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GHEORGHE PĂUN

(A tribute in honour of his 60th birthday)

We know him for a whole life. At first it was just a name, often
found in journals – particularly in the abstract journals, because in
the ’70s we did not have too much access to literature from abroad, or
even from the neighboring country. ”I have a dream”, – confessed one
of colleagues – ”to visit Bucharest, Gheorghe Păun.” For those times a
research visit, especially from the Moldavian Soviet Socialist Republic
to Romania could be just a dream.
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The dream was realized much later, only in 1996, when to our
colleague that had a speech in the plenary conference, came a tall,
handsome man, addressing his congratulations and expressing interest
in what he had heard. ”My name is Gheorghe Păun”, – he introduced
himself. Thus began our collaboration, which already lasts for 15 years
and has brought fruitful results. A testimony to this collaboration is
exposed on the pages of this issue, which we devote to the 60 years
anniversary of the eminent scientist and cultural figure, Corresponding
Member of the Romanian Academy, Member of the Romanian Writers
Association, Gheorghe Păun.

Gheorghe Păun had a powerful influence on the development of
theoretical computer science, especially the area of natural computing.
He is the inventor of the new rapidly developing area of biocomputing –
computing using membrane systems, or P systems. Due to the results
and ideas of Gheorghe Păun in biocomputing the team of scientists
working successfully in this direction was formed in the Institute of
Mathematics and Computer Science. Gheorghe Păun is not only an
outstanding scientist, but he is an active promoter of science, writes
and publishes collections of poetry, publishes science fiction novels and
books. We are very grateful that he, being so much busy, has time
to be the member of editorial board of ”Computer Science Journal of
Moldova”, and it is a great honour for us.

We wish Gheorghe Păun long fruitful creative life, opening new
roads in science. And we are happy to follow him.

Editorial board of Computer Science Journal of Moldova
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Abstract

We describe the investigations on natural computing in the
Institute of Mathematics and Computer Science of the Academy
of Sciences of Moldova during last fifteen years. Most of these in-
vestigations are inspired by results and ideas belonging to Corre-
sponding Member of the Romanian Academy Gheorghe Păun.

1 Introduction

In this paper we present a short overview of investigations on natural
computing carried out in the Institute of Mathematics and Computer
Science of Academy of Sciences of Moldova during last fifteen years.

Exactly fifteen yeas ago one of the authors of this paper, Prof. Yurii
Rogozhin has started his study in the scope of natural computing. His
studies and studies of his colleagues in the Institute were inspired by
scientific activity of Corresponding Member of the Romanian Academy
Gheorghe Păun.

c©2010 by A.Alhazov, E.Boian, L.Burtseva, C.Ciubotaru, S.Cojocaru,
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This overview includes investigations at the Institute on DNA com-
puting, membrane computing, insertion-deletion systems and other
models of biocomputing. The most of results obtained by scientists
of the Institute of Mathematics and Computer Science were presented
at different international workshops and conferences on natural com-
puting and published in prestigious international journals. Three PhD
theses and one Habilitation thesis were defended since 2004 and their
results are reflected in this volume of the journal.

2 DNA Computing

2.1 Test Tubes Systems

Molecular computers have been attracting many people from chemistry,
biology and computer science. A major break through was a concrete
molecular computer by Adleman [1] that could solve instances of the
travelling-salesman-problem.

In a remarkable paper T. Head [59] draw the connections between
molecular computers and formal language theory. The molecules from
biology are replaced by words over a finite alphabet and the chemical
reactions are replaced by the splicing operation. An H system specifies
a set of rules used to perform splicing and a set of initial words or
axioms. A splicing rule may be applicable to two molecules. It breaks
both molecules at fixed locations, defined by the splicing rule, and
recombines the initial string of one broken molecule with the final string
of the other one. The computation is done by applying iteratively the
rules to the set of words until no more new words can be generated.
This corresponds to a bio-chemical experiment where we have enzymes
(splicing rules) and initial molecules (axioms) which are put together
in a tube and we wait until the reaction stops.

T. Head’s smooth connection to formal language theory brought
this field to the attention of many people from formal language theory.
E.g., Gh. Păun, G. Rozenberg and A. Salomaa [89] asked what classes
of formal languages are derivable by molecular computers depending
on certain classes in formal language theory that the initial molecules
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and enzymes belong to.
One of such results says that any regular language is derivable

from finitely many initial molecules with finitely many splicing rules.
E. Csuhaj-Varjù, L. Kari, Gh. Păun [47] modified T. Head’s concept
slightly to systems of n test tubes. Here, any test tube is an H-system
with an additional filter. In a single macro-step any test tube generates
new molecules according to its set of starting molecules and its set of
splicing rules. Afterwards, the outcome of all test tubes is poured into
the filters of all test tubes. Those molecules that may pass the filter
of test tubes i, 1 ≤ i ≤ n, form the new starting molecules for the i-th
test tube for the next macro-step.

This new process, filtering results of one test tube into another,
increases the computational capability of molecular computers. Let us
call a system of n test tubes finite if initially any test tube contains
(arbitrarily many) copies of molecules from a finite set of molecules and
possesses only finitely many splicing rules.

It is known [89, 1] that a finite 1-test-tube-system generates only
regular sets of molecules. However, finite 2-test-tube-system may gen-
erate more complicated non-regular sets [47]. C. Ferretti, G. Mauri,
C. Zandron [54] have shown that any recursively enumerable (r.e.) set
of molecules is derivable in a finite 9-test-tube-system (or in a finite
6-test-tube-system if one allows for a rather simple encoding of the
molecules to be generated).

These results have implications for molecular computers as r.e. lan-
guages have many undecidable properties. E.g., the membership prob-
lem is in general not decidable for r.e. languages. This means that
there exists no algorithm A which can tell, when presenting a word w
and an r.e. languages L to A, whether w belongs to L or not. Fur-
ther, there is a fixed language, U , such that there exists no algorithm
A which can tell, when presenting a word w to A, whether w is an
element of U or not.

Thus, a trivial consequence of the result of [54] is that there exists
no algorithm which can compute which molecules may be generated
in a finite 6-test-tube-system. I.e., the results of a finite 6-test-tube-
system cannot be algorithmically predicted in general. We improved
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this result by showing how to generate any r.e. language in a finite
3-test-tube-system [96]. Thus, there is no way to predict the outcome
of the reactions of only three test tubes starting with molecules and
enzymes from finite set of molecules and enzymes.

This question is still open for finite 2-test-tube-systems.

2.2 TVDH Systems

Head splicing systems (H systems) were one of the first theoreti-
cal models of biomolecular computing and they were introduced by
T. Head [59].

Ordinary H systems are not very powerful and a lot of other models
introducing additional control elements were proposed. One of these
well-known models are time-varying distributed H systems (TVDH sys-
tems) introduced by Gh. Păun in [90] as another theoretical model of
biomolecular computing, based on splicing operations.

He started from the biological observation that at each moment
there is a set of active enzymes which behave depending on conditions
of the environment. If the environment (temperature, acidity or other
parameter) changes, then the set of active enzymes also change. In the
proposed model, the set of splicing rules changes periodically. More
exactly, the model contains a set of words, the axioms, and a finite
number of sets of splicing rules, the components. At each step, the
current words are spliced once using the rules of the current compo-
nent, and the result of this splicing forms the set of words for the next
iteration.

We remark that this elimination procedure is very powerful and
it permits to obtain a big computational power. If the elimination
procedure is changed by permitting several splicings to be applied,
then another model similar to TVDH systems is obtained: Enhanced
Time-Varying distributed H systems, see [73, 75, 103, 104].

It is worthy to note that TVDH systems with one component gen-
erate all RE languages. This result highlights the importance of the
elimination and shows that for ordinary H systems only small modifi-
cations are needed in order to pass from regularity to rationality, see
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also [105].
A study of TVDH systems from a computational point of view may

be found in [102] where TVDH systems for main arithmetic operations
(addition, multiplication, exponentiation and division) and for the Ack-
ermann function were explicitly given. A computer simulator of TVDH
systems was also developed [101].

Moreover, the simple structure of TVDH systems permit to use
these systems as target for universality proofs for systems based on
splicing. For example, in [79] a simulation of the TVDH system
from [78] is done. In [106] there is an example of simulation of TVDH
systems with one component by splicing membrane systems (P sys-
tems) [100].

TVDH systems have a very simple structure and a powerful con-
trol. These features stimulated several articles investigating the com-
putational power of these systems. In [92, 91] Gh. Păun showed that
TVDH systems are computationally complete by constructing a system
having 7 components that simulate any type-0 grammar.

Subsequent articles decreased consequently the number of compo-
nents needed to obtain the computational completeness. This was done
in two ways. In the first case TVDH systems simulating Turing ma-
chines and tag systems were constructed. We remark that in this case
the proof is strictly sequential: only one molecule which encodes the
tape (or the working word) and the state of the machine shall be present
in the system. In 1998 M. Margenstern and Yu. Rogozhin showed first
that TVDH systems with 2 components are able to do universal com-
putations, see [70, 71]. Their proof was based on a simulation of tag
systems [45, 82] and the obtained system is quite complicated. Later,
a proof based on a simulation of Turing machines was proposed [71].

Shortly after that the same authors showed that with 2 components
it is possible to generate all recursively enumerable languages [72, 74].
Such generation was done in the following way. It is known that for
any RE language L = {w1, w2, . . . } there is a Turing machine that,
given an input 01n, n > 0, will compute 01n+1wn. The system that
they constructed behaves in the following way. First, a simulation of
corresponding Turing machine on the input 01n is done. After that
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special rules cut off word wn and the system restarts the simulation
of the Turing machine on the new input 01n+1. In this way any RE
language is generated word by word.

The same authors obtained in 2001 a very important result: TVDH
systems with one component are universal [77]. The core of the proof
consists in a simulation of tag systems. In the same year they proposed
a system having one component that generates all RE languages [76].
The proof is based on the same ideas that were presented in previous
paragraph.

Another way to show the computational completeness of TVDH
systems consists in simulation of type-0 grammars. This introduces a
parallelism in computations because several evolutions of molecules are
made in the same time. Also this case is more complicated than the
sequential one and needs much more accuracy. Almost all results in
this case are based on “rotate-and-simulate” method.

The article of Gh. Păun [92] is an example of this technique. In
1999 A. Păun showed that it is possible to simulate the work of an ar-
bitrary grammar with 4 components [88]. This result was improved by
M. Margenstern and Yu. Rogozhin who showed that a type-0 grammar
can be simulated with 3 components, see [73].

We improved the above results by showing that it is possible to
generate any recursively enumerable language in a parallel way with 2
components, see [78]. Finally, the final point was reached by showing
that it is possible to generate all recursively enumerable languages in
a parallel way with one component, see [79]. The last result was ob-
tained by using the method of directing molecules, see [104], which is
a modification of the “rotate-and-simulate” method for systems based
on splicing.

3 Membrane (P) Systems

The research area of membrane computing originated as an attempt
to formulate a model of computation motivated by the structure and
functioning of a living cell - more specifically, by the role of mem-
branes in compartmentalization of living cells into protected reactors.
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Therefore, initial models were based on a cell-like (hence hierarchical)
arrangement of membranes delimiting compartments, where multisets
of chemicals (called objects) evolve according to given evolution rules.
These rules were either modeling chemical reactions and had the form of
(multiset) rewriting rules, or they were inspired by other biological pro-
cesses, such as passing objects through membranes (either in symport
or antiport fashion), and had the form of communication rules. These
initial models were then modified by incorporating various additional
features motivated by considerations rooted in biology, mathematics,
or computer science.

The next important step in the development of research in mem-
brane computing was to also consider other (nonhierarchical) arrange-
ments of membranes. While hierarchical (cell-like) arrangements of
membranes correspond to trees, tissue-like membrane systems con-
sider arbitrary graphs as underlying structures, with membranes placed
in the nodes while edges correspond to communication channels (see
[94, 87]).

3.1 Transitional P Systems

We introduced a new approach to study the family of languages gen-
erated by the transitional membrane systems without cooperation and
without additional ingredients ([28, 29, 30, 31]). The fundamental na-
ture of these basic systems makes it possible to also define the corre-
sponding family of languages in terms of derivation trees of context-free
grammars. We also compare this family to the well-known language
families and discuss its properties.

We considered some theoretical tasks for P systems. In particular,
we considered a new variant of the halting condition in P systems ([20,
55]), i.e., a computation in a P system is already called halting if not for
all membranes a rule is applicable anymore at the same time, whereas
usually a computation is called halting if no rule is applicable anymore
in the whole system. This new variant of partial halting is especially
investigated for several variants of P systems using membrane rules
with permitting contexts and working in different transition modes,
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especially for minimal parallelism.
Both partial halting and minimal parallelism are based on an arbi-

trary set of subsets from the set of rules assigned to the membranes.
We considered the problem of synchronizing the activity of all mem-

branes of a P system ([9, 23]). After pointing at the connection with
a similar problem dealt with in the field of cellular automata where
the problem is called the firing squad synchronization problem, FSSP
for short, we provided two algorithms to solve this problem. One al-
gorithm is non-deterministic and works in 2h + 3 steps, the other one
is deterministic and works in 3h + 3 steps, where h is the height of
the tree describing the membrane structure. We introduced a new
derivation mode for P systems that permits to make a look-ahead on
the next configuration and check for some forbidding conditions on it
[108]. The interesting point is that the software implementation of this
mode needs very small modifications to the standard algorithm of rule
assignment for maximally parallelism. As benefits of this mode some
non-deterministic proofs become deterministic.

As an example we present a generalized communicating P system
that accepts numbers 2n in n steps in a deterministic way. Another
example shows that in the deterministic case this mode is more pow-
erful than the maximally parallel derivation mode. Finally, this mode
gives a natural way to define P systems that may accept or reject a
computation.

3.2 Communication P Systems

Communication P systems [52, 56, 98, 110] are inspired by the idea
of communicating substances through membrane channels of a cell.
Molecules may go in the same direction together – symport – or some
of them may leave while at the same time other molecules enter the
cell – antiport. Communicating objects between membrane regions is a
powerful tool yielding computational completeness with one membrane
using antiport rules or symport rules of size three, i.e. involving three
objects, in the maximally parallel mode. As register machines can be
simulated in a deterministic manner, P systems with antiport rules or
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symport rules can accept any recursively enumerable set of (vectors of)
natural numbers in a deterministic way.

In tissue P systems, the objects are communicated through chan-
nels between cells. In each transition step we apply only one rule for
each channel, whereas at the level of the whole system we work in the
maximally parallel way. Computational completeness can be obtained
with a rather small number of objects and membranes or cells, in the
case of tissue P systems even with copies of only one object.

The computational power of P systems with antiport rules or sym-
port rules involving copies of only one object remains one of the most
challenging open questions.

The concept of P systems with antiport and/or symport rules can
be generalized to systems using membrane rules evolving multisets of
objects on both sides of the membrane even depending on permitting
contexts (also called promoters) and/or forbidden contexts (also called
inhibitors).

P systems with communication rules can also be used as language
generators – we take the sequences of terminal objects sent out to the
environment as the strings generated by the system. A generalized
communicating P system, or a GCPS for short, corresponds to a graph
where each node, called a cell, contains a multiset of objects which –
by communication – may move between the cells.

The communication rules are rather restricted, any rule identifies
four cells, two input cells and two output cells, such that a pair of
objects from the two input cells moves synchronously to the two output
cells. The form of a communication rule is (a; i)(b; j) → (a; k)(b; l)
where a and b are objects and i, j, k, l are numbers that identify the
input and the output cells. Such a rule means that an object a from
cell i and an object b from cell j move synchronously to cell k and cell l,
respectively. It can easily be seen that these very simple communication
rules can also be interpreted as interaction rules.

Depending on the relation of i, j, k, l, nine restricted variants of
communication rules (modulo symmetry) can be distinguished. (For
example, i 6= j 6= k 6= l is one of these restrictions, called a parallel-
shift rule). When the GCPS has only one type of these restricted
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rules, we speak of generalized communicating P systems with minimal
interaction, a GCPSMI for short.

We considered generalized communicating P systems which use only
one type of the above interaction operations [51]. We proved that in 7
of these cases computational completeness is obtained, i.e., the corre-
sponding GMPCSs are able to determine any recursively enumerable
set of non-negative integers; the only exception determines only finite
singletons of natural numbers.

The constructions in the proofs also demonstrate that this large
expressive power can be obtained by P systems with relatively small
numbers of cells and simple graph architectures. We also proved [52]
that GCPSs still remain computationally complete if they are given
with a singleton alphabet of objects and with one of the restricted
types of rules: parallel-shift, join, presence-move, and chain.

3.3 Polymorphic P systems

We introduced a variant of the multiset rewriting model of P systems
where the rules of every region are defined by the contents of interior
regions, rather than being explicitly specified in the description of the
system [33]. This idea is inspired by the von Neumann’s concept of
“program is data” and also related to the research direction proposed
by Gh. Păun about the cell nucleus.

Membrane computing is a fast growing research field opened by
Gh. Păun in 1998. It presents a formal framework inspired from the
structure and functioning of the living cells.

In this paper we define yet another, relatively powerful, extension
to the model, which allows the system to dynamically change the set
of rules, not limited to some finite prescribed set of candidates. There
are three motives for this extension:

• first, our experience shows that “practical” problems need “more”
computing potential than just computational completeness;

• second, we attempt to import a very important computational
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ingredient into P systems, this time from the conventional com-
puter science;

• third, this extension correlates with the biological idea that dif-
ferent actions are carried out by different objects, which can be
acted upon as well.

Let us first explain these motives. Most papers of the field belong to
the following categories:

1. introducing different models and variants,

2. studying the computational power of different models depending
on what ingredients are allowed and on the descriptional com-
plexity parameters,

3. studying the computational efficiency of solving intractable prob-
lems (supercomputing potential) depending on the ingredients,

4. using membrane computing to represent and model various pro-
cesses and phenomena, including but not limited to biology,

5. other applications.

There is a surprisingly big gap between the sets of ingredients
needed to fulfill requirements in directions 2, 3, and the sets of ingre-
dients demanded by other applications. For instance, very weak forms
of cooperation between objects are often enough for the computational
completeness, but many “practical” problems cannot be solved in a sat-
isfactory way under the same limitations. This leads to the following
question. What is implicitly required in most “practical” problems?
We will mention just a few of these requirements below.

A) Determinism or at least confluence. Clearly, the end user wants
to obtain the answer to the specified problem in a single run of a
system instead of examining infinitely many computations. This
is a strong constraint, e.g., catalytic P systems and P systems
with minimal symport/antiport are universal, while in the deter-
ministic case non-universality is published for the first ones and
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claimed for the latter ones. Informally speaking, less computa-
tional power is needed to just compute the result than it is to
also enforce choice-free behavior of the system.

B) Input/output. Most of the universality results are formulated as
generating languages or accepting sets of vectors, or in an even
more restricted setup. There is no need to deal with input in
the first case, and in the latter case the final configuration itself
is irrelevant (except yes or no in case of the efficiency research).
On the other side, both input and output are critical for most
applications.

C) Representation. Clearly, any kind of discrete information can be
encoded in a single integer in some consistent way. However, a
much more transparent data representation is typically required;
even the intermediate configurations in a computation are ex-
pected to reflect a state of the object in the problem area.

D) Efficiency. Suppose numbers are represented by multiplicities of
certain objects. The number of steps needed to multiply two num-
bers by plain (cooperative) multiset processing is proportional to
the result. If the multiset processing can be controlled by pro-
moters/inhibitors/priorities, then the number of steps needed for
multiplication is proportional to one of the arguments. However,
many applications would ask for a multiplication to be performed
in a constant number of steps. Similar problems appear for string
processing.

E) Data structures. Membrane computing deals with multisets dis-
tributed over a graph, while conventional computers provide ran-
dom memory access and pointer operations, allowing much more
complex structures to be built.

Some of these implicit requirements originate because the user wants
a solution which is at least as good as the one that can be provided by
conventional computers.
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We introduced a new feature into the membrane computing. This
time the inspiration is not biological, but rather is from the area of
conventional computing.

Suppose we want to be able to manipulate the rules of the system
during its computation. A number of papers has been written about
this but in most of them the rules are predefined in the description
of the system. The most natural way to manipulate the rules is to
represent them as data, treat this data as rules, and manipulate it
as usual in P systems, in the spirit of von Neumann’s approach. In
membrane systems, the data consists of multisets, so objects should be
treated as description of the rules. Informally, a rule j in a region i
can be represented by the contents of membranes jL and jR inside i.
Changing the contents of regions jL and jR results in the corresponding
change of the rule j. We call such P systems polymorphic, by analogy
with polymorphic or self-modifying computer programs.

At the same time, if a membrane system is an abstraction inspired
by the biological cell, one can view inner regions as an abstraction
inspired by the cell nucleus; their contents correspond to the genes
encoding the enzymes performing the reactions of the system.

The simplicity of the proposed model is that we consider the natural
encoding, i.e., no encoding at all: the multisets describing the rules
are represented by exactly themselves. Therefore, we are addressing
a problem informally stated by Gh. Păun “Where Is the Nucleus?”
by proposing a computational variant based on one simple difference:
the rules are taken from the current configuration rather than from the
description of the P system itself.

3.4 Insertion-Deletion (P) Systems

We considered models of biocomputing based on insertion and deletion
operations of small size [80, 21, 22, 35, 36, 57, 68, 65, 66, 64, 67, 69, 81].
The insertion and the deletion operations originate from the language
theory, where they where introduced mainly with linguistic motivation.
In general form, an insertion operation means adding a substring to
a given string in a specified (left and right) context, while a deletion

113



A.Alhazov et al. . . .

operation means removing a substring of a given string from a specified
(left and right) context. A finite set of insertion-deletion rules, together
with a set of axioms provide a language generating device: starting from
the set of initial strings and iterating insertion-deletion operations as
defined by the given rules we get a language.

In the last years, the study of these operations has received a new
motivation from molecular computing, because, from the biological
point of view, insertion-deletion operations correspond to mismatched
annealing of DNA sequences. As expected, insertion-deletion systems
are quite powerful, leading to characterizations of recursively enumer-
able languages. This is not quite surprising as the corresponding device
contains two important ingredients needed for the universality: the con-
text dependency and the erasing ability. However, as it was shown in
[80], the context dependency may be replaced by insertion and deletion
of strings of sufficient length, in a context-free manner. If the length
is not sufficient (less than two) then such systems are decidable and a
characterization of them was shown by S.Verlan in [107].

Similar investigations were continued in [5, 4] on insertion-deletion
systems with one-sided contexts, i.e. where the context dependency is
present only from the left (right) side of all insertion and deletion rules.
These articles also give some combinations of rule parameters that lead
to systems, which are not computationally complete. However, if these
systems are combined with the distributed computing framework of P
systems, then their computational power may strictly increase [64, 68].

In [21, 35] we study P systems with context-free insertion and dele-
tion rules of one symbol. We show that this family is strictly included
in MAT, however some non-context-free languages may be generated.
If Parikh vectors are considered, then the corresponding family equals
to PsMAT. When a priority of deletion over insertion is introduced,
PsRE can be characterized, but in terms of language generation such
systems cannot generate a lot of languages because there is no control
on the position of an inserted symbol. If one-sided contextual insertion
or deletion rules are used, then this can be controlled and all recursively
enumerable languages can be generated.

The same result holds if a context-free deletion of two symbols is

114



Investigations on Natural Computing . . .

allowed.

3.5 Splicing (P) Systems

It is known that H systems are not very powerful, so, a lot of other
models introducing additional control elements were proposed. An-
other extension of H systems was done using the framework of P sys-
tems (see [109]). In a formal way, splicing P systems can be considered
like a graph, whose nodes contain sets of strings and sets of splicing
rules. Every rule permits to perform a splicing and to send the result
to some other node. Since splicing P systems generate any recursively
enumerable language, it is clear that there are universal splicing P sys-
tems.

Like for small universal Turing machines, we are interested in such
universal systems that have a small (smallest) number of splicing rules.
A first result was obtained by Yu.Rogozhin and S.Verlan in [97] where
a universal splicing P system with 8 rules was shown. Similar investi-
gations for P systems with symbol-objects were done in [11, 39] and the
latter article constructs a universal antiport P system with 23 rules.

In [38] we provided a new construction for splicing P systems and
proved the remarkable fact that 6 splicing rules are powerful enough for
the universality. In [34] we presented a series of small universal devices
(splicing systems):

• two universal time-varying distributed H systems: of degree 2
with 15 rules and of degree 1 with 17 rules,

• and also three universal splicing test tube systems with 3 or 2
test tubes and 10 rules.

Test tube systems based on splicing, introduced in E. Csuhaj-Varjú et
al. in [47] are symbol processing mechanism with components (test
tubes) working as splicing schemes in the sense of T. Head, and com-
municating through redistribution of the contents of the test tubes via
filters. These systems with finite initial contents of the tubes and finite
sets of splicing rules associated to each component are computation-
ally complete; they characterize the family of recursively enumerable
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languages. The existence of universal test tube distributed systems
was obtained on this basis, hence there is the theoretical possibility to
design universal programmable computers with the structure of such a
system.

Since 1996, a lot of variants of test tube systems have been intro-
duced and studied, using filtering of the strings by patterns. A natural
question is whether or not such systems with other types of filtering
mechanisms, based on techniques widely used in laboratory, can be
defined. We introduced a new variant of test tube systems, length-
separating test tube systems, based on splicing where the communica-
tion of the words among the test tubes is based on filtering by their
lengths, motivated by the gel electrophoresis laboratory technique [50].
However, we remark that filtering by length can also be done by other
methods, like size exclusion chromatography, that permits to separate
molecules depending on their size.

Gel electrophoresis is a technique for separation of molecules which
is widely used in the laboratory. It is usually performed for analytical
purposes at the final stage of the experiment. Its formal counterpart,
the length separation, is a standard tool in DNA computing. For ex-
ample, it is used in the third step of the Adleman’s experiment in
1994. There are also algorithms like in F. Guarnieri et al. [58] based
on the length separation which use it at the end of the computation
in order to confirm or select the result. In Y. Khodor et al. [63], a
method called length-only discrimination based on the generate-and-
search approach but relying on the length of the sequence is presented
and experimentally confirmed.

We use the length separation in another way. We consider a dis-
tributed system and we use the length separation for the communica-
tion between the components of the system. Since such systems work
iteratively, the length separation, used at each step, becomes one of
the main ingredients of the model. In an informal way, our model
corresponds to the following experiment.

Let us suppose that there is a set of test tubes. Each of these
test tubes may transform DNA molecules (cut, ligate, multiply etc).
The tubes are selective and they can do their transformations only
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on specific molecules (for example, in a tube DNA molecules may be
cut with a specific enzyme, hence only molecules having a correspond-
ing site will be modified). Taking a tube, we may put some amount
of DNA molecules into it. After the transformation, all molecules
from a tube are put in a gel electrophoresis. After the separation,
the gel is cut at some points corresponding to some molecular lengths.
Hence, molecules will be grouped by some length intervals. After that,
molecules are extracted from the gel and distributed among other test
tubes depending on their molecular length interval.

The above process may be iterated and, since all tubes are orga-
nized in a network, some interesting transformations may be done. The
initial DNA molecules are put in some fixed tube, and the transformed
molecules are collected in the output tube. To separate molecules to
be transmitted from one tube to another one, we define different con-
ditions. These conditions are exclusive, namely, each string (molecule)
found in a tube can be forwarded to only one tube. All molecules in
the test tube are communicated to some tube (depending on the un-
derlying graph of the test tube system, might remain at the original
tube). One type of these conditions are variants of communication by
fixed (bounded) length where strings of length equal to (or at most
equal to or at least equal to) a fixed constant are communicated to
another tube. In terms of gel electrophoresis this corresponds to the
cut at some specific points depending on the marker molecules.

Other types of conditions involve molecules of maximal and minimal
size as well as their negations (not maximal and not minimal). From
the gel point of view, this corresponds to the selection of the first
or the last molecule from the gel (the other molecules correspond to
the negation variant). We study the computational power of these
constructs. We show that the length separating test tube systems, even
with very restricted size parameters, are able to simulate the Turing
machines. This result holds in general case as well as for systems only
using communication conditions based on separation of molecules by
maximal (resp. minimal) and not maximal (resp. not minimal) length
and on the ability checking whether the word (the molecule) differs
from the empty word. These results correspond to our expectations,

117



A.Alhazov et al. . . .

due to the nature of the splicing operation.

If we restrict the communication conditions to select molecules with
fixed or bounded length, then the computational power of the corre-
sponding systems is not known. Although using appropriate commu-
nication predicates our construction has the power of the Turing ma-
chines, this does not help in efficiently solving practical problems. For
example, given a particular molecule, can we design a system that will
perform a particular transformation on it? Moreover, this transforma-
tion should be efficient, i.e., it shall be done in the smallest possible
number of steps, involving the smallest number of high-cost operations.
This problem is difficult to solve.

Here we provided a theoretical framework that could be used to de-
scribe and possibly answer the above questions. However, we mainly fo-
cus on the network structure and length filtering; the operation-related
improvements remain to be further investigated.

3.6 Reversibility and P Systems

Membrane computing is a formal framework of distributed parallel
computing. We studied the reversibility and maximal parallelism of
P systems from the computability point of view [32, 24, 25, 37]. The
notions of reversible and strongly reversible systems are considered.

The universality is shown for reversible P systems with either pri-
orities or inhibitors, and a negative conjecture is stated for reversible
P systems without such control. Strongly reversible P systems without
control have shown to only generate sub-finite sets of numbers; this
limitation does not hold if inhibitors are used.

Another concept considered is strong determinism which is a syn-
tactic property, as opposed to the determinism typically considered
in membrane computing. Strongly deterministic P systems without
control only accept sub-regular sets of numbers, while systems with
promoters and inhibitors are universal.
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3.7 P Systems with Active Membranes

Membrane systems are a convenient framework of describing polynomial-
time solutions to certain intractable problems in a massively parallel
way. Division of membranes makes it possible to create an exponential
space in linear time, suitable for attacking problems in NP and even
in PSPACE. Their solutions by so-called P systems with active mem-
branes have been investigated in a number of papers since 2001, later
focusing on solutions by restricted systems (see, for example, The Ox-
ford Handbook of Membrane Computing, ed. by G. Paun, G. Rozen-
berg, A. Salomaa [87]). The description of rules in P systems with
active membranes involves membranes and objects; the typical types
of rules are object evolution, object communication, membrane disso-
lution, membrane division.

Our goal was to implement methods of P systems with active mem-
branes in computer algebra and particularly, to generalize the ap-
proach from decisional problems to the computational ones, by consid-
ering a #P-complete (pronounced sharp-P complete) problem of com-
puting the permanent of a binary matrix [5, 14].

Commutative and non-commutative Computer Algebra Systems
were analyzed. The systems were analyzed taking into account effi-
ciency, termination of calculations, and some technical details of their
implementation. Existing methods of parallel calculations used with
Computer Algebra Systems were also examined. We studied a series of
problems in the matrix theory (permanent calculation), Grobner base
theory (determination if the algebra has the finite dimension, check-
ing if a given set of polynomials forms the Grobner base of the given
algebra). We used P-lingua system [95] to simulate elaborated algo-
rithms. We found that the said system does not meet all necessities to
simulate monomials manipulations. We proposed to extend it with the
mechanism of rule parameterization.

The domain of Computer Algebra is characterized by problems of
the high calculation complexity. Therefore, the interest in effective
methods of their solution is justified. The results of our research demon-
strate that natural calculations make an effective mechanism to solve
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problems in this domain, in particular, for non-commutative algebras
where the computing processes can be infinite.

Other our goal was to implement methods of P systems with active
membranes in mathematical linguistics.

Solving most problems of natural language processing is based on
using certain linguistic resources, represented by corpora, lexicons, etc.
Usually, these collections of data constitute an enormous volume of in-
formation, so processing them requires much computational resources.
A reasonable approach for obtaining efficient solutions is that based
on applying parallelism; this idea has been promoted already in 1970’s.
Many of the stages of text processing (from tokenization, segmentation,
lematizing to those dealing with natural language understanding) can
be carried out by parallel methods. This justifies the interest to the
methods offered by the biologically inspired models, and by membrane
computing in particular.

However, there are some issues that by their nature do not allow
complete parallelization, yet exactly they are often those “computa-
tional primitives” that are inevitably used during solving major prob-
lems, like the elementary arithmetic operations are always present in
solving difficult computational problems. Among such “primitives” in
the computational linguistics we mention handling of the dictionaries,
e.g., dictionary lookup and dictionary update. Exactly these problems
constitute the subject of our work.

In our approach we speak about dictionary represented by a pre-
fix tree and P systems with active membranes that are a conve-
nient framework of describing computations on trees [17, 16, 46]. In
[13, 15, 41, 42, 43] we formalised inflection process for the Romanian
language using the model of P systems with cooperative string repli-
cation rules, which will make it possible to automatically build the
morphological lexicons as a base for different linguistic applications.

3.8 Networks of Evolutionary Processors

Motivated by some models of massively parallel computer architec-
tures (see [53] and [60]), networks of language processors have been
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introduced in 1997 by E. Csuhaj-Varjú and A. Salomaa [48]. Such a
network can be considered as a graph where the nodes are sets of pro-
ductions and at any moment of time a language is associated with a
node. In a derivation step, any node derives from its language all pos-
sible words as its new language. In a communication step, any node
sends those words to other nodes that satisfy an output condition given
as a regular language, and any node takes those words sent by the other
nodes that satisfy an input condition also given by a regular language.
The language generated by a network of language processors consists
of all (terminal) words which occur in the languages associated with a
given node.

Inspired by biological processes, J. Castellanos, C. Mart́ın-Vide,
V. Mitrana and J. Sempere introduced in [44] a special type of networks
of language processors which are called networks with evolutionary
processors because the allowed productions model the point mutation
known from biology. The sets of productions have to be substitutions
of one letter by another letter or insertions of letters or deletion of
letters; the nodes are then called substitution node or insertion node
or deletion node, respectively.

It was shown by A. Alhazov et al. in [3] that networks of evolution-
ary processors are universal in that sense that they can generate any re-
cursively enumerable language and that networks with three nodes are
sufficient to get all recursively enumerable languages. The proof uses
one node of each type (and intersection with a monoid). Therefore it
is a natural question to study the power of networks with evolutionary
processors where the nodes have only two types, i. e.,

(i) networks with deletion nodes and substitution nodes (but without
insertion nodes),

(ii) networks with insertion nodes and substitution nodes (but with-
out deletion nodes), and

(iii) networks with deletion nodes and insertion nodes (but without
substitution nodes).

We investigated the power of such systems and studied the number
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of nodes sufficient to generate all languages which can be obtained by
networks of the type under consideration. We prove that networks of
type (i) and (ii) produce only finite and context-sensitive languages,
respectively. Every finite, context-sensitive or recursively enumerable
language can be generated by a network of type (i) with one node, by
a network of type (ii) with two nodes or by a network of type (iii) with
two nodes, respectively [19].

Particularly interesting variants of these devices are the so-called
hybrid networks of evolutionary processors (HNEPs), where each lan-
guage processor performs only one of the above operations on a certain
position of the words in that node. Furthermore, the filters are de-
fined by some variants of random-context conditions, i.e., they check
the presence/absence of certain symbols in the words. These constructs
can be considered both language generating and accepting devices, i.e.,
generating HNEPs (GHNEPs) and accepting HNEPS (AHNEPs).

In [49] E. Chuhaj-Varjú et al. showed that, for an alphabet V ,
GHNEPs with 27+3 · card(V ) nodes are computationally complete. A
significant improvement of the result can be found in [6, 7], where we
proved that GHNEPs with 10 nodes (irrespectively of the size of the
alphabet) obtain the universal power. Recently [8, 18] we improved
this result and showed that any recursively enumerable language can
be generated by a GHNEP having 7 nodes and it can be accepted by an
AHNEP with the same number of nodes. We also show that the fam-
ilies of GHNEPs and AHNEPs with 2 nodes are not computationally
complete. Although the sharpness of the upper bounds is not verified,
we considerably improved the previous results. The gap between uni-
versality and non-universality for GHNEPs now is very small (it is the
same as for the famous PCP problem). In [10] we completed investi-
gation of HNEPs with one node and presented a precise description of
languages generated by them.

We considered new variant of HNEP, so called Obligatory Network
of Evolutionary Processors (OHNEP shortly) [12]. The differences be-
tween HNEP and OHNEP are:

1) in using deletion and substitution operations: a node discards a
string if no operations in node are applicable to string (in HNEP
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case this string remains in the node),

2) an underlying graph is directed graph (in HNEP case this graph
is undirected).

We underline that both differences are natural.
The first one allows us to have the uniform definitions of the opera-

tions on a string, as opposed to considering two cases as in HNEPs (it
is the set of results of the applications of the operation to all possible
positions; the case when there are no such positions yields the empty
set by definition).

The second difference, that of generalization of the underlying graph
to be directed, is natural from the computational point of view; more-
over, since the loops are typically not considered, it also seems relevant
from the viewpoint of the biological motivation that the communicating
channels are directed.

These differences allow proofing universality of OHNEP with nodes
with only one operation, without input and output filters and using
only insertion operation at the left end and deletion operation at the
right end of a string. This interesting fact stresses the importance of
structure of HNEP in order to reach universality.

On the other hand we can avoid substitution operation. Notice
that this feature of OHNEP to discard a string if this string does not
participate at the operations has counterpart in DNA computing area,
TVDH systems also discard strings if they do not participate at splicing
operations ([73]). A task to find a minimal number of nodes of universal
OHNEP is open. A variant of OHNEP with underlying complete graph
is not considered yet.

An implementation of HNEPs and OHNEPs in mathematical lin-
guistics is also interesting task to investigate. The constructions
demonstrate that distributed architectures of very small size, with uni-
form structure and with components based on very simple language
theoretic operations are sufficient both to generate and to recognize
any recursively enumerable language.
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3.9 Other Models of Natural Computing

A number-conserving cellular automaton (NCCA) is a cellular automa-
ton whose states are integers and whose transition function keeps the
sum of all cells constant throughout its evolution. It can be seen as a
kind of modeling of the physical conservation laws of mass or energy.

We showed a construction method of NCCAs with radius 1/2 [61].
The local transition function is expressed via a single unary function
which can be regarded as “flows” of numbers. In spite of the strong
constraint, we constructed NCCAs with radius 1/2 that simulate any
cellular automata with radius 1/2 or any NCCA with radius 1. We
also consider the state complexity of these non-splitting simulations
(4n2 + 2n + 1 and 8n2 + 12n − 16, respectively). These results also
imply existence of intrinsically universal NCCA with radius 1/2.

A reversible logic element is a primitive from which reversible com-
puting systems can be constructed. A rotary element is a typical 2-
state 4-symbol reversible element with logical universality, and we can
construct reversible Turing machines from it very simply.

There are also many other reversible elements with 1-bit memory.
So far, it is known that all the 14 kinds of non-degenerate 2-state
3-symbol reversible elements can simulate a Fredkin gate, and hence
they are universal. We showed that all these 14 elements can “directly”
simulate a rotary element in a simple and systematic way [84, 85, 86].
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A.Salomaa, Oxford University Press, 2010.

[110] S.Verlan, Y.Rogozhin: New choice for small universal devices:
Symport/antiport P systems. In: International Workshop on The
Complexity of Simple Programs, University College Park, Ire-
land, December 6th and 7th, 2008, pp. 305–314.

137



A.Alhazov et al. . . .

A. Alhazov1,2, E. Boian1, L. Burtseva1, Received November 1, 2010
C. Ciubotaru1, S. Cojocaru1, A. Colesnicov1,
V. Demidova1, S. Ivanov1,3, V. Macari1,
G. Magariu1, L. Malahova1, V. Rogojin1,4,
Yu. Rogozhin1, T. Tofan1, S. Verlan1,5, T. Verlan1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD-2028, Moldova
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4 Biomedicum Helsinki,
B524a P.O.Box 63 (Haartmaninkatu 8) 00014
UNIVERSITY OF HELSINKI

5 LACL, Departement Informatique
UFR Sciences et Technologie
Universite Paris XII
61, av. General de Gaulle
94010 Creteil, France

E–mails:
Dr. Artiom Alhazov: artiom@math.md,
Dr. Elena Boian: lena@math.md,
Dr. Liudmila Burtseva: burtseva@math.md,
Dr. Constantin Ciubotaru: chebotar@math.md,
Dr.hab. Svetlana Cojocaru: Svetlana.Cojocaru@math.md,
Dr. Alexandru Colesnicov: kae@math.md,
Valentina Demidova: demidova@math.md,
Sergiu Ivanov: sivanov@math.md,
Veaceslav Macari: vmacari@yandex.ru,
Dr. Galina Magariu: gmagariu@math.md,
Ludmila Malahova: mal@math.md,
Dr. Vladimir Rogojin: vladimir.rogojin@helsinki.fi,
Dr.hab. Yurii Rogozhin: rogozhin@math.md,
Tatiana Tofan: ttofan@math.md,
Dr.hab. Sergey Verlan: verlan@univ-paris12.fr,
Tatiana Verlan: tverlan@math.md

138



Computer Science Journal of Moldova, vol.18, no.2(53), 2010

Membrane Systems Languages Are

Polynomial-Time Parsable

Artiom Alhazov Constantin Ciubotaru Sergiu Ivanov
Yurii Rogozhin

Abstract

The focus of this paper is the family of languages generated
by transitional non-cooperative P systems without further ingre-
dients. This family can also be defined by so-called time yields of
derivation trees of context-free grammars. In this paper we prove
that such languages can be parsed in polynomial time, where the
degree of polynomial may depend on the number of rules and on
the size of the alphabet.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed
multiset processing. It has been introduced by Gheorghe Păun in 1998,
and has been an active research area; see [6] for the comprehensive
bibliography and [4],[3] for a systematic survey. Membrane systems
are also called P systems.

The configurations of membrane systems (with symbol objects) con-
sist of multisets over a finite alphabet, distributed across a tree struc-
ture. Therefore, even such a relatively simple structure as a word (i.e.,
a sequence of symbols) is not explicitly present in the system. To
speak of languages as sets of words, one first needs to represent them
in membrane systems, and there are a few ways to do it.

One of the most elegant ways is to do all the processing by multisets,
and regard the order of sending the objects in the environment as their
order in the output word. In case of ejecting multiple symbols in the

c©2010 by A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin
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same step, the output word is formed from any of their permutations.
One can say that this approach also needs an implicit observer, but
at least this observer only inspects the environment and it is, in some
sense, the simplest possible one.

Following [2], in this paper we are interested in the case when the
rules are non-cooperative, i.e., all objects evolve independently. A num-
ber of results have been established in [2]. For instance, it was shown
that one membrane is enough, and a characterization of this family
was given via derivation trees of context-free grammars. Next, three
normal forms were given for the corresponding grammars. It was than
shown that the membrane systems language family lies between regu-
lar and context-sensitive families of languages, and it is incomparable
with linear and with context-free languages. Then, the lower bound
was strengthened to REG•Perm(REG). An example of a considerably
more “difficult” language was given than the lower bound mentioned
above. The membrane systems language family was also shown to be
closed under union, permutations, erasing/renaming morphisms. It
is not closed under intersection, intersection with regular languages,
complement, concatenation or taking the mirror image.

In attempt to lower the known upper bound (semilinear context-
sensitive) of these languages, we show here that the word membership
problem can be solved in polynomial time.

2 Definitions

Consider a finite set V . The set of all words over V is denoted by
V ∗, the concatenation operation is denoted by • (which is written only
when necessary) and the empty word is denoted by λ. Any set L ⊆ V ∗
is called a language. For a word w ∈ V ∗ and a symbol a ∈ V , the
number of occurrences of a in w is written as |w|a. We write w[i] to
denote the i-th symbol of w, 1 ≤ i ≤ |w|. The permutations of a word
w ∈ V ∗ are Perm(w) = {x ∈ V ∗ | |x|a = |w|a∀a ∈ V }. We denote the
set of all permutations of the words in L by Perm(L), and we extend
this notation to families of languages. We use FIN , REG, LIN , CF ,
MAT , CS, RE to denote finite, regular, linear, context-free, matrix

140



Membrane Systems Languages Are Polynomial-Time Parsable

without appearance checking and with erasing rules, context-sensitive
and recursively enumerable families of languages, respectively. The
family of languages generated by extended (tabled) interactionless L
systems is denoted by E(T )0L. Notation SLIN stands for the semi-
linear languages. We denote by P the family of languages recognizable
by Turing machines in polynomial time. For more formal language
preliminaries, we refer the reader to [5].

A multiset over V is a mapping M : V → N; M(a) is mul-
tiplicity of a in M . For V = {a1, · · · , am}, we may write M as{
a

M(a1)
1 , · · · , aM(am)

m

}
, omitting missing elements. The size |M | of a

multiset is
∑m

i=1M(ai). We use the extension of the set notations
to multisets; for instance, M1 ⊆ M2, M1 ∪ M2 and M1 \ M2 mean
M1(a) ≤ M2(a), M1(a) + M2(a) and max(M1(a) −M2(a), 0) for the
multiplicities of all symbols a, respectively. Multisets in membrane
computing are typically represented by strings; in this paper we use
the set notations described above, to be able to distinguish between
multisets and strings.

2.1 Transitional P systems

A membrane system is defined by a construct

Π = (O,µ,w1, · · · , wm, R1, · · · , Rm, i0), where
O is a finite set of objects,
µ is a hierarchical structure of membranes,
wi is the initial multiset in region i, 1 ≤ i ≤ m,
Ri is the set of rules of region i, 1 ≤ i ≤ m,
i0 is the output region.

The membranes are bijectively labeled by 1, · · · ,m, the interior of each
membrane defines a region; the environment is referred to as region 0.
When languages are considered, i0 = 0 is assumed.

The rules of a membrane system have the form u → v, where u is
a non-empty multiset over O and v is a multiset over (O × Tar). The
target indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m} are
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written as a subscript, and target here is typically omitted. In case of
non-cooperative rules, u is a multiset of size 1.

The rules are applied in maximally parallel way: no further rule
should be applicable to the idle objects. In case of non-cooperative
systems, the concept of maximal parallelism is the same as in L systems:
all objects evolve by the associated rules in the corresponding regions
(except objects a in regions i such that Ri does not contain any rule
a → u, but these objects do not contribute to the result). The choice
of rules is non-deterministic.

A configuration of a P system is a construct which contains the
information about the hierarchical structure of membranes as well as
the contents of every membrane at a definite moment of time. The
process of applying all rules which are applicable in the current config-
uration and thus obtaining a new configuration is called a transition.
A sequence of transitions is called a computation. The computation
halts when such a configuration is reached that no rules are applicable.
The result of a (halting) computation is the sequence of objects sent
to the environment (all the permutations of the symbols sent out in
the same time are considered). The language L(Π) generated by a P
system Π is the union of the results of all computations. The family
of languages generated by non-cooperative transitional P systems with
at most m membranes is denoted by LOPm(ncoo, tar). If the number
of membranes is not bounded, m is replaced by ∗ or omitted. If the
target indications of the form inj are not used, tar is replaced by out.

Example 1 To illustrate the concept of generating languages, consider
the following P system:

Π = ({a, b, c}, [1 ]1, {a
2},
{
{a} → ∅, {a} → {a, bout, c

2
out}

}
, 0).

Each of the two symbols a has a non-deterministic choice whether to be
erased or to reproduce itself while sending a copy of b and two copies of
c into the environment. Therefore, the contents of region 1 can remain
a2 for an arbitrary number m ≥ 0 of steps, and after that at least
one copy of a is erased. The other copy of a can reproduce itself for
another n ≥ 0 steps before being erased. Each of the first m steps, two
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a

bcc

bcc

bcc

bcc

a

bcc

bcc

bcc

a

bcc

bcc

a

λ

a

a

λ

bcc

bcc

bcc

bcc

⇒

⇒

⇒

⇒

.

Result

Perm(bccbcc)•

Perm(bcc)•

Perm(bcc).

Figure 1. An example of a computation of a P system from Example
1. The lines are only used to hint how the rules are applied.

copies of b and four copies of c are sent out, while in each of the next
n steps, only one copy of b and two copies of c are ejected. Therefore,
L(Π) = (Perm(bccbcc))∗(Perm(bcc))∗.

3 Parsability

We first recall a few existing results.

Lemma 1 Random access machines can be simulated by Turing ma-
chines with polynomial slowdown.

This result will lead to a much simpler proof of the main result.

Lemma 2 [2] LOP∗(ncoo, tar) = LOP1(ncoo, out).

This result means one membrane is enough. Such membrane systems
only have one working region, and the destination of the objects in
right hand side of the rules may only be here and out.

Lemma 3 [2] Any non-cooperative P system can be transformed into
an equivalent one such that all objects evolve by some rules (objects not
participating in left-hand side of any rule are never produced).
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This condition implies that the system only halts if there are no ob-
jects inside the system. Hence, the evolution of any object inside the
system eventually leads to some number (possibly zero) of objects in
the environment.

Lemma 4 ([2]) Any non-cooperative P system can be transformed into
an equivalent one such that the initial contents is w1 = {S}, and

• S does not appear in the right-hand side of any rule, and

• R1 has no erasing rules, except possibly {S} → ∅.

This result means that no object can be erased, except the axiom which
may only be erased immediately.

We now proceed to the main result.

Theorem 1 LOP∗(ncoo, tar) ⊆ P.

Proof. The proof consists of three parts. First, a few known results
are used to simplify the statement of the theorem. Second, a finite-
state automaton (with transitions labeled by multisets of terminals) of
polynomial size is constructed. Third, acceptance problem is reduced
to a search problem in a graph of a polynomial size.

Thanks to Lemma 1, the rest of the proof can be explained at the
level of random access machines.

Due to Lemma 2, we assume that an arbitrary membrane system
language L is given by a one-membrane system Π = ([1 ]1, O,w1, R1).

It is known from Lemma 3 that the condition specified in it does not
restrict the generality. Hence, from now we assume that every object
A inside the system corresponds to at least one rule that rewrites A.

Without restricting generality, we also assume the normal form
specified in Lemma 4. In this case, it is clear that if w ∈ Tn, then
during any computation of Π generating w, the number of objects in-
side the system can never exceed max(n, 1).

We now build a finite automaton A = (Q,Σ, q0, δ, F ) such that any
word w′ ∈ T≤n is accepted by A if and only if w′ ∈ L(Π). Accepting
by an automaton with transitions labeled by multisets is understood as
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follows: a transition labeled by a multiset of weight k can be followed if
the multiset composed of the next k input symbols equals the transition
label; in this case these input symbols are read.

We define Q as the set of multisets of at most max(n, 1) objects, Σ
as the set of multisets of at most n objects, q0 is the singleton multiset
{S}, and F = {∅}. It only remains to define the transition mapping δ of
A. We say that q′ ∈ δ(q, s) if [1 q ]1 ⇒ [1 q

′ ]1s. It is known (see, e.g.,
[1]) that computing all transitions from a configuration with k objects
takes polynomial time with respect to k; here, k ≤ max(n, 1) (and the
degree of such a polynomial does not exceed |R1|), and, moreover, the
number of configurations reachable in one step is also polynomial.

Notice that |Q| is polynomial with respect to n (and the degree of
such a polynomial does not exceed |O|+1).1 Hence, building A from n
and Π can be done in polynomial time, and, moreover, the size of the
description of A is also polynomial. Of course, it is sufficient to only
examine the reachable states of A.

Running each transition q′ ∈ δ(q, s) of A on w can be actually
done in time O(|s|); however, there are two problems. Firstly, A is
non-deterministic, and secondly, A may have transitions labeled by
an empty multiset, and removing empty multiset transitions or non-
determinism might need too much time or space, or even increase its
size too much. Instead, we reduce parsing by A to a graph reachability
problem.

Consider a graph Γ = (V,U), where V = {0, · · · , n} × Q and U
consists of such transitions ((i, q), (j, q′)) that i ≤ j and q′ ∈ δ(q, s),
where s equals the multiset consisting of w[i+ 1], · · · , w[j].

Finally, w ∈ L = Lt(G) if and only if w ∈ L(A), and w ∈ L(A) if
and only if there is a path from (0, q0) to (n, e) in Γ. Note: alternatively,
search in A incrementally by prefixes of w. �

1Indeed, multisets of size ≤ n over O bijectively correspond to multisets of size
exactly n over O ∪ {λ}. Let |O| = m. Moreover, multisets of size n over O ∪ {λ}
correspond to n-combinations of m+1 possible elements with repetition. For n > 0,
their number is |Q| =

(
n+m

n

)
≤ nm+1.
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It is known from [2] that membrane systems language family is in-
cluded in the family of context-sensitive languages, see also Lemma 4.
In [2] one also claims that membrane systems language family is semi-
linear. No formal proof is given, but there is an almost immediate
observation that such language is letter-equivalent to that generated
by the context-free language with the same rules (languages are letter-
equivalent if for every word in one of them there is a word in the other
one with the same multiplicities of all symbols; indeed, the difference
is only in the order of output). Semilinearity thus follows from Parikh
theorem. By Theorem 1, we improve the upper bound:

Corollary 1 LOP∗(ncoo, tar) ⊆ CS ∩ SLIN ∩P.

4 An Example

Consider a word w = babbaa and a P system

Π = ([1 ]1, {S
′, S, a, b}, {S′}, R), where

R = {p : {S′} → {S}, q : {S} → {S2}, r : {S} → {a, b}out}.

Only objects S, S′ are productive inside the system, and only objects
a, b may be sent outside. Since |w| = 6, we only need to examine
multisets over S, S′ of size up to 6 elements (28 in total). However,
out of them only {S′}, {S}, ∅, {S2}, {S4}, {S6} are reachable. The
finite automaton would look as follows (for simplicity of the picture,
we wrote i instead of {ai, bi} as labels):

// WVUTPQRS{S′}

0
��

?>=<89:;76540123∅ WVUTPQRS{S6}6oo

5

uulllllllllllllllllll
4

||yy
yy

yy
yy

yy
3

XX

ONMLHIJK{S}
0

//

1

<<yyyyyyyyyyy WVUTPQRS{S2}
0

//

2

OO

1
XX

WVUTPQRS{S4}
1

<<yyyyyyyyyy3oo

4

bbEEEEEEEEEEE

2
XX

We now check the word w:

• states after reading λ: {S′}, {S}, {S2}, {S4};
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• states after reading ba: ∅, {S2}, {S4}, {S6};

• states after reading babbaa: ∅, {S4}. The input is accepted.

5 Conclusions

We have shown that there exists an algorithm deciding the word mem-
bership problem of membrane systems languages in polynomial time
with respect to the length of the word. The degree of such polyno-
mial may depend on the number of rules and on the size of the al-
phabet. Hence, the position of the membrane systems language family
in the language family hierarchy is between REG • Perm(REG) and
CS ∩ SLIN ∩P.
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Riscos-Núñez, F.J. Romero-Campero, D. Sburlan: RGNC re-
port 01/2005, University of Seville, Third Brainstorming Week on
Membrane Computing, Fénix Editora, Sevilla, 2005, 1–10.

[2] A. Alhazov, C. Ciubotaru, Yu. Rogozhin, S. Ivanov: The Fam-
ily of Languages Generated by Non-Cooperative Membrane Sys-
tems. In: M. Gheorghe, Th. Hinze, Gh. Păun: Preproceedings
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Minimal Parallelism and Number of Membrane

Polarizations

Artiom Alhazov

Abstract

It is known that the satisfiability problem (SAT) can be ef-
ficiently solved by a uniform family of P systems with active
membranes with two polarizations working in a maximally par-
allel way. We study P systems with active membranes without
non-elementary membrane division, working in minimally paral-
lel way. The main question we address is what number of po-
larizations is sufficient for an efficient computation depending on
the types of rules used.

In particular, we show that it is enough to have four polar-
izations, sequential evolution rules changing polarizations, polar-
izationless non-elementary membrane division rules and polar-
izationless rules of sending an object out. The same problem is
solved with the standard evolution rules, rules of sending an ob-
ject out and polarizationless non-elementary membrane division
rules, with six polarizations. It is an open question whether these
numbers are optimal.

1 Introduction

Membrane computing with symbol-objects is a biologically inspired
framework of distributed parallel multiset processing; see [11] for an
overwiew and [15] for the comprehensive bibliography. The most ad-
dressed questions are completeness (solving every solvable problem)
and efficiency (solving hard problems in feasible time). We focus on
the latter one.

An interesting class of membrane systems are those with active
membranes (see [10]), where membrane division can be used for solving

c©2010 by A. Alhazov
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computationally hard problems in polynomial time. Let us mention a
few results:

• A semi–uniform solution to SAT using three polarizations and
division for non-elementary membranes, [10].

• A polarizationless solution, [3].

• Using only division for elementary membranes, with three polar-
izations, [12].

• A uniform solution, with elementary membrane division, [13].

• Using only two polarizations, in a uniform way, with elementary
membrane division, [4].

• Computational completeness of P systems with three polariza-
tions and three membranes, [11].

• Using only two polarizations and two membranes, [6].

• Using only one membrane, with two polarizations, [5].

• Polarizationless systems are complete, with no known bound on
the number of membranes, [2].

• Solving SAT in a minimally parallel way, using non-elementary
membrane division (replicating both objects and inner mem-
branes), [7].

• Avoiding polarizations by using rules changing membrane labels.
Using (up to the best author’s knowledge) either cooperative rules
or non-elementary division as above, [9].

Given a P system, a rule and an object, whether this rule is applica-
ble to this object in some membrane might depend on both membrane
label (that usually cannot be changed) and membrane polarization.
Essentially, the number of polarizations is the number of states that
can be encoded directly on the membrane.
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Minimal parallelism provides less synchronization between the ob-
jects, so one might expect the need of a stronger control, i.e., more po-
larizations. It is not difficult to construct the system in such a way that
the rules are global (i.e., the membrane labels are not distinguished),
most likely without adding additional polarizations. In this way the
results dealing with the number of polarizations can be reformulated in
terms of number of membrane labels (in that case, the systems have no
polarizations, but the rules are allowed to modify membrane labels).

This paper is an extended version of [1].

2 Preliminaries

2.1 Solvability by P systems with input

Definition 1 A P system with input is a tuple (Π,Σ, iΠ), where (a)
Π is a P system with working alphabet , with m membranes labelled
with 1, · · · ,m, and initial multisets w1, · · · , wm (over O−Σ) associated
with them; (b) Σ ⊆ O is an (input) alphabet, (c) iΠ is the label of a
distinguished (input) membrane.

The initial configuration of (Π,Σ, iΠ) with an input multiset w over Σ is

(µ,w1, · · · , wiΠ ∪ w, · · · , wm).

We call (Π, Σ, iΠ) a decisional P system with input if there exists two
distinguished objects yes, no ∈ O and for any valid input (see cod
function in the definition below) all its computations send to the envi-
ronment exactly one object, either yes (in this case the computation is
called an accepting one) or no. Moreover, (Π, Σ, iΠ) is called confluent if
for any valid input all its computations halt in the same configuration.

Definition 2 Consider a decision problem X = (IX , θX): IX is the
set of possible instances of X and θX is a boolean function over IX .
We say that X is solvable in polynomial time by a uniform family of P
systems Π = (Π(n))n∈N if the following conditions hold:
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• The family Π is polynomially constructible, i.e., there exists a
deterministic Turing machine constructing the system Π(n) from
n in polynomial time.

• There exists a pair (s, cod) of polynomial-time computable func-
tions mapping every instance u ∈ IX of the problem X into a
natural number and a multiset (over the alphabet of Π(s(u))), re-
spectively. The instance u is to be solved by a system Π(s(u))
with the multiset cod(u) placed in the input membrane, as de-
scribed below.

• The family Π is polynomially bounded with respect to (X, cod, s),
i.e., there exists a polynomial function p(n) such that for each
u ∈ IX every computation of the system Π(s(u)) with input cod(u)
is halting in at most p(s(u)) steps.

• The family Π is sound with respect to (X, cod, s), i.e., for each
u ∈ IX if there exists an accepting computation of Π(s(u)) with
input cod(u), then θX(u) = 1.

• The family Π is complete with respect to (X, cod, s), i.e., for each
u ∈ IX if θX(u) = 1, then every computation of Π(s(u)) with
input cod(u) is an accepting one.

2.2 P systems with active membranes

Definition 3 A P system with active membranes is a P system with
the working alphabet O, with the set H of membrane labels, with the
set E of polarizations, and with the rules of the following forms:

(a) [ a → u ]eh for a ∈ O, u ∈ O∗, h ∈ H and e ∈ E. These are object
evolution rules. An object a ∈ O in the region associated with a
membrane with label h and polarization e evolves to a multiset
u ∈ O∗.

(b) a[ ]eh → [ b ]e
′

h for a, b ∈ O, h ∈ H and e, e′ ∈ E. These
are send–in communication rules. An object a from the region
immediately outside a membrane with label h and polarization e
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is introduced in this membrane, transformed into b and changing
the polarization of the membrane to e′.

(c) [ a ]eh → [ ]e
′

h b for a, b ∈ O, h ∈ H and e, e′ ∈ E. These are send–
out communication rules. An object a is sent out from the region
associated with membrane with label h and polarization e to the
region immediately outside, transformed into b and changing the
polarization of the membrane to e′.

(d) [ a ]eh → a for a, b ∈ O, h ∈ H and e ∈ E. These are dissolution
rules. A membrane with label h and polarization e is dissolved in
reaction with an object a, transformed into b. The skin is never
dissolved.

(e) [ a ]eh → [ b ]e
′

h [ c ]e
′′

h for a, b, c ∈ O, h ∈ H and e, e′, e′′ ∈ E.
These are division rules for elementary membranes. An elemen-
tary membrane can be divided into two membranes with the same
label, possibly with different polarizations, possibly transforming
some objects.

Generally, rules of type (a) are executed in parallel, while at most one
rule out of all rules of types (b), (c), (d), (e) can be applied to the same
membrane in the same step. We also speak about the sequential version

(a′′s) [ a ]eh → [ u ]e
′

h for a ∈ O, u ∈ O∗, h ∈ H and e, e′ ∈ E.

of rules (a) (let us use ′′ to indicate that the rule is allowed to
change the polarization of the membrane) and their modifications
(b0), (c0), (d0), (e0), (a′0s), (b′0), (c

′
0), (e

′
0) (here, 0 represents that the

rules neither distinguish polarization nor change it, while ′ means that
the rule is allowed to change membrane label).

2.3 Minimal parallelism

In [8], the minimal parallelism has been formalized as follows (through-
out this paper, each set Rj is associated to a membrane):
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App(Π, C,min) = { R′ ∈ App(Π, C, asyn) | there is no
R′′ ∈ App(Π, C, asyn) such that
(R′′ −R′) ∩Rj 6= ∅ for some j with
R′ ∩Rj = ∅, 1 ≤ j ≤ h }.

We are not going to define all notations used here. In our context,
this definition means that minimally parallel application of rules to
a configuration consists of all applicable multisets R′ that cannot be
extended by a rule corresponding to a membrane for which no rule
appears in R′.

There exist different interpretations of minimal parallelism. For
instance, the original definition of maximal parallelism introduced in
[7] is formalized in [14] and called there base vector minimal parallelism:

App(Π, C,minG) = { R′′′ ∈ App(Π, C, asyn) | there is
R′ ∈ App(Π, C, asyn), such that R′ ⊆ R′′′,
|R′ ∩Rj | ≤ 1 for all j, 1 ≤ j ≤ h, and
there is no R′′ ∈ App(Π, C, asyn) such that
(R′′ −R′) ∩Rj 6= ∅ for some j with
R′ ∩Rj = ∅, 1 ≤ j ≤ h }.

Without discussing all technicalities, we point out that base vector
minimally parallel application of rules consists of all extensions of mul-
tisets R′, which represent maximally parallel choice of sets Rj used
sequentially. Hence, the latter mode is identical to the following:

{ R′′′ ∈ App(Π, C, asyn) | ∃R′ ∈ App(Π, C, seqset), R′ ⊆ R′′′

and 6 ∃R′′ ∈ App(Π, C, seqset) : R′ ⊆ R′′ }, where

App(Π, C, seqset) = { R′ ∈ App(Π, C, asyn) |
|R′ ∩Rj | ≤ 1 for all j, 1 ≤ j ≤ h.

In this way, one can first restrict applicable multisets to those having
at most one rule corresponding to a membrane, then take maximally
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parallel ones from them (i.e., those whose extensions do not belong to
the same restriction), and finally take their unrestricted extensions.

Luckily, the constructions presented in this paper work equally well
for both definitions of minimal parallelism. Indeed, they do not use
rules of type (b) or its modifications; hence, in one step a membrane
reacts only with objects in the associated region. This means that
selection of rules for each membrane is done independently, so differ-
ent membranes do not compete for objects and the system behaves
identically in both modes.

Hence, we can simply follow the basic idea introduced already in
[7]: for every membrane, at least one rule - if possible - has to be used.

The following remarks describe applicability, maximal applicability
and applying rules, respectively.

• The rules of type (a) may be applied in parallel. At one step, a
membrane can be the subject of only one rule of types (a′0s), (a

′′
s)

and (b), (c), (d), (e) with their modifications.

• In one step, one object of a membrane can be used by only one
rule (non-deterministically chosen), but for every membrane
at least one object that can evolve by one rule of any form,
must evolve (no rules associated to a membrane are applied only
if none are applicable for the objects that do not evolve).

• If at the same time a membrane is divided by a rule of type (e)
and there are objects in this membrane which evolve by means of
rules of type (a), then we suppose that first the evolution rules of
type (a) are used, and then the division is produced. Of course,
this process takes only one step.

3 Using Rules (a′′s)

The three size parameters of the SAT problem are the number m of
clauses, the number n of variables and the total number l of occurrences
of variables in clauses (clearly, l ≤ mn: without restricting generality,

155



A. Alhazov

we could assume that no variable appears in the same clause more than
once, with or without negation).

Theorem 1 A uniform family of confluent P systems with rules
(a′′s), (c0), (e0) working in minimally parallel way can solve SAT with
four polarizations in O(l(m + n)) number of steps.

Proof. The main idea of the construction is to implement a maximally
parallel step sequentially. For this, a “control” object will be changing
the polarization, and then an input object or a clause object will be
restoring it. Since the input is encoded in l objects, changing and
restoring polarization will happen for l times, the counting is done by
the “control” object.

Consider a propositional formula in the conjunctive normal form:

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

l =
m∑

i=1

li.

Let us encode the instance of β in the alphabet Σ(〈n,m, l〉) by mul-
tisets X, X ′ of the clause-variable pairs such that the variable appears
in the clause without negation, with negation or neither:

Σ(〈n,m, l〉) = {vj,i,1,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ s ≤ 2},
X = {(vj,i,1,1, 1) | xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n},
X ′ = {(vj,i,1,2, 1) | ¬xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n}.

We construct the following P system:

Π(〈n,m, l〉) = (O, H,E, [ [ ]02[ ]03 ]01, w1, w2, w3, R), with
O = {vj,i,k,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n,
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1 ≤ k ≤ m + n + 1, 1 ≤ s ≤ 4}
∪ {di,k | 1 ≤ i ≤ m + n + 1, 1 ≤ k ≤ 2l}
∪ {ti,k, fi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ l}
∪ {di | 1 ≤ i ≤ m + n + 1} ∪ {S, Z, yes, no}
∪ {zk | 1 ≤ k ≤ (4l + 3)n + m(4l + 1) + 2}

w1 = λ, w2 = d1, w3 = z0, H = {1, 2, 3}, E = {0, 1, 2, 3},

and the rules are listed below. The computation consists of three stages.

1. Producing 2n membranes with label 2, corresponding to the pos-
sible assignments of variables x1, · · · , xn and selecting clauses that
are satisfied for every assignment (groups A and C of rules).

2. Checking for all assignments whether all clauses are satisfied
(groups B and D of rules).

3. Generating yes from the positive answer, and sending it to the
environment. Generating no from the timeout (during the first
two stages the number of steps is counted in the object in mem-
brane with label 3) and sending it to the environment if there
was no positive answer (groups E and F of rules).

Stage 1 consists of n cycles and stage 2 consists of m cycles. Each cycle’s
aim is to process all l objects, i.e., each object counts the number of
cycles completed, and in the first stage the clauses are evaluated while
in the second stage the presence of each clause is checked.

In the case of maximal parallelism, a cycle could be performed in
a constant number of (actually, one or two) steps, while the minimal
parallelism cannot guarantee that all objects are processed. The so-
lution used here is the following. A cycle consists of marking (setting
the last index to 3 or 4) all l objects one by one while performing the
necessary operation, and then unmarking (setting the last index to 1 or
2) all of them. Marking or unmarking an object happens in two steps:
the control object changes the polarization from 0 to 1, 2 (to mark) or
to 3 (to unmark), and then one of the objects that has not yet been
(un)marked is processed, resetting the polarization to 0.
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Control objects in membrane 2: select clauses

A1 (for variable i: divide)
[ di ] → [ ti,0 ] [ fi,0 ] , 1 ≤ i ≤ n

A2 (process and mark all l objects)
[ ti,k−1 ]0 → [ ti,k ]1, 1 ≤ i ≤ n, 1 ≤ k ≤ l

[ fi,k−1 ]0 → [ fi,k ]2, 1 ≤ i ≤ n, 1 ≤ k ≤ l

A3 (prepare to unmark objects)
[ ti,l ]0 → [ di,0 ]0, 1 ≤ i ≤ n

[ fi,l ]0 → [ di,0 ]0, 1 ≤ i ≤ n

A4 (unmark all l objects)
[ di,k−1 ]0 → [ di,k ]3, 1 ≤ i ≤ n, 1 ≤ k ≤ l

A5 (switch to the next variable)
[ di,l ]0 → [ di+1 ]0, 1 ≤ i ≤ n

Control objects in membrane 2: check clauses

B1 (test if clause i is satisfied)
[ dn+i ]0 → [ dn+i,1 ]2, 1 ≤ i ≤ m

B2 (process and mark the other l − 1 objects)
[ dn+i,k−1 ]0 → [ dn+i,k ]1, 1 ≤ i ≤ m, 1 ≤ k ≤ l

B3 (unmark all l objects)
[ dn+i,l+k−1 ]0 → [ dn+i,l+k ]3, 1 ≤ i ≤ m, 1 ≤ k ≤ l

B4 (switch to the next clause)
[ dn+i,2l ]0 → [ dn+i+1 ]0, 1 ≤ i ≤ m

B5 (send a positive answer)
[ dm+n+1 ] → [ ]S

Input objects in membrane 2: select clauses
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C1 (mark an object)
[ vj,i,k,s ]p → [ vj,i,k+1,s+2 ]0,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m, k 6= m, 1 ≤ s ≤ 2, 1 ≤ p ≤ 2

C2 (a true variable present without negation or a false variable
present with negation satisfies the clause)
[ vj,i,i,s ]s → [ vj,i,i+1,3 ]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C3 (a true variable present with negation or a false variable present
without negation does not satisfy the clause)
[ vj,i,i,3−s ]s → [ vj,i,i+1,4 ]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C4 (unmark an object)
[ vj,i,k,s+2 ]3 → [ vj,i,k,s ]0,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ m + 1, 1 ≤ s ≤ 2

Input objects in membrane 2: check clauses

D1 (check if the clause is satisfied at least by one variable)
[ vj,i,m+j,1 ]2 → [ vj,i,k+1,3 ]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

D2 (mark an object)
[ vj,i,m+k,s ]1 → [ vj,i,k+1,s+2 ]0,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ s ≤ 2

D3 (unmark an object)
[ vj,i,m+k,s+2 ]3 → [ vj,i,k,s ]0,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ n + 1, 1 ≤ s ≤ 2

Control objects in membrane 3

E1 (count)
[ zk−1 ]0 → [ zk ]0, 1 ≤ k ≤ N = (4l + 3)n + m(4l + 1) + 2

E2 (send time-out object)
[ zN ] → [ ]Z

Control objects in the skin membrane
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F1 (a positive result generates the answer)
[ S ]0 → [ yes ]1

F2 (without the positive answer, the time-out generates the negative
answer)
[ Z ]0 → [ no ]0

F3 (send the answer)
[ yes ] → [ ]yes
[ no ] → [ ]no

Let us now explain how the system works in more details.
Like the input objects, the control objects keep track of the number

of cycles completed. The control object also remembers whether mark-
ing or unmarking takes place, as well as the number of objects already
(un)marked. Moreover, the control object is responsible to pass the
“right” information to the objects via polarization: in stage 1, 1 if the
variable is true, and 2 if the variable is false; in stage 2, 1 if the clause
is already found, and 2 if the clause is being checked for.

During the first stage, an object vj,i,1,s is transformed into vj,i,n+1,t,
where t = 1 if variable xj satisfies clause Ci, or t = 2 if not. The change
of the last index from s to t happens when the third index is equal to i.
Notice that although only information about what clauses are satisfied
seems to be necessary for checking if β is true for the given assignment
of the variables, the information such as the number of cycles completed
is kept for synchronization purposes, and the other objects are kept so
that their total number remains l. The control object d1 is transformed
into dn+1. Stage 1 takes (4l + 3)n steps.

If some clause is not satisfied, then the computation in the corre-
sponding membrane is “stuck” with polarization 2. Otherwise, dur-
ing the second stage an object vj,i,n+1,t is transformed into vj,i,n+m+1,t,
while the control object dn+1 becomes dm+n+1. Stage 2 takes m(4l+1)
steps, plus one extra step to send objects S to skin, if any.

After stage 2 is completed, one copy of S, if any, is transformed into
yes, changing the polarization of the skin membrane. In the same time
yes, if it has been produced, is sent out, object Z comes to the skin
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from region 3. If the polarization of the skin remained 0, Z changes to
no, which is then sent out. Depending on the answer, stage 3 takes 2
or 4 steps. In either case, the result is sent out in the last step of the
computation. ¤

Notice that membrane labels are not indicated in the rules. This
means that the system is organized in such a way that the rules are
global, i.e., the system would work equally well starting with the con-
figuration µ = [ w1[ w2 ]01[ w3 ]01 ]01, the labels were only given for the
simplicity of explanation.

Using the remark in the end of the Introduction, we obtain

Corollary 1 A uniform family of confluent polarizationless P systems
with rules (a′0s), (c0), (e0) working in minimally parallel way can solve
SAT with membrane labels of four kinds.

The statement follows directly from the possibility of rewriting a global
rule [ a ]e → [ u ]e

′
of type (a′′s) in a rule [ a ]e → [ u ]e′ of type (a′0s)

(which is polarizationless but is able to change the membrane label).

4 Using Rules (a)

An informal idea of this section is to replace rules of type (a′′s) with rules
(a) producing additional objects, and rules (c), sending an additional
object out to change the polarization.

Theorem 2 A uniform family of confluent P systems with rules
(a), (c), (e0) working in minimally parallel way can solve SAT with six
polarizations in O(l(m + n)) number of steps.

Proof. The strategy used in the construction below is similar to
that of the previous theorem. However, since the application of the
evolution rules no longer changes the polarization of the membrane,
the control symbols di,k, ti,k, fi,k no longer “operate” in polarization
0, but rather in polarization that toggles between 0 (for even k) and
5 (for odd k), to prevent multiple applications of evolution rules in a
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row in the same membrane. Moreover, the input objects are actually
allowed to evolve in parallel (and the degree of parallelism is chosen
non-deterministically), but in the end of both halves of a cycle it is
possible to count the number of extra objects produced, to make sure
that all l objects have been processed.

For the same propositional formula

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

l =
m∑

i=1

li.

and the same encoding of the instance of β in the alphabet Σ(〈n,m, l〉)
by multisets X, X ′,

Σ(〈n,m, l〉) = {vj,i,1,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ s ≤ 2},
X = {(vj,i,1,1, 1) | xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n},
X ′ = {(vj,i,1,2, 1) | ¬xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n}.
we construct the following P system:

Π(〈n,m, l〉) = (O, H, E, [ [ ]02[ ]03 ]01, w1, w2, w3, R), with
O = {vj,i,k,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n,

1 ≤ k ≤ m + n + 1, 1 ≤ s ≤ 4}
∪ {di,k | 1 ≤ i ≤ m + n + 1, 1 ≤ k ≤ 2l}
∪ {ti,k, fi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ l}
∪ {di | 1 ≤ i ≤ m + n + 1} ∪ {S,Z, yes, no}
∪ {zk | 1 ≤ k ≤ (4l + 3)n + m(4l + 1) + 2}
∪ {oi,j | 0 ≤ i ≤ 5, 0 ≤ j ≤ 5}

w1 = λ, w2 = d1, w3 = z0,

H = {1, 2, 3}, E = {0, 1, 2, 3, 4, 5},
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and the rules are listed below. The computation stages are the same
as in the previous proof.

1. Producing 2n membranes corresponding to the possible variables
assignments; selecting satisfied clauses (groups A and C).

2. Checking whether all clauses are satisfied (groups B and D).

3. Generating the answer and sending it to the environment.
(groups E and F).

Stage 1 consists of n cycles and stage 2 consists of m cycles. Each cycle’s
aim is to process all l objects, i.e., each object counts the number of
cycles completed, and in the first stage the clauses are evaluated while
in the second stage the presence of each clause is checked.

A cycle consists of marking (setting the last index to 3 or 4) all l
objects one by one while performing the necessary operation, and then
unmarking (setting the last index to 1 or 2) all of them. Marking or
unmarking an object generally happens in five steps:

1. the control object produces two “polarization changers”,

2. one of them changes the polarization from 0 or 5 to 1, 2 (to mark)
or to 3 (to unmark),

3. one of the objects that has not yet been (un)marked is processed,
producing a “witness” — yet another “polarization changer”,

4. the “witness” switches the polarization to 4,

5. the second “changer” produced in step 1 of this routine changes
the polarization to 5 or 0.

Notice, however, that “step” 3 might actually take more than one step
(more objects can be (un)marked in parallel, or even in a row, creating
a supply of “witnesses”). Step 4 might actually be executed in parallel
with the last step of “step” 3 (sending out a previous “witness” while
producing more). Finally, “step” 3 might even be skipped if a previous
“witness” is already there. What matters is that the whole (un)marking
routine takes at most 5l steps.
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Changing polarization of membrane 2

O1 (change from i to j)
[ oi,j ] i → [ ]j o4,5, 0 ≤ i ≤ 5, 0 ≤ j ≤ 5

O2 (“witnesses” of D2 are “compatible” with “witnesses” of D1; this
does not interfere with the rest of the computation)
[ o1,4 ]2 → [ ]4 o4,5

Control objects in membrane 2: select clauses

A1 (for variable i: divide)
[ di ] → [ ti,0 ] [ fi,0 ] , 1 ≤ i ≤ n

A2 (process and mark all l objects)
[ ti,k−1 → ti,ko0,1o4,5 ]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[ fi,k−1 → fi,ko0,2o4,5 ]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[ ti,k−1 → ti,ko5,1o4,0 ]5, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even
[ fi,k−1 → fi,ko5,2o4,0 ]5, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

A3 (prepare to unmark objects)
[ ti,l → di,0 ]0, 1 ≤ i ≤ n, if l is even
[ fi,l → di,0 ]0, 1 ≤ i ≤ n, if l is even
[ ti,l → di,0o5,0 ]5, 1 ≤ i ≤ n, if l is odd
[ fi,l → di,0o5,0 ]5, 1 ≤ i ≤ n, if l is odd

A4 (unmark all l objects)
[ di,k−1 → di,ko0,3o4,5 ]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[ di,k−1 → di,ko5,3o4,0 ]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

A5 (switch to the next variable)
[ di,l → di+1 ]0, 1 ≤ i ≤ n, if l is even
[ di,l → di+1o5,0 ]5, 1 ≤ i ≤ n, if l is odd

Control objects in membrane 2: check clauses

B1 (test if clause i is satisfied)
[ dn+i → dn+i,1o0,2o4,5 ]0, 1 ≤ i ≤ m
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B2 (process and mark the other l − 1 objects)
[ dn+i,k−1 → dn+i,ko0,1o4,5 ]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, k is odd
[ dn+i,k−1 → dn+i,ko5,1o4,0 ]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, k is even

B3 (unmark all l objects)
[ dn+i,l+k−1 → dn+i,l+ko0,3o4,5 ]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, l + k is
odd
[ dn+i,l+k−1 → dn+i,l+ko5,3o4,0 ]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, l + k is
odd

B4 (switch to the next clause)
[ dn+i,2l → dn+i+1 ]0, 1 ≤ i ≤ m

B5 (send a positive answer)
[ dm+n+1 ]0 → [ ]0S

Input objects in membrane 2: select clauses

C1 (mark an object)
[ vj,i,k,s → vj,i,k+1,s+2op,4 ]p,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m, k 6= m, 1 ≤ s ≤ 2, 1 ≤ p ≤ 2

C2 (a true variable present without negation or a false variable
present with negation satisfies the clause)
[ vj,i,i,s → vj,i,i+1,3os,4 ]s, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C3 (a true variable present with negation or a false variable present
without negation does not satisfy the clause)
[ vj,i,i,3−s → vj,i,i+1,4os,4 ]s, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C4 (unmark an object)
[ vj,i,k,s+2 → vj,i,k,so3,4 ]3,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ m + 1, 1 ≤ s ≤ 2

Input objects in membrane 2: check clauses

D1 (check if the clause is satisfied at least by one variable)
[ vj,i,m+j,1 → vj,i,k+1,3o1,4 ]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2
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D2 (mark an object)
[ vj,i,m+k,s → vj,i,k+1,s+2o1,4 ]1,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ s ≤ 2

D3 (unmark an object)
[ vj,i,m+k,s+2 → vj,i,k,so3,4 ]3,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ n + 1, 1 ≤ s ≤ 2

Control objects in membrane 3

E1 (count)
[ zk−1 → zk ]0, 1 ≤ k ≤ N = (10l + 5)n + m(10l + 1) + 2

E2 (send time-out object)
[ zN ]0 → [ ]0Z

Control objects in the skin membrane

F1 (the first positive result sends the answer)
[ S ]0 → [ ]1yes

F2 (without the positive result, the time-out sends the negative an-
swer)
[ Z ]0 → [ ]0no

Let us now explain how the system works in more details. The control
objects keep track of the number of cycles completed, whether mark-
ing or unmarking takes place, as well as the number of objects already
(un)marked. Moreover, the control object is responsible to pass the
“right” information to the objects via polarization: in stage 1, by gen-
erating o0,1 or o5,1 if the variable is true, and o0,2 or o5,2 if the variable
is false; in stage 2, o0,1 or o5,1 if the clause is already found, and o0,2

or o5,2 if the clause is being checked for.
During the first stage, an object vj,i,1,s is transformed into vj,i,n+1,t,

where t = 1 if variable xj satisfies clause Ci, or t = 2 if not. The change
of the last index from s to t happens when the third index is equal to i.
The control object d1 is transformed into dn+1. Stage 1 takes at most
(10l + 5)n steps (at most (10l + 3)n in the case when l is even).
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If some clause is not satisfied, then the computation in the corre-
sponding membrane is “stuck” with polarization 2. Otherwise, during
the second stage an object vj,i,n+1,t is transformed into vj,i,n+m+1,t,
while the control object dn+1 becomes dm+n+1. Stage 2 takes at most
m(10l + 1) steps, plus one extra step to send objects S to skin, if any.

After stage 2 is completed, one copy of S, if any, is sent out as yes,
changing the polarization of the skin membrane. After this time has
passed, object Z comes to the skin from region 3. If the polarization
of the skin remained 0, Z is sent out as no. ¤

The rules of the system in the proof above are also global, so we can
again obtain the following

Corollary 2 A uniform family of confluent polarizationless P systems
with rules (a), (c′0), (e0) working in minimally parallel way can solve
SAT with membrane labels of six kinds.

5 Conclusions

Since changing membrane polarization controls what rules can be ap-
plied, the number of polarizations corresponds to the number of states
of this control. Moreover, almost the only way the objects of the sys-
tem may interact is via changing membrane polarization. Hence, the
number of polarizations is a complexity measure deserving attention.

For maximal parallelism it has been proved that two polariza-
tions are sufficient for both universality (with one membrane) and
efficiency, while one-polarization systems are still universal (with el-
ementary membrane division and membrane dissolution), but are con-
jectured not to be efficient.

We proved that efficient solutions of computationally hard problems
by P systems with active membranes working in minimally parallel way
can be constructed avoiding both cooperative rules and non-elementary
membrane division, thus improving results from [7], [9]. For this task,
it is enough to have four polarizations, sequential evolution rules chang-
ing polarizations, polarizationless elementary membrane division rules
and polarizationless rules of sending an object out. One can use the
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standard evolution and send-out rules, as well as polarizationless ele-
mentary membrane division rules; in this case, six polarizations suffice.

The first construction is “almost” deterministic: the only choices
the system can make in each cycle is the order in which the input
systems are processed. The second construction exhibits a more asyn-
chronous behaviour of the input objects, which, depending on the cho-
sen degree of parallelism, might speed up obtaining the positive answer,
but less than by 20% 1. In this case, controlling polarizations by evo-
lution is still faster than controlling polarizations by communication.

A number of interesting problems related to minimal parallelism
remain open. For instance, is it possible to decrease the number of
polarizations/labels? Moreover, it presents an interest to study other
computational problems in the minimally-parallel setting, for instance,
the computational power of P systems with one active membrane work-
ing in the minimally parallel way.
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with Minimal Parallelism. Theoretical Computer Science 378, 1,
2007, 117–130.

[8] R. Freund, S. Verlan: A Formal Framework for Static (Tissue)
P Systems. Membrane Computing, 8th International Workshop,

169



A. Alhazov

WMC 2007, Thessaloniki, Revised Selected and Invited Papers
(G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa,
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On computational properties of gene assembly

in ciliates

Vladimir Rogojin

Abstract

Gene assembly in stichotrichous ciliates happening during
sexual reproduction is one of the most involved DNA manipu-
lation processes occurring in biology. This biological process is of
high interest from the computational and mathematical points of
view due to its close analogy with such concepts and notions in
theoretical computer science as permutation and linked list sort-
ing and string rewriting. Studies on computational properties
of gene assembly in ciliates represent a good example of inter-
disciplinary research contributing to both computer science and
biology. We review here a number of general results related both
to the development of different computational methods enhanc-
ing our understanding on the nature of gene assembly, as well as
to the development of new biologically motivated computational
and mathematical models and paradigms. Those paradigms con-
tribute in particular to combinatorics, formal languages and com-
putability theories.

1 Introduction

We survey here a number of major results which address some compu-
tational properties of evolved DNA manipulation process happening in
mating cells of stichotrichous ciliates [57, 27, 37, 59, 66]. Stichotrichous
ciliates belong to Domain Eukaryote, Phylum Ciliophora, Subphylum
Intramacronucleata, Class Spirotrichea, Subclass Stichotrichia [46].

DNA manipulation during gene assembly in stichotrichous ciliates
represents a beautiful example of a computational process happening

c©2010 by V. Rogojin

171



V. Rogojin

in living organisms. Ciliates belong to one of the oldest and most di-
verse groups of eukaryotic cells [65]. Currently there are known around
8,000 species of ciliates [17]. Two unique features differ ciliates from
other eukaryotes: nuclear dualism and possession of hairlike structures
on their cellular surfaces which are called cilia [17, 58]. Germline
and somatic nuclear functions are split between nuclei of two different
types, called micro- and macronuclei respectively. Micronuclei keep
their genetic data in highly encrypted form: genes are split into frag-
ments separated by non-protein-encoding sequences, those fragments
may be shuffled and some of them could be inverted [8]. In the same
time macronuclear genome is organized in a very compact form: basi-
cally any macronuclear DNA represents one (rarely two) contiguous nu-
cleotide sequences representing genes. Majority of non-stichotrichous
ciliates have simpler organization of their micronuclear genome: gene
fragments are still separated by non-coding sequences but follow in the
orthodox order. When micronuclei get transformed into macronuclei,
all non-coding blocks of DNA are being excised and gene fragments get
spliced together to form contiguous sequences representing genes [57].
In stichotrichs and several other species of ciliates this process is even
more involved due to the necessity to unscramble gene fragments. This
process of gene assembly is especially of interest in stichotrichs from
the computational point of view, since it could be interpreted formally
as a string rewriting and permutation sorting procedure [61, 17].

We present briefly in this article three aspects related to studies of
computational properties of gene assembly in ciliates.

First, we consider a restricted versions of the intramolecular op-
erations of gene assembly (called simple and elementary models)
which take into account only local intramolecular manipulations with
DNA [22, 33, 45]. We describe a number of combinatorial properties
of simple and elementary models, including the structure of gene pat-
terns that can be assembled in these restricted models and form of their
assembly strategies [32, 44, 33, 56, 63].

Secondly, we address several novel computational models based
on gene assembly relying on either contextual molecular recombina-
tions [36] or on non-deterministic sequence matching [4]. We show
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that some variants of the models are Turing complete, while some oth-
ers may be used to solve efficiently (albeit only theoretically) compu-
tationally intractable (in particular, NP-complete) problems. More-
over, we mention the result where it was shown that the concept of
distributed computations from Tissue-like P systems substitutes well
the contextual ingredient of molecular operations in the computational
model when demonstrating the Turing universality of gene assembly in
ciliates [2].

The third aspect, which we investigate in this paper, is related to an
algorithmic approach for studying a graph-theoretical notion of parallel
complexity of the gene assembly in ciliates [30].

2 Biological basics of gene assembly in ciliates

As it was mentioned above, ciliates posses two unique features: all
ciliates have cilia and all of them are in possession of nuclei of two
different types. Cilia represent a complex of moving hair-like organelles
projecting from the cellular surface. The motion of cilia is synchronized
so that they propel efficiently the cell through the aqueous environment
and/or direct nutritious particles (like bacteria, algae or other ciliates)
into the cell’s oral apparatus [17, 58].

Those nuclei that perform germline function in ciliates are called
micronuclei. Micronuclei practically do not participate in RNA tran-
scription and most of the time are passive throughout the life cycle of
a cell. However, when ciliates breed, micronuclei get activated. When
breeding, two ciliate organisms of the same specie exchange their mi-
cronuclear genetical information. On the other hand, almost all RNA
transcription in ciliates is carried on in macronuclei [17, 59].

There is a big difference in the internal organization of micronu-
clear and macronuclear genome. Micronuclear DNA are organized on
chromosomes. Each micronuclear DNA represents very long molecule,
which contains many genes separated by long non-protein-coding
spacer nucleotide sequences. Each gene is broken into some number of
fragments separated from each other by non-protein-coding blocks [8].
In stichotrichs ciliates and several other species gene fragments are
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also shuffled throughout the molecule and some of the fragments are in-
verted [59, 17]. Contrary to micronuclear DNA macronuclear molecules
are short and contain usually one, rarely two contiguous nucleotide
protein-coding sequences [8].

The internal molecular structure of micronuclear genes suits well
for robust preservation of the genetic information for future genera-
tions, while macronuclear gene structure is optimized for rapid RNA
transcription, what should bring an evolutionary advantage for ciliate
organisms [17].

Macronuclei from maternal organisms get disintegrated during sex-
ual reproduction, while some copies of micronuclei from child organ-
isms are being transformed into new macronuclei. During this trans-
formation heavy editing of micronuclear DNA occurs, so that non-
protein-coding sequences (called Internal Eliminated Sequences, IESs)
get eliminated and new macronuclear DNA are being created from the
micronuclear DNA as the result of splicing of micronuclear gene frag-
ments (called Macronuclear Destined Sequences, MDSs). Thus, this
DNA manipulation process is called gene assembly [57]. This process
is particularly complex in stichotrichous ciliates because gene fragments
on the micronuclear DNA are shuffled and some of the fragments are
inverted [8].

The order in which MDSs should be spliced to each other to as-
semble a macronuclear gene is indicated by short nucleotide sequences
(called pointers) placed on the edges of MDSs. Any two MDSs which
stay next to each other in the assembled macronuclear gene share same
pointer on their respective edges. In this way, pointers ”tell” for each
MDS to which other MDSs it should be spliced to. One can think
that MDSs that follow directly one another in the macronuclear DNA
”point” to each other by means of their pointers. Thus, a micronuclear
gene pattern could be interpreted as a linked list data structure, and
the gene assembly process could be seen as a list sorting procedure [61].
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3 Molecular models for gene assembly

Two molecular models for gene assembly that suggest splicing of MDSs
on their common pointers are called intermolecular [39, 42, 43] and in-
tramolecular [20, 21]. As it follows from their names, the intermolecular
model considers interaction and exchange of some pieces of DNA be-
tween several molecules during gene assembly, while the intramolecular
model assumes that all manipulations are being carried on in all DNA
independently from each other.

The intermolecular model

The intermolecular model considers three molecular operations [39, 42,
43]:

1. Intramolecular recombination: A block of DNA flanked by oc-
currences of same pointer gets excised in the form of a circular
molecule. As the result, two molecules are produced, one is linear
which contains the remaining nucleotide sequence, and another
is the circular one containing the excised sequence. For details
we refer to Figure 1.

2. Intermolecular recombination: As the inverse of the intramolec-
ular recombination, a circular molecule gets inserted into a linear
molecule if both molecules posses occurrences of the same pointer.
The circular molecule is cut at the site of the occurrence of the
pointer and gets inserted at the location of another occurrence of
the pointer into the linear molecule. See Figure 2.

3. Intermolecular recombination: Two linear molecules recombine
on their common pointer. As the result, two molecules inter-
change their tails starting on the common pointer. Note, that
this operation is self-reversible, i.e., if applied on its resulting
molecules on the same pointer, the initial two molecules can be
obtained. See Figure 3.
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Figure 1. Intramolecular recombination. (a) Initial molecule: a pointer
is in direct repeat. (b) Folding: the molecule folds forming a loop so
that occurrences of the pointer get next to each other. (c) The result:
A part of the molecule flanked by the occurrences of the pointer gets
excised in the form of a circular molecule.

The intramolecular model

The intramolecular model considers three operations, called ld, hi and
dlad [20, 21]:

1. Loop, direct-repeat excision, ld: This operation is applicable to a
molecule having either an IES flanked by repeating occurrences of
a pointer (called simple ld) or having a block containing all MDSs
flanked by occurrences of a pointer, and this pointer occurs twice
with the same orientation. The molecule folds forming a loop,
so that occurrences of the pointer get next to each other. Then
the recombination happens, and as the result the block flanked
by occurrences of the pointer gets excised as a circular molecule,
see Figure 4. Note, that this operation resembles the intramolec-
ular recombination from the intermolecular model, except that
its simple version does not excise DNA blocks containing any
MDS. During gene assembly this operation is used to get rid of
non-coding blocks.

2. Hairpin, inverted-repeat excision/reinsertion, hi: This opera-
tion is applicable to a molecule having two occurrences of the
same pointer with opposite orientations. The molecule folds form-
ing a hairpin loop, so that both occurrences of the pointer are
brought next to each other and have the same spacial orienta-
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Figure 2. Intermolecular recombination. The inverse of the in-
tramolecular recombination (a) Initial molecules: a circular and a lin-
ear molecule having occurrences of the same pointer (b) Result: the
circular molecule gets inserted into the linear molecule at the site of
occurrences of the pointer.

Figure 3. Intermolecular recombination. (a) Initially two linear
molecules with occurrences of the same pointer. (b) Result: molecules
exchange their tails starting at occurrences of the pointer.

tion. Then the recombination is possible, and as the result, piece
of the molecule flanked by occurrences of the pointer in the in-
verted repeat is inverted, see Figure 5. This operation is used
throughout the assembly process in order to restore the proper
orientation of MDSs.

3. Double loop, alternating direct-repeat excision-reinsertion, dlad:
This operation can be applied when the molecule has two point-
ers occurring in an overlapping direct repeat. I.e., when block
flanked by occurrences of the same orientation of a pointer over-
laps with the block flanked by occurrences of the same orientation
of the other pointer. The molecule folds forming a double loop
so that occurrences of both pointers get next to each other so
that the recombination be possible. In the result of this recombi-
nation, non-overlapping parts of blocks flanked by their pointers
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exchange their places, see Figure 6. This operation is used in the
assembly in order to sort MDSs in proper order.

Figure 4. Simple loop recombination [64]. (a) Initial molecule: an IES
flanked by occurrences of pointer p. (b) Loop-folding, alignment of
occurrences of pointer p. (c) Recombination by pointer p. (d) Result:
the IES is excised in the form of circular molecule, MDS A and MDS
B are spliced on the common pointer p in the linear molecule. One
occurrence of p is present in the linear molecule and one occurrence
of p is present in the circular molecule, but neither of them acts as a
pointer.

Note, that contrary to the intermolecular model, the intramolecular
operations are not reversible. Application of any of ld, hi or dlad
reduces the number of MDSs by gluing two or more MDSs on their
common pointers into bigger composite MDSs. A pointer is considered
to stop acting as a pointer, when its occurrence gets either inside of an
composed IES or of an composed MDS.
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Figure 5. Hairpin recombination [64]. (a) Initial molecule: one oc-
currence of p in an orthodox orientation and another in the inverted
orientation. (b) Hairpin-folding, alignment of occurrences of pointer p.
(c) Recombination by pointer p. (d) Resulting molecule: the orienta-
tion of PART B is changed, the rest of the molecule is not affected.
As a result of the inversion of PART B MDSs having pointer p are
spliced together. Occurrences of p and their orientations are retained,
but neither of the occurrences acts as a pointer.

Simple and elementary intramolecular models

The intramolecular operations allow in their general formulation that
DNA blocks participating in the recombination may contain any num-
ber of MDSs. However, arguing on the principle of parsimony, simple
intramolecular operations were introduced in [22] suggesting that all
the recombinations are applied ”locally”. Simple operations follow the
same folding and recombination events as the operations in the general
intramolecular model, however, blocks of DNA that are being inverted
or relocated may contain exactly one MDS. Even further simplification
of the intramolecular operations led to so called elementary operations,
where only the micronuclear (non-composite) MDSs are allowed to be
inverted/relocated [33]. I.e., as soon as two MDSs are combined into
a composite MDS, this MDS cannot be rearranged by the elementary
operations.
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Figure 6. Double-loop recombination [64]. (a) Initial molecule: blocks
flanked by occurrences of pointers p and q respectively overlap, their
common nucleotide sequence is PART C. (b) The molecule forms a
double-loop folding so that occurrences of p and q get aligned for the
recombination. (c) Recombination by pointers p and q. (d) Result-
ing molecule: PART B and PART D exchange places. As a result of
the translocation of PART B and PART D MDSs having pointer p are
spliced together, and MDSs having pointer q are spliced together. Oc-
currences of p and q remain in the molecule, but none of them act as a
pointer.

Template-guided recombination models

Since nucleotide sequences representing pointers are very short (from
2 to 20 base-pairs) and may occur also in the middle of MDSs and
IESs [6], there is a need for some kind of guiding mechanism which
”helps” ciliates to identify correctly MDSs and to align ”real” occur-
rences of the pointers next to each other and splice ”real” MDSs in the
right order. The template-guided recombination models suggest such
mechanism [7, 60]. These models rely on the concept of templates -
macronuclear DNA or RNA remained from maternal organisms. The
presence of those molecules in the newly formed macronuclei and their
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critical role for gene assembly have been shown experimentally [49].
The template-guided recombination represents triple-splicing, where
two recombining molecules (or different parts of the same molecule)
get aligned next to each other and recombine with the help of the
template molecule which being as a product of an earlier equivalent
recombination, shows the way the alignment and the recombination
should be done [7, 60].

In the first template-guided recombination model proposed in [60]
a double-stranded DNA serves as a template. This DNA is assumed to
be a copy of the assembled gene from the parental macronucleus. In
this model, the template DNA is placed in-between recombining DNA.
As the result of the recombination, one double stranded DNA whose
nucleotide sequence contains the left part of one of the recombining
molecules and the right part of the other of the recombining molecules
and which matches the template is obtained. During this recombina-
tion, the recombining molecules and the template molecule exchange
some of their physical parts, thus the resulting DNA contains some
parts of the template, and the template is reconstructed to its original
form, so that it could be reused for other recombinations. Also, the
right part of the first of the recombining molecules and the left part
of the second of the recombining molecules that do not much the tem-
plate get excised. In this template-guided recombination model the
parts of the recombining molecules that do not match the template are
not spliced together after the recombination, what contradicts both the
intermolecular and the intramolecular models.

A modification of the template-guided model from above was sug-
gested in [7]. Instead of double-stranded DNA either a single- or
double-stranded RNA serves as the template. During the recombi-
nation, the spacial position of the double-stranded template is ”above”
the recombining molecules contrary to the previous model. No physical
parts of the template get incorporated inside the resulting molecules.
Parts of the recombining molecules that do not match the template are
also spliced together.
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4 Formalizing gene assembly

As we have mentioned above, gene assembly process can be inter-
preted from the computational point of view as a permutation sorting
or string (or multiset of strings) rewriting process. We concentrate
in this manuscript on the intramolecular model. Hereby, we present
briefly here several formalisms for the intramolecular model at differ-
ent levels of abstraction. We start from the permutation-based formal-
ism [33], then we continue with MDS-descriptors [20, 21], after that
we switch to double occurrence strings [18, 23] and contextual string
rewriting rules [41, 47, 51], and finally we present graph-based formal-
ization [18, 23] for the intramolecular model.

Gene assembly as sorting of permutations

The most suitable formalism to handle simple and elementary in-
tramolecular operations is through rewriting rules for signed permu-
tations [33, 45]. A given gene pattern could be represented by a signed
permutation which indicates the order and orientation of its micronu-
clear MDSs. The gene assembly process itself could be interpreted as
a sorting of the signed permutation.

We formalize here only the elementary intramolecular model. As
the elementary operations rearrange only micronuclear MDSs, this
leads to the following formalization of elementary operations:

Definition 1 1. For each p ≥ 1, ehp is defined as follows:

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(x(p + 1)pz) = x(p + 1)pz,

ehp(x(p + 1)pz) = x(p + 1)pz,

where x, z are signed strings over Πn. We denote Eh = {ehp |
1 ≤ p ≤ n}.
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2. For each p, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(xpy(p− 1)(p + 1)z) = xy(p− 1)p(p + 1)z,

edp(x(p− 1)(p + 1)ypz) = x(p− 1)p(p + 1)yz,

edp(xpy(p + 1) (p− 1)z) = xy(p + 1) p(p− 1)z,

edp(x(p + 1) (p− 1)ypz) = x(p + 1) p (p− 1)yz,

where x, y, z are signed strings over Πn. We denote Ed = {edp |
1 < p < n}.

Since the permutation-based formalism captures only the MDS in-
version and relocation events throughout the gene assembly, LD oper-
ation is not being formalized because it neither inverts, nor relocates
MDSs [64].

Example 1 [33]

(i) Permutation π1 = 45 6 1 2 3 is sortable and a sorting composition is
(eh4 ◦eh5 ◦eh2 ◦eh1)(π1) = 4 5 6 1 2 3. Permutation π′1 = 45 6 1 2 3
is unsortable. Indeed, only eh4◦eh5 is applicable to π′1, but it does
not sort it.

(ii) There exist permutations with several sorting compositions, even
leading to different (cyclically) sorted permutations. One such
permutation is π2 = 24 1 3. Indeed, ed2(π2) = 4 1 2 3. At the
same time, ed3(π2) = 2 3 4 1.

(iii) There are permutations having both sorting compositions and
non-sorting compositions leading to unsortable permutations. If
π3 = 2 4 1 3 5, then ed3(π3) = 2 3 4 1 5 is a unsortable permuta-
tion. However, π3 can be sorted, e.g., by the following composi-
tion: (ed4 ◦ ed2)(π3) = 1 2 3 4 5.

(iv) Applying a cyclic shift to a permutation may render it unsortable.
Indeed, permutation 2 1 3 is sortable, while 3 2 1 is not.
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Gene assembly as MDS descriptor rewriting process

Here we represent a gene pattern through its sequence of MDSs.
Each MDS we represent through its incoming and outgoing pointers
(opening and closing pointers respectively), as well as through the se-
quence of pointers incorporated in the MDS on which micronuclear
MDSs spliced to form this composite MDS [20, 21, 4]. Formally, let
ΣP = {p1, p2, . . . , pn} be the set of pointers, and b, e ∈ ΣP be so called
begin and end markers (denoting opening sequence of very first MDS
and closing sequence of very last MDS respectively). Then we represent
an MDS by a triple M = (p, u, q), where p ∈ ΣP ∪ {b}, q ∈ ΣP ∪ {e}
are called active pointers and u ∈ Σ∗P is called the content. It is said,
that p is an incoming and q is an outgoing pointer of M . The length of
M is denoted as |M | = |puq|. We denote the set of all MDSs over ΣP

as ΣM = {(p, u, q)|p ∈ ΣP ∪ {b}, q ∈ ΣP ∪ {e}, u ∈ Σ∗P }. The inversion
of MDS M = (p, u, q) we denote as M = (q, u, p) and set of inverted
MDSs as ΣM = {M |M ∈ ΣM}.

The gene pattern we represent by its MDS descriptor – a sequence
of MDSs and their orientations. Formally, an MDS descriptor is a
string over alphabet ΣM ∪ ΣM .

Note, that the assembled gene is represented by any of the com-
posite MDSs (b, p1p2 . . . pn, e) and (e, pn . . . p2p1, b). In this way, a gene
assembly process may be interpreted as an MDS descriptor rewriting
process that leads to any of the two MDSs from above.

The intramolecular operations we formalize on MDS descriptors as
follows:

1. ld operation on pointer p is formalized as ldp:

ψ1(q, u, p)ψ2(p, v, r)ψ3 ⇒ldp ψ1(q, upv, r)ψ3

2. hi operation on pointer p is formalized as hip:

• ψ1(p, u, q)ψ2(p, v, r)ψ3 →hip ψ1ψ2(q, u p v, r)ψ3;

• ψ1(q, u, p)ψ2(r, v, p)ψ3 →hip ψ1(q, upv, r)ψ2ψ3;

3. dlad operation on pointers p and q is formalized as dladp,q:
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• ψ1(p, u1, r1)ψ2(q, u2, r2)ψ3(r3, u3, p)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1ψ4(r4, u4qu2, r2)ψ3(r3, u3pu1, r1)ψ2ψ5;

• ψ1(p, u1, r1)ψ2(r2, u2, q)ψ3(r3, u3, p)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1ψ4ψ3(r3, u3pu1, r1)ψ2(r2, u2qu4, r4)ψ5;

• ψ1(r1, u1, p)ψ2(q, u2, r2)ψ3(p, u3, r3)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1(r1, u1pu3, r3)ψ4(r4, u4qu2, r2)ψ3ψ2ψ5;

• ψ1(r1, u1, p)ψ2(r2, u2, q)ψ3(p, u3, r3)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1(r1, u1pu3, r3)ψ4ψ3ψ2(r2, u2qu4, r4)ψ5;

• ψ1(p, u1, r1)ψ2(q, u2, p)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1ψ4(r4, u4qu2pu1, r1)ψ2ψ5;

• ψ1(p, u1, q)ψ3(r3, u3, p)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1ψ4ψ3(r3, u3pu1qu4, r4)ψ5;

• ψ1(r1, u1, p)ψ2(q, u2, r2)ψ3(p, u3, q)ψ5 ⇒dladp,q

ψ1(r1, u1pu3qu2, r2)ψ3ψ2ψ5;

For more details on this formalism we refer to [20, 21, 4].

Example 2 [64]
Let us consider a micronuclear gene pattern of the actin I gene from

Stylonychia lemnae. Its MDS descriptor is

δ = (3, 4)(4, 5)(5, 6)(7, 8)(3, 2)(b, 2)(6, 7)(8, e).

Composition Φ = ld5 ◦ ld4 ◦ hi7 ◦ hi2 ◦ hi3 ◦ dlad6,8 reduces δ to MDS
(b, 234567, e). Indeed,

δ′ = dlad6,8(δ) =(3, 4)(4, 5)(5, 6, 7)(3, 2)(b, 2)(7, 8, e)
δ′′ = hi3(δ′) =(7, 6, 5)(5, 4)(4, 3, 2)(b, 2)(7, 8, e)

δ′′′ = hi2(δ
′′) =(7, 6, 5)(5, 4)(4, 32, b)(7, e)

δiv = hi7(δ
′′′) =(b, 23, 4)(4, 5)(5, 67, e)

δv = ld4(δiv) =(b, 234, 5)(5, 67, e)

δvi = ld5(δv) =(b, 234567, e)
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Gene assembly by contextual intramolecular operations
on double occurrence strings

If we abstract from the information about MDSs and concentrate only
on pointers occurrences in a gene pattern, then we obtain a string based
formalism, where each letter and its sign represent an occurrence of a
pointer and its orientation [23]. If we follow the idea that pointer
alignment during gene assembly is context-guided, then we may come
to the similar concept of contextual intramolecular operations [36].

Formally, set of templates may be represented by so-called splicing
scheme which is a set of splicing relations. A splicing rule is represented
by a pair of triplets (α, p, β) ∼ (α′, p, β′) which means that the recom-
bination at pointer p is possible if and only if, one of its occurrences is
flanked by sequences α and β and another of its occurrences is flanked
by α′ and β′.

The contextual ld on pointer p is formalized as delp: delp(xpupy) =
xpy with respect to splicing scheme R if and only if there is a splicing
relation (α, p, β) ∼ (α′, p, β′) in R such that x = x′α, u = βu′ = u′′α′

and y = β′y′.
The contextual dlad on pointers p and q is formalized as trlp,q:

trlp,q(xpuqypvqz) = xpvqypuqz with respect to splicing scheme R if and
only if there are splicing relations (α, p, β) ∼ (α′, p, β′) and (γ, q, δ) ∼
(γ′, q, δ′) in R such that x = x′α, uqy = βu′ = u′′α′, vqz = β′v′,
xpu = x′′γ, ypv = βy′ = y′′γ′ and z = δ′z′.

Formalizing contextual hi is beyond our scope in this manuscript.
For non-contextual formalizations of ld, hi and dlad we refer to [18,

23].

Gene assembly as graph reduction process

If we abstract from positions of pointers in a gene pattern and concen-
trate only on their overlapping relations, then we obtain graph-based
formalism for gene assembly [18, 23]. We recall that two pointers p
and q overlap if and only if the interval flanked by pointer p overlaps
(but does not include and is not included) with interval delimited by
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pointer q. I.e., we say that p and q overlap if in the gene pattern we
have either scattered subsequence pqpq or qpqp.

Formally, let u be a string representing occurrences of pointers in
a gene pattern. We define for it signed overlap graph G = (V, E, σ) as
follows:

• V = dom(u), i.e., each node p from G corresponds to a pointer p
from u;

• E = {{p, q}|pqpq ≤s u or qpqp ≤s u}, i.e., {p, q} is an undirected
edge in G if and only if pointers p and q overlap in u;

• σ : V → {+,−}, where σ(p) = − if and only if both occurrences
of p have the same sign (i.e., the same orientation) in u.

Operations LD, HI and DLAD are represented on the abstraction
level of signed overlap graphs as follows:

Let G = (V,E, σ) be a signed overlap graph:

• Operation ld on pointer p is formalized as graph reduction oper-
ation gnr: the operation gnr is applicable to a vertex p ∈ V if
σ(p) = − and N(p) = ∅. In this case, gnrp(G) = G− {p}.

• Operation hi on pointer p is formalized as graph reduction op-
eration gpr: the operation gpr is applicable to vertex p ∈ V
if σ(p) = +. In this case, gprp(G) = locp(G) − {p}, where
locp(G) = (V, E, σ′) with σ′(x) = −σ(x) if x is a neighbor of
p, otherwise σ′(x) = σ(x), for all x ∈ V . Here −σ(x) = − if and
only if σ(x) = +.

• Operation dlad on pointers p and q is formalized as graph reduc-
tion operation gdr: The operation gdrp,q is applicable to adjacent
vertices p, q ∈ V if σ(p) = σ(q) = −. In this case, gdrp,q(G) = G′

where G′ = (V \ {p, q}, E′, σ). Here for all pairs of x and y from
V \ {p, q} such that x ∈ NG(p) \ NG(q) and y ∈ NG(q) \ NG(p)
we have edge {x, y} ∈ E′ if and only if x and y are not neighbors
in G. For all other pairs x, y from V \ {p, q} we have {x, y} ∈ E′

if and only if {x, y} ∈ E.

187



V. Rogojin

Example 3 [64]
Here we show how an overlap graph G which represents the mi-

cronuclear gene pattern of the actin I gene from Stylonychia lemnae,
can be reduced to the empty graph:

Step 1: Vertices 6 and 8 are negative and adjacent in G. In this way,
we can apply gdr6,8. The resulting graph gdr6,8(G) is represented
in Figure 7(a);

Step 2: Vertex 3 is positive in gdr6,8(G). Then, we can apply gpr3.
Vertex 7 changes its sign since it is adjacent to 3. Then we obtain
graph represented in Figure 7(b);

Step 3: Vertices 2 and 7 are positive in gpr3(gdr6,8(G)). Then we
can apply gpr2 and gpr7. The resulting graph is represented in
Figure 7(c);

Step 4: Finally, only two negative isolated vertices 4 and 5 remain
in (gpr7◦ ◦gpr2 ◦ gpr3 ◦ gdr6,8)(G). By applying gnr4 and gnr5 we
reduce the graph to the empty one.

5 Complexity of gene assembly

Intuitively, by ”complexity” of gene assembly one can understand the
”effort” needed to assemble a gene. In literature exist several concepts
for the complexity of gene assembly related to types of molecular oper-
ations involved into the process as well as to the order and the manner
in which those operations are applied [64]. In this section we address
such gene assembly complexity related topics as simple [22] and ele-
mentary [33] gene assembly as well as the parallel complexity of gene
assembly [30, 28].

Simple and elementary gene assembly

In its general formulation, intramolecular operations may invert and
translocate blocks of DNA containing any number of MDSs. It has
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(a)

(b) (c) (d)

Figure 7. Graph reduction strategy [64]: (a) Graph G which repre-
sents the micronuclear gene pattern of the actin I gene from Stylony-
chia lemnae, (b) Graph gdr6,8(G), (c) graph gpr3(gdr6,8(G)), (d) graph
(gpr7 ◦ gpr2 ◦ gpr3 ◦ gdr6,8)(G).

been shown that the intramolecular model is complete in a sense that
any given hypothetical micronuclear gene pattern can be assembled to
the macronuclear gene [17]. The restriction from general intramolec-
ular to simple model has one immediate consequence, simple model
is not complete. I.e., there are some hypothetical gene patterns for
which there is no assembly strategy consisting of solely simple oper-
ations which lead to assembled macronuclear gene. However, simple
operations can assemble all currently discovered from ciliates gene pat-
terns [17, 22]. This fact enables the hypothesis that ciliates use simple
operations to assemble their genes. Then it might be interesting to
characterize those gene patterns that can be assembled by simple op-
erations.

There may exist many different intramolecular assembly strategies
applicable to the same micronuclear gene pattern [17]. In general in-
tramolecular model, any assembly strategy applicable to a gene pattern
leads to an assembled gene. However, since simple model is not com-
plete, there are gene patterns for which there is no simple assembly
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strategy leading to the assembled gene. Interestingly, any gene pattern
which can be assembled by simple operations to the macronuclear gene
has only successful simple strategies (i.e., those leading to the macronu-
clear gene) [44]. In this way, characterizing those gene patterns that
can be assembled by simple strategies is straightforward: just try a sim-
ple assembly strategy and see if it assembles successfully a gene pattern
to the macronuclear gene. However, the situation is totaly different for
elementary operations.

The slight difference between the definitions of simple and elemen-
tary operations (elementary hi and dlad invert/relocate blocks of DNA
containing only one non-composite MDS) generates the following im-
portant outcome: a gene pattern may have both successful and un-
successful applicable elementary assembly strategies [33]. This means
that characterization of those gene patterns that can be assembled by
elementary operations is not as straightforward as it is in the case of
simple operations. It may be necessary to try some number of differ-
ent elementary assembly strategies applicable to a gene pattern before
finding a successful one. However, we have found an efficient combina-
torial procedure to decide whether a gene pattern may be assembled
by elementary operations without actually trying any of elementary
assembly strategies [56, 63].

Our decision method is basing on the concept of a dependency graph
associated to a gene pattern [33]. The dependency graph is a directed
graph reflecting the information about the order in which operations
can be used in strategies applicable to the gene pattern as well as about
those operations that are never used in any strategy for this pattern.
In this manuscript we present results addressing gene patterns without
inverted MDSs. For characterization of gene patterns with the inverted
MDSs we refer to [33].

As it was mentioned above, signed permutations is a suitable for-
malism to represent gene patterns when working with elementary oper-
ations. The dependency graph associated to permutation π is defined
as Γπ = (Vπ, Eπ), where Vπ = dom(π) and

Eπ = {(1, 1), (n, n)} ∪ {(i, i)|(i + 1)(i− 1) ≤s π}∪

190



On computational properties of gene assembly in ciliates

∪{(j, i)|(i− 1)j(i + 1) ≤s π}.
Also, we denote the subgraph induced from Γπ by set Tπ,p =

{q|there is a path from q to p in Γπ} as Γπ,p.

Example 4 [64]
Let π = 1 10 3 5 7 12 2 9 4 11 6 13 8. Then

Vπ = dom(π) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

and

Eπ = {
(1, 1)
(10, 2), since 1 10 3 ≤s π

(9, 3), since 2 9 4 ≤s π

(11, 5), since 4 11 6 ≤s π

(13, 7), since 6 13 8 ≤s π

(2, 8), (12, 8) since 12 12 2 9 ≤s π

(9, 9), since 10 8 ≤s π

(4, 10), since 9 4 11 ≤s π

(3, 11), (5, 11), (7, 11), since 10 3 5 7 12 ≤s π

(6, 12), since 11 6 13 ≤s π

(13, 13), since n = 13
}

The corresponding dependency graph Γπ = (Vπ, Eπ) is shown in
Figure 8.

Since we consider here gene patterns without inverted MDSs, all
gene assembly strategies that we address do not use hi operations.
I.e., formally we consider Ed-sortable permutations. For dependency
graph-based characterization of Eh,Ed-sortable permutations we refer
to [33].

Here we present a constructive dependency graph-based character-
ization of Ed-sortable permutations from [56]. We use the notion of
so-called ”forbidden integers” for a permutation, integers on which ed
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?>=<89:;4 // ?>=<89:;10 // ?>=<89:;2 // ?>=<89:;8

?>=<89:;5

²²?>=<89:;3 // ?>=<89:;11

OO

?>=<89:;7oo ?>=<89:;12

OO

?>=<89:;9

OO
­­

?>=<89:;1
­­

?>=<89:;13

OO
®® ?>=<89:;6

OO

Figure 8. The dependency graph Γπ = (Vπ, Eπ) of permutation π =
110 3 5 7 12 2 9 4 11 6 13 8 [64]

operations are never used in any ed-strategy applicable to the permu-
tation. I.e., an integer p from domπ for some unsigned permutation π
we call forbidden if and only if there is no Ed strategy applicable to π
where operation edp is used.

We can decide the set of forbidden integers for a permutation π as
follows:

Theorem 1 [56] For a permutation π over Σn and p ∈ Σn, p is
forbidden in π if and only if the subgraph Γπ,p = (Tπ,p, Eπ,p) is cyclic
or q − 1, q ∈ Tπ,p for some q.

By π|U we denote a scattered substring of π containing only the
letters from set U .

Now, we decide the Ed-sortability of a permutation π as follows:

Theorem 2 [56]
Permutation π is sortable if and only if π|F (π) is sorted.

Example 5 [64]
Let π be the permutation from Example 4. By Theorem 1, set

F (π) = {1, 3, 5, 7, 9, 11, 13}, since 1, 9 and 13 are in self-loops, 5 and
11 form a cycle, and edges (9, 3) and (13, 7) belong to Γπ. Clearly
π|F (π) = 1 3 5 7 9 11 13, which is sorted. Thus π is sortable. For in-
stance, composition of ed operations ed8 ◦ ed12 ◦ ed6 ◦ ed2 ◦ ed10 ◦ ed4(π)
sorts π.
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This theorem does not provide any information about those ed
strategies that sort π. The general form of all sorting strategies was
presented in [63].

Parallel gene assembly

By parallel complexity of a gene pattern we understand the minimal
number of parallel steps needed to assemble a gene. Formally, the
parallelism of gene assembly is analyzed by means of the pointer re-
duction system. We say that a set of graph reduction operations may
be applied in parallel to a graph if and only if these operations may
be applied in any order to the graph. It was shown that for an initial
graph the set of reduction operations, but not the order of their ap-
plication determine the resulting graph. All these enables the notion
of parallel reduction of a graph as a sequence of parallel steps leading
to the empty graph [30, 28]. Here a parallel step is a set of opera-
tions applied in parallel. We represent a parallel reduction formally as
Φ = Sk ◦ . . . ◦ S1, where Si is a set of operations applicable in par-
allel to graph Si−1 ◦ . . . ◦ S1(G) and Φ(G) is an empty graph. The
parallel complexity of Φ is k, we denote it as C(Φ) = k. By parallel
complexity of graph G we understand the minimal complexity among
all of its parallel reductions. Formally, the parallel complexity of G is
C(G) = min{C(R) | R is a parallel reduction of G}.

One of the main open questions related to the topic of parallel
gene assembly is whether ”the common finite upper bound for parallel
complexities of all signed overlap graphs exists”. This question was an-
swered only for some particular types of graphs in [28, 31, 30]. The
highest parallel complexity for negative trees is 2, and for positive trees
is 3. The upper bound for arbitrarily signed trees is unknown. The
parallel complexity of negative paths with 2n vertices is 1, and of neg-
ative paths with 2n + 1 vertices is 2. The parallel complexity of any
path with either 3n or 3n + 1 vertices is 2, and of any positive path
with 3n + 2 vertices is 3. Any positive complete bipartite or tripartite
graph has a parallel complexity of at most 3. Upper bounds for parallel
complexities of some other types of graphs are also known.
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Another open problem for the topic of parallel gene assembly is to
find an efficient algorithm to decide the parallel complexity of a signed
graph. Currently, the most optimal known algorithm computing the
parallel complexity of a graph [5] has time complexity

O

(
nn+7/2

cn

)
for c =

e√
2
.

This is an improvement in comparison to the basic brute force algo-
rithm [3] where all applicable parallel strategies are being checked. In
this improved algorithm we are considering parallelization of sequential
graph reduction strategies. Any sequential strategy that we consider is
split into parallel steps in such a manner that the number of parallel
steps is minimal for this strategy. Moreover, we do not consider more
than one sequential strategy having the same parallelization. This
approach enables us to consider instead of many parallel reduction
strategies with the same domain of operations just one of them with
the lowest complexity. Moreover, we have improved also on the parallel
applicability decision procedure. Instead of checking the applicability
of all permutations of operations from a set, we have used another ap-
proach. We based on the fact that a set of operations S is applicable
in parallel to a graph G if and only if for any subset S′ ⊆ S sequence of
operations r ◦ lex(S′) is applicable to G, where r ∈ S \ S′ and lex(S′)
is the lexicographical order of operations from S′. In this way, we have
to check k2k−1 sequences of operations r ◦ lex(S′) to decide the paral-
lel applicability of S. The complexity estimate of the basic algorithm
in [3] grows almost as fast as (nn)2, while the present estimate of the
improved algorithm in [5] grows almost as fast as nn.

6 Computing with gene assembly

In this section we concentrate on the topic of computing by gene assem-
bly in ciliates. Inspired by the celebrated computational experiment of
Adleman with DNA [1], we are interested whether and how we can com-
pute by using evolved DNA manipulation during the gene assembly.
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The research in this direction addresses such formal language-based
topics as computability, hierarchies of classes, language equations, clo-
sure properties, as well as the results on developing methods to solve
computationally hard mathematical problems.

Formal languages-related results

One of the first results concerning the computability of gene assembly
was obtained for the intermolecular model [39]. The concept of contex-
tual recombinations [54] was used to simulate computations by Turing
machines by using intermolecular operations. Basing on contextual
version of intermolecular operations an accepting system was defined:
a multiset of strings is accepted if in result of application of a sequence
of contextual intermolecular operations according to the given splicing
scheme [26] a multiset containing the given axiom word is obtained.

Inspired by this result we have shown in a similar manner the Tur-
ing universality for the contextual intramolecular operations [36]. Since
the intramolecular model operates on a single molecule, we used the
formalism of contextual string rewriting rules representing intramolec-
ular operations. Basing on these contextual string rewriting rules we
have defined an accepting intramolecular recombination system incor-
porating the following ingredients: the splicing scheme, the start word
and the target word. That system accepts all those words which being
concatenated to the start word produce the target word in the result of
a sequence of application of contextual string rewriting rules according
to the given splicing scheme. Formally, an accepting intramolecular
recombination system is denoted as G = (Σ,∼, α0, wt), where (Σ,∼)
is the splicing scheme, α0 is the start word and wt is the target word.
G accepts the following language: L(G) = {w ∈ Σ∗|α0w ⇒∗

R̃
wt}. Ac-

cepting intramolecular recombination systems were proved to be uni-
versal. Instead of using multiple copies of a string as in the case of the
intermolecular model we used concatenation of multiple copies of the
string. For any simulation of a Turing machine we assumed that we
have as many concatenations of copies of the string as needed.

It was shown in [2] that the ”contextual ingredient” of the inter-
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molecular model if substituted by the ”distribution ingredient” does
not decrease the computational power of gene assembly. In [2] there
were introduced tissue P systems with ciliate operations. In general, a
tissue P system is represented by an undirected graph, where multisets
of objects and sets of multiset rewriting (evolution) rules are associated
to each node (called region, or membrane, or cell). Rules define the
evolution of multisets and communication between neighboring regions
through communication channels (the graph edges) [48]. The paradigm
of P systems was motivated from such biological elements as cellular
membranes and membranal structure, biochemical reactions, DNA and
RNA manipulations, transmembrane transportation of chemicals and
other phenomena in cellular biology [52, 53, 48]. We refer to [53, 62] for
the detailed overview on the research topic of P systems. In its generic
definition, P systems posses an abstract nature of their objects and
evolution rules. In tissue P systems with ciliate operations the objects
are strings representing DNA molecules and evolution rules are inter-
molecular operations with transmembrane communication. It is added
to the definition of the intramolecular excision and the intermolecu-
lar insertion, the information about the regions-targets for the excised
circular molecule and the molecule containing non-excised sequences,
as well as the information about regions-sources for the recombining
molecules.

Formally, a tissue P system with ciliate operations is defined as a
tuple Π = (O, C, R, i0), where O is a finite set of symbols, C is a finite
set of regions, R is a finite set of excision/insertion rules and i0 is the
output region. To each region c ∈ C there are associated finite sets
of strings inf(c) presented in infinite number of copies in c and initial
finite multiset of strings cfg(c). The strings can be both linear and
circular and are defined over alphabet O. Each evolution rule from R
has one of the following forms: intramolecular excision rule i →p j/k is
applicable on a string upvpw (or ◦upvpw) in region i ∈ C and produces
strings upw (or ◦upw respectively) and ◦pv in region k; intermolecular
insertion rule j/k →p i is applicable on pair of strings upw (or ◦upw)
in region j and ◦pv in region k and produces string upvpw (or ◦upvpw
respectively) in region i. Here p is a pointer and u, v, w are linear strings
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over O. All rules from R are applied in parallel either synchronously or
non-synchronously and either in maximally parallel or non-maximally
parallel manner (depending on the type of the system). If in result of
application of rules from R the system reaches a state where no rule
from R could be used, then the multiset of words (or the number of
words) in region i0 is considered to be the result of computation of
Π. Registers machines were chosen to be simulated by the tissue P
systems with ciliate operations in order to prove the P systems Turing
universality.

Among other results on gene assembly based on formal languages
we can mention language operations inspired by molecular gene as-
sembly operations and their closure properties as well as solutions of
language equations [9, 12, 13, 24], language operations inspired by the
template-guided DNA recombination [15, 16], generalization of intra-
and intermolecular operations as synchronized insertion/deletion on
linear strings [9], generalized versions of ld and dlad operations and
families of languages defined by closure under those operations [10, 11].

Computing NP-complete problems

We are wondering how we can use gene assembly in order to solve
computationally intractable problems. One of the advantages of gene
assembly over DNA computing from the point of view of the experimen-
tal implementation might be the fact that such actions as amplification
(producing a high number of clones of a DNA molecule) and filtering on
the DNA molecules of interest which should be performed ”manually”
in the lab might be executed by ciliates ”autonomously”.

In this section we survey research results related to the develop-
ment of computational methods for solving NP-complete problems [50]
by means of gene assembly process. Generally, the gene assembly pro-
cess is deterministic and confluent, i.e., starting from a gene pattern
it always assembles the macronuclear gene (or in case of simple in-
tramolecular operations all assembly strategies applicable to the gene
pattern either lead to the assembled gene, or all of the strategies fail).
The basic approach for solving instances of NP-complete problems is in
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checking all the particular solutions for the instance of an NP-complete
problem. In order to implement this approach by means of gene assem-
bly, one has to make the gene assembly process non-deterministic and
non-confluent, i.e., while starting from the same gene pattern different
assembly strategies should produce different resulting molecules. This
is achievable if allowing gene patterns with more than two occurrences
of the same pointer (and even with several copies of the same MDS) [4].
Then, the computational method for solving NP-complete problems is
looking as follows:

1. Encode an instance of the problem as a gene pattern;

2. Let the ciliate amplify the molecule with the encoded instance;

3. Let the gene assembly occur so that all copies of the molecule
get assembled by different assembly strategies corresponding to
different particular solutions to different resulting molecules;

4. Interpret the resulting molecules as the results of the correspond-
ing particular solutions of the instance.

In [4] we have presented a computational method to solve instances
of Hamiltonian Path Problem (HPP) inspired by the famous Adleman’s
experiment with DNA [1]. For a directed graph G = (V,E) with n
vertices and m edges a hamiltonian path in G from vertex p to vertex
q is a noncyclic path from p to q containing all the vertices from G.
The HPP is defined as the problem of deciding whether there exists a
hamiltonian path from p to q.

Adleman has solved a small instance of HPP through an experimen-
tal assay on its DNA encoding. He implemented the following steps by
using biotechnological tools:

Step 1: Generating random paths of the graph;

Step 2: Filtering set of paths generated at Step 1 so that only paths
from p to q remain;

Step 3: Filtering set of paths generated at Step 2 and living only paths
of exactly length n;
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Step 4: Filtering set of paths generated at Step 3 and retaining just
paths containing all the vertices of the graph;

Step 5: The paths remaining after Step 4 are the hamiltonian paths.

The instance of HPP problem was encoded as follows: for each
vertex i of the graph there was designed a short single strand DNA
sequence Oi of length 20 bp. An edge between vertices i and j was
represented by a single strand molecule Oij where the prefix Oij of
length 10 was the suffix of Oi, and the suffix of Oij was the prefix of
Oj . In his experimental asset, Adleman used a number of copies of
molecules Oij for each edge (i, j) ∈ E and a number of copies Oi of
complementary strands to Oi for each vertex i ∈ V .

Then, Step 1 was implemented as follows. All the molecules Oij

were let to splice to the complementary sites at molecules Oi and Oj in
a random way. In this way, two molecules Oij and Ojk were attached
to each other by means of molecule Oj and a double-stranded molecule
representing path ijk from the graph G was produced. In this manner
there were produced double-stranded DNA representing a number of
paths from graph G. It was assumed that there were enough number
of copies of vertex- and edge-representing molecules provided in the
initial assay so that the probability of generating hamiltonian paths
was sufficiently high.

Then, Step 2 was implemented by polymerase chain reaction, Step
3 by gel electrophoresis, and Step 4 was performed by using a biotin
avidin magnetic beads system in order to select molecules containing
nucleotide sequences Oi for all i ∈ V . In this way, in result of the
experiment only the molecules representing hamiltonian paths were
obtained.

In this way, Adleman has demonstrated that in principle one can
use DNA to compute in vitro computationally intractable mathematical
problems. Adleman’s result has motivated our work [4], where we
followed similar principles and have demonstrated (albeit theoretically)
how complex DNA manipulations naturally occurring in living cells
could be used to compute solutions for NP-complete problems.
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We developed several encodings for instances of HPP through artifi-
cial gene patterns, so that the results of gene assembly are the solutions
of the problem, i.e., hamiltonian paths. In this way, the gene assembly
is successful if and only if the problem has a solution (i.e., at least one
hamiltonian path).

We used the formalism of MDS descriptors in order to encode HPP
instances. For a directed graph G = (V,E) we represented each vertex
p ∈ V as a pointer p, and each directed edge (p, q) ∈ E we represented
as an MDS (p, q). A path puq in the graph from vertex p to vertex q
via vertices u we represented as a composite MDS (p, u, q), where u is
a string over V .

Since a graph may contain more than two edges incident to a ver-
tex p, then we may get in our encoding more than two occurrences of
pointer p for the same gene pattern. Gene patterns with any number of
occurrences of pointers yield non-deterministic assembly strategies, fa-
cilitating in this way the possibility to assemble molecules correspond-
ing to many different paths in the graph. Moreover, we relaxed the
conditions under which molecular operation LD could be applied on a
molecule: we allowed LD to excise parts of a molecule which contain
any number of MDSs.

For each of the following subsets of intramolecular operations LD,
HI, DLAD, {LD, DLAD}, {LD, HI, DLAD} we have designed artificial
gene patterns which could be assembled by the respective subsets
of operations to a molecule represented either as (b, p1upn, e) or as
(e, pnup1, b), where in our HPP instance we are interested in hamilto-
nian paths from p1 to pn. Among all the assembled MDSs (b, p1upn, e)
and (e, pnup1, b) we choose those which contain all pointers p ∈ V in
string p1upn and the length of p1upn equals n. I.e., we choose the
assembled MDSs which correspond to hamiltonian paths in G.

The length of the encoding on gene patterns for an instance of HPP
is O(m) for all subsets of intramolecular operations with the exception
of only LD operations. Encoding for LD-only strategies has length
O(mn).

The result we presented here is purely theoretical. In order to
implement this method in a lab, we have to clarify experimentally the
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following questions: will a ciliate accept our artificially designed gene
pattern and can two ciliates assemble our identical gene pattern into
two different macronuclear genes according to our model? Since it was
demonstrated experimentally, that templates guide the gene assembly
process [49], probably we may tweak the gene assembly by designing
our own templates [4].

A slightly different approach to solve computationally intractable
problems was presented in [34, 35]. Computational methods to solve
instances of Boolean satisfiability problem (SAT) were developed for
both of the intramolecular and intermolecular models. Unlike the result
with HPP from above, the formalism of contextual string rewriting
rules was used.

7 Discussion

Initially, the research on the computational nature of gene assembly in
stichotrichous ciliates was aiming at explaining and understanding this
evolved biological DNA manipulation process. A considerable number
of biologically related results were obtained. For instance, model- and
strategy-independent invariant properties were discovered for gene as-
sembly in [19, 55]. Theoretical models and the experimental evidence
were presented for the short pointer identification problem. In partic-
ular, template-based recombination models were considered in [21, 7]
and experimental work was presented in [49] describing the function
of maternal RNA-templates on gene assembly. Virtual knot diagrams
were presented in [7] as a physical representation of the homologous
recombinations of molecule(s) during gene assembly.

Also, the research on computational properties of gene assembly
has a great impact on Computer Science and Discrete Mathemat-
ics. In particular, new computational modeling techniques and com-
puting paradigms, formal language theoretical results were obtained.
Models for gene assembly and models motivated by gene assembly
were introduced in terms of permutations, strings, graphs, formal lan-
guages and linear algebra. For instance, language generating sys-
tems based on gene assembly were introduced [14], non-contextual
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string rewriting rules were presented in [9, 12, 13, 24] and used to
study the closure properties and language equations. The template-
guided recombination-based language operations were explored in [10].
Turing-completeness of both inter- and intramolecular operations was
demonstrated in [25, 36, 38, 39]. The research related to the concept of
parallel gene assembly was launched in [3, 5, 29, 28, 30]. For a recent
detailed survey on the research topics on the computational nature of
gene assembly we refer to [40]. Also, for a review on some recent results
in this area we refer to [64].
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Recent Developments on Insertion-Deletion

Systems∗

Sergey Verlan

Abstract

This article gives an overview of the recent developments in
the study of the operations of insertion and deletion. It presents
the origin of these operations, their formal definition and a series
of results concerning language properties, decidability and com-
putational completeness of families of languages generated by
insertion-deletion systems and their extensions with the graph-
control. The basic proof methods are presented and the proofs
for the most important results are sketched.

Keywords: insertion-deletion systems, computational com-
pleteness, decidability, graph control, P systems.

1 Introduction

In general form, an insertion operation means adding a substring to
a given string in a specified (left and right) context, while a deletion
operation means removing a substring of a given string being in a spec-
ified (left and right) context. An insertion or deletion rule is defined
by a triple (u, x, v) meaning that x can be inserted between u and v
or deleted if it is between u and v. Thus, an insertion corresponds to
the rewriting rule uv → uxv and a deletion corresponds to the rewrit-
ing rule uxv → uv. A finite set of insertion-deletion rules, together
with a set of axioms provides a language generating device: starting
from the set of initial strings and iterating insertion or deletion oper-
ations as defined by the given rules one gets a language. The size of
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the alphabet, the number of axioms, the size of contexts and of the in-
serted or deleted string are natural descriptional complexity measures
for insertion-deletion systems.

The idea of insertion of one string into another was firstly considered
with a linguistic motivation in [23] and latter developed in [8, 29].
Marcus contextual grammars investigated in above references consider
couples (x, (u, v)), meaning that words u and v can be adjoined to the
word x. This corresponds in some sense to grammars having rules of
type x → uxv, i.e., u and v are inserted around the position marked by
x. Such grammars are alternative concepts to Chomsky grammars and
present the evolution of the descriptive linguistics. Many interesting
linguistic properties like ambiguity and duplication can be captured in
this framework. The insertion of a string in a specified context was
firstly considered in [8].

In [9, 10] the insertion operation and its iterated variant is intro-
duced with a different motivation. The author considers this opera-
tion as generalization of Kleene’s operations of concatenation and clo-
sure [17]. The operation of concatenation would produce a string x1x2y
from two strings x1x2 and y. By allowing the concatenation to happen
anywhere in the string and not only at its right extremity a string x1yx2

can be produced, i.e., y is inserted into x1x2. In [13] the deletion is de-
fined as a right quotient operation which happens not necessarily at the
rightmost end of the string. In the same thesis the duality between the
insertion and deletion is also highlighted: any insertion system gener-
ating a language L is at the same time a deletion system recognizing L.
The operations considered in above works correspond to context-free
variants of insertion and deletion operations, because no contexts are
used. In the same place several other variants of insertion and deletion
are introduced and their closure properties are investigated.

The third inspiration for insertion and deletion operations comes,
surprisingly, from the field of molecular biology. In fact they correspond
to a mismatched annealing of DNA sequences. We refer to [32] for more
details. Such operations are also present in the evolution processes
under the form of point mutations as well as in RNA editing, see the
discussions in [3], [34] and [32]. This biological motivation of insertion-
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deletion operations lead to their study in the framework of molecular
computing, see, for example, [6], [14], [32], [35].

This article is organized as follows. After a formal definition given
in Section 2, the next section describes existing formal proof methods
and presents a recent proof technique. Section 4 considers context-free
insertion-deletion systems and their links to the previous results in the
formal language theory. After that in Section 5 one-sided insertion-
deletion systems are considered. Section 6 investigates the graph-
control extension of insertion-deletion systems that permits to increase
the computational power for non-complete classes. Finally, Section 7
considers the variant where only the insertion operation is used.

2 Formal definition

We do not present here definitions concerning standard concepts of the
theory of formal languages and we refer to [33] for more details.

The empty string is denoted by λ. The length of the word x ∈ V ∗

is the number of symbols which appear in x and it is denoted by |x|.
The number of occurrences of a symbol a ∈ V in x ∈ V ∗ is denoted
by |x|a. If x ∈ V ∗ and U ⊆ V , then we denote by |x|U the number
of occurrences of symbols from U in x. For a word w ∈ V ∗ we define
Perm(w) = {w′ : |w′|a = |w|a for all a ∈ V }. The length set of a
language L is defined as |L| = {|x| : x ∈ L}. The length set of a family
of languages F is defined analogously: NF = {|L| : L ∈ F}.

The family of matrix languages, i.e., the family of languages gen-
erated by matrix grammars without appearance checking is denoted
by MAT . The family of recursively enumerable languages is de-
noted by RE. The Parikh image of a language family F is a fam-
ily of sets of vectors denoted by PsF (we assume a fixed order-
ing on the alphabet T = {a1, . . . , an}), and is defined as follows:
Ps(L) = {(|w|a1 , . . . , |w|an) : w ∈ L} and PsF = {Ps(L) : L ∈ F}.

An insertion-deletion system is a construct ID = (V, T, A, I, D),
where V is an alphabet, T ⊆ V , A is a finite language over V , and
I,D are finite sets of triples of the form (u, α, v), α 6= λ, where u
and v are strings over V . The elements of T are terminal symbols
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(in contrast, those of V − T are called nonterminals), those of A are
axioms, the triples in I are insertion rules, and those from D are dele-
tion rules. An insertion rule (u, α, v) ∈ I indicates that the string α
can be inserted between u and v, while a deletion rule (u, α, v) ∈ D
indicates that α can be removed from the context (u, v). As stated
otherwise, (u, α, v) ∈ I corresponds to the rewriting rule uv → uαv,
and (u, α, v) ∈ D corresponds to the rewriting rule uαv → uv. We
denote by =⇒ins the relation defined by an insertion rule (formally,
x =⇒ins y iff x = x1uvx2, y = x1uαvx2, for some (u, α, v) ∈ I and
x1, x2 ∈ V ∗) and by =⇒del the relation defined by a deletion rule (for-
mally, x =⇒del y iff x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D
and x1, x2 ∈ V ∗). We refer by =⇒ to any of the relations =⇒ins, =⇒del,
and denote by =⇒∗ the reflexive and transitive closure of =⇒ (as usual,
=⇒+ is its transitive closure).

The language generated by ID is defined by

L(ID) = {w ∈ T ∗ | x =⇒∗ w, x ∈ A}.
The complexity of an insertion-deletion system ID = (V, T, A, I, D)

is described by the vector (n,m, m′; p, q, q′) called size, where
n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},
m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},
m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.
We also denote by INSm,m′

n DELq,q′
p corresponding families of

insertion-deletion systems. Moreover, we define the total size of the
system as the sum of all numbers above: ψ = n + m + m′ + p + q + q′.

If some of the parameters n,m, m′, p, q, q′ is not specified, then we
write instead the symbol ∗. In particular, INS0,0

∗ DEL0,0
∗ denotes the

family of languages generated by context-free insertion-deletion sys-
tems. If one of numbers from the couples m, m′ and/or q, q′ is equal to
zero (while the other is not), then we say that corresponding families
have a one-sided context.

We remark that, historically, another complexity measure called
weight was used for insertion-deletion systems. It corresponds to 4-
tuples (n, m̄; p, q̄), where m̄ = max{m,m′} and q̄ = max{q, q′}.
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3 Basic simulation principles

In this section we show some important properties of insertion-deletion
systems, present some normal forms and indicate basic methods for
equivalence proofs used in the rest of the chapter.

We start with the presentation of the normal form for insertion-
deletion systems.

Definition 3.1. An insertion-deletion system ID = (V ∪ {$}, T, A, I,
D ∪D2) of size (n,m, m′; p, q, q′) is said to be in the normal form if

• for any (u, x, v) ∈ I it holds |u| = m, |v| = m′, |x| = n,

• for any (u, x, v) ∈ D it holds |u| = q, |v| = q′, |x| = p,

• for any (u, x, v) ∈ D it holds that x contains no letters from T ,

• the set D2 is defined as D2 = {(λ, $, λ)}.
Theorem 3.2. For any insertion-deletion system ID it is possible to
construct a system ID′ in normal form and having same size such that
L(ID) = L(ID′).

This affirmation is quite obvious. For the first two conditions it is
enough to replace any rule having left or right contexts of a smaller
size by a group of rules, where the left (resp. right) context is a string
over V ∪ {$} of the required size. The same holds for the inserted or
deleted symbol and axioms. More precisely, the new symbol $ permits
to fill the context of rules and sizes of axioms up to the desired size.

The third condition can be satisfied as follows. For any terminal
symbol t ∈ T a special non-terminal Nt is considered. All rules and
axioms involving t are duplicated and t replaced by Nt. This construc-
tion ensures that symbol Nt acts like an alias for the symbol t, i.e. for
any derivation producing w1tw2 there is another derivation producing
w1Ntw2. Hence there is no difference between erasing t or Nt, there-
fore all deletion rules involving t can be omitted. A formal proof of the
theorem can be found in [2].
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Example 3.3.

Consider the system ID = ({a, b, C}, {a, b}, {ab}, I,D) of size
(2, 1, 1; 2, 1, 1), with I = {(a, aC, b), (a, b, C)} and D = {(b, C, b)}.
Then ID′ can be defined as follows: ID′ = ({a, b, C, $}, {a, b},
{ab � $$}, I ′, D′ ∪ {(λ, $, λ)}), where I ′ = {(a, aC, b), (a, $b, C),
(a, b$, C)} and D′ = {(b, C$, b), (b, $C, b)}.

Insertion-deletion systems represent a powerful model of compu-
tation. If the size of the system is not bounded, then an arbitrary
grammar can be simulated.

Theorem 3.4. For any type-0 grammar G = (N, T, S, P ) there is
an insertion-deletion system ID = (V, T, A, I, D) such that L(G) =
L(ID).

Proof. Let V = N ∪ {#i : 1≤ i≤|P |} ∪ {$}. Let k1 = max{|u|, u → v ∈
P} and k2 = max{|v|, u → v ∈ P}. Consider k = max(k1, k2). The set
A is defined as A = {$kS$k}.

For any rule i : u → v ∈ P we add insertion rules (xu,#iv, y),
x, y ∈ (N ∪{$})∗, |xu| = k, |y| = k, to I and a deletion rule (x, u#i, v),
x ∈ N ∪ {$} to D. Finally, a rule (λ, $, λ) is added to D.

It is not difficult to see that such system simulates G. Indeed, for
any derivation w1uw2 =⇒ w1vw2 in G there is a following two-step
derivation $kw1uw2$k =⇒ $kw1u#ivw2$k =⇒ $kw1vw2$k in ID that
simulates the corresponding production of G. If w ∈ L(G) then the
string $kw$k will be obtained in ID. Additional symbols $ can be
deleted at this moment. So w ∈ L(ID).

For the converse inclusion it is enough to observe that if an insertion
rule (xu, #iv, y) is used, then no more insertions inside the correspond-
ing site xu can be done. So, the only way to eliminate the symbol #i

is to perform the corresponding deletion. Hence the computation in
ID can be rearranged in such a way that an insertion is followed by
the corresponding deletion. This corresponds to a derivation step in
G, which completes the proof.

As one can see from the previous theorem, the basic idea of gram-
mar simulation by insertion-deletion systems is a construction of a set
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of related insertion and deletion rules that shall be used in some spec-
ified sequence thus performing a grammar rule simulation. Usually,
insertion rules introduce new non-terminal symbols in the string which
can be deleted only by corresponding deletion rules (like symbols #i

in the theorem above). If the correct sequence is not performed, then
some non-terminal symbols that cannot be deleted will remain in the
string. In the subsequent sections different variants of this method are
shown permitting to decrease the size of used insertion and deletion
rules.

3.1 The method of direct simulation

A simulation of type-0 grammars by insertion-deletion systems is the
main method permitting to prove the computational completeness of
insertion-deletion systems. However, when several such results are es-
tablished, it is much easier to prove the computational completeness
by simulating another insertion-deletion systems. For example:

Theorem 3.5. INS1,1
1 DEL0,0

2 = RE.

Sketch of Proof. The proof may be done by simulating insertion-
deletion systems of size (1, 1, 1; 1, 1, 1) which are known to be com-
putationally complete, see [35, 36]. In this case it is enough to show
how a deletion rule (a, b, c), a, b, c ∈ V can be simulated using insertion
and deletion rules of size (1, 1, 1; 2, 0, 0). Let a 6= b 6= c. Then a dele-
tion rule (a, b, c) with label i may be simulated by a sequence of the
following rules: {(a, }i, b), (b, ]i, c), (a, [i, }i), ([i, {i, }i), ([i,Ki, {i, )} ⊆ I
and (λ, {i}i, λ), (λ,Kib, λ), (λ, [i]i, λ) ⊆ D. The simulation is performed
as follows (we underline the inserted symbols):

w1abcw2 =⇒ins w1a}ibcw2 =⇒ins w1a[i}ibcw2 =⇒ins w1a[i}ib]icw2

=⇒ins w1a[i{i}ib]icw2 =⇒ins w1a[iKi{i}ib]icw2 =⇒del

=⇒del w1a[iKib]icw2 =⇒del w1a[i]icw2 =⇒del w1acw2.

The idea behind the simulation is the following. Symbols [i and ]i
delimit the deletion site. Symbol Ki performs the deletion of b, while
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symbols }i and {i ensure that Ki is inserted only once after [i (hence
only one b can be deleted). If all the above steps are not performed,
then some of additional symbols will remain in the string, hence it
will never become terminal. This is a common method of simulation:
the working (insertion or deletion) site is delimited by special symbols
in order to avoid interactions between several such sites and inside the
site the sequence of insertions and deletions permits to simulate exactly
one application of the corresponding rule. All additional symbols are
related in such a way that the whole sequence of insertions and deletions
shall be performed in order to eliminate all of them.

We remark that it would be wrong to simulate a deletion rule
(a, b, c) by only rules {(a, [i, b), (b, ]i, c), ([i,Ki, b)} ⊆ I and (λ,Kib, λ),
(λ, [i]i, λ) ⊆ D, because it is possible to erase several symbols b, which
leads to a wrong computation:

w1abbcw2 =⇒ins w1a[ibbcw2 =⇒ins w1a[ibb]icw2 =⇒ins

=⇒ins w1a[iKibb]icw2 =⇒del w1a[ib]icw2 =⇒ins

=⇒ins w1a[iKib]icw2 =⇒del w1a[i]icw2 =⇒del w1acw2.

The above approach is very powerful and it permits to establish
the computational completeness of the corresponding class of insertion-
deletion systems in a much easier way. For example, the proof of Theo-
rem 3.5 in [32] (Theorem 6.3) takes more than two pages. The method
is quite generic, in order to use it one should find a computational
complete class of insertion-deletion systems having same insertion or
deletion parameters. Then, in order to prove the computational com-
pleteness, it is sufficient to simulate corresponding deletion or insertion
operation. This is significantly easier than the simulation of a Chomsky
grammar because only left-hand or only right-hand side of a production
u → v shall be simulated.

Most of the recent results about the universality of insertion-
deletion systems are obtained using this technique.
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4 Context-free insertion-deletion systems

In this section we present an important class of insertion-deletion sys-
tems: systems with context-free rules. This permits to bridge recent
results with early investigations from [9] and [13] giving answers to old
questions from this area.

4.1 Computational completeness results

We start with the sketch of the proof of the computational completeness
for context-free insertion-deletion systems. More details can be found
in [24].

Theorem 4.1. INS0,0
∗ DEL0,0

∗ = RE.

Sketch of proof. Let G = (N, T, S, P ) be type-0 Chomsky grammar
where N,T are disjoint alphabets, S ∈ N , and P is a finite subset of
rules of the form u → v with u, v ∈ (N ∪ T )∗ and u contains at least
one letter from N . We assume all rules from P labeled in a one-to-one
manner with elements of a set M , disjoint of N ∪ T .

We construct the following context-free insertion-deletion system:
γ = (N ∪ T ∪M,T, {S}, I,D), where

I = {(λ, vR, λ) | R : u → v ∈ P, R ∈ M, u, v ∈ (N ∪ T )∗},
D = {(λ,Ru, λ) | R : u → v ∈ P, R ∈ M, u, v ∈ (N ∪ T )∗}.

Two rules (λ, vR, λ) ∈ I, (λ,Ru, λ) ∈ D as above are said to be M -
related.

We have the equality L(G) = L(γ).
The inclusion L(G) ⊆ L(γ) is obvious: each derivation step

x1ux2 =⇒ x1vx2, performed in G by means of a rule R : u → v, can be
simulated in γ by an insertion operation step x1ux2 =⇒ins x1vRux2

which uses the rule (λ, vR, λ) ∈ I, followed by the deletion operation
x1vRux2 =⇒del x1vx2 which uses the rule (λ,Ru, λ) ∈ D.

Consider now the inclusion L(γ) ⊆ L(G). The idea of the proof is
to transform any terminal derivation in γ into one in which any two
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consecutive (odd, even) derivations steps simulate one production in
G. Because the labels of rules from P precisely identify a pair of M -
related insertion-deletion rules, and the elements of M are nonterminal
symbols for γ, every terminal derivation with respect to γ must involve
the same number of insertion steps and deletion steps; moreover, these
steps are performed by using pairs of M -related rules from I and D.

For every terminal derivation in γ it is possible to construct
an equivalent derivation, using the same rules in a different order,
and having only matching pairs of consecutive rules, i.e. odd steps
wi =⇒ins wi+1 are performed by a rule (λ, vR, λ) ∈ I, while even
steps wi+1 =⇒ wi+2 are performed by using the M -related rule
(λ,Ru, λ) ∈ D. Clearly, two consecutive steps of a derivation in
γ which use M -related rules (λ, vR, λ) ∈ I, (λ,Ru, λ) ∈ D, corre-
spond to a derivation step in G which uses the rule R : u → v. This
implies the inclusion L(γ) ⊆ L(G).

The context control of a type 0 grammar does not really disap-
pear in the corresponding insertion-deletion system (as constructed in
Theorem 4.1 above). It rather changes its form, becoming a rigid syn-
chronization of insertions and deletions. In other terms, if a word u
represents the context of a word v in a “context-sensitive production”
R : u → v, then in the corresponding insertion-deletion system the
word v will also be conditioned by the later occurrence of u in a suc-
cessful derivation (hence u is yet again the context of v). This condition
is enforced by the newly introduced symbol R which acts as a “remote
context binder”. The fact that the context u “seems” to appear after
the context-controlled v is of no importance, reflecting the reversal of
generative process of the grammar.

Let us denote by L ¿ L1

L2
the operation of insertion-deletion that

inserts words from L1 into L or deletes words belonging to L2 from L
and by L ¿∗ L1

L2
its reflexive and transitive closure. Then the following

representation of RE holds:

Theorem 4.2. Any language L ∈ RE can be represented in the fol-
lowing form L =

(
{S} ¿∗ L1

L2

)
∩ T ∗, where L1 and L2 are two finite

languages and T is an alphabet.
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In the proof of Theorem 4.1, the length of inserted or deleted strings
is not bounded, but a bound can be easily found by controlling the
length of strings appearing in the rules of the starting type-0 grammar:

Theorem 4.3. INS0,0
3 DEL0,0

3 = RE.

Proof. Let G = (N, T, S, P ) be type-0 Chomsky grammar in Kuroda
normal form. Then, the rules of the context-free insertion-deletion sys-
tem constructed in the proof of Theorem 4.1 are of the form (λ, α, λ)
with |α| ≤ 3, hence RE ⊆ INS0

3DEL0
3.

The total size of the system provided by the proof of Theorem 4.1
is 6. We can improve by one this result, by decreasing by one either
the length of the inserted strings or the length of the deleted strings.
These proofs can be done by a direct simulation of systems of size
(3, 0, 0; 3, 0, 0) using the method presented in Section 3.1.

Theorem 4.4. [24] INS0,0
3 DEL0,0

2 = RE.

A counterpart of this result is also true: we can trade-off the length
of inserted and deleted strings.

Theorem 4.5. [24] INS0,0
2 DEL0,0

3 = RE.

4.2 Non-completeness results

We show below that the above complexity parameters for context-free
insertion-deletion systems are optimal. If one of the parameters is fur-
ther decreased, then the language generated by such systems is included
in the family of context-free languages.

The main idea used to obtain this result is that the non-terminal
alphabet can be omitted, hence, the deletion can also be omitted.

This can be argued as follows. Consider a derivation of w ∈ T ∗

starting from an empty word. Let us mark the corresponding inser-
tion pairs by an overline and the corresponding deletion pairs by an
underline. For example, suppose that we insert aA, after that bC in po-
sition 1, DE in position 2, aA in position 6 and bc in position 8. After
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that suppose that we delete EC, DA and Ab. Then the corresponding
marking will be as follows (the resulting word is w = abac):

a
_^ ]\

___________________________

b
GF ED

^^^^^^^^^^^^^^^^^

D
'& %$^^^^^

E C"#Ã!^^^^^
ABC@A

^^^^^^^^^^^^^^^^^

a
'& %$^̂^̂^

A b"#Ã!^̂ ^̂ ^

'& %$^^^^

c

We may interpret symbols as labeled graph nodes and lines as edges.
In this case we obtain a graph. It is easy to observe that this graph
consists of a set of disjoint linear paths and/or cycles. Indeed, for each
node, at most two edges corresponding to an insertion and a deletion
may be drawn. Let us also label edges corresponding to insertions by
i and edges corresponding to deletions by d. If we take the example
above, we obtain:

a i
A

d
D

i
E

d
C

i
b

a i
A

d
b

i c

We may suppose that the first and the last edge of a path are marked
with i. If this is not the case, we add an additional node labeled by λ
and we connect this node with the last node by a path labeled by i.
In particular, a path containing only one letter a (corresponding to an

insertion of a) will be written as λ
i a . Hence, each path consists of

sequences of one insertion followed by one deletion.
We observe that for a derivation of a word w ∈ T ∗ there can only

be paths of the following 4 types: (1) paths that start with a letter
a ∈ T and that end with a letter b ∈ T ; (2) Paths that have at one
end a terminal letter a and at the other end λ; (3) paths that have λ
at both ends; (4) Cycles.

We remark that in Case 1 the path leads to the word ab (i.e.,
contributes to the production of the subword ab of w), in the second
case the path produces the letter a and in the last two cases the path
generates the empty word.

Without loss of generality, we may suppose that there are no paths
of type 3 and 4, because by eliminating the corresponding insertions
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and deletions we obtain the same word.
Suppose that we have a path marked by over- and underlines as

above. We shall understand by an interior of the path the set of all
positions that are underlined. In the example above, all positions be-
tween D and the first A form the interior of the path. It is clear that
no other path (of type 1 and 2) may be situated in the interior of some
path, because in this case the corresponding deletion cannot be per-
formed. Consequently, all paths are independent of each other, and we
may group rules corresponding to each path and compute paths one
after another. Moreover, each path contributes to at most two terminal
symbols of the resulting word. Therefore, the computation consists of
insertion of terminal symbols corresponding to paths ends as well as of
deletion of terminal symbols.

Moreover, we can show that it is possible to precompute all possible
paths. This may be done by using the following observation. We

may assume that each path p has the following property: if A
i− B

belongs to p, then p does not contain an insertion that has A in the

left-hand side (A
i− X) or B in the right-hand side (Y

i− B). This
assertion is obvious, because if p contains such a pair, for example

p = · · · d− A
i− X

d− · · · d− A
i− B · · · , then we may eliminate the

subpath between two A’s by obtaining an equivalent path (that leads

to the same ends) p′ = · · · d− A
i− B · · · . So, the length of each path is

bounded by 2 · card(V ), and we may precompute all possible paths.
In a similar manner it can be proved that the nonterminal alphabet

is not relevant even in the general case. See [37] for details.

Lemma 4.6. Let ID = (V, T, A, I, D) be a context-free insertion-
deletion system of size (2, 0, 0; 2, 0, 0). Then it is possible to con-
struct a system ID2 = (T, T,A2, I2, D2) of size (2, 0, 0; 2, 0, 0) such that
L(ID) = L(ID2).

Moreover, if we consider that the initial system is in the nor-
mal form, then there are no deletions of terminal symbols. Hence
we obtain that it is sufficient to consider insertion-only systems as
INS0,0

2 DEL0,0
2 ⊆ INS0,0

2 DEL0,0
0 .
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We can describe insertion-deletion systems of size (2, 0, 0; 0, 0, 0) by
the following context-free grammar, which is a particular case of a more
general result for systems of size (∗, 1, 1; 0, 0, 0) given in [32].

Let ID = (T, T,A, I, ∅) be an insertion-deletion system of size
(2, 0, 0; 0, 0, 0). We construct the following context-free grammar G =
({Z, S}, T, Z, P ). Define P = PA ∪ PI ∪ {S → λ}, where

PA = {Z → Sa1Sa2S . . . SanS | a1a2 . . . an ∈ A},
PI = {S → SaSbS | (λ, ab, λ) ∈ I} ∪ {S → SaS | (λ, a, λ) ∈ I}.

It is clear that L(G) = L(ID). Indeed, symbol S marks all possible
insertion positions and permits the simulation of insertion rules as well.

Consequently, we obtain:

Theorem 4.7. INS0,0
2 DEL0,0

2 = INS0,0
2 DEL0,0

0 ⊂ CF .

Proof. The strictness of the inclusion follows from the fact that
insertion-deletion systems of size (2, 0, 0; 0, 0, 0) cannot generate the
language L = {a∗b∗}. Indeed, consider an arbitrary system ID =
(T, T,A, I, ∅). It is easy to observe that for each word w that belongs
to L(ID), words {x∗wx∗ | (λ, x, λ) ∈ I} belong to L(ID). Therefore, if
we suppose that L(ID) is not finite, then I 6= ∅, and then for any word
w ∈ L(ID), there are words {x∗wx∗ | (λ, x, λ) ∈ I} in L(ID). It is easy
to see that L does not have such a property.

Theorem 4.8. INS0,0
2 DEL0,0

2 is incomparable with REG.

Proof. Previous theorem gives REG \ INS0,0
2 DEL0,0

2 6= ∅. It is also
clear that the Dyck language Dn may be generated by a context-free
insertion system having insertion rules (λ, aiāi, λ), 1 ≤ i ≤ n. Hence,
the assertion is proved.

From the description above it is clear that languages generated
by insertion-deletion systems of size (2, 0, 0; 2, 0, 0) have a particular
structure (below, we denote by

∏
the concatenation operation).
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Theorem 4.9. A language L belongs to INS0,0
2 DEL0,0

2 if and only if
it can be represented in the form

L = h


T ′∗ �

⋃

w=a1...an∈A

|w|∏

i=1

DaiD


 ,

where A ⊆ T ∗ is a finite set of words, T is an alphabet, D is the Dyck
language over an alphabet T ′′ ⊆ T , h is a coding and T ′ ⊆ T .

In a similar way next two results can be obtained. See [37] for more
details.

Theorem 4.10. INS0,0
m DEL0,0

1 = INS0,0
m DEL0,0

0 ⊂ CF , m > 0.

Theorem 4.11. INS0,0
1 DEL0,0

p ⊂ REG for any p > 0.

We collect all results above as well as some other results about
the computational power of symmetrical insertion-deletion systems in
Table 1.

Table 1. Results on symmetrical insertion-deletion systems
Size Family Ref. Size Family Ref.

(1, 2, 2; 1, 1, 1) RE [14, 32] (3, 0, 0; 2, 0, 0) RE [24]
(1, 2, 2; 2, 0, 0) RE [14, 32] (1, 1, 1; 2, 0, 0) RE [32]
(2, 1, 1; 2, 0, 0) RE [14, 32] (2, 0, 0; 1, 1, 1) RE [20]
(1, 1, 1; 1, 2, 2) RE [35] (1, 1, 1; 1, 1, 1) RE [35]
(2, 1, 1; 1, 1, 1) RE [35] (2, 0, 0; 2, 0, 0) ( CF [37]
(3, 0, 0; 3, 0, 0) RE [24] (m, 0, 0; 1, 0, 0) ( CF [37]
(2, 0, 0; 3, 0, 0) RE [24] (1, 0, 0; p, 0, 0) ( REG [37]

5 One-sided insertion-deletion systems

In this section we present results about insertion-deletion systems with
one-sided context, i.e., of size (n,m, m′; p, q, q′) where either m+m′ > 0
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and m ∗m′ = 0, or q + q′ > 0 and q ∗ q′ = 0, i.e., one of numbers in
some couple is equal to zero.

One-sided insertion-deletion systems present features common to
both contextual and context-free insertion-deletion systems. More pre-
cisely, an insertion rule having an empty left (or right) context can
be applied any number of times like in the case of context-free rules.
However, while a context-free insertion can happen anywhere in the
string, in the case of a one-sided insertion the context indicates the
place where the insertion can happen. Similar properties are exposed
by deletion rules.

Example 5.1.

Consider a system ID = (T, T, {a}, I, ∅), where T = {a, b, c, d} and
I is defined as follows: I = {(a, b, λ), (b, c, λ), (c, d, λ), (d, a, λ)}.

Let L be the language generated by ID (L = L(ID)). It is
clear that L can be defined by the following formulas:

L = L1 L1 = aL∗2 L2 = bL∗3 L3 = cL∗4 L4 = dL∗1

By substituting Li, for 2 ≤ i ≤ 4 into the description of Li−1

we obtain:

L1 = a(b(c(dL∗1)
∗)∗)∗

Let R = {(abcd)∗(dcb)∗}. Consider the language L′′ = L ∩ R.
Consider the word w = abcddbc from R. This word is generated in
L as follows (we underline the inserted symbol):

a =⇒ ab =⇒ abb =⇒ abcb =⇒ abccb =⇒ abcdcb =⇒ abcddcb

We observe that the generation of the second part of w, the
subword dcb, is related to the generation of its first part abcd, be-
cause every letter is inserted two times: first for the second part and
after that for the first part. It is also clear that this is the only way
to generate the subword dcb. Moreover, it can be easily seen that
such a generation leads to a one-to-one correspondence between
abcd and dcb. Now, taking w it is possible to insert a after the first
letter d and to continue in a similar manner as before and so on,
which gives wn = (abcd)n(dcb)n, n ≥ 1. It is also possible to obtain
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more copies of abcd by performing insertions of four corresponding
letters after d, c, b or a in the first part of wn. Hence, we finally
obtain L′′ = {(abcd)i(dcb)j , j ≤ i}, which is a non-regular context-
free language (by the inverse morphism {abcd → x, dcb → y} it
becomes the well known language {xiyj , 1 ≤ j ≤ i}). Since the
intersection of two regular languages would be regular, we obtain
that L is a non-regular context-free language.

5.1 Computational completeness results

Generally, computational completeness proofs for one-sided insertion-
deletion systems take into account the above behavior and ensure that
additional symbols that potentially can be inserted more than one time
are inserted exactly once. This property is usually satisfied by intro-
ducing groups of insertion and deletion rules of a special form that can
act only if a specified pattern is present in the string. If the pattern is
compromised by inserting or deleting more than one additional sym-
bol, then the whole group of rules will fail and non-terminal symbols
will remain in the string; moreover, it can be guaranteed that these
symbols cannot be eliminated anymore.

The proofs are based on simulation of insertion-deletion systems
from Sections 3 and 4 which are known to generate all RE languages.
The proof technique is very similar to the one from Theorem 3.5.

We remark that by symmetry, all results for classes INSm,m′
n DELq,q′

p

are also true for classes INSm′,m
n DELq′,q

p .
We give the sketch of proof for the following theorem.

Theorem 5.2. INS1,2
1 DEL1,0

1 = RE.

Sketch of Proof. The proof is based on the simulation of insertion-
deletion systems of size (1, 1, 1; 1, 1, 1) in normal form. Hence, it is
sufficient to show how a deletion rule (a, x, b), with a, b, x ∈ V , may
be simulated by using rules of the target system, i.e., insertion rules of
type (a′, x′, b′c′) and deletion rules of type (a′′, y, λ).

Since the system is in normal form, we may assume that ab 6= λ.
Moreover, we may assume that the system has no insertion rules of the
form (a, b, b), a, b ∈ V. If this is the case then we replace every such rule
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by two insertion rules (a,X, b), (a, b,X), and one deletion rule (b,X, b),
where X is a new nonterminal.

A deletion rule i : (a, x, b), where i is the label of the rule, is sim-
ulated by two insertion rules (x,Xi, b), (a, Di, xXi) and three deletion
rules (Di, x, λ), (Di, Xi, λ), (a,Di, λ).

Symbols Di and Xi act like left and right parentheses that surround
x before deleting it. The simulation is performed as follows. First, two
insertions are performed:

w1axbw2 =⇒ins w1axXibw2 =⇒ins w1aDixXibw2,

and then x is deleted:

w1aDixXibw2 =⇒del w1aDiXibw2.

At this moment symbols Xi and Di are deleted:

w1aDiXibw2 =⇒del w1aDiw2 =⇒del w1abw2.

Hence, every derivation in an insertion-deletion system having the size
(1, 1, 1; 1, 1, 1) can be carried out in a system of size (1, 1, 2; 1, 1, 0). On
the other hand, we observe that once being inserted, the nonterminals
Xi, Di can be erased only by the rules shown above. Moreover, if
they are not deleted, then no symbol can be inserted at the right of
a or at the left of b. The rule (Di, x, λ) can delete at most one x as
the pair Dix is followed by Xib and b 6= x. Thus, there is a one-to-
one correspondence between the original and the new systems, which
implies that the theorem statement holds.

In a similar way the results from Table 2 are obtained. We remark
that last three results are counterparts of the first three results, where
the sizes for insertion and deletion are interchanged. However, in gen-
eral, systems where insertion parameters are 1, 1, 0 are simpler than
systems having deletion parameters 1, 1, 0. This is due to the fact that
it is easier to control a repeated insertion of symbols by using deletion
than a repeated deletion of symbols by using insertion. In the latter
case, special “barrier” symbols shall be inserted in order to delimit
exactly one symbol to be deleted.
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Table 2. Computationally complete one-sided insertion-deletion sys-
tems

Size Ref. Size Ref.
(1,1,2;1,1,0) [20] (1,1,0;1,1,2) [26]
(2,0,2;1,1,0) [20] (1,1,0;2,0,2) [26]
(2,0,1;2,0,0) [20] (2,0,0;2,0,1) [26]
(1,2,0;1,0,2) [21]

5.2 Non-completeness results

In what follows we show that there are classes of one-sided insertion-
deletion systems that are not computationally complete.

We start with the following result.

Theorem 5.3. REG \ INS1,0
1 DEL1,1

1 6= ∅.

Sketch of Proof. Consider the regular language L = {(ba)+}. We claim
that there is no insertion-deletion system ID of size (1,1,0;1,1,1) such
that L(ID) = L. We can suppose that ID is in normal form.

Let wf ∈ (ba)+ be a word generated by ID. Now consider an
arbitrary ba block of wf (wf = βbaγ, β, γ ∈ (ba)∗) and take its letter
a. Since there are no rules deleting terminal symbols in ID this letter
is either inserted by an insertion rule or it was a part of an axiom. We
may omit the latter case by taking a derivation that produces a string
that is long enough. Now suppose that this letter was inserted using a
rule (z, a, λ) ∈ I, z ∈ V :

w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒∗ βbaγ = wf . (1)

This means that:
w1z =⇒∗ βb
aw2 =⇒∗ aγ

(2)

Now we remark that symbol a might be inserted twice:
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w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒ w1zaaw2. (3)

From (3) and (2) we obtain:

w =⇒∗ w1zaaw2 =⇒∗ βbaaγ

which is a contradiction.

In way similar to Theorem 5.3 it is possible to show several non-
completeness results for one-sided insertion-deletion systems. Table 3
summarizes these results. We remark that systems having smaller pa-
rameters, like systems of size (1, 1, 0; 1, 1, 0) are also not complete.

Table 3. Computationally non-complete one-sided insertion-deletion
systems

Size Witness language Reference
(1,1,0;1,1,1) (ba)+ [20]
(1,1,1;1,1,0) anbn, n ≥ 0 [26]
(1,1,0;2,0,0) (ba)+ [19]
(2,0,0;1,1,0) (ba)+ [19]

Moreover, in the case of systems of size (1, 1, 0; 1, 1, 0) it is possible
to show that the language generated by such insertion-deletion systems
is a particular subclass of the family of context-free languages.

This class of languages is non-trivial because even a smaller sub-
class, INS1,0

1 DEL0,0
0 , contains non-regular context-free languages, see

Example 5.1.

Theorem 5.4. INS1,0
1 DEL0,0

0 ∩ (CF \REG) 6= ∅.
In [19] it is shown that the effect of deletion rules can be precom-

puted. This gives the following result.

Theorem 5.5. INS1,0
1 DEL1,0

1 ⊂ CF .
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6 Graph-controlled insertion-deletion systems

In previous sections it was shown that there are classes of insertion-
deletion systems that cannot generate RE. Making an analogy to
context-free grammars, a natural extension of insertion-deletion sys-
tems using the graph-controlled or programmed approach can be done.
Such model introduces states (or labels of the program) associated to
every insertion or deletion rule. The transition is performed by apply-
ing corresponding rule and choosing the new state (thus the rule to be
applied) among a specific set of rules. Another definition of this model
in the style of [30] or [5] can be done. This definition supposes that
there are disjoint groups of insertion and deletion rules (correspond-
ing to membranes from [30] or components from [5]). The transition
is performed by firstly choosing and applying one of applicable rules
from the current group and switching to the next group indicated in
the rule description.

6.1 Formal definition

A graph-controlled insertion-deletion system is a construct

Π = (V, T, A, H, I0, If , R) where

• V is a finite alphabet,

• T ⊆ V is the terminal alphabet,

• A ⊆ V ∗ is a finite set of axioms,

• H is a set of labels associated (in a one-to-one manner) to the
rules in R,

• I0 ⊆ H is the set of initial labels,

• If ⊆ H is the set of final labels, and

• R is a finite set of rules of the form l : (r, E) where r is an insertion
or deletion rule over V and E ⊆ H.
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As it is common for graph controlled systems, a configuration of Π
is represented by a pair (w, i), where i is the label of the rule to be
applied and w is the current string. A transition (w, i) V (w′, j) is
performed if there is a rule l : ((u, α, v)t, E) in R such that w =⇒t w′

by the insertion/deletion rule (u, α, v)t, t ∈ {ins, del}, and j ∈ E. The
result of the computation consists of all terminal strings reaching a
final label from an axiom and the initial label, i.e.,

L(Π) = {w ∈ T ∗ | (w′, i0) V∗ (w, if ) for some w′∈ A, i0∈ I0, if ∈ If}.

We will use another rather similar definition for a graph-controlled
insertion-deletion system, thereby assigning groups of rules to compo-
nents of the system:

A graph-controlled insertion-deletion system with k components is
a construct

Π = (k, V, T, A,H, i0, if , R) where

• k is the number of components,

• V, T, A, H are defined as for graph-controlled insertion-deletion
systems,

• i0 ∈ [1..k] is the initial component,

• if ∈ [1..k] is the final component, and

• R is a finite set of rules of the form l : (i, r, j) where r is an
insertion or deletion rule over V and i, j ∈ [1..k].

The set of rules R may be divided into sets Ri assigned to the
components i ∈ [1..k], i.e., Ri = {l : (r, j) | l : (i, r, j) ∈ R}; in a
rule l : (i, r, j), the number j specifies the target component where the
string is sent from component i after the application of the insertion
or deletion rule r. A configuration of Π is represented by a pair (w, i),
where i is the number of the current component (initially i0) and w is
the current string. We also say that w is situated in component i. A
transition (w, i) V (w′, j) is performed as follows: first, a rule l : (r, j)
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from component i (from the set Ri) is chosen in a non-deterministic
way, the rule r is applied, and the string is moved to component j;
hence, the new set from which the next rule to be applied will be chosen
is Rj . More formally, (w, i) V (w′, j) if there is l : ((u, α, v)t, j) ∈ Ri

such that w =⇒t w′ by the rule (u, α, v)t; we also write (w, i) Vl (w′, j)
in this case. The result of the computation consists of all terminal
strings situated in component if reachable from the axiom and the
initial component, i.e.,

L(Π) = {w ∈ T ∗ | (w′, i0) V∗ (w, if ) for some w′ ∈ A}.
It is not difficult to see that graph-controlled insertion-deletion sys-

tems with k components are a special case of graph-controlled insertion-
deletion systems. Without going into technical details, we just give the
main ideas how to obtain a graph-controlled insertion-deletion system
from a graph-controlled insertion-deletion system with k components:
for every l : ((u, α, v)t, j) ∈ Ri we take a rule l : (i, (u, α, v)t, Lab(Rj))
into R where Lab(Rj) denotes the set of labels for the rules in Rj ; more-
over, we take I0 = Lab(Ri0) and If = Lab(Rif ). Finally, we remark
that the labels in a graph-controlled insertion-deletion system with k
components may even be omitted, but they are useful for specific proof
constructions. On the other hand, by a standard powerset construc-
tion for the labels (as used for the determinization of non-deterministic
finite automata) we can easily prove the converse inclusion, i.e., that
for any graph-controlled insertion-deletion system we can construct an
equivalent graph-controlled insertion-deletion system with k compo-
nents.

We define the communication graph of a graph-controlled insertion-
deletion system with k components to be the graph with nodes 1, . . . , k
having an edge between node i and j if and only if there exists a rule
l : ((u, α, v)t, j) ∈ Ri. In [30], 5.5, special emphasis is laid on graph-
controlled insertion-deletion systems with k components whose commu-
nication graph has a tree structure, as we observe that the presentation
of graph-controlled insertion-deletion systems with k components given
above in the case of a tree structure is rather similar to the definition
of insertion-deletion P systems as given in [30]; the main differences are
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that in P systems the final component if contains no rules and corre-
sponds with the root of the communication tree; on the other hand, in
graph-controlled insertion-deletion system with k components, each of
the axioms can only be situated in the initial component i0, whereas in
P systems we may situate each axiom in various different components.

Throughout the rest of this section we shall only use the notion
of graph-controlled insertion-deletion systems with k components, as
they are easier to handle and sufficient to establish computational com-
pleteness in the proofs of our main results presented in the succeed-
ing section. By GCIDk(insm,m′

n , delq,q′
p ) we denote the family of lan-

guages L(Π) generated by graph-controlled insertion-deletion systems
with at most k components and insertion and deletion rules of size
at most (n,m,m′; p, q, q′). We replace k by ∗ if k is not fixed. The
letter “G” is replaced by the letter “T” to denote classes whose com-
munication graph has a tree structure. Some results for the families
TCIDk(insm,m′

n , delq,q′
p ) can directly be derived from the results pre-

sented in [19, 30], for the corresponding families of insertion-deletion P
systems ELSPk(insm,m′

n , delq,q′
p ), yet the results we present in the suc-

ceeding section either reduce the number of components for systems
with an underlying tree structure or else take advantage of the arbi-
trary structure of the underlying communication graph thus obtaining
computational completeness for new restricted variants of insertion and
deletion rules.

Example 6.1.

Consider the following graph-controlled insertion-deletion system
Π = (3, T, T, λ, H, 1, 1, R), with T = {a, b, c}, H = {1, 2, 3}
and R = R1 ∪ R2 ∪ R3, where R1 = {1 : ((λ, a, λ)ins, 2)},
R2 ={2 : ((λ, b, λ)ins, 3)}, R3 = {3 : ((λ, c, λ)ins, 1)}.

The system is inserting consecutively a, b and c. Therefore it is
clear that L(Π) = {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}, which is
not a context-free language.

We remark that using two nodes, it is possible to similarly gen-
erate the non-regular language L = {w ∈ {a, b}∗ : |w|a = |w|b}.
The communication graph has the form of a tree in this case.
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6.2 Results

We start with the following result from [1].

Theorem 6.2. PsTCID∗(ins0,0
1 , del0,0

1 ) ⊆ PsGCID∗(ins0,0
1 , del0,0

1 ) =
PsMAT .

However, in terms of the generated language such systems are not
very powerful. Like in the case of context-free insertion-deletion sys-
tems there is no control on the position of insertion. Hence, the lan-
guage L = {a∗b∗} cannot be generated, for insertion strings of any size.
Hence we obtain:

Theorem 6.3. REG\GCID∗(ins0,0
n , del0,0

1 ) 6= ∅, for any n > 0.

However, there are non-context-free languages that can be gener-
ated by such systems (even without deletion). From Example 6.1 we
obtain:

Theorem 6.4. GCID∗(ins0,0
1 , del0,0

0 ) \ CF 6= ∅.
A more general inclusion holds:

Theorem 6.5. [1] GCID∗(ins0,0
n , del0,0

1 ) ⊂ MAT , for any n > 0.

Next theorem shows that graph-controlled insertion-deletion sys-
tems are strictly more powerful than ordinary insertion-deletion sys-
tems of the same size.

Theorem 6.6. [21] TCID5(ins1,0
1 , del1,0

1 ) = RE.

The proof is based on the following idea. Any rule AB → CD of a
type-0 grammar in Kuroda normal form can be simulated in 4 stages:
(1) erasing A, (2) erasing B, (3) inserting D and (4) inserting C. Every
operation can be done by a dedicated component with the help of an
additional symbol that marks the position before A and that is used in
all operations. A typical computation may look as follows:

w1ABw2 V w1PiABw2 V w1PiBw2 V w1Piw2 V
w1PiDw2 V w1PiCDw2 V w1CDw2
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Other rules of the grammar can be simulated in a similar manner.
We leave technical details that can be consulted in [21].

In a similar way it is possible to obtain a characterization of RE
languages by the family TCID5(ins1,0

1 , del0,1
1 ), i.e. with contexts for

insertion and deletion on different sides. Taking also into account the
symmetrical cases we get:

Corollary 6.7. TCID5(ins1,0
1 , del0,1

1 ) = TCID5(ins0,1
1 , del1,0

1 ) =
TCID5(ins0,1

1 , del0,1
1 ) = RE.

Using a similar technique it is possible to prove following theorems
(see [22]).

Theorem 6.8. TCID5(ins1,0
1 , del0,0

2 ) = TCID5(ins0,1
1 , del0,0

2 ) = RE.

Theorem 6.9. TCID5(ins0,0
2 , del1,0

1 ) = TCID5(ins0,0
2 , del0,1

1 ) = RE.

However, in some cases graph-controlled insertion-deletion systems
are still not complete.

Theorem 6.10. [22] REG \GCID∗(ins0,0
2 , del0,0

2 ) 6= ∅.

6.3 Graph-controlled insertion-deletion systems with
priorities

A further control can be added to graph-controlled insertion-deletion
systems by introducing a priority of deletion over insertion, i.e., if
deletion and insertion rules are applicable, then one of deletion rules
will be chosen. This condition can also be viewed as a particular case of
the graph-controlled insertion-deletion systems if the latter have rules
with appearance checking. We denote by TCIDk(insm,m′

n < delq,q′
p )

the families of languages generated by corresponding classes.
Using priorities it is possible to further decrease the length of con-

texts needed for computational completeness. It is quite astonishing
that insertion-deletion systems that insert or delete one symbol in a
context-free manner can generate PsRE. In case of general communi-
cation graph this is particularly easy to see: jumping to an instruction
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of a register machine corresponds to switching to the associated com-
ponent, and the entire construction is a composition of graphs shown in
Fig. 1. The decrement instruction works correctly because of priority
of deletion over insertion. A configuration (p, x1, · · · , xn) of a register
machine is encoded by strings Perm(pAx1

1 · · ·Axn
n ).

/.-,()*+
p

((λ,Ak,λ)ins,q)//

((λ,Ak,λ)ins,r)
²²

/.-,()*+
q

/.-,()*+
r

/.-,()*+
p

((λ,Ak,λ)del,q)//

((λ,N,λ)ins,p′)
²²

/.-,()*+
q

/.-,()*+
p′
((λ,N,λ)del,r) ///.-,()*+

r

Figure 1. Simulating (p, Ak+, q, r)(left) and (p,Ak−, q, r) (right).

For the tree-like communication graph, the proof is more sophisti-
cated and needs a communication graph depicted at Fig. 2. The main
idea is to use a rule ((λ, p, λ)del, p

+
1 ) if p is an increment instruction or

((λ, p, λ)del, p
−
1 ) if p is a decrement instruction and redirect the compu-

tation to corresponding components that simulate only one instruction
of the register machine. This gives:

Theorem 6.11. PsTCID∗(ins0,0
1 < del0,0

1 ) = PsRE.

Although the above theorem shows that corresponding systems are
quite powerful, they cannot generate RE without control on the place
where a symbol is inserted (REG\GCID∗(ins0,0

n < del0,0
1 ) 6= ∅ for any

n > 0, see Theorem 6.3). Once we allow a context in insertion or
deletion rules, they can do it.

Theorem 6.12. TCID∗(ins0,1
1 < del0,0

1 ) = RE.

In a similar way the following result can be obtained.

Theorem 6.13. TCID∗(ins0,0
1 < del1,0

1 ) = RE.

However in this case the proof is more technical and needs addi-
tional components, see [1]. A similar can be done with a context-free
deletion of two symbols.
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/.-,()*+
1

/.-,()*+
0

/.-,()*+
2

KKK
KKK

K

for every p ∈ Q+
/.-,()*+

3
iiiiiiiiiiiii

UUUUUUUUUUUUU /.-,()*+
4

for every p ∈ Q−

/.-,()*+
p+
1

/.-,()*+
p−1 VVVVVVVVVVVVV

/.-,()*+
p+
2

/.-,()*+
p−2

/.-,()*+
p0
2/.-,()*+

p+
3

/.-,()*+
p−3

/.-,()*+
p0
3
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Â
Â
Â
Â
Â

Â
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Â

_ _ _ _ _ _ _ _ _ _ _

Figure 2. Communication graph for Theorem 6.11. The structures in
the dashed rectangles are repeated for every instruction of the register
machine.

Theorem 6.14. TCID∗(ins0,0
1 < del0,0

2 ) = RE.

We mention that the counterpart of Theorem 6.14 obtained by in-
terchanging parameters of insertion and deletion rules is not true, see
Theorem 6.3.

7 Using only insertion

In this section we consider systems which only use the operation of
insertion, i.e., there are no deletion rules. We shall use the nota-
tion INSm,m′

n in order to denote families of languages generated by
insertion-only systems. It is known that the classes of insertion lan-
guages are incomparable with many known language classes. For exam-
ple, consider a linear language {anban | n ≥ 1}. This language cannot
be generated by any insertion system (see Theorem 6.6 in [32]).

In order to be complete it is possible to use some codings to “inter-
pret” the generated strings. In the literature several types of codings
were considered. It is possible to consider the following languages as a
result for an insertion system I:
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1. h(L(I) ∩R), where h is a morphism and R is a special language
(as considered in [28, 31]), or

2. ϕ(h−1(L(I))), where h is a morphism and ϕ is a weak coding
(considered in [25, 32, 15]).

We mention that both types of codings are rather simple and can be
simulated by a finite state transducer, provided that R is regular. In
some cases R is considered to be the Dyck language.

We start with the following representation of regular languages by
using insertion systems and star languages. We recall that the family
STAR = {A∗ | A ∈ FIN} of star languages is a subfamily of regular
languages.

Theorem 7.1. [31] Any regular language L can be represented in the
form L = h(L′ ∩ R), where h is a weak coding, L′ ∈ INS0,0

2 , and R is
a star language.

Let W represent the family of weak codings. We mention that the
inclusion REG ⊂ W (INS0,0

2 ∩ STAR) is proper, because the Dyck
language is in INS0,0

2 .
A similar characterization of context-free languages by the means

of insertion systems can be done.

Theorem 7.2. [18] A language L is context-free if and only if it can
be represented in the form L = ϕ(h−1(L′)) where L′ ∈ INS1,1

3 , ϕ is a
weak coding and h is a morphism.

We remark that it is important to use a coding:

Theorem 7.3. [32] INS1,1
∗ ⊆ CF.

We present below several characterizations of recursively enumer-
able languages by the means of insertion systems. We start with the
following result.

Theorem 7.4. [15, 27] Each language L ∈ RE can be written as
L = ϕ(h−1(L′)), where ϕ is a weak coding, h is a morphism, and L′ ∈
INS3,3

3 .
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Sketch. The idea of the proof is to apply “mark and migrate” technique
in order to simulate a type-0 grammar. According to this technique,
symbols that have been rewritten are marked. In the following a special
symbol # called marking symbol will be used. We say that a letter a is
marked in a sentential form waw′ if it is followed by #, i.e., |w′| > 0,
and # is the prefix of w′. For example, in order to simulate a context-
free production A → BC, the string #BC is inserted immediately
at the right of A, assuming that A was not marked before. As soon
as the derivation of the simulated sentential form is completed, every
nonterminal A is marked, and the inverse morphism is applied to the
pairs A#.

In order to simulate context-sensitive productions of the form
AB → CD, the migration of symbols is applied. This means that
if a pair AB that should be used by the production is separated by one
or more marked symbols, then copies of symbol A are inserted to the
right, using the marked symbols as contexts. In this way, the symbol
A can migrate to the right and become adjacent to B. When only
the terminal symbols are unmarked in the resulted sentential form, the
inverse morphism h−1 and the weak coding may be applied in order to
eliminate marking symbols and nonterminals.

Corollary 7.5. [15] Every language L ∈ RE can be represented in
either of the forms L = L′ \ R, L = L′/R′, where L′ ∈ INS3,3

3 , R, R′

are regular languages, and \R, /R′ denote the left and right quotient
with R, R′ respectively.

In a similar way it is possible to obtain a characterization of RE by
replacing the inverse morphism h−1 by the intersection with a regular
language. It is shown in [28] that in order to obtain this character-
ization it is enough to use strictly k−testable languages (denoted by
LOC(k)), which is a strictly subset of the family of regular languages,
for k ≥ 2. We recall that a language L is a strictly k−testable language
over T if there are finite sets Pref, Suf, Int ⊆ T k, and for every w,
w ∈ L if and only if (a) the prefix of w of length k belongs to Pref ,
(b) the suffix of w of length k belongs to Suf , and (c) every proper
subsequence of w of length k belongs to Int.
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Then, the following theorem holds.

Theorem 7.6. [28] Every language L ∈ RE can be represented in the
form h(L′∩R), where h is a projection, L′ ∈ INS3,3

3 , and R ∈ LOC(2).

The next theorem considers a different approach showing that in-
sertion systems with context-free rules are quite powerful. Since the
mark and migrate technique cannot be used in this case, the filtering
of sentential forms that have the “proper structure” is performed by
an intersection with the Dyck language.

Theorem 7.7. [31] Every language L ∈ RE can be represented in the
form L = h(L′ ∩ D), where L′ ∈ INS0,0

3 , h is a projection, and D is
the Dyck language.

Finally, we remark that in the case of graph-controlled insertion
systems it is possible to decrease the sizes of the contexts.

Theorem 7.8. [18] Every language L ∈ RE can be represented in the
form L = ϕ(h−1(L′)), where ϕ is a weak coding, h is a morphism, and
L′ ∈ TCID3(ins2,2

2 del0,0
0 ).

8 Bibliographical remarks

Insertion systems, without using the deletion operation, were first con-
sidered in [8], however the idea of the context adjoining was exploited
long time before by [23]. Context-free insertion systems as a gener-
alization of concatenation were first considered in [9, 10]. A formal
language study of both context-free insertion and deletion operations
was done in [13], however the operations were considered separately.
The articles [7, 11] investigate the power of the insertion and deletion
operations. Both operations were first considered together in [16] and
related formal language investigations can be found in several places;
we mention only [25] and [29]. The biological motivation of insertion-
deletion operations leaded to their study in the framework of molecular
computing, see, for example, [6], [14], [32], [35]. An interesting study
of the deletion operation can be found in [7].
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The universality of context-free insertion-deletion systems of size
(2, 0, 0; 3, 0, 0) and (3, 0, 0; 2, 0, 0) was shown in [24], while the opti-
mality of this result was shown in [37]. The last article suggested to
consider the sizes of each context as a complexity measure and not the
maximum as it was done before. One-sided insertion-deletion systems
were firstly considered in [26] and the graph-controlled variant in [21].
Graph-controlled insertion-deletion systems with priorities were intro-
duced in [1].

Other variants of the insertion operation and different control mech-
anisms can be found in [13, 12, 4].
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Simulator of P-Systems with String Replication

Developed in Framework of P-Lingua 2.1∗

Veaceslav Macari, Galina Magariu, Tatiana Verlan

Abstract

In this paper we present beta version of simulator for P-
systems with string replication rules. This simulator is developed
according to P-Lingua ideology and principles of the P-Lingua
2.1 development environment. Format for presentation of rules
with replications in P-Lingua language is proposed. The already
known solutions by means of P-systems with string replication
for two problems are used to demonstrate the work with the sim-
ulator: the SAT problem and inflections generation problem.

Keywords: P-system, string object, string replication rule,
simulator, P-Lingua

1 Introduction

Membrane computing is a rapidly developing scientific trend. The sci-
entists, working in the domain and those who applies results obtained
in the domain for practical problems solution, need some tools for veri-
fication, demonstration and proof of their theoretical ideas and results.
Taking into consideration fast development of the domain and con-
stant appearance of new types of P-systems, the idea to create the
development environment, which can be extended as new types of P-
systems appear, seems to be successful [1]. Simulators developed in
the framework of P-Lingua 2.1 support several types of P-systems:
transition P-system model, symport/antiport P-system model, active

c©2010 by V. Macari, G. Magariu, T. Verlan
∗The authors acknowledge the support of the Science and Technology Center

in Ukraine, project 4032 “Power and efficiency of natural computing: neural-like P
(membrane) systems”.
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membranes P-system model (with membrane division rules and with
membrane creation rules), probabilistic P-system model, stochastic P-
system model. As new models have been included, new simulators have
been developed inside the pLinguaCore library, providing at least one
simulator for each supported model [2]. P-systems working with string
objects using replication rules are not covered by the P-Lingua 2.1 soft,
but considered to be powerful means for solution of some problems in
different domains (e.g. SAT problem, Hamiltonian Path Problem, some
linguistic problems, etc. [3], [4], [5]). So, in this paper we present beta
version of simulator for P-systems with string replication rules. This
simulator is developed according to P-Lingua ideology and principles
of the P-Lingua 2.1 development environment.

2 Model of P-System with String Replication
Rules

The formal definition of membrane P-systems with replications is given
in [6]. A P-system with string objects and input is a construct

Π = (O, Σ, µ,Ml1 , . . . ,Mlp , Rl1 , . . . , Rlp , i0), (1)

where
O – a finite alphabet;
Σ – a sub-alphabet, Σ ⊆ O;
µ – a membrane structure defined as a rooted tree with nodes labeled
1, . . . , p, the interior of each membrane defines a region;
Mli – multiset of strings, initially present in region li, 1 ≤ i ≤ p;
Rli – set of rules of region li, 1 ≤ i ≤ p;
li0 – label of input region, 1 ≤ i0 ≤ p.

A replication rule has the following structure:

a → (u1, t1)||(u2, t2)|| . . . ||(uk, tn), (2)

where
a ∈ O+,
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uj ∈ O∗, 1 ≤ j ≤ n,
tj ∈ {out, here} ∪ {inli | 1 ≤ i ≤ p}, 1 ≤ j ≤ n.

It is the string rewriting rule with string replication and target
indication.

Application of a rule a → (u1, t1)||(u2, t2)|| . . . ||(uk, tn) from the set
of rules Rlk transforms any string of the form w1aw2 from region lk
into n strings w1u1w2, w1u2w2, . . . , w1unw2, where w1, w2 ∈ O∗. The
resulting string w1ujw2 should be sent to the region specified by tj :

- if tj = here, the resulting string remains in the region lk;

- if tj = out, the resulting string is sent out of the region associated
with membrane with label lk to the region immediately outside;

- if tj = inli , the resulting string is sent into the region associated
with membrane with label li, which has to be immediately nested
into the region lk.

(If k = 1 we have the usual string rewriting rule with target indication.)
The initial configuration contains the input string(s) over Σ in re-

gion i0 and the multisets of strings Mi in regions i. The rules of the
system are applied in parallel to all strings in the system. It may occur
that several rules are applicable to a string. But really only one of
them can be applied. The rule which will be applied, is determined in
non-deterministic way. The computation consists in non-deterministic
application of the rules to the strings in regions. If some string can be
involved into the computing process, it has to be involved.

The computation halts when no rules are applicable. The result of
the computation is the set of all words sent out of the outermost region
into environment.

3 P-Lingua Format for P-Systems with String
Replication Rules

Since the P-Systems with String Replication had not been implemented
within the scope of P-Lingua 2.1, the format for replication rules rep-
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resentation have been developed by the authors. When developing the
format, the authors tried to keep principles and notations accepted
in the domain and in the framework of P-Lingua 2.1. The authors
acknowledge A.Alhazov for fruitful discussions on the question. The
developed format is described below.

3.1 Special Symbols

There is a set of symbols of keyboard and reserved words in P-Lingua
2.1, which are used for specific aim when a P-system is described in P-
Lingua format [2] (e.g. @mu, def , call, #). We use the special symbols
predefined in P-Lingua with the same purpose as it was designed by the
developers of P-Lingua. But, for the P-system with string replication
there was a need to introduce some additional symbols and additional
functionality for the existing ones.

Thus, the following notations are admitted:

• symbol ”’ ” is used now to present not only the label of membrane,
but the target membrane as well;

• symbol ”‖” is introduced as the sign for operation of replication;

• the new reserved word ”here” shows, that the resulting string will
remain in the current region;

• the new reserved word ”out” shows, that the resulting string will
be sent out of the current region into the immediately encom-
passing region.

3.2 Rules with Replication

P-systems with replications operate with strings. To represent a string
one has to use a sequence of alphabet symbols which are tied by
sign of concatenation and are bracketed in < and >. For example,
< c.A{1, 2}.Beta > is the string from three alphabet symbols c, A1,2,
Beta. To write the empty string, we use < # >.
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3.2.1 Membrane to Which a Rule Belongs and Target Mem-
brane

To indicate membrane to which a rule belongs, we write symbol ”’ ”
and membrane label in the left part of the rule after the string. For
example, if a rule belongs to membrane with label 1, we write:

<a.b.c>’1 -->

To indicate the target membrane, we use the same scheme for the
right part of the rule if the target is inli . When the target is out or here,
we write (after the string) the symbol ”’ ” and the respective reserved
word out or here. For example, the following rule for membrane with
label 1

a → (abc, here)||(dd, in2)||(f, out) (3)

we present as

<a>’1 --> <a.b.c>’here || <d.d>’2 || <f> ’out

3.2.2 Rules Presentation

According to general view of a replication rule a → (u1, t1)||(u2, t2)|| . . .
. . . ||(uk, tk), it consists of a left part and a list of right parts with the
symbol of replication ”||” between them.

Left part → Right part || Right part || . . . || Right part (4)

Left part has the following format:

s′h, (5)

where
s – a non-empty string, e.g. <a.alpha.bb>;
h – the label of the membrane to which the rule belongs.

Each Right part can have one of the following three formats:
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1)
s′here, (6)

where

– s is a string, possibly empty, e.g. <a.beta.abd> or < # >;

– the reserved word ”here” shows, that the resulting string will
remain in the current region;

2)
s′out, (7)

where

– s is a string, possibly empty, e.g. <a.beta.abd> or < # >;

– the reserved word ”out” shows, that the resulting string will be
sent out of the current region into the immediately encompassing
region;

3)
s′h, (8)

where

– s is a string, possibly empty, e.g. <a.beta.abd> or < # >;

– h is the label of target membrane, which specifies the region
into which the resulting string will be placed and which has to
be immediately nested into the current membrane.

Examples of rules:
1. Suppose that we have the following rule for membrane 1:

β · e → (φ1, here) || (φ2, in3) || (λ, out) (9)

In Plingua format it looks like:

<beta.e>’1 --> <fi{1}>’here || <fi{2}>’3 || <#>’out;

2. Suppose that we have the following rule for membrane 2:

d → (µ · k, out) (10)

In Plingua format it looks like:

<d>’2 --> <mu.k>’out;
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4 Examples of Solution Implementation to
Some Problems

4.1 A Solution to SAT

Satisfiability problem (SAT) definition is the following: Given a
Boolean expression E in conjunctive normal form (CNF), to decide
if there is some assignment to the variables in E such that E is true.

Let us consider a solution to the SAT problem, using P-systems
with string replication, given in [4].

Suppose we are given a fomula E = C1 ∧ C2 ∧ . . . ∧ Cm where C1,
C2, . . ., Cm are disjunctions, and the variables involved are x1, x2, . . .,
xn. The following P-system with string replication is proposed for the
problem solution:

Π = (V, V, µ, M1,M2, . . . , Mm+1, R1, R2, . . . , Rm+1), (11)

where
V = {ai, ti, fi | 1 ≤ i ≤ n},
µ = [1 [2 . . . [m+1 ]m+1 ]2 ]1;
Mm+1 = {a1}, Mi = {λ}, 1 ≤ i ≤ m,
Rm+1 = {ai → (tiai+1, here) || (fiai+1, here) | 1 ≤ i ≤ n− 1}

∪{an → (tn, out) || (fn, out)},
Rj = {ti → (ti, out) | xi is present in Cj , 1 ≤ i ≤ n}

∪{fi → (fi, out) | ¬xi is present in Cj , 1 ≤ i ≤ n} , 1 ≤ j ≤ m.

For demonstration simplicity we take the case, when the values for
m and n are not so large: m = 3, n = 4, E = (x1 + ¬x2)(¬x2 + x3 +
¬x4)¬x3.

Code of the program for this problem solution written in P-Lingua
(file with extension .pli) is the following:

@model<string_replication>

def SAT() {

@mu = [ [ [ [ ]’4]’3]’2]’1;
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@ms(4) = <a{1}>;
/* rules for membrane 1 */
<t{1}>’1 --> <t{1}>’out;
<f{2}>’1 --> <f{2}>’out;
/* rules for membrane 2 */
<t{3}>’2 --> <t{3}>’out;
<f{2}>’2 --> <f{2}>’out;
<f{4}>’2 --> <f{4}>’out;
/* rules for membrane 3 */
<f{3}>’3 --> <f{3}>’out;
/* rules for membrane 4 */
<a{1}>’4 --> <t{1}.a{2}>’here || <f{1}.a{2}>’here;
<a{2}>’4 --> <t{2}.a{3}>’here || <f{2}.a{3}>’here;
<a{3}>’4 --> <t{3}.a{4}>’here || <f{3}.a{4}>’here;
<a{4}>’4 --> <t{4}>’out || <f{4}>’out;
}

def main() {
call SAT();
}

The solution is got in 7 steps (m + n steps).
The initial configuration is shown in Annex 1, Fig. 1. There is the

only string a1 in the region associated with label 4. During the first 4
steps all possible sets of values for variables x1, x2, x3, x4 are generated
in the region associated with label 4.

Step 1. (See Annex 1, Fig. 2.) Due to replication two strings are
generated in the region associated with label 4 (for different values of
the variable x1: t1 – for the value true and f1 – for the value false):
strings < t1.a2 >, < f1.a2 >.

Step 2. (See Annex 1, Fig.3.) Four strings are generated in the
region associated with label 4 for different values of the variables x1

and x2: < t1.t2.a3 >, < f1.t2.a3 >, < t1.f2.a3 >, < f1.f2.a3 >.
Step 3. (See Annex 1, Fig. 4.) Eight strings are generated in the

region associated with label 5 for different values of the variables x1,
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x2 and x3.
Step 4. (See Annex 1, Fig. 5.) 16 strings are generated for different

values of all 4 variables x1, x2, x3, x4 and they are sent out of the region
associated with label 4 into the region associated with label 3.

Step 5. (See Annex 1, Fig. 6.) During the steps 5 – 7 the sets of
variables values are filtered: only those sets leave the region, for which
the given expression gets the value true. At the step 5 the sets are
filtered by possible values of the third disjunction C3 which in our case
is negation of the variable x3: only sets with value false for the variable
x3 leave the region associated with label 3.

Step 6. (See Annex 1, Fig. 7.) At the step 6 the sets from the
region associated with label 2 are filtered by possible values of the
second disjunction C2 which in our case is ¬x2 + x3 + ¬x4: only sets,
for which this disjunction is equal to true, are sent out of the region
associated with label 2.

Step 7. (See Annex 1, Fig. 8.) At the step 7 the sets from the
region associated with label 1 are filtered by possible values of the first
disjunction C1 which in our case is x1 + ¬x2: only the sets, for which
this disjunction is equal to true, are sent out of the region associated
with label 1. And after that the computation halts: the resulting sets,
for which the formula E = (x1 + ¬x2)(¬x2 + x3 + ¬x4)¬x3 gets the
value true, are in the environment.

4.2 A Solution to the Problem of Inflections Generation
in Romanian Language

Inflection in natural language means a change in the form of a word,
usually modification or affixation, signalling change in such grammat-
ical functions as tense, voice, mood, person, gender, number, or case.
The inflection process goes on according to some set of rules (different
rules for different groups of words). The number of such rules varies
for different natural languages. The rules can be algorithmized, so the
process of inflections generation gets computer aiding.

When modeling the process of inflections generation by P-systems,
there appears the possibility to construct in parallel way all the inflec-
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tions not only for one word, but all the inflections for some group of
words which have specific common characteristics, i.e. belong to one
inflectional model (e.g. neuter noun, in Romanian, inflectional model
3).

In the article [5] there is defined the P-system with string repli-
cation performing the inflection process (including vowel/consonant
alternation with the assumption that alternating subword is present
in the input word in just one occurrence). According to this defini-
tion we construct the P-system for the words of one inflectional model
for nouns in Romanian – masculine, inflectional model 5. Below we
demonstrate the work of the P-system on the example of two nouns –
”brad” (engl. ”firtree”) and ”caid” (engl. ”kaid”), which belong to this
inflectional model. For better understanding of P-system rules, let us
consider the list of inflected words for the noun ”brad”. Taking into
account that the Romanian forms for nominative and accusative cases
coincide, as well as for the genitive and dative ones, we consider the
reduced paradigm:

brad, brad, brad, bradul, bradului, bradule,
brazi, brazi, brazi, brazii, brazilor, brazilor.

Since one part of inflections is formed without alternation and an-
other part – with alternation, we have two sublists of endings for the
nouns of inflectional model 5:

F1 = {, , , ul, ului, ule} and F2 = {i, i, i, ii, ilor, ilor}.
So in this case we have the number of sublists of endings s = 2; the

number of alternations is m− 1 = 1, then we have m = 2.
Now we can construct the P-system which models the inflection

process for considered inflection group according to the definition given
in [5].

The words ”brad” and ”caid” (followed by the symbol ”#”) we
place into the input region. The P-system looks like the following:

Π = (O, Σ, µ, brad#, λ, λ, R1, R2, R3, 1), (12)

where
Σ = V ∪ {#},
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O = Σ ∪ E,
µ = [ [ ]2 [ ]3 ]1 ,
E = {#2} ∪ {A11, A12, A21, A22},
V = {a, b, . . . , z},
R1 = {# → A12 || (#2, in2)} ∪ {A21 → (λ, in3)}∪

{A12 → (λ, out)||(λ, out)||(λ, out)||(ul, out)||(ului, out)||(ule, out)}∪
{A22 → (i, out)||(i, out)||(i, out)||(ii, out)||(ilor, out)||(ilor, out)}

R2 = {d → (zA21, out},
R3 = {#2 → (A22, out)}.

The P-system has 1 + (s− 1)m membranes, then there are 3 mem-
branes in our case. Membrane with label 1 is intended for endings
adding. The inflections corresponding to subset F1 are generated in 2
steps. At the second step they are sent out to the environment. Addi-
tionally, in the P-system there are m membranes for each other subset
(these membranes are intended for alternations implementation). In
our case there are two membranes intended for implementation of sin-
gle alternation: membranes with labels 2 and 3. The number of steps
necessary for performing one alternation is equal to 2. When there are
several alternations, they are implemented subsequently inside a word
but in parallel for different words. So, the solution is got in 2m + 1
steps regardless of the number of words placed in the input region; then
there are 5 steps for our case.

Code of the program for this problem solution written in P-Lingua
(file with extension .pli) is the following:

@model<string_replication>

def Inflection() {
@mu = [ []’2 []’3]’1;
@ms(1) = <b.r.a.d.diez>,<c.a.i.d.diez>;

/* rules for membrane 1 */

/* <diez> -> <A{1,2}> || <diez{2}> in 2; */
<diez>’1 --> <A{1,2}>’1 || <diez{2}>’2;
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/* <A{2,1}> -> <#> in 3; */
<A{2,1}>’1 --> <#>’3;

/* <A{1,2}> -> <#> out || <#> out || <#> out || <u.l> out
|| <u.l.u.i> out || <u.l.e> out; */

<A{1,2}>’1 --> <#>’out || <#>’out || <#>’out ||
<u.l>’out || <u.l.u.i>’out || <u.l.e>’out;

/* <A{2,2}> -> <i> out || <i> out || <i> out || <i.i> out
|| <i.l.o.r> out || <i.l.o.r> out; */

<A{2,2}>’1 --> <i>’out || <i>’out || <i>’out ||
<i.i>’out || <i.l.o.r>’out || <i.l.o.r>’out;

/* rule for membrane 2 */
/* <d> -> <z.A{2,1}> out; */

<d>’2 --> <z.A{2,1}>’out;

/* rule for membrane 3 */
/* <diez{2}> -> <A{2,2}> out; */

diez{2}>’3 --> <A{2,2}>’out;
}

def main() {
call Inflection();

}

In Annex 2, Fig. 9 there is the initial configuration of the P-system
as it looks in the simulator console.

Step 1. (See Annex 2, Fig. 10.) Since we have two sublists of
endings, for each input word two strings are generated – two strings
stay in the region 1 and two strings enter the region 2:

- strings in the region 1 are responsible for generation of inflections
with endings from subset F1, which are supposed to be formed
without alternation;

- strings in the region 2 are responsible for generation of inflections
with endings from subset F2. One can see that the string is
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marked by the special symbol diez2. It has index equal to 2 that
shows that the string corresponds to subset F2 (the subset with
index equal to 2).

Step 2. (see Annex 2, Fig. 11.) For strings from region 1 the
replicative substitutions are performed and the generated inflections
with endings from subset F1 are sent out to the environment. For
strings from region 2 the alternation is carried out (letter ”d” is changed
by letter ”z”), the marked letter A2,1 is added to show that the first
alternation was carried out and the resulting strings go to region 1.

Step 3. (see Annex 2, Fig. 12.) The marked letter A2,1 in the
strings in region 1 is dropped and the resulting strings are placed in
region 3.

Step 4. (see Annex 2, Fig. 13.). The symbol diez2 in the strings
from region 3 is replaced by the marked letter A2,2 and the resulting
strings are sent out to region 1. The second index of the marked letter
is equal to m, it means that all alternations are carried out and now
the endings have to be added.

Step 5. (see Annex 2, Fig. 14.) For strings from region 1 the
replicative substitutions are performed and generated inflections with
endings from subset F2 are sent out to the environment. The compu-
tation halts: the resulting strings corresponding to all inflections of the
input words are present in the environment.

Due to massive parallelism the process of all inflections generation
for the words ”brad” and ”caid” was implemented in 5 steps. The user
is able to place into the input region several words from this inflection
group – the number of steps for all inflections generation will be the
same.

5 Conclusion and Future Work

The simulator for P-systems with String replications is being developed
according to the ideology and in the framework of pLinguaCore. So a
set of new classes and methods were added to pLinguaCore in order to
support string objects as they are used in P-systems with replication
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rules. At the same time a set of classes and methods already existing
in PLinguaCore were modified to fit string replication P-systems.

The main idea of P-Lingua extension was to use already imple-
mented ideology and to make a separate program flow at the same
time. Therefore, new P-system implementation uses base types of P-
Lingua framework but the code is separated starting from parsing of
P-Lingua program, XML generation, XML loading and simulation with
intermediary results and final solution output.

For the implementation of P-Lingua strings replication model,
changes in parsing of string objects and rules were made.

A new model definition – ”string replication” – was added in order
to make the P-Lingua soft to start working with strings replication
P-system.

As far as when applying the rules there is an active work with
string objects in P-systems with replications, the internal representa-
tion of string objects was changed (compared with that as it is made
in PLingua 2.1). String object is represented as a list of objects (not
as a simple string), each of which containing: alphabet object name,
alphabet object indexes, alphabet object multiplicity. Due to this the
work with rules and membrane content during simulation is essentially
simplified.

The following classes were added to realize rules with replica-
tion: StringsCellLikePsystem, ReplicationLeftHandRule, StringsRepli-
cationRightHandRule, StringsReplicationCellLikeRule, ReadStringsRe-
plicationRule (for reading replication rules from XML file).

The subsequent work supposes implementation of other types of
rules for string objects, first of all, splicing operation. Moreover, the
more sophisticated means are planned to be offered for user of the sim-
ulator: for visualization of P-system (for these models) current con-
figuration and for control of evolving process. Undoubtedly that our
experience in the work on strings replication P-systems simulator will
serve the good base for elaboration of simulators for other types of
P-systems.
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Annex 1

Figure 1. The initial configuration of the P-system for problem SAT
solution
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Figure 2. Configuration of the system after Step 1

Figure 3. Configuration of the system after Step 2
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Figure 4. Configuration of the system after Step 3

Figure 5. Configuration of the system after Step 4
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Figure 6. Configuration of the system after Step 5
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Figure 7. Configuration of the system after Step 6

Figure 8. Configuration of the system after Step 7
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Annex 2

Figure 9. The initial configuration of the P system for inflections gen-
eration

Figure 10. Configuration of the system after Step 1
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Figure 11. Configuration of the system after Step 2

Figure 12. Configuration of the system after Step 3
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Figure 13. Configuration of the system after Step 4

Figure 14. Configuration of the system after Step 5
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