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Abstract

This article deals with a method, based on total variation
diminishing (TVD) scheme, for solving three-dimensional equa-
tions of gravitational gas dynamics. For this method a parallel
algorithm of the decision is offered. Equations of this kind are a
powerful approach to simulating astrophysical problems. Numer-
ical schemes applied for their solving must provide high-resolution
capturing of shocks, prevent spurious oscillations and specify the
behavior of the matter in the neighborhood of small perturba-
tions beyond shock fronts. Difference schemes have to combine
the properties of high resolution in the regions of small pertur-
bations and of monotonicity in the domains of steep gradients in
order to satisfy such contradictory conditions.

1 Introduction

Modeling supernova explosions is referred to complex dynamic pro-
cesses, requiring application of difference schemes of a high resolution.
These have to describe the behavior of the matter in the neighborhood
of the discontinuity at the maximum accuracy and to refer small pertur-
bations far from shock fronts definitely. Conditions of such kind lead
to the necessity of loss of dissipative (nonconservative) properties of
numerical schemes and therefore to the apparition of large oscillations
beyond shock fronts.
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TVD, ENO, WENO, PPM schemes refer to the kind of schemes
that satisfy all these necessary conditions and possess high resolution in
regions of small perturbations combined with monotonicity in domains
of steep gradients.

1.1 Magnetorotational mechanism of supernova explo-
sion

In [1] a mechanism for the magnetorotational supernova explosion was
analyzed. The basic concept of magnetorotational explosion consists
in taking account on transition of rotating magnetic field energy into
the radial kinetic energy of explosion. Various layers of the star rotate
at the different angular velocities during the collapse. Differential ro-
tation of this kind generates and enforces the magnetic field toroidal
components. The growth of magnetic field intensity leads to the in-
crease of pressure. Hence a compression shock wave appears in the
neighborhood of the extreme magnetic pressure. It starts moving from
the center toward the considerably fast falling density of the matter.
For a rather short time this leads to the appearance of the fast mag-
netohydrodynamics (MHD) shock. When the shock wave reaches the
surface of the collapsing star it throws out its matter. This emission
may be interpreted as an explosion of supernova. Modeling magnetoro-
tational supernova explosion in one-dimensional setting was examined,
for example, in [2] and [3]. In one-dimensional case the star may be
represented in the form of an infinite cylinder. The equations of ideal
MHD with a self-gravitating substance in terms of Lagrangian coordi-
nate system were considered.

The initial magnetic field had only the radial component. Differ-
ential rotation led to the appearance and increasing of toroidal com-
ponent of the magnetic field. Modeling magnetorotational explosion
of supernova in one-dimensional case illustrates that differential ro-
tation of toroidal field leads to the apparition of the MHD shocks,
moving towards the surface of the star. Modeling supernova explo-
sion in two-dimensional case gives a more realistic flow pattern than in
one-dimensional case. The first two-dimensional model of rotating star
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collapse was analyzed in [4]. The magnetic field magnitude considered
in that work was unrealistic large and together with the differential
rotating it led to the formation of axial emission.

Simulation of magnetorotational supernova explosion in three-
dimensional case is considered in this work. Three-dimensional model
of collapse is the most realistic one and does not have any restric-
tions connected with the assumptions, stated in 1D and 2D models.
Three-dimensional models admit simulating of magnerotational super-
nova explosion in cases, when the axises of rotation do not coincide
with the axises of dipole magnetic field (if dipole is taken as the initial
value of magnetic field). If numerical schemes, elaborated for simulat-
ing two-dimensional cases, are utilized in three-dimensional case, then
it will lead to big problems. The substance of the star compresses in
the direction of ϕ in two-dimensional case. It is necessary to calcu-
late hundreds and thousands of cycles of rotation for simulating the
explosion of protoneutron star. The protoneutron star rotation occurs
very differently. If in three-dimensional case Lagrangian mesh contains
tetragonal elements, then it should be reorganized on every time step.
But grid modification involves reinterpolation of the mesh functions
with respect to mesh structure. Utilization of the rectangular Eule-
rian meshes allows to avoid this problem. A tree-dimensional model of
collapsing star in rectangular coordinate system was proposed in [5].

1.2 TVD schemes

TVD-type schemes of the first and second order of accuracy are con-
sidered in this article. First order accurate difference schemes retain
the property of monotonicity, but lead to the smearing of the shock
fronts. Second order accurate nonlinear schemes with the diminishing
of total variation allow to carry out calculations of high resolution and
to prevent nonphysical oscillations beyond shock wave fronts. Schemes
of this type are of different order of accuracy in the domains with steep
and low gradients. Application of these schemes in tree-dimensional
case produces especially good results while simulating collapsing stars.

Equations that govern hydrodynamic motion are conservation laws
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for mass, momentum, [6] and energy. The conservation form of hy-
drodynamic equations in terms of Eulerian coordinate system is the
following:

∂ρ

∂t
+

∂ρ

∂xi
(ρvi) = 0, (1)

∂ρvi

∂t
+

∂

∂xi
(ρvivj + Pδij) = 0, (2)

∂e

∂t
+

∂

∂xi
[(e + P )vi] = 0. (3)

The influence of gravitational field is omitted in equations (1) - (3)
as well as the action of other sources of energy, for example, neutrino
radiation. The equation of state may be written as follows

P = (γ − 1)ε, (4)

here ρ is the density, v is the vector of speed and P is the pressure,
besides that the total energy is e = 1

2ρv2 + ε.
A TVD scheme was applied to the equations (1) - (3) in [7, 8]. A

common restriction of oscillations is a nonlinear condition of stability.
The discrete solution for TVD scheme may be defined in the following
way

TV (ut) =
N∑

i=1

|ut
i+1 − ut

i| (5)

as a measure of total amount of oscillations.
Thus using second order accurate fluxes F

(2)t
i+1/2 across cells bound-

aries a nonlinear TVD scheme may be presented in another way. Sec-
ond order fluxes are derived from first order accurate fluxes F

(1)t
i+1/2 for

the upwind scheme applying second order accurate correction. First
order accurate flux is obtained, in turn, from the flux mean values.
Second order accurate correction is introduced in order to bound spu-
rious oscillations. Hence the number of oscillations on the current time
step must not exceed the number of oscillations on the previous one.
TV (ui+1) ≤ TV (ui).
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Figure 1. TVD scheme using vanLeer flux limiter (stared line) in
comparison with analytical solution (solid line)

Different flux limiters are used in order to limit oscillations , specif-
ically, minmod, superbee, vanLeer. The former limiter chooses the
smallest absolute value from between the left and right corrections:

minmod(a, b) =
1
2
[sign(a) + sign(b)] min(|a|, |b|). (6)

The superbee limiter choses between the larger correction and 2
times the smallest correction, whichever is smaller in magnitude

superbee(a, b) =

{
minmod(a, 2b), if |a| ≥ |b|,
minmod(2a, b), if |a| < |b|. (7)

The vanLeer limiter is the most moderate of all limiters and finds
a harmonic mean between left and right corrections

vanleer(a, b) =
2ab

a + b
.
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The test, proposed in [7], was used for checking the obtained computer
program

u0 =





−x sin(3
2πx2, −1 ≤ x < −1

3 ,

| sin(2πx)|, |x| < 1
3 ,

2x− 1− 1
6 sin(3πx), 1

3 < x < 1.

(8)

The solution obtained by TVD scheme with the vanLeer limiter
(stared line) is presented in Figure 1. The analytical solution (solid
line) is included for comparison. The Courant – Friedrich’s – Levy
number CFL = 1. A close agreement between numerical and analyti-
cal solutions should be noted [8].

1.3 Equations of gravitational gas dynamics

The solution of equations of gravitational gas dynamics that describes
the collapsing star may be written in the following way

∂ρ

∂t
+

∂ρ

∂xi
(ρvi) = 0, (9)

∂ρvi

∂t
+

∂

∂xi
(ρvivj + Pδij) = −ρ

∂φ

∂xi
, (10)

∂e

∂t
+

∂

∂xi
[(e + P )vi] = −ρvi

∂φ

∂xi
. (11)

The value of gravitational potential φ is defined from Poisson equa-
tion: 4φ = 4πGρ. Equation of state is used in the form of (4). In the
equations from above ρ - density, v - field of velocities, P - pressure, ε
- specific internal energy, e - total energy:

e =
1
2
ρv2 + ε . (12)

TVD scheme testing was accomplished for the Sedov-Taylor test-
problem of point explosion. For this purpose computational domain
was defined in the form of a cube with 128 cells. The cube domain is
filled in with the medium of constant density ρ1 while the pressure is a
negligible quantity. A high energy deposition takes place at the moment
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Figure 2. Pressure profile for the Sedov–Taylor test problem

t=0 in the center of the computational domain. Pressure profile is
plotted in the Figure 2 at the moment t = t*. A good coincidence of
numerical and analytical results has to be mentioned.

1.4 The main results

Let us consider the case of interaction of two shocks. Two sources of
energy are placed in the center of a cube for this purpose. Instanta-
neous energy production takes place in the start time and the explosion
is of the same yield as in the previous section. The complexity of this
test consists in the necessity of an accurate computation of interac-
tion of two shock waves. This test is more often used in astrophysical
computations as a basis of supernova explosion simulating.

Pressure profile is plotted in the Figure 3 for the problem (1)-(3).
The initial density and energy are respectively: ρ0 = 1.0 and E = 105.
The problem was solved for the case of rectangular coordinate system
which is not invariant with respect to the rotation. However, the non
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Figure 3. Pressure distribution for the case of two interacting shocks.

isotropic dispersion is not large. One can observe that the numerical
solution has spherically symmetric form. Shock wave resolution is of
two space cells dimension. Numerical scheme testing convinced us that
TVD scheme may be used in solving supernova explosion problems.

Adaptive mesh techniques are currently being used for the improv-
ing of the accuracy of numerical calculations as well as of the algorithm
efficiency. The methods of this type allow to reduce the computing time
and to narrow the volume of employed memory. These techniques are
especially effective in solving the problems of gas dynamics charac-
terized by apparition of compression waves, shock waves and contact
discontinuities. The use of adaptive meshes makes it possible to in-
vestigate the processes with a desirable degree of accuracy in complex
geometry domains or steep gradients. AMR method allows to decrease
the number of cells and therefore the time of computing. AMR tech-
nology is based on use of cells hierarchical structure. In this case every
level of the hierarchy is referred to its level of spacial and time reso-
lution. The possibility to add cells to a fixed place of computational
domain locally and dynamically is the characteristic property of AMR
methods. An algorithm for the refinement of the mesh on several levels
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with consecutively diminishing space steps is proposed in this work.
Nested meshes were used for solving three-dimensional Poisson

equation, for example in [10, 11]. The density of collapsing star varies
in many degrees. The density on the surface is not large but in the cen-
ter the order of density increases up to 1014g/cm3. Nested and refined
meshes were built in order to take account on such enormous variation
of density. In the center of computational domain a cube with the size
of cells in 23 times smaller than the initial size of the cells was ex-
tracted. In the center of specified cube another cube was constructed
with smaller dimension of cells. Dimensions of the nested cube were
equal to M3, here the value of M is varying from 64 up to 1024 cells.
The solution of Poisson equation was found with the help of successive
over-relaxation method. The density profile and the particles paths for
two interacting shock waves are plotted in the Figure 4. Calculations
were carried out on the 1024x1024x1024 mesh.

Figure 4. Distribution of the density and the particles paths for the
1024x1024x1024 mesh.

A parallel algorithm for solving Poisson hydrodynamic equations
was constructed [11]. The algorithm efficiency is the highest one for
8-12 processors but for the greater number of processors the loss of
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efficiency is observed. Calculations have been performed on the high
performance computing cluster of the Institute of Mathematics and
Computer Science of the Academy of Sciences of Moldova.

1.5 Summary

A parallel algorithm and a code for three-dimensional gravitational
gas dynamic equations were provided in this work. For this purpose a
TVD scheme possessing high resolution in the regions of shock fronts
and steep gradients was used. Numerical calculations obtained on the
sequence of nested meshes have been presented. Calculations were
implemented on the meshes from 64x64x64 to 1024x1024x1024 nodes
up to 5 nesting levels. It was demonstrated that the algorithm is quite
efficient for 8 – 12 processors.

The results of computer modeling obtained in this work were visu-
alized with the help of HDVIS program [12].

This article has been written under the support of the grant RFFI-
Moldova ( Space Research Institute of the Academy of Sciences of Rus-
sia – Institute of Mathematics and Computer Science of the Academy
of Sciences of Moldova) 08.820.06.40 RF.
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Computational Experiments on the Tikhonov

Regularization of the Total Least Squares

Problem

Maziar Salahi∗ Hossein Zareamoghaddam

Abstract
In this paper we consider finding meaningful solutions of ill-

conditioned overdetermined linear systems Ax ≈ b, where A and
b are both contaminated by noise. This kind of problems fre-
quently arise in discretization of certain integral equations. One
of the most popular approaches to find meaningful solutions of
such systems is the so called total least squares problem. First we
introduce this approach and then present three numerical algo-
rithms to solve the resulting fractional minimization problem. In
spite of the fact that the fractional minimization problem is not
necessarily a convex problem, on all test problems we can get the
global optimal solution. Extensive numerical experiments are re-
ported to demonstrate the practical performance of the presented
algorithms.

Keywords: Linear systems, Total least squares, Tikhonov
regularization, Newton method, Bisection method.

1 Introduction

In this paper we aim to find meaningful solutions for the linear systems
of the form

Ax ≈ b, (1)

where A ∈ Rm×n, b ∈ Rm, m ≥ n are both contaminated by noise.
This kind of systems frequently arise in discretization of certain integral
equations [3].

c©2009 by M. Salahi, H. Zareamoghaddam.
∗ This author is a corresponding author
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If A is ill-conditioned, a quite effective procedure to find a rea-
sonably good solution for (1) is to use the regularized least squares
approach. Perhaps the best known regularization technique is due to
Tikhonov [6], which solves the following minimization problem rather
than classical least squares one:

min
x∈Rn

‖Ax− b‖2 + ρ ‖x‖2 , (2)

where ρ is a positive constant.
It is worth mentioning that when ρ = 0 (the classical least squares

approach), and A is ill-conditioned, then the solution of (2) might have
large norm, while for positive ρ it is not the case. It is not easy to
find the exact value of ρ, however there have been some studies on this
subject [5]. It is obvious that (2) is a convex minimization problem
and its optimal solutions should satisfy

(AT A + ρI)x = AT b. (3)

We may use existing efficient iterative algorithms like conjugate gradi-
ent methods to solve (3).

Another most popular approach to deal with such systems is the
so called total least squares problem [1, 4]. This approach leads to a
fractional nonconvex minimization problem. In this paper we present
three efficient algorithms to solve it. Extensive numerical results are
reported to show the efficiency of the discussed algorithms.

2 Total least squares problem

In this approach, one aims to find a feasible system by minimal changes
in problem data i.e.,

min
x,E,r

‖E‖2 + ‖r‖2

(A + E)x = b + r. (4)

The optimal E and r values are given in the following theorem.
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Theorem 1. The optimal E and r values of problem (4) are given by

r∗ =
Ax∗ − b

1 + ‖x∗‖2 , E∗ = − Ax∗ − b

1 + ‖x∗‖2 x∗T

where x∗ is the optimal solution of

min
x∈Rn

‖Ax− b‖2

1 + ‖x‖2 . (5)

Proof. The minimization problem in (4) can be written as two mini-
mization problems as follows:

min
x∈Rn

min
E,r

‖E‖2 + ‖r‖2

(A + E)x = b + r.

Let us first consider the inner minimization problem. Obviously it
is a convex optimization problem, therefore the KKT conditions are
necessary and sufficient for optimality that follows:

2E∗ + λ∗xT = 0
2r∗ − λ∗ = 0 (6)
(A + E∗)x− b− r∗ = 0,

where the vector λ∗ denotes the lagrange multipliers. From the sec-
ond equation of (6) we have λ∗ = 2r∗ and subsequently from the first
equation we have E∗ = −r∗xT . Finally, the last equation implies that

r∗ =
Ax− b

1 + ‖x‖2 ,

and subsequently

E∗ = − Ax− b

1 + ‖x‖2 xT .

Now the objective function of inner minimization problem becomes

‖Ax− b‖2

1 + ‖x‖2 .
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Thus if x∗ be an optimal solution of this problem, then the proof is
completed.

Therefore, by solving this minimization problem we have a mod-
ified linear system which is feasible. Since the original system is ill-
conditioned, then the solution of (5) might be meaningless from prac-
tical point of view due to the large norm. Thus we can stabilize the
solution by utilizing the Tikhonov regularization technique. The regu-
larized problem becomes:

min
x∈Rn

f(x) :=
‖Ax− b‖2

1 + ‖x‖2 + ρ ‖x‖2 , (7)

where ρ is a nonnegative parameter. As it is obvious, problem (7) is
not known to be convex or concave in general. In the sequel we present
several numerical algorithms, which can help us to solve (7) up to global
optimality. First let us derive the gradient and hessian of the objective
function of (7) as follows:

∇f(x) =
2AT (Ax− b)

1 + ‖x‖2 − 2 ‖Ax− b‖2 x

(1 + ‖x‖2)2
+ 2ρx

∇2f(x) =
2AT A

1 + ‖x‖2 −
4x(AT (Ax− b))T

(1 + ‖x‖2)2
+ 2ρI − 4AT (Ax− b)xT

(1 + ‖x‖2)2
+

(
8xxT

(1 + ‖x‖2)3
− 2

(1 + ‖x‖2)2
I

)
‖Ax− b‖2 .

The first approach which we utilize to tackle (7) numerically is the
classical Newton method. During this process one might end up with
an iterate when the hessian is singular or very close to singularity, but
a slight perturbation of it usually resolves this bad behavior. Although
the objective function of (7) is not known to be convex, but for most
of the test problems we have considered, it yields a global solution as
it will be shown in the next section. The structure of the algorithm is
as follows:
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Newton Based Algorithm

Inputs: An accuracy parameter ε > 0;
A regularization parameter ρ;
A parameter δ usually 10−4;
A starting point x0 ∈ Rn.
begin
i=0;
while ‖∇f(xi)‖ ≥ ε
Find an appropriate α by Armijo line search and let
xi+1 = xi − α(∇2f(xi) + δI)−1∇f(xi).
i=i+1;
end
end

In the sequel we present another algorithm by an old idea due to
Dinkelbach [2] which uses an equivalent formulation of the problem (7)
to solve it. It is obvious that

min
x∈Rn

{‖Ax− b‖2

1 + ‖x‖2 + ρ ‖x‖2} ≤ t

is equivalent to

min
x∈Rn

{‖Ax− b‖2 − t(1 + ‖x‖2) + ρ(‖x‖2 + ‖x‖4)} ≤ 0. (8)

Now let us define

Φ(t) = min
x∈Rn

{‖Ax− b‖2 − t(1 + ‖x‖2) + ρ(‖x‖2 + ‖x‖4)}.

Lemma 1. The function Φ(t) is a strictly decreasing function.

Proof. Let t1 < t2 and xt1 be the point for which

Φ(t1) = ‖Axt1 − b‖2 − t1(1 + ‖xt1‖2) + ρ(‖xt1‖2 + ‖xt1‖4).

Then we have

Φ(t1) > ‖Axt1 − b‖2 − t2(1 + ‖xt1‖2) + ρ(‖xt1‖2 + ‖xt1‖4) ≥ Φ(t2).
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Therefore, Φ(t1) > Φ(t2).
We further have that Φ(0) > 0 and

Φ(‖b‖2) ≤ ‖A0− b‖2 − ‖b‖2 (1 + ‖0‖2) + ρ(‖0‖2 + ‖0‖4) = 0

Therefore function Φ(t) has a unique root in the interval [0, ‖b‖2]. Now
our goal is to find this root. First in the Next lemma we prove that
this gives us the global minimum of (7). Then explain how to find the
root numerically.

Lemma 2. The root of the function Φ(t) gives the global minimum of
problem (7).

Proof. Let t∗ be the root of Φ(t). Then

min
x∈Rn

{‖Ax− b‖2 − t∗(1 + ‖x‖2) + ρ(‖x‖2 + ‖x‖4)} = 0.

Let x∗ be the point on which this minimum happens. Then for any
x ∈ Rn one has

‖Ax− b‖2 − t∗(1 + ‖x‖2) + ρ(‖x‖2 + ‖x‖4) ≥ 0,

or
‖Ax− b‖2

1 + ‖x‖2 + ρ ‖x‖2 ≥ t∗.

This further implies that

min
x∈Rn

{‖Ax− b‖2

1 + ‖x‖2 + ρ ‖x‖2} ≥ t∗,

but at least we know that equality holds when x = x∗. Thus x∗ is the
global minimum of (7).

Now, to find the root of function Φ(t) we utilize the bisection algo-
rithm to reduce the initial interval [0, ‖b‖2] and also the classical New-
ton method to solve the corresponding minimization problem. Similar
to the fractional case, here also we do not know whether the objective
function is convex or not. But this simple procedure leads us to the
global minimum for all test problems.
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However, as we are aware, the bisection method is usually too slow,
so the third approach which we consider is as follows. First we perform
a few iterations of bisection algorithm, then crossover to formulation
(7) rather than finding the root of function Φ. This combined algo-
rithm finds the global solution much faster compared to both previous
algorithms. In the next section we report extensive numerical testing
which demonstrates the practical performance of the three presented
algorithms.

3 Computational experiments

Test problems in Tables 1 and 2 are taken from [5] which contains
ill-posed linear systems arising from certain integral equations, and
problems on Table 3 are taken from University of Florida sparse matrix
collection. The implementation of the algorithms are done in MATLAB
7.4 on a pentium M 1.7GHz laptop with 1 GB of memory. All test
problems are square, however they can easily be made overdetermined
by repeating some constraints with slightly different right hand side
and still the same observations, which will be given in the sequel, hold.

For all test problems the coefficient matrices are either singular or
very close to singularity. Moreover, for problems in Tables 1 and 2
we have the exact solution and for problems in Table 3 we consider
all one vector as the exact solution. Furthermore the noisy system is
generated by perturbing A and b by adding ‘1e − 3 ∗ randn(size(A))’
and ‘1e− 3 ∗ randn(size(b))’ respectively. Since the coefficient matrix
is singular or very close to singularity, then either system Ax = b is
infeasible or its solution might have very large norm. Therefore the
total least squares approach is utilized to find an appropriate feasible
system with a meaningful solution.

In all tables xs and x∗ denote the exact and computed solution of
problems, respectively and ‖Ax∗ − b‖ denotes the violation of the com-
puted solution from the original system. The numbers in all parenthesis
are for the classical Newton method, bisection method, and bisection-
Newton method (crossover) respectively. For all test problems we have
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used 10 ∗ ones(n, 1) as the starting point1 with four different values of
the ρ parameter. Having prior information of the solution also indeed is
suggested to be incorporated as the starting point selection procedure.

As our computational results show, the classical Newton method
solves all problems for ρ = 0.1, 1, 10 faster than the other two ap-
proaches, however it fails for many problems when ρ = 0.001. It is
worth to note that by changing the starting point to for example
100 ∗ ones(n, 1) Newton method solves some of the failed problems.
However, the other two approaches successfully solve all problems for
all ρ values up to global optimality. Therefore, based on these compu-
tational results we may conclude that for smaller ρ values the later two
approaches are preferred to Newton algorithm, specially the crossover
approach, otherwise the Newton algorithm seems to find the global
solution much faster.

4 Conclusions

In this paper, first we have introduced the total least squares problem
to deal with approximate feasible linear systems. Then three numerical
algorithms are presented to solve the resulting fractional minimization
problem. Finally, several numerical examples are presented to demon-
strate the practical efficiency of the presented algorithms.
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Conceptual issues in development of

telemedicine in the Republic of Moldova

I. Ababii, C. Gaindric, O. Lozan, I. Brinister

Abstract

The article discusses a concept of development of telemedicine
in the Republic of Moldova that determines the role and place of
telemedicine in the structure of health services and sets priority
development directions, considering the processes of development
of the Republic of Moldova and its objective of integration with
the European Union.

In the article we refer to telemedicine as to the use of informa-
tion technology to deliver medical services and information from
one location to another [1].

1 Background

The process of information society development in the Republic of
Moldova bases on the National e-Strategy for Building an Information
Society ”Electronic Moldova”, approved by the Government Decision
nr. 255 from March 9, 2005. In the framework of the Strategy, e-Health
chapter refers to the need of telemedicine implementation in health care
system.

During last years, a strong growth in utilization of ICT in health
care system is observed. A range of management information systems
for primary care, health care insurance administration, a National Au-
tomated Information System ”State register of medicines”, manage-
ment information systems for blood transfusion service (including the
National register of donors and the informational register of blood prod-
ucts), and for monitoring and evaluation of the National programme
on control and prevention of tuberculosis were developed.

c©2009 by I. Ababii, C. Gaindric, O. Lozan, I. Brinister
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Automation of medical information and data circulation is being
on an initial stage of development.

Presently, pilot telemedical projects are implemented in the area of
perinatology and neurology. Telemedical videoconferencing and Web-
based education support are applied in distant learning programmes
for health professionals. There is some trial experience in conducting
international telemedical consultations.

Recently, a telemedical link for consultation of neurology patients
was implemented between the Neurology and Neurosurgery Institute in
Chisinau, and neurology department in the municipal hospital in Balti.
Using a videoconferencing link and a hospital management suite imple-
mented in the Institute, neurology specialists from Balti can conduct
real-time consultations with high class specialists of a leading repub-
lican institution. The implemented neurology telemedical system is
expected to considerably increase the quality of care provided to neu-
rology patients, especially in emergency cases, and become a lighthouse
experience for other health care institutions in Moldova.

At the international level, implementation and utilization of telemed-
ical services frames into a general effort of modernization of health ser-
vices with the purpose of improving quality and accessibility of them.

Telemedicine optimizes utilization of health care systems resources
and reduces the costs of treatment and care by improving communi-
cation among providers and access to health information for patients.
Telemedical distant learning environments help to improve training of
doctors and nurses, and educate and manage patients with chronic con-
ditions. Calculations suggest that presently, about 0.1% of potential
telemedicine demand is met in developing countries [2].

A EU report covering wider area of e-Health [3] outlined that the
economic impact of all ten sites participated in the Study on Economic
Impact of e-Health was positive, and on average it took four years to
reach the level of benefits prevailing over costs. Utilization of e-Health
solutions, including telemedical ones, grew, in some cases, exponen-
tially, and showed a steady growth over a longer period of time, in
others. While the economic impact of e-Health benefits surged by ten
times between 1994 and 2004 from d20 million to d200 million per
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year, the associated costs remained stable, and did not exceed d100
million per year. In all e-Health applications a prominent impact was
observed over the effect of the application on timeliness, effectiveness
and efficiency of health service.

WHO continuously supports the efforts of the member states in
developing telemedicine by providing assistance in identification of pri-
orities, elaboration of e-Health and telemedical policy documents, con-
solidation of the legal, normative and ethical base in the area of health
information utilization, dissemination of best practices and facilitation
of implementation for National technical programmes.

In the Regulation COM (2008) 689 from 4.11.2008 on telemedicine
for the benefit of patients, healthcare systems and society, the Euro-
pean Commission underlines the importance of telemedicine, and, for
better implementation of telemedical services offers its member-states
large facilities for building the confidence and acceptance of telemedi-
cal services, introduction of legal clarity, solution of technical issues of
compatibility and standardization, and facilitation of market relation
in the area.

During 2009-2011, EU member-states are required to complete
baseline evaluations and develop national regulation regarding access
to telemedical services, including accreditation, jurisdiction and profes-
sional accountability, service reimbursement methods, confidentiality
and security of data.

Best international telemedical practices include both telemedical
services improving access of patients to health services in hard-to-reach
areas and in critical conditions, and telemedical services targeting im-
provement of quality of health care services, optimization of health
care system resources utilization, reduction of individual expenditures
of patients in highly populated areas with a better access to ICT.

2 Baseline scenario

Despite the progress in health sector reforms, there is a range of draw-
backs and problems related to accessibility and quality of health ser-
vices, and to organization of health services for the population:
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• distribution of health care personnel over the territory of the
Republic of Moldova is non-uniform;

• there is a disparity in the level of professional training of health
care personnel from rural and urban areas;

• emergency service, due to lack of mobile consulting and diagnos-
tics tools, looses critical time to save lives of patients;

• the quality and volume of health care services provided can not
be fully managed under existing practices of health services pro-
vision;

• private expenditure for patients from rural areas for visiting mu-
nicipal and republican health care facilities, are much larger than
for inhabitants of municipalities;

• systems for management of chronic conditions, remote monitoring
and home care are underdeveloped;

• management of emergency situations, natural disasters and man-
caused catastrophes is weak.

The professional level of health care personnel does not correspond
to the growing requirements in health care system, and distant profes-
sional consulting and training resources are limited.

Continuous professional training of health personnel presently uses
the methods that do not fully ensure continuity of professional train-
ing, and imply in training process additional considerable side costs
(extended absence from work place, cost of travel and accommodation
of health care personnel during the training etc.)

ICT infrastructure in health care system is underdeveloped limiting
the possibilities for optimization of health data circulation. Existing
capacities of health care system provide weak continuity of health in-
formation among different care levels.

Access to ICT in professional activity, and IT knowledge among
medical personnel is subambient. The level of awareness and accep-
tance of telemedical services is limited.
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Existing instruments for informing the population regarding health,
disease prevention and promotion of health lifestyle are not ample for
improvement of the population’s health, if we consider growing non-
communicable and communicable morbidity and mortality, and preva-
lence of pernicious behaviour and habits observed.

There is a disparity between offer and demand for health services
on-line in Moldova. More than a third of Internet users in the Republic
of Moldova [4] are pushed to look for health information in the Internet
on foreign health information resources. Presence of national health
care institutions on the Internet does not exceed 5% [5], and national
useful health information resources are limited.

Cooperation in the area among different stakeholders is inadequate
and does not allow effective coordination of the integrated development
of telemedicine.

International professional and scientific integration of health care
institutions and doctors from the Republic of Moldova is insufficient,
both on crossborder cooperation between health care facilities and
health care personnel, and in accessing international sources of medical
data for application in professional and scientific activity.

3 Telemedicine development path

Telemedical services represent a range of secured processes of obtain-
ing, transmission, reception, processing, storing and analysis of medical
data and information with further formulation of a diagnosis and rec-
ommendations for treatment, or direct provision of health service, or
distant learning in health care, using ICT available.

The term telemedicine refers to:

• Telemedical consultations - medical consultation with the pur-
pose of remote diagnosing or treatment by the mean of ICT. A
complete clinic case or separate clinic data case be the object of
a telemedical consultation [6].

• Telemonitoring/telemetry - a range of telemedical services to re-
motely monitor and manage health of a patient [7].
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• Telemedical distant learning - distant learning using telemedical
links (videoconferencing, Web, etc.), including professional train-
ing of medical personnel, educating patients and the population.

Introduction of telemedical consultation, tools for patient monitor-
ing, distant learning for medical personnel, patients and the population
is expected to contribute to solving of a range of issues in health care
sector.

Considering the need for an integrated approach to issues of
telemedicine development, social importance and economic impact of
them, the issue of infrastructure development for telemedical services
should be tackled as well, while developing telemedicine projects and
implementing them in clinical practice. Following directions and mea-
sures are suggested for development:

• implementation of telemedical consultative services in different
level of care (primary, hospital, emergency care);

• creation of remote monitoring and home care services based on
ICT for elderly, convalescent patients, for patients with chronic
conditions, disabilities, pregnant women and young mothers;

• introduction of modern distant learning methods with applica-
tion of telemedical technologies as videoconferencing and Web to
training of medical personnel;

• stimulation of public health care institutions to increasing connec-
tivity for institutions, equipping the institutions with productive
modern and compatible IT equipment and medical appliances
with the capacity to obtain, stock, transmit, receive and analyze
digital data and images within national telemedical network;

• creation of telemedical service for emergency situations and dis-
asters;

• wider application of Internet and other communication services
in public health programmes;
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• creation and maintenance of web-pages of health care institutions,
through a common effort of the Ministry of Health and health care
facilities;

• elaboration of standards and ethical code of conduct for exchange
of medical information and provision of telemedical services in the
Internet.

Facilitation of international cooperation in the area of telemedicine
is especially important. Participation to regional and international
telemedical networks and projects, joining international professional
associations, facilitation of exchange programmes in telemedicine con-
tributes to knowledge transfer, and improves access of doctors to reli-
able international health data and medical information.

Information technology underlying telemedicine, offers new pos-
sibilities for collaborative work of health professionals from different
countries with proficient communication and health data exchange.
Accumulated experience shows that development of international co-
operation between clinicians by the mean of telemedicine contributes
to growth of the quality and accessibility of health care services with
simultaneous reduction of costs in many cases.

It can be observed that development directions refer to different
domains of health care and ICT. Proper management of coordination
and monitoring of the development of telemedical support for health
care system is important for optimal utilization of available resources,
and maintenance of continuity and integrity of telemedical services.
Therewith, efficient coordination helps to better accumulate national
experience and knowledge in the area of telemedicine.

Introduction of new market condition in health care increased op-
portunities for investment attraction, including private, in health care
system. Application of private-public partnerships can be one of the
means for attracting investment for telemedical services by health care
institutions.
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4 Evaluation of the impact of telemedicine de-
velopment for the Republic of Moldova

Implementation of telemedicine in the Republic of Moldova will con-
tribute to:

• approximation of high quality health services to the patients
home, including rural and isolated areas;

• improvement of the quality of professional medical training at all
levels of care;

• improved informing of the population regarding health, and ac-
cessibility of useful public health information.

International experience suggests that along with growing utiliza-
tion rate of a telemedical service, the cost of the service decreases in
comparison with the costs of a similar traditional health care services
and training methods. By anticipating higher utilization levels for a
telemedical services, an advanced paypack period on investment into
telemedicine can be achieved.

It is expected that successful implementation of telemedical con-
sultations will contribute to financial savings in health care system,
through extending the range cost-effective health services available at
primary and secondary level, and optimization of patient pathways in
system.

Telemedical monitoring and homecare services should contribute to
prevention of hospitalization and reductionist duration with concomi-
tant savings.

Economic impact of telemedicine in Moldova can be demonstrated
on the example of the emergency service. The process of emergency
solicitation involves a telephone probe that reduces the number of un-
justified solicitations.

Evaluation of the application of videoconferencing to continuous
education of medical professionals demonstrated high appreciation of
this method of training and its quality. The economic efficiency of
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telemedical training was found much higher compared to traditional
education and training means.

Rapt interest to telemedicine in developed countries is conditioned
by the social impact of telemedicine on accessibility and quality of
health care services and strengthening health and quality of life for the
population.

Telemedical consultations contribute to levelling distribution of
health care personnel in the country, and bring specialized health care
closer to patients home. Private expenditure of patients on costly travel
to republican institutions goes down correspondingly. Application of
telemedical consultations can improve access to health services of a
range of target groups (poor, pregnant women and young mothers, pa-
tients with chronic conditions, disabled, prisoners, other socially vul-
nerable groups).

Telemedical remote monitoring improves the quality of supervision
and treatment of patients in outpatient conditions, prevention and
early detection of complications and emergency conditions. Telemedi-
cal homecare prevents institutionalization of persons with special needs
and improve the quality of their lives in communities.

Improving the quality of health care services is indispensable from
the continuous professional training of health care personnel. Intro-
duction of new forms of professional training with application of ICT
will contribute to the growth of competences among health care per-
sonnel that will help to improve the quality of health care services they
provide.

Provision of the access to reliable health information for the popu-
lation and patients will contribute to increase of personal responsibility
for health, accompanying reduction of health risks, and improvement
of the national health indicators.

Wide introduction of telemedical services will also influence the
transparency of relations between health care provider and patients,
simultaneously reducing corruption in health care system.

The possibility of extending the access to cost-effective medical ser-
vice in rural or isolated areas is an important argument for development
of telemedicine in the Republic of Moldova, where more than half of
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the population lives in rural areas.
Stimulating participation of health institutions from the Repub-

lic of Moldova to international telemedical networks should improve
mobility both for patients and health professionals from Moldova and
other countries, regarding obtaining required health service or getting
a consultation of a health profession anywhere, including abroad.

In case the country fails on effective coordination of development
processing in telemedicine, telemedical applications will continue de-
veloping in a sporadic way, a fact proved by early experiences in many
countries. The costs of isolated telemedical projects jumps high, but
the results obtained can be non-satisfactory. Most of patients will be
deprived from the opportunity to benefit from cost-effective ICT facil-
ities that improve accessibility and quality of health services.

Without wider application of ICT in clinical practice, the costs
of health care services will be strongly dependent on the continuous
growth of health care personnel reimbursement expenditure, both med-
ical and non-medical.

Utilization of existing methods of continuous professional training
will continue training of weak health care personnel, maintaining the
inadequacy of health care system capacities.

The process of European integration of the Republic of Moldova
will be affected by the incapacity of the country to correspond to EU
community requirements to the process of maintaining population’s
health.

Through wider implementation and utilization of telemedicine, Re-
public of Moldova will make an important step to realization of the
human right on qualitative health services in the necessary place at
the right time.
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About one algorithm of C2 interpolation using

quartic splines

Igor Verlan

Abstract

The problem of C2 interpolation of a discrete set of data on
the interval [a,b] representing the function f using quartic splines
is investigated. An explicit scheme of interpolation is obtained
using different quartic splines on even and odd subintervals of
interpolation.

Mathematical Subject Classification: 41A05, 41A15
Keywords and phrases: interpolation, quartic splines, ex-

plicit interpolation.

1 Introduction

Let us suppose that the mesh ∆ : a = x0 < x1 < ... < xn = b is
given and fi = f(xi), i = 0(1)n are the corresponding data points. The
problem of the construction of an interpolation function S ∈ C2[a, b]
is considered. It is well known (e.g. [1]) that cubic splines may be
used in order to solve this problem. In this case you have to solve a
tri-diagonal system of linear algebraic equations, which is diagonally
dominant one. Well, but in the case of very large set of data you might
have problems with capacity of your computer in order to solve this
problem. In the case when additional data are available and you have
to solve the problem again, it may become critical. In the case of two-
dimensional interpolation it is much more difficult to overcome these
problems. In what follows quartic splines are considered in order to
solve this problem.

c©2009 by I.Verlan
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2 Algorithm of interpolation using quartic
splines

In what follows the next notations are used: mi = S′(xi), Mi = S′′(xi),
hi = xi+1 − xi, t = (x− xi)/hi, δ

(1)
i = (fi+1 − fi)/hi.

The following three cases are considered.

a) Let us introduce splines as follows

S(x) = fi + (fi+1 − fi)t + h2
i Mi(t4 − 3t3 + 3t2 − t)/6−

−h2
i Mi+1(t4 − 3t3 + 2t)/6 (1)

For derivatives we have

S′(x) = δ
(1)
i + hiMi(4t3 − 9t2 + 6t− 1)/6−
−hiMi+1(4t3 − 9t2 + 2)/6 (2)

and
S”(x) = Mi(2t2 − 3t + 1)−Mi+1(2t2 − 3t) (3)

From (1) it follows immediately that interpolation conditions are
fulfilled. From (3) it follows that the second derivative is the continuous
one at the knots of the mesh.

From (2) for the first derivative at the knots of the mesh we obtain

S′(xi+) = δ
(1)
i − hiMi/6− hiMi+1/3 (4)

and
S′(xi−) = δ

(1)
i−1 + hi−1Mi/2 (5)

From the requirement of continuity of the first derivative at the
knots of the mesh the following system of equations is obtained:

(3hi−1 + hi)Mi/6 + hiMi+1/3 = δ
(2)
i , i = 1(1)n− 1,

where δ
(2)
i = δ

(1)
i − δ

(1)
i−1, i = 1(1)n− 1.
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As it can be seen, the system presented above is the undeter-
mined one. In this case end conditions are required. But, it should
be mentioned, for example, that if we have end conditionsM0 = f”(a)
and Mn = f”(b), in the sistem given above the value of M0 is not
present.

If the reprezentation of the spline via the first derivatives is used
we have

S(x) = fi + (fi+1 − fi)(2t4 − 6t3 + 5t2) +
+himi(−t4 + 3t3 − 3t2 + t) + himi+1(−t4 + 3t3 − 2t2), (6)

S′(x) = δ
(1)
i (8t3 − 18t2 + 10t) + mi(−4t3 + 9t2 − 6t + 1) +

+mi+1(−4t3 + 9t2 − 4t), (7)

S”(x) =
δ1
i

hi
(24t2 − 36t + 10) +

mi

hi
(−12t2 + 18t− 6) +

+
mi+1

hi
(−12t2 + 18t− 4). (8)

From (6) it follows that interpolation conditions are fullfilled and
from (7) it follows that the first derivative is the continuous one at the
knots of the mesh.

From (8) it follows

S”(xi+) = 10
δ
(1)
i

hi
− 6

mi

hi
− 4

mi+1

hi

and

S”(xi−) = −2
δ
(1)
i−1

hi−1
+ 2

mi

hi−1
.

From the requirement of continuity of the second derivative the
following system of equations is obtained:

(hi + 3hi−1)mi + 2hi−1mi+1 = 5hi−1δ
(1)
i + hiδ

(1)
i−1, i = 1, n− 1,
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which is the undetermined one and end conditions are required.

b) Let’s consider now the splines in the following form:

S(x) = fi + (fi+1 − fi)t + h2
i Mi(−t4 + t3 + 3t2 − 3t)/6 +

+h2
i Mi+1(t4 − t3)/6. (9)

For derivatives we have

S′(x) = δ
(1)
i + hiMi(−4t3 + 3t2 + 6t− 3)/6 + hiMi+1(4t3 − 3t2)/6

S”(x) = Mi(−2t2 + t + 1) + Mi+1(2t2 − t).

As in the previous case the interpolation conditions are hold and
the second derivative is continuous at the knots of the mesh.

In this case at the knots of the mesh for the first derivative we have

S′(xi+) = δ
(1)
i − hiMi/2 (10)

and
S′(xi−) = δ

(1)
i−1 + hi−1Mi−1/3 + hi−1Mi/6. (11)

From (10) and (11) the corresponding system of linear algebraic
equations which ensure the continuity of the first derivative of the spline
at the knots of the mesh is obtained:

hi−1Mi−1/3 + (hi−1 + 3hi)Mi/6 = δ
(2)
i , i = 1(1)n− 1.

As in the previous case, if the representation via the first derivatives
of the spline is used, we have

S(x) = fi + (fi+1 − fi)(−2t4 + 2t3 + t2) +
+himi(t4 − t3 − t2 + t) + himi+1(t4 − t3), (12)

S′(x) = δ
(1)
i (−8t3 + 6t2 + 2t) + mi(4t3 − 3t2 − 2t + 1) +

+mi+1(4t3 − 3t2), (13)
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S”(x) =
δ
(1)
i

hi
(24t2 + 12t + 2) +

mi

hi
(12t2 − 6t− 2) +

+
mi+1

hi
(12t2 − 6t). (14)

At the knots of the mesh in this case

S”(xi+) = 2
δ
(1)
i

hi
− 2

mi

hi
,

S”(xi−) = −10
δ
(1)
i−1

hi−1
+ 4

mi−1

hi−1
+ 6

mi

hi−1
.

So, the next system of equations results in

2himi−1 + (3hi + hi−1)mi = 5hiδi−1 + hi−1δi, i = 1, n− 1.

c) Let us consider now a scheme of interpolation, when splines (1)
and (6) are used alternatively, namely on odd subintervals the splines
(1) are used and on even subintervals the splines (6), respectively. As
a result, at the odd knots of the mesh from (5) and (7) the following
condition of continuity of the first derivative is obtained:

Mi = 2δ
(2)
i /(hi−1 + hi) (15)

and for even knots of the mesh we get

2hi−1Mi−1 + (hi−1 + hi)Mi + 2hiMi+1 = 6δ
(2)
i . (16)

Substituting in (16) expressions which follow from (14) for Mi−1

and Mi+1 we get the next formulae for the second derivative at the
even knots of the mesh

Mi = 6(δ(2)
i − 2hi−1δ

(2)
i−1/(3(hi−2 + hi−1))−

−2hiδ
(2)
i+1/(3(hi + hi+1)))/(hi−1 + hi). (17)

So, we obtain an explicit scheme of interpolation.
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If the representation via the first derivatives is used we have

S”(xi−) = −2
δ
(1)
i−1

hi−1
+ 2

mi

hi
, (18)

S”(xi+) = 2
δ
(1)
i

hi
− 2

mi

hi
. (19)

From requirement of continuity of the second derivative of the spline
at the knots of the mesh it follows:

mi =
hi−1δ

(1)
i

hi−1 + hi
+

hiδ
(1)
i−1

hi−1 + hi
. (20)

Let’s consider the knots i + 1. In this case

S”(xi+1−) = −10
δ
(1)
i

hi
+ 4

mi

hi
+ 6

mi+1

hi
, (21)

S”(xi+1+) = 10
δ
(1)
i+1

hi+1
− 6

mi+1

hi+1
− 4

mi+1

hi+1
. (22)

Then we have the following:

2hi+1mi + 3(hi + hi+1)mi+1 + 2himi+2 = 5hiδ
(1)
i+1 + 5hi+1δ

(1)
i . (23)

Substituting formulae for mi and mi+2 which are obtained from
(20) in (23) we get

mi+1 =
1

3(hi + hi+1)

[
− 2hihi+1

hi+1 + hi+2
δ
(1)
i+2 + (5hi − 2hihi+2

hi+1 + hi+2
)δ(1)

i+1+

+(5hi+1 − 2hi−1hi+1

hi−1 + hi
)δ(1)

i − 2hi−1hi+1

hi−1 + hi
δ
(1)
i−1

]
(24)

and an explicit scheme of interpolation is obtained when representation
of spline via the first derivative is used.
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3 Remarks on errors of approximation.

We’ll consider the case of uniform mesh with step h. Then the formula
(15) has the form

Mi = (fi−1 − 2fi + fi+1)/h2 (25)

and the formula (17), respectively,

Mi = (−fi−2 + 5fi−1 − 8fi + 5fi+1 − fi+2)/h2. (26)

If the reprezentation via the first derivatives of the spline at the
knots of the mesh is used we have

mi =
fi+1 − fi

2h
, (27)

which follows from (20) and

mi+1 =
−fi+3 + 5fi+2 − 5fi + fi−1

6h
, (28)

which follows from (24).
The set of functions f , which have absolutely continuous derivatives

of order r−1 on the interval [a, b] and which have derivatives of order r
from L∞[a, b], is denoted by W r∞[a, b]. The norm in this case is defined
as follows:

‖f(x)‖∞ = ess sup |f(x)| , x ∈ [a, b].

Lemma 1 Let us suppose that f(x) ∈ W 3∞[a, b]. Then the following
estimates are valid for regular mesh:

∣∣mi − f ′i
∣∣ ≤ h2

6

∥∥∥f (3)(x)
∥∥∥∞ (29)

at the odd knots and

∣∣mi − f ′i
∣∣ ≤ 13h2

18

∥∥∥f (3)(x)
∥∥∥∞ (30)

for the even knots.
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Proof. Let’s consider the case (29).
We have ∣∣mi − f ′i

∣∣ =
∣∣∣∣
fi+1 − fi−1

2h
− f ′i

∣∣∣∣ .

Substituting fi+1 and fi−1 by the corresponding Taylor series ex-
pansions at the point xi with the remainder term in the integral form,
after necessary transformations we get

∣∣mi − f ′i
∣∣ =

1
4h

∣∣∣∣∣∣

xi+1∫

xi

(xi+1 − v)2 f (3)(v)dv −
xi−1∫

xi

(xi−1 − v)2f (3)(v)dv

∣∣∣∣∣∣
.

Using the Hölder inequality in the last relation and computing in-
tegrals the presented above estimation follows immediately.

Let’s consider now the case (30). We have

∣∣mi − f ′i
∣∣ =

∣∣∣∣
−fi+2 + 5fi+1 − 5fi−1 + fi−2

6h
− f ′i

∣∣∣∣ .

Using the corresponding Taylor series expansions for fi−2, fi−1,
fi+1, fi+2 with the remainder term in the integral form we get

|mi − f ′i | =
∣∣∣∣∣∣

1
12h


−

xi+2∫

xi

(xi+2 − v)2f (3)(v)dv+

+5

xi+1∫

xi

(xi+1 − v)2f (3)(v)dv − 5

xi−1∫

xi

(xi−1 − v)2f (3)(v)dv+

+

xi−2∫

xi

(xi−2 − v)2f (3)(v)dv




∣∣∣∣∣∣
.

From the last relation using the Hölder inequality and computing
integrals we get

∣∣mi − f ′i
∣∣ ≤ 13h2

18

∥∥∥f (3)(x)
∥∥∥∞ .

So, the lemma is proved.
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Lemma 2 Let us suppose that f(x) ∈ W 3∞[a, b]. Then the following
estimates are valid for regular mesh:

|Mi − f”i| ≤ h

3

∥∥∥f (3)(x)
∥∥∥∞

at the odd knots and

|Mi − f”i| ≤ 13h

3

∥∥∥f (3)(x)
∥∥∥∞

at the even knots.

The proof of the lemma 2 is the analogous one as for lemma 1.
Let us introduce now Hermite splines

H(x) = fi + (fi+1 − fi)(2t4 − 6t3 + 5t2) +
+hif

′
i(−t4 + 3t3 − 3t2 + t) + hif

′
i+1(−t4 + 3t3 − 2t2) (31)

and

H(x) = fi + (fi+1 − fi)(−2t4 + 2t3 + t2) +
+hif

′
i(t

4 − t3 − t2 + t) + hif
′
i+1(t

4 − t3). (32)

Lemma 3 Let us suppose that f(x) ∈ W 3∞[a, b]. Then for regular
mesh: ∥∥∥H(k)(x)− f (k)(x)

∥∥∥∞ = O(h3−k), k = 0, 1, 2.

Proof. Let’s consider the remainder term

R(x)=H(x)-f(x).

For the case (31), substituting Taylor series expansions for fi, fi+1,
f ′i , f ′i+1 at the point x = xi + th with remainder term in the integral
form after necessary transformations we obtain

R(x) =
xi∫

x

[
(xi − v)2(

1
2
− t4 + 3t3 − 5t2

2
)+

45



I.Verlan

+h(xi − v)(−t4 + 3t3 − 3t2 + t)
]
f (3)(v)dv+

+

xi+1∫

x

[
(xi+1 − v)2(t4 − 3t3 +

5t2

2
)+

+h(xi+1 − v)(−t4 + 3t3 − 2t2)
]
f (3)(v)dv.

Substituting in the previous relation v − xi = τh we get

R(x) = h3

t∫

0

ψ1(t, τ)f (3)(xi + τh)dτ + h3

1∫

t

ψ2(t, τ)f (3)(xi + τh)dτ,

where

ψ1(t, τ) = τ

[
−t4 + 3t3 − 3t2 + t− τ(

1
2
− t4 + 3t3 − 5t2

2
)

]

and

ψ2(t, τ) = (1− τ)

[
(1− τ)(t4 − 3t3 +

5t2

2
)− t4 + 3t3 − 2t2

]
.

From the above it follows that R(x) = O(h3).
Consider the case (32).

R(x) =
h3

2

t∫

0

ψ1(t, τ)f (3)(xi + τh)dτ +
h3

2

1∫

t

ψ2(t, τ)f (3)(xi + τh)dτ,

where
ψ1(t, τ) = τ(t4 − t3)− τ2(1 + 2t4 − 2t3 − t2)

and

ψ2(t, τ) = (1− τ)2(−2t4 + 2t3 + t2)− (1− τ)(t4 − t3),

from where it follows that R(x) = O(h3).
Similarly, for derivatives corresponding estimates are obtained.
Now we are in position to state:
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Theorem 1 If f(x) ∈ W 3∞[a, b] then for regular mesh
∥∥∥S(k)(x)− f (k)(x)

∥∥∥∞ = O(h3−k), k = 0, 1, 2.

The proof of the theorem follows from the identity

R(x) = S(x)−H(x) + H(x)− f(x),

and from Lemma 1 and Lemma 3.

4 Conclusions.

So, in the presented paper an explicit scheme of interpolation using
quartic splines is obtained. The order of approximation by the proposed
algorithm is the same as by the one for cubic splines. The presented
algorithm can be extended for bidimensional case.
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Postoptimal analysis of one lexicographic

combinatorial problem with non-linear criteria

Vladimir A. Emelichev, Olga V. Karelkina

Abstract

In this article we consider a multicriteria combinatorial prob-
lem with ordered MINMIN criteria. We obtain necessary and
sufficient conditions of that type of stability to the initial data
perturbations for which all lexicographic optima of the original
problem are preserved and occurrence of the new ones is allowed.

Mathematics subject classification: 90C27, 90C29, 90C31
Keywords and phrases: multicriteria combinatorial prob-

lem, lexicographic set, quasi-stability, binary relations, perturb-
ing matrix

Vector (multicriteria) discrete optimization problems may arise as
a result of formalization of object-oriented behavior of a human being
in various fields of human activity such as e.g. technical system de-
sign, planning and management, business administration, environmen-
tal analysis and etc. As far as accuracy of input data is not-guaranteed,
frequently, even in the well formalized problems, the reliability of the
results (solutions) may be questionable. The data inaccuracy may hap-
pen due to various factors, among them the most typical ones are mea-
surement and calculation errors, mathematical model inadequacy and
many other. Therefore, it seems to be very natural to define classes of
optimization problems for which small perturbations of input data are
not significant. This research continues the series of works devoted to
the above-mentioned topic [1–5]. We study different aspects of stabil-
ity to the initial data perturbations for the lexicographic combinatorial
problem with MINMIN criteria. In the paper, we formulate and prove
necessary and sufficient conditions of quasi-stability of the problem.

c©2009 by V.A. Emelichev, O.V. Karelkina
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This type of stability characterizes the case where all optimal solutions
remain optimal under small changes of input data.

Let us consider n-criteria trajectory problem, i.e. problem is given
on a system T of non-empty subsets (trajectories) of the set Nm =
{1, 2, . . . , m} with sub-criteria of the MINMIN form

fi(t, A) = min
j∈ t

aij → min
t∈T

, i ∈ Nn,

where A = [aij ] ∈ Rn×m, n ≥ 1, m ≥ 2, |T | > 1.

Under n-criterial trajectory problem Zn(A) we understand the
problem of finding the lexicographic set (the set of lexicographic opti-
mal trajectories):

Ln(A) = {t ∈ T : ∀t′ ∈ T (t Â
A

t′)},

where Â
A

as usual is a negation of the binary lexicographic relation Â
A

defined on the set of trajectories T ⊆ 2Nm by the formula:

t Â
A

t′ ⇔ ∃p ∈ Nn (fp(t, A) > fp(t′, A) & p =

= min{k ∈ Nn : fk(t, A) 6= fk(t′, A)}).
It is easy to see that the set Ln(A) is non-empty for any matrix A ∈
Rn×m as the subset of the Pareto set.

Note, that many classical combinatorial extreme problems on
graphs (traveling salesman problem, spanning tree problem, match-
ing problem, etc.), various problems of scheduling theory and boolean
programming problems [6–8] are included into the scheme of the scalar
(singlecriterion) problems (with linear, bottleneck,

∑
-MINMAX, and∑

-MINMIN criteria).
By definition, put Ln(A) = T \ Ln(A).
The following properties are obvious.
Corollary 1. If t Â

A
t′, then t ∈ Ln(A).

Corollary 2. If t Â
A

t′, then t′ Â
A

t.
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It is also known (see, e.g., [9]) that the lexicographic set Ln(A) may
be defined as a result of solving the sequence of n scalar problems

Ln
i (A) = Arg min{fi(t, A) : t ∈ Ln

i−1(A)}, i ∈ Nn, (1)

where Ln
0 (A) = T , Argmin{·} is the set of all optimal trajectories for

corresponding minimization problem. Hence, the following inclusions

T ⊇ Ln
1 (A) ⊇ Ln

2 (A) ⊇ . . . ⊇ Ln
n(A) = Ln(A) (2)

are true.
Following [1–5], the problem Zn(A) is quasi-stable if the formula

∃ε > 0 ∀A′ ∈ Ω(ε) (Ln(A) ⊆ Ln(A + A′))

is valid. Here

Ω(ε) = {A′ ∈ Rn×m : ||A′|| < ε}

is a set of perturbing matrices

||A′|| = max{|a′ij | : (i, j) ∈ Nn ×Nm}, A′ = [a′ij ].

Thus, quasi-stability characterizes the case when all trajectories
from lexicographic set preserve a property of optimality for sufficiently
small initial data perturbations. Therefore, quasi-stability may be
interpreted as the discrete analogue of Hausdorff lower semicontinu-
ity [10] at a point A of the many-valued optimal mapping

Ln : Rn×m → 2T .

We define binary relations for any non-empty set I ⊆ Nn on the set
of trajectories T for the problem Zn(A)

t ≥
I,A

t′ ⇔ ∀i ∈ I (fi(t, A) ≥ fi(t, A)),

t >
I,A

t′ ⇔ ∀i ∈ I (fi(t, A) > fi(t, A)),
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t `
I,A

t′ ⇔ ∀i ∈ I (Ni(t, A) ⊇ Ni(t′, A)),

where Ni(t, A) = Argmin{aij : j ∈ t}, i. e. Ni(t, A) = {j ∈ t : aij =
fi(t, A)}.

The following properties are obvious.
Corollary 3. If t `

I,A
t′, then there exists a number ε > 0 such that

for any perturbing matrix A′ ∈ Ω(ε) the relation

t′ ≥
I,A+A′

t

holds.
Corollary 4. If t ≥

Nn,A
t′, then t′ Â

A
t.

Consequently applying the properties 3, 4 and using continuity of
the functions fi(t, A), i ∈ Nn on the set of parameters Rm, we deduce
the following properties.

Corollary 5. If t `
Nn,A

t′,then

∃ε > 0 ∀A′ ∈ Ω(ε) (t Â
A+A′

t′).

Corollary 6. If any of the following conclusions:

(i) t >
1,A

t′,

(ii) ∃k ∈ Nn−1 (t′ `
Nk,A

t & t >
k+1,A

t′),

holds for trajectories t and t′, then the formula

∃ε > 0 ∀A′ ∈ Ω(ε) (t Â
A+A′

t′)

is true.
Denote

Un(A) = {t ∈ Ln(A) : ∀i ∈ Nn ∀t′ ∈ Ln
i (A) (t `

i,A
t′)}.

Next property follows directly from the previous definition.
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Corollary 7. If t ∈ Un(A) and t′ ∈ Ln(A), then t `
Nn,A

t′.

In order to prove the quasi-stability criteria we need a series of
lemmas.

Lemma 1. If t ∈ Un(A) and t′ ∈ T , then

∃ε > 0 ∀A′ ∈ Ω(ε) (t Â
A+A′

t′) (3)

Proof. Let t ∈ Un(A). We consider two possible cases for trajec-
tory t′.

Case 1: t′ ∈ Ln
1 (A). Suppose that t′ ∈ Ln(A). Then by virtue of

the property 7 the relation

t `
Nn,A

t′

holds. Hence, taking into account the property 5, we get (3).
Now let t′ ∈ Ln

1 (A)\Ln(A). Thus, there exists an index k = k(t′) ∈
Nn \{1}, such that t′ 6∈ Ln

k(A) and t′ ∈ Ln
i (A) for i ∈ Nk−1. Therefore,

we obtain
t `

Nk−1,A
t′ and t′ >

k,A
t.

Making use of this facts and property 6, we conclude that the formula

∃ε > 0 ∀A′ ∈ Ω(ε) (t′ Â
A+A′

t)

is true. Therefore, due to the property 2, we obtain (3).
Case 2: t′ ∈ T \ Ln

1 (A). Thus,

t′ >
1,A

t.

Therefore, in view of the properties 2 and 6 the formula (3) is true.
Lemma 1 is thus proved.
Lemma 2. If t ∈ Ln(A) \ Un(A), then the formula

∃t0 ∈ T ∀ε > 0 ∃A0 ∈ Ω(ε) (t Â
A+A0

t0) (4)

is true.
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Proof. Since t 6∈ Un(A), then there exist k ∈ Nn and t0 ∈ Ln
k(A)

such that Nk(t, A) + Nk(t0, A) and t ∈ Ln
k(A) (by virtue of t ∈ Ln(A)).

Hence fk(t, A) = fk(t0, A) = akp, if p ∈ Nk(t0, A)\Nk(t, A). Therefore,
let us assume ε > 0 and construct elements of a perturbing matrix
A0 = [a0

ij ] ∈ Rn×m according to the rule

a0
ij =

{ −α, if i = k, j = p,
0 otherwise,

where 0 < α < ε, in view of p ∈ Nk(t0, A) \Nk(t, A) we conclude that
the relations

fk(t0, A + A0) = min{akj + a0
kj : j ∈ t0} = akp − α < akp =

= fk(t, A) = fk(t, A + A0),

fi(t0, A + A0) = fi(t0, A) = fi(t, A) = fi(t, A + A0), i ∈ Nk−1

hold true. Hence,
t Â

A+A0
t0,

i.e. formula (4) is true.
Lemma 2 is thus proved.
Now let us formulate quasi-stability criterion for the concerned

problem.
Theorem. The vector problem Zn(A), n ≥ 1, is quasi-stable if

and only if the formula

∀t ∈ Ln(A) ∀i ∈ Nn ∀t′ ∈ Ln
i (A) (t `

i,A
t′) (5)

is true.
Proof. Sufficiency. Let the formula (5) holds true and t ∈ Ln(A).

Then t ∈ Un(A) and, therefore, due to Lemma 1 we find that

∀t′ ∈ T ∃ε(t′) > 0 ∀A′ ∈ Ω(ε(t′)) (t Â
A+A′

t′).

Hence, by putting ε(t) = min{ε(t′) : t′ ∈ T}, it is easy to see that for
any trajectory t ∈ Ln(A) and for any perturbing matrix A′ ∈ Ω(ε(t))
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the inclusion t ∈ Ln(A + A′) is true. Therefore, if ε∗ = min{ε(t) : t ∈
Ln(A)}, we obtain

∃ε∗ > 0 ∀A′ ∈ Ω(ε∗) (Ln(A) ⊆ Ln(A + A′)).

Thus, the problem Zn(A) is quasi-stable.
Necessity. We assume that, on the contrary, the problem Zn(A)

is quasi-stable, but the formula (5) is not true. Then there exists
trajectory t ∈ Ln(A) \ Un(A), for which on account of Lemma 2 and
property 1 the formula

∀ε > 0 ∃A0 ∈ Ω(ε) (t ∈ Ln(A + A0))

is true. Hence, we conclude

∀ε > 0 ∃A0 ∈ Ω(ε) (Ln(A) 6⊆ Ln(A + A0)),

This is contradiction to the quasi-stability of the problem Zn(A).
Theorem is proved.
Let us give two examples which illustrate stated result.
Example 1. Let n = 2, m = 4, T = {t1, t2, t3}, t1 = {1, 2, 4},

t2 = {1, 4}, t3 = {1, 2},

A =
(

1 3 1 2
3 2 2 1

)
.

Thus,
f1(t1, A) = f1(t2, A) = f1(t3, A) = 1.

Therefore L2
1(A) = {t1, t2, t3} = T . Moreover, we have

f2(t1, A) = f2(t2, A) = 1, f2(t3, A) = 2.

Hence, we get lexicographic set L2(A) = L2
2(A) = {t1, t2}.

Further we find the sets

N1(t1, A) = N1(t2, A) = N1(t3, A) = {1},

N2(t1, A) = N2(t2, A) = {4}.
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Therefore, the formula

∀t ∈ L2(A) ∀i ∈ N2 ∀t′ ∈ L2
i (A) (Ni(t, A) = Ni(t′, A))

is true. Consequently, in virtue of the theorem the problem Z2(A) is
quasi-stable.

Example 2. Let n = 2, m = 4, T = {t1, t2, t3}, t1 = {1, 2, 4},
t2 = {1, 2}, t3 = {1, 3, 4},

A =
(

1 3 1 2
3 2 2 1

)
.

Then
f1(t1, A) = f1(t2, A) = f1(t3, A) = 1.

Thus, L2
1(A) = {t1, t2, t3} = T . Then, we have

f2(t1, A) = f2(t3, A) = 1, f2(t2, A) = 2.

Hence we get the lexicographic set L2(A) = L2
2(A) = {t1, t3}.

Having found the sets

{1} = N1(t1, A) = N1(t2, A) 6⊇ N1(t3, A) = {1, 3},

N2(t1, A) = N2(t3, A) = {4},
we conclude that conditions of the theorem don’t hold. Therefore, the
problem Z2(A) isn’t quasi-stable.

Corollary 1. A sufficient condition for the problem Zn(A) to be
quasi-stable is equality |Ln

1 (A)| = 1.
Let us give an example illustrating that the equality |Ln

1 (A)| = 1
isn’t necessary condition for the problem to be quasi-stable.

Example 3. Let n = 2, m = 3, T = {t1, t2}, t1 = {1, 2, 3},
t2 = {1, 2},

A =
(

3 2 4
3 5 5

)
.

Then
f1(t1, A) = f1(t2, A) = 2.
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Therefore L2
1(A) = {t1, t2} = T . Moreover

f2(t1, A) = f2(t2, A) = 3.

Hence, the lexicographic set is L2(A) = L2
2(A) = {t1, t2}. Thus,

|L2
1(A)| = 2.
Further, having found the sets

N1(t1, A) = N1(t2, A) = {2},

N2(t1, A) = N2(t2, A) = {1},
we conclude that the formula

∀t ∈ L2(A) ∀i ∈ N2 ∀t′ ∈ L2
i (A) (Ni(t, A) = Ni(t′, A))

is true. Therefore, by theorem, the problem Z2(A) is quasi-stable but
|L2

1(A)| > 1.
Corollary 2. The formula

∀t, t′ ∈ Ln(A) (N1(t, A) = N1(t′, A)) (6)

is necessary condition for the problem Zn(A), n ≥ 1 to be quasi-stable.
It is obvious that the formula (6) is simultaneously a sufficient con-

dition for quasi-stability of the problem Z1(C) in scalar case (n = 1).
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Structured knowledge management techniques

for the development of interactive and adaptive

decision support system

Iulian Secrieru

Abstract

The phase of knowledge acquisition and formalization is being
considered as the key one for the development of decision support
system (DSS). The main problem at this stage is to find a knowl-
edge representation (KR) and a supporting reasoning system that
can make the inferences your application needs. The main crite-
rion of choice is what kind of inference the developers prefer and
is more appropriate to the problem domain. However, already at
the stage of the user interface creation there arise tension between
KR and end-user ”needs” (preferences and habits). So, mul-
tiple representations of the acquired and structured knowledge
and management techniques could provide a solution for decision
support system inference and interface requirements satisfaction.

Keywords: Knowledge representation, knowledge manage-
ment techniques, decision support system, interactive and adap-
tive interface.

1 Introduction

The problem, associated with the physicians (doctors) diagnostic ac-
tivities, acquire a special relevance in modern circumstances. First of
all it is connected with the fact that the doctors have to work with
weakly structured and formalized information. Besides, the volume of
information is in a continuous growth thanks to the appearance of new
methods of examination of patients.

c©2009 by I. Secrieru
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The ultrasound investigation domain is not an exception. The ap-
pearance of new ultrasound devices or the improvement of the old
scanners doesn’t simplify but complicates the physician’s diagnostic
thinking, because he has to analyze a much larger number of diagnos-
tic data, which typically reduces the accuracy and increases the time
of determining the diagnosis.

The phase of knowledge acquisition and formalization is being con-
sidered as the key one for the development of decision support system
(DSS). In order to obtain a well-structured description of the problem
domain, the developers are forced to choose a “rigid” scheme of its
representation. The problem domain is quite often represented as a
decision tree or semantic net.

The development of the user’s interface for the DSS based on the
decision tree can lead to various problems and inconveniences.

The main lack is the fact that the interface does not correspond to
the daily work and habits of the end-user.

The discrepancy of the user’s interface of the decision support med-
ical system with the form of the doctor’s diagnostic thinking may be-
come the reason of different mistakes or it may lead to the rejection of
the user to utilize it in medical practice.

The principles and techniques of structured knowledge manipula-
tion and management aiming to create an interactive and adaptive user
interface for a decision support system in the ultrasound investigation
domain, is being described in this article.

2 Knowledge Representation Schemes

The fundamental goal of KR is to represent knowledge in a manner as
to facilitate drawing conclusions (inferencing) by decision support or
another computer-aided systems.

We distinguish two approaches - single and hybrid KR schemes.
First we focus on the most popular single KR schemes.

Semantic nets, decision trees and their descendants (frames or
schemes) [1] represent knowledge in the form of graph (or hierarchy).
Nodes in graph represent concepts and the edges represent relations

59



I. Secrieru

between the concepts. Nodes in a frame hierarchy also represent con-
cepts, but they have internal structure that describes the corresponding
concept via a set of attributes. All of these KR schemes are very natu-
ral and well suited for representing structural and relational knowledge.
They can also make efficient inferences for small to medium graphs (hi-
erarchies). However, it is difficult to represent heuristic knowledge, un-
certain knowledge, and make inferences from partial inputs. Also, ex-
planations are not provided and knowledge updates are difficult. Con-

ceptual graphs are similar to semantic nets, whereas ontologies [2] refer
to a representation scheme similar to frames, but more restrictive.

Symbolic rules are one of the most popular KR methods [1]. They
represent general domain knowledge in the form of IF-THEN rules: if
<conditions> then <conclusion>, where the term <conditions> rep-
resents the conditions of a rule, whereas the term <conclusion> rep-
resents its conclusion. The conditions are connected with one or more
logical operators such as ”and”, ”or”, and ”not”. The inference en-
gine uses the knowledge in the rule base as well as facts about the
problem at hand to draw conclusions. Typically, facts are provided by
the user during inference. There are two main inference approaches:
backward chaining (guided by the conclusions) and forward chaining
(guided by the input data). The explanation module provides expla-
nations regarding the drawn conclusions. Rules are natural (easy to
comprehend) and rule-base updates (removing/inserting rules) can be
easily made. In addition, heuristic knowledge is naturally represented
by rules. Efficiency of the inference process depends on the length of the
inference chains. Additionally, conclusions cannot be derived if some of
the inputs are unknown. Finally, pure rules cannot represent uncertain
or vague knowledge and are not suitable for representing structural and
relational knowledge.

Fuzzy rules (fuzzy logic) are good at representing imprecise and
fuzzy terms, like ”low” and ”high”. Fuzzy logic extends traditional
logic and sets membership by defining membership functions over the
range [0.0,1.0], where 0.0 denotes absolute falseness and 1.0 - absolute
truth [3]. Given the above, fuzzy rules are good for representing vague-
ness. However, fuzzy rules are not as natural as symbolic rules, that
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complicates the knowledge acquisition and the updates processes. In-
ference is more complicated and less natural than in simple rule-based
reasoning. Provision of explanations is feasible, but not all reasoning
steps can be explained.

Case-based representations [4] store a large set of past cases with
their solutions in the case base and use them whenever a similar new
case has to be dealt with. A case-based system performs inference in
four stages: (1) retrieve, (2) reuse, (3) revise, and (4) retain. In the
retrieval stage, the stored case(s) most relevant to the new case is (are)
retrieved. Similarity measures and indexing schemes are used in this
context. In the reuse stage, the retrieved case is combined with the new
case to create a solution. The revise stage validates the correctness of
the proposed solution. Finally, the retain stage decides on retention
(or not) of the new case. Cases are usually easy to obtain. Cases are
natural. Explanations cannot be provided in a straightforward way
as in rule-based systems. Even if some of the inputs are not known,
conclusions can be reached through similarity to stored cases. Updates
can be easily made. However, the efficiency of the inference process
depends on the size of the case base. Finally, cases are not suitable for
representing structural, uncertain, and heuristic knowledge.

Neural networks represent a totally different approach to artificial
intelligence, known as connectionist [5]. A neural network consists of
many simple interconnected processing units called neurons. Neural
networks are very efficient in producing conclusions, since inference
is based on numerical calculations, and can reach conclusions based
on partially known inputs due to their generalization ability. On the
other hand, neural networks lack naturalness of representation, that is,
the encompassed knowledge is incomprehensible, and explanations for
the reached conclusions cannot be provided. It is also difficult to make
structural updates to specific parts of the network. Neural networks do
not possess inherent mechanisms for representing structural, relational,
and uncertain knowledge. Heuristic knowledge can be represented to
some degree via supervised training.

Belief networks (or probabilistic nets) [6] are graphs, where nodes
represent statistical concepts and links represent mainly causal rela-
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tions between them. Each link is assigned a probability which repre-
sents how certain is it that the concept, where the link departs from,
causes the concept, where the link ultimately arrives. Belief nets are
good for representing causal relations between concepts. Also, they can
represent heuristic knowledge. Furthermore, they can represent uncer-
tain knowledge through the probabilities and make relatively efficient
inferences (via computations of probabilities propagation). However,
estimation of probabilities is difficult, making the knowledge acquisi-
tion process a problem. For the same reason, it is difficult to make
updates. Also, explanations are difficult to produce, since the infer-
ence steps cannot be easily followed by humans. Furthermore, their
naturalness is reduced.

Hybrid schemes are integrations of two or more single KR schemes.
We mention the most popular ones.

Connectionist rule-based representations [5] combine neural net-
works with rule-based representation. The knowledge base is a network
whose nodes correspond to domain concepts. Dependency information
regarding the concepts is used to create links among nodes. The net-
work’s weights are calculated through a training process using a set
of training patterns. In addition to the knowledge base, connectionist
rule-based systems also consist of an inference engine and an explana-
tion mechanism. Compared to neural networks, they offer more natural
representation and can provide some type of explanation. Naturalness
is enhanced due to the fact that most of the nodes correspond to do-
main concepts.

Another approach in hybrid knowledge representation is the integra-

tions of rule-based reasoning with case-based reasoning [7]. Compared
to ”pure” case-based reasoning, their key advantage is the improve-
ment in the performance of the inference engine and the ability to
represent heuristic and relational knowledge. Furthermore, the syn-
ergism of rules and cases can cover up deficiencies of rules (improved
knowledge acquisition) and also enable partial input inferences. The
existence of rules in such hybrid schemes makes updates more difficult
than ”pure” case-based representations. Also, explanations can be pro-
vided but not as easily as in pure rule-based representations, given that
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similarity functions are still present.

There are various ways to integrate neural networks and fuzzy logic
[8]. Such integrations are the fuzzy neural networks and the hybrid
neuro-fuzzy representations. Fuzzy neural networks retain the basic
properties and architectures of neural networks and ”fuzzify” some of
their elements. In a hybrid neuro-fuzzy system, both fuzzy techniques
and neural networks play key role. Each does its own job in serving
different functions in the system. Hybrid neuro-fuzzy systems seem
to satisfy KR requirements to a greater degree than fuzzy neural net-
works. This hybrid approach enables the representation of incomplete,
imprecise, and vague information and also exploits the generalization
capability of neural networks.

Neurules are type of hybrid rules integrating symbolic rules with
neurocomputing [9, 10]. In contrast to other hybrid approaches, the
constructed knowledge base retains the modularity of rules, since it
consists of autonomous units (neurules), and also retains their natu-
ralness in a great degree, since neurules look much like symbolic rules.
Neurules can be constructed either from symbolic rules [9], thus ex-
ploiting existing symbolic rule bases, or empirical data [10].

A conclusion that can be drawn is that there is no single or hybrid
schemes that satisfy end-users preferences and/or all the requirements
of decision support systems developers. So, taking into account only the
system requirements on the knowledge acquisition and modeling stages,
one can say that semantic nets, decision trees, frames, description logics
are more suitable for representing knowledge in the domain model.

3 Knowledge base of the decision support sys-

tem SONARES.

SONARES is a knowledge based system in the ultrasound investigation
domain. Experts are its main source of knowledge. Expert knowledge
was obtained in result of “knowledge engineer – expert group” commu-
nication and stored as a pyramid of meta-concepts. The common work
of knowledge engineer with the experts revealed that in the ultrasound
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investigation domain the reasoning based on meta-concepts (facts) and
knowledge representation in the form of a hierarchy (pyramid) totally
corresponds to the expert’s thinking and reasoning.

The semantic rules scheme was chosen as a model of acquired knowl-
edge representation. Based on the principles of semantic rules scheme
the knowledge base of the decision support system SONARES has been
established. It consists of a pyramid of meta-concepts, and of a set of
rules created on its basis.

As a result of 23 common working sessions of knowledge engineer
with experts there was received a pyramid of knowledge (decision tree)
which consists of 335 facts (9 root nodes with a maximum deep level
equal to 9) and 54 rules [11, 12 , 13]. This knowledge represents formal-
ized description of the ultrasound investigation process of gallbladder.

4 The user interface based on the decision tree

scheme

Let’s analyze the following example.

Suppose that during the stage of knowledge acquisition the de-
velopers have identified a group of 3 mutually exclusive facts: F1 =
<gallbladder volume, normal>, F2 = <gallbladder volume, enlarged>,
F3 = <gallbladder volume, reduced>. That is, there was identified
the attribute A1=<GALLBLADDER VOLUME> with three possible
values: V1=”normal”, V2=”enlarged”, V3=”reduced”. Due to the
sources of knowledge, these three facts can be represented as a decision
tree in three different ways (see Figure 1).

If we take into consideration all possible options for the interchange-
ability of the facts for each of these ways of representation, we’ll get 18
different decision trees to describe these 3 facts.

Thus, the interface creation on the base of one of the 18 decision
trees can be unusual for certain users, whose process of reasoning is
described by one of the remaining 17 options. In this case, the created
interface won’t correspond to their daily work.

Besides, the user interface based on the decision tree scheme is
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Figure 1. Decision trees for description of 3 exclusive facts.

inefficient because:

• unjustifiedly limits the end-user actions

• requires frequent appeals to the knowledge base

• requires a lot of screen space

It is obvious, in order to organize an effective dialog with the DSS users,
it is necessary to develop an alternative representation scheme for the
knowledge base represented in form of decision tree.

5 Alternative representation of the knowledge

base as a means of effective user interface for

the DSS.

Note that we are not talking about replacing the decision tree as a
means of knowledge representation scheme at the stage of knowledge
acquisition. Since, at this stage, the use of such representations is
reasonable, and in some cases it is the necessary and the only right
decision. Especially in cases when developers want to receive a well-
structured knowledge base and have to deal with poorly formalized
domain. In these cases it is meaningful and effective to use the decision
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tree scheme even as a means of visualization the knowledge base. [14,
15].

The aim of creation of the alternative representation scheme of the
knowledge base is the organization on it’s bases the effective dialog
with the DSS users and the elimination of the deficiencies, inherent in
the user interface based on decision tree scheme.

The source of information for alternative representation scheme is
the DSS knowledge base, described as a decision tree.

In our case, the DSS SONARES knowledge base is represented in
the form of a decision tree which consists of 335 facts that can describe
any situation in the domain of gallbladder ultrasound investigation.
There were formulated 54 rules on its base, which correspond to the
anomalies and pathologies of this problem domain. It is necessary to
propose such representation of this acquired knowledge in order to have
the opportunities to realize the user interface of DSS SONARES with
the following features:

The interface must be simple and understandable. The dialog with the
end-users should take place in its usual rhythm and form, and should
not be necessary required the change of his reasoning.

The interface should correspond to the user’s daily work and preferen-
ces. The users must have the possibility to influence the dialog form.

The interface must be “transparent”. The solution proposed by DSS
should be easily verified.

The user dialog should not have a linear structure. The user should al-
ways have the opportunity to return to the appointed step back.

The interface should be interactive. It must change in dependence on
the user available time to make a decision. In addition, the interface
must conform to the basic forms of user’s diagnostic thinking.

The interface should not unnecessarily restrict the end-user’s actions.

The interface should be oriented on a restricted screen space and a li-
mited decision making time. The medical DSS users often have to use
them in an emergency or a network mode.
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The most common form of communication and information transfer
is the dialog. Therefore, the organization of the DSS user interface as
an ordered set of questions is justified.

The facts of which the decision tree consist, in fact constitute a
meta-knowledge, through which we can describe some situation in the
selected problem domain and are involved in the inference to deter-
mine solutions. That is, these are the answers to those questions that
we should address to the user in order to help him with the decision
making. It is obvious that in the interface based on a decision tree,
the questions themselves are missing (determined by the structure of
the decision tree). It doesn’t correspond to the usual way of the users
reasoning, because for each of the fact from the decision tree repre-
sentation the user is forced to formulate a question. A more common
variant for him could be the option to answer to the specific questions
by selecting from a list of all possible answers.

The essence of the proposed new representation approach is the
separation of knowledges to those ones that can be used in the inference
and those which are used only in the interface.

At the first stage of the creation of the alternative representation of
the knowledge base there were determined those facts of the decision
tree, which are involved in the inference. For each of them there has
been formulated a question concerning the existence or not of this fact.
For example, for the fact F1 = <gallbladder volume, normal> there
was formulated the question Q1 = “Is the volume of gallbladder a
normal one?”, for the fact F2 = <gallbladder volume, enlarged> - the
question Q2 = “Is the volume of gall bladder enlarged?”, and for F3 =
<gallbladder volume, reduced> - Q3 = “Is the volume of gallbladder
reduced?”.

As a result, 203 questions were formulated.

Answering to some of these questions, the user can describe the
case of gallbladder ultrasound investigation domain, in which he needs
assistance of DSS SONARES.

In terms of these questions all of 54 pathologies and anomalies of
this domain are described. That is, each pathology or anomaly from
the gallbladder ultrasound investigation domain can by described by
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the vector (Q1.value,Q2.value,...Qn.value ), where Qi.value — is the
answer to the question Qi, n - total number of questions, in our case
n=203. Under these conditions, the whole diagnostic knowledge base
(the information about all pathologies and anomalies, that is necessary
for the inference to make a decision) can be represented in the form of
decision making matrix [Pi,Qj.value], in our case i=1..54, j=1..203.

Concerning the matrix representation of diagnostic knowledge base,
the proposed approach was named alternative matrix representation of
KB.

On the second stage, we saved all existing relationships between
facts. That is, we elaborated an interconnection system between all
formulated questions.

There are two types of relationships between facts in the decision
tree.

The first one indicates the position of given fact in the knowledge
base hierarchy.

Let’s analyze the subtree F4-F5-F6, where F4=<gallbladder form,
abnormal (abnormality of conformation)>, F5=<gallbladder twist,
present>, F6=<gallbladder twist form, circular>. There is a hier-
archical relationship between the facts F4-F5, which indicates that it
makes sense to show the fact F5 only in the case when the fact F4 is
determined. The same relationship exists between the facts F4-F6 and
F5-F6. They are not taken into account during the inference process,
however, they are of great importance for the determination of the op-
portunity of a fact visualization. In our case, this information helps us
to determine the opportunity of a question visualization and organize
the dialog with the DSS user.

The second type of relationships indicates the existence of interde-
pendence between facts.

For example, the above mentioned facts F1, F2, F3 are mutually ex-
clusive (it means If F1 = TRUE then (F2 = FALSE) & (F3 = FALSE),
If F2 = TRUE then (F1 = FALSE) & (F3 = FALSE), If F3 = TRUE
then (F1 = FALSE) & (F2 = FALSE)). These relations does not depend
on the form of visualization of the facts or the whole user interface, but
form the basis of the system knowledge base and inference.
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The separation of the existing relationships between questions in
two groups, those that can be used in inference and those which are
used only in the interface, allows us to create a high-quality interactive
interface based on individual characteristics and habits of the end-user.
This is achieved because the user can define himself the subject and
the form of dialog (by changing the visualization relationships between
questions), without any fear to influence the inference.

Some of the questions can be grouped. For example, the questions
Q1 = “Is the volume of gall bladder a normal one?”, Q2 = “Is the
volume of gall bladder enlarged?”, and Q3 = “Is the volume of gall
bladder reduced?” could be grouped into the group, which describes
the volume of the gallbladder. Now, if the user wants to visualize all
the questions related to the volume of the gallbladder, he may do so
through the visualization of the group.

Additionally, the questions association into the group will allow to
diversify the form of dialog.

The resulting relational database is the alternative representation
of DSS SONARES knowledge base.

6 Conclusions

Realization of the described approach has shown that the creation of
alternative matrix representation of DSS knowledge base requires ad-
ditional time for its creation, but it is justified, if we want to be able
to organize an effective interactive dialog with the user. In addition,
the user interface based on a matrix representation is simple, under-
standable and transparent, fully corresponds to the daily activities and
habits of the user, not unreasonably restrict the user actions.

This approach allows realization of different versions of the interface
with the restricted screen space and limited time of the decision making
(for systems used in emergency cases).

Table 1 compares the KR schemes discussed in the previous sections
with the proposed approach. Symbol ”-” means ”unsatisfactory”; ”±”
- ”average”; ”+” - ”good”; and ”V” - ”very good”.
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Semantic nets / decision trees / frames V ± V - + - ± ± ± V V - - - ±

Symbolic rules V V + V ± - + + ± - ± - - V ±

Case-based representations V V + + V + ± ± - - + - - - ±

Belief networks ± - V - ± - - ± - + V V ± ± ±

Neural networks - - V - V V + + ± - ± - - ± +

Fuzzy rules + - + - ± - ± ± - - ± ± V V ±

Connectionist expert system ± ± V ± V V ± ± ± - ± - - ± ±

Neuro-fuzzy representations ± - + - + ± ± ± ± - ± ± V + ±

Cases and rules V + + + + + + + ± - + - - + ±

Neurules + + V V V V + + + - ± - - V ±

Semantic nets/decision trees &
symbolic rules in form of “ma-
trix” representation

V + V V + ± + + + V V - - V +
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Also there have been identified some additional advantages of using
a matrix representation of the DSS knowledge base.

1. Matrix representation of knowledge base allows to organize an
interactive interface according to the type of user’s diagnostic
thinking. We realized a version of user interface with adaptive
support for inductive reasoning ability.

2. Matrix representation of knowledge base has a cognitive value. It
can be used as a means of visualization and detection of weakly
described sub-domain in the problem domain in general and in
the knowledge base in particular.

3. In matrix representation of the knowledge base every decision is
described by the vector (Q1.value, Q2.value, ... Qn.value). By
calculating the correlation coefficient between the vectors, the so-
lutions can be grouped by various criteria. This will allow better
knowledge formalization of problem domain.
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On Covering Approximation Subspaces∗

Xun Ge

Abstract

Let (U ′; C′) be a subspace of a covering approximation
space (U ; C) and X ⊂ U ′. In this paper, we show that
C′(X) = C(X)

⋂
U ′ and B′(X) ⊂ B(X)

⋂
U ′. Also, C(X) =

C′(X)
⋂ C(U ′) iff (U ; C) has Property Multiplication. Further-

more, some connections between outer (resp. inner) definable
subsets in (U ; C) and outer (resp. inner) definable subsets in
(U ′; C′) are established. These results answer a question on cov-
ering approximation subspace posed by J. Li, and are helpful to
obtain further applications of Pawlak rough set theory in pattern
recognition and artificial intelligence.

Keywords: Rough set; covering approximation subspace;
covering approximation operator; definable; outer definable; in-
ner definable.

1 Introduction

In order to extract useful information hidden in voluminous data, many
methods in addition to classical logic have been proposed. Pawlak
rough-set theory, which was proposed by Z. Pawlak in [11], plays an im-
portant role in applications of these methods. Their usefulness has been
demonstrated by many successful applications in pattern recognition
and artificial intelligence (see [4, 5, 6, 8, 10, 11, 12, 13, 14, 16, 19, 24, 28],
for example). In the past years, Pawlak rough-set theory have been ex-
tended from Pawlak approximation spaces to covering approximation
spaces (see [1, 2, 3, 7, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29], for
example).

c©2009 by Xun Ge
∗This paper is supported by Natural Science Foundation of P. R. China

(No.10571151 and 10671173)
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Definition 1.1. Let U be a finite set (a universe of discourse), C be a
cover of U and X ⊂ U . Put

C(X) =
⋃
{K : K ∈ C

∧
K ⊂ X};

C(X) =
⋃
{K : K ∈ C

∧
K

⋂
X 6= ∅};

B(X) = X − C(X).

(1) (U ; C) is called a covering approximation space.
(2) C : 2U −→ 2U is called lower covering approximation operator.
(3) C : 2U −→ 2U is called upper covering approximation operator.
(4) C(X) is called lower covering approximation of X.
(5) C(X) is called upper covering approximation of X.
(6) B(X) is called boundary of X.
(7) X is called definable in (U ; C) if C(X) = C(X).

However, in many applications of Pawlak rough-set theory, we need
to consider the case that a cover C of a universe of discourse U is re-
stricted on some subset U ′ of U (see [19], for example). More precisely,
we are also interested in subspace (U ′; C′) of covering approximation
space (U ; C).
Definition 1.2. Let (U ; C) be a covering approximation space. (U ′; C′)
is called a subspace of (U ; C) if U ′ ⊂ U and C′ = {K ⋂

U ′ : K ∈ C}.
Remark 1.3. For a subspace (U ′; C′) of a covering approximation space
(U ; C) and a subset X of U ′, it is the same as Definition 1.1 to define
lower covering approximation operator C ′, upper covering approxima-
tion operator C ′, lower covering approximation C′(X) of X, upper cov-
ering approximation C′(X) of X, boundary B′(X) of X and definable
subsets in (U ′; C′). We omit these definitions.

Let (U ′; C′) be a subspace of a covering approximation space (U ; C)
and X ⊂ U ′. It is worthy to give some relations between covering
approximations of subsets in (U ; C) and covering approximations of
subsets in (U ′; C′) and to establish some connections between definable
subsets in (U ; C) and definable subsets in (U ′; C′). It is well-known that

75



Xun Ge

if (U ; C) is a Pawlak approximation space, i.e., C is a partition of U ,
then (U ; C) is a topological space with a base C. C(X), C(X) and B(X)
are exactly interior of X, closure of X and boundary of X in (U ; C),
respectively (see [7, 15, 26], for example). Thus, (U ′; C′) is a topological
subspace of (U ; C) with a base C′. C′(X), C′(X) and B′(X) are exactly
interior of X, closure of X and boundary of X in (U ′; C′), respectively.
So the following results are obtained naturally.

Proposition 1.4. Let (U ′; C′) be a subspace of a Pawlak approximation
space (U ; C), and X ⊂ U ′. Then the following hold.

(1) C′(X) = C(X)
⋂

U ′.
(2) C(X) = C′(X)

⋂ C(U ′).
(3) B′(X) ⊂ B(X)

⋂
U ′.

(4) If U ′ is definable in (U ; C), then X is definable in (U ; C) iff X
is definable in (U ′; C′).

By viewing Proposition 1.4, J. Li raised the following question in
[9].

Question 1.5. If (U ; C) is a covering approximation space, does Propo-
sition 1.4 hold?

In this paper, we investigate and answer Question 1.5. For a sub-
space (U ′; C′) of a covering approximation space (U ; C) and a subset
X of U ′, we show that C′(X) = C(X)

⋂
U ′ and B′(X) ⊂ B(X)

⋂
U ′.

Also, C(X) = C′(X)
⋂ C(U ′) iff (U ; C) has Property Multiplication.

Furthermore, we establish some connections between outer (resp. in-
ner) definable subsets in (U ; C) and outer (resp. inner) definable subsets
in (U ′; C′). These results are helpful to obtain further applications of
Pawlak rough set theory in pattern recognition and artificial intelli-
gence.

2 On Covering Approximations of subsets

The following lemma is known (see [18, 29], for example).
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Lemma 2.1. Let (U ; C) be a covering approximation space. Then the
following hold.

(1) If X ⊂ U , then C(X) ⊂ X ⊂ C(X).
(2) If X ⊂ Y ⊂ U , then C(X) ⊂ C(Y ) and C(X) ⊂ C(Y ).
(3) If X, Y ⊂ U , then C(X ⋂

Y ) ⊂ C(X)
⋂ C(Y ).

(4) If X is a union of some elements of C, then C(X) = X.
(5) C(U) = C(U) = U .

Theorem 2.2. Let (U ′; C′) be a subspace of a covering approximation
space (U ; C) and X ⊂ U ′. Then the following hold.

(1) C′(X) = C(X)
⋂

U ′.
(2) B′(X) ⊂ B(X)

⋂
U ′.

Proof. (1) Let x ∈ C′(X), then there exists K ∈ C such that x ∈ K
⋂

U ′

and (K
⋂

U ′)
⋂

X 6= ∅, so x ∈ K and K
⋂

X 6= ∅. Thus x ∈ C(X) and
x ∈ U ′, i.e., x ∈ C(X)

⋂
U ′. On the other hand, let x ∈ C(X)

⋂
U ′,

then there exists K ∈ C such that x ∈ K and K
⋂

X 6= ∅. Since
X ⊂ U ′, (K

⋂
U ′)

⋂
X = K

⋂
X 6= ∅. Note that x ∈ K

⋂
U ′ and

K
⋂

U ′ ∈ C′. So x ∈ C′(X).
(2) Since B′(x) = U ′−C′(X) and B(X)

⋂
U ′ = (U −C(X))

⋂
U ′ =

U ′− (C(X)
⋂

U ′), it suffices to prove that C(X)
⋂

U ′ ⊂ C′(X). Let x ∈
C(X)

⋂
U ′, then x ∈ U ′ and there exists K ∈ C such that x ∈ K ⊂ X,

So x ∈ K
⋂

U ′ ⊂ X. Note that K
⋂

U ′ ∈ C′, so x ∈ C′(X). This proves
that C(X)

⋂
U ′ ⊂ C′(X).

Remark 2.3. The following example shows that “⊂” in Theorem
2.2(2) can not be replaced by “=”.

Example 2.4. There exist a subspace (U ′; C′) of a covering approxima-
tion space (U ; C) and a subset X of U ′ such that B′(X) 6= B(X)

⋂
U ′.

Proof. Let U = {a, b, c}, C = {{a, b}, {b, c}}, U ′ = {a, b} and C′ =
{{a, b}, {b}}, then (U ′; C′) is a subspace (U ; C). Put X = {b}, then
X ⊂ U ′.

(1) C(X) = ∅, so B(X) = X − C(X) = X.
(2) C′(X) = X, so B′(X) = X − C′(X) = ∅.
Consequently, B′(X) 6= B(X)

⋂
U ′.
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In general, Proposition 1.4(2) does not hold for covering approx-
imation spaces (see [18, 29], for example). We give a sufficient and
necessary condition such that it holds.

Definition 2.5. Let (U ; C) be a covering approximation space. (U ; C)
is called to have Property Multiplication (Property (M), in brief), if
C(X

⋂
Y ) = C(X)

⋂
C(Y ) for any X, Y ⊂ U .

Remark 2.6. Every Pawlak approximation space has Property (M).
In general, covering approximation spaces have not Property (M) (see
[26, Proposition 4].

The following lemma comes from [26, Theorem 1].

Lemma 2.7. Let (U ; C) be a covering approximation space. Then the
following are equivalent.

(1) (U ; C) has Property (M).
(2) If K1,K2 ∈ C and x ∈ K1

⋂
K2, then there exists K ∈ C such

that x ∈ K ⊂ K1
⋂

K2.

Theorem 2.8. Let (U ; C) be a covering approximation space. Then
the following are equivalent.

(1) (U ; C) has Property (M).
(2) If (U ′; C′) is a subspace of (U ; C) and X ⊂ U ′, then C(X) =

C′(X)
⋂ C(U ′).

Proof. (1) =⇒ (2): Let (U ′; C′) be a subspace of (U ; C) and X ⊂ U ′.
If x ∈ C(X), then there exists K ∈ C such that x ∈ K ⊂ X ⊂ U ′, so
x ∈ C(U ′). Note that K

⋂
U ′ = K, so K ∈ C′, thus x ∈ C′(X). Conse-

quently, x ∈ C′(X)
⋂ C(U ′). On the other hand, if x ∈ C′(X)

⋂ C(U ′),
then there exist K1,K2 ∈ C such that x ∈ K1

⋂
U ′ ⊂ X and x ∈ K2 ⊂

U ′. Since (U ; C) has Property (M), by Lemma 2.7, there exists K ∈ C
such that x ∈ K ⊂ K1

⋂
K2. So x ∈ K ⊂ K1

⋂
K2 ⊂ K1

⋂
U ′ ⊂ X.

Thus x ∈ C(X). This proves that C(X) = C′(X)
⋂ C(U ′).

(2) =⇒ (1): Let K1,K2 ∈ C and x ∈ K1
⋂

K2. Put U ′ = K1 and
C′ = {K ⋂

U ′ : K ∈ C}, then (U ′; C′) is a subspace of (U ; C). Put
X = K1

⋂
K2 = K2

⋂
U ′, then x ∈ X ∈ C′. So x ∈ X = C′(X) from
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Lemma 2.1(4). On the other hand, x ∈ K1 = C(K1) = C(U ′) from
Lemma 2.1(4). Thus x ∈ C′(X)

⋂ C(U ′). Since C(X) = C′(X)
⋂ C(U ′),

x ∈ C(X), and so there exists K ∈ C such that x ∈ K ⊂ X = K1
⋂

K2.
By Lemma 2.7, (U ; C) has Property (M).

Remark 2.9. In the proof of Theorem 2.8(1) =⇒ (2), we can see
that C(X) ⊂ C′(X)

⋂ C(U ′) without requiring Property (M), and so
C(X) ⊂ C′(X) without requiring Property (M).

3 On Outer and Inner Definable Subsets

As some applications of Theorem 2.2 and Theorem 2.8, we investigate
definable subsets in covering approximation subspaces. The following
definitions come from [15]

Definition 3.1. Let (U ; C) be a covering approximation space and X ⊂
U .

(1) X is called outer definable in (U ; C) if C(X) = X.
(2) X is called inner definable in (U ; C) if C(X) = X.

Remark 3.2. It is easy to see that X is definable in (U, C) iff it is both
outer definable and inner definable in (U ; C).
Lemma 3.3. Let (U ; C) be a covering approximation space and X ⊂ U .
Consider the following conditions.

(1) X is definable in (U, C).
(2) X is outer definable in (U, C).
(3) X is inner definable in (U, C).
Then (1) ⇐⇒ (2) =⇒ (3).

Proof. By Remark 3.2, (1) =⇒ (2) and (1) =⇒ (3). It suffices to prove
(2) =⇒ (1).

Let X be outer definable in (U ; C), i.e., C(X) = X. Let x ∈ X,
then there is K ∈ C such that x ∈ K. So K

⋂
X 6= ∅, and hence

K ⊂ C(X) = X. It follows that x ∈ K ⊂ C(X). This proves that
X ⊂ C(X). By Lemma 2.1(1), C(X) ⊂ X, so C(X) = X. Consequently,
X is inner definable in (U, C).
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Remark 3.4. (1) In Lemma 3.3, (3) 6=⇒ (2) (see Example 3.5).
(2) If (U ; C) is a Pawlak approximation space and X ⊂ U , then

(1), (2) and (3) in Lemma 3.3 are equivalent ([15]).

Example 3.5. There exist a covering approximation space (U ; C) and
a subset X of U such that X is inner definable in (U ; C), but X is not
outer definable in (U ; C).

Proof. Let U = {a, b, c}, C = {{a, b}, {b, c}}, X = {a, b}.
(1) Since X ∈ C, C(X) = X from Lemma 2.1(4), so X is inner

definable in (U ; C).
(2) It is easy to see that, C(X) = U 6= X, so X is not outer definable

in (U ; C).

By Lemma 3.3, “outer definable” can be replaced by “definable”
throughout the following.

Theorem 3.6. Let (U ′; C′) be a subspace of a covering approximation
space (U ; C) and X ⊂ U . Then the following hold.

(1) If X is outer definable in (U ; C), then X
⋂

U ′ is outer definable
in (U ′; C′).

(2) If X is inner definable in (U ; C), then X
⋂

U ′ is inner definable
in (U ′; C′).

Proof. (1) Let X is outer definable in (U ; C), i.e., C(X) = X. By
Theorem 2.2(1), Lemma 2.1(3) and Lemma 2.1(1), C′(X ⋂

U ′) =
C(X ⋂

U ′)
⋂

U ′ ⊂ C(X)
⋂ C(U ′)

⋂
U ′ = X

⋂
U ′. On the other hand,

X
⋂

U ′ ⊂ C′(X ⋂
U ′) from Lemma 2.1(1). Thus C′(X ⋂

U ′) = X
⋂

U ′,
so X

⋂
U ′ is outer definable in (U ′; C′).

(2) Let X is inner definable in (U ; C), i.e., C(X) = X. Then
X

⋂
U ′ = C(X)

⋂
U ′ = (

⋃{K : K ∈ C∧
K ⊂ X}) ⋂

U ′ =
⋃{K ⋂

U ′ :
K ∈ C∧

K ⊂ X} ⊂ ⋃{K ⋂
U ′ : K ∈ C∧

K
⋂

U ′ ⊂ X
⋂

U ′} =
C′(X ⋂

U ′). On the other hand, C′(X ⋂
U ′) ⊂ X

⋂
U ′ from Lemma

2.1(1). Thus C′(X ⋂
U ′) = X

⋂
U ′, so X

⋂
U ′ is inner definable in

(U ′; C′).
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Remark 3.7. The following example shows that both (1) and (2) in
Theorem 3.6 can not be reversed even if (U ; C) is a Pawlak approxima-
tion space.

Example 3.8. There exist a subspace (U ′; C′) of a Pawlak approxi-
mation space (U ; C) and a subset X of U , where U ′ is outer definable
in (U ; C), such that X

⋂
U ′ is outer definable in (U ′; C′), but X is not

inner definable in (U ; C).

Proof. Let U = {a, b, c, d}, C = {{a, b}, {c, d}}, then (U ; C) is a Pawlak
approximation space. Put U ′ = {a, b} and C′ = {{a, b}}, then (U ′; C′)
is a subspace (U ; C). Put X = {a, b, c}.

(1) It is clear that U ′ is outer definable in (U ; C).
(2) Since X

⋂
U ′ = U ′, X

⋂
U ′ is outer definable in (U ′; C′).

(3) It is easy to see that C(X) = U ′ 6= X, so X is not inner definable
in (U ; C).

However, we have the following results.

Theorem 3.9. Let (U ′; C′) be a subspace of a covering approximation
space (U ; C) and X ⊂ U ′. If U ′ is outer definable in (U ; C), then the
following are equivalent.

(1) X is outer definable in (U ; C).
(2) X is outer definable in (U ′; C′).

Proof. (1) =⇒ (2): It holds from Theorem 3.6(1).
(2) =⇒ (1): Let X be outer definable in (U ′; C′), i.e., C′(X) = X.

Since U ′ is outer definable in (U ; C), C(U ′) = U ′. C(X) ⊂ C(U ′) = U ′

from Lemma 2.1(2). By Theorem 2.2(1), C(X) = C(X)
⋂

U ′ = C′(X) =
X. So X is outer definable in (U ; C).

Remark 3.10. (1) By Theorem 3.6(1), the condition ”U ′ is outer
definable in (U ; C)” in Theorem 3.9(1) =⇒ (2) can be omitted.

(2) The condition ”U ′ is outer definable in (U ; C)” in Theorem
3.9(2) =⇒ (1) can not be relaxed to “U ′ is inner definable in (U ; C)”
(see Example 3.11).
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Example 3.11. There exist a subspace (U ′; C′) of a covering approxi-
mation space (U ; C) and a subset X of U ′ such that (U ; C) has Property
(M), U ′ is inner definable in (U ; C), and X is outer definable in (U ′; C′),
but X is not outer definable in (U ; C).
Proof. Let U = {a, b, c}, C = {{a, b}, {b, c}, {b}}. Put U ′ = X = {a, b}
and C′ = {{a, b}, {b}}, then (U ′; C′) is a subspace (U ; C).

(1) Using Lemma 2.7, it is easy to check that (U ; C) has Property
(M).

(2) It is clear that U ′ is inner definable in (U ; C).
(3) Since X ⊂ C′(X) ⊂ U ′ = X, C′(X) = X, so X is outer definable

in (U ′; C′).
(4) C(X) = U 6= X, so X is not outer definable in (U ; C).

Theorem 3.12. Let (U ′; C′) be a subspace of a covering approximation
space (U ; C) and X ⊂ U ′. If (U ; C) has Property (M) and U ′ is inner
definable in (U ; C), then the following are equivalent.

(1) X is inner definable in (U ; C).
(2) X is inner definable in (U ′; C′).

Proof. (1) =⇒ (2): It holds from Theorem 3.6(2).
(2) =⇒ (1): Let X be inner definable in (U ′; C′), i.e., C′(X) = X.

Since (U ; C) has Property (M), C(X) = C′(X)
⋂ C(U ′) from Theorem

2.8. Note that C(U ′) = U ′ because U ′ is inner definable in (U ; C).
Thus C(X) = C′(X)

⋂ C(U ′) = X
⋂

U ′ = X. So X is inner definable
in (U ; C).
Remark 3.13. (1) By Theorem 3.6(2), both condition ”(U ; C) has
Property (M)” and condition ”U ′ is inner definable in (U ; C)” in The-
orem 3.12(1) =⇒ (2) can be omitted.

(2) The condition ”(U ; C) has Property (M)” in Theorem 3.12(2)
=⇒ (1) can not be omitted (see Example 3.14).

(3) The condition ”U ′ is inner definable in (U ; C)” in Theorem
3.12(2) =⇒ (1) can not be omitted (see Example 3.15).

Example 3.14. There exist a subspace (U ′; C′) of a covering approxi-
mation space (U ; C) and a subset X of U ′, where U ′ is inner definable
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in (U ; C), such that X is inner definable in (U ′; C′), but X is not inner
definable in (U ; C).
Proof. Let U = {a, b, c}, C = {{a, b}, {b, c}}. Put U ′ = {a, b} and
C′ = {{a, b}, {b}}, then (U ′; C′) is a subspace (U ; C). Put X = {b},
then X ⊂ U ′.

(1) Since U ′ ∈ C, C(U ′) = U ′ from Lemma 2.1(4), so U ′ is inner
definable in (U ; C).

(2) Since X ∈ C′, C′(X) = X from Lemma 2.1(4), so X is inner
definable in (U ′; C′).

(3) C(X) = ∅ 6= X, so X is not inner definable in (U ; C).
Example 3.15. There exist a subspace (U ′; C′) of a covering approx-
imation space (U ; C) and a subset X of U ′, where (U ; C) has Property
(M), such that X is inner definable in (U ′; C′), but X is not inner
definable in (U ; C).
Proof. Let U = {a, b, c}, C = {{a, b}, {b, c}, {b}}. Put U ′ = X = {a, c}
and C′ = {{a}, {c}}, then (U ′; C′) is a subspace (U ; C).

(1) (U ; C) has Property (M) from Example 3.11.
(2) Since C′(U ′) = U ′ from Lemma 2.1(5), C′(X) = C′(U ′) = U ′ =

X, so X is inner definable in (U ′; C′).
(3) C(X) = ∅ 6= X, so X is not inner definable in (U ; C).

4 Postscript

In this paper, our investigations on covering approximation subspaces
are based on lower covering approximation operator C and upper cov-
ering approximation operator C, which are endowed covering approx-
imation spaces. Because there are also other covering approximation
operators (see the following Definition 4.1), It is an interesting work
to give some answers of Question 1.5 for these covering approximation
operators.

Definition 4.1. Let (U ; C) be a covering approximation space. For
each x ∈ U , put

Md(x) = {K : (x ∈ K ∈ C)
∧

(x ∈ S ∈ C
∧

S ⊂ K =⇒ S = K)};
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N(x) =
⋂
{K : x ∈ K ∈ C}.

For each i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, Ci and Ci are defined as follows
and are called i-th lower covering approximation operator and i-th upper
covering approximation operator on (U ; C), respectively.

(1) C1(X) =
⋃{K : K ∈ C∧

K ⊂ X};
C1(X) = C1(X)

⋃
(
⋃{⋃ Md(x) : x ∈ X − C1(X)}).

(2) C2(X) = {x ∈ U : ∀K ∈ C(x ∈ K =⇒ K ⊂ X)};
C2(X) =

⋃{K : K ∈ C∧
K

⋂
X 6= ∅}.

(3) C3(X) =
⋃{K : K ∈ C∧

K ⊂ X};
C3(X) =

⋃{⋃Md(x) : x ∈ X}.
(4) C4(X) =

⋃{K : K ∈ C∧
K ⊂ X};

C4(X) = C4(X)
⋃

(
⋃{K : K ∈ C∧

K
⋂

(X − C4(X)) 6= ∅}).
(5) C5(X) =

⋃{K : K ∈ C∧
K ⊂ X};

C5(X) = C5(X)
⋃

(
⋃{N(x) : x ∈ X − C5(X)}).

(6) C6(X) = {x ∈ U : N(x) ⊂ X};
C6(X) = {x ∈ U : N(x)

⋂
X 6= ∅}.

(7) C7(X) =
⋃{K : K ∈ C∧

K ⊂ X};
C7(X) = U − C7(U −X).

(8) C8(X) = {x ∈ U : ∃u(u ∈ N(x)
∧

N(u) ⊂ X)};
C8(X) = {x ∈ U : ∀u(u ∈ N(x) =⇒ N(u)

⋂
X 6= ∅)}.

(9) C9(X) = {x ∈ U : ∀u(x ∈ N(u) =⇒ N(u) ⊂ X)};
C9(X) =

⋃{N(x) : x ∈ U
∧

N(x)
⋂

X 6= ∅}.
(10) C10(X) = {x ∈ U : ∀u(x ∈ N(u) =⇒ u ∈ X)};

C10(X) =
⋃{N(x) : x ∈ X}.

Remark 4.2. Ci and Ci (i=1,3) come from [29]; C2 and C2 come
from [17]; C4 and C4 come from [26]; C5 and C5 come from [27]; C6

and C6 come from [18, 28]; Ci and Ci (i=7,8,9,10) come from [18].
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Thus, we have the following question, which is still worthy to be
considered in subsequent research.

Question 4.3. Let (U ′; C′) be a subspace of a covering approximation
space (U ; C), X ⊂ U ′ and i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Do following
hold?

(1) C′i(X) = Ci(X)
⋂

U ′.
(2) Ci(X) = C′i(X)

⋂ Ci(U ′).
(3) B′

i(X) ⊂ Bi(X)
⋂

U ′.
(4) If U ′ is definable in (U ; C), then X is definable in (U ; C) iff X

is definable in (U ′; C′).

Acknowledgments. The author would like to thank the referee
for his/her valuable amendments and corrections.
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An approach for testing the primeness of

attributes in relational schemas

Cotelea Vitalie

Abstract

In this paper there is proposed a method of partition the
attributes of relation scheme in equivalence classes and in nonre-
dundant equivalence classes. Several properties of these equiva-
lence classes are proved. Their properties serve as the basis for
an algorithm with a polynomial complexity, which determines the
prime attributes of a database schema.

Keywords: Relation scheme, functional dependencies, equiv-
alence classes, prime attributes, polynomial complexity tasks.

1 Introduction

The scope of this paper is to propose a solution to the problem that
arises during design and analysis of database, that is determination
of prime attributes (attributes that are contained in schema’s possible
keys). This problem is known to be NP-complete, due to the fact that
the solution to this problem was reached through keys searching. But a
schema can have an exponential number of keys with respect to number
of functional dependencies [1].

In the current paper a different approach is taken for the search-
ing of prime attributes that avoids the necessity of keys determination.
Namely, the notion of contribution graph (Definition 1) of a reduced
set of functional dependencies is proposed. The strongly connected
components are computed, where each component represents a vertex
of condensed graph (Definition 2). Over vertices of condensed graph a

c©2009 by Vitalie Cotelea
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strict partial order is defined. Then it’s presented how the inferred de-
pendencies are reflected in contribution graph (Lemma 1 and Corollary
1).

Obviously, the strongly connected components of contribution
graph split the set of attributes of relation scheme into equivalence
classes. The notion of nonredundant equivalence classes of attributes
is given (Definition 3). In section 4 several lemmas and theorems (Lem-
mas 2-3, Theorems 1-4) are proved that reflect the properties of equiv-
alence classes of attributes.

It should be mentioned that redundant attributes represent the
set of nonprime attributes of scheme (Corollary 4), and nonredundant
equivalence classes of attributes consist only of prime attributes (Corol-
lary 3). Proved properties in section 4, allow the determination of prime
and nonprime attributes without scheme’s keys finding.

In section 5 it is shown that the determination of prime and non-
prime attributes can be performed in a polynomial time. This approach
can be a part of the database analysis and design toolset.

2 Some basic concepts

In order to facilitate exposure of this paper’s material, some preliminary
notions are presented [2].

Let Sch(R,F ) be a relation scheme, where F is a set of functional
dependencies defined on set R of attributes. Given a set F of functional
dependencies on R, the closure of F , written as F+, consists of all
functional dependencies that are logically implied by F , that is F+ =
= {V → W |F | = V → W}.

Given a set F of functional dependencies on set R of attributes and
a subset X of R, the closure of the set X under the set F , written as
X+, contains all attributes, each of which is functionally dependent on
Xunder F , that is X+ = {A|X → A ∈ F+}.

Let X and Y be two sets of attributes, where X, Y ⊆ R. The set
X is a determinant for Y , under the set F of functional dependencies,
if X → Y ∈ F+ and for every proper subset X ′ of the set X, the
expression X ′ → Y /∈ F+ takes place.
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A subset K of R is a key for a relation scheme Sch(R, F ), if K is a
determinant of the set R under the set F of dependencies. A relation
scheme can have more than one key, but it always has at least one.

An attribute A in R is prime if A belongs to some key, and nonprime
otherwise.

In this paper, it is considered that the set F of functional depen-
dencies is reduced. Let Sch(R, F ) be a relation scheme. The set of
functional dependencies F is reduced [2], if there is no attribute A in
R and no dependency X → Y in F , so that they satisfy the following
conditions:

1. A ∈ X and F ≡ F − {X → Y }⋃{(X − {A}) → Y },
2. A ∈ Y and F ≡ F − {X → Y }⋃{X → (Y − {A})}.

For functional dependencies an inference tool, named maximal
derivation [3], will be used. Maximal derivation of the set X of
attributes under the set F of dependencies, is a sequence of sets
H =< X0, X1, ..., Xn > of attributes, where

1. X0 = X;

2. Xi = Xi−1
⋃

Z, where Z =
⋃

j Wj for ∀Vj → Wj ∈ F that satisfy
Vj ⊆ Xi−1 and Wj 6⊂ Xi−1;

3. Nothing else is in Xi.

The last term of maximal derivation Xn is, in fact, the closure of the
set X of attributes under the set F of dependencies, that is Xn = X+.

Claim 1. [3]. X → Y ∈ F+, if and only if there exists a derivation
H =< X0, X1, ..., Xk > for X → Y under F , where Xk is the first term
that contains the set of attributes Y .

Claim 2. [3]. If X → Y ∈ F+ and X is a determinant for Y under
F , then for every attribute A in X − Y there exists in F a dependency
V → W used in derivation H =< X0, X1, ..., Xk > for X → Y under
F , such that A ∈ V .
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3 Graphical representation of functional de-
pendencies

Given a set F of functional dependencies on the set R of attributes,
that are part of the relation scheme Sch(R,F ), a contribution graph is
drawn, in order to represent F .

Definition 1. Contribution graph G = (S, E) of set F is a graph that:

• ∀A ∈ R there exists in S a vertex labeled with attribute A;

• ∀X → Y ∈ F and ∀A ∈ X and ∀B ∈ Y there exists in E an edge
a = (A,B), that is directed from vertex A to vertex B.

Example 1. If F = {C → B, AD → B, AB → DC, B → E} and R =
{A,B, C, D, E} then the contribution graph of set F of dependencies is
presented in Figure 1.

Figure 1. A contribution graph for set F

Two vertices A,B ∈ S are strongly connected, if and only if there
exists in graph G a path from A to B and backwards, from B to A.
It is obvious that the relation of strong connectivity is an equivalence
relation. So, there is a partition of set of vertices S into pairwise
disjoint subsets. That is, S =

⋃n
i=1 Si and all vertices in Si, i = 1, n,

are strongly connected, and every two vertices from different subsets
are not strongly connected.
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In accordance with this partition, subgraphs Gi = (Si, Ei), i = 1, n
are called strongly connected components [4] of the graph G, where Ei

represents the set of edges that connect pairs of vertices in Si.

Example 2. The set of vertices of the graph represented in Figure 1
are split into three equivalence classes S1 = {A}, S2 = {B, C, D} and
S3 = {E}.
Definition 2. Let G∗ be the condensed graph of the graph G. Set of
vertices of graph G∗ represents set {G1, ..., Gn} of all strongly connected
components of graph G and there is an edge from vertex Gi to vertex
Gj of graph G∗, if there exists in G at least one edge that connects one
vertex from component Gi to one vertex from component Gj.

Obviously the graph G∗ is an acyclic one.

Example 3. The condensed graph of graph from Figure 1 has three
vertices and two edges, as shown in Figure 2.

Figure 2. Condensed graph of the graph from Figure 1

Over the set of vertices of graph G∗ a strict partial order is defined.
Vertex Gi precedes vertex Gj , if Gj is accessible from Gi. Now, the
equivalence classes S1, ..., Sn will be sorted based on the corresponding
order graph’s G∗ vertices.

Lemma 1. If X → Y ∈ F+ and X is a determinant of set Y under
F , then for every attribute A ∈ (X − Y ) there is an attribute B ∈ Y
so that in the contribution graph G there exists a path from vertex A
to vertex B and for every attribute B ∈ (Y −X) there exists in X an
attribute A, from which the vertex B can be reached.

Proof. Let attribute B ∈ (Y −X) and let the subset X ′ of set X
be determinant for B under F . Because X ′ → B ∈ F+, according to
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Claim 1, there is a derivation H =< X
′
0, X

′
1, ..., X

′
m > for dependency

X ′ → B under F . Then, based on Claim 2, there exists a sequence of
dependencies V1 → W1, ..., Vq → Wq in F , where A ∈ V1, B ∈ Wq and
Wi

⋂
Vi−1 6= ∅, for i = 1, q − 1.

Contribution graph has a structure, such that for every dependency
Vj → Wj in F , from each vertex labeled with an attribute in Vj an edge
leaves to every vertex labeled with an attribute in Wj . So, there exists
a path from every vertex A ∈ X ′ to vertex B.

It must be mentioned that, if X is considered the union of all de-
terminants of attributes in Y − X, then X

⋃
X

⋂
Y = X. Indeed, if

we suppose that the set X
⋃

X
⋂

Y is a proper subset of set X, this
will contradict the supposition that X is a determinant for Y under F .

Corollary 1. If reduced dependency V → W is used nonredundantly
in building the derivation H for dependency X → Y under F , then in
contribution graph G there exists a path from every vertex labeled with
an attribute in V to every vertex labeled with an attribute in Y .

4 Properties of equivalence classes of attributes

Theorem 1. If X is a determinant under F of set S1
⋃

...
⋃

Sj, where
j = 1, n, then X ⊆ S1

⋃
...

⋃
Sj.

Proof. Let X 6⊂ S1
⋃

...
⋃

Sj . Then there exists an equivalence
class St, where t = j, n, such that X

⋂
St 6= ∅. By Lemma 1, in

the contribution graph G, from every attribute A ∈ X
⋂

St there is a
path towards B, where B ∈ S1

⋃
...

⋃
Sj . But this fact contradicts the

supposition that the sets S1, ..., Sj precede the set St.

Corollary 2. If X is a determinant of set S1
⋃

...
⋃

Sn under F , then
X

⋂
S1 6= ∅.

Proof. Indeed, for every attribute B in S1 or B ∈ X, or, according
to Lemma 1, there is in X an attribute A from which vertex B is
accessible in contribution graph G. But then A is also a member of
equivalence class S1.
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Definition 3. Equivalence class Sj is called nonredundant, if and only
if for every attribute A in Sj, the expression (

⋃n
i=1 Si−Sj) → A /∈ F+

holds.

Considering Lemma 1, it can be concluded that set Sj is nonre-
dundant, if and only if for every attribute A in Sj , the expression
(
⋃j−1

i=1 Si) → A /∈ F+ holds.
From the ordered sequence of sets S1, ..., Sn a sequence of ordered

nonredundant sets can be built T1, ..., Tn, where T1 = S1 and Tj =
= Sj − (

⋃j−1
i=1 Ti)+F for j = 2, n. As a result of this process, some sets

Tj can become empty. These empty sets can be excluded from the
sequence and a sequence of nonempty sets T1, ..., Tm will be obtained,
keeping the precedence of prior sets.

Proposition 1. T1 = S1.

Proposition 2. (T1
⋃

...
⋃

Tm) → (S1
⋃

...
⋃

Sn) ∈ F+.

Example 4. Sequence of equivalence classes of attributes S1 = {A},
S2 = {B,C, D} and S3 = {E} turns into the following sequence of non
redundant equivalence classes of attributes: T1 = {A}, T2 = {B,C, D}.

Theorem 2. Set X is a determinant of set S1
⋃

...
⋃

Sn under F , if
and only if X is determinant of set T1

⋃
...

⋃
Tm under F .

Proof. Necessity. Because X is a determinant of set S1
⋃

...
⋃

Sn

and T1
⋃

...
⋃

Tm ⊆ S1
⋃

...
⋃

Sn, then X → (T1
⋃

...
⋃

Tm) ∈ F+.
Supposing X is not a determinant of set T1

⋃
...

⋃
Tm under F , thus

there exists at least one attribute A in X for which the expression (X−
{A}) → (T1

⋃
...

⋃
Tm) ∈ F+ holds. Then, according to Proposition

2, the expression (X − {A}) → (S1
⋃

...
⋃

Sn) ∈ F+ holds, fact that
contradicts the hypothesis that X is a determinant of set S1

⋃
...

⋃
Sn

under F .
Sufficiency. Let X be a determinant of set T1

⋃
...

⋃
Tm under

F . Since (T1
⋃

...
⋃

Tm) → (S1
⋃

...
⋃

Sn) ∈ F+ and T1
⋃

...
⋃

Tm ⊆
S1

⋃
...

⋃
Sn, then X is a determinant for S1

⋃
...

⋃
Sn under F .
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Lemma 2. If X is a determinant under F of set S1
⋃

...
⋃

Sn, then
Z, where Z = X

⋂
(S1

⋃
...

⋃
Sj) and j = 1, n, is a determinant for

S1
⋃

...
⋃

Sj under F .

Proof. According to Theorem 1, the expression X ⊆ S1
⋃

...
⋃

Sn

takes place. First it will be shown that Z → (S1
⋃

...
⋃

Sj) ∈ F+. Lets
suppose the contrary: Z → (S1

⋃
...

⋃
Sj) /∈ F+. Then there exists

a set Z ′, where Z ′ ⊆ X, which is a determinant of set S1
⋃

...
⋃

Sj

and Z ′
⋂

(
⋃n

i=j+1 Si) 6= ∅. Considering Lemma 1, there is a path from
every vertex labeled with A in Z ′

⋂
(
⋃n

i=j+1 Si) that leads to a vertex
B in

⋃j
i=1 Si. A contradiction has been encountered. Therefore, Z →

(S1
⋃

...
⋃

Sj) ∈ F+.
To complete the proof of this lemma, it will be shown that Z is

a determinant under F of set S1
⋃

...
⋃

Sj . Indeed, if it is considered
that Z is not a determinant of F under F , then there must exist in Z
an attribute A, such that (Z − {A}) → (S1

⋃
...

⋃
Sj) ∈ F+. But then

(Z − {A}) → Z ∈ F+ takes place, fact that implies (X − {A}) → X ∈
F+. So, a contradiction has been encountered, that X is a determinant
of set S1

⋃
...

⋃
Sn under X.

Theorem 3. If set Z = X
⋂

(T1
⋃

...
⋃

Tj)of attributes is a determi-
nant of set S1

⋃
...

⋃
Sn, then X ⊆ T1

⋃
...

⋃
Tm.

Proof. Let Sj be the first set of attributes that doesn’t coincide
with Tj and assume that there is an attribute A in X, such that
A ∈ Sj and A /∈ Tj . Lemma 2 implies that (X

⋂
(S1

⋃
...

⋃
Sj)) →

(S1
⋃

...
⋃

Sj) ∈ F+. Since A /∈ Tj , then (X
⋂

(S1
⋃

...
⋃

Sj)) → A ∈
F+. So (X − {A}) → X ∈ F+, thus X is not a determinant of set
S1

⋃
...

⋃
Sn under F .

Corollary 3. If an attribute A in R is prime in scheme M , then
A ∈ ⋃m

i=1 Ti.

Corollary 4. If an attribute A in O(||F ||) is nonprime in scheme
Sch = (

⋃n
i=1 Si, F ), then A ∈ (

⋃n
i=1 Si −

⋃m
i=1 Ti).

Example 5. Considering Corollaries 3 and 4, and Example 4, for the
scheme Sch(R, F ), where F = {C → B, AD → B, AB → DC, B → E}
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and R = {A,B, C,D, E}, {A,B, C, D} is set of prime attributes and
E is nonprime attribute.

Theorem 3 and Lemma 2 can be paraphrased for nonredundant
equivalence classes of attributes.

Lemma 3. If X is a determinant under F of set T1
⋃

...
⋃

Tm, then
Z, where Z = X

⋂
(T1

⋃
...

⋃
Tj) and j = 1,m, is a determinant for

T1
⋃

...
⋃

Tj under F .

Proposition 3. If set of attributes X is a determinant of set T1
⋃

...
⋃

⋃
Tj, then X ⊆ T1

⋃
...

⋃
Tj, where j = 1,m.

The soundness of this affirmation follows from theorems 1, 2 and 3.

Theorem 4. If set of attributes X is a determinant of set T1
⋃

...
⋃

Tm,
then X

⋂
Ti 6= ∅, where i = 1,m.

Proof. Let for a set Tj , where j = 1,m, the equality X
⋂

Tj = ∅
holds. From Corollary 2 and Proposition 1, follows that X

⋂
T1 6= ∅.

According to Lemma 3 set Z, where Z = X
⋂

(T1
⋃

...
⋃

Tj) and
j = 1, m, is a determinant for T1

⋃
...

⋃
Tj under F . From the

fact that X
⋂

Tj = ∅ it follows that Z ⊆ T1
⋃

...
⋃

Tj−1 and then
(T1

⋃
...

⋃
Tj−1) → Tj ∈ F+. But this contradicts the assumption that

set T1
⋃

...
⋃

Tm is nonredundant.

5 Algorithmic aspects

From the algorithmic point of view, the problem of testing the prime-
ness of attributes consists of two parts, construction of equivalence
classes of scheme’s attributes and elimination of the redundancy in
these classes. In other words, being given a relation scheme Sch(R, F ),
the sets S1

⋃
...

⋃
Sn = R and T1∪ ...∪Tm are to be build, respectively.

The method for determination of equivalence classes of attributes
consists in the fact that for every attribute A in R, the list of attributes
that label accessible vertices from A on the contribution graph is com-
puted. So, accessibility matrix M will be computed, that will consist
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of 0 and 1, with a dimension |R| × |R|, where |R| is cardinality of set
R. The element M(i, j) = 1 if and only if there exists a path from
vertex i to vertex j. Based on matrix M the set of equivalence classes
of attributes R is constructed.

In the speciality literature (for example, in [5]) it is described an
algorithm of finding the strongly connected components of a directed
graph with a complexity O(max(|S|, |E|)), where |S|- number of ver-
tices, and |E|- number of edges. But, it is easy to observe that, using
this algorithm is non suitable, because the computing of the contribu-
tion graph (for example its representation in form of adjacency lists)
for a set F of functional dependencies requires O(|R| · ||F ||) opera-
tions and the graph will have a number of edges proportionally to |R|2.
Where ||F || is the number of attributes involved in F , when dupli-
cates are also considered. As ||F || > |R|, algorithm of computing the
equivalence classes of attributes needs O(|R| · ||F ||) operations.

Because the closure of a set of attributes under a set of func-
tional dependencies is computed in a time O(||F ||) [2], then for equiv-
alence classes of attributes the elimination of redundancies requires
O(|EquivClasses| · ||F ||), where |EquivClasses| represents the num-
ber of equivalence classes of attributes. Since |EquivClasses| ≤ |R|,
this algorithm requires a time proportionally to |R| · ||F ||.
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Ramanujan-like formulas for 1
π2 á la Guillera

and Zudilin and Calabi-Yau differential

equations

Gert Almkvist

Abstract

Using the PSLQ-algorithm J.Guillera found some formulas for
1

π2 . He proved three of them using WZ-pairs. Then W. Zudilin
showed how to produce formulas for 1

π2 by squaring formulas
for 1

π . The success of this depends on facts related to Calabi-
Yau differential equations of string theory. Here some examples
of this is worked out. Also some formulas containing harmonic
numbers are found by differentiating formulas for 1

π2 .

1 Introduction

Ramanujan [10] found several formulas for 1
π of the following form

∞∑

n=0

anxn
0 (α + βn) =

1
π

where

v(x) =
∞∑

n=0

anxn

satisfies a third order differential equation with polynomial coefficients.
J.Guillera [9] found eight (and proved three of them) formulas for 1

π2

of the form ∞∑

n=0

Anxn
0 (c0 + c1n + c2n

2) =
1
π2

c©2009 by G. Almkvist
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where

w(x) =
∞∑

n=0

Anxn

satisfies a differential equation of order five. It is quite remarkable that

w(x) = x(y0(x)y′1(x)− y′0(x)y1(x))

where y0, y1 are solutions of a fourth order differential equation (the
pullback) of Calabi-Yau type (see [1] for definitions). With the notation
of [2] the w are 3̂, 6̂, 7̂, 8̂, 1̂1, 1̂2, A ∗ β = #40, C ∗ ϑ. Guillera used the
PSLQ-algorithm to find and WZ-pairs to prove his formulas. Also this
paper uses modern computer algebra to find the formulas.

In [14] Zudilin showed how to ”square” a Ramanujan-like formula
for 1

π to get a formula for 1
π2 . The success of this depends on

the fact that v(x) = u(x)2 where u(x) satisfies a second order
differential equation. Hence w(x) = u(x)4 which leads to that the
Yukawa coupling of the pullback is trivial. This is proved in section
2. In section 1 we give some examples of Zudilin’s square. Finally
in section 3 we give some examples of formulas containing harmonic
numbers obtained by differentiating the formulas for 1

π2 .

2 The square of Ramanujan

In [14] Zudilin has given the recipe for how to obtain a formula for 1
π2

from a formula for 1
π . The key fact is that for all known formulas

∞∑

n=0

Bnxn
0 (α + βn) =

1
π

then

v =
∞∑

n=0

Bnxn

satisfies a third order differential equation

v′′′ + s2v
′′ + s1v

′ + s0v = 0
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which is the symmetric square of a second order differential equation

u′′ + p1u
′ + p0u = 0.

This means that v = u2 and in [1] it is shown that it is equivalent to

s1s2

27
+

s′1
2
− s′′2

6
− s2s

′
2

3
− s0 = 0

and

p0 =
s1

4
− s2

2

18
− s′2

12
,

p1 =
s2

3
.

In Zudilin [14] it is shown that squaring the formula for 1
π one obtains

the following formula for 1
π2 :

∞∑

n=0

Anxn
0 (c0 + c1n + c2n

2) =
1
π2

where

v2 =
∞∑

n=0

Anxn

and

c0 = α2 +
4
3
β2x2

0p0(x0) = α2 +
1
27

β2x2
0(9s1(x0)− 2s2(x0)2 − 3s′2(x0)) ,

c1 = αβ +
1
3
β2(x0p1(x0)− 1) = αβ +

1
9
β2(x0s2(x0)− 3) ,

c2 =
1
3
β2 .

The hypergeometric case.
Assume that

v =
∞∑

n=0

(1
2)n(a)n(1− a)n

n!3
xn.
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Then v = u2 where

u =
∞∑

n=0

(a
2 )n(1−a

2 )n

n!2
xn

by Clausen’s identity and u satisfies

u′′ +
2− 3x

2x(1− x)
u′ − a(1− a)

4x(1− x)
u = 0

which gives

c0 = α2 − 1
3
β2a(1− a)

x0

1− x0
,

c1 = αβ − 1
6
β2 x0

1− x0
,

c2 =
1
3
β2 .

Case a=1/2.
Here

v =
∞∑

n=0

(1
2)3n
n!3

xn

and

An =
n∑

k=0

(1
2)3k(

1
2)3n−k

k!3(n− k)!3

with

w =
∞∑

n=0

Anxn

satisfying the 5-th order differential equation ( θ = x d
dx )

8θ5 − x(2θ + 1)(8θ4 + 16θ3 + 17θ2 + 9θ + 2) + 8x2(θ + 1)5 .

Example (Ramanujan [10])

∞∑

n=0

(1
2)3n
n!3

(5 + 42n)
1

64n
=

64
π
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Here x0 = 1
64 , α = 5

16 , β = 42
16 which gives c0 = 17

192 , c1 = 77
96 , c2 = 147

64
and we find ∞∑

n=0

An
17 + 154n + 441n2

192
1

64n
=

1
π2

.

Case a=1/3.
Here

v =
∞∑

n=0

(1
2)n(1

3)n(2
3)n

n!3
xn

and

An = 108−n
n∑

k=0

(
2k

k

)2(2n− 2k

n− k

)2(3k

k

)(
3n− 3k

n− k

)

with

w =
∞∑

n=0

Anxn

satisfying the 5-th order differential equation

324θ5 − 18x(2θ + 1)(18θ4 + 36θ3 + 37θ2 + 19θ + 4) +
+x2(θ + 1)(3θ + 2)(3θ + 4)(6θ + 5)(6θ + 7) .

Example (Chan-Liaw-Tan [7])

∞∑

n=0

(1
2)n(1

3)n(2
3)n

n!3
(−1)n

5002n
(827 + 14151n) =

1500
√

3
π

Here x0 = − 1
5002 , α = 827

1500
√

3
, β = 14151

1500
√

3
, which gives c0 = 410393

4050000 ,

c1 = 2600669
1500000 , c2 = 22250089

2250000 and we find

∞∑

n=0

An
4103930 + 70218063n + 400501602n2

40500000
(−1)n

5002n
=

1
π2

.

Case a=1/4.
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Here

v =
∞∑

n=0

(1
2)n(1

4)n(3
4)n

n!3
xn

and

An = 256−n
n∑

k=0

(4k)!
k!4

(4n− 4k)!
(n− k)!4

with

w :=
∞∑

n=0

Anxn

satisfying the differential equation

64θ5 − 2x(2θ + 1)(32θ4 + 64θ3 + 63θ2 + 31θ + 6) +
+x2(θ + 1)(2θ + 1)(2θ + 3)(4θ + 3)(4θ + 5) .

Example. (J.Borwein-P.Borwein [4])

∞∑

n=0

(1
2)n(1

4)n(3
4)n

n!3
(−1)n

8822n
(1123 + 21460n) =

3528
π

Here x0 = − 1
8822 , α = 1123

3528 , β = 21460
3528 which gives c0 = 630583

6223392 ,
c1 = 18074759

9335088 , c2 = 28783225
2333772 and we find

∞∑

n=0

An
1891749 + 36149518n + 230265800n2

18670176
(−1)n

8822n
=

1
π2

.

Example. (D.V.Chudnovsky-G.V.Chudnovsky [8])

∞∑

n=0

(1
2)n(1

4)n(3
4)n

n!3
1

74n
(3 + 40n) =

49
√

3
9π
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Here x0 = 1
74 , α = 27

49
√

3
, β = 360

49
√

3
, which gives c0 = 1935

19208 , c1 = 3237
2401 ,

c2 = 14400
2401 and we find

∞∑

n=0

An
1935 + 25896n + 115200n2

19208
1

74n
=

1
π2

.

Case a=1/6.
Here

v =
∞∑

n=0

(1
2)n(1

6)n(5
6)n

n!3
xn

and

An = 1728−n

(
2n

n

)(
3n

n

) ∞∑

n=0

16−k

(
2k

k

)3(2n− 2k

n− k

)

with

w =
∞∑

n=0

Anxn

satisfies

648θ5 − 9x(2θ + 1)(3θ + 1)(3θ + 2)(8θ2 + 8θ + 5) +
+8x2(θ + 1)(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)

(this is the Hadamard product B∗ϑ which is deleted from the big table
since its fourth order pullback has trivial Yukawa coupling)

Example (J.Borwein-P.Borwein [4])

1
2E
√

3

∞∑

n=0

(1
2)n(1

6)n(5
6)n

n!3
(A + Bn)

1
E2n

=
1
π

where
A = 1657145277365 + 212175710912

√
61 ,

B = 107578229802750 + 13773980892672
√

61 ,

E = 4752926464 + 608549875
√

61 .
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We obtain ∞∑

n=0

An(c0 + c1n + c2n
2)

1
E2n

=
1
π2

where

c0 =
1

13203E2F 3
(1116646893876058625329270431173989297780098334

+142971984278650150521031407984764718461880160
√

61) ,

c1 =
1

13203E2F 3
(72490262500274310806460103027944564563578681503

+9281427036051733416631061849834430653748120480
√

61) ,

c2 =
1

13203E2F 3
×

×(1568636180985945215797364215662316853825981949903

+200843282363293945697228573609629579498429824000
√

61)

where
F = 236674 + 30303

√
61 .

Sporadic formulas

Example. (H.H.Chan-S.H.Chan-Z.G.Liu [6])

∞∑

n=0

n∑

k=0

(
n

k

)2(2k

k

)(
2n− 2k

n− k

)
(1 + 5n)

(−1)n

64n
=

8
π
√

3
.

Here (case (α) )

v =
∞∑

n=0

n∑

k=0

(
n

k

)2(2k

k

)(
2n− 2k

n− k

)
xn

satisfies

v′′
′
+

3(128x2 − 30x + 1)
x(64x2 − 20x + 1)

v′′+
448x2 − 68x + 1

x2(64x2 − 20x + 1)
v′+

4
x2(4x− 1)

v = 0 .

107



G. Almkvist

We get

An =
n∑

k=0

∑

i

∑

j

(
k

i

)2(2i

i

)(
2k − 2i

k − i

)(
n− k

j

)2(2j

j

)(
2n− 2k − 2j

n− k − j

)

and

w =
∞∑

n=0

Anxn

satisfies

θ5 − 2x(2θ + 1)(10θ4 + 20θ3 + 25θ2 + 15θ + 4)

+22x2(θ + 1)(132θ4 + 528θ3 + 947θ2 + 838θ + 312)

−27x3(2θ + 3)(10θ4 + 60θ3 + 145θ2 + 165θ + 74)

+212x4(θ + 2)5 .

Then we have x0 = − 1
64 , α =

√
3

8 , β = 5
√

3
8 which gives c0 = − 1

72 ,
c1 = 5

32 , c2 = 25
64 and

∞∑

n=0

An
−8 + 90n + 225n2

576
(−1)n

64n
=

1
π2

.

Example.

∞∑

n=0

n∑

k=0

(
2k

k

)2(2n− 2k

n− k

)2 1 + (3 + 2
√

3)n
4

(
2−√3

64

)n

=
1
π

Here (case (β) )

v =
∞∑

n=0

n∑

k=0

(
2k

k

)2(2n− 2k

n− k

)2

xn

satisfies

v′′′ +
3(32x− 1)
x(16x− 1)

v′′ +
1792x2 − 112x + 1

x2(16x− 1)2
v′ +

8(32x− 1)
x2(16x− 1)2

v = 0 .
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We get

An =
n∑

k=0

∑

i

∑

j

(
2i

i

)2(2k − 2i

k − i

)2(2j

j

)2(2n− 2k − 2j

n− k − j

)

where

w =
∞∑

n=0

Anxn

satisfies
θ5 − 23x(2θ + 1)(4θ4 + 8θ3 + 11θ2 + 7θ + 2)

+29x2(θ + 1)(3θ4 + 12θ3 + 23θ2 + 22θ + 9)

−211x3(2θ + 3)(4θ4 + 24θ3 + 59θ2 + 69θ + 32)

+216x4(θ + 2)5 .

Then we have x0 = 2−√3
64 , α = 1

4 , β = 3+2
√

3
4 which gives c0 = 0,

c1 = 1+
√

3
8 , c2 = 7+4

√
3

16 and we get

∞∑

n=0

An
(2 + 2

√
3)n + (7 + 4

√
3)n2

16

(
2−√3

64

)n

=
1
π2

.

Example (T.Sato [12])

∞∑

n=0

∑

k

(
n

k

)2(n + k

n

)2

(10−3
√

5+20n)

(√
5− 1
2

)12n

=
20
√

3 + 9
√

15
6π

Here (case (γ) )

v =
∞∑

n=0

∑

k

(
n

k

)2(n + k

n

)2

xn

satisfies

v′′′+
3(2x2 − 51x + 1)
x(x2 − 34x + 1)

v′′+
7x2 − 112x + 1

x2(x2 − 34x + 1)
v′+

x− 5
x2(x2 − 34x + 1)

v = 0 .

109



G. Almkvist

We get

An =
n∑

k=0

∑

i

∑

j

(
k

i

)2(k + i

k

)2(n− k

j

)2(n− k + j

j

)2

and

w =
∞∑

n=0

Anxn

satisfies

θ5 − 2x(2θ + 1)(17θ4 + 34θ3 + 38θ2 + 21θ + 5)

+2x2(θ + 1)(579θ4 + 2316θ3 + 3604θ2 + 2576θ + 714)

−2x3(2θ + 3)(17θ4 + 102θ3 + 242θ2 + 267θ + 115)

+x4(θ + 2)5 .

We have x0 =
(√

5−1
2

)12
, α = 6(10−3

√
5)

20
√

3+9
√

15
, β = 120

20
√

3+9
√

15
which gives

c0 =
1473122

9
− 73200

√
5 ,

c1 = 183680− 82144
√

5 ,

c2 = 51520− 23040
√

5

and
∞∑

n=0

An(c0 + c1n + c2n
2)

(√
5− 1
2

)12n

=
1
π2

.

Example (H.H.Chan-H.Verrill [5])

∞∑

n=0

∑

k

(−1)n+k3n−3k

(
n

3k

)(
n + k

n

)
(3k)!
k!3

(1 + 4n)
1

81n
=

3
√

3
2π
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Here ( case (δ) )

v =
∞∑

n=0

∑

k

(−1)n+k3n−3k

(
n

3k

)(
n + k

n

)
(3k)!
k!3

xn

satisfies

v′′′ +
3(162x2 + 21x + 1)
x(81x2 + 14x + 1)

v′′ +
567x2 + 48x + 1

x2(81x2 + 14x + 1)
v′+

+
3(27x + 1)

x2(81x2 + 14x + 1)
v = 0 .

We get

An =
n∑

k=0

∑

i

∑

j

(−1)n+i+j3n−3i−3j

(
k

3i

)(
n− k

3j

)(
k + i

k

)
×

×
(

n− k + j

j

)
(3i)!
i!3

(3j)!
j!3

and

w :=
∞∑

n=0

Anxn

satisfies
θ5 + 2x(2θ + 1)(7θ4 + 14θ3 + 18θ2 + 11θ + 3)

+2x2(θ + 1)(179θ4 + 716θ3 + 1364θ2 + 1296θ + 522)

+2 · 34x3(2θ + 3)(7θ4 + 42θ3 + 102θ2 + 117θ + 53)

+38x4(θ + 2)5 .

We have x0 = 1
81 , α = 2

3
√

3
, β = 8

3
√

3
, which gives c0 = 50

243 , c1 = 160
243 ,

c2 = 64
81 and we get

∞∑

n=0

An
50 + 160n + 192n2

243
1

81n
=

1
π2

.
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Example (Yifan Yang [13])

∞∑

n=0

∑

k

(
n

k

)4

(1 + 4n)
1

36n
=

18
π
√

15

We have

v =
∞∑

n=0

∑

k

(
n

k

)4

xn

which satisfies

v′′′ +
3(128x2 + 18x− 1)
x(64x2 + 12x− 1)

v′′ +
444x2 + 40x− 1

x2(64x2 + 12x− 1)
v′+

+
2(30x + 1)

x2(64x2 + 12x− 1)
v = 0 .

We have

An =
n∑

k=0

∑

i

∑

j

(
k

i

)4(n− k

j

)4

and

w :=
∞∑

n=0

Anxn

satisfies
θ5 − 4x(2θ + 1)(θ2 + θ + 1)(3θ2 + 3θ + 1)

+16x2(θ + 1)(θ4 + 4θ3 − 9θ2 − 26θ − 17)

+8x3(2θ + 3)(96θ4 + 576θ3 + 1361θ2 + 1491θ + 634)

+64x4(θ + 2)(2θ + 3)(2θ + 5)(4θ + 7)(4θ + 9) .

We have x0 = 1
36 , α =

√
15

18 , β = 2
√

15
9 which gives c0 = − 1

60 , c1 = 8
81 ,

c2 = 20
81 and

∞∑

n=0

An
−27 + 160n + 400n2

1620
1

36n
=

1
π2
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Example (Rogers [11])

∞∑

n=0

(−1)n

(
2n

n

) ∑

k

(
n

k

)2(2k

k

)
(159− 48

√
3 + 520n)(

8− 5
√

3
22

)2n =

=
2(64 + 29

√
3)

π

We have

v =
∞∑

n=0

(
2n

n

) ∑

k

(
n

k

)2(2k

k

)
xn

which satisfies

v′′′ +
3(1− 60x + 288x2)
x(1− 40x + 144x2)

v′′ +
11− 132x + 972x2

x2(1− 40x + 144x2)
v′+

+
6(−1 + 18x)

x2(1− 40x + 144x2)
v = 0 .

We have

An =
∞∑

k=0

(
2k

k

)(
2n− 2k

n− k

)∑

i,j

(
k

i

)2(2i

i

)(
n− k

j

)2(2j

j

)
.

We have x0 = −(8−5
√

3
22 )2 , α = 159−48

√
3

2(64+29
√

3)
, β = 260

64+29
√

3
which

gives c0 = 1084121−624832
√

3
114 , c1 = 10(581611−333800

√
3

3·114 c2 = 100
3·114 (26476−

14848
√

3) and

∞∑

n=0

An(c0 + c1n + c2n
2)(−1)n(

8− 5
√

3
22

)2n =
1
π2

.
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3 Symmetric squares of third order differential
equations

For a fourth order differential equation there are six 2×2-wronskians of
the four solutions. In general they satisfy a differential equation of order
6. But there is an interesting exception, the Calabi-Yau equations, for
which the wronskians satisfy a fifth order equation. Dually, there are
six symmetric squares of the three solutions to a third order differential
equation. When do these satisfy a fifth order equation? The answer is:

Theorem:
Consider the differential equation

v′′′ + s2v
′′ + s1v

′ + s0v = 0 .

Then w = v2 satisfies a fifth order equation if and only if

1
3
s1s2 − 2

27
s3
2 +

1
2
s′1 −

1
6
s′′2 −

1
3
s2s

′
2 − s0 = 0 .

This means that already v is a square and w is a fourth power of a
solution to a second order differential equation.

Proof:
Differentiating w = v2 five times and eliminating vv′, vv′′, v′v′′ we

get

w(5) +
10
3

s2w
(4) + 5(s1 +

5
9
s2
2 +

1
3
s′2)w

′′′+

+(11s0 + 2s′1 + s′′2 +
19
3

s1s2 +
4
9
s1s

2
2 + 2s2s

′
2)w

′′

+(7s′0 + s′′1 + 4s2
1 +

32
3

s0s2 +
4
9
s1s

2
2 −

1
3
s1s

′
2 +

7
3
s′1s2)w′+

+(2s′′0 + 8s0s1 +
8
9
s0s

2
2 −

2
3
s0s

′
2 +

14
3

s′0s2)w

= −12v′2(
1
3
s1s2 − 2

27
s3
2 +

1
2
s′1 −

1
6
s′′2 −

1
3
s2s

′
2 − s0)

The right hand side is zero if and only if v is the square of a solution
to a second order equation.
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Corollary.
The fifth order equation in the Theorem is Calabi-Yau (but its

fourth order pullback has trivial Yukawa coupling)
Proof: The C-Y2 condition for

w(5) + b4w
(4) + b3w

′′′ + b2w
′′ + b1w

′ + b0w = 0

is ( see [3] )

−b2 +
3
2
b′3 +

3
5
b3b4 − b′′4 −

6
5
b4b

′
4 −

4
25

b3
4 = 0

and we compute the left hand side

−b2 +
3
2
b′3 +

3
5
b3b4 − b′′4 −

6
5
b4b

′
4 −

4
25

b3
4 =

= 11(
1
3
s1s2 − 2

27
s3
2 +

1
2
s′1 −

1
6
s′′2 −

1
3
s2s

′
2 − s0) = 0 .

We have w0 = v2
0, w1 = v0v1, w2 = v2

1. To show that the fourth order
pullback has trivial Yukawa coupling we use the identities in [3]

x2fy2
0 =

∣∣∣∣
w0 w1

w′0 w′1

∣∣∣∣ = v2
0

∣∣∣∣
v0 v1

v′0 v′1

∣∣∣∣

x2fy0y1 =
∣∣∣∣
w0 w1

w′0 w′1

∣∣∣∣ = 2v0v1

∣∣∣∣
v0 v1

v′0 v′1

∣∣∣∣

x2fy0y2 = v2
1

∣∣∣∣
v0 v1

v′0 v′1

∣∣∣∣

which implies

y2

y0
=

v2
1

v2
0

=
1
4

(
y1

y0

)2

.
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4 Harmonic sums

The expansions on pp.58-59 of [9] lead to, after differentiation, formulas
containing harmonic numbers Hn defined by

Hn =
n∑

k=1

1
k

and H0 = 0. As a curiosity I mention the asymptotic expansion

Hn = log(n) + γ −
∞∑

k=1

Bk

knk

which could be a strange definition of the Bernoulli numbers

∞∑

n=0

{120 + 4(9 + 120n)(H4n −Hn)} (4n)!
n!4

1
28n74n

=

=
49(8 log(2) + 4 log(7))

π
√

3
∞∑

n=0

{52780 + 4(2206 + 52780n)(H4n −Hn)} (4n)!
n!4

1
28n994n

=

=
992(8 log(2) + 4 log(99))

π
√

2
∞∑

n=0

(−1)n{51 + (7 + 51n)(3H3n + 2H2n − 5Hn)}
(

2n

n

)2(3n

n

)
1

24n108n
=

=
36(6 log(2) + 3 log(3))

π
√

3
∞∑

n=0

(−1)n{545140134 +(13591409 +545140134n)(6Hn −3H3n −3Hn)}×

× (6n)!
(3n)!n!3

1
123n533603n

=
9 · 533602(log(12) + log(53360))

2π
√

10005
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∞∑

n=0

(−1)n

{
45 + 410n + 10(

13
4

+ 45n + 205n2)(H2n −Hn)
}
×

×
(

2n

n

)5 1
220n

=
640 log(2)

π2

∞∑

n=0

(−1)n

{
1 + 5n + 10(

1
8

+ n +
5
2
n2)(H2n −Hn)

}(
2n

n

)5 1
212n

=

=
12 log(2)

π2

∞∑

n=0

{
38 + 480n + (

15
8

+ 38n + 240n2)(8H8n − 4H4n + 2H2n − 6Hn)
}
×

×
(

2n

n

)
(8n)!

(4n)!n!4
1

218n74n
=

49(18 log(2) + 4 log(7)
π2
√

7

∞∑

n=0

(−1)n
{
693 + 10836n + 6(29 + 693n + 5418n2)(H6n −Hn)

}×

×(6n)!
n!6

1
28803n

=
384

√
5 log(2880)

π2

∞∑

n=0

∑

k

∑

i

∑

j

{
160 +800n +4(−27 +160n +400n2)(Hn−k−Hn−k−j)

}×

×
(

k

i

)4(n− k

j

)4 1
36n

=
1620 log(36)

π2

I have continued the expansions one term longer for a few of
Guillera’s expansions on p.43 and 46 in [9]

∞∑

n=0

(−1)n

1024n+x

(1
2)5n+x

(1)5n+x

(13 + 180(n + x) + 820(n + x)2) =

117



G. Almkvist

=
128
π2

− 320x2 +
4880

3
π2x4 − 114688ζ(3)x5 + O(x6)

∞∑

n=0

(−1)n

1024n+x

(1)5n+x

(3
2)5n+x

(13 + 180(n +
1
2

+ x) + 820(n +
1
2

+ x)2) =

= 256ζ(3) +
64
3

π4x + O(x2)

∞∑

n=0

1
64n+x

(1
2)7n+x

(1)7n+x

(1 + 14(n + x) + 76(n + x)2 + 168(n + x)3) =

=
32
π2

(1− π2x2 +
4
3
π4x4 − 257

45
π6x6 + O(x7))

∞∑

n=0

1
64n+x

(1)7n+x

(3
2)7n+x

(1+14(n+
1
2

+x)+76(n+
1
2

+x)2+168(n+
1
2

+x)3) =

=
1
2
π4 − 186ζ(5)x + O(x2)

Errata: In the thesis on p.58 in [9] 59
√

3
49 should be 9

√
3

49 ( on p.33
formula (1.9) is correct)
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