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Abstract 

In the present work, the Chern–Simons (CS) gauge field theory developed by Jackiw and 

Pi [8] and widely used to interpret the fractional quantum Hall effects, is applied to describe a 

two-dimensional (2D) electron–hole (e–h) system in a strong perpendicular magnetic field and 

under the influence of quantum point vortices creating the CS gauge field. Composite particles 

formed by electrons and holes with equal integer positive numbers   of attached quantum point 

vortices are described by dressed field operators, which obey the Fermi or Bose statistics 

depending on even or odd numbers  . It is shown that the phase operators, as well as the vector 

and scalar potentials of the CS gauge field, depend on the difference between the electron and 

hole density operators. They vanish in the mean field approximation, when the average values of 

electron and hole densities coincide. Nevertheless, even in this case, the quantum fluctuations of 

the CS gauge field lead to new physics of the 2D e–h system. 

Keywords: Chern–Simons gauge field, quantum point vortices, electron–hole system, 

two-dimensional (2D), strong magnetic field. 

 

Rezumat 

În lucrarea de față, teoria câmpului de etalonare de tip Chern–Simons (CS), dezvoltată de 

Jackiw și Pi [8] și pe larg utilizată pentru a explica efectele cuantice fracționale de tip Hall, a fost 

aplicată pentru a descrie sistemul bidimensional (2D) compus din electroni și goluri (e–h) supuse 

unui câmp magnetic perpendicular puternic și sub influența vârtejurilor punctiforme cuantice care 

creează câmpul de etalonare de tip CS. Particulele compozite formate din electroni și din goluri 

cu numere pozitive întregi egale   de vârtejuri punctiforme cuantice atașate sunt descrise de 

operatorii de câmp modificați, care se supun statisticilor Fermi sau Bose în dependență de 

numerele pare sau impare   ale vârtejurilor atașate. Operatorii, care descriu fază, precum și 

potențialele vectoriale și scalare ale câmpului de etalonare de tip CS depind de diferența dintre 

operatorii de densitate ale electronilor și golurilor. Ele se anihilează în aproximarea câmpului 

mediu atunci când valorile medii ale densităților electronilor și golurilor coincid. Totuși, chiar și 
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în acest caz, fluctuațiile cuantice ale câmpului de etalonare de tip CS aduc la noi fenomene fizice 

în sistemul 2D e–h. 

Cuvinte cheie: сâmp de etalonare  Chern–Simons, vârtejuri punctiforme cuantice, sistem 

din electroni și goluri bidimensionali (2D), câmp magnetic puternic. 

 

1. Introduction 

 

The Chern–Simons (CS) theory [1] is a quantum gauge theory using which some 

problems can be viewed from a different point of view providing better understanding. The most 

prominent of these problems are the change in the statistics of charged particles coupled to the 

CS field and the occurrence of a transverse conductivity, which directly makes the theory useful 

for describing the Hall effect. There is a deep analogy between CS gauge theories and quantum 

mechanical Landau levels of charge particles (electrons) in a magnetic field which have led to the 

understanding of the fractional quantum Hall effect [2–4] and simple understanding of the origin 

of massive gauge excitations in CS theories. It is worth mentioning that CS theories have 

important applications in the quantum field theory; the CS gauge theory can arise as a string 

theory, CS gravity theory, etc. The statistical transmutation leads to the physics of “anyons” [4], 

which are particles with generalized statistics neither fermionic nor bosonic that occur as 

excitations upon the ground state wave function (Laughlin wave function) of a quantum Hall 

system. 

The CS Lagrangian for the (2+1)–dimensional space–time is 
CS

1 2 a a
  

= −  L , 

where 
  is a U 1( )  gauge field and   is a constant. The CS Lagrangian is invariant for the 

gauge transformation a a
  
→ +   , which is seen from 

a a a a a  
        

  →   +    . The last term here can be written as total derivative 

3dS d x a( )
  

=    , which means that it vanishes if there is no boundary, or we can 

neglect the boundary effect. The equation of motion for the a


 fields is a 0
 

  = ; for the 

field strength tensor f a a
    

=  −  , we have f 0


= . This is a trivial result, which is of no 

interest from the point of view of physics until the a


 CS field is coupled to a J  source, which 

is the conserved current of another real physical field. 

Using a simple example, we recall the gauge theory notation for a planar system of 

electrons. The usual Lagrangian of the Maxwell gauge theory is 

 

   
M

1
F F A J

4

 
 

= − −L ,  (1) 

where 
0

A A A( , )

=  is the gauge field, F A A

    
=  −   is the field antisymmetric tensor, J  

is the conserved current, J 0

 = . Lagrangian (1) is invariant under the A A

  
→ +    

gauge transformation and, accordingly, the Euler–Lagrange equations of motion F J 

 =  are 

gauge invariant. The new situation is for 2+1 dimensions. In this case, the CS theory is a 
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completely different type of gauge theory. It satisfies our usual criteria for a sensible gauge 

theory: it is Lorentz invariant, gauge invariant, and local. The CS Lagrangian is defined as 

follows: 

  
CS

A A A J
2

 
   


=   − .L  (2) 

A gauge transformation changes the CS Lagrangian by a total space–time derivative: 

  
CS

A
2


  


 =   ( ).L   (3) 

Therefore, if we can neglect boundary terms, then the respective CS action 
3

CS CS
S d x=  L  is 

gauge invariant. Another important feature of CS Lagrangian (2) is that it is of the first order in 

space–time derivatives and, in 2+1 dimensions, the Lagrangian is quadratic in the gauge field. The 

Euler–Lagrange equations for CS Lagrangian are 

 

  F J
2

 



 = , or 

1
F J
 

= 


.   (4) 

If we introduce a matter current J J( , ) =   and consider CS equations (4) coupled to matter 

fields, then the components of equation (4) are 

  B =  , 
i ij

j
J E=  .  (5) 

The first equation (5) suggests that the charge density is locally proportional to the magnetic 

field, which means that the effect of a CS field is to relate magnetic flux to electric charge. Using 

the time derivative of the first equation in (5) 
ij

i j
B A =  =    and the current conservation 

equation 
i

i
J 0 +  = , we obtain 

  
i ij ij

j j
J A=  +    ,  (6) 

which is the second equation in (5), transverse piece   that can be identified with 
0

A . 

In this way, the effect of the CS coupling can be considered as a magnetic flux attached to 

the charge density in such a way that it everywhere follows the matter charge density. A feature 

of the CS theory is a magnetic flux attached to the charged particle fields together with the 

statistics transmutation. This feature is responsible for the appearance of CS fields in the 

composite boson or composite fermion models for the fractional quantum Hall effect, which 

involve quasiparticles that have magnetic fluxes attached to charged particles [5, 6]. 

Consider coupling of the Maxwell and CS Lagrangians, both of them producing gauge 

theories in 2+1 dimensions: 

  
MCS 2

1
F F A A

24e

 
   


= − +  L .  (7) 

The respective field equations 

  
2e

F F 0
2

 
 


 +  = ,  (8) 

describe the propagation of a single degree of freedom with mass 

  
2

MCS
m e=  .  (9) 
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Here, κ is dimensionless and 
2e  has mass dimension. If we write the equation of motion (8) in 

terms of the pseudovector “dual” field F F 


  , then we obtain 

  2 2e F 0( ) 


   +  =
  

.  (10) 

The origin of mass 
2e  is clearly seen from equation (10). 

To better understand the importance of the CS theory, we consider the quantum 

mechanical analogy following [7]. In the gauge, 
0

A 0= , the spatial components of gauge field 

A  are conjugated to electric field E , which satisfied equation E  =  , for which the 

“nondynamical” field 
0

A  is a Lagrange multiplier. We consider the structure of the Maxwell–CS 

theory Lagrangian: 

  2 2 ij
MCS i i j 02 2

1 1
E B A A kA B

22e 2e


= − +  +L .  (11) 

 

The “nondynamical” field 
0

A  is a Lagrange multiplier that can be regarded as a Lagrange 

multiplier in the Gauss law constraint: 

  
i0 2 ij

i i j
F e A 0 +    = .   (12) 

This is the 0 =  component of the Euler–Lagrange equations (8). In the 
0

A 0=  gauge, we 

identify 
i

A  as “coordinate” fields with respective ‘momentum’ fields: 

  i ij
i j2

i

1
A A

A 2e

 
  = + 



L
.  (13) 

Using the Legendre transformation, we write down the Hamiltonian 

 

  

i
MCS i

2
2

i ij 2 i
j 0 i2

A

e 1
A B A B

2 2 2e

=  −

 
  −  + +   + 
 
 

( ).

H L =

  (14) 

If we consider the long wavelength limit of the Maxwell–CS Lagrangian, in which we can drop 

all spatial derivatives, then the resulting Lagrangian will be as follows: 

  2 ij
i i j2

1
L A A A

22e


= +  .   (15) 

 

This is exactly the Lagrangian for a nonrelativistic charged particle moving in the plane in the 

presence of a uniform external magnetic field B  perpendicular to the plane: 

  2 ij
i i j

1 b
L x x x

2 2
= +  .  (16) 

For momentum, we have 

  ij
i i j

i

L B
p mx x

x 2


= = + 


,  (17) 
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and the Hamiltonian is 

  ij 2 2
i i i j i

1 b m
H p x L p x u

2m 2 2
( )= − = −  = .  (18) 

The quantum commutation relations 
i j ij

x p i[ , ] =   imply that the velocities do not commute, i.e. 

2
i j ij

v v i b m= − [ , ] . This shows the quantum mechanical analogy to the classic Landau problem 

of electrons moving in the plane in the presence of an external uniform magnetic field 

perpendicular to the plane. In the latter case, fields 
i

A x t( , )  and i x t( , )  in Hamiltonian (14) 

satisfy classical equal-time Poisson brackets: j j
i i

A x y i x y( ), ( ) ( )  =   −
  

 and 

4
i j

E x E y i e x y( ), ( ) ( )  =   −
 

. 

There is a useful quantum mechanical analogy to the Landau problem of electrons moving 

in the plane with an external uniform magnetic field perpendicular to the plane; it is of special 

interest in quantum Hall systems. 

It is now necessary to introduce density operators for the CS gauge field in a two-

component electron–hole (e–h) system. We use the classical and quantum nonrelativistic CS 

theory for a two-dimensional N–body system of point particles, which was developed by Jackiw 

and Pi [8], to describe a 2D e–h system in a strong perpendicular magnetic field under the 

influence of quantum point vortices creating the CS gauge field. Phase operator ( )ˆ r  of the CS 

field was introduced as a coherent summation of angles ( )/r r −  formed with the in-plane x-

axis by reference vectors ( )/r r− , which determine positions /r  of the particles creating the 

gauge field at point r . It was pointed in [8] that angles ( )/r r −  are ill determined because 

arctangent is a multivalued function. However, this deficiency was compensated by the fact that 

the summation of the angles was weighted in [8] by density operators ( )/ˆ r  of the charged 

particles as follows: 

  ( ) ( ) ( )/ / /ˆ ˆ ;
e

r dr r r r


  


= − −  ( )
/

/

/
arctan

y y
r r

x x


 −
− =  

− 
.   (19) 

Here,   is an integer, positive number and   is the fine structure constant 
2e c 1 137/ / = = . 

The integer value of   is another factor, which makes the dressed field operators to be well 

defined. Since we are interested in the generalization of the CS theory from a one-component 

electron gas to a two–component e–h system, we repeat the main statements of the CS theory in a 

new version by introducing a supplementary label ,i e h=  denoting electrons and holes from the 

very beginning. Partial field operators ( )i r  and ( )i r+  lead to partial phase operators ( )ˆ
i r  

and to partial vector potential operators ( )ˆ
ia r  taking into account the electrical charges of the 

electrons (-e) and the holes (+e). 

The bare field operators will be denoted as ( )0ˆ
i r  and ( )0

i r+  with supplementary label 

zero, whereas the dressed field operator ( )ˆ
i r  and ( )i r+  will be written without it. Note that, 

while the bare and dressed field operators are different, their density operators ( )ˆ
i r  and ( )0ˆ

i r  
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coincide: 

  ( ) ( ) ( ) ( ) ( ) ( )0 0 0ˆ ˆ ˆ ˆˆ ˆ
i i i i i ir r r r r r + +=   =  =                                      (20) 

Below, we will show that this property is a consequence of the unitary transformation 

( ) ( )ˆ ˆ 1u r u r+ =  and it concerns any operators, which are analytical functions of the density 

operators as follows: ( )( ) ( )( )0ˆ ˆ .i if r f r =  

For example, partial phase operators ( )ˆ
i r  and partial vector potential operators ( )ˆ

ia r  

show this property: 

  ( ) ( ) ( ) ( )2 / / / 0ˆ ˆ ˆ
i i i

e
r d r r r r r


   


= − − = , 

  ( ) ( ) ( ) ( ) ( )2 / / / 0ˆ ˆˆ ˆ
i r i r i i

e
a r r d r r r r a r


  


=  = −  − = ,  (21) 

  ( ) ( ) ( )ˆ ˆ ˆ ,e hr r r  = −  ( ) ( ) ( )ˆ ˆ ˆ ,e hia r a r a r= −  

 

and, as was pointed in [8], the ( )/r r −  function is ill determined. The differences added in (21) 

give rise to the resultant phase [9, 10] and vector potential operators [11] created by the integer 

e–h system [12]. 

Phase operators ( )ˆ
i r  and ( )ˆ r  are singular values because they are expressed in terms 

of a multivalued function, such as arctangent, and therefore as follows: 

 

  ( )/ /ln ;r rr r r r − = −  −  ( ) ( )/ /lnr r r r − =  − , 

  ( )/ 0,r r r − =  ( )/ 2 /ln 2 ;r r r r r − = −  

where 

  ;
 

 = −
 

x ye e
y x

 ;x y re e
x y r r





   
 = + =


+

   
 ;

x ye y e x

r


− +
=  ,r

r

r
=  

  

( ) 12 21 22

,

; 1, 0.

ij

i j y x

i
ij n

j

V V V V S
x y

S S

 
 =  = − =

 

 =  = − =   = =



 

  

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

2 / / /

2 / / /

ˆ 0,

ˆˆ ˆln

ˆ ˆln 2 ,

ˆ
ˆ ˆ ˆ2 2 .

 =

 = =     − =

=  − =

= = −





r r

r

e h

a r

e
a r b r d r r r r

e e
d r r r r r

e e
b r r r r






 
  

 

 
    
 

  (22) 

 

It was pointed out in [8] that, in the 2D space, the curl of the vector is a scalar, whereas the curl 

of the scalar is a vector. These properties are shows by formulas (22), in particular, the Green 

function of the Laplacian in the 2D space is (ln ) / 2r  . Other important data provided by 
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formulas (22) is the effective magnetic field ( )
ˆ
b r  expressed by ( )ˆa r . It was shown in [8] 

that this magnetic field is created by quantum point vortices. In the case of a one-component 

electron gas, this supplementary magnetic field can compensate the external magnetic field. It 

will be shown below that, in the case of a two-component e–h system, this effective magnetic 

field has a special interesting property. It seems to vanish in the mean-field approximation when 

the average values of the density operators coincide ( ) ( )ˆ ˆ
e hr r = ; however, its quantum 

fluctuations lead to unexpected physics of the 2D e–h system in a strong external magnetic field. 

Jackiw and Pi [8] gave a special attention to calculations involving the ill determined angle 

function ( )/r r − . They emphasized that, in the nonrelativistic quantum mechanics, the particles 

are points and density operator ( )ˆ r  is localized at these points being a superposition of the   

functions. This fact plays a critical role in calculations involving the CS gauge field. For 

example, it permits interchanging the integration and the differentiation in the definition of the 

CS vector potential ( )â r . Otherwise, it would be impossible to move the gradient with respect to 

r  out of the integral on variable /r . In the general case, operators (21) are singular, because the 

( )/r r −  angle is a multivalued function and the integration over the 2D /r  plane requires 

specifying the cut in /r  beginning in r . However, the presence of density operator ( )/ˆ r  in the 

integral with -function eigenvalues leads to an exceptional situation, when r -gradient can be 

moved with impunity outside the integral. Since the derivative of the ( )/r r −  function at point 

/r r=  is ill defined, the authors of [8] proposed its regularization: ( )
/

/ 0r
r r

r r
=

 = − = . 

To confirm the affirmation concerning the eigenvalues of the density operators, it is 

necessary to use the commutation relations between the field operators and the density operator: 

 

  ( ) ( ) ( ) ( )/ 2 / /ˆˆ, ;i i ir r r r r   = − 
 

 ( ) ( ) ( ) ( )/ 2 / /ˆˆ, ,i i ir r r r r + +  = − − 
 

 

  ( ) ( )/ˆ ˆ, 0,i jr r   =
 

 ( ) ( )/ˆ ˆ, 0,i r r   =
 

 ( ) ( )/ ˆˆ , 0.r a r  =
 

 (23) 

The proper functions of density operators ( )ˆ
i r  can be introduced as follows: 

  ( ) ( )/ /ˆ ˆ 0 ,i ir r+ =  ( ) ( )/ /ˆ ˆ0 ,i ir r =   (24) 

where 0  is the ground state of the system. The action of the density operator on the ( )/ˆ
i r  

function gives rise to the result 

 

  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

/ /

2 / 2 / /

ˆ ˆ ˆ ˆˆ 0

ˆ ˆ0 .

i i i i i

i i

r r r r r

r r r r r r



 

+ +

+

 =   =

= −  = − 
  (25) 

It confirms that the eigenvalues of density operators ( )ˆ
i r  have the form of -functions and that 

these operators play a decisive role in combating the deficiencies associated with the presence of 

the ( )/r r −
 
angle function. The integer, positive values of numbers   in the definitions of 

operators (21) contribute also to the removal of the incertitude associated with the 
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multivaluedness of the ( )/r r −
 
angles. 

The paper is organized as follows. Section 2 describes the unitary transformation 

operators that introduce the CS field into a two-component e–h system. In Section 3, we derive 

the Hamiltonian and the equations of motion for dressed field operators. The new properties of 

2D magnetoexcitons under the influence of the CS gauge field are revealed in Section 4. 

Conclusions are given in Section 5. 

 

 

2. Unitary Transformation Introducing the CS Gauge Field in a 

Two-Component Electron–Hole System 

 

In a two-component e–h system, the electrons and the holes equally contribute to the 

creation of a unique and common CS gauge field, each of them acting with a proper electric 

charge. The resultant phase operator ( )ˆ r  and its gradient are algebraic sums of the partial 

electron and hole contributions 

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 / / /

2 / / /

ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆˆ ,

ˆ ˆ ˆ ˆ ;

ˆ ˆˆ ˆ .

e h

e h r

e h

i i i i

e
r r r d r r r r r

e
a r a r a r d r r r r a r

r r r r

r r r r


     




 



   

 

+

+

+

+ +

= − = − − =

= − = −  − =

= − =

=   =



   (26) 

 

These expressions are true in the bare and dressed representations, no matter to which statistics—

Fermi or Bose—obey the field operators. Unlike a one-component two-dimensional electron gas 

(2DEG), in this case, there are two subsystems with different electric charges. As a consequence, 

the resultant phase and vector potential operators compensate each other, so as to obtain a zero-

gauge field in the mean-field approximation. It opens up the possibility of neglecting the effects 

arising due to the influence of the CS gauge field in the zero-order approximation and taking 

them into account in the next orders of the perturbation theory. In the case of a two-component e–

h system, the unitary transformation introducing the CS gauge field looks as follows: 

 

  ( )
( )ˆ

ˆ ;
ie

r
cu r e


=  ( )
( )ˆ

ˆ ;
ie

r
cu r e
−

+ = ( ) ( )ˆ ˆ 1.u r u r+ =   (27) 

The bare electron and hole field operators will be denoted as ( )0ˆ
i r  and ( )0ˆ

i r+  with the 

supplementary zero label. They obey the Fermi statistics with the Fermi commutation relations 

 

  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0 2 /

0 0 / 0 / 0

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ 0.

i j j i ij

i j j i

r r r r r r

r r r r

 + +  +  = −

  +  =
 (28) 

 

The dressed electron and hole field operators creating the CS gauge field are written without the 

zero label and they are introduced in the form 

 



 Sveatoslav A. Moskalenko, Vsevolod A. Moskalenko, Igor V. Podlesny, and Michael A. Liberman  
 

15 

  ( ) ( ) ( )0ˆ ˆ ,e er u r r+ =   ( ) ( ) ( )0ˆ ˆ ,e er r u r+ + =  

  ( ) ( ) ( )0ˆ ˆˆ ,h hr u r r =   ( ) ( ) ( )0ˆ ˆ ,h hr r u r+ + + =  

  ( ) ( ) ( ) ( ) ( ) ( )0 0 0ˆ ˆ ˆ ˆˆ ˆ , , ;i i i i i ir r r r r r i e h + +=   = =  =  

  ( ) ( )ˆ ˆ ,i ir r + =  ( ) ( )0 0ˆ ˆ ,i ir r + =  ( ) ( )/ˆ ˆ, 0,i jr r   =
 

 (29) 

  ( ) ( ) ( ) ( ) ( ) ( )0 0 0ˆ ˆ ˆ ˆ ˆ ˆ .e h e hr r r r r r     = − = = −  

 

Due to the equality ( ) ( )0ˆ ˆr r = , the phase and vector potential operators determined by 

formulas (26) are the same in the bare and in the dressed representations: 

 

  ( ) ( )0ˆ ˆ ,r r =  ( ) ( )0ˆ ˆ ,i ir r =  

  ( ) ( )0ˆ ˆ ,a r a r=  ( ) ( )0ˆ ˆ ,i ia r a r=  ( ) ( )0ˆ ˆ .r r =  (30) 

 

This also concerns other operators expressed as analytic functions depending on density operator 

( )ˆ r . Despite the fact that bare electron and hole field operators ( )0ˆ
i r  and ( )0ˆ

i r+  obey 

Fermi commutation relations (28), dressed field operators ( )ˆ
i r  and ( )ˆ

i r+  satisfy the Fermi or 

Bose statistics depending on the even or odd integer, positive numbers   introduced into the 

definitions of operators (26). To prove this statement, it is necessary to derive first the 

commutation relations between field operators ( )ˆ
i r  and ( )ˆ

i r+  with density operators ( )ˆ
i r

 
and the commutation relations between the field operators and unitary transformations operators 

( )u r  and ( )u r+
. The first of them are as follows: 

 

  ( ) ( ) ( ) ( )/ 2 / /ˆ ˆˆ, ;i i ir r r r r   = − 
 

 ( ) ( ) ( ) ( )/ / 2 / /ˆ ˆˆ, .i i ir r r r r + +  = − − 
 

 (31) 

 

They are the same as those in the case of the Fermi or Bose statistics. Thereupon, the following 

commutation relations can be obtained: 

  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

/ / /

/ / /

/ / /

/ / /

ˆ ˆˆ ˆ ,

ˆ ˆˆ ˆ ,

ˆ ˆˆ ˆ ,

ˆ ˆˆ ˆ .

n

n

e e

n

n

h h

n

n

e e

n

n

h h

e
r r r r r r

e
r r r r r r

e
r r r r r r

e
r r r r r r


  




  




  




  



+ +

+ +

 
 = − −  

 

 
 = + −  

 

 
 = + −  

 

 
 = − −  

 

 (32) 

 

In this case, the commutation relations of field operators ( )ˆ
i r  with unitary transformation 

operators /ˆexp( ( ) ( ))ie r c  will be 
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  ( )
( )

( ) ( )
/ˆ

/

0

1ˆ ˆ ˆ
!

nie
r

nc
e e

n

ie
r e r r

c n






=

 
 =  = 

 
  

  ( ) ( ) ( )/ /

0

1 ˆˆ
!

n n

e

n

ie e
r r r r

c n


 





=

   
= − −  =   

   
  

  
( ) ( )

( )
// ˆ

ˆ ,
ie

ri r r
c

ee e r



−

=   

  

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

/ //

/ //

/ //

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ .

ie ie
r ri r r

c c
h h

ie ie
r ri r r

c c
e e

ie ie
r ri r r

c c
h h

r e e e r

r e e e r

r e e e r

 

 

 


  −

 
 −+ +

 
−+ +

 = 

 = 

 = 

 (33) 

 

To prove the main statement concerning the statistics of the dressed field operators, we will start 

with the first equation (28) and transcribe it from the bare to dressed operators as follows: 

 

  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

/

/

0 0 / 0 / 0 2 /

/ / / /

0/ /

0/ /

/ /

/ /

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ,

,

.

e e e e

e e e e

i r ri

e e

i r ri

e e

r r r r r r

u r r r u r r u r u r r

r r u r u r e e

r r u r u r e e

u r u r u r u r

r r r r







  

+ +

+ + + +

− −+ +

− −+ +

+ +

  +  = − =

=   +  =

=   +

+ 

=

− = − +

 (34) 

With account of the last two relations, equation (34) can be transcribed in the form 

 

  

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

/
0 / /

/ 2 /

ˆ ˆ ˆ ˆ

.

i r ri i

e e e ee e r r e r r

u r u r r r

 



− − + − +

+

   +   
 

 = −

 (35) 

It is equivalent to the commutation relation 

 

  

( ) ( ) ( ) ( ) ( )

( )

/ / 2 /ˆ ˆ ˆ ˆ ,

1, 0,2,4...,
cos isin .

1, 1,3,5..,B

i

e e e e

i

r r e r r r r

F
e








 



+ − +

−

  +   = −

= 
= − =  

− = 

 (36) 

 

The most important result of these calculation is the affirmation that CS gauge field operators 

( )ˆ
i r+  and ( )ˆ

i r  with ,i e h=  obey the Fermi statistics in the case of the even integer, positive 

pair numbers   and the Bose statistics in the case of odd integer positive numbers  . It is an 

important result of the CS gauge field theory developed by Jackiw and Pi in [8]. 
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3. Hamiltonian and Equations of Motion Describing the Dressed Operators of the CS 

Gauge Field 

 

To obtain a Hamiltonian describing the interaction of the composite particles expressed in 

terms of dressed field operators ( )ˆ
i r+  and ( )ˆ

i r
 
and deduce their equations of motion, we 

will start with the respective expressions for bare field operators ( )0ˆ
i r+  and ( )0ˆ

i r . The 

Hamiltonian describing bare 2D electrons and holes in an external perpendicular magnetic field 

and interacting by the Coulomb forces obtained in [13] looks as follows: 

 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

22
0 2 / 0 / / / 0 /

22
2 / 0 / / / 0 /

0 2 / 2 / / / / / 0 / 0 / / 0 /

2 / 2 / /

ˆ ˆ ˆ ,

ˆ ˆ ˆ
2

ˆ ˆ ,
2

1ˆ ˆ ˆˆ
2

1

2

Coul

e e

e

h h

h

Coul Coul e e e

Coul

H K H

e
K d r r i A r r

m c

e
d r r i A r r

m c

H d r d r V r r r r r

d r d r V



+ +

+ +

+

= +

 
=  −  +  + 

 

 
+  −  −  

 

= −   +

+





 

  ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

/ / / 0 / 0 / / 0 /

2 / 2 / / / / / 0 / 0 / / 0 /

ˆ ˆˆ

ˆ ˆˆ .

h h h

Coul e h e

r r r r r

d r d r V r r r r r





+

+

−   −

− −   

   (37) 

 

Here, ( )/A r  is the vector potential created by an external magnetic field perpendicular to the 

layer. In the Landau gauge description, it has the form of ( ) ( ),0,0A r B y= −  , where B  is the 

magnetic field strength. The vector potential obeys the following condition: ( ) 0A r = . The 

Coulomb interaction potential in a 2D system can be represented as 

 

  ( ) ,iQr

Coul Q
Q

V r V e=  ( )
2

0

2
,

e
V Q

S Q




=  ( ) ( )

2 2
0

2 ;
Q l

W Q V Q e
−

=  2

0 .
c

l
eB

=   (38) 

 

Here, S  is the layer surface area, 0  is the effective dielectric constant, and 0l  is the magnetic 

length. Coefficient ( ) ,W Q  along with coefficient ( )V Q , was introduced into (38); it will be used 

below. 

Bare density operators ( )0ˆ
i r  were introduced by formula (20). Schrodinger equations 

for bare operators ( )0ˆ
e r  and ( )0ˆ

h r  were derived in [13], and we just recall them: 
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( )
( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

20 2
0 0 0

2 / / 0 / 0

.

20 2
0 0 0

2 / / 0 / 0

.

0

0

ˆ
ˆ ˆ ˆ,

2

ˆˆ ,

ˆ
ˆ ˆ ˆ,

2

ˆˆ ,

ˆ
ˆ

e

e e

e

Coul e

h

h h

h

Coul h

e

e

d r e
i r H i A r r

dt m c

d r V r r r r

d r e
i r H i A r r

dt m c

d r V r r r r

d r
i r

dt





+

+

   =  = − +  +    

+ − 

   =  = − −  −    

− − 


= 





( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

22
0 0

2 / / 0 0 /

.

20 2
0 2 / / 0 0 /

.

0 / 0 /

ˆ ˆ,
2

ˆ ˆ ,

ˆ
ˆ ˆ ˆ ;

2

ˆ ˆ .

e

e

Coul e

h

h Coul h

h

e
H i A r r

m c

d r V r r r r

d r e
i i A r r d r V r r r r

dt m c

r r





 

+

+

+

+ +

+

   = −  +  −    

− − 

  
= − −  + −  

 

=





  (39) 

Time derivatives 
0ˆ( ( ))id r dt  and the continuity equations were derived using equations of motion 

 

  ( ) ( ) ( )( ) ( )0 0 0 0ˆˆ ˆˆ ;i i i i

d d
r r r J r

dt dt
 +=   = −  ,i e h= . 

  ( ) ( ) ( ) ( ) ( )( ) ( ) ( )0 0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ ,
2

e e e e e e

e e

e
J r r r r r A r r

m i m c
+ +=   −  +  

  ( ) ( ) ( ) ( ) ( )( ) ( ) ( )0 0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ .
2

h h h h h h

h h

e
J r r r r r A r r

m i m c
+ +=   −  −   (40) 

 

The equations of motion for dressed field operators ( )ˆ
i r+  and ( )ˆ

i r  can be obtained taking 

into account equation (39) and time derivatives of unitary transformation operators ( ) ( )0ˆ ˆu r u r=  

and ( ) ( )0ˆ ˆu r u r+ += , which coincide in the bare and dressed representations as well as operators 

( ) ( )0ˆ ˆ
i ir r = , ( ) ( )0ˆ ˆ

i ir r = . Therefore, one of them can be used in calculations without 

supplementary specifications. 

Following the procedure used in [13], we obtain two equations: 

 

  
( )

( ) ( )( ) ( ) ( ) ( ) ( )0 0 0
ˆ

ˆ ˆ ˆˆ ˆ ˆ ,
e

e e e

i d r d d i d
i u r r i u r r u r r

dt dt dt dt

+ + +


=  =  +   

  
( )

( ) ( )( ) ( ) ( ) ( ) ( )0 0 0
ˆ

ˆ ˆ ˆˆ ˆ ˆ .
h

h h h

i d r d d i d
i u r r i u r r u r r

dt dt dt dt


=  =  +   (41) 

 

To obtain time derivatives of unitary transformation operators ˆexp( ( ) ( ))ie r c , we take into 

account that operators ( )ˆ /d r dt  and ( )ˆ r  do not commute. This was pointed out by Jackiw 
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and Pi in [8] and demonstrated in [13] as follows: 

  

( )
( ) ( ) ( )

( )
( )

( ) ( ) ( )

( )
( )

( )
( )

2

2 / 2 / / /

/ 2

/ / / / 2 / 2 / / / / /

/ /

/ / / /

ˆ
ˆˆ,

ˆ
ˆ,

ˆ ˆ
ˆ ˆ, ,

e h

e h

d r e
r iL r d r d r r r

dt

d r e
r r r d r d r r r r r

dt

d r d r e
r r

dt dt

 
 



 
   



  
 



   
= − = −    

  

   
  − = − −  

   

       
    + =  

         

 

 

( ) ( ) ( ) ( ) ( ) ( ) 

2

2 / 2 / /

/ / / / / / / / / /ˆ ˆˆ ˆ, ,e e h h

d r d r

r r r r J r r J r r   



    − − +
      

 

 (42) 

 

where we used expressions (40), which lead to the form 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 

2

2 / 2 / / / / / /

0 / / 0 / 0 / / / 0 / 0 / 0 / /

ˆ ˆ ˆ ,
2 2

ˆ

ˆ ˆ ˆ ˆˆ ˆ, , ; , .

e h

e h

i

i i i i i i

L r M r M r
m m

e
M r d r d r r r r r

r r r r r r i e h


 



 + +

= +

 
=  − −  
 

       −    =
   

    (43) 

 

The commutation relations that were substituted into formulas (43) were calculated in [13] and 

look as follows: 

  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

0 / / 0 / 0 / / 0 / / 2 / / / 0 / /

2 / / / 0 / / / 0 /

/ 0 / 0 / 0 / / / 2 / / / 0 / / 0 /

/ 0 / 2 / / / 0 / /

ˆ ˆ ˆ ˆˆ,

ˆ ˆ ,

ˆ ˆ ˆ ˆˆ,

ˆ ˆ , , .

i i i i i

i i

i i i i i

i i

r r r r r r r

r r r r

r r r r r r r

r r r r i e h

 



 



+ +

+

+ +

+

    =   −  −
 

− −   

    = − −   +
 

+  −  =

  (44) 

The ( )/ / 0r r − =  and ( )( )
2 2

/ / /
−

 − = −r r r r  properties help to effectuate the next 

calculations, which lead to the expressions 

 

  ( )
( )0 /2

2 /

2
/

ˆ
ˆ 2 , , ;

i

i

re
M r d r i e h

r r





 
= = 

  −
  

  
( )

( ) ( )

( ) ( ) ( ) ( )

0 / 0 /

2 / 2 /

2 2
/ /

ˆ ˆ1 1ˆ ,

ˆ ˆˆ ˆ, , 0.

e h

e h

i

r re
L r d r d r

m mr r r r

L r r L r r

 



 

 
   = + 

   − −
 

   = =
   

 
  (45) 

 

To derive time derivatives of the unitary transformation operators, we will use the following formula: 
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  ( ) ( )
0

1
ˆ ˆ .

!

nie

nc

n

d ie d
e r r

dt c n dt
 



=

 
=  

 
  (46) 

 

The first steps are the following results: 

 

  

( ) ( )
( )

( )
( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

2

3 2 2

ˆ ˆ
ˆ ˆˆ ˆ ˆ2 2 ,

ˆ ˆˆ ˆ ˆ ˆ3 3 3 3 ,

d r d rd
r r iL r r iL r

dt dt dt

d r d rd
r r iL r r r iL r r

dt dt dt

 
  

 
    

= − = +

= − = +

 

  ( ) ( ) ( )
( )

( ) ( ) ( )1 2ˆˆ ˆn nn

n

d rd
r n r iX L r r

dt dt


  

− −
= − =  

  

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

1 2

1

ˆˆ ˆ ,

1
1 , 2.

2

n n

n

n n

d r
n r iX L r r

dt

n n
X n X n


 

− −

−

= +

−
= − + + 

  (47) 

The last equation was used as follows: 

 

  

( ) ( )
( )

( ) ( )

( )
( )

( )
( )

( )

( )
( )

ˆ

2

1

1

2

2

0

ˆ 1
ˆ

!

ˆ ˆ1
ˆ

k!

ˆ ˆ
2 !

nie
r n

c

n

k

k

k

m

m m

m

d rd ie ie d
e r

dt c dt c n dt

d r d rie ie
r

c dt c dt

Xie
iL r r

c m

 


 






=

+

=

+
+

=

   
=  +  =   
   

   
=  +  −   
   

 
−  = 

+ 







 

  

( ) ( ) ( )

( )

( )
( )

( )

( )
( )

1

1

2

2

0

ˆ ˆ 1
ˆ

k!

ˆ ˆ
2 !

k

k

k

m

m m

m

d r d rie ie
r

c dt dt c

Xie
iL r r

c m

 




+

=

+
+

=

   
=  +  +   
   

 
+  = 

+ 





 

  
( ) ( )

( )
2

ˆ ˆ
ˆ

2

ie
r

c
d rie i e

e L r
c dt c

      
=  + =    

     

 

  

( )
( )

( )

( )

( )

2
ˆ

2

ˆ
ˆ

2

1 1
, 0.

2 ! 2 !

ie
r

c

m

d rie i e
L r e

c dt c

X
m

m m

 

+

    
=  −     

     

 =  
+

  (48) 

We can now calculate the commutation relation between time derivative ( )ˆ /d r dt  and unitary 

transformation operators ˆexp( ( ) ( ))ie r c : 
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( ) ( ) ( )

( )
ˆ

0

ˆ ˆ1
ˆ, , .

!

nie
r

nc

n

d r d rie
e r

dt c n dt

 




=

    
=      

    
   (49) 

 

To clarify this issue, we recall the basic equalities 

  
( )

( ) ( )
ˆ

ˆˆ, ,
d r

r iL r
dt




 
= − 

 
 

( )
( ) ( ) ( )

2ˆ
ˆˆ ˆ, 2 .

d r
r iL r r

dt


 

 
= − 

 
 

 

They lead to the recurrent formula 

 

  
( )

( ) ( ) ( )1
ˆ

ˆˆ ˆ, n n
d r

r inL r r
dt


  −

 
= − 

 
, (50) 

which solves the problem: 

 

  
( ) ( )

( )
( )ˆ ˆˆ

ˆ, .
ie ie

r r
c c

d r ie
e L r e

dt c

      
=    
  

 (51) 

 

Next, to derive the equations of motion for dressed field operators ( )ˆ
i r  and ( )ˆ

i r+ , we 

consider equations 

  

( ) ( ) ( )( )
( )

( ) ( )
( )

( ) ( ) ( )( )
( )

( ) ( )
( )

0

0 0

0

0 0

ˆˆ
ˆ ˆ ˆˆ ˆ ,

ˆˆ
ˆ ˆ ˆˆ ˆ .

e

e e e

h

h h h

du r d rd d
i r i u r r i r u r i

dt dt dt dt

du r d rd d
i r i u r r i r u r i

dt dt dt dt

+

+ +


 =  =  +


 =  =  +

 (52) 

 

We recall that operators ( )ˆ r  and ( )ˆ /d r dt  do not commute and their commutation equals to 

 

  
( )

( ) ( )
ˆ

ˆˆ, ,
d r

r iL r
dt




 
= − 

 
  (53) 

  ( ) ( )ˆ ˆ ,L r L r+ =  ( ) ( )ˆ ˆ, 0,iL r r  =
 

 ( ) ( )/ˆ ˆ, 0.L r r  =
 

 

 

Similar to as it was done in the derivation of equation (48), we can write 

 

  

( )
( )

( )
( )

( )
( ) ( )

( )
( )

2

2

2

2

ˆ

ˆˆ
ˆˆ

2

ˆ
ˆ ˆ ,

2

ˆ ,
ie

r
c

du r d re e
i u r L r

dt c dt c

d re e
L r u r

c dt c

u r e






 
= − − = 

 

 
= − + 
 

=
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( )
( )

( )
( )

( )
( ) ( )

( )
( )

2

2

2

2

ˆ

ˆˆ
ˆˆ

2

ˆ
ˆ ˆ ,

2

ˆ .
ie

r
c

du r d re e
i u r L r

dt c dt c

d re e
L r u r

c dt c

u r e






+

+

+

−
+

 
= − = 

 

 
= + 
 

=

  (54) 

Below, we will use formulas describing the action of operator ( )i−   on unitary transformation 

operators ˆexp( ( ) ( ))ie r c : 

 

  ( )
( )

( )
( )ˆ ˆ

ˆ ;
ie ie

r r
c c

e
i e a r e

c

  

−  =   ( ) ( )ˆ ˆ ,a r r=  

  

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
ˆ

0

2 2
ˆ

0

0 0 /

ˆˆ ˆ ,

ˆˆ ˆ .

ˆ ˆ ˆ ˆ ˆˆ, , , 0.

ie
r

c
e e

ie
r

c
h h

e e h e

e e e
e i A r r i A r a r r

c c c

e e e
e i A r r i A r a r r

c c c

r u r r r u r r a r r







−

+

   
−  +  = − + +    
   

   
−  −  = − − −    
   

  =   =  =
 

 (55) 

 

The time derivatives of the dressed field operators can be expressed in terms of derivatives of 

their components: 

  

( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )

0

0

0

0

ˆˆ
ˆ ˆ ˆ ,

ˆˆ
ˆ ˆ ˆ .

e

e e

hh

h

du r d rd
i r i r u r i

dt dt dt

du r d rd
i r i r u r i

dt dt dt

+

+


 =  +


 =  +

 (56) 

 

Using formulas (39), (54), and (55), we obtain 

 

  
( )

( ) ( ) ( )
22ˆ

ˆ ˆ
2

e

e

e

d r e e
i i A r a r r

dt m c c

  
= − − +  + 

 
 

  
( )

( ) ( ) ( ) ( ) ( ) ( )
2

2 / / /

.2

ˆ
ˆ ˆ ˆ ˆˆ ,

2
e e Coul e

d re e
r L r r d r V r r r r

c dt c


+  +  + −   

  

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

22

2
2 / / /

.2

/ / / / / /

ˆ
ˆ ˆ

2

ˆ
ˆ ˆ ˆ ˆˆ ,

2

ˆ ˆˆ ˆ ˆ ˆ; , , .

h

h

h

h h Coul h

e h i i i

d r e e
i i A r a r r

dt m c c

d re e
r L r r d r V r r r r

c dt c

r r r r r r i e h




    +

  
= − − −  − 

 

−  +  − − 

= − =   =

  (57) 

 

Unlike equations of motion (39) for bare field operators ( )0ˆ
i r , equations (57) contain new 
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operators, such as ( )ˆ r , ( )ˆ r dt , and ( ) ( )ˆˆ r a r = , which characterize the CS gauge field. 

Similar to the case of a one-component 2DEG, in a two-component 2D e–h system, the quantum 

point vortices also give rise to vector potential ( )a r  and scalar potential ˆ ( )d cdt , which appear 

supplementary to vector potential ( )A r  of the external magnetic field. However, as noted above, 

they depend on the difference of the density operators ( ) ( ) ( )ˆ ˆ ˆ
e hr r r  = −  due to different signs 

of the electrical charges of electrons and holes. 

In the case under discussion, vector potential ( )a r
 
cannot compensate vector potential 

( )A r  created by an external magnetic field. Chern–Simons vector potential ( )a r  vanishes in the 

mean-field approximation, if the average densities e  and h  coincide. Nevertheless, 

numbers   of the quantum point vortices attached to each electron and each hole can be different 

from zero; in the zero-order approximation, the composite particles will be subjected only to an 

external magnetic field. In the zero-order approximation, they undergo the Landau quantization 

under the influence of an external magnetic field and will undergo perturbations in the next 

orders of the perturbation theory. In addition to the equations of motion (57) characterizing the 

time evolution of dressed field operators, we need a Hamiltonian describing a 2D e–h system in 

the presence of the CS gauge field. It can be easily obtained by substituting bare field operators 

( )0ˆ
i r+  and ( )0ˆ

i r  into Hamiltonian (37) by the dressed field operators 

 

     ( ) ( ) ( )0ˆ ˆ ,e er u r r =  ( ) ( ) ( )0ˆ ˆ ,h hr u r r+ =  ( ) ( ) ( )0ˆ ˆ ˆ ,e er r u r+ + + =  

  ( ) ( ) ( )0ˆ ˆ ˆ ,h hr r u r+ + =  ( )
( )ˆ

ˆ ,
ie

r
cu r e


=  ( )
( )ˆ

ˆ .
ie

r
cu r e
−

+ =   (58) 

 

For example, the first two terms of Hamiltonian (37) are transformed as follows: 

 

      ( ) ( ) ( )
22
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 (59) 
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where we use relationships (55): 
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 (60) 

 

Hamiltonian 
0ˆ
CoulH  of the Coulomb interaction of bare electrons and holes can be transcribed in 

the dressed field operator representation, taking into account that 
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 (61) 

 

The Hamiltonian of the e–h system in the presence of the CS gauge field looks as 
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 (62) 

 

Hamiltonian (62) is much more complicated than its bare counterpart (37), because it contains a 

nonlinear form of vector potential operator ( )/â r  created by the CS gauge field. To obtain 

equations of motion for dressed field operators, we start with the Schrodinger equations for 

electrons and holes 

 

  
( )

( )
ˆ

ˆ ˆ, ,
i

i

d r
i r H

dt


 = 
 

 , .i e h=  (63) 

 

In this case, it is necessary to calculate commutation relations of the field operators with operator 

( )/â r  
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  (64) 

 

Using these equations, we can write 
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  (65) 

It should be borne in mind that dressed field operators ( )ˆ
i r  and ( )ˆ

i r+  obey the Fermi or 

Bose statistics with commutation relations 
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and all the formulas obtained above are valid in both cases. For example, to derive the next 

commutation relations, we have to use both formulas (65) and (66) as follows: 
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 (67) 

 

Here, we took into account the properties described by formulas (64) and the equalities written below 
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−
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Both integrals proportional to   in equation (67) can be transformed introducing the dressed 

current density operators for electrons ( )ˆ
eJ r  and holes ( )ˆ

hJ r  and the respective continuity 

equations as follows: 
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Condition ( )/ / 0r r − =  is useful for a simple integral transformation: 
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The obtained relations allow us to write the above-mentioned integrals in equations (67) as 

follows: 
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  (70) 

 

Combining the results expressed by equations (67)–(70), we can formulate the main result of our 

calculations: 
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In a similar way, the following commutations can be derived: 
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Formulas (71) and (72) constitute the basis for the main statements: 
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The obtained results confirm the earlier derived equations of motion (57) for dressed field 

operators. 

 

 

4. Influence of the CS Gauge Field on the Energy Level of a 

Two-Dimensional Magnetoexciton 

 

In the Landau gauge description, two-dimensional electrons and holes are described as 

free particles moving along the in-plane x -axis and undergoing the Landau quantization along 

the in-plane y-axis perpendicular to the x-axis. The free motion is represented by the plane wave 

functions with unidimensional (1D) wave vectors p  and q  as quantum numbers, whereas the 

Landau quantization takes place in the form of harmonic oscillations around the gyration points 

situated on the y-axis at distances 
2

0pl  and 
2

0ql−  from the origin, where 0l  is the magnetic length. 

The displacements of electrons and holes in the opposite parts of the y-axis are due to the 

different signs of their electric charges. The single particle wave functions corresponding to the 

lowest energy level of the Landau quantization are as follows: 
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 (74) 

 

  Here, we consider the 2D layer with a surface area of x yS L L= . Wave functions (74) 

belong to the lowest levels of Landau quantization with quantum numbers 0e hn n= = ; in this 

paper, we do not consider the excited Landau quantization energy levels. This approach is known 
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as the lowest Landau Levels (LLL) approximation and labels en  and hn  at electron field operators 

pa+
, pa  and hole field operators pb+

, pb  will be dropped. Bare electron and hole field operators 

obey the Fermi statistics. The energies of the electrons and holes are c, 2i , with ,i e h= , where 

c,i  are the cyclotron frequencies. The electron and hole field operators in the coordinate 

representation in the LLL–approximation are as follows: 
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 (75) 

 

where we introduced the electron and hole density operators 
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 (76) 

Here, the density operator of the e–h system ( )ˆ r  was defined as the algebraic sum of the 

electron and hole density operators. This algebraic sum determines the CS gauge field vector 

potential operator ( )â r  as follows: 
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 (77) 

 

To determine the influence of the CS gauge field on the 2D magnetoexciton energy level, it is 
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necessary to calculate the average value of Hamiltonian (62) using magnetoexciton wave 

function ( )ex k , which was obtained in [13]: 
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First, we will discuss the influence of the terms in Hamiltonian (62), which are proportional to 

the square of CS vector potential ( )â r  in the form 
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Their average value calculated with the magnetoexciton wave function with wave vector 0k =  is 

as follows: 
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 (80) 

The Fourier series expansions of exponents ( )exp siniz t  and ( )exp cosz t  contain coefficients 

expressed in terms of Bessel functions ( )J z  and modified Bessel functions ( )I z  [14]: 
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 (81) 

 

Substitution of them into the previous expression leads to its transformation 
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In subsequent calculations, we will use integrals with two Bessel functions [14]: 
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Their applications give rise to energy shift e  of the magnetoexciton energy level 
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It is possible to estimate, along with terms (79) containing the square of the CS vector potential 

( )2â r , the contribution of the mixed term proportional to the scalar product of two vector 

potentials ( )â r  and ( )A r . It is expressed by the average value 
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The shift of the magnetoexciton energy level 
/

e  at point 0k =  due this term can be calculated exactly: 

  /

4
e

e

eB

m c


 = . (86) 

In the case of electron effective mass em  equal to free electron mass 0m  at a magnetic field 

strength of 10 TB = and 1 = , the shift of the magnetoexciton energy level at point 0k =  due to 

the influence of the CS gauge field can be estimated as 
/ 1 4 meVe = . 

 

 

5. Conclusions 

 

The origin of the CS gauge field, as well as quantum point vortices, is associated with a 

collective motion in the 2D system, where the main role is played by angles ( )/r r −  created by 

reference vectors ( )/r r−  with a selected axis. The reference vectors describe positions of the 

particles at points /r  with density operator ( )/ˆ r . The coherent summation of the angles 

weighted with the density operator gives rise to phase operator ( )ˆ r , whereas the gradients of 

the angles and their weighted summation give rise to vector potential ( )â r  of the CS gauge field. 

Unitary transformation operators ( )ˆexp ( ) ( )ie r c  acting on bare electron and hole 

field operators lead to the formation of dressed field operators representing composite particles 

with number   of attached quantum point vortices. Dressed field operators obey the Fermi or 

Bose statistics depending on the parity of numbers   of attached vortices. A Hamiltonian 

describing the composite particles and their interactions through the Coulomb forces and under 

the influence of the CS gauge field has been deduced; equations of motion for dressed field 

operators have been derived. The influence of the CS gauge field on the energy levels of 2D 

magnetoexcitons has been estimated. 

 

References 

 

[1] S. S. Chern and J. Simons, Ann. Math. 99, 48 (1974). 

[2] B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993). 

[3] N. Read, Phys. Rev. B 58, 16262 (1998). 

[4] F. Wilczek, Phys. Rev. Lett. 48, 1144, (1982); 49, 957 (1982). 

[5] S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989). 

[6] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989). 

[7] G. Dunne, R. Jackiw, and C. Trugenberger, Phys. Rev. D 41, 661 (1990). 

[8] R. Jackiw and So Young Pi, Phys. Rev. D 42, 3500 (1990). 

[9] S. A. Moskalenko and V. A. Moskalenko, Mold. J. Phys. Sci. 16 (3–4), 133 (2017). 

[10] S. A. Moskalenko, V. A. Moskalenko, D. F. Digor, and I. A. Lelyakov, Mold. J. Phys. Sci. 

16 (3–4), 173 (2017). 

[11] S. A. Moskalenko and V. A. Moskalenko, Mold. J. Phys. Sci. 17 (1–2), 41 (2018). 



Moldavian Journal of the Physical Sciences, Vol. 20, 1, 2021 
 

 34 

[12] S. A. Moskalenko, V. A. Moskalenko, I. V. Podlesny, and I. A. Zubac, Semiconductors 53, 

2055 (2019). 

[13] S. A. Moskalenko, V. A. Moskalenko, P. I. Khadzhi, I. V. Podlesny, M. A. Liberman, and I. 

A. Zubac, Mold. J. Phys. Sci. 17, 52 (2018). 

[14] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: Special 

Functions, Gordon and Breach Science Publishers, New York, 1986. 

 

 



 

 

   
PARTIAL WAVE BASIS ADAPTED TO EXTERIOR BOUNDARY CONDITIONS OF 

AN ELASTIC PLATE 

 

Sergiu Cojocaru 
 

Department of Theoretical Physics, 

Horia Hulubei National Institute for Physics and Nuclear Engineering, 

077125 Magurele, Romania 

E-mail: scojocaru@theory.nipne.ro 

 

(Received November  24, 2020) 

 

https://doi.org/10.53081/mjps.2021.20-1.02                                                            CZU:530.1+534 

 

Abstract 
 

An approach to describing normal elastic vibration modes in confined systems is 

presented. In a standard treatment of the problem, the displacement field is represented by a 

superposition of partial waves of a general form, e.g., plane waves. The unknown coefficients of 

superposition are then obtained from the equation of motion and the full set of boundary 

conditions. In the proposed approach, the functional form of partial waves is chosen in such a 

way as to satisfy the boundary conditions on exterior surfaces identically, i.e., even if the 

unknown quantities determined by the remaining constraints are found in an approximation, 

numerically or analytically. Some examples of solutions for composite elastic plates are 

discussed to illustrate the efficiency of the approach and its relevance for applications.  
 

Keywords: wave propagation, confined systems, boundary conditions   

 
 

Rezumat 
 

Este prezentată o metodă nouă pentru descrierea modurilor proprii de vibrații elastice în 

sisteme confinate. Într-o abordare standard a problemei, câmpul de deplasări este reprezentat de o 

superpoziție a undelor parțiale de formă generală, de exemplu, unde plane. Coeficienții 

necunoscuți ai superpoziției sunt apoi obținuți din ecuația de mișcare și din setul complet de 

condiții la limită. În abordarea propusă, forma funcțională a undelor parțiale este construită astfel 

încât condițiile la limită de pe suprafețele exterioare să fie îndeplinite în mod identic, adică chiar 

dacă valorile necunoscute, ce urmeaza a fi determinate de restul constrângerilor, sunt obținute 

într-o aproximare, numerică sau analitică. Eficiența și relevanța metodei pentru aplicații este 

demonstrată prin câteva exemple de soluții pentru plăci elastice compuse. 

 

Cuvinte cheie: propagarea undelor, sisteme confinate, condiții la limită 
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1. Introduction   

 

 We consider an infinite composite plate with layers of homogeneous materials labeled 

with index            (e.g., layer thickness   ) and briefly outline the general formalism  

[e.g., 1–5]. The stress–strain relation in a given material is as follows:  

 

                      

 

where             is the Kronecker symbol,         , double index implies summation,            are 

the two Lamé stiffness parameters and the strain tensor at a given point    r = (x1=x, x2=y, x3=z) 

and time t  is defined by respective space derivatives of the displacement field               

components  

 

 

          
   
   

 
   
   

     

Solutions of elastodynamic equations 

                                           
         

   
 

  i      

   
             (1) 

 

are represented by a superposition of normal modes propagating in-plane with the wave vector q||  

and indexed by           :  

                          
  

  
  

 

Here we have set the    - axis collinear to the wave vector, so that    r
 
q||                and 

plate thickness is spanned by the   - axis. Equations are then decoupled according to the 

polarization pattern into the shear horizontal,            , and mixed (shear vertical and 

longitudinal [6]),             . The latter, which are referred to as Rayleigh-Lamb waves, are 

examined in the following. The relevant components of the stress tensor are as follows: 

 

                
      

  
        

 

          
   
  

          

From Eq. (1) we then obtain for the mode amplitudes  
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        (2) 

 

where               ,          are the bulk longitudinal and transverse sound velocities 

in the respective materials of mass density    . Quantities          and          defined as 

 

 

            
 
             

 
  

 

contain  phase velocities         of normal modes (   index is dropped). 

 

2. Basis Set Functions 

 

Equations (2) are to be solved by specifying the displacement and/or stress fields at the 

external boundaries,         . In addition, these fields are subject to continuity conditions at 

the interfaces between different media: for a double layer, the interface is chosen at         , so 

that the upper bound is at               and the lower bound at               . The standard 

approach is to use a universal basis set of incoming and outgoing plane waves, which does not 

depend on details of the structure. It is well suited for treating systems embedded in an infinite 

medium, and the problem is then mapped into one of a linear algebra for the expansion 

coefficients by applying the complete set of boundary conditions. Dispersion curves are obtained 

from the respective secular equation in an analytical or numerical approximation. The proposed 

alternative necessarily produces the same frequency spectrum; however, the basis set functions 

will not be universal, since their functional form is required to transform some of the boundary 

conditions into identities. To this end, equations defining the exterior surfaces are introduced as 

arguments of the basis set functions. In this case, exterior boundary conditions allow reducing the 

number of independent coefficients by the number of constraint equations. As a consequence, the 

expressions of the wave fields in terms of these independent algebraic variables automatically 

satisfy the above boundary conditions. 

For flat boundaries, we can start with the following general form of the partial wave 

superposition:  
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It is evident that the substitution of these expressions into the governing equations (2) reduces the 

number of variables by half (in what follows, the     index identifying the layers will be 

occasionally dropped for brevity): 

 

                                      

 

By introducing the new notations  

                        

 

we get the final general form of the partial wave expansion: 
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         (6) 

 

We have also used the following identity: 

 

       
          

    

 

3. Traction-Free Plate 

 

 To illustrate the procedure, we first consider the case of a traction-free composite plate. 

Relations that come from the zero stress requirement                 reduce the number of 

variables by four when applied to the general equations (5, 6) 
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here,                       . Note that if we consider a bilayered plate, then            

variables are completely removed from consideration and we are left with only            as 

unknowns. It can then be verified that, in terms of these variables, the traction-free BC are indeed 

satisfied automatically:  
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                           (10) 

 

The physical meaning of variables             is that they are proportional to the 

components of the displacement field on the outer surfaces. The secular equation is then a result 

of matching the continuity of the four fields in Eqs. (7)–(10) at the interface      . It can be 

verified that the complete set of equations, including normalization of the amplitudes, coincides 

with those obtained in [7]. If a plate is composed of a larger number of materials, then the inner 

layers will be sub ect to continuity conditions only and the         and          variables for          

 will be included. 

It is also instructive to see how Lamb equations for a homogeneous free plate and their 

symmetry properties emerge as a limiting case of the obtained expressions,         . To avoid 

lengthier arguments, we take               so that the interface         is at the middle plane. 
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In this case, equations resulting from continuity of (7)–(10) are decoupled into a         pair with 

symmetric and antisymmetric combinations of variables:                 for Eqs. (7, 9) and     
              for  Eqs. (8, 10). Namely, 
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Solutions are given by equating the product of the two determinants to zero. It is obvious 

the two systems of equations above are different and can only produce the same eigenvalues at 

the points of intersection between the two corresponding sets of dispersion curves. Therefore, 

nontrivial solutions of the secular equation, i.e., the whole set of four equations, are generally 

found when one of the       pairs has a non-trivial and the other has a trivial solution. This 

gives only two possibilities:                     (A) and                     (S). In this 

case, we find for the case (A): 

 

        

vw      
    vw  cosh hqw  sinh hqv         sinh hqw  cosh hqv      

 

and for the case (S) 

        

        
    vw  cosh hqv  sinh hq          sinh hqv  cosh hq     . 
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These expressions are the well-known Lamb equations. Their transformation properties with 

respect to reflection in the      plane are then easily obtained from the explicit form of the fields 

in (7) –(10): 

 

                         
                               zz      zz     

              xz     xz    .
                  (11)  

 

                         
                              zz     zz     

               xz      xz    .
                        (12) 

 

Thus, we have  derived the transformation properties of the Lamb modes directly from our 

approach instead of introducing symmetry relations (11, 12) from the outset, based on general 

theorems, in order to derive the Lamb equations in the end. 

  

 

4. Clamped Plate 

 

To illustrate the approach using another example, let us now examine a bilayered plate 

clamped at the top and bottom surfaces,       . From zero-displacement condition applied to 

the general expressions in (3) and (4) we find:  

             
 

    
. 

 

It can be seen again that the exterior boundary conditions at          are accounted for by our 

basis set.  

         sinh        qv
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    cosh        qv
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    sinh        qv
 
  

     

       
sinh        qw
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Similarly to the case of a free plate, the final equations are obtained from continuity of the 

fields in the above expressions at the internal boundary        . Likewise, the single layer limit 

leads to the decoupling of the secular equation into a        pair corresponding to S (Eq. (12)), 

and A modes (Eq. (11)), their spectra being determined by 

(S)  

  
    

  
 cosh hqw  sinh hqv   vw  sinh hqw  cosh hqv      

 

(A) 

  
    

vw
 cosh hqv  sinh hqw   vw  sinh hqv  cosh hqw    . 

 

These are essentially the same secular equations as analyzed in [8]. On the other side, as 

noted above, our expressions for the wave amplitudes appear to differ from those of a standard 

representation. However, it can be shown that, for the frequencies coinciding with eigenvalues of 

the secular equations, the amplitudes become equivalent to the standard form.  

 

 

5. Summary 

 

The main advantage of the approach is that it offers a simple and direct route to the 

irreducible form of the secular equation. This simplification has allowed to obtain a complete 

analytic solution describing the long wavelength region of the vibration spectrum [7] of a two-

layered system. In this case, the set of independent material parameters is 8-dimensional: the 

longitudinal and transverse sound velocities in the two media, respective mass densities and 

thicknesses of the layers. These systems are quite common in a broad range of applications; 
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however, experimental or numerical exploration of the full parametric space is hopeless in view 

of understanding and engineering of their properties. Nevertheless, the above approach reveals an 

unexpected evolution with the layer thickness of the slowest (flexural) mode of the velocity 

spectrum and other features [9], which could be exploited for specific purposes. The approach 

also provides an interesting new perspective of extension to confined systems of different 

geometries. It may also be of interest in implementing various approximation schemes, since, 

unlike other approaches, some of the boundary conditions are satisfied identically from outset 

and approximation errors can only show up, e.g., in a mismatch of the fields at interfaces.  
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Abstract 

 

The results of the theory of modeling for obtaining nanocylinders have been described. A 

case of a nanocylinder whose diameters are shorter than the Tolman length has been considered. 

This important issue is taken into account in studying a nanocylinder for which, in the simplest 

model, the thickness of the interfacial layer cannot be determined because it supposedly has a 

small size. At the same time, it has been shown that the introduction of a special form of 

anisotropy energy makes it possible to analytically describe the origin of an interfacial layer 

whose sizes can be regarded as sizes comparable to the Tolman length. 

 

Keywords: nanocylinder, Tolman length, Heisenberg model, Euler–Lagrange equations, 

instantons or skyrmions 

 

Rezumat 

 

Sunt descrise rezultatele teoriei modelării pentru obținerea nanocilindrilor. Am considerat 

un caz în care nanocilindrul are diametre mai mici decât lungimea Tolman. Această întrebare 

importantă este luată în considerare atunci când se studiază nanocilindrul pentru care în cel mai 

simplu model nu s-a putut distinge grosimea stratului interfacial datorită dimensiunii sale 

presupuse mici. În același timp, se arată că introducerea unei forme speciale de energie 

anizotropică permite o descriere analitică a originii unui strat interfacial ale cărui dimensiuni pot 

fi considerate ca dimensiuni comparabile cu lungimea Tolman. 

 

Cuvinte cheie: nanocilindru, lungime Tolman, model Heisenberg,  ecuații Euler-

Lagrange, instantane sau skyrmions 
 

1. Introduction 
 

The modern statistical mechanics of curved interfaces, mainly spherical and cylindrical, is 

equally important to the simple thermodynamics of planar interfaces (maybe even more 

important). However, this statistical mechanics theory needs a more subtle analysis than the 
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thermodynamics of flat geometry, for which a great progress has been achieved in understanding 

the properties (for details see [1–5]).  

The first studies of the effect of only one curvature on the properties of drops (Jung and 

Laplace) date back to the nineteenth century [1, 2]. Laplace considered a drop of radius R 

enclosing a homogeneous liquid-like phase (interior phase) separated from a homogeneous bulk 

vapor phase (exterior phase) by a mathematical dividing surface, where the density changes 

abruptly from a constant value inside the drop to a constant value outside; to provide the stability 

of the drop against the surface tension (regarded as a mechanical force) of the vapor–liquid 

interface, it is necessary to set up a pressure difference over the interface to balance the 

contracting force and maintain the system in equilibrium, i.e., the condition of mechanical 

equilibrium, which is referred to as the Laplace law (see [1–10]). 

On the other hand, the curved interface theory with a Tolman's intermediate phase was 

based on sound thermodynamic arguments in the late 1940s (see [6]); however, it received little 

attention in electrochemistry (see, for example, [3–5]).  After that, this theory was developed in 

[7–10]. We will not discuss all reviews; we can only mention many original papers and reviews 

[11–20]. Those studies are close to our research. 

Below, we will consider a new theory [21–24] that takes into account the cylindrical 

shape and the intermediate phase. Moreover, the size of the intermediate phase can be arbitrary. 

 
.  

2. A Small Long Cylinder  

 

We consider a case of the application theory [21–23], where nanoparticles have the form 

of a long cylinder. We used a cylindrical coordinate system for which the characteristic spin 

function [21, 22] is represented by angle function (r) about the cylinder axis z.  

The free energy in this model can have the following form [21, 22]: 

 

                                 
2 4

2

, 12 2

sin θ sin θ
θ ...,

2
g c

A
H k

r r

 
    

 
                                                    (1)  

 

where (r) is the angle between the cylinder axis and the magnetization vector; r is the radial 

coordinate, and k1 is the second anisotropy constant.  

The model kinetic energy in (1) is a classical analog of the exchange energy in the 

Heisenberg model for the two-dimensional space at the continuum approximation [21], which in 

our case corresponds to the infinite cylinder model [21, 22]. In this case, the kinetic energy in (1) 

coincides in form with the kinetic energy of the particle (in cylindrical coordinates). This fact is 

not casual because the model under consideration permits exact analytical solutions in the form 

of quasi-particles (nonlinear waves), which are referred to as instantons (or skyrmions [21, 22]). 

Note that, in our case, these quasi-particles are topological compositions, rather than dynamic 

particles. Therefore, in our case, the virtual kinetic energy of a topological instanton is meant by 

the kinetic energy.   

We introduce a relative coordinate 

ρ ,
c

r

R


 

 

(2) 
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where Rc is the drop equilibrium radius.  

In this case, there is a condition of 0    1. The proposed continuum model of energy 

(1) actually appears to be a Heisenberg model, in which the interacting spins have the meaning of 

energy states of the particles associated with the constant exchange interaction  A (with the 

dimension for the exchange energy [J/m]).  

Using (1), it is simple to derive the Euler–Lagrange equation: 

 

                                       
3

12 2

θ (ρ) sin θcosθ sin θcosθ
θ (ρ) ... 0.

ρ ρ ρ
k


                                      (3)            

 

For simplicity, it is sufficient to use only a particular solution of this equation describing the 

nucleation process under simple boundary conditions:  

π, ρ 0,

θ(ρ) π
, ρ 1.

2




 


  

 

(4) 

                                                                                                                         

The solutions of equations (3) and (4) are as follows: 

 

                                        2

1

θ 1
tan ~ 1 ρ ... ,

2 ρ
k

 
     

 
                                                                 (5)       

k1<1                                    

                                          (if    k1=0 ,   then      
θ 1

tan
2 ρ

 
 

 
),                                                (5a) 

 

which is convenient for further analysis.  

Let us introduce the model surface energy to obtain the Euler–Lagrange equations for the 

scale-invariant theory as well:   
2

2

θ (ρ) sin θ cosθ
θ (ρ) 0,

ρ ρ

a a a
a

a
   

 

 

(6) 

                                                                              

where a
2
 is the ratio of the anisotropy energy to exchange interaction constant A. The a

2
 

parameter is determined in [21, 22]: 

2 1,
B

a
A

 
 

 

(7) 

                                                                                                                                     

with the determined anisotropy function (model as the Rapini modified potential (see [21, 22]): 
2

2

sin θ
,

2ρ

aB

 

 

(8) 

                                                                              

where B  is the positive energy quantity whose dimension coincides with  A. 

For agreement with the previous solution, we assume that, in (6), anisotropy does not 

occur at B = 0 and occurs at B > 0. The solution of equation (6) is as follows:   
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θ 1
tan .

2 ρ

a

a

 
 

   

 

(9) 

 

                                                                                                                         

Note that solutions (5) and (9) analytically join; therefore, the indices are later omitted. 

Let us consider one general solution (9). The diagram of this solution is shown in Figs. 1a 

and 1b.  

It is easy to show that the (r) function has no point of inflection at a = 1 and 0    1. 

This point appears only at a > 1. This means that the surface layer in our model can exist only at 

a > 1. In this case, a certain volume whose energy is the surface energy of the cylindrical particle 

can be chosen as a surface layer. For definiteness, we suppose, for example, that the surface layer 

begins to clearly manifest itself from a value of a > 4. Thus, we suppose that at a = 1 there is no 

anisotropy in the system, and the Tolman length actually coincides with the drop sizes. If a >> 1, 

then, in the proposed model, the specific anisotropy is higher than the exchange interaction, and 

in the drop there appears a parameter (Tolman length) that characterizes the dimension of the 

interfacial region.  

 
 

Fig. 1a. Diagrams of solution (9) at different values of parameter a (see [22]). 

 

 
Fig. 1b. Diagrams of solution (9) at the different values of parameter a: a = (1) 1, (2) 10, (3) 50, and (4) 

100 (see [21]).   
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The case of a < 1 corresponds to the negative surface energy (in Fig. 1a, this case is 

shown for a = 0.5); it is not discussed in detail in this paper, because it is associated with the 

condensed phase instability.  

The change in the free energy from the particle center to the particle surface can be 

estimated. This estimation allows the physical interpretation of the introduced parameters of the 

model and their comparison with conventional energy characteristics used to describe the 

nucleation process.   

Let us initially consider the layer-by-layer change in this free energy of a cylindrical drop. 

Let us return to the formula for the energy that was used to derive the equation of motion. It is as 

follows: E(r) = T + U. Taking into account solution (9), we find that the kinetic energy is equal to 

the potential energy: T = U. This important result for the closed dynamic system is associated 

with the virial theorem for the finite motion; in our case, it is the test to verify whether this 

approach to the problem solution is correct. For the total full energy we have:  

 
2 2

2 2

ρ
(ρ) 4 .

ρ (1 ρ )

a

a

a
E T U A

 
    

   

 

(10) 

                                                                                   

It follows from (10) that, at a = 1 and r < 1, the equality E(r) = A is satisfied. If В > 0, then the 

cylinder surface energy tends to Aa
2
 ~ B; the higher the B value, the sharper the limit. Thus, just 

this parameter B can be associated with the parameter of the specific thermodynamic surface 

energy that occurs in the thermodynamic theories (Gibbs, Tolman, etc.) provided that the 

dimension of these energies is different.  

 

 

 
Fig. 2a. Plot for tan(θ/2) as function of θ for different a values. 
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Fig. 2b. Dependence of energy on parameters а and ρ (see [22]). 

 

 

 
 

 

 
Fig. 2c. Dependence of energy on parameters а and ρ (see [21]). 

 

 

A sharp rise in free energy (see Figs. 2b, 2c) depending on parameter a is identified with 
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the phase transition, which takes place in the system in the case of infinitely small anisotropy (for 

details see [21, 22]). To determine the total energy of the particle assigned to the cylinder length 

unit, an integral of E(r) over the cylinder volume should be taken. Let us begin with a qualitative 

analysis of the model. Note that, for a particular case of a = 1 and В = 0, this integral should be 

equal to A (with an accuracy to the multiplier). In this case, there is no other energy in the system; 

here A is the only internal model energy of the system. In another limiting case, a certain high 

value of a is sufficient for the total energy to tend to the anisotropy energy B. In the general case, 

the total full specific energy (for the cylinder length unit) will be as follows: 

 

                    

1 1 2 1
2

2 2

0 0

ρ ρ
2π (ρ)ρ ρ 8π 2π .

(1 ρ )

a

a

d
W E d a A a A



  
 

                                            (11)         

In the Cahn–Hilliard theory [22, 23], the activation barrier energy is in proportion to the 

geometric mean of two energy parameters:  

 

                                                        
BAEc ~

.                                                             (11a) 

 

Unlike the proposed theory, the Cahn–Hilliard theory is not scale-invariant, and the quantity B 

has a dimension of J/m
3
. In our case, the integral formula derived from (11) for the activation 

energy has the same form; that is, the coincidence of these theories can be stated in calculating 

the mean activation energy (in the volume unit). Thus, we can deduce that the proposed theory 

qualitatively coincide with the Cahn–Hilliard theory.  In terms of the Cahn–Hilliard theory, we 

obtain the same analytic structures [23]: 

 

                                            0tgθ ρ / 2 exp ρ ρ / .ccr                                                  (12)  

        

 

 

                                 
                                                   (A)                                             (B) 

 

 
Fig. 3. Schematics representations of solution (9): (A) and (12): (B) in the form of a domain wall of 

energy vectors. 
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3. Physical Application 

 

The previously introduced parameter 
2a  (see (7)) can formally be less than a = 1 (in  

Fig. 1a, this case is shown for a = 0.5). This case can correspond to negative anisotropy energy, 

which can, for example, prevent the formation of a nanoparticle. Technologically, it is possible to 

initiate the formation of a nanoparticle, yet limit the nanoparticle growth. 

Therefore, it is of interest to consider the case where 

 
 

                                                                                AB  ,                                                      (13)    

               
This physical situation can take place in the case when a nanoparticle nucleus with a size of 

0ρ 1  (for definiteness,
0ρ 0.1 ) has already been formed; however, the development of it to an 

equilibrium state withρ 1  is hindered by the created (artificially) anisotropy: 

 

 

                                                                

2

2

sin θ

ρ

aA
 .                                                            (14)    

 

We believe that this anisotropy manifests itself only starting from some sizes corresponding to 

the value 

                                                             0ρ 0.1                                                                    (15) 
 

               

Then, for this case, the equation is greatly simplified: 

 

                                      

θ (ρ)
θ (ρ) 0

ρ


  

.
                                                      (16)    

 

A particular solution for equation (16) can have the form (in our case, we use condition (16) to 

compare it with the solution in the form of formula (9)): 

 

                              0θ ln (ρ ρ )c   ,                                                      (17)    

where      

                            0/ (2ln(1 ρ ))c  ,      (for 0ρ ρ . ). 

 

Function graph        0ln ρ ρc        is shown in Fig. 4. 

 

 



Moldavian Journal of the Physical Sciences, Vol. 20, 1, 2021 
 

 52 

 
 

 
Fig. 4. Functions graphs of solution (17). 

 

 

 

3.  Electrochemical Application 

 

 
 

 
 

 

 

Fig. 5. Scheme of the physical process of nucleation for the case of electrochemical nucleation. The 

charge is q, the potential is φ. The capacity of the double layer is C. Electrode 2 (grid) can control 

the electrodeposition by changing the potential and electrical capacity of the near-electrode layer. 

 

 

We can study the electrochemical nature of the examined anisotropy for the case of 
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electrochemical nucleation. This anisotropy can be generated using the distribution of the electric 

field in the near-electrode layer, because the dimensions of the particles become comparable to the 

dimensions of the layer. 

Let the surface energy change dσ in the nucleation process according to the Lippman 

equation [25]: 

                                                            dσ =qdφ,                                                                             (18) 

 

where q and φ  are the charge and potential on the surface. In the approximation of the constant 

capacity of the double layer C 

 

                                                             q = С φ .                                                                              (19) 

 

Note that constant capacity C is defined as a specific amount, namely, capacitance per unit area as 

surface energy σ is defined as the amount of energy per unit area. 

For the change in surface energy σ, we obtain 

 

                                                       σ = С (φ)
2
/2.                                                                            (20) 

 

The change in the surface energy can be attributed to the anisotropy introduced above. Actually, if 

we assume that an asymptotic functional dependence occurs, 

 

                                                     (φ)
2
 ~ 1/ ρ

2
,                                                                               (21) 

    

then we finally obtain for parameter a
2
 

 

                                                     a
2
/rс  ~ С/2,                                                                              (22) 

 

where  rс ~ 10
6 

cm  is the equilibrium value of the nanoparticle dimension. 

 

For the evaluation, we take the specific capacity of a mercury electrode that is known to be 

on the order of  

 

                                                С/2   ~ 10
7  

(1/cm)   (CGS).                                                          (23) 

 

If we confine ourselves to the upper limit of the rс value, then, for the evaluation of dimensionless 

quantity a
2
, we obtain  

 

a
2
 ~ 10.                                                                                   (24) 

 

In general, the consideration results are qualitative.  

 

 

4. Mathematical Application 

 

 

In terms of the classical theory [8–10, 22–24], we can obtain (see Fig. 6) 
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θ

tan ~
2 R

H 
 
              .                                                    (25)  

 

  

Fig. 6. Dimensionless profiles of a sessile microdrop. 

 

From formulas (5)–(9), we can obtain the dependence 

 

θ 1
tan

2 ρ

 
 

 
      and                                              

 

θ 1
tan .

2 ρ

a

a

 
 

                                                    
 

These formulas (18) and (5)–(9) have the same analytic structures. 

In terms of the Cahn–Hilliard theory, we obtain same analytic structures (12). Another 

dependence, which can correspond to (5)–(9), is obtained in [26]. 
 

 

5. Conclusions  
 

(i) We have obtained results associated with the van der Waals gradient theory, which can 

be resumed in the following way. If in the formation of a nanoparticle there is only one energy 

form that plays the role of exchange interaction A, then, in the context of the proposed model, the 

additive separation of the system energy into the surface energy and the nanoparticle volume 

energy is incorrect. However, in this case, we can introduce the average energy of the whole 

nanoparticle and, from simple geometric considerations, derive the Rusanov linear formula for 

the surface energy (see [22]). Typically, the Rusanov formula is assumed universally applicable. 

This fact is not confirmed when our model of the anisotropy energy is complicated.  

(ii) The concept of anisotropy energy, which is introduced into the theory in the form of 

the proposed model as a modified Rapini potential, leads to the appearance of surface energy. 

Note that, in the conventional Rapini potential, there is no multiplier of the form of 1/r
2
 [21, 22]. 

Anisotropy energy can have the meaning of double electric layer energy (in electrochemistry); in 

addition, in the case of the formation of extremely small equilibrium particles with a 

differentiated surface energy, the electric capacity of the nanosystem where this nanoparticle is 
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formed should be increased. Thus, it can be assumed that the nano-nucleation process can be 

efficiently controlled. 
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Abstract 

 

In this paper, solutions for two problems are proposed. One of the problems is associated 

with increasing the strength of objects, for instance, the strength of windows in industrial 

buildings and dwelling houses. The other problem is related to electromagnetic shielding. Both of 

these problems are related to the protection form terrorist acts, since terrorists make use of 

concentrated electromagnetic pulses to destroy computers or other electronic equipment. The 

proposed solutions are based upon the manufacturing of glass windows reinforced with cast 

glass-coated amorphous micro- and nanowires (CGCAMNWs) having a special composition and 

structure, which increases their tensile strength against mechanical destruction, on the one hand, 

and imparts them with shielding properties against electromagnetic radiation, on the other hand. 

The CGCAMNW materials are of interest from both theoretical and practical points of view.  

 

Keywords: glass-coated amorphous micro- and nanowires, Taylor–Ulitovsky method 

 

Rezumat 

 

În această lucrare sunt propuse soluții pentru două probleme. Una este asociată cu 

ridicarea durabilității obiectelor, de exemplu a durabilității ferestrelor în clădiri industriale și case 

de locuit. A doua problemă este legată de ecranarea electromagnetică. Ambele probleme au 

legătură cu protejarea contra actelor de terorism, deoarece teroriștii utilizează impulsurile 

concentrate de radiație electromagnetică pentru distrugerea calculatoarelor și altor echipamente 

electronice. Soluțiile propuse se bazează pe confecționarea ferestrelor din sticlă întărite cu micro- 

și nano-fire amorfe turnate în înveliș de sticlă (MNFATAS) cu compoziții și structuri specifice, 

care ridică durabilitatea lor mecanică, pe de o parte, și le conferă proprietăți de ecranare contra 

radiației electromagnetice, pe de altă parte. MNFATAS prezintă interes atât din punct de vedere 

teoretic, cât și din punct de vedere al aplicațiilor practice. 

 

Cuvinte cheie: micro- și nanofire amorfe, înveliș de sticlă, metoda Taylor–Ulitovsky 
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1. Introduction 
 

One of the dangerous consequences of acts of terrorism is a traumatism of people owing 

to shattering of window glass of administration, industrial, and apartment houses. Therefore, an 

urgent problem is to improve the glass strength by decreasing the probability of forming and 

spreading the splinters during shattering. 

In addition, modern acts of terrorism can occur with use of concentrated beams of radio-

frequency pulses in order to disable computers and other electronic devices, running of life-

support systems of cities, etc. 

Furthermore, the radio-electronic intelligence service using directional electromagnetic 

radiation for reading information typed on the computer keyboard or displayed in the monitor, for 

example, via window opening, is concerned with modern acts of terrorism and espionage activity.  

It is known that conventional glass almost completely passes electromagnetic radiation in 

the entire frequency range. Therefore, the problem of producing radio-screening glasses is also 

urgent. 

The above problems can be solved in complex with the use of glass reinforced with glass-

coated microwires prepared by the solution casting technique of the Taylor–Ulitovsky method 

[1–4].  

The reinforcement of glass with glass-coated microwires using an adhesive film increases 

the durability of the glass under shock and static loadings and prevents splinter scattering in the 

case of glass shattering. 

In addition, this glass considerably reduces the transitivity of electromagnetic radiation in 

a wide frequency range—from a few hundreds of megahertz to a few tens of gigahertz.  

The reinforcement of glass with microwires does not reduce the light transmission ability 

in the entire gamut of colors, as in conventional glass, and does not worsen the transparency of 

the glass. Glass-coated microwires are almost imperceptible. 

Another possible application of microwires in the antiterrorist purposes, also for providing 

a hardening and screening effect, is the reinforcement of vests and helmets made of plastic, such 

as Kevlar, with microwire elements. 

The microwire represents a construction composed of a continuous metal core coated with 

a continuous glass coating.  

For a more precise comparison of the theory with the experiment, a set of experimental 

measurements is required; they are also discussed in the paper. 

The resulting microwires with an optimum chemical composition were tested for 

reinforcing window glass. A grid of high-strength microwires was preconstructed using linear 

and orthogonal winding. After that, a melt was poured into special molds to reinforce window 

glass to obtain a sheet blank with a thickness of about 1–3 mm. 

 
.  

2. Casting of Glass-Coated Amorphous Magnetic Microwires 

 

Cast glass-coated amorphous micro- and nanowires (CGCAMNWs) are prepared using a 

rapid solidification technique, the so-called quenching and drawing procedure, or a modified 

Taylor–Ulitovsky method [1–4], as shown in Fig. 1.  
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Fig. 1. Casting of CGCAMNWs (see [1–4] and below):  

(1) glass tube with a metal droplet, (2) water, (3) glass-coated microwire, and 

 (4) rotating receiving bobbin. 

        

In this process, an alloy in an amount of a few grams is placed inside a glass tube held 

directly over suitable heating means, for example, a high-frequency inductor heater. The alloy is 

heated up to the melting point to form a droplet. The portion of the glass tube adjacent to the 

melting metal softens to envelope the metal droplet. A glass filament is drawn from the softened 

glass portion and collected onto a receiving bobbin. Under certain drawing conditions, the molten 

metal can fill the glass capillary; thus, a microwire in which a metal core is covered continuously 

with glass is formed. The glass consumption in the process is compensated by continuous 

delivery of the glass tube in the inductor zone, whereas the formation of the metallic core is 

restricted to the initial amount of the droplet. The microstructure and, accordingly, properties of a 

microwire considerably depend on the cooling rate, which can be controlled by a cooling 

mechanism when the metal-filled capillary passes through a stream of a cooling liquid (water or 

oil) on its way to the receiving coil.  

The main advantages of this method for the production of cast glass-coated microwires 

are as follows [1–4]: 

(i) The formation of continuous long pieces of a microwire up to 10
4
 m (in the case of a 

drip process). For a continuous process (see Fig. 1), the microwire length is not limited. 

(ii) A wide range of variations in the geometric parameters (typically the metallic core 

diameter Dm is in a range of 0.5–70 µm, and the glass-coating thickness is in a range of  

1–50 µm). 

(iii) The control and adjustment of the geometric parameters (inner metallic core diameter 

Dm and glass thickness) during production. 

(iv) The reproducibility of the physical properties and geometric parameters of the 

microwires in large-scale production. 
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3. Production of Glass Reinforced with Microwires 

 

Glass reinforced with a microwire represents a three-layered construction consisting of 

two pieces of glass glued using a special adhesive film.  

The adhesive film consists of an adhesive base on two sides of which pieces of a 

microwire are put in mutual perpendicular directions.  

In the case of an electromagnetic wave incident on the interface between two media, a 

portion of the field is reflected from the surface; another portion permeates and spreads inside the 

other medium; the third portion interacts with the medium and is absorbed (transformed into 

heat). The coefficient of screening of the medium |Geff| can be written as follows: 

 

                                      |Geff| = Pr/Ps,                                                (1) 

 

where Pr is the power of the incident wave and Ps is the power of the past wave. 

Since an electromagnetic wave contains electrical and magnetic components, the 

interaction of an electromagnetic wave and a medium can be electrical in the case of a conducting 

medium and magnetic in the case of a screen with a high magnetic permeability. 

(i) For screening household and working buildings, inside which electromagnetic 

radiation is not located, for constructions and devices requiring protection against external 

electromagnetic radiation, it is reasonable to apply reflecting screens containing a microwire 

made of conducted materials (copper, silver, and alloys based on them). Depending on the 

screened object, the screens can be pliable and elastic, such as fabrics containing a microwire, 

and rigid, such as plastics, polymers, and glass or paper products. 

(ii) For screening household and working buildings, in which, in addition to protection 

from external radiation, it is required to inhibit (weaken) electromagnetic radiation and 

reradiation from an internal source of radiation, it is reasonable to apply microwire-reinforced 

reflecting–absorbing screens having a high impedance at the working frequencies of the source. 

For example, in buildings with a powerful source operating at an extremely high radiation 

frequency, it is reasonable to apply microwire-reinforced materials having a resonant absorption 

frequency of the working source. 

(iii) It is reasonable to use reflecting–absorbing multilayered electromagnetic shields for 

screening people (service personnel) working under conditions of high-level electromagnetic 

radiation. 

(iv) Description of the design and technology of production of shielding. To provide 

functionality in electromagnetic screens, a microwire should be located as a grid construction. In 

this case, the microwire is located in a plane of the screen in two mutually perpendicular 

directions. The grid construction steps and the types and number of microwires in a construction 

are determined from requirements for the level of loosening the radiation power, the frequency 

range of screening, and expediency of applying the shielding. 

 In implementing the stage of working out the technology for the preparation of triplex 

glass reinforced with microwires, technological equipment and process modes for gluing the 

glasses will be developed. 

 

 

 

 

 



Moldavian Journal of the Physical Sciences, Vol. 20, 1, 2021 
 

 60 

4. Absorption Properties 

 

The design of GCAMNW composites was described in [8–11]. We have following typical 

configurations:  

 

 

 
Fig. 2.  Composite shielding for radio absorption protection with GCAMNWs made with a stochastic 

mixture of microwires in the polymeric matrix. 

 

 

 
 

Fig. 3.  Composite shielding for radio absorption protection with GCAMNWs in the form of a grating. 

 

 

Natural ferromagnetic resonance (NFMR) occurs if the sample is subjected to a microwave 

field without application of any biasing field other than the anisotropy field of the microwire  

[8–13].  

Permeability dispersion is as follows:  

 

                                                     μ() = μ' () + i μ'' ().                                    (2) 
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The peak in μ'' (and a zero crossing of μ'): 

 

 
 

Fig. 4. Imaginary relative permeability of components around NFMR for (1) Co70Fe5,5B14,5Si10 ,  

(2)  Co70Mn7B13Si10, (3)  Co59Fe15B16Si10, and (4) Fe69C5B16Si10 microwires. 

 

. 

 

 
 

 
Fig. 5. Typical absorption characteristics of shielding by composite in an HF field of 

components around NFMR for (1) Co70Fe5,5B14,5Si10, (2)  Co70Mn8B12Si10, (3)  Co59Fe15B16Si10, 

and (4) Fe69C5B16Si10 microwires (see [5–11]). 
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Fig. 6.  Frequency dispersion of the real and imaginary parts of relative permeability around the NFMR 

frequency for the Fe68C4B16Si10Mn2 microwire (see [1, 2, 5–13]). 

 

 

Figures 4–6 show resonance frequencies of 7.5, 8.5, 10.5, and 13.5 GHz and resonance 

widths of 1.5, 2, 3, and 4 GHz.   

Near μ'' resonance is expected to be described as follows:  

 

                                          μ''/ μdc ~ Г Ω / [ (Ω – ω)² +  Г²],                                     (3) 

 

where μdc is the static magnetic permeability and Г is the width of the resonant curve. Very near 

resonance, where Г > (Ω – ω), Eq. (3) reduces to 

 

                                          μ''/ μdc ~ Ω / Г~ (10 ÷ 10
2
).                                      (4) 

 

Monitoring the geometry of the microwire (i.e., wire diameter) and the magnetostriction through 

the microwire composition makes it possible to prepare microwires with desirable permeability 

dispersion and for absorption materials: (i) determining the resonant frequency in a range of  

1–12 GHz and (ii) controlling the maximum of the imaginary part of magnetic permeability. 

 

 
 

Fig. 7. Typical absorption characteristics of shielding by a microwire composite with NFMR in an HF field 

in a frequency range of 10 GHz. 
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Figure 7 also shows the frequency absorption spectrum of shielding with Fe69C5B16Si10 

microwires. The varying attenuation is attributed to the lack of an ideal angular distribution of 

microwires, the length of which does not always fit into the shielding thickness. 

Pieces of microwires were embedded in planar polymeric matrices to form a composite 

shielding for radio absorption protection.  Experiments were performed employing a commercial 

polymeric rubber with a thickness of about 2–3 mm. Microwires were spatially randomly 

distributed over the matrix before its solidification. The concentration was maintained below  

8–10 g of microwire dipoles (1–3 mm long) per 100 g of rubber [1, 5–7]. A typical result obtained 

in an anechoic chamber is shown in Fig. 6 for shielding with embedded Fe69C5B16Si10  microwires. 

It is evident that an absorption level of at least 10 dB is obtained in a frequency range of  

8–12 GHz with a maximum attenuation peak of 30 dB at about 10 GHz. In general, optimum 

absorption is obtained using microwires with metallic nuclei with a diameter of 2r = 1–3 m  

(2R ~ 20 m (x >10)) and a length of L = 1–3 mm. These pieces of microwires can be treated as 

dipoles whose length L is comparable to the half value of effective wavelengths Λeff/2 of the 

absorbed field in the composite material (i.e., in connection to a geometric resonance).  

 

 
Fig.  8. (1) Average absorption characteristics of a shielding containing a microwire composite exhibiting 

NFMR in a microwave frequency range of 10–10.2 GHz for  Fe68C4B16Si10Mn2 microwires ([2, 5–12]) and 

(2) absorption curve in the case of an external pressure (see [5–12]). 

 

 

5. Theory for Absorption Materials 

 

The propagation of an electromagnetic wave through absorption shielding with microwire-

based elements is characterized by transmittance |T| and reflectance |Rr| (coefficients given in  

[2, 5–13]): 

                     |T| = (
2 
+ β

2
)
 
/[(1+ )

2
+ β

2
];   |Rr|= 1

 
/[(1+ )

2
+ 

2
],                          (5) 

 

where    = 2Xr/Z0  and β = 2Y/Z0, with  Z0 = 120 π/Q, and the complex impedance Z = Xr + iY.  

Absorption function G is correlated with the generalized high-frequency complex 

conductivity Σ (or high-frequency impedance Z).  

Here, we use the analogy between the case of a conductor in a waveguide and that of a 

diffraction grating. The absorption function given by 
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                                                 |G| = 1 - |T|
2 
- |Rr|

2 
= 2 / [(1+ )

2
+ 

2
]    (6) 

has a maximum  

                                                            |Gm|= 0.5  |G|, 

 

for simultaneous  = 1 and   = 0, for which 

 

                                                           |T|
2 
= |Rr|

2 
= 0.25. 

The minimum |G|=0 occurs at  = 0 and  of any positive number. 

Theoretical estimations taking into account only the active résistance of microwires result in 

attenuation in a range of 5–10 dB, which is much lower than experimental results, which for a 

spacing of microwires of Q =10
-2 

m ranges between 18 and 15 dB, while for a spacing of  

Q = 10
-3 

m it increases up to 20–40 dB. Thus, it becomes clear that shielding exhibits anomalously 

high absorption factors, which cannot be attributed solely to the resistive properties of microwires.  

Let us consider the effective absorption function [2, 5–13]: 

 

                                          |Geff| ~  Гeff Ω eff  / [(Ωeff  – Ω)² + Гeff ²],                (7) 

  

where Гeff  ≥  Г and Ω ~ Ωeff = 2πc/Λ. 

           A microwave antenna will resonate when its length L satisfies to the condition  

 

                                                 L ~ Λ/ 2(μeff)
 ½ 

  .                                             (8) 

 

Absorptions maximum (see  Fig.  7) occurs for Ωeff  ~ 10 GHz  (Λ ~ 3 cm) and μ eff  ~ 10
2
 [2, 5–13].  

           This corresponds to 

                                              L ~ 1.5–2 mm,                                            (9) 

  

where the microwire concentration is much less than the  percolation threshold.  A higher 

concentration of dipoles leads to an increase in absorption |Geff| and an increase in reflectance |Rr1|, 

which can be simply estimated as [2, 5–13]: 

 

                                            |Rr1| ~1  2√ (Ω/2 Σm) ,                                             (10) 

where Ω/2 ~10
10 

Hz.  

The formula is applicable, and calculation of small reflectance |Rr1| is possible, only if 

                                            Σm~10
11

Hz                                                            (11) 

for concentration below the  percolation threshold  (as  Σ2 ~ 10
15

 Hz). 

 

 

6. Conclusions  
 

Microwave electromagnetic response has been analyzed for composites consisting of 

dipoles and a diffraction grating of amorphous magnetic glass-coated microwires in a dielectric. 

These materials can be employed for radio absorbing screening. The spontaneous NFMR 

phenomena observed in glass-coated microwires has opened the possibility of developing novel 

broad-band radio absorbing materials. 

The described studies provide the following basic conclusions [8]: 

(a) Cast GCAMNWs exhibit NFMR whose frequency depends on the composition, 

geometrical parameters, and deformation of the microwire. The NFMR phenomenon observed in 
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glass-coated magnetic microwires opens up the possibility of developing new radio-absorbing 

materials with a wide range of properties. An important feature of cast microwires with an 

amorphous magnetic core is the dependence of the NFMR frequency on the deformation (stress 

effect). The calculations have shown that the shift of the NFMR frequency caused by the stress 

effect achieves 20% before the degradation of the composite.  

(b) The general technology of magnetic wire composites is cost-effective and suitable for 

large-scale applications. 

Here, the electromagnetic properties of composites with magnetic wires showing NFMR 

phenomena have been discussed. A striking property of these materials is that the spectra of the 

effective electromagnetic parameters (permittivity and permeability) can be actively tuned. 

The technology of glass coated amorphous microwires provides the preparation of 

continuous wires.  

 

Acknowledgments. This work was supported by the Moldavian National project and the 

Shevchenko Pridnestrov'e State University project.  

 

References 

 

[1] S. A. Baranov, V. S. Larin, and A. V. Torcunov, Crystals 7, 136 (2017). 

[2] S. A. Baranov, An Engineering Review about Microwire, Lambert (Academic publishing), 

2017.  

[3] H.-X. Peng, F. Qin, and M.-H. Phan, Ferromagnetic Microwire Composites: From Sensors to 

Microwave Applications, Springer, Switzerland, 2016.  

[4] F. Qin and H.-X. Peng, Progr. Mater. Sci. 58 (2) (2013). 

[5] S. A. Baranov, M. Yamaguchi, K. L. Garcia, and M. Vazquez, Surf. Engin. Appl. 

Electrochem. 44(6), 245 (2008). 

[6] S. A. Baranov, Tech. Phys. Lett. 24, 549 (1998). 

[7] S. A. Baranov, Mold. J. Phys. Sci. 14 (3–4), 201 (2015). 

[8] E. Adar, A. M. Yosher, and S. A. Baranov, J. Phys. Res. Appl. 3, 118 (2020). 

[9] E. Adar, S. A. Baranov, N. A. Sobolev, and A. M. Yosher, Mold. J. Phys. Sci. 19 (1–2), 89 

(2020). 

[10] S. A. Baranov, Biomed J. Sci. Tech. Res. 32 (5), 25413 (2021) 

[11] S. A. Baranov, Global J. Sci. Front. Res., A 20 (14) (2021). 

[12] M. J. Malliavin, O. Acher, C. Boscher, F. Bertin, and V. S. Larin, J. Magn. Magn. Mat.. 

196–197, 420 (1999)  

[13] A.N. Antonenko, S.A. Baranov, V.S. Larin, and A.V. Torkunov, J. Mat. Sc. and Eng. A 248, 

248 (1997) 

 

 

 



 

 

    
FABRICATION OF p-NiO/n-ZnO:Ga HETEROSTRUCTURES FOR A RECTIFIER 

DIODE AND A UV PHOTODETECTOR VIA RF MAGNETRON SPUTTERING AND 

SPRAY PYROLYSIS SYNTHESIS 

 

Lidia Ghimpu
1
, Victor Suman

1
, Dumitru Rusnac

2
, and Tamara Potlog

2
 

 

1
D.

.
Ghitu Institute of Electronic Engineering and Nanotechnologies, Academiei str.3/3, Chisinau, 

MD-2028 Republic of Moldova 
2
Moldova State University, A. Mateevici str. 60, Chisinau, Republic of Moldova 

E-mail: lidia.ghimpu@gmail.com 

 

(Received April 12, 2021) 

 

https://doi.org/10.53081/mjps.2021.20-1.05                                                        CZU:535.33:543.4 

 

Abstract 

 

In this paper, a p–n thin film NiO/ZnO heterojunction for a rectifier diode and a UV 

photodetector is prepared and characterized. Nickel oxide (NiO) and gallium-doped zinc oxide 

(ZnO:Ga) thin films are grown by RF magnetron sputtering and spray pyrolysis techniques, 

respectively. The crystal structure of the thin films is studied by the X-ray diffraction (XRD) 

method. The transmittance and reflectance are studied by UV–VIS spectroscopy. The p–n 

electrical parameters are estimated from current–voltage characteristics. The effects of duration 

of thermal annealing at 450
o
C on the characteristics of the NiO/ZnO:Ga device are evaluated. 

The non-annealed diode shows the best rectification coefficient of 10
5
 at ±1 V. The p–n 

photodetection capability is studied under UV illumination. At a reverse bias of –3 V under  

365-nm UV illumination, the device shows a current intensity of ~6.2 × 10
12

 A. The observed 

increase in the reverse current intensity by about two orders of magnitude under a UV lamp with 

a spectral irradiance of 10 W m
2 
m

1 
indicates a promising application in UV light detection. 

Keywords: RF magnetron sputtering, spray pyrolysis, UV–VIS spectroscopy, electrical 

properties. 

Rezumat 

 

În această lucrare, a fost descrisă fabricarea și caracterizarea diodei redresoare și senzorului 

UV pe baza heterojoncțiunii cu straturi subțiri p-NiO/n-ZnO. Straturile subțiri de oxid de nichel 

(NiO) și oxid de zinc (ZnO:Ga) au fost obținute prin metoda pulverizării în regim de 

radiofrecvenţă (RF) și, respectiv, metoda pulverizării pirolitice. Structura cristalină a straturilor 

subțiri a fost investigată prin metoda difracției cu raze X (XRD). Transmitanța și reflectanța au 

fost studiate prin spectroscopie UV-VIS. Parametrii electrici ai heterojoncțiunii p-n au fost 

estimați din caracteristicile curent-tensiune. Au fost evaluate efectele duratei tratării termice la 

450
o
C asupra caracteristicilor structurii NiO/ZnO:Ga. Dioda redresoare netratată a arătat cel mai 

bun coeficient de redresare de 10
5
 la aplicarea tensiunii ±1 V. Capacitatea de detecție a 

senzorului pe baza heterojoncțiunii p-n a fost studiată la iluminarea UV. Curentul de întuneric al 

joncțiunii la polarizare inversă de -3V este ~ 6,2 × 10
-12

 A. O creștere a curentului invers cu 
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aproximativ două ordine de mărime la iluminare cu lampa UV cu iradiere spectrală 10 Wm
-2
m

-1 

prezintă o aplicație promițătoare în detectarea luminii UV. 

Cuvinte cheie: pulverizare cu magnetron RF, piroliză prin pulverizare, spectroscopie  

UV–VIS, proprietăți electrice 

1. Introduction 

Metal oxide thin films have attracted much interest because of their electrical and 

optoelectronic characteristics and various applications. Zinc oxide and NiO have attracted 

attention as promising candidates for heterojunction thin film devices. The most important native 

defects that affect ZnO are attributed to the presence of interstitial zinc and oxygen and oxygen 

and zinc vacancies, which are intrinsic defects [1]. Niobium oxide is inherently of the p-type 

because of the presence of native acceptor defects generated by nickel vacancies. Both materials 

have good band alignment [2, 3]. Zinc oxide and NiO have been extensively studied for use in 

electronic and optoelectronic devices, such as light emitting diodes, sensors, photodetectors, and 

thin film p–n junctions [2–4]. The p–n type photodetector has many advantages, in particular, 

low bias current, high impedance, capability for high frequency operation, and compatibility of 

the fabrication technology with planar-processing techniques [5]. Up to now, a variety of n-type 

metal oxide thin films has been studied for p–n junction diode or ultraviolet (UV) photodetector 

applications. Among them, amorphous indium gallium zinc oxide (a-IGZO) has been widely 

studied because of its high mobility, good uniformity, low temperature process, and high optical 

transparency [6]. The amorphous nature of the IGZO thin film makes it a good choice for multi-

layer devices due to the smooth interface, which is quite helpful to device performance [7]. 

Similar to n-type materials, p-type metal transparent oxides do not exist widely in nature. Among 

the available p-type metal oxide thin films, nickel oxide has been given considerable attention 

due to its p-type conductivity and transparency [8–11]. A UV detector based on lithium-doped 

NiO and ZnO was reported by Ohta et al. [12]. The literature survey reveals that there is no 

detailed report on analysis of the p–n junction parameter for gallium-doped ZnO and undoped 

NiO. In this paper, we describe the preparation and characterization of a heterojunction rectifier 

diode and a UV photodetector based on undoped NiO deposited by RF magnetron sputtering and 

Ga-doped ZnO grown by the spray pyrolysis technique. 

2. Experimental 

Nickel oxide deposition was conducted on a RF magnetron sputtering system using a Ni 

target of 99.5% purity. Nickel oxide was prepared at room temperature by RF magnetron 

sputtering at 210 W RF power. The distance from the sample to the target was 7–8 cm. The 

working pressure was maintained at 4 × 10
3

 Pa. Different levels of carrier concentrations in the 

NiO layer can be achieved by introducing different amounts of O2 gas during the sputtering 

deposition [13, 14]. With a higher amount of O2 gas introduced during the sputtering deposition, 

a larger number of nickel vacancies, which act as acceptors, are formed in p-NiO thin films [13]; 

on the contrary, a smaller number of oxygen vacancies, which act as donors, are formed in n-ZnO 

thin films [14]. Zinc oxide layers doped with Ga were deposited by spray pyrolysis in an argon 

(Ar) atmosphere. The initial solution was prepared by dissolving zinc acetate 

[Zn(CH3COO)2•2(H2O)] in a methanol–water solution in a ratio of 25 : 65 to obtain a 

concentration of 0.2 M. In addition, to prevent the aggregation process, a few drops of 

concentrated acetic acid were added to the starting solution. For doping of ZnO thin films, 
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gallium trichloride (GaCl3) was used. The vacuum thermal annealing of ZnO:Ga thin films 

deposited on a NiO/glass substrate was performed at 450C for 90 min. Heterojunctions having 

the structure of In/n-ZnO:Ga /p-NiO/Au were prepared in the following sequence. First, a  

200-nm-thick NiO film was deposited on a glass substrate by the RF magnetron sputtering 

method. At 3–4 sccm O2 (99.99%) in the O2/Ar+O2 flow, an RF power of 210 W, and a substrate 

temperature of 450C, a carrier concentration on the order of 10
16

–10
17

 cm
3

 was achieved in the 

NiO thin film. After that, a 300-nm-thick ZnO layer doped with 3% Ga was deposited by spray 

pyrolysis. An Al electrode was evaporated for NiO, whereas Au was used for ZnO:Ga thin films.  

The structural properties of NiO, ZnO:Ga, and NiO/ZnO:Ga thin films were studied at 

room temperature on a XRD Rigaku Ultima IV diffractometer using CuKα radiation  

(λ = 1.5405 Å) at 40 kV and 30 mA. The optical transmittance values of the thin films were 

measured in a wavelength range of 300–900 nm using a PerkinElmer double-beam UV–VIS 

spectrophotometer. The current–voltage (I–V) measurements were conducted using a Keithley 

2400 source meter and a Newport Oriel lamp (94023A). 

 

3. Results and Discussion 

Figure 1 shows X-ray diffraction pattern of the Ga-doped ZnO thin film thermally annealed 

in a vacuum and the NiO thin film grown at room temperature. The XRD studies of the ZnO:Ga 

thin film revealed a polycrystalline nature with the (0002) plane as the dominant orientation and a 

hexagonal wurtzite crystal structure, as confirmed by the standard JCPDS card number 089-1397. 

According to the authors of [15, 16], who studied Ga-doped ZnO thin films, the diffraction peak 

at 31.61
o 

indicate that Ga can occupy regular positions of the structure, while replacing zinc ions 

with tetrahedral coordination, or can be incorporated into octahedral interstices. We suppose that 

the observed diffraction peak corresponds to the Zn1xGaxO phase [17]. The grain size estimated 

from the (0002) plane reached about 29.0 nm. The XRD results show that the NiO thin film has a 

polycrystalline structure with the (111) and (200) reflections corresponding to the NiO cubic 

lattice [18]. The average grain size of the NiO thin film is about 17.0 nm. At room-temperature 

growth, i.e., in the case of an unheated sample holder, the deposited atoms will have a lower 

mobility. This factor hinders the diffusion of atoms in an energetically convenient site and forces 

the atoms to nucleate in new sites of the atom; as a consequence, smaller grains are formed. The 

XRD pattern of the NiO/ZnO:Ga structure revealed the presence of not only ZnO and NiO 

phases, but also other phases, such as NiGa2O4 and NiO2.  

 

 

 

 

 

 

Fig. 1. X-ray diffraction pattern of the sputtered 

NiO thin film, the ZnO:Ga thin film thermally 

annealed in a vacuum, and the ZnO/NiO 

heterostructure. 
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It is well known that NiO exists in various oxidation states, such as nickel trioxide or 

sesquioxide (Ni2O3), nickelous oxide (NiO), nickel dioxide (NiO2), nickelosic oxide (Ni3O4), and 

nickel peroxide (NiO4). The ZnO XRD peaks are much weaker than those of NiO; this fact 

indicates that the ZnO thickness is ultrathin. 

 

Table 1. Structural parameters of the sputtered NiO thin film, the ZnO:Ga thin film thermally 

annealed in a vacuum, and the ZnO/NiO heterostructure 

Samples No. 2θ d, Å FWHM, rad D, Å ε hkl 

NiO 1 36.64 2.4518 0.0068 236.70 0.00518 111 

 2 42.60 2.1212 0.0246 67.22 0.01578 200 

ZnO 1 31.79 2.8139 0.0065 242.91 0.00579 1000 

 2 34.49 2.5996 0.0063 256.14 0.00507 0002 

 3 36.30 2.4740 0.0075 214.62 0.00576 1001 

 4 47.60 1.9097 0.0077 216.88 0.0044 1002 

 5 56.69 1.6231 0.0085 204.05 0.00398 1100 

 6 62.92 1.4766 0.0078 230.03 0.00321 1003 

ZnO/NiO 1 30.51 2.9290 0.0067 236.52 0.00619 NiGa2O4220 (cubic) 

 2 35.44 2.5320 0.0059 274.28 0.00462 unknown 

 3 36.32 2.4727 0.0072 222.87 0.00555 ZnO 101 

 4 37.65 2.3883 0.0063 255.61 0.00467 NiGa2O4222 (cubic) 

 5 41.74 2.1633 0.0084 195.26 0.00554 unknown 

 6 45.60 1.9887 0.0074 225.39 0.00441 unknown 

 7 47.59 1.9101 0.0089 188.86 0.00506 ZnO 102 

 8 50.91 1.7930 0.0073 231.20 0.00388 NiO2 203 

 9 55.94 1.6431 0.0076 227.23 0.00362 NiAl2O4 422 (cubic) 

 10 60.56 1.5283 0.0078 227.22 0.00336 unknown 

 11 62.07 1.4947 0.0069 258.27 0.00289 unknown 

 12 62.97 1.4755 0.0088 204.22 0.00361 ZnO 103 

 13 67.95 1.3790 0.0076 241.43 0.00286 ZnO 112 

 

The optical transmittance T) and reflectance R() spectra of the NiO, ZnO:Ga, and 

NiO/ZnO:Ga thin films in a wavelength range of 350–800 nm are shown in Fig. 2. These spectra 

show that the ZnO:Ga films exhibit a reflectance exceeding 20% in the visible range and a 



Moldavian Journal of the Physical Sciences, Vol. 20, 1, 2021 
 

 70 

transparency between 40–50% in the visible region. This low transparency can be attributed to 

the surface defects, such as voids and pores. The NiO thin film has a moderate transmittance in 

the short wavelength range of the UV–Vis region, which gradually increases in the NIR region. 

The transmittance of the NiO thin film in the visible region is between 30–40%. The 

transmittance of the NiO/ZnO:Ga structure is about 40% in the UV-VIS region; it gradually 

decreases in the NIR region. From the transmittance and reflectance spectra of ZnO:Ga, NiO, and 

NiO/ZnO shown in Fig. 2, the optical band gap was estimated by plotting the (αhν)
2 

= f(hν) 

dependence. An extrapolation of the linear region to the photon energy axis allowed us to 

determine the bandgap energy, as shown in Fig. 3. 

 

 

Fig. 2. Optical transmittance and reflectance spectra of the sputtered NiO thin film, the ZnO:Ga thin film 

thermally annealed in a vacuum, and the ZnO/NiO heterostructure. 

 

 

Fig. 3. The (αhν)
2
 =f(hν) dependence of the sputtered NiO thin film, the ZnO:Ga thin film thermally 

annealed in a vacuum, and the ZnO/NiO heterostructure. 

 

The optical band gaps of the ZnO :Ga, NiO thin films were calculated and indicated a 

direct transition. The band gap extracted from the (αhν)
2 

= f(hν) dependence for the NiO thin film 

shows a value of 3.32 eV, while for ZnO:Ga and NiO/ZnO:Ga it shows the same value of  
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3.28 eV. The optical band gap values of these films are in the same range as those reported for 

bulk materials. 

To study the effect of the thin film resistivity on the rectifying characteristics of the 

NiO/ZnO:Ga heterojunction, the ZnO:Ga thin films were annealed at 450C in an O2 atmosphere 

for different durations. As shown in Fig. 4a, an obvious tendency to decreasing can be observed 

for the forward current of the NiO/ZnO:Ga heterojunction with an increase in the annealing time. 

It is evident that annealing in an O2 atmosphere causes an increase in the resistivity of the 

ZnO:Ga thin film. In addition, it is revealed that the longer the annealing time, the more resistant 

the ZnO:Ga thin film. If a forward bias is applied to the heterostructure, in addition to the voltage 

falling across the depletion region, part of the voltage will drop across the highly resistive 

ZnO:Ga region. In this case, it is reasonable to expect a smaller forward current. In addition, the 

highly resistive ZnO:Ga region also restricts the current passing through the entire 

heterostructure. Thus, a tendency to decreasing is observed for the forward current with an 

increase in the resistivity of the ZnO:Ga thin film. The best rectifying performance with a 

rectification coefficient of 10
5
 at ±1 V was obtained for the NiO/ZnO:Ga heterojunction without 

annealing in an O2 atmosphere. 

 

 

  

Fig. 4. (a) Current-voltage characteristics of the NiO/ZnO:Ga heterojunction with the ZnO:Ga thin film 

annealed in a vacuum for 0, 90, 120, and 150 min and (b) I–V characteristics under 365-nm UV light 

illumination for a heterojunction with the non-annealed (0 min) ZnO:Ga thin film. 

Figure 4b illustrates the photoelectric response to the UV illumination of the  

p-NiO/n-ZnO:Ga heterojunction. The reverse dark current measured at –3 V is ~6.2 × 10
12

 A. 

This finding shows the typical behavior of a p–n junction; that is, a higher acceptor concentration 

in the p-NiO layer leads to a lower reverse current. It is obvious that the UV illumination of the 

p-NiO/n-ZnO:Ga heterojunction causes an increase in the reverse current by about two orders and 

thereby shows a promising application in UV light detection. The phenomena could be attributed 

to the effect of the UV-induced hole trapping in the p-NiO layer. The UV illumination produces 

electron–hole pairs in both the p-NiO and n-ZnO:Ga layers. If some of the UV-generated holes 

are trapped in the deep-levels in the p-NiO layer, the I–V characteristic of the p-n junction will be 

affected by the hole trapping. The hole trapping will partially compensate for the negative space 

charge in the p-NiO side of the depletion region of the p–n junction, while reducing the built-in 

electric field and the barrier height of the p–n junction. 
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4. Conclusions 

Thus, the p-NiO/n-ZnO:Ga thin film heterojunctions have been prepared for both rectifier 

diode and UV photodetector applications. For the diode application, the conductivities of both the 

NiO and ZnO:Ga thin films have a strong effect on the rectifying characteristic of the 

heterojunction diode. The best rectifying performance has been obtained for the diode with both 

highly conductive NiO and ZnO:Ga thin films. The evolution of the electrical properties studied 

by the I–V measurements has shown that vacuum annealing suppresses the rectifying nature of 

the annealed heterojunctions. The photocurrent to dark current ratio for the p-NiO/n-ZnO:Ga thin 

film heterojunction upon applying a 1 V reverse bias is about 35.  
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Abstract 

 

Experimental results on the bis[(μ2-etoxi)(benzoyl trifluoroacetonato)(nitrato)(1,10-

phenantroline)europium(III)]1,10-phenantroline europium(III) coordination complex (hereafter, 

[Eu(µ2-OC2H5)(btfa)(NO3)(phen)]2·phen) are described. The complex is characterized by 

photoluminescence (PL) and infrared spectroscopy. Photoluminescence spectra of the complex 

exhibit strong emission with specific narrow emission bands associated with the  
5
D0→

7
Fj (j = 0–4) transitions. The pattern of emission band splitting and the luminescence time 

decay suggest the presence of at least two different sites of the Eu
3+

 ion in a low-symmetry 

environment. The absolute PL quantum yield of the complex is determined to be 49.2%. 

Keywords: rare-earth compounds, europium (III) complex, luminescence, quantum yield. 

 

Rezumat 

 

Sunt prezentate rezultate experimentale pentru complexul coordinativ al europiului III) - 

[Eu(µ2-OC2H5)(btfa)(NO3)(phen)]2phen. Complexul a fost caracterizat prin spectroscopia de 

fotoluminescență și spectroscopia în infraroșu. Spectrele de fotoluminescență ale complexului 

reprezintă benzi de emisie puternice asociate cu tranzițiile 
5
D0→

7
Fj (j=0-4).  Caracterul despicării 

benzilor de emisie, cât şi timpul de relaxare al luminescenței indică prezența a cel puțin două site-

uri diferite ale ionului Eu
3+

 în mediu cu simetrie redusă. A fost determinat randamentul cuantic 

absolut al complexului de 49,2%. 

Cuvinte cheie: compuși de pământ rar, complex Europium (III), luminescență, randament 

cuantic. 

 

1. Introduction 

 

Rare-earth compounds, and specifically their coordination complexes, attract a lot of 

interest because of their fundamental physical properties and numerous applications in different 

mailto:vverlan@gmail.com
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fields in optoelectronics, biotechnology, biochemistry, medicine, and other industries [1–3]. 

Complexes with trivalent europium ion Eu
3+

exhibit high fluorescence efficiency upon UV 

excitation, emission spectra in the visible range with high color purity and a large Stokes shift, 

long-lived luminescence, etc. [4–6]. This luminescence is characterized by long lifetimes and 

sharp spectral lines. In biomedical field, europium(III) complexes are extensively used for the 

development of high-performance sensors, luminescent labels in immunoassays, bioanalysis, etc. 

[7]. Europium ions are characterized by a simple structure of 
2S+1

LJ multiplets with non-

degenerate first excited and ground levels, 
5
D0 and 

7
F0. Because of these specific properties of 

trivalent europium ion, it can be used as a luminescent probe to acquire information on the local 

symmetry in crystalline host matrices or glasses as well as complexes with organic ligands  

[8–10]. 

In the recent years, increased research efforts have been focused on new lanthanide 

complexes with potential development toward material sciences, chemical and biomedical 

applications, quantum storage devices, etc. [11, 12]. Previously, we reported preliminary results 

on Eu(III) coordination compound bis[(μ2-etoxi)(benzoyl trifluoroacetonato)(nitrato)(1,10-

phenantroline)europium(III)]1,10-phentroline, hereafter [Eu(µ2-OC2H5)(btfa)(NO3)(phen)]2·phen 

[13]. This work reports a further study of photoluminescence (PL) properties of europium(III) 

coordination complex [Eu(µ2-OC2H5)(btfa)(NO3)(phen)]2·phen.  

2. Preparation and Characterization of the Complex 

 

Europium(III) coordination complex [Eu(µ2-OC2H5)(btfa)(NO)3(phen)]2∙phen has been 

synthesized as described elsewhere [14]. Samples were characterized by infrared (IR) and PL 

spectroscopy. Infrared spectra were registered using a PerkinElmer Spectrum 100 FTIR 

Spectrometer at a resolution of 1 cm
1

. Infrared spectra were recorded on a dry powder between 

KBr pellets (4000–650 cm
1

) or in Nujol mull (4000–400 cm
1

) between KBr pellets. 

Photoluminescence emission spectra were recorded using a single emission monochromator 

MDR-23 and different excitation sources (337 or 405 nm) close to ligand absorption maximum. 

Photoluminescence spectral measurements were carried out using a Thorlabs LD Model CPS405 

4.5 mW as an excitation source. A 337-nm pulsed nitrogen laser at a repetition rate of 10–100 Hz 

and a pulse width of 10 ns was used for PL relaxation measurements. Photoluminescence signal 

was detected in a photon counting mode using a Hamamatsu H8259-01 module with a C8855-01 

counting unit connected to a PC. The spectral resolution for PL measurements was as low as 

0.125 nm. For both the PL spectra and the quantum yield measurements, the emission spectra 

were corrected for the instrument spectral sensitivity. The luminescence time decay was recorded 

using a nitrogen pulsed laser as a light source at a repetition rate of 10 Hz. The H8259-01 PMT 

module with a C8855-01 pulse-counter provides time-resolved measurements at a resolution of 

50 s, which is sufficient for registration of PL relaxation in a range of 50 s to 10 ms. 

The [Eu(µ2-OC2H5)(btfa)(NO)3(phen)]2∙phen complex exhibits a bright-red emission 

under UV irradiation. Figure 1 shows a photographic image of a powder sample under day-light 

illumination compared with the sample under UV irradiation. Measurements of absolute PL 

quantum yield were performed using the absolute method of integration sphere [15]. The 

integration sphere was 150 mm in diameter. The inner spherical cavity wall was coated with 

MgO (extremely high diffuse reflectance) using a burning magnesium ribbon in an O2 stream. 

The sphere was mounted in front of an MDR-23 monochromator. Absolute quantum yield Q is 
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defined as the ratio of the number of emitted photons Nem to the number of absorbed photons 

[16]: 

  
 

Fig. 1. Photographic image of a powder sample: (left) under day-light illumination and (right) under 

UV irradiation. 

absem NNQ 
.
 

Figure 2 illustrates the experimental approach for measuring the absolute quantum yield. 

First, the excitation spectrum is registered when the substrate is placed under a direct excitation 

beam in a sample holder. The total area under this spectrum (S0) is proportional to the number of 

excitation photons minus those absorbed in the substrate. In the next step, the excitation spectrum 

is registered when the substrate with a PL compound is placed under an excitation beam in a 

sample holder. The area under this spectrum (S1) is proportional to the number of excitation 

photons minus those absorbed in the substrate and the compound. The PL emission spectrum was 

registered with a probe (substrate with the sample powder) placed inside a sample holder. The 

area under the PL spectrum (S2) is proportional to the number of emission photons under direct 

and diffuse excitation. Finally, the PL spectrum is registered when the probe is excited only by 

indirect excitation light diffusively reflected from the integrating sphere walls (S3). The quantum 

yield is determined as )()( 1032 SSSSQ   [15, 16]. 

 

 

 

 

Fig. 2. Illustration of the 

spectra for the determination of 

quantum yield: S0 is the 

excitation spectrum registered 

with the substrate under an 

excitation beam in a sample 

holder; S1 is the excitation 

spectrum registered with a probe 

under an excitation beam; S2 is 

the PL emission spectrum 

registered with the probe under 

an excitation beam; and S3 is the 

PL emission spectrum registered 

when the probe is excited by 

indirect excitation light diffused 

by the integration sphere walls. 
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3. Infrared Transmission Spectra 

Infrared spectra were registered using a PerkinElmer Spectrum 100 FTIR Spectrometer 

with at a resolution of 1 cm
1

. Infrared spectra were recorded on a dry powder between KBr 

pellets (4000–650 cm
1

) or in Nujol mull between KBr pellets (4000–400 cm
1

). Absorption 

bands in the IR spectrum were identified by comparing with the reference data [17, 18]. The 

absorption bands corresponding to the basic structural units of the [Eu(µ2-

OC2H5)(btfa)(NO)3(phen)]2∙phen complex are listed in Table 1. 

 

Table 1. Ligands absorption bands in the complex related to the basic structural units 

 

Ligand Structural unit , cm
1

 

btfa (C=O) 1610 

as(CF3) 1180 

s(CF3) 1135 

CH 731; 700 

o-phen (C=N) 1637 

(C=C) 1675; 1498; 1441 

OC2H5 as(CH2/CH3) 1459 

asCH2/CH3) 1377 

Scissor oscillation CH2 1470 

(CH2) 1466 

NO3 

 1489; 1290; 1026 

 

4. Photoluminescence Emission Spectra 

 

Photoluminescence emission spectra were registered for both the powdered samples and 

the samples dissolved in a dimethylformamide solution under excitation of a 405-nm or 337-nm 

laser beam. The PL emission spectrum registered at 300 K in the powder sample (exc 405 nm) is 

shown in Fig. 3a. Upon UV excitation, the Eu
3+

 complex exhibits well-known characteristic 

transitions 
5
D0→

7
Fj (j = 0, 1, 2, 3, 4) with typical narrow band components. The complex shows 

strong emission bands in the solid state; less intense bands are registered in the 

dimethylformamide solution (Fig. 3b). 
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Less resolved Stark splitting and wider peaks of the emission bands are known to be a 

common feature of Eu(III) complexes in solution [21]. This difference in the degree of splitting 

suggests different degrees of distortion of the ligand crystal field in different media. With a 

decrease in temperature, the peak intensity of the basic emission bands increases and the 

resolution of emission band splitting also increases. Assignment of the emission lines is 

consistent with the predicted number of transition bands, which is based on the selection rules for 

low-symmetry complexes [19]. The strongest emission is related to the transition between excited 

state 
5
D0 and ground state manifold 

7
F2 due to an efficient energy transfer from higher excited 

states to 
5
D0 [20]. Along with the transitions from the first excited state 

5
D0, a number of 

extremely weak transitions from the higher excited state level 
5
D1 can be observed (Fig. 3a):  

5
D1–

7
F0 (526.8 nm), 

5
D1–

7
F1 (533–543 nm), 

5
D1–

7
F2 (551–573 nm), and 

5
D1–

7
F3 (583 nm).  

 

 

 

 

  

a b 

 

 
Fig. 3. Illustration of the PL spectrum of the europium(III) complex under 405-nm excitation (T = 300 K): 

(a) PL spectrum for the powder sample; the integrated intensity ratio is R = 9.02 and (b) PL spectrum of 

the complex in a dimethylformamide solution; the integrated intensity ratio is R = 14.4. 

 

 

The band at ~580 nm represents the forbidden electric dipole transition 
5
D0→

7
F0, from 

the 
5
D0 excited state to the 

7
F0 ground state. The 

5
D0→

7
F0 transition is forbidden by the selection 

rules and commonly can be observed only in low-symmetry complexes, if the lanthanide ion is 

located on a site with Cnv, Cn, or Cs symmetry [8, 19]. It is one of the most remarkable features in 

the luminescence spectrum of the [Eu(µ2-OC2H5)(btfa)(NO)3(phen)]2∙phen complex. Since both 

the emitting 
5
D0 and ground state 

7
F0 of the transition are non-degenerate and cannot be split by 

the ligand field, the number of its components exactly indicates the number of different Eu
3+

 ion 

sites [19]. The band at 580 nm has a small line width, which at 300 K equals 32 cm
1

 for the 

powder sample and 45 cm
1

 for the solution sample (Figs. 3, 4). Although the low-resolution 

spectrum for the 
5
D0→

7
F0 transition reveals an almost symmetrical single line (Fig. 5), its 
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relatively wide full width at half maximum suggests that it can contain two closely spaced 

components. In fact, deconvolution of the emission band 
5
D0→

7
F0 (Fig. 5) reveals two lines, and 

this is consistent with the assumption of existence of two different sites of the Eu
3+

 ion.  

The 
5
D0→

7
F1 transition with the emission band at 587–600 nm is a purely magnetic 

dipole transition; it represents the crystal field splitting of the 
7
F1 level. An important feature of 

this transition is that its integrated intensity is relatively insensitive to the local crystal field 

induced by ligands surrounding the Eu
3+

 ion. Therefore, the 
5
D0→

7
F1 transition is used as a 

reference in comparing the absolute emission intensities within the Eu(III) spectrum [8, 10]. The 

pattern of splitting of the 
5
D0→

7
F1 transition provides information to which crystal system the 

complex corresponds. In the case of complexes with low symmetry (orthorhombic or lower 

symmetries) the maximum splitting of three lines appears [8, 19]. In Fig. 6, we can distinguish 

the 
5
D0→

7
F1 splitting into more than six components (peaks and shoulders), which can be 

attributed to the existence of at least two distinct, although chemically quite similar, emitting Eu
3+

 

centers in the complex [22, 23]. 

 

  
a b 

 
Fig. 4. Photoluminescence spectrum of the europium(III) complex under 337-nm excitation (T = 300 K): 

(a) PL spectrum for the powder sample; the integrated intensity ratio is R = 7.18 and (b) PL spectrum of 

the complex in a dimethylformamide solution; the integrated intensity ratio is R = 11. 

 

 

 

 

 

 

 

Fig. 5. Deconvolution of the emission 

band at ~580 nm attributed to the 
5
D0→

7
F0 

transition in the case of the powder sample 

(T = 300 K, exc = 405 nm). 
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The dominant feature in the PL spectrum of the [Eu(µ2-OC2H5)(btfa)(NO)3(phen)]2∙phen 

compound is the 
5
D0→

7
F2 electric dipole transition with the emission band at 610–630 nm  

(Fig. 6). It is this transition that is responsible for the typical bright red luminescence observed in 

most of the europium(III) compounds. Since its intensity is sensitive to the local symmetry of the 

Eu
3+

 ion and the nature of the ligands, the 
5
D0→

7
F2 transition is considered as a “hypersensitive” 

transition [8–10]. The PL spectrum of the [Eu(µ2-OC2H5)(btfa)(NO)3(phen)]2∙phen compound 

shows that the 
5
D0→

7
F2 transition is much more intense than the 

5
D0→

7
F1 magnetic dipole 

transition (Figs. 4, 6). The asymmetric ratio R, which is defined as an integrated intensity ratio 

I2(
5
D0→

7
F2)/I1(

5
D0→

7
F1) is equal to 9.02 for the powdered sample; for the sample dissolved in a 

dimethylformamide solution, the ratio is 14.4 (exc = 405 nm). This high magnitude of 

asymmetric ratio R suggests that the Eu(III) ion is not at an inversion center [19]. At a low 

temperature of 10.7 K, the 
5
D0→

7
F2 transition splitting into at least ten components and shoulders 

can be observed; this multiple splitting is consistent with the existence of at least two sites of the 

Eu(III) ion. 

 

 
 

Fig. 6. Photoluminescence spectrum for the powder [Eu(µ2-OC2H5)(btfa)(NO)3(phen)]2∙phen sample 

measured at 10.7 K. The insets show the splitting of the 
7
F3 and 

7
F4 bands.  

The excitation light is 405 nm. 

 

The other two emission bands corresponding to the 
7
F3, and 

7
F4 levels, which are electric 

dipole transitions, are extremely weak. The 
5
D0→

7
F3 transition at 640–655 nm is a forbidden 

electric dipole transition, which is the weakest in the spectrum of the compound. This transition 

can only gain intensity via J-mixing [10]. Another electric dipole transition is the 
5
D0→

7
F4 

emission band at 680–710 nm. The 
5
D0→

7
F4 transition is slightly higher than the 

5
D0→

7
F3 

transition. It is considered to be sensitive to the Eu
3+ 

environment, because the intensity of the 
5
D0→

7
F4 transition is determined not only by symmetry factors, but also by the chemical 

composition of the host matrix [23–25]. 
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Fig. 7. Photoluminescence decay profiles for the powder and dissolved sample of the  

[Eu(µ2-OC2H5)(btfa)(NO3)(phen)]2∙phen complex at 300 K registered at 611 nm under 337-nm pulsed 

excitation [13]. 

 

Photoluminescence decay curves of the complex were registered at 300 K for the 
5
D0→

7
F2 transition at 611 nm. Temporal characteristics of the PL exhibit a bi-exponential decay 

for both the powder sample and the sample dissolved in a dimethylformamide solution (Fig. 8). 

The PL decay curves can be fitted by the two-exponential function: 

)/exp()/exp()( 2211  tAtAtI  , 

where 1A  and 2A  are pre-exponential factors; 1  and 2 are the time constants. 

The lifetime constants for Eu
3+

 obtained from the plot in Fig. 8 are 1  = 0.67 ms and  

2  = 0.82 ms for the powdered sample and 1 = 0.28 ms and2 = 0.57 ms for the complex 

dissolved in a dimethylformamide solution [13]. The absolute quantum yield of PL measured in 

the powder samples by the integration sphere was determined to be 49.2%, while the sensitization 

efficiency was 89.3%. 

 
 

Fig. 8. Illustration of the mechanism of energy transfer from the organic ligand to the Eu
3+

 ion: S0, 

S1, and T1 are the singlet ground state, singlet excited state, and triplet state, respectively. A is 

absorption, FL is fluorescence, PS is phosphorescence, IC is internal conversion, ISC is intersystem 

crossing, and ET is energy transfer. 
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Photoluminescence spectra can be interpreted in terms of energy transfer from organic 

ligands to the Eu(III) ion [10, 23]. Figure 8 illustrates the mechanism of energy transfer from 

organic ligands to the Eu(III) ion. Under UV radiation, the organic ligand of the complex is 

excited from the singlet ground state S0 to a vibration level of the first excited singlet state S1. 

There are three possible deactivation transitions of excited electrons from the singlet S1 state. 

These transitions are as follows: (i) radiative transitions from excited singlet state S1 to ground 

state S0, which contribute to the ligand molecule fluorescence and the excitation of 4f shell 

electrons through the Foerster mechanism; (ii) non-radiative transitions from singlet state S1 to 

triplet state T1; and (iii) a Dexter transition of excited electrons from the S1 level to the 4f shell 

levels of the Eu
3+

 ion. Triplet state T1 can be deactivated similarly to the S1 state, which results in 

the phosphorescence of the ligand molecule (Foerster mechanism), or through intramolecular 

energy transfer from the T1 state to the 4f level of the Eu
3+

 ion (Dexter mechanism), which results 

in Eu
3+

 luminescence emission [19–22]. 

Further studies will be performed to extend the described preliminary PL results. 

Currently, research is progressing on powder pattern X-ray diffraction measurements aimed at the 

structural characterization of the compound.  

5. Conclusions 

 

The [Eu(µ2-OC2H5)(btfa)(NO)3(phen)]2∙phen complex has been characterized by IR and 

PL spectroscopy. Upon UV excitation, the Eu
3+

 complex exhibits well-known characteristic 

transitions 
5
D0→

7
Fj (j = 0–4) with typical narrow emission bands. Although the 

5
D0→

7
F0 

transition represents a single line, its full width at half maximum is relatively large of about 32 

cm
–1

; this fact suggests that it can contain two closely spaced components. Both the emission 

spectra and the PL decay characteristics indicate the presence of two different sites of the Eu
3+

 

ion. The absolute PL quantum yield and the sensitization efficiency have been determined to be 

49.2 and 89.3%, respectively. We believe that this high luminescence material can be useful for 

various applications in optoelectronics. 
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Abstract 

 

Doped (with GaCl3), undoped ZnO and ITO/ZnO:Ga nanostructured thin films are 

synthesized using the spray pyrolysis method. The doped ZnO thin films are synthesized at the 

atomic ratio of Ga/Zn added in the starting solution fixed at 1, 2, 3, and 5. Gallium-doped ZnO 

films synthesized on glass/ITO substrates are annealed at 450C in different environments: 

vacuum, oxygen, and hydrogen. X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy 

(EDX), atomic force microscopy (AFM), and current–voltage (I–V) measurements are applied to 

characterize the structural properties, composition, surface morphology, and electrical properties 

of ZnO:Ga nanostructured thin films. X-ray diffraction analysis shows that ZnO:Ga films 

deposited on glass substrates have a dense and homogeneous surface with a hexagonal structure. 

The ZnO:Ga films deposited on glass/ITO substrates are composed of two phases, namely, 

hexagonal ZnO and cubic ITO. The I–V characteristics show the presence of good ohmic 

contacts between Al and In metals and ZnO:Ga thin films regardless of the nature of the substrate 

and the annealing atmosphere.  

Keywords: zinc oxide, gallium, annealing, structural properties, film morphology. 

 

Rezumat 

 

Au fost sintetizate straturi subțiri nanostructurate ZnO atât dopate cu (GaCl3), cât și 

nedopate, precum și straturi de ITO/ZnO:Ga, folosind metoda prin pulverizare cu piroliză. 

Straturile subțiri de ZnO dopate au fost sintetizate la raportul atomic Ga/Zn adăugat în soluția 

inițială fixă la 1, 2, 3 și 5 Straturile nanostructurate de ZnO dopate cu Ga obținute pe substraturi 

de sticlă/ITO au fost  tratate termic la 450℃ în diferite medii: vid, oxigen și hidrogen. S-au 

realizat măsurătorile de difracție cu raze X (XRD), spectroscopie cu raze X cu dispersie 

energetică (EDX), microscopie cu forță atomică (AFM), curent-tensiune (I-V) pentru a 

caracteriza proprietățile structurale, compoziția, morfologia suprafeței și proprietățile electrice ale 

straturilor subțiri de ZnO:Ga. Analiza XRD arată că stratul de ZnO:Ga depus pe substratul de 

sticlă are o suprafață densă și omogenă cu structura hexagonală. Stratul de ZnO:Ga depus pe 

substraturi de sticlă/ITO indică două faze, acestea fiind ZnO hexagonal și ITO cubic. 

https://doi.org/10.53081/mjps.2021.20-1.07
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Caracteristica I-V prezintă contacte ohmice bune între  metalele Al, In și straturile subțiri de 

ZnO:Ga, indiferent de natura substratului și de atmosfera de tratare termică. 

Cuvinte-cheie: oxid de zinc, galiu, tratare termică, proprietăți structurale, morfologia 

straturilor subțiri. 

 

 

1. Introduction 

 

Zinc oxide has attracted great attention due to its versatile nature. Zinc oxide has a 

hexagonal wurtzite structure (P63mc) with lattice constants of a = 3.252 Å and c = 5.313 Å [1]. 

Zinc oxide is a wide bandgap semiconductor (3.37 eV at room temperature) that can be used in 

numerous applications, such as solar cells [2], flat displays, heat mirrors, thin-film transistors, 

and chemical sensors [3]. In particular, it is a promising alternative to indium tin oxide (ITO) in 

transparent conducting oxide applications due to its low cost, non-toxicity, and stability under 

hydrogen plasma [4, 5]. Zinc oxide thin films were synthesized by a wide variety of techniques, 

in particular, by chemical and physical routes, such as pulsed laser deposition [6], thermal 

evaporation [7], chemical vapor deposition [8, 9], electron beam evaporation [10], spray 

pyrolysis [11], sol–gel method [12], and magnetron sputtering on a variety of substrates [11]. The 

spray pyrolysis technique is one of these techniques to prepare large-scale production for 

technological applications. Recently, gallium (Ga) has engrossed great interest as a dopant due to 

enhanced structural, optical, electrical, and magnetic properties upon incorporation into a ZnO 

material. Gomez et al. [12] prepared gallium-doped zinc oxide (Ga:ZnO) thin films on glass 

substrates by the spray pyrolysis technique and found that ZnO:Ga exhibits the n-type 

conductivity with an electrical resistivity on the order of 8 × 10
−3

 Ω cm and an optical 

transmittance higher than 80% in the visible region. These results make chemically sprayed 

Ga:ZnO potentially applicable as transparent electrode in photovoltaic devices. According to 

Ramakrishna Reddy et el. [13], for higher [Ga]/[Zn] rates in solution, the Ga ions do not occupy 

more zinc sites, and a segregation of Ga in an oxide form takes place in the grain boundaries or 

interstices, which causes a decrease in the mobility and a consequent increase in the electrical 

resistivity. For low [Ga]/[Zn] ratios, the decrease in resistivity is attributed to an increase in the 

number of Ga atoms incorporated into the ZnO lattice in the Zn sites supplying one electron to 

the conduction band for each Ga atom until the maximum solubility of Ga into the ZnO lattice 

(minimum resistivity value) is reached [13]. Recently, many studies have been focused on the 

improvement of photoactivity by combining with other semiconductors, such as WO3, ZnO, 

SnO2, CdS, CuO, and Fe2O3 [14, 15]. In this study, bilayer ZnO films were grown under the same 

conditions on ITO layers with the same crystal structure. After deposition, the Ga-doped ZnO 

films were annealed in different environments: oxygen (O2), hydrogen (H2), and vacuum. To the 

best of the authors’ knowledge, a similar study has not been carried out. The aim of this study is 

to optimize the preparation of Ga-doped ZnO deposited on ITO/glass substrate to explore their 

optoelectronic properties.  

 

 

2. Experimental 

 

Zinc oxide nanostructured thin films were synthesized using the spray pyrolysis method. 

Doped and undoped ZnO thin films were synthesized. The initial solution was prepared by 

dissolving zinc acetate [Zn(CH3COO)2•2(H2O)] in a methanol–water solution in a ratio of 25 : 65 
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to obtain a concentration of 0.2 M. The solution was stirred at 50C for 1 h. In addition, to 

prevent the aggregation process, a few drops of concentrated acetic acid were added to the 

starting solution. For doping of ZnO thin films, gallium trichloride (GaCl3) was used. Glass 

substrates were treated ultrasonically in soapy water, acetone, ethanol, and finally in distilled 

water for 60 min and then dried at ~110C for ~20 min in a hydrogen atmosphere after cleaning. 

The solution was sprayed at a flow rate of 12 mL/min onto cleaned soda-lime glass substrates and 

onto ITO substrates. Argon gas at a flow rate of 10 mL/min was used as the carrier gas. The 

substrate temperature was 450C. The ZnO thin films were synthesized at an atomic ratio of 

Ga/Zn added in the starting solution fixed at 1, 2, 3, and 5. The vacuum thermal annealing of  

Ga-doped ZnO thin films deposited on a commercial ITO/glass substrate was performed at 450C 

for 90 min in different environments, namely, vacuum, oxygen, and hydrogen. The structural 

properties of nanostructured thin films were characterized by X-ray diffraction measurements. 

Atomic force microscopy (AFM) experiments were performed using a Digital Instruments 

Dimension 3100 AFM instrument (Veeco Company) equipped with a Nanoscope IV controller. 

Standard silicon cantilevers with a spring constant between 4.0–4.4 mN were used in the tapping 

mode. Current–voltage characteristics of the device were measured using a Keithley 2400 power 

supply under dark conditions. 

 

3. Results and Discussion 

 

The XRD studies of Ga-doped ZnO thin films deposited on a glass substrate (not shown 

here) at the Ga/Zn fixed atomic ratio of 1, 2, 3, and 5 revealed a polycrystalline nature with the 

(0002) plane as the dominant orientation. The XRD studies of Ga-doped ZnO thin films suggest 

that all the characteristic peaks correspond to zinc oxide. The crystal-lattice parameters were 

determined on the basis of the most intensive (0002) crystallographic plane. The structural 

parameters are listed in Table 1. With a decrease in Ga concentration, the intensity of the 

preferred (0002) plane decreases disorderly. The highest intensity of the preferred (0002) 

diffraction plane is revealed for 5% Ga. In addition, it is observed that the full width at half 

maximum (FWHM) of the peak corresponding to the (0002) diffraction varied only slightly with 

an increase in the Ga doping concentration from 1 to 5 at %. The mean grain size values obtained 

from the Scherrer formula applied on the (0002) XRD peak of Ga-doped ZnO thin films are 

shown in Fig. 1. The grain sizes reached about 29.0 nm.  

 
Fig. 1. Mean grain size value obtained from the Scherrer formula applied on the (0002) XRD peak of  

Ga-doped ZnO thin films. 
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The grain size of the 5%Ga-doped sample is found to be lower than that of the other 

doped samples, because the strain is inversely related to the grain size. According to Table 1, the 

internal strain values of the Ga-doped ZnO thin films do not change with an increase in the Ga 

concentration to 5%. The higher strain value of the 5%Ga-doped ZnO film shows that the 

crystallinity of the films is deteriorated. The peak broadening is a result of micro strains that 

appear due to the displaced atoms that are rearranged relative to their referenced lattice-points 

and due to the lattice defects occurring in the Ga-doped ZnO thin films. Probably, with an 

increase in the Ga concentration in the films, a contraction and decrease in the ZnO unit cell 

volume take place. 

 

Table 1. Structural parameters of Ga-doped ZnO thin films 

 

Energy-dispersive X-ray spectroscopy (EDX) measurements were performed to study the 

elemental composition of the Ga-doped ZnO thin films. The compositional analysis of the ZnO 

thin films doped with 5% Ga that were synthesized in an Ar atmosphere is shown in Fig. 2. Table 

2 lists the weight and atomic percent compositions (wt % and at %) of the components of ZnO 

thin films. The respective patterns confirm that the average atomic percentage of Zn and oxygen 

deviates from the stoichiometry. The elemental analysis also proved the presence of the Ga 

dopant in the structure of the 5%Ga-doped ZnO thin film. Some impurities (Si, Ca) are found in 

the spectra; they originated from the glass substrate [16]. The presence of the Ga dopant is 

available for all the ZnO thin films, except for that doped with 1%. 

 
Fig. 2. Energy-dispersive X-ray spectra of the 5%Ga-doped ZnO thin film. 

Samples 

Gallium 

concentration , 

% 

2θ 

(deg) 
d, Ǻ FWHM, rad 

ɛ (lattice 

strain) 

10
3

 

as-deposited ZnO 0 34.47 2.6010 0.0052 4.2 

Gallium-doped 

ZnO thin films 

synthesized in an 

Ar atmosphere 

1 34.51 2.5981 0.0054 4.3 

2 34.49 2.5996 0.0052 4.2 

3 34.50 2.5988 0.0052 4.2 

5 34.48 2.6003 0.0055 4.5 
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Table 2. Weight and atomic percent compositions (wt % and at %) of the 5%Ga-doped 

 ZnO thin film 

 

 

 

 

 

 

 

 

 

 

 

 

As described in the Introduction of this paper, ZnO is considered to be an n-type 

semiconductor, where the most of the defects are zinc interstitials (Zni) and oxygen vacancy 

(VO). Excess zinc and oxygen deficiency in the synthesized ZnO thin films that were observed in 

this study can possibly be assigned to Zni in ZnO thin films.  

Figure 3 shows XRD patterns of the ZnO thin films with a 3% Ga doping concentration 

that are deposited on commercial ITO/glass substrates, glass substrates, and commercial ITO 

deposited on a glass substrate. According to Fig.3, the XRD pattern of the ITO thin film revealed 

a polycrystalline nature with the preferred (400) plane. Other ITO peaks are observed at 2θ of 

21.27°, 30.26°, 45.25°, 47.39°,
 
48.21°, 50.68°, 55.61°, and 60.25°. The ITO thin film crystallizes 

in a cubic structure. For the Ga-doped ZnO thin film deposited on a glass substrate, the most 

intense maximum is revealed at 2θ ≈ 35.2° with regard to the (0002) plane. The dhkl value of 

2.6129 Ǻ for Ga-doped ZnO thin films deposited on a glass substrate is higher than that of a 

standard ZnO powder (2.603 Å); this fact suggests that the crystalline plane distance of the Ga-

doped ZnO film lengthens due to imperfections, such as lattice strains and interstitial defects. The 

crystal structures of the Ga-doped ZnO thin films deposited on commercial ITO/glass substrates 

are similar to each other and revealed weak diffraction maxima at 2θ = 47.39
o
 and 62.71° for all 

the films deposited on ITO substrates, regardless of the annealing environment type, 

corresponding to the (1002) and (1003) diffraction planes. The XRD results revealed the 

polycrystalline nature of the films with a hexagonal wurtzite structure. The XRD peaks of the Ga-

doped ZnO thin films deposited on commercial ITO/glass substrates are shifted toward the larger 

θ values; this shift leads to a decrease in the lattice parameter: c = 5.1345 Å compared with 

c = 5.2331 Å in the case of deposition on glass substrates. This decrease is directly related to the 

incorporation of Ga
3+

 ions in the Zn
2+ 

substitutional sites. Then, the incorporation of the dopant 

into the ZnO matrix leads to a network contraction. 

 

 

Element Weight % Atomic % 

O K 23.73 47.18 

Si K 22.37 25.34 

Ca K 4.05 3.22 

Zn K 49.85 24.26 

Ga K 0.16 0.08 

Total 100.00 100.00 
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Fig. 3. X-ray diffraction patterns of the 3%Ga-doped ZnO thin films deposited on a commercial 

ITO/glass substrate annealed in different environments ((4) O2, (5) H2,  

(6) vacuum), 3%Ga-doped ZnO deposited on a glass substrate, and commercial ITO  

on a glass substrate. 

 
 

 

The shift of Bragg’s angles is attributed to changes in the interplanar spacing upon 

deposition on an ITO/glass substrate. The strain value for the 3%Ga-doped ZnO thin films 

deposited on a commercial ITO/glass substrate annealed in an oxygen atmosphere reached  

5.4  10
3

. The lowest strain value (3.1  10
3

) was obtained for the Ga-doped ZnO thin films 

deposited on a commercial ITO/glass substrate annealed in a vacuum. The defects, impurities, 

and lattice strain lead to the presence of an intrinsic stress, whereas lattice mismatch and the 

thermal expansion coefficient mismatch give way to an extrinsic stress, which is developed 

between the film and the substrate [17]. 

The AFM images from Fig. 4 (left) show a columnar nanostructure and the occurrence of 

grain growth along the c axis, which is in good agreement with XRD analysis. It is observed that 

the grains grow uniformly with a homogenous distribution. The evolution feature can be more 

easily observed from the respective surface profiles of these films. The root mean square (RMS) 

roughness profiles of AFM images are compared in Fig. 4 (right). They indicate the formation of 

prominent wrinkles on the film surface. The height distribution over the surface of the Ga-doped 

ZnO thin films deposited on a commercial ITO/glass substrate annealed in an O2 and H2 

atmosphere is sharp and wider compared with that in the case of the surface annealed in a 

vacuum.   
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Fig. 4. Atomic force microscopy image of the 3%Ga-doped ZnO thin films deposited on a commercial 

ITO/glass substrate annealed in different environments and the relationship between (RMS) and profile 

scan. 

 

Thus, it is evident from Fig. 4 that the interface width (RMS) values are slightly decreased 

for the Ga-doped ZnO thin film annealed in a vacuum.  

Electrical properties play a key role in optoelectronic applications; it is well known that 

electrical characteristics are strongly affected by the doping content. As a result, the devices 

composed of glass/ITO/ZnO/metal contacts are manufactured to determine the effect of different 

metals on the electrical properties of the deposited ZnO thin films. Indium (In) and aluminum 

(Al) contacts were deposited by thermal evaporation through a mask having 2  2 mm
2
 openings. 

Figure 5 shows the schematic representation of the fabricated glass/ITO/Ga:ZnO/Al and 

glass/ITO/Ga:ZnO/In samples (a) and dark current–voltage (I–V) characteristics of these devices 

(b).  

Experimental results show good ohmic contacts between Al and In metals and ZnO thin 

films and the proportional increase in the current intensity to the supplied voltage for the films 

under both forward and reverse bias conditions. The current–voltage characteristics indicate also 

the increase in the slope of the I–V curves of the glass/ITO/Ga:ZnO contacts due to an increase in 

the Ga doping concentration in the ZnO lattice. This behavior can be attributed to the occupancy 

of a Ga ion on the Zn site acting as a donor, which can enhance the density of free charge carriers 

and the electrical conductivity of the ZnO films.  
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Fig. 5. Schematic representation of the fabricated glass/ITO/Ga:ZnO/Al and glass/ITO/GaZnO/In devices 

(a) and the dark current–voltage (I–V) characteristics of these devices (b). 

 

The Al/ZnO and In/ZnO contacts exhibit a linear I–V variation over the voltage region 

ranging from −6 to 6 V, which indicates the ohmic nature of the contact. Resistivity values of the 

2%Ga-doped ZnO and 5%Ga-doped ZnO thin films were determined to be 29.4 and 40.0 Ω cm, 

respectively. The resistivity of the 5%Ga-doped ZnO thin films is higher than that of the 2%Ga-

doped films. The 1%Ga-doped film has the lowest resistivity value of all the studied films. The 

measured dark and illuminated I–V characteristics for the vacuum-annealed 1%Ga-doped ZnO 

films obtained in an Ar atmosphere are shown in Fig. 6. The wavelength of 365 nm was used for 

the illuminated I–V measurements. The dark current at 5 V bias voltages was 816 µA. The 

photocurrent under 365-nm UV light illumination was 44 mA at 5 V biases, which is obviously 

higher than the dark current. The UV detector operates in the photoconductive mode. 

 

 
 

Fig. 6. Dark and illuminated I–V characteristics under 365-nm light excitation at room temperature for the 

vacuum-annealed ITO/Ga:ZnO/Al structure. 

 

 

(a)                                           (b) 
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4. Conclusions 

 

Nanostructured Ga-doped ZnO thin films were deposited on glass and ITO/glass substrates 

by spray pyrolysis in an Ar atmosphere at a substrate temperature of 450C and then annealed at 

450C in different environments: vacuum, oxygen, and hydrogen. The key results are outlined as 

follows: 

(1) X-ray diffraction analysis has revealed that the Ga-doped ZnO thin films have a 

hexagonal wurtzite phase with the preferred [0002] orientation in the case of deposition on glass 

substrates.  

(2) X-ray diffraction analysis of Ga-doped ZnO deposited on ITO/glass substrates has 

shown the appearance of weak diffraction peaks corresponding to the (1002) and (1003) planes, 

regardless of the annealing environment type, which leads to a decrease in lattice parameter c.  

(3) The elemental analysis has proven the presence of the Ga dopant in the structure of the 

5%Ga-doped ZnO thin film. Moreover, the presence of the Ga dopant is available for all the ZnO 

thin films, except only for the one doped with 1%.  

(4) Atomic force microscopy images of Ga-doped films deposited on ITO/glass substrates 

have shown a rough granular structure. The surface of the layers is affected by the nature of the 

annealing environment.  

(5) Current–voltage characteristics have shown that the In and Al metals are good ohmic 

contacts for Ga-doped ZnO thin films.  

(6) The UV-detection capability under 365-nm light excitation has been studied. 

 

Acknowledgments. The authors thank the Ministry of Education, Culture, and Research of 

the Republic of Moldova for funding the research (grant 20.80009.5007.16). 

 

References 

 

[1]  U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. 

Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005). 

[2]  Y. L. Li, D. Y. Lee, S. R. Min, H. N. Cho, J. S. Kim, and C. W. Chung, J. Appl. Phys. 47, 

6896 (2008). 

[3]  S. Lee, S. Bang, J. Park, S. Park, W. Jeong and H. Jeon, Phys. Status Solidi 207, 1845 

(2010). 

[4]  M. Jiang, X. Liu and H. Wang, Surf. Coat. Technol. 203, 3750 (2009). 

[5]  E. Vasco, C. Zaldo and L. Vázquez, J. Phys.: Condens. Matter. 13, L663 (2001). 

[6]  W. Mtangi, F. D. Auret, P. Janse van Rensburg, S. M. Coelho, M. J. Legodi, et al., J. Appl. 

Phys. 100, 094504 (2011). 

[7]  M. Kasuga and S. Ishihara, Jpn. J. Appl. Phys. 15, 1835 (1976). 

[8]  Y. S. Choi, D. K. Hwang, B. J. Kwon, J. W. Kang, Y. H. Cho, and S. J. Park, Jpn. J. Appl. 

Phys. 50, 10550 (2011). 

[9]  E. Sonmez, S. Aydin, M. Yilmaz, M. T. Yurtcan, T. Karacali, and M. Ertugrul, J. 

Nanomater.  2012, 950793 (2012). 

[10]  M. H. Mamata, Z. Khusaimib, M. Z. Musa, M. F. Maleka, and M. Rusopa, Sens. 

Actuators, A 171, 241 (2011). 

[11]  S.-S. Lin and J. H. Huang, Surf. Coat. Technol. 185, 222 (2004). 

[12]  H. Gomez et al., Sol. Energy Mater. Sol. Cells 87, 107 (2005). 

https://www.sciencedirect.com/topics/chemistry/hexagonal-space-group
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/wurtzite


 Dumitru Rusnac, Ion Lungu, Lidia Ghimpu, Gleb Colibaba, and Tamara Potlog  
 

93 

[13]  K. T. Ramakrishna Reddy, H. Gopalaswamy, and P. J. Reddy, J. Cryst. Growth 210, 516 

(2000). 

[14]  K. T. Ramakrishna Reddy, T. B. Reddy, and I. Forbes, Surf. Coat. Technol. 110, 151 

(2002). 

[15]  Y. Bessekhouad, D. Robert, and J.-V. Weber, Catal. Today 101, 315 (2005)  

[16]  X. Hui-li, Z. Hui-sheng, Z.Tao, and X. Dong-chang, J. Environ. Sci. 19, 1141 (2007). 

[17]  T. Prasada Rao, M. C. Santhosh Kumar, A. Safarulla, V. Ganesan, S. R. Barman, and C. 

Sanjeeviraja, Physica B 405, 2226 (2010). 

 

 



 

 

   
NORMALIZED PARAMETERS OF A 

MAGNETORESISTIVE SENSOR IN BRIDGE CIRCUITS 

 

Alexandr Penin
1
 and Anatolie Sidorenko

1,2 

 

1
D.

.
Ghitu Institute of Electronic Engineering and Nanotechnologies, Academiei str.3/3, 

Chisinau, MD-2028 Republic of Moldova 
2
Technical University of Moldova, Chisinau, MD-2004 Republic of Moldova 

Emails: aapenin@mail.ru,   sidorenko.anatoli@gmail.com 

 

(Received March 6, 2021)  

 

https://doi.org/10.53081/mjps.2021.20-1.08                                             CZU:537.8.029+621.3.08 

 

Abstract 

 

Magnetoresistive sensors are considered as part of bridge circuits for measuring magnetic 

field strength and electric current value. Normalized or relative expressions are introduced to 

change the resistance of the sensor and the measured bridge voltage to increase the information 

content of the regime to provide the possibility of comparing the regimes of different sensors. To 

justify these expressions, a geometric interpretation of the bridge regimes, which leads to 

hyperbolic straight line geometry and a cross ratio of four points, is given. Upon a change in the 

sensor resistance, the bridge regime is quantified by the value of the cross ratio of four samples 

(three characteristic values and the current or real value) of voltage and resistance. The cross 

ratio, as a dimensionless value, is taken as a normalized expression for the bridge voltage and 

sensor resistance. Moreover, the cross ratio value is an invariant for voltage and resistance. The 

proposed approach considers linear and nonlinear dependences of measured voltage on sensor 

resistance from general positions. 

 

Keywords: magnetoresistive sensors, bridge circuit, projective transformation, cross 

ratio. 

 

Rezumat 

 

Se analizează utilizarea senzorilor magnetorezistivi ca parte componentă a circuitelor în 

punte pentru măsurarea intensității câmpului magnetic și a curentului electric. Pentru a spori 

capacitatea informativă a regimului de lucru, a oferi posibilitatea de a compara regimurile 

diferitor senzori, sunt introduse expresii normalizate sau relative pentru schimbarea rezistenței 

senzorului și a tensiunii măsurate a punții. Pentru a fundamenta aceste expresii, se utilizează 

interpretarea geometrică a regimurilor de punte, ceea ce duce la geometria hiperbolică a liniei 

drepte și la raportul complex a patru puncte. Atunci când rezistența senzorului se schimbă, 

regimul de punte este determinat cantitativ de valoarea raportului complex a patru eșantioane 

(trei valori caracteristice și valoarea actuală) a tensiunii și rezistenței. Raportul complex, ca 

mărime adimensională, este luat ca expresie normalizată pentru tensiunea punții și rezistența 

mailto:aapenin@mail.ru
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senzorului. În plus, valoarea raportului complex este un invariant pentru tensiune și rezistență. 

Abordarea propusă ia în considerare, din punct de vedere general, dependențele liniare și 

neliniare ale tensiunii măsurate de rezistența senzorului. 

 

Cuvinte cheie: senzori magnetorezistivi, circuit de punte, transformare proiectivă, raport 

complex. 

 

           

1. Introduction 

 

Currently, magnetoresistive or spin valve sensors are commonly used to measure 

magnetic field strength and electric current value [1–4].  

Magnetoresistive sensors are based on a number of quantum mechanical effects. Thus, 

the anisotropic magnetoresistive (AMR) effect is to change the electrical resistance of the 

ferromagnetic strips of films depending on their orientation relative to an external magnetic field. 

The magnetoresistive ratio is 2–3%. 

Giant magnetoresistance (GMR) is observed in thin metal films consisting of alternating 

ferromagnetic and conducting non-magnetic layers. The effect is a significant change in the 

electrical resistance of this structure upon a change in the mutual direction of magnetization of 

neighboring magnetic layers and, accordingly, electron spins. Magnetization direction can be 

controlled by an external magnetic field. The device whose resistance is different for electrons 

with different spin directions is commonly referred to as a spin valve or a valve. It is considered 

to be open if magnetizations in its layers are oriented in parallel and closed in the opposite case. 

In most applications, the magnetoresistive ratio is 4–25%. 

Tunnel magnetoresistance (TMR) is manifested by the flow of current between two 

layers of ferromagnets separated by a thin dielectric layer (about 1 nM). At the same time, the 

total resistance of the device, in which the current flows due to the tunnel effect, depends on the 

mutual orientation of the magnetization fields of the two magnetic layers and, accordingly, 

electron spins. The resistance is higher in the case of an antiparallel magnetization of layers. The 

magnetoresistive ratio is more than 200%. 

Manufacturers offer a wide range of sensors of different types [5, 6]. A commonly used 

full sensor bridge circuit (four identical sensors) ensures the maximum sensitivity and linearity 

of the transient characteristic. 

All magnetoresistive sensors listed are characterized by a typical dependence of the 

resistance value on the external magnetic field strength. The zero strength value corresponds to 

the initial resistance. Increasing the intensity in one or another direction of the magnetic field 

leads to an approximately linear change in the resistance. At fairly high strength values, 

saturation of the characteristic is manifested and the resistance of the sensor takes the minimum 

and, accordingly, maximum value. 

If the sensor operates as part of the bridge, then the dependence of the measuring 

diagonal voltage on the resistance of this sensor is used [7]. In the case of a full bridge circuit 

(four sensors), it is necessary to ensure the opposite direction of the magnetic field for the upper 

and lower sensors in each branch. After that, the linear dependence of the change in the 

measuring diagonal voltage on the change in the resistance of the same sensors is obtained [8]. 

Similarly, it is obtained for a half bridge circuit, when two sensors are located in the same 

branch. 

In the case of measuring the current value in a conductor, the opposite direction of 
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magnetic field is provided due to bending of this conductor [9]. This complexity of the 

construction is excluded in the half bridge circuit [10]. In this circuit, the sensors are located in 

different branches (one sensor is upper and the other is lower). However, in this case, a nonlinear 

(fractional linear) dependence of the change in the measuring diagonal voltage on the change in 

the resistance of the sensors is manifested. The same dependence is shown for a bridge with one 

sensor. 

Thus, it was found in practice that changes in the voltage and resistance value set in kind 

of increments. With small changes in these values (relative to the initial resistance value) and, 

accordingly, the linear area of the transition characteristic, the magnetic field strength value or 

current value is determined. On the other hand, the characteristic values of the sensor resistance 

(initial, minimum, maximum) also correspond to the characteristic values of the measuring 

diagonal voltage. Therefore, with large changes in this voltage and resistance, it is necessary to 

compare the current values of these parameters with characteristic values in order to evaluate the 

capabilities of the regime, that is, increase its information content. Monitoring tasks now arise, 

namely, how to determine—in a relative form—the same current changes for different sensors or 

the same changes at different work points. This is important in practice if one system uses, for 

example, two sensors to measure the load current and voltage [11].  

Generally, normalized or relative values are introduced. There is no problem with one 

characteristic value. Consider, for example, the simplest circuit with a voltage source, its internal 

resistance and variable load. In this case, the characteristic value of the load voltage will be its 

open circuit voltage. For the load current, the characteristic value will be the short circuit current; 

for the load resistance, the internal resistance of the source. The normalized values are then 

obtained; they make it possible to evaluate the quality or capabilities of the regime, which is 

important in practice. However, even in this simple circuit, a problem manifests itself. Different 

values of these normalized values make analysis difficult. 

The considered bridge circuits relate to the electric circuits theory with variable regimes. 

The developed method of analyzing these circuits, which is based on projective geometry, makes 

it possible to solve the described problems. 

 

 

2. Analysis of a Bridge Circuit with a Typical Sensor 

 

A characteristic asymmetrical dependence of the resistance of a spin valve sensor with 

GMR on magnetic field strength [8] is shown in Fig. 1.  

The zero strength value 0H  determines the nominal 0

SR sensor resistance. As the 

strength increases, the resistance decreases to saturation. In this case, saturation resistance P

SR

corresponds to the parallel case of magnetizing the sensor layers. At negative strength values, the 

resistance increases up to saturation. In this case, saturation resistance AP

SR corresponds to the 

antiparallel case of magnetizing the sensor layers.   
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Fig. 1. Characteristic R–H curve of a GMR spin valve. 

 

Magnetoresistive ratio is defined by the relative expression  

AP

S

P

S

AP

S

R

RR
M


 . 

In the measurement practice, a linear area of characteristic is generally used. The 

inflection point of the characteristic most often does not correspond to the strength of 0H . 

Let us give the known bridge circuits [7] in Fig. 2. Reference resistances 0

SR  and the 

change in the resistance value R are indicated in these circuits. 

 
Fig. 2. Typical bridge circuits: (a) quarter bridge, (b) half bridge with unidirectional sensors, 

            (c) half bridge with different directional sensors, and (d) full bridge. 

     



Moldavian Journal of the Physical Sciences, Vol. 20, 1, 2021 
 

 98 

The bridges are connected to power supply voltage sources 0V . Measuring diagonal 

voltages for circuits (a), (b), (c), and (d) are determined by respective expressions in Table 1. 

 

Table 1. Measuring diagonal voltages for typical bridge circuits 

 

Circuit (a) Circuit (b) Circuit 

(c) 

Circuit 

(d) 

2/4 0

0

RR

RV
V

S 




 

2/2 0

0

RR

RV
V

S 


  

0

0

2 SR

RV
V


  

00

SR

R
VV


  

 

It is evident that there is a linear and fractional linear dependence of the measuring 

diagonal voltage on the change in the sensor resistance. In practice, linear bridges are usually 

used. In the case of nonlinear bridges, various schematic techniques are used to linearize the 

dependence. 

Let us now consider the specific problems. 

 

Case of the linear dependence of bridge voltage 

We use the following measuring diagonal voltage: 

 

0

0

2 SR

RV
V


 .                                                                     (1) 

The normalized expression is obtained at once to change the resistance R  relative to the 

reference or nominal value 0

SR  . This expression provides additional or qualitative information 

about the current or real regime. If the change in resistance is not large and a linear area of the 

characteristic is used, then this is quite satisfactory in practice. However, formula (1) does not 

contain saturation resistances P

SR  and AP

SR . Therefore, if we work in a wide area of the 

characteristic, this expression does not give direct information about the capabilities of the 

current or real  measurement. Moreover, formally, we can go beyond the area of change in the 

sensor resistance, as shown for clarity in Fig. 3. 

 

 

 

Fig. 3. Correspondence the values of the sensor resistance and voltage. 

 

   

On the other hand, for these three characteristic values 0

SR , P

SR , and AP

SR  of the sensor 

resistance, the question of a reasonable normalized expression for changing the resistance arises. 
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Case of the fractional linear dependence of bridge voltage 

Let us present the expression of the measuring diagonal voltage for the circuit shown in 

Fig. 2a in the normalized form: 

 

0

0

0

0

0

/2

/

222 S

S

S RR

RRV

RR

RV
V









 .                                                           (2) 

However, this formula does not contain saturation resistances P

SR  and AP

SR  either. 

Therefore, the same questions as for expression (1) and Fig. 3 arise. 

 

    

3. Geometry of a Straight Line 

 

Further, we consider some provisions about different geometries of a straight line or 

determining the segment length [12] according to Fig. 4. 

 

 

 
Fig. 4. Three different geometries on a straight line: (a) parabolic Euclidean (ordinary), 

(b) elliptical Riemann, and (c) hyperbolic Lobachevsky geometry. 

 

 

 For parabolic geometry, the unit of length or scale E0  is fixed on a straight line, and the 

distance E

ABd  between points A and B is determined by the formula 

 

E

AB
d P

AB
0

 .                                                         (3) 

In the case of elliptical geometry, some point Q  is fixed outside the straight line, and the 

distance is just the "normal" angle AQB ; that is, 

AQBd E

AB  . 

 

Hyperbolic geometry is defined in a more complex way. In addition to points A and B, 

two points I and J are fixed. These extreme or base points define an infinitely remote boundary 

or absolute as points A and B move. Next, the cross ratio (double proportion) of four points is 

composed: 

 
BJ

BI

AJ

AI
JBAIm  .                                                  (4) 

 In this case, the distance is as follows: 
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BJ

BI

AJ

AI
d H

AB log .                                                        (5) 

 

If one of points A and B tends to the base point, then the cross ratio is 0  or  . In this 

case, the respective distance is  H

ABd . 

 

 

4. Geometric Interpretation of Bridge Regimes 

 

The contributed short information about straight line geometry makes it possible to 

reasonably enter the necessary expressions. 

 

Case of a linear dependence 

According to (1), the measuring diagonal voltage corresponds to the distance of parabolic 

geometry (3). On the other hand, saturation resistances P

SR  and AP

SR  correspond to base points of 

hyperbolic geometry. Therefore, cross ratio (4) for the three characteristic values 0

SR , P

SR ,and 
AP

SR  of the sensor resistance and the current value 1

SR  leads to a normalized expression for 

changing the resistance and, accordingly, for the voltage. The cross ratio values for characteristic 

points are shown in Fig. 5. 

 

 

Fig. 5. Correspondence the voltage, resistance, and cross ratio values. 

 

Cross ratio for the resistance and voltage values or samples 
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                                       (6) 

Thus, when a sensor resistance varies from a minimum to maximum value (base values), 

a bridge regime is quantified by cross ratio value m . Thus, we get additional information about 

the capabilities of the regime and its qualitative characteristics. A cross ratio is a dimensionless 

value; therefore, it can be assumed that the m  value is the normalized expression for the bridge 

voltage and sensor resistance, where all characteristic values are used. In other words, the 

dimensionless coordinate of a resistance value 1

SR on a straight line relative to an initial value 0

SR  

is determined by cross ratio (6) or respective distance (5). 
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Case of a fractional linear dependence 

Let a current or initial value of the sensor resistance correspond to RRR SS  01 . In this 

case, expression (2) takes the form 

      
01

01

0

0

011

222
)(

SS

SS

S

S
RR

RRV

RR

RV
RV









 .                                                          (7) 

 

This fractional linear expression represents a projective transformation 
11 VRS  in the 

sense of projective geometry in Fig. 6. Let us apply the projective geometry method [13] to 

analyze a bridge with a fractional linear dependence. 

The points of the resistance axis are projected onto the voltage axis from point P as the 

projection center. It is evident that the proportions of the segment lengths on these axes are 

broken. On the other hand, there is a value that is retained for this projection. This value or 

invariant of the transformation is a cross ratio, similar to (6), of respective four points or samples 

of the resistance and voltage. 

 

Fig. 6. Projective transformation 
11 VRS  defines the cross ratio value m . 

 

Thus, this case, which is more general, corresponds to the discussed linear dependence if 

the projection center P . In this case, the projection of points of the resistance axis onto the 

voltage axis is carried out by parallel lines. Next, we will consider both cases from a common 

perspective. 

Change of the bridge regime 

Let the subsequent value of the sensor resistance correspond to 2

SR  and determine the 

respective voltage value 
2V . In this case, the subsequent cross ratio value is as follows: 
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The cross ratio has a group property if a subsequent 
2m  value is expressed relative to an 

initial 
1m  value through its change

21m  by a group operation (addition or multiplication). The 

expression structure shows the execution of the group multiplication operation: 
1212 mmm  . 

Next, we introduce the regime change 
21m  by the cross ratio 
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The structure of cross ratio (9) shows the mutual reduction of possible additive and 

multiplicative errors of measurement of voltage samples. 

Next, knowing the 12 ,VV  voltage values, we find the regime change (9) and calculate the 

subsequent resistance value by (8) 
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 .                                                  (10) 

 

The obtained transformation translates an initial point 1

SR  to a subsequent point 2

SR . The 

transformation parameter 
21m  forms a segment of invariable “length,” and we observe the 

movement of this segment in Fig. 7.  

 

 

 

Fig. 7. Hyperbolic projective transformation determines the moving of a segment of invariable 

length. 

 

 

 Here, the change in the usual length is visible. For the base fixed points AP

S

P

S RR , , this 

length is decreasing to zero.   Let the initial point P

SS RR 1 . In this case, the subsequent point 
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Similarly, if AP

SS RR 1 , then AP

SS RR 2 . Expression (10) and Fig. 7 show how to set the 

same changes at different initial or work points, compare regimes of different sensors, etc. 

The described approach provides the basis for consideration of symmetric characteristics

)(HR  [6], in particular, for superconducting spin valves [14]. 

 

 

5. Conclusions 

 

(i) The geometric method provides a general approach for determining and comparing the 

regime of different bridge circuits in a normalized or relative form. 

(ii) Normalized mode parameter expressions include all the characteristic regime values. 

(iii) The proposed invariant expressions in the form of a cross ratio represent a qualitative 

estimate of the real regime and exclude a variety of different values of the regime parameters. 

(iv) Additive and multiplicative errors of measurement of voltage samples are mutually 

reduced for the cross ratio. 
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