
CTW16
14th Cologne-Twente Workshop

on Graphs and
Combinatorial Optimization

Università degli Studi di Milano
Gargnano (BS), Italy

June 6-8, 2016
ctw16.di.unimi.it

Proceedings of the Conference

Alberto Ceselli, Roberto Cordone, Giovanni Righini (Eds.)

Organization

The CTW16 is organized by the Optimization Laboratory (OptLab) at Department of Computer
Science of Università degli Studi di Milano.

Scientific Committee:

• Ali Fuat Alkaya (U Marmara)

• Alberto Ceselli (U Milano)

• Roberto Cordone (U Milano)

• Ekrem Duman (U Ozyegin)

• Ulrich Faigle (U Cologne)

• Johann L. Hurink (U Twente),

• Leo Liberti (École Polytechnique, Paris)

• Bodo Manthey (U Twente)

• Gaia Nicosia (U Roma Tre)

• Andrea Pacifici (U Roma Tor Vergata)

• Stefan Pickl (UBw München)

• Giovanni Righini (U Milano)

• Rainer Schrader (U Cologne)

• Rüdiger Schultz (U Duisburg-Essen)

Local Organization:

• Saverio Basso

• Alberto Ceselli

• Roberto Cordone

• Marco Premoli

• Giovanni Righini

• Andrea Taverna

2

Table of Contents

Combinatorial Optimization Track.

Approximation Algorithm
Mon 6, 09:00-10:30.

Marika Ivanova

The Shared Broadcast Tree Problem and MST
9

Walter Kern and Bodo Manthey

Bounded-Degree Spanning Trees with Nodes of Degree One
13

Klaus Jansen and Denis Trystram

Scheduling parallel jobs on heterogeneous platforms
17

Heuristics 1
Mon 6, 11:00-13:00

Claudia Justel, Carlos Eduardo Pinheiro Rocha and Emanuelle Chaves

Experiments with two heuristic algorithms for the Maximum Algebraic Con-
nectivity Augmentation Problem

21

Roberto Cordone and Guglielmo Lulli

Multimode extensions of Combinatorial Optimization problems
25

Alberto Ceselli, Marco Premoli and Stefano Secci

Heuristics for static cloudlet location
29

Roberto Aringhieri, Andrea Grosso, Pierre Hosteins and Rosario Scatamacchia

A preliminary analysis of the Distance Based Critical Node Problem
33

Heuristics 2
Mon 6, 14:30-16:30

Valentina Cacchiani, Feng Jiang and Paolo Toth

Timetable Optimization for High-Speed Trains at Chinese Railways
37

Combinatorial Optimization
Mon 6, 17:00-18:30

Maurizio Bruglieri and Roberto Cordone

Partitioning a graph into minimum gap components
41

Isabella Lari, Justo Puerto, Federica Ricca and Andrea Scozzari

Algorithms for uniform centered partitions of trees
45

3

Becky Callaghan, Said Salhi and Gábor Nagy

Drezner’s Exact Method for the Continuous p-Centre Problem Revisited
49

Mathematical Programming
Tue 7, 09:00-10:30

Gustavo Dias and Leo Liberti

New methods for the Distance Geometry Problem
53

Jia Liu, Abdel Lisser and Zhiping Chen

Stochastic geometric programming with joint probabilistic constraints
57

Leo Liberti, Pierre-Louis Poirion and Ky Vu

Solving LP using random projections
61

Integer Programming Models 1
Tue 7, 11:00-13:00

Roberto Cordone, Pierre Hosteins and Giovanni Righini

The Prize-Collecting Single Machine Problem with Deadlines
65

Marco Casazza and Alberto Ceselli

Column generation for the variable cost and size bin packing problem with
fragmentation

69

Maurizio Naldi, Gaia Nicosia, Andrea Pacifici and Ulrich Pferschy

Maximin Fairness in Project Budget Allocation
73

Luca Mencarelli, Claudia D’Ambrosio, Angelo Di Zio and Silvano Martello

Heuristics for the General Multiple Non-linear Knapsack Problem
77

Integer Programming
Wed 8, 09:00-10:30

Marianna De Santis

Dual approaches for a specific class of integer nonlinear programming prob-
lems

81

Borzou Rostami and Federico Malucelli

A generalized Gilmore-Lawler procedure for the quadratic assignment prob-
lem

85

Jean-Paul Doignon, Samuel Fiorini and Selim Rexhep

The Linear Extension Polytope of a Poset
89

Integer Programming Models 2
Wed 8, 11:00-13:00

4

Evellyn Cavalcante, Johan Oppen, Phillippe Samer and Sebastián Urrutia

Combinatorial Relaxation Bounds and Preprocessing for Berth Allocation
Problems

93

Simona Mancini, Maurizio Bruglieri, Ferdinando Pezzella and Ornella Pisacane

A new Mathematical Programming Model for the Green Vehicle Routing
Problem

97

Paolo Gianessi, Alberto Ceselli, Lucas Létocart and Roberto Wolfler Calvo

A Branch&Price&Cut algorithm for the Vehicle Routing Problem with Inter-
mediate Replenishment Facilities

101

Anja Fischer, J. Fabian Meier, Ulrich Pferschy and Rostislav Stanek

Linear Models and Computational Experiments for the Quadratic TSP
105

Graph Theory Track

Connectivity on Graphs
Mon 6, 09:00-10:30

Ana Silva and Cláudia Linhares Sales

Graphs with large girth are b-continuous
109

Christoph Brause, Trung Duy Doan and Ingo Schiermeyer

Proper connection number 2, connectivity, and forbidden subgraphs
113

Christoph Brause, Trung Duy Doan and Ingo Schiermeyer

On the minimum degree and the proper connection number of graphs
117

Graphs Coloring
Mon 6, 11:00-13:00

Parinya Chalermsook and Daniel Vaz

A Note on Fractional Coloring and the Integrality gap of LP for Maximum
Weight Independent Set

121

Sreekanth Gorla and Meghana Nasre

List Coloring of Planar Graphs with Forbidden Cycles
125

mer Can Yavuzyilmaz and Enver Kayaaslan

Subset matching and edge coloring in bipartite graphs
130

Christoph Brause, Trung Duy Doan and Ingo Schiermeyer

On the chromatic number of (P5,K2,t)-free graphs
134

Graph Optimization
Mon 6, 14:30-16:30

5

Pankaj Pundir and Gadhamsetty Ramakrishna

On Minimum Average Stretch Spanning Trees in Grid Graphs
138

Christina Bsing, Sarah Kirchner and Annika Thome

The Capacitated Budgeted Minimum Cost Flow Problem with Unit Upgrad-
ing Costs

142

Marcia R. Cerioli and Paloma Lima

Intersection of Longest Paths in Graph Classes
146

Jochen Harant

On longest cycles in essentially 4-connected planar graphs
150

Game Theory
Mon 6, 17:00-18:30

Sascha Kurz, Xavier Molinero, Martin Olsen and Maria Serna

Dimension and Codimension of Simple Games
154

Vikas Vikram Singh, Oualid Jouini and Abdel Lisser

Equivalent Nonlinear Complementarity Problem for Chance-constrained
Games

158

Dmitrii Lozovanu and Stefan Pickl

Determining the Optimal Strategies for Zero-Sum Average Stochastic Posi-
tional Games

162

Computational Complexity
Tue 7, 09:00-10:30

Rafael Veiga Pocai

The Complexity of SIMPLE MAX-CUT on Comparability Graphs
167

Zsuzsa Karkus

Hardness results for stable exchange problems
171

Julliano Rosa Nascimento, Erika Morais Martins Coelho, Hebert Coelho and Jayme

Luiz Szwarcfiter

On the Complexity of the P3-Hull Number of the Cartesian Product of Graphs
175

Graph Structures
Tue 7, 11:00-13:00

Carla Oliveira and Leonardo Lima

A lower bound for the sum of the two largest signless Laplacian eigenvalues
179

Zakir Deniz, Tinaz Ekim, Tatiana Romina Hartinger, Martin Milanic and Mordechai

Shalom

On Three Extensions of Equimatchable Graphs
183

6

Verónica Hernández, José M. Rodŕıguez and Domingo Pestana

Diameter, minimum degree and hyperbolicity constant in graphs
187

Ulrich Faigle

Weighted Graphs as Dynamical Interaction Systems
191

Computational Complexity
Wed 8, 09:00-10:30

Bálint Hujter, Viktor Kiss and Lilla Tóthmérész

Some positive results on the complexity of the chip-firing reachability problem
196

Ismael González Yero

Vertices, edges, distances and metric dimension in graphs
200

Algebraic Structures
Wed 8, 11:00-13:00

Petr Golovach, Dieter Kratsch, Daniel Paulusma and Anthony Stewart

Squares of Low Clique Number
204

Keno Merckx, Jean Cardinal and Jean-Paul Doignon

On the shelling antimatroids of split graphs
208

Jesmmer Alves, Diane Castonguay and Thomas Brustle

A Polynomial Recognition of Unit Forms
212

Amal Gassara and Ismael Bouassida Rodriguez

Encoding Bigraphical Reactive Systems into Graph Transformation Systems
216

7

The Shared Broadcast Tree Problem and MST

Marika Ivanova 1

Department of Infomatics,
University of Bergen,

Bergen, Norway

Abstract

The shared broadcast tree (SBT) problem in Euclidean graphs resembles the mini-
mum spanning tree (MST) problem, but differs from MST in the definition of the
objective function. The SBT problem is known to be NP-hard. In the current work,
we analyse how closely the MST-solution approximates the SBT-solution, and we
prove in particular that the approximation ratio is at least 6. Further, we conduct
numerical experiments comparing the MST-solution and the optimum. The results
show that the cost of the MST-solution is around 20% higher than the optimal cost.

Keywords: shared broadcast tree, MST, approximation algorithm

1 Introduction

The purpose of a broadcast communication in a wireless ad-hoc network is
to route information from one source node to all other nodes. Given a set of
devices and distances between them, the task is to assign a power to each node,
so that the communication demands are met and the energy consumption is
minimized, assuming their locations are fixed. The devices are able to both
transmit and receive a signal, as well as dynamically adjust their power level.

1 Email: marika.ivanova@uib.no

8

Omnidirectional antennas are used, and hence a message reaches all nodes
within the communication range given by a power assigned to the sender, i.e.
the maximum of the powers necessary to reach all intended recipients.

Minimum Energy Broadcast [3] (MEB) is the problem of constructing an
optimal arborescence for broadcasting from a given source to all remaining
nodes, such that the total power consumption is minimized. A separate tree
has to be stored for each source. The idea of SBT [2][4] is to construct a
common source-independent tree, instead of a set of individual arborescences.
The power levels then depend merely on the immediate neighbour from which
a message is received. This idea is based on the observation that a forwarded
signal does not have to reach the neighbour from which it originally came.

The decentralized nature of wireless ad-hoc networks implies its suitability
for applications, where it is not possible to rely on central nodes, or where
network infrastructure does not exist. This is typical for various short-term
events like conferences or fixtures. Simple maintenance makes them useful in
emergency situations, military conflicts, and home networking.

We model a wireless network as a complete graph G = (V, E), where V
corresponds to the network nodes (points in R2), and the edges E correspond
to the potential links between them. The energy requirement for transmission
from i to j is denoted by pij = κdα

ij, where dij is the Euclidean distance
between i and j, α is an environment-dependent parameter (typically valued
between 2 and 4) and κ is a constant. In this work, we use α = 2 and κ = 1.
Let T = (V,ET), ET ⊆ E be a spanning tree of G. Then Ti/j denotes the
subtree of T consisting of all vertices k such that the path from k to j visits i,
as introduced in [4]. For a non-leaf node i in T , i1 and i2 denote the first and
the second most distant neighbour of i in T , respectively. If i is a leaf, i2 is not
defined, and we let pii2 = 0. If a message is generated at a node k in Ti1/i then
i needs power pii2 to relay the message to i2 and other neighbours in T \ Ti1/i.
Power pii1 is needed to relay messages initiated in T \Ti1/i. Assuming that all
nodes initiate messages equally frequently, the SBT problem is to construct a
spanning tree T minimizing the objective function

P (T) =
∑

i∈V

|Ti1/i|pii2 + |T \ Ti1/i|pii1 . (1)

2 MST as an approximate solution to the SBT problem

Since the SBT problem is NP-hard, inexact solutions are often considered.
Because any spanning tree is a feasible solution, the MST-solution yields one

such approximation. This approach is also valid for MEB, where MST ap-
proximates the optimum with factor 6 [1]. We define the MST approximation
ratio ρ as the supremum, taken over all SBT instances, of the ratio between
the power consumptions in the MST solution and an optimal SBT.

Theorem 2.1 The MST approximation ratio for SBT is at least 6.

Proof. For an integer k ≥ 2, let Gk be a complete Euclidean graph with a
node o located in the center of a unit circle, nodes t1, . . . , t6 evenly distributed
on the circumference, and nodes si1, . . . , sik, (i = 1, . . . , 6), evenly distributed
on the radial line [o, sik] ⊂ [o, ti], where sik is located 1/k units from o. Thus,
since arc costs puv are the square of arc lengths duv, we have puv = 1/k4 for
u = sij, v = si,j+1, whereas puv = (1 − 1/k)2 for u = sik, v = ti. A possible
MST (denoted Tk) of Gk consists of the 6 paths (o, si1, . . . , sik, ti). For this
tree, the objective function (1) evaluates to

P (Tk) = 6
(
1 − k−1

)2

︸ ︷︷ ︸
ti

+ 6
[
(6k + 6)

(
1 − k−1

)2
+ k−4

]

︸ ︷︷ ︸
sik

+ (6k − 5)(6k + 7)k−4

︸ ︷︷ ︸
o,si1,...,si,k−1

.

Another spanning tree of Gk is the star T ∗
k centered at node o. For this

solution, (1) evaluates to

P (T ∗
k) = 6︸︷︷︸

ti

+ 6
∑k

i=1

(
i

1

k2

)2

︸ ︷︷ ︸
si1,...,sik

+ 6k + 7︸ ︷︷ ︸
o

.

Thus, the MST-approximation ratio satisfies ρ ≥ P (Tk)
P (T ∗

k)
. Since lim

k→∞
P (Tk)
P (T ∗

k)
= 6,

the claim follows. 2

3 Numerical Experiments

The SBT problem can be modelled as a MILP [2][4], and moderately sized
instances can be solved. We have generated instances of a specific number
of nodes with random coordinates distributed uniformly on a square, and
compared the MST-solution to the optimal one. The MILP solver CPLEX is
used to compute the optimal solution. Each number of nodes is tested in 100
instances. Although the theoretical approximation ratio suggests that MST
is not very suitable for SBT, the experimental results summarized in Tab. 1
reveal that in practice, MST represents a feasible solution with objective value
approximately 1.2 times the optimum. This factor does not seem to change
much with growing number of nodes. However, calculation of the optimum

Table 1
Average SBT costs of MST and optimal solutions for various instance sizes.

Number of nodes 10 12 14 16 18 20

P (OPT) 46268 56060 66747 69727 84250 94039

P (MST) 9432 68833 80195 84262 101816 119679

P (MST)/P (OPT) 1.198 1.232 1.206 1.210 1.209 1.271

for larger instances takes prohibitively long time, so we have access only to
limited data. The largest ratio observed in the experiments is 1.59.

4 Conclusion and Future Work

This paper studies the relation between MST and the optimal solution to SBT
in terms of the objective value. It has been shown that the MST approximation
ratio is at least 6. Numerical experiments suggest that even though there are
instances where MST is nearly 60% above the optimum, it represents a good
solution in the vast majority of cases. The current research leads to several
interesting questions that merit further investigation. A prominent question
is whether there exists a constant upper bound on the MST-approximation
ratio. For the related MEB problem, approximation algorithms with constant
performance guarantee are well studied. Adapting these methods and the
corresponding analysis to SBT is a research question to be pursued.

References

[1] Ambühl, C.: An Optimal Bound for the MST Algorithm to Compute Energy
Efficient Broadcast Trees in Wireless Networks. Automata, Languages and
Programming. 32nd International Colloquium, ICALP 2005, Lisbon, Portugal.
1139–1150 (2005)

[2] Papadimitriou, I., and Georgiadis, L.: Minimum-energy Broadcasting in Multi-
hop Wireless Networks Using a Single Broadcast Tree. Mobile Networks and
Applications, 11, 3 361–375 (2006)

[3] Wieselthier, J. E., Nguyen, G. D., Ephremides, A.: Energy-efficient broadcast
and multicast trees in wireless networks. Mob. Netw. Appl. 7, 6, 481-492 (2002)

[4] Yuan, D., Haugland, D.: Dual Decomposition for Computational Optimization
of Minimum-Power Shared Broadcast Tree in Wireless Networks. IEEE
Transactions on Mobile Computing, Vol 12, no 11. 2008–2019 (2012)

Bounded-Degree Spanning Trees
with Nodes of Degree One

Walter Kern and Bodo Manthey

University of Twente
Enschede, Netherlands

Abstract

We present a constant factor approximation algorithm for the following problem:
given a connected graph G = (V,E) with non-negative edge weights that satisfy the
triangle inequality, find a minimum weight spanning tree that respects prescribed
upper bounds on the vertex degrees. Using this approximation algorithm, we obtain
constant factor approximation algorithms for the problem of computing connected
d-factors of minimum weight for prescribed vertex degrees d = (di)i∈V . Constant
factor approximation algorithms for these problems were known only for the case
that di ≥ 2 for all i ∈ V .

1 Introduction

Finding low-cost spanning subgraphs with prescribed degree and connectivity
requirements is a fundamental problem in the area of network design. The
goal is to find a cheap, connected subgraph that meets the degree constraints.
Most variants of such problems are NP-hard. Because of this, finding good
approximation algorithms for such network design problems has been the topic
of a significant amount of research. In this paper, we study the problem of
finding low-cost spanning connected subgraphs with degree constraints, where
violation of the degree constraint is not allowed. The degree constraints are
either upper bounds or have to be met exactly.

Minimum-weight subgraphs with prescribed vertex degrees can be found
efficiently, but asking for connectedness in addition makes the problem NP-
hard [1]. Also finding spanning trees with given upper bounds for the degrees
of the nodes is NP-hard [5].

A main obstacle for approximation algorithms for these problems seem to
be vertices that are required to have degree 1. In fact, existing approximation
algorithms [3,4,6] only work when the minimum degree requirement is at least

Preprint submitted to CTW 2016 26 February 2016

12

2, and it has been raised as an open problem [4,6] to approximate network
design problems in the presence of vertices that must have degree 1.

Problem Definition. Instances of the problems that we consider consist
of a simple undirected complete graph G = (V,E) with edge weights w that
satisfy the triangle inequality and given d = (di)i∈V to be interpreted as either
prescribed vertex degrees or upper bounds thereof. For F ⊆ E, let degF (i) be
the degree of node i ∈ V in the graph (V, F). Furthermore, w(F) =

∑
e∈F w(e)

is the total weight of the edge set F .

In the bounded-degree minimum spanning tree problem (denoted by BMST),
we are to compute a tree T ⊆ E of minimum weight with the additional con-
dition that degT (i) ≤ di for all i ∈ V . We call such a tree d-bounded. We
denote a minimum weight d-bounded tree by Treed, breaking ties arbitrarily.

In the connected factor problem (denoted by ConnFact), our goal is to
compute a connected, simple d-factor F of minimum weight. This means that
(V, F) must be connected and degF (i) = di for all vertices i ∈ V .

Our Contribution. We give an affirmative answer to the question raised
by Fukunaga and Nagamochi [4] and Cornelissen et al. [2] whether constant
factor approximation algorithms also exist in case some of the di are equal to
1.. We present a factor 3-approximation algorithm for BMST. Then we use
this algorithm to get factor 7 approximation algorithms for ConnFact.

2 Bounded-Degree Spanning Trees

We start with a simple observation, based on the standard construction of
Hamilton paths by doubling a minimum spanning tree.

Lemma 1 Given an undirected, complete graph G with edge weights w and
an edge e0 = {i0, j0} ∈ E, we can compute in polynomial time a Hamiltonian
path P with endpoints i0 and j0 such that w(P) ≤ 2w(T), where T ⊆ E is a
minimum weight spanning tree containing e0.

In what follows, we distinguish between nodes with prescribed degree di =
1 and other nodes. Therefore, we define V=1 = {i ∈ V | di = 1} and V≥2 =
{i ∈ V | di ≥ 2}. Any d-bounded tree T consists of an interior tree Tint that
connects only the V≥2 nodes and to which the V=1 nodes are attached. We
may assume that Tint connects at least two nodes. Otherwise, |V≥2| ≤ 1 and
the problem becomes trivial. The most challenging part is to determine how
the vertices in V=1 are attached to the interior tree.

To address this problem, we proceed in two steps. In the first step, we
compute a forest that spans all of V=1 and a subset of V≥2 without violating the
degree constraints. In the second step, we connect the connected components
of this forest along a Hamiltonian path through a subset of the V≥2 nodes. The

2

forest in the first step is computed by solving an appropriate minimum-cost
flow problem.

Let us describe the first step. In what follows, we assume that we know an
edge e0 = {i0, j0} ∈ Treed in the interior tree of the unknown optimum solution
Treed. (In our algorithm, we fix i0 ∈ V≥2 arbitrarily, try all possible choices of
j0 ∈ V≥2 \ {i0}, and take the best outcome.) Removing e0 splits the unknown
tree Treed into two subtrees. To outline the intuition behind our approach,
consider i0 and j0 as the roots of these subtrees, and direct all edges in these
two subtrees towards i0 and j0, respectively. We may interpret the subtrees
as “flows” from the V=1 nodes towards the roots i0 and j0, respectively. In
this sense, the two subtrees define a solution to the flow problem (with node
capacities) described below.

Consider the following flow problem MCFe0 : The underlying graph has
vertex set V ∪ {r}, where r /∈ V is a new node, and edge set (E \ {e0}) ∪
{{i0, r}, {j0, r}}. All edges e ∈ E \{e0} have a capacity of 1 in both directions
and costs of we per unit of flow. Each node i ∈ V≥2 has a node capacity of
di − 1 (this means that at most di − 1 units of flow may pass through i). In
addition, there are overflow edges {i, r} for i ∈ V≥2, which have cost 0. For
i ∈ V≥2 \ {i0, j0}, edge {i, r} has a capacity of di − 2. For i ∈ {i0, j0}, edge
{i, r} has a capacity of di − 1. The task is to find a min cost flow from the
V=1 nodes, each having a supply of 1, to the new root node r, which has a
demand of |V=1|.

The set Treed \{e0} defines a solution fTree of this flow problem as follows:
Recall that we direct all edges in the two subtrees of Treed \ {e0} towards
their roots i0 or j0, respectively. On every arc e = {i, j} in the directed tree
Treed \ {e0}, we have a flow of 1 (towards i0 or j0). Thus, in particular, each
i ∈ V=1 has an outflow of 1. If a node i ∈ V≥2\{i0, j0} has degree ` (2 ≤ ` ≤ di)
in Treed, then in the directed tree, it has `−1 incoming arcs and one outgoing
arc (in direction to the root i0 or j0). Thus its total inflow equals ` − 1 and
we send ` − 2 units of outflow directly to r on the overflow arc from i to r.
Note that the node capacity constraint (throughput at most di − 1) is met.
If i ∈ {i0, j0} has degree ` (2 ≤ ` ≤ di − 1) in Treed, then its inflow equals `
units, which we route to r on the overflow arc {i, r}. This, again, also respects
the node capacity constraints.

Lemma 2 Let f ? be an integral optimum solution of MCFe0 with minimum
support S? (which can be computed efficiently). Then we have the following
properties:

(i) w(S?) ≤ w(Treed).

(ii) S? is a forest.

(iii) degS?(i0) ≤ di0 − 1 and degS?(j0) ≤ dj0 − 1.

(iv) Each connected component of S? contains i0 or j0 or a node i ∈ V≥2 with

3

degS?(i) ≤ di − 2.

Given S?, as in Lemma 2, we connect the connected components via a
Hamilton path P with endpoints i0 and j0 as in Lemma 1: In each component
of S? that contains neither i0 nor j0, we pick a “root” node i of degree at
most di − 2 in S?. Then we connect the components of S? by following P ,
starting in i0, ending in j0 and skipping all other vertices except the root nodes
chosen. This yields a d-bounded tree T of weight w(T) ≤ w(S?) + w(P) ≤
w(Treed) + 2(Treed) ≤ 3w(Treed). Putting this together yields the following
result.

Theorem 3 There is a polynomial-time 3 approximation for BMST.

3 Connected Factors

The idea to approximate connected factors is as follows: we compute a d-factor
F , which is not necessarily connected, and a d-bounded tree T . As long as
the d-factor F is not connected, there exists an edge e ∈ T \ F that we can
add. In order to maintain the degrees, we remove one edge of each endpoint
of e and add the edge e plus another edge.

Theorem 4 There is a polynomial-time 7 approximation for ConnFact.

The algorithm above also works for the variant of ConnFact, where we
allow multiple edges. We just have to replace the initialization of F by a
minimum-weight d-factor where multiple edges are allowed. In this way, we
obtain a factor 7 approximation also for this variant of the problem.

References

[1] F. Cheah and Derek G. Corneil. The complexity of regular subgraph recognition.
Discrete Appl. Math., 27(1-2):59–68, 1990.

[2] Kamiel Cornelissen, Ruben Hoeksma, Bodo Manthey, N. S. Narayanaswamy, and
C. S. Rahul. Approximability of connected factors. Proc. WAOA 2013, LNCS
8447, pp. 120–131. Springer, 2014.

[3] Sándor P. Fekete, Samir Khuller, Monika Klemmstein, Balaji Raghavachari, and
Neal E. Young. A network-flow technique for finding low-weight bounded-degree
spanning trees. J. Algorithms, 24(2):310–324, 1997.

[4] Takuro Fukunaga and Hiroshi Nagamochi. Network design with edge-
connectivity and degree constraints. Theory Comput. Syst., 45(3):512–532, 2009.

[5] Martin Fürer. Degree-bounded trees. In Ming-Yang Kao, editor, Encyclopedia
of Algorithms, pages 231–233. Springer, 2008.

[6] Bodo Manthey and Marten Waanders. Approximation algorithms for k-
connected graph factors. Proc. WAOA 2015, LNCS. Springer, to appear.

4

Scheduling parallel jobs on heterogeneous
platforms

Klaus Jansen 1,2

Department of Computer Science
University of Kiel
Kiel, Germany.

Denis Trystram 3

Laboratoire d’Informatique
University of Grenoble

Grenoble, France.

Abstract

We consider the problem of scheduling parallel jobs on heterogeneous platforms.
Given a set J of n jobs where each job j ∈ J is described by a pair (pj, qj)
with a processing time pj and number qj of processors required and a set of N
heterogeneous platforms Pi with mi processors, the goal is to find a schedule for
all jobs on the platforms minimizing the maximum completion time. The problem
is directly related to a two-dimensional multi strip packing problem. Unless P =
NP there is no approximation algorithm with absolute ratio better than 2 for the
problem. We propose an approximation algorithm with absolute ratio 2 improving
the previously best known approximation algorithms. This closes the gap between
the lower bound of < 2 and the best approximation ratio.

Keywords: scheduling parallel tasks, strip packing, approximation algorithms.
16

1 Introduction

We study the problem of scheduling parallel jobs on heterogeneous platforms.
The input consists of a set J = {1, . . . , n} of n jobs and a set B of N platforms
P1, . . . , PN , where each Pi consists of a set Mi = {1, . . . , mi} of processors for
i ∈ [N] := {1, . . . , N}. The width of the platform Pi is the number mi of
processors. Each job j ∈ J is described by a pair (pj , qj) with a processing
time (or height) pj ∈ N and number of processors (or width) qj ∈ N required
to execute j. If all numbers mi are equal, we have identical platforms. In
the general case the numbers mi may be different and the machines are called
heterogeneous platforms. For simplification we suppose that m1 ≥ m2 ≥
. . . ≥ mN . A schedule is an assignment a : J → Q′ ≥0 × ∪N

i=12
Mi that assigns

every job j to a starting time tj = a1(j) and to a subset Aj = a2(j) ⊆ Mi of
processors of a platform Pi such that |Aj| = qj . A job j can only be executed
in platform Pi if the width of the platform mi ≥ qj . A schedule is feasible if
every processor in every platform executes at most one job at any time. The
goal is to find a feasible schedule with minimum total length or makespan
maxi∈[N] Cmax(Pi) where Cmax(Pi) = maxj|Aj⊆Mi

tj + pj is the local makespan
on platform Pi (or height of platform Pi). The optimum value for an instance
(J , B) is denoted by OPT (J , B).

2 Previous and new Results

Table 1
Approximation algorithms for heterogeneous platforms.

ratio constraints

Tchernykh et al. [7] 2005 10 none

Schwiegelshohn et al. [6] 2008 3 non-clairvoyant

Tchernykh et al. [8] 2010 2e + 1 release dates

Bougeret et al. [1] 2010 2.5 max qj ≤ min mi

Dutot et al. [2] 2013 (2 + ǫ) none

Jansen and Trystram(new result) 2016 2 none

1 Research supported by German Research Foundation (DFG), project Ja 612/12-2.
2 Email: kj@informatik.uni-kiel.de
3 Email: trystram@imag.fr

A typical application in grid computing is described in [8]. First, parallel
jobs are allocated to suitable clusters and, afterwards, the allocated jobs are
locally scheduled on the corresponding assigned clusters. The scheduling prob-
lem is also related to a multiple strip packing problem. By a reduction from
3-Partition, Zhuk [9] proved that there is no approximation algorithm with
absolute approximation ratio better than 2 for packing rectangles with height
1 into multiple strips. This reduction shows also that there is no approxima-
tion algorithm with ratio better than 2 for scheduling parallel jobs on identical
platforms, where m1 = . . . = mN . For the general problem, Tchernykh et al.
[7] presented an algorithm with absolute ratio 10. Earlier Remy [5] claimed
that the approximation ratio 2 of List Schedule is preserved when applied to
the problem with identical platforms while in [7] and again later in [6] it is
shown that List Schedule cannot even guarantee a constant approximation
ratio for this problem. On the other hand, several improved approximation
algorithms for the scheduling problem have been proposed. In Table 1 we give
an overview about the known approximation algorithms for heterogeneous
platforms. Remark that in [6], the algorithm is an online non-clairvoyant al-
gorithm where processing times are not available in advance. The algorithm
in [1] works only under the constraint where the maximum required number
of processors max qj is at most the minimum number of processors min mi

among all platforms, while the algorithm in [8] works for the general problem
with additional release dates. Currently, the best known absolute ratio of an
approximation algorithm [2] for the general problem with heterogeneous plat-
forms is (2+ ǫ). The running time of the algorithm is g(1/ǫ)nO(f(1/ǫ)) for some
functions f and g. In this paper we propose a polynomial time algorithm with
absolute ratio 2. This closes the gap between the lower bound of < 2 and the
currently best absolute ratio (2 + ǫ).

Theorem 2.1 There is an approximation algorithm that for a set J of n
parallel jobs and a set B of N heterogeneous platforms generates a schedule for
the jobs with makespan at most 2 OPT (J , B). The running time is polynomial
in n.

3 Methods and Techniques

In order to obtain an approximation algorithm with absolute ratio 2, we use
the following approach. Our new algorithm works in two phases. By scaling
we may assume that OPT ≤ 1. In the first phase we use a slight modification
of the (2 + ǫ)-approximation algorithm in [2]. Depending on four cases, the
algorithm in the first phase generates a solution where the makespan on some

platforms is bounded by (1 + ǫ) and on other platforms by 2 while a constant
number of sets of jobs is non-assigned to the platforms. Our previous algorithm
places these sets onto the first group of platforms causing a makespan of (2+ǫ).
Instead of this approach, our new developed method converts the approximate
solution of the first phase with fixed ǫ = 1/10 into a 2-approximate solution.
To achieve this goal we clever re-schedule in the second phase jobs on the
platforms and insert the sets of non-assigned jobs of the first phase. The
details can be found in [3].

References

[1] Bougeret, M., P.-F. Dutot, K. Jansen, C. Otte, and D. Trystram., A fast 5/2-
approximation algorithm for hierarchical scheduling, European Conference on
Parallel and Distributed Computing (Euro-Par 2010), Ischia, Springer LNCS
6272, 157–167.

[2] Dutot, P.F., K. Jansen, C. Robenek, and D. Trystram., A (2+ǫ) - approximation
for scheduling parallel jobs in platforms, European Conference on Parallel and
Distributed Computing (Euro-Par 2013), Aachen, Springer LNCS 8097, 78–89.

[3] Jansen, K., and D. Trystram, Scheduling parallel jobs on a network of
heterogeneous platforms, University of Kiel, Dept. of Computer Science,
Technical Report No. 1502 (2015).

[4] Remy, J., Resource constrained scheduling on multiple machines, Information
Processing Letters, 91 (2004), 177–182.

[5] Schwiegelshohn, U., A. Tchernykh, and R. Yahyapour, Online scheduling in
grids, IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2008), Miami, 1–10.

[6] Tchernykh, A., J. Ramirez, A. Avetisyan, N. Kuzjurin, D. Grushin, and S. Zhuk,
Two level job-scheduling strategies for a computational grid, Conference on
Parallel Processing and Applied Mathematics (PPAM 2005), Poznan, Springer
LNCS 3911 (2005), 774–781.

[7] A. Tchernykh, A., U. Schwiegelshohn, R. Yahyapour, and N. Kuzjurin, On-
line hierarchical job scheduling on grids with admissible allocation, Journal of
Scheduling 13(5) (2010), 545–552.

[8] Zhuk, S.N., Approximation algorithms to pack rectangles into several strips,
Discrete Mathematics and Applications 16(1) (2006), 73–85.

Experiments with two heuristic algorithms for
the Maximum Algebraic Connectivity

Augmentation Problem

Claudia Justel a,1 Carlos Rocha a,2 and Emanuelle Chaves a,3

a Instituto Militar de Engenharia, Rio de Janeiro, Brasil

Abstract

In this work we present a heuristic algorithm to solve the Maximum Algebraic
Connectivity Augmentation Problem (MACAP). This is an NP-complete problem
(proved by Mosk-Aoyama in 2008) and consists in, given a graph, determining the
smallest set of edges not belonging to it in such a way that the value of the alge-
braic connectivity of the augmented graph is maximum. In 2006, Ghosh and Boyd
presented a heuristic procedure to solve this problem. This heuristic is an iterative
method that selects one edge at a time based on the values of the components of a
Fiedler vector of the graph. Our goal is to increase the value of the algebraic con-
nectivity of a given graph by inserting edges based on the eccentricity of vertices. In
order to evaluate our algorithm, computational tests comparing it with the Ghosh
and Boyd procedure are presented.

Keywords: Graph, Laplacian matrix, Algebraic connectivity, Approximated
algorithm.

1 Email: cjustel@ime.eb.br, speaker
2 Email: edugaspar@hotmail.com
3 Email: manuenlc@gmail.com

20

1 Introduction

The algebraic connectivity, defined as the second smallest eigenvalue of the
Laplacian matrix of a graph G, is a spectral invariant widely studied in the
literature. This parameter is related to the connectivity of the graph. There
are different applications of this parameter in several problems ([4])[7],[8]).
In this work, we deal with a NP-complete problem known as the Maximum
Algebraic Connectivity Augmentation (MACAP). We present a heuristic pro-
cedure, which is an iterative method where edges are added depending on the
values of the eccentricities of its endpoints. This strategy is different from
the heuristic procedure proposed by Ghosh and Boyd in 2006 [2]. The rest of
the paper is organized as follows: in Section 2, the definition of the MACAP
and the heuristic algorithm proposed by Ghosh and Boyd are given. Section
3 presents a new heuristic algorithm and experimental results comparing this
new algorithm with the approximate algorithm in Section 2. At last, final
remarks are presented in Section 4. Basic concepts and notation in Graph
and Spectral Graph Theory can be found in [1] and [3].

2 MACAP: Complexity, Ghosh and Boyd’s heuristic

Given a graph G = (V, E) and a non-negative integer k, the MACAP consists
in determining, among all the subsets of edges in GC of size at most k, the
subset that increases the algebraic connectivity as much as possible. In [4]
Mosk-Aoyama proved that the decision problem associated to the MACAP is
NP-Complete. The heuristic procedure presented in [2] by Ghosh and Boyd,
uses a Fiedler vector in order to determine a set of edges to be included in the
input graph G to increase the value of the algebraic connectivity. The notation
used is: Gbase = (V, Ebase) a graph with |V | = n, Ecand ⊂ EC

base a subset of
candidate edges of size mc, and a non-negative integer number k, 0 ≤ k ≤ mc.
The heuristic, denoted Perturbation Heuristic, PH, chooses k edges in Ecand

(E ⊆ Ecand, |E| = k) to be inserted in Gbase. Let L = L(G) be the Laplacian
matrix of G, λ2(G) the algebraic connectivity of G and w = (w1, . . . , wn)
a Fiedler vector, an eigenvector associated to λ2(G). The greedy strategy
used selects k edges, one at a time, being the edge (i, j) ∈ EC

base for which the
components i and j of the Fiedler vector w has the greatest value of (wi−wj)

2.
In this case, a set of candidates edges Ecand that may be different than the
set EC is considered. Ghosh and Boyd ([2]) discuss the results obtained with
their algorithm for 3 types of graphs (randomly generated) and suggest that
”a large increase in algebraic connectivity can be obtained by adding a few
edges carefully”. This suggestion is what motivates our work.

3 Contribution

The Fiedler vector is widely used to produce efficient bipartition of vertices
in sets of almost the same size. But the use of the Fiedler vector, as pro-
posed by Ghosh and Boyd, does not guarantee an increase in the value of
the algebraic connectivity. It is well known that 4

n.diam(G)
is a lower bound

of the algebraic connectivity of G ([3]). We propose a new procedure, the
Eccentricity Heuristic EH, to choose an edge in the complement of the input
graph by decreasing the diameter of the graph, in order to improve the lower
bound for λ2(G). Following this idea, we determine some conditions to eccen-
tricities at the endpoints of the candidate edge, so that the diameter of the
resulting graph will decrease. Given a connected graph G = (V, E), select an
edge e = (a, b) ∈ EC such that: eG(a) = diam(G), eG(b) = diam(G) − 1, and
dG(a, b) = diam(G)−1; to break ties, we consider dG(a) and dG(b) the highest.
EH is an iterative procedure, where graph G and non-negative integer k are
inputs. At each iteration of the main loop one edge is chosen by the criterion
above and then graph G and set EC

base are updated. After k iterations, a set
with k edges is returned. Algorithm 1 shows pseudo-code of EH.

Algorithm 1: EH

Input: k, Gbase = (V, Ebase)

Output: E ⊆ EC , |E| = k;

1. G = Gbase;

2. If k > |EC | then stop;

3. E = ∅;

4. For i = 1, ..., k do

5. For v ∈ V do compute eG(v);

6. d = diam(G) = maxv∈V eG(v);

7. For v ∈ V do compute dG(v);

8. Determine (a, b) ∈ EC
base such that

9. dG(a, b) = d − 1

10. eG(a) = d and eG(b) = d − 1

11. dG(a) maximum or maximum minus one

12. dG(b) maximum or maximum minus one;

13. E = E ∪ {(a, b)};

14. G = G ∪ {(a, b)};

15. EC
base = EC

base − {(a, b)};

16. Return E;

Some observations about the input
graph G for EH are necessary: i) the con-
nected graph G can’t be a complete graph;
ii) the graph must have vertices with differ-
ent values of eccentricities (we choose two
vertices with conditions over their eccen-
tricities). In order to evaluate the quality
of the solutions of the EH, we executed a
series of experiments with k = 1 and in-
put graphs randomly generated. We con-
sider groups of graphs with 40, 60, 80 and
100 vertices and use the Nauty generator of
random graphs (genrang [6]) to obtain 10
samples of each type of instance for fixed
n and m. It is important to notice that,
in the case of sparse graphs with m = n
generated by Nauty, the number of disconected graphs obtained is high. On
the other hand, the generation of graphs with m = n(n−1)

4
gives a high num-

ber of graphs with all the vertices with the same eccentricity. After that, we
create two classes of instances. For each value of n, we generate 30 samples
of graphs with m = 6n and m = 10n, and only consider 10 graphs that verify

all the conditions of the algorithm EH (connected and with different values of
eccentricities for the vertices) except for the case n = 80 and m = 6n in which
only 9 of the 30 graphs generated verify all the conditions. For result analysis,
we execute two type of experiments. First, we use EH without the lines 11 and
12. The set of edges considered in line 8 of this case is denoted E1, and the
best edge determined is denoted e1. The second experiment considers EH with
all the conditions in lines 9, 10, 11 and 12. In this second experiment, the set
of edges considered in line 8 is denoted E2, and the best edge determined is e2.
Our experiments were run on a PC with Intel(R)Core 5i processor running at
2.4 GHz with 4 GB of RAM and use Matlab ([5]) for computing eigenvectors
in PH. From the experiments, the instance n = 100 and m = 6n achieves
the best results for ∆λ2 (the difference between λ2(G + e), with e = e1, e2

obtained by EH and λ2(G + ePH), with ePH obtained by PH), in 90% of the
graphs, with average value 0.081 for the first experiment. In all the instances
considered, the first experiment presents better results than the second one,
and the size of the sets E1 are in general relatively small (compared to EC).

4 Final Remarks

In this paper we compare the results obtained with two heuristic algorithms
for the MACAP, the EH and the PH, using random graphs generated by
Nauty. The experiments described show good results with the EH for the
graphs considered. We propose as future work to investigate the structures
of graphs which present better results in our experiments and perform new
experiments with particular families of graphs.

Acknowledgement: The first author was partially supported by CNPq with Grant
305677/2013-6, and the others by PIBITI-CNPq.

References

[1] Diestel, R.D., Graph Theory . Springer (2000).
[2] Ghosh, A., Boyd, S. Growing well-connected graphs. Proceedings of the 45th

IEEE Conference on Decision and Control (2006) pp. 6605-6611.
[3] Moliterno, J.J. Applications of Combinatorial Matrix Theory to Laplacian

Matrices of Graphs. CRC Press (2012).
[4] Mosk-Aoyama, D., Maximum algebraic connectivity augmentation is NP-hard,

Operations Research Letters (36) (2008) pp. 677-679.
[5] Matlab. http://www.mathworks.com/products/matlab/ .
[6] Nauty. http://users.cecs.anu.edu.au/ b̃dm/nauty/
[7] Olfati Saber,R. Ultrafast Consensus in Small World Networks, Proceedings of

the American Control Conference 4 (2005) pp. 2371-2378.
[8] Wang, H., Van Mieghem, P. Algebraic connectivity optimization via link adition

Bionetics (2008), Hyogo, Japan.

Multimode extensions of Combinatorial
Optimization problems.

Roberto Cordone 1

University of Milano, Department of Computer Science, via Comelico 39, 20135
Milano, Italy

Guglielmo Lulli 2

Lancaster University Management School, LA1 4YX Lancaster, UK

Abstract

We review some complexity results and present a viable heuristic approach based
on the Variable Neighborhood Search (VNS) framework for multimode extension of
combinatorial optimization problems, such as the the Set Covering Problem (SCP)
and the Covering Location Problem (CLP)

Keywords: Combinatorial Optimization, covering problems, complexity, Variable
Neighborhood Search.

1 Introduction

Different real life applications motivate the generalization of some combinato-
rial optimization problems to a multimode setting. A primer in this category
is the Resource Constrained Project Scheduling problem (RCPSP) [1], which
requires to determine the starting times of all activities of a project so as
to minimize its total completion time. The multimode extension allows each
activity to be executed in one out of a set M of modes.

1 Email: roberto.cordone@unimi.it
2 Email: g.lulli@lancaster.ac.uk

24

Recently, we have been investigating the multimode setting in other com-
binatorial optimization problems, e.g., the Set Covering Problem (SCP) [2]
and the Covering Location Problem (CLP) [3]. The former combines |M | sin-
gle mode SCP instances, defined on the same ground set I, which must be
covered in all modes. The single mode subproblems are linked by cardinality
constraints, which limit the number of modes in which the same column from
J can be used. The generalization of the CLP to the multimode setting con-
sists in placing a given number Km of facilities of each mode m ∈ M to serve
a set I of demand centers that require different types of service. The goal is to
maximize the demand coverage over all centers and modes with a cardinality
constraint that limits the number of active modes in each facility site.

The decision version of the multimode problems listed above are all NP-
complete because they include, as a special case, the corresponding single
mode version. However, the introduction of additional modes makes them
much more challenging to solve. The higher complexity does not refer only to
the worst case analysis (i.e., computational complexity and approximability),
but also to the average case (i.e., exact and heuristic algorithms).

In what follows, we focus on the SCP and CLP. We first review some
complexity results for their multimode generalizations and then present the
computational challenges and a viable heuristic approach based on the Vari-
able Neighborhood Search (VNS) framework.

2 Complexity results

Set covering

The single mode SCP admits a logarithmic approximation guarantee and ap-
proximation results are also available for more general covering problems [4].
By contrast, even the feasibility of the multimode SCP is NP-complete.

Theorem 2.1 It is NP-complete to determine whether a given instance of
the multimode SCP is feasible or not, even if |M | = 2.

With the same construction it is possible to prove the inapproximability.

Corollary 2.2 The MM-SCP does not admit any polynomial algorithm with
an approximation guarantee, unless P = NP.

Facility location

The CLP has a constant approximation guarantee, as discussed in Vohra and
Hall [5]. Under mild technical assumptions, we provide two greedy algorithms

that compute feasible solutions with a guaranteed approximation for the mul-
timode CLP. Algorithm Greedy1 selects one column at a time which covers
the uncovered set of rows of maximum weight, satisfying the cardinality con-
straint. Algorithm Greedy2 first builds a solution like Greedy1, but relaxing
the cardinality constraints, then retrieves a feasible solution by removing the
facilities which leave uncovered the minimum weight set of rows as necessary.

Theorem 2.3 Algorithm Greedy1 computes a solution of MM-CLP with a
guaranteed approximation factor of

α1 =

∑
m∈M

Km Wm

|J | Wtot

where Wm =
∑

i∈I wim is the total weight of all rows in mode m ∈ M and
Wtot =

∑
m∈M Wm is the total weight of all rows in all modes.

When all modes have the same total weight (Wm = W) and require the
same number of facilities (Km = K), α1 = K/|J |. If all columns can be
selected in one single mode (bj = 1), the approximation can be refined.

Corollary 2.4 If Km = K and Wm = W for all m ∈ M , and bj = 1 for all
j ∈ J , Algorithm Greedy1 provides a constant approximation factor equal to

α′
1 =

K

|J |

(
1

|M | +
|J |

K|M | ln
1

1 − K
|J |(|M | − 1)

)

Theorem 2.5 If bmin = minj∈J bj and Kmin = minm∈M Km, Algorithm Greedy2
computes a solution of MM-CLP with a guaranteed approximation factor of

α2 =
bmin

|M |

[
1 −

(
1 − 1

Kmin

)Kmin

]

In Table 1, we summarize the complexity results described so far.

3 Computational experience and heuristic approach

Although the mentioned problems are all NP-hard even in the single mode
version, the multimode version experimentally proves much harder. Indeed,
whilst state-of-the-art ILP solvers like CPLEX are able to quickly solve to
optimality average-sized instances of the single mode versions, the same is not
true for the multimode instances. Our computational experience shows that

Single-mode Multi-mode

Feas. easy Feas. NP-complete

SCP NP-hard NP-hard

log-APX not APX

MCLP NP-hard NP-hard

APX with αsm APX with αmm ≈ αsm/|M |

Table 1
Comparison of complexity between singlemode and multimode problems

the ILP solver is unable to close the gap in hours of computation on instances
of a few thousands variables and constraints. More specifically, the average
gap for the CLP is always around 10%, whereas the situation is even gloomier
for the SCP, as the ILP in some cases is unable to find a feasible solution.

Given this experience, we developed a metaheuristic approach based on
the VNS framework. We will discuss neighborhoods of different typologies
and exploration strategies (exchange mechanisms), which are very promising
to solve multimode problems. Computational results show that it is possible
to achieve in a matter of minutes a 5% gap with respect to the known bound
provided by the solver (which is unlikely to be tight).

References

[1] C. Artigues, S. Demassey and E. Néron (eds.) Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. Wiley (2008)

[2] F. Colombo, R. Cordone and G. Lulli (2015). A Variable Neighborhood Search
algorithm for the Multimode Set Covering Problem, J. of Global Optimization
65 (3) pp. 461–480.

[3] F. Colombo, R. Cordone and G. Lulli (2016). The Multimode Covering Location
Problem, Computers & Operations Research 67 pp. 25–33.

[4] A. Srinivasan (2006) An Extension of the Lovász Local Lemma, and its
Applications to Integer Programming. SIAM Journal on Computing, 36 (3),
pp. 609–634.

[5] R.V. Vohra, N. Hall (1993) A probabilistic analysis of the maximal covering
location problem Discrete Applied Mathematics, 43, pp. 175–183.

Heuristics for static cloudlet location

Alberto Ceselli, Marco Premoli 1

Department of Computer Science, Università Degli Studi di Milano, Crema, Italy

Stefano Secci 2

UPMC University Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Abstract

Major interest is currently given to the integration of clusters of virtualization
servers, also referred to as ‘cloudlets’, into the access network to allow higher perfor-
mance and reliability in the access to mobile edge computing services. We tackle the
facility location problem arising in the planning of these networks. Due to the com-
plexity of the network topology, and the number of operational constraints, methods
from the literature are hard to adapt. While in [1] we discussed the application is-
sues, considering a real test case, in this paper we focus on the algorithmic ones,
providing matheuristics solution algorithms for the static case, and an experimental
insight on their computational behavior.

Keywords: telecommunications, facility location, matheuristics

Model. Let B be a set of access point (AP) locations. Let I, J and
K be a set of sites where aggregation, core nodes and cloudlet facilities can
be installed, resp.. Our static cloudlet location problem asks to design a two-
level AP-aggregation-core network, to locate cloudlets on it, and to assign APs
to cloudlets, minimizing installation costs, respecting cloudlet capacities and
service level agreements on maximum delay and available bandwidth on paths
between APs and cloudlets. We assume a superposition of stars topology:
any AP is connected to a single aggregation node, and each aggregation node
to a single core node, while a full mesh is built among cores. For each AP
s ∈ B, let δu

s be the number of users connecting to s and δb
s their overall

1 Email: {alberto.ceselli, marco.premoli}@unimi.it
2 Email: stefano.secci@upmc.fr

28

bandwidth consumption. Let li, mj, ck be the fixed cost for activating an
aggregation node in i ∈ I, a core node in j ∈ J and a cloudlet facility in
k ∈ K, resp.. Let C denote the number of users that each cloudlet can
serve. Let di,j and ui,j be the length and bandwidth capacity of each link
(i, j) ∈ E = (B ×I)∪ (I ×J)∪ (J ×J). We assume low latency to be enforced
by imposing both a maximum sum of links’ length (D̄) and number of hops
(H̄) in a path from AP to its cloudlet, and a maximum distance (d̄) between
connected nodes. We define as Ssk the set of paths from APs to cloudlets
such that

∑
(i,j)∈p d(i,j) ≤ D̄, |p| ≤ H̄ and d(i,j) ≤ d̄ for all (i, j) ∈ p}, with

|p| denoting the number of links forming path p. We introduce three sets of
variables. The first corresponds to binary location variables: xi, yj and zk take
value 1 if sites i ∈ I, j ∈ J and k ∈ K, resp., are selected to host facilities.
The second corresponds to binary routing variables: rs,k

p take value 1 if users
in AP s ∈ B are served by a cloudlet in k ∈ K, and the corresponding traffic is
routed along path p ∈ S̄sk. The third corresponds to network topology binary
variables: ts,i, wi,j and om,n take value 1 if a link is established between an AP
s and an aggregation node i, an aggregation node i and a core node j, two
core nodes m and n, resp.. Moreover, let U ∈ [0, 1], represent the maximum
allowed link utilization ratio. We formulate our problem as follows.

min
∑

i∈I

lixi +
∑

j∈J

mjyj +
∑

k∈K

ckzk (1)

s.t.
∑

p∈Ssk|i∈p

rs,k
p ≤ xi , ∀s ∈ B, ∀k ∈ K, ∀i ∈ I (2)

∑

p∈Ssk|j∈p

rs,k
p ≤ yj , ∀s ∈ B, ∀k ∈ K, ∀j ∈ J (3)

∑

p∈Ssk

rs,k
p ≤ zk , ∀s ∈ B, ∀k ∈ K (4)

∑

k∈K

∑

p∈Ss,k

rs,k
p = 1 , ∀s ∈ B (5)

∑

s∈B

∑

p∈Ss,k

δu
s rs,k

p ≤ Czk , ∀k ∈ K (6)

∑

s∈B

∑

k∈K

∑

p∈Ss,k

|(i,j)∈p

δb
sr

s,k
p ≤ u(i,j)U(wi,j + oi,j + ti,j) , ∀(i, j) ∈ E (7)

We minimize installation costs (1); (2)-(4) impose that no path can be selected
unless devices are installed on its sites; (5)-(7) ensure that each AP is assigned

to a cloudlet; (6) impose that active cloudlets serve at most C users; (7) are
link utilization constraints. Moreover a set of topology constraints need to be
imposed, that are omitted here for the sake of brevity.

Algorithms. We devised matheuristics that consist of five phases: (i)
clustering of the APs in B, aggregating their demands in centers (ii) dynamic
generation of the center-cloudlet path variables rs,k

p (iii) retrieval of a feasible
solution with a hierarchical rounding and pricing process (iv) refinement of
the solution with local branching (v) restart.

During phase (i) we create |B|/α clusters of APs by selecting centers. To
ensure feasibility we enforce that no AP is placed in a cluster if its distance
from the center is greater than d̄, and the distance between two centers is
computed as the maximum distance between one center and each of the APs
of the other cluster. To initialize the clustering we use a simplified model in
which cloudlets, aggregation and core nodes coincide. Therefore, a routing
path is always a direct link, the resolution process needs to find only cloudlet
locations, and only capacity constraints need to be enforced.

During phase (ii), as the cardinality of feasible paths sets Ssk grows com-
binatorially, we perform column generation on the set of variables rs,k

p . The
pricing problem is a resource constrained shortest path problem on an acyclic
network, that we solve in pseudo polynomial time by dynamic programming.

At the end of the column generation process (phase iii) we start rounding
by selecting the location variable with highest fractional value, fix it to one,
and propagate that fixing. If the solution is still fractional, we resume column
generation to restore optimality, and we repeat the rounding and propagation
process. If infeasibility is detected we backtrack, fixing the last rounding
variable to zero, and column generation is resumed. If infeasibility is obtained
also in this way, we stop in a FAIL status. Whenever a feasible integer solution
is achieved, instead, we stop in a SUCCESS status. Instead of choosing an
arbitrary location variable for rounding, we consider in sequence variables zk,
yj, xi and rs,k

p . Variables related to the topology are never rounded explicitly:
in case of SUCCESS, a small MILP problem remains to fix them. In case of
FAIL, instead, the solution produced in phase (i) is considered. That is, in
any case a feasible solution Ŝ is obtained after phase (iii), unless the instance
itself is infeasible.

During phase (iv) we try to improve the feasible integer solution Ŝ with
an ILP-based very large scale neighborhood search strategy, exploring a κ-
OPT neighborhood : we consider the restricted model produced by the last
column generation round, and we include the following local-branching con-

Table 1
Results on 100 nodes instances

α = 2 α = 3 α2 → 3

zinit t z∗ ∆ z t z∗ ∆ z ∆ z ∆ t

µ 12.65 9055.70 11.37 10.01% 320.50 11.85 6.21% -4.43% 96.35%

σ 0.74 1884.33 0.70 5.26 75.80 0.64 4.33 5.41 0.95

max 13.32 11984.00 12.92 18.84% 489.00 13.12 10.73% -11.10% 97.27%

straint:
∑

k∈K|z̄k=1(1 − zk) +
∑

k∈K|z̄k=0 zk ≤ ⌈κ · ∑
k∈K z̄k⌉ where parameters

z̄k represent the values of the variables zk in Ŝ, and parameter κ represents
the fraction of zk variables whose values are allowed to flip with respect to
the current solution. We solve this restricted model with a general purpose
ILP Solver, setting a limit τ on the execution time. As a restart strategy
(phase v) we update the clustering and iterate steps (ii)–(iv). The informa-
tion given by the fractional solution found at the end of phase (ii) is used to
perform such an update: when a center i is fully associated to a cloudlet k
through a single path, the two clusters represented by i and k are joined and
a new representative is found by aggregating them; otherwise if center i is
fractionally associated through multiple paths to different cloudlets, then the
corresponding cluster is split, trying to improve a suitable connectivity mea-
sure that we devised, and whose formal definition is omitted for brevity. A
fixed number of restarts are performed, and the best solution found is retained.

Computational results. We implemented our algorithms in C++, using
CPLEX 12.6 to solve both LP and MILP problems. Our tests ran on an Intel
Core 2 Duo 3 GHz workstation with 2 GB of RAM. Parameters are set as
in [1]. We considered a dataset adapted from capacitated p-median instances
from the literature. Table 1 reports an overview of results on instances with
100 nodes. We first report the value of the solution found by the initial
clustering heuristics (zinit). Then we indicate average computing time, value
of the solutions and gap with respect to the initial solutions, comparing two
settings: clustering with α = 2 (second block) and α = 3 (third block). In
the last block we summarize the effect of moving from α = 2 to α = 3. Our
matheuristics lead to an average improvement of the initial solution of ∼ 10%
and ∼ 6%, resp.. We also note that using fewer clusters leads to major savings
in CPU time (∼ 96%) with a mild quality worsening (∼ 4%).

References

[1] A. Ceselli, M. Premoli, S. Secci, “Cloudlet Network Design Optimization”, in
Proc. of IFIP Networking 2015, 20-25 May, 2015, Toulouse, France.

A preliminary analysis of the Distance Based
Critical Node Problem

Roberto Aringhieri, Andrea Grosso, Pierre Hosteins 1

Dipartimento di Informatica
Università degli Studi di Torino

Turin, Italy

Rosario Scatamacchia 2

Dipartimento di Automatica e Informatica
Politecnico di Torino

Turin, Italy

Abstract

We discuss how to develop efficient heuristics for the distance based critical node
problem, that is the problem of deleting a subset of k nodes from a graph G in such
a way that the distance between each pair of nodes is as large as possible.

Keywords: Critical Node Problem, Graph Fragmentation, Shortest Paths.

1 Introduction

The Critical Node Problem (CNP) has been defined as a type of Interdiction
Network Problem which aims at maximally fragmenting an undirected and

1 Email: roberto.aringhieri@unito.it, grosso@di.unito.it, hosteins@di.unito.it
2 Email: rosario.scatamacchia@polito.it

32

unweighted graph G = (V, E) by deleting a subset of its nodes S ⊂ V (|S| = k)
according to a specific connectivity measure. This particular problem has
raised a certain interest in the recent literature due its potential applicability
to a vast number of real situations (see, e.g., [4]). Currently, the state of the
art algorithms for solving the CNP are those presented in [1,2,3].

In the classic CNP, the connectivity is related to a pair-wise connectivity
concept, that is either a path exists between a pair of nodes, or it does not.
In [8], the authors introduces a more refined connectivity concept based on the
shortest distance between each pair of nodes: the more distant the nodes, the
lower their connectivity value. Therefore, the DB-CNP consists in minimizing
the following objective function:

F (S) =
∑

i,j∈V \S : i 6=j

1

dspt(i, j)
(1)

where dspt is the value of the shortest path between the node i and the node
j belonging to the weighted graph G.

Constructive and Local Search based heuristics usually build an incumbent
solution step-by-step, that is, for instance, adding or deleting elements, or
swapping a pair of elements respectively belonging and not belonging to a
starting solution. As for the classic CNP, the development of efficient heuristic
algorithms for the DB-CNP suffers from the non trivial evaluation of the
incumbent new solution since we need to update the shortest path between
each pair of nodes. In this paper we discuss how to develop efficient heuristics
for the DB-CNP.

2 Shortest paths re-computation

The operations traditionally used to obtain an incumbent solution of the CNP
consist in adding a node to S (i.e., deleting it from the graph), removing a
node from S or swapping a node from S with a node from V \ S. As moving
nodes from or to S can affect the length of shortest paths (SP), we are required
to recompute all the SP values in the graph, which is known to have a com-
putational cost of O(|V ||E|+ |V |2 log |V |) [6]. As such a complexity is usually
prohibitive when thousands of incumbent solutions should be evaluated, we
need to implement more efficient evaluations of the SP modifications.

It has been noted in computational works regarding all-SP re-computation
that usually, if a very small number of edges’ weights are modified, the time
necessary to recompute only the shortest paths that are affected is actually

much less than the theoretical worst case complexity. Since for the CNP we
only modify the edges belonging to the backward and the forward start of
one node at a time, such empirical results are encouraging for implementing
efficient heuristics.

Moreover, some particular cases of interest to us can be demonstrated to
require a lower worst case complexity than the general all-SP re-computation.
For example, reintroducing a node u ∈ S inside the graph amounts to consider
that each SP can now go through u if it is profitable enough. Using the SP
properties, we can show that computing the SP starting and ending at u can
be done in O(D(G)(|V | − |S|)) where D(G) is the largest number of edges
incident on any node in G. Then using those new SP lengths we can update
all shortest paths in a maximum number of operations equal to O(|V |2), which
is inferior to the general case of edge weights modification [6].

Some dominance rules should also be devised, the simplest example being a
node v ∈ V \S which does not belong to any shortest path in graph G[V \S]:
evidently such a node can never be an appropriate candidate for deletion
since such a move would not lower the objective function. Similarly, the
impact of removing a node belonging to a certain connected component would
not change if our moves in the solution space only modifies other connected
components.

3 Extension to directed graphs and weighted pair-wise
connectivity

Since the SP definition is not limited to undirected graphs, the DB-CNP can
be also applied to directed graphs, which opens the perspective of applying
the critical node analysis to such situations that can be modelled by directed
graphs only, contrary to the versions of the CNP previously considered in the
literature [4].

We also note that the CNP based on weighted pair-wise connectivity is
much more difficult to tackle with the existing heuristic algorithms since they
tend to rely on the fact that not weighted pair-wise connectivity can be com-
puted solely using the connected components’ cardinality, a fact which is no
longer true when weights are introduced between pairs of nodes. However,
the heuristic framework developed for a DB-CNP, which tracks the SP values,
allows us to evaluate solution moves for weighted pair-wise connectivity as a
non infinite length means that the nodes are connected. Thus we see that
algorithmic efforts in order to solve the DB-CNP can be beneficial for other
formulations of the CNP as well.

4 Betweenness centrality

Betweenness centrality [7] can play also a fundamental role to devise efficient
heuristics. Centrality would evaluate how important is a node for the con-
nection of every pair of nodes. Betweenness centrality of the node j is the
number of shortest paths from all vertices to all others that pass through the
node j, and it can be computed using the Brandes’ algorithm [5]. The basic
idea is therefore to rank the nodes with respect to their betweenness value,
and to consider first those having highest value in our heuristics. Note that
heuristics for the classic CNP benefit of using such a rank as reported in [1,3].

References

[1] Addis, B., R. Aringhieri, A. Grosso and P. Hosteins, Hybrid Constructive
Heuristics for the Critical Node Problem, Annals of Operations Research 238
(2016), pp. 637–649.

[2] Aringhieri, R., A. Grosso and P. Hosteins, A genetic algorithm for a class
of Critical Node Problems, Electronic Notes in Discrete Mathematics (2015),
proceedings of the INOC 2015 conference. To appear.

[3] Aringhieri, R., A. Grosso, P. Hosteins and R. Scatamacchia, Local
Search Metaheuristics for the Critical Node Problem, Networks (2016),
DOI:10.1002/net.21671.

[4] Arulselvan, A., C. W. Commander, L. Elefteriadou and P. M. Pardalos, Detecting
critical nodes in sparse graphs, Computers & Operations Research 36 (2009),
pp. 2193–2200.

[5] Brandes, U., A faster algorithm for betweenness centrality, Journal of
Mathematical Sociology 25 (2001), pp. 163–177.

[6] Demetrescu, C. and G. F. Italiano, Experimental analysis of dynamic all pairs
shortest path algorithms, ACM Trans. Algorithms 2 (2006), pp. 578–601.

[7] Freeman, L. C., A Set of Measures of Centrality Based on Betweenness,
Sociometry 40 (1977), pp. 35–41.

[8] Veremyev, A., O. A. Prokopyev and E. L. Pasiliao, Critical nodes for distance-
based connectivity and related problems in graphs, Networks 66 (2015), pp. 170–
195.

Timetable Optimization for High-Speed Trains
at Chinese Railways

Valentina Cacchiani 1

DEI
University of Bologna

Bologna, Italy

Feng Jiang 2

School of Transportation and Logistics
Southwest Jiaotong University

Chengdu, China

Paolo Toth 3

DEI
University of Bologna

Bologna, Italy

Abstract

We study the Train Timetabling Problem (TTP) of the high-speed trains at the
Chinese railways. TTP calls for determining, in the planning phase, an optimal
schedule for a given set of trains, while satisfying track capacity occupation con-
straints. In this work, we are given on input a set of feasible timetables for the trains
already planned along a double-track high-speed line, and the main goal consists of
scheduling as many additional trains as possible. Beside the main goal, a second
objective is to obtain a regular schedule, i.e. a schedule showing regularity in the
train frequency. We model TTP on a time-space graph and propose a heuristic

36

algorithm for it. Preliminary computational results on real-world instances of the
high-speed line from Beijing to Shanghai in China are reported.

Keywords: Train Timetabling, Heuristic Algorithm, Timetable Regularity

1 Introduction

Railway networks are more and more utilized. The high-speed double-line
from Beijing to Shanghai in China has shown an average increase of passenger
volume of about 30% every year since it was put into operation in 2011. In
2013, 8.4 million of passengers travelled along the corridor and this number
is expected to keep growing, mainly because new high-speed lines connected
with the Beijing-Shanghai line will be put into operation.

The Train Timetabling Problem (TTP) is a crucial step to improve the
capacity utilization of the railway network while guaranteeing a high quality
of service. The TTP at the planning level consists of determining efficient train
schedules in order to have a service with high frequency and short waiting and
travel times. We focus on the non-periodic TTP, i.e. we do not require that
trains are operated with the same schedule every given time period (e.g. every
hour), since we consider a highly congested corridor (double-track railway
line).

Given a corridor, described as a sequence of stations and a set of tracks
connecting them, the TTP calls for scheduling arrivals and departures of trains
at/from the stations, while respecting minimum travel, stopping and headway
times, and track capacity constraints (related to overtaking and crossing of
trains that must be avoided according to the physical structure of the corridor).
The non-periodic TTP has been deeply investigated in the literature ([4], [8]),
not only for deriving timetables from scratch ([1], [5]), but also for improving
existing timetables by inserting additional trains ([2]), real-time rescheduling
([6]) and increasing the capacity utilization of the railway nodes ([3]).

In this work, we start from a given initial feasible schedule (described as
departure and arrival train times at each of the visited stations) for the trains
already planned along the double-track high-speed line. Given a set of new
trains to be scheduled along the line, the main goal consists of scheduling as
many additional trains as possible. As the number of passengers is expected to

1 Email:valentina.cacchiani@unibo.it
2 Email:feng.jiang@studio.unibo.it
3 Email:paolo.toth@unibo.it

increase, inserting new passenger trains is important to guarantee comfortable
travels. For each additional train, we are given its origin station and departure
time, its destination station, the set of intermediate stations to be visited, the
minimum stopping time at each of them and the travel time between each pair
of consecutive stations. To determine an overall feasible train schedule, we are
allowed to change the departure times and to increase the stopping times of the
additional trains. With respect to the existing literature, we also investigate
the possibility of modifying the timetables of the already planned trains and
even of changing the stopping patterns (i.e. of canceling train stops at a given
penalty) of both the planned and the additional trains. Beside the main goal,
a second objective is to obtain a regular schedule, i.e. a schedule showing
regularity in the train frequency at the main stations. A regular frequency
allows passengers to easily remember the timetable and has uniform waiting
times for the following train at different times of the day. This follows the
aim of the periodic TTP ([7]), while keeping the flexibility of the non-periodic
TTP.

2 Heuristic Algorithm

We model TTP on a time-space graph ([2], [3], [5]). Let T be the set of trains
to be scheduled and G = (V, A) the time-space graph: nodes in V represent
time instants at which some train can arrive at and depart from a station. In
addition, V includes an artificial source node σ and an artificial terminal node
τ . The arc set A is partitioned into sets A1, . . . , A|T |, one for each train t ∈ T .
These arcs represent either the travel or the stop of a train, or correspond to
artificial arcs connected to σ and τ . Given this graph representation, a path
from σ to τ using arcs in At corresponds to a feasible timetable for train t ∈ T .

We propose an iterative heuristic algorithm based on a two-phase approach.
In the first phase, we consider the main goal and insert additional trains: this
is achieved by using a dynamic programming procedure that computes, for
each additional train, its best path in the time-space graph, while respecting
all the operational constraints induced by the previously scheduled trains. In
particular, every change to the departure or stopping times and to the stopping
patterns of the additional trains is penalized, and the already planned trains
are initially kept as fixed. Successively, we allow to change the timetables
and to cancel existing stops of the planned trains, so as to possibly schedule
additional trains.

In the second phase, we focus on the regularity of the timetable, while
keeping the set of scheduled trains as fixed. To improve the timetable regu-

larity we assign appropriate penalties to the train graph nodes so as to favor
regular time intervals between consecutive trains at the main stations.

3 Preliminary Computational Experiments

We consider the 2015 timetable of the Beijing-Shanghai high-speed corridor,
that is a double-track line with 29 stations along which 304 trains run every
day between 06:00 and midnight in both directions. We are given 42 additional
trains to be scheduled. After the first phase, 20 additional trains are scheduled.
In the second phase, the regularity of the scheduled trains from the main
departure stations Beijing and Shanghai is improved. Current research is
dedicated to further improve the line capacity utilization and the timetable
regularity. In addition, we are studying different measures of regularity, and
focusing on dealing with additional real-world constraints.

References

[1] Brännlund, U., Lindberg, P.O., Nöu, A. and J.E. Nilsson, Allocation of scarce
track capacity using Lagrangian relaxation, Transportation Science. 32 (1998)
358–369.

[2] Cacchiani, V., Caprara, A., and P. Toth, Scheduling Extra Freight Trains on
Railway Networks, Transportation Research Part B. 44(2) (2009), 215–231.

[3] Cacchiani, V., Furini, F., and M.P. Kidd, Approaches to a real-world train
timetabling problem in a railway node, Omega. 58 (2016), 97–110.

[4] Cacchiani, V., and P. Toth, Nominal and Robust Train Timetabling Problems,
European Journal of Operational Research. 219(3) (2012), 727–737.

[5] Caprara, A., Fischetti, M., and P. Toth, Modeling and solving the train
timetabling problem, Operations Research. 50 (2002) 851–861.

[6] D’Ariano, A., Pacciarelli, D., and M. Pranzo, A branch and bound algorithm
for scheduling trains in a railway network, European Journal of Operational
Research. 183(2) (2007) 643–657.

[7] Kroon, L. G., Peeters, L. W., Wagenaar, J. C., and R. A. Zuidwijk,
Flexible connections in pesp models for cyclic passenger railway timetabling,
Transportation Science. 48(1) (2013) 136–154.

[8] Lusby, R. M., Larsen, J., Ehrgott, M., and D. Ryan, Railway track allocation:
models and methods, OR spectrum. 33(4) (2011), 843–883.

Partitioning a graph into minimum gap
components

Maurizio Bruglieri 1

Dipartimento di Design, Politecnico di Milano, Milano, Italy

Roberto Cordone 2

Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy

Abstract

We study the computational complexity and approximability for the problem of
partitioning a vertex-weighted undirected graph into p connected subgraphs with
minimum gap between the largest and the smallest vertex weights.

Keywords: Graph partitioning, computational complexity, approximability

1 Introduction

Let G = (V, E) be an undirected connected graph, wv an integer weight co-
efficient defined on each vertex v ∈ V , and p ≤ |V | a positive integer num-
ber. Given a vertex subset U ⊆ V , we denote by mU = minu∈U wu and
MU = maxu∈U wu the minimum and maximum weight in U , respectively, and
by gap their difference γU = MU −mU . The Minimum Gap Graph Partitioning

1 Email: maurizio.bruglieri@polimi.it
2 Email: roberto.cordone@unimi.it

40

Problem (MGGPP) requires to partition G into p vertex-disjoint connected
subgraphs Gr = (Vr, Er), (r = 1, . . . , p) with at least two vertices each. Its
min-max and min-sum versions minimize, respectively, the maximum gap
fMM and the sum of the gaps fMS over all subgraphs:

fMM = max
r=1,...,p

γ
Vr

fMS =

p∑

r=1

γ
Vr

The MGGPP can find applications in agriculture (divide a land into parcels
with limited difference in height [3]), in the location of gate houses along rivers,
and in social network analysis (identify connected clusters of members with
homogeneous features). It falls in the large field of graph partitioning prob-
lems [1,2], but, as far as we know, objective functions related to the differences
between vertex weights in each subgraph have never been considered before.

2 Complexity

Theorem 2.1 The MGGPP admits feasible solutions if and only if graph G
contains a matching of cardinality at least p.

Proof. Any maximum cardinality matching M induces on graph G a span-
ning forest of |M | nondegenerate trees and |V | − 2|M | isolated vertices. Each
isolated vertex v has an incident edge ev which is adjacent to an edge in M .
Adding ev to M for each isolated vertex v, we obtain a spanning forest of ex-
actly |M | trees. If |M | > p, we consider the edges connecting different trees,
and we add them to M , stopping as soon as we obtain exactly p trees. This
provides a feasible solution of the MGGPP. Vice versa, given a feasible solu-
tion, we can choose an edge from each subgraph (they all contain at least two
vertices): these edges are nonadjacent, and yield a p-cardinality matching. 2

Let WU = {z ∈ Z : ∃v ∈ U with wv = z} be the set of values assumed by
w on a subset of vertices U ⊆ V , and ηU = |WU | the number of such values.

Theorem 2.2 The MGGPP with the min-max objective function is strongly
NP-hard even if p = 2 and ηV = 3.

Proof. The decision version of the problem, obviously in NP , amounts to
verifying the existence of a solution such that the gap of all subgraphs is not
larger than a given threshold. Given a generic instance of SAT, we build the
following auxiliary graph. We introduce for each literal (xi or x̄i) a vertex (vi or
v̄i) with wvi

= wv̄i
= 2, and for each clause Cj a vertex cj with weight wcj

= 1;

v

v1 v2 v3

c1 c2

c3

v1 v2 v3

fv0 2 2 2

2 2 2

1 1

1

3 3

Fig. 1. Graph construction for the NP-hardness proof of the min-max MGGPP

finally, we introduce two dummy vertices v0 and vf with weight w0 = wf = 3.
Vertex v0 is connected to v1 and v̄1; vertex vf is connected to vn and v̄n; each
vertex vi (resp. v̄i) is connected to vi+1 and v̄i+1 (i = 1, . . . , n − 1) and to all
the clause vertices cj such that literal xi (resp. x̄i) occurs in clause Cj. We are
looking for p = 2 connected subgraphs with gaps not larger than 1. Figure 1
shows the graph corresponding to (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3). If
both subgraphs have gap ≤ 1, v0 and vf belong to the same subgraph, and
this connects them through a path entirely made of vertices vi or v̄i. By
construction, this path contains at least one of vi or v̄i for each variable xi.
The other subgraph contains all the clause vertices cj and connects them
through adjacent vertices vi or v̄i which identify literals satisfying all clauses.
Such a truth assignment is consistent because the subgraph includes at most
one vertex for each variable xi. Vice versa, any satisfying truth assignment
identifies a partition of the graph into two subgraphs with gap ≤ 1. 2

Theorem 2.3 The MGGPP with the min-sum objective function is strongly
NP-hard even if ηV = 2.

Proof (Sketch). The proof is by reduction from 3-SAT. 2

3 Approximability

Theorem 3.1 The min-max MGGPP cannot be approximated for any con-
stant α < 2 unless P = NP.

Proof. Following Theorem 2.2, we can build an instance with optimum equal
to 1 for any YES-instance of SAT and one with optimum equal to 2 for any
NO-instance. By contradiction, a hypothetical α-approximated polynomial
algorithm with α < 2, would find on the former instances solutions with a
value < 2 (by integrality, 1), and therefore solve SAT in polynomial time. 2

Theorem 3.2 The MGGPP is 2-approximable for p = 2.

Proof. Let V ∗
1 and V ∗

2 be the unknown subsets of vertices of the optimal
solution. The ranges of the weights in the two subgraphs,

[
mV ∗

1
; MV ∗

1

]
and[

mV ∗
2
; MV ∗

2

]
, are either separate or overlapping. In the former case, all the

vertices in a subgraph have weights strictly smaller than those in the other.
Then, the optimal solution can be found by exhaustively considering all pairs
of intervals [wπ1 , wπk

] and
[
wπk+1

, wπη

]
(k = 1, . . . , ηV − 1), and building the

subgraphs induced on G by the vertices whose weights fall in the two intervals.
In the latter case, the two ranges overlap, and f ∗MS = γV ∗

1
+ γV ∗

2
≥ γV , which

implies f ∗MM = max (γ∗
1 , γ

∗
2) ≥ γV /2. Generating any feasible solution with

Theorem 2.1, we obtain fMS ≤ 2γV ≤ 2f ∗MS and fMM ≤ γV ≤ 2f ∗MM . 2

4 Some special cases

The MGGPP admits some polynomially solvable special cases.

Proposition 4.1 The min-max MGGPP is polynomially solvable if ηV = 2.

Proof (Sketch). If there is a vertex whose weight is different from that of
the adjacent vertices, the optimal solution is γV . Otherwise, we merge all
the adjacent vertices of equal weight and consider the resulting vertex set
V ′. If |V ′| > p, the optimum is γV ; otherwise, a procedure similar to that of
Theorem 2.1 provides an optimal solution with p subgraphs of zero gap. 2

Proposition 4.2 The min-sum and min-max MGGPP are polynomially solv-
able on line graphs.

Proof (Sketch). The proof is based on the computation by dynamic pro-
gramming of the minimum bottleneck path on a suitable graph. 2

We are currently investigating the complexity of other special cases and
working on the design of exact and heuristic algorithms.

References

[1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, eds. Graph Partit-
ioning and Graph Clustering, v. 588 of Contemporary Mathematics. AMS, 2013.

[2] C.-E. Bichot and P. Siarry, editors. Graph Partitioning. Wiley-ISTE, 2013.

[3] Li Xiao, Li Hongpeng, Niu Dongling, Wang Yan, and Liu Gang. Optimization
of GNSS-controlled land leveling system and related experiments. Transactions
of the Chinese Society of Agricultural Engineering, 31(3):48–55, 2015.

Algorithms for uniform centered partitions of trees

Isabella Lari a, Justo Puerto b, Federica Ricca a, Andrea Scozzari c

a Sapienza University of Rome, Italy
b IMUS, Instituto de Matemáticas de la Universidad de Sevilla, Spain

c University Niccolò Cusano, Rome, Italy

Abstract

In this paper we provide polynomial time algorithms for the problem of finding uniform centered
partitions of a tree, that is, partitions that are as balanced as possible either w.r.t. the costs or
to the weights of their components.

Keywords: Tree partitioning, centered partitions, flat costs, min-max criteria, uniform
partitions.

1 Introduction, notation and definitions

Let T = (V, E) be a tree with |V | = n. Assume that V is partitioned into two subsets S
and U such that S ⊂ V with |S| = p. S is the set of centers (facilities) and U = V \S
is the set of units (clients). We consider a cost function c : U × S → R+ ∪ {0} which
associates a cost cis to each pair (i, s), i ∈ U , s ∈ S. We assume that these costs are flat,
i.e., they are independent of the topology of T . We also consider a nonnegative weight wi

associated to each i in U . A centered partition of T is a partition of the set V into p non
empty subsets, {C1, . . . , Cp}, such that each subset induces a subtree of T and contains
exactly one center. The cost of the component Cs centered in s is defined as the sum of
the costs cis of the units i ∈ Cs. The weight of the component Cs is given by the sum of
the weights of the units i ∈ Cs. We consider the flat costs and study the following two
problems: i) max-min cost centered partition problem, that is, find a centered partition of
T that maximizes the minimum cost of a component; ii) min-max cost centered partition
problem, that is, find a centered partition of T that minimizes the maximum cost of a
component.

Replacing the minimum and maximum cost by the minimum and maximum weight of a
component we obtain the following variants of the above problems: iii) max-min weight

44

centered partition problem; iv) min-max weight centered partition problem. For problems
i)-iv) we provide polynomial time algorithms: for i), iii) and iv) we adapt already existing
approaches, while for ii) we suggest a new procedure. This kind of problems are known as
uniform partition problems, and they have been widely studied in the literature on trees
[2,5]. In this paper we focus on the particular case of finding uniform centered partitions.
In previous papers we already studied problems of this class on general graphs, providing
several NP-completeness results for other types of graphs [1,3]. In particular, we proved
that all the above problems are NP-complete even on planar bipartite graphs with vertex
degree at most 3 and p = 2, and this motivates our interest for studying them now on
trees.

2 Max-min centered partition of trees

In this section we study the max-min (cost/weight) centered partition problem of a tree
T and we show how this problem can be solved in polynomial time by using results from
[2], where Becker and Perl provide a general technique for partitioning trees with different
objectives that is based on shifting operations and greedy decisions. Given the family F
of all the possible subsets of V , they define a weighting function H : F → R+ ∪ {0} that
assigns a weight H(Z) to each subset Z in F . Among the others, they solve the problem
of finding a partition of T into p connected components, {Z1, . . . , Zp}, that maximizes
the minimum of the H(Zj), j = 1, . . . , p, by applying a shifting algorithm originally
proposed in [5]. We refer to this problem as BP-max-min problem and observe that the
only difference with our problem is that [2] does not consider centered partitions. For
the BP-max-min problem the shifting algorithm applies when H(·) is a basic weighting
function, i.e., a function satisfying the following property: if Z1,Z2 ∈ F are such that
Z1 ⊆ Z2 then H(Z1) ≤ H(Z2).

Consider our problem of finding a max-min cost centered partition {C1, . . . , Cp} of T . Let
M =

∑
i∈U maxs∈S cis. For a generic subset C of V we introduce the following weighting

function:

H(C) =

M |C ∩ S| +
∑

i∈C∩U

max
s∈C∩S

cis if C ∩ S ̸= ∅
∑
i∈C

min
s∈S

cis if C ∩ S = ∅
(1)

It is easy to see that the above weighting function is basic. Notice that when {C1, . . . , Cp}
is a centered partition, for a component Cs centered in s one has:

H(Cs) = M +
∑

i∈Cs∩U

cis(2)

Theorem 2.1 A partition {C1, . . . , Cp} is an optimal solution of the max-min cost cen-
tered partition problem on a tree T if and only if it is an optimal solution of the BP-max-
min problem with weighting function H(·).
From Theorem 2.1 it follows that the max-min cost centered partition problem can be
solved by the shifting algorithm for the BP-max-min problem in O(p2r + pn) time, where
r is the radius of T . We observe that the same basic weighting function (1) and the same

shifting algorithm can be applied also to solve our max-min weight centered partition
problem by setting for each i ∈ U : cis = wi, ∀s ∈ S.

3 Min-max centered partition of trees

In [2] Becker and Perl also provide a shifting algorithm for the problem of finding a
partition of a tree into p connected components that minimizes the maximum weight of
a component (BP-min-max problem) that applies when the weighting function H(·) is
invariant (see [2] for the definition). Our min-max weight centered partition problem
on T can be solved in polynomial time by exploiting the shifting algorithm in [2]. Let
W =

∑
i∈U wi and assign the following weights:

wv =

wv if v ∈ U

W if v ∈ S
(3)

It can be shown that the resulting weighting function that assigns to a component C a
weight H(C) =

∑
v∈C

wv is invariant.

Theorem 3.1 A partition {C1, . . . , Cp} is an optimal solution of the min-max weight cen-
tered partition problem on a tree T if and only if it is an optimal solution of the BP-min-
max problem with weighting function H(·).
The most efficient implementation of the shifting algorithm for the BP-min-max problem
was provided by Perl and Vishkin in [6] and requires O(rp(p + logd) + n) time, where r
and d are the radius of T and the maximum degree of a vertex, respectively.

Finally, for the min-max cost centered partition problem we propose a new polynomial
time algorithm based on the solution of a sequence of feasibility problems in which, at
each iteration, a centered partition with maximum component cost bounded above by a
quantity δ (δ-centered partition) must be identified. Since T is a tree, a unit i cannot be
assigned to a center s such that the unique path from i to s contains another center s′ ̸= s.
As a consequence, we can suppose that all leaves of T are centers. For a fixed value δ, if a
δ-centered partition of T exists, it can be found by visiting bottom-up T rooted at a leaf r
(denoted by Tr). Let Ti be the subtree of Tr rooted at i, Si the set of its centers, and p(i)
the parent of i in Tr, i ̸= r. The idea of the algorithm is to add as much cost as possible
to the components in the bottom part of the tree without exceeding the given limit δ. If
a unit i can be assigned to a center in Ti, such center is selected in Si as the one that
minimizes the sum of the assigning costs; if not, i must be assigned to the same center as
its parent p(i) in S\Si. In this way, during the algorithm, for the current vertex i and for
each center s ∈ Si we are able to record the minimum cost of a component containing i
and s. A δ-centered partition of T exists if, at the end, all these costs are smaller than or
equal to δ. During the algorithm we compute the following quantities:

• c̄(i, s), i ∈ V and s ∈ S: the sum of the costs chs of the units h in Ti that must be
assigned to the same center as i in any δ-centered partition of T ;

• w∗(i, s), i ∈ V , s ∈ Si: the minimum cost of a component containing i and s in a

centered partition of Ti whose components, but at most the one containing s, have cost
at most δ. At the beginning we set w∗(i, s) = M > δ, i ∈ V , s ∈ Si.

We also introduce the binary indicator r(p(i), i), i ∈ U , which is set to 1 when i must be
necessarily assigned to the same center as its parent p(i) in any δ-centered partition of T .

For any given δ, after a suitable initialization of the above quantities, the algorithm
performs the following visit of Tr:

visit Tr bottom-up starting from its leaves
if the visited vertex is a unit i

for each j such that p(j) = i and r(i, j) = 0
for each s ∈ Sj such that w∗(j, s) ≤ δ set w∗(i, s) := w∗(j, s) + c̄(i, s)

if w∗(i, s) > δ for all s ∈ Si then
set r(p(i), i) := 1 and c̄(p(i), s) := c̄(p(i), s) + c̄(i, s) for all s ∈ S\Si

else if the visited vertex is a center s ∈ S
if c̄(s, s) > δ then STOP: the problem is infeasible

return r(p(i), i), ∀ i ∈ U

If a δ-centered partition exists, it can be found by a top-down visit of Tr using r(p(i), i).

Theorem 3.2 A δ-centered partition of T can be found in O(np) time.

By a binary search on all the possible values of δ one can find the min-max cost centered
partition in O(np log C̄) time, where C̄ is an upper bound on the cost of a component
(for example C̄ =

∑
i∈U maxs∈S cis). Let f(δ) be the maximum cost of a component in

a δ-centered partition of T . It is easy to see that f(δ) is an increasing stepwise linear
function of δ whose number of steps is bounded above by 2n. Using the approach in [4]
one can search over the different δ values in an overall time complexity of O(n2p).

References

[1] N. Apollonio, I. Lari, J. Puerto, F. Ricca, and B. Simeone, Polynomial algorithms for
partitioning a tree into single-center subtrees to minimize flat service costs, Networks 51
(2008) 78–89.

[2] R.I. Becker and Y. Perl, The shifting algorithm technique for the partitioning of trees, Disc.
Appl. Math. 62 (1995) 15–34.

[3] I. Lari, J. Puerto, F. Ricca and A. Scozzari, Partitioning a graph into connected components
with fixed centers and optimizing cost-based objective functions or equipartition criteria,
Networks 1 (2016) 69–81.

[4] M. Megiddo and A. Tamir, New results on the complexity of p-center problems, SIAM J.
Comput. 12 (1983) 751–758.

[5] Y. Perl and S. Schach, Max-min tree partitioning, J. of the ACM 28 (1981) 5–15.

[6] Y. Perl and U. Vishkin, Efficient implementation of a shifting algorithm, Disc. Appl. Math.
12 (1985) 71–80.

Drezner’s Exact Method for the Continuous
p−Centre Problem Revisited

Becky Callaghan, Säıd Salhi, Gábor Nagy 1

Centre for Logistics & Heuristic Optimisation (CLHO), Kent Business School,
The University of Kent, Canterbury, Kent, UK, CT2 7NZ

Abstract

Drezner’s optimal algorithm for the p−centre problem is an elegant but somewhat
slow method. We suggest some technical enhancements that significantly improve
the method’s efficiency.

Keywords: location, p−centre problem, Drezner’s method

1 Introduction

The p−centre problem seeks to minimise the maximum distance or travel
time whilst ensuring all the n demand points are covered by at least one of
the p chosen facilities. This problem can be categorised as either the vertex
p−centre problem or the absolute p−centre problem. In the former, which is
the discrete case, the optimal facilities are part of a set of the potential facility
sites which can be either the demand points or other known sites. However,
in the latter the facilities can be located anywhere in the plane. In this work,
we will explore the absolute p−centre problem by revisiting an early optimal
algorithm proposed by Drezner (1984) to solve this problem.

1 Email: bc349@kent.ac.uk, s.salhi@kent.ac.uk, g.nagy@kent.ac.uk
48

The idea of maximal circles, which we use here, is based on Drezner’s algo-
rithm. A circle is defined as maximal based on a given upper bound, Z. The
set of maximal circles based on Z is then identified and their respective centres
are then used as a subset for the potential facility locations.

Let us define the following notations.
I: set of demand points indexed by i = 1 . . . n;
J : set of all possible circles indexed by j = 1 . . .m;
rj: the radius of circle Cj, j ∈ J ;
Cj: circle j defined by its centre (xc

j , y
c
j) and radius rj;

di,j: Euclidean distance from demand point i to the centre of circle Cj, i ∈
I, j ∈ J ;
p: number of facilities to locate;
Z: the upper bound at a given iteration;
JZ : set of maximal circles defined by Z (JZ ⊂ J);
R(K): radius of the smallest circle encompassing all points in K, where K ⊂ I.

Definition 1.1 The closure of circle Cj is Clj = {i ∈ I| di,j ≤ rj} ∀ j =
1 . . .m.

Definition 1.2 A circle Cj with radius rj is said to be maximal with respect
to Z if rj < Z and for every demand point i /∈ Clj, R(Clj ∪ {i}) ≥ Z.

Definition 1.3 The minimum covering circle (MCC) is the smallest cir-
cle that encompasses all the demand points in the Euclidean plane.

Drezner proposed two formulations used to solve for the p−centre problem
using maximal circles. The first uses the set covering problem to find the
minimum number of maximal circles needed. The second imposes a new con-
straint so that the number of covering circles has to be equal to p, thus making
it a feasibility problem. Drezner’s optimal algorithm is given in Figure 1.

2 Two Possible Enhancements

Both formulations suggested by Drezner were found to take a relatively large
amount of computational time and iterations. This observation led us to con-
sider an alternative approach where the basic p−centre formulation was used
instead. This approach has an advantage over Drezner’s original suggestions
as the optimal solution value is much tighter, leading to requiring a relatively
smaller number of iterations. Drezner’s original algorithm was also enhanced
further which will now be explained.

Step 1. Find all circles made from one, two or three demand points. This creates
three sets of circles : C1

J , C2
J and C3

J . Discard any circle in C3
J whose

three points create an obtuse or right-angled triangle.

Step 2. Find an initial solution and set the solution value as the initial upper
bound, Z.

Step 3. Eliminate all circles whose radii are ≥ Z.

Step 4. Find all circles that are maximal according to Definition 1.2.

Step 5. Find a feasible solution using the set of current maximal circles JZ .
If a feasible solution is found, set the new upper bound Z to the radius

of the largest maximal circle found in the solution and go to Step 3.
Else take the upper bound Z as the optimal solution value of the planar
p−centre problem and stop.

Fig. 1. Drezner’s Original Algorithm (Drezner [1])

(i) The Elzinga Hearn algorithm-Based Implementation
The Elzinga-Hearn algorithm (1972), used to find the MCC of a set
of demand points, was enhanced in two ways. Firstly, the algorithm was
terminated early if the MCC found had a radius larger than Z. Secondly,
more informative initial points were selected.

(ii) Efficient Recording of the Maximal Circles
If circle Cj ∈ JZt , then Cj ∈ JZt∗ where t∗ > t and so there is no need for
further calculations in subsequent iterations.

As an example, Table 1 shows the number of maximal circles found at each
iteration for the first 5 iterations of the original algorithm for the TSP-Library
data set pr439 where p = 100. It can be shown that approximately 14% of
the new maximal circles need to be identified at each iteration only as the
other ones have already been found in previous iterations. Therefore, a tech-
nique to identify whether a circle is maximal or not in subsequent iterations
is worthwhile constructing.

Our algorithm was tested on the TSP-Lib data set where N = 439, namely
pr439. For illustration, we report the results found where p = 80, 90 and 100,
see Table 2. The proposed enhanced algorithm found the optimal solution in
an improved computational time compared to the initial Drezner algorithm.
This modified algorithm will be tested on other data sets more extensively
and, if need be, we may need to explore further enhancements.

Acknowledgments

The first author would also like to thank EPSRC for her PhD studentship.

Iteration # # Original Circles # Maximal Circles # Circles Previ-
ously Identified

Extra %
Required

1 9281 860 - -

2 9189 855 780 8.77

3 8835 797 597 25.09

4 8796 805 758 5.84

5 8652 809 684 15.45

Average 8951 825 705 13.79

Table 1
Number of maximal circles required & previously identified for the first 10

iterations (n = 439, p = 100)

Initial Algorithm Enhanced Algorithm

p Z∗ # Iterations Total CPU Time (secs) Total CPU Time (secs)

80 312.500 53 2186.27 173.85

90 280.903 38 1258.22 88.94

100 256.680 30 462.30 40.97

Average 283.361 44 1302.26 101.25

Table 2
Initial Algorithm vs Enhanced Algorithm for n = 439 TSP-Lib

References

[1] Drezner, Z. (1984). The p−centre Problem - Heuristic and Optimal Algorithms.
Journal of the Operational Research Society, 35 (8), 741-748.

[2] Elshaikh, A., Salhi, S., & Nagy, G. (2015). The continuous p−centre problem:
An investigation into variable neighbourhood search with memory. European
Journal of Operational Research, 241, 606-621.

[3] Elzinga, J., & Hearn, D. (1972). Geometric Solutions for some Minimax
Location Problems. Transportation Science, 6, 379-394.

New methods for the Distance Geometry
Problem

Gustavo Dias and Leo Liberti 1,2

CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

Abstract

Given an integer K and a simple edge-weighted undirected graph G = (V,E), the
Distance Geometry Problem questions the existence of a vertex realization function
V → RK such that each vertex pair adjacent to an edge is placed at a distance
which is equal to the edge weight. This problem has many applications to science
and engineering, and many methods have been proposed to solve it. We propose
some new formulation-based methods.

Keywords: DGP, Semidefinite Programming, Diagonally dominant matrices.

1 Introduction

The problem studied in this paper is the

Distance Geometry Problem (DGP). Given an integer K ≥ 1 and a simple,
edge-weighted, undirected graph G = (V, E, d), where d : E → R+, verify
the existence of a vertex realization function x : V → RK such that:

∀{i, j} ∈ E ‖xi − xj‖ = dij. (1)

1 Gustavo Dias is financially supported by a CNPq PhD thesis award.
2 Email: {dias,liberti}@lix.polytechnique.fr52

A recent survey on the DGP with the Euclidean norm is given in [2]. The DGP
is NP-hard, by reduction from Partition. Three well-known applications are
to clock synchronization (K = 1), sensor network localization (K = 2), and
protein conformation (K = 3). A related problem, the Distance Matrix Com-

pletion Problem (DMCP), asks whether a partially defined matrix can be
completed to a distance matrix. The difference is that while K is part of the
input in the DGP, it is part of the output in the DMCP, in that a realization
into any Euclidean space which allows the computation of the missing dis-
tances provides a certificate. It is remarkable that, by virtue of this seemingly
minor difference, it is not known whether the Euclidean DMCP (EDMCP) is
in P or NP-hard. It is currently thought to be “between the two classes”.

In this short paper we sketch several new formulation-based methods for
solving the DGP.

2 MILP formulations for 1- and ∞-norms

To the best of our knowledge, no method for solving DGPs with the 1- and
∞-norm currently exists. 3 Yet, since both norms can be linearized exactly, it
is not difficult to derive Mixed-Integer Linear Programming (MILP) formula-
tions for either. We first re-write Eq. (1) as follows:

min
x

∑

{i,j}∈E

| ‖xi − xj‖� − dij |, (2)

for � ∈ {1, ∞}. Then, for � = 1 we write:

min
x

∑

{i,j}∈E

∣∣∣∣∣
∑

k≤K

|xik − xjk| − dij

∣∣∣∣∣ ,

and equivalently for � = ∞. For � = 1, we apply some standard absolute value
reformulations to obtain a MILP. The case � = ∞ is slightly more involved, but
still easy to model. These formulations can be solved using any off-the-shelf
MILP solver.

3 We shall gladly take corrections to this statement!

3 SDP formulations for the 2-norm

Many Semidefinite Programming (SDP) formulations for the 2-norm case are
well known from the sensor network localization literature (see [2]). Note that
a realization x can be represented in matrix form by an n × K matrix where
n = |V |, and where each of the n rows is a vector xi ∈ RK which places vertex
i ∈ V . The Euclidean DGP (EDGP) can be modelled as follows:

∀{i, j} ∈ E ‖xi − xj‖2
2 = xi · xi + xj · xj − 2xi · xj = d2

ij. (3)

Since the EDGP involves sums xi · xj of quadratic terms for various i, j ∈ V ,
we can linearize these sums by replacing them with variables Xij organized
in an n × n matrix, i.e. X = xx�. This provides an easy reformulation of
Eq. (3):

∀{i, j} ∈ E Xii + Xjj − 2Xij = d2
ij

X =xx�.

The rank constraint X = xx� can be readily relaxed to X � xx�, which

in turn can be written as the Schur complement

(
IK x�

x X

)
� 0, yielding a

well-known pure feasibility SDP formulation. Usually, in an attempt to re-
duce the rank of the solution X, many papers propose the objective function
min trace(X). Some empirical experience suggests that this particular objec-
tive is suitable for instances from the sensor network localization application,
since the so-called “anchor nodes” are usually evenly scattered among the sen-
sors, and play a regularization role. For protein conformation instances, on
the other hand, trace minimization yields poor results. A better formulation
turns out to be:

min
X

∑

{i,j}∈E

(Xii + Xjj − 2Xij)

∀{i, j} ∈ E Xii + Xjj − 2Xij ≥ d2
ij

X − xx� � 0.

For the EDMCP, where the rank is of no importance, we only require that
X should be the Gram matrix of a realization x (of any rank). Since Gram
matrices are exactly positive semidefinite (PSD) matrices, the formulation is
simplified to

∀{i, j} ∈ E Xii + Xjj − 2Xij = d2
ij

X � 0.

4 Diagonally dominant approximation

One serious drawback of SDP is that current solving technology is limited to
instances of fairly low sizes. A. Ahmadi recently remarked [1] that diagonal
dominance provides a useful tool for inner approximating the PSD cone. A
matrix (Yij) is diagonally dominant (DD) if

∀i ≤ n Yii ≥
∑

j �=i

|Yij|. (4)

It follows from Gershgorin’s theorem that diagonally dominant matrices are
PSD (the converse does not hold, hence the inner approximation). The crucial
observation is that Eq. (4) is easy to linearize as follows:

∀i ≤ n
∑

j �=i

Tij ≤ Yii

∀i, j ≤ n − Tij ≤ Yij ≤ Tij .

This yields a new LP formulation related to the EDGP:

min
X,Y,T

∑
{i,j}∈E

(Xii + Xjj − 2Xij)

∀{i, j} ∈ E Xii + Xjj − 2Xij ≥ d2
ij(

IK x�

x X

)
= Y

∀i ≤ n + K
∑

j≤n+K
j �=i

Tij ≤ Yii

−T ≤ Y ≤ T.

(5)

Let D(U) = {U�MU | M is DD}. The approximation Eq. (5) can be itera-

tively improved by requiring that Y ∈ D(U) with U0 = I and Uh =
√

Ȳ h−1

for all h > 0, where Ȳ h−1 is the solution of Eq. (5) at the previous iteration
h − 1.

References

[1] Ahmadi, A. and G. Hall, Sum of squares basis pursuit with linear and second
order cone programming, Technical Report 1510.01597v1, arXiv (2015).

[2] Liberti, L., C. Lavor, N. Maculan and A. Mucherino, Euclidean distance geometry
and applications, SIAM Review 56 (2014), pp. 3–69.

Stochastic geometric programming with joint
probabilistic constraints

Jia Liua,b, Abdel Lisserb, Zhiping Chena

a. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an,
Shaanxi, 710049, P. R. China

b. Laboratoire de Recherche en Informatique, Université Paris Sud, Bat 650 Ada
Lovelace, Orsay, 91405, France

Abstract

This paper discusses the geometric programs with joint probabilistic constraints.
When the coefficients are normally distributed and independent of each other, we
approximate the problem by using piecewise linear function and transform the ap-
proximation problem into a geometric program. We prove that this approximation
method provides a lower bound, and we use Bonferroni approximation to find an
upper bound.

Keywords: Geometric programs; Joint probabilistic constraints; Piecewise linear
approximation; Bonferroni approximation.

1 Introduction

Geometric programs are a type of optimization problems characterized by an
objective and constraints functions which have a special form [2]. In real world

1 Jia Liu’s research was supported by the China Scholarship Council (CSC).
2 E-mails: liu.jia@stu.xjtu.edu.cn; lisser@lri.fr; zchen@xjtu.edu.cn

56

applications, some of the coefficients in a geometric program may not be known
precisely when the optimization is made. Hence, the stochastic geometric
programming models are proposed to model geometric problems with random
parameters. Individual probabilistic constraints have been applied to control
the uncertainty level of geometric constraints [4,5,7].

In this paper, we furthermore consider the following joint probabilistic
constrained stochastic geometric programs:

min
t

E

[∑

i∈I0

ci

M∏

j=1

t
aij

j

]
(1)

s.t. P

(∑

i∈Ik

ci

M∏

j=1

t
aij

j ≤ 1, k = 1, · · · , K

)
≥ 1 − ϵ. (2)

Here, {Ik, k = 0, · · · , K} is a decomposition of {1, · · · , Q} into K + 1 dis-
joint index sets. Q is the total number of monomilas ci

∏M
j=1 t

aij

j in (1) and
(2). Unlike [4,5,7], we require that the overall probability of meeting the K
geometric constraints is above a certain probability level 1 − ϵ, ϵ ∈ (0, 0.5].

The stochastic geometric program with joint probabilistic constraints is a
special kind of joint probabilistic constrained problems. The linear programs
with joint probabilistic constraints are widely studied in [1,3,6].

2 Approximation methods

Similarly to [4], we suppose that aij is deterministic and ci is normally dis-
tributed and independent of each other, i.e., ci ∼ N(Eci

, σ2
i).

As ci are independent, (2) is equivalent to

K∏

k=1

P (
∑

i∈Ik

ci

M∏

j=1

t
aij

j ≤ 1) ≥ 1 − ϵ. (3)

By introducing auxiliary variables yk ∈ R, k = 1, · · · , K, (3) can be equiva-
lently transformed into

P (
∑

i∈Ik

ci

M∏

j=1

t
aij

j ≤ 1) ≥ yk, k = 1, · · · , K, (4)

and
K∏

k=1

yk ≥ 1 − ϵ, yk ≥ 0. (5)

From [4], we know that for independent normally distributed ci ∼ N(Eci
, σ2

i),
constraint (4) is equivalent to

∑

i∈Ik

Eci

M∏

j=1

t
aij

j + Φ−1(yk)

√√√√∑

i∈Ik

σ2
i

M∏

j=1

t
2aij

j ≤ 1, k = 1, · · · , K. (6)

Here, Φ−1(yk) is the quantile of the standard normal distribution N(0, 1).
However, inequalities (6) are still very hard to handle in an optimization prob-
lem due to the nonlinear property of Φ−1(·).

2.1 Piecewise linear approximation

In this paper, we consider a piecewise linear approximation of Φ−1(yk) [3]. We
choose S linear segments Fs(yk) = asyk + bs such that as, bs ≥ 0, s = 1, · · · , S
and Fs(yk) ≤ Φ−1(yk) for all yk ∈ [1 − ϵ, 1]. Φ−1(yk) is then approximated by

F (yk) = max
s=1,··· ,S

Fs(yk).

Theorem 2.1 Using the piecewise linear F (yk), we can found an approxima-
tion of the geometric problem with joint probabilistic constraints:

min
t,y

∑

i∈I0

Eci

M∏

j=1

t
aij

j (7)

s.t.
∑

i∈Ik

Eci

M∏

j=1

t
aij

j + (asyk + bs)

√√√√∑

i∈Ik

σ2
i

M∏

j=1

t
2aij

j ≤ 1,

s = 1, · · · , S, k = 1, · · · , K, (8)
K∏

k=1

yk ≥ 1 − ϵ, yk ≥ 0. (9)

The optimal value of the approximation problem (7)-(9) is a lower bound of
the problem (1)-(2).

Although problem (7)-(9) is not convex with respect to t and y, but it
is convex with respect to rj = log(tj), j = 1, · · · ,M and xk = log(yk), k =
1, · · · , K, hence interior-point methods still can be efficiently used to solve the
problem and provide a lower bound for the joint probabilistic problem (1)-(2).

2.2 Bonferroni approximation

In order to give an estimation about the upper bound of the joint probabilistic
problem (1)-(2), we adopt the popular Bonferroni approximation, which gives
probabilistic measure to the individual constraints. We set a group of esti-
mations ϵk, k = 1, · · · , K, such that ϵk ≥ 0, k = 1, · · · , K, and

∑K
k=1 ϵk = ϵ.

Then we use the following individual probabilistic constraint:

P (
∑

i∈Ik

ci

M∏

j=1

t
aij

j ≤ 1) ≥ 1 − ϵk, k = 1, · · · , K. (10)

to approximate the joint probabilistic constraint (2). By using the same
method in [4], these individual constraints can be formulated as posynomial
forms and the optimization problems with the individual constraints can also
be solved by interior-point methods.

As Bonferroni approximation gives one possible allocation of the total tol-
erance probability, the optimal solution of the problem with constraints (10)
is a feasible solution for the original problem (1)-(2). Hence, it provides an
upper bound.

References

[1] Ackooij, W. V., R. Henrion, A. Moller, and R. Zorgati, On joint probabilistic
constraints with Guassian coefficient matrix, Oper. Res. 39 (2011) 99–102.

[2] Boyd, S., S. J. Kim, L. Vandenberghe, and A. Hassibi, A tutorial on geometric
programming, Optim. Eng. 8 (2007), 67–127.

[3] Cheng, J., and A. Lisser, A second-order cone programming approach for linear
programs with joint probabilistic constraints, Oper. Res. Letters 40 (2012), 325–
328.

[4] Dupačová, J., Stochastic geometric programming: approaches and applications,
In V. Brožová, R Kvasnička, eds., Proceedings of MME09 (2009), 63 - 66.

[5] Iwata, K., Y. Murotsu, and T. Iwatsubo, A probabilistic approach to the
determination of the optimal cutting conditions, J. of Engineering for Industry
Trans. of ASME 94 (1972), 1099–1107

[6] Prékopa, A., “Stochastic Programming”, Kluwer Academic Publishers,
Dordrecht, Boston, (1995).

[7] Rao, S. S., “Engineering Optimization: Theory and Practice,” 3rd Ed., Wiley-
Interscience, New York, (1996).

Solving LP using random projections

Leo Liberti, Pierre-Louis Poirion, Vu Khac Ky 1,2

CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

Abstract

A celebrated result of Johnson and Lindenstrauss asserts that, in high enough di-
mensional spaces, Euclidean distances defined by a finite set of points are approx-
imately preserved when these points are projected to a certain lower dimensional
space. We show that the distance from a point to a convex set is another approxi-
mate invariant, and leverage this result to approximately solve linear programs with
a logarithmic number of rows.

Keywords: Johnson-Lindenstrauss lemma, random projection.

1 Introduction

One of the computational “grand challenges” in Mathematical Programming
is to solve ever larger Linear Programs (LP). We are currently able to rou-
tinely solve (sparse) LPs with a million variables and constraints. Developers
of commercial solvers have seen customer LPs with up to a hundred million
variables. What about a billion? This short paper is unfortunately not an-
nouncing such a breakthrough, but it possibly paves the way — if one is willing
to accept an approximate solution with high probability.

1 Email: {liberti,poirion,vu}@lix.polytechnique.fr
2 Vu Khac Ky is supported by a Microsoft Research PhD grant.

60

We want to find approximate solution of LPs in standard form

min{cx | Ax = b ∧ x ≥ 0}, (1)

with high probability, where A is an m × n matrix, c ∈ Rn and b ∈ Rm. The
general idea is as follows: we pre-multiply A and b by a certain k×m matrix T
(sampled randomly from certain distributions), with k � m. T is guaranteed
with high probability to approximately preserve Euclidean distances among
the columns of A and b. Since the worst-case complexity LP methods depends
on both n and m, a large decrease in the number of rows is likely to have a
beneficial impact on efficiency, and to allow for solving larger instances.

Such random projection methods are at the heart of the proof of the
Johnson-Lindenstrauss Lemma (JLL), which states that, for any finite set
X ⊆ Rm with |X| = n and ε ∈ (0, 1) there exists a k of order O(1

ε2 ln n) and
a mapping T : Rm → Rk such that:

∀x, y ∈ X (1 − ε)‖x − y‖2 ≤ ‖Tx − Ty‖2 ≤ (1 + ε)‖x − y‖2. (2)

From here onwards, norms will always be Euclidean unless specified otherwise.

Random projections have been used previously to address optimization
and/or learning algorithms involving the Euclidean norm only (see e.g. [2,1]).
This is their natural setting, since a set of Euclidean distances is rotationally
independent and rotational independence plays a prominent role in the orig-
inal proof in the JLL [3]. As far as we know, this is the first application of
the approximate preservation of the orthant x ≥ 0 (which is definitely not
rotationally independent), and is therefore interesting in its own right from a
theoretical point of view.

For a matrix A we denote the i-th row by Ai and the j-th column by
Aj. For a vector v and an index set J , we let vJ = (vj | j ∈ J). Let
C (A) = cone(Aj | j ≤ n). For a problem P let F(P) be its feasible region.

2 A randomized algorithm for large LPs

Our proposed algorithm is as follows.

1. Sample a k × m random projector matrix T .
2. Solve TP ≡ min{cx | TAx = Tb ∧ x ≥ 0},

let c′ be its optimal objective function value.
3. Retrieve an approximately optimal solution x∗ of P as follows:

a. let A′x = b′ be the system TAx = Tb ∧ cx = c′,

let α be a uniform random vector in Rn;
b. solve TPα ≡ min{αx | A′x = b′ ∧ x ≥ 0},

let y′ be its optimal dual vector and y = T �y′;
c. let J be the set of indices j ≤ n such that yAj = αj,

set x∗
i = 0 for each j �∈ J ;

d. let x̄ be the solution of the k × k system (AJ)
�
AJxJ = (AJ)

�
b,

let x∗
j = x̄j for each j ∈ J .

In the rest of this paper, we shall sketch the reason why this algorithm works.

3 The random projector

Among the many distributions that T can be sampled from, the simplest has
each component of T sampled independently from N (0, 1√

k
). Since T is a

linear map, it obviously preserves feasibility. In the (yet unpublished) report
[4], we prove that, if b, Aj are unit vectors for j ≤ n and b �∈ C (A), then
∃C > 0 such that:

Prob(Tb �∈ C (TA)) ≥ 1 − 2n(n + 1)e−C(ε2−ε3)k

for all ε > 0 in a certain “reasonable” interval. Since b ∈ C (A) iff ∃x ≥ 0
s.t. Ax = b, our result shows that if P is infeasible then TP highly likely to be
infeasible, and this probability can be made arbitrarily close to 1 as k grows. 3

4 Solving the projected LP

Since F(P) = F(TP) with high probability, a bisection argument shows that
P and TP both have objective function values c′ with high probability. Thus,
we can find c′ by simply solving TP using a standard LP solver. On the other
hand, we can prove that the primal solution x′ of TP is infeasible in P with
probability 1, so we need a different strategy to compute the certificate.

5 Solution retrieval

Steps a-d in the algorithm of Sect. 2 provide a primal solution retrieval method
via the dual LP using complementary slackness. The dual y′ of Pα is such
that y′A′ ≤ α. Since A′ = (TAc)�, we write y′ = (ȳ, yc) so that we have
ȳTA + ycc ≤ α (�). Letting y = (ȳT, yc) we have y(Ac)� ≤ α (†), which

3 I.e. as m grows, which, since P is in standard form, also means that n grows.

means that y is a valid dual solution to the problem Pα = min{αx | Ax =
b ∧ cx = c′ ∧ x ≥ 0}. By complementary slackness of TPα, at least k of
the n inequalities in (�) are satisfied at equality (say those corresponding to
the index set J), which means the same holds for (†). By complementary
slackness of Pα, ∀j �∈ J we have x∗

j = 0. The nonzero components of x∗ are
those indexed by J , and we can find them by identifying the corresponding k
columns of Ax = b and then solving a k × k linear system.

6 Perspectives

So, how far are we down the road to solving large LPs? If we only consider
dense, randomly generated feasibility problems Ax = b ∧ x ≥ 0, the following
table shows that this approach does actually save us some time.

Uniform ε k ≈ CPU savings accuracy
(0, 1) 0.1 0.5m 10% 100%
(0, 1) 0.15 0.25m 90% 100%
(0, 1) 0.2 0.12m 97% 100%
(−1, 1) 0.1 0.5m 30% 50%
(−1, 1) 0.15 0.25m 92% 0%
(−1, 1) 0.2 0.12m 99.2% 0%

For sparse LPs, as expected, the issues concerning size, values of the con-
stant C, and values of ε (none of which we know how to estimate, much less
compute) make it impossible to obtain any CPU time saving. For validation
purposes, we ran a simple experiment on the afiro and recipe instances of
the NetLib [5], and obtained a valid objective function value and primal solu-
tions in around 10% and 20% of the total number of independent runs of our
randomized algorithm.

References

[1] Ailon, N. and B. Chazelle, Approximate nearest neighbors and fast Johnson-
Lindenstrauss lemma, in: Proceedings of the Symposium on the Theory Of
Computing, STOC 06 (2006).

[2] Indyk, P. and A. Naor, Nearest neighbor preserving embeddings, ACM
Transactions on Algorithms 3 (2007), p. Art. 31.

[3] Johnson, W. and J. Lindenstrauss, Extensions of Lipschitz mappings into a
Hilbert space, in: G. Hedlund, editor, Conference in Modern Analysis and
Probability, Contemporary Mathematics 26 (1984), pp. 189–206.

[4] Ky, V. K., P.-L. Poirion and L. Liberti, Using the johnson-lindenstrauss lemma
in linear and integer programming, Technical Report 1507.00990v1[math.OC],
arXiv (2015).

[5] NetLib, LP instance library (2015), http://www.netlib.org/lp/.

The Prize-collecting Scheduling Problem with
Deadlines

Pierre Hosteins 1

Computer Science Department
Università di Torino

Turin, Italy

Roberto Cordone 2 Giovanni Righini 3

Computer Science Department
Università degli studi di Milano

Milan, Italy

Abstract

We study a prize-collecting single machine scheduling problem with hard deadlines,
where the objective is to minimise the difference between the total tardiness and
the total prize of selected jobs. This problem is motivated by industrial applica-
tions, both as a standalone model and as a pricing problem for column generation
approaches to parallel machine scheduling problems. It is handled through the use
of exact approaches, in the form of a Branch and Bound (B&B) algorithm and an
Integer Linear Programming (ILP) formulation. The B&B and ILP formulation are
compared in their efficiency on randomly generated benchmark instances.

Keywords: Prize-collecting, Single Machine Scheduling, Total Tardiness, Integer
Linear Programming, Hard Deadlines, Branch and Bound.

64

1 Introduction

Even though the single machine scheduling problem has been given a tremen-
dous amount of attention in the literature, the case where the jobs are subject
to hard deadlines constraints (1/d̄j/

∑
j Tj) has been given a lot less attention:

the work of [3] provides rules for the case of a single machine total tardiness
minimisation with hard deadlines and proposes a B&B framework to solve the
general case. Another recent trend of research is the prize-collecting general-
ization, where (at least part of) the jobs are no more obligatory and have a
prize attached, that one can claim if the job is performed [2]. In such a setup,
the processing time available is insufficient to perform all jobs and one has to
select a subset so as to maximise profit, taking into account possible losses due
to the total tardiness of the jobs. Examples of such a situation can be found
in make-to-order production systems with limited production capacity and
tight delivery requirements as well as scheduling with an outsourcing option.
Another situation where a similar setup has been investigated is the pricing
problem of multi-machine scheduling problems solved through Column Gener-
ation formulations, which ends up providing an example of a prize-collecting
scheduling problem. However, such cases are mainly investigated for easier
additive objective functions, such as the total (weighted) completion time of
jobs or the (weighted) number of tardy jobs, see for example the works of [1].
The prize-collecting scheduling problems considered in these works are solved
through pseudo-polynomial algorithms.
We provide dominance rules between the jobs in the prize-collecting case with
total tardiness and a general B&B algorithm to solve the problem exactly.

2 Problem Formulation

The problem at hand consists of a set of jobs J (with cardinality n = |J |) that
can be selected for processing by a machine with limited available working
time T . Each job j ∈ J has a certain number of characteristics: a processing
time pj; a due date dj; a hard deadline d̄j; an associated prize λj. Finally,
a subset Jf ⊆ J of jobs that have to be processed obligatorily is introduced.
The aim is to maximise the total prize of the jobs processed and to minimise
the total tardiness while respecting the deadlines. The tardiness Tj of job j
is, as usual, the difference between the completion time of the job and its due

1 Email: hosteins@di.unito.it
2 Email: roberto.cordone@unimi.it
3 Email: giovanni.righini@unimi.it

date if the former exceeds the latter; otherwise, it is zero.

A linear formulation for the problem is obtained using positional date
variables, taking into account the facultative nature of the jobs, in particular
binary variables: xjp ∈ {0, 1}, equal to 1 if job j ∈ J is in position p ∈ {1, ..., n}
in the schedule and yp ∈ {0, 1}, equal to 1 if the scedule includes a job in
position p ∈ {1, ..., n}. With the help of tardiness variables Tp for job in

position p the formula
∑

p∈{1,...,n}

(
Tp −

∑
j∈J λjxjp

)
defines the objective

function as the difference between the total tardiness and the total prize. It is,
however, more useful to define the objective function with an added constant∑

j∈J λj such that the objective function is always positive. The constraints of
the problem (using the completion time variable Cp for position p ∈ {1, ..., n})
can be written in the following manner:

yp =
∑

j∈J
xjp, p ∈ {1, ..., n}, yp ≥ yp+1, p ∈ {1, ..., n− 1}. (1)

Cp ≥
∑

p′≤p

∑

j∈J
pjxjp′ −M(1− yp), p ∈ {1, ..., n}, (2)

Cp −
∑

j∈J
djxjp ≤ Tp ≤

∑

j∈J
(d̄j − dj)xjp, p ∈ {1, ..., n}, (3)

∑

p∈{1,...,n}
xjp ≤ 1, j ∈ J \ Jf ,

∑

p∈{1,...,n}
xjp = 1, j ∈ Jf . (4)

3 Branch and Bound

An exact approach to optimise our prize collecting scheduling problem is de-
signed by branching on the jobs that are not obligatory, in order to include or
reject them from the schedule by fixing a binary variable fj =

∑
p∈{1,...,n} xjp to

1 or 0 (defining respectively subsets of jobs J1 and J0). The general structure
of the B&B for each given node ν of the branching tree is the following:

• compute the cost of ν by computing the total tardiness of jobs J1 through
the B&B procedure of [3] (tardiness subproblem);

• obtain a lower bound LBν through an ILP model which is a partial relax-
ation of the full problem where additional jobs are included into the schedule
without taking into account the additional tardiness they might introduce,
such that the objective function is decreased by the total sum of their prizes
(prize subproblem);

• compute an upper bound UBν by inserting jobs of decreasing λj/pj ratio

inside the optimal schedule of jobs J1, at the position that introduces the
smallest tardiness (starting from the solution of the tardiness subproblem
for J1); if UBν < UB∗, update UB∗; if LBν > UB∗, prune the node;

• if the node is not pruned, find the job j ∈ J \ (J0 ∪ J1) that belongs to
the solution of the prize subproblem and has the highest λj/pj (such a job
always exists unless LBν = UBν); generate two children nodes fixing fj to
either 1 or 0;

4 Numerical Results

Our B&B algorithm has been tested on randomly generated instances with
|J | from 20 to 200 jobs against the resolution of ILP models using the C++
library of CPLEX 12.5.1. Among our 25 instances, the B&B could manage to
close the gap between lower and upper bounds for all but one within a running
time limit of 1000 seconds, while ILP models are usually unable to close the
gap for instances with 80 jobs or more. Including a proportion of obligatory
jobs confirms the relative velocity of our algorithm. When the time cutoff
is lowered to 100 seconds, the results are even more interesting as the B&B
solution remains near optimal for all instances while for the largest ones, the
gap of ILP models gets much bigger, which prevents those models to be used
for finding quickly good heuristic solutions.

References

[1] Z.L. Chen and W.B. Powell, Solving Parallel Machine Scheduling Problems by
Column Generation, INFORMS Journal on Computing, 11:1 (1999) 78–94.
J.M. van den Akker, J.A. Hoogeveen and S.L. van de Velde, Parallel Machine
Scheduling by Column Generation, Operations Research 47:6 (1999) 862–872.

[2] D. Shabtay, N. Gaspar and M. Kaspi, A survey on offline scheduling with
rejection, Journal of Scheduling 16 (2013) 3–28.

[3] R. Tadei, A. Grosso and F. Della Croce, Finding the Pareto-optima for the total
and maximum tardiness single machine problem, Discrete Applied Mathematics
124 (2002) 117–126.

Column generation for the variable cost and
size bin packing problem with fragmentation

Marco Casazza 1

UPMC University Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Alberto Ceselli 2

Dipartimento di Informatica, Università Degli Studi di Milano, Crema, Italy

Abstract

Bin Packing Problems with Item Fragmentation (BPPIF) are variants of classical
Bin Packing in which items can be split at a price. We extend BPPIF models
from the literature by allowing a set of heterogeneous bins, each potentially having
a different cost and capacity. We introduce extended formulations and column
generation algorithms to obtain good bounds with reasonable computing effort. We
test our algorithms on instances from the literature. Our experiments prove our
approach to be more effective than state-of-the-art general purpose solvers.

Keywords: Bin Packing, Item Fragmentation, Variable Cost and Size, Column
Generation.

1 Introduction

Bin Packing Problems with Item Fragmentation (BPPIF) haves been intro-
duced to model problems in diverse domains, like routing of consolidated traf-
fic in optical networks and VLSI circuit design [1]. In their bin-minimization
variant a set I of items, each having a size di, and a set of bins J , each having
a capacity C, are given, together with a fragmentation budget F . The aim
is to assign items to the minimum number of bins; up to F item splits are

1 Email: marco.casazza@upmc.fr
2 Email: alberto.ceselli@unimi.it, partially funded by Regione Lombardia - Fon-
dazione Cariplo, grant n. 2015-0717, project “REDNEAT”

68

allowed: whenever an item is split, it is replaced by two fragments; the split
point is arbitrary, but the sum of fragment sizes must equal the size of the
original item. Recursive fragmentations are allowed, but each split counts in
the budget. The final set of fragments need then to be assigned to the bins, in
such a way that the sum of item (fragment) sizes assigned to the same bin do
not exceed C. Recent contributions to the field include both approximation
algorithms [3] and exact methods [2], both approaches proving to be effec-
tive. As stressed in [3], major interest is currently in making BPPIF models
more flexible. In this paper we tackle the generalization of BPPIF, in its bin-
minimization variant, in which each bin j ∈ J has a potentially different cost
vj and capacity cj, and the overall cost of the used bins needs to be minimized.
We refer to our generalization as the Variable Cost and Size BPPIF (VCSB).

2 Model

We first observe the following.

Proposition 2.1 An optimal VCSB solution always exists, in which (a) each
item is split in at most two fragments (b) each bin contains at most two frag-
mented items (c) each set of k bins contains at most k − 1 fragmented items.

Any solution satisfying (a)–(c) is called primitive [1]. A formal proof is
omitted, but intuitively given a set of k bins and a solution assigning a subset
of items Ī ⊆ I to them, a Next Fit with Fragmentations procedure produces a
fragmentation pattern that comply with (a)–(c). Fragmented items link one
bin another in a chain structure, that includes a subset Ī ⊆ I of items and a
subset J̄ ⊆ J of bins. On feasible chains it always holds

∑
i∈Ī di ≤

∑
j∈J̄ cj.

Let Ω be the set of all feasible chains. Following the framework of [2] we model
the VSCB with the following chain-based extended formulation:

min
∑

p∈Ω

(
∑

j∈J
vj ȳ

p
j)zp (1)

s.t.
∑

p∈Ω

x̄pi z
p = 1 ∀i ∈ I (2)

∑

p∈Ω

ȳpj z
p ≤ 1 ∀j ∈ J (3)

∑

p∈Ω

f̄pzp ≤ F (4)

zp ∈ {0, 1} ∀p ∈ Ω. (5)

Coefficient x̄pi (resp. ȳpj) is 1 if item i (resp. bin j) is included in chain p, 0

otherwise. Coefficient f̄p is the number of fragmentations performed in chain p.
Binary variables zp are 1 if chain p is selected, 0 otherwise. Since (

∑
j∈J vj ȳ

p
j)

represents the cost of using the set of bins in chain p, the objective function (1)
aims at minimizing the overall cost of selected chains. Constraints (2) ensure
that each item is included in a selected chain. Constraints (3) ensure that
each bin is included in at most one selected chain. Constraints (4) enforce the
fragmentations budget to be respected.

3 Algorithms

Formulation (1)–(5) includes an exponential number of variables. In order to
obtain dual bounds on the value of the optimal solution we relax integrality
conditions and exploit column generation techniques. Without loss of quality
in the bound, we also relax constraints (2) in ≥ form. Let λi ≥ 0, µj ≤ 0 and
η ≤ 0 be the dual variables associated to constraints (2), (3) and (4), resp..
The associated pricing problem is the following.

min
∑

j∈J
(vj − µj)−

∑

i∈I
λixi − ηf

s.t.
∑

i∈I
dixi ≤

∑

j∈J
cjyj

∑

j∈J
yj ≤ f + 1

xi ∈ {0, 1} ∀i ∈ I, yj ∈ {0, 1} ∀j ∈ J, f ≥ 0

Since if
∑

j∈J yj = 0 also
∑

i∈I xi = 0, such a setting is never profitable.
Therefore we set f = (

∑
j∈J yj) − 1, obtaining a variant of a 0–1 Knapsack

Problem (KP) in which capacity consumption has a (possibly non monotone)
cost. We solve it with an ad-hoc pseudo-polynomial time algorithm, whose
main idea is to find, for each value of capacity c = 0 . . .

∑
j∈j cj (a) the com-

bination of bins of minimum reduced cost giving at least overall capacity c
(b) the combination of items of minimum reduced cost using at most capacity
c (c) sum up these two contributions to obtain an optimal pricing solution
using capacity c (d) return the best pricing solution over all values of c. The
key observation is that both steps (a) and (b) can be performed by solving a
single KP each, that in turn can be done in pseudo-linear time. Therefore, our
pricing algorithm has pseudo-linear time as well. When column generation is
over we also perform rounding to search for good primal solutions.

Instances CPLEX CG

Cap. Weight S G(%) T(s) S G(%) T(s)

T L 0 8.57 0.11 9 0.49 0.64

T M 0 10.00 0.04 0 9.15 1.06

T S 0 16.67 0.03 0 16.53 0.99

L L 0 25.00 0.10 10 0.00 0.44

L M 0 12.12 0.10 4 2.24 0.60

L S 1 10.00 0.06 0 10.43 0.90

Overall 1 13.73 0.073 23 6.47 0.771

Table 1
Results on instances adapted from [1].

We implemented our algorithms in C++, using SCIP 3.1 as framework
and CPLEX 12.6.2 to solve LP subproblems. Our tests ran on a PC with a
2.1GHz CPU and 8GB of RAM. We compared to the branch-and-cut algorithm
of CPLEX, with default parameter settings, exploiting a compact formulation
of the VSCBPP adapted from [2], and stopping the computation at the root
node. We considered a dataset adapted from the literature [1]. The dataset
includes instances with either Tight (T) or Loose (L) capacities, and items
whose size is either Small (S), Medium (M) or Large (L). Preliminary results
on 6 classes of 10 instances each with |I| = 20 are reported in Table 1. Capacity
and size distribution are indicated in the first two colums. The Table includes
two blocks, one for CPLEX and one for our Column Generation algorithm
(CG). Each block reports the number of instances whose optimality was proved
(S) the average optimality gap obtained (G) and the time required to complete
the computation (T). CPLEX turned out to be faster, but CG results were
more accurate, requiring reasonable additional CPU time. In particular, CG
was able to directly solve many more instances to proven optimality.

References

[1] M. Casazza, A. Ceselli “Mathematical programming algorithms for bin packing
problems with item fragmentation ” Computers and Operations Research 46
(2014)

[2] M. Casazza, A. Ceselli “Exactly solving packing problems with fragmentation ”
Optimization Online Tech. Rep. (2015)

[3] B. LeCun, T. Mautor, F. Quessette, M.-A. Weisser “Bin packing with
fragmentable items ”Theoretical Computer Science 602 (2015)

Maximin Fairness in Project Budget Allocation

Maurizio Naldi a,1 Gaia Nicosia b,2 Andrea Pacifici a,3

Ulrich Pferschy c,4

a Dipartimento di Ingegneria Civile e Ingegneria Informatica,
Università di Roma Tor Vergata, Roma, Italy

b Dipartimento di Ingegneria, Università Roma Tre, Roma, Italy
c Department of Statistics and Operations Research,

University of Graz, Graz, Austria

Abstract

This work addresses a multi agent allocation problem in which multiple departments
compete for shares of a company budget. Each department has its own portfolio of
projects with given expected profits and costs and selects an optimal subset of its
projects consuming its assigned budget share. Besides considering the total profit of
the company a central decision maker should also take fairness issues into account.
Thus, we introduce an equity criterion based on maximin fairness. The resulting
trade-off between total profit and fairness indicators is studied in this contribution.
To this purpose a bicriteria ILP model is presented where one of the objectives
is the maximization of the overall profit and the other is the maximization of the
minimum budget allocated to one of the departments. We perform an experimental
analysis showing a nearly perfect linear anticorrelation between profit and fairness
index values.

Keywords: Knapsack problem, project management, multi agent system, fair
allocation, decision support system.

72

1 Introduction

We consider an allocation problem faced by the general manager of a company
with a set D of d departments. A total budget b has be allocated to several
projects, each belonging to one of the departments. We indicate by Ji the set
of projects of department i ∈ D and w.l.o.g. assume that |Ji| = n, for i ∈ D.
The j-th project of the i-th department requires a budget sij, which must
be obtained in full for the project to be undertaken, and yields an estimated
return on investment (ROI) rij (i = 1 . . . d, j = 1 . . . n). Since the overall
required budget

∑
i∈D, j∈Ji sij is usually larger than the available budget b,

the company must select a subset of the projects submitted for funding.

Naturally, the company’s objective is the maximization of the total profit
obtained from the budget investment. However, this may correspond to se-
lecting projects in a way that can be perceived as unfair by one or more de-
partments, since the budget may well be allocated in an unbalanced way. To
avoid such potentially biased solutions the company should take into account
some idea of equity or fairness in the allocation decision.

In economic analysis, an axiomatic characterization of what might be a
fair resource allocation has been the subject of several studies in the last
decades. In the context of optimization, even though some studies date back
to the Nineties ([4]), only recently “fairness” concepts received considerable
attention (see e.g. [1], [6] and [7]). Here, we formulate the allocation decision
as a bicriteria problem in which both profit and fairness maximization are
considered. In this paper we follow the idea of Rawlsian justice and adopt
a maximin fairness approach, i.e., we aim at maximizing, together with the
overall profit, the minimum value of the budget allocated to a department. A
similar problem has been addressed in [3], where the author uses range as a
fairness indicator, i.e. the maximum difference between the budget allocated
to any two departments. The author presents an ILP model and a two-phase
algorithm for determining Pareto optimal solutions. In the future we will
consider also other fairness measures, e.g. based on HHI or the Gini-coefficient.

Note that our problem is also strongly related to variants of the binary
knapsack problems with multiple agents as, for instance, the knapsack sharing
problem [2].

1 Email: naldi@disp.uniroma2.it
2 Email: nicosia@dia.uniroma3.it
3 Email: andrea.pacifici@uniroma2.it (Corresponding author.)
4 Email: pferschy@uni-graz.at Supported by the Austrian Science Fund (FWF): P
23829-N13.

2 Bicriteria model

We use a set of decision variables as in the standard 0-1 knapsack model:
Variable xij ∈ {0, 1} equals 1 iff the j-th project of department i is ac-
cepted. Then the budget bi(x) allocated to the i-th department and the
overall expected profit π(x) for the company may be expressed respectively
as bi(x) =

∑
j∈Ji sijxij and π(x) =

∑
i∈D
∑

j∈Ji rijsijxij. The total invest-
ment by the company is obviously limited through a knapsack constraint by
the available budget b. We indicate by X the set of feasible allocations, i.e.
X = {x ∈ {0, 1}d×n :

∑
i∈D bi(x) ≤ b}. Under any allocation x ∈ X , the

maximin fairness index is then expressed by F (x) = mini∈D bi(x) and the ob-
vious resulting bicriteria knapsack model for the overall profit and fairness
maximization can be written as follows:

max {(π(x), F (x)) : x ∈ X} (1)

In this work we study P (λ) as a surrogate model of (1) for any fairness bound
λ:

P (λ) : max{π(x) : F (x) ≥ λ, x ∈ X}. (2)

3 Computational Experiments

We performed a large number of computational tests using Gurobi as ILP
solver on randomly generated instances: individual project budgets are drawn
from a lognormal distribution and the corresponding ROI values from a uni-
form distribution (whose lower bound reflects the assumption that only projects
with a positive estimated return larger than the given interest rate are con-
sidered). The lognormal model has been validated in [5] for datasets spanning
ten years of data. In particular, the following values have been set for the
parameters of the lognormal model: µ = 5.2 and σ = 1.35. These values are
quite central in the range observed in the analyzed datasets and give a mean
project size of 451 M$. We generated 5 different classes of 1000 instances
each. The instances in each class share the same budget value b, the number
of departments d ∈ {2, 5, 10} and the number of projects for each department
n ∈ {10, 50, 100}.

We performed a statistical analysis on the test instances set to measure
the distribution of fairness, normalized by the maximum fairness that can be
achieved, i.e., the fairness that would result if all the departments got the
same share of the budget (maxF = b/d). The resulting empirical probability

density function (obtained through a Gaussian kernel approach) gets more
and more slanted towards 1 and exhibits a diminishing dispersion as λ grows.

Most importantly, we investigate how the value of λ in (2) impacts the
average profit and fairness in the solution of P (λ). Since the optimization
procedure aims at maximizing the profit, and the quest for fairness is consid-
ered as a constraint, we expect fairness to be achieved at the expense of profit,
the more so the higher the λ-threshold is set. Such a behavior is convincingly
verified by the data for all instance classes. In fact, the correlation between
fairness and profit turns out to be a startling -0.9975, i.e., profit and fairness
exhibit a nearly perfect linear anticorrelation. However, taking a different
point of view, it can be shown that the relationship of profit and fairness to λ
is not linear. Indeed, if we progressively raise the fairness bound λ, the average
fairness grows more rapidly than its minimum guaranteed value λ especially
as λ is increased over 50% of the budget value b. Moreover, we can observe
that the simultaneous decrease in profits is also non linear.

At the time being, additional experiments are in progress aiming at better
characterizing the trade-off between profit and fairness criteria.

References

[1] D. Bertsimas, V.F. Farias, N. Trichakis, The price of fairness, Operations
Research 59, 17–31, 2011.

[2] M. Fujimoto, T. Yamada, An exact algorithm for the knapsack sharing problem
with common items, European J. of Operational Research 171, 693–707, 2006.

[3] G. Kozanidis, Solving the linear multiple choice knapsack problem with two
objectives: profit and equity, Computational Optimization and Applications 43,
261–294, 2009.

[4] M. Mandell, Modeling effectiveness-equity tradeoffs in public service delivery
systems, Management Science 37, 467–482, 1991.

[5] M. Naldi, A Probability Model for the Size of Investment Projects, in: UKSim-
AMSS 9th IEEE European Modelling Symposium on Mathematical Modelling
and Computer Simulation, Madrid, 169–173, 2015.

[6] G. Nicosia, A. Pacifici, U. Pferschy, Competitive subset selection with two
agents, Discrete Applied Mathematics 159, 1865–1877, 2011.

[7] G. Nicosia, A. Pacifici, U. Pferschy, Price of Fairness for Allocating Bounded
Resources, arXiv Preprint Series, no. 1508.05253, 2015.

Heuristics for the General Multiple Non-linear
Knapsack Problem

Luca Mencarelli a,1,2, Claudia D’Ambrosio a,3, Angelo Di Zio b,4

and Silvano Martello c,5

a CNRS, UMR 7161, LIX
École Polytechnique
Palaiseau, France
b Ferrari S.p.A.
Maranello, Italy

c DEI “Guglielmo Marconi”
Bologna, Italy

Abstract

We propose heuristic algorithms for the multiple non-linear knapsack problem with
separable non-convex profit and weight functions. First, we design a fast construc-
tive algorithm that provides good initial solutions. Secondly, we improve the quality
of these solutions through local search procedures. We compare the proposed meth-
ods with exact and heuristic algorithms for mixed integer non-linear programming
problems, proving that our approach provides good-quality solutions in smaller CPU
time.

Keywords: Multiple non-linear knapsack problem, Heuristic algorithm, Local
search, Mixed-integer non-linear programming.

1 The first author acknowledges the financial support provided by “MINO” Initial Training
Network (ITN) under the Marie Curie 7th European Framework Programme.
2 Email: mencarelli@lix.polytechnique.fr
3 Email: dambrosio@lix.polytechnique.fr
4 Email: angelo.dizio@ferrari.com
5 Email: silvano.martello@unibo.it

76

1 Introduction

In the multiple non-linear knapsack problem, we are given n items and m
knapsacks. We aim at deciding how many units of item j to load in knapsack i,
i.e., our decision variables are represented by xij ≥ 0 for each i = 1, . . . , m, j =
1, . . . , m. The units of some items are indivisible, thus integrality requirements
on the corresponding xij (i = 1, . . . , m) have to be satisfied. For each item j,
we have

• an upper bound on the item availability uj > 0;

• a profit function fj(x) : R+ → R+;

• a weight function gj(x) : R+ → R+.

We assume that f(x) and g(x) are twice continuously differentiable, separa-
ble, non-linear, non-negative, non-decreasing functions. Note that there is no
further assumption, thus, in general, f and g can be non-convex and non-
concave.

The Multiple Non-Linear Knapsack Problem (MNLKP) can then be writ-
ten as:

max
∑

i∈M

∑

j∈N

fj(xij) (1)

s.t.
∑

j∈N

gj(xij) ≤ ci i ∈ M (2)

∑

i∈M

xij ≤ uj j ∈ N (3)

xij ≥ 0 i ∈ M, j ∈ N (4)

xij integer i ∈ M, j ∈ N ⊆ N (5)

where M = {1, . . . , m} and N = {1, . . . , n}. Objective function (1) aims
at maximizing the profit given by the total amount of items inserted in the
knapsacks. Constraints (2) impose that the knapsack maximum capacities are
respected. The limit on the maximum availability of each item is represented
by constraints (3). Constraints (5) ensure that, for the indivisible items, a
discrete quantity is selected.

To the best of our knowledge, no author studied such variant of the non-
linear knapsack before. For an extended reference on the classical 0-1 multiple
knapsack the reader is referred to [6,5]. For a study on the single non-linear
knapsack problem, we refer the reader to [3].

2 Constructive heuristic

The constructive heuristic is based on the discretization of the solution space.

Let δj = uj/s for j ∈ N (or δj = max(1, ⌊uj/s⌋) if j ∈ N) be the sampling
step size, where s is the corresponding number of samplings.

We define the profit-to-weight ratios:

rjk =
fj(kδj)

gj(kδj)
(j ∈ N, k = 1, . . . , s).

For every item j, let µj = arg maxk=1,...,s{rjk}. We assume, without loss of
generality, that the items are sorted in non-decreasing order of their profit-to-
weight ratio, i.e., so that r1µ1 ≥ r2µ2 ≥ · · · ≥ rnµn , and that the knapsacks are
sorted in non-decreasing order of their capacities, i.e., so that c1 ≥ c2 ≥ · · · ≥
cm.

Initially, the first two items, i.e., the two items with best largest profit-
to-weight ratios, are considered. The algorithm selects µ̄1δ1 units to the first
item, where µ̄1 is the largest sampling point, at which the ratio of first item
is higher than the one of the second item. The capacity available for the first
item is correspondly decreased. The algorithm updates the value of the profit-
to-weight ratios and eventually re-sorts the items. The process considers then
the next couple of items. The time complexity of this procedure is O(n2).

By iterating for all the knapsacks, we obtain a heuristic for the MNLKP
of time complexity O(mn2).

3 Local Search

Given a knapsack i, we choose two items j and k and consider two potential
modification of the current solution:

(i) ∆1 = (fj(xij + ε) − fj(xij)) + (fk(xik − ε) − fk(xik));

(ii) ∆2 = (fj(xij − ε) − fj(xij)) + (fk(xik + ε) − fk(xik)),

where ε is a sufficiently small value, i.e., ε < min(δj, δk).

The local search selects the best modification, i.e., the variation ∆ that leads
to a greater objective value: ∆ = max(∆1, ∆2). If a variation is infeasible with
respect to (2)-(4), the corresponding ∆i is set to 0. If ∆ > 0 the modification
is performed and an improved solution is obtained. The process is iterated for
all the knapsacks. The overall time complexity of the local search is O(mn2).

4 Computational Results

Extensive computational experiments show that the proposed heuristic ap-
proach produces a quick solution, outperforming the exact and heuristic solvers
for non-convex (mixed-integer) non-linear programs, namely Couenne [2] and
Bonmin [1] or Ipopt [4]. The experiments consider the cases in which the prof-
its are described by general non-convex non-concave functions and the weights
are either concave or linear.

We randomly generated 3360 instances similarly to [3] with the number
of items between 10 and 1000 and the number of knapsacks between 2 and
10. However, ∀i = 1, . . . , m − 1 capacity ci of the i-th knapsack is uniformly
generated in either:

[
0.4

n∑

j=1

gj(uj)

m
, 0.6

n∑

j=1

gj(uj)

m

]
or

[
0,

(
0.5

n∑

j=1

gj(uj) −
i−1∑

k=1

ck

)]

while the m-th capacity is always set to cm = 0.5
∑n

j=1 gj(uj) − ∑m−1
i=1 ci.

Preliminary computational results clearly show that the proposed methods
outperform all the solvers in finding a good feasible solution in short CPU time.

References

[1] Bonmin. URL https://projects.coin-or.org/Bonmin, 02/2016.

[2] Couenne. URL https://projects.coin-or.org/Couenne, 02/2016.

[3] D’Ambrosio, C., and Martello, S., Heuristic Algorithms for the General
Nonlinear Separable Knapsack Problem. Computers & Operations Research,
38 (2011), 505–513.

[4] Ipopt. URL https://projects.coin-or.org/Ipopt, 02/2016.

[5] Kellerer, H., and Pferschy, U., and Pisinger, D., “Knapsack Problems”, Springer,
Berlin, Germany, 2004.

[6] Martello, S., and Toth, P., “Knapsack Problems: Algorithms and Computer
Implementations”, John Wiley & Sons, Chichester, New York, 1990.

Dual approaches for a specific class of integer
nonlinear programming problems

Marianna De Santis 1

Institut für Mathematik
Alpen-Adria Universität Klagenfurt

Universitätsstrasse 65-67, 9020 Klagenfurt am Wörthersee, Austria

Abstract

In this work, we propose a strategy for computing valid lower bounds for a specific
class of integer nonlinear programming problems, that includes integer quadratic
programming problems. This strategy is used within a branch-and-bound scheme.
Experimental results for randomly generated instances show that, in the quadratic
case, the devised branch-and-bound method compares favorably to the MIQP solver
of CPLEX 12.6 when the number of constraints is small.

Keywords: integer programming, quadratic programming, global optimization

We consider integer optimization problems of the following form:

min f(x) = (x⊤Qx)p + L⊤x

s.t. Ax ≤ b

xi ∈ Z, i = 1, . . . , n

(1)

where Q ∈ Rn×n is a positive definite matrix, L ∈ Rn, A ∈ Rm×n, b ∈ Rm and
0.5 < p ≤ 1.

The motivation for studying this class of problems is twofold. From a prac-
tical point of view, Problem (1) includes problems that arise in applications,
such as portfolio optimization problems (see e.g. [1]). From a theoretical point
of view, defining effective algorithms to solve to global optimality Problem (1)
represents a big challenge in itself.

1 Email: marianna.desantis@aau.at
80

In this work, following what has been done in recent papers by Buchheim
et al. (see e.g. [3], [4]), we propose a strategy for computing valid lower bounds
of Problem (1), with the idea of using this strategy within a branch-and-bound
scheme for MINLP problems.

The branch-and-bound scheme we consider enumerates nodes very quickly:
by fixing the branching order in advance, we gain the advantage of shifting
expensive computations into a preprocessing phase. In each node, the dual
problem of the continuous relaxation is solved in order to determine a local
lower bound. Since all constraints of the continuous relaxation of (1) are
affine, strong duality holds if the primal problem is feasible.

More precisely, assume that the variables with indices in I ⊆ {0, . . . , n}
have been fixed to values s = (si)i∈I . Then, Problem (1) reduces to the
minimization of

fs : Zn−|I| → R, x 7→ (x⊤Qsx + c⊤
s x + ds)

p + Lsx + es (2)

over the feasible region Fs = {x ∈ Zn−|I| | Asx ≤ bs}, where the matrix Qs

is obtained by deleting the rows and columns corresponding to I, the matrix
As is obtained by deleting the columns corresponding to I, and the remaining
terms are updated appropriately.

Let Ls(x, λ) : Rn−|I| × Rm → R be the Lagrangian function associated
to the continuous relaxation at a generic node. In Section 1 we show how to
compute, for fixed λ, the unconstrained minimizer of the Lagrangian function,
so that the dual problem we end up with is a continuous problem with non-
negativity constraints:

max Ls(x
⋆(λ), λ)

s.t. λ ≥ 0; λ ∈ Rm,
(3)

where x⋆(λ) = arg minx∈Rn−|I| Ls(x, λ).

Problem (3) is then solved by the feasible active set method for box con-
strained problems proposed in [2]. Since we are considering the dual problem,
it suffices to find an approximate solution, as each dual feasible solution yields
a valid lower bound. We can thus prune the branch-and-bound node as soon
as the current upper bound is exceeded by the value of any feasible iterate
produced in a solution algorithm for the dual problem.

Experimental results for randomly generated instances show that, in the
quadratic case (i.e. p = 1), the devised branch-and-bound method compares
favorably to the MIQP solver of CPLEX 12.6 when the number of constraints
is small.

1 Unconstrained minimization of the Lagrangian

Let us consider a generic node of the branch-and-bound tree where the vari-
ables with indices in I ⊆ {0, . . . , n} have been fixed. The continuous relaxation
we end up with is the following continuous convex problem:

min (x⊤Qsx + c⊤
s x + ds)

p + L⊤
s x + es (4)

s.t. Asx ≤ bs , x ∈ Rn−|I| .

Let x0 = −1
2
Q−1

s cs and d̄s = ds − 1
4
c⊤
s Q−1

s cs. Note that d̄s ≥ 0 by construction.
The Lagrangian function of (4) and its gradient can be written as

L (x, λ)=
(
(x − x0)

⊤Qs(x − x0) + d̄s

)p
+ L⊤

s x + es + λ⊤(Asx − bs);

∇xL (x, λ)= 2p Qs(x − x0)
(
(x − x0)

⊤Qs(x − x0) + d̄s

)p−1
+ Ls + A⊤

s λ,

respectively, where λ ∈ Rm.

After applying the bijective transformation z = Q
1
2
s (x − x0), we get

∇zL (z, λ)= 2p Q
1
2
s z(z⊤z + d̄s)

p−1 + Ls + A⊤
s λ.

Therefore, the unconstrained minimizer of L (z, λ) satisfies the following equa-
tion

z(z⊤z + d̄s)
p−1 = r, (5)

where

r =
Q

− 1
2

s (−Ls − A⊤
s λ)

2p
.

Equation (5) can be rewritten as

z = r(‖z‖2 + d̄s)
1−p. (6)

Let y ∈ R+, y = ‖z‖. Taking the norm on both sides of (5) we get

y(y2 + d̄s)
p−1 = ‖r‖. (7)

Let f : R+ → R+ be the continuous, unbounded and strictly monotonically
increasing function f(y) = y(y2+d̄s)

p−1. It can be easily noticed that f(0) = 0,
so that f(y) = ‖r‖ has a unique solution y ≥ 0.

We distinguish two cases:

Case 1: d̄s = 0, that is xi = 0, for all i ∈ I. In this case equation (7) becomes

y2p−1 = ‖r‖

and by (6), we get

z = r‖r‖
2(1−p)
2p−1 . (8)

Case 2: d̄s > 0, that is ∃i ∈ I such that xi 6= 0. In this case, the Newton method
can be applied to solve f(y) = ‖r‖. Let ŷ > 0 be the only positive value
such that f(ŷ) = ‖r‖. Then, the unconstrained minimizer with respect to
z of L (z, λ) is

z = r(ŷ2 + d̄s)
1−p. (9)

We are then able to state the following result:

Proposition 1.1 The unique solution of ∇xL (x, λ) = 0 is

x⋆(λ) = − β

2p
Q−1

s (Ls + A⊤
s λ) + x0, (10)

where β := (ŷ2 + d̄s)
1−p and ŷ ∈ R+ is the solution of equation (7).

Proof. By (8) and (9) and recalling that x = Q
− 1

2
s z + x0 we get the expres-

sion (10). ✷

References

[1] Cornuéjols, G. and Tütüncü, R. Optimization methods in Finance.
Mathematics, Finance, and risk. Cambridge University Press, Cambridge, U.K.,
New York, 2006

[2] De Santis, M., Di Pillo, G. and Lucidi, S., An active set feasible method for
large-scale minimization problems with bound constraints, Comput. Opt. Appl.,
53(2) (2012) 395–42.

[3] Buchheim, C., De Santis, M., Palagi, L. and Piacentini, M., An Exact Algorithm
for Nonconvex Quadratic Integer Minimization using Ellipsoidal Relaxations,
SIAM J. Optim. 23(3) (2013), 1867–1889.

[4] Buchheim, C., De Santis, M., Lucidi, S., Rinaldi, F. and Trieu, L., A Feasible
Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer
Programming, Optimization online, 2014.

A generalized Gilmore-Lawler procedure for the
Quadratic Assignment Problem

Borzou Rostami a,1,2 Federico Malucelli b

a Fakultät für Mathematik, TU Dortmund, Germany
b Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di

Milano, Italy

Abstract

In this paper we propose a new lower bounding procedure for the Quadratic As-
signment Problem based on a generalization of the well-known Gilomore-Lawler
procedure for a higher order reformulation. Computational results on some bench-
mark instances show the strength of the new approach compared with other lower
bounds.

Keywords: Quadratic Assignment Problem, Lower bound, Gilomore-Lawler
procedure

1 Introduction

The Quadratic Assignment Problem (QAP) is among the most difficult NP-
hard combinatorial optimization problems. The general mathematical formu-

1 The first author has been supported by the German Research Foundation (DFG) under
grant BU 2313/2.
2 Email: brostami@mathematik.tu-dortmund.de

84

lation of the problem is as follows:

QAP: min
{ n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

qijklxijxkl : x ∈ X, x binary
}

where

X = {x ≥ 0 :
∑

j xij = 1 ∀i;
∑

i xij = 1 ∀j}.

Many solution methods, exact or heuristic algorithms have been proposed
for solving the QAP. Because of the quadratic structure of the problem many
attempts have been made in the literature to reformulate the problem as a
quadratic 0-1 programming problem, a global concave minimization problem,
or an Mixed Integer Programming (MIP).

In this paper, we are concerned with lower bounds for the QAP. Lower
bounds play an important role in success of the Branch-and-Bound type algo-
rithms for the QAPs. The ideal lower bound should be sharp (i.e., yielding a
“small” gap with respect to the optimum solution) and fast enough to com-
pute. The Gilmore-Lawler procedure presented by Gilmore [2] and Lawler [4]
is one of the best known lower bounds for QAP given by the solution of the
following linear assignment problem (LAP):

GLB = min
{∑

i

∑
j lijxij : x ∈ X, x binary

}
,

where for each i, j the coefficient lij are found by solving the following problem:

lij = min
{∑

k

∑
l qijklxkl : x ∈ X, xij = 1

}
.

Although the GL provides a lower bound for the QAP that can be com-
puted very efficiently, the obtained bounds are not so close to the optimal
solution and usually deteriorate as the size of the QAP increases.

2 A generalization of the Gilmore-Lawler procedure

Given a general mathematical formulation of QAP, we consider a generaliza-
tion of the GL, called GGL, procedure which considers the minimum interac-
tion cost not only of a single assignment but of two special assignments. To
explain the idea, let us first define a reformulation of the QAP as follows:

CAP: min
{ ∑

(i,j,k)∈A

∑
l,m Elm

ijkxijxjkxlm : x ∈ X, x binary
}

(1)

where A = {(i, j, k) : i = j = k or i ̸= j, j ̸= k}, and for each (i, j, k) ∈ A,
and each l, m, Elm

ijk = 1/2 (qijlm + qjklm).

Theorem 2.1 Problems CAP and QAP are equivalent. 2

In order to compute a lower bound for the QAP, we apply a GL type pro-
cedure to CAP. More precisely, for each (i, j, k) ∈ A potentially in the solution
we consider a subproblem to solve an assignment problem which contains as-
signment of i to j and assignment of j to k, i.e.,

uijk = min
{∑

l,m Elm
ijkxlm : x ∈ X, xij = xjk = 1

}
∀(i, j, k) ∈ A

The new bound is then defined to be the solution of the following problem:

P : GGLB = min
{∑

(i,j,k)∈A uijkxijxjk : x ∈ X, x binary
}

.

To linearize this problem, we first multiply equations
∑

j xij = 1, for
each i, and equations

∑
j xij = 1, for each j by variables xki and xjk, re-

spectively. All such quadratic equations are included within the formulation.
Then we linearize the nonlinear terms xijxjk by substituting yijk = xijxjk for
all (i, j, k) ∈ A. Following [5] we further simplify the linearized model and
then project out the x variables to result the following Integer Programming
formulation:

IP1 : min
∑

(i,j,k)∈A(uijk + qijjk)yijk

s.t.
∑

i,k:(i,j,k)∈A yijk = 1 ∀ j
∑

k:(k,i,j)∈A ykij − ∑
k:(i,j,k)∈A yijk = 0 ∀(i, j)

y binary. ∀ (i, j, k) ∈ A.

Theorem 2.2 Problems IP1 and P are equivalent. 2

Note that this problem has network properties and its optimal solution
will yield the GGL bound. However, if the binary restrictions on variables y
are relaxed in IP1, the problem provides a lower bound on the GGLB value.

3 Computational results

In this section we evaluate the quality of lower bounds in terms of relative gap
in percent obtained by the GGL procedure and compare it with the GL. To
show the effectiveness of the GGL, we also report the relative gap in percent
obtained by the well-known RLT based approach [3]. We should note here

Table 1
Results for some chalanging instances from the QAPLIB

Instance Gap(%) Time (second)

name Opt. GL GGL RLT1 GL GGL RLT1

bur26g 10117172 7.4 0.6 0.6 0.0 5.9 138.0

bur26h 7098658 7.8 0.7 0.7 0.0 5.8 129.8

Had20 6922 10.9 5.3 5.1 0.0 0.4 36.1

Rou20 725520 17.3 12.1 11.5 0.0 1.1 36.4

Nug20 2057 19.9 15.8 15.2 0.0 1.3 36.2

Nug30 6124 25.8 22.3 21.7 0.0 5.7 225.9

that, in our computation of GGLB we found it more efficient to apply the
reformulation (1) to the quadratic 0-1 reformulation of the QAP proposed in
[1]. Table 1 reports the results. The first two columns give the instance names
and the optimal objective values (opt). The next three columns give the gap
in percent obtained by the GL, GGL, and RLT1, respectively. The last three
columns give the computing times. As you can observe, the bounds provided
by the GGL outperform the GL bounds and very close to those of the RLT1.
Note that our results have been obtained in small computational times; less
than 6 seconds for all instances, while the RLT1 take much longer time to
compute the bounds.

References

[1] Carraresi, P. and F. Malucelli, A reformulation scheme and new lower bounds
for the qap, Quadratic assignment and related problems (1994), pp. 147–160.

[2] Gilmore, P. C., Optimal and suboptimal algorithms for the quadratic assignment
problem, Journal of the Society for Industrial & Applied Mathematics 10 (1962),
pp. 305–313.

[3] Hahn, P. and T. Grant, Lower bounds for the quadratic assignment problem based
upon a dual formulation, Operations Research 46 (1998), pp. 912–922.

[4] Lawler, E. L., The quadratic assignment problem, Management science 9 (1963),
pp. 586–599.

[5] Rostami, B. and F. Malucelli, A revised reformulation-linearization technique for
the quadratic assignment problem, Discrete Optimization 14 (2014), pp. 97–103.

The Linear Extension Polytope of a Poset

Jean-Paul Doignon a,1, Samuel Fiorini a,2, Selim Rexhep a,3

a Department of Mathematics, Université Libre de Bruxelles, Brussels, Belgium

Abstract

Let P be a finite poset. By definition, the linear extension polytope of P has
as vertices the characteristic vectors of all linear extensions of P . In case P is
an antichain, it is the linear ordering polytope. The linear extension polytope
appears in combinatorial optimization in the context of scheduling with precedence
constraints, see e.g. [5]. It seems also relevant to order theory, being similar in spirit
to other constructions such as the linear extension graph, see e.g. [4]. In this work,
we relate the combinatorial properties of the poset P to the polyhedral structure
of its linear extension polytope. Of particular interest is a natural relaxation of
the linear extension polytope. We prove that the relaxation is exact in case P is
a width-2 poset, and formulate a conjecture stating exactly when the relaxation is
exact.

Keywords: poset, linear extension, polytope, linear ordering problem

1 Introduction

Consider a (finite, strict) poset P = (X, <). A chain L = (X, ≺) is said to
be a linear extension of P if i < j implies i ≺ j for all i, j ∈ X . The linear

1 Email: doignon@ulb.ac.be
2 Email: sfiorini@ulb.ac.be
3 Email: srexhep@ulb.ac.be

88

extension polytope of P is defined as the convex hull of the characteristic
vectors of the linear extensions of P . Letting A := {(i, j) | i, j ∈ X, i 6= j}
and letting χL denote the characteristic vector of the chain L = (X, ≺), that
is, the vector χL ∈ RA such that χL

ij = 1 if i ≺ j and χL
ij = 0 otherwise, we

have PLO(P) := conv
(
{χL | L is a linear extension of P}

)
.

If P is antichain, then the linear extension polytope PLO(P) is the fa-
mous linear ordering polytope PX

LO, which naturally appears in polyhedral
approaches to the linear ordering problem, see e.g. [3]. For a general poset
P = (X, <), the linear extension polytope PLO(P) is the face of the linear
ordering polytope PX

LO obtained by setting xij = 1 whenever i < j.

To our knowledge, Schulz in his PhD thesis [5] was the first to study the
linear extension polytope. He proved that the affine hull of PLO(P) is defined
by

xij = 1, whenever i < j, (1)

xij = 0, whenever i > j, (2)

xij + xji = 1, whenever i and j are incomparable. (3)

As a consequence, the dimension of the linear extension polytope PLO(P)
equals the number of unordered pairs formed of incomparable elements of P .

2 Linear Description

Since the linear ordering problem is NP-hard, obtaining an explicit linear
description of PLO(P) for a general poset P seems hopeless. However, the
situation can change when posets P are restricted. In general, let QLO(P)
denote the polytope defined by (1)–(3) together with

xij > 0, ∀i, j ∈ X with i 6= j, (4)

xij + xjk − xik 6 1, ∀i, j, k ∈ X with i 6= j 6= k 6= i. (5)

Inequalities (4)–(5) define facets of the linear ordering polytope PX
LO. The

situation is however more complex for PLO(P). An incomparable pair of ele-
ments (i, j) of P = (X, <) is critical if adding the pair (i, j) to < still yields a
partial order relation. For more information on critical pairs, see Trotter [6].
We proved that Inequality (4) defines a facet of PLO(P) if and only if the pair
(j, i) is critical in P . Determining when Inequality (5) is facet defining for
PLO(P) seems harder to do.

Note that the polytope QLO(P) is a relaxation of PLO(P). It is natural to
ask when this relaxation is exact, that is, when QLO(P) = PLO(P) holds. The
answer is already known when P is an antichain:

Theorem 2.1 (Dridi [1]) If P is an antichain, QLO(P) = PLO(P) if and
only if n 6 5.

To prove Theorem 2.1, Dridi uses the following result. Recall that the
dimension of the poset P = (X, <) is the minimum number of linear orders
of X such that their intersection is precisely <.

Theorem 2.2 (Dridi [1]) Let P = (X, <) be a poset and Q = (X, ≺) be a
(nonnecessarily linear) extension of P . Let also φ(Q) be the {0, 1

2
, 1} point of

RA defined by φ(Q)ij = 1 if i ≺ j, φ(Q)ij = 1
2

if i and j are incomparable and
φ(Q)ij = 0 otherwise. Then φ(Q) ∈ QLO(P). Moreover, φ(Q) ∈ PLO(P) if
and only if dim(Q) 6 2.

Remark: Dridi [1] worked only on the linear ordering polytope PX
LO, and

Theorem 2.1 and 2.2 are reformulations of his results.

We propose the following conjecture generalizing Theorem 2.1:

Conjecture 2.3 There holds QLO(P) = PLO(P) if and only if all the exten-
sions of P have dimension at most 2.

The implication ⇒ of the conjecture follows easily from Theorem 2.2. On
the other hand, because an antichain of size at least 6 has an extension of
dimension 3, a poset without 3-dimensional extensions has width at most 5.
The following result implies that one can focus on the cases where P has
width 3, 4 or 5 in order to establish Conjecture 2.3:

Theorem 2.4 If P has width at most 2, then PLO(P) = QLO(P).

Our next result suggests to consider the structure of the incomparability
graph G(P) of P when aiming to prove Conjecture 2.3.

Theorem 2.5 All extensions of the finite poset P = (X, 6) have dimension at
most 2 if and only the incomparability graph G(P) does not admit the antenna
nor the co-rising sun (see Figure 1) as (nonnecessarily induced) subgraphs.

Fig. 1. The antenna and the co-rising sun

In order to prove Conjecture 2.3, we established that it suffices to consider
posets P whose incomparability graph G(P) is connected, even 2-connected

with the possible exception of some pendent edges. If G(P) admits a clique of
size 5, then because of the absence of antenna the clique must be a connected
component of G(P); hence the conjecture is true by Theorem 2.1 and the
fact that we assume G(P) connected. Using a similar argument, we are able
to handle the case where G(P) admits a clique of size 4. Hence, to prove
Conjecture 2.3, there remains to handle only the case of a width-3 poset P .

3 Comparability Invariance

Two posets with the same comparability graphs are called equivalent. It is
well known that the number of linear extensions of a poset is a comparability
invariant, that is, if P and Q are equivalent then e(P) = e(Q) (see for example
Trotter [6]). Hence, for two equivalent posets, the associated polytopes have
both the same number of vertices and the same dimension. Now a natural
question is whether the combinatorial structure of PLO(P) is a comparability
invariant. (We recall that two polytopes are combinatorially equivalent if they
have isomorphic face lattices). Suprisingly, the answer is no in general. We
found a counter-example on only 6 points. However, we have a proof that
the linear extension polytope of two equivalent width-2 posets are affinely
equivalent.

References

[1] T. Dridi, Sur les distributions binaires associées à des distributions ordinales,
Mathématiques et Sciences Humaines, 69, 15-31, 1980.

[2] E. Gawrilow, M. Joswig, Polymake: a framework for analyzing convex polytopes,
Polytopes-combinatorics and computation (Oberwolfach, 1997), 43-73, DMV
Sem., 29, Birkhäuser, Basel, 2000.

[3] M. Grötschel, M. Jünger, G. Reinelt, Facets of the linear ordering polytope,
Mathematical Programming, 33, 43-60, 1984.

[4] M. Massow, Linear extension graphs and linear extension diameter, PhD thesis,
TU Berlin, 2009.

[5] A. Schulz, Polytopes and Scheduling, Phd Thesis, TU Berlin, 1996.

[6] W.T. Trotter, Combinatorics and partially ordered sets : Dimension theory, The
Johns Hopkins University Press, Baltimore, 1992.

Combinatorial Relaxation Bounds and
Preprocessing for Berth Allocation Problems

Evellyn Cavalcante, Johan Oppen, Phillippe Samer 1

Molde University College – Molde, Norway

Sebastián Urrutia 2

Universidade Federal de Minas Gerais – Belo Horizonte, Brazil

Abstract

We investigate an optimization problem in container ports, for which previous mod-
els based on generalized set partitioning formulations have been studied. We de-
scribe two combinatorial relaxations based on computing maximum weighted match-
ings in suitable graphs, providing dual bounds and a variable reduction technique.

Keywords: Dual bounds, matching, probing, port operations, maritime logistics.

1 Introduction

In this work, we discuss graph-theoretical results for a discrete optimization
problem in maritime logistics. The Berth Allocation and Quay Crane As-
signment Problem (BACAP) aims to allocate berthing position/time, and a
number of quay cranes (QCs) for arriving vessels in a seaport container termi-
nal. Feasible assignments in the BACAP need to fulfil requirements on desired
berthing period and position, and an agreement on the QCs availability.

1 evellyn.cavalcante@gmail.com, johan.oppen@himolde.no, samer@dcc.ufmg.br
2 surrutia@dcc.ufmg.br

Work supported by Norwegian Research Council project 227084/O70: Port-Ship Coordinated Planning.
92

Recent work formulate variations of this problem as a Generalized Set
Partitioning Problem (GSPP) [1,2], where each column represents a feasi-
ble assignment for a vessel, and its cost is a linear combination of deviations
from desired berthing and QCs allocation. The algorithms in [1] solve a GSPP
model after generating all variables a priori. Effective variable reduction tech-
niques are central in their effective results. The work of [2] stems from a similar
approach, though they assume different application modeling and instances.

We demonstrate two novel dual bounds and, as it is done in [1], extend
them into a preprocessing technique. The results can be exploited in algo-
rithms building on variable enumeration approach [1,2]. Our companion full
paper describes computational experiments, and a branch and cut algorithm
separating valid inequalities from set partitioning and packing relaxations.

2 Set partitioning formulations for BACAP

We describe next the GSPP model for the BACAP presented by [1]. Let V be
the set of vessels, T be the set of time slots in the horizon, and L be the set
of berthing positions in the quay. Define P = T × L, and K as the number
of available QCs. Let Ω denote the complete set of feasible assignments;
note that |Ω| ≤ (|V | × |P | × K) since feasible assignments respect each vessel
requirements in a problem instance. Decision variables y ∈ B|Ω| indicate which
assignments are used in the solution. The coefficient matrices are as follows.
A ∈ B|V |×|Ω| associates each column j with a single vessel. B ∈ B|P |×|Ω|

represents berthing (time, space) positions: bp,j is one iff position p ∈ P is
used in yj. An element of Q ∈ Z|T |×|Ω| determines how many QCs are used by
yj in time period t. Then, the BACAP is defined as follows.

min
∑

j∈Ω

cjyj (1)

subject to (2,3,4,5)

∑

j∈Ω

aijyj = 1 ∀i ∈ V (2)

∑

j∈Ω

bpjyj ≤ 1 ∀p ∈ P (3)

∑

j∈Ω

qtjyj ≤ K ∀t ∈ T (4)

yj ∈ {0, 1} ∀j ∈ Ω (5)

Set partition constraints (2) ensure that all vessels are served by exactly
one assignment, while set packing in (3) forbid overlapping in time/space slots.
Inequalities (4) guarantee that QCs availability in the terminal is respected.

3 Weighted matching in two interesting graphs

The GSPP formulations and algorithms we refer to are based on two steps:
enumerating feasible assignments for individual vessels a priori, and solving
the resulting model with a MIP solver. We consider next two suitable graphs,

representing the set of assignments enumerated on the first step. In the follow-
ing, let Ωi ⊆ Ω be the subset of assignments corresponding to a given vessel
i ∈ V . We denote two assignments for different vessels as compatible if they
have no overlap in berthing time and space.

We define the graph G1(V, E1), with a vertex for each vessel. The set E1

includes an edge (i, j) if the individual assignments of best cost for vessels i
and j are not compatible with each other. Let c′

j denote the minimum cost
assignment for vessel j, i.e. c′

j = min{c(yj) : yj ∈ Ωj}. Analogously, let c′′
j

be the second minimum cost assignment for j. The cost c1(i, j) of an edge in
G1 is defined by the least difference among such costs, for the corresponding
vessels i and j. That is: c1(i, j) = min{(c′′

i −c′
i), (c

′′
j −c′

j)}. Then, the following
bound on the cost of any feasible solution holds.

Theorem 3.1 Let M ⊆ E1 denote a maximum weighted matching in G1, and
w(M) be its weight. Then LB1 ! w(M) +

∑
j∈V c′

j is a lower bound to (1).

Proof. The selection of the best individual assignments for each vessel cor-
responds to relaxing constraints (3) and (4). Therefore, this is a trivial lower
bound to the cost of any feasible solution, and amounts to

∑
j∈V c′

j.

Starting with the trivial selection of best individual assignments, the weight
of an edge (i, j) ∈ E1 corresponds to the minimum cost increase due to ex-
changing one such assignment for the second best. Clearly, this new pair of
assignments for vessels i and j can still be infeasible, but the sum of their costs
is a lower bound to the cost of any compatible assignment for these vessels.

Any matching in G1 correspond to disjoint pairs of vessels, whose best
assignments are not compatible. Therefore, the weight of any matching is a
required cost increase over

∑
j∈V c′

j, implied by the pairwise overlap of the
corresponding individual assignments. In particular, a maximum weighted
matching corresponds to the strongest such bound in G1. ✷

Our second dual bound strengthens the information on the cost of com-
patible assignments between pairs of vessels. Let G2(V, E2) denote a com-
plete graph, with a vertex for each vessel. Define the cost c2(i, j) of an
edge in E2 as the cheapest compatible assignments for vessels i and j, i.e.
c2(i, j) = min{c(yi)+c(yj) : yi ∈ Ωi, yj ∈ Ωj, yi and yj are compatible}. Then,
we have the following result.

Theorem 3.2 Let M ⊆ E2 be a maximum weighted matching in G2. Then,
LB2 !

∑
e∈M c2(e) is a lower bound to (1).

Proof. The weight of a single edge (i, j) ∈ E2 is the sum of the minimum cost
assignments for vessels i and j, maintaining their non-overlapping constraints.

A selection of edges not sharing a vertex (i.e. a matching) thus corresponds to
pairing up vessels and determining their best compatible assignments, which is
required in any solution satisfying (3). Therefore, the weight of any matching
in G2 is a lower bound to the cost of a feasible solution, since this clearly
relaxes constraints regarding the overlap of unpaired vessels. A maximum
weighted matching thus provides the strongest such bound in G2. ✷

Although this result holds for any number of vessels, it would be weaker
for odd |V |. To circumvent this, we simply add to G2 an artificial vertex s,
with edges to every other vertex i, with costs c2(s, i) = min{c(yi) : yi ∈ Ωi}.

Due to space limitations, we only state the following two results here, and
refer the reader to the companion full paper for their demonstrations.

Theorem 3.3 The lower bound from graph G2 is stronger than that from
graph G1, i.e. for any given problem instance, LB2 ≥ LB1 holds.

Finally, assuming that any primal solution bound is known, we can also
extend the previous results into a variable probing technique. First, assum-
ing that a given assignment yk ∈ Ωk is fixed in the solution, we can de-
fine the complete graph G2,k(V \{k}, E2,k). The corresponding edge costs
c2,k regard the best compatible assignments for two vessels, which are also
compatible with yk. That is: c2,k(i, j) = min{c(yi) + c(yj) : yi ∈ Ωi, yj ∈
Ωj , yi and yj are compatible with each other and with yk}.

Proposition 3.4 Let LB2,k denote the lower bound from Theorem (3.2) de-
termined over G2,k. Given any upper bound UB to (1), if c(yk)+LB2,k > UB,
then there is an optimal solution which does not include the assignment yk ∈
Ωk, and the corresponding variable/column can be removed from the model.

An analogous method can be derived from (3.1), but (3.3) implies that it
cannot be stronger, i.e. it cannot remove a column which (3.4) does not.

References

[1] Ç. Iris, D. Pacino, S. Ropke, and A. Larsen. Integrated berth allocation and quay
crane assignment problem: Set partitioning models and computational results.
Transportation Research Part E: Logistics and Transportation Review, 81:75 –
97, 2015.

[2] Y. B. Türkoǧulları and Z. C. Taşkın and N. Aras and İ. K. Altınel. Optimal
berth allocation and time-invariant quay crane assignment in container terminals.
European Journal of Operational Research, 235(1):88 – 101, 2014.

A new Mathematical Programming Model for
the Green Vehicle Routing Problem

Maurizio Bruglieri 1

Dipartimento di Design, Politecnico di Milano, Milano, Italy

Simona Mancini 2

Dipartimento di Matematica e Informatica, Universitá di Cagliari, Cagliari, Italy

Ferdinando Pezzella 3

DII, Universitá Politecnica delle Marche, Ancona, Italy

Ornella Pisacane 4

Facoltá di Ingegneria, Universitá degli Studi e-Campus, Novedrate (Como), Italy

Abstract

A new MILP formulation for the Green Vehicle Routing Problem is introduced
where the visits to the Alternative Fuel Stations (AFSs) are only implicitly consid-
ered. The number of variables is also reduced by pre-computing for each couple of
customers an efficient set of AFSs, only given by those that may be actually used
in an optimal solution. Numerical experiments on benchmark instances show that
our model outperforms the previous ones proposed in the literature.

Keywords: Vehicle Routing, Refueling, Alternative Fuel Vehicles, Efficient set of
Alternative Fuel Stations, Mixed Integer Programming

96

1 Introduction

In the Vehicle Routing Problem (VRP), fuel autonomy is usually assumed
sufficient to serve customers in every route. However, with Alternative Fuel
Vehicles (AFVs), refuels along the route are needed. Moreover, since Alter-
native Fuel Stations (AFSs) are not widespread on road networks, refueling
stops should be a priori planned to prevent drivers to remain stuck along their
routes. The Green VRP (G-VRP) [1] consists in serving a set of customers
with a fleet of m AFVs that leave fully refueled from a single depot and can
be refueled at AFSs, along their routes. The objective is to minimize the total
travel distance. The refueling time is fixed. A fuel consumption rate (r) is
given and tanks are totally replenished at AFSs. A maximum route duration
(Tmax) is imposed. The G-VRP is modeled in [1] including dummy copies
of the AFSs to manage multiple visits at the same AFS. Hereafter we refer
to such a formulation as the EMH model. A further formulation in which
the AFSs are implicitly addressed is proposed in [2], together with a Branch-
and-Cut method (hereafter, KK-B&C). In this paper, the G-VRP is modeled
by Mixed Integer Linear Programming (MILP) without cloning AFSs, since
this increases the number of nodes and, consequently, the problem complexity.
The number of variables employed is also reduced by pre-computing for each
couple of customers an efficient set of AFSs, including only those that may be
actually used in an optimal solution. Our formulation is tested on two sets of
benchmark instances taken by [1], showing that it outperforms both the EMH
model and the KK-B&C.

2 A New MILP Model for the G-VRP

The G-VRP is defined on a directed complete graph G = (N, A), where N =
I ∪ {0}, with I set of customers and 0 the depot, and A = {(i, j) : i ∈ N, j ∈
N, i ̸= j}. The set F of available AFSs is known. The following data are
given: ∀i ∈ N ∪ F, ∀j ∈ N ∪ F, i ̸= j, travel time, tij, and travel distance, dij;
∀i ∈ I, pi is the service time, while ∀s ∈ F it represents the refueling time; Q
is the refueling capacity. Our model is based on the computation of the sets
Lij of AFSs that may be convenient for an AFV to move in a feasible way
from i to j, ∀(i, j) ∈ A. These sets are computed in the following way. Let

1 Email:maurizio.bruglieri@polimi.it
2 Email:simona.mancini@unica.it
3 Email:pezzella@dii.univpm.it
4 Email:ornella.pisacane@uniecampus.it

s∗ = arg mins∈F :dis≤ Q
r

,dsj≤ Q
r
{dis +dsj}. At the beginning Lij := F and for each

s ∈ F if dis > dis∗ and dsj > ds∗j or dis > Q
r

or dsj > Q
r
, the AFS s is removed

from Lij. Moreover, t̂ijs = tis + tsj − tij is the detour time of an AFV to visit

s ∈ Lij going from i to j and d̂ijs = dis + dsj − dij is its detour distance. We
model the G-VRP through the following binary variables: routing variables
xij, ∀(i, j) ∈ A, equal to 1 if node j is visited just after node i (directly or
through an AFS), 0 otherwise; zijs, ∀(i, j) ∈ A, ∀s ∈ Lij equal to 1 if AFS
s is employed to go from i to j, 0 otherwise. Moreover, we use the following
continuous variables ∀i ∈ N : the residual fuel level yi of AFV at i; the time
τi on which i is reached. The MILP model is detailed in the following:

min
∑

(i,j)∈A

dijxij +
∑

s∈Lij

d̂ijszijs

(1)

s.t.
∑

s∈Lij

zijs ≤ xij ∀ (i, j) ∈ A(2)

∑

j∈N :j 6=i

xij = 1 ∀ i ∈ I(3)

∑

i∈N :i 6=j

xji =
∑

i∈N :i 6=j

xij ∀ j ∈ N(4)

∑

j∈N :j 6=0

x0j ≤ m(5)

∑

j∈N :j 6=0

xj0 ≤ m(6)

τj ≥ τi+(tij + pi)xij+
∑

s∈Lij

(t̂ijs + ps)zijs−l0(1−xij) ∀i∈N, ∀j∈I, i 6=j(7)

τj ≤ Tmax − (tj0 + pj)−
∑

s∈Lj0

(t̂j0s + ps)zj0s ∀j ∈ N \ {0}(8)

yj ≤
∑

s∈Lij

(Q− r · dsj)zijs +Q(1−
∑

s∈Lij

zijs) ∀j ∈ I, ∀i ∈ I, i 6= j(9)

yj ≤ yi − r · dij + 2Q(1− xij +
∑

s∈Lij

zijs) ∀j ∈ I, ∀i ∈ N, i 6= j(10)

yi ≥ r · di0(xi0 −
∑

s∈Lij

zi0s) ∀i ∈ I(11)

∑

s∈Lij

r · ds0zi0s ≤ Q ∀i ∈ I(12)

yi ≥
∑

s∈Lij

(r · diszijs) ∀(i, j) ∈ A(13)

y0 ≤ Q(14)

xij ∈ {0, 1} ∀(i, j) ∈ A(15)

yi ≥ 0, τi ≥ 0 ∀i ∈ N(16)

zijs ∈ {0, 1} ∀(i, j) ∈ A, ∀s ∈ Lij(17)

Fig. 1. New formulation for the G-VRP.

Objective function (1) minimizes the total travel distance. Between each

pair of customers, at most one AFS may be visited (2) while each customer
must be visited exactly once (3). Route continuity is assured by (4). The
number of AFVs is limited by (5)-(6). Arrival time at each node is ruled
by (7) that also exclude sub-tours. Maximum route duration is enforced by
(8). Fuel level, at each node, is ruled by (9)-(10). An AFV, after visiting its
last customer, must have enough fuel to return to the depot either without
refueling (11) or refueling (12). In case of refueling, (13) guarantee the AFV
can reach the selected AFS. The AFVs leave fully recharged from the depot
thanks to (14). Finally, the variables nature is specified in (15)-(16)-(17).

3 Some Numerical Results
We tested the performances of our model on the benchmark instance sets S1
and S3 of [1], each one with 10 instances and every instance with 20 customers,
on average. Both our model and EMH one are solved with CPLEX12.5 with
a CPU time limit of 3, 600 s. In the EMH model, for each AFS, m copies are
introduced. Concerning S1, our model optimally solves 7 instances with an
average CPU time of 1, 772 s and an average Relative MIP Gap (RMG) of
3.22%. Instead, EMH always reaches the CPU time limit (never certifying the
optimality) with an average RMG of 29.97% and, for one instance, it is not able
even to find a feasible solution. For three instances, it finds the same optimal
value of ours, without certifying its optimality, thus showing that their lower
bound is too weak. Comparing our results with those of KK-B&C (Table
5 of [2]), despite they use a more powerful computer, we detect two more
optimal solutions with a lower average CPU time (theirs is 2, 373 s) and with
a lower average RMG (theirs is 3.5%). About S3, our model performs better
than on S1, probably because the greater number of AFSs allows exploiting
better the variables saving given by the non-generation of dummy copies of
the AFSs. Indeed, our model solves to the optimality 9 over 10 instances with
an average CPU time of 1, 040 s and an average RMG of 0.68%. While, EMH
always reaches the CPU time limit with an average RMG of 22.42%. On five
instances it is not able even to find a feasible solution within the time limit and
only on two instances, the optimal value is found. Comparing our results with
those of the KK-B&C, two more optimal solutions are found, with a lower
average CPU time (theirs is 1, 204 s) and average RMG (theirs is 1.38%).

References
[1] Erdogan, S., and E. Miller-Hooks, A Green Vehicle Routing Problem,

Transportation Research Part E. 48 (2012), 100–114.

[2] Koç, C. and I., Karaoglan, The green vehicle routing problem: A heuristic based
exact solution approach, Applied Soft Computing. 39 (2016), 154–164.

A Branch&Price&Cut algorithm for the
Vehicle Routing Problem with Intermediate

Replenishment Facilities

Paolo Gianessi 1

École des Mines de Saint-Étienne, FAYOL-EMSE, CNRS:UMR6158, LIMOS, France

Alberto Ceselli 2

Dipartimento di Informatica, Università degli Studi di Milano, Italy

Lucas Létocart 3 Roberto Wolfler Calvo 3

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, (UMR 7030), France

Abstract
We present a Branch&Price&Cut algorithm for the Vehicle Routing Problem with Interme-
diate Replenishment Facilities that relies on a new extended formulation. The aim of this
latter is to tackle symmetry issues by dropping out the vehicle index. The linear relaxation
is further strengthened by adding valid inequalities.

Keywords: Column Generation, Valid Inequalities, Branch&Price&Cut, Vehicle Routing
Problem with Intermediate Replenishment Facilities.

1 Introduction

The Vehicle Routing Problem with Intermediate Replenishment Facilities (VR-
PIRF) is defined on a graph where the node set consists of a central depot ∆, a
set C of n customers, and f replenishment facilities.

1 Email: paolo.gianessi@emse.fr
2 Email: Alberto.Ceselli@unimi.it
3 Email: {lucas.letocart,roberto.wolfler}@lipn.univ-paris13.fr100

The aim is to find a least cost set of routes that visits each client exactly once,
the cost of a route being the sum of the costs of the visited arcs. Each client has a
demand and can be served by one of the nK homogeneous, fixed capacity vehicles
based at the depot. Furthermore, vehicles can recharge at replenishment facilities
so as to perform not one but a sequence of routes called a rotation. However, the
rotation of a vehicle must start and end at the depot and its total duration (the sum
of the travel, service and recharge times associated with the visited arcs, clients,
and depots, respectively) must not exceed a given shift length.

VRPIRF [11] is the particular case of the Multiple Depot VRP with Inter-Depot
routes (MDVRPI, [9]) with only one depot. MDVRPI itself is a generalization of
the Multi-Depot VRP (MDVRP) in which each depot acts both as the base for the
vehicles of its own fleet, and as a facility for vehicles based at other depots. Hence,
VRPIRF turns out to belong to the family of Multi-Depot VRPs (see e.g. [2]),
one of the most investigated families of VRPs. The multiple use of vehicles is an
element that VRPIRF has also in common with the Multi-Trip VRP (MTVRP) [8].

In Section 2, we describe an extended formulation which makes use of replen-
ishment arcs and arrival times together with valid connectivity inequalities, while
Section 3 is devoted to the description of the Branch&Price&Cut algorithm.

2 Formulation

We propose a new Set-Partitioning formulation without the vehicle index for the
VRPIRF. A solution to overcome vehicle-related symmetry issues, which affect
some previous formulations, consists in using arrival times and replenishment arcs.
Arrival times (inspired by e.g. [1], [6]) enable to keep track of the elapsed time
along a rotation: the association between a vehicle and the routes it performs to
compute its total service time can be disregarded, and the vehicle index removed.
Further, arrival times assure the connection of a solution as a side-effect. However,
in order to use them, a rotation must be represented as a sequence of arcs in which
each intermediate has indegree and outdegree equal to 1. This representation shift is
what replenishment arcs (see e.g. [6], [10]) AP = C×C allow to do, as they model
recharges in between two clients so that facility nodes are no more needed. We will
use them along with base arcs A0 = V × V , where node set is V = {∆} ∪ C.

As to decision variables, we have three sets of binary variables, namely route
variables xr, base arc variables xij , ij ∈ A0 and replenishment arc variables wij ,
ij ∈ AP , whereas arrival time variables zij , i, j ∈ V , are real nonnegative. Along
with problem-defining contraints, we introduce connectivity inequalities in order to
refine the fractional solution of a node of the Branch&Bound tree and tighten the
lower bound. They generalize subtour elimination constraints (SECs) in that both

base and replenishment arcs are taken into account, so as to exploit the structural
similarity between a rotation expressed with replenishment arcs, and a classical
route. To separate such connectivity inequalities we use CVRPSEP (see [7]), a
library of routines to separate various families of valid cuts for symmetric Capac-
itated VRP. Route r ∈ R is associated with cost cr and binary terms ai

r, bij
r , e′∆

r

(resp. e′′∆
r), e′p

r (resp. e′′p
r), which denote whether r ∈ R visits i ∈ C or ij ∈ A0,

starts (resp. ends) at ∆ or at facility p. Terms tij, ij ∈ A0 and uij , ij ∈ AP denote
the time associated with a base or replenishment arc.

min
∑

r∈R
crxr

s.t.
∑

r∈R
ai

r xr = 1 ∀i∈C clients service 1

∑
r∈R

e′p
r xr =

∑
r∈R

e′′p
r xr ∀p∈F routes balance at facilities

∑
r∈R

e′∆
r xr =

∑
r∈R

e′′∆
r xr ≤ nK routes bal. at ∆, nr of vehicles

∑
r∈R

bij
r xr = xij ∀ij ∈A0 route-arc variables link

∑
ji∈A0

xji +
∑

ji∈AP

wji =
∑

ij∈A0

xij +
∑

ij∈AP

wij = 1 ∀i∈C clients service 2

z∆i = t∆ix∆i ∀i∈C arrival times

(t∆i+tij)xij +(t∆i+uij)wij ≤zij ≤(T −tj∆)(xij +wij) ∀ij ∈AP∑
j∈V \i

zij =
∑

j∈V \i

zji +
∑

j∈V \i

tijxij +
∑

j∈C\i

uijwij ∀i∈C arrival times propagation

(t∆i + ti∆)xi∆ ≤ zi∆ ≤ Txi∆ ∀i∈C max shift length

3 Branch&Price&Cut algorithm

A Column Generation-based framework is considered, where the Pricing Prob-
lem (PP) consists of an Elementary Shortest Path Problem with Resource Con-
straints (ESPPRC) to determine new negative reduced cost route variables. The
ESPPRC is solved by means of a Dynamic Programming algorithm inspired by
the one presented in [5] and enhanced with ng-paths [3] and a q-paths-based [4]
completion bound method to restrain the combinatorial explosion. Then, the ex-
ploration of the Branch&Price&Cut tree is guided by problem-tailored branching
rules. In our CG-based framework, branching rules can only concern base arc vari-
ables xij , ij ∈ A0, or replenishment arc variables wij , ij ∈ AP , as route variables
xr cannot be branched on. On the other hand, branching on arc variables requires
no transformation, since the link between route and arc variables is explicit in the

model. The chosen branching strategy consists in branching on replenishment arc
variables wij (total number, total number per facility, single variables) and then on
base arc variables xij (node with the highest number of fractional outgoing arc vari-
ables, single variables). The propagation of branching decisions on xij variables to
the PP requires to transform back a solution with routes variables xr, whereas the
branching decisions on wij variables have no effect on the PP as replenishment arcs
do not appear in the graph of the PP.

References

[1] S.Almoustafa, S.Hanafi, N.Mladenovic, New exact method for large asymmetric distance-
constrained vehicle routing problem. European Journal of Operational Research, 226(3), 386–
394, 2013.

[2] R.Baldacci, A.Mingozzi, A unified exact method for solving different classes of vehicle
routing problems. Mathematical Programming, 120(2):347–380, 2009.

[3] R.Baldacci, A.Mingozzi, R.Roberti, New Route Relaxation and Pricing Strategies for the
Vehicle Routing Problem. Operations Research, 59(5), 1269–1283, 2011.

[4] N.Christofides, A.Mingozzi, P.Toth, Exact algorithms for the vehicle routing problem, based
on spanning tree and shortest path relaxations. Mathematical Programming, 20(1), 255–282,
1981.

[5] D.Feillet, P.Dejax, M.Gendreau, C.Gueguen, An exact algorithm for the elementary shortest
path problem with resource constraints: Application to some vehicle routing problems..
Networks, 44(3), 216–229, 2004.

[6] I. Kara, Arc based integer programming formulations for the Distance Constrained Vehicle
Routing problem. 3rd IEEE International Symposium on Logistics and Industrial Informatics
(LINDI), 33–38, 2011.

[6] I.Karaoglan, C.Koc, A branch and cut algorithm for the vehicle routing problem with multiple
use of vehicles. Proceedings of the 41st International Conference on Computers & Industrial
Engineering, 2011.

[7] J.Lysgaard, CVRPSEP: A Package of Separation Routines for the Capacitated Vehicle Routing
Problem. Technical Report, Handelshøjskolen i Århus. Institut for Driftsøkonomi og Logistik,
2003.

[8] D.Cattaruzza, N.Absi, D.Feillet, Vehicle routing problems with multiple trips. 4OR: A
Quarterly Journal of Operations Research, http://hal-emse.ccsd.cnrs.fr/emse-01250603, to
appear, 2016.

[9] I.Muter, J.-F.Cordeau, G.Laporte, A Branch-and-Price Algorithm for the Multidepot Vehicle
Routing Problem with Interdepot Routes. Transportation Science, 48(3):425–441, 2014.

[10] O.J.Smith, N.Boland, H.Waterer, Solving shortest path problems with a weight constraint and
replenishment arcs. Computers & Operations Research, 39(5), 964–984, 2012.

[11] C.D.Tarantilis, E.E.Zachariadis, C.T.Kiranoudis, A Hybrid Guided Local Search for the
Vehicle-Routing Problem with Intermediate Replenishment Facilities. INFORMS Journal on
Computing, 20(1):154–168, 2008.

Linear Models and Computational Experiments
for the Quadratic TSP

Anja Fischer a,1 J. Fabian Meier b,2 Ulrich Pferschy c,3

Rostislav Staněk c,3

a Institute for Numerical and Applied Mathematics, University of Goettingen,
Goettingen, Germany

b Continentale Krankenversicherung a.G., Dortmund, Germany
c Dept. of Statistics and Operations Research, University of Graz, Graz, Austria

Abstract
We consider the Symmetric Quadratic Traveling Salesman Problem (SQTSP), which
is a generalization of the classical TSP where each sequence of two consecutive edges
in the tour gives rise to a certain cost value. For the standard linearization we
apply a purely integral subtour elimination strategy which outperforms the usual
fractional separation routine in computational experiments, even if strengthened
inequalities are added. The maximization version of the problem is introduced
and turns out to benefit from this strengthening. Finally, a new geometry-based
linearization with only a linear number of additional variables is presented for the
Angular Metric TSP and variants thereof. It is faster than the other approaches for
medium-sized instances of one of the variants.
Keywords: TSP, Angular Metric TSP, subtour elimination, computational study

1 Email: anja.fischer@mathematik.uni-goettingen.de
2 Email: brief@fabianmeier.de
3 Supported by the Austrian Science Fund (FWF): P 23829-N13.
Email: {pferschy, rostislav.stanek}@uni-graz.at104

1 Introduction

In this contribution we consider a generalization of the classical Traveling
Salesman Problem (TSP) in terms of the cost structure. For each pair of
adjacent edges there is a cost coefficient representing the cost of using both
edges in a tour. In other words, if the tour visits vertices i, j and k in
this order, costs of dijk with dijk = dkji arise. This allows the modeling
of symmetric transition costs such as turning costs of a physical path but
also setup costs when moving from one activity to another. The resulting
Symmetric Quadratic Traveling Salesman Problem (SQTSP) asks for a cost-
minimal Hamiltonian cycle with respect to this quadratic objective function.

The SQTSP was previously studied in [3] and [2]. An important special
case is the Angular Metric TSP (AngleTSP) [1] that arises in robotics where
dijk represents the turning angle between edges (i, j) and (j, k). Indeed, the
energy demand for the motion of a robot also depends on the turning angle.

We will also consider the Maximum Symmetric Quadratic Traveling Sales-
man Problem (MaxSQTSP) which asks for a cost-maximal tour T w. r. t. the
quadratic objective function and has not been studied in the literature before.

2 Fractional vs. integral approach

Following the notation in [2] let G = (V, V {2}) be a complete graph with vertex
set V = {1, . . . , n}, n ≥ 3, and edge set V {2} ..=

{
(i, j) = (j, i) : i, j ∈ V, i 6= j

}
.

A 2-edge e〈3〉 ..= 〈i, j, k〉 ∈ V 〈3〉 ..=
{
〈i, j, k〉 = 〈k, j, i〉 : i, j, k ∈ V, |{i, j, k}| =

3
}

is defined as a sequence of three distinct vertices where the reverse sequence
is regarded as identical. Furthermore, for a set of 2-edges V 〈3〉 let G = (V, V 〈3〉)
denote a complete 2-graph. Using binary edge variables xe, e ∈ V {2}, SQTSP
can be formulated using the well-known subtour elimination constraints in (3).

min
∑

e〈3〉=〈i,j,k〉∈V 〈3〉
de〈3〉x(i,j)x(j,k) (1)

s. t.
∑

j∈V \{i}
x(i,j) = 2, i ∈ V, (2)

∑

e=(i,j)∈S{2}
xe ≤ |S| − 1, S (V, S 6= ∅, (3)

xe ∈ {0, 1}, e ∈ V {2}. (4)

We linearize this model by introducing a cubic number of variables ye〈3〉 =
yijk ∈ {0, 1} for all 2-edges e〈3〉 = 〈i, j, k〉 ∈ V 〈3〉, where yijk = 1 if and only
if the vertices i, j and k are visited in the tour consecutively, see [2]. The
x-variables are coupled with the y-variables by constraints (5).

min
∑

e〈3〉∈V 〈3〉
de〈3〉ye〈3〉

s. t. (2), (3), (4),
x(i,j) =

∑

k∈V \{i,j}
yijk =

∑

k∈V \{i,j}
ykij, (i, j) ∈ V {2}, (5)

ye〈3〉 ∈ {0, 1}, e〈3〉 ∈ V 〈3〉. (6)

This ILP can be used to solve the SQTSP by the “standard” TSP techniques
of separating the subtour elimination constraints (3): Identify the violated
constraints on fractional solutions during the branch and cut solution process
by solving appropriate min-cut problems as it was done in [2].

In this contribution we focus on a different strategy which was already
tested (with limited success) for the classical TSP in [4]: Relax all subtour
constraints (3) first and then solve the remaining model to integral optimality
using an ILP solver. In the resulting 2-matching cycles can be found by a
simple scan. Now, we add a subtour elimination constraint for each such cycle
and resolve the enlarged ILP model. This process is repeated until we get a
solution consisting of only one cycle, i. e. an optimal tour.

3 Computational Experiments

We performed extensive computational experiments for several instance classes
of SQTSP following benchmarks from the literature. We also tested different
strengthened variants of subtour elimination constraints suggested in [2]. It
turned out that the simple integral approach significantly outperforms the
standard fractional separation procedure known from the literature for all
types of test instances. Moreover, the standard versions were faster so that
sophisticated separation strategies do not pay off in the minimization case.

A different picture appears for MaxSQTSP, where some of the strengthened
subtour elimination constraints from [2] do speed up the solution process. The
comparison between purely integral and fractional subtour elimination is less
clear and depends on the particular type of test instances. For MaxAngleTSP
the computational results showed a surprisingly dichotomous behavior for odd
and even cardinalities of V . This will be subject of further study.

4 A geometry-based MILP linearization for AngleTSP

For the special case of the AngleTSP we can exploit the geometry of the
problem and avoid the cubic number of additional binary variables ye〈3〉 , e〈3〉 ∈
V 〈3〉. Instead, the following linearization adds only a linear number of real-
valued variables yj ∈ R+

0 , j ∈ V, expressing the turning angle of a tour in j.
Thus, we replace (1) by min ∑

j∈V yj and add the constraints

yj ≥
∑

i,k∈V \{j}
i<k

dijkx(i,j)x(j,k), j ∈ V. (7)

We can show that these inequalities are equivalent to the following linear in-
equalities if the degree two (2) and the integrality constraints (6) are satisfied.

yj ≥
∑

k∈V \{j}
dijkx(j,k) − π, i, j ∈ V, i 6= j. (8)

Theorem 4.1 The set of constraints (2) and (7) is equivalent to the set of
constraints (2) and (8) for x(i,j) ∈ {0, 1}, (i, j) ∈ V {2}, yj ∈ R+

0 , j ∈ V .

Our computational tests show that using this formulation the running
times can be improved for instances with up to n = 55 if we consider a variant
of the AngleTSP where the turning angles are part of a linear combination
with the distances between the vertices. For larger or classical AngleTSP
instances the running times are often worse. One reason for this behavior
might be the larger root node gaps.

References

[1] Aggarwal, A., D. Coppersmith, S. Khanna, R. Motwani and B. Schieber, The
angular-metric traveling salesman problem, SIAM Journal on Computing 29
(2000), pp. 697–711.

[2] Fischer, A. and C. Helmberg, The symmetric quadratic traveling salesman
problem, Mathematical Programming 142 (2013), pp. 205–254.

[3] Jäger, G. and P. Molitor, Algorithms and experimental study for the traveling
salesman problem of second order, Springer LNCS 5165 (2008), pp. 211–224.

[4] Pferschy, U. and R. Staněk, Generating subtour elimination constraints for
the TSP from pure integer solutions, Central European Journal of Operations
Research (2016), to appear, doi: 10.1007/s10100-016-0437-8.

Graphs with large girth are b-continuous 2

Ana Silva a,b,1 Cláudia Linhares Sales a,c,1

a ParGO Research Group - Parallelism, Graphs and Optimization
b Departamento de Matemática, Universidade Federal do Ceará, Brazil
c Departamento de Computação, Universidade Federal do Ceará, Brazil

Abstract

A b-coloring of the vertices of a graph is a proper coloring where each color class
contains a vertex which is adjacent to each other color class. The b-chromatic num-
ber of G is the maximum integer b(G) for which G has a b-coloring with b(G) colors.
A graph G is b-continuous if G has a b-coloring with k colors, for every integer k
in the interval [χ(G), b(G)]. It is known that not all graphs are b-continuous. Here,
we show that if G has girth at least 10, then G is b-continuous.

Keywords: b-chromatic number, b-continuity, graphs with large girth.

Let G be a simple graph. A coloring of G is a function ψ : V (G) → N such
that ψ(u) ̸= ψ(v) whenever uv ∈ E(G). We say that u ∈ V (G) is a b-vertex
in ψ if for every color c ̸= ψ(u), there exists v ∈ N(u) colored with c. Observe
that if ψ has a color class c that has no b-vertices, then we can separatedly
change the color of each vertex in c to obtain a proper coloring with fewer
colors. But since the coloring problem is NP-complete, χ(G) cannot always
be reached. Irving and Manlove [10], interested in the worst case scenario,
defined a b-coloring as a coloring of G that has at least one b-vertex in each

1 Email addresses: anasilva@mat.ufc.br (Silva), linhares@lia.ufc.br (Linhares Sales)
2 Partially supported by CNPq and CAPES, Brazil.

108

of its color classes, and the b-chromatic number of G as the maximum number
of colors b(G) used by a b-coloring of G. Finding b(G) is NP-complete [10],
even if G is bipartite [13], chordal [9], or a line graph [5].

It is known that Kn,n minus a perfect matching only admits b-colorings
with 2 and n colors, for n ∈ N [13]. Also, for every finite S ⊂ N − {1}, there
exists a graph G that admits a b-coloring with k colors iff k ∈ S [2]. This
leads to the following definition: G is b-continuous if it has a b-coloring with k
colors, for every k ∈ {χ(G), · · · , b(G)}. Deciding whether a given graph G is
b-continuous is NP-complete, even if b-colorings with χ(G) and b(G) colors are
given [2]. Concerning positive results, we mention that the following graph
classes are b-continuous: chordal graphs [8,12]; Kneser graphs K(n, 2) for
n ≥ 17 [11]; P4-sparse graphs [4] and P4-tidy graphs [3]; and regular graphs
with girth at least 6 and with no cycles of length 7 [1].

The girth of G is the minimum size g(G) of a cycle in G. Let m(G) be
the maximum k for which G has at least k vertices of degree at least k − 1
. It is not hard to see that b(G) ≤ m(G) [10]. In [7], it is conjectured that
if G is a d-regular graph with g(G) ≥ 5 and d ≥ 4, then b(G) = m(G).
This conjecture has also motivated the investigation in [1] mentioned in the
previous paragraph.

It is also known that if G is a tree, then (*) b(G) ≥ m(G) − 1, and one
can decide whether b(G) equals m(G) − 1 or m(G) in polynomial time [10].
Later, it was noted that in fact this property holds for graphs with large girth,
and the most recent result regarding this aspect says that (*) holds whenever
g(G) ≥ 7 [6]. This and the numerous results on regular graphs with large girth
indicate that, unlike the classic coloring problem, having large girth somehow
helps in finding b-colorings of G. We therefore pose the question below, and
give a partial answer to it.

Question 1 What is the minimum ĝ s.t. G is b-continuous when g(G) ≥ ĝ?

Theorem 1 If g(G) ≥ 10, then G is b-continuous.

We mention that the known non-b-continuous graphs have girth 4; hence,
5 ≤ ĝ ≤ 10. Also, if g(G) ≥ 7, then finding b(G) can be done in polynomial
time [6], while finding χ(G) is NP-complete, even if G is a line graph [14].
Therefore, any proof that (partially) answers Question 1 must have a non-
constructive part.

1 Outline of the proof

Let G be any graph, and ψ be a b-coloring of G with k colors. Let B(ψ) denote
the set of all b-vertices in ψ, and for each color i denote by Bi the set of b-
vertices in color class i. We want to change the color of some x ∈ V (G)\B(ψ),
while ensuring that exactly one color class loses b-vertices, and that no new
b-vertex is created. For each x ∈ V (G) \ B(ψ), let U(x) contain w ∈ B(ψ) if
x is the only neighbor of w colored with ψ(x). We say that x is mutable if,
for every w ∈ N(x) \ B(ψ), there exists i ∈ {1, · · · , k} \ ψ(N [x]) such that
{1, · · · , k} \ ψ(N [w] \ {x}) ̸= {i}. This means that changing the color of x to
i does not create new b-vertices.

Lemma 2 If x ∈ V (G)\B(ψ) is mutable and |ψ(U(x))| = 1, then there exists
a b-coloring of G with k − 1 colors.

For each u ∈ B(ψ) and each color i ∈ {1, · · · , k} \ ψ(u), let Bi(u) =
N(u) ∩Bi, and Ri(u) be the remaining neighbors of u colored with i. We say
that color i is weak in N(u) if, ∀x ∈ Ri(u), x is mutable and:

(**) For every w ∈ U(x) \ {u}, there exists w′ ∈ Bψ(w) \N(Ri(u)).

Condition (**) means that, if the color of every x ∈ Ri(u) gets changed,
then not every b-vertex of color ψ(w) is lost.

Lemma 3 Let u ∈ B(ψ) and i ∈ {1, · · · , k} \ {ψ(u)}. If i is weak in N(u)
and Bi(u) = ∅, then there exists a b-coloring of G with k − 1 colors.

Let Dk(G) be the subset of vertices of degree at least k − 1 in G, and for
each u ∈ V (G), let N2(u) (N≤2(u)) denote the set of vertices at distance 2
(at most 2) from u. We say that u ∈ V (G) is a k-iris in G if there exists
S ⊆ N(u) ∩ Dk(G) with cardinality k − 1; and we say that u is a dilated
k-iris if there exists a subset S ⊆ N≤2(u) ∩Dk(G) with k vertices such that:
N(v)∩N(w) = ∅, for every v, w ∈ S∩N2(u), v ̸= w; and |S∩N2(u)| ≥ 1. The
next two lemmas finish the proof. We mention that the proof in [1] actually
proves the k-iris part of the next lemma, and works for any graph with girth 6
that has no cycles of length 7. Also, girth 5 suffices for the recoloring part,
i.e., the condition g(G) ≥ 10 is necessary only for coloring the dilated k-iris.

Lemma 4 Let G be a graph with girth at least 10. If G has a k-iris or dilated
k-iris, where k ≥ χ(G), then G has a b-coloring with k colors.

Lemma 5 Let G be a graph with g(G) ≥ 5, ψ be a b-coloring of G with k
colors, where k ≥ χ(G) + 1, and u ∈ B(ψ). Then there exists a weak color i
in N(u) such that Bi(u) = ∅, or u is a (k − 1)-iris, or a dilated (k − 1)-iris.

References

[1] R. Balakrishnan and T. Kavaskar. b-coloring of Kneser graphs. Discrete Appl.
Math. 160 (2012) 9–14.

[2] D. Barth, J. Cohen and T. Faik. On the b-continuity property of graphs.
Discrete Appl. Math. 155, 1761–1768, 2007.

[3] C.I. Betancur Velasquez, F. Bonomo, and I. Koch. On the b-coloring of P4-tidy
graphs. Discrete Appl. Math. 159 (2011) 67–76.

[4] F. Bonomo, G. Duran, F. Maffray, J. Marenco and M. Valencia-Pabon. On
the b-coloring of cographs and P4-sparse graphs. Graphs and Combin. 25 (2),
153–167, 2009.

[5] V. Campos, C. Lima, N.A. Martins, L. Sampaio, M.C. Santos and A. Silva. The
b-chromatic index of graphs. Discrete Mathematics 338 (11) (2015) 2072–2079.

[6] V. Campos, C. Lima and A. Silva. Graphs with girth at least 7 have high
b-chromatic number. European Journal of Combinatorics 48 (2015), 154–164.

[7] A. El Sahili and H. Kouider. About b-colouring of regular graphs. Utilitas Math.
80 (2009) 211–215.

[8] T. Faik, About the b-continuity of graphs. Electron. Notes in Discrete Math.
17 (2004) 151–156.

[9] F. Havet, C. Linhares-Sales and L. Sampaio. b-coloring of tight graphs. Discrete
Appl. Mathematics 160 (18) (2012) 2709–2715.

[10] R.W. Irving and D.F. Manlove. The b-chromatic number of a graph. Discrete
Appl. Math. 91, 127–141, 1999.

[11] R. Javadi and B. Omoomi. On b-coloring of the Kneser graphs. Discrete Math.
309, 4399–4408, 2009.

[12] J. Kára, J. Kratochv́ıl and M. Voigt. b-Continuity. Preprint no. M14/04, Faculty
for Mathematics and Natural Science, Technical University Ilmenau, 2004.

[13] J. Kratochv́ıl, Zs. Tuza, and M. Voigt. On the b-chromatic number of graphs.
WG 2002, Lecture Notes In Computer Science 2573 (2002) 310–320.

[14] V.V. Lozin and M. Kaminski. Coloring edges and vertices of graphs without
short or long cycles. Contributions do Discrete Mathematics 2 (1) (2007).

Proper connection number 2, connectivity, and
forbidden subgraphs

Christoph Brausea, Trung Duy Doana,b,1, Ingo Schiermeyera

aInstitute of Discrete Mathematics and Algebra
TU Bergakademie Freiberg

Freiberg, Germany
brause@math.tu-freiberg.de, ingo.schiermeyer@tu-freiberg.de

bSchool of Applied Mathematics and Informatics
Hanoi University of Science and Technology

Hanoi, Vietnam
trungdoanduy@gmail.com

Abstract

An edge-coloured graph G is called properly connected if any two vertices are con-
nected by a path whose edges are properly coloured. The proper connection number
of a graph G, denoted by pc(G), is the smallest number of colours that are needed in
order to make G properly connected. In this paper we consider sufficient conditions
in terms of connectivity and forbidden subgraphs, implying a graph to have proper
connection number 2. 1

Keywords: proper connection number, 2-connected, forbidden subgraphs

1 Financial support by the Free State of Saxony (Landesgraduiertenstipendium) is thank-
fully acknowledged

112

1 Introduction

We use [4] for terminology and notation not defined here and consider simple
and undirected graphs only.

The concept of proper connections in graphs is an extension of proper
colourings and is motivated by rainbow connections of graphs. Andrews et al.
[1] and, independently, Borozan et al. [3] introduced the concept as follows:

An edge-coloured graph G is called properly connected if every two vertices
u, v ∈ V (G) are connected by a path whose edges are properly coloured. The
proper connection number pc(G) is the smallest number of colours needed to
colour a graph G properly connected. We say, an edge-colouring c has the
strong property if for every two vertices u, v ∈ V (G) there exists two properly
coloured paths P1 : u = w1w2 . . . wk = v and P2 : u = z1z2 . . . zl = v such that
c(w1w2) 6= c(z1z2) and c(wk−1wk) 6= c(zl−1zl). We note that pc(G) = 1 if and
only if G is complete [3].

For simplifying notation, let [k] be the set {1, 2, . . . , k} for some positive
integer k. Following common notation, we say G contains an induced subgraph
F if there is a vertex subset U ⊆ V (G) such that G[U] ∼= F . Therefore, G is
F -free (F -free) if and only if G contains F (all graphs of F) not as an induced
subgraph. Let Si,j,k be the graph consisting of three induced paths of lengths
i,j, and k with a common initial vertex, and S be the set of graphs whose
every component is of the form Si,j,k for some 0 ≤ i ≤ j ≤ k.

In many fields of graph theory, forbidden subgraphs and the connectivity
of a graph play an important role. In [2], Bedrossian characterized pairs of
forbidden subgraphs for 2-connected graphs implying hamiltonicity. Thus,
since every noncomplete, hamiltonian graph has proper connection number
2 [3], his characterization is the starting point for our work to find sufficient
conditions in terms of connectivity and forbidden subgraphs such that pc(G) =
2 holds for a graph G. We note that all pairs in Bedrossian’s characterization
contain the claw. Our first result improves that observation by forbidding
only the claw.

Theorem 1.1 Let G be a connected, claw-free, and noncomplete graph. Then
pc(G) = 2.

Sketch of the Proof. Suppose, to the contrary, that there exists a connected,
claw-free graph of proper connection number at least 3. Moreover, all those
graphs are noncomplete. Then, let G be a counterexample of minimum order,
i.e. G is connected, claw-free, but pc(G) ≥ 3, and for all noncomplete but
connected induced subgraphs G′ of G, it holds pc(G′) = 2. Now, let H be a

connected induced subgraph in G such that

(i) pc(H) = 2, and (ii) subject to (i), n(H) is maximum.

Therefore, there exists a vertex v in V (G−H) which is adjacent to at least
one vertex of V (H), say u. Now, by some small case to case analysis, one can
show that G[V (H)∪ {v}] is properly connected, contradicting the minimality
of G. 2

Further, we find necessary conditions on forbidden subgraphs, implying a
proper connection number 2.

Proposition 1.2 (i) Let F be a finite set of graphs. If F ∩ S = ∅, then
there exists a 2-connected, F-free graph G such that pc(G) = 3.

(ii) Let 0 ≤ i ≤ j ≤ k. If i ≥ 3 or j+k ≥ 15, then there exists a 2-connected,
Si,j,k-free graph G such that pc(G) = 3.

Using this characterization, it is quit natural to forbid Si,j,k with small i,j,
and k, for example S1,1,3.

Theorem 1.3 Let G be a noncomplete, 2-connected, S1,1,3-free graph of min-
imum degree at least 3. Then pc(G) = 2.

Some basic results, which are important for our proofs, make only use of
the connectivity of a graph.

Theorem 1.4 (Borozan et al. [3]) Let G be a 2-connected graph. Then
there exists an edge-colouring c : E(G)→ [3] having the strong property.

Theorem 1.5 (Borozan et al. [3]) Let G be a 2-connected bipartite graph.
Then there exists an edge-colouring c : E(G)→ [2] having the strong property.

The authors claim that their results still hold if one replaces 2-connectivity
by 2-edge-connectivity. As a further consequence, by a result of Paulraja in
[5], every 3-connected graph G has a 2-connected bipartite spanning graph.
Therefore, Borozan et al. deduced the following result.

Theorem 1.6 (Borozan et al. [3]) Let G be a 3-connected graph. Then
there exists an edge-colouring c : E(G)→ [2] having the strong property.

There are 2-connected graphs having proper connection number 3, for ex-
ample graph B in Figure 1 [3]. Since all known graphs have a 3-cut, we study
the proper connection number of 3-edge-connected graphs.

Theorem 1.7 Let G be a 3-edge-connected and noncomplete graph. Then
pc(G) = 2.

Fig. 1. Graph B

We note that Theorem 1.7 closes the gap in transforming Theorems 1.4,
1.5, and 1.6 to their edge-connected version.

2 Basic sketch of the proofs of Theorems 1.3 and 1.7

The idea of both proof can be described in its basic form as follows:

Suppose, to the contrary, there is a graph G fulfilling all conditions of the
corresponding theorem, but has proper connection number at least 3. Since
G is 2-edge-connected in both theorems, it contains a cycle as a subgraph.
Therefore, G contains a subgraph of proper connection number 2. Now let H
be a connected subgraph in G such that

(i) pc(H) = 2, and (ii) subject to (i), n(H) is maximum.

Moreover, we can assume, without loss of generality, that H is induced. Now
by some case to case analysis, we obtain that the 2-edge-colouring making H
properly connected is extendable, contradicting the maximality of H, or we
find an induced subgraph S1,1,3, in case of Theorem 1.3, or a 2-cut in case of
Theorem 1.7, a contradiction.

References

[1] E. Andrews, C. Lumduanhom, E. Laforge, and P. Zhang, On Proper-Path
Colourings in Graphs, JCMCC, to appear.

[2] P. Bedrossian, Forbidden Subgraph and Minimum Degree Conditions for
Hamiltonicity, Thesis, Memphis State University, USA, 1991.

[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, and
Z. Tuza, Proper connection of graphs, Discrete Math. 312(17) (2012), 2550–
2560.

[4] F. Harary, Graph Theory, Addison-Wesley, 1969.

[5] P. Paulraja, A characterization of Hamiltonian prisms, J. Graph Theory 17 (2)
(1993), 161–171.

On the minimum degree and the proper
connection number of graphs

Christoph Brausea, Trung Duy Doana,b,1, Ingo Schiermeyera

aInstitute of Discrete Mathematics and Algebra
TU Bergakademie Freiberg

Freiberg, Germany
brause@math.tu-freiberg.de, ingo.schiermeyer@tu-freiberg.de

bSchool of Applied Mathematics and Informatics
Hanoi University of Science and Technology

Hanoi, Vietnam
trungdoanduy@gmail.com

Abstract

An edge-coloured graph G is called properly connected if any two vertices are con-
nected by a path whose edges are properly coloured. The proper connection number
of a graph G, denoted by pc(G), is the smallest number of colours that are needed in
order to make G properly connected. In this paper we consider sufficient conditions
in terms of the ratio between minimum degree and order of a 2-connected graph G
implying that G has proper connection number 2. 1

Keywords: proper connection number, 2-connected, minimum degree

1 Financial support by the Free State of Saxony (Landesgraduiertenstipendium) is thank-
fully acknowledged

116

1 Introduction

We use [3] for terminology and notation not defined here and consider simple
and undirected graphs only.

As an extension of proper colourings and motivated by rainbow connections
of graphs, Andrews et al. [1] and, independently, Borozan et al. [2] introduced
the concept of proper connections in graphs. An edge-coloured graph G is
called properly connected if every two vertices u, v ∈ V (G) are connected by
a path whose edges are properly coloured. The proper connection number
pc(G) of a graph is the smallest number of colours needed to colour a graph G
properly connected. We say, an edge-colouring c has the strong property if for
every two vertices u, v ∈ V (G) there exists two properly coloured paths P1 :
u = w1w2 . . . wk = v and P2 : u = z1z2 . . . zl = v such that c(w1w2) 6= c(z1z2)
and c(wk−1wk) 6= c(zl−1zl).

For simplifying notation, let [k] be the set {1, 2, . . . , k} for some positive
integer k. Further, let G be a graph, u, v ∈ V (G) be two distinct vertices, and
P : w1w2 . . . wk be a path, vertex disjoint from G. We say, we add the ear P to
G by adding the edges uw1 and vwk. Hence, for a Θ-graph G, there is a cycle
C, two distinct vertices u, v ∈ V (C), and a path P such that G is obained by
adding ear P to C. Moreover, we define a 2-ear cycle to be a graph obtained
by adding some ear to a Θ-graph.

Borozan et al. [2] proved the following results.

Theorem 1.1 (Borozan et al. [2]) Let G be a 2-connected graph. Then
there exists an edge-colouring c : E(G)→ [3] having the strong property.

Theorem 1.2 (Borozan et al. [2]) Let G be a 2-connected bipartite graph.
Then there exists an edge-colouring c : E(G)→ [2] having the strong property.

Further, Borozan et al. [2] introduced a construction to obtain 2-connected
graphs having proper connection number 3, for example graph B in Figure 1.
We note that all those graphs contain odd cycles.

Fig. 1. Graph B with proper connection number 3

By a result of Paulraja in [6], every 3-connected graph G has a 2-connected
bipartite spanning graph. Therefore, Borozan et al. deduced the following
result.

Theorem 1.3 (Borozan et al. [2]) Let G be a 3-connected graph. Then
there exists an edge-colouring c : E(G)→ [2] having the strong property.

Based on their construction for 2-connected graphs of proper connection
number 3, the authors conjectured the following in [2].

Conjecture 1.4 (Borozan et al. [2]) Let G be a graph of connectivity κ(G) =
2 and minimum degree δ(G) at least 3. Then pc(G) = 2.

In this paper we study sufficient conditions related to the minimum degree
and implying a proper connection number at most 2. In particular, we disprove
Conjecture 1.4 by constructing a series of 2-connected graphs Gi such that
δ(Gi) = i, n(Gi) = 42i, and pc(Gi) ≥ 3.

Proposition 1.5 For every integer d ≥ 2, there exists a 2-connected graph G
of minimum degree d and order n = 42d such that pc(G) ≥ 3.

Further, using our construction technique in a slightly different way, we
can prove the following result.

Proposition 1.6 For all integers d, k ≥ 2, there exists a connected graph G
of minimum degree d and order n = (d+ 1)(k + 1) such that pc(G) = k.

By Proposition 1.5, one cannot bound the minimum degree of a 2-connected
graph G from below by a constant such that pc(G) ≤ 2 follows. Therefore,
it is quiet natural to ask for a ratio between minimum degree and order of a
2-connected graph, implying pc(G) ≤ 2.

Theorem 1.7 Let G be a 2-connected graph of order n = n(G) and minimum
degree δ(G) > n+8

20
. Then pc(G) ≤ 2.

2 Sketch of the proof of Theorem 1.7

Before we start sketching the main steps of our proof, let us mention Menger’s
theorem, since we shall use it, as well as Theorem 1.2, frequently as a basic
tool at several points throughout the proof.

Theorem 2.1 (Menger’s theorem [5]) Let G be a graph, u, v ∈ V (G) be
two distinct vertices. Then the size of a minimum vertex cut for u and v equals
the maximum number of internally pairwise disjoint u− v paths.

Now we are able to sketch our proof by starting with the following claim.

Claim 2.2 If G is a cycle, Θ-graph, or 2-ear cycle, then pc(G) ≤ 2.

Now suppose, to the contrary, that G is a 2-connected graph of order
n = n(G), minimum degree δ(G) > n+8

20
, and proper connection number

at least 3. Trivially, G is no cycle, Θ-graph, or 2-ear cycle by Claim 2.2.
Therefore, let Q be a subgraph of G such that

(i) Q is a 2-ear cycle, and (ii) subject to (i), n(Q) is maximum.

Further, let H be a subgraph of G such that

(i) pc(H) ≤ 2, Q is a subgraph of H, and

(ii) subject to (i), n(H) is maximum.

By our supposition, G−V (H) is a nonempty graph. Now the following series
of claims lead us to the nonexistence of G.

Claim 2.3 Any component of G− V (H) is bipartite.

Claim 2.4 Any component of G− V (H) has a bridge.

Using a result of Jackson in [4], we obtain the next claim.

Claim 2.5 There exist two distinct vertices u and v in G− V (H) such that

(i) u and v are adjacent to vertices in V (H),

(ii) there exists a path P connecting u and v in G − V (H) of order at least
4δ(G)− 2.

Claim 2.6 n(H) ≥ 16δ(G)− 6.

By Claims 2.5 and 2.6, and the assumption on the minimum degree of G,
n(G) ≥ n(H) + n(P) ≥ 20δ(G)− 8 > n(G), a contradiction.

References

[1] E. Andrews, C. Lumduanhom, E. Laforge, and P. Zhang, On Proper-Path
Colourings in Graphs, JCMCC, to appear.

[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, and
Z. Tuza, Proper connection of graphs, Discrete Math. 312(17) (2012), 2550–
2560.

[3] F. Harary, Graph Theory, Addison-Wesley, 1969.

[4] B. Jackson, Long cycles in bipartite graphs, J. of Combinatorial Theory, Series
B, 38 (2) (1985), 118–131.

[5] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 96–115.

[6] P. Paulraja, A characterization of Hamiltonian prisms, J. Graph Theory 17 (2)
(1993), 161–171.

A Note on Fractional Coloring and the Integrality
gap of LP for Maximum Weight Independent Set

Parinya Chalermsook a,2, Daniel Vaz a,b,1

a Max-Planck-Institut für Informatik, Saarbrücken, Germany
b Graduate School of Computer Science, Saarland University, Saarbrücken, Germany

Abstract

We prove a tight connection between two important notions in combinatorial optimiza-

tion. Let G be a graph class (i.e. a subset of all graphs) and r(G) = supG∈G
χf (G)
ω(G) where

χf (G) and ω(G) are the fractional chromatic number and clique number of G respec-
tively. In this note, we prove that r(G) tightly captures the integrality gap of the LP
relaxation with clique constraints for the Maximum Weight Independent Set (MWIS)
problem. Our proof uses standard applications of multiplicative weight techniques, so
it is algorithmic: Any algorithm for rounding the LP can be turned into a fractional
coloring algorithm and vice versa. We discuss immediate applications of our results in
approximating the fractional chromatic number of certain classes of intersection graphs.

Keywords: Fractional coloring, maximum weight independent set, linear programming.

1 Introduction

In the Maximum Weight Independent Set Problem (MWIS), we are given graph
G and weight function w : V (G) → R≥0. A set J ⊆ V (G) is independent if
there is no edge in J . Define w(J) =

∑
v∈J w(v). Our goal is to compute the

maximum weight independent set in G. We denote the weight of a maximum

1 Email: ramosvaz@mpi-inf.mpg.de
2 Email: parinya@mpi-inf.mpg.de

120

weight independent set by α(G,w). This problem is cornerstone in combinatorial
optimization and has been extensively studied.

We consider the LP relaxation with clique constraints for MWIS. For each
vertex v ∈ V , there is a variable xv indicating whether vertex v is included.

(LP) max
∑

v∈V (G)

w(v)xv

s.t.
∑

v∈C
xv ≤ 1 for each clique C in graph G

In general, the number of cliques can be exponentially large, but for restricted
graph classes (e.g. intersection graphs of rectangles in higher dimensional boxes
[4,3]), there is only a polynomial number of maximal cliques. Moreover, it is known
that all clique constraints are implied by the canonical SDP relaxation of MWIS,
as well as the Lovasz theta function [6]. The main question of our interest is:

How good is (LP) in approximating the maximum-weight independent set?

For each G and weight function w, define LP(G,w) as the value of an optimal

solution for the above LP. The integrality gap gap(G,w) is the ratio LP(G,w)
α(G,w)

.

In this note, we show a tight connection between the integrality gap of (LP)
and the fractional chromatic number of a graph. A valid fractional coloring for
G is a function σ : 2V (G) → [0, 1] such that (i) the support of σ contains only
independent sets, and (ii) for each v ∈ V (G), we have

∑
I:v∈I σ(I) ≥ 1. The

fractional chromatic number χf (G) is defined as the minimum real number k such
that there exists a valid fractional coloring σ,

∑
I σ(I) ≤ k.

For any graph G, a clique replacement operation on v is performed by creating
graph G′ : V (G′) = (V (G) \ v) ∪ {v1, . . . , v`} and E(G′) = E(G \ v) ∪ {viu : vu ∈
E(G)} ∪ {vivj : i, j ∈ [`]}. In words, this operation replaces vertex v with a clique
K`. Let G be a class of graphs. We say that G is closed under clique replacement
if for any G ∈ G, a clique replacement operation at v gives us G′ ∈ G. Many
natural graph classes are closed under clique replacement, e.g., interval graphs,
d-dimensional box graphs, disk graphs, and perfect graphs.

Theorem 1.1 Let G be any class of graphs that is closed under clique replacement.
The following statements hold:

• Suppose that, for any n-vertex graph G ∈ G, we have χf (G) ≤ γ(n)ω(G). Then,
for any G ∈ G and any weight function w, we have LP(G,w) ≤ γ(N)α(G,w) for
some N . Moreover, given a fractional coloring with polynomial support, there is
a (1 + ε)γ(N) approximation for MWIS via rounding (LP), for N = O(n2/ε).

• Assume LP(G,w) ≤ γ(n)α(G,w) for all w. Then we have χf (G) ≤ γ(n)ω(G).
Moreover, given a polynomial-time γ(n)-approximation LP rounding algorithm
for MWIS, we can efficiently compute a fractional coloring using at most (1 +

ε)γ(n)ω(G) colors for any ε > 0.

The gap between χ(G) and ω(G) has received a lot of attention in the con-
text of intersection graphs. In particular, many old problems in mathematics are
related to χ-boundedness 3 of intersection graphs (see for instance [2,5] and refer-
ences therein). We hope that this work will encourage the study of χf (G)/ω(G).
Our results have many immediate applications, giving both new algorithmic and
integrality gap results. Due to the space limit, we omit the applications.

2 The Equivalence

Fractional Coloring =⇒ LP Gap: Consider any graph G = (V,E), n = |V |,
and G ∈ G. We will show that α(G,w) ≥ LP(G,w)/γ(n).

Let x be an optimal LP solution for (LP). First, assume that xv is in an integral
multiple of 1/q for some integers q. By standard LP theory, this is possible. Let
xv = qv/q. We create a graph G′ from G as follows: For each vertex v ∈ V (G),
perform a clique replacement operation on v by replacing v with a clique Xv of
size qv. Observe that ω(G′) ≤ q: Let C ′ be a clique in G′. Consider the set
C = {v ∈ V (G) : Xv ∩ C ′ 6= ∅}. The LP constraint guarantees that

∑
v∈C xv ≤ 1

and therefore |C ′| ≤∑v∈C |Xv| =
∑

v∈C qv ≤ q.

Since G is closed under clique replacement operation, we have G′ ∈ G and that
χf (G

′) ≤ γ(N)q. Let σ be an optimal fractional coloring of G′. We sample an
independent set J where each J ⊆ V (G′) is sampled with probability σ(J)/χf (G).
Therefore, each vertex v ∈ V (G′) is sampled with probability

∑
I:v∈I σ(I) ≥

1/χf (G
′). So we get an independent set J : E[w(J)] =

∑
v∈V (G′)w(v)Pr[v ∈ J] ≥

1
χf (G′)

∑
v∈V (G′)w(v). This is at least 1

γ(N)q

∑
v∈V (G)w(v)qv = LP(G,w)/γ(N).

This concludes the proof. Remark that N can be very large compared to n,
but this does not affect the ratio if γ is a constant function. If γ is not a constant
function, we can reduce the value of N to O(n2/ε), while preserving the ratio
within a factor of (1 + ε). The proof is omitted, due to space limitation.

LP Gap =⇒ Coloring: Let G be a graph on n vertices. If gap(G,w) ≤ γ(n) for
all weight vectors w, then χf (G) ≤ γ(n)ω(G). Moreover, we show how to compute
a fractional coloring using at most (1 + ε)γ(n)ω(G) colors for any ε > 0.

The following linear constraints check whether the graph is 1/η-colorable.

(P)
∑

I:v∈I
σ(I) ≥ η for all v ∈ V (G)

∑

I

σ(I) ≤ 1

3 A graph is χ-bounded if χ(G) ≤ f(ω(G)) for some function f .

Our goal is to find a feasible solution σ that satisfies every constraint. Applying
a standard multiplicative weight framework, our algorithm does the following steps:

(i) Start with initial weight function w(1) where w
(1)
v = 1 for all v.

(ii) In iteration t, compute a solution σ(t) that satisfies the “weighted average

constraint”
∑

v w
(t)
v (
∑

I:v∈I σ(I)− η) ≥ 0.

(iii) Update the weight w(t) to w(t+1). Then return to Step (ii).

Theorem 2.1 [1] There is an update strategy such that, after T rounds, solution
σ = 1

T

∑T
t=1 σ

(t) (1−ε)-satisfies all constraints, i.e. for all v,
∑

I:v∈I σ(I) ≥ (1−ε)η.

It only remains to show that we can compute a solution that satisfies the
“weighted average constraint”, which means finding I with w(I) ≥ η w(t)(V) on

(G,w(t)). Consider the linear program for MWIS, (LP), using weights {w(t)
v }v∈V .

We obtain a fractional solution x with weight 1
ω(G)

∑
v∈V w

(t)
v by setting xv =

1/ω(G) for all v ∈ V . Since
∑

v∈C xv = |C|/|ω(G)| ≤ 1, for every clique C, it is
clear that this is a solution to the LP. This implies that there is an integer solution
with weight 1

γ(n)ω(G)

∑
v∈V w

(t)
v = η

∑
v∈V w

(t)
v , that is, there is an independent set I ′

with the desired weight. Furthermore, we use a γ(n)-approximation LP rounding

algorithm to find I ′ of total weight 1
γ(n)

∑
v w

(t)
v xv = w(t)(V)/ω(G)γ(n).

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(6):121–164,
2012.

[2] Edgar Asplund and Branko Grünbaum. On a coloring problem. Mathematica
Scandinavica, 8:181–188, 1960.

[3] Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles.
In Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009,
New York, NY, USA, January 4-6, 2009, pages 892–901, 2009.

[4] Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum
independent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–
392, 2012.

[5] András Gyárfás. On the chromatic number of multiple interval graphs and overlap
graphs. Discrete mathematics, 55(2):161–166, 1985.

[6] László Lovász. On the shannon capacity of a graph. Information Theory, IEEE
Transactions on, 25(1):1–7, 1979.

List Coloring of Planar Graphs with Forbidden
Cycles

Sreekanth Gorla, Meghana Nasre

Indian Institute of Technology, Madras, India.
{gsrikanth,meghana}@cse.iitm.ac.in

Abstract

We consider list coloring of planar graphs without cycles of length in {4, . . . , 8}.
List coloring is a generalization of the classical vertex coloring problem where each
vertex has a list of colors associated with it. The goal is to proper vertex color the
graph, such that each vertex gets a color available in its list. In this note, we prove
that it is possible to 3-list color planar graphs without cycles of length in {4, . . . , 8}
and with restrictions on 9-cycles.

Keywords: planar graphs; list coloring; discharging method

1 Introduction

Coloring is possibly one of the most well-studied problems in graph theory.
A generalization of the coloring problem is list coloring where the input is a
graph G and associated with every vertex is a list l(v) of distinct colors. It is
common to assume that the lists associated with all vertices are of the same
size. The goal is to proper vertex color the graph such that every vertex gets
a color from its list. The choosability number of a graph denoted by χl(G) is
the minimum size of the lists such that with any assignment of colors to the
lists, it is possible to get a proper vertex coloring of G. Since all the lists can
be same, it is clear that the chromatic number of G denoted by χ(G) ≤ χl(G).

124

Coloring and list coloring have been extensively investigated on planar
graphs. It was conjectured that for a planar graph χl(G) ≤ χ(G)+1. Support-
ing this, Alon and Tarsi [1] proved that planar bipartite graphs are 3-choosable.
Thomassen [6] proved that planar graphs are 5-choosable. However, Voigt [7]
constructed a 3-colorable graph which is not 4-choosable. In this paper, we
consider planar graphs with forbidden cycles.

Salvatipour [5] and Borodin et al.[2] in a series of results have proved
that planar graphs without {4, . . . , 7} cycles are 3-colorable. However, in
terms of choosability, the current best known result is by Borodin [3] where
he shows that planar graphs without {4, . . . , 9} cycles are 3-choosable. In
the same paper, Borodin also posed the open question of proving that planar
graphs without cycles of length in {4, . . . , 8} are 3-choosable. In this note,
we make partial progress towards this question. Our main result is stated as
Theorem 1.1 which we prove using the discharging method. At the heart of
the proof are reducible configurations with respect to 3-choosability, which
may be of independent interest.

Theorem 1.1 Let G be a planar graph. If in G,

(i) there is no cycle of length in {4, . . . , 8} and

(ii) 9-cycles do not have vertices of degree 4 or 5 on its boundary,

then G is 3-choosable.

Preliminaries: All graphs considered here are planar, simple, and connected.
For a graph G, the sets V (G), E(G), F (G) denote the set of vertices, edges,
and faces of G respectively. Let dv denote the degree of vertex v and lf denote
the length of a face f . The chromatic number and choosability number of
G are denoted by χ(G) and χl(G) respectively. Recall Euler’s formula which
holds for planar graphs, V (G) + F (G) = E(G) + 2.

Our proof is using the discharging method which is most popularly known
for the proof of the four color theorem. The main ingredients of any proof
by discharging method is a set of reducible configurations, charging rules, and
discharging rules. These terms will be clarified in the proof of Theorem 1.1.

2 Proof of Theorem 1.1

In order to prove the theorem, we first list the set of reducible configura-
tions. A reducible configuration is a subgraph that cannot occur in a minimal
counterexample for the desired property (in this case, Theorem 1.1).

(R1) : Vertices of degree less than 3.

(R2) : Induced even cycle with all degree-3 vertices.

(R3) : 9 cycle with all degree-3 vertices and adjacent to four triangles.

To see that R1 is reducible, assume that a minimal counterexample G
contains a vertex v with dv < 3. Consider the graph H = G \ {v}. By
minimality of G, the graph H is 3-choosable. Recall that each vertex has lists
of size 3 associated with it. Thus, it is possible to extend the coloring of H
and assign a color to v from l(v) such that G is 3-choosable. To see that R2 is
3-choosable, we employ a similar argument and the fact that every even cycle
is 2-choosable [4]. Proving R3 is reducible is significantly non-trivial and we
show it using Theorem 2.1.

Assuming these reducible configurations, we prove Theorem 1.1. We show
that any planar graph satisfying the conditions of Theorem 1.1 has one of the
reducible configurations. If not, then there exists a minimal counterexample
G. We now assign charge (see below) to the vertices and faces of G such that
the total charge is negative. Using suitable discharging rules (see below) and
the fact that G does not contain any reducible configuration as an induced
subgraph, we show that the final charge is positive. This contradicts the
existence of the minimal counterexample G.
Charging rules: For a vertex v of degree dv, assign a charge of dv − 6. For
a face f of length lf , assign a charge of 2lf − 6. With this charging scheme
and using Euler’s formula, it is easy to see that the total initial charge for
any graph is −12. We also note that, all faces have non-negative charge. On
the other hand, vertices of degree 3, 4, and 5 get negative charge. We call a
degree-3 vertex as a type-1 vertex, if it belongs to two non-triangular faces
and one triangular face. We call a degree-3 vertex as a type-2 vertex, if it has
all non-triangular faces surrounding it.
Discharging rules: We set up the discharging rules such that every non-
triangular face (having positive charge) gives excess charge to vertices which
have negative charge. Every non-triangular face f gives:

(i) a charge of 3
2

to type-1 degree-3 vertices on its boundary.

(ii) a charge of 1 to type-2 degree-3 vertices on its boundary.

(iii) a charge of 1
2

to each degree-4 vertex v on its boundary, if either (a) v
has exactly one triangle incident on it and that triangle shares an edge
with f or (b) v has no triangle incident on it.

(iv) a charge of 1 to all degree-4 vertices on its boundary not satisfying (iii).

(v) a charge of 1
3

to all degree-5 vertices on its boundary.

As mentioned earlier these charging, discharging rules and the reducible

configurations allow us to contradict the existence of a minimal counterexam-
ple, or in fact any counterexample. Thus, this proves the theorem.

Theorem 2.1 A 9 cycle with all degree-3 vertices and adjacent to four trian-
gles is reducible with respect to Theorem 1.1.

Proof. (sketch) Let H denote a 9 cycle as mentioned above, see Figure 1(i).
If H occurs in any minimal counterexample G, we remove v1 (degree 3 vertex
of H not a part of any triangle) from G. By minimality of G, G \ {v1} has
a 3-list coloring say φ. We prove that, either φ can be extended to G or
the colors on vertices in H form two equivalence classes. That is, for each
i = 1, . . . , 9, vertex vi has a l(vi) = {c1, c2, x(j)}, where x(j) denotes the color
that φ assigned to wj (j = 1, . . . , 5), the neighbour of vi not in the cycle. If
the lists are of this type and we are not able to complete the coloring, it must
be the case that for each j = 1, . . . , 5, wj is assigned x(j). We then introduce
a suitable gadget to show that this bad case cannot happen and therefore, we
can always extend the 3-list coloring to G. 2

Fig. 1. Reducible configurations

Discussion: We remark that in addition to the reducible configurations men-
tioned earlier, we can also prove that a particular case of two 9-cycles sharing
a degree-4 vertex (see Figure 1(ii)) is also reducible. We believe that these re-
ducible configurations are a useful contribution which may help in completing
the proof of Borodin’s open question.

References

[1] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica, 12
(1992), pp. 125–134.

[2] O. Borodin, A. Glebov, A. Raspaud, and M. Salavatipour, Planar graphs
without cycles of length from 4 to 7 are 3-colorable, Journal of Combinatorial
Theory, Series B, 93 (2005), pp. 303 – 311.

[3] O. V. Borodin, Structural properties of plane graphs without adjacent triangles
and an application to 3-colorings, Journal of Graph theory, (1996), pp. 183 –
186.

[4] P. Erdős, A. L. Rubin, and H. Taylor, Choosability in graphs. (in english),
Combinatorics, graph theory and computing, (1980), pp. 125–157.

[5] M. R. Salavatipour, Graph Colouring via the Discharging Method, PhD thesis,
Toronto, Ont., Canada, Canada, 2003.

[6] C. Thomassen, Every planar graph is 5-choosable, Journal of Combinatorial
Theory, Series B, 62 (1994), pp. 180 – 181.

[7] M. Voigt and B. Wirth, On 3-colorable non-4-choosable planar graphs, Journal
of Graph Theory, 24 (1997), pp. 233–235.

Subset matching and edge coloring
in bipartite graphs

Ömer Can Yavuzyılmaz*, Enver Kayaaslan

Turgut Ozal University, Ankara, Turkey
omercanyy@gmail.com, ekayaaslan@turgutozal.edu.tr

Abstract

The focus of this paper is on finding a matching in a bipartite graph such that a
given subset of vertices are matched. This is called subset matching and generalizes
perfect matchings. We prove a necessary and sufficient condition for the existence
of a subset matching in bipartite graphs. The proof is algorithmic and based on
combination of two matchings. Remarkably, the necessary and sufficient condition
always holds when the subset is composed of the vertices with maximum degree.
This in turn leads to a simple algorithm that finds an optimal edge coloring in
bipartite graphs with no need to transform the bipartite graph into a regular one.

Keywords: bipartite graph, matching, edge coloring.

Bipartite graphs represent the class of (undirected) graphs without odd
cycles, and a matching is a subgraph in which every vertex is incident to at
most one edge. Throughout the presentation of our findings, we assume that
the reader is familiar with bipartite graphs and matchings [10]. A closely
related study is by Alon and Yuster [2], which introduces maximum subset
matching in general graphs and gives an approximation algorithm. In our
study, we are interested in subset matching in bipartite graphs, where a given
subset of vertices are all matched. Notice that a subset matching is, in fact, a
perfect matching for the bipartite graph when the subset contains all vertices.

129

(a) two paths of even
and odd lengths starting
from the blue vertices. (b) a cycle.

(c) two paths of even
and odd lengths starting
from the red vertices.

Fig. 1. Possible components of the union graph of two matchings.

Problem 1 Subset matching in bipartite graphs Given a bipartite graph
B(V1∪V2, E) and a subset S ⊂ V1∪V2 of vertices, a matching M is called a
subset matching for S if there is an edge {u, v} ∈ M for every v ∈ S.

The following theorem presents a necessary and sufficient condition for a
bipartite graph to have a subset matching for a given subset of vertices.

Theorem 1 Necessary and sufficient condition Given a bipartite graph
B(V1∪V2, E) and S⊂V1∪V2, there is a subset matchingM for S if and only if
|Xi| ≤ |N (Xi)| for any Xi ⊂ S∩Vi, for each i = 1, 2.

Proof. Hall’s Theorem [6] implies that there exists a matching that covers
S ∩ Vi if and only if |Xi| ≤ |N (Xi)| for any Xi ⊂ S ∩ Vi, for each i = 1, 2.

Assume that there is a subset matching M for S. Then, M covers both
S ∩ V1 and S ∩ V2, and due to Hall’s Theorem, |Xi| ≤ |N (Xi)| for any Xi ⊂
S∩Vi, for each i = 1, 2.

Assume that |Xi| ≤ |N (Xi)| for any Xi ⊂ S∩Vi, for each i = 1, 2. By
Hall’s Theorem, there are two matchings M1 and M2 that cover S ∩ V1 and
S ∩ V2, respectively. Now, we show that there is a subset matching M for S.
Consider the union graphM1 ∪M2, which is also a subgraph of the bipartite
graph. We categorize vertices into three groups: the vertices of S ∩V1 (shown
as blue circles in Fig. 1), the vertices of S∩V2 (red circles), and the vertices of
V1∪V2−S (empty circles). Notice that any vertex in the union graph is either
isolated, or incident to exactly one edge, or incident to exactly two edges (one
fromM1 and the other fromM2). Thus a connected component of the union
graph is either a path, or a cycle of even length [9,11,4], as depicted in Fig. 1,
where the blue and red edges represent edges of M1 and M2, respectively.
For a path that starts from a (blue) vertex in S ∩ V1 (Fig. 1a), we pick the
corresponding (blue) edges ofM1 to be included inM. For a cycle (Fig. 1b),
we pick either the corresponding (blue) edges ofM1 or (red) edges ofM2 for
M. Finally, for a path that starts from a (red) vertex in S ∩ V2 (Fig. 1c), we
pick the corresponding (red) edges ofM2 to be included inM. Then,M is a
matching and covers all vertices of S. Thus, M is a subset matching for S.2

v5v4v3v2v1

u5u4u3u2u1

v5v4v3v2v1

u5u4u3u2u1

v5v4v3v2v1

u5u4u3u2u1

Fig. 2. A sample bipartite graph with maximum degree three (left), a subset match-
ing for the maximum degree vertices (middle), an optimal edge coloring (right).

The following theorem relates the edge coloring problem in bipartite graphs
to subset matching for the maximum degree vertices.

Theorem 2 Subset matching for maximum degree vertices Given a
bipartite graph B(V1∪V2, E), there is a subset matching M∆ for S∆ = {v ∈
V1 ∪ V2 : deg(v) = ∆}, where ∆ refers to the maximum degree.

Proof. We show that |Xi| ≤ |N (Xi)| for any Xi ⊂ S∆ ∩ Vi, for each i =
1, 2. Without loss of generality, take any X1 ⊂ S∆ ∩ V1. For the sake of
contradiction, suppose |X1| > |N (X1)|. Consider the edges incident to any of
the vertices in X1. There are ∆|X1| such edges as deg(v) = ∆ for each v ∈ X1.
Notice that each of those edges is also incident to a vertex in N (X1). Since we
suppose |X1| > |N (X1)|, there is a vertex w ∈ N (X1) such that deg(w) > ∆,
by the pigeonhole principle. This contradicts with that ∆ is maximum. 2

The edge chromatic number of a bipartite graph equals to the maximum
degree ∆, and this fact dates back to König [8]. In the literature, there are
a number of algorithms for finding an optimal edge coloring of a bipartite
graph [5,7,3,12,1]. However, those algorithms are, in general, based on edge
coloring of regular bipartite graphs.

The proof of Theorem 1 is algorithmic, and thus, we can find a subset
matching, if exists, using bipartite graph matching algorithms as a subrou-
tine, and a subset matching exists for the maximum degree vertices, due to
Theorem 2. This leads to an algorithm for finding an optimal edge coloring
of bipartite graphs without introducing new vertices or edges. Our algorithm
takes ∆ steps, and initially, we consider the bipartite graph B1 = B. At each
step k < ∆, the algorithm finds a subset matching Mk for the maximum
degree vertices in Bk, assigns a color ck to those edges of Mk, and, for the
next step, considers the bipartite graph Bk+1 = Bk −M1. Notice that the
maximum degree decreases exactly by one after each step. At the final step,
the bipartite graph B∆ is itself a matching since the maximum degree becomes
one. Fig. 2 illustrates a bipartite graph with maximum degree ∆ = 3, a subset
matching for {u1, v2, v4}, which are the vertices of maximum degree, and an

edge coloring with three colors obtained by our algorithm. Note that our algo-
rithm computes an optimal edge coloring also for bipartite multigraphs, if we
identify the maximum degree vertices by taking multiple edges into account,
and consider multiple edges as a single one when finding a subset matching.

References

[1] Noga Alon. A simple algorithm for edge-coloring bipartite multigraphs.
Information Processing Letters, 85(6):301–302, 2003.

[2] Noga Alon and Raphael Yuster. Fast algorithms for maximum subset matching
and all-pairs shortest paths in graphs with a (not so) small vertex cover. In
Algorithms–ESA 2007, pages 175–186. Springer, 2007.

[3] Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite
multigraphs in O(E log D) time. Combinatorica, 21(1):5–12, 2001.

[4] Fanny Dufossé, Kamer Kaya, and Bora Uçar. Bipartite matching heuristics
with quality guarantees on shared memory parallel computers. In Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, pages 540–
549. IEEE, 2014.

[5] Harold N Gabow and Oded Kariv. Algorithms for edge coloring bipartite graphs
and multigraphs. SIAM Journal on Computing, 11(1):117–129, 1982.

[6] Philip Hall. On representatives of subsets. J. London Math. Soc, 10(1):26–30,
1935.

[7] Ajai Kapoor and Romeo Rizzi. Edge-coloring bipartite graphs. Journal of
Algorithms, 34(2):390–396, 2000.

[8] Dénes König. Graphok és alkalmazásuk a determinánsok és a halmazok
elméletére. Mathematikai és Természettudományi Ertesito, 34:104–119, 1916.

[9] Eugene L Lawler. Combinatorial optimization: networks and matroids. Courier
Corporation, 2001.

[10] László Lovász and Michael D Plummer. Matching theory, volume 367.
American Mathematical Soc., 2009.

[11] Fredrik Manne and Mahantesh Halappanavar. New effective multithreaded
matching algorithms. In Parallel and Distributed Processing Symposium, 2014
IEEE 28th International, pages 519–528. IEEE, 2014.

[12] Alexander Schrijver. Bipartite edge coloring in O(∆m) time. SIAM Journal on
Computing, 28(3):841–846, 1998.

On the chromatic number of (P5, K2,t)-free
graphs ?

Christoph Brausea, Trung Duy Doana,b, Ingo Schiermeyera

aInstitute of Discrete Mathematics and Algebra
TU Bergakademie Freiberg

Freiberg, Germany
brause@math.tu-freiberg.de, ingo.schiermeyer@tu-freiberg.de

bSchool of Applied Mathematics and Informatics
Hanoi University of Science and Technology

Hanoi, Vietnam
trungdoanduy@gmail.com

Abstract

In this paper we study the chromatic number of (P5,K2,t)-free graphs with t ≥ 2.
It is still an open question whether there are polynomial (χ-binding) functions fk
for k ≥ 5 such that every Pk-free graph G satisfies χ(G) ≤ fk(ω(G)), where Pk is
an induced path on k vertices. Our main result is that every (P5,K2,t)-free graph
G admits a polynomial χ-binding function. Moreover, we will present polynomial
χ-binding functions for several other subclasses of P5-free graphs.

Keywords: chromatic number, χ-binding function, P5-free graphs

? Part of this research has been financially supported by the DAAD PPP-project 57210296
Freiberg-Pilsen. Financial support by the Free State of Saxony (Landesgraduierten-
stipendium of Trung Duy Doan) is thankfully acknowledged.

133

1 Introduction

We consider finite, simple, and undirected graphs, and use standard terminology
and notation.

Let G be a graph. An induced subgraph of G is a graph H such that
V (H) ⊆ V (G), and uv ∈ E(H) if and only if uv ∈ E(G) for all u, v ∈ V (H).
Given graphs G and F we say that G contains F if F is isomorphic to an
induced subgraph of G. We say that a graph G is F -free, if it does not contain
F. For two graphs G,H we denote by G+H the disjoint union and by G∨H
the join of G and H, respectively.

A graph G is called k-colourable, if its vertices can be coloured with k
colours so that adjacent vertices obtain distinct colours. The smallest k such
that a given graph G is k-colourable is called its chromatic number, denoted by
χ(G). It is well-known that ω(G) ≤ χ(G) ≤ ∆(G) + 1 for any graph G, where
ω(G) denotes its clique number and ∆(G) its maximum degree. A graph G is
perfect if χ(H) = ω(H) for every induced subgraph H of G.

A family G of graphs is called χ-bound with binding function f if χ(G′) ≤
f(ω(G′)) holds whenever G ∈ G and G′ is an induced subgraph of G. For a
fixed graph H let G(H) denote the family of graphs which are H-free. The
following theorems are well known in chromatic graph theory.

Theorem 1.1 (Erdős [4]) For any positive integers k, l ≥ 3 there exists a
graph G with girth g(G) ≥ l and chromatic number χ(G) ≥ k.

Theorem 1.2 (The Strong Perfect Graph Theorem [3]) A graph is per-
fect if and only if it contains neither an odd cycle of length at least five nor
its complement.

In this paper we study the chromatic number of P5-free graphs. Our work was
motivated by the following conjecture of Gyárfás.

Conjecture 1.3 (Gyárfás’ conjecture [6])) Let T be any tree (or forest).
Then there is a function fT such that every T -free graph G satisfies χ(G) ≤
fT (ω(G)).

Gyárfás [6] proved this conjecture when T is a path Pk for all k ≥ 4 by
showing fPk

(ω) ≤ (k − 1)ω(G)−1. One may wonder whether this exponential
bound can be improved. In particular:

Question: Are there polynomial (χ-binding) functions fk for k ≥ 5 such that
every Pk-free graph G satisfies χ(G) ≤ fk(ω(G))?

2 Known results for P5-free graphs

The following results have been shown for P5-free graphs.

Theorem 2.1 ([5]) Let G be a connected (P5, House)-free graph of order n
and clique number ω(G). Then χ(G) ≤

(
ω(G)+1

2

)
.

Theorem 2.2 ([2]) Let G be a connected (P5, Gem)-free graph of order n
and clique number ω(G). Then χ(G) ≤ 6ω(G).

Corollary 2.3 Let G be a connected (P5, H)-free graph of order n and clique
number ω(G), where H ∈ {Paw,Diamond}. Then χ(G) ≤ 6ω(G).

•
•

•
•

•
.......
.......
.......
.......
...........

..........
..........

..........
...

...

...

House
• •
•
•

..........
..........
..........
..........
...

.......

.......

.......

.......

.......

.....

Paw
•

•
•
•

..

...

.......

.......

.......

.......

.......

.......

.......

.

Diamond
• •
• • •...

........
........
........
.........................

..

.......
.......
.......
.......
.......
...

Gem
• •
•
•

..........
..........
..........
..........
..

.......

.......

.......

.......

.......

.....

Claw
•

•
•
•

•
..

...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

Dart
• •
•

• •
..........
..........
..........
..........
...

...
..........
..........
..........
...

Cricket
• •
• •
•
•...

........
........
........
.........................

..

.......
.......
.......
.......
.......
...

.......

.......

.......

.......

.

Gem+
• •
•

• •
..........
..........
..........
..........
...

.......

.......

.......

.......

.......

.......

.......

..
..........
..........
..........
..

W 2
3

Fig. 1. The graphs House, Paw, Diamond, Gem, Claw, Dart, Cricket, Gem+,
and Windmill W 2

3 .

In [7] the subgraph Gem was replaced by the supergraph Gem+ = K1 ∨
(K1 + P4).

Theorem 2.4 Let G be a (P5, Gem
+)-free graph of order n and clique number

ω(G). Then χ(G) ≤ ω2(G).

Corollary 2.5 Let G be a connected (P5, H)-free graph of order n and clique
number ω(G), where H ∈ {Claw,Dart, Cricket}. Then χ(G) ≤ ω2(G).

For integers r, p ≥ 2 the windmill graph W p
r+1 = K1 ∨ pKr is the graph

obtained by joining a single vertex (the center) to the vertices of p disjoint
copies of a complete graph Kr (the Windmill W 2

3 is shown in Figure 2).

Theorem 2.6 ([8]) Let G be a (P5,W
p
r+1)-free graph for some r, p ≥ 2. Then

χ(G) ≤ c(p, r) · ω(p−1)r+1 for a constant c(p, r).

3 Main results

Our first main result is the following:

Theorem 3.1 Let G be a (P5, K2,t)-free graph for some t ≥ 2. Then χ(G) ≤
ct · ωt for a constant ct.

Sketch of proof: By the Strong Perfect Graph Theorem every non perfect
(P5, K2,t)-free graph contains an induced C5 or an induced C2p+1 for some

3 ≤ p ≤ ω. We first consider the neighbourhood N(C5) of the C5, which can be
partitioned into 21 distinct subsets depending on the neighbours on an induced
C5. Using the Ramsey number R(Kω, Kt) we manage to find an induced K2,t

or to show that χ(G) ≤ c(n1) · ωt. Next we consider the neighbourhood of an
induced C2p+1 and proceed in a similar way. 2

Next we make use of a structural result for connected P5-free graphs.

Theorem 3.2 (Bacsó and Tuza[1]) Every connected P5-free graph contains
a dominating clique or a dominating P3.

This admits the following result for P5-free graphs (cf. [7]).

Theorem 3.3 Let H be a graph such that G(H) has an O(ωs) χ-binding func-
tion for some s ≥ 1, and let G be a connected (P5, K1 ∨ H)-free graph with
clique number ω(G). Then G has an O(ωs+1) χ-binding function.

So we can apply Theorem 3.3 to obtain the following result for (P5, K2,t)-
free graphs.

Theorem 3.4 Let G be a (P5, Kp ∨ K2,t)-free graph for some p ≥ 1, t ≥ 2.
Then χ(G) ≤ c(p, t) · ωt+p for a constant c(p, t).

References

[1] G. Bacsó and Zs. Tuza, Dominating cliques in P5-free graphs, Period. Math.
Hungar. 21 (3) (1990) 303–308.

[2] S. A. Choudum, T. Karthick, and M. A. Shalu, Perfect Coloring and Linearly
χ-Bound P6-free Graphs, J. Graph Theory 54 (4) (2006) 293–306.

[3] M. Chudnovsky, N. Robertson, P. Seymour, and R.Thomas, The Strong Perfect
Graph Theorem, Ann. of Math. 164 (2006) 51–229.

[4] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959), 3438.

[5] J. L. Fouquet, V. Giakoumakis, F. Maire, and H. Thuillier, On graphs without
P5 and P 5, Discrete Math. 146 (1995) 33–44.

[6] A. Gyárfás, Problems from the world surrounding perfect graphs. In Proc. Int.
Conf. on Comb. Analysis and Applications (Pokrzywna, 1985), Zastos.
Mat. 19 (1987) 413–441.

[7] I. Schiermeyer, Chromatic number of P5-free graphs: Reed’s conjecture,
Discrete Math., to appear.

[8] I. Schiermeyer, On the chromatic number of (P5, windmill)-free graphs,
Preprint 2015.

On Minimum Average Stretch Spanning Trees
in Grid Graphs

Pankaj Pundir and G. Ramakrishna

Indian Institute of Information Technology Chittoor, Sri City, India
{pankaj.pundir,ramakrishna.g}@iiits.in

Abstract

A minimum average stretch spanning tree of a graph is a spanning tree that min-
imizes the average stretch. We present a necessary-and-sufficient condition for a
spanning tree to be a minimum average stretch spanning tree (mast) in grid graphs
and provide a linear-time algorithm to construct an mast.

Keywords: Minimum average stretch spanning tree, Grid graphs

1 Introduction

A minimum average stretch spanning tree (mast) of a graph is a spanning tree
that minimizes the average stretch and has various applications in network
design and solving symmetric diagonally dominant linear systems [2]. Let
G = (V (G), E(G)) be an unweighted graph and T be a spanning tree of G.
For an edge (u, v) ∈ E(G), dT (u, v) denotes the distance between u and v in
T . For a non-tree edge e = (u, v) with respect to T , i.e., e ∈ E(G) \ E(T),
stretch(e) is dT (u, v). The average stretch of T is defined as

AvgStr(T) =
1

|E(G)| − |E(T)|
∑

e∈E(G)\E(T)

stretch(e) (1)
137

Motivation and Our contribution. To the best of our knowledge, there is
no necessary-and-sufficient condition for a spanning tree to be an mast in grid
graphs. Also, there is no published work to construct an mast in any subclass
of planar graphs except polygonal 2-trees. We state our main theorem, which
is based on edge-missing property (defined later).

Theorem 1.1 A spanning tree T of an unweighted grid graph G is an mast
if and only if T satisfies the edge-missing property. Further, an mast of an
unweighted grid graph can be constructed in linear time.

We also derive an expression to find the number of masts in grid graphs.

Related work. The mast problem is equivalent to the problem of finding
a minimum fundamental cycle basis (mfcb) [2] and is shown as NP-complete
in general graphs [1]. Recently, Reich has shown that mfcb is NP-complete
in planar graphs as well [4]. In case of polygonal 2-trees, a subclass of planar
graphs, Narayanaswamy et al. designed a polynomial-time algorithm for mast
[3]. The routing region in a microchip can be modeled as a grid graph. Also,
combinatorial problems such as the existence of a Hamiltonian path between
given two vertices and various routing problems are studied in grid graphs.

2 Structural Properties of MAST

We first introduce the necessary terminology on grid graphs. Then, we provide
proofs for necessary and sufficient conditions in Lemma 2.2 and Lemma 2.4,
respectively, and these lemmas leads to our main result.

Grid Graphs Preliminaries. For a positive integer n, [n] denotes the set
{1, . . . , n}. A graph G is a grid graph if for some fixed m ≥ 1 and n ≥ 1,
V (G) = [m] × [n], and E(G) = {(p1, p2) | p1 = (x1, y1), p2 = (x2, y2) ∈
V (G), |x1 − x2| + |y1 − y2| = 1}. Let G be a grid graph. The bounded
regions defined by the planar embedding of G are cells of G. For each cell
C, V (C) and E(C) denote the set of vertices and edges of C, respectively
and |V (C)| = |E(C)| = 4. For a set X ⊆ V (G), G[X] denotes the induced
subgraph on vertices in X. An edge e ∈ E(G) is external if e appears exactly
in one cell, otherwise it is internal. A cell C is E-cell if and only if C has
at least one external edge. The vertices appear on the exterior boundary of
G are external and the remaining vertices are internal. Let G′ be the graph
obtained from G after the removal of external vertices in G. If all the cells in
G are E-cells, then the number of layers in G is one; Otherwise, the number
of layers in G is defined as one plus the number of layers in G′. A grid graph
on ` layers is denoted by G`. From a grid graph Gi on i layers, the grid graph

Gi−1 on i− 1 layers can be obtained by removing the external vertices in Gi.

Consider a spanning tree T of G`. For i ∈ [`], an E-cell C in Gi is said to
satisfy edge-missing property, with respect to T , if exactly one external edge
among all the external edges in C does not appear in T . T is said to satisfy
edge-missing property, if for each 1 ≤ i ≤ `, each E-cell in Gi satisfies the
edge-missing property. T is said to satisfy external-edge-missing property, if
each E-cell in G` satisfies edge-missing property. A fundamental cycle with
respect to T is a cycle formed by a non-tree edge (u, v), and the unique path
between u and v in T , where (u, v) ∈ E(G) \E(T). A fundamental cycle C is
an external fundamental cycle if the associated non-tree edge in C is external.

For the rest of the paper, G denotes a grid graph and G` denotes a grid
graph on ` layers. Due to the page limit, proofs of few lemmas are omitted.

Lemma 2.1 Let T be a spanning tree of G`. (a) If ` = 1, then T is an mast
if and only if T satisfies external-edge-missing property. (b) If T is an mast,
then T satisfies external-edge-missing property.

The distance between two cells Cu and Cv in a grid graph G is the distance
between two vertices u and v in G̃, where G̃ is the dual graph of G, u and v
are the dual vertices corresponding to Cu and Cv, respectively.

Lemma 2.2 Let T be an mast of G`. Then T satisfies edge-missing property.

Proof. (Sketch.) By Lemma 2.1.(b), from every E-cell of G` exactly one
external edge does not appear in T . Then, each E-cell in G` satisfies the edge-
missing property. We assume that there is an E-cell C in Gi, i ≤ `− 1, such
that C violates the edge-missing property and for every k, i+1 ≤ k ≤ `, every
E-cell in Gk, satisfies the edge-missing property. Let e be an external edge of
Gi that appears in C. Let C ′ denote an E-cell in Gi, such that both C and
C ′ appears in a same external fundamental cycle of T .

Since C violates the edge-missing property and T is a tree, an internal
edge e′ of Gi that appears in C is not available in T . Let T ′ = T + e− e′ be
a new spanning tree obtained from T . We can observe that tot-Stretch(T)−
tot-Stretch(T ′) ≥ 2r, where r denotes the distance between C and C ′. As r ≥
1, tot-Stretch(T ′) < tot-Stretch(T) and thus T is not an mast. Consequently,
our assumption is incorrect, and hence the lemma is true. 2

An edge e ∈ E(G) is in level i if and only if e is an external edge in Gi. The
stretch of a spanning tree T in level i is defined as the summation of stretches
of the non-tree edges in level i, and is denoted by stretchi(T). A grid graph
G is a chain if all the vertices in G are external. If a spanning tree T of G

satisfies edge-missing property, then we observe that for every fundamental
cycle C with respect to T , G[V (C)] is a chain. This observation helps to find
the level-wise stretch in Lemma 2.3. Let ni denote the number of E-cells in
Gi. The parameter base structure value b of G, is defined as n1 if G1 is chain;
Otherwise the value of b is 2.

Lemma 2.3 Let T and T ′ be two spanning trees of G` that satisfy edge-
missing property. Then for each i ∈ [`], stretchi(T) = stretchi(T

′). Further,
stretch1(T) = 3n1, stretch2(T) = 5n1 + 3(b + 6), and for each 3 ≤ i ≤ `,
stretchi(T) = (2i + 1)n1 + (2(i− 1) + 1)(b + 6) + 8((i− 1)2 − 1).

Lemma 2.4 Let T` be a spanning tree of G`. If T` satisfies edge-missing
property, then T` is an mast.

Proof. Let T ∗ be an mast of G. By Lemma 2.2, T ∗ satisfies edge-missing
property. Also, T` satisfies edge-missing property. Then by applying Lemma
2.3, we observe that for each i ∈ [`], stretchi(T`) = stretchi(T

∗). Consequently,
AvgStr(T`) is equal to AvgStr(T ∗), and thus T` is an mast. 2

The first part of Theorem 1.1 follows from Lemma 2.2 and Lemma 2.4.
MAST Construction. For each 1 ≤ i ≤ `, for each E-cell C in Gi, remove
an external edge of C, and from the first part of Theorem 1.1, the resultant
graph is an mast. Second part of Theorem 1.1 follows from this construction.

Theorem 2.5 Let G` be a grid graph on ` layers, {C1, . . . , Cr} be the set of
E-cells in G1, and bi denotes the number of external edges in Ci. Then the
number of masts in G` is 16`−1 × b1 × . . .× br.

Remark. Characterizing a graph class in which an mast is also a spanning
tree whose maximum stretch is minimum, is an interesting open question.

References

[1] N. Deo, G. Prabhu, and M.S. Krishnamoorthy. Algorithms for generating
fundamental cycles in a graph. ACM Trans. on Math. Soft., 8:26–42, 1982.

[2] C. Liebchen and G. Wünsch. The zoo of tree spanner problems. Discrete Appl.
Math., 156:569–587, 2008.

[3] N.S. Narayanaswamy and G. Ramakrishna. On minimum average stretch
spanning trees in polygonal 2-trees. Theor. Comput. Sci., 575(C):56–70, 2015.

[4] A. Reich. Minimum strictly fundamental cycle bases of planar graphs are hard
to find. Discr. Appl. Math, 205:150 – 159, 2016.

The Capacitated Budgeted Minimum Cost
Flow Problem with Unit Upgrading Costs

Christina Büsing, Sarah Kirchner, Annika Thome 1

Lehrstuhl II für Mathematik, Lehrstuhl für Operations Research
RWTH Aachen University

D-52062 Aachen, Germany

Abstract

We consider a constraint minimum cost flow problem and show that it is in general
NP–complete. For special graph classes we give (pseudo–)polynomial algorithms.

Keywords: minimum cost flow, complexity, polynomial, pseudo–polynomial

1 Introduction and Problem Definition

Many polynomially solvable optimization problems become NP-hard when
resource constraints are added, e.g. minimum spanning tree or shortest path
problems (see [1] and [4]). However if the resource consumption is of unit
size these problems are solvable in polynomial time. This holds for the NP-
complete knapsack problem (see [5]). We consider a constraint minimum flow
problem – the Budgeted Minimum Cost Flow Problem with resource limit K
(BMCF(K)). We assume that each arc is associated with two costs: high cost c̄
and low cost c. The budget K now allows to pay the low instead of the high
cost for flow on up to K arcs.

Definition 1.1 [The BMCF(K) Problem] Let G = (V,A) be a digraph.
Let s be the single supply vertex with b(s) > 0. Let b(v) ∈ Z−0 be the demand
of any v ∈ V \{s}, let c̄(a), c(a) be upper and lower costs for all a ∈ A such
that there are no negative cost cycles, and let u(a) be capacities for all a ∈ A.

1 Email: buesing@math2.rwth-aachen.de,{kirchner,thome}@or.rwth-aachen.de141

Finally, let K ∈ N be the budget parameter. A solution to the BMCF(K)
problem is a b–flow f ∗ and a set A∗K ⊆ A with |A∗K | ≤ K. The objective is to
find such a pair (f ∗, A∗K) that minimizes the cost function

c(f ∗, A∗K) =
∑

a∈A∗K

c(a) · f ∗(a) +
∑

a∈A\A∗K

c̄(a) · f ∗(a)

The BMCF(K) problem is strongly NP-complete for arbitrary resource
consumption (see [3]). Even if the resource consumption is bounded to 1 per
arc and no capacities are considered, the BMCF(K) problem is strongly NP-
complete (see [2]). Adding upper capacities this result transfers to the single
source single sink BMCF(K) problem.

2 Results on Special Graph Classes

We introduce a polynomial algorithm for the BMCF(K) problem on cycles and
pseudo-polynomial algorithms for parallel-arc trees and series-parallel graphs.
We start with a first general observation: Let f be a flow. Then the cost
contribution of an arc a is determined by conf (a) = (c̄(a)− c(a)) ·f(a). When
all cost contributions are known and sorted non-decreasingly, the first K arcs
are selected to be upgraded. This selection A∗K(f) of upgraded arcs is optimal
for the given flow f as there are no arcs with higher cost contributions.

2.1 Cycles

A cycle C = {v1, . . . , vn} is a sequence of vertices where each two consecutive
vertices are connected to each other by two antiparallel arcs (vi, vi+1) and
(vi+1, vi) for all i = 1, . . . , n and vn+1 = v1. We assume that s = v1. In a
given solution on a cycle C, there are three options to send flow to a specific
demand vertex. The first two options are to send the entire flow clockwise or
anticlockwise. The third one is to split the flow and send one portion clockwise
and the rest anticlockwise. In case of the third option, we say that a demand
vertex is a split vertex. We can show that there is always an optimal solution
with at most one split vertex.

One further structural property of an optimal solution is that it can be
transformed into a neat solution. A neat solution is characterized by a specific
vertex vi such that the demand of all demand vertices vj with j < i is satisfied
by flow sent clockwise and demand of demand vertices vj with j > i is satisfied
by flow sent anticlockwise. If there is a split vertex, then this vertex is the
specific vertex vi of a neat solution.

Exploiting the structure of a neat solution we propose a poynomial time
algorithm to solve the BMCF(K) problem on cycles: We declare one of the
demand vertices as the split vertex, say vi and obtain a neat solution spec-
ified by vi. There are two potentially optimal ways to send flow to satisfy
the demand of vi, i.e. two possible flows f 1

i and f 2
i . We compute the cost

c(f 1
i , A

∗
K(f 1

i)) and c(f 2
i , A

∗
K(f 2

i)). This is repeated for all demand vertices.
An optimal solution to the BMCF(K) problem on a cycle is determined by
choosing (f ∗, A∗K) = argminti∈V,j=1,2{c(f j

i , A
∗
K(f j

i))}.

2.2 Parallel-Arc Trees

The capacitated BMCF(K) is easy on directed trees because the flow in a
tree is unique. Given this unique flow we can obtain an optimal solution as
described at the beginning of this section. We extend the defintion of directed
trees and introduce the graph class of parallel-arc trees. A parallel-arc tree
is a directed tree T on a macro level whose arcs represent batches of parallel
arcs. In any BMCF(K) instance on a parallel-arc tree the supply vertex s is
w.l.o.g. located at the root of the underlying tree. The amount of flow di that
is sent through each batch i is fixed as the flow in the underlying tree is unique.
Hence, we need to decide which arcs to upgrade and which arcs of a batch
have positive flow. To do so, we propose a two-step dynamic program (DP)
that solves the BMCF(K) on parallel-arc trees to optimality in polynomial
time. In the first step, the DP considers each batch separately. It calculates
for each batch i the cost ci(k

′, f, j) of sending f units of flow through batch i
only via the first j arcs when k′ arcs can be upgraded. After the DP calculated
these costs ci(k

′, f, j) for all k′ ≤ K, f ≤ di and j ≤ i for all i ≤ |AT |, the DP
determines in the second step how many arcs to upgrade in each batch.

2.3 The BMCF on series-parallel Graphs

Finally, we propose a pseudo-polynomial dynamic program (DP) that solves
the BMCF(K) problem on series-parallel digraphs. The used definition can
be found in [2]. The DP is based on the SP-tree T of the graph. The induced
subgraph Gi of an SP node i is the subgraph obtained by applying all series
and parallel operations of the subtree rooted at i.

Let hi denote the inner demand in Gi which is the demand in Gi exluding
the demand of ti for each node i of T . We denote by ci(k, f, d) the cost of
sending flow through Gi where k arcs are upgraded such that all inner demand
hi is satisfied; f units of flow exceed the total demand of Gi; and the demand
of ti is possibly partially met by d units of flow. In the intialization for the

leaves i of T associated with a single arc, depending on whether the arc is
upgraded or not, either the upper or lower cost applies to the total flow. In
case the flow exceeds the capacity or k > 1 the cost is set to infinity. Let us
consider an SP node i that represents a series operation where j and l are
the child nodes of i and tj is contracted with sl. We know that the entire
flow present in Gl must have been flow that exceeded the total demand of Gj.
Hence fj = fl + hl + dl and also fl = f and dl = d. The demand of tj must
be satisfied by flow through Gj after the series operation since it will not be a
target in future operations. Therefore, we only need to consider costs where
dj = b(tj). Since we must divide the budget k between the two subgraphs Gj

and Gl, we can obtain ci(k, f, d) as follows.

ci(k, f, d) = min
0≤k′≤k

{cj(k′, f + hl + d, b(tj)) + cl(k − k′, f, d)} (1)

Let us now consider an SP node i that represents a parallel operation
where j and l are the child nodes of i. Due to the capacity constraints we
must divide the budget k between the two subgraphs Gj and Gl and obtain
ci(k, f, d) as follows.

ci(k, f, d) = min
k′≤k,x≤f,y≤d

{cj(k′, f − x, d− y) + cl(k − k′, x, y)} (2)

The DP for the uncapacitated BMCF(K) problem on graphs with bounded
tree-width as described in [2] can be easily modified for the capacitated case.

References

[1] Aggarwal, V., Y. Aneja and K. Nair, Minimal spanning tree subject to a side
constraint, Computers & Operations Research 9 (1982), pp. 287 – 296.

[2] Büsing, C., S. Kirchner, A. Koster and A. Thome, The budgeted minimum cost
flow problem with unit upgrading cost, http://www.optimization-online.org/
DB_HTML/2015/10/5173.html (2015).

[3] Coene, S., P. Goos, P. Maya Duque, K. Sörensen and F. Spieksma, The
accessibility arc upgrading problem, European Journal of Operational Research
224 (2013), pp. 458 – 465.

[4] Garey, M. and D. Johnson, A guide to the theory of NP-completeness, WH
Freemann, New York (1979).

[5] Magazine, M. J., G. L. Nemhauser and L. E. Trotter Jr., When the greedy solution
solves a class of knapsack problems., Operations Research 23 (1975), p. 207.

Intersection of Longest Paths in Graph Classes

Márcia R. Cerioli 1,3

COPPE - Sistemas e Computação and Instituto de Matemática
Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brazil

Paloma Lima 1,2

COPPE - Sistemas e Computação
Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brazil

Abstract

Let G be a graph and lpt(G) be the size of the smallest set S ⊆ V (G) such that
every longest path of G has at least one vertex in S. If lpt(G) = 1, then all longest
paths of G have non-empty intersection. In this work, we prove that this holds
for some graph classes, including ptolemaic graphs, P4-sparse graphs, and starlike
graphs, generalizing the existing result for split graphs.

Keywords: intersection of longest paths, graph classes, ptolemaic graphs,
P4-sparse graphs, starlike graphs

1 This work was partially supported by CNPq, Brazil.
2 Email: paloma@cos.ufrj.br
3 Email: cerioli@cos.ufrj.br

145

1 Introduction

It is a well-known fact that in every simple connected graph, every two longest
paths intersect, that is, they share a common vertex. In 1966, Gallai asked
whether it is true that all longest paths of a connected graph share a common
vertex. Even though the answer for Gallai’s question is known to be negative
for general graphs [4], many graph classes answer positively to this question.
This is the case for split graphs [7], interval graphs [1], outerplanar graphs and
2-trees [4], circular-arc graphs [6], and graphs with matching number smaller
than three [3]. In order to approach this problem, Rautenbach and Sereni [8]
defined lpt(G) to be the size of the smallest set S ⊆ V (G) such that every
longest path of G intersects S, where lpt stands for longest path transversal.
Let C be a class of graphs. If lpt(G) = 1 for all G ∈ C, then the answer
for Gallai’s question is positive in C. In [8], the authors also provide upper
bounds on lpt(G) for general graphs and for some specific graph classes, such
as planar and bounded treewidth graphs.

In this work, we determine graph classes that have positive answer for
Gallai’s question, including ptolemaic graphs, starlike graphs and P4-sparse
graphs. We also prove that if the blocks of a given graph are a split graph, an
interval graph or have a universal vertex, then lpt(G) = 1.

2 Ptolemaic Graphs

A connected graph is a ptolemaic graph if for every four vertices u1, u2, u3, u4

of G, the inequality d12d34 ≤ d13d24 + d14d23 is satisfyed, where dij is the
distance between vertices ui and uj in G. The following characterization of
ptolemaic graphs has been given by Howorka:

Theorem 2.1 (Howorka [5]) The following conditions are equivalent:
1. G is a ptolemaic graph.
2. G is a gem-free graph and a chordal graph.
3. G is a distance-hereditary graph and a chordal graph.
4. For every two non-disjoint maximal cliques Q and Q′ of G, Q ∩ Q′

separates Q \Q′ and Q′ \Q.

A minimal vertex separator of G is a uv-minimal separator for some pair
of vertices u, v ∈ V (G). A family of sets F = {F1, F2, ..., Fk} is said to be
laminar if Fi ∩ Fj 6= ∅ implies Fi ⊆ Fj or Fj ⊆ Fi ∀i, j. Uehara and Uno [9]
proved the following theorem concerning the minimal separators of ptolemaic
graphs:

Theorem 2.2 (Uehara and Uno [9]) Let G be a chordal graph. G is a
ptolemaic graph if and only if the family of minimal vertex separators contained
in each maximal clique of G is laminar.

The following result was suggested in the final remarks of [1]:

Theorem 2.3 (Balister et al. [1]) Let G be a chordal graph. There exists
a maximal clique K such that each longest path of G has at least one vertex
in K.

Using the Characterisation 2.1 and Theorems 2.2 and 2.3 we are able to
prove the following:

Theorem 2.4 If G is a ptolemaic graph, then lpt(G) = 1.

3 Split-like Graphs

A graph is a split graph if V (G) can be partitioned into an independent set
and a clique. Split graphs have many different characterisations, for example,
as intersection graphs of distinct substars of a star or as (2K2, C4, C5)-free
graphs. Klavžar and Petkovšek [7] proved that if G is a split graph, then
lpt(G) = 1.

We prove the following stronger result:

Theorem 3.1 Let G be a graph such that V (G) can be partitioned into k + 1
sets (V1, ..., Vk, K), such that

1. K is a clique;
2. For all x ∈ Vi and y ∈ Vj, i 6= j, it holds that xy /∈ E(G);
3. The vertices of Vi can be ordered vi1, vi2, ..., vi|Vi| in such a way that for

all x ∈ K, if xvij ∈ E(G), then xvik ∈ E(G) for all k < j;
4. For all x /∈ K, there exists y ∈ K such that xy ∈ E(G).

Then lpt(G) = 1.

It is worth noticing that split graphs satisfy the conditions in Theorem 3.1,
as they are exactly the graphs obtained when |Vi| = 1, for every i. We are
now able to use Theorem 3.1 to prove the following, where a starlike graph is
the intersection graph of substars of a star [2].

Theorem 3.2 If G is a (2K2, C4)-free graph, then lpt(G) = 1.

Theorem 3.3 If G is a starlike graph, then lpt(G) = 1.

Theorem 3.4 If G is a P4-sparse graph, then lpt(G) = 1.

4 Conditions on the Blocks of a Graph

Balister et al. [1] proved that lpt(G) = 1 if G is an interval graph. Given
x, y ∈ V (G), we say P is a xy-longest path if P is a longest path connecting x
and y. We modify the proof presented in [1] in order to obtain the following:

Theorem 4.1 Let G be an interval graph and {P1, P2, ..., Pk} a set of paths
such that Pi is a xiyi-longest path. If Pi∩Pj 6= ∅ for all i 6= j, then ∩ki=1Pi 6= ∅.

We also prove an analogous result for split graphs and then obtain some
conditions on the blocks of a graph G that force lpt(G) = 1.

Theorem 4.2 Let G = (K ∪ S,E) be a 2-connected split graph with maxi-
mal S. For all x, y ∈ V (G), every xy-longest path contains all vertices of K.

Theorem 4.3 If every block of G is a split graph, an interval graph, or a
graph with a universal vertex, then lpt(G) = 1.

References

[1] P. Balister, E. Györi, J. Lehel, R. Schelp, Longest paths in circular arc graphs,
Comb. Probab. Comput. 13 (2004) 311–317.

[2] M. R. Cerioli and J. L. Szwarcfiter, Characterizing intersection graphs of
substars of a star, Ars Combinatoria 79 (2006) 21–31.

[3] F. Chen, Nonempty intersection of longest paths in a graph with a small
matching number, Czech. Math. J. 65 (2015) 545–553.

[4] C. G. Fernandes, D. M. Martin, S. F. Rezende, and Y. Wakabayashi,
Intersecting longest paths, Discrete Math. 313 (2013) 1401–1408.

[5] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theor. 5 (1981)
323–331.

[6] F. Joos, A note on longest paths in circular arc graphs, Discuss. Math. Graph
Theory 35 (2015) 419–426.

[7] S. Klavžar and M. Petkovšek, Graphs with nonempty intersection of longest
paths, Ars Combinatoria 29 (1990) 43–52.

[8] D. Rautenbach and J. S. Sereni, Transversals of longest paths and cycles, SIAM
J. Discrete Math. 28 (2014) 335–341.

[9] R. Uehara and Y. Uno, Laminar structure of ptolemaic graphs with
applications,Discrete Appl. Math. 157 (2009) 1533–1543.

On Longest Cycles
in Essentially 4-connected Planar Graphs

Jochen Harant 1

Institut for Mathematics
Ilmenau University of Technology

Germany

Igor Fabrici 2

Institut for Mathematics
P.J. Šafárik University

Košice, Slovakia

Stanislav Jendrol’3

Institut for Mathematics
P.J. Šafárik University

Košice, Slovakia

Abstract

A planar 3-connected graph G is essentially 4-connected if, for any 3-separator S of
G, one component of the graph obtained from G by removing S is a single vertex.
Jackson and Wormald proved that an essentially 4-connected planar graph on n
vertices contains a cycle C such that |V (C)| ≥ 2n+4

5 . For a cubic essentially 4-
connected planar graph G, Grünbaum with Malkevitch, and Zhang showed that
G has a cycle on at least 3

4n vertices. In the present paper the result of Jackson
and Wormald is improved. Moreover, new lower bounds on the length of a longest

149

cycle of G are presented if G is an essentially 4-connected planar graph of maximum
degree 4 or G is an essentially 4-connected maximal planar graph.

Keywords: planar graph, longest cycle

We use standard notation and terminology of graph theory ([1]) and con-
sider a finite simple 3-connected planar graph G with vertex set V (G) and
maximum degree ∆(G). A subset S ⊂ V (G) is an s-separator of G if |S| = s
and G−S is disconnected. It is well-known that G−S has exactly two compo-
nents if G is a 3-connected planar graph and S is a 3-separator of G. If S is a
3-separator of a 3-connected planar graph G and one component of G−S is a
single vertex, then S is a trivial 3-separator of G. If G is planar, 3-connected,
and each 3-separator of G is trivial, then G is essentially 4-connected.

It is known ([6]) that there are infinitely many 3-connected planar graphs
G on n vertices such that the length of a longest cycle of G is at most 9nlog3 2.
The constant 9 is improved several times, however, the exponent log3 2 is best
possible ([2]). On the other hand, a 4-connected planar graph always contains
a hamiltonian cycle ([9]). Since an essentially 4-connected planar graph is 3-
connected but not necessarily 4-connected, we are interested in lower bounds
on the length of longest cycles of an essentially 4-connected planar graph.

Jackson and Wormald [5] proved that every essentially 4-connected pla-
nar graph on n vertices contains a cycle C such that |V (C)| ≥ 2n+4

5
. For a

cubic essentially 4-connected planar graph G, Grünbaum and Malkevitch [4],
and Zhang [10] showed that G has a cycle on at least 3

4
n vertices. Given a

real constant c > 2
3
, Jackson and Wormald [5] presented an infinite family

of essentially 4-connected planar graphs G such that G does not contain a
cycle on more than c · n vertices. This observation is even true for essentially
4-connected maximal planar graphs. To see this, let G′ be a 4-connected
maximal planar graph on n′ ≥ 6 vertices embedded into the plane and G
be obtained by inserting a new vertex into each face of G′ and connecting it
with all three vertices of that face by an edge. Obviously, G is an essentially
4-connected maximal planar graph on n = n′ + (2n′ − 4) vertices and the
2n′ − 4 vertices in V (G) \ V (G′) are pairwise independent. Hence each cycle
of G contains at most 2n′ = 2

3
(n + 4) vertices. One can show easily that G

contains a cycle on exactly 2n′ = 2
3
(n + 4) vertices.

It is well-known, that a 3-connected planar graph on 4 ≤ n ≤ 10 vertices is

1 Email: Jochen.Harant@tu-ilmenau.de
2 Email: Igor.Fabrici@upjs.sk
3 Email: stanislav.jendrol@upjs.sk

hamiltonian. It remains open whether a maximal planar (or even an arbitrary
planar) essentially 4-connected graph on n ≥ 11 vertices contains a cycle C
such that |V (C)| ≥ 2

3
(n + 4).

Our results are presented in the following Theorem 0.1 improving the result
of Jackson and Wormald. Moreover, new lower bounds on the length of a
longest cycle of G are presented if G is an essentially 4-connected planar graph
of maximum degree 4 or G is an essentially 4-connected maximal planar graph.

Theorem 0.1 ([3])
Let G be an essentially 4-connected planar graph on n ≥ 11 vertices and C be
a longest cycle of G.
(i) |V (C)| ≥ 1

2
(n + 4).

(ii) If ∆(G) = 4, then |V (C)| ≥ 3
5
n.

(iii) If G is maximal planar, then |V (C)| ≥ 13
21

(n + 4).

To sketch a proof of Theorem 0.1, we need some definition.

Let C be a cycle of a graph G and B be a component of G − V (C). A
vertex x ∈ V (C) is a touch vertex of B if x is adjacent to a vertex of V (B).
Note that B has at least 3 touch vertices, if G is a 3-connected planar graph.

In [9], Tutte proved a remarkable and famous result on cycles in 2-connected
planar graphs implying that a 4-connected planar graph is hamiltonian. This
result has been extended several times ([7], [8]). We use the following Lemma
0.2 of Sanders ([7]) as a version of Tutte’s result for 3-connected planar graphs.

Lemma 0.2 Every 3-connected planar graph G with two prescribed edges a
and b contains a cycle C through a and b such that each component of G−V (C)
has exactly 3 touch vertices.

A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V (G)\V (C)
is an independent set of vertices and d(x) = 3 for all x ∈ V (G) \ V (C).

We prove Lemma 0.3.

Lemma 0.3 Let G be an essentially 4-connected planar graph G and let a
and b be non-adjacent edges of G. If a and b belong to a common face of G
or all end vertices of a and b have degree at least 4 in G, then G contains an
OI3-cycle C through a and b.

Note that a hamiltonian cycle of a graph is an OI3-cycle. Let a = yz be an
edge of an OI3-cycle C of a graph G and assume that y and z have a common
neighbor x ∈ V (G) \ V (C). Then let C ′ be the cycle of G obtained from C
by replacing the edge a with the path (y, x, z). In this case, a is an extendable
edge of C. Note that C ′ is again an OI3-cycle of G, |V (C ′)| = |V (C)|+1, and

that C ′ has less extendable edges than C. Obviously, a longest OI3-cycle of
G does not contain an extendable edge.

Using Lemma 0.3, we prove Lemma 0.4 implying Theorem 0.1.

Lemma 0.4 Let G be an essentially 4-connected planar graph on n ≥ 11
vertices.
(i) G contains an OI3-cycle.
(ii) If C is an OI3-cycle of G without extendable edges, then |V (C)| ≥ 1

2
(n +

4).
(iii) If ∆(G) = 4 and C is an OI3-cycle of G, then |V (C)| ≥ 3

5
n.

(iv) If G is maximal planar and C is a longest OI3-cycle of G, then |V (C)| ≥
13
21

(n + 4).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer 2008.

[2] G. Chen, X. Yu, Long cycles in 3-connected graphs, J. Combin. Theory Ser. B
86(2002)80-99.

[3] I. Fabrici, J. Harant, S. Jendrol’, On Longest Cycles in Essentially 4-connected
Planar Graphs, accepted in Discussiones Mathematicae Graph Theory.

[4] B. Grünbaum, J. Malkevitch, Pairs of edge-disjoint Hamilton circuits,
Aequationes Math. 14(1976)191-196.

[5] B. Jackson, N.C. Wormald, Longest cycles in 3-connected planar graphs, J.
Combin. Theory Ser. B 54(1992)291-321.

[6] J.W. Moon, L. Moser, Simple paths on polyhedra, Pacific J. Math. 13(1963)629-
631.

[7] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24(1997)341-345.

[8] C. Thomassen, A theorem on paths in planar graphs J. Graph Theory
7(1983)169-176.

[9] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82(1956)99-
116.

[10] C.-Q. Zhang, Longest cycles and their chords, J. Graph Theory 11(1987)521-
529.

Dimension and codimension of simple games

Sascha Kurz

LS Wirtschaftsmathematik, Universitaet Bayreuth, Germany

Xavier Molinero 1

Department of Mathematics,Technical University of Catalonia, Manresa, Spain

Martin Olsen

BTECH, Aarhus University, Denmark

Maria Serna 2

Department of Computer Science, Technical University of Catalonia, Spain

Abstract

This paper studies the complexity of computing a representation of a simple game
as the intersection (union) of weighted majority games, as well as, the dimension
or the codimension. We also present some examples with linear dimension and
exponential codimension with respect to the number of players.

Keywords: Simple games, Dimension, Codimension, Computational complexity

1 Introduction and preliminaries

We consider the so-called simple games and the computational complexity
of representing them as unions or intersections of weighted majority games.

1 Partially funded by Grant MTM2015-66818-P from MINECO.
2 Partially funded by MINECO and FEDER funds under grant TIN2013-46181-C2-1-R,
and AGAUR grant SGR 2014–1034.
3 Emais: sascha.kurz@uni-bayreuth.de, xavier.molinero@upc.edu, martino@btech.au.dk,
mjserna@cs.upc.edu

153

Simple games and its dimension, as well as, weighted majority games, were de-
fined by Taylor and Zwicker [10]. Later, Freixas and Marciniak [3] introduced
a new concept, the codimension of simple games.

A simple game is a tuple Γ = (N,W), where N is a finite set of players
and W ⊆ P(N) is a monotonic family of subsets of N . Furthermore, its dual
Γ∗ = (N,W∗) is the game such that W∗ = {S ⊆ N : N \ S 6∈ W}. Γ
is said to be self-dual if Γ = Γ∗. Note that (Γ∗)∗ = Γ. Given two simple
games Γ1 = (N1,W1) and Γ2 = (N2,W2), they are equivalent if N1 = N2

and W1 = W2. The subsets of N are called coalitions, the set N is the
grand coalition and each X ∈ W is a winning coalition. The complement
of the family of winning coalitions is the family of losing coalitions L, i.e.,
L = P(N) \ W . Any of those set families determine uniquely the game Γ
and constitute one of the usual forms of representation for simple games [10],
although the size of the representation is not, in general, polynomial in the
number of players [8].

A simple game Γ is a weighted majority game (WMG) if it admits a repre-
sentation by means of n+1 nonnegative real numbers [q;w1, . . . , wn] such that
S ∈ W ⇐⇒ w(S) ≥ q where, for each coalition S ⊆ N , w(S) =

∑
i∈S wi.

The number q is called the quota and wi the weight of the player i. It is well
known that any WMG admits a representation with integer numbers. The
dimension of a simple game Γ is the least k such that there exists WMGs
Γ1, . . . ,Γk such that Γ = Γ1 ∩ . . . ∩ Γk. On the other hand, the codimension
of a simple game Γ is the least k such that there exists WMGs Γ1, . . . ,Γk such
that Γ = Γ1 ∪ . . . ∪ Γk.

There are many theoretical results and examples about dimension and
codimension [9,7,3,6,4,10,5] including computational complexity results [1].
We present some results that will be used later on.

Lemma 1.1 The dimension of a simple game v is bounded above by
∣∣LM

∣∣
and the co-dimension is bounded above by |Wm|.

Lemma 1.2 Let Γ be a simple game. Γ is the intersection of t weighted games
if and only if Γ∗ is the union of t weighted games. Furthermore a representa-
tion, as union (intersection), of Γ∗ can be obtained from a representation, as
intersection (union), of Γ in polynomial time. Moreover, dim(Γ)=codim(Γ∗),
and if Γ is self-dual then dim(Γ) = codim(Γ).

Note that the converse statement of the last sentence is not true in general
as there are weighted games which are not self-dual.

2 Computational complexity of related problems

First, we present a simple game with 2n players, dimension n and codimension
2n−1. Other examples of high dimensional games can be found in [10,9].

Example 2.1 Given a positive integer n, Freixas and Marcinicak (Theorem 2
of [3]) define a simple game with 2n players and dimension n. Let Γ = (N,W)
be a simple game defined by N = {1, 2, . . . , 2n} and S ∈ W iff S∩{2i−1, 2i} 6=
∅, i ∈ {1, . . . , n}, then Γ has dimension n.

As S is a winning coalition in Γ∗ iff N \ S is a losing coalition in Γ, Γ∗ =
(N,W∗1 ∪ . . . ∪W∗n), where W∗i = {S ⊆ N : {2i− 1, 2i} ⊆ S}, i ∈ {1, . . . , n}.
As Γ∗ is a composition of n unanimity games, Γ∗ has dimension 2n−1 [4] and
Γ has codimension 2n−1 (by Lemma 1.2).

Proposition 2.2 Given a simple game Γ as union (intersection) of weighted
games, computing a representation of Γ as intersection (union) of weighted
games requires exponential time.

The complexity of several problems about representations of simple games
as intersections of WMGs were analyzed in [1]. We provide here a new reduc-
tion from the NP-hard Subset Sum Problem (SSP). Our reduction differs in
the fact that, for the game Γ(I, d) associated to an instance I, we know both
the dimension and the codimension.

Lemma 2.3 Let d > 1. When I is a yes instance of SSP then dim(Γ(I, d)) =
d and codim(Γ(I, d)) = 2d, otherwise, dim(Γ(I, d)) = codim(Γ(I, d)) = 1.

Combining lemmas 2.3 and 1.2 we can prove the following results.

Proposition 2.4 Let d1 and d2 be two integers with 1 ≤ d2 < d1. Then
the problem of deciding whether the union of d1 given WMGs can also be
represented as the union of d2 WMGs is NP-hard.

Proposition 2.5 Let d1 and d2 be two integers with 1 ≤ d1, d2. Then the
problem of deciding whether the intersection (union) of d1 given WMGs can
also be represented as the union (intersection) of d2 WMGs is NP-hard.

As a consequence of the previous results, given a simple game Γ as union
or intersection of WMGs, to compute dim(Γ), codim(Γ) or deciding whether
Γ is weighted are NP-hard problems. Recall that two game representations
are said to be equivalent whenever the represented games have the same set
of winning coalitions. We can extend several results on equivalence problems
from [2] to games given as unions of WMG, in particular we have.

Proposition 2.6 Checking whether a given union of WMGs is equivalent to
a given union of WMGs is co-NP-complete, even if all weights are equal to 0
or 1.

It remains open to exhaustively classify the dimension and codimension of
all complete simple game up to n players. Some bounds about dimension are
given by Freixas and Puente [4] and Olsen et al. [9]. As well as to find complete
simple games with small dimension (codimension), but with large codimension
(dimension), and to construct analytical examples with specific dimension
and codimension. It is also interesting to find real simple games with large
dimension or codimension as the example given by Kurz and Napel [7].

References

[1] V.G. Dĕıneko and G.J. Woeginger. On the dimension of simple monotonic
games. European Journal of Operational Research, 170:315–318, 2006.

[2] E. Elkind, L.A. Goldberg, P.W. Goldberg, and M. Wooldridge. On the
dimensionality of voting games. In AAAI Conference on Artificial Intelligence,
pages 69–74, 2008.

[3] J. Freixas and D. Marciniak. On the notion of dimension and codimension of
simple games. Cont. to Game Theory and Management, 3:67–81, 2010.

[4] J. Freixas and M. A. Puente. A note about games-composition dimension.
Discrete Applied Mathematics, 113(2–3):265–273, 2001.

[5] J. Freixas and M.A. Puente. Complete games with minimum. Annals of
Operations Research, 84:97–109, 1998.

[6] J. Freixas and M.A. Puente. Dimension of complete simple games with
minimum. European Journal of Operational Research, 188(2):555–568, 2008.

[7] S. Kurz and S. Napel. Dimension of the Lisbon voting rules in the EU Council:
a challenge and new world record. Optimization Letters, to appear, 2015.

[8] X. Molinero, F. Riquelme, and M. J. Serna. Forms of representations for simple
games: sizes, conversions and equivalences. Mathematical Social Sciences,
76:87–102, 2015.

[9] M. Olsen, S. Kurz, and X. Molinero. On the construction of high dimensional
simple games. CoRR, abs/1602.01581, 2016.

[10] A.D. Taylor and W.S. Zwicker. Simple games: desirability relations, trading,
and pseudoweightings. Princeton University Press, New Jersey, USA, 1999.

Equivalent Nonlinear Complementarity
Problem for Chance-constrained Games

Vikas Vikram Singh 1

Laboratoire de Recherche en Informatique, Université Paris Sud XI, Bât 650,
91405, Orsay, France

Oualid Jouini 2

Laboratoire Génie Industriel, Ecole Centrale Paris,Grande Voie des Vignes,
92290, Châtenay-Malabry, France

Abdel Lisser 3

Laboratoire de Recherche en Informatique, Université Paris Sud XI, Bât 650,
91405, Orsay, France

Abstract

We formulate a random bimatrix game, where the entries of the payoff matrix of each
player jointly follow a multivariate elliptically symmetric distribution, as a chance-
constrained game. We show that a Nash equilibrium of a chance-constrained game
can be computed by solving an equivalent nonlinear complementarity problem.

Keywords: Chance-constrained game, Nash equilibrium, Elliptically symmetric
distribution, Nonlinear complementarity problem.

1 Email: vikas.singh@lri.fr
2 Email: oualid.jouini@ecp.fr
3 Email: abdel.lisser@lri.fr

157

1 Introduction

The games with deterministic payoffs have been extensively studied in the lit-
erature. However, there can be practical cases where the players’ payoffs are
better modeled by random variables. The wholesale electricity markets are
the good examples that capture this situation [2]. We refer [5] and references
therein for recent literature on games with random payoffs. The situation
where players are risk neutral can be handled using expected payoff criterion
[3]. The risk averse situation is better modeled by formulating the game as
a chance-constrained game, e.g., see [5], [1], [4] and references therein. The
existence of Nash equilibrium for chance-constrained game has been shown in
[5]. To compute the Nash equilibria of a chance-constrained game, where the
players’ payoffs are independent random variables, a mathematical program-
ming based approach have been proposed in [4]. In general, the payoffs can be
dependent random variables following a certain joint probability distribution.

In this paper, we consider a two player random bimatrix game where the
entries of the payoff matrix of each player follow a multivariate elliptically
symmetric distribution. We formulate the corresponding chance-constrained
game as an equivalent nonlinear complementarity problem (NCP).

2 Chance-constrained Game

We consider a bimatrix game (A,B) where the entries of A and B are random
variables. Let I = {1, 2, · · · ,m} and J = {1, 2, · · · , n} be the action sets of
player 1 and player 2 respectively. Let X and Y be the sets of all probabil-
ity distributions over action sets I and J respectively. The generic elements
x ∈ X and y ∈ Y are mixed strategies of player 1 and player 2 respectively.
We consider the situation where players are risk averse. Let α1 ∈ [0, 1] and
α2 ∈ [0, 1] be the confidence (risk) levels of player 1 and player 2 respectively.
Let α = (α1, α2) be a confidence level vector which is of common knowledge.
For given strategy pair (x, y) and α, the payoff of player 1 and player 2, defined
using chance constraint, is respectively given by,

uα1
1 (x, y) = sup{u|P (xTAy ≥ u) ≥ α1}, (1)

uα2
2 (x, y) = sup{v|P (xTBy ≥ v) ≥ α2}. (2)

We assume that the probability distributions of the payoff matrix of one player
are known to another player. Then, for a given α the chance constrained game
defined above is a non-cooperative game with complete information. The

definition of Nash equilibrium of a chance-constrained game is a standard
definition of Nash equilibrium for payoff functions uα1

1 (·) and uα2
2 (·).

3 Nonlinear Complementarity Problem Formulation

We represent the entries of A (resp. B) by an mn × 1 vector a =
(a1, a2, · · · , am)T (resp. b = (b1, b2, · · · , bm)), where ai = (ai1, ai2, · · · , ain)
(resp. bi = (bi1, bi2, · · · , bin)) for all i ∈ I. We assume that the vector a
(resp. b) follow a multivariate elliptically symmetric distribution with param-
eters µ1 and Σ1 (resp. µ2 and Σ2). Let Σ1 and Σ2 be positive definite ma-
trices. Denote, µ1 = (µ1,1, µ1,2, · · · , µ1,m)T , where µ1,i = (µ1,i1, µ1,i2, · · · , µ1,in)
for all i ∈ I. The vector µ2 is defined similarly. For a given (x, y), define
η(x, y) = (η1, η2, · · · , ηm)T , where ηi = (ηi1, ηi2, · · · , ηin), i ∈ I, such that
ηij = xiyj. From [5], the payoff functions of player 1 and player 2, defined by
(1) and (2) respectively, are given by,

uα1
1 (x, y) = µT1 η(x, y) + ||Σ1/2

1 η(x, y)||F−1Z1
(1− α1), (3)

uα2
2 (x, y) = µT2 η(x, y) + ||Σ1/2

2 η(x, y)||F−1Z2
(1− α2), (4)

where Z1 and Z2 follow a univariate spherically symmetric distribution, and
F−1Z1

(·) and F−1Z2
(·) denote its quantile functions, and || · || is the Euclidean

norm. Let µ1(y) =
(∑

j∈J µ1,ijyj

)
i∈I

be an m × 1 vector for fixed y, and

µ2(x) =
(∑

i∈I µ2,ijxi

)
j∈J

be an n× 1 vector for fixed x. For fixed (x, y), let

f1(x, y) = Σ
1/2
1 η(x, y) and f2(x, y) = Σ

1/2
2 η(x, y). Then, f1(·) and f2(·) are

vectors of functions. Let Jf1(·,y)(x) be a Jacobian matrix of f1(·, y) for fixed y,
and Jf2(x,·)(y) be a Jacobian matrix of f2(x, ·) for fixed x. For a given vector ν,
ν ≥ 0 implies componentwise non-negativity, and ⊥ means that elementwise
equality must hold at one or both sides. We have the following result.

Theorem 3.1 Consider a bimatrix game (A,B) where the entries of A
(resp. B) jointly follow a multivariate elliptically symmetric distribution with
parameters µ1 and Σ1 (resp. µ2 and Σ2). Let Σ1 and Σ2 be positive definite
matrices. Consider a point ζ∗T = (x∗T , y∗T , λ∗1, λ

∗
2, λ
∗
3, λ
∗
4). Then, the strategy

part (x∗, y∗) of ζ∗ is a Nash equilibrium of a chance-constrained game, for a
given α ∈ (0.5, 1]2, if and only if ζ∗ is a solution of the NCP given below:

0 ≤ x ⊥ −µ1(y)− (Jf1(·,y)(x))Tf1(x, y)F−1Z1
(1− α1)

||f1(x, y)|| − λ1em + λ2em ≥ 0,

0 ≤ y ⊥ −µ2(x)− (Jf2(x,·)(y))Tf2(x, y)F−1Z2
(1− α1)

||f2(x, y)|| − λ3en + λ4en ≥ 0,

0 ≤ λ1 ⊥
∑

i∈I
xi − 1 ≥ 0, 0 ≤ λ2 ⊥ 1−

∑

i∈I
xi ≥ 0,

0 ≤ λ3 ⊥
∑

j∈J
yj − 1 ≥ 0, 0 ≤ λ4 ⊥ 1−

∑

j∈J
yj ≥ 0.

The chance-constrained game proposed in this paper can be used to model
the Cournot or Bertrand competition among electricity firms, where, using
discretization the action sets of the firms are finite, and the demand or cost
functions are uncertain. We will provide the proof of Theorem 3.1, and the
application of chance-constrained game in the electricity market together with
numerical results using the proposed NCP, in the extended version of the
paper.

Acknowledgements

This research was supported by Fondation DIGITEO, SUN grant No. 2014-
0822D.

References

[1] R. A. Blau, Random-payoff two person zero-sum games, Operations Research
22 (6) (1974) 1243–1251.

[2] M. Mazadi, W. D. Rosehart, H. Zareipour, O. P. Malik, M. Oloomi, Impact
of wind integration on electricity markets: A chance-constrained Nash Cournot
model, International Transactions on Electrical Energy Systems 23 (1) (2013)
83–96.

[3] U. Ravat, U. V. Shanbhag, On the characterization of solution sets of smooth
and nonsmooth convex stochastic Nash games, Siam Journal of Optimization
21 (3) (2011) 1168–1199.

[4] V. V. Singh, O. Jouini, A. Lisser, Chance-constrained games: A mathematical
programming approach (2015).
URL http://www.optimization-online.org/DB_FILE/2015/12/5270.pdf

[5] V. V. Singh, O. Jouini, A. Lisser, Existence of Nash equilibrium for chance-
constrained games (2015).
URL http://www.optimization-online.org/DB_FILE/2015/06/4977.pdf

Determining the Optimal Strategies for
Zero-Sum Average Stochastic Positional Games

Dmitrii Lozovanu

Applied Mathematics
Institute of Mathematics and Computer Science of Moldova Academy of Sciences

Chisinau, Moldova

Stefan Pickl

Institute for Theoretical Computer Science, Mathematics and Operations Research
Universität der Bundeswehr, München,

Neubiberg-München, Germany

Abstract

We consider a class of zero-sum stochastic positional games that generalizes the
deterministic antagonistic positional games with average payoffs. We prove the
existence of saddle points for the considered class of games and propose an approach
for determining the optimal stationary strategies of the players.

Keywords: Average Markov decision process, Zero-sum stochastic positional
games, Optimal strategies, Saddle points.

1 Email: dmitrii.lozovanu@math.md
2 Email: stefan.pickl@unibw.de

161

1 Introduction and Problem Formulation

The aim of this paper is to prove the existence of saddle points for a class of an-
tagonistic stochastic games that extends deterministic positional games with
average payoffs from [1,2,5]. The considered class of games we formulate by us-
ing the framework of a Markov decision process (X, A, c, p, x0) with a finite set
of states X, a finite set of actions A = ∪x∈XA(x) where A(x) is the set of ac-
tions in the state x ∈ X, a probability transition function p : X×A×X → [0, 1]
that satisfies the condition

∑
y∈X pa

x,y = 1, ∀x ∈ X, a ∈ A(x), and the cost
function c : X × X → R. We assume that the Markov process describes the
evolution of a dynamic system that is controlled by two players as follows:
The set of states is divided into two subsets X = X1 ∪ X2 with X1 ∩ X2 = ∅,
where X1 represents the position set of the first player and X2 represents the
position set of the second player. At time moment t = 0 the dynamical sys-
tem is in the state x0. If this state belongs to the set of positions of the first
player then the action a0 ∈ A(x0) in this state is selected by the first player,
otherwise the action a0 ∈ A(x0) is chosen by the second player. After that the
dynamical system passes randomly to an another state according to the proba-
bility distribution {pa0

x0,y}. At time moment t = 1 the players observe the state
x1 ∈ X of the system. If x1 belongs to the set of positions of the first player
then the action a ∈ A(x1) is chosen by the first player, otherwise the action
is chosen by the second one and so on, indefinitely. In this process the first

player intends to maximize lim
t→∞

inf 1
t

t∑
τ=1

µ(xτ−1), where µ(xτ) =
∑
y∈X

paτ
xτ ,ycxτ ,y,

and the second player intends to minimize lim
t→∞

sup 1
t

t∑
τ=1

µ(xτ−1). We assume

that the players use stationary strategies of a selection of the actions in their
position sets. We define the stationary strategies of the players as maps:
s1 : x → a ∈ A(x) for x ∈ X1; s2 : x → a ∈ A(x) for x ∈ X2. Let s1, s2 be
arbitrary strategies of the players.Then s = (s1, s2) determines a Markov pro-

cess induced by probability distributions {p
si(x)
x,y } in the states x ∈ Xi, i = 1, 2

and a given starting state x0. For this Markov process with transition costs
cx,y, x, y ∈ X we can determine the average cost per transition Fxo(s

1, s2).
The function Fxo(s

1, s2) on S = S1 ×S2, where S1 and S2 represent the corre-
sponding sets of the stationary strategies of player 1 and player 2, defines an
antagonistic game. This game is determined by position sets X1, X2, the set of
actions A, the probability function p, the cost function c and the starting state
x0. We denote this game by (X1, X2, A, c, p, x0) and call it zero-sum average
stochastic positional game. In this game, we are seeking for the saddle points.

2 The Main Results

We show that for the considered zero-sum game there exists a saddle point,
i.e there exist s1∗

, s2∗
for which

Fx(s
1∗

, s2∗
) = max

s1∈S1
min
s2∈S2

Fx(s
1, s2) = min

s2∈S2
max
s1∈S1

Fx(s
1, s2).

Theorem 2.1 Let (X1, X2, A, c, p, x) be an antagonistic stochastic po-
sitional game with average payoff Fx(s

1, s2). Then the system of equations

εx + ωx = max
a∈A(x)

{
µx,a +

∑
y∈X

pa
x,yεy

}
, ∀x ∈ X1;

εx + ωx = min
a∈A(x)

{
µx,a +

∑
y∈X

pa
x,yεy

}
, ∀x ∈ X2;

(1)

has a solution under the set of solutions of the system of equations

ωx = max
a∈A(x)

{ ∑
y∈X

pa
x,yωy

}
, ∀x ∈ X1;

ωx = min
a∈A(x)

{ ∑
y∈X

pa
x,yωy

}
, ∀x ∈ X2,

(2)

i.e. the system of equations (2) has such a solution ω∗
x, x ∈ X for which

there exists a solution ε∗
x, x ∈ X of the system of equations

εx + ω∗
x = max

a∈A(x)

{
µx,a +

∑
y∈X

pa
x,yεy

}
, ∀x ∈ X1;

εx + ω∗
x = min

a∈A(x)

{
µx,a +

∑
y∈X

pa
x,yεy

}
, ∀x ∈ X2.

The optimal stationary strategies s1∗
, s2∗

of the players can be found by fixing
arbitrary maps s1∗

(x) ∈ A(x) for x ∈ X1 and s2∗
(x) ∈ A(x) for x ∈ X2 such

that

s1∗
(x)∈

(
Arg max

a∈A(x)

{ ∑
y∈X

pa
x,yω

∗
y

})∩(
Arg max

a∈A(x)

{
µx,a+

∑
y∈X

pa
x,yε

∗
y

})
, x ∈X1,

s2∗
(x)∈

(
Arg max

a∈A(x)

{ ∑
y∈X

pa
x,yω

∗
y

})∩(
Arg max

a∈A(x)

{
µx,a+

∑
y∈X

pa
x,yε

∗
y

})
, x ∈X2.

Proof (Sketch) Let x ∈ X be an arbitrary state and consider the stationary
strategies s1 ∈ S1, s2 ∈ S2 for which Fx(s

1, s2) = mins2∈S2 maxs1∈S1 Fx(s
1, s2).

We show that Fx(s
1, s2) = maxs1∈S1 mins2∈S2 Fx(s

1, s2), i.e. we show that
s1 = s1∗

, s2 = s2∗
.

If we consider the Markov decision process induced by strategies s1, s2 then
according to the properties of the bias equations for this decision process the
system of linear equations

εx + ωx = µx,a +
∑
y∈X

pa
x,yεy, ∀x ∈ X1, a = s1(x);

εx + ωx = µx,a +
∑
y∈X

pa
x,yεy, ∀x ∈ X2, a = s2(x);

ωx =
∑
y∈X

pa
x,yωy, ∀x ∈ X1, a = s1(x);

ωx =
∑
y∈X

pa
x,yωy, ∀x ∈ X2, a = s2(x)

(3)

has the solution ε∗
x, ω∗

x (x ∈ X) which for a fixed strategy s2 ∈ S2 satisfies the
condition:

ε∗
x + ω∗

x ≥ µx,a +
∑
y∈X

pa
x,yε

∗
y, ∀x ∈ X1, a ∈ A(x);

ε∗
x + ω∗

x = µx,a +
∑
y∈X

pa
x,yε

∗
y, ∀x ∈ X2, a = s2(x);

ω∗
x ≥ ∑

y∈X

pa
x,yω

∗
y, ∀x ∈ X1, a ∈ A(x);

ω∗
x =

∑
y∈X

pa
x,yω

∗
y, ∀x ∈ X2, a = s2(x)

and Fx(s
1, s2) = ω∗

x, ∀x ∈ X.

Taking into account that Fx(s
1, s2) = mins2∈S2 Fx(s

1, s2) then for a fixed
strategy s1 ∈ S1 the solution ϵ∗

x, ω∗
x (x ∈ X) satisfies the condition

ε∗
x + ω∗

x = µx,a +
∑
y∈X

pa
x,yε

∗
y, ∀x ∈ X1, a = s1(x);

ε∗
x + ω∗

x ≤ µx,a +
∑
y∈X

pa
x,yε

∗
y, ∀x ∈ X2, a ∈ A(x);

ω∗
x =

∑
y∈X

pa
x,yω

∗
y, ∀x ∈ X1, a = s1(x);

ω∗
x ≤ ∑

y∈X

pa
x,yω

∗
y, ∀x ∈ X2, a ∈ A(x)

So, the following system

εx + ωx ≥ µx,a +
∑
y∈X

pa
x,yεy, ∀x ∈ X1, a ∈ A(x);

εx + ωx ≤ µx,a +
∑
y∈X

pa
x,yεy, ∀x ∈ X2, a ∈ A(x);

ωx ≥ ∑
y∈X

pa
x,yωy, ∀x ∈ X1, a ∈ A(x);

ωx ≤ ∑
y∈X

pa
x,yωy, ∀x ∈ X2, a ∈ A(x)

has a solution, which satisfies condition (3). This means that s1 = s1∗
,

s2 = s2∗
and

Fx(s
1∗

, s2) = max
s1∈S1

min
s2∈S2

Fx(s
1, s2) = min

s2∈S2
max
s1∈S1

Fx(s
1, s2), ∀x ∈ X,

i.e. , the theorem holds. 2

The obtained saddle point condition for zero-sum stochastic games gen-
eralizes the saddle point condition for deterministic average positional games
from [1,5]. Based on Theorem 2.1 we may conclude that the optimal strategies
of the players in the considered game can be found if we determine a solution
of equations (1),(2). We have shown that a solution of these equations can
be determined using iterative algorithms like algorithms for determining the
optimal solutions of an average Markov decision problem [3,4].

References

[1] Ehrenfeucht, A., Mycielski, J., Positional strategies for mean payoff games
International Journal of Game Theory. 8 (1979), 109–113.

[2] Lozovanu, D., Pickl, S., ”Optimization and Multiobjective Control of Time-
Discrete Systems”, Springer, 2009.

[3] Lozovanu, D., Pickl, S., ”Optimization of Stochastic Discrete Systems and
Control on Complex Networks”, Springer, 2015.

[4] Puterman, M., ”Markov Decision Processes: Discrete Stochastic Dynamic
Programming”, John Wiley, New Jersey, 2005.

[5] Zwik U., Paterson M., The complexity of mean payoff games on graphs, TCS
158 (1996), 344-359.

The Complexity of SIMPLE MAX-CUT on
Comparability Graphs

Rafael Veiga Pocai 1,2

Instituto de Matemática e Estat́ıstica
Universidade de São Paulo

São Paulo, Brazil

Abstract

We adapt a result by Masuda et al. [3] on FIXED LINEAR CROSSING NUMBER
to show that SIMPLE MAX-CUT is NP-hard on comparability graphs.

Keywords: max-cut, comparability graphs, computational complexity

1 Introduction

SIMPLE MAX-CUT is the problem of, given a graph G = (V, E), finding a
set U ⊂ V such that δ(U) has maximum cardinality.

Masuda et al. [3] showed that FIXED LINEAR CROSSING NUMBER
is NP-hard. The problem consists on minimizing crossings in a drawing of a
graph such that the vertices are drawn on a line in a fixed order and the edges
are drawn as semicircles. This problem can be interpreted as SIMPLE MAX-
CUT on circle graphs, as observed by Buchheim and Zheng [1]. Therefore,

1 This work was supported by CNPq, Brazil (131103/2014-8)
2 Email: rvpocai@ime.usp.br

166

Masuda’s result also proves that SIMPLE MAX-CUT is NP-hard on circle
graphs.

A comparability graph is a graph that can be generated by a partial order
≺ over a set V , where the vertices are the elements of V and u, v ∈ V are
adjacent if and only if u ≺ v or v ≺ u. Inspired on Masuda’s proof, we show
that SIMPLE MAX-CUT is NP-hard also on comparability graphs.

2 Reduction from SET SPLITTING

In SET SPLITTING, we are given a set X and a collection S of subsets of
X, and the goal is to decide whether there is a partition X1, X2 of X such
that for all S ∈ S, S ∩ X1 6= ∅ and S ∩ X2 6= ∅. We call such an instance
affirmative.

This problem is NP-complete even if the sets in S have only either two or
three elements [2]. Let (X, S) be an instance of this kind, and let m = |X|,
n = |S|, n2 = {S ∈ S : |S| = 2} and n3 = {S ∈ S : |S| = 3}. We also define
M =

(
2n2+6n3

2

)
+ 1.

We construct a comparability graph G = (V, E) such that the answer of
SIMPLE MAX-CUT on G tells us whether (X, S) is an affirmative instance
or not. The set of vertices V is the following:

• For each set S ∈ S such that S = {xp, xq}, we create two disjoint sets AS
pq

and AS
qp, where |AS

pq| = |AS
qp| = M . This two sets will form a complete

bipartite graph called BS
pq = (AS

pq, A
S
qp).

• For each set S ∈ S such that S = {xp, xq, xr}, we create six disjoint sets
AS

pq, AS
qp, AS

pr, AS
rp, AS

qr and AS
rq, where each one has M vertices. From

them we will obtain three complete bipartite graphs called BS
pq = (AS

pq, A
S
qp),

BS
pr = (AS

pr, A
S
rp) and BS

qr = (AS
qr, A

S
rq).

• For each xp ∈ X and for each S ∈ S:
· If S = {xp, xq} then we create the vertex wS

pq.
· If S = {xp, xq, xr} then we create the vertices wS

pq and wS
pr.

• For each xp ∈ X, we create the Zp with 2M vertices.

We define the partial order relation ≺ over V as follows:

• For each BS
pq = (AS

pq, A
S
qp), and for all u ∈ AS

pq and v ∈ AS
qp, we define u ≺ v

if p < q and v ≺ u if q < p.

• For each wS
pq and u ∈ AS

pq, we define u ≺ wS
pq if p < q and wS

pq ≺ u if q < p.

• For all Zp, z ∈ Zp and wS
pq, we define z ≺ wS

pq if p < q and wS
pq ≺ z if q < p.

≺

≺

≺ ≺

≺

z

wS
pq

wS′
pr

Fig. 1. The red edge was induced by transitivity through vertex z.

S1

S2

S3

x1 x2 x3 x4

Fig. 2. An example of G constructed from the instance X = {x1, x2, x3, x4} and
S = {S1 = {x1, x2}, S2 = {x1, x2, x3}, S3 = {x3, x4}}. The figure also shows the
kind of cut presented in the proof of Lemma 2.1, where the green edges are the only
not in it.

The graph G = (V, E) is the comparability graph induced by ≺. The
edges listed above are called explicit, and the edges induced by the transitive
property are called implicit. By construction, the only implicit edges induced
by ≺ connect vertices w related to the same xp ∈ X, by transitivity through
some vertex z ∈ Zp, as illustrated by Figure 1. These edges sum at most(
2n2+6n3

2

)
= M − 1. Figure 2 shows an example of the construction.

Let K = M(n3 +1)−1 and mc = max{|δ(U)| : U ⊂ V }. The next lemmas
will connect the results of SIMPLE MAX-CUT on G and SET SPLITTING
on (X, S).

Lemma 2.1 If (X, S) is an affirmative instance of SET SPLITTING, then
mc ≥ |E| − K.

Proof. Let X1, X2 be a partition of X that split all the sets in S. Lets
construct a set of vertices U such that |δ(U)| ≥ |E| − K.

• We start with U = ∅.

• For each xp ∈ X1, we put all wS
pq in U .

• For each xp ∈ X2, we put all z ∈ Zp in U .

• For each S = {xp, xq} such that xp ∈ X1, we put all elements of AS
qp in U .

• For each S = {xp, xq, xr} such that xp ∈ X1 and xq, xr ∈ X2, we put all
elements of AS

qp, AS
qr and AS

rp in U .

• For each S = {xp, xq, xr} such that xp, xq ∈ X1 and xr ∈ X2, we put all
elements of AS

pq, AS
rp and AS

rq in U .

Figure 2 illustrates the construction. All explicit edges are in the cut,
except M edges for each set of three elements in S. Moreover, the implicit
edges are also out of the cut. Hence:

mc ≥ |δ(U)| ≥ |E| − Mn3 −
(

2n2 + 6n3

2

)
= |E| − M(n3 + 1) + 1 = |E| − K.

✷

The next lemma claims the reciprocal, but its proof will be omitted here.

Lemma 2.2 If mc ≥ |E| − K, then (X, S) is an affirmative instance of SET
SPLITTING. ✷

Since the graph G may be constructed in polynomial time, the theorem
follows:

Theorem 2.3 SIMPLE MAX-CUT is NP-hard on comparability graphs. ✷

References

[1] Buchheim, C. and L. Zheng, Fixed linear crossing minimization by reduction
to the maximum cut problem, Lecture Notes in Computer Science 4112 (2006),
pp. 507–516.

[2] Garey, M. R. and D. S. Johnson, “Computers and Intractability: A Guide to the
Theory of NP-Completeness,” W. H. Freeman, 1979.

[3] Masuda, S., K. Nakajima, T. Kashiwabara and T. Fujisawa, Crossing
minimization in linear embeddings of graphs, IEEE Transactions on Computers
39 (1990), pp. 124–127.

Hardness results for stable exchange problems

Zsuzsa Karkus 1,2

Department of Operations Research
Eötvös Loránd University

Budapest, Hungary

Abstract

In this paper, we study variants of the stable exchange problem which can be viewed
as a model for kidney exchange. The b-way stable l-way exchange problem is a
generalization of the stable roommates problem. For b = l = 3, Biró and McDermid
proved that the problem is NP-complete and asked whether a polynomial time
algorithm exists for b = 2, l = 3. We prove that the problem is NP-complete and
it is W[1]-hard with the number of 3-cycles in the exchange as a parameter. We
answer a question of Biró by proving that it is NP-hard to maximize the number of
covered nodes in a stable exchange. We also prove some related results on strong
stability, approximation and variants of the problem where we allow chains.

Keywords: stable exchange, kidney exchange, computational complexity

1 Introduction

Given a simple digraph D = (V,A), a set of node-disjoint directed cycles is
called an exchange. In an instance of a stable exchange problem, every v ∈ V

1 Research was supported by the Hungarian Scientific Research Fund (OTKA, grant num-
ber K109240).
2 Email: karkuszsuzsi@gmail.com

170

has a strictly ordered preference list containing the nodes to which there is
an arc from v. We say that u gets v in the exchange if uv is an arc of one
of the directed cycles in the exchange. We say that v ∈ V is covered by the
exchange E if v belongs to a cycle in E. An exchange is called stable if there
is no directed cycle C such that for each arc e = uv of C, u is not covered by
the exchange or u prefers v over what he got in the exchange. An exchange
is called strongly stable if there is no directed cycle C not in the exchange
such that for each arc e = uv of C, u is not covered by the exchange or e is in
the exchange or u prefers v over what he got in the exchange. In both cases,
the node set of a violating cycle C is called a blocking coalition.

An important motivation of this model is kidney exchange. (This was first
described in [5].) Currently the best known treatment for kidney failure is
transplantation. Since there are a large number of people on the deceased
donor waiting list, the more efficient solution is living donation. However, a
kidney of a willing living donor is often not suitable for the patient for im-
munological reasons. Therefore incompatible patient-donor pairs might want
to exchange kidneys with other pairs in the same situation.

In the model described above, the nodes of the digraph correspond to the
incompatible patient-donor pairs and uv ∈ A if and only if the kidney of the
donor corresponding to v is suitable for the patient corresponding to u. Each
patient has a strict preference order over the kidneys suitable for him. In
an exchange, the patient-donor pairs exchange kidneys backwards along the
cycles.

Shapley and Scarf [7] showed that the stable exchange problem (SE) is
always solvable, and a stable exchange can be found by the Top Trading
Cycles (TTC) algorithm proposed by Gale.

In case of kidney exchanges, the cycles in the exchange should be short,
since all operations along a cycle have to be carried out at the same time (to
avoid someone backing out). If all the cycles in the exchange have length at
most l, we call it an l-way exchange. An exchange is called b-way stable if
there is no blocking coalition of size at most b. The definition is analogous for
strong stability. The 2-way stable 2-way exchange problem is equivalent to the
stable roommates with incomplete preference lists problem and hence solvable
in polynomial time [3]. Biró and McDermid [1] proved that the problem of
deciding whether a 3-way stable 3-way exchange exists is NP-complete, and
asked whether a polynomial time algorithm exists for the problem of deciding
whether a 2-way stable 3-way exchange exists. In this paper we settle this and
other related questions. The proofs are omitted for lack of space, they can be
found in [4].

2 Stable exchanges with restrictions and maximizing
the number of covered nodes

Theorem 2.1 The problem of deciding whether a stable l-way exchange exists
is NP -complete for any l ≥ 3. The same holds for b-way (strongly) stable l-
way exchanges for any b ≥ 2.

Theorem 2.2 For parameter k, the problem of deciding whether a 2-way sta-
ble 3-way exchange with at most k 3-cycles exists is W[1] -hard even in com-
plete digraphs.

An instance might admit more than one stable exchanges; therefore, it is a
natural goal to maximize the number of covered nodes in the exchange. The
complexity of this problem was mentioned as an open problem in [2] as well
as the same question for 2-way stable exchanges.

Theorem 2.3 It is NP-complete to decide if an instance of the stable ex-
change problem admits a complete stable exchange.

Roth and Postlewaite [6] proved that the exchange found by the TTC
algorithm is the only strongly stable solution. However, there might be more
then one b-way strongly stable exchanges.

Theorem 2.4 It is NP-complete to decide if an instance of the stable ex-
change problem admits a complete b-way (strongly) stable exchange for any
b ≥ 2.

Theorem 2.5 If the digraph is symmetric, then TTC is a 1
2
-approximation

algorithm, while the stable partition algorithm [8] is a 2
3
-approximation algo-

rithm for maximizing the number of covered nodes in a 2-way (strongly) stable
exchange.

3 Allowing chains

A recent innovation in kidney exchange is allowing chains. There are altruists
who are willing to donate one of their kidneys to any patient who needs it. In
an exchange with chains we allow chains ending in an altruist besides cycles.
The cycles should be short in practice, however, the chains might be longer
since the operations along a chain do not necessarily have to be carried out
simultaneously (although it is desirable).

In this section we study the problem of deciding whether a 2-way stable
pairwise exchange with chains exists. Pairwise means that besides the chains

only 2-cycles are allowed. (The 2-way stable l-way exchange with chains prob-
lem is NP-hard since its special case, where there are no altruist nodes is
NP-complete.)

Theorem 3.1 The problem of deciding whether a 2-way stable pairwise ex-
change with chains exists is NP-complete, even if the number of altruists is
restricted to 1.

Theorem 3.2 The problem of deciding whether a 2-way stable pairwise ex-
change with chains exists, where the lengths of the chains are at most l is
NP-complete for any given l ≥ 1.

Theorem 3.3 The 2-way stable pairwise exchange with chains problem is
W [1]-hard even if the number of altruists is restricted to 1, if the parame-
ter is the length of the longest chain in the exchange.

Acknowledgement. The author would like to thank Tamás Király for his help-
ful suggestions and comments.

References

[1] P. Biró and E. McDermid, Three-Sided Stable Matchings with Cyclic
Preferences, Algorithmica, 58(1) (2010), 5–18.

[2] P. Biró, “The stable matching problem and its generalizations: an algorithmic
and game theoretical approach,“ Ph.D. thesis, Budapest University of
Technology and Economics, 2007.

[3] R. W. Irving and D.F. Manlove, The stable roommates problem with ties,
Journal of Algorithms, 43(1) (2002), 85–105.

[4] Zs. Karkus, “Stable exchanges,“ M.Sc. thesis, Eötvös Loránd University
Budapest, 2015.

[5] A. E. Roth, T. Sönmez and U. M. Ünver, Kidney exchange, Quarterly Journal
of Economics, 119 (2004), 457-488.

[6] A. Roth and A. Postlewaite, Weak versus strong domination in a market with
indivisible goods, Journal of Mathematical Economics 4(2) (1977), 131–137.

[7] L. S. Shapley and H. E. Scarf, On cores and indivisibility, Journal of
mathematical economics, 1(1) (1974), 23-37.

[8] J.J.M. Tan, A necessary and sufficient condition for the existence of a complete
stable matching, Journal of Algorithms, 12 (1991), 154–178.

On the Complexity of the P3-Hull Number of
the Cartesian Product of Graphs 3

Julliano R. Nascimento a,1, Erika M. M. Coelho a,1,
Hebert Coelho a,1, Jayme L. Szwarcfiter b,c,2

a Instituto de Informática, Universidade Federal de Goiás, GO, Brazil
b IM, COPPE, and NCE, Universidade Federal do Rio de Janeiro, RJ, Brazil

c Instituto Nacional de Metrologia, Qualidade e Tecnologia, RJ, Brazil

Abstract

Let G be a finite, simple, and undirected graph and let S be a set of vertices of
G. If no vertex of G that does not belong to S has two neighbors in S, then S is
P3-convex. The P3-convex hull H(S) of S is the smallest P3-convex set containing
S. If H(S) = V (G) we say that S is a P3-hull set of G. The cardinality h(G) of
a minimum P3-hull set in G is called the P3-hull number of G. In this paper we
extend the result of Centeno et al. [2] showing that, given a graph G and an integer
k, deciding whether h(G) ≤ k remains NP-complete for the Cartesian product of
graphs.

Keywords: P3-convexity, P3-hull number, Cartesian product.

1 Emails: {erikamorais,hebert,jullianorosanascimento}@inf.ufg.br
2 Email: jayme@nce.ufrj.br
3 The authors are partially supported by CAPES, CNPq, and FAPERJ.174

1 Introduction

The spread disease on a square grid [1] is an example of problem in which the
P3-hull number of Cartesian product of graphs can be applied. In a square
grid some cells are infected. Iteratively, an uninfected cell becomes infected if
at least two of its neighbors are so. What is the minimum number of originally
infected cells to guarantee that all cells of the grid become eventually infected?

In this paper we consider finite, simple and undirected graphs and we use
the standard terminology. Let G be a graph with vertex set V (G). A graph
convexity on V (G) is a collection C of subsets of V (G) such that ∅, V (G) ∈ C
and C is closed under intersections. The sets in C are called convex sets.

Many convexities in graphs are defined by a set P of paths in G, such that
a set S of vertices of G is convex if and only if for every path P : v0v1 . . . vl in
P such that v0 and vl belong to S, all vertices of P belong to S. If we define P
as the set of, all shortest paths in G, all induced paths of G and all paths of G
with 3 vertices, we have the geodetic convexity [5], the monophonic convexity
[4], and the P3-convexity [3], respectively.

In this paper we study the P3-convexity C on a graph G. Given a set
S ⊆ V (G), the P3-interval I[S] of S is formed by S with every vertex outside
S with at least two neighbors in S. If I[S] = S, then the set S is P3-convex.
The P3-convex hull H(S) of S is the smallest P3-convex set containing S. If
H(S) = V (G) we say that S is a P3-hull set of G. The cardinality h(G) of a
minimum P3-hull set in G is called the P3-hull number of G. Some results on
the P3-hull number follow in [2,7].

Our motivation comes from the infection problem presented at the first
paragraph and from a work of Centeno et al. [2]. They proved that, given a
graph G and an integer k, to decide whether h(G) ≤ k is NP-complete. We
extend their result showing that the same problem remains NP-complete for
the Cartesian product of graphs. The Section 2 contains our result.

2 Results

The Cartesian product of two graphs G1 and G2, denoted by G1�G2, is the
graph with vertex set V (G1�G2) = V (G1) × V (G2) and edge set E(G1�G2)
satisfying the following condition: (u, u′)(v, v′) ∈ E(G1�G2) if and only if
either u = v and u′v′ ∈ E(G2) or u′ = v′ and uv ∈ E(G1).

Let G1 and G2 be two graphs with vertex sets V (G1) = {u1, . . . , um} and
V (G2) = {v1, . . . , vn}, respectively. We refer to column Cj, for 1 ≤ j ≤ n, the
subset of vertices {(u1, vj), . . . , (um, vj)} of V (G1�G2).

Problem 2.1 SAT-am3 [6]
Instance: A set F = {F1, F2, . . . , Fm} of clauses, built on a finite set U =
{x1, x2, . . . , xn} of boolean variables, such that each clause contains at most
three literals and each variable appears at most three times.
Question: Is there a truth assignment to the variables in U satisfying F?

Problem 2.2 P3-Hull number [2]
Instance: A graph G and an integer k ≥ 0.
Question: Does G have a P3-hull set S, such that |S| ≤ k?

Theorem 2.3 The P3-Hull number remains NP-complete on Cartesian
product of graphs.

Proof (Sketch) According to Centeno et al. [2] the problem for general
graphs is in NP, then the same problem with the restriction of the graph
considered be the result of a Cartesian product is also in NP.

The problem SAT-am3 is NP-complete [6]. Centeno et al. [2] perform a
reduction from SAT-am3, assuming that, for every 1 ≤ i ≤ n, each of the two
literals xi and xi is contained in exactly one or two of the clauses of F . We
proceed in the same way. From an instance φ of SAT-am3 we first construct
a graph G such that h(G) = 7n.

For every 1 ≤ i ≤ n, we add to G a variable gadget G(xi), as in Figure 1.
For every 1 ≤ j ≤ m, we add to G a clause gadget G(Fj), which is a complete
bipartite graph. The first partite set of G(Fj) consists of the vertices Fj(1)
and Fj(2). For every literal x that occurs in Fj and is contained in exactly
one clause of φ, the second partite set of G(Fj) contains two vertices Fj(x, 1)
and Fj(x, 2), and we add to G the six edges x(1)Fj(1), x(2)Fj(1), x(3)Fj(2),
x(4)Fj(2), x(5)Fj(x, 1), x(5)Fj(x, 2). Similarly, for every literal x that occurs
in Fj and is contained in exactly two clauses of φ, the second partite set of
G(Fj) contains one vertex Fj(x, 1), and we add to G the five edges x(1)Fj(1),
x(2)Fj(1), x(3)Fj(2), x(4)Fj(2), x(5)Fj(x, 1).

To complete our construction, we use the graph G, to create a graph G�K2,
where V (K2) = {v1, v2}, such that an instance φ of SAT-am3 is satisfiable
if and only if h(G�K2) ≤ k, where k = 7n. We denote by X

vj

i (X
vj

i) the set
Xi (X i) of the variable gadget, for 1 ≤ i ≤ n, that belongs to the column Cj,
j ∈ {1, 2}.

Suppose that φ is satisfiable and let A be an assignment that turns F
true. Let S ′ = {(xi(p), v1), (xi(p), v1) : 7 ≤ p ≤ 9, 1 ≤ i ≤ n}. Consider
S ⊆ V (G�K2) such that S contains the set (S ′ \ {(x1(7), v1)})∪{(x1(7), v2)}.
For every literal x that is true in A, add the vertex (x(0), v1) in S. Note that

Fig. 1. The variable gadget G(xi).

|S| = 7n. It is possible to prove that the set S is a P3-hull set of G�K2.

For the converse, suppose that G�K2 has a P3-hull set S with 7n vertices.
Since the set Xi = Xv1

i ∪ Xv2
i ∪ X

v1

i ∪ X
v2

i , for 1 ≤ i ≤ n, is P3-convex, then
S must contain at least one vertex of each Xi, 1 ≤ i ≤ n. Defining a truth
assignment A where xi is true if and only if S has a vertex of Xv1

i ∪ Xv2
i , for

every 1 ≤ i ≤ n, it is possible to show that A is a valid truth assignment.

2

References

[1] Bollobás, B., “The art of mathematics: Coffee time in Memphis,” Cambridge
University Press, 2006.

[2] Centeno, C. C., M. C. Dourado, L. D. Penso, D. Rautenbach and J. L.
Szwarcfiter, Irreversible conversion of graphs, Theoretical Computer Science 412
(2011), pp. 3693–3700.

[3] Centeno, C. C., M. C. Dourado and J. L. Szwarcfiter, On the convexity of paths
of length two in undirected graphs, Electronic Notes in Discrete Mathematics 32
(2009), pp. 11–18.

[4] Duchet, P., Convex sets in graphs, ii. minimal path convexity, Journal of
Combinatorial Theory, Series B 44 (1988), pp. 307–316.

[5] Everett, M. G. and S. B. Seidman, The hull number of a graph, Discrete
Mathematics 57 (1985), pp. 217–223.

[6] Garey, M. R. and D. S. Johnson, “Computers and intractability: a guide to NP-
completeness,” W.H. Freeman and Company, 1979.

[7] Penso, L. D., F. Protti, D. Rautenbach and U. dos Santos Souza, Complexity
analysis of p3-convexity problems on bounded-degree and planar graphs,
Theoretical Computer Science 607 (2015), pp. 83–95.

A lower bound for the sum of the two largest
signless Laplacian eigenvalues

Carla Silva Oliveira 1

Department of Mathematical and Statistics
National School of Statistics

Rio de Janeiro, Brasil

Leonardo de Lima 2

Department of Production Engineering
Federal Center of Technological Education Celso Suckow da Fonseca

Rio de Janeiro, Brasil

Abstract

Let G be a connected graph of order n ≥ 3 and let Q(G) = D(G) + A(G) be
the signless Laplacian of G, where A(G) is the adjacency matrix and D(G) is the
diagonal matrix of the row-sums of A(G). Write q1(G) and q2(G) for the two largest
eigenvalues of Q(G). In this paper, we obtain a lower bound to the sum of the two
Q−largest eigenvalues, that is, q1(G) + q2(G) ≥ d1(G) + d2(G) + 1 with equality if
and only if G is the star Sn or the complete graph K3, where di is the i−largest
degree of a vertex of G.

Keywords: Signless Laplacian, two largest eigenvalues, sequence degree, lower
bound

1 Email: carla.oliveira@ibge.gov.br
2 Email: leonardo.lima@cefet-rj.br

178

1 Introduction

Let G(V,E) be a simple graph on n vertices. Define N(u) as the set of
neighbors of a vertex u ∈ V and |N(u)| its cardinality. The sequence degree of
G is denoted by d(G) = (d1(G), d2(G), . . . , dn(G)) , such that di(G) = |N(vi)|
is the degree of the vertex vi ∈ V and d1(G) ≥ d2(G) ≥ . . . ≥ dn(G). Write
A for the adjacency matrix of G and let D be the diagonal matrix of the
row-sums of A, i.e., the degrees of G. The matrix Q (G) = A + D is called
the signless Laplacian or the Q-matrix of G. As usual, we shall index the
eigenvalues of Q (G) in non-increasing order and denote them as q1(G) ≥
q2(G) ≥ . . . ≥ qn(G), respectively. In [1], Cvetkovic, Rowlinson and Simic
proved that q1(G) ≥ d1(G) + 1 and Das in [3] proved that q2(G) ≥ d2(G)− 1.
From these two previous results, an obvious lower bound to the sum of the
two largest Q−eigenvalues of G is obtained. In this paper, we improve that
bound to q1(G) + q2(G) ≥ d1(G) + d2(G) + 1, which is proved in Section 3.
Some useful results to our purposes are presented in Section 2. We denote the
following graphs on n vertices: the complete graph Kn; the star Sn and the
complete bipartite graph Kn1,n2 , such that n1 ≥ n2 and n = n1 + n2.

2 Preliminary results

First, we recall the Interlacing Theorem that is a classical result in matrix
theory and can be found at Horn and Johnson [4] (in Theorem 4.3.8). The
Interlacing Theorem version to the signless Laplacian matrix holds in a specify
way which is proved in [5] and stated here in Theorem 2.1. In [2], the authors
proved an edge removal version of Interlacing Theorem for the Q-eigenvalues
by using line graphs. Notice that the usage of both Interlacing Theorems play
an important role in our proofs.

Theorem 2.1 ([5]) Let G be a graph of order n and v ∈ V. Then for i =
1, . . . , n− 1, qi+1(G)− 1 ≤ qi(G− v) ≤ qi(G), where the right inequality holds
if and only if v is an isolated vertex.

Let u and v be the vertices with the two largest degrees of a graph G, that
is, |N(u)| = d1(G) and |N(v)| = d2(G). A subgraph H(VH , EH) of G can
be obtained by taking the vertex set as VH = {vi ∈ V | vi ∈ N(u) ∪ N(v) ∪
{u} ∪ {v}} and the edge set as EH = {(vi, vj) ∈ E | vi ∈ {u, v} and vj ∈
N(u) ∪N(v)}. The proof of our main result in Theorem 3.1 follows from the
fact that q1(G) + q2(G) ≥ q1(H) + q2(H) by the Interlacing Theorem 2.1 and
its edge version, and also that d1(G)+d2(G) = d1(H)+d2(H) since we did not

remove any vertex from N(u) and N(v) of G to build the graph H. In fact, if
we prove that q1(H)+q2(H) ≥ d1(H)+d2(H)+1, we are done. Before proving
that, we need to introduce some notation and two types of graphs obtained by
the definition of H(VH , EH). Let S1 = N(u) \ (N(v) ∪ v), S2 = N(u) ∩ N(v)
and S3 = N(v) \ (N(u) ∪ u), such that |S1| = r, |S2| = p and |S3| = s. If u
and v are not adjacent, H is denoted by H(p, r, s) with d1(G) = d1(H) = p+r
and d2(G) = d2(H) = p+ s. If u and v are adjacent, H is denoted by G(p, r, s)
with d1(G) = d1(H) = p+r+1 and d2(G) = d2(H) = p+s+1. Now, consider
Lemmas 2.2 and 2.3 which establish lower bounds to q1(G) and q2(G) in terms
of d1(G) and d2(G).

Lemma 2.2 ([1]) Let G be a connected graph on n ≥ 4 vertices. Then,
q1(G) ≥ d1(G) + 1 with equality if and only if G is the star Sn.

Lemma 2.3 ([3]) Let G be a graph. Then q2(G) ≥ d2(G)− 1.

We improve the lower bounds of the previous lemmas for the graphs
H(p, r, s) and G(p, r, s) in Propositions 2.4 and 2.5. The proofs are based
on the quotient matrix according to the partition π = (u, v, S2, S1, S3) of the
matrix Q(G). Such results are crucial to proof Theorem 3.1.

Proposition 2.4 Let G ∈ H(p, r, s) be a graph on n ≥ 3 vertices with p ≥ 1
and r ≥ 1. If r ≥ s ≥ 1, then q2(G) > d2(G); otherwise, if s = 0, then
q2(G) ≥ d2(G) with equality if and only if G = P4.

Proposition 2.5 Let G ∈ G(p, r, s) be a graph on n ≥ 3.

(i) If r = p = 1 and s = 0, then q2(G) = d2(G);

(ii) If p = 0, r, s ≥ 1, then q1(G) + q2(G) > d1(G) + d2(G) + 1;

(iii) If p = 1 and r = s, then q1(G) > d1(G) + 3
2
and q2(G) > d2(G)− 1

2
;

(iv) If p ≥ 2 and r = s, then q1(G) > d1(G) + 2;

(v) If p ≥ 1 and r ≥ s+ 3, then q2(G) > d2(G);

(vi) If p ≥ 1 and r ∈ {s + 1, s + 2}, then q1(G) > d1(G) + 1 + p
n
and q2(G) >

d2(G)− p
n
.

3 Main result

In this section, we prove the main result of the paper.

Theorem 3.1 Let G be a simple connected graph on n ≥ 3 vertices. Then
q1 (G) + q2 (G) ≥ d1 (G) + d2 (G) + 1 with equality if and only if G is one of
the following graphs: the complete graph K3 or a star Sn.

Proof. Let G be a simple connected graph on n ≥ 3 vertices. Assume that
u and v are the vertices with largest and second largest degrees of G, i.e.,
d(u) = d1(G) and d(v) = d2(G). Take H as a subgraph of G containing u and v
such that H is isomorphic to H(p, r, s) or G(p, r, s). Note that d1(G)+d2(G) =
d1(H)+d2(H) and from Interlacing Theorem 2.1 and its edge version, q1(G)+
q2(G) ≥ q1(H) + q2(H). Firstly, suppose that H is isomorphic to H(p, r, s).
Since G is connected, the cases p = 0 with any r and s are not possible. If
p = 1 and r = s = 0, then H = H(1, 0, 0) = S3 and q1(H) + q2(H) = 4 =
d1(H) + d2(H) + 1. If p ≥ 2 and r = s = 0, then H = H(p, 0, 0) = K2,p and
q1(H)+q2(H) = 2p+2 > d1(H)+d2(H)+1 = 2p+1. If p, r ≥ 1 and s = 0, from
Proposition 2.4 and Lemma 2.2, we get q1(H) + q2(H) > d1(H) + d2(H) + 1.
Now, if p ≥ 1 and r ≥ s ≥ 1, from Proposition 2.4 and Lemma 2.2, follows
that q1(H)+q2(H) > d1(H)+d2(H)+1. Now, suppose that H is isomorphic to
G(p, r, s). If p = s = 0 and r ≥ 1, H = G(0, r, 0) = Sr+2 and q1(H) + q2(H) =
r + 3 = d1(H) + d2(H) + 1. If p = 0 and r, s ≥ 1, the result follows from
Proposition 2.5. If p = 1 and r = s = 0, then H is the complete graph K3

and q1(H) + q2(H) = 5 = d1(H) + d2(H) + 1. If p ≥ 2 and r = s = 0, then
H = G(p, 0, 0) = K2 ∨Kp, i.e., the complete split graph, and it is well-known
that q1(H) = (n+2+

√
n2 + 4n− 12)/2 and q2(H) = n−2. It is easy to check

that for p ≥ 2, we have q1(H) + q2(H) > d1(H) + d2(H) + 1. If p ≥ 1, r ≥ 1
and s ≥ 0, the result of the theorem follows from Proposition 2.5 and Lemmas
2.2 and 2.3. From the cases above, the equality conditions are restricted to
the graphs K3 and Sn and the result follows.

2

References

[1] Cvetković D., Rowlinson P. and Simic S., Eigenvalue bounds for the signless
Laplacian, Publ. Inst. Math. Beograd 81(95), (2007), 11–27.

[2] D. Cvetković, P. Rowlinson, S.K. Simic, Signless Laplacians of finite graphs,
Linear Algebra Appl., 423 (1) (2007), 155–171.

[3] Das K. C., On conjectures involving second Largest signless Laplacian eigenvalue
of graphs, Linear Algebra Appl. 432, (2010), 3018–3029.

[4] Horn R. and Johnson C., Matrix Analysis, Cambridge University Press,
Cambridge, 1985, xiii+561 pp.

[5] Wang J. and Belardo F., A note on the signless Laplacian eigenvalues of graphs,
Linear Algebra Appl. 435 (10), (2011), 2585–2590.

On Three Extensions of Equimatchable Graphs

Zakir Deniz a, Tınaz Ekim b, Tatiana Romina Hartinger c,
Martin Milanič c, Mordechai Shalom d

a Department of Mathematics, Süleyman Demirel University, Isparta, Turkey
zakirdeniz@sdu.edu.tr

b Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey
tinaz.ekim@boun.edu.tr

c University of Primorska, UP IAM and UP FAMNIT, Koper, Slovenia
tatiana.hartinger@iam.upr.si, martin.milanic@upr.si

d TelHai College, Upper Galilee, 12210, Israel
cmshalom@telhai.ac.il

Abstract

A graph is said to be equimatchable if all its maximal matchings are of the same
size. In this work we introduce three extensions of the property of equimatchability
and present some initial structural and algorithmic insights about them.

Keywords: matching, equimatchable graph, greedy algorithm, equimatchable set,
matching gap

1 Introduction

A matching is a set of pairwise disjoint edges in a graph. A matching is said to
be maximal if it is not contained in any other matching and maximum if it is
of maximum size. Given a graph G, we denote by ν(G) and β(G) the sizes of a
maximum matching and of a minimum maximal matching of G, respectively.

182

A graph G is equimatchable if all its maximal matchings are of the same size,
that is, if β(G) = ν(G). Equimatchable graphs were first introduced and
characterized in [3] and it has been shown in [2] that they are polynomially
recognizable. In this work we generalize the property of equimatchability of
graphs in three different ways: to a weighted case related to a greedy algorithm
and by introducing two graph parameters measuring how far a graph is from
being equimatchable.

2 Greedy equimatchable graphs

Our first generalization is related to a greedy algorithm and motivated by ap-
plications in routing in wireless networks. Consider an edge-weighted graph
(G, w) (with w : E(G) → R+) and the greedy algorithm that forms a maximal
matching by starting with the empty matching and iteratively adding to it an
edge of maximum possible weight. A maximal matching M of G is said to be
a greedy matching of (G, w) if it can be chosen by the greedy algorithm. An
edge-weighted graph is t-greedy equimatchable if the weight of every greedy
matching of it is t, greedy equimatchable if it is t-greedy equimatchable for
some t, and strongly greedy equimatchable if it is ν(G, w)-greedy equimatch-
able, where ν(G, w) denotes the maximum w-weight of a matching in G. Note
that t, if exists, is uniquely determined by (G, w). Given a weighted graph
(G, w) and a real number ρ, we denote by Gρ the subgraph of G consisting of
all the edges of G of weight ρ and their endpoints.

In the study of greedy equimatchable and strongly greedy equimatchable
graphs we may, without loss of generality, restrict our attention to weight
functions with the smallest weight equal to 1. The special case when all the
weights are equal to 1 coincides with the notion of equimatchability. While
not every graph is an induced subgraph of an equimatchable graph [1], every
graph G can be turned into a strongly greedy equimatchable graph, simply by
assigning weight 2 to every edge of a fixed maximum matching, and weight 1 to
every other edge. On the other hand, using the following sufficient condition
for strong greedy equimatchability with weights 1 and 2, we can show that
every graph H equals Gρ for some strongly greedy equimatchable graph (G, w)
with w : E(G) → {1, 2} and ρ = 2. A set S of vertices in a graph G is said to
be covered by a matching M if S ⊆ V (M), and strongly matching-covered if it
is covered by every maximal matching of G.

Proposition 2.1 Let G = (V, E) be a graph that has a vertex cover S and a
set F ⊆ E(G[S]) such that for every maximal matching M in the graph (S, F),

the set S−V (M) is a strongly matching-covered independent set of G−V (M).
Let w : E → {1, 2} be the weight function such that w(e) = 2 if and only if
e ∈ F . Then (G, w) is strongly greedy equimatchable, with ν(G, w) = |S|.

A randomly matchable graph is a graph G in which every maximal match-
ing is perfect (that is, covers V (G)). Given a graph H , let G be any graph such
that V (G) = S∪T , S∩T = ∅, G[S] = H , |S| = |T |, T is independent, and the
bipartite graph defined by the edges between S and T is randomly matchable.
Then, conditions in Proposition 2.1 apply with G, S, and F = E(G[S]).

The general case of greedy equimatchable graphs with two distinct weights
is considered in the following theorem.

Theorem 2.2 Let ρ > 1 and let (G, w) be a weighted graph with w : E(G) →
{1, ρ}. For every t ≥ 0, the following two statements are equivalent:

(i) (G, w) is t-greedy equimatchable.
(ii) For every maximal matching M of Gρ we have ν(G − V (M)) = β(G −

V (M)) = t − ρ · |M |, and if Gρ is not equimatchable, then ρ = 2.

Moreover, if ρ ≥ 2, then (G, w) is greedy equimatchable if and only if it is
strongly greedy equimatchable.

By the last part of the above theorem, if G is a {1, ρ}-edge-weighted graph
that is greedy equimatchable but not strongly greedy equimatchable, then
ρ < 2. Three small examples of such weighted graphs can be obtained as
follows. Let 1 < ρ < 2, let G be a graph with V (G) = {a, b, c, d}, {ab, bc, cd} ⊆
E(G), ad 6∈ E(G), and let w(bc) = ρ and w(e) = 1 for all e ∈ E(G)\{bc}. Each
of the so-obtained graphs G contains a semi-induced P4, that is, a 4-vertex
path the endpoints of which are non-adjacent in G. This is not a coincidence:

Theorem 2.3 Let G be a graph with no semi-induced P4 (equivalently: every
component of G is either complete or complete bipartite) and let w : E(G) →
{1, ρ} with ρ > 1. Then (G, w) is greedy equimatchable, if and only if (G, w)
is strongly greedy equimatchable, if and only if Gρ is equimatchable.

3 Equimatchable sets

Given a graph G, we say that a set S ⊆ V (G) is equimatchable (in G) if all
maximal matchings of G that cover S are of the same size. We denote by
η(G) the minimum size of an equimatchable set in G. Clearly, a graph G is
equimatchable if and only if η(G) = 0. Below we give a hitting set formulation
of this parameter and some complexity results related to its computation. A
second best matching in a graph G is a maximal matching of size ν(G)−1. For

a graph G, let Exp2(G) be the hypergraph with vertex set V (G) and hyperedge
set {Exp(M) : M is a second best matching of G} where Exp(M) = V (G) \
V (M).

Proposition 3.1 For every graph G, a set S ⊆ V (G) is equimatchable if and
only if S is a hitting set of the hypergraph Exp2(G). In particular, η(G) equals
the minimum size of a hitting set of Exp2(G).

Theorem 3.2 Computing η(G) for a given graph G is APX-hard (and conse-
quently also NP-hard). For each constant k, testing if η(G) ≤ k is polynomial.

4 The matching gap of a graph

For a graph G, we define the matching gap of G as the quantity ν(G) − β(G)
and denote it by µ(G). Clearly, for every graph G we have µ(G) ≥ 0, with
equality if and only if G is equimatchable. In the following two theorems, we
characterize graphs with µ(G) = 1 and give bounds relating parameters η and
µ to each other and to the matching number. For an (independent) set S,
we say that a matching M isolates S if every vertex of S is a component of
G − V (M).

Theorem 4.1 A graph G has µ(G) = 1 if and only if G has a semi-induced
P4 := u, w, y, v and a matching M isolating {u, v} and containing wy, and
there exists an integer m such that for each semi-induced P4 := u, w, y, v of
G, every maximal matching of G − V (P4) saturating N({u, v}) − V (P4) is of
size m.

Theorem 4.2 For every graph G with at least one edge, we have µ(G) ≤
η(G) ≤ 2ν(G) − 2. Each of the two inequalities is achieved with equality by
graphs with arbitrarily large values of η(G).

References

[1] Dibek, C., T. Ekim, D. Gozupek, and M. Shalom, Equimatchable graphs are
C2k+1-free for k ≥ 4, submitted to Discrete Mathematics.

[2] Lesk, M., M.D. Plummer, and W.R. Pulleyblank, Equi-matchable graphs, Graph
theory and combinatorics (Cambridge, 1983), 239–254, Academic Press, London,
1984.

[3] Lewin, M., Matching-perfect and cover-perfect graphs, Israel J. Math., 18(4)
(1974), 345–347.

Diameter, minimum degree and hyperbolicity
constant in graphs

Verónica Hernández 1,2

Department of Mathematics
Universidad Carlos III de Madrid

Madrid, Spain

Domingo Pestana 1,3

Department of Mathematics
Universidad Carlos III de Madrid

Madrid, Spain

José Manuel Rodŕıguez 1,4

Department of Mathematics
Universidad Carlos III de Madrid

Madrid, Spain

Abstract

In this work, we obtain good upper bounds for the diameter of any graph in terms
of its minimum degree and its order, improving a classical theorem due to Erdös,
Pach, Pollack and Tuza. We use these bounds in order to study hyperbolic graphs
(in the Gromov sense). Since computing the hyperbolicity constant is an almost
intractable problem, it is natural to try to bound it in terms of some parameters of
the graph. Let H(n, δ0) be the set of graphs G with n vertices and minimum degree
δ0. We study a(n, δ0) := min{δ(G) | G ∈ H(n, δ0)} and b(n, δ0) := max{δ(G) | G ∈186

H(n, δ0)}. In particular, we obtain bounds for b(n, δ0) and we compute the precise
value of a(n, δ0) for all values of n and δ0.

Keywords: Diameter, minimum degree, finite graphs, Gromov hyperbolicity,
hyperbolicity constant.

1 Introduction

All graphs considered in this paper are undirected, connected and simple.
Let us denote by G = (V,E) a graph such that every edge has length equal
to 1. Here V = V (G) denotes the set of vertices of G and E = E(G) the
set of edges of G. The degree of v ∈ V (G) is the number of edges incident
to the vertex and is denoted deg(v). The diameter of a graph is defined as
diam(G) := max{d(x, y) | (x, y) ∈ G}, while the diameter of the vertices
of a graph is defined as diamV (G) := max{d(x, y) | (x, y) ∈ V (G)}. The
maximum and minimum degree of a graph G are ∆ := max{deg(v) | v ∈
V (G)}, δ0 := min{deg(v) | v ∈ V (G)}.

In the design of communication networks, it is common to take into account
limitations on the vertex degrees and the diameter. Throughout the years,
problems related with the diameter and degree have attracted the attention of
many researchers and they have numerous applications (see [5] for an overview
on results related to this topic).

In this paper, we focus on improving a result due to Erdös, Pach, Pollack
and Tuza (see [2]), which gives an asymptotically sharp upper bound for the
diameter of a connected graph in terms of its minimum degree and its order.

On the other hand, on the second part of this work, we deal with hyperbolic
graphs in the Gromov sense.

Gromov hyperbolicity was introduced by Mikhail Leonidovich Gromov in
the setting of geometric group theory, but has played an increasing role in anal-
ysis on general metric, with applications to the Martin boundary, invariant
metrics in several complex variables and extendability of Lipschitz mappings.
The concept of hyperbolicity appears also in discrete mathematics, algorithms
and networking. Another important application of these spaces is the secure

1 Supported in part by a grant from Ministerio de Economı́a y Competitividad (MTM
2013-46374-P), Spain.
2 Email: vehernan@math.uc3m.es
3 Email: dompes@math.uc3m.es
4 Email: jomaro@math.uc3m.es

transmission of information by internet. For detailed expositions about Gro-
mov hyperbolicity, see e.g. [7], [3].

The study of mathematical properties of Gromov hyperbolic spaces and its
applications is a topic of recent and increasing interest in graph theory. Now,
let us introduce the main concepts and results concerning this theory.

If X is a metric space we say that the curve γ : [a, b] −→ X is a geodesic
if we have L(γ|[t,s]) = d(γ(t), γ(s)) = |t− s| for every s, t ∈ [a, b]. The metric
spaceX is said geodesic if for every couple of points inX there exists a geodesic
joining them. We can consider a graph G as a geodesic metric space.

If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle
T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1].
We say that T is δ-thin if each of its sides is contained in the δ-neighborhood
of the union of the other sides. We denote by δ(T) the sharp thin constant of
T , i.e., δ(T) = inf{δ ≥ 0|T is δ-thin }. The space X is δ-hyperbolic if every
geodesic triangle in X is δ-thin. We denote by δ(X) the sharp hyperbolicity
constant of X, i.e., d(X) := sup{δ(T)|T is a geodesic triangle in X }. We
say that X is hyperbolic if X is δ-hyperbolic for some δ ≥ 0.

For a general graph deciding whether or not the space is hyperbolic seems
an intractable problem. Thus, it is interesting to study the hyperbolicity of
particular classes of graphs; see, for instance,[1], [6].

Let H(n, δ0) be the set of graphs G with n vertices and minimum degree
δ0. Let us define a(n, δ0) := min{δ(G) | G ∈ H(n, δ0)}, b(n, δ0) := max{δ(G) |
G ∈ H(n, δ0)}.

The structure of this paper is as follows. In Section 2 we improve the upper
bound for the diameter of a graph given in [2] (see Theorem 2.2). In Section
3 we prove upper and lower bounds for b(n, δ0). Moreover, we compute the
precise value of b(n, δ0) for many values of n and δ0 (see Theorem 3.1). In
Section 4 we compute the precise values of a(n, δ0) (see Theorem 4.1). See [4]
for the detailed proofs.

2 Minimum degree and hyperbolicity constant

The following result gives an asymptotically sharp upper bound for the diam-
eter of a connected graph (see [2, Theorem 1]).

Theorem 2.1 (Erdös, P., Pach, J., Pollack, R. and Tuza) Let G ∈ H(n, δ0)
with δ0 ≥ 2. Then diamV (G) ≤ b3n/(δ0 + 1)c − 1.

The next result provides better estimations of diamV (G).

Theorem 2.2 If G ∈ H(n, δ0), then diamV (G) ≤ n − 1 if δ0 = 1, and
diamV (G) ≤ max{2, b(3n− 4)/(δ0 + 1)c − 1} for every δ0 ≥ 2.

3 Bounds and some precise values for b(n, δ0)

We use Theorem 2.2, along with further results, to prove the theorem below,
which gives good bounds for b(n, δ0) when δ0 is big enough, and provides the
precise value of b(n, δ0) in many cases.

Theorem 3.1 Consider any n ≥ 4 and 3 ≤ δ0 ≤ n − 1. If δ0 ≥ n − 2, then
b(n, δ0) = 1. If δ0 = n − 3, then b(n, δ0) = 5/4. If (n − 2)/2 ≤ δ0 ≤ n − 4,
then b(n, δ0) = 3/2. If δ0 = (n− 3)/2, then b(n, δ0) = 7/4. If δ0 = (n− 4)/2,
then b(n, δ0) = 2. If δ0 = (n− 5)/2, then b(n, δ0) = 9/4. If (n− 2)/3 ≤ δ0 <
(n− 5)/2, then b(n, δ0) = 5/2. If δ0 = (n− 3)/3, then 5/2 ≤ b(n, δ0) ≤ 3.

4 Computation of a(n, δ0)

Theorem 4.1 Consider G ∈ H(n, δ0) with 1 ≤ δ0 ≤ n − 1. If δ0 = 1, then
a(n, δ0) = 0 for all values of n. If δ0 = 2, then a(n, δ0) = 1 if n = 4 and
a(n, δ0) = 3/4 if n 6= 4. If δ0 ≥ 3, then a(n, δ0) = 1.

References

[1] Brinkmann, G., Koolen J. and Moulton, V., On the hyperbolicity of chordal
graphs, Ann. Comb. 5 (2001), 61-69.

[2] Erdös, P., Pach, J., Pollack, R. and Tuza, Z., Radius, Diameter and Minimum
Degree, Journal of Combinatorial Theory 47 (1989), 73-79.

[3] Ghys, E. and de la Harpe, P. Sur les Groupes Hyperboliques d’après Mikhael
Gromov, Progress in Mathematics 83, Birkhäuser Boston Inc., MA, 1990.

[4] Hernández, V., Pestana, D. and Rodŕıguez, J. M., On a classical theorem on
the diameter and minimum degree of a graph, Submitted.

[5] Miller, M., Sirán, J. Moore graphs and beyond: A survey of the degree/diameter
problem, Electr. J. Comb. 20(2) (2013), DS14v2.

[6] Rodŕıguez, J. M., Characterization of Gromov hyperbolic short graphs, Acta
Math. Sinica 30 (2014), 197-212.

[7] Väisälä, J. Gromov hyperbolic spaces, Expo. Math. 23 (2005), 187-231.

Weighted Graphs as
Dynamical Interaction Systems

Ulrich Faigle

Mathematisches Institut
Universität zu Köln
Cologne, Germany

faigle@zpr.uni-koeln.de

Abstract
This is an extended abstract.

Keywords: Graph, interaction system, Markov evolution, Schrödinger evolution

1 Symmetric interaction systems

A (weighted) graph on N = {1, . . . , n} is a map A : N × N → R and thus
represented by a real n×n matrix A = [Aij]. If N is a set of agents, A corresponds
to a situation of pairwise interaction in N with structural coefficients Aij . The
vector space Rn×n of all real n × n matrices is n2-dimensional is a (real) Hilbert
space with the inner product

〈A|B〉 =
∑

ij

AijBij = tr(BTA) and norm ‖A‖ =
√
〈A|A〉.

A simple (real) interaction A is described by a vector a ∈ Rn of normed euclid-
ian length ‖a‖ = 1 and an amplitude λ ∈ R such that

Aij = λaiaj ∀i, j ∈ N , i.e., A = λ · aaT .190

2 MARKOV AND SCHRÖDINGER EVOLUTION

NOTE: The n diagonal elements a2i of aaT define a probability distribution on N .

Theorem 1.1 (Spectral decomposition) A ∈ Rn×n is symmetric if and only if A
is the superposition of n pairwise orthogonal simple interactions λiPi:

A =
∑

i∈N
λiPi.

The amplitudes λi are the eigenvalues of A. �

The (well-known) spectral decomposition (Theorem 1.1) shows that the dy-
namics of symmetric interaction systems are determined by the dynamics of simple
interactions. Note furthermore,

At =
∑

i∈N
λtiPi (t = 1, 2, . . .)

2 Markov and Schrödinger evolution

Let A = λP with P = aaT be a simple interaction with amplitude λ. The Markov
evolution is based on the evolution of the amplitude, i.e., on the repeated application
of A and thus the Markov chain

A2 = λ2P,A3 = λ3P, . . . , At = λtP, . . .

So the evolution converges to a limit if and only if the amplitudes λt converge to a
limit.

In the Schrödinger picture the evolution of A = λP is described by an orthog-
onal transformation a 7→ Ua of Rn (with U−1 = UT) and hence the chain

λ(Ua)(Ua)T = λUPUT , . . . , λ(U ta)(U ta)T = λ(UPUT)t,

of simple interactions with identical amplitude λ.

NOTE: In both evolution models, the evolution is derived from a linear operator
on the space of all graphs (interactions).

2

3 AVERAGE CONVERGENCE AND SAMPLING

3 Average convergence and sampling

Let µ be a linear operator on the Hilbert space of all interactions (graphs) A and
define the averages

µt(A) =
1

t

t∑

k=1

µk(A) (t = 1, 2, . . .).

Theorem 3.1 (Sampling Theorem) For any A ∈ Rn×n, the following statements
are equivalent:

(i) The averages µt(A) converge to a well-defined limit µ(A) as t→∞.

(ii) The evolution chain {µk(A) | k = 1, 2, . . .} is bounded in the norm.

�
For example, consider the simple interaction A = λP . The Markov evolution

of A converges on the average if and only if |λ| ≤ 1. Observe

|λ| < 1 =⇒ lim
t→∞

λtP = 0 and lim
t→∞

1

t

t∑

k=1

λkP = 0.

In the case λ = −1, the graphs (interactions) (−1)tP do not converge. Yet, their
averages do:

lim
t→∞

1

t

t∑

k=1

(−1)kP = 0.

In contrast, average convergence is guaranteed for any λ in a Schrödinger evo-
lution. The graphs λ(UPUT)t, of course, do not need to converge themselves.

A sampling function is a linear functional f : Rn×n → R and hence of the form

f(A) = 〈F |A〉 for some F ∈ Rn×n.

Theorem 3.1 says that the sampling averages

f t(A) =
1

t

t∑

k=1

〈F |µk(A)〉

converge to a well-defined limit f∞(A) on bounded evolution chains (µk(A)).
Classical examples arise from the observation of random walks (Markov chains)
on graphs.

3

5 BINARY INTERACTION AND QUANTUM SPINS

4 General interaction systems

A non-symmetric matrix A ∈ Rn×n does not admit a spectral representation as in
Theorem 1.1. Considering A as an interaction representative, however, we may
choose another representation. Recall that A admits a uniquely determined sym-
metric matrix A+ and a skew-symmetric matrix A− such that

A = A+ + A−.

Where i2 = −1, define Â = A+ + iA− and consider the real vector space

Hn = {Â | A ∈ Rn×n} ⊆ Cn×n

Proposition 4.1 Hn is the (real) Hilbert space of self-adjoint complex n × n ma-
trices under the hermitian inner product

〈C|D〉 = tr(D∗C) where D∗ = D
T

is the adjoint of D.

Moreover, A 7→ Â is an isometry between Rn×n andHn.
�

A pure matrix is a matrix of the form P = vv∗ with v ∈ Cn, ‖v‖ = 1.

Theorem 4.2 (Spectral Representation) For every A ∈ Rn×n, there are pairwise
orthogonal pure matrices P1, . . . , Pn and real amplitudes λi such that

Â =
n∑

i=1

λiPi.

�

5 Binary interaction and quantum spins

Let n = 2. The space of symmetric matrices in R2×2 is generated by

I =

1 0

0 1

 , σ1 =

1 0

0 −1

 , σ2 =

0 1

1 0

 .

The skew symmetric subspace is generated by the matrix σ3 =

0 −1
1 0

.

4

6 COMPLEX NUMBERS AND QUATERNIONS

In this case, one has Î = I , σ̂1 = σ1, σ̂2 = σ2 and

σ̂3 = iσ3 =

0 −i
i 0

 .

I , σ1, σ2 and σ̂3 are the Pauli spin matrices in quantum mechanics.

NOTICE: σ2
3 = −I (i.e., ”σ3 =

√
−I”) but σ̂2

3 = I .

6 Complex numbers and quaternions

The set

C =

aI + bσ3 =

a −b
b a

 | a, b ∈ R

 ⊆ R2×2

is closed under matrix addition and multiplication and, in fact, isomorphic to the
field C of complex numbers.

For the use in mechanics, Hamilton introduced quaternions as formal linear
combinations of the type

q = a+ bi+ cj + dk (a, b, c, d ∈ R)

where

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = 1.ki = −ik = j.

Quaternions form a non-commutative field H and can be represented via matrices

Q = aI + bσ3 + c(iσ1) + d(iσ2) (a, b, c, d ∈ R).

Quaternions endow R2×2 with the algebraic structure of a non-commutative field.

5

Some positive results on the complexity of the
chip-firing reachability problem

Bálint Hujter 1,4

Department of Operations Research
Eötvös Loránd University, Budapest, Hungary

Viktor Kiss 2,5

Department of Analysis
Eötvös Loránd University, Budapest, Hungary

Lilla Tóthmérész 1,3

Department of Computer Science
Eötvös Loránd University, Budapest, Hungary

Abstract

The chip-firing reachability problem asks whether for two given chip-distributions
x and y, y can be reached from x by playing a legal chip-firing game. Previously
Björner and Lovász gave an algorithm that decides this problem and runs in poly-
nomial time for simple Eulerian digraphs. The complexity of the problem was left
open for multigraphs and for non-Eulerian digraphs. We show that for Eulerian
digraphs, the reachability problem can be decided in polynomial time even if the
digraph has multiple edges. As a further positive result, we show that the chip-firing
reachability problem is in co−NP for general digraphs.

Keywords: chip-firing game, computational complexity, algorithms
195

1 Introduction

Chip-firing is a solitary game on a directed graph, defined by Björner, Lovász
and Shor [2]. Each vertex contains a non-negative integer number of chips.
A legal move is to choose a vertex with at least as many chips as its out-
degree and let it send a chip along each outgoing edge. The motivation for
studying this game is that it gives a simple diffusion process on graphs, that
still has interesting properties. We analyze the complexity of the following
reachability question: given two chip-distributions x and y, decide whether y
can be reached from x by playing a legal game. Let us denote by x ; y if such
a legal game exists. This question is a special case of the reachability problem
for integral vector addition systems [1]. It was first considered by Björner
and Lovász, who gave an algorithm that decides the reachability question and
runs in polynomial time for simple Eulerian digraphs [1]. The complexity of
the reachability problem was left open for Eulerian digraphs with multiple
edges, and for non-Eulerian digraphs. The question whether the reachability
problem is in NP or in co−NP was also left open. In this paper, we show
that the chip-firing reachability problem can be decided in polynomial time
for Eulerian digraphs with multiple edges. For general digraphs, we show that
the reachability problem is in co−NP.

Let us sum up our notations. By digraph, we mean a weakly connected
directed graph G = (V,E), that can have multiple edges but no loops. For
a vertex v, the in-degree and the out-degree of v are denoted by d−(v) and
d+(v), respectively. We denote a directed edge leading from vertex u to vertex

v by −→uv. The multiplicity of −→uv is denoted by
−→
d (u, v). A digraph is simple, if−→

d (u, v) ≤ 1 and
−→
d (v, u) ≤ 1 for each pair of vertices u, v ∈ V . A digraph is

Eulerian, if d+(v) = d−(v) for each v ∈ V . If we give a digraph as an input to
an algorithm, we always encode it by its adjacency matrix. Hence a digraph
might have exponentially many edges in terms of the size of the input.

In the chip-firing game, we call the assignment of a non-negative integer to
each vertex a chip-distribution. We denote by ZV

+ the set of non-negative inte-
ger vectors indexed by the vertices of a digraph G. Hence, a chip-distribution
is a vector x ∈ ZV

+. The Laplacian of a digraph G is the following matrix

L ∈ ZV×V : L(v, v) = −d+(v) for each v, and L(u, v) =
−→
d (v, u) for each

1 Supported by the Hungarian Scientific Research Fund - OTKA K109240.
2 Supported by the Hungarian Scientific Research Fund - OTKA 104178, 113047.
3 Email: tmlilla@cs.elte.hu
4 Email: hujterb@cs.elte.hu
5 Email: kivi@cs.elte.hu

u 6= v. Note that firing a vertex v transforms the chip-distribution x to
x + L1v, where 1v denotes the characteristic vector of vertex v.

Let us point out a simple necessary condition for x ; y: If x ; y, then for
the vector f ∈ ZV

+ encoding for each vertex how many times it has been fired
during the legal game transforming x to y, y = x+Lf . Hence the existence of
a vector f ∈ ZV

+ such that y = x + Lf is a necessary condition for x ; y. By
results of Björner and Lovász [1], if such a vector exists, then there is a unique
minimal one among such nonzero vectors, that they call reduced. Whether
such a vector exists can be decided in polynomial time by using Gaussian
elimination and then solving a system of linear congruence equations. Also, if
there exists a vector f ∈ ZV

+ such that y = x+Lf , then the reduced f can be
computed in polynomial time by this procedure. By Björner and Lovász, if
x ; y, and f is the reduced vector such that y = x + Lf , then there exists a
legal game transforming x to y, where each vertex v is fired exactly f(v) times.
Also by Björner and Lovász, whether for given x and f , there exists such a
legal game, can be checked “greedily” [1, Lemma 1.4]. This gives an algorithm
for deciding the reachability problem, but unfortunately the reduced f can
have exponentially large coordinates. Björner and Lovász employ a scaling-
like technique to speed up this greedy algorithm, which gives a polynomial
algorithm for simple Eulerian digraphs. We use a different grouping of the
firings, that enables us to create a polynomial algorithm also for Eulerian
digraphs with multiple edges.

2 Results

Theorem 2.1 There is a polynomial algorithm that decides whether x ; y
for two chip-distributions x and y on an Eulerian digraph G (with possibly
multiple edges).

The heart of our algorithm is the following lemma. Informally, it says,
that if one chip-distribution is reachable from another, then it can be reached
so that we fire an ascending chain of subsets of vertices.

Lemma 2.2 Let G be an Eulerian digraph. Suppose that x, y ∈ ZV
+ such

that x ; y. Then there exists a sequence of legal firings (v1, v2, . . . , vs) that
transforms x to y, and there exist indices i0 = 0, i1, i2, . . . it = s such that for
each j = 1, . . . , t, no vertex appears twice in the sequence vij−1+1, . . . , vij , and
by setting Sj = {vij−1+1, . . . , vij}, we have S1 ⊆ S2 ⊆ . . . ⊆ St (V .

Remark 2.3 ’Ascending chains’ also play a role in the related field of graph
divisor theory, see for example [3, Lemma 1.3.] or [4].

The idea of the algorithm is the following: We decide if there exists f ∈ ZV
+

such that y = x + Lf , and if yes, we compute the reduced f . From f , we can
determine the sets S1, . . . St. As the chain of sets S1 ⊆ S2 ⊆ . . . ⊆ St (V
is ascending, at most polynomially many different sets appear in it. The
key observation is that if we can fire a set at its last occurrence, we can
fire it in all of its previous occurrences. We can compute the current chip-
distribution at the beginning of the last firing of a set, and we can check
greedily whether the set can be fired from that chip-distribution. We need to
do this for polynomially many sets, hence we have a polynomial algorithm.

For general digraphs Björner and Lovász conjectures that the reachability
problem is NP-hard [1], but previously, the question of whether the reacha-
bility problem is in NP or in co−NP was also open. We show the following:

Theorem 2.4 Let G be a digraph (with possibly multiple edges) and x, y ∈
ZV

+. Then deciding whether x ; y is in co−NP.

3 Open questions

The most intriguing open question in the area is the complexity of the reach-
ability problem on general digraphs.

Problem 3.1 Let G be a digraph and x, y ∈ ZV
+. What is the complexity of

deciding whether x ; y?

Acknowledgements

We would like to thank András Frank and Ágoston Weisz for calling our
attention to reachability questions.

References

[1] A. Björner and L. Lovász. Chip-firing games on directed graphs. J. Algebraic
Combin., 1(4):305–328, 1992.

[2] A. Björner, L. Lovász, and P. W. Shor. Chip-firing games on graphs. European
J. Combin., 12(4):283–291, 1991.

[3] J. van Dobben de Bruyn and D. Gijswijt. Treewidth is a lower bound on graph
gonality. Preprint, arXiv:1407.7055, 2014.

[4] J. van Dobben de Bruyne. Reduced divisors and gonality in finite graphs,
Bachelor’s thesis, Mathematisch Instituut, Universiteit Leiden, 2012.

Vertices, edges, distances and metric dimension
in graphs

Ismael González Yero 1

Departamento de Matemáticas, Escuela Politécnica Superior de Algeciras
Universidad de Cádiz

Av. Ramón Puyol s/n, 11202 Algeciras, Spain

Abstract

Given a connected graph G = (V, E), a set of vertices S ⊂ V is an edge metric
generator for G, if any two edges of G are identified by S by mean of distances to
the vertices in S. Moreover, in a natural way, S is a mixed metric generator, if any
two elements of G (vertices or edges) are identified by S by mean of distances. In
this work we study the (edge and mixed) metric dimension of graphs.

Keywords: mixed metric dimension, edge metric dimension, metric dimension.

Parameters related to distances in graphs have attracted the attention of
several researchers since several years, and recently, one of them has centered
several investigations, namely, the metric dimension. A vertex v of a connected
graph G distinguishes two vertices u,w if d(u, v) ̸= d(w, v), where d(x, y)
represents the length of a shortest x − y path in G. A subset of vertices S of
G is a metric generator for G, if any pair of vertices of G is distinguished by
at least one vertex of S. The minimum cardinality of any metric generator
for G is the metric dimension of G. This concept was introduced by Slater in
[5] in connection with some location problems in graphs. On the other hand,

1 Email: ismael.gonzalez@uca.es
199

the concept of metric dimension was independently introduced by Harary and
Melter in [2].

One can now consider the following situation. A metric generator uniquely
recognizes the vertices of a graph in order to look out how they “behave”.
However, what does it happen if there are anomalous situations occurring in
some connections (edges) between some vertices? Is it possible that metric
generators would properly identify the edges in order to also see their behav-
ing? The answer to this question is negative. In connection with this, the
following concepts deserve to be considered.

Given a connected graph G = (V,E), a vertex v ∈ V and an edge e =
uw ∈ E, the distance between the vertex v and the edge e is defined as
dG(e, v) = min{dG(u, v), dG(w, v)}. A vertex w ∈ V distinguishes two edges
e1, e2 ∈ E if dG(w, e1) ̸= dG(w, e2). A set S ⊂ V is an edge metric generator
for G if any two edges of G are distinguished by some vertex of S. The smallest
cardinality of an edge metric generator for G is the edge metric dimension and
is denoted by edim(G) [3]. Moreover, a kind of mixed version of these two
parameters described above is of interest. That is, a vertex v of G distinguishes
two elements (vertices or edges) x, y of G if dG(x, v) ̸= dG(y, v). Now, a set
S ⊂ V is a mixed metric generator if any two elements of G are distinguished
by some vertex of S. The smallest cardinality of a mixed metric generator for
G is the mixed metric dimension and is denoted by mdim(G) [4].

1 Results

As stated, there are several graphs in which no metric generator is also an
edge metric generator. In this sense, one could think that probably any edge
metric generator S is also a standard metric generator. Nevertheless, this is
again further away from the reality, although there are several graph fami-
lies in which such facts occur. In [3], among other results, some comparison
between these two parameters above were discussed. In contrast with this,
for the case of mixed metric dimension, it clearly follows that that any mixed
metric generator is also a metric generator and an edge metric generator. In
this sense, the following relationship immediately follows. For any graph G,
mdim(G) ≥ max{dim(G), edim(G)}. From now on, we present several re-
sults concerning the (edge, mixed) metric dimension of graphs. First of all,
we remark the next complexity result.

Theorem 1.1 [3] Computing the edge metric dimension of graphs is NP-hard.

The result above was proved by using a reduction from the 3-SAT problem.

Now, for the mixed metric dimension, nothing similar is known yet, although
it is relatively natural to think that computing the mixed metric dimension is
NP-hard, since also a similar fact occurs for the standard metric dimension.
Based on these results, we next present some bounds or closed formulae for
the (edge, mixed) metric dimension of several families of graphs.

Proposition 1.2 [3]

(i) For any integer n ≥ 2, edim(Pn) = 1, edim(Cn) = 2 and edim(Kn) =
n − 1. Moreover, edim(G) = 1 if and only if G is a path Pn.

(ii) For any complete bipartite graph Kr,t different from K1,1, edim(Kr,t) =
r + t − 2.

Proposition 1.3 [4] Let G be any graph of order n. Then

(i) mdim(G) = 2 if and only if G is a path.

(ii) If at least one of the next situations happens, then mdim(G) = n.
• Every vertex of G is a true twin vertex or an extreme vertex.
• There are at least two vertices of degree n − 1.

Proposition 1.4 [4]

(i) For any integer n ≥ 4, mdim(Cn) = 3.

(ii) For any integers r, t ≥ 2, mdim(Kr,t) =

r + t − 1, if r = 2 or t = 2,

r + t − 2, otherwise.

A vertex of degree at least 3 in a tree T is a major vertex of T . Any leaf u
of T is said to be a terminal vertex of a major vertex v of T if d(u, v) < d(u,w)
for every other major vertex w of T . The terminal degree of a major vertex v
is the number of terminal vertices of v. A major vertex v of T is an exterior
major vertex of T if it has positive terminal degree. Let n1(T) denote the
number of leaves of T , and let ex(T) denote the number of exterior major
vertices of T .

Proposition 1.5 [3] If T is a tree which is not a path, then edim(T) =
n1(T) − ex(T).

Proposition 1.6 [4] For any tree T , mdim(T) = n1(T).

The Cartesian product of two graphs G and H is the graph G2H, such
that V (G2H) = {(a, b) : a ∈ V (G), b ∈ V (H)} and two vertices (a, b) and
(c, d) are adjacent in G2H if and only if, either (a = c and bd ∈ E(H)), or
(b = d and ac ∈ E(G)).

Proposition 1.7 [3] For any integers r ≥ t ≥ 2, edim(Pr2Pt) = 2.

Proposition 1.8 [4] For any integers r ≥ t ≥ 2, mdim(Pr2Pt) = 3.

The next result shows an example where the edge metric dimension is
strictly less than the standard metric dimension, since edim(C4r2C4t) = 4.

Proposition 1.9 [3] For any integers r, t, edim(C4r2C4t) = 3.

We close our exposition with a mathematical programming model for com-
puting the mixed metric dimension of a graph G. A similar model for the
metric dimension is known [1]. Let G be a graph of order n and size m with
vertex set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}. We consider the
matrix D = [dij] of order (n + m) × n such that dij = dG(xi, xj), xi ∈ V ∪ E
and xj ∈ V . Now, given the variables yj ∈ {0, 1} with j ∈ {1, 2, . . . , n} we
define the following function:

F(y1, y2, . . . , yn) = y1 + y2 + . . . + yn.

Clearly, minimizing the function F subject to the following constraints

n∑

i=1

|dji − dli|yi ≥ 1 for every 1 ≤ j < l ≤ n + m,

is equivalent to finding a mixed metric basis of G, since the solution for
y1, y2, . . . , yn represents a set of values for which the function F achieves the
minimum possible.

References

[1] Chartrand, G., L. Eroh, M. A. Johnson, and O. R. Oellermann, Resolvability in
graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000),
99–113.

[2] Harary, F., and R. A. Melter, On the metric dimension of a graph, Ars Combin.
2 (1976), 191–195.

[3] Kelenc, A., N. Tratnik, and I. G. Yero, Uniquely identifying the edges of a graph:
the edge metric dimension, Manuscript, (2015).

[4] Kelenc, A., D. Kuziak, A. Taranenko, and I. G. Yero, On the mixed metric
dimension of graphs, Manuscript, (2016).

[5] Slater, P. J., Leaves of trees, Congr. Numer. 14 (1975) 549–559.

Squares of Low Clique Number

Petr Golovach a,1 Dieter Kratsch b,2 Daniël Paulusma c,3,5

Anthony Stewart c,4

a University of Bergen, Bergen, Norway
b Université de Lorraine, Metz, France

c Durham University, Durham, UK

Abstract

The Square Root problem is that of deciding whether a given graph admits a
square root. This problem is only known to be NP-complete for chordal graphs
and polynomial-time solvable for non-trivial minor-closed graph classes and a very
limited number of other graph classes. By researching boundedness of the treewidth
of a graph, we prove that Square Root is polynomial-time solvable on various graph
classes of low clique number that are not minor-closed.

Keywords: graph classes, square roots, squares, treewidth

The square G = H2 of a graph H = (VG, EG) is the graph with vertex
set VH , such that any two distinct vertices u, v ∈ VH are adjacent in G if and
only if u and v are of distance at most 2 in H. A graph H is a square root
of G if G = H2. There exist graphs with no square root, graphs with a unique
square root as well as graphs with many square roots. The corresponding

1 petr.golovach@ii.uib.no
2 dieter.kratsch@univ-lorraine.fr
3 daniel.paulusma@durham.ac.uk
4 a.g.stewart@durham.ac.uk
5 supported by EPSRC Grant EP/K025090/1.

203

recognition problem, which asks whether a given graph admits a square root,
is called the Square Root problem and is known to be NP-complete [9]. As
such, it is natural to restrict the input to special graph classes in order to
obtain polynomial-time results. For many graph classes the complexity of
Square Root is still unknown. For instance, Milanic and Schaudt [8] posed
the complexity of Square Root restricted to split graphs and cographs as open
problems. In Table 1 we survey the known results (note that the row for planar
graphs could be absorbed by the row above of it). We explain this table in
more detail below. In this paper we aim to identify new classes of squares of
bounded treewidth. Our motivation for this question stems from the following
result (obtained via applying Courcelle’s meta-theorem).

Lemma 1 ([2]) The Square Root problem can be solved in time O(f(t)n)
for n-vertex graphs of treewidth at most t.

The unreferenced results in Table 1 correspond to our new results. The
last column of this table indicates whether the squares of the graph class
have bounded treewidth, where an ∗ means that these squares have bounded
treewidth after some appropriate edge reduction (see [3] for further details).
Note that the seven graph classes in the bottom seven rows not only have
bounded treewidth but also have bounded clique number. We also observe
that Nestoridis and Thilikos [10] proved that Square Root is polynomial-time
solvable for non-trivial minor-closed graph classes by showing boundedness
of carving width instead of treewidth. However, it is possible, by using the
graph minor decomposition of Robertson and Seymour, to show that squares
of graphs from such classes have in fact bounded treewidth as well.

We sketch the proof of one of our results from Table 1, namely the proof
for 3-degenerate graphs (that is, graphs for which every subgraph has a vertex
of degree at most 3.) We need one known and one new lemma (proof omitted).

Lemma 2 ([1]) For any fixed constant k, it is possible to decide in linear
time whether the treewidth of a graph is at most k.

Lemma 3 Let H be a square root of a graph G. Let T be the bipartite graph
with VT = C ∪ B, where partition classes C and B are the set of cut vertices
and blocks of H, respectively, such that u ∈ C and Q ∈ B are adjacent if and
only if Q contains u. For u ∈ C, let Xu consist of u and all neighbours of u
in H. For Q ∈ B, let XQ = VQ. Then (T,X) is a tree decomposition of G.

We call the tree decomposition (T,X) the H-tree decomposition of G. We
also need the following lemma.

Lemma 4 If G is a 3-degenerate graph with a square root, then tw(G) ≤ 3.

graph class complexity square bounded tw

trivially perfect graphs [8] polynomial no

threshold graphs [8] polynomial no

chordal graphs [4] NP-complete no

line graphs [7] polynomial no

non-trivial and minor-closed [10] linear yes

planar graphs [6] linear yes

K4-free graphs linear yes

(Kr, Pt)-free graphs linear yes

3-degenerate graphs linear yes

graphs of maximum degree ≤ 5 linear yes

graphs of maximum degree ≤ 6 [2] polynomial yes∗

graphs of maximum average degree < 46
11 [3] polynomial yes∗

Table 1
The known results for Square Root restricted to some special graph class.

Proof. Without loss of generality we may assume that G is connected and has
at least one edge. Let H be a square root of G; let C be the set of cut vertices of
H and let B be the set of blocks of H. We construct the H-tree decomposition
(T,X) of G (cf. Lemma 3) and show that (T,X) has width at most 3.

We start with two useful observations. If v ∈ VH , then NH [v] is a clique
in G. Because G is 3-degenerate, this means that ∆(H) ≤ 3. For the same
reason H contains no cycles of length at least 5 as a subgraph, since a square
of a cycle of length at least 5 has minimum degree 4.

We claim that XQ has size at most 4 for every Q ∈ B. In order to see
this let Q be a block of H and let u ∈ VQ. Suppose that Q has a vertex v
at distance at least 3 from u. Since Q is 2-connected, Q has two internally
vertex disjoint paths that join u and v. Therefore, Q (and thus H) contain a
cycle of length at least 6 which, as we saw, is not possible. We find that each
vertex v ∈ VQ is at distance at most 2 from u. Hence, u is adjacent to all
other vertices of Q in G. Similarly, any two vertices in Q are of distance at
most 2 from each other. Hence, Q is a clique in G. As G is 3-degenerate, this
means that Q is a clique in G of size at most 4. Consequently, XQ, has size

at most 4. As ∆(H) ≤ 3, Xu has size at most 4 for every cut vertex u of H.2

We can now prove the following result.

Theorem 1 Square Root can be solved in O(n) time for 3-degenerate graphs.

Proof. Let G be an 3-degenerate graph on n vertices. By Lemma 2 we can
check in O(n) time whether tw(G) ≤ 3. If tw(G) > 3, then G has no square
root by Lemma 4. Otherwise, apply Lemma 1. 2

We cannot claim any upper bound for the treewidth of 4-degenerate graphs
with a square root: take the square of a wall of arbitrarily large treewidth in
which each edge is subdivided three times. We pose determining the complex-
ity of the Square Root problem for 4-degenerate graphs as an open problem.

References

[1] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of
small treewidth, SIAM J. Comput. 25 (1996) 305–1317.

[2] M. Cochefert, J.-F. Couturier, P. A. Golovach, D. Kratsch, and D. Paulusma,
Sparse square roots, Proc. WG 2013, LNCS 8165 (2013) 177–188.

[3] P.A. Golovach, D. Kratsch, D. Paulusma and A.G. Stewart, A linear kernel for
finding square roots of almost planar graphs, Proc. SWAT 2016, Leibniz Int.
Proc. Inform., to appear.

[4] L. C. Lau and D. G. Corneil, Recognizing powers of proper interval, split, and
chordal graph, SIAM J. Discrete Math. 18 (2004) 83–102.

[5] V. B. Le and N. N. Tuy, A good characterization of squares of strongly chordal
split graphs, Inf. Process. Lett. 111 (2011) 120–123.

[6] Y.-L. Lin and S. Skiena, Algorithms for square roots of graphs, SIAM J. Discret.
Math. 8 (1995) 99–118.

[7] M. Milanic, A. Oversberg and O. Schaudt, A characterization of line graphs
that are squares of graphs, Discret. Appl. Math. 173 (2014) 83–91.

[8] M. Milanic and O. Schaudt, Computing square roots of trivially perfect and
threshold graphs, Discret. Appl. Math. 161 (2013) 1538–1545.

[9] R. Motwani and M. Sudan, Computing roots of graphs is hard, Discret. Appl.
Math. 54 (1994) 81–88.

[10] N.V. Nestoridis and D.M. Thilikos, Square roots of minor closed graph classes,
Discret. Appl. Math. 168 (2014) 34–39.

On the shelling antimatroids of split graphs

Keno Merckx 1

Département d’Informatique
Université Libre de Bruxelles

Brussels, Belgium

Jean Cardinal

Département d’Informatique
Université Libre de Bruxelles

Brussels, Belgium

Jean-Paul Doignon

Département d’Informatique
Université Libre de Bruxelles

Brussels, Belgium

Abstract

Unlike poset antimatroids, chordal graph shelling antimatroids have received little
attention as regard their structures, optimization properties and associated circuits.
Here we consider a special case of those antimatroids, namely the split graph shelling
antimatroids. We establish a connection between the structure of split graph shelling
antimatroids and poset shelling antimatroids. We discuss some applications of this
new connection, in particular, we give a simple polynomial time algorithm to find
a maximum weight feasible set in split graph shelling antimatroids.

Keywords: Antimatroid, split graph, shelling, poset.
207

1 Introduction

Many classical problems in combinatorial optimization have the following
form.

Problem 1.1 For a set system (V, F) and for a function w : V → R, find a
set F of F maximizing the value of

w(F) =
∑

f∈F

w(f).

For instance, the problem is known to be efficiently solvable for the in-
dependent sets of matroids using the greedy algorithm. Since antimatroids
capture a combinatorial abstraction of convexity in the same way as matroids
capture linear dependence, we investigate the optimization of linear objective
functions for antimatroids.

We recall that a set system (V, F), where V is a finite set of elements and
∅ 6= F ⊆ 2V , is an antimatroid when

V ∈ F , (AM0)

∀F1, F2 ∈ F ⇒ F1 ∪ F2 ∈ F , (AM1)

∀F ∈ F and F 6= ∅ ⇒ ∃ f ∈ F such that F \ {f} ∈ F . (AM2)

The feasible sets of the antimatroid (V, F) are the members of F . We call
path any feasible set that cannot be decomposed into the union of two other
(non-empty) feasible sets.

Antimatroids arise naturally from various kinds of shellings and searches
on combinatorial objects, and appear in various contexts in mathematics and
computer science. Dilworth [4] first examined structures very close to antima-
troids in terms of lattice theory. Later, Edelman [5] and Jamison [7] studied
the convex aspects of antimatroids. Korte, Lovász and Schrader [8] considered
antimatroids as a subclass of greedoids. Today, the concept of antimatroid ap-
pears in many fields of mathematics such as formal language theory (Boyd and
Faigle [2]), choice theory (Koshevoy [9]), game theory (Algaba et al. [1]) and
mathematical psychology (Falmagne and Doignon [6]) among others. The
concept of a convex geometry is dual to the one of an antimatroid.

For instance, one particular class of antimatroids comes from shelling pro-
cesses over posets by removing successively the maximum elements. Let (V, ≤)

1 Email: kmerckx@ulb.ac.be

be a poset, then (V, flt(V, ≤)) is a poset (shelling) antimatroid when flt(V, ≤)
denotes the family of all filters of the poset.

It is not known whether a general efficient algorithm exists for Problem 1.1
in the case of antimatroids as shown in the following proposition.

Proposition 1.2 The problem of finding a maximum weight feasible set in an
antimatroid encoded in the form of its path is not approximable in polynomial
time within a factor better than O(N

1
2
−ε) for any ε > 0, where N is the number

of paths, unless P = NP .

2 Main results

Here, we gave a polynomial time algorithm for solving Problem 1.1 when set
system (V, F) is a “split graph shelling antimatroids” which are particular
instances of “chordal graph shelling antimatroids”. For any chordal graph
G = (V, E), we define an antimatroid (V, F) in which F ⊆ V is feasible if
and only if there is some ordering O = (f1, . . . , f|F |) of the elements of F such
that for all j between 1 and |F |, fj is simplicial in G \ {f1, . . . , fj−1}. The
antimatroid resulting from this construction is called a chordal graph (ver-
tex) shelling antimatroid. Here we consider the special case of chordal graph
shelling antimatroids where the graph is a split graph. These antimatroids
will be called split graph (vertex) shelling antimatroids.

We have obtained a useful characterization of the feasible sets in a split
graph shelling antimatroid.

Proposition 2.1 Let G = (K ∪ I, E) be a split graph and (V, F) be the split
graph vertex shelling antimatroid defined on G. Then a subset F of vertices
is feasible for the antimatroid if and only if N(F) induces a clique.

We use Proposition 2.1 to establish a connection between the structure
of split graph shelling antimatroids and poset shelling antimatroids. This
connection given by Proposition 2.1 helps us to solve optimization problems
on split graph shelling antimatroid.

For an antimatroid, we call path any feasible set that cannot be decomposed
into the union of two other (non-empty) feasible sets. The family of paths can
be partially ordered by inclusion, forming the path poset. Antimatroids are
completely determined by their path posets. The path poset is can be seen as
a short way to encode all the information of the antimatroid.

Proposition 2.2 Giving a split graph G (as a list of vertices and a list of
edges), the problem of finding a maximum weight feasible set in the split graph

shelling antimatroid defined on G can be done in polynomial time.

We can also use Proposition 2.1 to characterize in simple terms the “cir-
cuits” and “free sets” of a split graph shelling antimatroid. Let (V, F) be an
antimatroid and X ⊆ V , we define the trace of (V, F) on X by

tr(F , X) = {F ∩ X : F ∈ F}.

We say that a set X ⊆ V is free if tr(F , X) = 2X . A minimal nonfree set is
called a circuit. Remark that if C is a circuit then tr(F , X) = 2C \ {{r}} for
some r in C, see [8] for proof. The element r is the root of C, and we will call
the pair (C \ {r}, r) a rooted circuit. Dietrich [3] provides a characterization
of antimatroids in terms of their circuits.

References

[1] E. A. Algaba, J. M. Bilbao, R. van den Brink, and A. Jimnez-Losada.
Cooperative games on antimatroids. Discrete Mathematics, 282(1-3):1–15, 2004.

[2] E. A. Boyd and U. Faigle. An algorithmic characterization of antimatroids.
Discrete Appl. Math., 28(3):197–205, 1990.

[3] B. L. Dietrich. A circuit set characterization of antimatroids. J. Combin. Theory
Ser. B, 43(3):314–321, 1987.

[4] R. P. Dilworth. Lattices with unique irreducible decompositions. Ann. of Math.
(2), 41:771–777, 1940.

[5] P. H. Edelman. Meet-distributive lattices and the anti-exchange closure. Algebra
Universalis, 10(3):290–299, 1980.

[6] J.-C. Falmagne and J.-P. Doignon. Learning Spaces. Springer-Verlag, Berlin,
2011.

[7] R. E. Jamison-Waldner. A perspective on abstract convexity: classifying
alignments by varieties. In Convexity and related combinatorial geometry
(Norman, Okla., 1980), volume 76 of Lecture Notes in Pure and Appl. Math.,
pages 113–150. Dekker, New York, 1982.

[8] B. Korte, L. Lovász, and R. Schrader. Greedoids, volume 4 of Algorithms and
Combinatorics. Springer-Verlag, Berlin, 1991.

[9] G. Koshevoy. Choice functions and abstract convex geometries. Math. Social
Sci., 38(1):35–44, 1999.

A Polynomial Recognition of Unit Forms

Jesmmer Alves 1,2 Diane Castonguay 3

Instituto de Informática - Universidade Federal de Goiás
Goiânia, Goiás, Brasil

Thomas Brüstle 4

Faculté des Sciences - Université de Sherbrooke
Sherbrooke, Quebec, Canada

Abstract

In this paper we introduce a polynomial algorithm for the recognition of weakly
nonnegative unit forms. The algorithm identify hypercritical restrictions testing
every 9-point subset of the quadratic form associated graph. With Depth First
Search strategy, we use a similar approach for the weakly positive recognition.

Keywords: unit form, polynomial algorithm, graph. MSC: 11E04, 16G60, 42A82.

1 Introduction

An integral quadratic form q is defined as q(x) =
∑

i≤j

aijxixj , for x ∈ Zn. In

this paper, we are interested in unit form, that is an integral quadratic form

1 This author was supported by Capes, Fapeg, UFG and Instituto Federal Goiano.
2 Email: jesmmeralves@inf.ufg.br
3 Email: diane@inf.ufg.br
4 Email: thomas.brustle@usherbrooke.ca

211

where aii = 1, for all i. Its corresponding symmetric bilinear form is such that
q(x) = 1

2
q(x, x). The recognition of weakly nonnegative and weakly positive

unit forms have an important role in the representation theory of algebras,
however, some concepts related to computational complexity theory have not
been fully described.

Dean and De La Peña [1] developed an algorithm to decide whether a
given unit form is weakly nonnegative. The strategy was to generate all pos-
itive roots and make some tests to identify whether the unit form is weakly
nonnegative. Despite being a significant development, the weakly nonnega-
tive unit forms can have an infinite number of positive roots, and this strategy
become unfeasible.

A very interesting solution for weakly nonnegative recognition comes from
the hypercritical unit forms, classified by Unger [5]. All unit forms in the
Unger’s list have 9 or less vertices. Therefore, we use an algorithm to test all
9-point subsets. That strategy give us a polynomial algorithm of complexity
O(n9). By adding Depth First Search approach, we use a similar strategy in
the weakly positive recognition.

2 Basic Concepts

A vector x ∈ Zn is said to be positive, written x > 0, provided x 6= 0 and
xi ≥ 0 for all i. A unit form q is weakly positive if q(x) > 0 for all positive
x ∈ Zn, or weakly nonnegative, if q(x) ≥ 0 for all positive x ∈ Zn.

Definition 2.1 [2] A unit form q is said to be critical, resp. hypercritical, if
every proper restriction q′ is weakly positive, resp. weakly nonnegative, but q
itself is not.

All critical forms were classified by von Höhne [4] and all hypercritical by
Unger [5]. A unit form is properly represented by quivers. 5 A Quiver Q =
(Q0, Q1) is a finite and connected graph with a set of vertices Q0 = {1, . . . , n}
and a set of edges Q1, with possibly multiple edges but without loops.

3 A Polynomial Approach

The following corollary gives support to the polynomial algorithm for weakly
nonnegative recognition.

5 See more details about quiver representations in [2].

Corollary 3.1 A unit form q is weakly nonnegative if and only if every re-
striction q′ which correspond to a connected induced subquiver of 9 vertices is
weakly nonnegative.

Proof. Follows from De La Peña [2] and Unger [5]. ✷

For an algorithm that generates all connected induced subquivers see [3].
Testing 6 each subquiver is constant since we have a fixed number of points,
and there are

(
n
9

)
such subquivers - a polynomial of degree 9 in n.

On the other hand, deciding whether a unit form is weakly positive is
equivalent to excluding all subgraphs that are critical restrictions. Except for
the diagrams Ãn and D̃n, all critical restrictions also have less than 10 vertices.
Therefore, we use the DFS strategy to identify the restrictions in the form Ãn

and D̃n, and if it doesn’t fail, we test all connected induced subquivers with 9
vertices of the quiver associated to q, by using De La Peña algorithm [2].

We represent the critical restrictions of type Ãn and D̃n by the components
in the Figure 1. The component C represent the critical restrictions of type
Ãn and, the components D, E, F and G, critical restrictions of type D̃n.

u1

ut u2
...

(a) Component C.

x

y

u ...
ut

v

w

(b) Component D.

x

u1

u ... v
.
.
.

ut

y

(c) Component E.

x

y

u ...
ut

v

w

v2

vr−1

.

.

.

(d) Component F.

x

w2

u.
.
.

ws−1

y

...
ut

v

w

v2

vr−1

.

.

.

(e) Component G.

Fig. 1. Components that represent critical restrictions of type Ãn and D̃n.

6 The test can be done by the Dean and De La Peña algorithm [1].

We highlight the ideas of our algorithms in five situation that characterize
these five critical restrictions in a quiver Q. 7 Any vertex that are neighbors
to the explored subquiver without the vertices that we are looking to extends,
by positive or negative edges, are considered blocked.

When Q has a component C, the algorithm starts with some triplet p =
〈x, u, y〉 and increase p adding a new unblocked vertex at the end of p. Eventu-
ally it finds some vertex v that is adjacent to x and fails. If Q has a component
D, it starts with p = 〈u〉 and increase p adding a new unblocked vertex v at
the end of p. Eventually it finds two unblocked neighbors v and w of the
end vertex ut of p, that are not neighbors by positive edges and fails. In the
case that Q has a component E, we start with the triplet 〈x, u, y〉 and will
look for 〈x, v, y〉. Afterwards, it finds the path 〈u1, u2, . . . , ut〉 and fails. For
the component F, the algorithm starts with the triplet 〈x, u, y〉. As for com-
ponent D, the algorithm increase the path p (starting with p = 〈u〉) till it
finds two unblocked neighbors v and w of the end vertex ut of p. In this case,
(v, w) ∈ Q1 p and the algorithm will extend p = 〈v, ut, w〉. It will fail after
finding a path between v and w. Finally, when Q has a component G, the
algorithm starts with the triplet 〈x, u, y〉. At this stage, the algorithm had
verify that it has no Component E. As for component D, it increase the path
p, starting with (p = 〈u〉), till it finds two unblocked neighbors v and w of the
end vertex ut of p. In this case, (v, w) ∈ Q1 p, and the algorithm finds both
paths 〈v1, v2, . . . , vr〉 and 〈w1, w2, . . . , ws〉 and fails.

References

[1] Dean, A. and De La Peña, J.A.: Algorithms for Weakly Nonnegative Quadratic
Forms, Linear Algebra and its Applications, Elsevier, 235, 35–46, (1996).

[2] De La Peña, J.A.: Quadratic Forms and the Representation Type of an Algebra,
Sonderforschungsbereich, Univ. Bielefeld, 343, ISSN 0936–7926, 90–003, (1990).

[3] Maxwell, S. and Chance, M.R. and Koyutürk, M.: Efficiently Enumerating All
Connected Induced Subgraphs of a Large Molecular Network, Algorithms for
Computational Biology, Springer, 171–182, (2014).

[4] von Höhne, H.: On Weakly Positive Unit Forms, Commentarii Mathematici
Helvetici, Springer, 63, 1, 12–336, (1988).

[5] Unger, L.: The Concealed Algebras of the Minimal Wild, Hereditary Algebras,
Bayreuth. Math. Schr., 99, 145–154, (1990).

7 All paths and triplets cited are connected by negative edges.

Encoding Bigraphical Reactive Systems into
Graph Transformation Systems

Amal Gassara a,1, Ismael Bouassida Rodriguez a,c,
Mohamed Jmaiel a,b and Kalil Drira c

a ReDCAD Laboratory, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
b Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia

c LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

In this paper, we present a solution for executing bigraphical reactive systems based
on an investigation on graph transformation systems. For this, we encode a bigraph
into a ranked graph. This encoding is ensured, formally, by defining a faithful
functor that allows to move from bigraph category to ranked graph category. Then,
we show that reaction rules can be simulated with graph rules.

Keywords: Bigraphs, BRS, Graphs, Matching.

1 Introduction

The theory of Bigraphical Reactive Systems (BRSs) has been developed by
Milner [5] as a formalism for describing and analyzing mobile computation
and pervasive systems. A BRS is a graphical model in which bigraphs can be
reconfigured using reaction rules. It is very important to have an implementa-
tion of the dynamic of a BRS to enable experimentations. The main challenge
of this implementation is the matching problem. In fact, it is a computational
task that determines for a given bigraph B and a reaction rule R whether and
how the reaction rule can be applied to rewrite the bigraph B.

The theory of BRS is closely related to graph transformation system (GTS)
[3,2]. Considering the exhaustiveness of studies on graph transformations,
it is natural to ask whether we could apply graph matching algorithms on
Bigraphs. As an alternative to implementing matching for bigraphs, we could
try to formalize BRSs as GTSs. By this way, we can benefit from existing

1 Email: amal.gassara@redcad.org

215

0
1

0 1

e1

e0

x0

v0

v1

K

K

M v2

L

v3

Bigraph B

0

1

2

v1:v0:0

v0:0

v2:0

v3:1

0

1

e1

e0
K

K

M

L

Ranked graph G

Fig. 1. Encoding a bigraph into a ranked graph

tools and techniques developed for graph transformations. Consequentially,
we have initiated an investigation of how to simulate a BRS with a GTS.

In this paper, we propose a formal basis allowing such simulation. Indeed,
we encode a bigraph into a graph by defining a function named Fsim that
allows to move from bigraph category to graph category. We demonstrate
that Fsim is a well defined and faithful functor. Then, we rely on the work of
Ehrig [1] to show that reaction rules can be simulated with graph rules. As a
result, we ensure the validity of simulating a BRS by a GTS.

2 Encoding a Bigraph into a Ranked Graph

In order to understand our contribution, the reader should understand bi-
graphs [5] and ranked graphs [4].

The main difference between bigraphs and graphs lies in the nesting and
the linking structure of bigraphs. Hence, we define the nesting structure of
bigraphs through the node identifiers of graphs. For instance, in Fig. 1, v0 is
nested in 0 (the parent of v0 is 0). Its image in the graph G is a node having
the identifier v0 : 0. So, we encode the parent of a node through its identifier.

Furthermore, the linking structure of bigraphs is represented in graphs by
defining two types of nodes: place nodes that represent bigraph places, and
link nodes that represent bigraph hyperedges. For example, the hyperedge e1

in the bigraph of Fig. 1, connecting v2 and v3, is represented in the graph with
the green node e1 to which are connected v2 : 0 and v3 : 1.

Categorically, bigraphs and their morphisms form a category BG which
has as objects inner and outer interfaces, and as arrows bigraphs. Similar to
bigraphs, ranked graphs are presented as morphisms between two interfaces i
and j, forming a category denoted DG.

Our main objective is to ensure the validity of encoding bigraphs into
ranked graphs, preserving their structure. We shall achieve this by defining a
functor [5] which allows to move from one category to another.

Hence, we define a functor, named Fsim : BG → DG, which allows to
move from BG to DG. This functor associates to each morphism (Bigraph)
B : I → J from BG, a morphism (Graph) G : i→ j from DG.

2.1 Defining Fsim on objects.

We define an injective function Fsim between the objects (interfaces) of the two
models. Given a bigraphical interface ⟨m,X⟩, Fsim associates a graph interface
represented as a list of ordered numbers with exactly m + |X| − 1 elements,
regarded as a discrete graph. Every x < m is encoded by a place node and
every name ∈ X is encoded by a link node. For example in Fig. 1, the image
of the inner interface I = ⟨2, {x0}⟩ is the interface i = {0, 1, 2} of G where the
nodes 0 and 1 are place nodes and the node 2 is a link node. The interface i
is represented by the list of numbers on the left of the graph.

2.2 Defining Fsim on morphisms.

Consider a bigraph B = (VB, EB, ctrlB, prntB, linkB). Fsim(B) = G = (VG,
V EG, ctrlG, prntG, linkG). Fsim is defined as a pair of functions (fv, fe) where:

• VG = fv(VB). fv associates for each node ∈ VB, a node ∈ VG. The identifier
of a node image is determined by concatenating the identifier of this node
with the identifier of its parents. For example, in Fig. 1, fv(v1) = v1 : v0 : 0.

• V EG = fe(EB). fe associates for each hyperedge ∈ EB, a link node ∈ V EG.
For example, in Fig. 1, fe(e0) = e0 (the image of the hyperedge e0 in the
bigraph B is the node e0 in the graph G).

Proposition 2.1 Fsim = (fv, fe) respects the structure in the following sense:

(1) Fsim preserves the controls

(2) Fsim preserves the structural mapping prnt

(3) Fsim preserves the structural mapping link

Proposition 2.2 Fsim is a faithful functor between BG and DG.

Proof. We have demonstrated that Fsim is a well defined functor by demon-
strating that it preserves functor properties (i.e., preserves identity and com-
position). So, Fsim is a faithful functor since the morphisms fv and fe are
injective functions. For sake of shortness, we have not present the proof. 2

Proposition 2.2 ensures the validity of moving from BG to DG by Fsim,
ensuring in this way the validity of encoding a bigraph into a ranked graph.

3 Simulating BRSs with GTSs

Bigraphs are associated with reaction rules which can be applied to rewrite
bigraphs. On the other hand, graphs are associated with rewrite rules or
productions according to the double pushout approach, DPO approach [3].

We propose a correspondence between a reaction rule and a production.
Let (R,R′ : ϵ→ I) a reaction rule in BG and let a reaction relation a→ a′ via

(R, R′) and D : I → J . By definition, Fsim translates the rule (R, R′ : ϵ→ I)
and the context D : I → J from BG into (Fsim(R), Fsim(R′) : ϵ → Fsim(I))
and Fsim(D) : Fsim(I)→ Fsim(J) in DG, respectively.

Since Fsim preserves composition, Fsim(a) = Fsim(D ◦ R) = Fsim(D) ◦
Fsim(R) and Fsim(a′) = Fsim(D◦R′) = Fsim(D)◦Fsim(R′). So, Fsim translates
each transformation a→ a′ into a transformation Fsim(a)→ Fsim(a′) into DG.

Ehrig [1] showed that it is possible to use the cospan idea to construct
from a reaction relation a corresponding DPO transformation a ⇒ a′ via
(p,D) where p is constructed from the reaction rule (R,R′).

So, we can obtain from the reaction relation Fsim(a) → Fsim(a′) via
(Fsim(R), Fsim(R′)) and Fsim(D) : Fsim(I) → Fsim(J) a DPO transforma-
tion Fsim(a) ⇒ Fsim(a′) via (p, Fsim(D)) where p = (Fsim(R) ← Fsim(I) →
Fsim(R′)). Hence, we can simulate the application of a reaction rule on a
bigraph by applying its corresponding production on the encoded graph.

4 Conclusion

In this paper, we have presented a solution for executing BRSs that is based
on an investigation of GTSs. In fact, we have encoded a bigraph into a ranked
graph. This encoding is ensured, formally, by defining a faithful functor Fsim

from bigraph categories to ranked graph categories. Then, we have referenced
Ehrig et al. [1] to show that reaction rules can be simulated by graph rules.
Hence, the behavior of bigraphs can be simulated by simulating their encoded
graphs using the graph transformation tools and techniques.

References

[1] H. Ehrig. Bigraphs meet double pushouts. Bulletin of the EATCS, 78:72–85,
2002.

[2] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation (Monographs in Theoretical Computer Science. An
EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[3] H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: An algebraic
approach. In IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 167–180, 1973.

[4] F. Gadducci and R. Heckel. An inductive view of graph transformation.
In FrancescoParisi Presicce, editor, Recent Trends in Algebraic Development
Techniques, volume 1376 of Lecture Notes in Computer Science, pages 223–237.
Springer Berlin Heidelberg, 1998.

[5] R. Milner. The Space and Motion of Communicating Agents. Cambridge
University Press, 2009.

