
Computer Science Journal of Moldova, vol.22, no.1(64), 2014

Solving Problems in Various Domains by

Hybrid Models of High Performance

Computations

Yurii Rogozhin Artiom Alhazov Lyudmila Burtseva

Svetlana Cojocaru Alexandru Colesnicov
Ludmila Malahov

Abstract

This work presents a hybrid model of high performance com-
putations. The model is based on membrane system (P sys-
tem) where some membranes may contain quantum device that
is triggered by the data entering the membrane. This model is
supposed to take advantages of both biomolecular and quantum
paradigms and to overcome some of their inherent limitations.
The proposed approach is demonstrated through two selected
problems: SAT, and image retrieving.

1 Introduction

The present paper concerns definition and investigation of new com-
putational models based on combination of biomolecular and quantum
approaches. This new approach springs from practical needs of sev-
eral disciplines delivering the hard tasks. Both existing quantum- and
bio- models of calculation are widely used to solve hard tasks being
not always satisfactory. Each paradigm has its own advantages and
disadvantages. The proposed hybrid model supposes to compensate
restrictions of existing models and to expose their benefits.

We will use membrane computing, or P systems [1] that was mo-
tivated by the structure and functioning of a living cell. The model is

c©2014 by Yu. Rogozhin et al.

3

Yu. Rogozhin et al.

based on a cell-like hierarchical arrangement of membranes. (There is a
variation named the tissue model that uses a non-hierarchical arrange-
ment.) Membranes delimit compartments where objects presented by
multisets, numbers, or strings evolve according to the given evolution
rules. Many variants dependent on permitted rules and operations ex-
ist; we will not restrict ourselves by a particular type.

Quantum computing uses quantum properties to represent data
and perform operations over them [2]. Each quantum computation
inevitably includes non-quantum steps. Quantum algorithms always
begin with the (non-quantum) preparation of the initial observable
(classical) state. Then a sequence of quantum operations is applied
to the system whose states are unobservable during the process. At
the end, a (non-quantum) measurement is performed, and the quan-
tum system collapses to its final observable state.

One of the first hybrid computational models was proposed by
A. Leporati [3]. His hybrid of membrane and quantum systems de-
velops previously introduced UREM (Unit Rules and Energy assigned
to Membranes) P systems. The former adds “energy” to the objects
in a membrane system, and rules can be applied to objects inside a
membrane only if there is enough energy to do so. Quantum UREM
P system changes objects and rules: objects are represented as pure
states of a quantum system, and rules are quantum operators. The re-
sult is a hybrid computation device, a membrane system with quantum
operations.

We propose a different variant of hybrid model that keeps the entire
power of P systems. Our hybrid model is the classical P system frame-
work in which two types of membranes coexist: classical membranes,
and quantum membranes, the latter containing a quantum device in-
side. Entrance of an object into a quantum membrane triggers the
quantum computation, while the entered object is available as data in
the initial state of the quantum device.

The process of hybrid calculation is illustrated by solutions of two
problems. These problems represent the opposite sides of problems
range: from theoretical computing (SAT problem) to everyday practi-
cal application (medical image retrieval). Presentation of such different

4

Hybrid Models of High Performance Computations

problems intends to demonstrate general potential of the proposed hy-
brid model.

This is an introductory paper dedicated to the proposed hybrid
model of calculations. The article demonstrates the applicability and
operability of the model on two selected examples. More applications
and other aspects like estimations of efficiency and consumed resources,
synchronization, hybrid simulator, etc., are subjects of further works.

2 P Systems and Hybrid Model

The first problem we selected to illustrate our construction is the SAT
problem. The second selected problem is the image retrieval problem.

Transitional P systems with inhibitors. For SAT problem, we
use non-cooperative transitional P systems with atomic inhibitors [4].
Although this class of systems is not even computationally complete [5],
it fits well to illustrate the power of the hybrid model. We introduce
here only the necessary definitions.

A non-cooperative transitional P system with atomic inhibitors
with input is defined as a tuple

Π = (O, Σ, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where: O is a finite alphabet; Σ ⊆ O is the input subalphabet; µ
is a membrane structure (a rooted tree, traditionally represented by
bracketed expression, e.g., [[]2]1 denotes membrane 2 in membrane
1, and the set of labels of membranes from µ is H = 1, . . . , m); wi,
i ∈ H, are the initial multisets associated to regions i (directly inside
the corresponding membrane), traditionally represented by strings over
O (only the multiplicities of symbols being relevant, not their order);
Ri, i ∈ H, are the sets of rules associated to regions i; and i0 is the
label of input membrane (an input multiset over Σ is added to the
initial multiset in region i0 into the starting configuration). In this
paper, multisets wi and sets Ri are omitted if i is a label of a quantum
membrane.

The rules of the corresponding model are of the forms a → u or
a → u|¬b, where a, b ∈ O, u ∈ (O×Tar)∗, Tar = {here, out}∪{inj | j},

5

Yu. Rogozhin et al.

and in this case j denotes a label of immediately inner membrane. The
effect of a rule is replacing object a with a multiset of objects specified
in the right side, in the regions specified by target indications (here
may be omitted). A rule with inhibitor b is applicable whenever b
absent. A transition step consists in parallel application of applicable
rules to all possible objects (non-deterministically if there is a choice).
The computation stops when no rules are applicable.

Symport/antiport tissue P systems. For the image retrieval
problem, we use tissue P systems with symport/antiport rules. A tissue
P system with symport/antiport rules with input is defined by a tuple

Π = (O, Σ, E, d, w1, · · · , wd, R, i0, o0),

where: O is the alphabet; Σ is the input subalphabet; E is the set
of objects occurring in the environment in infinitely many copies; d is
the degree of the system (H = {1, . . . , d} is the set of labels of regions
called cells, and the environment region is labeled by 0), wi, i ∈ H,
is the initial content of cell i; R is the set of rules; i0 is the label of
the input region (where a multiset over Σ is additionally placed in the
beginning of the computation); o0 is the label of the output region.

The rules have the form (i, u/v, j), meaning that a multiset u may
move from region i to region j, coupled with moving of a multiset v
from region j to region i. The rules are applied non-deterministically,
in the maximally parallel mode (i.e., no further rules can be applicable
to the idle objects).

The structure of the tissue is deduced from rules. A rule (i, u/v, j)
means that the i-th and the j-th cells are neighboring.

Hybrid model. We now present the formal description of hybrid
model

β = (Π,HQ, NQ, Inp, Outp, Q1, . . . , Qm).

A hybrid system β is defined by a membrane system Π (let us de-
note its membrane/cell label set as H and assume in the membrane
case that membranes with labels in HE ⊆ H are elementary), where
quantum devices Qj are associated to the elements j of a subset of
elementary membranes/cells HQ ⊆ HE . No membrane rules are as-

6

Hybrid Models of High Performance Computations

sociated to the objects inside the quantum membranes. NQ is the
maximum number of qubits in the quantum part of the model.

Special objects are used to transfer data in the quantum membrane
and to obtain result of quantum calculation. They are collected in
alphabets Inp and Outp. See Sec. 3 for details of this interaction.

3 Quantum Membranes for the Hybrid Com-
putational Model

Our model is characterized by the existence of quantum membranes.
We describe below their internal construction.

Notations. Our quantum device explores function y = f(x). Sup-
pose that x is an integer, 0 ≤ x < 2N , that is, the argument of the
function takes N qubits.

M is the size of the result: y is an integer, 0 ≤ y < 2M .
We are provided with the initial data. Suppose that the membrane

is entered by a K-bit integer z0 (0 ≤ z0 < 2K). The quantum device
begins to work as z0 enters the membrane.

Suppose that intermediate data takes R qubits.
Quantum registers. Quantum calculation is to be reversible

while function f is not always bijective. Therefore, we need quan-
tum registers both for argument and for result, and we demand that
the argument was restored by quantum implementation F of function
f . The standard demand is

F |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 , (1)

where |x〉N is the argument register (the index denotes the size of N
qubits), |y〉M is the result, ⊕ is the modulo 2 bitwise addition (bitwise
xor).

Condition (1) implies the reversibility of transformation F. More-
over, F is its own inverse because:

FF |x〉 |y〉 = |x〉 |y ⊕ f(x)⊕ f(x)〉 = |x〉 |y〉 . (2)

7

Yu. Rogozhin et al.

The quantum register |z〉K keeps initial data, and |w〉R keeps ancil-
lary (intermediate) data. Because of inevitable entanglement, we can
regard the quantum memory as one register of N +M +K +R qubits.

The linearity and the reversibility of quantum transformations per-
mit to organize the calculation in such a manner that we can ignore
ancillary data |w〉 in our deductions, as we will see below.

Initialization. Before the quantum calculation starts, each qubit
is to be set in one of basis states |0〉1, or |1〉1. The measurement
operation is already embedded to be used after calculation, so we can
apply it to our qubits.

As we use the measurement before the calculation, the qubits col-
lapse in the basis states. Measurement is irreversible, therefore it is a
classical operation.

Now we are to set qubits in the initial states. For example, if we
want to set them in the state |0〉, we are to check the state of each
qubit and invert |1〉. This is not a quantum transformation because
it glues two orthogonal vectors together. (In other words: because of
linearity, α |0〉+ β |1〉 would be transformed to (α + β) |0〉 that implies
|α + β|2 = 1, and αβ = 0. The operation is not linear, or it cannot be
applied to non-basis states.)

Usually, all qubits are initially set to |0〉1. (Several quantum
algorithms use different initial values though.) In our case, we
will use non-quantum tools to prepare the state |x〉 |y〉 |z〉 |w〉 =
|0〉N |0〉M |z0〉K |0〉R. Here z0 is the number that entered the quantum
membrane and initiated the process.

As the last step of the initialization, all qubits from register |x〉 are
at once transformed by one-qubit Hadamard transformation

H =
1√
2

(
1 1
1 −1

)
. (3)

As the result, register |x〉 gets the state

|x〉 =
1

2N/2

∑

0≤x<2N

|x〉 , (4)

8

Hybrid Models of High Performance Computations

that corresponds to the equal probability of all possible values of argu-
ment x. This ends the initialization.

Interaction with membrane environment. The quantum
membrane needs a binary number to be initialized. P systems are
mostly supposed to work over multisets of objects. If this is the case
we can use in the membrane part objects Zi,b ∈ Inp, where 0 ≤ i < K
and b = 0, 1, where K is the size of the initial data |z〉K for the quan-
tum device. If the quantum membrane is entered by Zi,0 (Zi,1), then
the i-th qubit ot the quantum register |zi〉 should be initialized to |0〉
(|1〉). We have several possible techniques:

1. We can demand that exactly K objects Zi,b with all 0 ≤ i < K
enter the quantum membrane simultaneously as we do it in this
paper.

2. We can use |0〉 as the default initialization of |z〉 in the quan-
tum device and require only Zi,1 for selected values of i to enter
simultaneously the quantum membrane.

3. We can use an additional object Qtrigger whose only mission is
to start quantum calculation. In this case the simultaneous input
of all Zi,b into the quantum membrane becomes not necessary.

4. We should not demand that Zi,0 and Zi,1 were mutually exclusive.
For example, if the quantum membrane was entered by three
instances of Z2,0 and one instance of Z2,1, then the second qubit
of |z〉 is to be initialized as |z2〉 =

√
3

2 |0〉+ 1
2 |1〉.

5. We can introduce even more objects to represent initial values of
all qubits in the quantum device. For example, standard initial-
ization of |x〉 would correspond to the entrance of both Xi,0 and
Xi,1 for all 0 ≤ i < N , with obvious notations.

The output of quantum result y outside the quantum membrane
is performed classically producing objects from Outp after the final
measurement.

Quantum calculation and result. Applying F, we get into |y〉
superposition of values of function f(x) at all possible values of the
argument:

F |x〉 |0〉 =
1

2N/2

∑

0≤x<2N

|x〉 |f(x)〉 . (5)

9

Yu. Rogozhin et al.

This is the quantum parallelism.
If this finishes the calculation, the following measurement reduces

qubit states to basis and we get the result |x1〉 |f(x1)〉. Here x1 is a
random integer between 0 and 2N − 1.

Nobody would mess with quantum calculations were they to pro-
duce only a value of the function at a random point. However,
we could not stop after transformation F. Let us use simultane-
ously available values of function f at all values of its argument, and
perform over |f(x)〉 another transformation G that produces some
important information on all these values at once: G |x〉 |f(x)〉 =
|x〉 |something important〉.

The quantum programmer should elaborately select unitary linear
transformations F and G. They are applied using entanglement and
quantum parallelism.

During the quantum calculation we got all values of function f but
they are unobservable. We can then stop and get no more than one
value f(x1), or we can continue losing the information on particular
values of function f but obtaining some data on its more general prop-
erties. This is the uncertainty principle in quantum calculations.

Independence of ancillary qubits. Register |z〉 of initial data
and the ancillary register |w〉 could be ignored as speaking on result
of the calculation. This was done, for example, in equation (5). The
necessary conditions are:

• after the calculation the qubits of |z〉 and |w〉 were not entangled
with qubits of |x〉 and |y〉;

• resulting values of |z〉 and |w〉 do not depend on the initial values
of |x〉 and |y〉.

The entanglement of all qubits during the calculation should take
place because in the opposite case the unused qubits could be deleted
from the construction.

The construction of a quantum computer shown in Fig. 1 guarantees
this.

V†f = V−1
f is the inverse transformation to Vf . CM are M standard

“controlled NOT” gates, where qubits from |f(x)〉M are control qubits.
An additional transformation is introduced as follows: Vf is re-

10

Hybrid Models of High Performance Computations

|y〉M

|x〉N

|w〉R

|z〉K

Vf

|f(x)〉M

CM

|ψx,z〉N+R+K−M

|f(x)〉M

V
†

f

|y ⊕ f(x)〉M

|x〉N

|w〉R

|z〉K

Figure 1. Quantum calculation into a membrane; initialization is not
shown

placed by VgVf . The inverse transformations are applied in the reverse
order: V†f V†g (Fig. 2).

|y〉M

|x〉N

|w〉R

|z〉K

Vf Vg

|g(f(x))〉M

CM

|ηx,z〉N+R+K−M

|g(f(x))〉M

V
†

g V
†

f

|y ⊕ g(f(x))〉M

|x〉N

|w〉R

|z〉K

Figure 2. Quantum calculation with an additional transformation

Let us note that, in Fig. 2, transformation Vg can access only entan-
gled qubits |ψ〉 and |f(x)〉 while the original |x〉 and |z〉 are unavailable.
To correct this, we are to apply Vg exactly alike Vf after the termination
of all calculations as in Fig. 1, so to speak, “as the second cascade”.
We need another ancillary register made from M qubits initialized by
|0〉 (Fig. 3; the gray color emphasizes the part corresponding to Fig. 1).

11

Yu. Rogozhin et al.

|0〉M

|x〉N

|w〉R

|z〉K

|ψ〉

Vf

CM

V
†

f

|f(x)〉M

|x〉N

|w〉R

|z〉K

|y〉P

Vg

CP

V
†

g

|g(f(x))〉P

|η〉

|y ⊕ g(f(x))〉P

|f(x)〉M

|x〉N

|w〉R

|z〉K

Figure 3. Additional transformation with access to the initial data

The size R of an ancillary register may grow at necessity. The size P
of the result should not be equal to M . We get as the result not only
|g(f(x))〉, but |f(x)〉 either. We can construct a chain of more than
two transformations in this manner.

4 Satisfiability

SAT problem. A boolean formula in conjunctive normal form is
an expression γ =

∨
1≤j≤m Cj , where Cj =

∧
1≤l≤kj

zl,j , and zl,j ∈
{xi,¬xi | 1 ≤ i ≤ n}, 1 ≤ j ≤ m, 1 ≤ l ≤ kj . We assume the input is
given by a set of objects from Σ = {xi,j , xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
each object representing appearance of variable xi in clause Cj without
negation in case of xi,j and with negation in case of xi,j .

Remark: if xi does not appear in clause Cj in either form, this fact
also needs to be explicitly present as an input to the quantum system
we consider. However, it will be the job of membrane subsystem to
detect this case and produce the corresponding object.

Membrane system. For the construction we need a bijection l
from pairs (i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m onto numbers {k | 1 ≤ k ≤
mn}. We define it by l(i, j) = (j−1)m+ i. We construct the following

12

Hybrid Models of High Performance Computations

P system (where membrane 2 is a quantum membrane):

Π = (O,Σ, µ = [[]2]1, w1 = s,R1, i0 = 1),
O = Σ ∪ {Ik,b, I

′
k,b | 1 ≤ k ≤ 2mn, 0 ≤ b ≤ 1}

∪ {s, s′, yes, no} ∪ {yi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
R1 = {xi,j → I ′2l(i,j)−1,1I

′
2l(i,j),0}

∪ {xi,j → I ′2l(i,j)−1,1I
′
2l(i,j),1}

∪ {s → y1,1 · · · yn,ms′}
∪ {yi,j → I ′2l(i,j)−1,0I

′
2l(i,j),0|¬I′

2l(i,j)−1,1

| 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {s′ → λ}
∪ {yi,j → λ|¬s′ | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {I ′k,b → (Ik,b, in2)|¬s′ | 1 ≤ k ≤ 2mn, 0 ≤ b ≤ 1}.

The P system above takes three steps to prepare the input for the
quantum system. The first step generates the input symbols corre-
sponding to variables appearing in some clauses. The second step gen-
erates the input symbols corresponding to variables not appearing in
some clauses. The third step erases intermediate objects and sends the
input into the quantum membrane. The input z0 consists of K = 2mn
bits, that are grouped in m groups of 2n bits each. Each of m groups
corresponds to a clause, and each two bytes in these groups correspond
to a variable. From these bytes, the first one is 0 if the variable is
absent in the clause, and it is 1 if the variable is present in the clause.
The second byte is 0 for variable xi and 1 for its negation x̄i. It is obvi-
ous that combination 01 is impossible for these bytes. We will denote
these bytes by zp (presence) and zg (negation).

Quantum system. The quantum calculation is quite straightfor-
ward and implements formula:

C = C ∨ (zp ∧ (zg ⊕ x))

to calculate clause C of the propositional form γ. Here C means any
of Cj , x means any of xi, and zp and zg mean the corresponding pairs
of bits from z0. γ is calculated as γ = γ ∧ C for each clause C.

13

Yu. Rogozhin et al.

The necessary quantum circuits are shown in Fig. 4. They use stan-
dard cNOT and Toffoli gates, and inversion (not). We need ancillary
qubits to make and and or reversible.

a a

b a⊕ b

xor

a a

b b

0 a ∧ b

and

a ¬a

b ¬b

1 a ∨ b

or

Figure 4. Quantum implementation of Boolean operations

Then Grover’s algorithm is applied to search for 1 between possible
values of γ. See a detailed step-by-step description in [7].

5 Image Retrieval

Many tasks of medical imaging are affected by image database size.
Retrieval of images, similar to a given one, can be considered the most
important one among these tasks. During the retrieval, extraction by
attributes can be implemented mostly in parallel. The attribute vectors
comparison can be also made in parallel for each image as we check
the similarity over the whole database. Therefore, images retrieval
problem is favorable for massive parallelism provided by unconventional
computation, and its binary outputs are suitable for being given by
quantum oracle. Basing on this, we chose image retrieval problem as
relevant test example for hybrid computational model. It is obvious,
however, that in general image retrieval problem is the monstrous task.
In current work we only demonstrate how hybrid model can solve the
essence subtask of retrieval – estimation of two images similarity.

14

Hybrid Models of High Performance Computations

Definitions. Let Imgdb is one image from database of grayscale
images. Imgu is the pattern image supplied by user. Both images have
the size Nw ×Nh pixels. The problem is to learn range of similarity of
two images according to given similarity criterion Csim. Let us assume
for test purpose that Csim = Nsim/Nucont, where Nsim is the number
of matching contour points, Nucont is the total number of points in the
contour of the user image.

Basing on general definition of hybrid model given in Sec. 2, the
solution of images retrieval problem is represented by the following
hybrid model:

β = (Π,HQ, NQ, Inp, Outp, Q1, . . . , Qm),

where m is the database size as we will need m identical quantum
devices for m database images.

For this task P system based calculation implements algorithm of
grayscale image region-based segmentation proposed by the Spanish
P system research group [6]. Thus, Π is a tissue-like P system. On
account of calculation details do not concern the hybrid model func-
tioning, let us give only brief scheme of algorithm. Each pixel is coded
by integer representation of its associated grayscale value and mapped
to the corresponding multiset object aij (bij – for the second image).
Graphical-related basis of algorithm is the edge-based segmentation
using the cross-like 4-adjacency.

We need two membranes to perform algorithm for each of two im-
ages and one HQ membrane to proceed to retrieval, one more membrane
is added to keep the answer.

Π(n,m) = (µ,Σ, ε, w1u, w2u, w1db, w2db, q1,R, iΠ , oΠ),

where set of membranes is µ = []1[]2[]3[]4[]5[]collect; input alphabet
is Σ = {aij : a ∈ C, 1 ≤ i ≤ n; 1 ≤ j ≤ m} ∪{bij : a ∈ C, 1 ≤ i ≤ n;
1 ≤ j ≤ m}; environment alphabet is ε = {āij : a ∈ C, 1 ≤ i ≤ n,
1 ≤ j ≤ m, a ∈ C} ∪ {Aij : a ∈ C, 1 ≤ i ≤ n; 1 ≤ j ≤ ma ∈ C} ∪ {b̄ij :
a ∈ C, 1 ≤ i ≤ n, 1 ≤ j ≤ m, b ∈ C} ∪ {Bij : b ∈ C, 1 ≤ i ≤ n;
1 ≤ j ≤ mb ∈ C}; w1u, w2u, w1db, w2db = ∅; iΠ = 1; oΠ = collect.

15

Yu. Rogozhin et al.

The only quantum system for one database picture is Q1 that will
be described below.

Now let us present set R of communication rules.
Firstly, the segmentation is implemented by P system based cal-

culation using subset Rpsyst of R. The Rpsyst is presented only for
one image, because rules are identical, excepting replacement a by b.
Communication rules of Rpsyst are divided into types according seg-
mentation steps.

Rules of type 1 look like (1, aijbkl/āijAijbkl, 0), where a, b ∈ C, 1 ≤
i, k ≤ n; 1 ≤ j, l ≤ m}. These rules identify the contour pixels by
adjacency of different colors and produce the marks of the edge pixels.

After these marks appear, the rules of type 2 start to be applied in
parallel with type 1 rules. Rules of type 2 are as follows:
(1, āijaij+1āi+1j+1bi+1j/āij āij+1Aij+1āi+1j+1bi+1j , 0) a, b ∈ C, a < b, 1 ≤
i ≤ n− 1, 1 ≤ j ≤ m− 1
(1, āijai−1j+1āij+1bij+1/āij āi−1jAi−1j āi−1j+1bij+1, 0) a, b ∈ C, a < b, 1 ≤
i ≤ n; 1 ≤ j ≤ m− 1
(1, āijaij+1āi−1j+1bi−1j/āij āij+1Aij+1āi−1j+1bi−1j , 0) a, b ∈ C, 1 ≤ i, k ≤
n; 1 ≤ j, l ≤ m− 1
(1, āijai+1j āi+1j+1bij+1/āij āi+1jAi+1j āi+1j+1bij+1, 0) a, b ∈ C, 1 ≤ i, k ≤
n− 1; 1 ≤ j, l ≤ m− 1

These rules mark with the pixels that are adjacent to two pixels
of the same color, which were marked by rules of type 1 but with the
condition that the marked objects are adjacent to another pixel with a
different color. Together with these operations the object representing
the final border pixel is brought from the environment.

Finally, the rules of type 3 (1, Aij/λ, 2), for 1 ≤ i ≤ n, 1 ≤ j ≤ m
are applied putting all the edge pixels Aij in the output cells.

The only change, made in the algorithm from [6] to adopt it for
retrieval, is the absence of final stage in which segmented image is
restored from tissue P system. To prepare the enter in membrane of
HQ we only need the points of contours that divide segmented areas.
They are stored in the resulting multiset Aij (Bij). Actually we have
the set of contour points that are now independent from color. To solve
retrieval problem, points Bij obtained from Imgu have to be checked

16

Hybrid Models of High Performance Computations

(in fully parallel mode) only on existence of contour point (points) Aij

in correspondent neighborhood for Imgdb. The question of similarity is
mapped to matching of criterion Csim to threshold. This fact makes the
problem similar to graph isomorphism one (for case of reduced graph),
that has a number of quantum-based solutions in majority applying
the adaptation of classical Grover search [7].

To manage HQ calculation of this problem, we have to apply two
extensions of classical Grover search algorithm. Firstly, we need the
possibility of starting from an arbitrary state. The convergence of
Grover search in this case is proved in [8] and iterations number is
π
√

N
4 . The second extension is a well known one: existence of several

solutions. It is proved that Grover search algorithm converges with
the same number of iterations even when the number of solutions is
unknown, but only if any arbitrary solution is suited [9]. This is our
case because presence of any contour point in the given neighborhood
is enough for a positive answer.

The next subsetRq ofR prepares the input for the quantum system.
Rq = (2, Aij/λ,)5, (4, Bij/λ,)5, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Inp contains
Aij ∪ Bij , Outp is {yes, no} i.e. similar or not. The activation of HQ

membrane has to wait until segmentation of both images finishes.
The calculation inside HQ membrane is implemented by the follow-

ing way. Both user and database images contours are coded by integers
i, 0 < i < Ncntr that represent index number of the corresponding pixel
in the image left-right and top-down. The |x〉 and |y〉 registers of HQ

membranes are activated by these tuples of integer. The search is pro-
vided for each integer in |x〉 having |y〉 as work register. Starting from
description in work [7] where the close task is solved, the following
Grover oracle is build:

f(x) =

{
1, if ileftnbh < i < irightnbh;
0, otherwise.

In general the algorithm is:
1. Obtain the integer |xi〉 from register |x〉
2. Use Grover Algorithm with oracle described above on the ele-

ments of |y〉 to search the contour point in given neighborhood.

17

Yu. Rogozhin et al.

3. if Grover search gives the positive answers, then Nsim + +
4. if i + + < Nucont, then return to step 1, else
5. the criterion Csim = Nsim/Nucont is evaluated, then the answer

yes/no is generated and passed into membrane µcollect.
This calculation can be repeated in parallel for all database images,

collecting the answers in µcollect.

6 Conclusions

This work introduces our version of computational paradigm that com-
bines both quantum and biological approaches. In the field of uncon-
ventional computing, quantum and biological paradigms were devel-
oped mostly in parallel but both are considered as the tools for hard
tasks solutions. Solutions of some, mostly practical, hard tasks by
pure quantum or pure bio-inspired methods could be inefficient. The
idea of hybrid model springs from necessity of efficient computational
models for such problems. We use P systems as the starting point at
the hybrid model development. The proposed computational model
applies the classical P system framework in which the quantum-style
algorithms are interned.

We concentrated in this paper on demonstration of functioning of
the proposed hybrid model. In our following works we will provide
more detailed basis as well as the quantitative characteristics of the
effectiveness of hybrid calculations. Simulation of the hybrid model
will be also discussed. Here and now we just intend to show viability of
membrane-quantum hybrid model. For this, we choose two problems of
different patterns: the first problem belongs to theoretical computing,
while the second is strongly practical one. Both problems show good
applicability of the proposed hybrid model.

We presented here the hybrid model where the P system (macro)
level is the main frame while quantum (micro) level is represented by
membrane with quantum computation. The mutual accepting of in-
put/output by computation models consists, on the current stage, in
mapping of P system multisets to quantum basis states. Quantum com-
putation is reduced in these problems to quantum oracle that answers

18

Hybrid Models of High Performance Computations

yes or no.
We would provide in our further research mutually-inspired devel-

opment of formal hybrid model description and practical solutions for
more emerging and complicated tasks that can demonstrate the advan-
tages of hybrid model.

Acknowledgment

This work was executed under the project STCU 5384 awarded by the
Scientific and Technology Center in Ukraine.

References

[1] Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.

[2] C. P. Williams. Explorations in Quantum Computing. Springer,
2008.

[3] A. Leporati. P systems with a quantum-like behavior: Background,
definition, and computational power, in: Lecture Notes in Com-
puter Science, 2007, vol. 4860, pp. 32–53.

[4] A. Alhazov, R. Freund. Asynchronous and maximally parallel de-
terministic controlled non-cooperative P systems characterize NFIN
and coNFIN, in: Lecture Notes in Computer Science, E. Csuhaj-
Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, and G. Vaszil,
Eds., 2013, vol. 7762, pp. 101–111.

[5] D. Sburlan. Further results on P systems with promoters/inhibitors,
International Journal of Foundations of Computer Science, vol. 17,
pp. 205–221, February 2006.

[6] H. A. Christinal, D. Diaz-Pernil, P. Real. Region-based segmentation
of 2D and 3D images with tissue-like P systems, Pattern Recogni-
tion Letters, vol. 32(16), pp. 2206–2212, 2011.

19

Yu. Rogozhin et al.

[7] N. Volpato, A. Moura. A fast quantum algorithm for the
closest bichromatic pair problem, Instituto de Computação,
Universidade Estadual de Campinas, Tech. Rep. IC-10-03, January
2010. [Online]. Available: http://www.ic.unicamp.br/~reltech/
2010/10-03.pdf

[8] D. Kenigsberg. (2001) Grover’s quantum search algorithm
and mixed states. Computer Science Department, The
Technion – Israel Institute of Technology. [Online]. Avail-
able: http://www.cs.technion.ac.il/users/wwwb/cgi-bin/
tr-info.cgi/2001/MSC/MSC-2001-01

[9] E. Rieffel, W. Polak. Quantum Computing – a Gentle Introduction.
Massachusetts Institute of Technology, 2011.

Yurii Rogozhin, Artiom Alhazov, Received March 24, 2014

Lyudmila Burtseva, Svetlana Cojocaru,
Alexandru Colesnicov, Ludmila Malahov

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD-2028, Moldova

E–mails
Artiom Alhazov: artiom@math.md

Lyudmila Burtseva: luburtseva@gmail.com

Svetlana Cojocaru: Svetlana.Cojocaru@math.md

Alexandru Colesnicov: acolesnicov@gmx.com

Ludmila Malahov: lmalahov@gmail.com

20

Computer Science Journal of Moldova, vol.22, no.1(64), 2014

Chromatic Polynomials Of Some

(m, l)−Hyperwheels

Julian A. Allagan

Abstract

In this paper, using a standard method of computing the chro-
matic polynomial of hypergraphs, we introduce a new reduction
theorem which allows us to find explicit formulae for the chro-
matic polynomials of some (complete) non-uniform (m, l)−
hyperwheels and non-uniform (m, l)−hyperfans. These hyper-
graphs, constructed through a “join” graph operation, are some
generalizations of the well-known wheel and fan graphs, respec-
tively. Further, we revisit some results concerning these graphs
and present their chromatic polynomials in a standard form that
involves the Stirling numbers of the second kind.

Keywords: chromatic polynomial, hyperfan, hyperwheel,
Stirling numbers.

1 Basic definitions and notations

For basic definitions of graphs and hypergraphs we refer the reader
to [1, 4, 10, 17, 20]. A hypergraph H of order n is an ordered pair
H = (X, E), where |X| = n is a finite nonempty set of vertices and
E is a collection of not necessarily distinct non empty subsets of X

called (hyper)edges. In this paper, all hypergraphs discussed are con-
sidered simple and Sperner, i.e., they have distinct hyperedges and no
hyperedge is a subset of another.

A hypergraph H is r−uniform, if |e| = r for each e ∈ E ; otherwise,
H is said to be non-uniform. In the case when r = 2, the resulting
hypergraph is called a graph which is often defined by H = (V,E). A

c©2014 by J. A. Allagan

21

J. A. Allagan

hypergraph is said to be linear if each pair of hyperedges has at most
one vertex in common. The degree of a vertex v, denoted by d(v), is
the number of hyperedges that contain v. Hypergraphs in this paper
are assumed to be connected and linear unless stated otherwise.

Given a hypergraph H = (X, E), we define the deletion of e by
H− e, which is the hypergraph obtained from H by deleting some hy-
peredge e ∈ E . The contraction of e defined by H.e, is the hypergraph
obtained from H by identifying all the vertices in e by a single vertex
and removing e from E (clearing).

A hyperedge e1 ∈ E is called a hyperleaf if there exists e2 ∈ E − e1

such that e ∩ e2 ⊆ e1 ∩ e2 for every e ∈ E − e1. In the case of linear
hypergraphs, a hyperleaf is simply a hyperedge with exactly one vertex
of degree greater than 1. If P l := v1, e1, v2, e2, . . . , vl, el, vl+1 denotes an
alternating sequence of distinct hyperedges ei and distinct intersecting
vertices vi, then P l is called an l−hyperpath, for all l ≥ 1. In the
event v1 = vl+1 for all l ≥ 2, the resulting hypergraph is called an
l−hypercycle which we denote by Cl. It causes no confusion to say that
Cl is induced by the sequence of hyperedges (e1, e2, . . . , el), for all l ≥ 2.
We note that the term elementary hypercycle has also been used by
Tomescu [15] to describe l−hypercycle and yet, for simplicity, we choose
to use the former term. Moreover, we point out that a 2−hypercycle
induced by (e1, e2) when 2 < |e1| ≤ |e2|, is not linear, and in fact, is a
2−hyperpath with |e1 ∩ e2| = 2. For this paper, we do not make such
a distinction in name, since it does not affect the results.

Let H1 and H2 be two hypergraphs. The join of H1 and H2, de-
noted by H1 ∨ H2, is the hypergraph H whose vertex set is X(H) =
X(H1) ∪ X(H2), a disjoint union, and whose hyperedge set is E(H) =
E(H1) ∪ E(H2) ∪ {x1x2 | x1 ∈ X(H1), x2 ∈ X(H2)}. For example,
Kn1

∨Kn2
∨. . .∨Knk

= K(n1, n2, . . . , nk) is a complete k−partite graph
with part sizes n1, . . . , nk. We denote a wheel graph by W l = C l ∨ v,
where C l is a cycle on l = n vertices. C l is the rim of the wheel and
the edges not in the rim are called spokes. We will call a wheel on l

rim edges (or on n + 1 vertices), an l−wheel, for short. For instance,
when l = 2, a 2−wheel graph is a cycle C3 ' K3; for this reason, it is
customary to define a 3−wheel instead. Although a wheel and a cycle

22

Chromatic Polynomials Of Some (m, l)−Hyperwheels

are both traditionally defined on n vertices (see [20] for instance), we
think it causes no confusion to substitute (where it is convenient) the
number of vertices n for l, the number of edges. Further, the notation
of W l and C l (instead of Wn and Cn, respectively) will be particularly
important for us when handling hypergraphs. In each of the formula
presented in this paper, one can easily replace l with the appropriate
number of vertices by a simple substitution. We also denote the falling
factorial λt = λ(λ − 1)(λ − 2) . . . (λ − t + 1) with λ0 = 1. Further, the
Stirling number of the second kind is denoted by

{

n
k

}

; it counts the
number of partitions of a set of n elements into k nonempty subsets.
Clearly

{

n
0

}

=
{0

n

}

= 0 and
{

n
1

}

=
{

n
n

}

=
{0

0

}

= 1. These notations
and other combinatorial identities can be found in [12].

2 Chromatic polynomial of some graphs

The notion of coloring the vertices of a graph has been widely studied
[10, 20]. A given graph G on n vertices can be properly colored in
many different ways using a sufficiently large number of colors. This
property of a graph is expressed elegantly by means of a polynomial.
This polynomial is called the chromatic polynomial of G. It is well-
known that Birkhoff [5] first introduced this polynomial in 1912 in an
attempt to prove the four color theorem. The value of the chromatic
polynomial P (G,λ) = P (G) of a graph with n vertices gives the number
of ways to properly color the graph G, using λ or fewer colors. For
instance, the chromatic polynomials of a complete graph on n vertices,
a tree, and a cycle with l edges are respectively given by P (Kn) = λn,
P (T l) = λ(λ − 1)l and P (C l) = (λ − 1)l + (−1)l(λ − 1).

The following theorem of Whitney [22], which gives the chromatic
polynomial of a graph in terms of ”broken circuits”, is often used as a
standard form; this form explicitly gives a basic property of the chro-
matic polynomial, namely, the powers of the chromatic polynomial are
consecutive and their coefficients alternate in sign.

Theorem 2.1. (Whitney’s ”Broken Circuits” Theorem). Let P (G,λ) =
λn − a1λ

n−1 + a2λ
n−2 − . . . + (−1)n−1an−1λ. The coefficient ai is equal

23

J. A. Allagan

to the number of i−subsets of edges of the graph G which contain no
broken cycles, for each i = 1, 2, . . . , n − 1.

Although any chromatic polynomial can be written in this form,
it is shown in [13] that chromatic polynomials written in terms of the
Stirling numbers of the second kind have many applications. Still, we
can always rewrite our results given in terms of Stirling numbers into
a more standard basis, using the combinatorial identity (see [12] for

instance) that

{

n

k

}

=
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn.

F 3 = P 3 ∨ v
F 3 = T 3 ∨ v

(a) Gem graph (b) Θ(1, 2, 2, 2) graph

Figure1. Two non-isomorphic fan graphs

u1 u2 u3 u4

v

w1 w2 w3

w4

v

Theorem 2.2. Suppose H is a (hyper)graph. Then P (H ∨ Kn, λ) =
n
∑

i=0

{

λ

i

}

λiP (H, λ − i).

Proof. Recall that
{

λ
i

}

counts the number of ways of partioning n ver-
tices into i distinct classes of colors. Now, there are λi ways to color
the vertices of each class. Since a color used in a class cannot occur on
any vertex in H, the result follows.

24

Chromatic Polynomials Of Some (m, l)−Hyperwheels

Using a similar argument, we derive an alternative version of the
previous theorem as:

Theorem 2.3. (Alternative Version) Suppose Hl is a hypergraph with
l hyperedges. Then P (Hl ∨ Kn, λ) = λnP (Hl, λ − n).

Corollary 2.3.1. Let G = T l ∨ Kn. The chromatic polynomial of G

is given by P (G) = λn(λ − n)(λ − n − 1)l.

It is easy to verify that when l = 1 and n = 2, P (G) = λ2(λ −
2)(λ − 3) = λ4 = P (K4).

Corollary 2.3.2. The chromatic polynomial of a complete k−partite

graph G = K(n, 1 . . . , 1) is P (G) =

n
∑

i=0

{

λ

i

}

λi(λ − i)k−1.

Proof. Clearly G ' Kn ∨ Kk−1 and P (Kk−1, λ) = λk−1. The result
follows from Theorem 2.2.

Observe that if we choose to count the proper colorings of the ver-
tices of Kk−1 first, we can easily establish an equivalent formula that
P (G) = λk−1(λ−k +1)n, a formula that is also supported by Theorem
2.3.

Corollary 2.3.3. Suppose G = K(n1, n2) is a complete bipartite graph.

Then P (G) =

n1
∑

i=0

{

λ

i

}

λi(λ − i)n2 .

Proof. This result also follows from Theorem 2.2, since G ' Kn1
∨Kn2

.

We define an (m, l)−wheel and (m, l)−fan graphs respectively by
W m,l ' Km ∨ C l and Fm,l ' Km ∨ P l, where P l is an l−path, C l an
l−cycle, and Km is an empty graph on m vertices. We note that though
P l may not be isomorphic to T l for l ≥ 3, their chromatic polynomials
are the same for all l. For this reason, it even makes sense to define
an (m, l)−fan graph by Fm,l ' Km ∨ T l, where T l is an l−tree. When
m = 1, a (1, l)−wheel graph is simply the usual wheel graph and a

25

J. A. Allagan

(1, l)−fan graph is simply called a fan graph (also known as a 2−tree
graph in [20]); in which case, we let W 1,l = W l and F 1,l = F l. Thus,
(m, l)−wheel and (m, l)−fan graphs are some generalizations of the
ordinary wheel and fan graphs (Figure 1), for m ≥ 1. In section 4, we
provide further generalizations of these graphs to hypergraphs.

Corollary 2.3.4. The chromatic polynomial of an (m, l)−wheel graph

is given by P (W m,l) =
m
∑

i=0

{

λ

i

}

(

(λ − i − 1)l + (−1)l(λ − i − 1)
)

.

Corollary 2.3.5. The chromatic polynomial of an (m, l)−fan graph is

given by P (Fm,l) =
m
∑

i=0

{

λ

i

}

λi(λ − i)(λ − i − 1)l.

Corollary 2.3.6. The chromatic polynomial of an l−wheel graph is
given by P (W l) = λ((λ − 2)l + (−1)l(λ − 2)).

Corollary 2.3.7. The chromatic polynomial of a fan graph is P (F l) =
λ(λ − 1)(λ − 2)l.

3 Chromatic polynomial of some hypergraphs

In 1966 P. Erdös and A. Hajnal extended the notion of proper coloring
of a graph to the coloring of a hypergraph [11]. Thus, the chromatic
polynomial of a hypergraph H, first denoted in [16] by P (H, λ) = P (H),
is the function that counts the number of proper λ−colorings, which
are mappings, f : X → {1, 2, . . . , λ} with the condition that every hy-
peredge has at least two vertices with distinct colors. We encourage
the reader to refer to [1, 6, 13, 14, 17] for detailed information about
chromatic polynomials, research, and applications of hypergraph col-
orings.

This next theorem will be instrumental to streamline the arguments
we make in several upcoming proofs for the remaining of this paper.
Similar versions of this theorem can be found in [6, 19]. However, we
think this particular version (Reduction Theorem) is unknown as it
generalizes the Fundamental Reduction Theorem for graphs found in
[10, 20] for instance.

26

Chromatic Polynomials Of Some (m, l)−Hyperwheels

Theorem 3.1. (Reduction Theorem) Suppose H is a hypergraph with
l ≥ 2 hyperedges. Then P (H) = λ|e|−2P (H− e)−P (H.e), where e is a
hyperedge with exactly two vertices of degree 2 or greater.

Proof. Note that if |e| = 2, then the relation satisfies the reduction for
graphs.

Let u1 and u2 be the 2 vertices of degree 2 in e. In any proper
coloring of the hyperedge e using λ colors, the following is true:

Either (i) u1 and u2 have the same color, or (ii) u1 and u2 have
different colors. We therefore count the number of such colorings for
each case in turn.

Case (i) There are λ|e|−2−1 ways to color the vertices in e\{u1, u2}
so that not all receive the same color, and there are P (H.e) ways to
color the remaining vertices so that f(u1) = f(u2) (to see this, delete e

and identify u1 and u2). Hence, there are (λ|e|−2 − 1)P (H.e) colorings.

Case (ii) There are λ|e|−2 colorings of the vertices in e\{u1, u2}. For
each such coloring, the number of colorings of the remaining vertices is
P (H− e)−P (H.e), since the first term counts the number of colorings
where u1 and u2 may have the same or different colors, and the second
term counts the number of colors where u1 and u2 may have the same
color. So there are λ|e|−2(P (H − e) − P (H.e)) colorings altogether.

By combining (i) and (ii), we obtain the result for all |e| ≥ 2.

Dohmen [8] extended Whitney’s ”Broken Circuits” Theorem to hy-
pergraphs with the next proposition. It denotes by n(H), the number
of vertices of H, m(H), the number of hyperedges of H and by c(H),
the number of connected components of H.

Proposition 3.1. Let H be a hypergraph. Then

P (H) =
∑

S⊆H

(−1)m(S)λn(H)−n(S)+c(S). (1)

Later, Tomescu [15] also presented a similar result using an
inclusion-exclusion principle argument in

27

J. A. Allagan

Lemma 3.1. Let H = (X, E) be a connected hypergraph with |X| = n.
Denote by N(i, j) the number of spanning subhypergraphs of H with n

vertices, i components, and j hyperedges. Then

P (H) =

n
∑

i=1

aiλ
i, (2)

where ai =
∑

j≥0

(−1)jN(i, j).

We now present some known results (see [1, 6, 19] for instance),
although in different forms. Our results are more in line with the stan-
dard form (2) as they can have some added benefits for further analysis,
namely, finding generating functions. In addition, these results will not
only help to illustrate the Reduction Theorem but also later serve the
purpose of comparing the effect of a certain ”join” operation on the
chromatic polynomial of some hypergraphs.

The next theorem was first presented by Walter [19] as a general-
ization of Dohmen’s result for r−uniform hypertree [9]. Though the
proof can be obtained by a recursion using the Reduction Theorem, it
is quite simple by an induction on l ≥ 1.

Theorem 3.2. If T l = (X, E) is an l−hypertree, then P (T l) =

λ

l
∏

i=1

(λ|ei|−1 − 1), for all l ≥ 1.

Proof. When l = 1, it is clear that there are λ|e| − λ = λ(λ|e|−1 − 1)
ways to color the vertices of a hyperedge so that not all of them have
the same color. So, we assume l ≥ 2. Let el be a hyperleaf (there
is at least one since T l is acyclic). Then, for each proper coloring of
T l−el, there are exactly λ|el|−1−1 ways to properly color the remaining
(pendant) vertices of el, giving (λ|el|−1 −1)P (T l − el) proper colorings.
Since P (T l − el) = P (T l−1), the result follows from the inductive
hypothesis.

Theorem 3.3. The chromatic polynomial of an l−hypercycle is given
by

28

Chromatic Polynomials Of Some (m, l)−Hyperwheels

P (Cl) =

l−1
∑

i=0

(−1)iλ|el−i|−2P (T l−i−1), with P (T 0) = λ(1 − λ2−|e1|).

Proof. When l = 2, we apply the Reduction Theorem on e2 to ob-
tain that P (C2) = λ|e2|−2P (T 1) − P (T 1

∗), where T 1
∗ is a (loop) hyper-

edge on |e1| − 1 vertices which chromatic polynomial is λ|e1|−1 − λ =
λ|e1|−2P (T 0).

Further, when l = 3, we have that P (C3) = λ|e3|−2P (T 2)−P (C2) =
λ|e3|−2P (T 2)− λ|e2|−2P (T 1) + P (T 1

∗). Using the previous result and a
simple recursion, we establish the formula for all l ≥ 2, with P (T 0) =
λ2−|e1|P (T 1

∗).

Corollary 3.3.1. The chromatic polynomial of an l−hypercycle is
given by

P (Cl) = λ
(

l−2
∑

i=0

(−1)iλ|el−i|−2
l−i−1
∏

j=1

(λ|ej |−1 − 1) + (−1)l−1(λ|e1|−2 −

1)
)

, for all l ≥ 2.

Proof. This follows directly from Theorems 3.2 and 3.3.

The following result follows when |e| = r, for each e ∈ E .

Corollary 3.3.2. The chromatic polynomial of any r−uniform l−
hypercycle is given by

P (Cl
r) = λ

(

l−2
∑

i=0

(−1)iλr−2(λr−1 − 1)l−i−1 + (−1)l−1(λr−2 − 1)
)

, for

all l ≥ 2, r ≥ 2.

The case when r = 2 follows as

Corollary 3.3.3. The chromatic polynomial of any l−cycle is given
by

P (C l) = λ

l−2
∑

i=0

(−1)i(λ − 1)l−i−1, for all l ≥ 2.

29

J. A. Allagan

We observe from this last result that we established the following:

P (C l) = (λ − 1)l + (−1)l(λ − 1) = λ

l−2
∑

i=0

(−1)i(λ − 1)l−i−1, for all

l ≥ 2.

We now present some results on some new families of hypergraphs.

4 Chromatic polynomial of some (m, l)−hyper-

wheels

Suppose Cl = (X, E) is an l−hypercycle induced by the set of hyper-
edges (e1, . . . , el) and let Km ' {v1, . . . , vm} be the empty graph on m

vertices. We shall call G1 = Km∨Cl, a complete (m, l)−hyperwheel and
G2 = Km ∨ P l, a complete (m, l)−hyperfan, where P l = Cl+1 − e for
some hyperedge e. We call G1 and G2 ”complete” in the sense of the
”join” operation. For this reason, their chromatic polynomials are eas-
ily obtained from Theorems 2.2, 3.2 and Corollary 3.3.1; these findings
are presented in the next two corollaries. Further, we found that remov-
ing some of the edges of G1 (and G2) yields more interesting families
that are less ”complete”. These families are better generalizations of
their graphs counterparts, namely the wheel and the fan graphs. They
will be called (m, l)−hyperwheels and (m, l)−hyperfans. The chro-
matic polynomials of (m, l)−hyperwheels and (m, l)−hyperfans remain
open for all m ≥ 2. However, we present the chromatic polynomials of
the particular case when m = 1, that we call l−hyperwheels (l ≥ 2)
and l−hyperfans (l ≥ 1).

Corollary 4.0.4. The chromatic polynomial of a complete (m, l)−hyper-

wheel is given by

P (G1, λ) =

m
∑

k=0

{

λ

k

}

λk(λ − k)

(

l−2
∑

i=0

(−1)i(λ − k)|el−i|−2
l−i−1
∏

j=1

(

(λ −

k)|ej |−1 − 1
)

+ (−1)l−1
(

(λ − k)|el|−2 − 1
)

)

, for all m ≥ 1, l ≥ 2.

30

Chromatic Polynomials Of Some (m, l)−Hyperwheels

u1

u2

v2

e1 e3

e2

e1

e2

W 2,3 F 2,2

W 2,3 − e3

Figure 2. A (2, 3)−hyperwheel and a (2, 2)−hyperfan

u3

v1 u2

u1

u3

v1

v2

Corollary 4.0.5. The chromatic polynomial of a complete (m, l)−hyper-

fan is given by P (G2, λ) =

m
∑

k=0

{

λ

k

}

λk(λ − k)

l
∏

j=1

(

(λ − k)|ej |−1 − 1
)

,

for all m ≥ 1, l ≥ 2.

Suppose Cl = (X, E) is an l−hypercycle induced by the set of
hyperedges (e1, . . . , el) and let Km ' {v1, . . . , vm} be the empty
graph on m vertices. We define an (m, l)−hyperwheel by Wm,l '
(Km ∨ Cl) − {uv|deg(u) = 1} for each u ∈ X and v ∈ V (Km). Each
edge {u, v} is referred to as a spoke and its endpoints u and v are
called rim and apex vertices respectively. The hyperedges ei are re-
ferred to as rim hyperedges as well. Figure 2 contains an example of a
(2, 3)−hyperwheel with rim hyperedges of size |ei|, for i = 1, 2, 3.

An (m, l)−hyperfan is defined by Fm,l = Wm,l+1−e, where Wm,l+1

is an (m, l+1)−hyperwheel and e is a rim hyperedge. In the case when
m = 1, we write W l (and F l) and call it an l−hyperwheel (and an

31

J. A. Allagan

l−hyperfan). Figure 2 contains a representation of a (2, 2)−hyperfan
with rim hyperedges of size |ei|, for i = 1, 2.

When |e| = r for each rim hyperedge e, we denote an (m, l)−

hyperwheel and an (m, l)−hyperfan respectively by Wm,l
r and Fm,l

r . For
instance W l

2 = W l, an l−wheel (l ≥ 2) and F l
2 = F l, an l−fan (l ≥ 1).

A 1−hyperfan (with 2 spokes) is a 3−hypercycle (with one hyperedge
and 2 edges).

Theorem 4.1. The chromatic polynomial of an l−hyperfan is given
by

P (F l) = λ(λ − 1)

l
∏

i=1

(λ|ei|−1 − λ|ei|−2 − 1), for all l ≥ 1.

Proof. We proceed by induction on l, which is the number of rim hy-
peredges.

Note that when l = 1, F1 = C3
∗ , which is a 3−hypercycle with a

single hyperedge that we denote by e1. From Corollary 3.3.1, when
l = 3, we have that P (C3

∗) = (λ − 1)2(λ|e1|−1 − 1) + (−1)3(λ − 1) =
λ(λ − 1)(λ|e1|−1 − λ|e1|−2 − 1).

For l ≥ 2, let e1, . . . , el be the rim hyperedges. Let ul and ul+1 be
the two vertices of el that are incident to v, the apex vertex. We apply
the Reduction Theorem on el to get that P (F l) = λ|el|−2P (F l − el) −
P (F l.el). Now, P (F l − el) = P (F l−1 ∪{vul+1}) = (λ− 1)P (F l−1) and
P (F l.el) = P (F l−1). Thus, we obtain the relation that

P (F l) = λ|el|−2(λ − 1)P (F l−1) − P (F l−1) = P (F l−1)(λ|el|−1 −
λ|el|−2 − 1).

Further, using P (F1) as the basis of the recursion, we have that

P (F l) = P (F1)
l
∏

i=2

(λ|ei|−1 − λ|ei|−2 − 1).

The result follows, since P (F1) = P (C3
∗) = λ(λ − 1)(λ|e1|−1 −

λ|e1|−2 − 1).

The following corollary is derived when each rim hyperedge of a
hyperfan is of size r ≥ 2.

32

Chromatic Polynomials Of Some (m, l)−Hyperwheels

Corollary 4.1.1. The chromatic polynomial of an l−hyperfan with
r−uniform rim hyperedges is P (F l

r) = λ(λ − 1)(λr−1 − λr−2 − 1)l,
l ≥ 1, r ≥ 2.

We note that when r = 2, the previous formula coincides with that
of Corollary 2.3.7.

Theorem 4.2. Suppose W l is a hyperwheel with rim hyperedges

e1, e2, . . . , el, l ≥ 2. Then P (W l) =

l−1
∑

i=0

(−1)iλ|el−i|−2P (F l−i−1) with

P (F0) = λ(λ − 1)(1 − λ2−|e1|).

Proof. Apply the Reduction Theorem on el, for l ≥ 2, to obtain that
P (W l) = λ|el|−2P (F l−1)−P (W l−1). From this relation, when l = 2, we
have that P (W2) = λ|e2|−2P (F1)−P (W1), where W1 is a 2−hyperpath
with one hyperedge e1 and one edge. Thus, P (W1) = (λ− 1)(λ|e1|−1 −
λ). Similarly, the result follows by a recursion with P (F0) = λ2−|e1|(λ−
1)(λ|e1|−1 − λ) = λ(λ − 1)(1 − λ2−|e1|).

Corollary 4.2.1. The chromatic polynomial of an l−hyperwheel is
given by

P (W l) = λ(λ − 1)

(

l−2
∑

i=0

(−1)iλ|el−i|−2
l−i−1
∏

j=1

(

λ|ej |−1 − λ|ej|−2 − 1
)

+

(−1)l−1(λ|e1|−2 − 1)

)

, for all l ≥ 2.

The following result follows when |e| = r, for each rim hyperedge e.

Corollary 4.2.2. The chromatic polynomial of any l−hyperwheel with
r−uniform rim hyperedges is given by

P (W l
r) =

= λ(λ− 1)
(

l−2
∑

i=0

(−1)iλr−2(λr−1 − λr−2 − 1)l−i−1 + (−1)l−1(λr−2 − 1)
)

,

for all l ≥ 2, r ≥ 2.

33

J. A. Allagan

The case when r = 2 follows as

Corollary 4.2.3. The chromatic polynomial of any l−wheel is given
by

P (W l) = λ(λ − 1)

l−2
∑

i=0

(−1)i(λ − 2)l−i−1, for all l ≥ 2.

We observe that from Corollary 2.3.6 and Corollary 4.2.3, together
we have

P (W l) = λ((λ−2)l +(−1)l(λ−2)) = λ(λ−1)

l−2
∑

i=0

(−1)i(λ−2)l−i−1,

for all l ≥ 2.

5 Conclusion

The purpose of this paper, as it has been for related research on the
topic of chromatic polynomials, is to derive the formulae for a number
of graphs and hypergraphs with the goal to further classify them. We,
once again, discovered that the process of finding these formulae is of a
great computational complexity. Further work is needed to determine
the efficiency of our proposed Reduction Theorem. Nonetheless, we
derived some nice recursive relationships which we hope can serve the
purpose of further analysis such as the finding of the roots and the
meaning of the coefficients of these polynomials. Our focus has been
primarily on graphs and hypergraphs which are obtained as a result
of a ”join” graph operation. This process and the resulting new class
of hypergraphs discussed in this paper are certainly worth extending
to other known multivariate polynomials such as the Tutte polynomial
[2, 21].

Another variation of hypergraph coloring, is the concept of mixed
hypergraph coloring, which has been studied extensively by Voloshin
[16, 18]. A mixed hypergraph H with vertex set X, is a triple
(X, C,D) such that C and D are subsets of X, called C−hyperedges
and D−hyperedges, respectively. Given the mixed hypergraph H =
(X, C,D), when C = ∅, we write H = (X,D) and call it a

34

Chromatic Polynomials Of Some (m, l)−Hyperwheels

D−hypergraph. This is the classical hypergraph discussed in this pa-
per. It will be interesting to see these results extended to mixed hy-
pergraphs since the chromatic polynomial of mixed l−hypercyles has
recently been found [3].

References

[1] J.A. Allagan. The chromatic polynomials of some linear uniform
hypergraphs, Congr. Numerantium 187 (2007), pp.156–160.

[2] J. A. Allagan. Tutte Polynomials of multi-bridge graphs, Computer
Science Journal of Moldova, vol.21, no. 2(62), 2013, pp.159–173.

[3] J. A. Allagan, D. Slutzky. Chromatic Polynomials of Mixed Hyper-
graphs, Australasian Journal of Combinatorics 58 (1) (2014), pp.
197–213.

[4] C. Berge. Graphs and hypergraphs, North-Holland, Amsterdam,
1973.

[5] G.D. Birkhoff. A determinant formula for the number of ways of
coloring a map, Ann. Math. 14 (1912), pp.42–46.

[6] M. Borowiecki, E. lazuka. Chromatic polynomials of hypergraphs,
Discuss Math., Graph Theory 20 (2000), no. 2, pp.293–301.

[7] A. Brandstdt, V.B. Le, J.P. Spinrad. Graph Classes: A survey, Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, SIAM (1987), 18.

[8] K. Dohmen. A broken-circuits-theorem for hypergraphs, Arch.
Math. (Basel) 64 (1995), no. 2, pp.159–162.

[9] K. Dohmen. Chromatic polynomials of graphs and hypergraphs,
(Chromatische Polynome von Graphen und Hypergraphen) Disser-
tation, Düsseldorf, 1993.

[10] F.M. Dong, K.M. Koh, K.L. Teo. Chromatic polynomials and chro-
maticity of graphs, Singapore: World Scientific Publishing. xxvii,
2005.

[11] P. Erdös, A. Hajnal. On chromatic number of graphs and set-
systems, Acta Math. Acad. Sci. Hung. 17 (1966), pp.61–99.

35

J. A. Allagan

[12] R.L. Graham, D.E. Knuth, O. Patashnik. Concrete Mathematics,
Addison–Wesley Publishing, 1994, pp.264–265.

[13] A. Mohr, T.D. Porter. Applications of Chromatic Polynomials In-
volving Stirling Numbers, J. Combin. Math. and Comb. Computing
70 (2009), pp.57–64.

[14] R.C. Read. An introduction to chromatic polynomials, J. Combin.
Theory 4 (1968), pp.52–71.

[15] I. Tomescu. Chromatic coefficients of linear uniform hypergraphs,
J. Combin. Theory B 2(72) (1998), pp.229–235.

[16] V.I. Voloshin. The mixed hypergraphs, Computer Science Journal
of Moldova 1 (1993), no.1, pp.45–52.

[17] V.I. Voloshin. On the upper chromatic number of a hypergraph,
Australasian Journal of Combinatorics 11 (1995), pp.25–45.

[18] V.I. Voloshin. Coloring Mixed Hypergraphs: Theory, Algorithms
and Applications, American Mathematical Society, 2002.

[19] M. Walter. Some Results on Chromatic Polynomials of Hyper-
graphs, Electronic Journal of Combinatorics 16 (2009), R94.

[20] D. West. Introduction to Graph Theory, Prentice Hall, 2001, 229.

[21] J. A. White. On multivariate chromatic polynomials of hypergraphs
and hyperedge elimination, Electronic Journal of Combinatorics 18
(2011), 120.

[22] H. Whitney. A logical expansion in mathematics, Bull. Amer.
Math. 38 (1932), pp.572–579.

Julian A. Allagan Received July 12, 2013

Julian A. Allagan,

University of North Georgia, Watkinsville, GA, United States.

Department of Mathematics

E–mail: julian.allagan@ung.edu

36

Computer Science Journal of Moldova, vol.22, no.1(64), 2014

A New Full-Newton Step O(n) Infeasible

Interior-Point Algorithm for P∗(κ)-horizontal

Linear Complementarity Problems

Soodabeh Asadi, Hossein Mansouri∗

Abstract

In this paper, we first present a brief review about the fea-
sible interior-point algorithm for P∗(κ)-horizontal linear comple-
mentarity problems (HLCPs) based on new directions. Then we
present a new infeasible interior-point algorithm for these prob-
lems. The algorithm uses two types of full-Newton steps which
are called feasibility steps and centering steps. The algorithm
starts from strictly feasible iterations of a perturbed problem,
and feasibility steps find strictly feasible iterations for the next
perturbed problem. By accomplishing a few centering steps for
the new perturbed problem, we obtain strictly feasible iterations
close enough to the central path of the new perturbed problem
and prove that the same result on the order of iteration complex-
ity can be obtained.

Keywords: Horizontal linear complementarity problem, in-
feasible interior-point method, central path.

1 Introduction

Interior-point methods (IPMs) have been studied for decades by many
researchers. After Karmarkar’s pioneer work on interior-point polyno-
mial algorithm for linear programming (LP) [1], interior-point poly-
nomial algorithms have been investigated by many researchers. For
example, Ye and Tse [2] extended Karmarkar’s algorithm for convex

c©2014 by S. Asadi, H. Mansouri.
∗This author is a corresponding author

37

S. Asadi, H. Mansouri

quadratic programming (CQP) and proved that it has polynomial com-
plexity bound O

(
n log

(
1
ε

))
. IPMs also are the powerful tools to solve

some widely used mathematical problems such as, semidefinite op-
timization (SDO) [3, 4] and linear complementarity problem (LCP)
[5, 6, 7, 8]. These methods are so-called feasible IPMs. Feasible IPMs
start with a strictly feasible interior point and keep feasibility during
the solution process. Infeasible IPMs (IIPMs) start with an arbitrary
positive point and feasibility is reached as optimality is approached.
The choice of the starting point in IIPMs is crucial for the perfor-
mance. Very recently, in [9, 10], Mansouri et al. presented the first
full-Newton step IIPM for LCPs, which is an extension of the work for
LP [11, 12, 13]. These algorithms use an intermediate problem which
is a suitable perturbation of the given original problem so that at any
stage the iterations are strictly feasible for the current perturbed prob-
lem. In each iteration the size of the perturbation decreases at the
same speed as the barrier parameter µ. When µ changes to a smaller
value, the perturbed problem also changes, and hence also the current
central path. The iterations are kept feasible for the new perturbed
problem and close to its central path. To achieve this, the algorithm
uses a so-called feasibility step. This step serves to get iterations that
are strictly feasible for the new perturbed problem and belong to the
region of quadratic convergence of its µ+-center, where µ+ is the bar-
rier parameter after updating. Now the algorithm can start from the
point obtained in the feasibility step and perform few centering steps
to obtain iterations that are close enough to the µ+-center of the new
perturbed problem. This process continues until the algorithm finds
an ε-solution or detects that the problem has no optimal solution with
zero duality gap. In this paper, we discuss an extension to HLCP of the
just described algorithm, using Darvay’s method [14]. We show that
whose complexity is at least as good as the best known complexity of
IIPMs. We use the results of analysis of the centering full Newton steps
in [15].

The paper is organized as follows: in Section 2 we first recall some
tools in the analysis of a feasible IPM that we use also in the analysis
of IIPMs proposed in this paper. In Section 3 we describe an IIPM

38

A new full-Newton IIPM for P∗(κ) -HLCPs

for HLCP. The analysis of the feasibility step of our method, the most
tedious part of the analysis, is carried out in Section 4. In Section
5 we will derive a complexity bound for our algorithm. In section 6
some numerical results are presented. Finally, some concluding remarks
follow in Section 7.

Some notations used throughout the paper are as follows. Vectors
are denoted by lower-case Latin letters and matrices by capital Latin
letters. Rn

+(Rn
++) is the nonnegative (positive) orthant of Rn. Further,

X is the diagonal matrix whose diagonal elements are the coordinates
of the vector x, i.e., X = diag (x), and I denotes the identity matrix
of appropriate dimension. The vector xs = Xs is the componentwise
product (Hadamard product) of the vectors x and s, and for α ∈ R the
vector xα denotes the vector whose i-th component is xα

i . We denote
the vector of ones by e. As usual, ‖·‖ denotes the 2-norm for vectors and
matrices. min(x) (or max(x)) denotes the smallest (or largest) value
of the components of x. C1 is the set of all continuously differentiable
functions in R. Finally, if z ∈ Rn

+ and f : R+ → R+, then f(z) denotes
the vector in Rn

+ whose i-th component is f(zi) , with 1 ≤ i ≤ n. We
write f(x) = O(g(x)) if f(x) ≤ cg(x) for some positive constant c.

2 Preliminaries

2.1 The HLCP problem

In the HLCP, we seek a vector pair (x, s) ∈ R2n that satisfies the
conditions

Qx + Rs = b, (x, s) ≥ 0, xT s = 0, (P)

where b ∈ Rn, and Q,R ∈ Rn×n. The standard (monotone) linear
complementarity problem (SLCP) is obtained by taking R = −I, and
Q positive semidefinite matrix. The class P∗ matrices are introduced
by Kojima et al. [16]. The matrix pair (Q, R) belongs to P∗ if there
exists a constant κ ≥ 0 such that

Qu + Rv = 0 ⇒ (1 + 4κ)
∑

i∈I+

uivi +
∑

i∈I−
uivi ≥ 0 ∀u, v ∈ Rn,

39

S. Asadi, H. Mansouri

where I+ = {i : uivi > 0} and I−={i : uivi <0}. Then we say that
the pair (Q,R) is a P∗(κ)-pair or equivalently the HLCP is called a
P∗(κ)-HLCP. For κ = 0, P∗(0)−HLCP is called the monotone HLCP.

2.2 Central path for the P∗(κ)-HLCP

Because of nonnegativity of x and s in (P), solving HLCP is equivalent
to finding a solution of the following system of equations:

Qx + Rs = b, x ≥ 0,
xs = 0, s ≥ 0.

(1)

The classical path-following IPMs consist in introducing a positive
parameter µ. One considers the nonlinear system parameterized by µ:

Qx + Rs = b, x ≥ 0,
xs = µe, s ≥ 0,

(2)

where e denotes the all-one vector. It is shown in [17] that un-
der interior-point condition (IPC), i.e., the existence of a vector pair
(x, s) > 0 with Qx + Rs = b, there exists one unique solution
(x(µ), (s(µ)). The path µ → (x(µ), (s(µ)) is called the central path. It
is known that when µ → 0, (x(µ), (s(µ)) goes to a solution of (P).

2.3 Feasible full-Newton step

In this section we briefly present the feasible IPM in [15]. Consider the
function

ϕ ∈ C1, ϕ : R+ → R+,

and suppose that the inverse function ϕ−1 exists. The system of equa-
tions in (2) can be written equivalently in the following form:

Qx + Rs = b, x ≥ 0,

ϕ
(

xs
µ

)
= ϕ(e), s ≥ 0.

(3)

40

A new full-Newton IIPM for P∗(κ) -HLCPs

If we use Newton’s method for linearizing the system (3), we get
the following system for the search directions ∆x and ∆s:

Q∆x + R∆s = 0, x ≥ 0,
s
µϕ′

(
xs
µ

)
∆x + x

µϕ′
(

xs
µ

)
∆s =ϕ(e)− ϕ

(
xs
µ

)
, s ≥ 0,

which is equivalent to the following system:

Q∆x + R∆s = 0, x ≥ 0,

s∆x + x∆s = µ
(
ϕ′

(
xs
µ

))−1 (
ϕ(e)− ϕ

(
xs
µ

))
, s ≥ 0.

(4)

We define the following notations:

v =
√

xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
. (5)

Then we have

µv (dx + ds) = x∆s + s∆x, (6)

and

dxds =
∆s∆x

µ
. (7)

Consequently we have the scaled Newton-system as follows:

Q̄dx + R̄ds = 0,

dx + ds = pv, (8)

where

Q̄ = QXV −1, R̄ = RSV −1, pv =
ϕ(e)− ϕ

(
v2

)

vϕ′ (v2)
.

If ϕ(t) = t, then pv = v−v−1, and we obtain the standard algorithm.
Now we take ϕ(t) =

√
t based on Darvay’s technique for LP [14]. So

we have

pv = 2(e− v). (9)

41

S. Asadi, H. Mansouri

Then the systems (4) and (8) are equivalent to the following sys-
tems, respectively:

Q∆x + R∆s = 0, x ≥ 0,
s∆x + x∆s = 2µv(e− v), s ≥ 0,

(10)

and

Q̄dx + R̄ds = 0,

dx + ds = 2 (e− v) . (11)

We derive the new search directions dx and ds by solving (11) and
then we compute ∆x and ∆s via (5). The new iterations are given by

x+ = x + ∆x,

s+ = s + ∆s. (12)

In the analysis of the algorithm we use the norm-based proximity
measure to the central path as follows:

δ(v) := δ(x, s; µ) =
‖pv‖

2
= ‖e− v‖ . (13)

The algorithm starts with (x0, s0) such that δ(x0, s0; µ0) < τ :=
1

2(1+4κ) . In each iteration the search directions at the current iterations
with respect to the current value of µ be computed and then (12) be
applied to get new iterations. The algorithm terminates with a point in
τ -neighborhood of the central path that satisfies nµ ≤ ε. The following
lemmas are crucial in the analysis of the algorithm. We recall them
without proof.

Lemma 2.1 (Lemma 7 in [15]). Let δ := δ(x, s; µ) ≤ 1√
1+4κ

and µ+ =
(1− θ)µ, where 0 < θ < 1. Then

δ(x, s; µ+) ≤ θ
√

n + (1 + 4κ) δ2

1− θ +
√

(1− θ) (1− (1 + 4κ) δ2)
.

42

A new full-Newton IIPM for P∗(κ) -HLCPs

Algorithm 1. Feasible IPM for P∗(κ)-HLCPs

Input:
Accuracy parameter ε > 0;
threshold parameter τ < 1;
barrier update parameter θ, 0 < θ < 1;
feasible pair

(
x0, s0

)
with (x0)T s0 = nµ0 and µ0 > 0 such

that δ(x0, s0;µ0) ≤ τ .
begin

x := x0; s := s0; µ := µ0;
while nµ ≥ ε do
begin

(x, s) := (x, s) + (∆x, ∆s);
µ := (1− θ)µ;

end
end

Lemma 2.2 (Lemma 6 in [15]). After a full Newton-step, one has

(x+)T s+ ≤ nµ.

Lemma 2.3 (Lemma 5 in [15]). Let δ := δ(x, s;µ) ≤ 1√
1+4κ

. Then

δ(x+, s+; µ) <
(1 + 4κ)δ2

1 +
√

1− (1 + 4κ)δ2
.

Thus δ(x+, s+; µ) ≤ (√
1 + 4κ δ

)2, which shows the quadratic conver-
gence of the algorithm.

The following result establishes a polynomial iteration bound of the
above described algorithm; it easily follows from the above lemmas.

43

S. Asadi, H. Mansouri

Theorem 1 (Theorem 1 in [15]). If θ = 1
2(1+4κ)

√
n
, then the algorithm

requires at most

4(1 + 4κ)
√

n log
nµ0

ε

iterations.

3 Infeasible full-Newton step IPM

In this section we present an infeasible interior-point algorithm that
generates an ε-solution of P∗(κ)-HLCPs.

3.1 The perturbed problem and its central path

We use a triple
(
x0, s0, µ0

)
> 0 with x0s0 = µ0e for some (positive)

number µ0 to start our IIPM. We denote the value of the residual at
these initial points as r0, as

r0 = b−Qx0 −Rs0. (14)

Now for any ν with 0 < ν ≤ 1, we consider the perturbed problem
(Pν), defined by

b−Qx−Rs = νr0, (x, s) ≥ 0. (Pν)

Note that if ν = 1, then (x, s) =
(
x0, s0

)
yields a strictly feasible

solution of (Pν). We conclude that if ν = 1 then (Pν) satisfies the IPC.

Lemma 3.1. Let the original problem (P) be feasible, then the per-
turbed problem (Pν) satisfies IPC.

Proof. The proof is similar to the proof of Lemma 4.1 in [9].

We assume that (P) is feasible. Letting 0 < ν ≤ 1, Lemma 3.1
implies that the problem (Pν) satisfies the IPC, and hence its central
path exists. This means that the system

b−Qx−Rs = νr0, x ≥ 0, s ≥ 0,
xs = µe,

(15)

44

A new full-Newton IIPM for P∗(κ) -HLCPs

has a unique solution, for every µ > 0. In the sequel this unique solu-
tion is denoted by (x(µ, ν), s(µ, ν)). It is the µ-center of the perturbed
problem (Pν). Note that since x0s0 = µ0e, (x0, s0) is the µ0-center of
the perturbed problem (P1). In other words,

(
x

(
µ0, 1

)
, s

(
µ0, 1

))
=(

x0, s0
)
. In the sequel the parameters µ and ν always satisfy the rela-

tion µ = νµ0.

3.2 New feasibility search directions

For the search directions in the feasibility step we use the pair(
∆fx,∆fs

)
such that the new iterations

xf = x + ∆fx,
sf = s + ∆fs.

(16)

be feasible for (Pν+), where ν+ = (1− θ)ν. According to the definition
of (Pν), we have

b−Q(x + ∆fx)−R(s + ∆fs) = ν+r0,
(
x + ∆fx, s + ∆fs

)
> 0.

Since (x, s) is feasible for (Pν), it follows that ∆fx and ∆fs should
satisfy

Q∆fx + R∆fs = θνr0.

Now we propose new feasibility search directions for HLCPs based
on Darvay’s method in LP [14]. Consider the function

ϕ ∈ C1 , ϕ : R+ → R+,

and suppose that the inverse function ϕ−1 exists. The system of equa-
tions in (15) can be rewritten equivalently in the following form:

b−Qx−Rs = νr0, x ≥ 0,

ϕ
(

xs
µ

)
= ϕ(e), s ≥ 0.

(17)

We define:

df
x =

v∆fx

x
, df

s =
v∆fs

s
, (18)

45

S. Asadi, H. Mansouri

where v is defined in (5). Let ϕ(t) =
√

t, so after using Newton’s
method and linearizing the system (17), we get the following system
for the feasibility search directions ∆fx and ∆fs:

Q∆fx + R∆fs = θνr0, x ≥ 0,
s∆fx + x∆fs = 2µv(e− v), s ≥ 0,

(19)

and the following system for scaled feasibility search directions df
x and

df
s :

Q̄df
x + R̄df

s = θνr0,

df
x + df

s = 2 (e− v) , (20)

where

Q̄ = QXV −1, R̄ = RSV −1, X = diag (x), S = diag (s).

We derive the new search directions df
x and df

s by solving (20) and
then we compute ∆fx and ∆fs via (18).

3.3 Description of the algorithm

Suppose that ν = 1 and µ = µ0. Then (x, s) =
(
x0, s0

)
is the µ-center

of the perturbed problem (Pν). The algorithm is started by these
iterations. We measure proximity to the µ-center of the perturbed
problem (Pν) by the quantity δ(v) as defined in (13). We assume that
at the start of each iteration, just before the µ-update, δ(v) is smaller
than or equal to a (small) threshold value τ > 0. So this is certainly
true at the start of the first iteration.

One (main) iteration of the algorithm works as follows. Suppose
that for some µ ∈ (

0, µ0
)

we have (x, s) satisfying the feasibility condi-
tion (15) for ν = µ

µ0 , and δ(x, s, µ) ≤ τ . We reduce ν to ν+ = (1− θ) ν

and µ to µ+ = (1− θ) µ, with θ ∈ (0, 1), and find new iterations
(x+, s+) that satisfy (15), with µ replaced by µ+ and ν by ν+, and
such that xT s ≤ nµ+ and δ(x+, s+; µ+) ≤ τ . In each main itera-
tion first we accomplish one feasibility step to get iterations

(
xf , sf

)

46

A new full-Newton IIPM for P∗(κ) -HLCPs

that are strictly feasible for (Pν+) and close enough to its central path,
and then we perform a few centering steps to improve the closeness
of

(
xf , sf

)
to the central path of (Pν+) and obtain a pair (x, s) that

satisfies the condition δ (x, s; µ) ≤ τ . Since during the centering steps
the iterations stay feasible for Pν+ , it follows that for the analysis of the
centering steps we can use the analysis for the feasible IPM, presented
in Section 2.

Algorithm 2. Infeasible IPM for P∗(κ)-HLCP

Input:
Accuracy parameter ε > 0;
threshold parameter τ < 1;
barrier update parameter θ, 0 < θ < 1;
feasible pair

(
x0, s0

)
with (x0)T s0 = nµ0 and µ0 > 0 such

that δ
(
x0, s0, µ0

) ≤ τ .

begin
x := x0; s := s0; µ := µ0;
while max(nµ, ||r||) ≥ ε do
begin

feasibility step:
(x, s) := (x, s) + (∆fx, ∆fs);

µ-update:
µ := (1− θ)µ;

centering steps:
while δ(v) ≥ τ do
begin

(x, s) := (x, s) + (∆x, ∆s) ;
end

end
end

47

S. Asadi, H. Mansouri

3.4 Some useful tools

In this subsection we present some technical lemmas which we need in
the rest of the paper.

Lemma 3.2. One has

min(v) ≥ 1− δ(v).

Proof. Using (13), one has

δ(v) = ‖e− v‖ ≥ |1−min(v)| ≥ 1−min(v).

which results the lemma.

Lemma 3.3. One has

‖v‖ ≤ √
n + δ(v).

Proof. Due to Cauchy-Schwartz inequality, one has

eT v ≤ |eT v| ≤ ‖e‖ ‖v‖ .

Using the above inequality and (13), one has

δ2(v) =
n∑

i=1

(1− vi)
2 = ‖v‖2 − 2eT v + n ≥ (‖v‖ − ‖e‖)2 ,

which completes the proof.

4 Analysis of the feasibility step

In this section we present some conditions for strict feasibility of the
feasibility step and an upper bound for the proximity function after a
feasibility step.

Lemma 4.1. The new iterations
(
xf , sf

)
are strictly feasible if

∥∥∥df
xdf

s

∥∥∥
∞

< 1− δ2(v).

48

A new full-Newton IIPM for P∗(κ) -HLCPs

Proof. The proof of this Lemma is similar to the proof of Lemma 10
in [18] and therefore is omitted.

To simplify the notation in the sequel we introduce

ω(v) :=
1
2

(∥∥∥df
x

∥∥∥
2
+

∥∥∥df
s

∥∥∥
2
)

.

Lemma 4.2. If ω(v) < 1 − δ2(v), then the iterations
(
xf , sf

)
are

strictly feasible.

Proof. The proof is similar to the proof of lemma 11 in [18].

Assuming ω(v) < 1 − δ2(v), which guarantees the strict feasibility
of the iterations

(
xf , sf

)
. The next lemma gives an upper bound for

δ
(
xf , sf ; µ

)
.

Theorem 4.3. If the new iterations
(
xf , sf

)
are strictly feasible, then

δ
(
xf , sf ;µ+

)
≤ θ

√
n + δ2(v) + ω(v)

√
1− θ

(√
1− θ +

√
1− δ2(v)− ω(v)

) . (21)

Proof. The proof is similar to the proof of Theorem 2 in [18] and there-
fore is omitted.

Note that in the algorithm for using the quadratically convergence
of the centering steps after doing the feasibility step we need that the
following condition is satisfied

δ
(
xf , sf ; µ+

)
<

1√
1 + 4κ

. (22)

Using Theorem 4.3, this is certainly true, if

θ
√

n + δ2(v) + ω(v)
√

1− θ
(√

1− θ +
√

1− δ2(v)− ω(v)
) <

1√
1 + 4κ

. (23)

49

S. Asadi, H. Mansouri

By some elementary calculations, we obtain that if

ω(v) <
1

4
√

1 + 4κ
, (24)

δ(v) < τ <
1

4
√

1 + 4κ
, (25)

0 ≤ θ <
1

2n(1 + 4κ)
, (26)

then the inequality (23) is satisfied. In other words, the inequalities
(24), (25) and (26) imply that the iterations

(
xf , sf

)
are strictly feasible

and lie in the quadratic convergence neighborhood with respect to the
µ+-center of (Pν+). We proceed by considering the value ω(v) in more
detail.

4.1 An upper bound for ω(v)

We start by finding some bounds for the solution of a linear system of
the form

su + xv = a,

Qu + Rv = b̃.
(27)

Lemma 4.4 (Lemma 3.3 in [19]). If HLCP be P∗(κ), then for any
z = (x, s) ∈ R2n

++ and any a, b̃ ∈ Rn the linear system (27) has a
unique solution w = (u, v) and the following inequality is satisfied:

‖w‖z ≤
√

1 + 2κ ‖ã‖+
(
1 +

√
2 + 4κ

)
ξ(z, b̃),

where

ã = (xs)−
1
2 a, ‖w‖2

z = ‖(u, v)‖2
z = ‖Du‖2 +

∥∥D−1v
∥∥2

,

D = X− 1
2 S

1
2 ,

and

ξ(z, b̃)2 = min{‖(ũ, ṽ)‖2
z : Qũ + Rṽ = b̃}.

50

A new full-Newton IIPM for P∗(κ) -HLCPs

Comparing system (27) with (19) and considering w = (u, v) =
(∆fx,∆fs), a = 2µv(e − v), b̃ = θνr0, z = (x, s) in the system (27),
we have

∥∥∥D∆fx
∥∥∥

2
+

∥∥∥D−1∆fs
∥∥∥

2
≤ (28)

≤
(
2
√

1 + 2κ
∥∥∥(xs)−1/2 (µv(e− v))

∥∥∥ + (1 +
√

2 + 4κ)ξ(z, θνr0)
)2

.

Note that
∥∥∥(xs)−

1
2 (µv(e− v))

∥∥∥ =
√

µ ‖e− v‖ =
√

µδ(v).

Also by definition of ξ(z, b̃), we have

ξ(z, θνr0) = θνξ(z, r0).

By definitions of df
x and df

s , we obtain D∆fx =
√

µ df
x and

D−1∆fs =
√

µ df
s . Substituting the above equations in (28), we have

ω(v) ≤ 1
µ

(√
2µ(1 + 2κ)δ(v) +

1√
2

(
1 +

√
2 + 4κ

)
θνξ(z, r0)

)2

. (29)

To proceed, we have to specify our initial iterates
(
x0, s0

)
. We

assume that ρp and ρd are such that

‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd, (30)

for some optimal solutions (x∗, s∗) of (P), and as usual we start the
algorithm with

x0 = ρp e, s0 = ρd e, µ0 = ρp ρd. (31)

Note that for such starting points we have clearly

x∗ − x0 ≤ ρpe, (32)

s∗ − s0 ≤ ρde. (33)

Now we find an upper bound for ξ(z, r0).

51

S. Asadi, H. Mansouri

Lemma 4.5. Let ξ(·, ·) be as defined in Lemma 4.4. Then we have

ξ(z, r0) ≤
√

ρ2
p

µv2
min

‖s‖2
1 +

ρ2
d

µv2
min

‖x‖2
1 .

Proof. By definition of ξ(z, b̃), we have

ξ(z, r0)2 = min{‖(ũ, ṽ)‖2
z : Qũ + Rṽ = r0}

= min{‖Dũ‖2 +
∥∥(D)−1ṽ

∥∥2 : Qũ + Rṽ = r0}.
We also have

r0 =b−Qx0 −Rs0 = Qx∗ + Rs∗ −Qx0 −Rs0

= Q(x∗ − x0) + R(s∗ − s0),

thus by applying (32) and (33) the following inequalities are satisfied

ξ(z, r0)2 ≤ ∥∥D(x∗ − x0)
∥∥2+

∥∥D−1(s∗ − s0)
∥∥2 ≤

≤ ‖ρpDe‖2 +
∥∥ρdD

−1e
∥∥2 =

= ρ2
p

∥∥∥∥
√

s

x

∥∥∥∥
2

+ ρ2
d

∥∥∥∥
√

x

s

∥∥∥∥
2

≤ ρ2
p

∥∥∥∥
√

s

x

∥∥∥∥
2

1

+ ρ2
d

∥∥∥∥
√

x

s

∥∥∥∥
2

1

=

=
ρ2

p

µ

∥∥∥∥
√

µ

xs
s

∥∥∥∥
2

1

+
ρ2

d

µ

∥∥∥∥
√

µ

xs
x

∥∥∥∥
2

1

=
ρ2

p

µ

∥∥∥s

v

∥∥∥
2

1
+

ρ2
d

µ

∥∥∥x

v

∥∥∥
2

1
≤

≤ ρ2
p

µv2
min

‖s‖2
1 +

ρ2
d

µv2
min

‖x‖2
1 .

The proof is completed.

In what follows we obtain some upper bounds for ‖x‖1 and ‖s‖1.

Lemma 4.6. Let (x, s) be feasible for the perturbed problem (Pν) and(
x0, s0

)
as defined in (31). Then for any optimal solution (x∗, s∗), we

have

ν
(
xT s0 + sT x0

) ≤
≤ (1 + 4κ)

(
ν2nµ0+ ν(1− ν)

(
(x∗)T s0 + (x0)T s∗

)
+xT s

)
.

52

A new full-Newton IIPM for P∗(κ) -HLCPs

Proof. Since r0 = b−Qx0 −Rs0 and b−Qx−Rs = νr0, by definition
of perturbed problem, we have

Q (νx0 + (1− ν)x∗ − x) + R(νs0 + (1− ν)s∗ − s) =
= ν(Qx0 + Rs0) + (1− ν)(Qx∗ + Rs∗)− (Qx + Rs) =
= ν(b− r0) + (1− ν)b− (b− νr0) = 0.

Thus if

I+ = {i :
(
νx0 + (1− ν)x∗ − x

)
i

(
νs0 + (1− ν)s∗ − s

)
i
> 0},

and

I− = {i :
(
νx0 + (1− ν)x∗ − x

)
i

(
νs0 + (1− ν)s∗ − s

)
i
< 0},

then the P∗(κ) property implies that

(1 + 4κ)
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i +

+
∑

I−
(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i ≥ 0.

So we have
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i +

+
∑

I−
(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i ≥

≥ −4κ
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i.

Thus we obtain

[νx0 + (1− ν)x∗ − x]T [νs0 + (1− ν)s∗ − s] ≥
≥ −4κ

∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i ≥

≥
∑

I+

(
ν2x0

i s
0
i + ν(1− ν)(x∗i s

0
i + x0

i s
∗
i) + xisi

) ≥

≥ −4κ
(
ν2(x0)T (s0) + ν(1− ν)((x∗)T s0 + (x0)T s∗) + xT s

)
.

53

S. Asadi, H. Mansouri

Since (x∗)T s∗ = 0, sT x∗+xT s∗ ≥ 0 and sT x0+xT s0 ≥ 0, we deduce
that

−4κ
(
ν2(x0)T (s0) + ν(1− ν)((x∗)T s0 + (x0)T s∗) + xT s

) ≤
≤ [νx0 + (1− ν)x∗ − x]T [νs0 + (1− ν)s∗ − s] =
= ν2nµ0 + ν(1− ν)((x∗)T s0 + (x0)T s∗)− ν(sT x0 + xT s0) +
+xT s− (1− ν)(sT x∗ + xT s∗) + (1− ν)(x∗)T s∗ ≤
≤ ν2nµ0 + ν(1− ν)((x∗)T s0 + (x0)T s∗)− ν(sT x0 + xT s0) + xT s.

Therefore we have

ν(xT s0 + sT x0) ≤
≤ (1 + 4κ)

(
ν2nµ0+ ν(1− ν)

(
(x∗)T s0 + (x0)T s∗

)
+ xT s

)
.

The proof is completed.

Lemma 4.7. Let (x, s) be feasible for the perturbed problem (Pν) and(
x0, s0

)
as defined in (31). Then we have

‖x‖1 ≤ (1 + 4κ)
(
2n +

(√
n + δ(v)

)2
)

ρp, (34)

‖s‖1 ≤ (1 + 4κ)
(
2n +

(√
n + δ(v)

)2
)

ρd. (35)

Proof. Using Lemma 4.6 and Lemma 3.3, this lemma may be proved
in the same way as the proof of Lemma 16 in [18].

Substituting (34) and (35) in Lemma 4.5 and noting Lemma 3.2
gives

ξ(z, r0) ≤
√

2ρ2
pρ

2
d

µ (1− δ(v))2
(1 + 4κ)2

(
2n +

(√
n + δ(v)

)2
)2

=

=
√

2
µ

(1 + 4κ)ρpρd

(
2n + (

√
n + δ(v))2

)

(1− δ(v))
. (36)

54

A new full-Newton IIPM for P∗(κ) -HLCPs

Now by substituting (36) in (29), we have

ω(v) ≤ 1
µ

(√
2µ(1 + 2κ)δ(v) +

+
θν

(
1 +

√
2 + 4κ

)
(1 + 4κ)ρpρd

(
2n + (

√
n + δ(v))2

)

√
µ (1− δ(v))

)2

=

=

(√
2(1 + 2κ)δ(v) +

+
θ
(
1 +

√
2 + 4κ

)
(1 + 4κ)

(
2n + (

√
n + δ(v))2

)

1− δ(v)

)2

. (37)

4.2 Value for θ

We have found that δ(v) < 1√
1+4κ

holds if the inequalities (24) and
(25) and (26) are satisfied. Then by (37), inequality (24) holds if

√
2(1 + 2κ)δ(v) +

θ
(
1 +

√
2 + 4κ

)
(1 + 4κ)

(
2n + (

√
n + δ(v))2

)

1− δ(v)
<

<
1

2 4
√

1 + 4κ
.

Obviously, the left-hand side of the above inequality is increasing
in δ(v). Using this, one may easily verify that the above inequality is
satisfied if

τ =
1

32(1 + 4κ)
, θ =

1
50n(1 + 4κ)2

, (38)

which is in agreement with (24) and (25).
Note that by Lemma 4.2, to keep the iterates (xf , sf) be feasible,

the following condition must be satisfied

ω(v) < 1− δ2(v).

55

S. Asadi, H. Mansouri

It follows from (37) that the above inequality certainly holds if

√
2(1 + 2κ)δ(v) +

θ
(
1 +

√
2 + 4κ

)
(1 + 4κ)

(
2n + (

√
n + δ(v))2

)

1− δ(v)
<

<
√

1− δ2(v). (39)

It is easy to verify that, for the above inequality, the left side is
monotone increasing according to δ(v), while the right hand side is
monotone decreasing according to δ(v). Using (38), an upper bound
for the left hand side of inequality (39) is 0.1969, while a lower bound
for the right hand side of inequality (39) is 0.9995. In this case, we
conclude that the iterate (xf , sf) is strictly feasible.

5 Complexity analysis

Let δ
(
xf , sf ; µ+

) ≤ 1
2(1+4κ) , which is in agreement with (22). Starting

at (xf , sf) we repeatedly apply full Newton steps until the k−iterate,
denoted as (x+, s+) := (xk, sk), satisfies δ

(
xk, sk; µ+

) ≤ τ . We can
estimate the required number of (centering) Newton steps by using
Lemma 2.3. To simplify notations we define for the moment δ(vk) =
δ
(
xk, sk; µ+

)
, δ(v0) = δ

(
xf , sf ; µ+

)
and γ =

√
1 + 4κ. Note that

γ ≥ 1. It then follows that

δ
(
vk

)
≤

(
γδ

(
vk−1

))2
≤

(
γ

(
γδ

(
vk−2

))2
)2

≤

≤ . . . ≤ γ2+4+...+2k (
δ
(
v0

))2k

.

This gives

δ
(
vk

)
≤ γ2k+1−2

(
δ
(
v0

))2k

= γ−2
(
γ2δ

(
v0

))2k

≤ (
γ2δ

(
v0

))2k

.

Using the definition of γ and δ
(
v0

) ≤ 1
2(1+4κ) we obtain

γ2δ
(
v0

) ≤ (√
1 + 4κ

)2 1
2(1 + 4κ)

=
1
2
.

56

A new full-Newton IIPM for P∗(κ) -HLCPs

Hence we certainly have δ (x+, s+;µ+) ≤ τ if
(

1
2

)2k ≤ τ . Taking
logarithms at both sides, this reduces to

2k log2

1
2
≤ log2 τ.

Thus we find that after no more than
⌈
log2

(
log2

1
τ

)⌉
(40)

centering steps we have iterations (x+, s+) that satisfy δ (x+, s+; µ+) ≤
≤ τ . Substituting the value of τ from (38) in (40) gives that in the
algorithm, at most log2 (log2 (32(1 + 4κ))) centering steps are needed.
Note that in each main iteration both the value of xT s and the norm of
the residual are reduced by the factor 1− θ. Hence, the total number
of main iterations is bounded above by

1
θ

log
max

{(
x0

)T
s0,

∥∥r0
∥∥
}

ε
.

Due to (38) we may take

θ =
1

50n(1 + 4κ)2
.

Hence the total number of inner iterations is bounded above by

50n (1 + 4κ)2 log2 (log2 (32(1 + 4κ))) log
max

{(
x0

)T
s0,

∥∥r0
∥∥
}

ε
.

Thus we may state without further proof the main result of the
paper.

Theorem 5.1. If (P) has an optimal solution (x∗, s∗) such that
‖x∗‖∞ ≤ ρp and ‖s∗‖∞ ≤ ρd, then after at most

50n (1 + 4κ)2 log2 (log2 (32(1 + 4κ))) log
max

{(
x0

)T
s0,

∥∥r0
∥∥
}

ε

iterations, the algorithm finds an ε-solution of HLCP.

57

S. Asadi, H. Mansouri

Table 1. The number of iterations for the examples.

Examples The number of iterations
6.1 107

6.2 with n=10 111
6.2 with n=20 117
6.2 with n=30 121

6 Numerical results

The algorithm was tested on some P∗(0) (monotone) linear comple-
mentarity problems. So R = −I. For the algorithm, the initialization
parameters ρp and ρd are assumed as described in Subsection 4.1, and
τ = 0.031, ε = 10−4 and θ = 0.1. Table 1 shows the number of itera-
tions to obtain ε−solutions of the following examples with Algorithm 2.

Example 6.1.

Q =

1 0 −0.5 0 1 3 0
0 0.5 0 0 2 1 −1

−0.5 0 1 0.5 1 2 −4
0 0 0.5 0.5 1 −1 0
−1 −2 −1 −1 0 0 0
−3 −1 −2 1 0 0 0
0 1 4 0 0 0 0

, b =

1
3
−1
1
−5
−4
1.5

.

Example 6.2.

Q =

1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
... . . .

...
0 0 0 . . . 1

, b =

1
1
1
...
1

.

58

A new full-Newton IIPM for P∗(κ) -HLCPs

7 Concluding remarks and further research

In this paper, an infeasible full-Newton step method for solving P∗(κ)-
HLCP is presented. Based on new search directions, we established
that the complexity of the algorithm is at least as good as the currently
best known iteration bound for infeasible methods. Future research
could be done on representing the other type of infeasible interior-point
algorithms by analyzing the algorithm with another function ϕ(t) ∈ C1.

8 Acknowledgments

The authors are indebted to referees for careful reading of the
manuscript and for their suggestions which helped to improve the pa-
per. The authors also wish to thank Shahrekord University for finan-
cial support. The authors were also partially supported by the Center
of Excellence for Mathematics, University of Shahrekord, Shahrekord,
Iran.

References

[1] N.K. Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. Proceedings of the 16th Annual ACM Symposium on
Theory of Computing, vol. 4 (1984), pp. 373–395.

[2] Y. Ye, E. Tse. An extension of Karmarkar’s projective algorithm
for convex quadratic programming. Mathematical Programming,
vol. 44 (1989), pp. 157–179.

[3] J. Peng, C. Roos, T. Terlaky. Self-regular functions and new search
directions for linear and semidefinite optimization. Mathematical
Programming, vol. 93 (2002), pp. 129–171.

[4] H. Mansouri, C. Roos. A new full-Newton step O(n) infeasible
interior-point algorithm for semidefinite optimization. Numerical
Algorithms, vol. 52 (2) (2009), pp. 225–255.

59

S. Asadi, H. Mansouri

[5] C. Gonzaga. The largest step path following algorithm for mono-
tone linear complementarity problems. Math. Program., vol. 76
(1997), pp. 309–332.

[6] M. Anitescu, G. Lesaja, F. A. Potra. Equivalence between differ-
ent formulations of the linear complementarity problem. Optim.
Method Softw., vol. 7 (3) (1997), pp. 265–290.

[7] W. B. Ai, S. Z. Zhang. An O(
√

nL) iteration primal-dual path-
following method, based on wide neighborhoods and large updates
for monotone linear complementarity problems. SIAM J. Optim.,
vol. 16 (2) (2005), pp. 400-417.

[8] H. Mansouri, S. Asadi. A quadratically convergent O (
√

n) interior-
point algorithm for the P∗(κ)-matrix horizontal linear complemen-
tarity Problem. Journal of Sciences, Islamic Republic of Iran, vol.
23(3) (2012), pp. 237–244.

[9] H. Mansouri, M. Zangiabadi, M. Pirhaji. A full-Newton step
O(n) infeasible interior-point algorithm for linear complementar-
ity problems. Nonlinear Anal. Real World Appl., vol. 12 (2011),
pp. 545–561.

[10] M. Zangiabadi, H. Mansouri. Improved infeasible-interior-point
algorithm for linear complementarity problems. Bulletin Iranian
Math. Soc., vol. 38 (2012), pp. 787–803.

[11] H. Mansouri, C. Roos. Simplified O(n) infeasible interior-point
algorithm for linear optimization using full-Newton step. Optim.
Methods and Soft., vol. 22 (3) (2007), pp. 519–530.

[12] H. Mansouri. Full-Newton step interior-point methods for conic
optimization. Ph.D. thesis, Faculty of Mathematics and Computer
Science, TU Delft, NL2628 CD Delft, The Netherlands (2008).

[13] C. Roos. A full-Newton Step O(n) infeasible interior-Point Algo-
rithm for Linear Optimization. SIAM J. Optim. vol. 16(4) (2006),
pp. 1110–1136.

60

A new full-Newton IIPM for P∗(κ) -HLCPs

[14] Z. Darvay. New interior-point algorithms in linear programming.
Adv. Model. Optim., vol. 5 (1) (2003), pp. 51–92.

[15] S. Asadi, H. Mansouri. Polynomial interior-point algorithm for
P∗(κ) horizontal linear complementarity problems. Numer. Algor.,
vol. 63 (2013), pp. 385–398.

[16] M. Kojima, N. Megiddo, T. Noma, A. Yoshishe. A Unified Ap-
proach to Interior Point Algorithms for Linear Complementarity
Problems. Springer, Berlin, 1991.

[17] J. Stoer, M. Wechs. Infeasible-interior-point paths for sufficient
linear complementarity problems and their analyticity. Math. Pro-
gram. Ser., A., vol. 83 (3) (1998), pp. 407–423.

[18] L. Zhang, Y. Bai, Y. Xu. A full-Newton step infeasible interior-
point algorithm for monotone LCP based on a locally-kernel func-
tion. Numer. Algor., DOI 10.1007/s11075-011-9530-1.

[19] F. Gurtuna, C. Petra, F. A. Potra, O. Shevehenko, A. Vancea.
Corrector-Predictor methods for sufficient linear complementarity
problems. Compute. Optim. Appl., vol. 48 (2011), pp. 453–485.

Soodabeh Asadi, Hossein Mansouri, Received April, 25 2013

Soodabeh Asadi
Department of Mathematics, Faculty of Mathematical Sciences,
University of Shahrekord,
P.O. Box 115, Shahrekord, Iran
E–mail: Sudabeasadi@yahoo.com

Hossein Mansouri
Department of Mathematics, Faculty of Mathematical Sciences,
University of Shahrekord,
P.O. Box 115, Shahrekord, Iran
Phone: +983814421622
E–mail: Mansouri@sci.sku.ac.ir

61

Computer Science Journal of Moldova, vol.22, no.1(64), 2014

Search tree-based approach for the p-median

problem using the ant colony optimization

algorithm

Gabriel Bodnariuc, Sergiu Cataranciuc

Abstract

In this paper we present an approximation algorithm for the
p-median problem that uses the principles of ant colony optimiza-
tion technique. We introduce a search tree that keeps the partial
solutions during the solution process of the p-median problem.
An adaptation is proposed that allows ant colony optimization
algorithm to perform on this tree and obtain good results in short
time.

Keywords: ant colony optimization, p-median, location the-
ory, combinatorial optimization, search tree.

1 Introduction

Let G = (X, U) be an undirected graph, with the vertex set X =
{x1, x2, ..., xn} and the edge set U = {u1, u2, ..., um}. We define two
functions:

a) υ : X → N ;

b) ω : U → N ,

where N = {0, 1, 2, ...}.
Values υ (xi) and ω (uj) are called weights of the vertex xi ∈ X and

of the edge uj ∈ U , respectively. We denote by d (xi, xj) the distance
between vertices xi, xj ∈ X [16] and consider the function f : X → N
such that:

c©2014 by G. Bodnariuc, S. Cataranciuc

62

Search tree-based approach for the p-median problem

f (xi) =
∑

xj∈X

υ (xj) d (xi, xj) (1)

for ∀xi ∈ X.

Definition 1 ([6]). The vertex x∗ ∈ X is called median of the graph if
f (x∗) = min

x∈X
f (x).

Figure 1. Vertices x5, x6 and x7 are medians of the graph

According to this definition, the median of graph cannot be found
univocally. For example, vertices x5, x6 and x7 are the medians of the
graph represented in Figure 1 (edges and vertices weights are equal
to 1).

Let A ⊂ X and an arbitrary vertex x ∈ X. We denote by
d (x,A) the distance between vertex x and the set A. According to
[16] d (x,A) = min

y∈A
{d (x, y)}.

We denote by Xp the family of all subsets of size p of the set X,
1 ≤ p ≤ n = |X|, and define function f : Xp → N such that:

f (A) =
∑

xj∈X

υ (xj) d (xj , A) (2)

for all A ∈ Xp. Function (2) is called median function.

63

Gabriel Bodnariuc, Sergiu Cataranciuc

Definition 2 ([16]). Set A∗ ⊂ X, |A∗| = p, is called p-median of the
graph G = (X, U), if the following relation holds:

f (A∗) = min
A∈Xp

f (A) = min
A∈Xp

∑

xj∈X

p (xj) d (xj , A). (3)

We will study the p-median problem, where vertex and edge weights
have arbitrary values.

2 Methods for solving the median problem on
graphs

Finding the median of an undirected graph G = (X, U) is a difficult
discrete optimization problem. Being a NP -complete [9], [13], this
problem has stimulated the interest of many researchers for building
approximation algorithms for finding graph median. In this case it
is necessary to know how good is the approximation of the obtained
results using these methods.

There are some well known exact algorithms for finding p-median
[3], [6], [7], [18], but their efficiency is limited to a certain size of the
graphs. In case of the trees, the 1-median can be found in time O(n) [11]
and p-median in time O(pn2) using a dynamic programming algorithm
[17]. Also in polynomial time the median for d-convex simple graphs
[5] can be found.

There are many other techniques for solving this problem: genetic
algorithm [1], branch and cut [4], scatter search [10], variable neigh-
borhood search [12].

In this paper we show a modification of the algorithm presented in
[14] that uses the principles of the ant colony algorithms. This type
of algorithm was proposed by M. Dorigo, V. Maniezzo and A. Colorni,
the algorithm is described in [8]. The first problem on which the ant
colony optimization algorithm was applied was the travelling salesman
problem.

The ant colony optimization algorithm is based on observation of
ants, which are colony organised insects. Their activity is oriented

64

Search tree-based approach for the p-median problem

for the benefit of the whole colony. One important aspect is the way
they build short paths between colony location and food sources. Ants
deposit a substance called pheromone while walking. Pheromone in-
dicates the path used by other ants. Each ant usually chooses a path
with high concentration of pheromone. This represents an indirect way
of communication called stigmergy. The environment has an important
role to diminish the quantity of the pheromone. This leads to changing
of attractiveness of choosing different paths.

3 Tree representation of the p-median search

The problem solution is searched by starting vertex elimination from
the vertex set X until p elements remain. At each step a vertex is
eliminated from X according to some rules. All combinations of vertex
elimination can be represented by a rooted tree, denoted by T .

Figure 2. Tree representation of the 2-median search

Each tree node corresponds to a subset of X when from graph G a
number of vertices was eliminated and the search of p-median is done
on the remaining vertices. The tree root S0 corresponds to the vertex
set X. Each arc from S0 corresponds to the elimination of a vertex
from X and this vertex will not be a part of the solution. In this way,
we pass from S0 to Sj

1 on the level 1. There are n = C1
n nodes on the

65

Gabriel Bodnariuc, Sergiu Cataranciuc

first level of the tree T . The process is repeated for each node on the
level i = 1, 2, ..., (n−p+1). An example for the case p = n−2 is shown
in Figure 2. The bottom level nodes represent all subsets of size p of
the vertex set X. The tree T contains 1 + A1

n + A2
n + ... + An−p

n nodes.
Each node on the level k has n−k descendants, where 0 ≤ k ≤ n−p+1.

In the tree T a path between the root node, which corresponds to
the set S0 and any node of the level n−p, is considered a branch. Value
of the median is among the values of median functions for the sets that
correspond to the nodes of the level n− p.

Ant colony algorithm is used for finding a preferential branch in the
tree T that will lead to choosing a set S∗n−p as an approximate solution
of the problem.

There are r ants in the colony. Each ant searches the p-median
traversing a branch of the tree T . An iteration corresponds to the
situation when r ants participate to find a branch in the tree. Obvi-
ously, some of these branches intersect other branches. At the end of
an iteration, there will be some nodes with better values of the median
function. These results will be used for building new preferential path
in the tree T that will help to find better solutions.

4 Reduced tree representation of the p-median
search

The size of the tree described above can be reduced if we take into ac-
count some specific features of the problem. This feature will optimize
the solution search process performed by ant colony algorithm.

Let Sj
k, 1 ≤ k ≤ n − p, be a node of the search tree, which is

obtained from S0 = X after a successive elimination of vertices in the
following order ai1 , ai2 , ..., aik . In this case, we denote the node Sj

k by

S
(ai1

,ai2
,...,aik)

k . The weight of this node is ω

(
S

(ai1
,ai2

,...,aik)
k

)
which

is equal to the value of function (2) for vertex set of graph G that

corresponds to the node S
(ai1

,ai2
,...,aik)

k from the tree T . Formally, this

66

Search tree-based approach for the p-median problem

can be written:

ω

(
S

(ai1
,ai2

,...,aik)
k

)
= F

(
S

(ai1
,ai2

,...,aik)
k

)

(here F

(
S

(ai1
,ai2

,...,aik)
k

)
represents the function value (2) for the set

A = X \ {ai1 , ai2 , ..., aik}).
Elements elimination order from set A does not affect the value of

function (2) for a subset of vertices A ⊂ X, A = X \ {ai1 , ai2 , ..., aik},
so:

Theorem 1. Let the set S
(ai1

,...,aik
)

k is obtained from the set S0 af-
ter successive elimination of elementents a1, a2, ..., ak, and the set

S
(ai∗1 ,...,ai∗

k
)

k is obtained after a different elimination order of the same
elements, then these two sets satisfy the following relation:

F (S
(ai1

,...,aik
)

k) = F (S
(ai∗1 ,...,ai∗

k
)

k).

Figure 3. Reduced tree representation of the 2-median search

This gives us the possibility to build a new tree T ∗ which has a
smaller size than T . It is obtained from T after removing some nodes
that give identical results. A reduced search tree for case p = n− 2 is
represented in Figure 3.

67

Gabriel Bodnariuc, Sergiu Cataranciuc

Figure 4. Reduced tree representation for the case n = 7 and p = 4

p + 1 arcs start from the root node xT ∗
S0

. These arcs correspond
to exclusion of elements a1, a2, ..., ap+1 from S0 and make connection
with nodes of the level 1: xT ∗

S
(a1)
1

, xT ∗

S
(a2)
1

,..., xT ∗

S
(ap+1)
1

that correspond

to the sets S
(a1)
1 = {a2, a3, ..., an}, S

(a2)
1 = {a3, ..., an},..., S

(ap+1)
1 =

{ap+2, ..., an}, respectively.
At the tree level 1, p + 1 arcs start from the node xT ∗

S
(a1)
1

, and they

indicate the possibility of removing of the following elements from S
(a1)
1 :

a2, a3, ..., ap+2.
It is the node xT ∗

S
(a2)
1

from which p arcs start, and they indi-

cate the possibility of removing of the following elements from S
(a2)
1 :

a3, ..., ap+2.
It is the node xT ∗

S
(a3)
1

from which p − 1 arcs start, and they indi-

cate the possibility of removing of the following elements from S
(a3)
1 :

68

Search tree-based approach for the p-median problem

a4, ..., ap+2.
...
It is the node xT ∗

S
(ap+1)
1

from which one arc starts, and it indicates

the possibility of removing of the element ap+2 from S
(ap+1)
1 .

The process continues until the level n− p of the tree T . There are
Cp

n nodes on the last level.
There is an example in Figure 4, where n = 7 and p = 4, and in

Figure 5 it is shown what happens when element x1 is removed.

Figure 5. Prunning vertex x1 from the search process

Theorem 2. Let the graph G = (X, U), where |X| = n, has the subsets
Yk ∈ X, (|Yk| = k, k > 1) and Yk−1 = Yk \ {x∗i }, then:

F (Yk) ≤ F (Yk−1)

Proof. There are two possible cases:
a) eliminated vertex x∗i from the subset Yk has in its neighbourhood

only elements from Yk. So, the shortest path that connects each element

69

Gabriel Bodnariuc, Sergiu Cataranciuc

of the set X \ Yk to one of the elements of the subset Yk remains
unchanged and the following sum does not change:

∑

xi∈X\Yk

d(xi, Yk),

and F (Yk−1) = F (Yk) + min
xi∈Γ(x∗i)

d(xi, x
∗
i);

b) one of the following two relations is true: (i) Γ(x∗i) ⊂ X \ Yk

or (ii) Γ(x∗i) ∩ {X \ Yk} 6= ∅ and Γ(x∗i) ∩ {Yk} 6= ∅. Then paths of
minimal length between some vertices from X \ Yk and x∗i disappear
and there is a necessity to establish new paths of minimal length, that
make connections with vertices from Yk−1. New paths are longer than
the initial paths. A new connection between vertex x∗i and yi ∈ Yk−1

and yi ∈ Yk−1 is built.

5 Implementation of ant colony algorithm for
the p-median problem

The role of ants is to use the reduced tree described above for finding a
good approximate solution. The size of tree used in the solving process
should be as small as possible.

This reduced tree is denoted by T ∗ and it is built iteratively. At
first, the tree T ∗ has only the root node that corresponds to the set S0.
Each ant chooses, with some probability, an element ai, 1 ≤ i ≤ n−p+1
for removing from this set. The chosen element will not be examined
further by the ant as part of its solution. Eliminations are done until
there are n−p elements from the original set. The eliminated elements
form a branch in the tree T ∗. To each element xi ∈ S0 it is attributed a
value τi that represents quantity of pheromone. Initially, the quantity
of the pheromone is equal for every element. The pheromone influences
the way how elements are chosen for removing from the set Sk.

The probability to choose element i at stage k that represents elim-
ination of element xi ∈ Sk, is [8]:

pi (k) =
[τi]α[ηi (k + 1)]β

|Sk|∑

l=1

[τl]α[ηl (k + 1)]β
,

70

Search tree-based approach for the p-median problem

where ηi (k + 1) = 1/F (Sk \ {ai}).
The quantity of pheromone deposited by each ant at the end of one

iteration is:

∆τ j
i =

{
1/F j (Sn−p) , if xi ∈ Sn−p

0 , otherwise

where F j (Sn−p) is the solution obtained by the ant j.
Evaporation and addition of pheromone is realized in the following

way:
τi ← (1− ρ) τi + ∆τi,

where ∆τi =
r∑

j=1

∆τ j
i , r is the number of ants and ρ is the evaporation

coefficient.
According to Theorem 2, the elimination of one element from Sk

leads to rising of value F (Sk−1). This helps us to build a branch-and-
bound algorithm.

5.1 Improving the obtained solution

The solution can be improved if the vertex set X of the graph
G = (X,U) is partitioned into p subsets: Xi, i = 1, p. Let S =
{xi1 , xi2 , ..., xip} be an approximate solution.

Each subset Xj , i = 1, p, consists of one vertex xij contained in
the solution S and the closest to it vertexes from the set G \ S. The
1-median of each subgraph Gi = (Xi, Ui) is found. The set S1 of
obtained 1-medians could be considered a new approximate solution if
F (S) > F (S1).

5.2 Ant colony optimization algorithm on the reduced
search algorithm (ACORST)

All operations are done on the tree T ∗.

71

Gabriel Bodnariuc, Sergiu Cataranciuc

1. Let nrIterations be the maximal number of iterations, nrAnts
– the number of ants, Rec = ∞ – the initial value of the searched‘
solution.

2. iteration := 0;
3. idAnt := 0;

4. k := 0;
5. Ant idAnt starts from the root node x0;
6. If for the current node xk there are no child nodes of the

level k + 1, then the neigbourhood set Γ+
xk

is built;
7. For each node xk+1 ∈ Γ+

xk
the value F (Sk+1) is calculated;

8. If there are nodes xk+1 for which Rec < F (Sk+1), then
the node xk+1 and its subtree are removed and will not be examined
further;

9. A node xk+1 ∈ Γ+
xk

is chosen with probability p described
above;

10. If Γ+
xk

= ∅, then we pass to the step 13;
11. k := k + 1;
12. If k < n− p− 1, then we pass to the step 6;
13. If k = n − p − 1, then improve the solution using the

algorithm described in the section 5.1 and then rec = min
xk+1∈Γ+

xk

F (Sk+1).

If rec < Rec, then Rec := rec;
14. If there are nodes xk+1, for which Rec < F (Sk+1), then the

node xk+1 and its subtree is removed and will not be examined further;
15. k := k − 1;
16. If k > 0, then we pass to the step 14;

17. idAnt := idAnt + 1;
18. If idAnt < nrAnts, then we pass to the step 4;

19. iteration := iteration + 1;
20. If the tree T ∗ has only the root node x0, then STOP;
21. If iteration < nrIterations, then we pass to the step 3, else

STOP.

72

Search tree-based approach for the p-median problem

6 Experimental results

The OR Library was chosen for tests [2]. Here the results of ACORST
algorithm and the results of the implementation of ACO algorithm
[14] are produced. The tests were performed on a Pentium Dual Core
2.2 GHz PC with 3 GB memory. The algorithms were implemented
in C++ and the codes were compiled with gcc 4.5.0 compiler with
optimization flag -O2. For both algorithms the ant colony consists of
30 ants and the number of iterations is limited to 40. In the Table 1 the
best results obtained after 50 runs of the algorithm for each instance
and the mean running time in seconds are produced.

Table 1. Results of ACORST and ACO algorithms

Test n p Optimal ACORST Time ACO Time

pmed1 100 5 5819 5819 0.427 5819 3.214

pmed2 100 10 4093 4247 0.597 4093 3.097

pmed3 100 10 4250 4279 0.646 4273 3.11

pmed4 100 20 3034 3312 1.105 3050 2.461

pmed5 100 33 1355 1463 1.354 1357 2.211

pmed6 200 5 7824 7877 2.047 7824 24.554

pmed7 200 10 5631 5854 2.434 5645 25.641

pmed8 200 20 4445 4824 4.087 4479 23.601

pmed9 200 40 2734 3036 7.168 2797 21.064

pmed10 200 67 1255 1331 14.466 1288 16.483

pmed11 300 5 7696 7721 6.117 7696 93.177

pmed12 300 10 6634 6948 8.075 6657 86.424

pmed13 300 30 4374 4900 16.89 4449 83.907

pmed14 300 60 2968 3341 26.247 3057 74.346

pmed15 300 100 1729 1987 35.965 1773 52.85

pmed16 400 5 8162 8314 12.494 8162 245.656

pmed17 400 10 6999 7262 12.956 7010 226.541

pmed18 400 40 4809 5157 30.153 4906 213.587

pmed19 400 67 2845 3713 40.772 3319 193.144

pmed20 400 133 1789 1866 76.547 1820 132.204

The ACO algorithm has slightly better solutions than ACORST,
but the running time is worse. The running time of our algorithm is
proportional to p for fixed n.

73

Gabriel Bodnariuc, Sergiu Cataranciuc

7 Conclusion

We proposed an algorithm for the p-median problem using ant colony
optimization technique. The algorithm is based on using a tree for
keeping track of vertex removals and for pruning bad solutions. The
algorithm gives good results for p < n

2 and there is a comparison table
with results obtained by ACO algorithm.

References

[1] O. Alp, E. Erkut, D. Drezner. An efficient genetic algorithm for
the p-median problem, Annals of Operations Research, vol. 122,
issue 1-4, pp. 21–42, 2003.

[2] J.E. Beasley. OR-Library: Distributing test problems by electronic
mail, Journal of the Operational Research Society, vol. 41, no. 11,
pp. 1069–1072, 1990.

[3] C. Beltran, C. Tadonki, J.-Ph. Vial. Solving the p-median problem
with a semi-Lagrangian relaxation, Computational Optimization
and Applications, vol. 35, issue 2, pp.239–260, 2006.

[4] M. Boccia, A. Sforza, C. Sterle, I. Vasilyev. A cut and branch
approach for the capacitated p-median problem based on Fenchel
cutting planes, J. Math. Model. Algor., vol. 7, pp 43–58, 2008.

[5] S. Cataranciuc, N. Sur. d-convex simple and quasi-simple graphs,
CECMI Textbook and Monograph Series, vol. 7, State University
of Moldova, Chişinău, 200 p., 2009. (in Romanian)

[6] N. Christofides. Graph Theory: an algorithmic approach, Aca-
demic Press, 400 p., 1975.

[7] N. Christofides, J.E. Beasley. Extensions to a Lagrangean relax-
ation approach for the capacitated warehouse location problem, Eu-
ropean Journal of Operational Research, Vol. 12, no. 1, pp. 19–28,
1983.

74

Search tree-based approach for the p-median problem

[8] M. Dorigo, G. Di Caro, M. Gambardella. Ant algorithm for Dis-
crete Optimization, Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

[9] M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company,
New York, 338 p., 1979.

[10] F. Garcia-Lopez, B. Melian-Batista, J.A. Moreno-Perez, J.
Moreno-Vega. Parallelization of the scatter search for the p-median
problem, Parallel Computing, vol. 29, pp 575–589, 2003.

[11] A.J. Goldman. Optimal center location in simple networks, Trans-
portation Science, vol. 5, issue 2, pp. 212–221, 1971.

[12] K. Fleszar, K.S. Hindi. An effective VNS for the capacitated p-
median problem, European Journal of Operational Research, no.
191, pp. 612–622, 2008.

[13] O. Kariv, S.L. Hakimi. An Algorithmic Approach To Network Lo-
cation Problems. II: The p-medians, SIAM J. appl. math., vol. 37,
no. 3, pp. 513–538, 1979.

[14] T.V. Levanova, M.A. Loresh. Algorithms of ant system and sim-
ulated annealing for the p-median problem, Avtomatika i Tele-
mekhanika, vol. 65, no. 3, pp. 80–89, 2004. (in Russian)

[15] G.J. Lim, J. Reese, Holder G. Allen. Fast and Robust Techniques
for the Euclidean p-Median Problem with Uniform Weights, Com-
puters and Industrial Engineering, vol. 57, issue 3, pp. 896–905,
2009.

[16] P. Soltan. Extremal problems on convex sets, Ştiinţa, Chişinau,
115 p., 1976. (in Russian)

[17] A. Tamir. An O(pn2) algorithm for the p-median and related prob-
lems on tree, Operations Research Letters, vol. 19, issue 2, pp. 59–
64, 1996.

75

Gabriel Bodnariuc, Sergiu Cataranciuc

[18] J.R. Weaver, R.L. Church. A median location model with nonclos-
est facility service Transportation Science, vol. 19, issue 1, pp. 58–
74, 1985.

Gabriel Bodnariuc, Sergiu Cataranciuc Received June 20, 2013

Gabriel Bodnariuc
State University of Moldova, Republic of Moldova
60 A. Mateevici, MD-2009.
E–mail: gabriel.bodnariuc@gmail.com

Sergiu Cataranciuc
State University of Moldova
60 A. Mateevici, MD-2009, Republic of Moldova
E–mail: s.cataranciuc@gmail.com

76

Computer Science Journal of Moldova, vol.22, no.1(64), 2014

Artificial Bee Colony with Different Mutation

Schemes: A comparative study

Iyad Abu Doush, Basima Hani F. Hasan,
Mohammed Azmi Al-Betar, Eslam Al Maghayreh,

Faisal Alkhateeb, Mohammad Hamdan

Abstract

Artificial Bee Colony (ABC) is a swarm-based metaheuristic
for continuous optimization. Recent work hybridized this algo-
rithm with other metaheuristics in order to improve performance.
The work in this paper, experimentally evaluates the use of differ-
ent mutation operators with the ABC algorithm. The introduced
operator is activated according to a determined probability called
mutation rate (MR). The results on standard benchmark func-
tion suggest that the use of this operator improves performance
in terms of convergence speed and quality of final obtained solu-
tion. It shows that Power and Polynomial mutations give best
results. The fastest convergence was for the mutation rate value
(MR=0.2).

Keywords: Artificial Bee Colony, Evolutionary Algorithms,
Mutation, Meta-heuristic algorithm, Polynomial mutation.

1 Introduction

Meta-heuristic and evolutionary algorithms are computational meth-
ods that solve a problem by iteratively trying to improve a candidate
solution with regard to a given fitness function. While meta-heuristics
do not guarantee reaching an optimal solution if one is available, they
are useful for solving combinatorial optimization problems in both sci-
ence and engineering. Many algorithms that mimic natural phenomena

c©2014 by I. Abu Doush, B. Hasan, M. Al-Betar, E. Al Maghayreh, F.

Alkhateeb, M. Hamdan

77

I. Abu Doush et al.

such as genetic algorithms [21], simulated annealing [5], ant colony opti-
mization [8], and particle swarm optimization [8] have shown significant
efficiency in solving many real-world problems.

The Artificial Bee Colony (ABC) is an optimization algorithm based
on the intelligent behavior of honey bees [1, 16]. In ABC, the position of
a food source represents a possible solution to the optimization problem
and the nectar amount of a food source corresponds to the quality
(fitness) of the associated solution. In the ABC algorithm, the goal of
the bees (employed bees, onlookers and scouts) is to discover the places
of food sources with high nectar amount and finally the one with the
highest nectar. The algorithm basically works as follows: employed
bees go to their food source and return to hive. The employed bee
whose food source has been abandoned becomes a scout and starts
searching a new food source. Onlookers choose food sources depending
on dances. Later on, the abandoned food sources are replaced with the
new food sources discovered by scouts and the best food source found
so far is registered. These steps are repeated until reaching the stop
condition.

The ABC has been used to solve several optimization problems
(e.g., forecasting stock markets [3, 18, 12], capacitated vehicle routing
problem [29, 3, 9], multiproduct manufacturing system [2], and combat
air vehicle path planning [13, 22, 30]). Other researchers work on
modifiying the original ABC (e.g., [4, 17]).

In ABC, some scouts choose the food sources randomly based upon
a randomized mutation function. In this paper, we explore the use
of different mutation functions as a replacement for the original ran-
dom mutation used in the ABC algorithm, specifically in the scout
bees’ phase, to enhance the convergence speed. In particular we used
five mutation schemes (non-uniform mutation, Makinen, Periaux and
Toivanen (MPT) mutation, power mutation, polynomial mutation and
best-based mutation). The effectiveness of the updated ABC algo-
rithms are evaluated by using eight benchmark functions with differ-
ent characteristics (Sphere function, Step function, Schwefel’s problem
2.26, Six-Hump Camel-Back, Shifted Sphere, Shifted Schwefel’s prob-
lem, Shifted Rosenbrock and Shifted Rastrigin).

78

Artificial Bee Colony with Different Mutation Schemes . . .

The remainder of this paper is organized as follows: Section 2 intro-
duces the Artificial Bee Colony (ABC) Algorithm. Section 3 presents
the different mutation methods. The experimental environment is pre-
sented in Section 4. Finally, we conclude in Section 5.

2 The Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm was first proposed by
Karaboga in [14, 16]. In a real bees colony, there are different types of
specialized bees performing different tasks. The main goal of the bees
is to maximize the amount of nectar stored in the hive.

According to the ABC algorithm, the bees’ colony involves three
different types of bees. Employed bees, onlooker bees and scouts. Half
of the colony are employed bees and the reset are onlookers. Employed
bees exploit food sources visited previously and provide the onlooker
bees with information regarding the quality of the food sources they
are exploiting. The onlooker bees use the information shared with em-
ployed bees to decide where to go. Scout bees explore the environment
randomly looking for new sources of food. When a food source ex-
hausted, the corresponding employed bee becomes a scout. The main
steps of the ABC algorithm are described below.

Step1: Initialize the food source positions.
In the ABC algorithm the position of a food source represents a pos-

sible solution of the optimization problem and the amount of nectar at
each food source represents the fitness of the corresponding solution.
In this step of the algorithm, solutions xi (where i = 1 . . . n) are ran-
domly generated within the ranges of the problem’s parameters, where
n is the number of food sources (one source for each employed bee).
Each solution is a vector of d dimensions, where d is the number of the
problem’s parameters.

Step 2: Each employed bee generates a new food source and exploits
the better one.

79

I. Abu Doush et al.

The new food source (solution) is generated according to the fol-
lowing formula:

yij = xij + ϕij(xij − xkj),

where ϕij is a random number in the range [-1,1], k is the index of the
solution chosen randomly and j = 1, . . . , d.

After generating the new solution yi, the employed bee compares
between it and the original solution xi and exploits the better one.

Step 3: Each onlooker bee chooses a food source based on its quality,
generates a new food source and then exploits the best one.

An onlooker bee selects a food source based on the probability value
associated with it. The probability value is calculated as follows:

pi =
Fitnessi∑n

k=1 Fitnessk
,

where Fitnessi is the fitness of solution i, and n is the number of food
sources which is equal to the number of employed bees.

Step 4: Stop the exploitation of the food sources exhausted and con-
vert its employed bees into scouts.

A solution (represented by a food source) is said to be exhausted
if it has not been improved after a predetermined number of execution
cycles. The employed bee of each exhausted food source is converted
into a scout that performs a random search for another solution (food
source) based on the following formula:

xij = xmin
j + (xmax

j − xmin
j) ∗ rand,

where xmax
j and xmin

j are the upper and the lower bounds of parameter
(decision variable) j.

Step 5: Keep the best solution (food source) found so far.

Step 6: Repeat steps 2 to 5 until the termination condition is satisfied.

80

Artificial Bee Colony with Different Mutation Schemes . . .

3 Mutation Methods

The mutation method is an essential operator in EAs [7]. It normally
provides a mechanism to explore unvisited regions in the search space.
It operates with less consideration to the natural principle of the ‘sur-
vival of the fittest’. Any successful EA should have a mutation mech-
anism to ensure the diversification of the search space while makes use
of the accumulative search.

Genetic Algorithm can be seen as the most popular EA algorithm
that is widely used for optimization problems [25, 26]. It begins with
population of individuals generated randomly. Evolutionary, it selects,
recombines and mutates the current population to come up with a new
population hopefully better. It exploits the current population using
selection and recombination operators. It also explores the search space
using mutation. This is necessary to prevent getting stuck in the local
optima and increasing the chance of finding the global optima.

The way of diversifying the individuals in the population have been
widely studied [11, 10, 7]. The mutation operator in GA randomly and
structurally changes some genes in the individual without considering
the characteristics of their parents. In order to implement a mutation
operator, two issues should be watched: i) the probability of using
mutation over population and ii) the power of mutation represented by
the perturbation obtained in an individual.

Similarly to GA, other population-based method have a mutation
operator to diversify the search, e.g., the Random consideration in
Harmony Search Algorithm, the scout bee in Artificial Bee Colony
(ABC). Particularly in ABC, the scout bee provides a mechanism to
diversify the individuals and therefore to prevent the search to fault
down in a local optima trap.

Figure 1 flowcharts the scout bee process. At each iteration, all
individuals, x i, ∀i ∈ 1 . . . SN , in the population will be examined using
Scout[.] vector. Note that the Scout[.] vector contains an accumulative
counter information about each individual regarding if they improved.
In case the individual (say xi = (xi,1, xi,2 . . . , xi,N), where N is the
number of genes) is improved in such iteration, the Scout[i] will be

81

I. Abu Doush et al.

initialized by 0, otherwise it will be incremented by 1 until a certain
limit exceeded, then a Do mutation() operator will be applied.

In general, the continuous optimization problem is formulated as
follows

min{f(x) |x ∈ X},
where f(x) is the objective function; x = {xi | i = 1, . . . , N} is the set
of decision variables (or genes). X = {Xi | i = 1, . . . , N} is the possible
value range for each gene, where Xi ∈ [Lxi , Uxi], where Lxi and Uxi are
the lower and upper bounds for the gene xi respectively and N is the
number of genes.

In this paper, five mutation operators have been investigated in
the scout bee operator. These mutation operators are controlled by
a Mutation Rate (MR). The purpose of mutation is to diversify the
search direction and to prevent the convergence into local optimum.
Algorithm 1 shows that each gene in the selected individual will be
examined for whether or not it will be changed randomly. In each
mutation type, the change process is different as we will discuss below.

Algorithm 1 Scout Bee Procedure
1: for i = 1, · · · , SN do
2: if Scout[i] < limit then
3: for j = 1, · · · , N do
4: if U(0, 1) < MR then
5: DO Mutation()
6: end if
7: end for
8: end if
9: end for

3.1 Original mutation

The original mutation is proposed by [15], which is called random mu-
tation. In this type of mutation, the gene (xi,j) that met the probability
of MR is changed as follows

82

Artificial Bee Colony with Different Mutation Schemes . . .

Figure 1. The flowchart Scout Bee Operation

83

I. Abu Doush et al.

x′i,j = Lxj + U(−1, 1)(Uxj − Lxi).

In this type of mutation, the value of the gene is replaced randomly
with a value within the range of decision variable [21] in the abandoned
solution i. Note that U(−1, 1) generates a random number between −1
and 1.

3.2 Non-uniform random mutation

The non-uniform random mutation is one of popular mutation types
that is widely used in GA [21, 20]. In non-uniform mutation, as the
generations increase, the step size decreases, therefore making a uni-
form search in the initial stage of search and very little at later stages.
In this type of mutation, the gene (xi,j) that met the probability of
MR is changed as follows:

x′i,j = xi,j × (1− U(0, 1)(
1−t

MSN
)b

),

where b is a system parameter determining the degree of dependency
of iteration number (in this study, the value of b is fixed to 5 as rec-
ommended by a previous study [21]), t is the generation (or iteration)
number. And MSN refers to the maximum number of iterations in
ABC. Note that the gene x′i,j is assigned with a value in a range [0, xi,j].

3.3 Makinen, Periaux and Toivanen (MPT) Mutation

Makinen, Periaux and Toivanen mutation, proposed by [19], is a rel-
atively new mutation and has been applied to solve multidisciplinary
shape optimization problem in addition to a large set of optimization
problems with constrained nature. In this type of mutation, the gene
(xi,j) that met the probability of MR is changed as follows:

x′i,j = (1− t̂j)× Lxj + t̂j × Uxj ,

84

Artificial Bee Colony with Different Mutation Schemes . . .

where

t̂j ←

tj − (tj)× (tj−rj

tj
)b rj < tj

tj rj = tj ,

tj + (1− tj)× (rj−tj

1−tj
)b rj > tj

and

tj =
xi,j − Lxj

Uxj − xi,j
.

Normally, the value of b = 1.

3.4 Power Mutation

This type of mutation operator is based on power distribution, and
proposed by [7]. It is an extended version of MPT mutation. In this
type of mutation, the gene (xi,j) that met the probability of MR is
changed as follows:

x′i,j ←
{

xi,j − s× (xi,j − Lxj) t < r
xi,j − s× (Uxj − xi,j) otherwise,

where

t =
xi,j − Lxj

Uxj − xi,j
,

and s is a random number generated according to the final distribution,
and r is a uniform random number generated in the range 0 and 1,
r ∈ [0, 1].

3.5 Polynomial mutation

Polynomial mutation was first introduced by Deb and Agrawal in [6]
which has been successfully applied for single and multi-objective op-
timization problems. In this type of mutation, the gene (xi,j) that met
the probability of MR is changed as follows:

x′i,j = xi,j + δq × (Uxj − Lxj),

85

I. Abu Doush et al.

where

δq ←
{

[(2r) + (1− 2r) + (1− δ1)ηm+1]
1

ηm+1−1 r < 0.5
1− [(2(1− r)) + (2(r − 0.5)) + (1− δ2)ηm+1]

1
ηm+1 otherwise,

δ1 =
xi,j − Lxj

Uxj − Lxj

,

δ2 =
Uxj − xi,j

Uxj − Lxj

.

Note that r is a uniform random number generated in the range 0
and 1, r ∈ [0, 1].

3.6 Best-based Mutation

This type of mutation is initially proposed by [27]. It is effective and
powerful mutation type for unconstrained large scaled optimization
problems. In this type of mutation, four individuals are randomly
selected (i.e., (xr1,xr2,xr3,xr4) from the entire population. After that,
the gene (xi,j) that met the probability of MR is changed as follows:

x′i,j = xbest,j + F × (xr1,j − xr2,j) + F × (xr3,j − xr4,j),

where xbest,j is the gene in the best individual from the entire popula-
tion. F is an important parameter that ensures the balance between
exploration and exploitation which normally is experimentally deter-
mined, and takes a value range between 0 and 1.

4 Experimental results

We used 8 global minimization benchmark functions (Table 2) to eval-
uate different mutation methods used in ABC (see Table 1). These
benchmark functions have been selected as one function for each set of
unique characteristics (e.g, unimodal, multi-modal, and separable), as
it is shown in the last column of Table 2. The benchmark functions

86

Artificial Bee Colony with Different Mutation Schemes . . .

were implemented with a multi-dimension (N=100), with the exception
to Six-Hump Camel-Back function which is two-dimensional.

We conducted four different experiements, each one with different
mutation rate (MR = 0, 0.2, 0.5, and 0.8). In each experiment we
tested six different mutation methods: ABC original, Non-uniform,
MPT, Power, Polynomial, and Best mutation. Each experiment was
repeated 30 times with different random seeds. The average of the best
values obtained by the algorithms is calculated. The obtained results
of the mean best values and standard deviation are shown in tables 3,
4, 5, and 6.

The experiments were executed on a P4 machines with 1 GB of
RAM using C++ under Microsoft Visual Studio environment. In all
the experiments the values for common parameters are as follows: the
population size (NP) was 100, the food sources was 50, the stopping
criteria = 10,000, and the algorithm ran for 30 times. The limit is
defined using the formula D* NP*0.5 which uses the dimension of the
problem and the colony size to determine the limit value. These values
are similar to what has been suggested in the state of the art methods.

The results in tables 3, 4, 5, and 6 show that for the sphere function
the mutation rate (MR=0.2) gives the best result, and the power mu-
tation (M4) gives the best result. The best result for sphere function
using other mutation rate values (MR= 0.5 and 0.8) was given by the
polynomial mutation (M5).

On the other hand, for the Schwefel problem function the muta-
tion rate (MR=0.2) gives the best result with MPT mutation (M3).
The shifted rosenbrock gives the best result using the mutation rate
(MR=0.5) with MPT mutation (M3). The best result for shifted rosen-
brock function using other mutation rate values (MR= 0.2 and 0.8) was
given by the Non-uniform mutation (M2).

For the rest of the functions (i.e., step, camel-back, shifted sphere,
shifted schwefel, and shifted rastrigin) all the mutation methods (M1-
M6) with all mutation rates reached the global optimal solution.

Figure 3 shows the effect of using the mutation rate value (MR=0.8)
on the convergence speed of the six different mutation methods. The
compared benchmark functions are: sphere and shifted rosenbrock.

87

I. Abu Doush et al.

For the two functions polynomial mutation (M5) has the fastest con-
vergence speed. The slowest convergence speed for the sphere function
was for Power mutation (M4). On the other hand, for the shifted
rosenbrock, Best mutation (M6) has the slowest convergence speed.

Figure 2 compares the effect of using different mutation rate val-
ues on the convergence speed of the mutation method used (i.e., M1
to M6 in Table 1). Generally speaking the mutation rate (MR=0.2)
has the fastest convergence speed for the mutation methods M1, M4,
and M6 (Original ABC, Power, and Best). For the mutation meth-
ods M3 and M5 (MPT and Polynomial), the mutation rate (MR=0.8)
has the fastest convergence speed. These observations confirm the
mean best results obtained, which are usually using mutation rate
value (MR=0.2). This value allows diversifying the population without
changing the population to be far from optimal solution.

Table 1. The different mutation schemes used in the experiments.
Original ABC Non-uniform Makinen, Periaux and

Toivanen (MPT)
Power Polynomial Best

M1 M2 M3 M4 M5 M6

5 Conclusion and Further Work

It is common in swarm-based algorithms to hybridize with operators
from evolutionary algorithms such as mutation. Normally, the hy-
bridization comes by adding a common to an existing algorithm. This
paper investigated the performance of ABC using different mutation
schemes. The mutation happened in the ABC algorithm after reaching
the limit and calling the scout bees. We updated the original ABC
algorithm with six different mutation schemes. The application of the
mutation is performed according to a defined parameter called muta-
tion rate (MR). We evaluated the updated algorithms of ABC with
8 global benchmark functions used in the literature. We investigated
the mean best value and studied the convergence speed using the six
different mutation methods parametrized with four different mutation
rates.

88

Artificial Bee Colony with Different Mutation Schemes . . .
T
ab

le
2:

B
en

ch
m

ar
k

fu
nc

ti
on

s
us

ed
to

ev
al

ua
te

H
S

va
ri

at
io

ns

Fu
nc

ti
on

N
am

e
E

xp
re

ss
io

n
Se

ar
ch

R
an

ge
O

pt
im

um
V

al
ue

C
at

eg
or

y
[2

4]

Sp
he

re
fu

nc
-

ti
on

[2
3]

f 1
(x

)
=

N ∑ i=
1

x
2 i

x
i

∈
[−

10
0,

10
0]

m
in

(f
1
)

=
f
(0

,.
..

,0
)
=

0
un

im
od

al

St
ep

fu
nc

ti
on

[2
3]

f 2
(x

)
=

N ∑ i=
1

(bx
i
+

0.
5c

)2
x

i
∈

[−
10

0,
10

0]
m

in
(f

2
)

=
f
(0

,.
..

,0
)
=

0
di

sc
on

ti
nu

o-
us

un
im

od
al

Sc
hw

ef
el

’s
pr

ob
le

m
2.

26
[3

1]

f 3
(x

)
=
−

N ∑ i=
1

(x
i
si

n
(√
|x i
|))

x
i

∈
[−

50
0,

50
0]

m
in

(f
3
)

=
f
(4

20
.9

68
7,

..
.,

42
0.

96
87

)
=

−1
25

69
.5

di
ffi

cu
lt

m
ul

-
ti

m
od

al

Si
x-

H
um

p
C

am
el

-B
ac

k
fu

nc
ti

on
[2

3]

f 4
(x

)
=

4x
2 1
−

2.
1x

4 1
+

1 3
x

6 1
+

x
1
x

2
−

4x
2 2
+

4x
4 2

x
i

∈
[−

5,
5]

m
in

(f
4
)

=
f
(−

0.
08

98
3,

0.
71

26
)

=
−1

.0
31

62
85

lo
w

di
m

en
-

si
on

al

89

I. Abu Doush et al.
C

on
ti

nu
at

io
n

of
T
ab

le
2

Fu
nc

ti
on

N
am

e
E

xp
re

ss
io

n
Se

ar
ch

R
an

ge
O

pt
im

um
V

al
ue

C
at

eg
or

y
[2

4]

Sh
ift

ed
Sp

he
re

fu
nc

-
ti

on
[2

8]

f 5
(x

)
=

N ∑ i=
1

z
2 i

+
f

bi
a
s 1

,
w

he
re

z
=

x
−

o

x
i

∈
[−

10
0,

10
0]

m
in

(f
5
)

=
f
(o

1
,.

..
,o

N
)

=
f

bi
a
s 1

=
−4

50

un
im

od
al

,
sh

ift
ed

,
se

p-
ar

ab
le

,
an

d
sc

al
ab

le

Sh
ift

ed
Sc

hw
ef

el
’s

pr
ob

le
m

1.
2

[2
8]

f 6
(x

)
=

N ∑ i=
1

(
i ∑ j=
1

z j

) 2
+

f
bi

a
s 2

,

w
he

re
z

=
x
−

o

x
i

∈
[−

10
0,

10
0]

m
in

(f
6
)

=
f
(o

1
,.

..
,o

N
)

=
f

bi
a
s 6

=
−4

50

un
im

od
al

,
sh

ift
ed

,
no

n-
se

pa
ra

bl
e,

an
d

sc
al

ab
le

Sh
ift

ed
R

os
en

br
oc

k
[2

8]

f 7
(x

)
=

N
−1 ∑ i=
1

(1
00

(z
i+

1
−

z
2 i
)2

+
(z

i
−

1)
2
)
+

f
bi

a
s 6

,
w

he
re

z
=

x
−

o

x
i

∈
[−

10
0,

10
0]

m
in

(f
7
)

=
f
(o

1
,.

..
,o

N
)

=
f

bi
a
s 6

=
−3

90

m
ul

ti
-m

od
al

,
sh

ift
ed

,
no

n-
se

pa
ra

bl
e,

an
d

sc
al

ab
le

Sh
ift

ed
R

as
t-

ri
gi

n
[2

8]
f 8

(x
)

=
N ∑ i=

1

(z
2 i
−

10
co

s(
2π

z i
)
+

10
)

+

f
bi

a
s 9

,
w

he
re

z
=

x
−

o

x
i

∈
[−

5,
5]

m
in

(f
8
)

=
f
(o

1
,.

..
,o

N
)

=
f

bi
a
s 9

=
−3

30

m
ul

ti
-m

od
al

,
sh

ift
ed

,
se

p-
ar

ab
le

,
an

d
sc

al
ab

le

90

Artificial Bee Colony with Different Mutation Schemes . . .

Generally speaking the results show that Power and Polynomial
mutations give best results. The mutation rate value (MR=0 and 0.8)
gives the slowest convergence. On the other hand, the fastest conver-
gence was for the mutation rate value (MR=0.2).

The future work can be experimenting different mutation schemes
after modifying the original ABC algorithm to apply mutation on early
stages of the algorithm. Currently, the algorithm uses mutation after
exceeding the limit of reaching constant optimal solution. We could
benefit more from the different mutation methods presented in this
paper by applying them early in the ABC algorithm.

It might be interesting to adaptively select the mutation operator
based on algorithm performance. But the algorithm needs to use a sin-
gle best mutation rate, and mutation operator should be recommended,
as it is not allowed to change this operator for each benchmark. For
example, if the ABC algorithm is stuck in local optima, then use an-
other operator in the hope to improve search capabilities and reach the
global optima.

Table 3. Average and standard deviation (±SD) of the benchmark
function results (N = 100), mr=0

Sphere Step Schwefel’s
2.26

Camel-
Back

Shifted
Sphere

Shifted
Schwe-
fel’s

Shifted
Rosen-
brock

Shifted
Rast-
rigin

2.15E-15 0 -
4.199724E+04

-
1.03163E+00

-450 -450 3.90054E+02 -330

(1.60935E-16) (0) (0.25795393) (0) (0) (0) (0.102094052) (0)

References

[1] A. Aderhold, K. Diwold, A. Scheidler, and M. Middendorf. Ar-
tificial bee colony optimization: A new selection scheme and its
performance. Nature Inspired Cooperative Strategies for Optimiza-
tion (NICSO 2010), pages 283–294, 2010.

91

I. Abu Doush et al.

(a) M1 (b) M2

(c) M3 (d) M4

(e) M5 (f) M6

Figure 2. The convergence speed for the sphere function using different
mutation rates (10,000 iterations). The figures show the portions with
noticable difference, here it is within the range 0 – 600.

92

Artificial Bee Colony with Different Mutation Schemes . . .

Table 4. Average and standard deviation (±SD) of the benchmark
function results (N = 100), mr=0.2

M1 M2 M3 M4 M5 M6
Sphere 1.60E-15 1.63E-15 1.60E-15 1.56E-15 1.93E-15 1.66E-15

(2.4049E-
16)

(2.50432E-
16)

(2.95416E-
16)

(2.32707E-
16)

(2.07427E-
16)

(2.41625E-
16)

Step 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0)

Schwefel’s -
4.199731E+04

-
4.199734E+04

-
4.199724E+04

-
4.199731E+04

-
4.199730E+04

-
4.199736E+04

problem
2.26

(0.223375361) (0.256613668) (0.258221147) (0.217112715) (0.204236734) (0.160781139)

Camel-
Back

-1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163

(0) (0) (0) (0) (0) (0)

Shifted
Sphere

-450 -450 -450 -450 -450 -450

(0) (0) (0) (0) (0) (0)

Shifted
Schwe-
fel’s

-450 -450 -450 -450 -450 -450

problem
1.2

(0) (0) (0) (0) (0) (0)

Shifted
Rosen-
brock

3.90025E+02 3.90018E+02 3.90035E+02 3.90031E+02 3.90039E+02 3.90023E+02

(0.088819745) (0.033415342)(0.092817557) (0.03157629) (0.081382741) (0.05924405)

Shifted
Rastri-
gin

-330 -330 -330 -330 -330 -330

(0) (0) (0) (0) (0) (0)

[2] S. Ajorlou, I. Shams, and M.G. Aryanezhad. Optimization of a
multiproduct conwip-based manufacturing system using artificial
bee colony approach. Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists, 2, 2011.

[3] B. Akay and D. Karaboga. Artificial bee colony algorithm for
large-scale problems and engineering design optimization. Journal
of Intelligent Manufacturing, pages 1–14, 2010.

[4] Nebojsa Bacanin and Milan Tuba. Artificial bee colony (abc) al-
gorithm for constrained optimization improved with genetic oper-

93

I. Abu Doush et al.

Table 5. Average and standard deviation (±SD) of the benchmark
function results (N = 100), mr=0.5

M1 M2 M3 M4 M5 M6
Sphere 2.10E-15 2.16E-15 2.09E-15 2.13E-15 1.85E-15 2.14E-15

(1.84796E-
16)

(1.95236E-
16)

(2.65087E-
16)

(2.10979E-
16)

(1.61943E-
16)

(2.2148E-
16)

Step 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0)

Schwefel’s -
4.199731E+04

-
4.199736E+04

-
4.199733E+04

-
4.199731E+04

-
4.199728E+04

-
4.199735E+04

problem
2.26

(0.171671967) (0.195965045) (0.291429296) (0.214449308) (0.241189581) (0.247377045)

Camel-
Back

-1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163

(0) (0) (0) (0) (0) (0)

Shifted
Sphere

-450 -450 -450 -450 -450 -450

(0) (0) (0) (0) (0) (0)

Shifted
Schwe-
fel’s

-450 -450 -450 -450 -450 -450

problem
1.2

(0) (0) (0) (0) (0) (0)

Shifted
Rosen-
brock

3.90025E+02 3.90036E+02 3.90016E+02 3.90019E+02 3.90039E+02 3.90032E+02

(0.056847244) (0.0972493) (0.031588391)(0.03157629) (0.066354577) (0.083040386)

Shifted
Rastri-
gin

-330 -330 -330 -330 -330 -330

(0) (0) (0) (0) (0) (0)

ators. Studies in Informatics and Control, 21(2):137–146, 2012.

[5] Thomas Back. Evolutionary Algorithms in Theory and Practice.
OXFORD UNIVERSITY PRESS, New York, Oxford, 1996.

[6] K. Deb and R. Agrawal. Simulated binary crossover for continuous
search space. Complex Systems, 9:115–148, 1995.

[7] Kusum Deep and Manoj Thakur. A new mutation operator for real
coded genetic algorithms. Applied Mathematics and Computation,
193(1):211 – 230, 2007.

94

Artificial Bee Colony with Different Mutation Schemes . . .

Table 6. Average and standard deviation (±SD) of the benchmark
function results (N = 100), mr=0.8

M1 M2 M3 M4 M5 M6
Sphere 2.08E-15 2.10E-15 2.18E-15 2.16E-15 1.86E-15 2.09E-15

(2.32587E-
16)

(1.97095E-
16)

(1.55962E-
16)

(1.62883E-
16)

(1.65775E-
16)

(2.15497E-
16)

Step 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0)

Schwefel’s -
4.199741E+04

-
4.199729E+04

-
4.199728E+04

-
4.199734E+04

-
4.199726E+04

-
4.199728E+04

problem
2.26

(0.228840154) (0.165952493) (0.277530158) (0.158621939) (0.252550211) (0.175545128)

Camel-
Back

-1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163

(0) (0) (0) (0) (0) (0)

Shifted
Sphere

-450 -450 -450 -450 -450 -450

(0) (0) (0) (0) (0) (0)

Shifted
Schwe-
fel’s

-450 -450 -450 -450 -450 -450

problem
1.2

(0) (0) (0) (0) (0) (0)

Shifted
Rosen-
brock

3.90034E+02 3.90020E+02 3.90031E+02 3.90042E+02 3.90027E+02 3.90061E+02

(0.074387028) (0.041508398)(0.05580612) (0.143667564) (0.06110496) (0.18150363)

Shifted
Rastri-
gin

-330 -330 -330 -330 -330 -330

(0) (0) (0) (0) (0) (0)

[8] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. SpringerVerlag, 2003.

[9] M. El-Abd. Black-box optimization benchmarking for noiseless
function testbed using artificial bee colony algorithm. In Pro-
ceedings of the 12th annual conference companion on Genetic and
evolutionary computation, pages 1719–1724. ACM, 2010.

[10] Mohammad Hamdan. A dynamic polynomial mutation for evo-
lutionary multi-objective optimization algorithms. International
Journal on Artificial Intelligence Tools, 20(1):209–219, 2011.

95

I. Abu Doush et al.

(a) Sphere (b) Shifted Rosenbrock

Figure 3. The convergence speed using different mutation methods
(10,000 iterations and MR=0.8).

[11] F. Herrera and M. Lozano. Two-loop real coded genetic algorithms
with adaptive control of mutation step sizes. Applied Intelligence,
13:187–204, 2002.

[12] T.J. Hsieh, H.F. Hsiao, and W.C. Yeh. Forecasting stock markets
using wavelet transforms and recurrent neural networks: An in-
tegrated system based on artificial bee colony algorithm. Applied
Soft Computing, 11(2), 2010.

[13] F. Kang, J. Li, and Z. Ma. Rosenbrock artificial bee colony al-
gorithm for accurate global optimization of numerical functions.
Information Sciences, 2011.

[14] D. Karaboga and B. Akay. A comparative study of artificial
bee colony algorithm. Applied Mathematics and Computation,
214(1):108–132, 2009.

[15] D. Karaboga and B. Basturk. Artificial bee colony (abc) opti-
mization algorithm for solving constrained optimization problems.
Foundations of Fuzzy Logic and Soft Computing, pages 789–798,
2007.

[16] D. Karaboga and B. Basturk. On the performance of artificial bee
colony (abc) algorithm. Applied Soft Computing, 8(1):687–697,
2008.

96

Artificial Bee Colony with Different Mutation Schemes . . .

[17] Dervis Karaboga and Bahriye Akay. A modified artificial bee
colony (abc) algorithm for constrained optimization problems. Ap-
plied Soft Computing, 11(3):3021 – 3031, 2011.

[18] S. Kockanat, T. Koza, and N. Karaboga. Cancellation of noise on
mitral valve doppler signal using iir filters designed with artificial
bee colony algorithm. Current Opinion in Biotechnology, 22:S57–
S57, 2011.

[19] Raino A.E. Makinen, Jacques Periaux, and Jari Toivanen. Multi-
disciplinary shape optimization in aerodynamics and electromag-
netics using genetic algorithms. International Journal for Numer-
ical Methods in Fluids, 30(2):149–159, 1999.

[20] Z Michalewicz, T Logan, and S Swaminathan. Evolutionary op-
erators for continuous convex parameter space. In Proceedings of
Third Annual Conference on Evolutionary Programming. 1994.

[21] Zbigniew Michalewicz. Genetic algorithms + data structures =
evolution programs (2nd, extended ed.). Springer-Verlag New York,
Inc., New York, NY, USA, 1994.

[22] SN Omkar, J. Senthilnath, R. Khandelwal, G. Narayana Naik, and
S. Gopalakrishnan. Artificial bee colony (abc) for multi-objective
design optimization of composite structures. Applied Soft Com-
puting, 2009.

[23] M. G. H. Omran and M. Mahdavi. Global-best harmony search.
Applied Mathematics and Computation, 198(2):643–656, 2008.

[24] Quan-Ke Pan, P.N. Suganthan, M. Fatih Tasgetiren, and J.J.
Liang. A self-adaptive global best harmony search algorithm
for continuous optimization problems. Applied Mathematics and
Computation, 216(3):830 – 848, 2010.

[25] J.E. Smith and T.C. Fogarty. Operators and parameter adaptation
in genetic algorithms. Soft computing, 1(2):81–87, 1997.

97

I. Abu Doush et al.

[26] W.M. Spears. Foundations of Genetic Algorithms. Morgan Kauf-
mann, San Mateo, CA, 1993.

[27] Nadezda Stanarevic. Comparison of different mutation strategies
applied to artificial bee colony algorithm. In Proceedings of the 5th
European conference on European computing conference, ECC’11,
pages 257–262, Stevens Point, Wisconsin, USA, 2011. World Sci-
entific and Engineering Academy and Society (WSEAS).

[28] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen,
A. Auger, and S. Tiwari. Problem definitions and evaluation crite-
ria for the cec 2005 special session on real-parameter optimization.
Technical Report KanGAL Report#2005005, IIT Kanpur, India,
Nanyang Technological University, Singapore, 2005.

[29] WY Szeto, Y. Wu, and S.C. Ho. An artificial bee colony algorithm
for the capacitated vehicle routing problem. European Journal of
Operational Research, 2011.

[30] C. Xu, H. Duan, and F. Liu. Chaotic artificial bee colony approach
to uninhabited combat air vehicle (ucav) path planning. Aerospace
Science and Technology, 2010.

[31] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary program-
ming made faster. IEEE Transactions on Evolutionary Computa-
tion, 3(2):82 –102, 1999.

Iyad Abu Doush1, Basima Hani F. Hasan1, Received December 17, 2012
Mohammed Azmi Al-Betar2, Eslam Al Maghayreh1,
Faisal Alkhateeb1

1 Yarmouk University
Computer Science Department, Irbid, Jordan

Iyad Abu Doush
E–mail: iyad.doush@yu.edu.jo

2Jadara University
Computer Science Department, Irbid, Jordan

98

Computer Science Journal of Moldova, vol.22, no.1(64), 2014

A Note on Solvable Polynomial Algebras

Huishi Li

Abstract

In terms of their defining relations, solvable polynomial alge-
bras introduced by Kandri-Rody and Weispfenning [J. Symbolic
Comput., 9(1990)] are characterized by employing Gröbner bases
of ideals in free algebras, thereby solvable polynomial algebras are
completely determinable and constructible in a computational
way.

Keywords: PBW basis, Monomial ordering, Gröbner basis,
Solvable polynomial algebra.

1 Introduction

In the late 1980s, the Gröbner basis theory invented by Bruno Buch-
berger ([2], [3]) for commutative polynomial ideals was successfully
generalized to one-sided ideals in enveloping algebras of Lie algebras by
Apel and Lassner [1], to one-sided ideals in Weyl algebras (including
algebras of partial differential operators with polynomial coefficients
over a field of characteristic 0) by Galligo [6], and more generally, to
one-sided and two-sided ideals in solvable polynomial algebras (or al-
gebras of solvable type) by Kandri-Rody and Weispfenning [8]. In
particular, the noncommutative Buchberger Algorithm for computing
Gröbner bases of one-sided and two-sided ideals in solvable polyno-
mial algebras has been implemented in some well-developed computer
algebra systems such as Singular [4].

Originally, a noncommutative solvable polynomial algebra R′ was
defined in [8] by first fixing a monomial ordering ≺ on the standard
K-basis B = {Xα1

1 · · ·Xαn
n | αi ∈ N} of the commutative polynomial al-

gebra R = K[X1, . . . , Xn] in n variables X1, . . . , Xn over a field K, and

c©2014 by H. Li

99

H. Li

then introducing a new multiplication ∗ on R, such that certain axioms
([8], AXIOMS 1.2) are satisfied. In the formal language of associative
K-algebras, a solvable polynomial algebra can actually be defined as a
finitely generated associative K-algebra A = K[a1, . . . , an], that has the
PBW K-basis B = {aα1

1 · · · aαn
n | αi ∈ N} and a monomial ordering≺ on

B such that for 1 ≤ i < j ≤ n, ajai = λjiaiaj +fji and LM(fji) ≺ aiaj ,
where λji ∈ K−{0}, fji ∈ K-spanB and LM(fji) is the leading mono-
mial of fji with respect to ≺ ([11], Definition 2.1). Full details on this
definition will be recalled in the next section. In the literature, some
results on the construction of solvable polynomial algebras by means
of Gröbner bases for ideals in a free K-algebra K〈X〉 = K〈X1, . . . , Xn〉
were given (see [8], Theorem 1.11; [9], CH.III, Proposition 2.2, Propo-
sition 2.3; [10], Ch.4, Proposition 4.2), but a complete constructive
characterization of solvable polynomial algebras has not been reached.

By employing Gröbner bases of ideals in free algebras, in this note
we give a characterization of solvable polynomial algebras in terms of
their defining relations (Section 2, Theorem 2.1), which shows that solv-
able polynomial algebras are completely determinable and constructible
in a computational way.

Throughout this note, K denotes a field, K∗ = K −{0}; N denotes
the set of all nonnegative integers. Moreover, the Gröbner basis theory
for ideals of free algebras is referred to [12] and [7].

2 The main result

We first briefly recall from ([8], [11], [9]) some basics concerning solv-
able polynomial algebras. Let A = K[a1, . . . , an] be a finitely generated
K-algebra with the set of generators {a1, . . . , an}. If, for some permu-
tation τ = i1i2 · · · in of 1, 2, . . . , n, the set B = {aα = aα1

i1
· · · aαn

in
| α =

(α1, . . . , αn) ∈ Nn} forms a K-basis of A, then B is referred to as a
PBW K-basis of A. It is clear that if A has a PBW K-basis, then
we can always assume that i1 = 1, . . . , in = n. Thus, we make the
following convention once for all.

100

Note on Solvable Polynomial Algebras

Convention From now on in this paper, if we say that the algebra A
has the PBW K-basis B, then it always means that

B = {aα = aα1
1 · · · aαn

n | α = (α1, . . . , αn) ∈ Nn}.
Moreover, adopting the commonly used terminology in computational
algebra, elements of B are referred to as monomials of A.

Suppose that A has the PBW K-basis B as presented above and
that ≺ is a total ordering on B. Then every nonzero element f ∈ A
has a unique expression f = λ1a

α(1) + λ2a
α(2) + · · · + λmaα(m) with

λj ∈ K∗ and aα(j) = a
α1j

1 a
α2j

2 · · · aαnj
n ∈ B, 1 ≤ j ≤ m, in which

aα(1) ≺ aα(2) ≺ · · · ≺ aα(m). It follows that the leading monomial, the
leading coefficient, and the leading term of f are respectively defined
as LM(f) = aα(m), LC(f) = λm, and LT(f) = λmaα(m).

Definition 1. Suppose that the K-algebra A = K[a1, . . . , an] has the
PBW K-basis B. If ≺ is a total ordering on B that satisfies the follow-
ing three conditions:

(1) ≺ is a well-ordering;
(2) For any aγ , aα, aβ, aη ∈ B, if aα ≺ aβ and LM(aγaαaη),

LM(aγaβaη) 6∈ K, then LM(aγaαaη) ≺ LM(aγaβaη);
(3) For any aγ , aα, aβ, aη ∈ B, if aβ 6= aγ, and aγ = LM(aαaβaη),

then aβ ≺ aγ (thereby 1 ≺ aγ for all aγ 6= 1),
then ≺ is called a monomial ordering on B (or a monomial ordering
on A).

Definition 2. If the K-algebra A = K[a1, . . . , an] satisfies the follow-
ing two conditions:

(S1) A has the PBW K-basis B;
(S2) There is a monomial ordering ≺ on B such that for all aα =

aα1
1 · · · aαn

n , aβ = aβ1
1 · · · aβn

n ∈ B, aαaβ = λα,βaα+β + fα,β,
where λα,β ∈ K∗, aα+β = aα1+β1

1 · · · aαn+βn
n , and either fα,β =

0 or fα,β ∈ K-spanB with LM(fα,β) ≺ aα+β,
then A is said to be a solvable polynomial algebra.

The results of the next proposition are summarized from ([8], Sec-
tions 2 – 5).

101

H. Li

Proposition 2.1. Let A = K[a1, . . . , an] be a solvable polynomial al-
gebra with the monomial ordering ≺ on the PBW K-basis B of A. The
following statements hold.

(i) A is a (left and right) Noetherian domain.
(ii) Every left ideal I of A has a finite left Gröbner basis G =

{g1, . . . , gt} in the sense that if 0 6= f ∈ I, then there is some
gi ∈ G such that LM(gi)|LM(f), i.e., there is some aγ ∈ B
such that LM(f) = LM(aγLM(gi)), or equivalently, with γ(ij) =
(γi1j , γi2j , . . . , γinj) ∈ Nn, f has a left Gröbner representation:

f =
∑

i,j λija
γ(ij)gj , where λij ∈ K∗, aγ(ij) ∈ B, gj ∈ G,

satisfying LM(aγ(ij)gj) ¹ LM(f) for all (i, j).

(iii) The Buchberger’s Algorithm, that computes a finite Gröbner
basis for a finitely generated commutative polynomial ideal, has a com-
plete noncommutative version that computes a finite left Gröbner basis
for a finitely generated left ideal I =

∑m
i=1 Afi of A.

(iv) Similar results of (ii) and (iii) hold for right ideals and two-
sided ideals of A.

¤

It follows from Definition 2 that the two conditions (S1) and (S2)
satisfied by a solvable polynomial algebra A = K[a1, . . . , an] are com-
pletely independent factors. To reach the main result of this note, we
also recall from the literature a constructive result for getting PBW
bases.

Let K〈X〉 = K〈X1, . . . , Xn〉 be the free K-algebra on X =
{X1, . . . , Xn} and B = {1, Xi1 · · ·Xis | Xij ∈ X, s ≥ 1} the standard
K-basis of K〈X〉. For convenience, we use capital letters U, V,W, S, . . .
to denote elements (monomials) of B. Recall that a monomial ordering
≺X on B is a well-ordering such that for any W,U, V, S ∈ B, U ≺X V im-
plies WU ≺X WV , US ≺X V S (or equivalently, WUS ≺X WV S); and
moreover, if U 6= V , then V = WUS implies U ≺X V (thereby 1 ≺X W
for all 1 6= W ∈ B). Let I be an ideal of K〈X〉 and G ⊂ I. If, with re-
spect to some monomial ordering ≺X on B, 〈LM(I)〉 = 〈LM(G)〉, then
G is said to be a Gröbner basis of I, where 〈LM(I)〉 and 〈LM(G)〉 are

102

Note on Solvable Polynomial Algebras

respectively the ideals generated by the sets of leading monomials of
I and G. The reduced Gröbner basis of I is defined in a similar way
as in the commutative case. Concerning the relation between Gröbner
bases of I and the existence of a PBW K-basis for the quotient algebra
A = K〈X〉/I, the following result is a generalization of ([7], Proposition
2,14; [9], CH.III, Theorem 1.5).

Proposition 2.2. ([10], Ch.4, Theorem 3.1) Let A = K〈X〉/I be
as above. Suppose that I contains a subset of n(n−1)

2 elements

G = {gji = XjXi − Fji | Fji ∈ K〈X〉, 1 ≤ i < j ≤ n}

such that with respect to some monomial ordering ≺X on B, LM(gji) =
XjXi holds for all the gji, where LM(gji) denotes the leading monomial
of gji with respect to ≺X . The following two statements are equivalent:

(i) A has the PBW K-basis B = {Xα1

1 X
α2

2 · · ·Xαn

n | αj ∈ N}, where
each Xi denotes the coset of I represented by Xi in K〈X〉/I.

(ii) Any subset G of I containing G is a Gröbner basis for I with
respect to ≺X .

¤

Remark 1. Obviously, Proposition 2.2 holds true if we use any per-
mutation {Xk1 , . . . , Xkn} of {X1, . . . , Xn} (see an example given in
the end of this note). So, in what follows we conventionally use only
{X1, . . . , Xn}.

We note that if G = {gji = XjXi−Fji | Fji ∈ K〈X〉, 1 ≤ i < j ≤ n}
is a Gröbner basis of the ideal I such that LM(gji) = XjXi for all the
gji, then the reduced Gröbner basis of I is of the form

G =
{

gji = XjXi −
∑

q µji
q X

α1q

1 X
α2q

2 · · ·Xαnq
n with µji

q ∈ K,

and LM(gji) = XjXi, 1 ≤ i < j ≤ n

}
.

Bearing in mind Definition 2 and combining this fact, we are now able
to present the main result of this note.

Theorem 2.1. Let A = K[a1, . . . , an] be a finitely generated algebra
over the field K, and let K〈X〉 = K〈X1, . . . , Xn〉 be the free K-algebras

103

H. Li

with the standard K-basis B = {1, Xi1 · · ·Xis | Xij ∈ X, s ≥ 1}. With
notation as before, the following two statements are equivalent:

(i) A is a solvable polynomial algebra in the sense of Definition 2.
(ii) A ∼= A = K〈X〉/I via the K-algebra epimorphism π1: K〈X〉 →

A with π1(Xi) = ai, 1 ≤ i ≤ n, I = Kerπ1, satisfying
(a) with respect to some monomial ordering ≺X on B, the ideal

I has a finite Gröbner basis G and the reduced Gröbner
basis of I is of the form

G =

gji = XjXi − λjiXiXj − Fji with λji ∈ K∗,
Fji =

∑
q µji

q X
α1q

1 X
α2q

2 · · ·Xαnq
n , µji

q ∈ K,

and LM(gji) = XjXi, 1 ≤ i < j ≤ n

 ,

thereby B = {Xα1

1 X
α2

2 · · ·Xαn

n | αj ∈ N} forms a PBW K-
basis for A, where each Xi denotes the coset of I represented
by Xi in A; and

(b) there is a monomial ordering ≺ on B such that

LM(F ji) ≺ XiXj whenever F ji 6= 0,

where F ji =
∑

q µji
q X

α1i

1 X
α2i

2 · · ·Xαni

n , 1 ≤ i < j ≤ n.

Proof. (i) ⇒ (ii) Let B = {aα = aα1
1 · · · aαn

n | α = (α1, . . . , αn) ∈
Nn} be the PBW K-basis of the solvable polynomial algebra A and ≺
a monomial ordering on B. By Definition 2, the generators of A satisfy
the relations:

ajai = λjiaiaj + fji, 1 ≤ i < j ≤ n, (∗)

where λji ∈ K∗ and fji =
∑

q µji
q aα(q) ∈ K-spanB with LM(fji) ≺

aiaj . Consider in the free K-algebra K〈X〉 = K〈X1, . . . , Xn〉 the sub-
set

G = {gji = XjXi − λjiXiXj − Fji | 1 ≤ i < j ≤ n},
where if fji =

∑
q µji

q a
α1q

1 · · · aαnq
n , then Fji =

∑
q µji

q X
α1q

1 · · ·Xαnq
n for

1 ≤ i < j ≤ n. We write J = 〈G〉 for the ideal of K〈X〉 generated by
G and put A = K〈X〉/J . Let π1: K〈X〉 → A be the K-algebra epi-
morphism with π1(Xi) = ai, 1 ≤ i ≤ n, and let π2: K〈X〉 → A be the

104

Note on Solvable Polynomial Algebras

canonical algebra epimorphism. It follows from the universal property
of the canonical homomorphism that there is an algebra epimorphism
ϕ: A → A defined by ϕ(Xi) = ai, 1 ≤ i ≤ n, such that the following
diagram of algebra homomorphisms is commutative:

K〈X〉 π2−→ A

π1

y ↙ϕ ϕ ◦ π2 = π1

A

.

On the other hand, by the definition of each gji we see that every
element H ∈ A may be written as H =

∑
j µjX

β1j

1 X
β2j

2 · · ·Xβnj

n with
µj ∈ K and (β1j , . . . , βnj) ∈ Nn, where each Xi is the coset of J
represented by Xi in A. Noticing the relations presented in (∗), it is
straightforward to check that the correspondence

ψ : A −→ A∑

i

λia
α1i
1 · · · aαni

n 7→
∑

i

λiX
α1i

1 · · ·Xαni

n

is an algebra homomorphism such that ϕ ◦ ψ = 1A and ψ ◦ ϕ = 1A,
where 1A and 1A denote the identity maps of A and A respectively.
This shows that A ∼= A, thereby Kerπ1 = I = J ; moreover, B =
{Xα1

1 X
α2

2 · · ·Xαn

n | αj ∈ N} forms a PBW K-basis for A, and ≺ is a
monomial ordering on B.

We next show that G forms the reduced Gröbner basis for I as de-
scribed in (a). To this end, we first show that the monomial ordering
≺ on B induces a monomial ordering ≺X on the standard K-basis B of
K〈X〉. For convenience, as before we use capital letters U, V, W, S, . . . to
denote elements (monomials) in B. We also fix a graded lexicographic
ordering ≺grlex on B (with respect to a fixed positively weighted gra-
dation of K〈X〉) such that

X1 ≺grlex X2 ≺grlex · · · ≺grlex Xn.

105

H. Li

Then, for U, V ∈ B we define

U ≺X V if

LM(π1(U)) ≺ LM(π1(V)),
or
LM(π1(U)) = LM(π1(V)) and U ≺grlex V.

Since A is a domain (Proposition 2.1(i)) and π1 is an algebra homomor-
phism with π1(Xi) = ai for 1 ≤ i ≤ n, it follows that LM(π1(W)) 6= 0
for all W ∈ B. We also note from Definition 2 that if f, g ∈ A are
nonzero elements, then LM(fg) = LM(LM(f)LM(g)). Thus,

if U, V, W ∈ B and U ≺X V subject to LM(π1(U)) ≺ LM(π1(V)),
then

LM(π1(WU)) = LM(LM(π1(W))LM(π1(U)))
≺ LM(LM(π1(W))LM(π1(V)))
= LM(π1(WV))

implies WU ≺X WV ;
if U, V, W ∈ B and U ≺X V subject to LM(π1(U)) = LM(π1(V))

and U ≺grlex V , then

LM(π1(WU)) = LM(LM(π1(W))LM(π1(U)))
= LM(LM(π1(W))LM(π1(V)))
= LM(π1(WV)),

and WU ≺grlex WV implies WU ≺X WV .
Similarly, if U ≺X V , then US ≺X V S for all S ∈ B. Moreover,

if W,U, V, S ∈ B, W 6= V , such that W = UV S, then LM(π1(W)) =
LM(π1(UV S)) and clearly V ≺grlex W , thereby V ≺X W . Since ≺ is
a well-ordering on B and ≺grlex is a well-ordering on B, the above argu-
ment shows that ≺X is a monomial ordering on B. With this monomial
ordering ≺X in hand, by the definition of Fji we see that LM(Fji) ≺X

XiXj . Furthermore, since LM(π1(XjXi)) = aiaj = LM(π1(XiXj))
and XiXj ≺grlex XjXi, we see that XiXj ≺X XjXi. It follows that
LM(gji) = XjXi for 1 ≤ i < j ≤ n. Now, by Proposition 2.2 we con-
clude that G forms a Gröbner basis for I with respect to ≺X . Finally,

106

Note on Solvable Polynomial Algebras

by the definition of G, it is clear that G is the reduced Gröbner basis
of I with respect to ≺X , as desired.

(ii) ⇒ (i) Note that (a) + (b) tells us that the generators of A
satisfy the relations XjXi = λjiXiXj + F ji, 1 ≤ i < j ≤ n, and that
if F ji 6= 0, then LM(F ji) ≺ XiXj with respect to the given monomial
ordering ≺ on B. It follows that A and hence A is a solvable polynomial
algebra in the sense of Definition 2. ¤

Remark 2. The monomial ordering ≺X we defined in the proof of The-
orem 2.1 is a modification of the lexicographic extension defined in [5].
But our definition of ≺X involves a graded monomial ordering ≺grlex on
the standard K-basis B of the free K-algebra K〈X〉 = K〈X1, . . . , Xn〉.
The reason is that the monomial ordering ≺X on B must be compatible
with the usual rule of division, namely, W,U, V, S ∈ B, W 6= V , and
W = UV S implies V ≺X W . While it is clear that if we use any lexi-
cographic ordering ≺lex in the definition of ≺X , then this rule will not
work in general.

We end this note by an example illustrating Theorem 2.1, in partic-
ular, illustrating that the monomial ordering ≺X used in the condition
(a) and the monomial ordering ≺ used in the condition (b) may be mu-
tually independent, namely ≺ may not necessarily be the restriction of
≺X on B, and the choice of ≺ is indeed quite flexible.

Example 1. Considering the N-graded structure of the free K-algebra
K〈X〉 = K〈X1, X2, X3〉 by assigning X1 the degree 2, X2 the degree
1 and X3 the degree 4, let I be the ideal of K〈X〉 generated by the
elements

g1 = X1X2 −X2X1,
g2 = X3X1 − λX1X3 − µX3X

2
2 − f(X2),

g3 = X3X2 −X2X3,

where λ ∈ K∗, µ ∈ K, f(X2) is a polynomial in X2 which has degree
≤ 6, or f(X2) = 0. The following properties hold.

(1) If we use the graded lexicographic ordering X2 ≺grlex X1 ≺grlex

X3 on K〈X〉, then the three generators have the leading monomials
LM(g1) = X1X2, LM(g2) = X3X1, and LM(g3) = X3X2. It is

107

H. Li

straightforward to verify that G = {g1, g2, g3} forms a Gröbner basis
for I.

(2) With respect to the fixed ≺grlex in (1), the reduced Gröbner
basis G′ of I consists of

g1 = X1X2 −X2X1,
g2 = X3X1 − λX1X3 − µX2

2X3 − f(X2),
g3 = X3X2 −X2X3,

(3) Writing A = K[a1, a2, a3] for the quotient algebra K〈X〉/I,
where a1, a2 and a3 denote the cosets X1 + I, X2 + I and X3 + I in
K〈X〉/I respectively, it follows that A has the PBW basis B = {aα =
aα2

2 aα1
1 aα3

3 | α = (α2, α1, α3) ∈ N3}. Noticing that a2a1 = a1a2, it is
clear that B′ = {aα = aα1

1 aα2
2 aα3

3 | α = (α1, α2, α3) ∈ N3} is also a PBW
basis for A. Since a3a1 = λa1a3 + µa2

2a3 + f(a2), where f(a2) ∈ K-
span{1, a2, a

2
2, . . . , a

6
2}, we see that A has the monomial ordering ≺lex

on B′ such that a3 ≺lex a2 ≺lex a1 and LM(µa2
2a3 + f(a2)) ≺lex a1a3,

thereby A is turned into a solvable polynomial algebra with respect to
≺lex.

Moreover, one easily checks that if a1 is assigned the degree 2, a2

is assigned the degree 1 and a3 is assigned the degree 4, then A has
another monomial ordering on B′, namely the graded lexicographic
ordering ≺grlex such that a3 ≺grlex a2 ≺grlex a1 and LM(µa2

2a3 +
f(a2)) ≺grlex a1a3, thereby A is turned into a solvable polynomial
algebra with respect to ≺grlex.

References

[1] J. Apel, W. Lassner. An extension of Buchberger’s algorithm and
calculations in enveloping fields of Lie algebras. J. Symbolic Com-
put., 6, 1988, pp. 361–370.

[2] B. Buchberger. Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenringes nach einem nulldimensionalen poly-
nomideal, PhD thesis, University of Innsbruck, 1965.

[3] B. Buchberger. Gröbner bases: An algorithmic method in polyno-
mial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems
Theory. Reidel Dordrecht, 1985, pp. 184–232.

108

Note on Solvable Polynomial Algebras

[4] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann. Singular
3-1-3 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de(2011).

[5] D. Eisenbud, I. Peeva, B. Sturmfels. Non-commutative Gröbner
bases for commutative algebras. Proc. Amer. Math. Soc., 126,
1998, pp. 687-691.

[6] A. Galligo. Some algorithmic questions on ideals of differential
operators. Proc. EUROCAL’85, LNCS 204, 1985, pp. 413–421.

[7] E. L. Green. Noncommutative Grobner bases and projective reso-
lutions. In: Michler, Schneider (eds) Proceedings of the Eurocon-
ference, Computational Methods for Representations of Groups
and Algebras, Essen, 1997. Progress in Mathematics, Vol. 173,
Basel, Birkhauser Verlag, 1999, pp. 29–60.

[8] A. Kandri-Rody, V. Weispfenning. Non-commutative Gröbner
bases in algebras of solvable type. J. Symbolic Comput., 9, 1990,
pp. 1–26.

[9] H. Li. Noncommutative Gröbner Bases and Filtered-Graded
Transfer. Lecture Notes in Mathematics, Vol. 1795, Springer-
Verlag, Berlin, 2002.

[10] H. Li. Gröbner Bases in Ring Theory. World Scientific Publishing
Co., 2011.

[11] H. Li, Y. Wu. Filtered-graded transfer of Gröbner basis computa-
tion in solvable polynomial algebras. Communications in Algebra,
28(1), 2000, pp. 15–32.

[12] T. Mora. An introduction to commutative and noncommutative
Gröbner Bases. Theoretic Computer Science, 134, 1994, pp. 131–
173.

Huishi Li Received December 17, 2013

Huishi Li
Department of Applied Mathematics,
College of Information Science and Technology
Hainan University, Haikou 570228, China
E–mail: huishipp@yahoo.com

109

Computer Science Journal of Moldova, vol.22, no.1(64), 2014

Dynamic Object Identification with SOM-based

neural networks

Aleksey Averkin, Veaceslav Albu, Sergey Ulyanov, Ilya Povidalo

Abstract

In this article a number of neural networks based on self-
organizing maps, that can be successfully used for dynamic object
identification, is described. Unique SOM-based modular neural
networks with vector quantized associative memory and recurrent
self-organizing maps as modules are presented. The structured
algorithms of learning and operation of such SOM-based neural
networks are described in details, also some experimental results
and comparison with some other neural networks are given.

Keywords: Neural networks; forecasting; timeseries predic-
tion; dynamic object identification.

1 Introduction

Identification theory solves problems of constructing mathematical
models of dynamic systems according to the observations of their be-
haviour. The object identification step is one of the most important
steps while constructing mathematical models of objects or processes.
The quality of the model relies on this step and, therefore, the quality
of control, that is based on this model, or results of a research with
this model also rely on this step.

Dynamic object identification is one of the basic problems which
could be solved using neural networks [1] along with different other
methods. Object identification is complicated if noises are present in
the source data, some of the object parameters change according to un-
known laws or the exact number of the object parameters is unknown.

c©2014 by A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

110

Dynamic Object Identification with SOM-based neural networks

In such cases neural network can be applied for dynamic object identi-
fication. There are a lot of different types of neural networks that can
be used for dynamic object identification.

Among different neural network architectures applicable for dy-
namic object identification a class of neural networks based on self-
organizing maps (SOM) can be noted. Neural networks of such type
will be given special attention in this article due to their wider spread
and successful application in solving different kinds of problems [2,3] in-
cluding problems of forecasting and identification. A number of biomor-
phic neural networks, architecture of which is the result of studying the
structure of the cerebral cortex of mammals, will also be considered.

2 SOM-based neural networks that can be
used for dynamic object identification

2.1 Problem definition

Identification of a dynamic object that receives a vector of input pa-
rameters u(t) at time t and gives an output vector y(t) can be de-
scribed as finding the type of a model of this object, that has an out-
put ŷ(t) and finding parameters of this model such that minimize error
e =‖ y(t)− ŷ(t) ‖2 of this model (see figure 1).

Figure 1. Dynamic object identification scheme

Suppose that there is a sequence of vectors of input parameters
u(t), tε[0, T] and a sequence of output vectors y(t), tε[0, T], where T

111

A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

– number of input-output pairs. We will consider the solution of the
object identification problem as definition of the type of the function
f that will define the model of identified object:

ŷ(t) = f [y(t− 1), ..., y(t− ny), u(t), u(t− 1), ..., u(t− nu)], (1)

where ŷ(t) is vector of output parameters of the model. At a single
moment of time the input of the model takes current known measured
values of the input parameters along with nu < T previous values and
ny < T previous output parameters of the identified object.

Also we will consider solution of this problem in the following form:

ŷ(t) = f [ŷ(t− 1), ..., ŷ(t− ny), u(t), u(t− 1), ..., u(t− nu)], (2)

where ŷ(0) = y(0), ŷ(t) is vector of output parameters of the model,
nu < T . This identification scheme has recurrent connections and at
a single moment of time the input of the model takes current known
measured values of the input parameters of the object along with nu <
T previous values of these parameters and ny < T previous output
parameters of the model.

2.2 Vector quantized temporal associative memory (VQ-
TAM)

VQTAM is a modification of self-organizing maps which can be used
for identification of dynamic objects [4,5]. The input vector u(t) of this
network is split into two parts: xin(t), xout(t). The first part of the
input vector xin(t) contains information about the inputs of the dy-
namic object and its outputs at previous time steps. The second part
of the input vector xout(t) contains information about the expected
output of the dynamic object corresponding to the input xin(t). The
weights vector is also split into two parts in a similar way [4]. Thus

x(t) =
(

xin(t)
xout(t)

)
and wi(t) =

(
win

i (t)
wout

i (t)

)
, where wi(t) is weights vector

of the i-th neuron, win
i (t) is the part of the weights vector that contains

information on the inputs, and wout
i (t) is the part of the weights vector

112

Dynamic Object Identification with SOM-based neural networks

that contains information on the outputs. The first part of the in-
put vector contains information on the process inputs and its previous
outputs:

xin(t) = (y(t− 1), ..., y(t− ny), u(t), u(t− 1), ..., u(t− nu)) , (3)

where nu < T , ny < T . The second part of the input vector xout = y(t)
contains information on the expected output of the process correspond-
ing to the inputs xin(t).

Each vector in the learning sample consists of a pair of vectors
(y(t), u(t)) and the sample should contain not less than max(nu, ny)
vectors. Vectors y(t) are the measured output parameters of the process
at time step t, and u(t) are the input parameters of the process at the
same time step.

After presenting a subsequent input vector x(t), combined of several
vectors from the learning sample, to the network the winner neuron is
determined only by the xin(t) part of the vector:

i∗(t) = arg min
i

{‖ xin(t)− win
i (t) ‖} , (4)

where i∗(t) is a number of the winner neuron at time step t.
For weight modification a modified SOM weight modification rule

is used:

∆win
i (t) = α(t)h(i∗, i, t)[xin(t)− xin

i (t)],
∆wout

i (t) = α(t)h(i∗, i, t)[xout(t)− wout
i (t)],

(5)

where 0 < α(t) < 1 is a learning rate of the network, h is neighbourhood
function of the i-th and i∗-th neurons. For example a Gaussian function
can be chosen as a neighbourhood function h(i∗, i, t):

h(i∗, i, t) = exp
(
−‖ ri(t)− ri∗(t) ‖2

2σ2(t)

)
, (6)

where ri(t) and ri∗(t) are positions on the map of the i-th and i∗-th
neurons, σ(t) > 0 determines the radius of the neighbourhood function
at time step t. When the winner neuron i∗ is defined, the output of
the network is set to wout

i∗ (t).

113

A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

On the test sample VQTAM’s input takes only xin(t) part of the
input, which is used to define the winner neuron, and the output of
the network is set to wout

i∗ (t). Vector wout
i∗ (t) can be interpreted as the

predicted output ŷ(t) of the dynamic object at time step t.
Learning algorithm of VQTAM network is similar to regular SOM

algorithm:

1. Weights are initialized with random values or values from the
training sample.

2. A vector from the sample is presented to the network and the
winner neuron is identified according to equation 4.

3. Weights are modified according to the rule 5.

4. Steps 2 and 3 are repeated for each vector from the sample.

5. Steps 2 – 4 are repeated for the sample several times until a
specified number of epochs has passed or a desired accuracy of
identification has been reached.

On a test sample after presenting an input vector containing only
the first xin(t) part of the input vector a winner neuron is identified and
the output of the network (modeled output of the object) is set equal
to the second part of the weight vector of the winner neuron wout

i∗ (t).
The output can be also identified as average between several wout

i (t) of
best-matching neurons.

2.3 Recurrent self-organizing map (RSOM)

In RSOM unlike conventional SOMs with recurrent connections, a de-
caying in time vector of outputs is introduced for each neuron. This
vector is used to determine the winner neuron and is used in maps
weights modification [6, 7].

The network inputs vector x(t) is represented as follows:

x(t) = (y(t− 1), ..., y(t− ny), u(t), u(t− 1), ..., u(t− nu))) , (7)

114

Dynamic Object Identification with SOM-based neural networks

where nu < T , ny < T .
Output of each neuron is determined according to the following

equation:

Vi(t) =‖ νi(t) ‖, (8)

where νi(t) = (1− α)νi(t− 1) + α(x(t)−wi(t)), α is the output decay
factor (0 < α 6 1), Vi(t) is output of the i-th neuron at time step
t, wi(t) is weights vector of the i-th neuron. Further in the article it
will be shown, that a neuron with defined like this output is close to
definition of a chaotic neuron, and also some benefits of this approach
will be described.

After presenting a subsequent input vector to the network a winner
neuron is determined as the neuron with minimal output [7]:

i∗(t) = arg min
i
{Vi(t)} . (9)

To modify the weights a modified conventional SOM rule is used:

∆wi(t) = α(n)h(i∗, i, t)νi(t), (10)

where 0 < α(t) < 1 is learning rate, h is neighbourhood function of
i-th and i∗-th neurons.

When the learning process is complete, the network is presented
again with the learning sample and clusterizes it. Each cluster can be
approximated with an individual model, for example a linear function
fi(t) for the i-th cluster. Thus, after presenting the learning sample a
linear function is defined for each vector of this sample. These functions
can be used to determine the output value at the next time step.

This process can be speeded up by using algorithms for constructing
local linear models while training the neural network. Each neuron of
the RSOM network is associated with a matrix Ai(t) that contains
coefficients of the corresponding linear model:

Ai(t) =
[
bi,1(t), ..., bi,ny(t), ai,1(t), ..., ai,nu(t)

]T
, (11)

115

A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

The output value of the network is defined according to the follow-
ing equation:

ŷ(t) =
ny∑

k=1

bi∗,k(t)u(t− k) +
nu∑

l=1

ai∗,i(t)y(t− l) = AT
i∗(t)x(t), (12)

where Ai∗(t) is the matrix of coefficients associated with the winner
neuron i∗(t). Matrix Ai∗(t) is used for linear approximation of model’s
output.

While constructing the local linear models simultaneously with
training of the neural network an additional rule to modify the co-
efficients of the linear model is needed:

Ai(t + 1) = Ai(t) + βh(i∗, i, t)∆Ai(t), (13)

where 0 < β < 1 is learning rate of the model, ∆Ai(t) is Widrow-Hoff’s
rule for error correction:

∆Ai(t) =
[
y(t)−AT

i (t)x(t)
] x(t)
‖ x(t) ‖2

, (14)

where y(t) is desired output of the model for the x(t) input.
Thus, at each step of the network training a modification of the

model coefficients is performed along with modification of the weights
of neurons. On the test sample after an input vector is presented to
the network a winner neuron i∗(t) is chosen. Then a corresponding
coefficients matrix Ai∗(t) of the linear model is calculated. Using the
determined matrix the output of the model is defined by the equation:
ŷ(t) = AT

i∗(t)x(t).
So, learning algorithm of RSOM network is similar to SOM training

algorithm but with some differences:

1. Weights are initialized with random values or values from the
training sample.

2. Parameters of the local models assigned to neurons are initialized
with random values.

116

Dynamic Object Identification with SOM-based neural networks

3. A vector from the sample is presented to the network, outputs of
all neurons are calculated according to (8) and the winner neuron
is identified by (9).

4. Weights are modified according to the rule (10).

5. Local models parameters are modified according to (13).

6. Steps 3 – 5 are repeated for each vector from the sample.

7. Steps 3 – 6 are repeated for the sample several times until a
specified number of epochs has passed or a desired accuracy of
identification has been reached.

On a test sample after presenting an input vector, outputs of all
neurons are calculated according to (8), the winner neuron is identified
and the corresponding local model is chosen and the resulting modelled
output is determined by equation (12).

2.4 Modular self-organizing maps

Modular self-organizing maps are presented in Tetsuo Furukava’s works
[8, 9]. Modular SOM has a structure of an array which consists of
functional modules that are actually trainable neural networks (see fig-
ure 2), such as multilayer perceptrons (MLP), but not a vector, as in
conventional self-organizing maps. In case of MLP-modules modular
self-organizing map finds features or correlations in input and output
values simultaneously building a map of their similarity. Thus, a mod-
ular self-organizing map with MLP modules is a self-organizing map in
a function space but not in a vector space [9].

These neural network structures can be considered biomorphic, as
their emergence is due to research of the brain structure of mammals
[10], and confirmed by a number of further studies [11]. The basis of
the idea of the cerebral cortex structure is a model of cellular structure,
where each cell is a collection of neurons, a neural column. Columns
of neurons are combined in a more complex structures. In this regard
it was suggested to model the individual neural columns with neural

117

A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

Figure 2. Modular network structure

networks [11]. This idea has formed the basis of the modular neural
networks.

In fact, the modular self-organizing map is a common SOM, where
neurons are replaced by more complex and autonomous entities such as
other neural networks. Such replacement requires a slight modification
of the learning algorithm. In the proposed by [9] algorithm at the
initial stage the network receives the i-th sample of the input data
corresponding to I functions, which will be mapped by the network,
and the error is calculated for each network module:

Ek
i =

1
J

J∑

j=1

‖ ŷk
i,j − yi,j ‖2, (15)

where k is module number, for which the error is calculated, J is num-
ber of vectors in the sample, ŷk

j is output of the k-th module, yj is
expected output of the network on the suggested set of input data.
Winner module is calculated as the module that minimizes the error
Ek:

k∗i = arg min
k

Ek
i . (16)

As soon as the winner module is defined, the adaptation process

118

Dynamic Object Identification with SOM-based neural networks

takes place and the weights of the module are being modified according
to one of learning algorithms suitable for the networks of this type, after
that the weights of the main SOM are being modified. In this process
parameters (weights) of each module are considered as the weights of
the SOM and are modified according to standard learning algorithms
suitable for conventional SOMs.

In this study SOMxVQTAM and SOMxRSOM networks were de-
veloped, which are SOMs with modules of VQTAM type and SOMs
with modules of RSOM type respectively. Further some application
results of such networks will be reviewed.

3 Using SOM-based neural networks for dy-
namic object identification

For some experiments and comparisons of the algorithms the neural
networks of types VQTAM, RSOM, SOMxVQTAM and SOMxRSOM
were tested on samples that were used in 2006 – 2007 to identify the
winners at neural networks forecasting competition [14]. Results of
these competitions were used in this study as there is a detailed de-
scription of the place definition method used for all competitors. Also
a fair amount of different algorithms took part in this competion and
there was a description for the most of those algorithms as well as the
learning and testing samples, which allowed a comparative analysis of
the neural networks described in this paper with other advanced al-
gorithms. To determine the place in the table, the organizers of the
competition [14] suggested to forecast 18 steps for each of the 111 sam-
ples. For each of the resulting predictions a symmetric mean absolute
percentage error (SMAPE) was calculated:

SMAPE =
1
n

n∑

t=1

‖ y(t)− ŷ(t) ‖
(y(t) + ŷ(t))/2

∗ 100, (17)

where y(t) is the real state of the object at time step t, ŷ(t) is the
output of the model at time step t, n is the number of vectors in the

119

A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

testing sample (18 for this competition). Then the place in the table
was determined from the average error for all of 111 samples.

Each of the 111 samples had different lengths (from 51 to 126 points
in the training samples), those samples represented a monthly measure
of several macroeconomic indicators.

Each of the algorithms described in this article were launched with
the same parameters for all of 111 samples, that is the parameters
for each network were set only once before presenting the set of all 111
samples, but not set individually for each of the 111 samples, which lead
to some not very successful forecasts that led to growth of the average
error. Despite this fact algorithms could accurately predict the future
values, as it is clearly seen from the results table (see Table 1). The
SMAPE error of the forecast for most of the 111 samples was lower
than 5% (for more than 70% of all samples) but the average error
grew due to unsuccessful forecasts with error values up to 60%. The
above error can be greatly reduced if the automatic tuning of network
parameters for each of the samples would be applied.

Table 1: Results table for different forecasting algorithms

Num. Algorithm name SMAPE
1 Stat. Contender - Wildi 14,84%
2 Stat. Benchmark - Theta Method (Nikolopou-

los)
14,89%

3 Illies, Jager, Kosuchinas, Rincon, Sakenas,
Vaskevcius

15,18%

4 Stat. Benchmark - ForecastPro (Stellwagen) 15,44%
5 CI Benchmark - Theta AI (Nikolopoulos) 15,66%
6 Stat. Benchmark - Autobox (Reilly) 15,95%
7 Adeodato, Vasconcelos, Arnaud, Chunha, Mon-

teiro
16,17%

8 Flores, Anaya, Ramirez, Morales 16,31%
9 Chen, Yao 16,55%
10 D’yakonov 16,57%
11 Kamel, Atiya, Gayar, El-Shishiny 16,92%

120

Dynamic Object Identification with SOM-based neural networks

Continuation of Table 1
Num. Algorithm name SMAPE
12 Abou-Nasr 17,54%
13 Theodosiou, Swamy 17,55%
– VQTAM 17,61%
– SOMxVQTAM 17,70%
14 CI Benchmark - Naive MLP (Crone) 17,84%
– RSOM 17,94%
15 de Vos 18,24%
16 Yan 18,58%
17 CI Benchmark - Naive SVR (Crone, Pietsch) 18,60%
18 C49 18,72%
19 Perfilieva, Novak, Pavliska, Dvorak, Stepnicka 18,81%
20 Kurogi, Koyama, Tanaka, Sanuki 19,00%
21 Stat. Contender - Beadle 19,14%
22 Stat. Contender - Lewicke 19,17%
23 Sorjamaa, Lendasse 19,60%
24 Isa 20,00%
25 C28 20,54%
26 Duclos-Gosselin 20,85%
– SOMxRSOM 21,64%
27 Stat. Benchmark - Naive 22,69%
28 Papadaki, Amaxopolous 22,70%
29 Stat. Benchmark - Hazarika 23,72%
30 C17 24,09%
31 Stat. Contender - Njimi, Melard 24,90%
32 Pucheta, Patino, Kuchen 25,13%
33 Corzo, Hong 27,53%

3.1 Example of learning on one of the samples

For example, take one of the 111 samples and see the results of the
identification done by all four types of the described neural networks.
The original sample is shown in Figure 3, the test 18 points of the

121

A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

sample are separated from the learning sample with a vertical dashed
line.

Figure 3. The original sample divided into learning and test samples
with a vertical dashed line

In Figure 4 the results of testing VQTAM network on the last 18
points of the sample are overlain on the original sample. The SMAPE
of 7.54% has been observed.

Figure 4. Results of testing VQTAM network, SMAPE 7.54%

In Figure 5 the results of testing RSOM network are overlain on

122

Dynamic Object Identification with SOM-based neural networks

the original sample. The SMAPE of 7.79% has been observed.

Figure 5. Results of testing RSOM network, SMAPE 7.79%

In Figure 6 the results of testing SOMxVQTAM modular network
are presented. The SMAPE of 6.12% has been reached.

Figure 6. Results of testing SOMxVQTAM modular network, SMAPE
6.12%

In Figure 7 the results of testing SOMxRSOM modular network
are overlain on the original sample. The SMAPE of 9.20% has been
observed.

123

A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

Figure 7. Results of testing SOMxRSOM modular network, SMAPE
9.20%

This and other tests that were concluded lead to a suggestion that
modular modification gives a significant increase if accuracy in case of
VQTAM modules, but modular networks are more sensitive to changes
of learning parameters. The higher SMAPE in case of the SOMxRSOM
modular network compared to RSOM network can be explaned by the
fact that RSOM itself contains local models and during the learning
process of the SOMxRSOM network those local models are treated
as weight vectors for the whole SOMxRSOM network, but the local
models are constructed for different parts of the input data and the
local model corresponding to one of the neurons of one of the RSOMs
are most likely to be constructed for the different part of the input
data compared to the local model contained in another RSOM for the
neuron on the same position.

4 Conclusion

In this article several SOM-based neural networks, that can be suc-
cessfully used for dynamic object identification, have been described.
Also, this study proves the necessity of investigating the possibilities
of modular neural networks of higher complexity for identification of

124

Dynamic Object Identification with SOM-based neural networks

dynamic objects and study of the ability of such networks to identify
patterns in time series. Also it is necessary to develop an algorithm
to automatically select learning parameters of presented in this paper
neural networks in order to reduce prediction error.

References

[1] S. Haykin. Neural Networks – A Comprehensive Foundation, 2nd
Edition. Prentice Hall International, Inc. (1998).

[2] N. Efremova, N. Asakura, T. Inui. Natural object recognition with
the view-invariant neural network. The Proceedings of the 5th In-
ternational Conference of Cognitive Science (CoSci), (2012).

[3] A. Trofimov, I. Povidalo, S. Chernetsov. Usage of the self-learning
neural networks for the blood glucose level of patients with diabetes
mellitus type 1 identification. Science and education. vol. 5 (2010),
(In Russian). http://technomag.edu.ru/doc/142908.html

[4] T. Koskela. Neural network methods in analyzing and modelling
time varying processes. Espoo. (2003), pp. 1–72.

[5] Luis Gustavo M. Souza, Guilherme A. Barreto. Multiple Local
ARX Modeling for System Identification Using the Self-Organizing
Map. Proceedings, European Symposium on Artificial Neural Net-
works – Computational Intelligence and Machine Learning. Bruges
(Belgium). (2010).

[6] M. Varsta, J. Heikkonen. A recurrent Self-Organizing Map for tem-
poral sequence processing. Springer. (1997), pp. 421–426.

[7] A. Lotfi, J. Garibaldi. In Applications and Science in Soft Com-
puting, Advances in Soft Computing Series. Springer. (2003), pp.
3–8.

[8] K. Tokunaga, T. Furukawa. SOM of SOMs. Neural Networks. vol.
22 (2009), pp. 463–478.

[9] K. Tokunaga, T. Furukawa. Modular network SOM. Neural Net-
works. vol. 22 (2009), pp. 82–90.

125

A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

[10] N. K. Logothetis, J. Pauls, T. Poggiot. Shape representation in
the inferior temporal cortex of monkeys. Current Biology. vol. 5
(1995), pp. 552–563.

[11] T. Vetter, A. Hurlbert, T. Poggio. View-based Models of 3D Ob-
ject Recognition: Invariance to Imaging Transformations. Cere-
bral Cortex. vol. 3 (1995), pp. 261–269.

[12] K. Aihara, G. Matsumoto, M. Ichikawa. An alternating periodic-
chaotic sequence observed in neural oscillators. Phys. Lett. A. vol.
111(5) (1985), pp. 251–255.

[13] K. Aihara, T. Takabe, M. Toyoda. Chaotic neural networks. Phys.
Lett. A. vol. 144(6/7) (1990), pp. 333–340.

[14] Artificial Neural Network & Computational Intelligence Fore-
casting Competition. (2007). http://www.neural-forecasting-
competition.com/NN3/results.htm

Aleksey Averkin, Veaceslav Albu, Received December 2, 2013
Sergey Ulyanov, Ilya Povidalo

Aleksey Averkin
Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS
Vavilov st. 40, 119333 Moscow, Russia
E–mail: averkin2003@inbox.ru

Veaceslav Albu
Institute of Mathematics and Computer Science
Academiei 5, Kishinev, MD 2028 Moldova
E–mail: vaalbu@googlemail.com

Sergey Ulyanov
International University of Nature, Society and Man ”Dubna”
Universitetskaya st. 19, 141980 Dubna, Moscow region, Russia
E–mail: ulyanovsv@mail.ru

Ilya Povidalo
International University of Nature, Society and Man ”Dubna”
Universitetskaya st. 19, 141980 Dubna, Moscow region, Russia
E–mail: ipovidalo@gmail.com

126

Computer Science Journal of Moldova, vol.22, no.1(64), 2014

Evaluating the impact of software metrics on

defects prediction. Part 2

Arwa Abu Asad, Izzat Alsmadi

Abstract
Software metrics are used as indicators of the quality of the

developed software. Metrics can be collected from any software
part such as: code, design, or requirements. In this paper, we
evaluated several examples of design coupling metrics. Analy-
sis and experiments follow hereinafter to demonstrate the use
and value of those metrics. This is the second part for a paper
we published in Computer Science Journal of Moldova (CSJM),
V.21, N.2(62), 2013 [19]. We proposed and evaluated several de-
sign and code coupling metrics. In this part, we collected source
code from Scarab open source project. This open source is se-
lected due to the availability of bug reports. We used bug reports
for further analysis and association where bugs are used to form a
class for classification and prediction purposes. Metrics are col-
lected and analyzed automatically through the developed tool.
Statistical and data mining methods are then used to generalize
some findings related to the collected metrics. In addition classi-
fication and prediction algorithms are used to correlate collected
metrics with high level quality attributes such as maintainability
and defects prediction.

Keywords: Design metrics, Object-Oriented Designs, Coupling met-
rics, software faults.

1 Introduction

Design activity should consider the dependency between classes so that
changing in one class should not be propagated to several classes. Qual-
ity attributes such as: dependency and modularity can be measured or

c©2014 by A. Abu Asad, I. Alsmadi

127

A. Abu Asad, I. Alsmadi

evaluated through coupling metrics. Coupling describes how classes are
related and dependent on each other. Coupling is considered as one of
the fundamental design metrics that aims to minimize coupling among
different modules facilitating understanding, maintaining, reusability,
modularity and testing tasks of the software and design. In addition,
they provide information to the designers regarding the capability of
their design to change or to be reused. Low coupling results in compo-
nents’ self-containment, which in turn increases class understandability
in isolation. Furthermore, it improves maintainability and increases po-
tentials for reuse. On the other side, high coupling between two classes
or components makes it more difficult to understand one of them in
separation from the other. Thus, ripple changes are increased due to
high dependency among classes. Myers et al., (1974) [18] defined six
coupling metrics between pairs of modules. Those are: content, com-
mon, external, control, stamp, and data coupling. Eder et al. (1994)
[7], Hitz et al. (1995) [10], and Briand et al. (1997) [3] defined OO
coupling frameworks. These three frameworks were unified by Briand
et al. (1999) to a more formalized framework.

A software product can hardly be free from errors. Maintenance and
testing stages involve looking for bugs and fixing them. However, the
allocation of potential regions where errors are or can be located plays
important role in budget and effort reduction in software projects. In
this study, we have used fault proneness as a quality predictor. On the
other hand, we have investigated several coupling metrics as possible
predictors for fault proneness.

In this paper several design coupling metrics proposed by Briand et
al (1999) [4] are assessed using a large set of open source code projects.
One of the major design goals is to minimize coupling. Therefore, it
is important to be able to develop tools for coupling assessment before
or after code development.

2 Coupling Metrics

Coupling is a measure of interconnection among modules. One of ma-
jor goals in software design is that classes should be loosely coupled.

128

Evaluating the impact of software metrics on defects prediction . . .

Therefore, Simple connection between modules will produce more un-
derstandable and maintainable software. Loosely coupled software will
be less subjective to ripple effect in case of code changes. Myers et al.
(1974) [18] defined six procedural coupling types, which are explained
in Table 1.

Table 1. Procedural coupling levels
Coupling type Description
DATA
COUPLING

Data coupling occurs when passing pure simple
data between two modules by parameters using
a simple elementary piece of argument list and
every item in the list is used.

STAMP
COUPLING

Stamp coupling occurs between modules when
passing composite data through parameters us-
ing a data structure containing fields, which may
or may not be used.

CONTROL
COUPLING

Control coupling occurs between modules when
data are passed that influence the internal logic
of a module (e.g. flags)

COMMON
COUPLING

Common coupling occurs when modules commu-
nicate sharing global data areas so common cou-
pling is also known as global coupling.

CONTENT
COUPLING

Content coupling occurs between two modules if
one modifies the internals of other module. In
practice, only assembler language allows content
coupling. Most object-oriented programming lan-
guages do not allow implementing content cou-
pling.

These metrics were realized into object oriented design resulting
in many metrics. This research is interested in investigating coupling
metrics unified by Briand et al. (1999) [4] framework. Here is a brief
preview of coupling metrics that will be measured in this research:

129

A. Abu Asad, I. Alsmadi

Coupling between object (CBO) (Chidamber & Kemerer,
1994 [6])

Two classes are coupled when methods declared in one class use
methods or instance variables defined by the other class. Multiple
accesses to the same class are counted as one access. Only method
calls and variable references are counted as the original definition: “two
classes are coupled when methods of one class use methods or instance
variables defined by the other class”.

Definition 1
CBO = number of classes to which a class is coupled

Response for a Class (RFC) (Chidamber & Kemerer, 1994
[6]) The response set of a class is a set of methods that can potentially
be executed in response to a message received by an object of that class
It counts only the first level of calls outside of the class. RFC is simply
the number of methods in the set. It regards all methods and properties
declared. Calls to properties: Set and Get are all counted separately.

Definition 2

RFC = M + R (First-step measure) where M = number of methods
in the class, R = number of remote methods directly called by methods
of the class

Message passing coupling (MPC) (Li & Henry, 1993) [13]
The message passing is the number of call statements defined in

a class or the number of messages between objects in local method
of a class. Thus, this includes only counting method invocations to
other classes, and these classes with inheritance relationship have been
excluded from counting.

Data Abstraction Coupling (DAC) (Li & Henry, 1993) [13]
Data Abstraction Coupling is the total number of other class types

in attribute declarations. It is also referred to as aggregation coupling.
DAC does not count primitive types, system types, and inherited types
from the base classes. DAC has two variants, which are:

130

Evaluating the impact of software metrics on defects prediction . . .

Definition 3

DAC: The number of attributes in a class that have another class as
their type (count the repetition of class type)
DAC1: The number of different classes that are used as types of
attributes in a class

Information-flow-based coupling (ICP) (Lee et al., 1995)
[11]

Information-flow-based coupling is the number of implemented
method m of one class plus the number of polymorphically invoked
methods of other classes, weighted by the number of parameters of the
invoked method.

Definition 4

ICP c(m) =
∑

m′∈PIM(m)−(MNEW (c)∪MOV R(c))

(1+|Par(m′)|)·NPI(m,m′)

Where:
MOV R(c): is the set of overriding methods of class c.
MNEW (c): is the set of non-inherited, non-overriding methods of class c.
Par(m): is the set of parameters of method m.
PIM(m): is the set of Polymorphically Invoked Methods of m.
NPI(m,m′): is the Number of Polymorphic Invocations of m′ by m.

Briand et al. (1999) [4] redefined ICP as the number of method
invocations in one class weighted by the number of parameters of the
methods invoked by class methods (the weight is number of parame-
ters +1 but for empirical consideration they refined it to number of
parameters only).

Definition 5

Total Number of Method Invocations

Total Number of Method Invocations +
∑all methods

i=0 parmOf(mi)

131

A. Abu Asad, I. Alsmadi

ICP has two variations, which are:

• H-ICP of just inheritance invocation are considered invocation to
method of ancestors classes only

• NIH-ICP non inheritance invocation

ICP is the sum of IH-ICP and NIH-ICP

Definition 6

ICP = IH − ICP + NIH − ICP

Coupling factor (COF) (Abreu et al., 1995)

COF is defined as: the ratio of the maximum possible number of
couplings in the system to the actual number of couplings not im-
putable to inheritance.

Definition 7

Coupling Factor

COF =

∑TC
i=1

[∑TC
j=1 is client(Ci, Cj)

]

TC2 − TC − 2×∑TC
i=1 DC(Ci)

is client(Cc, Cs) =

∣∣∣∣∣∣
1 iff

Cc ⇒ Cs ∧ Cc 6= Cs

∧¬(Cc → Cs)
0 otherwise

• is client(x, y) = 1 iff a dependency exists between the client and
the server classes. 0 otherwise;

• (TC2− TC) is the total number of possible dependencies.

Briand suite [3-5]
Briand et al. suggested suite of coupling metrics. The abbreviations

used in Briand measurements:

132

Evaluating the impact of software metrics on defects prediction . . .

A: Coupling to ancestor classes.
D: Coupling to Descendents.
IC: import coupling, the measure counts for a class C all interac-

tions where C is using another class;
EC – export coupling, counts interactions where class D is the used

class.
CA – Class-attribute interaction
CM – Class-method interaction
MM – Method-method interaction
The definitions for CA, CM , and MM are as follows:

Class-attribute interaction (CA) (Briand et al., 1997 [3])
Class-attribute interaction occurs if a class contains an attribute of

type another class. It is the number of class-attribute interactions from
one class C to another class D.

Definition 8

CA(c, d) =
∣∣a|a ∈ AI(c′) ∧ T (a) = d

∣∣ .

A: is the set of attributes in class c.
T (a): is the type of attribute where the attribute type will be a

class.

Class-method interaction (CM) (Briand et al., 1997 [3])
Class-method interaction occurs if a newly defined method of one

class has a parameter of type another class.

Definition 9

CM(c, d) =
∑

m∈MNEW (c)

|a|a ∈ Par(m) ∧ T (a) = d| .

T (a): is the type of attribute where the attribute type will be a
class.

Par(m): is the set of parameters of method m.

133

A. Abu Asad, I. Alsmadi

Method-method interaction (MM) (Briand et al., 1997 [3])
Method-method interaction occurs if a method implemented at

class c statically invokes a method of class d (newly defined or overrid-
ing), or receives a pointer to such a method. The number of method-
method interactions from class c to class d.

Definition 10

MM(c, d) =
∑

m∈MI(c)

∑

m′∈MNEW (d)∪MOV R(d)

(NSI(m,m′) + PP (m,m′)).

NSI(m,m′): is the number of static invocations of method m′ by
m.

M : is the set of methods in a class.
MOV R(c): is the set of overriding methods of class c.
MNEW (c): is the set of non-inherited, non-overriding methods of

class c.

Afferent and Efferent Coupling (Martin 2002) [14]
The OO Design package or system metrics of Martin (Afferent and

Efferent Coupling), based on fan-in and fan-out metrics, are largely
used in the industry and commonly referenced in the academy. Lots
of static analysis tools are able to extract them. They can help in
understanding how defects are likely to ripple among different classes
or components. They measure how much a particular class, method,
component etc. is coupled with other components as either calling them
or being called by them. The remainder of this paper is organized as
follows: Section 3 provides an overview of related work. Section 4
presents goals and approaches. Section 5 presents an experimental
section and paper is concluded in Section 6.

3 Related Work

In this section, we will list some examples of related papers of evaluating
software design or coupling metrics.

134

Evaluating the impact of software metrics on defects prediction . . .

Hitz and Montazeri (1995) [10] distinguished between coupling
among objects (CLO) and coupling among classes (CLC). CLC is prin-
cipally important in maintenance or change dependencies within pro-
gram. On the other hand, OLC is relevant for runtime-oriented activ-
ities like testing and debugging. In addition, they argued that various
levels of coupling depend on three attributes: Stability, Access Type
and Scope of Access, and each combination of these attributes would
have different strength of coupling. Coupling measures the strength
of connection between two classes as pairs. Although, coupling was
defined as characteristics of pairs of classes, but as a metric, it is the
total number of couples that one class has with other classes. There-
fore, implicitly all coupling connections are supposed to be of equal
strength among a class with others in the system level (Norman et al.,
1992). Therefore, in the proposed system coupling was computed using
previous definition.

Briand et al. (1999) [4] refined existing framework defined by (Eder
et al., 1994 [7]; Hitz and Montazeri, 1995 [10]; and Briand et al. 1997
[3]) into comprehensive and formalized framework for coupling mea-
surements. The framework for coupling consists of six criteria, which
are:

1. Type of connection

2. Direction of connection: Fan-in or Fan-out.

3. Granularity of the measure: Domain of the measure and how to
count coupling connections.

4. Stability of server: whether a class stable or changing frequently.

5. Direct or indirect coupling.

6. Inheritance: Inheritance-based or non inheritance-based cou-
pling.

Briand et al. (1999) [4] also distinguished two directions of coupling,
which are import and export. Export occurs when a class is used as
server class in the interaction. On the other hand, import occurs when

135

A. Abu Asad, I. Alsmadi

a class is used as client class in the interaction. But Lee (2007) [12]
specified that Dependency between classes could be in one direction
or two directions. A high fan-out represents a class coupling to other
classes. High fan-in represents a good level of reuse.

Many object oriented metrics were proposed in the previous studies
to predict software quality attributes. One of these attributes is fault
proneness. Michael English et al. (2009) [9] summarized the results
from 23 papers that evaluated software metrics and their correlation
with software fault prone modules. Their evaluation showed that CK
and LOC metrics are the most used and evaluated metrics. Emam et
al. (2001) [8] used the CK metrics in addition to Briand’s coupling
metrics to predict faults on a commercial Java system [3-5]. Basili et
al. (1996) studied the correlation of fault-proneness with CK metrics
for eight student projects. The results showed that WMC, CBO, DIT,
NOC and RFC have a significant correlation with faults whereas LCOM
didn’t have same significant correlation with faults. Tang et al. (1999)
[16] found that higher WMC and RFC were found to be associated with
fault-proneness on three real time systems. Menzies et al. (2007) [15],
on the other hand, evaluated fault proneness for C and Java projects.

There are various types of methods to predict faulty classes such
as statistical methods, machine learning methods, etc. However, the
trend recently is moved from traditional statistical methods to machine
learning methods. Zhou et al. (2006) [17] used logistic regression and
machine learning methods to show how OO metrics and fault proneness
are correlated. The results showed that WMC, CBO, and SLOC were
found to be strong predictors across all severity levels based on the
public domain NASA datasets.

4 Goals and Approaches

As described earlier, this is the second part of one paper. In the first
part that was published in CSJM, V.21, N.2(62), 2013 [19], we de-
scribed in details the coupling metrics that we want to investigate. We
described them with examples and also described the developed tool to
automatically collect those coupling metrics. In this part, we assembled

136

Evaluating the impact of software metrics on defects prediction . . .

a case study of a large number of source code.
We will define the terminologies and the abbreviations that are used

in later sections. Table 2 shows the terms and the definitions used in
this paper as well as the abbreviation of terms.

5 Results and Analysis

In this section, we will present the results from the collection of metrics
and their statistical and correlation analysis with bug reports for the
same source code. The first section includes descriptive statistics for
the collected coupling metrics.

5.1 Descriptive Statistics for Coupling measures

Table 3 presents the descriptive statistics for the coupling measures
collected from Scarab project. The columns: Min, Max, Mean, and
Std. Deviation are the: minimum value, maximum value, mean value
and standard deviation, respectively. N > 5 is NO if the count of
non-zero values is less than six.

The following observations can be made from Table 3:

• The measures that are counting various relationships through in-
heritance (i.e. ACAIC, DCAEC, ACMIC, and ACMIC) have all
relatively zero values for all columns which means that no exten-
sive use of inheritance (at the attribute and method use, override
and reuse) is observed in the Scarab project.

• The largest maximum value is for RFC, which also has the largest
mean. This may be explained by the fact that RFC counts
method invocations plus the number of methods. MPC has the
next maximum mean value as it counts the sent statement.

• All measures with significant variance (i.e. six or more non-zero
values – N > 5) were subjected to further analysis. Therefore,
ACAIC, DCAEC, ACMIC, and DCMEC are removed from fur-
ther analysis.

137

A. Abu Asad, I. Alsmadi

Table 2. Terminology Abbreviation
Term Definition Abbre-

viation
Defined
methods

Methods declared within class C Mdef

Inherited
methods

Methods declared within parent class and inher-
ited and (not overridden) within child class C

Minh

Polymorphic
method

Methods defined within an interface Mpoly

New meth-
ods

Methods declared within class C that do not
override inherited ones

Mnew

Overriding
methods

Methods declared within class C that override
(redefine) inherited ones

Mover

Invoked
methods

Methods that can be invoked in association with
class C

Minv

External
calls

Invocations to a method defined in other classes Callex

Internal
calls

Invocations to a method in the same class Callint

Polymorphic
calls

Invocations to a method defined in an interface Callpoly

Inherited
calls

Invocations to a method defined in parent class
through object of child class

Callinh

Defined at-
tributes

Attributes declared within class C Attrdef

Overriding
attributes

Attributes declared within class C that overrides
(redefines) inherited ones

Attrover

Inherited at-
tributes

Attributes inherited (and not overridden) in
class C

Attrinh

Used at-
tributes

Attributes that can be manipulated in associa-
tion with class C (those external public attribute
from other classes used in method of class C)

Attruse

Instance at-
tributes

Attributes of type class Attrinst

Instance pa-
rameters

Parameters of type class argins

138

Evaluating the impact of software metrics on defects prediction . . .

Table 3. Descriptive statistics for collected metrics
Descriptive Statistics

Metrics Min Max Mean
Std.

Devia-
tion

N>5

CBO 0 53 5.17 8.13
RFC 0 1098 33.42 85.49
MPC 0 928 24.56 71.79
DAC 0 12 .36 1.11
DAC1 0 11 .33 .99
ICP .0 1.6 .46 .39

ACAIC 0 0 .00 .00 NO
DCAEC 0 0 .00 .00 NO
ACMIC 0 0 .00 .00 NO
DCMEC 0 0 .00 .00 NO
AMMIC 0 32 .21 1.81
DMMEC 0 44 .21 2.37

NOC 0 31 .33 2.42
NDC 0 37 .39 2.87
NAC 0 4 .39 .70

5.2 A defect prediction model

In this section, we built a defect prediction model to validate the cor-
relation between coupling metrics and reported bugs. On the other
hand, we also measured which coupling metrics have more significant
effect in comparison with the rest of collected metrics.

Figure 1 shows the results from Gain Ratio (GR) feature selection
method applied on the collected dataset. It can be seen that inheritance
metrics have no significant role in bug prediction. CBO, RFC, MPC
and ICP are the most significant metrics in defects prediction. In
particular, CBO has the most significant effect.

J48graft data mining method is then used on the collected dataset
after applying feature selection. Table 4 shows prediction performance

139

A. Abu Asad, I. Alsmadi

Figure 1. Gain Ratio feature evaluator

metrics: recall, precision, and accuracy. The Table 4 shows the recall,
precision and accuracy for faulty (i.e. true case), and for not faulty
classes (i.e. false case). The Table 4 shows also the recall, precision
and accuracy for overall average of both. 10 cross validation method
is used as the selection for testing and training.

Table 4. Scarab performance metrics with J48graft and 10 cross vali-
dation

Precision Recall Accuracy
Not faulty 0.77 0.69 0.69
Faulty 0.61 0.70 0.70
Weighted
Avg.

0.70 0.70 0.70

Figure 2 shows the classification tree after applying gain ratio using
J48graft.

5.3 Study Limitation

Similar to most experiments conducted in this field one of the limi-
tations is the dependency of the results in one source code project.

140

Evaluating the impact of software metrics on defects prediction . . .

Figure 2. Metrics-bugs-dependent classification tree

141

A. Abu Asad, I. Alsmadi

This may have a risk of having possibly biased results that may not be
generalized to all software source codes especially those that may not
share the project same domain, environment, etc.

In addition, the dataset used in this research may not be perfect or
complete. Bugs reporting and judgments are also human subjective.
In addition, bugs were not classified or categorized based on their se-
riousness or importance. Those are examples of some of the possible
limitations on generalizing the results in this study on other software
products.

6 Summary and Conclusion

In this paper, we presented several metrics for evaluating the quality
of software design. Those metrics focus on evaluating design coupling
quality where software components are expected to be moderately cou-
pled. Experiments and analysis were conducted to demonstrate the
value of the proposed and evaluated metrics. Scarab open source is
used in the case study due to the availability of bug reports related to
the usage of this software. We used such bug reports for classification
and prediction where a bug class is formed with values of true or false
based on whether the subject class contains bugs or not (based on bug
reports). Some coupling metrics such as: CBO, RFC, MPC and ICP
showed significant correlation with bugs. This means that those cou-
pling metrics can be used for bugs prediction. Monitoring those metrics
early in the software project can help software project managements
monitor quality aspects especially those related to bugs.

References

[1] F. Abreu, M. Goul, R. Esteves. Toward the design quality evalu-
ation of object-oriented software systems, Proc. Fifth Int’l Conf.
Software Quality, Austin, Texas, (1995), pp.44–57.

142

Evaluating the impact of software metrics on defects prediction . . .

[2] V. Basili, L. Briand, W. Melo. A Validation of Object Oriented
Design Metrics as Quality Indicators, IEEE Transactions on Soft-
ware Engineering, 22, (1996), pp. 751–761.

[3] L. Briand, P. Devanbu, W. Melo. An investigation into coupling
measures for C++, Proc. 19th Int’l Conf. Software Eng, ICSE,
(1997), pp. 412–421.

[4] L. Briand, J.W. Daly, J.K. Wust. A unified framework for cou-
pling measurment in objmct-oriented systems, IEEE Tranractions
on Software Engineering, 25 (1) (1999), pp. 91–121.

[5] L.C. Briand, J.K. Wust, J.W. Daly, D.V. Porter Exploring the re-
lationships between design measures and software quality in object
oriented systems’, Journal of systems and Software, 51(3), (2000),
pp. 254–273.

[6] S. Chidamber, C. Kemerer. A metrics suite for object oriented
design, IEEE Trans Journal. Software Eng, 20 (6), (1994), pp.
476–493.

[7] J. Eder, C. Kappel, M. Schrefl. Coupling and Cohesion in Object-
Oriented Systems. Technical Report, Univ. of Klagenlurt, available
at ftp://ftp.ifs.uni-inz.ac.at/pub/publications/1993/0293.ps.gz,
(1994).

[8] K.E. Emam, W. Melo, J.C. Machado. The prediction of faulty
classes using object-oriented design metrics, Journal of Systems
and Software, 56(1), (2001), pp. 63–75.

[9] M. English, Ch. Exton, I. Rigon, B. Cleary. Fault Detection and
Prediction in an Open-Source Software Project, In Proceedings of
Promise, (2009).

[10] M. Hitz, B. Montazeri. Measuring coupling and cohesion in object-
oriented systems, Proc. ESEC ‘95 fifth European Software Eng.
Conf., Barcelona, Spain, 1 (4), (1995), pp. 2–10.

[11] Y. Lee, B.S. Liang, S.F. Wu, F.J. Wang. Measuring the coupling
and cohesion of an object-oriented program based on information
flow, Proc. Int’l Conf. Software Quality, Maribor, Slovenia 12,
(1995), pp. 81–90.

143

A. Abu Asad, I. Alsmadi

[12] Y. Lee. Automated source code measurement environment for soft-
ware quality, Doctor Thesis, (2007) Auburn, Alabama, USA.

[13] W. Li, S. Henry. Object-Oriented metrics that predict maintain-
ability, J. of Systems and Software, 23 (2), (1993), pp. 111–122.

[14] R.C. Martin. Agile Software Development, Principles, Patterns,
and Practices, Prentice Hall (2002).

[15] T. Menzies, J.Gneenwald, A. Frank. Data mining static code at-
tributes to learn defect predictors, IEEE Trans. on Soft. Eng.,
33(1), (2007), pp. 2–13.

[16] M.H. Tang, M.H. Kao, M.H. Chen. An empirical study on object-
oriented metrics, In Sixth International Software Metrics Sympo-
sium, (1999), pp. 242–249.

[17] Y. Zhou, H.H. Leung. Empirical Analysis of Object-Oriented De-
sign Metrics for Predicting High and low Severity Faults, IEEE
Transactions on Software Engineering, 32(10), (2006), pp. 771–
789.

[18] W. Stevens, G. Myers, L.L. Constantine. Structured design, IBM
Systems Journal, 13 (2), (1974), pp. 115–139.

[19] A.A. Asad, I. Alsmadi. Design and code coupling assessment
based on defects prediction. Part 1, Computer Science Journal of
Moldova (CSJM), V.21, N.2(62), (2013), pp. 204–224.

Arwa Abu Asad, Izzat Alsmadi Received October 17, 2012

Arwa Abu Asad
Institution: Yarmouk University
Address: CIS department
E–mail: arwa abuasad@yahoo.com

Izzat Alsmadi
Institution : Yarmouk University
Address : CIS department
E–mail: ialsmadi@yu.edu.jo

144

	1 Solving Problems in Various Domains by Hybrid Models 3-21.pdf
	2 Chromatic Polynomials Of Some _m,l_ Hyperwheels 21-36.pdf
	3 A New Full_Newton Step O_n_ Infeasible Interior_Point Algorithm 37-61.pdf
	4 Search tree_based approach for the p_median problem 62-76.pdf
	5 Artificial Bee Colony with Different Mutation Schemes_ A comparative study 77-98.pdf
	6 A Note on Solvable Polynomial Algebras 99-109.pdf
	7 Dynamic Object Identification with SOM_based neural networks110-126.pdf
	8 Evaluating the impact of software metrics on defects prediction_ Part 2 127-144.pdf

