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Abstract

In this paper, based on equivalence classes of attributes there
are formulated necessary and sufficient conditions that constraint
a database schema to be in the second, third or Boyce-Codd
normal forms. These conditions offer a polynomial complexity
for the testing algorithms of the normalizations level.
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1 Introduction

The anomalies that appear during database maintaining are known as
insertion, update and deletion anomalies. These are directly related to
the dependencies between attributes. A rigorous characterization of the
quality grade of a database schema can be made through the exclusion
of mentioned anomalies, with consideration of attributes dependencies,
which offers the possibility to define some formal techniques for design
of desirable relation schemes.

The process of design of some relation scheme structure with in-
tend to eliminate the anomalies, is called normalization. Normaliza-
tion consists in following a set of defined rules on data arrangement
with the scope to reduce the complexity of scheme structures and its
transformation into smaller and stable structures which will facilitate
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data maintenance and manipulation. There exist several normalization
levels that are called normal forms.

The normal forms based on functional dependencies are first nor-
mal form (1NF), second normal form (2NF), third normal form (3NF)
and Boyce-Codd normal form (BCNF). These forms have increasingly
restrictive requirements: every relation in BCNF is also in 3NF, every
relation in 3NF is also in 2NF and every relation in 2NF is in 1NF. A
relation is in 1NF if every attribute contains only atomic values. 2NF
is mainly of historical interest. 3NF and BCNF are important from a
database design standpoint [1].

For example, the design of a 3NF database schema, through the
synthesizing method, can be performed in a polynomial time [2]. Un-
fortunately, the problem of determination of the normalization level is
known to be NP-complete [3, 4], because normalization testing requires
finding the candidate keys and nonprime attributes. Firstly, the defi-
nitions of normal schemes (second, third or BCNF) contain the notion
of key. But it is known that a relation can have an exponential number
of keys under the number of all attributes of its scheme [5]. Secondly,
the definitions of normal forms use the notions of prime and nonprime
attributes, which are also related to key.

The problem of prime and nonprime attributes finding has been
solved in a polynomial time [6]. In this paper necessary and suffi-
cient conditions for a scheme to be in 2NF, 3NF or BCNF are defined.
These conditions are described in terms of redundant and nonredun-
dant equivalence classes of attributes and the computation of these
classes can be performed in polynomial time [6]. Therefore, the deter-
mination of normalization level of a scheme is also polynomial. Thus
a database designer may work in terms of attributes sets and data de-
pendencies, and not in terms of keys. This approach can be a part
of the database analysis and design toolset, i.e. for the automation of
database design and testing.

In Section 2, most of the definitions needed in this paper are pre-
sented. In Section 3, several properties for equivalence classes of at-
tributes, proved in [6], are given.

Besides this, the correlation is proven between nonredundant classes
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of attributes and the right and left sides of functional dependency that
is inferred from a given set of functional dependencies (Theorem 3).
In Sections 4, 5 and 6 there are presented necessary and sufficient
conditions (Theorems 4-6), in terms of equivalence classes of attributes,
for a relation scheme to be in 2NF, 3NF or BCNF, respectively. The
final section is about algorithmic aspects, where it is shown that the
determination of the normalization level of database schemas can be
performed in polynomial time.

2 Preliminary notions

In this and in the next section, that will be as concise as possible, some
definitions and statements used in this paper are presented.

Let Sch(R,F ) be a relation scheme, where F is a set of functional
dependencies defined on a set R of attributes. The set of all functional
dependencies implied by a given set F of functional dependencies is
called the closure of F and is denoted as F+, that is F+ = {V →
W |F | = V → W} [7].

If F is a set of functional dependencies over R and X is a subset
of R, then the closure of the set X with respect to F , written as X+,
is the set of attributes A such that X → A can be inferred using the
Armstrong Axioms, that is X+ = {A|X → A ∈ F+} [7].

Armstrong’s Axioms are sound in that they generate only functional
dependencies in F+ when applied to a set F . They are complete in
that repeated application of these rules will generate all functional
dependencies in the closure F+ [1].

Let X and Y be two nonempty finite subsets of R. The set X is a
determinant for Y with respect to F if X ′ → Y is not in F+ for every
proper subset X ′ of X.

If X is a determinant for R with respect to F , then X is a key for
relation scheme Sch(R,F ). Note that some relation scheme may have
more than one key.

An attribute A is prime in Sch(R, F ) if A is contained in some key
of Sch(R, F ). Otherwise A is nonprime in Sch(R, F ).
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In what follows, it will be assumed that the set F of functional
dependencies is reduced [7].

Given a relation scheme Sch(R, F ), the set F can be represented by
a graph, called contribution graph [6] for F and denoted by G = (S, E),
where:

• for every attribute A in R, there is a vertex labeled by A in S;

• for every functional dependence X → Y in F and for every at-
tribute A in X and every B in Y there is an edge a = (A,B) in
E that is directed from vertex A to vertex B.

Let G = (S,E) be divided into strongly connected components.
The relation of strong connectivity is an equivalence relation over the
set S. So, there is a partition of set of vertices S into pairwise disjoint
subsets, that is, S =

⋃n
i=1 Si.

Let S1, ..., Sn be the strongly connected components of a graph
G = (S, E). Then the condensed graph [8] of G, G∗ = (S∗, E∗) is
defined as follows:

S∗ = {S1, ..., Sn} and
E∗ = {(Si, Sj)|i 6= j, (A,B) in E, A ∈ Si and B ∈ Sj}.
Evidently the condensed graph G∗ is free of directed circuits. Over

the set S∗ of vertices of graph G∗ a strict partial order is defined.
Strict partial orders are useful because they correspond more directly to
directed acyclic graphs. Vertex Si precedes vertex Sj , if Sj is accessible
from Si.

From the ordered sequence of sets S1, ..., Sn a sequence of ordered
nonredundant sets can be built T1, ..., Tn, where T1 = S1 and Tj = Sj−
(
⋃j−1

i=1 Ti)+F for j = 2, n. All empty sets are excluded from the sequence
and a sequence of nonempty sets T1, ..., Tm is obtained, keeping the
precedence of prior sets.

Lemma 1. [6]. If X → Y ∈ F+ and X is a determinant of Y under
F , then for every attribute A ∈ (X − Y ) there is an attribute B ∈ Y
so that in the contribution graph G there exists a path from vertex A
to vertex B and for every attribute B ∈ (Y −X) there exists in X an
attribute A, from which the vertex B can be reached.
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3 Some properties of equivalence classes of at-
tributes

In this section a brief overview of several properties of equivalence
classes of attributes is given. And their proofs are presented in [6].

Theorem 1. ([6], Theorem 2). Set X is a determinant of set
S1

⋃
...

⋃
Sn under F , if and only if X is determinant of set T1

⋃
...

⋃
Tm

under F .

Lemma 2. ([6], Lemma 3). If X is a determinant under F of set
T1

⋃
...

⋃
Tm, then Z, where Z = X

⋂
(T1

⋃
...

⋃
Tj) and j = 1,m, is a

determinant for T1
⋃

...
⋃

Tj under F .

Theorem 2. ([6], Theorem 4). If set of attributes X is a determinant
of set T1

⋃
...

⋃
Tm, then X

⋂
Ti 6= ∅, where i = 1,m.

Corollary 1. ([6], Corollary 3). If an attribute A in S1
⋃

...
⋃

Sn is
prime in scheme Sch = (

⋃n
i=1 Si, F ), then A ∈ ⋃m

i=1 Ti.

Corollary 2. ([6], Corollary 4). If an attribute A in S1
⋃

...
⋃

Sn is
nonprime in scheme Sch = (

⋃n
i=1 Si, F ), then A ∈ (

⋃n
i=1 Si−

⋃m
i=1 Ti).

Theorem 3. Let X → Y ∈ F+, where X is a determinant for Y under
F and X, Y ⊆ T1

⋃
...

⋃
Tm. For a Tj , where j = 1,m, the following

takes place: if Y
⋂

Tj 6= ∅, then X
⋂

Tj 6= ∅.
Proof. The soundness of this statement is proven by contra-

diction: let Y
⋂

Tj 6= ∅, but X
⋂

Tj = ∅. Evidently that X ⊆
T1

⋃
...

⋃
Tj−1

⋃
Tj+1

⋃
...

⋃
Tm and X → (Y

⋂
Tj) ∈ F+. Let X ′,

where X ′ ⊆ X, is a determinant for Y
⋂

Tj under F . According to
Lemma 1, on the contribution graph of set F of dependencies, from ev-
ery vertex labeled with an attribute in X ′ there exists a path to a vertex
labeled with an attribute in Y

⋂
Tj . Thereby, X ′ ⊆ T1

⋃
...

⋃
Tj−1. But

in this case, Tj is redundant. A contradiction has been reached.
Using above structures and statements it will be shown that the

problem of determination of the normalization level has polynomial
complexity. In the following sections, in terms of equivalence classes of
attributes, sufficient and necessary conditions for a relation scheme to
be in a normal form are presented.
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4 Second normal form

Thus, the relation scheme in the 2NF can be defined:

Definition 1. [9]. Scheme Sch = (
⋃n

i=1 Si, F ) is in the 2NF under
a set of functional dependencies F , if it is in 1NF and each nonprime
attribute in

⋃n
i=1 Si doesn’t partially depend on every key for Sch.

Database schema is in the 2NF, if each constituent relation scheme is
in the 2NF.

Definition 2. [9]. Let X → A ∈ F be a nontrivial functional depen-
dency (namely A /∈ X). An attribute A is called partially dependent on
X, if there exists a proper subset X ′ of set X, such that X ′ → A ∈ F+.
If such a proper subset doesn’t exist, then A is called that completely
depends on X.

Proposition 1. If set of attributes X is a determinant for attribute A
under set of attributes F , then A completely depends on X.

The next theorem gives a characterization of the 2NF in terms of
equivalence classes of attributes.

Theorem 4. Relation scheme Sch = (
⋃n

i=1 Si, F ) is in the 2NF, if and
only if it is in the 1NF and for every Tj , j = 1,m, (

⋃m
i=1 Ti − Tj)+ =⋃m

i=1 Ti − Tj takes place.

Proof. Necessity. Let scheme Sch = (
⋃n

i=1 Si, F ) be in the 2NF.
Then every nonprime attribute A, that is a member of set

⋃n
i=1 Si −⋃m

i=1 Ti completely depends on every determinant X of set S1
⋃

...
⋃

Sn.
According to Theorem 1, X is a determinant of set T1

⋃
...

⋃
Tm. In

addition, X ⊆ T1
⋃

...
⋃

Tm. Assuming to the contrary, that Sch is in
the 2NF, but there is an attribute A∈(

⋃m
i=1 Ti−Tj)+ such that A /∈

(
⋃m

i=1 Ti−Tj). There are two cases: either A ∈ Tj , or A ∈ (
⋃n

i=1 Si −⋃m
i=1 Ti).

Let A ∈ Tj . From the construction of contribution graph, follows
that (T1

⋃
...

⋃
Tj) → A ∈ F+. Because A∈(

⋃m
i=1 Ti−Tj)+, namely

A∈(
⋃j−1

i=1 Ti−Tj)+, then (T1
⋃

...
⋃

Tj−1)→A∈F+. But this contradicts
the fact that set Tj is nonredundant.
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Let A ∈ (
⋃n

i=1 Si−
⋃m

i=1 Ti). If X is a determinant for T1
⋃

...
⋃

Tm

under F , taking into account Lemma 2, X
⋂

(T1
⋃

...
⋃

Tj−1) is a de-
terminant for T1

⋃
...

⋃
Tj−1. So that (T1

⋃
...

⋃
Tj−1)→A∈F+, then

(X
⋂

(T1
⋃

...
⋃

Tj−1)) → A ∈ F+. In other words, the nonprime at-
tribute A partially depends on determinant X. That is A partially
depends on key X, fact that contradicts the assumption that scheme
Sch is in the 2NF.

Sufficiency. Let scheme Sch = (
⋃n

i=1 Si, F ) be in the 1NF and for
every Tj , j = 1,m, the following equality takes place: (

⋃m
i=1 Ti−Tj)+ =⋃m

i=1 Ti−Tj . It will be proven that scheme Sch is in the 2NF. Two cases
are possible: either (

⋃n
i=1 Si−

⋃m
i=1 Ti) = ∅, or (

⋃n
i=1 Si−

⋃m
i=1 Ti) 6= ∅.

If (
⋃n

i=1 Si −
⋃m

i=1 Ti) = ∅, then scheme doesn’t contain nonprime
attributes and, therefore, scheme is in the 2NF and it is even in the
third.

If (
⋃n

i=1 Si−
⋃m

i=1 Ti) 6= ∅, that is in the case when set of nonprime
attributes is not empty, results that every nonprime attribute A com-
pletely depends on T1

⋃
...

⋃
Tm, furthermore it completely depends on

determinant X under F of set T1
⋃

...
⋃

Tm. So, the scheme is in the
2NF.

Corollary 3. Scheme Sch = (
⋃n

i=1 Si, F ) is in the 2NF, if and only if
for every i = 1,m Ti = Si holds.

Proof. The soundness of this statement follows from the fact that
(
⋃m

i=1 Ti−Tj)+ =
⋃m

i=1 Ti−Tj takes place when Ti = Si holds for every
i = 1,m and vice versa.

5 Third normal form

In this section a characterization of the 3NF is given through the equiv-
alence classes.

Definition 3. [9]. Scheme Sch = (
⋃n

i=1 Si, F ) is in 3NF under a set
of functional dependencies F , if it is in the 1NF and every nonprime
attribute doesn’t transitively depend on a key of scheme Sch. Database
schema is in the 3NF, if every constituent relation scheme is in the 3NF.
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Definition 4. [10]. Let scheme Sch = (
⋃n

i=1 Si, F ), V, W ⊆ ⋃n
i=1 Si

and A ∈ ⋃n
i=1 Si. It is considered that the attribute A transitively

depends on V through W , if the following conditions are all satisfied:

1. V → W ∈ F+;

2. W → V /∈ F+ (namely V doesn’t functionally depend on W );

3. W → A ∈ F+;

4. A /∈ V W.

Theorem 5. Relation scheme Sch = (
⋃n

i=1 Si, F ) is in the 3NF, if
and only if (

⋃n
i=1 Si−

⋃m
i=1 Ti) is a determinant for (

⋃n
i=1 Si−

⋃m
i=1 Ti)

under F .

Proof. Necessity. Let scheme Sch = (
⋃n

i=1 Si, F ) be in the
3NF. Then scheme Sch = (

⋃n
i=1 Si, F ) is also in the 2NF and each

attribute A, where A ∈ (
⋃n

i=1 Si −
⋃m

i=1 Ti), fully functionally depends
on key X of scheme Sch = (

⋃n
i=1 Si, F ), namely it is fully functionally

dependent on determinant X of set T1
⋃

...
⋃

Tm under F . In addition,
no attribute A, where A ∈ (

⋃n
i=1 Si−

⋃m
i=1 Ti), transitively depends on

X. That is, there doesn’t exist any dependency W → A ∈ F+, such
that W ⊆ (

⋃n
i=1 Si −

⋃m
i=1 Ti) and A /∈ XW . Therefore, dependency

(
⋃n

i=1 Si−
⋃m

i=1 Ti) → (
⋃n

i=1 Si−
⋃m

i=1 Ti) is reduced on the left side, fact
that confirms that (

⋃n
i=1 Si −

⋃m
i=1 Ti) is a determinant for (

⋃n
i=1 Si −⋃m

i=1 Ti) under F .
Sufficiency. Assume (

⋃n
i=1 Si −

⋃m
i=1 Ti) is a determinant for

(
⋃n

i=1 Si −
⋃m

i=1 Ti) under F . Let X be a determinant of set
T1

⋃
...

⋃
Tm under F . According to Theorem 1, X is a determinant

of set S1
⋃

...
⋃

Sn. Hence, X → (
⋃n

i=1 Si −
⋃m

i=1 Ti) ∈ F+ holds. Be-
cause (

⋃n
i=1 Si−

⋃m
i=1 Ti) is a determinant for (

⋃n
i=1 Si−

⋃m
i=1 Ti) under

F , then there doesn’t exist any dependency W → A ∈ F+, such that
W ⊆ (

⋃n
i=1 Si−

⋃m
i=1 Ti), A ∈ (

⋃n
i=1 Si−

⋃m
i=1 Ti) and A /∈ XW . That

is, all nonprime attributes A don’t depend transitively on determinant
X.
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6 Boyce-Codd normal form

The concept of BCNF is refined from the notion of 3NF. In the de-
termination of a database schema being in BCNF, a given set F of
functional dependencies is used.

Definition 5. [11]. Relation scheme Sch = (
⋃n

i=1 Si, F ) is in BCNF
under set F of functional dependencies, if it is in the 1NF and for
every nontrivial dependency V → A ∈ F+ V → ⋃n

i=1 Si ∈ F+ takes
place, that is, the left side of each functional dependency functionally
determines all attributes of scheme.

Theorem 6. Scheme Sch = (
⋃n

i=1 Si, F ) is in the normal form Boyce-
Codd, if and only if it is in the 3NF and for every Tj , j = 1,m, the set
of attributes (

⋃m
i=1 Ti − Tj) is a determinant for (

⋃m
i=1 Ti − Tj) under

F .

Proof. Necessity. Let scheme Sch = (
⋃n

i=1 Si, F ) be in BCNF.
Then for every nontrivial functional dependency V → A ∈ F+, that
is, the case when A /∈ V , V → ⋃n

i=1 Si ∈ F+ holds. Based on the
reflexivity rule, (

⋃m
i=1 Ti− Tj) → (

⋃m
i=1 Ti− Tj) ∈ F+. If it’s supposed

that (
⋃m

i=1 Ti − Tj) is not a determinant for (
⋃m

i=1 Ti − Tj) under F ,
that is, if there exists a set of attributes V ⊂ (

⋃m
i=1 Ti − Tj), so that

V → (
⋃m

i=1 Ti − Tj) ∈ F+, then the last dependency is not trivial.
By the definition of BCNF V → ⋃n

i=1 Si ∈ F+ holds. But this func-
tional dependency contradicts the fact that every determinant Xof set⋃n

i=1 Si and consequently a set
⋃m

i=1 Ti contains, according to Theorem
2, attributes in Tj j = 1,m too, namely X

⋂
Tj 6= ∅ for j = 1,m.

Sufficiency. Let scheme Sch = (
⋃n

i=1 Si, F ) be in the 3NF and for
every Tj , j = 1,m, the set of attributes (

⋃m
i=1 Ti−Tj) is a determinant

for (
⋃m

i=1 Ti − Tj) under F . It will be proven that scheme Sch =
(
⋃n

i=1 Si, F ) is in BCNF.
Let scheme Sch = (

⋃n
i=1 Si, F ) not be in BCNF. In this case, there

is a nontrivial functional dependency V → A ∈ F+, so that V →⋃n
i=1 Si /∈ F+ holds. Then it can be stated that V → ⋃m

i=1 Ti /∈ F+.
Without constraining the generality, let V be a determinant for A under
F . From the construction of the contribution graph and from the fact
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that dependency V → A is reduced, three cases can be examined (other
cases don’t exist):

1. V ⊆ (
⋃n

i=1 Si−
⋃m

i=1 Ti) and A ∈ (
⋃n

i=1 Si−
⋃m

i=1 Ti), that is, left
and right sides are formed just from nonprime attributes,

2. V ⊆ ⋃m
i=1 Ti and A ∈ (

⋃n
i=1 Si−

⋃m
i=1 Ti) - the left side is formed

from prime attributes, and the right side consists of a nonprime
attribute.

3. V ⊆ ⋃m
i=1 Ti and A ∈ ⋃m

i=1 Ti, that is, left and right sides are
formed just from prime attributes,

Suppose that V ⊆ (
⋃n

i=1 Si−
⋃m

i=1 Ti) and A ∈ (
⋃n

i=1 Si−
⋃m

i=1 Ti),
then nonprime attribute A would transitively depend through V on
every determinant of set

⋃n
i=1 Si and then scheme Sch = (

⋃n
i=1 Si, F )

will not be in the 3NF, which contradicts the hypothesis.
If it is considered that V ⊆ ⋃m

i=1 Ti and A ∈ (
⋃n

i=1 Si −
⋃m

i=1 Ti),
then nonprime attribute A would partially depend on a determinant
of set

⋃n
i=1 Si therefore scheme Sch = (

⋃n
i=1 Si, F ) will not be in the

2NF, that is, neither in the third, fact that contradicts the hypothesis.
If it is considered that V ⊆ ⋃m

i=1 Ti and A ∈ ⋃m
i=1 Ti, then the

set (
⋃m

i=1 Ti − Tj) of attributes is not a determinant for (
⋃m

i=1 Ti − Tj)
under F . Indeed, let m > 1 and A ∈ Tk. Then by Theorem 3 and
the construction way of drawing the contribution graph, it can exist
two cases either V ⊆ Tk, or V 6⊂ Tk, but V ⊆ (Tl

⋃
Tl+1

⋃
...

⋃
Tk),

where V
⋂

Ti 6= ∅, i = l, k. Evidently m > k − l + 1, but in this case
there exists a Tj , where V

⋂
Tj = ∅, so that (

⋃m
i=1 Ti − Tj) is not a

determinant for (
⋃m

i=1 Ti − Tj) under F , because ((
⋃m

i=1 Ti − {A}) −
Tj) → (

⋃m
i=1 Ti − Tj) ∈ F+.

7 Algorithms’ complexities

Based on the above characterization, the polynomiality of the normal
form testing problem can be proved. A few comments about the com-
plexity of the algorithms for finding the normal form of scheme are
made below.
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Both construction of equivalence classes of scheme’s attributes and
redundancy elimination from these classes have a complexity O(|R| ·
||F ||) [6].

It is not hard to calculate the complexity of algorithms that deter-
mine whether a scheme is in the second, third or Boyce-Codd normal
form. That is, |R| · ||F || for each of these algorithms. This is explained
through the fact that the complexity of calculation of the classes of
nonredundant attributes exceeds the complexity of calculation of the
verification conditions that determine if a scheme is in one of the enu-
merated forms.

Thus, if nonredundant classes
⋃m

i=1 Ti are built, then calculation
of the condition for the scheme Sch = (

⋃n
i=1 Si, F ) to be in the 2NF

(that is, if for every Tj , j = 1,m, (
⋃m

i=1 Ti − Tj)+ =
⋃m

i=1 Ti − Tj)
requires a time O(|NonRedEquivClasses| · ||F ||). Therefore the time
is O(|R| · ||F ||).

Computation of the condition for the scheme Sch = (
⋃n

i=1 Si, F )
to be in the 3NF (that is, if (

⋃n
i=1 Si −

⋃m
i=1 Ti) is a determinant for

(
⋃n

i=1 Si −
⋃m

i=1 Ti)) requires a time O(||F ||).
Similarly, verification of the condition for the scheme Sch =

(
⋃n

i=1 Si, F ) to be in BCNF (that is, if for every Tj , j = 1,m, set
of attributes (

⋃m
i=1 Ti − Tj) is a determinant for (

⋃m
i=1 Ti − Tj) under

F ) requires a time O(|R| · ||F ||).
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Abstract

The aim of this article is the formalization of inflection process
for the Romanian language using the model of P systems with
cooperative string replication rules, which will make it possible
to automatically build the morphological lexicons as a base for
different linguistic applications.

1 Introduction

Natural language processing has a wide range of applications, the spec-
trum of which varies from a simple spell-check up to automatic trans-
lation, text and speech understanding, etc. The development of ap-
propriate technology is extremely difficult due to the specific feature
of multidisciplinarity of the problem. This problem involves several
fields such as linguistics, psycholinguistics, computational linguistics,
philosophy, computer science, artificial intelligence, etc.

As in many other fields, solving of a complex problem is reduced to
finding solutions for a set of simpler problems. In our case among the
items of this set we find again many traditional compartments of the
language grammar. The subject of our interest is the morphology, and
more specifically, its inflectional aspect.

The inflectional morphology studies the rules defining how the in-
flections of the words of a natural language are formed, i.e., the aspect
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of form variation (of the inflection, which is the action of words modi-
fication by gender, number, mood, time, person) for various expressing
grammatical categories.

In terms of natural language typology the morphological classifica-
tion can be analytical and synthetic. Of course, this classification is
a relative one, having, however, some irrefutable poles: Chinese, Viet-
namese, as typical representatives of the analytical group, and Slavic
and Romance languages serving as examples of synthetic ones. The En-
glish language, with a low degree of morpheme use, is often among the
analytical ones, sometimes is regarded as synthetic, indicating however
that it is “less synthetic” comparatively with other languages from the
same group. It is evident that it is the inflectional morphology of syn-
thetic languages that presents special interest, being a problem more
complex comparatively with analytical class.

The object of our studies is the Romanian language, which be-
longs to the category of synthetic flective languages. The last notion
stresses the possibility to form new words by declension and conjuga-
tion. Moreover, the Romanian language is considered a highly inflec-
tional language, because the number of word-forms is big enough.

The inflection simplicity in English makes that the majority of re-
searchers in the field of computational linguistics neglect the inflection
morphology. For efficient processing of other natural languages, includ-
ing Romanian, it is necessary to develop suitable computational models
of morphology of each language. In the case of Romanian language,
some inflectional models are known [25], [19],[7].

In [25] it is certified an advanced number of morpho-syntactic spec-
ifications for Romanian language, namely 34 for nouns, 44 for verbs,
24 for adjectives, 15 for pronouns, etc. The aim of our paper is to
describe the process of inflection (i.e. the process of obtaining both
the derivative words and their morphological attributes) by P systems
[17]. This paper is a final version of [1].
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2 Description of the inflection process

To develop a formalism for the inflection process description we invoke
a number of definitions and notions which allow us to understand the
essence of this process. Inflection is a part of morphology - the science
which “includes the rules considering the word forms and the formal
modifications of the words” [24]. From the morphological point of view
the words are classified corresponding to the part of speech, and their
structure is described in terms of inflection, derivation and composition.
Inflection is the systematic variation of the word form which allows
to obtain different semantic and syntactic functions [10]. The words
combine in themselves two components: a constant and a variable [12]].

The root of primary lexical units is called the constant. For the
derivative ones the term lexical theme is used. Since in our study this
distinction does not play any role, for both cases we use a single term
“root”.

The variable is the bearer of grammatical meanings, it consists of
one or more morphemes being called also flective. This term will be
used in exposure below. In accordance with [24] we identify three ways
of achieving the inflections:

analytical : the flective is a free morpheme (separated from root) and
the root remains invariable (e.g., adverb, bine – mai bine (engl.
well - better));

synthetic: the flective is a conjunctive morpheme (group of mor-
phemes), related to the root (e.g., for noun, pronoun; studentă –
studente – studentei; care-căreia-căruia-cărora (engl. student –
students – student’s, who-whose-whom), etc.).

synthetic and analytical : the flective consists of free and conjunctive
morphemes (e.g., adjective, verb, frumos – frumoasă – mai fru-
moasă; cântasem – am cântat (engl. beautiful – beautiful – more
beautiful, singing – I sang), etc.).

In the following we will deal with the synthetic method, the analyti-
cal one is effectuated relatively easy through a set of simply formulated
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rules. Following the model from [10] we present in Figure 1 the classifi-
cation of Romanian language parts of speech in terms of the inflection
process.

Figure 1. The classification of the Romanian language parts of speech
(in terms of the inflection process.)

The class of opened productive parts of speech is the most inter-
esting in terms of inflection, and it will be the primary object of our
investigations.

Indeed, opened classes, containing tens of thousands of elements,
are characterized by a productive process of inflection, derivation and
composition, while the closed ones include a reduced number of items
(practically excluding the possibility of the new ones apparition), be-
cause the morphological processes of word formation are poorly pro-
ductive [12]. Moreover, in the case of opened classes the problem is
complicated not only because we cannot enumerate the elements, ex-
isting at the moment, but also because a successful formalism should be
able to “serve” the future neologisms that could occur in language de-
velopment process. In the following we will operate with the paradigms
of inflection, by which we imply the systematic arrangement of all in-
flection forms of a word [13].

For our purposes we will work not with the whole words, but with
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their variable parts. Hereinafter by paradigm we mean a list of flectives.
For each flective we can put into correspondence a set of morpho-

logical attributes.
Example. Let us examine the morphological attributes for mascu-

line nouns of Romanian language [25].

N noun (part of speech),
m masculine gender,
s singular number,
p plural number,
d direct (nominative – accusative cases),
o oblique (genitive – dative cases),
v vocative case,
y yes – definiteness,
n no – definiteness.

(Given that the Romanian forms for nominative and accusative
cases coincide, as well as for the genitive and dative ones, we reduced
the paradigm merging both word forms, and respective attributes.)

Thus, the list of flectives F = {−,−,−, ul, ului, ule, i, i, i, ii,
ilor, ilor}, where “−” denotes the empty word, can be regarded as a
morphologically annotated one.

Fmorf = { (−, Nmsdn), (−, Nmson), (−, Nmsvn),
(ul, Nmsdy), (ului, Nmsoy), (ule, Nmsvy),
(i, Nmpdn), (i, Nmpon), (i, Nmpvn),
(ii, Nmpdy), (ilor, Nmpoy), (ilor, Nmpvy)}.

Let us mention the use of paradigmatic model for the Romanian
language [8, 9, 20, 21, 22].

We will refer also to the works [18] and [11], which treat the sub-
ject of generation of the flectioned forms for the Romanian language.
The authors do not provide the inflection algorithms, but offer some
useful suggestions for generation of flectioned forms. In paper [18] it
is proposed a method of encoding vowel and consonant alternations
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in the root, taken by the authors from researches of acad. G. Moisil,
namely: each alternation is presented in the root by a distinct code. In
paper [11] it is found a (incomplete) set of rules, which indicates the
way of concatenation of flective for nouns and adjectives without con-
cerning the problem of the alternations in the root. Therefore, having
the aim to achieve the synthetic model of inflection, we must develop
a formalism, which should include two processes:

- making the alternation in the root, and
- concatenation of a flective.
The starting point of our approach was the dictionary [13], in which

the flective words of Romanian language are classified according to
the way of inflections formation. There were set 100 groups of inflec-
tion for masculine nouns, 273 – for verbs, etc. A dictionary of about
30,000 words with the specification of the number of the group was
constructed. The classification was made taking into account all lin-
guistic aspects, e.g. accents. In our case we will focus only on the way
of writing a word, which in equal measure simplifies and complicates
the problem. However this classification is extremely useful suggesting
us the idea of defining a special class of grammars to formalize the
inflection process [2, 3, 4, 5].

In general case, from a whole variety of inflection groups, we can
identify two classes:

– without alternations, and
– with alternations.
In the first case the inflection is made in the following manner. Let

= be a set formed from lists of flectives, F = {f1, f2, · · · , fn}, w = w′α
is a word-lemma, where |α| ≥ 0. In the simplest case the inflected
words will be those of the form w′fi, fi ∈ F , (i = 1, · · · , n).

General case: Let w = w1a1w2a2 · · ·wmα. The inflected words will
be of the form:

w(1) = w1 a1 w2 a2 · · · wmfi1 ,

w(2) = w1 u
(2)
1 w2 u

(2)
2 · · · wmfi2 ,

· · ·
w(s) = w1 u

(s)
1 w2 u

(s)
2 · · · wmfis ,
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where wi, ai ∈ V +, u
(j)
i ∈ V ∗, fi1 ∈ F (1), . . . , fis ∈ F (s), and F (1) ∪

. . . ∪ F (s) forms a complete paradigm.
Note: the analysis of inflection rules allowed us to ascertain that

for the Romanian language m ≤ 4, s ≤ 3.

Example 1. Inflection of masculine nouns without alternations.
Let F = {−,−,−, ul, ului, ule, i, i, i, ii, ilor, ilor} – a list of flectives,

where ’-’ denotes the empty word. Let w =‘stejar’ (engl. oak), |α| =
0, |F | = 12. The set of inflected words supplied by morphological
attributes will be:

{ (stejar, Nmsdn), (stejar, Nmson), (stejar, Nmsvn),
(stejarul, Nmsdy), (stejarului, Nmsoy), (stejarule, Nmsvy),
(stejari, Nmsdn), (stejari, Nmpon), (stejari, Nmpvn),
(stejarii, Nmpdy), (stejarilor, Nmpoy), (stejarilor, Nmpvy) }

Taking advantage of paradigmatic ordering of the elements from the
list of flectives, in what follows we will omit the explicit writing of mor-
phological attributes implying their conformity to respective flectives.

Example 2. Inflection of masculine nouns with alternations.
Let w =tânăr (engl. young), |α| = 0. The vowel alternations â→ i

and ă→ e will be used. The obtained roots w =‘tânăr’ and w′ =‘tiner’
are respectively annexed by the endings: F1 = {−,−, ul, ului, ule} and
F2 = {e, i, i, i, ii, ilor, ilor}, |F1|+ |F2| = 12.

{ (tânăr, Nmsdn), (tânăr, Nmson), (tânărule, Nmsvy),
(tânărul, Nmsdy), (tânărului, Nmsoy), (tinere, Nmsvn),
(tineri, Nmsdn), (tineri, Nmpon), (tineri, Nmpvn),
(tinerii, Nmpdy), (tinerilor, Nmpoy), (tinerilor, Nmpvy) }

Note: In most cases (for 80 groups of inflexion from [13]), when
declining the masculine noun, 12 words are obtained. Exceptions are
the following nouns:
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– irregular, for example, those which can not have the plural definite
form (instance, the word gnu);

– those which are singularia tantum (nouns which appear only in
the singular form), ianuarie etc.;

– those which are pluralia tantum (nouns that appear only in the
plural and do not have a singular form), for example, ochelari, pantaloni
etc.

In general, the 100 groups of inflection of masculine nouns in rela-
tion to the number of words produced at inflection, present the follow-
ing table:

Forms of the lemma Number of forms Number of groups
all forms 12 80
singularia tantum 6 13
pluralia tantum 6 4
irregular 6-8 3

Modern dictionaries contain hundreds of thousands of words–
lemma. Their forms of inflexion (the amount of which exceeds mil-
lions) are needed for developing various applications based on natural
language: from the spell-checker up to the systems understanding the
speech. Obviously, to solve the problem of creating a dictionary with
a morphologically representative coverage, as well as to build various
applications based on it, effective mechanisms are needed, especially
those that allow parallel processing. One of the possible ways to per-
form parallel computation is based on biological models.

Let us mention a series of works that used the biological calcu-
lation approaches for solution of linguistic problems. In [15] there
are presented some attempts to construct linguistic membrane systems
and some applications related to analysis of conversational acts, bio-
inspired for dealing with semantics. In [16] two parsing methods using
P automata are presented. The first method uses P automata with ac-
tive membranes for parsing natural language sentences into dependency
trees. The second method uses a variant of P automata with evolu-
tion and communication rules for parsing Marcus contextual Languages
[14].
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Our paper tries to expand the area of potential applications of P
systems to linguistics problems, introducing a formalism to capture
inflections with their morphological attributes.

To formalize the inflection process for the Romanian language the
model of cooperative membrane P systems with replication will be used
[17].

3 P systems with string replication and input

Let us recall the basics of P systems with string objects and input. The
membrane structure µ is defined as a rooted tree with nodes labeled
1, · · · , p. The objects of the system are strings (or words) over a finite
alphabet O. A sub-alphabet Σ ⊆ O is specified, as well as the input
region i0, 1 ≤ i0 ≤ p. In this paper we need to use cooperative rewriting
rules (i.e. string rewriting rules, not limited by context-free ones) with
string replication and target indications.

A rule a → u1, where a ∈ O+ and u1 ∈ O∗, can transform
any string of the form w1aw2 into w1u1w2. Application of a rule
a → u1||u2|| · · · ||uk transforms any string of the form w1aw2 into
the multiset of strings w1u1w2, w1u2w2, · · ·, w1ukw2. If in the right
side of the rule (ui, t) is written instead of some ui, 1 ≤ i ≤ k,
t ∈ {out} ∪ {inj | 1 ≤ j ≤ p}, then the corresponding string would
be sent to the region specified by t.

Hence, such a P system is formally defined as follows:

Π = (O, Σ, µ, M1, · · · ,Mp, R1, · · · , Rp, i0), where
Mi is themultiset of strings initially present in region i, 1 ≤ i ≤ p,

Ri is the set of rules of region i, 1 ≤ i ≤ p,

and O, Σ, µ, i0 are described above.

The initial configuration contains the input string(s) over Σ in re-
gion i0 and strings Mi in regions i. Rules of the system are applied
in parallel to all strings in the system. The computation consists in
non-deterministic application of the rules in a region to a string in that
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region. The computation halts when no rules are applicable. The re-
sult of the computation is the set of all words sent out of the outermost
region (called skin).

4 Describing the inflection process by P sys-
tems

Let us define the P system performing the inflection process. Let L be
the set of words which form opened productive classes. We will start
by assuming that the words in L are divided into groups of inflection,
i.e. for each w ∈ L the number of inflection group is known [13]. The
inflection group is characterized by the set G = {α,RG, FG}, where
|α| ≥ 0 is the length of ending which is reduced in the process of
inflection, FG is the set of the lists of flectives, the assembly of which
forms complete paradigm, RG is the set of the rules, which indicate
vowel/consonant alternation of type a → u, a ∈ V +, u ∈ V ∗, and also
the conformity of the roots obtained by the lists of flectives from FG.
To each group of inflexion a membrane system ΠG will be put into
correspondence.

As it was mentioned earlier, we will investigate two cases:
– without alternations, and
– with vowel/consonant alternation.

The first model is very simple. For any group G = (α, ∅, {f1G , f2G ,
· · · , fnG}) of inflection without alternation,

ΠG = (O, Σ, [ ]1, ∅, R1, 1), where
O = Σ = V ∪ {#},
V = {a, · · · , z} is the alphabet of the Romanian language, and

R1 = {α# → (f1G , out)||(f2G , out)|| · · · ||(fnG , out)}

If this system receives as an input the words w′α#, where w′α corre-
sponds to the inflection group G, then it sends all its inflected words
out of the system in one step. Clearly, ΠG is non-cooperative if α = λ,
but non-cooperativeness is too restrictive in general, since then the
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system would not be able to distinguish the termination to be reduced
from any other occurrence of α.

The general model will require either a more complicated struc-
ture, or a more sophisticated approach. Let G be an arbitrary in-
flection group, with m − 1 alternations a1 = a

(1)
1 a

(1)
2 · · · a(1)

n1 , · · · , am =
a

(m)
1 a

(m)
2 · · · a(m)

nm . Let the set of flectives consist of s subsets, and for
subset FkG

= {f (k)
1 , · · · , f (k)

p1 }, 1 ≤ k ≤ s, the following alternations
occur: a1 → u

(k)
1 , · · ·, am → u

(k)
m (the alternations are fictive for

k = 1), and
⋃s

k=1 FkG
corresponds to a complete paradigm. For in-

stance, Example 2 corresponds to s = 2 sublists (singular and plural),
and m− 1 = 2 alternations.

The associated P system should perform the computation

w# =
m−1∏

j=1

(wjaj) wmα# ⇒∗

⇒∗





m−1∏

j=1

(
wju

(k)
j

)
wmfik | 1 ≤ k ≤ s, fik ∈ F (k)



 ,

where u
(1)
j = aj , 1 ≤ j ≤ m.

The first method assumes the alternating subwords aj are present
in the input word in just one occurrence, or marked. Moreover, we
assume that carrying out previous alternations does not introduce more
occurrences of the next alternations.

For modeling such process of inflection for the group G we define
the following P system with 1 + (s− 1)m membranes
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Π′G = (O,Σ, µ, ∅, · · · , ∅, R1, · · · , R1+(s−1)m, 1), where
Σ = V ∪ {#},
O = Σ ∪ E,

µ = [ [ ]2[ ]3 · · · [ ]1+(s−1)m ]1,

E = {#k | 2 ≤ k ≤ s} ∪ {Ak,j | 1 ≤ k ≤ s, 1 ≤ j ≤ m},
V = {a, · · · , z} is the alphabet of the Romanian language,

(V can be extended by marked letters if needed), and the rules are
given below.

R1 = {α# → A1,m||(#2, in2)|| · · · ||(#s, ins)}
∪ {Ak,j → (λ, ink+(s−1)j) | 2 ≤ k ≤ s, 1 ≤ j ≤ m− 1}
∪ {Ak,m → (f (k)

1 , out)|| · · · ||(f (k)
pm

, out) | 1 ≤ k ≤ s},
Rk+(s−1)(j−1) = {aj → (u(k)

j Ak,j , out)}, 2 ≤ k ≤ s, 1 ≤ j ≤ m− 1,

Rk+(s−1)(m−1) = {#k → (Ak,m, out)}, 2 ≤ k ≤ s.

The work of P system Π′G is the following. First, s copies of the string
are made, and the first one stays in the skin, while others enter regions
2, · · · , s. Each copy in region k is responsible to handle the k-th subset
of inflections. The first one simply performs a replicative substitution
in the end, and sends the results out, in the same way as ΠG works.
Consider a copy of the input in region k, 2 ≤ k ≤ s. When j-th
alternation is carried out, the string returns to the skin, and symbol
Ak,j is additionally produced. This symbol will be used to send the
string in the corresponding region to carry out alternation j+1. Finally,
if j = m, then the system performs a replicative substitution in the end,
and sends the results out.

Assuming s ≥ 2, the system halts in 2m + 1 steps, making an
efficient use of scattered rewriting with parallel processing of different
inflection subsets. For instance, the inflection group from Example
2 would transform into a P systems with 4 membranes, halting in 7
steps. Notice that this system is non-cooperative if α = λ and |aj | = 1,
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1 ≤ j ≤ m. It is also worth noticing that it is possible to reduce the
time to m + 1 steps by using tissue P systems with parallel channels.

The second method avoids the limiting assumptions of the first
methods. More exactly, it performs the first alternation at its leftmost
occurrence, the second alternation at its leftmost occurrence which is
to the right of the first one, etc. Formally, such a P system discovers
the representation of the input string as

∏m−1
j=1 (wjaj) wmα, where aj

has no other occurrences inside wjaj except as a suffix.
A theoretical note: overlapping occurrences or occurrences with

context can be handled by rules with a longer left-hand side. A differ-
ent order of occurrences of the alternations can be handled by renum-
bering the alternations. Should the specification of a group require,
e.g., second-leftmost occurrence for a → u, this can be handled by in-
serting a fictive substitution a → a before a → u, etc. Therefore, this
is the most general method.

We construct the following P system, which takes the input in the
form

#lw#r = #l

m−1∏

j=1

(wjaj) wmα#r.

Π′′G = (O,Σ, [ ]1, ∅, R1, 1), where
Σ = V ∪ {#l,#r},
O = Σ ∪ E,

E = {Ak,j | 1 ≤ k ≤ s, 0 ≤ j ≤ m},
V = {a, · · · , z} is the alphabet of the Romanian language,

and the rules are given below.

R1 = {#l → A1,0|| · · · ||As,0} (1)

∪ {Ak,j−1γ → γAk,j−1 | γ ∈ V \ {a(j)
1 },

1 ≤ k ≤ s, 1 ≤ j ≤ m} (2)

∪ {Ak,j−1a
(j)
1 vγ → a

(j)
1 Ak,j−1vγ | a(j)

1 v ∈ Pref(aj),
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|v| < |aj | − 1, γ ∈ V \ {a(|v|+2)
1 }, 1 ≤ k ≤ s, 1 ≤ j ≤ m} (3)

∪ {Ak,j−1aj → u
(k)
j Ak,j | 1 ≤ k ≤ s, 1 ≤ j ≤ m} (4)

∪ {αAk,m#r → (f (k)
1 , out)|| · · · ||(f (k)

pm
, out) | 1 ≤ k ≤ s}. (5)

The rules are presented as a union of 5 sets. The rule in the first set
replicates the input for carrying out different inflection subsets. The
symbol Ak,j is a marker that will move through the string. Its index
k corresponds to the inflection subset, while index j tells how many
alternations have been carried out so far.

The rules in the second set allow the marker to skip a letter if it
does not match the first letter needed for the current alternation. The
rules in the third set allow the marker to skip one letter if some prefix
of the needed subword is found, followed by a mismatch. The rules in
the fourth set carry out an alternation, and the last set of rules perform
the replicative substitution of the flectives.

This system halts in at most |w|+ 2 steps.

5 Determining the inflection group

The rules of the systems described above define, in fact, the way of
inflection at algorithmic level:

– deleting the given number of symbols at the end of the word (α),
– obtaining the roots by making substitutions (vowel and consonant

alternations),
– attachment of the respective endings to each root.
But this method can be applied only for the case when the number

of the inflexion group is known. Otherwise there appears the problem
of inflexion model establishing, knowing the graphical representation
of the word. Is it possible to solve algorithmically this problem? The
answer is negative. The first obstacle is the determination of part of
speech: there are several examples of homonyms which mean different
parts of speech. (Example: abate – masculine noun (abbat) and verb (to
divert). In English this phenomenon is very common, and most nouns
are the verbs too.) Let us restrict the formulation of the problem: is it

173



A. Alhazov, E. Boian, S. Cojocaru, Y. Rogozhin

possible to establish the model of inflection (in the conditions indicated
above) knowing the part of speech? The answer is negative in this case
too. For confirmation we can bring a list of examples, which show us
that without invoking phonetic information or the etymological one we
cannot determine the model of inflection. Let us illustrate this assertion
by analyzing female noun masă. Following the meaning of furniture
object we will form plural mese, using the model with vowel alternation
a → e. But if you are following the meaning “compact crowd of people”
[23], the plural mase will be produced without alternation. The origin
of this phenomenon is etymological: in the first case the origin of the
word is from Latin mensa, and in the second – from the French word
masse [23]. But the problem can be tackled in another way: we can
set certain criteria that allow us as a result of analysis of the word
structure to conclude, if it is possible to determine the inflection model
or not. If so, we determine precisely which is the respective model.

In [6] the algorithm had been proposed, which, analyzing the dic-
tionary of classification into morphological groups with entries of type
(w, σ), where w is a word in natural language, and σ – number (label)
of inflection group, constructs two groups of sets A = {A1, A2, . . . , Ak}
and P = {P1, P2, . . . Ps}, ∩k

i=1Ai = ∅, ∩s
i=1Pi = ∅. Ai ∩ Pj = ∅.

These sets consisted of subwords αi of the words w = w′αj , where
1 ≤ |αj | ≤ |w|. In [6] it is shown that for certain categories of words it
is possible to construct such sets Ai, that from the fact that αj ∈ Ai it
results unequivocally that the word w belongs to the single inflection
group σ, and these words being named “absolutely regular”. With
the help of the same algorithm there are constructed also such sets Pi,
that from the fact that αj ∈ Pi it results that w = w′αj can belong
to several inflection groups σ1, . . . , σm, and the respective words being
named “partially regular”.

So, in the case of an arbitrary word w, using the algorithm men-
tioned above, the inflection group is established at first, and then with
the help of membrane system described above, the inflection is carried
out obtaining word forms (with respective morphological attributes).
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6 Conclusions

The membrane system to describe the inflexional process when the
inflexional morphological model is known is investigated in this article.

In the case when the model is not known in advance, it can be
determined by using the algorithm from [6]. The membrane systems
presented in this paper can be also adapted for other natural languages
with high level of inflection, such as Italian, French, Spanish etc., hav-
ing structured morphological dictionaries, similar to the Romanian one.

Future work: we plan to also consider the problem of representa-
tion of the algorithm determining the inflection group by membrane
systems.
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Iaşi, 2002. (http://consilr.info.uaic.ro) (in Romanian).
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Correcting Inconsistency in Linear Inequalities

by Minimal Change in the Right Hand Side

Vector

Saeed Ketabchi Maziar Salahi

Abstract

Correcting an inconsistent set of linear inequalities by mini-
mal changes in problem data is a well studied problem and up
to now several algorithms have been developed to do this task.
In this paper, we consider doing the minimal correction using
the l2 norm by changing just the right hand vector. A new for-
mulation of the problem is introduced and its relation with the
normal solution of the alternative system of the original system is
given. Then a generalized Newton algorithm is designed to solve
the new formulation. Extensive computational results using this
algorithm and conjugate gradient method is reported to demon-
strate the advantages and disadvantages of the two algorithms.

Keywords: Linear Inequalities, Convex Optimization, Con-
jugate Gradient Method, Generalized Newton Method, Barrier
Method.

1 Introduction

In this paper we consider the following set of linear inequalities that
are inconsistent:

Ax ≤ b, (1)

where A ∈ Rm×n and b ∈ Rm. In other words, there is no x ∈ Rn for
which (1) is feasible. The inconsistency in system (1) might be due to
the various reasons, such as lack of interaction between different groups

c©2009 by S. Ketabchi, M. Salahi
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who are defining the constraints, wrong or inaccurate estimates, error
in data, over optimistic goals, and many others. Correcting system (1)
to a feasible system by minimal changes in its data have been known
for long time and up to now several algorithms have been developed
to do it [1, 2]. A very simple approach to form a feasible system from
(1) is to consider changes just in the right hand side vector b, which is
usually called the resources vector, using l1 norm i.e.,

min
m∑

i=1

|ri|

Ax ≤ b + r. (2)

As we know, this problem is easily convertable to an linear program-
ming (LP) problem which is efficiently solvable by either the Simplex
or Interior Point Methods [3, 5]. It is also worth to note that one may
consider the infinity norm in the objective function which results to:

min ‖r‖∞
Ax ≤ b + r. (3)

This still is equivalent to an LP problem. In the next section we discuss
the minimal correction using the l2 norm. An equivalent formulation of
the problem is given and two efficient algorithms are designed to solve
the new formulation.

2 2-Norm Corrections

The minimal correction using the l2 norm by changing the right hand
side vector is:

min
x,r

1
2
‖r‖2

Ax ≤ b + r. (4)

In the following theorem we show how we compute optimal x and r
values.
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Theorem 2.1. Let x∗ and r∗ be the optimal solution of (4). Then
r∗ = (Ax∗ − b)+, where a+ = max(a, 0) and x∗ is an optimal solution
of

min
x

1
2
‖(Ax− b)+‖2 . (5)

Proof. Let us write (4) as:

min
x

min
r

1
2
‖r‖2

Ax ≤ b + r. (6)

Now for a given x ∈ Rn, let us first consider the inner minimization
problem i.e.,

min
r

1
2
‖r‖2

Ax ≤ b + r. (7)

It is obvious that problem (7) is a convex minimization problem, there-
fore the KKT conditions are necessary and sufficient for optimality and
are given by:

r − λ = 0,

Ax ≤ b + r,

λT (Ax− b− r) = 0,

λ ≥ 0,

where the vector λ denotes the lagrange multipliers. From the first
equation one has r = λ. Now if λi 6= 0 for some i, then from the third
equation (Ax − b)i = ri = λi. However, when λi = 0, from the first
equation one has ri = 0. All these together imply that r = (Ax− b)+.
Therefore, we can write problem (4) as

min
x

1
2
‖(Ax− b)+‖2 .

This completes the proof.
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It is worth mentioning that (5) is the dual of the following opti-
mization problem:

max −bT u− 1
2
‖u‖2

AT u = 0, (8)
u ≥ 0.

In the following corollary we give an optimal solution of (8) using an
optimal solution of (5).

Corollary 2.2. Let x∗ be an optimal solution of problem (5). Then
u∗ = (Ax∗ − b)+ is an optimal solution of (8).

Proof. Let x∗ be an optimal solution of (5). It is obvious that for
u∗ = (Ax∗ − b)+, AT u∗ = 0, which is the optimality condition for (5)
and u ≥ 0. Now we further show that the objective values of (5) and
(8) are equal i.e.,

−bT (Ax∗ − b)+ = ‖(Ax∗ − b)+‖2 .

Since AT (Ax∗−b)+ = 0, therefore, −bT (Ax∗−b)+ = (Ax∗−b)T (Ax∗−
b)+ = (Ax∗ − b)T

+(Ax∗ − b)+ = ‖(Ax∗ − b)+‖2 .

In the sequel we further show that using an optimal solution of (5)
we can construct an optimal solution for

min
1
2
‖u‖2

AT u = 0, (9)
bT u = −ρ,

u ≥ 0,

where ρ is an arbitrary strictly positive parameter.

Remark 2.3. It is worth to note that the constraints of (9) are the
alternative system of (1).
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Corollary 2.4. Let x∗ be an optimal solution of problem (5), then
u∗ = − ρ(Ax∗−b)+

‖(Ax∗−b)+‖2 is the normal solution of

AT u = 0, bT u = −ρ, u ≥ 0

namely a solution of (9).

Proof. The Lagrangian dual of (9) is

max
λ,µ

−1
2
‖(Aλ− bµ)+‖2 + µρ, (10)

where u = (Aλ − bµ)+. At optimality the objective values of (9) and
(10) should be equal. This implies that

‖(Aλ∗ − bµ∗)+‖2 = ρµ∗.

From this we further can deduce that µ > 0, then

µ∗
∥∥∥∥
(

A

(
λ∗

µ∗

)
− b

)

+

∥∥∥∥ = ρ.

By further defining x = λ∗
µ∗ we have µ∗ = ρ

‖(Ax−b)+‖ . Now let x∗ be the
optimal solution of (5) and also let µ∗ = ρ

‖(Ax∗−b)+‖ . This implies that
λ∗ = µ∗x∗. Now for this choice of variables the two objective values are
equal. Thus we have the optimal solutions of both problems.

To solve (5) we use conjugate gradient algorithm and the so called
generalized Newton algorithm that is discussed in the sequel. As it is
obvious, the objective function of (5) is a convex function, but it just
has the first derivative not the second one [6]. However, the generalized
hessian is defined for this function that follows:

∇f(x) = AT (Ax− b)+

and
∇2f(x) = AT DA,

where D is an n×n diagonal matrix for which D(i, i) = 1 when (Ax−
b)i > 0, D(i, i) = 0, when (Ax−b)i < 0, and in [0, 1] when (Ax−b)i = 0.
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Obviously the generalized Hessian is a set and for simplicity in this
article we consider a specific element of this set, namely D(i, i) = 0
when (Ax − b)i = 0. Now the generalized Newton algorithm can be
outlined as follows:

Generalized Newton Algorithm

• Inputs: An accuracy parameter ε > 0, a regularization parame-
ter1, δ = 10−4 and a starting point x0 ∈ Rn.

• i=0;

• While ‖∇f(xi)‖∞ ≥ ε.

• xi+1 = xi − (∇2f(xi) + δI)−1∇f(xi).

• i=i+1.

• End.

Remark 2.5. It is worth to note that one may use line search tech-
niques such as Armijo or Wolf in the structure of the algorithm. More-
over the finite global convergence of generalized Newton algorithm with
Armijo line search is proved in [6].

3 Linear Inequalities with Nonnegativity Con-
straints

In this section we consider the set of linear inequalities (1) by adding
extra nonnegativity constraint to them i.e.,

Ax ≤ b

x ≥ 0. (11)

It is obvious that one can consider (11) as a special case of (1), but due
to its special structure it is reasonable to do the correction of this sort

1It guarantees the nonsingularity of hessian matrix.
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of inconsistent set of linear inequalities specifically. Here we consider
the case where the correction is done by just correcting the right hand
side of the first set of inequalities not the x ≥ 0 i.e.,

min
1
2
‖r‖2

Ax ≤ b + r (12)
x ≥ 0.

In the following theorem we show how one can compute optimal x and
r values.

Theorem 3.1. Let x∗ and r∗ be optimal solutions of (12). Then r∗ =
(Ax∗ − b)+, where x∗ is an optimal solution of

min
x≥0

1
2
‖(Ax− b)+‖2 . (13)

Proof. Similar to the proof of Theorem 2.1.
As it is obvious the only difference between (13) and (5) is the

nonnegativity constraint and it makes the problem a constraint op-
timization problem. To solve (13) we use the logarithmic barrier [7]
approach by bringing the x ≥ 0 to the objective functions as:

min
x

1
2
‖(Ax− b)+‖2 − µ

n∑

i=1

log(xi), (14)

where µ is the barrier parameter. Then we apply the generalized New-
ton method by starting from a strictly positive vector x and µ0 = 1.
The logarithmic term does not allow the components of variable x to
get negative and the value of µ approaches to zero during the iterations
of the algorithm, for example µk+1 = 0.8µk. Another approach which
one might consider to solve (13) is the penalty function method as:

min
x

1
2
‖(Ax− b)+‖2 +

1
2
M ‖(−x)+‖2 , (15)

where M is a very big number, for example 1010. This does not allow
to have big ‖(−x)+‖2. It is worth mentioning that vector x might
have very small negative values in the optimal solution which can be
rounded to zero.
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4 Computational Results

In this section we present numerical results for the generalized New-
ton and conjugate gradient algorithms on various randomly generated
problems. Test problems are generated using the following MATLAB
code:
MATLAB random insolvable linear inequalities generator
% Generates random inconsistent system Ax <= b;
% Input:m,n,d(density); Output:A ∈ Rm×n, b ∈ Rm;
pl=inline(’(abs(x)+x)/2’);%pl(us) function;
m=input(’enter m= ’); n=input(’enter n= ’); d=input(’enter
d= ’);
m1=max(m-round(0.5*m),m-n);
A1=sprand(m1,n,d);A1=1*(A1-0.5*spones(A1));
x=spdiags(rand(n,1),0,n,n)*1*(rand(n,1)-rand(n,1));
x=spdiags(ones(n,1)-sign(x),0,n,n)*10*(rand(n,1)-rand(n,
1));
m2=m-m1;u=randperm(m2);A2=A1(u,:);
b1=A1*x+spdiags((rand(m1,1)),0,m1,m1)*1*ones(m1,1);
b2=b1(u)+spdiags((rand(m2,1)),0,m2,m2)*10*ones(m2,1);
A=100*[A1;-A2]; b=[b1;-b2];

In Tables 1 and 2 we present comparison between the gradient based
algorithm (GR) and our new generalized Newton algorithm (GNew-
ton) with Armijo linesearch for various randomly generated problems
with different densities. Our numerical experiments show that the gen-
eralized Newton method finds an optimal solution much faster than the
gradient based algorithm for majority of problems and for all problems
the optimal objective values are much smaller than the gradient algo-
rithm. It is worth mentioning that we run both algorithms for at most
500 seconds with the tolerance equal to 10−5 for gradient algorithm
and 10−8 for the generalized Newton method.

In Tables 3 and 4 we report numerical experiments on various ran-
domly generated problems with different densities for inconsistent lin-
ear inequalities that involve nonnegativity of variables. To solve these
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Correcting Inconsistency in Linear Inequalities . . .

problems we have employed the generalized Newton (GNewton) and
barrier methods (Barrier). In the optimal solution obtained by the
generalized Newton method we might have very small components of
x that are negative. In this case we rounded them to zero and this
is the reason for having norm infinity of the gradient vector far away
than zero, however at optimality it is usually around O(10−8). On the
other hand this shows the sensitivity of these problems to very small
changes in the optimal solution. As we observe from these tables, the
generalized Newton method beats the barrier approach both in time
and quality of solution for all of the problems.

5 Conclusion

In this paper we have furthermore investigated how to correct an in-
consistent set of linear inequalities by minimal changes in its data.
A new formulation of the original model is given and its relation to
normal solution of alternative system for original system is discussed.
Then we have presented a generalized Newton based algorithm to solve
the new formulation. We also discussed inconsistent set of inequalities
that involve nonnegativity of variables. To solve this specific case we
have utilized the generalized Newton method and barrier approach.
At last, our computational experiments on several randomly generated
problems show the superior performance of the generalized Newton al-
gorithm to the classical gradient based algorithm and barrier approach.
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We give a review of some known published applications of quasi-
groups in cryptology.
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1 Introduction

Now the theory of quasigroups applications in cryptology goes through
the period of rapid enough growth. Therefore any review of results
in the given area of researches quite quickly becomes outdated. Here
we give a re-written and supplemented form of more early versions
[111, 112] of such kind of reviews. See also [55, 123].

Almost all results obtained in the domain of quasigroups application
in cryptology and coding theory till the end of eighties years of the XX-
th century are described in [25, 26, 28]. In the present survey the main
attention is devoted to the later articles in this direction.

It is possible to find basic facts on quasigroup theory in [6, 8, 7,
102, 83, 111]. Information on basic fact in cryptology can be found in
many books, see, for example, [3, 13, 95, 96].

Cryptology is a science that consists of two parts: cryptography and
cryptanalysis. Cryptography is a science on methods of transformation
(ciphering) of information with the purpose of this information protec-
tion from an unlawful user. Cryptanalysis is a science on methods and
ways of breaking down the ciphers [37].

In some sense cryptography is a ”defense”, i.e. this is a science
on construction of new ciphers, but cryptanalysis is an ”attack”, i.e.
this is a science and some kind of ”art”, a set of methods on breaking
the ciphers. This situation is similar to situation with intelligence and
contr-intelligence.

These two objects (cryptography and cryptanalysis) are very close
and there does not exist a good cryptographer that does not know
methods of cryptanalysis.

It is clear, that cryptology depends on level of development of so-
ciety, of science and level of technology development.

We recall, a cipher is a way (a method, an algorithm) of information
transformation with the purpose of its defense. A key is some hidden
part (usually, a little one) or parameter of a cipher.

Steganography is a set of means and methods of hiding the fact
of sending (or passing) the information, for example, a communica-
tion or a letter. Now there exist methods of hiddenness of the fact of
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information sending by usual post, by e-mail and so on.
In this survey as Coding Theory (Code Theory) will be meant a sci-

ence on defense of information from accidental errors caused by trans-
formation and sending (passing) this information.

When sending the important and confidential information, as it
seems to us, there exists a sense to use methods of Code Theory, Cryp-
tology, and Steganography all together [80].

In cryptology one often uses the following Kerkhoff’s (1835 - 1903)
rule: an opponent (an unlawful user) knows all ciphering procedure
(sometimes a part of plaintext or ciphertext) with exception of key.

Many authors of books, devoted to cryptology divide this science
(sometimes not paying attention to this fact) in two parts: before ar-
ticle of Diffie and Hellman [30] (so-called cryptology with non-public
(symmetric) key) and after this work (a cryptology with public or non-
symmetric key). Practically namely Diffie and Hellman article opened
new era in cryptology. Moreover, it is possible to apply these new
approaches in practice.

Especially fast development of the second part of cryptology is con-
nected with very fast development of Personal Computers and Nets
of Personal Computers, other electronic technical devices in the end
of XX-th century. Many new mathematical, cryptographical problems
appeared in this direction and some of them are not solved. Solving of
these problems have big importance for practice.

Almost all known construction of error detecting and error cor-
recting codes, cryptographic algorithms and enciphering systems have
made use of associative algebraic structures such as groups and fields,
see, for example, [84, 21].

There exists a possibility to use such non-associative structures as
quasigroups and neo-fields in almost all branches of coding theory, and
especially in cryptology.

Often the codes and ciphers based on non-associative systems show
better possibilities than known codes and ciphers based on associative
systems [28, 78].

Notice that in the last years the quantum code theory and quantum
cryptology [114, 47, 124, 14] have been developed intensively. Quantum
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cryptology also use theoretical achievements of ”usual” cryptology [12].
Efficacy of applications of quasigroups in cryptology is based on the

fact that quasigroups are ”generalized permutations” of some kind and
the number of quasigroups of order n is larger than n! ·(n−1)! · ... ·2! ·1!
[25].

It is worth noting that several of the early professional cryptog-
raphers, in particular, A.A. Albert, A. Drisko, M.M. Glukhov, J.B.
Rosser, E. Schönhardt, C.I. Mendelson, R. Schaufler were connected
with the development of Quasigroup Theory. The main known ”appli-
cants” of quasigroups in cryptology were (and are) J. Denes and A.D.
Keedwell [22, 25, 26, 28, 23].

Of course, one of the most effective cipher methods is to use un-
known, non-standard or very rare language. Probably the best enci-
phering method was (and is) to have a good agent.

2 Quasigroups in ”classical” cryptology

There exist two main elementary methods when ciphering the informa-
tion.

(i). Symbols in a plaintext (or in its piece (its bit)) are permuted
by some law. The first known cipher of such kind is cipher ”Scital”
(Sparta, 2500 years ago).

(ii). All symbols in a fixed alphabet are changed by a law on other
letters of this alphabet. One of the first ciphers of such kind was
Cezar’s cipher (x → x+3 for any letter of Latin alphabet, for example
a → d, b → e and so on).

In many contemporary ciphers (DES, Russian GOST, Blowfish [95,
31]) the methods (i) and (ii) are used with some modifications.

Trithemius cipher makes use of 26× 26 square array containing 26
letters of alphabet (assuming that the language is English) arranged
in a Latin square. Different rows of this square array are used for
enciphering various letters of the plaintext in a manner prescribed by
the keyword or key-phrase [3, 65]. Since a Latin square is the multi-
plication table of a quasigroup, this may be regarded as the earliest
use of a non-associative algebraic structure in cryptology. There exists
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a possibility to develop this direction using quasigroup approach, in
particular, using orthogonal systems of binary or n-ary quasigroups.

R. Schaufler in his Ph.D. dissertation discussed the minimum
amount of plaintext and corresponding ciphertext which would be re-
quired to break the Vigenere cipher (a modification of Trithemius ci-
pher) [106]. That is, he considered the minimum member of entries of
particular Latin square which would determine the square completely.

Recently this problem has re-arisen as the problem of determining
of so-called critical sets in Latin squares, see [67, 32, 33, 36, 35, 69].
See, also, articles, devoted to Latin trades, for example, [5].

More recent enciphering systems which may be regarded as exten-
sion of Vigenere’s idea are mechanical machines such as Jefferson’s
wheel and the M-209 Converter (used by U.S.Army until the early
1950’s) and the electronically produced stream ciphers of the present
day [77, 95].

During the second World War R.Shauffler while working for the
German Cryptography service, developed a method of error detection
based on the use of generalized identities (as they were later called by
V.D. Belousov) in which the check digits are calculated by means of an
associative system of quasigroups (see also [19]). He pointed out that
the resulting message would be more difficult to decode by unautho-
rized receiver than in the case when a single associative operation is
used for calculation [107].

Therefore it is possible to assume that information on systems of
quasigroups with generalized identities (see, for example, works of Yu.
Movsisyan [97] may be applied in cryptography of the present day.

Definition 2.1. A bijective mapping ϕ : g ½ ϕ(g) of a finite group
(G, ·) onto itself is called an orthomorphism if the mapping θ : g ½ θ(g)
where θ(g) = g−1ϕ(g) is again a bijective mapping of G onto itself. The
orthomorphism is said to be in canonical form if ϕ(1) = 1 where 1 is
the identity element of (G, ·).

A direct application of orthomorphisms to cryptography is de-
scribed in [92, 91].
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3 Quasigroup-based stream ciphers

”Stream ciphers are an important class of encryption algorithms. They
encrypt individual characters (usually binary digits) of a plaintext mes-
sage one at a time, using an encryption transformation which varies
with time.

By contrast, block ciphers tend to simultaneously encrypt groups
of characters of a plaintext message using a fixed encryption trans-
formation. Stream ciphers are generally faster than block ciphers in
hardware, and have less complex hardware circuitry.

They are also more appropriate, and in some cases mandatory (e.g.,
in some telecommunications applications), when buffering is limited or
when characters must be individually processed as they are received.
Because they have limited or no error propagation, stream ciphers may
also be advantageous in situations where transmission errors are highly
probable” [90].

Often for ciphering a block (a letter) Bi of a plaintext the previous
ciphered block Ci−1 is used. Notice that Horst Feistel was one of the
first who proposed such method of encryption (Feistel net) [51].

In [77] (see also [78, 79]) C. Koscielny has shown how quasigro-
ups/neofields-based stream ciphers may be produced which are both
more efficient and more secure than those based on groups/fields.

In [100, 87] it is proposed to use quasigroups for secure encoding.
A quasigroup (Q, ·) and its (23)-parastrophe (Q, \) satisfy the fol-

lowing identities x\(x · y) = y, x · (x\y) = y. The authors propose to
use this property of the quasigroups to construct a stream cipher.

Algorithm 3.1. Let A be a non-empty alphabet, k be a natural number,
ui, vi ∈ A, i ∈ {1, ..., k}. Define a quasigroup (A, ·). It is clear that the
quasigroup (A, \) is defined in a unique way. Take a fixed element l
(l ∈ A), which is called a leader.

Let u1u2...uk be a k-tuple of letters from A. The authors propose
the following ciphering procedure v1 = l · u1, vi = vi−1 · ui, i = 2, ..., k.
Therefore we obtain the following cipher-text v1v2 . . . vk.

The enciphering algorithm is constructed in the following way: u1 =
l\v1, ui = vi−1\vi, i = 2, ..., k.
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The authors claim that this cipher is resistant to the brute force
attack (exhaustive search) and to the statistical attack (in many lan-
guages some letters meet more frequently, than other ones).

Example 3.1. Let alphabet A consists from the letters a, b, c. Take
the quasigroup (A, ·):

· a b c

a b c a
b c a b
c a b c

Then (A, \) has the following Cayley table

\ a b c

a c a b
b b c a
c a b c

Let l = a and open text is u = b b c a a c b a. Then the cipher
text is v = c b b c a a c a. Applying the decoding function on v we get
b b c a a c b a = u.

Probably the cipher which is described here (Algorithm 3.1) and its
generalizations are now the most known and the most used quasigroup
based stream-ciphers.

Authors [100] say that this cipher is resistant to the brute force
attack and to the statistical one.

Cryptanalyses of Algorithm 3.1 was made by M. Vojvoda [122]. He
showed that this cipher is not resistant relatively to chosen ciphertext
attack, chosen plaintext attack and ciphertext-only attack.

We give the following 3-ary modification of Algorithm 3.1 [101].
The possibility of such modification of Algorithm 3.1 was observed in
[111].

Algorithm 3.2. Let A be a non-empty alphabet, k be a natural number,
ui, vi ∈ A, i ∈ {1, ..., k}. Define a 3-ary quasigroup (A, β). It is clear
that this quasigroup defines (4!− 1) parastrophes including (14)-, (24)-
and (34)-parastrophe.
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Take the fixed elements l1, l2, l3, l4 (li ∈ A), which are called leaders.
Let u1u2...uk be a k-tuple of letters from A. The author proposes the

following ciphering procedure v1 = β(u1, l1, l2), v2 = β(u2, l3, l4), vi =
β(ui, vi−2, vi−1), i = 3, 4, ..., k − 1. Therefore we obtain the following
cipher-text v1v2...vk.

The enciphering algorithm is constructed in the following way:
u1 = (14)β(v1, l1, l2), u2 = (14)β(v2, l3, l4), ui = (14)β(vi, vi−2, vi−1), i =
3, 4, ..., k − 1.

In [101] also variants of Algorithm 3.2 are given using (24)- and
(34)-parastrophes of a ternary quasigroup.

Further development of Algorithm 3.1 is presented in [54].

Definition 3.1. Let r be a positive integer. let (Q, ∗) be a quasigroup
and aj , bj ∈ Q. For each fixed m ∈ Q define first the transformation
Qm : Qr −→ Qr by

Qm(a0, a1, . . . , ar−1) = (b0, b1, . . . , br−1) ⇐⇒

bi =
{

m ∗ a0; i = 0
bi−1 ∗ ai; 1 ≤ i ≤ (r − 1).

Then define R1 as composition of transformations of kind Qm, for suit-
able choices of the indexes m, as follows

R1(a0, a1, . . . , ar−1) = Qa0(Qa1 . . . (Qar−1(a0, a1, . . . , ar−1))).

Definition 3.2. [54] (Shapeless quasigroup) A quasigroup (Q, ∗) of
order n is said to be shapeless if it is non-commutative, non-associative,
it does not have neither left nor right unit, it does not contain proper
subquasigroups, and there is no k < 2n for which are satisfied the
identities of the kinds:

x ∗ (x . . . x ∗ (x(x︸ ︷︷ ︸
k

∗y)) = y; y = ((y ∗ x) ∗ . . . ) ∗ x) ∗ x︸ ︷︷ ︸
k

(1)

Remark 3.1. Condition k < 2n for identities (1) means that any
left and right translation of quasigroup (Q, ∗) should have the order
k ≥ (2n + 1).
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In [54] it is proposed to construct shapeless quasigroups using
transversal approach [58]. Simple quasigroups without subquasigroups
and with identity automorphism group are studied in [82, 75, 64, 110].

In the article [53] it is proposed a block cipher based on Algorithm
3.1. Let (Q, ∗) be a quasigroup of finite order 2d. Using the oper-
ation ∗ authors define the following vector valued Boolean function
(v.v.b.f.) a ∗ b = c ⇔ ∗vv(x1, x2, ..., xd, y1, y2, ..., yd) = (z1, z2, ..., zd),
where x1...xd, y1...yd, z1...zd are binary representations of a, b, c respec-
tively.

Each element zi depends on the bits x1, x2, ..., xd, y1, y2, ..., yd and
is uniquely determined by them. So, each zi can be seen as a 2d-
ary Boolean function zi = fi(x1, x2, ..., xd, y1, y2, ..., yd), where fi :
{0, 1}2d → {0, 1} strictly depends on, and is uniquely determined by ∗.

Authors state that for every quasigroup (Q, ∗) of order 2d and
for each bijection Q → {0, 1..., 2d − 1} there are a uniquely deter-
mined v.v.b.f. ∗vv and d uniquely determined 2d-ary Boolean functions
f1, f2, ..., fd such that for each a, b, c ∈ Q

a ∗ b = c ⇔ ∗vv(x1, ..., xd, y1, ..., yd) =
(f1(x1, ..., xd, y1, ..., yd), ..., fd(x1, ..., xd, y1, ..., yd)).

Each k-ary Boolean function f(x1, ..., xk) can be represented in a
unique way by its algebraic normal form (ANF), i.e., as a sum of prod-
ucts

ANF (f) = α0+
k∑

i=1

αixi+
k∑

1≤i≤j≤k

αi,jxixj +
k∑

1≤i≤j≤s≤k

αi,j,sxixjxs+ ...,

where the coefficients α0, αi, αi,j , ... are in the set {0, 1} and the addi-
tion and multiplication are in the field GF (2).

The ANFs of the functions fi give information about the complexity
of the quasigroup (Q, .) via the degrees of the Boolean functions fi.
The degrees of the polynomials ANF (fi) rise with the order of the
quasigroup. In general, for a randomly generated quasigroup of order
2d, d ≥ 4, the degrees are higher than 2.
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Definition 3.3. A quasigroup (Q, ∗) of order 2d is called Multivariate
Quadratic Quasigroup (MQQ) of type Quadd−kLink if exactly d− k of
the polynomials fi are of degree 2 (i.e., are quadratic) and k of them
are of degree 1 (i.e., are linear), where 0 ≤ k < d [53].

Authors prove the following

Theorem 3.1. Let A1 = [fij ] and A2 = [gij ] be two d× d matrices of
linear Boolean expressions, and let b1 = [ui] and b2 = [vi] be two d× 1
vectors of linear or quadratic Boolean expressions. Let the functions fij

and ui depend only on variables x1, ..., xd, and let the functions gij and
vi depend only on variables xd+1, ..., x2d. If Det(A1) = Det(A2) = 1 in
GF (2) and if

A1 · (xd+1, ..., x2d)T + b1 ≡ A2 · (x1, ..., xd)T + b2

then the vector valued operation ∗vv(x1, ..., x2d) = A1 ·(xd+1, ..., x2d)T +
b1 defines a quasigroup (Q, ∗) of order 2d that is MQQ [53].

The authors researched the existence of MQQ of order 8, 16 and
32.

Problem 3.1. Finding MQQs of orders 2d, d ≥ 6 the authors consider
as an open research problem.

Authors show that the proposed cipher is resistant relatively to the
chosen plain-text attack, attacks with differential cryptanalysis, XL
attack, Grobner basis attacks and some other kind of attacks.

Algebraic cryptanalysis of MQQ public key cryptosystem is given
in [93]: ”... we present an efficient attack of the multivariate Quadratic
Quasigroups (MQQ) cryptosystem. Our cryptanalysis breaks MQQ
cryptosystems by solving systems of multivariate quadratic polynomial
equations using a modified version of the MutantXL algorithm”.

In order to make Algorithm 3.1 more complicate and quite fast we
propose the following

Procedure 3.1. Let A be a non-empty alphabet, k be a natural num-
ber, ui, vi ∈ A, i ∈ {1, ..., k}. Define a system of n n-ary orthogonal
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operations (A, fi), i = 1, 2, . . . , n. We propose the following ciphering
procedure vi = fi(u1, u2, . . . , un), i = 1, 2, ..., n. Therefore we obtain
the following cipher-text v1v2...vn.

The enciphering algorithm is based on the fact that orthogonal sys-
tem of n n-ary operations





f1(x1, x2, . . . , xn) = a1

f2(x1, x2, . . . , xn) = a2

. . .
fn(x1, x2, . . . , xn) = an

has a unique solution for any tuple of elements a1, . . . , an.

Notice that we can take as a system of orthogonal n-ary operations
a set of orthogonal n-quasigroups [117, 118, 44].

Of course this choice does not make Procedure 3.1 more safe, but
it gives a possibility to use Algorithm 3.2 and Procedure 3.1 together
on the base of the same quasigroup system.

Probably there exists a sense to use in Algorithm 3.2 the irreducible
3-ary or 4-ary finite quasigroup [1, 2].

4 Some applications of quasigroup-based stream ciphers

In [100] (see also [87]) it is proposed to use Algorithm 3.1 for secure
encoding of file system. A survey of security mechanisms in mobile
communication systems is in [120].

SMS (Short Message Service) messages are sometimes used for the
interchange of confidential data such as social security number, bank
account number, password etc. A typing error in selecting a number
when sending such a message can have severe consequences if the mes-
sage is readable to any receiver.

Most mobile operators encrypt all mobile communication data, in-
cluding SMS messages. But sometimes, when encrypted, the data is
readable for the operator.

Among others these needs give rise for the need to develop addi-
tional encryption for SMS messages, so that only accredited parties are
able to be engaged in a communication. In [60] an approach to this
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problem using Algorithm 3.1 is described. In [61] differential crypt-
analysis of the quasigroup cipher is given. Definition of the encryption
method is presented.

In [87] the authors introduce a stream cipher with almost public key,
based on quasigroups for defining suitable encryption and decryption.
They consider the security of this method. It is shown that the key
(quasigroups) can be public and still has sufficient security. A software
implementation is also given.

In [81] a public-key cryptosystem, using generalized quasigroup-
based streamciphers is presented. It is shown that such a cryptosystem
allows one to transmit securely both a cryptogram and a secret portion
of the enciphering key using the same insecure channel. The system is
illustrated by means of a simple, but nontrivial, example.

5 Neo-fields and left neo-fields

A left neo-field (N,+, ·) of order n consists of a set N of n symbols
on which two binary operations ”+” and ”·” are defined such that
(N,+) is a loop, with identity element, say 0. (N\{0}, ·) is a group
and the operation ”·” distributes from the left over ”+”. (That is,
x · (y + z) = x · y +x · z for all x, y, z ∈ N .) If the right distributive law
also holds, the structure is called a neofield.

A left neofield (or neofield) whose multiplication group is (G, ·) is
said to be based on that group. Clearly, every left neofield based on an
abelian group is a neofield. Also, a neofield whose operation of addition
satisfies the associative law is a field.

In [28, 27] some cryptological applications of neo-fields and left neo-
fields are described.

6 On one-way function

A function F : X → Y is called one-way function, if the following
conditions are fulfilled:

• there exists a polynomial algorithm of calculation of F (x) for any
x ∈ X;
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• there does not exist a polynomial algorithm of inverting of the
function F , i.e. there does not exist any polynomial time algo-
rithm for solving the equation F (x) = y relatively variable x.

It is proved that the problem of existence of one-way function is
equivalent to well known problem of coincidence of classes P and NP.

One of better candidates to be an one-way function is so-called
function of discrete logarithms [83].

A neofield (N,+, ·) of order n consists of a set N of n symbols on
which two binary operations ”+” and ”·” are defined such that (N,+)
is a loop with identity element, say 0, (N\{0}, ·) is a group and the
operation ”·” distributes from the left and right over ”+” [28].

Let (N,+, ·) be a finite Galois field or a cyclic ((N\{0}, ·) is a
cyclic group) neofield. Then each non-zero element u of the additive
group or loop (N, +) can be represented in the form u = aν , where a
is a generator of the multiplication group (N\{0}, ·). ν is called the
discrete logarithm of u with base a, or, sometimes, the exponent or
index of u.

Given ν and a, it is easy to compute u in a finite field, but, if
the order of the finite field is a sufficiently large prime p and also is
appropriately chosen it is believed to be difficult to compute ν when u
(as a residue modulo p) and a are given.

In [28] discrete logarithms are studied over a cyclic neofield whose
addition is a CI-loop.

In [83] the discrete logarithm problem for the group RLn of all row-
Latin squares of order n is defined (p.103) and, on pages 138 and 139,
some illustrations of applications to cryptography are given.

7 On hash function

In [46, 45] an approach for construction of hash function using quasi-
groups is described.

Definition 7.1. A function H() that maps an arbitrary length message
M to a fixed length hash value H(M) is a OneWay Hash Function
(OWHF), if it satisfies the following properties:

205



V.A. Shcherbacov

1. The description of H() is publicly known and should not require
any secret information for its operation.

2. Given M , it is easy to compute H(M).
3. Given H(M) in the rang of H(), it is hard to find a message M

for given H(M), and given M and H(M), it is hard to find a message
M0(6= M) such that H(M0) = H(M).

Definition 7.2. A OneWay Hash Function H() is called Collision Free
Hash Function (CFHF), if it is hard to find two distinct messages M
and M0 that hash to the same result (H(M) = H(M0))[46, 45].

We give construction of hashing function based on quasigroup [46].

Definition 7.3. Let HQ() : Q −→ Q be projection defined as

HQ(q1q2 . . . qn) = ((. . . (a ? q1) ? q2 ? . . . ) ? qn (2)

Then HQ() is said to be hash function over quasigroup (Q; ?). The
element a is a fixed element from Q.

Example 7.1. Multiplication in the quasigroup (Q, ?) is defined in the
following manner: a ? b = (a − b) (mod 4). This quasigroup has the
following multiplication table:

? 0 1 2 3
0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

Value of hash function is H2(0013) = (((2 ? 0) ? 0) ? 1) ? 3 = 2.

Remark 7.1. There exists a possibility to apply n-ary quasigroup
approach to study hash functions of such kind. Since, in fact, equality
(2) defines an n-ary operation.

Remark 7.2. We notice, safe hash function must have at least 128-bit
image, i.e. HQ(q1q2 . . . qn) must consist of at least 128-digit number
[96].
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In [121, 122] hash functions, proposed in [46, 45], are discussed. The
author shows that for some types of quasigroups these hash functions
are not secure.

From [86] we give the following summary: “In this paper we
consider two quasigroup transformations QM1: A2m → A2m and
QM2: Am → A2m, where A is the carrier of a quasigroup. Based on
these transformations we show that different kinds of hash functions
can be designed with suitable security.”

Further development of quasigroup based on hash function is re-
flected in [116].

In [105] on Algorithm 3.1 based on encrypter that has good scram-
bling properties is proposed.

8 CI-quasigroups and cryptology

In [28, 56] some applications of CI-quasigroups in cryptology with non-
symmetric key are described.

Definition 8.1. Suppose that there exists a permutation J of the ele-
ments of a quasigroup (Q, ◦) such that, for all x, y ∈ Q

Jr(x ◦ y) ◦ Jsx = J ty,

where r, s, t are integers. Then (Q, ◦) is called an (r, s, t)-inverse quasi-
group ([72]).

In the special case when r = t = 0, s = 1, we have a definition of
CI-quasigroup.

Example 8.1. A CI-quasigroup can be used to provide a one-time pad
for key exchange (without the intervention of a key distributing centre)
[28, 68].

The sender S, using a physical random number generator (see [78]
on random number generator based on quasigroups), selects an arbi-
trary element c(u) of the CI-quasigroup (Q, ◦) and sends both c(u) and
enciphered key (message) c(u) ◦m. The receiver R uses this knowledge
of the algorithm for obtaining Jc(u) = c(u+1) from c(u) and hence he
computes (c(u) ◦m) ◦ c(u+1) = m.

207



V.A. Shcherbacov

Example 8.2. We can propose the following application of rst-inverse
quasigroups in situation similar to situation described in Example 8.1.
It is possible to re-write definitive equality of rst-inverse quasigroup in
the following manner Jr(Jku ◦m) ◦ Js+ku = J tm.

Then the schema of the previous example can be re-written in the
following manner. The sender S selects an arbitrary element Jku of the
rst-quasigroup (Q, ◦) and sends both Jku and enciphered key (message)
Jr(Jku ◦m). The receiver R uses this knowledge of the algorithm for
obtaining Jk+s(u) from Jk(u) and hence he computes Jr(Jku ◦ m) ◦
Js+ku = J tm and after this he computes the message m. Of course
this example can be modified.

Example 8.3. [28]. Take a CI-quasigroup with a long inverse cycle
(c c′ c′′ . . . ct−1) of length t. Suppose that all the users Ui (i = 1, 2, . . . )
are provided with apparatus (for example, a chip card) which will com-
pute a ◦ b for any given a, b ∈ Q. We assume that only the key dis-
tributing centre has a knowledge of the long inverse cycle which serves
as a look-up table for keys.

Each user Ui has a public key ui ∈ Q and a private key Jui, both
supplied in advance by the key distributing centre. User Us wishes to
send a message m to user Ut. He uses Ut’s public key ut to compute
ut ◦m and sends that to Ut. Ut computes (ut ◦m) ◦ Jut = m.

Remark 8.1. It is not very difficult to understand that opponent
which knows the permutation J may decipher a message encrypted
by this method.

Remark 8.2. There exists a possibility to generalize Example 8.3 using
some m-inverse quasigroups [71], or (r, s, t)-inverse quasigroups [72, 73],
else (α, β, γ)-inverse quasigroups [74].

9 Critical sets and secret sharing systems

Definition 9.1. A critical set C in a Latin square L of order n is a set
C = {(i; j; k) | i, j, k ∈ {1, 2, . . . , n}} with the following two properties:

(1) L is the only Latin square of order n which has symbols k in
cell (i, j) for each (i; j; k) ∈ C;
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(2) no proper subset of C has property (1) [83].

A critical set is called minimal if it is a critical set of smallest
possible cardinality for L. In other words a critical set is a partial
Latin square which is uniquely completable to a Latin square of order
n.

If the scheme has k participants, a (t, k)-secret sharing scheme is
a system where k pieces of information called shares or shadows of a
secret key K are distributed so that each participant has a share such
that

(1) the key K can be reconstructed from knowledge of any t or more
shares;

(2) the key K cannot be reconstructed from knowledge of fewer
than t shares.

Such systems were first studied in 1979. Simmons [115] surveyed
various secret sharing schemes. Secret sharing schemes based on critical
sets in Latin squares are studied in [17]. We note, critical sets of Latin
squares give rise to the possibilities to construct secret-sharing systems.

Critical sets of Latin squares were studied in sufficiently big number
of articles. We survey results from some of these articles. In [34] the
spectrum of critical sets in Latin squares of order 2n is studied. The
paper [30] gives constructive proofs that critical sets exist for all sizes
between [n2/4] and [(n2−n)/2], with the exception of size n2/4+1 for
even values of n.

For Latin squares of order n, the size of a smallest critical set is
denoted by scs(n) in [15]. The main result of [15] is that scs(n) ≥
nb1

2(log n)1/3c for all positive integers n.
In [63] the authors show that any critical set in a Latin square of

order n ≥ 7 must have at least b7n−√n−20
2 c empty cells. See, also, [62].

The paper [33] contains lists of (a) theorems on the possible sizes
of critical sets in Latin squares of order less than 11, (b) publications,
where these theorems are proved, (c) concrete examples of such type
of critical sets. In [36] an algorithm for writing any Latin interchange
as a sum of intercalates is corrected.

In [59] the author proposes a greedy algorithm to find critical sets
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in Latin squares. He applies this algorithm to Latin squares which are
abelian 2-groups to find new critical sets in these Latin squares. The
critical sets have the nice property that they all intersect some 2 × 2
Latin subsquare in a unique element so that it is easy to show the
criticality.

In [4] the author gives an example of a critical set of size 121 in the
elementary abelian 2-group of order 16.

In [94] critical sets of symmetric Latin squares are studied. There-
fore the authors require all elements in their critical sets and uniquely
completable partial Latin squares to lie on or above the main diagonal.
For n > 2, a general procedure is given for writing down a uniquely
completable partial symmetric 2n × 2n Latin square L′2n containing
n2 − n + 2 entries, of which 2n − 2 are identical and lie on the main
diagonal.

Paper [32] presents a solution to the interesting combinatorial prob-
lem of finding a minimal number of elements in a given Latin square of
odd order n by which one may restore the initial form of this square.
In particular, it is proved that in every cyclic Latin square of odd order
n the minimal number of elements equals to n(n− 1)/2.

Surveys on critical sets of Latin squares are given in [67, 69]. See,
also, [70].

The concept of Latin trades is closely connected with the concept
of critical set in Latin squares. Let T be a partial Latin square and L
be a Latin square with T ⊆ L. We say that T is a Latin trade if there
exists a partial Latin square T ′ with T ′ ∩ T = ∅ such that (L \ T ) ∪ T ′

is a Latin square. Information on Latin trades is in [16].

Remark 9.1. See also Introduction for other application of critical
sets of Latin squares in cryptology.

”For a given triple of permutations T = (α, β, γ) the set of all
Latin squares L such that T is its autotopy is denoted by LS(T ). The
cardinality of LS(T ) is denoted by ∆(T ). Specifically, the computation
of ∆(T ) for any triple T is at the moment an open problem having
relevance in secret sharing schemes related to Latin squares” [49, 50].
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10 Secret sharing systems and other algebraic systems

Some secret-sharing systems are pointed in [26]. One of such systems
is the Reed-Solomon code over a Galois field GF [q] with generating
matrix C(aij) of size k × (q − 1), k ≤ q − 1. The determinant formed
by any k columns of G is a non-zero element of GF [q]. The Hamming
distance d of this code is maximal (d = q − k) and any k from q − 1
keys unlock the secret.

In [9] an approach to some Reed-Solomon codes as a some kind of
orthogonal systems of n-ary operations is developed.

In [10] general approach to construction of secret sharing systems
using some kinds of orthogonal systems of n-ary operations is given.
Transformations of orthogonal systems of n-ary operations are studied
in [11].

We give the summary from [52] : ”We investigate subsets of critical
sets of some Youden squares in the context of secret-sharing schemes.
A subset C of a Youden square is called a critical set if C can be uniquely
completed to a Youden square but no proper subset of C has a unique
completion to a Youden square.”

”That part of a Youden square Y which is inaccessible to subsets
of a critical set C of Y , called the strongbox of C, may be thought
to contain secret information. We study the size of the secret. J. R.
Seberry and A. P. Street [108] have shown how strongboxes may be
used in hierarchical and compartmentalized secret-sharing schemes.”

11 Row-Latin squares based cryptosystems

A possible application in cryptology of Latin power sets is proposed in
[29].

In [23] an encrypting device is described, based on row-Latin
squares with maximal period equal to the Mangoldt function.

In our opinion big perspectives has an application of row-Latin
squares in various branches of contemporary cryptology (”neo-crypto-
logy”).

In [83] it is proposed to use: 1) row-Latin squares to generate an
open key; 2) a conventional system for transmission of a message that
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is the form of a Latin square; 3) row-Latin square analogue of the RSA
system; 4) procedure of digital signature based on row-Latin squares.

Example 11.1. Let

L =

2 3 4 1
4 1 3 2
3 2 4 1
4 3 1 2

Then

L7 =

4 1 2 3
4 1 2 3
3 2 4 1
3 4 2 1

L3 =

4 1 2 3
1 2 3 4
1 2 3 4
3 4 2 1

Then

L21 =

2 3 4 1
1 2 3 4
1 2 3 4
4 3 1 2

is a common key for a user A with the key L3 and a user B with the
key L7.

A public-key cryptosystem, using generalized quasigroup-based
streamciphers, as it has been noticed earlier, is presented in [81].

12 NLPN sequences over GF[q]

Non-binary pseudo-random sequences over GF[q] of length qm−1 called
PN sequences have been known for a long time [57]. PN sequences over
a finite field GF[q] are unsuitable directly for cryptology because of
their strong linear structure [78]. Usually PN sequences are defined over
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a finite field and often an irreducible polynomial for their generation is
used.

In article [78] definition of PN sequence was generalized with the
purpose to use these sequences in cryptology.

We notice, in some sense ciphering is making a “pseudo-random se-
quence” from a plaintext, and cryptanalysis is a science how to reduce a
check of all possible variants (cases) by deciphering of some ciphertext.

These new sequences were called NLPN-sequences (non-linear
pseudo-noise sequences). C. Koscielny proposed the following method
for construction of NLPN-sequences.

Let −→a be a PN sequence of length qm − 1 over GF[q], q > 2, i.e.

−→a = a0a1 . . . aqm−2.

Let −→a i be its cyclic i places shifted to the right. For example

−→a 1 = a1 . . . aqm−2a0.

Let Q = (SQ, ·) be a quasigroup of order q defined on the set of elements
of the field GF[q].

Then
−→
b = −→a · −→a i, −→c = −→a i · −→a , where bj = aj · ai

j , cj = ai
j · aj for

any suitable value of index j (j ∈ {1, 2, . . . , qm − 1}) are called NLPN
sequences [78].

NLPN sequences have much more randomness than PN sequences.
As notice C. Koscielny the method of construction of NLPN sequences
is especially convenient for fast software encryption. It is proposed to
use NLPN sequences by generation of keys. See also [76].

13 Authentication of a message

By authentication of message we mean that it is made possible for a
receiver of a message to verify that the message has not been modified
in transit, so that it is not possible for an interceptor to substitute a
false message for a legitimate one.

By identification of a message we mean that it is made possible
for the receiver of a message to ascertain its origin, so that it is not
possible for an intruder to masquerade as someone else.

213



V.A. Shcherbacov

By non-repudiation we mean that a sender should not be able later
to deny falsely that he had sent a message.

In [28] some quasigroup approaches to problems of identification
of a message, problem of non-repudiation of a message, production of
dynamic password and to digital fingerprinting are discussed. See also
[18].

In [27] authors suggested a new authentication scheme based on
quasigroups (Latin squares). See also [26, 28, 20]

In [104] several cryptosystems based on quasigroups upon various
combinatorial objects such as orthogonal Latin squares and frequency
squares, block designs, and room squares are considered.

Definition 13.1. Let 2 ≤ t < k < v. A generalized S(t, k, v) Steiner
system is a finite block design (T, B) such that (1) |T | = v; (2) B =
B′ ∪ B′′, where any B′ ∈ B′, called a maximal block, has k points and
2 ≤ |B′′| < k for any B′′ ∈ B′′, called a small block; (3) for any
B′′ ∈ B′′ there exists a B′ ∈ B′ such that B′′ ⊆ B′; (4) every subset of
T with t elements not belonging to the same B′′ ∈ B′′ is contained in
exactly one maximal block.

In [89] (see also [48]) an application of generalized S(t, k, v) Steiner
systems in cryptology is proposed, namely, it is introduced a new au-
thentication scheme based on the generalized Steiner systems, and the
properties of such scheme are studied in the generalized affine planes.

14 Zero knowledge protocol

In [103] Rivest introduced All-Or-Nothing (AON) encryption mode in
order to devise means to make brute-force search more difficult, by ap-
propriately pre-processing a message before encrypting it. The method
is general, but it was initially discussed for block-cipher encryption, us-
ing fixed-length blocks.

It is an unkeyed transformation, mapping a sequence of input blocks
(x1, x2, . . . , xs) to a sequence of output blocks (y1, y2, . . . , yt) having
the following properties:

Having all blocks (y1, y2, . . . , yt) it is easy to compute (x1, x2, . . . , xs).
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If any output block yj is missing, then it is computationally infea-
sible to obtain any information about any input block xJ .

The main idea is to preserve a small-length key (e.g. 64-bit) for
the main encryption that can be handled by special hardware with not
enough processing power or memory. This gives the method a strong
advantage, since we can have strong encryption for devices that have
minimum performance.

Several transformation methods have been proposed in the liter-
ature for AON. In the article [88] it is proposed a special transform
which is based on the use of a quasigroup (it is used in algorithm 3.1).

In [24] it is proposed to use isotopy of quasigroups in zero knowledge
protocol.

Assume the users (u1, u2, ..., uk) form a network. The user ui has
public-key Lui , L

′
ui

(denotes two isotopic Latin squares of order n) and
secret-key Iui (denotes the isotopism of Lui upon L

′
ui

). The user ui

wants to prove identity for uj but he doesn’t want to reveal the secret-
key (zero-knowledge proof).

1. ui randomly permutes Lui to produce another Latin square H.
2. ui sends H to uj .
3. uj asks ui either to:

a. prove that H and L
′
ui

are isotopic,
b. prove that H and Lui are isotopic.

4. ui complies. He either
a. proves that H and L

′
ui

are isotopic,
b. proves that H and Lui are isotopic.

5. ui and uj repeat steps 1. through 4. n times.

Remark 14.1. In the last procedure it is possible to use isotopy of
n-ary groupoids.

15 Hamming distance between quasigroups

The following question is very important by construction of quasigroup
based cryptosystems: how big is the distance between different bi-
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nary or n-ary quasigroups? Information on Hamming distance between
quasigroup operation is in the articles [41, 42, 39, 38, 40, 43, 119].

We recall, if α and β are two n-ary operations on a finite set Ω,
then the Hamming distance of α and β is defined by

dist(α, β) = |{(u1, . . . , un) ∈ Ωn : α(u1, . . . , un) 6= β(u1, . . . , un)}|.

The author in [41] discusses Hamming distances of algebraic ob-
jects with binary operations. He also explains how the distance set of
two quasigroups yields a 2-complex, and points out a connection with
dissections of equilateral triangles.

For a fixed group (G, ◦), δ(G, ◦) is defined to be the minimum of all
such distances for (G, ?) not equal to (G, ◦) and ν(G, ◦) the minimum
for (G, ?) not isomorphic to (G, ◦).

In [38] it is proved that δ(G, ◦) is 6n−18 if n is odd, 6n−20 if (G, ◦)
is dihedral of twice odd order and 6n−24 otherwise for any group (G, ◦)
of order greater than 50. In [119] it is shown that δ(G, ◦) = 6p− 18 for
n = p, a prime, and p > 7.

In the article [39] there are listed a number of group orders for which
the distance is less than the value suggested by the above theorems.
New results obtained in this direction are in [43].

16 Generation of quasigroups for cryptographical needs

Important cryptographical problem is a generation of ”big” quasi-
groups which it is possible to keep easily in a compact form in computer
memory. It is clear that for this aims the most suitable is a way to keep
a little base and some procedures of obtaining a necessary element.

Therefore we should have easily generated objects (cyclic group,
abelian group, group), fast and complicate methods of their trans-
formation (parastrophy, isotopy, isostrophy, crossed isotopy [109], ho-
motopy, generalized isotopy), their glue and blowing (direct product,
semi-direct product, wreath product [66], crossed product, generalized
crossed product). For these aims various linear quasigroups (especially
n-ary quasigrous) are quite suitable [7, 85, 113].
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In [99] the boolean function is proposed to use by construction of
n-ary and binary quasigroups.

A method of generating a practically unlimited number of quasi-
groups of an arbitrary (theoretically) order using the computer algebra
system Maple 7 is presented in [79].

This problem is crucial to cryptography and its solution permits to
implement practical quasigroup-based endomorphic cryptosystems.

In this article [79] it is proposed to use isotopy of quasigroups and
direct products of quasigroups. If we start from class of finite groups,
then, using these ways, it is possible to obtain only class of quasigroups
that are isotopic to groups. We notice, there exists many quasigroups
(especially of large order) that are not isotopic to a group. Therefore
for construction of quasigroups that are not isotopic to groups probably
better to use the concept of gisotopy [98, 113].

17 Conclusion remarks

In many cases in cryptography it is possible to change associative sys-
tems by non-associative ones and practically in any case this change
gives in some sense better results than use of associative systems.
Quasigroups in spite of their simplicity, have various applications in
cryptology. Many new cryptographical algorithms can be formed on
the basis of quasigroups.
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[29] J. Dénes and P. Petroczki. A digital encrypting communication
systems, 1990.

[30] W. Diffie and M.F. Hellman. New directions in cryptography.
IEEE, Transactions of Information Theory, IT-22:644–654, 1976.

[31] V. Domashev, V. Popov, D. Pravikov, I. Prokof’ev, and
A. Shcherbakov. Programming of algorithms of defense of in-
formation. Nolidge, Moscow, 2000. (in Russian).

[32] D. Donowan. Critical sets for families of latin squares. Util.
Math., 53:3–16, 1998.

[33] D. Donowan. Critical sets in latin squares of order less than 11.
J. Comb. Math. Comb. Comput., 29:223–240, 1999.

[34] D. Donowan, J. Fevre, and G. H. John van Rees. On the spectrum
of critical sets in latin squares of order 2n. J. Combin. Des.,
16(1):25–43, 2008.

[35] D. Donowan and A. Howse. Correction to a paper on critical
sets. Australas. J. Combin., 21:107–130, 2000.

220



Quasigroups in cryptology

[36] D. Donowan and E.S. Mahmoodian. Correction to a paper on
critical sets. Bull. Inst. Comb. Appl., 37:44, 2003.

[37] S.A. Dorichenko and V.V. Yashchenko. 25 sketches on ciphers.
Teis, Moscow, 1994. (in Russian).

[38] A. Drapal. How far apart can the group multiplication tables be?
Eur. J. Comb., 13(5):335–343, 1992.

[39] A. Drapal. On distances of multiplication tables of groups. Lond.
Math. Soc. Lect. Note Ser., 260:248–252, 1999.

[40] A. Drapal. Non-isomorphic 2-groups coincide at most in three
quartes of their multiplication table. Eur. J. Comb., 21:301–321,
2000.

[41] A. Drapal. Hamming distances of groups and quasi-groups. Dis-
crete Math., 235(1-3):189–197, 2001.

[42] A. Drapal. On groups that differ in one of four squares. Eur. J.
Comb., 23(8):899–918, 2002.

[43] A. Drapal and N. Zhukavets. On multiplication tables of groups
that agree on half of the columns and half of the rows. Glasgow
Math. J., 45:293–308, 2003.

[44] W.A. Dudek and P.N. Syrbu. About self-orthogonal n-groups.
Bul. Acad. Stiinte Repub. Mold., Mat., (3):37–42, 1992. (in Rus-
sian).

[45] J. Dvorsky, E. Ochodkova, and V. Snasel. Hashovaci funkce za-
lozena na kvazigrupach. In Workshop Milkulasska kryptobesidka,
Praha, 2000. (in Czech).

[46] J. Dvorsky, E. Ochodkova, and V. Snasel. Hash functions based
on large quasigroups. Velokonocni kryptologie, pages 1–8, 2002.

[47] A. Ekert. From quantum, code-making to quantum code-
breaking. In Proceedings of the symposium on geometric issues in

221



V.A. Shcherbacov

the foundations of science, Oxford, UK, June 1996 in honour of
Roger Penrose in his 65th year, pages 195–214. Oxford University
Press, 1998.

[48] F. Eugeni and A. Maturo. A new authentication system based on
the generalized affine planes. J. Inf. Optimization Sci., 13(2):183–
193, 1992.

[49] R. M. Falcon. Latin squares associated to principal autotopisms
of long cycles. application in cryptography. In Proc. Transgres-
sive Computing 2006: a conference in honor of Jean Della Dora,
pages 213–230, 2006.

[50] R. M. Falcon. Cycle structures of autotopisms of the Latin
squares of order up to 11. http://arxiv.org/, 0709.2973:18 pages,
2007.

[51] Horst Feistel. Cryptography and computer privacy. Scientific
American, 228(5):15–23, 1973.

[52] L. Fitina, K. G. Russell, and J. Seberry. The power and influence
in some Youden squares and secret sharing. Util. Math., 73:143–
157, 2007.

[53] D. Gligoroski, S. Markovski, and S. J. Knapskog. A public
key block cipher based on multivariate quadratic quasigroups.
http://arxiv.org/, 0808.0247:22 pages, 2008.

[54] D. Gligoroski, S. Markovski, and L. Kocarev. Edon-R,
An infnite family of cryptographic hash functions, 2006.
http://csrc.nist.gov/pki/HashWorkshop/2006/Papers.

[55] M. M. Glukhov. On application of quasigroups in cryptology.
Applied discrete mathematics, 2:28–32, 2008. (in Russian).

[56] S. Golomb, L. Welch, and J. Denes. Encryption system based on
crossed inverse quasigroups, 2001. US patent, WO0191368.

222



Quasigroups in cryptology

[57] S.W. Golomb. Shift Register Sequences. Holden Day, San Fran-
cisco, 1967.

[58] Marshall Hall. Combinatorial Theory. Blaisdell Publishing Com-
pany, Massachusetts, 1967.

[59] C. Hamalainen. New 2-critical sets in the abelian 2-group. J.
Combin. Math. Combin. Comput., 61:193–219, 2007.

[60] M. Hassinen and S. Markovski. Secure SMS messaging using
Quasigroup encryption and Java SMS API. In SPLST’03, Kuo-
pio, Finland, June 2003.

[61] M. Hassinen and S. Markovski. Differential cryptanalysis of the
quasigroup cipher. Definition of the encryption method. In Dif-
ferential cryptanalysis, Petrozavodsk, June 2004.

[62] P. Horak, R. E. L. Aldred, and H. J. Fleischner. Completing latin
squares: critical sets. i. J. Combin. Des., 10(6):419–432, 2002.

[63] P. Horak and I. J. Dejter. Completing latin squares: critical sets.
ii. J. Combin. Des., 15(1):77–83, 2007.

[64] V.I. Izbash. Monoquasigroups without congruences and auto-
morphisms. Bul. Acad. Stiinte Repub. Mold., Mat., (4):66–76,
1992.

[65] D. Kahn. The codebreakers: the story of secret writing. Wieden-
field and Nicolson, London, 1967.

[66] M.I. Kargapolov and M.Yu. Merzlyakov. Foundations of Group
Theory. Nauka, Moscow, 1977. (in Russian).

[67] A.D. Keedwell. Critical sets for latin squares, graphs and block
designs: a survey. Congressus Numeratium, 113:231–245, 1996.

[68] A.D. Keedwell. Crossed-inverse quasigroups with long inverse
cycles and applications to cryptography. Australas. J. Combin.,
20:241–250, 1999.

223



V.A. Shcherbacov

[69] A.D. Keedwell. Critical sets in latin squares and related matters:
an update. Util. Math., 65:97–131, 2004.

[70] A.D. Keedwell. On sudoku squares. Bull. Inst. Combin. Appl.,
50:52–60, 2007.

[71] A.D. Keedwell and V.A. Shcherbacov. On m-inverse loops and
quasigroups with a long inverse cycle. Australas. J. Combin.,
26:99–119, 2002.

[72] A.D. Keedwell and V.A. Shcherbacov. Construction and prop-
erties of (r,s,t)-inverse quasigroups, I. Discrete Math., 266(1-
3):275–291, 2003.

[73] A.D. Keedwell and V.A. Shcherbacov. Construction and proper-
ties of (r,s,t)-inverse quasigroups, II. Discrete Math., 288:61–71,
2004.

[74] A.D. Keedwell and V.A. Shcherbacov. Quasigroups with an in-
verse property and generalized parastrophic identities. Quasi-
groups Relat. Syst., 13:109–124, 2005.

[75] T. Kepka. A note on simple quasigroups. Acta Univ. Carolin.
Math. Phys., 19(2):59–60, 1978.

[76] A. Klapper. On the existence of secure keystream generators. J.
Cryptology, 14:1–15, 2001.

[77] C. Koscielny. A method of constructing quasigroup-based stream
ciphers. Appl. Math. and Comp. Sci., 6:109–121, 1996.

[78] C. Koscielny. NLPN Sequences over GF(q). Quasigroups Relat.
Syst., 4:89–102, 1997.

[79] C. Koscielny. Generating quasigroups for cryptographic applica-
tions. Int. J. Appl. Math. Comput. Sci., 12(4):559–569, 2002.

[80] C. Koscielny. Stegano crypto graphy with maple
8. Technical report, Institute of Control and Com-
putation Engineering, University of Zielona Gora,

224



Quasigroups in cryptology

http://www.mapleapps.com/categories/mathematics/Cryp-
tography /html/stegcryp.html, 2003.

[81] C. Koscielny and G.L. Mullen. A quasigroup-based public-key
cryptosystem. Int. J. Appl. Math. Comput. Sci., 9(4):955–963,
1999.

[82] A. V. Kuznetsov and A.F. Danilchenko. Functionally complete
quasigroups. In First All-Union Simposium on quasigroup theory
and its applications. Abstracts of reports and talks, pages 17–19,
Tbilisi, 1968.

[83] Charles F. Laywine and Gary L. Mullen. Discrete Mathematics
Using Latin Squares. John Wiley & Sons, Inc., New York, 1998.

[84] S.S. Magliveras, D.R. Stinson, and Tran van Trung. New ap-
proach to designing public key cryptosystems using one-way func-
tion and trapdoors in finite groups. J. Cryptology, 15:285–297,
2002.

[85] A. Marini and V.A. Shcherbacov. On autotopies and automor-
phisms of n-ary linear quasigroups. Algebra and Discrete Math.,
(2):51–75, 2004.

[86] S. Markovski, D. Gligoroski, and V. Bakeva. Quasigroups and
hash functions. In Res. Math. Comput. Sci., volume 6, pages
43–50, South-West Univ., Blagoevgrad, 2002.

[87] S. Markovski, D. Gligoroski, and B. Stojcevska. Secure two-way
on-line communication by using quasigroup enciphering with al-
most public key. Novi Sad J. Math., 30(2):43–49, 2000.

[88] S.I. Marnas, L. Angelis, and G.L. Bleris. All-or-nothing trans-
forms using quasigroups. In Proceedings of 1st Balkan Conference
in Informatics, pages 183–191, Thessaloniki, November 2003.

[89] A. Maturo and M. Zannetti. Redei blocking sets with two Re-
dei lines and quasigroups. J. Discrete Math. Sci. Cryptography,
5(1):51–62, 2002.

[90] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook
of Applied Cryptography. CRC Press, Boca Raton, FL, 1997.

225



V.A. Shcherbacov

[91] L. Mittenhal. A source of cryptographically strong permutations
for use in block ciphers. In Proc. IEEE, International Sympos. on
Information Theory, 1993, IEEE, pages 17–22, New York, 1993.

[92] L. Mittenhal. Block substitutions using orthomorphic mappings.
Advances in Applied Mathematics, 16:59–71, 1995.

[93] Mohamed Saied Emam Mohamed, Jintai Ding, and Johannes
Buchmann. Algebraic Cryptanalysis of MQQ Public Key Cryp-
tosystem by MutantXL, 2008. eprint.iacr.org/2008/451.pdf.

[94] D. A. Mojdeh and N.J. Rad. Critical sets in latin squares given
that they are symmetric. Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat., 18:38–45, 2007.

[95] N.A. Moldovyan. Problems and methods of cryptology. S.-
Petersburg University Press, S.-Petersburg, 1998. (in Russian).

[96] N.A. Moldovyan, A.A. Moldovyan, and M.E. Eremeev. Cryp-
tology. From primitives to syntez of algorithms. S.-Petersburg
University Press, S.-Petersburg, 2004. (in Russian).

[97] Yu. Movsisyan. Hyperidentities in algebras and varieties. Russ.
Math. Surv., 53(1):57–108, 1998.

[98] G.L. Mullen and V.A. Shcherbacov. On orthogonality of binary
operations and squares. Bul. Acad. Stiinte Repub. Mold., Mat.,
(2 (48)):3–42, 2005.

[99] V. A. Nosov and A. E. Pankratiev. Latin squares over abelian
groups. Fundamentalnaya i prikladnaya matematika, 12:65–71,
2006.

[100] E. Ochadkova and V. Snasel. Using quasigroups for secure en-
coding of file system. In Conference ”Security and Protection of
information”, Abstract of Talks, pages 175–181, Brno, May 2001.

[101] Adrian Petrescu. Applications of quasigroups in cryptogra-
phy. In ”Interdisciplinarity in Engineering” Scientific Inter-
national Conference Tg.Mures-Romania, 15-16 November 2007,
2007. www.upm.ro/InterIng2007/Papers/Section6/16-Petrescu-
Quasigroups-pVI- 16-1-5.pdf.

226



Quasigroups in cryptology

[102] H.O. Pflugfelder. Quasigroups and Loops: Introduction. Helder-
mann Verlag, Berlin, 1990.

[103] R.L. Rivest. All-or-nothing encryption and the package trans-
form. In Fast Software Encryption ’97, volume 1267 of LNCS.
Springer, 1997.

[104] D.G. Sarvate and J. Seberry. Encryption methods based on com-
binatorial designs. Ars Combinatoria, 21A:237 – 245, 1986.

[105] M. Satti. A quasigroup based cryptographic system. Technical
Report CR/0610017, arxiv.org, 2006.

[106] R. Schauffler. Eine Anwendung zyklischer Permutationen und
ihre Theorie. PhD thesis, Philipps-Universität Marburg, 1948.
(in German).

[107] R. Schauffler. Uber die Bildung von Codewörter. Arch. Elektr.
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