
Computer Science Journal of Moldova, vol.18, no.3(54), 2010

Performance evaluation of clustering techniques

for image segmentation
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Abstract

In this paper, we tackle the performance evaluation of two
clustering algorithms: EFC and AIC-based. Both algorithms
face the cluster validation problem, in which they need to es-
timate the number of components. While EFC algorithm is a
direct method, the AIC-based is a verificative one. For a fair
quantitative evaluation, comparisons are conducted on numeri-
cal data and image histograms data are used. We also propose
to use artificial data satisfying the overlapping rate between ad-
jacent components. The artificial data is modeled as a mixture
of univariate normal densities as they are able to approximate a
wide class of continuous densities.

Keywords: Performance evaluation, probability density
function, clustering algorithm, unsupervised learning, univariate
normal mixtures, gray-level histogram.

1 Introduction

Cluster analysis appeared ever since the works in [1, 2]. It began to
attract a great deal of attention with the publication of Sokal and
Sneath’s revolutionary book on numerical taxonomy [3] and the de-
velopment of high speed computers. More than a hundred different
schemes of cluster analysis have been proposed [4-9] which makes it
difficult for users to choose the right clustering algorithm for their
application. Some authors have partially addressed this problem by
evaluating and comparing several clustering techniques [5, 9-13].
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For numerical comparison, the common model used to generate
test data is the mixture model. Several schemes for generating artifi-
cial mixtures of test data have been proposed [9, 14-16]. The task of
cluster analysis is cast as the classification of a mixture of populations
into its components provided that the number of populations and their
parameters are unknown. The contribution of mixture models is not
limited to test data generation. They are now used in the design of
clustering algorithms. This is due to the ability of mixture models,
and particularly mixture of normal densities, to approximate a wide
class of continuous probability densities. Parameters estimation in a
mixture model is accomplished using the Expectation Maximization
algorithm (EM) [17], which maximizes the likelihood function of the
observed data.

Mixture models face the difficult problem of determining the num-
ber of components in the mixture. This is known as the cluster verifi-
cation [18]. Because the mixture components are not always well sepa-
rated, the determination of their number is a difficult task. There are
two categories of clustering algorithms: direct and verificative methods.
Direct methods are those which exploit geometric properties or other
ad hoc principles such as inflexion points in histograms [20, 21]; see also
[12, 22] for other methods. Their performances depend on the applica-
tion. Recently, another direct method has been proposed: elimination
of false clusters (EFC) [23]. Methods which take explicitly account
of the nature of the observed data, perform very well, compared to
verificative methods. They are generally simple and fast. Verificative
methods on the other hand do not depend on the application. They
are general algorithms such as Akaike’s information criterion (AIC)
[25, 31], the partition coefficient (PC) [26], the ICOMP [27], the mini-
mum description length (MDL) [28] and the minimum message length
(MML) [29]. Many applications, such as image segmentation and image
retrieval [30], require collecting information about the overall distribu-
tion of the pixels in the image. The common approach is to consider the
histogram as a mixture of univariate normal densities and to estimate
the parameters of each component of the mixture. Cluster validation
techniques must be used to estimate the number of components in the
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mixture.
In this paper, we propose to benchmark EFC and AIC-based algo-

rithms. The goal of this comparison is twofold: the evaluation of the
performances of EFC against AIC-based algorithm on the same bench-
marking data since a fair a comparison has never been done before;
and the development of a new method for generating test data from
a mixture of normal densities. The artificial data shows the property
of components separation as they are generated according to compo-
nents overlapping rate. The overlapping rate allows the control of the
degree of overlap between two adjacent components. This results in
mixtures with components sufficiently separated so that the clustering
algorithm has a chance to distinguish between sub-populations. The
paper is organized as follows: standard clustering algorithms and mix-
ture models are reviewed in Section 2. Section 3 deals with comparison
purposes and experimental results. Finally, the discussion is presented
in Section 4.

2 Unsupervised learning and
standard mixtures

Consider that the data can be represented by N random vectors de-
noted by X = x1, x2, · · · , xN , and assume that it arises from a mixture
of M normal densities. The distribution of the data can be approached
by a PDF which takes the following form, for any x ∈ X:

p(x,Γ) =
M∑

j=1

κjfj(x, Θj) (1)

where fj(.) is the jth normal distribution with parameter Θj = (µj , σj)
representing respectively the mean and the standard deviation of the
jth component; κj are the mixing parameters, with the restrictions that
κj > 0 for j = 1, · · · ,M and

∑M
j=1 κj = 1, and Γj = (Θj , κj) totally

describe p(x,Γ). In the following, we use Γ(x,Γj) to describe the jth

component of the mixture. Note that µj and σj are scalar since we are
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dealing with one-dimensional distributions. Such a representation of
X is called a mixture representation [20].

Mixture models have shown better data classification capacities
than many conventional neural network models such as layered net-
works trained with the Back-Propagation algorithm. They have been
used as basic configurations for radial functions in Radial Basis Net-
works (RBF) [32]. Various procedures have been developed for deter-
mining the parameters of a mixture of normal densities, often based on
the maximum likelihood technique, leading to the EM algorithm [17]
and stochastic sequential estimation [33]. The technique used to maxi-
mize the likelihood function relies on the choice of Γ most likely to give
rise to the observed data. For analytical convenience, it is equivalent
to minimize the log-likelihood function, which, for the given X yields:

E = − log{L(X, Γ)} = −
{

N∑

n=1

log(p(xn, Γ))

}
(2)

= −
N∑

n=1

log





M∑

j=1

κjfj(x,Θj)





Here, the log-likelihood function is considered as an error, and
its minimization with respect to Γ leads to an estimate, denoted by
Γ̂ = (Θ̂, κ̂). A review of the maximum-likelihood technique in the con-
text of mixture models is given in [34]. However, due to the structural
complexity of mixture models, most of the maximum likelihood pro-
cedures are numerical and iterative, resulting in only locally optimal
estimates. The accuracy of the final estimate Γ̂ depends heavily on
the initial value of Γ. This is essentially the reason why clustering
algorithms are usually used to produce initial estimates of Γ.

2.1 Cluster analysis and initial estimation of Γ

Clustering algorithms basically perform an unsupervised learning that
groups the input data into different categories, from which the initial
values of means and widths can be calculated. A common algorithm
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widely used in the literature to initialize Γ is the k-means algorithm [35,
36], an effective and popular algorithm developed within the pattern
recognition community. Improved schemes for the k-means algorithm
using fuzzy concepts (fuzzy c-means) are available in the literature [37].
However, clustering algorithms do not provide an estimation of M , the
number of clusters in the data set, but reorganize data into M clus-
ters, with M given by the user. Thus, a key problem, known as cluster
validation [18] concerns estimation of M . Most of the previously pro-
posed solutions to the cluster validation problem can be classified into
two broad categories [12, 19, 38]: direct approaches and verificative
methods. Regarding direct approaches, different methods have been
proposed in the literature. However, each method is generally appli-
cable only to a specific type of application data. In our study, we are
interested in estimating the number of components in gray-level image
histograms. Thus, we developed a direct algorithm, denoted by EFC
(Elimination of False Clusters), to solve the cluster validation problem
[23, 24]. In the next section, we review the basic principle of the EFC.

2.1.1 EFC algorithm

A gray-level image histogram can be represented by a function, h(x),
x ∈ GlN , of the gray-level frequencies of the image, where GlN =
{0, 1, · · · , N − 1} corresponds to the set of gray levels of the image.
When a given image contains objects/regions having quite different
gray-level values, different modes appear in the histogram of the im-
age. This type of histogram is called multi-modal. However, when
objects/regions in the image have close gray-level averages, they may
overlap to give a single mode. Our hypothesis is that each mode corre-
sponds to a normal distribution. This is acceptable in a large number
of practical applications [39]. The EFC algorithm has been developed
especially to estimate the number of modes of such histograms. Figure
1 shows a block diagram of the model, which consists of two major
steps.
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In the first step, initial estimation of the mixture parameters is done
using the k-means algorithm. In order to approximate each mode by
at least one Gaussian, the k-means algorithm is applied with a num-
ber of clusters K greater than M , the number of modes in the image
histogram. The next step mainly concerns the EFC procedure for sup-
pressing false clusters that may result from the k-means algorithm. Ba-
sically, it takes advantage of the Gaussian PDF. Before proceeding with
the elimination, a smoothing operation is performed on the histogram
using a PNN (Probabilistic Neural Network or, equivalently, Parzen
Window) [40]. While this operation is not essential in all cases, it
greatly increases the robustness of our model to noise (especially when
applied to radar images). Finding the optimal smoothing parameter
for the PNN is another interesting problem that we have studied [41].

To choose the best number of clusters to use in the k-means algo-
rithm, we have experimentally studied the accuracy of cluster centers,
denoted by yj , j = 1, · · · ,K estimated by the k-means algorithm, as
the function of K, the number of initial clusters. The experiment in-
volves computing the average distance between any true center and
the closest center estimated over a set of artificial histograms. In other
words, we wanted to get a statistical assessment of the quality of the k-
means algorithm in terms of the (average) precision with which the true
centers of histogram are estimated. For this purpose, an error function
was proposed to measure the quality of the set of clusters computed
by the k-means algorithm. The experiment yielded a very interesting
relationship between the number of initial clusters K, the true number
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of modes M , and the precision of the approximation. From the statis-
tical point of view, the k-means algorithm accurately finds all the true
centers if K is chosen as at least M + 4. This in itself is an important
discovery concerning the k-means algorithm. We further note that the
choices M +2 and M +3 are also good candidates for M . Consequently,
for real images it is not necessary to impose a very strict condition on
the accuracy with which M is estimated.

Since the k-means algorithm is applied with an initial number of
clusters greater than the number of modes, there are false clusters
that must be eliminated. The EFC is used to eliminate them. The
proposed EFC procedure depends on two parameters, β and γ. β is
related to the relative level of the histogram at which the symmetry
is measured, because it specifies the percentage of histogram height
h(yj) for any cluster center yj . In practice, β can be as large as 0.975
and as small as 0.5. The parameter γ is used as a threshold for the
acceptable deviation between the true center and the closest center
for the clusters computed by the k-means algorithm. If the deviation,
written as ||µj − yj ||, is greater than γ, then yj is rejected, where µj ,
j = 1, · · · ,M , are the real centers of modes. In real applications, µj are
unknown. Thanks to the fact that a true center divides a mode into two
symmetric parts, an equivalent test can be performed without knowing
the position of the true center. Reasonable values for γ have been
computed experimentally. We have measured the deviation between
the true center and the closest center found by the k-means algorithm,
for each combination of M and K.

Some performances of the EFC procedure are listed in [23]. The
results are encouraging; nevertheless, they should be compared with
those of other cluster validation methods. For this purpose, in the
next section, we will present the general structure of the second broad
category of algorithms, known as verificative methods.

2.2 Verificative Methods

While some practical problems can be solved by using direct ap-
proaches, they do not provide a general solution. To find generally
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applicable solutions to cluster validation, many researchers have tried
to formulate the problem as a multiple-decision problem [25, 26, 27, 28,
29]. The philosophy of these techniques is quite simple. Instead of ask-
ing which hypothesis is acting (how many classes are really there), we
ask which model, parameterized by K, the number of clusters, best fits
the data. However, as the number of clusters increases, the estimated
PDF fits the empirical density increasingly tightly, at the expense of
its generalization capacity. This problem can be recognized as the bias
and variance trade-off in curve-fitting problems [42]. Thus, one should
always try to find the minimum number of components describing a
PDF, without overfitting the empirical data. In the case of mixture
models, we can generate Kmax models, where Kmax is given by the
user. The choice of the best model thus becomes a model selection
problem, since we find ourselves faced with competing Kmax models.
To choose among them, researchers have developed selection criteria.
The criteria are composed of two parts. The first part concerns the ad-
equacy, usually evaluated using the maximum likelihood. The second
part deals with penalization, which employs an expression that essen-
tially depends on the number of components, K. A general expression
for a criterion C(K), where K = 1, · · · ,Kmax is given by:

C(K) = −aLK + g(K) (3)

where a is a scalar, LK is the logarithm of the likelihood of the model
of order K, and g(.) is an increasing function depending on K. The
best model is the one which minimizes C(K), namely:

K̂ = argminK
C(K) (4)

2.2.1 Implementation

The principle is that for each value of K, K = 1, · · · ,Kmax, Γ is
initialized using the k-means algorithm with K initial clusters. Then,
a maximum-likelihood solution is obtained using the estimated Γ and
the value of K. There are no formal rules for choosing the value of
Kmax. However, several heuristics have been proposed:
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• The number of observations N must be greater than the total
number of parameters [43].

• Suggested choices for Kmax include Kmax =
√

N
2 and Kmax =

(
N

log N

) 1
3 [27].

The general algorithm can be given as follows:

Algorithm 1.
Input: Kmax

Output: K̂
For K = 1, · · · ,Kmax:

Estimate Γ using k-means with K initial clusters.
Compute the maximum likelihood for the estimated Γ.
Compute C(K).
Choose K̂, such that K̂ = argminK

C(K).

2.2.2 Akaike’s information criterion (AIC)

In this paper, we are interested in the AIC. This technique was orig-
inally proposed by Akaike [31]. However, different schemes based on
the AIC have been developed and used in different applications [19,
44,45,46]. In our work, we use the classical AIC proposed by Akaike
and given by:

AIC(K) = −2LK + 2Np (5)

where K is the number of components considered, LK is the logarithm
of the likelihood at the maximum likelihood solution Γ̂, and Np is
the number of parameters estimated. We select K which leads to the
minimum value of AIC(K).

A brief comparison of some criteria for comparing models is pre-
sented in [38]. The AIC figures among these algorithms. The AIC per-
formed better than both the ICOMP and the PC, and quite similarly
to the MDL, but relatively poorly compared to the MML. Neverthe-
less, the AIC is the most popular criterion used in the literature. We
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have chosen the classical AIC method since it does not depend on the
size of the data. This is suitable for image histograms since a normal-
ized histogram represents only the distribution of data, without any
information of its size.

3 Comparison between the EFC
and the AIC

It is unfortunately not possible to use results obtained respectively
from [23] (EFC evaluation) and [38] (AIC evaluation) to compare the
EFC and the AIC, for the simple reason that the test data used in the
two experiments are different. Furthermore, neither method has been
evaluated on an adequately verified data set. In order to perform a
fair comparison, we must apply both algorithms to the same test data,
which we will describe in the present section.

3.1 Comparison based on one vector

We used an artificial histogram composed of 3 modes as illustrated in
Fig.2. To the smoothed histogram we added a Gaussian white noise of
width σn = 3. Both algorithms were applied with Kmax = 7. Figure
3 shows the resulting AIC plotted against the number of clusters K =
1, · · · ,Kmax, computed from (3). The maximum likelihood technique
has been used to estimate Γ̂j , j = 1, · · · ,K. We can see clearly from
Fig. 3 that the minimum AIC is for K = 3, the exact number of
components in the mixture.
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Figure 4 shows the plot of both the original histogram and the
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resulting histogram at the Γ̂3 solution, given by

Γ̂3 = ((36.00, 21.63, 0.26)(141.39, 21.24, 0.25)(168.53, 8.12, 0.49))

The estimation using the AIC is good: although there is a rela-
tive shift in the means for the first two components of the estimated
histogram, the result is still acceptable. For the case of the EFC,
Table 1 summarizes the parameters estimated using the k-means al-
gorithm with Kmax = 7. Table 1 is divided into two parts. The first
multi-column, denoted by “Before EFC” presents the parameters of
each component resulting from applying the k-means algorithm with
Kmax = 7. The second part of Table 1, the multi-column “after EFC
ML”, presents the resulting estimated parameters of each component
after applying the EFC procedure and the maximum-likelihood algo-
rithm respectively. In this part, dashes represent components elimi-
nated by the EFC procedure. The values of both β and γ were set as
in the experiments performed in [23], namely β = 0.97 and γ chosen
from the γ table.
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Table 1. Results for the EFC for the artificial histogram, Kmax = 7
and β = 0.97.

Before EFC After EFC & ML
cluster means width MP means width MP

1 15.33 9.26 0.11 29.5 51.24 0.43
2 44.77 10.08 0.11 – – –
3 76.86 11.16 0.09 – – –
4 112.32 9.51 0.10 – – –
5 136.85 8.72 0.11 131.56 15.84 0.18
6 169.69 6.38 0.45 169.32 6.09 0.39
7 208.14 26.65 0.03 – – –

From Table 1, we can see that the EFC procedure has eliminated
four spurious clusters. Only clusters corresponding to the true com-
ponents of the mixture have been kept. Thus, the EFC also finds the
exact number of components. Classification using the k-means algo-
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rithm, initialized using the values of the remaining cluster means (see
Table 1), permits the redistribution of points belonging to eliminated
clusters. Finally, we apply the maximum-likelihood technique. Figure
5 shows the plot of both the original and the resulting EFC mixtures
for the parameters given in Table 1.

From Figs. 4 and 5, we can see that while both algorithms estimate
the exact number of components, the EFC procedure is more accurate
than the AIC (see MSE in Figs. 4 and 5). This result is in perfect
agreement with the k-means experiment performed in [23]. Indeed, for
the case of the AIC, the parameters used to initialize the likelihood
were obtained using the k-means algorithm. For the AIC [3], the k-
means algorithm was performed with K = 3 initial clusters. This is
the exact number of components of the test histogram. In this case,
the estimated centers of the components are less accurate than those
obtained with a large value of K. This does not help the maximum like-
lihood to result in accurate final estimates. In contrast, for the case of
the EFC, the initialization of each component’s mean is obtained using
the k-means algorithm with K = Kmax = 7 clusters. Therefore, the
centers of the real components are very well estimated. This helps the
maximum-likelihood procedure to converge, which explains why the
parameters estimated using the EFC were clearly more accurate than
those estimated by the AIC. We can also evaluate the two algorithms
in terms of complexity. For example, we need to perform the k-means
algorithm Kmax times, followed by the maximum likelihood to compute
AIC(K), K = 1, · · · ,Kmax. In contrast, the EFC algorithm requires
one k-means run, followed by the maximum likelihood. Thus, the EFC
technique is roughly Kmax times faster than the AIC. Although the
EFC compares favorably to the AIC in the example described above, it
is necessary to examine the effectiveness of the EFC in more general sit-
uations. For this purpose, we need to apply both algorithms to a large
set of test data. In this way, we can obtain a statistical assessment of
the general performance trend. Statistical comparison between algo-
rithms is possible, since mixture models have been used as general test
data for clustering algorithms. Indeed, a number of different schemes
for generating artificial mixtures have been proposed. Blashfield [9]
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and Edelbrock [14] used unconstrained multivariate normal mixtures
with fairly complex covariance structures. Milligan and Issac proved in
[8] that the generation processes used in [9] and [14] lead to data with
overlapping clusters. Other researchers such as Kuiper and Fisher [15],
and Bayne et al. [11] have used multivariate normal clusters with sim-
ple covariance structure and have directly manipulated variables such
as the separation between clusters. In 1985, Milligan and Cooper [12]
examined the ability of about 30 different clustering algorithms to de-
termine the number of clusters in a data set. For this purpose, Milligan
has developed an algorithm for generating test data [16]. The algorithm
is described in nine steps. The main assumption, however, is that the
generated data do not overlap in the first dimensional space. The
verification of this assumption was mainly done using non-automatic
techniques such as visual inspection. All of these generation methods
try to define ad hoc criteria in order to handle overlapping components.
However, there is no formal definition of the concept of overlap. This
raises questions concerning the effectiveness of the generation schemes.
In this paper, we introduce a new algorithm for generating mixtures of
univariate normal densities. First, we give an analytic definition of the
concept of overlap. We have chosen relative component overlap instead
of total component overlap in order to preserve the appearance of each
component in the mixture. This definition allows us to control the
overlapping process, thus offering the possibility of generating a large
number of such mixtures with known degrees of overlap. The genera-
tion of such examples, denoted by non-overlapped vectors, is described
in the next section.

3.2 Generation of non-overlapped vectors

When we want to generate a large set of mixture data, the problem is
how to ensure that modes are not totally overlapped. As an example
of what we mean by overlapped, we generate a three-component mix-
ture, but due to component overlap, the mixture results in only two
components. The example in Fig. 6 illustrates this phenomenon. The
mixture in Fig. 6a is actually composed of three components, despite
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the fact that only two components are visible. The vector in Fig. 6a
is called an overlapped vector; the vector in Fig. 6b on the other hand
is not. Note that the difference between the parameters of Fig. 6.a, b
is the value of the second width σ2. We can perform algorithm com-
parison using overlapped vectors, as in the example of Fig. 6a. Each
algorithm will most likely estimate the same number of components.
The process is indeed still fair. However, such vectors are not valid
for use in evaluating algorithms, due to the degree of component over-
lap. To avoid such situations, it is necessary to control the overlapping
process.

Definition 1. We define the overlapping rate, denoted by OLR, as,

OLR =
min(p(x))(µi ≤ x ≤ µi+1)

min(p(µi), p(µi+1))
. (6)

In the above formulae, p(x) is the mixture function and µi < µi + 1.
Figure 7 illustrates two different overlappings for a mixture of two
Gaussians. OLR → 0 when the Gaussians are almost totally sepa-
rated, since min(p(x)) → 0, (µi ≤ x ≤ µi+1) as in Fig. 7a. OLR → 1
when min(p(x)) → min(p(µi)) as in Fig. 7b. Thus, OLR specifies
the degree of overlap between two adjacent components of a mixture.
Our goal here is to develop an automatic algorithm for generating mix-
ture components that are not completely overlapped; in other words
OLR < 1 should be true for all pairs of adjacent components. Such an
algorithm allows us to generate a large set of non-overlapped vectors.
Furthermore, we could also control the overlapping rate if we want to
perform a refined evaluation of algorithms.
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From (6), a general condition for OLR < 1 can be obtained using
the derivatives of p(x). This idea has been applied to the solution of the
edge-detection problem using the Laplacian of Gaussian edge detector
[47]. Interestingly, there is an astonishing similarity between the case
of overlapping components and the case of a double-step edge. The
edge-detection problem involves the appearance of a false edge located
between the two true edges when they are smoothed with a Gaussian.
In [47], the problem is treated as a mixture of two Gaussians with equal
width σ. It is proven that a false edge appears if and only if 2σ < µd,
where µd is the distance between the means of the two Gaussians.
Viewed from the perspective of our case, the false edge corresponds to
min(p(x)) defined in (6). Thus, we have:
Corollary 1 - If we have a mixture of two Gaussians with the same
width σ, OLR < 1 iff 2σ < µd.

Corollary 1 is a direct consequence of results obtained in [47]. Un-
fortunately, it is not valid for the case where σ1 6= σ2, and the mathe-
matical approach used in [47] cannot be extended to this general case.
As it can be seen in what follows, developing a general condition for
OLR < 1 is much more difficult. The algorithm will be iterative, deal-
ing with two adjacent components at each iteration. When the width
of the first component is fixed, the condition OLR < 1 will depend on
the width of the next component. Here is a sketch of the algorithm:

3.2.1 Algorithm for generating
non-overlapped vectors

Algorithm 2.
Generate M , the number of components in the mixture.
For i = 1, · · · ,M :

Randomly generate µi and κi such that µi < µi+1,
κi > 0, and

∑M
i=1 κi = 1.

Randomly generate σ1 such that σ1 < µ1 − µ2.
For i = 2, · · · ,M :

Compute σi such that OLR < 1.

The number of components M can be set by the user. It is also
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convenient, without loss of generality, to generate M means µi and
sort them so that µi < µi+1. This will facilitate the execution of
the algorithm. However, σ1 should be smaller than µ2−µ1; otherwise,
there will be no solution for σ2 to satisfy the non-overlapping condition.
Thus, the problem is to find an upper bound for σi+1 given σi, in order
to ensure that OLR < 1.

In order to develop a general algorithm, let us consider the overlap
of two adjacent components Γ1(x) and Γ2(x) with Γ1 6= Γ2. Let us
denote by Sσ = κΓ(µ−σ) the height at which the width σ is located for
a given component Γ(x). For the general case of the overlapping process
for two adjacent components Γ1(x) and Γ2(x), we have Sσ1 6= Sσ2 since
the two components do not necessarily have the same height.

Definition 2. We define a notion of apparent width, denoted by σ̂, as
the deviation of the higher component from its center at height Sσl

, for
a pair of adjacent components. Here, Sσl

is the height at which the
width of the lower component is located.

We distinguish two cases: Γ1(µ1) > Γ2(µ2), denoted by case 1, and
Γ1(µ1) < Γ2(µ2), denoted by case 2. Figure 8 illustrates the principle of
apparent width for the two cases. Using Definition 2, a generalization
of Corollary 1 can be stated as a hypothesis:
Hypothesis 1 - If we have a mixture of two Gaussians with different
heights, OLR < 1 iff σ̂h + σl < µd.

σ̂h is the apparent width of the higher component, σl is the width
of the lower component, and µd is the distance between the two means.
It is self-evident that if the components have the same widths and the
same heights, Hypothesis 1 collapses into Corollary 1, since σ̂h = σl =
σ. However, it is very difficult to prove Hypothesis 1. For each of the
above cases, we can compute σ̂h as a function of Γ1 and Γ2. Then,
by introducing the expression of σ̂h in Hypothesis 1, we can solve the
resulting relation in order to obtain the bound on σ2. For the two cases
we have:

{
A

√
ln(Bσ2) + σ2 < µd case 1

Cσ2

√
ln D

σ2
+ σ1 < µd case 2

(7)
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where A, B, C and D are known values. For deduction details, see [48].
By solving (7), we can obtain a condition on the upper bound of σ2 as
a function of the remaining known parameters. However, (7) is non-
linear, which will introduce difficulties for obtaining general solutions.
The non-linearity of (7) arises from the non-linearity of the Gaussian
expression. Thus, it is necessary to simplify (7) by approximating the
Gaussian expression.

3.2.2 Approximation of the Gaussian

Consider a family of lines ∆l = ∆1, ∆2,∆3, · · · , ∆p, where ∆i, i =
1, · · · , p, is a tangent line to the point (xiσ = µ − iσ, p(xiσ)). If we
approximate a Gaussian by the series of lines ∆i, we obtain a piece-
wise linear approximation, denoted by ĝl(x) and given by

{
ĝl(x) = iS

σ e−
1
2
i2

(
x− µ + i2+1

i σ
)

x ∈ [µ− f(i− 1)σ, µ− f(i)σ]
(8)

where

f(i) =
(i2 + 1)e−

i2

2 − ((i + 1)2 + 1)e−
(i+1)2

2

ie−
i2

2 − (i + 1)e−
(i+1)2

2
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Due to the symmetry of the Gaussian, we have developed only
the approximation of the left part. Figure 9 shows the result of this
approximation for p = 3. The approximation error, denoted by Eapp,
is given by:

Eapp(p) =
1√
2π

p∑

i=1

e−
i2

2 × [f(i− 1)− f(i)]
[
f(i)− f(i− 1)

2
− i2 + 1

i

]

(9)
It is proven in [48] that Eapp(p) does not depend on the width σ.

However, Eapp(p) decreases as p increases and is almost constant when
p ≥ 3. Note that this approximation has been developed especially for
this work. With this new approximation of the Gaussian, the compu-
tation of the apparent width σ̂ can be done on the tangent lines ∆i

, i = 1, · · · , p, and we will have (10) as solutions to the condition of
Hypothesis 1:

0 < σ2 ≤ −(2σ1 − µd) +
√

δ

2
(case 1) (10)

where δ is the discriminant of the quadratic form given by

T1(σ2) = σ2
2 + (2σ1 − µd)σ2 − κ2

κ1
σ2

1 and

0 < σ2 ≤
κ2
κ1

2σ1−
√

δ

2 case 2
(11)
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where δ is the discriminant of the quadratic form given by

T2(σ2) = σ2
2 −

κ2

κ1
2σ1σ2 +

κ2

κ1
µdσ1 − κ2σ

2
1.

All deduction details are available in [48]. The conditions in (10)
and (11) express the bound within which σ2 should be picked in order
that the overlap of the two adjacent components satisfies OLR < 1.
In each step i of the algorithm i = 1, · · · ,M − 1, (10) and (11) are
used to generate σi+1. By choosing σi+1 as suggested in (10) and
(11), we ensure control of all the parameters of the vector. For imple-
mentation purposes, especially when we want to generate a large set
of non-overlapped vectors, we define other parameter measures that
are grouped in a characteristic vector, denoted by CVS (Characteristic
Vector of the Set). These measures are:

(a) the number of vectors forming the set;

(b) the maximum number of components in the set;

(c) the minimum number of components in the set;

(d) the minimum distance between the means of components;

(e) the minimum width of Gaussian white noise added to vectors of
the set; and finally,

(f) the maximum width of Gaussian white noise added to vectors of
the set.

The example used here to compare the EFC with the AIC has a
CVS = (1, 3, 3, 12, 3, 3).

3.3 Comparison based on a set of vectors

In this section, we intend to compute a kind of average comparison
between the EFC and the AIC. For this purpose, we will use a set
of non-overlapped vectors. The evaluation proposed here is divided
in two parts. First, we will compute the ability of each algorithm to
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estimate the exact number of components. This type of evaluation is
used in [12, 23, 38]. The results will be presented in tables showing all
statistics. Secondly, we will use the parameters of each component and
reconstruct the PDF in order to compute the measure of adequacy of
the estimated vectors.

Both experiments use three different sets of 1000 vectors each, gen-
erated by the algorithm described in the previous section. The CVSs
of the three sets are given respectively by: (1) CV S1 = (1000, 1, 1,
12, 0, 0), a set containing only vectors of one component, (2) CV S2

=(1000, 2, 2, 12, 0, 0), a set containing only vectors of two components
and (3) CV S3 = (1000, 3, 3, 12, 0, 0), a set containing only vectors
of three components. Moreover, in order to evaluate the robustness of
both algorithms against noise, we have used the same generated sets
and added a Gaussian white noise of width σn = 2 to form new noisy
sets. Both algorithms were applied with Kmax = 7.

The results of the first experiment are presented in Tables 2 and 3
(non-noisy and noisy sets, respectively). Each of these tables is divided
into three parts. Each part, identified by its CVS (row 2), presents the
application of both algorithms to a given set. The first column gives
the different possibilities for the number of components each algorithm
can estimate. The cells of the table report the percentage of cases in
which the two algorithms estimate the number of components given in
column 1. As an example, when the AIC is applied to the non-noisy
set with CV S1, it estimates two components in 42% of cases.

From the results reported in Table 2 (non-noisy sets), the AIC and
EFC performances are quite similar. Nevertheless, as the number of
components of the set increases, the EFC performs relatively better
than the AIC (15% better for the set with CV S3). For the noisy sets
reported in Table 3, we see that the AIC is more robust than the EFC.
Indeed, there are no great differences between the AIC results shown
in Tables 2 and 3. The EFC is less robust since its performances were
degraded by about 12% for all three sets. Note that the smoothing
operation using the PNN was not performed in these experiments, in
order to evaluate the robustness of the EFC against noise.

The second experiment computes the adequacy degree to which the
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Table 2. Comparison between EFC and AIC applied to the noiseless
sets. NCE is the estimated number of clusters.

Noise standard deviation σn = 0
CV S1 CV S2 CV S3

NCE AIC EFC AIC EFC AIC EFC
1 54 56 15 8 0 0
2 42 23 47 52 13 6
3 2 12 21 16 51 66
4 2 5 10 10 28 15
5 0 3 6 12 6 10
6 0 0 1 2 2 2
7 0 0 0 0 0 0

Table 3. Comparison between EFC and AIC applied to noisy samples.

Noise standard deviation σn = 2
CV S1 CV S2 CV S3

cluster AIC EFC AIC EFC AIC EFC
1 54 46 12 5 0 0
2 38 31 45 43 6 3
3 5 15 25 31 49 54
4 2 4 12 11 25 26
5 1 2 2 6 13 10
6 0 1 1 3 5 5
7 0 0 1 1 2 2
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Table 4. Average MSE for each set.

σn = 0 σn = 2
CV S1 CV S2 CV S3 CV S1 CV S2 CV S3

AIC 0.022 0.047 0.248 0.021 0.43 0.0122
EFC 0.008 0.038 0.072 0.019 0.042 0.081

two algorithms fit, measured by the mean square error (MSE). When
an algorithm estimates a given number of components K, the maxi-
mum likelihood estimates for K components are used to reconstruct
the estimated PDF. Thus, a MSE is computed between the original
and the estimated vectors. This experiment is applied to both sets,
noiseless and noisy. Table 4 shows the average MSEs resulting from
the application of the two algorithms to the different sets. We can see
from Table 4 that in all cases, the EFC has better overall adequacy
than the AIC. The average MSE, however, does not provide specific
information regarding the behavior of the adequacy as a function of
the estimated number of components. Such information would help to
perform an objective comparison.

To this end, we compared the adequacy of the two algorithms using
only vectors resulting in the estimation of the same number of compo-
nents. In other words, instead of using, for example, all the vectors of
CV S1 to compute the MSE, we divide them into groups. Each group
contains only vectors resulting in the estimation of the same number
of components. Thus, we will have Kmax groups. We then compute
an average MSE for each group. Note that if a group contains only a
few vectors, the average MSE can be biased. On the other hand, the
average MSE is representative when a group contains a large number
of vectors.

Figure 10 shows the plots of adequacy for EFC, for CV S1 in (a),
CV S2 in (b) and CV S3 in (c). The adequacy behaves similarly for
the two algorithms. Indeed, adequacy for vectors resulting in correct
estimation of the number of components M is relatively good compared
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to those resulting in a close estimation of M . However, the results
totally deteriorate for a significant underestimation of M (see Fig. 10c
with CV S3 for vectors resulting in an estimation of M = 1). Finally,
the adequacy is better when we overestimate M (see Fig. 10a with
CV S1 for vectors resulting in an estimation of M = 6). When no
vector results in an estimation of a given number of components, the
corresponding error is set to MSE = 1, which explains the behavior
of the curves for K = 7. This overall behavior of the adequacy is also
observed for the noisy sets in Fig. 11.

The behavior of clustering algorithms observed above is not unique
to our experiments. Indeed, Windham and Cutler [49] observed it,
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and developed an algorithm, called MIREV in order to use it. They
argued that the best solution may be indicated by an elbow or a knee
in a plot of the values versus the number of components. However,
the occurrence of the elbow or knee may not necessarily mean that a
solution is particularly good, but simply that its neighbors are relatively
bad. Note that the experiments performed by Windham and Cutler
were done using bivariate normal densities of three components each.

4 Conclusion

The EFC and AIC algorithms are two clustering algorithms pertaining
to two different categories: direct and verificative methods. The cate-
gory of verificative methods provides algorithms than can be used for
all types of application data. However, when a prior knowledge about
certain characteristics of the application data is available, direct meth-
ods can be designed in order to exploit this knowledge. In the case of
gray-level image histograms, the EFC clearly outperforms AIC. Indeed,
the effectiveness of the EFC has been shown in this paper in terms of
its ability to estimate the exact number of modes in a histogram and
the adequacy resulting from PDF estimation using the estimated pa-
rameters. It is also straightforward to verify that the EFC is roughly
Kmax times (Kmax = 7 in our experiments) faster than the AIC. Note
that a more extensive comparison can be conducted, including other
clustering algorithms. In this paper, we have conducted a comparison
between the EFC algorithm and the AIC algorithm. The compari-
son was designed to use a novel algorithm for generating mixture test
data with non-overlapped components. This algorithm makes it pos-
sible to perform statistical tests and evaluations, since it can handle a
large number of test data. Moreover, its flexibility allows the design
of more detailed and appropriate statistical tests, such as algorithm’s
robustness in relation to component overlap. This type of test pro-
vides information about algorithm limitations. The formal definition
of component overlap introduced in this paper can be used to design
multivariate mixtures of test data. Indeed, one can keep a Milligan
[16] generation framework, while using our algorithm to satisfy the
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non-overlap condition necessary in 1D.

References

[1] Tryon, R.C., Cluster Analysis, volume of Ann Arbor, Mich. Ed-
wards Brothers, MA, 1939.

[2] Zubin, J.A., A Technique for Measuring Like-mindedness, Abnor-
mal and Social Psychology, 1938, vol. 33.

[3] Sokal, R.R. and Sneath, P.H.A., Principles of Numerical Taxon-
omy, San Francisco: Freeman, 1963.

[4] Anderberg, M.R., Cluster Analysis for Applications, New York:
Academic Press, 1973.

[5] Bailey, K.D., Cluster Analysis, Heise, D., Ed. of Sociological
Methodology edition, San Francisco: Jossey- Bass, 1974.

[6] Cormack, R.M., A Review of Classification, J. of the Royal Statis-
ticians, Series A, 1971, vol. 134(3).

[7] Everitt, B.S., Cluster Analysis, London: Halstead Press, 1974.

[8] Milligan, G.W., An Examination of the Effect of Six Types of Er-
rors Perturbation on Fifteen Clustering Algorithms, Psychomet-
rica, 1980, vol. 45(3), pp. 325–342.

[9] Blashfield, R.K., Mixture Model Test of Cluster Analysis: Accu-
racy of Four Agglomerative Hierarchical Methods, Psychological
Bulletin, 1976, vol. 83(3), pp. 377–388.

[10] Wolfe, J.H., Pattern Clustering by Multivariate Mixture Analysis,
Multivariate Behavioral Analysis, 1970, vol. 5(4), pp. 329–349.

[11] Bayne, C.K., Beauchamp, J.J., Begovich, C.L., and Kane, V.E.,
Monte Carlo Comparisons of Selected Clustering Procedures, Pat-
tern Recognition, 1980, vol. 12(2), pp. 51–62.

298



Performance evaluation of clustering techniques for . . .

[12] Milligan, G.W. and Cooper, M.C., An Examination of Procedures
for Determining the Number of Clusters in a Data Set, Psychome-
trica, 1985, vol. 50(2), pp. 159–179.

[13] Dudes, R. and Jain, A.K., Clustering Techniques: the User’s
Dilemma, Pattern Recognition, 1976, vol. 8(4), p. 247.

[14] Edelbrock, C., Comparing the Accuracy of Hierarchical Grouping
Techniques: the Problem of Classifying Everybody, Multivariate
Behavioral Research, 1979, vol. 14, pp. 367–384.

[15] Kuiper, F.K. and Fisher, L., A Monte Carlo Comparison of Six
Clustering Procedures, Biometrica, 1975, vol. 31(1), pp. 86–101.

[16] Milligan, G.W., An Algorithm for Generating Artificial Test Clus-
ters, Psychometrica, 1985, vol. 50(1), pp. 123– 127.

[17] Dempster, A.P., Maximum Likelihood from Incomplete Data, Via
the EM Algorithm, J. of the Royal Statistical Society, 1977, vol.
B 39(1), pp. 1–38.

[18] Jain, A.K. and Dubes, R.C., Algorithms for Clustering Data,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[19] Zhang, J. and Modestino, J.M., A Model-fitting Approach to Clus-
ter Validation with Application to Stochastic Model-based Image
Segmentation, IEEE Trans. on Pattern Analysis and Machine In-
telligence, 1990, vol. 12(10), pp. 1009–1017.

[20] McLachlan, G.J. and Basford, K.E., Mixture Models, New York:
Marcel Deker, 1988.

[21] Aitnouri, E. and Ouali, M., Multithreshold-based SAR image seg-
mentation to targets and shadows detection, Journal of Applied
Remote Sensing (SPIE-JARS), Submitted in October 2010.

[22] Dudes, R. and Jain, A.K., Validity Studies in Clustering Method-
ologies, Pattern Recognition, 1979, vol. 11(4), pp. 235–254.

299



M. Ouali, E. Aitnouri

[23] Aitnouri, E.M., Wang, S., Ziou, D., Vaillancourt, J., and Gagnon,
L., Estimation of a Multi-modal Histogram’s PDF using a Mixture
Model, Neural, Parallel & Scientific Computation, 1999, vol. 7(1),
pp. 103–118.

[24] Aitnouri, E.M., Wang, S., Ziou, D., Vaillancourt, J., and Gagnon,
L., An Algorithm for Determination of the Number of Modes in
Image Histograms, Vision Interface V’99, Trois-Rivières, 1999, pp.
368–374.

[25] Akaike, H., Information and an Extension of the Maximum Likeli-
hood Principle, 2nd Int. Symp. on Information Theory, Budapest,
1973, pp. 267–281.

[26] Bozdek, J.C., Pattern Recognition with Fuzzy Objective Function,
New York: Plenum, 1981.

[27] Bozdogan, H., Mixture-model Cluster Analysis Using Model Selec-
tion Criteria and a New Informational Measure of Complexity. In
Bozdogan, H. et al., Eds., The first US/Japan Conf. on the Fron-
tiers of Statistical Modeling: An Informational Approach, Kluwer
Academic Publishers, 1994, pp. 69–113.

[28] Rissanen, J., Modeling by Shortest Data Description, Automatica,
1978, vol. 14(3), pp. 465–471.

[29] Wallace, C.S. and Boulton, D.M., An Information Measure for
Classification, Computer Journal, 1968, vol. 11(2), pp. 185–194.

[30] Kelly, P.M., Cannon, T.M., and Hush, D.R., Query by Image Ex-
ample: The CANDID Approach, SPIE, 1995, vol. 242, pp. 238–
248.

[31] Akaike, H., On Entropy Maximization Principle, in Applications of
Statistics, Krishnaiah, P.R., Ed., North Holland Publishing Com-
pany, 1977, pp. 27–41.

300



Performance evaluation of clustering techniques for . . .

[32] Powell, M.J.D., Radial Basis Functions for Multivariate Interpo-
lation: a Review, Algorithms for Approximation, 1987, no. 1, pp.
143–167.

[33] Traven, H.G.C., A Neural Network Approach to Statistical Pattern
Classification by Semiparametric Estimation of Probability Density
Functions, IEEE Transactions on Neural Networks, 1991, vol. 2(3),
pp. 366–377.

[34] Redner, R.A. and Walker, H.F., Mixture Densities, Maximum
Likelihood and the EM Algorithm, SIAM Review, 1984, vol. 26(2),
pp. 195–239.

[35] Fukunaga, K., Introduction to Statistical Pattern Recognition,
New York: Academic Press, 1972.

[36] Tou, J.T. and Gonzalez, R.C., Pattern Recognition Principles,
Addison-Wesley, Reading, MA, 1974.

[37] Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function
Algorithms, New York: Plenum, 1981.

[38] Oliver, J.J., Baxter, R.A., and Wallace, C.S., Unsupervised Learn-
ing Using MML. 13th Conf. on Machine Learning, Bari, Italy,
1996, pp. 364–372.

[39] Lawrence, D.B. and Gene Hwang, J.T., How to Approximate a
Histogram by a Normal Density, The American Statistician, 1993,
vol. 47(4).

[40] Parzen, E., On the Estimation of a Probability Density Function
and Mode, Ann. Math. Stat., 1962, vol. 33, pp. 1065–1076.

[41] Jiang, Q., Aitnouri, E.M., Wang, S., and Ziou, D., Ship Detection
Using PNN Model. In CD-ROM of ADRO’98, Montreal, 1998.

[42] Bishop, C.M., Neural Networks for Pattern Recognition, Oxford:
Clarendon Press, Oxford Univ. Press, 1995.

301



M. Ouali, E. Aitnouri

[43] Sardo, L. and Kittler, J., Minimum Complexity PDF Estimation
for Correlated Data. Int. Conf. on Pattern Recognition’96, Madis-
son, 1996, pp. 750–754.

[44] Sclove, S.L., Application of the Conditional Populationmixture
Model to Image Segmentation, IEEE Tran. Patter. Anal. Machine
Intell., 1983, vol. PAMI-5(4), pp. 428–433.

[45] Schwarz, G., Estimating the Dimension of a Model, The Annals
of Statistics, 1978, vol. 6(3), pp. 661–664.

[46] Oliver, C., Jouzel, F., and Elmatouat, A., Choice of the Number of
Component Clusters in Mixture Models by Information Criteria,
Vision Interface VI’99, Trois- Rivieres, 1999, pp. 74–81.
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To the memory of our dear Lucia

Abstract

An octagon quadrangle is the graph consisting of an 8-cycle
(x1, x2, ..., x8) with two additional chords: the edges {x1, x4} and
{x5, x8}. An octagon quadrangle system of order v and index λ
[OQS] is a pair (X,H), where X is a finite set of v vertices and H
is a collection of edge disjoint octagon quadrangles (called blocks)
which partition the edge set of λKv defined on X. An octagon
quadrangle system Σ = (X, H) of order v and index λ is said
to be upper C4 − perfect if the collection of all of the upper 4-
cycles contained in the octagon quadrangles form a µ-fold 4-cycle
system of order v; it is said to be upper strongly perfect, if the
collection of all of the upper 4-cycles contained in the octagon
quadrangles form a µ-fold 4-cycle system of order v and also the
collection of all of the outside 8-cycles contained in the octagon
quadrangles form a %-fold 8-cycle system of order v. In this pa-
per, the authors determine the spectrum for these systems, in the
case that it is the largest possible.

1 Introduction

A λ-fold m-cycle system of order v is a pair Σ = (X,C), where X is
a finite set of n elements, called vertices, and C is a collection of edge
disjoint m-cycles which partitions the edge set of λKv, (the complete
graph defined on a set X, where every pair of vertices is joined by λ
edges). In this case, |C| = λv(v− 1)/2m. The integer number λ is also

c©2010 by L. Berardi, M. Gionfriddo, R. Rota
∗ Lavoro eseguito nell’ambito di un progetto PRIN 2008.
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called the index of the system. When λ = 1, we will simply say that
Σ is an m-cycle system. Fairly recently the spectrum (the set of all v
such that an m-cycle system of order v exists) has been determined to
be [1][12]:

v ≥ m, if v > 1, v is odd, v(v−1)
2m is an integer.

The spectrum for λ-fold m-cycle systems for λ ≥ 2 is still an open
problem.

In these last years, G-decompositions of λKv have been examined
mainly in the case in which G is a polygon with some chords forming
an inside polygon whose sides joining vertices at distance two. Many
results can be found at first in [4,11,13] and after in [5,10,12]. Recently,
octagon triple systems and dexagon triple systems have been studied in
[3,14]. Generally, in these papers, the authors determine the spectrum
of the corresponding systems and study problems of embedding.
In [6,7,8,9], Lucia Gionfriddo introduced another idea: she studied G-
decompositions, in which G is a polygon with chords which determine
at least a quadrangle. Further, these polygons have the property of
nesting C4-systems, kite-systems, etc... . In particular, in [8] she stud-
ied perfect dodecagon quadrangle systems.

In this paper, where the blocks are dodecagons with chords which
join vertices at distance three dividing the dodecagon in five quadran-
gles, the authors study these systems in the case that the spectrum is
the largest possible.

2 Some definitions

The graph given in the Fig.1 is called an octagon quadrangle and
will be also denoted by [(x1), x2, x3, (x4), (x5), x6, x7, (x8)]. The cy-
cle (x1, x2, x3, x4) will be the upper C4-cycle, the cycle (x5, x6, x7, x8)
will be the lower C4-cycle, while the cycle (x1, x2, x3, x4, x5, x6, x7, x8)
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will be the outside cycle. Obviously, an upper C4-cycle of an octagon
quadrangle OQ can be considered as a lower C4-cycle of OQ and vicev-
ersa. It depends only on the representation of the OQ in the plane.

x2              x3

x1                                           x4

x8                                           x5

x7              x6

Figure 1. Octagon Quadrangle

An octagon quadrangle system of order v and index λ, briefly an
OQS, is a pair Σ = (X,B), where X is a finite set of v vertices and B is
a collection of edge disjoint octagon quadrangles, called blocks, which
partition the edge set of λKv, defined on the vertex set X.

An octagon quadrangle system Σ = (X, B) of order v and index λ
is said to be:

i) upper C4-perfect, if all of the upper C4-cycles contained in the
octagon quadrangles form a µ-fold 4-cycle system of order v;

ii) C8-perfect, if all of the outside C8-cycles contained in the oc-
tagon quadrangles form a %-fold 8-cycle system of order v;

iii) upper strongly perfect, if the collection of all of the upper C4-
cycles contained in the octagon quadrangles form a µ-fold 4-cycle sys-
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tem of order v and the collection of all of the outside C8-cycles con-
tained in the octagon quadrangles form a %-fold 8-cycle system of order
v.

In the first two cases, we say that the system has indices (λ, µ) or
(λ, %) respectively, in the third case we say that the system has indices
(λ, %, µ). It is immediate that any system of order v and index 2k can
be obtained from a system of the same type of the same order and
index k, by a repetition of the blocks.

In the following examples there are OQSs of different types. In them
the vertex set is always Zv and the blocks are given by a given number
of base blocks, from which one can obtain their translated blocks and
define all the system.

Example 1

The following blocks define a strongly perfect OQS(11) of indices
(10,8,4): the upper C4-cycles form an upper C4-system of index µ = 4
and the outside C8-cycles form a C8-system of index % = 8.

Base blocks (mod 11):

[(0), 6, 4, (10), (8), 3, 7, (1)], [(0), 10, 7, (9), (5), 3, 2, (6)],

[(0), 10, 7, (3), (9), 5, 2, (6)], [(0), 8, 3, (7), (4), 2, 10, (9)],

[(1), 0, 4, (6), (7), 5, 8, (9)].

Example 2

The following blocks define an upper C4-perfect OQS(8) of indices
(10,8,4). It is not C8-perfect. In fact, while the upper C4-cycles form
a C4-system of index µ = 4, the outside C8-cycles do not form a C8-
system of index % = 8.

Base blocks (mod 7):

[(0), 4, 3, (6), (2), 1,∞, (5)],
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[(∞), 3, 5, (2), (4), 1, 6, (0)],

[(0, 6, 4, (5), (3), 2,∞, (1)],

[(∞), 2, 5, (0), (6), 1, 4, (3)],

where ∞ is a fixed vertex and all the others are obtained cyclically in
Z7.

Example 3

The following blocks define a C8-perfect OQS(8) of indices (10,8,4).
It is not upper C4-perfect. In fact, while the outside C8-cycles form
a C8-system of index % = 8, it is not possible to find upper or lower
C4-cycles which form a C4-system of index µ = 4.

Base blocks (mod 7):

[(1), 0, 2, (5), (4), 6,∞, (3)],

[(∞), 0, 3, (6), (4), 5, 1, (2)],

[(6), 0, 5, (2), (3), 1,∞, (4)],

[(∞), 0, 4, (1), (3), 2, 6, (5)].

where ∞ is a fixed vertex and all the others are obtained cyclically in
Z7.

Remark: It is immediate that any system of order v and index 2k
can be obtained from a system of the same type of the same order and
index k, by a repetition of the blocks. In this paper we will not use this
technique and always we will consider OQSs without repeated blocks.
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3 Necessary existence conditions

In this section we prove some necessary existence conditions.

Theorem 3.1 : Let Ω = (X, B) be an upper strongly perfect OQS of
order v and let Σ1 = (X, B1), Σ2 = (X, B2) be the corresponding out-
side C8 − system and upper C4 − system, respectively. If the systems
Ω, Σ1, Σ2 have indices (λ, %, µ), in the order, then:

i) λ = 5 · k, % = 4 · k, µ = 2 · k,

for some positive integer k;

ii) the largest possible spectrum for upper strongly perfect OQSs is

S = {v ∈ N : v ≥ 8},
and the corresponding minimum values for the indices are:

λ = 10, % = 8, µ = 4.

Proof. If Ω = (X, B) is an upper strongly perfect OQS of order v,
Σ1 = (X, B1) and Σ2 = (X, B2) the outside C8−system and the upper
C4 − system respectively and (λ, %, µ) the indices, since |B| = |B1| =
|B2|, then necessarily:

λ

5
=

%

4
=

µ

2
and the statement i) follows.

For k = 1 the possible spectrum for strongly perfect OQS is a sub-
set of S = {v ∈ N : v ≥ 8}. For k = 2 the possible spectrum is exactly
S = {v ∈ N : v ≥ 8}. 2

Remark: The same conditions are obtained in the case of upper C4-
perfect OQSs but not C8-perfect, and in the case of C8-perfect OQSs
but not C4-perfect.
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4 Existence of particular octagon systems of
indices (10,8,4), without repeated blocks

The systems contained in the following Theorems will be used in what
follows.

Theorem 4.1 : There exist upper strongly perfect OQSs, having order
8,9,10,11,12,13,14,15 and indices (10,8,4).

Proof. The following OQSs are upper strongly perfect. They have
order 8,9,10,11,12,13,14,15 and indices (10,8,4).

i) Σ9 = (Z9, B), base blocks (mod 9):

[(0), 4, 8, (1), (5), 2, 7, (3)], [(0), 1, 7, (2), (5), 4, 6, (8)],
[(0), 2, 4, (3), (6), 5, 8, (1)], [(0), 1, 7, (4), (6), 2, 3, (5)].

ii) Σ8 = (W8, B), W8 = Z7 ∪ {∞}, ∞ /∈ Z7, base blocks (mod 7):

[(0), 3, 4, (1), (5), 6,∞, (2)],[(∞), 4, 2, (5), (3), 6, 1, (0)],
[(0), 1, 3, (2), (4), 5,∞, (6)],[(∞), 5, 0, (4), (1), 6, 3, (2)].

iii) Σ11 = (Z11, B), base blocks (mod 11):

[(0), 5, 7, (1), (3), 8, 4, (10)], [(0), 1, 4, (2), (6), 8, 9, (5)],
[(0), 1, 4, (8), (2), 6, 9, (5)], [(0), 3, 8, (4), (7), 9, 1, (2)],
[(10), 0, 7, (5), (4), 6, 3, (2)].

iv) Σ10 = (W8, B), W10 = Z9 ∪ {∞}, ∞ /∈ Z9, base blocks (mod 9):

[(0), 4, 7, (1), (3), 8, 6, (5)], [(0), 1, 5, (2), (3), 6,∞, (4)],
[(∞), 5, 6, (7), (4), 2, 1, (0)], [(0), 2, 7, (3), (1), 8,∞, (4)],
[(∞), 8, 6, (4), (7), 1, 0, (3)].

v) Σ13 = (Z13, B), base blocks (mod 13):
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[(0), 6, 12, (1), (4), 11, 7, (2)], [(0), 1, 12, (2), (6), 7, 4, (3)],
[(0), 2, 11, (3), (8), 6, 9, (4)], [(0), 3, 11, (4), (10), 8, 6, (5)],
[(0), 4, 8, (5), (12), 11, 7, (6)], [(0), 1, 6, (7), (4), 2, 11, (5)].

vi) Σ12 = (W12, B), W12 = Z11∪{∞}, ∞ /∈ Z11, base blocks (mod 11):

[(0), 5, 10, (1), (4), 8, 3, (2)], [(0), 2, 9, (3), (8), 5,∞, (4)],
[(∞), 4, 8, (7), (5), 6, 2, (0)], [(0), 1, 10, (2), (6), 7, 4, (3)],
[(0), 3, 10, (4), (7), 6,∞, (2)], [(∞), 3, 6, (5), (1), 7, 2, (0)].

vii) Σ15 = (Z15, B), base blocks (mod 15):

[(0), 7, 13, (1), (4), 6, 5, (2)], [(0), 1, 13, (2), (6), 12, 10, (3)],
[(0), 2, 13, (3), (8), 14, 11, (4)], [(0), 3, 13, (4), (10), 12, 6, (5)],
[(0), 4, 13, (5), (12), 7, 11, (6)], [(0), 5, 4, (6), (8), 12, 11, (1)],
[(14), 1, 8, (7), (4), 11, 10, (3)].

viii) Σ14 = (W14, B), W14 = Z13 ∪ {∞}, ∞ /∈ Z13, base blocks (mod
13):

[(0), 6, 10, (1), (4), 5, 8, (2)], [(0), 1, 12, (2), (6), 4, 9, (3)],
[(0), 2, 11, (3), (8), 5, 10, (4)], [(0), 3, 10, (4), (6), 2,∞, (1)],
[(0), 1, 11, (5), (10), 6,∞, (4)], [(∞), 3, 4, (9), (8), 7, 5, (2)],
[(∞), 6, 8, (3), (1), 2, 7, (0)]. 2

Theorem 4.2 : There exist upper C4- perfect OQSs, having order
8,9,10,11,12,13,14,15 and indices (10,4), which are not C8- perfect.

Proof.
The following OQSs are upper C4- perfect, have order 8,9,10,11, 12,

13,14,15 and indices (10,4), but they are not C8- perfect.

i) Ω9 = (Z9, B), base blocks (mod 9):
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[(0), 4, 8, (1), (5), 2, 7, (3)], [(0), 1, 7, (2), (5), 4, 6, (8)],
[(0), 2, 4, (3), (6), 5, 8, (1)], [(0), 1, 7, (4), (3), 8, 6, (5)].

ii) Ω8 = (W8, B), W8 = Z7 ∪ {∞}, ∞ /∈ Z7, base blocks (mod 7):

[(0), 3, 4, (1), (5), 6,∞, (2)],[(∞), 4, 2, (5), (3), 6, 1, (0)],
[(0), 1, 3, (2), (4), 5,∞, (6)],[(∞), 5, 2, (0), (1), 6, 3, (4)].

iii) Ω11 = (Z11, B), base blocks (mod 11):

[(0), 5, 7, (1), (3), 8, 4, (10)], [(0), 1, 4, (2), (6), 8, 9, (5)],
[(0), 1, 4, (8), (2), 6, 9, (5)], [(0), 3, 8, (4), (7), 9, 6, (5)],
[(10), 0, 7, (5), (4), 6, 3, (2)].

iv) Ω10 = (W8, B), W10 = Z9 ∪ {∞}, ∞ /∈ Z9, base blocks (mod 9):

[(0), 4, 7, (1), (3), 8, 6, (5)], [(0), 1, 5, (2), (3), 6,∞, (4)],
[(∞), 5, 6, (7), (4), 2, 1, (0)], [(0), 2, 7, (3), (1), 8,∞, (4)],
[(∞), 8, 6, (4), (7), 3, 0, (1)].

v) Ω13 = (Z13, B), base blocks (mod 13):

[(0), 6, 12, (1), (4), 11, 7, (2)], [(0), 1, 12, (2), (6), 7, 4, (3)],
[(0), 2, 11, (3), (8), 6, 9, (4)], [(0), 3, 11, (4), (10), 8, 6, (5)],
[(0), 4, 8, (5), (12), 1, 2, (6)], [(0), 1, 6, (7), (8), 12, 11, (5)].

vi) Ω12 = (W12, B), W12 = Z11∪{∞}, ∞ /∈ Z11, base blocks (mod 11):

[(0), 5, 10, (1), (4), 8, 3, (2)], [(0), 2, 9, (3), (8), 5,∞, (4)],
[(∞), 4, 8, (7), (5), 6, 2, (0)], [(0), 1, 10, (2), (6), 7, 4, (3)],
[(0), 3, 8, (4), (5), 10,∞, (2)], [(∞), 3, 6, (5), (1), 7, 2, (0)].

vii) Ω15 = (Z15, B), base blocks (mod 15):

[(0), 7, 13, (1), (4), 6, 5, (2)], [(0), 1, 13, (2), (6), 12, 11, (3)],
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[(0), 2, 13, (3), (8), 14, 11, (4)], [(0), 3, 13, (4), (10), 12, 6, (5)],
[(0), 4, 13, (5), (12), 7, 11, (6)], [(0), 5, 4, (6), (8), 12, 11, (1)],
[(14), 1, 8, (7), (6), 13, 11, (3)].

viii) Ω14 = (W14, B), W14 = Z13 ∪ {∞}, ∞ /∈ Z13, base blocks (mod
13):

[(0), 6, 10, (1), (4), 5, 8, (2)], [(0), 1, 12, (2), (6), 4, 9, (3)],
[(0), 2, 11, (3), (8), 5, 10, (4)], [(0), 3, 10, (4), (6), 2,∞, (1)],
[(0), 1, 11, (5), (10), 6,∞, (4)], [(∞), 3, 4, (9), (8), 7, 5, (2)],
[(∞), 10, 8, (3), (2), 1, 6, (0)]. 2

Theorem 4.3 : There exist C8- perfect OQSs, having order 8,9,10,11,
12, 13,14,15 and indices (10,8), which are not upper C4- perfect.

Proof.
The following OQSs are C8- perfect, have order 8,9,10,11,12,13,14,15

and indices (10,8), but they are not upper C4- perfect.

i) ∆9 = (Z9, B), base blocks (mod 9):

[(0), 4, 8, (1), (5), 2, 7, (3)], [(0), 1, 7, (2), (5), 4, 6, (8)],
[(0), 2, 4, (3), (6), 5, 8, (1)], [(0), 4, 7, (5), (2), 3, 8, (1)].

ii) ∆8 = (W8, B), W8 = Z7 ∪ {∞}, ∞ /∈ Z7, base blocks (mod 7):

[(0), 6, 5, (1), (3), 2,∞, (4)],[(∞), 6, 3, (5), (4), 1, 2, (0)],
[(0), 3, 5, (2), (6), 4,∞, (1)],[(∞), 2, 1, (4), (6), 0, 5, (3)].

iii) ∆11 = (Z11, B), base blocks (mod 11):

[(0), 5, 3, (1), (10), 4, 11, (6)], [(0), 1, 4, (2), (6), 8, 9, (5)],
[(0), 1, 4, (8), (2), 6, 3, (10)], [(2), 5, 3, (9), (6), 10, 7, (1)],
[(10), 0, 7, (5), (4), 6, 3, (2)].
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iv) ∆10 = (W8, B), W10 = Z9 ∪ {∞}, ∞ /∈ Z9, base blocks (mod 9):

[(0), 4, 7, (1), (3), 8, 6, (5)], [(0), 1, 5, (2), (3), 6,∞, (4)],
[(∞), 5, 6, (7), (4), 2, 1, (0)], [(0), 2, 7, (3), (1), 8,∞, (4)],
[(∞), 0, 2, (8), (6), 3, 4, (1)].

v) ∆13 = (Z13, B), base blocks (mod 13):

[(0), 6, 12, (1), (4), 11, 7, (2)], [(0), 1, 12, (2), (6), 7, 4, (3)],
[(0), 2, 11, (3), (8), 6, 9, (4)], [(0), 5, 10, (4), (11), 12, 1, (3)],
[(0), 4, 8, (5), (12), 11, 7, (6)], [(0), 1, 6, (7), (4), 2, 11, (5)].

vi) ∆12 = (W12, B), W12 = Z11∪{∞}, ∞ /∈ Z11, base blocks (mod 11):

[(0), 5, 10, (1), (4), 8, 3, (2)], [(0), 2, 9, (3), (8), 5,∞, (4)],
[(∞), 9, 10, (8), (5), 6, 2, (0)], [(0), 1, 10, (2), (6), 7, 4, (3)],
[(0), 3, 10, (4), (7), 6,∞, (2)], [(∞), 8, 1, (0), (4), 10, 5, (3)].

vii) ∆15 = (Z15, B), base blocks (mod 15):

[(0), 7, 13, (1), (4), 6, 5, (2)], [(2), 5, 11, (0), (4), 7, 9, (1)],
[(0), 2, 13, (3), (8), 14, 11, (4)], [(0), 3, 13, (4), (10), 12, 6, (5)],
[(0), 4, 13, (5), (12), 7, 11, (6)], [(0), 5, 4, (6), (8), 12, 11, (1)],
[(14), 1, 8, (7), (4), 11, 10, (3)].

viii) ∆14 = (W14, B), W14 = Z13 ∪ {∞}, ∞ /∈ Z13, base blocks (mod
13):

[(0), 6, 10, (1), (4), 5, 8, (2)], [(0), 1, 12, (2), (6), 4, 9, (3)],
[(0), 2, 11, (3), (8), 5, 10, (4)], [(0), 3, 10, (4), (6), 2,∞, (1)],
[(0), 1, 11, (5), (10), 6,∞, (4)], [(∞), 11, 10, (9), (1), 4, 6, (7)],
[(∞), 6, 8, (3), (1), 2, 7, (0)]. 2
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5 Construction v → v + 8

In this section we give a construction for OQSs having indices
(10,8,4),(10,4),(10,8), for all possible orders.

Theorem 5.1 : An upper strongly perfect OQS of order v+8 and in-
dices (10,8,4) can be constructed starting from an upper strongly perfect
OQS of order v and indices (10,8,4).

Proof. Let A = {1′, 2′, 3′, 4′, 5′, 6′, 7′, 8′}, Zv = {0, 1, 2..., v−1}, where
A ∩ Zv = ∅. Let Σ = (Zv, B), Σ′ = (A,B′) be two upper strongly
perfect OQSs both of indices (10, 8, 4). Define on Zv ∪A the family H
of octagon quadrangles as follows.
Define a partition of A in two sets L = {α, β, γ, δ}, M = {a, b, c, d}
such that L ∩M = ∅. Then, H is the family having the blocks:

[(α), i, β, (i+1), (γ), i+2, δ, (i+3)], [(β), i+1, α, (i+2), (δ), i+3, γ, (i+4)],

[(γ), i, δ, (i+1), (α), i+2, β, (i+3)], [(δ), i+1, γ, (i+2), (β), i+3, α, (i+4)],

[(a), i, b, (i+1), (c), i+2, d, (i+3)], [(b), i+1, a, (i+2), (d), i+3, c, (i+4)],

[(c), i, d, (i+1), (a), i+2, b, (i+3)], [(d), i+1, c, (i+2), (b), i+3, a, (i+4)],

where i belongs to Zv.

If X=Zv∪A and C = B∪B′∪H, then Ω = (X, C) is an upper strongly
perfect OQS of order v + 8 and indices (10,8,4).
If x, y ∈ Zv [resp. A], then the edge {x, y} is in a block of B [resp. B′]:
exactly in ten octagon quadrangles, in eight outside C8-cycles and in
four upper C4-cycles.
If x ∈ Zv and y ∈ A, then the edge {x, y} is contained in the octagon
quadrangles of H. Each vertex y ∈ A has degree 3 in 2v blocks and
degree 2 in the other 2v blocks, also the edge {x, y} is contained exactly
in ten octagon quadrangles of H, in eight outside C8-cycles and in four
upper C4-cycles.
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We also observe that the number of blocks of C is:

|C| = |B|+ |B′|+ |H| =
v(v−1)

2 + 8·7
2 + 8 · v = 1

2 · (v2 + 15v + 56),

which is exactly the number of blocks of an OQS(v + 8) of indices
(10,8,4):

(v+8)(v+7)
2 = 1

2 · (v2 + 15v + 56).

So, the proof is complete. 2

Theorem 5.2 : An upper C4-perfect OQS of order v + 8 and indices
(10,4), which is not C8-perfect, can be constructed starting from an
upper C4-perfect OQS of order v and indices (10,4).

Proof. Let Σ′ = (A,B′) be the OQS(8) of indices (10,4), isomorphic
to the OQS(8) defined on Z7 ∪ {∞} and defined by the translated one
of the following

base blocks (mod 7):
[(0), 3, 4, (1), (5), 6,∞, (2)],[(∞), 4, 2, (5), (3), 6, 1, (0)],
[(0), 1, 3, (2), (4), 5,∞, (6)],[(∞), 5, 2, (0), (1), 6, 3, (4)].

Following the proof of Theorem 5.1, since Σ′ is an upper C4-perfect
OQS(8), but not C8-perfect (see Theorem 4.2), the statement is proved.
2

Theorem 5.3 : A C8-perfect OQS of order v + 8 and indices (10,8),
which is not C4-perfect, can be constructed starting from a C8-perfect
OQS of order v and indices (10,8).
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Proof. Let Σ′ = (A,B′) be the OQS(8) of indices (10,8), isomorphic
to the OQS(8) defined on Z7 ∪ {∞} and defined by the translated one
of the following

base blocks (mod 7):
[(0), 6, 5, (1), (3), 2,∞, (4)],[(∞), 6, 3, (5), (4), 1, 2, (0)],
[(0), 3, 5, (2), (6), 4,∞, (1)],[(∞), 2, 1, (4), (6), 0, 5, (3)].

Following the proof of Theorem 5.1, since Σ′ is a C8-perfect OQS(8),
but it is not upper C4-perfect (see Theorem 4.3), the statement is
proved. 2

6 Conclusive Existence Theorems

Collecting together the results of the previous sections, we have the
following conclusive theorems:

Theorem 6.1 : There exist upper strongly perfect OQS(v)s of indices
(10,8,4) for every positive integer v, v ≥ 8.

Proof. The statement follows from Theorems 4.1 and 5.1. 2

Theorem 6.2 : There exist OQS(v)s of indices (10,4), which are up-
per C4-perfect but not C8-perfect, for every positive integer v, v ≥ 8.

Proof. The statement follows from Theorems 4.2 and 5.2. 2

Theorem 6.3 : There exist OQS(v)s of indices (10,8), which are C8-
perfect but not upper C4-perfect, for every positive integer v, v ≥ 8.

Proof. The statement follows from Theorems 4.3 and 5.3. 2
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Information encryption systems based on

Boolean functions

Aureliu Zgureanu

Abstract

An information encryption system based on Boolean func-
tions is proposed. Information processing is done using multi-
dimensional matrices, performing logical operations with these
matrices. At the basis of ensuring high level security of the sys-
tem the complexity of solving the problem of building systems of
Boolean functions that depend on many variables (tens and hun-
dreds) is set. Such systems represent the private key. It varies
both during the encryption and decryption of information, and
during the transition from one message to another.

Keywords: Boolean functions, multidimensional matrices,
private keys, security of the system, the complexity of the prob-
lem.

1 Introduction

The most popular information encryption systems (IES), based on
prime numbers, are shown in [1, 2]. In [3], using ideas from [1], there
is proposed a new encryption algorithm, which considerably increases
resistance to breakage, keeping the speed encryption and decryption.
In [4] there has been proposed another encryption system with a cryp-
tographic power not smaller than those two shown in [1,3], but, at the
same time, with an encrypting-decrypting time much smaller. Together
with the improving of computing means, the requirements towards IES
also increase. Public keys and those private become bigger and bigger,
and arithmetic operations with very big numbers become more difficult.
As a result, the productivity of the systems decreases considerably. The

c©2010 by A. Zgureanu
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situation may be changed if we replace these arithmetic operations with
logical operations on systems of Boolean functions, represented by mul-
tidimensional matrices [4]. Such a solution to the problem is proposed
in this paper.

2 Sets of relations and multidimensional ma-
trixes

In accordance with [11], a system A of NA = n1n2n3 · ... · np elements
ai1i2i3...ip (iα = 1, 2, 3, ..., nα; α = 1, 2, 3, ..., p) that belong to the set
Ω and are placed in the points of p-dimensional space of coordinates
i1, i2, ..., ip is called a multidimensional matrix over the set Ω. The
number p is called the size of the matrix and shows the number of
indexes in the notation of the matrix elements. Size NA shows the
total number of elements in this matrix. Size nα of the index iα shows
how many values (from 1 to nα) this index runs. So in this paper,
a multidimensional matrix is a direct generalization of the usual two-
dimensional matrix.

Consider a family of sets X = {X1, X2, ..., Xn}, where Xi =
{xi1, xi2, ..., xiλi}, i = 1, n and the set Ω = {ω1, ..., ωr} with arbitrary
elements (in our case – integer numbers). There are k relations Rj =
RXj1

...Xjdj
(2 ≤ dj ≤ n, j = 1, k, j1, j2, ..., jdj ∈ {1, 2, ..., n}) defined

on this family as subsets of Cartesian products Xj1 ×Xj2 × ...×Xjdj
.

The matrixes of these relations are dj-dimensional with elements from
Ω. Let’s mark by

−→
R the vector with components Rj , that is

−→
R =

(R1, ..., Rj , ..., Rk). Let’s correlate the following n-dimensional matrix
to this vector:

AR = Φ(~R). (1)

The elements of this matrix are denoted by as1...sτ ...sn . Let’s explain
how these elements are obtained.

We build the Cartesian product X1×X2×...×Xn = {x11, ..., x1λ1}×
...× {xn1, ..., xnλn}, which obviously contains u = λ1 · ... · λn elements.
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With these elements compose a two-dimensional matrix with u rows
and n columns (Figure 1, left side).

Figure 1.

Compose another two-dimensional matrix ||rij || with u rows and
k columns (Figure 1, right side), where rij = rsj1

...sjd
with elements

sj1 , ..., sjd
selected from line i at the places j1, ..., jd, that indicate the

sets Xj1 , ..., Xjd
where relation Rj is defined.

For simplicity replace the element xτsτ with its second index as it
is shown in Figure 2. The lines of the matrix in the left side of Figure 2
represent indices of the matrix AR elements. The lines of the matrix
in the right side of Figure 2 form the elements of matrix AR:

as1...sτ ...sn = (ri1, ..., rij , ..., rik), (2)

To the vector (2) there is associated a number ci in the base y which
satisfies the condition y > maxωh, h = 1, r:

ci = ri1y
k−1 + ... + rijy

k−j + ... + rik =
k∑

j=1

rijy
k−j , i = 1, u. (3)

So, we obtain the vector

~c = (c1, ..., ci, ..., cu). (4)
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Figure 2.

Thus, using the transformation (1), the vector ~c (3), (4) is put into
correspondence to the vector ~R. The reverse transformation

~R = Φ−1(~c), (5)

generally is much more complicated [5], [7], [8].
In some particular cases we can find vector ~R coordinates by vector

~c coordinates. This was achieved when investigating of the distribution
of prime numbers in the range of integer numbers. As the result an
algorithm for prime numbers generating has been elaborated [9], [10].

If the transformation (5) is difficult we can use this when elaborat-
ing the IES.

3 Information encryption systems

We consider a particular case of the exposed above, i.e. X1 = X2 =
... = Xn = Ω = {0, 1}. We denote the relations defined on these sets by
Mj = MXj1

...Xjdj
(2 ≤ dj ≤ n, j = 1, k, j1, j2, ..., jdj ∈ {1, 2, ..., n}),

thus obtaining the vector ~M = (M1, ..., Mj , ..., Mk). Let’s correlate
an n-dimensional matrix AM = Φ( ~M), i = 0, u, j = 1, k [5], pre-
sented at Figure 3, to this vector. In this matrix Mj = MXτ ...Xn and
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mij = mστ ...σn ∈ {0, 1}. Therefore, this matrix represents a system of k
Boolean functions with variables x1, ..., xn. We correlate the following
vector to this matrix:

~m = (m0, ..., mi, ..., mt), t ≤ u, where mi =
k∑

j=1

mij · 2k−j , i = 0, t, (6)

n = dlog2 te , k = dlog2 maxmie (7)

Figure 3.

By analogy (Figure 4) we create another matrix AD to which we
correlate a vector

~d = (d0, ..., di, ..., dt), t ≤ u, where di =
k∑

j=1

dij · 2k−j , i = 0, t. (8)

We may perform logical operations with these matrixes: AM ∧AD,
AM ∨AD, AM ⊕AD and other, as the result we obtain other matrixes.
Let’s analyze the operation ⊕ (sum modulo 2). Suppose that AM ⊕
AD = AC . In this case cij = mij ⊕ dij . Taking into account properties
of this operation, we obtain:
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Figure 4.

(AM ⊕AD)⊕AD = AM ⊕ (AD ⊕AD) = AM .

Thus

AM ⊕AD = AC , AC ⊕AD = AM . (9)

From (9) it results that the matrix AD may serve as private key for
encryption and decryption of vector ~m which is the ASCII encoding (or
any other encoding) of the plaintext M through vector

⇀
c (ciphertext)

⇀
c = (c0, ..., ci..., ct), t ≤ u,

where ci =
k∑

j=1

cij · 2k−j , i = 0, t, cij = mij ⊕ dij . (10)

Let’s see how we may create the private key. Suppose that the
function is defined by veracity table (see Table 1), where ε0, ..., εu ∈
{0, 1}.

Let’s create the partition {X̃1, X̃2} = {{x1, ..., xτ}, {xτ+1, ..., xn}}
on set x = {x1, ..., xn}. We create two sets:

- Y = {y0, y1, ..., yp, ..., y2τ−1} (formed of binary states that corre-
spond to variables from X̃1);
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Table 1.
x1 · · · xτ · · · xn F (x1, ..., xn)

0
...
i
...
u

0 · · · 0 · · · 0
. . .

σ1 · · · στ · · · σn

. . .
1 · · · 1 · · · 1

ε0
...
εi
...

εu

• and Z = {z0, ..., zq, ..., z2n−τ−1} (formed of binary states that
correspond to variables from X̃2).

Then, the Boolean function F (x1 , ..., xn) may be considered as a binary
relation RY Z between the sets Y and Z with the matrix

RY Z =

z0 · · · zj · · · zs

y0
...
yi
...

yh




a00 · · · a0j · · · a0s

. . .
ai0 · · · aij · · · ais

. . .
ah0 · · · ahj · · · ahs




, h = 2τ − 1, s = 2n−τ − 1,

∀i, jaij =
{

1, if F (yi, zj) = 1,
0, if F (yi, zj) = 0.

According to [6], the subset S
zj

F ε of the set Y is called subset of
column of the function F (x1 , ..., xn) for the column zj and is composed
of the elements yi for which aij = ε, ε ∈ {0, 1}.

The Boolean function may be defined by the table of subsets of
column (see Table 2):

It is obvious that S
zj

F 0 = Y \Szj

F 1 . Because of this, the subsets S
zj

F 0

are not indicated in the Table 2. We create partitions πx1 , ..., πxτ on
the set Y [6].
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Table 2.
z0 . . . zj . . . zs

F 1 Sz0

F 1 . . . S
zj

F 1 . . . Szs

F 1

Let’s consider a specific case: n=5, τ = 3 (see Table 3). In this case
X̃1 = {x1, x2, x3}, X̃2 = {x4, x5} and Y = {y0, y1, y2, y3, y4, y5, y6, y7} =
{000, 001, 010, 011, 100, 101, 110, 111}, Z = {z0, z1, z2, z3} = {00, 01, 10,
11}. We create the Table 3 (ε0, ..., ε31 ∈ {0, 1}) and the partitions
πxi = {m̄0

i ; m̄
1
i }, i = 1, 3 according to the following conditions:

yj ∈ m̄σi
i , if xi = σi (11)

πx1 = {y0, y1, y2, y3
0
1; y4, y5, y6, y7

1
1}, πx2 = {y0, y1, y4, y5

0
2; y2, y3, y6, y7

1
2},

πx3 = {y0, y2, y4, y6
0
3; y1, y3, y5, y7

1
3}.

Table 3.
x4x5

z0 z1 z2 z3

x1 x2 x3 00 01 10 11
y0

y1

y2

y3

y4

y5

y6

y7

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ε0

ε4

ε8

ε12

ε16

ε20

ε24

ε28

ε1

ε5

ε9

ε13

ε17

ε21

ε25

ε29

ε2

ε6

ε10

ε14

ε18

ε22

ε26

ε30

ε3

ε7

ε11

ε15

ε19

ε23

ε27

ε31
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To simplify this, we replace elements yi by their indexes i. Thus,
such partitions are obtained:

πx1 = {0, 1, 2, 3 0
1; 4, 5, 6, 7 1

1}, πx2 = {0, 1, 4, 5 0
2; 2, 3, 6, 7 1

2},

πx3 = {0, 2, 4, 6 0
3; 1, 3, 5, 7 1

3}.
Let’s mark by m̄

σi, ..., σj , ... , σp

i, ... , j, ..., p the bloc of product of partitions
πxi , ..., πxj , ..., πxp , where σj = 0 (1) if the elements of this bloc belong
to the bloc m̄0

j (m̄1
j ) for j = i, p. We also mark the indicated partitions

product by πxi,..., xj ,..., xp . For partitions above we get the following
products:

πx1,x2 = {0, 10,0
1,2; 2, 30,1

1,2; 4, 51,0
1,2; 6, 71,1

1,2},

πx1,x3 = {0, 20,0
1,3; 1, 30,1

1,3; 4, 61,0
1,3; 5, 71,1

1,3},

πx2,x3 = {0, 40,0
2,3; 1, 50,1

2,3; 2, 61,0
2,3; 3, 71,1

2,3},

πx1, x2, x3 = {00,0,0
1,2,3; 1

0,0,1
1,2,3; 2

0,1,0
1,2,3; 3

0,1,1
1,2,3; 4

1,0,0
1,2,3; 5

1,0,1
1,2,3; 6

1,1,0
1,2,3; 7

1,1,1
1,2,3}.

The Table 2 is obtained when the function is given by veracity table.
This table may be also obtained in the case when the function is given
in analytical form, for instance in disjunctive normal form:

F (x1 , ..., xn) = u1 ∨ ... ∨ ui ∨ ... ∨ ue,

where ui = x
σi1
i1
∧ ... ∧ x

σia
ia

, i1, i2, ..., ia ∈ {1, ..., n}, σi1 , ..., σia ∈ {0, 1},
i = 1, e.

There may be distinguished the following 3 cases:

327



A. Zgureanu

a) xi1 , ..., xia ∈ X̃1

In this case ui doesn’t depend on variables xτ+1, ..., xn and, there-
fore, the subsets of column are equal and are formed of the ele-
ments of the bloc m̄

σi1
... σiα

i1 ... iα
[6]:

Sz0

u1
i

= ... = Szs

u1
i

= m̄
σi1

... σiα

i1 ... iα

b) xi1 , ..., xia ∈ X̃2

Taking into account the property

ui =
{

1, if ∀xit ∈ {xi1 , ..., xia}, xit = σit ,
0, if ∃xit ∈ {xi1 , ..., xia}, xit 6= σit

and the definition of the subset of column we get:

S
zj

u1
i

=
{

Y, if for ∀xit ∈ {xi1 , ..., xia}, xit = σit ,
∅, if ∃xit ∈ {xi1 , ..., xia}, xit 6= σit ;

c) xi1 , ..., xib ∈ X̃1, xib+1
, ..., xia ∈ X̃2

In this case

S
zj

u1
i

=
{

m̄
σi1

... σis

i1 ... is
if for ∀xit ∈ {xis+1 , ..., xib}, xit = σit ,

∅ if ∃xit ∈ {xis+1 , ..., xib}, for which xit 6= σit holds.

Considering every conjunction as a Boolean function, we get their
subsets of column according to the cases mentioned above. These sub-
sets are given in Table 4. The subsets of column of the given function
are obtained in last line. They represent the union of the subsets from
every column.

As any analytical form of Boolean function may be reduced to the
form (11), then any function given in analytical form may be repre-
sented by the table of subsets of column.
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The representation of Boolean function by subsets of column gives
us the possibility to create the private key in a compact form. Suppose
that functions F1, ..., Fj , ..., Fk with values from the respective columns
from the Figure 4 correspond to relations D1, ..., Dj , ..., Dk.

Table 4.

z0 . . . zj . . . zs

u1
1 Sz0

u1
1

. . . S
zj

u1
1

. . . Szs

u1
1

u1
2 Sz0

u1
2

. . . S
zj

u1
2

. . . Szs

u1
2

...
...

...
...

...
...

u1
e Sz0

u1
e

. . . S
zj

u1
e

. . . Szs

u1
e

Sz0

F 1=
⋃e

i=1 Sz0

u1
i

. . . S
zj

F 1=
⋃e

i=1 S
zj

u1
i

. . . Szs

F 1=
⋃e

i=1 Szs

u1
i

Consider functions Fj for which the following conditions are
achieved:

Sz0

F 1
j

= Sz1

F 1
j

= ... = Szs

F 1
j

= Sj , j = 1, k.

For all the values of j we’ll get the vector ~S = (S1, ..., Sj , ..., Sk)
– private key. Suppose that the values of the first τ variables in the
index i of di form the binary state σ1...στ = yq (Figure 4). Thereby,
according to the definition of the subset of column, the values of dij

are obtained from the relation

dij =
{

1, if yq ∈ Sj

0, if yq /∈ Sj
(12)

Thus, the vector ~S determines univocally the matrix AD. The
subsets Sj are chosen on condition that

k⋃

j=1

Sj = Y (13)
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This condition assures changing the components of the vector ~m
through vector ~d. Relation (12) assures a rapid calculation of function
value on binary state i = σ1...στ ...σn.

As |Y | = 2τ , then for a single function we may create 22τ
subsets

of column, and for k functions we have

λ = 2k·2τ

different keys. As a result, the security of the private key may be chosen
by parameter τ and subsets Sj .

According to those mentioned, in the computational software pro-
gram Mathematica 6, there has been elaborated an IES composed of:

• key generator, which generates vector ~S = (S1, ..., Sj , ..., Sk).
The components Sj are selected randomly as subsets of the set
Y and on condition (13). Using (12) and (8) we create vector
~d = (d0, ..., dt);

• codifier, which creates vector ~c = (c0, ..., ct) (on the basis of
vectors ~m and ~d using (10)), codifies vector ~S = (S1, ..., Sj , ..., Sk)
with the help of the system from [4] or other secure system, and,
concatenating it with vector ~c, creates vector ~g [4];

• decoder, which restores the vector ~S = (S1, ..., Sj , ..., Sk) from
the vector ~g, creates vector ~d using (8) and (12), creates vector
~m on the basis of the vectors ~c = (c0, ..., ct) and ~d = (d0, ..., dt)
using (9). The initial text is printed on the basis of the vector ~m.

Some data concerning functioning of this system (Cripto 3) in com-
parison with the system RSA are brought in the Table 5. We notice
that for RSA both the encrypting and decrypting time grow almost
linearly. Beginning with t = 100000 the system already meets some
difficulties in creating vector ~c because of its too big components. This
fact is marked in the Table 5 by symbol∞. The data correspond to the
public key of 2057 bits. The time grows much slowly for the system
Cripto 3 and as a result it manages handling messages that contain
millions of symbols, and, in the same time, has a very high security.
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Table 5.
Encrypting
systems

Number
of symbols

Encrypting
time (sec.)

Decrypting
time (sec.)

RSA
Cripto3

100 0.34
0.31

5.34
0.07

RSA
Cripto3

500 0.48
0.36

26.90.
0.08

RSA
Cripto3

1000 0.93.
0.46

53.66
0.10

RSA
Cripto3

10000 9.60
1.01

533.40
0.51

RSA
Cripto3

100000 ∞
14.67

∞
5.46

RSA
Cripto3

500000 ∞
76.23

∞
34.37

RSA
Cripto3

1000000 ∞
82.62

∞
67.20

RSA
Cripto3

2000000 ∞
192.06

∞
193.23

RSA
Cripto3

4000000 ∞
582.75

∞
431.90

For instance, if t = 1000000, then k = 14. Consider τ = 4 and, there-
fore, λ = 2224. This number is bigger than the number of atoms in the
galaxy.

More than that, the key is the variable one. It changes both from
one message to another and during the information encrypting. It
changed 334 times in the case mentioned above. The data from Table
5 were got using Athlon (tm) Processor3500.

This system may be generalized for the case when the functions
F1, ..., Fj , ..., Fk are from q-valent logics. In such a case, both variables
x1, ..., xn and functions Fj admit values from the set Ω = {0, 1, ..., q−1}.
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In the Table 1 we have u = qn−1 for these functions and the last state
has the form q − 1...q − 1...q − 1. In Figure 3 mij ∈ Ω and in Figure 4
dij ∈ Ω. These matrices represent systems of q-valent functions. The
formulas (14), (15) and (16) correspond respectively to the formulas
(6), (7) and (8):

~m = (m0, ..., mi, ...,mt), t ≤ u,

where mi =
k∑

j=1

mij · qk−j , i = 0, t, (14)

n =
⌈
logq t

⌉
, k =

⌈
logq maxmi

⌉
, (15)

~d = (d0, ..., di, ..., dt), t ≤ u, where di =
k∑

j=1

dij · qk−j , i = 0, t. (16)

Let’s create a new matrix AC = AM + AD(mod q), where cij =
mij +dij(mod q). Since for q matrices AD the following relation holds:

q times︷ ︸︸ ︷
AD + AD + ... + AD(mod q) = 0 (zero matrix),

then the equalities (17) and (18) correspond respectively to equalities
(9) and (10):

AM + AD(mod q) = AC , AC + (q − 1)AD(mod q) = AM , (17)

⇀
c = (c0, ..., ci..., ct), t ≤ u,

where ci =
k∑

j=1

cij · qk−j , i = 0, t , cij = mij + dij(mod q). (18)
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From (18) it results that if for encrypting the vector ~m we apply
the matrix AD, then for decrypting this vector we apply the matrix
(q − 1)AD.

From (16) it results that components dh of the vector ~d belong to
the set {1, ..., qk−1} (0 is not included in this set because the state 0....0
doesn’t change the components of the vector ~m). In order to create this
vector we take the last τ variables from the set {x1, ..., xn−τ , ..., xn},
choose randomly qτ numbers from the set {1, ..., qk− 1} and create the
following vector with these numbers:

~d = (d0, ..., dh, ..., dqτ−1), qτ − 1 ≤ t,

which represents the private key. Components dh may be repeated an
arbitrary number of times. Thereby, the number of different private
keys is

λ = (qk − 1)qτ
.

Using (14) and (18) we create the vector ~c. It results from (17) that

mi =
k∑

j=1

(cij + (q − 1)dij)(mod q)qk−j , i = 0, t.

For the examined case, in the computation software Mathematica
6, there was also elaborated an encryption system with a higher speed,
depending on q and τ values. For example, the encrypting and de-
crypting time for t = 2000000, q = 3, τ = 4 is equal to 130.62 sec
and 127.45 sec respectively in comparison with 192.06 and 193.23 (see
Table 5). Generally, a deeper investigation is needed to determine the
optimal values for parameters q, τ and t.

For q > 2 the private key may be also represented by subsets of
column. For this case, in the vector ~S = (S1, ..., Sj , ..., Sk), every com-
ponent Sj represents sets of form {{S1

j }, {S2
j }, ..., {Sq−1

j }}, where Sε
j

is a subset of the set {0, 1, ..., qτ − 1}, for ∀ε ∈ {1, ..., q − 1}, and
Sk

j

⋂
Ss

j = ∅ occurs for ∀k, s ∈ {1, ..., q − 1}. But, together with the
growth of q, there appear difficulties concerning the representation and
transmitting of private key. Additional investigations are needed here.
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4 Conclusions

1. The elaborated system has information processing speed much
higher and also a capacity of solving the problems of much bigger
dimensions in comparison with existent encryption systems. The
priorities of the system have been highlighted during its testing
with vectors that contain hundreds, thousands and millions of
components.

2. Due to the fact that the system can operate with small numbers,
it may be easily created using different programming languages.

3. The system may be improved using functions with q-valent logics.
Deeper investigations are needed in order to achieve this.
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Matrix balancing and robust Monte Carlo

algorithm for evaluating dominant eigenpair

Behrouz Fathi Vajargah Farshid Mehrdoust

Abstract

Matrix balancing may effect the stability of algorithms in ma-
trix computations and the accuracy of computed solutions. In
this paper, we first introduce an algorithm for matrix balancing.
Then, using Monte Carlo method we propose a robust algorithm
to evaluate dominant eigenpair of a given matrix. Finally, several
randomly generated examples are presented to show the efficiency
of the new method.

Keywords: Monte Carlo algorithms; Robust Monte Carlo
algorithm; Markov chain; Balancing; Eigenpair; Large scale ma-
trices

1 Introduction

The need to compute dominant eigenpair of matrices arises frequently
in scientific and engineering applications with the solution being useful
either by itself or as an intermediate step in solving a larger problem.
There are many different algorithms presently used to obtain eigenpair
of a matrix, among them are the Householder method, the QR method
and subspace iteration [6, 7]. Many of these algorithms are inefficient
when applied to very large structural systems. Krylov subspace Lanc-
zos method is widely appreciated by the numerical analysis community
[6, 7]. The problem of using Monte Carlo and quasi Monte Carlo meth-
ods for finding an eigenpair has been extensively studied, for example
[2-7]. In this paper, we study the Monte Carlo approach to obtain the
dominant eigenpair of matrices with an emphasis on preconditioning

c©2010 by B. Fathi Vajargah, F. Mehrdoust
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implementation of the corresponding algorithm which is called matrix
balancing. We employ a special balancing procedure as a preprocessing
step before running the Monte Carlo procedure. Such a balancing pro-
cedure ensures robustness of the Monte Carlo algorithm and therefore
relatively small values for the stochastic error.

Let A be an n×n real matrix whose eigenvalues we seek. The pair
(λ, x) is called an eigenpair of A if

Ax = λx, x 6= 0. (1)

In equation (1) the scaler λ and the vector x are called an eigenvalue
and eigenvector, respectively. Throughout the paper we suppose that
the matrix A ∈ Rn×n is diagonalizable with eigenvalues

λmax = |λ1| > |λ2| ≥ . . . ≥ |λk|.
Note that this implies λ1 is real, otherwise λ1( conjugate of λ1 ) is

another eigenvalue with the same magnitude as λ1 [7].

2 Monte Carlo approach for computing (λ, x)

Consider the following Markov chain with length i

Ti : k0 → k1 → · · · → ki (2)

where kj ∈ {1, 2, ..., n} for j = 1, 2, ..., i.
The following choice of pα and pα,β, for constructing T ,

is, is considered:

p(k0 = α) = pα, p(kj = β|kj−1 = α) = pαβ, (3)

where pα and pαβ show the probability of starting chain at α and
transition probability from state α to β, respectively. We further should
have that

n∑

α=1

pα = 1 (4)
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and
n∑

β=1

pαβ = 1 (5)

for each α = 1, 2, ..., n. Probabilities pαβ define the transition matrix
P .

Let matrix A ∈ Rn×n and two vectors f, h ∈ Rn are given. Further
suppose that the distributions created from the density probabilities
pα and pαβ are acceptable according to the following definition [2]

pα > 0 when hα 6= 0, pα ≥ 0 when hα = 0 (6)

and

pαβ > 0 when aαβ 6= 0, pαβ ≥ 0 when aαβ = 0. (7)

We define the random variable Wj using the following recursive
equation

Wj = Wj−1

akj−1kj

pkj−1kj

, j = 1, 2, ..., i, (8)

where W0 = hk0
pk0

. Then we may apply the following probability struc-
tures

pα=
|hα|∑n

β=1 |hβ|

pαβ=
|aαβ |∑n

β=1 |aαβ | α, β = 1, 2, ..., n. (9)

Thus, from (8) and (9) we have

Wi=
n∑

β=1

|hβ|
n∑

β=1

|ak0β|
n∑

β=1

|ak1β|...
n∑

β=1

|aki−1β|
i∏

j=1

akj−1kj

|akj−1kj |
hk0

|hk0 |

=
n∑

β=1

|hβ|
i−1∏

j=0

n∑

β=1

|akjβ|sign{hk0

i∏

j=1

akj−1kj}. (10)
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Now, let us define the random variable Γ(i) as

Γ(i) = Wifki =
n∑

β=1

|hβ|
i−1∏

j=0

n∑

β=1

|akjβ|sign{hk0

i∏

j=1

akj−1kj}fki , (11)

where Γ(i) will be employed for evaluating < h, Aif >, which is used for
estimating λmax. We follow the above discussions in the next theorem.

Theorem 1. Under assumptions 2 to 9, the random variable Γ(i) is
an unbiased estimator for < h,Aif > i.e.,

E[Γ(i)] =< h, Aif > . (12)

Proof. We have

E[Γ(i)] = E[
hk0

pk0

ak0k1 ...aki−1ki

pk0k1 ...pki−1ki

fki ]

=
n∑

k0,...,ki=1

hk0

pk0

ak0k1 ...aki−1ki

pk0k1 ...pki−1ki

fkipk0pk0k1 ...pki−1ki

=
n∑

k0=1

hk0

n∑

k1=1

ak0k1 ...
n∑

ki−1=1

aki−2ki−1

n∑

ki=1

aki−1kifki

=
n∑

k0=1

hk0

n∑

k1=1

ak0k1 ...
n∑

ki−1=1

aki−2ki−1(Af)ki−1

=
n∑

k0=1

hk0(A
if)k0 =< h, Aif > . ¥

Now, let us simulate N random paths as Ti defined in (2), (3) and
suppose Γ(i)

s is the sth realization of random variable Γ(i)
s i.e.,

Γ(i)
s =

n∑

β=1

|hβ|{
i−1∏

j=0

n∑

β=1

|akjβ|sign(
i∏

j=1

akj−1kjfki)}s, s = 1, ..., N.

Then the value

Γ̄(i) =
1
N

N∑

s=1

Γ(i)
s , i ≥ 1 (13)
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is considered as a Monte Carlo approximation of < h, Aif >.
Based on the power method [7], Monte Carlo method for evaluating

the dominant eigenvalue as i →∞, is

λmax ≈ Γ(i)
s

Γ(i−1)
s

. (14)

Let the goal is to find the eigenvector x that corresponds to the
eigenvalue λ, then we set h = e(j) = (0, ..., 0, 1, 0, ..., 0), where e(j) is
the jth unit vector in Rn, i.e. (e(j))α = δjα. It follows that

< h, x >=
n∑

α=1

(e(j))αxα

and the jth component of eigenvector x using Monte Carlo method is

xj ≈ 1
N

N∑

s=1

{Γ(i)[e(j)]}s. (15)

Theorem 2. The stochastic error for calculating the dominant eigen-
value of a given matrix A ∈ Rn×n, based on the Monte Carlo algorithm
is minimized if for each i and for some L > 0, we have

∑n
j=1 |aij | = L,

i.e. the absolute rowsums of A be a constant number.

Proof. Consider the following random variable

Θl(f) =
l∑

i=0

Wifki , (16)

where f ∈ Rn is an arbitrary vector and Wi is the variable, defined in
(8). It is easy to see that

V ar[Θl(f)] =
l∑

i=0

V ar[Wifki ] + 2
∑

i

∑

j>i

Cov(WifkiWjfkj )

≤
l∑

i=0

V ar[Wifki
] + 2

∑

i

∑

j>i

σ(Wifki
)σ(Wjfkj

).
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Therefore, it is sufficient to minimize V ar[Wifki ].
We further have

E[(Wifki)
2] =

n∑

k0k1···ki=1

h2
k0

pk0

a2
k0k1

· · · a2
ki−1ki

pk0k1 · · · pki−1ki

f2
ki

=
i−1∏

k=0

n∑

j=1

|akj |
n∑

k0k1···ki=1

|hk0 ||ak0k1 | . . . |aki−1ki
|f2

ki

=
i−1∏

k=0

n∑

j=1

|akj |
n∑

k0=1

|hk0 |(|A|i, f2
ki

)k0

=
i−1∏

k=0

n∑

j=1

|akj |(|h|, |A|if2).

Now, since f and h are arbitrary vectors, without loss of generality
assume that f = (1, · · · , 1)T , h = ( 1

n , · · · , 1
n). Now, we suppose that

A = |A| = (|ai,j |)i,j=1,...,n, thus from the previous equality it follows

i−1∏

k=0

n∑

j=1

|akj | = (h, Aif),

hence we easily conclude that V ar[Wifki ] vanishes when
∑n

j=1 |akj | is
equal to a constant value L, for k = 1, 2, . . . , n. ¥

The above theorem shows that to reduce the Monte Carlo error it
is important to deal with balanced matrices. In the next section, we
introduce matrix balancing procedure based on the condition given in
Theorem 2.

3 Balancing matrices

Balancing is a preprocessing step, which may produce positive effects
on the accuracy and performance of numerical methods for computing
eigenvalues. A matrix A ∈ Rn×n with a norm that is several orders

360



Matrix balancing and robust Monte Carlo algorithm . . .

of magnitude larger than the modules of its eigenvalues typically has
eigenvalues that are sensitive to perturbations in the entries of A. One
of the main methods is Sinkhorn-Knopp algorithm [1]. There are other
algorithms for balancing that can converge faster than the Sinkhorn-
Knopp algorithm, for example, Parlett and Landis [6]. In this paper,
we have used a Krylov-based balancing algorithm proposed in [1].

Definition 1. An n× n matrix A with nonnegative entries is said
to be balanced if for each i = 1, ..., n, the sum of the entries of its ith

row is equal to the sum of the entries of its ith column. In other words,

Ae = ATe, (17)

where e is the n-vector of all ones.
More generally, an n×n matrix with arbitrary real entries is said to be
balanced in lp−norm if for each i = 1, ..., n its ith row and column have
the same lp − norm. Our employed balancing algorithm is as follows:

Algorithm 1. (Balancing algorithm)

1. Input A ∈ Rn×n, t (number of iterations)
2. for s=1 : t
2.1 Set vector zn×1 of random numbers 1,−1s
2.2 Compute p = Az
2.3 for i = 1 : n
2.4 if (p(i) = 0) then
2.4.1 Set D(i) = 1
2.4.2 else D(i) = 1

p(i)
2.4.3 end for
2.5 Set A = D ∗A ∗D−1

2.6 end for
3. end of algorithm 1

Now, we present the robust Monte Carlo algorithm based on the
balanced matrix. In this algorithm, we use partitioned random number
generator for generating Markov chains (random trajectories). In fact,
we may divide the interval (0, 1) to r subintervals with equal length 1

r ,
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where r is a natural number greater than 1. We use it in rand function
of MATLAB software for generating random numbers with more uni-
formity. We note that in the following algorithm each row of the N × i
matrix ZZ is a Markov chain with the length i. According to Theorem
2, we further consider the vector h = ( 1

n , . . . , 1
n)T .

Algorithm 2. ( Robust Monte Carlo algorithm)

1. Input the matrix An×n, the number of Markov chains N
and the length of Markov chains i

2. Call algorithm 1 for balancing matrix A
3. Generate transition probability matrix P = (pij)i,j=1,...,n

according to the equation (9)
4. Generate an N × i random matrix ZZ
5. Set D1=0; D2=0
6. for s = 1 : N
7. Set z = ZZ(s, :) I sth row of the matrix ZZ
8. Set v = A(z(i− 1), :)
9. if A(z(i− 1), z(i)) 6= 0 then
10. Set D1 = D1 + sign(A(z(i− 1), z(i))) ∗ norm1(v) ∗ 1

n
11. Set D2 = D2 + h(z(i− 1))
12. End if
13. End for
14. Approximation of dominant eigenvalue is D1/D2
15. End algorithm 2

4 Computational results

In the following tables we compare the precision of the computed dom-
inant eigenpair without balancing and after applying balancing algo-
rithm. All test problems were run in MATLAB software on a PC with
Intel(R) 1.83 GHz Dual CPU processor. Moreover, the Monte Carlo
relative error was computed by the following formula

MC relative error =
|MC result− exact result|

|exact result| .
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First, let us consider the following test matrix

A =




0.6716 0.2417 0.2461 0.4788 0.1615
0.7003 0.1290 0.3725 0.3583 0.9478
0.9097 0.3089 0.9758 0.8556 0.5761
0.2902 0.5112 0.0766 0.6052 0.1597
0.7199 0.3323 0.2303 0.7844 0.8600




.

Basing on the Theorem 2, the rowsums vector for matrix A before
balancing is

rowsums = (1.7997, 2.5079, 3.6261, 1.6429, 2.9269)T ,

and after balancing is

rowsums = (2.3035, 2.0470, 2.4542, 2.1937, 2.5738)T ,

where the balanced matrix is

A =




0.6716 0.4076 0.5187 0.4671 0.2385
0.4153 0.1290 0.4655 0.2073 0.8299
0.4316 0.2472 0.9758 0.3960 0.4036
0.2975 0.8837 0.1655 0.6052 0.2418
0.4875 0.3795 0.3287 0.5182 0.8600




.

As we see, the rowsums after applying balancing algorithm are more
centralized. In Table 2, we have compared the precision of the com-
puted eigenvalues without balancing and after applying balancing al-
gorithm for several randomly generated matrices.

Table 1. MC relative error for calculating dominant eigenpair (λ̂, v̂)

Number of tra-
jectories

λ̂, v̂ (without bal.) Time (s) λ̂, v̂ (with bal.) Time (s)

100 0.0797, 0.2504 0.03 0.0069, 0.1637 0.05
1000 0.0727, 0.1340 0.14 0.0041, 0.0571 0.16
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Table 2. MC relative error in computing the dominant eigenvalue for
several randomly generated matrices

Dimension MC method

λ̂1 (with bal.) λ̂1 (without bal.)

100 4.1289× 10−4 0.1600× 10−2

200 5.4924× 10−5 3.0526× 10−4

400 1.7083× 10−4 0.1100× 10−2

800 2.9271× 10−5 0.1900× 10−2

1600 1.3916× 10−5 3.4172× 10−4

3200 5.1900× 10−6 3.7581× 10−4

5 Concluding remarks

In this paper, we have proposed a new algorithm for obtaining dom-
inant eigenpair of desired matrices. By this algorithm, we are able
to reduce the stochastic error in Monte Carlo method. The numeri-
cal experiments have shown that the Algorithm 1 not only makes the
matrix more balanced, but also balances the sum of absolute values in
the rows which is desirable according to the Theorem 2. The proposed
algorithm has been implemented for large scale matrices in computing
dominant eigenvalue and we can conclude that the balancing of the
input matrix is very important for improving the accuracy of Monte
Carlo algorithm (Figure 1 and Figure 2).

References

[1] Chen T. Y. and Demmel J. W., Balancing sparse matrices
for computing eigenvalues, Linear algebra and its applications,
309(2000)261-287.

[2] Dimov I.T. and Alexandrov V.N., A new highly convergent Monte
Carlo method for matrix computations. Mathematics and Com-
puters in Simulation, 47(1998)165-181.

364



Matrix balancing and robust Monte Carlo algorithm . . .

Figure 1. Comparison of relative error between Monte Carlo and robust
Monte Carlo methods for various matrices

Figure 2. Comparison of relative error between Monte Carlo and robust
Monte Carlo methods for various Markov chains

365



B. Fathi Vajargah, F. Mehrdoust

[3] Fathi Vajargah B. and Mehrdoust F., New Monte Carlo algorithm
for obtaining three dominant eigenvalues, IJAM, 22(2009)553-559.

[4] Fathi Vajargah B. and Mehrdoust F., New hybrid Monte Carlo
methods and computing the dominant generalized eigenvalue, In-
ternational journal of computer mathematics, Taylor & Francic,
2009.

[5] Hammersley J. M. and Handscomb D. C., Monte Carlo Methods.
Methuen, London, (1964).

[6] Kressner D., Numerical Methods for General and Structured
Eigenvalue Problems, Springer-Verlag Berlin Heidelberg, (2005).

[7] Meyer K. D., Matrix analysis and applied linear algebra, SIAM,
(2000).

Behrouz Fathi Vajargah, Farshid Mehrdoust Received June 17, 2010
Revised January 31, 2011

Faculty of Mathematical Sciences,
University of Guilan,
Rasht, P.O. Box: 1914, Iran
E–mail: fathi@guilan.ac.ir,

fmehrdoust@guilan.ac.ir

366



Computer Science Journal of Moldova, vol.18, no.3(54), 2010

Abstracts of Doctor Habilitatus Thesis

Title: Study of language-theoretic computational paradigms inspired by bi-
ology
Author: Serghei Verlan
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Understanding the surrounding matter, the laws and the functioning of
the universe, this is the main challenge of the humankind, appeared at the
dawn of times. Significant progress was made during last centuries, especially
in the field of physics, which ultimately permitted the engineering of new
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devices and the development of new technologies. The mathematics is in
tight relation with all these discoveries, as it provided a formal basis for these
achievements.

The challenges of the actual science more and more reside in the field of
biology. This is quite natural as the fundamental questions about life: what
distinguishes living and non-living matter and what is the organization of a
living thing, are considered from the very old times. Recent developments in
most areas of science permit to approach above questions in a methodological
way giving a hope for substantial breakthrough.

Still the biology is an experimental science that accumulates a large col-
lection of knowledge and that needs the help of other disciplines in order to
explain and correlate the gathered information. The mathematics is the pri-
mary tool sewing this goal, for example, with differential equations in systems
biology or statistical analysis for populations evolution.

The computer science also plays an important role in biological investi-
gations. Large-scale databases, data mining, sequence analysis and protein
structure prediction – these are several tasks that would never be possible
without the arrival of the computers, computational theory and correspond-
ing algorithms. The molecular biology highlighted the key role of DNA and
of related mechanisms for the information processing, which is crucial for the
understanding of the functioning of living organisms. The computer science
traditionally deals with sequences, so it was natural to use the provided tools
for the sequence-related research, forming the field of bioinformatics.

We note that computer science is specialized on the discrete representation
of the universe and on the representation of information flow processes. Many
key concepts from the field where borrowed from the biology. This is why it
fits well to the biological modeling providing discrete models in contrast to
a modeling with differential equations, which are continuous. This property
stimulated the investigation of (computational) models and operations issued
from biology. In this case real biological phenomena are abstracted and a
discrete system based on the involved operations and functioning is proposed.

There are two motivations for the investigation of such models. The first
motivation is very clear – since the model represents an abstraction of a bi-
ological phenomena, it is possible to describe the last one in precise terms
and provide simulations, estimations and predictions. A close relationship
with target biological system permits to express it in a short and clear man-
ner giving the hope to extract additional knowledge about the model. This
approach, very nice in theory, encounters important difficulties while faced
to the practice. Usually, simple models are too abstract for obtaining non-
trivial relations for the initial biological system, while more complete models
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encounter rapidly the combinatorial explosion of their size, which makes them
very difficult to analyze. The success of the approach relies on a deep knowl-
edge of the target phenomena that permits to find a good balance between
abstraction and adequateness.

The second motivation comes from the fact that most successful appli-
cations of computer science are based on ideas borrowed from the biology.
During the evolution of living organisms, the nature provided solutions for
many complicated problems encountered and it is very fruitful to adapt these
solutions to different problems. Ant colony optimization, cellular automata,
neural networks, evolutionary algorithms are some examples of such an ap-
proach.

This thesis is centered around two main topics: insertion-deletion systems
and P systems. The first part does a systematical study of the operations of
insertion and deletion. While it is possible to consider them as biologically
inspired operations, we perform in the thesis a pure theoretical investigation
in terms of the theory of formal languages. Thus, our research provides new
classes of formal grammars which extend the Chomsky hierarchy by intro-
ducing new levels. We introduce a new proof method and show a series of
computational-completeness and non-completeness results and discuss possi-
bilities for the extension of the computational power for the latter case.

The research on P systems follows a different motivation. Primary, they
represent a general framework for distributed multiset rewriting, which cap-
tures important processes in cell biology. In contrast to traditional approaches
in systems biology, P systems provide a discrete framework for the representa-
tion of molecular interactions1 that focuses on the structure of the system and
on the identification of its components. The field of application for P systems
is not limited to systems biology, the topic incorporates concepts from cell
biology and aims to propagate them to all fields of the computer science.

The first part of our work targets the core of the P systems framework –
its formal definition, which, surprisingly, was not always clear; moreover the
introduction of new concepts like the minimal parallelism lead to different
interpretations by different authors. We provide a single formal definition,
which covers most of the classes of P systems with static structure known up
to now.

The second part of Chapter 3 deals with one of most important models
in the area of P systems – P systems using only communication, i.e., the
objects present in the system cannot evolve, but can only be moved from one

1We remark that other discrete models like Petri nets or process algebra are also used,
each of them having advantages and limitations.
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compartment to another. We generalise the idea of co-transporters from the
cell biology and end up with an interesting computational model based on
the synchronization of signals. It is worth to note that the obtained model
generalises all previous communication- only models of P systems.

The last part of Chapter 3 deals with two concrete problems. The first
problem, the problem of the synchronization on a tree, is the generalization
of the firing squad synchronization problem for cellular automata, where a
linear communication structure is replaced by a hierarchical one. The second
problem, the construction of universal P systems of small size, is closely related
to the problem of the construction of small size universal Turing machines,
which is a fundamental problem of the computer science.

The last part of the thesis presents an exploratory topic, where we per-
formed all the stages for the construction of a new model – we start with
a biological phenomena, give its formalization and start theoretical investi-
gations. The closeness of the obtained model to the initial biological subject
permit us to affirm that results that are obtained theoretically, can be verified
in vitro.
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