whose coefficients are
coprime integer numbers of the order from 1032 to 1054.
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Let us introduce the vector q = (A,D). The system (29) has 18 real solutions
q = qi, where qi = (Ai,Di), i = 1, 9, qi+9 = (−Ai,Di), i = 1, 9, and

A1 = 2.48741..., A2 = A3 = A4 = 2.495479 . . . , A5 = A6 = A7 = 2.189944 . . . ,
A8 = 2.072126 . . . , A9 = 1.916074 . . . , D1 = 2.027444 . . . , D2 = 2.9540003 . . . ,
D3 = 2.990356 . . . , D4 = 3.008036 . . . , D5 = 0.617227 . . . , D6 = 1.954363 . . . ,
D7 = 5.659333 . . . , D8 = 4.479633 . . . , D9 = 3.057486 . . . .

Replacing qi, i = 1, 18, by ri, i = 4, 6, which was found from the system of equations
ri = 0, i = 4, 6, find M = Mi, i = 1, 18.

Then from v4 = 0 we find p = pi, i = 1, 18. Consider r = (A,D,K,L,M,P ).
Taking into account K,L which were found before, when B = 1, we have 18 real
solutions r = rk = (Ak,Dk,Kk, Lk,Mk, Pk), k = 1, 18, of the system of equations
gi = 0, i = 1, 6. Here ri+9 = (−Ai,Di,−Ki, Li,−Mi, Pi), i = 1, 9. Notice that Ai

are roots of the polynomial Θ, Di are roots of the polynomial θ0.
Let us show that g7|r=r

k
6= 0, k = 1, 18 . We have

RM (r4, r7) = α0A
35(A2 − 6)3(2A2 − 21)5(D − 3)24(D − 2)(D + 2)4(2D − 1)29×

(3D − 4)12(4D − 17)(4D − 7)H2
0T6,

where α0 6= 0. Then we find RA2(T5, T6) = γ5,6(D−3)30(D+2)(2D−1)26(3D−4)2C0,
where γ5,6 6= 0, C0, is a polynomial in D of 997th degree whose coefficients are
coprime integer numbers of the order from 103009 to 103580. Since Θ0, C0 are
coprime polynomials in D, then v7|r=r

k
6= 0, k = 1, 18. So, when (29) is fulfilled,

O(0, 0) cannot be a centre.
Proof of Theorem 5. The proof follows directly from Lemmas 1–4.

Proposition 2. When r = rk, k = 1, 18, B = 1, the critical point O(0, 0) of system
(6) is a focus of 7th order.

Proof. The proof follows from Lemma 4.

Theorem 6. For any ε > 0, δ > 0, k, (k = 1, 18) there exists r ∈ Uδ(rk),
where Uδ(rk) is a δ-neighbourhood of rk, such that system (6) with B = 1 has in
ε-neighbourhood Uε(0) of the point O(0, 0) 6 limit cycles.

Proof. The proof is analogous to the proof of Theorem 3 from [25], using Lemma
1 from [25].
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On initial value problem in theory of the second order

differential equations

Valerii Dryuma∗, Maxim Pavlov

Abstract. We consider the properties of the second order nonlinear differential
equations b

′′ = g(a, b, b
′) with the function g(a, b, b

′ = c) satisfying the following
nonlinear partial differential equation

gaacc + 2cgabcc + 2ggaccc + c
2
gbbcc + 2cggbccc + g

2
gcccc + (ga + cgb)gccc−

4gabc − 4cgbbc − cgcgbcc − 3ggbcc − gcgacc + 4gcgbc − 3gbgcc + 6gbb = 0 .

Any equation b
′′ = g(a, b, b

′) with this condition on the function g(a, b, b
′) has the

General Integral F (a, b, x, y) = 0 shared with General Integral of the second order

ODE’s y
′′ = f(x, y, y

′) with the condition ∂
4
f

∂y
′4

= 0 on the function f(x, y, y
′) or

y
′′+a1(x, y)y′3+3a2(x, y)y′2+3a3(x, y)y′+a4(x, y) = 0 with some coefficients ai(x, y).

Mathematics subject classification: 34C14, 35K35.
Keywords and phrases: dual equation, space of linear elements, projective connec-
tion.

1 Introduction

The relation between the equations in the form

y′′ + a1(x, y)y
2 + 3a3(x, y)y

′ + a4(x, y) = 0 (1)

and
b′′ = g(a, b, b′) (2)

with the function g(a, b, b′) satisfying the p.d.e

gaacc + 2cgabcc + 2ggaccc + c2gbbcc + 2cggbccc + g2gcccc + (ga + cgb)gccc−
4gabc − 4cgbbc − cgcgbcc − 3ggbcc − gcgacc + 4gcgbc − 3gbgcc + 6gbb = 0.

(3)

from geometrical point of view was studied by E. Cartan [1].
In fact, according to the expressions for curvature of the space of linear elements

(x, y, y′) connected with equation (1)

Ω1
2 = a[ω2 ∧ ω2

1] , Ω0
1 = b[ω1 ∧ ω2] , Ω0

2 = h[ω1 ∧ ω2] + k[ω2 ∧ ω2
1] ,
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where

a = −1

6

∂4f

∂y′4
, h =

∂b

∂y′
, k = − ∂µ

∂y′
− 1

6

∂2f

∂2y′
∂3f

∂3y′
,

and

6b = fxxy′y′ + 2y′fxyy′y′ + 2ffxy′y′y′ + y′2fyyy′y′ + 2y′ffyy′y′y′

+ f2fy′y′y′y′ + (fx + y′fy)fy′y′y′ − 4fxyy′ − 4y′fyyy′ − y′fy′fyy′y′

− 3ffyy′y′ − fy′fxy′y′ + 4fy′fyy′ − 3fyfy′y′ + 6fyy

two types of equations by a natural way are evolved: the first type from the condition
a = 0 and the second type from the condition b = 0.

The first condition a = 0 determines the equation in form (1) and the second
condition leads to the equation (2) where the function g(a, b, b′) satisfies the above
p.d.e. (3).

From the elementary point of view the relation between both equations (1) and
(2) is a result of special properties of their General Integral F (x, y, a, b) = 0. So we
have the following fundamental diagram:

F (x, y, a, b) = 0
ւր ցտ

y′′ = f(x, y, y′) b′′ = g(a, b, b′)

m m
M3(x, y, y′) ⇐⇒ N3(a, b, b′)

which presents the General Integral F (x, y, a, b) = 0 (as some 3-dim orbifold) in the
form of the twice nontrivial fibre bundles on circles over corresponding surfaces:

M3(x, y, y′) = U2(x, y) × S1 and N3(a, b, b′) = V 2(a, b) × S1 .

2 Examples of solutions of dual equation

Let us consider the solutions of equation (3).

It has many types of reductions and the simplest of them are

g = cαω[acα−1], g = cαω[bcα−2], g = cαω[acα−1, bcα−2],

g = a−αω[caα−1], g = b1−2αω[cbα−1], g = a−1ω(c− b/a),

g = a−3ω[b/a, b− ac], g = aβ/α−2ω[bα/aβ, cα/aβ−α].

For any type of reduction we can write the corresponding equation (2) and then
integrate it.

For example, for the function g = a−γA(caγ−1) we get the equation

[A+(γ−1)ξ]2AIV +3(γ−2)[A+(γ−1)ξ]AIII +(2−γ)AIAII +(γ2−5γ+6)AII = 0.



ON EQUATION FOR INITIAL VALUES IN THEORY OF ODE 53

One solution of this equation is

A = (2 − γ)[ξ(1 + ξ2) + (1 + ξ2)3/2] + (1 − γ)ξ.

This solution corresponds to the equation

b′′ =
1

a
[b′(1 + b′2) + (1 + b′2)3/2]

with the General Integral

F (x, y, a, b) = (y + b)2 + a2 − 2ax = 0.

The dual equation has the form

y′′ = − 1

2x
(y′3 + y′).

Remark that the first examples of solutions of equation (3) were obtained in
[3-6].

Proposition 1. The equation (3) can be represented in the form

gac + ggcc − g2
c/2 + cgbc − 2gb = h(a, b, c), (4)

hac + ghcc − gchc + chbc − 3hb = 0.

From this it follows that there exists the class of equations (2) with the function
g(a, b, c) satisfying the condition

gac + ggcc − g2
c/2 + cgbc − 2gb = 0 (5)

which is easier solved than equation (3).
Here we present some solutions of the equation (5) as functions depending on

two variables g = g(a, c)
In the case when g = g(a, c) and h = 0 we have the equation

gac + ggcc −
1

2
g2
c = 0 .

To integrate this equation we can transform it into a more convenient form using
the variable gc = f(a, c). Then one obtains:

2fcfac + (f2 − 2fa)fcc = 0 .

After the Legendre transformation we obtain the equation:

[(ξωξ + ηωη − ω)2 − 2ξ]ωξξ − 2ηωξη = 0 .

Using the new variable ξωξ + ηωη − ω = R we have the new equation for R:
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Rξ −
1

2
R2ωξξ = 0

and the following relations:

ωη =
ω

η
+
R

η
+

2ξ

ηR
− ξA(η)

η
, ωξ = − 2

R
+A(η)

with an arbitrary function A(η). From the conditions of compatibility it follows:

2ηRη +Rξ(2ξ −R2) + ηAηR
2 = 0 .

Integrating this equation we can obtain general integral.
In the particular case A = 1

η
we have:

R2

R− 2η
= − ξ

η
+ Φ

(1

η
− 2

R

)

.

By the condition A = 0 we obtain the equation 2ηRη + (2ξ −R2)Rξ = 0 , which
has the solution:

R2 = 2ξ + 2ηΦ(R) ,

were Φ(R) is an arbitrary function.
After choosing the function Φ(R) we can find the function ω and then using

the inverse Legendre transformation, the function g which determines dual equation
b′′ = g(a, c).

Remark 1. The solutions of the equations of type

uxy = uuxx + εu2
x (6)

were constructed in [7]. In the article [8] it was showed that they can be presented
in the form

u = B′(y) +

∫

[A(z) − εy](1−ε)/εdz,

x = −B(y) +

∫

[A(z) − εy]1/εdz.

To integrate the above equations we can apply the parametric representation

u = A(a) + U(a, τ), y = B(a) + V (a, τ). (7)

Using the formulas

uy =
uτ

yτ

, ux = ux + uττx

we get after the substitution in (6) the conditions

A(x) =
dB

dx
and Uxτ −

(

VxUτ

Vτ

)

τ

+ U

(

Uτ

Vτ

)

τ

− 1

2

U2
τ

Vτ

= 0.
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So we get one equation for two functions U(x, τ) and V (x, τ). Any solution of
this equation determines the solution of equation (6).

Let us consider some examples.

A = B = 0, U = 2τ − xτ2

2
, V = xτ − 2 ln(τ).

Using the representation U = τωτ −ω, V = ωτ it is possible to obtain other
solutions of this equation.

The equation gac = ggcc − g2
c/2 can be integrated in explicit form and the

solutions are

g = −H ′(a) +

∫

dz

[A(z) + 1
2a]

3
, c = H(a) +

∫

dz

[A(z) + 1
2a]

2
,

with arbitrary functions H(a) and A(z).
In fact, for A(z) = z we have

g = −H ′(a) +

∫

dz

[z + 1
2a]

3
= −H ′(a) − 1

2

1

[z + 1
2a]

2

and

c = H(a) +

∫

dz

[z + 1
2a]

2
= H(a) − 1

[z + 1
2a]

3
.

As result we get the solution.

Remark 2. In general case the equation gacc + ggccc = 0 is equivalent to the
equation

gac + ggcc −
1

2
gc

2 = B(a) .

It can be integrated with the help of Legendre transformation as in the previous case.
Really, we get

[(ξωξ + ηωη − ω)2 − 2ξ + 2B(ωξ)]ωξξ − 2ηωξη = 0

and the relation
2Rξ = [R2 + 2B(ωξ)ωξξ.

It can be written in the form

2
dR

dΩ
= R2 + 2B(Ω)

using the notation ωξ = Ω.

Proposition 2. In the case h 6= 0 and g = g(a, c) the system (3) is equivalent to
the equation

Θa

(Θa

Θc

)

ccc
− Θc

(Θa

Θc

)

acc
= 1 (8)

where

g = −Θa

Θc

, hc =
1

Θc

.
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To integrate this equation we use the presentation c = Ω(Θ, a). From the
relations

1 = ΩΘΘc, 0 = ΩΘΘa + Ωc

we get

Θc =
1

ΩΘ
, Θa = − Ωa

ΩΘ
and

Ωa

ΩΘ
(Ωa)ccc +

1

ΩΘ
(Ωa)cca = 1.

Now we get

Ωac =
ΩaΘ

ΩΘ
= (ln ΩΘ)a = K, Ωacc =

KΘ

ΩΘ
,

Ωaccc = (
KΘ

ΩΘ
)Θ

1

ΩΘ
, (Ωacc)a = (

KΘ

ΩΘ
)a −

Ωa

ΩΘ
(
KΘ

ΩΘ
)Θ.

As a result the equation (8) takes the form

[

(ln ΩΘ)aΘ

ΩΘ

]

a

= ΩΘ (9)

and can be integrated by the substitution Ω(Θ, a) = Λa. So, we get the equation

ΛΘΘ =
1

6
Λ3

Θ + α(Θ)Λ2
Θ + β(Θ)Λ(Θ) + γ(Θ) (10)

with arbitrary coefficients α, β, γ.
Let us consider the following examples.
1. α = β = γ = 0
The solution of equation (10) is

Λ = A(a) − 6

√

B(a) − 1

3
Θ

and we get

c = A′ − 3B′

√

B − 1
3Θ

or Θ = 3B − 27
B′2

(c −A′)2
.

This solution corresponds to the equation

b′′ = −Θa

Θc

= − 1

18B′
b′

3
+

A′

6B′
b′

2
+

(

B′′

B′
− A′2

6B′

)

b′ +A′′ +
A′3

18B′
− A′B′′

B′

cubical in the first derivative b′ with arbitrary coefficients A(a), B(a). This equation
is equivalent to the equation b′′ = 0 under a point transformation.

In fact, from the formulas

L1 =
∂

∂y
(a4y + 3a2a4) −

∂

∂x
(2a3y − a2x + a1a4) − 3a3(2a3y − a2x) − a4a1x,
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L2 =
∂

∂x
(a1x − 3a1a3) +

∂

∂x
(a3y − 2a2x + a1a4) − 3a2(a3y − 2a2x) + a1a4y

which determine the components of projective curvature of the space of linear ele-
ments for the equation in the form

y′′ + a1(x, y)y′3 + 3a2(x, y)y
′2 + 3a3(x, y)y

′ + a4(x, y) = 0

we have

a1(x, y) =
1

18B′
, a2(x, y) = − A′

18B′
, a3(x, y) =

A′2

18B′
− B′′

3B′
,

a4(x, y) =
A′B′′

B′
− A′3

18B′
−A′′

and conditions L1 = 0, L2 = 0 hold.

This means that our equation determines a projective flat structure in the space
of elements (x, y, y′).

Remark 3. The conditions L1 = 0, L2 = 0 correspond to the solutions of the
equation (3) in the form

g(a, b, b′) = A(a, b)b′
3
+ 3B(a, b)b′

2
+ 3C(a, b)b′ +D(a, b).

In general case the equation (2) with condition (3) determines the 3-dimensional
Einstein-Weyl geometry in the space of linear elements (a, b, b′).

For more general classes of the form-invariant equations the notion of dual equa-
tion is introduced by analogous way.

For example, for the form-invariant equation of the type

Pn(b′)b′′ − Pn+3(b
′) = 0,

where Pn(b′) are the polynomials of degree n in b′ with coefficients depending on the
variables a, b, the dual equation b′′ = g(a, b, b′) has the right-hand side g(a, b, b′)
in the form [9]

∣

∣

∣

∣

∣

∣

∣

∣

ψn+4 ψn+3 ... ψ4

ψn+5 ψn+4 ... ψ5

. . ... .
ψ2n+4 ψ2n+3 ... ψn+4

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

where the functions ψi are determined with the help of the relations

4!ψ4 = − d2

da2
gcc + 4

d

da
gbc − gc(4gbc −

d

da
gcc) + 3gbgcc − 6gbb,

iψi =
d

da
ψi−1 − (i− 3)gcψi−1 + (i− 5)gbψi−2, i > 4.
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For example, for the equation 2yy′′ − y′4 − y′2 = 0 with the solution

x = a(t+ sin t) + b, y = a(1 − cos t)

we have the dual equation b′′ = − tan(b′/2)/a.
According to the above formulas for n = 1 we get

4!ψ4 =
3

2a3
tan

c

2
(1 + tan2 c

2
)3, 5!ψ5 = − 15

4a4
tan

c

2
(1 + tan2 c

2
)4,

6!ψ6 =
90

8a5
tan

c

2
(1 + tan2 c

2
)5,

and the relation
ψ2

5 − ψ4ψ6 = 0

is satisfied.
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About some equations of the third order with six poles

A.V. Chichurin

Abstract. Investigating ordinary differential equations of the third order on
the subject of belonging to P-type (solutions of such equations have no movable
critical singular points), Chazy has built an equation (Chazy equation) with
32 coefficients. If these coefficients satisfy the special (S)-system, then Chazy
equation belongs to P-type. In this paper we find three solution of the (S)-
system and build three classes of Chazy equation of the P-type.

Mathematics subject classification: 34A30.
Keywords and phrases: nonlinear differential equation of the third order,
Painleve property (P-type), Chazy system, Chazy equations of the P-type.

Having researched nonlinear differential equations of the third order on the sub-
ject of belonging to P-type (solutions of such equations have no movable critical
singular points), Chazy have obtained the equation [1]

w′′′ =
6∑

k=1

(w′ − a′k)(w
′′ − a′′k) + Ak(w′ − a′k)

3 + Bk(w′ − a′k)
2 + Ck(w′ − a′k)

w − ak
+

+Dw′′ + Ew′ +
6∏

i=1

(w − ai)
6∑

k=1

Fk

w − ak
, (1)

32 coefficients of equation (1) Ak, Bk, Ck, Fk, D,E, ak (k = 1, 6) are functions of z.
The aim of this paper is building of three classes of equations (1) of P-type.
Equation (1) is connected quite closely with Painleve equations [2]. Investigation

of equation (1) is also connected with the theory of isomonodromy deformation
of linear systems, the theory of golonomic quantum fields and nonlinear evolution
equations. The necessary and sufficient conditions of belonging of equation (1) to
P-type are a system (S) [1], which consists of 31 algebraic and differential equations

6∑

k=1

Ak = 0,
6∑

k=1

akAk = 0,
6∑

k=1

a2
kAk = 0, (2)

2A2
k +

∑

j

Ak −Aj

ak − aj
= 0 (k, j = 1, 6; j 6= k), (3)

c©2003 A.V.Chichurin
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2D +
6∑

k=1

(Bk − 3a′kAk) = 0,

6∑

k=1

Fk =
6∑

k=1

akFk =
6∑

k=1

a2
kFk = 0, (4)

−(
5
2
Ak +

∑

j

1
ak − aj

)Bk +
∑

j

(
1
2
Ak +

1
ak − aj

)Bj = −A′k+

+Ak

∑

j

a′k − a′j
ak − aj

− 3
∑

j

Aj

a′k − a′j
ak − aj

+
3
2
Ak

6∑

i=1

a′iAi, (5)

−(2Ak +
∑

j

1
ak − aj

)Ck +
∑

j

Cj
1

ak − aj
= B2

k −B′
k −Bk

∑

j

a′k − a′j
ak − aj

−

−
∑

j

3Aj(a′k − a′j)
2 + 2Bj(a′k − a′j)

ak − aj
+ BkD −E −

∑

j

a′′k − a′′j
ak − aj

, (6)

−a′′′k −BkCk + C ′
k +

∑

j

(a′k − a′j)(a
′′
k − a′′j − Ck) + Aj(a′k − a′j)

3

ak − aj
+

+
∑

j

Bj(a′k − a′j)
2 + Cj(a′k − a′j)

ak − aj
+ E a′k + D(a′′k −Ck) + Fk

∏

j

(ak − aj) = 0, (7)

where k, j = 1, 6; j 6= k.
Chasy did not investigate the (S) system and therefore did not single out ex-

plicitly the classes of equations like (1), which are P-type equations. Prof. N.A.
Lukashevich continued the investigation of system (S). In [3] he proved that solution
of systems (2), (3) is

Ak = −1/ak (k = 1, 6). (8)

The search of solutions of systems (4)-(7) is contained in the papers [4, 5]. Here
to simplify calculations we consider the case when ak (k = 1, 6) are constants.

Let us consider system (5). From the relation (41) (the first relation of the system
(4)) we find

D =
6∑

i=1

(−1
2

Bi +
3
2
a′iAi). (9)

Using relation (9) we rewrite system (5) as

−3AkBk +
∑

j

Bj −Bk

ak − aj
= −A′k +

∑

j

(Ak−3Aj)
a′k − a′j
ak − aj

+AkD (k, j = 1, 6; j 6= k).

(10)
We simplify the sum in the right-hand side of (10) (here we use relations (8))
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∑

j

(
− 1

ak
+

3
aj

)
a′k − a′j
ak − aj

= − 1
ak

∑

j

a′k − a′j
ak − aj

+ 3
∑

j

1
aj

a′k − a′j
ak − aj

=

=
2
ak

∑

j

a′k − a′j
ak − aj

+
3
ak


a′k

∑

j

1
aj
−

∑

j

a′j
aj


 . (11)

From equalities (8) it follows that

σ1 = σ5 = 0, (12)

where σ1, σ5 are the first and the fifth elementary symmetric polynomials composed
of the elements ak (k = 1, 6). Using (12) we get

∑
j

1
aj

=
∑6

i=1
1
ai
− 1

ak
= − 1

ak
. Then

expression (11) is
2
ak

∑

j

a′k − a′j
ak − aj

− 3
a′k
a2

k

− 3
ak

∑

j

a′j
aj

. (13)

Using (13) we can write system (10) in the form

3
ak

Bk +
Bj −Bk

ak − aj
= −a′k

a2
k

+
2
ak

∑

j

a′k − a′j
ak − aj

− 3
a′k
a2

k

− 3
ak

σ′6
σ6
− D

ak
(k, j = 1, 6; j 6= k),

(14)
where σ6 =

∏6
i=1 ai. Let us set

Bi = ψi − 1
3
D − 2

a′i
ai
− 1

3
σ′6
σ6

(i = 1, 6). (15)

Then system (15) is

 3

ak
−

∑

j

1
ak − aj


 ψk +

∑

j

ψj

ak − aj
= −3 (a−1

k )′ (k, j = 1, 6; j 6= k), (16)

where ψk (k = 1, 6) are unknown values. A simple calculation shows us that the
determinant of the system (16) is equal to zero. Hence according to Kroneker-
Capelli criterion for the compatibility of system (16) it is necessary and sufficient
that the rank of extended matrix be equal to the rank of matrix of system (16).
This condition is true if ak (k = 1, 6) are constants. Then the system (16) has the
form


 3

ak
−

∑

j

1
ak − aj


 ψk +

∑

j

ψj

ak − aj
= 0 (k, j = 1, 6; j 6= k).

Solving this system we obtain

ψ1 =
a1

a6

a2a3 + a2a4 + a2a5 + a2a6 + a3a4 + a3a5 + a3a6 + a4a5 + a4a6 + a5a6

a1a2 + a1a3 + a1a4 + a1a5 + a2a3 + a2a4 + a2a5 + a3a4 + a3a5 + a4a5
ψ6,
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17)

ψ5 =
a5

a6

a1a2 + a1a3 + a1a4 + a1a6 + a2a3 + a2a4 + a2a6 + a3a4 + a3a6 + a4a6

a1a2 + a1a3 + a1a4 + a1a5 + a2a3 + a2a4 + a2a5 + a3a4 + a3a5 + a4a5
ψ6.

Using elementary symmetric polynomials we rewrite the relations (17) as

ψi =
δi

δ6
ψ6 (i = 1, 5),

where
δk = ak (σ2 + a2

k) (k = 1, 6), (18)

ψ6 is an arbitrary analytical function of z.
Let us set

ψ ≡ ψk/δk (k = 1, 6). (19)

Using the substitution (18), (19), we obtain a solution of the system (5) in the
form

Bk = ak(σ2 + a2
k)ψ −

1
3

D (k = 1, 6), (20)

where D is a known function, ψ is an arbitrary analytical function of z. Further we
shall use the relations [5]

6∑

k=1

an
k

φ(ak)
≡ 0 (n = 0, 4),

6∑

k=1

a5
k

φ(ak)
≡ 1,

6∑

k=1

a6
k

φ(ak)
≡ σ1,

6∑

k=1

a7
k

φ(ak)
≡ σ2

1 − σ2,
6∑

k=1

a8
k

φ(ak)
≡ σ3

1 − 2σ1σ2 + σ3, (21)

where φ(ak) ≡
∏

j (ak − aj) (j 6= k; j, k = 1, 6), σk (k = 1, 6) is an elementary
symmetric polynomial composed of the elements ak (k = 1, 6). For σ1 = σ5 = 0
from the identities (21) we have

6∑

k=1

an
k

φ(ak)
≡ 0 (n = 0, 4, 6),

6∑

k=1

a5
k

φ(ak)
≡ 1,

6∑

k=1

a7
k

φ(ak)
≡ −σ2,

6∑

k=1

a8
k

φ(ak)
≡ σ3,

6∑

k=1

a9
k

φ(ak)
≡ σ2

2 − σ4,
6∑

k=1

a10
k

φ(ak)
≡ (−2)σ2σ3, (22)

6∑

k=1

a11
k

φ(ak)
≡ σ2

3 − σ3
2 + 2σ2σ4 − σ6,

6∑

k=1

a12
k

φ(ak)
≡ 3σ2

2σ3 − 2σ3σ4.

Since a′k = 0 (k = 1, 6), the first relation of the system (4) is

6∑

k=1

Bk = −2D. (23)
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Hence
6∑

k=1

Bk = σ2ψ σ1 + ψ
6∑

k=1

a3
k − 2D = s3ψ − 2D. (24)

From the equalities (23) and (24) the next theorem follows.

Theorem 1. System (41), (5) with respect to constantsak (k = 1, 6) is compatible
and it has two solutions:
1) Bk = −1

3 D (k = 1, 6) (for ψ = 0), (25)
or
2) Bk (k = 1, 6) is determined according to (20) (for s3 = 0).

Then we shall find a solution of the systems (6), (7). The system (6) for our case
has the form 

 2
ak
−

∑

j

1
ak − aj


 Ck +

∑

j

Cj

ak − aj
=

= (δkψ − 1
3

D)2 − δkψ
′ +

1
3
D′ + δkψD − 1

3
D2 −E (k, j = 1, 6; j 6= k). (26)

The determinant of system (26) is equal to zero. By setting

Ck =
ak

3
(E − 1

3
D′ +

2
9
D2) + χk (k = 1, 6) (27)

in the system (26) we get the system

 2

ak
−

∑

j

1
ak − aj


 χk +

∑

j

χj

ak − aj
= (

1
3
Dψ−ψ′)δk +ψ2δ2

k (k, j = 1, 6; j 6= k).

(28)
Applying Cramer’s rule to the system (28), we find the value of the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1
3Dψ − ψ′)δ1 + ψ2δ2

1
1

a1−a2

1
a1−a3

1
a1−a4

1
a1−a5

1
a1−a6

(1
3Dψ − ψ′)δ2 + ψ2δ2

2 a22
1

a2−a3

1
a2−a4

1
a2−a5

1
a2−a6

(1
3Dψ − ψ′)δ3 + ψ2δ2

3
1

a3−a2
a33

1
a3−a4

1
a3−a5

1
a3−a6

(1
3Dψ − ψ′)δ4 + ψ2δ2

4
1

a4−a2

1
a4−a3

a44
1

a4−a5

1
a4−a6

(1
3Dψ − ψ′)δ5 + ψ2δ2

5
1

a5−a2

1
a5−a3

1
a5−a4

a55
1

a5−a6

(1
3Dψ − ψ′)δ6 + ψ2δ2

6
1

a6−a2

1
a6−a3

1
a6−a4

1
a6−a5

a66

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where aii = 2
ai
−∑

j (j 6=i)
1

ai−aj
(i = 2, 6). A simple calculation shows us that this

determinant is equal to

12a1

σ6
(σ3 − a1σ2 − a3

1)
(

1
3
Dψ − ψ′ + σ3ψ

2

)
.

Also this determinant must be equal to zero because the determinant of the system
(28) is equal to zero. Hence we obtain the condition for the function ψ

1
3
Dψ − ψ′ + σ3ψ

2 = 0. (29)
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Now consider the first case when ψ = 0. Then we get

Bk = −1
3

D (k = 1, 6). (30)

Solving the system

 2

ak
−

∑

j

1
ak − aj


 χk +

∑

j

χj

ak − aj
= 0 (k, j = 1, 6; j 6= k). (31)

with unknown functions χk (k = 1, 6), we find

χk =
ξi

ξ6
χ6 (i = 1, 5), (32)

where

ξ1 = a1(a2a3a4 + a2a3a5 + a2a3a6 + a2a4a5 + a2a4a6 + a2a5a6 + a3a4a5+

a3a4a6 + a3a5a6 + a4a5a6) = a1(σ3 − a1σ2 − a3
1),

. . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .

ξ6 = a6(a1a2a3 + a1a2a4 + a1a2a5 + a1a3a4 + a1a3a5 + a1a4a5 + a2a3a4+

a2a3a5 + a2a4a5 + a3a4a5) = a6(σ3 − a6σ2 − a3
6),

χ6 is an arbitrary analytical function of z. Let us set

ξk = ak(σ3 − akσ2 − a3
k), χ =

χk

ξk
(k = 1, 6). (33)

Using relations (32), (33), for our case we write a solution of the system (6) in the
form

Ck =
ak

3
(E − 1

3
D′ +

2
9
D2) + ξk χ (k = 1, 6), (34)

where ξk are determined according to formulas (33), χ is any analytical function.
Let us consider the second case, when s3 = σ3 = 0. Taking into account relation

(27), we obtain system (26) as

 2

ak
−

∑

j

1
ak − aj


 χk +

∑

j

χj

ak − aj
= ψ2δ2

k (k, j = 1, 6; j 6= k), (35)

where the function ψ, according to (29), has the form

ψ = C exp
(

1
3

∫
Ddx

)
, (36)
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(C is an arbitrary constant). We shall seek functions χk (k = 1, 6) in the form

χk = ψ2[a3
k

(
1
3
a4

k +
4
3
σ2a

2
k + σ2

2 +
4
3

σ4

)
+

ak

3
(6σ2σ4 +2σ6)]+ χ̃k (k = 1, 6). (37)

By substituting (37) into the system (35) we obtain the system (31), where
functions χ̃k (k = 1, 6) are unknown values. Let us consider the solution (32), (33)
of the system (31). Because σ3 = 0 then solution of the last system is

χ̃k = −a2
k(σ2 + a2

k)χ (k = 1, 6),

where χ is an arbitrary analytical function. Hence solution of system (35) is

χk = ψ2[a3
k

(
1
3
a4

k +
4
3
σ2a

2
k + σ2

2 +
4
3

σ4

)
+

ak

3
(6σ2σ4+2σ6)]−a2

k(σ2+a2
k)χ (k = 1, 6).

(38)
Taking into account the substitution (38), we obtain

Ck = ψ2[a3
k

(
1
3
a4

k +
4
3
σ2a

2
k + σ2

2 +
4
3

σ4

)
+

+
ak

3
(E − 1

3
D′ +

2
9
D2 + 6σ2σ4 + 2σ6)]− a2

k(σ2 + a2
k)χ (k = 1, 6). (39)

Thus in the second case we have determined functions Ck (k = 1, 6) in the form
(39). From Theorem 1 and relations (39) the next theorem follows:

Theorem 2. System (6) with respect to constants ak (k = 1, 6) is compatible and it
has two solutions:
1) Ck = ak

3 (E − 1
3D′ + 2

9D2) + ξkχ (for ψ = 0), (40)
or
2) Ck (k = 1, 6) is determained according to (39) ( for s3 = 0).

Now we shall seek a solution of the system (7). By our assumptions this system
is

−BkCk + C ′
k −DCk + Fk

∏

j

(ak − aj) = 0 (k, j = 1, 6; j 6= k). (41)

Using the notations

φ(ak) ≡
∏

j

(ak − aj) = ak(6a4
k + 4σ2a

2
k + 2σ4) (k = 1, 6)

and (20) in the general case we rewrite system (41) in the form

Fk =
(ak(σ2 + a2

k)ψ + 2D/3)Ck − C ′
k

φ(ak)
(k = 1, 6).

Using relations (39) from the last system we find

Fk = [3ψ3a10
k + 15σ2ψ

3a8
k + ψ(2Dψ − 6ψ′ − 9χ)a7

k + ψ3(9λ1 + 12σ2
2)a

6
k+
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+2σ2ψ(4Dψ − 9χ− 12ψ′)a5
k + (3ψ3(λ2 + 3λ1σ2 + γ) + 9χ′ − 6Dχ)a4

k+

+3ψ(2Dλ1ψ − 3σ2
2χ− 6λ1ψ

′)a3
k + (3σ2ψ

3(λ2 + γ) + 3σ2(3χ′ − 2Dχ))a2
k+ (42)

+ψ(2Dλ2ψ + 2Dγψ − 3ψγ′ − 6λ2ψ
′ − 6γψ′)ak] (k = 1, 6),

where γ ≡ E − 1
3D′ + 2

9D2, λ1 ≡ σ2
2 + 4

3σ4, λ2 ≡ σ2σ4 + 2σ6. We find the
exact form of the functions Fk (k = 1, 6) for each of two cases. Consider the case
1 (ψ = 0, the functions Bk (k = 1, 6) are determined according to relations (30),
Ck (k = 1, 6) - according to (40)). Taking into account relations (42) we obtain
functions Fk (k = 1, 6) as

Fk =
ak

3φ(ak)
γ1 +

ξk

φ(ak)
(χ′ +

2
3
Dχ) (k = 1, 6), (43)

where
γ1 =

1
3
D′′ − 2

3
DD′ − E′ +

2
3
DE +

4
27

D3. (44)

Since equality (52) :
∑6

k=1 Fk = 0 is true, then χ′ + 2
3Dχ = 0 or

χ = C exp(−2
3

∫
Ddx), (45)

where C is an arbitrary constant. From relations (43) and (45) we find

Fk =
ak

3φ(ak)
γ1 (k = 1, 6). (46)

Thus in the first case equation (1) has the form

w′′′ =
6∑

k=1

w′w′′ − (ak)−1 w′3 + Bkw
′2 + Ckw

′

w − ak
+Dw′′+Ew′+

6∏

i=1

(w−ai)
6∑

k=1

Fk

w − ak
,

(47)
where Bk (k = 1, 6) are determined according to formulas (30), Ck (k = 1, 6)
- according to formulas (40), Fk (k = 1, 6) - according to formulas (46) and χ -
according to formula (45).

Consider the second case (s3 = 0 or, taking into account the relation s3 = 3σ3,
we have σ3 = 0). Functions Bk (k = 1, 6) are determined from (20), functions
Ck (k = 1, 6) are determined from (39). Then relations (22) are

6∑

k=1

an
k

φ(ak)
≡ 0 (n = 0, 4, 6, 8, 10, 12),

6∑

k=1

a5
k

φ(ak)
≡ 1,

6∑

k=1

a7
k

φ(ak)
≡ −σ2,

6∑

k=1

a9
k

φ(ak)
≡ σ2

2 − σ4,
6∑

k=1

a11
k

φ(ak)
≡ −σ3

2 + 2σ2σ4 − σ6. (48)
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To find functions Fk (k = 1, 6) we use the identities (48). Substituting values
of the functions Fk (k = 1, 6) from (42) in the relation

∑6
k=1 Fk = 0, we obtain

3σ2ψ(2Dψ − 6ψ′ − 3χ) = 0. (49)

Since ψ 6= 0 (otherwise we have the first case), then from (49) it follows:

σ2 = 0, (50)

or
χ =

2
3
Dψ − 2ψ′. (51)

Substituting the value of function ψ from (36) into (51), we obtain

χ = 0. (52)

Substitute (42), (48) and (52) into the relations
∑6

k=1 akFk = 0,
∑6

k=1 a2
kFk = 0.

Then the first relation becomes
1
3

ψ3 (2D2 + 3(3E − 3σ2σ4 + 3σ6 −D′) = 0, (53)

and the second one be the identity. From (53) we find the value of function E

E =
1
9
(3D′ − 2D2) + σ2σ4 − σ6. (54)

By substituting (52), (54) into equation (42), we obtain functions Fk (k = 1, 6)
as

Fk =
a2

k(σ2 + a2
k)(a

6
k + 4σ2a

4
k + a2

k(3σ2
2 + 4σ4) + 7σ2σ4 + σ6)

3φ(ak)
ψ3 (k = 1, 6). (55)

Consider here the subcase σ2 = 0. Then from the relation
∑6

k=1 akFk = 0, we
find

χ′ =
1
27

(18Dχ + (3D′ − 2D2 − 9E − 9σ6)ψ3). (56)

Substitute (42), (48), (56) and σ2 = 0 into the relation
∑6

k=1 a2
kFk = 0, which

we can write as
9σ4 χ ψ = 0.

From the last equation it follows that σ4 = 0 (otherwise we obtain one of two
considered above cases: ψ = 0 or χ = 0). Then functions Fk (k = 1, 6) have the
next form:

Fk =
1

27φ(ak)
[akψ(9a9

kψ
2−27a6

kχ+9a3
kσ6ψ

2+ψ(3(D′′−3E′)−4DD′))] (k = 1, 6). (57)

Thus, in the second case (σ3 = 0) we obtain two equations (47), where Bk (k =
1, 6) are determined by (20), Ck (k = 1, 6) are determined by (39), Fk (k = 1, 6)
be (55) or (57). The preceding gives the following two theorems.
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Theorem 3. For constants ak (k = 1, 6) the system (7) is compatible and it has
three solutions:
1) Fk (k = 1, 6) are determined by (46) and there are (44), (45) ( for ψ = 0)
or
2) Fk (k = 1, 6) are determined by (55) and there are (52), (54) (for s3 = 0)
or
3) Fk (k = 1, 6) are determined by (57) and there are (56), σ2 = σ4 = 0 (for
s3 = 0).

Theorem 4. Differential equations (47), where
1) Bk (k = 1, 6) are determined by (30), Ck (k = 1, 6) - by (40), Fk (k = 1, 6) -
by (46), χ = C exp(−2

3

∫
Ddx) ( C is arbitrary constant)

or
2) Bk (k = 1, 6) are determined by (20), Ck (k = 1, 6) - by (39), Fk (k = 1, 6) -
by (55) and there are σ3 = 0, (52), (54)
or
3) Bk (k = 1, 6) are determined by (20), Ck (k = 1, 6) - by (39), Fk (k = 1, 6) -
by (57) and there are σ2 = σ3 = σ4 = 0, (56) belong to P-type.

By theorem 4 we obtain three classes of differential equations (47) of P-type.
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Ergodic sets and mixing extensions of topological

transformation semigroups

A.I. Gherco

Abstract. We extend the concept of the ergodic set [1] – [2] from topological trans-
formation groups to topological transformation semigroups. We investigate, in par-
ticular, connections between ergodicity, weak ergodicity, topological transitivity and
minimality of the Whitney’s sum of extensions of topological transformation semi-
groups.
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1 Basic definitions and notations

In this paper we use terminology and notation generally accepted at present in
the theory of topological transformation groups (semigroups). We give only defini-
tions of concepts which are necessary in our opinion; for more detailed discussions
the reader is referred to [2] – [5].

A topological transformation semigroup (for short transformation semigroup) is
a triple (X,S, π), where X is a nonempty compact Hausdorff topological space with
unique uniformity U [X] (phase space), S is a topological semigroup with the unit
element e (phase semigroup) and π : X×S → X is a continuous mapping satisfying
the following conditions:

1) ∀x ∈ X, π(x, e) = x;

2) ∀x ∈ X, ∀s, t ∈ S π(π(x, s), t) = π(x, st).

We shall refer to (X,S) rather than (X,S, π).
Let (X,S, π) be a transformation semigroup, s ∈ S, A ⊂ X. Usually we shall

write πs for the map X → X defined by πs(x) = π(x, s) (x ∈ X); xs = πs(x) and
xS = { xs | s ∈ S } (x ∈ X). For x ∈ X we denote the set xs−1 = {y | y ∈ X ∧ys =
x} and

AS−1 =
⋃

a∈A,s∈S

as−1.

A is called invariant if AS ⊂ A. A is called minimal if A 6= ∅ and xS = A for
every x ∈ A. A (X,S) is minimal if the set X is minimal. If for x ∈ X, xS is
minimal x is called an almost periodic point. We denote by AJ the set of all almost
periodic points from A.

c©2003 A.I.Gherco
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An extension (a homomorphism) ϕ : (X,S, π) → (Y, S, ρ) of transformation
semigroups is a continuous surjection ϕ : X → Y such that for ∀x ∈ X ∀s ∈
S, ϕ(πs(x)) = ρs(ϕ(x)). A homomorphism ϕ : (X,S, π) → (Y, S, ρ) is called an
isomorphism if ϕ is a homeomorphic map. Let ϕ : (X,S) → (Y, S), ψ : (Z,S) →
(Y, S) be two extensions. We denote:

Rϕψ = {(x, z) | (x, z) ∈ X × Z ∧ ϕ(x) = ψ(z)}; Rϕ = Rϕϕ; ∆(X) = {(x, x) | x ∈
X};

P (Rϕ) =
⋂

α∈U [X]

⋃

s∈S

{(x, y) | (x, y) ∈ Rϕ ∧ (xs, ys) ∈ α};

Q(Rϕ) =
⋂

α∈U [X]

⋃

s∈S

{(x, y) | (x, y) ∈ Rϕ ∧ (xs, ys) ∈ α}.

The set Rϕψ is an invariant set in the direct product of (X,S) and (Z,S). Hence
are defined the transformation semigroup (Rϕψ, S) and the Whitney’s sum of the
extensions ϕ and ψ η : (Rϕψ, S) → (Y, S), where η(x, y) = ϕ(x) = ψ(y) ((x, y) ∈
Rϕψ).

An extension ϕ : (X,S) → (Y, S) is called minimal if (X,S) is minimal.

An extension ϕ is called distal (proximal, regionally distal) if P (Rϕ) = ∆(X)
(P (Rϕ) = Rϕ, Q(Rϕ) = ∆(X)). If Y is a singleton, then the distal (proximal,
regionally distal) extension ϕ : (X,S) → (Y, S) is called transformation semigroup
(X,S) distal (proximal, regionally distal).

2 Ergodic transformation semigroups

The transformation semigroup (X,S) is said to be ergodic (weakly ergodic) if
X = V S−1 for any nonempty and open (nonempty, invariant and open) set V ⊂ X.
(X,S) is said to be topological transitive if xS = X for some x ∈ X.

It is clear that for transformation groups the concepts of the ergodicity and
weak ergodicity are the same and every ergodic transformation semigroup is weakly
ergodic.

Theorem 1. If for every nonempty open set V ⊂ X there exists nonempty, open
and invariant set U ⊂ V S−1, then any weakly ergodic transformation semigroup
(X,S) is ergodic.

Proof. Let V ⊂ X be a nonempty and open set and U ⊂ V S−1 be a nonempty,
open and invariant set. Since X = US−1 ⊂ (V S−1)S−1 ⊂ V S−1 ⊂ X then X =
V S−1.

Theorem 2. Let (X,S) be a transformation semigroup. The following assertions
are equivalent.

1) (X,S) is ergodic.
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2) X does not contain an invariant closed proper subset with the nonempty inte-
rior.

3) X = US for any nonempty open set U ⊂ X.

4) U ∩ V s 6= ∅ for any nonempty open sets U and V from X and some s ∈ S.

5) Us−1 ∩ V 6= ∅ for any nonempty open sets U and V from X and some s ∈ S.

Proof. Suppose 1) holds, B ⊂ X is a closed and invariant set, V = int B 6= ∅ and
U ⊂ X is nonempty and open. Since X = US−1 then V ∩Us−1 6= ∅ for some s ∈ S,
hence U ∩ V S 6= ∅. Then X = V S. B = X because X = (int B)S ⊂ BS ⊂ B ⊂ X.
We proved 1) =⇒ 2). Suppose 2) holds and U ⊂ X is nonempty and open. Then
X = US, because X contains the nonempty, closed and invariant subset US with
the nonempty interior . We proved 2) =⇒ 3). Suppose 3) holds and U and V are
nonempty open sets from X. Then X = V S and U ∩ V S 6= ∅, hence U ∩ V s 6= ∅
for some s ∈ S. We proved 3) =⇒ 4). Suppose 4) holds and U and V are nonempty
open sets from X. Then U ∩ V s 6= ∅ for some s ∈ S. Therefore there is an x ∈ U
such that x ∈ V s. Then x = ys for some y ∈ V , hence y ∈ Us−1 and Us−1 ∩ V 6= ∅.
We proved 4) =⇒ 5). Suppose 5) holds and V ⊂ X is a nonempty open set, x ∈ X
and U is an open neighborhood of x. Then V s−1 ∩U 6= ∅ for some s ∈ S. Therefore
x ∈ V S−1 and X = V S−1. We proved 5) =⇒ 1).

It is clear that the minimal transformation semigroup is ergodic and the topolog-
ical transitive transformation group is ergodic. The following example shows that for
the transformation semigroups the notions of ergodicity and weak ergodicity are not
the same and topological transitive transformation semigroups are not obligatory
ergodic.

Let S = {0, 1, 2, 3}, S(·) be a discrete semigroup with respect to modulo 4
multiplication, i.e. s · t = r where r is the remainder by the division of the product
of the numbers s and t by 4. If π(s, t) = s · t (s, t ∈ S), then (S, S, π) is a topological
transitive but not ergodic and not weakly ergodic transformation semigroup. There
is also the following general proposition.

Theorem 3. If Ss ⊂ sS for ∀s ∈ S, then every topological transitive transformation
semigroup (X,S) is weakly ergodic.

Proof. Let (X,S) be a topological transitive transformation semigroup and U be
a nonempty, invariant and open subset of X. And let X = xS for some x ∈ X.
Then there is s ∈ S with xs ∈ U . Let t ∈ S. Then st = tp for some p ∈ S. Since
xtp = xst ∈ U then xt ∈ US−1, hence xS ⊂ US−1 and X = US−1.

Theorem 4. Let (X,S) be an ergodic transformation semigroup, X be a metric
space. Then (X,S) is topological transitive. Furthermore, there is M ⊂ X such that
M = X and for ∀x ∈M , xS = X.

Proof. Let B = {Vi | i = 1, 2, . . .} be a countable base of the topology of X and
U be any nonempty open subset of X. By ergodicity of (X,S) for every natural
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number i we have X = ViS−1. Let M = ∩∞
i=1ViS

−1. By Baire’s theorem the set M
is nonempty and M = X. Let ∀x ∈ M . Then x ∈ ViS

−1 for every natural number
i. Since Vk ⊂ U for some natural number k then x ∈ US−1. Whence it follows that
xS ∩ U 6= ∅ and xS = X.

The next example will demonstrate the existence of a weakly ergodic but not
topological transitive transformation semigroup with metric phase space.

Let X be a compact metric space, f : X → X be a constant mapping, S be a
semigroup of nonnegative integer numbers by addition, π : X × S → X be a map
by the definition: π(x, s) = f s(x) where f s is the constant mapping X → X if s = 0
and f s = f if s 6= 0. Then (X,S, π) is weakly ergodic with metric phase space but
not topological transitive.

Theorem 5. A distal and ergodic transformation semigroup (X,S) is minimal.

Proof. By Theorem 4 and Corollary 3 from [4] the transformation semigroup
(X,S) is inclosed into some transformation group (X,T ) and E(X,S) = E(X,T )
where E(X,S) and E(X,T ) are Ellis groups of (X,S) and (X,T ) accordingly. By
the definition of the inclosure of a transformation semigroup into a transformation
group and by Theorem 2 it follows that the transformation group (X,T ) is ergodic.
In this case by Ellis theorem [2] (X,T ) is minimal. Since E(X,S) = E(X,T ) then
(X,S) is minimal, too.

Theorem 6. Let ϕ : (X,S) → (Y, S) be an extension. If (X,S) is ergodic (weakly
ergodic), then (Y, S) is ergodic (weakly ergodic), too.

Proof. Let U ⊂ Y be nonempty and open (invariant, nonempty and open). Since
A1 = ϕ−1(U) ⊂ X is nonempty and open (invariant, nonempty and open) then
X = A1S−1. Because Y = ϕ(A1S−1) ⊂ ϕ(A1S−1) = ϕ(ϕ−1(U)S−1) ⊂ US−1 ⊂ Y
then Y = US−1 and (Y, S) is ergodic (weakly ergodic).

Theorem 7. Let ϕ : (X,S) → (Y, S) be a proximal extension. If (Y, S) is ergodic
and XJ = X, then (X,S) is ergodic, too.

Proof. We suppose that A is an invariant and closed subset of X with V =
int A 6= ∅ and will prove that A = X. First we will prove that the set B = X \ V is
invariant. It is sufficient to show that V S−1 = V . For the latter is sufficient to show
that V S−1 ⊂ A. Let y ∈ V S−1 and y 6∈ A. At this point Ut0 ⊂ V and U ∩ A = ∅
for some point t0 ∈ S and some neighborhood U of y. There is an almost periodic
point x belonging to U . Then xS = xt0S ⊂ A and consequently x ∈ A. But this
contradicts U ∩ A = ∅. The contradiction proved that V S−1 ⊂ A. Thus B is an
invariant and closed subset of X and B 6= X, too. If B = ∅, then A = X. Suppose
B 6= ∅. It is clear the set Y \ ϕ(B) is open and Y \ ϕ(B) ⊂ ϕ(A). Suppose that
Y \ ϕ(B) = ∅ then Y = ϕ(B). Let x ∈ XJ , then ϕ(x) = ϕ(b) for some b ∈ B and
xS∩bS 6= ∅ by proximality of ϕ. From the latter we have x ∈ bS by minimality of the
set xS. Hence x ∈ B, XJ ⊂ B and X = XJ ⊂ B. At this point X = B. But this
contradicts B 6= X. Therefore Y \ϕ(B) is nonempty. Thus Y contains an invariant
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and closed subset ϕ(A) with the nonempty interior. At this point Y = ϕ(A). By
the same argument as in the proof of the equality X = B we have that A = X.

Corollary 1. Every proximal transformation semigroup (X,S) with XJ = X is
ergodic.

Theorem 8. Let X, Y be metric spaces and ϕ : (X,S) → (Y, S) be a distal extension
with Y J = Y . If (X,S) is ergodic, then it is minimal.

Proof. By Teorem 4 (X,S) is topological transitive. Since Y J = Y and ϕ is
distal, then XJ = X. At this point (X,S) is minimal.

Theorem 9. Let ϕ : (X,S) → (Y, S) be a regionally distal extension with (Y, S)
minimal. If (X,S) is ergodic, then it is minimal.

Proof. Let X ′ be a minimal subset of X, x ∈ X, x′ ∈ X ′ and ϕ(x) = ϕ(x′).
Since (X,S) is ergodic, then by Theorem 2 xα ∩ x′αs−1

α 6= ∅ for any open index
α ∈ U [X] and some sα ∈ S. Therefore xαsα ∈ x′α for some xα ∈ xα. Without
loss of generality we may suppose that limα xα = x and limα xαsα = x′. Since the
restriction of ϕ to X ′ is an open map and limα ϕ(xα)sα = ϕ(x′), then for α there
is some point x′α ∈ X ′ with ϕ(x′α) = ϕ(xα) and limα x

′
αsα = x′. Suppose that

limα x
′
α = z ∈ X ′. Then (x, z) ∈ Q(Rϕ) and x = z because ϕ is regionally distal.

Therefore x ∈ X ′ and X ′ = X.

3 Mixing extensions

We shall say that the pair (ϕ,ψ) of the extensions ϕ : (X,S) → (Y, S)
and ψ : (Z,S) → (Y, S) is disjoint (weakly disjoint, mixing, weakly mixing) if
(Rϕψ, S) is minimal (topological transitive, ergodic, weakly ergodic). The extension
ϕ : (X,S) → (Y, S) is called mixing (weakly mixing) if the pair (ϕ,ϕ) is mixing
(weakly mixing). We denote the disjointness (weak disjointness) of pair (ϕ,ψ) by
ϕ ⊥ ψ (ϕ ˜⊥ ψ).

Theorem 10. Let X, Y, Z be metric spaces, ϕ : (X,S) → (Y, S) be a distal
extension and ψ : (Z,S) → (Y, S) be an extension with ZJ = Z. If the pair (ϕ,ψ)
is mixing, then ϕ ⊥ ψ.

Proof. Since the projection map Rϕψ → Z is a distal extension (Rϕψ, S) →
(Z,S), then ϕ ⊥ ψ by Theorem 8.

Corollary 2. Let X, Y, Z be metric spaces, ϕ : (X,S) → (Y, S) and ψ : (Z,S) →
(Y, S) be distal extensions with Y J = Y . If the pair (ϕ,ψ) is mixing, then ϕ ⊥ ψ.

Proof. Since ψ is distal and Y J = Y , then ZJ = Z and by Theorem 10 ϕ ⊥ ψ.

Corollary 3. Let X, Y be metric spaces and ϕ : (X,S) → (Y, S) be a distal
extension with Y J = Y . If ϕ is mixing, then it is minimal and it is an isomorphism.
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Corollary 4. A distal transformation semigroup with metric phase space is trivial
if it is mixing.

Theorem 11. Let ϕ : (X,S) → (Y, S) be regionally distal and ψ : (Z,S) → (Y, S)
be minimal. If the pair (ϕ,ψ) is mixing, then ϕ ⊥ ψ.

Proof. Since the projection map Rϕψ → Z is a regionally distal extension
(Rϕψ, S) → (Z,S), then ϕ ⊥ ψ by Theorem 9.

Theorem 12. Let ϕ : (X,S) → (Y, S) and ψ : (Z,S) → (Y, S) be regionally distal
extensions with (Y, S) minimal. If the pair (ϕ,ψ) is mixing, then ϕ ⊥ ψ.

Proof. Since ϕ and ψ are regionally distal then the Whitney’s sum (Rϕψ, S) →
(Y, S) of ϕ and ψ is regionally distal, then ϕ ⊥ ψ by Theorem 9.

Corollary 5. Let ϕ : (X,S) → (Y, S) be regionally distal and (Y, S) be minimal. If
ϕ is mixing, then it is minimal and it is an isomorphism.

Corollary 6. A regionally distal transformation semigroup is trivial if it is mixing.

Let u be a fixed idempotent from a fixed minimal right ideal I of the Ellis
enveloping semigroup of a universal minimal transformation semigrup of the class of
all minimal transformation semigroups with the fixed phase semigroup S, E = Iu [5].
Henceforth it is assumed that ϕ : (X,S) → (Y, S) and ψ : (Z,S) → (Y, S) are
minimal extensions; x0 ∈ Xu, y0 ∈ Y u and z0 ∈ Zu such that ϕ(x0) = ψ(z0) = y0;
A = {p | p ∈ E ∧ x0p = x0}, B = {p | p ∈ E ∧ z0p = z0}, F = {p | p ∈ E ∧ y0p = y0}
are the Ellis groups of (X,S), (Z,S) and (Y, S), respectively [5].

The regionally distal extension ψ : (Z,S) → (Y, S) is called an RD-factor of the
extension ϕ : (X,S) → (Y, S) if ϕ = η ◦ ψ for some extension η : (X,S) → (Z,S).
The pair (ϕ,ψ) is called RD-prime if every common RD-factor η of ϕ and ψ, η 6= ϕ
and η 6= ψ, is an isomorphism. The extension ϕ is called RD-prime if the pair (ϕ,ϕ)
is RD-prime.

The pair (ϕ,ψ) is called B-pair if Rϕψ = RϕψJ . The extension ϕ is called
B-extension if Rϕ = RϕJ . The transformation semigroup (X,S) is called B-

transformation semigroup if X ×X = (X ×X)J .

Theorem 13. Every mixing pair of the extensions is RD-prime.

Proof. Let η be a maximal RD-factor of the mixing pair (ϕ,ψ), δ is an extension
such that ϕ = δ ◦ η; θ = δ × idZ; q : Rηψ → Z is a projection map. Since the set
Rϕψ is ergodic and θ(Rϕψ) = Rηψ then by Theorem 6 Rηψ is ergodic. Because η is
regionally distal then q is regionally distal, too. At this point by Theorem 9 the set
Rηψ is minimal, hence η is an isomorphism.

Corollary 7. Every mixing transformation semigroup is RD-prime.

From theorems 4.4.5 and 4.1.12 from [5] we obtain the following two theorems.
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Theorem 14. For the RD-prime B-pair (ϕ,ψ) of the extensions the following as-
sertions are valid:

1) If Ss ⊂ sS for any s ∈ S and AB is a group, then the pair (ϕ,ψ) is weakly
mixing.

2) If X, Y, Z are metric spaces and A = B or A (B) is an invariant subgroup of
F , then ϕ ˜⊥ ψ.

Theorem 15. For the RD-prime B-extension ϕ we have the following assertions:

1) If Ss ⊂ sS for any s ∈ S, then ϕ is weakly mixing.

2) If X and Y are metric spaces, then ϕ ˜⊥ ϕ.

From Theorems 13 – 15 we obtain the following results.

Theorem 16. Let (ϕ,ψ) be a B-pair with the conditions: AB is a group; for ∀s ∈ S
Ss ⊂ sS and for any nonempty and open set V ⊂ Rϕψ there exists a nonempty,
open and invariant set U ⊂ V S−1 (in partucular S is a group). Then the following
statements are equivalent.

1) (ϕ,ψ) is RD-prime.

2) (ϕ,ψ) is weakly mixing.

3) (ϕ,ψ) is mixing.

Theorem 17. Let ϕ be a B-extension such that Ss ⊂ sS (s ∈ S) and for any
nonempty and open set V ⊂ Rϕ there exists a nonempty, open and invariant set U ⊂
V S−1 (in partucular S is a group). Then the following statements are equivalent.

1) ϕ is RD-prime.

2) ϕ is weakly mixing.

3) ϕ is mixing.

Theorem 18. Let S be a group, X, Y, Z be metric spaces and (ϕ,ψ) be a B-pair
such that A or B is an invariant subgroup of F . Then the following statements are
equivalent.

1) (ϕ,ψ) is RD-prime.

2) ϕ ˜⊥ ψ.

3) (ϕ,ψ) is mixing.

Theorem 19. Let S be a group, X and Y be metric spaces and ϕ be a B-extension.
Then the following statements are equivalent.
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1) ϕ is RD-prime.

2) ϕ ˜⊥ ϕ.

3) ϕ is mixing.

Corollary 8. Let (X,S) be a RD-prime B-transformation semigroup. Then:

1) If for ∀s ∈ S, Ss ⊂ sS, then (X,S) is weakly mixing.

2) If X is metric, then (X ×X,S) is topological transitive.

Corollary 9. Let S be a group, X be a metric space and (X,S) be a B-
transformation semigroup. Then the following statements are equivalent.

1) (X,S) is RD-prime.

2) (X,S) is mixing.

3) (X ×X,S) is topological transitive.

Remark 1. 1) (ϕ,ψ) is a B-pair, in particular, if ϕ or ψ is a RIC-extension [5].
2) A or B is an invariant subgroup of F , in particular, if ϕ or ψ is regular

(an extension ϕ is called regular if for ∀(x, y) ∈ RϕJ there exists a homomorphism
α : (X,S) → (X,S) such that α(x) = y).
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Abstract. We study the behavior of solutions of the problem εu
′′(t)+u

′(t)+Au(t) =
f(t), u(0) = u0, u

′(0) = u1 in the Hilbert space H as ε → 0, where A is a linear,
symmetric, strong positive operator.
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1 Introduction

Let V and H be the real Hilbert spaces endowed with the norm || · || and
| · |, respectively, such that V ⊂ H, where the embedding is defined densely and
continuously. By (, ) denote the scalar prodact in H. Let A : V → H be a linear,
closed, symmetric operator and

(Au, u) ≥ ω||u||2, ∀u ∈ V, ω > 0. (1)

In this paper we shall study the behavior of the solutions of the problem

{

εu′′(t) + u′(t) +Au(t) = f(t), t > 0,
u(0) = u0, u

′(0) = u1
(Pε)

as ε → 0, where ε is a small positive parameter. Our aim is to show that u→ v as
ε→ 0, where v is the solution of the problem

{

v′(t) +Av(t) = f(t), t > 0
v(0) = u0.

(P0)

The main tool of our approach is the relation between the solutions of the prob-
lems (Pε) and (P0).

For k ∈ N, p ∈ [1,∞) and (a, b) ⊂ (−∞,+∞) we denote by W k,p(a, b;H) the
usual Sobolev spaces of vectorial distributions W k,p(a, b;H) = {f ∈ D′(a, b;H);
f (l) ∈ Lp(a, b;H), l = 0, 1, . . . , k} with the norm

||f ||W k,p(a,b;H) = (
k

∑

l=0

||f (l)||p
Lp(a,b;H))

1/p.

c©2003 Perjan A.
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For each k ∈ N, W k,∞(a, b;H) is the Banach space equipped with the norm

||f ||W k,∞(a,b;H) = max
0≤l≤k

||f (l)||L∞(a,b;H)

For s ∈ R, k ∈ N and p ∈ [1,∞] we denote the following Banach space

W k,p
s (a, b;H) = {f : (a, b) → H; f (l)(t)e−st ∈ Lp(a, b;H)} with the norm

‖f‖
W

k,p

s (a,b;H)
= max

0≤l≤k
||f (l)(·)e−st||Lp(a,b;H).

2 A priori estimates for solutions of the problem (Pε)

In this section we shall prove the a priori estimates for the solutions of the
problem (Pε) which are uniform relative to the small values of parameter ε. First
of all we shall remind the existence theorems for the solutions of the problems (Pε)
and (P0).

Theorem A. [1] For any T > 0 suppose that f ∈ W 1,1(0, T ;H), u0, u1 ∈ V
and the operator A satisfies the condition (1). Then there exists a unique func-
tion u ∈ C(0, T ;H) ∩ L∞(0, T ;V ) satisfying the problem (Pε) and the conditions:
Au ∈ L∞(0, T ;H), u′ ∈ L∞(0, T ;V ), u′′ ∈ L∞(0, T ;H).

Theorem B. [1] If f ∈ W 1,1(0, T ;H), u0 ∈ V and A satisfies the condition (1),
then there exists a unique strong solution v ∈ W 1,∞(0, T ;H) of the problem (P0)
and estimates

|v(t)| ≤ e−ωt
(

|u0| +
∫ t

0
eωτ |f(τ)|dτ

)

,

|v′(t)| ≤ e−ωt
(

|Au0 − f(0)| +
∫ t

0
eωτ |f ′(τ)|dτ

)

are true for 0 ≤ t ≤ T .

Before to prove the estimates for solutions of problem (Pε) we recall the following
well-known lemma.

Lemma A. [2] Let ψ ∈ L1(a, b)(−∞ < a < b < ∞) with ψ ≥ 0 a. e. on (a, b) and
let c be a fixed real constant. If h ∈ C([a, b]) verifies

1

2
h2(t) ≤ 1

2
c2 +

∫ t

a

ψ(s)h(s)ds, ∀t ∈ [a, b],

then

|h(t)| ≤ |c| +
∫ t

a

ψ(s)ds, ∀t ∈ [a, b]

also holds.
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Denote by

E1(u, t) = ε|u′(t)| + |u(t)| +
(

ε
(

Au(t), u(t)
))1/2

+
(

ε

∫ t

0
|u′(τ)|2dτ

)1/2
+

+
(

∫ t

0

(

Au(τ), u(τ)
)

dτ
)1/2

.

Lemma 1. Suppose that for any T > 0 f ∈ W 1,1(0, T ;H), u0, u1 ∈ V and the
operator A satisfies the condition (1). Then there exist positive constants γ and C
depending on ω such that for the solutions of the problem (Pε) the following estimates

E1(u, t) ≤ C
(

E1(u, 0) +

∫ t

0

∣

∣

∣f(τ)
∣

∣

∣dτ
)

, 0 ≤ t ≤ T, (2)

E1(u
′, t) ≤ C

(

E1(u
′, 0) +

∫ t

0
|f ′(τ)|dτ

)

, 0 ≤ t ≤ T (3)

are true.

Proof. Denote by

E(u, t) = ε2|u′(t)|2 +
1

2
|u(t)|2 + ε

(

Au(t), u(t)
)

+ ε

∫ t

0
|u′(τ)|2dτ+

+ε
(

u(t), u′(t)
)

+

∫ t

0

(

Au(τ), u(τ)
)

dτ.

The direct computations show that for every solution of the problem (Pε) the fol-
lowing equality

d

dt
E(u, t) =

(

f(t), u(t) + 2εu′(t)
)

(4)

is fulfilled. From (4) it follows that

d

dt
E(u, t) ≤ |f(t)|

(

|u(t)| + 2ε|u′(t)|
)

. (5)

As E(u, t) ≥ 0 and |u(t)| + 2ε|u′(t)| ≤ C(E(u, t))1/2, then from (5) we have

d

dt

(

E(u, t)
)

≤ C
∣

∣

∣f(t)
∣

∣

∣

(

E(u, t)
)1/2

.

Integrating the last inequality we obtain

1

2
E(u, t) ≤ 1

2
E(u, 0) +C

∫

(

E(u, τ)
)1/2∣

∣

∣f(τ)
∣

∣

∣dτ.

From the last inequality using Lemma A we get the estimate

(

E(u, t)
)1/2

≤ C
[(

E(u, 0)
)1/2

+

∫ t

0

∣

∣

∣f(τ)
∣

∣

∣dτ
]

. (6)
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It is easy to see that there exist positive constants C0, C1 such that

C0

(

E(u, t)
)1/2

≤ E1(u, t) ≤ C1

(

E(u, t)
)1/2

. (7)

Using the inequality (7) from (6) we obtain the estimate (2).
To prove the estimate (3) let us denote by

Eh(u, t) = ε2|u′(t+ h) − u′(t)|2 + ε
(

A(u(t+ h) − u(t)), u(t+ h) − u(t)
)

+

+
1

2
|u(t+ h) − u(t)|2 + ε

(

u′(t+ h) − u′(t), u(t + h) − u(t)
)

+

ε

∫ t

0
|u′(τ + h) − u′(τ)|2dτ+

+

∫ t

0

(

A(u(τ + h) − u(τ)), u(τ + h) − u(τ)
)

dτ, h > 0, t ≥ 0.

For any solution of the problem (Pε) we have

d

dt
Eh(u, t) =

(

2ε(u′(t+ h) − u′(t)) + u(t+ h) − u(t), f(t+ h) − f(t)
)

, t ≥ 0.

Dividing the last equality by h2 and then passing to the limit as h→ 0 we get

d

dt
E(u′, t) =

(

f ′(t), 2εu′′(t) + u′(t)
)

. (8)

Since u′(0) = u1, εu
′′(0) = f(0) − u1 − Au0, then the estimate (3) follows from (8)

in the same way as the estimate (2) follows from (4). Lemma 1 is proved.

3 Relation between the solutions of the problems (Pε) and (P0)

In this section we shall give the relation between the solutions of the problems
(Pε) and (P0). This relation was inspired by the work [3]. At first we shall prove some
properties of the kernel K(t, τ) of transformation which realizes this connection.

For ε > 0 denote

K(t, τ) =
1

2ε
√
π

(

K1(t, τ) + 3K2(t, τ) − 2K3(t, τ)
)

,

where

K1(t, τ) = exp
{3t− 2τ

4ε

}

λ
{2t− τ

2
√
εt

}

, (9)

K2(t, τ) = exp
{3t+ 6τ

4ε

}

λ
(2t+ τ

2
√
εt

)

, (10)

K3(t, τ) = exp
{τ

ε

}

λ
( t+ τ

2
√
εt

)

, (11)

and λ(s) =
∫ ∞
s
e−η2

dη.
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Lemma 2. The function K(t, τ) possesses the following properties:

(i) K ∈ C(R+ ×R+) ∩ C2(R+ ×R+);

(ii) Kt(t, τ) = εKττ (t, τ) −Kτ (t, τ), t > 0, τ > 0;

(iii) εKτ (t, 0) −K(t, 0) = 0, t ≥ 0;

(iv) K(0, τ) =
1

2ε
exp

{

− τ

2ε

}

, τ ≥ 0;

(v) For each fixed t > 0, there exist constants C1(t, ε) > 0 and C2(t) > 0 such that

|K(t, τ)| ≤ C1(t, ε) exp{−C2(t)τ/ε}, |Kt(t, τ)| ≤ C1(t, ε) exp{−C2(t)τ/ε},

|Kτ (t, τ)| ≤ C1(t, ε) exp{−C2(t)τ/ε}, |Kττ (t, τ)| ≤ C1(t, ε) exp{−C2(t)τ/ε}

for τ > 0;

(vi) K(t, τ) > 0, t ≥ 0, τ ≥ 0;

(vii) For any ϕ : [0,∞) → H continuous on [0,∞) such that |ϕ(t)| ≤ M exp{Ct}
for t ≥ 0, the relation

lim
t→0

∫ ∞

0
K(t, τ)ϕ(τ)dτ =

∫ ∞

0
e−τϕ(2ετ)dτ

is valid in H for each fixed ε, 0 < ε≪ 1;

(viii)
∫ ∞
0 K(t, τ)dτ = 1, t ≥ 0;

(ix) Let ρ : [0,∞) → R, ρ ∈ C1[0,∞), ρ and ρ′ be increasing functions and |ρ(t)| ≤
Mect, |ρ′(t)| ≤ Mect, for t ∈ [0,∞). Then there exist positive constants C1

and C2 such that

∫ ∞

0
K(t, τ)|ρ(t) − ρ(τ)|dτ ≤ C1

√
εeC2t, t > 0;

(x) Let f(t)e−Ct, f ′(t)e−Ct ∈ L∞(0,∞;H) with some C ≥ 0. Then there exist
positive constants C1, C2 such that

∣

∣

∣
f(t) −

∫ ∞

0
K(t, τ)f(τ)dτ

∣

∣

∣

H
≤ C1

√
εeC2t‖f ′‖L∞

C
(0,∞;H), t ≥ 0, 0 < ε≪ 1;

(xi) There exists C > 0 such that

∫ t

0

∫ ∞

0
K(τ, θ) exp

{

− θ

ε

}

dθdτ ≤ Cε, t ≥ 0, ε > 0.
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Proof. The properties (i)-(iv) can be verified by direct calculation.
Proof (v). From (9), (10) and (11) we have

Kt(t, τ) =
1

8πε2

[

3K1(t, τ)+9K2(t, τ)− 6

√

ε

t
exp

{

− (t− τ)2

4εt

}]

, t > 0, τ > 0, (12)

Kτ (t, τ) =
1

4πε2

[

−K1(t, τ) + 9K2(t, τ) − 4K3(t, τ)
]

, t > 0, τ > 0, (13)

Kττ (t, τ) =
1

8πε3

[

K1(t, τ) + 27K2(t, τ) − 8K3(t, τ)−

−6

√

ε

t
exp

{

− (t− τ)2

4εt

}]

, t > 0, τ > 0.
(14)

As |λ(s)| ≤ √
π for s ∈ R and | exp{s2}λ(s)| ≤ C for s ∈ [0,∞), then

∣

∣

∣K1(t, τ)
∣

∣

∣ ≤ exp
{t− 2τ

4ε

}

, τ > 0, t > 0, (15)

∣

∣

∣
K2(t, τ)

∣

∣

∣
≤ C exp

{

− (t− τ)2

4εt

}

t > 0, τ > 0, (16)

∣

∣

∣K3(t, τ)
∣

∣

∣ ≤ C exp
{

− (t− τ)2

4εt

}

t > 0, τ > 0. (17)

Using (15), (16) and (17) from (12), (13) and (14) we get the estimates from property
(v). The property (v) is proved.

Proof (vi). We shall prove property (vi) using the maximum principle for the
solutions of equation (ii). It is easy to see that

K(t, 0) =
1

ε
√
π

[

2 exp
{ 3t

4ε

}

λ
(

√

t

ε

)

− λ
(1

2

√

t

ε

)]

, t ≥ 0. (18)

We intend to prove that
K(t, 0) > 0, t ≥ 0. (19)

To this end we consider the function f(s) = 2q(s) − q(s/2), where q(s) =
exp{s2}λ(s), s ∈ [0,∞). Because K(t, 0) = (

√
επ)−1 exp{−t/4ε}f(

√

t/ε), to prove
(19) it is sufficient to show that f(s) > 0 for s ∈ [0,∞). At first we shall prove that
q′(s) < 0 for s ∈ [0,∞). Since

q′(s) = 2sq(s) − 1, q′′(s) = 2(2s2 + 1)q(s) − 2s, q′′′(s) = (8s3 + 12s)q(s) − 4(s2 + 1)

and lims→+∞ 2sq(s) = 1, then q′(0) = −1 and lims→+∞ q′(s) = 0. Suppose that
there exists s1 ∈ (0,∞) such that q′′(s1) = 0, i. e. q(s1) = s1(2s

2
1 + 1)−1. As

q′′′(s1) = −4(2s21 + 1)−1, then s1 is the point of maximum for q′(s), and q′(s1) <
0, s1 ∈ [0,∞) and consequently the function q(s) is decreasing on (0,∞). Further,
we note that

f(0) = q(0) =

√
π

2
, lim

s→+∞
f(s) = 0. (20)
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Suppose that s1 ∈ (0,∞) is any critical point for function f(s), i. e. f ′(s1) = 0,
then we have: 4s1q(s1) − 2−1s1q(s1/2) − 3/2 = 0, from which follows

f(s1) = 2q(s1) − q
(s1

2

)

=
3

s1
− 6q(s1). (21)

As q′(s) < 0 for s ∈ (0,∞), then 2s1q(s1) < 1. Hence from (21) it follows that
f(s1) > 0. The last condition and conditions (20) permit us to conclude that
f(s) > 0 for s ∈ [0,∞), i. e. K(t, 0) > 0 for t ≥ 0. Finally, from (ii), (iv), (v) and
(18) it follows that the function V (t, τ) = exp{(t − 2τ)/4ε}K(t, τ) is the bounded
solution of the problem



































Vt(t, τ) = εVττ (t, τ), t > 0, τ > 0

V (0, τ) =
1

2ε
exp

{

− τ

ε

}

, τ ≥ 0,

V (t, 0) =
1

ε
√
π
f
(

√

t

ε

)

, t ≥ 0,

(P.V )

in QT = {(t, τ) : τ ≥ 0, 0 ≤ t ≤ T}, for any T > 0. Using the maximum principle
for the solutions of problem (P.V ) we conclude that V (t, τ) > 0 and consequently
K(t, τ) > 0. The property (vi) is proved.

Proof (vii). For any fixed C > 0 and for any fixed ε > 0, we get

∫ ∞

0
K2(t, τ)e

Cτdτ =
2ε

3 + 2Cε

[

exp
{

C(1 + Cε)t
}

λ
(

− 1 + 2Cε

2

√

t

ε

)

−

− exp
{ 3t

4ε

}

λ
(

√

t

ε

)]

=
2ε

3 + 2Cε

[

λ
(

√

t

ε

)(

1 − exp
{ 3t

4ε

})

+

√
t

ε
∫

− 1+2Cε

2

√
t

ε

e−η2
dη−

−
(

1 − exp
{

C(1 + Cε)t
})

λ
(

− 1 + 2Cε

2

√

t

ε

)]

= O(
√
t), t→ 0. (22)

If ϕ : [0,∞) → H, and |ϕ(t)|H ≤MeCt, t ≥ 0, then from (22) we have

∣

∣

∣

∫ ∞

0
K2(t, τ)ϕ(τ))dτ

∣

∣

∣

H
≤M

∫ ∞

0
K2(t, τ)e

Cτdτ ≤MC(ε)
√
t, 0 < t≪ 1, (23)

for any fixed ε > 0. Similarly as was obtained (22) we get

∫ ∞

0
K3(t, τ)e

Cτdτ =
ε

1 + Cε

[

exp{C(1 + Cε)t
}

λ
(

− 1 + 2Cε

2

√

t

ε

)

− λ
(1

2

√

t

ε

)]

=

=
ε

1 +Cε

[(

exp
{

C(1 + Cε)t
}

− 1
)

λ
(

− 1 + 2Cε

2

√

t

ε

)

+
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+

1
2

√
t

ε
∫

− 1+2Cε

2

√
t

ε

e−η2
dη

]

= O(
√
t), t→ 0, (24)

for any fixed ε > 0. If ϕ : [0,∞) → H, and |ϕ(t)|H ≤ M exp{Ct}, t ≥ 0, then from
(24) it follows that

∣

∣

∣

∫ ∞

0
K3(t, τ)ϕ(τ)dτ

∣

∣

∣

H
≤M

∫ ∞

0
K3(t, τ) exp{Cτ}dτ ≤ C(ε)M

√
t (25)

for 0 < t ≪ 1. For ϕ : [0,∞) → H, ϕ ∈ C(0,∞;H) and |ϕ(t)|H ≤ M exp{Ct},
t ≥ 0, we have
∫ ∞

0
K1(t, τ)ϕ(τ)dτ = exp

{ 3t

4ε

}

∫ ∞

0
exp

{

− τ

2ε

}[

λ
(2t− τ

2
√
εt

)

− λ
(

− τ

2
√
εt

)]

ϕ(τ)dτ+

+
(

exp
{ 3t

4ε

}

− 1
)

∫ ∞

0
exp

{

− τ

2ε

}

λ
(

− τ

2
√
εt

)

ϕ(τ)dτ+

+

∫ ∞

0
exp

{

− τ

2ε

}

λ
(

− τ

2
√
εt

)

ϕ(τ)dτ = I1 + I2 + I3. (26)

Let us evaluate the integrals Ii, i = 1, 2, 3, from (26). For any fixed 0 < ε <
(2C)−1 we have

|I1|H ≤M exp
{ 3t

4ε

}

∫ ∞

0
exp

{

− τ

4ε
+ Cτ

}

∫ 2t−τ

2
√

εt

− τ

2
√

εt

exp
{

− η2
}

dηdτ ≤

≤ 2M

1 − 2Cε
exp

{ 3t

4ε

}√
εt ≤ C(ε)

√
t, 0 < t≪ 1,

(27)

and

|I2|H ≤M
∣

∣

∣
exp

{ 3t

4ε

}

− 1
∣

∣

∣

√
π

∫ ∞

0
exp

{

− τ

2ε
+ Cτ

}

dτ ≤

≤ C(ε)t, 0 < t≪ 1.
(28)

At last, let us investigate the behaviour of integral I3 as t→ 0. I3 can be represented
in the form

I3 =

∫ ∞

0
exp

{

− τ

2ε

}[

λ
(

− τ

2
√
εt

)

−
√
π
]

ϕ(τ)dτ+
√
π

∫ ∞

0
exp

{

− τ

2ε

}

ϕ(τ)dτ. (29)

The first term of the right side of (29) can be evaluated as follows

∣

∣

∣

∫ ∞

0
exp

{

− τ

2ε

}[

λ
(

− τ

2
√
εt

)

−
√
π
]

ϕ(τ)dτ
∣

∣

∣

H
≤
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≤M

∫ ∞

0
exp

{

− τ

2ε
+ Cτ

}

λ
( τ

2
√
εt

)

dτ =

=
2Mε

1 − 2Cε

[

λ(0) − exp
{(1 − 2Cε)2t

4ε

}

λ
(1 − 2Cε

2

√

t

ε

)]

=

=
2Mε

1 − 2Cε

[(

1 − exp
{(1 − 2Cε)2t

4ε

})

λ(0)+

+ exp
{(1 − 2Cε)2t

4ε

}

(1−2Cε)2

2

√
t

ε
∫

0

exp
{

− η2
}

dη
]

≤ C(ε)
√
t, 0 < t≪ 1. (30)

From (29) and (30) follows the estimate

∣

∣

∣I3 −
√
π

∫ ∞

0
exp

{

− τ

2ǫ

}

ϕ(τ)dτ
∣

∣

∣

H
≤ C(ε)

√
t, 0 < t≪ 1. (31)

Hence due to (26), (27), (28) and (31) we have

∣

∣

∣

∫ ∞

0
K1(t, τ)ϕ(τ)dτ − 2ε

√
π

∫ ∞

0
e−τϕ(2ετ)dτ

∣

∣

∣

H
≤ C

√
t, 0 < t≪ 1, (32)

for any fixed ε, 0 < ε≪ 1. Finally, from (23), (25) and (32) we get the proof of the

property (vii).

Proof (viii). Integrating by parts we have

∫ ∞

0
K1(t, τ)dτ = 2ε

[

exp
{ 3t

4ε

}

λ
(

√

t

ε

)

+ λ
(

− 1

2

√

t

ε

)]

,

∫ ∞

0
K2(t, τ)dτ =

2ε

3

[

λ
(

− 1

2

√

t

ε

)

− exp
{ 3t

4ε

}

λ
(

√

t

ε

)]

,

∫ ∞

0
K3(t, τ)dτ = ε

[

λ
(

− 1

2

√

t

ε

)

− λ
(1

2

√

t

ε

)]

,

from which follows the proof of the property (viii).

Proof (ix). As ρ is increasing and |ρ(t)| ≤M exp(Ct), then integrating by parts
and using the property (v) we get

∫ ∞

0
K1(t, τ)|ρ(t)− ρ(τ)|dτ = exp

{ 3t

4ε

}[

∫ t

0
exp

{

− τ

2ε

}

λ
(2t− τ

2
√
εt

)(

ρ(t)− ρ(τ)
)

dτ+
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+

∫ ∞

t

exp
{

− τ

2ε

}

λ
(2t− τ

2
√
εt

)(

ρ(τ)− ρ(t)
)

dτ
]

= 2ε
(

ρ(t)− ρ(0)
)

exp
{ 3t

4ε

}

λ
(

√

t

ε

)

+

+

√

ε

t

∫ ∞

0
exp

{

− (t− τ)2

4εt

}∣

∣

∣
ρ(t) − ρ(τ)

∣

∣

∣
dτ − 2ε exp

{ 3t

4ε

}

×

×
∫ ∞

0
exp

{

− τ

2ε

}

ρ′(τ)λ
(2t− τ

2
√
εt

)

sign(t− τ)dτ. (33)

Similarly can be obtained the equalities

∫ ∞

0
K2(t, τ)|ρ(t) − ρ(τ)|dτ = −2ε

3

(

ρ(t) − ρ(0)
)

exp
{ 3t

4ε

}

λ
(

√

t

ε

)

+

+
1

3

√

ε

t

∫ ∞

0
exp

{

− (t− τ)2

4εt

}∣

∣

∣ρ(t) − ρ(τ)
∣

∣

∣dτ+

+
2ε

3
exp

{ 3t

4ε

}

∫ ∞

0
exp

{3τ

2ε

}

ρ′(τ)λ
(2t+ τ

2
√
εt

)

sign(t− τ)dτ, (34)

and
∫ ∞

0
K3(t, τ)|ρ(t) − ρ(τ)|dτ = −ε

(

ρ(t) − ρ(0)
)

λ
(1

2

√

t

ε

)

+

+
1

2

√

ε

t

∫ ∞

0
exp

{

− (t− τ)2

4εt

}∣

∣

∣
ρ(t) − ρ(τ)

∣

∣

∣
dτ+

+ε

∫ ∞

0
exp

{τ

ε

}

ρ′(τ)λ
( t+ τ

2
√
εt

)

sign(t− τ)dτ, (35)

As a consequence from (33), (34) and (35) we get

∫ ∞

0
K(t, τ)|ρ(t) − ρ(τ)|dτ =

1√
π

[

λ
(1

2

√

t

ε

)(

ρ(t) − ρ(0)
)

+

+
1

2
√
εt

∫ ∞

0
exp

{

− (t− τ)2

4εt

}∣

∣

∣
ρ(t) − ρ(τ)

∣

∣

∣
dτ+

+

∫ ∞

0
ρ′(τ)

[

exp
{3t+ 6τ

4ε

}

λ
(2t+ τ

2
√
εt

)

− exp
{3t− 2τ

4ε

}

λ
(2t− τ

2
√
εt

)

−

− exp
{τ

ε

}

λ
( t+ τ

2
√
εt

)]

sign(t− τ)dτ
]

, (36)
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Since ρ′(t) is increasing and |ρ′(t)| ≤M exp(Ct), then it follows that

λ
(1

2

√

t

ε

)(

ρ(t) − ρ(0)
)

≤ λ
(1

2

√

t

ε

)

Mt exp{Ct} ≤

≤ C1t exp
{

− t

4ε
+ Ct

}

≤ C1ε exp{C2t}, t ≥ 0, ε ≤ 1

8C
.

(37)

Further we have

∫ ∞

0
exp

{

− (t− τ)2

4εt

}

|ρ(t) − ρ(τ)|dτ ≤

≤M

∫ ∞

0
exp

{

− (t− τ)2

4εt
+ Cmax{t, τ}

}

|t− τ |dτ =

= 4Mεt

∞
∫

− 1
2

√
t

ε

|η| exp
{

− η2 + Cmax{t, t+ 2η
√
εt}

}

dη =

= 4Mεt exp{Ct}
(

0
∫

− 1
2

√
t

ε

|η| exp{−η2}dη +

∫ ∞

0
η exp

{

− η2 + 2C
√
εtη

}

dη
)

≤

≤ C1εt exp{C2t}, t ≥ 0. (38)

As |λ(s) exp{s2}| ≤ C, for s ≥ 0, then we have

exp
{ 3t

4ε

}

∫ ∞

0
|ρ′(τ)| exp

{3τ

2ε

}

λ
(2t+ τ

2
√
εt

)

dτ ≤

≤M exp
{ 3t

4ε

}

∫ ∞

0
exp

{

Cτ +
3τ

2ε

}

λ
(2t+ τ

2
√
εt

)

dτ ≤ C1

∫ ∞

0
exp

{

Cτ − (t− τ)2

4ετ

}

=

= C1

√
εt exp{Ct}

∞
∫

− 1
2

√
t

ε

exp
{

2C
√
εtη − η2

}

dη ≤ C1

√
εt exp

{

C2t
}

, t ≥ 0. (39)

Similarly we get the estimates

exp
{ 3t

4ε

}

∫ ∞

0
exp

{

− τ

2ε

}

λ
(2t− τ

2
√
εt

)

|ρ′(τ)|dτ ≤ C1

√
εt exp

{

C2t
}

, t ≥ 0, (40)

and
∫ ∞

0
exp

{τ

ε

}

λ
(τ + t

2
√
εt

)

|ρ′(τ)|dτ ≤ C1

√
εt exp

{

C2t
}

, t ≥ 0. (41)
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Finally from (36) and the estimates (37)-(41) follows the estimate from property
(ix).

Proof (x). From the properties (viii) and (ix) it follows that

∣

∣

∣
f(t) −

∫ ∞

0
K(t, τ)f(τ)dτ

∣

∣

∣

H
≤

∫ ∞

0
K(t, τ)|f(t) − f(τ)|H dτ ≤

≤
∫ ∞

0
K(t, τ)

∣

∣

∣

∫ t

τ

|f ′(θ)|H dθ
∣

∣

∣ ≤M

∫ ∞

0
K(t, τ) |eCτ − eCt|dτ ≤

≤ C1
√
ε eC2t‖f ′‖L∞

C
(0,∞;H),

for t ≥ 0, 0 ≤ ε≪ 1. Property (x) is proved.

Proof (xi). Denote by K(t, τ) = K(t, τ)|ε=1,Ki(t, τ) = Ki(t, τ)|ε=1, i = 1, 2, 3.
Then

I =

∫ t

0

∫ ∞

0
K(τ, θ) exp

{

− θ

ε

}

dθdτ = ε

∫ t

ε

0

∫ ∞

0
K(τ, θ) exp{−θ}dθdτ =

=
ε

2
√
π

(

I1 + 3I2 − 2I3

)

. (42)

As 0 < Ki(τ, θ) ≤ C exp
{

− (τ−θ)2

4τ

}

, i = 2, 3, then

Ii ≤
∫ t

ε

0

∫ ∞

0
exp

{(τ + θ)2

4τ

}

dθdτ ≤ C, t ≥ 0, i = 2, 3. (43)

For I1 we have the estimate

I1 =

∫ t

ε

0

∫ ∞

0
K1(τ, θ)e

−θdθdτ =

∫ t

ε

0
exp

{

− 9τ

4

}

∫

√
τ

−∞
exp

{

3η
√
τ
}

λ(η)dηdτ =

=
1

3

∫ t

ε

0
τ−1/2 exp

{3τ

4

}

λ(
√
τ)dτ − 1

3

∫ t

ε

0
τ−1/2λ(

√
τ

2
)dτ ≤ C, t ≥ 0. (44)

From (42), (43) and (44) follows the property (xi). Lemma 2 is proved.
Now we are ready to establish the relation between the solutions of the problem

(Pε) and the corresponding solutions of the problem (P0).

Theorem 1. Let A : D(A) ⊂ H → H be a linear and closed operator, f ∈
W 1,∞

C (0,∞;H) for some C ≥ 0. If u is a solution of the problem (Pε) such that

u ∈W 2,∞
C (0,∞;H) with some C ≥ 0, then the function v0 which is defined by

v0(t) =

∫ ∞

0
K(t, τ)u(τ)dτ

satisfies the following conditions:
{

v′0(t) +Av0(t) = F0(t, ε), t > 0,
v0(0) = ϕε,

(P.v0)
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where

F0(t, ε) =
1√
π

[

2 exp
{ 3t

4ε

}

λ
(

√

t

ε

)

− λ
(1

2

√

t

ε

)]

u1 +

∫ ∞

0
K(t, τ)f(τ)dτ,

ϕε =

∫ ∞

0
e−τu(2ετ)dτ.

Proof. Integrating by parts and using the properties (i) − (iii) and (v) of Lemma
2 we get

v′0(t) =

∫ ∞

0
Kt(t, τ)u(τ)dτ =

∫ ∞

0

(

εKττ (t, τ) −Kτ (t, τ)
)

u(τ)dτ =

=

∫ ∞

0
K(t, τ)

(

εu′′(τ) + u′(τ)
)

dτ + εK(t, 0)u1 −Av0(t) +

∫ ∞

0
K(t, τ)f(τ)dτ.

Thus v0(t) satisfies the equation from (P.v0). From property (viii) of Lemma 2
follows the validity of the initial condition of (P.v0). Theorem 1 is proved.

4 The limit of the solutions of the problem (Pε) as ε → 0

In this section we shall study the behavior of the solutions of the problem (Pε)
as ε→ 0.

Theorem 2. Suppose f ∈W 1,∞
C (0,∞;H), with some C ≥ 0, u0, u1 ∈ H,Au0, Au1 ∈

H and the operator A satisfies the condition (1). Then

|u(t) − v(t)| ≤ C1MeC2t
√
ε, t ≥ 0, 0 ≤ ε≪ 1, (45)

where u and v are the solutions of the problems (Pε) and (P.v), respectively,

M = |f(0)| + |u0| + |Au0| + |u1| + ||f ′||L∞

C
(0,∞;H),

and C1 and C2 are independent of M and ε.
If

u0, Au0, u1, f(0) ∈ V, f ∈W 2,∞
C (0,∞;H), with some C ≥ 0, (46)

then
∣

∣

∣
u′(t) − v′(t) + h exp

{

− t

ε

}∣

∣

∣
≤ C1M1e

C2t
√
ε, t ≥ 0, 0 ≤ ε≪ 1, (47)

where h = f(0) − u1 − Au0, M1 = |f ′(0)| + |Ah| + ||f ′′||L∞

C
(0,∞;H), and C1 and C2

are independent of M1 and ε.
If

u0, Au0, Au1 ∈ V,Af ∈W 1,∞
C (0,∞;H), with some C ≥ 0, (48)

then
||u(t) − v(t)|| ≤ C1M2e

C2t
√
ε, t ≥ 0, 0 ≤ ε≪ 1, (49)

where M2 = |Af(0)|+ |Au0|+ |Au1|+ |A2u0|+ ||Af ′||L∞

C
(0,∞;H), and C1 and C2 are

independent of M2 and ε.
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Proof. Under the conditions of the theorem from (3) follows the estimate

|u′(t)| ≤ CM, t ≥ 0. (50)

According to Theorem 1 the function w which is defined by

w(t) =

∫ ∞

0
K(t, τ)u(τ)dτ

is a solution of the problem

{

w′(t) +Aw(t) = F (t, ε),
w(0) = w0,

(P.w)

where

F (t, ε) = F0(t, ε) +

∫ ∞

0
K(t, τ)f(τ)dτ,

F0(t, ε) =
1√
π

[

2 exp
{ 3t

4ε

}

λ
(

√

t

ε

)

− λ
(1

2

√

t

ε

)]

u1, w0 =

∫ ∞

0
e−τu(2ετ)dτ.

Using the property (x) of Lemma 2 and the estimate (50) we get

|u(t) − w(t)| ≤ C1Mec2t
√
ε, t ≥ 0. (51)

Let us denote R(t) = v(t) − w(t), where v is the solution of the problem (P.v) and
w is the solution of the problem (P.w). Then R(t) is the solution of the problem

{

R′(t) +AR(t) = F(t, ε), t ≥ 0,
R(0) = R0,

where R0 = u0 − w0 and

F(t, ε) = f(t) −
∫ ∞

0
K(t, τ)f(τ)dτ − F0(t, ε).

As
d

dt
|R(t)|2 = −2

(

AR(t), R(t)
)

+ 2
(

F(t, ε), R(t)
)

≤

≤ −2ω|R(t)|2 + 2|F(t, ε)||R(t)|, t ≥ 0,

and hence

1

2
|R(t)|2e2ωt ≤ 1

2
|R0|2 +

∫ t

0
|F(τ, ε)||R(τ)|e2ωτ dτ, t ≥ 0,

then using Lemma A we obtain the estimate

|R(t)| ≤ e−ωt
(

|R0| +
∫ t

0
|F(τ, ε)|eωτ dτ

)

, t ≥ 0. (52)
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From (50) follows the estimate

|R0| ≤
∫ ∞

0
e−τ |u(2ετ) − u0|dτ ≤

∫ ∞

0
e−τ

∫ 2ετ

0
|u′(s)|dsdτ ≤ CMε (53)

for 0 < ε≪ 1. Now let us estimate |F(t, ε)|. Using the property (x) of Lemma 2 we
have

∣

∣

∣
f(t) −

∫ ∞

0
K(t, τ)f(τ)dτ

∣

∣

∣
≤ C1M

√
εeC2t, t ≥ 0. (54)

As
∫ t

0
exp

{3τ

4ε
+ ωτ

}

λ
(

√

τ

ε

)

dτ = ε

∫ t

ε

0
exp

{3τ

4
+ ωτ

}

λ
(√

τ
)

dτ

≤ C

∫ ∞

0
eτλ(

√
τ) ≤ Cε, t ≥ 0, 0 < ε≪ 1,

and
∫ t

0
eωτλ

(1

2

√

τ

ε

)

dτ ≤ Cε, t ≥ 0, 0 < ε≪ 1,

then
∫ t

0
eωτ |F0(τ, ε)|dτ ≤ Cε|u1| ≤ CεM, t ≥ 0, 0 < ε≪ 1. (55)

From (54) and (55) follows the estimate

∫ t

0
eωτ |F(τ, ε)|dτ ≤ C1Meωt

√
ε, t ≥ 0, 0 < ε≪ 1. (56)

From (52), using the estimates (53) and (56) we get

|R(t)| ≤ C1MeC2t
√
ε, t ≥ 0, 0 < ε≪ 1. (57)

Finally from estimates (51) and (57) we have

|u(t) − v(t)| ≤ |u(t) − w(t)| + |R(t)| ≤ C1MeC2t
√
ε, t ≥ 0, 0 < ε≪ 1.

The estimate (45) is proved.

Let us prove the estimate (47). Denote by z(t) = u′(t) + h exp
{

− t

ε

}

. If u0, u1

and f satisfy the conditions (46) and A satisfies the condition (1), then z(t) is a
solution of the problem

{

εz′′(t) + z′(t) +Az(t) = f ′(t) + exp
{

− t

ε

}

h, t ≥ 0,

z(0) = f(0) −Au0, z′(0) = 0.

According to Theorem 1 the function w1(t) which is defined by

w1(t) =

∫ ∞

0
K(t, τ)z(τ)dτ
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is a solution of the problem











w′
1(t) +Aw1(t) = F1(t, ε), t ≥ 0,

w1(0) =

∫ ∞

0
exp

{

− τ
}

z(2ετ)dτ ,

where

F1(t, ε) =

∫ ∞

0
K(t, τ)

[

f ′(τ) − exp
{

− t

ε

}

Ah
]

dτ.

Further denote by v1(t) = v′(t), where v(t) is the solution of the problem (P.v).
Then v1(t) is the solution of the problem

{

v′1(t) +Av1(t) = f ′(t), t ≥ 0,
v1(0) = f(0) −Au0.

Let R1(t) = w1(t) − v1(t). Then R1(t) is the solution of the problem











R′
1(t) +AR(t) = F1(t, ε) − f ′(t), t ≥ 0,

R1(0) =

∫ ∞

0
exp

{

− τ
}

∫ 2ετ

0
z′(θ)dθdτ .

Using Theorem B we obtain the estimate

|R1(t)| ≤ e−ωt
(

|R1(0)| +
∫ t

0
eωt|F1(τ, ε) − f ′(τ)|dτ

)

, t ≥ 0. (58)

Using the estimate (3) we get

|z′(t)| ≤ C1

(

|f ′(0) +Ah| +
∫ t

0

∣

∣

∣f ′′(t) − 1

ε
exp

{

− t

ε

}

Ah
∣

∣

∣dτ
)

≤ C1e
C2tM1 (59)

for t ≥ 0. Then from (59) follows the estimate

|R(0)| ≤ C1ε, 0 < ε≪ 1. (60)

Due to the property (x) of Lemma 2 we get the estimate

|f ′(t) −
∫ ∞

0
K(t, τ)dτ | ≤ C1e

C2t
√
ε||f ′′||L∞

C
(0,∞;H), t ≥ 0, 0 < ε≪ 1. (61)

Further using the property (xi) of Lemma 2 we have

∣

∣

∣

∫ t

0

∫ ∞

0
K(τ, θ) exp

{

− θ

ε

}

Ahdθdτ
∣

∣

∣ ≤ CεM1, t ≥ 0. (62)

Using the estimates (60), (61) and (62) from (58) follows the estimate

|R1(t)| ≤ C1e
C2t

√
εM1, t ≥ 0, 0 < ε≪ 1. (63)
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From the property (xi) of Lemma 2 and the estimates (59) we get

|w1(t) − z(t)| ≤
∫ ∞

0
K(t, τ)

∣

∣

∣

∫ t

τ

z′(θ)dθ
∣

∣

∣dτ ≤

≤ C1e
C2t

√
εM1, t ≥ 0, 0 < ε≪ 1. (64)

Finally, from the estimates (63) and (64) we obtain

|z(t) − v1(t)| ≤ |z(t) −w1(t)| + |R1(t)| ≤ C1e
C2t

√
εM1, t ≥ 0, 0 < ε≪ 1,

i. e. the estimate (47).

Let us prove the estimate (49). Denote by y(t) = Au(t), y1(t) = Av(t). Then
under conditions (48) y(t) is the solution of the problem

{

εy′′(t) + y′(t) +Ay(t) = Af(t), t ≥ 0,
y(0) = Au0, y′(0) = Au1,

and y1(t) is the solution of the problem

{

y′1(t) +Ay1(t) = Af(t),
y1(0) = Au0.

From (45) follows the estimate

|Au(t) −Av(t)| ≤ C1e
C2t

√
εM2, t ≥ 0, 0 < ε≪ 1. (65)

As from (1) it follows that

|Au(t) −Av(t)| ≥ ω||u(t) − v(t)||,

then using (65) we obtain the estimate (48). Theorem 2 is proved.

Remark 1. The relation (47) shows that the function u′(t) possesses the boundary
function in the neighborhood of the line t = 0. But, if h = 0, then the function u′(t)
like u(t) does not have a boundary function.

Finally let us give one simple example. Consider the following initial boundary
problems







εutt(x, t) + ut(x, t) + L(x, ∂x)u(x, t) = f(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, (x, t) on ∂Ω × [0,∞),

(66)







vt(x, t) + L(x, ∂x)v(x, t) = f(x, t), x ∈ Ω, t > 0,

v(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, (x, t) on ∂Ω × [0,∞),

(67)
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where Ω ⊂ R
n is a bounded domain with a smooth boundary ∂Ω. The operator

L(x, ∂x) = −
n

∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj

·
)

+ a(x)·

is uniformly elliptic in Ω, i.e. a, aij : Ω → R, a, aij ∈ C(Ω) , aij(x) = aji(x), and

n
∑

i,j=1

aij(x)ξiξj ≥ ω|ξ|2, ξ ∈ R
n, x ∈ Ω,

where ω > 0, a(x) ≥ 0 for x ∈ Ω. Let us put H = L2(Ω), V = H1
0 (Ω). In this

conditions the problems (Pε) and (P.v) represent the functional analytical statement
of the problems (66) and (67) respectively, where A is the closure of the operator
L in L2(Ω). Under suitable conditions on the functions u0, u1 and f which follow
from conditions (46) and (48) from Theorem 2 for the variational solutions of the
problems (66), (67) we get

u = v +O(
√
ε) in C(0, T ;L2(Ω)), ε→ 0,

ut = vt + h exp
{

− t

ε

}

+O(
√
ε) in L∞(0, T ;L2(Ω)), ε→ 0,

u = v +O(
√
ε) in L∞(0, T ;H1

0 (Ω)), ε→ 0,

where h(x) = u1(x) + L(x, ∂x)u0(x) − f(x, 0).
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Chşinau, 2009, Republic of Moldova
e-mail: perjan@usm.md

Received December 31, 2002


	On Strong Stability of Linear Poisson Actions
	Algebraic equations with invariant coefficients in qualitative study of the
	Studying stability of the equilibrium solutions in the restricted Newtons
	The centre_focus problem for analytical systems of Lienard form
	On initial value problem in theory of the second order differential equations
	About some equations of the third order with six poles
	On rational bases of GL_2_R_comitants of planar polynomial systems
	Ergodic sets and mixing extensions of topological transformation
	Linear singular perturbations of hyperbolic_parabolic type

