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An Example of TI3-complete
Infinitary Rational Relation

Olivier Finkel

Abstract

We give in this paper an example of infinitary rational relation,
accepted by a 2-tape Biichi automaton, which is II3-complete in
the Borel hierarchy. Moreover the example of infinitary rational
relation given in this paper has a very simple structure and can
be easily described by its sections.
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1 Introduction

Acceptance of infinite words by finite automata was firstly considered
in the sixties by Buchi in order to study decidability of the monadic
second order theory of one successor over the integers [5]. Then the
so called w-regular languages have been intensively studied and many
applications have been found, see [33, 30, 25] for many results and
references.

Since then many extensions of w-regular languages have been inves-
tigated as the classes of w-languages accepted by pushdown automata,
Petri nets, Turing machines, see [33, 9, 30] for a survey of this work.

On the other side rational relations on finite words were studied in
the sixties and played a fundamental role in the study of families of
context free languages [4]. Investigations on their extension to rational
relations on infinite words were carried out or mentioned in the books
[1, 23]. Gire and Nivat studied infinitary rational relations in [16, 18].

Infinitary rational relations are subsets of XY x X4 x ... x X% where
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n is an integer > 2 and X, Y9, ... %, are finite alphabets, which are
accepted by n-tape finite Biichi automata with n asynchronous reading
heads. So the class of infinitary rational relations extends both the class
of finitary rational relations and the class of w-regular languages.

They have been much studied, in particular in connection with the
rational functions they may define, see for example [8, 3, 28, 30, 27] for
many results and references.

Notice that a rational relation R C X{ x X% x ... x 2 may be seen
as an w-language over the product alphabet 37 x g x ... X X,.

A way to study the complexity of languages of infinite words ac-
cepted by finite machines is to study their topological complexity and
firstly to locate them with regard to the Borel and the projective hier-
archies. This work is analysed for example in [29, 33, 9, 22, 30]. It is
well known that every w-language accepted by a Turing machine with
a Biichi or Muller acceptance condition is an analytic set and that w-
regular languages are boolean combinations of II9-sets hence A3-sets,
[30, 25].

The question of the topological complexity of relations on infinite
words also naturally arises and was asked by Simonnet in [28]. It was
also posed in a more general form by Lescow and Thomas in [22] (for
infinite labelled partial orders) and in [32] where Thomas suggested to
study reducibility notions and associated completeness results.

Every infinitary rational relation is an analytic set. We showed in
[11] that there exist some infinitary rational relations which are analytic
but non Borel sets. Considering Borel infinitary rational relations we
prove in this paper that there exist some infinitary rational relations,
accepted by 2-tape Buchi automata, which are Hg—complete.

Examples of £3-complete and IT3-complete infinitary rational re-
lations have already been given in the conference paper [13]. But the
proof of the existence of II3-complete infinitary rational relations was
only sketched and we used a coding of w?-words by pairs of infinite
words. We use in this paper a different coding of w?-words. This
way we get some infinitary rational relations which have a very simple
structure and can be easily described by their sections.

The result given in this paper has two interests: 1) It gives a com-
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plete proof of a result of [13]. 2) Some new ideas are here introduced
with a new coding of w?-words. Some of these new ideas led us further
to the proof of very surprising results, answering the long standing open
questions of the topological complexity of context free w-languages and
of infinitary rational relations. In particular infinitary rational relations
have the same topological complexity as w-languages accepted by Biichi
Turing machines [14, 15] and for every recursive ordinal « there exist
some II9-complete and some X0-complete infinitary rational relations.

The result presented in this paper is still interesting, although the
result of the paper [15] is stronger; we use here a coding of w?-words
while in [14, 15] we used a simulation of Turing machines and the
examples of infinitary rational relations we obtain are different.

The result of this paper may also be compared with examples of 29-
complete w-languages accepted by deterministic pushdown automata
with the acceptance condition: “some stack content appears infinitely
often during an infinite run”, given by Cachat, Duparc, and Thomas
in [6] or with examples of £9-complete and IT12-complete w-languages,
n > 1, accepted by non-deterministic pushdown automata with Biichi
acceptance condition given in [10].

The paper is organized as follows. In section 2 we introduce the
notion of infinitary rational relations. In section 3 we recall definitions
of Borel sets, and we prove our main result in section 4.

2 Infinitary rational relations

Let X be a finite alphabet whose elements are called letters. A non-
empty finite word over X is a finite sequence of letters: © = aias2...a,
where for all integers ¢ € [1;n] a; € ¥. We shall denote z(i) = a; the
i letter of z and z[i] = z(1)...z(i) for i < n. The length of z is
|z|] = n. The empty word will be denoted by A and has 0 letter. Its
length is 0. The set of finite words over ¥ is denoted ¥*. A (finitary)
language L over ¥ is a subset of ¥*. The usual concatenation product
of v and v will be denoted by w.v or just uv. For V' C ¥* we denote
Ve={vi...on| Yi€e[lin] v,ieV FU{A}L

The first infinite ordinal is w. An w-word over 3 is an w -sequence
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a1as9 . ..day ..., where for all integers 1 > 1 a; € 3. When ¢ is an w-word
over ¥, we write 0 = o(1)0(2)...0(n)... and o[n] = o(1)o(2)...0(n)
the finite word of length n, prefix of . The set of w-words over the
alphabet ¥ is denoted by X“. An w-language over an alphabet X is a
subset of X¥. For VC¥* V¥ ={o=wuj...uy... € XY |Vi>1 u; €
V'} is the w-power of V. The concatenation product is extended to
the product of a finite word w and an w-word v: the infinite word
u.v is then the w-word such that: (u.v)(k) = u(k) if & < |u] , and
(uw)(k) =v(k — |u]) if & > |ul.

If A is a subset of B we shall denote A~ = B — A the complement
of A (in B).

We assume the reader to be familiar with the theory of formal lan-
guages and of w-regular languages. We recall that w-regular languages
form the class of w-languages accepted by finite automata with a Biichi
acceptance condition and this class is the omega Kleene closure of the
class of regular finitary languages.

We are going now to introduce the notion of infinitary rational
relation R C ¥¢ x X§ via acceptance by 2-tape Biichi automata.

Definition 2.1 A 2-tape Biichi automaton is a 7-tuple T = (K, X1, 3o,
A, qo, F'), where K is a finite set of states, X1, X9, are finite alphabets,
A is a finite subset of K x X7 x X5 x K called the set of transitions,
qo 1s the initial state, and F' C K 1is the set of accepting states.

A computation C of the 2-tape Buchi automaton T over the pair
(u,v) € BY x 3¢ is an infinite sequence of transitions

(CIOaUlaUla Q1), (Q1,u2,v2,Q2), - (Qi—lauiavia Qi)a (Qi,ui+1,vz'+1,qz'+1), cee

such that: u = uj.ug.ug ... and vV =v1.02.03....

The computation is said to be successful iff there exists an accepting
state gy € F' and infinitely many integers 1 > 0 such that q; = qy.

The infinitary rational relation R(T) C XY x £Y accepted by the
2-tape Bichi automaton T is the set of pairs (u,v) € XY x XY such
that there is some successful computation C of T over (u,v).

The set of infinitary rational relations accepted by 2-tape Bichi au-
tomata will be denoted RATS.
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As noticed in the introduction an infinitary rational relation R C XY X
35 may be considered as an w-language over the product alphabet
311 X X9. We shall use this fact to investigate the topological complexity
of infinitary rational relations.

3 Borel sets

We assume the reader to be familiar with basic notions of topology
which may be found in [24, 19, 22, 30, 25].

For a finite alphabet X we shall consider X% as a topological space
with the Cantor topology. The open sets of X“ are the sets in the form
W.X%, where W C X*. Aset L C X% is a closed set iff its complement
X% — L is an open set.

Define now the next classes of the Hierarchy of Borel sets of finite
ranks:

Definition 3.1 The classes £% and II of the Borel Hierarchy on the
topological space X“ are defined as follows:

29 is the class of open sets of X“.

119 is the class of closed sets of X“.

And for any integer n > 1:

Egﬂ is the class of countable unions of TI2-subsets of X“.

H?1+1 is the class of countable intersections of X9 -subsets of X“.

The Borel Hierarchy is also defined for transfinite levels, but we shall
not need them in the present study. There are also some subsets of X
which are not Borel. In particular the class of Borel subsets of X¢ is
strictly included into the class 31 of analytic sets which are obtained
by projection of Borel sets, see for example [30, 22, 25, 19] for more
details.

Recall also the notion of completeness with regard to reduction by
continuous functions. For an integer n > 1, a set ' C X“ is said to be
a 29 (respectively, IT2, =1)-complete set iff for any set £ C Y (with
Y a finite alphabet): E € 9 (respectively, E € TI%, E € 1) iff there
exists a continuous function f : Y¥ — X“ such that E = f~!(F).
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A X9 (respectively, 19, 21)-complete set is a 9 (respectively,
IT2, 1)-set which is in some sense a set of the highest topological com-
plexity among the X9 (respectively, II9, X1)-sets. X9 (respectively,
I19)-complete sets, with n an integer > 1, are thoroughly characterized
in [29].

Example 3.2 Let¥ = {0,1} and A = (0*.1)¥ C X¥. A is the set of w-
words over the alphabet 3 with infinitely many occurrences of the letter
1. It is well known that A is a TI-complete set and its complement
A~ is a E9-complete set: it is the set of w-words over {0,1} having
only a finite number of occurrences of letter 1.

4 TII3-complete infinitary rational relations

We had got in [13] some II3-complete infinitary rational relations. We
used a coding of w?-words over a finite alphabet ¥ by pairs of w-words
over ¥ U {A} where A is an additional letter not in X.

We shall modify the previous proof (only sketched in [13]) by coding
an w?-word over a finite alphabet 2 by a single w-word over ¥ U {A}.
This way we can get some II3-complete infinitary rational relation
having some extra property.

Theorem 4.1 Let I' = {0,1, A} be an alphabet having three letters,
and o be the w-word over the alphabet I' which is defined by:

a=A0.4.0%240%40"A0°A... A0 A0 A. .. .

Then there exists an infinitary rational relation R C 'Y x ' such that:

Ry = {0 € I | (0,a) € R} is a II3 — complete subset of I, and
forallu eI —{a} R, ={oc€I¥]|(o,u) € R} =T% Moreover R
s a Hg—complete subset of 'Y x 'Y,

Proof. We shall use a well known example of II3-complete set which
is a subset of the topological space I



An Example of Hg—complete Infinitary Rational Relation

The set ¢° is the set of w2-words over the finite alphabet . It may
also be viewed as the set of (infinite) (w X w)-matrices whose coefficients
are letters of X. If z € X%° we shall write z = (x(m,n))m>1,n>1- The
infinite word z(m, 1)z(m,2)...z(m,n)... will be called the m** col-
umn of the w?-word z and the infinite word z(1,n)z(2,7n)...z(m,n)...
will be called the n'* row of the w?-word z. Thus an element of ¥*
is completely determined by the (infinite) set of its columns or of its
rOWS.

The set X is usually equipped with the product topology of the
discrete topology on X (for which every subset of ¥ is an open set),
see [19] [25]. This topology may be defined by the following distance
d. Let z and y be two w?-words in >? such that = # y, then

1
d(z,y) = o where

n=min{p > 1|3(i,5) =(i,5) # y(i,7) and i + j = p} .

Then the topological space »e? is homeomorphic to the above de-
fined topological space >“. The Borel hierarchy and the projective
hierarchy on ¢ are defined from open sets in the same manner as in
the case of the topological space ¥¥. The notion of X9 (respectively
I19)-complete sets is also defined in a similar way.

Let now

P ={z € {0,1}*" | VYm3<®n z(m,n) = 1},

where 3<°° means “there exist only finitely many”,

P is the set of w?-words having all their columns in the £9-complete
subset A~ of {0,1}* where A is the IT3-complete w-regular lan-
guage given in Example 3.2.

Recall the following classical result, [19, p. 179]:

Lemma 4.2 The set P is a TI3-complete subset of {0, 1}“’2.
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Proof. Let By, = {z € %" | z(m,1)z(m,2)...z(m,n)... € A} be
the set of w?-words over ¥ = {0,1} having their m' column in the
29-complete set A~. In order to prove that, for every integer m > 1,
the set B, is a X9-subset of E“’z, consider the function i,, : IR 3
defined by i, (z) = z(m, 1)z(m,2)...z(m,n)... for every z € $%°.
The function i,, is continuous and i,,'(A~) = B, holds. Therefore
B, is a X9-subset of 39" because the class 9 is closed under inverse
images by continuous functions.
Thus the set

of w?-words over X having all their columns in A~ is a countable in-
tersection of X9-sets so it is a IT3-set.

It remains to show that P is II3-complete. Let then L be a I13-
subset of 3¥. We know that L = Njen+ 4; for some X9-subsets A;,
i > 1, of X¥. But A~ is X9-complete therefore, for each integer i > 1,
there is some continuous function f; : 3¢ — 3¢ such that f; (A7) =
A;.

Let now f be the function from ¢ into »%” which is defined by
f(x)(m,n) = fi(z)(n). The function f is continuous because each
function f; is continuous.

For x € X f(z) € P iff the w?-word f(z) has all its columns in the
w-language A, i.e. iff for all integers m > 1

Fn@) = Fua(@) (D) fin(@)(2) .. fra(@)(m)... € A”

iff vm > 1 2z € Ap. Thus f(z) € Piff v € L = Nyp>1 Ay s0 L =
FLP).

We have then proved that all II3-subsets of X¢ are inverse images
by continuous functions of the Hg—set P therefore P is a Hg—complete
set. O

In order to use this example we shall firstly define a coding of w?-
words over ¥ by w-words over the alphabet (X U{A}) where A is a new
letter not in 3.

10
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Let us call, for x € »<* and p an integer > 1:

TI?—H ={z(p,1),2(p - 1,2),...,2(2,p— 1),2(1,p)}

the set of elements z(m,n) with m +n =p+ 1 and

U;—I—l = fL‘(p, 1)[1,‘(p - 172) T .T(2,p - 1)«7;(17]7)
the sequence formed by the concatenation of elements z(m,n) of T;,,

for increasing values of n.
We shall code an w?-word z € X¢° by the w-word h(z) defined by

h(z) = AU AULAULAUEAUEA. .. AUS AU A .. .

Let then h be the mapping from X¢” into (SU{A})¥ such that, for every
w?-word z over the alphabet X, h(z) is the code of the w?-word = as
defined above. It is easy to see, from the definition of h and of the order
of the enumeration of letters z(m,n) in h(z) (they are enumerated for
increasing values of m + n), that h is a continuous function from ICH
into (XU {A})“.

Remark that the above coding of w?-words resembles the use of the
Cantor pairing function as it was used to construct the complete sets
P; and S; in [31] (see also [29] or [30, section 3.4]).

Lemma 4.3 Let X be a finite alphabet. If L C ne? s Hg—complete
then

h(L) U h(S¥")~
is a TI9-complete subset of (X U {A})*.

Proof. The topological space w7 s compact thus its image by the
continuous function h is also a compact subset of the topological space
(S U{A})¥. The set h(S”) is compact hence it is a closed subset of
(X U{A})¥ and its complement

(R(Z“"))” = (TU{4})” — h(z*")

11
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is an open (i.e. a XY) subset of (X U {A})v.

Oun the other hand the function A is also injective thus it is a bi-
jection from ¥ onto h(X*”). But a continuous bijection between two
compact sets is an homeomorphism therefore A induces an homeomor-
phism between ¥ and h(2”2). By hypothesis L is a II$-subset of
»%” thus k(L) is a I19-subset of h(2“") (where Borel sets of the topo-
logical space h(Z“’2) are defined from open sets as in the cases of the
topological spaces X% or E“’z).

The topological space h(X%) is a topological subspace of (SU{A})*
and its topology is induced by the topology on (X U {A})¥: open sets
of h(X¥") are traces on h(X%”) of open sets of (SU{A})¥ and the same
result holds for closed sets. Then one can easily show by induction
that for every integer n > 1, TI%-subsets (resp. 3%-subsets) of h(X%")
are traces on h(Z¥") of II)-subsets (resp. X)-subsets) of (X U {A})“,
i.e. are intersections with h(X¥’) of II%-subsets (resp. X9-subsets) of
(B {A)~. |

But h(L) is a II3-subset of h(X“") hence there exists a I19-subset
T of (S U{A})¥ such that h(L) = T' N h(X¥?). But h(Z¥?) is a closed
i.e. TI-subset (hence also a II3-subset) of (X U{A})“ and the class of
I13-subsets of (X U {A})¥ is closed under finite intersection thus h(L)
is a I13-subset of (XU {A})~.

Now h(L) U (h(3¥*))~ is the union of a I13-subset and of a X9-
subset of (XU {A})“ therefore it is a II3-subset of (X U{A})* because
the class of II3-subsets of (X U {A})¥ is closed under finite union.

In order to prove that A(L) U (h(2¥°))~ is I19-complete it suffices
to remark that

L=h""WL)UhE)].

This implies that k(L) U (h(XZ¢%))~ is I19-complete because L is as-
sumed to be Hg—complete. [l

Lemma 4.4 Let P = {z € {0,1}*" | Ym3<®n z(m,n) = 1} and
¥ =4{0,1}. Then

P = h(P) U (W)

12
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is a T13-complete subset of (X U{A})¥.

Proof. It follows directly from the two preceding Lemmas. O
Let now ¥ = {0,1} and let o be the w-word over the alphabet
¥ U {A} which is defined by:
a=A.0.4.0°.A.0°. A0 A0 A.. . AO"A0"TLALL. .

We can now state the following Lemma.

Lemma 4.5 Let ¥ = {0,1} and a be the w-word over X U{A} defined
as above. Then there exists an infinitary rational relation Ry C (X U

{A})¥ x (XU {A})¥ such that:
Vz € 2¥° (z € P)iff (Wz),a) € Ry) .

Proof. We define now the relation R;. A pair y = (y1,y2) of w-words
over the alphabet ¥ U {A} is in R; if and only if it is in the form

y1 = Uk.ur.01.Aug.v9. Aug.vg. A ... Aun.vp. A ...

yo = Viwy.z1. Awsg.z0. Aiws.z3. A ... Awy.zn A ...

where £ is an integer > 1, Uy, Vi, € (X*.A)*, and, for all integers i > 1,

v, w;, z; € 0% and u; € ¥* and
jwil = vl and [ fuipa] = [z + 1 or |uia]| = |zi] ]
and there exist infinitely many integers ¢ such that |u;1| = |2
We prove first that the relation R; satisfies:
Vz € 3¢ (z € P) iff (h(z),q) € Ry) .

Assume that for some z € 3¢°  (h(z),a) € Ry. Then (h(z), @) may
be written in the above form (yi,y2) with

y1 = Ug.ur.v1.Aug.vg. Aug.vg. A ... Aug.u,. A ...

yo = Viwy.z1. Aws.z9. Aiws.z3. A ... Aiwy.2p A . L.

13
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y1 = h(z) implies that for all integers n > 1 UJ_,, = up.v, thus
|up.vp| =k +n—1.

yo = o implies that for all integers n > 1  wy,.z, = 05171 thus
|wn.zn| =k+n—1.

S0 |up.vp| = |wy.2zn| but by hypothesis |wy,| = |v,| therefore |u,| =

Moreover |un 1| = |zn| + 1 or |upy1]| = |2n]-

If |upy1] = |zn| + 1 then |upi1| = |un| + 1 and |v,41| = |vn| because
[unt1| + [vn1] = |un| + |vn| + 1.

If |upt1] = |zn| then |upi1| = |up| and |v,41| = |vn| + 1 because

[unt1| + [vnga| = [unl + |vn| + 1.

This proves that the sequence (|v,|)n>1 is increasing because for
all integers n > 1 |vp41]| = |vp| or |vpt1]| = |vn| + 1. Moreover by
definition of R we know that there exist infinitely many integers n > 1
such that |up41| = |2, | hence also |vp41| = |vn| + 1. Thus

lim |v,| =400 .
n—-+00

Let now K be an integer > 1 and let us prove that the K first
columns of the w?-word z have only finitely many occurrences of the
letter 1.

limy, o0 |Un| = 400 thus there exists an integer N > 1 such that
Vn>N |u,| > K.

Consider now, for n > N,

Upyn = tn.vp =x(k+n—11) .2k +n—-2,2)...
czx(2,k+n—-2)x(l,k+n—-1).

We know that v, € 0* thus

z(|opl, k+n—|vg|) =z(jvn| = LE+n+1—|v,]) =...
co.=z(2,k+n—-2)=z(l,k+n—-1)=0

and in particular

14
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(K,k+n—K)=z(K—-1,k+n+1-K)=...
co=z(2,k+n—-2)=z(l,k+n—-1)=0

because |v,| > K.

These equalities hold for all integers n > N and this proves that the
K first columns of the w?-word z have only finitely many occurrences
of the letter 1.

But this is true for all integers K > 1 so all columns of z have a
finite number of occurrences of the letter 1 and z € P.

Conversely it is easy to see that for each x € P the pair (h(x), a)
may be written in the above form (y1,y2) € R;.

It remains only to prove that the above defined relation R; is an
infinitary rational relation. It is easy to see that the following 2-tape
Biuchi automaton 7 accepts the infinitary rational relation R;.

T =(K,I,T,0,q, F), where K = {qo, q1, 92,93, 94, g5 } is a finite set
of states, I' = XU{A} = {0,1, A}, with ¥ = {0, 1}, qo is the initial state,
and F' = {q4} is the set of final states. Moreover § C K x I'* x I'™* x K
is the finite set of transitions, containing the following transitions:

(qo,a, A, qo), for all a € 3,

(qo; Ay a,qo), for all a € 3,

(q07 Au Au q0)7

(qUa Aa Aa q1)7

(q1,a,A,q1), for all a € X,

(q1: A A, @),

(g2,a,0,q2), for all a € 3,

(g2, A, X g3),

(g3,a,0,q3), for all a € %,

(a3, A A, qa)

(g3, a, A, qs5), for all a € 3,
(q4a >\7 Aa q2)7
(g5, A A, q2).

Remark 4.6 Using classical constructions from automata theory, we
could have avoided the set of transitions to contain some transitions in
the form (gi, A\, X, q;), like (qi, A, A, q2) or (g3, A, X, q4).
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Lemma 4.7 The set

Ry = (S U{A}® x (SU{A})® - (W(E) x {a})

s an infinitary rational relation.

Proof. By definition of the mapping h, we know that a pair of w-
words over the alphabet (XU {A}) is in A(Z%") x {a} iff it is in the
form (oy,09), where

g1 — AulAUQAU3AU4A e AunAun_HA e

o9 =a=A0A0%2A03A40"A.. A0 A0 A. ..
where for all integers i > 1, u; € ¥* and |u;| = 1.

So it is easy to see that (S U{A})* x (ZU{A}) — (A(Z") x {a})
is the union of the sets C; where:

e C; ={(01,09) | 01,09 € (XU{A})¥ and (01 € Bor oy € B)}

where B is the set of w-words over (X U{A}) having only a finite
number of letters A.

e (C, is formed by pairs (o1, 09) where

01 or o2 has not any initial segment in AY.AX2A.

e (3 is formed by pairs (01, 02) where
o9 ¢ {0, A}¥.

e C, is formed by pairs (01, 09) where
o1 = Aw . Aws. Aws. Awg A .. Awy Au. Az
o9 = Awl) . Awh. Aws Aw).A. .. Aw], . Av. Az

where n is an integer > 1, for all i < n w;,w, € ¥*, 21,20 €
(XU{A})“ and

u,v € X* and |v]| # |u]

16
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e C; is formed by pairs (01, 09) where
01 = Aw. Awy. Aws. Awy ... Awn. Awpi1 . Av. A2y
= Aw| Awh Awh Aw) ... Aw],. Au.A.z

where n is an integer > 1, for all i <n wj;, w}, € £*, wy4; € ¥*,
z1,22 € (MU{A})¥ and

u,v € X* and |v| # |u| + 1.

Each set Cj, 1 < j <5, is easily seen to be an infinitary rational relation
C(XU{A}Y x (XU {A})¥ (the detailed proof is left to the reader).
The class RAT, is closed under finite union thus

Ry = (SU{A}DY x (BU{A} = (h(Z) x {a}) = |J ¢

1<j<5

is an infinitary rational relation. O
Return now to the proof of Theorem 4.1. Let

R=R1URQQFUJXFUJ.

The class RAT5 is closed under finite union therefore R is an infini-
tary rational relation.

Lemma 4.5 and the definition of Ry imply that R, = {0 € 'V |
(0,a) € R} is equal to the set P = h(P) U (h(Z%"))~ which is a 13-
complete subset of (X U{A})* by Lemma 4.4.

Moreover, for all w € I'Y — {a}, R, = {0 € I¥ | (0,u) € R} =T¥
holds by definition of Rj.

In order to prove that R is a Hg—set remark first that R may be
written as the union:

R=Px{a} |J T¥x (T -{a})

We already know that P is a II3-complete subset of (3 U {A})“.
Then it is easy to show that P x {a} is also a II3-subset of (XU{A})*
(XU{A})¥. On the other side it is easy to see that I'Y x (I'Y — {a}) is

17
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an open subset of I' x I'“. Thus R is a IT13-set because the Borel class
I19 is closed under finite union.

Moreover let g : £¢° — (S U {4})¥ x (S U{A})* be the function
defined by:

Vzex¥  g(z) = (h(z),a).

It is easy to see that g is continuous because h is continuous. By

construction it turns out that for all w?-words z € X¢° (z € P)
iff (g(z) € R). This means that g !(R) = P. This implies that R is
I12-complete because P is II3-complete. O

Remark 4.8 The structure of the Hg—complete infinitary rational re-
lation R we have just got is very different from the structure of a pre-
vious example given in [13]. It can be described very simply by the
sections Ry, u € I'Y. All sections but one are equal to I', so they
have the lowest topological complexity and ezactly one section is a 13-
complete subset of T'.

Acknowledgements. Thanks to Jean-Pierre Ressayre and Pierre
Simonnet for useful discussions.
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Machine Intelligence Quotient as a Complex
Fuzzy Numeral

V. C. I. Ulinwa

Abstract

Abstract. An ongoing research shows that machine intel-
ligence quotient (MIQ) is an integrated complex numeral from
three standard measures and transformable within the plane and
other coordinates. With distinctive scales, technical, personal,
and legislative, the multiple perspectives inquiring system (TOP)
is used in calibrating, measuring, and interpreting the quotient.
Given the homogeny of the linguistic Choquet fuzzy integral and
linguistic complex fuzzy set theorems, on which the considered
machine intelligence measurement is based, a new MIQ calcu-
lus is presented for consideration. The tenets are expected to
withstand technological advancement and human interpretation.

Keywords. Machine Intelligence Measurement, MIQ, Ma-
chine Intelligence Quotient, Multiple Perspective Inquiring Anal-
ysis, TOP

1 Introduction

The investigated phenomenon, machine intelligence quotient, is con-
troversial and important for electromechanical advancement [29]. One
of the controversies is how to determine machines that think [28]. The
other is how to figure their level of intelligence and representation [7]
[13] [24] [30]. According to [12], machine intelligence is a result of some
type of rules that are algorithmically coded on software or hardwired.

Although Zadeh [32] envisaged the concept of machine intelligence
quotient (MIQ), Turing [28] testing primer and Searle [24] argument

(©2007 by V. C. I. Ulinwa
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advanced the necessity as much as Descente’s work laid the funda-
mental need [29] [31]. Ironmically, little is still known about MIQ [3].
For these reasons, this study used the multiple perspective inquiring
method (TOP) to elucidate a new measurement method. The invo-
cation of ambiguous quantified tenets similar to human intelligence
measurement is avoided. Rather MIQ is factually an aggregation of
disjointed complex fuzzy sets, a nonunitary definition. It is unwise to
use a single and the same indicator to qualitatively or quantitatively
represent the intelligence or to use the indices of quality to presume
quantity and visa-vis. This investigation also takes exception in equat-
ing performance as if it is the intelligence. Such a supposition is far
fetched; performance measure is a sub measure of productivity. Rather,
machine intelligence is relative to productivity because machine intel-
ligence without a productive work is a waste. Also, human preference
for quality than quantity and quantitative desire for more of quality
things, with respect to machine intelligence, is reconciled. The qual-
ity is not about the outward appearance of a machine but about the
implicit tangible. As such, this study uses a Cartesian fuzzy set to
represent the intelligence.

2 Multiple Perspective Inquiring Method

To provide a valid and reliable measurement instrument that captures
features in diverse but correlated machine intelligence domains, TOP
scales are used. TOP minimizes statistical biases that are common in
the quantitative science and practice; secondly, it discovers the underly-
ing perspective meanings that affect the science of machine intelligence;
three, it ratifies theory and data anchors of the intelligence that ground
on more than one perspective; and four, it insures that the bases of any
solution and thesis are within the domain peer experts and consumers
recognize.

The presupposed calibration approach is grounded on the deriva-
tives set forth by [16], [17], [22], [26], and [33] because it is imperative
to lay down a comprehensive and standard method for measuring the
intelligence. Moreover, TOP brings to bear, in any given machine in-
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telligence measurement the factors [16].

2.1 Technical Perspective (T)

The quantitative science of machine intelligence measurement requires
T perspective, a tenet that numerically justifies every means and re-
sults. It uses the science to isolate, abstract, idealize, and simplify
problems into solutions [22]. For the measurement to be a major sci-
entific function, results must be quantitatively analyzed, interpreted,
and reported.

A five-theoretic topology [6], with a distinct name of a philosopher:
Leibniz, Locke, Kant, Hegel, and Singer, is crucially used to explain
this perspective [8], [16]. For the Leibnizian, truth is analytical and
can be mathematically reduced into a solution space. To the Lockean,
truth is experimental and in any given problem peer experts’ scientific
opinion determines if a solution is acceptable or not. The Kantian
inquiring analysis rests on the assumption that truth is synthetic and
only through two complementary solution models. Null and alternative
hypotheses are developed for accepting or rejecting any practice that is
hard to be studied with the Lockean or the Leibnzian method. To the
Hegelian, analysis is grounded on the premise that truth conflicts and
only through formulation of antithetical representation. The Singerian
inquiring analysis emphasizes on pragmatic methods relative to the
general purpose and objective of an inquiry [6],[16].

2.2 Organizational Perspective (O)

Organizational filter, legislative filter as it is in this case, is for observing
and analyzing an organization’s tenets of machine intelligence. The
O perspective relies on policies and ethics. For example, it insures
that the intelligence is within the acceptable scientific practices. It
determines the standard and conditions for rigorous issues. Generally,
the O perspective does not seek optimal solutions but emphasizes on
compromise and routine.
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2.3 Personal Perspective (P)

The personal perspective is very subtle compared to the others. It
brings to bear the psychology, ethics, and sociology of those whose
decisions affect machine intelligence, and these factors are inseparable
from any model [8], [16]. It brings human persona or the eye of an
individual into measurement science and practice. It is the unique
insight and intuition for analysis [16].

3 Machine Intelligence Measurement

When one observes certain machinery systems, there abound manifests
that appeal and in some cases are the cursors of the intelligence. As
such, a scientific approach is needed to determine and measure the
intelligence in controllable scientific contexts.

3.1 Contexts

The first thing is to define the appropriate contexts. The contexts are
the informational descriptions and explanations about the system, its
domain, resources available to it, and contribution to humanity. They
characterize the situations. Events are just the sub-summaries of the
contexts.

But in what contexts should the intelligence be tested? One should
avoid testing only in contexts in which the purpose of the intelligence is
predictable or obvious. This approach is not promising for the system
behavior is known. The test, instead, should be conducted in controlled
contexts such as normal, sudden, rare, and where or when the purpose
is barely present.

Events in a normal context are the types system designers generally
model for. They are well defined and predictable and usually unwanted
events are generally minimized or eliminated; sudden events occur un-
expectedly; rare events are those the designers consider to be possible
but least probable and they are sometimes quite catastrophic or ben-
eficial and very difficult to detect; and less purposeful event is one in
which the purpose of the system is barely present in the environment.
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Given the contextual event, the focus should be on what Ji and
Chen [14] characterized as knowledge incompleteness, motivation cor-
relativeness, and initiative openness. Knowledge incompleteness occurs
when events are so-new to a system and it is unable to deduce knowl-
edge from its base. On the other hand, motivation correlativeness is
due to events that positively or negatively impact the achievement of
goals. Finally, initiative openness helps explain opportunities that par-
tially open to a system control for promoting benefits or reducing and
avoiding cost relative to measurable. Numbered equations must be
managed manually.

3.2 Measurable

Although there is no general list of acceptable factors of machine intel-
ligence, the identified relevant qualitative and quantitative measurable
or factors, used in this study, are impedance, machine (process) capa-
bility, productivity, versatility, and agility, to list a few. Figure 1 shows
how conventional measures, with respect to the measurable, are sorted
as T, O, or P.

Perf -Theoreti
ormance -Iheoreie Other regulations

Autonomy-Theoretic 5
Industry regulations
Information-Theoretic ‘ Legislations ‘ Turing-Theoretic
Technical Theoretic Organizational Theoretic Humanistic Theoretic
Based
Measures Measures WIS
]
[
C‘R.

The Proposed
Three-tier
MIQ Scale

Figure 1. TOP Classified Measurable
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From Figure 1 it is evident that Turing test and the Searle’s argu-
ment are within the humanistic category and the information-theoretic
or autonomous theoretic measures are in the technical kind. To the
technical school, machine intelligence is all but qualitative manifest.
This induces the search for a universal numerical meaning such that
any qualitative feature is unscientific. The purpose is to operationalize
properties of the intelligence in terms of behavioral actions that can be
mathematically measured and manipulated.

Measuring machine intelligence is elusive and subtle with the per-
sonal perspective than the T or O. The qualitative measure is usually
from an individual’s eyes and mental representation; and it is grounded
on human charisma and interest. From this point of view, it is the per-
sona of human intelligence and it filters in qualities parallel to the
manifests of human neural and social implications. In other words, it
is a general logic that contains no precepts but a rule-governed man-
ifestation [15]. It is therefore evident from Figure 1 that measurable
for T oriented measures such as information or performance measures
are different from those for O and P. The standardization counsists of
using T to quantify factors such as productivity, O to assess compli-
ance of the intelligence to the relevant regulations, and P to assess the
socio-psychological aspects. The latter should include the concerns of
Turing [28] and Searle [23]; and it is like tasting wine or rating movies
or music.

To start with, let O be a set of observations such that o; € O and
b; € B represent a time series observable machine behaviors during an
event type ¢;. If e; € E, b; € B, and o0; € O then the following are:

1. Determining relevant measurable relative to machine intelligence;
2. Determining machine productivity during each event type;
3. Deriving a technical measure of machine intelligence;

4. Deriving a legislative measure of machine intelligence;

ot

. Deriving a humanistic measure of machine intelligence; and
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6. Determining MIQ from 3, 4, and 5 relative to the effects of 1 and 2

Given these conditions, the first thing is to convert T, O, P mea-
sures to complex fuzzy sets. The procedural method starts with
fuzzy linguistic variables [18] [19]. A linguistic variable is a quintuple
(z,T () U,G, M), where z is a variable, T(z) is a set of the variables
in a universe U and G is a syntactic rule that generates the linguistic
values. M is a rule relating meanings of the linguistic values such that
fuzzy relations, the interaction between the components of complex
fuzzy numbers, are meaningful [20] [21].

Thus T, O, and P as linguistic variables consist of laced labels;
each label specifies a focal point of the measurement. The most com-
mon methods are a fuzzy triangular, a trapezoidal, and an exponential
functions as shown in Equations (1), (2), and (3) where LS means
linguistic set [25]; and resemble the ones shown in Figure 3:

= e for [0/ 0
Lsz/j(%)/ﬁ/jl/ﬁ/j(%)/x (2)

L, = /65($5)2/.I (3)

In Figure 2, (a) is a triangular set, (b) is a trapezoidal set, and (c)
is a Gaussian set. Notice that the sets are the result of a membership
function that f(A) — [0, 1] assigns numbers in [0, 1] interval to sub-
sets of a universe of discourse p [9] [10] [18]. Using scale 5.45¢, number
3, from [4] each of the labels of T, O, and P measures is characterized
as ‘very unsatisfactory’, ‘unsatisfactory’, ‘partially satisfactory’, ‘satis-
factory’, or ‘very satisfactory’ with unique fuzzy numbers [4] [5]. With
Equations (4) and (5), fuzzy projection, each of the linguistic variables
is transformed to a linguistic complex fuzzy set such that [19]:

proj[R; X| =/ (mgf"'“R(x=y)> Jx (4)

proj[R; Y] = / (mga:uR(w, y)) 1y (5)

z
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Ax) fx)

ol & a a ol a 2
A: Triangular fuzzy set B: Trapezoidal fuzzy set
Ax)

T
o m-d M md X

C: Gaussian fuzzy set

Figure 2. Common Membership Types

Although [10] suggested X = / [C Uy A pgr(z,y)] /z and Y =
Uz

[C Uy A pr(z,y)] /y for completing the transformation, linguistic
Uy
Choquet fuzzy integral [1] [2] [10] is recommended instead. The result-

ing set is the linguistic complex fuzzy set [2].

4 Complex Fuzzy Set

4.1 Background

A linguistic complex fuzzy set z = z + jy, in a Cartesian coordinate, is
composed of two linguistic fuzzy sets [19]. One for a real number Re(z)
and the other for the imaginary part Im(z). Each relates to a specific
dimension such that z = z + jy is information on the X-axis and the
Y-axis of the set. Intuitively, arithmetic operations can be performed
on such sets [9] [19] [20] [21]. Given two such sets Z; = (z1 + jy1) and
Zy = (29 + jy2) then Z = Zy + Zy = (1 + x2) + (jy1 + jy2). Because
[9] noted that it is easy to perform division operation in polar plane,
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Z is transformed to a polar plane such that p’ = Z = (x + jy) where
p1(z+jy) = 0 and 0 = p = \/2? +y?. Notice that 6 = arctan (£).
It Z1Z5 or % is in a polar plane then Z; and Z,are also polar coor-
dinated [19]. These operations are applicable to machine intelligence

measurement.

4.2 Application to Machine Intelligence Measurement

Like any other implicit tangible goods, machine intelligence is a pur-
poseful creation. Setting it relative to economic values is intuitive and
meaningful for productive endeavors. Therefore, the first step is to set
machine intelligence relative to O or a compliance measure. Figure 3
is an example. This is done by fixing compliance along the X axis as
x for T or P along the Y axis. The fixation, an aggregated value, is
determined with linguistic Choquet fuzzy integral [1] [2].

With (C) [ fdp = Z(h, —ri—1)(4;), a standard Choquet fuzzy
i=1
integral defined over nonadditive measures [10],

/ hog=" hiz:) [g(X:) - glzi 1) (6a)
=1

c
or

[1og=>"g@) h(X) ~ hai-) (6b)
=1

C
defines the lower and upper bounds of the linguistic fuzzy sets intervals
such that

[rea=U |[neg|. (6¢)

¢ a€l0,1] | ¢
It is evident from [1] [2] that such

[ros| = | [ba oo, o0 (6d)

C C
is a linguistic Choquet fuzzy integral where

(1], =[h],, [P, {h € R|[h], < [h]a}, and 0 < o < 1.

30



Machine Intelligence Quotient as a Complex Fuzzy Numeral

Given the integration, it is clear that subsethood of T' and P quan-
tifies MIQ after conditioning 7" and P to the compliance measure O;
meaning that

Q= sir. ) = () (%52) g
with N as a standard fuzzy interception operator.

Y2 ~

Linguistic

location Y
takes

Figure 3. Common Membership Types

To profile the machine given a contextual event and taking linguistic
variables or fuzzy numbers as inputs, m’ observations are taken on n
measurable. If ¢;; C T, l;; C O, and p;; C O measure the system
behavior such that f(z;;) = [tij, lij, pij] then

Tjj = ——, Lij = —2—, and Pyj = 24— 8

1) Z N y Ly Z L ’ vy Z pis ( )
i,j=1 i,j=1 i,j=1

Each is further normalized with its direct variance with golden ratio
such that y = kw, where k is the constant of proportionality of the
greatest j' column value and golden ratio: 1.618. Notice that y varies
as r; and k is used to obtain new normalized T};, L;;, P;; values.
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Next, a composition of fuzzy relation on each event E; and its
transpose E~! is taken such that

11 ot Tim i1 ot Tnl
EoE = : : : o : : : 9)
nl " Tmn Ttm "~ Tmn
a b a c
WhereEoElz[C d]o[b d]:
aNa U bNb aNc U bNd
:[cﬂa U dnb cNe U dmd]‘

It involves taking the maximum of the minimums per row of a fuzzy
projection. Finally, from [5] a matched ratio (MR) of the projected
fuzzy set and each of the reference set is calculated using

py(y)dy + | p=(y)dy — D
MR = E/Sy ' / ’ , (10

2 /s pig(y)dy

Y

where D = /SyU szlug(y) — p=ldy -

Given a highest matched ratio, the idea is to select the reference
set corresponding with the projected set. The selected set then be-
comes the linguistic variable representing the profile. Alternatively,
the crispy numbers that represent the reference sets could be used
directly for the measurement. Letting f,-j be the linguistic vari-

ables, N = {En,im...ilm}, and knowing that L;, = [ai, bi, ¢, d;] and
1 € 1,2, ...,n, trapezoid with parameters defined by

- m
Li = tPLij, (11)
j=1

then Equation (11) is the extension principle of addition of fuzzy means
[4]. The steps are repeated for all the measurement contexts. Thus with
a given n number of measurable there are associable n rated machine
behavior and n productivity to explain the system’s profile from a
linguistic variable.
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5 Conclusion

When one observes a machinery system there abound manifests that
appeal and in some cases act as cursors for attributing intelligence to
it. What is arguable is how to measure the intelligence ordained on
them. Equally controversial is how to represent them. The postula-
tion used in this paper consists of three perspectives: technical (T),
organizational (O), and personal (P). Each calibrates the intelligence
differently. The T is the most traditional, quantitative, method of mea-
suring observation; the O measures compliance of a machine to certain
legislated criteria; and the P takes humanities into the measurement
and interpretation.

Because each gives a different definition and measure of the intel-
ligence, it is only when T, O, and P are integrated that one derives
a meaningful measure. This is important when a machinery system
manufacturer, regulatory agency, or a user ascribes intelligence to the
orderliness; or an observer tests if a machine is intelligent. The en-
deavor is that a machinery system is not intelligent until it is measured
against the required purpose, compliance to a certain regulation, and
what humans understand as showing intelligence.

For each defined measurement context, the T filter should be used
to quantify the manifest using input and output relations. Focus should
also be on machine productivity relative to each context. The O per-
spective should be used to measure compliance of the system to any
regulation during each context. This requires using any standard com-
pliance measure as assessment tool or a new one constructed. This
measure is important because any intelligent system that is not incom-
pliance, for instance, to a required act of congress or an executive order
is stupid with respect to this perspective. In addition to the T and O
calibrations per the contexts, P requires the use of socio-psychology
scale.

Figure 4 shows the independent filters as used for defining and
measuring the intelligence. The presupposed concern is the region of
interception. The region is where all agree on what is intelligent. The
sets can overlap more or be null depending on the system behavior. So
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far the indices are meaningless until cross-cued. The meaningfulness
necessitates linguistic complex fuzzy set theory.

COhhservation Stand

- =

echnical Perspechve

| Personal Perspective

The Machine Problem Domain

Figure 4. Common Membership Types

This grammatical sketch exposes new approach to define and ar-
ticulate machine intelligence and the quotient. With this approach,
one can fuse some variables and fix another for a controlled measure-
ment. The linguistic method allows even a novice to understand what
is measured. The tent is that unproductive intelligent machinery is a
waste.

References
[1] Auephanwiriyakul, S., & Keller, J. M. (2001). A comparison of the

linguistic Chogquet and Sugeno fuzzy integral. Paper presented at
the 2001 TEEE International Fuzzy Systems.

34



Machine Intelligence Quotient as a Complex Fuzzy Numeral

2]

3]

[4]

[5]

[6]
[7]

8]

[9]

[10]

[11]

[12]

[13]

Auephanwiriyakul, S., Keller, J. M., & Gader, P. D. (2001). Gen-
eralized Choquet fuzzy integral fusion. Information Fusion(3), pp.
69-85.

Bien, Z., Bang, W., Kim, D., & Han, J. (2002). Machine intelli-
gence quotient: its measurements and applications. Fuzzy Sets and
Systems, 127(1), pp. 3-16.

Chen, S. J., Hwang, C. L., & Hwang, F. P. (Eds.). (1992).
Fuzzy multiple attribute decision making: Methods and Applica-
tion (Chen, S. J Hwang, C. L ed.). (Vol. 375). New York, NY:
Springer- Verlag.

Chen, C.-C., Lai, C.-M., Chen, T.-H., & Nien, H. (2005). Statis-
tical test of fuzzy hypothees using linguistic variables. Journal of
Industrial and Business Management, 1(1), pp. 11-22.

Churchman, C. W. (1971). The Design of inquiring systems. New
York, New York: Basic Books.

Cotsaftis, M. (2000). On definition of task oriented system intelli-
gence. Paper presented at the PerMIS: Workshop on Performance
Metrics for Intelligent Systems, Gaithersburg, MD.

Courtney, J. F., Croasdell, d. T., & Paradice, D. (1998). Inquir-
ing organization. Foundation of Information Systems. Available:
http://www.cba.uh.edu [2000, March 15].

Dick, S. (2005). Towards complex fuzzy logic. IEEE Transaction of
Fuzzy Systems, 13(3), pp. 405-414.

Grabisch, M. (1995). Anew algorithm for identifying fuzzy mea-
sures and its application to pattern recognition. IEEE, pp. 145-
150.

Hasan, H. (1998). Integrating IS and HCI using activity theory as
a philosophical and theoretical basis. Foundations of Information
Theory. Available: http://www.cba.uh.edu [2000, May 15].

lIovine, J. (1998). Understanding neural networks. Indanapolis, IN:
Prompt Publications.

Jennings, A. (1999). Growing intelligence. Jennings, Andrew.
Available: ajennings@rmit.edu.au [2000, May 15].

35



V. C. 1. Ulinwa

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

Ji, & Cheng. (2001). Chance discovery in a BDI perspective
of planning: Anticipation, participation and correlation: Multi-
Agent Systems Lab.

Kant, 1. (1787). Critique of pure reason. Macmillian Press Ltd.
Available:  www.arts.cuhk.edu/Philosophy/Kant/cpr-open.html
2002, July 20].

Linstone, H. A. (1984). Multiple perspectives for decision mak-

ing: bridging the gap between analysis and action. New York, NY:
North-Holland.

Lowell, B. E. (1995). A Tazonomy of uncertainty. Unpublished
Dissertation, Portland State University, Portland. OR.

Moses, D., Degani, O., Teodorescu, H.-N., Fiedman, M., & Kan-
del, A. (1999). Linguistic Coordinate TRansformation for complex
fuzzy sets. Paper presented at the 1999 IEEE International Fuzzy
Systems Conference Proceedings, Seoul, Korea.

Moses, D., Teodorescu, H., Friedman, M., & Kandel, A. (1999).
Complex memebership grades with an application to the design of
adaptive filters. Computer Science of Journal of Moldova, 7(3(21)),
ppP. 253-283.

Ramot, D., Friedman, M., Langholz, G., Milo, R., & Kandel, A.
(2001). On complex fuzzy sets. IEEE International Fuzzy Confer-
ence, 1160-1163.

Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002). Complex
fuzzy sets. IEEE Transaction on Fuzzy Systems, 10(2), 171186.

Sapp, J. C. (1987). Eletricity demand forecasting in a changing
reginonal context: The application of the multiple perspective con-
cept to the prediction process. Unpublished Dissertation, Portland
State University, Portland, OR.

Searle, J. (1983). Intentionality: An essay in the phyilosophy of
mind. New york, NY: Cambridge University Press.

Small, P. (1999). Magical A-life avatars: A new paradigm for the
Internet with examples in Macromedia’s director. Greenwich, CT:
Manning.

36



Machine Intelligence Quotient as a Complex Fuzzy Numeral

[25]

[26]

[27]

[28]

[29]

[30]

Tanaka, K. (1996). An introduction to fuzzy logic for practical ap-
plication (Tak Niimura, Trans.). New York, NY: Springer.

Tarr, S. C. (1990). The knowledge transfer project: A multiple
perspective investigation into the integration of a new technology

within a business unit. Unpublished Dissertation, University of
Portland, Portland, OR.

Turing, A. (1936). On computable numbers: With an application
to the enthscheidungsproblem. Paper presented at the Proceedings
of the London Mathemetical Society, London.

Turing, A. (1950). Computing machinery and intelligence. Mind,
59(236), pp. 433-460.

Ulinwa, I. C. (2003, 9-13-16-2003). MIQ: Understanding a machine
through multiple perspective analysis. Paper presented at the Per-
MIS’03, Gaithersburg, MD.

Wang, P. P. (2000). Machine intelligence ranking. Paper presented
at the PerMIS: Workshop on Performance Metrics for intelligent
Systems, Gaithersburg.

[31] Wolfram, S. (2002). A new kind of science. Champaign, IL: Wol-
fram Media, Inc.

[32] Zadeh, L. A. (1994). Fuzzy logic, neural network, and soft comput-
ing. Comunication of the ACM, 37(3), 77-84.

[33] Zeiber, A. R. (1996). A system approach for rational decision mak-
ing n potential strike situation. Portland State University, Port-
land, OR.

V. C. I. Ulinwa, Received March 26, 2007

Walden University School of Education, USA
E-mail: iulinwaQuwaldenu.edu

37



Computer Science Journal of Moldova, vol.15, no.1(43), 2007

Aspect oriented programming
and component assembly

A. Colesnicov L. Malahova

Abstract

The article describes an attempt to use the aspect oriented
programming for construction of a graphical user interface from
components. Aspects were applied to produce the glue code. Pre-
viously some doubts were expressed on possibility of such usage.

1 Introduction

The main efforts in development of complicated software products for
scientific applications are applied to the creation of their computational
engines that solve their target problems. Supplying a modern graph-
ical user interface (GUI) for the resulting system is a different task
that usually meets a shortage of resources. Our own experience with
the Bergman symbolic computation system (SCS) and review of other
systems illustrate this [1].

We investigate in this article a possibility to create a GUI for a
given SCS semi-automatically from a set of ready-made components.
The modern techniques of component programming (CP) give us a lot
of useful approaches, e.g.: conceptions of black, grey, and white boxes;
the notion of the glue code (the additional code that is necessary to
assemble components together); lists of requirements for components,
etc. Nevertheless, we found the existing CP frameworks not fully suit-
able: they provide less than we need in the automation of component
assembly, and they provide much more than we need being oriented
mainly towards distributed applications.

(©2007 by A. Colesnicov, and L. Malahova
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Aspect oriented programming (AOP) is a technique to add a new
behavior to an existing program without changing its sources and even
binaries. It is mostly used to handle cross-cutting concerns like logging
or debugging. E.g., we need to add almost the same code in regularly
selected places of the program to trace it. AOP concentrates templates
of additional code and insertion points in aspects. Aspects are compiled
separately, and the code weaving is performed during the execution of
the program.

To apply AOP for the semi-automated assembly of a GUI from
components, we noted that the glue code is regular and repeating, and
that it can be generated from a formal description of the GUL. With
AOP, we use an unchanged GUI template and unchanged components,
and generate only aspects containing the glue code. We have checked
this idea by implementing it.

Application of the AOP techniques to the CP was claimed in 1999
[2] but was not developed further that time, may be because that so-
lution had supposed language extensions. Moreover, in 2003 C. Perez
had published a note in his blog! under the title “Do aspects super-
sede components” that motivates the impossibility of such application.
Our article describes a successful experiment in usage of the AOP for
component assembly resolving therefore these doubts.

The article begins with a short review (Sec. 2-3) of existing tech-
niques and frameworks of CP. See [3,4] for more details. Sec. 4 briefly
describes the AOP. We describe in Sec. 5 our implementation of the
idea formulated above. The next Sec. 6 discusses requirements to com-
ponents. The article terminates with conclusions (Sec. 7) and acknowl-
edgements.

Lhttp://www.manageability.org/blog/archive /20030604 %23do_aspects_supercede_
components
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2 Component programming: black-box tech-
niques

Techniques of component adaptation may be roughly classified as white-
boz, grey-boz, and black-box [5, p. 2-6].

At white-box reuse we actually need the full knowledge of compo-
nent’s internals. The most primitive kind of such reuse is the copy-and-
paste technique known also as the code scavenging. Another technique
is the inheritance usual at object-oriented programming. We meet
here at the first time the important notion of the glue code, i.e., the
code that assembles components together. At the inheritance, the glue
code is represented by new methods in the subclasses of the original
component.

Grey-bozes were thoroughly discussed in [5]. The following example
is adapted from there: let we have a black-box component Sort that
takes its input and produces the sorted output. We can replace this
component. Suppose the initial component used the Insertion sort
that is stable, i.e., keeps order of records with equal keys. We note this
behavior during experimentation and use it in our programming of
other parts of our system. Then we replace the component by another
one that implements Tree sort. This algorithm is unstable, and we
are in the wrong side. Therefore some knowledge of this component’s
internals is necessary. With Sort, we can return to the black-box model
including stability in its output specifications but there are another
situations where this is impossible, e.g., when a component depends on
an external service [5, p. 3-5]. Grey boxes are used in most modern
technologies.

Black-boxes hide all their internals; only input and output specifica-
tions are exposed. Due to their simplicity, this is the most comfortable
model for assembly. There are many techniques to manipulate them.
We present below several CP technologies based on black-box model.
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2.1 Wrapping

This technique is also named containment when referred in COM tech-
nology (see 3.3 below). A wrapper can be defined as a container object
that encapsulates a given black-box component and intercepts all its
input and output. The simplest wrapper adapts the containing ob-
ject’s interface. More complicated wrappers can restrict or extend the
functionality of their containing objects.

Wrappers perform additional calls during the interface tunnelling
and can therefore lose in performance.

2.2 Superimposition

Superimposition was introduced by J. Bosch [6]. The component is
included inside one ore more layers that intercept all messages to and
from it. Each layer can convert a message in a passive object, ana-
lyze its contents and react in correspondence. Then some additional
behavior is superimposed over the initial component’s behavior.

original class file Adaptation specification
byte stream

| Class loader | Delta file compiler |

class file structure

class file structure

| Interpreter | | JIT |

v v

| Runtime system |

Figure 1. Binary component adaptation
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2.3 Active interfaces and binary component adaptation

Active interfaces were proposed by G. Heineman [7]. An active inter-
face decides whether to take action when a method is called. All inter-
face requests pass two phases: the “before-phase” before the compo-
nent performs any steps towards executing the request, and the “after-
phase” when the component has completed all execution steps for the
request. The active interface does not adapt component’s behavior;
instead, it enforces the necessary behavior at run-time.

Binary component adaptation [8] changes compiled (binary) com-
ponent while it is loaded and was applied to Java. It is illustrated
by Fig. 1 taken from [8, p. 2]. We see that adaptation specification is
prepared separately and compiled separately by a delta file compiler to
a delta file. A modifier is a single additional part of the Java virtual
machine weaving the delta file with the original class.

Both these techniques were superseded by the aspect oriented pro-
gramming (see Sec. 4 below).

3 Component programming: industrial com-
ponent models

Attempts to define a set of standards for component implementation,
customization, and composition led to such industrial component mod-
els as CORBA/CCM, JavaBeabs/EJB, COM, .NET.

3.1 CORBA/CCM

Common Object Request Broker Architecture (CORBA) and CORBA
Component Model (CCM) were developed by OMG2. CORBA is an
infrastructure that provides communication of distributed objects or
components. The Object Request Broker (ORB) supports communi-
cation of components independently of their platforms or the methods
of their implementation. All communicating components should be
registered in an implementation repository. The components (objects)

2Object Management Group, http://www.omg.com
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are represented by their stubs and skeletons that are their platform
and language independent abstractions. To create stubs and skeletons,
a specialized language called IDL (Interface Definition Language) is
used. Instances of stubs look like local objects and accept method in-
vocations from other objects. The actual target objects can be located
elsewhere in the network and get these invocations through skeletons.
Skeletons handle argument arrangement, actual method invocations
and rearrangement of resulting values that are passed back to stubs.

3.2 JavaBeans/EJB

JavaBeans is a technology that is implemented for Java and permits to
produce visual (graphical) components that are platform-independent,
and reusable.

EJB are Enterprize JavaBeans introduced by SUN®. EJB are non-
visual components of two kinds, session beans and entity beans. Session
beans provide the communication of a client and a database. Entity
beans represent the data from the databases and provide methods to
manipulate these data. A session bean exists while a connection ex-
ists between a client and a database. An entity bean exists while the
corresponding data exist in a database.

The EJB model allows the developer to implement business logic of
applications and do not go into the things like transactions or security.

3.3 COM

Microsoft’s Common Object Model (COM) defines a binary structure
for interfaces between a COM objects (COM-compliant components)
and their clients. There is a standard way to lay out virtual func-
tion tables (vtables) in memory, and a standard way to call functions
through vtables. Components can be implemented in different lan-
guages. There exists Microsoft’s IDL to define interfaces. Each object
can provide several services. All services are registered in a system

3http://java.sun.com/developer/onlineTraining/Beans/index.html|
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registry using a global unique identifier (GUID). New implementations
of existing objects use new GUIDs.

COM provides two methods of binary reuse, containment and ag-
gregation. The first one is in fact wrapping: the object intercepts
method calls and forwards them to its internal objects. In aggrega-
tion, a COM object exposes the services of another object as its own
services.

3.4 .NET

The .NET framework (now version 3.0; regrettably, different versions
are not compatible) is the latest platform from Microsoft that delivers
components’ services through Internet. A .NET application is com-
posed of assemblies. An assembly contains compiled code and meta-
data. The manifest is included with each assembly and contains the
assembly name, its version, the list of files, the list of dependencies,
and the list of exported features.

4 Aspect-oriented programming

Aspect-oriented programming (AOP) generalizes, systematizes, and for-
malizes the code weaving. The code weaving was used in many circum-
stances like logging, tracing, debugging, security checking, etc. An
example of early (1989-1990) use of the code weaving at the imple-
mentation of a debugger can be found in [9].

In AOP, the existing code is extended by aspects. An aspect con-
tains pointcuts and advices. A pointcut is a template that defines join
points. Each time the program execution passes a join point, the cor-
responding advice is executed. The advice code seems to be weaved
with the original program code at the join point.

The source code weaving is a single possible solution in languages
like C+4. On the contrary, the Java binary code is well-defined and
permits the binary code weaving. The AspectJ* implementation of

“http:/ /www.eclipse.org/aspect;/
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Aspect Java started with the source code weaving in 2001, then got
the bytecode weaver at build time, and use the bytecode weaver at
class loading since 2005.

The AOP is a popular and developing technique. Detailed descrip-
tions and examples can be found elsewhere®.

5 Implementation

We selected Java for portability, and Eclipse® with AspectJ plug-in as
our implementation tool.

Suppose we have an engine that performs some symbolic calcula-
tions. The engine gets data for a computation session as a text file or
several files. The engine does not interact with the user during calcu-
lation; it is, therefore, a true “black box” that takes data and produces
results. We want to wrap the engine in a GUI that collects data, creates
text files, runs the engine over these files, and shows results.

A GUI consists of the constant part and the variable part. The
constant part contains the session management: storing data for each
session, their modification, etc. We also found useful a notion of enwvi-
ronment, or partially defined session [1]. Each session can be based on
an environment where some data are already defined. The environment
management is implemented like the session management.

Other features of the constant part of a GUI are possibilities to
select one of several engines, to start external programs, to check col-
lected data, to show help, etc.

Modules that enter the data form the variable part of a GUI. These
modules depend on the problems solved by a particular engine.

During the assembly of a GUI its constant part is taken as the base.
The developer prepares list of data and defines how they have to be
entered in the GUI (by selection from several variants, by marking,
by text editing, by 2D formula input, by entering parameters of a
mathematical object using a wizard, etc.) Each possible method of

®http://en.wikipedia.org/wiki/Aspect_oriented_programming
Shttp:/ /www.eclipse.org/
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Figure 2. Generation of GUI in our project

the data input is implemented as a customizable component. The
necessary modules pass the customization and are glued together with
the constant part of the GUI.

The system consists therefore of a pre-implemented constant part,
a set of data input components, and a GUI generator that adapts and
assembles all parts together.

We already noted that the generated GUI contains the constant
and the variable part. The constant part performs a lot of independent
standard tasks (e.g., “Save session as...” or “Select engine”). We
apply the CP techniques at the development of both parts of GUI
The constant part is also composed from several components and the
resident part. There is a possibility to vary the constant part. Some
components of the constant part are not obligatory. The GUI developer
marks included components of the constant part in the list (default is
“Include all”).
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There is some difference between components of the constant and
variable GUI parts. The former do not need adaptation; the ques-
tion is “to use or not to use”. The latter are customizable through
parametrization.

The generation of a GUI can be illustrated by Fig. 2.

The resident part contains, in particular, the control center. The
control center registers all assembled components, collects and keeps
data from data input components, and produces files for the engine.

The following techniques can be used to assemble applications from
components:

e Manual assembly; the gluing code is written manually.
e Visual assembly in an IDE (Java Builder designer, etc.).
e Automated assembly.

The first two techniques are not suitable because they are oriented
mainly towards a professional software developer. We selected semi-
automated script-based assembly. At first it is necessary to plan the
menu structure. The planned menu structure is fixed in an XML de-
scription. Using the XML description, a Java menu source is generated
programmatically. For each menu item, its action is generated as an
aspect. The menu, the aspects and the constant part of the GUI are
weaved together resulting in a ready-made GUIL.

Fig. 3 shows a simplified GUI that was generated using this tech-
nique. The opened dialog permits 2D input of polynomials. To assem-
ble this component to the GUI, it was necessary to generate 2 lines
of code in the Java menu source, and an aspect source of 11 lines (5
significant lines), in total 13(7) lines. The constant part of the GUI
and the component sources were not changed at all.

6 Requirements to GUI components

Liier and Rosenblum [10] define a component as a unit of independent
deployment prepared for reuse that does not have persistent state. The
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Figure 3. 2D input component in a generated GUI

latter means that a component is a set of classes and does not contain
objects.

The following seven requirements of component development were
formulated in [10].

1. We should follow the common principles of modular design. In
particular, the private and public parts of a component should
be separated.

2. Component should be self-descriptive.

3. Component interfaces should be accessed within a global name
space through unique names.

4. Development process has two parts, component development and
application composition.
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5. Application development consists of the component composition
and the implementation of additional functionality that is not
available in components.

6. We should provide multiple views: a component developer view,
a composition view, a type view, an instance view, an overall
structure view, etc.

7. The best component reuse is achieved through reuse by reference.

Now we discuss the application of these seven requirements in our
case.

1. Modular design. The public part of a component should contain
public interface definitions, and, optionally, installation tools and
self-description. The private part contains implementation (set
of classes) and resources (e.g., graphic or help files).

In [10], installation tools and self-description are exposed as oblig-
atory subparts of component’s public part. Installation means
providing instances of the classes implemented into the compo-
nent (objects) for component’s clients. It is straightforward in
the simplest case; however, a more complicated component may
internally select from different implementations of the same pub-
lished interface.

In our case, separation of public and private parts will be strictly
adhered. Installation means for us parametrization and inclusion
in the generated GUI, i.e., gluing. This is made using aspects as
described above in Sec. 5.

2. Self-description. It is used in a limited way in industrial compo-
nent models like Java Beans, COM, and .NET. Lier and Rosen-
blum [10, p. 4] define five levels of self-description:

1. The syntactic level. 1t provides signatures of abstract data
types that are provided by the component or required by it.
A special language (IDL) can be used for such descriptions.
We saw that this is a common feature in many CP platforms.
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2. The behavioral level. It provides semantic description of
data types. The semantic description can be informal, semi-
formal, or even formal.

3. The synchronization level. It provides information that per-
mits cooperating components to resolve concurrency prob-
lems.

4. The QoS, or non-functional, level. QoS (Quality of Service)
is the usual term for all non-functional specifications like
the volume of used memory, the response delay, the result
precision, etc.

5. The non-technical level. It provides other information like
price, contact address, support phone, gained official certi-
fications, etc.

Self-description is less necessary as our components will be used
by the GUI generator in programmed manner. The corresponding
parts of aspects are in fact self-description in the syntactic level.

Global naming scheme. We will use our components inside a
monolithic system; therefore, we have to use unique names.

-

Two-stage development process. In our case, component de-
velopment and component usage are strictly separated in time.
The assembly of a GUI is executed by a different developer, prob-
ably by a mathematician that programmed a calculation engine
and wants the GUI for it.

. Functionality not present in components. The constant part
of GUI provides such functionality in our case. Components are
dialogs or wizards to enter one or more session parameters.

Multiple views. In our case, the component development and

their composition are strictly separated in time. The instance
view may be useful during the GUI generation.

50



AOP and component assembly

7. Reuse by reference. This principle is applicable in the case
when the components have different sources and need mainte-
nance, e.g., distant update. Such option is not supposed in our
development, but we could provide it later. If the resulting sys-
tem became widely used, the existence of a central component
repository may be useful.

7 Conclusions

There exists many classifications of component assembly paradigms.
One such classification was proposed by a research group’ at the Uni-
versity of Waterloo, Canada. The classification is as follows:

Design Patterns describe how to assemble objects basing on the
separation of concerns. Design patterns capture design experi-
ence “in-the-small”. The viewpoint approach to software design
helps the designer to isolate many design pattern constructs.

Frameworks are semi-finished software architectures for a specific
application domain, and they attempt to capture design expe-
rience “in-the-large”. Frameworks represent the highest level of
reusability currently found in software design and implementa-
tion. Design patterns and frameworks are related, in that design
patterns are normally used to assemble components in a frame-
work.

We have a semi-finished GUI (constant part) and a set of compo-
nents. Therefore our solution can be classified as a framework that is
based on the AOP and automates the CP. This is a successful attempt
to widen the area of the AOP towards the realm of components, at
least for adaptable monolithic applications.

Thttp://csg.uwaterloo.ca/program.html
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The Pico’s formula Generalization

Sergiu Cataranciuc, Marina Holban

Abstract

The Pico formula generalizations are obtained for area cal-
culation of a polygon P through the determination of special
nodes of the network in which this P is placed. The case of
the polygon with rational coordinates of its vertexes is exam-
ined, as well as the case of the polygon with holes. In the case of
three-dimensional space a formula of volume calculation for some
polyhedrons, such as prism and tetrahedron is presented. On the
basis of theoretic outcomes an algorithm that can be applied in
calculation for areas of plane figure is elaborated.

1 The Pico’s formula

The determination problem of some efficient formulas for areas calcula-
tion of some plane figures classes presents a certain interest from both
theoretical and practical point of view. In general case, the integral
calculus come to help that will make this problem quite difficult, both
from the point of view of function construction that describes the figure
frontier and of subsequent calculations that must be effectuated. Thus
the study of some special plane figure classes, in particular polygous,
becomes very important.

Let us consider one arbitrary polygon P in the plane the vertexes
of which are the nodes of a rectangular network D. Network D is de-
termined by classes of parallel to axes OX and OY lines. The crossing
points of lines are called the network nodes.

Depending on the structure of network D the formulas for efficient
calculation of area of the polygon P are known. The result obtained
by the Austrian mathematician G. Pico in 1899 is considered to be

(©2007 by S. Cataranciuc, M. Holban
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among the first results in this direction. In his work G. Pico studies
the network case, determined by classes of parallel to axes OX and OY
straight lines in which the distance between any two neighbour straight
lines is equal to one. Such a network will be called unitary network.

Theorem 1.1. [1]. The area of any polygon P, constructed in a
unitary network D is calculated by the following formula:

. b
S(P):1+§—1, (1)
where b represents the number of points of the network situated on the
frontier of the polygon, and i represents the number of points of the
network that belong to interior of this polygon.

Let’s illustrate the formula from Theorem 1.1 for polygons P; and
P, from Figure 1.

Polygon P;: On the one hand, as it can be observed the polygon P
is formed from 4 complete squares and 8 triangles (halves of squares)
of the unitary network. Thus S(P;) = 4+ 8- % = 8. Applying the
formula (1), taking into consideration that « = 1 and b = 16, we obtain
the same result:

b 16
S(P)=itg—l=1+7-1=8.

Polygon P;: The polygon P» can easily be reduced to some simple
polygons, trapeziums or triangles, the area of which is easily calculated
by the formula:

S(Py)= S(ALFH) — S(AIH) — S(DEF) — S(HGF) — S(BLDC) =
AH -hay HF-hpy BL+CD

=AH - -HF — LD =
2 2 2
. 4.1 1 .
T _5 _3 1_2+1.1:§.
2 2 2 2 2
On the other hand, applying formula (1) we obtain:
b 11 25
P)=i+-—1=84+4——-1=22.
S( 2) ’L+2 8+2 D)
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Fy Py

Figure 1.

2 The generalization of Pico’s Formula in the
rational polygons

Let us counsider P a polygon, vertexes of which have rational coordi-
nates. This kind of polygons will be called rational polygon. If the
polygon has k + 1 vertexes, than we form the increasing series of ab-
scissas

T, T, ey Ty Th+1
and of ordinates

Y, Y2, -5 Yk, Yk+1

of the polygon P vertexes. We mark

df =xip1 —x;, Vi=1k,

d! =vyiz1—vyi, Vi=1k.

Without losing from the generality we consider that df, d3, ...,
di are distinct, and dy, d, ..., d% as well. Let us form the multi-
tude D = {d}, d%, ..., df, dY, dj, ..., dI}. One rational

number « will be named divisor of the rational number 3 if g €z
(Here Z represents the multitude of integer numbers). In the case
when «, [, -« are 3 rational numbers and % € 7, g € 7Z, than
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we will say that v is the common divisor of numbers « and 3. It is
obviously that for any multitude of rational numbers there exists a
common divisor. Let us denote the common divisor of the multitude
D of elements by d’.

Let us trace in space R? parallel to axes OX and OY straight lines
so that the distance between each 2 neighbour straight lines to be equal
to d'. As a result we obtain a network marked by D(d'). Obviously,
the vertexes of the rational polygon P are situated in the nodes of this
network.

Theorem 2.1. If the vertexes of rational polygon P are situated
in the nodes of the network D(d'), then the area of this polygon is
calculated by the formula:

S(P) = (i' + % — 1) (d)?, (2)

where ' is the number of nodes of network D(d') which belong to the
interior of polygon P and V' - number of nodes on the frontier of P.

Proof: We’ll prove the affirmation of the theorem by the math-
ematical induction on n vertexes of polygon P. When n = 3 poly-
gon is a triangle ABC with certain rational coordinates of vertexes:
A= (za, wya), B=(zp, ygB), C = (xc, yc)- Let us pass to an-
other coordinate system OX*Y™*, in which z* = Z,4* = %. In this
system vertexes of the triangle will have coordinates: A* = (fi—i‘, %’i—‘,‘),
B*= (%, ) and C* = (%, ). Let us calculate the triangle’s
area in the coordinate system OX*Y™:

1| ) 1 |z i L
SAA*B*C*=‘§-;££_B 351_3—1-5-951_0 &1+ ‘:él él_AH—
@ d & d 7 d
(111 e oya| 111 qzp oyp| 111 ze ye
- d d |z yB 2 d d |z¢ yc 2 d d |za ya
2
_ b <l> A ya| |zB yB| , |Tc yefl _ 1  Saipc
2 \d Tt ys| |Tc yo| |za wal| (d)?
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The network D(d') nodes in the coordinate system OX*Y™* are the
coordinates in integer numbers. According to Pico’s formula
bl
Saaprcr =1 + 7~ L
where ¢’ is the number of nodes of the network D(d') which belong to
the interior of triangle A* B*C*, and b’ — is the number of nodes of this
network situated on the frontier of P. Thus

1
Spapcr = @)z -SaaBC -

Hence

Saapc = Spapec- - (d)?

or

/
SnaBc = <'L" + % — 1) (d)? .

Thus the induction base is proved.

Let’s admit that the theorem affirmation is true for any polygon P
with the number of vertexes smaller than n, n > 4. Let us analyse a
polygon with n vertexes from network D(d’). Let A1, Az, ..., A,
be the vertexes of this polygon, described clockwise (CW). Without
losing the generality let us consider that A, 1, A,, A; are non-
collinear points in plan. Let us connect A,_; with A;. We obtain the
triangle A1 A, 1A, and A1 Ay ... A, 1 polygon with (n — 1) vertexes.
Depending on the position of the initial polygon vertexes in plan we
obtain

S(P) =84, Ap_y T 52A,4,_14,

or

S(P) = SAl...An,1 - SAA1An—1An
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m A P
A \as / A
/ As ; !/
P . A
% An1 A=

a) b)

Figure 2.

(see Figure 2, cases a) and b)).

Let i’ be the number of nodes of the network D(d’) that are the
interior points of the polygon P = A1 Ay... Ap_1A,, i’n—l — the number
of nodes of the polygon A;As ... A,_1 with n — 1 vertexes, and i'A -
the number of nodes of the triangle A; A, 1A,. Let ¥, blnfl, b'A
be the number of nodes of the network D(dl) that are situated on the
frontier of the mentioned polygons. Let b:ih 4,_, also be the number of
nodes of the network, that are interior points of the segment [A; A,—1],
and let b, | and b”A be the number of nodes that respectively belong to
the broken lines A1 As... A,_1 and A,_1A,A;. Thus, in the polygon
from the Figure 2 a) we have the relations

N N "
7 :/Ln—1+zA+bA1A

n—1 "7

bl Zb;l71+blA—2'b:;1An_1 —2=b;;71+b”A—2 .
In the case of polygon from figure 2 b) we obtain

. ¥ "
1 =14, 1 —1ip—ba+2

(number 2 corresponds to the vertexes A; and A, that are included
into the number bHA but aren’t interior for the polygon)

b :bn—1+bA_bA1An,1_2'
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Let us pass to the calculation of areas for the polygons from the

Figure 2 a) and b).
For the case represented in Figure 2 a), considering mathematical

induction method we obtain

S(P) = SaA,4, 1A, + 5414, , =

] bl / / bl_ /
=<in1+7A—1)-(d)2+<in1+"Tl—1>-(d)2=

. bo 4 —2.0" — 420" +2 ,
(’LA—FZ ( n—1 A1An—1 ) A1Ap—1 _2) . (d )2

n71+

= <’iA +ip_1 +baa, , + 9

:<¢’+%—1)-(d’)2.

Analogically, for the polygon represented in Figure 2 b) we obtain

S(P)=854,..4,_1 —SAAA, 1A, =

! b’i / ! b’ /
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!

- b 1 —in—ba+2 | +by—2 |+

i

! ' n b” —"_b” / ! ' /
:(i +%—1+bA—%>-(d)2=<z‘ +%—1)-(d)2.

Theorem is proved.

Let us illustrate this demonstration for the case of a polygon P with
the vertexes ./fl(%, 5, B(3, 2),C(3, 3)and D(%7 2). It is easy
to calculate d = %. Thus the polygon P can be placed in the network
D (%) (see Figure 3).

In this case we obtain i = 1, b =5 and, thus

5 1\*> 5
=(14+4=-1]-{=2) ===
SaBcp ( T3 ) (6) 72
On the other hand, the polygon ABC D, being divided in 2 triangles
ABC and ACD has the area

2

36 36

-1 -
0

=

L1 — &3 Y1 — Y3
T2 — X3 Y2 — Y3

N | =

1
= — mod
2

1 1
Spapc = 2 mod ‘

N
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1
&
3 B
¥ l‘l B
i lf C ]
1
k
i A
a,
L L 2 E 4 L i X =
L] |} ] ] 4 [ 1 u
Figure 3.
1 _5 2 1 3 3
S = — d = — e — = —
AACD = 5 THO ‘—% =357

So Sapep = Saape + Saacp = % + % = 75—2, which corresponds
to the calculation made in concordance with theorem’s formula.

By analogy, we will say that real number 3 is a divisor of the real
number «, if% € 7.

Consequence: If P is a polygon, the vertexes of which have real
coordinates, and d is a the common divisor of these coordinates than
P can be placed in the network D(d'), and its area is calculated by the
formula

S(P) = (z + % - 1) (d)?,

where 7’ represents the number of nodes of network D(d ) which belongs

to the polygon interior, and b’ - the number of vertexes situated on the
frontier of P.
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On the basis of those mentioned above let us elaborate a calculation
algorithm of a polygon area according to the studied formula, in the
conditions when the common divisor d exists.

Let us admit that 4;, A, ..., A, arethe polygon P vertexes,
described clockwise.

Description of the algorithm

Step 1.

Step II.

Step III.

Step 1V.

Step V.

Let us draw the network D(d).

Let a and b represent the smallest and biggest values among the
abscissas of the vertexes A;, Ao, ..., A, of polygon P, and
¢ and d — the smallest and biggest values among the ordinates of
these vertexes.

Let us counstruct the rectangle D, determinated by the straights
T =a,x=0>b y=cand y = d. Obviously, in the described
conditions, the polygon P will be situated in the interior of the
rectangle D.

. . /
Let us construct the ordinate series 1 = a, 9 = 1 +d , x3 =

azg-l—d/,...,xl:bwherel:b;a-l-l.

We trace the straight X = z; for Vi = 1,n . We study the knots
of the network D(d') which belong to the rectangle D and are
situated on the straight X = x;.

Let’s consider V one of these knots:

a) If there exists a segment [A;, Aji1], j = 1,n (it’s consid-
ered A, +1 = A; ) that contains point V', then this, which is a
knot on the frontier of P, will be taken up in the calculation
of number b .

b) If the condition a) is not realized, then we trace from the
point V' a semi-straight, parallel to the positive direction of
axis OX. We calculate the number L of intersections of this
semi-straight with frontier of polygon P. If the intersection
is realized in some vertex A;, j = 1,n of the polygon, then
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such intersection will be taken into consideration in the cal-
culation of L in the case when the neighbouring vertexes A;
and A;, are situated on different sides of the semi-straight.
The knot V of the network D(d ), belongs to the interior of
the polygon P if and only if the number L is odd.

As a result of application of items a) and b) for each straight X =
X;, i = 1,n we’ll obtain the values i and b . Thus, applying respective
formula we calculate the polygon area.

Analyzing the described algorithm, we make sure of correctness of
the following result.

Theorem 2.2 The area of the polygon P situated in one network
D(d') can be calculated in time O(N?), where N is the number of ver-
texes of the polygon P.

3 Polygons with holes

According to those described above, it’s fascinating the fact that simi-
larly to the formula exposed in the Theorem 1.1, there is the subtraction
formula of the area of polygon P, with holes, built in a single network

S(P) =i+ 5~ X(Py) + 5x(6F). 0

where b represents the number of network knots which are situated on
the frontier of the polygon P, but 7 represents the number of network
knots which belong to the interior of this polygon, x(Py) = 1—n -
Euler formula for the considered polygon with holes ( n — the number
of polygon holes), but § P, denotes the frontier of this (x(0P,) = b—M,,
My, — the number of edges belonging to the frontier of polygon F,) [1].

Let’s illustrate the formula (1) for the polygon from Figure 4.

The polygon P, can easily be reduced to some simpler polygons,
the area of which is easily determined just so:

S(Pg) =S(ADV Z) — S(ABC) — S(DEF) — S(FGV) — S(HIZ)—
— S(ALM) — S(BNEO) — S(PRST) =
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Figure 4.

2 2

B R 2’

3-1 6-2 1-1_2-2_3-1_21_<2-1 1-2)_39
2 2 -

Elsewhere, applying formula (1) and taking up that ¢ = 8, b = 23,
X(Py) =1—-2=—1and x(0P;) = b— M, = 23 — 25 = —2, we obtain
the same result:

S(P)=8+ % — (-1 45 (-2) ="

We can easily make sure that, the area of the rational polygon P,
with holes, the vertexes of which belong to the network D(d') (previ-
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ously described), are calculated by formula
b 1 .
S(Py) = Z“‘E_X(Pg)"‘ﬁ'X(‘SPQ) (d)”,

where i’ — number of knots of network D(d ) which belong to the interior
of polygon P, with holes, b — number of knots which are situated on
the frontier of Py, but x () — Euler formula for the considered polygon
with n holes, x(6F,) represents the Euler formula of this frontier.
We'll illustrate those affirmed, in case of polygon P, from Figure
5. It’s easily determined that d = % As sequel, the polygon P, with

holes can be placed in network D (%)

A D U, ¥

\\ C E

e R B By TR R ST S
=
]

Figure 5.

In this case, we have i’ = 3,b =25 and x(P,)) = 1-n =1-2 = —1,
X(0Py) = b — M, = 25—26 = —1, as continuation, the polygon has
the area

S(P,) = <3+%—(—1)+%-(—1)) - <§)2=% .
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Dividing the given polygon into simpler polygons, it’s easily verified
that we obtain the same result just so:

S(P,) =S(AVWL)—2-(S(LKY)+S(KJXY))—S(DEU)—S(UEFV)-
S(FGH) — S(HIW) — S(IJX) — S(OMPN) — S(RSGT) =

:AL-LW—2-(LY'YK—KY—FJX-XY)—

2 2
_DU-UE UE+VF UV_FH-GH_
2 2 2
_HW-WI IX-XJ OM+PN E_RSQ_
2 2 2 3 B

4 Generalizations of Pico formula in case of 3
- dimensional polyhedron

Suppose P is a 3 - dimensional polyhedron without holes which contains
k + 1 vertexes with rational coordinates. As in the case of polygons,
on the basis of non-descending ranges of coordinates

o 9, R Ty Tk4+1
Y, Y2, ---5 Yks  Yk+1
21, 29, ey 2k Zk+1
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we form the multitude D = {df, d3, ..., df, d&, dj, ...,
di di, di, ..., di} where

df = ziy1 —x;, Yi=1k,

<
=)
I

\.I—\
o

d! = yit1 — vis

I
—
Eal

. .
di = zit1— 2z, Vi

We'll denote by d some of common divisors of the elements from
multitude D. (We mention that for any multitude of rational numbers
there exists, at least, one common divisor). In the space R® we pass
planes parallel to planes XOY, XOZ and YOZ so that the distance
between any two parallel and neighbouring planes is equal to d . Thus
in space R3 we obtain a cubic network which we’ll denote by Q(dl).
In this case we can say that P is a d -rational polyhedron. In a sequel
we’ll study the problem of volume calculation of polyhedron P when
this is a pyramid or prism.

Definition 3.1 One polyhedron P, the vertexes of which are sit-
uated in the knots of network Q(dl), is named d -rational elementary
polyhedron, if with exception of knots in which the vertexes of P are
situated, this contains no other knots from Q(d').

Easily can be observed that if P is a 1-rational elementary tetrahe-
dron with height h = 1, then the volume of this is V = %. Surely, on
the basis of those exposed earlier we obtain

1 1 b 1 3 1
=—-S,-h==-(i+=-—-1)-h=-"- ——1)-1=-=.
Vv 3 Sp 3 <’L+2 ) 3 <0+2 ) 6

In the case of d -rational tetrahedron with the height H we have
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Theorem 3.1 Any straight prism, the vertexes of which are situated
in the knots of rational network Q(dl), can be divided in d -rational
elementary prisms.

Proof: Firstly we observe that any polygon from plane, the ver-
texes of which are situated in the knots of rational network D(d ) can
be divided into d -rational elementary triangles, that is triangles which
with exception of knots in which the vertexes of these are placed, con-
tain no other knots of the network D(d'). In this case we’ll say that a
triangulation of the polygon, determined by network D(dl) is given.

Oune of possible triangulations of any polygon can iteratively be
obtained in the following way:

1. We denote by N(P) the multitude of knots of unitary network
which belong to polygon P, that are situated on the frontier bd(P)
or in the interior int(P) of this. Evidently N(P) # @.

2. We choose an element t € N(P) Nbd(P).

3. We form the multitude I'(¢) of all w € N(P) knots, w # ¢, for
which the segment [¢, w] belongs to the polygon P, which con-
tains no other knots of the network excepting ¢ and w, which can
be united by a curve that belongs integrally to the polygon P.

4. We denote by ¢ and ¢ the elements from ['(t) which belong
to the frontier bd(P) and for which the curve line [q', t, q”]
is placed on this frontier. We execute an order of elements of
multitude I'(¢) correspondingly to the clockwise direction, begin-
ning with one of the knots q/ or q”, finishing with the second,
with the condition that the curve which unites consecutive el-
ements from I'(¢) belongs as a whole to the polygon. Suppose
L(t) = {s1 = ¢, $3, ., Sk_1, Sp = q } (see Figure 6
a) ). We draw up a curve, consequently uniting elements from
I'(t). We denote by Pr the polygon with the frontier bd(Pr) =
[s1 = g, S92, s Sk_1, Sk=4q . t g]- We mention that
int(Pr) contains no knots of the network. Surely, in the opposite
case such knot z will belong to a triangle [s;—_1, ¢, si],1=2,k
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which means that in the interior of the cone s;_1, t, s1 there exist
nodes which weren’t taken into consideration at forming the set
I'(t). It is obvious that Pr is a triangulated polygon.

13:-.51? 6 A1 ..
Vit N SEEER R § oW A YElE oW w
a) b
Figure 6.

5. Let us denote by Bd(P) the common frontier between P and Fr
and eliminate the set Bd(P) Nint(Pp) from P. If we obtain as a
result a void set of the points from the plan then we obtain the
triangulation of the initial polygon. Otherwise we denote by P
the remained part of the polygon. We mention that in general
case the obtained domain P can be a reunion of simple polygons.
(see Figure 6 b). Let us return to the step 2 and continue the
triangulation procedure.

If for the polygon P from Figure 6 a) we consecutively apply the
described algorithm, then we obtain the situations described in the
Figure 6 a), b) and Figure 7 a), b).

Finally we’ll obtain a triangulation of the initial polygon. Such a
triangulation is presented in Figure 8. Of course, the triangulation of
the polygon on the basis of the described algorithm is not obtained
univocally. Surely, the number of the triangles into which the polygon
will be divided is always the same.

Now let P be an arbitrary prism, the vertexes of which are situated
in the nodes of the network Q(dl). Let us triangulate the polygon
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Figure 7.

Figure 8.
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from the base of the prism according to the described procedure. In
accordance with the obtained base configuration we trace a vertical
section of the prism P and the planes parallel to the base through
different nodes of the network. As a result we obtain a division of
prism P into d -rational elementary prisms.

Consequence. Any prism the vertexes of which are situated in
the nodes of the network Q(d') can be divided into (2i +b— 2)(n — 1)
d -rational elementary prisms, where 1 is the number of nodes of the
network situated in the interior of the polygon on the base of the prism,
b — the number of nodes on the polygon frontier, and n — the number
of nodes on a lateral edge.

Proof: According to the Euler formula, the number of triangular
domains into which a plane can be divided using k points is 2k — 4. In
the case of the studied polygon k = i 4+ b. Because the domains from
the polygon exterior do not interest us we obtain that the polygon can
be divided into 2k —4—1—(b—3) =2(i+b) —4—-1—-0+3 =2i+b—2
triangles. Because there are n nodes of the network on the lateral edge
of the prism we trace (n — 1) sections parallel to the base and thus we
obtain (2i + b — 2)(n — 1) d -rational elementary prisms.

Theorem 3.2. The volume of a prism with the vertexes in the
nodes of a network Q(d’) can be calculated by the formula:

!

V= (2i4b—2)-(n—1)-(d)?,

N | —

where 1 is the number of nodes of the network Q(d/) which s situated in
the interior of the polygon on the prism base, b — the number of nodes
on the polygon frontier, and n — the number of nodes on a lateral edge.

Proof: It is known that a d -rational elementary prism can be
divided into three d -rational elementary pyramids of equal volume.
Thus, according to those mentioned above, the volume of such a prism
is 3 (d)2-h= X (d')3. Taking into consideration the consequence 3.1
we obtain the affirmation of the Theorem 3.2.
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Theorem 3.3. The volume of a pyramid, the vertezes of which are
in the nodes of the network Q(dl) is calculated by the formula

1 ,
Vzg-(2i+b—2)-k-(d)3 :
where 1 and b represent the number of network nodes, that belong to
the interior of the base of the pyramid and to the frontier of this base
respectively, and k — the number of nodes on the height traced from the
pyramid vertex.

Proof: According to those described above let us make a triangu-
lation of pyramid base. Joining every node of the network that belong
to the base with the vertex of pyramid, we obtain (27 + b — 2) d-
rational elementary pyramids. Each of these pyramids has the height
h =d - (k—1), where k is the number of nodes that belong to the
height traced from pyramid vertex. Thus for initial pyramid we have

(d)2 -

G (2i+b—2)-(k—1)-(d)?.

V=02i+b-2)-

| =

Theorem is proved.
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On Soundness for Time Workflow Nets

Inga Camerzan

Abstract

Workflow technology is widely used in order to offer com-
panies a solution for managing business processes. Time man-
agement is a critical component of workflow management. In a
workflow management system there is a delay between the mo-
ment an activity becomes enabled and the moment the activity
is executed by a certain resource. The notion of correctness also
called soundness for untimed workflow nets is extended for Time
Workflow Nets and a characterisation of this property is given
for two particular classes of Time Workflow Nets.

1 Introduction

Workflow technology has been introduced in order to model and man-
age business processes, but workflows have some disadvantages: they
are inflexible, they do not support inter-operability, and the formal
verification of their correctness is difficult. For solving these problems,
workflows can be modeled using Petri Nets[6, 9], which are expressive,
have a well defined semantic, a very accessible graphical representation
and reach techniques for checking quantitative and qualitative proper-
ties.

A work flow represents the automatization of a complex process
which consists of a set of interdependent activities, orientated towards
the fulfilling of a certain objective. The applicability domains of work-
flows are: modeling, coordination, management of business processes.
Workflows are based on cases, which are generated by external clients
or they are generated internal. A case is an instance of a workflow. A

(©2007 by I. Camerzan
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workflow process is designed to handle similar cases, specifying what
action must be executed and in what order.

In this article we will define and use Time Workflow nets for mod-
eling workflows, because Petri nets have well-known three advantages:
simplicity, generality, and adaptability.

- Simplicity - a reduced number of elementary concepts, which can
be combined in a large variety.

- Generality - the different kind of semantics (transition sequences,
tracks, processes) are easy to associate with Petri nets.

- Adaptability - the modification of the basic model leads to special
models which include different aspects like time, making it usable
in different domains.

Workflow properties can be easily checked using the analysis tech-
niques of Petri nets.

The correctness, effectiveness, and efficiency of the business pro-
cesses supported by the workflow management system are vital to the
organization. It is important to analyze a workflow process definition
before it is put into production. In this article we will focus on verifica-
tion (establishing the correctness of a workflow). For verification linear
algebraic techniques and coverability graph analysis can be used. With
these techniques it is known that such problem like boundness and live-
ness are decidable. That is why we will reduce soundness problem to
boundness and liveness problems.

2  Workflows

As we mentioned above a set of interdependent atomic activities forms a
workflow. Basic entities of a workflow are: actions, agents and activities
dependences.

An action can take place if some preconditions are fulfilled and it
yields some postconditions. For the execution of an action a trigger
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is necessary; a trigger can be represented by the external conditions
which lead to the execution of an enabled task.

We distinguish between four types of tasks: automatic - a task is
triggered at the moment when it is enabled, user - a task is triggered
by human participant, message - an external event (message) triggers
en enabled task instance, {ime - an enabled task instance is triggered
by a clock (we are especially interested in these types of tasks).

A task which is enabled for a specific case is a work item. A work
item is the combination of action + case + trigger (optional).

An activity is the actual execution of a work item, i.e., a task is
executed for a specific case = action + case + resourse (optional) +
trigger.

A workflow has three dimensions: the case dimension, the process
dimension, the resource dimension.

1. Case dimension specifying that every case is treated individually.

2. Process dimension specifying the workflow process, i.e., actions
and routing for these actions.

3. Resource dimension specifying the what resources are grouped in
roles and organizational units.

We will focus only on process dimension.

3 Time Workflow Nets

In this section we model the process dimension using Petri nets.

A Petri Net is a bipartite graph with two types of nodes: places and
transitions interconnected by arcs, which connect only different types
of nodes.

The process dimension specifies, as we mentioned above, which ac-
tions must be performed and in what order. For modeling workflows
by means of Petri Nets the transition will be done directly: actions will
be modeled by transitions, work items by enabled transitions, activities
by firing transitions, conditions will be modeled by places, and cases
will be modeled by tokens and dependences by arcs.
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Further we will consider only Petri nets which describe the life cycle
of one case. A Workflow net [2] will be defined as a Petri net which
models the workflow process definition.

Definition 3.1 A Petri net PN = (P,T,F,W) is a Workflow net iff:

1. PN has two additional places i and o, ”start” place @, "destina-
tion” place o.

2. If we add a transition tx to PN which connects o with © then the
resulting Petri net is strongly connected.

(where P - is a finite set of places, T - is a finite set of transitions,
FCPXxTUT x P -is the flow relation, W : F — N - is the weight
function.)

We define the extended net PN' = (P',T',F' ) with P' = P,T' =
TU{tx}, F' = FU{(0,t%), (t*,0)} W =W U{W(o,tx) = 1, W (t,1) =
1}.

The notion of trigger defined in the paragraph above corresponds
to an additional condition which must be fulfilled before the execution
of the action, so it can be modeled by a token in an supplementary
input location for the action.

There are different known methods of incorporating time in Petri
nets: associating time delay to transition, associating time delay to
places, associating time delay with arcs, associating time delays or time
intervals to different types of objects of the net, associating stochastic
time. Further we consider only Petri nets which have deterministic
time associated to transitions, in the form of time intervals, defined by
Merlin in 1972 [9] and then studied by Berthomeu-Menasche, Popova
[10, 11, 12], Berthomieu-Diaz [4, 5], Boucheneb-Berthelot. Time Petri
nets are classical Petri nets where for each transition ¢, a time interval
[at, by] is associated. The times a;,b; are relative to the moment at
which ¢ was last enabled. Assuming that ¢ was last enabled at time ¢,
then ¢ may fire only after the time interval [a; + ¢, by + ¢;] elapses.

We define a Time Workflow net in following way:
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Definition 3.2 A Time Workflow net is a tuple X=(P, T, F, W, I)
where PN=(P, T, F, W) is the Workflow net, I: T — Qg x Qg (where
Q[]" is the set of assertive numbers) is a time function which associates
timed intervals with transitions and for each transition t € T, I1(t) <

I5(t), where I(t) = (I1(t), I2(t)).

A global clock is associated with the Time Workflow net, which begins
to work as soon as the first token appears in the net. After time asso-
ciation, the Workflow net will work in following way: from the moment
when a transition ¢ is enabled, the tokens from the input locations
are stored for I5(t) — I;(t) time units, and after this time elapses the
transition fires putting tokens in their output places. For transitions
in conflict, the first transition that fires is the one which has the latest
time interval smaller.

For the definition of a state and of a change of state of the net X
we will follow [10, 11]:

Definition 3.3 Let X = (P,T,F,W,I) be a Time Workflow net and
J:T — Qf U{t}. Then S = (m,J) is the state of ¥ iff:

1. m is a marking in skeleton net.
2.Vt €T andt— <m — J(t) < I1(t)).
3.Vt (teT andt™ £m— J(t)=14).

(where symbol §f means that clock does not work, t—(p) = W(p,t),Vp €
P is arc weight from place p to transition t).

One can understand the notion of state in the following way: let
S = (m,J) be a state. Each transition ¢ in the net has a watch. The
watch doesn’t work (J(t) = #) at the marking m if ¢ is disabled at m.
If t is enabled at m, then the watch of ¢ shows the time J(¢) that has
elapsed since t was last enabled.

Let ¥ = (P,T,F,W,I) be a time workflow net. The state Sy :=
(4, Jo) with 7 the initial marking of the workflow net (the marking which
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0 iff ¢t <m
# iff t7Lm
is counsidered to be the initial state of the time workflow net.
The states in a Time Worklow Net can change due to transition
firings or time elapsing.

has a single token in place i) and Jy(t) = {

Definition 3.4 Transition t is enabled in the state S = (m,J), de-
noted by S — iff

1.t— <m
2. 11 (t) < J(¢).
The resulting state is defined as follows:

Definition 3.5 Transition t enabled at the state S = (m,J), will fire
inducing state S' = (m/,J"), denoted by S — S’ defined thus:

1. m'(p) = m(p) + At(p) = m(p) + W(t,p) — W(p, 1)
2.

f t= £’
Jt)y=< Jit) t- <mAt- <m/ANF,NEFE/ =0
0, otherwise

where Fy = {p|p € P ApF't}, F{ = {p|p € P A\ pF't}

Definition 3.6 Let ¥ = (P,T,F,W,I) be a time workflow net. The
state S = (m, J) changes into the state S" = (m', J") by the time dura-
tion T € Q, denoted by S = S iff: m' = m and the time duration T is
possible Vi(t € T N J(t) # # — J(t) + 7 < I5(t)) and
JA)+7 iff t—<m
! _ —
””_{# it Zm

Definition 3.7 RS(X,Sy) denotes the set of all reachable states from
initial state Sy.
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Definition 3.8 Transition t is live at the state S’ iff VS’ € RS(X, So) —
38"(S" € RS(X,S’) and t is enabled at the state S"). State S is live

in the net X iff all transitions t € T are live in S and X is live iff Sy

15 live in 3.

Definition 3.9 The state S is bounded iff Vp € P : 3k € N : VS' €
[S > S(p) < k. The net ¥ is bounded if VS € [Sy > is bounded.

4 The Soundness Property

This section defines a notion of correctness for Time Workflow Nets
- the notion of soundness and a sufficient condition for soundness is
proven. This property reduces to the problem of soundness for the
corresponding untimed workflow skeleton net, for two special classes
of Time Workflow Nets: time interval workflow nets with immediate
transitions: for these nets, a transition can fire as soon as it becomes
enabled, the second class is the class of time interval workflow nets with
transitions that are not forced to fire in a specific amount of time. For
these classes, the soundness property can be checked by verifying the
boundness and liveness property for an untimed Petri Net.

Definition 4.1 Let X = (P,T,F,W,I) be a Time Workflow Net. ¥ is
sound iff:

1. For every state S reachable from the initial state Sy, there exists
a firing sequence leading from S to a final state (o, J)

VS(So[*)S) = (S[*)(o, J)

2. The states (o, J) are the only states reachable from state Sy with
at least one token in place o:

VS = (M,J)(So[*)SAM > 0= (M = o)

3. There are no dead transitions in :

Vt € T, 38, S'(So[*)S[t)S")

Note that the soundness property relates to the dynamics of the WF
- net. Given X = (P,T,F,W,I) a Time Workflow Net, we define the
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extended Time Workflow Net X' as follows: X' = (P, 7', F', W', I')
where:

*P' =P

T =TU{t*}

* F'=FU{(o,t%), (t*,1)}

* I'(t) = I(t) for all t € T and I'(t*) = [0, +o0]
*W =W U{W(o,tx) =1, W (tx,i) =1}

Lemma 4.1 Let X be a time workflow net with the initial state Sy =
(1, Jo). If X is live and bounded, then X is a sound time workflow net.

Proof.

Y is live, i.e for each reachable state S there is a sequence which leads
to another state S’ in which transition ¢* is enabled. Let S’ = (m’,.J").
Since t* can fire it results that ¢* is enabled in marking m'. Place o is
the input place for t*, so m/(0) = 1. So, for any state reachable from
the initial state, it is possible to reach a state with at least one token in
place 0. So the first condition from the definition of soundness holds.

Consider S a state reachable from Sy, S = (M, J) with M > o (at
least one token in place 0). This means M = M'+ o. The transition ¢*
is fireable in this marking: Since M > o, then M(0) > 1 and o is the
only input place for ¢*, so t* is enabled in M'. Tt also holds that I; (t*) <
J(t*) because I (t*) = 0. If t* fires, a new state S' = (M’ +1,J') is
reached. Since Y’ is bounded and M’ + i > i it results that M’ +1 = 1,
so M’ should be equal to the empty state. Hence condition (2) from
the definition of soundness also holds. The final condition from the
definition of soundness results from the fact that 3’ is live.

The next lemma shows that, for time interval workflows nets with
immediate transitions (i.e transitions that can fire as soon as they be-
come enabled), the soundness property implies the boundness of the
extended time workflow net.

Lemma 4.2 If ¥ is sound and ¥t € T : I (t) = 0 then X' is bounded.
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Proof.

We will first show that X is bounded. Assume that ¥ is sound and X is
not bounded. Since X is not bounded, there are two states S; = (M;, J;)
and Sy = (M, Ji) such that Sg[*)S;, Si[*)Sk and M}, > M;. However,
since X is sound, there is a sequence ¢ = 7g,%0,...Tn_1,tn_1 Such
that S;[o)(o, J). We will show that the sequence o’ = tg,t1,...tp—1 is
fireable from Sy. We prove the statement by induction on 7.

If n =1, then S; % Sk 4 S;1. We prove that t( is fireable at state
Sk. It holds that t; < My, since t; < M; and My, > M;. It must hold
that Jx(to) > I1(to). But this always holds, because I;(tg) = 0. It also
holds that My, > M;;.

Suppose the statement holds for n and we want to prove it for n—+1.
e b
So, if §; % - fa, Sitly ... =S Sy "5 Sin then we have the sequence:

trn— n— T
Sk g Skl---Sknfl —>1 S/m Let S, ﬂ z{l g Sil,... T—>1 Sl’n —>1

t

Sin = zl'n—l—l = Sin+1. From the induction assumption: Sy fa,

k1. Skno1 "3 Sga. It also holds that: ML, = My < My;.j €
0...n—1. We prove that ¢, is fireable at state Sk,, and My, 11 > Mn41.
We know that ¢, is fireable at Sz"n—i—l and Miln+1 = M;, < Mj,, hence
t < Mpp. It must hold that Ji,(t,) > I1(¢,). This statement always
holds, since I1(t,) = 0. So t, can fire at state S, and it results a new

state Skn—l—l with Mgp11 > M.

Using the result proven above, if Sj[0)S, and S; > Sk then there
exists o’ such that Sg[o’)Sk, such that My, > o. This fact contradicts
the condition 2 from the definition of soundness. Thus, ¥ must be
bounded. From the fact that ¥ is bounded and sound it results that
Y is bounded: if transition #* in X’ fires, then the time workflow net
returns to its initial state.

The next lemma proves the same result as Lemma 4.2 for time
interval workflow nets in which transitions don’t have the obligation to
fire at a specific moment of time.

Lemma 4.3 If ¥ is sound and Vt € T : Iy(t) = +oo then X' is
bounded.
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Proof.

We will first show that X is bounded. Assume that ¥ is sound and X is
not bounded. Since X is not bounded, there are two states S; = (M;, J;)
and Sy = (My, Ji) such that Sy[*).S;, Si[*) Sk and My > M;.

We will prove that for any sequence o = S; = Sh ta, Sity. ..

T

n—1
—

trn—1 . T
S! "5 Sin there exists a sequence o' fireable from Si: o' = S 5
.

S8 S, 5SS "5 Sy, with My, > M, where ¥ =
maz{ly(t),t~ < M;_1}.

We will prove that if Sy, = S, 2 Sy, My > My then it
holds:
Ski—1 a, St 4 Sp and My > My, where 77 = maxz{l(t),t” <
M;;_1}. We must prove that the time duration 7;° is possible at S,
ieVt:t™ < My—1 — Jy—1(t) + 7 < Ir(t). This always holds, since
I5(t) = 4o00. The resulting state has Jy,(t) = Jy1(t) +7,Vt : t <
Mj_i. Next, we must prove that ¢; is fireable at the state S},. We
know that M}, = My, > My, and t; is fireable at M], = M;;_1, so
it holds that ¢, < Mj, = Mj,—1. We must prove that I,(¢;) < J,(t).
But t;7 < My = My, so, from the definition of 7; it holds that
7 > Ii(t;). Then, Ji(t) = Ju—1(t;) + 77 > Ju—1(ty) + 11(t) > Ii(t).
So, Ii(t;) < J;,;(t). Thus we have proven that # is fireable at Sj,. For
the resulting state Sy; it holds that My > M;;.

From the fact that ¥ is sound, it results that there exists a sequence
o such that M;[o)(o,J) = M,. Then, there exists a sequence o’ as de-
scribed above such that My[o")M] = (M',J') such that M' > o. This
relation contradicts the second relation from the definition of sound-
ness, so Y cannot be unbounded. From the fact that ¥ is bounded and
sound it results that X' is bounded: if transition ¢* in ¥’ fires, then the
time workflow net returns to its initial state.

Lemma 4.4 If 3 is a sound time workflow net, then Y is live.
Proof.
First we show that state Sy is a home state for ¥/, i.e V.S € [Sp)y :

So € [S)sy. From the definition of soundness, for all states S € [Sp),
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there exists an execution sequence S[o)(o,J). We prove that ¢t* is
enabled in state (o,J). It holds that t*~ < o. We must prove that
J(t*) > I;(t*). This relation is true, because I;(t*) = 0. The resulting
state is S = (i, Jy) So, for every state S € [Sp) there exists a sequence
S[o)t*[So). Now we will prove that ¥ is live. Let ¢ be a transition
and S a state. From the soundness (3), there exists state S’ € [Sp)n
such that ¢ is enabled in S’. We show that S’ € [S)ys. We know that
S[x)sr So[*)srS". So S” € [S)y, and we have proven that ¥’ is live.

Theorem 4.1 If ¥ = (P, T,F,W,I) is a Time Workflow Net, such
that Vt € T : I1(t) = 0. Then X is sound iff the extended Time
Workflow Net, X' is live and bounded.

Proof.
The proof of the theorem results immediately from Lemma 4.1, Lemma
4.2 and Lemma 4.4.

Theorem 4.2 If X = (P,T,F,W,I) is a Time Workflow Net, such
that Vt € T : I(t) = +oo. Then X is sound iff the extended Time
Workflow Net, X' is live and bounded.

Proof.
The proof of the theorem results immediately from Lemma 4.1, Lemma
4.3 and Lemma 4.4

Proposition 4.1 Let X=(P, T, F, W, I) be a Time Workflow Net
such that Vt (t € T — I(t) = 0) and S(X) the skeleton of 2, then it
holds:

1. 8(%) is unbounded iff ¥ is unbounded.
2. S(X) is live iff X is live.

Proof.
Demonstration is similar to the demonstration from [11].

Proposition 4.2 Let X=(P, T, F, W, I) be a Time Workflow Net
such that Vt(teT— I2(t) = oo0) and S(X) the skeleton of X, then it
holds:
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1. S(X) is unbounded iff ¥ is unbounded.
2. S(X) is live iff X is live.

It can be noticed that the two classes of Time Workflow Nets de-
fined above have the same boundedness and liveness behaviour as the
corresponding classical Petri Nets (their skeletons). Now, using the-
orems 4.1 and 4.2 and proposition 4.1 and 4.2, the following results
regarding the soundness of these classes of Time Workflow Nets can be
proven.

Theorem 4.3 Let ¥ = (P,T,F,W,I) be a Time Workflow Net such
that Vt (t € T — 11(t) = 0) and S(X) the skeleton of X, then it holds:
Y is a sound Time Workflow Net iff S(X) is a sound workflow net.

Proof.

According to Theorem 4.1, ¥ is sound iff ¥’ is live and bound. Since ¥’
has for all ¢ : I;(t) = 0, then X' is live and bound iff S(¥’) is live and
bound. But S(X') = S(X)’, so S(¥') is live and bound iff S(X)’ is live
and bound. For untimed workflow nets we know that W F' is sound iff
W F' is live and bounded. So S(X) is sound.

Theorem 4.4 Let X=(P, T, F, W, I) be a Time Workflow Net such
that Vt (t € T — I5(t) = o0) and S(X) the skeleton of X2, then it holds:
Y is a sound Time Workflow Net iff S(X) is a sound workflow net.

Using theorem 4.3, theorem 4.4 and the fact that soundness is de-
cidable for untimed workflow nets, it results that:

Corollary 4.1 Let ¥ = (P, T,F,W,I) be a Time Workflow Net such
that Vt (t € T — I(t) = 0). The soundness property is decidable for
2.

Corollary 4.2 Let ¥ = (P,T,F,W,I) be a Time Workflow Net such
that ¥t (t € T — I5(t) = oo). The soundness property is decidable for
2.
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For the two classes of Time Workflow Nets described above, the
soundness property is decidable and it can be checked by verifying the
boundness and liveness property of the underlying untimed net of the
extended net Y'.

5 Conclusions

In this paper we have introduced a new class of Petri Nets for modelling
workflows with time delays associated to tasks. We have defined the
notion of soundness for Time Workflow Nets, extending the notion of
soundness defined in [2] for untimed workflow nets. It was shown for
a Time Workflow Net X that, if the extended Time Workflow Net X'
is live and bounded, then X is sound. There were identified two sub-
classes of Time Workflow Nets (Time Workflow Nets with immediate
transition firing and Time Workflow Nets with no obligation to fire for
transitions) for which the soundness property reduces to the soundness
property of the skeleton net. Thus, the soundness can be verified using
the liveness and the boundness properties of an untimed workflow net.
Therefore, the soundness property is decidable in these two particular
cases. Further we research aims at finding a characterisation for the
soundness property for all Time Workflow Nets and finding interesting
subclasses of Time Workflow Nets for which the soundness is decidable.
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Ordering of jobs with three different processing
times in the Mxn Bellman-Johnson problem

Ion Bolun

Abstract

Bellman-Johnson Mzn scheduling problem with monotone (no
decreasing, constant or no increasing) jobs of three different pro-
cessing times is investigated. Three different classes Cs1, Cs.o
and Cj.3 of such systems are considered. On the basis of earlier
results, the solution for optimal ordering of adjacent or nonadja-
cent jobs in pairs for each of these classes of systems is obtained.
In addition, examples of systems for which it is possible to obtain
the optimal solution of ordering all n jobs are done, too.

1 Introduction

Bellman-Johnson Mzn scheduling problem in sequential systems [1] —
one of the main problem in theory of scheduling [2, 3], is not solved,
yet. Solutions for some particular cases only are obtained [1-5, 7, §]
and algorithms for quasi optimal solving of the general problem are
proposed [5, 6]. The notion of monotone jobs is defined in [7]. There,
some results referring to partial or total ordering of no decreasing,
constant or no increasing jobs are obtained, too. In article [8], the case
of monotone jobs with no more than two different processing times is
investigated.

In this paper, some particular cases of partial or total ordering of
jobs with no more than three different processing times are investigated.
For each such a job, the processing time on first sequence of processing
units (servers) is the same, on the second sequence of servers is the
same too, although possible different from the first one, and on the

(©2007 by I. Bolun
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third sequence of servers is also the same, although possible different
from the first two ones.

2 Preliminary considerations

The Mzn Bellman-Johnson problem foresees the execution of n jobs
by a system of M consecutive servers. Each server processes, at any
moment of time, only one job and may begin the execution of next job
immediately after completion of the current one. Jobs’ processing order
must be the same on all systems’ servers. It is required to determine
the order, which assure the minimal total processing time 7' of the n
jobs:

= 1<ul<uz< <u (Z Z Tyzk> — min, (1)

=1 kujl

where 7j;, is the processing time on server j of job 4, placed in the
schedule on place k, and, also, ug = 1, upr = n.

Let = {1,2,3,...,n} be the set of all jobs to be processed in the
system. From earlier known results referring to jobs ordering, below we
address, in particular, to Statement 5 and Consequence 4 from paper
[5] and to Statements 2, 3, to Consequence 1, to Statements 4, 8, 5 and
9 from paper [7], which in this paper are described as Statements 1-9,
respectively, but without their proof.

Statement 1 [5]. Let, for a pair of jobs @ and ( from the n ones,
the following relations take place

min(7; o; 7j41,4) < min(7541,0378),5 =1, M — 1 (2)

and, at the same time, let for a server v € [2, M] the inequality

Toa < Tyg (3)
takes place and for a server k € [2,v — 1] the equality

Tka = Tkp (4)
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takes place; in these conditions, if the inequality

Tka 2 Tk—1,a (5)

takes place too, then when placing jobs « and 3 near each other in the
schedule it is opportune, in sense of (1), that & — [ (job « precedes to
job A).

Statement 2 [5]. If, for any pair «, [ from the n jobs, relations
(2)-(5) take place and these are transitive ones, then the optimal, in
sense of (1), schedule can be obtained according to the rule: a« — 3, if
conditions (2)-(5) are satisfied.

Statement 3 [1, 7]. Conditions (2) are transitive ones, in other
words, if relations (2) and relations min(7;3; 7j11,,) < min(7j41,6; 7j4),
j = 1,M —1 take place, then relations min(7;q; 7j4+1,) < min(7j41,q;
Tjy), § = 1, M — 1 take place, too.

Statement 4 [7]. At o € A, the conditions (3)-(5) are satisfied.

Statement 5 [7]. At o € A, the conditions (2)-(5) are transitive
ones.

Statement 6 [7]. If relations

TjaZTj+1,a,Tjﬂ=Tj+1,ﬂ,j:3aU (6)

take place, then the subset of conditions (2) for jobs a and ( on the
server fragment [s; u| is satisfied.

Statement 7 [7]. When placing jobs @ € A and 8 € E near each
other in the schedule, it is opportune, in sense of (1), that a — g.

Statement 8 [7]. Let L = 4;,44,—1 and L C C, then it is unim-
portant, in sense of (1), the reciprocal placement of subset’s L jobs in
the schedule on places [,l +r — 1 — this can be an arbitrary one.

Statement 9 [7]. Let L =4;,4;,,—1 and L C (AUE) C 2, then the
rearrangement in the schedule of different categories of subsets of jobs
from L on places [,] + r — 1 is opportune, in sense of (1), according to
the order: 1)LN(A\C) - LNC — LN(E\C)or2) LNA — LN(E\C)
or3) LN(A\C) — LNE.

Below, the following definitions referring to monotone jobs, pro-
posed in paper [7], and the definition regarding monotone jobs with
three different processing times are used:
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1. No decreasing jobs are those from the n ones, for which relations

Tjii < Tj414, 1 €A, J=1,M — 1 (7)

take place. Here A is the set of all no decreasing jobs from the n ones.
2. No increasing jobs are those from the n ones, for which relations

Tji 2 Tjtl4, 1 € By, j=1,M —1, (8)

take place. Here E is the set of all no increasing jobs from the n ones.
3. Constants jobs are those from the n ones, for which relations

Tji:Ti,Z'GC,j:].,M, (9)

take place. Here C' = (] is the set of all constant jobs from the n ones.
From relations (7) — (9), one can see that

C=C C(AUE). (10)

4. Monotone with three different processing times jobs (of type C3)
are those from the n ones, for which relations

Tl’iaj = 17V’i
i =4 0i.j=vi+ Lk i€ Cs, (11)
v, ) = ki + 1, M

take place. Here C} is the set of all monotone jobs with three different
processing times from the n ones. The processing time of job ¢ on
first sequence of servers, namely j = 1,v;, is 714, on second sequence of
servers, namely j = v; + 1, k;, is 6;, and on third sequence of servers,
namely j = k; + 1, M, is 7p7;. From relations (7), (8) and (11), one can
easy observe that relation

C3 C(AUE) (12)

takes place.
From the multitude of possible particular cases, referring to the set
Cj5 of jobs, the following three cases are investigated:
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1) C3 = C31, where the set Cs 1 is constituted from n jobs of Cj
type for which the equalities 7; = 7, ¢ = 1, n take place;

2) C3 = C39, where the set C34 is constituted from n jobs of Cj
type for which the equalities §; = 7, i = 1,n take place;

3) C3 = Cs.3, where the set C33 is constituted from n jobs of Cj
type for which the equalities 7y;; = 7, i = 1,n take place.

The proof of statements, with regard to jobs of types C5.1, C3.9 and
Cjs .3 ordering formulated below, is done by confirming the satisfaction
of conditions (2)-(5) from Statement 1, for jobs placed near each other
in the schedule, or of those of Statement 2, for general ordering of
jobs in the schedule. According to their description, conditions (3)-
(5) are satisfied at that time, when for the definition domain, outlined
by relations (3) and (4), the relation (5) takes place; if this definition
domain is empty, then it is not needed to satisty relation (5) and is
considered that conditions (3)-(5) are satisfied.

3 Ordering of (55 type jobs

Let us consider a particular set C3 9 of no decreasing (of type A) or no
increasing (of type E) n jobs with the following processing times:

Tliaj = 17Vi
Tji = Taj:’/i'i']-aﬁ’i 72.:1777“7 (13)
™G] = ki + 1L, M

accepting, to extend the implicated categories of jobs, that there can
be ki = v;, too, when job ¢ is with only two different processing times
(11; and 7p7;). One example of two jobs a and f of type C3 4 is shown
in Figure 1.

Statement 10. For the set of jobs defined by relations (13), it
is opportune, in sense of (1), that « — S if « € A and § € E or if
relations:

min(7asqa; T18)s (14)
Vg, (15)

min(7ia; 7p3)

Va



Ordering of jobs with three different processing times in ...

Y

Ka Kg (16)
take place.

Tji

Figure 1. Two jobs « and (8 of type C3.9.

Proof. According to (12), the jobs from the set C3 = Cs4 are
monotone no decreasing (belong to set A) or no increasing (belong to
set F) ones. At the same time, on the basis of Statement 7, if a € A,
g € E and C39 = (AU E), then the placement of jobs o and [ in
the schedule is opportune, in sense of (1), in order @« — . Hence, it
remains to prove the reliability of this statement for cases (o, ) € A
and (a,f) € E. Proof will be done by confirming the satisfaction
of conditions (2)-(5) from the Statement 1 and of their transitivity
(according to Statement 2).

From relations (13), it is easy to see that v, < ko and vg < kg.
Therefore, for two concrete compared jobs « and [, there can be the
following six variants of relations among values vy, Kq, Vg and Kg:
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1) vo < Ko Svp < kg 2) Vg Svg < Kq < Kg;
3) va Svg < kg < Ka; 4) Vg S Vo < Ko < Kg; (17)
5) vg < vq < kg < Koy 6) g < kg < Vg < Ka-

The procedure for confirming the satisfaction of conditions (2) for
each of the six variants (17) is the following. Let us consider the variant
I: vo < ko < vg < Kg. According to Statement 6, the conditions (2) on
server fragments [s;u], for which relations (6) take place, are satisfied.
That’s why, for variant 1 from (17), it is also necessary to verify the
following 10 cases:

1.1) j = vy < Kaj 1.2) j = Vo = Ka < vg;

1.3) j =va =Ko =g < Kg; 14) j =14 = Ko =g = Kg;

)I/a<j—f<&a<1/ﬂ; 1.6) vo < j = Ko =g < Kg; (18)

L.7) Vo <j =ka=vg =rg; 18) ko <j=rg <rpg;
19)f<;a<j—1/ﬁ—fig, 110)Vﬁ<j=f<&ﬁ.

For each of the ten cases from (18), it is needed to verify the re-
spective condition from (2), taking into account relations (13) and (14).
For example, for cases 1.5 and 1.7 from (18), one has, respectively:

1.5) min(7;71) min(7ara; 714); (19)

<
1.7) min(7;7arg) < min(7aa; i) (20)

If (o, ) € A then, on the basis of relations (7), (8) and (13), in-
equalities 715 < 7 < Ty take place, hence condition (19) takes place,
too. But the condition (20) doesn’t take place, because according to
(13) inequalities 7 > 713 and T8 > Tig take place. In a similar mode,
it was established that conditions (19) and (20) for cases 1.1, 1.2, 1.3,
1.4 and 1.5 at (a, 8) € A are satisfied.

If (a, B) € E then, according to relations (7), (8) and (13), inequal-
ities Tprq < 7 < 718 take place, thus condition (19) doesn’t take place.
At the same time, because of (a,3) € E, relation 7y3 < 715 takes
place and, according to relations (14), inequality Targ < Tare takes
place; hence condition (20) takes place, too. In a similar mode, it was
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established that conditions (19) and (20) for cases 1.4, 1.7, 1.8, 1.9,
1.10 at (o, B) € E are satisfied.

Combining cases («,3) € A and («,3) € E, it is easy to obtain
that conditions (2) for variant 1 take place only at

Vo = Vg = Kq = K@, (21)

which corresponds to the case with two different processing times for
each job: 7; and 74, 1 = 1,n.

Obtained results for the six variants (17) are specified in Table 1.
In this table, the cases for each of variants 2-6 are formed in a similar
mode as the formation of cases for variant 1, but taking into account
the particular order, for the concrete variant, of values v,, Kq, V5 and
K3-

From Table 1 for each of the six variants, it is easy to observe that
even if the set of cases, for which the local conditions are satisfied, is
different (depending of job type), however the solution by job types is
the same.

Table 1. Cases that satisfy conditions (2) for the set (13) of jobs

Vari4{ Job type Cases that satisty | Solution by Solution for the
ant local conditions (2) | job types variant
(a,8) € A | 1.1-15 Vo = Ka = V3 = Kg o
1 (0,f) €E | 14, 1.7-1.10 Vo =Fa =vg =g | 0 FaT VBT RS
(a,8) € A | 2.1-2.4, 28, 2.9 Vo =13 < Ka = Kg _ _
2 (@, /) €F [ 22, 24, 2.5, 2.7, | va =15 < Fia =rp |/ = V8 S Ko = s
2.9, 2.10
(a,8) € A | 3.1-3.4, 3.8-3.10 Vo =13 < kg < Ka
3 (0,B) €E | 32-3.10 Vo =5 < Rg < R |72 T VPS8 S Ka
(a,8) € A | 4.1-49 v < Vo < Ka = Kg
4 (a,B) € E | 41, 4.2, 44, 45, | vg < Vs < Ka = kg Vo S Va S Ra = g
4.7, 4.9-4.10
(a,8) € A | 5.1-5.10 vg < va < kg < Ka
2 (@,f) €EE | 5.1-5.10 V6 < Va <R < Rg | SVa SR8 S Ka
(a,8) € A | 6.1-6.10 vg < kg < Vo < Ka
6 (o0,B) €E | 6.1-6.10 V6 < R < Va < g | S8 SVa S Ka

From the last column of Table 1 one can see: the solution for the
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variant 1 is a particular case of solutions for variants 2-6; the solutions
for variants 2-4 are particular cases for the variant 5 solution. Combin-
ing the solutions for variants 5 and 6 and taking into account that (see
(13)) vq < Ko and vg < kg, one can obtain relations (15) and (16).

Thus, from conditions (2)-(5) of Statement 1, it remains to prove
that conditions (3)-(5) take place. According to Statement 4, these
ones take place at & € A. So, it is needed to prove that conditions
(3)-(5) take place at a € E, too, that is at (a,3) € E, because case
{a € E; € A} signify that f — « and therefore it secedes. Let
(a, 8) € E and relations (13)-(16) take place. At (a,3) € E, the
inequality (3) doesn’t take place for server sequences:

® j = Ko + 1, M, because according to relations (14) the inequality
TMa > Tump takes place;

® j = kg + 1, Kq, because according to relations (8) and (13) the
inequality 7 > 7)/4 takes place;

® j = v, + 1, kg, because according to relations (13) the equalities
Tja = Tjp = T take place;

e j = vg+ 1,1,, because according to relations (8) and (13) the
relations 7, = T1o > 7 = Tjg take place.

Thus inequality (3) can take place only at j = 1,vg, but according
to (13) in this case the inequality (4) doesn’t take place. So, for j =
1, M, inequalities (3) and (4) don’t take place concomitantly and the
necessity of satisfaction the condition (5) secedes. Hemnce conditions
(3)-(5), and with them conditions (2)-(5), too, are satisfied.

It remains to prove the transitivity of conditions (2)-(5). In this
aim, it is sufficient to prove the transitivity of conditions (14)-(16),
because, as was confirmed above in this section, if conditions (14)-
(16) take place, then conditions (2)-(5) take place, too. According to
Statement 3, conditions (2) are transitive ones, and conditions (14) are
a particular case of conditions (2), so they are transitive, too.

One can easyly observe that conditions (15) and (16) are transitive,
too. Really, if relations v, > vg and vg > v, take place, then the
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inequality v, > v, takes place, too. In a similar mode, if relations
ko > kg and kg > K4 take place, then the inequality ko, > ky takes
place, too. Hence conditions (14)-(16) are transitive ones, that was
required to be proved.

Statement 11. Let L = 4,4, 1, L C C35 C Q and for each pair
of jobs («, ) € L the conditions of Statement 10 are satisfied. Then the
rearrangement of jobs of subset L in the schedule on places [, + 7 —1
is opportune, in sense of (1), in the following mode: 1) beginning with
place [, all jobs of subset L N (A\C) are placed in such a way that
a— B, if vy > vg, Ko > kg and T, < Tig; 2) immediately after jobs of
subset L N (A\C), the jobs of subset L N C are placed in the schedule
in an arbitrary mode; 3) immediately after jobs of subset L N C, the
jobs of subset L N (E\C') are placed in the schedule in such a way that
a— B, ifvy > vg, Ko 2> kg and Tara > Tyg.

Proof. According to (10), relations C3 = C359 C (AU E) take place.
At the same time, because of L C Cj 9, relations L C (AUE) hold, too.
The opportunity of ordering the categories of jobs of types A or E from
L in order LN (A\C) - LNC — LN (E\C) results from Statement
9. Here, unlike conditions from Statement 11, the jobs of category C
are separated from subsets of jobs of types A and E. With regard to
the order of jobs of the same type A\C or E\C, the conditions from
Statement 11 coincide with those ones from Statement 10, if for pairs
of jobs of type A\C ((a, ) € A\C) to substitute the condition (14) by
the 714 < 713 one and for pairs of jobs of type E\C ((o,8) € E\C)
to substitute the condition (14) by the 7a7q > Tar3 one; the relevancy
of such substitutions is proved in paper [4]. According to Statement 8,
the jobs of category C can be placed in the schedule, on places between
jobs of category A\C and those of category E\C, in an arbitrary mode,
that was required to be proved.

Consequence 1. If L = C3 9 = Q and for each pair of jobs (a, 8) €
L the conditions from Statement 10 are satisfied yet, then jobs ordering
according to the modality, defined in Statement 11, results with an
optimal, in sense of (1), schedule of all jobs from 2.

The relevancy of Consequence 1 results directly from Statement 11,
taking into account that in this case [ =1 and r = n.
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Evidently, the conditions from Statement 10 are not always satisfied
for all jobs of type Cs3.2. Two examples, for which the conditions from
Statement 10 are satisfied for all jobs of type (32, are described in
Consequences 2 and 3.

Consequence 2. For the set of jobs, defined by relations (13), and
in addition

Vi=Vv, ki =K, i =1,n, (22)

the optimal, in sense of (1), ordering of all n jobs is possible.

Proof. Tt is easy to observe that conditions (22), although corre-
spond to the conditions (15) and (16) from Statement 10, are symmetric
for each pair of jobs from the n ones. So, the optimal, in sense of (1),
ordering of the n jobs depends on conditions (14) only. At the same
time, conditions (14) can be substituted, according to [4], with: @ — (8
if 714 < 11 — for pairs of jobs of type A, and o — B if Tpyq > Tas5 — for
pairs of jobs of type E. In that way, there doesn’t appear uncertainty
with regard to the ordering of jobs of type A and of type E ones, that
was required to be proved.

Consequence 3. If for i € A C (35 relations 71; < 71441, V15 >
V1it+1, k1i > k1,41 take place and for ¢« € £ C U3 relations 7p7; >
TM,i+1, V1i = V141, k15 > k1,441 take place, then the optimal, in sense
of (1), schedule of all the n jobsis: 1 -2 —+3— .. =>n—1—n.

Proof. 1t is easy to observe that the conditions from Statement 10
are satisfied for each pair of the n jobs defined in Consequence 3.

4 Ordering of (5, type jobs

Consider a particular set C31 of n no decreasing (of type A) or no
increasing (of type E) jobs with the following processing times:

Taj = 17Vi
Tji = 0i, =vi + 1,k i=1,n, (23)
TM’iaj :H’i+1aM
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accepting, to extend the implicated categories of jobs, that there can
be k; = v;, too, when the job ¢ is only with two different processing
times (0; and 7p7;). One example of two jobs « and 3 of type Cs; is

shown in Figure 2.

A

3_

Figure 2. Two jobs a and § of type Cs.1.

b

Statement 12. When placing jobs («, ) € C31 near each other
in the schedule, it is opportune, in sense of (1), that « — fif a € A

and 8 € F or if there take place the relations
min(fa: Targ) < min(Tara;0s)
and the conditions of one of the following cases:

a) vg < kg < Vo < Ka;
b) vg <vg <kg <Ky and: (a,fB) € Aor

{(a, 8
c) vg <vq < ko <kg and: {(o,f) € A;Tpq < 05} or
{(a, 8

(24)
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Proof. According to (12), the jobs of C3 = C59 set are monotone
no decreasing (belong to set A) or no increasing (belong to set E) ones.
At the same time, according to Statement 7, if « € A and § € E when
placing jobs a and 3 near each other in the schedule it is opportune, in
sense of (1), that &« — . Thus it remains to prove the reliability of the
statement for cases (a, 3) € A and (a, 3) € E. The proof will be done
by confirming the satisfaction of conditions (2)-(5) from Statement 1.

From (23), one can see that v, < K, and vg < kg. That’s why,
for two concrete compared jobs a and 3, there can be the same six
variants (17) of relations among values v, K, Vg and kg as at proving
the Statement 10.

The procedure for confirming the satisfaction of conditions (2), for
each of the six variants (17), is similar to that used when proving
Statement 10, with the difference that, in place of relations (14), the
relations (24) will be taken into account. The obtained results for the
six variants (17), are described in Table 2. In this table, the cases for
each of variants 1-6 are formed in a similar mode as the formation of
analog cases when proving the Statement 10.

One can see from Table 2 that, unlike the jobs’ set (13), for each
of the six variants of the jobs’ set, defined by relations (23), there
exist many cases when the solutions by jobs type (local ones) differ;
at the same time, solutions coincide or are larger for jobs of type A
((a, B) € A), than for ones of type E ((«o, 8) € E).

From the last column of Table 1, one can observe that the solutions
of variants 1-5 are particular cases of the solution of variant 6. So,
the general solution coincides with that of variant 6. As well, solutions
by jobs type 1, 3, 7, 11, 15 and 19 (see penultimate column of Table
2) coincide with the solution of variants, to which these belong, hence
are particular cases of the general solution; local solutions 21 and 22
coincide with the general one. While satisfying some supplementary
conditions, there are other cases for which it is possible the partial
ordering of jobs, too (see the penultimate column referring to numbered
local solutions). It is easy to observe that a part of solutions by jobs
types are particular cases of other local solutions or of the general one.
The correspondence among these solutions is shown in Table 3.
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Table 2. Cases that satisfy conditions (2) for the set C3 9 of jobs

Variy Job type Cases that satisfy Solution by job types Solution for the
ant local conditions (2) variant
1.1-1.5 1. Vo = Ko = Vg = Kg
. (a,8) € A [ 1.1-1.5, 110  at | 2. va = ka =vg < Kg
TMa < 0p Vo = Ka =V3 =K
1.4, 1.7, 1.9, 1.10 3 Va—ha=vp=hrg | o o P
(,8) € E [ 1.3, 1.4, 1.6-1.10 at | 4. va = ka = Vg < kg
TMa 2> U5
2.12.4, 28,29 5. Va = Vg < ha = kg
(a,8) € A 2124, 28,29, 210 | 6. va = Vg < ka < kg
2 at Tya < 06 —
2.4,2.7,29,2.10 7 Vo =Up =ha =Ry | & VAT RaTHs
2.2,24,25,27, 29, | 8 va =vg < Ka = kg
@A €L 51010 00 > 0,
2.2-2.10 at Tpo > 03 | 9. va = vg < ko < Kg
(a,8) € A | 3.1-3.4, 3.8-3.10 10. vo = vg < kg < Ka
3 (a /8) cE 33, 3,4, 3.6-3.10 11. vy = V3= Kg S Ka Vo = Vg = Kg S Ka
’ 3.2-3.10 at 0o > 05 [12. va=V5< Ag< Fa
4.1-4.9 13. vg < wa < Ko = Kg
(@ 8) € A T 10 at 770 <05 |14 05 < va < Fa < Rg
4 4.1,4.4,4.7,4.9-4.10 [15. vg< Vo = Ka = Kg < - -
(@.8) ¢ B | FL 32, 44, 454716 5 < va < ha= hp VB S Vo = Ka = Kp
’ 4.9, 4.10 at 0o > 0
4.1-4.10 at T(ye 205 |17 v3< va < ka < kg
(a,8) € A| 5.1-5.10 18. U5 < Va < Fijp < Fa
5 (a ﬂ) cE 5.1, 5.3, 5.4, 5.6-5.10 19. Vs S Vo = HﬁS Ka vg S Vo = Kg S Ka
’ 5.1-5.10 at Oa > 05 |20. V5< Va < p < Fa
(a,8) € A | 6.1-6.10 21. vg< kg < va < Ka
b [(ap cr]616.10 22 U5 < ip < Vo < e |0 S 18 S Ve S Fa

From the last column of Table 3, one can observe that there are
five different cases, defined by relations among values v, Kq, vg and
kg, which correspond to the general solution of variant 6 and to local
solutions 14, 17, 18 and 20. These solutions correspond to cases (25)-
(27), hence conditions (2) are satisfied.

It is needed still to prove the satisfaction of conditions (3)-(5). Case
{a € E; g € A}, which leads according to Statement 7 to the order
B — «, secedes. Thus there remain cases that cover local solutions 14,
17, 18, 20, 21 and 22 from Table 2. According to Statement 4, these
conditions take place for cases that are applicable at (a, ) € A and,
namely, those which cover the solutions 14, 18 and 21 from Table 2.
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Table 3. Local solutions-particular cases of generalizing solutions for

(3. set
Applicability domain Local solutions- | Generalizing solutions
particular cases (from | (from Table 2)
Table 2)
(a,B)€e Aor (a,f) € E | 1,3, 7,11, 15,19, 21, 22 | Var.6. 3< kg < Vo < Ka
(a,B) € A 5,10, 13 18. v < va < kg < Ka
(a,8) € E and 6, > 05 | 8,12, 16 20. vg < Vo < kg < Ka
(,B) € Aand Tma < | 2,6 14. vg < va < Ko < Kg
b5
(,B) € E and e > | 4,9 17. v < Vo < ka < Kg
b5

With regard to the other local cases (17, 20 and 22) from Table 2
applicable at (o, 8) € E, at first it is needed to select server sequences,
for which definition domains outlined by relations (3) and (4) are not
empty. At («,) € E, on the base of relations (24), the inequality
Tma > Tympg takes place and, taking into account relation (23), the
condition (3) can take place only in the frame of server sequence j =
vg+1,kg. Let the condition (3) be satisfied, then the condition (4)
can take place only in the frame of server sequence j = 1,1v3. Let the
conditions (3) and (4) take place, then condition (5) is satisfied, too,
because in the frame of server sequence j = 1,vp, according to (23),
equalities 7;, = 7;3 = 7 take place, that was required to be proved.

Statement 13. For the set of n jobs of type Cs.1, defined by
relations (23), it is opportune, in sense of (1), that o — [ if &« € A and
B € E or if there take place the relations (24) and conditions (25) at
(o, B) € E or conditions

vg < Vo, kg < Kq at (a, ) € A. (28)

Proof. 1t is easy to see that the conditions from Statement 13 are
a subset of conditions from Statement 12. Therefore, conditions from
Statement 13 satisfy conditions (2)-(5) from Statement 1. In that way,
from the same counsiderations as when proving the Statement 10, it
remains to prove that conditions (24), (25) at (a, ) € E and (28) are
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transitive.

The transitivity of conditions (24) is confirmed by Statement 3.
With regard to conditions (25), let @« — (§ and 8 — -y, then from the
problem conditions we have: vg < kg < vy < Ko and vy, < Kk, <
vg < kg. Combining these two groups of inequalities, one can obtain
vy < Ky < vg < kg < Vo < Kq, from where, eliminating factors v5 and
kg referring to job f, results that inequalities v, < K, < vy < Ko take
place, hence conditions (25) are transitive.

It remains to prove the transitivity of conditions (28). Let
(o, 8,7) € A and o — B, f — =, then from the problem conditions we
have: vg < vy, kg < Kq and v, < vg, Ky < Kg. Combining in respective
way these two pairs of inequalities, it is easy to obtain v, < vg < v,
and k, < kg < Kq, from where, eliminating factors v4 and kg referring
to job f, results that inequalities v, < v, and K, < ko take place,
hence conditions (28) are transitive, that was required to be proved.

Consequence 4. If relations T13 < T1,i+15 V1g > V1,i+1, kli >
kl,i—l—l for (i,’i + 1) €A g 03.2 and relations TMi Z TM,i+1, 01 Z 01'4_1,
vy > V1441, ki > k1’i+1 for (’L,’l + ].) € E C (54 take place, then the
optimal, in sense of (1), ordering of all the n jobs is: 1 € A — j € E,
1-2=23—=.—=n-1—=n.

Proof. 1t is easy to observe that the conditions from Statement 12
are satisfied for any pair of the n jobs defined by Consequence 3. The
transitivity of conditions, defined in Consequence 4, can be confirmed in
a similar mode as the conditions from Statement 13, that was required
to be proved.

5 Ordering of (53 type jobs

Let us consider a particular set C3 3 of n no decreasing (of type A) or
no increasing (of type F) jobs with following processing times:

Tli7j:17’/i
Tii =14 bUij=vi+ 1,k ,i=1n, (29)
Taj:’ii'i_]-aM
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accepting, to extend implicated categories of jobs, that there can be
ki = V;, too, when job i is only of two different processing times (71,
and 6;). One example of two jobs « and ( of type Cj3 is shown in
Figure 3.

Y
g % ——
3

| & wb---o se)ma 07@
14

k %

1 3 5 7 9 11 Jj

Figure 3. Two jobs « and (3 of type C3.3.

Statement 14. When placing jobs («, ) € Cs3 near each other
in the schedule, it is opportune, in sense of (1), that « — fif a € A
and 8 € F or if there take place the relations

min(7iq;05) < min(fa;715) (30)
and the conditions of one of the following cases:

a) Vg < K3 < Vo < Ka; (31)
b) vg <vq < kg <Ky and: (a,fB) € Eor (32)

{(a.
c) Vo v < kg <Koy and: {(a,B) € A;0, < Tig}or (33)
{(a.
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Proof. According to (12), the jobs of set C5 = C3 3 are monotone no
decreasing (of type A) or no increasing (of type E). At the same time,
according to Statement 7, if « € A and § € E, then when placing jobs
« and [ near each other in the schedule it is opportune, in sense of (1),
that @ — . Thus it remains to prove the reliability of the statement
for cases (o, 3) € A and («, 3) € E. Proof will be done by confirming
the satisfaction of conditions (2)-(5) from Statement 1.

From (29), one can see that v, < ko and vg < kg. Therefore, for
two concrete compared jobs a and 3, there can be the same six variants
(17) of relations among values vq, ko, 3 and kg as at Statement 10.

The procedure for the verification of satisfaction of the conditions
(2) for each of the six variants (17) is similar to that used when proving
Statement 10 with the difference that, in place of relations (14), the
relations (30) are taken into account. The obtained results for the six
variants (17) are described in Table 4. In this table, the cases for each
of variants 1-6 are formed in a similar mode as the formation of analog
cases when proving Statement 10.

From Table 4 it is easy to see that, unlike of jobs set (13), for
each of the six variants of jobs set defined by relations (29), there exist
many cases when the solution by job types differ; at the same time,
this coincide or is larger for jobs of type E ((a, 8) € E), than for jobs
of type A ((«, B) € A).

Comparing the last column of Tables 2 and 4, it is easy to observe
that the solutions of variants 1-6 for jobs set defined by relations (23)
and the ones for jobs set defined by relations (29) coincide. At the
same time, solutions by jobs type, specified in the penultimate column
of Tables 2 and 4, don’t always coincide.

From the last column of Table 4, one can see that the solutions of
variants 1-5 are particular cases of the solution of variant 6. Thus, the
general solution coincide with that of variant 6 one. As well, solutions
by jobs types (local ones) 1, 3, 5, 10, 15 and 18 (see penultimate column
of Table 4) coincide with solutions for variants, to which these belong,
hence are particular cases of the general solution, and local solutions
21 and 22 coincide with the general one. At the same time, when
satisfying some supplementary conditions, other cases, for which the
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Table 4. Cases that satisfy conditions (2) for the jobs set (29)

Vari4{ Job type Cases that satisty | Solution by Solution for the
ant local conditions (2) | job types variant
1.1-1.5 1. vo=Ka=vg=kKg
. @B €A i 7t 0a<ry |2 vaShazro=rs |
5 er 1.4, 1.7-1.10 3 Va=fka=vg=nrg Vo~ Ra = V6 =Fp
(@.8) € B 771, 17190 [ 4. v <ra—vs=rp
at €a Z T13
2.1-2.4, 2.8 5. Vo =Vg=Ka =HKg
2.1-2.4, 2.8, 2.9 at | 6. va=13<Ka=K
, eA ) ) @ B> Fa B
g | ®P) 6o < 5
2129 at 0o <718 | 7. Va SV <Ko =Kg _ _ _
22, 24, 25, 2.7, | 8 Va=v3<ka=rg | & P T a= M5
2.9, 2.10
() € B 5153 24, 2.5, [9. va <vs <ra=rp
2.7, 2.9, 2.10 at
0o > T13
3.1-3.4, 3.10 10. va =vg=Kg < kKa
31-3.4, 3.83.10 |11. va=1p<fp<Ha
3 | (P €eA | atg, <6,
.1-3. o < Vo Svg <Kl Ka
3.1-3.10 at 0, < [12.v4 <vg<Kg<lK Ve = Vs = Ky < Ka
T3
3.2-3.10 13. Vo =5 < hip < Fia
(,0) €E [31-310 at 0, > |14.va <vp<hp<ka
T3
4.1-4.8 15.v3<va=Ka=kKg
g | @P) €A Gt 6. <85 [16. 5 <va <ra—rps
vg < Vo = Ko = Kg
(@.B) CE 41, 4.2, 4.4, 45, |17. V3 <Va <Fa=Fp
@8 4.7,4.9,4.10
5.1-5.7, 5.10 18. 13 < Vo = Kp < Fia
5 (a,0) € A 2.1-5.10 at 0, < [19.v5<vo<kp<Ha Vs < Ve = Ky < Ka
B
(a,8) € E | 5.1-5.10 20. v3 <vo <K< Ka
(a,8) € A | 6.1-6.10 21. v <Kp <Va<Ka
6 (0,f) €E | 6.1-6.10 32175 <Ry <va< e | P S8 S Va S Ko
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partial ordering of jobs is possible, exist, too (see penultimate column
referring to numbered solutions by jobs types — local ones). One can
easily observe that a part of solutions by jobs types are particular cases
of other local solutions or of the general solution. The correspondence
among them is shown in Table 5.

Table 5. Local solutions-particular cases of generalizing solutions for
03.3 set

Applicability domain Local solutions- | Generalizing solutions
particular cases (from | (from Table 4)
Table 4)
« €Aor(a,B8) € E | 1,3, 5,10, 15,18, 21, 22 | Var.6.v3 <k <vs <kq
( 7/8) ) ) 9y Y, ) ) 3 3 B B
o ek 8,13, 17 20. v < vy < K3 < Ka
(o, B) , 13, 3 S va < kg <
«a €Aand b, <96 6, 11, 16 19. v < Vo < kg < Ka
(o, B) s | 6,11, i s
(,) e Eand b, > 115 | 4,9 14. va <vg < kg < Ka
(a,B) € Aand b, <7118 | 2,7 12, vo < v3 < kg < Ka

Thus, there are five different cases, defined by relations among val-
ues Vg, K, Vg and kg, that correspond to the general solution of variant
6 and to local solutions 12, 14, 19 and 20. These correspond to cases
(31)-(33), hence conditions (2) are satisfied.

We have still to prove the satisfaction of conditions (3)-(5). The
case {a € E;[ € A}, which leads, according to Statement 4, to the
order # — «, secedes. Thus there remain cases that cover solutions
12, 14, 19, 20, 21 and 22 from Table 4. According to Statement 4,
conditions (3)-(5) take place for cases applicable at («, 5) € A, namely
that which cover solutions 12, 19 and 21 from Table 4.

With regard to the other cases from Table 4 (14, 20 and 22) ap-
plicable at («,8) € E, firstly it is needed to select server sequences,
for which definition domains, outlined by relations (3) and (4), are not
empty. At (a,0) € E, on the basis of relations (30), the inequality
0o > 63 takes place and, on the basis of conditions (31)-(33), the in-
equality kg < Ko takes place. Thus, taking into account relation (23),
the condition (3) can take place only in the frame of servers sequence
j = 1lvg: (a) at vg > v, and 0, < 715 or (b) at vg < v, and, re-
spectively, 714 < T15. In the first of these two cases, according to data
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from Table 4, the condition 6, < 713 doesn’t hold for local solution 14,
but can take place for local solutions 20 and 22. At the same time,
according to data from Table 4, for local solutions 20 and 22 the in-
equality vg < v, takes place, hence case (a) can’t take place. Let the
case (b) take place and the condition (3) is satisfied; then the condi-
tion (4) can’t be held, because the condition (3) takes place for the
entire servers sequence j = 1,v3. Thus, conditions (3) and (4) don’t
take place concomitantly; hence conditions (3)-(5) are satisfied that
was required to be proved.

Statement 15. For the set of n jobs of type Cs3, defined by
relations (29), it is opportune, in sense of (1), that o — [ if &« € A and
B € E or if there take place the relations (30) and conditions (31) at
(a, B) € A or conditions

vg < Vo, kg < Ko at (o, ) € E. (34)

Proof. We can see that the conditions from Statement 15 are a
subset of the ones from Statement 14. Therefore, the conditions from
Statement 15 satisfy the conditions (2)-(5) from Statement 1. Thus,
from the same considerations as when proving the Statement 10, it
remains to prove, that conditions (30), (31) at (o, 8) € A and (34) are
the transitive ones.

The transitivity of relations (30) is confirmed by Statement 3. With
regard to conditions (31), these coincide with the (25) ones and the
transitivity of the last are proved in Statement 13. Note, that the
proof of transitivity of conditions (34) doesn’t depend on the class (A
or E) to which the jobs a and ( belong. At the same time, if not
to take into account the class to which the jobs a and 8 belong, then
relations (34) coincide with those from (28) and the transitivity of last
ones is confirmed by Statement 13, that was required to be proved.

Consequence 5. If the relations 71; < 71441, 6; < 041, v1; >
Vli+1, ki; > k17i+1 for (’i,’i + 1) € A C (33 and relations 7z; > TM,i+1,
Vii > Viis1, ki > ki1 for (4,0 + 1) € E C C3.3 take place, then the
optimal, in sense of (1), ordering of all the n jobsis: i € A — j € E,
1-2=3—=..=2n—-1—=n.
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Proof. We can easily observe that the conditions from Statement
14 are satisfied for each pair from the n jobs, defined in Consequence 5.
At the same time, the transitivity of relations, defined in Consequence
5, can be confirmed in the same mode as of ones from the Statement
15, that was required to be proved.

6 Conclusions

Three classes C5.1, C32 and Cs3 of systems with monotone jobs of
no more than three different processing times in the Mzn Bellman-
Johnson ordering problem are investigated. For the class Cs.o, it is
obtained a set of relatively simple rules for partial ordering or, in the
case that all jobs satisfy the respective conditions, total ordering of the
n jobs. There are obtained the rules for ordering in pairs of adjacent
jobs for classes of systems C51 and Cjs3, too. Rules for ordering the
pairs of jobs, when placing them anywhere in the schedule are defined,
too. Examples of concrete systems, for which the optimal order of all n
jobs can be obtained, are done, too. The obtained results can be used
for jobs ordering in sequential systems, aiming to minimize the total
processing time of all jobs.
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The dissertation is devoted to the investigation of human—computer inter-
action modalities in computer algebra systems and developing of methods for
intelligent interfaces creation for such systems.

The principles of interfaces design are investigated, intelligent interfaces
and interfaces for computer algebra systems are classified; the intelligent in-
terfaces features are described. Some aspects of natural language usage in
intelligent interfaces are revealed.

The problem of computational lexicon development for inflectional lan-
guages is investigated. A notion of inflectional grammar is proposed; it per-
mits to describe the inflexion process in the case when the inflexion model
is known. This grammar was applied to formalize the inflexion process in
Romanian. An algorithm of the morphological models ascertainment for the
cases when the corresponding models are not known is proposed.

According to the proposed methods (static and dynamic ones) a compu-
tational lexicon containing about 1 million words was elaborated. It was used
for developing of several applications.

A number of methods to implement intelligence features in interfaces for
computer algebra systems are proposed. They include problems interception
from the user, adaptation to his preferences, error prevention.
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