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Introduction

It is more than 10 years since we have published our first special
issue devoted to the Computer Algebra. For us it was a starting point
for the development of Computer Algebra in Moldova. Looking back
we can say that this was a period during which we have found our
own place in this very important part of modern Computer Science.
It was, of course, impossible without the help of our colleagues from
other countries, without the financial support from INTAS and Swedish
Academy of Science. In fact the most part of articles, published in this
issue was supported by INTAS project Nr 05-104-7553 and we are very
grateful for this important help.

It is interesting to compare old and new issues. The systems which
were just introduced in the previous issue (Singular, Anick) are now ac-
tively used to obtain much more sophisticated and fine results. Grobner
bases and non-commutative computations which were something new
at that time, now are the standard topics for student courses. Today
they became natural instruments and there are applications and user
friendly implementations of those instruments that are of main inter-
est. Differential algebraic equations, Cryptography, Integration - these
are the topics of non-commutative Computer Algebra in this issue and
such development is amusing!

Even ”classic” topics, such as solving of the system of equations,
optimization of algorithms, homogenization and studying of singulari-
ties are presented in this issue, but the level is much higher than ten
years ago. In some sense the modern Computer Algebra has achieved
the micro level: it helps us to study invisible details and the develop-
ment of the software itself is also on the microscopic level: invisible
(for the user) contributions for the essential improvements of the main
algorithms. It is Fine Computer Algebral
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A New Attempt On The F5 Criterion

Christian Eder

Abstract

Faugere’s criterion used in the Fj algorithm is still not un-
derstand and thus there are not many implementations of this
algorithm. We state its proof using syzygies to explain the nor-
malization condition of a polynomial. This gives a new insight in
the way the Fj criterion works.

1 Introduction

In 2002 Faugere published a new algorithm for computing Grobner
bases [2]. He found a new criterion defining when a set is a Grébner
basis. This criterion can be used to compute Grobner bases of ideals
generated by arbitrary finite sequences of polynomials.

In the Fj algorithm additional data on the polynomials is used to
detect redundant critical pairs in advance to avoid computations of
zero. In this paper we give a proof of the Fj criterion with some easier
and more general arguments.

The plan of the paper is as follows: In section 2 we give briefly
the basic definitions for Grobner basis computations as well as the
main terminology for the F5 criterion. In section 3 we prove the main
theorem of this paper, the Fj criterion.

(©2008 by Ch. Eder
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2 Basic Notations

Throughout this paper ring always means a commutative ring with
identity, N is the set of non-negative integers. K denotes the ground
field, K[z] the polynomial ring over K in the finite sequence of n vari-
ables z = (z1,...,y,). 7 denotes the set of terms of K[z]. Furthermore
let < be a total order on K[z].

2.1 Grobner basics

We briefly give the main definitions needed to define a Grobner basis
in a characterization useful for our purposes.

Definition 2.1. Let ¢t = 2" 2% € T where o; € N for i €
{1,...,n}. The total degree of t is defined to be deg(t) = > """ | ;.
Let

F=3 otz = 3 caa® € K]\ {0}

«

where o = (a1,...,a,) € N, ¢, € K, and only finitely many ¢, # 0.
The total degree of f is defined as deg(f) = max{a; + -+ + a, |
Coy.nan # 0}, Furthermore writing f = coz® + ngﬁ + o+ ey,
z® > 2P > ... > 27 in a unique way as a sum of non-zero terms we

define

(a) the head monomial of f: HM(f) = cqx®,
(b) the head term of f: HT(f) = z?,
(c) the head coefficient of f: HC(f) = c,.

Definition 2.2. Let f,g € K[z]\{0}. The S-polynomial of f and g is
defined to be

T T

Spol(f,g) = HC(Q)WJC - Hc(f)mg

where 7 = lem(HT(f),HT(g)).
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Definition 2.3. Let P C K]z] be a finite set, 0 # f € K[z], and t € 7.

A representation
f = E App)
peP

where )\, € K[z], p € P is called a t-representation of f w.r.t. P if for
all p € P such that A\, # 0 HT(\,p) < t.

For t = HT(f) a t-representation of f is called a standard represen-
tation

There are a lot of equivalent characterizations of Grobner bases, see
for example [1]. The one we need in this paper is stated next.

Theorem 2.4. Let G = {g1,...,9n.} be a finite subset of Klz]| with
0¢G. If forall f € I ={g1,...,9ny) [ has a standard representation,
then G is a Grébner basis of I.

Proof. See [1]. O

2.2 F; basics

We extend given definitions and state new terminology needed to un-
derstand Faugere’s Fy criterion.

In the following let F' = (f1,..., fm) be a sequence of polynomials
in K[z], K[z]™ denotes the free K[z]-module of rank m.

Definition 2.5. Let g = > ", grer € K[z]™ where e denotes the
k-th standard vector in K[z]|™. We define the evaluation map w.r.t. F
vp : Klz]™ — K[z] such that

m m
vp (Z gkek> = gl
k=1 k=1

An element s € K[z]™ is called a syzygy w.r.t. F if vp(s) = 0. For
m > 2 for each pair f;, f; with 1 < ¢ < 7 < m we have a so-called
principal syzygy w.r.t. I, m; ; = fje; — fie;.
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The set of all syzygies w.r.t. F is denoted Syz(F') = ker(vp) and
generates an K[z]-module. The submodule generated by all principal
syzygies w.r.t. F' is denoted PSyz(F).

Next we define an ordering of K[z]™.

Definition 2.6. Let g = )", grex € K[z]™. The index of g, denoted
by index(g), is the smallest ¢ € {1,...,m} such that g; # 0.

Suppose that g and h € K[z]™ with index(g) = ¢ and index(h) = j.
Then we can write g = > )", gre, and h = Y37 - hyey.

g <h:o 1> 7, or
' i =7 and HT(g;) < HT(h;)

For any g € K[z]™\{0} it holds that 0 < g.

This leads to an extension of the terminology of head terms.

Definition 2.7. Let g € K[z]™\{0} with index(g) = ¢. The module
head term MHT of g is defined to be MHT(g) = HT(g;)e;.

Lemma 2.8. The module ordering < is well-founded.

Proof. Let § # P C K[z]™. The index of any element p = Y"1, p;e; €
P is bounded by m, and < is a well-ordering on the head terms of
polynomials in K[z]. Thus

imax = max{index(p)|p € P}
tmin = min{HT(py) | p € P,index(p) = k}

are well-defined. Then
) # M :={p € P |index(p) = imax, HT(Pi,..) = tmin}

is the set of minimal elements of P. O

Next we define a connection between polynomials in K[z] and mod-
ule elements in K[z]™. These are the main concepts for the Fj criterion.

7
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Definition 2.9.

(a)

(b)

()
(d)

(e)

(f)

A labeled polynomial r is an element r = (uey, p) such that u € 7,
p € Klz].

The signature of r is defined by S(r) := uey, the polynomial of r
by poly(r) := p, and the index of r by index(r) := k. For a finite
set G of labeled polynomials we define poly(G) := {poly(r)|r €
G}.

If t € T then tr := (tueg, tp), if ¢ € K then cr := (ueg, cp).

r is called admissible w.r.t. F if there exists a g € K[z]™\{0}
such that vp(g) = p and MHT(g) = S(r).

Let G be a finite set of labeled admissible w.r.t. F' polynomi-
als. r is called normalized w.r.t. G if u ¢ HT({{p; € poly(G) |
index(r;) > index(r)})).

Let (r1,7r2) be a pair of labeled polynomials with

7 = lem(HT(poly(r1)), HT(poly(r2))), 7 = Tpoy )y 1or & €
{1,2}. Then (r1,r2) is called normalized if 71r;, Tory are nor-
malized and S(7er2) < S(mir1). For a pair of labeled polynomials

(r1,72) where ri, 9 are admissible to g1, g2 respectively, we define
the S-polynomial to be

Spol(ry,ra) == (MHT(7’1g1 — T282), caTipoly(ry) — 017'21901}’(7’2))7

where ¢; = HC(poly(r;)) for i € {1,2}.

Corollary 2.10. If ry and ro are admissible labeled polynomials w.r.t.
F then Spol(ri,r2) is an admissible labeled polynomial w.r.t. F'.

3 Fj; criterion

Next we prove the Fj criterion stated in [2]. For this purpose we need
some lemmata and more notations.
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Convention 3.1. In the following let F' = (f1,..., fm), fi € K[z], G =
{r1,...,rng } aset of labeled admissible w.r.t. F polynomials such that

{(e1, f1),.- ., (€m, fm)} C G.

Let p; = poly(r;) for all : € {1,...,ng}, poly(G) = {p1,- -, Pne }

When we write admissible we always mean admissible w.r.t. F.

Lemma 3.2. If an admissible labeled polynomial r = (uey,p) with
g € Klz|™ such that MHT(g) = uey, and vp(g) = p is non-normalized
w.r.t. G then there exists s € PSyz(F) with index(s) = k such that
MHT(g —s) < MHT(g).

Proof. If r = (ueg, p) is non-normalized then there exists r; € G with
p; = Z?l:ko Mefe € G where Ay € K[z] such that index(r;) = ko > k
and HT(p;) | u. So there exists t € 7 such that tHT(p;) = u. Let
Z:= pier — [k Zz’;ko Meey € Syz(F). Now we can rewrite

piek — fr Y Mer = | D Mefe|er—fi Y Aeer

{=ko l=ko l=ko
= Aofro®k — Moo fk€ko T Mkot1fko+1€K —
— AMegt1fk€kot1 + -+ AmSmer — Amfrem
Ak Thiko + Meo+1Th ko+1 T+ + AnThm

m
= E ATl g

{=ko

where 7, ,, denotes the principal syzygy fue, — fvew € PSyz(F')
for v < w € {1,...,m}. Set s =tz € PSyz(F). By construction
index(s) = k, MHT(g —s) < MHT(g) and vp(g —s) = vr(g). O

Lemma 3.3. Let r = (uek,p) and let 71,70 € T. If Tomi7 is normalized
w.r.t. G = 17 18 normalized w.r.t. G.
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Proof. Let tomir = (ToT1u€), T2T1p) be normalized w.r.t. G.

Assume for contradiction that 717 = (1yueg, 71p) is non-normalized
w.r.t. G. Then there exists rg € G such that index(rg) > k and
HT(po) | Tiw. Then HT(pg) | 7omiu and it follows that 7e7ir is non-
normalized w.r.t. G, which contradicts our assumption that mmr is
normalized w.r.t. G. O

The following definition of the ordering < for representations of a
labeled polynomials is similar to the one Faugere has stated in [2]. For
a deeper insight we refer to [3].

Definition 3.4. Let f € I = (g1,..., gny). Then we define

ng

Ry := {()\,0) € Kz]"¢ x Sym,,, | f= Z)\ipg(i),S()\lrg(l)) - ...
=1

s S(Ancra(ng))}

to be the set of labeled representations of f w.r.t. G where Sym,,, de-
notes the symmetric group on {1,...,ng}. Next we define the ordering
< on labeled representations of f w.r.t. G.

For two labeled representations of f w.r.t. G, (\,0) and (X, o),
we define
w = (S(HT()\l)TU(l)), e ,S(HT(}\nG)TU(nG))) s
W' = (SHTA)req)), - SHTN, )rorng))) -

respectively.
(A, 0) < (N, 0') iff one of the following conditions holds:

(a) i such that V1 < j <i<ng: w;= w} and w; < wf,

(b) Vj: wj =w} and
man:Lm’nGHT()\gpg([)) < man/:Lm’nGHT()\Z,pO/@/)),

(c) Vj: wj = wi,
max=1,.. e HT (AePo(r)) = maxp—1, . e HT(Nppor(ry) =:
and #{¢ | HT(Aepy () = t} < #{l' | HT (Ao po(er)) = t}-

10
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Lemma 3.5. The ordering < is well-founded.

Proof. See [3], Lemma 3.17. O

Lemma 3.6. Let f € I = (g1,...,9ny)- Let (N, 0) be a minimal labeled
representation for f w.r.t. G. Then for all indices v € {1,...,m}:

#{k | (Mg, 0(k)) € (N, 0), A\ # 0, index(rypy) = v} < 1.

Proof. We can assume o to be the identity by renumbering G, f =
Yot Aigi- Choose v € {1,...,m} arbitrarily. Denote

I = {k| (Mg, id(k)) € (\,id), index(rg) = v},
I. = {k| (Mg id(k)) € (N id),index(rg) < v} and
I. = {k| (Mg id(k)) € (A id),index(rg) > v}.

Assume that #1 > 1.
Each r; € G is admissible w.r.t. F, ie. gp = > 7" ng;fj with ny; €
Thus we get a new representation of f:

Fo= D Xgi=> Xgi+> Ngi
i=1

i€l jel1

m
= D NG+ D A | Fot DN D mikfet D Mg

iele jeI jel  k=v+1l el

This new labeled representation (XN,0’) <jex (A,id): The first #1
components remained unchanged, then there is one component X, f,,

where X =3 jer AjTjv- By construction

SMHT(A )74/ ()
= max{S(HT(\x)7x) | (Mg, id(k)) € (A, id),index(ry) = v},

11
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where poly(r,/(y)) = fu- So the signatures of the first #/. + 1 com-
ponents of both labeled representations are equal. But the #1. + 2th
component of (A, id) has index v, as we assumed that there are at least
two such components, whereas the #1. 4 2th component of (X, ¢’) has
an index < v.

Thus we received a contradiction of the minimality of (A,id) w.r.t.
<. t

Remark 3.7. Note that a labeled representation w.r.t. G does not re-
strict the number of possible representations of an element f € I. A
labeled representation w.r.t. GG just orders the components of the corre-
sponding representation of f so that representations can be compared
w.r.t. <.

Definition 3.8. Let t € 7, (A, o) be a labeled representation w.r.t. G
of a labeled polynomial . W.l.o.g. we can assume o = id. Then (), id)
is called a t-representation of r if

ngG
pP=> A
=1

such that for all components HT(A\ypy) < t and S(HT (Ag)r¢) < S(r).

Theorem 3.9. If for all pairs (r;,rj) normalized w.r.t. G Spol(r;,7;)
has a t-representation where t < lem(HT(p;), HT(p;)) then poly(G) is
a Grobner basis of I = (p1,...,pn).

Proof. Let f € I. Then f has a labeled representation (X, o) w.r.t. G.
W.lo.g. we can assume o = id such that f = Y} Ampy. By Lemma
3.5 let us assume (A,id) to be a minimal labeled representation of f
w.r.t. G.

If there is a component (Ag,id(k)) € (A,id) such that Agry is
not normalized w.r.t. G then there exists a principal syzygy s by
Lemma 3.2. Agry is admissible, i.e. there exists g € K[z]™ such that
MHT(g) = S(HT(A\x)rg) and vp(g) = A\gpk. So we can construct g —s
with MHT (g —s) < MHT(g) and A;r admissible to g —s. This gives a

12
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labeled representation (X, o’) of f w.r.t. G such that (N,o’) < (A,id).
This contradicts the minimality of (),id) w.r.t. <, so every Agri such
that (Ag,id(k)) € (A,id) is normalized w.r.t. G.

By Lemma 3.6 there are no two components with the same index
in (A,id), i.e. all Agrg have different signatures.

Assume that there exist components (\g, id(k)) such that HT (Agpg) =
t' where t' > HT(f). Note that #{¢ | HT(A¢p¢) = t'} > 2. Choose two
such components (A;,id(7)), (A;,id(j)).

Let 7 = lem(HT(p;), HT(p;)), 7 = wrey and 7 = ﬁpj). Then
7| ¢, 7 | HT(X\;), and 75 | HT(\;).

Define m; = HM()\;) and m; = ggé/)\‘;))HM()\]) Now we compute

mip; —myp; = HC\)HT(N)p; — HC(\)HT(Aj)p;
Tit/ Tjt,
- HC(/\z) (sz - ij>

t/
= HC(\)—Spol(pi, p;)-

Since A;r; and \;r; are normalized w.r.t. G it follows with Lemma 3.3
that also 7;7; and 7;7; are normalized w.r.t. G.

Thus we get a new labeled representation (\’,¢”) of f w.r.t. G:

ng nag
fo= o= ipi+\pj+ > Mepe

=1 =1

040,

HC(\)
= mipi + (A — HT(\i))pi — mypj — HCO,) (A = HT(\))p;
HC()\i)> &
+ 1+ Ajpj + Aepe.
( HC(\) ) ;
(Fig

As Spol(r;, ;) has a t-representation Spol(p;, pj) = >, nepe such that

HT(nepe) < HT(lem(HT (p;), HT(p;)) and
S(HT(ne)re) = S(Spol(rs, 75)).

13
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It follows that (A\”,0”) < (A,id). This contradicts the minimality of
(\,id). 0

Acknowledgement. 1 would like to thank John Perry for many useful
discussions.
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Some Remarks on Blowing-Ups in a Computer
Algebra System

Anne Frithbis—Kriiger

Abstract

The aim of this short note is to provide detailed information
on how to compute blowing ups in various settings by means of
a computer algebra system. All examples are formulated using
the system SINGULAR[3].

1 Introduction

Although the notion of blowing up is ubiquitous in algebraic geometry
and singularity theory, the most common use of it is a blowing-up at
a point. Consequently tools to compute blowing-ups at a point are
implemented in a wide range of computer algebra systems.

For more complex applications on the other hand like e.g. studying
examples of flops, considering Nash modifications or desingularization,
restricting the choice of centers to sets of points is not an option: Con-
sidering the even the simplest example of a flop, the centers of the
blow-ups for the small resolutions will be Weil divisors'; considering
resolution of singularities, the singular locus has, in general, no rea-
son to be zerodimensional. Thus implementations of blowing ups also
need to cover the general case, which will be described in section 2 of
this article. Allowing centers to be higher dimensional, we encounter
problems of efficiency, which may be countered to some extent by con-
sidering embedded blowing up, whenever the centers are non-singular
and we are using a covering by affine charts; allowing centers to even

(©2008 by A. Friihbis-Kriiger
!see section 3 for the step-by-step calculations in SINGULAR
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be singular, as is necessary for Nash modifications, on the other hand,
blocks this alternative for computations.

In sections 3 and 4, we consider examples of applications of the vari-
ous variants mentioned — each time including a step by step SINGULAR-
input and output for treating the respective task.

As usual for computational methods for algebraic geometry in char-
acteristic zero, we assume the ground field to be C for all reasoning,
although actual computations are performed over the rationals.

I should like to thank Lawrence Ein, Priska Jahnke, Patrick
Popescu-Pampu, David Ploog and Ivo Radloff, whose questions on how
to compute specific examples of blowing ups by means of a computer
algebra system, led to this collection of remarks. I am also indebted
to the Freie Universitdt Berlin and the ICTP Trieste for the invita-
tions that provided the opportunity to meet the previously mentioned
colleagues.

2 Implementation of Blowing Ups

2.1 Blowing Up a Scheme

Recall that given a noetherian scheme W and a closed subscheme Y of
W, corresponding to a ideal sheaf 7 on W, the blowing-up of W along
Y is defined as

m: W= Proj(@ 1% — W.
d>0
This is a birational map, which is an isomorphism away from Y, i.e.
W\ 7 1Y) = W\Y; the inverse image 7~ 1(Y) is a Cartier divisor on
W, called the exceptional divisor of the blowing up?. Unfortunately,
this description is not well-suited for explicit calculations and imple-
mentations, which usually require objects to be represented by polyno-
mial data, i.e. a free presentation or a set of generators of an ideal over
a polynomial ring or a quotient thereof. To achieve this description, a

2For further details including the universal property of blowing up see any text-
book on algebraic geometry like [6], II or [9]
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convenient way is to pass to a covering of W by finitely many affine
open sets. Then the initial situation in an affine chart U C W can be
formulated as follows: Working over the basering A := Ow (U), which
is a polynomial ring or a quotient thereof, we can describe the center
Y in this chart by the ideal I/ = Z(U) which we now assume to be
generated by fo,..., fs. Then we can consider the graded morphism of
A-algebras

v: Alyo,...,ys] —> A[t- fo,...,t- fs] C At]
yi > t-fi

whose image is obviously isomorphic to @~ [¢. Hence 77 1(U), as a
subset of U x P, allows a description by A[yo, ..., ys]/ker(¢) which is
precisely what we needed for computational purposes. The exceptional
divisor of the blowing up, i.e. the inverse image of the center Y, then
corresponds to the ideal I - Alyo, ..., ys|/ker(p).

The ideal ker(y) unfortunately involves s + 1 additional variables
and hence it seems at first glance that e.g. the number of variables in
the resolution process might constantly rise making effective standard
bases calculations virtually impossible after just a few blow-ups. But
passing once again to an appropriate affine covering helps us keep the
number of variables sufficiently low; more precisely we use the usual
covering of the newly introduced P* by the sets D(y;), 1 < i < s.
Obviously, this is a trade-off and causes the calculations to branch
which easily leads to duplicate calculations on the intersections of sev-
eral charts and significantly increases the amount of data to be stored.
On the other hand, treating several charts at the same time on differ-
ent processors/computers allows a parallelization of e.g. the resolution
algorithm which is only rarely possible for computational tasks in com-
mutative algebra and may improve the performance.

Nevertheless, the disadvantages of passing to open covers largely
outweigh the benefits in general and it is therefore desirable to keep
the number of charts as low as possible e.g. by dropping charts which
do not contribute any new information to the considered task.
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Example 1 [Blowing up of A% at the origin]

ring r=0, (t,x(1..3),y(1..3)),(dp(1),dp);
// A3 x P"2 plus extra variable
// for elimination of t
// as usual in computation of
// preimage of zero
ideal I=y(1)-t*x(1),
y(2)-t*x(2),
y(3)-t*x(3); // ideal describing map
ideal IW=eliminate(I,t);
// elimination step
ring r2=0,(x(1..3),y(1..3)),dp;

// A3 x P°2
ideal IW=imap(r,IW); // transfer the ideal to this ring
IW; // ideal of variety after blowing up

-=> IW[1]=x(3)*y(2)-x(2)*y(3)
-=> IW[2]=x(3) *y (1) -x(1)*y(3)
-=> IW[3]=x(2)*y (1) -x(1)*y(2)

subst (IW,y(1),1); // what does the chart
// D(y(1)) look like
-—> _[1]1=x(3) *y (2) -x(2) *y (3)
-=> _[2]=-x(1) *y(3)+x(3)
-=> _[3]=-x(1)*y(2)+x(2)
// As expected this is isomorphic to an A"3, getting rid
// of x(2) and x(3) using generators _[2] and _[3].
// The exceptional divisor is described by x(1)=0 in
// this chart.
//
// The same observations hold in the other charts,
// as the whole situation is blind to exchanging the roles
// of the variables x(i).

As already mentioned, we would like to blow up at more general

18
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centers than point. Here is one such example:
Example 2 [Blowing up A3 in V(z,2? + 42 — 1)]

ring r=0, (t,x(1..3),y(1..2)),(dp(1),dp);
// A3 x P"1 plus extra variable
// for elimination of t
// as usual in computation of
// preimage of zero

ideal I=y(1)-t*x(3),

y(2)-t*(x(1)"2+x(2)"2-1) ;

// ideal describing map

ideal IW=eliminate(I,t);
// elimination step

ring r2=0,(x(1..3),y(1..2)),dp;

// A3 x P°1
ideal IW=imap(r,IW); // transfer the ideal to this ring
IW; // ideal of variety after blowing up

-=> IW[1]=x(1) "2*y (1) +x(2) "2*y (1) -x(3) *y (2) -y (1)

subst (IW,y(1),1); // what does the chart
// D(y(1)) look like
-=> _[11=x(1)"2+x(2) "2-x(3) *y (2)-1
// This is obviously non-singular, but we cannot get rid
// of a fourth variable.
subst (IW,y(2),1); // and D(y(2)) -->
_[1=x(1) "2xy (1) +x(2) "2*y (1) -x(3) -y (1)
// Here we can get rid of x(3).

This sequence of computational steps to compute blowing ups is
available as commands blowUp and blowUp2 in SINGULAR, see the SIN-
GULAR. online manual for a description.

2.2 Notions of Transforms

Considering blowing ups, we are usually not just dealing with a single
scheme, but additionally with one or several subschemes of it which are
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also affected by the blowing up. This leads to the task of computing
the total and the strict transform of such a subscheme (or depending
on the context also the weak or the controlled transform).

To this end, let us recall that the total transform of a closed sub-
scheme Z C W (corresponding to an ideal sheaf Jz; C O ) under
the blowing up 7 is just the inverse image 7 !(Z) and can hence be
computed as

Tz 0tal = Tz * Oy

Let us further recall that the strict transform Z of Z is obtained by
blowing up Z at the center given by Z - Oz according to the following
commutative diagram:

i

Z < W
L
7z 5 W

In the affine case, we can also obtain the strict transform of Z by
forming the closure of 7=%(Z \ (Z N Y)) in W. By using again the

previously introduced affine covering of W, this allows us to compute
the strict transform from the total transform using a saturation?:

JZ,strict = (JZ : OW(U) : I%o)a

where J is used as short hand notation of J7(U) and Iy denotes the
ideal of the exceptional divisor of 7 on our chart U. Geometrically this
saturation can be interpreted as dropping all components of the total
transform which lie in the exceptional divisor or coincide with it.

For resolving singularities by the algorithmic approaches of Vil-
lamayor [1] and Encinas/Hauser [3] two other notions of transforms
come into play which amount to ending the above saturation prema-
turely after a fixed number of ideal quotient computations. In the case

3Saturating, i.e. iterating the ideal quotient until it stabilizes (noetherian ring), is
available in most computer algebra systems for algebraic geometry and commutative
algebra as a built-in command. It is usually an expensive operation, but not if we
are saturating by a principal ideal. For a detailed discussion of saturation and its
geometric interpretation see [2] or [4]
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of the weak transform, this number of iterations is the maximal order
of the ideal J prior to the blowing up (at a center contained in the
locus of maximal order); geometrically speaking, the weak transform
originates from the total transform by removing all copies of the excep-
tional divisor, but keeping the lower-dimensional components which lie
inside the exceptional divisor. In the case of the controlled transform,
the number of iterations is prescribed by the resolution algorithm and
can be anything between 1 and the number of iterations for the weak
transform.

Example 3 [Different notions of transforms of a space curve] Contin-
uing the first example, we now consider the space curve V (zz,yz, 23 —

y*) C A% and compute its different transforms:

ideal J=x(1)*x(3),x(2)*x(3),x(1)"4-x(2)"3;
// ideal of space curve
ideal Jtotal=J,IW; // ideal of total transform,
// before passing to charts
ideal Jtl=subst(Jtotal,y(1),1);
// ideal in chart D(y(1))
Jt1l;
-=> Jt1[1]=x(1)*x(3)
-—> Jt1[2]=x(2)*x(3)
-=> Jt1[3]=-x(1)"4+x(2)"3
-=> Jt1[4]=x(3) *y (2)-x(2) *y (3)
-=> Jt1[6]=—x(1) *y(3)+x(3)
-=> Jt1[6]=—x(1)*y(2)+x(2)
// 0Obviously we can get rid of x(2) and x(3) by appropriate
// reductions. As the heuristic to do this automatically is
// lengthy, it is not printed here. Instead, we use our
// knowledge of what we want to replace:
ideal Jt2=subst(Jt1,x(3),x(1)*y(3));
// replace x(3) by x(1)*y(3)
// according to Jt1[5]
Jt2=subst (Jt2,x(2) ,x(1)*y(2));
// replace x(2) by x(1)*y(2)
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// according to Jt1[6]
Jt2=interred(Jt2); // drop unnecessary
// generators
Jt2;
--> Jt2[1]1=x(1) "2y (3)
-=> Jt2[2]=x(1)"3*y(2)"3-x(1)"4

ring chart=0, (x(1),y(2),y(3)),dp;

ideal Jt2=imap(r2,Jt2); // only keep necessary
// variables for this chart,
// by passing to appropriate
// ring

Jt2;

-=> Jt2[1]=x(1) ~2xy(3)

-=> Jt2[2]=x(1) "3*y(2) "3-x(1)"4

ideal Jctrll=quotient(Jt2,ideal(x(1)));
// controlled transform,
// #iterations=1

Jctrlil;

-=> Jetrl[1]=x(1)*y(3)

-=> Jctrl[2]=x(1)"2*y(2)"3-x(1)"3

ideal Jweak=quotient(quotient(Jt2,ideal(x(1))),
ideal(x(1)));
// weak transform
// #iterations=2, because
// ord(J)=ord(x(1)*x(3))=2
Jweak;
-=> Jueak[1]=y(3)
-=> Jweak[2]=x(1)*y(2)"3-x(1)"2

LIB"elim.1lib"; // saturation is in elim.lib

ideal Jstr=sat(Jt2,x(1));
// strict transform
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Jstr;

[1]:
_[11=y(3) // ideal of strict transform
_[2]=y(2)~3-x(1)

[2]:
3 // number of iterations when

// stabilizing

Figure 1. These three pictures illustrate the different notions of trans-
forms computed in the example 3. From left to right, we see total
transform, weak transform and strict transform. Due to technical rea-
sons with the imaging tool surf, one additional plane is shown in each
image: V(y(3)), of which we know that it contains the two curves.

The above considerations about the definition and the computation
of the strict transform of a subscheme also imply that there are two
equivalent ways of computing the blowing up of a scheme which can be
embedded into a A* or a P at a non-singular center:

e blowing up the scheme directly

e considering the scheme as embedded in an appropriate A* (pos-
sibly after passing to an affine covering), blowing up the A¥ and
computing the strict transform

The first variant can be quite expensive in the elimination of the ad-
ditional variables — depending on how complicated the equations for
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the variety are*. The latter variant has to deal with a larger amount

of data due to the affine covering; the expensive part here is the satu-
ration which is, on the other hand, cheaper than a general saturation,
because we saturate by a principal ideal.

If the center itself is singular, however, blowing up the ambient
space is not an option, because the ambient space has no reason to be
smooth after such a blowing up as the following example shows:

Example 4 [Blowing up at a singular center]

ring r=0, (t,x(1..3),y(1..2)),(dp(1),dp);
// again A3 x P"1 plus
// additional variable t
ideal I=y(1)-t*x(1)*x(2),y(2)-t*x(3);
// center is the union
// of the x- and y-axes
ideal IW=eliminate(I,t);
Iw;
-=> IW[1]=x(1)*x(2)*y(2)-x(3) *y (1)
subst (IW,y(2),1); // chart D(y(2))
-=> _[1]=x(1)*x(2)-x(3)*y (1)
// this obviously has a singular point at the origin!

3 Application 1: A Flop

As the first application, we now consider the simplest example of a flop.
It is however beyond the scope of this short note to explain exactly what
a flop is; a good reference for the minimal model program (the context,
in which the notions of flips and flops arose) and the precise definitions
of flips and flops can be found in [7]. For our purpose here, which is

4 Standard basis calculations w.r.t. elimination orderings are never really cheap,
but (like standard basis calculations in general) they tend to become very expensive,
if we are dealing with many variables and the equations are not of a particularly
simple form.
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an illustration on how to use a computer algebra system to deal with
a concrete example, it suffices to consider the following situation:

Let X = V(z129 — z314) C A(4C, which obviously has one isolated
singularity at the origin. Blowing up X at this singular point, we obtain
X cC A(‘IC X P(?’C whose exceptional locus turns out to be a P! x PL. On
the other hand, blowing up at the Weil divisor V (z1,z3) C X which is
not -Cartier, we obtain X; C Aé X IP’}C. Analogously, blowing up at
V(z9,x4) yields another scheme Xo. Here it is interesting to observe
that X; and X9 may alternatively be constructed by blowing down
one (and the other resp.) of the Pl of the exceptional divisor of X.
The resulting rational map X; — — > Xy is the well-known simplest
example of a flop®. As a diagram, we have the following situation

The following sequence of SINGULAR commands mimics the main steps
of the above construction:

ring r=0, (t,x(1..4)),dp; // A"4 plus extra variable t,
// for checking singular locus,
// Weil divisors, not Cartier;
// extra variable t will be
// needed later on -
// explained there

ideal I=x(1)#*x(2)-x(3)*x(4);

LIB"sing.1lib"; // slocus is in sing.lib

std(slocus(I)); // ideal of singular locus

SConsidered abstractly, the two varieties X; and X» are isomorphic in this very
simple example. This is a coincidence and does not occur in general.
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-=> _[1]=x(4)

-=> _[2]=x(3)

--> _[3]=x(2)

-=> _[4]1=x(1) // as we expected
ideal IDivi=x(1),x(3); // first divisor
ideal IDiv2=x(2),x(4); // second divisor

// as both V(IDivl) and V(IDiv2) are obviously reduced,
// irreducible, closed subsets of A4, it remains to check
// — V(IDivl) contained in V(I) and of codimension 1
// - analogously for V(IDiv2) -- not shown here
size(reduce(I,std(IDivl)));
// zero if ideal containment
// test succeeds
-—> 0
dim(std(I))-dim(std(IDivl));
// codimension of V(IDiv1)
// in V(I)
// remark: extra variable t
// causes both dimensions

// to be raised by 1
// which does not
// affect this result

-—> 1
// Hence we have prime divisors on X, which are of course
// Weil divisors.
//
// We now check that V(IDivl) cannot be Q-Cartier, i.e.
// that there cannot be a power of V(IDivl) which is
// locally principal. To this end, we pass to the
// localization at the only singular point. - If it
// fails there, this is sufficient to show that V(IDiv1l)
// is not Q-Cartier.
ring rlocal=0, (t,x(1..4)),(dp(1),ds);
// ds ordering is local!
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def I=imap(r,I);

ideal Itest=I,x(1),x(3)*t-1;

reduce(1,std(Itest)); // 0, if some power of x(3) is
// in I+<x(1)>; 1 otherwise

-—> 1

Itest=I,x(3),x(1)*t-1; // as above, but roles of x(1)
// and x(3) exchanged

reduce(1,std(Itest));

-—> 1

// This implies that V(IDivl) cannot be Q-Cartier.
//
// After checking the claimed properties of $X$, we now
// return to blowing up and blowing down.
ring r2=0,(t,x(1..4),u(1..4)),(dp(1),dp);
// for A4 x P"3 + extra
// variable
ideal Ipt=x(1)*x(2)-x(3)*x(4),u(1)-t*x(1),u(2)-t*x(2),
u(3)-t*x(3) ,u(4)-t*x(4);
// ideal for blowing up point
ideal IWeill=x(1)*x(2)-x(3)*x(4),u(1)-t*x(1),u(3)-t*x(3);
// for Weil-divisor V(x_1,x_3)
ideal IXtop=eliminate(Ipt,t);
// I blownup at point
size(IXtop);
-->9 // 9 generators

std(IXtop+ideal(x(1..4))); // ideal of except.locus
-—> _[1]1=x(4)

-=> _[2]=x(3)
-=> _[3]=x(2)
--> _[4]=x(1)

-=> _[6]=u(1)*u(2)-u(3)*u(4) // <-- P"1 x P"1 in P"3

ideal IXl1=eliminate(IWeill,t);
// I blown up at first
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// Weil divisor
IX1;
-=> IX1[1]=x(3)*u(1)-x(1)*u(3)
> IX1[2]=x(2)*u(1)-x(4)*u(3)
-=> IX1[3]=x(1)*x(2)-x(3)*x(4)

// Now we blow down contracting the P"1 specified by

// V(u(2),u(4)) to a point

// In general this can only be done, if the corresponding
// blow-up map is known - it is then a preimage

// calculation.

// Here, however, the situation is so simple that we can
// see that this contraction amounts to a projection to
// A4 x P71, i.e. to eliminating u(2) and u(4)
eliminate(IXtop,u(2)*u(4));

-=> _[1]=x(3)*u(1)-x(1)*u(3)

-=> _[2]=x(2)*u(1)-x(4)*u(3)

-=> _[3]=x(1)*x(2)-x(3)*x(4)

// As expected this is the same as IX1.

4 Application 2: A Nash Modification

As the second application, we consider Nash modifications, which are
known to locally be blowing ups. In particular, we shall consider two
examples, only one of which is a complete intersection.

Let us recall that given a reduced separated algebraic scheme X
of pure dimension 7, a Nash modification p : X — X is defined
by the following process (which, for simplicity of presentation, we de-
scribe only in the special case that X C A" and that X is defined by

(105 fm)):

Denoting by G the Grassmannian of r-planes in A", by Reg(X)
the complement of the singular locus of X, and by Tx , the tangent
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space of X at a point x € Reg(X), consider the morphism

n:Reg(X) — X xGY (1)
z — (2,Tx4)- (2)

X is then defined as the closure of the image of 5 in X x G} and the Nash
modification p : X —» X is the first projection. By a result of Nobile
[8], p can locally be formulated as a blowing up at a center J C Ox
where J is generated® by appropriate elements gp of the ideal of n —r
minors of the Jacobian matrix (ng;)lSifmylfjfn' More precisely, for
each irreducible component X; of X, we can find

e an (n—r) xn submatrix of this matrix of which at least one n—r
minor does not vanish on X; (The minors of this submatrix will
be denoted by M; s where 3 indicates the columns involved in
this particular minor)

e a global section 0 # h; € T'(X,Ox) vanishing along all other
components X;, 1 <j <d, i # j.

The generators of J are then

d
93 ==§£:’Mﬂ4@g
1=1

where (3 runs through all n —r tuples of column indices of the Jacobian
matrix.

In the case of a complete intersection, the Jacobian matrix does not
have more than n — r rows, thus making the row selection and the h;
in the above construction unnecessary and implying that J is just the
ideal of the singular locus.

// As a first example we consider a complete intersection:
ring r=0,(t,x,y,z,a(1..5)),(dp(1),dp);
// A~3 plus additional variables

SUnder the above simplifications of X C A* and I(X) = (f1,. .., fm)
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// for blowing up

ideal Il=x"2-y"2-z"4,yz;
// 2 lines V(x+y,z),V(x-y,z)
// 2 parabolas V(x-z"2,y),
// V(x+z"2,y)
// all meeting in (0,0,0)

// Center of blowing up is singular locus
LIB"sing.lib"; // slocus is in sing.lib
ideal sL=mstd(slocus(I1))[2];
// minimal number of generators
// of ideal of singular locus
size(sL);
-->5
ideal blowl=I1,a(1)-t*sL[1],a(2)-t*sL[2],a(3)-t*sL[3],
a(4)-txsL[4] ,a(5)-t*sL[5];
ideal Eliml=eliminate(blowl,t);
// do the blowing up

// Now we would like to check that we have indeed
// 2 single and a double point in the preimage

// of V(x,y,z)

LIB"primdec.lib";

primdecGTZ (Eliml+ideal(x,y,z));

--> [1]: // double point
-—> [1]: // the component
-—> _[11=a(5)"2

-—> _[2]1=a(3)

-=> _[31=a(4)

--> _[4]1=a(1)

--> _[5]==

-—> _[6]=y

--> _[7]=x

-—> [2]: // its radical
-—> cee // output omitted
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-—>[2]: // single point
-—> [1]: // the component
-—> _[11=a(3)-a(b)

-=> _[2]=a(2)

--> _[3]1=a(4)

-=> _[4]=a(1)

-—> _[5]==

--> _Lel=y

- _[71=x

-—> [2]: // its radical
-—> cee // output omitted
-->[3]: // single point
-—> [1]: // the component
-=> _[1]1=a(3)+a(5)

--> _[2]=a(2)

-=> _[3]1=a(4)

--> _[4]=a(1)

--> _[5]==

-—> _[6]=y

--> _[7]=x

-—> [2]: // its radical
- cee // output omitted

// As a second example, we determine the center
// in the non-complete-intersection case:
ring r=0, (x,y,z) ,dp;
// A3
ideal I2=xz,yz,x"2-y"4;
// 1 line V(x,y)
// 2 parabolas V(x-y~2,z)
// and V(x+y~2,z)
// all meeting in (0,0,0)
list comps=minAssGTZ(I2);
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// minimal associated primes
// of our ideal —-
// coincides here obviously
// with prim. decomp.
matrix M[3][3]=diff(I2,x),diff(I2,y),diff(I2,z);
print (M) ; // Jacobian matrix of I2
--> z,0,2x%x,
--> 0,z,-4*y"3,
--> x,y,0
// To determine the appropriate generators
// of our center, we need to construct the
// g_beta=\sum h_i M_beta,i
// Step 1: define the three submatrices
// and their respective ideals of minors:
matrix M12[2][3]1=M[1,1..3],M[2,1..3];
matrix M13[2][3]=M[1,1..3],M[3,1..3];
matrix M23[2][3]1=M[2,1..3],M[3,1..3];
ideal mini2=minor (M12,2);
ideal mini3=minor (M13,2);
ideal min23=minor (M23,2);
// Step 2: check for each component, which minors

// do not vanish along the component
size(reduce(mini2,std(comps[1])));
-->0 // all minors of M12 vanish

// along first component
size(reduce(minl2,std(comps[2])));

-->0 // as before
size(reduce(mini2,std(comps[3])));
-—>1 // this is the good component

/* Important Aside:
The numbering of the components in the output
of minAssGTZ resp. primdecGTZ is not fixed and
often changes when recomputing the decomp. */

// ... repeating these steps for the other ideals of

32



Some Remarks on Blowing-Ups in a Computer Algebra System

// minors, we obtain:
// compl: M13 or M23
// comp2: M13 or M23
// comp3: M12

// Step 3: determine the h_i:
// check which generators of intersection of compi and
// compj does not vanish identically on compk
ideal interl2=intersect(comps[1],comps[2]);
reduce(inter12,std(comps[3]));

// study compl \cap comp2

// and comp3 ==> h3

-—> _[1]==z
--> _[2]=0
--> _[3]=0
poly h3=inter12[1]; // inter12[1] does not
// vanish identically on compl
// ... repeating these steps for the other two
// components, we obtain:
// hl = y"2—=x
// h2 = y~2+x
// h3 =z

// Step 4: combine information to obtain the center:
ideal center=(hl * min13) + (h2 * min13) + (h3 * minl2);
center;

--> center[1]=z"3

-=> center[2]=x*z"2

-—> center[3]=x*y*z

-=> center[4]=x"2*y

--> center[5]=x"3

-=> center [6] =y~ 3*z-x*xy*z

-=> center[7]=x*y~3-x"2x*y
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// Blowing up with this center now provides the
// desired Nash modification.

References

[1]

2]

[3]

[4]

[5]

[6]
[7]

8]

[9]

Bravo,A., Encinas,S., Villamayor,O.:A Simplified Proof of
Desingularisation and Applications, Rev. Math. Iberoameri-
cana 21 (2005), 349-458.

Decker,W., Lossen,C.: Computing in Algebraic Geometry - A
quick start using SINGULAR, Algorithms and Computation in
Mathematics 16, Springer Verlag (2006).

Encinas,S., Hauser,H.: Strong resolution of singularities in
characteristic zero, Comment. Math. Helv. 77 (2002), 821-845.

Greuel,G.-M., Pfister,G.: A SINGULAR Introduction to Com-
mutative Algebra, Springer (2002).

Greuel,G.-M., Pfister,G., Schonemann,H.: SINGULAR 3.0,
http://www.singular.uni-kl.de/.

Hartshorne,R.: Algebraic Geometry, Springer (1977).

Kollar,J., Mori,Sh.: Birational geometry of algebraic varieties,
Cambridge Univ. Press (1998).

Nobile,A.: Some Properties of the Nash Blowing-Up, Pac. J.
Math. 60 (1975), 297-306.

Shafarevich,l.: Basic Algebraic Geometry, Springer (1977).

Anne Frithbis—Kriiger, Received January 9, 2008

E-mail: anne@Qmath.uni — hannover.de

34



Computer Science Journal of Moldova, vol.16, no.1(46), 2008

Computing one of Victor Moll’s irresistible
integrals with computer algebra

Christoph Koutschan * Viktor Levandovskyy

Abstract

We investigate a certain quartic integral from V. Moll’s book
“Irresistible Integrals” and demonstrate how it can be solved by
computer algebra methods, namely by using non-commutative
Grobner bases. We present recent implementations in the com-
puter algebra systems SINGULAR and MATHEMATICA.

1 Introduction

The integral [1, (7.2.1)] which we deal with is

F(a,m) = /OOO ( ! dz. (1)

x* + 2ax? + 1)m+!

From mathematical expert’s view this integral might not look very
challenging, and of course, Moll is able to compute its solution by
hand. But nevertheless his computations are involved and need some
quite special knowledge. From the software point of view both MAPLE
and MATHEMATICA fail to evaluate (1) due to the presence of two
parameters a,m (if they are set to concrete numbers the evaluation
can be immediately done). We present computer algebra methods that
allow to compute this integral in a purely automatic fashion with no
expert’s knowledge involved. The first approach is based on D-module
theory whereas the second one follows Zeilberger’s “holonomic systems
approach”. Our aim is to bring together these two directions since the
underlying theoretical principles are identical. Moreover, we aim at a
self-contained presentation of theory and algorithms.

(©2008 by Ch. Koutschan, V. Levandovskyy
* supported by the Austrian FWF grant P20162
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2 Preliminaries

Let K be a field. For the integration, we will need to deal with some
special non-commutative algebras. It is common to define K-algebras
via generators and relations, especially if they have infinite dimension
over K. Let X = {x1,...,2,} be a finite set of symbols, then by
K(X) one denotes a free associative algebra. Given a finite set R =
{ri(z),...,rm(z)} C K(X), writing for an associative K-algebra A =
K(X | R) means A = K(X)/Ig, where Ir := (R) is the two-sided ideal
of K(X) generated by R. The elements of both R and I are often
regarded as relations of A. This way of defining algebras has its roots
in group theory, where a similar construction is performed. Since we are
dealing with the algebras, which are in many sense close to commutative
- in particular, each pair of variables is connected by some relation - we
use shorter notation when writing the defining relations R. Namely,
if we do not mention any relation between a pair of variables, these
variables do commute.

Given two algebras A = K(X)/I and B = K(Y)/J, we identify
A ®k B with the algebra K(X,Y | I +J), since in A ®k B any element
a® 1 for a € A commutes with every element 1 ® b for b € B.

In this article we deal with Weyl algebras, shift algebras and their
tensor products over a field K of characteristic 0. Given a natural
number n > 1 and a set of variables (also called coordinates) X =
{z1,...,2,}, we construct first a commutative ring R, = K[X]. We
identify a polynomial f € R, with the operator of multiplication by
f. Given n natural operators 0; := 0., = a%i of partial differentiation
with respect to the coordinate variable x;, we define the algebra of
linear partial differential operators with polynomial coefficients (also
called the n-th Weyl algebra) to be

An = K<x17...,xn,81,. . .,8n | {8]331 = l’iaj +6ij1 V1 < i,j < n})

Note, that the action of an operator on a function from an appro-
priate function space will be denoted by e, while - will be used for

15”' denotes the Kronecker symbol
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multiplication in operator algebras. Thus,

Of(z1,...,2n)
Op, @ f(11,. .. 2p) 1= —"T—1—2,
T; f( 1 n) 8&?1
To each coordinate x; we can also associate a partial shift operator
si, which acts on a function f(x1,...,2;,...,2,) as

si® f(x1, . @iy xy) = flxr,... @+ 1,00 2p).

Given n such operators, we define the algebra of linear partial shift op-
erators with polynomial coefficients (also called the n-th shift algebra)
to be

Sni=K(z1,..., 0, 81,...,80 | {8j2i = xisj + 0555 V1 < 4,5 < n}).
Both A, and S,, share many nice properties, for instance

- {at. ..:c%"alﬁl Lopn | i, Bi € No} is a K-basis for A,
- {alt o alns] L. ghn | i, B;i € Ng} is a K-basis for Sy,

- A, and S, are Noetherian domains (in particular, every module
is finitely generated and there are no zero divisors),

- forany 7,5 €N, 4;1; =2 A, ®c Aj and S;; = S; ®k S,

- there is a Grobner basis theory for both types of algebras, very
close to the theory in the commutative case, see e.g. [11, 8].

Picking some nice K-basis for an algebra as above, we call
these basis elements monomials. As one can see, the monomials
are in one-to-one correspondence with their exponent wectors, say,
(a1,...,0n, B1,..., Bn) € N?". Hence, we can define a monomial or-
dering on A, as follows (the cases of S, and A, ® S,, are completely
analogous, see e.g. [8])

Definition 1 A monomial ordering on A, is a total ordering < on the
set of monomials, which satisfies for all a« = (g, ), B = (Bx, By), ¥ =
(’Yx) ’Ya) € N2

(1) a<pB=2%0% < 270% and

(2) z0=9% < xPegfo = goetregrotio < phetreglotio,

37



Ch. Koutschan, V. Levandovskyy

Since every polynomial f € A,, can be uniquely written as a sum of
monomials times coefficients, we call the highest monomial of f with
respect to a given ordering the leading monomial of f. We denote the
latter by lm(f).

Note that there is another requirement we need to be fulfilled in our
class of algebras, namely 1 < z;,0;,s; V 4,7, k, that is the monomial
ordering is a well-ordering.

We say that 270 divides x50%  if a; < (3; for all i in the range.
Note, that this just means, that there exist v € N*® and r € A, such
that 292980 = x®= 9% . x729% + r with r = 0 or Im(r) < 2% 9,

Definition 2 Let < be a monomial ordering on A, and G C A, a
finite set of polynomials. Let I be a left ideal, generated by G. G is
called a left Gréobner basis of I if and only if for any f € I ~ {0} there
exists g € G satisfying lm(g) | lm(f).

Given a finite set of generators of a left ideal L, there is Buchberger’s
algorithm for computing a left Grobner basis of L (see e.g. [11, 8]).

Let M, := R,, \ {0}, then M, is a multiplicatively closed subset of
both A, and S,. Hence, using the algebraic formalism of “localization”
and the fact that M, is an Ore set, we can pass from A, (resp. S,) to
its “Ore localization”, that is an algebra (A;) s, (resp. (Sn)a,). In the
language of systems of operator equations (Ay,)as, (resp. (Sn)n,,) stays
for the algebra of linear partial differential (resp. shift) operators with
rational coefficients. The algebras with rational coefficients appear very
often in practical applications. They - as well as the Weyl and the shift
algebra - are special cases of Ore algebras. We refer to [10, 4, 3, 8] for
more details on these algebras, their properties as well as computational
aspects and Grobner bases.

3 Integration with D-modules

Define f := f(a,z) = 2* +2ax? +1 € K[z, a, then we have to integrate
the function £~ with respect to z.

D-module theory stands for “the theory of differential modules”
and encompasses systems of linear partial differential equations with
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polynomial and rational coefficients. One of the most important algo-
rithms, obtained with D-module theory (see [11] and references therein
for the full picture) is the algorithm for computing the s-parametric an-
nihilator of f € Klzq,...,z,] for a symbolic s. That is, it is possible
to compute a set of operators {P € D[s] : P e f* = 0} =: Annpjy f*,
which is indeed a left ideal in the algebra Dls| := A,[s] = A, ®k K[s]
(for historical reasons D stands for some n-th Weyl algebra). Addi-
tionally, there is an algorithm for computing Annp f* for any \ € C,
which uses the previously mentioned one.

In the case of the integral (1), f € K[z,a] = Re. Then D =
Ay = K(x,a,04,04|0,x = 20, + 1,040 = ady + 1) is the 2nd Weyl
algebra and Dl[s| = Ay ®k K]s]. First, we are going to compute the
left ideal L := Annpp, f® C Az ®k K[s] for s := —(m + 1) being
symbolic. L corresponds to the system of linear partial differential
equations in operators 0, 0y, s with coefficients in K]z, a], which has
f° as a solution. That is Vh € L, he f* = 0.

In order to compute a system I of such equations for the function
F(a,s), we use Theorem 5.5.1 of [11], which states the following: let J
be the right ideal of Ay, generated by all partial differential operators,
corresponding to variables, with respect to which we perform integra-
tion (in our case this is just 9., but the Theorem, as well as the whole
approach, which goes back to Takayama [13, 12], holds for the multiple
variable case t00). Then

I=(L+J) N (Kla,da | Oaa = ada + 1) @k K[s]),

where the latter algebra is a natural K-subalgebra of A; @k K[s].

In general the sum of a left and of a right ideals carries no left or
right structure. However, in the setting we work with a right ideal is
very special one and, as we can see, there is a structure of left ideal on
the intersection I of the sum of ideals above with a subalgebra.

We work with the special K-basis of the algebra As ®k K[s], namely
{0028a7925¢ | o, 3,7, 6,€ € Ng}. In particular, each monomial of any
polynomial in a left Grobner basis of L = Annp(, f* is presented in this
form. Moreover, we compute a left Grobner basis G of L with respect
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to an ordering which eliminates z, 0, i.e., any monomial containing 0,
or x is bigger than one, which does not contain both of them.

Instead of summing L with the right ideal J (generated by 9, ), we
perform the right reduction of G with respect to J, what amounts to
just skipping any monomial of every polynomial of G, if it is of the
form 0%xPa79?s¢, where a > 1. We may throw such a monomial away,
because it belongs to the ideal J. After such a procedure we get a
new set of polynomials G’, where 9, does not appear. Since we used
elimination ordering for both x and 0, for G and, moreover, monomials
containing 0, are not present in G’, it remains to pick those elements of
G’, which do not contain z. These elements then belong to the algebra
K{a,d, | Oga = ad, + 1)[s] and, according to the Theorem 5.5.1 of [11],
they generate the left ideal I we are looking for.

Now we illustrate the computation for the integral (1) with the
computer algebra system SINGULAR:PLURAL [5, 6]. This system has a
library for computations with algebraic D-modules dmod.1ib [9], which
we are going to use.

LIB "dmod.lib"; // load the library for D-modules

ring r = 0,(a,x),dp; // define a commutative ring

poly £ = x74 + 2%a*x"2 + 1;

def A = Sannfs(f); // A is a ring with the result object
// in it

setring A;

In the ring A, which stays for D[s] (see above), there is an object
called LD of the type ideal, which is the s-parametric annihilator ideal
L = Annpj, f* as before. Its Grobner basis consists of four operators

2220, + 240, — 0y ,

230, — 2020, + axd, — 42°s + 20, ,

4a%0? — 220% — 8a0,s + 4a0, — 40? + 4205 — 20, ,
2a%x0, + ax?0, — daxs — 220, + Oy.

Now, we change the order of variables into 0,,z,a,0,,s; adjust
the non-commutative relations respectively; set the monomial ordering,
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eliminating 0.,z and compute the left Grobner basis of the ideal L,
mapped from the ring A.

ring rr = 0, (Dx, x, a, Da, s), (a(1,1),dp);

matrix @D[5] [5];

@D[1,2] = -1; @D[3,4] = 1;

def RR = nc_algebra(1,@D);

setring RR; // a new non-commutative ring

map M = A, a, x, Da, Dx, s; // map from A to RR using names
ideal LD = M(LD); // the image of LD in the new ring

LD = groebner(LD); // left Groebner basis of LD

At this stage we have to perform the addition of the left ideal L
with the right ideal J, generated by 9, and intersect the result with the
subalgebra K(a, 9, | 04a = ad,+1)[s]. We go along the lines, described
above.

ideal DD = Dx ;

ideal J = rightNF(LD,DD); // reduce with Dx from the right
ideal NJ = nselect(J,1,2); // see below

NJ = groebner(NJ); // left Groebner basis of NJ

We achieve these operations by computing the right normal forms
of generators of left Grobner basis of LD with respect to d,. Invoking
nselect command we select those generators, which do not include
the variables from 1 to 2, that is 0, and . As we can see, the ideal
called NJ, which stay for I as above, is a principal ideal indeed. It is
generated by the polynomial

4a%0% — 40? — 840, + 4ad, — 4s — 1.

Depending on the monomial ordering used, sometimes an invertible
element might appear as a factor.

Now we substitute s by —m —1 and rewrite some terms, giving back
the answer: the integral F'(a,m) is annihilated by the left principal
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ideal of the algebra K(a, 0, | 04a = a0, + 1)[m], which is generated by
the operator

4(a —1)(a+1)0% 4 4a(2m + 3)0, + (4m + 3).

Of course, it is not yet a final answer, but an important part of it.
In the next sections we show how we come to a closed form for the
integral.

4 Holonomic systems and O-finite functions

We will now demonstrate how the symbolic evaluation of integrals
like (1) can be performed in a different, more general framework, fol-
lowing D. Zeilberger’s “holonomic systems approach” [14]. This theory
was extended by F. Chyzak [2, 3, 4] who introduced the concept of
O-finite functions and proposed Ore algebras to describe them. More-
over he implemented the underlying algorithms in the MAPLE package
MGFUN.

For the construction of an Ore algebra, one starts with a com-
mutative algebra like K[X] or K(X) and adds one or several Ore ex-
tensions. These extensions introduce operators that necessarily com-
mute with each other but usually do not commute with the vari-
ables X. This setting is quite general (see e.g. [10]) and here we
consider only special operators, namely the partial derivatives 9, 0,
and the shift s,,. For example, the Ore algebra that we will use here is
O = K(x,a,m)[0; 1, 0][0a; 1, Oa)[Sm; Sm, 0]. This algebra can also be
realized as an Ore localization (As ®k S1)p where Ay = K(x, a, 0y, d, |
Opx = 20; + 1,040 = a0y + 1), S1 = K(m, s, | Sum = msy, + sm),
and B is the multiplicatively closed set K[z, a,m] \ {0} C Ay ®k Si.

A function f is called O-finite w.r.t. an Ore algebra K(X)[P;.,.] if
the K(X)-vector space spanned by all (X™P™")e f is finite-dimensional
over K(X). The following example will clarify this definition.

We want to find Ore operators in O that annihilate the integrand
g(z,a,m) = 1/(x* 4 2azx? + 1)1, First observe that g is hyperexpo-
nential in z and a, i.e., % and % are rational functions in z and a
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respectively, e.g.,

Oy @ g(z,a,m)  (—m —1) (42® 4 4ax)
g(z,a,m) x4+ 2a2? + 1

Moreover g is hypergeometric in m which means that 2% = ¢ (@amtl)
g(z,a,m)

is a rational function in m. Hence we can compute first order annihilat-
ing operators for g(z,a,m) in Anngg = {R € O | Reg = 0}. Note that
we use the term “annihilator” for any ideal of annihilating operators.

g = 1/(x"4+2xa*xx"2+1) "~ (m+1) ;
ann = Annihilator([g, {S[m], Der[al], Der[x]}]

{(z* + 2a2® + 1)0, + 4ma® + 423 + dax + dama,
(z* 4 2a2® 4+ 1)9, + 2ma? + 222,
(z* + 2a2” 4 1)s,, — 1}

An easy check ensures that these polynomials indeed constitute a Grob-
ner basis of the left ideal they generate. Moreover all leading monomials
have degree 1; hence the corresponding ideal is a left maximal ideal and
we have dimky 4,m) O/ Annp g = 1, so g is indeed O-finite w.r.t. O.

In order to perform the integration w.r.t. x, we are interested in
finding operators in Anng g of the following special form:

P(“v m, 8@7 Sm) + aocQ(xv a,m, 890’ 8a7 Sm)a

since

0 — / (P(@, 11, By $1m) + 00Q(, 011, g By 5)) ® 9, a,m) d
0

r=0o0
= PeF(a,m)+ |Qeglr,am) . (2)
xr=
For this purpose we will use Takayama’s algorithm [13, 12]. It is de-
signed in a way that it computes P (the part one is mainly interested in)
without computing ). Informally spoken, one first divides out the right
ideal generated by 9, and then eliminates z by performing a Grébner
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basis computation over a module. To this aim we have to compute
in the Ore algebra K(a, m)[x][0x; 1, 02][0a; 1, 0a][Sm; Sm, 0] because oth-
erwise we were not able to eliminate x. More details on Takayama’s
algorithm were given in the previous section.

The fact that () is not considered at all leads to the prerequisite that
the integral must have natural boundaries: An integral f; h(z,...)dz
is said to have natural boundaries if [R  h];_, = 0 for all operators R
in the respective algebra. In particular, the inhomogeneous part in (2)
will vanish. If the integral does not have natural boundaries, we can
end up with an inhomogeneous equation.

If we now look at the integral (1) we see that unfortunately it does
not have natural boundaries, e.g.,

=00
le g(x,a,m)] =—1.
=0

We nevertheless can apply Takayama’s algorithm, but we have to
use an extended version where also @) is computed. Such an extension
is included in [7].

Takayama[ann, {x}, OreAlgebral[{x}, {Der[x], S[m]l, Der[al}],
Extended -> Truel]

{{(=4m — 4)sp, + 2a0, + (4m + 3), (3)
(4a® — 4)02 + (8ma + 12a)9, + (4m + 3)},
{z,(—4m — 4)z$;, + 2020, + x}}.

We are interested in the ordinary differential equation in a (the second
operator). Note that it is the same as the result obtained with the first
method. The corresponding @ is (—4m — 4)xs,, + 2axd, + x. Now we
verify that [Q e g]*=3° indeed vanishes although the integral does not
have natural boundaries:

inhom = Simplify[ApplyOreOperator[%[[2,2]1], gl]

-2

T (334 + 2ax? + 1) —2* + 202 + 4m (am2 + 1) + 3)
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inhom /. x -> O
0
Limit[inhom, x -> Infinity, Assumptions -> m >= 0]

0

Hence, we derived in a purely automatic fashion an ordinary differential
equation in a that is satisfied by the integral.
5 Closed form solution

Up to now we did not present a closed form solution of the integral,
but only a differential equation in the parameter a:

(4m + 3)F(a,m) + 4a(2m + 3)F'(a,m) +4 (a® — 1) F"(a,m) = 0. (4)

For solving this differential equation we can use standard tools. Since
it has order 2, we need the initial values F(0, m) and F'(0,m):

in0 = Integratelg /. a -> 0, {x, 0, Infinity},
Assumptions -> m >= 0]
(3T (m+3)
I'm+1)
inl = Integrate[D[g, al /. a -> 0, {x, 0, Infinity},

Assumptions -> m >= 0]

20 ()T (m + 3)
- 3T(m+1)

We solve (4) with MATHEMATICA’s command DSolve:

DSolve [{(4m+3)F[a] + 4a(2m+3)F’[a] + 4(a"2-1)F’’[a] == 0,
F[0] == in0O, F’[0] == in1}, F[a], al
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After some simplification we end up with the final result:

m

(e (@ - 1) Rt o)
Fla,m)=- T(m+ 1) :

where Qg\“ )(z) denotes the associated Legendre function of the second
kind.

Note that we computed this solution completely automatically with
no necessity of human insight to the specific problem. V. Moll as
an expert in the field of integrals gives the following slightly simpler
solution involving Jacobi polynomials:

1,1
F(a,m) = 2_m_%(a + 1)_m_%7rP,§1m+2’ " 2)(a)

With our software [7] we can immediately prove the correctness of this
solution:

Annihilator[Pi*JacobiP[m, m+1/2, -m-1/2, al/2" (m+3/2)/
(at+1) " (m+1/2) ,{Der[a], S[ml}]

{=4m + (—-2a)0y + (4m + 4)s,, — 3,
4m + (4a* — 4) 92 + (8ma + 12a)9, + 3}

Observe that this annihilator is exactly the same as (3). By comparing
the initial values

F(0,0) = —— and F'(0,0) =

22 42

we complete the proof.

6 Conclusion

We presented computer algebra methods for the automatic solution of a
parametrized integral. We want to emphasize that these methods are
applicable to a wide class of integration (and summation) problems.
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In particular the second method works for the large class of holonomic
functions. As a more challenging example let’s just mention the integral

& 1
d
/0 (x* 4+ az3 + bx? + cx + d)™ v

which contains more parameters, but nevertheless can be tackled in an
analogous way. The problem here is only that the resulting differential
equations are so involved that the standard tools are not able to find
a closed form solution.

We are grateful to Victor Moll and Peter Paule for turning our
attention towards this interesting problem.

We would like to acknowledge a partial financial support by the
DFG Graduiertenkolleg “Hierarchie und Symmetrie in mathematischen
Modellen” at RWTH Aachen, Germany, and by the Austrian FWF
grant P20162 “Symbolische Integration und Spezielle Funktionen”.
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Abstract

In a present paper a problem of classification of Af f(2,R)-
orbits’ dimensions is considered on example of an autonomous
two-dimensional affine differential system of first order. Meth-
ods of Lie algebras are used in the work, as well as methods
of group analysis. Computer algebra systems ”Bergman” and
”Mathematica 5.0” are widely used.
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1 Introduction

In a present work we consider autonomous polynomial differential sys-
tem, written in general form as follows

da’ _ S P (), (G =T,2), (1)
at

where I' = {m;}\_, is some finite set of different non-negative integers,
and

Pl (z) = Z (”}?) & (@)@, (j=T,20 = 1,)

k=0

(©2008 by E. Naidenova
Supported by INTAS grant Ref. Nr. 05-104-7553, CSSDT grant Ref.
Nr.07.411.05INDF
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are homogeneous polynomials with order m; in (2!, 22,...,2"). Coef-
ficients and variables of system (1) are defined over the field of real
numbers R. Further we will denote system (1) by s*(T) for special T
The variable t is independent one, and z', 2% are dependent functions
(variables) on t.

System (1) will be considered with group of affine transformations
Aff(2,R) given by equalities

7! = az' +B2% 4+ hi, T = ya' +02% + ho, (A =

SO

where o, 3, 7, 6, h1, ho are real parameters, ever varying in R. Further

we will consider transformations (2) given by matrix ¢ = 3 g ),
and when we say ”"q belongs to group Aff(2,R)”, we write this as
q€ Aff(2,R).

Note that the application of group Aff(2,R) to qualitative inves-
tigation of systems (1) is remarkable as the system keeps its form after
affine transformation. And coefficients of the system are varying in ac-
cording to law of tensors, being basic geometrical objects of Invariant
Theory. Thus, we can conclude that to perform complete qualitative
investigation of system (1) it is necessary to apply the method of al-
gebraic invariants. Remark, that this method was founded in works by
K.Sibirsky [1].

Adaptation of Lie algebras of operators and techniques of group
analysis in study of systems (1) has appeared as a certain step in de-
velopment of this method. Results of such researches are quoted in
works by M.Popa [2] and his disciples. These works are devoted to
investigation of algebraic objects (finite-dimensional Lie algebras and
corresponding algebras of invariants), obtained due to representation of
linear groups of transformations in space of coefficients of systems (1).
Besides, the classification’s tasks are considered in these works, con-
cerned with dimensions of orbits, as well as with problems of existence
of invariant integrals.

As appeared, an answer to the question about existence of such in-
tegrals is thoroughly connected with classification of orbits’ dimensions
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and of invariant varieties of considering groups, particularly, group
Aff(2,R). Therefore it became necessary to construct such classifi-
cations for further investigation of systems (1).

Remark, that solution of classifications’ questions for systems (1)
with more than one homogeneity in right-hand sides requires implica-
tion of computer algebra systems and was impossible until nowadays
due to intricate calculations.

2 Basic notions and definitions

Throughout the work we will need some notions.

Definition 2.1. Call the linear space L, over the field R a Lie al-
gebra, if for any two of its elements X, Y the operation of commutation
[X,Y] is defined, which returns the element from L, (commutator of
elements X, Y ) and satisfies the following azioms:

1) bilinearity: for any X,Y,Z € L and o, 3 € R

[aX + BY, Z] = o|X, Z] + B]Y, Z],
[X, oY + BZ] = o[ X, Y] + B[X, Z];
2) anti-symmetry: for any X,Y € L
X, Y] = —[¥, X];
3) identity of Jacobi: for any X,Y,Z € L
[X,Y],Z] +[[Y,Z], X]+ [[Z,X],Y] =0.

It is shown in [2] that Lie algebra, corresponding to linear repre-
sentation of group Af f(2,R) in the space of coefficients and variables of
system (1), is six-dimensional Lie algebra Lg = { X1, X2, X3, X4, X5, X¢}.
This algebra can be given by Lie operators [2]:

0 0 0
_ 1 .2 1
X1 =X axl —Dl, X2 =T 78.’1,'1 —DQ, X3 =T 781‘2 —D3,
0 0
Xy =a2>—5 —Dy, Xs =— D5, X¢ =—= — D
1=0"5 5 =Dy, Xs =55 5, Xo = 55— Ds, (3)
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where
- -
- i1 O 0
Di=)Y (mi — k — Vap— + (m; — k)ag— | ,
i=1 k=0 daj, da |
I m i
- 0 0 iy O
b=y 30 i (o 2 i, 2 ) i 2
i=1 k=0 C?a,l€ 3ai 8@1_
I m i
- i 0 i 0 ip O
Dy=3 > |(mi—k) | Ghp—— +at—— | —ap——|.
i=1 k=0 Oa, Oaj, dai
m
- ii O 0
Dy=Y_ kap—— + (k—1)ai—| ,
b1 b2
i=1 k=0 day, da3
I oi-1
0 0
_ il io
D5_Z_Z akai 1 5a2 )
!
i 0 i 0
D=3 > |- +atn—— |- (4)
i=1 k=0 day, dar

According to [2], in order to solve the problem of classification of orbits’
dimensions, we will consider only operators Di - Dg, since they form
six-dimensional Lie algebra Lg, corresponding to linear representation
of group Aff(2,R) in the space of coefficients of system (1).

Let a = (clzé, clz%, e clL?m € E(a), where E(a) is Euclidean space of
coefficients of right-hand sides of system (1).

Denote by a(q) a point from E(a) corresponding to a system, ob-
tained from system (1) with coefficients a after transformation ¢ €
AfF(2,R).

Definition 2.2. The set O(a) = {a(q);q € Aff(2,R)} is called an
Aff(2,R)-orbit of a point a for system (1).

Definition 2.3 The set M C E(a) is called an Af f(2,R)-invariant
set if for any point a € M its orbits O(a) C M.
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It is known from [3] - [4] that space g(a), constructed on coordinate
vectors of operators (4), is the tangent space to Af f(2,R) - orbit O(a)
in point a € E(a), such that

dimrO(a) = dimrg(a). (5)

On the other hand,
dimgrg(a) = rankM;, (6)

where M; is a matrix, constructed on coordinate vectors of operators

(4).

From (5) - (6) it is evident

dimrO(a) = rankM. (7)
Denote by
zb 0
22 0
0 z!
M= 0 a2
1 0
0 1

We will denote the matrix (M, M;) by (&(x),n(a)) when it repre-
sents a reflection in space of coefficients and variables E(z, a) of system
(1).

Further we will consider varieties ¥ given implicitly in finite-
dimensional space E(x,a) [4].

This means that an open set U C E(z,a) is given together with
reflection ¢ : U — R of class C(U), and ¢(x, ap) = 0 for some point
(xo,a0) € U and the set 1(Up) is open in R for any vicinity Uy C U
of the point (z¢,ap). Variety ¥ can be defined in these conditions as
locus of (x,a) € U, for which holds

Equality (8) is called the equation of variety W.
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Definition 2.4. Call the variety ¥ an invariant if for any point
a € VU its orbit O(a) C V.

Definition 2.5. Call the number

e =14(&,m) = max rank(§(z),n(a))
(z,a)€U

a general rang of the reflection (§,1) onto open set U C E(z,a).

Definition 2.6. Call the point (xz,a) € E(z,a) a singular point (of
group Aff(2,R) or its Lie algebra Lg), if

rank(§(z),n(a)) < r«,
and non-singular point (of group Aff(2,R) or its Lie algebra Lg) if

rank(&(x),n(a)) = ry.

Definition 2.7. Call the variety V C U a singular variety of group
Aff(2,R) (or its Lie algebra Lg(&,n)) if all its points are singular and
if the reflection (§,1) has the rang on ¥, i.e. for any point (x,a) € ¥

we obtain
rank(&(x),n(a)) = ri(M|¥) < r,.

Definition 2.8. Call the variety ¥ C U a non-singular variety
of group Aff(2,R) (or its Lie algebra L¢(&,m)) if all its points are
non-singular, i.e. if the following equality holds

ro(M[W) = r,.

According to last definitions, all invariant varieties of group Af f(2,
R) can be divided into singular and non-singular Af f(2,R)-invariant
varieties.

From this viewpoint, the classification of dimensions of Af f(2,R)-
orbits of differential equations’ system can be represented as a classifica-
tion of invariant varieties of group Af f(2,R). Remark, that Af f(2,R)-
orbits of maximal dimension correspond to non-singular invariant va-
rieties of group Af f(2,R).
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From Theorem of representation [4] follows

Theorem 2.1. If non-singular variety of Lie algebra Lg(&,n) is
given reqularly by equation (8), then such invariant F : E(x,a) — R of
this algebra exists, that this variety can be given by equality F(z,a) =
0.

Definition 2.9. Call the integer rational function K (x,a), in vari-
ables x and coefficients a of system (1) an affine comitant if it meets
the condition

K(z,a) = A™K(z,a)

for any values of x and a and any transformations of group Af f(2,R).
Number g is called a weight of affine comitant.

Definition 2.10. If an affine comitant K(x,a) does not depend on
variables x, it is called an affine invariant of system (1).

From [2] and [4] it is known

Theorem 2.2. The integer rational function K(xz,A) (I(A)) in
variables x© and coefficients a of system (1) is an affine comitant (in-
variant) of this system with weight g if and only if it meets conditions

X1(K) = Xy(K) = —gK, Xo(K) = X3(K) = X5(K) = X¢(K) = 0;
Di(I) = Dy(I) = —gl, D2(I) = D3(I) = D5(I) = Dg(I) =0,

where X1 - X¢ and Dy - Dg are defined in (3) and (4).

3 Classification of dimensions of Aff(2,R) - or-
bits for system s%(0,1).

Let us apply above stated theory to investigation of affine differential

system s2(0,1).

Consider system (1) for I' = {0,1}. According to [1] we will write
it in tensor form as follows

dt
System (9) will be considered with group Af f(2,R), defined in (2).

=a’ +a£xa, (j,ao =1,2). (9)
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Further we will use affine comitants and invariants known from
works [1], [5], [6]:

(6% (6%
Ky = dba®ze,y, Ko1 = aPalepy, Kop = aabaley,,

(07 (0% (6%
L =a), I, = aﬁag, Iy = a“a%dbey,,

1
Q= I + 11 Koo — Io K91 + 5(112 — I)K>, (10)
where €1 and €, are unit bi-vectors with coordinates ell = ¢22 =,
e2=—e2l=1lande;; =€ =0, 19 =—e9; = 1.

Remark [6], that invariants I;, I and comitant @ form minimal
polynomial basis of affine comitants for system (9).

In order to simplify further expressions we will use the following
notations

l=x 2=y a'=a,a®>=b,al =c, al=d, ¥ =e, a3 =f. (11)

According to (3) - (4) and (11), we will write Lie operators for
system (9):

0 0 0

Xlzx%—Dl, X2=y%—D2, X3=$@—D3,
0
Xe =y — D4, X5 7 D5, X¢ =+ — Deg,
A
where
0 0 0 0 0 0 0
Dl——a%—d%+€$, DQ——b%—C%ﬂ—(C—f)%‘f‘e%,
0 0 0 0 0 0 0
Dg__a%—i_d%_(c_f)%_daif? D4——b%+d%—€%,
0 0 0 0
D5:C%+€%, Dﬁzd%+f%(12)

Matrix M, constructed on coordinate vectors of operators (12),
takes the form
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—a 0 0 —d e 0
b 0 —e c—f 0
0 —a d 0 f—c —d
MO =1 6 4 o 4 "¢ o0 (13)
c e 0 0 0 0
d f 0 0 0 0

Remark 3.1. One can verify that rank of matriz (13) is less than
5. Therefore, according to (7), the dimension of Aff(2,R)-orbit for
system (9) is less than 5.

Remark 3.2. Using (10), one can verify that Ko = 0 yields Q = 0.

To define a rank of matrix M;(0,1) it is necessary to construct all
its minors of all possible orders. It is done using computer algebra
system ”Mathematica 5.0”. In order to find affine-invariant conditions
for rank of matrix M (0, 1) its minors of each order are considered sep-
arately along with invariants and semi-invariants (corresponding coef-
ficients of affine comitants with each degree of variable x) of system
(9). As these objects are polynomials depending on coefficients of sys-
tem (9) and forming an ideal, the corresponding Grébner bases [7] can
be used to obtain linear dependency among them. Namely, the set of
minors of each order is divided in subsets with respect to their types.
All possible combinations of invariants, semi-invariants and their prod-
ucts of each type are composed. The corresponding Groébner bases
then has been constructed for them with the help of computer alge-
bra system ”Bergman” [8]. Analyzing such a bases one can figure out
its element representing linear dependency between minors of matrix
(13) and affine invariants and semi-invariants, as this element should
contain only names of minors, invariants and semi-invariants, not the
coefficients of system (9). According to this algorithm all types of
minors of matrix (13) have been treated and corresponding Grébner
bases are constructed, therefore, desired dependencies are obtained.
This technique is used throughout the proofs of Lemmas 3.1 - 3.4.

Lemma 3.1. Rank of matriz M;(0,1) is equal to 4 if and only if
holds
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where Ko and Q are defined in (10).
Proof. Let us prove the necessity. Assume the contradiction.
Namely, assume that for
KQ =0 (15)

even one non-zero minor of 4th order of matrix (13) exists. Equality
(15) holds at least for Ko =0 or @ = 0.

Examine Ky = 0. Than, taking into consideration (10) and (11),
we obtain the following values for coefficients of system (9)

e=d=0, c=f. (16)

After substitution of values (16) to matrix (13) one can verify that
all 4th order’s minors of this matrix are equal to zero. Thus, the
assumption is not true in this case.

Examine @ = 0. Than, taking into consideration (10) and (11), we
obtain the following series of values for coefficients of system (9):

e=d=0, c=f, (17)

a=c=d=0, (18)

b=e=f=0, (19)
d:fzo,e:%,a#o, (20)
azsz,dz%,e;ﬁO, (21)
e=—f =% = w0 (22)
c:e:0,d:%,b5£07 (23)
c:f,d:%,e:%, ab # 0. (24)

Case (17) coincides with case (16), obtained for Ks = 0, and will not
be considered.

After substitution of each of series (18) - (24) to matrix (13) we
obtain that all its 4th order minors are equal to zero. So, the above
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stated assumption is not true in this case too. Therefore we conclude
the necessity of conditions (14).
Sufficiency of conditions (14) is ensured by equality

KQ = Afsgea® + 2A13%2%y + (241538 — ATR)2y” + 2A13500y° +
1356 4 1245 2345\ 3 2345 1236 .2 2345
+A31Y" + (Argsg + 2A7535) 77 + (Aldze — 2A1535) 77y + (247531 —
1236y . 2 1346 1345y 3 1234 2 1234 12342
*A1236)$y + (A1236 - 2A1234)?/ + A2a57" — A1o367y — A1234Y°,

where Ali%fp is 4th order minor of matrix (13), constructed on lines 7,
g, hy k (1 <i,5,h,k < 6) and columns I, m, n, p (1 < Il,m,n,p < 6).
Lemma 3.1 is proved.

Lemma 3.2. Rank of matriz M1(0,1) is equal to 3 if and only if
hold

Q=0, Ko Z0, (25)

where Ko and Q are defined in (10).

Proof. Necessity of conditions (25) follows from Lemma 3.1. Let us
prove sufficiency. We will consider each of cases (18) - (24) separately.
Note, that case (17) contradicts to conditions of Lemma 3.2.

Denote by Aﬁ:n a 3rd order minor of matrix (13) constructed on
lines 4, j, h, (1 <14,j,k <6) and columns I, m, n (1 <I,m,n < 6).

As conditions (18) hold, comitant Kj takes the form Ky = —ex? —
fxy. For K9 # 0 non-zero 3rd order’s minors of matrix (13) will be at
least Al22 = —e3 or A2 = f3.

As conditions (19) hold, comitant K5 takes the form Ko = caxy+dy?.
For K5 # 0 non-zero 3rd order’s minors of matrix (13) will be at least
AlS = —a3 or A2 = 3.

As conditions (20) hold, comitant K5 takes the form Ky = c(—ng—i—
zy). For Ky # 0 non-zero 3rd order’s minor of matrix (13) will be at
least A233 = ¢3.

As conditions (21) hold, comitant K5 takes the form Ky = —ex? +
(c— flzy + %yQ. Remark, that e # 0. So, K3 # 0 and non-zero 3rd
order’s minor of matrix (13) will be at least Al22 = —e3.

As conditions (22) or (24) hold, comitant K» takes the form Ky =
f(—%x2 —2zy+ $y?) or Ko = f(—ga:2 + %y?), correspondingly. In both
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cases for Ky # 0 non-zero 3rd order’s minor of matrix (13) will be at
least Al2% = f3.

As conditions (23) hold, comitant K» takes the form Ko = f(—zy+
4y?). For K3 # 0 non-zero 3rd order’s minor of matrix (13) will be at
least A338 = f3.

Sufficiency of conditions (25) is proved completely. Lemma 3.2 is
proved.

Lemma 3.3. Rank of matriz M;(0,1) is equal to 2 if and only if
hold

Ky =0, Kg +1I #0, (26)

where K, Ka1, Iy are defined in (10).
Proof. Denote by Ay, a 2nd order minor of matrix (13) con-
structed on lines ¢, j (1 <4,j <6) and columns h, k (1 < h,k <6).
Necessity of equality from (26) follows from Lemmas 3.1 - 3.2 and
Remark 3.2. Let us prove necessity of inequality from (26). Assume
the contradiction. Namely, assume that for

K3 +I}=0 (27)

at least one non-zero 2nd order’s minor of matrix (13) exists. For
Ky = 0, taking into consideration (10) and (16), invariant I; takes the
form

I = 2f. (28)
According to (10) and (11), comitant K9 can be written as follows
K21 = —bx + ay. (29)

As Ky = 0 holds, all non-zero 2nd order’s minors of matrix (13) will
coincide to sign with one of the following

Alj =a? A3 =ab, AT =V, Al =af, AT =bf, A= f> (30)

As (27) holds, from (28) and (29) follows that a = b = f = 0 and all mi-
nors (30) are equal to zero. This contradiction confute our assumption
and confirms the necessity of inequality from (26).
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Sufficiency of conditions (26) is ensured by equality
K2 + I = ABa2? — 2A13ay + Af3y® + 4A%.
Lemma 3.3 is proved.
From Lemmas 3.1 - 3.3 evidently follows

Lemma 3.4. Rank of matriz M1(0,1) is equal to 0 if and only if
hold
Ky=0, Kij +I} =0, (31)

where Ko, Ko1, I are defined in (10).
From Lemmas 3.1 - 3.4, Remark 3.1 and equality (7) follows

Theorem 3.1. Aff(2,R) - orbit of system (9) has the dimension

4 for  QK, #Z 0; (32)
3 for Q=0, Koy #0; (33)
2 for Ky=0, K3 +1I? #0; (34)
0 for Koy=0, K3 + I} =0, (35)

where Ko, Ko1, Q, I are defined in (10).
According to Definition 2.3 from Theorem 3.1 follows

Theorem 3.2. Sets My, My, Ms, My, defined by expressions (32),
(33), (34) and (35) correspondingly, form Af f(2,R)-invariant parti-
tion of space E(a) of coefficients of system (9), i.e.

4
UMi=E(a), Mi(\M;=0
=1

and each set My (i =1,4) is Af f(2,R)-invariant.

Remark 3.3. Set My with conditions (32) represents non-singular
invariant variety of group Aff(2,R).

Remark 3.4. Sets My-My with conditions (33) - (35) correspon-

dingly represent singular invariant varieties of group Aff(2,R).

Some results of this paper were announced in a common report with
V.Orlov at the Conference ” Algebraic systems and their applications
in differential equations and other domains of mathematics”, see [9].
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A zero-dimensional approach to compute real
radicals

Silke J. Spang

Abstract

The notion of real radicals is a fundamental tool in Real Alge-
braic Geometry. It takes the role of the radical ideal in Complex
Algebraic Geometry. In this article I shall describe the zero-
dimensional approach and efficiency improvement I have found
during the work on my diploma thesis at the University of Kaiser-
slautern (cf. [6]). The main focus of this article is on maximal
ideals and the properties they have to fulfil to be real. New theo-
rems and properties about maximal ideals are introduced which
yield an heuristic prepare max which splits the maximal ideals
into three classes, namely real, not real and the class where we
can’t be sure whether they are real or not. For the latter we have
to apply a coordinate change into general position until we are
sure about realness. Finally this constructs a randomized algo-
rithm for real radicals. The underlying theorems and algorithms
are described in detail.

1 Introduction

The original task arose from an article by Becker and Neuhaus written
in 1998 (see [1]), where they present an idea to compute the real radical
of a polynomial ideal. The following article speeds up the computation
time of the algorithm which they described there:

Becker and Neuhaus idea was a coordinate change to reduce to the
univariate case. Such coordinate changes cause a coefficient growth
which slows down the computation.

(©2008 by Silke J. Spang
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Our idea is to study the properties of maximal ideals M and find
a heuristic to decide whether they are real, i.e. if /M = M or not.
This arose from the fact that the primary decomposition in SINGULAR
is well implemented and very efficient in the average case.

The article is structured in three parts:

Section 1 gives a short overview of and motivation for the notion
of 7-radicals. In particular the real radical is recalled. Some theory
on how the \T/—functor behaves and first properties of K-algebras A are
stated. The real radical commutes with intersection and localisation.
For an arbitrary ideal I <A, we know /1= "/ VI, and VT is a rad-
ical ideal by definition. A special form of the Real Nullstellensatz over
Q is stated. One of the fundamental statements is Theorem 1 which
tells us that the real radical of I is the intersection of all real prime ide-
als P containing I. In fact, giving rise to all real points, the real radical
of I is the intersection of all real maximal ideals M containing I. The
section finishes by sketching how the one-to-one correspondences from
algebraic geometry over algebraically closed fields are translated to real
algebraic geometry by means of the real radical. Thus a real maximal
ideal corresponds to a zero-dimensional real zero-set which can be seen
as finitely many conjugate points in the field extension of Q to Ry, (or
R by the Tarski Seidenberg principle).

Prime ideals correspond to irreducible Q-varieties in R™ and the pri-
mary decomposition is just the decomposition of a Q-variety V;..(I) C
R™ into its irreducible components.

The univariate case of polynomials f € Q(y1, ..., ym)[x] which is a
special case of zero-dimensional ideals is explained in Section 2. The
main idea is the following: Let

f:gp?IPSQPgT

If we could decide whether a prime polynomial p; is real or not, then
the real radical of the principal ideal (f) <Q(y1,...,ym)[x] is

T\E/W=< H pi)-

p; is real
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This provides an idea how to compute the real radical of a univariate
polynomial.

After describing the machinery for the univariate case, an algorithm
for computing the zero-dimensional radical is explained in section 3. In
contrast to the article of Becker and Neuhaus, the decision was to com-
pute the primary decomposition of the zero-dimensional input and to
give a heuristic for deciding whether a maximal ideal is real or not.
This heuristic yields a procedure prepare max which prepares a max-
imal ideal in such a way that we can avoid a coordinate change into
general position as often as possible. If a coordinate change can’t be
avoided we use the procedure GeneralPos. Its input is a list of maximal
ideals where a change can’t be avoided. Here a suitably randomised
coordinate change is computed such that we can check the properties of
prepare_max for the transformed maximal ideals and afterwards we in-
tersect all real maximal ideals of this list. The procedure RealZero gets
a zero-dimensional input I and computes its primary decomposition.
Then it considers separately every maximal ideal and tests if a change
is needed to compute the real part. Afterwards it intersects the real
radicals of all these 'nice’ maximal ideals and restarts the procedure
GeneralPos for the list of ’bad’ ideals. To conclude the article section
3 is finished with one important Theorem of Becker and Neuhaus ([1]
Theorem 4.5.) which explains the computation real radicals of general
polynomial ideals via a reduction to the zero-dimensional case.

I would like to thank Dr. Anne Friithbis-Kriiger and Prof. Dr. Ger-
hard Pfister for many fruitful discussions. I want to thank the SIN-
GULAR team of the University in Kaiserslautern, especially Dr. Hans
Schonemann, for supporting me with my SINGULAR problems while
implementing the algorithms for my diploma thesis and giving good
advise on the computation.

2 7-real ideals and the real radical

This section uses some basics in real algebra which can be found in [5].
We define 7-radicals for pre-orderings o of real fields K.
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Definition 1 (7-radicals and the real radical) Let K be a for-
mally real field and T a pre-ordering of K. For any K-algebra A, we
define the T-radical of an ideal I < A by

\Tﬁ:{feA : f27+ZaigZ2 € I with r,m € N, g; € A and a; € 7 Vi}.
i=1

An ideal T with the property I = /T is called T-real.
If 1 =Y K? =:re, then /I is called the real radical of I.

We can easily verify that /T is an ideal. For the special case of subfields
K of R we get the following definition.

Definition 2 (Real radical) Let A be an affine K-algebra, I 1A any
ideal. We define the real radical of I to be

T\eﬁ::<f€A:E|T’,mEN:
P+ kgl €1, ki € K>0,9: € A)
i=1
I is called real if and only if V1 = 1I.

To see that both definitions do not differ for Q € K C R and the
special case 7 = re = > Q? we prove the following lemma:

Lemma 1 Let K = Q, then re = Y. K? = K> is an ordering of K.

Proof 1 > Q? C Q> is clear.
Let %’ € Qsq. Then
p pg P /1\? ,
— === -] € Q-.
qa ¢ ; <q> 2

Hence Q has a unique real closure and this closure is Ry := QNR, so
we get the following corollary.

Corollary 1 For every algebraic extension K of Q which is in R there
exists only one possible ordering, i.e. > K? = K>p.
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2.1 Some properties of the \r/-functor

For this subsection see Chapter 2 of [1].

Theorem 1 Let (K, 7) be a pre-ordered field, I,J ideals in some K-
algebra A and S a multiplicative closed subset of A satisfying 1 € S
and 0 & S. Then we have:

(a) VINJT =In/J
(b) VIs = (VI)s

Here /Ig denotes the T-radical of the extension ideal Ig of I in the
quotient ring Ag which naturally is a K-algebra.

For prime ideals and prime polynomials we get the following prop-
erties:

Lemma 2 Let (K, 1) be a pre-ordered field and I a T-real ideal of some
K-algebra A. Then all minimal primes of I are T-real as well.

Corollary 2 Let (K, T) be a pre-ordered field and I an ideal of some
K -algebra A. Then /1 = (P, where P ranges over all T-real primes
containing I.

Proof 2 The 7-real ideal /I is radical and thus the intersection of its
minimal primes. These are T-real by Lemma 2.

The most important proposition which describes the relation between
T-realness and the possibility to extend pre-orderings is stated below.

Proposition 1 Let (K, 7) be a pre-ordered fields and P a prime ideal
of some K-algebra A. Then the following statements are equivalent:

(a) P is T-real

(b) There is some o € X(K) (which is the set of all orderings for any
formally real field K.) satisfying o O 7 which can be extended to
an ordering & of the function field k(P) := Q(A/P).
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(c) There is some a € X(K) satisfying o 2 7 such that P is o-real.

Moreover if A is an affine K-algebra and P a maximal ideal of A then
the statements (a) — (c¢) are equivalent to:

(d) There is some o € X (K) satisfying o O 7 such that k(P) can be
embedded into some real closed field containing the real closure of
(K, 7).

Finally the real radical describes a real variety as a collection of all
real points respectively. conjugated points.

Proposition 2 Let (K, T) be a pre-ordered field and I an ideal of some
affine K -algebra A. Then /1 = (M, where M ranges over all T-real
mazimal ideals of A containing 1.

2.1.1 The behaviour of prime polynomials

The well-known sign change criterion of D. Dubois and G. Elfroym-
son (see [5] Chapter 2 12 Theorem 4) is:

Theorem 2 Let (K, T) be an ordered field with its unique real closure
R and f € Klz1,...,z,] be an irreducible polynomial. Then the fol-
lowing are equivalent:

(a) The ordering T can be extended to an ordering @ over the function

field k(f) = Q(K[z1, ..., xn)/{f)).

(b) f is indefinite over R, i.e. there exists a,b € R"™ such that f(a) -
f(b) <o.

This leads us directly to the following remark about the situation
over the special case that K = Q.

Remark 1 Let f € Qlxy,...,z,] be an irreducible polynomial. Then

fis real (i.e. (f) is real) if and only if f is indefinite over Ryy and
thus by the Tarski-Seidenberg principle indefinite over R.
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Proof 3 f is real if and only if the ordering re = Q> can be extended
in Q(Q[z1,...,x,]/(f)) by Proposition 1. By the sign change criterion
this can be extended if and only if f is indefinite over Ryy.

As another remark for polynomials over Q(y1, ..., ¥ym) we get:

Remark 2 Let f € Q(y1,...,Ym)[21,.-.,2n] be an irreducible poly-
nomial. Then f is real if and only if there exists an ordering a of
Q(y1,--.,Ym) such that f is indefinite over the corresponding real clo-
sure R.

Proof 4 Let F:= Q(y1,..-,Ym)-

Let us first observe that since f is irreducible the ideal (f) is a prime
ideal. Let now o € X(F) be an ordering such that f is indefinite
over R,. This ordering o of F' can be extended to an ordering a in
k(f) = Flx1,...,x,)/{f). By Proposition 1 (b) this is equivalent to the
statements that (f) is real. Thus f is real.

2.2 The Real Nullstellensatz

We now state the Real Nullstellensatz which was proved by Krivine
in the 60s. We first recall the set of real points. For more detailed
information see [5] or ([1] Definition 2.7 and Theorem 2.8)

Definition 3 Let (K,7) be a pre-ordered field and I < K[x1,...,xy].
For a ordering o O 7 let R, denote the unique real closure of (K, ).
Then we define the set of all T-real points V; as follows:

VT(I) = UQQTVRQ (I)
Especially the set of all real points is denoted by Vyc(I).

We get the general Real Nullstellensatz:

Theorem 3 (The general Real Nullstellensatz) Let (K,7) be a
pre-ordered field and I I K[x1,...,x,] be an ideal. Then we have

Ik (Vo (1)) = V1.
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The following lemma is useful for the computation in real closed
fields. Note that it is a kind of specialisation of the Weak Nullstellensatz
over algebraically closed fields.

Lemma 3 Let R be any real closed field and M < -R[z1,...,x,] be a
maximal ideal. Then we have the following 2 cases.

i. M is not real, so VR(M) = @.

it. M is real and Vr(M) consists of only one point.

Proof 5 As M is a mazimal ideal R' := R[x1,...,x,]/M is a field

extension of R. As R is real closed, we know that R = R(i) and

[R: R] =2. So we have the following 2 cases.

[R': R] =1 Then R’ = R and every zero of M is real thus M is real.
Let a = (a1,az,...,a,) € R" soa € Vr(M).
Now Ig(a) = (x1 — a1,x2 — ag, ..., Ty — ay) s a mazximal
ideal which contains M as (x1—a1,T2—ag,..., Ty —ap) =
Ig(a) C Igr(VR(M)) = M. Thus M = (x1 — aj,x2 —
ag, ..., Tn — ap). And hence Vr(M) = {a} is exactly one
point.

[R'': R] =2 Then R' = R and R is not real, thus M is not real by
Proposition 1. Hence by the Real Nullstellensatz (Theorem
3) VR<M) = J.

2.3 One-to-one correspondences in real algebraic geom-
etry

Let K be any subfield of R and A = K{zy,...,x,]. Here the following
special form of Theorem 3 holds:

Theorem 4 (Special Real Nullstellensatz) Let J<K|x1,...,zy],
then:

Ix(Ve(J)) = VJ
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This yields the well-known one-to-one correspondences.

. 1:1 .. .
real ideals «+— K-varieties in R"
. . 1:1 . . .. .
real prime ideals «+— irreducible K-varieties in R"

. . 1:1 . . . .. .
real maximal ideals «— irreducible 0-dim. K-varieties in R"

So every correspondence over C occurs in a natural way by means
of real radicals in real algebraic geometry.

3 The univariate case

To obtain an algorithm for the zero-dimensional case, we first consider
the univariate case, i.e. ideals in the principal ideal domain F'[z] where
F = Q(y1,.--,Ym). The main idea for the univariate case is the fol-
lowing: If we compute the real radical of (f) < K[z], we know that
factorising f corresponds to a primary decomposition. So if

f:ngl p72n2p;n""

then the (p;), for all i = 1,...,r are precisely the minimal primes of
(f). Such a minimal prime is real if and only if Vr(p;) # @, i.e. if p
has a real root. So (p;) is real if and only if p; is real.

Hence the real radical of (f) is:

T/W:< H i)

p; real

This leads us directly to the demand of a criterion to know whether an
irreducible polynomial p is real or not.

Here we have two cases:

In the easier first case F' = Q i.e. m = 0; the general case m > 0
requires more knowledge of real algebra.
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3.1 The special univariate case

Definition 4 Let p € Qx| be an irreducible polynomial. We call p
real if p has a real root a € R. Then p is the minimal polynomial of
this root a.

Note that p is real if and only if Vr(p) # &, that is p is real if
and only if (p) is real, since (p) is a maximal ideal and §/(p) 2 (p).
Hence the decision of being real for prime polynomials reduces to a
root counting problem.

The solution to this problem is the following:

If the degree of p is odd the fundamental theorem of algebra over R
states that p has a real root. But if the degree of p is even, we can’t
be sure if p has a real root. In this case we use the theorem of Sturm,
which counts the number of all distinct real roots of a non—constant
polynomial f € K[z] in an interval [a, b], where a < b. The best a and
b can be found by computing the Cauchy bound for polynomials. For
detailed description of Sturm’s theorem and its applications see [2].

3.2 The general univariate case

Contrary to the special case F' = Q the general case of polynomials
in Q(y1,...,ym)[r] is not a real root counting problem as we do not
know about sign or when a root is real. Thus we need some tools of
real algebra.

The following special form of Lemma 4.1 in [1] gives a solution to
the decision problem of realness for prime polynomials:

Lemma 4 Let p € Q[yi,...,Ym, x|, where m € Ny and deg,p > 0 be
an irreducible polynomial. Then the following conditions are equivalent:

(a) (p)-Qy1,...,ym)[x] is real.

(0) (p)-Qly1,---,Ym,x] is real.

(c) p is indefinite over R, i.e. there are points a,b € R™! satisfying
p(a) - p(b) <0.
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This reduces our problem to decision whether a polynomial has a
sign change i.e. whether it is indefinite or not. For a detailed solution
of this problem see the article of G. Zeng and X. Zeng [4].

3.3 Example for the procedure RealPoly

The algorithm RealPoly (cf. SINGULAR Release 3-0-3) computes the
real part of a polynomial in the univariate case. We conclude this
section with some examples.

Example 1 1. Let f = 2%+ 27 +220 +2°+22% — 723 + 422 —8x+4 €
Q[z]. Factorising yields f = (x —1)- (23 + 22+ 2 —1)- (23 +4)-
(22 4+ 1) = p1 - p2 - p3 - pa. The prime factors p1,pa, p3 are real as
they have real roots by the fundamental theorem of algebra, but
pg has no real root. Hence py is not real. So the real part of f is:
f=p1-po-p3 =27+ 224+ 23 — 8z + 4.

Let

f :$8y224 — 2x7y3z2 + m6y4z4 + $6y4 + x6y224 + 2x6yz5 — 2:c5y522—
2259322 — 4z0y223 + 240 + tyt + 200320 + 20%yB s + 20ty +
2428 — 4x3yt23 — 4a3y?23 — 223yt 4 20202 + 2223 2 + 22y 0+

a2y 2% 4 2228 — 2032t — 2wyt 4 2% + 222 € Q(y, 2) ).

Factorising yields that
f= 42 (@22 —y)? (2® + 2 +1) =p?-p3-ps.

As p1 and pa have odd degree in z (resp. in y) they are indefinite and
thus real. x% + y*> + 1 is positive semi-definite. The real polynomial
computed from f is g = p1 - p2 = 23y2? — 22y + x2° — yz.

4 The zero-dimensional radical computation

To explain the main idea used in the algorithm for the zero-dimensional
real radical via reduction to the univariate case consider the following
example. Let F':= Q(y1,...,Ym) as in the last section.
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Example 2 Let I = (z1 — g1(zn), 22 — g2(xn), -+, Tn—1 — Gn-1(zn),
gn(zy)) < Flxy,...,x,] be given. If G, is the real part of g, obtained
by the procedure RealPoly the real radical of I is:

T\e/j = <‘T1 - gl(xn)7 o — gZ(xn), ey Ip—1 — gn—l(xn)?gin(xN)>
Proof 6 Let g, = [[;_, p;" be the factorisation of g, in F[x,]. Then

every ideal (x1 — 1,22 — g2, -+, Tn—1 — Gn—1, Pi) s maximal because of
the isomorphism

Floy, ... xp]/(x1 — 91,02 — g2, - -, Tn1 — gn—1,Di) = Flan]/(pi)-

As p; is prime we conclude that Fxy, ..., x,]/{(x1—91,2—g2, ..., Tn_1—
In—1,pi) is a field.
Now (x1 — 91,22 — g2, .-+, Tn—1 — Gn-1,Pi) is real if and only if p; is

real because F|xy,|/(pi) is real if and only if p; is real by Propostion 1.
Hence

7'\c/j 02.2 ﬂ M
MeMin(I) real
= ﬂ (T1— 91,72 — 92, -, Tn—1 — Gn-1,Di)
p; is real

= (21— 91,T2 — g2, -, Tn—1 — Gn—1, H pi)

pi is real

= <x1 - gl(xn)v xro — 92(xn)7 ey Ip—1 — gn—l(xn)>97($n)>

The most important theorem for the zero-dimensional computation
in the article of Becker and Neuhaus is the Shape lemma which gives
a detailed information on the shape of the reduced Grobner basis of
a radical ideal satisfying the property of being in general position in
some way, so that we can obtain the position of an ideal given in the
example above.

Lemma 5 (Shape-Lemma) Let I be a zero-dimensional radical ideal
in Flxy,...,x,] with all d roots in ' having distinct x,, coordinates.
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Then the reduced Grébner basis of I in the lexicographical ordering has
the shape

G = {351 — g1 (Sﬂn), T2 — 92(33n)7 ceey Tp—1 — gnfl(xnfl)a gn(xn)},

where g, s a square-free polynomial of degree d and the g;, 1 < n, are
polynomials of degree d — 1.

Proof 7 See Lemma 4.5 of [0].

A naive idea for an algorithm could be:
1. Compute the radical VT of the given ideal I.

2. Test if /T fulfils the shape condition with respect to one variable
z; and compute a reduced Grobner basis of VI w.r.t. a lexico-
graphical ordering with lowest variable x;. If not use a random
change into general position until this condition is fulfilled.

3. Compute the real radical of VT as described in Example 2 and
undo the coordinate change.

As a coordinate change into general position causes a growth of co-
efficients and terms which slows down the Grébner bases computations
it is important to avoid this change as often as possible. Therefore we
give some heuristics, i.e. some kinds of special cases in which we do
not have to apply a random coordinate change.

The idea for the algorithm due to Becker and Neuhaus ([1]) has
been presented in Example 2 and Lemma 5. In the rest of this section
I will present my own algorithm:

As in SINGULAR the primary decomposition of zero-dimensional
ideal, in the average case, is very efficient, we can use this algorithm
as a black box. The main idea of the primary decomposition due to
Gianni/Trager/Zacharias (the command is primdecGTZ) was presented
in [3] chapter 4.2. Hence we can assume the maximality of all ideals
we are dealing with. The next subsection presents some properties for
maximal ideals I found.
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4.1 How to decide whether a maximal ideal is real

For a maximal ideal there are only two possibilities — either it is real or
its real radical is the whole ring. This is the reason why getting criteria
for maximal ideals is not difficult. The main idea of this section is to
find an heuristic which fulfils the following criteria:

1. Its costs have to be lower in the average case than the costs that
a random coordinate change would cost.

2. The decision of realness must be an easy test, i.e. it shouldn’t
cost too many operations.

3. Our heuristic must cancel out maximal ideals M which are not
real as early as possible in the computations.

Here are some properties of maximal ideals that I found during the
work on my diploma thesis ([6]). For the definition of orderings and
real closed fields I refer to [5].

One obvious property of real maximal ideals is the following corol-
lary.

Corollary 3 Let M <-Flx1,...,xz,] be mazimal and fi,..., f, be the
univariate polynomials such that (f;) = M N F[xz;]. If M is real then
every f; is real too.

Another simple remark is:

Remark 3 If M = (f1,... fn) <-Q|x1,..., 2] is a mazimal ideal with
every fi € Q[x;] real, then M is real.

Proof 8 This is clear as every f; has a zero a; in the common real
closed field R. Thus (ai,...,an) € R" is in the real zeros of M.

Note that this simple remark for the rational numbers is not true
for an arbitrary real field F'. This remains only true if F' is an ordered
field. The problem for arbitrary real fields is the following:

A polynomial f; € F[z;] is real if and only if there exist orderings
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a1,...,0, and the corresponding real closures R, ..., Rq, such that
fi has zeros in every R,,.

But these orderings «; could occur in a way that there exists no
common real closed ground field R, and no corresponding ordering «
of F' such that the polynomials f; all have a root in R,, which would
yield that M is real. The following counter-example for arbitrary real
fields clarifies the problem:

Example 3 Let M = (2?> + 1+ t,y%> —t) < -Q(t)[z,y]. Then m; =
22+ 1+t is real in every real closed extension Ry of Q(t) which admits
an ordering o in which t < —1 (note that we conclude that my is real
as it is indefinite over R), my = y? —t is real in every real closed
extension Rg which admits an ordering 3 satisfying t > 0. Both types
of orderings, the a— and [(-orderings, contradict each other.

In fact M is not real as

P+ =mi+mpeM
and hence 1 € VM.

Analogous to the Shape Lemma, there holds a stronger property
for maximal ideals that can be tested very easily:

Proposition 3 Let M < -F[z1,...,x,] be a mazimal ideal and G =
{g91,...,9n} the reduced Grébner basis of M with respect to any lexi-
cographical ordering with smallest variable x;. If G has the following
properties:

e g1 € Flz;] and g1 is real.!

o cvery g; fori=2,...,n has odd degree in its leading variable.

1@ is a triangular set as it is a reduced lexicographical Grobner basis, wlog we
can assume that the univariate polynomial in smallest variable in G is g;.

*Let f € Q[z1,...,2s]. The leading variable of f (short lvar(f)) is the largest
variable in f, i.e. if

—1

f=as(z1,...,z_1)x) + as—1(z1, ..., Th—1)x)  + ... +ao(T1,...,Th-1),

as € Qlz1,...,zk-1]\ {0}, for a k < n, then lvar(f) = x; and the pseudo leading
coeflicient of f is ini(f) = as(x1,...,Tk-1).
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Then the maximal ideal M is real.

Proof 9 Assume for simplicity that G = {g1,...,9n} is a Grébner
basis satisfying the properties above w.r.t. the ordering r1 < x2 <
o< Ty,

As g1 € F[x1] is real there exists a real closed field R O F such that
g1 has a zero a1 € R. Now ga(xa,01) € R[za] has odd degree and
thus has a zero ag in R by the fundamental theorem of algebra. By
the same reason gs(xs3,aa, 1) € R[zs] has a zero ag € R. Inductively
there exists an o € Vgn(M).

Thus Vr(M) # @ and hence, by the definition of the real zero-set of M,
Vie(M) # @. Now by the Real Nullstellensatz /M = Ip(Vp(M)) =
Ir(a) € M. As M is mazimal and V,e(M) # @ we conclude the
realness of M.

A last non-trivial condition to test the realness of M is:

Lemma 6 Let M = (my,...,my,) be a maximal ideal in Flxq,...,zy]
written as a reduced lexicographical Grobner basis w.r.t to the ordering
1 < X9 < ... < xp. If M is real, every generator m; is real.

Proof 10 Assume contrary: Thus let i be the smallest index such that
m; is not real. As M is a lexicographical Grébner basis we get the
following cases:

Case 1: i =1 then my € Fx1] and has no real root. So
(1) = /my C V/(ma,...,mp) = VM.
Thus M is not real which is a contradiction.

Case 2: i > 1. Let R be an arbitrary real closure of (F,a) w.r.t. an

ordering o of F such that a = (a1,...,a,) € R" is a real
point of M (i.e. a € Vye(M)). Then we have the following
situation:

o M :=(my,...,mi) = MO F[x1,...,2]<-Flxy,... 2] is
real since (a1, ...,a;) € VR(M') C Vye(M').
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o M" = <m1,...,mi_1> = MﬂF[(lZl,...,xi_l] < ‘F[xl,...
x;—1] is real since (a1,...,a;—1) € VR(M") C V,e(M").

As M’ is real, the ordering « of F' can be extended in k(M) =

Flzy,...,x5|/M, i.e. k(M) is a formally real field (see Propo-
sition 1). From the first isomorphism theorem, we get:

F[[L’l, e ,(L‘Z']/M/ %(F[acl, e ,xi_l,xi]/M”)/(M’/M”)
= ((Flay, .. i) /M) [2i]) /(((mai) + M) /M").

Now as (ai,...,a;—1) is a (real) root of the maximal M" we
get that

Flry,...,2;i1)/M" =2 F(ay,...,a;-1)
which is ordered by F(a1,...,a;_1) N R%. Hence
k(M) = F(al, c. ,ai_l)[:z:i]/<mi(a1, ey i1, JIZ)>

and k(M) is real. Thus the ordering F(ai,...,a;_1) N R?
can be extended to F(ay,...,a;—1,a;) N R? (as a; is a real
root of mi(ay,...,a;—1,x;) by the definition of a). But then
mi(ay,...,a;—1,x;) is indefinite over R by the sign change cri-
terion (Theorem 2) and thus m;(z1,...,x;) is indefinite over
R, too. Now we get from Remark 2 that m; is real which con-
tradicts the assumption.

Lemma 6 is no equivalence as we can see in the following example:

Example 4 Let M = (23 -2, >+ 22 —2) <-Q[z,y]. Now x> —2 is real
since v/2 is in R and y? +x% — x is real by Lemma 4 as it is indefinite.
But M is not real as y2+ \3/52— /2 has no real root since \3/52— V2 > 0.

The following corollary is useful to test the realness of prime polyno-
mials f € Flzy,...,x,).

Corollary 4 Let f € Q[y1,...,Ym,Z1,--.,2Tn] be an irreducible poly-
nomial. Then f is real considered as polynomial in Flx1,...,xy,] if and
only if f considered as a polynomial in Q[y1, ..., Ym,T1, ..., Ty] is Teal.
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Proof 11 =: As (f)F[z1,...,2y] is real in Flx1,...,x,], there exists
an x; such that deg,. [ > 0. Without loss of generality let x, be
this x;. By Theorem 1 we conclude that (f)F(x1,...,Tn_1)[Tn] =

(NQY1, -+ s Yms X1y« oy Tp—1)|xp] is real. Thus by Lemma 4
(NHQ Y1,y YmsX1,...,Ty] is real and hence f is real consid-

ered over Q[z1,...,Tn, Y1, Ym]-

<: This is clear as reality commutes with localisation (see Lemma 1).

Combining all these conditions yields a good heuristic to decide the
property of being real for maximal ideals M. Let us first consider a
large example in which it was possible to avoid the change into general
position completely.

Example 5 Let
T={((*+3° +y+ )2 + 4y +4)(«® + 1),
(@ +y)(2® —y*)(a® + 22y + y2)(y° + y + 1)) < Q[ y]
The primary decomposition of I yields 10 maximal ideals.

1. My = (y*+ 1,2 —y) which is not real as y>+ 1 is not real. Hence
it does not satisfy the conditions in Proposition 8 and Corollary
3.

2. My = (y —1,2% + 1) does not satisfy the Corollary 3 and is thus
not real.

3. Mz = (y®> +y+1,22+1) does not satisfy Corollary 3 and is thus
not real.

4. My = (y*>+ 1,2 +y) does not satisfy Corollary 3 and is thus not
real.

5. Ms = (y+ 2,z — 2) is real by Proposition 3 or Remark 3.

6. Mg = (y+2,2%—2) is real by Proposition 3 for the ordering x < y
with the reduced Grébner basis G = {x? — 2,y + 2}.
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7. M7 = (y+ 2,z + 2) is real by Proposition 3 or Remark 3.

8. Mg = (y3+3y?> +y+1,2+7) is real by Proposition 3 w.r.t. the
ordering y < x under which M 1is a reduced Grébner bases.

9. My = (> +3y?> +y + 1,22 + y). Here it is not obvious to see
if My is real or not. So we have to compute the Gréibner bases
w. r. t. both orderings r <y and y < x.

The Grébner basis w.r.t. to the lexicographical ordering x < y
of My 1is

G = (2% — 32" + 2% — 1,y + 2?).
First we have to test if x5 — 3x* + 22 — 1 is real. We know
that x8 — 3x* + 22 — 1 is prime and after applying the RealPoly
procedure introduced in the last section we get that 2% —3z*4+22—1

is real. Now we know that My is real by Proposition 8 w.r.t. to
the ordering x < y.

10. Myg = (y> +3y> +y + 1,z — ) is real by Proposition 3.
So the real radical of I is

7\6/.7:M50MGOM7ﬂMgﬁMgﬂM10
=yt + 53 + T2 + 3y + 2,21 — 2%y + 2ty — 3)

In the next subsection I describe a procedure using the criteria
introduced above.

After giving this procedure it is easy to describe the algorithm for
the zero-dimensional case using a coordinate change into general posi-
tion.

4.1.1 The procedure prepare max

The procedure prepare max which uses the properties introduced
above acts in the following way:
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It gets as input a maximal ideal M and returns a list erg = M, j, where

/M if j =1, the change into general position can be
avoided

M if 7 =0, the change into general position cannot be
avoided

M =

I explain my algorithm in pseudo-code. The proof of the correctness
of this algorithm follows from the criteria explained above. In the
algorithm itself there is no need to check Corollary 3 explicitly. This
criterion is checked implicitly in the check of Proposition 3 as we will
see.

The procedure prepare max is written as follows:

Algorithm 1
(An heuristic to check if a coordinate change can be avoided)

proc prepare_maz(M)
INPUT : a maximal ideal M < -Flzq,...,Ty]
OUTPUT: a list erg = (M, j) s.t.

VM if j =1, the change into general position can

- be avoided
N M if j =0, the change into general position can’t
be avoided
BEGIN
Initialise P := {X: X\ is a permutation of the variables {z1,...,2,}}
while (P # &) do {
Choose a X\ = (xj,,%j,,...,2j,) € P

P:=P\{\}

Compute the lexicographical Grobner basis My = {f1, fo,. .., fn}
of M w.r.t. the ordering xj, < xj, < ... <xj,. Now fy is
unwariate in the variable x;j, .
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Let f1 := RealPoly(f1) the real part of fi. As f; is prime there
are two possibilities fi =1 or f1 = fi.
if (fi=1)
{
erg:=(1),1
return(erg);

}

According to Proposition 8 search the first position k > 2 such
that my, has even degree in xj, . Set k = n+1 if there exists
none.

if (k>n)
{

erg := M, 1; (Correctness is clear from Prop. 3)

return(erg);

}

According to Lemma 6 search from position (k + 1) in M)y, the
first non-real generator m;.

If there exists a position i < n set erg = (1),1 and return erg.
}

If F is non parametric, i.e. F = Q and every generator of M is
univariate use Remark 8 and return erg :== M, 1.

erg = M,Q0;
return(erg);
END

In many cases the realness of maximal ideals can be checked only
using the procedure prepare max. But it may happen that an ideal
fails this test, i.e. the result of prepare_maxz(M) is erg = M, 0. In this
case we have to apply a coordinate change into general position.
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Here I used the already well-optimised coordinate change imple-
mented in the primdec.lib.

The method I implemented during my diploma thesis is called
GeneralPos. It gets a list of maximal ideals which failed the test
prepare max as input and returns the intersection of all real maximal
ideals of this input.

Let us consider an example. An ideal in which we have to apply
a coordinate change into general position was presented in Example 3.
Lets have a look at this.

Example 6 Let M = (2% + 1 +t,5% — t) <-Q(t)[z,y]. Choosing the
coordinate change

¢ Q)[z,y] — Qt)[z,y]

y—y+ax+t
we get:
p(M) = (2 + 1+, (y + 2 +)* — t)
= (2% + 1+ t, 2% + 22y + 2tx + y* + 2ty + 12 — 1)
Its lexicographical Grébner basis w. r.t. the ordering y < x is:

Gy = {y* +4ty® + (662 + t)y* + (4% + 4t)y + (t* + 612 + 4t + 1),
(—4t — 2)x — y> + (—=3t)y* + (=3t> — 2t — 3)y + (—t> — 2t* — 3t)}.

Now y* + 4ty3 + (6% +2)y? + (4¢3 + 4t)y + (t* + 6% + 4t + 1) is not real
in Q(t)[y] as y* + 4ty + (612 + 2)y? + (463 + 4t)y + (t* + 612 + 4t + 1)
is positive semi-definite (which can be seen using Lemma 4). Hence as
i Fxample 3 we get that M s not real.

In all my tests it didn’t happen often that I had to change into
general position for the test of being real. In fact the only examples
I found in which there is a need to apply this change are ideals over
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transcendent extensions of (Q which are of the form in Example 3, i.e.
every generator is univariate and real. For these cases I have not yet
found any property to check realness without applying this change. A
simple example for an ideal in which this change yields the realness of
a maximal ideal is the following:

Example 7 Let M = (z? + 1 —t,y*> — t) <-Q(t)[x,y]. Here the same
coordinate change as in the example above yields:

p(M) = (2? +1—t,(y+x+1)° —t)
= (22 + 1 —t, 2 + 2wy + 2tz + > + 2y + 2 — 1)
Here the Grobner basis w. r. t. the lexicographical ordering y < x is:
Gy ={y* + 4ty® + (6t — 4t + 2)y” + (4% — 8% + 4t)y + (t* — 4¢3+
+ 2t + 1), 20 4 y> + 3ty + (3t% — 4t + 3)y + (3 — 412 + 3t)}.

Now y* +4ty3 + (612 — 4t +2)y? + (4¢3 — 82 +-4t)y + (t* — 43+ 2t2 + 1) is
real as it is indefinite and the degree of 2z +1y> + 3ty® + (3t> — 4t +3)y +
(t3 — 4t? + 3t) in x is odd. Hence @(M) is real by Proposition 3, thus
M s real. In fact M is a-real in every ordering o of Q(t) satisfying
the condition t > 1.

To see the algorithm GeneralPos I recommend looking at Algo-
rithm 4.2 in [6].
4.2 An algorithm to compute the zero-dimensional rad-
ical

From the explanation in the last subsections, it is not difficult to get an
algorithm which computes the real radical of a zero-dimensional ideal
Jin Flxy,...,zy].

Algorithm 2

proc RealZero(I)

INPUT : a zero-dimensional ideal I < F[xq,. .., xy)
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OUTPUT: an ideal J s.th. J = /T

Simplify the ideal I = (f1,..., fr) to J = {(g1,...,9r) as described in
[6] Remark 4.16,*

Compute the associated primes of Max := Min(I) with primdecGTZ
or primdecSY. (This depends on which algorithm is faster.t).

Initialise Prep := @ and NonPrep := &

while Max # & do

{

Choose an M € Max
Mazx .= Max \ {M}
Compute erg = M, j with Algorithm 1.
If j=1and M # (1)

{
Prep := PrepU {M}

NonPrep := NonPrepU {M}
}

Prepared := ﬂMePrepM’

NonPrepared := General Pos(NonPrep);®

4These operations are applied with a time limit by the aid of the watchdog
command. watchdog(command, timer) returns the result of the command if the
time for the command finishes before the timer.

5The idea of this approach was explained with 2 examples in the previous sub-
section.
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According to Theorem 1 we get that

NT=NJ= Prepared N NonPrepared =: J.

return(J);

To finish this chapter I give an example in which every path of Algo-
rithm 2 is taken.

Example 8 Let

I — <($2y3 Ctaty +yf — oy bt 2 1) (y3 22 4 (—t3 42
— )y + %), (—2t)at — 4t + (—t + 1)y® + (—2 + 1)y + (P~
— )yt () (- )y + (0 2 2t), T
P2yt 123 ()2 120 — S — P 4yt (— 3
+ 12— )y + By + (¢ — £+ 12)).

Then every generator of I is simplified in the sense of Remark 4.16.

1. The primary decomposition of I provides 4 minimal primes which
are

o My = (z>+1—t,y3+1t%)

o My=(z? +t2+1,y°+1)

o My = (z?+1—ty>—1t)
(

o My= (22 +1+t,y>—1t)
We set Max := {My, Mo, M3, My}.
2. Prep:= @ and NonPrep := O
3. As Max is not empty choose My € Max and set

Max := Max \ {Ml} = {M27M37M4}.
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10.

11.

. prepare-max(My) = My, 1 because of Proposition 3. Hence set:

Prep := Prep U {M;} = {M;}
NonPrep := NonPrep =2

. As Max is not empty choose Ms € Max and set

Max := Max \ {Mg} = {Mg, M4}

. prepare_max(Maz) = (1),1 by [6] Lemma 3.2 w. . t. the lexicograph-

ical ordering y < x. Hence set:

Prep := Prep = {M;}
NonPrep := NonPrep = &

. As Max is not empty choose Ms € Max and set

Mazx == Max \ {M3} = {Ma}.

. prepare_max(Ms) = Ms,0. Hence we have to apply a coordinate

change and set:

Prep := Prep = {M,}
NonPrep := NonPrepU {Ms} = {Ms}

As Max is not empty choose My € Max and set
Mazx := Max \ {M4}.

prepare_max(My) = My,0. Hence we have to apply a coordinate
change and set:

Prep := Prep = {M,}
NonPrep := NonPrep U {M} = {Ms, M4}

Now Mazx is empty and we set Prep = {M}.
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12. From the examples 6 and 7 we conclude with the coordinate change
@ satisfying p(z) = z,p(y) = y + x + t that Ms is real and My is
not real. Hence

NonPrep = {Ms}

13. Set

J = Prepn NonPrep = M; N M3
— <y5 _ ty3 + t2y2 _ t3,$2 + (—t + 1)>

Hence the real radical of I is

J =’ —ty® + 29 — 2,27 + (—t + 1)).

4.3 The general case as reduction

To conclude I shall explain shortly how to compute the real radical
with the preparations of this article.

The main theorem for the higher dimensional computation, adapted
from [1] Theorem 4.5., is:

Theorem 5 Let I < Flxy,...,xy,]. For any S C {x1,...,x,} let J)
denote an ideal of the quotient ring F[x1,...,xy,] - F(S) satisfying

dim J®) <0 and I-F(S) C J®) C (I F(9))1s0-

Then
Vi= () (VJIONFla,... z)

S{{z1,...,zn}

As every J) has a dimension less then equal zero we are able to
compute there real radicals. Theorem 5 now tells us how to intersect
all these ideals properly so that our result will be the real radical. The
theory of finding the J(5) uses real isolated points for arbitrary formally
real fields. It is explained in detail in [1] chapter 4 or in chapter 5 of
[6].
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5 Conclusions

Following a short introduction of the basics on real algebra and real
radicals, I described how to compute the real radical in the univariate
case and in the zero-dimensional case. The univariate case corresponds
to the leaves of the reduction tree for computing real radicals. While
the univariate case uses theory which can already be found in literature,
like Sturm’s Theorem (cf. [2]) or the decision of indefiniteness (cf. [4]),
section 4, the zero-dimensional case, introduces newly found properties.
The decision was to compute the primary decomposition of the zero-
dimensional input and to give a heuristic for deciding whether a max-
imal ideal is real or not. This heuristic yield a procedure prepare _max
which prepares a maximal ideal in such a way that we can avoid a
coordinate change into general position as often as possible. If we can
not avoid a coordinate change we use the procedure GeneralPos. Its
input is a list of maximal ideals where a change can’t be avoided. Here
a suitably randomised coordinate change is computed such that we
can check the properties of prepare max for the transformed maximal
ideals and afterwards we intersect all real maximal ideals of this list.
Finally, the procedure RealZero gets a zero-dimensional input I and
computes its primary decomposition. Then it considers separately ev-
ery maximal ideal and tests if a change is needed to compute the real
part. Afterwards it intersects the real radicals of all these 'nice’ maxi-
mal ideals and restarts the procedure GeneralPos for the list of ’bad’
ideals. Since the primary decomposition is well-optimised in SINGULAR
the advantage of this is a time improvement during the computations.
This is because coordinate changes into general position cause a growth
of coefficients and terms which slows the Grobner bases computations
down. The idea presented in this abstract avoid such changes as often
as possible. Finally the article closes with the description how to com-
pute the arbitrary radical as a reduction to the zero-dimensional case.
We have presented an algorithm to compute real radicals which uses the
new introduced heuristic prepare max and is thus a time improvement
to the algorithm presented by Becker and Neuhaus in [1].

91



Silke J. Spang

References

1]

2]

E. Becker and R. Neuhaus. On the computation of the real radical.
Journal of Pure and Applied Algebra, 124:261-280, 1998.

Henri Cohen. A course in computational algebraic number theory,
volume 138 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, 1993.

Gert-Martin Greuel and Gerhard Pfister. A Singular intro-
duction to commutative algebra. Springer-Verlag, Berlin, 2002.
With contributions by Olaf Bachmann, Christoph Lossen and
Hans Schonemann, With 1 CD-ROM (Windows, Macintosh, and
UNIX).

Zeng Guangxing and Zeng Xiaoning. An effective decision method
for semidefinite polynomials. J. Symb. Comput., 37(1):83-99,
2004.

Manfred Knebusch and Claus Scheiderer. Finfiihrung in die reelle
Algebra, volume 63 of Vieweg Studium: Aufbaukurs Mathematik
[Vieweg Studies: Mathematics Course]. Friedr. Vieweg & Sohn,
Braunschweig, 1989.

Silke J. Spang. On the Computation of the real radical. Diploma
Thesis. University of Kaiserslautern, March 2007.

Silke J. Spang, Received November 9, 2007

Fraunhofer Institute for Industrial Mathematics (ITWM)
Department System Analysis, Prognosis and Control
Kaiserslautern, Germany

E—mail: silke.spangQitwm.fraunhofer.de

92



Computer Science Journal of Moldova, vol.16, no.1(46), 2008

Grobner Bases for Nonlinear DAE Systems of
Analog Circuits

Silke J. Spang

Abstract

Systems of differential equations play an important role in
modelling and analysis of many complex systems e. g. in elec-
tronics and mechanics. The following article is concerned with a
symbolic analysis approach for reduction of the differential index
of nonlinear differential algebraic equation (DAE) systems, which
occur in the modelling and simulation of analog circuits.

1 Introduction

Systems of differential equations play an important role in modelling
and analysis of many complex systems e. g. in electronics and mechan-
ics. For example, the simple oscillator circuit of figure 1, which is part
of nearly all analog electronic devices, yields the following DAE

C1(V{(H) = Va(#)) — I1a(t) = 0 (1.1)
V;T?Jr(}l(vg(t) -Vi@t) =0 (1.2)
Vi(t)+ L1-1;,(t) =0 (1.3)

where I;; denotes the current through the inductor L1 and V; the
voltage between the node 7 and the ground.

Unlike ordinary differential equation systems (short ODE), proper
DAE systems are subject to hidden constraints. These constraints are
not explicitely stated in the system of equations, but they constrain
the solution within a certain manifold. For instance, in the above DAE

(©2008 by Silke J. Spang
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—
1 I I 2
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L1l Ccl R1

Y Iout

Figure 1. Analog oscillator circuit

there is no possibility to compute an explicit formula for Vi which does
not depend on V{ and vice versa using algebraic deformations only.
Deriving the whole system, we obtain:

C1 (W (0) ~ Vi) ~ Ia(t) =0 )
By ovvie - iy =0 )
Vi(t) + L1- I}, () =0 ®)
C1(R0) ~ V(1) ~ (1) =0 @
B0 | ovwge - viw) =0 ©)
Vi) + L1 Iy (8) =0 )
Adding (4) and (5) we get

B0 w =0 )

multiplying (7) with L1 and adding it to (3) we end up with
V;;(lt) CL1— V() = 0. (8)

In the same way we get another equation for V{(t) and get the following
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equation:
R1 1
I = —— —_—
Vi) =~ 35 Vi) + g - Tua() 9)
So the system can be reformulated as an ODE of the following form:
R1 1
I = —— —_—
Vi) =31 Vi) + g T () (2.1)
R1
() = —— - Wi (t 2.2
Va(t) = =77 - (1) (2.2)
Vi(t)
I = 2.
£1(t) 1 (2.3)

In general hidden constraints for such systems can be handled using
methods from commutative algebra.

The treatment of linear DAE systems using algebraic methods is
straight-forward, but this is not the case for nonlinear terms, e. g. DAEs
containing exponential functions. Here some further development of
computational methods is necessary to match the needs of this equa-
tions which arise from nonlinear circuits.

We describe a method for the detection of such hidden constraints
and reformulate the DAE in an ODE like manner. In section 2 some
background theory of differential systems and their differential index is
explained and an algebraic framework by meanings of rings, ideals and
Grobuer bases for the properties of local solvability and being formally
integrable are given. The ring of all differential equations up to order
q w.r.t. the independent variable ¢ will be reinterpreted as the polyno-
mial ring A@. In section 3 the computational development during the
work with SINGULAR and Mathematica on this subfield is described.
We will see how such problems can be tackled using polynomial sys-
tems in SINGULAR. Systems containing the latter give rise to electrical
circuits describing the behavior of transistors and diodes.

Section 4 expands our view to some new classes of functions. We
will get some feeling how to tackle exponential functions, sines and
cosines and in particular square-roots in an algebraic and polynomial
frame. Systems containing exponential functions may give rise to elec-
trical circuits describing the behavior of transistors and diodes. We
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will embed all these classes in a new ring D for which we define deriva-
tive map ¢p. To this end will see in section 5 that our gained theory
applied to some DAE systems good solutions in Analog Insydes. After
our preprocessing the last example we detected some equations which
gave sufficient counstraints to compute the solution with the nonlinear
DAE-Solver of Mathematica. Concluding with section six we will give
some outlook for further development.

I would like to thank the Analog Insydes Team especially Dr.
Alexander Dreyer for many fruitful discussions and their support with
problems in Analog Insydes. I also want to thank the Fraunhofer In-
stitute for Industrial Mathematics especially my department System
Analysis, Prognosis and Control with the department chief Dr. Patrick
Lang for giving my the opportunity to work this field. Last I want to
thank my advisor Prof. Dr. Gerhard Pfister for being a good friend and
advisor which always has an ear for me and my problems.

2 Basics and mathematical background

In this section we will present some algebraic and analytic basics which
shall help to understand the next sections.

Suppose a DAE (F) of order ¢ is given. We introduce the differ-
ential index (cf. [4]) of (F) to be r if a minimum of r + 1 geometric
differentiations of (#) is required until no new constraint is found. Note
that this index definition is one out of a group of indices measuring the
difficulty of solving DAE systems (cf. [6]).

As already mentioned above, proper DAE systems yield additional
constraints to the solution, which are not stated explicitely in terms of
equations.

Example 1
Consider the following system (cf. [6]) with functions z; in the inde-
pendent variable t

a:'l +x21=0 (3.1)
Tozh — 13 =0
w4z —1=0. (3.3)
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This system admits a hidden constraint 3 —x3 = 0 which appears after
a differentiation of equation (3.3) and the elimination x| and x4 -z},
by using the equations (3.1) and (3.2). The above turns out to have
differential index two as after two steps there occur no more hidden
constraints. In this case the system can be transformed to an ODE.

Systems of high index are algebraically underdetermined as they
have a gap of constraints which only appear after differentiation. These
hidden constraints may slow down numerical computations, or make
them even impossible. Systems of lower indices have less of these hidden
equations and it turns out to be desirable to transform a higher indexed
system into one of a lower index. Among the approaches to decrease
the differential index is the theory of locally solvable and involutive
systems. (cf. [5] ) Here we prolongate and project the given DAE until
no new constraint can be found.

We define the prolongation and the projection of ¢-th order
systems (cf. [3] chapter 2, [4] chapter 2-3), where the prolongation
coincides with differentiation and the projection with the elimination
of the highest order part.

Definition 2

Let f1,..,fn, € C™(T,t) be m-differentiable functions in the time
t €T C K for an interval T in o field K. If fi(J) = % denotes
the j-th derivation of f;, then we denote the space of all differential

algebraic equations up to order q of f = (f1,..., fn) over K by
AW = K[f@, fla=) f1f ]

Now we are able to give a formal definition of projection and pro-
longation in terms of ring maps and elimination.

Definition 3
Let Dy : AW — AW be g formal differentiation, i.e.:

® Di(p-q) = Di(p) - q+p-Di(q) (chain rule)
e Dy(p+q) = Di(p) + Dy(q)

o D,(f9) = £t for all {9 € AW,

1
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e Di(a) =0 forala€K.

The field Const(A) = {a € A : Dy(a) = 0} is called the field of
constants. Note that K is a subfield of Const(A), but they need not
be equal.

Now a DAE system (F) can be transformed into an ideal I of A,
Recall that an ideal is a subset which is invariant under addition and
scalar multiplication and is denoted by I << A. Note that the solutions
of (F') do not coincide with the solutions of I. Of course, every solution
of (F') corresponds to a solution in I but not vice versa. This is because
algebraically the derivative of an f; is another variable and we have no
a priori knowledge about their analytical relationship. The map D; has
its natural extension for ideals I = (g1,...¢g,) < A? given by

Dy(I) = (Di(g1), - - - » Di(gr))-

Definition 4
Let I be an ideal in A ;

e The algebraic prolongation of I is defined to be

P(1) = (I, Dy(T)) < AT+,
e The algebraic projection of I is given by
E(I)=INAT"

The next definition gives some properties of systems which have a low
index.

Definition 5
Let I < A9 pe an ideal then

1. I is called locally solvable if

EoP(I) =1
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2. 1 is called formally integrable if for all k> 0

£ o P(PF(1)) = Pr(I).

We try to use Grobuner basis methods to obtain such forms. First of all
we define orderings and Grobner bases (cf. [2]).

Definition 6 (Ordering)
Let A = K[z1,...,2z,] be an affine K-algebra. A total ordering > on
the set of monomials of A.

Mon(A) = {z{* - z3*-- -zl : a; € N}

n

18 an antisymmetric binary relation

> @)= 0 a=p
-1 B>w «

for an ordering >nn of N, Additionally
> (2%, 4°) = > (a7 - 2,27 - 2P)
holds. For simplicity we write:
o 2> 2P if > (2%, 2P) =1
o 2@ =P if > (z*,2°) =0
o 2 < 2P if > (2*,28) = —1.

An ordering is a well- or global ordering if z* > 1 for all a €
N'N\J{(0,...,0)}, a local ordering if every z* < 1 and mized order-
tng otherwise.

Definition 7 (leading monomial and leading ideal)
Let A be an affine K-algebra and > an ordering on Mon(A), then:
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1. For every polynomial
f=ha® + fou® 4 fa®m € AN{O}

with f1 # 0 and x** > %2 > ... > % let LM(f) = ' denote
the leading monomazal, which is the biggest monomial w. r. t. >

2. For any ideal I <A let L(I) = (LM(f) : f € I) denote the leading
tdeal of I.

Now we are able to define a Grobner basis as a so called “fine form*“
of an ideal I, see [2, Def. 1.6.1].

Definition 8 (Grébner basis)

Let I = {(f1,....fr) < A be any ideal. A standard basis is
a representation (g1,...,9m) of I such that the equality L(I) =
(LM(g1),...,LM(gm)) holds. If the underlying ordering > is a global
one then we call a standard basis just Grobner basis.

To represent ideals on computers, we can use Grobner bases. This form
is suitable for computations as it provides a reduction to the monomial
case. Note that computing with monomials is only a combinatorial
problem. The so-called normal form w.r.t. to a set {g1,..,g9m} is
defined as follows:

Definition 9 (Normal form, standard representation)
Let G denote the set of all finite subsets G C A. A map

NF:AxG— A, (f,G)— NF(f|G)

is called normal form on A if NF(0|G) =0 for all G € G and for all
fERand G€G:

1. NF(f|G) #0 = LM(NF(f|G)) € L(G).
2. If G = {g1,-.-,9m}, then r := f — NF(f|G) has a standard

representation w. r.t. G, that is, either it holds r = 0, or

T
rzzai'gia aieAa
i=1

satisfying LM(r) > LM(a; - g;), such that a; - g; # 0, for all 1.
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Most of the classical problems of ideal theory, e. g. ideal membership,
variable elimination, equality of two ideals, etc. can be easily solved
using Grobner bases. To eliminate variables, we use elimination or-
derings.

Simply expressed, we can view them as a separator that makes ev-
erything we want to eliminate larger than the elements we want to keep.
The best elimination orderings for fast Grobuner basis computations are
the so called block orderings (cf. [2] Example 1.2.8.(3) ).

Because of the elimination property of Grobuer bases it seems ad-
visable to use the Grobner basis theory to obtain a good formulation
for a given DAE system. We finish this section proving the following
lemma.

Lemma 10
Let I < A9 be a linear locally solvable DAE. Then I is formally inte-
grable too.

Proor

We have to show the & o P(P*(I)) = P¥(I) for all k. As the prolon-
gation of a linear DAE is again linear we conclude that every P¥(I)
is linear. Thus it suffices to show that £ o P(P(I)) = P(I). As I is
linear all polynomials in I are of degree one. Hence D;(I) is simply a
substitution of variables. So let I be written as Grobner basis w.r. t. a
block elimination ordering > on the ring variables satisfying

(O < {1 <Dy <. < {f9).

Then the Grobner basis G of I can be written in block form:

G= {fqlu"'7fqnq7"'7f117-"7f1,n17f017"'7f0n0}
N J/ N ~ o N ~~ -
order q order 1 order 0

Let F; = {fj1,---, fjn; }. Now Dy(G) is again a Grobmer basis as all
variables are substituted. In fact

o Di(Q) = {Dy(Fy), Dy(Fy 1), ., Dy(Fo)}
o D{(G) ={D;(Fy), D{(Fy-1), - -, D{(Fo)}.
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Now

EoP(P(I) = EoP(I + Dy(I)))
=E( + D(I) + Dy(I + Dy(1)))
= E(I + Dy(I) + D} (1))
= I+ Dy(I) + E(D2(I)) = P(I) + E(D2(D))

As P(I) C EoP(P(I)) always holds, it suffices to show the inclusion £ o
P(P(I)) € P(I). This reduces to E(D?(I)) € P(I). Now

t
= Dy({Di(Fy-1),- .., Dy(Fy), Di(Fp)))
= Dy(E(D(1))) € Di(€ o P(1))
= Dy(I) CP(I)

This proves our claim.

3 A computational approach

In the following section a computational approach for interacting the
Mathematica-based tool Analog Insydes [1] with SINGULAR is ex-
plained. One of the main difficulties is to construct a communication
bridge between both systems that come from different mathematical
application domains. SINGULAR is well optimised for polynomials and
Grobuer bases, while Analog Insydes is used for modelling and mixed
numeric/symbolic approximation of analog circuits.

3.1 Differentiation and Prolongation

A natural way to implement differentiation is dealing with word rewrit-
ing systems. The derivative of a variable is simply represented by an-
other variable. This rewriting process is obtained by the definition of
new variables df; for f!, ddf; for f] etc. Then differentiation is obtained
by a left shift to the formal derivative. So, to obtain a correct differ-
entiation we simply introduce a map ¢ defining the derivative of every
function. The core of the whole differentiation of pure polynomials in
the A9 is the product rule (see Algorithm 1).
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Algorithm 1 PROC productrule (poly f,map @)

Require: a polynomial (resp. monomial) f € A? and the derivative
map ¢ of variables
Ensure: a polynomial df which is f’ € A1
if (deg f =0) then
return 0;
if (deg f = 1) then
return ¢(f);
else
pick a prime factor p of f;
Py
df := g - ¢(p)+productrule(g, ¢) - p
return df

Using this underlying core it is possible to obtain a procedure for
the differentiation of an ideal. This procedure is called derivideal.
It gets an ideal I as input and the definition of the derivative map
@, the output is D;(I), the derivative of I. The prolongation is simply
defined by the procedure Prolongation which takes the ideal dae and a
natural number functionanz as arguments where the latter denotes the
number of involved functions and is just to generate the derivative map
automatically. The following example which is derived from Example
1 shows how the procedure Prolongation works.

Example 11

> ring r=0,(dx(1..3),x(1..3),t),dp;

> ideal dae=dx(1)+x(1),x(2)*dx(2)-x(3),
x(1)"2+x(2)"2-1;

//x(1),x(2),x(3) are the 3 functions

> def difring=Prolongation(dae,3);

> setring difring;

> dae;

dae[1]=dx(1)+x(1)

dae[2]=dx(2)*x(2)-x(3)

dae[3]=x(1)"2+x(2)"2-1
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//ddx (i) is x(i)?’

> prol;

prol[1]=dx(1)+x(1)

prol[2]=dx(2)*x(3)+x(2)*x(3)-dx(2)

prol[3]=x(2)"2+x(3)-1

prol[4]=dx(2)*x(2)-x(3)

prol[5]=x(1)"2-dx(2)*x(2)

prol[6]=ddx(2)+dx(2) ~3+dx(2) "2*x(2)
-dx(2)*dx(3)-dx(3)*x(2)

prol[7]=ddx(1)+dx(1)

The ideal prol is the Grobner basis of the prolongation from Definition
4. The equation x? —z3 = 0 (cf. Example 1) can be easily derived from
prol[4] and prol[5]. The ring difring is ordered by a block ordering
admitting {¢,z1,...dzs} < {ddzi,ddzs,ddzs}. Hence, we see that
prol[1..5] is the elimination of the highest derivatives in prol. So we see
that after defining the prolongation with Grobner bases it is an easy
task to compute the elimination.

3.2 Computing locally solvable systems

Algorithm 2 PROC LocallySolvableDAE(ideal dae, int n)

Require: a DAE dae of ¢-th order in A@, N the number of functions
Ensure: a DAE locs of ¢-th order which is locally solvable and the
differential index of dae
int difindex = 0;
ideal locs = dae;
ideal buffer = 0;
while buffer # locs do
buffer = locs;
locs = InvolutionStep(locs);
difindex = difindex + 1;
return (locs, difindex);

In the previous section we saw that the computation of £ oP(I) for
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every I can be implemented easily. This is done in the auxilliary proce-
dure InvolutionStep. The natural way to extend this to a procedure
which returns a locally solvable system is described in Algorithm 2.

To finish the computations of Example 1 we see the following ex-
ample:

Example 12

> ring r=0,(dx(1..3),x(1..3),t),dp;

> ideal dae=dx(1)+x(1),x(2)*dx(2)-x(3),

x(1)"2+x(2)"2-1;

> LocallySolvableDAE(dae,3);

[1]:
_[11=dx(3)+2*x(3)
_[2]=dx(1)+x(1)
_[31=dx(2)*x(3)+x(2)*x(3)-dx(2)
_[4]1=x(2)~2+x(3)-1
_[6]=dx(2)*x(2)-x(3)
_[6]=x(1)"2-x(3)

[2]:
2

Here we see that the differential index of our system is 2 and the equal-
ity 22 — 23 =0 (cf Example 1) appears as the sixth in the result. The
advantage is that we can now derive every hidden counstraint in the orig-
inal DAE from the resulting one. The next two sections will deal with
some extensions to new functions that may be included in the nonlinear
systems like exponential functions, sines, cosines and squareroots.

4 Integration of more function types

This section describes the main ideas how to extend the algorithmic
approach from the last section to the case of rings including more func-
tion classes like exponential functions, sines, cosines and squareroots
as extensions of A@. These allow us to formalize the concept of DAE
systems including the latter.
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4.1 Special extension rings for Exponential functions

First, let us consider systems with exponential functions. Such systems
occur in simple analog circuit consisting of transistors and diodes. The
special diode equations are called Shockley equations. They explain the
connection between current and voltage. The Shockley diode equation
is

[=1Ig-("FF — 1),

where [ is the diode current, Ig is a scalar factor called the saturation
current, ¢ - the elementary charge, Vp is the voltage across the diode,
k - the Boltzmann constant and 1" - the temperature.

The extension ring B9 is defined as follows:

Definition 13

Let n. be a natural number and arg = argi,...,arg,, be a list of
polynomials in AD. Then we define e¢; := €¢¥9%. Now the ring of
special exponential DAEs of q-th order is denoted by

B(q) = A(q)[ela---aene] :K[f(q)a"'aflaf’t7e]‘

arg °
If there is no confusion about arg, we simply write B instead of B,(Z?)g.

Note that for every list arg there is another ring. So the prolongation
and of course the index and the local solvability depend on arg. With
the additional definition

Dy(e;) = Dy(arg;) - e;

we get our natural extensions of the above discussed theory. In the
next subsection the programs defined in the previous section will be
extended for these special rings.

4.2 A solution to the computational task of exponential
functions

As written in Section 3 the core of prolongation is how to define the
derivative map. To this end we have to get a method to get the ex-
ponents of the ¢; and to define the derivatives. As we already have
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an algorithm representing a derivative map to compute derivatives in
AW callit ¢ 4 and DerivPoly(-, ), we can describe the derivative
map for B,

Definition 14
Let = be one of the variables in BY. We define the derivative map
Yp) as follows

N P A@) (.T) if z € Al
DerivPoly (arg;, p4«)) -€i if z=¢;

Now the prolongation can be extended to exponential functions easily
if we know their number and arg.

4.3 How to expand to sines and cosines

As sine and cosine depend on each other by means of their derivatives

(g)

we extend our ring Bgrg simultaneously with both sine and cosine on

arguments in Bé?n)g as follows:

Definition 15
Let nyrig be any natural number and trigerg = trigargy, - - - ,trigargnmg

a list of polynomials in BéZlg. We define s; = sin(trigarg;) and c¢; :=

cos(trigarg;) as the ring of special trigonometric functions of q-th order

cw .= B [51,...,snm.g,cl,...,cnm.g] =

tTigarg:earg €arg
= K[f(q)7"' 7fl7f7t’eﬂs7c:|'

If there is no confusion about trige.y and eqq we simply write c(a)

instead of Ct(Q)

rig,earg’

To extend our theory of locally solvable systems we have to extract our
derivative map.
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Definition 16
Let x be one of the variables in C\9. We define the derivative map
Yo as follows

Yot :CW = ¢latl)

o) (.T) if z € B(Q)
z + { DerivPoly(trigeg;, ¥pw) - ¢ if z=s;
DerivPoly(tm’gmgi, Ypw) (=) ifr=¢

As a last extension we present squareroots.

4.4 Extension to square-roots

As we consider polynomials and no rational functions we need to adjoint

both, the squareroot /- and its multiplicative inverse % to the ring
C9). This yields the following definition:

Definition 17

Let Ce,,,trigary a5 i Definition 15 and let sqrigg = $qriargys-- -,

sqrtargnsqrt € C9 be the list of the arguments Ngqrt Of the squareroot

functions \/-;. We define for the list mf = eqrg, tTigarg, Sqrtarg the
ring of special functions including exponential functions, sines, cosines
and squareroots as follows:

1 1
\/?17. o \/._'nsqrt

Additionally extracting the derivative map for the new ring D with

Dmf = Ct(;]i)gmg,earg [\/?17 ey \/?'nsq'rt7 ]

. 1 1
‘PD(\/?i) = DerIVPOIy(Sq'rtargia ‘PC(q)) e T
2V
1 -1 /1)
¢p(—=) = DerivPoly(sqrte,g;. ¢c@) - — - <_>
\/?1' arg; q 9 \/—1

we get the desired prolongation.
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4.5 The structure of D

D fits to all algebraic combinations that are possible with exponential
functions, sines, cosines and square-roots. Unfortunately, we have no
a priori knowledge about their analytical and geometric relationship.
The following subsection tries to fill this gap. First of all let us recall
the geometric relationship between sines and cosines, that is

sin(z)? 4 cos(x)? = 1 Va.

Therefore, we have naturally s? + ¢ = 1 for all i € {1,...,nyg}-
Because of the multiplicative relation between the square-roots and
their reciprocal we have additionally the conditions /-; - % = 1 for
every i. Hence we get the following definition:

Definition 18
Let Dy,y be defined as above (Definition 17), then we define the ideal
Iy to be

e

(S {17 e 7ntrig}7j € {17 .- 7nsqrt}>

1 2
Iy = (s2+c — 1,\[]- C— = 1,\[]- — sqriarg;
J

The ideal I represents every algebraic combination which is trivially
zero for this special classes. The main question is: does this suffice in
general? Hence we want to show that Iy is already locally solvable.
Therefore we consider the following lemma.

Lemma 19

Let D and Iy be defined as above, then Iy is formally integrable, es-
pecially for the theory of locally solvable set in D it is sufficient to
compute the normal forms w. r. t. 1y after every prolongation step.

PROOF
We will show that D;(Iy) C Iy. Therefore we show that D,(g) € I, for
every generator g of I5. We have the following cases:
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1. g = s?+ ¢ — 1 for some suitable 5. Then

Dy(g) = Dy(si +¢i — 1)
= Dy(s?) + Dy(c}) — Dy(1)
=2-8;-Dy(s;) +2-¢;- Dy(c;) — 0
= 2 DerivPoly (trigarg;, Ppw) - 8i - ¢i—
-2 DerivPoly(trigargi, @B(q)) “ Gt S
=0€l

— — 1 for a suitable j. Then

V'
Dilg) = Dilv/5;- ==~ 1)
t\g) =L\ —F —
Ve
1
= Dy(V; - Tj) — Dy(1)
1 1
=Di-;)-— ++-;-D —) =0
t( j) \/'_j J t(\/'_j
DerivPoly (sqrt )1—1 —t
= berivioly(sqrigrg,, $o@) - = - )
94> ¥ Cl4 2 - \/?j
-1 (1}*
+ \[j - DerivPoly (sqrte g, 0cw) - = - <\/>

1 : LY’
= 5 . DeI‘]VPOIy(Sthargia ‘pC(Q)) ’ [<—) B

G
= % - DerivPoly (sqrtargs Pow) - <L>2 = <

1 . LY
_ _5 ) DeerPOl)’(SthaTgi’ @C(q)) . —> -g €l
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3. g= \/3 — 8qrtarg; for a suitable j. Then

2
Dy(g) = Dy(v-5 — Sqrtarg ;)
2
= Dy(V+5) — Dy(sqrtarg,)
—9. \[j . Dt(\[j) — DerivPoly(sqrtarg;; @)
. 1 1
=2. \[j . DeerPOIy(Sthargiu @c(q)) Yo T T T
2 V5
— DerivPoly(qu’targ,-a Yow)
= DerivPoly(Sthargia Yow) 2
= DerivPoly(sqrtargi, o) -9 €l

Hence P(Iy) = (Io, Di(Io)) = Iy and thus P*(Iy) = I, for all
k € N and especially £ o P(P*(Iy)) = I = P*(Iy) for all k and
thus Iy is formally integrable.

Algorithm 3 extends Algorithm 2 following Lemma 19.

Algorithm 3 PROC LocallySolvableDAE(ideal dae,ideal 1)

Require: a DAE dae of ¢-th order in D@ and the ideal I from Defi-
nition 18
Ensure: a DAE locs of ¢-th order which is locally solvable and the
differential index of dae
int difindex = 0;
ideal locs = dae;
Iy=groebner(Ij);
ideal buffer = 0;
while buffer # locs do
buffer = locs;
locs = NF(InvolutionStep(locs),l);
difindex = difindex + 1;
return (locs, difindex);
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Figure 2. Analog rectifier circuit
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5 Computational examples and outlook

To finish this article with the last section we will see how the gained
theory applies to the following two examples. This section will be
concluded with an outlook for further development.

5.1 Analog rectifier circuit

Example 20

We have given the analog circuit in figure 2. This circuit contains
both nonlinear as well as dynamic components, namely the diode D1
and the capacitor C1. Given numerical element values and a cus-
tom input voltage waveform Vi = Viy(t) we shall compute the tran-
sient response Voui(t) across the load resistor R1. The model parame-
ters Is (saturation current) and Vp = kT'/q (thermal voltage) are given
as Is = 1pA and Vp = 26 mV. The values of the circuit elements are
assumed to be R1 = 1002 and C'1 = 100nF. This yields the following
DAE system (F'):

Ibacapi(t) + Ibye(t) =0 (4.1)
Via(t)  V7o(8)
—1 T = 4.2
bacapi(t) + =55~ + o7 =0 (4.2)
WO v
e T — 14+ _
1012 = MRS = Ibacapi(t) (4.3)

and the input condition Vi1 (t) = Vip(t).
The three equalities are transferred from Analog Insydes to SIN-

112



Grobner Bases for Nounlinear DAE Systems of Analog Circuits

GULAR, which continues with computations in the polynomial ring
QV, 1, Vo, Iy, IV a1 Vats Va2, Ibvo, Ibacapi, ts €1

Now the procedure LocallySolvable DA FE returns the following sys-
tem to Mathematica

Ibscap1(t) + Ibyo(t) =0 (5.1)

IVscap1 () + Tbyo(t) = 0 (5.2)

14 10" Tbacapi(t) + Via(t) — e = Vi (2) (5.3)
10° - (100 - Tbacapi(t) — Via(t)) = Via(t) (5.4)

(e1 +1)(=10° - (100 - Tbacap (t)—
Va2 (1)) + Vi1 (8)) = 10" - Vi - Iby0qpy (t) - (5.5)

Vp1 (8) = Vo (t) i
where e] = e Vr . Using normal forms and our knowledge about

Va1 the system can be written as

Var(t) = Vi (1) (6.1)
Vao(t) = f(2) (6.2)
Wicam(t) = AT DIOL ‘_/’{ﬁT(t)) —Val (g
¥y (t) = =164 capy (t) (6.4)
Vi (t) = Vin(t) (6.5)
Ibacapi(t) = —1by(2) (6.6)

where f(t) = 105 - (100 - Ibacap1(t) — Via(t)). This constrains the
equations of an explicit ODE formulation in the wvariables Vi1, Vya
and Ibgcapi- This is because Vin(t), and hence V; (t), have to be
explicitly pmvided by the user. Therefore, the first three equations give
formulas for V. Vo and IV 4 p1, which do not depend on unknown
derivatives.
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5.2 A system including sines and cosines

Example 21
Ibaparc(t) + Ibyo(t) =0 (7.1)
Drarc(t) = IV parc(t) .
—16 cos(Ibyparc(t)) + Drarc(t) = 4 (7.3)

Although the system contains all necessary conditions, it can hardly
be solved numerically without preprocessing. Processing the equation
system above with the approach of locally solvable sets described earlier,
we find the following equations:

16 COS(IbABdL()(t)) + 4 :DIdLC(t) (8'1)
Ibaparc(t) + Ibyo(t) = 0 (8.2)
16 cos(Ibaparc(t)) +4 =Ibyparc(t)

3)
Ibaparc(t) + 1byo(t) +4=0 (8.4)
64(sin(Ibaparc(t)) + 2sin(2Ibaparc(t))) + Digre(t) = 0 (8.5)

If we look at the system, we see that constraint (8.4) is redundant, as it
is implicitly given by (8.2) and (8.3). If we additionally cut constraint
(8.1) which is implicitly given in constraint (8.5), we get the following
system (F):

IbABch(t) + Ibvg(t) =0 (91)
16 COS(IbABch(t)) +4= Ib;&BdLC(t) .
64(Sin(IbABch(t)) + 2 Sin(2IbABdLC (t))) = DIIdLC’(t) (93)

With the initial conditions Drgc(0) = 1,Ibaparc(0) = 0 and
Ibyo(0) = O the solution to the system computed by Analog Insydes
can be seen in figure 3.
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..................................................
.......

Figure 3. Time integration of9.1-9.3, where Ibspqrc (- ), Digre (—-),
and Ibvg (7)

5.3 Conclusion and outlook

We have embedded an important class of nonlinear DAE systems into a
polynomial frame. This enables us to apply the theory of commutative
algebra and Grobner bases for modelling problems arising from ana-
log circuit analysis. Therefore, we recalled some algebraic basics. We
introduced algorithmic procedures for transforming DAEs to systems
which are as close as possible to ODEs. After discussing polynomial
nonlinear DAEs our approach was extended to systems containing ex-
ponential terms. This is an improvement of the known theory of local
solvability and formal integrability (cf. [5], [4], [3]). This enables the
analysis of important nonlinear components like diodes and transistors.

In further developments, because integrating further function types
in Singular would only entail unnecessary work, we have decided to
move the prolongation implementation to Mathematica. On one hand,
this allows us to consider a larger spectrum of DAEs, and on the other
hand, the prolongation process may use the specialized Mathematica
differentiation functions. To transform between Mathematica and Sin-
gular representation, we define a mapping between Mathematica DAEs
and Singular ideals.

The initial results of my research are very promising, more practical
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applications will be tackled in the future by using more sophisticated
approaches. This will be published in a forthcoming article.
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Private Key Extension of Polly Cracker
Cryptosystems

Nina Taslaman

Abstract

In 1993 Koblitz and Fellows proposed a public key cryptosys-
tem, Polly Cracker, based on the problem of solving multivariate
systems of polynomial equations, which was soon generalized to a
Grobner basis formulation. Since then a handful of improvements
of this construction has been proposed.

In this paper it is suggested that security, and possibly effi-
ciency, of any Polly Cracker-type cryptosystem could be increased
by altering the premises regarding private- and public informa-
tion.

1 Introduction

In 1993, Koblitz and Fellows [1] proposed a public key cryptosystem,
Polly Cracker, based on the NP-complete problem of solving multivari-
ate systems of polynomial equations over a finite field. This was imme-
diately generalized to a Grobner basis formulation, where the problem of
solving polynomial equations was replaced by the EXPSPACE-complete
problem of computing a Grébner basis for an ideal. Using some general
NP - or EXPSPACE-complete problem as the basis for a public key cryp-
tosystem was a daring move, since the failure of Merkle and Hellman’s
knapsack-based cryptosystem from 1978 [4] had resulted in high scepti-
cism among cryptographers regarding this type of construction. Indeed,
a title like Why you cannot even hope to use Grobner Bases in Public
Key Cryptography [3] suggests it met a harsh response. The main criti-
cism against the idea was single-break attacks (i.e. individual-message
recovery) based on linear algebra.

(©2008 by N. Taslaman
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However, over the years a plethora of possible countermeasures
against these attacks and others has been proposed, as well as differ-
ent modifications to improve and generalize the initial idea - the most
general version as of now seeming to be Ackermann and Kreutzer’s gen-
eralization to module Grébner bases over general monoid rings, which
allows commonly used public key schemes such as RSA and ElGamal
to be formulated as special cases [9].

Rather than continuing in this direction of generalizing the setting,
V. Ufnarovski suggested author to investigate altering the rules for pri-
vate and public information in the Polly Cracker setup. This is the
subject of this paper.

To introduce the actors: Alice - intended receiver of secret messages,
Bob - sender of such messages, and Eve - enemy, who tries to recover
Bob’s messages. Messages are restricted to some message space M and
encrypted by Bob using some encryption function F : M — C into
ciphertext space C. In a public-key cryptosystem (Williamson 1974 [5],
Diffie and Hellman 1976 [6]) there may be many Bob’s but only one Al-
ice, i.e. F is publicly known (the public key) and anyone may encrypt
messages, but (hopefully) only Alice can decipher them. This requires
F to be a trapdoor one-way function, i.e. while encryption F(m) = ¢
may be computed in polynomial time, the decryption F~1(¢) = m may
not - except for someone (Alice) knowing some additional trapdoor in-
formation which simplifies the computation (the private key). As for
Eve’s part of the game, one distinguishes between total break attacks, in
which she tries to find the secret key (or some equivalent information)
so that she may decrypt any future ciphertext, and single break attacks,
aimed at decrypting specific individual messages. The basic assump-
tion is always that Fve has access to any encrypted message sent by
Bob. One also has to consider the situation that she has temporary
access to some decryption black box (e.g. in the form of a compiled de-
cryption program), which she may use to decrypt any finite number of
ciphertexts of her choosing. This is the scenario for a chosen-ciphertest
attack, where Eve’s goal is to use this information for a total break
attack.
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1.1 The Polly Cracker Public Key System

Let Fy[X] be the set of multivariate polynomials over a finite field Fy
generated by the alphabet X = {x1,...,x,}. Given a subset F' of poly-
nomials, let (F') denote the ideal they generate over [F[X]. Also, given
a Grobner basis G C Fy[X], under some monomial ordering <, and
a polynomial f € Fy[X], let f denote the normal form of f over (G)
with respect to =<, i.e. f:=rg(f) is the unique remainder of f over G
under the given monomial ordering. The Grobner basis version of Polly

Cracker may then be described like so:

Cryptosystem 1.1 (Polly Cracker).

KEY GENERATION To set up the system, Alice chooses a Grobner
basis G C Fy[X] under some monomial ordering < and selects a finite
subset P C (G) of the corresponding ideal.

PrivaTE KEY: G PuBLic KEY: P
MESSAGE SPACE A subset of all G-normal forms:
Mc{f|feF,X]}

ENCRYPTION Bob encrypts a message m € M by choosing some
p € (P) and computing the ciphertext

c:=m+pem+(G)

DECRYPTION Alice decrypts ¢ by computing its normal form over
(G):
c=rg(c) =rg(m)+ralp) =m+0

1.2 Main Attacks

A total break attack on this cryptosystem generally amounts to com-
puting an equivalent Grobner basis G’ for the public key ideal (P) - this
would be an equivalent secret key. The general problem of computing a
Grobner basis for a given ideal is NP-complete (see e.g. [7]), and Alice
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may choose her P and =< from some class of known hard instances, for
example by encoding well-studied problems from logic, to ensure giving
Eve (the attacker) a hard time here.

Now, if Eve does not succeed in the above she could always try to ex-
ploit some possible weakness in Bob’s choice of p € (P), letting her de-
cipher at least some of his messages. The most severe criticism against
Polly Cracker has been its vulnerability to such single break attacks
based on linear algebra, mentioned already in Fellows and Koblitz’s
original paper [1]. With public key P = {p1,...,ps}, Bob’s p will have
the form p = Y7 ; hip; for some ephemeral polynomials h;. The main
idea is then to consider

c= erZhipi (1)
=1

as a linear system of equations, whose unknowns are the coefficients of
the polynomials h;’s and m. By guessing the support of these, the linear
system might be solvable by usual Gaussian elimination, retrieving m.
The countermeasure here is for Alice to choose the setting parameters
so as to ensure infeasible system sizes (there is a security/efficiency-
tradeoff here), and for Bob to choose his h;’s so as to ensure a certain
amount of cancellation in the sum. This calls for quite clever construc-
tions.

1.3 Efficiency Issues

The main problem for implementing Polly Cracker instances stems from
the above mentioned security/efficiency-tradeoff. In particular, the so
called message expansion is an issue here: a message m will be en-
crypted into a ciphertext polynomial ¢ of, most likely, larger support,
so even though supp(m) may be as small as a single constant term,
supp(c) may be very big if parameter sizes are not properly restricted,
implying issues in storage, transfer and decryption. For example, in
[2] Koblitz presents a study-example of a Polly Cracker instance (the
Graph Perfect Code Instance) based on a perfect code problem from
graph theory, and for sufficient security suggests using a polynomial
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ring with 500 indeterminates z;. However, even narrowing it down to
200 one gets ciphertexts of about 60’000 monomials for this instance
(see [8]). All serious attempts at practical, implementable Polly Cracker
instances have to deal with this issue, which tends to make them some-
what technical.

2 Related Work

In [10] (2004), Levy-dit-Vehel and Perret describe how to construct
Polly Cracker instances based on 3-SAT problems from logic, i.e. so
that a total break attack may be p-reduced to some well-studied hard
3-SAT instance, while at the same time providing resistance against the
classical linear algebra attacks. The latter is achieved by the use of
an elaborate generating algorithm for p € (P), together with suggested
parameter sizes resulting in a message expansion of about 1500 terms,
which is at least manageable but still not suitable for practical use.

The efficiency issue is addressed more directly in [11] (2002), where
Ly presents a cleverly constructed, however somewhat technical, mod-
ification of Polly Cracker called Polly Two. This cryptosystem can be
viewed in three different polynomial settings via a ring homomorphism:
domain- goal- or quotient ring, each setting providing security in its own
way and simultaneously taking care of the efficiency/sequrity trade-off.
In the goal-ring setting this cryptosystem reduces to a Polly Cracker
instance with very large parameter sizes, thus handling the linear alge-
bra attacks. Legal users operate in the domain ring where parameter
sizes are quite small, with a message expansion of less than 100 terms.
This would be acceptable for practical use, however setting up con-
crete instances seems to be somewhat difficult (e.g. finding a suitable
homomorphism).

In [12] (2004), T. Rai generalizes Polly Cracker to noncommutative
polynomial rings, inspiration being that this allows ideals for which no
finite Grobner bases exist. The idea here is for Alice to take a secret key
Grobner basis G, finite as usual, but with a public key subset P C G so
that no finite Grobner basis exists for (P). This means that Eve cannot
even theoretically succeed in the usual total break attack. Another
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benefit comes from the use of two-sided ideals, leading to quadratic
(rather than linear) systems of coefficients in the single break attacks.
Unfortunately, finding suitable ideals for concrete instances turns out
to be a challenging task. Also, no experimental data is provided, so it
is unclear how efficient instances of this system would be.

Going further along the generalizing path, Ackermann and Kreuzer
in [9] take the Polly Cracker scheme all the way up to a setting of
modules (generalizing the ideals in Polly Cracker) over general monoid
rings (generalizing the standard polynomial rings). This could be a
promising framework for future cryptosystems (no such instances are
provided), but even in its abstract formulation it is of direct interest
since most well-known public key schemes seem to let themselves be for-
mulated as special cases, e.g. RSA, ElGamal and even recent attempts
at group-based public key schemes.

3 Extending The Private Key in Polly Cracker

Studying the Polly Cracker construction (Cryptosystem 1.1), we make
the following observations:

1. The monomial ordering =< used is seemingly assumed to be a
public domain parameter - at least the advantages of keeping it
private is, to our knowledge, never pointed out. The idea here is
the following:

Alice could choose a Grobner basis G under some or-
dering < so that (G)-normal words with respect to <
are not necessarily (G)-normal with respect to other
orderings.

This would imply that even if Eve managed to find some Grébner
basis G for (P), unless she guesses the correct monomial order-
ing, she cannot expect messages to be preserved in an attempted
decryption, i.e. it might be that
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2. The public setting for Polly Cracker is a polynomial ring over
some finite field F,. It is never motivated why the cardinality of
this field should be public information. In fact, Bob could encrypt
messages perfectly well in Z[X], with Alice taking the ciphertext
(mod p) before proceeding as usual with decryption, if we just
require the coefficients of messages to be bounded so that they
are not destroyed by the (mod p) computation.

While the idea of private monomial ordering works with the usual
Polly Cracker scheme, keeping the field cardinality private requires some
adjustments of the scheme.

3.1 Polly Goes Private - With p

To concretize these ideas, let us first for simplicity of discussion con-
sider the case F, = Z, for some large prime number p. For a set of
polynomials F' C Zpy[X], let (F'), denote the usual ideal they generate
in Z,[X], and let (F')z denote the ideal F' generates when lifted to Z[X],
ie.
(F)z =13 fhy | by € ZIX])
fer

Note that

(F)z (mod p) = (F), @)

Cryptosystem 3.1 (Polly Cracker with Private < and p).

KEY GENERATION Alice chooses some big prime p, a positive in-
teger ¢ < p, a finite Grébner basis G C Z,[X] under some monomial
ordering =<, and a finite subset P C (G)z.

PrivaTe KeY: p, G, X PuBLic KEY: P
MESSAGE SPACE M: G-normal forms under =< in Z,[X] with coef-

ficients bounded by q.
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ENCRYPTION Bob chooses f € (P)z and encrypts a message m €
M into the ciphertext

c:i=m+ f € Z[X]
DECRYPTION Alice decrypts ¢ by first computing
' =c(mod p) =m+ f, € Zp[X]
where fp, := f (mod p) and then
d =ra(d) =rag(m)+ra(fy) =m+0
Decryption follows from (2):
feP)z = [(modp)e (P C(G)

Before proceeding with the case of higher prime-power cardinality,
let us first discuss the effects of this private key alteration.

3.1.1 Security gain

The main idea of keeping p private is that it blows up the complexity
of a total break attack. As before, this attack amounts to finding a
Grobuer basis (under some lucky monomial ordering) for (P),. While
this can be made hard even when p is known, without this knowledge
Eve could at best try searching through primes p’ > ¢, and for each try
finding a Grobner basis for (P),.

Also, forcing users to compute over Z[X], rather than K[X] for
some field K, Eve cannot use scalar inverses in her attacks. Since
Gaussian elimination without using scalar inverses leads to intermediate
coefficient swell, this means that linear algebra attacks grow more costly.

3.1.2 Efficiency possibilities

The decryption procedure now consists of two steps: first a modulo
operation, which is fast, and then the usual reduction, which may be
costly. Alice has a possibility to speed up the decryption procedure
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here by choosing some public key polynomials p; = 0 (mod p), so that
much of the ciphertext is simplified in the first (fast) decryption step.
While tempting for very efficient decryption, Alice should not take every
p; = 0 (mod p), however, since this would make p a common factor of
all public-key coefficients, which could be detected by Eve.

3.1.3 Issues and countermeasures

By limiting message coefficients to ¢ < p, there is a trade-off between
the size of the message space and the additional security provided by
keeping p secret. However, if ¢ and p are large enough, this should not
be a major concern.

A more serious effect is that, since Bob encrypts over Z[X], the
coefficients of the ciphertext may grow big, which can be cumbersome.
To limit this effect he should not choose ephemeral key polynomials
with too big coefficients. The Chinese remainder theorem could also be
used for more efficient transmission:

With a the largest coefficient of a ciphertext polynomial ¢, Bob
multiplies relatively prime numbers n;, of manageable size, so that the
product N :=nj ---n, > «. He then computes

c1=c (modny)
¢ =c (modn,)

and sends the ciphertext tuple

C = {(c1,.s¢r), (N4 ey my) }

Here coefficients of the ¢;’s are bounded by max{ni,..,n,}. Al
ice then uses the Chinese remainder theorem to solve (3), recovering
¢ (mod N) = ¢ with full coefficients, and she may proceed as before.
Note, however, that while coefficient sizes may be controlled by this
method, we have to pay in the number r of ciphertext polynomials.
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3.1.4 Chosen-ciphertext attack

In a private letter, Rai suggests a chosen-ciphertext attack aimed at
finding our secret p: Eve could e.g. enumerate primes ¢; > ¢g and
encrypt fake messages of the form

m=qmi+... +qpgmg

where each m; is a monomial in the message space. If it would happen
that some ¢; = p, the corresponding term would decrypt to zero and
the decryption black box she has temporary access to would return
m — q;m;, revealing p = g;.

Note that such a fake message after decryption would contain some
coefficients ¢; > ¢, which was not allowed in the message space. Hence,
to avoid this attack, the decryption black box should be set to detect
any such fake ciphertexts (decrypting to terms with coefficients larger
than ¢) and return an error message if that happens.

3.2 Polly Goes Private - With p”

Now suppose F, = F,» for some prime p and n > 1, and let « denote a
generating element for this field via some primitive degree-n-polynomial
in Zp[a]. We use a-power notation as default for nonzero field elements.
Let us define a homomorphism from the ring of univariate polynomials
f(s) over Z into Fyn by

@ Z[s] > Fpn; s+
and extend it to a homomorphism from Z[s|[X] into Fyn[X] as:
¢ Z[s|[X] = Fprn [X]; fls)w = o(flw (4)

where w denotes a word with letters from X. This ¢ will be used by
Alice to translate Bob’s messages in Z[s][X] into the ordinary Polly
Cracker setting Fpn[X]. We will need some notation here in order to
recognize corresponding key polynomials in these two settings.

Given f = Y a*wy, in Fyn [ X], let fs denote the polynomial obtained
in Z[s][X] by simply replacing every « by s. Then, corresponding to
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the definitions in the prime-cardinality case, for F' C Fpn[X] let (F)pn
be the usual ideal generated by F' over Fy»[X], i.e.

(F)pn :={>_ far | g5 € Fpn[X]}

fer

and let
(F)zig) = {)_ fshg | hy € Z[s][X]}

fer

be the ideal generated by the corresponding polynomials fs over Z[s|[X].
Since

o(fshy) = o(fs)p(hy) = fo(hy)
we have

feFz = o(f) € (Fpn (5)

Now, Alice may keep p and n secret while letting Bob compute over
Z[s][X]. Using ¢ she may then translate his ciphertext into a standard
Polly Cracker ciphertext in Fp»[X]. By 5, this works if the message
space is restricted properly. The details are as follows:

Cryptosystem 3.2 (Polly Cracker with Private < and p").

KEY GENERATION Alice chooses a prime number p, somen > 1, a
finite Grébner basis G C Fp»[X]| under some monomial ordering =<, a
finite subset P Cr (G)z[, and some r < p" — 1.

PrivATE KEY: Fpn, G, = PuUBLIC KEY: P

MESSAGE SPACE Linear combinations of G-normal words w; €
Fyn [X] with coefficients s* where k < r, i.e.

M = {Z sFiw; | ki <7, ra(w;) = w;}

ENCRYPTION Bob chooses f € (P)zy and encrypts a message
m =Y sFiw; € M into the ciphertext

c:=m+ f € Z[s|[X]
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DECRYPTION Alice decrypts ¢ as

ra(p(e)) = ra(ma + ¢(f)) = ma +0

where mq = Y ¥iw; is the message m only with the symbol s replaced
by a.

Here decryption follows from 5:

J€(P)zi C(G)zisy = @(f) € (G)pn

Note that the message is preserved in two steps: First it is preserved
by ¢ since its coefficients are of form s* for k < ¢™ — 1 (so there is no
modulo-effect in the exponent), and then it is preserved in reduction
over (G, as usual for Polly Cracker, being a normal form.

In this description we have, for clarity, used the different symbols s
and « to distinguish Bob’s computations over Z[s][X] from field com-
putations. Of course we might as well let Bob use the same symbol «
and compute over Z[a][X] - the important thing is that he is not able
to interpret o as the field element in Fpn.

Example 3.1 (Toy Example). For demonstration, we give a very
small example in Fos[z,y]. A translation table for power/polynomial
representation of the field elements in Fys is given by:

o [ ri(a) || oF ri(a)

- 0 o3 a+1

1 1 at o+«
a a a® |l +a+1
a? a? ab a?+1

KEY GENERATION Take the Grobner basis
G = {33 - Oé5,y - 042} € F23[I7y]
and preliminary public key polynomials

pr=a>+ary+1, po=clzy+ay’+ad
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5 5

Over Fys we have p1(a®,a?) = pa(a®,a?) = 0, so
p1,P2 € (G)pn

We multiply these by some polynomials in Z[«|[z, y] to form public key
polynomials p1,p2 € (G)z[q), for example:

p1=p1 - (5a’z + 1) = 5a’z® + 5aP2?y + 2° + azy + 5a’z + 1
p2 = Pa - (4a2y —a) = dotzy? + 403y — odzy — oy + Py — ot
For message restriction we choose r = 6 < 23 — 1.

5

PRIVATE KEY: Fos, G={x—0a’ y—a?}

PusLic KEY: P ={p1, p2 } from above

MESSAGE SPACE G-normal forms in this case are just constants:

M = {o" | k <6}

ENCRYPTION Suppose Bob wants to send us the message m = .

He chooses ephemeral polynomials in Z[c][x, y]:
hi =3y —a, hy=azy+a?
and computes the ciphertext in Z[a][z, y]:
c=m+p1h1 + p2he =
4022y 4 4’yte — oBaty? — oPay® + (1507 + 3)2%y+
(150® + 408 + 40° + 30)xy® + 4’y — (50 + a)z?—
(5% + a° + ot + o®)zy — My + (1907 + 3)y — (508 + «)

Note that Bob’s choice of the last term a? in ho gives cancellation of

the message m = o in c.
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DECRrRYPTION Upon receiving ¢ as above, we first compute in Fos
(using the translation table):

olc) =040+ 2%y + o?ay® + (1 + 1)y +
(@ +0+0+a)zy* + 0+ (a + a)z’+

(@®+a® +a* + aP)ry +aty? + (1 + Dy + (e + )
= a3x2y2 + ozzar:y3 + a2y + a4y2

Then, with G = {z — a®,y — a®} we have:

ra(p(e) = ole)(@®,a®) =’ +af +1+a=a=m

4 Conclusion

An extension of the private key in Polly Cracker has been suggested.
In particular, an adjustment of the scheme to private field cardinality
could be used to increase complexity of standard attacks (total- as well
as single break), while at the same time providing means to control ef-
ficiency of decryption by introducing a fast preliminary decryption step
before the usual reduction. This scheme adjustment is very simple in
Polly Cracker instances over Z,[X]. The case of higher prime power
coefficient fields requires a bit more theory, but in the end does not
increase the complexity of the system. An issue that arises is the pos-
sible occurrence of large integer coefficients in the ciphertext. Modular
techniques could be used to handle this effect.

It would remain to test these ideas on realistic Polly Cracker in-
stances.
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On the Cancellation Rule in the
Homogenization

Victor Ufnarovski

Abstract

We consider the possible ways of the homogenization of non-
graded non-commutative algebra and show that it should be com-
bined with the cancellation rule to get the mathematically ade-
quate correspondence between graded and non-graded algebras.

1 Introduction

The homogenization is a standard instrument in the commutative alge-
bra. From the computational point of view it is useful because homo-
geneous algorithms are often more efficient, allowing to save memory
(for example cleaning a lot when the current degree is done). In the
non-commutative case the situation is much less trivial, because the
connection between non-graded algebra and graded algebra obtained
by the homogenization is not so obvious as in the commutative case.
First of all there are several ways to homogenize. If ¢ is a homogenizing
variable and one wants to homogenize a non-commutative polynomial
f of the degree k the obvious way is to multiply all the monomials in f
that have the degree less than k by the corresponding power of ¢. But
how to do it? From the left? From the right? In the middle?

The answer depends on our aim. Suppose we want to calculate the
Grobner basis G of given non-graded algebra and our goal is to obtain
it from the Grobner basis G* of the corresponding graded algebra which
we get using the homogenization of the relations. It would be nice to
get it using the dehomogenization procedure as in the commutative

(©2008 by V. Ufnarovski
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case, i.e. simply putting ¢t = 1. Is it possible? Do we really get the
Grobner basis of our non-graded algebra?

An easy example 22 = x shows that we should be careful about the
choice of the ordering: if t >  then tz > 22 and the leading word tx
in to — 22 will be not the leading word after dehomogenization. But
suppose that we have solved this problem (and it is not so difficult).
Suppose even more that we know that after the dehomogenization we
get the correct Grobner basis. There are still some problems. The
first one reflects the fact that 1 commutes with all other variables,
but t does not. From the computational point of view it means that
the calculating of Grobner basis G* may be much more complicated
than in the corresponding non-graded algebra. A couple of tests shows
that this is the case: almost any non-trivial example creates a huge
Grobner basis G*, almost always we get infinite Grobner basis even
in the case where the non-graded Grobner basis is finite. One of the
explanation of this phenomena is that though we get Grobner basis
G after dehomogenization, normally it is not minimal, because the
reduction works differently in graded and non-graded case. As example,
suppose that the leading terms of Grobner basis in our graded algebra
look as txy"t for all k > 0. It is obvious that we get a minimal Grébner
basis G*. But after dehomogenization we get the set of leading terms
zy* of Grobner basis G, which is far from being minimal. The term
xy alone should be the leading term of the minimal Grébner basis, but
how to avoid the unnecessary calculations of the infinite set in G*?

One more or less evident attempt to solve this problem is to intro-
duce extra commuting relations: tx = xt for any variable x and demand
tx > xt. Then all other words in the Grobner basis of our graded alge-
bra will have the form ft*, where the word f does not contain t. Words
in the example above should be replaced by zy*t? and we can do the
reduction already on the level G*, so zyt? be the only leading word
term remaining in the minimal Grobner basis and we achieved our goal
in this case. Can we in general hope that the minimal Grébner basis be
still minimal Grobner basis after dehomogenization? Much more often,
but it is still not the case! To see the reason, consider the following
example.
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Example 1 The algebra A = (z,y|z? — 1,2y* — 1) has the set G =
{y?> — x,2% — 1} as a Grébner basis if y > x. If we homogenize the
relations using the commuting homogenizing variable t > y > x we get
the graded algebra

(t,z,ylax? — 2, xy® — 3, te — xt, ty — yt).

Its Grobner basis is infinite. Even it contains such elements as y*t —
xt3, 22 — t2, which should be sufficient to obtain G, it contains also
infinitely many other elements, for example, of form

a2 %k =1,2,...

The reason for the trouble is the presence of ¢ in the leading word y%t.
Because of it the leading monomials containing 3> cannot be reduced
(as they are in G).

The remedy for this trouble is far from the being trivial and the
main aim of this article is to find it. Shortly the idea is that it is
not sufficient to homogenize the relations. We should work in another
factor-algebra, where leading terms of the corresponding Groébner basis
do not contain t (commutativity relations tz = xt are the only excep-
tions). We describe this algebra below. Shortly the rule is as follows:
during the Grobner basis calculations cancel t, if it appears in all the
terms. The resulting reduced Grobner basis will be minimal after the
dehomogenization. Let us discuss all the details more carefully (but
more formally).

2 Homogenization and dehomogenization

Let K(X) be a free algebra over the field K and ¢ be an additional
(homogenizing) variable. For any homogenous element u € K(X) of
the degree k and any m > k we define u*(™) € K(X,t) as ut™ *. If u €
K(X) is an arbitrary element, written as the sum of its homogeneous
components u = ¥ u;, and still having degree k < m we define v*(™ as
u=>y. u:(m) and v* as w*®) . In other words u* = 3 u;t" %, if deg u; = 1.
So, u* = u if and only if u is homogeneous.
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To dehomogenize some element v € K (X, t) we simply replace all
occurrences of ¢ by 1. In other words, if v = v(X,t) we define v, =
v(X,1).

For example,

(22 +y)* = 22 + yt; (2% + y)*®) = 22t 4 yt?;

(2% 4+ yt)s = 2% + y; (tx — xt), = 0.
The following statement is trivial, but useful.

Lemma 1 a) The map v — v, is a homomorphism from K(X,t) to
K(X).
b) (u*)s =u for anyu € K(X). m

Note that the map v — u* is not a homomorphism and in general
not always (v.)* = v. The following definition helps to choose elements
that almost have this property.

Definition 1 A word g = ft' is canonical, if | > 0 and f does not con-
tain variable t. A canonical element of K(X,t) is a linear combination
of some canonical words of the same length.

Note that canonical elements are by the definition homogeneous. The
following lemma shows their importance.

Lemma 2 a) Every homogeneous element in K(X,t) can be uniquely
written as a sum of the canonical element and the element belonging to
the ideal, generated by the set S = {tx — zt|z € X}.

b) If v is a canonical element then v = (v.)*t?, where d is the
minimal power of t dividing some word in v. In particular, v = (v.)* if
and only if v cannot be written as wt.

Proof. a) is evident and is a trivial application of the Grobner bases
theory.
b) is sufficient to check for a canonical word: if g = ft* and |g| = k
then
g = f7 f*(m) — ftmf(kfi) — gtmfk
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for any m > k — . So, if v = };aj9; = X jfjt is a canonical
element of the degree k, then v, =3 ; a; f; has degree k — d, and

(ve)* = Z ajgjt(k*d)*k = ot74.
J

3 Homogenized ideal

Let A = K(X)/I, where I is some ideal which will be fixed for the
rest of this article. In general I (and A) are not graded and our idea is
to study A with the help of graded algebra B = K(X,t)/I*, where I'*
contains all homogenized elements of I and (to be able to work with the
canonical elements only) all the commutators tx —xt. More formally, I*
is an ideal in K (X,t), generated by all homogenized elements u*,u € I
and the set S = {tx — zt|z € X}. We want to prove some elementary
properties of I*.

Lemma 3 a) If u € I is homogeneous, then u € I*.
b) If v € I* then v, € I.
c) If ve K(X,t) is homogeneous, then v € I* < v, € 1.
d) If vt € I* then v € I*.

Proof. a) u = u* and belongs to I*.
b) Consider a map ¢ which is the composition

K(X,t) = K(X) — A= K(X)/I,

where the first arrow corresponds to the homomorphism v — v, and
the second is the natural homomorphism. Then v, € I < v € ker ¢.
Because S C ker ¢ and for every u € I, according to Lemma 1, u* €
ker ¢, we have that I* C ker ¢, which proves b).

¢) The implication v € I* = v, € I follows from b). On the other
hand, according to Lemma 2, v = w+s, where w is a canonical element
and s belongs to the ideal, generated by S. Now v, = wx + 4 = ws 50
vy € I & wy € I and, according to Lemma 2, v = w+s = (w*)*td+s IS
I*ifv, €1.

d) follows from c) because I* is a homogeneous ideal. m
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4 Eliminating ordering

Suppose that > is an admissible ordering on free monoid (X) such that
|f] > |g| = f > g, where | f| is the length of a word f. We will extend it
to the eliminating ordering on free monoid (X, ), namely for any two
words f,g € (X,t) we put

[f1>lg]
or

f>g9% |f|:|9’a Jx > g«
or

|f‘:|g’a f*:g*a f>le(lj.ga

where >, is a pure lexicographical ordering, extending > such that
the letter ¢ is larger than any letter from X. Note that t < z, but
tx > at for any x € X. This ordering is also admissible and has some
special properties that we want to use.

Lemma 4 Let v € K(X,t) be a canonical element, g be its leading
word. Then

a) If deg, g = k then v = wt®, for some canonical element w.

b) Leading term of vy is gs.

c) If u e K(X) then the leading word of w in K(X) is the same as
leading word of u* in K(X,t).

Proof. Recall that v is homogeneous.

a) If h is another word in v then deg;h > deg, g, otherwise |h.| >
|g«]. So, h = Wt with [ > k and v = wt*.

b) In the same notations, if I > k then |g.| > |h/| = |h.|. Otherwise
l=Fkand g > h< g.> h, (we can cancel tk).

¢) The leading term of u* does not contain t according to a). Be-
cause it depends only on the words of highest length in u we can use
b). m
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5 Normal words and Grobner basis

From now we fix the eliminating ordering. We want to study the rela-
tion between the Grobner basis for I and Grébner basis for I*. Let us
recall that the subset G of I is its Grobner basis if for any u € I there
exists an element g € G such that its leading word (or leading mono-
mial in another terminology) Im(g) is a subword of the leading word
Im(u). Words that are not divisible by any Im(g),g € G (or equivalent
by any Im(u),u € I) are called normal and if we denote the set of
the normal words by N then K(X) = KN @ I (direct sum of vector
spaces), so N can serve as a basis for factor-algebra A = K(X)/I (see
e.g. [2] for the details). Suppose that G is a minimal Grébner basis for
I. Our aim is to describe a minimal Grébner basis G* for I* and the
corresponding set of normal words N* in K (X, t). Note that N* is not
the same set as {n*|n € N}, which is the same as N.

Theorem 1 a) A word f € (X,t) is normal relative I* (i.e f € N*)
if and only if it is canonical and f, € N.

b) If G is a minimal Grébner basis for I then G* = SU{g*|g € G}
is a Grobner basis for I*. It is minimal, if G does not contain elements
of degree 1 or constants.

c) If G = {1} then {1} is a minimal Grébner basis for I* too.

d) If Y C X is the set of leading monomials in G that have degree
1, then to obtain a minimal Grébner basis for I* from that one in b)
we need only to take away all the commutators ty — yt,y € Y.

Proof. a) Because S is a subset of I* a normal word should be
canonical. Let f be a canonical word, f = ht*, f, = h.

If f is not normal then it is a leading word of some homogeneous
v € I* (because I* is homogeneous). Then by Lemma 3 v, € I and
according to Lemma 4 h is its leading term, so f, = h is not normal.

On the other hand if f, = h is not normal, then h is the leading
word of some u € I. According to Lemma 4 u* € I* has h as the leading
term, so f is the leading term of w*t* € I*. This conclusion finishes the
proof that f € N* if and only if f, € N.
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b) Because ¢g* € I* for every g € G the set G* is a subset of I* and
it remains to proof that every leading word f of some u € I* is divisible
by some leading term of G*. Because f is not normal it is evident for
non-canonical words: tz = Im(tz — zt) is a subword for some x € X.
If f = ht* is canonical then, according to a), h ¢ N and is divisible
by the leading word of some g € G. But g* € G* has the same leading
word by Lemma 4 and word is a subword of f too.

If G does not contain any element of degree less then two then no
leading term of G* can be a subword of the leading term of some s € S.
Because GG is minimal, G* should be minimal too.

¢) is evident and for d) we need only to note that ty—yt can be writ-
ten in the factor-algebra as linear combination of other commutators
and we do not need it. m

6 Rabbit Strategy in the Calculating of
Grobner basis

Now, when we get the good definition of the homogenization ideal
the question is how to get Grobner basis for the ideal I'* practically,
starting from the generating set R for the ideal I7 We know, that
we need to homogenize the elements in R, we know, that we need to
add the commuting relations xt — tx from S, but it is not sufficient to
get all the canonical elements in I*, as Example 1 shows. Fortunately
we need only to slightly modify the main algorithm for Grobner basis
calculations to get the desired result.

Definition 2 The cancellation rule: if u = vt* is a canonical element
and k > 0 is as maximal as possible then replace v by v. Formally:
replace u by (uy)*.

Theorem 2 Let R C K(X) be the generating set of the ideal I. Con-
sider the eliminating ordering (as above) and the following algorithm.
Homogenize R, add S = {tz —xt|z € X} and use the standard Grébner
basis calculation algorithm (Mora’s algorithm) with the following modi-
fication: every time when we get a new canonical element u that should
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be added to the Grobner basis add instead the element, obtained by the
cancellation rule.

The resulting set G* is the Grébner basis for the ideal I*. After
dehomogenization (setting t = 1) we get the Grobner basis G for the
ideal I. Moreover, G* is minimal if and only if G is minimal. In
particular if I has a finite Grobner basis we get it after finitely many
steps.

Proof. Consider the process of calculating the Grobner basis for I and
compare it with the modified algorithm creating G*. By the construc-
tion and according to Lemma 4 all leading monomials from G* (except
those that correspond to S) do not contain ¢. From this follows that
those two processes deal with the same leading monomials. The only
possible difference could be in the reduction, but the cancellation rule,
commutativity rules for ¢ and ordering are specially designed to take
care about this problem: the reduction process looks similar too (see
example below). So, for every g € G we get g* added to the Grébner
basis. According to the previous theorem we get Grobner basis for I*
(and no other elements, because we are always inside I*). Thus G is
obtained from G* using the dehomogenization, which proves all the
statements in the theorem. m

Let us check how this algorithm works in the Example 1. As above
we suppose that y > x > t, but work in the eliminating ordering. We
start from the same set:

tr —xt, ty — yt,a:2 — t2, $y2 — 3.
Rewriting 22y in two different ways we get the element
z(zy? —t3) — (2? — )% = 2% — 2t® — 2?1 — 213 = w.

The main difference now is that we should apply the cancellation rule
and add the cancelled element v = y? — zt to our Grobner basis. Now
we can throw away the element zy? — 3 (it is reduced to zero using v)
and we are done: no more new elements appear. The dehomogenization
gets the desired result.
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The algorithm described in this theorem was used in the Computer
Algebra package Bergman (see [3]). Initially Bergman was elaborated
for the graded algebras only. This restriction makes it more efficient.
To be able to use Bergman in the non-graded situations we introduced
so called Rabbit strategy, close to the strategy, described in the last
theorem. More exactly, dealing with non-graded algebras, Bergman
homogenize them and uses the cancellation rule during the calculations.
This means that the calculations cannot be done degree by degree as
for graded case, but sometimes (when we used the cancellation rule)
we need to go back to the lower degrees. This jumping between the
degrees explains the name of the strategy and in fact is organized using
three parameters: maximum degree, starting degree and step s. We
do all the calculations degree after degree until the maximum degree.
But when we pass the starting degree we are ready to jump. We pass
s degrees and, if we have found that the cancellation rule was used,
we jump back to the corresponding degree and pass next s degrees
and so on until the maximum degree will be achieved. In the case we
get Grobner basis completely the dehomogenized set G is the minimal
Grdébner basis for our non-graded algebra. If not, the user is informed
that obtained set G may be incomplete. The important property of
the Rabbit strategy is that if we have a finite Grébner basis in our
non-graded algebra than using sufficiently large maximum degree we
will obtain this Grobner basis and the user will be informed about this.

7 n-chains and Anick resolution

As we have seen above the ideal I* is the correct way to work with the
homogenization. We want to underline this fact even more by showing
(without complete proofs) that in fact we can use I* and G* to work
with the homological properties. For simplicity we restrict ourselves by
the case when Grobner basis G has no elements of the degree less then
two, so both G and G* are minimal. We also suppose that the elements
in I have no constant terms, so K be a trivial module both for graded
and non-graded algebra. We want to compare Anick resolutions for
them.
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Let us recall that the sets C), of n-chains are defined recursively.
First of all, C_1 = 1,Cy = {X}, where X is our alphabet and for every
x € X its tail is x itself.

The set Cj11 consists of those words fr with f € C,,,1 #r € N
which have the following properties:

o If f = gs, where s is the tail of f then sr & N.
e If r = 7'z, where z € X then sr’ € N.

The normal word r is uniquely determined by the word fr and is its
tail.

Recall that the set C is exactly the set of the leading words of any
minimal Grobner basis (and depends on ideal I and ordering only).
Now we want to describe the set of n-chains for the ideal I*.

Theorem 3 a) The set of n-chains for the ideal I* is the union of two
different sets forn > 0: C = Cp UtCy_1.

b) Every element of C,, has the same tail as for ideal I.

c) If f =tg € tCp—1 then for n > 0 it has the same tail as g and
for n =0 the tail is the word t itself.

Proof. Easy induction. Base for n = 0 is trivial, for n = 1 follows
from the Theorem 1. In general, if fr is (n+1)-chain for I* with n > 1,
then f = gs is n-chain for I* and 7, s are normal (for I*), but sr is not.
If r =r'y,y € X Ut, then s’ is normal. According to Theorem 1 a) we
have y # t (otherwise sr and sr’ are normal simultaneously). Because
r is normal r’ does not contain ¢ neither. At last, by the induction, the
tail s does not contain ¢. So we decide the question of normality exactly
as in I. If g € C,, we can conclude that f € C,41, but if g € tC,, say
g =th,h € C,_1, then th and h have the same tale and the fact that
ths is (n + 1)-chain is equivalent to the fact that hs is n-chain for 7. m

Let us recall that n-chains are used for the constructing of Anick

resolution (see [1, 2]), namely for the trivial module K over algebra
A= K(X)/I. It looks as

o Cp®A—=Cho1®A---—-C1®A—- K
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The differentials d,, are recursively defined for any n-chain f, which
we identify with f ® 1. The last theorem allow us to see how in fact
Anick resolution is lifted from the non-graded algebra A to the graded
algebra B = K (X,t)/I*. We skip the proof of the technical details of
this process, and only formulate its most important properties.

Theorem 4 If d), are differentials in the Anick resolution for trivial
B—module K then

WIf f € C then di(f) = (du(f))"

bIf f =tg € tC,—1 then dj(tf) =td}_1(g9) + (—1)"gt.

c)v e Ker d) < v, € Ker d,, for any canonical element v.

This and previous theorem gives also some hint how to extract
the information about the homology of A from the homology of B.
We see for example that in the monomial case the Betti numbers are
nothing else than the differences of the corresponding Betti numbers
for B, because in the monomial case the Betti numbers are equal to the
number of the corresponding n-chains. Of course, we do not need to
homogenize monomial algebras, but the last theorem shows that we can
calculate the Betti numbers in the similar way in general case. It does
not work if we only homogenize the relations. This again shows that the
homogenization should be combined with the cancellation rule to get
the correct mathematical connection between non-graded and graded
algebras.

This article takes its origin from the discussion of the properties of
Anick resolution with Ed Green and the author is very grateful to him
for all his ideas that have helped to write this article.
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Abstract

The paper proposes a calculator model of the graphical shell
to be used for computer algebra systems. The calculator shell
model is described. Then the techniques of semi-automated con-
struction of such shell are discussed. The motivation of the ap-
proach based on the domain model is given. We describe also two
possible component assembly methods, static and dynamic, and
our experience with them. We motivate the selection of dynamic
component assembly.

1 Introduction

We suppose the existence of programs executing symbolic computa-
tions in computer algebra (engines) whose developers need to provide
modern graphical shell with their systems. Computer algebra is widely
used in many areas, including pure and applied mathematics, theo-
retical physics, chemistry, engineering, technology, etc. Multitude of
solved problems makes investigators to create specialized engines in
the cases when use of general purpose systens is inefficient, or the nec-
essary functionality is not implemented even in commercial systems.
As a rule, creators of such systems have not enough time, resources,
and qualification to develop shells for them. It isn’t unusual that rich
mathematical ideas implemented in an engine are enveloped in poorly
designed interface. Our own experience with the Bergman computer
algebra system (CAS) and review of other systems illustrate this [1].

(©2008 by A.Colesnicov, S.Cojocaru, L.Malahova
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The absence of the user-friendly standard shells makes such systems
less popular because of requiring special knowledge and skills, e.g., in
programming, to use them.

Another problem of computer algebra engines is multitude of their
data formats and the implied difficulty in communication between dif-
ferent engines.

Investigations show that CAS interface developer provides some or
all of the following features:

e 2-D presentation of mathematical expressions,

e Editing of mathematical expressions that includes sub-expression
manipulation,

e Windows that model sheets of paper and combine texts, formulas,
and graphics,

e Processing and presentation of long expressions,

e Simultaneous use of several CAS, which implies the necessity to
solve problems of data conversion, configuration management,
and communication protocols,

e Interface extensibility providing additions of new menus, new
fragments of on-line documentation, etc.,

e Guiding of the user during the whole period of his/her problem
solving,

e The system should be self-ex‘planatory; its operational mode
should be understandable directly from the experience of inter-
action with the system,

e Control over problem formulation correctness and over informa-
tion necessary to solve it.

The primary scope of a shell is creation of a comfortable environ-
ment for a mathematician or another specialist that uses mathematical
apparatus. It would be preferable for these users to input data and to
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obtain mathematical results in their natural 2-dimensional form. The
linear form of input can be used also as the linear input is faster but it
imposes additional conventions to enter powers, indices, fractions, etc.,
or uses additional characters. It is necessary also to provide possibili-
ties to edit expressions, integrate them with a usual text, and obtain
results in a form suitable for publication of an article (e.g., IXTEX) or
in Internet (e.g., MathML).

The syntactic check of the entered mathematical expressions and
the spelling check of accompanying text would be also desired features.

We see that functions of the graphical shell are almost independent
of the engine.

We propose therefore a universal shell implementing the calculator
model and constructed from the ready-made components [2]. Moreover,
we successfully used several engines at once with such shell. This solves
many problems of incompatibility of data formats in different CASs,
and solves partially the problem of their interconnection.

Sec. 2 defines and discusses the calculator model of the graphical
shell. We describe there the details of its work and its interaction with
the CAS engines.

There are two approaches to the automated construction of such
shells. Both approaches are based on the component programming
(CP) and differ mainly in the technique of component assembly that
can be static or dynamic.

At the first approach (static component assembly), we successfully
combined the CP and the aspect-oriented programming (AOP). This
technique is described in Sec. 3.

It is possible to construct the shell using dynamic component assem-
bly. This second technique was developed over the Eclipse platform.
The details are described in Sec. 4.

In the Conclusion (Sec. 5) we compare both approaches, describe
their advantages and shortcomings, and motivate our decision to use
the second approach.
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2 The calculator model of the user interface

A usual numerical calculator works step-by-step: you enter numbers,
and select one of possible operations. The calculator executes the op-
eration and shows the result that can be used as an operand for the
next operation.

The calculator model of the CAS shell behaves quite similarly. You
enter a mathematical object (e.g., an ideal that is presented as a list of
polynomials with coefficients from some field), select a possible action
(e.g., calculation of the Grobner basis of the corresponding algebra)
and start a CAS engine that executes the operation. The result is a
new object (in our example, a new list of polynomials), and it can be
used for further calculations (e.g., for reduction of polynomials).

The shell implements the input and output of mathematical object
in the form suitable for the user; the engines implement all calculations.

Fig. 1 shows one of variants of our shell that supports two CASs:
Bergman! and Singular?.

Figure 1. A graphical shell that supports Bergman and Singular

Both these engines support only the console interface.  For
Bergman, it is the underlying Lisp console. For Singular, it is a console
with the Singular programming language. Our shell permits to enter
mathematical objects, converts them to the Singular or Bergman input
files, and runs the corresponding engine to execute calculations.

http://www.math.su.se/bergman/
http:/ /www.singular.uni-kl.de/
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The CAS shell design can have two different starting points: the
set of engine operations, or the set of processed mathematical objects.
In [5, Sec. 3.3] these approaches are called correspondingly “noun-verb”
and “verb-noun” (or “object-action” and “action-object”). V. Lépez-
Jaquero and F. Montero [4] refer to these variants as to “domain model”
and “task model”.

There is no common opinion on applicability of these two ap-
proaches. J. Raskin [5] shows several advantages of the first approach
over the second one. V. Lépez-Jaquero and F. Montero [4] motivate
the advantage of the second approach, but their argumentation applies
mainly to the case when the objects are containing in the databases.
They note also that “the derivation of the user interface out of a task
model adds an additional view to the design process: the user”.

In the beginning we built shells for the Bergman CAS originating
them from the engine operations (“the task model”). This seemed
naturally for Bergman that has only a small set of objects, but a big and
growing set of actions. Later we planned to use several CAS engines
with the same shell. We wanted to support the usage of an engine
that would not be even taken into account at the shell programming,
i.e., to make the shell as independent of the engines as possible. The
corresponding investigation permitted us to construct the calculator
model of the shell. In this case, the shell actions are restricted by
the object input, the result output, the object conversions between
different representations, the selection of the engine and its operation,
and several common tasks like the session support. We see that most
tasks are defined by objects and that user tasks are quite restricted. In
the meantime [1] the old “verb-noun” model began to hinder the shell
development.

Therefore we decided to originate the CAS shell from the mathe-
matical objects we want to proceed (“the domain model”). This ap-
proach permitted us to create a shell that is really independent of the
used engines, and to provide researchers-mathematicians with a unified
shell for several CASs.

Within the domain model, the CAS shell development begins with
the listing of used mathematical objects. For each object, we provide
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a procedure or procedures of its input that produces its internal XML
representation. The entered object is dispalyed on a tab. The current
set of tabs with objects, and the current parameter settings can be
stored as a session and restored later.

The object is displayed on a tab in one of its external representa-
tions (e.g., ITEX). A set of convertors from internal XML represen-
tation to different external representations exists for each object. The
user selects a representation of an object through a menu. There is
also a possibility to store an object in any of its representations in a
file.

Except of input procedures and convertors to external represen-
tations, each object is associated with actions that can be performed
over it by the existing engines. As the user opens object’s tab, the
associated actions became visible in a menu.

Some actions use more than one object. These additional objects
should be entered and visible on other tabs. If there are several combi-
nations of objects for one or several actions, the corresponding request
is made to select one of these variants.

So the user selects object(s) and the action. The shell converts
objects from their internal XML representation to the engine input
files and starts the necessary engine.

After the engine run termination the calculated result is kept usu-
ally in a file. After the calculation is finished a shell module converts
the result in its internal XML representation and shows it on a new tab.
Being a mathematical object, this result can be converted in different
external (visual) representations, saved in a file, and used for further
calculations.

We see that a calculator CAS shell model supposes the object-inde-
pendent part (session support, tab manipulations, dynamic menus sup-
port, etc.) and the object-dependent part. The object-dependent part
contains input modules and convertors. Most convertors are engine-
independent but the convertors used to generate input files before the
engine start are engine-dependent. There are also engine-dependent
convertors that scan output files after the engine finishes its calcula-
tions and produce internal XML representation of resulting objects.
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Action menus are both object- and engine-dependent. To change these
menus dynamically, the shell uses XML descriptions that exist for each
type of object, each engine, and each allowed combination of those.

3 Static shell assembly

Our technique of the static shell assembly is described in details in [3].
We combined in it the component and aspect-oriented programming.

Having a set of ready-made modules described above we need three
operations to assembly a shell:

1. to generate the glue code (the additional code that is necessary
to assemble components together);

2. to generate code that tunes adaptable components;
3. to generate variable menus.

Aspect oriented programming (AOP) is a technique to add a new
behavior to an existing program without changing its sources and even
binaries. It is mostly used to handle cross-cutting concerns like logging
or debugging. E.g., we need to add almost the same code in regularly
selected places of the program to trace it. AOP concentrates templates
of additional code and insertion points in aspects. Aspects are compiled
separately, and the code weaving is performed during the execution of
the program.

To apply AOP for the semi-automated assembly of a shell from
components, we noted that the glue code is regular and repeating, and
that it can be generated from a formal description of the shell. With
AOP, we use an unchanged shell template and unchanged components,
and generate only aspects containing the glue code or the code to tune
adaptable modules. The menu is also generated as an aspect. We have
checked this idea by implementing it.

A shell consists of the constant part and the variable part. The
constant part contains, in particular, the session management: storing
data for each session, their modification, etc. We also found useful a

152



Approaches to automated construction of graphical shells for ...

notion of environment, or partially defined session [1]. Each session can
be based on an environment where some data are already defined. The
environment management is implemented like the session management.

Other features of the constant part of a shell are possibilities to
create the list of engines, to start external programs, to check collected
data, to show help, etc.

Modules that enter the data and convertors form the variable part
of a shell.

During the assembly of a shell its constant part is taken as the base.
The developer prepares list of objects and defines how they have to be
entered in the shell (by selection from several variants, by marking,
by text editing, by 2D formula input, by entering parameters of a
mathematical object using a wizard, etc.) Each possible method of
the data input is implemented as a customizable component. The
necessary modules pass the customization and are glued together with
the constant part of the shell. Menus are also generated and included
as an aspect.

The whole system consists therefore of a pre-implemented constant
part, a set of data input components and convertors, and a shell gen-
erator that adapts and assembles all parts together producing CAS
shells.

4 Dynamic shell assembly

The shell with dynamic module assembly is based on the open source
Eclipse? platform.

An Eclipse-based application consists of the Eclipse platform and
a set of plugins. Each plugin is a module that contains in itself its
XML description as a resource. The system tunes itself (e.g., adds new
menu items) using the XML description of the new module. To add a
module, it is enough to copy its JAR archive in the plugin directory
and to restart.

The visual part of the Eclipse platform is the Eclipse workbench.

3http:/ /www.eclipse.org/
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The workbench provides a window that contains tabbed views (e.g.,
lists of settings) and editors. Such window is called in Eclipse the
perspective (corresponds to session as we defined before). Editors are
plugins that edit texts; a usual text editor is already provided with the
Eclipse platform. The workbench supports also projects; for a project,
we can store and restore its current perspective.

The construction and work of the CAS shell based on Eclipse re-
mains the same as described before.

The Eclipse platform will form the constant part of the shell.

Modules to input mathematical object should be implemented as
plugins-editors. Counvertors should be also implemented as plugins.
Eclipse supports the dynamic change of menus at the activation of
each editor.

A separate plugins are necessary to conduct engines. It includes
engine list support, engine start, consoles, etc., and, especially, the
support of correspondence between the engine functions and mathe-
matical objects. This last feature is new for Eclipse.

5 Conclusions

The first approach permits to implement a platform-independent sys-
tem. We work in Java with Swing graphics. The deployed shell consists
of a single executable JAR that contains the compiled classes, resources,
and additional libraries. This archive can be executed on any platform
with the suitable version of the Java VM. At the second approach we
use SWT graphic library from Eclipse that is platform dependent. We
are in this case to deploy different archives for different platforms, or
to require the user to install Eclipse or, at least, its libraries.

However the Swing graphics was criticized for its visual appearance
that does not correspond the platform standards. Eclipse uses the na-
tive graphics on each platform that can slightly accelerate the graphical
operations and guarantees the native appearance.

At the first approach we implement session support in the exact
necessary volume. With Eclipse, we are to use the Eclipse framework
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that is more general and may seem more complicated: some base fea-
tures of Eclipse are superfluous for us.

Any shell expansion (adding a new mathematical object, new engine
or new action of the existing engine, etc.) implies recompilation to
add new features at the static assembly. Eclipse adds new plugins
dynamically.

The factors listed till now balance one another; none of them is
decisive. The main advantage of Eclipse is its richness, especially in
the current Eclipse 3 “Europa”. This version of Eclipse contains more
than 900 ready-made plugins. A big part of common GUI functions is
already implemented or can be adapted from existing plugins. After the
appearance of Eclipse 3 we decided to use this approach in our project.
However the general system structure and functions are common for
both approaches.
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Congratulations

The Society “Academician Constantin Sibirschi”, which activates
in Republic of Moldova under the chairmanship of the USA business
man, Dr. Val Sibirschi, organizes annually the contest of most valuable
works in the field of mathematics. It was the corresponding member of
the Academy of Sciences of Moldova, Professor C.Gaindric who became
the 2007 laureate. He was awarded by the Premium of “Academician
Constantin Sibirschi” for the series of works “Mathematical models and
information systems of decisions underlying in information society”.

The series consists from 42 works (2 monographs, 3 chapters in
collective monographs, 13 articles in journals, 21 articles in collections,
the 10 of which are abroad, 4 overviews and brochures) summarizing
the following results:

e The solutions of the problems which can be formulated as general-
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ization of the problem of m-traveling salesmen are proposed. The
algorithms of solution on the base of the scheme branch and bound
and tabu search are proposed. An information heuristic system
for calculation of transportation routes for different goods within
radius of Moscow and Baku was elaborated and experimentally
applied in Moldova for spare parts transportation in association
Moldselhoztechnica.

A structure of Decision Support Systems (DSS) was proposed,
which permits a unified approach irrespective of the problem do-
main and its nature, assures their functionality and convenience
in decision making process.

Under Prof. C.Gaindric leadership and at his direct participation
there were elaborated:

- DSS for dispatcher of vehicle transport enterprise;

- DSS for activity plan formation for transport enterprise;

- DSS for financing and monitoring of the projects of a scien-
tific and technical program.
In these DSS the methods and algorithms for solution of the
problems described in the works of the series are used.

- At present the system SonaRes for ultrasonographic diag-
nostics is being elaborated.

In the problems of Information Society (IS) creation the analysis

of the process of IS development was made, corresponding indices were
revealed and analyzed, concentrating henceforth on the problem of dig-
ital divide overcoming. The solutions were proposed which can serve as
a draft for a future DSS, which will monitor indices of IS development,
highlight strong and weak aspects, offer concrete solutions for creation
of public access points in some community, starting from existing un-
biassed situation. In this context:

The researches were made on the role which science, electronic cul-

ture, electronic education, electronic governance play in information
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society; system of indices of preparation for integration into informa-
tion society (e-readiness) and those which monitor the process of digital
divide overcoming (digital divide) were investigated also.

The problem of population providing for the nondiscriminatory ac-
cess to information was examined. Its solution was argued by public
Internet access points formation at schools.

Editorial board of the journal ,,Computer Science Journal of
Moldova” congratulates heartily its colleague, Prof. Constantin Gain-
dric, on getting this high award.

Editorial board of CSJMol
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