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Abstract

In this paper, we introduce a new paradigm - multiset-based
tree model. We show that trees can be represented in the form
of wellfounded multisets. We also show that the conventional ap-
proach for this representation is not injective from a set of trees to
the class of multisets representing such trees. We establish a one-
to-one correspondence between trees and suitable permutations
of a wellfounded multiset, which we call tree structures. We give
formal definitions of a tree structure and a subtree structure of a
tree structure. Finally, we represent membrane structures in the
form of tree structures – a form in which membrane structures
can suitably be represented at programming level.

Keywords: wellfounded multiset, saw-like structure, multi-
set-based tree structure, membrane structure.

1 Introduction

A tree is an acyclic connected graph (having one source or trunk and
several exits or leaves). It can also be defined as a partial order relation
over a finite set with the smallest element. Note that if there is only
one edge from a source node, then we have only one branch on the
node.

Trees have served as handy tools in solving problems involving
decisions and the flow of information. Thus they form a fundamen-
tal concept in graph theory. They are used in many disciplines such
as Mathematics, Management, Economics, Commerce, Biology, Com-
puter Science, Statistics and Probability, just to mention a few.
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In Managerial accounting ([7], p. 502), a tree diagram in the form of
an organizational chart was used to illustrate the organization of Aloha
Hotels and Resorts. In Computer Science [1], the Huffman tree is used
to compress bits so as to reduce the amount of storage that is necessary
in a storage media. In Biology, ([12], p. 57) exploits a tree structure to
represent the basic characteristics of meiosis involving one chromosome
duplication followed by two nuclear and cell divisions. In Probability
[8], the concept of tree measure is applied to represent a sequence of
repeated throws of a coin with either side labelled head or tail. In
English language ([6], p. 24), the classification of nouns is represented
in the form of a tree. As some membranes can contain several other
membranes [10], trees can also be suitably used to study membrane
structures and hence in comprehending membrane computing.

Note that it may be relevant to count the number of nodes in an n-
nary tree – a tree with (n ≥ 2) number of branches emerging from each
of the major branches after them (which is called a tail or a node) or
a general tree, for that matter, with n varying from branch to branch.

In the recent years, the representation of a tree in the form of a
wellfounded (cardinality–bounded) multiset has been arguably used.
It is observed that the said representation is not injective from a set
of trees to the class of multisets representing such trees. In order to
achieve injection, we devise various permutations of the wellfounded
multiset in consideration along with a suitable rule. We begin with a
binary tree and generalize the approach to an n-nary tree as well as a
general tree.

2 Aptness for the Use of Trees and a Multiset
Environment

Unlike other graphs, trees are quite innovative especially in one of the
recently researched areas of computer science – molecular and mem-
brane computing. This is because among all other forms of graphs
(e.g., a loop or a multigraph), only trees can suitably represent mem-
brane structures (without intersections, loops or parallel edges). This

4



Multiset-based tree model for membrane computing

singular but essential ability of trees is what has inspired us to study
them and to see how they can help us in contributing to the improve-
ment of membrane computing.

There is no provision for a diagrammatic or pictorial input of mem-
brane structures at programming level. Thus, one aim of this paper is
to demonstrate how membrane structures can be represented at pro-
gramming level by devising a discrete approach for such a represen-
tation. It is in line with this that we have employed multiset as an
environment in representing trees, and consequently membrane struc-
tures.

3 Some Basic Concepts

Definition i: Multiset.
A multiset (mset, for short) is a collection of objects in which, unlike
a crisp (Cantorian) set, objects are allowed to repeat finitely in most
of the application areas; although infinite multiplicities are also dealt
with in a theoretical development (see [2] and [3] for details).

A multiset is represented in several ways. The use of square brack-
ets to represent a multiset is quasi-general. Thus, a multiset containing
one occurrence of a, two occurrences of b, and three occurrences of c is
notationally written as [[a, b, b, c, c, c]] or [a, b, b, c, c, c] or [a, b, c]1,2,3 or
[a, 2b, 3c] or [a.1, b.2, c.3] or [1/a, 2/b, 3/c] or [a1, b2, c3] or [a1b2c3]. For
convenience, the curly brackets are used in place of the square brack-
ets. In fact, the last form of representation as a string, even without
using any brackets, turns out to be the most compact one, especially
in computational parlance. The following schematic representation of
a multiset as a numeric-valued or count function abounds, particularly
in the foundational development of multiset theory and its application:

A multiset is a mapping from some ground or generic set of objects
into some set of numbers. For example, a multiset α = [x, y, z]1,2,3 is
a mapping from a ground set D to N, the set of non negative integers,
defined by
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α(t) =





1, if t = x
2, if t = y
3, if t = z
0, for all the remaining t ∈ D.

In other words, a multiset α drawn from a ground set D can be
represented by a cardinal-valued function Cα : D → N.

In general terms, for a given ground set D and a numeric set T , we
call a mapping α : D → T ,





a set, if T = {0, 1} ;
a multiset, if T= N, the set of natural numbers;
a signed multiset(hybrid or shadow set), if T = Z, the set of integers;
a fuzzy(or hazy) set if T = [0, 1] ⊆ R, a two−valuedBoolean algebra.

In view of the above definition, a multiset A can also be represented
by a set of pairs as follows:

A = {〈mA(x1), x1〉, . . ., 〈mA(xj), xj〉, . . .} or
A = {mA(x1) · x1, . . . ,mA(xj) · xj , . . .} or
A = {n1/x1, . . . , nj/xj , . . .}, where mA(xj) = nj = the count or

the multipliciy of xj in A.
Note that there are other forms of representing a multiset (see [2],

[3] and [11] in particular).

Definition ii: Submultiset.
Given a multiset M over a domain set D, a multiset A over D is called
a submultiset of M written as A ⊆ M or M ⊇ A if mA(x) ≤ mM (x)
for all x ∈ D, where mA(x) and mM (x) are the multiplicities of x in
the multisets A and M respectively. Also if A ⊆ M and A 6= M , then
A is called a proper submultiset of M . A multiset is called the ancestor
in relation to its submultiset (see [11], for details).

Definition iii: Dressed epsilon.
For any object x occurring as an element of a multiset A i.e., mA(x) >
0, we write x ∈+ A, where ∈+ (dressed epsilon) is a binary predicate
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intended to be ‘belongs to at least once’, as ∈ is ‘belongs to only once’
in the case of sets. Also, x ∈k

+ A implies ‘x belongs to A at least k
times’, while x ∈k A means x belongs exactly k times to A. x /∈ A
means ‘x does not belong to A’ ([11], for details).

Definition iv: Partial ordering.
A binary relation <· on a set X is called a partial order on X if <·
satisfies the following axioms:

1. x <· x for all x ∈ X. (Reflexivity)

2. x <· y and y <· x ⇒ x = y for all x, y ∈ X. (Anti symmetry)

3. x <· y and y <· z ⇒ x <· z for all x, y, z ∈ X. (Transitivity)

The set X is said to be partially ordered with respect to <·. We
note that for some pair of elements x, y in X, neither x <· y nor y <· x
may hold. If x <· y or y <· x for all x, y in X then X is said to be
totally ordered or linearly ordered or a chain (see [5] for details).

Definition v: The Dershowitz-Manna ordering on multisets.
We follow the Dershowitz-Manna ordering on multiset. Let (S, >) be
a partially ordered set and M(S) be the set of all finite multisets with
elements taken from the set S. Then a partial order À on M(S) can
be defined as follows:

Let M , M ′ ∈ M(S). Then M À M ′ if for some multisets X,Y ∈
M(S), with ∅ 6= X ⊆ M , we have M ′ = (M\X) ∪ Y and (∀ y ∈+

Y )(∃x ∈+ X) x > y.
For example, let S = N, the set of natural numbers including 0 with

the usual ordering >, then under the corresponding multiset ordering
À over N, the multiset {3, 3, 4, 0} is greater than each of the three
multisets {3, 4}, {3, 2, 2, 1, 1, 1, 4, 0} and {3, 3, 3, 3, 2, 2}. (see [4]
for details).

Definition vi: Wellfounded multiset.
A wellfounded multiset is a multiset with an irreflexive and transitive
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ordering defined on it, such that its every submultiset has a minimal
element; in other words, no infinite descending chain occurs. We shall
follow the Dershowitz-Manna ordering on multisets over a set of natural
numbers which has been proved wellfounded (see for the proof in [4]).

Definition vii: An n-nary tree.
Given a non-negative integer n, an n-nary tree is a tree which has
exactly n number of branching on each of its branches. In the case
where the number of branching varies from branch to branch on the
tree, we call such a tree a general tree or simply a tree.

Definition viii: A binary tree.
A binary tree is an n-nary tree for n = 2.

Definition ix: A subtree.
A subtree is a subgraph which is a tree.

See [4] for details of the aforesaid definitions.

4 The Binary Tree

Dershowitz and Manna ([4]) demonstrated the termination of a pro-
gram to count the tips of a binary tree using a wellfounded multiset
ordering. We describe in brief one of the examples they considered.

Consider a simple program to count the number of tips – ter-
minal nodes (without descendents) – in a full binary tree. Each
tree y that is not a tip has two subtrees, left(y) and right(y).

Typically, a binary tree can be schematically represented as in Figure
1.

In Figure 1, the tree trunk is represented by the largest integer in
the labelling of the tree. One of the branches on a y-shaped (or fan-
shaped) subtree is called an axis. The part of the tree which continues
from the base to a tip without a gap is called a chain. The y-shaped
subtree at the bottom of the tree is called the base of the subtree.
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Figure 1. A binary tree

Notice that in the diagram above the integer label of a branch is
less than the integer label of the node upon which the branch rests.
One of the advantages of representing a tree in this way is reflected in
membrane structures. Thus, the sizes of membranes in a membrane
structure can be used in place of the integer labels, yet retaining the
tree representation of membrane structures. This fact is vindicated
in this paper when we shall be applying tree structures to membrane
computing.

5 Conventional Approach to Representing a
Tree by a Wellfounded Multiset

A conventional method of representing a tree by a wellfounded mul-
tiset seems to have first appeared in [4]. The conventional method
entails that in a wellfounded multiset, any element-multiset represent-
ing a subtree which is built upon another element-multiset represent-
ing another subtree needs to be smaller than the one upon which it is
built. Moreover, there is no permutation governing the arrangement
of the element-multisets of the wellfounded multiset. Rather, one rule
inherent in the representation is that the smaller and larger element-
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multisets have exactly one element in common. This common element
is also the largest element in the smaller element-multiset and cannot
be the largest element in the larger element-multiset. The action of
picking an element-multiset to represent a subtree on the tree is done
exhaustively. Though no definition of this method has been given in
[4], we give the following formal definition to capture the concept.

Definition x.
Formally, given a multiset S over a domain set D, a multiset T (S)
whose elements are submultisets of S is a conventional representation
of a tree if and only if it satisfies the following properties:

1. There exists z ∈1 T (S) such that z = max{y : y ∈+ T (S)},
2. For each u ∈+ T (S) where u 6= max{y : y ∈+ T (S)},∃w ∈+ T (S)

with w À u and x0 ∈+ S such that x0 ∈1 u ∩ w, x0 = max{x :
x ∈+ u} and x0 6= max{x : x ∈+ w}.

In the above definition, the first condition is called the base condi-
tion and z is called the base of a tree. The second condition is called
the join condition and x0 is the join between two subtrees.

6 Wellfounded Multiset Representation of a
Binary Tree (Use of the Conventional Ap-
proach)

A binary tree is represented in the form of a wellfounded multiset whose
elements are multisets containing only three elements. For example,
the wellfounded multiset {{322}, {211}} represents the binary tree in
Figure 2.

Each y-shaped subtree is represented by an element say a in
the multiset; a itself is a multiset with three elements of the form
{a1, a2, a3}. We show that the conventional approach of the represen-
tation is not injective from a set of trees to the class of wellfounded
multisets representing such trees.
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Figure 2. A two-element binary tree

Consider N = {{544}, {433}, {432}, {322}, {322}, {322}, {211},
{211}}. Each element of N has three elements and represents a y-
shaped subtree of the tree in Figure 1.

It is easy to see that N is ordered according to the Dershowitz-
Manna ordering on multisets.

The element {544} represents the first y-shaped subtree with tail
5. The two 4’s in {544} show that we can locate two elements in N ,
each of which has 4 as its largest element. The two elements are {433}
and {432} which give rise to two y-shaped subtrees with tails labelled
4 on the trunk labelled 5.

The three 3’s in these two elements combined show that we can
locate three other elements in N each of which has 3 as its largest
element. These elements are three {322}’s, which give rise to three
y-shaped subtrees with tails labelled 3 on the branch labelled 4.

Next are the six 2’s in the three elements. But, since there are only
two {211}’s in N each of which has 2 as its largest element, there can
only be two y-shaped subtrees each of whose tail is labelled 2.

Also, the 2 in {432} shows that we can locate an element in N
which has 2 as its largest element. This element is {211}, and can give
rise to a y-shaped subtree with tail labelled 2.

It can be observed that there arises a decidability problem as to how
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and on which of the two types of branches, one of which is labelled 4
and three of which are labelled 3, should the two subtrees with tail
labelled 2 be built upon. If one of the two {211}’s is built on any one
of the three {322}’s while the other {211} is built on {432}, we get
the binary tree A in Figure 3 below. If on the other hand each of the
two {211}’s is built on each of any two of the three {322}’s, we get the
binary tree B in Figure 3.

Figure 3. Two different binary trees generated by the multiset N

Thus, our ordered multiset N can yield two different binary trees
and so the conventional method does not give room for a wellfounded
multiset representation of a binary tree in a one-to-one manner.

The above assertion can be generalised in the case of an n-nary
tree. It can similarly be shown for a tree with n varying from branch
to branch on the tree, called a general tree.

7 The Saw Rule

We demonstrate below by considering a suitable permutation of a par-
tially ordered multiset how to represent a rule in which each submultiset
of elements is arranged in an uphill manner, while at the same time
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the multiset of all the elements in the system is arranged in a downhill
manner, called a saw-like permutation.

An uphill multiset of elements is a permutation of a partially or-
dered multiset of elements which ends with the largest element in the
multiset. A downhill multiset of elements is a permutation of a partially
ordered multiset of elements which begins with the largest element in
the multiset. Thus, all the elements in an uphill multiset of elements
or in a downhill multiset of elements may neither be ascending nor
descending.

This rule is called a saw-like permutation because it creates a re-
semblance of a wood saw blade when viewed pictorially using vertical
bars to represent the elements of a permutation of a partially ordered
multiset according to their sizes as in the following figure:

Figure 4. A saw-like structure illustrating a saw-like permutation

The scheme can be interpreted as follows: Each bar in a multiset
of ascending bars is attached to the longest bar immediately before
the multiset. In other words, any two bars in which one is attached to
another must not have any bar longer than the attached bar in between
them. The bars represent the element-multisets of a permutation of a
partially ordered multiset. The left arrow pointing from one bar to
another indicates attachment from the bar on its right to the bar on its
left. In other words, each bar on the right side of an arrow represents
a branch while the corresponding bar on the left represents a node on
the tree. We shall often refer to the element-multisets of a wellfounded
multiset as simply elements.
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While going through the elements of the partially ordered multiset,
we pick the first and largest element represented by the longest bar.
This is followed by the smallest element that can be attached directly
to the largest element. This in turn is followed by another element
only larger than the smallest element, and can be attached directly to
the largest element. Any element that must be attached to an element
which has already been attached to the largest element must come after
the element upon which it is to be attached, even if it happens to be
smaller than the first element attached directly to the largest element.

We continue in this way until we have exhausted all the elements
that can be attached to the largest element. In Figure 4 above, only
two bars have been attached to the first (largest) bar. There is no
doubt that these two bars are trivially in an uphill order according to
their heights.

This gives us a submultiset of elements immediately following the
largest element in an uphill order. Among all the submultisets in an
uphill order which have been attached to an element, this one happens
to be the largest. The last but not the least element (the third bar in
Figure 4 above) in this submultiset turns out to be the second largest
element in the partially ordered multiset, and it is the element upon
which the second submultiset of elements in an uphill order will be
attached starting with the smallest element directly attachable to it.
In Figure 4, the second largest bar (which is the third bar) has only
one bar attached to it. This one bar can be regarded as a submultiset
in an uphill order containing a singleton multiset, though a very trivial
case.

Next is the third largest submultiset of elements in an uphill order.
We continue in this way until all the elements in the partially ordered
multiset belong to a group of elements in an uphill order. Note that
in Figure 4 above, the fifth bar has four bars attached to it, including
the eighth bar, which in turn has two bars attached to it. These four
bars are clearly in ascending order, whereas the six bars (the four bars
with the two bars) make up the multiset of bars attached to the fifth
bar in an uphill order. This is a non trivial example of bars arranged
in an uphill order.
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Every element on the saw-like permutation is called a bar ; every
bar which has an element attached to it is called a column; a column
which is followed by a non-singleton submultiset of descending bars
each of which is less than the column and at least one of which has
a bar attached to it, is called a pillar. A submultiset of consecutive
elements from the same object whose multiplicity is more than one is
called a platform. The first bar on the saw-like permutation is called
its base.

Having demonstrated how the saw-like permutation is used to ar-
range the elements of a partially ordered multiset in the above discus-
sion, we now give a formal definition of the representation of a partially
ordered multiset in order of a saw-like permutation in the following def-
inition:

Definition xi.
A permutation P (S) of a partially ordered multiset S of order n is said
to be in order of a saw-like permutation if and only if y1 > yi in P (S),
for all i = 2, 3, . . . , n.

If such a permutation exists, we say that P (S) is arranged in order
of a saw-like permutation or P (S) is a saw-like permutation of the
elements of S. We shall see later in this paper that this construction
is of immense help in defining a tree structure.

8 Representation of a Tree by a Saw-like Per-
mutation of a Wellfounded Multiset (The
Saw Rule)

To resolve the aforesaid issue of the representation not being injective
from a set of trees to the class of multisets representing such trees as
indicated in section six above, we demonstrate by considering saw-like
permutations, how to represent a tree by a permutation of a wellfounded
multiset. We called this the saw rule. We show below how to represent
a binary tree using the saw rule and also how the injection is achieved
using this rule. In this case, consider the following illustrations to bring
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our point home:
Let us consider the following two permutations N1 and N2 of N :
N1 = [{544}, {423}, {322}, {211}, {433}, {322}, {322}, {211}] and
N2 = [{544}, {423}, {211}, {322}, {211}, {433}, {322}, {322}]
The element {544} of N1 represents the first y-shaped subtree

(called the base) with tail 5. The two 4’s in {544} show that we can
locate at most two elements in N1 each of which has 4 as its largest
element. The two elements are {423} and {433}.

The element {423} is smaller than {544} and so can give rise to a
y-shaped subtree with tail labelled 4.

The 3 in {423} shows that we can locate at most an element in N1

which has 3 as its largest element, and since the next element {322}
is smaller than {423} it can give rise to a y-shaped subtree with tail
labelled 3.

The two 2’s in {322} show that we can locate at most two elements
each of which has 2 as its largest element. Since there is only one such
element which has 2 as its largest element and smaller than {322} then
it can give rise to a subtree with tail labelled 2.

The next element {433} is larger than {322} and so no subtree
representing {433} can arise on {322}. However, {544} is the smallest
element larger than {433}, going backwards. Since only one of the two
elements having 4 as their largest element has its subtree on {544},
there can arise another subtree with tail labelled 4 on {544} (since
{544} has two 4’s in it).

The two 3’s in {433} show that we can locate at most two elements
each of which has 3 as its largest element. Since the next two elements
satisfy this condition, and are smaller than {433}, then there can arise
two subtrees with tails labelled 3.

The last two 2’s in the last {322} show that we can locate at most
two elements each of which has 2 as its largest element. Since we have
only one of such elements which is {211} having 2 as its largest element,
there can arise only one subtree with tail labelled 2 coinciding with only
one of the axes labelled 2.

The permutation N1 of N can be seen to have constructed the
one and only tree A in Figure 3 above and no other. Similarly, N2
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determines only the binary tree B in Figure 3. We call N1 and N2

tree structures. The following figures are saw-like structures of N1 and
N2 equivalent to the one in Figure 4, for a clear understanding of the
concept.

Figure 5. A saw-like structure illustrating N1

Figure 6. A saw-like structure illustrating N2

Notice in Figures 5 and 6, that a bar (representing a subtree on the
tree) can only be attached to a larger bar (representing a node on the
tree) where the larger bar is a multiset containing the largest element of

17



D. Singh, C.M. Peter

the smaller multiset representing the smaller bar. Such largest element
must not be the largest in the larger bar. Notice also that a bar has
not been attached to another bar of equal size (or height in this case).

Not all wellfounded multisets, even with the conventional method,
can represent a tree. This is seen from the multiset [{544}, {432}, {211},
{432}, {211}, {211}] since the supposed subtree structure [{211}] of the
last element {211} does not have a branch to rest upon. The saw rule
ensures, firstly, that a wellfounded multiset can suitably represent a
tree; secondly, that every tree can be represented in the form of a
wellfounded multiset (this is the only property that the conventional
method ensures) and thirdly, that this representation is injective from
a set of trees to the class of multisets representing such trees.

Remark.
It is important to observe that in order to construct a tree using a
unique permutation of a given wellfounded multiset, the use of the saw
rule in building an element upon a preceding element is not only that
the subsequent element be smaller than the preceding one, but also
that its largest element must belong to the preceding element, and that
the multiplicity of such subsequent element in an uphill submultiset of
elements must not be greater than the number of occurrences of such
largest element in the preceding element.

For example, in [. . .{543}, {211}. . .], the subtree representing [{211}]
cannot be built upon the subtree representing [{543}] since the
largest element 2 of {211} does not belong to {543}. But in
[. . .{543}, {411}. . .], [{411}] can be built upon [{543}] since the largest
element 4 of {411} is in {543}. Again, we cannot build any subtree
using [. . .{543}, {411}, {411}, {411}. . .] since 4 does not appear up to
three times in {543}. However, [. . .{5444}, {411}. . .] represents a sub-
tree. Such an element as 4 in this case is called a join in a tree structure.
We use square brackets for a tree structure since a tree structure is a
list – an ordered sequence of elements with repetitions allowed.

To avoid misinterpretation, we shall not use a tree and a tree struc-
ture interchangeably. As mentioned in the introduction, a tree is an
acyclic connected graph. On the other hand, a tree structure is a
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multiset representation of a tree by exploiting the saw rule, e.g., N1

and N2 above. Notwithstanding the fact that there is a one-to-one cor-
respondence between the two, this distinction is useful especially when
we shall be applying the concept of tree structures to membrane com-
puting. The same argument goes for a subtree and a subtree structure.

Having discussed the representation of a binary tree in order of
a saw-like permutation of a wellfounded multiset (called a tree struc-
ture), we consider it necessary to generalize our discussion to capture
the concepts of an n-nary tree structure (corresponding to a tree with
exactly n branches on each node of the tree) and a general tree (corre-
sponding to a tree with n varying from branch to branch on the tree).
Therefore, based on the discussions above, we now give the following
formal definitions:

Definition xii.
Let S be a partially ordered multiset over a domain set D. A permu-
tation P (τ(S)) of a wellfounded multiset τ(S) of cardinality m, whose
elements are submultisets of S is called an n-nary tree structure if and
only if it satisfies the following properties:

1. For all y ∈+ P (τ(S)) ∃n ∈ N such that C(y) = n, where C(y)
denotes the cardinality of y.

2. y1 À yi in P (τ(S)) for all i = 2, 3, . . . , m.

3. For all i, j ∈ N with yi À yj for i < j, if @ k ∈ N such that
yi À yk À yj for i < k < j then ∃ x0 ∈1 yi ∩ yj such that
x0 = max{x : x ∈+ yj} and x0 6= max{x : x ∈+ yi}, where
yi, yk, yj ∈+ P (τ(S)), i = 1, 2, . . . , m− 1, k = 2, 3, . . . ,m− 1 and
j = 2, 3, . . . , m.

In other words, it says that yi yields yj via x0 or yj is an imme-
diate successor of yi or yi is an immediate predecessor of yj , and
we denote this by yi

{x0}
³ yj .

4. For each z ∈ P (τ(S)) and for a given x ∈+ S the multiset
Y = {y : z {x}³ y} is such that C(Y ) ≤ mz(x), where C(Y ) is
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the cardinality of Y and mz(x) is the multiplicity of x in z.

In the above definition, the first condition is known as the equal car-
dinality condition. The second condition is known as the base condition
(or the saw rule condition) and y1 is the base of the tree structure. The
third condition is the join condition and x0 is the join between two sub-
tree structures. The fourth condition is the parallelism condition. The
parallelism condition ensures that the multiplicity of a join in a node is
greater than or equal to the number of subtree structures (or branches)
joinable to the node using such join.

Definition xiii.
Let S be a partially ordered multiset over a domain set D, a permu-
tation P (τ(S)) of a wellfounded multiset τ(S) of cardinality m, whose
elements are submultisets of S, is called a general tree structure if and
only if it satisfies the following properties:

1. y1 À yi in P (τ(S)) for all i = 2, 3, . . . , m.

2. For all i, j ∈ N with yi À yj for i < j, if @ k ∈ N such that
yi À yk À yj for i < k < j then ∃ x0 ∈1 yi ∩ yj such that
x0 = max{x : x ∈+ yj} and x0 6= max{x : x ∈+ yi}, where
yi, yk, yj ∈+ P (τ(S)), i = 1, 2, . . . , m− 1, k = 2, 3, . . . ,m− 1 and
j = 2, 3, . . . , m.

In other words, it says that yi yields yj via x0 or yj is an imme-
diate successor of yi or yi is an immediate predecessor of yj , and
we denote this by yi

{x0}
³ yj .

3. For each z ∈ P (τ(S)) and for a given x ∈+ S the multiset
Y = {y : z {x}³ y} is such that C(Y ) ≤ mz(x), where C(Y ) is
the cardinality of Y and mz(x) is the multiplicity of x in z.

The first condition is the base condition. The second condition is
the join condition and the third condition is the parallelism condition.

In the above two definitions, the tree structure P (τ(S)) is said to
be built over the multiset S with D as its domain. We define the root
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set of the tree structure P (τ(S)) as the set R = {x ∈ D : x ∈+ y ∀ y ∈+

P (τ(S))}. If there is no confusion about which multiset S is intended,
we simply write τ for P (τ(S)).

The process by which a subtree structure yields another subtree
structure in a tree structure is called a succession.

That is, if y1
{x1}
³ y2 and y2

{x2}
³ y3 then y3 is a successor (not an

immediate successor) of y1 and we write y1
{x1,x2}

³ y3 (y1 yields y3 via
the set {x1, x2}).

There are immediate successions between y1 and y2 and between y2

and y3. There is also a succession between y1 and y3, however, this is
not an immediate succesion.

Definition xiv.
Given a tree structure τ over a multiset S, a tree structure σ over S
is called a subtree structure of τ if and only if ∀ y, z ∈+ σ and x ∈+ S
such that z {x}³ y, ∃ a, b ∈+ τ with y ⊆ a and z ⊆ b such that b{x}³ a.

In other words, a tree structure σ is a subtree structure of a tree
structure τ if and only if it inherits all its immediate successions from
the tree structure τ .

The following are some immediate consequences of this defini-
tion: A subtree structure of a tree structure may not necessarily
be a submultiset of the tree structure and vice versa. There are
subtree structures of a tree structure whose members are not ele-
ments of the tree structure. For example, for the tree structure
τ = [{544}, {423}, {322}, {211}, {433}, {322}, {322}, {211}], the sub-
tree structure [{54}, {43}, {32}] of τ is not a submultiset of τ since all of
its elements do not belong to τ . The submultiset [{544}, {322}, {211}]
of τ does not represent any subtree structure of τ , since it does not
form a tree structure. The multiset [{544}, {433}, {21}] is neither
a submultiset of τ nor a subtree structure of τ while the multiset
[{544}, {423}, {322}] is both a submultiset of τ and a subtree struc-
ture of τ .
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9 Tree Structure Based Representation of Mem-
brane Structures

In this section, we apply the aforesaid technique to represent membrane
structures. Membrane structures can be represented in the form of a
tree ([10], p. 8). Let us consider the schematic representation of a
membrane structure as in Figure 7. It is customary to label the largest
membrane with the number 1, the next larger membrane with the
number 2 and so on.

In our example, in order to have an intuitively clearer representa-
tion, we shall identify the membranes by their membrane sizes. For
instance, a membrane labelled 2 will be identified by the membrane
size M2.

The schematic representation of the membrane structure (µ) in Fig-
ure 7 can be discussed as follows: M1 contains M2, M3, M5 and M8;
M2 contains M4 and M6; M3 contains M7 while M8 is empty. Also the
ordering relations M2 > M3 > M5 and M6 > M4 hold.

Let S = {Mi : i = 1, 2, . . . , 9}. The size of a membrane is defined
as the sum of the multiplicities of all the objects in the membrane
([9], p. 6). The domain set of the multisets consisting of the sizes of
membranes in a membrane structure as elements, is wellfounded with
the usual ordering, being a subset of the set N of natural numbers.
Thus, S is wellfounded and it follows that a multiset having elements
of S as elements of its elements is also wellfounded ([4]).

We note that the membrane sizes may change during the process of
transition. In particular, the above relations may not hold especially
for elementary membranes. However, this does not change the fact
that the tree structure representations still apply. Figure 8 is the tree
representation of the membrane structure in Figure 7.

The tree structure representation of the tree in Figure 8 is denoted
by µ.

µ = [{M1M2M3M5M8}{M3M7}{M2M4M6}].
We now present the above representation in greater details. The

contents of the membranes are represented by a letter such as aij of
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Figure 7. A membrane structure

Figure 8. A tree representation of the membrane structure in Figure 7
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the jth element in the ith membrane, while the mth rule in the kth

membrane is represented by rl
km, l being the rules’ priorities if any.

The membrane structure can further be expanded to show the contents
of each membrane in the initial configuration of the system.

µ = [{M1[a11a12a13r
1
11r

2
12r

3
13]M2[a21a22r21]M3[a31a32r31]

M5[a51a52a53r51]M8[]}{M3M7[a71r
1
71r

2
72]}

{M2M4[a41r41]M6[a61a62r61]}].

The subscripts used for the labelling of the elements are just for
illustration purpose and will not appear in the example we shall give
below. The contents of membrane Mi have been grouped in the square
brackets immediately following the membrane. If a membrane is con-
tained in Mi, such containment follows the rule governing attachment
in the tree structure. An empty membrane is denoted by an empty
square bracket. Elementary membranes appear only once in the tree
structure.

The first membrane is the skin membrane and is the only non-
elementary membrane which is allowed to appear once in the tree struc-
ture. Any other membrane which is neither the skin membrane nor an
elementary membrane will appear more than once, since it contains
some other membranes.

10 Computation (An Example)

The following is the example, given in ([9], pp. 10-11), of a transi-
tion in a (cooperative) super-cell system. In this example we substi-
tute membrane structures by tree structures (saw-like permutations of
wellfounded multisets). Also, membranes are represented by subtree
structures having both objects and rules (with associated rule priori-
ties) as members. However, a membrane or a susbtree structure may
exist having only rules as its members. The original tree structure rep-
resenting the membrane structure is the initial configuration prior to
the transitions.

24



Multiset-based tree model for membrane computing

Let us consider the following super-cell system of degree 4.

Π = (V, µ,M1, . . ., M4, (R1, ρ1), . . ., (R4, ρ4), 4),
V = {a, b, c, d},
µ = [{M1M2M4}{M2M3}],
M1 = [aacr1

11r
1
12r13],

M2 = [ar21],
M3 = [cdr31],
M4 = [r41],
R1 = {r11 : c → (c, in4), r21 : c → (b, in4), r13 : a → (a, in2)b, dd →

(a, in4)},
ρ1 = {r11 > r13, r12 > r13},
R2 = {r21 : a → (a, in3), ac → δ},
ρ2 = ∅,
R3 = {r31 : a → δ},
ρ3 = ∅,
R4 = {r41 : c → (d, out), b → b},
ρ4 = ∅.

C0 : µ = [{M1[aacr1
11r

1
12r13]M2[ar21]M4[r41]}{M2M3[cdr31]}]

In the initial configuration C0 we can apply a rule in membrane M1

and one in membrane M2. If we use the rule c → (b, in4) in membrane
M1, the rule b → b can be applied non-stop and the computation will
never end. Therefore, we will not use the rule c → (b, in4), but the
rule c → (c, in4). Since both these rules can be applied and they have
priorities over the rule a → (a, in2)b, this latter rule cannot be used.
Hence, the object c is sent from membrane M1 to membrane M4 and
at the same time the object a is sent from membrane M2 to membrane
M3.

C1 : µ = [{M1[aar1
11r

1
12r13]M2[r21]M4[cr41]}{M2M3[acdr31]}].

No rule can be applied on c in membrane M1, hence the rule a →
(a, in2)b can be used. It will be used for both copies of a in membrane
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M1, and so two copies of a will be sent to membrane M2 and two copies
of b will remain in membrane M1. At the same time, the rule a → δ
will be used in membrane M3, dissolving it, and the rule c → (d, out)
will be used in membrane M4, sending a copy of d to membrane M1.
As a result of these operations, membrane M1 will contain the string
bbd, membrane M2 will contain the string aacd, while membrane M4

will contain no string; membrane M3 no longer exists, therefore the
rule a → (a, in3) in membrane M2 is useless for now.

C2 : µ = [{M1[bbdr1
11r

1
12r13]M2[aacdr21]M4[r41]}].

The rule ac → δ can be used in membrane M2, dissolving it and
releasing the remaining objects ad. Thus, membrane M1 will contain
the string abbdd.

C3 : µ = [{M1[abbddr1
11r

1
12r13]M4[r41]}].

It is now possible for the first time to use the rule dd → (a, in4)
from membrane M1. It consumes the two copies of d and sends a copy
of a to membrane M4. No further rule can be applied, and the “life”
of the super-cell stops here.

C4 : µ = [{M1[abbr1
11r

1
12r13]M4[ar41]}].

11 Conclusion

The paper is an attempt to indicate that a multiset-based tree model
may prove useful in membrane computing and by extension to other
computing devices, especially of biological orientation.

Moreover, the application of the saw-like permutation can be ex-
ploited in describing various algebraic properties of a tree structure,
and hence, that of a membrane structure.
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[9] Gh. Păun, Computing with Membranes, TUCS Report 208, Turku
Centre for Computer Science, 1998.
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Maximal induced colorable subhypergraphs of

all uncolorable BSTS(15)s

Jeremy Mathews

Abstract

A Bi-Steiner Triple System (BSTS) is a Steiner Triple System
with vertices colored in such a way that the vertices of each block
receive precisely two colors. When we consider all BSTS(15)s as
mixed hypergraphs, we find that some are colorable while others
are uncolorable. The criterion for colorability for a BSTS(15)
by Rosa is containing BSTS(7) as a subsysytem. Of the 80 non-
isomorphic BSTS(15)s, only 23 meet this criterion and are there-
fore colorable. The other 57 are uncolorable. The question arose
of finding maximal induced colorable subhypergraphs of these 57
uncolorable BSTS(15)s. This paper gives feasible partitions of
maximal induced colorable subhypergraphs of each uncolorable
BSTS(15).

1 Introduction

1.1 Mixed Hypergraphs

The concept of mixed hypergraphs was introduced in [4] in 1993 by V.
Voloshin. A mixed hypergraph is a triple H=(X,C,D), where X is
a finite vertex set, C is a family of subsets of X called C-edges, and
D is a family of subsets of X called D-edges. If a mixed hypergraph
has C = D, then it is called a bi-hypergraph and its edges are called
bi-edges. For a proper coloring of a mixed hypergraph, C-edges must
contain at least two vertices of the same color and D-edges must contain
at least two vertices of different colors. If at least one proper coloring

c©2011 by J. Mathews
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of a mixed hypergraph exists, then it is called colorable; otherwise,
it is called uncolorable. The strong deletion of a vertex from a
hypergraph is the removal of x from H along with all C-edges and D-
edges containing x. An induced subhypergraph H’=(X’,C’,D’) of
a mixed hypergraph H=(X,C,D) is obtained through the strong dele-
tion of vertices from X. If H is an uncolorable mixed hypergraph and
after the deletion of some vertex (or vertices) the induced subhyper-
graph H’ becomes colorable, then H’ is called an induced colorable
subhypergraph of H. It is called a maximal induced colorable
subhypergraph of H if, with the addition of any of the deleted ver-
tices from H, it becomes uncolorable. [5]

1.2 Steiner Triple Systems

A Steiner System is a block design of the form S(t, k, v) where v is
the total number of vertices, k is the number of vertices that are in each
block and t is the number of distinct vertices that appear together in
precisely λ blocks. When λ = 1, k = 3, t = 2, and v ≡ 1 or 3(mod6),
it is called a Steiner Triple System or STS(v) [6]. If a STS(v) is
considered as a bi-hypergraph H=(X,B,B) where X is a finite vertex set
and |X| = v, B is the family of 3-element subsets of X known as blocks
(which are bi-edges), and each pair of distinct elements of X appear
together in precisely one block, then it is called a Bi-Steiner Triple
System or BSTS(v). Bi-Steiner Triple Systems are also known as
bi-colorings of Steiner Triple Systems [1]. Since each block consists of
bi-edges and each block contains exactly 3 vertices, the vertices of each
block are colored with precisely 2 colors by the definition of a proper
coloring of a mixed hypergraph.

2 Method

The number of blocks b in a BSTS(v) is given by the following:

b = v(v−1)
6 .
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So in the case of a BSTS(15), b = 35. Also, each vertex of a
BSTS(v) is contained in r blocks, where

r = v−1
2 .

Therefore, for a BSTS(15), r = 7. If just one vertex is strongly
deleted from X, then |X’| = 15 − 1 = 14 and b = 35 − 7 = 28. It
follows that there exists a maximal induced colorable subhypergraph
H’=(X’,B’,B’) of any uncolorable BSTS(15) H=(X,B,B) with |X’| ≤
14 and |B’| ≤ 28. In this paper, the case where |X’| = 14 and |B’| = 28
is proved for every uncolorable BSTS(15). In order to find any H’ of
H, we must strongly delete a vertex and test for colorability using any
number of colors.

3 Theorem and Proof

Theorem 1. Every uncolorable BSTS(15) H=(X,B,B) has some max-
imal induced colorable subhypergraph H’=(X’,B’,B’) obtained through
the strong deletion of exactly one vertex from X.

Proof. To show that all 57 uncolorable BSTS(15)s have a maximal
induced colorable subhypergraph obtained by one vertex deletion, we
delete vertex {15}, or as the vertices are labeled in [2] vertex {e},
and show a proper coloring by listing a feasible partition of X’. Note
that obviously the partitions listed below are not all of the possible
partitions for H’, nor is {15} (or {e}) the only vertex which can be
deleted in order to obtain H’ from H. Some systems can have any
vertex from X deleted to obtain H’ while others only have certain
vertices that can be deleted to obtain H’. Also, many of the maximal
induced colorable subhypergraphs of these uncolorable BSTS(15)s are
colorable using 3 and 4 colors; however, here we only show a partition
into 3 cells for 3 colors. These calculations were made with the aid of
a computer program written by B. Tolbert and myself. The systems
below are numbered as in [2] (Note that systems no. 1-22 and no.61
are the 23 colorable BSTS(15)s).
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BSTS(15) no. 23 {1, 2, 9, 13, 14}
⋃
{3, 12}

⋃
{4, 5, 6, 7, 8, 10, 11}

BSTS(15) no. 24 {1, 2, 4, 7, 8}
⋃
{3, 5, 6}

⋃
{9, 10, 11, 12, 13, 14}

BSTS(15) no. 25 {1, 2, 4}
⋃
{3, 5, 6, 7}

⋃
{8, 9, 10, 11, 12, 13, 14}

BSTS(15) no. 26 {1, 2, 4}
⋃
{3, 5, 6, 7}

⋃
{8, 9, 10, 11, 12, 13, 14}

BSTS(15) no. 27 {1, 2, 4, 7, 11}
⋃
{3, 5, 6}

⋃
{8, 9, 10, 12, 13, 14}

BSTS(15) no. 28 {1, 2, 4, 7, 8}
⋃
{3, 5, 6}

⋃
{9, 10, 11, 12, 13, 14}

BSTS(15) no. 29 {1, 2, 4, 7, 12}
⋃
{3, 5, 6}

⋃
{8, 9, 10, 11, 13, 14}

BSTS(15) no. 30 {1, 2, 4, 7, 11}
⋃
{3, 5, 6}

⋃
{8, 9, 10, 12, 13, 14}

BSTS(15) no. 31 {1, 2, 4, 7, 11}
⋃
{3, 5, 6}

⋃
{8, 9, 10, 12, 13, 14}

BSTS(15) no. 32 {1, 2, 4, 7, 11}
⋃
{3, 5, 6}

⋃
{8, 9, 10, 12, 13, 14}

BSTS(15) no. 33 {1, 2, 4, 7, 8}
⋃
{3, 5, 6}

⋃
{9, 10, 11, 12, 13, 14}

BSTS(15) no. 34 {1, 2, 4, 7, 8}
⋃
{3, 5, 6}

⋃
{9, 10, 11, 12, 13, 14}

BSTS(15) no. 35 {1, 2, 7, 10, 13, 14}
⋃
{3, 12}

⋃
{4, 5, 6, 8, 9, 11}

BSTS(15) no. 36 {1, 3, 5, 7, 8, 12, 14}
⋃
{2, 10, 11}

⋃
{4, 6, 9, 13}

BSTS(15) no. 37 {1, 3, 5, 7, 8, 10}
⋃
{2, 4}

⋃
{6, 9, 11, 12, 13, 14}

BSTS(15) no. 38 {1, 2, 7, 9, 10, 13, 14}
⋃
{3, 4, 5, 6, 11}

⋃
{8, 12}

BSTS(15) no. 39 {1, 3, 4, 6, 13, 14}
⋃
{2, 12}

⋃
{5, 7, 8, 9, 10, 11}
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BSTS(15) no. 40 {1, 2, 7, 10, 13, 14}
⋃
{3, 12}

⋃
{4, 5, 6, 8, 9, 11}

BSTS(15) no. 41 {1, 2, 7, 10, 13, 14}
⋃
{3, 12}

⋃
{4, 5, 6, 8, 9, 11}

BSTS(15) no. 42 {1, 3, 5, 7, 8, 10}
⋃
{2, 4}

⋃
{6, 9, 11, 12, 13, 14}

BSTS(15) no. 43 {1, 4, 6, 8, 10, 12, 14}
⋃
{2, 3, 7}

⋃
{5, 9, 11, 13}

BSTS(15) no. 44 {1, 2, 5, 6, 13}
⋃
{3, 8, 9, 10, 11, 12, 14}

⋃
{4, 7}

BSTS(15) no. 45 {1, 2}
⋃
{3, 4, 5, 6, 7}

⋃
{8, 9, 10, 11, 12, 13, 14}

BSTS(15) no. 46 {1, 3, 5, 7, 8, 10}
⋃
{2, 4}

⋃
{6, 9, 11, 12, 13, 14}

BSTS(15) no. 47 {1, 3, 5, 7, 8, 10}
⋃
{2, 4}

⋃
{6, 9, 11, 12, 13, 14}

BSTS(15) no. 48 {1, 5}
⋃
{2, 3, 6, 7, 10, 11}

⋃
{4, 8, 9, 12, 13, 14}

BSTS(15) no. 49 {1, 3, 5, 7, 9, 11}
⋃
{2, 10}

⋃
{4, 6, 8, 12, 13, 14}

BSTS(15) no. 50 {1, 2}
⋃
{3, 4, 5, 6, 7}

⋃
{8, 9, 10, 11, 12, 13, 14}

BSTS(15) no. 51 {1, 3, 5, 7, 8, 10}
⋃
{2, 4}

⋃
{6, 9, 11, 12, 13, 14}

BSTS(15) no. 52 {1, 3, 4, 6, 11, 13, 14}
⋃
{2, 5, 8, 9, 12}

⋃
{7, 10}

BSTS(15) no. 53 {1, 4, 6, 9, 10, 12}
⋃
{2, 3, 8, 11, 13, 14}

⋃
{5, 7}

BSTS(15) no. 54 {1, 5}
⋃
{2, 3, 6, 7, 10, 11}

⋃
{4, 8, 9, 12, 13, 14}

BSTS(15) no. 55 {1, 2, 4, 7, 8, 11}
⋃
{3, 5, 9}

⋃
{6, 10, 12, 13, 14}

BSTS(15) no. 56 {1, 3, 4, 6, 11, 13, 14}
⋃
{2, 5, 8, 9, 12}

⋃
{7, 10}
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BSTS(15) no. 57 {1, 3, 5, 7, 8, 10}
⋃
{2, 4}

⋃
{6, 9, 11, 12, 13, 14}

BSTS(15) no. 58 {1, 4, 6, 9, 10, 12}
⋃
{2, 3, 8, 11, 13, 14}

⋃
{5, 7}

BSTS(15) no. 59 {1, 11}
⋃
{2, 3, 6, 7, 8, 9}

⋃
{4, 5, 10, 12, 13, 14}

BSTS(15) no. 60 {1, 2, 4, 9, 10, 13, 14}
⋃
{3, 8}

⋃
{5, 6, 7, 11, 12}

BSTS(15) no. 62 {1, 2, 4, 7, 12}
⋃
{3, 5, 6}

⋃
{8, 9, 10, 11, 13, 14}

BSTS(15) no. 63 {1, 2, 4, 7, 11}
⋃
{3, 5, 6}

⋃
{8, 9, 10, 12, 13, 14}

BSTS(15) no. 64 {1, 2, 4, 7, 11}
⋃
{3, 5, 6}

⋃
{8, 9, 10, 12, 13, 14}

BSTS(15) no. 65 {1, 12}
⋃
{2, 3, 8, 9, 13, 14}

⋃
{4, 5, 6, 7, 10, 11}

BSTS(15) no. 66 {1, 2, 5, 6, 8, 13, 14}
⋃
{3, 4, 7, 9, 12}

⋃
{10, 11}

BSTS(15) no. 67 {1, 8, 10}
⋃
{2, 3, 4, 5, 9}

⋃
{6, 7, 11, 12, 13, 14}

BSTS(15) no. 68 {1, 12}
⋃
{2, 3, 8, 9, 13, 14}

⋃
{4, 5, 6, 7, 10, 11}

BSTS(15) no. 69 {1, 8, 10}
⋃
{2, 3, 4, 5, 9}

⋃
{6, 7, 11, 12, 13, 14}

BSTS(15) no. 70 {1, 2, 5, 9, 10, 13, 14}
⋃
{3, 8}

⋃
{4, 6, 7, 11, 12}

BSTS(15) no. 71 {1, 2, 5, 9, 10, 13, 14}
⋃
{3, 8}

⋃
{4, 6, 7, 11, 12}

BSTS(15) no. 72 {1, 5, 7, 9, 11, 12}
⋃
{2, 3, 4, 10, 13, 14}

⋃
{6, 8}

BSTS(15) no. 73 {1, 3, 4, 7, 11, 13, 14}
⋃
{2, 5, 6, 10, 12}

⋃
{8, 9}

BSTS(15) no. 74 {1, 6, 9, 11, 12}
⋃
{2, 3, 4, 5, 10, 13, 14}

⋃
{7, 8}
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BSTS(15) no. 75 {1, 2, 5, 6, 10, 12}
⋃
{3, 7, 11, 13, 14}

⋃
{4, 8, 9}

BSTS(15) no. 76 {1, 9}
⋃
{2, 3, 6, 7, 12, 13, 14}

⋃
{4, 5, 8, 10, 11}

BSTS(15) no. 77 {1, 4, 6, 8, 10}
⋃
{2, 3, 9}

⋃
{5, 7, 11, 12, 13, 14}

BSTS(15) no. 78 {1, 4, 6, 8, 10, 13}
⋃
{2, 3, 5}

⋃
{7, 9, 11, 12, 14}

BSTS(15) no. 79 {1, 3}
⋃
{2, 6, 7, 12, 13, 14}

⋃
{4, 5, 8, 9, 10, 11}

BSTS(15) no. 80 {1, 3}
⋃
{2, 8, 9, 12, 13, 14}

⋃
{4, 5, 6, 7, 10, 11}

Therefore, each uncolorable BSTS(15) has a maximal induced col-
orable subhypergraph using 3 colors with the deletion of exactly one
vertex.

4 How the Program Works

This program was written in the C++ language and contains several
sub-programs and functions. We created incidence matrices for each
colorable BSTS(15) as text files in the source code. We added dis-
play functions for all relevant data to check our results and to double
check the computer results. We started by creating files that would
find partitions and collect them with different permutations of colors
being collected as a single partition. The main program calls the in-
cidence matrix that is specified in a subprogram and displays it along
with each block of vertices. The program then prompts the user to
enter the number of colors that are to be used and then the number of
colorings the user wishes to find (first 10 or first 200 for example, or the
user can enter −1 for all colorings). If the user wants to find all proper
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colorings, the program runs an exhaustive search of all possible color-
ings from a string of all 0s to a string of all 3s. If a coloring is proper,
then the coloring is displayed and counted; and if it is not a proper
coloring, then that coloring is skipped. Also, if the coloring is proper,
then that feasible partition is stored. After all proper colorings have
been found and displayed and counted, the monitor prompts the user
to press any key to see the feasible partitions displayed and counted
and the number of colorings of each partition. All of the different per-
mutations of colors of the partitions that were stored from the proper
colorings are grouped together by the computer and only the first per-
mutation of colors is displayed. For example, 011222233333333 would
be displayed and 122333300000000 would not be displayed because it
is a permutation of the same partition where vertex 1 is mapped to one
color, vertices 2, 3 are mapped to one color, vertices 4− 7 are mapped
to one color, and vertices 8− 15 are mapped to one color. By altering
the incidence matrices to account for vertex deletions, we were able
to use this program to test the colorability of these induced subhyper-
graphs of every uncolorable BSTS(15). This enabled us to check the
accuracy of our hypothesis and our results; and by displaying all of the
relevant data on the monitor, we were able to check the accuracy of
the computer results [3].

5 Concluding Remarks

This paper shows that the minimum number of vertex deletions re-
quired for a maximal induced colorable subhypergraph of each uncol-
orable BSTS(15) is precisely one. Obviously with the deletion of vertex
{15}, there are more partitions than those listed in the proof; however,
they are not needed to show the existence of one H’ from H. How-
ever, it remains to find a maximal partial colorable subhypergraph for
each uncolorable BSTS(15). The weak removal of edges is the
deletion of edges without changing the vertex set X. A partial sub-
hypergraph H’=(X,B’,B’) of an uncolorable BSTS(15) H=(X,B,B)
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is obtained through the weak removal of C-edges and/or D-edges re-
sulting in B’. It is called a partial colorable subhypergraph if with
the weak removal of edges, H’ becomes colorable. Given H, which is
an uncolorable BSTS(15), then H’, which is a partial colorable subhy-
pergraph, is called a maximal partial colorable subhypergraph of
H if adding any C-edge or D-edge of H to H’ makes it uncolorable [5].
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Complex of abstract cubes and median problem
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Abstract

In this paper a special complex Kn of abstract cubes [2, 3],
which contains only n-dimensional cubes is examined. The bor-
der of this complex is an abstract (n − 1)-dimensional sphere.
It is proved that the abstract sphere contains at least one 0-
dimensional cube, which belongs to exactly n cubes with dimen-
sion 1, if the complex is a homogeneous n-dimensional tree. This
result allows to solve, in an efficient way, the problem of median
for a skeleton of size 1 of the tree with weighted vertices and
edges. The algorithm to calculate the median without using any
metric is described. The proposed algorithm can be applied with
some modifications, for arbitrary complex of abstract cubes.

Mathematics subject classification: 18F15, 32Q60, 68R10
Keyword and phrases: Abstract cube, complex, multidi-

mensional homogeneous tree, abstract sphere, median

1 Introduction

Let (X, d) be a metric space, determined by a finite set X, with ordered

elements X = {x1, x2, ..., xn}, and f(x) =
n∑

i=1
d(x, xi)p(xi) be a defined

function on X, where p(xi) is a positive real number, called weight of
the element xi ∈ X.

Definition 1.1. Point x∗ ∈ X, which satisfies the following equality

f(x∗) = min
x∈X

n∑

i=1

d(x, xi)p(xi) (1.1)

c©2011 by S. Cataranciuc, P. Soltan
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is called median of X.

Median applications for solving applied problems, especially in ser-
vice location problems, are well known. But calculating procedure of
the median according to the formula (1.1), usually in some circum-
stances is a difficult issue. In the works [2], [3], [4], efficient algorithms
for finding the median without using metric are proposed for some spe-
cial complexes. This paper largely generalizes results presented in the
papers [3] and [4]. However, if in [2] the median is calculated by effec-
tive way for weighted tree, then in this paper the problem is studied for
an abstract homogeneous tree Kn, n ≥ 1, with dimension n. For the
1-dimensional skeleton (see below) of this tree an efficient algorithm
for finding the median without using any metric is proposed.

In the paper [2] algorithm for calculating median for a finite tree
with positive weights of the elements is described. It is an elegant
algorithm, which has found many practical applications. The same sit-
uation we have in the case of a quadrilateral complex [3] with weighted
edges especially for the Euclidean space E2.

The problem, which is studied in this paper was formulated for the
first time, and partially solved in the late ’60s, at the Institute of Math-
ematics with Computer Center of Academy of Sciences of Moldova. At
that time, the two-dimensional case of the problem was studied. For
the greater dimensions any effective solutions weren’t obtained. Last
years researches have led to some theoretical results for dimensions
greater than 2, using new constructions (such is the complex of ab-
stract cubes). These complexes are studied through their groups of
direct homologies [5-7].

2 Homogeneous complexes of abstract cubes

Let r = {Q1
i1

, Q1
i2

, ..., Q1
in
}, n > 2, be a landmark of 1-dimensional ori-

ented cubes with a common vertex (a 0-dimensional cube), considered
the origin of these cubes. Any one-dimensional and oriented cube can
be an ordered pair of 0-dimensional cubes (vertices of 1-dimensional
cube). Consider Q0

i0
– the origin of cubes which forms the landmark r
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and Q1
i1

= (Q0
i0

, Q0
i1

), Q1
i2

= (Q0
i0

, Q0
i2

), ..., Q1
in

= (Q0
i0

, Q0
in

). Next, we
describe the landmark r by ordered tuple of indices (i1,i2,...,in), which
actually is a permutation of the tuple (1, 2,..., n).

It is clear that any landmark r of n oriented cubes, with dimension
1, determines unequivocally an n-dimensional oriented cube Qn and
vice versa. This cube is also determined by ordered tuple of (i1,i2,...,in)
indices.

Definition 2.1. If the number of inversions k of tuple (i1,i2,...,in)
is even (odd), then the n-dimensional cube Qn, which is determined by
the landmark r, is called positively (negatively) oriented.

Corollary 2.1. The same tuple of indices (i0,i1,...,in) describes un-
equivocally an n-dimensional simplex. Therefore, we consider that the
sign of an n-dimensional cube coincides with the sign of n-dimensional
simplex, determined by the same landmark r of 1 -dimensional cubes.

Definition 2.2. Two cubes with dimension 1 are called abstract-
convex cubes, if their emptinesses [23] have only one common point
x ∈ M of intersection. A cube Qm, 2 6 m 6 n, is called abstract-
convex if in intersection with another abstract-convex cube Q1 we obtain
at most an abstract-convex cube with dimension 1 .

According to Boltyanski [5] and Hilton [7], any abstract and ori-
entable manifold V n

p without borders [1], [23], which is determined
by a finite number of n-dimensional and abstract-convex cubes, can
be oriented if it satisfies the following property: any two arbitrary
n-dimensional cubes of V n

p , which have an intersection of an (n − 1)-
dimensional cube, are both positively or negatively directed. In other
words, for these two cubes exists an n-dimensional way [22], that unites
them – the so-called strong orientation, as a connected and oriented
graph [11] is.

Definition 2.3. Let V n
p be an abstract manifold, determined by

abstract-convex cubes, and x′, x′′ are two points of infinite set M [22],
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which does not belong to V n
p , and determines an abstract-convex 1 -

dimensional cube. Let the edge (x′, x′′) intersects V n
p in an odd number

of points from M . There are two points x1 and x2 in V n
p which leads to

a nonorientable one-dimensional cube (edge) of V n
p , denoted by (x1, x2).

We consider that the intersection of edges (x′, x′′) and (x1, x2) is only
a single point y ∈ M . Points x′ and x′′ belong to V n

p . One of these two
vacuums we consider as intern and will denote by intV n

p , and another
– exterior, denoted by extV n

p (a situation which generalizes theorem of
Jordan and Holder [14], [24]).

The abstract and oriented cube is defined by abstract simplexes in
inductive way [1], starting with an abstract oriented arc. A complex of
abstract-convex cubes

Kn =
{
Qp

λ : 0 ≤ p ≤ n, λ ∈ Λ, dimΛ < ∞}
,

where n = dimKn, and his groups of direct homologies over the group
Z of integers:

∆0(Kn,Z), ∆1(Kn,Z), ...,∆n(Kn,Z), (2.1)

is defined as it is shown in [7] (case Euclidean space En), and as for
the complex of abstract simplexes [16].

Definition 2.4. If Kn and Kp are two complexes of abstract-
convex cubes, so that Kp ⊂ Kn, then Kp is called subcomplex of Kn.

Definition 2.5. A set of all cubes of Kn, with dimensions p ≥ 0,
is called p -dimensional skeleton of Kn and is denoted by sk(p)Kn,
0 ≤ p ≤ n− 1.

Obviously, sk(p)Kn is a subcomplex of Kn and sk(1)Kn is its ori-
ented graph [11]. Next we will make the following denotations:

- Qp – the family of all p-dimensional and abstract-convex cubes
of Kn, 0 ≤ p ≤ n;
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- G = (X; U) – a graph which represents the 1-dimensional skeleton
of Kn, where X = Q0, and U = Q1. Hence Q0 and Q1 are the
sets of vertices and arcs of G.

Definition 2.6. The complex Kn of abstract-convex cubes, satis-
fying the following conditions:

a) if Qp, 0 ≤ p ≤ n is an element of Kn, then every facet Qk ⊂ Qp,
0 ≤ k < p, is an element of Kn;

b) for every two cubes Qp1 and Qp2 of Kn, the intersection Qp1∩Qp2

is empty or is an element of Kn, where 0 ≤ p1, p2 ≤ n;
c) any cube Qk of Kn, 0 ≤ k ≤ n, belongs at least to one n-

dimensional cube Qn of Kn;
d) for any two subcomplexes Kn

1 and Kn
2 of Kn, which satisfy con-

ditions a)-c) and Kn
1 ∪ Kn

2 = Kn, their intersection is a subcomplex
Kp ⊂ Kn, with dimension p = n− 1;

e) the homology group of rank zero is isomorphic to the group of
integers Z, i.e.

∆0(K n,Z) ∼= Z; (2.2)

f) the homology groups of rank 1, 2, 3, ...n are isomorphic to zero,
i.e.

∆1(K n,Z) ∼= ∆2(K n,Z) ∼= ... ∼= ∆n(K n,Z) ∼= 0 , (2.3)

is called homogeneous n-dimensional abstract complex and is denoted
by Kn

A.

Following the conditions e) and f) of this definition for the complex
Kn

A means that it is connected and acyclic [5], [7].

Definition 2.7. The set of all (n − 1) -dimensional cubes of the
complex Kn

A, which belong exactly to one n-dimensional cube Qn of
Kn

A, will be called the border of this complex and will be denoted by
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bdKn
A. The set of vacuums of all cubes of Kn

A, which do not belong
to the border bdKn

A will be called interior of this complex and will be
denoted by intKn

A.

Definition 2.8. [22] An orientable variety V n
p , which is determined

by abstract cubes will be called abstract n-dimensional sphere, if V n
p

satisfies the conditions:

χ(V n
p ) = 2, for n = 2m,

χ(V n
p ) = 0, for n = 2m− 1, (2.4)

We will denote this sphere by Sn = V n
0 , where χ is the Euler char-

acteristic:

χ
(
V n

p

)
=

n∑

i=0

(−1 )iαi, (2.5)

and αi is the number of i-dimensional cubes, 0 ≤ i ≤ n [5-7].

Theorem 2.1. If Kn
A is a convex-abstract and homogeneous n-

dimensional cubic complex, then its boundary bdKn
A is an abstract (n−

1)-dimensional sphere Sn−1.

Proof: First we will show that the border bdKn
A is an abstract

(n− 1)-dimensional orientable manifold V n−1
p , with genus p = 0.

Suppose the contrary. Let p > 0. In these circumstances, taking
into account the homogeneity of Kn

A and the assumption that p > 0,
we immediately obtain a contradiction: the complex Kn

A is not acyclic,
(contradicts the condition f) of the Definition (2.6)); the variety V n−1

p

can be cut by a variety V n−2
q , 1 ≤ q ≤ p, and in this case we will

have at least ∆n−1(V n−1
p ,Z) � 0 [22]. In this case, satisfying the

equalities (2.3), we obtain that V n−1
p is not a variety. Then p loses

its meaning. According to the homogeneity of Kn
A it leads to the fact

that this complex does not satisfy the condition d) of the Definition
2.6: there does not exist two subcomplexes Kn

A(1) and Kn
A(2), such that
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Kn
A(1) ∩ Kn

A(2) = Kp
A(3), where 0 ≤ p ≤ n − 2. Thus V n−1

p = V n−1
0 =

Sn−1. ¥

Theorem 2.2. If V n
p is an orientable (abstract) variety, deter-

mined by abstract-convex cubes, and any cycle of size k, 1 ≤ k ≤ n−1,
is homologous to 0, then V n

p , is an abstract sphere.

Proof: The variety V n
p is connected [22]. Therefore ∆0(V n

p ,Z) ∼=
Z. Let Ck

0 be an arbitrary cycle of variety V n
p . If all k-dimensional

cycles, 1 ≤ k ≤ n − 1, are homologous to zero, then in sk(k)V n
p , each

such cycle is the boundary of some subcomplex V K
p This leads to the

fact that the subgroup Zk
0 of the group of cycles Zk coincides with

Zk
0 . Therefore, the factor-group does not contain cycles which are not

homologous to 0. This means that ∆k(V n
p , Z) ∼= 0, 1 ≤ k ≤ n − 1.

Thus we have:

∆1(V n
p ,Z) ∼= ∆2(V n

p ,Z) ∼= . . . ∼= ∆n−1(V n
p ,Z) ∼= 0.

Considering the Euler-Poancare equality [22]:

χ(V n
p ) =

n∑

i=0

(−i)iαi =
n∑

i=0

(−1)iri,

where αi is the number of i-dimensional cubes of V n
p , and ri is the rank

of the group ∆i(V n
p ,Z), 0 ≤ i ≤ n, we obtain:

χ(V n
p ) = 1 + 0 + . . . + (−1)n1 =

{
2, for n = 2m;
0, for n = 2m− 1

}
.

However, according to the Definition 2.8, the variety V n
p is an ab-

stract n-dimensional sphere Sn.¥

In the paper [9] it is defined the notion of emptiness (vacuum) of
a p-dimensional cube, 1 ≤ p ≤ n. For the 0-dimensional cube Q0,
we consider that it coincides with its emptiness, and it will be called
0-dimensional emptiness.

44



Complex of abstract cubes and median problem

Corollary 2.2. Let Qk ∈ Qk be a convex-abstract, k-dimensional
cube, 0 ≤ k ≤ n, of some homogeneous complex. Then the variety
bdQk is an abstract (k − 1)-dimensional sphere.

The proof of this assertion follows immediately from the Theo-
rem 2.1.

3 n-dimensional homogeneous tree

Let us first explain some auxiliary issues.

Theorem 3.1. If Sn−1 is an abstract sphere determined by the
border bdKn

A of a homogeneous complex Kn
A of abstract-convex cubes,

then it has at least one cube (vertex) Q0 ∈ Q0, that exactly belongs to
n 1-dimensional cubes (edges).

To prove this theorem some additional examinations are necessary.

Lemma 3.1. There exists at least one homogeneous n -dimensional
complex Kn

A with the property that every cube Qp ∈ Qp from intKn
A,

which intersects the border bdKn
A at most through a cube of the dimen-

sion (p− 1), 1 ≤ p ≤ n, is incident to a number not less than 2n−p of
n-dimensional cubes.

Proof is done in a constructive way. Let Qn
1 be a cube. Let us

stick the cube Qn
2 to the cube Qn

1 so that Qn
1 ∩Qn

2 = Qn−1 and continue
this process in a way not contrary to the Definition 2.2. It is enough
to stop this process when we obtain the complex Kn

A.

According to the Definition 2.5. we may consider that any n-
dimensional abstract sphere Sn is determined by a complex of n-
dimensional abstract cubes or at least of abstract simplexes. Obvi-
ously, for any abstract sphere Sn there always exists a complex of n-
dimensional abstract cubes Kn+1 (not necessary homogeneous), so that
its border is Sn. The interior of the complex Kn+1 will be considered
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to be the interior of the n-dimensional sphere Sn and will be denoted
by intSn. The union Sn ∪ intSn is called an n-dimensional disk .

To examine the possibility of using the homogeneous complex of
abstract cubes, in solving some practical problems, some additional
issues are necessary to be examined. First let define the notion of
parallel edges class of a homogeneous complex Kn

A. Let Qn be an
n-dimensional abstract cube and Fn−1

1 and Fn−1
2 two n-dimensional

opposite facets of this cube. The cube Qn contains 2n−1 edges between
the facet vertices Fn−1

1 and Fn−1
2 .

Definition 3.1. Edges of the cube Qn, that merge vertices of the
facets Fn−1

1 and Fn−1
2 are called parallel edges of this cube. The set of

all parallel edges between two (n− 1)-dimensional facets we will denote
by C(Qn).

Obviously the set content is unequivocally determined by the pair of
opposite facets Fn−1

1 and Fn−1
2 . In the cube Qn there exist n different

sets of parallel edges.

Let us iteratively choose a special family of n-dimensional cubes.
We denote by i the numbers of cubes of this family. Initially we will
consider this family empty, i.e. i = 0. To make this kind of family we
should follow the following 4 steps:

p.1. Let us choose an n-dimensional cube Qn of the complex Kn
A.

So, we may consider that i = 1. Let us denote by Qn
T (1) the family

of cubes and by C(Qn
T (1)) – one of the parallel edges set of the chosen

cube Qn.
p.2. Suppose that some i > 1 n-dimensional cubes from Kn

A were
selected. Thus we obtained family of cubes Qn

T (i), for which the parallel
edges set C(Qn

T (i)) is known.
p.3. Let us choose a new cube (if there exists one) Qn∗ ∈ Qn\Qn

T (i),
which contains at least an edge from C(Qn

T (i)). We denote by C(Qn∗ )
the parallel edges set of this cube, that satisfies the following relation:
C(Qn

T (i)) ∩ C(Qn∗ ) 6= 0, and forms new sets

46



Complex of abstract cubes and median problem

Qn
T (i + 1) = Qn

T (i)∪{Qn
∗}

C(Qn
T (i + 1)) = C(Qn

T (i)) ∪ C(Qn
∗ ).

p.4. Repeat step 3 until it is possible. Since only finite n-
dimensional homogeneous complex is studied, at a certain point we will
reach the situation when we cannot select an n-dimensional cube from
Kn

A that satisfies the step 3. In this case we will consider the searched
family of n-dimensional cube formed.

Definition 3.2. The family of cubes, constructed according to the
steps p.1-p.4, will be called n-dimensional transversal of the com-
plex Kn

A. We will denote this family by Tn, and by C(Tn) – the respec-
tive class (set) of parallel edges.

By the Definition 2.6. any n-dimensional homogeneous complex
Kn

A contains m ≥ n sets of parallel edges, that we will denote by
C1,C2, ...,Cm. The equality m = n is true only if Kn

A is formed from a
single n-dimensional cube Qn.

From those mentioned above follows that any class of parallel edges
Ci, 1 ≤ i ≤ m, determines an n-dimensional transversal and vice versa,
any n-dimensional transversal determines a set of parallel edges. Also
we will consider that any class of parallel edges Ci, 1 ≤ i ≤ m, generates
unequivocally an n-dimensional homogeneous subcomplex of abstract
cubes (see definition 2.6). This subcomplex is determined by the facets
family, both own and unfit, of all n-dimensional cubes from transversal
Tn

i . We will denote this subcomplex by Kn
i .

Corollary 3.1. The n-dimensional subcomplex Kn
i , generated by

class of parallel edges Ci, 1 ≤ i ≤ m, of the complex Kn
A, is an n-

dimensional subcomplex from Kn
A.

The border of the complex Kn
i contains exactly two maximal (n−1)-

dimensional and acyclic subcomplexes, that don’t contain an edge from
the respective class of parallel edges Ci. We denote these subcomplexes
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by Kn−1
i(1) and Kn−1

i(2) . Prior let call Kn−1
i(1) ”left” facet, and Kn−1

i(2) - ”right”
facet of the transversal Tn

i .

Definition 3.3. The off-empty union of all abstract-convex cubes
with dimension k, 1 ≤ k ≤ n, that belong to the complex Kn

i , but do
not belong to the left and right facets of transversal Tn

i , will be called
vacuum of transversal Tn

i and will be denoted by V (Tn
i ).

Corollary 3.2. Any transversal Tn
i of an abstract and homoge-

neous complex Kn
A divides this complex, through its vacuum V (Tn

i ), in
two connected complexes of abstract cubes. Each of these complexes
is not necessary homogeneous, and has at least the dimension equal to
n− 1.

Definition 3.4. n-dimensional transversals Tn
i1

, Tn
i2

, ..., Tn
iq

of an
abstract and homogeneous complex Kn

A, determined by the classes of
parallel edges Cn

i1
,Cn

i2
, ...,Cn

iq
, 2 ≤ q ≤ m, are called pairwise neighbors

transversals if any two transversals Tn
ir

, Tn
is
, 0 ≤ ir, is ≤ q, satisfy the

following conditions:

1) V (Tn
ir

) ∩ V (Tn
is

) = ∅;

2) the classes of parallel edges Cir and Cis contain each at least one
edge Q ′

1 ∈ Ci and Q ′′
1 ∈ Cj, that at their turn have a common

vertex.

From the Definition 3.4. it follows: For a transversal Tn
ik

we will
denote the left and the right facets by Tn

ik(1) and Tn
ik(2). If transver-

sals Tn
i1

, Tn
i2

, ..., Tn
iq

are pairwise neighbors, then there exists a forked

transversal, Tn
i1,q

=
q∪

j=1
Tn

ij
∩ Tn

ik
, that divides Kn

A in many connected

subcomplexes. Let us denote by stKn
ik(1) and drKn

ik(2) the components
respectively determined by the ”left” and ”right” facets of transversal
Tn

ik
. For these components the relation stKn

ik(1) = Kn
A\drK is true.

Let Tn
i , 1 ≤ i ≤ m, be any transversal of the complex Kn

A and Kn−1
i(1)

be its ”left” facet
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Definition 3.5. (n−1)-dimensional maximal connected subcomplex
of the complex Kn

A, with the following properties:

1) any subcomplex contains the facet Kn−1
i(1) of the transversal Tn

i ;

2) any two (n−1)-dimensional cubes of this subcomplex do not belong
to an n-dimensional cube from Kn

A,

is called an (n−1)-dimensional transversal, determined by n-dimensional
transversal Tn

i , 1 ≤ i ≤ m.

According to the Definition 3.5., any n−dimensional transversal of
Kn

A determines exactly two (n − 1)-dimensional transversals. Also an
(n− 1)-dimensional transversal could be determined by more than one
n-dimensional transversal.

By analogy with the notation of n-dimensional transversal, we will
denote the (n− 1)-dimensional transversal by Tn−1.

(n− 1)-Dimensional transversal, determined by the transversal Tn
i

and containing the facet Kn−1
i(1) will be denoted by Tn−1

i(1) ; and one that

contains the facet Kn−1
i(2) , will be denoted by Tn−1

i(2) .

Lemma 3.2. If Tn
i is an (n−1)-dimensional transversal from Kn

A,
and Tn−1

i(1) , Tn−1
i(2) are the (n − 1)-dimensional transversals of the Kn

A,

determined by the transversal Tn
i , then Tn−1

i(1) ∩ Tn−1
i(2) = ∅, 1 ≤ i ≤ m.

Proof. Let Tn−1
i(1) and Tn−1

i(2) be (n − 1)-dimensional transversals,
determined by an n-dimensional Tn

i . Their intersection is not empty.
This intersection may coincide with a cube Q0 ∈ Q0 or at least with
a cube Qn−2 ∈ Qn−2. If this intersection is a cube Q0 ∈ Q0, then two
n-dimensional cubes from Tn

i and incident to Q0 are degraded, what
is excluded. The same situation is for the cube Qn−2 ∈ Qn−2: Qn−2 is
the opposite facet with the dimension n− 1 of the n-dimensional cube.
Thus we have at least an n-dimensional degraded cube.

Proof of the Theorem 3.1.
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Let Tn−1
ik

, 1 ≤ k ≤ m be an (n − 1)-dimensional transversal. If
k 6= m, then we will consider the transversal Tn−1

ik+1
. According to lemma

3.2. we obtain Tn−1
ik

∩Tn−1
ik+1

= ∅. Let us consider the following (n−1)-
dimensional transversals till Tn−1

im
. We obtain again Tn−1

im−1
∩Tn−1

im
= ∅.

Let us consider such n − 1 sections of n-dimensional and abstract-
connected cubes from Kn

A, that two neighbors are intersected through
an (n−1)-dimensional facet, opposite to (n−1)-dimensional facet of the
first and the second cube, which is at the border of Tn

m and intersects
through the n-dimensional cube Qn ∈ Qn. This cube is abstract-convex.
Cube Qn contains a vertex from circular border of (n− 1)-dimensional
cubes, that has a vertex Q0 ∈ Q0 with n+1 edges incident to stSn−1.¥

Let Kn
A be a homogeneous abstract complex (see Definition 2.6.),

but non-oriented.
As for the Theorem 2.2, the border bdKn

A is an (n−1)-dimensional
cubical sphere Sn−1. Let st(Q0)Sn−1 be the star of the vertex Q0,
calculated on sphere Sn−1.

Definition 3.6. An n-dimensional homogeneous undirected ab-
stract complex Kn

A, that satisfies the following conditions:

1) any cube Qk ∈ intKn
A belongs at least to 2n−k n-dimensional cube

from Kn
A, 0 ≤ k ≤ n;

2) if Q0 is a vertex from bdKn
A, that has exactly n incident arcs

of bdKn
A, and the star st(Q0)bdKn

A contains exactly n cubes of
(n − 1) dimension of bdKn

A, then the n-dimensional cube Qn

determined by this star belongs to the complex Kn
A;

is called n-dimensional homogeneous tree. We will denote this tree
by An.

By the Definition 3.6. we exclude the situation from Figure 1 (Fig-
ure 1 is shown for a better understanding of the examined situation.)
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Figure 1. A complex, which does not satisfy the condition 2) of the
Definition 3.6.

Note 3.1. The first condition of the Definition 3.6. is assured by
the Lemma 3.1.

Let us next consider the following function:

P : Q0 → R+ (3.1)

and the length of the edges from the classes of parallel edgesC1,C2, ...,Cm

equal to the numbers

d1, d2, ..., dp, (3.2)

where di > 0, for 1 ≤ i ≤ m. Thus all edges that belongs to a class
have the same length.

For any Q0 ∈ Q0 number p(Q0) is the share of Q0.

4 The representation of an n-dimensional tree
in a normed space

Let Q0 =
{
Q0

λ : λ ∈ Λ
}

be the vertices set and Q1 =
{
Q1

µ : µ ∈M}
be the edges set of the tree An. Let us fix an arbitrary chain
L1 = (Q1

µ1
, Q1

µ2
, ..., Q1

µk
) with the origin Q0

λi
and the extremity in Q0

λj
;
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µ1, µ2, ..., µk ∈ M; λi, λj ∈ Λ. Next we will form an integer non-
negative number (see conditions (3.1.) and (3.2.)).

d(Q0
λi

, Q0
λj

) = t1d1 + t2d2 + .. + tkdk, (4.1)

where ti = 0 (or ti = 1), if L1 passes an even (odd) number of times
through the edges from Q, that belongs to the class Ci, 1 ≤ i ≤ p.

Theorem 4.1. The relation (4.1) represents the Hamming metric
[25].

Proof. From the relation (4.1) and the condition (3.2) we have
1) d(Q0

λi
, Q0

λj
) ≥ 0, and from the equality d(Q0

λi
, Q0

λj
) = 0 it follows

that t1 = t2 = ... = tk = 0, and Q0
λi

= Q0
λj

;
2) the equality d(Q0

λi
, Q0

λj
) = d(Q0

λj
, Q0

λi
) is obvious;

3) according to (4.1) for three different vertices Q0
λi

, Q0
λj

, Q0
λk

, it is
easy to prove the equality

d(Q0
λi

, Q0
λj

) = d(Q0
λj

, Q0
λk

) + d(Q0
λk

, Q0
λj

).

The last equality proves that (4.1) is the Hamming metric. ¥

Suppose that the tree An has classes of parallel edges C1,C2, ...,Cm

with the fixed length (3.2). Let us also consider space Rm
1 over real

numbers set with norm ‖x‖ =
m∑

1=i
|xi|. We will fix on the coordinate

axes OY1, OY2, ..., OYp, from the origin O ∈ Rm
1 , segments with lengths

d1, d2, ..., dm. Let us make unequivocally a parallelepiped Pm on these
segments. The set of all k-dimensional facets of this parallelepiped
forms a complex of k-dimensional parallelepipeds, 0 ≤ k ≤ m. We will
denote this complex by Pk = {Pk ⊂ Pm, 0 ≤ k ≤ m}. For the case
k = 1 we obtain the complex P1, that represents union of all 0- and
1-dimensional facets from Pm. This complex P1 is a subcomplex of the
Pm. The complex P1 represents a connected, metric and undirected
graph. This graph will be denoted by H = (Y ; V ), where Y is the
vertices set from P1, and V – the edges set from P1.
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Theorem 4.2. For the tree An there exists an unequivocal appli-
cation α : An → Pm, that intersects An on a subcomplex from Pm, so
that α : G → P 1 represents an isometry.

Proof. The truth of the theorem follows from the construction
method of the complex Pm and relation (4.1).

We will denote by Y = {y1, y2, ..., yn} ⊂ α(An) the vertices set
α(X) in the space Rm

1 . Let us consider the following function:

f(y) =
n∑

i=1

p(yi) ‖ y − yi ‖, (4.1*)

where yi is the image of α(xi) and has the weight p(yi) = p(α(xi)),
1 ≤ i ≤ n.

We will prove that the point y∗ ∈ Rm
1 , that minimizes the function

(4.1*), is median of the graph H = (Y ;V ).

Note 4.1. The condition 2) from the Definition 3.6. is neces-
sary in calculation of the median of skeleton sk(1)Kn

A, that may not
be on sk(0)Kn

A. For example, let us consider the complex K2
A with

Q2 =
{
Q2

1, Q
2
2, Q

2
3

}
, Q1 = {(x1, x2), (x1, x4), (x1, x6), (x2, x3), (x3, x4),

(x4, x5), (x5, x6), (x6, x7), (x7, x2)} andQ0 = {(x1, x2, x3, x4, x5, x6,x7}
(The geometric representation of this complex is given in Figure 2.)

For this complex we consider the edges length 1, and the vertices
weight p(x1) = p(x2) = p(x4) = p(x6) = 1, p(x3) = p(x5) = p(x7) =
100. According to the formula (1.1) the vertex x∗8 that does not belong
to Q0 = sk(0)K2

A is a median.
Thus we denote by y the vectors from Rm

1 . So for the vector y =
(y1, y2, ..., ym) ∈ Rm

1 let us form the differences yi−yi
1, yi−yi

2, ..., y
i−yi

n,
1 ≤ i ≤ m, and the set of indices

I+
i = j : yi − yi

j > 0,

I0
i = j : yi − yi

j = 0, (4.2)

I−i = j : yi − yi
j < 0.
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Figure 2. A complex, which does not contain the median.

The relations (4.2) are formed as in [4].

Theorem 4.3. The vector yj ∈ Rm
1 minimizes the function (4.1*)

if and only if the following relations are satisfied:

∑

j∈I+
i ∪I0

i

p(yj) ≥
∑

j∈I−i

p(yj),

(4.3)
∑

j∈I+
i

p(yj) ≥
∑

j∈I0
i ∪I−i

p(yj).

The Proof of the theorem is analogous to that of the Theorem
3.1. from [3].

The Theorem 4.3. permits us to state an important fact: median
of metric graphic H does not depend on the edges lengths d1, d2, ..., dm

from V . Thus, the parallelepiped Pm could be replaced by a unitary
cube of the Rm

1 , using the operation of the expansion or constraint for
each edge with lengths di, 1 ≤ i ≤ m.

So we obtain mapping

β : Pm → Im, (4.4)
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where Im is a unitary cube the vertices of which have the coordinates
formed from 0 and 1 of the space Rm

1 . As a result of this mapping
the graph H passes in a metric graph β(H) that we will denote by
G = (Z; W ) ⊂ Im. We have Hamming metric both on the cube Im

and on the graph G. The vertices set Z of this graph is βα(Q0),
and the edges set W represents the edges set βα(Q1). The classes of
parallel edges C1,C2, ..., Cm are transformed into the following classes
of parallel edges from the cube Im:

C1
1 = βα(C1),C1

2 = βα(C2), ..., βα(C1
m) = βα(Cm).

The union of these classes does not necessary cover all the edges
from unitary cube Im. It could be a cover only if An = Pm.

For the set of vertices Z = {z1, z2, ..., zn} the same weights are kept:

p(z1), p(z2), ..., p(zn), (4.5)

where p(zi) = p(βα(xi), 1 ≤ i ≤ m.
Thus we have an isometric mapping:

βα : G → G.

Let the vertex zi ∈ Z of the cube Im has the coordinates:

zi = (z1
i , z2

i , ..., zm
i ),

where zj
i = 1 or zj

i = 0.
Because the median from Rm

1 does not depend on metric, let con-
sider that all lengths d1, d2, ..., dm are equal to 1. We will denote An

by An(1). Thereby the mapping βα(An(1)) → Im is also an isometry,
where βα(A(1)) is a subcomplex of the complex, formed from the facets
of Im.

Let us form the matrix as we did in [3]:
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C1
1
↓

C1
2
↓

... C1
j
↓

... C1
m
↓

N =




z1
1 z2

1 ... zj
1 ... εm

1

z1
2 z2

2 ... zj
2 ... zm

2

... ... ... ... ... ...

z1
i z2

i ... zj
i ... zm

i

... ... ... ... ... ...

z1
n z2

n ... zj
n ... zm

n




← z1

← z2

...
← zi

...
← zn

For every column from the matrix N we calculate a new tuple
r = (r1, r2, ..., rj , ..., rm), considering rj = 1 or rj = 0:

a) if the scalar product (zj
1, z

j
2, ..., z

j
n)(p(z1), p(z2), ..., p(zn)) =∑n

i=1 zj
i p(zi) is a number bigger than 1

2

∑n
i=1 p(zi), then rj = 1, and if

this product is less than the sum, then rj = 0;
b) if the following equality:

n∑

i=1

Zj
i p(zi) =

1
2

n∑

i=1

p(zi), (4.6)

is true, then the value of rj is chosen arbitrarily: 0 or 1.

Theorem 4.4. Any vector r = (r1, r2, ..., rm) is a line of the matrix
N .

To prove this theorem some additional issues are necessary.
Let Tn−1

i be an (n − 1)-dimensional transversal of the complex
An(1). This transversal divides An(1) in two different parts Tn

i(1) and
Tn

i(2), with a non-empty intersection Tn−1
i . These represent some dis-

tinct subcoplexes An
1 (j), j = 1, 2 of the An

1 . We will call Tn
i(1) and Tn

i(2)

n-dimensional subcomplexes, determined by Tn−1
i (let call them left

and right subcomplexes).

Next let us denote by Q0
i(j), 1 ≤ i ≤ B, j ∈ {1, 2}, Q0

i(1) and Q0
i(2)

the respective sets of vertices of An(1), Tn
i(1) and Tn

i(2). Obviously the
following relations are true:
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Q0
i(1) ∩Q0

i(2) = Q0
i(j),

(4.7)

Q0
i(1) ∪Q0

i(2) = Q0,

If Q0
i(1) and Q0

i(2) are the sets of vertices of n-dimensional complexes
Tn

i(1) and Tn
i(2), determined by the transversals Tn

i(j), j ∈ {1, 2}, 1 ≤ i ≤
B, where B is the number of all n-dimensional transversals, then we
will denote by p(Q0

i(1)), p(Q0
i(2)) the weight sum of the respective left

and right set of vertices, i.e.:

p(Q0
i(1)) =

∑

xi∈Q0
i(1)

p(xi),

(4.8)

p(Q0
i(2)) =

∑

xi∈Q0
i(2)

p(xi).

The numbers p(Q0
i(1)) and p(Q0

i(2)) will be called weights of the
respective n-dimensional complexes.

Theorem 4.5. A vertex x∗ of the graph G = (X; U) = sk(1)An(1)
is a median of G if and only if this vertex represents in An(1) the inter-
section of n transversals Tn

i(j), j ∈ {1, 2}, 1 ≤ i ≤ B, of distinct direc-
tions pairwise, for which the weight sum of the pair of n-dimensional
complexes An

i1(1), An
i1(2),..., An

in(1), An
in(2), determined by the mentioned

and accommodated transversals at the graph G, satisfies the following
relations:

p(Q0
i1(1)) = p(Q0

i1(2)),

p(Q0
i2(1)) = p(Q0

i2(2)), (4.9)

. . . . . . . . . . . . . . . . . . . . . . . .
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p(Q0
in(1)) = p(Q0

in(2)).

Proof. Necessity. Let x∗ be the median vertex of the graph
G = (X;U) ⊂ An(1). This vertex is the median of the tree An(1)
also. We observe first that according to the condition c) of the cubes
complex, any its vertex is situated at the intersection of at least n
(n − 1)-dimensional transversals pairwise. As for the Theorem 4.2,
it follows unequivocally that through Tn−1

i1
, Tn−1

i2
, ..., Tn−1

ib
there exist

some n transversals at the intersection of which there is the median
vertex x∗, for which it is necessary to take place relations analogous to
(4.3). Let us be more explicit. Let An

i1(1), An
i1(2), An

i2(1), An
i2(2),..., An

in(1),
An

in(2) be the pairs of subcomplexes of the An(1), determined by the
mentioned transversals; Q0

i1(1), Q0
i1(2); Q0

i2(1), Q0
i2(2); Q0

in(1), Q0
in(2) – the

sets of vertices of the respective subcomplexes; and p(Q0
i1(1)), p(Q0

i1(2));
p(Q0

i2(1)), p(Q0
i2(2));..., p(Q0

in(1)), p(Q0
in(2)) – the pairs of sums from

the theorem. Some of the mentioned subcomplexes may be even some
transversals Tn−1

i1
, Tn−1

i2
, ..., Tn−1

in
. Obviously the inequalities (4.6) de-

termine the vertex x∗, i.e.

Tn−1
i1

∩ Tn−1
i2

∩ ... ∩ Tn−1
in

= x∗, (4.10)

because the relations (4.9) are the adapted ones to the An from (4.3).
Let the relations (4.9) be again verified.

Tn−1
i1

∩ Tn−1
i2

∩ ... ∩ Tn−1
in

= ®. (4.11)

Through a simple syllogism we get to a contradiction that the condition
2 from the Definition 3.1. is not satisfied.

According to the results from [4] it follows that the set of all medians
of the graph G= (Z; W ) represents a facet-cube of the Im. So, if we
would be interested in those medians of the graph G, that are also
the vertices of this graph, then these are the vertices of the respective
facets. More than that, their existence does not depend on the distances
(3.2).
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Now let us return to the Theorem 4.4.

Proof. Suppose the opposite. That means that there exists a
vertex r = (r1, r2, ..., rm) of the cube Im, that does not belong to the
graph βα(G) = G, where β is the mapping

β : Pm → Im.

Let r = z∗ ∈ In\G minimize the function f(z), that is analogous to
(4.1). The point z∗ has m facets of dimension m−1. These facets for the
cubic complex of all facets from Im, represent some (n−1)-dimensional
transversals, that have the point (vector) z∗ as intersection. Each of
these facets contains an (n−1)-dimensional transversal of the complex
βα(An), that is isometric with An(1). Now let us mention that z∗ satis-
fies the pair of relations (4.9), adapted to the complex βα(An(1)). Also,
in the complex βα(An(1)) any m transversals βα(Tn−1

i1
), βα(Tn−1

i2
), ...,

βα(Tn−1
im

) of (n− 1)-dimension has an empty intersection, because the
vector z∗ does not belong to them. This is in contradiction with the
Theorem 4.2.

5 The algorithm of median calculation for an
n-dimensional tree

Let An(1) be an n-dimensional tree. From those studied above follows
that the median of the tree An(1) could be determined by the median
z∗ calculated in the m-dimensional cube Im for a special graph G. This
graph could be obtained as a result of two consecutive mappings α and
β. Thus, if z∗ is the median of the graph G in the cube Im then median
x∗ of the tree An(1) is determined by the relation

x∗ = α−1β−1(z∗).

The obtained results let us describe as an efficient algorithm of
median calculation in An(1) which does not depend on metric.

So the searched algorithm is as follows:
1) Let X = {x1, x2, ..., xm} = Q0
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2) To find the classes of parallel edges in the tree An(1). Suppose
we have m classes of parallel edges

C1,C2, ...,Cm;

3) To establish an arbitrary vertex from X, for example x1, and
put in correspondence the tuple x1 = (0, 0, ...0), formed from m zeros;

4) For any other vertex xi ∈ X we choose an arbitrary chain
L1(x1, xi), that merge together two vertices x1 and xi;

5) The vertex xi will have in correspondence the tuple

xi = (ε1
i , ε

2
i , ..., ε

m
i ),

for εj
i = 1, if the chain L1(x1, xi) passes an odd number of times through

the edges of the class Cj , and for εj
i = 0, if this number is even, i ∈ 1, n.

From tuples we form a matrix M , the lines of which represent the
tuples, proper to the vertices xi, 1 ≤ i ≤ n:

C1
↓

C2
↓

... Cm
↓

M =




ε1
1 ε2

1 ... εm
1

ε1
2 ε2

2 ... εm
2

... ... ... ...
ε1
n ε2

n ... εm
n




.

6) To calculate a new tuple r∗ = (r∗1, r
∗
2, ..., r

∗
m) using the matrix M

elements and the vertices weight p(xi) from X, 1 ≤ i ≤ n, according
to the rules:

rj =





1, if
n∑

i=1
εj
ip(xi) > 1

2

n∑
i=1

p(xi),

0, if
n∑

i=1
εj
ip(xi) < 1

2

n∑
i=1

p(xi),

0 or 1 (unconcerned), if
n∑

i=1
εj
ip(xi) = 1

2

n∑
i=1

p(xi).
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7) As for the the Theorem 4.4. the tuple r∗ belongs to the matrix
M , and the the vertex x∗ which corresponds to this tuple is the median
An.
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Abstract

In the paper an explicit algorithm for the problem of two-
dimensional spline interpolation on a rectangular grid is pro-
posed.
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1 Introduction

Let’s assume that the mesh ∆ = ∆x × ∆y is given on the domain
Ω = [a, b] × [c, d], where ∆x = a = x0 < x1 < . . . < xn = b and ∆y =
c = y0 < y1 < . . . < ym = d. Let us suppose that values f(xi, yj) = fij ,
i = 0, n, j = 0,m, are known at the knots of mesh ∆. The interpolant
S(x, y) is to be constructed such that S(xi, yj) = fij . In order to solve
this problem, bilinear splines, which are local ones, but derivatives
are not continuous, are widely used. If cubic splines of two variables
[1] are used, we get an interpolating surface S(x, y) ∈ C2,2(Ω), where
the class of functions f(x, y), which are continuous together with their
derivatives ∂k+lf(x,y)

∂kx∂ly
, k = 0, 2, l = 0, 2, on Ω, is denoted by C2,2(Ω).

But in this case you have to solve at least n + 2m or m + 2n (in the
case of periodic end conditions) systems of equations for determining
unknown coefficients of the spline. This fact may become critical in the
case of large set of data from computational point of view, therefore
the problem of elaboration of new algorithms which possess the locality
property, still remains actual. Below there is an algorithm for explicit

c©2011 by I. Verlan
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two-dimensional spline interpolation for rectangular grid, which is a
generalisation of the algorithm for one-dimensional case presented in
[2]. Two-dimensional spline is constructed as a tensor product of one-
dimensional splines.

2 Definition of splines

Let us introduce splines as follows: on Ωij = [xi, xi+1]× [yj , yj+1]

S(x, y) = ϕi(t)Fijφj(u), (1)

where notations hi = xi+1 − xi, t = (x − xi)/hi, lj = yj+1 − yj and
u = (y − yj)/lj are used.

In (1) the matrix Fij is a matrix represented in the following form:

Fij =




F
(0,0)
ij , F

(0,1)
ij , F

(0,2)
ij

F
(1,0)
ij , F

(1,1)
ij , F

(1,2)
ij

F
(2,0)
ij , F

(2,1)
ij , F

(2,2)
ij


 ,

where the submatrix

F
(0,0)
ij =

(
fij , fij+1

fi+1j , fi+1j+1

)
,

contains given data at the knots of the mesh and submatrices

F
(k,l)
ij =

(
m

(k,l)
ij ,m

(k,l)
ij+1

m
(k,l)
i+1j ,m

(k,l)
i+1j+1

)
,

where k = 0, 2, l = 0, 2 and k + l ≥ 1 contain unknown coefficients of
the spline m

(k,l)
ij = ∂k+lS

∂kx∂ly
(xi, yj). Vector-functions ϕi(t) and φj(u) are

defined as follows:

ϕi(t) = (1− ν(t), ν(t), hi(t4 − 2t3 + 2t− ν(t))/2,
hi(2t3 − t4 − ν(t))/2, h2

i (3t
4 − 8t3 + 6t2 − ν(t))/12,

h2
i (3t4 − 4t3 + ν(t))/12)
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and

φj(u) = (1− ν(u), ν(u), lj(u4 − 2u3 + 2u− ν(u))/2,
lj(2u3 − u4 − ν(u))/2, l2j (3u

4 − 8u3 + 6u2 − ν(u))/12,

l2j (3u
4 − 4u3 + ν(u))/12)T .

A function ν, called generating function for the spline (1), has to
satisfy the following conditions:

ν(1) = 1, ν(0) = ν ′(0) = ν ′(1) = ν ′′(0) = ν ′′(1) = 0,
ν(3)(0) = ν(3)(1) = 24 and ν ∈ C3[0, 1]. (2)

Some examples of generating functions ν (see [2]) are presented
below. Conditions (2) are held by functions

ν(t) = t3(4 + 15t− 48t2 + 42t3 − 12t4),

ν(t) = −48+120t−84t2+106t3−75t4+30t5−48t/(2−t)+48(1−t)/(1+t)

or

ν(t) =
{

4t3 + 6t4 − 12t5, t ∈ [0, 1/2]
1− 4(1− t)3 − 6(1− t)4 + 12(1− t)5, t ∈ [1/2, 1].

Taking into account (2) we have that ϕ(0) = φT (0) = (1, 0, 0, 0, 0, 0)
and ϕ(1) = φT (1) = (0, 1, 0, 0, 0, 0), therefore from (1) it immediately
follows that

S(xi, yj) = ϕi(0)Fijφj(0) = fij ,

S(xi+1, yj) = ϕi(1)Fijφj(0) = fi+1j ,

S(xi, yj+1) = ϕi(0)Fijφj(1) = fij+1,

S(xi+1, yj+1) = ϕi(1)Fijφj(1) = fi+1j+1,

i.e. interpolation conditions are fulfilled.
Due to the fact that ϕ′(0) = (φ′(0))T = (0, 0, 1, 0, 0, 0), ϕ′(1) =

(φ′(1))T = (0, 0, 0, 1, 0, 0), ϕ′′(0) = (φ′′(0))T = (0, 0, 0, 0, 1, 0) and
ϕ′′(1) = (φ′′(1))T = (0, 0, 0, 0, 0, 1) it follows that the following equali-
ties

ϕ
(k)
i−1(1)Fi−1j = ϕ

(k)
i (0)Fij , k = 0, 2,
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Fij−1φ
(l)
j−1(1) = Fijφ

(l)
j (0), l = 0, 2

are valid. As a result it can be concluded that the function S(x, y) and
its derivatives ∂k+lS

∂kx∂ly
(x, y), where k = 0, 2, l = 0, 2, k + l ≥ 1, are the

continuous ones.

3 Computing formulae for unknown coefficients

In this section we’ll present computing formulae for unknown coeffi-
cients of the spline (1). Components of submatrix F

(1,0)
ij are computed

using formula

m
(1,0)
ij = α1iδ

(1,0)
i−2j +α2iδ

(1,0)
i−1j +α3iδ

(1,0)
ij +α4iδ

(1,0)
i+1j , i = 2, n− 2, j = 0,m,

where δ
(1,0)
ij = (fi+1j − fij)/hi, i = 0, n− 1, j = 0, m and

α1i = − hi−1hi(hi + hi+1)
(hi−2 + hi−1)(hi−2 + hi−1 + hi)(hi−2 + hi−1 + hi + hi+1)

α4i =
(hi−2 + hi−1)2(hi−2 + hi−1 + hi)α1i

(hi−1 + hi + hi+1)(hi + hi+1)2

α3i =
hi−1 + (hi−2 + hi−1)α1i − (hi−1 + 2hi + hi+1)α4i

hi−1 + hi

α2i = 1− α1i − α3i − α4i.

For components of submatrix F
(0,1)
ij we have formula of the similar

form:

m
(0,1)
ij = β1jδ

(0,1)
ij−2 +β2jδ

(0,1)
ij−1 +β3jδ

(0,1)
ij +β4jδ

(0,1)
ij+1, i = 0, n, j = 2,m− 2

where, respectively, δ
(0,1)
ij = (fij+1 − fij)/lj , i = 0, n, j = 0,m− 1 and

β1j = − lj−1lj(lj + lj+1)
(lj−2 + lj−1)(lj−2 + lj−1 + lj)(lj−2 + lj−1 + lj + lj+1)

,

β4j =
(lj−2 + lj−1)2(lj−2 + lj−1 + lj)β1j

(lj−1 + lj + lj+1)(lj + lj+1)2
,
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β3j =
lj−1 + (lj−2 + lj−1)β1j − (lj−1 + 2lj + lj+1)β4j

lj−1 + lj
,

β2j = 1− β1j − β3j − β4j .

In order to compute m
(1,1)
ij we can use values of m

(1,0)
ij or values of

m
(0,1)
ij . In the first case we get

m
(1,1)
ij = β1jδym

(1,0)
ij−2 + β2jδym

(1,0)
ij−1 + β3jδym

(1,0)
ij + β4jδym

(1,0)
ij+1,

i = 2, n− 2, j = 2,m− 2,

where δym
(1,0)
ij = (m(1,0)

ij+1 −m
(1,0)
ij )/lj .

In the second case the computational formula has the form

m
(1,1)
ij = α1iδxm

(0,1)
i−2j + α2iδxm

(0,1)
i−1j + α3iδxm

(0,1)
ij + α4iδxm

(0,1)
i+1j ,

i = 2, n− 2, j = 2,m− 2,

where δxm
(0,1)
ij = (m(0,1)

i+1j −m
(0,1)
ij )/hi.

Let us require the continuity of S(3,0)(x, y) along x = xi. This
requirement has the form

ϕ
(3)
i−1(1)Fi−1jφj(u) = ϕ

(3)
i (0)Fijφj(u)

or
ϕ

(3)
i−1(1)Fi−1j = ϕ

(3)
i (0)Fij . (3)

Taking into account that

ϕ
(3)
i−1(1) = (−24/h3

i−1, 24/h3
i−1,−6/h2

i−1,−18/h2
i−1, 0, 6/hi−1)),

ϕ
(3)
i (0) = (−24/h3

i , 24/h3
i ,−18/h2

i ,−6/h2
i , 6/hi, 0)

from (3) we get

m
(2,0)
ij = 4(

µiδ
(1,0)
ij

hi
− λiδ

(1,0)
i−1j

hi−1
) +

λi(m
(1,0)
i−1j + 3m

(1,0)
ij )

hi−1
−

−µi(3m
(1,0)
ij + m

(1,0)
i+1j)

hi
, i = 3, n− 3, j = 0, m,
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m
(2,1)
ij = 4(

µiδxm
(0,1)
ij

hi
− λiδxm

(0,1)
i−1j

hi−1
) +

λi(m
(1,1)
i−1j + 3m

(1,1)
ij )

hi−1
−

−µi(3m
(1,1)
ij + m

(1,1)
i+1j)

hi
, i = 3, n− 3, j = 2,m− 2,

m
(2,2)
ij = 4(

µiδxm
(0,2)
ij

hi
− λiδxm

(0,2)
i−1j

hi−1
) +

λi(m
(1,2)
i−1j + 3m

(1,2)
ij )

hi−1
−

−µi(3m
(1,2)
ij + m

(1,2)
i+1j)

hi
, i = 3, n− 3, j = 3,m− 3. (4)

The notations λi = hi/(hi−1 + hi), µi = 1− λi are used above.
Similarly, from the requirement of continuity of S(0,3)(x, y) along

y = yj , which has the form

Fij−1φ
(3)
j−1(1) = Fijφ

(3)
j (0),

where

φ
(3)
j−1(1) = (−24/l3j−1, 24/l3j−1,−6/l2j−1,−18/l2j−1, 0, 6/lj−1),

φ
(3)
j (0) = (−24/l3j , 24/l3j ,−18/l2j ,−6/l2j , 6/lj , 0)

the following formulae are derived:

m
(0,2)
ij = 4(

µ′jδ
(0,1)
ij

lj
− λ′jδ

(0,1)
ij−1

lj−1
) +

λ′j(m
(0,1)
ij−1 + 3m

(0,1)
ij )

lj−1
−

−µ′j(3m
(0,1)
ij + m

(0,1)
ij+1)

lj
, i = 0, n, j = 3,m− 3,

m
(1,2)
ij = 4(

µ′jδym
(1,0)
ij

lj
− λ′jδym

(1,0)
ij−1

lj−1
) +

λ′j(m
(1,1)
ij−1 + 3m

(1,1)
ij )

lj−1
−

−µ′j(3m
(1,1)
ij + m

(1,1)
ij+1)

lj
, i = 2, n− 2, j = 3,m− 3,
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m
(2,2)
ij = 4(

µ′jδym
(2,0)
ij

lj
− λ′jδym

(2,0)
ij−1

lj−1
) +

λ′j(m
(2,1)
ij−1 + 3m

(2,1)
ij )

lj−1
−

−µ′j(3m
(2,1)
ij + m

(2,1)
ij+1)

lj
, i = 3, n− 3, j = 3,m− 3, (5)

where λ′j = lj/(lj−1 + lj), µ′j = 1− λ′j .

In order to compute values of m
(2,2)
ij formula (4) or formula (5) can

be used.
Taking into account values which indices take in the formulae pre-

sented above, we can conclude that we have an explicit algorithm for
the subdomain Ω′ = [x3, xn−3]× [y3, ym−3].

4 Case of uniform mesh

In the case when the mesh is the uniform one, i.e. hi = h,∀i and
lj = l,∀j, the computational formulae are more simple. Taking into
account that λi = µi = λ′j = µ′j = 1/2 and α1i = α4i = β1j = β4j =
1/12, α2i = α3i = β2j = β3j = 5/12 from the previous section we get

m
(1,0)
ij = (−fi−2j − 4fi−1j + 4fi+1j + fi+2j)/12h,

m
(0,1)
ij = (−fij−2 − 4fij−1 + 4fij+1 + fij+2)/12l,

m
(1,1)
ij = (−m

(0,1)
i−2j − 4m

(0,1)
i−1j + 4m

(0,1)
i+1j + m

(0,1)
i+2j)/12h or

m
(1,1)
ij = (−m

(1,0)
ij−2 − 4m

(1,0)
ij−1 + 4m

(1,0)
ij+1 + m

(1,0)
ij+2)/12l,

m
(2,0)
ij = 2(fi−1j − 2fij + fi+1j)/h2 + (m(1,0)

i−1j −m
(1,0)
i+1j)/2h,

m
(0,2)
ij = 2(fij−1 − 2fij + fij+1)/l2 + (m(0,1)

ij−1 −m
(0,1)
ij+1)/2l,

m
(2,1)
ij = 2(m(0,1)

i−1j − 2m
(0,1)
ij + m

(0,1)
i+1j)/h2 + (m(1,1)

i−1j −m
(1,1)
i+1j)/2h,

m
(1,2)
ij = 2(m(1,0)

ij−1 − 2m
(1,0)
ij + m

(1,0)
ij+1)/l2 + (m(1,1)

ij−1 −m
(1,1)
ij+1)/2l,

m
(2,2)
ij = 2(m(0,2)

i−1j − 2m
(0,2)
ij + m

(0,2)
i+1j)/h2 + (m(1,2)

i−1j −m
(1,2)
i+1j)/2h or
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m
(2,2)
ij = 2(m(2,0)

ij−1 − 2m
(2,0)
ij + m

(2,0)
ij+1)/l2 + (m(2,1)

ij−1 −m
(2,1)
ij+1)/2l.

Obviously, for each of the above formulae the indices take the same
values as for the corresponding formulae from the previous section.

5 Conclusions

In this paper we restricted ourselves to the interpolation problem on
subdomain Ω′. If you want to construct an interpolation surface on the
domain Ω you have to use boundary conditions in order to determine
coefficients of the spline which remain unknown.
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Optimal Correction of Infeasible Systems in the

Second Order Conic Linear Setting∗

Maziar Salahi

Abstract

In this paper we consider correcting infeasibility in a second
order conic linear inequality by minimal changes in the problem
data. Under certain conditions, it is proved that the minimal
correction can be done by solving a lower dimensional convex
problem. Finally, several examples are presented to show the
efficiency of the new approach.

Keywords: Second Order Cone Program, Infeasibility, Inte-
rior Point Methods.

1 Introduction

Correcting infeasibility by minimal changes in problem data is a well
studied problem and various approaches have been developed to do this
task [2, 5, 6]. The aim of this paper is to consider the optimal correction
of infeasible linear inequalities in the second order conic setting. Thus
let us first introduce second order cone program that has been widely
used in modeling many real world problems [1, 4].

Definition 1. A second order cone in Rn is defined as

Qn = {x ∈ Rn| ||x̄|| ≤ x1}, where x̄ = (x2, · · · , xn)T .

It has the following fundamental properties that enables one to
extend interior point algorithms from linear program (LP) to second
order cone program (SOCP) [1, 4]:

c©2011 by Maziar Salahi
∗ This work was supported by the University of Guilan, Rasht, Iran.
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• It is convex and closed.

• It is self-dual.

• It is pointed and has nonempty interior.

It is worth to note that x ∈ Qn is usually denoted by x ºQn 0. An
SOCP in the standard primal form similar to primal LP is given by

min cT
1 x1 + · · ·+ cT

r xr

A1x1 + · · ·+ Arxr = b,

xi ºQni
0, i = 1, · · · , r,

where Ai ∈ Rm×ni , b ∈ Rm, c ∈ Rni and its dual is given by

max bT y

AT
i y + si = ci, i = 1, · · · , r,

si ºQni
0, i = 1, · · · , r.

This dual pair in the compact form is written as

min cT x

Ax = b, (1)
x ºQ 0,

where A = [A1, · · · , Ar], x = (xT
1 , · · · , xT

r )T and Q = Qn1 × · · · ×Qnr

and

max bT y

AT y + s = c, (2)
s ºQ 0,

where s = (sT
1 , · · · , sT

r )T and c = (cT
1 , · · · , cT

r )T . Moreover, dual with-
out slack variable can be written as

max bT y

c−AT y ºQ 0. (3)
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It is worth to note that weak duality theorem holds for this dual
pair analogous to the LP case, but the strong duality theorem requires
stronger assumptions as follows:

• Assumption 1: Ai’s i = 1, · · · , r are linearly independent.

• Assumption 2: Both primal and dual problems are strictly fea-
sible i.e., there exist a primal feasible vector x1, · · · , xr such that
xi ÂQni

0 for i = 1, · · · , r and there exist a dual feasible vector y
and s1, · · · , sr such that si ÂQni

0 for i = 1, · · · , r.

Now under these two assumptions the strong duality theorem holds for
SOCP [4].

2 Optimal Correction of an Infeasible Conic
Linear Inequality

Suppose we have the following infeasible conic linear inequality

Ax− b ºQm 0, x ∈ Rn. (4)

To correct this infeasible system to a feasible one by minimal changes
in the vector b, it is sufficient to solve

min
x,r

||r||
Ax− b− r ºQm 0. (5)

This is obviously equivalent to

max
x,r,t

−t

Ax− b− r ºQm 0,

||r|| ≤ t,

which further can be written in the following dual SOCP form (3):

max −t


−b
0

0m×1


−




0m×1 Im −A
−1 0T

m×1 0T
n×1

0m×1 −Im 0m×n







t
r
x


 ºQm×Qm+1 0, (6)
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which can be solved efficiently using any interior point based software
packages for SOCP, like Mosek or SeDuMi [3, 7].

Now let us see whether it would be possible to have the
optimal r value by solving a lower dimensional convex problem
as in the nonnegative orthant case. In the following theorem
we discuss this question.

Theorem 1. The optimal r value in (5) is either given by

r =

(
(A(1,:)x∗−b(1))−||Āx∗−b̄||

2
Āx∗−b̄

2 − (A(1,:)x∗−b(1))(Āx∗−b̄)

2||Āx∗−b̄||

)
,

where x∗ is the optimal solution of

min
1√
2
(||Āx− b̄|| − (A(1, :)x− b(1))),

|A(1, :)x− b(1)| ≤ ||Āx− b̄|| (7)

with A(1, :) and b(1) denoting the first row of A and the first element
of b respectively and Ā = A(2 : m, :) and b̄ = b(2 : m), or

r = Ax∗ − b, (8)

where x∗ is an optimal solution of

min ||Ax− b||
−A(1, :)x + b(1) ≥ ||Āx− b̄||. (9)

Proof. Problem (5) can be written as

min
x

min
r
||r||

Ax− b− r ºQm 0.

Now let us first consider the inner minimization problem. It is equiva-
lent to

min
t,r

t

Ax− b− r ºQm 0
||r|| ≤ t
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or the following dual SOCP, since x is a constant vector for the inner
minimization problem:

max −t


Ax− b
0

0m×1


−




0m×1 Im

−1 01×m

0m×1 −Im




(
t
r

)
ºQm×Qm+1 0 (10)

and its corresponding primal problem is given by

min (Ax− b)T y1

(
0T

m×1 −1 0T
m×1

Im 0T
1×m −Im

)


y1

y2

y3


 =

( −1
0m×1

)
, (11)

y1 ∈ Qm, (y2, y
T
3 )T ∈ Qm+1.

Now if for the given vector x ∈ Rn, we have |A(1, :)x−b(1)| < ||Āx−b̄||,
then the optimal solutions of (10) and (11) are given by

r =

(
(A(1,:)x−b(1))−||Āx−b̄||

2
Āx−b̄

2 − (A(1,:)x−b(1))(Āx−b̄)

2||Āx−b̄||

)
,

t = ||r||
and

y2 = 1, y1 = y3 =
1√
2

(
1

− Āx−b̄
||Āx−b̄||

)
,

since they are both feasible and having equal objective values. It is
easy to check that

||r|| = 1√
2
(||Āx− b̄|| − (A(1, :)x− b(1))).

Thus in this case to have the optimal r value in (5), it is sufficient to
solve (7). However, if −A(1, :)x + b(1)| ≥ ||Āx − b̄||, then the optimal
solution for (10) and (11) are given by

r = Ax− b, t = ||r||
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and y2 = 1, y1 = y3 = − Ax−b
||Ax−b|| , since they are both feasible and

having equal objective values. Thus in this case to find optimal r value
in (5), it is sufficient to solve (9).

As we see, for the optimal correction of (4), unlike linear inequalities
in the nonnegative orthant, we can not necessarily find the optimal r
value by solving a lower dimensional convex problem. However under
certain conditions it would be possible. These conditions are given in
the next corollary.

Corollary 1. If for all x ∈ Rn, A(1, :)x−b(1) > 0 or |A(1, :)x−b(1)| ≤
||Āx− b̄||, then the optimal r value in (5) is given by

r =

(
(A(1,:)x∗−b(1))−||Āx∗−b̄||

2
Āx∗−b̄

2 − (A(1,:)x∗−b(1))(Āx∗−b̄)

2||Āx∗−b̄||

)
,

where x∗ is the optimal solution of

min
1√
2
(||Āx− b̄|| − (A(1, :)x− b(1))). (12)

One can see that (12) is equivalent to the following dual SOCP:

max − 1√
2
z

−b−
( −A(1, :) −1

−Ā 0(m−1)×1

)(
x
z

)
ºQm 0. (13)

Remark 1. Obviously the dimension of problem (13) is lower than the
dimension of (6). Therefore doing the minimal correction by solving
(13) should be much faster than (6), as it is verified by our numerical
experiments.

3 Illustrative Examples

In Table 1 we have listed the results of several randomly generated test
problems with different dimensions using MATLAB version 7.2. For all
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problems, matrices are generated randomly and we set their first row
equal to zero. Then we consider the vector b with all coordinates equal
to one of appropriate dimension. Obviously Ax− b ºQm 0 is infeasible
since its first element is negative. To solve (6) and (13), which are
exactly in dual form SOCP, we have used SeDuMi version 1.05 [7],
which is an interior point methods based software package. SeDuMi’s
input format can be either (1) or (3), which in our case is (3). For all
test problems we report the norm of r and the time taken to find it.
As we see, by increasing the dimension of the problems, finding r by
using the lower dimensional model (13) is extremely faster than (6).

Table 1. Comparison of problems (6) and (13)

m, n
Problem (6)

(time(sec), ||r||)
Problem (13)

(time(sec), ||r||)
50,30 (0.2, 4.0697) (0.1, 4.0697)
100,80 (0.3, 3.6762) (0.1, 3.6762)
300,200 (1.9, 7.0938) (0.5, 7.0938)
500,300 (5.9, 10.9243) (1.2, 10.9243)
1000,700 (132.1, 12.9153) (10.1, 12.9153)

4 Conclusions

In this paper, we have considered correcting infeasible systems in sec-
ond order conic linear setting by minimal changes in the vector b. It
is proved that under certain conditions, the minimal correction can be
done by solving a lower dimensional convex problem. Numerical exam-
ples show that the new approach is extremely faster than the original
model, especially on large scale problems.
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Blind Collective Signature Protocol∗

Nikolay A. Moldovyan

Abstract

Using the digital signature (DS) scheme specified by Belaru-
sian DS standard there are designed the collective and blind col-
lective DS protocols. Signature formation is performed simul-
taneously by all of the assigned signers, therefore the proposed
protocols can be used also as protocols for simultaneous signing
a contract. The proposed blind collective DS protocol represents
a particular implementation of the blind multisignature schemes
that is a novel type of the signature schemes. The proposed pro-
tocols are the first implementations of the multisignature schemes
based on Belarusian signature standard.

Keywords. Digital signature, collective digital signature, discrete
logarithm problem, blind signature, blind collective signature.

1 Introduction

The digital signatures (DS) are widely used in practical informatics to
solve different problems connected with electronic documents authen-
tication. There is proposed a variety of the DS protocols in the litera-
ture [11, 7]. Some type of the DS schemes, called multi-signature pro-
tocols, provide computing the single DS shared by several signers [1, 8].
A particular type of the multi-signature protocols, called collective DS,
has been recently designed [9]. That variant of the multi-signature
protocols is based on using the difficulty of finding large prime roots
modulo 1024-bit prime p possessing the structure p = Nkz + 1, where

c©2011 by N.A.Moldovyan
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z ≥ 2, N is an even number, and k is a 160-bit prime. That proto-
col produces a fixed size collective DS for arbitrary number of signers,
however the DS length is sufficiently large, actually, 1184 bits.

Using the general design of the collective DS scheme by [9] and DS
algorithm specified by Belarusian DS standard, in this paper there is
designed the collective DS protocol based on difficulty of finding dis-
crete logarithm. The proposed protocol produces a 320-bit collective
DS. Then the proposed collective DS protocol has been used to de-
sign the blind collective DS protocol that represents a new type of the
multi-signature schemes. The blind collective signature protocol can
be applied, for example, in the electronic voting systems and in the
electronic money systems.

2 Collective signature protocol based on diffi-
culty of discrete logarithm

2.1 Belarusian signature standard

Belarusian signature standard STB 1176.2−9 [6] is based on difficulty
of finding the discrete logarithm in the finite group, order of which
contains large prime factor q. The size of the factor q should be equal
to h ≥ 160 bits. The standard specifies the finite group as follows.
Select prime p such that its size is l ≥ 1024 bits. The group includes
all numbers of the set {1, 2, . . . , p− 1}. The group operation is defined
by the following formula:

a ◦ b = abR−1 mod p,

where a and b are the group elements and R = 2l+2. The standard
specifies ten security levels corresponding to balanced pairs of the values
h and l (see Table 1). The exponentiation operation is denoted as
follows:

a(k) = a ◦ a ◦ . . . ◦ a mod p (k times).
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In the STB 1176.2−9 signature scheme the public key is computed
using the following formula:

y = g(x),

where g is the q order element of the group and x is the secret key
(1 < x < q). The signature generation procedure includes the following
steps:

1. Generate a random number k (1 < k < q) and compute T = g(k).

2. Concatenate the value T and message M to be signed: M ′ =
T‖M .

3. Using the specified hash function FH compute the hash value
from M ′: e = FH(M ′) = FH(T‖M), where ‖ is the concatenation
operation.

4. Compute the value s = (k − xe) mod q.

The pair of numbers (e, s) is the signature to message M . The
signature verification is performed as follows:

1. If 1 < s < q and 0 < e < q, then go to step 2. Otherwise the
signature is false.

2. Compute value T ∗ = g(s) ◦ y(e).

3. Compute value e∗ = FH(T ∗‖M).

4. If e∗ = e the signature is valid, otherwise the signature is false.

2.2 Collective signature scheme

Suppose that m users should sign the given message M . The collective
DS protocol works as follows:

1. Each of the users generates his individual random value ki and
computes Ti = g(ki).
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Table 1. Ten security levels of the STB 1176.2−9 standard

Security h, l Security h l
level bits bits level bits bits

1 143 638 6 208 1534
2 154 766 7 222 1790
3 175 1022 8 235 2046
4 182 1118 9 249 2334
5 195 1310 10 257 2462

2. It is computed the common randomization parameter as the prod-
uct T = T1 ◦ T2 ◦ . . . ◦ Tm.

3. Using the common randomization parameter T and the speci-
fied hash function FH it is computed the first element e of the
collective DS: e = FH(T‖M).

4. Each of the users computes his share si in the second element of
the collective DS

si = ki − xie mod q, i = 1, 2, .., m.

5. The second element s of the collective DS (r, s) is computed as
follows s =

∑m
i=1 si mod q.

Size of the value s is equal to h, since it is computed modulo prime
q. The total size of the signature (e, s) is h+h′, where h′ is the bit size
of the specified hash function.

The signature verification is performed exactly as it is described
in Section 2.1 except the collective DS verification uses the collective
public key computed as follows:

y = y1 ◦ y2 ◦ . . . ◦ ym.

The presented collective DS protocol works correctly. Indeed,

T ∗ = y(e) ◦ g(s) = y(e) ◦ g(
∑m

i=1
(ki−xie)) =
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= y(e) ◦ g(
∑m

i=1
ki) ◦ g(−e

∑m

i=1
xi) = y(e) ◦ g(

∑m

i=1
ki) ◦ y(−e) =

= g(k1) ◦ g(k2) ◦ . . . ◦ g(km) = T1 ◦ T2 ◦ . . . ◦ Tm = T ⇒
⇒ E∗ = FH(M, R∗) = FH(M, R) = E.

Since the equality E∗ = E holds, the collective signature produced
with the protocol satisfies the verification procedure, i.e. the described
collective signature protocol is correct.

2.3 Attacks on the collective DS protocol

The participants of the collective DS protocol have significantly more
possibilities to attack the protocol than outsiders. They can try to forge
a collective signature (the first type of the attacks) and to compute the
secret key of one of the signers that shares a collective DS.

The first attack. Suppose it is given a message M and m − 1
signers attempt to create a collective DS corresponding to m signers
owning the collective public key y = y′ ◦ ym, where y′ =

∏m−1
i=1 yi, i.e.

m − 1 users unite their efforts to generate a pair of numbers (e∗, s∗)
such that T ∗ = y(e∗) ◦ g(s∗) and e∗ = FH(T ∗‖M). Suppose that they
are able to do this, i.e. the collective forger (i.e. the considered m− 1
signers) is able to calculate a valid signature (e∗, s∗) corresponding to
collective public key y = y1 ◦ y2 ◦ . . . ◦ ym. The collective DS satisfies
the following relation

T ∗ = y(e∗) ◦ g(s∗) =
(
y′ym

)(e∗)
g(s∗) =

= y′(e
∗) ◦ y(e∗)

m ◦ g(s∗) = g
(
e∗

∑m−1

i
xi

)
◦ y(e∗)

m ◦ g(s∗) =

= y(e∗)
m ◦ g

(
s∗+e∗

∑m−1

i
xi

)
⇒ T ∗ = y(e∗)

m ◦ g(s∗∗),

where s∗∗ = s∗ − E∗ ∑m−1
i xi mod q. The collective forgery have com-

puted the signature (e∗, s∗∗) which is a valid signature (to message M)
of the mth signer, since e∗ is equal to FH(M‖R∗) and the pair of num-
bers (e∗, s∗∗) satisfies the verification procedure of the underlying DS
scheme. Thus, any successful attack breaking the collective DS proto-
col also breaks the underlying DS standard. Since the STB 1176.2−9
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standard specifies secure DS scheme the proposed protocol is also se-
cure. Otherwise two or more persons would be able to forge a signature
of the STB 1176.2−9 standard.

The second attack. Suppose that m− 1 signers that share some
collective DS (e, s) with the mth signer are attackers trying to calculate
the secret key of the mth signer. The attackers know the values Tm

and sm generated by the mth signer. This values satisfy the equation
Tm = y

(e)
m g(sm), where the values Tm and e are out of the attackers’

control, since the value Tm = g(km), where km is a random number
generated by the mth signer, and e is the output of the hash function
algorithm. It is supposed that the standard uses secure hash function,
therefore the attackers are not able to select the value T producing
some specially chosen value e. This means that, like in the case of
underlying DS algorithm, computing the secret key requires solving
the discrete logarithm problem, i.e. i) to find km = log Tm and then
compute xm = e−1(km − sm) mod q or ii) to compute xm = log ym.

3 Blind collective signature protocol based on
Belarusian DS standard

3.1 Blind signatures

Blind signature schemes [2] represent a particular type of the cryp-
tographic protocols that are especially interesting for application in
the electronic money systems and in the electronic voting systems. For
practical applications it is interesting to use the blind signature schemes
based on the DS algorithms specified by the DS standards. Belarusian
DS standard STB 1176.2−9 suites well to be used as the underlying
DS scheme of the blind signature protocols.

The properties of the blind signatures are [11]:

i) the signer can’t read the document during process of signature
generation;

ii) the signer can’t correlate the signed document with the act of
signing.
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Usually in the DS algorithms the signature is calculated using the
hash function from the document to be signed, therefore the first prop-
erty can be easily provided. It is sufficiently to present the hash func-
tion to the signer keeping the document secret. The problem of pro-
viding the second property is known as anonymity (or untraceability)
problem. To solve this problem there are used specially designed DS
algorithms. There are known blind signature schemes based on diffi-
culty of the factorization problem [3] and on difficulty of finding the
discrete logarithm [10].

To provide the anonymity of the signature there are used so called
blinding factors. Prior to submit a hash function value (or message
M) for signing, the user U computes the hash function value H and
multiplies H (or M) by a random number (blinding factor). Then the
user submits the blinded hash function value (or blinded document)
for signing. The signer signs the blinded value H (or M) producing
the blinded signature that is delivered to user U. The user divides out
the blinding factor producing the valid signature to the original hash
function value (or directly to the original document).

The blind DS protocol based on Belarusian signature standard can
be constructed using the blinding factors yτ and gε applied earlier to
construct a blind signature scheme based on Schnorr’s DS scheme [10,
12]. The designed protocol works as follows.

The blind signature generation procedure includes the following
steps:

1. The signer generates a random number k (1 < k < q), computes
T = g(k), and sends the value T to the user U.

2. The user U generates random values τ and ε, computes T ′ =
Ty(τ)g(ε), e′ = FH(T ′‖M), where M is document to be signed,
and e = e′ − τ mod q. Then the user sends the value e to the
signer.

3. The signer computes the blinded signature s = (k − xe) mod q
and sends the value e to the user U.
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4. The user U computes the signature s′ = s+ε. The pair of numbers
(e′, s′) is the valid signature to the message M .

Correctness of the described blind signature protocol is proved as
follows. Computing the value T ∗ (see signature verification procedure
in subsection 2.1) gives

T ∗ = g(s′) ◦ y(e′) = g(k−xe+ε) ◦ y(e+τ) =

= g(k) ◦ g(−xe) ◦ g(ε) ◦ y(e) ◦ y(τ) = g(k) ◦ y(−e) ◦ g(ε) ◦ y(e) ◦ y(τ) =

= g(k) ◦ y(τ) ◦ g(ε) = T ◦ y(τ) ◦ g(ε) = T ′ ⇒
⇒ e∗ = FH(T ∗‖M) = FH(T ′‖M) = e′.

Thus, the signature (e′, s′) satisfies the equations of the STB 1176.2−9
standard verification procedure.

3.2 Blind collective signature

Belarusian standard suits also to be used as underlying DS scheme of
the blind collective DS scheme. Suppose some user U is intended to get
a collective DS (corresponding to message M) of some set of m signers
using a blind signature generation procedure. To solve this problem
the user can apply the following protocol:

1. Each signer generates a random value ki < q and computes Ti =
g(ki), and presents the value Ti to each of the signers.

2. It is computed a common randomization parameter R as the
product T = T1 ◦ T2 ◦ . . . ◦ Tm.

3. The value T is send to the user U.

4. The user U generates random values τ < q and ε < q and com-
putes the values T ′ = Ty(τ)g(ε) and e′ = FH(T ′‖M). The value
e′ is the first element of the collective DS.

5. The user U calculates the value e = e′ − τ mod q and presents
the value e to the signers.
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6. Each signer, using his individual value ki and his secret key xi,
computes his share in the blind collective DS: si = ki−xie mod q.

7. It is computed the second part s of the blind collective DS:
s =

∑m
i=1 si mod q.

8. The user U computes the second parameter of the collective DS:
s′ = s + ε mod q.

The signature verification procedure is exactly the same as de-
scribed in the case of collective DS based on Belarusian standard (see
subsection 2.2). The signature (e′, s′) is a valid collective DS corre-
sponding to the message M . Indeed, using the collective public key

y = y1 ◦ y2 ◦ . . . ◦ ym = g(
∑m

i=1
xi)

we get

T ∗ = y(e′) ◦ g(s′) = y(e+τ) ◦ g(s+ε) = y(e) ◦ yτ ◦ g(s) ◦ g(ε) =

= g(e
∑m

i=1
xi) ◦ y(τ) ◦ g(

∑m

i=1
(ki−xie)) ◦ g(ε) = g(

∑m

i=1
ki) ◦ y(τ)g(ε) =

= T ◦ y(τ) ◦ g(ε) = T ′ ⇒ e∗ = FH(T ∗‖M) = FH(T ′‖M) = e′.

Thus, the protocol yields a valid collective DS (e′, s′) that is known to
the user U and unknown to each of the signers. The protocol provides
anonymity of the user in the case when the message M and collective
signature (e′, s′) will be presented to the signers. Anonymity means
that the signers are not able to correlate the disclosed signature with
only one act of the blind signing, if the signers have participated in two
or more procedures of blind signing. Indeed, suppose the signers save
in a data base all triples (e, s, T ) that are produced while performing
the protocol.

Accordingly to the blind collective DS protocol the elements of each
triple satisfy the expression:

T = y(e) ◦ g(s). (1)
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The signature (e′, s′) satisfies the expression:

T ′ = y(e′) ◦ g(s′). (2)

From formulas (1) and (2) we get

T ′ ◦ T−1 = y(e′−e) ◦ g(s′−s) ⇒ T ′ = Ty(τ) ◦ g(ε),

where τ = e′ − e mod q and ε = s′ − s mod q. Since the values τ
and ε are generated at random while performing the protocol, each of
the triples has equal rights to be associated with the given disclosed
signature.

3.3 Application as a protocol for simultaneous signing a
contract

Due to the fact, that individual shares of the collective DS formed
with the protocols described in subsections 2.2 and 3.2 are valid only
in the frame of the given set of m signers, the mentioned protocols
can be used to solve efficiently the problem of simultaneous signing
a contract. The collective signature protocols solve the problem of
signing simultaneously a contract being free of any trusted party. A
scenario of practical application of the blind simultaneous signing some
electronic messages can be attributed to the electronic money systems
in which the electronic banknotes are issued by several banks.

4 Conclusion

Belarusian DS standard is recommended for practical application in
information technologies connected with exchange and processing elec-
tronic documents accompanied by the usual-type digital signatures.
The results of this paper show that the signature generation and signa-
ture verification procedures specified by Belarusian DS standard can be
additionally used as underlying algorithms in the following protocols:

i) blind signature,
ii) collective signature;
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iii) blind collective signature.
Besides, the collective DS protocols can be efficiently used as pro-

tocols for signing simultaneously a contract.
It is interesting to study possibility to implement such protocols

using other official DS standards. Our preliminary investigation of this
problem has shown that Ukrainian and Russian [4] DS standards pro-
vide such possibility, however American signature standards DSA and
ECDSA [5] do not suite to this purpose. More detailed investigation
of the proposed problem represents a subject of independent research.
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Architecting software concurrency

Dumitru Ciorbă, Victor Beşliu

Abstract
Nowadays, the majority of software systems are inherently

concurrent. Anyway, internal and external concurrent activities
increase the complexity of systems’ behavior. Adequate archi-
tecting can significantly decrease implementation errors. This
work is motivated by the desire to understand how concurrency
can constrain or influence software architecting. As a result, in
the paper a methodological architecting framework applied for
systems with ”concurrency-intensive architecture” is described.
This special term is defined to emphasize architectures, in which
concurrent interactions are crucial. Also in the paper potential
models for each phase of architecting framework are indicated.

Keywords: software architecture, concurrency, concurrency-
intensive architecture, architecting framework, concurrency model,
formalization, specification, CSP#

1 Key challenges in managing concurrency

1.1 Benefits and costs of concurrency

Software development undoubtedly passes a revolutionary period. De-
sired performance can be achieved not only by increasing proces-
sor frequencies. This outlines a future that is determined by multi-
core/multiprocessor architectures and multi-threading programs [1].

The benefits of concurrency reside in the full exploitation of ad-
vantages offered by multi-core/multiprocessor architectures, primarily,
through the possibility to represent naturally and separately concur-
rent activities. This leads directly or indirectly to the key character-
istics of modern software such as: availability, protection, scalability,
performance.

c©2011 by D.Ciorbă, V.Beşliu
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However, concurrency has its costs for organizing inter-thread syn-
chronization and communication. Non-determinism, inherent in con-
current systems, requires taking into account a number of properties
that must satisfy programs (mutual exclusion, absence of deadlock,
livelock, starvation and race conditions, etc.) [2]. Thus the coordina-
tion of activities is complicated, and multithreading related errors are
intermittent and difficult to reproduce. Moreover, synchronization and
communication worsen effects of code scattering and code tangling [3];
involve reuse difficulties due to conflicts between basic functionalities
and synchronization functionalities. These conflicts have been inten-
sively studied and we find in the literature by the name the inheritance
anomaly.

1.2 Inheritance anomalies

Several researchers [4,5,6] have attempted to classify and formalize the
anomalies that make unreasonable or even impossible to reuse the base
class by inheritance, since the redefinition involves an excessive number
of methods. In [7] authors state that any popular modern programming
languages do not exclude yet the occurrence of these anomalies. The
authors propose three generic classes for anomalies where the role of
inheritance as a form of reuse is greatly diminished: history-sensitive
anomaly; partitioning of states; modification of acceptable states.

In [8] it is proposed unified treatment of phenomena in a general des-
ignation - reuse anomalies, arguing that in a concurrency context, the
above mentioned effects can also occur in the case of aggregation and
association relations. This fact is easily claimed in other works. An ex-
ample is the paper [9] which states that adverse phenomena may occur
in cases other than inheritance, referring to the composition anomaly.

In order to investigate this phenomenon, which appears in code
reuse in the context of concurrency, formalization was used in [5]. The
results of formal analysis presented in it have surprised the scientific
community. It can be easily emphasized that the following statements
stand out from a more general content of the research:

• Inheritance anomalies are common to other paradigms, not only
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to object-oriented programming: e.g. agent-oriented program-
ming (based on the Actor model [10]);

• If anomaly is present in the implementation, it does not neces-
sarily cause practical problems;

• Inheritance anomaly problem in one form or another still cannot
be resolved, but rather may be reduced adverse effects induced
by anomalies.

Making the concurrency explicit and isolating it into a concurrent com-
ponent, seems to be reasonable solution [11].

1.3 Concurrency “isolation” techniques

Elimination of adverse consequences (by defining separate and explicit
orthogonal functionalities) can be accomplished in many ways at all
levels of abstraction of software development (Figure 1): mix-in classes
[12] and aspects [3,13,14] can be used in order to compose functionali-
ties at implementation phases; design patterns allow us localization and
integration of orthogonal functionalities in analysis and design stages
[15,16]; and programming frameworks can help us improving compo-
nents reuse [17,18,19].

The technological possibility of locating the synchronization code is
not the solution by itself. It happens because the problem of inheritance
anomalies cannot be fully solved [5]. Moreover in [20] the authors state
that aspectization (localization) of concurrency in some cases may even
be dangerous. Thus we have to diminish bad effects of anomalies with
appropriate methods of concurrency management in the early stages of
software development.

1.4 Concurrency management

Concurrency management has to provide a proactive strategy that will
allow concurrency organization and management throughout the soft-
ware life cycle. A successful strategy will be determined by the follow-
ing characteristics:
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Figure 1. Abstraction levels of software development

• Process development centered: the strategy will require integra-
tion with existing processes and applications;

• Centrally managed: all development activities must comply with
adopted policies;

• Heterogeneous: the strategy must take into account different or-
ganizational forms of concurrency.

One of the early activities of the strategy should include the classifica-
tion of developed systems in accordance of the degree of concurrency.
Some information systems have no concurrency whilst others become
more concurrent, in order to maximize efficiency determined by a num-
ber of factors (e.g. cheap multiprocessor). In this context, there can
be defined a special term: concurrency-intensive architecture. It is
necessary for emphasizing architecture, where concurrency influences
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essentially the architecting. Concurrency-intensive architecture thus
needs a special and distinct architecting approach.

2 Architecting and concurrency

Architecting is a process where the outcome is stakeholder’s satisfaction
towards architectural requirements. In the context of software archi-
tecting, abstraction is one of the main principles. It captures through
encapsulation the essential properties of a system.

There are numerous definitions of architecture. An interesting idea
is mentioned in [21] according to which “a system may be composed of
many levels of abstraction and many phases of operation, each with its
own software architecture”. Anyway the entire concept, according to
some researchers, is ambiguous in relation to information systems re-
search and practice [22]. Even though, most of them define architecture
analogically: as an abstract concept, which provides a certain perspec-
tive on information system [23], it was still necessary to standardize
the architecting process. Finally, IEEE in 2000 [24], and ISO in 2007
[25] have standardized this conception: “the activities of the creation,
analysis and sustainment of architectures of software-intensive systems,
and the recording of such architectures in terms of architectural descrip-
tions”. The main result of this architecting standardization is a clear
and comprehensive documentation of the architecture representations
of information systems in various views.

This approach can be traced from the earliest major research direc-
tions and frameworks for software development. According to [26], ar-
chitecture can be described in five main views: logical, process, physical,
development and scenarios; the last of them is essentially redundant,
but it represents the interaction of the other four (Figure 2).

In the architectural model presented above, planned active pro-
cessing entities, communication structure, integrity, and other archi-
tecturally significant concerns of the control flow management, syn-
chronization and concurrency are described in the process view.

It is important to note that the view, according to definitions from
[24,25,26], is not yet the localization of implemented functionalities;
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Figure 2. The “4+1” View Model of Software Architecture [26]

this is the representation of the entire system from some viewpoint of
interrelated requirements (aspects).

Now the following question arises: is it possible to separate syn-
chronization and concurrency concerns from the functional ones and
localize them in a separate structural unit? The answer is simple:
yes, it is possible and necessary [27,28]; but in order to integrate sepa-
rate functionalities, developer has to either use non-traditional aspect-
oriented programming [29], or create applications with loosely coupled
architecture.

In loosely coupled architectures the separation, localization and
composition of functionalities can be achieved by applying adequate
design patterns [30], asynchronous messaging architectures [31], and/or
event-driven architectures [32].

These days, most information systems are inherently concurrent,
since they handle activities that can happen simultaneously in the
world external to the system’s world [33]. It is likely then, that concur-
rency is considered as a critical property of systems and that it must
be considered in the early development stages – architecting stages.

3 Concurrency-intensive software architecting

According to IBM Rational Unified ProcessTM, architecture is defined
during the inception and elaboration phases [34]. This popular software
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development process is architecture centric. It means that the system’s
architecture is a primary artifact for system’s development [35]. Thus
the importance of an accurate architecting must be sustained by a
distinct process.

In this context The Visual Architecting ProcessTM (VAP) can be
mentioned. It is promoted by Bredemeyer Consulting. According to it,
the architecture specification phase consists of iterative five sub-phases:
Meta-Architecture, Conceptual Architecture, Logical Architecture, Ex-
ecution Architecture and Architecture Guidelines [36]. Concurrency
issues are tightly related with Execution Architecture, where analysis
focuses on Process and Deployment views.

Execution Architecture phase is the forth one. This allows us to
confirm that concurrency, as a critical property of modern systems,
is considered too late. This can be argued by means of structuralism
[37], according to which “a structure may be defined as a network of
relationships between elements or elementary process. . . A structure
thus manifests itself by means of relationships; a system manifests it-
self by means of communications of the relevant elements. A function
within a system may be seen as a communicative relationship.” Thus
communication is necessary to “transport” data; but it is the means
of communication by which control information is being transported
as well. This particular communication form is well known as synchro-
nization, which constraints event ordering and controls processing unit
interference. It is usual then, that the concurrency influences systems
via the communication style, hence concurrency must be an important
factor for structural and functional analysis of architecture.

There are numerous architecting methodologies where concurrency
is one of the key factors. Here it’s case to mention Nick Rozanski and
Eoin Woods’ work [38], where concurrency concerns are described from
the point of view of Concurrency Viewpoint.

A viewpoint is a way of looking at the system, and does not capture
architecting focused on concurrency concerns. In this context a generic
framework is proposed below. It will permit us to analyze concurrency-
intensive architecture from the perspective of evolution (Figure 3).

The architecting process, represented in Figure 3, is a waterfall
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Figure 3. Concurrency-intensive software architecting

process with three phases. Each phase defines an architecture model,
which may also include a number of views, where each view is related
to a particular domain of the phase.

Conceptual architecture defines entities, their relationships and con-
ceptual constraints. The structure view can show configurations in
terms of components, which are units of runtime computation or data-
storage, and connectors, which in their turn are the interaction mech-
anisms between components [39].

In order to facilitate structuring, architectural patterns can be used.
A coherent set of related patterns makes up a pattern language. An
interesting pattern language is presented in [40].

The last three views have been inspired by a survey of concurrency
issues presented in [6]. The survey is organized of taxonomy of the
features of concurrent object-oriented languages. In spite of the gen-
eralization of the described models, they allow us to use them in our
architecting process as views.

Animation view shows the relationship between objects and active
entities (process/thread/task). The treatment of threads and objects as
independent or dependent concepts, defines two alternatives of activity
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organization: unrelated and related models (Figure 4).

Figure 4. Unrelated (a) and related (b) models of Animation view

The interaction view depicts interactions between objects initiated
by the client’s invocation, which may be either synchronous or asyn-
chronous. Semantics of returns is defined in this view as well.

Concepts, related to Synchronization view, specify concurrent in-
vocation management. It is important to mention that Conceptual
architecture phase defines rules to synchronize, select and accept op-
erations, and these rules define control constraints used at the next
Logical architecture phase.

Logical architecture conforms to the principles and rules of the con-
ceptual architecture. This phase involves a variety of structures, which
have the nature of mathematical formalisms. Logical architecture thus
is represented by a generalized formal structure that determines logic
of specification, which helps describing and reasoning about behavior
of concurrent architecture.

Numerous formal models have been studied over the past 20-25
years. Formal semantics, provided by these models, can be classified
by partitioning criteria of the following dichotomies [41,42]:

• Intensional and Extensional semantics,

• Interleaving and True concurrency semantics,

100



Architecting software concurrency

• Branching time and Linear time semantics.

Specifying systems as “machines”, determined by states (and possible
state changes), obtains intensional models. Extensional (also known
as behavior) models focus on occurrence patterns of actions over time.
Concurrency is an implicit property in “true concurrency” models. Yet
interleaving models reduce it to nondeterministic interleaving represen-
tations. Last dichotomy splits models into nondeterministic branching
models and linear time setting models. In the former case, models
describe concurrency in terms of the sets of their possible (partial)
executions.

Formal relationships between models have been analyzed by many
researchers. Here should be mentioned the work [43], where translation
between models have been studied in terms of category theory. Eight
models, more precisely model classes, have been obtained by varying,
in all possible ways, the aforementioned criteria (Figure 5).

Figure 5. Concurrency models

Positioning of models from Figure 5 in a three-dimensional space
relative to dichotomies is represented in Figure 6.
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Figure 6. Semantic models for concurrency specification

Executable architecture is a result “product” of the last architect-
ing phase. In the first instance, this term expresses the description of
the system’s architecture in a formal notation, the semantic of which
is being determined by the logic architecture phase. In the second in-
stance, after using automatic or semi-automatic generation tools, this
term may signify a partial implementation of the system – a proto-
type, which must validate all architecturally significant requirements.
A closely related term is the term of evolutionary prototype, which is
not a work product, but it is stable enough to be considered as a first
approximation of a system. According to the article [44], “producing
an evolutionary prototype means that you design, implement, and test
a skeleton structure, or architecture, of the system. . .”

4 Conclusion

Systems become more concurrent and a new term is needed to define
an architecture influenced essentially by concurrency. In this work a
new term concurrency-intensive architecture is proposed. Also it is be-
ing shown that concurrency, as a key factor, can determine a generic
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architecting framework by providing an architectural prototype. It per-
fectly fits in the modern architecture-centric development methodolo-
gies, such as Rational Unified Process. However concurrency generates
difficulties. Still the right methods and tools can decrease the archi-
tecting effort. Mature theories and models of concurrency exist; thus
the key target of researches is: developing of methods and tools of spec-
ification and verification. So an immediate and important objective is
to develop and integrate a graphical language of concurrency specifica-
tion in one of the popular development environments. Language must
expressively specify concurrency, thus must use denotational semantic.
Such specification language based on events will be presented in the
future article. Also, in this article it will be shown how models are
verified with operational semantic of CSP# language.
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Preface

Between September 13 and 14, 2011 at the Institute of Mathematics
and Computer Science (IMCS) of Academy of Sciences of Moldova
(ASM) the first edition of the International Workshop on Intelligent
Information Systems (IIS-2011) took place. It was organized by the
IMCS of the ASM with support of the Supreme Council for Science and
Technological Development (Republic of Moldova), National Authority
for Scientific Research (Romania) and Union of Scientific and Technical
Societies of Moldova (Republic of Moldova).

A special session of the workshop was dedicated to celebrating the
70th anniversary of Corresponding member Constantin Gaindric.

Objective of the workshop was meeting of experts in the field and
people taking their first steps in research, to make a review of current
trends and applications related to the main directions of development of
intelligent systems: knowledge processing, natural language processing,
decision making, formal models of computation, etc.

Figure 1. Plenary session

Experience exchange took place, new ideas were promoted and var-
ious forms of collaboration were established.

c©2011 by S.Cojocaru, I.Ţiţchiev
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The following scientists attended plenary session of the workshop
and made communications which have aroused interest and provoked
interesting debates: Academician Florin Gheorghe Filip (Romanian
Academy) with ,,Designing and Building Modern Information Systems;
A Series of Decisions to be Made”; Professor Antoni Wiliński (Faculty
of Computer Science and Information Technology, West Pomeranian
University of Technology of Szczecin, Poland) with ,,Prediction Models
of Financial Markets Based on Multiregression Algorithms”; Professor
Dan Cristea (University “A.I.Cuza”, Iasi, Romania) with ,,Romanian
Linguistic Resourses On Very Large Scale”; Corresponding member
Horia-Nicolai Teodorescu (Romanian Academy) with ,,Modelling Be-
havior in Social Networks under Disagreement, in Various Logistics”.
Also, the value of communication made by Professor Gennaro J. Maf-
fia (Department of Chemical Engineering, Manhattan College, USA)
”Analysis and Modeling of Vapor Distillation Using ASPEN, HYSYS
Recompressive”, was not diminished by thousands of miles away, where
he had been, as it was successfully done online.

The workshop offered researchers the opportunity to meet with col-
leagues to share and discuss news and trends of intelligent systems
development, with special emphasis on their applicability.

In the framework of the workshop 6 scientific sessions worked: Infor-
mation systems and technologies, Theory of computing, Image process-
ing, Image processing in medicine, Language technologies, Students’
session. There were published and presented as reports 48 papers of
authors from Republic of Moldova, Romania, Ukraine, Russia, Poland,
Finland and the USA. More than 98 scientists attended the workshop.

A special session for young researchers was organized. Current and
future problems of information society development were discussed, as
well as applying new information technologies, natural language pro-
cessing, decision support systems and medical diagnostic systems.

The participants appreciated the high level of organization of the
event and specially mentioned that presented scientific results are valu-
able, particularly those of young researchers, expressing hope that this
forum will have continuity, becoming a traditional meeting.

This volume of Computer Science Journal of Moldova contains the
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Figure 2. Invited speakers: H.-N. Teodorescu, A. Wiliński, F.G. Filip,
D. Cristea
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Figure 3. Session for young researchers

peer-reviewed articles that were presented at International Workshop
on Intelligent Information Systems – 2011, published in Proceedings
IIS-2011 and selected and revised for publication in this edition of
CSJM.
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