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Abstract

Architecting framework proposed in [1] can be used efficiently
for developing concurrency-intensive systems only if there exist
languages and tools corresponding to the described concepts. In
this article there will be presented an approach based on us-
ing formalism. Theoretical advantages of formal specification are
well known. However, usage of formal specification in practice
ascertains some difficulties, thus their current advantages are not
widely explored. The main focus of our research is to improve
usage of formal method in verification of concurrency. Our vi-
sion consists in adapting the pragmatic approach and relaxing
formalism, by creating graphical specification language based on
events.

Keywords: software architecture, concurrency, formaliza-
tion, specification, CSP#

1 Specification and formal methods

It is well known that methods of formal specification allow [2, 3]: to
describe completely behavior of a system; to analyze in detail and,
consequently, to better understand systems; to facilitate verification,
maintenance and development of system; to reduce number of errors,
etc.

In practice, the methods of formal specifications are not widely used
due to the fact that formal character of specification languages makes
difficult their understanding and usage.
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Usually, overall development time using formal methods is ex-
panded so much that the question arises whether to use them or not.
The work [3] reflects unavailability of the majority of IT-experts to the
methods of formal specifications and disadvantages of full formal anal-
ysis of large and complex systems. Despite this, the author of the work
[3], being a proponent of formal specification methods, insists that the
key to achieving good results is exactly the use of formal methods in
early stages of development. Numerous studies [3, 4, 5] have shown
that the earlier discrepancy is detected, the cheaper the error costs
(Figure 1).

Figure 1. Relative cost to correct a defect

But is it always justified the effort for the formal specification of
the system in the early stages of development? In [2] it is insisted that
transition from informal requirements to formal specifications should
not be done too early because of the fact that a greater degree of detail
complicates the specification.

Also, in the above-mentioned work, it is proposed a pragmatic ap-
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proach to formal specification, which consists in usage, if necessary, of
several formalisms for specification of different system aspects, increas-
ing expressiveness of formalization, in general, and avoiding restrictions
of specification languages, in particular.

The same approach applies when using UML (Unified Modeling
Language, [6]). However the language is semi-formal, even in the case
of model annotating with OCL-expressions (Object Constraint Lan-
guage, [7]). In addition to UML and ADL (Architecture Description
Language) diagrams, at architectural level, for describing system be-
havior, the formal language needs to be used. Anyway, without doubt,
today it is best used in the IT industry.

The expressiveness of UML models, the “standardization” of the
software development processes, the advantages of the methods of for-
mal specifications and pragmatic approach, incline to improve the spec-
ification phase through complement or extension of existing methods
rather than through development of new universal and common lan-
guage for formal specification.

2 Component-based structure architecting

Structure architecting consists in describing the set of components and
set of connections (connectors) defining components interaction. Struc-
ture view of architecting process focuses on term, which is closely re-
lated to system topology.

Description of architecture as configurations of components and
connectors is very popular, and, in majority of cases, architectural de-
scription languages (ADLs) graphically represent them as “boxes and
lines”.

The ACME language of architecture description must be men-
tioned. ACME is a formal meta-language, which provides a set of
language constructs for describing architectural structure, architectural
types and styles, and annotated properties of the architectural elements
[8].

Publish-subscribe style architecture is represented in Figure 2 using
ACME-like concepts and graphical representations.
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Figure 2. Structure view of a publish-subscribe architecture

Component is an elementary system entity, which represents pro-
cess or data store unit of a system. Thus, components are abstractions
used to model hardware and software elements. A module, library,
class or other encapsulation unit can be an analogue of a component,
abstract description of which can be captured by properties. Compo-
nent functionalities are exposed through ports. Thus, port represents
the interface which describes services (operations) of components that
are provided or requested

Connector makes interaction as explicit concept. All architecture
connectors embody a protocol of communication and synchronization
between participants, which are defined by roles. Connectors have
properties too. Details of interactions can be specified exactly using
properties and another formalisms and tools as “value” (e.g. CSP-
like language Wright or described bellow ESC language). Connectors
and ports can be discoverable at run-time, and define a “transport”
independent communication between components.
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3 Event-based behavior architecting

3.1 Event centric development

Event-based behavior architecting permits very flexible interactions be-
tween system active entities, therefore event-driven techniques remain
popular for concurrency for a long time. Matt Welsh [9] had adopted
an event-driven architecture too, in order to support massive degrees
of concurrency. Resulted staged event-driven architecture (SEDA) is
very efficient and has a robust structure.

Event centric architecture in the simplest case defines four basic
entities (Figure 3):

Figure 3. Basic entities of the event-based architecture

• Data (what data is processed);

• Actions (actions taken when processing);

• Components (where actions of processing localized);

• Events (when and in what sequence are actions activated).

235



D.Ciorbă, V.Beşliu

Inexpensive synchronization is an important argument for event-
driven approaches: synchronization is easily obtained by event cooper-
ation [10]. Another key advantage of events is scheduling at application
level. Thus scheduling optimization is possible. Also events allow bet-
ter code locality, which is one of implementation mechanisms of the
fundamental principle of modern software development – Separation of
Concerns (SoC) [11, 12, 13].

3.2 Event-based Specification Chart (ESC)

The main objective of research is to simplify the specification of con-
currency in information system architecting. If events happen in com-
ponent ports and relationships among events are the only things that
interest us, an event-based approach for behavior specification can be
an adequate choice.

Event-based Specification Charts (ESCs) consist in drawings, which
specify events, event orderings, event conflicts, roles and role actions.

An event is an instantaneous, atomic “state” transition in the com-
putation trace. Exactly over these transitions the behavior of a system
is defined. Event ordering in computation trace is determined by the
causal dependency relationship “→” (read as “precede”). The interpre-
tation of “→” as a causal ordering means that, if e1 and e2 are events
in a system and e1 → e2, then existence of the event e1 will cause
occurrence of the event e2 in the future.

Conflict relationship “↔” models mutual exclusion of events, dis-
allowing them to overlap in time. An asymmetric conflict “½”, which
blocks an event while another event happens, is allowed too.

Thus an event e can occur when all its causes have occurred and
no event, which it is in conflict with, has already occurred.

Concurrency and non-determinism are implicit in ESC specifica-
tions, and are determined by causal independence and absence of con-
flicts between concurrent events.

A role defines the behavior of a participant, identified in the col-
laborations between architecture components. Through roles the com-
ponent captures events, which can occur in an order determined by
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concurrency and synchronization logic, and exposes actions associated
to these events by role to cloud incidence connectors.

Possibility of localization of interrelated events is realized using
cloud. The cloud of events is a partially ordered set of events, where the
partial ordering is determined by causal, temporal and other relations
between events. A closely related term of event cloud is defined in the
glossary of Event Processing Technical Society too [14].

Basics of the language notations are presented in Figure 4, where
ESC chart describes the following entities:

• Events: e1, e2, e3, e4, e5;

• Causal dependencies: e1 → e2, e1 → e3, e4 → e5;

• Conflict: e3 ↔ e4;

• Clouds: Cloud1, Cloud2;

• Role: Role1.

In order to increase flexibility of specifications two relationship at-
tributes for causal dependencies were introduced: role incidence and
event occurrence.

Role incidence attribute is used to indicate which roles are impli-
cated in event occurrence, and has the following values:

• Same – the causal and dependent events occur involving the same
role;

• All – a special case of same attribute, used when a dependent
event occurs only if the causal event is occurred in every inci-
dent role. Thus the cause event is synchronization between all
component processes interfaced by roles.

• Any – a dependent event occurs, when the causal event mani-
fested itself in any incident role; used as attribute for dependen-
cies between events located in different clouds;
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Figure 4. An ESC diagram

Event occurrence attribute can be used to specify how many times
the dependent event may occur, when the causal event manifests once:

• bound[n] – limits to n number of occurrences of the dependent
event in each incident roles;

• free – the dependent event may occur unlimited times for incident
roles.

Let there be four events ordered by some dependencies (e1 → e2,
e2 → e3, and e2 → e4), which form a system behavior presented in
Figure 5. Role1 and Role2 are synchronized by event e1, because de-
pendency between e1 and e2 has All as value of role incidence attribute.
Event e2 thus will not happen until e1 will not occur in both roles. Also
according to diagram from Figure 5, the event e3 will occur only once
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for each incident role (both Role3 and Role4 ), but the event e4 will
occur unlimited times involving incident roles.

It is important to mention that role can be “interpreted” by a pro-
cess or multiple. Thus event e3 may occur once in multiple processes
or will occur multiple times in one process (execution unit).

Figure 5. Synchronized events in ESC

Modern software development requires an incremental refinement
approach. Thus reutilization is an important factor to efficient elabo-
ration, but it is applied to late. Reutilization, usually achieved through
inheritance, is especially present from design to programming activi-
ties. Therefore an effort must be made to apply reusing in behavioral
specification of concurrency-intensive architecture too.

Refinements in ESC language are realized through cloud superposi-
tion (with event specialization) and event substitution.

Cloud superposition superimposes additional behavior on an exist-
ing cloud. Addition behavior preserves independencies and conflicts
between old events, therefore liveness and safety properties will be
preserved. Superposition must be viewed as monotonic inheritance,
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because can be characterized in the following way: new events may be
added; new actions may be associated to new events; new causal depen-
dencies may be added between new events, new causal dependencies
may be added between a specialized event and events from superposi-
tioned cloud; a specialized event may be refined through substitution
by events from a cloud.

Event substitution is a refinement, which replaces an event by mul-
tiple events from a cloud. Substitutions preserve dependencies of re-
placed events, therefore causal ordering is preserving too.

Refinement relations between clouds and events is shown in Figure
6, according to which Role1 is involved by events e1, e3, e4, e5, e7 with
occurring ordering determined by the following final (after refinements)
causal dependencies: e1 → e3, e1 → e4, e1 → e5, e4 → e7, e5 → e7.

Figure 6. Superposition and substitution refinements

240



Concurrency specification using Event-based . . .

3.3 An event structure semantic for ESCs

Every specification language should have a formal semantic, which de-
fines logic for reasoning about behavior and concurrency. A semantic is
indispensable for the development of tools; therefore it is an advantage,
if specification language has direct and simple correspondence to the
logic. This is the way to avoid errors in concurrent specification.

Another important aspect of language design concerns explicit link-
ing of specification to implementation, which is realized at later stages
of developments. So language must be capable to preserve internal
system “structure” (which can be lost with interleaving models [15]),
to express implicitly non-determinism (which is an inherent property
of modern multi-threading programs [16]), and to avoid detailed inter-
nal state description (behavioral approach is preferred for high-level
architectural specification).

According to [15, 17] and aforementioned requirements, a well ac-
cepted branching-time true concurrency semantic model is model of
event structures (Figure 7).

Figure 7. The ESC language as an emanation of branching-time true
concurrency extensional semantic

An event structures model with non-interleaving semantic allows in
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a natural way to describe the relationship between events of the system
[15, 17].

The event structure S = (E,≤, #) consists of a countable set of
events E, partially ordered by causal dependence ≤ ⊆ (E × E), an
irreflexive and symmetric conflict # ⊆ (E×E), satisfying the principle
of inheritance: ∀e, e1, e2 ∈ E; e#e1 ≤ e2 ⇒ e#e2. Thus the concur-
rency relationship co between events e and e1 from E can be defined
as follows: e co e1, iff ¬(e1 ≤ e ∨ e ≤ e1 ∨ e#e1).

Event substitution refinement can be defined as vertex substitution
operation presented in [18] with assumption that substituted event has
no conflict relationship with any events (Figure 8).

Figure 8. Event substitution

In order to describe formally this refinement operation it needs to
assume that

• U(E1, e1) is a subset of E1 upper bounded by e1 ∈ E1 (∀u ∈ E1:
u ≤ e1);

• L(E1, e1) is a subset of E1 lower bounded by e1 ∈ E1 (∀l ∈ E1:
e1 ≤ l);

• dSe denotes a subset of S, including only elements’ upper bound
S (∀s ∈ S; ∀u ∈ dSe; s ≤ u);
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• bSc denotes a subset of S, including only elements’ lower bound
S (∀s ∈ S; ∀l ∈ bSc; l ≤ s).

Then after substitution of event b in event structure ES1 by event
structure ES2 (operation which can be noted as in [19] with ES3 =
ES1[b →ES2]) is obtained an event structure ES3=(E3,≤3, #3), where

• E3 = (E1 ∪ E2)− {b}, E1 ∩ E2 = ∅;

• ≤3 = (≤1 − ≤b) ∪ ≤2 ∪ ≤ dU(E1,b)e×bE2c ∪ ≤ bL(E1,b)c×dE2e;

• #3 = #1 ∪#2.

Refinement through cloud superposition formally can be interpreted
as union of two graphs, which anticipates vertex contractions specified
by specialization relationships (dashed arrow in Figure 9).

Figure 9. Cloud superposition

The above-described basic relationships are the ones which permit
event structures to be expressive and natural for concurrency descrip-
tion and explaining. However these arguments are not valid for au-
tomated analysis, because of the difficulty in defining operations like
products and parallel compositions on event structures of the form
(E ≤, #). They encourage the uses of more general structures or even
CCS/CSP like languages from which event structure semantics is then
induced [15].
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3.4 Operational interpretation of ESC specifications

Automated analyses imply an operational interpretation of formal ESC
specifications. The most appropriate for this is the classic process al-
gebra CSP (Communicating Sequential Processes). CSP has an event-
based operational semantic and describes system behavior by sequenc-
ing of events [20]. There are two popular model checkers based on
CSP-like operational semantic and syntax: FDR (Failures/Divergence
Refinement), which is a commercial product expressing models in
machine-readable dialect of CSP (CSPM ) [21]; and PAT (Process Anal-
ysis Toolkit) with CSP# as input language [22].

Greater flexibility, expressiveness, openness and freeness offered by
PAT determine a univocal choice for CSP# as interpretation language.
Compared to CSPM , CSP# adds to original language features such
as shared variables, asynchronous communication channels and event
associated programs [23].

Formally, the language of sequential processes (programs) CSP#,
ranged over processes P and Q, is the set of terms generated by the
following BNF (Backus-Naur Form) description (Figure 10), in which
e is a name representing an event with an optional sequential program
prog, X is a set of event names, b is a Boolean expression,ch is a channel,
exp is an expression, and x is a variable.

Figure 10. The BNF description of CSP# language

The easiest way to apply PAT platform as model checker is to create
a “rewriter” from the ESC specification language to CSP# language. In
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order to avoid complex CSP# models, rewriting should be anticipated
by refinement operations, which can be understood as operations of
syntactic substitution.

Rewriting from ESC model to CSP# model produces systems com-
posed of multiple processes. In accordance with CSP# language defini-
tion the word process can stand for the behavior pattern of an object,
which can be described in terms of limited set of events. In both lan-
guages each event name denotes an event class; there may be many
occurrences of the same event, involved separately in time by processes
(CSP#) or roles (ESC).

Let Role1 and Role2 be the roles, which act and interact with each
other exactly in accordance with ESC specifications showed in Fig-
ure 11. It is easy to see, that Role1 exposes actions for occurrences
of events a, b and c, ordered by causal dependencies from TheCloud1 ;
and the behavior of Role2 is determined by ordering of occurrences of
events a, b, c (from TheCloud1), and d, e, f (from TheCloud2 ). Also ac-
cording to specification, event b from TheCloud1 requires simultaneous
participation of the both roles involved.

Figure 11. Event clouds as behavior patterns
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The system behavior is defined by all role behaviors, which can be
described as combination of deterministic CSP processes. When roles
are incident to the same cloud, parallel composition is used. Paral-
lel composition introduces concurrency and synchronization. Using of
the same alphabet assures that processes interact in lock-step synchro-
nization over events with the same name. Interleaving operator may
combine many role behaviors (incident to different event cloud) into
complex one, representing completely concurrent activity.

Thus a CSP# model which describes a behavior equivalent to ESC
specification from Figure 11 consists from five processes (Figure 12): a
composed process System, which corresponds to overall specified sys-
tem; processes R1 and R2, which correspond to roles Role1 and Role2 ;
processes R21 and R22, which combine concurrently behavior of Role2
determined by TheCloud1 and TheCloud2 from ESC specification.

Figure 12. Interleaving and parallel composition in CSP# model

Also parallel composition is used to define a behavior like presented
in Figure 13, according to which Role1 may concurrently involve events
(b and d, b and e, c and e).

After model “rewriting”, the role process R1 behaves like the sys-
tem composed of processes R11, R12 and R13, interacting in lock-step
synchronization as described above (Figure 14).

Last translations may not be optimal, because the processes de-
scribing the behavior Role1 are obtained by finding in the cloud’s DAG
all the paths that begin from source events and end at the sink events.
The equivalence of ESC model and CSP# model can be proved, if both
models satisfy the same state graph (Figure 15). This equivalence is
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Figure 13. A cloud with concurrent events

Figure 14. One cloud can impose multiple processes for behavior defi-
nition

analogical to Milner’s principle of observational congruence [20].
It is easy to see from the state graph (Figure 15) that two indepen-

dent events (c and e, d and b, b and e) which can occur at the same
state, can be performed in any order without affecting the reached state
(in literature this is often identified as ‘diamonds’ of concurrency [17]).

In Figure 16 represented role behaviors are defined by two clouds,
which include conflicting events. Conflict relationship is used to spec-
ify mutual exclusion between events. Inheritance principle of conflict
relationship acts in cloud boundary. Circle in the upper-left corner of
cloud shape means that the cloud is a singleton: at the same time only
one role incident to cloud can involve events from this cloud.
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Figure 15. Complete state graph (generated by PAT)

It is obvious that conflict relationship imposes a choice between
processes including conflicting events. Selection in CSP model will
be done in the conflict process specifically designed for this. Conflict
process must be defined by role events. Deterministic choice realized
in CSP by a special operator – external choice, can help us to engage
in execution only one “conflicting” process. Thus specification shown
in Figure 16 can be translated as presented in Figure 17.

In the system described in Figure 17, the lock-step synchronization
admits execution of one process at a moment. Using global variables
and guarded processes, and splitting alternative process in two (sub)
processes can permit occurrence of one conflicting event in multiple
role processes (Figure 18).

4 Conclusion

The Event-based Specification Charts (ESC) specification language was
created to easily design model of concurrent processes using events.
Thus, the proposed language involving event-driven techniques, does
not replace the existing verification methods and tools. On the con-
trary, the main objective of the language is to improve usage of formal
methods in verification.
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Figure 16. Conflict between events from singleton clouds

Figure 17. Conflict relationship and external choice

Event-based specification charts have many advantages. They are
easily understood, even by the non-specialist. They permit to concen-
trate on causality or independence of events. They offer reutilization
mechanisms of events.

Language constructs semantically are interpreted by means of event
structure model, which is more suitable for modeling “true paral-
lelism”. Hoare’s CSP language provides operational interpretation for
ESC models: partial order is modeled by the sequencing; conflict rela-
tion is modeled by nondeterministic choice, etc.

Major factor reducing the use of formal language is poor integration
of formal tools with modern development environments. Now we intend
to develop a tool for specification of concurrency, integrated into Visual
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Figure 18. Multiple role processes with conflicting events

Studio IDE, using Visual Studio Visualization and Modeling SDK, in
order to increase the quality of software development. Formal checks
will be made by PAT, which provides an API just for this.
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Concept-Oriented Model: Extending Objects

with Identity, Hierarchies and Semantics

Alexandr Savinov

Abstract

The concept-oriented data model (COM) is an emerging ap-
proach to data modeling which is based on three novel principles:
duality, inclusion and order. These three structural principles
provide a basis for modeling domain-specific identities, object hi-
erarchies and data semantics. In this paper these core principles
of COM are presented from the point of view of object data mod-
els (ODM). We describe the main data modeling construct, called
concept, as well as two relations in which it participates: inclu-
sion and partial order. Concepts generalize conventional classes
by extending them with identity class. Inclusion relation gener-
alizes inheritance by making objects elements of a hierarchy. We
discuss what partial order is needed for and how it is used to
solve typical data analysis tasks like logical navigation, multidi-
mensional analysis and reasoning about data.

Keywords: Data modeling, object data models, set nesting,
partial order, data semantics.

1 Introduction

The concept-oriented model (COM) is an emerging general-purpose
approach to data modeling. It is aimed at unifying different views on
data and solving a wide spectrum of problems in data modeling and
analysis [31, 33]. COM overlaps with many existing data modeling
methodologies but perhaps most of its features are shared with object
data models (ODM) [10, 4, 3]. COM is not only based on the general
principles of object-based models but can be viewed as their further

c©2011 by A. Savinov
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development and generalization. If we take ODM as a starting point
then what problems COM is going to solve? In other words, what are
the main motivating factors behind this approach if it is considered a
generalization of ODM? COM is aimed at solving the following three
major problems:

How objects exist. COM provides a mechanism for domain-specific
references so that both objects and their references may have
arbitrary structure and behavior.

Where objects exist. COM turns each object into a set which is in-
terpreted as a space, context, scope or domain for its member
objects. The whole model is then turned into a set-based ap-
proach where sets are first-class elements of the model.

What objects mean. COM augments objects with semantics and
makes references elementary semantic units. The meaning of an
object is defined via other objects and this semantic information
can be used for reasoning about data.

“Object identity is a pillar of object orientation” [16] and the role of
identities has never been underestimated. There exist numerous studies
[17, 38, 1, 16, 11] highlighting them as an essential part of database
systems and arguing for the need in having strong and consistent notion
of identity in data and programming models. A lot of identification
methods have been proposed like primary keys [6], object identifiers
[1, 17], l-values [18] or surrogates [12, 7]. Nevertheless, there is a very
strong bias towards modeling entities while the support of identities is
relatively weak. Identities have always been considered important but
secondary elements remaining in the shadow of their more important
counterpart. There is a very old and very strong belief that it is entity
that should be in the focus of data modeling while identities simply
serve entities. Almost all existing data (and programming) models
assume that identities should be provided by the platform and there
is no need for modeling domain-specific identities. For this reason, the
roles of entities and identities are principally separated: entities have
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domain-specific structure and behavior while identities have platform-
specific structure and behavior.

COM changes this traditional and currently dominating view by
assuming that identities and entities are equally important for data
modeling. In this context, the main goal of COM is to provide data
modeling means where both identities and entities may have arbitrary
domain-specific structure and behavior. To solve this problem, COM
introduces a novel data modeling construct, called concept (hence the
name of the model), which generalizes classes. Its main advantage is
that it allows for modeling arbitrary domain-specific identities (refer-
ences) what is impossible if conventional classes are used. Importantly,
identities and entities are modeled together as two parts of one thing.
Elements in COM can be compared to complex numbers in mathe-
matics which also have two constituents (real and imaginary parts)
manipulated as one whole.

Set-orientation is one of the most important features of any data
model just because data is normally represented and manipulated as
groups rather than as individual instances. Probably, it is the solid sup-
port of set-oriented operations why the relational model [6] has been
dominating among other data models for several decades. And insuffi-
cient support of the set-oriented view is why object-oriented paradigm
is less popular in data modeling than in programming. Of course, we
can model sets, groups or collections manually (at conceptual level)
but in this case the database management system is unaware of these
constructs and cannot help in maintaining consistency of these struc-
tures. In this context, the main goal of COM is to turn instance-based
view into a set-based model where set is a first-class notion supported
by the model at the very basic level. The idea here is that any instance
has to be inherently a set, and vice versa, a set has to be a normal in-
stance. To solve this problem, COM introduces a novel relation, called
inclusion. The most important change is that elements exist within a
hierarchy where any parent is a set of its children and any instance is
a member within its parent superset. Parent elements are shared parts
of children and are treated as a space, context, scope or domain for its
children. In contrast, in most class-based models classes exist within
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a hierarchy while their instances exist in flat space (so we do not have
a hierarchy of instances). The use of inclusion relation makes COM
similar to the hierarchical model [37] where parents are containers for
their child elements. In addition, inclusion generalizes inheritance and
can be used for reuse, type modeling and other purposes. This ap-
proach is also very close to prototype-based languages [5, 19, 34] where
parents are shared parts of children. However, these languages do not
use classes while COM allows for using both classes (in the form of
concepts) and object hierarchies (in the form of inclusion).

According to Stefano Ceri [20], “the three most important problems
in Databases used to be Performance, Performance and Performance;
in the future, the three most important problems will be Semantics,
Semantics and Semantics”. The main advantage of having semantics
in databases is that it “should enable it to respond to queries and
other transactions in a more intelligent manner” [7] by providing richer
mechanisms and constructs for structuring data and representing com-
plex application-specific concepts and relationships. There has been a
tremendous interest in semantic models [13, 21] but most of the works
propose conceptual models which need to be translated into some log-
ical model. The lack of semantics in logical data models significantly
decreases their overall value and, particularly, decreases the possibility
of information exchange, data integration, consistency and interoper-
ability.

As a response to this demand, COM proposes a novel approach to
representing and manipulating semantics as integral part of the model.
The main idea is that concepts are partially ordered by using the rule
that a field type represents a greater concept. As a result, all instances
exist as elements of a partially ordered set where they have greater el-
ements and lesser elements. In contrast, most other models are graph-
based with objects treated as nodes and references considered the edges.
In COM, references always represent greater elements by playing a role
of an elementary semantic construct rather than a navigational tool in
a graph. Partial order changes the way how data is being accessed:
instead of using graph navigation, COM introduces two operations of
projection and de-projection. Although there exist approaches which
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are based on partial order relation [24], only in COM it is used as a
primary relation for representing data semantics and reasoning about
data. The main benefit of using partial order is that it “seems to fulfill
a basic requirement of a general-purpose data model: wide applicabil-
ity” [24], that is, many conventional data modeling mechanisms and
patterns can be explained in terms of this formal setting. In COM,
this approach was shown to be successful in solving such highly general
tasks as logical navigation [27], multi-dimensional analysis [26], group-
ing and aggregation [28], constraint propagation and inference [29].

In the next three sections we discuss three principles of COM. In
Section 2 we describe duality principle and introduce the main data
modeling construct, concept. In Section 3 we discuss inclusion prin-
ciple by defining inclusion relation among concepts and showing its
differences from inheritance. Section 4 discusses order principle by
demonstrating how partial order can be used for data access and solv-
ing typical data modeling tasks. Section 5 makes concluding remarks.
We will follow a convention that identities are shown as gray rounded
rectangles while entities are white rectangles. Also, concepts names
will be written in singular while collection names will be in plural.

2 Concepts Instead of Classes

Existence precedes and rules essence — Jean-Paul Sartre, Being and Nothingness

2.1 Modeling Identities

How things exist and what does it mean for a thing to exist? In many
theoretical and practical contexts existence can be associated with the
notions of representation and access. This means that a thing is as-
sumed to exist if it can be represented and accessed. Conversely, if a
thing does not have a representation or cannot be accessed then it is
assumed to be non-existing. According to this view, any existing thing
is supposed to have a unique identity which manifests the fact of its
existence.

One of the main distinguishing features of COM is that it makes
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identities first-class elements of the model. To describe how COM
differs from other identification schemes we will use the following three
dimensions:

• Strong vs. weak identities
• Domain-specific vs. platform-specific identities
• Implicit vs. explicit identities

The first criterion divides all identification schemes in two groups
[38, 11]: strong identities and weak identities. Strong identities exist
separately from the identified entity while weak identities are actually
internal properties of the entity used for identification purposes (iden-
tifier properties).

Memory address is an example of a strong identity because memory
cells do not contain their address as a property (otherwise memory
would be a two-column array with addresses in the first columns and
cells in the second column). Object references are also strong identities
because they are not contained in object fields. In particular, if a class
does not have fields then its instances have zero size but still have
references. In contrast, primary keys in the relational model (RM)
are weak identities because they are made up of a number of normal
attributes.

The main problem with weak identities like primary keys is that it
is not possible to access entity properties without some kind of strong
identity which therefore should be provided by a good data model.
In other words, some kind of strong identity must always exist while
having weak identities in the model is optional. In this sense, weak
identities should be viewed as a design pattern rather than a primary
data modeling mechanism.

Strong identities are provided in ODM and COM because objects
in these models are represented by a separable reference (Fig. 1). In
contrast, RM relies on weak identities in the form of primary keys.
Note however that many implementations provide some kind of strong
identity for representing rows like surrogates and their usefulness is
theoretically justified.

The second dimension for evaluating various identification schemes
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Figure 1. Modeling identities and entities in different models

is the possibility to model domain-specific (user-defined) identities as
opposed to having only platform-specific (primitive, system) identities.
An example of platform-specific identity is OID, surrogate or object
reference, which are provided by the DBMS. The mechanism of primary
keys is an example of domain-specific identities which is defined by
the data modeler and reflects specific features of the problem domain.
Since identities are integral part of the problem domain, a good data
model should provide an adequate mechanism for their modeling. In
particular, this mechanism is available in RM and COM but not in
ODM (Fig. 1).

The third criterion separates all identification mechanisms depend-
ing on whether they provide implicit or explicit identities. An identity
is called explicit if its functionality has to be used manually to access
the represented entity. For example, primary keys are explicit identities
because it is necessary to manually specify join conditions. The prob-
lem of explicit identities is that one and the same fragments span many
queries. If the structure of the identity changes then all queries involv-
ing this fragment have to be also updated. For example, all queries
where we need to get bank accounts given a set of persons involve the
same fragment with the join condition like the following:

WHERE ACCOUNTS.owner = PERSONS.id AND ...

Note that this fragment is mixed with other conditions. What is worse,
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if we change the primary key then all queries involving it in their join
conditions have to be also updated (join is a cross-cutting concern).

In contrast, implicit identities hide their structure and function-
ality. For example, each time an object is about to be accessed, the
DBMS needs to resolve its OID, then to lock memory handle and fi-
nally execute the operation using the obtained memory address. If it
is a remote reference then the access procedure is even more complex.
However, all these operations in queries are hidden – it is enough only
to specify a variable and operation to be executed – all the interme-
diate actions will be executed behind the scenes. The mechanism of
implicit identities has numerous advantages and therefore it should be
supported by good data models. However, dot notation is also rather
restrictive in comparison with the flexibility of joins. In COM and
ODM, implicit identities are supported at basic level while RM relies
on explicit identities in the form of join conditions for FK-PK pairs.

2.2 Identity and Entity — Two Sides of One Thing

To provide strong domain-specific implicit identities COM assumes in
its duality principle that any element is a couple consisting of one iden-
tity and one entity. Formally, an element is represented as a couple of
one identity tuple and one entity tuple. To model such identity-entity
couples COM introduces a novel construct, called concept. Concept is
defined as a couple of two classes: one identity class and one entity
class. Both classes may have fields which are referred to as dimensions
(to emphasize their special role for defining partial order described in
Section 4) as well as other members like methods and queries. Im-
portantly, these two constituents cannot be used separately because
identity-entity couples are regarded as one whole. When a concept is
instantiated we get a couple consisting of one identity and one entity
so that the whole approach is reduced to manipulating identity-entity
couples. Identity is an observable part manipulated directly in its orig-
inal form. It is passed by-value (by-copy) and does not have its own
separate representative. Entity can be viewed as a thing-in-itself or
reality which is radically unknowable and not observable in its original
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form. The only way to do something with an entity consists in using
its identity as an intermediate. Identities are transient values while
entities are persistent objects.

For example, a bank account in COM can be described by the
following concept:

CONCEPT Account
IDENTITY

CHAR(10) accNo
ENTITY

DOUBLE balance

Identity class of this concept has one dimension which stores account
number and entity class has one dimension which stores the current
balance.

Concepts generalize conventional classes and are used instead of
them in COM. There are two special cases:

• identity class is empty
• entity class empty

If identity class is empty then such concept is equivalent to a conven-
tional class. Its instances will be represented by identities inherited
from the parent concept (see Section 3). For example, we could define
a class of color objects as follows:

CONCEPT ColorObject
IDENTITY // Empty
ENTITY

INT red, green, blue

Instances of this concept are normal objects represented by some kind of
platform-specific reference or OID. If all concepts have empty identity
classes then we get the object-oriented case where one and the same
platform-specific identity is inherited from the root concept and is used
to represent all entities. What is new in COM is that it allows for
modeling user-defined types of references together with the represented
entities. Such references can be thought of as user-defined surrogates
or separable primary keys. If entity class is empty then this concept
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describes a value type (value domain). Indeed, its identity does not
have entity part and hence it is not intended to represent anything (if
it is not used as identity in a child concept). For example, we could
define colors as values:

CONCEPT ColorValue
IDENTITY

INT red, green, blue
ENTITY // Empty

Any instance of this concept is a value which is copied when it is passed
or stored.

Concepts are instantiated precisely as classes by specifying their
name as a type of the variable and then invoking this concept con-
structor. Moreover, from the source code where concepts are used, we
cannot determine if it is a concept-oriented query or an object-oriented
one – it depends how the concepts are defined. If they have only one
constituent (entity) then it is an object-based approach and if they have
two constituents (identity and entity) then it is a concept-oriented ap-
proach.

In data modeling concepts are normally used to declare types of
elements in collections where data are stored. For example, if data are
stored in tables then concepts are used to parameterize such a table by
specifying the type of its elements. In an SQL-like language a table for
storing bank accounts could be created as follows:

CREATE TABLE Accounts CONCEPT Account

Here Accounts is a table name and Account is a concept name so
that this new table will store only elements of this concept type. Note
that collections in COM are different from relational tables because
they have domain-specific row identifiers. Such a collection can be
viewed as a memory with arbitrary user-defined addresses and arbitrary
user-defined cells.

2.3 Concepts for Domain Modeling

COM provides means for describing both values (identity class) and ob-
jects (entity class). The specific feature is that they are described and
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then exist in couples. In contrast to object-relational models (ORM)
[35, 36] where value domains and relations are modeled separately,
COM provides one unified construct for modeling simultaneously value
and relation types. In other words, there is only one type – a type of
an element – but this element has a transient part (value) and a per-
sistent part (object). The main benefit is that we can vary the “degree
of persistence” by choosing which attributes belong to transient part
(identity) and persistent part (entity).

In ORM, the idea is that relation attributes can store complex
values rather than only primitive values. For example, we can define a
user defined type composed of two integers:

TYPE MyType
field1 AS INT
field2 AS DOUBLE

END TYPE

After that it can be used as a type of relation attributes:
RELATION MyRelation

intAttribute AS INT
myAttribute AS MyType

END RELATION

The problem is that traditional approaches to data and type modeling
do not allow us to use relations as types:

TYPE NewType
myField AS MyRelation // Not possible

END TYPE

RELATION NewRelation
myAttribute AS MyRelation // Not possible

END RELATION

In other words, relations are defined on domains only (primitive or
complex) but not on other relations.

COM solves this problem by using concepts which essentially unite
domain modeling and relation modeling. In COM, there is only one
kind of domain or set – it is a set of concept instances which are value-
object couples. Once a concept has been defined, it can be then used as

264



Concept-Oriented Model: Extending Objects . . .

a type in any other concept independent of its use for value modeling,
relation modeling or mixed use. For example, we could define colors as
values:

CONCEPT Color
IDENTITY

INT red, green, blue
ENTITY // Empty

This concept is equivalent to a user-defined type. The difference is that
new fields can be added to either value part (identity class) or object
part (entity class). For example, if each color has a unique name which
has to be shared then we add the corresponding field to the entity class:

CONCEPT Color
IDENTITY

INT red, green, blue
ENTITY

CHAR(64) name

It is already a mix of three primitive values in the identity class and one
object field. Now suppose that colors may have some other property
which is supposed to be stored in a separate relation:

CONCEPT ColorDescr
IDENTITY

INT code
ENTITY

CHAR(2) lang
CHAR(64) name

Now the color concept simply declares a field with this concept as a
type:

CONCEPT Color
IDENTITY

INT red, green, blue
ENTITY

ColorDescr descr

Importantly, only one concept name is used as a type of variables
in the model independent of its division on identity and entity parts.
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Figure 2. Value vs. object types in different approaches

All domains (independent of whether they are values, objects or both)
are described using one system of types. If we use only identity classes
then all elements in the model are values and it can be used for value
modeling precisely as it is done in ORM. If all concepts have only entity
part then we can model objects represented by OIDs or relations where
rows are represented by surrogates. But in the general case, and it is
one of the main advantages of COM, we can freely vary the division
between values and objects. The differences between ORM, ODM and
COM are shown in Fig. 2. In ORM, we can model only value domains
which are used as attribute types. In ODM, we can model only object
types. In COM, we can model both value types and object types.

3 Inclusion Instead of Inheritance

A place for everything and everything in its place — Victorian proverb

3.1 Modeling Hierarchies

In the previous section we asked the question how entities exist and
assumed that the fact of their existence is manifested by means of
identities. In this section, the main question is where objects exist.
COM assumes that if something exists then there has to be some space,
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environment, domain, container or context to which it belongs, that
is, things are not able to exist outside of any space. Assuming so,
the next question is what does it mean to exist within some space?
The answer is that existence within a space means that the element is
identified with respect to this space. Further assuming that the space
is a normal element and any element is included only in one space then
we get inclusion principle: elements exist within a hierarchy where any
element (excepting the root) is included in one parent with respect to
which it is identified.

Hierarchies are used in almost all branches of science and their
descriptive role can hardly be overestimated. They exist almost every-
where in real life and they are especially useful in programming and
data modeling. However, there exist many interpretations of hierar-
chies in terms of different relations:

• Containment hierarchies (inclusion relation)
• Re-use hierarchies (inheritance relation)
• Semantic hierarchies (specialization-generalization relation)

Containment hierarchies are used in the hierarchical data model
[37] where many child elements are included in one parent and exist in
its context. Hierarchies are also one of the corner stones of the object-
oriented paradigm where they exist in the form of inheritance relation.
Here the idea is that one base class can be extended by many more
specific classes and in this way we can describe arbitrary entities from
the problem domain by reusing more general descriptions. In semantic
and conceptual models hierarchies are used to describe abstraction lev-
els of the problem domain by defining more specific elements in terms
of more general elements.

Yet, in spite of the highly general and natural character of the
hierarchical view on data, it has not got a dominant position in data
modeling. One reason for this state of affairs is asymmetry between the
space of classes and the space of their instances [34]: classes exist within
a hierarchy while their instances (objects) exist in flat space. Classical
inheritance considers only class hierarchies and it is not possible to
produce a hierarchy of their instances precisely what is needed in data
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Figure 3. Asymmetry between classes and instances

modeling (and implemented in the hierarchical model). In other words,
by using inheritance we cannot store objects in hierarchies like in the
hierarchical model and it is a strong limitation because a database is
modeled as a large flat space of objects.

For example, if two classes Savings and Checking extend one
base class Account then we get a hierarchy where the parent class
is shared among its child classes (Fig. 3a). Surprisingly, instances of
these classes exist in a flat space so that each extension has its own
parent and each instance is identified by one kind of OID (Fig. 3b).
In other words, if two child classes have one shared parent class then
their instances have no shared parent.

The conception of data reuse exists only at the level of classes but
not their instances (code is reused in both cases). For data modeling
purposes, it would be natural to create one main account object and
then several savings and checking accounts within it. However, it is
not possible using the traditional view on hierarchies, inheritance and
semantic relationships. The goal of COM here is to unite the existing
interpretations of hierarchies by introducing one relation for modeling
containment (like in the hierarchical data model), inheritance (like in
object data models), and generalization-specialization relation (like in
semantic data models).
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3.2 Inclusion for Modeling Hierarchies and Inheritance

COM revisits hierarchies by introducing a new relation, called inclu-
sion. Inclusion relation assumes that child concepts are declared to
be included in the parent concept. The most important property is
that concept instances also exist within a hierarchy so that parents
are shared parts of children. Note that the possibility to have many
children within one parent is implied by the mechanism of identities.
Each child is an instance of its concept and hence has some identity.
This identity is always relative to the parent instance which has its
own identity. For example, assume that concept Savings is included
in concept Account (Fig. 4a):

CONCEPT Savings IN Account
IDENTITY

CHAR(2) subAccNo
ENTITY

DOUBLE balance

This concept declares its identity class having one dimension storing
savings account number and its entity class having one dimension stor-
ing the current balance of the sub-account. It is important that sub-
account number is a relative number which is meaningful only in the
context of its main account. Hence (Fig. 4b) many savings accounts
(instances of concept Savings) can be created in the context of one
main account (an instance of concept Account). In particular, main
account fields are shared among many savings accounts. In contrast,
if Savings were a class inheriting from class Account then any new
instance of Savings would get its own main account with all its fields.

An interesting observation about COM is that with the introduc-
tion of inclusion it essentially revives the hierarchical model of data but
at the same time remains compatible with the object-oriented view. In-
clusion hierarchy can be viewed as a nested container where each object
has its own hierarchical domain-specific address which is analogous to a
normal postal address. For example, a savings account might be iden-
tified by a reference consisting of two segments: 〈′123456789′〉 : 〈′02′〉
where the first number is the main account and the second number
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Figure 4. Symmetry between concepts and instances

identifies the relative savings account.
Note that these object identities are virtual addresses because they

are defined in domain-specific terms which are not directly bound to
the platform. Thus the represented entities can reside anywhere in the
world. In particular, bank account objects can be persistently stored
in a database and the account number is used to retrieve them. It is
possible to specify how these virtual addresses are translated to physical
addresses [30]. This can be used for implementing such mechanisms as
replication, partitioning and distribution.

An important use of COM inclusion hierarchies consists in modeling
types of values. If we define a concept without entity class then it
will describe some value type. Using inclusion relation, this value can
be extended by adding new dimensions and producing a more specific
type. In this way we can build a hierarchy of value types. For example,
we could define colors as elements identified by their unique name and
having three entity properties:

CONCEPT Color IN ColorObject
IDENTITY

CHAR(16) name // For example 'red'
ENTITY // Inherited from ColorObject

Of course, we could use conventional classes for this purpose like it
is done in ORM but then we would need to have two kinds of classes
for values and objects. The distinguishing feature of COM is that con-
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cepts are intended for describing both values and objects as couples.
In relational terms, COM allows for modeling two type hierarchies for
domains and relations using only one construct (concept) and one re-
lation (inclusion). In the general case, a domain in COM is a set of
identity-entity couples. In this sense, it is a step in the direction of uni-
fying object-oriented and relational models by uniting two orthogonal
branches: domain modeling and relational modeling.

If concepts have empty identity classes then inclusion is a means for
modeling relation types. For example, an existing concept Persons
can be extended by introducing a new concept Employees:

CONCEPT Employees IN Persons
IDENTITY // Empty
ENTITY

DOUBLE age

Due to the nature of inclusion relation, many employee records can
belong to one person record which is obviously not what we need in
this situation. In order to model classical extension, identity class of
the Employee concept is left empty. In this case no more than one
employee segment is possible because of the absent identity class. As
a result, each person record will have one or zero extensions which
means that a person belongs to either base Person concept or to the
extended Employee concept.

4 Partial Order Instead of Graph

Ordnung muss sein — German phrase

4.1 Partial Order for Data Modeling

In the previous sections we described how objects exist and where they
exist. In this section we answer the question what an object means,
that is, what is its semantic content. When an element is created it gets
some identity which determines its location in the hierarchical address
space but says little about its relationships with other elements. To
semantically characterize an element, it has to be connected with other
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elements in the model. Almost all data models including ODM are
implicitly or explicitly graph-based, i.e., they assume that a set of data
elements is a graph. In this case semantics is encoded in relationships
among elements. The distinguishing feature of COM is that it uses an
approach where connectivity and semantics are represented by means
of partial order relation, i.e., a database is defined as a partially ordered
set of elements. As a result, any element participates in two orthogonal
relations simultaneously: inclusion and partial order.

Strict partial order is a binary relation < (less then) defined on
elements of the set and satisfying the properties of irreflexivity and
transitivity. If a < b (a is less than b) then a is a lesser element and b is
a greater element. In diagrams greater elements are positioned higher
than lesser elements. Given two data elements, the main question in
COM is whether one of them is less than the other. If we do this
comparison for all elements then we get a concept-oriented database.
Thus a concept-oriented database is a partially ordered set an example
of which is shown in Fig. 5 where b, d and f are the greatest elements,
and a and c are the least elements.

Formally, partial order in COM is represented by means of tuples by
assuming that a tuple is less than any of its members: if a = 〈. . . , e, . . .〉
then a < e. For example, element a in Fig. 5 is less than b, d and e just
because it is defined as a = 〈b, d, e〉. Thus if we have a number of tuples
defined via each other then they induce partial order, and vice versa, if
there is partial order then it can be represented by tuples representing
elements and their members representing greater elements.

In object-oriented terms, this principle means that references rep-
resent greater objects. If one object references another object via one
of its fields then the first object is less than the referenced object. For
example, if a book element is an object storing a publisher, title and
sales in its fields then these three constituents are its greater elements.
Semantically, they are considered more general terms which define the
meaning of the more specific book element. If we change a greater
element then the meaning of all lesser elements which use it will also
change.

To describe a partially ordered structure of elements at the level of
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Figure 5. Concept-oriented database is a partially ordered set

concepts, COM uses the following principle: dimension types represent
greater concepts. A set of concepts (with inclusion relation) partially
ordered using this principle is referred to as a concept-oriented schema
and a set of their instances is referred to as a concept-oriented database.
Note that concepts and their instances participate simultaneously in
two relations: inclusion and partial order.

For example, assume that concept Book has a dimension referenc-
ing its publisher of type Publisher:

CONCEPT Book // Book < Publisher
IDENTITY

CHAR(10) isbn
ENTITY

Publisher pub // Greater concept
DOUBLE sales

According to this definition, Book is a lesser concept and Publisher
is a greater concept: Book < Publisher. In object oriented ap-
proach, field types constrain possible elements that can be referenced
via this field. In COM, we not only constrain possible referenced ele-
ments but also say that the referenced element is greater than this one
and this property is then used for querying and reasoning about data.
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Figure 6. Projection and de-projection operations

4.2 Projection and De-Projection Operations

Data access operations in COM rely on the partially ordered structure
of concepts and their instances. If we move up in the direction of some
greater concept then this operation is called projection and denoted by
right arrow '->'. If we move down in the direction of a lesser concept
then this operation is called de-projection and denoted by left arrow
'<-'. Given a set of elements, projection returns all greater elements
and de-projection returns all lesser elements along the specified dimen-
sion. A sequence of projections and de-projections is called a logical
access path. The main difference from graph-based models is that these
operations are intended for changing the level of detail by moving only
up and down in a zig-zag manner along the structure of dimensions.
This makes COM similar to multidimensional models [22].

For example, assume that any book (Books collection) has one
publisher (Publishers collection). Publishers of all books with low
sales can be found by projecting the selected Books to the greater
Publishers collection (Fig. 6):

(Books | sales < 1000) -> pub -> (Publishers)

All books of the selected publishers can be found using de-projection:

(Publishers | name == 'C') <- pub <- (Books)
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Figure 7. Logical navigation and inference in COM

Note that projection is a set of elements from the target domain
without repetitions. For example, we could get all locations of the
publishers as follows:

(Publishers) -> location

Here we do not write the primitive target domain because it can be
restored from the schema and therefore is optional. The result of this
query for the example in Fig. 6 consists of three values ‘DE’, ‘MD’ and
‘RU’ even though the value ‘DE’ occurs two times.

This approach is very convenient for retrieving related elements in
complex schemas. Let us consider a schema in Fig. 7 with many-to-
many relationship between books and writers where each book belongs
to one publisher. All writers of the selected publisher can be retrieved
for three steps using the following query:

(Publishers | name = 'XYZ')
<- pub <- (Books) (1)
<- book <- (BooksWriters) (2)
-> writer -> (Writers) (3)

Here the selected publisher is (1) de-projected down to the collection
of books, then (2) further down to the BooksWriters collection, and
(3) finally the constrained facts are projected up to the Writers col-
lection.

It is very easy to write correlated queries using this approach. For
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example, assume that we need to find all books with sales higher than
the average sales in their respective publishers. The average sales figure
for a publisher is computed as follows:

AVG( pub <- (Books).sales) )

Now we simply select books which have sales higher than this number:
(Books | sales > AVG(pub <- (Books).sales) )

For comparison, in SQL this query has a rather complicated and not
very intuitive form:

SELECT isbn FROM Books b WHERE
sales > (SELECT AVG(sales) FROM Books WHERE

pub = b.pub )

One advantage of our approach is that it does not use joins and
therefore queries in COM are much simpler than in SQL. In COM, it
is possible to use the conventional dotted notation however it does not
remove the necessity to use joins. Therefore, dotted notation is used
only when it is necessary to access individual elements. For set-oriented
operations COM relies on projection and de-projection. An advantage
is that these operations hide the underlying structure of identities and
it is not necessary to change all queries if some identity has changed.

4.3 Reasoning about Data

An important consequence of having partial order with projection and
de-projection operations is the ability to reason about data by automat-
ically deriving conclusions from initial constraints. It is not necessary
to specify an exact access path because the system is able to propagate
initial constraints automatically. In traditional semantic and deduc-
tive models this can be done using inference rules which are treated
differently and managed separately from data. In COM, data itself is
treated inherently as dependencies and data schema is used for con-
straint propagation. Inference procedure is essentially integral part of
the model because it does not rely on inference rules but rather uses
data for reasoning about data. In other words, once a model has been
defined, it can be immediately used for inference.
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In our example it is possible to derive writers belonging to the
selected publisher without specifying how it has to be done. Such a
query provides only (i) what we have in the form of source constraints
and (ii) what we want to get by specifying a target collection. The
source constraints are then propagated to the target automatically by
the system. For example, such a query could be written as follows:

GIVEN (Publisher | name = 'XYZ')
GET (Writers)

The most important feature of this query is that it does not specify how
the result has to be obtained and therefore this query can be answered
by only using some semantic data model and its ability to infer the
result. Most semantic models are based on formal logic where the
result is derived using inference rules. COM proposes an alternative
approach to inference which relies on partially ordered structure of the
database [29]. This procedure consists of the following two steps:

Down. Source constraints X are propagated down to the bottom col-
lection Z using de-projection: X ←? Z

Up. The constrained bottom collection Z is propagated up to the tar-
get collection Y using projection: Z ?→ Y

Here operators ‘←?’ and ‘?→’ (with star symbol) denote de-projection
and projection along all dimension paths. Using this two-step inference
procedure we can get all authors of one publisher using the following
semantic query:

(Publishers | name = 'XYZ')
<-* (BooksWriters) *-> (Writers)

Note that this query does not involve any dimension name. It says
only that the inference has to be carried out using BooksWriters as
a bottom collection. Thus the chosen Publishers are de-projected
down to BooksWriters and then up to Writers which are returned
as a result collection. Yet, this query can be further simplified if we
unite two steps into one inference operator denoted '<-*->'. This
operator works with only source constraints and a target:

(Publishers | name = 'XYZ') <-*-> (Writers)
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To illustrate how rather complex queries can be written in a very
concise form let us assume that we want to consider only small publish-
ers (with less than 10 books) and return only writers who have written
more than 2 books:

(Publishers p | p <- pub <- (Books) < 10)
<-*-> (Writers w | w <-*-> (Books) > 2)

Here we use a shortcut that comparison of a collection with a num-
ber implies COUNT aggregation function, that is, the condition
p<-pub<-(Books) < 10 is true if the publisher has less than 10
books, and the condition w <-*-> (Books) > 2 is true if the writer
has more than 2 books.

4.4 Multiple Propagation Paths

Generally, there are two approaches to constraint propagation:

Direct. Source constraints are imposed directly on the elements of the
source set and then they are propagated through the model.

Inverse. Source constraints are expressed in terms of the target el-
ements and then imposed on them so that target elements are
selected by specifying properties they have to satisfy.

Projection and de-projection operations are an example of the di-
rect approach while SQL is an example of the second approach. One
limitation of the constraint propagation procedure via projection and
de-projection operations is that we cannot use many source constraints.
For example, assume that the task is to find all books belonging to the
selected publishers and writers (Fig. 7). In this case we have two con-
straints: a set of publishers and a set of writers. One solution is to
use the second (traditional) approach by simply expressing these two
source constraints as properties of the books:

(Books p | p.pub.name = 'Springer' AND
p <-*-> (Writers | name = 'Smith') > 0 )

This query involves two explicit conditions imposed directly on the
retrieved elements. The first condition selects books depending on
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their publisher and the second condition selects books depending on
their author. Then these two conditions are combined using logical
'AND' operation.

To solve this problem using the direct approach source constraints
can be independently propagated and then the result is built as their
intersection (also denoted by 'AND'):

(Publishers | name='Springer') <- (Books) AND
(Writers | name = 'Smith') <-*-> (Books)

This query consists of two propagation paths leading to the same target
collection. The first operation propagates publishers to books and the
second operation propagates writers to books. Then these two sets are
combined using set intersection operation.

Strictly speaking the above query also contains a portion with in-
verse constraints where the names of publishers and writers are spec-
ified. These fragments can be removed by rewriting this query as fol-
lows:

'Springer'<- name <- (Publishers)
<- pub <- (Books) AND

'Smith'<- name <- (Writers)
<- writer <- (BooksWriters) -> book -> (Books)

The most important property of this query is that it does not involve
inverse constraints at all. Both of its access paths start from some value
and lead to the same target collection. The values are taken from prim-
itive domains (text strings in this example). In contrast, inverse queries
specify constraints as properties of collection elements. Of course, such
a query is too verbose and in practice these two approaches are com-
bined. For us it is important to understand that COM supports both
approaches.

4.5 Analytical Queries

In previous sections we described how data can be retrieved from the
database. In analytical applications, it is necessary to have a possibility
to compute new values using existing data. For this purpose, COQL

279



A. Savinov

introduces CUBE operator (also denoted as FOREACH in other papers)
which combines several source collections and returns their product:

CUBE(Collection1, Collection2, ...)
BODY {

...
}
RETURN ...

This query allows us to iterate over all combinations of elements in the
source collections and to perform intermediate calculations in its BODY
block. The structure of the result is specified in the RETURN statement.

For example (Fig. 8), assume that each book belongs to some
genre and writers live in certain countries. The goal is to show how
book sales are distributed among genres and countries. The difficulty
is that a book may have many authors living in different countries and
we want to distribute the book sales evenly among the authors. To
solve this problem, a derived method is added to the BooksWriters
concept which computes sales for one book and one author:

CONCEPT BooksWriters
IDENTITY ...
ENTITY

DOUBLE sales() {
RETURN book.sales / book <- (BooksWriters)

}
Here sales can be considered a normal (read-only) dimension which
is computed for each instance of this concept by dividing the book sales
by the number of book authors.

To compute sales for each genre and country, we build a cube any
cell of which is one genre and one country:

CUBE(Genres g, Countries c)

Each element of the result set returned by this query, called a cell in
OLAP, is a pair of one genre and one country. Now we can compute
sales for each cell in the query body as follows:

CUBE(Genres g, Countries c)
BODY {
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Figure 8. Multidimensional analysis in COM

BW = g <-* (BooksWriters) AND
c <-* (BooksWriters)

}
RETURN g.name, c.name, SUM(bw.sales)

Here BW is a cell and BooksWriters is a fact collection. A cell is
computed as an intersection of all facts belonging to the current genre
and all facts belonging to the current country. Then we simply return
total sales for all facts in the cell where fact sales are computed in
the derived method. Note that this approach does not use group-by
operation which is replaced by de-projection.

5 Conclusion

The concept-oriented model is based on three general principles but
intrinsically supports many patterns of thought used in other data
models including set-based, hierarchical, multidimensional and seman-
tic views on data. However, the largest overlap is with the object-
based view and therefore COM can be characterized as taking its roots
in object-orientation. In comparison with object-orientated approach,
COM makes the following major contributions:

Concepts instead of classes. If class has only one constituent then
concept combines two constituents in one construct: identity and en-
tity. Data modeling is then reduced to describing identity-entity cou-
ples. This duality produces a nice yin-yang style of balance and sym-
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metry between two orthogonal branches: identity modeling and entity
modeling. In particular, this generalization allows us to model domain-
specific identities instead of having only platform-specific ones. Con-
cepts provide a basis for a new approach to type modeling. One its
application is a unified mechanism for modeling relation types and do-
main types (which is one of the oldest problems in data modeling) by
defining a domain as a set of identity-entity couples.

Inclusion instead of inheritance. Classical inheritance assumes that
objects exist in one flat space where they are identified using one type
of references. Inclusion generalizes this view by permitting objects to
exist in a hierarchy where they are identified by hierarchical addresses.
In this case both concepts and their instances exist within a hierarchy.
This eliminates the asymmetry between classes defined as a hierarchy
and their instances existing in flat space. Data modeling is then re-
duced to describing such hierarchical address space where objects are
supposed to exist by focusing on identity modeling as opposed to tra-
ditional entity-centric approaches. This generalization turns objects
into sets (of their children) and makes the whole approach inherently
set-based rather than instance-based. Another important property of
inclusion is that it retains all properties of classical inheritance and can
be employed for reuse. Inheritance (IS-A) is revisited and considered
a particular case of inclusion (IS-IN), that is, to put an object in a
container means to inherit its properties.

Partial order instead of graph. Elements in COM are partially or-
dered where references represent greater elements and dimension types
of concepts represent greater concepts. Data modeling is then reduced
to ordering elements while other properties and mechanisms are derived
from this relation. In particular, to be characterized by some property
is equivalent to have another object as a greater element. Partial order
also emphasizes the set-oriented nature of COM because elements are
treated as sets of their lesser elements. Another important consequence
of having partial order is that it allows us to implement an alternative
approach to inference which is based on the data itself rather than on
inference rules.

Due to this generality, COM decreases the existing mismatches be-

282



Concept-Oriented Model: Extending Objects . . .

tween various kinds of models and methodologies:

Identity vs. entity and value vs. object. COM treats values and
objects as two sides of one element by uniting identity modeling
and entity modeling. In addition, COM provides an alternative
approach for unifying domain and relational modeling.

Data modeling vs. programming. COM is integrated with a novel
approach to programming, called concept-oriented programming
(COP) [25, 30, 32] so that programming and data modeling are
two branches of one methodology by decreasing the old and
deeply rooted incongruity between these two branches of com-
puter science [9, 8, 2]. In this context, COM can be defined as
COP plus data semantics (implemented via partial order).

Transactional vs. analytical. COM unites transactional and ana-
lytical approaches to data modeling by narrowing the gap be-
tween operational systems and data warehouse (OLTP-OLAP
impedance mismatch) by providing direct support for analytical
operations which is currently a highly actual problem [23].

Logical vs. conceptual. COM is an inherently semantic data model
which provides built-in mechanisms for reasoning about data by
retaining conventional mechanisms for data access. In addition,
COM essentially achieves the goals pursued by the nested relation
model [14] and the universal relation models [15] but does it on
the order-theoretic basis.

Instance-based vs. set-based. COM allows for both instance-level
and set-level data access and manipulations.

Using the notions of concepts, inclusion and partial order, COM
can describe a wide range of existing data modeling techniques and
patterns. In particular, this approach does not use low level join and
group-by operations. Taking into account its simplicity and generality,
COM seems rather perspective direction for further research and devel-
opment activities in the area of data modeling and object databases.
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Abstract

In the fully meshed network, where every node is connected
directly to every other node, network traffic is very high because
in the fully meshed network, number of communication links is
N×(N−1)

2 and communication cost is 2×N × (N −1), where N is
total number of nodes in the network. To minimize network traf-
fic, we propose an algorithm for generation of communication sets
that allows any two nodes to communicate by traversing at most
two nodes regardless of the network size by dividing the nodes in
the system into subgroups of size G where G ≥ 1, which are then

organized into quorum groups of size k1 =
(√

N
G approx.

)
in a

method similar to that used in Maekawa’s algorithm except that
now quorum groups are constructed out of subgroups instead of
nodes. The performance analysis of the proposed partitioning
algorithm shows that it significantly reduces network traffic as
well as total number of communication links required for a node
to communicate with other nodes in the system.

Keywords: Quorum; Coterie; Communication sets; Network
traffic

1 Introduction

Every node is connected directly to every other node in the completely
connected network, so that number of communication links is very high,
N×(N−1)

2 , where N is total number of nodes in the network. The num-
ber of hops used in a completely connected network is N × (N − 1)

c©2011 by Rupali Bhardwaj, V.S. Dixit, Anil Kr. Upadhyay
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because each node can reach every other node using one hop only.
In the proposed partitioning algorithm each node can communicate
with other nodes by either one or two hops regardless of the network
size by dividing the nodes in the system into subgroups of size G
where G ≥ 1, which are then organized into quorum groups of size

k1 =
(√

N
G approx.

)
in a method similar to that used in Maekawa’s

algorithm [1] except that now quorum groups are constructed out of
subgroups instead of nodes. The idea presented in this paper is that
the entire system is divided into number of subsets equal to the num-
ber of nodes. Each node in the system is assigned a subset of size
k, (k =

√
N approx.). After that,

(
N
G

)
subgroups are formed with

G subsets per subgroup. Now subgroups organized into
(

N
G

)
quorum

groups of size k1 =
(√

N
G approx.

)
in a method similar to that used

in Maekawa’s algorithm [1]. Now, each such Quorum group will be
associated with G subgroups. The intersection between every pair of
quorum groups is exactly one subgroup instead of a node. The per-
formance of proposed partitioning algorithm will be evaluated using
network traffic, communication links, communication cost and routing
table size as a criterion for evaluation. The major contributions of the
paper include: (i) a novel approach for generating communication sets
proposed by considering the concept of Quorums (ii) simulation results
show that proposed algorithm performed better than Hajj’s [2] scheme
with respect to reducing the network traffic and the total number of
communication links. The remainder of the paper is organized as fol-
lows: Section 2 features existing research work in the field of generation
of communication sets. Section 3 outlines the model on which our al-
gorithm is based. The proposed partitioning algorithm is presented in
section 4. Section 5 discusses about the performance of the proposed
algorithm. Finally, section 6 concludes the paper.
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2 Related Work

Maekawa’s algorithm [1] is a distributed algorithm and total number
of messages per mutual exclusion required 3

√
Nk messages:

√
Nk mes-

sages to convey a request,
√

Nk messages to obtain permissions, and√
Nk messages to release mutual exclusion. It is assumed that the nodes

communicate only by passing messages instead of sharing of memory.
Drawback of Maekawa’s algorithm is that there is no procedure given
for the construction of overlapped sets when k − 1 is power of a prime
number. Wassim EI-Hajj [2] presented a special network topology that
is unique in terms of nodes interconnection, communication sets are
designed by two techniques, when p+1 is the power of a prime number
and when p+1 is not the power of a prime number. A distributed rout-
ing protocol is proposed by them after constructing the initial topology
that allows any two sites to communicate with each other by travers-
ing at most two nodes regardless of the network size. If k is power
of a prime number then there exists a finite projective plane of order
k. If either k − 1 or k − 2 is divisible by 4 and k is not a sum of two
integral squares (k 6= a2 + b2), then finite projective plane of order k
does not exist. k × (k + 1) + 1 lines are there in a finite projective
plane of order k [3]. A method for creating a coterie with quorum size
k + 1, where k is a prime number is presented by K.T. Tseng, C.B.
Yang [4]. In this paper [5], grid based quorums are constructed using
paths that bear resemblance with billiard ball paths, through the re-
sulting quorums of size

√
2N as compared to 2

√
N of Maekawa’s grid

based method. Barbara [6] examined the relationship through pair wise
non null intersections between weighted voting and sets of nodes. S.
Rangarajan [7] proposed a distributed fault tolerant algorithm for the
replica control problem that can be parameterized to achieve the de-
sired balance between low message overhead and high data availability.
M. Neilsen [8] introduced a new class of protocols within the unifying
framework based on quorums which generalized all consensus proto-
cols which used m rounds of message exchange. Load of a particular
node is distributed over m identical nodes by partitioning the nodes
into mutually overlapping subsets so that, through querying only a few
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nodes, a node gets the partial system state information [9]. Advantage
is that it significantly reduced the total number of messages required
for a node to take scheduling decision.

3 The System Model

In our proposed algorithm, each node in the network allocates a com-
munication set satisfying the following constraints:
A1. Si

⋂
Sj 6=φ ∀i, j ∈ 1, 2 . . . N .

A2. Si, 1 ≤ i ≤ N always contains i.
A3. The size of |Si| is k for any i. That is,

|S1| = |S2| = |S3| = . . . . . . = k

A4. Ri is contained in k S′js ∀i, j ∈ 1, 2 . . . N .

Where set of subsets Si is called coterie, Ri is referred to as requesting
subset of Si. According to Maekawa algortihm [1], for a network with
N number of nodes, create N different sets of size k (k =

√
N approx.)

such that N is represented as N = k×(k−1)+1, where k−1 is a prime
number. If N cannot be represented in this form, then some dummy
sites have to be added for the construction to work.

Considering a system with 13 nodes, we see that the communication
sets of the nodes 3, 7, 8 & 12 are as follows:
S3 = {3, 7, 8, 12}, S7 = {2, 7, 10, 13},
S8 = {1, 8, 9, 10}, S12 = {4, 5, 10, 12}.

Rule 1 states that there is at least one common node between the
communication sets of any two nodes. Communication sets S3 and
S7 have node n2 in common as in Figure 1. Rule 2 states that each
node should belong to its own communication set, i.e. node n1 is
part of communication set S3. Rule 3 states that the size of each
communication set is to be equal to k, i.e. size of S3, S7, S8, S12 is 4
whenever N = 13. The fourth constraint states that each site should be
contained in k other sets. Whenever communication sets are generated,
each node can communicate with other nodes by either one or two hops
regardless of the network size. So in case of S3, node 3 will exchange its
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Figure 1. Network topology of size N = 13 nodes

state change messages only with node 7, 8 and 12. From these nodes
it can also acquire the state information of nodes numbered 1, 2, 4,
5, 7, 8, 9, 10, 12 and 13 and can update its system state table also.
So node 3 does not need to communicate explicitly with all the nodes
except missing nodes 6, 11. So that total number of messages is equal
to 2×(k−1)+2× number of missing nodes. Therefore, given a network
of size N , our task is to generate a communication set for each node
such that constraints A1 through A4 are satisfied.

4 The Proposed Partitioning Algorithm

Consider a system with N (N ≥ 2) nodes, entire system is divided into
number of subsets equal to the number of nodes. Each node in the
system is assigned a communication set of size k, (k =

√
N approx.)

according to algorithm 1 & 3. After that, we group these subsets into(
N
G

)
subgroups with G subsets per subgroup, where G ≥ 1. We then
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construct
(

N
G

)
quorum groups such that each quorum group is made

up of k1 =
(√

N
G approx.

)
subgroups; where each subgroup contains

G subsets according to algorithm 1&3, except that now the quorum
groups are constructed out of subgroups instead of nodes. Whenever
Quorums are generated, each node can communicate with other nodes
by either one or two hops regardless of the network size. Algorithm 2
calculates total number of missing nodes (worst case), through which
each quorum communicated explicitly, because each quorum contained
only partial system information.

4.1 Case 1: N = k(k − 1) + 1

Algorithm 1: Generating the communication sets where k−1 is a prime
number
Result: Generate k groups of (k − 1) non-intersecting sets.
1. begin
2. Data K, count=2
3. Result: Generate a matrix B [K] [K-1]
4. for i = 0 to K do
5. for j = 0 to K-1 do
6. B[i] [j] = count++
7. end loop
8. input c = 1
9. Result: Calculate all S[i] rows by performing operation on inter-
secting rows.
10. begin
11. for i = 0 to K do
12. S[c] [0] = 1
13. for j = 0 to K-1 do
14. S[c] [j+1] = B[i] [j]
15. end loop
16. c = B[i+1] [0]
17. end loop
18. end
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19. input c = 2
20. Result: Calculate all S[i] columns by performing operation on
intersecting column.
21. begin
22. for j = 0 to K-1 do
23. S[c] [0] = 2
24. for k = 0 to K-1 do
25. S1[c] [k+1] = B [k+1] [j]
26. end loop
27. c = B[1] [j+1]
28. end loop
29. end
30. Result: Perform the operations of diagonal matrix
31. begin
32. set c = 0, s = 0, t2 = 2, z = 2
33. for k =1 to K-1 do
34. set t3 = 0, n = 0, r = 0
35. while (r < k-1) do
36. if (t3 < z-1) then
37. set t1 = B [t2] [++t3]
38. else
39. set t1 = B [0] [k]
40. set S1[t1] [0] = B[0] [k]
41. set c = 1+ n, j =1+ n, m1=1
42. for i =1 to k-1 do
43. S1[t1][m1] = B[i] [j-1]
44. m1++
45. c+ = k + s
46. P = c % (k-1)
47. if (P==0) then
48. set j = z
49. else
50. set j = P
51. end for loop
52. n = n + 1, r = r + 1
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53. end while loop
54. end for loop
55. end
56. Result: Display the no. of S[i] matrix.
57. for i =1 to n do
58. for j = 0 to k do
59. print S1[i] [j]
60. end loop
61. end loop
62. end

Algorithm 2: Find the all missing nodes
1. begin
2. input l, k, c
3. for t1 = 1 to N do
4. initialize j = 0
5. for m1 = 0 to k do
6. l = S [t1] [m]
7. k = 0
8. while k <= K do
9. c = 0
10. for a = 0 to 1000 do
11. if SS[a]==S1[l] [K] then
12. c =1
13. break
14. end if
15. end for loop
16. if c = 0 then
17. SS[j] = S1 [l] [k]
18. j++
19. end if
20. end while loop
21. end step 4 for loop
22. for i = 0 to 1000 do
23. if S[i] != 0 then
24. print SS[i]
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25. else
26. break
27. end if
28. end for loop
29. print t1
30. print N-i
31. end for loop of Step 2
32. end

4.2 Case 2: N 6= k(k − 1) + 1

When N 6= k × (k − 1) + 1, we need to find the value of a number
M such that M = k × (k − 1) + 1, where M > N . First, we create a
degenerate set of Si’s in a similar way as in algorithm 1 and eliminate
M −N Si’s from this coterie as well as these nodes must be replaced
from each quorum such that M1 replaced by N1, M2 replaced by N2

etc.

Algorithm 3: Calculation of D and replacement of D sites
1. begin
2. k =

√
N and let M = k (k-1) + 1

3. if M < N then
4. k = k + 1
5. D = M – N
6. Replace these D sites, D1, D2...... from coterie as well as from quo-
rums by N1, N2 . . . in such a way that each quorum size should be
k in such a way that Ri is contained in more than k Sj ’s, for all
i, j ∈ 1, 2 . . . N .
7. If there is a duplication of node in Si then insert a new node (starting
from the first node) in such a way that Ri is contained in k Sj ’s, for
all i, j ∈ 1, 2 . . . N

8. end

An example of such grouping strategy is discussed here. We con-
sider a system with 28 nodes; Figure 2 groups nodes with

√
N nodes

per subset. Figure 3 shows subgroups that contain four subsets (G = 4)

296



A
√

N
G Method for Generating Communication Sets

per subgroup and there are seven quorum groups
(

N
G

)
= 7 as shown in

Figure 4. Each quorum group consists of k1 = 3, k1 =
(√

N
G approx.

)

subgroups. The intersection between every pair of quorum groups is
exactly one subgroup. Now construct communication sets for N = 28
by algorithm 1 and 3.

S1 = {1, 2, 3, 4, 5, 6}
S2 = {2, 7, 12, 17, 22, 27}
S3 = {3, 11, 12, 18, 24, 27}
S4 = {4, 8, 15, 17, 24, 28}
S5 = {5, 8, 16, 19, 22, 27}
S6 = {6, 11, 15, 19, 23, 27}
S7 = {1, 7, 8, 9, 10, 11}
S8 = {2, 8, 13, 18, 23, 28}
S9 = {2, 9, 14, 19, 24, 26}
S10 = {2, 10, 15, 20, 25, 27}
S11 = {2, 11, 16, 21, 26, 28}
S12 = {1, 12, 13, 14, 15, 16}
S13 = {3, 7, 13, 19, 25, 28}
S14 = {3, 8, 14, 20, 26, 27}
S15 = {3, 9, 15, 21, 22, 28}
S16 = {3, 10, 16, 17, 23, 26}
S17 = {1, 17, 18, 19, 20, 21}
S18 = {4, 9, 16, 18, 25, 27}
S19 = {4, 10, 12, 19, 26, 28}
S20 = {4, 11, 13, 20, 22, 26}
S21 = {4, 7, 14, 21, 23, 27}
S22 = {1, 22, 23, 24, 25, 26}
S23 = {5, 9, 12, 20, 23, 28}
S24 = {5, 10, 13, 21, 24, 27}
S25 = {5, 11, 14, 17, 25, 28}
S26 = {5, 7, 15, 18, 26, 6}
S27 = {1, 27, 28, 26, 6, 8}
S28 = {6, 7, 16, 20, 24, 28}

Figure 2. Grouping nodes with
√

N nodes per subset
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G1 = (S1, S2, S3, S4)
G2 = (S5, S6, S7, S8)
G3 = (S9, S10, S11, S12)
G4 = (S13, S14, S15, S16)
G5 = (S17, S18, S19, S20)
G6 = (S21, S22, S23, S24)
G7 = (S25, S26, S27, S28)

Figure 3. Grouping subsets with G subsets per subgroup
Q1 = {G1, G2, G3}
Q4 = {G1, G4, G5}
Q6 = {G1, G6, G7}
Q2 = {G2, G4, G6}
Q5 = {G2, G5, G7}
Q7 = {G3, G4, G7}
Q3 = {G3, G5, G6}

Figure 4. Grouping subgroups with
√

N
G subgroups per Quorum

5 Experimental Study

Performance of the proposed partitioning algorithm is evaluated using
network traffic, communication links, communication cost and routing
table size as a criterion for evaluation. According to simulation study,
the proposed algorithm performs better than Hajj’s [2] algorithm with
respect to reducing the network traffic and the number of communica-
tion links. First, consider Hajjs [2] algorithm in some detail which is
based on Maekawa’s [1] algorithm.

5.1 Hajj’s Algorithm

In Hajj’s Algorithm [2], it is shown that how N sites in an ad-hoc net-
work can be divided into communication sets with

√
N nodes per com-

munication set such that constraints A1 through A4 are satisfied. Com-
munication between two nodes takes place either directly or through
a third node, which will exist to connect them. An example is shown
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in Figure 5 where there are 7 nodes and 7 communication sets with 3
nodes per communication set.
S1 = {1, 2, 3}
S4 = {1, 4, 5}
S6 = {1, 6, 7}
S2 = {2, 4, 6}
S5 = {2, 5, 7}
S7 = {3, 4, 7}
S3 = {3, 5, 6}

Figure 5. Grouping nodes with
√

N nodes per communication set

So in case of S3, node 3 will exchange its state change messages only
with node 5 and 6. From these nodes it can also acquire the state
information of nodes numbered 1, 2, 5, 6 and 7 and can update its
system state table also.

5.2 Simulation Result

5.2.1 Routing Table Size

Usually, each node stored a routing table of size (N × N) for making
routing decisions. Now no routing table needs to be stored on any one
of node, route is computed on demand.

5.2.2 Communication Links

The number of links in a completely connected network is N×(N−1)
2 ;

number of links required by our algorithm is N ×
(√

NG − 1
)

.

Gain =


 N − 1

2×
(√

NG− 1
)


 (1)

5.2.3 Communication Cost

The number of hops used in a completely connected network is N ×
(N−1) because each node can reach every other node using one hop. In
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the proposed algorithm each node can communicate with other nodes
by either 1 or 2 hops. So, total number of hops is = N×(no. of 1 hop

+ 2 ×(no. of 2 hops)) = 2×N ×
(√

NG − 1
)2

.

Loss =


 N − 1

2×
(√

NG − 1
)2


 (2)

Figure 6. Gain Figure 7. Loss

5.2.4 Network Traffic

Quorum contained only partial system information, so that some node
information is missed through which each quorum communicated ex-
plicitly. If quorums explicitly communicate with these nodes, then the
required number of messages will be 2 × {[(k − 1) × G]} + 2× num-
ber of missing nodes according to the proposed partitioning algorithm
where, as in traditional systems, the number of required messages is
[2× (N − 1)] and in Hajj’s algorithm [2], the number of required mes-
sages is [2× (k − 1)+ number of missing nodes ×2].
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5.2.5 Analysis

It can be clearly seen from Figure 9 that network traffic is less in the
proposed algorithm as compared to Hajj’s algorithm [2], as N increases,
traffic increases almost in a linear fashion. If communication sets are
generated using the proposed algorithm, then the number of missing
nodes is less as compared to Hajj’s algorithm [2] (Figure 8). But in
terms of gain (Figure 6) and loss (Figure 7), Hajji’s algorithm [2] per-
forms better than the proposed algorithm. As N increases, the gain
increases almost in a linear fashion, while the loss is bounded by a
constant in case of Hajj’s [2] algorithm.

Figure 8. Missing Nodes Information Figure 9. Network Traffic

6 Future work and conclusion

It is shown that from the perspective of the network traffic and par-
tial system information, the proposed algorithm provides a significant
performance over the traditional one. We illustrated by simulation
that this protocol reduces both network traffic and number of messages
communicated explicitly with missing nodes. Now, we will propose an
algorithm for load balancing problem in P2P system using concept of
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this paper.
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Abstract

Ad hoc network is a set of nodes that are able to move and
can be connected in an arbitrary manner. Each node acts as a
router and communicates using a multi-hop wireless links. Nodes
within ad hoc networks need efficient dynamic routing protocols
to facilitate communication. An Efficient routing protocol can
provide significant benefits to mobile ad hoc networks, in terms of
both performance and reliability. Several routing protocols exist
allowing and facilitating communication between mobile nodes.
One of the promising routing protocols is DSR (Dynamic Source
Routing). This protocol presents some problems. The major
problem in DSR is that the route cache contains some incon-
sistence routing information; this is due to node mobility. This
problem generates longer delays for data packets. In order to re-
duce the delays we propose a technique based on cleaning route
caches for nodes within an active route. Our approach has been
implemented and tested in the well known network simulator
GLOMOSIM and the simulation results show that protocol per-
formance have been enhanced.

Keywords: Ad Hoc Networks, Mobile Networking, Minimiz-
ing Delay, Stale routes problem, DSR.

1 Introduction

Each node in a mobile ad hoc network (MANET) is a router. Com-
munication between nodes requires a multihop wireless path from a
source to a destination, so nodes must cooperate in routing operation.

c©2011 by S. Boukli Hacene, A. Lehireche
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All nodes are mobile and can be connected dynamically in an arbi-
trary manner to form a network [1]. A challenge in the design of ad
hoc networks is the development of dynamic routing protocols that can
efficiently find routes between two nodes. The key task of routing pro-
tocols is to deliver packets from the source node to the given destination
[2]. The existing routing protocols are, traditionally, divided into two
classes, depending on when a node acquires a route to a destination.
Reactive protocols invoke a route discovery procedure on demand only.
Thus, when a route is needed, some sort of flooding-based global search
procedure is employed. One of the promising reactive routing protocols
is DSR. In general, routing protocol presents some problems, and one
of the major problems in DSR is longer data packets delays caused by
the search process in the cache. In this paper, we propose a technique
to solve this problem.

The remainder of the paper is organized as follows. First, we give
an overview on DSR and its operations. This is followed by focusing
on stale routes problem in section 3. In section 4, a presentation of
different works that tries to solve this problem is given. Next, we
concentrate on the proposed technique to solve the problem of delay
caused by stale routes in cache in section 5. In section 6, we present
the performance evolution of the proposed approaches, and finally, we
conclude in section 7.

2 Dynamic Source Routing Protocol (DSR)

Dynamic Source Routing [3, 4] is based on source routing, where the
source node specifies the whole path to destination node in the packet
header. When a source node needs to communicate with a destination
node, it first searches in its route cache for a route to the destination,
if a route is found, the source node uses it, otherwise the source node
initiates a route discovery mechanism to discover a route. In a route
discovery mechanism, the source node floods a route request message
(RREQ) to neighboring nodes. The message contains the source ad-
dress, the destination address, the request id, and a list containing the
complete path to destination. When a node receives this request, it
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proceeds as following:

• If the node has seen this same request before, it ignored the re-
quest.

• If the receiving node is the destination itself or a node having a
route to the destination in its cache, it returns a route reply mes-
sage (RREP), which contains: the source address, the destination
address, and the route record in the route request message. The
route reply message is sent back to the source node by following
the same route record in the route request message in reverse
order.

• Otherwise, it appends its own address to the route record, and
rebroadcast the route request message to its neighboring nodes.

When the source node receives the route reply message, it starts
sending data packets to the destination. When a route failure happens,
the node upstream the broken link sends back to the effective source a
route error message (RERR). Nodes receiving RERR message remove
broken link from its routes cache. The source node initiates a route
discovery if it receives RERR message, it still needs a route to the
destination and no alternate route in its cache.

3 The Stale Routes Problem in the DSR Pro-
tocol

The DSR has the advantage of learning routes by scanning for infor-
mation in packets that are received. A route from A to C through B
means that A learns the route to C, but also that it will learn the route
to B. The source route will also mean that B learns the route to A and
C and that C learns the route to A and B. This form of active learning
is very good and reduces overhead in the network, by this way each
node in DSR can find alternative routes when link failure happens.
This property will have a bad repercussion on route cache when node
mobility is high. The route caches will contain in this case many stale
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routes to destinations that may be used to reach a destination and this
generates longer delay for data packets. Several previous studies deal
with stale routes problem [5, 6].

4 Related Work

In this section we will present some ideas to enhance the DSR routing
protocol.

Chen and Hou in [5] used a neighbor link-state information ex-
change mechanism. Once a connection has been established, the neigh-
bor link-state information is exchanged among nodes along the route
from the source to the destination. As the information of the neigh-
bor lists is piggybacked in data packets, the nodes on the source route
are able to learn the partial topology around the neighborhood of the
connection. The simulation results show that with limited overhead
incurred in neighbor list dissemination, the proposed protocol outper-
forms DSR with either path or link caches in terms of packet delivery
ratio and route discovery overhead.

In [7], He et al propose an active packet technique to improve DSR.
The mean idea is allowing a packet to visit each node twice. This packet
is named “Active packet”. The objective of the first visit is to obtain
topology information of the network; and the objective of the second
visit is to update route caches according to the obtained information.
In the header active packet header contains a marker field to indicate
if the packet is in the first or the second visit. The payload of the
active packet is a connection matrix for the network topology. The
active packet is generated periodically. Simulation results show that
the method reduced the miss rates by up to 60% and routing packet
numbers by up to 47%.

An enhancement to DSR by using a link breakage prediction algo-
rithm was proposed in [8]. A mobile node uses signal power strength
from the received packets to predict the link breakage time, and sends
a warning to the source node only if the link is soon-to-be-broken. The
source node can perform a pro-active route rebuild to avoid disconnec-
tion. Simulation results show that the method reduced the dropped
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packets (by at least 20%). The tradeoff is an increase in the number of
control messages by at most 33.5%.

5 The Proposed Technique

In order to minimize the delay which is experienced by data packets and
reduce stale routes in caches, we add an expiration time for each route
inserted in the cache. This idea is inspired from route management in
the routing table of AODV [9, 10]. When learning new routes, a node
must set an expiration time for each route inserted in the cache, and
when this time expires, the route is removed from the route cache of
the node. Each time a route is used the expiration time is set. The max
value is fixed to 10 Seconds (represent approximately 1% of simulation
time) empirically.

6 Performance Evaluation
& Simulation Results

In order to evaluate the effectiveness of the proposed technique de-
scribed above, we add it to the basic version 3 of DSR available in the
GLOMOSIM simulator, and we compare it with the original version
using performance metrics.

The simulation environment and the performance metrics used will
be described in the next paragraph, the simulation results presentation
and discussion is done later.

6.1 Simulation Environment

We have used the implementation of DSR version 3 included in the
well known GlomoSim simulator. Our results are based on the simu-
lation of 50 wireless nodes forming an ad hoc network moving about
in a rectangular area of 1500 meters by 300 meters for 900 seconds of
simulated time. The source-destination pairs are spread randomly over
the simulation area, sending four data packets per second following a
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CBR (constant bit rate) fashion. For our simulation 10-20-30 and 40
source-destination pairs are chosen. Traffic sessions are established ran-
domly and stay active until the simulation ends. A random waypoint
mobility model [3] is used. The movement scenario we used for each
simulation is characterized by a pause time. Each node begins the sim-
ulation by selecting a random destination in the simulation area and
moving to that destination at a speed distributed uniformly between 0
and 20 meters per second. It then remains stationary for pause time
seconds. This scenario is repeated for the duration of the simulation.
We carry out simulations with movement patterns generated for 10 dif-
ferent pause times starting by 0s varying by a step of 100s until 900s
(the length of the simulation) is reached, which corresponds to lim-
ited motion. The physical radio characteristics of each mobile node’s
network interface, such as the antenna gain, transmission power, and
receiver sensitivity, were chosen to approximate the Lucent WaveLAN
direct sequence spread spectrum radio[11]. The performance metrics
[12] used to evaluate performance are:

• Average end-to-end delay of data packets: This includes
all possible delays caused by buffering during route discovery,
queuing at the interface queue, retransmission delays at the MAC
layer, and propagation and transfer times.

• Communication overhead is the total number of control pack-
ets, and including route request, route reply, and route error pack-
ets generated for each delivered data packet.

• Number of broken links is the number of invalid routes for
sending data across it; the proposed technique reduces the use of
the broken links.

6.2 Simulation Results and Discussions

We report the results of the simulation experiments for the original
DSR protocol and for Optimized DSR (DSR Opt). In all figures below,
Pause time varied between 0 seconds and 900 seconds. When pause
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time is 0 seconds this denotes high mobility, while 900 seconds pause
time means no mobility. Each scenario is repeated five times and the
average values of the results are chosen.

6.2.1 Broken Links

In high mobility, the number of broken links is high (Figures 1, 2, 3
and 4). This is due to constant changement in the network topology
and the incapability to find a valid alternative link. The number of
sources also affects the number of broken links. When the number of
sources increases, the number of broken links also increases because
the need of more routes to destinations and the failure of one link can
induce a breach of several communications. It can be noticed from
those figures that DSR Opt results in substantially fewer link breaks,
especially when pause times are small (high mobility). This is due to
the expiration time mechanism added to DSR and consequently, the
probability of using a stale route is minimized (The protocol tends to
use fresher valid routes).

6.2.2 Average End-To-End Delay

In Figures 5, 6, 7 and 8 the results obtained for the end-to-end delay
metric are presented. We observe that the end-to-end delay increases
significantly when the number of sources increases, especially in high
mobility because queues of nodes are almost full and nodes try to sal-
vage many data packets. Minimizing stale routes contribute directly to
minimizing end to end delay for data packets. When a broken link hap-
pens in DSR Opt, data packets experience a lower delay than in DSR
because of the reduced number of cached route. The results show that
DSR Opt outperforms DSR significantly when the number of sources is
low and motion of nodes is high. This enhancement of DSR is suitable
for Multimedia flows which cannot tolerate higher delays.
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Figure 1. Number of Broken Links for 10 sources

6.2.3 Communication Overhead

Figures 9, 10, 11 and 12 show how mobility and number of sources
affect the communication overhead. We notice that communication
overhead is high when node mobility is high; this is due to the dynamic
and constant change in network topology. It is also observed that the
overhead is high when the number of sources is high. This results
from the fact that many sources try to discover routes to destinations,
which increase the number of control packets and so the communication
overhead. The results show that DSR Opt results in substantially less
overhead when the mobility is moderate (100s to 400s); this has a good
impact on energy consumption because the number of control packets
generated is low. Sometimes, DSR Opt generates higher overhead than
DSR, this can be explained by the fact that when using the expiration
time technique, some valid routes may be removed from the cache,
which generates a new route discovery.
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Figure 2. Number of Broken Links for 20 sources

Figure 3. Number of Broken Links for 30 sources
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Figure 4. Number of Broken Links for 40 sources

7 Conclusion

In this paper, we have improved the promising DSR routing protocol
for ad hoc networks. We have equipped DSR with expiration time
technique for routes in route cache. This technique has been inspired
from route management in the routing table of AODV routing proto-
col, in order to avoid the use of stale route in routing. The performance
of the proposed technique was evaluated and compared with DSR us-
ing detailed simulations. Several common performance metrics were
considered. The simulation results show that the proposed algorithm
performs well; it can overall generate lower communication overhead,
fewer broken links and lower Average end-to-end delay.
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Figure 5. Average end to end delay for 10 sources

Figure 6. Average end to end delay for 20 sources
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Figure 7. Average end to end delay for 30 sources

Figure 8. Average end to end delay for 40 sources
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Figure 9. Communication overhead for 10 sources
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Octagon Quadrangle Systems nesting

4-kite-designs having equi-indices

Luigia Berardi, Mario Gionfriddo, Rosaria Rota

Abstract

An octagon quadrangle is the graph consisting of an 8-cycle
(x1, ..., x8) with two additional chords: the edges {x1, x4} and
{x5, x8}. An octagon quadrangle system of order v and index
λ [OQS] is a pair (X,B), where X is a finite set of v vertices
and B is a collection of edge disjoint octagon quadrangles (called
blocks) which partition the edge set of λKv defined on X. A 4-kite
is the graph having five vertices x1, x2, x3, x4, y and consisting of
an 4-cycle (x1, x2, ..., x4) and an additional edge {x1, y}. A 4-kite
design of order n and index µ is a pair K = (Y,H), where Y is a
finite set of n vertices and H is a collection of edge disjoint 4-kite
which partition the edge set of µKn defined on Y. An Octagon
Kite System [OKS] of order v and indices (λ, µ) is an OQS(v) of
index λ in which it is possible to divide every block in two 4-kites
so that an 4-kite design of order v and index µ is defined.

In this paper we determine the spectrum for OKS(v) nesting
4-kite-designs of equi-indices (2,3).

—————–
Lavoro eseguito nell’ambito del progetto PRIN 2008: Disegni Combi-
natorici, Grafi e loro applicazioni.

1 Introduction

Let λ ·Kv be the complete multigraph defined on a vertex set X.
Let G be a subgraph of λ · Kv. A G-decomposition of λ · Kv is a

c©2011 by L. Berardi, M. Gionfriddo, R. Rota
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pair Σ = (X,B), where B is a partition of the edge set of λ ·Kv into
subsets all of which yield subgraphs that are isomorphic to G. A G-
decomposition is also called a G-design of order v and index λ; the
classes of the partition B are said to be the blocks of Σ. Thus, B is a
collection of graphs all isomorphic to G such that every pair of distinct
elements of X is contained in λ blocks of Σ.

A 4-kite is a graph G = C4 + e (Fig.1), formed by a cycle C4 =
(x, y1, y2, y3), where the vertices are written in cyclic order, with an
additional edge {x, z}. In what follows, we will denote such a graph
by [(y1, y2, y3), (x), z]. We will say that x is the centre of the kite, z
the terminal point, y1, y3 the lateral points and y2 the median point.
A (C4 + e)-design will also be called a 4-kite-design. It is known that a
4-kite-design of order v exists if and only if: v ≡ 0 or 1 mod 5, v ≥ 10.

Figure 1. 4-kite

A λ-fold m-cycle system of order v is a pair Σ = (X, C), where X is
a finite set of v elements, called vertices, and C is a collection of edge
disjoint m-cycles which partitions the edge set of λKv, (the complete
multigraph defined on X, where every pair of vertices is joined by λ
edges). In this case, |C| = λv(v− 1)/2m. The integer number λ is also
called the index of the system. When λ = 1, we will simply say that
Σ is an m-cycle system. The spectrum for λ-fold m-cycle systems for
λ ≥ 2 is still an open problem.

The graph given in Fig.2 is called an octagon quadrangle and will
be denoted by [(x1), x2, x3, (x4), (x5), x6, x7, (x8)]. An octagon quad-
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rangle system [OQS] is a G-design, where G is an octagon quadrangle.
OQS(v)s have been studied by the authors in [1][2][3][5].

x2              x3

x1                                           x4

x8                                           x5

x7              x6

Figure 2. Octagon Quadrangle

Observe that, if we consider an octagon quadrangle Q = [(x1), x2, x3,
(x4), (x5), x6, x7, (x8)], it is possible to partition it into the two 4-kites
K1(Q) = [(x1, x2, x3), (x4), x5], K2(Q) = [(x5, x6, x7), (x8), x1].

In this paper we study OQSs which can be partitioned into two
(C4+e)-designs (see Fig.3).

2 Definitions

Let Σ = (X,B) be an OQS of order v and index λ. We say that Σ is
4-kite nesting, if for every octagon quadrangle Q ∈ B there exists at
least a 4-kite K(Q) ∈ {K1(Q),K2(Q)} such that the collection K of all
these 4-kites K(Q) form a 4-kite-design of order µ. This kite system
is said to be nested in Σ. We will call it an octagon 4-kite system of
order v and indices (λ, µ), briefly also OKS or OKSλ,µ, OKSλ,µ(v).

If Ω is the family of all the 4-kites {K1(Q),K2(Q)} contained in
the octagon quadrangles Q ∈ B, we observe that also the family Kc =
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Figure 3. Decomposition of an OQ into two 4-kites

= Ω−K forms a 4-kite-design of index µ′ = λ−µ. If, for every octagon
quadrangle Q ∈ B, both families of 4-kites Ω1 = {K1(Q) : Q ∈ B},
Ω2 = {K2(Q) : Q ∈ B} form a 4-kite design of index µ, we will say
that the OQS is an octagon bi-kite system.

3 The new concept of G-Designs with equi-
indices

In this section we give a new concept, which considers the possibility
for a G-design to have more indices. We consider the case of two indices
and order v = 4h+1, because these will be considered in what follows,
but the definition can be extended for the case with k indices, k ≥ 2,
and order every admissible v.

Definition of G-design with two equi-indices

Let G be a graph and let v = 4h + 1 an integer.
A G-design of equi-indices λ, µ is a pair Σ = (X,B) where X = Zv and
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B is a collection of graphs, all isomorphic to G, called blocks and defined
in a subset of Zv, such that for every pair of distinct element x, y ∈ Zv:

1) if the distance (difference) between x, y is equal to 1,2,...,h, then
the pair x, y is contained in exactly λ blocks of Σ;

2) if the distance (difference) between x, y is equal to h+1,h+2,...,2h,
then the pair x, y is contained in exactly µ blocks of Σ.

This definition generalizes the well known concept of G-design and
it can be done in many different ways and conditions. For them we
keep the usual terminology.

Example 1

Let v = 13. In Z13 the set of all the possible differences is
∆ = {1, 2, 3, 4, 5, 6}. Partition ∆ into the following two classes:
A = {1, 2, 3}, B = {4, 5, 6}. It is possible to define a K3-design (Steiner
Triple System) of order v = 13 and equi-indices (λ, µ)=(1,2), as follows:

∀{x, y} ⊆ Z13, x 6= y, |x− y| = 1, 2, 3 =⇒ λ = 1,

∀{x, y} ⊆ Z13, x 6= y, |x− y| = 4, 5, 6 =⇒ µ = 2,

where λ = 1 and µ = 2 mean respectively that the pair x, y is contained
in exactly one or two blocks of the system.

The blocks

{i, i + 1, i + 5}, {i, i + 2, i + 7}, {i, i + 3, i + 7},
for every i ∈ Z13,

define such a system.
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Example 2

Let v = 9. In Z9 the set of all the possible differences is ∆ =
{1, 2, 3, 4}. Partition ∆ into the following two classes: A = {1, 2},
B = {3, 4}. It is possible to define a (K4−e)-design of order v = 9 and
equi-indices (λ, µ)=(3,2), as follows:

∀{x, y} ⊆ Z9, x 6= y, |x− y| = 1, 2 =⇒ λ = 3,

∀{x, y} ⊆ Z13, x 6= y, |x− y| = 3, 4 =⇒ µ = 2,

where λ = 3 and µ = 2 mean respectively that the pair x, y is contained
in exactly three or two blocks of the system.
If we indicate by [x, y, (z, t)] a block of a (K4 − e)-design, where (z, t)
are the only two vertices non adjacent in (K4 − e), then the blocks

{i, i + 2, (i + 1, i + 4)}, {i, i + 4, (i + 1, i + 6)},
for every i ∈ Z9,

define such a system.

4 Strongly Balanced 4-kite-Designs

It is known that a G-design Σ is said to be balanced if the degree of
each vertex x ∈ X is a constant: in other words, the number of blocks
of Σ containing x is a constant.

In [4] the authors have introduced the following concept.
Let G be a graph and let A1, A2, ..., Ah be the orbits of the automor-
phism group of G on its vertex-set. Let Σ = (X,B) be a G-design.

We define the degree dAi(x) of a vertex x ∈ X as the number of
blocks of Σ containing x as an element of Ai.

We say that:
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Σ = (X,B) is a strongly balanced G-design if, for every i =
1, 2, ..., h, there exists a constant Ci such that

dAi(x) = Ci,

for every x ∈ X.

It follows that:

Theorem 4.1. A strongly balanced G-design is a balanced G-design.

Proof Clearly, if Σ = (X,B) is a balanced G-design, then for each
vertex x ∈ X the relation d(x) =

∑h
i=1 dAi(x) holds. Hence, there

exists k ∈ N such that d(x) = k, for every x ∈ X. 2

We say that a G-design is simply balanced if it is balanced, but not
strongly balanced.

Theorem 4.2. If Σ=(X,B) in a balanced OQS of order v and index
λ, then Σ is strongly balanced.

Proof If G is an octagon quadrangle [(x1), x2, x3, (x4), (x5), x6, x7, (x8)],
the automorphism group of its vertices has the two orbits A1 =
{x1, x4, x5, x8}, A2 = {x2, x3, x6, x7}. For every vertex x ∈ X, de-
note by Cx the number of blocks of Σ containing x as a central vertex,
i.e. in a position of degree three, and by Mx the number of blocks of Σ
containing x as a median vertex, i.e. in a position of degree two. Since
Σ is balanced, it follows that:

Cx + Mx = d(x) =
8 · |B|

v
= 4 · λ · (v − 1);

4 · Cx =
8 · |B|

v
= 4 · λ · (v − 1).

Hence:
Cx = Mx = 2 · λ · (v − 1),
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and the statement is so proved. 2

If Ω is a balanced 4-kite-design, it is possible that Ω is not strongly
balanced. In Fig.4 there is a simply balanced 4-kite- design of order 11.
We can see that all the vertices x have degree d(x) = 5, but the vertex 2
has median-degree equal to three, while the vertex 3 has median-degree
equal to zero.

2                0     10      2                1       9      7               2       8       

9                3       7      1                4       6      2               5       4              

5               6       0     10               7       2       4 8       1           

7              9       3              8              10      5  

3                                 4                             5

6                                 7                             6

8                                 8                             9

10                                       3 

1                                 10                           9                  

5                                 3                             0    

1                                6                              0 

0                                        4

Figure 4. Simply balanced 4-kite-design of order 11
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5 Necessary existence conditions

In this section we prove some necessary conditions for the existence
of 4-kite-designs.

Theorem 5.1. Let Ω = (X,B) be an OKSλ,µ(v). Then

i) λ = 2 · µ;

ii) (λ, µ)=(2,1) or (4,2) or (6,3) or (8,4) implies v ≡ 0,1 mod 5, v ≥ 8;

iii) (λ, µ)=(10,5) implies v ≡ 0,1 mod 2, v ≥ 8.

Proof Let Ω = (X,B) be and let Σ = (X,K) the 4-kite system of
index µ, nested in it. It follows that:

|B| = |K|,

|B| = v(v − 1) · λ/20,

|K| = v(v − 1) · µ/10.

Hence: i) λ = 2 · µ. For ii) and iii), it suffices to consider that:

|K| = v(v − 1) · µ/10. 2

Theorem 5.2. Let Σ = (Zv,B) be a 4-kite-design of equi-indices
(λ, µ), with v odd. Then

i) |B|=(λ + µ) ·v · (v − 1)/20 ∈ N ;

ii) (λ, µ)=(2, 3) implies v ≡ 1 mod 4, v ≥ 5.
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Proof i) Let Σ = (Zv,B) be a 4-kite-design of equi-indices (λ, µ), with
v odd. It follows:

|B| = (
λ

2
·
(

v

2

)
+

µ

2
·
(

v

2

)
)/5 =

λ + µ

10
·
(

v

2

)
,

which must be a positive integer. ii) Directly from i). 2

The ii) of Theorem 5.2 will be used in the next section.

6 Main Existence Theorems

In this section we prove the conclusive Theorems of this paper. In
what follows, if B = [(a), b, c, (d), (α), β, γ, (δ)] in a block of a system
Σ defined in Zv, then the translates of B are all the blocks of type
Bj = [(a + j), b + j, c + j, (d + j), (α + j), β + j, γ + j, (δ + j)], for every
j ∈ Zv. B is called a base block of Σ.

Theorem 6.1. There exists an OKS of order v and equi-indices (2, 3),
with v odd, if and only if :

v ≡ 1 mod 4, v ≥ 9.

Proof ⇒ Let Σ = (Zv,B) be an OQS of order v and equi-indices (2, 3),
with v odd. Since every block contains eight vertices, from Theorem
5.2.ii), it follows

v ≡ 1 mod 4, v ≥ 9.

⇐ Let v = 4h + 1, h ∈ N , h ≥ 2.
Consider the following octagon quadrangles:

B1 = [(0), h, 3h + 1, (1), (2h + 1), 3h, h + 1, (2)],

B2 = [(0), 1, 3h + 1, (2), (2h + 1), 3h− 1, h + 1, (3)],
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B3 = [(0), 2, 3h + 1, (3), (2h + 1), 3h− 2, h + 1, (4)],

..............

Bi = [(0), i− 1, 3h + 1, (i), (2h + 1), 3h− (i− 1), h + 1, (i + 1)],

..............

Bh−1 = [(0), h− 2, 3h + 1, (h− 1), (2h + 1), 3h− (h− 2), h + 1, (h)],

Bh = [(0), h− 1, 3h + 1, (h), (2h + 1), h + 1, 3h + 2, (1)].

Consider the system Σ = (X,B), defined in X = Zv, having
B1, ..., Bi, ..., Bh as base blocks. This means that B1, B2, ..., Bi, ..., Bh

belong to B and also all the translates.
It is possible to verify that Σ is an OQS of order v = 4h +

1 and index λ = 5. Further, if we divide every block Q =
[(x1), x2, x3, (x4), (x5), x6, x7, (x8)], into the two 4-kites

K1(Q) = [(x1, x2, x3), (x4), x5],

K2(Q) = [(x5, x6, x7), (x8), x1],

we can verify that the collection of all the upper 4-kites form a 4-
kite-design Σ1 = (Zv,B1) of equi-indices (λ = 2, µ = 3), while the
collection of all the lower 4-kites form a 4-kite-design Σ2 = (Zv,B2) of
equi-indices (λ = 3, µ = 2).

Observe that:
i) in Σ1 all the pairs x, y ∈ Zv associated with the index λ = 2

have difference |x − y| belonging to A = {1, 2, ..., h}, while the pairs
associated with µ = 3 have difference belonging to B = {h + 1, h +
2, ..., 2h};

ii) in Σ2 all the pairs x, y ∈ Zv associated with the index λ = 3
have difference |x− y| belonging to A, while the pairs associated with
µ = 2 have difference belonging to B.
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This proves that Σ is an OKS of order v = 4h + 1, h ≥ 2, where
the two 4-kite-designs nested in it have equi-indices (2, 3) and (3, 2)
respectively. 2

Theorem 6.1 permits to prove the following Theorems:

Theorem 6.2. There exists a 4-kite-design of order v and equi-indices
(2, 3), with v odd, if and only if :

v ≡ 1 mod 4, v ≥ 5.

Proof The statement follows directly from Theorem 6.1 and consid-
ering that the design Σ5, defined in Z5 and having for blocks all the
translates of the base 4-kite:

[(2, 1, 3), (0), 4],

is a 4-kite-design of order 5 and equi-indices (2,3). 2

Theorem 6.3. For every v ≡ 1 mod 4, v ≥ 5, there exists a strongly
balanced 4-kite-design of order v.

Proof See Theorems 6.1 and 6.2. 2

References

[1] L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle sys-
tems, Discrete Mathematics, 310 (2010), 1979–1985.

[2] L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle sys-
tems with an upper C4-system and a large spectrum, Computer
Science Journal of Moldova (Discrete Mathematics), 54 (2010),
303–318.

[3] L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle sys-
tems with upper C4-systems, Journal of Statistical Planning and
Inference, 141 (2011), 2249–2255.

331



Luigia Berardi, Mario Gionfriddo, Rosaria Rota

[4] L.Berardi, M.Gionfriddo, R.Rota, Balanced and strongly balanced
Pk-designs, Discrete Mathematics, to appear.

[5] L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle sys-
tems - II, Discrete Mathematics, to appear.

[6] L.Gionfriddo, Two constructions for perfect triple systems, Bull.
of ICA, 48 (2006), 73–81.

[7] L.Gionfriddo, Hexagon quadrangle systems, Discrete Maths. 309
(2008), 231–241.

[8] L.Gionfriddo, Hexagon biquadrangle systems, Australasian J. of
Combinatorics 36 (2007), 167–176.

[9] L.Gionfriddo, Hexagon kite systems, Discrete Mathematics, 309
(2009), 505–512.

[10] L.Gionfriddo, Perfect dodecagon quadrangle systems, Discrete
Mathematics, to appear.

[11] S. Kucukcifci, C.C.Lindner, Perfect hexagon triple systems, Dis-
crete Maths., 279 (2004), 325–335.

[12] C.C.Lindner, A.Rosa, Perfect dexagon triple systems, Discrete
Maths. 308 (2008), 214–219.

Luigia Berardi, Mario Gionfriddo, Rosaria Rota Received June 28, 2011

Luigia Berardi
Dipartimento di Ingegneria Elettrica e dell’Informazione,
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A Smooth Newton Method for Nonlinear

Programming Problems with Inequality

Constraints

Vasile Moraru

Abstract

The paper presents a reformulation of the Karush-Kuhn-
Tucker (KKT) system associated nonlinear programming prob-
lem into an equivalent system of smooth equations. Classical
Newton method is applied to solve the system of equations. The
superlinear convergence of the primal sequence, generated by pro-
posed method, is proved. The preliminary numerical results with
a problems test set are presented.

Keywords: nonlinear programming, KKT conditions, strict
complementarity, Newton method, local superlinear convergence.

1 Introduction

We consider the following nonlinear programming problem:




minimize f (x)
subject to
gi (x) ≥ 0, i = 1, 2, . . . , m,

(1)

where x ∈ Rn, f, gi : Rn → R are assumed to be twice continuously
differentiable. Such problems have proved extremely useful in very
many areas of activity, in science, engineering and management [1,2].

Let the Lagrange function of problem (1) be defined by

L (x, λ) = f (x)−
m∑

i=1

λigi (x) ,

c©2011 by Vasile Moraru
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where λ = (λ1, λ2, ..., λm)T is the Lagrange multiplier vector.
We will denote by x∗ any local solution of the problem (1), and by

A (x) = {i : gi (x) = 0}
the index set of active constraints at x.

The Karush-Kuhn-Tucker system (KKT system for short) associ-
ated with (1) is [3,4] :

∇f (x)−
m∑

i=1

λi∇gi (x) = 0 (stationarity) (2)

gi (x) ≥ 0, i = 1, 2, . . . , m (primal feasibility) (3)

λi ≥ 0, i = 1, 2, . . . ,m (dual feasibility) (4)

λigi (x) = 0, i = 1, 2, . . . , m (complementarity) (5)

This system is the local equivalent to the problem (1) whenever the
inequalities (3) and (4) are satisfied and relations (2) and (5) comply
with the conditions of regularity [3–5].

We assume that the following hypotheses hold for any local solution
x∗.

Assumption A1. The active constraint gradients ∇gi (x∗) , i ∈
A (x∗) are linearly independent (the assumption is called the linear
independence constraint qualification (LICQ)).

Assumption A2. Strict complementarity holds at x∗, i.e. λ∗i > 0
for all i ∈ A (x∗) .

Assumption A3. The strong second order sufficient condition
(SSOSC):

pT∇2
xxL (x∗, λ∗) p ≥ c ‖p‖2 , c > 0, for all p ∈ T (x∗) , (6)

where ∇2
xxL (x∗, λ∗) is the Hessian matrix of the Lagrange function of

the problem (1) and

T (x∗) =
{

p ∈ Rn : p 6= 0, [∇gi (x∗)]T p = 0, i ∈ A (x∗)
}

.
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It is well know that, under Assumptions A1–A3, x∗ is an isolated
local minimum and to solve (1) is equivalent to solve the KKT system
(2) – (5).

KKT system (2) – (5) establishes necessary conditions [5,6] for solv-
ing finite-dimensional variational inequality:

[∇f (x∗)]T (x− x∗) ≥ 0, for all x ∈ Ω, (7)

where Ω = {x ∈ Rn : gi (x) ≥ 0, i = 1, 2, . . . ,m}.
In the particular case when Ω = {x ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}

the variational inequality problem (7) is equivalent to the following
complementarity problem

∇f (x) ≥ 0, x ≥ 0, [∇f (x)]T x = 0.

Furthermore, the KKT system (2)− (5) can be written as a mixed
complementarity problem (MCP) [8]:

[F (z∗)]T (z − z∗) ≥ 0, for all z ∈ B,

where zT =
(
xT , λT

)
, B = {z ∈ Rn × Rm : λ ≥ 0} and

[F (z)]T =
(
[∇xL (z)]T , g1 (x) , g2 (x) , . . . , gm (x)

)
.

The first major achievements obtained in the constrained optimiza-
tion referred to the KKT systems. This has brought to the development
of methods of optimization, a very active area with remarkable results
[1–7]. Conditions (5), also called complementarity conditions, raise
some difficult problems to solve directly the system of equations and
inequalities (2)–(5). Depending on how KKT system (2)–(5) is used
(i.e. how Lagrange multipliers are calculated and how the conditions
of complementarity are ensured), some methods that can be used suc-
cessfully in problems with medium or even large number of variables
have been developed [9]:

• active-set methods [5,7,9,10],
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• barrier/penalty and augmented Lagrangian methods [3,7, 10, 11,
12],

• sequential linear and quadratic programming methods [6,7,13,14],

• interior-point and trust region methods [15–17].

Another way of solving KKT system is to use procedures based
on the complementary functions [18,19]. The relationship (3) − (5)
constitutes the essence of nonlinear complementarity problems. The
KKT system (2)− (5) may be equivalently reformulated as solving the
nonlinear system [20, 21]:

∇xL (x, λ) = 0, ϕ (λi, gi (x)) = 0, i = 1, 2, . . . , m, (8)

where ϕ is any NCP function. A function ϕ : R × R → R is called
NCP function if the set of solutions of equation ϕ (a, b) coincides with
the set:

M = {a, b ∈ R : ab = 0, a ≥ 0, b ≥ 0} .

Classical examples of NCP functions are the min function

ϕ (a, b) = min (a, b)

and the Fischer-Burmeister function [22]

ϕ (a, b) =
√

a2 + b2 − a− b.

Other functions of complementarity with applications in optimization
can be found in the works [23, 24]. Most of them are nondifferentiable
at the point (0, 0). There are smooth functions of complementarity, for
example, the function [23, 30]

ϕ (a, b) = 2ab− [min (0, a + b)]2 .

This theme in optimization problems still presents challenges, which
are based mainly on the application of the Newton method for systems
of equations equivalent to system:
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∇xL (x, λ) = 0, gi (x) = 0, i ∈ A (x∗) . (9)

Relations (3)−(5) can be reformulated as the system of equalities by
introducing auxiliary variables y1, y2, ..., ym, so that (see [25,26,31,32]):





[−min (0, yi)]
k − gi (x) = 0,

[max (0, yi)]
k − λi = 0,

i = 1, 2, . . . , m,

(10)

where k ≥ 1. In [31,32] it is considered k = 1, in [25] and [26] take
k = 2, respectively k = 3.

Emphasize the role of regularity condition A2. Only in this case
we can guarantee that in the vicinity of (x∗, λ∗) relations (3)− (5) are
equivalent to the system of equations:

gi (x) = 0, i ∈ A (x∗) ,

λi = 0, i /∈ A (x∗) .

In other words, the Assumption A2, the KKT system (2) − (5)
is locally equivalent to system of equations (9). Both the procedure
(8) and procedure (10) do not require the explicit identification of the
active constraints A (x∗).

In the present paper a KKT system transformation in a system of
smooth equations, which can be solved by classical Newton method is
considered. The paper is organized as follows. In Section 2 we define
the functions that ensure the nonsingularity of Jacobian at a solution.
Section 3 presents the algorithm of Newton method. Superlinear con-
vergence in terms of primal variables is proved in Section 4. Some
numerical results are given in Section 5 and conclusion is drawn in
Section 6.

Throughout this paper, Rn denotes the space of n-dimensional real
column vectors and the superscript ”T ” denotes transpose. For con-
venience, we use (x, λ, y) to denote the column vector

(
xT , λT , yT

)T
.
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Given two vectors x, y ∈ Rn, xT y denotes the Euclidian scalar product
and ‖•‖ denotes the Euclidian vector norm. The identity matrix is
denoted by I. For any α > 0, β > 0, α = o (β) (respectively α = O (β))
means α/β tends to zero (respectively α/β is uniformly bounded) as
β → 0.

2 Smoothing Reformulation of the Karush-
Kuhn-Tucker System

We define two functions u, v : R→ R+ with the following properties:
P1.

u (x) =
{

= 0, for all x ≤ 0,
> 0, for all x > 0,

v (x) =
{

> 0, for all x < 0,
= 0, for all x ≥ 0.

P2. u (x) and v (x) is at least twice continuously differentiable on
R.

P3. u (x) = 0 and v (x) = 0 if and only if u′ (x) = 0, respectively
v′ (x) = 0 for all x 6= 0.

The functions u (x) and v (x) so defined form a complementarity
pair in the sense that the two functions are complementary to one
another (if one is zero at a point, then the other is necessarily nonzero
at that point):

{
u (x) = 0 ⇐⇒ v (x) > 0,
v (x) = 0 ⇐⇒ u (x) > 0,

(11)

i.e. u (x)× v (x) = 0 for all x ∈ R.
The following can serve as an example of functions u (x) and v (x)

that satisfy properties P1 - P3:

{
u (x) = xβ max (0, x) = 1

2

(
xβ+1 + |x|xβ

)
,

v (x) = (−1)γ+1 xγ min (0, x) = (−1)γ+1

2

(
xγ+1 − |x|xγ

)
,

(12)
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where β ≥ 2, γ ≥ 2 are any fixed parameters.
The functions u (x) and v (x) as defined by the formulas (12) are

continuously differentiable:

u′ (x) =
β + 1

2
(xβ + |x|xβ−1),

u′′ (x) =
β (β + 1)

2
(xβ−1 + |x|xβ−2),

v′ (x) =
(−1)γ+1 (γ + 1)

2
(
xγ + |x|xγ−1

)
,

v′′ (x) =
(−1)γ+1 γ (γ + 1)

2
(
xγ−1 + |x|xγ−2

)
.

By entering the auxiliary variables y1, y2, . . . , ym the KKT system
(2) − (5) may be transformed into an equivalent system of smooth
nonlinear equations:





∇xL(x, λ) = 0,
u(y1)− g1(x) = 0,

...
u(ym)− gm(x) = 0,

v(y1)− λ1 = 0,
...

v(ym)− λm = 0.

(13)

It is easily found that λi > 0 for all i ∈ A(x∗). Indeed, according
to (11) if gi (x) = 0, i.e. u (yi) = 0, then λi = v (yi) > 0. Therefore
(x∗, λ∗) ∈ Rn × Rm solves KKT system (2) − (5) or system (9) if and
only if (x∗, λ∗, y∗) ∈ Rn×Rm×Rm solves the system of equations (13).

For any y = (y1, y2, . . . , ym)T ∈ Rm define

U (y) = (u (y1) , u (y2) , . . . , u (ym))T ,
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V (y) = (v (y1) , v (y2) , . . . , v (ym))T ,

U ′ (y) = diag
(
u′ (y1) , u′ (y2) , . . . , u′ (ym)

)
,

V ′ (y) = diag
(
v′ (y1) , v′ (y2) , . . . , v′ (ym)

)
.

Matrices U ′ (y) and V ′ (y) are diagonal matrices of dimension m ×m
with elements u′ (yi) , respectively v′ (yi), i = 1, 2, . . . ,m.

We denote the Jacobian matrix of a mapping

G (x) = (g1 (x) , g2 (x) , . . . , gm (x))T : Rn → Rm

by G′ (x):

G′ (x) =




[∇g1 (x)]T

[∇g2 (x)]T
...

[∇gm (x)]T




Let F ′ (x, λ, y) denote the Jacobian of

F (x, λ, y) =




∇xL (x, λ)
u(y1)− g1(x)

...
u(ym)− gm(x)

v(y1)− λ1
...

v(ym)− λm




.

Then the Jacobian matrix F ′ (x, λ, y) has the form

F ′ (x, λ, y) =



∇2

xx(Lx, λ) − [G′ (x)]T On×m

−G′ (x) Om×n U ′ (y)
Om×n −Im V ′ (y)


 ,
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where Im is the identity matrix of order m and O represents the null
matrix, with subscripts indicating their dimensions.

The matrix F ′ (x, λ, y) has order (n + 2m)× (n + 2m).
The next theorem is true:

Theorem 1. Under the Assumption A1-A3 for z∗ = (x∗, λ∗, y∗)
Jacobian matrix F ′ (z∗) is nonsingular.

Proof. Let d = (p, q, r) ∈ Rn × Rm × Rm satisfy F ′ (z∗) d = 0.
Then

∇2
xxL (x∗, λ∗) p− [

G′ (x∗)
]T

q = 0, (14)

−G′ (x∗) p + U ′ (y∗) r = 0, (15)

−q + V ′ (y∗) r = 0. (16)

By multiplying equation (14) on the left side by pT we have

pT∇2
xxL (x∗, λ∗) p = pT

[
G′ (x∗)

]T
q = qT

[
G′ (x∗)

]T
p. (17)

There is at least an index k such that u (y∗k) = 0 (because otherwise
the gi (x∗) > 0 for any i = 1, 2, . . . ,m, i.e. x∗ is a point of unconstrained
minimum). As gk (x∗) = u (y∗k) = 0 yields k ∈ A (x∗). As we have that
Property P3 and u′ (y∗k) = 0, which together with (15) gives us

[∇gk (x∗)]T p = 0 for all k ∈ A (x∗) , (18)

i.e. p ∈ T (x∗).
For s /∈ A (x∗) we have u (y∗s) 6= 0 and so v (y∗s) = 0 where the

v′ (y∗s) = 0; then from the (16) result qs = 0. This together with
the relationship (18) gives us qT G′ (x∗) p = 0. From equation (16)
together with the Assumption A3 we have p = 0. So, from equations
(14)− (16) one obtains
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m∑

i=1

qi∇gi (x∗) = 0, (19)

u′ (y∗i ) ri = 0 for all i = 1, 2, . . . ,m, (20)

qi = v′ (y∗i ) ri for all i = 1, 2, . . . , m. (21)

We have λ∗i = 0, v (y∗i ) = 0, v′ (y∗i ) = 0, u′ (y∗i ) = 0 for all i /∈ A (x∗).
From (20) and (21) qi = 0, ri = 0, for all i /∈ A (x∗). It is true that

∑

i∈A(x∗)

qi∇gi (x∗) = 0,

where, under the Assumption A1, qi = 0 for all i ∈ A (x∗). For
i ∈ A (x∗) we have v′ (y∗i ) 6= 0 and from (21) it results that ri = 0.
Thus, the Assumption A1-A3 implies that p = 0, q = 0, r = 0.
Therefore, the Jacobian matrix F ′ (x∗, λ∗, y∗) is nonsingular.

3 Local Newton method

The best-known method for solving nonlinear systems of equations is
the Newton method [27,28,29]. Newton’s method has very attractive
theoretical and practical properties, because of its rapid convergence:
under the nonsingularity of the Jacobian matrix it will converge locally
superlinearly. If in addition, the Jacobian is Lipshitz continuous, then
the convergence is quadratic.

Let
(
x(0), λ(0), y(0)

)
be given sufficiently close to (x∗, λ∗, y∗). Given

that x(k), λ(k), y(k) is the k-th iterate of the Newton method for the
system (13), a new estimate x(k+1), λ(k+1), y(k+1) is defined by solving
the following linear system:
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∇2
xx(Lx(k), λ(k))(x− x(k))− [

G′ (x(k)
)]T

(λ− λ(k)) =
= −∇x(Lx(k), λ(k)),

−G′(x(k))(x− x(k)) + U ′(y(k))(y − y(k)) =
= −U(y(k)) + G(x(k)),

−λ + λ(k) + V ′(y(k))(y − y(k)) = −V (y(k)) + λ(k).

(22)

The system (22) consists of (n + 2m) equations and (n + 2m) un-
knowns. From the last equation of the system (22) we have

λ = V (y(k)) + V ′(y(k))(y − y(k)). (23)

Substituting (23) in the first equation, the system (22) becomes





∇2
xxL

(
x(k), λ(k)

) (
x− x(k)

)− [
G′ (x(k)

)]T
V ′ (y(k)

) (
y − y(k)

)
=

= −∇f
(
x(k)

)
+

[
G′ (x(k)

)]T
V

(
y(k)

)
,

−G′ (x(k)
) (

x− x(k)
)

+ U ′ (y(k)
) (

y − y(k)
)

=
= −U

(
y(k)

)
+ G

(
x(k)

)
.

(24)
The system (24) is from (n + m) equations with (n + m) unknowns.
According to Theorem 1, in the neighborhood of z∗ the system of

equations (24) admits the unique solution
(
x(k+1), y(k+1)

)
.

On the other hand, we see that system (13) can be transformed
into an equivalent system which only contains x and y:

{ ∇xL (x, V (y)) = 0,
−G (x) + U (y) = 0.

(25)

Linearizing the system (25), we obtain the same system of linear
equations (24), except that in the Hessian matrix ∇2

xxL
(
x(k), λ(k)

)
we

have λ(k) = V
(
y(k)

)
.

From (23) it follows that
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λ(k+1) = V
(
y(k)

)
+ V ′

(
y(k)

)(
y(k+1) − y(k)

)
=

= V
(
y(k+1)

)
+ o

(∥∥∥y(k+1) − y(k)
∥∥∥
)

.

So, both local direct linearization of the system (13) and linearization
of the system (25) are close enough. The difference may appear only if
you are not near the solution.

Thus we can define the following algorithm.

Algorithm 1. Local version of Newton’s method.

Step 1. Let x(0) ∈ Rn, y(0) ∈ Rm, λ(0) = V
(
y(0)

)
, ε > 0 and

k = 0.
Step 2. If

max
{∥∥∥∥

[
G′(x(k))

]T
V (y(k))−∇(fx(k))

∥∥∥∥ ,
∥∥∥U(y(k))−G(x(k))

∥∥∥
}

< ε,

STOP.
Otherwise, let x(k+1) ∈ Rn, y(k+1) ∈ Rm be a solution of

linear system (24).
Step 3. Let the multiplier vector

λ(k+1) = V (y(k)) + V ′(y(k))
(
y(k+1) − y(k)

)
,

and k = k + 1.
Go to Step 2.

Remark 1. The Algorithm 1 generates a sequence of pairs(
x(k), y(k)

)
– the solution of system of linear equations (24) which

consists of (n + m) equations with (n + m) unknowns. The Lagrange
multiplier λ is determined as a function of y through the formula (23).
Therefore the algorithm can be considered a primal-dual method.

Remark 2. After reformulation, Algorithm 1 can be used for
solving the complementarity problems and variational inequality prob-
lems.
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Remark 3. As it is well known, Newton method possesses just
local convergence, it is very sensitive to the choice of initial approxi-
mations and is not convergent if it is not sufficiently close to the solu-
tion. There are several ways to modify the method to ensure its global
convergence:

• Damped Newton’s method [27],

• The Levenberg-Marquardt scheme,

• Trust-regions approach [5,28].

4 Primal superlinear convergence

Newton’s method for solving system of linear equations (24) has the
advantage of high convergence of couple

(
x(k), y(k)

)
. In the following we

show that the rate of convergence for the sequence of primal variables{
x(k)

}
is also superlinear.

In addition to the Properties P1-P3, we assume that the func-
tions u (x) and v (x) satisfy the following Property P4:

P4.

u (x)× v′ (x) = u′ (x)× v (x) = 0 for all x ∈ R.

It is not difficult to see that the functions from example (12) also
satisfy the Property P4.

Theorem 2. Let us suppose that the standard Assumptions
A1-A3 are satisfied. Assume also that functions u (x) and
v (x) satisfy the Properties P1-P4. Then the sequence

{
x(k)

}
generated by Algorithm 1 for problem (1) converges locally to
x∗ superliniarly.

Proof. The linear system (24) together with (23) are equivalent
to the system (22). Let x(k+1), λ(k+1) and y(k+1) be solution for the
system equations (22). It is easy to follow the relations obtained from
the first equation of system (22):
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−∇2
xxL

(
x(k), λ(k)

)(
x(k+1) − x(k)

)
= ∇xL

(
x(k), λ(k+1)

)
=

= ∇xL
(
x∗, λ(k+1)

)
+

[
∇xL

(
x(k), λ(k+1)

)
−∇xL

(
x∗, λ(k+1)

)]
=

= ∇xL
(
x∗, λ(k+1)

)
+∇2

xxL
(
x∗, λ(k+1)

)(
x(k+1) − x∗

)
+

+o
(∥∥∥x(k) − x∗

∥∥∥
)

= ∇xL (x∗, λ∗) +∇2
xλL (x∗, λ∗)

(
λ(k+1) − λ∗

)
+

= ∇xL (x∗, λ∗) +∇2
xλL (x∗, λ∗)

(
λ(k+1) − λ∗

)
+

+∇2
xxL

(
x∗, λ(k+1)

)(
x(k+1) − x∗

)
+ o

(∥∥∥x(k) − x∗
∥∥∥
)

=

=
[
G′ (x∗)

]T
(
λ(k+1) − λ∗

)
+∇2

xxL (x∗, λ∗)
(
x(k+1) − x∗

)
+

=
[
∇2

xxL
(
x∗, λ(k+1)

)
−∇2

xxL (x∗, λ∗)
] (

x(k) − x∗
)

+

+o
(∥∥∥x(k) − x∗

∥∥∥
)

=
[
G′ (x∗)

]T
(
λ(k+1) − λ∗

)
+

+∇2
xxL (x∗, λ∗)

(
x(k+1) − x∗

)
−∇2

xxL (x∗, λ∗)
(
x(k+1) − x(k)

)
+
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+o
(∥∥∥x(k) − x∗

∥∥∥
)

,

where we have

[
∇2

xxL (x∗, λ∗)−∇2
xxL

(
x(k), λ(k)

)](
x(k+1) − x∗

)
=

[
G′ (x∗)

]T ×
(26)

×
(
λ(k+1) − λ∗

)
+∇2

xxL (x∗, λ∗)
(
x(k+1) − x∗

)
+ o

(∥∥∥x(k) − x∗
∥∥∥
)

.

Taking into consideration the Properties P1-P3 from the last equa-
tion of system (22) and from (23), one obtains:

λ
(k+1)
i gi

(
x(k+1)

)
=

[
v

(
y

(k)
i

)
+ v′

(
y

(k)
i

)(
y

(k+1)
i − y

(k)
i

)]
×

×gi

(
x(k+1)

)
+

[
∇gi

(
x(k+1)

)]T (
x(k+1) − x(k)

)
+

(
x(k+1) − x(k)

)
=

=
[
v

(
y

(k)
i

)
+ v′

(
y

(k)
i

)(
y

(k+1)
i − y

(k)
i

)]
×

×
[
u

(
y

(k)
i

)
+ u′

(
y

(k)
i

)(
y

(k+1)
i − y

(k)
i

)]
+ o

(∥∥∥x(k) − x∗
∥∥∥
)

.

So,

λ
(k+1)
i gi

(
x(k+1)

)
= o

(∥∥∥x(k) − x∗
∥∥∥
)

for any i. (27)

On the other hand,

λ
(k+1)
i gi

(
x(k+1)

)
= λ∗i gi (x∗) + gi (x∗)

(
λ

(k+1)
i − λ∗i

)
+
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+λ∗i [∇gi (x∗)]T
(
x(k+1) − x∗

)
+ o

(∥∥∥x(k+1) − x∗
∥∥∥
)

.

From here and from (27), taking into consideration the Assumption
A2, we have for all i ∈ A (x∗):

[∇gi (x∗)]T
(
x(k+1) − x∗

)
= −δ

(k)
i , (28)

where

−δ
(k)
i = o

(∥∥∥x(k+1) − x∗
∥∥∥
)

+ o
(∥∥∥x(k+1) − x(k)

∥∥∥
)

.

As the system of vectors {∇gi (x∗)}, i ∈ A (x∗), is linearly independent
(Assumption A2), there is a vector γ(k) ∈ Rn such that:

[∇gi (x∗)]T γ(k) = δ
(k)
i (29)

and
∥∥∥γ(k)

∥∥∥ = o
(∥∥∥x(k+1) − x∗

∥∥∥
)

+ o
(∥∥∥x(k+1) − x(k)

∥∥∥
)

.

Let now

p(k) = x(k+1) − x∗ + γ(k) ∈ Rn.

Then (28) and (29) shows that

[∇gi (x∗)]T p(k) = 0 for all i ∈ A (x∗) ,

i.e. p(k) ∈ T (x∗). We also notice that

[
p(k)

]T [
G′ (x∗)

]T
(
λ(k+1) − λ∗

)
= 0. (30)

Indeed

[
p(k)

]T [
G′ (x∗)

]T
(
λ(k+1) − λ∗

)
=

=
∑

i∈A(x∗)

(
λ

(k+1)
i − λ∗i

)
[∇gi (x∗)]T p(k) = 0.
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From (29) and (30) we have

[
p(k)

]T [
∇2

xxL (x∗, λ∗)−∇2
xxL

(
x(k), λ(k)

)](
x(k+1) − x∗

)
=

=
[
p(k)

]T
∇2

xxL (x∗, λ∗)
(
x(k+1) − x∗

)
+ o

(∥∥∥x(k+1) − x∗
∥∥∥
)∥∥∥p(k)

∥∥∥ .

Finally, the last relationship together with Assumption A2, gives
us

c
∥∥∥p(k)

∥∥∥
2
≤

[
p(k)

]T
∇2

xxL (x∗, λ∗) p(k) =

[
p(k)

]T [
∇2

xxL (x∗, λ∗)−∇2
xxL

(
x(k), λ(k)

)] (
x(k+1) − x∗

)
+

+
[
p(k)

]T
∇2

xxL (x∗, λ∗) γ(k) + o
(∥∥∥x(k) − x∗

∥∥∥
)∥∥∥p(k)

∥∥∥ =

= o
(∥∥∥x(k+1) − x∗

∥∥∥
)∥∥∥p(k)

∥∥∥ + O
(∥∥∥p(k)

∥∥∥
∥∥∥γ(k)

∥∥∥
)

+ o
(∥∥∥x(k) − x∗

∥∥∥
)
×

×
∥∥∥p(k)

∥∥∥ = o
(∥∥∥x(k+1) − x∗

∥∥∥
)∥∥∥p(k)

∥∥∥ + o
(∥∥∥x(k) − x∗

∥∥∥
)∥∥∥p(k)

∥∥∥ ,

where
∥∥∥p(k)

∥∥∥ = o
(∥∥∥x(k+1) − x∗

∥∥∥
)

+ o
(∥∥∥x(k) − x∗

∥∥∥
)

.

So,
∥∥∥x(k+1) − x∗

∥∥∥ =
∥∥∥p(k) − γ(k)

∥∥∥ ≤
∥∥∥p(k)

∥∥∥ +
∥∥∥γ(k)

∥∥∥ =
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= o
(∥∥∥x(k+1) − x∗

∥∥∥
)

+ o
(∥∥∥x(k) − x∗

∥∥∥
)

.

The last relationship implies that
∥∥∥x(k+1) − x∗

∥∥∥ = o
(∥∥∥x(k) − x∗

∥∥∥
)

,

This completes the proof.

5 Test examples

In this section, we give some numerical results. The algorithm de-
scribed in this paper was implemented by a Maple code and tested on
a selection of problems from [2] and [33]. As functions u(x) and v(x),
there were taken the concrete functions (12), where β = γ = 2.

Example 1. (Problem:16 [33, p. 39]).





f (x) = 100
(
x2 − x2

1

)2 + (1− x1)
2 → min

s.t. x1 + x2
2 ≥ 0, x2

1 + x2 ≥ 0,
−2 ≤ x1 ≤ 0.5, x2 ≤ 1.

The starting points: x(0) = (−2, 1) , y(0) = (−1, 1).
The optimal solution:

x∗ = (0. 5, 0. 25) , f (x∗) = 0.25,A (x∗) = (4) ,

y∗ = (0. 82548, 0. 7937, 1. 3572,−1.0, 0. 90856),
λ∗ = (0.0, 0.0, 0.0, 1.0, 0.0) .

Example 2. (Problem:43 [33, p. 66]).





f (x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4 → min
s.t. 8− x2

1 − x2
2 − x2

3 − x2
4 − x1 + x2 − x3 + x4 ≥ 0,

10− x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 ≥ 0,
5− 2x2

1 − x2
2 − x2

3 − x2
4 − 2x1 + x2 + x4 ≥ 0.
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The starting points: x(0) = (0, 0, 0, 0) , y(0) = (−1, 1,−1).
The optimal solution:

x∗ = (0.135 90, 1. 092 7, 1. 857 8, − 1. 138 7 ) , f (x∗) = −43.716,
y∗ = (−1. 010 3, 0.817 48,−1. 103 4),
λ∗ = (1. 031 1, 0.0, 1. 343 3) , A (x∗) = (1, 3)

Example 3. (Problem:64 [33, p. 86]).




f (x) = 5x1 + 50000
x1

+ 20x2 + 72000
x2

+ 10x2 + 144000
x3

→ min
s.t. 1− 4

x1
− 32

x2
− 120

x3
≥ 0, 0.00001 ≤ x1 ≤ 300,

0.00001 ≤ x2 ≤ 300, 0.00001 ≤ x3 ≤ 300.

The starting points: x(0) = (1, 1, 1) , y(0) = (−1, 1,−1, 1, 1, 1, 1).
The optimal solution:

x∗ = (108.73, 85.126, 204.32) , f (x∗) = 6299.8424,

y∗ = (−13.160, 4.773 0, 5.761 6, 4.399, 5.989 6, 5.889 9, 4.573 7) ,

λ∗ = (2279.0, 0, 0, 0, 0, 0, 0) , A (x∗) = (1) .

6 Conclusion

We have presented and tested smoothing Newton methods for solv-
ing nonlinear optimization problems, with requirements compared to
those of the classical Newton method. The basic idea of the methods
is to replace the KKT system by a system which is appropriate and
equivalent to the one on which we apply Newton’s method. It is shown
that by reasonable choice of functions u (x) and v (x) we obtain effec-
tive methods for solving the nonlinear programming problems. The
methods are simple and can be applied with different functions u (x)
and v (x) that satisfy the Properties P1-P4. The numerical results
show that the proposed method produces fast local convergence. From
the practical point of view, the possibility to relax the assumptions of
strict complementarity conditions (Assumption A2) remains an open
question.
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