
Computer Science Journal of Moldova, vol.18, no.1(52), 2010

A flexible navigation mechanism for complex

data models

Oleg Burlaca

Abstract

The paper presents a way to build flexible navigation tools
over a big dataset of well structured data models. The mecha-
nism is underpinned by a search engine that is used to slice and
dice the database. By applying a series of consecutive groupings,
the result of a search query can be organized in a hierarchical
structure and browsed using traditional user interface controls.

1 Introduction

Building successful user interfaces (UI) requires a good understanding
of the end user needs. As the data model of an application evolves
with the addition of new objects and relationships, it’s hard to create a
sustainable UI because of the user’s ever changing requirements. To al-
leviate the issue we should devote more time to the initial development
phase: the software architecture. Nevertheless, it’s not always possible
to encompass all aspects at the beginning. Moreover, the requirements
may change at a later stage when the software is already delivered and
launched.

The approach presented in [1] works well for websites due to sim-
ple data models that were used. As the number of entities in a model
increase, there is a need to quickly seek a desired object basing on
different criteria. It may happen that the user knows the chain of in-
terrelated objects that are connected to the object he is looking for, and
would like to easily spot it by ”jumping” from one object to another.

©2010 by O. Burlaca

3

O. Burlaca

Any information system that deals with a vast amount of data
should feature a search engine. Our idea is to leverage the search
engine and build the navigation system on the fly. In the next section
we introduce the data model we used for our application. Then we
discuss the search engine implementation, and finally we present the
idea of a ”navigation widget” that is powered by the search engine.

2 The Data Model

The Events Data Model elaborated by HURIDOCS [2] is depicted in
Figure 1.

Figure 1. Events Data Model.

An Event is a complex thing, it is comprised of several entities: in-
tervention, information and act. Acts are further comprised of victims,
perpetrators. Trying to build an interface for editing an Event seems to
be a tedious task and it might happen that due to the diverse number
of sub-entities (interventions, acts) and complementary tasks (adding
a new person or uploading a file), it might get cumbersome and a hard
nut to crack for simple users. The proposed solution is to work with
only one entity at a time and provide a suitable ”contextual skeleton”

4

A flexible navigation mechanism for complex data models

for the user. In other words, we try to split a complex problem into
smaller, but simpler ones, thus applying the divide and conquer design
paradigm. (See [3] for an in depth discussion about the UI part).

By looking at the model in Figure 1, one can notice that if to
exclude the person entity, the remaining structure has only 1 to Many
relationships, i.e.: An event has many intervention, information and
act entities. An act has many involvement entities. It allows us to
display an event as a tree. In Figure 2 one can see the ”Death Threats
Against Monsignor Alvaro Ramazzini” event with all its acts, victims,
perpetrators, information and other entities. We can think about this
tree as a ”contextual skeleton”: the user will be able to edit a single
entity from the tree, but he will always know to which parent entities
it belongs (is it a victim or a perpetrator and to which act and event
it belongs).

Figure 2. A hierarchical representation of an Event.

Let’s assume that the data entry aspect is solved [3] and we have

5

O. Burlaca

a quite big database of such events (some real world databases have
more than 20,000 events). We need a mechanism to easily browse
this dataset, but we can’t know beforehand how a user might want to
browse the collection. In the next section we describe a search engine
that will power our navigation mechanism: imagine that you’ll be able
to browse events in different ways: by date (an entity attribute), by
type of act (a relationship), by method of violence, etc.

3 The Search Engine

There are different types of entities in the system, thus creating a search
query will start by selecting what kind of entities to return (Events,
Acts, Information). But it doesn’t mean that it will be impossible to
search for one type of entity and have attributes of another type in
search results. For example, it will be possible to search for acts and
display the Event.Title. Because of the 1 to Many nature of the event
data model (an event has many acts, an act has many involvements, but
an act CAN’T belong to many events), one can uniquely identify the
parent entity. It means that if there are Involvements in search results,
one can also display Act.TypeOfAct and Event.Title. Conversely, one
can’t search for Events and display Act.TypeOfAct in search resutls,
because an event has Many acts.

In conclusion, you need to search for the deepest type of entity that
appears in search conditions if you need to display its attributes in
search results. It may sound a bit abstract for now, practical examples
provided in the next section will clarify things.

3.1 Simple search

A simple search query consists of:

a) Type of entity to fetch results from (Events, Acts, Interventions
etc.). We’ll refer to it as ResultEntity.

b) A set of search conditions coupled by logical operators: AND,
OR, AND NOT, OR NOT. A search condition may refer to a

6

A flexible navigation mechanism for complex data models

type of entity (let’s call it EntityX) that is a parent or child for
ResultEntity. This rule is transitive. i.e. the relationship is not
required to be direct, it’s ok if EntityX is a parent of a parent
of ResultEntity or vice versa: EntityX is a child of a child of
ResultEntity.

c) A set of attributes from ResultEntity and all its parent entities
to display in search results.

The search query illustrated in Figure 3 has 2 conditions, the first
one refers to the Event entity and the second refers to the Act entity.

Figure 3. A simple search query.

Following the rule ”you need to search for the deepest type of entity
that appears in search conditions”, the user needs to select the Act en-
tity as ResultEntity if he needs to display the Act.TypeOfAct attribute
in search results. If he selects Events as ResultEntity, the search will
work, but one will not be able to display Act attributes.

You should be aware that search results depend on the ResultEntity,
and sometimes even the correctness (validity) of a query changes. Let’s
see this in practice. Take the example from Figure 3. Suppose we have
two events in the database and we need to display only the title of the
event in search results:

Event1
Title: "threat against somebody"
Acts: no acts

Event2
Title: "a threat to the party leadership"
Act1

7

O. Burlaca

TypeOfAct: Violations of the right to life
InitialDate: 01/05/2008

If ResultEntity = Event, the results will be fetched from the event
collection and one will get both events. If ResultEntity = Act, one
will get results from the act collection. Because Event1 doesn’t have
any acts, it will not be listed at all in the EventAct relationship ta-
ble, thus only Event2 will be in search results. It should be stressed
once again: a search condition is evaluated/performed against the Re-
sultEntity database table. It means that a search condition’s entity
MUST be linked to the ResultEntity.

Let’s examine a situation when the validity of a search query de-
pends on ResultEntity, Figure 4.

Figure 4. A simple search with incompatible search conditions.

If ResultEntity = Event, everything is ok.
If ResultEntity = Act or Incident, then we get into trouble.
Let’s assume ResultEntity = Act. Because an Act is not linked by

a parent/child relationship to an Information entity (see the rule in
point (b) above), we can’t uniquely identify an Information entity for
an Act and vice versa. Technically speaking, the results we get from
the fourth search condition do not contain an Act column, so it is not
possible to join these results with results from other search conditions
(we don’t have a common entity by which to link two results sets).

3.2 Complex search

Imagine that we encapsulate a simple search into a block, we’ll call it
a search block. By applying logical operators (AND, OR, AND NOT,

8

A flexible navigation mechanism for complex data models

OR NOT) we can create a complex search query that consists of several
blocks, see Figure 5.

Figure 5. A complex search query.

Because each block has its own ResultEntity, we need to use the
least common denominator Entity before joining the result sets. The
system can automatically infer it, but as one can see in Figure 6, some-
times the user may need to set it manually.

Figure 6. Normalization of search blocks.

In Figure 6 the ResultEntity is Incident and Involvement corre-
spondingly. The least common denominator is the Act entity, and the
system will determine it automatically. But what if we need to display
only the title of found events? Since the overall ResultEntity of these
two blocks is Act, the search results will contain act entities. Surely, we
can display the event’s title, but the same event will appear many times
because there are many acts per event. Let’s run the search query on
a database that contains just one event:

Event1

9

O. Burlaca

Act1
Incident1

MethodOfViolence = Beating
Victim = PersonX

Involvement1
DegreeOfInvolvement = Planned the act
TypeOfPerpetrator = Police
Perpetrator = PersonY

Act2
Incident2

MethodOfViolence = Wounding
Victim = PersonZ

Involvement2
DegreeOfInvolvement = Directly carried out the act
TypeOfPerpetrator = Paramilitary forces

The first block returns Incident1 and Incident2, the second block
returns Involvement1 and Involvement2. Joining two results sets will
give us Act1 and Act2. So, if we need to display only event attributes in
search results, we’ll get Event1 listed twice. In order to remove dupli-
cates, the user is required to manually select the NormalizationEntity.
In our case, it will be the Event entity.

Remark: since NormalizationEntity applies to a block, it means it
applies to a simple search. As a result, the definition of a simple search
query will be expanded to include the (d) point: NormalizationEntity.

A query that doesn’t have a NormalizationEntity is invalid. In Fig-
ure 7 the first search condition returns Person entities while the second
one returns Events. These are top level entities that miss the par-
ent/child relationship.

3.3 Person roles in search conditions

The following example illustrates how to search for acts that have vic-
tims from one of the specified countries.

The same applies to other entities:

10

A flexible navigation mechanism for complex data models

Figure 7. Invalid search query.

Figure 8. Using person roles in search conditions.

- Intervention.InterveningPary.[PersonAttribute]
- Intervention.Victim.[PersonAttribute]
- Involvement.Perpetrator.[PersonAttribute]
- etc

3.4 Query Infeasibility

The proposed search mechanism is not able to perform all kinds of
searches you might have in mind, but we’ve tried to find a trade off
between ease of use and power. As a last resort, one can write a bunch
of SQL queries and PHP scripts to perform a complex and exotic search
query. Here is an example of an unfeasible query: Show me those
events that have more than 3 acts and where one of the victims is also
a perpetrator.

4 The Navigation Mechanism

Having a powerful search engine capable of querying different types of
entities at the same time and returning fields of different entities in the
same row, we are able to introduce the concept of Navigation Widget.

What if we start grouping the flat list comprised of found rows by
several columns? The output will be a hierarchy, where each level is

11

O. Burlaca

a ”folder” that is actually an entity attribute. Once a complex search
query is created, the user can specify a list of entity attributes used to
group the results and save the query and attribute list as a hierarchical
result container, such container we call Navigation Widget. The user
can create an unlimited number of widgets, and the system will auto-
matically display them as top level folders. Figure 9 illustrates three
widgets: ”By date”, ”By type of act”, ”[Event Widget]”. The second
folder ”By type of act” is a two level navigation widget. Starting from
the third level the system displays the event entities.

Figure 9. Navigation folders in event’s tree.

A small Win32 application was developed that displays a collection
of events along with attributes from child entities (see Figure 10). The
application is available for download from http://openevsys.burlaca.com/.
The user can drag&drop columns on the header and group search re-
sults, and he can group by as many columns as he wishes. The de-
scribed approach depicts the way navigation folders are created. The

12

A flexible navigation mechanism for complex data models

system may have two types of widgets:

- global: the administrator creates a widget that is automati-
cally visible by all other users and they will not be able to mod-
ify/remove it;

- local: a user creates his own widgets that are not visible by
others.

Figure 10. Grouping search results to create navigation folders.

5 Conclusions

Rapid Application Development tools became very flexible and power-
ful nowadays. Nevertheless, a developer has to rethink the User Inter-
face when the underlying data model changes. The approach described
in this paper implies considerable development efforts to implement the
search engine, but the flexibility in managing an ever changing data
model greatly reduces maintenance costs.

13

O. Burlaca

The approach is not universal in a sense that it can’t be applied to
an arbitrary data model, i.e. the search engine implementation may
change.

For future work there are two directions: a) expand search engine
capabilities to process different types of data models b) apply other
paradigms in navigation mechanisms, e.g., the pivot tables concept as
a complement to the hierarchical grouping.

References

[1] O. Burlaca. Generic Interfaces for Managing Web Data. Computer
Science Journal of Moldova, vol. 13, nr. 1(37), 2005. pp. 70–83

[2] HURIDOCS - Human Rights Information and Documentation
Systems, International. http://www.huridocs.org/

[3] OpenEvSys2 prototype. http://openevsys.burlaca.com/

Oleg Burlaca, Received June 16, 2010

O. Burlaca
Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E–mail: oburlaca@neonet.md

14

Computer Science Journal of Moldova, vol.18, no.1(52), 2010

Three models for gene assembly in ciliates: a

comparison

Miika Langille, Ion Petre, Vladimir Rogojin

Abstract

We survey in this paper the main differences among three
variants of an intramolecular model for gene assembly: the gen-
eral, the simple, and the elementary models. We present all of
them in terms of sorting signed permutations and compare their
behavior with respect to: (i) completeness, (ii) confluence (with
the notion defined in three different setups), (iii) decidability, (iv)
characterization of the sortable permutations in each model, (v)
sequential complexity, and (vi) experimental validation.

Keywords: Ciliate, simple gene assembly, simple model, el-
ementary model, confluence, completeness, characterization, se-
quential complexity, model validation, signed permutations, sort-
ing.

1 Introduction

Gene assembly in ciliates has been subject of intense research in the
last few years, both regarding the molecular details driving it, as well
as the theoretical implications of some mathematical models proposed
for it, see [7, 10, 25, 17, 16, 26, 1, 20].

Ciliates form an ancient and rich group of eukaryotes. There are
about 8000 species of ciliates currently known. Two characteristics
which are common for all ciliates distinguish them from other groups
of unicellular eukaryotes. First, they all have “cilia”, organs used for
motility and for feeding. Second, they all have two types of nuclei
presented in each organism. Almost all RNA-transcriptions happen in

c©2010 by M. Langille, I. Petre, V. Rogojin

15

M. Langille, I. Petre, V. Rogojin

macronuclei (somatic nuclei) during the life of a ciliate. The DNA-
molecules in the micronuclei (germline nuclei) seem to remain silent
until the sexual reproduction begins (see [24]).

The genetical information is stored in different ways on micro- and
macronuclear molecules. The macronuclear genes are contiguous se-
quences of nucleotides. The micronuclear genes however, are split
into coding blocks (called MDSs), shuffled and separated by noncoding
blocks (called IESs). This shuffling and inversion of MDSs is espe-
cially visible in a species of ciliates called stichotrichs. Macronuclear
molecules are known to be the shortest DNA in Nature, ranging in the
Sterkiella nova organisms between 200bp and 3700bp with an average
of 2200 bp in length (see [11, 5, 6, 23, 24, 27]). Macronuclear molecules
consist mainly of coding sequences. On the other hand, coding se-
quences occupy as little as 2 – 5 % of the micronuclear molecules of the
length about 107 bp (in Sterkiella nova, see [5, 23]).

At some point during sexual reproduction, ciliates destroy all
macronuclei and develop new ones from the micronuclei. In the pro-
cess they must excise non-coding sequences and assemble correctly all
coding blocks of the micronuclear genes. This process is called gene
assembly. For a brief introduction to the biology of ciliates, especially
to the gene assembly process we refer to [7].

Two molecular models have been proposed for gene assembly in
ciliates. The intermolecular model [17, 16] and the intramolecular
model [10, 25] suggest splicing of gene fragments via short nucleotide
sequences called pointers. Each pointer at the end of an MDS re-
peats at the beginning of the MDS which follows it in the assembled
gene. Recent results [1, 20] suggest that some template molecules may
assist the correct alignment of the recombining molecules. The inter-
molecular model suggests that two molecules may participate in the
recombination, while the intramolecular model considers folding and
recombination within a single molecule.

We focus in this paper on the intramolecular model (called in the
sequel the general model) and on two of its variants: the simple model,
introduced in [15] and the elementary model, introduced in [14].

The general model consists of three molecular operations, ld, hi,

16

Three models for gene assembly in ciliates: a comparison

ld(i) ld(ii) ld(iii)

hi(i) hi(ii) hi(iii)

dlad(i) dlad(ii) dlad(iii)

Figure 1. Illustration of the ld, hi, dlad molecular operation showing
in each case: (i) the folding, (ii) the recombination, (iii) the result.
Courtesy of Tero Harju.

dlad, see [10, 25]. The three operations are illustrated in Figure 1
where in each case we show the folding of the molecule on itself, the
recombination that takes place and the subsequent result. A charac-
teristic of this model is that all three operations operate on a single
molecule that folds on itself in a specific way. One thus says that the
model is intramolecular.

Note that the three intramolecular operations allow in their gen-
eral formulation that the MDSs participating in an operation may
be located anywhere along the molecule. Arguing on the principle
of parsimony, a simplified model was introduced in [15], asking that
all operations are applied ‘locally’. This simple model consists of the
same three molecular operations as the general model, requiring how-
ever that there is at most one coding block involved in each of the
three operations. This idea was then further developed into two sepa-
rate models, both using the terminology of simple gene assembly . In
the first one, that we will refer to in here as the elementary model ,
introduced in [13, 14], the model was further restricted so that only
micronuclear, but not composite, MDSs could be manipulated by the
molecular operations. Consequently, once two or more micronuclear

17

M. Langille, I. Petre, V. Rogojin

MDSs are combined into a larger composite MDS, they can no longer
be moved along the sequence. The second model, that we will refer
to as the simple model [18], allowed that both micronuclear, as well as
composite MDSs may be manipulated in each of the three molecular
operations.

However minor the difference between the frameworks of the simple
and the elementary models may seem, it does have a great impact on
the characteristics of each model. We survey in this paper the main
known results on the simple and elementary gene assembly, comparing
them also with the corresponding properties of the general model with
respect to: (i) completeness, (ii) confluence (with the notion defined
in three different setups), (iii) decidability, (iv) characterization of the
sortable permutations in each model, (v) sequential complexity, and
(vi) experimental validation. For this, we introduce in this paper a
permutation-based presentation of the general model. We discuss in
particular the question of model validation and consider the assembly
of all currently known ciliate gene patterns, see [4]. We also present
several open problems in this area.

The results in this paper have been previously published in [8, 14,
18, 19] using non-uniform (and even conflicting) terminology and no-
tation. In here we give the topic a uniform presentation, fix the termi-
nology and discuss in some details differences among the three models
of interest.

2 Mathematical preliminaries

For a finite alphabet A = {a1, . . . , an}, we denote by A∗ the free monoid
generated by A and call any element of A∗ a word. For any v ∈ A∗, we
denote dom(v) = {a ∈ A | a occurs in v}.

Let A = {a1, . . . , an}, where A ∩ A = ∅. For p, q ∈ A ∪ A, we
say that p, q have the same signature if either p, q ∈ A, or p, q ∈ A
and we say that they have different signatures otherwise. For any
u ∈ (A ∪ A)∗, u = x1 . . . xk, with xi ∈ A ∪ A, for all 1 ≤ i ≤ k, we
denote ‖u‖ = ‖x1‖ . . . ‖xk‖, where ‖a‖ = ‖a‖ = a, for all a ∈ A. We
also denote u = xk . . . x1, where a = a, for all a ∈ A. We say, that u

18

Three models for gene assembly in ciliates: a comparison

is uniformly signed, if either xi ∈ A for all 1 ≤ i ≤ k, or xi ∈ A for all
1 ≤ i ≤ k.

For strings u, v over Σ, we say that u is a substring of v, denoted
by u ≤ v, if v = xuy, for some strings x, y. We say that u is a
subsequence of v, denoted by u ≤s v, if u = a1a2 . . . am, ai ∈ Σ∪Σ and
v = v0a1v1a2v2 . . . amvm, for some strings vi, 0 ≤ i ≤ m, over Σ.

A permutation π over A is a bijection π : A → A. Fixing the
order relation (a1, a2, . . . , am) over A, we often denote π as the word
π(a1) . . . π(am) ∈ A∗. A signed permutation over A is a string ψ ∈
(A ∪ A)∗, where ‖ψ‖ is a permutation over A. We say that a signed
permutation π is (circularly) sorted if it is of either of the following
forms:

(i) π = akak+1 . . . ana1 . . . ak−1, for some k ≥ 1. In this case, we say
that π is an orthodox sorted permutation.

(ii) π = ak−1 . . . a1 an . . . ak+1 ak, for some k ≥ 1. In this case, we say
that π is an inverted sorted permutation.

In both cases, if k = 1, then we say that π is a linear sorted permutation;
otherwise, we say that it is circular.

A sorted block in the signed permutation π is a substring of π either
of the form aiai+1 . . . aj , or of the form aj . . . ai+1 ai, 1 ≤ i ≤ j ≤
n, where ai−1ai, ai ai−1, ajaj+1, aj+1 aj are not substrings of π. By
S(π) we denote the total number of sorted blocks in π. Clearly, the
permutation is cyclically sorted if we have S(π) ≤ 2.

The notion of structure of a permutation will be useful in the paper.
To define it, we first introduce the morphism ξi : (A∪A)∗ → (A∪A)∗,
for any 1 ≤ i ≤ |A|:

ξi(aj) =

λ if j = i;
aj if j < i;
aj−1 if j > i;

where aj ∈ A ∪A.
Consider the mapping σi : (A ∪ A)∗ → (A ∪ A)∗, where for any

string u ∈ (A ∪A)∗, σi(u) is defined as follows:

19

M. Langille, I. Petre, V. Rogojin

(a) σi(u) = u, if aiai+1 � u, with ai, ai+1 ∈ A, or ai+1 ai � u, with
ai, ai+1 ∈ A, and

(b) σi(u) = ξi(u) otherwise.

Then, the structure of a string is the mapping σ : (A ∪ A)∗ →
(A ∪ A)∗, such that σ(u) = (σ1 ◦ σ2 ◦ . . . ◦ σ|A|−1 ◦ σ|A|)(u). Note
that the structure of a sorted permutation π is either σ(π) = a1, or
σ(π) = a2a1, where a1, a2 ∈ A, or σ(π) = a1a2, where a1, a2 ∈ A.

Example 1. Consider a sorted permutation π = 34512. We find its
structure σ(π) as follows:

π5 = σ5(π) = π π2 = σ2(π3) = π3

π4 = σ4(π5) = ξ4(π5) = 3412 π1 = σ1(π2) =
π3 = σ3(π4) = ξ3(π4) = 312 = ξ1(π2) = 21

σ(π) = π1 = 21

3 Gene assembly as a sorting of signed permu-
tations

As discussed in [18, 13, 14], a natural formalization of the simple and
elementary operations is through rewriting rules for signed permuta-
tions. A given gene is represented as a signed permutation by denot-
ing the sequence and the orientation of its MDSs and assembling the
gene is modeled through the sorting of the associated permutation. As
shown in Definitions 1, 2, 3, the formalization of the molecular models
in terms of sorting permutations is somewhat intricate: a high num-
ber of cases needs to be considered. For the general model, a more
concise formalization can be done in terms of signed double occurrence
(also called legal) strings, see [7]. The two main advantages of the le-
gal string framework are: (i) it abstracts from denoting the sequence
of gene blocks to denoting only the sequence of pointers (and in the
process it ignores the two markers); (ii) it models gene assembly as a
process of consecutive pointer removals, based on the observation that
the assembled gene contains no pointers.

20

Three models for gene assembly in ciliates: a comparison

The simple model makes crucial use of the two markers. Con-
sequently, this model can only be formalized through extended legal
strings that denote the pointers, as well as the markers of the gene, as
done in [3]. The resulting model is equivalent with the permutation-
based model for simple operations but more concise for the same rea-
sons (i)-(ii) discussed above.

In the case of the elementary model however, it is crucial that
all pointers and markers are indicated throughout the gene assembly,
rather than being removed as in the (extended) legal string frame-
work. The main reason is that the elementary model distinguishes
between the original (micronuclear) gene blocks and the larger (com-
posite) blocks that are being formed throughout the process of assem-
bly. It is an open problem whether a more concise formalizations may
be introduced also for the elementary model.

In the following we consider a presentation based on signed permu-
tations for all three models. This presentation in the case of the general
model appears to be given here for the first time, although an equivalent
presentation in terms of MDS descriptors was reported before, see [7].
As observed also in the case of simple and elementary operations, it
is a characteristic of permutation-based models for gene assembly that
the ld operation is not explicitly modeled. Instead, it is just assumed
that two consecutive blocks are going to be spliced together in a bigger
composite block at some arbitrary point, independently of the other
operations applied to the permutation.

3.1 Modeling of the general operations

Consider a gene pattern formalized as a signed permutation over al-
phabet Πn = {1, 2, . . . , n}. We formalize the general operations over
signed permutations as follows:

21

M. Langille, I. Petre, V. Rogojin

Definition 1. i. For each 1 ≤ p < n, hip is defined as follows:

hip(xpy(p + 1)z) = xp(p + 1)yz,

hip(xpy(p + 1)z) = xyp(p + 1)z,

hip(x(p + 1)ypz) = xy(p + 1)pz,

hip(x(p + 1)ypz) = x(p + 1)p yz,

where x, y, z are signed strings over Πn. We denote Hi = {hii |
1 ≤ i < n}.

ii. For each 1 ≤ p, q < n, where |p − q| > 1, dladp,q is defined as
follows:

dladp,q(xp′′uq′′vp′wq′z) = xwq′q′′vp′p′′uz,

dladp,q(xp′′uq′vp′wq′′z) = xwvp′p′′uq′q′′z,

dladp,q(xp′uq′′vp′′wq′z) = xp′p′′wq′q′′vuz,

dladp,q(xp′uq′vp′′wq′′z) = xp′p′′wvuq′q′′z,

where p′ = p, p′′ = p+1, or p′ = (p + 1), p′′ = p, and q′ = q, q′′ =
q + 1, or q′ = (q + 1), q′′ = q, and x, u, v, w, z are signed strings
over Πn. In all these cases, we also denote dladq,p = dladp,q.

For each 1 < p < n, we define dladp−1,p and dladp,p−1 as follows:

dladp−1,p(xp′′′up′′wp′z) = xwp′p′′p′′′uz,

dladp−1,p(xp′′vp′wp′′′z) = xwvp′p′′p′′′z,

dladp−1,p(xp′up′′′vp′′z) = xp′p′′p′′′vuz,

where p′ = p − 1, p′′ = p, p′′′ = p + 1, or p′′′ = (p + 1), p′′ = p,
p′ = (p− 1), x, u, v, w, z are signed strings over Πn. We denote
Dlad = {dladi,j | 1 ≤ i, j < n, i 6= j}.

Example 2. Consider the permutation π1 = 2514376. We sort it by
hi and dlad as follows:

hi5(2514376) = 27 34156 hi4(4 7 3 2 156) = 1237456
hi2(27 34156) = 2374156 dlad3,6(1237456) = 1234567
hi1(2374156) = 4 7 3 2 156

22

Three models for gene assembly in ciliates: a comparison

3.2 Modeling of the simple operations

Simple operations are a restriction of the general operations [9, 7]:
they rearrange pieces of DNA containing at most one MDS, be that
micronuclear, or composite.

Definition 2. The molecular model of simple hi and simple dlad can
be formalized as follows.

i. For each 1 ≤ p < n, shp is defined as follows:

shp(xp . . . (p + i)(p + k) . . . (p + i + 1)y) =
= xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i) . . . p(p + i + 1) . . . (p + k)y) =
= xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i + 1) . . . (p + k)(p + i) . . . py) =

= x(p + k) . . . (p + i + 1)(p + i) . . . py,

shp(x(p + k) . . . (p + i + 1)p . . . (p + i)y) =

= x(p + k) . . . (p + i + 1)(p + i) . . . py,

where k > i ≥ 0 and x, y are signed strings over Πn. We denote
Sh = {shi | 1 ≤ i ≤ n}.

ii. For each p, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p . . . (p + i) y (p− 1) (p + i + 1) z) =
= xy(p− 1)p . . . (p + i)(p + i + 1)z,

sdp(x (p− 1)(p + i + 1)yp . . . (p + i)z) =
= x(p− 1)p . . . (p + i)(p + i + 1)yz,

sdp(x(p + i + 1)(p− 1)y(p + i) . . . pz) =

= x(p + i + 1)(p + i) . . . p(p− 1)yz,

sdp(x(p + i) . . . py(p + i + 1)(p− 1)z) =

= xy(p + i + 1)(p + i) . . . p(p− 1)z,

where i ≥ 0 and x, y, z are signed strings over Πn. We denote
Sd = {sdi, sdi | 1 ≤ i ≤ n}.

23

M. Langille, I. Petre, V. Rogojin

Example 3. Consider the following signed permutation π1 = 54 763 1 2.
It can be sorted by the following composition of simple operations

sh6(π) = 54 7 6 3 1 2, sh4 ◦ sd2 ◦ sh6(π) = 5 4 7 6 3 2 1,
sd2 ◦ sh6(π) = 54 7 6 3 2 1, sd4 ◦ sh4 ◦ sd2 ◦ sh6(π) =

= 7 6 5 4 3 2 1.

3.3 Modeling of the elementary operations

The elementary model is a restriction of the simple model: elementary
intramolecular operations rearrange only micronuclear MDSs. This
leads to the following formalization for elementary operations.

Definition 3. i. For each p ≥ 1, ehp is defined as follows:

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(x(p + 1)pz) = x(p + 1)pz,

ehp(x(p + 1)pz) = x(p + 1)pz,

where x, z are signed strings over Πn. We denote Eh = {ehp |
1 ≤ p ≤ n}.

ii. For each p, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(xpy(p− 1)(p + 1)z) = xy(p− 1)p(p + 1)z,

edp(x(p− 1)(p + 1)ypz) = x(p− 1)p(p + 1)yz,

edp(xpy(p + 1) (p− 1)z) = xy(p + 1) p(p− 1)z,

edp(x(p + 1) (p− 1)ypz) = x(p + 1) p (p− 1)yz,

where x, y, z are signed strings over Πn. We denote Ed = {edp |
1 < p < n}.

Note that Eh ⊂ Sh ⊂ Hi and Ed ⊂ Sd ⊂ Dlad.

Example 4. Assume the signed permutation π = 315246. It can be
sorted by a composition of elementary operations as follows

ed5(π) = 312456, ed3 ◦ eh1 ◦ ed5(π) = 123456.
eh1 ◦ ed5(π) = 312456,

24

Three models for gene assembly in ciliates: a comparison

3.4 Sorting strategies: terminology

A composition of operations Φ = φk ◦ φk−1 ◦ . . . φ2 ◦ φ1, where all
operations are from either Hi ∪ Dlad, or Sh ∪ Sd, or Eh ∪ Ed is called a
strategy. A composition Φ = φk◦φk−1◦. . . φ2◦φ1 of operations is called
a sorting strategy for π, if Φ(π) is a (circularly) sorted permutation. If
φ ∈ (Hi ∪ Dlad) for all 1 ≤ i ≤ k, we say that Φ is a general sorting
strategy. If φ ∈ (Sh ∪ Sd) for all 1 ≤ i ≤ k, we say that Φ is a
simple sorting strategy. If φ ∈ (Eh ∪ Ed) for all 1 ≤ i ≤ k, we say
that Φ is an elementary sorting strategy. We say that an unsorted
signed permutation π is blocked if no (simple, elementary) operation is
applicable to it. We say that Φ is an unsuccessful strategy for π, if Φ(π)
is blocked. If there are no sorting strategies for π, then we say that π
is an unsortable permutation.

4 Comparison of the three models

In this section we compare the general, simple and elementary in-
tramolecular models for gene assembly by different criteria:

- completeness: whether any gene pattern may be assembled or not;

- confluence, defined in three different ways:

(i) whether there are permutations having both successful and
unsuccessful strategies,

(ii) whether different assembly strategies starting from the same
gene pattern lead to assembled genes with the same struc-
ture,

(iii) if different assembly strategies starting from the same gene
pattern lead to the same assembled gene;

- decidability of assembly: whether it is possible to decide effectively
if a given gene pattern can be assembled or not;

25

M. Langille, I. Petre, V. Rogojin

- characterization of gene patterns that can be assembled (starting
from certain characteristics of a given gene pattern we can con-
clude whether the gene pattern can be assembled);

- sequential complexity is constant: whether all assembly strategies
apply the same number of intramolecular operations;

- model validation: whether it is consistent with biological data.

4.1 Completeness

It was shown in [9, 7] that the general model is complete, i.e., it as-
sembles any gene pattern. The result was proved in terms of MDS-
descriptors. To prove it for signed permutations, one may take two
different approaches.

On one hand, one may observe that the set of signed permuta-
tions and that of MDS descriptors are in an one-to-one correspondence.
Moreover, for a signed permutation π, if ψ(π) is its corresponding MDS
descriptor, then for any operation f ∈ Hi ∪ Dlad, ψ(f(π)) = f(ψ(π)).
The completeness result for signed permutations then follows easily
from the corresponding result for MDS descriptors.

On the other hand, one may give a direct proof of the completeness,
by essentially mimicking the proof in the case of MDS descriptors. The
essential observation in this case is that for any φ ∈ Hi ∪Dlad and any
signed permutation π, the number of sorted blocks of φ(π) is smaller
than that of π (i.e., S(φ(π)) < S(π)). One needs to observe then that
a signed permutation π is sorted if and only if S(π) ≤ 2 and π is
uniformly signed.

Theorem 1. All signed permutations are sortable over Hi ∪ Dlad.

Note however that the simple and the elementary models are not
complete, as shown by the following example.

Example 5. Consider the permutation π = 321. We cannot apply
either eh or sh operations as all pointers have the same signature, and
there is no applicable ed or sd operation either. On the other hand, π
is successful in the general model: dlad1,2(π) = 123.

26

Three models for gene assembly in ciliates: a comparison

4.2 Confluence

We consider the notion of confluence in three different setups, so as to
reflect the success of different assembly strategies, the resulting gene
structure, or the resulting gene pattern. These aspects are discussed
below stressing the differences between the three models for gene as-
sembly.

Consider first the most common notion of confluence, requiring that
the result of all assemblies of a given input is the same. Equivalently, all
strategies for a given signed permutation are confluent. It is easy to see
that neither of the three models for gene assembly is confluent in this
sense. For this, consider the permutation π = 2413. Then dlad2,1(π) =
sd2(π) = ed2(π) = 4123, while dlad2,3(π) = sd3(π) = ed3(π) = 2341.
Note that this observation does not contradict earlier invariant results
of [8, 21], see also [7], where it was proved that the result of all assembly
strategies of a given gene/string is always the same. The difference
comes from considering a so-called boundary ld operation that would be
applied as a last step in both strategies above to yield a circular string
1234 (that may also be denoted as 2341, 3412, or 4123, or even their
inverses). In the permutation-based presentation, we have chosen to
consider only standard linear permutations, rather than circular ones.
The non-confluence result above is a direct consequence of this choice.
We discuss more aspects of this matter in Section 5.

The example above shows that all three models are nondetermin-
istic in the sense that different sorting strategies may lead to different
results. A natural question is then whether a given signed permutation
may have both successful, as well as unsuccessful strategies in any of
the three models. Consider then the following notion of confluence.
We say that the general (simple, elementary, resp.) model is confluent
if there are no signed permutations having both successful and unsuc-
cessful strategies.

It follows from Theorem 1 that the general model is indeed con-
fluent in the sense above. As shown in [18], the simple model is also
confluent. However, the elementary model is not confluent. To see it,
consider the permutation π = 24135. Then ed3(π) = 23415 is a blocked

27

M. Langille, I. Petre, V. Rogojin

permutation, while ed2 ◦ ed4(π) = 12345, a sorted permutation.
It was proved in [8, 21], see also [2], that for any gene pattern, ei-

ther all general assembly strategies assemble it to a linear molecule, or
all of them assemble it to a circular one. Consequently, even though
if the assembly process is non-deterministic, the results of all possible
assemblies of a given gene pattern have the same structure. I.e., the re-
sults of all sorting strategies applicable to a permutation have the same
structure. As such, the same result holds also for all sorting strategies
in the simple and in the elementary models. The question may however
be asked also for the unsuccessful strategies. In this context, we say
that a model for gene assembly is confluent if, for any signed permu-
tation, all its sorting strategies lead to permutations having the same
structure. Based on the considerations above, it follows easily that the
general model is confluent in this sense, while the elementary model
is not (since a permutation may have both successful and unsuccess-
ful elementary strategies). Interestingly, it was proved in [18] that the
simple model is in fact confluent in this sense.

Example 6. Consider permutation π = 623514. There are only two
simple strategies applicable to π: π1 = sd2(π) = 651234 and π2 =
sd4(π) = 623451. These strategies are unsuccessful, and there are no
other simple strategies applicable to π. Permutation π cannot be sorted
by simple operations. Note however, that permutations π1 and π2 have
the same structure σ(π1) = 321 = σ(π2).

The following table captures the behavior of the three models for
gene assembly with respect to the three notions of confluence above.
Interestingly, none of these notions distinguishes the simple and the
general model. One property that does distinguish between the two is
the completeness, valid only for the general model.

4.3 Deciding the sortability problem

For the simple and elementary models, which are not complete, de-
ciding the sortability of a given signed permutation is an interesting
problem. Based on the confluence results in the previous section, it

28

Three models for gene assembly in ciliates: a comparison

Success Same result Same structure
General confluent not confluent confluent
Simple confluent not confluent confluent

Elementary not confluent not confluent not confluent

Table 1. The results of considering confluence with regard to the three
aspects are summarized here.

turns out that the problem is easy for the simple model: for any signed
permutation, either all its sorting strategies are successful, or they are
all unsuccessful. As such, to decide the sortability problem, it is enough
to find an arbitrary strategy (e.g., using a straightforward procedure
having quadratic time complexity) and answer ‘yes’/‘no’, depending on
whether or not that strategy is successful.

For the elementary model the problem of the eh-sortability of a
signed permutation is easy.

Theorem 2 ([14]). The signed permutation π is eh-sortable if and only
if either

(i) ‖π‖ = k(k + 1) . . . n12 . . . (k − 1) and for some 1 ≤ i ≤ k − 1,
k ≤ j ≤ n we have i, j unsigned, or

(ii) ‖π‖ = (k − 1) . . . 21n . . . (k + 1)k, and for some 1 ≤ i ≤ k − 1,
k ≤ j ≤ n we have i, j signed.

The problem of the ed-sortability turns out to be technically more
involved, since a signed permutation may have both successful, and
unsuccessful strategies. A complete characterization of the ed-sortable
signed permutation has been given in [13, 14, 22]. The main notions
used in the result are those of dependency graphs and forbidden ele-
ments. We only present here these notions for unsigned permutation;
in the case of signed permutation, the setup is technically more com-
plex, see [14]. Note also that an efficient decision procedure for the
sortability problem is only known for unsigned permutation, see [22].

29

M. Langille, I. Petre, V. Rogojin

Dependency graphs in the elementary model

Dependency graphs suggest in which order elementary operations
should be used to assemble a given gene pattern. Let π be an un-
signed permutation with dom(π) = {1, 2, . . . , n}. We associate to it a
dependency graph Γπ = (Vπ, Eπ), where Vπ = dom(π), and

Eπ ={(1, 1), (n, n)} ∪ {(i, i)|(i + 1)(i− 1) ≤s π}∪
∪ {(j, i)|(i− 1)j(i + 1) ≤s π}.

Intuitively, an edge (j, i) in Γπ shows that in any sorting strategy
for π, the operation edj should be used first, in order for edi to become
applicable. If there is a loop (i, i) in Γπ, then edi cannot be applied
in any strategy applicable to π. We refer to [14] for a proof of these
observations.

Example 7. Consider the unsigned permutation π = 62 8 4 10 7 1 3 5 9.
Its associated dependency graph Γπ = (Vπ, Eπ) is shown in Figure 2.

We have loops (1, 1), (5, 5), (6, 6), (10, 10) in the dependency graph,
and so, the operations ed1, ed5, ed6 and ed10 cannot be applied in any
strategy applicable to G. We have cycle 8 3 8 in Γπ and so, neither oper-
ation ed3, nor operation ed8 can be applied in any strategy applicable to
π. The dependency graph Γπ suggests the following order of operations
to be applied in any sorting strategy of π: ed2 should be applied before
ed7, and ed4 should be applied before ed9. Indeed, for instance, strategy
ed9◦ed4◦ed7◦ed2(π) sorts π: ed9◦ed4◦ed7◦ed2(π) = 6 7 8 9 10 1 2 3 4 5.

Forbidden elements and ed− sortability of unsigned permuta-
tions

For a signed permutation π, we say that p ∈ dom(π) is forbidden in
π if and only if there exists no composition of eh and ed operations
applicable to π with p in the domain of one of them. We denote Uπ the
set of all forbidden elements of π. It was proved in [14] that p ∈ U(π)
if and only if

(i) p is on a cycle of Γπ or

30

Three models for gene assembly in ciliates: a comparison

GFED@ABC10

		
GFED@ABC
.1.

		

��

GFED@ABC
.6.

		

GFED@ABC
.5.

		

// GFED@ABC
.8. 22

GFED@ABC
.3.

rr

GFED@ABC
.2. // GFED@ABC

.7.
GFED@ABC
.4. // GFED@ABC

.9.

Figure 2. The dependency graph associated to π = 62 8 4 10 7 1 3 5 9.

(ii) there is a path from q to p in Γπ, for some q on a cycle of Γπ or

(iii) there exists r > 1 such that there are paths from r − 1 to p and
from r to p in Γπ.

The following result gives the ed-sortability of unsigned permuta-
tions.

Theorem 3 ([14]). The unsigned permutation π is ed-sortable if and
only if π|Uπ is sorted.

Finding an efficient method for the eh, ed-sortability of a signed
permutation remains an open problem.

4.4 Characterization of sortable permutations

The following theorem characterizes ed-sortable unsigned permuta-
tions. A similar, albeit technically more involved, characterization
exists also for signed permutations, see [14].

Theorem 4 ([14]). Let π be a unsigned permutation. Then π is Ed-
sortable if and only if there exists a partition {1, 2, . . . , n} = D ∪ U ,
such that the following conditions are satisfied:

(i) π|U is sorted;

(ii) The subgraph induced by D in Gπ is acyclic;

31

M. Langille, I. Petre, V. Rogojin

(iii) If (p, q) ∈ Gπ with q ∈ D, then p ∈ D;

(iv) For any p ∈ D, (p− 1)(p + 1) ≤s π;

(v) For any p ∈ D, (p− 1), (p + 1) ∈ U .

For simple operations we do not have a characterization of sortable
permutations for the moment. For general operations the question is
moot since all signed permutations are sortable.

4.5 Sequential complexity

We focus now on the length of various sorting strategies of a given
signed permutation, where the length is defined as the number of
operations in the strategy. Consider first the general model and let
π1 = 152 436. One can sort it by applying dlad1,5 ◦ hi2, or by applying
hi2 ◦ hi3 ◦ hi1. These two sorting strategies are of different length, and
use a different combination of operations.

Somewhat surprisingly, the situation is different in the simple model
and by consequence, also in the elementary model. It was established
in [19] (using a string-based formalism) that any two sorting strategies
for a given signed permutation have the same assembly length.

Theorem 5 ([19]). Let π be a signed permutation and φ, ψ be two
simple sorting strategies for π. Then φ and ψ have the same sequential
assembly length. Moreover, they have the same number of sh and the
same number of sd operations.

The differences between the general model and the two restricted
models go beyond Theorem 5. E.g., when choosing operations in the
simple model, we may always just choose the first available operation
as the number of operations required in the end remains the same. If
the operations were given different weights or costs, then the general
model may have optimal and sub-optimal sorting strategies. We refer
to [12] for a detailed discussion on various measures of complexity for
gene assembly.

32

Three models for gene assembly in ciliates: a comparison

General Simple Elementary

Completeness complete not complete not complete

Confluence (Success) confluent confluent not confluent

Confluence (Structure) confluent confluent not confluent

Confluence (Result) not confluent not confluent not confluent

Deciding Sortability yes: trivial yes: confluence open for eh + ed

Characterizing trivial open yes
sortable permutations

Sequential Complexity no yes yes
constant

Model Validation valid valid not valid

Table 2. Summary for general, simple and elementary intramolecular
models

4.6 Model validation

A database of known sequences of micronuclear and macronuclear cili-
ate genes can be found in [4]. Based on the completeness result for the
general model, it is clear that all the gene patterns have an assembly
strategy in the general model. As it turns out however, the elementary
model cannot account for the assembly of some of the gene patterns
in [4].

Example 8. Actin I gene in it Sterkiella nova is represented by the
permutation π = 346579218. It is easy to check that there is no ele-
mentary sorting strategy applicable to π. However, we can sort π by
applying the simple sorting strategy

sh1 ◦ sh2 ◦ sd8 ◦ sd5(π) = 9 8 7 6 5 4 3 2 1.

Below we will outline all the available scrambled gene patterns in [4],
together with one simple sorting strategy. Genes that are not scrambled
in their micronuclear form or the ones that have missing MDSs will not
be included.

Actin I, Sterkiella n. : π = 346579218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 987654321.

33

M. Langille, I. Petre, V. Rogojin

Actin I, Sterkiella h. : π = 346579 10 218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 10 987654321.

Actin I, Stylonychia p. : π = 34657821;

sh1 ◦ sh2 ◦ sd6(π) = 87654321.

α Telomere Binding Protein, Sterkiella n. :

π = 1 3 5 7 9 11 2 4 6 8 10 12 13 14;
sd10 ◦ sd8 ◦ sd6 ◦ sd4◦sd2(π) =

= 1 2 3 4 5 6 7 8 9 10 11 12 13 14.

DNA Polymerase α, Paraurostyla weissei:

π = 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8
6 1 2 3 4 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
43 45 46 47 48

The signed permutation sorting strategy for this gene is just sh1

repeated 40 times.

4.7 Summary

Table 2 summarizes properties of general, simple and elementary mod-
els considered in this paper.

5 Discussion and open problems

There has been significant interest in the last few years in the so-called
simple operations for gene assembly, both for their biological appeal
as a minimal, parsimonious model, but also for the properties of their
mathematical formalization. The term simple has been used in connec-
tion with two different versions of the model. In this survey we review

34

Three models for gene assembly in ciliates: a comparison

these two models and fix the proper terminology. We also compare the
mathematical properties of these two models with those of the general
model.

For reasons detailed already in Section 3 we chose in this paper to
follow a permutation-based presentation, rather than a string-based
one. Indeed, a string-based presentation that would be more con-
cise than the permutation-based one is still missing for the elementary
model. Our choice of using permutations rather than strings has one
direct consequence that we mentioned already in Section 4.2. Rather
than eliminating all pointers as in the legal string and ending up with
linear, or circular strings, we always end up with sorted linear permu-
tations, where the term ‘sorted’ is extended to cover also permutations
such as 3412. We call such a permutation circularly sorted, see Sec-
tion 2. For this reason, a permutation such as 2413 may be sorted to
two seemingly different results: either 2341, or 4123. Clearly, the two
results correspond to the same circular string in the framework of legal
strings. This ambiguity leads nevertheless to some open problems of
independent interest. E.g., given a permutation that may be sorted
circularly, enumerate efficiently all the circularly sorted permutations
it can be sorted to. Similarly, the permutation 213 may be sorted to
either 231 or 213. One may also ask about the properties of those per-
mutations that have sortings both to an unsigned permutation, as well
as to a signed one. The properties of the three models may even be
different in this respect.

There are two currently open problems related to the simple model:
the linear decidability of the sortability problem and computing the
number of sortable permutations of length n. It is however possible
that these two problems are intertwined and an answer to one may at
least partly solve the other.

Decidability. It was shown in [18] that it is possible to decide
whether a permutation is sortable or unsortable in the simple model
by applying available operations in an arbitrary order until the per-
mutation is blocked or sorted. This gives us a quadratic method for
deciding. Our first open problem is related to the optimality of this

35

M. Langille, I. Petre, V. Rogojin

method: is there a procedure to decide in linear time the sortability
problem in the simple model?

For the elementary model, finding an efficient decision procedure
for {eh, ed}-sortability problem is also open.

Sortable permutations of length n. As we pointed out also in
this paper, not all permutations may be sorted using the simple opera-
tions. This differs from the general model which has been shown to be
complete. Thus, an interesting problem is computing how many per-
mutations of length n are sortable in the simple/elementary models. As
a related problem, it should even be interesting to see whether the ra-
tio of sortable signed permutations tends to 0 when n tends to infinity.
Both problems are open also in the case of unsigned permutations.

6 Acknowledgments.

Ion Petre and Vladimir Rogojin are supported by Academy of Fin-
land, project 108421. Vladimir Rogojin is on leave of absence from
Institute of Mathematics and Computer Science of Academy of Sci-
ences of Moldova, Chisinau MD-2028 Moldova. Vladimir Rogojin is
supported by Science and Technology Center in Ukraine, project 4032.

References

[1] A. Angeleska, N. Jonoska, M. Saito, and L.F.Landweber. Rna-
template guided dna assembly. Journal of Theoretical Biology,
248:706–720, 2007.

[2] R. Brijder, H. Hoogeboom, and G. Rozenberg. Reducibility of
gene patterns in ciliates using the breakpoint graph. Theoretical
Computer Science, 356:26–45, 2006.

[3] R. Brijder, M. Langille, and I. Petre. A string-based model for
simple gene assembly. In E. Csuhaj-Varju and Z. Esik, editors,

36

Three models for gene assembly in ciliates: a comparison

FCT 2007, Proceedings, volume 4639 of Lecture Notes in Computer
Science, pages 161–172. Springer-Verlag Berlin Heidleberg, 2007.

[4] A. Cavalcanti, T. Clarke, and L. Landweber. Mds ies db: a
database of macronuclear and micronuclear genes in spirotrichous
ciliates. Nucleic Acids Research, 33:396–398, 2005.

[5] W. Chang, P. Bryson, H. Liang, M. Shin, and L. Landweber. The
evolutionary origin of a complex scrambled gene. In Proceedings
of the National Academy of Sciences of the US, volume 102, pages
15149–15154, 2005.

[6] W. Chang, S. Kuo, and L. Landweber. A new scrambled gene in
the ciliate uroleptus. Gene, 368:72–77, 2006.

[7] A. Ehrenfeucht, T. Harju, I. Petre, D. M. Prescott, and G. Rozen-
berg. Computation in Living Cells: Gene Assembly in Ciliates.
Springer, 2003.

[8] A. Ehrenfeucht, I. Petre, D. M. Prescott, and G.Rozenberg. Circu-
larity and other invariants of gene assembly in ciliates. In M. Ito,
G. Paun, and S. Yu, editors, Words, semigroups, and transduc-
tions, pages 81–97. World Scientific, Singapore, 2001.

[9] A. Ehrenfeucht, I. Petre, D. M. Prescott, and G. Rozenberg. Uni-
versal and simple operations for gene assembly in ciliates, pages
329–342. Kluwer Academic, Dortrecht, 2001.

[10] A. Ehrenfeucht, D. M. Prescott, and G. Rozenberg. Computa-
tional aspects of gene (un)scrambling in ciliates. In L. F. Landwe-
ber and E. Winfree, editors, Evolution as Computation, pages 216–
256. Springer, Berlin, Heidelberg, New York, 2001.

[11] W. Foissner and H. Berger. Identification and ontogenesis of the
nomen nudum ypotrichs (protozoa: Ciliophora) oxytricha nova
(=sterkiella nova sp. n.) and o. trifallax (=s.histriomuscorum).
Acta Protozool., 38:215–248, 1999.

37

M. Langille, I. Petre, V. Rogojin

[12] T. Harju, C. Li, I. Petre, and G. Rozenberg. Complexity mea-
sures for gene assembly. In K. Tuyls, editor, Proceedings of the
Knowledge Discovery and Emergent Complexity in Bioninformat-
ics workshop, volume 4366 of Lecture Notes in Bioinformatics,
pages 42–60. Springer, 2007.

[13] T. Harju, I. Petre, V. Rogojin, and G. Rozenberg. Simple opera-
tions for gene assembly. In A. Carbone and N. A. Piercei, editors,
Proceedings of DNA-based computers 11, volume 3892 of Lecture
Notes in Computer Science, pages 96–111. Springer, 2006.

[14] T. Harju, I. Petre, V. Rogojin, and G. Rozenberg. Patterns of
simple gene assembly in ciliates. Discrete Applied Mathematics,
2007. to appear.

[15] T. Harju, I. Petre, and G. Rozenberg. Modelling simple operations
for gene assembly. In J.Chen, N.Jonoska, and G.Rozenberg, ed-
itors, Nanotechnology: Science and Computation, pages 361–376,
2006.

[16] L. F. Landweber and L. Kari. Evolution as computation, chapter
Universal molecular computation in ciliates, pages 257–274. Nat-
ural computing series. Springer Verlag, Berlin, Heidelberg, New
York, 1999.

[17] L. F. Landweber and L. Kari. The evolution of cellular computing:
Nature’s solution to a computational problem. In L. Kari, H. Ru-
bin, and D. H. Wood, editors, Proceedings of the 4th DIMACS
Meeting on DNA-Based Computers, volume 52, (1–3), pages 3–13.
Elsevier, 1999.

[18] M. Langille and I. Petre. Simple gene assembly is deterministic.
Fundamenta Informaticae, 73(1-2):179–190, 2006.

[19] M. Langille and I. Petre. Sequential vs. parallel complexity in
simple gene assembly. Theoretical Computer Science, 395(1):24–
30, 2008.

38

Three models for gene assembly in ciliates: a comparison

[20] M. Nowacki, V. Vijayan, Y. Zhou, K. Schotanus, T. Doak,
and L. Landweber. Rna-mediated epigenetic programming of a
genome-rearrangement pathway. Nature, 451:153–158, Jan. 2008.
doi:10.1038/nature06452.

[21] I. Petre. Invariants of gene assembly in stichotrichous ciliates.
Information Technology, 48(3):161–167, 2006.

[22] I. Petre and V. Rogojin. Decision problem for shuffled genes. In-
formation and Computation, 2007. to appear.

[23] D. M. Prescott. The dna of ciliated protozoa. Microbiology and
Molecular Biology Reviews, 58(2):233–267, 1994.

[24] D. M. Prescott. DNA manipulations in ciliates. In W. Brauer,
H. Ehrig, J. Karhumäki, and A. Salomaa, editors, Formal and
Natural Computing, volume 2300 of Lecture Notes in Computer
Science, pages 394–417. Springer, 2002.

[25] D. M. Prescott, A. Ehrenfeucht, and G.Rozenberg. Molecular
operations for dna processing in hypotrichous ciliates. European
Journal of Protistology, 37:241–260, 2001.

[26] D. M. Prescott, A. Ehrenfeucht, and G.Rozenberg. Template-
guided recombination for ies elimination and unscrambling of
genes in stichotrichous ciliates. Journal of Theoretical Biology,
222:323–330, 2003.

[27] M. Swanton, J. Heumann, and D. Prescott. Gene-sized dna
molecules of the macronuclei in three species of hypotrichs: size
distribution and absence of nicks. Chromosoma, 77:217–227, 1980.

39

M. Langille, I. Petre, V. Rogojin

Miika Langille, Ion Petre, Vladimir Rogojin, Received March 22, 2010

Miika Langille,
Department of IT, Åbo Akademi University
ICT-building, Joukahaisenkatu 3-5 A, 5th floor
Turku 20520 Finland
E–mail: miika.langille@abo.fi

Ion Petre
Academy of Finland and
Turku Centre for Computer Science
Department of Computer Science, Åbo Akademi University
Turku 20520 Finland E–mail: ion.petre@abo.fi

Vladimir Rogojin
Turku Centre for Computer Science
Department of Computer Science, Åbo Akademi University
Turku 20520 Finland
E–mail: vrogojin@abo.fi

40

Computer Science Journal of Moldova, vol.18, no.1(52), 2010

All proper colorings of every colorable

BSTS(15)

Jeremy Mathews, Brett Tolbert

Abstract

A Steiner System, denoted S(t, k, v), is a vertex set X con-
taining v vertices, and a collection of subsets of X of size k, called
blocks, such that every t vertices from X are in exactly one of
the blocks. A Steiner Triple System, or STS, is a special case of
a Steiner System where t = 2, k = 3 and v = 1 or 3 (mod6) [7].
A Bi-Steiner Triple System, or BSTS, is a Steiner Triple System
with the vertices colored in such a way that each block of vertices
receives precisely two colors. Out of the 80 BSTS(15)s, only 23
are colorable [1]. In this paper, using a computer program that
we wrote, we give a complete description of all proper colorings,
all feasible partitions, chromatic polynomial and chromatic spec-
trum of every colorable BSTS(15).

1 Introduction

A hypergraph is a generalized graph where an edge, called a hyperedge,
can contain more than two vertices. A mixed hypergraph contains two
kinds of hyperedges, C-edges and D-edges. A coloring of a mixed
hypergraph is proper if every C-edge has at least two vertices mapped
to the same color while every D-edge has at least two vertices mapped
to different colors [5]. A Steiner Triple System, denoted by STS(v)
where v is the number of vertices, is a special case of a Steiner System
in which its blocks are made up of exactly three vertices and no two
blocks can share a pair of vertices [7]. Here we consider STSs on
15 vertices as bi-hypergraphs, which are mixed hypergraphs such that

c©2010 by J. Mathews, B. Tolbert

41

J. Mathews, B. Tolbert

the C family of C-edges and the D family of D-edges coincide, or
equivalently C = D. We call these bi-hypergraphs Bi-Steiner Triple
Systems of order 15 (BSTS(15)) and we consider every block of three
vertices to be both a C-edge and a D-edge. Since each block of a
BSTS(15) contains exactly three vertices, two of those vertices must
be mapped to the same color and the third vertex must be mapped to
a different color to satisfy both the C-edge and D-edge requirements.
Therefore, each block of a BSTS(15) must be mapped to precisely
two colors. The lower chromatic number of a mixed hypergraph is the
minimum number of colors for which there exists a proper coloring,
and it is denoted by χ [5]. The upper chromatic number of a mixed
hypergraph is the maximum number of colors for which there exists
a strict proper coloring, and it is denoted by χ̄ [5]. Of the 80 non-
isomorphic BSTS(15)s, 23 contain BSTS(7) as a subdesign and those
23 BSTS(15)s are colorable [1]. They are numbered in [1] as no. 1−22
and no. 61. For these 23 BSTS(15)s, the upper and lower chromatic
numbers are equal. They all have χ = χ̄ = 4 [2][3]. This means that
all colorable BSTS(15)s are only colorable on exactly four colors. The
chromatic spectrum of a mixed hypergraph is an integer vector, R(H)
whose components are r1, r2, ..., rk, where ri is the number of different
feasible partitions into i color classes [5]. It is known that BSTS(15)s
are only colorable on 4 colors, so ri = 0, when i 6= 4. Only r4 will have
a value other than 0, so we can generalize and say the following:

R(BSTS(15)) = (0, 0, 0, rχ̄, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) [5]

since χ = χ̄ = 4. Using a computer program that we wrote, we
were able to find and display all proper colorings of every colorable
BSTS(15). Also we were able to display all feasible partitions and the
permutations of colors of every BSTS(15), which when multiplied to-
gether gives the number of all proper colorings. In this paper, we show
all proper colorings, all feasible partitions, the chromatic polynomial,
and the chromatic spectrum of all colorable BSTS(15)s.

42

All proper colorings of every colorable BSTS(15)

2 Method

The chromatic polynomial of a mixed hypergraph is simply a polyno-
mial in λ which gives the number of proper λ-colorings of a colorable
mixed hypergraph, where λ is the number of available colors [5]. If
we let ri(H) denote the number of feasible partitions of the mixed hy-
pergraph into i color classes or sets, and we let λ(i) denote the falling
factorial of λ, then we have the following equality:

P (H,λ) =
∑χ̄(H)

i=χ(H) ri(H)λ(i) [5].

To construct the chromatic polynomial for each colorable BSTS(15)s,
we need to alter the above equation to specify for BSTS(15)s. If we
let a colorable BSTS(15) be our H, the chromatic polynomial will give
the number of proper λ-colorings of that colorable BSTS(15), where
λ ≥ 4 since 4 colors are required for a proper λ-coloring of a colorable
BSTS(15). So we adjust the fundamental equality of mixed hyper-
graph coloring accordingly to accommodate the BSTS(15)s. First,
[2, 3] showed that χ = χ̄ = 4 in all colorable BSTS(15)s; there-
fore,

∑χ̄(H)
i=χ(H) is not needed. We simply say that i = 4 so now

rχ(H) = rχ̄(H) = r4(H). Therefore, these adjustments yield the fol-
lowing:

P (BSTS(15), λ) = r4(BSTS(15))λ(i).

We also know that BSTS(15)s are colorable if and only if they
contain BSTS(7) as a subsystem or subdesign [4]. There are 21 fea-
sible partitions in BSTS(7) [6, 8] and there are four cases of (7, 3, 1)-
subdesigns in various colorable BSTS(15)s. A (7, 3, 1)-subdesign is
a subsystem on 7 vertices where each block contains 3 vertices and
each vertex appears precisely once with every other vertex in a block.
BSTS(7) is the same as the finite projective plane of order 2, called the
Fano Plane [7]. In all 23 cases of colorable BSTS(15)s, there exist(s):

43

J. Mathews, B. Tolbert

1. 1 case in which a colorable BSTS(15) has 15 (7,3,1)-subdesigns,

2. 1 case in which a colorable BSTS(15) has 7 (7,3,1)-subdesigns,

3. 5 cases in which a colorable BSTS(15) has 3 (7,3,1)-subdesigns,
and

4. 16 cases in which a colorable BSTS(15) has 1 (7,3,1)-subdesign.

[1]

This covers all colorable BSTS(15)s. Let the number of (7, 3, 1)-
subdesigns in a BSTS(15) be denoted by s. The number of feasible
partitions in a particular colorable BSTS(15) is equal to the number
of feasible partitions in BSTS(7) which is 21 using three colors, times
the number of (7, 3, 1)-subdesigns in the BSTS(15), or equivalently,
r4 = 21s. We will show this in the next section. Now we can write the
fundamental equality of colorable BSTS(15)s as the following:

Proposition 1. The number of proper λ-colorings of a colorable
BSTS(15) is a polynomial with the following form:

P (BSTS(15), λ) = 21s(λ(4)).

Now we will look at all colorable BSTS(15)s and arrive at each of
their minimum number of proper colorings, their number of feasible
partitions, and their chromatic spectrums.

3 Theorem and Proof

Theorem 1. When λ = 4, the minimum number of proper colorings,
the number of feasible partitions, and the minimum number of permu-
tations of each partition of each colorable BSTS(15) can be obtained
by the following equality:

P (BSTS(15), 4) = 21s(4!)

44

All proper colorings of every colorable BSTS(15)

Proof. Let s denote the number of (7, 3, 1)-subdesigns in a particular
colorable BSTS(15). It is known that the number of feasible parti-
tions of BSTS(7) is 21 [6]. By an exhaustive search of all possible
colorings using a program that we wrote and by applying the splitting-
contraction algorithm [8] as defined in [5], the feasible partitions of
BSTS(7) are the following:

The blocks for BSTS(7) are
{1,2,4} {2,3,5} {3,4,6} {4,5,7} {5,6,1} {6,7,2} {7,1,3}

The set of available colors is {0,1,2}
Vertices 1 2 3 4 5 6 7 Vertices 1 2 3 4 5 6 7

Partition 1 0 1 2 1 2 2 2 Partition 11 0 1 1 0 2 0 0

Partition 2 0 1 2 0 2 2 2 Partition 12 0 0 0 1 2 0 2

Partition 3 0 0 2 1 2 2 2 Partition 13 0 0 2 1 0 2 0

Partition 4 0 1 2 1 1 1 2 Partition 14 0 0 2 1 0 1 0

Partition 5 0 1 1 1 2 2 1 Partition 15 0 0 1 1 0 2 0

Partition 6 0 1 2 1 1 1 0 Partition 16 0 0 0 1 1 0 2

Partition 7 0 1 0 1 1 1 2 Partition 17 0 0 0 1 2 0 1

Partition 8 0 1 2 0 2 0 0 Partition 18 0 1 0 0 0 1 2

Partition 9 0 1 0 0 0 2 2 Partition 19 0 1 0 0 0 2 1

Partition 10 0 1 2 0 1 0 0 Partition 20 0 1 1 1 2 0 1

Partition 21 0 1 1 1 0 2 1

Therefore, for any number of (7, 3, 1)-subdesigns in a colorable
BSTS(15), the number of the subdesigns times the number of feasible
partitions of the subdesign will equal the number of feasible partitions
of the colorable BSTS(15). In the 4 cases of (7, 3, 1)-subdesigns men-
tioned earlier, the number of proper colorings, the number of feasible
partitions, and the permutations of colors of each partition have been
calculated by a computer program we wrote. The number of proper
colorings, the number of feasible partitions, and the number of permu-
tations of colors of each partition from the program for each of (1− 4)
above are as follows:

1. 7560 proper colorings, 315 feasible partitions, and 24 permuta-
tions of colors of each partition;

45

J. Mathews, B. Tolbert

2. 3528 proper colorings, 147 feasible partitions, and 24 permuta-
tions of colors of each partition;

3. 1512 proper colorings, 63 feasible partitions, and 24 permutations
of colors of each partition; and

4. 504 proper colorings, 21 feasible partitions, and 24 permutations
of colors of each partition.

This will also give us the chromatic spectrum. This is a simple
proof by cases:

Case 1. 15(7, 3, 1)-subdesigns

P (BSTS(15), 4) = 21s(4!) = 21(15)(24) = 315(24) = 7560

This shows that the minimum number of proper colorings for BSTS(15)
no. 1 is 7560. It also gives the number of feasible partitions as
21(15) = 315. The vertices of BSTS(7) are mapped to this BSTS(15),
while keeping the same colorings and having the other eight vertices of
this BSTS(15) mapped to the fourth color. The vertices of BSTS(7)
are mapped to the vertices of BSTS(15) no. 1 in the following way:

BSTS(7): 1 2 3 4 5 6 7

BSTS(15): first 21 partitions 1 2 4 3 6 7 5

BSTS(15): second 21 partitions 1 2 8 3 10 11 9

BSTS(15): third 21 partitions 1 2 12 3 14 15 13

BSTS(15): fourth 21 partitions 1 4 8 5 12 13 9

BSTS(15): fifth 21 partitions 1 4 10 5 14 15 11

BSTS(15): sixth 21 partitions 1 6 10 7 12 13 11

BSTS(15): seventh 21 partitions 1 6 8 7 14 15 9

BSTS(15): eighth 21 partitions 2 4 8 6 12 14 10

BSTS(15): ninth 21 partitions 2 4 9 6 13 15 11

BSTS(15): tenth 21 partitions 2 5 9 7 12 14 11

BSTS(15): eleventh 21 partitions 2 5 8 7 13 15 10

46

All proper colorings of every colorable BSTS(15)

BSTS(15): twelfth 21 partitions 3 4 9 7 13 14 10

BSTS(15): thirteenth 21 partitions 3 4 8 7 12 15 11

BSTS(15): fourteenth 21 partitions 3 5 8 6 13 14 11

BSTS(15): fifteenth 21 partitions 3 5 9 6 12 15 10

Therefore, the above vertices in this BSTS(15) are mapped to the same
colors as in BSTS(7) and the other eight vertices are mapped to the
fourth color. This is minimum because λ = 4 is the minimum number
of available colors needed to properly color any colorable BSTS(15).
This also shows that the number of feasible partitions is equal to the
number of partitions in BSTS(7) multiplied by the number of times
the (7, 3, 1)-subdesign appears in the BSTS(15), which is 21(15) = 315
feasible partitions; therefore, the chromatic spectrum of this BSTS(15)
is:

R(BSTS(15), 4) = (0, 0, 0, 315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Case 2. 7(7, 3, 1)-subdesigns

P (BSTS(15), 4) = 21s(4!) = 21(7)(24) = 147(24) = 3528

This shows that the minimum number of proper colorings for BSTS(15)
no. 2 is 3528. It also gives the number of feasible partitions as
21(7) = 147. The vertices of BSTS(7) are mapped to this BSTS(15),
while keeping the same colorings and having the other eight vertices of
this BSTS(15) mapped to the fourth color. The vertices of BSTS(7)
are mapped to the vertices of BSTS(15) no. 2 in the following way:

BSTS(7): 1 2 3 4 5 6 7

BSTS(15): first 21 partitions 1 2 4 3 6 7 5

BSTS(15): second 21 partitions 1 2 8 3 10 11 9

BSTS(15): third 21 partitions 1 2 12 3 14 15 13

BSTS(15): fourth 21 partitions 1 4 8 5 12 13 9

BSTS(15): fifth 21 partitions 1 4 10 5 14 15 11

BSTS(15): sixth 21 partitions 1 6 10 7 12 13 11

BSTS(15): seventh 21 partitions 1 6 8 7 14 15 9

47

J. Mathews, B. Tolbert

Therefore, the above vertices in this BSTS(15) are mapped to the same
colors as in BSTS(7) and the other eight vertices are mapped to the
fourth color. This is minimum because λ = 4 is the minimum number
of available colors needed to properly color any colorable BSTS(15).
This also shows that the number of feasible partitions is equal to the
number of partitions in BSTS(7) multiplied by the number of times
the (7, 3, 1)-subdesign appears in the BSTS(15), which is 21(7) = 147
feasible partitions; therefore, the chromatic spectrum of this BSTS(15)
is:

R(BSTS(15), 4) = (0, 0, 0, 147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Case 3. 3(7, 3, 1)-subdesigns

P (BSTS(15), 4) = 21s(4!) = 21(3)(24) = 63(24) = 1512

This shows that the minimum number of proper colorings for
BSTS(15)s no. 3 − 7 is 1512. It also gives the number of feasible
partitions as 21(3) = 63. The vertices of BSTS(7) are mapped to this
BSTS(15), while keeping the same colorings and having the other eight
vertices of this BSTS(15) mapped to the fourth color. The vertices of
BSTS(7) are mapped to the vertices of BSTS(15) no. 3 − 7 in the
following way:

BSTS(7): 1 2 3 4 5 6 7

BSTS(15)s: first 21 partitions 1 2 4 3 6 7 5

BSTS(15)s: second 21 partitions 1 2 8 3 10 11 9

BSTS(15)s: third 21 partitions 1 2 12 3 14 15 13

Therefore, the above vertices in these BSTS(15)s are mapped to the
same colors as in BSTS(7) and the other eight vertices are mapped
to the fourth color. This is minimum because λ = 4 is the mini-
mum number of available colors needed to properly color any colorable
BSTS(15). This also shows that the number of feasible partitions is

48

All proper colorings of every colorable BSTS(15)

equal to the number of partitions in BSTS(7) multiplied by the num-
ber of times the (7, 3, 1)-subdesign appears in the BSTS(15), which
is 21(3) = 63 feasible partitions; therefore, the chromatic spectrum of
these BSTS(15)s is:

R(BSTS(15), 4) = (0, 0, 0, 63, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Case 4. 1(7, 3, 1)-subdesign

P (BSTS(15), 4) = 21s(4!) = 21(1)(24) = 21(24) = 504

This shows that the minimum number of proper colorings for
BSTS(15)s no. 8 − 22 and no. 61 is 504. It also gives the number of
feasible partitions as 21(1) = 21. The vertices of BSTS(7) are mapped
to these BSTS(15), while keeping the same colorings and having the
other eight vertices of this BSTS(15) mapped to the fourth color. The
vertices of BSTS(7) are mapped to the vertices of BSTS(15) no. 8−22
and no. 61 in the following way:

BSTS(7): 1 2 3 4 5 6 7

BSTS(15)s: 21 partitions 1 2 4 3 6 7 5

Therefore, the above vertices in these BSTS(15)s are mapped to the
same colors as in BSTS(7) and the other eight vertices are mapped
to the fourth color. This is minimum because λ = 4 is the mini-
mum number of available colors needed to properly color any colorable
BSTS(15). This also shows that the number of feasible partitions is
equal to the number of partitions in BSTS(7) multiplied by the num-
ber of times the (7, 3, 1)-subdesign appears in the BSTS(15), which
is 21(1) = 21 feasible partitions; therefore, the chromatic spectrum of
these BSTS(15)s is:

R(BSTS(15), 4) = (0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

49

J. Mathews, B. Tolbert

Thus, all cases have been satisfied and all 23 colorable BSTS(15)s have
been covered. Also, the (2v+1) construction as described in [6] follows.

4 How the Program Works

This program was designed in C++ and contains several sub-programs
and functions. We created files that were added to the source code
of the program. We also created incidence matrices for each colorable
BSTS(15) as text files in the source code. We added display func-
tions for all relevant data to check our results and to double check the
computer results.

We started by creating headers that would find partitions and col-
lect them not counting different permutations of colors. The main
program calls the incidence matrix that is specified in a subprogram
and displays it along with each block of vertices. The program then
prompts the user to enter the number of colors that are to be used
and then the number of colorings the user wishes to find (first 10 or
first 200 for example, or the user can enter −1 for all colorings). If the
user wants to find all proper colorings, the program runs an exhaustive
search of all possible colorings from a string of all 0s to a string of all
3s. If a coloring is proper, then the coloring is displayed and counted;
and if it is not a proper coloring, then that coloring is skipped. Also,
if the coloring is proper, then that feasible partition is stored. After
all proper colorings have been found and displayed and counted, the
monitor prompts the user to press any key to see the feasible partitions
displayed and counted and the number of colorings of each partition.
All of the different permutations of colors of the partitions that were
stored from the proper colorings are grouped together by the computer
and only the first permutation of colors is displayed. For example,
011222233333333 would be displayed and 122333300000000 would not
be displayed because it is a permutation of the same partition where
vertex 1 is mapped to one color, vertices 2, 3 are mapped to one color,

50

All proper colorings of every colorable BSTS(15)

vertices 4− 7 are mapped to one color, and vertices 8− 15 are mapped
to one color. When complete, the user can see the BSTS(7) subsys-
tem(s) and its coloring, and the expansion of colors to the remaining
eight vertices. We were able to use this program to check the accuracy
of our hypothesis and our results; and by displaying all of the rele-
vant data on the monitor, we were able to check the accuracy of the
computer results.

5 Concluding Remarks

This paper shows two things: 1. the minimal number of colorings
over all feasible sets of colors, the number of feasible partitions, and
the chromatic polynomial and chromatic spectrum for every colorable
BSTS(15); and 2. that computer science can be an invaluable part
of research in mathematics. Of course, the findings on the number of
proper colorings, the number of feasible partitions, and the number
of permutations of colors of each partition can be generalized for any
number of colors in a set of available colors by the equality in Proposi-
tion 1. It is true that all colorable BSTS(15)s are colorable only with
4 colors, but if you have 5 colors in the set of available colors, then you
can choose to use some subset of colors from 1, 2, 3, 4, 5 such as colors
1, 2, 3, 4, or colors 1, 2, 3, 5, or colors 2, 3, 4, 5, etc. The generalization
would simply be to change λ in the fundamental equality of colorable
BSTS(15)s to whatever number of colors are available in the set of
available colors. If we take the above example of 5 available colors on
the BSTS(15) with 15 (7, 3, 1)-subdesigns, we have:

Example 1. P (BSTS(15), λ) = 21s(λ(4)) = 21(15)(5(4)) = 315(120) =
37, 800

This shows that the number of proper colorings with 5 colors available
to use is 37, 800. This, of course, is not minimum. We still have
21(15) = 315 feasible partitions and (5(4)) = 120 permutations of colors
of each partition. The chromatic spectrum would be:

51

J. Mathews, B. Tolbert

R(BSTS(15)) = (0, 0, 0, 315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

since the number of feasible partitions would not change. There would
simply be more permutations of colors of each partition.

We strongly believe that working with someone in a different field
can help find answers and solutions to problems that have yet to be
solved. We both benefited from working with one another on this
project. When one may have strength in one area but very little de-
velopment in another area, the other can bring balance in the areas
needed. Also, the amount that you learn in the other’s field is incredi-
ble. Working together also gives additional viewpoints and ideas that
one may not think of on his or her own.

This paper leads obviously into the discussion of the 57 uncolorable
BSTS(15)s and their induced and/or partial colorable BSTS(15)s.
How many vertex deletions or edge deletions are needed to obtain an
induced or partial colorable BSTS(15)? Is this result universal for all
uncolorable BSTS(15)s? Much research is still needed in the area of
uncolorable BSTS(15)s.

References

[1] C. J. Colbourn, A. Rosa. Triple Systems. (Oxford University Press,
Inc.), New York, (1999).

[2] C. J. Colbourn, J. Dinitz, A. Rosa. Bicoloring Steiner Triple Sys-
tems. Electron. Journal of Combinatorics 6 (1999), R25.

[3] L. Milazzo, Zs. Tuza. Upper chromatic number of Steiner Triple
and Quadruple Systems. Discrete Mathematics 174 (1997), 247-
259.

[4] A. Rosa, V. I. Voloshin - Private Communication as cited in [6]

[5] V. I. Voloshin. Introduction to Graph and Hypergraph Theory.
(Nova Science Publishers, Inc.), New York, (2009), 202-204.

52

All proper colorings of every colorable BSTS(15)

[6] V. I. Voloshin. Coloring mixed hypergraphs: theory, algorithms and
applications. Fields Institute Monographs (2002), 147-148.

[7] E. W. Weisstein, Steiner Triple Sys-
tem, Mathworld - A Wolfram Web Source
http://mathworld.wolfram.com/SteinerTripleSystem.html,
(2009).

[8] Splitting-Contraction Algorithm Applied to BSTS(7) by J. Math-
ews.

Jeremy Mathews, Brett Tolbert, Received January 13, 2010

Troy University, Troy, AL 36082
E–mail: jmathews9106@gmail.com

bretttolbert@gmail.co

53

Computer Science Journal of Moldova, vol.18, no.1(52), 2010

Convexity preserving interpolation by splines of

arbitrary degree

Igor Verlan

Abstract

In the present paper an algorithm of C2 interpolation of dis-
crete set of data is given using splines of arbitrary degree, which
preserves the convexity of given set of data.

Mathematics Subject Classification 2000: 65D05,
65D07, 41A05, 41A15.

Keywords and phrases: spline, interpolation, convexity
preserving interpolation.

1 Introduction

It is well known that problems concerning nonnegativity, monotonic-
ity, or convexity preserving interpolation have received considerable
attention, because of their interest in computer aided design and in
other practical applications [1]. Problem of construction of interpolat-
ing curve which preserves the convexity of the initial discrete set of
data still remains in the focus of investigators [2]. In what follows an
algorithm preserving the convexity of given set of data is presented.

2 Interpolating splines of arbitrary degree

Let us assume that the mesh ∆ : a = x0 < x1 < ... < xn = b is given
on the interval [a, b] and fi = f(xi), i = 0(1)n, are the corresponding
data points. Problem of construction of an interpolation function S,
such that interpolation conditions S(xi) = fi, i = 0(1)n, are held and
S ∈ C2[a, b], is considered.

c©2010 by I. Verlan

54

Convexity preserving interpolation by splines of . . .

Let us introduce splines as follows: on [xi, xi+1]

S(x) = fi + (fi+1 − fi)t +

+
h2

i Mi(1− t)((1− t)αi − 1)
αi(αi + 1)

+
h2

i Mi+1t(tαi − 1)
αi(αi + 1)

, (1)

where the following notations are used:

t = (x− xi)/hi, hi = xi+1 − xi, S
′′(xi) = Mi.

The αi is a free parameter of the splines (1) and has to satisfy the
condition αi > 1.

From (1) for the first derivative of spline we get:

S′(x) = δ
(1)
i −

− hi(Mi((αi + 1)(1− t)αi − 1)−Mi+1((αi + 1)tαi − 1))
αi(αi + 1)

,(2)

where

δ
(1)
i = (fi+1 − fi)/hi,

and for the second derivative, respectively:

S′′(x) = Mi(1− t)αi−1 + Mi+1t
αi−1. (3)

Obviously, at the knots of the mesh the second derivative is the
continuous one.

For the first derivative at the knots of the mesh we have

S′(xi−) = δ
(1)
i−1 +

hi−1Mi−1

αi−1(αi−1 + 1)
+

hi−1Mi

αi−1 + 1

and
S′(xi+) = δ

(1)
i − hiMi

αi + 1
− hiMi+1

αi(αi + 1)
.

Requiring the continuity of the first derivative of the spline at the
knots of the mesh we obtain the following system of linear algebraic
equations:

55

I. Verlan

ciMi−1 + aiMi + biMi+1 = δ
(2)
i , i = 1(1)n− 1, (4)

where
ci =

hi−1

αi−1(αi−1 + 1)
,

ai =
hi−1

αi−1 + 1
+

hi

αi + 1
,

bi =
hi

αi(αi + 1)
,

and
δ
(2)
i = δ

(1)
i − δ

(1)
i−1.

The system (4), presented above, is the undetermined one. Since the
system (4) provides only n − 1 linear equations in n + 1 parameters
Mi, it follows that two additional linearly independent conditions are
needed in order to have a determined system of equations.

In what follows we’ll consider that the end conditions of the type
M0 = f ′′0 and Mn = f ′′n are used as additional conditions.

In fact, it is easy to prove that the system of equations (4) has
the diagonally dominant matrix of coefficients, therefore the solution
of this system exists and it is the unique one for fixed parameters of
the spline.

3 Convexity preserving algorithm

In this section it is considered that the initial set of data is the convex
one, namely,

δ
(2)
i ≥ 0, i = 1(1)n− 1.

From the formulae (3) it immediately follows, that in order to pre-
serve the convexity of initial data the solution of the system (4) has to
be the nonnegative one.

So, let’s choose the value of free parameter as it follows:

56

Convexity preserving interpolation by splines of . . .

αi ≥ max
(

2δ
(2)
i

δ
(2)
i+1

,
2δ

(2)
i+1

δ
(2)
i

)
. (5)

There is no problem to prove that in this case the solution of the
system (4) is the nonnegative one.

This conclusion is based on the fact that for the coefficients of the
matrix of linear algebraic equations (4) the following relations are valid:

ci

ai−1
<

1
2

and
bi

ai+1
<

1
2
.

In this case we get that

δ
(2)
i − ciδ

(2)
i−1

ai−1
− biδ

(2)
i+1

ai+1
≥ 0.

As a result, taking into account [3] it can be concluded that the solu-
tion of the system (4) is the nonnegative one. As a result the spline,
constructed using condition (5), preserves the convexity of the initial
set of data.

4 Conclusions

In fact not only the problem of convexity preserving interpolation rep-
resents the interest, but also the problem of construction of interpolants
which have the same number of inflection points as the initial set of
data and preserve the convexity or concavity of data.

References

[1] B. I. Kvasov. Methods of shape-preserving spline approximation,
World Scientific, Singapore, 2000.

57

I. Verlan

[2] V. V. Bogdanov, Yu. S. Volkov, Selection of parameters of gen-
eralized cubic splines with convexity preserving interpolation, Sib.
Zh. Vychisl. Mat., 9:1 (2006), pp.5–22.

[3] I. I. Verlan. Positive solutions of systems of linear algebraic equa-
tions with Jacobian matrices of coefficients. Mat. Issled. No 104,
Program. Obespech. Vychisl. Komlpeks. (1988), pp.52–59. (in
Russian)

I.Verlan, Received July 5, 2010

Department of Applied Mathematics, Moldova State University
60 Mateevich str. Chişinău,
MD2009, Moldova

Institute of Mathematics and Computer Science
5 Academiei str., Chişinău,
MD2028, Moldova
E–mail: i verlan@yahoo.com

58

Computer Science Journal of Moldova, vol.18, no.1(52), 2010

Determining best-case and worst-case times of

unknown paths in time workflow nets

Inga Camerzan

Abstract

In this paper we present a method aimed for determining best-
case and worst-case times between two arbitrary states in a time
workflow net. The method uses a discrete subset of the state
space of the time workflow net and archives the results, which
are integers.

1 Introduction

Time workflow nets (TWN) were developed to provide a suitable
method to model, simulate, and analyze the behavior of time depen-
dent systems, business processes. Best-case execution times (BCET)
and worst-case execution times (WCET) are a necessary step in the
development and validation process for hard real-time systems. Real-
time systems need to satisfy stringent timing constraints, induced by
the systems aims. We consider time workflow nets, those only which
allow the modelling of time delay and deadlines for the execution of
activities in the workflow process. This paper will mainly focus on
modelling the control flow perspective. Thus the perspective workflow
process definitions are formulated in order to specify which tasks need
to be executed and in what order. If a worst-case input for the task
were known, then there are reliable guarantees that processes always
terminate. However the worst-case input is not known and it is hard
to be determined.

In a workflow management system there is a delay beetween the
moment when an activity becomes enabled and the moment when the

c©2010 by I. Camerzan

59

I. Camerzan

activity is executed for a certain resource. For each transition t in the
time workflow net there is a static interval [at, bt] associated to it. The
times at, bt are relative to the moment at which t was last enabled.
Assuming that t was last enabled at the global time τ , then t may fire
only during the interval [at + τ, bt + τ] and must fire the latest at the
time bt + τ . This is a method of incorporating time into Petri Nets,
introduced by Merlin [7] and studied in [1, 2, 8, 9, 10].

One of the most important problems, in the above mentioned nets,
is to determine the deadlines for a sequence of system processes, i.e.,
to compare the longest duration of a transition sequence with a given
limit. Such considerations are important for determining the best-case
execution times and the worst-case execution times.

As a rule, the method used to estimate execution times bounds
in practice consist in measuring the end-to-end execution time of the
task for a subset of the possible executions, called test cases. This
determines the minimal observed and the maximal observed execution
times. Generally speaking, through these methods we are able to obtain
an overestimation of the BCET and underestimation of the WCET,
therefore we cannot consider them safe. Our aim is to propose an
algorithm able to estimate the execution times in a safe way.

This paper is organized as follows: In Section 2 we introduce the
basic notions and definitions for time workflow nets; In Section 3 we
present the reachability graph of the time workflow nets, which can
be used for computing the shortest and the longest path between two
arbitrary states in the TWN; In the last section the algorithm for exe-
cution times estimation is proposed. The way it functions is illustrated
by an example.

2 Basic notions and definitions

Definition 2.1 A Petri net PN =(P, T, F, W) is a Workflow net iff:

1. PN has two additional places i and o, ”start” place i, ”destina-
tion” place o.

60

Determining best-case and worst-case times of . . .

2. If we add a transition t* to PN which connects o with i then the
resulting Petri net is strongly connected.

There are distinct methods of incorporating time in Petri nets: as-
sociating time delay to transition, associating time delay to places,
associating time delay with arcs, associating time delays or time in-
tervals to different types of objects of the net, associating stochastic
time. Further we consider only Petri nets [5] which have deterministic
time associated to transitions, in the form of time intervals, defined by
Merlin [7] in 1972 and studied in [1, 2, 8, 9, 10].

We define a time workflow net in following way:

Definition 2.2 A Time workflow net is a tuple Σ=(P, T, F, W, I)
where PN=(P, T, F, W) is the workflow net (also called skeleton net),
I: T→ Q+

0 × Q+
0 is a time function which associates timed intervals

with transitions and I1(t) ≤ I2(t), where I(t) = (I1(t), I2(t)), for each
transition t∈T.

A global clock is associated with the time workflow net, which be-
gins to work as soon as the first token appears in the net. After time
association, the workflow net will work in the following way: from the
moment when a transition t is enabled, the tokens from the input loca-
tions are stored for I2(t)− I1(t) time units, and after this time elapses
the transition fires putting tokens in their output places. For transi-
tions in conflict, the first transition that fires is the one which has the
latest time interval smaller.

For the definition of a state and of a change of state of a net we
will follow [3, 6]:

Definition 2.3 Let Σ=(P, T, F, W, I) be a time workflow net and J:
T→ Q+

0 ∪ {]}. S=(m, J) is the state of the net Σ iff:

1. m is a marking in skeleton net,

2. if t ∈T and t− ≤ m, then J(t) ≤ I2(t),

3. if t ∈T and t− 6≤ m, then J(t) =],

61

I. Camerzan

where t−(p) = W (p, t) is arc weight from place p to transition t.

We understand the notion of state in the following way. Let S =
(m,J) be a state. Each transition t in the net has a watch. The watch
doesn’t work (J(t) =]) at the marking m if t is disabled at m. If t is
enabled at m, then the watch of t shows the time J(t) that has elapsed
since t was last enabled.

Let Σ = (P, T, F,W, I) be a time workflow net. The state S0 :=
(i, J0) with i the initial marking of the time workflow net (the marking

which has a single token in place i) and J0(t)=
{

0, if t− ≤ m,
], if t− 6≤ m

is considered to be the initial state of the time workflow net. The
states in a time workflow net can change due to transition firings or
time elapsing.

Definition 2.4 A transition t is enabled at the state S=(m, J), de-
noted by S →, iff

1. t− ≤ m;

2. I1(t) ≤ J(t).

Thus, a transition is enabled in a time workflow net Σ, if t is enabled
in the skeleton net (the timeless net) and the time specifications are
satisfied, i.e t has been enabled for a sufficient amount of time. The
resulting state is defined as follows:

Definition 2.5 A transition t enabled at the state S=(m, J), will fire
inducing state S′ = (m′, J ′), denoted by S → S′ defined thus:

1. m′ = m + 4t;

2.

J ′(t) =

], t− 6≤ m′,
J(t), t− ≤ m ∧ t− ≤ m′ ∧ Ft ∩ F ′

t = 0,
0, otherwise,

where 4t = W (t, p)−W (p, t).

62

Determining best-case and worst-case times of . . .

The resulting state (m′, J ′) has a marking m′ which results by firing of
transition t in the skeleton net and a time vector J ′. The values of the
vector for the not enabled transitions in the marking are undefined].
If a transition was enabled in the old marking, and it is still enabled in
the new marking, and it is not in conflict with the just fired transition,
then it keeps the values of its local clock J ′(t) = J(t). Otherwise, if a
transition has just become enabled in the new marking, then its local
clock J ′(t) = 0.

Definition 2.6 Let Σ = (P, T, F, W, I) be a time workflow net. The
state S = (m,J) changes into the state S′ = (m′, J ′) by the time dura-
tion τ ∈ Q, denoted by S

τ→ S′ iff m′ = m and the time duration τ is
possible i.e. for any t ∈ T with J(t) 6=], we have J(t)+ τ ≤ I2(t)) and

J ′(t)=
{

J(t) + τ, if t− ≤ m,
], if t− 6≤ m.

The sequence of transitions and time durations σ = τ0, t0, τ1, t1, . . .
τn−1, tn−1 is executable in the net Σ iff there exist the states S0, S

′
0, S1,

S′1, . . . S
′
n−1, Sn so that: S0

τ0→ S′0
t0→ S1, . . . Sn−1

τn−1→ S′n−1

tn−1→ Sn.
That sequence shortly can also be noted by S0[σ〉Sn. The transition-
time sequence σ is called an execution sequence in the net Σ. State S′

is reachable from the state S if there is a transition-time sequence σ so
that S[σ〉S′. RS(Σ, S0) or [S0〉 denotes the set of all reachable states
of a net Σ and RΣ(S) denotes the set of all reachable states from the
state S.

In Figure 1, the initial state is ((1,0,0,0,0,0)(0,],],])). Marking
(1,0,0,0,0,0) is the initial marking of the skeleton net. The time vec-
tor has value 0 corresponding to transition t1 enabled in the initial
marking and the values] for the rest of the transitions which are dis-
abled. Since t1 is enabled at marking i and the time constraints are also
satisfied, transition t1 can fire in the initial state of the net Σ. The re-
sulting state is S0

t1→ S1 = ((0, 1, 1, 0, 0, 0)(], 0, 0,])). The state S1 has
the marking m1 = (0, 1, 1, 0, 0, 0) and the time vector J1 = (], 0, 0,])
with value 0 corresponding to the transitions t2 and t3, enabled in
the marking m1 in the skeleton net, and value] corresponding to the
disabled transitions in the skeleton net. In the case of the time con-

63

I. Camerzan

straints, i.e. in the conditions I1(t2) ≥ J1(t2) and I1(t3) ≥ J1(t3) in
state S1 the transitions t2 and t3 cannot fire. So, state S1 can change
into another state in the net Σ only by time elapsing. For instance,
the following state change is possible in the net Σ: S1

3.7→ S2, where
S2 = ((0, 1, 1, 0, 0, 0)(], 3.7, 3.7,])). We notice that the marking of the
skeleton net remains unchanged, and results in a new time vector J2

with updated time values for the transitions t2 and t3. The time dura-
tion 6.1 is not possible in state S1 because the transition t2, which, if
enabled, must fire in 5 units of time. Now, both t2 and t3 can fire at
state S2. If t2 fires, then we have S2

t2→ S3 = ((0, 0, 1, 1, 0, 0)(],], 3.7,])).
Now, the time duration 1.3 is possible at state S3 and a new state ap-
pears: S3

1.3→ S4 = ((0, 0, 1, 1, 0, 0)(],], 5,])). Thus the state-transition-
times sequence results in: S0

t1→ S1
3.7→ S2

t2→ S3
1.3→ S4. The sequence

t1, 3.7, t2, 1.3 is an execution sequence in the net Σ.

Figure 1. A time workflow net

3 Reachability graph of the time workflow net

The state space of a time workflow net is the set of all reachable states
of the skeleton net, starting from i. Because of the markings, reachable
in the net, this set is discrete, and it may be infinite. On the other hand,
this set may be infinite because of the time of transitions. Thus, the set
of all reachable states for a fix marking is infinite (and densely ordered)
in general. Nevertheless, it is possible to pick up some ”essential” states

64

Determining best-case and worst-case times of . . .

only, so that quantitative and qualitative analysis is possible. In [10]
is shown, that essential states are integer states.

Definition 3.1 The graph RG(Σ, i) is called the reachability graph of
the TWN Σ from initial state i iff its vertices are the reachable integer-
states and its edges are defined by the triples (S, t, S′) and (S, τ, S′),
where S

t→ S′ or S
τ→ S′, respectively.

The reachable integer-states are those states from the state space,
which have clocks that are (of enabled transitions) integers only and can
be reached from the initial state S0 through any number of transition
firings or time durations. The reachability graph of the time workflow
net Σ is the transition relation → restricted to its reachable integer-
states. This graph is finite iff the set of the reachable markings of the
time workflow net is finite. This set is finite, if the set of reachable
markings of the skeleton net is finite.

Using the parametric description of transition sequence [7] minimal
and maximal length of time of the execution sequence can be evaluated.
The maximal and minimal length of time is an integer and it can be
reached by firing in integer-states. Thus, when the TWN is bounded, a
sequence with maximal/minimal length of time can be found for given
source-state and sink-state.

For time workflow net above the reachability graph consists of fol-
lowing reachable integer-states:

m0 = (1, 0, 0, 0, 0, 0), J0 = (0,],],])T , J∗0 = (10,],],])T ,
m1 = (0, 1, 1, 0, 0, 0), J1 = (], 0, 0,])T , J∗1 = (], 2, 2,])T , J∗∗1 =

(], 5, 5,])T ,
m2 = (0, 0, 1, 1, 0, 0), J2 = (],], 2,])T , J∗2 = (],], 3,])T , J∗∗2 =

(],], 6,])T ,
m3 = (0, 0, 0, 1, 1, 0), J3 = (],],], 0)T , J∗3 = (],],], 4)T , J∗∗3 =

(],],], 8)T ,
m4 = (0, 0, 0, 0, 0, 1), J4 = (],],],])T ,
S8 = (m0, J

∗
0), S9 = (m1, J

∗∗
1), S10 = (m2, J

∗∗
2), S11 = (m3, J

∗∗
3),

65

I. Camerzan

(m0, J0)︸ ︷︷ ︸
S0

t1−→ (m1, J1)︸ ︷︷ ︸
S1

2−→ (m1, J
∗
1)︸ ︷︷ ︸

S2

t2−→ (m2, J2)︸ ︷︷ ︸
S3

1−→ (m2, J
∗
2)︸ ︷︷ ︸

S4

t3−→

(m3, J3)︸ ︷︷ ︸
S5

4−→ (m3, J
∗
3)︸ ︷︷ ︸

S6

t4−→ (m4, J4)︸ ︷︷ ︸
S7

Figure 2. Reachability graph

4 Determining BCET and WCET

Methods from graph theory may be applied to determine best-case and
worst-case execution times while constructing the reachability graph.

Determining the best-case execution leads directly to the well-
known problem of the shortest path. Since reachability graph has
nonnegative times only, all common shortest path algorithms are ap-
plicable, e.g. Dijkstra’s algorithm or Bellman-Ford algorithm [4].

Determining worst-case execution is similar to the critical path
problem, sometimes called longest path problem.

The problem can be formulated as follows:
For a given directed weighted graph RG = (V,E), find the lengh l

of a longest path from a source vertex vs to a goal vertex vd so that vd

is contained by most ones as a last vertex.
Actually we mean, that the length l is infinite, if there exists a cycle

reachable starting on vs before passing vd and, otherwise, l is the sum
of the weights of the longest path.

To determine worst-case execution, we propose the following algo-
rithm A1:

1. Remove from the graph RG all edges (vd, vj), i.e. all edges that
are directed from vd.

66

Determining best-case and worst-case times of . . .

2. For each edge (vi, vj) ∈ RG with the weight wi assign a new
weight w−i = −wi. Edges, labeled by transitions names, obtain
the weight 0.

3. Procedure Bellman-Ford (V,E, s) ** s is a source node
for each v ∈ V (RG) do

d[v] ←−∞
p[v] ←− NIL ** p[v] is predecessor node of v

d[s] ←− 0
for i ←− 1 to n− 1 ** n = |V (RG)|

for each edge (u, v) ∈ E(RG) do

if d[u] + w(u, v) < d[v] then

p[v] ←− u

d[v] ←− d[u] + w(u, v)
for each edge (u, v) ∈ E(RG) do

if d[u] + w(u, v) < d[v] then ** check for negative weight
cycles

return FALSE
return TRUE

If algorithm returns false, then l is infinite. Otherwise, l = −d(vd).
The complexity of this algorithm is dominated by the complexity of the
Bellman-Ford algorithm, i.e. it is O(|V | · |E|). A correctness of A1 is
easy to be seen after the removal of all output edges from goal vertex.
No path is possible, which contains goal vertex at another position than
a final vertex. Obviously, the shortest path in the negative weighted
graph corresponds to the longest path in the initial graph.

We computed a worst-case and a best-case execution times with the
help of INA tool [11] for the example from the Figure 1. Our algorithm
identified 11 states. The worst-case execution time of the service from
source node i to target node o is 24 units of time. A maximal path is
i =⇒ p2 =⇒ p4 =⇒ o. The best-case execution time of service from
source node i to target node o is 6 units of time. A minimal path is
i =⇒ p1 =⇒ p3 =⇒ o.

67

I. Camerzan

5 Conclusions

In this paper we presented a new approach aimed at determining best-
case and worst-case times between two states in a TWN in polynomial
time and demonstrated the application of our method for a certain time
workflow net.

References

[1] B. Berthomieu, Modeling and Verification of Time Dependent Sys-
tems Using Time Petri Nets, In Advances of petri Nets 1984, vol
17 , No 3 of IEEE Trans. On Software Eng. 1991, 259–273.

[2] B. Berthomieu, An Enumerative Approach for Analyzing Time, In
Proceedings IFIP 1983, R:E:A:Mason(ed), North-Holland, 1983,
41–47.

[3] I. Camerzan, On soundness for time workflow nets, Computer Sci-
ece Journal of Moldova, volume 15, nr. 1(43), Chisinau, 2007, 74–87.

[4] T.H. Cormen, C.E. Leisserson, R. L. Rivest, C. Stein, Introduction
to Algorithms, second edn. MIT Press, 2001.

[5] T. Jucan, F. Tiplea, Petri Nets – theory and practice, Academia
Romana, Bucuresti, 1999. (in Romanian)

[6] T. Jucan, O. Prisecaru, I. Camerzan, Time Interval Workflow Nets,
Scientific Annals of the ”Al. I. Cuza” University, Computer Science
Section, Tome XV, Iasi, 2005, 77–92.

[7] P. Merlin, A study of the recoverability of computer system, Ph.
D. thesis, Dep. Computing Science, University California, Irvine,
1974.

[8] L. Popova-Zeugmann, On Time Invariance in Time Petri Nets,
In Informatik-Bericht Nr. 36 der Institute pur Informatik der
Humboldt-Univ. Zu Berlin, Oct. 1994

68

Determining best-case and worst-case times of . . .

[9] L. Popova-Zeugmann, On Liveness and Boundness in Time Petri
Nets

[10] L. Popova-Zeugmann, On Parametrical Sequences in Time Petri
Nets, Proceedings of the CSP 97 Workshop, Warsaw(1997), 105–
111.

[11] P.H. Starke, INA – Integrated Net Analyzer, Berlin, 1997.

Inga Camerzan, Received March 4, 2010

State University of Tiraspol
E–mail: caminga2002@yahoo.com

69

Computer Science Journal of Moldova, vol.18, no.1(52), 2010

Determining best-case and worst-case times of

unknown paths in time workflow nets

Inga Camerzan

Abstract

In this paper we present a method aimed for determining best-
case and worst-case times between two arbitrary states in a time
workflow net. The method uses a discrete subset of the state
space of the time workflow net and archives the results, which
are integers.

1 Introduction

Time workflow nets (TWN) were developed to provide a suitable
method to model, simulate, and analyze the behavior of time depen-
dent systems, business processes. Best-case execution times (BCET)
and worst-case execution times (WCET) are a necessary step in the
development and validation process for hard real-time systems. Real-
time systems need to satisfy stringent timing constraints, induced by
the systems aims. We consider time workflow nets, those only which
allow the modelling of time delay and deadlines for the execution of
activities in the workflow process. This paper will mainly focus on
modelling the control flow perspective. Thus the perspective workflow
process definitions are formulated in order to specify which tasks need
to be executed and in what order. If a worst-case input for the task
were known, then there are reliable guarantees that processes always
terminate. However the worst-case input is not known and it is hard
to be determined.

In a workflow management system there is a delay beetween the
moment when an activity becomes enabled and the moment when the

c©2010 by I. Camerzan

59

I. Camerzan

activity is executed for a certain resource. For each transition t in the
time workflow net there is a static interval [at, bt] associated to it. The
times at, bt are relative to the moment at which t was last enabled.
Assuming that t was last enabled at the global time τ , then t may fire
only during the interval [at + τ, bt + τ] and must fire the latest at the
time bt + τ . This is a method of incorporating time into Petri Nets,
introduced by Merlin [7] and studied in [1, 2, 8, 9, 10].

One of the most important problems, in the above mentioned nets,
is to determine the deadlines for a sequence of system processes, i.e.,
to compare the longest duration of a transition sequence with a given
limit. Such considerations are important for determining the best-case
execution times and the worst-case execution times.

As a rule, the method used to estimate execution times bounds
in practice consist in measuring the end-to-end execution time of the
task for a subset of the possible executions, called test cases. This
determines the minimal observed and the maximal observed execution
times. Generally speaking, through these methods we are able to obtain
an overestimation of the BCET and underestimation of the WCET,
therefore we cannot consider them safe. Our aim is to propose an
algorithm able to estimate the execution times in a safe way.

This paper is organized as follows: In Section 2 we introduce the
basic notions and definitions for time workflow nets; In Section 3 we
present the reachability graph of the time workflow nets, which can
be used for computing the shortest and the longest path between two
arbitrary states in the TWN; In the last section the algorithm for exe-
cution times estimation is proposed. The way it functions is illustrated
by an example.

2 Basic notions and definitions

Definition 2.1 A Petri net PN =(P, T, F, W) is a Workflow net iff:

1. PN has two additional places i and o, ”start” place i, ”destina-
tion” place o.

60

Determining best-case and worst-case times of . . .

2. If we add a transition t* to PN which connects o with i then the
resulting Petri net is strongly connected.

There are distinct methods of incorporating time in Petri nets: as-
sociating time delay to transition, associating time delay to places,
associating time delay with arcs, associating time delays or time in-
tervals to different types of objects of the net, associating stochastic
time. Further we consider only Petri nets [5] which have deterministic
time associated to transitions, in the form of time intervals, defined by
Merlin [7] in 1972 and studied in [1, 2, 8, 9, 10].

We define a time workflow net in following way:

Definition 2.2 A Time workflow net is a tuple Σ=(P, T, F, W, I)
where PN=(P, T, F, W) is the workflow net (also called skeleton net),
I: T→ Q+

0 × Q+
0 is a time function which associates timed intervals

with transitions and I1(t) ≤ I2(t), where I(t) = (I1(t), I2(t)), for each
transition t∈T.

A global clock is associated with the time workflow net, which be-
gins to work as soon as the first token appears in the net. After time
association, the workflow net will work in the following way: from the
moment when a transition t is enabled, the tokens from the input loca-
tions are stored for I2(t)− I1(t) time units, and after this time elapses
the transition fires putting tokens in their output places. For transi-
tions in conflict, the first transition that fires is the one which has the
latest time interval smaller.

For the definition of a state and of a change of state of a net we
will follow [3, 6]:

Definition 2.3 Let Σ=(P, T, F, W, I) be a time workflow net and J:
T→ Q+

0 ∪ {]}. S=(m, J) is the state of the net Σ iff:

1. m is a marking in skeleton net,

2. if t ∈T and t− ≤ m, then J(t) ≤ I2(t),

3. if t ∈T and t− 6≤ m, then J(t) =],

61

I. Camerzan

where t−(p) = W (p, t) is arc weight from place p to transition t.

We understand the notion of state in the following way. Let S =
(m,J) be a state. Each transition t in the net has a watch. The watch
doesn’t work (J(t) =]) at the marking m if t is disabled at m. If t is
enabled at m, then the watch of t shows the time J(t) that has elapsed
since t was last enabled.

Let Σ = (P, T, F,W, I) be a time workflow net. The state S0 :=
(i, J0) with i the initial marking of the time workflow net (the marking

which has a single token in place i) and J0(t)=
{

0, if t− ≤ m,
], if t− 6≤ m

is considered to be the initial state of the time workflow net. The
states in a time workflow net can change due to transition firings or
time elapsing.

Definition 2.4 A transition t is enabled at the state S=(m, J), de-
noted by S →, iff

1. t− ≤ m;

2. I1(t) ≤ J(t).

Thus, a transition is enabled in a time workflow net Σ, if t is enabled
in the skeleton net (the timeless net) and the time specifications are
satisfied, i.e t has been enabled for a sufficient amount of time. The
resulting state is defined as follows:

Definition 2.5 A transition t enabled at the state S=(m, J), will fire
inducing state S′ = (m′, J ′), denoted by S → S′ defined thus:

1. m′ = m + 4t;

2.

J ′(t) =

], t− 6≤ m′,
J(t), t− ≤ m ∧ t− ≤ m′ ∧ Ft ∩ F ′

t = 0,
0, otherwise,

where 4t = W (t, p)−W (p, t).

62

Determining best-case and worst-case times of . . .

The resulting state (m′, J ′) has a marking m′ which results by firing of
transition t in the skeleton net and a time vector J ′. The values of the
vector for the not enabled transitions in the marking are undefined].
If a transition was enabled in the old marking, and it is still enabled in
the new marking, and it is not in conflict with the just fired transition,
then it keeps the values of its local clock J ′(t) = J(t). Otherwise, if a
transition has just become enabled in the new marking, then its local
clock J ′(t) = 0.

Definition 2.6 Let Σ = (P, T, F, W, I) be a time workflow net. The
state S = (m,J) changes into the state S′ = (m′, J ′) by the time dura-
tion τ ∈ Q, denoted by S

τ→ S′ iff m′ = m and the time duration τ is
possible i.e. for any t ∈ T with J(t) 6=], we have J(t)+ τ ≤ I2(t)) and

J ′(t)=
{

J(t) + τ, if t− ≤ m,
], if t− 6≤ m.

The sequence of transitions and time durations σ = τ0, t0, τ1, t1, . . .
τn−1, tn−1 is executable in the net Σ iff there exist the states S0, S

′
0, S1,

S′1, . . . S
′
n−1, Sn so that: S0

τ0→ S′0
t0→ S1, . . . Sn−1

τn−1→ S′n−1

tn−1→ Sn.
That sequence shortly can also be noted by S0[σ〉Sn. The transition-
time sequence σ is called an execution sequence in the net Σ. State S′

is reachable from the state S if there is a transition-time sequence σ so
that S[σ〉S′. RS(Σ, S0) or [S0〉 denotes the set of all reachable states
of a net Σ and RΣ(S) denotes the set of all reachable states from the
state S.

In Figure 1, the initial state is ((1,0,0,0,0,0)(0,],],])). Marking
(1,0,0,0,0,0) is the initial marking of the skeleton net. The time vec-
tor has value 0 corresponding to transition t1 enabled in the initial
marking and the values] for the rest of the transitions which are dis-
abled. Since t1 is enabled at marking i and the time constraints are also
satisfied, transition t1 can fire in the initial state of the net Σ. The re-
sulting state is S0

t1→ S1 = ((0, 1, 1, 0, 0, 0)(], 0, 0,])). The state S1 has
the marking m1 = (0, 1, 1, 0, 0, 0) and the time vector J1 = (], 0, 0,])
with value 0 corresponding to the transitions t2 and t3, enabled in
the marking m1 in the skeleton net, and value] corresponding to the
disabled transitions in the skeleton net. In the case of the time con-

63

I. Camerzan

straints, i.e. in the conditions I1(t2) ≥ J1(t2) and I1(t3) ≥ J1(t3) in
state S1 the transitions t2 and t3 cannot fire. So, state S1 can change
into another state in the net Σ only by time elapsing. For instance,
the following state change is possible in the net Σ: S1

3.7→ S2, where
S2 = ((0, 1, 1, 0, 0, 0)(], 3.7, 3.7,])). We notice that the marking of the
skeleton net remains unchanged, and results in a new time vector J2

with updated time values for the transitions t2 and t3. The time dura-
tion 6.1 is not possible in state S1 because the transition t2, which, if
enabled, must fire in 5 units of time. Now, both t2 and t3 can fire at
state S2. If t2 fires, then we have S2

t2→ S3 = ((0, 0, 1, 1, 0, 0)(],], 3.7,])).
Now, the time duration 1.3 is possible at state S3 and a new state ap-
pears: S3

1.3→ S4 = ((0, 0, 1, 1, 0, 0)(],], 5,])). Thus the state-transition-
times sequence results in: S0

t1→ S1
3.7→ S2

t2→ S3
1.3→ S4. The sequence

t1, 3.7, t2, 1.3 is an execution sequence in the net Σ.

Figure 1. A time workflow net

3 Reachability graph of the time workflow net

The state space of a time workflow net is the set of all reachable states
of the skeleton net, starting from i. Because of the markings, reachable
in the net, this set is discrete, and it may be infinite. On the other hand,
this set may be infinite because of the time of transitions. Thus, the set
of all reachable states for a fix marking is infinite (and densely ordered)
in general. Nevertheless, it is possible to pick up some ”essential” states

64

Determining best-case and worst-case times of . . .

only, so that quantitative and qualitative analysis is possible. In [10]
is shown, that essential states are integer states.

Definition 3.1 The graph RG(Σ, i) is called the reachability graph of
the TWN Σ from initial state i iff its vertices are the reachable integer-
states and its edges are defined by the triples (S, t, S′) and (S, τ, S′),
where S

t→ S′ or S
τ→ S′, respectively.

The reachable integer-states are those states from the state space,
which have clocks that are (of enabled transitions) integers only and can
be reached from the initial state S0 through any number of transition
firings or time durations. The reachability graph of the time workflow
net Σ is the transition relation → restricted to its reachable integer-
states. This graph is finite iff the set of the reachable markings of the
time workflow net is finite. This set is finite, if the set of reachable
markings of the skeleton net is finite.

Using the parametric description of transition sequence [7] minimal
and maximal length of time of the execution sequence can be evaluated.
The maximal and minimal length of time is an integer and it can be
reached by firing in integer-states. Thus, when the TWN is bounded, a
sequence with maximal/minimal length of time can be found for given
source-state and sink-state.

For time workflow net above the reachability graph consists of fol-
lowing reachable integer-states:

m0 = (1, 0, 0, 0, 0, 0), J0 = (0,],],])T , J∗0 = (10,],],])T ,
m1 = (0, 1, 1, 0, 0, 0), J1 = (], 0, 0,])T , J∗1 = (], 2, 2,])T , J∗∗1 =

(], 5, 5,])T ,
m2 = (0, 0, 1, 1, 0, 0), J2 = (],], 2,])T , J∗2 = (],], 3,])T , J∗∗2 =

(],], 6,])T ,
m3 = (0, 0, 0, 1, 1, 0), J3 = (],],], 0)T , J∗3 = (],],], 4)T , J∗∗3 =

(],],], 8)T ,
m4 = (0, 0, 0, 0, 0, 1), J4 = (],],],])T ,
S8 = (m0, J

∗
0), S9 = (m1, J

∗∗
1), S10 = (m2, J

∗∗
2), S11 = (m3, J

∗∗
3),

65

I. Camerzan

(m0, J0)︸ ︷︷ ︸
S0

t1−→ (m1, J1)︸ ︷︷ ︸
S1

2−→ (m1, J
∗
1)︸ ︷︷ ︸

S2

t2−→ (m2, J2)︸ ︷︷ ︸
S3

1−→ (m2, J
∗
2)︸ ︷︷ ︸

S4

t3−→

(m3, J3)︸ ︷︷ ︸
S5

4−→ (m3, J
∗
3)︸ ︷︷ ︸

S6

t4−→ (m4, J4)︸ ︷︷ ︸
S7

Figure 2. Reachability graph

4 Determining BCET and WCET

Methods from graph theory may be applied to determine best-case and
worst-case execution times while constructing the reachability graph.

Determining the best-case execution leads directly to the well-
known problem of the shortest path. Since reachability graph has
nonnegative times only, all common shortest path algorithms are ap-
plicable, e.g. Dijkstra’s algorithm or Bellman-Ford algorithm [4].

Determining worst-case execution is similar to the critical path
problem, sometimes called longest path problem.

The problem can be formulated as follows:
For a given directed weighted graph RG = (V,E), find the lengh l

of a longest path from a source vertex vs to a goal vertex vd so that vd

is contained by most ones as a last vertex.
Actually we mean, that the length l is infinite, if there exists a cycle

reachable starting on vs before passing vd and, otherwise, l is the sum
of the weights of the longest path.

To determine worst-case execution, we propose the following algo-
rithm A1:

1. Remove from the graph RG all edges (vd, vj), i.e. all edges that
are directed from vd.

66

Determining best-case and worst-case times of . . .

2. For each edge (vi, vj) ∈ RG with the weight wi assign a new
weight w−i = −wi. Edges, labeled by transitions names, obtain
the weight 0.

3. Procedure Bellman-Ford (V,E, s) ** s is a source node
for each v ∈ V (RG) do

d[v] ←−∞
p[v] ←− NIL ** p[v] is predecessor node of v

d[s] ←− 0
for i ←− 1 to n− 1 ** n = |V (RG)|

for each edge (u, v) ∈ E(RG) do

if d[u] + w(u, v) < d[v] then

p[v] ←− u

d[v] ←− d[u] + w(u, v)
for each edge (u, v) ∈ E(RG) do

if d[u] + w(u, v) < d[v] then ** check for negative weight
cycles

return FALSE
return TRUE

If algorithm returns false, then l is infinite. Otherwise, l = −d(vd).
The complexity of this algorithm is dominated by the complexity of the
Bellman-Ford algorithm, i.e. it is O(|V | · |E|). A correctness of A1 is
easy to be seen after the removal of all output edges from goal vertex.
No path is possible, which contains goal vertex at another position than
a final vertex. Obviously, the shortest path in the negative weighted
graph corresponds to the longest path in the initial graph.

We computed a worst-case and a best-case execution times with the
help of INA tool [11] for the example from the Figure 1. Our algorithm
identified 11 states. The worst-case execution time of the service from
source node i to target node o is 24 units of time. A maximal path is
i =⇒ p2 =⇒ p4 =⇒ o. The best-case execution time of service from
source node i to target node o is 6 units of time. A minimal path is
i =⇒ p1 =⇒ p3 =⇒ o.

67

I. Camerzan

5 Conclusions

In this paper we presented a new approach aimed at determining best-
case and worst-case times between two states in a TWN in polynomial
time and demonstrated the application of our method for a certain time
workflow net.

References

[1] B. Berthomieu, Modeling and Verification of Time Dependent Sys-
tems Using Time Petri Nets, In Advances of petri Nets 1984, vol
17 , No 3 of IEEE Trans. On Software Eng. 1991, 259–273.

[2] B. Berthomieu, An Enumerative Approach for Analyzing Time, In
Proceedings IFIP 1983, R:E:A:Mason(ed), North-Holland, 1983,
41–47.

[3] I. Camerzan, On soundness for time workflow nets, Computer Sci-
ece Journal of Moldova, volume 15, nr. 1(43), Chisinau, 2007, 74–87.

[4] T.H. Cormen, C.E. Leisserson, R. L. Rivest, C. Stein, Introduction
to Algorithms, second edn. MIT Press, 2001.

[5] T. Jucan, F. Tiplea, Petri Nets – theory and practice, Academia
Romana, Bucuresti, 1999. (in Romanian)

[6] T. Jucan, O. Prisecaru, I. Camerzan, Time Interval Workflow Nets,
Scientific Annals of the ”Al. I. Cuza” University, Computer Science
Section, Tome XV, Iasi, 2005, 77–92.

[7] P. Merlin, A study of the recoverability of computer system, Ph.
D. thesis, Dep. Computing Science, University California, Irvine,
1974.

[8] L. Popova-Zeugmann, On Time Invariance in Time Petri Nets,
In Informatik-Bericht Nr. 36 der Institute pur Informatik der
Humboldt-Univ. Zu Berlin, Oct. 1994

68

Determining best-case and worst-case times of . . .

[9] L. Popova-Zeugmann, On Liveness and Boundness in Time Petri
Nets

[10] L. Popova-Zeugmann, On Parametrical Sequences in Time Petri
Nets, Proceedings of the CSP 97 Workshop, Warsaw(1997), 105–
111.

[11] P.H. Starke, INA – Integrated Net Analyzer, Berlin, 1997.

Inga Camerzan, Received March 4, 2010

State University of Tiraspol
E–mail: caminga2002@yahoo.com

69

Computer Science Journal of Moldova, vol.18, no.1(52), 2010

Determination of inflexional group using P

systems

Svetlana Cojocaru, Elena Boian

Abstract

The aim of this article is to describe the process of deter-
mining the inflectional group using P systems with replications.
In this process firstly the sets of endings of the same length are
constructed, to which inflectional models are put into correspon-
dence. Based on these endings the inflectional model for arbitrary
word is determined.

Introduction

Natural Language Processing (NLP) is one of the areas that requires
high performance computing. In order to solve problems in this do-
main, it needs to operate with resources containing millions of entries,
so there is a logical temptation to apply approaches based on paral-
lelism. Such attempts have been undertaken since the ’80s, and have
an ample development in coming decades [1, 2].

An important direction in NLP is creation of computational linguis-
tic resources. In [3] we presented the solution of one of the problems
that contributes to resources enrichment: automatic inflection. The
proposed solution was applied for the Romanian language. Thanks to
this process, we received over 40 word forms for each verb, 24 new
words for each adjective, etc. Our solution was based on the use of
P systems with replication and applied for the case when inflectional
model is known a priori. As a rule, there are classification dictionaries
for high inflectional languages, where these models are established. In
the case of the Romanian language we use the dictionary [4], containing

c©2010 by S. Cojocaru, E. Boian

70

Determination of inflexional group using P systems

the inflectional models defined for about 30,000 words. In this paper it
is shown how the inflection model for an arbitrary word can be deter-
mined. Knowing this information we are able to perform automatically
the inflectional process. Analogously to [3, 5] for illustration we will
use examples from the Romanian language, but the proposed method
can be applied also to other natural languages with similar inflectional
mechanisms.

From the beginning we must note that in general case an algorith-
mic solution to this problem is not possible. The first obstacle is the
determining of part of speech: there are a lot of examples of homonyms
which denote different parts of speech (e.g.: abate – masculine noun
(engl. abbot) and verb (engl. to divert).

Let us restrict the formulation of the problem: is it possible to
ascertain inflectional model knowing the part of speech? The answer
is negative in this case too.

For confirmation there is a list of examples which prove that we can
not determine the inflectional model without invoking the etymological
or phonetic information.

This assertion can be illustrated by analysing feminine noun masă.
Following the meaning of the furniture object we form the plural
mese (engl. tables) using the inflectional model with vowel alterna-
tion ”a → e”. But if the meaning is mass [6], plural mase will be
produced without vowel alternation. The origin of this phenomenon is
etymological: the first case is of the Latin origin mensa, and the second
– the French word masse) [6].

But the problem can be tackled in other mode: we can establish
certain criteria that allow us to conclude in the term of word structure
analysis, if it is possible to determine the inflectional model or not,
and in the case of ”yes”, to determine which is namely the respective
model. Otherwise speaking, we try to formulate the criterion under
which we can say that inflectional process is performed automatically
and can indicate the appropriate inflectional model.

71

S. Cojocaru, E. Boian

1 Problem of inflectional model determination
for an arbitrary word

The specific character of the investigated area (natural language) is
reflected in the fact that many of the objects and concepts it operates,
cannot be the subject to strict formalisation. Therefore we will try to
distinguish certain classes in which this formalisation is possible.

So let the word-lemma be known in its graphical representation
(i.e., the data without phonetic, etymological notes, etc.). Also let the
part of speech be known, and for nouns – the gender. We divide the
words into three categories: irregular, absolutely regular and partially
regular.

For all parts of speech the fact of belonging to the irregular class
is determined by the fact of their belonging to a set of words known
a priori. To simplify the statement we exclude from the examination
the set of irregular words, their presence (or absence) does not affect
the generality of the algorithm. We consider absolutely regular words,
to which a single inflectional model corresponds and we note by A the
set of their endings. We call partially regular those words, to which
two or more inflectional models correspond. The set of their endings
we denote by P . In the following we establish the criteria for belong-
ing to these two classes (and corresponding inflectional models). The
algorithm described in [7] determines these criteria in sequential mode.
We propose to obtain these criteria in parallel mode using massive
parallelism which is characteristic to membrane P systems [8].

Inflectional group determination will be made in two steps:
- building the sets of endings of the same length, to which the

inflectional models are being put into correspondence;
- determination of the inflectional group in correspondence with the

built sets of endings.

2 Construction of sets of endings

Let L be the set of all words of a language. We come from the assump-
tion (valid for majority of natural languages) that there is a classifica-

72

Determination of inflexional group using P systems

tion dictionary D ⊆ L, so that to any ω ∈ D it puts into correspon-
dence an inflectional model ν, where ν is a positive integer. We will
present dictionary D as a union of words classified by parts of speech
(and gender, for nouns), D = ∪(C)5i=1, where C is one of the sets of
words, which belong to the open classes [3] (for Romanian these are
the adjectives, verbs, nouns: masculine, feminine, neuter). For each Ci

the dictionary D puts into correspondence the finite set of inflectional
models Ni = {ν1, . . . , νnk

}, such that for ∀ω ∈ Ci there is at least a
ν ∈ Ni. We will separately operate with each of these classes.

Let C be one of these classes. The idea of algorithm to build the
sets of endings is the following. For each word ω ∈ C, to which the
inflectional model νm ∈ N corresponds (N is the set of integers of
inflectional models for words in C), there are built the endings with
decreasing lengths from |ω| to 1. The pairs (γi, νm) are formed, where
γi is a substring of length i of the word ω, (1 ≤ i ≤ |ω|). The pairs,
constructed thus, are compared and filtered. The filtration process is
carried out in the following way: out of each two elements (γi, νm),
(ηi, νn), we keep only one, if γi = ηi and νm = νn, where γi is a
substring of length i of the word |ω|, and ηi is a substring of length i
of the word ψ (i.e. only noncoincident pairs are kept).

If for all the pairs in which γi 6= ηi the equality νm = νn takes
place, then the pairs (γi, νm) and (ηi, νn) are elements of the set A of
the endings corresponding to absolutely regular words.

If γi = ηi and νm 6= νn, then the ending ηi indicates a substring of
the word ψ partially regular from the set P , to which several inflectional
models νm, νn, . . . correspond.

We denote by Lmax = max{|ω|}, ω ∈ C, maximum of the length of
words in C.

This algorithm can be realised using the following membrane system
Π1.

Π1 = (O,Σ, µ, R0, Ri, A, P),

where i = 1, ..., Lmax,

O is the alphabet of symbols, λ is an empty element, λ ∈ O.

73

S. Cojocaru, E. Boian

Σ ⊆ O – Romanian alphabet,

µ – membrane structure which is defined as:

µ = [0 [A]A [Lmax [Lmax−1 . . . [1]1 . . .]Lmax−1]Lmax [P]P]0,

R0: {(ω, νm) → (ω, νm)1|| . . . ||(ω, νm)i|| . . . ||(ω, νm)|ω|, 1 ≤ i ≤ |ω|,
ω ∈ C, |ω| ≤ Lmax,

(ω, νm)i → ((ω, νm)i, ini), for i = 1, . . . , |ω|, |ω| ≤ Lmax};

Ri: {(ω, νm)i → (γi, νm), for i = 1, . . . , |ω|, |ω| ≤ Lmax, where ω =
ωlγi, |γi| = i, i = 1 . . . |ω|,
(γi, νm) → λ |∃(ηi,νn):γi=ηi&νm=νn

, i = 1, . . . , |ω|, |ω| ≤ Lmax,
ψ = ψlηi, |ηi| = i, i = 1 . . . , |ψ|, |ψ| ≤ Lmax, ω, ψ ∈ C,

(γi, νm) → (γi, νm, νn, . . . ,
. . . , νnk

) |∃(η1
i ,νn1),(η2

i ,νn2),...,(η
nk
i ,νnk

):γi=η1
i =η2

i =...=η
nk
i &νm 6=νn

,
i = 1, . . . , |ω|, |ω| ≤ Lmax, i = 1 . . . , |ψ|, |ψ| ≤ Lmax, for ∀k =
1, . . . , j,

(γi, νm) → ((γi, νm), outA) |∀ηi:ηi 6=γi , i = 1, . . . , |ω|, |ω| ≤ Lmax,
i = 1 . . . , |ψ|, |ψ| ≤ Lmax,

(γi, νm, νn1 , . . . , νnk
) →

((γi, νm, νn1 , . . . , νnk
), outP) |∃η1

i ,η2
i ,...,η

nk
i :η1

i 6=γi&η2
i 6=γi...&η

nk
i 6=γi

,
i = 1, . . . , |ω|, |ω| ≤ Lmax, i = 1 . . . , |ψ|, |ψ| ≤ Lmax, for ∀k =
1, . . . , j}.

The membrane A contains objects of type (γi, νm).

The membrane P contains objects of type (γi, νm, νn1 , . . . , νnk
).

The rule R0 indicates the replication of objects (ω, νm)i for |ω|
times. Each object (ω, νm)i is transferred into the region bounded by
the membrane i (i = 1, . . . |ω|).

The rule Ri indicates the following:
– truncation of the word ω keeping the ending γi of the length i,

74

Determination of inflexional group using P systems

– elimination of the pair (γi, νm) from the region i in case if there
exists the duplicate pair. When such duplicate pair does not exist, the
remained object is transferred to the membrane A,

– in case if the same ending of length i has in the capacity of pair
different numbers of the inflectional models, then the object of the type
(γi, νm, νn1 , . . . , νnk

) is formed, which is transferred into the membrane
P .

Finally in the membrane 0 two resulting membranes A and P are
obtained containing criteria for setting inflectional models for abso-
lutely regular and partially regular words.

3 Determination of the inflectional group

We will determine the inflexional group for the word ψ ∈ C.
The idea of algorithm for the inflexional group determination is the

following.
The substrings ξi (1 ≤ i ≤ |ψ|) of the endings with decreasing

length from |ψ| to 1 of the word ψ are constructed. Initially we look
for a completely regular model, comparing the ending ξi (|ξi| = i)
with the elements (γ, νm) ∈ A (|γi| = i). If ∃γi = ξi, then νm is the
inflectional model number. In case if we did not find an appropriate
model in A, we look for it in P . If ∃γi = ξi (γi, νn1 , νn2 , . . . , νnk

∈ P),
the word ψ is partially regular and it has to inflect in correspondence
with the inflexional models νn1 , νn2 , . . . , νnk

. In the case when ξi 6= γi

for ∀γi from A and P the inflectional model can not be determined
automatically and the intervention of user (the expert in linguistics) is
needed.

This algorithm will be described by the following membrane system
Π2.

Π2 = (O, Σ, µ, A, P, R0, Ri, 0),

where i = 1, . . . , Lmax,

O is the alphabet of symbols, including element ”false”∈ Σ,

75

S. Cojocaru, E. Boian

Σ ⊆ O – is the Romanian alphabet. The element ”false” will
signal about the case when the inflectional model is not found for
the word to be inflected.

µ – membrane structure which is defined as the following:

µ = [0 [A]A [Lmax [Lmax−1 . . . [1]1 . . .]Lmax−1]Lmax [P]P]0,

A contains the set of pairs of type (γi, νm) own to absolutely regular
words (i = 1, . . . , |ω|, |ω| ≤ Lmax, k = 1, . . . , |C|).

P contains the set of elements of type (γi, νm, νn1 , . . . , νnk
) belong-

ing to partially regular words (i = 1, . . . , |ω|, |ω| ≤ Lmax, k =
1, . . . , |C|).

R0: { ψ → (ψ, in1)|| . . . ||(ψ, ini)|| . . . ||(ψ, in|ψ|),

ψ → (ξ1, in1)|| . . . ||(ξi, ini)|| . . . ||(ξ|ψ|, in|ψ|), where ψ = ωjξi,
|ξi| = i, i = 1, . . . , |ψ| },

Ri: {ξi → ((ψ, νm), out0) |∃(γi,νm)∈A:ξi=γi
, i = 1, . . . |ψ|, i = 1, . . . , |ω|,

|ψ| ≤ Lmax, |ω| ≤ Lmax,

ξi → ((ψ, νm, νn1 , . . . , νnk
), out0) |∃(γi,νm,νn,...,νnk

)∈P :ξi=γi
,

i = 1, . . . |ψ|, i = 1, . . . , |ω|, |ψ|, |ω| ≤ Lmax, k = 1, . . . , |C|,
ξi → ((false), out0) |ξi 6=γi , for ∀(γi, νm) ∈ A∨(γi, νn1 , νn2 , . . . , νnk

∈ P , i = 1, . . . |ψ|, k = 1, . . . , |C|}.

The rule R0 indicates replication for |ψ| times of the endings ξi

(ψ = ωjξi, |ξi| = i) which are transferred then to membrane i (1 ≤ i ≤
|ψ|).

The rule Ri forms objects of type (ψ, νm) ∈ A or (ψ, νm, νn1 , . . . , νnk
)

∈ P by which one or more inflectional models are assigned to the word
ψ. The formed objects are transferred to the external membrane.

The appearance of the value “false” in the region 0 means that the
number of the inflectional model is not found for the word ψ ∈ C. In
this case the inflectional model can not be determined automatically.

76

Determination of inflexional group using P systems

4 Example of using membrane systems Π1 and
Π2

Let D = { (grup,1),(grup,2), (dulap,1), (cuvânt,2), (vânt,1), (trac-
tor,3), (muzeu,41)}.

Initially A = ∅, P = ∅ (see Fig.1).
We will take as C all the words from D, i.e.,
C = { grup, dulap, cuvânt, vânt, tractor, muzeu}

(in English: group, wardrobe, word, wind, tractor, museum).
Lmax = 7; N = {1, 2, 3, 41}.

Figure 1. Initial state of membrane system Π1.

The Figure 2 illustrates the process of building the sets of endings
of the same length of words from C, to which the inflectional models
N are being put into correspondence.

We obtained the sets A and P with the following components (see
Fig.3):

A = { (dulap,1), (ulap,1), (lap,1), (ap,1), (cuvânt,2), (uvânt,2),
(tractor,3), (ractor,3), (actor,3), (ctor,3), (tor,3), (or,3),
(r,3), (muzeu,41), (uzeu,41), (zeu,41), (eu,41), (u,41) }.

77

S. Cojocaru, E. Boian

Figure 2. Building the sets of endings of the same length for words
from C.

P = { (grup,1,2), (rup,1,2), (up,1,2), (vânt,1,2), (ânt,1,2),
(nt,1,2), (p,1,2), (t,1,2) }.

The Figure 3 illustrates the process of determining the inflectional
group for the word motor (in English: engine) in relation to the built
sets of endings.

We obtained that the word motor will be inflected using the inflec-
tional model 3 (Fig. 4).

Conclusions

On the basis of the classification dictionary D for each part of speech
C the sets A and P are constructed, which determine the inflexional
models for absolutely and partially regular words. We mention the
following.

1. In the general case we can renounce to build the respective sets for
each part of speech apart, but in this way the number of partially

78

Determination of inflexional group using P systems

Figure 3. Obtaining the sets A and P .

regular words would be increased.

2. Both systems Π1 and Π2 could be reduced only to the membrane 0
with two membranes A and P contained in it. The inner mem-
branes i were introduced in order to separate the comparing pro-
cesses, which would allow us to simplify implementation of such
mechanisms by a simulator.

3. The experiments, performed for a set of about 2000 base words,
showed that in 97% of cases the inflectional model number can
be determined using the systems described above. The 3%, for
which the result was marked by ”false”, present in most cases the
irregular words.

79

S. Cojocaru, E. Boian

Figure 4. Example of using the membrane system Π2

References

[1] Eiichiro Sumita, Kozo Oi, Osamu Furuse, Hitoshi Iida, Tetsuya
Higuchi, Naotao Takahashi, Hiroaki Kitano. Example-Based Ma-
chine Translation on Massively Parallel Processors. Proceedings of
the 13th International Joint Conference on Artificial Intelligence,
Chambery, France, 1993, vol.2, pp.1283–1289.

[2] Hiroaki Kitano. Challenges of Massive Parallelism. Proceedings of
the 13th International Joint Conference on Artificial Intelligence,
Chambery, France, 1993, vol.1, pp.813–834.

[3] A.Alhazov, E. Boian, S. Cojocaru, Yi.Rogojin. Modelling Inflex-
ions in Romanian language by P Systems with String replications.
Computer Science Jourmal of Moldova, v.17, 2(50), 2009, pp.160–
178.

[4] A.Lombard, C.Gâdei. Dictionnaire morphologique de la langue
roumaine. Bucureşti, Editura Academiei, 1981, 232 p.

80

Determination of inflexional group using P systems

[5] S.Cojocaru. Romanian lexicon: Tools, implementation, usage. In
Tufis, D., Andersen, P., eds.: Recent Advances in Romanian Lan-
guage Technology. Volume I., Editura Academiei (1997), pp. 107–
114 ISBN 973-027-00626-00.

[6] www.dexonline.ro

[7] S.Cojocaru. The ascertainment of the inflexion models for Ro-
manian. Computer Science Journal of Moldova, vol.14, N1 (40),
pp.103–112.

[8] Gh. Păun, Membrane Computing. An Introduction, Natural com-
puting Series. ed. G. Rozenberg, Th. Back, A.E. Eiben, J.N. Kok,
H.P. Spaink, Leiden Center for Natural Computing, Springer -
Verlag Berlin Heidelberg New York, 2002, 420 p.

Svetlana Cojocaru, Elena Boian, Received June 8, 2010

Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E–mail: {Svetlana.Cojocaru,lena}@math.md

81

Computer Science Journal of Moldova, vol.18, no.1(52), 2010

Developing a derivatives generator

Mircea Petic

Abstract

The article intends to highlight the particularities of the
derivational morphology mechanisms that will help in lexical re-
sources extension. Some computing approaches for derivational
morphology are given for several languages, inclusively for Roma-
nian. This paper deals with some preprocessing particularities,
that are needed in the process of automatic generation. Then,
generative mechanisms are presented in the form of derivational
formal rules separately for prefixation and suffixation. The ar-
ticle ends with several approaches in automatic new generated
words validation.

Key-words: derivatives, word generation, lexicon, word val-
idation

1 Introduction

Romanian derivational morphology represents an important issue in
Romanian lexical resources extension. To automate the process of
derivation it is necessary: to establish rules that can be applied to
stems in order to obtain new derivatives; to establish conditions in
which these rules can be applied; if these restrictions do not guarantee
the correctness of the generated words - to develop and to implement
a validation mechanism.

In consideration of premises, this article pretends to highlight the
particularities of the derivational morphology mechanisms that will
help in lexical resources extension without any semantic information.

In order to understand the differences and similarities of the ap-
proaches used in our research, the article starts with a description

©2010 by M. Petic

82

Developing a derivatives generator

of the known methods used in derivational morphology for Romanian
and other languages. Then some preprocessing particularities, that are
needed in the process of automatic generation, are described, such as
the issues connected with derivatives analysis and the particular fea-
tures of a lexicon for derivatives generations aims, followed by the short
description of the vowel and/or consonant alternation. The generative
mechanisms are presented in the form of derivational formal rules sep-
arately for prefixation and suffixation. The article ends with several
approaches in automatic new generated words validation.

2 The derivational process automatization

This section will be a brief overview of automation methods of deriva-
tion for different languages. Note that the automation of the derivation
process mechanisms can help to solve other problems, such as: gen-
eration of morphological families, generation of derivatives with pre-
dictable meanings, expanding dictionaries and lexicons, informational
retrieval, machine translation, etc [1]. Below, different approaches of
the derivational morphology will be described for the following lan-
guages: Russian, Italian, Serbian, Arabian, French and Romanian.

Studying the automatization of the derivational process on the ex-
amples from different languages, we came to a conclusion that the
obvious elements for processing in derivational morphology are vocab-
ulary, lexicon or dictionary. Though it is not the subject of the present
compartment. Beside the list of words, there is also another impor-
tant moment to be discussed. There are two approaches in finding
the corresponding derivatives. The first approach provides, that the
derivatives are simply described in the lexicons, and being needed they
are extracted with the help of some restrictions. The second approach
corresponds to generative mechanisms, that form derivatives using con-
straint rules.

So, the first approach is used in the description of the Italian deriva-
tional morphology where generation is fulfilled only with regard to
derivatives included into descriptions of all derived words in terms of
finite automata. Another example is the system designed for Arabic

83

M. Petic

morphology involving two kinds of hierarchies: one for morphological
forms and the other – for set of rules. In this case all stems and the
corresponding information are stored in the lexicon.

The second approach is found in the description of Russian, Ser-
bian and French languages. RUSLO (RUsskoe SLOvoobrazovanie)
derivation system, works with Russian words. It can analyse both
present and not present (as the jargon and neologisms and/or slang)
in the dictionary words. RUSLO solved the problem of generation and
analysis of derivatives for Russian language through detailed generative
mechanisms of derivation [2]. In the case of Serbian language deriva-
tives were generated in a predictable way. The derivation is considered
predictable if the word changes gender (profesor → profesorka), or en-
hances meaning, i.e. generates diminutives (profesorc̆ić) and augments
(profesorc̆ina), forms relational adjectives (profesorski) and possessive
adjectives (profesorov) as well. The last one in fact is not the case of
Romanian language. This process was called regular derivation [3].

GeDeriF is a system for French, which automatically analyses un-
known in dictionary words and overgenerates derivatives. The system
uses derivational rules for suffixes -able, -ité and -is (-er). These gen-
erated derivatives had been checked in Encyclopedia Universalis and
terminology review Le Banc de Mots, which was drawn from a variety of
sources. Besides this, they made a program that automatically checked
the search engine www.yahoo.fr for each of the generated terms. Nev-
ertheless the average of the percentage of correct words is very low
[4].

One of the first applications of automatic differentiation system for
Romanian language was FAVR in the Mac environment ELU which
aimed to complete coverage of the inflectional morphology. Then, pre-
fixes and suffixes were described by means of lexical or grammatical
paradigms. In this scope 20 grammar categories have been used. This
morphologic description was tested on more than 15.000 lexical entries
[5].

84

Developing a derivatives generator

3 Preprocessing in derivational morphology

As it was emphasized above, the lexicon plays an important role in
the process of automatization of the derivational morphology. That is
why some particularities concerning lexicons are given below. Another
important issues in derivational morphology are the derivatives recog-
nition. In addition the problem of vowel and/or consonant alternations
is described by presenting a short picture of the type of alternations
with concrete examples.

3.1 Lexicon for derivatives generation

Lexicon represents one of the main elements in the process of new
derivatives generation. In this case the lexicon is not simply a repos-
itory for input of words with syntactic and semantic information (or
lemma level), but also prefixes and suffixes are described in it [6].

Another point of view supposes that lexicons should contain not
only dictionaries of simple words and their inflections, but also the
dictionary of compound words, and dictionary of the finite-state trans-
ducers used to recognise unregistered words in the dictionaries [3].

Although for our purposes the best solution is the Dictionary
of derivatives [7] containing only the graphical representation and
constituent morphemes without any information about their part of
speech, though the vast majority are nouns, verbs and adjectives. Elec-
tronic version of the dictionary [7] was obtained after it was scanned,
the original input OCRized and the corrections made. This electronic
version of the dictionary [7] becomes important as it is difficult to es-
tablish criteria for validation of new generated derivatives. In addition,
it allows detection of derivatives with the appropriate type morphemes
(prefix, root and suffix) and is an important electronic resource for re-
search derivational morphology. Basically, the entries in the dictionary
[7] are being built based on an uncertain schedule. In this scheme it is
not clear where the affixes and the root are. In order to exclude the
uncertainty of the electronic version of the dictionary entries, a regular
expression representing the structure of derivatives was developed:

85

M. Petic

derivative = (+ morpheme)*.morpheme(-morpheme)*

where +morpheme is a prefix, .morpheme is a root and -morpheme is a
suffix. An example of an entry in the lexicon is:

antistatal=+anti.stat-al

reprogramabil=+re.programa-bil

3.2 Automatic derivatives recognition

The majority of the derivational rules are taking into account the con-
sequence of letters referring to words endings or suffixes. Moreover, it
is not a good thing to generate several times derivatives with the same
prefix. That is why it is important to have a mechanism for derivatives
recognition.

As a source for automatic derivatives recognition, a lexicon serves,
containing not only graphic representation of the words, but also their
part of speech. The lexicon consists of approximately 100000 of words
bases, and words can have several entrances for different parts of speech.
Besides the lexicon, lists of prefixes with their phonological forms and
suffixes were used.

Since not all the words end (begin) with the same suffixes (prefixes),
some algorithms were elaborated for enabling the automatic extraction
of the derivatives from the lexicon. The elaborated algorithms took
into account the fact that being x, y ∈ Σ+, where Σ+ is the set of all
possible roots, and if y = xv then v is the suffix of y and if y = ux
then u is the prefix of y. In this context both y and x must be valid
words in Romanian language, and u and v are strings that can be af-
fixes for Romanian language. The problem of consonant and/or vowel
alternations was neglected in the case of the algorithm of derivatives
extraction. This fact does not permit the exact detecting of all deriva-
tives [8].

Being more precise, the following word formation scheme expresses
the particularities of prefixation:

86

Developing a derivatives generator

[prefix [stem]x]x

where x represents part of speech for stem and derivative. Note that
in the process of prefixation the part of speech does not change. In the
process of suffixation there are cases of part of speech changing, as it
is presented in the following word formation scheme:

[[stem]x suffix]y

Taking into consideration the peculiarities of the Romanian affixes
and derivatives the algorithm for automatic derivatives recognition was
elaborated that lately was implemented in a program written in Java
programming language. This program allows us to follow at every step
of the algorithm the partial results listed in the corresponding textual
files.

3.3 Classification of affixes attachment

We examine some classes of affixes attachment. The situation is that
there are more derivatives without alternations, especially in the case of
the prefix derivation. The lack of vowel and/or consonant alternations
in the process of derivation is observed with the following most frequent
prefixes: ne-, re-, pre-, anti-, auto-, supra-, and de- [8].

There are cases when affixes do not need vowel and/or consonant
alternations in the process of derivation. Below we will present some
of these cases. The attachment of the affixes to the words is done by
means of:

– addition of a letter to the end of the root, for example, şurub →
ı̂nşuruba, bold → ı̂mboldi, plin → ı̂mplini ;

– deleting of the final letter in the root, for example, l̂ınă→ dezl̂ına,
purpură → ı̂mpurpura, puşcă → ı̂mpuşca ;

– changing in the prefix, for example, şoca → de(s)şoca → deşoca,
pat → su(b)pat → supat ;

– avoiding of the double consonant, for example, spinteca →
de(s)spinteca → despinteca, braţ → su(b)braţ → subraţ;

87

M. Petic

– changing of two final letters in the root, for example, zeflemea →
zeflemitor, ı̂ncăpea → ı̂ncăpătoare,

– changing of the final letter in the root, for example, alinia →
aliniere, aşchia → aşchietor, cumpăra → cumpărător, curăţi →
curăţător, delăsa → delăsător, depune → depunător, faianţă →
faianţator, făr̂ıma → făr̂ımător, ı̂mpinge → ı̂mpingător, transcrie
→ transcriitor, cană → căneală, atrage → atrăgătoare, bate →
bătătoare;

– removing of the last vowel in the root, for example, răşchia →
răşchitor, acri → acreală, aduna → adunătoare.

3.4 Problem of vowel and/or consonant alternation

The problem of derivation consists not only in the detection of the
derivational rules for separate affixes, but also in the examination of
the concrete consonant and/or vowel alternations for the affixes. It is
important that not all affixes need vowel and/or consonant alternations
in the process of derivation. The vowel and/or consonant alternations
are a subject for research not only in derivational morphology but also
in inflectional morphology. Though there are some similarities, for
example, ean → en (moldovean – moldoveni – moldovenesc), o → u
(soră – surori – surioară), oa → o (ploaie – ploi – ploiţă), t → ţ (bărbat
– bărbaţi – bărbăţie), etc. But the derivational alternations differ from
those inflectional, for example: at →ăţ (argat – argăţesc), ar → er,
(adevăr – adeveri), g → s (̂ımpunge – ı̂mpunsătură), etc.

There are no cases with consonant and/or vowel alternations in the
process of derivation with suffixes. It means that there are situations
when the derivation is made up with minimum number of alterna-
tions and with maximum cases of changes in the root, for example:
a →ă a →ă (balsam – ı̂mbălsăma), a →ă a →ă a →ă (caimacam –
căimăcămie) etc. Possible vowel and/or consonant alternations are so
varied that it is difficult to describe them all in a chapter, but it is
possible, at least, to classify them:

– removing of final vowel and changing of final consonant, for ex-
ample, descreşte → descrescătoare, ı̂nchide → ı̂nchizătoare, ı̂ncrede

88

Developing a derivatives generator

→ ı̂ncrezătoare, promite → primiţătoare;
– changing of the vowels in the root, for example, cataramă →

ı̂ncătărăma, primăvară → desprimăvăra, rădăcină → dezrădăcina,
platoşă → ı̂mplătoşi ;

– changing in the root, for example, r̂ıde → r̂ızătoare, recunoaşte
→ recunoscătoare, roade → rozătoare, sta → stătătoare, şedea →
şezătoare, vedea → văzătoare, şti → ştiutor.

On purpose of precision which affixes have alternations in the pro-
cess of derivation, the digital variant of the derivatives dictionary has
been studied. Some of them are illustrated in the Table 1.

Taking into consideration all these observations, it is easier to un-
derstand the derivative structure, namely the prefixes, stem and the
suffixes of the derivatives. It represents a starting point for the process
of automatic derivatives generation.

4 Derivatives generation

Besides the problem of derivatives analysis there is a wish to have the
possibility to generate new derivatives, taking into account the stem
and affix peculiarities. In the process of linguistic resources completion
by automatic derivation appear a natural tendency to use the most
frequent affixes. In reality, the most productive affixes prove to be
problematic because of their irregular behaviour. That is why for the
research there have been chosen those affixes that have allowed to es-
tablish simpler behaviour rules, as not to appeal to too much exceptions
[9]. That is why the examples of prefixation with re-, ne-, in-/im-, and
suffixation with -re, -bil, -tor, -toare, -esc/-ească, -iza are described
below.

4.1 Automatic prefixation

The rule of derivation with the prefix re- is the following, let ω be the
infinitive of the verb, then the word of the form ω′ = reω is also the
infinitive of the verb, namely

89

M. Petic

Table 1. Vowel and/or consonant alternation
Alter. Root/ Context of Pref/ Word

vow/cons Stem alt. vow/cons Suf Examples
a →ă albastru bas – băs el albăstrel

arab rab – răb ească arăbească
cărare rar– răr uşă cărăruşă
dalb dal – dăl ior dălbior

a → ăr gustare tar – tăr ică gustărică
a → e iarbă iar – ier ăluă ierbăluă
a → ă dandana dan – dăn dăndănaie
a → ă dan – dăn ie

balsam bal – băl ı̂m
sam – săm a ı̂mbălsăma

a → ă calafat cal – căl ui
a → ă laf – lăf
a → ă fat – făt călăfătui
a → ă Banat ban – băn ean

at → ăţ nat – năţ bănăţean
a → ă baniţă ban – băn ioară
ţ –c niţ – nic bănicioară

a → e iatac iat - iet el
a → ă iatac tac - tăc ietăcel

at → ieţ băiat ăiat – ăieţ andru băieţandru

90

Developing a derivatives generator

[ω]inf →
[
re [ω]inf

]
inf

.

In this case there are derivatives like (a) filma → (a) refilma, (a)
genera → (a) regenera, etc. As in the previous case, there are no any
vowel and/or consonant alternations in this case.

In this context it is observed that the root for the derivative with
the prefix re- and suffix -re is the infinitive of the verb. So, let ω be
the infinitive of a verb, then ω′ = reωre is a noun, namely

[ω]inf →
[
re [ω]inf re

]
Nn

.

The derivatives would be: (a) ı̂nt̂ılni → re ı̂nt̂ılnire, (a) verifica →
reverificare. There are no vowel and/or consonant alternations.

Another known affix, which will permit to generate many deriva-
tives, is the prefix ne-. Thus, let ω be an adjective of the form ω′ = ωβ,
where β ∈ { -tor, -bil, -os, -at, -it, -ut, -ind, -ind}, then the deriva-
tives of the form ω′′ = neωβ are possible to generate and the resulted
derivatives will be also adjectives.

[ωβ]Adj →
[
ne [ωβ]Adj

]
Adj

.

In this case the obtained derivatives would be: conductor →
neconductor, nobil → nenobil, invidios → neinvidios, iubit → neiubit,
născut → nenăscut. In the process of derivation with the prefix ne-
the vowel and/or consonant alternations are not observed. Though a
question appears, what the endings β represent. If in some cases it is
clear that they are forms of participle or gerund, then the strings tor
and bil are lexical suffixes. So an interest appears to the process of
derivation with these suffixes.

The derivatives with the prefixes im−/in−, as a rule, are adjectives,
rarely nouns and verbs. The most numerous derivatives with prefix in−
/im− are adjectives formed with the suffix bil, for example, incurabil,
inestimabil, etc. So, being the adjectives of the form ω′ = ωbil, they
form derivatives of the form ω′′ = ωbil, where ω ∈ {in−, im−} [1].

91

M. Petic

Another well contoured group is that of adjectives derivated with
the suffixes −ent and −ant: inaderent, incoerent, independent, etc.
Similar, being the adjectives ω′ = ωγ, they form derivatives ω′′ = βωγ,
where β ∈ {in−, im−} and γ ∈ {−ent,−ant}. In both cases the choice
of the β depends on the first letter of the adjective ω, and namely in
the case when the letter is b or p then β = im−, in other cases it is
in−.

4.2 Automatic suffixation

For the suffix -re there is the following rule: let ω be the infinitive of a
verb, then the word of the form ω′ = ωre is a noun, namely

[ω]inf →
[
[ω]inf re

]
Nn

.

This formal model can generate derivatives such as: citi → citire,
mı̂nca → mı̂ncare, etc. In the process of derivation there are no vowel
and/or consonant alternations.

That is because the suffixes -tor and -bil have been studied. Both
of them have the same origin. Thus, let ω be the infinitive of the
verb of the form ω′ = ωβ, where β ∈ {−a, i}, then it is possible to
form the derivatives of the form ω′′ = ωβγ, where γ ∈ {−tor,−bil} is
adjective/noun.

This examination includes the verbal lexical simple suffix -iza,
which has neologic origin and nowadays is very productive and has
very strong relation with the lexical suffixes -ism and -ist. Thus, let ω
be an adjective/noun of the form ω′ = ωβγ, where γ ∈ {−ism,−ist},
then it is possible to say about the derivatives the following:

1. if β ∈ {−an,−ian}, then the word of the form ω′β = ωiza is a
verb;

2. of β ∈ {−ean}, then the word of the form ω′e a n = ωiza is a
verb, where a represents the cut out of the vowel a;

3. if β = µic, where:

92

Developing a derivatives generator

• µ ∈ {−at,−et,−ot,−if}, then the word of the form ω′ =
ωµiza is a verb;

• µ 6∈ {−at,−et,−ot,−if}, then the word of the form ω′ =
ωβiza is a verb;

4. if β ∈ −ură , then the word of the form ω′ = ωur ă iza is a verb,
where ă represents the cut out of the vowel a.

Thus, the examples of such derivatives are: alcan → alcaniza, euro-
pean → europeniza, dramatic → dramatiza, cosmetic → cosmetiza, pa-
triotic → patriotiza, ştiinţific → ştiinţifiza, caricatură → caricaturiza,
friptură → fripturiza [1].

The word gender changing can be achieved by switching to other
corresponding suffixes, for example, −tor → −toare, −esc → -ească,
etc. Thus, it was observed that the gender changing is made with
the help of suffixation, not of prefixation one. The lexicon, mentioned
above, consists of suffixed derivatives only with -tor, only with -toare
and with -tor and -toare at the same time. There are 148 words (nouns
and/or adjectives) of the form ω′ = ωtor, which could change into
the words of the form ω′′ = ωtoare. Similarly, there are 42 words
(nouns and/or adjectives) of the form ω′ = ωtoare which could change
into the words of the form ω′′ = ωtor. Nevertheless, these 190 words
generated in an automatic way should be validated. First of all, words
were checked on their presence in RRTLN. 122 from all generated words
were present there. The remaining words were checked in the electronic
documents of the Internet, and 49 of 68 derivatives have been validated.
Thus 95% of generated words were valid.

The same situation is with the pair of the suffixes -esc and -ească.
According to the same lexicon, it consists of 274 of derivatives with
suffixes -esc, and 249 with the suffix -ească. Note, that 229 of the
derivatives are suffixes both with -esc and -ească. It is natural to
assume that the words (nouns and/or adjectives) of the form ω′ = ωesc,
could change into the words of the form ω′′ = ωească. Similarly, the
words (nouns and/or adjectives) of the form ω′ = ωească could change
into the words of the form ω′′ = ωesc. Generating in an automatic way

93

M. Petic

those derivatives which lack in the case of gender and checking them
in an automatic way in the electronic documents, it was established
that with the help of RRTLN there were validated 43 words of all 65
generated words. Another 12 of 22 remaining derivatives were validated
using a web application based on Google search engine opportunities.
So, 84% of obtained words were validated.

5 Problem of derivatives validation

Automatic derivation represents an overgenerating mechanism. That
is why validation of generated words is needed.

5.1 Models of validation

One of the methods of new word validation consists in manual verifica-
tion of every new generated derivative as to correspond to semantic and
morphologic rules. In the case of the proceeding is performed by a spe-
cialist in domain, the specific disadvantages of a manual work appear:
considerable resources of time and the possibility to make mistakes.
So, this method of validation becomes inefficient [1].

Another method of validation consists of the verification of the
derivatives in the existent electronic documents.

5.2 Automatic validation

There are different types of electronic documents.
The first idea that appears – to validate words using existent cor-

pora, that represent verified documents – seems to be the best solution.
The condition for being the panacea in the new word validation is a rep-
resentative corpus, with a big number of words from different domains.
As there are no representative Romanian corpora, it is not possible to
consider it a good idea.

On the other hand there are documents on Internet, that are not
verified, that is why they are not credible. In order to make it more
precise, the searching on the Internet should be made for the documents

94

Developing a derivatives generator

typed only in Romanian language. Besides this, it is necessary that the
following be assured: the possibility to exclude word segmentation; the
part of speech of the derivatives [9].

This validation tool divides the generated derivatives in three cat-
egories. The first one contains words that are not found in Internet.
The second consists of the derivatives that appear less than a frequency
limit of n, in our case n = 1000. Derivatives that are more frequent
that limit n, are registered in the third group. This classification pre-
tends that the words, that are listed more than frequency limit of n,
are surely valid. Those, that are from the second group, can be valid
but should be verified by specialists in linguistics. The derivatives, that
are not present, could not be valid.

The idea of classification pretends to be a mixt method of valida-
tion, because needs only the manual verification for the words from the
second category.

6 Conclusions

Generation of derivatives is not a trivial problem, because the process
does not have a regular mechanism. The solution to store all derivatives
of a dictionary is a reasonable one, because these derivatives still will
not cover the full diversity of language, being in continuous evolution.
From the other hand, the approach to generate constraint derivatives
according to constraint rules for derived groups is a mechanism of over-
generation, when the validation phase excludes many wrong formed
words. Well defined rules will increase the level of the correct words
generation.

References

[1] S. Cojocaru, E. Boian, M. Petic. Stages in automatic derivational
morphology processing, KEPT2009, Knowledge Engineering, Prin-
ciples and Techniques, Selected Papers, Cluj-Napoca, July 2 - 4,
2009, pp.97-104.

95

M. Petic

[2] N. Percova. RUSLO: An Automatic System for Derivation in
Russian - http : //lcl.srcc.msu.ru/library/pertsova ruslo.pdf -
22.04.09

[3] V. Dus̆ko, C. Krstev. Derivational Morphology in a E-Dictionary
of Serbian, In Zygmunt Vetulani (ed.), Proceedings of the 2nd
Language & Technology Conference, Poznan, Poland, 2005, pp.
139–143.

[4] F. Namer, G. Dall. GeDeriF: Automatic Generation and Analysis
of Morphologically Constructed Lexical Resources, In LREC: 2nd
International Conference on Language Resources & Evaluation,

[5] D. Tufiş, L. Diaconu, A. M. Barbu, C. Diaconu. Romanian
language morphology, a reversible and reusable linguistic re-
source, Language and Technology, Publishing House of Romanian
Academy, Bucureşti, 1996, pp. 59–65. (in Romanian)

[6] F. Carota. Derivational Morphology of Italian: Principles of For-
malization, Literary and Linguistic Computing, Vol. 21, Suppl.
Issue, 2006.

[7] S. Constantinescu. The dictionary of derivated words. Editura
Herra, Bucureşti, 2008. (in Romanian)

[8] M. Petic. Automatic derivational morphology contribution to Ro-
manian lexical acquisition. Special issue: Natural Language Pro-
cessing and its Application. Research in Computing Science, Mex-
ico, vol. 46, 2010, pp. 67–78.

[9] M. Petic. Automatic extention of Romanian linguistic resources,
Romanian Workshop for Linguistic Tools and Resources Volume,
Publishing House of the University “Al. I. Cuza”, Iaşi, România,
2008, pp. 151–160. (in Romanian)

M. Petic, Received June 25, 2010

M. Petic
Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E–mail: mirsha@math.md

96

